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Preface

Artificial Intelligence (AI) has the definite goal of understanding intelligence and
building intelligent systems. However, the methods and formalisms used on the way
to this goal are not firmly set, which has resulted in AI consisting of a multitude of
subdisciplines today. The difficulty in an introductory AI course lies in conveying
as many branches as possible without losing too much depth and precision.

Russell and Norvig’s book [RN10] is more or less the standard introduction into
AI. However, since this book has 1,152 pages, and since it is too extensive and
costly for most students, the requirements for writing this book were clear: it should
be an accessible introduction to modern AI for self-study or as the foundation of a
four-hour lecture, with at most 300 pages. The result is in front of you.

In the space of 300 pages, a field as extensive as AI cannot be fully covered.
To avoid turning the book into a table of contents, I have attempted to go into some
depth and to introduce concrete algorithms and applications in each of the following
branches: agents, logic, search, reasoning with uncertainty, machine learning, and
neural networks.

The fields of image processing, fuzzy logic, and natural language processing are
not covered in detail. The field of image processing, which is important for all of
computer science, is a stand-alone discipline with very good textbooks, such as
[GW08]. Natural language processing has a similar status. In recognizing and gen-
erating text and spoken language, methods from logic, probabilistic reasoning, and
neural networks are applied. In this sense this field is part of AI. On the other hand,
computer linguistics is its own extensive branch of computer science and has much
in common with formal languages. In this book we will point to such appropriate
systems in several places, but not give a systematic introduction. For a first introduc-
tion in this field, we refer to Chaps. 22 and 23 in [RN10]. Fuzzy logic, or fuzzy set
theory, has developed into a branch of control theory due to its primary application
in automation technology and is covered in the corresponding books and lectures.
Therefore we will forego an introduction here.

The dependencies between chapters of the book are coarsely sketched in the
graph shown below. To keep it simple, Chap. 1, with the fundamental introduc-
tion for all further chapters, is left out. As an example, the thicker arrow from 2
to 3 means that propositional logic is a prerequisite for understanding predicate
logic. The thin arrow from 9 to 10 means that neural networks are helpful for un-
derstanding reinforcement learning, but not absolutely necessary. Thin backward
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arrows should make clear that later chapters can give more depth of understanding
to topics which have already been learned.

This book is applicable to students of computer science and other technical natural
sciences and, for the most part, requires high school level knowledge of mathemat-
ics. In several places, knowledge from linear algebra and multidimensional analysis
is needed. For a deeper understanding of the contents, actively working on the ex-
ercises is indispensable. This means that the solutions should only be consulted
after intensive work with each problem, and only to check one’s solutions, true to
Leonardo da Vinci’s motto “Study without devotion damages the brain”. Somewhat
more difficult problems are marked with ❄, and especially difficult ones with ❄ ❄.
Problems which require programming or special computer science knowledge are
labeled with ➳.

On the book’s web site at www.hs-weingarten.de/~ertel/aibook digital materi-
als for the exercises such as training data for learning algorithms, a page with refer-
ences to AI programs mentioned in the book, a list of links to the covered topics, a
clickable list of the bibliography, an errata list, and presentation slides for lecturers
can be found. I ask the reader to please send suggestions, criticisms, and tips about
errors directly to ertel@hs-weingarten.de.

This book is an updated translation of my German book “Grundkurs Künstliche
Intelligenz” published by Vieweg Verlag. My special thanks go to the translator
Nathan Black who in an excellent trans-Atlantic cooperation between Germany and
California via SVN, Skype and Email produced this text. I am grateful to Franz Kur-
feß, who introduced me to Nathan; to Matthew Wight for proofreading the translated
book and to Simon Rees from Springer Verlag for his patience.

I would like to thank my wife Evelyn for her support and patience during this
time consuming project. Special thanks go to Wolfgang Bibel and Chris Loben-
schuss, who carefully corrected the German manuscript. Their suggestions and dis-
cussions lead to many improvements and additions. For reading the corrections and
other valuable services, I would like to thank Richard Cubek, Celal Döven, Joachim
Feßler, Nico Hochgeschwender, Paul Kirner, Wilfried Meister, Norbert Perk, Pe-
ter Radtke, Markus Schneider, Manfred Schramm, Uli Stärk, Michel Tokic, Arne
Usadel and all interested students. My thanks also go out to Florian Mast for the
priceless cartoons and very effective collaboration.

I hope that during your studies this book will help you share my fascination with
Artificial Intelligence.

Wolfgang ErtelRavensburg
February 2011
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1Introduction

1.1 What Is Artificial Intelligence?

The term artificial intelligence stirs emotions. For one thing there is our fascination
with intelligence, which seemingly imparts to us humans a special place among
life forms. Questions arise such as “What is intelligence?”, “How can one measure
intelligence?” or “How does the brain work?”. All these questions are meaningful
when trying to understand artificial intelligence. However, the central question for
the engineer, especially for the computer scientist, is the question of the intelligent
machine that behaves like a person, showing intelligent behavior.

The attribute artificial might awaken much different associations. It brings up
fears of intelligent cyborgs. It recalls images from science fiction novels. It raises
the question of whether our highest good, the soul, is something we should try to
understand, model, or even reconstruct.

With such different offhand interpretations, it becomes difficult to define the term
artificial intelligence or AI simply and robustly. Nevertheless I would like to try,
using examples and historical definitions, to characterize the field of AI. In 1955,
John McCarthy, one of the pioneers of AI, was the first to define the term artificial
intelligence, roughly as follows:

The goal of AI is to develop machines that behave as though they were intelligent.

To test this definition, the reader might imagine the following scenario. Fif-
teen or so small robotic vehicles are moving on an enclosed four by four meter
square surface. One can observe various behavior patterns. Some vehicles form
small groups with relatively little movement. Others move peacefully through the
space and gracefully avoid any collision. Still others appear to follow a leader. Ag-
gressive behaviors are also observable. Is what we are seeing intelligent behavior?

According to McCarthy’s definition the aforementioned robots can be described
as intelligent. The psychologist Valentin Braitenberg has shown that this seemingly
complex behavior can be produced by very simple electrical circuits [Bra84]. So-
called Braitenberg vehicles have two wheels, each of which is driven by an inde-
pendent electric motor. The speed of each motor is influenced by a light sensor on
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2 1 Introduction

Fig. 1.1 Two very simple
Braitenberg vehicles and their
reactions to a light source

the front of the vehicle as shown in Fig. 1.1. The more light that hits the sensor,
the faster the motor runs. Vehicle 1 in the left part of the figure, according to its
configuration, moves away from a point light source. Vehicle 2 on the other hand
moves toward the light source. Further small modifications can create other behav-
ior patterns, such that with these very simple vehicles we can realize the impressive
behavior described above.

Clearly the above definition is insufficient because AI has the goal of solving
difficult practical problems which are surely too demanding for the Braitenberg ve-
hicle. In the Encyclopedia Britannica [Bri91] one finds a Definition that goes like:

AI is the ability of digital computers or computer controlled robots to solve problems that
are normally associated with the higher intellectual processing capabilities of humans . . .

But this definition also has weaknesses. It would admit for example that a com-
puter with large memory that can save a long text and retrieve it on demand displays
intelligent capabilities, for memorization of long texts can certainly be considered
a higher intellectual processing capability of humans, as can for example the quick
multiplication of two 20-digit numbers. According to this definition, then, every
computer is an AI system. This dilemma is solved elegantly by the following defi-
nition by Elaine Rich [Ric83]:

Artificial Intelligence is the study of how to make computers do things at which, at the
moment, people are better.

Rich, tersely and concisely, characterizes what AI researchers have been doing for
the last 50 years. Even in the year 2050, this definition will be up to date.

Tasks such as the execution of many computations in a short amount of time
are the strong points of digital computers. In this regard they outperform humans by
many multiples. In many other areas, however, humans are far superior to machines.
For instance, a person entering an unfamiliar room will recognize the surroundings
within fractions of a second and, if necessary, just as swiftly make decisions and plan
actions. To date, this task is too demanding for autonomous1 robots. According to
Rich’s definition, this is therefore a task for AI. In fact, research on autonomous
robots is an important, current theme in AI. Construction of chess computers, on
the other hand, has lost relevance because they already play at or above the level of
grandmasters.

It would be dangerous, however, to conclude from Rich’s definition that AI is
only concerned with the pragmatic implementation of intelligent processes. Intelli-
gent systems, in the sense of Rich’s definition, cannot be built without a deep un-

1An autonomous robot works independently, without manual support, in particular without remote
control.
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derstanding of human reasoning and intelligent action in general, because of which
neuroscience (see Sect. 1.1.1) is of great importance to AI. This also shows that the
other cited definitions reflect important aspects of AI.

A particular strength of human intelligence is adaptivity. We are capable of ad-
justing to various environmental conditions and change our behavior accordingly
through learning. Precisely because our learning ability is so vastly superior to that
of computers, machine learning is, according to Rich’s definition, a central subfield
of AI.

1.1.1 Brain Science and Problem Solving

Through research of intelligent systems we can try to understand how the human
brain works and then model or simulate it on the computer. Many ideas and princi-
ples in the field of neural networks (see Chap. 9) stem from brain science with the
related field of neuroscience.

A very different approach results from taking a goal-oriented line of action, start-
ing from a problem and trying to find the most optimal solution. How humans solve
the problem is treated as unimportant here. The method, in this approach, is sec-
ondary. First and foremost is the optimal intelligent solution to the problem. Rather
than employing a fixed method (such as, for example, predicate logic) AI has as its
constant goal the creation of intelligent agents for as many different tasks as pos-
sible. Because the tasks may be very different, it is unsurprising that the methods
currently employed in AI are often also quite different. Similar to medicine, which
encompasses many different, often life-saving diagnostic and therapy procedures,
AI also offers a broad palette of effective solutions for widely varying applications.
For mental inspiration, consider Fig. 1.2 on page 4. Just as in medicine, there is no
universal method for all application areas of AI, rather a great number of possible
solutions for the great number of various everyday problems, big and small.

Cognitive science is devoted to research into human thinking at a somewhat
higher level. Similarly to brain science, this field furnishes practical AI with many
important ideas. On the other hand, algorithms and implementations lead to fur-
ther important conclusions about how human reasoning functions. Thus these three
fields benefit from a fruitful interdisciplinary exchange. The subject of this book,
however, is primarily problem-oriented AI as a subdiscipline of computer science.

There are many interesting philosophical questions surrounding intelligence and
artificial intelligence. We humans have consciousness; that is, we can think about
ourselves and even ponder that we are able to think about ourselves. How does
consciousness come to be? Many philosophers and neurologists now believe that the
mind and consciousness are linked with matter, that is, with the brain. The question
of whether machines could one day have a mind or consciousness could at some
point in the future become relevant. The mind-body problem in particular concerns
whether or not the mind is bound to the body. We will not discuss these questions
here. The interested reader may consult [Spe98, Spe97] and is invited, in the course
of AI technology studies, to form a personal opinion about these questions.
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Fig. 1.2 A small sample of the solutions offered by AI

1.1.2 The Turing Test and Chatterbots

Alan Turing made a name for himself as an early pioneer of AI with his definition
of an intelligent machine, in which the machine in question must pass the following
test. The test person Alice sits in a locked room with two computer terminals. One
terminal is connected to a machine, the other with a non-malicious person Bob.
Alice can type questions into both terminals. She is given the task of deciding, after
five minutes, which terminal belongs to the machine. The machine passes the test if
it can trick Alice at least 30% of the time [Tur50].
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While the test is very interesting philosophically, for practical AI, which deals
with problem solving, it is not a very relevant test. The reasons for this are similar to
those mentioned above related to Braitenberg vehicles (see Exercise 1.3 on page 14).

The AI pioneer and social critic Joseph Weizenbaum developed a program named
Eliza, which is meant to answer a test subject’s questions like a human psycholo-
gist [Wei66]. He was in fact able to demonstrate success in many cases. Supposedly
his secretary often had long discussions with the program. Today in the internet there
are many so-called chatterbots, some of whose initial responses are quite impres-
sive. After a certain amount of time, however, their artificial nature becomes appar-
ent. Some of these programs are actually capable of learning, while others possess
extraordinary knowledge of various subjects, for example geography or software
development. There are already commercial applications for chatterbots in online
customer support and there may be others in the field of e-learning. It is conceivable
that the learner and the e-learning system could communicate through a chatterbot.
The reader may wish to compare several chatterbots and evaluate their intelligence
in Exercise 1.1 on page 14.

1.2 The History of AI

AI draws upon many past scientific achievements which are not mentioned here, for
AI as a science in its own right has only existed since the middle of the Twentieth
Century. Table 1.1 on page 10, with the most important AI milestones, and a graph-
ical representation of the main movements of AI in Fig. 1.3 on page 6 complement
the following text.

1.2.1 The First Beginnings

In the 1930s Kurt Gödel, Alonso Church, and Alan Turing laid important founda-
tions for logic and theoretical computer science. Of particular interest for AI are
Gödel’s theorems. The completeness theorem states that first-order predicate logic
is complete. This means that every true statement that can be formulated in predi-
cate logic is provable using the rules of a formal calculus. On this basis, automatic
theorem provers could later be constructed as implementations of formal calculi.
With the incompleteness theorem, Gödel showed that in higher-order logics there
exist true statements that are unprovable.2 With this he uncovered painful limits of
formal systems.

Alan Turing’s proof of the undecidability of the halting problem also falls into
this time period. He showed that there is no program that can decide whether a
given arbitrary program (and its respective input) will run in an infinite loop. With

2Higher-order logics are extensions of predicate logic, in which not only variables, but also func-
tion symbols or predicates can appear as terms in a quantification. Indeed, Gödel only showed that
any system that is based on predicate logic and can formulate Peano arithmetic is incomplete.
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Fig. 1.3 History of the various AI areas. The width of the bars indicates prevalence of the
method’s use

this Turing also identified a limit for intelligent programs. It follows, for example,
that there will never be a universal program verification system.3

In the 1940s, based on results from neuroscience, McCulloch, Pitts and Hebb
designed the first mathematical models of neural networks. However, computers at
that time lacked sufficient power to simulate simple brains.

1.2.2 Logic Solves (Almost) All Problems

AI as a practical science of thought mechanization could of course only begin once
there were programmable computers. This was the case in the 1950s. Newell and
Simon introduced Logic Theorist, the first automatic theorem prover, and thus also
showed that with computers, which actually only work with numbers, one can also
process symbols. At the same time McCarthy introduced, with the language LISP,
a programming language specially created for the processing of symbolic structures.
Both of these systems were introduced in 1956 at the historic Dartmouth Confer-
ence, which is considered the birthday of AI.

In the US, LISP developed into the most important tool for the implementation
of symbol-processing AI systems. Thereafter the logical inference rule known as
resolution developed into a complete calculus for predicate logic.

3This statement applies to “total correctness”, which implies a proof of correct execution as well
as a proof of termination for every valid input.
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In the 1970s the logic programming language PROLOG was introduced as the
European counterpart to LISP. PROLOG offers the advantage of allowing direct
programming using Horn clauses, a subset of predicate logic. Like LISP, PROLOG
has data types for convenient processing of lists.

Until well into the 1980s, a breakthrough spirit dominated AI, especially among
many logicians. The reason for this was the string of impressive achievements in
symbol processing. With the Fifth Generation Computer Systems project in Japan
and the ESPRIT program in Europe, heavy investment went into the construction of
intelligent computers.

For small problems, automatic provers and other symbol-processing systems
sometimes worked very well. The combinatorial explosion of the search space, how-
ever, defined a very narrow window for these successes. This phase of AI was de-
scribed in [RN10] as the “Look, Ma, no hands!” era.

Because the economic success of AI systems fell short of expectations, funding
for logic-based AI research in the United States fell dramatically during the 1980s.

1.2.3 The New Connectionism

During this phase of disillusionment, computer scientists, physicists, and Cognitive
scientists were able to show, using computers which were now sufficiently pow-
erful, that mathematically modeled neural networks are capable of learning using
training examples, to perform tasks which previously required costly programming.
Because of the fault-tolerance of such systems and their ability to recognize pat-
terns, considerable successes became possible, especially in pattern recognition.
Facial recognition in photos and handwriting recognition are two example appli-
cations. The system Nettalk was able to learn speech from example texts [SR86].
Under the name connectionism, a new subdiscipline of AI was born.

Connectionism boomed and the subsidies flowed. But soon even here feasibility
limits became obvious. The neural networks could acquire impressive capabilities,
but it was usually not possible to capture the learned concept in simple formulas or
logical rules. Attempts to combine neural nets with logical rules or the knowledge
of human experts met with great difficulties. Additionally, no satisfactory solution
to the structuring and modularization of the networks was found.

1.2.4 Reasoning Under Uncertainty

AI as a practical, goal-driven science searched for a way out of this crisis. One
wished to unite logic’s ability to explicitly represent knowledge with neural net-
works’ strength in handling uncertainty. Several alternatives were suggested.

The most promising, probabilistic reasoning, works with conditional probabili-
ties for propositional calculus formulas. Since then many diagnostic and expert sys-
tems have been built for problems of everyday reasoning using Bayesian networks.
The success of Bayesian networks stems from their intuitive comprehensibility, the
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clean semantics of conditional probability, and from the centuries-old, mathemati-
cally grounded probability theory.

The weaknesses of logic, which can only work with two truth values, can be
solved by fuzzy logic, which pragmatically introduces infinitely many values be-
tween zero and one. Though even today its theoretical foundation is not totally firm,
it is being successfully utilized, especially in control engineering.

A much different path led to the successful synthesis of logic and neural networks
under the name hybrid systems. For example, neural networks were employed to
learn heuristics for reduction of the huge combinatorial search space in proof dis-
covery [SE90].

Methods of decision tree learning from data also work with probabilities. Sys-
tems like CART, ID3 and C4.5 can quickly and automatically build very accurate
decision trees which can represent propositional logic concepts and then be used
as expert systems. Today they are a favorite among machine learning techniques
(Sect. 8.4).

Since about 1990, data mining has developed as a subdiscipline of AI in the area
of statistical data analysis for extraction of knowledge from large databases. Data
mining brings no new techniques to AI, rather it introduces the requirement of us-
ing large databases to gain explicit knowledge. One application with great market
potential is steering ad campaigns of big businesses based on analysis of many mil-
lions of purchases by their customers. Typically, machine learning techniques such
as decision tree learning come into play here.

1.2.5 Distributed, Autonomous and Learning Agents

Distributed artificial intelligence, DAI, has been an active area research since about
1985. One of its goals is the use of parallel computers to increase the efficiency
of problem solvers. It turned out, however, that because of the high computational
complexity of most problems, the use of “intelligent” systems is more beneficial
than parallelization itself.

A very different conceptual approach results from the development of au-
tonomous software agents and robots that are meant to cooperate like human teams.
As with the aforementioned Braitenberg vehicles, there are many cases in which
an individual agent is not capable of solving a problem, even with unlimited re-
sources. Only the cooperation of many agents leads to the intelligent behavior or to
the solution of a problem. An ant colony or a termite colony is capable of erecting
buildings of very high architectural complexity, despite the fact that no single ant
comprehends how the whole thing fits together. This is similar to the situation of
provisioning bread for a large city like New York [RN10]. There is no central plan-
ning agency for bread, rather there are hundreds of bakers that know their respective
areas of the city and bake the appropriate amount of bread at those locations.

Active skill acquisition by robots is an exciting area of current research. There
are robots today, for example, that independently learn to walk or to perform various
motorskills related to soccer (Chap. 10). Cooperative learning of multiple robots to
solve problems together is still in its infancy.



1.3 Agents 9

1.2.6 AI Grows up

The above systems offered by AI today are not a universal recipe, but a workshop
with a manageable number of tools for very different tasks. Most of these tools
are well-developed and are available as finished software libraries, often with con-
venient user interfaces. The selection of the right tool and its sensible use in each
individual case is left to the AI developer or knowledge engineer. Like any other
artisanship, this requires a solid education, which this book is meant to promote.

More than nearly any other science, AI is interdisciplinary, for it draws upon
interesting discoveries from such diverse fields as logic, operations research, statis-
tics, control engineering, image processing, linguistics, philosophy, psychology, and
neurobiology. On top of that, there is the subject area of the particular application.
To successfully develop an AI project is therefore not always so simple, but almost
always extremely exciting.

1.3 Agents

Although the term intelligent agents is not new to AI, only in recent years has it
gained prominence through [RN10], among others. Agent denotes rather generally
a system that processes information and produces an output from an input. These
agents may be classified in many different ways.

In classical computer science, software agents are primarily employed (Fig. 1.4
on page 11). In this case the agent consists of a program that calculates a result from
user input.

In robotics, on the other hand, hardware agents (also called robots) are employed,
which additionally have sensors and actuators at their disposal (Fig. 1.5 on page 11).
The agent can perceive its environment with the sensors. With the actuators it carries
out actions and changes its environment.

With respect to the intelligence of the agent, there is a distinction between reflex
agents, which only react to input, and agents with memory, which can also include
the past in their decisions. For example, a driving robot that through its sensors
knows its exact position (and the time) has no way, as a reflex agent, of determining
its velocity. If, however, it saves the position, at short, discrete time steps, it can thus
easily calculate its average velocity in the previous time interval.

If a reflex agent is controlled by a deterministic program, it represents a function
of the set of all inputs to the set of all outputs. An agent with memory, on the other
hand, is in general not a function. Why? (See Exercise 1.5 on page 14.) Reflex agents
are sufficient in cases where the problem to be solved involves a Markov decision
process. This is a process in which only the current state is needed to determine the
optimal next action (see Chap. 10).

A mobile robot which should move from room 112 to room 179 in a building
takes actions different from those of a robot that should move to room 105. In other
words, the actions depend on the goal. Such agents are called goal-based.
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Table 1.1 Milestones in the development of AI from Gödel to today

1931 The Austrian Kurt Gödel shows that in first-order predicate logic all true statements
are derivable [Göd31a]. In higher-order logics, on the other hand, there are true
statements that are unprovable [Göd31b]. (In [Göd31b] Gödel showed that predicate
logic extended with the axioms of arithmetic is incomplete.)

1937 Alan Turing points out the limits of intelligent machines with the halting
problem [Tur37].

1943 McCulloch and Pitts model neural networks and make the connection to propositional
logic.

1950 Alan Turing defines machine intelligence with the Turing test and writes about
learning machines and genetic algorithms [Tur50].

1951 Marvin Minsky develops a neural network machine. With 3000 vacuum tubes he
simulates 40 neurons.

1955 Arthur Samuel (IBM) builds a learning chess program that plays better than its
developer [Sam59].

1956 McCarthy organizes a conference in Dartmouth College. Here the name Artificial
Intelligence was first introduced.

Newell and Simon of Carnegie Mellon University (CMU) present the Logic Theorist,
the first symbol-processing computer program [NSS83].

1958 McCarthy invents at MIT (Massachusetts Institute of Technology) the high-level
language LISP. He writes programs that are capable of modifying themselves.

1959 Gelernter (IBM) builds the Geometry Theorem Prover.

1961 The General Problem Solver (GPS) by Newell and Simon imitates human
thought [NS61].

1963 McCarthy founds the AI Lab at Stanford University.

1965 Robinson invents the resolution calculus for predicate logic [Rob65] (Sect. 3.5).

1966 Weizenbaum’s program Eliza carries out dialog with people in natural
language [Wei66] (Sect. 1.1.2).

1969 Minsky and Papert show in their book Perceptrons that the perceptron, a very simple
neural network, can only represent linear functions [MP69] (Sect. 1.1.2).

1972 French scientist Alain Colmerauer invents the logic programming language PROLOG
(Chap. 5).

British physician de Dombal develops an expert system for diagnosis of acute
abdominal pain [dDLS+72]. It goes unnoticed in the mainstream AI community of
the time (Sect. 7.3).

1976 Shortliffe and Buchanan develop MYCIN, an expert system for diagnosis of
infectious diseases, which is capable of dealing with uncertainty (Chap. 7).

1981 Japan begins, at great expense, the “Fifth Generation Project” with the goal of
building a powerful PROLOG machine.

1982 R1, the expert system for configuring computers, saves Digital Equipment
Corporation 40 million dollars per year [McD82].

1986 Renaissance of neural networks through, among others, Rumelhart, Hinton and
Sejnowski [RM86]. The system Nettalk learns to read texts aloud [SR86] (Chap. 9).

1990 Pearl [Pea88], Cheeseman [Che85], Whittaker, Spiegelhalter bring probability theory
into AI with Bayesian networks (Sect. 7.4). Multi-agent systems become popular.

1992 Tesauros TD-gammon program demonstrates the advantages of reinforcement
learning.

1993 Worldwide RoboCup initiative to build soccer-playing autonomous robots [Roba].
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Table 1.1 (continued)

1995 From statistical learning theory, Vapnik develops support vector machines, which are
very important today.

1997 IBM’s chess computer Deep Blue defeats the chess world champion Gary Kasparov.

First international RoboCup competition in Japan.

2003 The robots in RoboCup demonstrate impressively what AI and robotics are capable of
achieving.

2006 Service robotics becomes a major AI research area.

2010 Autonomous robots start learning their policies.

2011 IBM’s natural language understanding and question answering program “Watson”
defeats two human champions in the U.S. television quiz show “Jeopardy!”
(Sect. 1.4).

Fig. 1.4 A software agent
with user interaction

Fig. 1.5 A hardware agent

Example 1.1 A spam filter is an agent that puts incoming emails into wanted or
unwanted (spam) categories, and deletes any unwanted emails. Its goal as a goal-
based agent is to put all emails in the right category. In the course of this not-so-
simple task, the agent can occasionally make mistakes. Because its goal is to classify
all emails correctly, it will attempt to make as few errors as possible. However, that
is not always what the user has in mind. Let us compare the following two agents.
Out of 1,000 emails, Agent 1 makes only 12 errors. Agent 2 on the other hand
makes 38 errors with the same 1,000 emails. Is it therefore worse than Agent 1? The
errors of both agents are shown in more detail in the following table, the so-called
“confusion matrix”:

Agent 1: Agent 2:

correct class
wanted spam

spam filter
decides

wanted 189 1
spam 11 799

correct class
wanted spam

spam filter
decides

wanted 200 38
spam 0 762
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Agent 1 in fact makes fewer errors than Agent 2, but those few errors are severe
because the user loses 11 potentially important emails. Because there are in this
case two types of errors of differing severity, each error should be weighted with the
appropriate cost factor (see Sect. 7.3.5 and Exercise 1.7 on page 14).

The sum of all weighted errors gives the total cost caused by erroneous decisions.
The goal of a cost-based agent is to minimize the cost of erroneous decisions in
the long term, that is, on average. In Sect. 7.3 we will become familiar with the
diagnostic system LEXMED as an example of a cost-based agent.

Analogously, the goal of a utility-based agent is to maximize the utility derived
from correct decisions in the long term, that is, on average. The sum of all decisions
weighted by their respective utility factors gives the total utility.

Of particular interest in AI are Learning agents, which are capable of changing
themselves given training examples or through positive or negative feedback, such
that the average utility of their actions grows over time (see Chap. 8).

As mentioned in Sect. 1.2.5, distributed agents are increasingly coming into use,
whose intelligence are not localized in one agent, but rather can only be seen through
cooperation of many agents.

The design of an agent is oriented, along with its objective, strongly toward its
environment, or alternately its picture of the environment, which strongly depends
on it sensors. The environment is observable if the agent always knows the com-
plete state of the world. Otherwise the environment is only partially observable.
If an action always leads to the same result, then the environment is deterministic.
Otherwise it is nondeterministic. In a discrete environment only finitely many states
and actions occur, whereas a continuous environment boasts infinitely many states
or actions.

1.4 Knowledge-Based Systems
An agent is a program that implements a mapping from perceptions to actions. For
simple agents this way of looking at the problem is sufficient. For complex applica-
tions in which the agent must be able to rely on a large amount of information and is
meant to do a difficult task, programming the agent can be very costly and unclear
how to proceed. Here AI provides a clear path to follow that will greatly simplify
the work.

First we separate knowledge from the system or program, which uses the knowl-
edge to, for example, reach conclusions, answer queries, or come up with a plan.
This system is called the inference mechanism. The knowledge is stored in a knowl-
edge base (KB). Acquisition of knowledge in the knowledge base is denoted Knowl-
edge Engineering and is based on various knowledge sources such as human experts,
the knowledge engineer, and databases. Active learning systems can also acquire
knowledge though active exploration of the world (see Chap. 10). In Fig. 1.6 on
page 13 the general architecture of knowledge-based systems is presented.

Moving toward a separation of knowledge and inference has several crucial ad-
vantages. The separation of knowledge and inference can allow inference systems to
be implemented in a largely application-independent way. For example, it is much
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Fig. 1.6 Structure of a classic knowledge-processing system

easier to replace the knowledge base of a medical expert system than to program a
whole new system.

Through the decoupling of the knowledge base from inference, knowledge can
be stored declaratively. In the knowledge base there is only a description of the
knowledge, which is independent from the inference system in use. Without this
clear separation, knowledge and processing of inference steps would be interwoven,
and any changes to the knowledge would be very costly.

Formal language as a convenient interface between man and machine lends itself
to the representation of knowledge in the knowledge base. In the following chap-
ters we will get to know a whole series of such languages. First, in Chaps. 2 and 3
there are propositional calculus and first-order predicate logic (PL1). But other for-
malisms such as probabilistic logic, fuzzy logic or decision trees are also presented.
We start with propositional calculus and the related inference systems. Building on
that, we will present predicate logic, a powerful language that is accessible by ma-
chines and very important in AI.

As an example for a large scale knowledge based system we want to refer to the
software agent “Watson”. Developed at IBM together with a number of universities,
Watson is a question answering program, that can be fed with clues given in natural
language. It works on a knowledge base comprising four terabytes of hard disk stor-
age, including the full text of Wikipedia [FNA+09]. Watson was developed within
IBM’s DeepQA project which is characterized in [Dee11] as follows:

The DeepQA project at IBM shapes a grand challenge in Computer Science that aims to
illustrate how the wide and growing accessibility of natural language content and the in-
tegration and advancement of Natural Language Processing, Information Retrieval, Ma-
chine Learning, Knowledge Representation and Reasoning, and massively parallel compu-
tation can drive open-domain automatic Question Answering technology to a point where
it clearly and consistently rivals the best human performance.

In the U.S. television quiz show “Jeopardy!”, in February 2011, Watson de-
feated the two human champions Brad Rutter and Ken Jennings in a two-game,
combined-point match and won the one million dollar price. One of Watson’s par-
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ticular strengths was its very fast reaction to the questions with the result that Watson
often hit the buzzer (using a solenoid) faster than its human competitors and then
was able to give the first answer to the question.

The high performance and short reaction times of Watson were due to an im-
plementation on 90 IBM Power 750 servers, each of which contains 32 processors,
resulting in 2880 parallel processors.

1.5 Exercises

Exercise 1.1 Test some of the chatterbots available on the internet. Start for exam-
ple with www.hs-weingarten.de/~ertel/aibook in the collection of links under Tur-
ingtest/Chatterbots, or at www.simonlaven.com or www.alicebot.org. Write down a
starting question and measure the time it takes, for each of the various programs,
until you know for certain that it is not a human.

❄ ❄ Exercise 1.2 At www.pandorabots.com you will find a server on which you can
build a chatterbot with the markup language AIML quite easily. Depending on your
interest level, develop a simple or complex chatterbot, or change an existing one.

Exercise 1.3 Give reasons for the unsuitability of the Turing test as a definition of
“artificial intelligence” in practical AI.

➳ Exercise 1.4 Many well-known inference processes, learning processes, etc. are
NP-complete or even undecidable. What does this mean for AI?

Exercise 1.5
(a) Why is a deterministic agent with memory not a function from the set of all

inputs to the set of all outputs, in the mathematical sense?
(b) How can one change the agent with memory, or model it, such that it becomes

equivalent to a function but does not lose its memory?

Exercise 1.6 Let there be an agent with memory that can move within a plane. From
its sensors, it receives at clock ticks of a regular interval �t its exact position (x, y)

in Cartesian coordinates.
(a) Give a formula with which the agent can calculate its velocity from the current

time t and the previous measurement of t − �t .
(b) How must the agent be changed so that it can also calculate its acceleration?

Provide a formula here as well.

❄ Exercise 1.7
(a) Determine for both agents in Example 1.1 on page 11 the costs created by the

errors and compare the results. Assume here that having to manually delete a
spam email costs one cent and retrieving a deleted email, or the loss of an email,
costs one dollar.

(b) Determine for both agents the profit created by correct classifications and com-
pare the results. Assume that for every desired email recognized, a profit of one
dollar accrues and for every correctly deleted spam email, a profit of one cent.
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In propositional logic, as the name suggests, propositions are connected by logical
operators. The statement “the street is wet” is a proposition, as is “it is raining”.
These two propositions can be connected to form the new proposition

if it is raining the street is wet.

Written more formally

it is raining ⇒ the street is wet.

This notation has the advantage that the elemental propositions appear again in un-
altered form. So that we can work with propositional logic precisely, we will begin
with a definition of the set of all propositional logic formulas.

2.1 Syntax

Definition 2.1 Let Op = {¬,∧,∨,⇒, ⇔ , ( , )} be the set of logical opera-
tors and Σ a set of symbols. The sets Op,Σ and {t, f } are pairwise disjoint.
Σ is called the signature and its elements are the proposition variables. The
set of propositional logic formulas is now recursively defined:
• t and f are (atomic) formulas.
• All proposition variables, that is all elements from Σ , are (atomic) formu-

las.
• If A and B are formulas, then ¬A, (A), A ∧ B, A ∨ B, A ⇒ B, A ⇔ B

are also formulas.

This elegant recursive definition of the set of all formulas allows us to generate
infinitely many formulas. For example, given Σ = {A,B,C},

A ∧ B, A ∧ B ∧ C, A ∧ A ∧ A, C ∧ B ∨ A, (¬A ∧ B) ⇒ (¬C ∨ A)

are formulas. (((A)) ∨ B) is also a syntactically correct formula.

W. Ertel, Introduction to Artificial Intelligence,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-299-5_2, © Springer-Verlag London Limited 2011
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Definition 2.2 We read the symbols and operators in the following way:

t : “true”
f : “false”

¬A: “not A” (negation)
A ∧ B: “A and B” (conjunction)
A ∨ B: “A or B” (disjunction)

A ⇒ B: “if A then B” (implication (also called material implication))
A ⇔ B: “A if and only if B” (equivalence)

The formulas defined in this way are so far purely syntactic constructions without
meaning. We are still missing the semantics.

2.2 Semantics

In propositional logic there are two truth values: t for “true” and f for “false”. We
begin with an example and ask ourselves whether the formula A ∧ B is true. The
answer is: it depends on whether the variables A and B are true. For example, if A

stands for “It is raining today” and B for “It is cold today” and these are both true,
then A∧B is true. If, however, B represents “It is hot today” (and this is false), then
A ∧ B is false.

We must obviously assign truth values that reflect the state of the world to propo-
sition variables. Therefore we define

Definition 2.3 A mapping I : Σ → {w,f }, which assigns a truth value to
every proposition variable, is called an interpretation.

Because every proposition variable can take on two truth values, every proposi-
tional logic formula with n different variables has 2n different interpretations. We
define the truth values for the basic operations by showing all possible interpreta-
tions in a truth table (see Table 2.1 on page 17).

The empty formula is true for all interpretations. In order to determine the truth
value for complex formulas, we must also define the order of operations for logical
operators. If expressions are parenthesized, the term in the parentheses is evaluated
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Table 2.1 Definition of the
logical operators by truth
table

A B (A) ¬A A ∧ B A ∨ B A ⇒ B A ⇔ B

t t t f t t t t

t f t f f t f f

f t f t f t t f

f f f t f f t t

first. For unparenthesized formulas, the priorities are ordered as follows, beginning
with the strongest binding: ¬,∧,∨,⇒, ⇔ .

To clearly differentiate between the equivalence of formulas and syntactic equiv-
alence, we define

Definition 2.4 Two formulas F and G are called semantically equivalent if
they take on the same truth value for all interpretations. We write F ≡ G.

Semantic equivalence serves above all to be able to use the meta-language, that
is, natural language, to talk about the object language, namely logic. The statement
“A ≡ B” conveys that the two formulas A and B are semantically equivalent. The
statement “A ⇔ B” on the other hand is a syntactic object of the formal language
of propositional logic.

According to how many interpretations in which a formula is true, we can divide
formulas into the following classes:

Definition 2.5 A formula is called
• Satisfiable if it is true for at least one interpretation.
• Logically valid or simply valid if it is true for all interpretations. True for-

mulas are also called tautologies.
• Unsatisfiable if it is not true for any interpretation.
Every interpretation that satisfies a formula is called a model of the formula.

Clearly the negation of every generally valid formula is unsatisfiable. The nega-
tion of a satisfiable, but not generally valid formula F is satisfiable.

We are now able to create truth tables for complex formulas to ascertain their
truth values. We put this into action immediately using equivalences of formulas
which are important in practice.
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Theorem 2.1 The operations ∧,∨ are commutative and associative, and the
following equivalences are generally valid:

¬A ∨ B ⇔ A ⇒ B (implication)
A ⇒ B ⇔ ¬B ⇒ ¬A (contraposition)

(A ⇒ B) ∧ (B ⇒ A) ⇔ (A ⇔ B) (equivalence)
¬(A ∧ B) ⇔ ¬A ∨ ¬B (De Morgan’s law)
¬(A ∨ B) ⇔ ¬A ∧ ¬B

A ∨ (B ∧ C) ⇔ (A ∨ B) ∧ (A ∨ C) (distributive law)
A ∧ (B ∨ C) ⇔ (A ∧ B) ∨ (A ∧ C)

A ∨ ¬A ⇔ w (tautology)
A ∧ ¬A ⇔ f (contradiction)

A ∨ f ⇔ A

A ∨ w ⇔ w

A ∧ f ⇔ f

A ∧ w ⇔ A

Proof To show the first equivalence, we calculate the truth table for ¬A ∨ B and
A ⇒ B and see that the truth values for both formulas are the same for all inter-
pretations. The formulas are therefore equivalent, and thus all the values of the last
column are “t”s.

A B ¬A ¬A ∨ B A ⇒ B (¬A ∨ B) ⇔ (A ⇒ B)

t t f t t t

t f f f f t

f t t t t t

f f t t t t

The proofs for the other equivalences are similar and are recommended as exercises
for the reader (Exercise 2.2 on page 29). �

2.3 Proof Systems

In AI we are interested in taking existing knowledge and from that deriving new
knowledge or answering questions. In propositional logic this means showing that
a knowledge base KB—that is, a (possibly extensive) propositional logic formula—
a formula Q1 follows. Thus, we first define the term “entailment”.

1Here Q stands for query.
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Definition 2.6 A formula KB entails a formula Q (or Q follows from KB) if
every model of KB is also a model of Q. We write KB |� Q.

In other words, in every interpretation in which KB is true, Q is also true. More
succinctly, whenever KB is true, Q is also true. Because, for the concept of entail-
ment, interpretations of variables are brought in, we are dealing with a semantic
concept.

Every formula that is not valid chooses so to speak a subset of the set of all inter-
pretations as its model. Tautologies such as A∨¬A, for example, do not restrict the
number of satisfying interpretations because their proposition is empty. The empty
formula is therefore true in all interpretations. For every tautology T then ∅ |� T .
Intuitively this means that tautologies are always true, without restriction of the in-
terpretations by a formula. For short we write |� T . Now we show an important
connection between the semantic concept of entailment and syntactic implication.

Theorem 2.2 (Deduktionstheorem)

A |� B if and only if |� A ⇒ B.

Proof Observe the truth table for implication:

A B A ⇒ B

t t t

t f f

f t t

f f t

An arbitrary implication A ⇒ B is clearly always true except with the interpretation
A 
→ t,B 
→ f . Assume that A |� B holds. This means that for every interpretation
that makes A true, B is also true. The critical second row of the truth table does
not even apply in that case. Therefore A ⇒ B is true, which means that A ⇒ B is a
tautology. Thus one direction of the statement has been shown.

Now assume that A ⇒ B holds. Thus the critical second row of the truth table is
also locked out. Every model of A is then also a model of B . Then A |� B holds. �

If we wish to show that KB entails Q, we can also demonstrate by means of the
truth table method that KB ⇒ Q is a tautology. Thus we have our first proof system
for propositional logic, which is easily automated. The disadvantage of this method
is the very long computation time in the worst case. Specifically, in the worst case
with n proposition variables, for all 2n interpretations of the variables the formula
KB ⇒ Q must be evaluated. The computation time grows therefore exponentially
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with the number of variables. Therefore this process is unusable for large variable
counts, at least in the worst case.

If a formula KB entails a formula Q, then by the deduction theorem KB ⇒ Q is
a tautology. Therefore the negation ¬(KB ⇒ Q) is unsatisfiable. We have

¬(KB ⇒ Q) ≡ ¬(¬KB ∨ Q) ≡ KB ∧ ¬Q.

Therefore KB ∧ ¬Q is also satisfiable. We formulate this simple, but important
consequence of the deduction theorem as a theorem.

Theorem 2.3 (Proof by contradiction) KB |� Q if and only if KB ∧ ¬Q is
unsatisfiable.

To show that the query Q follows from the knowledge base KB, we can also add
the negated query ¬Q to the knowledge base and derive a contradiction. Because
of the equivalence A ∧ ¬A ⇔ f from Theorem 2.1 on page 18 we know that a
contradiction is unsatisfiable. Therefore, Q has been proved. This procedure, which
is frequently used in mathematics, is also used in various automatic proof calculi
such as the resolution calculus and in the processing of PROLOG programs.

One way of avoiding having to test all interpretations with the truth table method
is the syntactic manipulation of the formulas KB and Q by application of inference
rules with the goal of greatly simplifying them, such that in the end we can instantly
see that KB |� Q. We call this syntactic process derivation and write KB � Q. Such
syntactic proof systems are called calculi. To ensure that a calculus does not gener-
ate errors, we define two fundamental properties of calculi.

Definition 2.7 A calculus is called sound if every derived proposition follows
semantically. That is, if it holds for formulas KB and Q that

if KB � Q then KB |� Q.

A calculus is called complete if all semantic consequences can be derived.
That is, for formulas KB and Q the following it holds:

if KB |� Q then KB � Q.

The soundness of a calculus ensures that all derived formulas are in fact seman-
tic consequences of the knowledge base. The calculus does not produce any “false
consequences”. The completeness of a calculus, on the other hand, ensures that the
calculus does not overlook anything. A complete calculus always finds a proof if
the formula to be proved follows from the knowledge base. If a calculus is sound
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KB

interpretation

�
derivation

Q

interpretation

syntactic level
(formula)

Mod(KB)
|�

entailment
Mod(Q)

semantic level
(interpretation)

Fig. 2.1 Syntactic derivation and semantic entailment. Mod(X) represents the set of models of a
formula X

and complete, then syntactic derivation and semantic entailment are two equivalent
relations (see Fig. 2.1).

To keep automatic proof systems as simple as possible, these are usually made
to operate on formulas in conjunctive normal form.

Definition 2.8 A formula is in conjunctive normal form (CNF) if and only if
it consists of a conjunction

K1 ∧ K2 ∧ · · · ∧ Km

of clauses. A clause Ki consists of a disjunction

(Li1 ∨ Li2 ∨ · · · ∨ Lini
)

of literals. Finally, a literal is a variable (positive literal) or a negated variable
(negative literal).

The formula (A ∨ B ∨ ¬C) ∧ (A ∨ B) ∧ (¬B ∨ ¬C) is in conjunctive normal
form. The conjunctive normal form does not place a restriction on the set of formulas
because:

Theorem 2.4 Every propositional logic formula can be transformed into an
equivalent conjunctive normal form.
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Example 2.1 We put A ∨ B ⇒ C ∧ D into conjunctive normal form by using the
equivalences from Theorem 2.1 on page 18:

A ∨ B ⇒ C ∧ D

≡ ¬(A ∨ B) ∨ (C ∧ D) (implication)

≡ (¬A ∧ ¬B) ∨ (C ∧ D) (de Morgan)

≡ (¬A ∨ (C ∧ D)) ∧ (¬B ∨ (C ∧ D)) (distributive law)

≡ ((¬A ∨ C) ∧ (¬A ∨ D)) ∧ ((¬B ∨ C) ∧ (¬B ∨ D)) (distributive law)

≡ (¬A ∨ C) ∧ (¬A ∨ D) ∧ (¬B ∨ C) ∧ (¬B ∨ D) (associative law)

We are now only missing a calculus for syntactic proof of propositional logic
formulas. We start with the modus ponens, a simple, intuitive rule of inference,
which, from the validity of A and A ⇒ B , allows the derivation of B . We write this
formally as

A, A ⇒ B

B
.

This notation means that we can derive the formula(s) below the line from the
comma-separated formulas above the line. Modus ponens as a rule by itself, while
sound, is not complete. If we add additional rules we can create a complete calcu-
lus, which, however, we do not wish to consider here. Instead we will investigate
the resolution rule

A ∨ B, ¬B ∨ C

A ∨ C
(2.1)

as an alternative. The derived clause is called resolvent. Through a simple transfor-
mation we obtain the equivalent form

A ∨ B, B ⇒ C

A ∨ C
.

If we set A to f , we see that the resolution rule is a generalization of the modus
ponens. The resolution rule is equally usable if C is missing or if A and C are
missing. In the latter case the empty clause can be derived from the contradiction
B ∧ ¬B (Exercise 2.7 on page 30).

2.4 Resolution

We now generalize the resolution rule again by allowing clauses with an arbitrary
number of literals. With the literals A1, . . . ,Am,B , C1, . . . ,Cn the general resolu-
tion rule reads

(A1 ∨ · · · ∨ Am ∨ B), (¬B ∨ C1 ∨ · · · ∨ Cn)

(A1 ∨ · · · ∨ Am ∨ C1 ∨ · · · ∨ Cn)
. (2.2)
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We call the literals B and ¬B complementary. The resolution rule deletes a pair of
complementary literals from the two clauses and combines the rest of the literals
into a new clause.

To prove that from a knowledge base KB, a query Q follows, we carry out a
proof by contradiction. Following Theorem 2.3 on page 20 we must show that a
contradiction can be derived from KB ∧ ¬Q. In formulas in conjunctive normal
form, a contradiction appears in the form of two clauses (A) and (¬A), which lead
to the empty clause as their resolvent. The following theorem ensures us that this
process really works as desired.

For the calculus to be complete, we need a small addition, as shown by the fol-
lowing example. Let the formula (A ∨ A) be given as our knowledge base. To show
by the resolution rule that from there we can derive (A ∧ A), we must show that the
empty clause can be derived from (A ∨ A) ∧ (¬A ∨ ¬A). With the resolution rule
alone, this is impossible. With factorization, which allows deletion of copies of lit-
erals from clauses, this problem is eliminated. In the example, a double application
of factorization leads to (A) ∧ (¬A), and a resolution step to the empty clause.

Theorem 2.5 The resolution calculus for the proof of unsatisfiability of for-
mulas in conjunctive normal form is sound and complete.

Because it is the job of the resolution calculus to derive a contradiction from
KB ∧ ¬Q, it is very important that the knowledge base KB is consistent:

Definition 2.9 A formula KB is called consistent if it is impossible to derive
from it a contradiction, that is, a formula of the form φ ∧ ¬φ.

Otherwise anything can be derived from KB (see Exercise 2.8 on page 30). This
is true not only of resolution, but also for many other calculi.

Of the calculi for automated deduction, resolution plays an exceptional role. Thus
we wish to work a bit more closely with it. In contrast to other calculi, resolution
has only two inference rules, and it works with formulas in conjunctive normal form.
This makes its implementation simpler. A further advantage compared to many cal-
culi lies in its reduction in the number of possibilities for the application of inference
rules in every step of the proof, whereby the search space is reduced and computa-
tion time decreased.

As an example, we start with a simple logic puzzle that allows the important steps
of a resolution proof to be shown.

Example 2.2 Logic puzzle number 7, entitled A charming English family, from the
German book [Ber89] reads (translated to English):
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Despite studying English for seven long years with brilliant success, I must admit that
when I hear English people speaking English I’m totally perplexed. Recently, moved by
noble feelings, I picked up three hitchhikers, a father, mother, and daughter, who I quickly
realized were English and only spoke English. At each of the sentences that follow I wa-
vered between two possible interpretations. They told me the following (the second possible
meaning is in parentheses): The father: “We are going to Spain (we are from Newcastle).”
The mother: “We are not going to Spain and are from Newcastle (we stopped in Paris and
are not going to Spain).” The daughter: “We are not from Newcastle (we stopped in Paris).”
What about this charming English family?

To solve this kind of problem we proceed in three steps: formalization, trans-
formation into normal form, and proof. In many cases formalization is by far the
most difficult step because it is easy to make mistakes or forget small details. (Thus
practical exercise is very important. See Exercises 2.9–2.11.)

Here we use the variables S for “We are going to Spain”, N for “We are from
Newcastle”, and P for “We stopped in Paris” and obtain as a formalization of the
three propositions of father, mother, and daughter

(S ∨ N) ∧ [(¬S ∧ N) ∨ (P ∧ ¬S)] ∧ (¬N ∨ P).

Factoring out ¬S in the middle sub-formula brings the formula into CNF in one
step. Numbering the clauses with subscripted indices yields

KB ≡ (S ∨ N)1 ∧ (¬S)2 ∧ (P ∨ N)3 ∧ (¬N ∨ P)4.

Now we begin the resolution proof, at first still without a query Q. An expression
of the form “Res(m,n): 〈clause〉k” means that 〈clause〉 is obtained by resolution of
clause m with clause n and is numbered k.

Res(1,2) : (N)5

Res(3,4) : (P )6

Res(1,4) : (S ∨ P)7

We could have derived clause P also from Res(4,5) or Res(2,7). Every further
resolution step would lead to the derivation of clauses that are already available. Be-
cause it does not allow the derivation of the empty clause, it has therefore been
shown that the knowledge base is non-contradictory. So far we have derived N

and P . To show that ¬S holds, we add the clause (S)8 to the set of clauses as a
negated query. With the resolution step

Res(2,8) : ()9

the proof is complete. Thus ¬S ∧ N ∧ P holds. The “charming English family”
evidently comes from Newcastle, stopped in Paris, but is not going to Spain.

Example 2.3 Logic puzzle number 28 from [Ber89], entitled The High Jump, reads
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Three girls practice high jump for their physical education final exam. The bar is set to 1.20
meters. “I bet”, says the first girl to the second, “that I will make it over if, and only if, you
don’t”. If the second girl said the same to the third, who in turn said the same to the first,
would it be possible for all three to win their bets?

We show through proof by resolution that not all three can win their bets.
Formalization:

The first girl’s jump succeeds: A, First girl’s bet: (A ⇔ ¬B),
the second girl’s jump succeeds: B, second girl’s bet: (B ⇔ ¬C),
the third girl’s jump succeeds: C. third girl’s bet: (C ⇔ ¬A).

Claim: the three cannot all win their bets:

Q ≡ ¬((A ⇔ ¬B) ∧ (B ⇔ ¬C) ∧ (C ⇔ ¬A))

It must now be shown by resolution that ¬Q is unsatisfiable.
Transformation into CNF: First girl’s bet:

(A ⇔ ¬B) ≡ (A ⇒ ¬B) ∧ (¬B ⇒ A) ≡ (¬A ∨ ¬B) ∧ (A ∨ B)

The bets of the other two girls undergo analogous transformations, and we obtain
the negated claim

¬Q ≡ (¬A ∨ ¬B)1 ∧ (A ∨ B)2 ∧ (¬B ∨ ¬C)3 ∧ (B ∨ C)4 ∧ (¬C ∨ ¬A)5

∧ (C ∨ A)6.

From there we derive the empty clause using resolution:

Res(1,6) : (C ∨ ¬B)7

Res(4,7) : (C)8

Res(2,5) : (B ∨ ¬C)9

Res(3,9) : (¬C)10

Res(8,10) : ()

Thus the claim has been proved.

2.5 Horn Clauses

A clause in conjunctive normal form contains positive and negative literals and can
be represented in the form

(¬A1 ∨ · · · ∨ ¬Am ∨ B1 ∨ · · · ∨ Bn)
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with the variables A1, . . . ,Am and B1, . . . ,Bn. This clause can be transformed in
two simple steps into the equivalent form

A1 ∧ · · · ∧ Am ⇒ B1 ∨ · · · ∨ Bn.

This implication contains the premise, a conjunction of variables and the conclusion,
a disjunction of variables. For example, “If the weather is nice and there is snow
on the ground, I will go skiing or I will work.” is a proposition of this form. The
receiver of this message knows for certain that the sender is not going swimming.
A significantly clearer statement would be “If the weather is nice and there is snow
on the ground, I will go skiing.”. The receiver now knows definitively. Thus we
call clauses with at most one positive literal definite clauses. These clauses have
the advantage that they only allow one conclusion and are thus distinctly simpler
to interpret. Many relations can be described by clauses of this type. We therefore
define

Definition 2.10 Clauses with at most one positive literal of the form

(¬A1 ∨ · · · ∨ ¬Am ∨ B) or (¬A1 ∨ · · · ∨ ¬Am) or B

or (equivalently)

A1 ∧ · · · ∧ Am ⇒ B or A1 ∧ · · · ∧ Am ⇒ f or B.

are named Horn clauses (after their inventor). A clause with a single positive
literal is a fact. In clauses with negative and one positive literal, the positive
literal is called the head.

To better understand the representation of Horn clauses, the reader may derive
them from the definitions of the equivalences we have currently been using (Exer-
cise 2.12 on page 30).

Horn clauses are easier to handle not only in daily life, but also in formal reason-
ing, as we can see in the following example. Let the knowledge base consist of the
following clauses (the “∧” binding the clauses is left out here and in the text that
follows):

(nice_weather)1

(snowfall)2

(snowfall ⇒ snow)3

(nice_weather ∧ snow ⇒ skiing)4
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If we now want to know whether skiing holds, this can easily be derived. A slightly
generalized modus ponens suffices here as an inference rule:

A1 ∧ · · · ∧ Am, A1 ∧ · · · ∧ Am ⇒ B

B
.

The proof of “skiing” has the following form (MP(i1, . . . , ik) represents application
of the modus ponens on clauses i1 to ik :

MP(2,3) : (snow)5

MP(1,5,4) : (skiing)6.

With modus ponens we obtain a complete calculus for formulas that consist of
propositional logic Horn clauses. In the case of large knowledge bases, however,
modus ponens can derive many unnecessary formulas if one begins with the wrong
clauses. Therefore, in many cases it is better to use a calculus that starts with the
query and works backward until the facts are reached. Such systems are designated
backward chaining, in contrast to forward chaining systems, which start with facts
and finally derive the query, as in the above example with the modus ponens.

For backward chaining of Horn clauses, SLD resolution is used. SLD stands for
“Selection rule driven linear resolution for definite clauses”. In the above example,
augmented by the negated query (skiing ⇒ f )

(nice_weather)1

(snowfall)2

(snowfall ⇒ snow)3

(nice_weather ∧ snow ⇒ skiing)4

(skiing ⇒ f )5

we carry out SLD resolution beginning with the resolution steps that follow from
this clause

Res(5,4) : (nice_weather ∧ snow ⇒ f )6

Res(6,1) : (snow ⇒ f )7

Res(7,3) : (snowfall ⇒ f )8

Res(8,2) : ()

and derive a contradiction with the empty clause. Here we can easily see “linear
resolution”, which means that further processing is always done on the currently
derived clause. This leads to a great reduction of the search space. Furthermore, the
literals of the current clause are always processed in a fixed order (for example, from
right to left) (“Selection rule driven”). The literals of the current clause are called
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subgoal. The literals of the negated query are the goals. The inference rule for one
step reads

A1 ∧ · · · ∧ Am ⇒ B1, B1 ∧ B2 ∧ · · · ∧ Bn ⇒ f

A1 ∧ · · · ∧ Am ∧ B2 ∧ · · · ∧ Bn ⇒ f
.

Before application of the inference rule, B1,B2, . . . ,Bn—the current subgoals—
must be proved. After the application, B1 is replaced by the new subgoal A1 ∧ · · · ∧
Am. To show that B1 is true, we must now show that A1 ∧ · · · ∧ Am are true. This
process continues until the list of subgoals of the current clauses (the so-called goal
stack) is empty. With that, a contradiction has been found. If, for a subgoal ¬Bi ,
there is no clause with the complementary literal Bi as its clause head, the proof
terminates and no contradiction can be found. The query is thus unprovable.

SLD resolution plays an important role in practice because programs in the logic
programming language PROLOG consist of predicate logic Horn clauses, and their
processing is achieved by means of SLD resolution (see Exercise 2.13 on page 30,
or Chap. 5).

2.6 Computability and Complexity

The truth table method, as the simplest semantic proof system for propositional
logic, represents an algorithm that can determine every model of any formula in
finite time. Thus the sets of unsatisfiable, satisfiable, and valid formulas are decid-
able. The computation time of the truth table method for satisfiability grows in the
worst case exponentially with the number n of variables because the truth table has
2n rows. An optimization, the method of semantic trees, avoids looking at variables
that do not occur in clauses, and thus saves computation time in many cases, but in
the worst case it is likewise exponential.

In resolution, in the worst case the number of derived clauses grows exponen-
tially with the number of initial clauses. To decide between the two processes, we
can therefore use the rule of thumb that in the case of many clauses with few vari-
ables, the truth table method is preferable, and in the case of few clauses with many
variables, resolution will probably finish faster.

The question remains: can proof in propositional logic go faster? Are there better
algorithms? The answer: probably not. After all, S. Cook, the founder of complexity
theory, has shown that the 3-SAT problem is NP-complete. 3-SAT is the set of all
CNF formulas whose clauses have exactly three literals. Thus it is clear that there is
probably (modulo the P/NP problem) no polynomial algorithm for 3-SAT, and thus
probably not a general one either. For Horn clauses, however, there is an algorithm
in which the computation time for testing satisfiability grows only linearly as the
number of literals in the formula increases.
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2.7 Applications and Limitations

Theorem provers for propositional logic are part of the developer’s everyday toolset
in digital technology. For example, the verification of digital circuits and the gener-
ation of test patterns for testing of microprocessors in fabrication are some of these
tasks. Special proof systems that work with binary decision diagrams (BDD) () are
also employed as a data structure for processing propositional logic formulas.

In AI, propositional logic is employed in simple applications. For example, sim-
ple expert systems can certainly work with propositional logic. However, the vari-
ables must all be discrete, with only a few values, and there may not be any cross-
relations between variables. Complex logical connections can be expressed much
more elegantly using predicate logic.

Probabilistic logic is a very interesting and current combination of propositional
logic and probabilistic computation that allows modeling of uncertain knowledge.
It is handled thoroughly in Chap. 7. Fuzzy logic, which allows infinitely many truth
values, is also discussed in that chapter.

2.8 Exercises

➳ Exercise 2.1 Give a Backus–Naur form grammar for the syntax of propositional
logic.

Exercise 2.2 Show that the following formulas are tautologies:
(a) ¬(A ∧ B) ⇔ ¬A ∨ ¬B

(b) A ⇒ B ⇔ ¬B ⇒ ¬A

(c) ((A ⇒ B) ∧ (B ⇒ A)) ⇔ (A ⇔ B)

(d) (A ∨ B) ∧ (¬B ∨ C) ⇒ (A ∨ C)

Exercise 2.3 Transform the following formulas into conjunctive normal form:
(a) A ⇔ B

(b) A ∧ B ⇔ A ∨ B

(c) A ∧ (A ⇒ B) ⇒ B

Exercise 2.4 Check the following statements for satisfiability or validity.
(a) (play_lottery ∧ six_right) ⇒ winner
(b) (play_lottery ∧ six_right ∧ (six_right ⇒ win)) ⇒ win
(c) ¬(¬gas_in_tank ∧ (gas_in_tank ∨ ¬car_starts) ⇒ ¬car_starts)

❄ ❄ Exercise 2.5 Using the programming language of your choice, program a theorem
prover for propositional logic using the truth table method for formulas in conjunc-
tive normal form. To avoid a costly syntax check of the formulas, you may represent
clauses as lists or sets of literals, and the formulas as lists or sets of clauses. The pro-
gram should indicate whether the formula is unsatisfiable, satisfiable, or true, and
output the number of different interpretations and models.
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Exercise 2.6
(a) Show that modus ponens is a valid inference rule by showing that A ∧

(A ⇒ B) |� B .
(b) Show that the resolution rule (2.1) is a valid inference rule.

❄ Exercise 2.7 Show by application of the resolution rule that, in conjunctive normal
form, the empty clause is equivalent to the false statement.

❄ Exercise 2.8 Show that, with resolution, one can “derive” any arbitrary clause from
a knowledge base that contains a contradiction.

Exercise 2.9 Formalize the following logical functions with the logical operators
and show that your formula is valid. Present the result in CNF.
(a) The XOR operation (exclusive or) between two variables.
(b) The statement at least two of the three variables A,B,C are true.

❄ Exercise 2.10 Solve the following case with the help of a resolution proof: “If the
criminal had an accomplice, then he came in a car. The criminal had no accomplice
and did not have the key, or he had the key and an accomplice. The criminal had the
key. Did the criminal come in a car or not?”

Exercise 2.11 Show by resolution that the formula from
(a) Exercise 2.2(d) is a tautology.
(b) Exercise 2.4(c) is unsatisfiable.

Exercise 2.12 Prove the following equivalences, which are important for working
with Horn clauses:
(a) (¬A1 ∨ · · · ∨ ¬Am ∨ B) ≡ A1 ∧ · · · ∧ Am ⇒ B

(b) (¬A1 ∨ · · · ∨ ¬Am) ≡ A1 ∧ · · · ∧ Am ⇒ f

(c) A ≡ w ⇒ A

Exercise 2.13 Show by SLD resolution that the following Horn clause set is unsat-
isfiable.

(A)1
(B)2
(C)3

(D)4
(E)5
(A ∧ B ∧ C ⇒ F)6

(A ∧ D ⇒ G)7
(C ∧ F ∧ E ⇒ H)8
(H ⇒ f )9

➳ Exercise 2.14 In Sect. 2.6 it says: “Thus it is clear that there is probably (modulo
the P/NP problem) no polynomial algorithm for 3-SAT, and thus probably not a
general one either.” Justify the “probably” in this sentence.
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Many practical, relevant problems cannot be or can only very inconveniently be
formulated in the language of propositional logic, as we can easily recognize in the
following example. The statement

“Robot 7 is situated at the xy position (35, 79)”

can in fact be directly used as the propositional logic variable

“Robot_7_is_situated_at_xy_position_(35, 79)”

for reasoning with propositional logic, but reasoning with this kind of proposition is
very inconvenient. Assume 100 of these robots can stop anywhere on a grid of 100×
100 points. To describe every position of every robot, we would need 100 · 100 ·
100 = 1 000 000 = 106 different variables. The definition of relationships between
objects (here robots) becomes truly difficult. The relation

“Robot A is to the right of robot B .”

is semantically nothing more than a set of pairs. Of the 10 000 possible pairs of
x-coordinates there are (99 · 98)/2 = 4851 ordered pairs. Together with all 10 000
combinations of possible y-values for both robots, there are (100 · 99) = 9900 for-
mulas of the type

Robot_7_is_to_the_right_of_robot_12 ⇔
Robot_7_is_situated_at_xy_position_(35, 79)
∧ Robot_12_is_situated_at_xy_position_(10,93) ∨ · · ·

defining these relations, each of them with (104)2 · 0.485 = 0.485 · 108 alternatives
on the right side. In first-order predicate logic, we can define for this a predicate
Position(number, xPosition, yPosition). The above relation must no longer be enu-
merated as a huge number of pairs, rather it is described abstractly with a rule of the
form

∀u ∀v is_further_right(u, v) ⇔
∃xu ∃yu ∃xv ∃yv position(u, xu, yu) ∧ position(v, xv, yv) ∧ xu > xv ,

Where ∀u is read as “for every u” and ∃v as “there exists v”.

W. Ertel, Introduction to Artificial Intelligence,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-299-5_3, © Springer-Verlag London Limited 2011
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In this chapter we will define the syntax and semantics of first-order predicate
logic (PL1), show that many applications can be modeled with this language, and
show that there is a complete and sound calculus for this language.

3.1 Syntax

First we solidify the syntactic structure of terms.

Definition 3.1 Let V be a set of variables, K a set of constants, and F a set
of function symbols. The sets V , K and F are pairwise disjoint. We define
the set of terms recursively:
• All variables and constants are (atomic) terms.
• If t1, . . . , tn are terms and f an n-place function symbol, then f (t1, . . . , tn)

is also a term.

Some examples of terms are f (sin(ln(3)), exp(x)) and g(g(g(x))). To be able to
establish logical relationships between terms, we build formulas from terms.

Definition 3.2 Let P be a set of predicate symbols. Predicate logic formulas
are built as follows:
• If t1, . . . , tn are terms and p an n-place predicate symbol, then p(t1, . . . , tn)

is an (atomic) formula.
• If A and B are formulas, then ¬A, (A), A ∧ B, A ∨ B, A ⇒ B, A ⇔ B

are also formulas.
• If x is a variable and A a formula, then ∀x A and ∃x A are also formulas.

∀ is the universal quantifier and ∃ the existential quantifier.
• p(t1, . . . , tn) and ¬p(t1, . . . , tn) are called literals.
• Formulas in which every variable is in the scope of a quantifier are called

first-order sentences or closed formulas. Variables which are not in the
scope of a quantifier are called free variables.

• Definitions 2.8 (CNF) and 2.10 (Horn clauses) hold for formulas of predi-
cate logic literals analogously.

In Table 3.1 on the page 33 several examples of PL1 formulas are given along
with their intuitive interpretations.
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Table 3.1 Examples of formulas in first-order predicate logic. Please note that mother here is a
function symbol

Formula Description

∀x frog(x) ⇒ green(x) All frogs are green

∀x frog(x) ∧ brown(x) ⇒ big(x) All brown frogs are big

∀x likes(x, cake) Everyone likes cake

¬∀x likes(x, cake) Not everyone likes cake

¬∃x likes(x, cake) No one likes cake

∃x ∀y likes(y, x) There is something that everyone likes

∃x ∀y likes(x, y) There is someone who likes everything

∀x ∃y likes(y, x) Everything is loved by someone

∀x ∃y likes(x, y) Everyone likes something

∀x customer(x) ⇒ likes(bob, x) Bob likes every customer

∃x customer(x) ∧ likes(x,bob) There is a customer whom bob likes

∃x baker(x) ∧ ∀y customer(y) ⇒ mag(x, y) There is a baker who likes all of his
customers

∀x older(mother(x), x) Every mother is older than her child

∀x older(mother(mother(x)), x) Every grandmother is older than her
daughter’s child

∀x ∀y ∀z rel(x, y) ∧ rel(y, z) ⇒ rel(x, z) rel is a transitive relation

3.2 Semantics

In propositional logic, every variable is directly assigned a truth value by an inter-
pretation. In predicate logic, the meaning of formulas is recursively defined over the
construction of the formula, in that we first assign constants, variables, and function
symbols to objects in the real world.

Definition 3.3 An interpretation I is defined as
• A mapping from the set of constants and variables K ∪ V to a set W of

names of objects in the world.
• A mapping from the set of function symbols to the set of functions in the

world. Every n-place function symbol is assigned an n-place function.
• A mapping from the set of predicate symbols to the set of relations in the

world. Every n-place predicate symbol is assigned an n-place relation.

Example 3.1 Let c1, c2, c3 be constants, “plus” a two-place function symbol, and
“gr” a two-place predicate symbol. The truth of the formula

F ≡ gr(plus(c1, c3), c2)



34 3 First-order Predicate Logic

depends on the interpretation I. We first choose the following obvious interpretation
of constants, the function, and of the predicates in the natural numbers:

I1: c1 
→ 1, c2 
→ 2, c3 
→ 3, plus 
→ +, gr 
→> .

Thus the formula is mapped to

1 + 3 > 2, or after evaluation 4 > 2.

The greater-than relation on the set {1,2,3,4} is the set of all pairs (x, y) of numbers
with x > y, meaning the set G = {(4,3), (4,2), (4,1), (3,2), (3,1), (2,1)}. Because
(4,2) ∈ G, the formula F is true under the interpretation I1. However, if we choose
the interpretation

I2: c1 
→ 2, c2 
→ 3, c3 
→ 1, plus 
→ −, gr 
→>,

we obtain

2 − 1 > 3, or 1 > 3.

The pair (1,3) is not a member of G. The formula F is false under the interpretation
I2. Obviously, the truth of a formula in PL1 depends on the interpretation. Now, after
this preview, we define truth.

