| AMINO ACIDS & PROTEINS | Central dogma of molecular biology Central dogma revisited Peptide bonds: formation & cleavage Special cases: histidine, proline, glycine & cysteine Amino acid structure Isoelectric point & zwitterions Classification of amino acids Four levels of protein structures Conformational stability: protein folding & denaturation | GENE CONTROL | Jacob-Monod: The Lac operon DNA & chromatin regulation Regulation of transcription Post-transcriptional regulation Non-coding RNA (ncRNA) Oncogenes Tumor Suppressors | |-----------------------------------|---|-----------------------|---| | ENZYME
STRUCTURE &
FUNCTION | Enzyme structure & function Intro to enzymes & catalysis Enzymes & activation energy Induced fit model of enzyme catalysis Six types of enzymes Cofactors, coenzymes, & vitamins Enzymes & their environment | GENETIC
MUTATIONS | Intro to genetic mutations Different types of mutations Causes of genetic mutations Mutagens & carcinogens Effects of mutations | | ENZYME
KINETICS | Intro to enzyme kinetics Steady states & the Michaelis Menten equation Cooperativity Allosteric regulation & feedback loops Non-enzymatic protein function Covalent modifications to enzymes | MENDELIAN
GENETICS | Intro to Mendelian genetics Co-dominance & incomplete dominance Worked example: Punnett squares Hardy-Weinberg equation Applying the Hardy-Weinberg equation | | DNA | Molecular structure of DNA Antiparallel structure of DNA stress Telomeres & single copy of DNA Leading & lagging stress Transcription & mRNA processing Speed & precision of DNA replication Translation DNA Repair 1 DNA Repair 2 Semi conservation replication Protein modification Jacob Monod Iac operon DNA structure & function | DNA TECHNOLOGY | Gel electrophoresis Polymerase Chain Reaction (PCR) DNA Libraries & generating cDNA DNA cloning & recombinant DNA Hybridization (microarray) Expressing cloned genes Southern Blot DNA sequencing Gene expression & function Applications of DNA technologies Safety & ethics of DNA technologies | | CHROMOSOMAL
INHERITANCE | Evidence that DNA is genetic material 1 Evidence that DNA is genetic material 2 Sex-linked traits Worked example: Punnett squares Genetic recombination Gene mapping Extranuclear inheritance 1 Extranuclear inheritance 2 | CARBOHYDRATES | Naming Configuration, epimers & names Cyclic structures & anomers Di & polysaccharides Keto-enol tautomerization | |---------------------------------|---|---------------|--| | EVOLUTION & POPULATION DYNAMICS | JLATION – Alternative selection | | PPP article Cellular respiration introduction Overview of glycolysis Gluconeogenesis: the big picture Gluconeogenesis: unique reactions Regulation of glycolysis & gluconeogenesis Pentose Phosphate pathway | | PRINCIPLES OF
BIOENERGETICS | Ticat transiti | | The citric acid cycle article Krebs/citric acid cycle Regulation of pyruvate dehydrogenase Regulation of Krebs-TCA cycle Electron Transport Chain Oxidative phosphorylation article Oxidative phosphorylation & chemiosmosis Regulation of oxidative phosphorylation Mitochondria, apoptosis, & oxidative stress Calculating ATP produced in cellular respiration | | OVERVIEW OF
METABOLISM | Overview of metabolism: anabolism & catabolism ATP: adenosine triphosphate ATP hydrolysis: Gibbs free energy ATP hydrolysis: transfer of a phosphate group Oxidation & reduction review Oxidation & reduction in metabolism Electron carrier molecules ATP hydrolysis mechanism | FAT & PROTEIN
METABOLISM | Digestion, Mobilization, & Transport of Fats - P. I Digestion, Mobilization, & Transport of Fats - P. II Fatty Acid Synthesis - P. I Fatty Acid Synthesis - P. II Overview of Fatty Acid Oxidation Fatty Acid Oxidation - P. I Fatty Acid Oxidation - P. II How does the body adapt to starvation? Overview of Amino Acid Metabolism | |---------------------------|--|-----------------------------|--| | ENDOCRINE
