WGS & SVs

Peter N. Robinson

Structural variants Array CGH SV Discover Poisson GC Content Read depth

Genome Sequencing and Structural Variation

Peter N. Robinson

Institut für Medizinische Genetik und Humangenetik Charité Universitätsmedizin Berlin

Genomics: Lecture #10

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Today

WGS & SVs

Peter N. Robinson

- Structural variants Array CGH
- Poisson
- GC Conten
- Read depth
- CNV Calling

- Structural Variation
 - Deletions
 - Duplications
 - Inversions
 - Other
- Array CGH
- Algorithms for detecting structural variations from WGS data (Introduction)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Read-depth
- Split reads etc
- Read-depth Algorithm: Detailed Example

Outline

WGS & SVs

Peter N. Robinson

1 Structural variants

Array CGH

- Structural variants Array CGH SV Discove Poisson GC Content Read depth
- CNV Calling

Bioinformatics Approaches for Structural Variant Discovery

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

- 4 Poisson
- **G** GC Content
- 6 Read depth
- **CNV** Calling

CNVs vs. SNVs

WGS & SVs

Peter N. Robinson

Structural variants Array CGH SV Discovery Poisson GC Content Read depth CNV Calling

Single-nucleotide variants

CNV

- Several thousand SNVs in typical exome (1% des Genoms)
- ca. 3–4 million SNVs in typical genome

- Hundreds/Thousands of CNVs per Genome
- average size 250,000 nt

(n.b.: avg. gene is ca. 60,000 nt)

CNVs vs. SNVs

WGS & SVs

Peter N. Robinson

Structural variants Array CGH SV Discover Poisson

Read deptl

CNV Calling

Single-Nucleotide Variants (SNV)

- Most missense, nonsense mutations, class also includes synonymous subsitutions and intergenic subsitutions
- Previously thought to be main source of interindividual genomic variability

Copy-Number Variants (CNV)

- Major class of genomic structural variation
- Alteration in normal number of copies of a genomic segment

(Normal: 2 copies; Deletion: 1 copy; Duplication 3 copies.)

Structural Variation: Definition

WGS & SVs

Peter N. Robinson

Structural variants Array CGH SV Discovery Poisson GC Content Read depth

CNV Calling

Structural variations (SV) are Genomic rearrangements that effect more than 1 $\rm Kb^1$

- Duplication and Amplification
- Deletion (often called Loss of heterozygosity if deletion occurs somatically, e.g., cancer)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Translocation and Fusion
- Inversion
- Breakpoints at SV edges

¹Yes, this definition is arbitrary!

Inversion

Peter N. Robinson

Structural variants Array CGH SV Discovery Poisson GC Content Read depth

CNV Calling

- A balanced structural variation (no loss/gain of genomic segment)
- Can be a neutral variation
- Can disrupt a coding sequence
- Can interrupt regulatory interactions

Intrachromosomal translocation

A balanced structural variation (no loss/gain of genomic segment)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Can be a neutral variation
- Can disrupt a coding sequence
- Can interrupt regulatory interactions

Interchromosomal translocation

- A balanced structural variation (no loss/gain of genomic segment)
- Translocation between two different chromosomes
- Like other balanced SVs, can be neutral of disrupt coding sequences or regulatory interactions

results in dosage abnormality of genes contained in deletion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Indirect regulatory imbalances also possible

Duplication

- An **unbalanced** structural variation (gain of genomic segment)
- results in dosage abnormality of genes contained in deletion
- Indirect regulatory imbalances also possible

Structural Variation: Distribution in Genome

$\sim 1000 \ {\rm SVs} > 2.5 {\rm kb}$ per Person

Korbel JO et al (2007) Paired-end mapping reveals extensive structural variation in the human genome. Science 318:420–6. $\langle \Box \rangle + \langle \Box \rangle + \langle$

