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@ Structural Variation

Deletions
Duplications
Inversions
Other

@ Array CGH

@ Algorithms for detecting structural variations from WGS
data (Introduction)

o Read-depth
o Split reads etc
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@ Read-depth Algorithm: Detailed Example



© Structural variants

© Array CGH

© Bioinformatics Approaches for Structural Variant
Discovery

@ Poisson
© GC Content
© Read depth

© CNV Calling
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CNVs vs. SNVs
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Peter N. Single-nucleotide CNV
variants
Structural
variants Paint mutations _
Homutstize Silﬂ;‘ Nonsense h Missense
e L ATC TCC. IGC-
AAG AAA UAG AGG ACG

Lys Lys STOP Arg Thr

@ Several thousand SNVs in

typical exome (1% des @ Hundreds/Thousands of
Genoms) CNVs per Genome
@ ca. 3—4 million SNVs in @ average size 250,000 nt

typical genome (nb.: avg. gene is ca. 60,000 nt)



CNVs vs. SNVs
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SIEE @ Most missense, nonsense mutations, class also includes

variants

synonymous subsitutions and intergenic subsitutions

@ Previously thought to be main source of interindividual
genomic variability

Copy-Number Variants (CNV)

@ Major class of genomic structural variation

@ Alteration in normal number of copies of a genomic
segment

(Normal: 2 copies; Deletion: 1 copy; Duplication 3 copies.)



Structural Variation: Definition
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N Structural variations (SV) are Genomic rearrangements that
variants effect more than 1 Kb?!

@ Duplication and Amplification

@ Deletion (often called Loss of heterozygosity if deletion
occurs somatically, e.g., cancer)

Translocation and Fusion

Inversion

Breakpoints at SV edges

Yes, this definition is arbitrary!
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Inversion

Allele A

Allele B

€

@ A balanced structural variation (no loss/gain of genomic
segment)

@ Can be a neutral variation
@ Can disrupt a coding sequence

@ Can interrupt regulatory interactions
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Intrachromosomal translocation

Allele A

Allele B

>

@ A balanced structural variation (no loss/gain of genomic
segment)

@ Can be a neutral variation
@ Can disrupt a coding sequence

@ Can interrupt regulatory interactions



Interchromosomal translocation
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variants
Allele A
Chromosome || AR ) Allele B

@ A balanced structural variation (no loss/gain of genomic
segment)

@ Translocation between two different chromosomes

@ Like other balanced SVs, can be neutral of disrupt coding
sequences or regulatory interactions



Deletion
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Structural ) Al Iele A

Allele B

@ An unbalanced structural variation (loss of genomic
segment)

@ results in dosage abnormality of genes contained in
deletion

@ Indirect regulatory imbalances also possible



Duplication
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Allele A
>

Structural
variants

Allele B

> >

@ An unbalanced structural variation (gain of genomic
segment)

@ results in dosage abnormality of genes contained in
deletion

@ Indirect regulatory imbalances also possible
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Structural Variation: Distribution in Genome
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~ 1000 SVs >2.5kb per Person

Korbel JO et al (2007) Paired-end mapping reveals extensive structural variation in the human genome.

Science 318:420-6.



Detection of Structural Variants
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Techniques Detection Maximum resolution  Sensitivity
Peter N. Copy-neutral events
Robinson
Deletions and Unbalanced Balanced LOH and
Insertions Inversions uPD
Structural
I — Early 1970s  Karyotyping/G-banding Yes Yes Yes Yes Yes No Low (>several Mb) Low
FISH-based
Early 1990s CGH Yes No Yes No No No Low (>several Mb) High
Mid 1990s M-FISH/SKY/COBRA Yes Yes Yes Yes No No Low (> several Mb) High
Late 1990s RxFISH Yes Yes Yes Yes Yes No Low (> several Mb) High
Array-based
Early 20008 1-Mb BAC array-CGH Yes No Yes No No No Average (> 1 Mb) High
Tiling-path BAC array-CGH Yes No Yes No No No High (>50-100kb) High
Oligonucleotide array-CGH Yes No Yes No No No High (catalogue >1kb, Very high
custom >400bp)
Late 2000s SNP arrays Yes No Yes No No Yes High (>5-10kb) High
NGS-based Yes Yes Yes Yes Yes Yes Very high (bp level) Very high

Abbreviations: BAG, bacterial arificial chromosome; GGH, comparative genomic hybeidisation; COBRA, combined binary ratio labelling: FISH, fluorescence in situ hybridisation; LOH, loss of
heterozyogosity: M-FISH, multiplex FISH; NGS, next generation sequencing: RxFISH, Rainbow cross-species FISH or crass-species colour banding: SNP, single-nucieotide polymorphism; SKY,
spectral karyotyping: UPD, uniparental disomy,

Methods in the grey-shaded area are discussed in this review.