SYSTEM | T | | Endocrine gland hormone review Hormone concentration metabolism & negative feedback Types of hormones Overview of metabolism: anabolism & catabolism How does the body adapt to starvation? Tissue specific metabolism & the metabolic states Insulin & glucagon Glucose insulin & diabetes Production of insulin & glucagon Hormone control of hunger Hormones, body mass & obesity | | CELL
MEMBRANE
OVERVIEW | Cell membrane introduction Phospholipid structure Cell membrane fluidity Membrane dynamics Fluid mosaic model: CM article | CYTO
SKELETON | Intro to cytoskeleton Microfilaments & intermediate filaments microtubules | | |---|---|-------------------------------|--|--| | CELL- CELL
INTER
ACTIONS | Cell- Cell interactions: how cells talk Cell junctions Membrane receptors Ligand Gated ion channels G protein coupled receptors Enzyme linked receptors | PRO
KARYOTES
& BACTERIA | Overview of Archaea, Protista & bacteria Bacterial characteristics - Gram staining Bacterial binary fission | | | TRANSPORT
ACROSS
CELL
MEMBRANE | ACROSS – Passive transport via – Exocytosis CELL – Passive transport via – Exocytosis – Phagocytosis article | | Are viruses dead or alive? Virus
structure & classification Viral replication: lytic or lysogenic Retroviruses Subviral particles: viroids & prions | | | EU
KARYOTIC
CELLS | Cellular organelles & structure Characteristics of eukaryotic cells Nucleus KARYOTIC Mitochondria | | Cell cycle phases Cell cycle control Loss of cell cycle control in cancer Fertilization terminology Zygote differentiating into somatic & germ cells Mitosis article Comparing mitosis vs meiosis Meiosis article Phases of meiosis 1 Phases of meiosis 2 Embryonic stem cells Cancer | | | CELLULAR
DEVELOP
MENT | Stem cells Cellular communication Mitochondria, apoptosis & oxidative stress Cellular specialization (differentiation) Telomeres & cell senescence Cellular movement | EMBRY
OLOGY | Egg meets sperm article Egg, sperm & Gestation Germ layer Human embryogenesis Early embryogenesis Gestation Germ layer derivatives | | | BIOLOGICAL BASES OF
BEHAVIOR | Structure of the nervous system Functions of the nervous system Motor unit Peripheral somatosensation Muscle stretch reflex Autonomic nervous system Grey & White matter Upper motor neurons | Somatosensory tracts Cerebellum Brainstem Subcortical cerebrum Cerebral cortex Neurotransmitter anatomy Early methods of studying the brain Lesion studies & experimental ablation Modern ways of studying the brain | | |--|---|---|--| | NEURAL CELLS - Intro to neural cell types - Overview of neuron structure - Overview of neuron function - Astrocytes | | MicrogliaEpendymal cellsOligodendrocytesSchwann cells | | | NEURON MEMBRANE
POTENTIALS | Neuron action potentials Action potential velocity Neuron graded potential description Neuron resting potential description Neuron resting potential mechanism | Neuron graded potential mechanism Neuron action potential description Neuron action potential mechanism Effects of axon diameter & myelination Action potential patterns | | | NEURONAL SYNAPSES | Signal propagation Synapse structure Neurotransmitter release Types of neurotransmitters | Types of neurotransmitters receptors Neurotransmitter removal Neuroplasticity | | | BIOSIGNALING | Membrane receptorsLigand gated Ion channels | G-protein Coupled ReceptorsEnzyme Linked Receptors | | | ENDOCRINE SYSTEM | Endocrine gland hormone review Hypothalamus & pituitary gland Hormone concentration metabolism & negative feedback Types of hormones | Cellular mechanism of hormone action From terpenes to steroid p. 1 From terpenes to steroids p. 2 | | | | – Meet the heart! | – Layers of a blood vessels | | |-----------------------|---|--|--| | | Layers of the heart | - Layers of a blood vessels - Arteries vs. Veins | | | CIRCULATORY SYSTEM | - Flow through the heart | Resistance in a tube | | | | Two circulations in the body | Putting it all together: pressure, flow & resistance | | | | - Lub dub | Thermoregulation in the circulatory system | | | | – What's inside of blood? | - How do we make blood