Detection of Structural Variants

WGS & SVs

Peter N. Robinson

Structural variants

Array CGH

SV Discover

Poisson

GC Content

Dood doot

CNN/ Calling

	Techniques	Detection					Maximum resolution	Sensitivity	
		Deletions and duplications Insert		Unbalanced ertions translocations	Copy-neutral events				
			Insertions		Balanced translocations	Inversions	LOH and UPD		
Early 1970s	Karyotyping/G-banding	Yes	Yes	Yes	Yes	Yes	No	Low (>several Mb)	Low
	FISH-based								
Early 1990s	CGH	Yes	No	Yes	No	No	No	Low (>several Mb)	High
Mid 1990s	M-FISH/SKY/COBRA	Yes	Yes	Yes	Yes	No	No	Low (>several Mb)	High
Late 1990s	RxFISH	Yes	Yes	Yes	Yes	Yes	No	Low (>several Mb)	High
	Array-based								
Early 2000s	1-Mb BAC array-CGH	Yes	No	Yes	No	No	No	Average (>1 Mb)	High
	Tiling-path BAC array-CGH	Yes	No	Yes	No	No	No	High (>50-100 kb)	High
	Oligonucleotide array-CGH	Yes	No	Yes	No	No	No	High (catalogue > 1 kb, custom > 400 bp)	Very high
Late 2000s	SNP arrays	Yes	No	Yes	No	No	Yes	High (>5-10 kb)	High
	NGS-based	Yes	Yes	Yes	Yes	Yes	Yes	Very high (bp level)	Very high

Abbreviations: BAC, bacterial articlai chromosome: CGH, comparative genomic hybridisation; COBRA, combined binary ratio labeling; FISH, fluorescence in *situ* hybridisation; CMI, loss of htterpropagoity. Http://structure.ifstration.com/structure

Still no method to reliably detect all SVsArray CGH currently the gold standard for CNVs

Le Scouarnec S, Gribble SM (2012) Characterising chromosome rearrangements: recent technical advances in molecular cytogenetics. *Heredity (Edinb)* 108:75-85.

Array-CGH

A small heterozygous deletion in the β -globin locus.

Urban AE et al. (2006) High-resolution mapping of DNA copy alterations in human chromosome 22 using high-density tiling oligonucleotide arrays. *Proc Natl Acad Sci U S A*. **103**:4534-9.

DNA Hybridization

Structural variants

Array CGH

- SV Discover
- GC Conten
- Read deptl
- **CNV** Calling

DNA Hybridization:

- If two DNA strands are separated, they still "recognize" their opposite (reverse complementary) strand.
- denaturation: Heat DNA until strands separate
- renaturation (hybridization): cool slowly and allow reverse complementary to anneal to one another

Array-CGH

Structura variants

Array CGH

Poisson

GC Conten

Read depth

CNV Calling

 Ratio of 2 fluorescent signals indications loss or gain of DNA segment

Array-CGH

WGS & SVs

Peter N. Robinson

Structural variants

Array CGH

SV Discovery

Poisson

GC Conter

Read dept

CNV Calling

Array CGH can detect

- Deletions
- Duplications (& and other gains in copy number)
- More complex copy number changes (e.g., mixed)

Urban AE et al. (2006) High-resolution mapping of DNA copy alterations in human chromosome 22 using

high-density tiling oligonucleotide arrays. Proc Natl Acad Sci U S A. 103:4534-9.

Array-CGH: Indications in Human Genetics

WGS & SVs

Peter N. Robinson

- Structural variants
- Array CGH
- SV Discovery
- Poisson
- GC Conten
- Read depth
- **CNV** Calling

- Intellectual disability or developmental delay of unknown cause
- Congenital malformation or facial dysmorphism
- Autism or suspicion of a specific chromosomal disorder

Array-CGH is a screening investigation to investigate nearly the entire genome for CNVs in an un targeted fashion. Many findings are "new" and may be difficult to interpret: cause of a disease or neutral polymorphism?

Outline

WGS & SVs

Peter N. Robinson

Structural variants

Array CGH

Array CGH

Poisson GC Conte Read dep

CNV Calling

Bioinformatics Approaches for Structural Variant Discovery

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

4 Poisson

GC Content

6 Read depth

CNV Calling

Bioinformatics Approaches for SV Discovery with WGS data

WGS & SVs

Peter N. Robinson

Structural variants Array CGH

SV Discovery

Poisson

GC Content

Read dept

CNV Calling

Several characteristics of NGS data can be exploited for identification of different kinds of structural variants

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Read depth
- Read pairs
 - Orientation of mates
 - Ø Distance of aligned mates to one another
- Split reads
- Fine mapping of breakpoints by local assembly

Paired NGS Reads

WGS & SVs

Peter N. Robinson

Structural variants Array CGH SV Discovery Poisson GC Content Read depth Paired sequences are extremely useful for read mapping in whole genome sequencing because we not only have the information about the DNA sequences but also the distance and orientation of the two mapped reads to one another. There are two major classes of paired sequences.