@ Still no method to reliably detect all SVs
@ Array CGH currently the gold standard for CNVs
Le Scouarnec S, Gribble SM (2012) Characterising chromosome rearrangements: recent technical advances in

molecular cytogenetics. Heredity (Edinb) 108:75-85.



Array-CGH
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A small heterozygous deletion in the S-globin locus.
Urban AE et al. (2006) High-resolution mapping of DNA copy alterations in human chromosome 22 using

high-density tiling oligonucleotide arrays. Proc Natl Acad Sci U S A. 103:4534-9.



DNA Hybridization
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DNA is denatured GACT
by heating Renaturation
on cooling

Array CGH

DNA Hybridization:

o If two DNA strands are separated, they still " recognize”
their opposite (reverse complementary) strand.

@ denaturation: Heat DNA until strands separate

@ renaturation (hybridization): cool slowly and allow
reverse complementary to anneal to one another
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Array CGH
SV Discovery
Poisson

GC Content
Read depth

CNV Calling

Array-CGH

Array CGH: The Complete Process

Step1 Padent | Cnmwi Step2
oNA

Steps1-3 Patient and control DNA are labeled with fluorescent dyes
and applied to the microarray.

Step4  Patient and control DNA compete to attach, or hybridize,
step3 i to the microarmay.

The microarray scanner measures fluorescent signal intensity.

\J; Stepé  Computer software gathers the data and generates a plot.

Stepd HYBRIDIZATION

DNA dosage loss

: Y =
g ')| e
4 compuTeR OATA BLOT
ona

SOFTWARE {Chromoseme 7)

hyblh!hmun duslgelm dosage gain

@ Ratio of 2 fluorescent signals indications loss or gain of
DNA segment



Array-CGH
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Array CGH can detect
Array CGH @ Deletions

@ Duplications (& and other
gains in copy number)

@ More complex copy
number changes (e.g.,
mixed)

Urban AE et al. (2006) High-resolution mapping of DNA copy alterations in human chromosome 22 using

high-density tiling oligonucleotide arrays. Proc Natl Acad Sci U S A. 103:4534-9.



Array-CGH: Indications in Human Genetics
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@ Intellectual disability or developmental delay of unknown

Array CGH cause

@ Congenital malformation or facial dysmorphism

@ Autism or suspicion of a specific chromosomal disorder

Array-CGH is a screening investigation to investigate nearly
the entire genome for CNVs in an un targeted fashion. Many
findings are “new” and may be difficult to interpret: cause of
a disease or neutral polymorphism?



@ Structural variants

© Array CGH

e Bioinformatics Approaches for Structural Variant
Discovery

@ Poisson
© GC Content

© Read depth

© CNV Calling
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Bioinformatics Approaches for SV Discovery
with WGS data

WGS & SVs

Peter N.
Robinson

Several characteristics of NGS data can be exploited for iden-
tification of different kinds of structural variants

SV Discovery

Read depth
Read pairs

@ Orientation of mates
@ Distance of aligned mates to one another

Split reads

Fine mapping of breakpoints by local assembly



Paired NGS Reads

WGS & SVs

Peter N.
Robinson

Paired sequences are extremely useful for read mapping in whole
genome sequencing because we not only have the information
about the DNA sequences but also the distance and orientation
of the two mapped reads to one another. There are two major

classes of paired sequences.

SV Discovery

@ Paired end. Fragment libraries® are sequenced from both
ends. The sequencing direction is from the ends towards

the middle.
© Mate-pair libraries. We will review this today

2As discussed in the very first lecture.
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Mate pair

Construction of lllumina mate-pair sequencing libraries.