clots? | | | HEMATOLOGIC CYCTEM | – Hemoglobin moves O2 & CO2 | Coagulation cascade | | | HEMATOLOGIC SYSTEM | – Bohr effect vs. Haldane effect | Life & times of RBCs & platelets | | | | – Blood types | Blood cell lineages | | | | – Meet the lungs! | – Henry's Law | | | | - Inhaling & exhaling | Fick's Law of diffusion | | | RESPIRATORY SYSTEM | How does lung volume change? | O2 movement from alveoli → capillaries | | | | - 02 & CO2 solubility | - Respiratory center | | | | | - Thermoregulation in the lungs | | | I VAADII ATIIC CVCTEM | – Why we need a lymphatic system | Lymphatic system's role in immunity Lipid & protein transport in the lymphatic system | | | LYMPHATIC SYSTEM | How lymphatic vessels move | - Lipid &protein transport in the lymphatic system What is actually in lymph | | | | Tour at a Transcript Star | - What is actually in lymph | | | | Innate ImmunityAdaptive immunity | – Helper T cells | | | | Role of phagocytes in innate/nonspecific | - Cytotoxic T cells | | | ********* | immunity | Review of B cells, CD\$+ T cells & CD*+ T cells | | | IMMUNE SYSTEM | – Types of immune responses | - Clonal selection | | | | – B cells | Self vs non self-immunityHow white blood cells move around | | | | – APC & MHC II complexes | Blood cell lineages | | | | Danal abasiala ass. CC | | | | | Renal physiology: GFTubular reabsorption article | – Changing GFR | | | | Renal physiology: counter current X | Changing GFK Countercurrent X in the kidney | | | RENAL SYSTEM | Meet the kidneys! | Secondary active transport in the nephron | | | | Kidney function & anatomy | - Urination | | | | – GF in the nephron | – Kidney & nephron | | | | | | | | | - Overview of the RAAS System | - Aldosterone raises BP & lowers K | | | RENAL REGULATION OF | - Renin production in the kidneys | Aldosterone removes acid from the blood ADL comption | | | BLOOD PRESSURE | - Activating angiotensin 2 | - ADH secretion | | | | – Angiotensin 2 raises BP | ADH effects on blood pressureAldosterone & ADH | | | | | - Aldosterolle & ADII | | | GASTROINTESTINAL
SYSTEM | Meet the GI tract! Mouth Teeth Esophagus Stomach Small Intestine 1: structure Small Intestine 2: digestion Small intestine 3: absorption | Liver Hepatic lobule Biliary tree Exocrine pancreas Endocrine pancreas Colon, rectum & anus Control of GI tract | | |---|--|--|--| | MUSCULAR SYSTEM | Myosin & actin How tropomyosin & troponin regulate muscle contraction Role of the sarcoplasmic reticulum in muscle cells Anatomy of skeletal muscle cell Three types of muscle | Motor neurons Neuromuscular junction & motor endplate Type 1 & 2 muscle fibers Calcium puts myosin to work Muscle innervation Autonomic vs. somatic nervous system Thermoregulation by muscles | | | SKELETAL SYSTEM - Skeletal structures & function - Microscopic structure of bones - Cellular structure of bone | | Skeletal endocrine controlCartilageLigament, tendons & joints | | | - Meet the skin! (overview) - What's the skin? - What lies beneath epidermis? - Where do nails & hair come from? - What's in sweat? - LeBron asks: Why does sweating cool you down? | | Overview of sensation & Meissner's corpuscle Pacinian corpuscle & Merkle's disk Ruffini's ending & hair follicle receptors Pain & temperature Thermoregulation by muscles | | | REPRODUCTIVE SYSTEM | Welcome to the reproductive system Anatomy of the male repro system Transport of sperm via erection & ejaculation Spermatogenesis Testosterone Basics of egg development Ovarian cycle Meet the placenta! | Reproductive cycle graph – follicular phase Reproductive cycle graph – luteal phase
Estrogen Maternal changes in pregnancy Labor (parturition) Breast anatomy & lactation | | | Vectors &
Scalars | Intro to vectors & scalars Visualizing vectors & scalars Unit vector notation Unit vector notation p. 2 | Force of
Tension | Intro to tension Intro to tension p. 2 Tension in an accelerating system & pie in the face | |---------------------------------------|---|--------------------------------|---| | Speed &