Definition 3.4
• An atomic formula p(t1, . . . , tn) is true (or valid) under the interpretation I

if, after interpretation and evaluation of all terms t1, . . . , tn and interpreta-
tion of the predicate p through the n-place relation r , it holds that

(I(t1), . . . , I(tn)) ∈ r.

• The truth of quantifierless formulas follows from the truth of atomic
formulas—as in propositional calculus—through the semantics of the log-
ical operators defined in Table 2.1 on page 17.

• A formula ∀x F is true under the interpretation I exactly when it is true
given an arbitrary change of the interpretation for the variable x (and only
for x)

• A formula ∃x F is true under the interpretation I exactly when there is an
interpretation for x which makes the formula true.

The definitions of semantic equivalence of formulas, for the concepts satis-
fiable, true, unsatisfiable, and model, along with semantic entailment (Def-
initions 2.4, 2.5, 2.6) carry over unchanged from propositional calculus to
predicate logic.
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Fig. 3.1 A family tree. The
edges going from Clyde B.
upward to Mary B. and
Oscar B. represent the
element (Clyde B., Mary B.,
Oscar B.) as a child
relationship

Theorem 3.1 Theorems 2.2 (deduction theorem) and 2.3 (proof by contra-
diction) hold analogously for PL1.

Example 3.2 The family tree given in Fig. 3.1 graphically represents (in the seman-
tic level) the relation

Child = {(Oscar A., Karen A., Frank A.), (Mary B., Karen A., Frank A.),

(Henry A., Anne A., Oscar A.), (Eve A., Anne A., Oscar A.),

(Isabelle A., Anne A., Oscar A.), (Clyde B., Mary B., Oscar B.)}
For example, the triple (Oscar A., Karen A., Frank A.) stands for the proposition
“Oscar A. is a child of Karen A. and Frank A.”. From the names we read off the
one-place relation

Female = {Karen A., Anne A., Mary B., Eve A., Isabelle A.}

of the women. We now want to establish formulas for family relationships. First we
define a three-place predicate child(x, y, z) with the semantic

I(child(x, y, z)) = w ≡ (I(x), I(y), I(z)) ∈ Kind.

Under the interpretation I(oscar) = Oscar A., I(eve) = Eve A., I(anne) = Anne A.,
it is also true that child(eve,anne,oscar). For child(eve,oscar,anne) to be true, we
require, with

∀x ∀y ∀z child(x, y, z) ⇔ child(x, z, y),

symmetry of the predicate child in the last two arguments. For further definitions
we refer to Exercise 3.1 on page 54 and define the predicate descendant recursively
as

∀x ∀y descendant(x, y) ⇔ ∃z child(x, y, z) ∨
(∃u ∃v child(x,u, v) ∧ descendant(u, y)).

Now we build a small knowledge base with rules and facts. Let
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KB ≡ female(karen) ∧ female(anne) ∧ female(mary)

∧ female(eve) ∧ female(isabelle)

∧ child(oscar, karen, franz) ∧ child(mary, karen, franz)

∧ child(eve,anne,oscar) ∧ child(henry,anne,oscar)

∧ child(isabelle,anne,oscar) ∧ child(clyde,mary,oscarb)

∧ (∀x ∀y ∀z child(x, y, z) ⇒ child(x, z, y))

∧ (∀x ∀y descendant(x, y) ⇔ ∃z child(x, y, z)

∨ (∃u ∃v child(x,u, v) ∧ descendant(u, y))).

We can now ask, for example, whether the propositions child(eve,oscar,anne) or
descendant(eve, franz) are derivable. To that end we require a calculus.

3.2.1 Equality

To be able to compare terms, equality is a very important relation in predicate logic.
The equality of terms in mathematics is an equivalence relation, meaning it is reflex-
ive, symmetric and transitive. If we want to use equality in formulas, we must either
incorporate these three attributes as axioms in our knowledge base, or we must in-
tegrate equality into the calculus. We take the easy way and define a predicate “=”
which, deviating from Definition 3.2 on page 32, is written using infix notation as
is customary in mathematics. (An equation x = y could of course also be written in
the form eq(x, y).) Thus, the equality axioms have the form

∀x x = x (reflexivity)

∀x ∀y x = y ⇒ y = x (symmetry)

∀x ∀y ∀z x = y ∧ y = z ⇒ x = z (transitivity).

(3.1)

To guarantee the uniqueness of functions, we additionally require

∀x ∀y x = y ⇒ f (x) = f (y) (substitution axiom) (3.2)

for every function symbol. Analogously we require for all predicate symbols

∀x ∀y x = y ⇒ p(x) ⇔ p(y) (substitution axiom). (3.3)

We formulate other mathematical relations, such as the “<” relation, by similar
means (Exercise 3.4 on page 55).

Often a variable must be replaced by a term. To carry this out correctly and
describe it simply, we give the following definition.
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Definition 3.5 We write ϕ[x/t] for the formula that results when we replace
every free occurrence of the variable x in ϕ with the term t . Thereby we do
not allow any variables in the term t that are quantified in ϕ. In those cases
variables must be renamed to ensure this.

Example 3.3 If, in the formula ∀x x = y, the free variable y is replaced by the term
x + 1, the result is ∀x x = x + 1. With correct substitution we obtain the formula
∀x x = y + 1, which has a very different semantic.

3.3 Quantifiers and Normal Forms

By Definition 3.4 on page 34, the formula ∀x p(x) is true if and only if it is true
for all interpretations of the variable x. Instead of the quantifier, one could write
p(a1) ∧ · · · ∧ p(an) for all constants a1 · · · an in K . For ∃x p(x) one could write
p(a1) ∨ · · · ∨ p(an). From this it follows with de Morgan’s law that

∀x ϕ ≡ ¬∃x¬ϕ.

Through this equivalence, universal, and existential quantifiers are mutually replace-
able.

Example 3.4 The proposition “Everyone wants to be loved” is equivalent to the
proposition “Nobody does not want to be loved”.

Quantifiers are an important component of predicate logic’s expressive power.
However, they are disruptive for automatic inference in AI because they make the
structure of formulas more complex and increase the number of applicable inference
rules in every step of a proof. Therefore our next goal is to find, for every predicate
logic formula, an equivalent formula in a standardized normal form with as few
quantifiers as possible. As a first step we bring universal quantifiers to the beginning
of the formula and thus define

Definition 3.6 A predicate logic formula ϕ is in prenex normal form if it
holds that
• ϕ = Q1x1 · · · Qnxn ψ .
• ψ is a quantifierless formula.
• Qi ∈ {∀,∃} for i = 1, . . . , n.
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Caution is advised if a quantified variable appears outside the scope of its quan-
tifier, as for example x in

∀x p(x) ⇒ ∃x q(x).

Here one of the two variables must be renamed, and in

∀x p(x) ⇒ ∃y q(y)

the quantifier can easily be brought to the front, and we obtain as output the equiv-
alent formula

∀x ∃y p(x) ⇒ q(y).

If, however, we wish to correctly bring the quantifier to the front of

(∀x p(x)) ⇒ ∃y q(y) (3.4)

we first write the formula in the equivalent form

¬(∀x p(x)) ∨ ∃y q(y).

The first universal quantifier now turns into

(∃x¬p(x)) ∨ ∃y q(y)

and now the two quantifiers can finally be pulled forward to

∃x ∃y¬p(x) ∨ q(y),

which is equivalent to

∃x ∃yp(x) ⇒ q(y).

We see then that in (3.4) we cannot simply pull both quantifiers to the front. Rather,
we must first eliminate the implications so that there are no negations on the quanti-
fiers. It holds in general that we may only pull quantifiers out if negations only exist
directly on atomic sub-formulas.

Example 3.5 As is well known in analysis, convergence of a series (an)n∈N to a
limit a is defined by

∀ε > 0 ∃n0 ∈ N ∀n > n0|an − a| < ε.

With the function abs(x) for |x|, a(n) for an, minus(x, y) for x − y and the predi-
cates el(x, y) for x ∈ y, gr(x, y) for x > y, the formula reads
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∀ε (gr(ε,0) ⇒ ∃n0 (el(n0,N) ⇒ ∀n (gr(n,n0) ⇒ gr(ε,abs(minus(a(n), a)))))).

(3.5)

This is clearly not in prenex normal form. Because the variables of the inner quanti-
fiers ∃n0 and ∀n do not occur to the left of their respective quantifiers, no variables
must be renamed. Next we eliminate the implications and obtain

∀ε (¬gr(ε,0)∨∃n0 (¬el(n0,N)∨∀n (¬gr(n,n0)∨gr(ε,abs(minus(a(n), a)))))).

Because every negation is in front of an atomic formula, we bring the quantifiers
forward, eliminate the redundant parentheses, and with

∀ε ∃n0 ∀n (¬gr(ε,0) ∨ ¬el(n0,N) ∨ ¬gr(n,n0) ∨ gr(ε,abs(minus(a(n), a))))

it becomes a quantified clause in conjunctive normal form.

The transformed formula is equivalent to the output formula. The fact that this
transformation is always possible is guaranteed by

Theorem 3.2 Every predicate logic formula can be transformed into an
equivalent formula in prenex normal form.

In addition, we can eliminate all existential quantifiers. However, the formula
resulting from the so-called Skolemization is no longer equivalent to the output for-
mula. Its satisfiability, however, remains unchanged. In many cases, especially when
one wants to show the unsatisfiability of KB ∧ ¬Q, this is sufficient. The following
formula in prenex normal form will now be skolemized:

∀x1 ∀x2 ∃y1 ∀x3 ∃y2 p(f (x1), x2, y1) ∨ q(y1, x3, y2).

Because the variable y1 apparently depends on x1 and x2, every occurrence of y1
is replaced by a Skolem function g(x1, x2). It is important that g is a new function
symbol that has not yet appeared in the formula. We obtain

∀x1 ∀x2 ∀x3 ∃y2 p(f (x1), x2, g(x1, x2)) ∨ q(g(x1, x2), x3, y2)

and replace y2 analogously by h(x1, x2, x3), which leads to

∀x1 ∀x2 ∀x3 p(f (x1), x2, g(x1, x2)) ∨ q(g(x1, x2), x3, h(x1, x2, x3)).

Because now all the variables are universally quantified, the universal quantifiers
can be left out, resulting in

p(f (x1), x2, g(x1, x2)) ∨ q(g(x1, x2), x3, h(x1, x2, x3)).
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NORMALFORMTRANSFORMATION(Formula):
1. Transformation into prenex normal form:

Transformation into conjunctive normal form (Theorem 2.1):
Elimination of equivalences.
Elimination of implications.
Repeated application of de Morgan’s law and distributive law.

Renaming of variables if necessary.
Factoring out universal quantifiers.

2. Skolemization:
Replacement of existentially quantified variables by new Skolem
functions.
Deletion of resulting universal quantifiers.

Fig. 3.2 Transformation of predicate logic formulas into normal form

Now we can eliminate the existential quantifier (and thereby also the univer-
sal quantifier) in (3.5) on page 39 by introducing the Skolem function n0(ε). The
skolemized prenex and conjunctive normal form of (3.5) on page 39 thus reads

¬gr(ε,0) ∨ ¬el(n0(ε),N) ∨ ¬gr(n,n0(ε)) ∨ gr(ε,abs(minus(a(n), a))).

By dropping the variable n0, the Skolem function can receive the name n0.
When skolemizing a formula in prenex normal form, all existential quantifiers are

eliminated from the outside inward, where a formula of the form ∀x1 . . .∀xn ∃y ϕ

is replaced by ∀x1 . . .∀xn ϕ[y/f (x1, . . . , xn)], during which f may not appear in ϕ.
If an existential quantifier is on the far outside, such as in ∃y p(y), then y must be
replaced by a constant (that is, by a zero-place function symbol).

The procedure for transforming a formula in conjunctive normal form is sum-
marized in the pseudocode represented in Fig. 3.2. Skolemization has polynomial
runtime in the number of literals. When transforming into normal form, the number
of literals in the normal form can grow exponentially, which can lead to exponential
computation time and exponential memory usage. The reason for this is the repeated
application of the distributive law. The actual problem, which results from a large
number of clauses, is the combinatorial explosion of the search space for a sub-
sequent resolution proof. However, there is an optimized transformation algorithm
which only spawns polynomially many literals [Ede91].

3.4 Proof Calculi

For reasoning in predicate logic, various calculi of natural reasoning such as
Gentzen calculus or sequent calculus, have been developed. As the name suggests,
these calculi are meant to be applied by humans, since the inference rules are more
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Table 3.2 Simple proof with modus ponens and quantifier elimination

WB: 1 child(eve,anne,oscar)

WB: 2 ∀x ∀y ∀z child(x, y, z) ⇒ child(x, z, y)

∀E(2) : x/eve, y/anne, z/oscar 3 child(eve,anne,oscar) ⇒ child(eve,oscar,anne)

MP(1,3) 4 child(eve,oscar,anne)

or less intuitive and the calculi work on arbitrary PL1 formulas. In the next section
we will primarily concentrate on the resolution calculus, which is in practice the
most important efficient, automatizable calculus for formulas in conjunctive normal
form. Here, using Example 3.2 on page 35 we will give a very small “natural” proof.
We use the inference rule

A, A ⇒ B

B
(modus ponens, MP) and

∀x A

A[x/t] (∀-elimination,∀E).

The modus ponens is already familiar from propositional logic. When eliminating
universal quantifiers one must keep in mind that the quantified variable x must be
replaced by a ground term t , meaning a term that contains no variables. The proof of
child(eve,oscar,anne) from an appropriately reduced knowledge base is presented
in Table 3.2.

The two formulas of the reduced knowledge base are listed in rows 1 and 2. In
row 3 the universal quantifiers from row 2 are eliminated, and in row 4 the claim is
derived with modus ponens.

The calculus consisting of the two given inference rules is not complete. How-
ever, it can be extended into a complete procedure by addition of further inference
rules. This nontrivial fact is of fundamental importance for mathematics and AI.
The Austrian logician Kurt Gödel proved in 1931 that [Göd31a]

Theorem 3.3 (Gödel’s completeness theorem) First-order predicate logic is
complete. That is, there is a calculus with which every proposition that is a
consequence of a knowledge base KB can be proved. If KB |
 ϕ, then it holds
that KB � ϕ.

Every true proposition in first-order predicate logic is therefore provable. But is
the reverse also true? Is everything we can derive syntactically actually true? The
answer is “yes”:

Theorem 3.4 (Correctness) There are calculi with which only true proposi-
tions can be proved. That is, if KB � ϕ holds, then KB |
 ϕ.
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Fig. 3.3 The universal logic machine

In fact, nearly all known calculi are correct. After all, it makes little sense to work
with incorrect proof methods. Provability and semantic consequence are therefore
equivalent concepts, as long as correct and complete calculus is being used. Thereby
first-order predicate logic becomes a powerful tool for mathematics and AI. The
aforementioned calculi of natural deduction are rather unsuited for automatization.
Only resolution calculus, which was introduced in 1965 and essentially works with
only one simple inference rule, enabled the construction of powerful automated the-
orem provers, which later were employed as inference machines for expert systems.

3.5 Resolution

Indeed, the correct and complete resolution calculus triggered a logic euphoria dur-
ing the 1970s. Many scientists believed that one could formulate almost every task
of knowledge representation and reasoning in PL1 and then solve it with an au-
tomated prover. Predicate logic, a powerful, expressive language, together with a
complete proof calculus seemed to be the universal intelligent machine for repre-
senting knowledge and solving many difficult problems (Fig. 3.3).
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If one feeds a set of axioms (that is, a knowledge base) and a query into such
a logic machine as input, the machine searches for a proof and returns it—for one
exists and will be found—as output. With Gödel’s completeness theorem and the
work of Herbrand as a foundation, much was invested into the mechanization of
logic. The vision of a machine that could, with an arbitrary non-contradictory PL1
knowledge base, prove any true query was very enticing. Accordingly, until now
many proof calculi for PL1 are being developed and realized in the form of theo-
rem provers. As an example, here we describe the historically important and widely
used resolution calculus and show its capabilities. The reason for selecting resolu-
tion as an example of a proof calculus in this book is, as stated, its historical and
didactic importance. Today, resolution represents just one of many calculi used in
high-performance provers.

We begin by trying to compile the proof in Table 3.2 on page 41 with the knowl-
edge base of Example 3.2 into a resolution proof. First the formulas are transformed
into conjunctive normal form and the negated query

¬Q ≡ ¬child(eve,oscar,anne)

is added to the knowledge base, which gives

KB ∧ ¬Q ≡ (child(eve,anne,oscar))1 ∧
(¬child(x, y, z) ∨ child(x, z, y))2 ∧
(¬child(eve,oscar,anne))3.

The proof could then look something like

(2) x/eve, y/anne, z/oscar : (¬child(eve,anne,oscar) ∨
child(eve,oscar,anne))4

Res(3,4) : (¬child(eve,anne,oscar))5
Res(1,5) : ()6,

where, in the first step, the variables x, y, z are replaced by constants. Then two
resolution steps follow under application of the general resolution rule from (2.2),
which was taken unchanged from propositional logic.

The circumstances in the following example are somewhat more complex. We
assume that everyone knows his own mother and ask whether Henry knows anyone.
With the function symbol “mother” and the predicate “knows”, we have to derive a
contradiction from

(knows(x,mother(x)))1 ∧ (¬knows(henry, y))2.

By the replacement x/henry, y/mother(henry) we obtain the contradictory clause
pair

(knows(henry,mother(henry)))1 ∧ (¬knows(henry,mother(henry)))2.
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This replacement step is called unification. The two literals are complementary,
which means that they are the same other than their signs. The empty clause is
now derivable with a resolution step, by which it has been shown that Henry does
know someone (his mother). We define

Definition 3.7 Two literals are called unifiable if there is a substitution σ

for all variables which makes the literals equal. Such a σ is called a unifier.
A unifier is called the most general unifier (MGU) if all other unifiers can be
obtained from it by substitution of variables.

Example 3.6 We want to unify the literals p(f (g(x)), y, z) and p(u,u,f (u)). Sev-
eral unifiers are

σ1 : y/f (g(x)), z/f (f (g(x))), u/f (g(x)),

σ2 : x/h(v), y/f (g(h(v))), z/f (f (g(h(v)))), u/f (g(h(v)))

σ3 : x/h(h(v)), y/f (g(h(h(v)))), z/f (f (g(h(h(v))))), u/f (g(h(h(v))))

σ4 : x/h(a), y/f (g(h(a))), z/f (f (g(h(a)))), u/f (g(h(a)))

σ5 : x/a, y/f (g(a)), z/f (f (g(a))), u/f (g(a))

where σ1 is the most general unifier. The other unifiers result from σ1 through the
substitutions x/h(v), x/h(h(v)), x/h(a), x/a.

We can see in this example that during unification of literals, the predicate sym-
bols can be treated like function symbols. That is, the literal is treated like a term.
Implementations of unification algorithms process the arguments of functions se-
quentially. Terms are unified recursively over the term structure. The simplest unifi-
cation algorithms are very fast in most cases. In the worst case, however, the compu-
tation time can grow exponentially with the size of the terms. Because for automated
provers the overwhelming number of unification attempts fail or are very simple, in
most cases the worst case complexity has no dramatic effect. The fastest unification
algorithms have nearly linear complexity even in the worst case [Bib82].

We can now give the general resolution rule for predicate logic:

Definition 3.8 The resolution rule for two clauses in conjunctive normal form
reads

(A1 ∨ · · · ∨ Am ∨ B), (¬B ′ ∨ C1 ∨ · · · ∨ Cn) σ (B) = σ(B ′)
(σ (A1) ∨ · · · ∨ σ(Am) ∨ σ(C1) ∨ · · · ∨ σ(Cn))

, (3.6)

where σ is the MGU of B and B ′.
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Theorem 3.5 The resolution rule is correct. That is, the resolvent is a seman-
tic consequence of the two parent clauses.

For Completeness, however, we still need a small addition, as is shown in the
following example.

Example 3.7 The famous Russell paradox reads “There is a barber who shaves
everyone who does not shave himself.” This statement is contradictory, meaning it is
unsatisfiable. We wish to show this with resolution. Formalized in PL1, the paradox
reads

∀x shaves(barber, x) ⇔ ¬shaves(x, x)

and transformation into clause form yields (see Exercise 3.6 on page 55)

(¬shaves(barbier, x) ∨ ¬shaves(x, x))1 ∧ (shaves(barbier, x) ∨ shaves(x, x))2.

(3.7)

From these two clauses we can derive several tautologies, but no contradiction. Thus
resolution is not complete. We need yet a further inference rule.

Definition 3.9 Factorization of a clause is accomplished by

(A1 ∨ A2 ∨ · · · ∨ An) σ(A1) = σ(A2)

(σ (A2) ∨ · · · ∨ σ(An))
,

where σ is the MGU of A1 and A2.

Now a contradiction can be derived from (3.7)

Fak(1, σ : x/barber) : (¬shaves(barber,barber))3
Fak(2, σ : x/barber) : (shaves(barber,barber))4

Res(3,4) : ()5

and we assert:

Theorem 3.6 The resolution rule (3.6) together with the factorization rule
(3.9) is refutation complete. That is, by application of factorization and reso-
lution steps, the empty clause can be derived from any unsatisfiable formula
in conjunctive normal form.
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3.5.1 Resolution Strategies

While completeness of resolution is important for the user, the search for a proof
can be very frustrating in practice. The reason for this is the immense combinato-
rial search space. Even if there are only very few pairs of clauses in KB ∧ ¬Q in
the beginning, the prover generates a new clause with every resolution step, which
increases the number of possible resolution steps in the next iteration. Thus it has
long been attempted to reduce the search space using special strategies, preferably
without losing completeness. The most important strategies are the following.

Unit resolution prioritizes resolution steps in which one of the two clauses con-
sists of only one literal, called a unit clause. This strategy preserves completeness
and leads in many cases, but not always, to a reduction of the search space. It there-
fore is a heuristic process (see Sect. 6.3).

One obtains a guaranteed reduction of the search space by application of the set
of support strategy. Here a subset of KB∧¬Q is defined as the set of support (SOS).
Every resolution step must involve a clause from the SOS, and the resolvent is added
to the SOS. This strategy is incomplete. It becomes complete when it is ensured that
the set of clauses is satisfiable without the SOS (see Exercise 3.7 on page 55). The
negated query ¬Q is often used as the initial SOS.

In input resolution, a clause from the input set KB ∧ ¬Q must be involved in
every resolution step. This strategy also reduces the search space, but at the cost of
completeness.

With the pure literal rule all clauses that contain literals for which there are no
complementary literals in other clauses can be deleted. This rule reduces the search
space and is complete, and therefore it is used by practically all resolution provers.

If the literals of a clause K1 represent a subset of the literals of the clause K2,
then K2 can be deleted. For example, the clause

(raining(today) ⇒ street_wet(today))

is redundant if street_wet(today) is already valid. This important reduction step is
called subsumption. Subsumption, too, is complete.

3.5.2 Equality

Equality is an especially inconvenient cause of explosive growth of the search space.
If we add (3.1) on page 36 and the equality axioms formulated in (3.2) on page 36
to the knowledge base, then the symmetry clause ¬x = y ∨ y = x can be unified
with every positive or negated equation, for example. This leads to the derivation of
new clauses and equations upon which equality axioms can again be applied, and so
on. The transitivity and substitution axioms have similar consequences. Because of
this, special inference rules for equality have been developed which get by without
explicit equality axioms and, in particular, reduce the search space. Demodulation,
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for example, allows substitution of a term t2 for t1, if the equation t1 = t2 exists. An
equation t1 = t2 is applied by means of unification to a term t as follows:

t1 = t2, (. . . t . . .), σ (t1) = σ(t)

(. . . σ (t2) . . .)
.

Somewhat more general is paramodulation, which works with conditional equa-
tions [Bib82, Lov78].

The equation t1 = t2 allows the substitution of the term t1 by t2 as well as the
substitution t2 by t1. It is usually pointless to reverse a substitution that has already
been carried out. On the contrary, equations are frequently used to simplify terms.
They are thus often used in one direction only. Equations which are only used in
one direction are called directed equations. Efficient processing of directed equa-
tions is accomplished by so-called term rewriting systems. For formulas with many
equations there exist special equality provers.

3.6 Automated Theorem Provers

Implementations of proof calculi on computers are called theorem provers. Along
with specialized provers for subsets of PL1 or special applications, there exist today
a whole line of automated provers for the full predicate logic and higher-order log-
ics, of which only a few will be discussed here. An overview of the most important
systems can be found in [McC].

One of the oldest resolution provers was developed at the Argonne National Lab-
oratory in Chicago. Based on early developments starting in 1963, Otter [Kal01],
was created in 1984. Above all, Otter was successfully applied in specialized areas
of mathematics, as one can learn from its home page:

“Currently, the main application of Otter is research in abstract algebra and formal logic.
Otter and its predecessors have been used to answer many open questions in the areas of
finite semigroups, ternary Boolean algebra, logic calculi, combinatory logic, group theory,
lattice theory, and algebraic geometry.”

Several years later the University of Technology, Munich, created the high-
performance prover SETHEO [LSBB92] based on fast PROLOG technology. With
the goal of reaching even higher performance, an implementation for parallel com-
puters was developed under the name PARTHEO. It turned out that it was not worth-
while to use special hardware in theorem provers, as is also the case in other areas
of AI, because these computers are very quickly overtaken by faster processors and
more intelligent algorithms. Munich is also the birthplace of E [Sch02], an award-
winning modern equation prover, which we will become familiar with in the next
example. On E’s homepage one can read the following compact, ironic characteri-
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zation, whose second part incidentally applies to all automated provers in existence
today.

“E is a purely equational theorem prover for clausal logic. That means it is a program that
you can stuff a mathematical specification (in clausal logic with equality) and a hypoth-
esis into, and which will then run forever, using up all of your machines resources. Very
occasionally it will find a proof for the hypothesis and tell you so ;-).”

Finding proofs for true propositions is apparently so difficult that the search suc-
ceeds only extremely rarely, or only after a very long time—if at all. We will go into
this in more detail in Chap. 4. Here it should be mentioned, though, that not only
computers, but also most people have trouble finding strict formal proofs.

Though evidently computers by themselves are in many cases incapable of find-
ing a proof, the next best thing is to build systems that work semi-automatically
and allow close cooperation with the user. Thereby the human can better apply his
knowledge of special application domains and perhaps limit the search for the proof.
One of the most successful interactive provers for higher-order predicate logic is Is-
abelle [NPW02], a common product of Cambridge University and the University of
Technology, Munich.

Anyone searching for a high-performance prover should look at the current re-
sults of the CASC (CADE ATP System Competition) [SS06].1 Here we find that
the winner from 2001 to 2006 in the PL1 and clause normal form categories was
Manchester’s prover Vampire, which works with a resolution variant and a special
approach to equality. The system Waldmeister of the Max Planck Institute in Saar-
brücken has been leading for years in equality proving.

The many top positions of German systems at CASC show that German research
groups in the area of automated theorem proving are playing a leading role, today
as well as in the past.

3.7 Mathematical Examples

We now wish to demonstrate the application of an automated prover with the afore-
mentioned prover E [Sch02]. E is a specialized equality prover which greatly shrinks
the search space through an optimized treatment of equality.

We want to prove that left- and right-neutral elements in a semigroup are equal.
First we formalize the claim step by step.

1CADE is the annual “Conference on Automated Deduction” [CAD] and ATP stands for “Auto-
mated Theorem Prover”.
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Definition 3.10 A structure (M, ·) consisting of a set M with a two-place
inner operation “·” is called a semigroup if the law of associativity

∀x ∀y ∀z (x · y) · z = x · (y · z)

holds. An element e ∈ M is called left-neutral (right-neutral) if ∀x e · x = x

(∀x x · e = x).

It remains to be shown that

Theorem 3.7 If a semigroup has a left-neutral element el and a right-neutral
element er , then el = er .

First we prove the theorem semi-formally by intuitive mathematical reasoning.
Clearly it holds for all x ∈ M that

el · x = x (3.8)

and

x · er = x. (3.9)

If we set x = er in (3.8) and x = el in (3.9), we obtain the two equations el · er = er

and el · er = el . Joining these two equations yields

el = el · er = er ,

which we want to prove. In the last step, incidentally, we used the fact that equality
is symmetric and transitive.

Before we apply the automated prover, we carry out the resolution proof manu-
ally. First we formalize the negated query and the knowledge base KB, consisting of
the axioms as clauses in conjunctive normal form:

(¬ el = er )1 negated query
(m(m(x, y), z) = m(x,m(y, z)))2
(m(el, x) = x)3
(m(x, er) = x)4

equality axioms:
(x = x)5 (reflexivity)
(¬x = y ∨ y = x)6 (symmetry)
(¬x = y ∨ ¬y = z ∨ x = z)7 (transitivity)
(¬x = y ∨ m(x, z) = m(y, z))8 substitution in m

(¬x = y ∨ m(z, x) = m(z, y))9 substitution in m,
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where multiplication is represented by the two-place function symbol m. The equal-
ity axioms were formulated analogously to (3.1) on page 36 and (3.2) on page 36.
A simple resolution proof has the form

Res(3,6, x6/m(el, x3), y6/x3) : (x = m(el, x))10
Res(7,10, x7/x10, y7/m(el, x10)) : (¬m(el, x) = z ∨ x = z)11
Res(4,11, x4/el, x11/er, z11/el) : (er = el)12
Res(1,12,∅) : ().

Here, for example, Res(3,6, x6/m(el, x3), y6/x3) means that in the resolution of
clause 3 with clause 6, the variable x from clause 6 is replaced by m(el, x3) with
variable x from clause 3. Analogously, y from clause 6 is replaced by x from
clause 3.

Now we want to apply the prover E to the problem. The clauses are transformed
into the clause normal form language LOP through the mapping

(¬A1 ∨ · · · ∨ ¬Am ∨ B1 ∨ · · · ∨ Bn) 
→ B1; . . . ;Bn< −A1, . . . ,Am.

The syntax of LOP represents an extension of the PROLOG syntax (see Sect. 5) for
non Horn clauses. Thus we obtain as an input file for E

<- el = er. % query
m(m(X,Y),Z) = m(X,m(Y,Z)) . % associativity of m
m(el,X) = X . % left-neutral element of m
m(X,er) = X . % right-neutral element of m

where equality is modeled by the predicate symbol gl. Calling the prover delivers

unixprompt> eproof halbgr1a.lop
# Problem status determined, constructing proof object
# Evidence for problem status starts

0 : [--equal(el, er)] : initial
1 : [++equal(m(el,X1), X1)] : initial
2 : [++equal(m(X1,er), X1)] : initial
3 : [++equal(el, er)] : pm(2,1)
4 : [--equal(el, el)] : rw(0,3)
5 : [] : cn(4)
6 : [] : 5 : {proof}

# Evidence for problem status ends

Positive literals are identified by ++ and negative literals by --. In lines 0 to 4,
marked with initial, the clauses from the input data are listed again. pm(a,b)
stands for a resolution step between clause a and clause b. We see that the proof
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found by E is very similar to the manually created proof. Because we explicitly
model the equality by the predicate gl, the particular strengths of E do not come
into play. Now we omit the equality axioms and obtain

<- el = er. % Query
m(m(X,Y),Z) = m(X,m(Y,Z)) . % Assoziativit\"{a}t v. m
m(el,X) = X . % linksneutrales El. v. m
m(X,er) = X . % rechtsneutrales El. v. m

as input for the prover.
The proof also becomes more compact. We see in the following output of the

prover that the proof consists essentially of a single inference step on the two rele-
vant clauses 1 and 2.

unixprompt> eproof halbgr1a.lop
# Problem status determined, constructing proof object
# Evidence for problem status starts

0 : [--equal(el, er)] : initial
1 : [++equal(m(el,X1), X1)] : initial
2 : [++equal(m(X1,er), X1)] : initial
3 : [++equal(el, er)] : pm(2,1)
4 : [--equal(el, el)] : rw(0,3)
5 : [] : cn(4)
6 : [] : 5 : {proof}

# Evidence for problem status ends

The reader might now take a closer look at the capabilities of E (Exercise 3.9 on
page 55).

3.8 Applications

In mathematics automated theorem provers are used for certain specialized tasks.
For example, the important four color theorem of graph theory was first proved in
1976 with the help of a special prover. However, automated provers still play a minor
role in mathematics.

On the other hand, in the beginning of AI, predicate logic was of great importance
for the development of expert systems in practical applications. Due to its problems
modeling uncertainty (see Sect. 4.4), expert systems today are most often developed
using other formalisms.

Today logic plays an ever more important role in verification tasks. Automatic
program verification is currently an important research area between AI and soft-
ware engineering. Increasingly complex software systems are now taking over tasks
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of more and more responsibility and security relevance. Here a proof of certain
safety characteristics of a program is desirable. Such a proof cannot be brought
about through testing of a finished program, for in general it is impossible to apply a
program to all possible inputs. This is therefore an ideal domain for general or even
specialized inference systems. Among other things, cryptographic protocols are in
use today whose security characteristics have been automatically verified [FS97,
Sch01]. A further challenge for the use of automated provers is the synthesis of
software and hardware. To this end, for example, provers should support the soft-
ware engineer in the generation of programs from specifications.

Software reuse is also of great importance for many programmers today. The
programmer looks for a program that takes input data with certain properties and
calculates a result with desired properties. A sorting algorithm accepts input data
with entries of a certain data type and from these creates a permutation of these
entries with the property that every element is less than or equal to the next element.
The programmer first formulates a specification of the query in PL1 consisting of
two parts. The first part PREQ comprises the preconditions, which must hold before
the desired program is applied. The second part POSTQ contains the postconditions,
which must hold after the desired program is applied.

In the next step a software database must be searched for modules which fulfill
these requirements. To check this formally, the database must store a formal descrip-
tion of the preconditions PREM and postconditions POSTM for every module M .
An assumption about the capabilities of the modules is that the preconditions of the
module follow from the preconditions of the query. It must hold that

PREQ ⇒ PREM.

All conditions that are required as a prerequisite for the application of module M

must appear as preconditions in the query. If, for example, a module in the database
only accepts lists of integers, then lists of integers as input must also appear as
preconditions in the query. An additional requirement in the query that, for example,
only even numbers appear, does not cause a problem.

Furthermore, it must hold for the postconditions that

POSTM ⇒ POSTQ.

That is, after application of the module, all attributes that the query requires must
be fulfilled. We now show the application of a theorem prover to this task in an
example from [Sch01].

Example 3.8 VDM-SL, the Vienna Development Method Specification Language,
is often used as a language for the specification of pre- and postconditions. Assume
that in the software database the description of a module ROTATE is available, which
moves the first list element to the end of the list. We are looking for a module
SHUFFLE, which creates an arbitrary permutation of the list. The two specifications
read
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ROTATE(l : List) l′ : List
pre true
post

(l = [] ⇒ l′ = [])∧
(l �= [] ⇒ l′ = (tail l)ˆ[head l])

SHUFFLE(x : List) x′ : List
pre true
post ∀i : Item·

(∃x1, x2 : List · x = x1ˆ[i]ˆx2 ⇔
∃y1, y2 : List · x′ = y1ˆ[i]ˆy2)

Here “ˆ” stands for the concatenation of lists, and “·” separates quantifiers with
their variables from the rest of the formula. The functions “head l” and “tail l”
choose the first element and the rest from the list, respectively. The specification
of SHUFFLE indicates that every list element i that was in the list (x) before the
application of SHUFFLE must be in the result (x′) after the application, and vice
versa. It must now be shown that the formula (PREQ ⇒ PREM) ∧ (POSTM ⇒
POSTQ) is a consequence of the knowledge base containing a description of the
data type List. The two VDM-SL specifications yield the proof task

∀l, l′, x, x′ : List · (l = x ∧ l′ = x ′ ∧ (w ⇒ w)) ∧
(l = x ∧ l′ = x′ ∧ ((l = [] ⇒ l′ = []) ∧ (l �= [] ⇒ l′ = (tl l)ˆ[hd l])
⇒ ∀i : Item · (∃x1, x2 : List · x = x1ˆ[i]ˆx2 ⇔ ∃y1, y2 : List · x ′ = y1ˆ[i]ˆy2))),

which can then be proven with the prover SETHEO.

In the coming years the semantic web will likely represent an important applica-
tion of PL1. The content of the World Wide Web is supposed to become interpretable
not only for people, but for machines. To this end web sites are being furnished with
a description of their semantics in a formal description language. The search for
information in the web will thereby become significantly more effective than today,
where essentially only text building blocks are searchable.

Decidable subsets of predicate logic are used as description languages. The de-
velopment of efficient calculi for reasoning is very important and closely connected
to the description languages. A query for a future semantically operating search en-
gine could (informally) read: Where in Switzerland next Sunday at elevations under
2000 meters will there be good weather and optimally prepared ski slopes? To an-
swer such a question, a calculus is required that is capable of working very quickly
on large sets of facts and rules. Here, complex nested function terms are less impor-
tant.

As a basic description framework, the World Wide Web Consortium developed
the language RDF (Resource Description Framework). Building on RDF, the signifi-
cantly more powerful language OWL (Web Ontology Language) allows the descrip-
tion of relations between objects and classes of objects, similarly to PL1 [SET09].
Ontologies are descriptions of relationships between possible objects.
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A difficulty when building a description of the innumerable websites is the ex-
penditure of work and also checking the correctness of the semantic descriptions.
Here machine learning systems for the automatic generation of descriptions can
be very helpful. An interesting use of “automatic” generation of semantics in the
web was introduced by Luis von Ahn of Carnegie Mellon University [vA06]. He
developed computer games in which the players, distributed over the network, are
supposed to collaboratively describe pictures with key words. Thus the pictures are
assigned semantics in a fun way at no cost. The reader may test the games and listen
to a speech by the inventor in Exercise 3.10 on page 55.

3.9 Summary

We have provided the most important foundations, terms, and procedures of predi-
cate logic and we have shown that even one of the most difficult intellectual tasks,
namely the proof of mathematical theorems, can be automated. Automated provers
can be employed not only in mathematics, but rather, in particular, in verification
tasks in computer science. For everyday reasoning, however, predicate logic in most
cases is ill-suited. In the next and the following chapters we show its weak points
and some interesting modern alternatives. Furthermore, we will show in Chap. 5
that one can program elegantly with logic and its procedural extensions.

Anyone interested in first-order logic, resolution and other calculi for automated
provers will find good advanced instruction in [New00, Fit96, Bib82, Lov78, CL73].
References to Internet resources can be found on this book’s web site.

3.10 Exercises

Exercise 3.1 Let the three-place predicate “child” and the one-place predicate “fe-
male” from Example 3.2 on page 35 be given. Define:
(a) A one-place predicate “male”.
(b) A two-place predicate “father” and “mother”.
(c) A two-place predicate “siblings”.
(d) A predicate “parents(x, y, z)”, which is true if and only if x is the father and y

is the mother of z.
(e) A predicate “uncle(x, y)”, which is true if and only if x is the uncle of y (use

the predicates that have already been defined).
(f) A two-place predicate “ancestor” with the meaning: ancestors are parents,

grandparents, etc. of arbitrarily many generations.

Exercise 3.2 Formalize the following statements in predicate logic:
(a) Every person has a father and a mother.
(b) Some people have children.
(c) All birds fly.
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(d) There is an animal that eats (some) grain-eating animals.
(e) Every animal eats plants or plant-eating animals which are much smaller than

itself.

Exercise 3.3 Adapt Exercise 3.1 on page 54 by using one-place function symbols
and equality instead of “father” and “mother”.

Exercise 3.4 Give predicate logic axioms for the two-place relation “<” as a total
order. For a total order we must have (1) Any two elements are comparable. (2) It is
symmetric. (3) It is transitive.

Exercise 3.5 Unify (if possible) the following terms and give the MGU and the
resulting terms.
(a) p(x,f (y)), p(f (z), u)

(b) p(x,f (x)), p(y, y)

(c) x = 4 − 7 · x, cosy = z

(d) x < 2 · x, 3 < 6
(e) q(f (x, y, z), f (g(w,w), g(x, x), g(y, y))), q(u,u)

Exercise 3.6
(a) Transform Russell’s Paradox from Example 3.7 on page 45 into CNF.
(b) Show that the empty clause cannot be derived using resolution without factor-

ization from (3.7) on page 45. Try to understand this intuitively.

Exercise 3.7
(a) Why is resolution with the set of support strategy incomplete?
(b) Justify (without proving) why the set of support strategy becomes complete if

(KB ∧ ¬Q)\SOS is satisfiable.
(c) Why is resolution with the pure literal rule complete?

❄ Exercise 3.8 Formalize and prove with resolution that in a semigroup with at least
two different elements a, b, a left-neutral element e, and a left null element n, these
two elements have to be different, that is, that n �= e. Use demodulation, which
allows replacement of “like with like”.

Exercise 3.9 Obtain the theorem prover E [Sch02] or another prover and prove the
following statements. Compare these proofs with those in the text.
(a) The claim from Example 2.3 on page 24.
(b) Russell’s paradox from Example 3.7 on page 45.
(c) The claim from Exercise 3.8.

Exercise 3.10 Test the games www.espgame.org and www.peekaboom.org, which
help to assign semantics to pictures in the web. Listen to the lecture about hu-
man computation by Luis von Ahn at: http://video.google.de/videoplay?docid=
-8246463980976635143.
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4.1 The Search Space Problem

As already mentioned in several places, in the search for a proof there are almost
always many (depending on the calculus, potentially infinitely many) possibilities
for the application of inference rules at every step. The result is the aforementioned
explosive growth of the search space (Fig. 4.1 on page 58). In the worst case, all
of these possibilities must be tried in order to find the proof, which is usually not
possible in a reasonable amount of time.

If we compare automated provers or inference systems with mathematicians or
human experts who have experience in special domains, we make interesting ob-
servations. For one thing, experienced mathematicians can prove theorems which
are far out of reach for automated provers. On the other hand, automated provers
perform tens of thousands of inferences per second. A human in contrast performs
maybe one inference per second. Although human experts are much slower on the
object level (that is, in carrying out inferences), they apparently solve difficult prob-
lems much faster.

There are several reasons for this. We humans use intuitive calculi that work on
a higher level and often carry out many of the simple inferences of an automated
prover in one step. Furthermore, we use lemmas, that is, derived true formulas that
we already know and therefore do not need to re-prove them each time. Meanwhile
there are also machine provers that work with such methods. But even they cannot
yet compete with human experts.

A further, much more important advantage of us humans is intuition, without
which we could not solve any difficult problems [PS09]. The attempt to formalize
intuition causes problems. Experience in applied AI projects shows that in complex
domains such as medicine (see Sect. 7.3) or mathematics, most experts are unable to
formulate this intuitive meta-knowledge verbally, much less to formalize it. There-
fore we cannot program this knowledge or integrate it into calculi in the form of
heuristics. Heuristics are methods that in many cases can greatly simplify or shorten
the way to the goal, but in some cases (usually rarely) can greatly lengthen the way
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Fig. 4.1 Possible consequences of the explosion of a search space

to the goal. Heuristic search is important not only to logic, but generally to problem
solving in AI and will therefore be thoroughly handled in Chap. 6.

An interesting approach, which has been pursued since about 1990, is the appli-
cation of machine learning techniques to the learning of heuristics for directing the
search of inference systems, which we will briefly sketch now. A resolution prover
has, during the search for a proof, hundreds or more possibilities for resolution steps
at each step, but only a few lead to the goal. It would be ideal if the prover could
ask an oracle which two clauses it should use in the next step to quickly find the
proof. There are attempts to build such proof-directing modules, which evaluate the
various alternatives for the next step and then choose the alternative with the best
rating. In the case of resolution, the rating of the available clauses could be com-
puted by a function that calculates a value based on the number of positive literals,
the complexity of the terms, etc., for every pair of resolvable clauses.

How can this function be implemented? Because this knowledge is “intuitive”,
the programmer is not familiar with it. Instead, one tries to copy nature and uses
machine learning algorithms to learn from successful proofs [ESS89, SE90]. The
attributes of all clause pairs participating in successful resolution steps are stored
as positive, and the attributes of all unsuccessful resolutions are stored as negative.
Then, using this training data and a machine learning system, a program is generated
which can rate clause pairs heuristically (see Sect. 9.5).
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A different, more successful approach to improving mathematical reasoning is
followed with interactive systems that operate under the control of the user. Here one
could name computer algebra programs such as Mathematica, Maple, or Maxima,
which can automatically carry out difficult symbolic mathematical manipulations.
The search for the proof, however, is left fully to the human. The aforementioned in-
teractive prover Isabelle [NPW02] provides distinctly more support during the proof
search. There are at present several projects, such as Omega [SB04] and MKM,1 for
the development of systems for supporting mathematicians during proofs.

In summary, one can say that, because of the search space problem, automated
provers today can only prove relatively simple theorems in special domains with
few axioms.

4.2 Decidability and Incompleteness

First-order predicate logic provides a powerful tool for the representation of know-
ledge and reasoning. We know that there are correct and complete calculi and theo-
rem provers. When proving a theorem, that is, a true statement, such a prover is very
helpful because, due to completeness, one knows after finite time that the statement
really is true. What if the statement is not true? The completeness theorem (Theo-
rem 3.3 on page 41) does not answer this question.2 Specifically, there is no process
that can prove or refute any formula from PL1 in finite time, for it holds that

Theorem 4.1 The set of valid formulas in first-order predicate logic is semi-
decidable.

This theorem implies that there are programs (theorem provers) which, given a
true (valid) formula as input, determine its truth in finite time. If the formula is not
valid, however, it may happen that the prover never halts. (The reader may grap-
ple with this question in Exercise 4.1 on page 65.) Propositional logic is decidable
because the truth table method provides all models of a formula in finite time. Ev-
idently predicate logic with quantifiers and nested function symbols is a language
somewhat too powerful to be decidable.

On the other hand, predicate logic is not powerful enough for many purposes.
One often wishes to make statements about sets of predicates or functions. This
does not work in PL1 because it only knows quantifiers for variables, but not for
predicates or functions.

Kurt Gödel showed, shortly after his completeness theorem for PL1, that com-
pleteness is lost if we extend PL1 even minimally to construct a higher-order logic.
A first-order logic can only quantify over variables. A second-order logic can also

1www.mathweb.org/mathweb/demo.html.
2Just this case is especially important in practice, because if I already know that a statement is true,
I no longer need a prover.
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quantify over formulas of the first order, and a third-order logic can quantify over
formulas of the second order. Even adding only the induction axiom for the natu-
ral numbers makes the logic incomplete. The statement “If a predicate p(n) holds
for n, then p(n + 1) also holds”, or

∀p p(n) ⇒ p(n + 1)

is a second-order proposition because it quantifies over a predicate. Gödel proved
the following theorem:

Theorem 4.2 (Gödel’s incompleteness theorem) Every axiom system for the
natural numbers with addition and multiplication (arithmetic) is incomplete.
That is, there are true statements in arithmetic that are not provable.

Gödel’s proof works with what is called Gödelization, in which every arithmetic
formula is encoded as a number. It obtains a unique Gödel number. Gödelization is
now used to formulate the proposition

F = “I am not provable.”

in the language of arithmetic. This formula is true for the following reason. Assume
F is false. Then we can prove F and therefore show that F is not provable. This is
a contradiction. Thus F is true and therefore not provable.

The deeper background of this theorem is that mathematical theories (axiom sys-
tems) and, more generally, languages become incomplete if the language becomes
too powerful. A similar example is set theory. This language is so powerful that
one can formulate paradoxes with it. These are statements that contradict them-
selves, such as the statement we already know from Example 3.7 on page 45 about
the barbers who all shave those who do not shave themselves (see Exercise 4.2
on page 65).3 The dilemma consists therein that with languages which are power-
ful enough to describe mathematics and interesting applications, we are smuggling
contradictions and incompletenesses through the back door. This does not mean,
however, that higher-order logics are wholly unsuited for formal methods. There are
certainly formal systems as well as provers for higher-order logics.

4.3 The Flying Penguin

With a simple example we will demonstrate a fundamental problem of logic and
possible solution approaches. Given the statements

3Many further logical paradoxes can be found in [Wie].
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Fig. 4.2 The flying penguin Tweety

1. Tweety is a penguin
2. Penguins are birds
3. Birds can fly
Formalized in PL1, the knowledge base KB results:

penguin(tweety)
penguin(x) ⇒ bird(x)

bird(x) ⇒ fly(x)

From there (for example with resolution) fly(tweety) can be derived (Fig. 4.2).4

Evidently the formalization of the flight attributes of penguins is insufficient. We
try the additional statement Penguins cannot fly, that is

penguin(x) ⇒ ¬fly(x)

From there ¬fly(tweety) can be derived. But fly(tweety) is still true. The knowledge
base is therefore inconsistent. Here we notice an important characteristic of logic,
namely monotony. Although we explicitly state that penguins cannot fly, the oppo-
site can still be derived.

Definition 4.1 A logic is called monotonic if, for an arbitrary knowledge base
KB and an arbitrary formula φ, the set of formulas derivable from KB is a
subset of the formulas derivable from KB ∪ φ.

4The formal execution of this and the following simple proof may be left to the reader (Exercise 4.3
on page 65).
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If a set of formulas is extended, then, after the extension, all previously deriv-
able statements can still be proved, and additional statements can potentially also
be proved. The set of provable statements thus grows monotonically when the set of
formulas is extended. For our example this means that the extension of the know-
ledge base will never lead to our goal. We thus modify KB by replacing the obvi-
ously false statement “(all) birds can fly” with the more exact statement “(all) birds
except penguins can fly” and obtain as KB2 the following clauses:

penguin(tweety)
penguin(x) ⇒ bird(x)

bird(x) ∧ ¬penguin(x) ⇒ fly(x)

penguin(x) ⇒ ¬fly(x)

Now the world is apparently in order again. We can derive ¬fly(tweety), but not
fly(tweety), because for that we would need ¬penguin(x), which, however, is not
derivable. As long as there are only penguins in this world, peace reigns. Every nor-
mal bird, however, immediately causes problems. We wish to add the raven Abraxas
(from the German book “The Little Witch”) and obtain

raven(abraxas)
raven(x) ⇒ bird(x)

penguin(tweety)
penguin(x) ⇒ bird(x)

bird(x) ∧ ¬penguin(x) ⇒ fly(x)

penguin(x) ⇒ ¬fly(x)

We cannot say anything about the flight attributes of Abraxas because we forgot to
formulate that ravens are not penguins. Thus we extend KB3 to KB4:

raven(abraxas)
raven(x) ⇒ bird(x)

raven(x) ⇒ ¬pinguin(x)

penguin(tweety)
penguin(x) ⇒ bird(x)

bird(x) ∧ ¬penguin(x) ⇒ fly(x)

penguin(x) ⇒ ¬fly(x)

The fact that ravens are not penguins, which is self-evident to humans, must be
explicitly added here. For the construction of a knowledge base with all 9,800 or so
types of birds worldwide, it must therefore be specified for every type of bird (except
for penguins) that it is not a member of penguins. We must proceed analogously for
all other exceptions such as the ostrich.

For every object in the knowledge base, in addition to its attributes, all of the
attributes it does not have must be listed.
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To solve this problem, various forms of non-monotonic logic have been devel-
oped, which allow knowledge (formulas) to be removed from the knowledge base.
Under the name default logic, logics have been developed which allow objects to
be assigned attributes which are valid as long as no other rules are available. In
the Tweety example, the rule birds can fly would be such a default rule. Despite
great effort, these logics have at present, due to semantic and practical problems,
not succeeded.

Monotony can be especially inconvenient in complex planning problems in
which the world can change. If for example a blue house is painted red, then af-
terwards it is red. A knowledge base such as

color(house,blue)
paint(house, red)

paint(x, y) ⇒ color(x, y)

leads to the conclusion that, after painting, the house is red and blue. The problem
that comes up here in planning is known as the frame problem. A solution for this is
the situation calculus presented in Sect. 5.6.

An interesting approach for modeling problems such as the Tweety example is
probability theory. The statement “all birds can fly” is false. A statement something
like “almost all birds can fly” is correct. This statement becomes more exact if we
give a probability for “birds can fly”. This leads to probabilistic logic, which today
represents an important sub-area of AI and an important tool for modeling uncer-
tainty (see Chap. 7).

4.4 Modeling Uncertainty

Two-valued logic can and should only model circumstances in which there is true,
false, and no other truth values. For many tasks in everyday reasoning, two-valued
logic is therefore not expressive enough. The rule

bird(x) ⇒ fly(x)

is true for almost all birds, but for some it is false. As was already mentioned, work-
ing with probabilities allows exact formulation of uncertainty. The statement “99%
of all birds can fly” can be formalized by the expression

P(bird(x) ⇒ fly(x)) = 0.99.

In Chap. 7 we will see that here it is better to work with conditional probabilities
such as

P(fly|bird) = 0.99.
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Fig. 4.3 Probability density of the continuous variable rainfall

With the help of Bayesian networks, complex applications with many variables can
also be modeled.

A different model is needed for the statement “The weather is nice”. Here it often
makes no sense to speak in terms of true and false. The variable weather_is_nice
should not be modeled as binary, rather continuously with values, for example, in
the interval [0,1]. weather_is_nice = 0.7 then means “The weather is fairly nice”.
Fuzzy logic, which also will be presented in Chap. 7, was developed for this type of
continuous (fuzzy) variable.

Probability theory also offers the possibility of making statements about the prob-
ability of continuous variables. A statement in the weather report such as “There is
a high probability that there will be some rain” could for example be exactly for-
mulated as a probability density of the form

P(rainfall = X) = Y

and represented graphically something like in Fig. 4.3.
This very general and even visualizable representation of both types of uncer-

tainty we have discussed, together with inductive statistics and the theory of Bay-
esian networks, makes it possible, in principle, to answer arbitrary probabilistic
queries.

Probability theory as well as fuzzy logic are not directly comparable to predicate
logic because they do not allow variables or quantifiers. They can thus be seen as
extensions of propositional logic as shown in the following table.

Formalism Number of
truth values

Probabilities
expressible

Propositional logic 2 –

Fuzzy logic ∞ –

Discrete probabilistic logic n yes

Continuous probabilistic logic ∞ yes



4.5 Exercises 65

4.5 Exercises

❄ Exercise 4.1
(a) With the following (false) argument, one could claim that PL1 is decidable: We

take a complete proof calculus for PL1. With it we can find a proof for any true
formula in finite time. For every other formula φ I proceed as follows: I apply
the calculus to ¬φ and show that ¬φ is true. Thus φ is false. Thus I can prove
or refute every formula in PL1. Find the mistake in the argument and change it
so it becomes correct.

(b) Construct a decision process for the set of true and unsatisfiable formulas in
PL1.

Exercise 4.2
(a) Given the statement “There is a barber who shaves every person who does not

shave himself.” Consider whether this barber shaves himself.
(b) Let M = {x|x /∈ x}. Describe this set and consider whether M contains itself.

Exercise 4.3 Use an automated theorem prover (for example E [Sch02]) and apply
it to all five different axiomatizations of the Tweety example from Sect. 4.3. Validate
the example’s statements.
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Compared to classical programming languages such as C or Pascal, Logic makes it
possible to express relationships elegantly, compactly, and declaratively. Automated
theorem provers are even capable of deciding whether a knowledge base logically
entails a query. Proof calculus and knowledge stored in the knowledge base are
strictly separated. A formula described in clause normal form can be used as input
data for any theorem prover, independent of the proof calculus used. This is of great
value for reasoning and the representation of knowledge.

If one wishes to implement algorithms, which inevitably have procedural com-
ponents, a purely declarative description is often insufficient. Robert Kowalski, one
of the pioneers of logic programming, made this point with the formula

Algorithm = Logic + Control.

This idea was brought to fruition in the language PROLOG. PROLOG is used in
many projects, primarily in AI and computational linguistics. We will now give a
short introduction to this language, present the most important concepts, show its
strengths, and compare it with other programming languages and theorem provers.
Those looking for a complete programming course are directed to textbooks such as
[Bra11, CM94] and the handbooks [Wie04, Dia04].

The syntax of the language PROLOG only allows Horn clauses. Logical notation
and PROLOG’s syntax are juxtaposed in the following table:

PL1 / clause normal form PROLOG Description

(¬A1 ∨ . . . ∨ ¬Am ∨ B) B:- A1, . . ., Am. Rule
(A1 ∧ . . . ∧ Am) ⇒ B B:- A1, . . ., Am. Rule
A A. Fact
(¬A1 ∨ . . . ∨ ¬Am) ?- A1, . . ., Am. Query
¬(A1 ∧ . . . ∧ Am) ?- A1, . . ., Am. Query
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1 child(oscar,karen,frank).
2 child(mary,karen,frank).
3 child(eve,anne,oscar).
4 child(henry,anne,oscar).
5 child(isolde,anne,oscar).
6 child(clyde,mary,oscarb).
7
8 child(X,Z,Y) :- child(X,Y,Z).
9
10 descendant(X,Y) :- child(X,Y,Z).
11 descendant(X,Y) :- child(X,U,V), descendant(U,Y).

Fig. 5.1 PROLOG program with family relationships

Here A1, . . . ,Am,A,B are literals. The literals are, as in PL1, constructed from
predicate symbols with terms as arguments. As we can see in the above table, in
PROLOG there are no negations in the strict logical sense because the sign of a
literal is determined by its position in the clause.

5.1 PROLOG Systems and Implementations

An overview of current PROLOG systems is available in the collection of links
on this book’s home page. To the reader we recommend the very powerful and
freely available (under GNU public licenses) systems GNU-PROLOG [Dia04]
and SWI-PROLOG. For the following examples, SWI-PROLOG [Wie04] was
used.

Most modern PROLOG systems work with an interpreter based on the Warren
abstract machine (WAM). PROLOG source code is compiled into so-called WAM
code, which is then interpreted by the WAM. The fastest implementations of a WAM
manage up to 10 million logical inferences per second (LIPS) on a 1 GHz PC.

5.2 Simple Examples

We begin with the family relationships from Example 3.2 on page 35. The small
knowledge base KB is coded—without the facts for the predicate female—as a
PROLOG program named rel.pl in Fig. 5.1.

The program can be loaded and compiled in the PROLOG interpreter with the
command

?- [rel].



5.2 Simple Examples 69

An initial query returns the dialog

?- child(eve,oscar,anne).

Yes

with the correct answer Yes. How does this answer come about? For the query “?-
child(eve,oscar,anne).” there are six facts and one rule with the same
predicate in its clause head. Now unification is attempted between the query and
each of the complementary literals in the input data in order of occurrence. If one
of the alternatives fails, this results in backtracking to the last branching point, and
the next alternative is tested. Because unification fails with every fact, the query
is unified with the recursive rule in line 8. Now the system attempts to solve the
subgoal child(eve,anne,oscar), which succeeds with the third alternative.
The query

?- descendant(X,Y).

X = oscar
Y = karen

Yes

is answered with the first solution found, as is

?- descendant(clyde,Y).

Y = mary

Yes

The query

?- descendant(clyde,karen).

is not answered, however. The reason for this is the clause in line 8, which specifies
symmetry of the child predicate. This clause calls itself recursively without the pos-
sibility of termination. This problem can be solved with the following new program
(facts have been omitted here).

1 descendant(X,Y) :- child(X,Y,Z).
2 descendant(X,Y) :- child(X,Z,Y).
3 descendant(X,Y) :- child(X,U,V), descendant(U,Y).
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But now the query

?- child(eve,oscar,anne).

is no longer correctly answered because the symmetry of child in the last two
variables is no longer given. A solution to both problems is found in the program

1 child_fact(oscar,karen,franz).
2 child_fact(mary,karen,franz).
3 child_fact(eva,anne,oscar).
4 child_fact(henry,anne,oscar).
5 child_fact(isolde,anne,oscar).
6 child_fact(clyde,mary,oscarb).
7
8 child(X,Z,Y) :- child_fact(X,Y,Z).
9 child(X,Z,Y) :- child_fact(X,Z,Y).
10
11 descendant(X,Y) :- child(X,Y,Z).
12 descendant(X,Y) :- child(X,U,V), descendant(U,Y).

By introducing the new predicate child_fact for the facts, the predicate child
is no longer recursive. However, the program is no longer as elegant and simple as
the—logically correct—first variant in Fig. 5.1 on page 68, which leads to the infi-
nite loop. The PROLOG programmer must, just as in other languages, pay attention
to processing and avoid infinite loops. PROLOG is just a programming language
and not a theorem prover.

We must distinguish here between declarative and procedural semantics of
PROLOG programs. The declarative semantics is given by the logical interpre-
tation of the horn clauses. The procedural semantics, in contrast, is defined by
the execution of the PROLOG program, which we wish to observe in more de-
tail now. The execution of the program from Fig. 5.1 on page 68 with the query
child(eve,oscar,anne) is represented in Fig. 5.2 on page 71 as a search
tree.1 Execution begins at the top left with the query. Each edge represents a pos-
sible SLD resolution step with a complementary unifiable literal. While the search
tree becomes infinitely deep by the recursive rule, the PROLOG execution termi-
nates because the facts occur before the rule in the input data.

With the query descendant(clyde,karen), in contrast, the PROLOG ex-
ecution does not terminate. We can see this clearly in the and-or tree presented
in Fig. 5.3 on page 71. In this representation the branches, represented by ,
lead from the head of a clause to the subgoals. Because all subgoals of a clause must
be solved, these are and branches. All other branches are or branches, of which at
least one must be unifiable with its parent nodes. The two outlined facts represent the

1The constants have been abbreviated to save space.
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Fig. 5.2 PROLOG search tree for child(eve,oscar,anne)

Fig. 5.3 And-or tree for desc(clyde,karen)

solution to the query. The PROLOG interpreter does not terminate here, however,
because it works by using a depth-first search with backtracking (see Sect. 6.2.2)
and thus first chooses the infinitely deep path to the far left.

5.3 Execution Control and Procedural Elements

As we have seen in the family relationship example, it is important to control the
execution of PROLOG. Avoiding unnecessary backtracking especially can lead to
large increases in efficiency. One means to this end is the cut. By inserting an ex-
clamation mark into a clause, we can prevent backtracking over this point. In the
following program, the predicate max(X,Y,Max) computes the maximum of the
two numbers X and Y.
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1 max(X,Y,X) :- X >= Y.
2 max(X,Y,Y) :- X < Y.

If the first case (first clause) applies, then the second will not be reached. On the
other hand, if the first case does not apply, then the condition of the second case is
true, which means that it does not need to be checked. For example, in the query

?- max(3,2,Z), Z > 10.

backtracking is employed because Z = 3, and the second clause is tested for max,
which is doomed to failure. Thus backtracking over this spot is unnecessary. We can
optimize this with a cut:

1 max(X,Y,X) :- X >= Y, !.
2 max(X,Y,Y).

Thus the second clause is only called if it is really necessary, that is, if the first clause
fails. However, this optimization makes the program harder to understand.

Another possibility for execution control is the built-in predicate fail, which
is never true. In the family relationship example we can quite simply print out all
children and their parents with the query

?- child\_fact(X,Y,Z), write(X), write(’ is a child of ’),
write(Y), write(’ and ’), write(Z), write(’.’), nl, fail.

The corresponding output is

oscar is a child of karen and frank.
mary is a child of karen and frank.
eve is a child of anne and oscar.
...
No.

where the predicate nl causes a line break in the output. What would be the output
in the end without use of the fail predicate?

With the same knowledge base, the query “?- child_fact(ulla,X,Y).”
would result in the answer No because there are no facts about ulla. This answer
is not logically correct. Specifically, it is not possible to prove that there is no ob-
ject with the name ulla. Here the prover E would correctly answer “No proof
found.” Thus if PROLOG answers No, this only means that the query Q cannot
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be proved. For this, however, ¬Q must not necessarily be proved. This behavior is
called negation as failure.

Restricting ourselves to Horn clauses does not cause a big problem in most cases.
However, it is important for procedural execution using SLD-resolution (Sect. 2.5).
Through the singly determined positive literal per clause, SLD resolution, and there-
fore the execution of PROLOG programs, have a unique entry point into the clause.
This is the only way it is possible to have reproducible execution of logic programs
and, therefore, well-defined procedural semantics.

Indeed, there are certainly problem statements which cannot be described by
Horn clauses. An example is Russell’s paradox from Example 3.7 on page 45, which
contains the non-Horn clause (shaves(barber,X) ∨ shaves(X,X)).

5.4 Lists

As a high-level language, PROLOG has, like the language LISP, the convenient
generic list data type. A list with the elements A, 2, 2, B , 3, 4, 5 has the form

[A,2,2,B,3,4,5]

The construct [Head|Tail] separates the first element (Head) from the rest (Tail)
of the list. With the knowledge base

list([A,2,2,B,3,4,5]).

PROLOG displays the dialog

?- list([H|T]).

H = A
T = [2, 2, B, 3, 4, 5]

Yes

By using nested lists, we can create arbitrary tree structures. For example, the two
trees

•
b c

and
a

b c

can be represented by the lists [b,c] and [a,b,c], respectively, and the two
trees

•
• • d

e f g h

and

a

b c d

e f g h
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by the lists [[e,f,g],[h],d] and [a,[b,e,f,g],[c,h],d], respectively.
In the trees where the inner nodes contain symbols, the symbol is the head of the
list and the child nodes are the tail.

A nice, elegant example of list processing is the definition of the predicate
append(X,Y,Z) for appending list Y to the list X. The result is saved in Z. The
corresponding PROLOG program reads

1 append([],L,L).
2 append([X|L1],L2,[X|L3]) :- append(L1,L2,L3).

This is a declarative (recursive) logical description of the fact that L3 results from
appending L2 to L1. At the same time, however, this program also does the work
when it is called. The call

?- append([a,b,c],[d,1,2],Z).

returns the substitution Z = [a, b, c, d, 1, 2], just as the call

?- append(X,[1,2,3],[4,5,6,1,2,3]).

yields the substitution X = [4, 5, 6]. Here we observe that append is not a
two-place function, but a three-place relationship. Actually, we can also input the
“output parameter” Z and ask whether it can be created.

Reversing the order of a list’s elements can also be elegantly described and si-
multaneously programmed by the recursive predicate

1 nrev([],[]).
2 nrev([H|T],R) :- nrev(T,RT), append(RT,[H],R).

which reduces the reversal of a list down to the reversal of a list that is one element
smaller. Indeed, this predicate is very inefficient due to calling append. This pro-
gram is known as naive reverse and is often used as a PROLOG benchmark (see
Exercise 5.6 on page 81). Things go better when one proceeds using a temporary
store, known as the accumulator, as follows:

List Accumulator

[a,b,c,d] []

[b,c,d] [a]

[c,d] [b,a]

[d] [c,b,a]

[] [d,c,b,a]
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The corresponding PROLOG program reads

1 accrev([],A,A).
2 accrev([H|T],A,R) :- accrev(T,[H|A],R).

5.5 Self-modifying Programs

PROLOG programs are not fully compiled, rather, they are interpreted by the WAM.
Therefore it is possible to modify programs at runtime. A program can even modify
itself. With commands such as assert and retract, facts and rules can be added
to the knowledge base or taken out of it.

A simple application of the variant asserta is the addition of derived facts
to the beginning of the knowledge base with the goal of avoiding a repeated, po-
tentially time-expensive derivation (see Exercise 5.8 on page 81). If in our family
relationship example we replace the two rules for the predicate descendant with

1 :- dynamic descendant/2.
2 descendant(X,Y) :- child(X,Y,Z), asserta(descendant(X,Y)).
3 descendant(X,Y) :- child(X,U,V), descendant(U,Y),
4 asserta(descendant(X,Y)).

then all derived facts for this predicate are saved in the knowledge base and thus in
the future are not re-derived. The query

?- descendant(clyde, karen).

leads to the addition of the two facts

descendant(clyde, karen).
descendant(mary, karen).