)

SV Discovery

o
2]

o

© 0 ©

Fragments are end-repaired using biotinylated nucleotides

After circularization, the two fragment ends (green and red) become
located adjacent to each other

The circularized DNA is fragmented, and biotinylated fragments are
purified by affinity capture. Sequencing adapters (Al and A2) are
ligated to the ends of the captured fragments

the fragments are hybridized to a flow cell, in which they are bridge
amplified. The first sequence read is obtained with adapter A2
bound to the flow cell

The complementary strand is synthesized and linearized with
adapter Al bound to the flow cell, and the second sequence read is
obtained

The two sequence reads (arrows) will be directed outwards from the
original fragment.

Berglund EC et al. (2011). Investig Genet 2:23.

lllumina

©
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3 ——
e

350-600 bp

36 by |
4 =0 Flow cell

— 36 by
5 e— Flow cell
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Paired-end vs. Mate pair
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Paired-end Mate pair
insert size =~ 250 bp  2-20 kb
SV Discovery DNA 1.5-5 ug 5-120 ug
lab work easier harder
Costs less more
Note
|-=——- 75---- 100-=====mmmmmmmmm o | oo 75

If we have two 75 bp paired-end reads with a 100bp middle piece, the insert size is calculated as

2 X 75 + 100 = 250 nt. The fragment size is insert size plus length of both adapters (/= 120 nt extra).



Read depth
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SV Discovery — JR—

Heterozygous Deletion?
Mappability Issue?
Poor "sequencability"?



Read depth

PACSISVS Characteristic signatures of paired-end sequences J
Peter N.
Robinson
reference
ced
Structural sequen /l'f'ﬂpped
variants Normal - -
Array CGH
SV Discovery Inversion - ‘
Poisson Tandem
GC Content duplication - -
Read depth Insertion ' -
CNV Calling
Deletion =) —
Translocation ‘ -Ger'

Chr5

graphic credit: Victor Guryev



Deletions in WGS Data
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SV classes Read pair Read depth Split read Assembly
SV Discovery B : == === — 5
) Contig/
Deletion L — Eae— scaffold —————
Assemble”_— —
)

£

What are the signals that let us detect a deletion?




Deletions in WGS Data
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SV classes

Deletion

SV Discovery

Read pair

Read depth

Split read

Read pair
Read depth
Split read

Assembly

Assembly

—

Contig/
scaffold

Assemble” A
6 a o » —ap)

increased interpair mapping distance

fewer reads

single read is “merged” from two seg-

ments surrounding deletion

assembled sequence shows “gap”
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Insertions in WGS Data

5V classes

Nowel
sequence
insertion

Read pair

Read depth

Not applicable

split read

Assembly

Contig/

scaffold

Assemble’_—
e

What are the signals that let us detect a insertion?

Tt
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Insertions in WGS Data
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Robinson SV classes Read pair Read depth Split read Assembly
Novel 4 \ : Contig/
sequence = = Not applicable =mae — scaffold —
insertion
Assemble’_
SV Discovery
Read pair

decreased interpair mapping distance
Read depth not applicable3

Split read single read is split into two segments
surrounding novel insertion sequence
Assembly assembled sequence with

inserted
novel sequence

Novel sequence will not map to genome



Inversions in WGS Data
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SV classes Read pair Read depth Split read Assembly
" — _ = _
SV Discovery RS (" 7
i ey : 3 y Contig/ | Inversion;
Inversion i B i Not applicable — e scaffold 18
RP1 RP 2 Inversion

What are the signals that let us detect a inversion?




Inversions in WGS Data
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; SV el Read pair Read depth split read Assembl
Robinson cosm Pe P Pl y
—— —— —

=g = —
Inversion L e Not applicable . i.c‘:;\f\f[‘;;’]; nversion

RP1 RP 2 Inversion

Assemble”_—

SV Discovery

Read pair aberrant mapping (>---> instead of
>---<) and interpair distance

Read depth not applicable?

Split read single read is split into two segments
one of which is inverted

Assembly assembled sequence with inverted se-
quence

4
Same amount of sequence



Duplications in WGS Data
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SV classes Read pair Read depth Split read Assembly

. == —_—
SV Discovery = —
Tandem v LV

duplication S ———1 ——

Assemble”

Contig/

G scaffold

What are the signals that let us detect a duplication?




Duplications in WGS Data
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St = — T ———
Tandem e S
il =i = :

Contig/
scaffold

SV Discovery
Read pair aberrant mapping (<---> instead of

>---<) and interpair distance

Read depth increasd

Split read single read is split into end of one du-
plicated block followed by beginning
of next block

Assembly assembled sequence with duplicated
sequence

Graphics credit: Le Scouarnec and Gribble SM Heredity (Edinb). 2012; 108:75-85.