- Paired end. Fragment libraries² are sequenced from both ends. The sequencing direction is from the ends towards the middle.
- Mate-pair libraries. We will review this today

²As discussed in the very first lecture. $\langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Box \rangle$

Mate pair

WGS & SVs

Peter N. Robinson

Structural variants

Array CGH

SV Discovery

Poisson

- GC Conten
- Read dept
- **CNV** Calling

Construction of Illumina mate-pair sequencing libraries.

Fragments are end-repaired using biotinylated nucleotides

- After circularization, the two fragment ends (green and red) become located adjacent to each other
- The circularized DNA is fragmented, and biotinylated fragments are purified by affinity capture. Sequencing adapters (A1 and A2) are ligated to the ends of the captured fragments

- the fragments are hybridized to a flow cell, in which they are bridge amplified. The first sequence read is obtained with adapter A2 bound to the flow cell
- (
- The complementary strand is synthesized and linearized with adapter A1 bound to the flow cell, and the second sequence read is obtained
- The two sequence reads (arrows) will be directed outwards from the original fragment.

Illumina

Berglund EC et al. (2011). Investig Genet 2:23.

Paired-end vs. Mate pair

WGS & SVs				
Peter N. Robinson				
Structural			Paired-end	Mate pa
Array CGH		insert size	pprox 250 bp	2–20 kb
SV Discovery		DNA	1.5–5 μg	5–120 μ
Poisson		lab work	easier	harder
GC Content		Costs	less	more
Read depth				
CNV Calling	Note:			
	75		-100	75

If we have two 75 bp paired-end reads with a 100bp middle piece, the insert size is calculated as $2 \times 75 + 100 = 250$ nt. The fragment size is insert size plus length of both adapters (≈ 120 nt extra).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Read depth WGS & SVs Peter N Analysis of read depth can identify deletion/duplications Robinson Array CGH SV Discovery Heterozygous Deletion? Mappability Issue? Poor "sequencability"?

Read depth

WGS & SVs

Peter N. Robinson

Structural variants Array CGH SV Discovery

FUISSOIT

GC Conten

Read depth

CNV Calling

Characteristic signatures of paired-end sequences

graphic credit: Victor Guryev

∃ \(\mathcal{O}\) \(\lambda\) \(\lambda\)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Deletions in WGS Data

Deletions in WGS Data

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

Insertions in WGS Data

What are the signals that let us detect a insertion?

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Insertions in WGS Data

WGS & SVs

Peter N. Robinson

Structural variants Array CGH SV Discovery Poisson GC Content Read depth

CNV Calling

SV classes	Read pair	Read depth	Split read	Assembly
Novel sequence insertion		Not applicable		Contig/ scaffold

Read pairdecreased interpair mapping distanceRead depthnot applicable3Split readsingle read is split into two segments
surrounding novel insertion sequenceAssemblyassembled sequence with inserted
novel sequence

³Novel sequence will not map to genome

Inversions in WGS Data

What are the signals that let us detect a inversion?

Inversions in WGS Data

WGS & SVs

Peter N. Robinson

Structural variants Array CGH SV Discovery Poisson GC Content Read depth

CNV Calling

Read pair	aberrant mapping (>> instead of
	><) and interpair distance
Read depth	not applicable ⁴
Split read	single read is split into two segments
	one of which is inverted
Assembly	assembled sequence with inverted se-
	quence

Duplications in WGS Data

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Duplications in WGS Data

WGS & SVs

Peter N. Robinson

- Structural variants Array CGH SV Discovery Poisson
- GC Conten
- Read depth
- **CNV** Calling

Read pair	aberrant mapping (<> instead of
	><) and interpair distance
Read depth	increasd
Split read	single read is split into end of one du-
	plicated block followed by beginning
	of next block
Assembly	assembled sequence with duplicated
	sequence

Graphics credit: Le Scouarnec and Gribble SM Heredity (Edinb). 2012; 108:75-85.

Translocations in WGS Data

• In sum: There are many different signals that are used for SV detecction. Different read types have distinct attributes

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Read depth

WGS & SVs

Peter N. Robinson

Structural variants Array CGH SV Discovery Poisson

GC Content Read depth In the remainder of this lecture, we will examine how read depth analysis can be used to search for CNVs. We will concentrate on three topics.