By manipulating rules with assert and retract, even programs that change
themselves completely can be written. This idea became known under the term ge-
netic programming. It allows the construction of arbitrarily flexible learning pro-
grams. In practice, however, it turns out that, due to the huge number of senseless
possible changes, changing the code by trial and error rarely leads to a performance
increase. Systematic changing of rules, on the other hand, makes programming so
much more complex that, so far, such programs that extensively modify their own
code have not been successful. In Chap. 8 we will show how machine learning
has been quite successful. However, only very limited modifications of the program
code are being conducted here.
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1 start :- action(state(left,left,left,left),
2 state(right,right,right,right)).
3
4 action(Start,Goal):-
5 plan(Start,Goal,[Start],Path),
6 nl,write(’Solution:’),nl,
7 write_path(Path).
8 % write_path(Path), fail. % all solutions output
9

10 plan(Start,Goal,Visited,Path):-
11 go(Start,Next),
12 safe(Next),
13 \+ member(Next,Visited), % not(member(...))
14 plan(Next,Goal,[Next|Visited],Path).
15 plan(Goal,Goal,Path,Path).
16
17 go(state(X,X,Z,K),state(Y,Y,Z,K)):-across(X,Y). % farmer, wolf
18 go(state(X,W,X,K),state(Y,W,Y,K)):-across(X,Y). % farmer, goat
19 go(state(X,W,Z,X),state(Y,W,Z,Y)):-across(X,Y). % farmer, cabbage
20 go(state(X,W,Z,K),state(Y,W,Z,K)):-across(X,Y). % farmer
21
22 across(left,right).
23 across(right,left).
24
25 safe(state(B,W,Z,K)):- across(W,Z), across(Z,K).
26 safe(state(B,B,B,K)).
27 safe(state(B,W,B,B)).

Fig. 5.4 PROLOG program for the farmer–wolf–goat–cabbage problem

5.6 A Planning Example

Example 5.1 The following riddle serves as a problem statement for a typical PRO-
LOG program.

A farmer wants to bring a cabbage, a goat, and a wolf across a river, but his boat is so small
that he can only take them across one at a time. The farmer thought it over and then said to
himself: “If I first bring the wolf to the other side, then the goat will eat the cabbage. If I
transport the cabbage first, then the goat will be eaten by the wolf. What should I do?”

This is a planning task which we can quickly solve with a bit of thought. The
PROLOG program given in Fig. 5.4 is not created quite as fast.

The program works on terms of the form state(Farmer,Wolf,Goat,
Cabbage), which describe the current state of the world. The four variables with
possible values left, right give the location of the objects. The central recur-
sive predicate plan first creates a successor state Next using go, tests its safety
with safe, and repeats this recursively until the start and goal states are the same
(in program line 15). The states which have already been visited are stored in the
third argument of plan. With the built-in predicate member it is tested whether the
state Next has already been visited. If yes, it is not attempted. The definition of the
predicate write_path for the task of outputting the plan found is missing here. It
is suggested as an exercise for the reader (Exercise 5.2 on page 80). For initial pro-
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gram tests the literal write_path(Path) can be replaced with write(Path).
For the query “?- start.” we get the answer

Solution:
Farmer and goat from left to right
Farmer from right to left
Farmer and wolf from left to right
Farmer and goat from right to left
Farmer and cabbage from left to right
Farmer from right to left
Farmer and goat from left to right

Yes

For better understanding we describe the definition of plan in logic:

∀z plan(z, z) ∧ ∀s ∀z ∀n [go(s, n) ∧ safe(n) ∧ plan(n, z) ⇒ plan(s, z)]

This definition comes out significantly more concise than in PROLOG. There are
two reasons for this. For one thing, the output of the discovered plan is unimpor-
tant for logic. Furthermore, it is not really necessary to check whether the next
state was already visited if unnecessary trips do not bother the farmer. If, however,
\+ member(...) is left out of the PROLOG program, then there is an infinite
loop and PROLOG might not find a schedule even if there is one. The cause of this
is PROLOG’s backward chaining search strategy, which, according to the depth-
first search (Sect. 6.2.2) principle, always works on subgoals one at a time without
restricting recursion depth, and is therefore incomplete. This would not happen to a
theorem prover with a complete calculus.

As in all planning tasks, the state of the world changes as actions are carried
out from one step to the next. This suggests sending the state as a variable to all
predicates that depend on the state of the world, such as in the predicate safe.
The state transitions occur in the predicate go. This approach is called situation
calculus [RN10]. We will become familiar with an interesting extension to learning
action sequences in partially observable, non-deterministic worlds in Chap. 10.

5.7 Constraint Logic Programming

The programming of scheduling systems, in which many (sometimes complex) log-
ical and numerical conditions must be fulfilled, can be very expensive and difficult
with conventional programming languages. This is precisely where logic could be
useful. One simply writes all logical conditions in PL1 and then enters a query. Usu-
ally this approach fails miserably. The reason is the penguin problem discussed in
Sect. 4.3. The fact penguin(tweety) does ensure that penguin(tweety) is
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true. However, it does not rule out that raven(tweety) is also true. To rule this
out with additional axioms is very inconvenient (Sect. 4.3).

Constraint Logic Programming (CLP), which allows the explicit formulation of
constraints for variables, offers an elegant and very efficient mechanism for solving
this problem. The interpreter constantly monitors the execution of the program for
adherence to all of its constraints. The programmer is fully relieved of the task of
controlling the constraints, which in many cases can greatly simplify programming.
This is expressed in the following quotation by Eugene C. Freuder from [Fre97]:

Constraint programming represents one of the closest approaches computer science has yet
made to the Holy Grail of programming: the user states the problem, the computer solves it.

Without going into the theory of the constraint satisfaction problem (CSP), we will
apply the CLP mechanism of GNU-PROLOG to the following example.

Example 5.2 The secretary of Albert Einstein High School has to come up with
a plan for allocating rooms for final exams. He has the following information: the
four teachers Mayer, Hoover, Miller and Smith give tests for the subjects German,
English, Math, and Physics in the ascendingly numbered rooms 1, 2, 3 and 4. Every
teacher gives a test for exactly one subject in exactly one room. Besides that, he
knows the following about the teachers and their subjects.
1. Mr. Mayer never tests in room 4.
2. Mr. Miller always tests German.
3. Mr. Smith and Mr. Miller do not give tests in neighboring rooms.
4. Mrs. Hoover tests Mathematics.
5. Physics is always tested in room number 4.
6. German and English are not tested in room 1.
Who gives a test in which room?

A GNU-PROLOG program for solving this problem is given in Fig. 5.5 on
page 79. This program works with the variables Mayer, Hoover, Miller,
Smith as well as German, English, Math, Physics, which can each take
on an integer value from 1 to 4 as the room number (program lines 2 and 5). A bind-
ing Mayer = 1 and German = 1 means that Mr. Mayer gives the German test
in room 1. Lines 3 and 6 ensure that the four particular variables take on different
values. Line 8 ensures that all variables are assigned a concrete value in the case of a
solution. This line is not absolutely necessary here. If there were multiple solutions,
however, only intervals would be output. In lines 10 to 16 the constraints are given,
and the remaining lines output the room numbers for all teachers and all subjects in
a simple format.

The program is loaded into GNU-PROLOG with “[’raumplan.pl’].”, and
with “start.” we obtain the output

[3,1,2,4]
[2,3,1,4]
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1 start :-
2 fd_domain([Mayer, Hoover, Miller, Smith],1,4),
3 fd_all_different([Mayer, Miller, Hoover, Smith]),
4
5 fd_domain([German, English, Math, Physics],1,4),
6 fd_all_different([German, English, Math, Physics]),
7
8 fd_labeling([Mayer, Hoover, Miller, Smith]),
9

10 Mayer #\=4, % Mayer not in room 4
11 Miller #= German, % Miller tests German
12 dist(Miller,Smith) #>= 2, % Distance Miller/Smith >= 2
13 Hoover #= Math, % Hoover tests mathematics
14 Physics #= 4, % Physics in room 4
15 German #\=1, % German not in room 1
16 English #\=1, % English not in room 1
17 nl,
18 write([Mayer, Hoover, Miller, Smith]), nl,
19 write([German, English, Math, Physics]), nl.

Fig. 5.5 CLP program for the room scheduling problem

Represented somewhat more conveniently, we have the following room schedule:

Room num. 1 2 3 4

Teacher Hoover Miller Mayer Smith
Subject Math German English Physics

GNU-PROLOG has, like most other CLP languages, a so-called finite domain
constraint solver, with which variables can be assigned a finite range of integers.
This need not necessarily be an interval as in the example. We can also input a list
of values. As an exercise the user is invited, in Exercise 5.9 on page 81, to create a
CLP program, for example with GNU-PROLOG, for a not-so-simple logic puzzle.
This puzzle, supposedly created by Einstein, can very easily be solved with a CLP
system. If we tried using PROLOG without constraints, on the other hand, we could
easily grind our teeth out. Anyone who finds an elegant solution with PROLOG or
a prover, please let it find its way to the author.

5.8 Summary

Unification, lists, declarative programming, and the relational view of procedures,
in which an argument of a predicate can act as both input and output, allow the de-
velopment of short, elegant programs for many problems. Many programs would be
significantly longer and thus more difficult to understand if written in a procedural
language. Furthermore, these language features save the programmer time. There-
fore PROLOG is also an interesting tool for rapid prototyping, particularly for AI
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applications. The CLP extension of PROLOG is helpful not only for logic puzzles,
but also for many optimization and scheduling tasks.

Since its invention in 1972, in Europe PROLOG has developed into one of Eu-
rope’s leading programming languages in AI, along with procedural languages. In
the U.S., on the other hand, the natively invented language LISP dominates the AI
market.

PROLOG is not a theorem prover. This is intentional, because a programmer
must be able to easily and flexibly control processing, and would not get very far
with a theorem prover. On the other hand, PROLOG is not very helpful on its own
for proving mathematical theorems. However, there are certainly interesting theo-
rem provers which are programmed in PROLOG.

Recommended as advanced literature are [Bra11] and [CM94], as well as the
handbooks [Wie04, Dia04] and, on the topic of CLP, [Bar98].

5.9 Exercises

Exercise 5.1 Try to prove the theorem from Sect. 3.7 about the equality of left- and
right-neutral elements of semi-groups with PROLOG. Which problems come up?
What is the cause of this?

Exercise 5.2
(a) Write a predicate write_move(+State1, +State2), that outputs a sen-

tence like “Farmer and wolf cross from left to right” for each boat cross-
ing. State1 and State2 are terms of the form state(Farmer, Wolf,
Goat, Cabbage).

(b) Write a recursive predicate write_path(+Path), which calls the predi-
cate write_move(+State1, +State2) and outputs all of the farmer’s
actions.

Exercise 5.3
(a) At first glance the variable Path in the predicate plan of the PROLOG pro-

gram from Example 5.1 on page 76 is unnecessary because it is apparently not
changed anywhere. What is it needed for?

(b) If we add a fail to the end of action in the example, then all solutions
will be given as output. Why is every solution now printed twice? How can you
prevent this?

Exercise 5.4
(a) Show by testing out that the theorem prover E (in contrast to PROLOG),

given the knowledge base from Fig. 5.1 on page 68, answers the query “?-
descendant(clyde, karen).” correctly. Why is that?

(b) Compare the answers of PROLOG and E for the query “?- descendant(X,
Y).”.
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Exercise 5.5 Write as short a PROLOG program as possible that outputs 1024 ones.

❄ Exercise 5.6 Investigate the runtime behavior of the naive reverse predicate.
(a) Run PROLOG with the trace option and observe the recursive calls of nrev,

append, and accrev.
(b) Compute the asymptotic time complexity of append(L1,L2,L3), that is, the

dependency of the running time on the length of the list for large lists. Assume
that access to the head of an arbitrary list takes constant time.

(c) Compute the time complexity of nrev(L,R).
(d) Compute the time complexity of accrev(L,R).
(e) Experimentally determine the time complexity of the predicates nrev,

append, and accrev, for example by carrying out time measurements
(time(+Goal) gives inferences and CPU time.).

Exercise 5.7 Use function symbols instead of lists to represent the trees given in
Sect. 5.4 on page 73.

❄ Exercise 5.8 The Fibonacci sequence is defined recursively by fib(0) = 1, fib(1) =
1 and fib(n) = fib(n − 1) + fib(n − 2).
(a) Define a recursive PROLOG predicate fib(N,R) which calculates fib(N) and

returns it in R.
(b) Determine the runtime complexity of the predicate fib theoretically and by

measurement.
(c) Change your program by using asserta such that unnecessary inferences are

no longer carried out.
(d) Determine the runtime complexity of the modified predicate theoretically and

by measurement (notice that this depends on whether fib was previously
called).

(e) Why is fib with asserta also faster when it is started for the first time right
after PROLOG is started?

❄ Exercise 5.9 The following typical logic puzzle was supposedly written by Albert
Einstein. Furthermore, he supposedly claimed that only 2% of the world’s popula-
tion is capable of solving it. The following statements are given.
• There are five houses, each painted a different color.
• Every house is occupied by a person with a different nationality.
• Every resident prefers a specific drink, smokes a specific brand of cigarette, and

has a specific pet.
• None of the five people drinks the same thing, smokes the same thing, or has the

same pet.
• Hints:

– The Briton lives in the red house.
– The Swede has a dog.
– The Dane likes to drink tea.
– The green house is to the left of the white house.
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– The owner of the green house drinks coffee.
– The person who smokes Pall Mall has a bird.
– The man who lives in the middle house drinks milk.
– The owner of the yellow house smokes Dunhill.
– The Norwegian lives in the first house.
– The Marlboro smoker lives next to the one who has a cat.
– The man with the horse lives next to the one who smokes Dunhill.
– The Winfield smoker likes to drink beer.
– The Norwegian lives next to the blue house.
– The German smokes Rothmanns.
– The Marlboro smoker has a neighbor who drinks water.

Question: To whom does the fish belong?
(a) First solve the puzzle manually.
(b) Write a CLP program (for example with GNU-PROLOG) to solve the puzzle.

Orient yourself with the room scheduling problem in Fig. 5.5 on page 79.
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6.1 Introduction

The search for a solution in an extremely large search tree presents a problem for
nearly all inference systems. From the starting state there are many possibilities for
the first inference step. For each of these possibilities there are again many possi-
bilities in the next step, and so on. Even in the proof of a very simple formula from
[Ert93] with three Horn clauses, each with at most three literals, the search tree for
SLD resolution has the following shape:

The tree was cut off at a depth of 14 and has a solution in the leaf node marked by ∗.
It is only possible to represent it at all because of the small branching factor of at
most two and a cutoff at depth 14. For realistic problems, the branching factor and
depth of the first solution may become significantly bigger.

Assume the branching factor is a constant equal to 30 and the first solution is
at depth 50. The search tree has 3050 ≈ 7.2 × 1073 leaf nodes. But the number of
inference steps is even bigger because not only every leaf node, but also every inner
node of the tree corresponds to an inference step. Therefore we must add up the
nodes over all levels and obtain the total number of nodes of the search tree

50∑

d=0

30d = 1 − 3051

1 − 30
= 7.4 × 1073,

which does not change the node count by much. Evidently, nearly all of the nodes
of this search tree are on the last level. As we will see, this is generally the case. But
now back to the search tree with the 7.4 × 1073 nodes. Assume we had 10,000 com-
puters which can each perform a billion inferences per second, and that we could

W. Ertel, Introduction to Artificial Intelligence,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-299-5_6, © Springer-Verlag London Limited 2011
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distribute the work over all of the computers with no cost. The total computation
time for all 7.4 × 1073 inferences would be approximately equal to

7.4 × 1073 inferences

10000 × 109 inferences/sec
= 7.4 × 1060 sec ≈ 2.3 × 1053 years,

which is about 1043 times as much time as the age of our universe. By this sim-
ple thought exercise, we can quickly recognize that there is no realistic chance of
searching this kind of search space completely with the means available to us in
this world. Moreover, the assumptions related to the size of the search space were
completely realistic. In chess for example, there are over 30 possible moves for a
typical situation, and a game lasting 50 half-turns is relatively short.

How can it be then, that there are good chess players—and these days also good
chess computers? How can it be that mathematicians find proofs for theorems in
which the search space is even much bigger? Evidently we humans use intelligent
strategies which dramatically reduce the search space. The experienced chess player,
just like the experienced mathematician, will, by mere observation of the situation,
immediately rule out many actions as senseless. Through his experience, he has the
ability to evaluate various actions for their utility in reaching the goal. Often a per-
son will go by feel. If one asks a mathematician how he found a proof, he may
answer that the intuition came to him in a dream. In difficult cases, many doctors
find a diagnosis purely by feel, based on all known symptoms. Especially in difficult
situations, there is often no formal theory for solution-finding that guarantees an op-
timal solution. In everyday problems, such as the search for a runaway cat in Fig. 6.1
on page 85, intuition plays a big role. We will deal with this kind of heuristic search
method in Sect. 6.3 and additionally describe processes with which computers can,
similarly to humans, improve their heuristic search strategies by learning.

First, however, we must understand how uninformed search, that is, blindly trying
out all possibilities, works. We begin with a few examples.

Example 6.1 With the 8-puzzle, a classic example for search algorithms [Nil98,
RN10], the various algorithms can be very visibly illustrated. Squares with the num-
bers 1 to 8 are distributed in a 3 × 3 matrix like the one in Fig. 6.2 on page 86. The
goal is to reach a certain ordering of the squares, for example in ascending order by
rows as represented in Fig. 6.2 on page 86. In each step a square can be moved left,
right, up, or down into the empty space. The empty space therefore moves in the
corresponding opposite direction. For analysis of the search space, it is convenient
to always look at the possible movements of the empty field.

The search tree for a starting state is represented in Fig. 6.3 on page 86. We
can see that the branching factor alternates between two, three, and four. Averaged
over two levels at a time, we obtain an average branching factor1 of

√
8 ≈ 2.83. We

see that each state is repeated multiple times two levels deeper because in a simple
uninformed search, every action can be reversed in the next step.

1The average branching factor of a tree is the branching factor that a tree with a constant branching
factor, equal depth, and an equal amount of leaf nodes would have.
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Fig. 6.1 A heavily trimmed search tree—or: “Where is my cat?”

If we disallow cycles of length 2, then for the same starting state we obtain the
search tree represented in Fig. 6.4 on page 86. The average branching factor is re-
duced by about 1 and becomes 1.8.2

2For an 8-puzzle the average branching factor depends on the starting state (see Exercise 6.2 on
page 110).
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Fig. 6.2 Possible starting
and goal states of the 8-puzzle

Fig. 6.3 Search tree for the 8-puzzle. Bottom right a goal state in depth 3 is represented. To save
space the other nodes at this level have been omitted

Fig. 6.4 Search tree for an 8-puzzle without cycles of length 2

Before we begin describing the search algorithms, a few new terms are needed.
We are dealing with discrete search problems here. Being in state s, an action a1

leads to a new state s′. Thus s ′ = a1(s). A different action may lead to state s′′, in
other words: s′′ = a2(s). Recursive application of all possible actions to all states,
beginning with the starting state, yields the search tree.
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Definition 6.1 A search problem is defined by the following values
State: Description of the state of the world in which the search agent finds

itself.
Starting state: The initial state in which the search agent is started.
Goal state: If the agent reaches a goal state, then it terminates and outputs a

solution (if desired).
Actions: All of the agents allowed actions.
Solution: The path in the search tree from the starting state to the goal state.
Cost function: Assigns a cost value to every action. Necessary for finding a

cost-optimal solution.
State space: Set of all states.

Applied to the 8-puzzle, we get
State: 3 × 3 matrix S with the values 1, 2, 3, 4, 5, 6, 7, 8 (once each) and one empty

square.
Starting state: An arbitrary state.
Goal state: An arbitrary state, e.g. the state given to the right in Fig. 6.2 on page 86.
Actions: Movement of the empty square Sij to the left (if j �= 1), right (if j �= 3),

up (if i �= 1), down (if i �= 3).
Cost function: The constant function 1, since all actions have equal cost.
State space: The state space is degenerate in domains that are mutually unreachable

(Exercise 6.4 on page 110). Thus there are unsolvable 8-puzzle problems.
For analysis of the search algorithms, the following terms are needed:

Definition 6.2
• The number of successor states of a state s is called the branching factor

b(s), or b if the branching factor is constant.
• The effective branching factor of a tree of depth d with n total nodes is

defined as the branching factor that a tree with constant branching factor,
equal depth, and equal n would have (see Exercise 6.3 on page 110).

• A search algorithm is called complete if it finds a solution for every solv-
able problem. If a complete search algorithm terminates without finding a
solution, then the problem is unsolvable.

For a given depth d and node count n, the effective branching factor can be
calculated by solving the equation

n = bd+1 − 1

b − 1
(6.1)
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Fig. 6.5 The graph of southern Germany as an example of a search task with a cost function

for b because a tree with constant branching factor and depth d has a total of

n =
d∑

i=0

bi = bd+1 − 1

b − 1
(6.2)

nodes.
For the practical application of search algorithms for finite search trees, the last

level is especially important because

Theorem 6.1 For heavily branching finite search trees with a large constant
branching factor, almost all nodes are on the last level.

The simple proof of this theorem is recommended to the reader as an exercise
(Exercise 6.1 on page 110).

Example 6.2 We are given a map, such as the one represented in Fig. 6.5, as a graph
with cities as nodes and highway connections between the cities as weighted edges
with distances. We are looking for an optimal route from city A to city B . The
description of the corresponding schema reads
State: A city as the current location of the traveler.
Starting state: An arbitrary city.
Goal state: An arbitrary city.
Actions: Travel from the current city to a neighboring city.
Cost function: The distance between the cities. Each action corresponds to an edge

in the graph with the distance as the weight.
State space: All cities, that is, nodes of the graph.
To find the route with minimal length, the costs must be taken into account because
they are not constant as they were in the 8-puzzle.
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Definition 6.3 A search algorithm is called optimal if it, if a solution exists,
always finds the solution with the lowest cost.

The 8-puzzle problem is deterministic, which means that every action leads from
a state to a unique successor state. It is furthermore observable, that is, the agent
always knows which state it is in. In route planning in real applications both char-
acteristics are not always given. The action “Drive from Munich to Ulm” may—for
example because of an accident—lead to the successor state “Munich”. It can also
occur that the traveler no longer knows where he is because he got lost. We want to
ignore these kinds of complications at first. Therefore in this chapter we will only
look at problems that are deterministic and observable.

Problems like the 8-puzzle, which are deterministic and observable, make action
planning relatively simple because, due to having an abstract model, it is possible to
find action sequences for the solution of the problem without actually carrying out
the actions in the real world. In the case of the 8-puzzle, it is not necessary to actually
move the squares in the real world to find the solution. We can find optimal solu-
tions with so-called offline algorithms. One faces much different challenges when,
for example, building robots that are supposed to play soccer. Here there will never
be an exact abstract model of the actions. For example, a robot that kicks the ball in
a specific direction cannot predict with certainty where the ball will move because,
among other things, it does not know whether an opponent will catch or deflect the
ball. Here online algorithms are then needed, which make decisions based on sen-
sor signals in every situation. Reinforcement learning, described in Sect. 10, works
toward optimization of these decisions based on experience.

6.2 Uninformed Search

6.2.1 Breadth-First Search

In breadth-first search, the search tree is explored from top to bottom according to
the algorithm given in Fig. 6.6 on page 90 until a solution is found. First every node
in the node list is tested for whether it is a goal node, and in the case of success, the
program is stopped. Otherwise all successors of the node are generated. The search
is then continued recursively on the list of all newly generated nodes. The whole
thing repeats until no more successors are generated.

This algorithm is generic. That is, it works for arbitrary applications if the
two application-specific functions “GoalReached” and “Successors” are provided.
“GoalReached” calculates whether the argument is a goal node, and “Successors”
calculates the list of all successor nodes of its argument. Figure 6.7 on page 90
shows a snapshot of breadth-first search.
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BREADTH-FIRST-SEARCH(NodeList, Goal)

NewNodes = ∅
For all Node ∈ NodeList

If GoalReached(Node, Goal)
Return(“Solution found”, Node)

NewNodes = Append(NewNodes, Successors(Node))
If NewNodes �= ∅

Return(BREADTH-FIRST-SEARCH(NewNodes, Goal))
Else

Return(“No solution”)

Fig. 6.6 The algorithm for breadth-first search

Fig. 6.7 Breadth-first search during the expansion of the third-level nodes. The nodes are num-
bered according to the order they were generated. The successors of nodes 11 and 12 have not yet
been generated

Analysis Since breadth-first search completely searches through every depth and
reaches every depth in finite time, it is complete if the branching factor b is finite.
The optimal (that is, the shortest) solution is found if the costs of all actions are the
same (see Exercise 6.7 on page 110). Computation time and memory space grow
exponentially with the depth of the tree. For a tree with constant branching factor b

and depth d , the total compute time is thus given by

c ·
d∑

i=0

bi = bd+1 − 1

b − 1
= O(bd).

Although only the last level is saved in memory, the memory space requirement is
also O(bd).

With the speed of today’s computers, which can generate billions of nodes within
minutes, main memory quickly fills up and the search ends. The problem of the
shortest solution not always being found can be solved by the so-called Uniform
Cost Search, in which the node with the lowest cost from the ascendingly sorted
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DEPTH-FIRST-SEARCH(Node, Goal)

If GoalReached(Node, Goal) Return(“Solution found”)
NewNodes = Successors(Node)
While NewNodes �= ∅

Result = DEPTH-FIRST-SEARCH(First(NewNodes), Goal)
If Result = “Solution found” Return(“Solution found”)
NewNodes = Rest(NewNodes)

Return(“No solution”)

Fig. 6.8 The algorithm for depth-first search. The function “First” returns the first element of a
list, and “Rest” the rest of the list

list of nodes is always expanded, and the new nodes sorted in. Thus we find the
optimal solution. The memory problem is not yet solved, however. A solution for
this problem is provided by depth-first search.

6.2.2 Depth-First Search

In depth-first search only a few nodes are stored in memory at one time. After the
expansion of a node only its successors are saved, and the first successor node is
immediately expanded. Thus the search quickly becomes very deep. Only when
a node has no successors and the search fails at that depth is the next open node
expanded via backtracking to the last branch, and so on. We can best perceive this
in the elegant recursive algorithm in Fig. 6.8 and in the search tree in Fig. 6.9 on
page 92.

Analysis Depth-first search requires much less memory than breadth-first search
because at most b nodes are saved at each depth. Thus we need b · d memory cells.

However, depth-first search is not complete for infinitely deep trees because
depth-first search runs into an infinite loop when there is no solution in the far left
branch. Therefore the question of finding the optimal solution is obsolete. Because
of the infinite loop, no bound on the computation time can be given. In the case of
a finitely deep search tree with depth d , a total of about bd nodes are generated.
Thus the computation time grows, just as in breadth-first search, exponentially with
depth.

We can make the search tree finite by setting a depth limit. Now if no solution is
found in the pruned search tree, there can nonetheless be solutions outside the limit.
Thus the search becomes incomplete. There are obvious ideas, however, for getting
the search to completeness.
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Fig. 6.9 Execution of depth-first search. All nodes at depth three are unsuccessful and cause back-
tracking. The nodes are numbered in the order they were generated

Fig. 6.10 Schematic representation of the development of the search tree in iterative deepening
with limits from 1 to 7. The breadth of the tree corresponds to a branching factor of 2

6.2.3 Iterative Deepening

We begin the depth-first search with a depth limit of 1. If no solution is found, we
raise the limit by 1 and start searching from the beginning, and so on, as shown in
Fig. 6.10. This iterative raising of the depth limit is called iterative deepening.

We must augment the depth-first search program given in Fig. 6.8 on page 91
with the two additional parameters “Depth” and “Limit”. “Depth” is raised by one
at the recursive call, and the head line of the while loop is replaced by “While
NewNodes �= ∅ And Depth < Limit”. The modified algorithm is represented in
Fig. 6.11 on page 93.

Analysis The memory requirement is the same as in depth-first search. One could
argue that repeatedly re-starting depth-first search at depth zero causes a lot of re-
dundant work. For large branching factors this is not the case. We now show that the
sum of the number of nodes of all depths up to the one before last dmax − 1 in all
trees searched is much smaller than the number of nodes in the last tree searched.
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ITERATIVEDEEPENING(Node, Goal)

DepthLimit = 0
Repeat

Result = DEPTHFIRSTSEARCH-B(Node, Goal, 0, DepthFirstSearch)
DepthLimit = DepthLimit + 1

Until Result = “Solution found”

DEPTHFIRSTSEARCH-B(Node, Goal, Depth, Limit)

If GoalReached(Node, Goal) Return(“Solution found”)
NewNodes = Successors(Node)
While NewNodes �= ∅ And Depth < Limit

Result =
DEPTHFIRSTSEARCH-B(First(NewNodes), Goal, Depth + 1, Limit)

If Result = “Solution found” Return(“Solution found”)
NewNodes = Rest(NewNodes)

Return(“No solution”)

Fig. 6.11 The algorithm for iterative deepening, which calls the slightly modified depth-first
search with a depth limit (TIEFENSUCHE-B)

Let Nb(d) be the number of nodes of a search tree with branching factor b and
depth d and dmax be the last depth searched. The last tree searched contains

Nb(dmax) =
dmax∑

i=0

bi = bdmax+1 − 1

b − 1

nodes. All trees searched beforehand together have

dmax−1∑

d=1

Nb(d) =
dmax−1∑

d=1

bd+1 − 1

b − 1
= 1

b − 1

((
dmax−1∑

d=1

bd+1

)
− dmax + 1

)

= 1

b − 1

((
dmax∑

d=2

bd

)
− dmax + 1

)

= 1

b − 1

(
bdmax+1 − 1

b − 1
− 1 − b − dmax + 1

)

≈ 1

b − 1

(
bdmax+1 − 1

b − 1

)
= 1

b − 1
Nb(dmax)
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Table 6.1 Comparison of the uninformed search algorithms. (*) means that the statement is only
true given a constant action cost. ds is the maximal depth for a finite search tree

Breadth-first
search

Uniform cost
search

Depth-first
search

Iterative
deepening

Completeness Yes Yes No Yes

Optimal solution Yes (*) Yes No Yes (*)

Computation time bd bd ∞ or bds bd

Memory use bd bd bd bd

nodes. For b > 2 this is less than the number Nb(dmax) of nodes in the last tree.
For b = 20 the first dmax − 1 trees together contain only about 1

b−1 = 1/19 of the
number of nodes in the last tree. The computation time for all iterations besides the
last can be ignored.

Just like breadth-first search, this method is complete, and given a constant cost
for all actions, it finds the shortest solution.

6.2.4 Comparison

The described search algorithms have been put side-by-side in Table 6.1.
We can clearly see that iterative deepening is the winner of this test because it

gets the best grade in all categories. In fact, of all four algorithms presented it is the
only practically usable one.

We do indeed have a winner for this test, although for realistic applications it
is usually not successful. Even for the 15-puzzle, the 8-puzzle’s big brother (see
Exercise 6.4 on page 110), there are about 2 × 1013 different states. For non-trivial
inference systems the state space is many orders of magnitude bigger. As shown in
Sect. 6.1, all the computing power in the world will not help much more. Instead
what is needed is an intelligent search that only explores a tiny fraction of the search
space and finds a solution there.

6.3 Heuristic Search

Heuristics are problem-solving strategies which in many cases find a solution faster
than uninformed search. However, this is not guaranteed. Heuristic search could
require a lot more time and can even result in the solution not being found.

We humans successfully use heuristic processes for all kinds of things. When
buying vegetables at the supermarket, for example, we judge the various options
for a pound of strawberries using only a few simple criteria like price, appearance,
source of production, and trust in the seller, and then we decide on the best option
by gut feeling. It might theoretically be better to subject the strawberries to a basic
chemical analysis before deciding whether to buy them. For example, the strawber-
ries might be poisoned. If that were the case the analysis would have been worth the
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HEURISTICSEARCH(Start, Goal)

NodeList = [Start]
While True

If NodeList = ∅ Return(“No solution”)
Node = First(NodeList)
NodeList = Rest(NodeList)
If GoalReached(Node, Goal) Return(“Solution found”, Node)
NodeList = SortIn(Successors(Node),NodeList)

Fig. 6.12 The algorithm for heuristic search

trouble. However, we do not carry out this kind of analysis because there is a very
high probability that our heuristic selection will succeed and will quickly get us to
our goal of eating tasty strawberries.

Heuristic decisions are closely linked with the need to make real-time decisions
with limited resources. In practice a good solution found quickly is preferred over a
solution that is optimal, but very expensive to derive.

A heuristic evaluation function f (s) for states is used to mathematically model a
heuristic. The goal is to find, with little effort, a solution to the stated search problem
with minimal total cost. Please note that there is a subtle difference between the
effort to find a solution and the total cost of this solution. For example it may take
Google Maps half a second’s worth of effort to find a route from the City Hall in
San Francisco to Tuolumne Meadows in Yosemite National Park, but the ride from
San Francisco to Tuolumne Meadows by car may take four hours and some money
for gasoline etc. (total cost).

Next we will modify the breadth-first search algorithm by adding the evaluation
function to it. The currently open nodes are no longer expanded left to right by row,
but rather according to their heuristic rating. From the set of open nodes, the node
with the minimal rating is always expanded first. This is achieved by immediately
evaluating nodes as they are expanded and sorting them into the list of open nodes.
The list may then contain nodes from different depths in the tree.

Because heuristic evaluation of states is very important for the search, we will
differentiate from now on between states and their associated nodes. The node con-
tains the state and further information relevant to the search, such as its depth in the
search tree and the heuristic rating of the state. As a result, the function “Succes-
sors”, which generates the successors (children) of a node, must also immediately
calculate for these successor nodes their heuristic ratings as a component of each
node. We define the general search algorithm HEURISTICSEARCH in Fig. 6.12.

The node list is initialized with the starting nodes. Then, in the loop, the first
node from the list is removed and tested for whether it is a solution node. If not, it
will be expanded with the function “Successors” and its successors added to the list
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Fig. 6.13 He: “Dear, think of the fuel cost! I’ll pluck one for you somewhere else.” She: “No,
I want that one over there!”

with the function “SortIn”. “SortIn(X,Y)” inserts the elements from the unsorted list
X into the ascendingly sorted list Y. The heuristic rating is used as the sorting key.
Thus it is guaranteed that the best node (that is, the one with the lowest heuristic
value) is always at the beginning of the list.3

Depth-first and breadth-first search also happen to be special cases of the function
HEURISTICSEARCH. We can easily generate them by plugging in the appropriate
evaluation function (Exercise 6.11 on page 111).

The best heuristic would be a function that calculates the actual costs from each
node to the goal. To do that, however, would require a traversal of the entire search
space, which is exactly what the heuristic is supposed to prevent. Therefore we
need a heuristic that is fast and simple to compute. How do we find such a heuris-
tic?

An interesting idea for finding a heuristic is simplification of the problem. The
original task is simplified enough that it can be solved with little computational
cost. The costs from a state to the goal in the simplified problem then serve as
an estimate for the actual problem (see Fig. 6.13). This cost estimate function we
denote h.

6.3.1 Greedy Search

It seems sensible to choose the state with the lowest estimated h value (that is, the
one with the lowest estimated cost) from the list of currently available states. The

3When sorting in a new node from the node list, it may be advantageous to check whether the node
is already available and, if so, to delete the duplicate.
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Fig. 6.14 City graph with flying distances from all cities to Ulm

cost estimate then can be used directly as the evaluation function. For the evaluation
in the function HEURISTICSEARCH we set f (s) = h(s). This can be seen clearly in
the trip planning example (Example 6.2 on page 88). We set up the task of finding
the straight line path from city to city (that is, the flying distance) as a simplifica-
tion of the problem. Instead of searching the optimal route, we first determine from
every node a route with minimal flying distance to the goal. We choose Ulm as the
destination. Thus the cost estimate function becomes

h(s) = flying distance from city s to Ulm.

The flying distances from all cities to Ulm are given in Fig. 6.14 next to the graph.
The search tree for starting in Linz is represented in Fig. 6.15 on page 98 left. We

can see that the tree is very slender. The search thus finishes quickly. Unfortunately,
this search does not always find the optimal solution. For example, this algorithm
fails to find the optimal solution when starting in Mannheim (Fig. 6.15 on page 98
right). The Mannheim–Nürnberg–Ulm path has a length of 401 km. The route
Mannheim–Karlsruhe–Stuttgart–Ulm would be significantly shorter at 238 km. As
we observe the graph, the cause of this problem becomes clear. Nürnberg is in fact
somewhat closer than Karlsruhe to Ulm, but the distance from Mannheim to Nürn-
berg is significantly greater than that from Mannheim to Karlsruhe. The heuristic
only looks ahead “greedily” to the goal instead of also taking into account the stretch
that has already been laid down to the current node. This is why we give it the name
greedy search.
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Fig. 6.15 Greedy search: from Linz to Ulm (left) and from Mannheim to Ulm (right). The node
list data structure for the left search tree, sorted by the node rating before the expansion of the node
München is given

6.3.2 A�-Search

We now want to take into account the costs that have accrued during the search up
to the current node s. First we define the cost function

g(s) = Sum of accrued costs from the start to the current node,

then add to that the estimated cost to the goal and obtain as the heuristic evaluation
function

f (s) = g(s) + h(s).

Now we add yet another small, but important requirement.

Definition 6.4 A heuristic cost estimate function h(s) that never overesti-
mates the actual cost from state s to the goal is called admissible.

The function HEURISTICSEARCH together with an evaluation function f (s) =
g(s) + h(s) and an admissible heuristic function h is called A�-algorithm. This
famous algorithm is complete and optimal. A� thus always finds the shortest solution
for every solvable search problem. We will explain and prove this in the following
discussion.

First we apply the A�-algorithm to the example. We are looking for the shortest
path from Frankfurt to Ulm.
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Fig. 6.16 Two snapshots of the A� search tree for the optimal route from Frankfurt to Ulm. In the
boxes below the name of the city s we show g(s), h(s), f (s). Numbers in parentheses after the
city names show the order in which the nodes have been generated by the “Successor” function

In the top part of Fig. 6.16 we see that the successors of Mannheim are generated
before the successors of Würzburg. The optimal solution Frankfurt–Würzburg–Ulm
is generated shortly thereafter in the eighth step, but it is not yet recognized as such.
Thus the algorithm does not terminate yet because the node Karlsruhe (3) has a
better (lower) f value and thus is ahead of the node Ulm (8) in line. Only when
all f values are greater than or equal to that of the solution node Ulm (8) have
we ensured that we have an optimal solution. Otherwise there could potentially be
another solution with lower costs. We will now show that this is true generally.

Theorem 6.2 The A� algorithm is optimal. That is, it always finds the solution
with the lowest total cost if the heuristic h is admissible.

Proof In the HEURISTICSEARCH algorithm, every newly generated node s is sorted
in by the function “SortIn” according to its heuristic rating f (s). The node with
the smallest rating value thus is at the beginning of the list. If the node l at the
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Fig. 6.17 The first solution
node l found by A� never has
a higher cost than another
arbitrary node l′

beginning of the list is a solution node, then no other node has a better heuristic
rating. For all other nodes s it is true then that f (l) ≤ f (s). Because the heuristic
is admissible, no better solution l′ can be found, even after expansion of all other
nodes (see Fig. 6.17). Written formally:

g(l) = g(l) + h(l) = f (l) ≤ f (s) = g(s) + h(s) ≤ g(l′).

The first equality holds because l is a solution node with h(l) = 0. The second is the
definition of f . The third (in)equality holds because the list of open nodes is sorted
in ascending order. The fourth equality is again the definition of f . Finally, the last
(in)equality is the admissibility of the heuristic, which never overestimates the cost
from node s to an arbitrary solution. Thus it has been shown that g(l) ≤ g(l′), that
is, that the discovered solution l is optimal. �

6.3.3 IDA�-Search

The A� search inherits a quirk from breadth-first search. It has to save many nodes
in memory, which can lead to very high memory use. Furthermore, the list of open
nodes must be sorted. Thus insertion of nodes into the list and removal of nodes
from the list can no longer run in constant time, which increases the algorithm’s
complexity slightly. Based on the heapsort algorithm, we can structure the node
list as a heap with logarithmic time complexity for insertion and removal of nodes
(see [CLR90]).

Both problems can be solved—similarly to breadth-first search—by iterative
deepening. We work with depth-first search and successively raise the limit. How-
ever, rather than working with a depth limit, here we use a limit for the heuristic
evaluation f (s). This process is called the IDA�-algorithm.

6.3.4 Empirical Comparison of the Search Algorithms

In A�, or (alternatively) IDA�, we have a search algorithm with many good proper-
ties. It is complete and optimal. It can thus be used without risk. The most important
thing, however, is that it works with heuristics, and therefore can significantly re-
duce the computation time needed to find a solution. We would like to explore this
empirically in the 8-puzzle example.

For the 8-puzzle there are two simple admissible heuristics. The heuristic h1
simply counts the number of squares that are not in the right place. Clearly this
heuristic is admissible. Heuristic h2 measures the Manhattan distance. For every
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Table 6.2 Comparison of the computation cost of uninformed search and heuristic search for
solvable 8-puzzle problems with various depths. Measurements are in steps and seconds. All values
are averages over multiple runs (see last column)

Depth Iterative deepening A� algorithm Num.
runsSteps Time

[sec]
Heuristic h1 Heuristic h2

Steps Time [sec] Steps Time [sec]

2 20 0.003 3.0 0.0010 3.0 0.0010 10

4 81 0.013 5.2 0.0015 5.0 0.0022 24

6 806 0.13 10.2 0.0034 8.3 0.0039 19

8 6455 1.0 17.3 0.0060 12.2 0.0063 14

10 50512 7.9 48.1 0.018 22.1 0.011 15

12 486751 75.7 162.2 0.074 56.0 0.031 12

IDA�

14 – – 10079.2 2.6 855.6 0.25 16

16 – – 69386.6 19.0 3806.5 1.3 13

18 – – 708780.0 161.6 53941.5 14.1 4

square the horizontal and vertical distances to that square’s location in the goal state
are added together. This value is then summed over all squares. For example, the
Manhattan distance of the two states

is calculated as

h2(s) = 1 + 1 + 1 + 1 + 2 + 0 + 3 + 1 = 10.

The admissibility of the Manhattan distance is also obvious (see Exercise 6.13 on
page 111).

The described algorithms were implemented in Mathematica. For a comparison
with uninformed search, the A� algorithm with the two heuristics h1 and h2 and
iterative deepening was applied to 132 randomly generated 8-puzzle problems. The
average values for the number of steps and computation time are given in Table 6.2.
We see that the heuristics significantly reduce the search cost compared to unin-
formed search.

If we compare iterative deepening to A� with h1 at depth 12, for example, it
becomes evident that h1 reduces the number of steps by a factor of about 3,000, but
the computation time by only a factor of 1,023. This is due to the higher cost per
step for the computation of the heuristic.

Closer examination reveals a jump in the number of steps between depth 12 and
depth 14 in the column for h1. This jump cannot be explained solely by the repeated
work done by IDA�. It comes about because the implementation of the A� algorithm
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deletes duplicates of identical nodes and thereby shrinks the search space. This is
not possible with IDA� because it saves almost no nodes. Despite this, A� can no
longer compete with IDA� beyond depth 14 because the cost of sorting in new nodes
pushes up the time per step so much.

A computation of the effective branching factor according to (6.1) on page 87
yields values of about 2.8 for uninformed search. This number is consistent with the
value from Sect. 6.1. Heuristic h1 reduces the branching factor to values of about 1.5
and h2 to about 1.3. We can see in the table that a small reduction of the branching
factor from 1.5 to 1.3 gives us a big advantage in computation time.

Heuristic search thus has an important practical significance because it can solve
problems which are far out of reach for uninformed search.

6.3.5 Summary

Of the various search algorithms for uninformed search, iterative deepening is the
only practical one because it is complete and can get by with very little memory.
However, for difficult combinatorial search problems, even iterative deepening usu-
ally fails due to the size of the search space. Heuristic search helps here through
its reduction of the effective branching factor. The IDA�-algorithm, like iterative
deepening, is complete and requires very little memory.

Heuristics naturally only give a significant advantage if the heuristic is “good”.
When solving difficult search problems, the developer’s actual task consists of de-
signing heuristics which greatly reduce the effective branching factor. In Sect. 6.5
we will deal with this problem and also show how machine learning techniques can
be used to automatically generate heuristics.

In closing, it remains to note that heuristics have no performance advantage for
unsolvable problems because the unsolvability of a problem can only be established
when the complete search tree has been searched through. For decidable problems
such as the 8-puzzle this means that the whole search tree must be traversed up to
a maximal depth whether a heuristic is being used or not. The heuristic is always
a disadvantage in this case, attributable to the computational cost of evaluating the
heuristic. This disadvantage can usually be estimated by a constant factor indepen-
dent of the size of the problem. For undecidable problems such as the proof of PL1
formulas, the search tree can be infinitely deep. This means that, in the unsolvable
case, the search potentially never ends. In summary we can say the following: for
solvable problems, heuristics often reduce computation time dramatically, but for
unsolvable problems the cost can even be higher with heuristics.

6.4 Games with Opponents

Games for two players, such as chess, checkers, Othello, and Go are deterministic
because every action (a move) results in the same child state given the same parent
state. In contrast, backgammon is non-deterministic because its child state depends
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on the result of a dice roll. These games are all observable because every player
always knows the complete game state. Many card games, such as poker, for ex-
ample, are only partially observable because the player does not know the other
players’ cards, or only has partial knowledge about them.

The problems discussed so far in this chapter were deterministic and observable.
In the following we will look at games which, too, are deterministic and observable.
Furthermore, we will limit ourselves to zero-sum games. These are games in which
every gain one player makes means a loss of the same value for the opponent. The
sum of the gain and loss is always equal to zero. This is true of the games chess,
checkers, Othello, and Go, mentioned above.

6.4.1 Minimax Search

The goal of each player is to make optimal moves that result in victory. In principle
it is possible to construct a search tree and completely search through it (like with
the 8-puzzle) for a series of moves that will result in victory. However, there are
several peculiarities to watch out for:
1. The effective branching factor in chess is around 30 to 35. In a typical game with

50 moves per player, the search tree has more than 30100 ≈ 10148 leaf nodes.
Thus there is no chance to fully explore the search tree. Additionally, chess is
often played with a time limit. Because of this real-time requirement, the search
must be limited to an appropriate depth in the tree, for example eight half-moves.
Since among the leaf nodes of this depth-limited tree there are normally no so-
lution nodes (that is, nodes which terminate the game) a heuristic evaluation
function B for board positions is used. The level of play of the program strongly
depends on the quality of this evaluation function. Therefore we will further treat
this subject in Sect. 6.5.

2. In the following we will call the player whose game we wish to optimize Max,
and his opponent Min. The opponent’s (Min’s) moves are not known in advance,
and thus neither is the actual search tree. This problem can be elegantly solved
by assuming that the opponent always makes the best move he can. The higher
the evaluation B(s) for position s, the better position s is for the player Max and
the worse it is for his opponent Min. Max tries to maximize the evaluation of his
moves, whereas Min makes moves that result in as low an evaluation as possible.

A search tree with four half-moves and evaluations of all leaves is given in Fig. 6.18
on page 104. The evaluation of an inner node is derived recursively as the maximum
or minimum of its child nodes, depending on the node’s level.

6.4.2 Alpha-Beta-Pruning

By switching between maximization and minimization, we can save ourselves a lot
of work in some circumstances. Alpha-beta pruning works with depth-first search
up to a preset depth limit. In this way the search tree is searched through from left
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Fig. 6.18 A minimax game tree with look-ahead of four half-moves

Fig. 6.19 An alpha-beta game tree with look-ahead of four half-moves. The dotted portions of the
tree are not traversed because they have no effect on the end result

to right. Like in minimax search, in the minimum nodes the minimum is generated
from the minimum value of the successor nodes and in the maximum nodes likewise
the maximum. In Fig. 6.19 this process is depicted for the tree from Fig. 6.18. At the
node marked a, all other successors can be ignored after the first child is evaluated as
the value 1 because the minimum is sure to be ≤1. It could even become smaller still,
but that is irrelevant since the maximum is already ≥3 one level above. Regardless
of how the evaluation of the remaining successors turns out, the maximum will
keep the value 3. Analogously the tree will be trimmed at node b. Since the first
child of b has the value 2, the minimum to be generated for b can only be less
than or equal to 2. But the maximum at the root node is already sure to be ≥3.
This cannot be changed by values ≤2. Thus the remaining subtrees of b can be
pruned.

The same reasoning applies for the node c. However, the relevant maximum node
is not the direct parent, but the root node. This can be generalized.
• At every leaf node the evaluation is calculated.
• For every maximum node the current largest child value is saved in α.
• For every minimum node the current smallest child value is saved in β .
• If at a minimum node k the current value β ≤ α, then the search under k can end.

Here α is the largest value of a maximum node in the path from the root to k.
• If at a maximum node l the current value α ≥ β , then the search under l can end.

Here β is the smallest value of a minimum node in the path from the root to l.
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ALPHABETAMAX(Node, α,β)

If DepthLimitReached(Node) Return(Rating(Node))
NewNodes = Successors(Node)
While NewNodes �= ∅

α = Maximum(α, ALPHABETAMIN(First(NewNodes), α,β))
If α ≥ β Return(β)
NewNodes = Rest(NewNodes)

Return(α)

ALPHABETAMIN(Node, α,β)

If DepthLimitReached(Node) Return(Rating(Node))
NewNodes = Successors(Node)
While NewNodes �= ∅

β = Minimum(β , ALPHABETAMAX(First(NewNodes), α,β))
If β ≤ α Return(α)
NewNodes = Rest(NewNodes)

Return(β)

Fig. 6.20 The algorithm for alpha-beta search with the two functions ALPHABETAMIN and AL-
PHABETAMAX

The algorithm given in Fig. 6.20 is an extension of depth-first search with two
functions which are called in alternation. It uses the values defined above for α

and β .

Complexity The computation time saved by alpha-beta pruning heavily depends
on the order in which child nodes are traversed. In the worst case, alpha-beta pruning
does not offer any advantage. For a constant branching factor b the number nd of
leaf nodes to evaluate at depth d is equal to

nd = bd .

In the best case, when the successors of maximum nodes are descendingly sorted
and the successors of minimum nodes are ascendingly sorted, the effective branch-
ing factor is reduced to

√
b. In chess this means a substantial reduction of the effec-

tive branching factor from 35 to about 6. Then only

nd = √
b

d = bd/2
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leaf nodes would be created. This means that the depth limit and thus also the search
horizon are doubled with alpha-beta pruning. However, this is only true in the case of
optimally sorted successors because the child nodes’ ratings are unknown at the time
when they are created. If the child nodes are randomly sorted, then the branching
factor is reduced to b3/4 and the number of leaf nodes to

nd = b
3
4 d .

With the same computing power a chess computer using alpha-beta pruning can, for
example, compute eight half-moves ahead instead of six, with an effective branching
factor of about 14. A thorough analysis with a derivation of these parameters can be
found in [Pea84].

To double the search depth as mentioned above, we would need the child nodes to
be optimally ordered, which is not the case in practice. Otherwise the search would
be unnecessary. With a simple trick we can get a relatively good node ordering. We
connect alpha-beta pruning with iterative deepening over the depth limit. Thus at
every new depth limit we can access the ratings of all nodes of previous levels and
order the successors at every branch. Thereby we reach an effective branching factor
of roughly 7 to 8, which is not far from the theoretical optimum of

√
35 [Nil98].

6.4.3 Non-deterministic Games

Minimax search can be generalized to all games with non-deterministic actions,
such as backgammon. Each player rolls before his move, which is influenced by the
result of the dice roll. In the game tree there are now therefore three types of levels
in the sequence

Max, dice, Min, dice, . . . ,

where each dice roll node branches six ways. Because we cannot predict the value
of the die, we average the values of all rolls and conduct the search as described
with the average values from [RN10].

6.5 Heuristic Evaluation Functions

How do we find a good heuristic evaluation function for the task of searching?
Here there are fundamentally two approaches. The classical way uses the knowledge
of human experts. The knowledge engineer is given the usually difficult task of
formalizing the expert’s implicit knowledge in the form of a computer program.
We now want to show how this process can be simplified in the chess program
example.

In the first step, experts are questioned about the most important factors in the
selection of a move. Then it is attempted to quantify these factors. We obtain a list
of relevant features or attributes. These are then (in the simplest case) combined into



6.5 Heuristic Evaluation Functions 107

a linear evaluation function B(s) for positions, which could look like:

B(s) = a1 · material + a2 · pawn_ structure + a3 · king_safety

+ a4 · knight_in_center + a5 · bishop_diagonal_coverage + · · · , (6.3)

where “material” is by far the most important feature and is calculated by

material = material(own_team) − material(opponent)

with

material(team) = num_pawns(team) · 100 + num_knights(team) · 300

+ num_bishops(team) · 300 + num_rooks(team) · 500

+ num_queens(team) · 900

Nearly all chess programs make a similar evaluation for material. However, there
are big differences for all other features, which we will not go into here [Fra05,
Lar00].

In the next step the weights ai of all features must be determined. These are
set intuitively after discussion with experts, then changed after each game based
on positive and negative experience. The fact that this optimization process is very
expensive and furthermore that the linear combination of features is very limited
suggests the use of machine learning.

6.5.1 Learning of Heuristics

We now want to automatically optimize the weights ai of the evaluation function
B(s) from (6.3). In this approach the expert is only asked about the relevant features
f1(s), . . . , fn(s) for game state s. Then a machine learning process is used with the
goal of finding an evaluation function that is as close to optimal as possible. We
start with an initial pre-set evaluation function (determined by the learning process),
and then let the chess program play. At the end of the game a rating is derived from
the result (victory, defeat, or draw). Based on this rating, the evaluation function is
changed with the goal of making fewer mistakes next time. In principle, the same
thing that is done by the developer is now being taken care of automatically by the
learning process.

As easy as this sounds, it is very difficult in practice. A central problem with
improving the position rating based on won or lost matches is known today as the
credit assignment problem. We do in fact have a rating at the end of the game, but
no ratings for the individual moves. Thus the agent carries out many actions but
does not receive any positive or negative feedback until the very end. How should it
then assign this feedback to the many actions taken in the past? And how should it
improve its actions in that case? The exciting young field of reinforcement learning
concerns itself with such questions (see Sect. 10).
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Most of the best chess computers in the world today still work without machine
learning techniques. There are two reasons for this. On one hand the reinforcement
learning algorithms developed up to now require a great deal of computation time
given large state spaces. On the other hand, the manually created heuristics of high-
performance chess computers are already heavily optimized. This means that only a
very good learning system can lead to improvements. In the next ten years, the time
will presumably come when a learning computer becomes world champion.

6.6 State of the Art

For evaluation of the quality of the heuristic search processes, I would like to repeat
Elaine Rich’s definition [Ric83]:

Artificial Intelligence is the study of how to make computers do things at which, at the
moment, people are better.

There is hardly a better suited test for deciding whether a computer program is
intelligent as the direct comparison of computer and human in a game like chess,
checkers, backgammon or Go.

In 1950, Claude Shannon, Konrad Zuse, and John von Neumann introduced the
first chess programs, which, however, could either not be implemented or would
take a great deal of time to implement. Just a few years later, in 1955, Arthur Samuel
wrote a program that played checkers and could improve its own parameters through
a simple learning process. To do this he used the first programmable logic computer,
the IBM 701. Compared to the chess computers of today, however, it had access to
a large number of archived games, for which every individual move had been rated
by experts. Thus the program improved its evaluation function. To achieve further
improvements, Samuel had his program play against itself. He solved the credit
assignment problem in a simple manner. For each individual position during a game
it compares the evaluation by the function B(s) with the one calculated by alpha-
beta pruning and changes B(s) accordingly. In 1961 his checkers program beat the
fourth-best checkers player in the USA. With this ground-breaking work, Samuel
was surely nearly 30 years ahead of his time.

Only at the beginning of the nineties, as reinforcement learning emerged, did
Gerald Tersauro build a learning backgammon program named TD-Gammon, which
played at the world champion level (see Sect. 10).

Today several chess programs exist that play at grandmaster level, and some are
sold commercially for PC. The breakthrough came in 1997, as IBM’s Deep Blue
defeated the chess world champion Gary Kasparov with a score of 3.5 games to 2.5.
Deep Blue could on average compute 12 half-moves ahead with alpha-beta pruning
and heuristic position evaluation.

One of the most powerful chess computers to date is Hydra, a parallel computer
owned by a company in the United Arab Emirates. The software was developed by
the scientists Christian Donninger (Austria) and Ulf Lorenz (Germany), as well as
the German chess grand champion Christopher Lutz. Hydra uses 64 parallel Xeon
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processors with about 3 GHz computing power and 1 GByte memory each. For the
position evaluation function each processor has an FPGA (field programmable gate
array) co-processor. Thereby it becomes possible to evaluate 200 million positions
per second even with an expensive evaluation function.

With this technology Hydra can on average compute about 18 moves ahead.
In special, critical situations the search horizon can even be stretched out to 40
half-moves. Clearly this kind of horizon is beyond what even grand champions can
do, for Hydra often makes moves which grand champions cannot comprehend, but
which in the end lead to victory. In 2005 Hydra defeated seventh ranked grandmaster
Michael Adams with 5.5 to 0.5 games.

Hydra uses little special textbook knowledge about chess, rather alpha-beta
search with relatively general, well-known heuristics and a good hand-coded po-
sition evaluation. In particular, Hydra is not capable of learning. Improvements are
carried out between games by the developers. Thus the computer is still relieved of
having to learn. Hydra also has no special planning algorithms. The fact that Hydra
works without learning is a clue that, despite many advances, there is still a need
for research in machine learning. As mentioned above, we will go into more detail
about this in Sect. 10 and Chap. 8.

In 2009 the system Pocket Fritz 4, running on a PDA, won the Copa Mercosur
chess tournament in Buenos Aires with nine wins and one draw against 10 excellent
human chess players, three of them grandmasters. Even though not much infor-
mation about the internal structure of the software is available, this chess machine
represents a trend away from raw computing power toward more intelligence. This
machine plays at grandmaster level, and is comparable to, if not better than Hydra.
According to Pocket Fritz developer Stanislav Tsukrov [Wik10], Pocket Fritz with
its chess search engine HIARCS 13 searches less than 20,000 positions per second,
which is slower than Hydra by a factor of about 10,000. This leads to the conclusion
that HIARCS 13 definitely uses better heuristics to decrease the effective branching
factor than Hydra and can thus well be called more intelligent than Hydra. By the
way, HIARCS is a short hand for Higher Intelligence Auto Response Chess System.

Even if soon no human will have a chance against the best chess computers, there
are still many challenges for AI. Go, for example. In this old Japanese game played
on a square board with 361 squares, 181 white and 180 black stones, the effective
branching factor is about 300. After four half-moves there are already about 8× 109

positions. All known classical game tree search processes have no chance against
good human Go players at this level of complexity. The experts agree that “truly
intelligent” systems are needed here. Combinatorial enumeration of all possibilities
is the wrong method. What is needed much more are processes that can recognize
patterns on the board, follow long-term developments, and quickly make “intuitive”
decisions. Much like in recognition of objects in complex images, humans are still
miles ahead of computer programs. We process the image as a whole in a highly
parallel fashion, whereas the computer processes the millions of pixels one after
another and has a hard time seeing what is essential in the fullness of the pixels. The
program “The many faces of Go” can recognize 1,100 different patterns and knows
200 playing strategies. But all Go programs still have serious problems recognizing
whether a group of stones is dead or alive, or where to group them in between.
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6.7 Exercises

Exercise 6.1
(a) Prove Theorem 6.1 on page 88, in other words, prove that for a tree with large

constant branching factor b, almost all nodes are on the last level at depth d .
(b) Show that this is not always true when the effective branching factor is large

and not constant.

Exercise 6.2
(a) Calculate the average branching factor for the 8-puzzle without a check for cy-

cles. The average branching factor is the branching factor that a tree with an
equal number of nodes on the last level, constant branching factor, and equal
depth would have.

(b) Calculate the average branching factor for the 8-puzzle for uninformed search
while avoiding cycles of length 2.

Exercise 6.3
(a) What is the difference between the average and the effective branching factor

(Definition 6.2 on page 87)?
(b) Why is the effective branching factor better suited to analysis and comparison

of the computation time of search algorithms than the average branching factor?
(c) Show that for a heavily branching tree with n nodes and depth d the effective

branching factor b̄ is approximately equal to the average branching factor and
thus equal to d

√
n.

Exercise 6.4
(a) Calculate the size of the state space for the 8-puzzle, for the analogous 3-puzzle

(2 × 2-matrix), as well as for the 15-puzzle (4 × 4-matrix).
(b) Prove that the state graph consisting of the states (nodes) and the actions (edges)

for the 3-puzzle falls into two connected sub-graphs, between which there are
no connections.

Exercise 6.5 With breadth-first search for the 8-puzzle, find a path (manually) from

the starting node to the goal node .

➳ Exercise 6.6
(a) Program breadth-first search, depth-first search, and iterative deepening in the

language of your choice and test them on the 8-puzzle example.
(b) Why does it make little sense to use depth-first search on the 8-puzzle?

Exercise 6.7
(a) Show that breadth-first search given constant cost for all actions is guaranteed

to find the shortest solution.
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Fig. 6.21 Minimax search tree

(b) Show that this is not the case for varying costs.

Exercise 6.8 Using A� search for the 8-puzzle, search (manually) for a path from

the starting node to the goal node

(a) using the heuristic h1 (Sect. 6.3.4).
(b) using the heuristic h2 (Sect. 6.3.4).

Exercise 6.9 Construct the A� search tree for the city graph from Fig. 6.14 on
page 97 and use the flying distance to Ulm as the heuristic. Start in Bern with Ulm
as the destination. Take care that each city only appears once per path.

➳ Exercise 6.10 Program A� search in the programming language of your choice
using the heuristics h1 and h2 and test these on the 8-puzzle example.

❄ Exercise 6.11 Give a heuristic evaluation function for states with which HEURIS-
TICSEARCH can be implemented as depth-first search, and one for a breadth-first
search implementation.

Exercise 6.12 What is the relationship between the picture of the couple at the
canyon from Fig. 6.13 on page 96 and admissible heuristics?

Exercise 6.13 Show that the heuristics h1 and h2 for the 8-puzzle from Sect. 6.3.4
are admissible.

Exercise 6.14
(a) The search tree for a two-player game is given in Fig. 6.21 with the ratings of

all leaf nodes. Use minimax search with α-β pruning from left to right. Cross
out all nodes that are not visited and give the optimal resulting rating for each
inner node. Mark the chosen path.

(b) Test yourself using P. Winston’s applet [Win].
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We have already shown in Sect. 4 with the Tweety problem that two-value logic
leads to problems in everyday reasoning. In this example, the statements Tweety
is a penguin, Penguins are birds, and All birds can fly lead to the (semantically
incorrect) inference Tweety can fly. Probability theory provides a language in which
we can formalize the statement Nearly all birds can fly and carry out inferences on
it. Probability theory is a proven method we can use here because the uncertainty
about whether birds can fly can be modeled well by a probability value. We will
show, that statements such as 99% of all birds can fly, together with probabilistic
logic, lead to correct inferences.

Reasoning under uncertainty with limited resources plays a big role in everyday
situations and also in many technical applications of AI. In these areas heuristic pro-
cesses are very important, as we have already discussed in Chap. 6. For example,
we use heuristic techniques when looking for a parking space in city traffic. Heuris-
tics alone are often not enough, especially when a quick decision is needed given
incomplete knowledge, as shown in the following example. A pedestrian crosses the
street and an auto quickly approaches. To prevent a serious accident, the pedestrian
must react quickly. He is not capable of worrying about complete information about
the state of the world, which he would need for the search algorithms discussed
in Chap. 6. He must therefore come to an optimal decision under the given con-
straints (little time and little, potentially uncertain knowledge). If he thinks too long,
it will be dangerous. In this and many similar situations (see Fig. 7.1 on page 114),
a method for reasoning with uncertain and incomplete knowledge is needed.

We want to investigate the various possibilities of reasoning under uncertainty in
a simple medical diagnosis example. If a patient experiences pain in the right lower
abdomen and a raised white blood cell (leukocyte) count, this raises the suspicion
that it might be appendicitis. We model this relationship using propositional logic
with the formula

Stomach pain right lower ∧ Leukocytes > 10000 → Appendicitis

W. Ertel, Introduction to Artificial Intelligence,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-299-5_7, © Springer-Verlag London Limited 2011
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Fig. 7.1 “Let’s just sit back and think about what to do!”

If we then know that

Stomach pain right lower ∧ Leukocytes > 10000

is true, then we can use modus ponens to derive Appendicitis. This model is clearly
too coarse. In 1976, Shortliffe and Buchanan recognized this when building their
medical expert system MYCIN [Sho76]. They developed a calculus using so-called
certainty factors, which allowed the certainty of facts and rules to be represented.
A rule A → B is assigned a certainty factor β . The semantic of a rule A →β B is
defined via the conditional probability P(B|A) = β . In the above example, the rule
could then read

Stomach pain right lower ∧ Leukocytes > 10000 →0.6 Appendicitis.

For reasoning with this kind of formulas, they used a calculus for connecting the
factors of rules. It turned out, however, that with this calculus inconsistent results
could be derived.
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As discussed in Chap. 4, there were also attempts to solve this problem by using
non-monotonic logic and default logic, which, however, were unsuccessful in the
end. The Dempster–Schäfer theory assigns a belief function Bel(A) to a logical
proposition A, whose value gives the degree of evidence for the truth of A. But even
this formalism has weaknesses, which is shown in [Pea88] using a variant of the
Tweety example. Even fuzzy logic, which above all is successful in control theory,
demonstrates considerable weaknesses when reasoning under uncertainty in more
complex applications [Elk93].

Since about the mid-1980s, probability theory has had more and more influence
in AI [Pea88, Che85, Whi96, Jen01]. In the field of reasoning with Bayesian net-
works, or subjective probability, it has secured itself a firm place among successful
AI techniques. Rather than implication as it is known in logic (material implica-
tion), conditional probability is used here, which models everyday causal reasoning
significantly better. Reasoning with probability profits heavily from the fact that
probability theory is a hundreds of years old, well-established branch of mathemat-
ics.

In this chapter we will select an elegant, but for an instruction book somewhat
unusual, entry point into this field. After a short introduction to the most important
foundations needed here for reasoning with probability, we will begin with a simple,
but important example for reasoning with uncertain and incomplete knowledge. In a
quite natural, almost compelling way, we will be led to the method of maximum en-
tropy (MaxEnt). Then we will show the usefulness of this method in practice using
the medical expert system LEXMED. Finally we will introduce the now widespread
reasoning with Bayesian networks, and show the relationship between the two meth-
ods.

7.1 Computing with Probabilities

The reader who is familiar with probability theory can skip this section. For every-
one else we will give a quick ramp-up and recommend a few appropriate textbooks
such as [Ros09, FPP07].

Probability is especially well-suited for modeling reasoning under uncertainty.
One reason for this is that probabilities are intuitively easy to interpret, which can
be seen in the following elementary example.

Example 7.1 For a single roll of a gaming die (experiment), the probability of the
event “rolling a six” equals 1/6, whereas the probability of the occurrence “rolling
an odd number” is equal to 1/2.

Definition 7.1 Let Ω be the finite set of events for an experiment. Each event
ω ∈ Ω represents a possible outcome of the roll. If these events wi ∈ Ω mu-
tually exclude each other, but cover all possible outcomes of the attempt, then
they are called elementary events.
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Example 7.2 For a single roll of one gaming die

Ω = {1,2,3,4,5,6}

because no two of these events can happen simultaneously. Rolling an even number
({2,4,6}) is therefore not an elementary event, nor is rolling a number smaller than
five ({1,2,3,4}) because {2,4,6} ∩ {1,2,3,4} = {2,4} �= ∅.

Given two events A and B , A∪B is also an event. Ω itself is denoted the certain
event, and the empty set ∅ the impossible event.

In the following we will use the propositional logic notation for set operations.
That is, for the set A∩B we write A∧B . This is not only a syntactic transformation,
rather it is also semantically correct because the intersection of two sets is defined
as

x ∈ A ∩ B ⇔ x ∈ A ∧ x ∈ B.

Because this is the semantic of A∧B , we can and will use this notation. This is also
true for the other set operations union and complement, and we will, as shown in
the following table, use the propositional logic notation for them as well.

Set notation Propositional logic Description

A ∩ B A ∧ B Intersection/and
A ∪ B A ∨ B Union/or

Ā ¬A Complement/negation
Ω w Certain event/true
∅ f Impossible event/false

The variables used here (for example A, B , etc.) are called random variables
in probability theory. We will only use discrete chance variables with finite do-
mains here. The variable face_number for a dice roll is discrete with the values
1,2,3,4,5,6. The probability of rolling a five or a six is equal to 1/3. This can be
described by

P(face_number ∈ {5,6}) = P(face_number = 5 ∨ face_number = 6) = 1/3.

The concept of probability is supposed to give us a description as objective as
possible of our “belief” or “conviction” about the outcome of an experiment. All
numbers in the interval [0,1] should be possible, where 0 is the probability of the
impossible event and 1 the probability of the certain event. We come to this from
the following definition.
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Definition 7.2 Let Ω = {ω1,ω2, . . . ,ωn} be finite. There is no preferred el-
ementary event, which means that we assume a symmetry related to the fre-
quency of how often each elementary event appears. The probability P(A) of
the event A is then

P(A) = |A|
|Ω| = Number of favorable cases for A

Number of possible cases
.