WGS & SVs

Peter N.
Robinson

Structural
variants
Array CGH
SV Discovery
Poisson

GC Content
Read depth

CNV Calling

Translocations in WGS Data

a) single-end
sequencing

b) paired end (short
insert library)

c) mate-pair (large

insert library)

Sequence =4  Physical =4

Sequence =2  Physical =4

Chr 2q12 |

Sequence=1 . Physical =7

What are the signals that let us detect a translocation? J




Signals
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and Read Types

Single-end

Split-read

Paired-end

Gap read pair

@ In sum: There are many different signals that are used for
SV detecction. Different read types have distinct attributes



Read depth
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In the remainder of this lecture, we will examine how read depth
analysis can be used to search for CNVs. We will concentrate
on three topics.
Poisson

@ Poisson distribution: Review
@ G/C dependence

e Simplified version of algorithm in Yoon et al.®

5 - . . .
Sensitive and accurate detection of copy number variants using read depth of coverage. Genome Res.

2009;19:1586-92.



Poisson

PRCSEEVS A Poisson experiment is a statistical experiment that has the following
Peter N. properties:
Robinson . . .
@ The experiment results in outcomes that can be classified as
successes or failures.
@ The average number of successes (1) that occurs in a specified
region is known.
- © The probability that a success will occur is proportional to the size
of the region.
@ The probability that a success will occur in an extremely small

region is virtually zero.

The “region” can be a length, an area, a volume, a period of time, etc.

Early use of Poisson distribution: Ladislaus Bortkiewicz
(1898): investigation of the number of soldiers in the

Prussian army killed accidentally by horse kick.



Poisson
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@ k = number of occurrences
@ )\ = average occurrences/time interval
For example, if the average number of soldiers killed by being

kicked by a horse each year in each of 14 cavalry corps is 1.7,
what is the probability of 4 soldiers being killed in one year?

Poisson

.7)te-(1)

P(X =4) = ( i —0.063 (2)

In R,

> dpois(4,1.7)
[1] 0.06357463



Poisson
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3
A=1
A=3
A=6
2 8 A=9
&
Poisson &
2
o | .
3
T T T T T
0 5 10 15 20

@ For X ~ Poisson()\), both the mean and the variance are
equal to A



Poisson and Read counts
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beter N Many NGS algorithms model read counts as a Poisson distri-

Robinson bution

@ Segment the genome into Windows (e.g., 1000 bp).
@ Count number of reads in each Window

@ All else equal, we expect half as many reads as normal in
the case of a deletion, and 1.5 times as many reads as
normal in the case of a duplication

Poisson

N Total number of reads
A= ——| where W size of window (3)

G  Size of genome
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Poisson and Normal Approximation

The Poisson distribution can be derived as a limiting form of
the binomial distribution in which n is increased without limit
as the product A = np is kept constant.

@ This corresponds to conducting a very large number of
Bernoulli trials with the probability p of success on any
one trial being very small.

@ This suggests we can approximate the Poisson distribution
by the Normal distribution

The central limit theorem: the mean of a sufficiently large number of independent random variables, each

with finite mean and variance, is approximately normally distributed



Poisson and Normal Approximation
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For sufficiently large values of A, (say A > 1,000), the
Normal(xz = \,0 = v/)) Distribution is an excellent approxi-
mation to the Poisson( A) Distribution.

Poisson

If \ is greater than about 10, then the Normal Distribution is a
good approximation if an appropriate continuity correction is
performed.



Poisson and Normal Approximation
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k=25
o
1
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2
Poisson 3 |
(=}
[=]
(=}
S T
0 10 20 30 40
k

@ X ~ Poisson(\ = 20)
Mke=A

0 P(X>25)=1-P(X <25)=1-Y7%, o




Poisson and Normal Approximation
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[S]
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Poisson 10
3
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o P(X >25)= ) dx

fx 25 2\/%



Poisson and Normal Approximation
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approximation to the Poisson (it is not an extremely close
approximation for X in this range yet)®.

poiscon > pnorm(25,mean=20,sd=sqrt(20),lower.tail=FALSE)

[1] 0.1317762

> ppois(25,20,lower.tail=FALSE)
[1] 0.112185

For this reason, we will see the Normal distribution (often a
z-score) used to calculate read depth statistics.