Velocity | Calculating avg. speed & velocity edited Solving for time Displacement from time & velocity Instantaneous speed & velocity | Forces On
Inclined
Plane | Inclined plane force components | | Accelerat
ion | Acceleration at a glance Acceleration Airbus A380 take off time Airbus A380 take off distance Why distance is area under VT line Avg. velocity for constant acceleration | Work &
Energy | Intro to work & energy Work & energy p. 2 Work & the work- energy principle Work example problems Conservation of energy Work/energy problem with friction Intro to springs & Hooke's law Potential energy stored in a spring Spring potential energy example Work as the transfer of energy Work can be negative! Conservative forces Power Intro to mechanical advantage | | Newton's
Laws &
Equilibri
um | – Unbalanced forces & motion – Applying newton's 1st law of motion – Newton's 3rd law of motion – Newton's 2nd law of motion – Center of mass – Intro to torque | Fluids at
Rest | The buoyant force does not get smaller Pressure & pascal's principle p.1 Pressure & pascal's principle p.2 Pressure at a depth in a fluid Finding height of fluid in barometer Archimedes principle & buoyant force | | Normal
Forces | Balanced & unbalanced forces Normal force & contact force Normal force in elevator | | Buoyant force example Specific gravity | | Fluids in
motion | Volume flow rate & continuity equation Bernoulli's equation derivation p.1 Bernoulli's equation derivation p.2 Finding fluid speed exiting hole More on finding fluid speed through hole Finding flow rate from Bernoulli's equation Viscosity & Poiseuille flow Turbulence at high velocities & Reynold's - number Surface tension & adhesion Venturi effect & pitot tubes Two circulation in the body Arteries vs. veins -what's the difference? Resistance in a tube Putting it all together: pressure, flow & resistance | Electro
Statics | Triboelectric effect & charge Coulomb's law Conservation of charge Conductions & insulators Electric field Electric potential article Electric potential energy Voltage Electric potential at a point in space | |--|--|-------------------------|--| | Gas Phase | Absolute temperature & the kelvin scale Pressure & simple mercury barometer Definition of ideal gas law & ideal gas Derivation of gas constant using molar volume & STP Boyle's Law Charles's Law Avogadro's Law Van der Waals equation Partial pressure | Current &
Resistance | Current & resistance article Intro to circuits & Ohm's law Resistors in series Resistors in parallel Analyzing a more complex resistor circuit Resistivity & conductivity Electrolytic conductivity Voltmeters & Ammeters | | Kinetic
Molecular
Theory of
Gas | Boltzmann's constant Heat capacity at constant V/P Kinetic molecular theory of gas | Capacitors | Capacitors article Dielectric article Capacitors & capacitance Capacitors & capacitance Capacitors in parallel Dielectric in capacitors | | | | Magnetism | Using the right-hand rule Magnetism p. 1 Magnetism p. 3 Magnetism p. 4 | | Electro
Chemistry | Electrochemistry article Redox reaction from dissolving zinc in copper sulfate Intro to galvanic/voltaic cells Electrodes & voltage of galvanic cell Shorth& notation for galvanic/ voltaic cells Free energy & cell potential Standard reduction potentials Voltage as an intensive property Using reduction potentials Spontaneity& redox reactions Standard cell potential & equilibrium constant Calculating equilibrium constant from standing cell potential Nernst equation Using Nernst equation Concentration cell Intro to electrolysis Quantitative electrolysis Electrolysis of molten sodium chloride edited Lead storage battery Nickel-cadmium battery | Sound | Sound is a longitudinal wave Production of sound Sound properties Speed of sound Relative speed of sound in SLG Decibel scale Why do sounds get softer? Ultrasound medical imaging Standing waves in open tubes Standing waves in close tubes | Doppler effect introduction Doppler effect formula for observed frequency Doppler effect formula when source is moving away When the source & wave move at same velocity Doppler effect for a moving observer Doppler effect: reflection off moving object | |----------------------|--|-------|--|---| |----------------------