It follows immediately that every elementary event has the probability 1/|Ω|.
The requirement that elementary events have equal probability is called the Laplace
assumption and the probabilities calculated thereby are called Laplace probabilities.
This definition hits its limit when the number of elementary events becomes infinite.
Because we are only looking at finite event spaces here, though, this does not present
a problem. To describe events we use variables with the appropriate number of val-
ues. For example, a variable eye_color can take on the values green, blue, brown.
eye_color = blue then describes an event because we are dealing with a proposition
with the truth values t or f . For binary (boolean) variables, the variable itself is
already a proposition. Here it is enough, for example, to write P(JohnCalls) instead
of P(JohnCalls = t).

Example 7.3 By this definition, the probability of rolling an even number is

P(face_number ∈ {2,4,6}) = |{2,4,6}|
|{1,2,3,4,5,6}| = 3

6
= 1

2
.

The following important rules follow directly from the definition.

Theorem 7.1
1. P(Ω) = 1.
2. P(∅) = 0, which means that the impossible event has a probability of 0.
3. For pairwise exclusive events A and B it is true that P(A ∨ B) = P(A) +

P(B).
4. For two complementary events A and ¬A it is true that P(A) + P(¬A) =

1.
5. For arbitrary events A and B it is true that P(A ∨ B) = P(A) + P(B) −

P(A ∧ B).
6. For A ⊆ B it is true that P(A) ≤ P(B).
7. If A1, . . . ,An are elementary events, then

∑n
i=1 P(Ai) = 1 (normalization

condition).
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The expression P(A ∧ B) or equivalently P(A,B) stands for the probability
of the events A ∧ B . We are often interested in the probabilities of all elementary
events, that is, of all combinations of all values of the variables A and B . For the
binary variables A and B these are P(A,B), P(A,¬B), P(¬A,B), P(¬A,¬B).
We call the vector

(P (A,B),P (A,¬B),P (¬A,B),P (¬A,¬B))

consisting of these four values a distribution or joint probability distribution of the
variables A and B . A shorthand for this is P (A,B). The distribution in the case of
two variables can be nicely visualized in the form of a table (matrix), represented as
follows:

P (A,B) B = w B = f

A = w P(A,B) P (A,¬B)

A = f P (¬A,B) P (¬A,¬B)

For the d variables X1, . . . ,Xd with n values each, the distribution has the values
P(X1 = x1, . . . ,Xd = xd) and x1, . . . , xd , each of which take on n different values.
The distribution can therefore be represented as a d-dimensional matrix with a total
of nd elements. Due to the normalization condition from Theorem 7.1 on page 117,
however, one of these nd values is redundant and the distribution is characterized
by nd − 1 unique values.

7.1.1 Conditional Probability

Example 7.4 On Landsdowne street in Boston, the speed of 100 vehicles is mea-
sured. For each measurement it is also noted whether the driver is a student. The
results are

Event Frequency Relative frequency

Vehicle observed 100 1
Driver is a student (S) 30 0.3
Speed too high (G) 10 0.1
Driver is a student and speeding (S ∧ G) 5 0.05

We pose the question: Do students speed more frequently than the average per-
son, or than non-students?1

The answer is given by the probability

P(G|S) = |Driver is a student and speeding|
|Driver is a student| = 5

30
= 1

6
≈ 0.17

1The computed probabilities can only be used for continued propositions if the measured sample
(100 vehicles) is representative. Otherwise only propositions about the observed 100 vehicles can
be made.
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for speeding under the condition that the driver is a student. This is obviously dif-
ferent from the a priori probability P(G) = 0.1 for speeding. For the a priori prob-
ability, the event space is not limited by additional conditions.

Definition 7.3 For two events A and B , the probability P(A|B) for A under
the condition B (conditional probability) is defined by

P(A|B) = P(A ∧ B)

P (B)
.

In Example 7.4 we see that in the case of a finite event space, the conditional
probability P(A|B) can be understood as the probability of A ∧ B when we only
look at the event B , that is, as

P(A|B) = |A ∧ B|
|B| .

This formula can be easily derived using Definition 7.2 on page 117

P(A|B) = P(A ∧ B)

P (B)
=

|A∧B|
|Ω|
|B|
|Ω|

= |A ∧ B|
|B| .

Definition 7.4 If, for two events A and B ,

P(A|B) = P(A),

then these events are called independent.

Thus A and B are independent if the probability of the event A is not influenced
by the event B .

Theorem 7.2 For independent events A and B , it follows from the definition
that

P(A ∧ B) = P(A) · P(B).
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Example 7.5 For a roll of two dice, the probability of rolling two sixes is 1/36 if
the two dice are independent because

P(D1 = 6 ∧ D2 = 6) = P(D1 = 6) · P(D2 = 6) = 1

6
· 1

6
= 1

36
,

where the first equation is only true when the two dice are independent. If for exam-
ple by some magic power die 2 is always the same as die 1, then

P(D1 = 6 ∧ D2 = 6) = 1

6
.

Chain Rule
Solving the definition of conditional probability for P(A∧B) results in the so-called
product rule

P(A ∧ B) = P(A|B)P (B),

which we immediately generalize for the case of n variables. By repeated applica-
tion of the above rule we obtain the chain rule

P (X1, . . . ,Xn)

= P (Xn|X1, . . . ,Xn−1) · P (X1, . . . ,Xn−1)

= P (Xn|X1, . . . ,Xn−1) · P (Xn−1|X1, . . . ,Xn−2) · P (X1, . . . ,Xn−2)

= P (Xn|X1, . . . ,Xn−1) · P (Xn−1|X1, . . . ,Xn−2) · . . . · P (X2|X1) · P (X1)

=
n∏

i=1

P (Xi |X1 . . . ,Xi−1), (7.1)

with which we can represent a distribution as a product of conditional probabilities.
Because the chain rule holds for all values of the variables X1, . . . ,Xn, it has been
formulated for the distribution using the symbol P .

Marginalization
Because A ⇔ (A ∧ B) ∨ (A ∧ ¬B) is true for binary variables A and B

P(A) = P((A ∧ B) ∨ (A ∧ ¬B)) = P(A ∧ B) + P(A ∧ ¬B).

By summation over the two values of B , the variable B is eliminated. Analogously,
for arbitrary variables X1, . . . ,Xd , a variable, for example Xd , can be eliminated by
summation over all of their variables and we get

P(X1 = x1, . . . ,Xd−1 = xd−1) =
∑

xd

P (X1 = x1, . . . ,Xd−1 = xd−1,Xd = xd).
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The application of this formula is called marginalization. This summation can con-
tinue with the variables X1, . . . ,Xd−1 until just one variable is left. Marginalization
can also be applied to the distribution P (X1, . . . ,Xd). The resulting distribution
P (X1, . . . ,Xd−1) is called the marginal distribution. It is comparable to the projec-
tion of a rectangular cuboid on a flat surface. Here the three-dimensional object is
drawn on the edge or “margin” of the cuboid, i.e. on a two-dimensional set. In both
cases the dimensionality is reduced by one.

Example 7.6 We observe the set of all patients who come to the doctor with acute
stomach pain. For each patient the leukocyte value is measured, which is a metric
for the relative abundance of white blood cells in the blood. We define the variable
Leuko, which is true if and only if the leukocyte value is greater than 10,000. This
indicates an infection in the body. Otherwise we define the variable App, which tells
us whether the patient has appendicitis, that is, an infected appendix. The distribu-
tion P (App,Leuko) of these two variables is given in the following table:

P (App,Leuko) App ¬App Total

Leuko 0.23 0.31 0.54
¬Leuko 0.05 0.41 0.46
Total 0.28 0.72 1

In the last row the sum over the rows is given, and in the last column the sum of the
columns is given. These sums are arrived at by marginalization. For example, we
read off

P(Leuko) = P(App,Leuko) + P(¬App,Leuko) = 0.54.

The given distribution P (App,Leuko) could come from a survey of German doctors,
for example. From it we can then calculate the conditional probability

P(Leuko|App) = P(Leuko,App)

P (App)
= 0.82

which tells us that about 82% of all appendicitis cases lead to a high leukocyte value.
Values like this are published in medical literature. However, the conditional prob-
ability P(App|Leuko), which would actually be much more helpful for diagnosing
appendicitis, is not published. To understand this, we will first derive a simple, but
very important formula.

Bayes’ Theorem
Swapping A and B in Definition 7.3 on page 119 results in

P(A|B) = P(A ∧ B)

P (B)
and P(B|A) = P(A ∧ B)

P (A)
.
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By solving the two equations for P(A∧B) and setting them equal we obtain Bayes’
theorem

P(A|B) = P(B|A) · P(A)

P (B)
, (7.2)

which we immediately apply to the appendicitis problem and get

P(App|Leuko) = P(Leuko|App) · P(App)

P (Leuko)
= 0.82 · 0.28

0.54
= 0.43. (7.3)

Now why is P(Leuko|App) published, but not P(App|Leuko)?
Assuming that appendicitis affects the human body irrespective of race,

P(Leuko|App) is a universal value that is true all over the world. In (7.3), we see that
P(App|Leuko) is not universal because this value is influenced by the a priori prob-
abilities P(App) and P(Leuko). Each of these can vary based on life circumstances.
For example, P(Leuko) depends on whether there are many or few infectious dis-
eases in a population. This value could potentially vary considerably between the
tropics and colder regions. However, Bayes’ theorem makes it simple to calculate
P(App|Leuko), which is relevant for diagnosis, from the universally valid value
P(Leuko|App).

Before we go more in depth into this example and expand it into a medical expert
system for appendicitis, we must first introduce the necessary probabilistic inference
mechanism.

7.2 The Principle of Maximum Entropy

We will now show, using an inference example, that a calculus for reasoning under
uncertainty can be realized using probability theory. However, we will soon see
that the well-worn probabilistic paths quickly come to an end. Specifically, when
too little knowledge is available to solve the necessary equations, new ideas are
needed. The American physicist E.T. Jaynes did pioneering work in this area in the
1950s. He claimed that given missing knowledge, one can maximize the entropy of
the desired probability distribution, and applied this principle to many examples in
[Jay57, Jay03]. This principle was then further developed [Che83, Nil86, Kan89,
KK92] and is now mature and can be applied technologically, which we will show
in the example of the LEXMED project in Sect. 7.3.
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7.2.1 An Inference Rule for Probabilities

We want to derive an inference rule for uncertain knowledge that is analogous to
the modus ponens. From the knowledge of a proposition A and a rule A ⇒ B , the
conclusion B shall be reached. Formulated succinctly, this reads

A,A → B

B
.

The generalization for probability rules yields

P(A) = α, P (B|A) = β

P (B) =?
.

Let the two probability rules α,β be given and the value P(B) desired. By marginal-
ization we obtain the desired marginal distribution

P(B) = P(A,B) + P(¬A,B) = P(B|A) · P(A) + P(B|¬A) · P(¬A).

The three values P(A),P (¬A),P (B|A) on the right side are known, but the value
P(B|¬A) is unknown. We cannot make an exact statement about P(B) with classi-
cal probability theory, but at the most we can estimate P(B) ≥ P(B|A) · P(A).

We now consider the distribution

P (A,B) = (P (A,B),P (A,¬B),P (¬A,B),P (¬A,¬B))

and introduce for shorthand the four unknowns

p1 = P(A,B),

p2 = P(A,¬B),

p3 = P(¬A,B),

p4 = P(¬A,¬B).

These four parameters determine the distribution. If they are all known, then every
probability for the two variables A and B can be calculated. To calculate the four
unknowns, four equations are needed. One equation is already known in the form of
the normalization condition

p1 + p2 + p3 + p4 = 1.

Therefore, three more equations are needed. In our example, however, only two
equations are known.

From the given values P(A) = α and P(B|A) = β we calculate

P(A,B) = P(B|A) · P(A) = αβ
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and

P(A) = P(A,B) + P(A,¬B).

From this we can set up the following system of equations and solve it as far as is
possible:

p1 = αβ, (7.4)

p1 + p2 = α, (7.5)

p1 + p2 + p3 + p4 = 1, (7.6)

(7.4) in (7.5): p2 = α − αβ = α(1 − β), (7.7)

(7.5) in (7.6): p3 + p4 = 1 − α. (7.8)

The probabilities p1,p2 for the interpretations (A,B) and (A,¬B) are thus known,
but for the values p3,p4 only one equation still remains. To come to a definite
solution despite this missing knowledge, we change our point of view. We use the
given equation as a constraint for the solution of an optimization problem.

We are looking for a distribution p (for the variables p3,p4) which maximizes
the entropy

H(p) = −
n∑

i=1

pi lnpi = −p3 lnp3 − p4 lnp4 (7.9)

under the constraint p3 +p4 = 1−α (7.8). Why exactly should the entropy function
be maximized? Because we are missing information about the distribution, it must
somehow be added in. We could fix an ad hoc value, for example p3 = 0.1. Yet it is
better to determine the values p3 and p4 such that the information added is minimal.
We can show (Sect. 8.4.2 and [SW76]) that entropy measures the uncertainty of
a distribution up to a constant factor. Negative entropy is then a measure of the
amount of information a distribution contains. Maximization of entropy minimizes
the information content of the distribution. To visualize this, the entropy function
for the two-dimensional case is represented graphically in Fig. 7.2 on page 125.

To determine the maximum of the entropy under the constraint p3 + p4 − 1 +
α = 0 we use the method of Lagrange multipliers [Ste07]. The Lagrange function
reads

L = −p3 lnp3 − p4 lnp4 + λ(p3 + p4 − 1 + α).

Taking the partial derivatives with respect to p3 and p4 we obtain

∂L

∂p3
= − lnp3 − 1 + λ = 0,

∂L

∂p4
= − lnp4 − 1 + λ = 0
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Fig. 7.2 Contour line
diagram of the
two-dimensional entropy
function. We see that it is
strictly convex in the whole
unit square and that it has an
isolated global maximum.
Also marked is the constraint
p3 + p4 = 1 as a special case
of the condition
p3 + p4 − 1 + α = 0 for
α = 0 which is relevant here

and calculate

p3 = p4 = 1 − α

2
.

Now we can calculate the desired value

P(B) = P(A,B) + P(¬A,B) = p1 + p3 = αβ + 1 − α

2
= α

(
β − 1

2

)
+ 1

2
.

Substituting in α and β yields

P(B) = P(A)

(
P(B|A) − 1

2

)
+ 1

2
.

P (B) is shown in Fig. 7.3 on page 126 for various values of P(B|A). We see that
in the two-value edge case, that is, when P(B) and P(B|A) take on the values 0
or 1, probabilistic inference returns the same value for P(B) as the modus ponens.
When A and B|A are both true, B is also true. An interesting case is P(A) = 0, in
which ¬A is true. Modus ponens cannot be applied here, but our formula results in
the value 1/2 for P(B) irrespective of P(B|A). When A is false, we know noth-
ing about B , which reflects our intuition exactly. The case where P(A) = 1 and
P(B|A) = 0 is also covered by propositional logic. Here A is true and A ⇒ B false,
and thus A ∧ ¬B true. Then B is false. The horizontal line in the figure means that
we cannot make a prediction about B in the case of P(B|A) = 1/2. Between these
points, P(B) changes linearly for changes to P(A) or P(B|A).
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Fig. 7.3 Curve array for P (B) as a function of P (A) for different values of P (B|A)

Theorem 7.3 Let there be a consistent2 set of linear probabilistic equations.
Then there exists a unique maximum for the entropy function with the given
equations as constraints. The MaxEnt distribution thereby defined has mini-
mum information content under the constraints.

It follows from this theorem that there is no distribution which satisfies the con-
straints and has higher entropy than the MaxEnt distribution. A calculus that leads
to lower entropy puts in additional ad hoc information, which is not justified.

Looking more closely at the above calculation of P(B), we see that the two
values p3 and p4 always occur symmetrically. This means that swapping the two
variables does not change the result. Thus the end result is p3 = p4. The so-called
indifference of these two variables leads to them being set equal by MaxEnt. This
relationship is valid generally:

Definition 7.5 If an arbitrary exchange of two or more variables in the La-
grange equations results in equivalent equations, these variables are called
indifferent.

2A set of probabilistic equations is called consistent if there is at least one solution, that is, one
distribution which satisfies all equations.
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Theorem 7.4 If a set of variables {pi1, . . . , pik } is indifferent, then the max-
imum of the entropy under the given constraints is at the point where pi1 =
pi2 = · · · = pik .

With this knowledge we could have immediately set the two variables p3 and p4

equal (without solving the Lagrange equations).

7.2.2 Maximum Entropy Without Explicit Constraints

We now look at the case in which no knowledge is given. This means that, other
than the normalization condition

p1 + p2 + · · · + pn = 1,

there are no constraints. All variables are therefore indifferent. Therefore we can
set them equal and it follows that p1 = p2 = · · · = pn = 1/n.3 For reasoning under
uncertainty, this means that given a complete lack of knowledge, all worlds are
equally probable. That is, the distribution is uniform. For example, in the case of
two variables A and B it would be the case that

P(A,B) = P(A,¬B) = P(¬A,B) = P(¬A,¬B) = 1/4,

from which P(A) = P(B) = 1/2 and P(B|A) = 1/2 follow. The result for the two-
dimensional case can be seen in Fig. 7.2 on page 125 because the marked condition
is exactly the normalization condition. We see that the maximum of the entropy lies
on the line at exactly (1/2,1/2).

As soon as the value of a condition deviates from the one derived from the uni-
form distribution, the probabilities of the worlds shift. We show this in a further
example. With the same descriptions as used above we assume that only

P(B|A) = β

is known. Thus P(A,B) = P(B|A)P (A) = βP (A), from which p1 = β(p1 + p2)

follows and we derive the two constraints

βp2 + (β − 1)p1 = 0,

p1 + p2 + p3 + p4 − 1 = 0.

3The reader may calculate this result by maximization of the entropy under the normalization
condition (Exercise 7.5 on page 158).
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Fig. 7.4 p1,p2,p3,p4 in dependence on β

Table 7.1 Truth table for
material implication and
conditional probability for
propositional logic limit

A B A ⇒ B P(A) P (B) P (B|A)

t t t 1 1 1

t f f 1 0 0

f t w 0 1 Undefined

f f t 0 0 Undefined

Here the Lagrange equations can no longer be solved symbolically so easily. A nu-
meric solution of the Lagrange equations yields the picture represented in Fig. 7.4,
which shows that p3 = p4. We can already see this in the constraints, in which p3

and p4 are indifferent. For P(B|A) = 1/2 we obtain the uniform distribution, which
is no surprise. This means that the constraint for this value does not imply a restric-
tion on the distribution. Furthermore, we can see that for small P(B|A), P(A,B) is
also small.

7.2.3 Conditional Probability Versus Material Implication

We will now show that, for modeling reasoning, conditional probability is better
than what is known in logic as material implication (to this end, also see [Ada75]).
First we observe the truth table shown in Table 7.1, in which the conditional proba-
bility and material implication for the extreme cases of probabilities zero and one are
compared. In both cases with false premises (which, intuitively, are critical cases),
P(B|A) is undefined, which makes sense.
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Now we ask ourselves which value is taken on by P(B|A) when arbitrary values
P(A) = α and P(B) = γ are given and no other information is known. Again we
maximize entropy under the given constraints. As above we set

p1 = P(A,B), p2 = P(A,¬B), p3 = P(¬A,B), p4 = P(¬A,¬B)

and obtain as constraints

p1 + p2 = α, (7.10)

p1 + p3 = γ, (7.11)

p1 + p2 + p3 + p4 = 1. (7.12)

With this we calculate using entropy maximization (see Exercise 7.8 on page 159)

p1 = αγ, p2 = α(1 − γ ), p3 = γ (1 − α), p4 = (1 − α)(1 − γ ).

From p1 = αγ it follows that P(A,B) = P(A) · P(B), which means that A and B

are independent. Because there are no constraints connecting A and B , the MaxEnt
principle results in the independence of these variables. The right half of Table 7.1
on page 128 makes this easier to understand. From the definition

P(B|A) = P(A,B)

P (A)

it follows for the case P(A) �= 0, that is, when the premise is not false, because
A and B are independent, that P(B|A) = P(B). For the case P(A) = 0, P(B|A)

remains undefined.

7.2.4 MaxEnt-Systems

As previously mentioned, due to the nonlinearity of the entropy function, MaxEnt
optimization usually cannot be carried out symbolically for non-trivial problems.
Thus two systems were developed for numerical entropy maximization. The first
system, SPIRIT (Symmetrical Probabilistic Intensional Reasoning in Inference Net-
works in Transition, www.xspirit.de), [RM96] was built at Fernuniversität Hagen.
The second, PIT (Probability Induction Tool) was developed at the Munich Techni-
cal University [Sch96, ES99, SE00]. We will now briefly introduce PIT.

The PIT system uses the sequential quadratic programming (SQP) method to
find an extremum of the entropy function under the given constraints. As input, PIT
expects data containing the constraints. For example, the constraints P(A) = α and
P(B|A) = β from Sect. 7.2.1 have the form
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var A{t,f}, B{t,f};

P([A=t]) = 0.6;
P([B=t] | [A=t]) = 0.3;

QP([B=t]);
QP([B=t] | [A=t]);

Because PIT performs a numerical calculation, we have to input explicit proba-
bility values. The second to last row contains the query QP([B=t]). This means
that P(B) is the desired value. At www.pit-systems.de under “Examples” we now
put this input into a blank input page (“Blank Page”) and start PIT. As a result we
get

Nr. Truth value Probability Query

1 UNSPECIFIED 3.800e–01 QP([B = t]);
2 UNSPECIFIED 3.000e–01 QP([A = t]-|> [B = t]);

and from there read off P(B) = 0.38 and P(B|A) = 0.3.

7.2.5 The Tweety Example

We now show, using the Tweety example from Sect. 4.3, that probabilistic reasoning
and in particular MaxEnt are non-monotonic and model everyday reasoning very
well. We model the relevant rules with probabilities as follows:

P(bird|penguin) = 1 “penguins are birds”
P(flies|bird) ∈ [0.95,1] “(almost all) birds can fly”
P(flies|penguin) = 0 “penguins cannot fly”

The first and third rules represent firm predictions, which can also be easily formu-
lated in logic. In the second, however, we express our knowledge that almost all
birds can fly by means of a probability interval. With the PIT input data

var penguin{yes,no}, bird{yes,no}, flies{yes,no};

P([bird=yes] | [penguin=yes]) = 1;
P([flies=yes] | [bird=yes]) IN [0.95,1];
P([flies=yes] | [penguin=yes]) = 0;

QP([flies=yes]| [penguin=yes]);

we get back the correct answer
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Nr. Truthvalue Probability Query

1 UNSPECIFIED 0.000e+00 QP([penguin=yes]-|> [flies=yes]);

with the proposition that penguins cannot fly.4 The explanation for this is very sim-
ple. With P(flies|bird) ∈ [0.95,1] it is possible that there are non-flying birds. If this
rule were replaced by P(flies|bird) = 1, then PIT would not be able to do anything
and would output an error message about inconsistent constraints.

In this example we can easily see that probability intervals are often very helpful
for modeling our ignorance about exact probability values. We could have made an
even fuzzier formulation of the second rule in the spirit of “normally birds fly” with
P(flies|bird) ∈ (0.5,1]. The use of the half-open interval excludes the value 0.5.

It has already been shown in [Pea88] that this example can be solved using proba-
bilistic logic, even without MaxEnt. In [Sch96] it is shown for a number of demand-
ing benchmarks for non-monotonic reasoning that these can be solved elegantly with
MaxEnt. In the following section we introduce a successful practical application of
MaxEnt in the form of a medical expert system.

7.3 LEXMED, an Expert System for Diagnosing Appendicitis

The medical expert system LEXMED, which uses the MaxEnt method, was devel-
oped at the Ravensburg-Weingarten University of Applied Sciences by Manfred
Schramm, Walter Rampf, and the author, in cooperation with the Weingarten 14-
Nothelfer Hospital [SE00, Le999].5 The acronym LEXMED stands for learning ex-
pert system for medical diagnosis.

7.3.1 Appendicitis Diagnosis with Formal Methods

The most common serious cause of acute abdominal pain [dD91] is appendicitis—
an inflammation of the appendix, a blind-ended tube connected to the cecum. Even
today, diagnosis can be difficult in many cases [OFY+95]. For example, up to about
20% of the removed appendices are without pathological findings, which means
that the operations were unnecessary. Likewise, there are regularly cases in which
an inflamed appendix is not recognized as such.

Since as early as the beginning of the 1970s, there have been attempts to auto-
mate the diagnosis of appendicitis, with the goal of reducing the rate of false di-
agnoses [dDLS+72, OPB94, OFY+95]. Especially noteworthy is the expert system

4QP([penguin=yes]-|> [flies=yes]) is an alternative form of the PIT syntax for
QP([flies=yes] | [penguin=yes]).
5The project was financed by the German state of Baden-Württemberg, the health insurance com-
pany AOK Baden-Württemberg, the Ravensburg-Weingarten University of Applied Sciences, and
the 14 Nothelfer Hospital in Weingarten.
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for diagnosis of acute abdominal pain, developed by de Dombal in Great Britain. It
was made public in 1972, thus distinctly earlier than the famous system MYCIN.

Nearly all of the formal diagnostic processes used in medicine to date have been
based on scores. Score systems are extremely easy to apply: For each value of a
symptom (for example fever or lower right stomach pain) the doctor notes a certain
number of points. If the sum of the points is over a certain value (threshold), a certain
decision is recommended (for example operation). For n symptoms S1, . . . , Sn a
score for appendicitis can be described formally as

Diagnose =
{

Appendicitis if w1S1 + · · · + wnSn > Θ ,
negative else.

With scores, a linear combination of symptom values is thus compared with a thresh-
old Θ . The weights of the symptoms are extracted from databases using statistical
methods. The advantage of scores is their simplicity of application. The weighted
sum of the points can be computed by hand easily and a computer is not needed for
the diagnosis.

Because of the linearity of this method, scores are too weak to model complex
relationships. Since the contribution wiSi of a symptom Si to the score is calculated
independently of the other symptoms, it is clear that score systems cannot take any
“context” into account. Principally, they cannot distinguish between combinations
of symptoms, for example they cannot distinguish between the white blood cell
count of an old patient and that of a young patient.

For a fixed given set of symptoms, conditional probability is much more powerful
than scores for making predictions because the latter cannot describe the dependen-
cies between different symptoms. We can show that scores implicitly assume that
all symptoms are independent.

When using scores, yet another problem comes up. To arrive at a good diagnosis
quality, we must put strict requirements on the databases used to statistically deter-
mine the weights wi . In particular they must be representative of the set of patients
in the area in which the diagnosis system is used. This is often difficult, if not impos-
sible, to guarantee. In such cases, scores and other statistical methods either cannot
be used, or will have a high rate of errors.

7.3.2 Hybrid Probabilistic Knowledge Base

Complex probabilistic relationships appear frequently in medicine. With LEXMED,
these relationships can be modeled well and calculated quickly. Here the use of
probabilistic propositions, with which uncertain and incomplete information can
be expressed and processed in an intuitive and mathematically grounded way, is
essential. The following question may serve as a typical query against the expert
system: “How high is the probability of an inflamed appendix if the patient is a 23-
year-old man with pain in the right lower abdomen and a white blood cell count of
13,000?” Formulated as conditional probability, using the names and value ranges
for the symptoms used in Table 7.2 on page 133, this reads
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Table 7.2 Symptoms used for the query in LEXMED and their values. The number of values for
the each symptom is given in the column marked #

Symptom Values # Short

Gender Male, female 2 Sex2

Age 0–5, 6–10, 11–15, 16–20, 21–25, 26–35, 36–45,
46–55, 56–65, 65–

10 Age10

Pain 1st Quad. Yes, no 2 P1Q2

Pain 2nd Quad. Yes, no 2 P2Q2

Pain 3rd Quad. Yes, no 2 P3Q2

Pain 4th Quad. Yes, no 2 P4Q2

Guarding Local, global, none 3 Gua3

Rebound tenderness Yes, no 2 Reb2

Pain on tapping Yes, no 2 Tapp2

Rectal pain Yes, no 2 RecP2

Bowel sounds Weak, normal, increased, none 4 BowS4

Abnormal ultrasound Yes, no 2 Sono2

Abnormal urine sedim. Yes, no 2 Urin2

Temperature (rectal) –37.3, 37.4–37.6, 37.7–38.0, 38.1–38.4, 38.5–38.9,
39.0–

6 TRec6

Leukocytes 0–6k, 6k–8k, 8k–10k, 10k–12k, 12k–15k, 15k–20k,
20k–

7 Leuko7

Diagnosis Inflamed, perforated, negative, other 4 Diag4

P(Diag4 = inflamed ∨ Diag4 = perforated |
Sex2 = male ∧ Age10 ∈ 21–25 ∧ Leuko7 ∈ 12k–15k).

By using probabilistic propositions, LEXMED has the ability to use information
from non-representative databases because this information can be complemented
appropriately from other sources. Underlying LEXMED is a database which only
contains data about patients whose appendixes were surgically removed. With sta-
tistical methods, (about 400) rules are generated which compile the knowledge con-
tained in the database into an abstracted form[ES99]. Because there are no patients
in this database who were suspected of having appendicitis but had negative di-
agnoses (that is, not requiring treatment),6 there is no knowledge about negative
patients in the database. Thus knowledge from other sources must be added in.
In LEXMED therefore the rules gathered from the database are complemented by
(about 100) rules from medical experts and the medical literature. This results in
a hybrid probabilistic database, which contains knowledge extracted from data as
well as knowledge explicitly formulated by experts. Because both types of rules are

6These negative diagnoses are denoted “non-specific abdominal pain” (NSAP).
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Fig. 7.5 Probabilistic rules
are generated from data and
expert knowledge, which are
integrated in a rule base
(knowledge base) and finally
made complete using the
MaxEnt method

formulated as conditional probabilities (see for example (7.14) on page 138), they
can be easily combined, as shown in Fig. 7.5 and with more details in Fig. 7.7 on
page 136.

LEXMED calculates the probabilities of various diagnoses using the probability
distribution of all relevant variables (see Table 7.2 on page 133). Because all 14
symptoms used in LEXMED and the diagnoses are modeled as discrete variables
(even continuous variables like the leukocyte value are divided into ranges), the size
of the distribution (that is, the size of the event space) can be determined using
Table 7.2 on page 133 as the product of the number of values of all symptoms, or

210 · 10 · 3 · 4 · 6 · 7 · 4 = 20 643 840

elements. Due to the normalization condition from Theorem 7.1, it thus has
20 643 839 independent values. Every rule set with fewer than 20 643 839 proba-
bility values potentially does not completely describe this event space. To be able
to answer any arbitrary query, the expert system needs a complete distribution. The
construction of such an extensive, consistent distribution using statistical methods
is very difficult.7 To require from a human expert all 20 643 839 values for the dis-
tribution (instead of the aforementioned 100 rules) would essentially be impossible.

Here the MaxEnt method comes into play. The generalization of about 500 rules
to a complete probability model is done in LEXMED by maximizing the entropy
with the 500 rules as constraints. An efficient encoding of the resulting MaxEnt
distribution leads to response times for the diagnosis of around one second.

7The task of generating a function from a set of data is known as machine learning. We will cover
this thoroughly in Chap. 8.
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Fig. 7.6 The LEXMED input mask for input of the examined symptoms and below it the output of
the resulting diagnosis probabilities

7.3.3 Application of LEXMED

The usage of LEXMED is simple and self-explanatory. The doctor visits the
LEXMED home page at www.lexmed.de.8 For an automatic diagnosis, the doctor
inputs the results of his examination into the input form in Fig. 7.6. After one or
two seconds he receives the probabilities for the four different diagnoses as well as
a suggestion for a treatment (Sect. 7.3.5). If certain examination results are missing
as input (for example the sonogram results), then the doctor chooses the entry not
examined. Naturally the certainty of the diagnosis is higher when more symptom
values are input.

8A version with limited functionality is accessible without a password.
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Fig. 7.7 Rules are generated from the database as well as from expert knowledge. From these,
MaxEnt creates a complete probability distribution. For a user query, the probability of every pos-
sible diagnosis is calculated. Using the cost matrix (see Sect. 7.3.5) a decision is then suggested

Each registered user has access to a private patient database, in which input data
can be archived. Thus data and diagnoses from earlier patients can be easily com-
pared with those of a new patient.

7.3.4 Function of LEXMED

Knowledge is formalized using probabilistic propositions. For example, the propo-
sition

P(Leuko7 > 20000|Diag4 = inflamed) = 0.09

gives a frequency of 9% for a leukocyte value of more than 20,000 in case of an
inflamed appendix.9

Learning of Rules by Statistical Induction
The raw data in LEXMED’s database contain 54 different (anonymized) values for
14,646 patients. As previously mentioned, only patients whose appendixes were
surgically removed are included in this database. Of the 54 attributes used in the
database, after a statistical analysis the 14 symptoms shown in Table 7.2 on page 133

9Instead of individual numerical values, intervals can also be used here (for example [0.06,0.12]).
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Fig. 7.8 Dependency graph computed from the database

were used. Now the rules are created from this database in two steps. The first step
determines the dependency structure of the symptoms. The second step fills this
structure with the respective probability rules.10

Determining the Dependency Graph The graph in Fig. 7.8 contains for each
variable (the symptom and the diagnosis) a node and directed edges which con-
nect various nodes. The thickness of the edges between the variables represents a
measure of the statistical dependency or correlation of the variables. The correla-
tion of two independent variables is equal to zero. The pair correlation for each of
the 14 symptoms with Diag4 was computed and listed in the graph. Furthermore,
all triple correlations between the diagnosis and two symptoms were calculated. Of
these, only the strongest values have been drawn as additional edges between the
two participating symptoms.

10For a systematic introduction to machine learning we refer the reader to Chap. 8.
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1 P([Leuco7=0-6k] | [Diag4=negativ] * [Age10=16-20]) = [0.132,0.156];
2 P([Leuco7=6-8k] | [Diag4=negativ] * [Age10=16-20]) = [0.257,0.281];
3 P([Leuco7=8-10k] | [Diag4=negativ] * [Age10=16-20]) = [0.250,0.274];
4 P([Leuco7=10-12k] | [Diag4=negativ] * [Age10=16-20]) = [0.159,0.183];
5 P([Leuco7=12-15k] | [Diag4=negativ] * [Age10=16-20]) = [0.087,0.112];
6 P([Leuco7=15-20k] | [Diag4=negativ] * [Age10=16-20]) = [0.032,0.056];
7 P([Leuco7=20k-] | [Diag4=negativ] * [Age10=16-20]) = [0.000,0.023];
8 P([Leuco7=0-6k] | [Diag4=negativ] * [Age10=21-25]) = [0.132,0.172];
9 P([Leuco7=6-8k] | [Diag4=negativ] * [Age10=21-25]) = [0.227,0.266];
10 P([Leuco7=8-10k] | [Diag4=negativ] * [Age10=21-25]) = [0.211,0.250];
11 P([Leuco7=10-12k] | [Diag4=negativ] * [Age10=21-25]) = [0.166,0.205];
12 P([Leuco7=12-15k] | [Diag4=negativ] * [Age10=21-25]) = [0.081,0.120];
13 P([Leuco7=15-20k] | [Diag4=negativ] * [Age10=21-25]) = [0.041,0.081];
14 P([Leuco7=20k-] | [Diag4=negativ] * [Age10=21-25]) = [0.004,0.043];

Fig. 7.9 Some of the LEXMED rules with probability intervals. “*” stands for “∧” here

Estimating the Rule Probabilities The structure of the dependency graph de-
scribes the structure of the learned rules.11 The rules here have different complex-
ities: there are rules which only describe the distribution of the possible diagnoses
(a priori rules, for example (7.13)), rules which describe the dependency between
the diagnosis and a symptom (rules with simple conditions, for example (7.14)), and
finally rules which describe the dependency between the diagnosis and two symp-
toms, as given in Fig. 7.9 in PIT syntax.

P(Diag4 = inflamed) = 0.40, (7.13)

P(Sono2 = yes|Diag4 = inflamed) = 0.43, (7.14)

P(P4Q2 = yes|Diag4 = inflamed ∧ P2Q2 = yes) = 0.61. (7.15)

To keep the context dependency of the saved knowledge as small as possible,
all rules contain the diagnosis in their conditions and not as conclusions. This is
quite similar to the construction of many medical books with formulations of the
kind “With appendicitis we usually see . . . ”. As previously shown in Example 7.6
on page 121, however, this does not present a problem because, using the Bayesian
formula, LEXMED automatically puts these rules into the right form.

The numerical values for these rules are estimated by counting their frequency in
the database. For example, the value in (7.14) is given by counting and calculating

|Diag4 = inflamed ∧ Sono2 = yes|
|Diag4 = inflamed| = 0.43.

11The difference between this and a Bayesian network is, for example, that the rules are equipped
with probability intervals and that only after applying the principle of maximum entropy is a unique
probability model produced.
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Expert Rules
Because the appendicitis database only contains patients who have undergone the
operation, rules for non-specific abdominal pain (NSAP) receive their values from
propositions of medical experts. The experiences in LEXMED confirm that the prob-
abilistic rules are easy to read and can be directly translated into natural language.
Statements by medical experts about frequency relationships of specific symptoms
and the diagnosis, whether from the literature or as the result of an interview, can
therefore be incorporated into the rule base with little expense. To model the un-
certainty of expert knowledge, the use of probability intervals has proven effective.
The expert knowledge was primarily acquired from the participating surgeons, Dr.
Rampf and Dr. Hontschik, and their publications [Hon94].

Once the expert rules have been created, the rule base is finished. Then the com-
plete probability model is calculated with the method of maximum entropy by the
PIT-system.

Diagnosis Queries
Using its efficiently stored probability model, LEXMED calculates the probabilities
for the four possible diagnoses within a few seconds. For example, we assume the
following output:

Results of the PIT diagnosis
Diagnosis Appendix inflamed Appendix perforated Negative Other

Probability 0.24 0.16 0.57 0.03

A decision must be made based on these four probability values to pursue one of
the four treatments: operation, emergency operation, stationary observation, or am-
bulant observation.12 While the probability for a negative diagnosis in this case
outweighs the others, sending the patient home as healthy is not a good decision.
We can clearly see that, even when the probabilities of the diagnoses have been
calculated, the diagnosis is not yet finished.

Rather, the task is now to derive an optimal decision from these probabilities. To
this end, the user can have LEXMED calculate a recommended decision.

7.3.5 Risk Management Using the Cost Matrix

How can the computed probabilities now be translated optimally into decisions?
A naive algorithm would assign a decision to each diagnosis and ultimately select
the decision that corresponds to the highest probability. Assume that the computed
probabilities are 0.40 for the diagnosis appendicitis (inflamed or perforated), 0.55
for the diagnosis negative, and 0.05 for the diagnosis other. A naive algorithm would
now choose the (too risky) decision “no operation” because it corresponds to the di-
agnosis with the higher probability. A better method consists of comparing the costs

12Ambulant observation means that the patient is released to stay at home.
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Table 7.3 The cost matrix of LEXMED together with a patient’s computed diagnosis probabilities

Therapy Probability of various diagnoses

Inflamed Perforated Negative Other

0.25 0.15 0.55 0.05

Operation 0 500 5800 6000 3565

Emergency operation 500 0 6300 6500 3915

Ambulant observ. 12000 150000 0 16500 26325

Other 3000 5000 1300 0 2215

Stationary observ. 3500 7000 400 600 2175

of the possible errors that can occur for each decision. The error is quantified in the
form of “(hypothetical) additional cost of the current decision compared to the opti-
mum”. The given values contain the costs to the hospital, to the insurance company,
the patient (for example risk of post-operative complications), and to other par-
ties (for example absence from work), taking into account long term consequences.
These costs are given in Table 7.3.

The entries are finally averaged for each decision, that is, summed while taking
into account their frequencies. These are listed in the last column in Table 7.3. Fi-
nally, the decision with the smallest average cost of error is suggested. In Table 7.3
the matrix is given together with the probability vector calculated for a patient (in
this case: (0.25,0.15,0.55,0.05)). The last column of the table contains the result of
the calculations of the average expected costs of the errors. The value of Operation
in the first row is thus calculated as 0.25 ·0+0.15 ·500+0.55 ·5800+0.05 ·6000 =
3565, a weighted average of all costs. The optimal decisions are entered with (ad-
ditional) costs of 0. The system decides on the treatment with the minimal average
cost. It thus is an example of a cost-oriented agent.

Cost Matrix in the Binary Case
To better understand the cost matrix and risk management we will now restrict the
LEXMED system to the two-value decision between the diagnosis appendicitis and
NSAP. As possible treatments, only operation with probability p1 and ambulant
observation with probability p2 can be chosen. The cost matrix is thus a 2 × 2
matrix of the form

(
0 k2
k1 0

)
.

The two zeroes in the diagonal stand for the correct decision operation in the case
of appendicitis and ambulant observation for NSAP. The parameter k2 stands for
the expected costs which occur when a patient without an inflamed appendix is
operated on. This error is called a false positive. On the other hand, the decision
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ambulant observation in the case of appendicitis is a false negative. The probability
vector (p1,p2)

T is now multiplied by this matrix and we obtain the vector

(k2 p2, k1 p1)
T

with the average additional cost for the two possible treatments. Because the de-
cision only takes into account the relationship of the two components, the vector
can be multiplied by any scalar factor. We choose 1/k1 and obtain ((k2/k1)p2,p1).
Thus only the relationship k = k2/k1 is relevant here. The same result is obtained
by the simpler cost matrix

(
0 k

1 0

)
,

which only contains the variable k. This parameter is very important because it
determines risk management. By changing k we can fit the “working point” of the
diagnosis system. For k → ∞ the system is put in an extremely risky setting because
no patient will ever be operated on, with the consequence that it gives no false
positive classifications, but many false negatives. In the case of k = 0 the conditions
are in exact reverse and all patients are operated upon.

7.3.6 Performance

LEXMED is intended for use in a medical practice or ambulance. Prerequisites
for the use of LEXMED are acute abdominal pain for several hours (but less than
five days). Furthermore, LEXMED is (currently) specialized for appendicitis, which
means that for other illnesses the system contains very little information.

In the scope of a prospective study, a representative database with 185 cases was
created in the 14 Nothelfer Hospital. It contains the hospital’s patients who came
to the clinic after several hours of acute abdominal pain and suspected appendicitis.
From these patients, the symptoms and the diagnosis (verified from a tissue sample
in the case of an operation) is noted.

If the patients were released to go home (without operation) after a stay of several
hours or 1–2 days with little or no complaint, it was afterwards inquired by telephone
whether the patient remained free of symptoms or whether a positive diagnosis was
found in subsequent treatment.

To simplify the representation and make for a better comparison to similar stud-
ies, LEXMED was restricted to the two-value distinction between appendicitis and
NSAP, as described in Sect. 7.3.5. Now k is varied between zero and infinity and
for every value of k the sensitivity and specificity are measured against the test data.
Sensitivity measures

P(classified positive|positive) = |positive and classified positive|
|positive| ,
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Fig. 7.10 ROC curve from LEXMED compared with the Ohmann score and two additional models

that is, the relative portion of positive cases which are correctly identified. It indi-
cates how sensitive the diagnostic system is. Specificity, on the other hand, measures

P(classified negative|negative) = |negative and classified negative|
|negative| ,

that is, the relative portion of negative cases which are correctly identified.
We give the results of the sensitivity and specificity in Fig. 7.10 for 0 ≤ k < ∞.

This curve is denoted the ROC curve, or receiver operating characteristic. Before we
come to the analysis of the quality of LEXMED, a few words about the meaning of
the ROC curve. The line bisecting the diagram diagonally is drawn in for orientation.
All points on this line correspond to a random decision. For example, the point
(0.2,0.2) corresponds to a specificity of 0.8 with a sensitivity of 0.2. We can arrive
at this quite easily by classifying a new case, without looking at it, with probabilities
0.2 for positive and 0.8 for negative. Every knowledge-based diagnosis system must
therefore generate a ROC which clearly lies above the diagonal.

The extreme values in the ROC curve are also interesting. At point (0,0) all
three curves intersect. The corresponding diagnosis system would classify all cases
as negative. The other extreme value (1,1) corresponds to a system which would
decide to do the operation for every patient and thus has a sensitivity of 1. We could
call the ROC curve the characteristic curve for two-value diagnostic systems. The
ideal diagnostic system would have a characteristic curve which consists only of the
point (0,1), and thus has 100% specificity and 100% sensitivity.
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Now let us analyse the ROC curve. At a sensitivity of 88%, LEXMED attains
a specificity of 87% (k = 0.6). For comparison, the Ohmann score, an established,
well-known score for appendicitis is given [OMYL96, ZSR+99]. Because LEXMED

is above or to the left of the Ohmann score almost everywhere, its average quality of
diagnosis is clearly better. This is not surprising because scores are simply too weak
to model interesting propositions. In Sect. 8.6 and in Exercise 8.16 on page 219
we will show that scores are equivalent to the special case of naive Bayes, that is,
to the assumption that all symptoms are pairwise independent when the diagnosis
is known. When comparing LEXMED with scores it should, however, be mentioned
that a statistically representative database was used for the Ohmann score, but a non-
representative database enhanced with expert knowledge was used for LEXMED.
To get an idea of the quality of the LEXMED data in comparison to the Ohmann
data, a linear score was calculated using the least squares method (see Sect. 9.4.1),
which is also drawn for comparison. Furthermore, a neural network was trained
on the LEXMED data with the RProp algorithm (see Sect. 9.5). The strength of
combining data and expert knowledge is displayed clearly in the difference between
the LEXMED curve and the curves of the score system and the RProp algorithm.

7.3.7 Application Areas and Experiences

LEXMED should not replace the judgment of an experienced surgeon. However,
because a specialist is not always available in a clinical setting, a LEXMED query
offers a substantive second opinion. Especially interesting and worthwhile is the
application of the system in a clinical ambulance and for general practitioners.

The learning capability of LEXMED, which makes it possible to take into account
further symptoms, further patient data, and further rules, also presents new possi-
bilities in the clinic. For especially rare groups which are difficult to diagnose, for
example children under six years of age, LEXMED can use data from pediatricians
or other special databases, to support even experienced surgeons.

Aside from direct use in diagnosis, LEXMED also supports quality assurance
measures. For example, insurance companies can compare the quality of diagno-
sis of hospitals with that of expert systems. By further developing the cost matrix
created in LEXMED (with the consent of doctors, insurance, and patients), the qual-
ity of physician diagnoses, computer diagnoses, and other medical institutions will
become easier to compare.

LEXMED has pointed to a new way of constructing automatic diagnostic systems.
Using the language of probability theory and the MaxEnt algorithm, inductively,
statistically derived knowledge is combined with knowledge from experts and from
the literature. The approach based on probabilistic models is theoretically elegant,
generally applicable, and has given very good results in a small study.

LEXMED has been in practical use in the 14 Nothelfer Hospital in Weingarten
since 1999 and has performed there very well. It is also available at www.lexmed.de,
without warranty, of course. Its quality of diagnosis is comparable with that of an
experienced surgeon and is thus better than that of an average general practitioner,
or that of an inexperienced doctor in the clinic.
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Despite this success it has become evident that it is very difficult to market such
a system commercially in the German medical system. One reason for this is that
there is no free market to promote better quality (here better diagnoses) through its
selection mechanisms. Furthermore, in medicine the time for broad use of intelligent
techniques is not yet at hand—even in 2010. One cause of this could be conservative
teachings in this regard in German medical school faculties.

A further issue is the desire of many patients for personal advice and care from
the doctor, together with the fear that, with the introduction of expert systems, the
patient will only communicate with the machine. This fear, however, is wholly un-
founded. Even in the long term, medical expert systems cannot replace the doctor.
They can, however, just like laser surgery and magnetic resonance imaging, be used
advantageously for all participants. Since the first medical computer diagnostic sys-
tem of de Dombal in 1972, almost 40 years have passed. It remains to be seen
whether medicine will wait another 40 years until computer diagnostics becomes an
established medical tool.

7.4 Reasoning with Bayesian Networks

One problem with reasoning using probability in practice was already pointed out in
Sect. 7.1. If d variables X1, . . . ,Xd with n values each are used, then the associated
probability distribution has nd total values. This means that in the worst case the
memory use and computation time for determining the specified probabilities grows
exponentially with the number of variables.

In practice the applications are usually very structured and the distribution con-
tains many redundancies. This means that it can be heavily reduced with the appro-
priate methods. The use of Bayesian networks has proved its power here and is one
of the AI techniques which have been successfully used in practice. Bayesian net-
works utilize knowledge about the independence of variables to simplify the model.

7.4.1 Independent Variables

In the simplest case, all variables are pairwise independent and it is the case that

P (X1, . . . ,Xd) = P (X1) · P (X2) · · · · · P (Xd).

All entries in the distribution can thus be calculated from the d values P(X1), . . . ,

P (Xd). Interesting applications, however, can usually not be modeled because con-
ditional probabilities become trivial.13 Because of

P(A|B) = P(A,B)

P (B)
= P(A)P (B)

P (B)
= P(A)

13In the naive Bayes method, the independence of all attributes is assumed, and this method has
been successfully applied to text classification (see Sect. 8.6).
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all conditional probabilities are reduced to the a priori probabilities. The situation
becomes more interesting when only a portion of the variables are independent or in-
dependent under certain conditions. For reasoning in AI, the dependencies between
variables happen to be important and must be utilized.

We would like to outline reasoning with Bayesian networks through a simple and
very illustrative example by J. Pearl [Pea88], which became well known through
[RN10] and is now basic AI knowledge.

Example 7.7 (Alarm-Example) Bob, who is single, has had an alarm system in-
stalled in his house to protect against burglars. Bob cannot hear the alarm when he
is working at the office. Therefore he has asked his two neighbors, John in the house
next door to the left, and Mary in the house to the right, to call him at his office if
they hear his alarm. After a few years Bob knows how reliable John and Mary are
and models their calling behavior using conditional probability as follows.14

P(J |Al) = 0.90 P(M|Al) = 0.70,

P (J |¬Al) = 0.05 P(M|¬Al) = 0.01.

Because Mary is hard of hearing, she fails to hear the alarm more often than John.
However, John sometimes mixes up the alarm at Bob’s house with the alarms at
other houses. The alarm is triggered by a burglary, but can also be triggered by a
(weak) earthquake, which can lead to a false alarm because Bob only wants to know
about burglaries while at his office. These relationships are modeled by

P(Al|Bur,Ear) = 0.95,

P (Al|Bur,¬Ear) = 0.94,

P (Al|¬Bur,Ear) = 0.29,

P (Al|¬Bur,¬Ear) = 0.001,

as well as the a priori probabilities P(Bur) = 0.001 and P(Ear) = 0.002. These
two variables are independent because earthquakes do not make plans based on the
habits of burglars, and conversely there is no way to predict earthquakes, so burglars
do not have the opportunity to set their schedule accordingly.

Queries are now made against this knowledge base. For example, Bob might be
interested in P(Bur|J ∨ M), P(J |Bur) or P(M|Bur). That is, he wants to know
how sensitively the variables J and M react to a burglary report.

14The binary variables J and M stand for the two events “John calls”, and “Mary calls”, respec-
tively, Al for “alarm siren sounds”, Bur for “burglary” and Ear for “earthquake”.
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Fig. 7.11 Bayesian network
for the alarm example with
the associated CPTs

7.4.2 Graphical Representation of Knowledge as a Bayesian
Network

We can greatly simplify practical work by graphically representing knowledge that
is formulated as conditional probability. Figure 7.11 shows the Bayesian network
for the alarm example. Each node in the network represents a variable and every
directed edge a statement of conditional probability. The edge from Al to J for
example represents the two values P(J |Al) and P(J |¬Al), which is given in the
form of a table, the so-called CPT (conditional probability table). The CPT of a
node lists all the conditional probabilities of the node’s variable conditioned on all
the nodes connected by incoming edges.

While studying the network, we might ask ourselves why there are no other edges
included besides the four that are drawn in. The two nodes Bur and Ear are not
linked since the variables are independent. All other nodes have a parent node, which
makes the reasoning a little more complex. We first need the concept of conditional
independence.

7.4.3 Conditional Independence

Analogously to independence of random variables, we give

Definition 7.6 Two variables A and B are called conditionally independent,
given C if

P (A,B|C) = P (A|C) · P (B|C).

This equation is true for all combinations of values for all three variables (that
is, for the distribution), which we see in the notation. We now look at nodes J and
M in the alarm example, which have the common parent node Al. If John and Mary
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independently react to an alarm, then the two variables J and M are independent
given Al, that is:

P (J,M|Al) = P (J |Al) · P (M|Al).

If the value of Al is known, for example because an alarm was triggered, then the
variables J and M are independent (under the condition Al = w). Because of the
conditional independence of the two variables J and M , no edge between these
two nodes is added. However, J and M are not independent (see Exercise 7.11 on
page 159).

Quite similar is the relationship between the two variables J and Bur, because
John does not react to a burglary, rather the alarm. This could be, for example,
because of a high wall that blocks his view on Bob’s property, but he can still hear
the alarm. Thus J and Bur are independent given Al and

P (J,Bur|Al) = P (J |Al) · P (Bur|Al).

Given an alarm, the variables J and Ear, M and Bur, as well as M and Ear
are also independent. For computing with conditional independence, the following
characterizations, which are equivalent to the above definition, are helpful:

Theorem 7.5 The following equations are pairwise equivalent, which means
that each individual equation describes the conditional independence for the
variables A and B given C.

P (A,B|C) = P (A|C) · P (B|C), (7.16)

P (A|B,C) = P (A|C), (7.17)

P (B|A,C) = P (B|C). (7.18)

Proof On one hand, using conditional independence (7.16) we can conclude that

P (A,B,C) = P (A,B|C)P (C) = P (A|C)P (B|C)P (C).

On the other hand, the product rule gives us

P (A,B,C) = P (A|B,C)P (B|C)P (C).

Thus P (A|B,C) = P (A|C) is equivalent to (7.16). We obtain (7.18) analogously
by swapping A and B in this derivation. �
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7.4.4 Practical Application

Now we turn again to the alarm example and show how the Bayesian network in
Fig. 7.11 on page 146 can be used for reasoning. Bob is interested, for example, in
the sensitivity of his two alarm reporters John and Mary, that is, in P(J |Bur) and
P(M|Bur). However, the values P(Bur|J ) and P(Bur|M), as well as P(Bur|J,M)

are even more important to him. We begin with P(J |Bur) and calculate

P(J |Bur) = P(J,Bur)

P (Bur)
= P(J,Bur,Al) + P(J,Bur,¬Al)

P (Bur)
(7.19)

and

P (J,Bur,Al) = P (J |Bur,Al)P (Al|Bur)P (Bur) = P (J |Al)P (Al|Bur)P (Bur),

(7.20)

where for the last two equations we have used the product rule and the conditional
independence of J and Bur given Al. Inserted in (7.19) we obtain

P(J |Bur) = P(J |Al)P (Al|Bur)P (Bur) + P(J |¬Al)P (¬Al|Bur)P (Bur)

P (Bur)
= P(J |Al)P (Al|Bur) + P(J |¬Al)P (¬Al|Bur). (7.21)

Here P(Al|Bur) and P(¬Al|Bur) are missing. Therefore we calculate

P(Al|Bur) = P(Al,Bur)

P (Bur)
= P(Al,Bur,Ear) + P(Al,Bur,¬Ear)

P (Bur)

= P(Al|Bur,Ear)P (Bur)P (Ear) + P(Al|Bur,¬Ear)P (Bur)P (¬Ear)

P (Bur)
= P(Al|Bur,Ear)P (Ear) + P(Al|Bur,¬Ear)P (¬Ear)

= 0.95 · 0.002 + 0.94 · 0.998 = 0.94

as well as P(¬Al|Bur) = 0.06 and insert this into (7.21) which gives the result

P(J |Bur) = 0.9 · 0.94 + 0.05 · 0.06 = 0.849.

Analogously we calculate P(M|Bur) = 0.659. We now know that John calls for
about 85% of all burglaries and Mary for about 66% of all burglaries. The probabil-
ity that both of them call is calculated, due to conditional independence, as

P(J,M|Bur) = P(J |Bur)P (M|Bur) = 0.849 · 0.659 = 0.559.

More interesting, however, is the probability of a call from John or Mary
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P(J ∨ M|Bur) = P(¬(¬J,¬M)|Bur) = 1 − P(¬J,¬M|Bur)

= 1 − P(¬J |Bur)P (¬M|Bur) = 1 − 0.051 = 0.948.

Bob thus receives notification for about 95% of all burglaries. Now to calculate
P(Bur|J ), we apply the Bayes formula, which gives us

P(Bur|J ) = P(J |Bur)P (Bur)

P (J )
= 0.849 · 0.001

0.052
= 0.016.

Evidently only about 1.6% of all calls from John are actually due to a bur-
glary. Because the probability of false alarms is five times smaller for Mary, with
P(Bur|M) = 0.056 we have significantly higher confidence given a call from Mary.
Bob should only be seriously concerned about his home if both of them call, because
P(Bur|J,M) = 0.284 (see Exercise 7.11 on page 159).

In (7.21) on page 148 we showed with

P(J |Bur) = P(J |Al)P (Al|Bur) + P(J |¬Al)P (¬Al|Bur)

how we can “slide in” a new variable. This relationship holds in general for two
variables A and B given the introduction of an additional variable C and is called
conditioning:

P(A|B) =
∑

c

P (A|B,C = c)P (C = c|B).

If furthermore A and B are conditionally independent given C, this formula simpli-
fies to

P(A|B) =
∑

c

P (A|C = c)P (C = c|B).

7.4.5 Software for Bayesian Networks

We will give a brief introduction to two tools using the alarm example. We are
already familiar with the system PIT. We input the values from the CPTs in PIT
syntax into the online input window at www.pit-systems.de. After the input shown
in Fig. 7.12 on page 150 we receive the answer:

P([Einbruch=t] | [John=t] AND [Mary=t]) = 0.2841.

While PIT is not a classical Bayesian network tool, it can take arbitrary conditional
probabilities and queries as input and calculate correct results. It can be shown
[Sch96], that on input of CPTs or equivalent rules, the MaxEnt principle implies
the same conditional independences and thus also the same answers as a Bayesian
network. Bayesian networks are thus a special case of MaxEnt.
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1 var Alarm{t,f}, Burglary{t,f}, Earthquake{t,f}, John{t,f}, Mary{t,f};
2
3 P([Earthquake=t]) = 0.002;
4 P([Burglary=t]) = 0.001;
5 P([Alarm=t] | [Burglary=t] AND [Earthquake=t]) = 0.95;
6 P([Alarm=t] | [Burglary=t] AND [Earthquake=f]) = 0.94;
7 P([Alarm=t] | [Burglary=f] AND [Earthquake=t]) = 0.29;
8 P([Alarm=t] | [Burglary=f] AND [Earthquake=f]) = 0.001;
9 P([John=t] | [Alarm=t]) = 0.90;
10 P([John=t] | [Alarm=f]) = 0.05;
11 P([Mary=t] | [Alarm=t]) = 0.70;
12 P([Mary=t] | [Alarm=f]) = 0.01;
13
14 QP([Burglary=t] | [John=t] AND [Mary=t]);

Fig. 7.12 PIT input for the alarm example

Fig. 7.13 The user interface of JavaBayes: left the graphical editor and right the console where
the answers are given as output

Next we will look at JavaBayes [Coz98], a classic system also freely available
on the Internet with the graphical interface shown in Fig. 7.13. With the graphical
network editor, nodes and edges can be manipulated and the values in the CPTs
edited. Furthermore, the values of variables can be assigned with “Observe” and
the values of other variables called up with “Query”. The answers to queries then
appear in the console window.

The professional, commercial system Hugin is significantly more powerful and
convenient. For example, Hugin can use continuous variables in addition to discrete
variables. It can also learn Bayesian networks, that is, generate the network fully
automatically from statistical data (see Sect. 8.5).

7.4.6 Development of Bayesian Networks

A compact Bayesian network is very clear and significantly more informative for
the reader than a full probability distribution. Furthermore, it requires much less
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memory. For the variables v1, . . . , vn with |v1|, . . . , |vn| different values each, the
distribution has a total of

n∏

i=1

|vi | − 1

independent entries. In the alarm example the variables are all binary. Thus for all
variables |vi | = 2, and the distribution has 25 − 1 = 31 independent entries. To cal-
culate the number of independent entries for the Bayesian network, the total number
of all entries of all CPTs must be determined. For a node vi with ki parent nodes
ei1, . . . , eiki

, the associated CPT has

(|vi | − 1)

ki∏

j=1

|eij |

entries. Then all CPTs in the network together have

n∑

i=1

(|vi | − 1)

ki∏

j=1

|eij | (7.22)

entries.15 For the alarm example the result is then

2 + 2 + 4 + 1 + 1 = 10

independent entries which uniquely describe the network. The comparison in mem-
ory complexity between the full distribution and the Bayesian network becomes
clearer when we assume that all n variables have the same number b of values and
each node has k parent nodes. Then (7.22) can be simplified and all CPTs together
have n(b − 1)bk entries. The full distribution contains bn − 1 entries. A signifi-
cant gain is only made then if the average number of parent nodes is much smaller
than the number of variables. This means that the nodes are only locally connected.
Because of the local connection, the network becomes modularized, which—as in
software engineering—leads to a reduction in complexity. In the alarm example the
alarm node separates the nodes Bur and Ear from the nodes J and M . We can also
see this clearly in the LEXMED example.

15For the case of a node without ancestors the product in this sum is empty. For this we substitute
the value 1 because the CPT for nodes without ancestors contains, with its a priori probability,
exactly one value.
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Fig. 7.14 Bayesian network for the LEXMED application

LEXMED as a Bayesian Network
The LEXMED system described in Sect. 7.3 can also be modeled as a Bayesian
network. By making the outer, thinly-drawn lines directed (giving them arrows),
the independence graph in Fig. 7.8 on page 137 can be interpreted as a Bayesian
network. The resulting network is shown in Fig. 7.14.

In Sect. 7.3.2 the size of the distribution for LEXMED was calculated as the
value 20 643 839. The Bayesian network on the other hand can be fully described
with only 521 values. This value can be determined by entering the variables from
Fig. 7.14 into (7.22) on page 151. In the order (Leuko, TRek, Gua, Age, Reb, Sono,
Tapp, BowS, Sex, P4Q, P1Q, P2Q, RecP, Urin, P3Q, Diag4) we calculate

n∑

i=1

(|vi | − 1)

ki∏

j=1

|eij | = 6 · 6 · 4 + 5 · 4 + 2 · 4 + 9 · 7 · 4 + 1 · 3 · 4 + 1 · 4 + 1 · 2 · 4

+ 3 · 3 · 4 + 1 · 4 + 1 · 4 · 2 + 1 · 4 · 2 + 1 · 4 + 1 · 4 + 1 · 4

+ 1 · 4 + 1 = 521.
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Fig. 7.15 Stepwise construction of the alarm network considering causality

This example demonstrates that it is practically impossible to build a full distribution
for real applications. A Bayesian network with 22 edges and 521 probability values
on the other hand is still manageable.

Causality and Network Structure
Construction of a Bayesian network usually proceeds in two stages.
1. Design of the network structure: This step is usually performed manually and

will be described in the following.
2. Entering the probabilities in the CPTs: Manually entering the values in the case

of many variables is very tedious. If (as for example with LEXMED) a database
is available, this step can be automated through estimating the CPT entries by
counting frequencies.

We will now describe the construction of the network in the alarm example (see
Fig. 7.15). At the beginning we know the two causes Burglary and Earthquake and
the two symptoms John and Mary. However, because John and Mary do not di-
rectly react to a burglar or earthquake, rather only to the alarm, it is appropriate
to add this as an additional variable which is not observable by Bob. The process
of adding edges starts with the causes, that is, with the variables that have no par-
ent nodes. First we choose Burglary and next Earthquake. Now we must check
whether Earthquake is independent of Burglary. This is given, and thus no edge is
added from Burglary to Earthquake. Because Alarm is directly dependent on Bur-
glary and Earthquake, these variables are chosen next and an edge is added from
both Burglary and Earthquake to Alarm. Then we choose John. Because Alarm
and John are not independent, an edge is added from alarm to John. The same is
true for Mary. Now we must check whether John is conditionally independent of
Burglary given Alarm. If this is not the case, then another edge must be inserted
from Burglary to John. We must also check whether edges are needed from Earth-
quake to John and from Burglary or Earthquake to Mary. Because of conditional
independence, these four edges are not necessary. Edges between John and Mary
are also unnecessary because John and Mary are conditionally independent given
Alarm.

The structure of the Bayesian network heavily depends on the chosen variable
ordering. If the order of variables is chosen to reflect the causal relationship begin-
ning with the causes and proceeding to the diagnosis variables, then the result will
be a simple network. Otherwise the network may contain significantly more edges.
Such non-causal networks are often very difficult to understand and have a higher
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Fig. 7.16 There is no edge
between A and B if they are
independent (left) or
conditionally independent
(middle, right)

complexity for reasoning. The reader may refer to Exercise 7.11 on page 159 for
better understanding.

7.4.7 Semantics of Bayesian Networks

As we have seen in the previous section, no edge is added to a Bayesian network
between two variables A and B when A and B are independent or conditionally
independent given a third variable C. This situation is represented in Fig. 7.16.

We now require the Bayesian network to have no cycles and we assume that the
variables are numbered such that no variable has a lower number than any variable
that precedes it. This is always possible when the network has no cycles.16 Then,
when using all conditional independencies, we have

P (Xn|X1, . . . ,Xn−1) = P (Xn|Parents(Xn)).

This equation thus is a proposition that an arbitrary variable Xi in a Bayesian net-
work is conditionally independent of its ancestors, given its parents. The somewhat
more general proposition depicted in Fig. 7.17 on page 155 can be stated compactly
as

Theorem 7.6 A node in a Bayesian network is conditionally independent
from all non-successor nodes, given its parents.

Now we are able to greatly simplify the chain rule ((7.1) on page 120):

P (X1, . . . ,Xn) =
n∏

i=1

P (Xi |X1 . . . ,Xi−1) =
n∏

i=1

P (Xi |Parents(Xi)). (7.23)

Using this rule we could, for example, write (7.20) on page 148 directly

P (J,Bur,Al) = P (J |Al)P (Al|Bur)P (Bur).

16If for example three nodes X1, X2, X3 form a cycle, then there are the edges (X1,X2), (X2,X3)

and (X3,X1) where X1 has X3 as a successor.
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Fig. 7.17 Example of
conditional independence in a
Bayesian network. If the
parent nodes E1 and E2 are
given, then all non-successor
nodes B1, . . . ,B8 are
independent of A

We now know the most important concepts and foundations of Bayesian net-
works. Let us summarize them [Jen01]:

Definition 7.7 A Bayesian network is defined by:
• A set of variables and a set of directed edges between these variables.
• Each variable has finitely many possible values.
• The variables together with the edges form a directed acyclic graph (DAG).

A DAG is a graph without cycles, that is, without paths of the form
(A, . . . ,A).

• For every variable A the CPT (that is, the table of conditional probabilities
P (A|Parents(A))) is given.

Two variables A and B are called conditionally independent given C if
P (A,B|C) = P (A|C) · P (B|C) or, equivalently, if P (A|B,C) = P (A|C).
Besides the foundational rules of computation for probabilities, the following
rules are also true:
Bayes’ Theorem: P(A|B) = P(B|A)·P(A)

P (B)
Marginalization: P(B) = P(A,B) + P(¬A,B) = P(B|A) · P(A) +
P(B|¬A) · P(¬A)

Conditioning: P(A|B) = ∑
c P (A|B,C = c)P (C = c|B)

A variable in a Bayesian network is conditionally independent of all non-
successor variables given its parent variables. If X1, . . . ,Xn−1 are no succes-
sors of Xn, we have P (Xn|X1, . . . ,Xn−1) = P (Xn|Parents(Xn)). This con-
dition must be honored during the construction of a network.
During construction of a Bayesian network the variables should be ordered
according to causality. First the causes, then the hidden variables, and the
diagnosis variables last.
Chain rule: P (X1, . . . ,Xn) = ∏n

i=1 P (Xi |Parents(Xi))
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In [Pea88] and [Jen01] the term d-separation is introduced for Bayesian net-
works, from which a theorem similar to Theorem 7.6 on page 154 follows. We will
refrain from introducing this term and thereby reach a somewhat simpler, though
not a theoretically as clean representation.