- Poisson distribution: Review
- G/C dependence
- Simplified version of algorithm in Yoon et al.⁵

⁵Sensitive and accurate detection of copy number variants using read depth of coverage. *Genome Res.* 2009;**19**:1586–92.

Poisson

WGS & SVs

Peter N. Robinson

Structural variants Array CGH SV Discovery

Poisson

GC Content

CNV Calling

A Poisson experiment is a statistical experiment that has the following properties:

The experiment results in outcomes that can be classified as successes or failures.

The average number of successes (µ) that occurs in a specified region is known.

The probability that a success will occur is proportional to the size of the region.

The probability that a success will occur in an extremely small region is virtually zero.

The "region" can be a length, an area, a volume, a period of time, etc.

Early use of Poisson distribution: Ladislaus Bortkiewicz (1898): investigation of the number of soldiers in the Prussian army killed accidentally by horse kick.

A B A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Poisson

WGS & SVs

Peter N. Robinson

Array CGH SV Discover Poisson GC Content Read depth

$$P(X=k) = \frac{\lambda^k e^{-\lambda}}{k!} \tag{1}$$

- *k* = number of occurrences
- $\lambda = average occurrences/time interval$

For example, if the average number of soldiers killed by being kicked by a horse each year in each of 14 cavalry corps is 1.7, what is the probability of 4 soldiers being killed in one year?

$$P(X = 4) = \frac{(1.7)^4 e^{-(1.7)}}{4!} = 0.063$$
(2)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

In R,

> dpois(4,1.7) [1] 0.06357463

Poisson

For X ~ Poisson(λ), both the mean and the variance are equal to λ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Poisson and Read counts

WGS & SVs

Peter N Robinson

Array CGH Poisson

Many NGS algorithms model read counts as a Poisson distribution

- Segment the genome into Windows (e.g., 1000 bp).
- Count number of reads in each Window
- All else equal, we expect half as many reads as normal in the case of a deletion, and 1.5 times as many reads as normal in the case of a duplication

$$\lambda = \frac{NW}{G}$$

where $\begin{cases} N & \text{Total number of reads} \\ W & \text{size of window} \\ G & \text{Size of genome} \end{cases}$ (3)

WGS & SVs

Peter N. Robinson

Structural variants Array CGH SV Discover Poisson GC Content Read depth The Poisson distribution can be derived as a limiting form of the binomial distribution in which n is increased without limit as the product $\lambda = np$ is kept constant.

- This corresponds to conducting a very large number of Bernoulli trials with the probability *p* of success on any one trial being very small.
- This suggests we can approximate the Poisson distribution by the Normal distribution

The central limit theorem: the mean of a sufficiently large number of independent random variables, each with finite mean and variance, is approximately normally distributed

WGS & SVs

Peter N. Robinson

Structural variants Array CGH SV Discovery Poisson

GC Content Read depth For sufficiently large values of λ , (say $\lambda > 1,000$), the Normal($\mu = \lambda, \sigma = \sqrt{\lambda}$) Distribution is an excellent approximation to the Poisson(λ) Distribution.

If λ is greater than about 10, then the Normal Distribution is a good approximation if an appropriate continuity correction is performed.

9 Q Q

э

WGS & SVs

Peter N. Robinson

Structural variants Array CGH SV Discovery Poisson

```
GC Conten
```

 Finally, we can check in R that the Normal is a reasonable approximation to the Poisson (it is not an extremely close approximation for λ in this range yet)⁶.

```
> pnorm(25,mean=20,sd=sqrt(20),lower.tail=FALSE)
[1] 0.1317762
> ppois(25,20,lower.tail=FALSE)
[1] 0.112185
```

For this reason, we will see the Normal distribution (often a z-score) used to calculate read depth statistics.

⁶It would be better for $\lambda = 50$ and better yet for $\lambda = 1000$ or above. So \sim

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

grapic: wikipedia

GC Content

grapic: wikipedia

• The GC content $\frac{G+C}{A+C+G+T}$ of a sequence affects many properties, e.g., annealing temperature of PCR primers

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

GC Content in Bioinformatics

WGS & SVs

Peter N. Robinson

Structural variants Array CGH SV Discover Poisson GC Content

Read depth

CNV Calling

GC content is correlated with multiple other parameters, and bioinformatics analysis often needs to take this into account

- \uparrow GC content \Leftrightarrow \uparrow mRNA stability
- Giemsa dark bands (cytogenetics) ⇔ locally GC-poor regions compared with light bands
- Housekeeping (ubiquitously expressed) genes in the mammal genome ⇔ on average slightly GC-richer than tissue-specific genes.
- Silent-site GC content correlates with gene expression efficiency in mammalian cells.

for instance...