--|-------|--|---| | Light &
Electro
Magnetic
Radiation | Light & electromagnetic radiation questions Electromagnetic waves & the electromagnetic spectrum Polarization of light, linear & circular Diffraction & Single slit interference Diffraction & More on single slit interference destructive & slit interference Wave interference Young's double slit introduction Young's double slit equation | Protein
Nuclear
Magnetic
Resonance | Proton nuclear magnetic resonance questions Magnetic resonance imaging Introduction to proton NMR Nuclear shielding Chemical equivalence Chemical shift Electronegativity & chemical shift Diamagnetic anisotropy Integration Spin-spin splitting (coupling) Multiplicity: n + 1 rule Coupling constant Complex splitting Hydrogen deficiency index Proton NMR practice 1 Proton NMR practice 2 Proton NMR practice 3 | | |---|--|---|---|--| | Infrared | Infrared & Ultraviolet/Visible spectroscopy questions Introduction to infrared spectroscopy Bonds as springs Signal characteristics - wavenumber IR spectra for hydrocarbons | Thin
Lenses | Thin lens sign conventions Convex lens Convex lenses examples Concave lens Object image & focal distance relation (proof of formula) Object image height and distance relationship Thin lens question & problem solving Multiple lens system Diopters, aberration, and the human eye | | | & UV/
Visible
Spectro
Scopy | Signal characteristics - intensity Signal characteristics - shape Symmetric & Asymmetric Stretching IR Signals for Carbonyl Compounds IR Spectra Practice UV/Visible Spectroscopy Absorption in The Visible Region Conjugation & Color | Spherical
Mirrors | Virtual image Parabolic mirrors & real images Parabolic mirrors 2 Convex parabolic mirrors "Objects in the mirror are" actually images in the mirror | | | Reflection
and
refraction | Refraction and light bending Specular & diffuse reflection Specular & diffuse reflection 2 | Refraction & Snell's law Refraction in water Snell's law ex: 1 Snell's law ex: 2 Total internal reflection Dispersion | Electron
structure | Photoelectric effect Bohr model radii (derivation using physics) Bohr model radii Bohr model energy levels (derivation using physics) Bohr model energy levels Absorption and emission Emission spectrum of hydrogen Heisenberg uncertainty principle Quantum numbers | Quantum numbers for the first four shells Electron configurations for the first period Electron configurations for the second period Electron configurations for the third and fourth periods Electron configurations of the 3d transition metals Para magnetism and diamagnetism Electron configurations article | |---------------------------------|---|--|-----------------------|---|---| | Atomic | Decay graphs and half-lives article Atomic number, mass number, and isotopes Atomic mass | Types of decay Half-life and carbon dating Half-life plot Exponential decay formula proof (can skip, involves | Periodic
table | Electronegativity and bonding The periodic table - classification of elements The periodic table - transition metals Counting valence electrons for main group elements Atomic and ionic radii | Ionization energy: group trend Ionization energy: period trend First and second ionization energy Electron affinity: period trend | | Nucleus | Mass defect and binding energy Nuclear stability and nuclear equations Writing nuclear equations for alpha, beta, and gamma decay | calculus) - Introduction to exponential decay - Exponential decay and semi-log plots - More exponential decay examples - Mass spectrometer | Stoichiome