7.5 Summary

In a way that reflects the prolonged, sustained trend toward probabilistic systems,
we have introduced probabilistic logic for reasoning with uncertain knowledge. Af-
ter introducing the language—propositional logic augmented with probabilities or
probability intervals—we chose the natural, if unusual approach via the method of
maximum entropy as an entry point and showed how we can model non-monotonic
reasoning with this method. Bayesian networks were then introduced as a special
case of the MaxEnt method.

Why are Bayesian networks a special case of MaxEnt? When building a Bayesian
network, assumptions about independence are made which are unnecessary for the
MaxEnt method. Furthermore, when building a Bayesian network, all CPTs must be
completely filled in so that a complete probability distribution can be constructed.
Otherwise reasoning is restricted or impossible. With MaxEnt, on the other hand,
the developer can formulate all the knowledge he has at his disposal in the form of
probabilities. MaxEnt then completes the model and generates the distribution. Even
if (for example when interviewing an expert) only vague propositions are available,
this can be suitably modeled. A proposition such as “I am pretty sure that A is true.”
can for example be modeled using P(A) ∈ [0.6,1] as a probability interval. When
building a Bayesian network, a concrete value must be given for the probability,
if necessary by guessing. This means, however, that the expert or the developer
put ad hoc information into the system. One further advantage of MaxEnt is the
possibility of formulating (almost) arbitrary propositions. For Bayesian networks
the CPTs must be filled.

The freedom that the developer has when modeling with MaxEnt can be a disad-
vantage (especially for a beginner) because, in contrast to the Bayesian approach, it
is not necessarily clear what knowledge should be modeled. When modeling with
Bayesian networks the approach is quite clear: according to causal dependencies,
from the causes to the effects, one edge after the other is entered into the network
by testing conditional independence.17 At the end all CPTs are filled with values.

However, the following interesting combinations of the two methods are possi-
ble: we begin by building a network according to the Bayesian methodology, enter
all the edges accordingly and then fill the CPTs with values. Should certain values
for the CPTs be unavailable, then they can be replaced with intervals or by other
probabilistic logic formulas. Naturally such a network—or better: a rule set—no

17This is also not always quite so simple.
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longer has the special semantics of a Bayesian network. It must then be processed
and completed by a MaxEnt system.

The ability to use MaxEnt with arbitrary rule sets has a downside, though. Sim-
ilarly to the situation in logic, such rule sets can be inconsistent. For example, the
two rules P(A) = 0.7 and P(A) = 0.8 are inconsistent. While the MaxEnt system
PIT for example can recognize the inconsistency, if cannot give a hint about how to
remove the problem.

We introduced the medical expert system LEXMED, a classic application for rea-
soning with uncertain knowledge, and showed how it can be modeled and imple-
mented using MaxEnt and Bayesian networks, and how these tools can replace the
well-established, but too weak linear scoring systems used in medicine.18

In the LEXMED example we showed that it is possible to build an expert system
for reasoning under uncertainty that is capable of discovering (learning) knowledge
from the data in a database. We will give more insight into the methods of learning of
Bayesian networks in Chap. 8, after the necessary foundations for machine learning
have been laid.

Today Bayesian reasoning is a large, independent field, which we can only briefly
describe here. We have completely left out the handling of continuous variables. For
the case of normally distributed random variables there are procedures and systems.
For arbitrary distributions, however, the computational complexity is a big problem.
In addition to the directed networks that are heavily based on causality, there are
also undirected networks. Connected with this is a discussion about the meaning
and usefulness of causality in Bayesian networks. The interested reader is directed
to excellent textbooks such as [Pea88, Jen01, Whi96, DHS01], as well as the pro-
ceedings of the annual conference of the Association for Uncertainty in Artificial
Intelligence (AUAI) (www.auai.org).

7.6 Exercises

Exercise 7.1 Prove the proposition from Theorem 7.1 on page 117.

Exercise 7.2 The gardening hobbyist Max wants to statistically analyze his yearly
harvest of peas. For every pea pod he picks he measures its length xi in centimeters
and its weight yi in grams. He divides the peas into two classes, the good and the
bad (empty pods). The measured data (xi, yi) are

good peas:
x 1 2 2 3 3 4 4 5 6
y 2 3 4 4 5 5 6 6 6

bad peas:
x 4 6 6 7
y 2 2 3 3

18In Sect. 8.6 and in Exercise 8.16 on page 219 we will show that the scores are equivalent to the
special case naive Bayes, that is, to the assumption that all symptoms are conditionally independent
given the diagnosis.
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(a) From the data, compute the probabilities P(y > 3 |Class = good) and
P(y ≤ 3 |Class = good). Then use Bayes’ formula to determine P(Class =
good |y > 3) and P(Class = good |y ≤ 3).

(b) Which of the probabilities computed in subproblem (a) contradicts the statement
“All good peas are heavier than 3 grams”?

Exercise 7.3 You are supposed to predict the afternoon weather using a few simple
weather values from the morning of this day. The classical probability calculation
for this requires a complete model, which is given in the following table.

Sky Bar Prec P (Sky,Bar,Prec)

Clear Rising Dry 0.40
Clear Rising Raining 0.07
Clear Falling Dry 0.08
Clear Falling Raining 0.10
Bewölkt Rising Dry 0.09
Bewölkt Rising Raining 0.11
Bewölkt Falling Dry 0.03

Sky: The sky is clear or
cloudy in the morning

Bar: Barometer rising or
falling in the morning

Prec: Raining or dry in the
afternoon

(a) How many events are in the distribution for these three variables?
(b) Compute P(Prec = dry|Sky = clear,Bar = rising).
(c) Compute P(Prec = rain|Sky = cloudy).
(d) What would you do if the last row were missing from the table?

❄ Exercise 7.4 In a television quiz show, the contestant must choose between three
closed doors. Behind one door the prize awaits: a car. Behind both of the other
doors are goats. The contestant chooses a door, e.g. number one. The host, who
knows where the car is, opens another door, e.g. number three, and a goat appears.
The contestant is now given the opportunity to choose between the two remaining
doors (one and two). What is the better choice from his point of view? To stay with
the door he originally chose or to switch to the other closed door?

Exercise 7.5 Using the Lagrange multiplier method, show that, without explicit
constraints, the uniform distribution p1 = p2 = · · · = pn = 1/n represents maxi-
mum entropy. Do not forget the implicitly ever-present constraint p1 + p2 + · · · +
pn = 1. How can we show this same result using indifference?

Exercise 7.6 Use the PIT system (www.pit-systems.de) to calculate the MaxEnt
solution for P(B) under the constraint P(A) = α and P(B|A) = β . Which disad-
vantage of PIT, compared with calculation by hand, do you notice here?

Exercise 7.7 Given the constraints P(A) = α and P(A ∨ B) = β , manually calcu-
late P(B) using the MaxEnt method. Use PIT to check your solution.
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❄ Exercise 7.8 Given the constraints from (7.10), (7.11), (7.12): p1 + p2 = α,
p1 + p3 = γ , p1 + p2 + p3 + p4 = 1. Show that p1 = αγ, p2 = α(1 − γ ), p3 =
γ (1 − α), p4 = (1 − α)(1 − γ ) represents the entropy maximum under these con-
straints.

❄ Exercise 7.9 A probabilistic algorithm calculates the likelihood p that an inbound
email is spam. To classify the emails in classes delete and read, a cost matrix is then
applied to the result.
(a) Give a cost matrix (2 × 2 matrix) for the spam filter. Assume here that it costs

the user 10 cents to delete an email, while the loss of an email costs 10 dollars
(compare this to Example 1.1 on page 11 and Exercise 1.7 on page 14).

(b) Show that, for the case of a 2 × 2 matrix, the application of the cost matrix is
equivalent to the application of a threshold on the spam probability and deter-
mine the threshold.

Exercise 7.10 Given a Bayesian network with the three binary variables A,B,C

and P(A) = 0.2, P(B) = 0.9, as well as the CPT shown below:

(a) Compute P(A|B).
(b) Compute P(C|A).

A B P(C)

w f 0.1
w w 0.2
f w 0.9
f f 0.4

Exercise 7.11 For the alarm example (Example 7.7 on page 145), calculate the
following conditional probabilities:
(a) Calculate the a priori probabilities P(Al), P(J ), P(M).
(b) Calculate P(M|Bur) using the product rule, marginalization, the chain rule, and

conditional independence.
(c) Use Bayes’ formula to calculate P(Bur|M).
(d) Compute P(Al|J,M) and P(Bur|J,M).
(e) Show that the variables J and M are not independent.
(f) Check all of your results with JavaBayes and with PIT (see [Ert11] for demo

programs).
(g) Design a Bayesian network for the alarm example, but with the altered variable

ordering M,Al,Ear,Bur, J . According to the semantics of Bayesian networks,
only the necessary edges must be drawn in. (Hint: the variable order given here
does NOT represent causality. Thus it will be difficult to intuitively determine
conditional independences.)

(h) In the original Bayesian network of the alarm example, the earthquake nodes is
removed. Which CPTs does this change? (Why these in particular?)

(i) Calculate the CPT of the alarm node in the new network.

Exercise 7.12 A diagnostic system is to be made for a dynamo-powered bicycle
light using a Bayesian network. The variables in the following table are given.
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Abbr. Meaning Values

Li Light is on t/f

Str Street condition dry, wet, snow_covered
Flw Dynamo flywheel worn out t/f

R Dynamo sliding t/f

V Dynamo shows voltage t/f

B Light bulb o.k. t/f

K Cable o.k. t/f

The following variables are pairwise independent:
Str,Flw,B,K . Furthermore: (R,B), (R,K), (V ,B),
(V ,K) are independent and the following equation
holds:

P(Li|V,R) = P(Li|V )

P (V |R,Str) = P(V |R)

P (V |R,Flw) = P(V |R)

(a) Draw all of the edges into the graph (taking causal-
ity into account).

(b) Enter all missing CPTs into the graph (table of con-
ditional probabilities). Freely insert plausible val-
ues for the probabilities.

(c) Show that the network does not contain an edge
(Str,Li).

(d) Compute P(V |Str = snow_covered).

V B K P(Li)

t t t 0.99
t t f 0.01
t f t 0.01
t f f 0.001
f t t 0.3
f t f 0.005
f f t 0.005
f f f 0
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If we define AI as is done in Elaine Rich’s book [Ric83]:

Artificial Intelligence is the study of how to make computers do things at which, at the
moment, people are better.

and if we consider that the computer’s learning ability is especially inferior to that
of humans, then it follows that research into learning mechanisms, and the de-
velopment of machine learning algorithms is one of the most important branches
of AI.

There is also demand for machine learning from the viewpoint of the software
developer who programs, for example, the behavior of an autonomous robot. The
structure of the intelligent behavior can become so complex that it is very difficult
or even impossible to program close to optimally, even with modern high-level lan-
guages such as PROLOG and Python.1 Machine learning algorithms are even used
today to program robots in a way similar to how humans learn (see Chap. 10 or
[BCDS08, RGH+06]), often in a hybrid mixture of programmed and learned be-
havior.

The task of this chapter is to describe the most important machine learning algo-
rithms and their applications. The topic will be introduced in this section, followed
by important fundamental learning algorithms in the next sections. Theory and ter-
minology will be built up in parallel to this. The chapter will close with a summary
and overview of the various algorithms and their applications. We will restrict our-
selves in this chapter to supervised and unsupervised learning algorithms. As an im-
portant class of learning algorithms, neural networks will be dealt with in Chap. 9.
Due to its special place and important role for autonomous robots, reinforcement
learning will also have its own dedicated chapter (Chap. 10).

What Is Learning? Learning vocabulary of a foreign language, or technical
terms, or even memorizing a poem can be difficult for many people. For computers,

1Python is a modern scripting language with very readable syntax, powerful data types, and exten-
sive standard libraries, which can be used to this end.

W. Ertel, Introduction to Artificial Intelligence,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-299-5_8, © Springer-Verlag London Limited 2011
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Fig. 8.1 Supervised learning . . .

however, these tasks are quite simple because they are little more than saving text
in a file. Thus memorization is uninteresting for AI. In contrast, the acquisition of
mathematical skills is usually not done by memorization. For addition of natural
numbers this is not at all possible, because for each of the terms in the sum x + y

there are infinitely many values. For each combination of the two values x and y,
the triple (x, y, x + y) would have to be stored, which is impossible. For decimal
numbers, this is downright impossible. This poses the question: how do we learn
mathematics? The answer reads: The teacher explains the process and the students
practice it on examples until they no longer make mistakes on new examples. After
50 examples the student (hopefully) understands addition. That is, after only 50 ex-
amples he can apply what was learned to infinitely many new examples, which to
that point were not seen. This process is known as generalization. We begin with a
simple example.

Example 8.1 A fruit farmer wants to automatically divide harvested apples into
the merchandise classes A and B. The sorting device is equipped with sensors to
measure two features, size and color, and then decide which of the two classes the
apple belongs to. This is a typical classification task. Systems which are capable of
dividing feature vectors into a finite number of classes are called classifiers.

To configure the machine, apples are hand-picked by a specialist, that is, they
are classified. Then the two measurements are entered together with their class label
in a table (Table 8.1 on page 163). The size is given in the form of diameter in
centimeters and the color by a numeric value between 0 (for green) and 1 (for red).
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Table 8.1 Training data for
the apple sorting agent

Size [cm] 8 8 6 3 . . .

Color 0.1 0.3 0.9 0.8 . . .

Merchandise class B A A B . . .

Fig. 8.2 BayWa company apple sorting equipment in Kressbronn and some apples classified into
merchandise classes A and B in feature space (Photo: BayWa)

Fig. 8.3 The curve drawn in
into the diagram divides the
classes and can then be
applied to arbitrary new
apples

A visualization of the data is listed as points in a scatterplot diagram in the right of
Fig. 8.2.

The task in machine learning consists of generating a function from the collected,
classified data which calculates the class value (A or B) for a new apple from the
two features size and color. In Fig. 8.3 such a function is shown by the dividing line
drawn through the diagram. All apples with a feature vector to the bottom left of the
line are put into class B, and all others into class A.

In this example it is still very simple to find such a dividing line for the two
classes. It is clearly a more difficult, and above all much less visualizable task, when
the objects to be classified are described by not just two, but many features. In
practice 30 or more features are usually used. For n features, the task consists of
finding an n − 1 dimensional hyperplane within the n-dimensional feature space
which divides the classes as well as possible. A “good” division means that the
percentage of falsely classified objects is as small as possible.
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Fig. 8.4 Functional structure of a learning agent for apple sorting (left) and in general (right)

A classifier maps a feature vector to a class value. Here it has a fixed, usually
small, number of alternatives. The desired mapping is also called target function. If
the target function does not map onto a finite domain, then it is not a classification,
but rather an approximation problem. Determining the market value of a stock from
given features is such an approximation problem. In the following sections we will
introduce several learning agents for both types of mappings.

The Learning Agent We can formally describe a learning agent as a function
which maps a feature vector to a discrete class value or in general to a real number.
This function is not programmed, rather it comes into existence or changes itself
during the learning phase, influenced by the training data. In Fig. 8.4 such an agent
is presented in the apple sorting example. During learning, the agent is fed with the
already classified data from Table 8.1 on page 163. Thereafter the agent constitutes
as good a mapping as possible from the feature vector to the function value (e.g.
merchandise class).

We can now attempt to approach a definition of the term “machine learning”.
Tom Mitchell [Mit97] gives this definition:

Machine Learning is the study of computer algorithms that improve automati-
cally through experience.

Drawing on this, we give

Definition 8.1 An agent is a learning agent if it improves its performance
(measured by a suitable criterion) on new, unknown data over time (after it
has seen many training examples).

It is important to test the generalization capability of the learning algorithm on
unknown data, the test data. Otherwise every system that just saved the training
data would appear to perform optimally just by calling up the saved data. A learning
agent is characterized by the following terms:
Task: the task of the learning algorithm is to learn a mapping. This could for ex-

ample be the mapping from an apple’s size and color to its merchandise class, but
also the mapping from a patient’s 15 symptoms to the decision of whether or not
to remove his appendix.
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Fig. 8.5 Data Mining

Variable agent (more precisely a class of agents): here we have to decide which
learning algorithm will be worked with. If this has been chosen, thus the class of
all learnable functions is determined.

Training data (experience): the training data (sample) contain the knowledge which
the learning algorithm is supposed to extract and learn. With the choice of training
data one must ensure that it is a representative sample for the task to be learned.

Test data: important for evaluating whether the trained agent can generalize well
from the training data to new data.

Performance measure: for the apple sorting device, the number of correctly classi-
fied apples. We need it to test the quality of an agent. Knowing the performance
measure is usually much easier than knowing the agent’s function. For example, it
is easy to measure the performance (time) of a 10,000 meter runner. However, this
does not at all imply that the referee who measures the time can run as fast. The
referee only knows how to measure the performance, but not the “function” of the
agent whose performance he is measuring.

What Is Data Mining? The task of a learning machine to extract knowledge from
training data. Often the developer or the user wants the learning machine to make
the extracted knowledge readable for humans as well. It is still better if the developer
can even alter the knowledge. The process of induction of decision trees in Sect. 8.4
is an example of this type of method.

Similar challenges come from electronic business and knowledge management.
A classic problem presents itself here: from the actions of visitors to his web portal,
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the owner of an Internet business would like to create a relationship between the
characteristics of a customer and the class of products which are interesting to that
customer. Then a seller will be able to place customer-specific advertisements. This
is demonstrated in a telling way at www.amazon.com, where the customer is rec-
ommended products which are similar to those seen in the previous visit. In many
areas of advertisement and marketing, as well as in customer relationship manage-
ment (CRM), data mining techniques are coming into use. Whenever large amounts
of data are available, one can attempt to use these data for the analysis of customer
preferences in order to show customer-specific advertisements. The emerging field
of preference learning is dedicated to this purpose.

The process of acquiring knowledge from data, as well as its representation
and application, is called data mining. The methods used are usually taken
from statistics or machine learning and should be applicable to very large
amounts of data at reasonable cost.

In the context of acquiring information, for example on the Internet or in an in-
tranet, text mining plays an increasingly important role. Typical tasks include find-
ing similar text in a search engine or the classification of texts, which for example
is applied in spam filters for email. In Sect. 8.6.1 we will introduce the widespread
naive Bayes algorithm for the classification of text. A relatively new challenge for
data mining is the extraction of structural, static, and dynamic information from
graph structures such as social networks, traffic networks, or Internet traffic.

Because the two described tasks of machine learning and data mining are for-
mally very similar, the basic methods used in both areas are for the most part iden-
tical. Therefore in the description of the learning algorithms, no distinction will be
made between machine learning and data mining.

Because of the huge commercial impact of data mining techniques, there are now
many sophisticated optimizations and a whole line of powerful data mining systems,
which offer a large palette of convenient tools for the extraction of knowledge from
data. Such a system is introduced in Sect. 8.8.

8.1 Data Analysis

Statistics provides a number of ways to describe data with simple parameters. From
these we choose a few which are especially important for the analysis of training
data and test these on a subset of the LEXMED data from Sect. 7.3. In this example
dataset, the symptoms x1, . . . , x15 of N = 473 patients, concisely described in Ta-
ble 8.2 on page 167, as well as the class label—that is, the diagnosis (appendicitis
positive/negative)—are listed. Patient number one, for example, is described by the
vector

x1 = (26,1,0,0,1,0,1,0,1,1,0,37.9,38.8,23100,0,1)
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Table 8.2 Description of
variables x1, . . . , x16.
A slightly different
formalization was used in
Table 7.2 on page 133

Var. num. Description Values

1 Age Continuous

2 Sex (1=male, 2=female) 1,2

3 Pain quadrant 1 0,1

4 Pain quadrant 2 0,1

5 Pain quadrant 3 0,1

6 Pain quadrant 4 0,1

7 Local muscular guarding 0,1

8 Generalized muscular guarding 0,1

9 Rebound tenderness 0,1

10 Pain on tapping 0,1

11 Pain during rectal examination 0,1

12 Axial temperature Continuous

13 Rectal temperature Continuous

14 Leukocytes Continuous

15 Diabetes mellitus 0,1

16 Appendicitis 0,1

and patient number two by

x2 = (17,2,0,0,1,0,1,0,1,1,0,36.9,37.4,8100,0,0)

Patient number two has the leukocyte value x2
14 = 8100.

For each variable xi , its average x̄i is defined as

x̄i := 1

N

N∑

p=1

x
p
i

and the standard deviation si as a measure of its average deviation from the average
value as

si :=

√√√√√
1

N − 1

N∑

p=1

(x
p
i − x̄i)2.

The question of whether two variables xi and xj are statistically dependent (cor-
related) is important for the analysis of multidimensional data. For example, the
covariance

σij = 1

N − 1

N∑

p=1

(x
p
i − x̄i )(x

p
j − x̄j )
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Table 8.3 Correlation matrix for the 16 appendicitis variables measured in 473 cases

1. −0.009 0.14 0.037 −0.096 0.12 0.018 0.051 −0.034 −0.041 0.034 0.037 0.05 −0.037 0.37 0.012

−0.009 1. −0.0074 −0.019 −0.06 0.063 −0.17 0.0084 −0.17 −0.14 −0.13 −0.017 −0.034 −0.14 0.045 −0.2

0.14 −0.0074 1. 0.55 −0.091 0.24 0.13 0.24 0.045 0.18 0.028 0.02 0.045 0.03 0.11 0.045

0.037 −0.019 0.55 1. −0.24 0.33 0.051 0.25 0.074 0.19 0.087 0.11 0.12 0.11 0.14 −0.0091

−0.096 −0.06 −0.091 −0.24 1. 0.059 0.14 0.034 0.14 0.049 0.057 0.064 0.058 0.11 0.017 0.14

0.12 0.063 0.24 0.33 0.059 1. 0.071 0.19 0.086 0.15 0.048 0.11 0.12 0.063 0.21 0.053

0.018 −0.17 0.13 0.051 0.14 0.071 1. 0.16 0.4 0.28 0.2 0.24 0.36 0.29 −0.0001 0.33

0.051 0.0084 0.24 0.25 0.034 0.19 0.16 1. 0.17 0.23 0.24 0.19 0.24 0.27 0.083 0.084

−0.034 −0.17 0.045 0.074 0.14 0.086 0.4 0.17 1. 0.53 0.25 0.19 0.27 0.27 0.026 0.38

−0.041 −0.14 0.18 0.19 0.049 0.15 0.28 0.23 0.53 1. 0.24 0.15 0.19 0.23 0.02 0.32

0.034 −0.13 0.028 0.087 0.057 0.048 0.2 0.24 0.25 0.24 1. 0.17 0.17 0.22 0.098 0.17

0.037 −0.017 0.02 0.11 0.064 0.11 0.24 0.19 0.19 0.15 0.17 1. 0.72 0.26 0.035 0.15

0.05 −0.034 0.045 0.12 0.058 0.12 0.36 0.24 0.27 0.19 0.17 0.72 1. 0.38 0.044 0.21

−0.037 −0.14 0.03 0.11 0.11 0.063 0.29 0.27 0.27 0.23 0.22 0.26 0.38 1. 0.051 0.44

0.37 0.045 0.11 0.14 0.017 0.21 −0.0001 0.083 0.026 0.02 0.098 0.035 0.044 0.051 1. −0.0055

0.012 −0.2 0.045 −0.0091 0.14 0.053 0.33 0.084 0.38 0.32 0.17 0.15 0.21 0.44 −0.0055 1.

gives information about this. In this sum, the summand returns a positive entry for
the pth data vector exactly when the deviations of the ith and j th components from
the average both have the same sign. If they have different signs, then the entry is
negative. Therefore the covariance σ12,13 of the two different fever values should be
quite clearly positive.

However, the covariance also depends on the absolute value of the variables,
which makes comparison of the values difficult. To be able to compare the degree
of dependence in the case of multiple variables, we therefore define the correlation
coefficient

Kij = σij

si · sj
for two values xi and xj , which is nothing but a normalized covariance. The matrix
K of all correlation coefficients contains values between −1 and 1, is symmetric,
and all of its diagonal elements have the value 1. The correlation matrix for all 16
variables is given in Table 8.3.

This matrix becomes somewhat more readable when we represent it as a density
plot. Instead of the numerical values, the matrix elements in Fig. 8.6 on page 169
are filled with gray values. In the right diagram, the absolute values are shown. Thus
we can very quickly see which variables display a weak or strong dependence. We
can see, for example, that the variables 7, 9, 10 and 14 show the strongest corre-
lation with the class variable appendicitis and therefore are more important for the
diagnosis than the other variable. We also see, however, that the variables 9 and 10
are strongly correlated. This could mean that one of these two values is potentially
sufficient for the diagnosis.
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Fig. 8.6 The correlation matrix as a frequency graph. In the left diagram, dark stands for negative
and light for positive. In the right image the absolute values were listed. Here black means Kij ≈ 0
(uncorrelated) and white |Kij | ≈ 1 (strongly correlated)

Fig. 8.7 A linearly separable
two dimensional data set. The
equation for the dividing
straight line is
a1x1 + a2x2 = 1

8.2 The Perceptron, a Linear Classifier

In the apple sorting classification example, a curved dividing line is drawn between
the two classes in Fig. 8.3 on page 163. A simpler case is shown in Fig. 8.7. Here the
two-dimensional training examples can be separated by a straight line. We call such
a set of training data linearly separable. In n dimensions a hyperplane is needed for
the separation. This represents a linear subspace of dimension n − 1.

Because every (n − 1)-dimensional hyperplane in R
n can be described by an

equation

n∑

i=1

aixi = θ

it makes sense to define linear separability as follows.
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Fig. 8.8 The boolean function AND is linearly separable, but XOR is not ( =̂ true, =̂ false)

Definition 8.2 Two sets M1 ⊂ R
n and M2 ⊂ R

n are called linearly separable
if real numbers a1, . . . , an, θ exist with

n∑

i=1

aixi > θ for all x ∈ M1 and
n∑

i=1

aixi ≤ θ for all x ∈ M2.

The value θ is denoted the threshold.

In Fig. 8.8 we see that the AND function is linearly separable, but the XOR
function is not. For AND, for example, the line −x1 + 3/2 separates true and false
interpretations of the formula x1 ∧x2. In contrast, the XOR function does not have a
straight line of separation. Clearly the XOR function has a more complex structure
than the AND function in this regard.

With the perceptron, we present a very simple learning algorithm which can sep-
arate linearly separable sets.

Definition 8.3 Let w = (w1, . . . ,wn) ∈ R
n be a weight vector and x ∈ R

n

an input vector. A perceptron represents a function P : R
n → {0,1} which

corresponds to the following rule:

P(x) =
{

1 if w x = ∑n
i=1 wixi > 0,

0 else.

The perceptron [Ros58, MP69] is a very simple classification algorithm. It is
equivalent to a two-layer neural network with activation by a threshold function,
shown in Fig. 8.9 on page 171. As shown in Chap. 9, each node in the network
represents a neuron, and every edge a synapse. For now, however, we will only
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Fig. 8.9 Graphical
representation of a perceptron
as a two-layer neural network

view the perceptron as a learning agent, that is, as a mathematical function which
maps a feature vector to a function value. Here the input variables xi are denoted
features.

As we can see in the formula
∑n

i=1 wixi > 0, all points x above the hyper-
plane

∑n
i=1 wixi = 0 are classified as positive (P(x) = 1), and all others as neg-

ative (P(x) = 0). The separating hyperplane goes through the origin because θ = 0.
We will use a little trick to show that the absence of an arbitrary threshold repre-
sents no restriction of power. First, however, we want to introduce a simple learning
algorithm for the perceptron.

8.2.1 The Learning Rule

With the notation M+ and M− for the sets of positive and negative training patterns
respectively, the perceptron learning rule reads [MP69]

PERCEPTRONLEARNING[M+,M−]
w = arbitrary vector of real numbers
Repeat

For all x ∈ M+
If w x ≤ 0 Then w = w + x

For all x ∈ M−
If w x > 0 Then w = w − x

Until all x ∈ M+ ∪ M− are correctly classified

The perceptron should output the value 1 for all x ∈ M+. By Definition 8.3 on
page 170 this is true when w x > 0. If this is not the case then x is added to the
weight vector w, whereby the weight vector is changed in exactly the right direction.
We see this when we apply the perceptron to the changed vector w + x because

(w + x) · x = w x + x2.

If this step is repeated often enough, then at some point the value w x will become
positive, as it should be. Analogously, we see that, for negative training data, the
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perceptron calculates an ever smaller value

(w − x) · x = w x − x2

which at some point becomes negative.2

Example 8.2 A perceptron is to be trained on the sets M+ = {(0,1.8), (2,0.6)} and
M− = {(−1.2,1.4), (0.4,−1)}. w = (1,1) was used as an initial weight vector. The
training data and the line defined by the weight vector w x = x1 + x2 = 0 are shown
in Fig. 8.10 on page 173 in the first picture in the top row. In addition, the weight
vector is drawn as a dashed line. Because w x = 0, this is orthogonal to the line.

In the first iteration through the loop of the learning algorithm, the only falsely
classified training example is (−1.2,1.4) because

(−1.2,1.4) ·
(

1
1

)
= 0.2 > 0.

This results in w = (1,1)− (−1.2,1.4) = (2.2,−0.4), as drawn in the second image
in the top row in Fig. 8.10 on page 173. The other images show how, after a total
of five changes, the dividing line lies between the two classes. The perceptron thus
classifies all data correctly. We clearly see in the example that every incorrectly
classified data point from M+ “pulls” the weight vector w in its direction and every
incorrectly classified point from M− “pushes” the weight vector in the opposite
direction.

It has been shown [MP69] that the perceptron always converges for linearly sep-
arable data. We have

Theorem 8.1 Let classes M+ and M− be linearly separable by a hyperplane
w x = 0. Then PERCEPTRONLEARNING converges for every initialization of
the vector w. The perceptron P with the weight vector so calculated divides
the classes M+ and M−, that is:

P(x) = 1 ⇔ x ∈ M+

and

P(x) = 0 ⇔ x ∈ M−.

As we can clearly see in Example 8.2, perceptrons as defined above cannot di-
vide arbitrary linearly separable sets, rather only those which are divisible by a line
through the origin, or in R

n by a hyperplane through the origin, because the constant
term θ is missing from the equation

∑n
i=1 wixi = 0.

2Caution! This is not a proof of convergence for the perceptron learning rule. It only shows that
the perceptron converges when the training dataset consists of a single example.
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Fig. 8.10 Application of the perceptron learning rule to two positive (•) and two negative (◦) data
points. The solid line shows the current dividing line w x = 0. The orthogonal dashed line is the
weight vector w and the second dashed line the change vector �w = x or �w = −x to be added,
which is calculated from the currently active data point surrounded in gray

With the following trick we can generate the constant term. We hold the last
component xn of the input vector x constant and set it to the value 1. Now the
weight wn =: −θ works like a threshold because

n∑

i=1

wixi =
n−1∑

i=1

wixi − θ > 0 ⇔
n−1∑

i=1

wixi > θ.

Such a constant value xn = 1 in the input is called a bias unit. Because the associated
weight causes a constant shift of the hyperplane, the term “bias” fits well.

In the application of the perceptron learning algorithm, a bit with the constant
value 1 is appended to the training data vector. We observe that the weight wn, or
the threshold θ , is learned during the learning process.

Now it has been shown that a perceptron Pθ : R
n−1 → {0,1}

Pθ(x1, . . . , xn−1) =
{

1 if
∑n−1

i=1 wixi > θ,

0 else
(8.1)

with an arbitrary threshold can be simulated by a perceptron P : R
n → {0,1} with

the threshold 0. If we compare (8.1) with the definition of linearly separable, then
we see that both statements are equivalent. In summary, we have shown that:
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Fig. 8.11 The six patterns used for training. The whole right pattern is one of the 22 test patterns
for the first pattern with a sequence of four inverted bits

Fig. 8.12 Relative
correctness of the perceptron
as a function of the number of
inverted bits in the test data

Theorem 8.2 A function f : R
n → {0,1} can by represented by a perceptron

if and only if the two sets of positive and negative input vectors are linearly
separable.

Example 8.3 We now train a perceptron with a threshold on six simple, graphical
binary patterns, represented in Fig. 8.11, with 5 × 5 pixels each.

The training data can be learned by PERCEPTRONLEARNING in four iterations
over all patterns. Patterns with a variable number of inverted bits introduced as noise
are used to test the system’s generalization capability. The inverted bits in the test
pattern are in each case in sequence one after the other. In Fig. 8.12 the percentage
of correctly classified patterns is plotted as a function of the number of false bits.

After about five consecutive inverted bits, the correctness falls off sharply, which
is not surprising given the simplicity of the model. In the next section we will present
an algorithm that performs much better in this case.

8.2.2 Optimization and Outlook

As one of the simplest neural-network-based learning algorithms, the two-layer per-
ceptron can only divide linearly separable classes. In Sect. 9.5 we will see that multi-
layered networks are significantly more powerful. Despite its simple structure, the
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perceptron in the form presented converges very slowly. It can be accelerated by
normalization of the weight-altering vector. The formulas w = w ± x are replaced
by w = w ± x/|x|. Thereby every data point has the same weight during learning,
independent of its value.

The speed of convergence heavily depends on the initialization of the vector w.
Ideally it would not need to be changed at all and the algorithm would converge
after one iteration. We can get closer to this goal by using the heuristic initialization

w0 =
∑

x∈M+
x −

∑

x∈M−
x,

which we will investigate more closely in Exercise 8.5 on page 217.
If we compare the perceptron formula with the scoring method presented in

Sect. 7.3.1, we immediately see their equivalence. Furthermore, the perceptron, as
the simplest neural network model, is equivalent to naive Bayes, the simplest type
of Bayesian network (see Exercise 8.16 on page 219). Thus evidently several very
different classification algorithms have a common origin.

In Chap. 9 we will become familiar with a generalization of the perceptron in the
form of the back-propagation algorithm, which can divide non linearly separable
sets through the use of multiple layers, and which possesses a better learning rule.

8.3 The Nearest Neighbor Method

For a perceptron, knowledge available in the training data is extracted and saved in a
compressed form in the weights wi . Thereby information about the data is lost. This
is exactly what is desired, however, if the system is supposed to generalize from the
training data to new data. Generalization in this case is a time-intensive process with
the goal of finding a compact representation of data in the form of a function which
classifies new data as good as possible.

Memorization of all data by simply saving them is quite different. Here the learn-
ing is extremely simple. However, as previously mentioned, the saved knowledge is
not so easily applicable to new, unknown examples. Such an approach is very unfit
for learning how to ski, for example. A beginner can never become a good skier just
by watching videos of good skiers. Evidently, when learning movements of this type
are automatically carried out, something similar happens as in the case of the per-
ceptron. After sufficiently long practice, the knowledge stored in training examples
is transformed into an internal representation in the brain.

However, there are successful examples of memorization in which generaliza-
tion is also possible. During the diagnosis of a difficult case, a doctor could try to
remember similar cases from the past. If his memory is sound, then he might hit
upon this case, look it up in his files and finally come a similar diagnosis. For this
approach the doctor must have a good feeling for similarity, in order to remember
the most similar case. If he has found this, then he must ask himself whether it is
similar enough to justify the same diagnosis.
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Fig. 8.13 In this example
with negative and positive
training examples, the nearest
neighbor method groups the
new point marked in black
into the negative class

What does similarity mean in the formal context we are constructing? We repre-
sent the training samples as usual in a multidimensional feature space and define:
The smaller their distance in the feature space, the more two examples are similar.

We now apply this definition to the simple two-dimensional example from
Fig. 8.13. Here the next neighbor to the black point is a negative example. Thus
it is assigned to the negative class.

The distance d(x,y) between two points x ∈ R
n and y ∈ R

n can for example be
measured by the Euclidean distance

d(x,y) = |x − y| =
√√√√

n∑

i=1

(xi − yi)2.

Because there are many other distance metrics besides this one, it makes sense to
think about alternatives for a concrete application. In many applications, certain
features are more important than others. Therefore it is often sensible to scale the
features differently by weights wi . The formula then reads

dw(x,y) = |x − y| =
√√√√

n∑

i=1

wi(xi − yi)2.

The following simple nearest neighbor classification program searches the train-
ing data for the nearest neighbor t to the new example s and then classifies s exactly
like t .3

NEARESTNEIGHBOR[M+,M−, s]
t = argminx∈M+∪M−{d(s,x)}
If t ∈ M+ Then Return („+”)

Else Return(„–”)

3The functionals argmin and argmax determine, similarly to min and max, the minimum or maxi-
mum of a set or function. However, rather than returning the value of the maximum or minimum,
they give the position, that is, the argument in which the extremum appears.
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Fig. 8.14 A set of points together with their Voronoi-Diagram (left) and the dividing line gener-
ated for the two classes M+ and M−

Fig. 8.15 The nearest
neighbor method assigns the
new point marked in black to
the wrong (positive) class
because the nearest neighbor
is most likely classified
wrong

In contrast to the perceptron, the nearest neighbor method does not generate a
line that divides the training data points. However, an imaginary line separating the
two classes certainly exists. We can generate this by first generating the so-called
Voronoi diagram. In the Voronoi diagram, each data point is surrounded by a convex
polygon, which thus defines a neighborhood around it. The Voronoi diagram has the
property that for an arbitrary new point, the nearest neighbor among the data points
is the data point, which lies in the same neighborhood. If the Voronoi diagram for a
set of training data is determined, then it is simple to find the nearest neighbor for a
new point which is to be classified. The class membership will then be taken from
the nearest neighbor.

In Fig. 8.14 we see clearly that the nearest neighbor method is significantly
more powerful than the perceptron. It is capable of correctly realizing arbitrar-
ily complex dividing lines (in general: hyperplanes). However, there is a dan-
ger here. A single erroneous point can in certain circumstances lead to very bad
classification results. Such a case occurs in Fig. 8.15 during the classification of
the black point. The nearest neighbor method may classify this wrong. If the
black point is immediately next to a positive point that is an outlier of the pos-
itive class, then it will be classified positive rather than negative as would be
intended here. An erroneous fitting to random errors (noise) is called overfit-
ting.
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K-NEARESTNEIGHBOR(M+,M−, s)

V = {k nearest neighbors in M+ ∪ M−}
If |M+ ∩ V | > |M− ∩ V | Then Return(„+”)
ElseIf |M+ ∩ V | < |M− ∩ V | Then Return(„–”)
Else Return(Random(„+”, „–”))

Fig. 8.16 The K-NEARESTNEIGHBOR ALGORITHM

Fig. 8.17 Relative
correctness of nearest
neighbor classification as a
function of the number of
inverted bits. The structure of
the curve with its minimum at
13 and its maximum at 19 is
related to the special structure
of the training data. For
comparison the values of the
perceptron from Example 8.3
on page 174 are shown in
gray

To prevent false classifications due to single outliers, it is recommended to
smooth out the division surface somewhat. This can be accomplished by, for ex-
ample, with the K-NEARESTNEIGHBOR algorithm in Fig. 8.16, which makes a ma-
jority decision among the k nearest neighbors.

Example 8.4 We now apply NEARESTNEIGHBOR to Example 8.3 on page 174.
Because we are dealing with binary data, we use the Hamming distance as the dis-
tance metric.4 As a test example, we again use modified training examples with n

consecutive inverted bits each. In Fig. 8.17 the percentage of correctly classified
test examples is shown as a function of the number of inverted bits b. For up to
eight inverted bits, all patterns are correctly identified. Past that point, the number
of errors quickly increases. This is unsurprising because training pattern number 2
from Fig. 8.11 on page 174 from class M+ has a hamming distance of 9 to the two
training examples, numbers 4 and 5 from the other class. This means that the test
pattern is very likely close to the patterns of the other class. Quite clearly we see
that nearest neighbor classification is superior to the perceptron in this application
for up to eight false bits.

4The Hamming distance between two bit vectors is the number of different bits of the two vectors.
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Fig. 8.18 The learning agent, which is supposed to avoid light (left), represented as a classifier
(middle), and as an approximation (right)

8.3.1 Two Classes, Many Classes, Approximation

Nearest neighbor classification can also be applied to more than two classes. Just
like the case of two classes, the class of the feature vector to be classified is simply
set as the class of the nearest neighbor. For the k nearest neighbor method, the
class is to be determined as the class with the most members among the k nearest
neighbors.

If the number of classes is large, then it usually no longer makes sense to use clas-
sification algorithms because the size of the necessary training data grows quickly
with the number of classes. Furthermore, in certain circumstances important infor-
mation is lost during classification of many classes. This will become clear in the
following example.

Example 8.5 An autonomous robot with simple sensors similar to the Braitenberg
vehicles presented in Fig. 1.1 on page 2 is supposed to learn to move away from
light. This means it should learn as optimally as possible to map its sensor values
onto a steering signal which controls the driving direction. The robot is equipped
with two simple light sensors on its front side. From the two sensor signals (with
sl for the left and sr for the right sensor), the relationship x = sr/sl is calculated.
To control the electric motors of the two wheels from this value x, the difference
v = Ur −Ul of the two voltages Ur and Ul of the left and right motors, respectively.
The learning agent’s task is now to avoid a light signal. It must therefore learn a
mapping f which calculates the “correct” value v = f (x).5

For this we carry out an experiment in which, for a few measured values x,
we find as optimal a value v as we can. These values are plotted as data points
in Fig. 8.18 and shall serve as training data for the learning agent. During nearest
neighbor classification each point in the feature space (that is, on the x-axis) is clas-
sified exactly like its nearest neighbor among the training data. The function for
steering the motors is then a step function with large jumps (Fig. 8.18 middle). If
we want finer steps, then we must provide correspondingly more training data. On

5To keep the example simple and readable, the feature vector x was deliberately kept one-
dimensional.



180 8 Machine Learning and Data Mining

the other hand, we can obtain a continuous function if we approximate a smooth
function to fit the five points (Fig. 8.18 on page 179 right). Requiring the function
f to be continuous leads to very good results, even with no additional data points.

For the approximation of functions on data points there are many mathematical
methods, such as polynomial interpolation, spline interpolation, or the method of
least squares. The application of these methods becomes problematic in higher di-
mensions. The special difficulty in AI is that model-free approximation methods are
needed. That is, a good approximation of the data must be made without knowledge
about special properties of the data or the application. Very good results have been
achieved here with neural networks and other nonlinear function approximators,
which are presented in Chap. 9.

The k nearest neighbor method can be applied in a simple way to the ap-
proximation problem. In the algorithm K-NEARESTNEIGHBOR, after the set V =
{x1,x2, . . . ,xk} is determined, the k nearest neighbors average function value

f̂ (x) = 1

k

k∑

i=1

f (xi ) (8.2)

is calculated and taken as an approximation f̂ for the query vector x. The larger k

becomes, the smoother the function f̂ is.

8.3.2 Distance Is Relevant

In practical application of discrete as well as continuous variants of the k nearest
neighbor method, problems often occur. As k becomes large, there typically exist
more neighbors with a large distance than those with a small distance. Thereby the
calculation of f̂ is dominated by neighbors that are far away. To prevent this, the k

neighbors are weighted such that the more distant neighbors have lesser influence on
the result. During the majority decision in the algorithm K-NEARESTNEIGHBOR,
the “votes” are weighted with the weight

wi = 1

1 + αd(x,xi )2 , (8.3)

which decreases with the square of the distance. The constant α determines the
speed of decrease of the weights. Equation (8.2) is now replaced by

f̂ (x) =
∑k

i=1 wif (xi )∑k
i=1 wi

.

For uniformly distributed concentration of points in the feature space, this ensures
that the influence of points asymptotically approaches zero as distance increases.
Thereby it becomes possible to use many or even all training data to classify or
approximate a given input vector.
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Fig. 8.19 Comparison of the k-nearest neighbor method (upper row) with k = 1 (left), k = 2
(middle) and k = 6 (right), to its distance weighted variant (lower row) with α = 20 (left), α = 4
(middle) and α = 1 (right) on a one-dimensional dataset

To get a feeling for these methods, in Fig. 8.19 the k-nearest neighbor method
(in the upper row) is compared with its distance weighted optimization. Due to
the averaging, both methods can generalize, or in other words, cancel out noise, if
the number of neighbors for k-nearest neighbor or the parameter α is set appropri-
ately. The diagrams show nicely that the distance weighted method gives a much
smoother approximation than k-nearest neighbor. With respect to approximation
quality, this very simple method can compete well with sophisticated approxima-
tion algorithms such as nonlinear neural networks, support vector machines, and
Gaussian processes.

There are many alternatives to the weight function (also called kernel) given in
(8.3) on page 180. For example a Gaussian or similar bell-shaped function can be
used. For most applications, the results are not very sensible on the selection of the
kernel. However, the width parameter α which for all these functions has to be set
manually has great influence on the results, as shown in Fig. 8.19. To avoid such
an inconvenient manual adaptation, optimization methods have been developed for
automatically setting this parameter [SA94, SE10].

8.3.3 Computation Times

As previously mentioned, training is accomplished in all variants of the nearest
neighbor method by simply saving all training vectors together with their labels
(class values), or the function value f (x). Thus there is no other learning algorithm
that learns as quickly. However, answering a query for classification or approxima-
tion of a vector x can become very expensive. Just finding the k nearest neighbors
for n training data requires a cost which grows linearly with n. For classification or
approximation, there is additionally a cost which is linear in k. The total computa-
tion time thus grows as Θ(n + k). For large amounts of training data, this can lead
to problems.
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Fig. 8.20 To determine
avalanche hazard, a function
is approximated from training
data. Here for comparison are
a local model (solid line), and
a global model (dashed line)

8.3.4 Summary and Outlook

Because nothing happens in the learning phase of the presented nearest neighbor
methods, such algorithms are also denoted lazy learning, in contrast to eager learn-
ing, in which the learning phase can be expensive, but application to new examples
is very efficient. The perceptron and all other neural networks, decision tree learn-
ing, and the learning of Bayesian networks are eager learning methods. Since the
lazy learning methods need access to the memory with all training data for approx-
imating a new input, they are also called memory-based learning.

To compare these two classes of learning processes, we will use as an example
the task of determining the current avalanche hazard from the amount of newly
fallen snow in a certain area of Switzerland.6 In Fig. 8.20 values determined by
experts are entered, which we want to use as training data. During the application of
a eager learning algorithm which undertakes a linear approximation of the data, the
dashed line shown in the figure is calculated. Due to the restriction to a straight line,
the error is relatively large with a maximum of about 1.5 hazard levels. During lazy
learning, nothing is calculated before a query for the current hazard level arrives.
Then the answer is calculated from several nearest neighbors, that is, locally. It could
result in the curve shown in the figure, which is put together from line segments and
shows much smaller errors. The advantage of the lazy method is its locality. The
approximation is taken locally from the current new snow level and not globally.
Thus for fundamentally equal classes of functions (for example linear functions),
the lazy algorithms are better.

Nearest neighbor methods are well suited for all problem situations in which a
good local approximation is needed, but which do not place a high requirement on
the speed of the system. The avalanche predictor mentioned here, which runs once
per day, is such an application. Nearest neighbor methods are not suitable when a
description of the knowledge extracted from the data must be understandable by hu-
mans, which today is the case for many data mining applications (see Sect. 8.4). In

6The three day total of snowfall is in fact an important feature for determining the hazard level. In
practice, however, additional attributes are used [Bra01]. The example used here is simplified.
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Feature Query Case from case base
Defective part: Rear light Front light
Bicycle model: Marin Pine Mountain VSF T400
Year: 1993 2001
Power source: Battery Dynamo
Bulb condition: ok ok
Light cable condition: ? ok

Solution
Diagnosis: ? Front electrical contact missing
Repair: ? Establish front electrical contact

Fig. 8.21 Simple diagnosis example for a query and the corresponding case from the case base

recent years these memory-based learning methods are becoming popular, and var-
ious improved variants (for example locally weighted linear regression) have been
applied [Cle79].

To be able to use the described methods, the training data must be available
in the form of vectors of integers or real numbers. They are thus unsuitable for
applications in which the data are represented symbolically, for example as first
order logic formulas. We will now briefly discuss this.

8.3.5 Case-Based Reasoning

In case-based reasoning (CBR), the nearest neighbor method is extended to sym-
bolic problem descriptions and their solutions. CBR is used in the diagnosis of tech-
nical problems in customer service or for telephone hotlines. The example shown
in Fig. 8.21 about the diagnosis of a bicycle light going out illustrates this type of
situation.

A solution is searched for the query of a customer with a defective rear bicycle
light. In the right column, a case similar to the query in the middle column is given.
This stems from the case base, which corresponds to training data in the nearest
neighbor method. If we simply took the most similar case, as we do in the nearest
neighbor method, then we would end up trying to repair the front light when the
rear light is broken. We thus need a reverse transformation of the solution to the dis-
covered similar problem back to the query. The most important steps in the solution
to a CBR case are carried out in Fig. 8.22 on page 184. The transformation in this
example is simple: rear light is mapped to front light.

As beautiful and simple as this methods seems in theory, in practice the construc-
tion of CBR diagnostic systems is a very difficult task. The three main difficulties
are:
Modeling The domains of the application must be modeled in a formal context.

Here logical monotony, which we know from Chap. 4, presents difficulties. Can
the developer predict and map all possible special cases and problem variants?
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Fig. 8.22 If for a case x a similar case y is found, then to obtain a solution for x, the transformation
must be determined and its inverse applied to the discovered case y

Similarity Finding a suitable similarity metric for symbolic, non-numerical fea-
tures.

Transformation Even if a similar case is found, it is not yet clear how the transfor-
mation mapping and its inverse should look.

Indeed there are practical CBR systems for diagnostic applications in use today.
However, due to the reasons mentioned, these remain far behind human experts in
performance and flexibility. An interesting alternative to CBR are the Bayesian net-
works presented in Chap. 7. Often the symbolic problem representation can also be
mapped quite well to discrete or continuous numerical features. Then the mentioned
inductive learning methods such as decision trees or neural networks can be used
successfully.

8.4 Decision Tree Learning

Decision tree learning is an extraordinarily important algorithm for AI because it
is very powerful, but also simple and efficient for extracting knowledge from data.
Compared to the two already introduced learning algorithms, it has an important
advantage. The extracted knowledge is not only available and usable as a black box
function, but rather it can be easily understood, interpreted, and controlled by hu-
mans in the form of a readable decision tree. This also makes decision tree learning
an important tool for data mining.

We will discuss function and application of decision tree learning using the C4.5
algorithm. C4.5 was introduced in 1993 by the Australian Ross Quinlan and is an
improvement of its predecessor ID3 (Iterative Dichotomiser 3, 1986). It is freely
available for noncommercial use [Qui93]. A further development, which works even
more efficiently and can take into account the costs of decisions, is C5.0 [Qui93].

The CART (Classification and Regression Trees, 1984) system developed by Leo
Breiman [BFOS84] works similarly to C4.5. It has a convenient graphical user in-
terface, but is very expensive.

Twenty years earlier, in 1964, the CHAID (Chi-square Automatic Interaction
Detectors) system, which can automatically generate decision trees, was introduced
by J. Sonquist and J. Morgan. It has the noteworthy characteristic that it stops the
growth of the tree before it becomes too large, but today it has no more relevance.
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Table 8.4 Variables for the skiing classification problem

Variable Value Description

Ski (goal variable) Yes, no Should I drive to the nearest ski resort
with enough snow?

Sun (feature) Yes, no Is there sunshine today?

Snow_Dist (feature) ≤100, >100 Distance to the nearest ski resort with
good snow conditions (over/under
100 km)

Weekend (feature) Yes, no Is it the weekend today?

Also interesting is the data mining tool KNIME (Konstanz Information Miner),
which has a friendly user interface and, using the WEKA Java library, also makes
induction of decision trees possible. In Sect. 8.8 we will introduce KNIME.

Now we first show in a simple example how a decision tree can be constructed
from training data, in order to then analyze the algorithm and apply it to the more
complex LEXMED example for medical diagnosis.

8.4.1 A Simple Example

A devoted skier who lives near the high sierra, a beautiful mountain range in Cal-
ifornia, wants a decision tree to help him decide whether it is worthwhile to drive
his car to a ski resort in the mountains. We thus have a two-class problem ski yes/no
based on the variables listed in Table 8.4.

Figure 8.23 on page 186 shows a decision tree for this problem. A decision tree
is a tree whose inner nodes represent features (attributes). Each edge stands for an
attribute value. At each leaf node a class value is given.

The data used for the construction of the decision tree are shown in Table 8.5 on
page 186. Each row in the table contains the data for one day and as such represents a
sample. Upon closer examination we see that row 6 and row 7 contradict each other.
Thus no deterministic classification algorithm can correctly classify all of the data.
The number of falsely classified data must therefore be ≥1. The tree in Fig. 8.23 on
page 186 thus classifies the data optimally.

How is such a tree created from the data? To answer this question we will at
first restrict ourselves to discrete attributes with finitely many values. Because the
number of attributes is also finite and each attribute can occur at most once per path,
there are finitely many different decision trees. A simple, obvious algorithm for the
construction of a tree would simply generate all trees, then for each tree calculate
the number of erroneous classifications of the data, and at the end choose the tree
with the minimum number of errors. Thus we would even have an optimal algorithm
(in the sense of errors for the training data) for decision tree learning.

The obvious disadvantage of this algorithm is its unacceptably high computa-
tion time, as soon as the number of attributes becomes somewhat larger. We will
now develop a heuristic algorithm which, starting from the root, recursively builds
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Fig. 8.23 Decision tree for the skiing classification problem. In the lists to the right of the nodes,
the numbers of the corresponding training data are given. Notice that of the leaf nodes sunny = yes
only two of the three examples are classified correctly

Table 8.5 Data set for the
skiing classification problem

Day Snow_Dist Weekend Sun Skiing

1 ≤100 Yes Yes Yes

2 ≤100 Yes Yes Yes

3 ≤100 Yes No Yes

4 ≤100 No Yes Yes

5 >100 Yes Yes Yes

6 >100 Yes Yes Yes

7 >100 Yes Yes No

8 >100 Yes No No

9 >100 No Yes No

10 >100 No Yes No

11 >100 No No No

a decision tree. First the attribute with the highest information gain (Snow_ Dist) is
chosen for the root node from the set of all attributes. For each attribute value (≤100,
>100) there is a branch in the tree. Now for every branch this process is repeated
recursively. During generation of the nodes, the attribute with the highest informa-
tion gain among the attributes which have not yet been used is always chosen, in the
spirit of a greedy strategy.

8.4.2 Entropy as a Metric for Information Content

The described top-down algorithm for the construction of a decision tree, at each
step selects the attribute with the highest information gain. We now introduce the
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entropy as the metric for the information content of a set of training data D. If we
only look at the binary variable skiing in the above example, then D can be described
as

D = (yes, yes, yes, yes, yes, yes, no, no, no, no, no)

with estimated probabilities

p1 = P(yes) = 6/11 and p2 = P(no) = 5/11.

Here we evidently have a probability distribution p = (6/11,5/11). In general, for
an n class problem this reads

p = (p1, . . . , pn)

with
n∑

i=1

pi = 1.

To introduce the information content of a distribution we observe two extreme cases.
First let

p = (1,0,0, . . . ,0). (8.4)

That is, the first one of the n events will certainly occur and all others will not. The
uncertainty about the outcome of the events is thus minimal. In contrast, for the
uniform distribution

p =
(

1

n
,

1

n
, . . . ,

1

n

)
(8.5)

the uncertainty is maximal because no event can be distinguished from the others.
Here Claude Shannon asked himself how many bits would be needed to encode
such an event. In the certain case of (8.4) zero bits are needed because we know
that the case i = 1 always occurs. In the uniformly distributed case of (8.5) there are
n equally probable possibilities. For binary encodings, log2 n bits are needed here.
Because all individual probabilities are pi = 1/n, log2

1
pi

bits are needed for this
encoding.

In the general case p = (p1, . . . , pn), if the probabilities of the elementary events
deviate from the uniform distribution, then the expectation value H for the number
of bits is calculated. To this end we will weight all values log2

1
pi

= − log2 pi with
their probabilities and obtain

H =
n∑

i=1

pi(− log2 pi) = −
n∑

i=1

pi log2 pi.

The more bits we need to encode an event, clearly the higher the uncertainty about
the outcome. Therefore we define:
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Fig. 8.24 The entropy
function for the case of two
classes. We see the maximum
at p = 1/2 and the symmetry
with respect to swapping p

and 1 − p

Definition 8.4 The Entropy H as a metric for the uncertainty of a probability
distribution is defined by7

H(p) = H(p1, . . . , pn) := −
n∑

i=1

pi log2 pi.

A detailed derivation of this formula is found in [SW76]. If we substitute the
certain event p = (1,0,0, . . . ,0), then 0 log2 0, an undefined expression results. We
solve this problem by the definition 0 log2 0 := 0 (see Exercise 8.9 on page 218).

Now we can calculate H(1,0, . . . ,0) = 0. We will show that the entropy in the
hypercube [0,1]n under the constraint

∑n
i=1 pi = 1 takes on its maximum value

with the uniform distribution ( 1
n
, . . . , 1

n
). In the case of an event with two possible

outcomes, which correspond to two classes, the result is

H(p) = H(p1,p2) = H(p1,1 − p1) = −(p1 log2 p1 + (1 − p1) log2(1 − p1)).

This expression is shown as a function of p1 in Fig. 8.24 with its maximum at
p1 = 1/2.

Because each classified dataset D is assigned a probability distribution p by
estimating the class probabilities, we can extend the concept of entropy to data by

7 In (7.9) on page 124 the natural logarithm rather than log2 is used in the definition of entropy.
Because here, and also in the case of the MaxEnt method, entropies are only being compared, this
difference does not play a role. (see Exercise 8.11 on page 218).
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the definition

H(D) = H(p).

Now, since the information content I (D) of the dataset D is meant to be the opposite
of uncertainty. Thus we define:

Definition 8.5 The information content of a dataset is defined as

I (D) := 1 − H(D). (8.6)

8.4.3 Information Gain

If we apply the entropy formula to the example, the result is

H(6/11,5/11) = 0.994

During construction of a decision tree, the dataset is further subdivided by each new
attribute. The more an attribute raises the information content of the distribution by
dividing the data, the better that attribute is. We define accordingly:

Definition 8.6 The information gain G(D,A) through the use of the attribute
A is determined by the difference of the average information content of the
dataset D = D1 ∪ D2 ∪ · · · ∪ Dn divided by the n-value attribute A and the
information content I (D) of the undivided dataset, which yields

G(D,A) =
n∑

i=1

|Di |
|D| I (Di) − I (D).

With (8.6) we obtain from this

G(D,A) =
n∑

i=1

|Di |
|D| I (Di) − I (D) =

n∑

i=1

|Di |
|D| (1 − H(Di)) − (1 − H(D))

= 1 −
n∑

i=1

|Di |
|D| H(Di) − 1 + H(D)

= H(D) −
n∑

i=1

|Di |
|D| H(Di). (8.7)
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Fig. 8.25 The calculated gain for the various attributes reflects whether the division of the data
by the respective attribute results in a better class division. The more the distributions generated by
the attribute deviate from the uniform distribution, the higher the information gain

Applied to our example for the attribute Snow_Dist, this yields

G(D,Snow_Dist) = H(D) −
(

4

11
H(D≤100) + 7

11
H(D>100)

)

= 0.994 −
(

4

11
· 0 + 7

11
· 0.863

)
= 0.445.

Analogously we obtain

G(D,Weekend) = 0.150

and

G(D,Sun) = 0.049.

The attribute Snow_Dist now becomes the root node of the decision tree. The situa-
tion of the selection of this attribute is once again clarified in Fig. 8.25.

The two attribute values ≤100 and >100 generate two edges in the tree, which
correspond to the subsets D≤100 and D>100. For the subset D≤100 the classification
is clearly yes. thus the tree terminates here. In the other branch D>100 there is no
clear result. Thus the algorithm repeats recursively. From the two attributes still
available, Sun and Weekend, the better one must be chosen. We calculate

G(D>100,Weekend) = 0.292

and

G(D>100,Sun) = 0.170.

The node thus gets the attribute Weekend assigned. For Weekend = no the tree termi-
nates with the decision Ski = no. A calculation of the gain here returns the value 0.
For Weekend = yes, Sun results in a gain of 0.171. Then the construction of the tree
terminates because no further attributes are available, although example number 7 is
falsely classified. The finished tree is already familiar from Fig. 8.23 on page 186.
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8.4.4 Application of C4.5

The decision tree that we just generated can also be generated by C4.5. The training
data are saved in a data file ski.data in the following format:

<=100, yes, yes, yes
<=100, yes, yes, yes
<=100, yes, no, yes
<=100, no, yes, yes
>100, yes, yes, yes
>100, yes, yes, yes
>100, yes, yes, no
>100, yes, no, no
>100, no, yes, no
>100, no, yes, no
>100, no, no, no

The information about attributes and classes is stored in the file ski.names
(lines beginning with “|” are comments):

|Classes: no: do not ski, yes: go skiing
|
no,yes.
|
|Attributes
|
Snow_Dist: <=100,>100.
Weekend: no,yes.
Sun: no,yes.

C4.5 is then called from the Unix command line and generates the decision tree
shown below, which is formatted using indentations. The option -f is for the name
of the input file, and the option -m specifies the minimum number of training data
points required for generating a new branch in the tree. Because the number of train-
ing data points in this example is extremely small, -m 1 is sensible here. For larger
datasets, a value of at least -m 10 should be used.
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unixprompt> c4.5 -f ski -m 1

C4.5 [release 8] decision tree generator

Wed Aug 23 10:44:49 2010
----------------------------------------

Options:
File stem <ski>
Sensible test requires 2 branches with >=1 cases

Read 11 cases (3 attributes) from ski.data

Decision Tree:

Snow_Dist = <=100: ja (4.0)
Snow_Dist = >100:
| Weekend = no: no (3.0)
| Weekend = yes:
| | Sun = no: no (1.0)
| | Sun = yes: yes (3.0/1.0)

Simplified Decision Tree:

Snow_Dist = <=100: yes (4.0/1.2)
Snow_Dist = >100: no (7.0/3.4)

Evaluation on training data (11 items):

Before Pruning After Pruning
---------------- ---------------------------
Size Errors Size Errors Estimate

7 1(9.1%) 3 2(18.2%) (41.7%) <<

Additionally, a simplified tree with only one attribute is given. This tree, which
was created by pruning (see Sect. 8.4.7), will be important for an increasing amount
of training data. In this little example it does not yet makes much sense. The error
rate for both trees on the training data is also given. The numbers in parentheses
after the decisions give the size of the underlying dataset and the number of errors.
For example, the line Sun = yes: yes (3.0/1.0) in the top tree indicates
that for this leaf node Sun = yes, three training examples exist, one of which is
falsely classified. The user can thus read from this whether the decision is statisti-
cally grounded and/or certain.

In Fig. 8.26 on page 193 we can now give the schema of the learning algorithm
for generating a decision tree.

We are now familiar with the foundations of the automatic generation of decision
trees. For the practical application, however, important extensions are needed. We
will introduce these using the already familiar LEXMED application.
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GENERATEDECISIONTREE(Data,Node)

Amax = Attribute with maximum information gain
If G(Amax) = 0

Then Node becomes leaf node with most frequent class in Data
Else assign the attribute Amax to Node

For each value a1, . . . , an of Amax , generate
a successor node: K1, . . . ,Kn

Divide Data into D1, . . . ,Dn with Di = {x ∈ Data|Amax(x) = ai}
For all i ∈ {1, . . . , n}

If all x ∈ Di belong to the same class Ci

Then generate leaf node Ki of class Ci

Else GENERATEDECISIONTREE(Di,Ki )

Fig. 8.26 Algorithm for the construction of a decision tree

8.4.5 Learning of Appendicitis Diagnosis

In the research project LEXMED, an expert system for the diagnosis of appendicitis
was developed on top of a database of patient data [ES99, SE00]. The system, which
works with the method of maximum entropy, is described in Sect. 7.3

We now use the LEXMED database to generate a decision tree for diagnosing
appendicitis with C4.5. The symptoms used as attributes are defined in the file
app.names:

|Definition of the classes and attributes
|
|Classes 0=appendicitis negative
| 1=appendicitis positive
0,1.
|
|Attributes
|
Age: continuous.
Sex_(1=m___2=w): 1,2.
Pain_Quadrant1_(0=no__1=yes): 0,1.
Pain_Quadrant2_(0=no__1=yes): 0,1.
Pain_Quadrant3_(0=no__1=yes): 0,1.
Pain_Quadrant4_(0=no__1=yes): 0,1.
Local_guarding_(0=no__1=yes): 0,1.
Generalized_guarding_(0=no__1=yes): 0,1.
Rebound_tenderness_(0=no__1=yes): 0,1.
Pain_on_tapping_(0=no__1=yes): 0,1.
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Pain_during_rectal_examination_(0=no__1=yes): 0,1.
Temp_axial: continuous.
Temp_rectal: continuous.
Leukocytes: continuous.
Diabetes_mellitus_(0=no__1=yes): 0,1

We see that, besides many binary attributes such as the various pain symptoms,
continuous symptoms such as age and fever temperature also occur. In the follow-
ing training data file, app.data, in each line a case is described. In the first line
is a 19-year-old male patient with pain in the third quadrant (lower right, where the
appendix is), the two fever values 36.2 and 37.8 degree Celsius, a leukocyte value
of 13400 and a positive diagnosis, that is, an inflamed appendix.

19,1,0,0,1,0,1,0,1,1,0,362,378,13400,0,1
13,1,0,0,1,0,1,0,1,1,1,383,385,18100,0,1
32,2,0,0,1,0,1,0,1,1,0,364,374,11800,0,1
18,2,0,0,1,1,0,0,0,0,0,362,370,09300,0,0
73,2,1,0,1,1,1,0,1,1,1,376,380,13600,1,1
30,1,1,1,1,1,0,1,1,1,1,377,387,21100,0,1
56,1,1,1,1,1,0,1,1,1,0,390,?,14100,0,1
36,1,0,0,1,0,1,0,1,1,0,372,382,11300,0,1
36,2,0,0,1,0,0,0,1,1,1,370,379,15300,0,1
33,1,0,0,1,0,1,0,1,1,0,367,376,17400,0,1
19,1,0,0,1,0,0,0,1,1,0,361,375,17600,0,1
12,1,0,0,1,0,1,0,1,1,0,364,370,12900,0,0
...