GC Content in Genomics

WGS & SVs

Peter N. Robinson

- Structural variants Array CGH SV Discover Poisson GC Content
- Read depth
- CNV Calling

GC content is can confound the results of a number of genomics experiments

- Dependence between fragment count (read coverage) and GC content found in Illumina sequencing data.
- The GC effect is unimodal: both GC-rich fragments and AT-rich fragments \Leftrightarrow underrepresented.
- RNA-seq: GC-rich and GC-poor fragments tend to be under-represented in RNA-Seq, so that, within a lane, read counts are not directly comparable between genes
 - ChIP-seq: Peaks (profiles) correlate positively with genomic GC content
 - Whole genome sequencing: GC content may correlate positively with read depth

See for instance: Benjamini Y, Speed TP (2012) Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res 40:e72.

Read Depth

WGS & SVs

Peter N. Robinson

Structural variants Array CGH SV Discovery Poisson GC Content Read depth We can get a simple picture of the distribution of reads acrosss a chromosome by counting how many reads start in a given chromosomal window.

Basic workflow

- Align reads from high or low coverage genome sequencing
- Count the number of reads that begin in each window of size N^7
- Plot (eyeball-o-metrics)

There is a tutorial on how to do the next few analysis steps on the website.

⁷The best size for *N* will depend on the questions, the coverage, and the algorithm, but might be between 1000-100,000.

Read Depth

WGS & SVs

Peter N. Robinson

Structural variants Array CGH SV Discovery Poisson GC Content Read depth This is a typical plot showing the raw read depth following genome sequencing.

Thousand genomes project, individual HG00155, chromosome 11, low-coverage

▲ロト ▲圖ト ▲注ト ▲注ト 三注 - のへの

GC content vs. Read Depth

WGS & SVs Here, we have plotted read count vs. GC content Peter N. Robinson Loess-smoothed regression line is shown

Array CGH

Read depth

There is a clear, if complicated, relationship between GC-content and read depth in this sample

WGS & SVs

Peter N. Robinson

Structural variants Array CGH SV Discovery Poisson GC Content

CNV Calling

With all of this in hand, we now will examine how to call CNVs from whole genome data. We will present a simplified version of Yoon S et al (2009) Sensitive and accurate detection of copy number variants using read depth of coverage. *Genome Res* **9**:1586-92.

- Align whole-genome sequences (high-coverage)
- **②** Filter out reads with low mapping quality (PHRED < 30)
- Count read depth in windows (100bp)
- adjust read-depth according to GC content of window
- Solution calculate z-score for each window
- o combine neighboring windows to maximize score

WGS & SVs

Peter N. Robinson

- Structural variants Array CGH SV Discovery Poisson
- GC Content
- Read depth
- **CNV Calling**

Step 1-3. Alignment and raw read depth

- Align sequence reads to genome
- In the Yoon et al. paper, the MAQ aligner was used with default settings
- Filter out low quality reads (PHRED < 30)
- Segment genome into 100bp windows and count reads (by start position)

100 bp

WGS & SVs

Peter N. Robinson

Structural variants Array CGH SV Discovery Poisson GC Content

CNV Calling

Step 4. GC adjustment

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• overall median count per window

Step 5a. Event detection.

WGS & SVs

Peter N. Robinson

Structural variants Array CGH SV Discovery Poisson GC Content

CNV Calling

• A deletion or duplication is evident as a decrease or increase across multiple consecutive windows

◆□> ◆□> ◆三> ◆三> ● 三 のへの

WGS & SVs

Peter N. Robinson

Structural variants Array CGH SV Discover Poisson GC Content

Read depth

CNV Calling

Step 5a. Event detection. The authors developed a heuristic they call Event-wise testing (**EWT**)

- Rapidly search across all windows for windows that meet criteria of statistical significance
- Clusters of small events are grouped into larger events
- Basic idea: Identify regions of consecutive 100-bp windows with significantly increased or decreased read depth (*r_i*).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