try | Stoichiometry article Stoichiometry and empirical formulae Empirical formula from mass composition edited Molecular and empirical formulas The mole and Avogadro's number | Stoichiometry example problem 1 Stoichiometry Stoichiometry: Limiting reagent Limiting reactant example problem 1 edited Specific gravity | | Balancing
Chemical
equations | Balancing chemical equations Balancing more complex chemical equations Visually understanding balancing chemical equations Balancing another combustion reaction Balancing chemical equation with substitution Balancing Chemical Equations Intuition | Redox
Reactions | Oxidizing and reducing agents Disproportionation Balancing redox reactions in acid Balancing redox reactions in base | |------------------------------------|--|--------------------|---| |------------------------------------
--|--------------------|---| | | | | T | |--------------------------|--|-----------------------------|---| | ACID/BASES
EQUILIBRIA | Acid-base definitions Chemistry of buffers and buffers in our blood Ka and acid strength Autoionization of water Definition of pH Strong acids and strong bases Weak base equilibrium Relationship between Ka and Kb Acid-base properties of salts pH of salt solutions Common ion effect and buffers Buffer solution pH calculations | STEREOCHEMISTRY | Chiral drugs Structural (constitutional) isomers Chiral vs achiral Stereoisomers, enantiomers, and chirality centers Identifying chirality centers R,S system Optical activity Enantiomers and diastereomers Cis-trans isomerism E-Z system Conformations of ethane Conformational analysis of butane | | TITRATIONS | Titration introduction Titration calculation example Titration of a weak base Titration of a strong acid with a strong base Titration of a strong acid with a strong base (continued) Titration of a weak base with a strong acid (continued) Acid-base titration curves Titration curves and acid-base indicators Redox titration | COVALENT BONDS | Single and multiple covalent bonds Electronegativity and bonding Intramolecular and intermolecular forces sp³ hybridization Holecular polarity sp hybridization Worked examples: Finding the hybridization of atoms in organic molecules Steric number Acid-base definitions | | SOLUBILITY
EQUILIBRIA | Common polyatomic ions Dissolution and precipitation Introduction to solubility and solubility product constant Solubility from the solubility product constant Solubility and the pH of the solubility and complex ion formation | SEPARATIONS & PURIFICATIONS | Simple and fractional distillations Extractions Principles of chromatography Basics of chromatography Thin layer chromatography (TLC) Calculating retention factors for TLC Column chromatography Gas chromatography Gel electrophoresis | | DOT
STRUCTURES | Drawing dot structures Formal charge and dot structures Resonance and dot structures VSEPR for 4 electron clouds VSEPR for 5 electron clouds VSEPR for 5 electron clouds VSEPR for 6 electron clouds | | - Resolution of enantiomers | | NUCLEIC
ACID, LIPIDS
& CARBS | Nucleic acid structure 1 Antiparallel structure of
DNA strands Saponification - Base
promoted ester hydrolysis Lipids - Structure in cell
membranes Lipids as cofactors and | Fischer projections Carbohydrates - Epimers, common names Carbohydrates - Cyclic structures and anomers Carbohydrate - Glycoside formation hydrolysis Keto-enol tautomerization | CARBS | Carbohydrates- di and polysaccharides Carbohydrates - cyclic structures and anomers Carbohydrates - absolute configuration, epimers, common names | Carbohydrates - naming and classification Keto-enol tautomerization (by Jay) | |--|---|---|-------------------------------|--|---| | | signaling molecules – Carbohydrates - Naming and classification | (by Sal)Disaccharides and polysaccharides | | | | | AMINO
ACIDS,
PEPTIDES, &
PROTEINS | Central dogma of molecular biology Central dogma - revisited Amino acid structure Peptide bonds: Formation and cleavage Special cases: Histidine, proline, glycine, cysteine Isoelectric point and zwitterions | Classification of amino acids Four levels of protein structure Conformational stability: Protein folding and denaturation The structure and function of globular proteins | ALPHA-