Without going into detail about the database, it is important to mention that only
patients who were suspected of having appendicitis upon arrival at the hospital and
were then operated upon are included in the database. We see in the seventh row
that C4.5 can also deal with missing values. The data contain 9764 cases.

unixprompt> c4.5 -f app -u -m 100

C4.5 [release 8] decision tree generator
Wed Aug 23 13:13:15 2006

----------------------------------------

Read 9764 cases (15 attributes) from app.data

Decision Tree:
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Leukocytes <= 11030 :
| Rebound_tenderness = 0:
| | Temp_rectal > 381 : 1 (135.9/54.2)
| | Temp_rectal <= 381 :
| | | Local_guarding = 0: 0 (1453.3/358.9)
| | | Local_guarding = 1:
| | | | Sex_(1=m___2=w) = 1: 1 (160.1/74.9)
| | | | Sex_(1=m___2=w) = 2: 0 (286.3/97.6)
| Rebound_tenderness = 1:
| | Leukocytes <= 8600 :
| | | Temp_rectal > 378 : 1 (176.0/59.4)
| | | Temp_rectal <= 378 :
| | | | Sex_(1=m___2=w) = 1:
| | | | | Local_guarding = 0: 0 (110.7/51.7)
| | | | | Local_guarding = 1: 1 (160.6/68.5)
| | | | Sex_(1=m___2=w) = 2:
| | | | | Age <= 14 : 1 (131.1/63.1)
| | | | | Age > 14 : 0 (398.3/137.6)
| | Leukocytes > 8600 :
| | | Sex_(1=m___2=w) = 1: 1 (429.9/91.0)
| | | Sex_(1=m___2=w) = 2:
| | | | Local_guarding = 1: 1 (311.2/103.0)
| | | | Local_guarding = 0:
| | | | | Temp_rectal <= 375 : 1 (125.4/55.8)
| | | | | Temp_rectal > 375 : 0 (118.3/56.1)
Leukocytes > 11030 :
| Rebound_tenderness = 1: 1 (4300.0/519.9)
| Rebound_tenderness = 0:
| | Leukocytes > 14040 : 1 (826.6/163.8)
| | Leukocytes <= 14040 :
| | | Pain_on_tapping = 1: 1 (260.6/83.7)
| | | Pain_on_tapping = 0:
| | | | Local_guarding = 1: 1 (117.5/44.4)
| | | | Local_guarding = 0:
| | | | | Temp_axial <= 368 : 0 (131.9/57.4)
| | | | | Temp_axial > 368 : 1 (130.5/57.8)

Simplified Decision Tree:

Leukocytes > 11030 : 1 (5767.0/964.1)
Leukocytes <= 11030 :
| Rebound_tenderness = 0:
| | Temp_rectal > 381 : 1 (135.9/58.7)
| | Temp_rectal <= 381 :
| | | Local_guarding = 0: 0 (1453.3/370.9)
| | | Local_guarding = 1:
| | | | Sex_(1=m___2=w) = 1: 1 (160.1/79.7)
| | | | Sex_(1=m___2=w) = 2: 0 (286.3/103.7)
| Rebound_tenderness = 1:
| | Leukocytes > 8600 : 1 (984.7/322.6)
| | Leukocytes <= 8600 :
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| | | Temp_rectal > 378 : 1 (176.0/64.3)
| | | Temp_rectal <= 378 :
| | | | Sex_(1=m___2=w) = 1:
| | | | | Local_guarding = 0: 0 (110.7/55.8)
| | | | | Local_guarding = 1: 1 (160.6/73.4)
| | | | Sex_(1=m___2=w) = 2:
| | | | | Age <= 14 : 1 (131.1/67.6)
| | | | | Age > 14 : 0 (398.3/144.7)

Evaluation on training data (9764 items):

Before Pruning After Pruning
---------------- ---------------------------
Size Errors Size Errors Estimate
37 2197(22.5%) 21 2223(22.8%) (23.6%) <<

Evaluation on test data (4882 items):

Before Pruning After Pruning
---------------- ---------------------------
Size Errors Size Errors Estimate
37 1148(23.5%) 21 1153(23.6%) (23.6%) <<

(a) (b) <-classified as
---- ----
758 885 (a): class 0
268 2971 (b): class 1

8.4.6 Continuous Attributes

In the trees generated for the appendicitis diagnosis there is a node Leukocytes
> 11030 which clearly comes from the continuous attribute Leukocytes
by setting a threshold at the value 11030. C4.5 thus has made a binary at-
tribute Leukocytes > 11030 from the continuous attribute Leukocytes.
The threshold ΘD,A for an attribute A is determined by the following algorithm:
for all values v which occur in the training data D, the binary attribute A > v is
generated and its information gain is calculated. The threshold ΘD,A is then set to
the value v with the maximum information gain, that is:

ΘD,A = argmaxv{G(D,A > v)}.

For an attribute such as the leukocyte value or the patient’s age, a decision based on
a binary discretization is presumably too imprecise. Nevertheless there is no need to
discretize finer because each continuous attribute is tested on each newly generated
node and can thus occur repeatedly in one tree with a different threshold ΘD,A. Thus
we ultimately obtain a very good discretization whose fineness fits the problem.
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Fig. 8.27 Learning curve of
C4.5 on the appendicitis data.
We clearly see the overfitting
of trees with more than 55
nodes

8.4.7 Pruning—Cutting the Tree

Since the time of Aristotle it has been stipulated that of two scientific theories which
explain the same situation equally well, the simpler one is preferred. This law of
economy, also now known as Occam’s razor, is of great importance for machine
learning and data mining.

A decision tree is a theory for describing the training data. A different theory for
describing the data is the data themselves. If the tree classifies all data without any
errors, but is much more compact and thus more easily understood by humans, then
it is preferable according to Occam’s razor. The same is true for two decision trees
of different sizes. Thus the goal of every algorithm for generating a decision tree
must be to generate the smallest possible decision tree for a given error rate. Among
all trees with a fixed error rate, the smallest tree should always be selected.

Up until now we have not defined the term error rate precisely. As already men-
tioned several times, it is important that the learned tree not just memorize the train-
ing data, rather that it generalizes well. To test the ability of a tree to generalize, we
divide the available data into a set of training data and a set of test data. The test data
are hidden from the learning algorithm and only used for testing. If a large dataset
is available, such as the appendicitis data, then we can for example use two-thirds
of the data for learning and the remaining third for testing.

Aside from better comprehensibility, Occam’s razor has another important justi-
fication: generalization ability. The more complex the model (here a decision tree),
the more details are represented, but to the same extent the less is the model trans-
ferable to new data. This relationship is illustrated in Fig. 8.27. Decision trees of
various sizes were trained against the appendicitis data. In the graph, classification
errors on both the training data and on the test data are given. The error rate on the
training data decreases monotonically with the size of the tree. Up to a tree size of
55 nodes, the error rate on test data also decreases. If the tree grows further, how-
ever, then the error rate starts to increase again! This effect, which we have already
seen in the nearest neighbor method, is called overfitting.
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We will give this concept, which is important for nearly all learning processes,
a general definition taken from [Mit97]:

Definition 8.7 Let a specific learning algorithm, that is, a learning agent, be
given. We call an agent A overfit to the training data if there is another agent
A′ whose error on the training data is larger than that of A, but whose error
on the whole distribution of data is smaller than the error of A.

How can we now find this point of minimum error on the test data? The most
obvious algorithm is called cross validation. During construction of the tree, the
error on the test data is measured in parallel. As soon as the error rises significantly,
the tree with the minimum error is saved. This algorithm is used by the CART
system mentioned earlier.

C4.5 works somewhat differently. First, using the algorithm GENERATEDECI-
SIONTREE from Fig. 8.26 on page 193, it generates a tree which is usually overfit.
Then, using pruning, it attempts to cut away nodes of the tree until the error on the
test data, estimated by the error on the training data, begins to rise.8 Like the con-
struction of the tree, this is also a greedy algorithm. This means that once a node is
pruned, it cannot be re-inserted, even if this later turns out to be better.

8.4.8 Missing Values

Frequently individual attribute values are missing from the training data. In the LEX-
MED dataset, the following entry occurs:

56,1,1,1,1,1,0,1,1,1,0,390, ?,14100,0,1,

in which one of the fever values is missing. Such data can nevertheless be used dur-
ing construction of the decision tree. We can assign the attribute the most frequent
value from the whole dataset or the most frequent of all data points from the same
class. It is even better to substitute the probability distribution of all attribute val-
ues for the missing attribute value and to split the training example into branches
according to this distribution. This is incidentally a reason for the occurrence of
non-integer values in the expressions in parentheses next to the leaf nodes of the
C4.5 tree.

Missing values can occur not only during learning, but also during classification.
These are handled in the same way as during learning.

8It would be better to use the error on the test data directly. At least when the amount of training
data is sufficient to justify a separate testing set.
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8.4.9 Summary

Learning of decision trees is a favorite approach to classification tasks. The reasons
for this are its simple application and speed. On a dataset of about 10 000 LEXMED

data points with 15 attributes each, C4.5 requires about 0.3 seconds for learning.
This is very fast compared to other learning algorithms.

For the user it is also important, however, that the decision tree as a learned model
can be understood and potentially changed. It is also not difficult to automatically
transform a decision tree into a series of if-then-else statements and thus efficiently
build it into an existing program.

Because a greedy algorithm is used for construction of the tree as well as dur-
ing pruning, the trees are in general suboptimal. The discovered decision tree does
usually have a relatively small error rate. However, there is potentially a better tree,
because the heuristic greedy search of C4.5 prefers small trees and attributes with
high information gain at the top of the tree. For attributes with many values, the
presented formula for the information gain shows weaknesses. Alternatives to this
are given in [Mit97].

8.5 Learning of Bayesian Networks

In Sect. 7.4, it was shown how to build a Bayesian network manually. Now we will
introduce algorithms for the induction of Bayesian networks. Similar to the learning
process described previously, a Bayesian network is automatically generated from a
file containing training data. This process is typically decomposed into two parts.
1. Learning the network structure: For given variables, the network topology is

generated from the training data. This first step is by far the more difficult one
and will be given closer attention later.

2. Learning the conditional probabilities: For known network topologies, the CPTs
must be filled with values. If enough training data are available, all necessary
conditional probabilities can be estimated by counting the frequencies in the data.
This step can be automated relatively easily.
We will now explain how Bayesian networks learn using a simple algorithm

from [Jen01].

8.5.1 Learning the Network Structure

During the development of a Bayesian network (see Sect. 7.4.6), the causal depen-
dency of the variables must be taken into account in order to obtain a simple net-
work of good quality. The human developer relies on background knowledge, which
is unavailable to the machine. Therefore, this procedure cannot be easily automated.

Finding an optimal structure for a Bayesian network can be formulated as a clas-
sic search problem. Let a set of variables V1, . . . , Vn and a file with training data be
given. We are looking for a set of directed edges without cycles between the nodes
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Fig. 8.28 Two Bayesian networks for modeling the weather prediction example from Exercise 7.3
on page 158

V1, . . . , Vn, that is, a directed acyclic graph (DAG) which reproduces the underlying
data as well as possible.

First we observe the search space. The number of different DAGs grows more
than exponentially with the number of nodes. For five nodes there are 29281 and for
nine nodes about 1015 different DAGs [MDBM00]. Thus an uninformed combina-
torial search (see Sect. 6.2) in the space of all graphs with a given set of variables is
hopeless if the number of variables grows. Therefore heuristic algorithms must be
used. This poses the question of an evaluation function for Bayesian networks. It is
possible to measure the classification error of a network during application to a set
of test data, as is done, for example, in C4.5 (see Sect. 8.4). For this, however, the
probabilities calculated by the Bayesian network must be mapped to a decision.

A direct measurement of the quality of a network can be taken over the prob-
ability distribution. We assume that, before the construction of the network from
the data, we could determine (estimate) the distribution. Then we begin the search
in the space of all DAGs, estimate the value of the CPTs for each DAG (that is,
for each Bayesian network) using the data, and from that we calculate the distribu-
tion and compare it to the distribution known from the data. For the comparison of
distributions we will obviously need a distance metric.

Let us consider the weather prediction example from Exercise 7.3 on page 158
with the three variables Sky, Bar, Prec, and the distribution

P (Sky,Bar,Prec) = (0.40,0.07,0.08,0.10,0.09,0.11,0.03,0.12).

In Fig. 8.28 two Bayesian networks are presented, which we will now compare with
respect to their quality. Each of these networks makes an assumption of indepen-
dence, which is validated in that we determine the distribution of the network and
then compare this with the original distribution (see Exercise 8.15 on page 219).

Because, for constant predetermined variables, the distribution is clearly repre-
sented by a vector of constant length, we can calculate the Euclidian norm of the
difference of the two vectors as a distance between distributions. We define

dq(x,y) =
∑

i

(xi − yi)
2

as the sum of the squares of the distances of the vector components and calculate the
distance dq(P a,P ) = 0.0029 of the distribution P a of network 1 from the original
distribution. For network 2 we calculate dq(P b,P ) = 0.014. Clearly network 1 is
a better approximation of the distribution. Often, instead of the square distance, the
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Fig. 8.29 The maximal
network with five variables
and edges (Vi,Vj ) which
fulfill the condition i < j

so-called Kullback–Leibler distance

dk(x,y) =
∑

i

yi(log2 yi − log2 xi),

an information theory metric, is used. With it we calculate dk(P a,P ) = 0.017 and
dk(P b,P ) = 0.09 and come to the same conclusion as before. It is to be expected
that networks with many edges approximate the distribution better than those with
few edges. If all edges in the network are constructed, then it becomes very con-
fusing and creates the risk of overfitting, as is the case in many other learning algo-
rithms. To avoid overfitting, we give small networks a larger weight using a heuristic
evaluation function

f (N) = Size(N) + w · dk(P N,P ).

Here Size(N) is the number of entries in the CPTs and PN is the distribution of
network N . w is a weight factor, which must be manually fit.

The learning algorithm for Bayesian networks thus calculates the heuristic eval-
uation f (N) for many different networks and then chooses the network with the
smallest value. As previously mentioned, the difficulty consists of the reduction of
the search space for the network topology we are searching for. As a simple algo-
rithm it is possible, starting from a (for example causal) ordering of the variables
V1, . . . , Vn, to include in the graph only those edges for which i < j . We start with
the maximal model which fulfills this condition. This network is shown in Fig. 8.29
for five ordered variables.

Now, for example in the spirit of a greedy search (compare Sect. 6.3.1), one edge
after another is removed until the value f no longer decreases.

This algorithm is not practical for larger networks in this form. The large search
space, the manual tuning of the weight w, and the necessary comparison with a goal
distribution P are reasons for this, because these can simply become too large, or
the available dataset could be too small.

In fact, research into learning of Bayesian networks is still in full swing,
and there is a large number of suggested algorithms, for example the EM algo-
rithm (see Sect. 8.7.2), Markov chain Monte Carlo methods, and Gibbs sampling
[DHS01, Jor99, Jen01, HTF09]. Besides batch learning, which has been presented
here, in which the network is generated once from the whole dataset, there are
also incremental algorithms, in which each individual new case is used to im-
prove the network. Implementations of these algorithms also exist, such as Hugin
(www.hugin.com) and Bayesware (www.bayesware.com).
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8.6 The Naive Bayes Classifier

In Fig. 7.14 on page 152 the diagnosis of appendicitis was modeled as a Bayesian
network. Because directed edges start at a diagnosis node and none end there, Bayes’
formula must be used to answer a diagnosis query. For the symptoms S1, . . . , Sn and
the k-value diagnosis D with the values b1, . . . , bk we calculate the probability

P(D|S1, . . . , Sn) = P(S1, . . . , Sn|D) · P(D)

P (S1, . . . , Sn)
,

for the diagnosis given the patient’s symptoms. In the worst case, that is, if
there were no independent variables, all combinations of all symptoms and D
would need to be determined for all 20 643 840 probabilities of the distribution
P (S1, . . . , Sn,D). This would require an enormous database. In the case of LEX-
MED’s Bayesian network, the number of necessary values (in the CPTs) is reduced
to 521. The network can be further simplified, however, in that we assume all symp-
tom variables are conditionally independent given D, that is:

P(S1, . . . , Sn|D) = P(S1|D) · · · · · P(Sn|D).

The Bayesian network for appendicitis is then simplified to the star shown in
Fig. 8.30 on page 203.
Thus we obtain the formula

P(D|S1, . . . , Sn) = P(D)
∏n

i=1 P(Si |D)

P (S1, . . . , Sn)
. (8.8)

The computed probabilities are transformed into a decision by a simple naive Bayes
classifier, which chooses the maximum P(D = di |S1, . . . , Sn) from all values di

in D. That is, it determines

dNaive-Bayes = argmaxi∈{1,...,k} P(D = di |S1, . . . , Sn).

Because the denominator in (8.8) is constant, it can be omitted during maximization,
which results in the naive Bayes formula

dNaive-Bayes = argmaxi∈{1,...,k} P(D = di)

n∏

j=1

P(Sj |D).

Because several nodes now have less ancestors, the number of values necessary to
describe the LEXMED distribution in the CPTs decreases, according to (7.22) on
page 151, to

6 · 4 + 5 · 4 + 2 · 4 + 9 · 4 + 3 · 4 + 10 · (1 · 4) + 1 = 141.
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Fig. 8.30 Bayesian network
for the LEXMED application
with the assumption that all
symptoms are conditionally
independent given the
diagnosis

For a medical diagnostic system like LEXMED this simplification would not
be acceptable. But for tasks with many independent variables, naive Bayes is
partly or even very well suited, as we will see in the text classification exam-
ple.

By the way, naive Bayes classification is equally expressive as the linear score
system described in Sect. 7.3.1 (see Exercise 8.16 on page 219). That is, all scores
share the underlying assumption that all symptoms are conditionally independent
given the diagnosis. Nevertheless, scores are still used in medicine today. Despite
the fact that it was generated from a better, representative database, the Ohmann
score compared with LEXMED in Fig. 7.10 on page 142 has a worse quality of
diagnosis. Its limited expressiveness is certainly a reason for this. For example, as
with naive Bayes, it is not possible to model dependencies between symptoms using
scores.

Estimation of Probabilities If we observe the naive Bayes formula in (8.8) on
page 202, we see that the whole expression becomes zero as soon as one of the fac-
tors P(Si |D) on the right side becomes zero. Theoretically there is nothing wrong
here. In practice, however, this can lead to very uncomfortable effects if the P(Si |D)

are small, because these are estimated by counting frequencies and substituting them
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into

P(Si = x|D = y) = |Si = x ∧ D = y|
|D = y| .

Assume that for the variables Si : P(Si = x|D = y) = 0.01 and that there are 40
training cases with D = y. Then with high probability there is no training case with
Si = x and D = y, and we estimate P(Si = x|D = y) = 0. For a different value
D = z, assume that the relationships are similarly situated, but the estimate results
in values greater than zero for all P(Si = x|D = z). Thus the value D = z is always
preferred, which does not reflect the actual probability distribution. Therefore, when
estimating probabilities, the formula

P(A|B) ≈ |A ∧ B |

|B|
= nAB

nB

is replaced by

P(A|B) ≈ nAB + mp

nB + m
,

where p = P(A) is the a priori probability for A, and m is a constant which can be
freely chosen and is known as the “equivalent data size”. The larger m becomes, the
larger the weight of the a priori probability compared to the value determined from
the measured frequency.

8.6.1 Text Classification with Naive Bayes

Naive Bayes is very successful and prolific today in text classification. Its primary,
and at the same time very important, application is the automatic filtering of email
into desired and undesired, or spam emails. In spam filters such as SpamAssassin
[Sch04], among other methods a naive Bayes classifier is used that learns to sep-
arate desired emails from spam. SpamAssassin is a hybrid system which performs
an initial filtering using black and white lists. Black lists are lists of blocked email
addresses from spam senders whose emails are always deleted, and white lists are
those with senders whose emails are always delivered. After this prefiltering, the re-
maining emails are classified by the naive Bayes classifier according to their actual
content, in other words, according to the text. The detected class value is then eval-
uated by a score, together with other attributes from the header of the email such as
the sender’s domain, the MIME type, etc., and then finally filtered.

Here the learning capability of the naive Bayes filter is quite important. For this
the user must at first manually classify a large number of emails as desired or spam.
Then the filter is trained. To stay up to date, the filter must be regularly retrained.
For this the user should correctly classify all emails which were falsely classified by
the filter, that is, put them in the appropriate folders. The filter is then continually
retrained with these emails.
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Beside spam filtering, there are many other applications for automatic text clas-
sification. Important applications include filtering of undesired entries in Internet
discussion forums, and tracking websites with criminal content such as militant or
terrorist activities, child pornography or racism. It can also be used to customize
search engines to fit the user’s preferences in order to better classify the search re-
sults. In the industrial and scientific setting, company-wide search in databases or
in the literature is in the foreground of research. Through its learning ability, a filter
can adapt to the habits and wishes of each individual user.

We will introduce the application of naive Bayes to text analysis on a short ex-
ample text by Alan Turing from [Tur50]:

“We may hope that machines will eventually compete with men in all purely intellectual
fields. But which are the best ones to start with? Even this is a difficult decision. Many
people think that a very abstract activity, like the playing of chess, would be best. It can also
be maintained that it is best to provide the machine with the best sense organs that money
can buy, and then teach it to understand and speak English. This process could follow the
normal teaching of a child. Things would be pointed out and named, etc. Again I do not
know what the right answer is, but I think both approaches should be tried.”

Suppose that texts such as the one given should be divided into two classes: “I”
for interesting and “¬I for uninteresting. Suppose also that a database exists of
texts which are already classified. Which attributes should be used? In a classical
approach to the construction of a Bayesian network, we define a set of attributes
such as the length of the text, the average sentence length, the relative frequency of
specific punctuation marks, the frequency of several important words such as “I”,
“machines”, etc. During classification using naive Bayes, in contrast, a surprisingly
primitive algorithm is selected. For each of the n word positions in the text, an
attribute si is defined. All words which occur in the text are allowed as possible
values for all positions si . Now for the classes I and ¬I the values

P(I |s1, . . . , sn) = c · P(I)

n∏

i=1

P(si |I ) (8.9)

and P(¬I |s1, . . . , sn) must be calculated and then the class with the maximum value
selected. In the above example with a total of 113 words, this yields

P(I |s1, . . . , sn)

= c · P(I) · P(s1 = “We”|I ) · P(s2 = “may”|I ) · · · · · P(s113 = “should”|I )

and

P(¬I |s1, . . . , sn)

= c · P(¬I ) · P(s1 = “We”|¬I )

· P(s2 = “may”|¬I ) · · · · · P(s113 = “should”|¬I ).

The learning here is quite simple. The conditional probabilities P(si |I ), P(si |¬I )

and the a priori probabilities P(I),P (¬I ) must simply be calculated. We now ad-
ditionally assume that the P(si |I ) are not dependent on position in the text. This
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means, for example, that

P(s61 = “and”|I ) = P(s69 = “and”|I ) = P(s86 = “and”|I ).

We could thus use the expression P(and|I ), with the new binary variable and, as
the probability of the occurrence of “and” at an arbitrary position.

The implementation can be accelerated somewhat if we find the frequency ni of
every word wi which occurs in the text and use the formula

P(I |s1, . . . , sn) = c · P(I)

l∏

i=1

P(wi |I )ni (8.10)

which is equivalent to (8.9) on page 205. Please note that the index i in the product
only goes to the number l of different words which occur in the text.

Despite its simplicity, naive Bayes delivers excellent results for text classifica-
tion. Spam filters which work with naive Bayes achieve error rates of well under
one percent. The systems DSPAM and CRM114 can even be so well trained that
they only incorrectly classify one in 7000 or 8000 emails respectively. This corre-
sponds to a correctness of nearly 99.99%.

8.7 Clustering

If we search in a search engine for the term “mars”, we will get results like “the
planet mars” and “Chocolate, confectionery and beverage conglomerate” which are
semantically quite different. In the set of discovered documents there are two notice-
ably different clusters. Google, for example, still lists the results in an unstructured
way. It would be better if the search engine separated the clusters and presented
them to the user accordingly because the user is usually interested in only one of the
clusters.

The distinction of clustering in contrast to supervised learning is that the training
data are unlabeled. Thus the pre-structuring of the data by the supervisor is missing.
Rather, finding structures is the whole point of clustering. In the space of training
data, accumulations of data such as those in Fig. 8.31 on page 207 are to be found. In
a cluster, the distance of neighboring points is typically smaller than the distance be-
tween points of different clusters. Therefore the choice of a suitable distance metric
for points, that is, for objects to be grouped and for clusters, is of fundamental im-
portance. As before, we assume in the following that every data object is described
by a vector of numerical attributes.
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Fig. 8.31 Simple
two-dimensional example
with four clearly separated
clusters

8.7.1 Distance Metrics

Accordingly for each application, the various distance metrics are defined for the
distance d between two vectors x and y in R

n. The most common is the Euclidean
distance

de(x,y) =
√√√√

n∑

i=1

(xi − yi)2.

Somewhat simpler is the sum of squared distances

dq(x,y) =
n∑

i=1

(xi − yi)
2,

which, for algorithms in which only distances are compared, is equivalent to the
Euclidean distance (Exercise 8.19 on page 220). Also used are the aforementioned
Manhattan distance

dm(x,y) =
n∑

i=1

|xi − yi |

as well as the distance of the maximum component

d∞(x,y) = max
i=1,...,n

|xi − yi |

which is based on the maximum norm. During text classification, the normalized
projection of the two vectors on each other, that is, the normalized scalar product

x y

|x| |y|
is frequently calculated, where |x| is the Euclidian norm of x. Because this formula
is a metric for the similarity of the two vectors, as a distance metric the inverse

ds(x,y) = |x| |y|
x y

can be used, or “>” and “<” can be swapped for all comparisons. In the search for
a text, the attributes x1, . . . , xn are calculated similarly to naive Bayes as compo-
nents of the vector x as follows. For a dictionary with 50,000 words, the value xi
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equals the frequency of the ith dictionary word in the text. Since normally almost all
components are zero in such a vector, during the calculation of the scalar product,
nearly all terms of the summation are zero. By exploiting this kind of information,
the implementation can be sped up significantly (Exercise 8.20 on page 220).

8.7.2 k-Means and the EM Algorithm

Whenever the number of clusters is already known in advance, the k-means algo-
rithm can be used. As its name suggests, k clusters are defined by their average
value. First the k cluster midpoints μ1, . . . ,μk are randomly or manually initial-
ized. Then the following two steps are repeatedly carried out:
• Classification of all data to their nearest cluster midpoint
• Recomputation of the cluster midpoint.
The following scheme results as an algorithm:

K-MEANS(x1, . . . ,xn, k)

initialize μ1, . . . ,μk (e.g. randomly)
Repeat

classify x1, . . . ,xn to each’s nearest μi

recalculate μ1, . . . ,μk

Until no change in μ1, . . . ,μk

Return(μ1, . . . ,μk)

The calculation of the cluster midpoint μ for points x1, . . . ,xl is done by

μ = 1

l

l∑

i=1

xi .

The execution on an example is shown in Fig. 8.32 on page 209 for the case of
two classes. We see how after three iterations, the class centers, which were first
randomly chosen, stabilize. While this algorithm does not guarantee convergence,
it usually converges very quickly. This means that the number of iteration steps is
typically much smaller than the number of data points. Its complexity is O(ndkt),
where n is the total number of points, d the dimensionality of the feature space, and
t the number of iteration steps.

In many cases, the necessity of giving the number of classes in advance poses
an inconvenient limitation. Therefore we will next introduce an algorithm which is
more flexible.

Before that, however, we will mention the EM algorithm, which is a continuous
variant of k-means, for it does not make a firm assignment of the data to classes,
rather, for each point it returns the probability of it belonging to the various classes.
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Fig. 8.32 k-means with two classes (k = 2) applied to 30 data points. Far left is the dataset with the
initial centers, and to the right is the cluster after each iteration. After three iterations convergence
is reached

Here we must assume that the type of probability distribution is known. Often the
normal distribution is used. The task of the EM algorithm is to determine the pa-
rameters (mean μi and covariance matrices Σi of the k multi-dimensional normal
distributions) for each cluster. Similarly to k-means, the two following steps are
repeatedly executed:
Expectation: For each data point the probability P(Cj |xi ) that it belongs to each

cluster is calculated.
Maximization: Using the newly calculated probabilities, the parameters of the dis-
tribution are recalculated.

Thereby a softer clustering is achieved, which in many cases leads to better re-
sults. This alternation between expectation and maximization gives the algorithm
its name. In addition to clustering, for example, the EM algorithm is used to learn
Bayesian networks [DHS01].

8.7.3 Hierarchical Clustering

In hierarchical clustering we begin with n clusters consisting of one point each.
Then the nearest neighbor clusters are combined until all points have been com-
bined into a single cluster, or until a termination criterion has been reached. We
obtain the scheme

HIERARCHICALCLUSTERING(x1, . . . ,xn, k)

initialize C1 = {x1}, . . . ,Cn = {xn}
Repeat

Find two clusters Ci and Cj with the smallest distance
Combine Ci and Cj

Until Termination condition reached
Return(tree with clusters)
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Fig. 8.33 In hierarchical clustering, the two clusters with the smallest distance are combined in
each step

The termination condition could be chosen as, for example, a desired number
of clusters or a maximum distance between clusters. In Fig. 8.33 this algorithm is
represented schematically as a binary tree, in which from bottom to top in each
step, that is, at each level, two subtrees are connected. At the top level all points are
unified into one large cluster.

It is so far unclear how the distances between the clusters are calculated. Indeed,
in the previous section we defined various distance metrics for points, but these can-
not be used on clusters. A convenient and often used metric is the distance between
the two closest points in the two clusters Ci and Cj :

dmin(Ci,Cj ) = min
x∈Ci, y∈Cj

d(x,y).

Thus we obtain the nearest neighbor algorithm, whose application is shown in
Fig. 8.34 on page 211.9 We see that this algorithm generates a minimum spanning
tree.10 The example furthermore shows that the two described algorithms gener-
ate quite different clusters. This tells us that for graphs with clusters which are not
clearly separated, the result depends heavily on the algorithm or the chosen distance
metric.

For an efficient implementation of this algorithm, we first create an adjacency
matrix in which the distances between all points is saved, which requires O(n2)

time and memory. If the number of clusters does not have an upper limit, the loop
will iterate n − 1 times and the asymptotic computation time becomes O(n3).

To calculate the distance between two clusters, we can also use the distance be-
tween the two farthest points

dmax(Ci,Cj ) = max
x∈Ci,y∈Cj

d(x,y)

9The nearest neighbor algorithm is not to be confused with the nearest neighbor method for clas-
sification from Sect. 8.3.
10A minimum spanning tree is an acyclic, undirected graph with the minimum sum of edge lengths.
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Fig. 8.34 The nearest neighbor algorithm applied to the data from Fig. 8.32 on page 209 at dif-
ferent levels with 12, 6, 3, 1 clusters

and obtain the farthest neighbor algorithm. Alternatively, the distance of the clus-
ter’s midpoint dμ(Ci,Cj ) = d(μi,μj ) is used. Besides the clustering algorithm
presented here, there are many others, for which we direct the reader to [DHS01]
for further study.

8.8 Data Mining in Practice

All the learning algorithms presented so far can be used as tools for data mining. For
the user it is, however, sometimes quite troublesome to get used to new software
tools for each application and furthermore to put the data to be analyzed into the
appropriate format for each particular case.

A number of data mining systems address these problems. Most of these systems
offer a convenient graphical user interface with diverse tools for visualization of the
data, for preprocessing such as manipulation of missing values, and for analysis. For
analysis, the learning algorithms presented here are used, among others.

The comprehensive open-source Java library WEKA deserves a special mention.
It offers a large number of algorithms and simplifies the development of new algo-
rithms.

The freely available system KNIME, which we will briefly introduce in the
following section, offers a convenient user interface and all the types of tools
mentioned above. KNIME also uses WEKA modules. Furthermore it offers a
simple way of controlling the data flow of the chosen visualization, preprocess-
ing, and analysis tools with a graphical editor. A large number of other sys-
tems meanwhile offer quite similar functionality, such as the open-source project
RapidMiner(www.rapidminer.com), the system Clementine (www.spss.com/
clementine) sold by SPSS, and the KXEN analytic framework (www.kxen.com).
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Fig. 8.35 The KNIME user interface with two additional views, which show the decision tree and
the confusion matrix

8.8.1 The Data Mining Tool KNIME

Using the LEXMED data, we will now show how to extract knowledge from data
using KNIME (Konstanz Information Miner, www.knime.org). First we generate a
decision tree as shown in Fig. 8.35. After creating a new project, a workflow is
built graphically. To do this, the appropriate tools are simply taken out of the node
repository with the mouse and dragged into the main workflow window.

The training and test data from the C4.5 file can be read in with the two file
reader nodes without any trouble. These nodes can, however, also be quite easily
configured for other file formats. The sideways traffic light under the node shows its
status (not ready, configured, executed). Then node J48 is selected from the WEKA
library [WF01], which contains a Java implementation of C4.5. The configuration
for this is quite simple. Now a predictor node is chosen, which applies the generated
tree to the test data. It inserts a new column into the test data table “Prediction” with
the classification generated by the tree. From there the scorer node calculates the
confusion matrix shown in the figure, which gives the number of correctly classified
cases for both classes in the diagonal, and additionally the number of false positive
and false negative data points.
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Fig. 8.36 The KNIME user interface with the workflow window, the learning curve, and the con-
fusion matrix

Once the flow is completely built and all nodes configured, then an arbitrary node
can be executed. It automatically ensures that predecessor nodes are executed, if
necessary. The J48 node generates the view of the decision tree, shown in the right
of the figure. This tree is identical with the one generated by C4.5 in Sect. 8.4.5,
although here the node TRekt<=378 is shown collapsed.

For comparison, a project for learning a multilayer perceptron (see Sect. 9.5) is
shown in Fig. 8.36. This works similarly to the previously introduced linear percep-
tron, but it can also divide non linearly separable classes. Here the flow is somewhat
more complex. An extra node is needed for error handling missing values when
preprocessing each of the two files. We set it so that those lines will be deleted. Be-
cause neural networks cannot deal with arbitrary values, the values of all variables
are scaled linearly into the interval [0,1] using the “normalizer” node.
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After applying the RProp learner, an improvement on backpropagation (see
Sect. 9.5), we can analyze the progression in time of the approximation error in
the learning curve shown. In the confusion matrix, the scorer outputs the analysis
of the test data. The “CSV Writer” node at the bottom right serves to export the
result files, which can then be used externally to generate the ROC curve shown in
Fig. 7.10 on page 142, for which there is unfortunately no KNIME tool (yet).

In summary, we can say the following about KNIME (and similar tools): for
projects with data analysis requirements which are not too exotic, it is worthwhile
to work with such a powerful workbench for analysis of data. The user already saves
a lot of time with the preprocessing stage. There is a large selection of easily usable
“mining tools”, such as nearest neighbor classifiers, simple Bayesian network learn-
ing algorithms, as well as the k-means clustering algorithm (Sect. 8.7.2). Evaluation
of the results, for example cross validation, can be easily carried out. It remains to
be mentioned, that besides those shown, there are many other tools for visualiza-
tion of the data. Furthermore, the developers of KNIME have made an extension to
KNIME available, with which the user can program his own tools in Java or Python.

However, it should also be mentioned that the user of this type of data mining
system should bring along solid prior knowledge of machine learning and the use
of data mining techniques. The software alone cannot analyze data, but in the hand
of a specialist it becomes a powerful tool for the extraction of knowledge from data.
For the beginner in the fascinating field of machine learning, such a system offers
an ideal and simple opportunity to test one’s knowledge practically and to compare
the various algorithms. The reader may verify this in Exercise 8.21 on page 220.

8.9 Summary

We have thoroughly covered several algorithms from the established field of super-
vised learning, including decision tree learning, Bayesian networks, and the nearest
neighbor method. These algorithms are stable and efficiently usable in various ap-
plications and thus belong to the standard repertoire in AI and data mining. The
same is true for the clustering algorithms, which work without a “supervisor” and
can be found, for example, in search engine applications. Reinforcement learning
as another field of machine learning uses no supervisor either. In contrast to super-
vised learning, where the learner receives the correct actions or answers as the labels
in the training data, in reinforcement learning only now and then positive or nega-
tive feedback is received from the environment. In Chap. 10 we will show how this
works. Not quite as hard is the task in semi-supervised learning, a young sub-area
of machine learning, where only very few out of a large number of training data are
labeled.

Supervised learning is now a well established area with lots of successful appli-
cations. For supervised learning of data with continuous labels any function approx-
imation algorithm can be employed. Thus there are many algorithms from various
areas of mathematics and computer science. In Sect. 9 we will introduce various
types of neural networks, least squares algorithms and support vector machines,
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which are all function approximators. Nowadays, Gaussian processes are very pop-
ular because they are very universal and easy to apply and provide the user with an
estimate of the uncertainty of the output values [RW06].

The following taxonomy gives an overview of the most important learning algo-
rithms and their classification.
Supervised learning

• Lazy learning
– k nearest neighbor method (classification + approximation)
– Locally weighted regression (approximation)
– Case-based learning (classification + approximation)

• Eager learning
– Decision trees induction (classification)
– Learning of Bayesian networks (classification + approximation)
– Neural networks (classification + approximation)
– Gaussian processes (classification + approximation)
– Wavelets, splines, radial basis functions, . . .

Unsupervised learning (clustering)
• Nearest neighbor algorithm
• Farthest neighbor algorithm
• k-means
• Neural networks

Reinforcement learning
• Value iteration
• Q learning
• TD learning
• Policy gradient methods
• Neural networks
What has been said about supervised learning is only true, however, when work-

ing with a fixed set of known attributes. An interesting, still open field under inten-
sive research is automatic feature selection. In Sect. 8.4, for learning with decision
trees, we presented an algorithm for the calculation of the information gain of at-
tributes that sorts the attributes according to their relevance and uses only those
which improve the quality of the classification. With this type of method it is pos-
sible to automatically select the relevant attributes from a potentially large base set.
This base set, however, must be manually selected.

Still open and also not clearly defined is the question of how the machine can
find new attributes. Let us imagine a robot which is supposed to pick apples. For
this he must learn to distinguish between ripe and unripe apples and other objects.
Traditionally we would determine certain attributes such as the color and form of
pixel regions and then train a learning algorithm using manually classified images.
It is also possible that for example a neural network could be trained directly with all
pixels of the image as input, which for high resolution is linked with severe compu-
tation time problems, however. Approaches which automatically make suggestions
for relevant features would be desired here. But this is still science fiction.
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Clustering provides one approach to feature selection. Before training the apple
recognition machine, we let clustering run on the data. For (supervised) learning
of the classes apple and non apple, the input is no longer all of the pixels, rather
only the classes found during clustering, potentially together with other attributes.
Clustering at any rate can be used for automatic, creative “discovery” of features. It
is, however, uncertain whether the discovered features are relevant.

The following problem is yet more difficult: assume that the video camera used
for apple recognition only transmits black and white images. The task can no longer
be solved well. It would be nice if the machine would be creative on its own account,
for example by suggesting that the camera should be replaced with a color camera.
This would be asking for too much today.

In addition to specialized works about all subfields of machine learning, there
are the excellent textbooks [Mit97, Bis06, Alp04, DHS01, HTF09]. For current re-
search results, a look into the freely available Journal of Machine Learning Research
(http://jmlr.csail.mit.edu), the Machine Learning Journal, as well as the proceedings
of the International Conference on Machine Learning (ICML) is recommended. For
every developer of learning algorithms, the Machine Learning Repository [DNM98]
of the University of California at Irvine (UCI) is interesting, with its large collec-
tion of training and test data for learning algorithms and data mining tools. MLOSS,
which stands for machine learning open source software, is an excellent directory
of links to freely available software (www.mloss.org).

8.10 Exercises

8.10.1 Introduction

Exercise 8.1
(a) Specify the task of an agent which should predict the weather for the next day

given measured values for temperature, air pressure, and humidity. The weather
should be categorized into one of the three classes: sunny, cloudy, and rainy.

(b) Describe the structure of a file with the training data for this agent.

Exercise 8.2 Show that the correlation matrix is symmetric and that all diagonal
elements are equal to 1.

8.10.2 The Perceptron

Exercise 8.3 Apply the perceptron learning rule to the sets

M+ = {(0,1.8), (2,0.6)} and M− = {(−1.2,1.4), (0.4,−1)}
from Example 8.2 on page 172 and give the result of the values of the weight vector.
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Exercise 8.4 Given the table to the right with the training data:
(a) Using a graph, show that the data are linearly

separable.
(b) Manually determine the weights w1 and w2,

as well as the threshold Θ of a perceptron
(with threshold) which correctly classifies the
data.

(c) Program the perceptron learning rule and ap-
ply your program to the table. Compare the
discovered weights with the manually calcu-
lated ones.

Num. x1 x2 Class

1 6 1 0
2 7 3 0
3 8 2 0
4 9 0 0
5 8 4 1
6 8 6 1
7 9 2 1
8 9 5 1

Exercise 8.5
(a) Give a visual interpretation of the heuristic initialization

w0 =
∑

xi∈M+
xi −

∑

xi∈M−
xi,

of the weight vector described in Sect. 8.2.2.
(b) Give an example of a linearly separable dataset for which this heuristic does not

produce a dividing line.

8.10.3 Nearest Neighbor Method

Exercise 8.6
(a) Show the Voronoi diagram for neighboring

sets of points.
(b) Then draw in the class division lines.

Exercise 8.7 Let the table with training data from Exercise 8.4 be given. In the
following, use the Manhattan distance d(a,b), defined as d(a,b) = |a1 − b1| +
|a2 − b2|, to determine the distance d between two data points a = (a1, a2) and
b = (b1, b2).
(a) Classify the vector v = (8,3.5) with the nearest neighbor method.
(b) Classify the vector v = (8,3.5) with the k nearest neighbor method for k =

2,3,5.

❄ Exercise 8.8
(a) Show that in a two-dimensional feature space it is reasonable, as claimed in (8.3)

on page 180, to weight the k nearest neighbors by the inverse of the squared
distance.

(b) Why would a weighting using w′
i = 1

1+αd(x,xi )
make less sense?
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8.10.4 Decision Trees

Exercise 8.9 Show that the definition 0 log2 0 := 0 is reasonable, in other words,
that the function f (x) = x log2 x thereby becomes continuous in the origin.

Exercise 8.10 Determine the entropy for the following distributions.

(a) (1,0,0,0,0) (b)

(
1

2
,

1

2
,0,0,0

)
(c)

(
1

2
,

1

4
,

1

4
,0,0

)

(d)

(
1

2
,

1

4
,

1

8
,

1

16
,

1

16

)
(e)

(
1

5
,

1

5
,

1

5
,

1

5
,

1

5

)
(f)

(
1

2
,

1

4
,

1

8
,

1

16
,

1

32
, · · ·

)

Exercise 8.11
(a) Show that the two different definitions of entropy from (7.9) on page 124 and

Definition 8.4 on page 188 only differ by a constant factor, that is, that

n∑

i=1

pi log2 pi = c

n∑

i=1

pi lnpi

and give the constant c.
(b) Show that for the MaxEnt method and for decision trees it makes no difference

which of the two formulas we use.

Exercise 8.12 Develop a decision tree for the dataset D from Exercise 8.4 on
page 217.
(a) Treat both attributes as discrete.
(b) Now treat attribute x2 as continuous and x1 as discrete.
(c) Have C4.5 generate a tree with both variants. Use -m 1 -t 10 as parameters

in order to get different suggestions.

Exercise 8.13 Given the following decision tree and tables for both training and
test data:

Training data

A B C Class

t t f t
t f f t
t t t f
f f t f
f f f f
f t t t

Test data

A B C Class

t t f t
t f f t
f t f f
f f t f

(a) Give the correctness of the tree for the training and test data.
(b) Give a propositional logic formula equivalent to the tree.
(c) Carry out pruning on the tree, draw the resulting tree, and give its correctness

for the training and test data.
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❄ Exercise 8.14
(a) When determining the current attribute, the algorithm for generating decision

trees (Fig. 8.26 on page 193) does not eliminate the attributes which have al-
ready been used further up in the tree. Despite this, a discrete attribute occurs in
a path at most once. Why?

(b) Why can continuous attributes occur multiple times?

8.10.5 Learning of Bayesian Networks

Exercise 8.15 Use the distribution given in Exercise 7.3 on page 158 and determine
the CPTs for the three Bayesian networks:

(a) (b) (c)

(d) Determine the distribution for the two networks from (a) and (b) and compare
these with the original distribution. Which network is “better”?

(e) Now determine the distribution for network (c). What does occur to you? Jus-
tify!

❄ ❄ Exercise 8.16 Show that for binary variables S1, . . . , Sn and binary class vari-
able K , a linear score of the form

decision =
{

positive if w1S1 + · · · + wnSn > Θ,

negative else

is equally expressive in relation to the perceptron and to the naive Bayes classifier,
which both decide according to the formula

decision =
{

positive if P(K|S1, . . . , Sn) > 1/2,

negative else

Exercise 8.17 In the implementation of text classification with naive Bayes, expo-
nent underflow can happen quickly because the factors P(wi |K) (which appear in
(8.10) on page 206) are typically all very small, which can lead to extremely small
results. How can we mitigate this problem?

➳ ❄ Exercise 8.18 Write a program for naive Bayes text analysis. Then train and test it
on text benchmarks using a tool of your choice. Counting the frequency of words in
the text can be done easily in Linux with the command

cat <datei> | tr -d “[:punct:]” | tr -s “[:space:]” “\n” | sort | uniq -ci
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Obtain the Twenty Newsgroups data by Tom Mitchell in the UCI machine learn-
ing benchmark collection (Machine Learning Repository) [DNM98]. There you will
also find a reference to a naive Bayes program for text classification by Mitchell.

8.10.6 Clustering

Exercise 8.19 Show that for algorithms which only compare distances, applying a
strictly monotonically increasing function f to the distance makes no difference. In
other words you must show that the distance d1(x, y) and the distance d2(x, y) :=
f (d1(x, y)) lead to the same result with respect to the ordering relation.

Exercise 8.20 Determine the distances ds (scalar product) of the following texts to
each other.
x1: We will introduce the application of naive Bayes to text analysis on a short

example text by Alan Turing from [Tur50].
x2: We may hope that machines will eventually compete with men in all purely

intellectual fields. But which are the best ones to start with?
x3: Again I do not know what the right answer is, but I think both approaches should

be tried.

8.10.7 Data Mining

Exercise 8.21 Use KNIME (www.knime.de) and
(a) Load the example file with the Iris data from the KNIME directory and ex-

periment with the various data representations, especially with the scatterplot
diagrams.

(b) First train a decision tree for the three classes, and then train an RProp network.
(c) Load the appendicitis data on this book’s website. Compare the classification

quality of the k nearest neighbor method to that of an RProp network. Optimize
k as well as the number of hidden neurons of the RProp network.

(d) Obtain a dataset of your choice from the UCI data collection for data min-
ing at http://kdd.ics.uci.edu or for machine learning at http://mlearn.ics.uci.edu/
MLRepository.html and experiment with it.
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Neural networks are networks of nerve cells in the brains of humans and animals.
The human brain has about 100 billion nerve cells. We humans owe our intelligence
and our ability to learn various motor and intellectual capabilities to the brain’s com-
plex relays and adaptivity. For many centuries biologists, psychologists, and doctors
have tried to understand how the brain functions. Around 1900 came the revolution-
ary realization that these tiny physical building blocks of the brain, the nerve cells
and their connections, are responsible for awareness, associations, thoughts, con-
sciousness, and the ability to learn.

The first big step toward neural networks in AI was made 1943 by McCulloch
and Pitts in an article entitled “A logical calculus of the ideas immanent in nervous
activity” [AR88]. They were the first to present a mathematical model of the neuron
as the basic switching element of the brain. This article laid the foundation for the
construction of artificial neural networks and thus for this very important branch
of AI.

We could consider the field of modeling and simulation of neural networks to be
the bionics branch within AI.1 Nearly all areas of AI attempt to recreate cognitive
processes, such as in logic or in probabilistic reasoning. However, the tools used for
modeling—namely mathematics, programming languages, and digital computers—
have very little in common with the human brain. With artificial neural networks,
the approach is different. Starting from knowledge about the function of natural
neural networks, we attempt to model, simulate, and even reconstruct them in hard-
ware. Every researcher in this area faces the fascinating and exciting challenge of
comparing results with the performance of humans.

In this chapter we will attempt to outline the historical progression by defining
a model of the neuron and its interconnectivity, starting from the most important
biological insights. Then we will present several important and fundamental models:
the Hopfield model, two simple associative memory models, and the—exceedingly
important in practice—backpropagation algorithm.

1Bionics is concerned with unlocking the “discoveries of living nature” and its innovative conver-
sion into technology [Wik10].
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Fig. 9.1 Two stages of the
modeling of a neural network.
Above a biological model and
below a formal model with
neurons and directed
connections between them

9.1 From Biology to Simulation

Each of the roughly 100 billion neurons in a human brain has, as shown in a simpli-
fied representation in Fig. 9.1, the following structure and function. Besides the cell
body, the neuron has an axon, which can make local connections to other neurons
over the dendrites. The axon can, however, grow up to a meter long in the form of a
nerve fiber through the body.

The cell body of the neuron can store small electrical charges, similarly to a
capacitor or battery. This storage is loaded by incoming electrical impulses from
other neurons. The more electric impulse comes in, the higher the voltage. If the
voltage exceeds a certain threshold, the neuron will fire. This means that it unloads
its store, in that it sends a spike over the axon and the synapses. The electrical
current divides and reaches many other neurons over the synapses, in which the
same process takes place.

Now the question of the structure of the neural network arises. Each of the
roughly 1011 neurons in the brain is connected to roughly 1000 to 10 000 other neu-
rons, which yields a total of over 1014 connections. If we further consider that this
gigantic number of extremely thin connections is made up of soft, three-dimensional
tissue and that experiments on human brains are not easy to carry out, then it be-
comes clear why we do not have a detailed circuit diagram of the brain. Presumably
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we will never be capable of completely understanding the circuit diagram of our
brain, based solely on its immense size.

From today’s perspective, it is no longer worth even trying to make a complete
circuit diagram of the brain, because the structure of the brain is adaptive. It changes
itself on the fly and adapts according to the individual’s activities and environmen-
tal influences. The central role here is played by the synapses, which create the
connection between neurons. At the connection point between two neurons, it is as
if two cables meet. However, the two leads are not perfectly conductively connec-
tive, rather there is a small gap, which the electrons cannot directly jump over. This
gap is filled with chemical substances, so-called neurotransmitters. These can be
ionized by an applied voltage and then transport a charge over the gap. The conduc-
tivity of this gap depends on many parameters, for example the concentration and
the chemical composition of the neurotransmitter. It is enlightening that the func-
tion of the brain reacts very sensitively to changes of this synaptic connection, for
example through the influence of alcohol or other drugs.

How does learning work in such a neural network? The surprising thing here is
that it is not the actual active units, namely the neurons, which are adaptive, rather it
is the connections between them, that is, the synapses. Specifically, this can change
their conductivity. We know that a synapse is made stronger by however much more
electrical current it must carry. Stronger here means that the synapse has a higher
conductivity. Synapses which are used often obtain an increasingly higher weight.
For synapses which are used infrequently or are not active at all, the conductivity
continues to decrease. This can even lead to them dying off.

All neurons in the brain work asynchronously and in parallel, but, compared to a
computer, at very low speed. The time for a neural impulse takes about a millisec-
ond, exactly the same as the time for the ions to be transported over the synaptic gap.
The clock frequency of the neuron then is under one kilohertz and is thus lower than
that of modern computers by a factor of 106. This disadvantage, however, is more
than compensated for in many complex cognitive tasks, such as image recognition,
by the very high degree of parallel processing in the network of nerve cells.

The connection to the outside world comes about through sensor neurons, for
example on the retina in the eyes, or through nerve cells with very long axons which
reach from the brain to the muscles and thus can carry out actions such as the move-
ment of a leg.

However, it is still unclear how the principles discussed make intelligent behavior
possible. Just like many researchers in neuroscience, we will attempt to explain
using simulations of a simple mathematical model how cognitive tasks, for example
pattern recognition, become possible.

9.1.1 The Mathematical Model

First we replace the continuous time axis with a discrete time scale. The neuron
i carries out the following calculation in a time step. The “loading” of the activa-
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Fig. 9.2 The structure of a
formal neuron, which applies
the activation function f to
the weighted sum of all inputs

tion potential is accomplished simply by summation of the weighted output values
x1, . . . , xn of all incoming connections over the formula

n∑

j=1

wijxj .

This weighted sum is calculated by most neural models. Then an activation function
f is applied to it and the result

xi = f

(
n∑

j=1

wijxj

)

is passed on to the neighboring neurons as output over the synaptic weights. In
Fig. 9.2 this kind of modeled neuron is shown. For the activation function there are
a number of possibilities. The simplest is the identity: f (x) = x. The neuron thus
calculates only the weighted sum of the input values and passes this on. However,
this frequently leads to convergence problems with the neural dynamics because the
function f (x) = x is unbounded and the function values can grow beyond all limits
over time.

Very well restricted, in contrast, is the threshold function (Heaviside step func-
tion)

HΘ(x) =
{

0 if x < Θ ,
1 else.

The whole neuron then computes its output as

xi =
{

0 if
∑n

j=1 wijxj < Θ ,
1 else.

This formula is identical to (8.1) on page 173, in other words, to a perceptron with
the threshold Θ (Fig. 9.3 on page 225). The input neurons 1, . . . , n here have only
the function of variables which pass on their externally set values x1, . . . , xn un-
changed.

The step function is quite sensible for binary neurons because the activation of a
neuron can only take on the values zero or one anyway. In contrast, for continuous
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Fig. 9.3 The neuron with a
step function works like a
perceptron with a threshold

Fig. 9.4 The sigmoid function for various values of the parameter T . We can see that in the limit
T → 0 the step function results

neurons with activations between 0 and 1, the step function creates a discontinuity.
However, this can be smoothed out by a sigmoid function, such as

f (x) = 1

1 + e− x−Θ
T

with the graph in Fig. 9.4. Near the critical area around the threshold Θ , this function
behaves close to linearly and it has an asymptotic limit. The smoothing can be varied
by the parameter T .

Modeling learning is central to the theory of neural networks. As previously men-
tioned, one possibility of learning consists of strengthening a synapse according to
how many electrical impulses it must transmit. This principle was postulated by
D. Hebb in 1949 and is known as the Hebb rule:

If there is a connection wij between neuron j and neuron i and repeated
signals are sent from neuron j to neuron i, which results in both neurons
being simultaneously active, then the weight wij is reinforced. A possible
formula for the weight change �wij is

�wij = ηxixj

with the constant η (learning rate), which determines the size of the individual
learning steps.
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Fig. 9.5 Recurrent
connections between two
neurons in a Hopfield
network

There are many modifications of this rule, which then result in different types of
networks or learning algorithms. In the following sections, we will become familiar
with a few of these.

9.2 Hopfield Networks

Looking at the Hebb rule, we see that for neurons with values between zero and
one, the weights can only grow with time. It is not possible for a neuron to weaken
or even die according to this rule. This can be modeled, for example, by a decay
constant which weakens an unused weight by a constant factor per time step, such
as 0.99.

This problem is solved quite differently by the model presented by Hopfield in
1982 [Hop82]. It uses binary neurons, but with the two values −1 for inactive and
1 for active. Using the Hebb rule we obtain a positive contribution to the weight
whenever two neurons are simultaneously active. If, however, only one of the two
neurons is active, �wij is negative.

Hopfield networks, which are a beautiful and visualizable example of auto-
associative memory, are based on this idea. Patterns can be stored in auto-associative
memory. To call up a saved pattern, it is sufficient to provide a similar pattern. The
store then finds the most similar saved pattern. A classic application of this is hand-
writing recognition.

In the learning phase of a Hopfield network, N binary coded patterns, saved in
the vectors q1, . . . ,qN , are supposed to be learned. Each component q

j
i ∈ {−1,1}

of such a vector qj represents a pixel of a pattern. For vectors consisting of n pixels,
a neural network with n neurons is used, one for each pixel position. The neurons
are fully connected with the restriction that the weight matrix is symmetric and all
diagonal elements wii are zero. That is, there is no connection between a neuron
and itself.

The fully connected network includes complex feedback loops, so-called recur-
rences, in the network (Fig. 9.5).

N patterns can be learned by simply calculating all weights with the formula

wij = 1

n

N∑

k=1

qk
i qk

j . (9.1)

This formula points out an interesting relationship to the Hebb rule. Each pattern
in which the pixels i and j have the same value makes a positive contribution to
the weight wij . Each other pattern makes a negative contribution. Since each pixel
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corresponds to a neuron, here the weights between neurons which simultaneously
have the same value are being reinforced. Please note this small difference to the
Hebb rule.

Once all the patterns have been stored, the network can be used for pattern recog-
nition. We give the network a new pattern x and update the activations of all neurons
in an asynchronous process according to the rule

xi =
{−1 if

∑n
j=1
j �=i

wij xj < 0,

1 else
(9.2)

until the network becomes stable, that is, until no more activations change. As a
program schema this reads as follows:

HOPFIELDASSOCIATOR(q)

Initialize all neurons: x = q

Repeat
i = Random(1, n)

Update neuron i according to (9.2)
Until x converges
Return (x)

9.2.1 Application to a Pattern Recognition Example

We apply the described algorithm to a simple pattern recognition example. It should
recognize digits in a 10×10 pixel field. The Hopfield network thus has 100 neurons
with a total of

100 · 99

2
= 4950

weights. First the patterns of the digits 1,2,3,4 in Fig. 9.6 on page 228 above are
trained. That is, the weights are calculated by (9.1) on page 226. Then we put in
the pattern with added noise and let the Hopfield dynamics run until convergence.
In rows 2 to 4 in the figure, five snapshots of the network’s development are shown
during recognition. At 10% noise all four learned patterns are very reliably recog-
nized. Above about 20% noise the algorithm frequently converges to other learned
patterns or even to patterns which were not learned. Several such pattern are shown
in Fig. 9.6 on page 228 below.

Now we save the digits 0 to 9 (Fig. 9.7 on page 229 top) in the same network
and test the network again with patterns that have a random amount of about 10%
inverted pixels. In the figure we clearly see that the Hopfield iteration often does
not converge to the most similar learned state even for only 10% noise. Evidently
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Fig. 9.6 Dynamics of a Hopfield network. In rows 2, 3 and 4 we can easily see how the network
converges and the learned pattern is recognized after about 300 to 400 iterations. In the last row
several stable states are shown which are reached by the network when the input pattern deviates
too much from all learned patterns

the network can securely save and recognize four patterns, but for ten patterns its
memory capacity is exceeded. To understand this better, we will take a quick look
into the theory of this network.

9.2.2 Analysis

In 1982, John Hopfield showed in [Hop82] that this model is formally equivalent to a
physical model of magnetism. Small elementary magnets, so-called spins, mutually
influence each other over their magnetic fields (see Fig. 9.8 on page 229). If we
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Fig. 9.7 For ten learned states the network shows chaotic behavior. Even with little noise the
network converges to the wrong patterns or to artifacts

Fig. 9.8 Comparison between the neural and physical interpretation of the Hopfield model

observe two such spins i and j , they interact over a constant wij and the total energy
of the system is then

E = −1

2

∑

i,j

wij xixj .

By the way, wii = 0 in physics too, because particles have no self-interaction. Be-
cause physical interactions are symmetric, wij = wji .

A physical system in equilibrium takes on a (stable) state of minimal energy and
thus minimizes E(x,y). If such a system is brought into an arbitrary state, then it
moves toward a state of minimal energy. The Hopfield dynamics defined in (9.2) on
page 227 correspond exactly to this principle because it updates the state in each
iteration such that, of the two states −1 and 1, the one with smaller total energy is
taken on. The contribution of the neuron i to total energy is

−1

2
xi

n∑

j �=i

wij xj .
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If now

n∑

j �=i

wij xj < 0,

then xi = −1 results in a negative contribution to the total energy, and xi = 1 results
in a positive contribution. For xi = −1, the network takes on a state of lower energy
than it does for xi = 1. Analogously, we can assert that in the case of

n∑

j �=i

wij xj ≥ 0,

it must be true that xi = 1.
If each individual iteration of the neural dynamics results in a reduction of the

energy function, then the total energy of the system decreases monotonically with
time. Because there are only finitely many states, the network moves in time to a
state of minimal energy. Now we have the exciting question: what do these minima
of the energy function mean?

As we saw in the pattern recognition experiment, in the case of few learned pat-
terns the system converges to one of the learned patterns. The learned patterns rep-
resent minima of the energy function in the state space. If however too many pat-
terns are learned, then the system converges to minima which do not correspond to
learned patterns. Here we have a transition from an ordered dynamics into a chaotic
one.

Hopfield and other physicists have investigated exactly this process and have
shown that there is in fact a phase transition at a critical number of learned patterns.
If the number of learned patterns exceeds this value, then the system changes from
the ordered phase into the chaotic.

In magnetic physics there is such a transition from the ferromagnetic mode, in
which all elementary magnets try to orient themselves parallel, to a so-called spin
glass, in which the spins interact chaotically. A more visualizable example of such a
physical phase transition is the melting of an ice crystal. The crystal is in a high state
of order because the H2O molecules are strictly ordered. In liquid water, by contrast,
the structure of the molecules is dissolved and their positions are more random.

In a neural network there is then a phase transition from ordered learning and
recognition of patterns to chaotic learning in the case of too many patterns, which
can no longer be recognized for certain. Here we definitely see parallels to effects
which we occasionally experienced ourselves.

We can understand this phase transition [RMS92] if we bring all neurons into a
pattern state, for example q1, and insert the learned weights from (9.1) on page 226
into the term

∑n
j=1,j �=i wij qj , which is relevant for updating neuron i. This results

in
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n∑

j=1
j �=i

wij q
1
j = 1

n

n∑

j=1
j �=i

N∑

k=1

qk
i qk

j q1
j = 1

n

n∑

j=1
j �=i

(
q1
i (q1

j )2 +
N∑

k=2

qk
i qk

j q1
j

)

= q1
i + 1

n

n∑

j=1
j �=i

N∑

k=2

qk
i qk

j q1
j .

Here we see the ith component of the input pattern plus a sum with (n − 1)(N − 1)

terms. If these summands are all statistically independent, then we can describe the
sum by a normally distributed random variable with standard deviation

1

n

√
(n − 1)(N − 1) ≈

√
N − 1

n
.

Statistical independence can be achieved, for example, with uncorrelated random
patterns. The sum then generates noise which is not disruptive as long as N � n,
which means that the number of learned patterns stays much smaller than the num-
ber of neurons. If, however, N ≈ n, then the influence of the noise becomes as large
as the pattern and the network reacts chaotically. A more exact calculation of the
phase transition gives N = 0.146n as the critical point. Applied to our example,
this means that for 100 neurons, up to 14 patterns can be saved. Since the patterns
in the example however are strongly correlated, the critical value is much lower, ev-
idently between 0.04 and 0.1. Even a value of 0.146 is much lower than the storage
capacity of a traditional memory list (Exercise 9.3 on page 255).

Hopfield networks in the presented form only work well when patterns with
roughly 50% 1-bits are learned. If the bits are very asymmetrically distributed, then
the neurons must be equipped with a threshold [Roj96]. In physics this is analogous
to the application of an outer magnetic field, which also brings about an asymmetry
of the spin 1/2 and the spin −1/2 states.

9.2.3 Summary and Outlook

Through its biological plausibility, the well understood mathematical model, and
above all through the impressive simulations in pattern recognition, the Hopfield
model contributed to a wave of excitement about neural networks and to the rise
of neuroinformatics as an important branch of AI.2 Subsequently many further net-
work models were developed. On one hand, networks without back-couplings were
investigated because their dynamics is significantly easier to understand than re-
current Hopfield networks. On the other hand, attempts were made to improve the
storage capacity of the networks, which we will go into in the next section.

2Even the author was taken up by this wave, which carried him from physics into AI in 1987.
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A special problem of many neural models was already evident in the Hopfield
model. Even if there is a guarantee of convergence, it is not certain whether the
network will converge to a learned state or get stuck at a local minimum. The Boltz-
mann machine, with continuous activation values and a probabilistic update rule for
its network dynamics, was developed as an attempt to solve this problem. Using
a “temperature” parameter, we can vary the amount of random state changes and
thus attempt to escape local minima, with the goal of finding a stable global mini-
mum. This algorithm is called “simulated annealing”. Annealing is a process of heat
treating metals with the goal of making the metal stronger and more “stable”.

The Hopfield model carries out a search for a minimum of the energy function
in the space of activation values. It thereby finds the pattern saved in the weights,
and which is thus represented in the energy function. The Hopfield dynamics can
also be applied to other energy functions, as long as the weight matrix is symmetric
and the diagonal elements are zero. This was successfully demonstrated by Hopfield
and Tank on the traveling salesman problem [HT85, Zel94]. The task here is, given
n cities and their distance matrix, to find the shortest round trip that visits each city
exactly once.

9.3 Neural Associative Memory

A traditional list memory can in the simplest case be a text file in which strings
of digits are saved line by line. If the file is sorted by line, then the search for an
element can be done very quickly in logarithmic time, even for very large files.

List memory can also be used to create mappings, however. For example, a tele-
phone book is a mapping from the set of all entered names to the set of all tele-
phone numbers. This mapping is implemented as a simple table, typically saved in
a database.

Access control to a building using facial recognition is a similar task. Here we
could also use a database in which a photo of every person is saved together with
the person’s name and possibly other data. The camera at the entrance then takes a
picture of the person and searches the database for an identical photo. If the photo is
found, then the person is identified and gets access to the building. However, a build-
ing with such a control system would not get many visitors because the probability
that the current photo matches the saved photo exactly is very small.

In this case it is not enough to just save the photo in a table. Rather, what we want
is associative memory, which is capable of not only assigning the right name to the
photo, but also to any of a potentially infinite set of “similar” photos. A function
for finding similarity should be generated from a finite set of training data, namely
the saved photos labeled with the names. A simple approach for this is the near-
est neighbor method introduced in Sect. 8.3. During learning, all of the photos are
simply saved.

To apply this function, the photo most similar to the current one must be found
in the database. For a database with many high-resolution photos, this process, de-
pending on the distance metric used, can require very long computation times and
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thus cannot be implemented in this simple form. Therefore, instead of such a lazy
algorithm, we will prefer one which transfers the data into a function which then
creates a very fast association when it is applied.

Finding a suitable distance metric presents a further problem. We would like a
person to be recognized even if the person’s face appears in another place on the
photo (translation), or if it is smaller, larger, or even rotated. The viewing angle and
lighting might also vary.

This is where neural networks show their strengths. Without requiring the de-
veloper to think about a suitable similarity metric, they still deliver good results.
We will introduce two of the simplest associative memory models and begin with a
model by Teuvo Kohonen, one of the pioneers in this area.

The Hopfield model presented in the previous chapter would be too difficult to
use for two reasons. First, it is only an auto-associative memory, that is, an ap-
proximately identical mapping which maps similar objects to the learned original.
Second, the complex recurrent dynamics is often difficult to manage in practice.
Therefore we will now look at simple two-layer feedforward networks.

9.3.1 Correlation Matrix Memory

In [Koh72] Kohonen introduced an associative memory model based on elementary
linear algebra. This maps query vectors x ∈ R

n to result vectors y ∈ R
m. We are

looking for a matrix W which correctly maps out of a set of training data

T = {(q1, t1), . . . , (qN, tN)}

with N query-response pairs all query vectors to their responses.3 That is, for p =
1, . . . ,N it must be the case that

tp = W · qp, (9.3)

or

t
p
i =

n∑

j=1

wijq
p
j . (9.4)

To calculate the matrix elements wij , the rule

wij =
N∑

p=1

q
p
j t

p
i (9.5)

3For a clear differentiation between training data and other values of a neuron, in the following
discussion we will refer to the query vector as q and the desired response as t (target).
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Fig. 9.9 Representation of
the Kohonen associative
memory as a two-layer neural
network

is used. These two linear equations can be simply understood as a neural network if
we define, as in Fig. 9.9, a two-layer network with q as the input layer and t as the
output layer. The neurons of the output layer have a linear activation function, and
(9.5) is used as the learning rule, which corresponds exactly to the Hebb rule.

Before we show that the network recognizes the training data, we need the fol-
lowing definition:

Definition 9.1 Two vectors x and y are called orthonormal if

xT · y =
{

1 if x = y,
0 else.

Thus

Theorem 9.1 If all N query vectors qp in the training data are orthonormal,
then every vector qp is mapped to the target vector tp by multiplication with
the matrix wij from (9.5) on page 233.

Proof We substitute (9.5) on page 233 into (9.4) on page 233 and obtain

(W · qp)i =
n∑

j=1

wijq
p
j =

n∑

j=1

N∑

r=1

qr
j tri q

p
j

=
n∑

j=1

q
p
j q

p
j t

p
i +

N∑

r �=p

n∑

j=1

qr
j q

p
j tri

= t
p
i

n∑

j=1

q
p
j q

p
j +

N∑

r �=p

tri

n∑

j=1

qr
j q

p
j

= t
p
i (qp)T qp

︸ ︷︷ ︸
=1

+ tri

N∑

r �=p

(qr )T qp

︸ ︷︷ ︸
=0

= t
p
i

�
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Thus, if the query vectors are orthonormal, all patterns will be correctly mapped
to the respective targets. However, orthonormality is too strong a restriction. In
Sect. 9.4 we will present an approach that overcomes this limitation.

Since linear mappings are continuous and injective, we know that the mapping
from query vectors to target vectors preserves similarity. Similar queries are thus
mapped to similar targets due to the continuity. At the same time we know, however,
that different queries are mapped to different targets. If the network was trained to
map faces to names and if the name Henry is assigned to a face, then we are sure
that for the input of a similar face, an output similar to “Henry” will be produced,
but “Henry” itself is guaranteed not to be calculated. If the output can be interpreted
as a string, then, for example, it could be “Genry” or “Gfnry”. To arrive at the
most similar learned case, Kohonen uses a binary coding for the output neuron. The
calculated result of a query is rounded if its value is not zero or one. Even then we
have no guarantee that we will hit the target vector. Alternatively, we could add a
subsequent mapping of the calculated answer to the learned target vector with the
smallest distance.

9.3.2 The Pseudoinverse

There is a different approach we can take to calculate the weight matrix W : by
thinking of all query vectors as columns of an n × N matrix Q = (q1, . . . ,qN) and
analogously the target vectors as columns of an m × N matrix T = (t1, . . . , tN).
Thus (9.3) on page 233 can be brought into the form

T = W · Q. (9.6)

Now we attempt to solve this equation for W . Formally we invert and obtain

W = T · Q−1. (9.7)

The requirement for this conversion is the invertability of Q. For this the matrix
must be square and must consist of linearly independent column vectors. That is,
it must be the case that n = N and the n query vectors must all be linearly inde-
pendent. This condition is indeed inconvenient, but still not quite as strict as the
orthonormality required above. Learning by the Hebb rule has the advantage, how-
ever, that we can simply apply it even if the query vectors are not orthonormal, in
the hope that the associator nonetheless works passably. Here, however, this is not
so simple, for how can we invert a non-invertable matrix?