WGS & SVs

Peter N. Robinson

Structural variants Array CGH SV Discover Poisson GC Content

CNV Calling

Step 5b. Convert to Z-Score

- Calculate mean (μ) and standard deviation (σ) of r̂_i (adjusted read depth) across genome
- transform the adjusted read depth into the corresponding Z-score

$$z_i = \frac{\bar{r}_i - \mu}{\sigma} \tag{5}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

WGS & SVs

Peter N. Robinson

Structural variants Array CGH SV Discovery Poisson GC Content Read depth CNV Calling Step 5b. Convert to upper and low tail probabilities

- Convert the Z-score to its upper-tail probability $P_i^{\text{Upper}} = \Pr(Z > z_i)$ (6)
- This is simply the probability that the read count in window *i* is at least as high as observed
 - Analogously, we calculate a lower-tail probability

$$P_i^{\text{Lower}} = \Pr(Z < z_i) \tag{7}$$

WGS & SVs

Peter N. Robinson

- Structural variants Array CGH SV Discovery Poisson GC Content Read depth
- CNV Calling

Step 5c. Evaluate intervals of consecutive windows

• For an interval \mathcal{A} of ℓ consecutive windows, we call it an unusual event if (for duplications)

$$\max_{i} \left\{ P_{i}^{\text{Upper}} | i \in \mathcal{A} \right\} < \left(\frac{\ell}{L} \times \text{FPR} \right)^{\frac{1}{\ell}}$$
(8)

- Here, *L* is the length in windows of the entire chromosome
- Thus $\frac{\ell}{L}$ is the proportion of the chromosome that is taken up by the candidate CNV
- If all *p*-values for the windows of *A* are less (more significant) than the term on the right side, we call the interval an "unusual event"

WGS & SVs

Peter N. Robinson

Structural variants Array CGH SV Discovery Poisson GC Content Read depth CNV Calling Step 5c. The EWT score $\left(\frac{\ell}{L} \times FPR\right)^{\frac{1}{\ell}}$ increases as the number of windows, ℓ , increases

WGS & SVs

Peter N. Robinson

Structural variants Array CGH SV Discovery Poisson GC Content Read depth

CNV Calling

Step 5c. Iteration

- The initial analysis calculates the p-values for each single window
- The EWT procedure then searches for two-window intervals (i.e., $\ell=2)$ such that

$$\max_{i} \left\{ P_{i}^{\text{Upper}} | i \in \mathcal{A} \right\} < \left(\frac{\ell}{L} \times \text{FPR} \right)^{\frac{1}{\ell}}.$$

• Continue iterating (increasing the size of ℓ by 1) as long as this condition is fulfilled.

WGS & SVs

Peter N. Robinson

Structural variants Array CGH SV Discovery Poisson GC Content

Read depth

CNV Calling

Step 5d. Deletion

• The same procedure is now done separately for deletions, using the formula

$$\max_{i} \left\{ P_{i}^{\text{Lower}} | i \in \mathcal{A} \right\} < \left(\frac{\ell}{L} \times \text{FPR} \right)^{\frac{1}{\ell}}$$
(9)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

WGS & SVs

Peter N. Robinson

Structural variants Array CGH SV Discove Poisson GC Content

CNV Calling

Correction for multiple testing

• We are making millions of tests across the genome

WGS & SVs

Peter N. Robinson

Structural variants Array CGH SV Discovery Poisson GC Content Read depth

CNV Calling

The *p*-value is the probability, under the null hypothesis, that the test statistic assumes the observed or a more extreme value. It is important to realize that if we go on testing long enough, we will inevitably find something which is "significant" by chance alone.

- If we test a null hypothesis that is true using a significance level of α = 0.05, then there is a probability of 1 - α = 0.95 of arriving at a correct conclusion of
 - $1 \alpha = 0.95$ of arriving at a correct conclusion of non-significance.
- If we now test two independent true null hypotheses, the probability that neither test is significant is $0.95 \times 0.95 = 0.90$.

WGS & SVs

Peter N. Robinson

Structural variants Array CGH SV Discovery Poisson GC Content Read depth

CNV Calling

You can see where this is leading...

- If we test 20 independent null hypotheses, the probability that none will be significant is then $(0.95)^{20} = 0.36$.
- This corresponds to a probability of 1 0.36 = 0.64 of getting at least one spurious significant result, and the expected number of spurious significant results in 20 tests is $20 \times 0.05 = 1$