CARBON
CHEMISTRY | Enolate formation from aldehydes Enolate formation from ketones Kinetic & | Aldol condensation Mixed (crossed) aldol condensation Mixed (crossed) aldol condensation using a lithium enolate Retro-aldol and retrosynthesis Intramolecular aldol condensation | | PROTEINS | Amino acid structure Alpha amino acid synthesis Classification of amino acids Peptide bonds: Formation and cleavage | Four levels of protein structure Conformational stability: Protein folding and denaturation Non-enzymatic protein function | ALDEHYDES
& KETONES | Nomenclature of aldehydes Physical properties of alde Reactivity of aldehydes and Formation of hydrates Formation of hemiacetals a Acid and base catalyzed for hemiacetals Formation of acetals Acetals as protecting group Formation of imines and en Formation of oximes and h Addition of carbon nucleop ketones Formation of alcohols using agents Oxidation of aldehydes using Cyclic hemiacetals and hem | s and ketones hydes and ketones d ketones and hemiketals rmation of hydrates & os and thioacetals namines ydrazones ohiles to aldehydes and g hydride reducing | | ALCOHOLS & PHENOLS | Alcohol nomenclature Properties of alcohols Biological oxidation of alcohols Oxidation of alcohols Oxidation of alcohols (examples) Protection of alcohols | Preparation of mesylates and tosylates SN1 and SN2 reactions of alcohols Biological redox reactions of alcohols and phenols Aromatic stability of benzene Aromatic heterocycles | ENZYMES | Introduction to enzymes and catalysis Induced fit model of enzyme catalysis Six types of enzymes An introduction to enzyme kinetics Allosteric regulation and feedback loops | |-----------------------------------|--|---
--|--| | CARBOXYLIC
ACID | Carboxylic acid reactions overview Carboxylic acid nomenclature and properties Reduction of carboxylic acids Preparation of esters via Fischer esterification Preparation of acyl (acid) chlorides | Preparation of acid anhydrides Preparation of amides using DCC Decarboxylation Alpha substitution of carboxylic acids | KINETICS | Rate of reaction Rate law and reaction order Experimental determination of rate laws First-order reaction (with calculus) Plotting data for a first-order reaction First-order reaction With calculus Forms of the Arrhenius equation | | CARBOXYLIC
ACID
DERIVATIVES | Nomenclature and properties of acyl (acid) halides and acid anhydrides Nomenclature and properties of esters Nomenclature and | Nucleophilic acyl substitution Acid-catalyzed ester hydrolysis Acid and base-catalyzed | | first-order reaction - Half-life of a first- order reaction - Plotting data for a second-order reaction - First-order reaction example - Second-order reaction (with calculus) - Using the Arrhenius equation - Elementary rate laws - Mechanisms and the rate- determining step - Catalysts - Kinetic and thermodynamic enolates | | | properties of amides - Reactivity of carboxylic acid derivatives hydrolysis of amides - Beta-lactam antibiotics | EQUILIBRIUM | Reactions in equilibrium Le Chatelier's principle Changes in free energy and the reaction quotient Standard change in free energy and the equilibrium constant Galvanic cells and changes in free energy | | | BIO
ENERGETICS | An analogy for Gibbs free energy Bioenergetics: The transformation of free energy in living systems Why we need metabolism? Insulin and glucagon Tissue specific metabolism and the metabolic states Thermodynamics article | | Phase diagrams Enthalpy Heat of formation Hess's law and reaction enthalpy change Gibbs free energy and spontaneity Gibbs free energy example More rigorous Gibbs free energy / | |--------------------|--|---------------------|---| | THERMO
DYNAMICS | Specific heat and latent heat of fusion and vaporization Zeroth law of thermodynamics First law of thermodynamics problem solving PV diagrams - part 1: Work and isobaric processes PV diagrams - part 2: Isothermal, isometric, adiabatic processes Second law of thermodynamics | THERMO