A matrix Q is invertible if and only if there is a matrix Q−1 with the property

Q · Q−1 = I , (9.8)

where I is the identity matrix. If Q is not invertible (for example because Q is not
square), then there is no matrix Q−1 with this property. There is, however, certainly
a matrix which comes close to having this property. In this sense we define
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Fig. 9.10 The matrix W
after saving three pairs
(q1, t1), (q2, t2), (q3, t3).
Empty fields correspond to
the value 0

Definition 9.2 Let Q be a real n × m matrix. An m × n matrix Q+ is called
pseudoinverse to Q if it minimizes

‖Q · Q+ − I‖.

Here ‖M‖ is the Euclidian norm.

Now, using

W = T · Q+ (9.9)

we can calculate a weight matrix that minimizes crosstalk (association errors)
T − W · Q. There are various ways of computing the pseudoinverse, for example
the method of least squares which we will introduce in Sect. 9.4.1.

9.3.3 The Binary Hebb Rule

In the context of associative memory, the so-called binary Hebb rule was suggested.
It requires that the pattern is binary-encoded. This means that for all patterns qp ∈
{0,1}n and tp ∈ {0,1}m. Furthermore, the summation from (9.5) on page 233 is
replaced by a simple logical OR and we obtain the binary Hebb rule

wij =
N∨

p=1

q
p
j t

p
i . (9.10)

The weight matrix is thus also binary, and a matrix element wij is equal to one if
and only if at least one of the entries q1

j t1
i , . . . , qN

j tNi is not zero. All other matrix
elements are zero. We are tempted to believe that a lot of information is lost here
during learning because, when a matrix element takes on the value 1 once, it cannot
be changed by additional patterns. Figure 9.10 shows how the matrix is filled with
ones for an example with n = 10, m = 6 after learning three pairs.
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Fig. 9.11 Calculation of the
product Wq1, Wq2, Wq3

To retrieve the saved patterns we simply multiply a query vector q by the matrix
and look at the result Wq . We test this on the example and get Fig. 9.11.

We see that in the target vector on the right side there is the value 3 in the place
where the learned target vector had a one. The correct results would be obtained by
setting a threshold value of 3. In the general case we choose the number of ones in
the query vector as the threshold. Each output neuron thus works like a perceptron,
albeit with a variable threshold.

As long as the weight matrix is sparse, this algorithm performs well. However,
if many different patterns are saved, the matrix becomes more and more dense. In
the extreme case it contains only ones. Then, after setting the threshold, all answers
would consist of just ones and would no longer contain any information.

This case rarely occurs as long as the number of bits saved in the matrix does
not become too large. The matrix has a size of mn elements. A pair to be saved has
m + n bits. One can show [Pal80] that the number of memorizable patterns Nmax is
determined by the following condition:

α = number of storable bits

number of binary matrix elements

= (m + n)Nmax

mn
≤ ln 2 ≈ 0.69. (9.11)

For a list memory we have α = 1. Associative memory with the binary Hebb rule
has a maximum memory efficiency of α = 0.69 compared to α = 0.72 for Koho-
nen associative memory and α = 0.292 for Hopfield networks [Pal80, Pal91]. The
memory capacity of the binary Hebb rule is thus surprisingly high in comparison to
the Kohonen model with continuous neurons.

It is obvious that such memory becomes “full” less quickly when the query and
target vectors are sparsely populated with ones. This is not the only reason why
the encoding of input and output for associative memories—as also for other neu-
ral networks—is very important for good performance. We will now demonstrate
this on an application of this memory with suitably chosen encodings of input and
output.
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9.3.4 A Spelling Correction Program

As an application of the described associative memory with the binary Hebb rule, we
choose a program that corrects erroneous inputs and maps them to saved words from
a dictionary. Clearly an auto-associative memory would be needed here. However,
because we encode the query and target vectors differently, this is not the case. For
the query vectors q we choose a pair encoding. For an alphabet with 26 characters
there are 26 · 26 = 676 ordered pairs of letters. With 676 bits, the query vector has
one bit for each of the possible pairs

aa, ab, . . . , az,ba, . . . ,bz, . . . , za, . . . , zz.

If a pair of letters occurs in the word, then a one will be entered in the appropriate
place. For the word “henry”, for instance, the slots for “ha”, “an”, and “ns” are
filled with ones. For the target vector t , 26 bits are reserved for each position in the
word up to a maximum length (for example ten characters). For the ith letter in the
alphabet in position j in the word then the bit number (j − 1) · 26 + i is set. For the
word “henry”, bits 8, 27, 66, and 97 are set. For a maximum of 10 letters per word,
the target vector thus has a length of 260 bits.

The weight matrix W thus has a size of 676 · 260 bits = 199420 bits, which by
(9.11) on page 237 can store at most

Nmax ≤ 0.69
mn

m + n
= 0.69

676 · 260

676 + 260
≈ 130

words. With 72 first names, we save about half that many and test the system. The
stored names and the output of the program for several example inputs are given
in Fig. 9.12 on page 239. The threshold is always initialized to the number of bits
in the encoded query. Here this is the number of letter pairs, thus the word length
minus one. Then it is stepwise reduced to two. We could further automate the choice
of the threshold by comparing with the dictionary for each attempted threshold and
output the word found when the comparison succeeds.

The reaction to the ambiguous inputs “andr” and “johanne” is interesting. In
both cases, the network creates a mix of two saved words that fit. We see here an
important strength of neural networks. They are capable of making associations to
similar objects without an explicit similarity metric. However, similarly to heuristic
search and human decision making, there is no guarantee for a “correct” solution.

Since the training data must be available in the form of input-output pairs for
all neural models which have been introduced so far, we are dealing with super-
vised learning, which is also the case for the networks introduced in the following
sections.
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Stored words:

agathe, agnes, alexander, andreas, andree, anna, annemarie, astrid, august, bernhard, bjorn,
cathrin, christian, christoph, corinna, corrado, dieter, elisabeth, elvira, erdmut, ernst, evelyn,
fabrizio, frank, franz, geoffrey, georg, gerhard, hannelore, harry, herbert, ingilt, irmgard, jan,
johannes, johnny, juergen, karin, klaus, ludwig, luise, manfred, maria, mark, markus, marleen,
martin, matthias, norbert, otto, patricia, peter, phillip, quit, reinhold, renate, robert, robin, sabine,
sebastian, stefan, stephan, sylvie, ulrich, ulrike, ute, uwe, werner, wolfgang, xavier

Associations of the program:

input pattern: harry

threshold: 4, answer: harry
threshold: 3, answer: harry
threshold: 2, answer: horryrrde

-------------------------------
input pattern: ute

threshold: 2, answer: ute

-------------------------------
input pattern: gerhar

threshold: 5, answer: gerhard
threshold: 4, answer: gerrarn
threshold: 3, answer: jerrhrrd
threshold: 2, answer: jurtyrrde

-------------------------------
input pattern: egrhard

threshold: 6, answer:
threshold: 5, answer:
threshold: 4, answer: gerhard
threshold: 3, answer: gernhrrd
threshold: 2, answer: irrryrrde

-------------------------------
input pattern: andr

threshold: 3, answer: andrees
threshold: 2, answer: anexenser

input pattern: andrees

threshold: 6, answer: a
threshold: 5, answer: andree
threshold: 4, answer: andrees
threshold: 3, answer: mnnrens
threshold: 2, answer: morxsnssr

-------------------------------
input pattern: johanne

threshold: 6, answer: johnnnes
threshold: 5, answer: johnnnes
threshold: 4, answer: jornnnrse
threshold: 3, answer: sorrnyrse
threshold: 2, answer: wtrrsyrse

-------------------------------
input pattern: johnnnes

threshold: 6, answer: joh
threshold: 5, answer: johnnnes
threshold: 4, answer: johnnyes
threshold: 3, answer: jonnnyes
threshold: 2, answer: jornsyrse

-------------------------------
input pattern: johnnyes

threshold: 7, answer:
threshold: 6, answer: joh
threshold: 5, answer: johnny
threshold: 4, answer: johnnyes
threshold: 3, answer: johnnyes
threshold: 2, answer: jonnnyes

Fig. 9.12 Application of the spelling correction program to various learned or erroneous inputs.
The correct inputs are found with the maximum (that is, the first attempted) threshold. For erro-
neous inputs the threshold must be lowered for a correct association
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9.4 Linear Networks with Minimal Errors

The Hebb rule used in the neural models presented so far works with associations
between neighboring neurons. In associative memory, this is exploited in order to
learn a mapping from query vectors to targets. This works very well in many cases,
especially when the query vectors are linearly independent. If this condition is not
fulfilled, for example when too much training data is available, the question arises:
how do we find the optimal weight matrix? Optimal means that it minimizes the
average error.

We humans are capable of learning from mistakes. The Hebb rule does not offer
this possibility. The backpropagation algorithm, described in the following, uses an
elegant solution known from function approximation to change the weights such
that the error on the training data is minimized.

Let N pairs of training vectors

T = {(q1, t1), . . . , (qN, tN)}
be given with qp ∈ [0,1]n tp ∈ [0,1]m . We are looking for a function f : [0,1]n →
[0,1]m which minimizes the squared error

N∑

p=1

(f (qp) − tp)2

on the data. Let us first assume that the data contains no contradictions. That is,
there is no query vector in the training data which should be mapped to two different
targets. In this case it is not difficult to find a function that minimizes the squared
error. In fact, there exist infinitely many functions which make the error zero. We
define the function

f (q) = 0, if q /∈ {q1, . . . ,qN }
and

f (qp) = tp ∀p ∈ {1, . . . ,N}.
This is a function which even makes the error on the training data zero. What more
could we want? Why are we not happy with this function?

The answer is: because we want to build an intelligent system! Intelligent means,
among other things, that the learned function can generalize well from the training
data to new, unknown data from the same representative data set. In other words it
means: we do not want overfitting of the data by memorization. What is it then that
we really want?

We want a function that is smooth and “evens out” the space between the points.
Continuity and the ability to take multiple derivatives would be sensible require-
ments. Because even with these conditions there are still infinitely many functions
which make the error zero, we must restrict this class of functions even further.
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Fig. 9.13 A two-layer
network with an output
neuron

9.4.1 Least Squares Method

The simplest choice is a linear mapping. We begin with a two-layer network
(Fig. 9.13) in which the single neuron y of the second layer calculates its activa-
tion using

y = f

(
n∑

i=1

wixi

)

with f (x) = x. The fact that we are only looking at output neurons here does not
pose a real restriction because a two-layer network with two or more output neurons
can always be separated into independent networks with identical input neurons for
each of the original output neurons. The weights of the subnetworks are all inde-
pendent. Using a sigmoid function instead of the linear activation does not give any
advantage here because the sigmoid function is strictly monotonically increasing
and does not change the order relation between various output values.

Desired is a vector w which minimizes the squared error

E(w) =
N∑

p=1

(wqp − tp)2 =
N∑

p=1

(
n∑

i=1

wiq
p
i − tp

)2

.

As a necessary condition for a minimum of this error function all partial derivatives
must be zero. Thus we require that for j = 1, . . . , n:

∂E

∂wj

= 2
N∑

p=1

(
n∑

i=1

wiq
p
i − tp

)
q

p
j = 0.

Multiplying this out yields

N∑

p=1

(
n∑

i=1

wiq
p
i q

p
j − tpq

p
j

)
= 0,
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and exchanging the sums results in the linear system of equations

n∑

i=1

wi

N∑

p=1

q
p
i q

p
j =

N∑

p=1

tpq
p
j ,

which with

Aij =
N∑

p=1

q
p
i q

p
j and bj =

N∑

p=1

tpq
p
j (9.12)

can be written as the matrix equation

Aw = b. (9.13)

These so-called normal equations always have at least one solution and, when A
is invertible, exactly one. Furthermore, the matrix A is positive-definite, which has
the implication that the discovered solution in the unique case is a global minimum.
This algorithm is known as least squares method.

The calculation time for setting up the matrix A grows with Θ(N · n2) and the
time for solving the system of equations as O(n3). This method can be extended
very simply to incorporate multiple output neurons because, as already mentioned,
for two-layer feedforward networks the output neurons are independent of each
other.

9.4.2 Application to the Appendicitis Data

As an application we now determine a linear score for the appendicitis diagnosis.
From the LEXMED project data, which is familiar from Sect. 8.4.5, we use the least
squares method to determine a linear mapping from symptoms to the continuous
class variables AppScore with values in the interval [0,1] and obtain the linear com-
bination

AppScore = 0.00085 Age − 0.125 Sex + 0.025 P1Q + 0.035 P2Q − 0.021 P3Q

− 0.025 P4Q + 0.12 TensLoc + 0.031 TensGlo + 0.13 Losl

+ 0.081 Conv + 0.0034 RectS + 0.0027 TAxi + 0.0031 TRec

+ 0.000021 Leuko − 0.11 Diab − 1.83.

This function returns continuous variables for AppScore, although the actual binary
class variable App only takes on the values 0 and 1. Thus we have to decide on
a threshold value, as with the perceptron. The classification error of the score as
a function of the threshold is listed in Fig. 9.14 on page 243 for the training data
and the test data. We clearly see that both curves are nearly the same and have
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Fig. 9.14 Least squares error for training and test data

their minimum at Θ = 0.5. In the small difference of the two curves we see that
overfitting is not a problem for this method because the model generalizes from the
test data very well.

Also in the figure is the result for the nonlinear, three-layer RProp network
(Sect. 9.5) with a somewhat lower error for threshold values between 0.2 and 0.9.
For practical application of the derived score and the correct determination of the
threshold Θ it is important to not only look at the error, but also to differentiate by
type of error (namely false positive and false negative), as is done in the LEXMED

application in Fig. 7.10 on page 142. In the ROC curve shown there, the score cal-
culated here is also shown. We see that the simple linear model is clearly inferior to
the LEXMED system. Evidently, linear approximations are not powerful enough for
many complex applications.

9.4.3 The Delta Rule

Least squares is, like the perceptron and decision tree learning, a so-called batch
learning algorithm, as opposed to incremental learning. In batch learning, all train-
ing data must be learned in one run. If new training data is added, it cannot simply
be learned in addition to what is already there. The whole learning process must
be repeated with the enlarged set. This problem is solved by incremental learning
algorithms, which can adapt the learned model to each additional new example. In
the algorithms we will look at in the following discussion, we will additively update
the weights for each new training example by the rule

wj = wj + �wj .

To derive an incremental variant of the least squares method, we reconsider the
above calculated n partial derivatives of the error function
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Fig. 9.15 Gradient descent for a large η (left) and a very small η (right) into a valley descending
flatly to the right. For a large η there are oscillations around the valley. For a η which is too small,
in contrast, convergence in the flat valley happens very slowly

∂E

∂wj

= 2
N∑

p=1

(
n∑

i=1

wiq
p
i − tp

)
q

p
j .

The gradient

∇E =
(

∂E

∂w1
, . . . ,

∂E

∂wn

)

as a vector of all partial derivatives of the error function points in the direction of the
strongest rise of the error function in the n-dimensional space of the weights. While
searching for a minimum, we will therefore follow the direction of the negative
gradient. As a formula for changing the weights we obtain

�wj = −η

2

∂E

∂wj

= −η

N∑

p=1

(
n∑

i=1

wiq
p
i − tp

)
q

p
j ,

where the learning rate η is a freely selectable positive constant. A larger η speeds
up convergence but at the same time raises the risk of oscillation around minima or
flat valleys. Therefore, the optimal choice of η is not a simple task (see Fig. 9.15).
A large η, for example η = 1, is often used to start with, and then slowly shrunk.

By replacing the activation

yp =
n∑

i=1

wiq
p
i

of the output neuron for applied training example qp , the formula is simplified and
we obtain the delta rule

�wj = η

N∑

p=1

(tp − yp)q
p
j .
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Fig. 9.16 Learning a
two-layer linear network with
the delta rule. Notice that the
weight changes always occur
after all of the training data
are applied

DELTALEARNING(TrainingExamples, η)
Initialize all weights wj randomly
Repeat

�w = 0
For all (qp, tp) ∈ TrainingExamples

Calculate network output yp = wpqp

�w = �w + η(tp − yp)qp

w = w + �w

Until w converges

DELTALEARNINGINCREMENTAL(TrainingExamples, η)
Initialize all weights wj randomly
Repeat

For all (qp, tp) ∈ TrainingExamples
Calculate network output yp = wpqp

w = w + η(tp − yp)qp

Until w converges

Fig. 9.17 Incremental variant of the delta rule

Thus for every training example the difference between the target tp and the actual
output yp of the network is calculated for the given input qp . After summing over
all patterns, the weights are then changed proportionally to the sum. This algorithm
is shown in Fig. 9.16.

We see that the algorithm is still not really incremental because the weight
changes only occur after all training examples have been applied once. We can
correct this deficiency by directly changing the weights (incremental gradient de-
scent) after every training example (Fig. 9.17), which, strictly speaking, is no longer
a correct implementation of the delta rule.

9.4.4 Comparison to the Perceptron

The learning rule for perceptrons introduced in Sect. 8.2.1, the least squares method,
and the delta rule can be used to generate linear functions from data. For perceptrons
however, in contrast to the other methods, a classifier for linearly separable classes
is learned through the threshold decision. The other two methods, however, gener-
ate a linear approximation to the data. As shown in Sect. 9.4.2, a classifier can be
generated from the linear mapping, if desired, by application of a threshold function.
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Fig. 9.18 A three-layer
backpropagation network
with n1 neurons in the first,
n2 neurons in the second, and
n3 neurons in the third layer

The perceptron and the delta rule are iterative algorithms for which the time until
convergence depends heavily on the data. In the case of linearly separable data, an
upper limit on the number of iteration steps can be found for the perceptron. For the
delta rule, in contrast, there is only a guarantee of asymptotic convergence without
limit [HKP91].

For least squares, learning consists of setting up and solving a linear system of
equations for the weight vector. There is thus a hard limit on the computation time.
Because of this, the least squares method is always preferable when incremental
learning is not needed.

9.5 The Backpropagation Algorithm

With the backpropagation algorithm, we now introduce the most-used neural model.
The reason for its widespread use its universal versatility for arbitrary approximation
tasks. The algorithm originates directly from the incremental delta rule. In contrast
to the delta rule, it applies a nonlinear sigmoid function on the weighted sum of the
inputs as its activation function. Furthermore, a backpropagation network can have
more than two layers of neurons. The algorithm became known through the article
[RHR86] in the legendary PDP collection [RM86].

In Fig. 9.18 a typical backpropagation network with an input layer, a hidden
layer, and an output layer is shown. Since the current output value x

p
j of the output

layer neuron is compared with the target output value t
p
j , these are drawn parallel to

each other. Other than the input neurons, all neurons calculate their current value xj

by the rule

xj = f

(
n∑

i=1

wjixi

)
(9.14)
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where n is the number of neurons in the previous layer. We use the sigmoid function

f (x) = 1

1 + e−x
.

Analogous to the incremental delta rule, the weights are changed proportional to the
negative gradient of the quadratic error function summed over the output neurons

Ep(w) = 1

2

∑

k∈output

(t
p
k − x

p
k )2

for the training pattern p:

�pwji = −η
∂Ep

∂wji

.

For deriving the learning rule, the above expression is substituted for Ep . Within the
expression, xk is replaced by (9.14) on page 246. Within the equation, the outputs
xi of the neurons of the next, deeper layer occur recursively, etc. By multiple appli-
cations of the chain rule (see [RHR86] or [Zel94]) we obtain the backpropagation
learning rule

�pwji = ηδ
p
j x

p
i ,

with

δ
p
j =

{
x

p
j (1 − x

p
j )(t

p
j − x

p
j ) if j is an output neuron,

x
p
j (1 − x

p
j )

∑
k δ

p
k wkj if j is a hidden neuron,

which is also denoted the generalized delta rule. For all neurons, the formula for
changing weight wji from neuron i to neuron j (see Fig. 9.19 on page 248) con-
tains, like the Hebb rule, a term ηx

p
i x

p
j . The new factor (1−x

p
j ) creates the symme-

try, which is missing from the Hebb rule, between the activations 0 and 1 of neuron
j . For the output neurons, the factor (t

p
j − x

p
j ) takes care of a weight change pro-

portional to the error. For the hidden neurons, the value δ
p
j of neuron j is calculated

recursively from all changes δ
p
k of the neurons of the next higher level.

The entire execution of the learning process is shown in Fig. 9.20 on page 248.
After calculating the output of the network (forward propagation) for a training
example, the approximation error is calculated. This is then used during backward
propagation to alter the weights backward from layer to layer. The whole process
is then applied to all training examples and repeated until the weights no longer
change or a time limit is reached.
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Fig. 9.19 Designation of the
neurons and weights for the
application of the
backpropagation rule

BACKPROPAGATION(TrainingExamples, η)
Initialize all weights wj to random values
Repeat

For all (qp, tp) ∈ TrainingExamples
1. Apply the query vector qp to the input layer
2. Forward propagation:

For all layers from the first hidden layer upward
For each neuron of the layer

Calculate activation xj = f (
∑n

i=1 wjixi)

3. Calculation of the square error Ep(w)

4. Backward propagation:
For all levels of weights from the last downward

For each weight wji

wji = wji + ηδ
p
j x

p
i

Until w converges or time limit is reached

Fig. 9.20 The backpropagation algorithm

If we build a network with at least one hidden layer, nonlinear mappings can
be learned. Without hidden layers, the output neurons are no more powerful than a
linear neuron, despite the sigmoid function. The reason for this is that the sigmoid
function is strictly monotonic. The same is true for multi-layer networks which only
use a linear function as an activation function, for example the identity function.
This is because chained executions of linear mappings is linear in aggregate.

Just like with the perceptron, the class of the functions which can be represented
are also enlarged if we use a variable sigmoid function

f (x) = 1

1 + e−(x−Θ)
.

with threshold Θ . This is implemented analogously to the way shown in Sect. 8.2, in
which a neuron whose activation always has the value one and which is connected
to neurons in the next highest level is inserted into the input layer and into each
hidden layer. The weights of these connections are learned normally and represent
the threshold Θ of the successor neurons.
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Fig. 9.21 The NETtalk network maps a text to its pronunciation attributes

9.5.1 NETtalk: A Network Learns to Speak

Sejnowski and Rosenberg demonstrated very impressively in 1986 what backprop-
agation is capable of performing [SR86]. They built a system that is able to un-
derstandably read English text aloud from a text file. The architecture of the net-
work shown in Fig. 9.21 consists of an input layer with 7 × 29 = 203 neurons in
which the current letter and three previous letters, as well as three subsequent, let-
ters are encoded. For each of these seven letters, 29 neurons are reserved for the
characters “a...z ,.”. The input is mapped onto the 26 output neurons over 80
hidden neurons, each of which stands for a specific phoneme. For example, the
“a” in “father” is pronounced deep, accented, and central. The network was trained
with 1,000 words, which were applied randomly one after another letter by letter.
For each letter, the target output was manually given for its intonation. To trans-
late the intonation attributes into actual sounds, part of the speech synthesis system
DECtalk was used. Through complete interconnectivity, the network contains a total
of 203 × 80 + 80 × 26 = 18320 weights.

The system was trained using a simulator on a VAX 780 with about 50 cycles
over all words. Thus, at about 5 characters per word on average, about 5 ·50 ·1000 =
250 000 iterations of the backpropagation algorithm were needed. At a rate of about
one character per second, this means roughly 69 hours of computation time. The
developers observed many properties of the system which are quite similar to human
learning. At first the system can only speak unclearly or use simple words. With time
it continued to improve and finally reached 95% correctness of pronounced letters.
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Fig. 9.22 The NETtalk network in JNNS. In the left window from left to right we see the 7 · 29
input neurons, 80 hidden, and 26 output neurons. Due to their large number, the weights are omitted
from the network. Top right is a learning curve showing the development of the squared error over
time

For visual experiments with neural networks, the Java Neural Network Simula-
tor JNNS is recommended [Zel94]. The NETtalk network, loaded and trained with
JNNS, is shown in Fig. 9.22.

9.5.2 Learning of Heuristics for Theorem Provers

In Chap. 6, algorithms for heuristic search, such as the A�-algorithm and the IDA�-
algorithm were discussed. To reach a significant reduction of the search space, a
good heuristic is needed for the implementation of these algorithms. In Sect. 4.1 the
problem of the exploding search space during theorem provers’ search for a proof
was demonstrated. This problem is caused by the large number of possible inference
steps in each step.

We now attempt to build heuristic proof controlling modules which evaluate the
various alternatives for the next step and then choose the alternative with the best
rating. In the case of resolution, the rating of the available clauses could be done
by a function which, based on certain attributes of clauses such as the number of
literals, the complexity of the terms, etc., calculates a value for each pair of resolv-
able clauses. In [ESS89, SE90] such a heuristic was learned for the theorem prover
SETHEO using backpropagation. While learning the heuristic, the attributes of the
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Fig. 9.23 Search tree with a successful path whose nodes are evaluated as positive, and the nega-
tively rated unsuccessful branches

current clause were saved as training data for the positive class for every proof found
at every branch during the search. At all branches which did not lead to a proof, the
attributes of the current clause were saved as training data for the negative class.
Such a tree, with a successful path and the corresponding node ratings, is sketched
in Fig. 9.23.

A backpropagation network was trained on this data and then used to evaluate
clauses in the prover. For each clause, 16 numeric attributes were calculated, nor-
malized, and encoded in an input neuron. The network was trained with 25 hidden
neurons and one output neuron for the class (positive/negative).

It was shown that the number of attempted inferences can be reduced by many
orders of magnitude for difficult problems, which ultimately reduces the compu-
tation time from hours to seconds. Thereby it became possible to prove theorems
which, without heuristics, were out of reach.

9.5.3 Problems and Improvements

Backpropagation is now 25 years old and has proved itself in various applications,
for example in pattern recognition and in robotics. However, its application is some-
times problematic. Especially when the network has many thousands of weights and
there is a lot of training data to learn, two problems come up:

The network often converges to local minima of the error function. Furthermore,
backpropagation often converges very slowly. This means that many iterations over
all training patterns are needed. Many improvements have been suggested to alle-
viate these problems. As mentioned in Sect. 9.4.3, oscillations can be avoided by
slowly reducing the learning rate η as shown in Fig. 9.15 on page 244.

Another method for reducing oscillations is the use of a momentum term while
updating the weights, which ensures that the direction of gradient descent does not
change too dramatically from one step to the next. Here for the current weight
change �pwji(t) at time t another part of the change �pwji(t − 1) from the previ-
ous step is added. The learning rule then changes to

�pwji(t) = ηδ
p
j x

p
i + γ�pwji(t − 1)
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Fig. 9.24 Abrupt direction
changes are smoothed out by
the use of the momentum
term. An iteration without the
momentum term (left) in
comparison to iteration with
the momentum term (right)

with a parameter γ between zero and one. This is depicted in a two-dimensional
example in Fig. 9.24.

Another idea is to minimize the linear error function instead of the square error
function, which reduces the problem of slow convergence into flat valleys.

Gradient descent in backpropagation is ultimately based on a linear approxima-
tion of the error function. Quickprop, an algorithm which uses a quadratic approx-
imation to the error function and thus achieves faster convergence, was created by
Scott Fahlmann.

Through smart unification of the improvements mentioned and other heuris-
tic tricks, Martin Riedmiller achieved a further optimization with the RProp al-
gorithm [RB93]. RProp has replaced backpropagation and is the new state of the
art feedforward neural network approximation algorithm. In Sect. 8.8 we applied
RProp to the classification of the appendicitis data and achieved an error which is
approximately the same size as that of a learned decision tree.

9.6 Support Vector Machines

Feedforward neural networks with only one layer of weights are linear. Linearity
leads to simple networks and fast learning with guaranteed convergence. Further-
more, the danger of overfitting is small for linear models. For many applications,
however, the linear models are not strong enough, for example because the rele-
vant classes are not linearly separable. Here multi-layered networks such as back-
propagation come into use, with the consequence that local minima, convergence
problems, and overfitting can occur.

A promising approach, which brings together the advantages of linear and non-
linear models, follows the theory of support vector machines (SVM), which we will
roughly outline using a two class problem.4

In the case of two linearly separable classes, it is easy to find a dividing hyper
plane, for example with the perceptron learning rule. However, there are usually
infinitely many such planes, as in the two-dimensional example in Fig. 9.25 on
page 253. We are looking for a plane which has the largest minimum distance to both
classes. This plane is usually uniquely defined by a few points in the border area.
These points, the so-called support vectors, all have the same distance to the dividing

4Support vector machines are not neural networks. Due to their historical development and math-
ematical relationship to linear networks, however, they are discussed here.
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Fig. 9.25 Two classes with
the maximally dividing line.
The circled points are the
support vectors

line. To find the support vectors, there is an efficient optimizing algorithm. It is
interesting that the optimal dividing hyperplane is determined by a few parameters,
namely by the support vectors. Thus the danger of overfitting is small.

Support vector machines apply this algorithm to non linearly separable problems
in a two-step process: In the first step, a nonlinear transformation is applied to the
data, with the property that the transformed data is linearly separable. In the second
step the support vectors are then determined in the transformed space.

The first step is highly interesting, but not quite simple. In fact, it is always pos-
sible to make the classes linearly separable by transforming the vector space, as
long as the data contains no contradictions.5 Such a separation can be reached for
example by introducing a new (n + 1)th dimension and the definition

xn+1 =
{

1 if x ∈ class 1,
0 if x ∈ class 0.

However, this formula does not help much because it is not applicable to new points
of an unknown class which are to be classified. We thus need a general transfor-
mation which is as independent as possible from the current data. It can be shown
that there are such generic transformations even for arbitrarily shaped class division
boundaries in the original vector space. In the transformed space, the data are then
linearly separable. However, the number of dimensions of the new vector space
grows exponentially with the number of dimensions of the original vector space.
However, the large number of new dimensions is not so problematic because, when
using support vectors, the dividing plane, as mentioned above, is determined by only
a few parameters.

The central nonlinear transformation of the vector space is called the kernel,
because of which support vector machines are also known as kernel methods. The
original SVM theory developed for classification tasks has been extended and can
now be used on regression problems also.

The mathematics used here is very interesting, but too extensive for an initial
introduction. To delve deeper into this promising young branch of machine learning,
we refer the reader to [SS02, Alp04] and [Bur98].

5A data point is contradictory if it belongs to both classes.
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9.7 Applications

Besides the examples indicated here, there are countless applications for neural net-
works in all branches of industry. A very important area is pattern recognition in
all of its forms, whether it is analysis of photographs for recognizing people or
faces, recognizing schools of fish from sonar images, recognition and classification
of military vehicles from radar scans, and many more. But neural networks can also
be trained to recognize spoken language and handwritten text.

Neural networks are not only used to recognize objects and scenes. They are
also trained to control simple robots using sensor data, as well as for heuristically
controlling search in backgammon and chess computers. Particularly interesting in
games are reinforcement learning techniques Sect. 10.8, for example with neural
networks.

For a long time neural networks, in addition to statistical methods, have been suc-
cessfully used for forecasting stock markets and for evaluating the creditworthiness
of banking customers.

For many of these applications, other machine learning algorithms can also be
used. Neural networks, however, have to date been more successful and popular
than all other machine learning algorithms. This however, the historical prevalence
of neural networks is slowly being pushed back in favor of other methods because
of the great commercial success of data mining and support vector machines.

9.8 Summary and Outlook

With the perceptron, the delta rule, and backpropagation, we have introduced the
most important class of neural networks and their relationship to scores and to naive
Bayes on one hand, but also to the least squares method. Next we saw the fascinating
Hopfield networks, inspired by biological models, which are, however, difficult to
manage in practice due to their complex dynamics. Of more importance in practice
are the various associative memory models.

In all neural models, information is stored distributed over many weights. Be-
cause of this, a few neurons dying off in the brain has no noticeable effect on
the brain’s function. Through its distributed storage of data, the network is robust
against small disruptions. This is also related to the ability to recognize patterns with
errors shown in multiple examples.

The distributed representation of knowledge has the disadvantage, however, that
it is difficult for the knowledge engineer to localize information. It is practically im-
possible to analyse and understand the many weights in a completely trained neural
network. For a learned decision tree, in contrast, it is easy to understand the learned
knowledge and even to represent it as a logical formula. Predicate logic, which al-
lows relationships to be formalized, is especially expressive and elegant. For exam-
ple, the predicate grandmother(karen,clyde) is easy to understand. This
kind of relationship can also be learned with neural networks, but it is not even pos-
sible to localize the “grandmother neuron” in the network. Therefore, there are still
problems in connecting neural networks with symbol processing systems.



9.9 Exercises 255

Of the large number of interesting neural models, many could not be treated
here. For example, the self-organizing maps introduced by Kohonen is a biologically
motivated mapping from a sensor layer of neurons to a second layer of neurons with
the property that this mapping is adaptive and preserves similarity.

A problem with the networks introduced here comes up during incremental learn-
ing. If for example a completely trained backpropagation network is further trained
with new patterns, then many (and potentially all) of the old patterns are quickly
forgotten. To solve this problem, Carpenter and Grossberg developed adaptive res-
onance theory (ART), which resulted in a whole line of neural models.

As additional literature we recommend the textbooks [Bis05, RMS92, Roj96,
Zel94]. Those interested in reading the most important original work in this exciting
field may consult the two collected volumes [AR88, APR90].

9.9 Exercises

9.9.1 From Biology to Simulation

Exercise 9.1 Show the point symmetry of the sigmoid function to (θ, 1
2).

9.9.2 Hopfield Networks

Exercise 9.2 Use the Hopfield network applet at http://www.cbu.edu/~pong/ai/
hopfield/hopfieldapplet.html and test the memory capacity for correlated and un-
correlated patterns (with randomly set bits) with a 10 × 10 grid size. Use a pattern
with 10% noise for testing.

Exercise 9.3 Compare the theoretical limit N = 0.146n for the maximum number
of patterns which can be stored, given in Sect. 9.2.2, with the capacity of classical
binary storage of the same size.

9.9.3 Linear Networks with Minimal Errors

➳ Exercise 9.4
(a) Write a program for learning a linear mapping with the least mean square

method. This is quite simple: one must only set up the normal equations
by (9.12) on page 242 and then solve the system of equations.

(a) Apply this program to the appendicitis data on this book’s website and deter-
mine a linear score. Give the error as a function of the threshold, as in Fig. 9.14
on page 243.

(c) Now determine the ROC curve for this score.
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9.9.4 Backpropagation

Exercise 9.5 Using a backpropagation program (for example in JNNS or KNIME),
create a network with eight input neurons, eight output neurons, and three hidden
neurons. Then train the network with eight training data pairs qp,qp with the prop-
erty that, in the pth vector qp , the pth bit is one and all other bits are zero. The
network thus has the simple task of learning an identical mapping. Such a network
is called an 8-3-8 encoder. After the learning process, observe the encoding of the
three hidden neurons for the input of all eight learned input vectors. What do you
notice? Now repeat the experiment, reduce the number of hidden neurons to two
and then one.

Exercise 9.6 In order to show that backpropagation networks can divide non
linearly separable sets, train the XOR function. The training data for this is:
((0,0),0), ((0,1),1), ((1,0),1), ((1,1),0).
(a) Create a network with two neurons each in the input layer and hidden layer, and

one neuron in the output layer, and train this network.
(b) Now delete the hidden neurons and connect the input layer directly to the output

neurons. What do you observe?

Exercise 9.7
(a) Show that any multi-layer backpropagation network with a linear activation

function is equally powerful as a two-layer one. For this it is enough to show
that successive executions of linear mappings is a linear mapping.

(b) Show that a two-layer backpropagation network with any strictly monotonic
activation function is not more powerful for classification tasks than one without
an activation function or with a linear activation function.

9.9.5 Support Vector Machines

❄ Exercise 9.8 Two non linearly separable two-dimensional sets of training data M+
and M− are given. All points in M+ are within the unit circle x2

1 + x2
2 = 1 and all

points in M− are outside. Give a coordinate transform f : R
2 → R

2 which makes
the data linearly separable. Give the equation of the dividing line and sketch the two
spaces and the data points.
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10.1 Introduction

All of the learning algorithms described so far—except the clustering algorithms—
belong to the class of supervised learning. In supervised learning, the agent is sup-
posed to learn a mapping from the input variables to the output variables. Here
it is important that for each individual training example, all values for both input
variables and output variables are provided. In other words, we need a teacher or a
database in which the mapping to be learned is approximately defined for a sufficient
number of input values. The sole task of the machine learning algorithm is to filter
out the noise from the data and find a function which approximates the mapping
well, even between the given data points.

In reinforcement learning the situation is different and more difficult because no
training data is available. We begin with a simple illustrative example from robotics,
which then is used as an application for the various algorithms.

Reinforcement learning is very valuable in the field of robotics, where the tasks
to be performed are frequently complex enough to defy encoding as programs and
no training data is available. The robot’s task consists of finding out, through trial
and error (or success), which actions are good in a certain situation and which are
not. In many cases we humans learn in a very similar way. For example, when a
child learns to walk, this usually happens without instruction, rather simply through
reinforcement. Successful attempts at walking are rewarded by forward progress,
and unsuccessful attempts are penalized by often painful falls. Positive and nega-
tive reinforcement are also important factors in successful learning in school and in
many sports (see Fig. 10.1 on page 258).

A greatly simplified movement task is learned in the following example.

Example 10.1 A robot whose mechanism consists only of a rectangular block and
an arm with two joints gy and gx is shown in Fig. 10.2 on page 258 (see [KMK97]).
The robot’s only possible actions are the movement of gy up or down and of gx

right or left. Furthermore, we only allow movements of fixed discrete units (for
example, of 10-degree increments). The agent’s task consists of learning a policy

W. Ertel, Introduction to Artificial Intelligence,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-299-5_10, © Springer-Verlag London Limited 2011

257



258 10 Reinforcement Learning

Fig. 10.1 “Maybe next time I should start turning a bit sooner or go slower?”—Learning from
negative reinforcement

Fig. 10.2 By moving both of its joints, the crawling robot in the left of the image can move
forward and backward. The walking robot on the right side must correspondingly move the frame
up and down or left and right. The feedback for the robot’s movement is positive for movement to
the right and negative for movement to the left

which allows it to move as quickly as possible to the right. The walking robot in
Fig. 10.2 works analogously within the same two-dimensional state space.

A successful action sequence is shown in Table 10.1 on page 259. The action at
time t = 2 results in the loaded arm moving the body one unit length to the right.
Nice animations of this example can be found through [KMK97] and [Tok06].

Before we go into the learning algorithm, we must suitably model the task math-
ematically. We describe the state of the robot by the two variables gx and gy for the
position of the joints, each with finitely many discrete values. The state of the robot
is thus encoded as a vector (gx, gy). The number of possible joint positions is nx , or
respectively ny . We use the horizontal position of the robot’s body, which can take
on real values, to evaluate the robot’s actions. Movements to the right are rewarded
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Table 10.1 A cycle of a periodic series of movements with systematic forward movement

Crawling robot Running robot Time State Reward Action

t gy gx x at

0 Up Left 0 Right

1 Up Right 0 Down

2 Down Right 0 Left

3 Down Left 1 Up

Fig. 10.3 The state space of the example robot in the case of two possible positions for each of
the joints (left) and in the case of four horizontal and vertical positions for each (middle). In the
right image an optimal policy is given

with positive changes to x, and movements to the left are punished with negative
changes.

In Fig. 10.3 the state space for two variants of this is shown in simplified form.1

In the left example, both joints have two positions, and in the middle example they
each have four positions. An optimal policy is given in Fig. 10.3 right.

10.2 The Task

As shown in Fig. 10.4 on page 260, we distinguish between the agent and its en-
vironment. At time t the world, which includes the agent and its environment, is
described by a state st ∈ S . The set S is an abstraction of the actual possible states
of the world because, on one hand, the world cannot be exactly described, and on
the other hand the agent often only has incomplete information about the actual

1The arm movement space consisting of arcs is rendered as a right-angled grid.
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Fig. 10.4 The agent and its
interaction with the
environment

state because of measurement errors. The agent then carries out an action at ∈ A at
time t . This action changes the world and thus results in the state st+1 at time t + 1.
The state transition function δ defined by the environment determines the new state
st+1 = δ(st , at ). It cannot be influenced by the agent.

After executing action at , the agent obtains immediate reward rt = r(st , at ) (see
Fig. 10.4). The immediate reward rt = r(st , at ) is always dependent on the current
state and the executed action. r(st , at ) = 0 means that the agent receives no imme-
diate feedback for the action at . During learning, rt > 0 should result in positive
and rt < 0 in negative reinforcement of the evaluation of the action at in state st . In
reinforcement learning especially, applications are being studied in which no imme-
diate reward happens for a long time. A chess player for example learns to improve
his game from won or lost matches, even if he gets no immediate reward for all in-
dividual moves. Here we can see the difficulty of assigning the reward at the end of
a sequence of actions to all the actions in the sequence that led to this point (credit
assignment problem).

In the crawling robot’s case the state consists of the position of the two joints,
that is, s = (gx, gy). The reward is given by the distance x traveled.

A policy π : S → A is a mapping from states to actions. The goal of reinforce-
ment learning is that the agent learns an optimal policy based on its experiences.
A policy is optimal if it maximizes reward in the long run, that is, over many steps.
But what does “maximize reward” mean exactly? We define the value, or the dis-
counted reward

V π(st ) = rt + γ rt+1 + γ 2rt+2 + · · · =
∞∑

i=0

γ irt+i (10.1)

of a policy π when we start in starting state st . Here 0 ≤ γ < 1 is a constant, which
ensures that future feedback is discounted more the farther in the future that it hap-
pens. The immediate reward rt is weighted the strongest. This reward function is
the most predominantly used. An alternative which is sometimes interesting is the
average reward

V π(st ) = lim
h→∞

1

h

h∑

i=0

rt+i . (10.2)

A policy π� is called optimal, if for all states s

V π�

(s) ≥ V π(s). (10.3)
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Fig. 10.5 The state space for the example with the values 2, 3, 4, 5 for nx and ny . The number of
possible actions is given for each state in the respective circles

Table 10.2 Number of
policies for differently sized
state spaces in the example

nx , ny Number of states Number of policies

2 4 24 = 16

3 9 24344 = 5184

4 16 243844 ≈ 2.7 × 107

5 25 2431249 ≈ 2.2 × 1012

That is, it is at least as good as all other policies according to the defined value
function. For better readability, the optimum value function V π�

will be denoted V �.
The agents discussed here, or their policies, only use information about the cur-

rent state st to determine the next state, and not the prior history. This is justified
if the reward of an action only depends on the current state and current actions.
Such processes are called Markov decision processes (MDP). In many applications,
especially in robotics, the actual state of the agent is not exactly known, which
makes planning actions even more difficult. The reason for this may be a noisy sen-
sor signal. We call such a process a partially observable Markov decision process
(POMDP).

10.3 Uninformed Combinatorial Search

The simplest possibility of finding a successful policy is the combinatorial enumer-
ation of all policies, as described in Chap. 6. However, even in the simple exam-
ple 10.1 there are a very many policies, which causes combinatorial search to be
associated with extremely high computational cost. In Fig. 10.5 the number of pos-
sible actions is given for every state. From that, the number of possible policies is
calculated as the product of the given values, as shown in Table 10.2.

For arbitrary values of nx and ny there are always four corner nodes with two
possible actions, 2(nx − 2) + 2(ny − 2) edge nodes with three actions, and (nx −
2)(ny − 2) inner nodes with four actions. Thus there are

2432(nx−2)+2(ny−2)4(nx−2)(ny−2)
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Fig. 10.6 Two different
policies for the example

different policies for fixed nx and ny . The number of policies thus grows expo-
nentially with the number of states. This is true in general if there is more than
one possible action per state. For practical applications this algorithm is therefore
useless. Even heuristic search, described in Chap. 6, cannot be used here. Since the
direct reward for almost all actions is zero, it cannot be used as a heuristic evaluation
function.

The computational cost rises even higher when we consider that (in addition to
enumerating all policies), the value V π(s) must be calculated for every generated
policy π and every starting state s. The infinite sum in V π(s) must be cut off for
use in a practical calculation; however, due to the exponential reduction of the γ i

factors in (10.1) on page 260, this does not present a problem.
In Example 10.1 on page 257 the difference xt+1 − xt can be used as an im-

mediate reward for an action at , which means that every movement of the robot’s
body to the right is rewarded with 1 and every movement of the robot’s body to the
left is penalized with −1. In Fig. 10.6, two policies are shown. Here the immediate
reward is zero everywhere other than in the bottom row of the state space. The left
policy π1 is better in the long term because, for long action sequences, the average
progress per action is 3/8 = 0.375 for π1 and 2/6 ≈ 0.333 for π2. If we use (10.1)
on page 260 for V π(s), the result is the following table with starting state s0 at the
top left and various γ values:

γ 0.9 0.8375 0.8

V π1 (s0) 2.52 1.156 0.77
V π2 (s0) 2.39 1.156 0.80

Here we see that policy π1 is superior to policy π2 when gamma = 0.9, and the
reverse is true when gamma = 0.8. For γ ≈ 0.8375 both policies are equally good.
We can clearly see that a larger γ results in a larger time horizon for the evaluation
of policies.

10.4 Value Iteration and Dynamic Programming

In the naive approach of enumerating all policies, much redundant work is per-
formed, because many policies are for the most part identical. They may only differ
slightly. Nevertheless every policy is completely newly generated and evaluated.
This suggests saving intermediate results for parts of policies and reusing them.
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This approach to solving optimization problems was introduced as dynamic pro-
gramming by Richard Bellman already in 1957 [Bel57]. Bellman recognized that
for an optimal policy it is the case that:

Independent of the starting state st and the first action at , all subsequent decisions proceed-
ing from every possible successor state st+1 must be optimal.

Based on the so-called Bellman principle, it becomes possible to find a globally
optimal policy through local optimization of individual actions. We will derive this
principle for MDPs together with a suitable iteration algorithm.

Desired is an optimal policy π� which fulfills (10.3) on page 260 and (10.1) on
page 260. We rewrite the two equations and obtain

V �(st ) = max
at ,at+1,at+2,...

(r(st , at ) + γ r(st+1, at+1) + γ 2r(st+2, at+2) + · · · ). (10.4)

Since the immediate reward r(st , at ) only depends on st and at , but not on the
successor states and actions, the maximization can be distributed, which ultimately
results in the following recursive characterization of V �:

V �(st ) = max
at

[r(st , at ) + γ max
at+1,at+2,...

(r(st+1, at+1) + γ r(st+2, at+2) + · · · )]

= max
at

[r(st , at ) + γV �(st+1)]. (10.5)

Equation (10.5) results from the substitution t → t + 1 in (10.4). Written somewhat
simpler:

V �(s) = max
a

[r(s, a) + γV �(δ(s, a))]. (10.6)

This equation implies, as does (10.1) on page 260, that, to calculate V �(s), the im-
mediate reward is added to the reward of all successor states, discounted by the
factor γ . If V �(δ(s, a)) is known, then V �(s) clearly results by simple local op-
timization over all possible actions a in state s. This corresponds to the Bellman
principle, because of which (10.6) is also called the Bellman equation.

The optimal policy π�(s) carries out an action in state s which results in the
maximum value V �. Thus,

π�(s) = argmax
a

[r(s, a) + γV �(δ(s, a))]. (10.7)

From the recursion equation (10.6) an iteration rule for approximating V �: follows
in a straightforward manner:

V̂ (s) = max
a

[r(s, a) + γ V̂ (δ(s, a))]. (10.8)

To begin the approximate values V̂ (s) for all states are initialized, for example
with the value zero. Now V̂ (s) is repeatedly updated for each state by recursively
falling back on the value V̂ (δ(s, a)) of the best successor state. This process of
calculating V � is called value iteration and is shown schematically in Fig. 10.7
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Fig. 10.7 The algorithm for
value iteration VALUEITERATION()

For all s ∈ S
V̂ (s) = 0

Repeat
For all s ∈ S

V̂ (s) = maxa[r(s, a) + γ V̂ (δ(s, a))]
Until V̂ (s) does not change

Fig. 10.8 Value iteration in the example with 3 × 3 states. The last two images show two optimal
policies. The numbers next to the arrows give the immediate reward r(s, a) of each action

on page 264. It can be shown that value iteration converges to V � [SB98]. An
excellent analysis of dynamic programming algorithms can be found in [Sze10],
where, based on contraction properties of the particular algorithms (for exam-
ple value iteration), convergence can be proven using Banach’s fixed-point theo-
rem.
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In Fig. 10.8 this algorithm is applied to Example 10.1 on page 257 with γ = 0.9.
In each iteration the states are processed row-wise from bottom left to top right.
Shown are several beginning iterations and in the second image in the bottom row
the stable limit values for V �.

We clearly see the progression of the learning in this sequence. The agent repeat-
edly explores all states, carries out value iteration for each state and saves the policy
in the form of a tabulated function V �, which then can be further compiled into an
efficiently usable table π�.

Incidentally, to find an optimal policy from V � it would be wrong to choose the
action in state st which results in the state with the maximum V � value. Corre-
sponding to (10.7) on page 263, the immediate reward r(st , at ) must also be added
because we are searching for V �(st ) and not V �(st+1). Applied to state s = (2,3)

in Fig. 10.8 on page 264, this means

π�(2,3) = argmax
a∈{left,right,up}

[r(s, a) + γV �(δ(s, a))]

= argmax
{left,right,up}

{1 + 0.9 · 2.66,−1 + 0.9 · 4.05,0 + 0.9 · 3.28}

= argmax
{left,right,up}

{3.39,2.65,2.95} = left.

In (10.7) on page 263 we see that the agent in state st must know the immediate
reward rt and the successor state st+1 = δ(st , at ) to choose the optimal action at .
It must also have a model of the functions r and δ. Since this is not the case for
many practical applications, algorithms are needed which can also work without
knowledge of r and δ. Section 10.6 is dedicated to such an algorithm.

10.5 A Learning Walking Robot and Its Simulation

A graphical user interface for simple experiments with reinforcement learning is
shown in Fig. 10.9 on page 266 [TEF09]. The user can observe reinforcement learn-
ing for differently sized two-dimensional state spaces. For better generalization,
backpropagation networks are used to save the state (see Sect. 10.8). The feedback
editor shown at the bottom right, with which the user can manually supply feed-
back about the environment, is especially interesting for experiments. Not shown
is the menu for setting up the parameters for value iteration and backpropagation
learning.

Besides the simulation, two small, real crawling robots with the same two-
dimensional discrete state space were developed specifically for teaching [TEF09].2

The two robots are shown in Fig. 10.10 on page 266. Each moves with a servo actu-

2Further information and related sources about crawling robots are available through www.
hs-weingarten.de/~ertel/kibuch.
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Fig. 10.9 Four different windows of the walking robot simulator

Fig. 10.10 Two versions of the crawling robot
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ator. The servos are controlled by a microcontroller or through a wireless interface
directly from a PC. Using simulation software, the feedback matrix of the robot can
be visualized on the PC. With this saved feedback, a policy can be trained on the PC
(which computes faster), then loaded again into the robot and executed. However,
the robot can also learn autonomously. For a state space of size 5×5 this takes about
30 seconds.

It is interesting to observe the difference between the simulation and the
“real” robot. In contrast to the simulation, the crawler learns policies in which
it never lifts its arm from the ground, but nonetheless moves forward very effi-
ciently. The reason for this is that, depending on the surface of the underground,
the tip of the “underarm” can grip the ground during backward movement, but
slides through during forward movement. This effect is very sensibly perceived
through the distance measuring sensors and evaluated accordingly during learn-
ing.

The robot’s adaptivity results in surprising effects. For example, we can observe
how the crawler, despite a defective servo which slips at a certain angle, nonethe-
less learns to walk (more like hobbling). It is even capable of adapting to changed
situations by changing policies. A thoroughly desirable effect is the ability, given
differently smooth surfaces (for example, different rough carpets) to learn an op-
timal policy for each. It also turns out that the real robot is indeed very adaptable
given a small state space of size 5 × 5.

The reader may (lacking a real robot) model various surfaces or servo defects by
varying feedback values and then observing the resulting policies (Exercise 10.3 on
page 276).

10.6 Q-Learning

A policy based on evaluation of possible successor states is clearly not useable if
the agent does not have a model of the world, that is, when it does not know which
state a possible action leads to. In most realistic applications the agent cannot resort
to such a model of the world. For example, a robot which is supposed to grasp
complex objects cannot predict whether the object will be securely held in its grip
after a gripping action, or whether it will remain in place.

If there is no model of the world, an evaluation of an action at carried out
in state st is needed even if it is still unknown where this action leads to. Thus
we now work with an evaluation function Q(st , at ) for states with their associ-
ated actions. With this function, the choice of the optimal action is made by the
rule

π�(s) = argmax
a

Q(s, a). (10.9)

To define the evaluation function we again use stepwise discounting of the
evaluation for state-action pairs which occur further into the future, just as in
(10.1) on page 260. We thus want to maximize rt + γ rt+1 + γ 2rt+2 + · · · .
Therefore, to evaluate action at in state st we define in analogy to (10.4) on
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page 263:

Q(st , at ) = max
at+1,at+2,...

(r(st , at )+γ r(st+1, at+1)+γ 2r(st+2, at+2)+· · · ). (10.10)

Analogously to the approach for value iteration, we bring this equation into a simple
recursive form by

Q(st , at ) = max
at+1,at+2,...

(r(st , at ) + γ r(st+1, at+1) + γ 2r(st+2, at+2) + · · · )

= r(st , at ) + γ max
at+1,at+2,...

(r(st+1, at+1) + γ r(st+2, at+2) + · · · )

= r(st , at ) + γ max
at+1

(r(st+1, at+1) + γ max
at+2

(r(st+2, at+2) + · · · ))

= r(st , at ) + γ max
at+1

Q(st+1, at+1)

= r(st , at ) + γ max
at+1

Q(δ(st , at ), at+1)

= r(s, a) + γ max
a′ Q(δ(s, a), a′). (10.11)

What then is the advantage compared to value iteration? The old equation is
only slightly rewritten, but this turns out to be exactly the right approach to a new
algorithm. Instead of saving V �, now the function Q is saved, and the agent can
choose its actions from the functions δ and r without a model of the world. We
still do not have a process, however, which can learn Q directly, that is, without
knowledge of V �.

From the recursive formulation of Q(s, a), an iteration algorithm for determining
Q(s, a) can be derived in a straightforward manner. We initialize a table Q̂(s, a) for
all states arbitrarily, for example with zeroes, and iteratively carry out

Q̂(s, a) = r(s, a) + γ max
a′ Q̂(δ(s, a), a′). (10.12)

It remains to note that we do not know the functions r and δ. We solve this prob-
lem quite pragmatically by letting the agent in its environment in state s carry out
action a. The successor state is then clearly δ(s, a) and the agent receives its reward
from the environment. The algorithm shown in Fig. 10.11 on page 269 implements
this algorithm for Q-learning.

The application of the algorithm to Example 10.1 on page 257 with γ = 0.9 and
nx = 3, ny = 2 (that is, in a 2 × 3 grid) is shown in Fig. 10.12 on page 269 as
an example. In the first picture, all Q values are initialized to zero. In the second
picture, after the first action sequence, the four r values which are not equal to zero
become visible as Q values. In the last picture, the learned optimal policy is given.
The following theorem, whose proof is found in [Mit97], shows that this algorithm
converges not just in the example, but in general.
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Q-LEARNING()

For all s ∈ S, a ∈ A
Q̂(s, a) = 0 (or randomly)

Repeat
Select (e.g. randomly) a state s

Repeat
Select an action a and carry it out
Obtain reward r and new state s′
Q̂(s, a) := r(s, a) + γ maxa′ Q̂(s ′, a′)
s := s′

Until s is an ending state Or time limit reached
Until Q̂ converges

Fig. 10.11 The algorithm for Q-learning

Fig. 10.12 Q-learning applied to the example with nx = 3, ny = 2. The gray arrows mark the
actions carried out in each picture. The updated Q values are given. In the last picture, the current
policy, which is also optimal, is shown

Theorem 10.1 Let a deterministic MDP with limited immediate reward
r(s, a) be given. Equation (10.12) on page 268 with 0 ≤ γ < 1 is used for
learning. Let Q̂n(s, a) be the value for Q̂(s, a) after n updates. If each state-
action pair is visited infinitely often, then Q̂n(s, a) converges to Q(s, a) for
all values s and a for n → ∞.
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Proof Since each state-action transition occurs infinitely often, we look at succes-
sive time intervals with the property that, in every interval, all state-action transitions
occur at least once. We now show that the maximum error for all entries in the Q̂

table is reduced by at least the factor γ in each of these intervals. Let

�n = max
s,a

|Q̂n(s, a) − Q(s, a)|

be the maximum error in the table Q̂n and s ′ = δ(s, a). For each table entry Q̂n(s, a)

we calculate its contribution to the error after an interval as

|Q̂n+1(s, a) − Q(s, a)| =
∣∣∣
(
r + γ max

a′ Q̂n(s
′, a′)

)
−

(
r + γ max

a′ Q(s′, a′)
)∣∣∣

= γ

∣∣∣max
a′ Q̂n(s

′, a′) − max
a′ Q(s′, a′)

∣∣∣

≤ γ max
a′ |Q̂n(s

′, a′) − Q(s ′, a′)|

≤ γ max
s′′,a′ |Q̂n(s

′′, a′) − Q(s′′, a′)| = γ �n.

The first inequality is true because, for arbitrary functions f and g,
∣∣∣max

x
f (x) − max

x
g(x)

∣∣∣ ≤ max
x

|f (x) − g(x)|

and the second inequality is true because, by additional variation of the state s′′, the
resulting maximum cannot become smaller. Thus it has been shown that �n+1 ≤
γ�n. Since the error in each interval is reduced by a factor of at least γ , after k

intervals it is at most γ k�0, and, as a result, �0 is bounded. Since each state is
visited infinitely many times, there are infinitely many intervals and �n converges
to zero. �

According to Theorem 10.1 on page 269 Q-learning converges independently
of the actions chosen during learning. This means that for convergence it does not
matter which actions the agent chooses, as long as each is executed infinitely often.
The speed of convergence, however, certainly depends on which paths the agent
takes during learning (see Sect. 10.7).

10.6.1 Q-Learning in a Nondeterministic Environment

In many robotics applications, the agent’s environment is nondeterministic. This
means that the reaction of the environment to the action a in state s at two different
points in time can result in different successor states and rewards. Such a nondeter-
ministic Markov process is modeled by a probabilistic transition function δ(s, a) and
probabilistic immediate reward r(s, a). To define the Q function, each time the ex-
pected value must be calculated over all possible successor states. Equation (10.11)
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on page 268 is thus generalized to

Q(st , at ) = E(r(s, a)) + γ
∑

s′
P(s′|s, a)max

a′ Q(s′, a′), (10.13)

where P(s′|s, a) is the probability of moving from state s to the successor state s′
with action a. Unfortunately there is no guarantee of convergence for Q-learning in
the nondeterministic case if we proceed as before according to (10.12) on page 268.
This is because, in successive runs through the outer loop of the algorithm in
Fig. 10.11 on page 269, the reward and successor state can be completely different
for the same state s and same action a. This may result in an alternating sequence
which jumps back and forth between several values. To avoid this kind of strongly
jumping Q values, we add the old weighted Q value to the right side of (10.12) on
page 268. This stabilizes the iteration. The learning rule then reads

Q̂n(s, a) = (1 − αn)Q̂n−1(s, a) + αn

[
r(s, a) + γ max

a′ Q̂n−1(δ(s, a), a′)
]

(10.14)

with a time-varying weighting factor

αn = 1

1 + bn(s, a)
.

The value bn(s, a) indicates how often the action a was executed in state s at the
nth iteration. For small values of bn (that is, at the beginning of learning) the sta-
bilizing term Q̂n−1(s, a) does not come into play, for we want the learning process
to make quick progress. Later, however, bn gets bigger and thereby prevents ex-
cessively large jumps in the sequence of Q̂ values. When integrating (10.14) into
Q-learning, the values bn(s, a) must be saved for all state-action pairs. This can be
accomplished by extending the table of Q̂ values.

For a better understanding of (10.14), we simplify this by assuming αn = α is a
constant and transforming it as follows:

Q̂n(s, a) = (1 − α)Q̂n−1(s, a) + α
[
r(s, a) + γ max

a′ Q̂n−1(δ(s, a), a′)
]

= Q̂n−1(s, a) + α
[
r(s, a) + γ max

a′ Q̂n−1(δ(s, a), a′) − Q̂n−1(s, a)
]

︸ ︷︷ ︸
TD-error

.

The new Q value Q̂n(s, a) can clearly be represented as the old Q̂n−1(s, a) plus α

times a correction term which is the same as the Q value’s change in this step. The
correction term is called the TD-error, or temporal difference error, and the above
equation for changing the Q value is a special case of TD-Learning, an important
class of learning algorithms [SB98]. For α = 1 we obtain the Q-learning described
above. For α = 0 the Q̂ values are completely unchanged. Thus no learning takes
place.
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10.7 Exploration and Exploitation

For Q-learning so far, only a coarse algorithm schema has been given. Especially
lacking is a description of the choice of the starting state each time and the ac-
tions to be carried out in the inner loop of Fig. 10.11 on page 269. For the se-
lection of the next action there are two possibilities. Among the possible actions,
one can be chosen randomly. In the long term this results in a uniform exploration
of all possible actions or policies, but with very slow convergence. An alternative
to this is the exploitation of previously learned Q̂ values. Here the agent always
chooses the action with the highest Q̂ value. This results in relatively fast conver-
gence of a specific trajectory. Other paths, however, remain unvisited all the way
to the end. In the extreme case then we can obtain non-optimal policies. In Theo-
rem 10.1 on page 269 it is therefore required that every state-action pair is visited
infinitely many times. It is recommended to use a combination of exploration and
exploitation with a high exploration portion at the beginning and reduce it more and
more over time.

The choice of the starting state also influences the speed of learning. In the first
three pictures in Fig. 10.12 on page 269 we can clearly see that, for the first itera-
tions, only the Q values in the immediate vicinity of state-action pairs are changed
by immediate reward. Starting farther away from this kind of point results in much
unnecessary work. This suggests transferring prior knowledge about state-action
pairs with immediate reward into starting states nearby these points. In the course
of learning then more distant starting states can be selected.

10.8 Approximation, Generalization and Convergence

As Q-learning has been described so far, a table with all Q values is explicitly
saved in a table. This is only possible when working with a finite state space with
finitely many actions. If the state space is infinite, however, for example in the case
of continuous variables, then it is neither possible to save all Q values nor to visit
all state-action pairs during learning.

Nonetheless there is a simple way of using Q-learning and value iteration on con-
tinuous variables. The Q(s, a) table is replaced by a neural network, for example a
backpropagation network with the input variables s, a and the Q value as the target
output. For every update of a Q value, the neural network is presented a training
example with (s, a) as input and Q(s, a) as target output. At the end we have a fi-
nite representation of the function Q(s, a). Since we only ever have finitely many
training examples, but the function Q(s, a) is defined for infinitely many inputs, we
thus automatically obtain a generalization if the network size is chosen appropri-
ately (see Chap. 9). Instead of a neural network, we can also use another supervised
learning algorithm or a function approximator such as a support vector machine or
a Gaussian process.
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However, the step from finitely many training examples to a continuous function
can become very expensive in certain situations. Q-learning with function approxi-
mation might not converge because Theorem 10.1 on page 269 is only true if each
state-action pair is visited infinitely often.

However, convergence problems can also come up in the case of finitely many
state-action pairs when Q-learning is used on a POMDP. Q-learning can be
applied—in both described variants—to deterministic and nondeterministic Markov
processes (MDPs). For a POMDP it can happen that the agent, due to noisy sensors
for example, perceives many different states as one. Often many states in the real
world are purposefully mapped to one so-called observation. The resulting obser-
vation space is then much smaller than the state space, whereby learning becomes
faster and overfitting can be avoided (see Sect. 8.4.7).

However, by bundling together multiple states, the agent can no longer differenti-
ate between the actual states, and an action may lead it into many different successor
states, depending on which state it is really in. This can lead to convergence prob-
lems for value iteration or for Q-learning. In the literature (e.g., in [SB98]) many
different approaches to a solution are suggested.

Also very promising are so-called policy improvement methods and their derived
policy gradient methods, in which Q values are not changed, but rather the policy
is changed directly. In this scheme a policy is searched for in the space of all poli-
cies, which maximizes the cumulative discounted reward ((10.1) on page 260). One
possibility of achieving this is by following the gradient of the cumulative reward
to a maximum. The policy found in this way then clearly optimizes the cumulative
reward. In [PS08] it is shown that this algorithm can greatly speed up learning in
applications with large state spaces, such as those which occur for humanoid robots.

10.9 Applications

The practical utility of reinforcement learning has meanwhile been shown many
times over. From a large number of examples of this, we will briefly present a small
selection.

TD-learning, together with a backpropagation network with 40 to 80 hidden neu-
rons was used very successfully in TD-gammon, a backgammon-playing program
[Tes95]. The only immediate reward for the program is the result at the end of the
game. An optimized version of the program with a two-move lookahead was trained
against itself in 1.5 million games. It went on to defeat world-class players and plays
as well as the three best human players.

There are many applications in robotics. For example, in the RoboCup Soccer
Simulation League, the best robot soccer teams now successfully use reinforcement
learning [SSK05, Robb]. Balancing a pole, which is relatively easy for a human, has
been solved successfully many times with reinforcement learning.

An impressive demonstration of the learning ability of robots was given by Russ
Tedrake at IROS 2008 in his presentation about a model airplane which learns to
land at an exact point, just like a bird landing on a branch [Ted08]. Because air
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currents become very turbulent during such highly dynamic landing approach, the
associated differential equation, the Navier–Stokes equation, is unsolvable. Landing
therefore cannot be controlled in the classical mathematical way. Tedrake’s com-
ment about this:

“Birds don’t solve Navier–Stokes!”

Birds can clearly learn to fly and land even without the Navier–Stokes equation.
Tedrake showed that this is now also possible for airplanes.

Today it is also possible to learn to control a real car in only 20 minutes using
Q-learning and function approximation [RMD07]. This example shows that real
industrial applications in which few measurements must be mapped to actions can
be learned very well in short time.

Real robots still have difficulty learning in high-dimensional state-action spaces
because, compared to a simulation, real robots get feedback from the environment
relatively slowly. Due to time limitations, the many millions of necessary training
cycles are therefore not realizable. Here, besides fast learning algorithms, methods
are needed which allow at least parts of the learning to happen offline, that is, with-
out feedback from the environment.

10.10 Curse of Dimensionality

Despite success in recent years, reinforcement learning remains an active area of
research in AI, not least because even the best learning algorithms known today are
still impractical for high-dimensional state and action spaces due to their gigantic
computation time. This problem is known as the “curse of dimensionality”.

In the search for solutions to this problem, scientists observe animals and humans
during learning. Here we notice that learning in nature takes place on many levels
of abstraction. A baby first learns simple motor and language skills on the lowest
level. When these are well learned, they are saved and can later be called up any time
and used. Translated into the language of computer science, this means that every
learned ability is encapsulated in a module and then, on a higher level, represents an
action. By using such complex actions on a higher level, the action space becomes
greatly reduced and thus learning is accelerated. In a similar way, states can be
abstracted and thus the state space can be shrunk. This learning on multiple levels
is called hierarchical learning [BM03].

Another approach to modularization of learning is distributed learning, or multi-
agent learning [PL05]. When learning a humanoid robot’s motor skills, up to 50 dif-
ferent motors must be simultaneously controlled, which results in 50-dimensional
state space and also a 50-dimensional action space. To reduce this gigantic complex-
ity, central control is replaced by distributed control. For example, each individual
motor could get an individual control which steers it directly, if possible indepen-
dently of the other motors. In nature, we find this kind of control in insects. For
example, the many legs of a millipede are not steered by a central brain, rather each
pair of legs has its own tiny “brain”.
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Similar to uninformed combinatorial search, reinforcement learning has the task
of finding the best of a huge number of policies. The learning task becomes sig-
nificantly easier if the agent has a more or less good policy before learning begins.
Then the high-dimensional learning tasks can be solved sooner. But how do we find
such an initial policy? Here there are two main possibilities.