®1t would be better for A = 50 and better yet for-\ = 1000 or above.



Poisson and Normal Approximation
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Normal,
Bell-shaped Curve
5 b
Percentage of ' | |
cases in 8 portions : 2.14% 13.59%| 34.13% | 34.13% [13.59% 2.14% : 13%
of the curve ' .
Standard Deviations -40 -30 -20 -1o 0 +10 +20 +30 +40
n Cumulative 'D L ' ! . [ I
Poisson Percentages 0. 1I/u 2‘3/0 15|9/u 50l/o 84‘1 % 97, l7/a 99‘9&
1 L T[T 1T 1 [ 1T 11 T T T
Percentiles 1 5 10 20 30 40 50 60 70 80 90 95 99
Zscores -4.0 -3.0 -2.0 -1.0 0 +1.0 +2.0 +3.0 +4.0
T scores | 20 30 40 50 60 70 80 ‘
Standardeel 1 |2‘3|4|5l6|7|3‘ 9 l
(Stanines)
Percentage 4% % 12%|17% 20% | 17% | 12% | 7% 4%
in Stanine

Z-Score

(4)

grapic: wikipedia



GC Content
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=ci Adenine
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f
N
“deoxyribose

s
deoxyribose ¢}

\ \ "soh Guanine
GC Content CytOSIne / Bl 8 NS “deoxyribose

N —N
deoxynbose/ (o0 ‘H,N
grapic: wikipedia
G+ C
@ The GC content AT C j__ Cr T of a sequence affects

many properties, e.g., annealing temperature of PCR
primers



GC Content in Bioinformatics
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GC content is correlated with multiple other parameters, and
bioinformatics analysis often needs to take this into account

@ 1T GC content & 1T mRNA stability

@ Giemsa dark bands (cytogenetics) < locally GC-poor

regions compared with light bands
GC Content

@ Housekeeping (ubiquitously expressed) genes in the
mammal genome < on average slightly GC-richer than
tissue-specific genes.

@ Silent-site GC content correlates with gene expression
efficiency in mammalian cells.

for instance...



GC Content in Genomics

PRCSEEVS GC content is can confound the results of a number of genomics
Peter N. experiments
Robinson
@ Dependence between fragment count (read coverage) and

GC Content °

GC content found in Illlumina sequencing data.

The GC effect is unimodal: both GC-rich fragments and
AT-rich fragments < underrepresented.

RNA-seq: GC-rich and GC-poor fragments tend to be
under-represented in RNA-Seq, so that, within a lane, read
counts are not directly comparable between genes
ChlIP-seq: Peaks (profiles) correlate positively with
genomic GC content

Whole genome sequencing: GC content may correlate
positively with read depth

See for instance: Benjamini Y, Speed TP (2012) Summarizing and correcting the GC content bias in

high-throughput sequencing. Nucleic Acids Res 40:e72.



Read Depth
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We can get a simple picture of the distribution of reads acrosss
a chromosome by counting how many reads start in a given
chromosomal window.
Basic workflow
@ Align reads from high or low coverage genome sequencing
" @ Count the number of reads that begin in each window of
ead depth

size N7
@ Plot (eyeball-o-metrics)

There is a tutorial on how to do the next few analysis steps on the website.

"The best size for N will depend on the questions, the coverage, and the
algorithm, but might be between 1000-100,000:



Read Depth

WES&SVs This is a typical plot showing the raw read depth following
fover . genome sequencing.
obinson

Thousand genomes project, individual HG00155, chromosome 11, low-coverage
Structural
variants

Array CGH

SV Discovery

Poisson

GC Content bt
Read depth

CNV Calling

count

500

50
Chri1 (Mb)



GC content vs. Read Depth

WGS & SVs Here, we have plotted read count vs. GC content
Peter N. A Ferm A
Robinson loess-smoothed regression line is shown
Read depth

count

There is a clear, if complicated, relationship between GC-content and read depth in this sample



CNV Calling via Read Depth
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peter N. With all of this in hand, we now will examine how to call CNVs
from whole genome data. We will present a simplified version of
Yoon S et al (2009) Sensitive and accurate detection of copy
number variants using read depth of coverage. Genome Res
9:1586-92.