The first possibility is classical programming. The programmer provides the
agent with a policy comprising a program which he considers good. Then a
switchover occurs, for example to Q-learning. The agent chooses, at least at the
beginning of learning, its actions according to the programmed policy and thus is
led into “interesting” areas of the state-action space. This can lead to dramatic re-
ductions in the search space of reinforcement learning.

If traditional programming becomes too complex, we can begin training the robot
or agent by having a human proscribe the right actions. In the simplest case, this is
done by manual remote-control of the robot. The robot then saves the proscribed
action for each state and generalizes using a supervised learning algorithm such
as backpropagation or decision tree learning. This so-called demonstration learn-
ing [BCDS08, SE10] thus also provides an initial policy for the subsequent rein-
forcement learning.

10.11 Summary and Outlook

Today we have access to well-functioning and established learning algorithms for
training our machines. The task for the human trainer or developer, however, is
still demanding for complex applications. There are namely many possibilities for
how to structure the training of a robot and it will not be successful without exper-
imentation. This experimentation can be very tedious in practice because each new
learning project must be designed and programmed. Tools are needed here which,
besides the various learning algorithms, also offer the trainer the ability to combine
these with traditional programming and demonstration learning. One of the first of
this kind of tool is the Teaching-Box [ESCT09], which in addition to an extensive
program library also offers templates for the configuration of learning projects and
for communication between the robot and the environment. For example, the human
teacher can give the robot further feedback from the keyboard or through a speech
interface in addition to feedback from the environment.

Reinforcement learning is a fascinating and active area of research that will be
increasingly used in the future. More and more robot control systems, but also other
programs, will learn through feedback from the environment. Today there exist a
multitude of variations of the presented algorithms and also completely different
algorithms. The scaling problem remains unsolved. For small action and state spaces
with few degrees of freedom, impressive results can be achieved. If the number
of degrees of freedom in the state space grows to 18, for example for a simple
humanoid robot, then learning becomes very expensive.
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For further foundational lectures, we recommend the compact introduction into
reinforcement learning in Tom Mitchell’s book [Mit97]. The standard work by Sut-
ton and Barto [SB98] is thorough and comprehensive, as is the survey article by
Kaelbling, Littman and Moore [KLM96].

10.12 Exercises

Exercise 10.1
(a) Calculate the number of different policies for n states and n actions. Thus tran-

sitions from each state to each state are possible.
(b) How does the number of policies change in subproblem (a) if empty actions,

i.e., actions from one state to itself, are not allowed.
(c) Using arrow diagrams like those in Fig. 10.3 on page 259, give all policies for

two states.
(d) Using arrow diagrams, give all policies without empty actions for three states.

Exercise 10.2 Use value iteration manually on Example 10.1 on page 257 with
nx = ny = 2.

Exercise 10.3 Carry out various experiments using a value iteration simulator.
(a) Install the value iteration simulator from [Tok06].
(b) Reproduce the results from Exercise 10.2 by first putting in the feedback with

the feedback editor and then carrying out value iteration.
(c) Model surfaces of differing smoothness and observe how the policy changes.
(d) With a similar feedback matrix, enlarge the state space incrementally up to

about 100 × 100 and fit the discount factor γ such that a sensible policy re-
sults.

❄ Exercise 10.4 Show that for the example calculation in Fig. 10.8 on page 264 the
exact value is V �(3,3) = 1.9/(1 − 0.96) ≈ 4.05499.

Exercise 10.5
Carry out Q-learning on the 3×3 grid on the right.
The state in the middle right is an absorbing goal
state.

Exercise 10.6 A robot arm with n joints (dimensions) and � discrete states per joint
is given. Actions from each state to each state are possible (if the robot does nothing,
this is evaluated as an (empty) action).
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(a) Give a formula for the number of states and the number of actions in each state
and for the number of policies for the robot.

(b) Create a table with the number of strategies for n = 1,2,3,4,8 and � =
1,2,3,4,10.

(c) To reduce the number of possible strategies, assume that the number of possible
actions per joint is always equal to 2 and that the robot can only move one
joint at a time. Give a new formula for the number of strategies and create the
associated table.

(d) With the calculated result, justify that an agent which operates autonomously
and adaptively with n = 8 and l = 10 can certainly be called intelligent.
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11.1 Introduction

Exercise 1.3 Many well-known inference processes, learning processes, etc. are
NP-complete or even undecidable. What does this mean for AI?

Exercise 1.4 If a problem is NP-complete or can be described as “hard”, that means
that there are instances in which the problem cannot be solved in an acceptable
amount of time. This is the so-called worst case. In some applications we have to
live with the fact that in the worst case an efficient solution is impossible. This
means that even in the future there will be practically relevant problems which in
certain special cases are unsolvable.

AI will therefore neither find a universal formula, nor build a super machine
with which all problems become solvable. It gives itself rather the task of build-
ing systems with a higher probability of finding a solution, or with a higher prob-
ability of finding fast, optimal solutions. We humans in everyday life deal with
suboptimal solutions quite well. The reason is, quite simply, the excessive cost of
finding the optimal solution. For example, it only takes me seven minutes to find
my way from point A to point B with a map in an unfamiliar city. The shortest
path would have taken only six minutes. Finding the shortest path, however, would
have taken perhaps an hour. The proof of the optimality of the path might be even
costlier.

Exercise 1.5
(a) The output depends not only on the input, but also on the contents of the mem-

ory. For an input x, depending on the contents of the memory, the output could
be y1 or y2. It is thus not unique and therefore not a function.

(b) If one considers the contents of the memory as a further input, then the output
is unique (because the agent is deterministic) and the agent represents a func-
tion.

W. Ertel, Introduction to Artificial Intelligence,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-299-5_11, © Springer-Verlag London Limited 2011
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Exercise 1.6
(a) Velocity vx(t) = ∂x

∂t
= lim�t→0

x(t)−x(t−�t)
�t

≈ x(t)−x(t−�t)
�t

. vy is calculated
analogously.

(b) Acceleration ax(t) = ∂2x

∂t2 = ∂
∂t

vx(t) = lim�t→0
vx(t)−vx(t−�t)

�t
=

lim�t→0
[

x(t)−x(t−�t)

(�t)2 − x(t−�t)−x(t−2�t)

(�t)2

] = x(t)−2x(t−�t)+x(t−2�t)

(�t)2 . ay is cal-
culated analogously. One also needs the position at the three times t − 2�t ,
t − �t , t .

Exercise 1.7
(a) Costs for agent 1 = 11 · 100 cents + 1 · 1 cent = 1,101 cents.

Costs for 2 = 0 · 100 cents + 38 · 1 cent = 38 cents.
Therefore agent 2 saves 1,101 cents − 38 cents = 1,063 cents.

(b) Profit for agent 1 = 189 · 100 cents + 799 · 1 cent = 19,699 cents.
Profit for agent 2 = 200 · 100 cents + 762 · 1 cent = 20,762 cents.
Agent 2 therefore has 20,762 cents − 19,699 cents = 1,063 cents higher profit.
If one assesses the lost profits due to errors, the utility-based agent makes the
same decisions as a cost-based agent.

11.2 Propositional Logic

Exercise 2.1 With the signature � = {σ1, σ2, . . . , σn} and the grammar variables
〈formula〉, the syntax of propositional logic can be defined as follows:

〈formula〉 ::= σ1|σ2| · · · |σn|w|f
|¬〈formula〉 | (〈formula〉) | 〈formula〉 ∧ 〈formula〉
| 〈formula〉 ∨ 〈formula〉 | 〈formula〉 ⇒ 〈formula〉
| 〈formula〉 ⇔ 〈formula〉

Exercise 2.2 Proof by the truth table method.

Exercise 2.3 (a) (¬A ∨ B) ∧ (¬B ∨ A) (b) (¬A ∨ B) ∧ (¬B ∨ A) (c) t

Exercise 2.4 (a) satisfiable (b) true (c) unsatisfiable

Exercise 2.6
(a) In Exercise 2.3(c) it was already shown that A ∧ (A ⇒ B) ⇒ B is a tautology.

The deduction theorem thus ensures the correctness of the inference rule.
(b) We show by the truth table method that (A ∨ B) ∧ (¬B ∨ C) ⇒ (A ∨ C) is

a tautology.
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Exercise 2.7 Application of the resolution rule to the clause (f ∨ B) and (¬B ∨ f )

yields the resolvent (f ∨ f ) ≡ (f ). Now we apply the resolution rule to the clauses
B and ¬B and obtain the empty clause as the resolvent. Because (f ∨ B) ≡ B and
(¬B ∨ f ) ≡ ¬B , (f ) ≡ (). It is important in practice that, whenever the empty
clause is derived, it is due to a contradiction.

Exercise 2.8 If KB contains a contradiction, then there are two clauses A and ¬A,
which allow the empty clause to be derived. The contradiction in KB is clearly still
in KB ∧ ¬Q. Therefore it also allows the empty clause to be derived.

Exercise 2.9 (a) (A ∨ B) ∧ (¬A ∨ ¬B) (b) (A ∨ B) ∧ (B ∨ C) ∧ (A ∨ C)

Exercise 2.10 Formalization: Accomplice: A, Car: C, Key: K

WB ≡ (A ⇒ C) ∧ [(¬A ∧ ¬K) ∨ (A ∧ K)] ∧ K

Transformation into CNF: (¬A ∧ ¬K) ∨ (A ∧ K) ≡ (¬K ∨ A) ∧ (¬A ∨ K)

Try to prove C and add ¬C to the set of clauses. The CNF clause set is

(¬A ∨ C)1 ∧ (¬K ∨ A)2 ∧ (¬A ∨ K)3 ∧ (K)4 ∧ (¬C)5.

Resolution proof : Res(2, 4) : (A)6
Res(1, 6) : (C)7
Res(7, 5) : ()8

Thus C has been shown.

Exercise 2.11
(a) KB ≡ (A ∨ B) ∧ (¬B ∨ C), Q ≡ (A ∨ C)

KB ∧ ¬Q ≡ (A ∨ B)1 ∧ (¬B ∨ C)2 ∧ (¬A)3 ∧ (¬C)4
Resolution proof : Res(1, 3) : (B)5

Res(2, 4) : (¬B)6
Res(5, 6) : ()

(b) ¬(¬B ∧ (B ∨ ¬A) ⇒ ¬A) ≡ (¬B)1 ∧ (B ∨ ¬A)2 ∧ (A)3
Resolution proof : Res(1, 2) : (¬A)4

Res(3, 4) : ()

Exercise 2.12 By application of the equivalences from Theorem 2.1 on page 18,
we can immediately prove the claims.

Exercise 2.13

Res(8, 9) : (C ∧ F ∧ E ⇒ f )10
Res(3, 10) : (F ∧ E ⇒ f )11
Res(6, 11) : (A ∧ B ∧ C ∧ E ⇒ f )12
Res(1, 12) : (B ∧ C ∧ E ⇒ f )13
Res(2, 13) : (C ∧ E ⇒ f )14
Res(3, 14) : (E ⇒ f )15
Res(5, 15) : ()
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11.3 First-Order Predicate Logic

Exercise 3.1
(a) ∀x male(x) ⇔ ¬female(x)

(b) ∀x ∀y ∃z father(x, y) ⇔ male(x) ∧ child(y, x, z)

(c) ∀x ∀y siblings(x, y) ⇔ [(∃z father(z, x) ∧ father(z, y)) ∨ (∃z mother(z, x) ∧
mother(z, y))]

(d) ∀x ∀y ∀z parents(x, y, z) ⇔ father(x, z) ∧ mother(y, z)

(e) ∀x ∀y uncle(x, y) ⇔ ∃z ∃u child(y, z,u) ∧ siblings(z, x) ∧ male(x)

(f) ∀x ∀y ancestor(x, y) ⇔ ∃z child(y, x, z) ∨ ∃u ∃v child(u, x, v) ∧
ancestor(u, y))

Exercise 3.2
(a) ∀x ∃y ∃z father(y, x) ∧ mother(z, x)

(b) ∃x ∃y child(y, x, z)

(c) ∀x bird(x) ⇒ flies(x)

(d) ∃x ∃y ∃z animal(x) ∧ animal(y) ∧ eats(x, y) ∧ eats(y, z) ∧ grain(z)

(e) ∀x animal(x) ⇒ (∃y (eats(x, y) ∧ (plant(y) ∨ (animal(y) ∧ ∃z plant(z) ∧
eats(y, z) ∧ much_smaller(y, x)))

Exercise 3.3 ∀x ∀y ∃z x = father(y) ⇔ male(x) ∧ child(y, x, z)

Exercise 3.4
∀x ∀y x < y ∨ y < x ∨ x = y,
∀x ∀y x < y ⇒ ¬y < x,
∀x ∀y ∀z x < y ∧ y < z ⇒ x < z

Exercise 3.5
(a) MGU: x/f (z), u/f (y), term: p(f (z), f (y))

(b) not unifiable
(c) MGU: x/ cosy, z/4 − 7 · cosy, term: cosy = 4 − 7 · cosy

(d) not unifiable
(e) MGU: u/f (g(w,w),g(g(w,w),g(w,w)), g(g(g(w,w),g(w,w)), g(g(w,w),

g(w,w)))), x/g(w,w), y/g(g(w,w),g(w,w)), z/g(g(g(w,w),g(w,w)),

g(g(w,w), g(w,w)))

term: q(f (g(w,w), g(g(w,w),g(w,w)), g(g(g(w,w),g(w,w)), g(g(w,w),

g(w,w)))), f (g(w,w), g(g(w,w), g(w,w)), g(g(g(w,w), g(w,w)),

g(g(w,w), g(w,w)))))

Exercise 3.7
(a) Let the unsatisfiable formula p(x) ∧ ¬p(x) ∧ r(x) be given. We choose the

clause r(x) as the SOS, so no contradiction can be derived.
(b) If the SOS is already unsatisfiable, then no contradiction can be derived. If not,

then resolution steps between clauses from SOS and (KB ∧ ¬Q)\SOS are nec-
essary.
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(c) If there is no complement to a literal L in a clause K , then the literal L will
remain in every clause that is derived using resolution from clause K . Thus the
empty clause cannot be derived from K or its resolvent, nor any future resol-
vent.

Exercise 3.8 ¬Q ∧ KB ≡ (e = n)1 ∧ (n · x = n)2 ∧ (e · x = x)3 ∧ (¬a = b)4
Proof : Dem(1, 2) : (e · x = e)5

Tra,Sym(3, 5) : (x = e)6
Dem(4, 6) : (¬e = b)7
Dem(7, 6) : (¬e = e)8

()

Here “Dem” stands for demodulation. Clause number 6 was derived by application
of transitivity and symmetry of the equality in clauses 3 and 5.

Exercise 3.9 The LOP input files are:

(a) a;b<-.
<-a,b.
b;c<-.
<-b,c.
c;a<-.
<-c,a.

(b) <- shaves(barb,X),
shaves(X,X).
shaves(barb,X);
shaves(X,X) <-.

(c) e = n.
<- a = b.
m(m(X,Y),Z)=m(X,m(Y,Z)).
m(e,X) = X.
m(n,X) = n.

11.4 Limitations of Logic

Exercise 4.1
(a) Correctly: We take a complete proof calculus for PL1. With it we find a proof

for every true formula in finite time. For all unsatisfiable formulas I proceed as
follows: I apply the calculus to ¬φ and show that ¬φ is true. Thus φ is false.
Thus we can prove every true formula from PL1 and refute every false formula.
Unfortunately, this process is unsuitable for satisfiable formulas.

Exercise 4.2
(a) He shaves himself if and only if he does not shave. (contradiction)
(b) The set of all sets which do not contain themselves. It contains itself if and only

if it does not contain itself.

11.5 PROLOG

Exercise 5.1 PROLOG signals a stack overflow. The reason is PROLOG’s depth-
first search, which always chooses the first unifiable predicate in the input file.
With recursive predicates such as equality, this causes a non-terminating recur-
sion.
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Exercise 5.2
write_path( [H1,H2|T] ) :- write_path([H2|T]), write_move(H2,H1).
write_path( [_X] ).
write_move( state(X,W,Z,K), state(Y,W,Z,K) ) :-

write(’Farmer from ’), write(X), write(’ to ’), write(Y), nl.
write_move( state(X,X,Z,K), state(Y,Y,Z,K) ) :-

write(’Farmer and wolf from ’), write(X), write(’ to ’), write(Y),nl.
write_move( state(X,W,X,K), state(Y,W,Y,K) ) :-

write(’Farmer and goat from ’),write(X),write(’ to ’), write(Y), nl.
write_move( state(X,W,Z,X), state(Y,W,Z,Y) ) :-

write(’Farmer and cabbage from ’),write(X),write(’ to ’), write(Y), nl.

Exercise 5.3
(a) It is needed to output the solutions found. The unification in the fact

plan(Goal, Goal,Path,Path). takes care of this.
(b) The conditions for entry into the clauses of the predicate safe overlap each

other. The backtracking caused by the fail leads to the execution of the
second or third alternative of safe, where the same solution will clearly
be found again. A cut at the end of the first two safe clauses solves the
problem. Alternatively, all safe states can be explicitly given, as for example
safe(state(left,left,left,right)).

Exercise 5.5 ?- one(10).
one(0) :- write(1).
one(N) :- N1 is N-1, one(N1), one(N1).

Exercise 5.6
(a) With n1 = |L1|, n2 = |L2| it is true that Tappend(n1, n2) = Θ(n1).
(b) With n = |L| it is true that Tnrev(n) = Θ(n2).
(c) With n = |L| it is true that Taccrev(n) = Θ(n).

Exercise 5.7 For the trees with symbols on the inner nodes, we can use the
terms a(b,c) and a(b(e,f,g),c(h),d), for example. Trees without sym-
bols: tree(b,c), or tree(tree(e,f,g),tree(h),d).

Exercise 5.8 SWI-PROLOG programs:
(a) fib(0,1). fib(1,1).

fib(N,R) :- N1 is N-1, fib(N1,R1), N2 is N-2,
fib(N2,R2), R is R1 + R2.

(b) T (n) = Θ(2n).
(c) :- dynamic fib/2. fib(0,1). fib(1,1).

fib(N,R) :- N1 is N-1, fib(N1,R1), N2 is N-2,
fib(N2,R2), R is R1 + R2,
asserta(fib(N,R)).

(d) If the facts fib(0,1) to fib(k,f ib(k)) were already calculated, then for
the call fib(n,X) it is true that

T (n) =
{

Θ(1) if n ≤ k,

Θ(n − k) if n > k.
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(e) Because after the first n calls to the fib predicate, all further calls have direct
access to facts.

Exercise 5.9
(a) The solution is not disclosed here.
(b)

start :-
fd_domain([Briton, Swede, Dane, Norwegian, German],1,5),
fd_all_different([Briton, Swede, Dane, Norwegian, German]),
fd_domain([Tea, Coffee, Water, Beer, Milk],1,5),
fd_all_different([Tea, Coffee, Water, Beer, Milk]),
fd_domain([Red, White, Green, Yellow, Blue],1,5),
fd_all_different([Red, White, Green, Yellow, Blue]),
fd_domain([Dog, Bird, Cat, Horse, Fish],1,5),
fd_all_different([Dog, Bird, Cat, Horse, Fish]),
fd_domain([Pallmall, Dunhill, Marlboro, Winfield, Rothmanns],1,5),
fd_all_different([Pallmall, Dunhill, Marlboro, Winfield, Rothmanns]),
fd_labeling([Briton, Swede, Dane, Norwegian, German]),
Briton #= Red, % The Briton lives in the red house
Swede #= Dog, % The Swede doesn’t have a dog
Dane #= Tea, % The Dane likes to drink tea
Green #= White - 1, % The green house is to the left of the white house
Green #= Coffee, % The owner of the green house drinks coffee
Pallmall #= Bird, % The person who smokes Pall Mall has a bird
Milk #= 3, % The man in the middle house drinks milk
Yellow #= Dunhill, % The owner of the yellow house smokes Dunhill
Norwegian #= 1, % The Norwegian lives in the first house
dist(Marlboro,Cat)#= 1, % The Marlboro smoker lives next to the cat
dist(Horse,Dunhill) #= 1, % The man with the horse lives next to the Dunhill smoker
Winfield #= Beer, % The Winfield smoker likes to drink beer
dist(Norwegian,Blue) #= 1, % The Norwegian lives next to the blue house
German #= Rothmanns, % The German smokes Rothmanns
dist(Marlboro,Water)#=1, % The Marlboro smoker’s neighbor drinks water.
write([Briton, Swede, Dane, Norwegian, German]), nl,
write([Dog, Bird, Cat, Horse, Fish]), nl.

11.6 Search, Games and Problem Solving

Exercise 6.1
(a) On the last level there are bd nodes. All previous levels together have

Nb(dmax) =
d−1∑

i=0

bi = bd − 1

b − 1
≈ bd−1

nodes, if b becomes large. Because bd/bd−1 = b there are about b times as
many nodes on the last level as on all other levels together.

(b) For a non-constant branching factor this statement is no longer true, as the fol-
lowing counter-example shows: A tree that branches heavily up to the level be-
fore last, followed by a level with a constant branching factor of 1, has exactly
as many nodes on the last level as on the level before last.

Exercise 6.2
(a) In Fig. 6.3 on page 86 the structure of the tree at the second level with its eight

nodes repeats. Thus we can calculate the average branching factor bm from b2
m =

8 to bm = √
8.
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(b) Here the calculation is not so simple because the root node of the tree branches
more heavily than all others. We can say, however, that in the interior of the
tree the branching factor is exactly 1 smaller than it would be without the cycle
check. Thus bm ≈ √

8 − 1 ≈ 1.8.

Exercise 6.3
(a) For the average branching factor the number of leaf nodes is fixed. For the ef-

fective branching factor, in contrast, the number of nodes in the whole tree is
fixed.

(b) Because the number of all nodes in the tree is usually a better measurement of
the computation time for searching an entire tree than the number of leaf nodes.

(c) For a large b according to (6.1) on page 87 we have n ≈ b̄d+1/b̄ = b̄d , yielding
b̄ = d

√
n.

Exercise 6.4
(a) 3-puzzle: 4! = 24 states, 8-puzzle: 9! = 362 880 states,

15-puzzle: 16! = 20 922 789 888 000 states.
(b) After moving the empty square 12 times in the clockwise direction we reach the

starting state again and thus create a cyclical sub-space with 12 states.

Exercise 6.6 (a) Mathematica program:

0 BreadthFirstSearch[Node_, Goal_, Depth_] := Module[{i, NewNodes={}},
1 For[i=1, i<= Length[Node], i++,
2 NewNodes = Join[ NewNodes, Successors[ Node[[i]] ] ];
3 If[MemberQ[Successors[ Node[[i]] ], Goal],
4 Return[{"Solution found", Depth+1}], 0
5 ]
6 ];
7 If[Length[NewNodes] > 0,
8 BreadthFirstSearch[NewNodes, Goal, Depth+1],
9 Return[{"Fail", Depth}]
10 ]
11 ]

(b) Because the depth of the search space is not limited.

Exercise 6.7
(a) For a constant cost 1 the cost of all paths at depth d are smaller than the costs

of all paths at depth d + 1. Since all nodes at depth d are tested before the first
node at depth d + 1, a solution of length d is guaranteed to be found before a
solution of length d + 1.

(b) For the neighboring search tree, node number 2 and the
solution node number 3 of cost 10 are generated first. The
search terminates. The nodes 4 and 5 with path costs of 2
each are not generated. The optimal solution is therefore
not found.
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Exercise 6.11 Depth-first search: the new node must have a lower rating than all
open nodes. Breadth-first search: the new node must have a higher rating than all
open nodes.

Exercise 6.12 Just like an admissible heuristic, the wife underestimates the dis-
tance to the goal. This could result in the two of them finding the quickest way to
the goal—though with great effort. This is only true, however, if the lady always
underestimates the distance.

Exercise 6.14
(a)

11.7 Reasoning with Uncertainty

Exercise 7.1
1. P(Ω) = |Ω|

|Ω| = 1.
2. P(∅) = 1 − P(Ω) = 0.
3. For pairwise exclusive events A and B: P(A ∨ B) = |A∨B|

|Ω| = |A|+|B|
|Ω| = P(A)+

P(B).
4. For two complementary events A and ¬A: P(A) + P(¬A) = P(A) + P(Ω −

A) = |A|
|Ω| + |Ω−A|

|Ω| = |Ω|
|Ω| = 1.

5. P(A ∨ B) = |A∨B|
|Ω| = |A|+|B|−|A∧B|

|Ω| = P(A) + P(B) − P(A ∧ B).

6. For A ⊆ B: P(A) = |A|
|Ω| ≤ |B|

|Ω| = P(B).

7. According to Definition 7.1 on page 115: A1 ∨ · · · ∨ An = Ω and
∑n

i=1 P(Ai) =
∑n

i=1
|Ai ||Ω| =

∑n
i=1 |Ai |
|Ω| = |A1 ∨···∨An|

|Ω| = |Ω|
|Ω| = 1.

Exercise 7.2
(a)

P(y > 3 |Class = good) = 7/9 P(Class = good) = 9/13 P(y > 3) = 7/13,

P (Class = gut |y > 3) = P(y > 3 |Class = good) · P(Class = good)

P (y > 3)

= 7/9 · 9/13

7/13
= 1,
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P(Class = good |y ≤ 3) = P(y ≤ 3 |Class = good) · P(Class = good)

P (y ≤ 3)

= 2/9 · 9/13

6/13
= 1

3
.

(b) P(y > 3 |Class = good) = 7/9.

Exercise 7.3
(a) eight events.
(b)

P(Prec = dry|Sky = clear,Bar = rising)

= P(Prec = dry,Sky = clear,Bar = rising)

P (Sky = clear,Bar = rising)
= 0.4

0.47
= 0.85.

(c) Missing row in the table: Cloudy Falling Raining 0.12

P(Prec = raining|Sky = cloudy) = P(Prec = raining,Sky = cloudy)

P (Sky = cloudy)

= 0.23

0.35
= 0.66.

(d) The missing probability measure is 0.15. The indifference principle (Defini-
tion 7.5 on page 126) now requires that both missing rows be symmetrically
allocated the value 0.075.

Exercise 7.4
The candidate first chose door number 1. Then the
host opened door number 3. We introduce the abbre-
viation Ai for “Car is behind door number i (before
the experiment begins) and Mi for “Host (modera-
tor) opens door number i”. Then P(A1) = P(A2) =
P(A3) = 1/3 and we compute

P(A1|M3) = P(M3|A1)P (A1)

P (M3)

= P(M3|A1)P (A1)

P (M3|A1)P (A1) + P(M3|A2)P (A2) + P(M3|A3)P (A3)

= 1/2 · 1/3

1/2 · 1/3 + 1 · 1/3 + 0 · 1/3
= 1/2 · 1/3

1/2
= 1/3,

P (A2|M3) = P(M3|A2)P (A2)

P (M3)
= 1 · 1/3

1/2
= 2/3.

Thus it is clear that it is better to switch to the other door.
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Exercise 7.5 The Lagrange function reads L = −∑n
i=1 pi lnpi + λ(

∑n
i=1 pi − 1).

Setting the partial derivatives with respect to pi and pj equal to zero yields

∂L

∂pi

= − lnpi − 1 + λ = 0 and
∂L

∂pj

= − lnpj − 1 + λ = 0.

Subtraction of these two equations results in pi = pj for all i, j ∈ {1, . . . , n}. Thus
p1 = p2 = · · · = pn = 1/n.

Exercise 7.6

PIT input data:
var A{t,f}, B{t,f};
P([A=t]) = 0.5;
P([B=t] | [A=t]) = 0.94;
QP([B=t]);

PIT output:
Reporting State of Queries

Nr Truthvalue Probability Query
1 UNSPECIFIED 7.200e-01 QP([B=t]);

Because PIT operates numerically, it cannot compute symbolically with the pa-
rameters α and β , rather only with concrete numbers.

Exercise 7.7

If: p1 = P(A,B),p2 = P(A,¬B),p3 = P(¬A,B),p4 = P(¬A,¬B)

The constraints are: p1 + p2 = α (11.1)

p4 = 1 − β (11.2)

p1 + p2 + p3 + p4 = 1 (11.3)

It follows that p3 = β − α. From (11.1) we infer, based on indifference, that
p1 = p2 = α/2. Thus P(B) = p1 + p3 = α/2 + β − α = β − α/2 = P(A ∨ B) −
1/2P(A). The corresponding PIT program reads

var A{t,f}, B{t,f};
P([A=t]) = 0.6;
P([B=t] OR [A=t]) = 0.94;
QP([B=t]).

Exercise 7.8 The Lagrange function reads

L = −
4∑

i=1

pi lnpi +λ1(p1 +p2 −α)+λ2(p1 +p3 −γ )+λ3(p1 +p2 +p3 +p4 −1).

(11.4)
Taking partial derivatives for p1, p2, p3, p4 we obtain

∂L

∂p1
= − lnp1 − 1 + λ1 + λ2 + λ3 = 0, (11.5)
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∂L

∂p2
= − lnp2 − 1 + λ1 + λ3 = 0, (11.6)

∂L

∂p3
= − lnp3 − 1 + λ2 + λ3 = 0, (11.7)

∂L

∂p4
= − lnp4 − 1 + λ3 = 0 (11.8)

and compute

(11.5)–(11.6): lnp2 − lnp1 + λ2 = 0, (11.9)

(11.7)–(11.8): lnp4 − lnp3 + λ2 = 0, (11.10)

from which it follows that p3/p4 = p1/p2, which we immediately substitute into
(7.12) on page 129:

p2p3

p4
+ p2 + p3 + p4 = 1

⇔ p2

(
1 + p3

p4

)
+ p3 + p4 = 1

(7.10)–(7.11): p2 = p3 + α − γ

(11.11)

which, substituted for p2, yields (p3 + α − γ )(1 + p3
p4

) + p3 + p4 = 1

(7.10) in (7.12): α + p3 + p4 = 1. (11.12)

Thus we eliminate p4 in (11.8), which results in

(p3 + α − γ )

(
1 + p3

1 − α − p3

)
+ 1 − α = 1 (11.13)

⇔ (p3 + α − γ )(1 − α − p3 + p3) = α(1 − α − p3) (11.14)

⇔ (p3 + α − γ )(1 − α) = α(1 − α − p3) (11.15)

⇔ p3 + α − γ − αp3 − α2 + αγ = α − α2 − αp3 (11.16)

⇔ p3 = γ (1 − α). (11.17)

With (11.12) it follows that p4 = (1 − α)(1 − γ ) and with (11.11) we obtain p2 =
α(1 − γ ) and p1 = αγ .

Exercise 7.9
(a)

M =
(

0 1000
10 0

)
.

(b)

M ·
(

p

1 − p

)
=

(
1000 · (1 − p)

10 · p
)

.
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Because the decision between delete or read is found by establishing the minimum
of the two values, it is sufficient to compare the two values: 1000(1 − p) < 10p,
which results in p > 0.99. In general, for a matrix M = ( 0 k

1 0

)
we compute the

threshold k/(k + 1).

Exercise 7.10
(a) Because A and B are independent, P(A|B) = P(A) = 0.2.
(b) By applying the conditioning rule (page 155) we obtain

P(C|A) = P(C|A,B)P (B)+P(C|A,¬B)P (¬B) = 0.2 ·0.9+0.1 ·0.1 = 0.19.

Exercise 7.11
(a)

P(Al) = P(Al,Bur,Ear) + P(Al,¬Bur,Ear)

+ P(Al,Bur,¬Ear) + P(Al,¬Bur,¬Ear)

= P(Al|Bur,Ear)P (Bur,Ear) + P(Al|¬Bur,Ear)P (¬Bur,Ear)

+ P(Al|Bur,¬Ear)P (Bur,¬Ear)

+ P(Al|¬Bur,¬Ear)P (¬Bur,¬Ear)

= 0.95 · 0.001 · 0.002 + 0.29 · 0.999 · 0.002 + 0.94 · 0.001 · 0.998

+ 0.001 · 0.999 · 0.998

= 0.00252,

P (J) = P(J,Al) + P(J,¬Al) = P(J|Al)P (Al) + P(J|¬Al)P (¬Al)

= 0.9 · 0.0025 + 0.05 · (1 − 0.0025) = 0.052,

P (M) = P(M,Al) + P(M,¬Al) = P(M|Al)P (Al) + P(M|¬Al)P (¬Al)

= 0.7 · 0.0025 + 0.01 · (1 − 0.0025) = 0.0117.

(b)

P(Al|Bur) = P(Al|Bur,Ear)P (Ear) + P(Al|Bur,¬Ear)P (¬Ear)

= 0.95 · 0.002 + 0.94 · 0.998 = 0.94002,

P (M|Bur) = P(M,Bur)/P (Bur) = [P(M,Al,Bur) + P(M,¬Al,Bur)]
/P (Bur)

= [P(M|Al)P (Al|Bur)P (Bur) + P(M|¬Al)P (¬Al|Bur)P (Bur)]
/P (Bur)

= P(M|Al)P (Al|Bur) + P(M|¬Al)P (¬Al|Bur)

= 0.7 · 0.94002 + 0.01 · 0.05998 = 0.659.

(c)

P(Bur|M) = P(M|Bur)P (Bur)

P (M)
= 0.659 · 0.001

0.0117
= 0.056.
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(d)

P(Al|J,M) = P(Al, J,M)

P (J,M)
= P(Al, J,M)

P (Al, J,M) + P(¬Al, J,M)

= 1

1 + P(¬Al,J,M)
P (Al,J,M)

= 1

1 + P(J|¬Al)P (M|¬Al)P (¬Al)
P (J|Al)P (M|Al)P (Al)

= 1

1 + 0.05·0.01·0.9975
0.9·0.7·0.0025

= 0.761,

P (J,M|Bur) = P(J,M|Al)P (Al|Bur) + P(J,M|¬Al)P (¬Al|Bur))

= P(J|Al)P (M|Al)P (Al|Bur)

+ P(J|¬Al)P (M|¬Al)P (¬Al|Bur))

= 0.9 · 0.7 · 0.94 + 0.05 · 0.01 · 0.06 = 0.5922,

P (Al|¬Bur) = P(Al|¬Bur,Ear)P (Ear) + P(Al|¬Bur,¬Ear)P (¬Ear)

= 0.29 · 0.002 + 0.001 · 0.998 = 0.00158,

P (J,M|¬Bur) = P(J,M|Al)P (Al|¬Bur) + P(J,M|¬Al)P (¬Al|¬Bur))

= P(J|Al)P (M|Al)P (Al|¬Bur)

+ P(J|¬Al)P (M|¬Al)P (¬Al|¬Bur))

= 0.9 · 0.7 · 0.00158 + 0.05 · 0.01 · 0.998 = 0.00149,

P (J,M) = P(J,M|Bur)P (Bur) + P(J,M|¬Bur)P (¬Bur)

= 0.5922 · 0.001 + 0.00149 · 0.999 = 0.00208,

P (Bur|J,M) = P(J,M|Bur)P (Bur)

P (J,M)
= 0.5922 · 0.001/0.00208 = 0.284.

(e) P(J)P (M) = 0.052 · 0.0117 = 0.00061, but P(J,M) = 0.00208 (see above).
Therefore P(J)P (M) �= P(J,M).

(f) See Sect. 7.4.5 on page 149.

(g)

Other solutions are possible
due to the counterproduc-
tive variable order. Thus we
learn: Always use a variable
order that respects causality!

(h) Only the CPT of the
alarm node changes.
All of the other nodes
are independent of
earthquake or inde-
pendent of earthquake
given alarm.

(i) Bur P (Al)

t 0.94
f 0.0016
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Fig. 11.1 Bayesian network
for the bicycle light. The CPT
for Li is given in the problem
statement

Exercise 7.12
(a), (b) See Fig. 11.1.

(c) The edge (Str,Li) is missing because Li and Str are conditionally independent
given V , i.e., P(Li|V,Str) = P(Li|V ) because the street condition has no direct
influence on the light, rather only over the dynamo and the voltage it generates. (The
conditional independence Li and Str given V cannot be shown here by calculation
based on available data for P(Li|V,Str) and P(Li|V ), rather it can only be asserted.)

(d) For the given CPTs:

P(R|Str) = P(R|Str,Flw)P (Flw) + P(R|Str,¬Flw)P (¬Flw)

= 0.95 · 0.4 + 0.7 · 0.6 = 0.8,

P (V |Str) = P(V |R)P (R|Str) + P(V |¬R)P (¬R|Str)

= 0.04 · 0.8 + 0.99 · 0.2 = 0.23.

11.8 Machine Learning and Data Mining

Exercise 8.1
(a) The agent is a function A, which maps the vector (t1, t2, t3, d1, d2, d3, f1, f2, f3)

consisting of three values each for temperature, pressure, and humidity to a class
value k ∈ {sunny, cloudy, rainy}.

(b) The training data file consists of a line of the form

ti1, ti2, ti3, di1, di2, di3, fi1, fi2, fi3, ki

for every single training data item. The index i runs over all training data. A con-
crete file could for example begin:

17,17,17,980,983,986,63,61,50,sunny
20,22,25,990,1014,1053,65,66,69, sunny
20,22,18,990,979,929,52,60,61,rainy

Exercise 8.2 We can see the symmetry directly using the definition of correlation
coefficients, or of covariance. Swapping i and j does not change the value. For the
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diagonal elements we calculate

Kii = σii

si · si =
∑N

p=1(x
p
i − x̄i )(x

p
i − x̄i )

∑N
p=1(x

p
i − x̄i )2

= 1.

Exercise 8.3 The sequence of values for w is

(1,1), (2.2,−0.4), (1.8,0.6), (1.4,1.6), (2.6,0.2), (2.2,1.2)

Exercise 8.4

(a) (b) Drawing a straight line in the graph yields:

1.5x1 + x2 − 15 > 0.

After 442 iterations, the perceptron learning
algorithms with the start vector w = (1,1,1)

returns:

w = (11,16,−129).

This corresponds to: 0.69x1 + x2 − 8.06 > 0

Exercise 8.5
(a) The vector

∑
x∈M+ x points in an “average” direction of all positive points and∑

x∈M− x points in an “average” direction of all negative points. The difference
of these vectors points from the negative points toward the positive points. The
dividing line is then perpendicular to this difference vector.

(b) The point cloud of the positive and negative points
dominate during the calculation of w. The two out-
liers hardly play a role here. For determining the
dividing line, however, they are important.

Exercise 8.6
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Exercise 8.7
(a) Nearest neighbor is (8,4), thus class 1.
(b) k = 2: class undefined since one instance of class 1 and one instance of class 2.

k = 3: decision 2:1 for class 0.
k = 5: decision 2:3 for class 1.

Exercise 8.8
(a) To be able to make general statements, we must assume that the points are

evenly distributed in the feature space, which means that the number of points
per area is overall approximately equal. Now we calculate the area Ad of a nar-
row ring of width δd and distance d around the point x:

Ad = π(d + �d)2 − πd2 = π(d2 + 2d�d + �d2) − πd2 ≈ 2πd�d.

The total weight of all points in the ring of width �d and distance d is thus
proportional to dwi = d/(1 + αd2) ≈ 1/(αd) for d → ∞.

(b) For this weighting, the total weight of all points in the ring of width �d and
distance d would be proportional to dw′

i = d/d = 1. Thus each ring of width
�d would have the same weight, independent of its distance to point x. This
certainly does not make sense because the immediate surroundings are most
important for the approximation.

Exercise 8.9 limx→0 x log2 x = limx→0
log2 x

1/x
= limx→0

1/(x ln 2)

−1/x2 = limx→0
−x
ln 2 =

0, where for the second equation l’Hospital’s rule was used.

Exercise 8.10 (a) 0 (b) 1 (c) 1.5 (d) 1.875 (e) 2.32 (f) 2

Exercise 8.11
(a) From log2 x = lnx/ ln 2, it follows that c = 1/ ln 2 ≈ 1.44.
(b) Since both entropy functions only differ by a constant factor, the position of the

entropy maximum does not change. Extrema under constraints also maintain
the same position. Thus the factor c does not cause a problem for the Max-
Ent method. For learning of decision trees, the information gains of various
attributes are compared. Because here only the ordering matters, but not the
absolute value, the factor c does not cause a problem here either.

Exercise 8.12
(a) For the first attribute we calculate

G(D,x1) = H(D) −
9∑

i=6

|Dx1=i |
|D| H(Dx1=i )

= 1 −
(

1

8
H(Dx1=6) + 1

8
H(Dx1=7) + 3

8
H(Dx1=8) + 3

8
H(Dx1=9)

)
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= 1 −
(

0 + 0 + 3

8
· 0.918 + 3

8
· 0.918

)
= 0.311

G(D,x2) = 0.75, thus x2 is selected. For
x2 = 0,1,3,4,5,6 the decision is clear.
For x2 = 2, x1 is selected. The tree then
has the form

x2 = 0: 0 (1/0)
x2 = 1: 0 (1/0)
x2 = 2:
| x1 = 6: 0 (0/0)
| x1 = 7: 0 (0/0)
| x1 = 8: 0 (1/0)
| x1 = 9: 1 (1/0)
x2 = 3: 0 (1/0)
x2 = 4: 1 (1/0)
x2 = 5: 1 (1/0)
x2 = 6: 1 (1/0)

(b) Information gain for the continuous attribute x2 as the root node:

Threshold Θ 0 1 2 3 4 5

G(D,x2 ≤ Θ) 0.138 0.311 0.189 0.549 0.311 0.138

Since G(D,x2 ≤ 3) = 0.549 >

0.311 = G(D,x1), x2 ≤ 3 is se-
lected. For x2 ≤ 3 the classifica-
tion is not unique. We calculate
G(Dx2≤3, x1) = 0.322, G(Dx2≤3, x2 ≤
0) = 0.073, G(Dx2≤3, x2 ≤ 1) = 0.17,
G(Dx2≤3, x2 ≤ 2) = 0.073. Thus x1
is selected. For x1 = 9 the classifica-
tion is not unique. Here the decision
is clearly G(D(x2≤3,x1=9), x1) = 0,
G(D(x2≤3,x1=9), x2 ≤ 1) = 1, x2 ≤ 1 is
chosen, and the tree once again has 100%
correctness.

Tree:
x2 <= 3:
| x1 = 6: 0 (1/0)
| x1 = 7: 0 (0/0)
| x1 = 8: 0 (1/0)
| x1 = 9:
| | x2 <= 1: 0 (1/0)
| | x2 > 1: 1 (1/0)
x2 > 3: 1 (3/0)

Exercise 8.13
(a) 100% for the training data, 75% for the test data, 80% total correctness.
(b) (A ∧ ¬C) ∨ (¬A ∧ B)

(c)
66.6% correctness for the training data
100% correctness for the test data
80% total correctness
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Exercise 8.14
(a) Equation (8.7) on page 189 for calculating the information gain of an attribute

A reads

InfoGain(D,A) = H(D) −
n∑

i=1

|Di |
|D| H(Di),

where n is the number of the values of the currently observed attribute. If the
attribute A is tested somewhere in the subtree as a successor of the value aj , then
only the value A = aj will occur in the dataset Dj and each of its subsets D′.
Thus D′ = D′

j and for all k �= j , |D′
k| = 0 and we obtain

InfoGain(D′,A) = H(D′) −
n∑

i=1

|D′
i |

|D′|H(D′
i ) = H(D′

j ) − |D′
j |

|D′
j |

H(D′
j ) = 0.

The repeated attribute thus has an information gain of zero, because of which it
is no longer used.

(b) From every continuous attribute A a binary attribute A > ΘD,A is generated.
If, further down in the tree, the attribute A is discretized again with a different
threshold ΘD′,A, then the attribute A > ΘD′,A is different from A > ΘD,A. If
it then has a higher information gain than all other attributes, it will be used in
the tree. However, this also means that for multiple occurrences of a continuous
attribute, the thresholds must be different.

Exercise 8.15

(a) P(Sky = clear) = 0.65
P(Bar = rising) = 0.67

Sky Bar P (Prec = dry|Sky,Bar)

Clear Rising 0.85
Clear Falling 0.44
Cloudy Falling 0.45
Cloudy Falling 0.2

(b) P(Sky = clear) = 0.65

Bar P (Prec = dry|Bar)

Rising 0.73
Falling 0.33

Sky P (Bar = rising|Sky)

Clear 0.72
Cloudy 0.57

(c) The necessary CPTs for P(Prec|Sky,Bar) and P(Bar|Sky), as well as P(Sky)
are already known.

(d) P a = (0.37,0.065,0.095,0.12,0.11,0.13,0.023,0.092)

P b = (0.34,0.13,0.06,0.12,0.15,0.054,0.05,0.1)

P = (0.4,0.07,0.08,0.1,0.09,0.11,0.03,0.12) (original distribution) Quadratic

distance: dq(P a,P ) = 0.0029, dq(P b,P ) = 0.014
Kullback–Leibler dist.: dk(P a,P ) = 0.017, dk(P b,P ) = 0.09
Both distance metrics show that the network (a) approximates the distribution
better than network (b). This means that the assumption that Prec and Sky are
conditionally independent given Bar is less likely true than the assumption that
Sky and Bar are independent.
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(e) P c = (0.4,0.07,0.08,0.1,0.09,0.11,0.03,0.12). This distribution is exactly
equal to the original distribution P . This is not surprising because there are
no missing edges in the network. This means that no independencies were as-
sumed.

Exercise 8.16 We can immediately see that scores and perceptrons are equiv-
alent by comparing their definitions. Now for the equivalence to naive Bayes:
First we establish that P(K|S1, . . . , Sn) > 1/2 is equivalent to P(K|S1, . . . , Sn) >

P (¬K|S1, . . . , Sn) because P(¬K|S1, . . . , Sn) > 1 − P(K|S1, . . . , Sn). We are in
fact dealing with a binary naive Bayes classifier here.

We apply the logarithm to the naive Bayes formula

P(K|S1, . . . , Sn) = P(S1|K) · · · · · P(Sn|K) · P(K)

P (S1, . . . , Sn)
,

and obtain

logP(K|S1, . . . , Sn) = logP(S1|K) + · · · + logP(Sn|K) + logP(K)

− logP(S1, . . . , Sn). (11.18)

To obtain a score, we must interpret the variables S1, . . . , Sn as numeric variables
with the values 1 and 0. We can easily see that

logP(Si |K) = (logP(Si = 1|K) − logP(Si = 0|K))Si + logP(Si = 0|K).

It follows that

n∑

i=1

logP(Si |K) =
n∑

i=1

(logP(Si = 1|K) − logP(Si = 0|K))Si

+
n∑

i=1

logP(Si = 0|K).

Now we define wi = logP(Si = 1|K)− logP(Si = 0|K) and c = ∑n
i=1 logP(Si =

0|K) and simplify

n∑

i=1

logP(Si |K) =
n∑

i=1

wiSi + c.

Substituted in (11.18) we obtain

logP(K|S1, . . . , Sn) =
n∑

i=1

wiSi + c + logP(K) − logP(S1, . . . , Sn).
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For the decision K it must be the case, according to the definition of the Bayes
classifier, that logP(K|S1, . . . , Sn) > log(1/2). Thus it must either be the case that

n∑

i=1

wiSi + c + logP(K) − logP(S1, . . . , Sn) > log(1/2)

or that
n∑

i=1

wiSi > log 1/2 − c − logP(K) + logP(S1, . . . , Sn),

with which we have defined a score with the threshold Θ = log 1/2 − c −
logP(K) + logP(S1, . . . , Sn). Because all of the transformations can be reversed,
we can also transform any score into a Bayesian classifier. With that, the equivalence
has been shown.

Exercise 8.17 Taking the logarithm of (8.10) on page 206 results in

logP(I |s1, . . . , sn) = log c + logP(I) +
l∑

i=1

ni logP(wi |I ).

Thereby very small negative numbers become moderate negative numbers. Since
the logarithm function grows monotonically, to determine the class we maximize
according to the rule

INaive-Bayes = argmax
I∈{w,f }

logP(I |s1, . . . , sn).

The disadvantage of this method is the somewhat longer computation time in the
learning phase for large texts. During classification the time does not increase, be-
cause the values logP(I |s1, . . . , sn) can be saved during learning.

Exercise 8.19 Let f be strictly monotonically increasing, that is, ∀x, y x < y ⇒
f (x) < f (y). If now d1(s, t) < d1(u, v), then clearly d2(s, t) = f (d1(s, t)) <

f (d1(u, v)) = d2(u, v). Because the inverse of f is also strictly monotonic, the re-
verse is true, that is, d2(s, t) < d2(u, v) ⇒ d1(s, t) < d1(u, v). Thus it has been
shown that d2(s, t) < d2(u, v) ⇔ d1(s, t) < d1(u, v).

Exercise 8.20

x1x2 = 4, and thus ds(x1, x2) =
√

23·26
4 = 6.11

x2x3 = 2, and thus ds(x2, x3) =
√

26·20
2 = 11.4

x1x3 = 1, and thus ds(x1, x3) =
√

23·20
1 = 21.4

Sentences 1 and 2 are most similar w.r.t. the distance metric ds .



300 11 Solutions for the Exercises

Exercise 8.21 Help for problems with KNIME: www.knime.org/forum

11.9 Neural Networks

Exercise 9.1 We want to show that f (Θ + x) + f (Θ − x) = 1.

f (Θ + x) = 1

1 + e− x
T

= e
x
T

1 + e
x
T

, f (Θ − x) = 1

1 + e
x
T

,

f (Θ + x) + f (Θ − x) = 1.

Exercise 9.3 Each pattern saved in the network has a size of n bits. The network
has a total of n(n− 1)/2 weights. If we reserve 16 bits per weight and define binary
storage of size 16n(n−1)/2 as equally large, then this can clearly store N = 8n(n−
1)/n = 4(n − 1) patterns n bits in size. For large n we obtain N = 4n as the limit.
If we take the quotient α of the number of storable bits and the number of available
storage cells, as in (9.11) on page 237, then we obtain the value 1 for the list memory
and the value α = 0.146n2/(16n(n − 1)/2) ≈ 0.018 for the Hopfield network. The
classical storage thus has (for 16 bits per weight), a capacity roughly 55 times higher.

Exercise 9.4
(a) Mathematica program for the least square method.

LeastSq[q_,a_] := Module[{Nq,Na,m,A,b,w},
Nq = Length[q]; m = Length[q[[1]]]; Na = Length[a];
If[Nq != Na, Print["Length[q] != Length[a]"]; Exit, 0];
A = Table[N[Sum[q[[p,i]] q[[p,j]], {p,1,Nq}]], {i,1,m}, {j,1,m}];
b = Table[N[Sum[a[[p]] q[[p,j]], {p,1,Nq}]], {j,1,m}];
w = LinearSolve[A,b]

]
LeastSq::usage = "LeastSq[x,y,f] computes from the query vectors q[[1]],...,

q[[m]] a table of coefficients w[[i]] for a linear mapping f[x] =
Sum[w[[i]] x[[i]], {i,1,m}] with f[q[[p]]] = a[[p]]."

(b) (c)

Exercise 9.6 (a) Learning works without errors. (b) Learning does not work with-
out errors!
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Exercise 9.7
(a) A mapping f is called linear if for all x, y, k it is the case that f (x + y) =

f (x) + f (y) and f (kx) = kf (x). Now let f and g be linear mappings.
Then f (g(x + y)) = f (g(x) + g(y)) = f (g(x)) + f (g(y)) and f (g(kx)) =
f (kg(x)) = kf (g(x)). Thus, successive executions of linear mappings are a lin-
ear mapping.

(b) We observe two arbitrary output neurons j and k. Each of the two represent a
class. Classification is done by forming the maximum of the two activations.
Let netj = ∑

i wjixi and netk = ∑
i wkixi be the weighted sum of values ar-

riving at neurons j and k. Furthermore, let netj > netk . Without an activation
function, class j is output. Now if a strictly monotonic activation function f is
applied, nothing changes in the result because, due to the function being strictly
monotonic, f (netj ) > f (netk).

Exercise 9.8 f1(x1, x2) = x2
1 , f2(x1, x2) = x2

2 . Then the dividing line in the
transformed space has the equation y1 + y2 = 1.

11.10 Reinforcement Learning

Exercise 10.1
(a) nn (b) (n − 1)n (c)

(d)

Exercise 10.2 Value iteration with row-wise updates of the V̂ -values from top left
to bottom right yields

0 0
0 0

→ 0.81 0.9
0.73 1

→ 1.35 1.49
1.21 1.66

→ ·· · → 2.36 2.62
2.12 2.91

Exercise 10.3
(c)
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(d) We see that the longer a policy becomes (i.e., the more steps, for example, that
a cycle of a cyclical strategy has), the closer the value γ must be to 1 because
a higher value for γ makes a longer memory possible. However, value iteration
converges that much more slowly.

Exercise 10.4 The value V �(3,3) at bottom right in the state matrix is changed as
follows:

V �(3,1) = 0.9V �(2,1) = 0.92V �(2,2) = 0.93V �(2,3) = 0.94V �(3,3). (11.19)

This chain of equations follows from (10.6) because, for all given state transitions,
the maximum immediate reward is r(s, a) = 0, and it is the case that

V �(s) = max
a

[r(s, a) + γV �(δ(s, a))] = γV �(δ(s, a)) = 0.9V �(δ(s, a)).

From (10.6) it also follows that V �(3,2) = 1 + 0.9V �(3,1), because r(s, a) = 1
is maximal. Analogously it is true that V �(3,3) = 1 + 0.9V �(3,2) and the circle
closes. The two last equations together yield V �(3,3) = 1 + 0.9(1 + 0.9V �(3,1)).
From (11.19) it follows that V �(3,1) = 0.94V �(3,3). Substituted in V �(3,3), this
yields

V �(3,3) = 1 + 0.9(1 + 0.95V �(3,3)),

from which the claim follows.

Exercise 10.5

Stable Q-values and an optimal
policy:

Exercise 10.6
(a) Number of states = �n. Number of actions per state = �n − 1. Number of poli-

cies = (�n)�
n = �n�n

.
(b)

l = 1 l = 2 l = 3 l = 4 l = 10

n = 1 1 4 27 256 1010

n = 2 1 256 3.9 × 108 1.8 × 1019 10200

n = 3 1 1.7 × 107 4.4 × 1038 3.9 × 10115 103000

n = 4 1 1.8 × 1019 3.9 × 10154 3.2 × 10616 1040000

n = 8 1 3.2 × 10616 1.4 × 1025043 6.7 × 10315652 10800000000
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(c) Per state there are now 2n possible actions. Thus there are (2n)�
n

policies.

l = 1 l = 2 l = 3 l = 4 l = 10

n = 1 2 4 8 16 1024

n = 2 4 256 2.6 × 109 4.3 × 109 1.6 × 1060

n = 3 6 1.7 × 106 1.0 × 1021 6.3 × 1049 1.4 × 10778

n = 4 8 2.8 × 1014 1.4 × 1073 1.6 × 10231 7.9 × 109030

n = 8 16 1.8 × 10308 1.7 × 107900 1.6 × 1078913 1.8 × 10120411998

(d) 10120411998 different policies can never be explored combinatorially, even if all
of the available computers in the world were to operate on them in parallel.
Thus “intelligent” algorithms are necessary to find an optimal or nearly optimal
policy.
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Learning, 161
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higher-order, 59, 60
probabilistic, 13, 29

Logic Theorist, 6, 10
Logically valid, 17
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M
Machine learning, 134, 161
Manhattan distance, 100, 207
Marginal distribution, 121
Marginalization, 120, 121, 123, 155
Markov decision process, 9, 273

nondeterministic, 270
partially observable, 261

Markov decision processes, 261
Material implication, 16, 115, 128
MaxEnt, 115, 126, 129, 131, 134, 149, 156

distribution, 126
MDP, 261, 263, 273

deterministic, 269
nondeterministic, 270

Memorization, 161
Memory-based learning, 182, 183
MGU, 44
Minimum spanning tree, 210
Model, 17
Modus ponens, 22, 30, 114, 125
Momentum, 251
Monotonic, 61
Multi-agent learning, 274
Multi-agent systems, 10
MYCIN, 10, 114, 132

N
Naive Bayes, 143, 144, 157, 166, 175, 202,

204, 219, 298
classifier, 202, 204

Naive reverse, 74
Navier–Stokes equation, 274
Nearest neighbor

classification, 176
method, 175

Nearest neighbor algorithm, 210
Negation, 16
Negation as failure, 73
Neural network, 6, 10, 180, 181, 221
Neural networks

recurrent, 226, 231
Neuroinformatics, 231
Neuroscience, 3
Neurotransmitter, 223
Noise, 177
Non-monotonic logic, 63, 130
Normal equations, 242
Normal form

conjunctive, 21
prenex, 37

O
Observable, 89, 103

Occam’s razor, 197
Offline algorithm, 89
Online algorithm, 89
Ontology, 53
Or branches, 70
Orthonormal, 234
Othello, 102, 103
Overfitting, 177, 197, 198, 201, 240, 243, 252,

273
OWL, 53

P
Paradox, 60
Paramodulation, 47
Partially observable Markov decision process,

261
Penguin problem, 77
Perceptron, 10, 169, 170, 224
Phase transition, 230
PIT, 129, 130, 149, 157
PL1, 13, 32
Planning, 76
Policy, 260

gradient method, 273
optimal, 260

POMDP, 261, 273
Postcondition, 52
Precondition, 52
Predicate logic, 5

first-order, 13, 32
Preference learning, 166
Premise, 26
Probabilistic

logic, 13, 63
reasoning, 7

Probability, 115, 117
distribution, 118
rules, 137

Product rule, 120
Program verification, 51
PROLOG, 7, 10, 20, 28, 67
Proof system, 19
Proposition variables, 15
Propositional

calculus, 13
logic, 15

Pruning, 192, 198
Pseudoinverse, 236
Pure literal rule, 46, 55

Q
Q-learning, 267, 275

convergence, 269
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Quickprop, 252

R
Random variable, 116
Rapid prototyping, 79
RDF, 53
Real-time decision, 95
Real-time requirement, 103
Receiver operating characteristic, 142
Reinforcement

learning, 257, 260
negative, 260
positive, 260

Resolution, 6, 22
calculus, 10, 20
rule, 22, 30

general, 22, 43
SLD, 27

Resolvent, 22
Reward

discounted, 260
immediate, 260, 269

Risk management, 141
RoboCup, 11, 273
Robot, 9, 258

walking-, 258
Robotics, 257
ROC curve, 143, 214
RProp, 252

S
Sample, 185
Satisfiable, 17
Scatterplot diagram, 163
Score, 132, 143, 203, 219, 242
Search

algorithm, 86
complete, 87
optimal, 89

heuristic, 84
space, 23, 27, 40, 46
tree, 86
uninformed, 84

Self-organizing maps, 255
Semantic trees, 28
Semantic web, 53
Semantics

declarative (PROLOG), 70
procedural (PROLOG), 70, 73

Semi-decidable, PL1, 59
Semi-supervised learning, 214
Sensitivity, 141, 148
Sensor, 9
Set of support strategy, 46, 55

Sigmoid function, 225, 241, 246
Signature, 15
Similarity, 175
Simulated annealing, 232
Situation calculus, 63
Skolemization, 39
SLD resolution, 30
Software reuse, 52
Solution, 87
Sound, 20
Spam, 204

filter, 11, 204
Specificity, 141
Starting state, 87
State, 87, 258, 259

space, 87
transition function, 260

Statistical induction, 136
Subgoal, 28, 69
Substitution axiom, 36
Subsumption, 46
Support vector, 252

machine, 252, 272
Support vector machine, 181
SVM, see support vector machine

T
Target function, 164
Tautology, 17
TD

-error, 271
-gammon, 273
-learning, 271, 273

Teaching-Box, 275
Temporal difference

error, 271
learning, 271

Term, 32
rewriting, 47

Test data, 164, 197
Text

classification, 204
mining, 166

Theorem prover, 6, 42, 43, 47, 51, 52
Training data, 58, 164, 197
Transition function, 270
True, 34
Truth table, 16

method, 19
Turing

Alan, 5
test, 4

Tweety example, 60, 63, 130
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U
Unifiable, 44
Unification, 44
Unifier, 44

most general, 44
Uniform cost search, 90
Unit

clause, 46
resolution, 46

Unsatisfiable, 17

V
Valid, 17, 34

Value iteration, 263
Variable, 32
VDM-SL, 52
Vienna Development Method Specification

Language, 52
Voronoi diagram, 177

W
Walking robot, 258
WAM, 68, 75
Warren abstract machine, 68
Watson, 13
WEKA, 185, 211


	Cover
	Undergraduate Topics in Computer Science
	Introduction to Artificial Intelligence
	ISBN 9780857292988
	Preface
	Contents
	Chapter 1: Introduction
	1.1 What Is Artificial Intelligence?
	1.1.1 Brain Science and Problem Solving
	1.1.2 The Turing Test and Chatterbots

	1.2 The History of AI
	1.2.1 The First Beginnings
	1.2.2 Logic Solves (Almost) All Problems
	1.2.3 The New Connectionism
	1.2.4 Reasoning Under Uncertainty
	1.2.5 Distributed, Autonomous and Learning Agents
	1.2.6 AI Grows up

	1.3 Agents
	1.4 Knowledge-Based Systems
	1.5 Exercises

	Chapter 2: Propositional Logic
	2.1 Syntax
	2.2 Semantics
	2.3 Proof Systems
	2.4 Resolution
	2.5 Horn Clauses
	2.6 Computability and Complexity
	2.7 Applications and Limitations
	2.8 Exercises

	Chapter 3: First-order Predicate Logic
	3.1 Syntax
	3.2 Semantics
	3.2.1 Equality

	3.3 Quantifiers and Normal Forms
	3.4 Proof Calculi
	3.5 Resolution
	3.5.1 Resolution Strategies
	3.5.2 Equality

	3.6 Automated Theorem Provers
	3.7 Mathematical Examples
	3.8 Applications
	3.9 Summary
	3.10 Exercises

	Chapter 4: Limitations of Logic
	4.1 The Search Space Problem
	4.2 Decidability and Incompleteness
	4.3 The Flying Penguin
	4.4 Modeling Uncertainty
	4.5 Exercises

	Chapter 5: Logic Programming with PROLOG
	5.1 PROLOG Systems and Implementations
	5.2 Simple Examples
	5.3 Execution Control and Procedural Elements
	5.4 Lists
	5.5 Self-modifying Programs
	5.6 A Planning Example
	5.7 Constraint Logic Programming
	5.8 Summary
	5.9 Exercises

	Chapter 6: Search, Games and Problem Solving
	6.1 Introduction
	6.2 Uninformed Search
	6.2.1 Breadth-First Search
	Analysis

	6.2.2 Depth-First Search
	Analysis

	6.2.3 Iterative Deepening
	Analysis

	6.2.4 Comparison

	6.3 Heuristic Search
	6.3.1 Greedy Search
	6.3.2 A-Search
	6.3.3 IDA-Search
	6.3.4 Empirical Comparison of the Search Algorithms
	6.3.5 Summary

	6.4 Games with Opponents
	6.4.1 Minimax Search
	6.4.2 Alpha-Beta-Pruning
	Complexity

	6.4.3 Non-deterministic Games

	6.5 Heuristic Evaluation Functions
	6.5.1 Learning of Heuristics

	6.6 State of the Art
	6.7 Exercises

	Chapter 7: Reasoning with Uncertainty
	7.1 Computing with Probabilities
	7.1.1 Conditional Probability
	Chain Rule
	Marginalization
	Bayes' Theorem


	7.2 The Principle of Maximum Entropy
	7.2.1 An Inference Rule for Probabilities
	7.2.2 Maximum Entropy Without Explicit Constraints
	7.2.3 Conditional Probability Versus Material Implication
	7.2.4 MaxEnt-Systems
	7.2.5 The Tweety Example

	7.3 Lexmed, an Expert System for Diagnosing Appendicitis
	7.3.1 Appendicitis Diagnosis with Formal Methods
	7.3.2 Hybrid Probabilistic Knowledge Base
	7.3.3 Application of Lexmed
	7.3.4 Function of Lexmed
	Learning of Rules by Statistical Induction
	Determining the Dependency Graph
	Estimating the Rule Probabilities

	Expert Rules
	Diagnosis Queries

	7.3.5 Risk Management Using the Cost Matrix
	Cost Matrix in the Binary Case

	7.3.6 Performance
	7.3.7 Application Areas and Experiences

	7.4 Reasoning with Bayesian Networks
	7.4.1 Independent Variables
	7.4.2 Graphical Representation of Knowledge as a Bayesian Network
	7.4.3 Conditional Independence
	7.4.4 Practical Application
	7.4.5 Software for Bayesian Networks
	7.4.6 Development of Bayesian Networks
	Lexmed as a Bayesian Network
	Causality and Network Structure

	7.4.7 Semantics of Bayesian Networks

	7.5 Summary
	7.6 Exercises

	Chapter 8: Machine Learning and Data Mining
	What Is Learning?
	The Learning Agent
	What Is Data Mining?
	8.1 Data Analysis
	8.2 The Perceptron, a Linear Classifier
	8.2.1 The Learning Rule
	8.2.2 Optimization and Outlook

	8.3 The Nearest Neighbor Method
	8.3.1 Two Classes, Many Classes, Approximation
	8.3.2 Distance Is Relevant
	8.3.3 Computation Times
	8.3.4 Summary and Outlook
	8.3.5 Case-Based Reasoning

	8.4 Decision Tree Learning
	8.4.1 A Simple Example
	8.4.2 Entropy as a Metric for Information Content
	8.4.3 Information Gain
	8.4.4 Application of C4.5
	8.4.5 Learning of Appendicitis Diagnosis
	8.4.6 Continuous Attributes
	8.4.7 Pruning-Cutting the Tree
	8.4.8 Missing Values
	8.4.9 Summary

	8.5 Learning of Bayesian Networks
	8.5.1 Learning the Network Structure

	8.6 The Naive Bayes Classifier
	Estimation of Probabilities
	8.6.1 Text Classification with Naive Bayes

	8.7 Clustering
	8.7.1 Distance Metrics
	8.7.2 k-Means and the EM Algorithm
	8.7.3 Hierarchical Clustering

	8.8 Data Mining in Practice
	8.8.1 The Data Mining Tool KNIME

	8.9 Summary
	8.10 Exercises
	8.10.1 Introduction
	8.10.2 The Perceptron
	8.10.3 Nearest Neighbor Method
	8.10.4 Decision Trees
	8.10.5 Learning of Bayesian Networks
	8.10.6 Clustering
	8.10.7 Data Mining


	Chapter 9: Neural Networks
	9.1 From Biology to Simulation
	9.1.1 The Mathematical Model

	9.2 Hopfield Networks
	9.2.1 Application to a Pattern Recognition Example
	9.2.2 Analysis
	9.2.3 Summary and Outlook

	9.3 Neural Associative Memory
	9.3.1 Correlation Matrix Memory
	9.3.2 The Pseudoinverse
	9.3.3 The Binary Hebb Rule
	9.3.4 A Spelling Correction Program

	9.4 Linear Networks with Minimal Errors
	9.4.1 Least Squares Method
	9.4.2 Application to the Appendicitis Data
	9.4.3 The Delta Rule
	9.4.4 Comparison to the Perceptron

	9.5 The Backpropagation Algorithm
	9.5.1 NETtalk: A Network Learns to Speak
	9.5.2 Learning of Heuristics for Theorem Provers
	9.5.3 Problems and Improvements

	9.6 Support Vector Machines
	9.7 Applications
	9.8 Summary and Outlook
	9.9 Exercises
	9.9.1 From Biology to Simulation
	9.9.2 Hopfield Networks
	9.9.3 Linear Networks with Minimal Errors
	9.9.4 Backpropagation
	9.9.5 Support Vector Machines


	Chapter 10: Reinforcement Learning
	10.1 Introduction
	10.2 The Task
	10.3 Uninformed Combinatorial Search
	10.4 Value Iteration and Dynamic Programming
	10.5 A Learning Walking Robot and Its Simulation
	10.6 Q-Learning
	10.6.1 Q-Learning in a Nondeterministic Environment

	10.7 Exploration and Exploitation
	10.8 Approximation, Generalization and Convergence
	10.9 Applications
	10.10 Curse of Dimensionality
	10.11 Summary and Outlook
	10.12 Exercises

	Chapter 11: Solutions for the Exercises
	11.1 Introduction
	11.2 Propositional Logic
	11.3 First-Order Predicate Logic
	11.4 Limitations of Logic
	11.5 PROLOG
	11.6 Search, Games and Problem Solving
	11.7 Reasoning with Uncertainty
	11.8 Machine Learning and Data Mining
	11.9 Neural Networks
	11.10 Reinforcement Learning

	References
	Index