Align whole-genome sequences (high-coverage)
Filter out reads with low mapping quality (PHRED < 30)
Count read depth in windows (100bp)

adjust read-depth according to GC content of window

CNV Calling

calculate z-score for each window

000000

combine neighboring windows to maximize score



CNV Calling via Read Depth

WES & SVs Step 1-3. Alignment and raw read depth |
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Robinson @ Align sequence reads to genome
@ In the Yoon et al. paper, the MAQ aligner was used with
default settings
o Filter out low quality reads (PHRED < 30)
@ Segment genome into 100bp windows and count reads (by
start position)
CNV Calling E

100 bp



CNV Calling via Read Depth
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Step 4. GC adjustment
Fi = I
mgc
@ adjusted read count
CNV Calling @ raw read count
@ median count for GC content

@ overall median count per window




CNV Calling via Read Depth
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@ A deletion or duplication is evident as a decrease or
increase across multiple consecutive windows
L]

CNV Calling s "

o

T

T T T T T T T T .
150.792 150.812 150.832 150.852 150.872



CNV Calling via Read Depth

WGS & SVs
Peter N.
Robinson
Step 5a. Event detection. The authors developed a heuristic
they call Event-wise testing (EWT)
@ Rapidly search across all windows for windows that meet
criteria of statistical significance
@ Clusters of small events are grouped into larger events
CNV Calling

@ Basic idea: Ildentify regions of consecutive 100-bp windows
with significantly increased or decreased read depth (7).



CNV Calling via Read Depth
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Step 5b. Convert to Z-Score J
o Calculate mean (u) and standard deviation (o) of #;
(adjusted read depth) across genome
@ transform the adjusted read depth into the corresponding
Z-score
CNV Calling

Zi:f:—M (5)




CNV Calling via Read Depth
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Step 5b. Convert to upper and low tail probabilities
@ Convert the Z-score to its upper-tail probability
PUPPT — Pr(Z > z) (6)
@ This is simply the probability that the read count in
CNV Calling window i is at least as high as observed
@ Analogously, we calculate a lower-tail probability
PLower — Pr(Z < z) (7)



CNV Calling via Read Depth
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—_— Step 5c. Evaluate intervals of consecutive windows J
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@ For an interval A of ¢ consecutive windows, we call it an
unusual event if (for duplications)
1
Upper - 14 ¢
max q P; lie Apr < 7 X FPR (8)
1
e @ Here, L is the length in windows of the entire chromosome

@ Thus % is the proportion of the chromosome that is taken
up by the candidate CNV

@ If all p-values for the windows of A are less (more
significant) than the term on the right side, we call the
interval an “unusual event”



CNV Calling via Read Depth
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1
¢ z
Peter N. Step 5¢c. The EWT score (L X FPR> increases as the num-

Robinson

ber of windows, ¢, increases

08
I

CNV Calling

prob
04

0.0
I




CNV Calling via Read Depth
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Step bc. lteration |

@ The initial analysis calculates the p-values for each single
window

@ The EWT procedure then searches for two-window
intervals (i.e., £ = 2) such that

1
z
CNV Calling max; {PiUpper’I- c .A} < (f « FPR) )

e Continue iterating (increasing the size of ¢ by 1) as long as
this condition is fulfilled.



CNV Calling via Read Depth
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Step 5d. Deletion J

@ The same procedure is now done separately for deletions,
using the formula

1

/ 7
CNV Calling max {P;Lower“ € A} < (L X FPR) (9)
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@ We are making millions of tests across the genome ...
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Peter N. The p-value is the probability, under the null hypothesis, that
the test statistic assumes the observed or a more extreme
value. It is important to realize that if we go on testing long
enough, we will inevitably find something which is “significant”
by chance alone.

@ If we test a null hypothesis that is true using a significance
level of e = 0.05, then there is a probability of
CNV Calling 1 — a = 0.95 of arriving at a correct conclusion of
non-significance.
@ If we now test two independent true null hypotheses, the
probability that neither test is significant is
0.95 x 0.95 = 0.90.
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You can see where this is leading...

o If we test 20 independent null hypotheses, the probability
that none will be significant is then (0.95)%° = 0.36.
@ This corresponds to a probability of 1 — 0.36 = 0.64 of
getting at least one spurious significant result, and the
AL expected number of spurious significant results in 20 tests
is20 x0.05=1
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