CHEMISTRY | spontaneity relationship – A look at a seductive but wrong Gibbs spontaneity proof – Endothermic vs. exothermic reactions | | F O | UNDATIONAL CONCEPT #6:PRO | CESSINGTE | IE ENVIRONMENT | |-----------------------|---|--------------------------|--| | SENSORY
PERCEPTION | Visual cues Sensory adaptation Weber's law and thresholds Absolute threshold of sensation Somatosensation The vestibular system, balance, and dizziness Signal detection theory - part 1 Signal detection theory - part 2 Bottom-up vs. top-down processing Gestalt principles | TASTE & SMELL | Pheromones Olfaction – structure & function Gustation – structure and function | | SIGHT | The structure of the eye Visual sensory information The phototransduction cascade Photoreceptors (rods vs cones) Photoreceptor distribution in the fovea Visual field processing Feature detection and parallel processing | SLEEP &
CONSCIOUSNESS | States of consciousness Sleep stages and circadian rhythms Dreaming Dream theories Freud, activation synthesis hypothesis Sleep disorders Breathing related sleep disorders Hypnosis and meditation | | SOUND | Auditory structure - p. 1 Auditory structure - p. 2 Auditory processing Cochlear implants | DRUG
DEPENDENCE | Overview of psychoactive drugs Psychoactive drugs: A represent and opiates opiates | | SOMATOSENSATION | Somatosensation Sensory adaptation and amplification Somatosensory homunculus Proprioception and kinesthesia Pain and temperature | ATTENTION | Divided Attention, selective attention, inattentional blindness & change blindness Theories of selective attention Spotlight model of attention & our ability to multitask | | MEMORY | Information processing model: Sensory, working, and long-term memory Encoding strategies Retrieval cues Retrieval: Free recall, cued recall, and recognition Memory reconstruction, source monitoring, and emotional memories Long term potentiation and synaptic plasticity Decay and interference Aging and cognitive abilities Alzheimer's disease and Korsakoff's syndrome Semantic networks and spreading | EMOTION | Emotions: limbic system Emotions: cerebral hemispheres & prefrontal cortex ANS & physiological markers of emotions Three components of emotion & the universal emotions Theories of Emotion | |-----------|---|---------
---| | COGNITION | Piaget's stages of cognitive development Schemas, assimilation, and accommodation Problem solving Decision making Semantic networks and spreading activation Intelligence Theories of intelligence Aging and cognitive abilities Cognitive dissonance Information processing model: Sensory, working, and long-term memory | STRESS | What is stress? Stressors Responding to stress Physical effects of stress Behavioral effects of stress Stress management | | LANGUAGE | Theories of the early stages of language acquisition Language and the brain: Aphasia and split-brain patients Theories of language and cognition Theories of language development: Nativist, learning, interactionist | | | | | FOUNDATIONAL CON | CEPT #7:B | EHAVIOR | |------------------------------------|--|----------------------------|---| | BIOLOGICAL
BASES OF
BEHAVIOR | Structure of the nervous system Functions of the nervous system Motor unit Peripheral somatosensation Muscle stretch reflex Autonomic nervous system Gray and white matter Upper motor neurons Somatosensory tracts Overview of the functions of the cerebral cortex Hemispheric differences and hemispheric dominance The old brain Cerebellum Brainstem Neurotransmitter anatomy Early methods of studying the brain Lesion studies and experimental ablation Modern ways of studying the brain Endocrine system and influence on behavior - Part 1 Endocrine system and influence on behavior - Part 2 | MOTIVATION
& ATTITUDES | Motivation article Physiological concept of positive and negative feedback Instincts, Arousal, Needs, Drives: Drive-Reduction and Cognitive Theories Maslow's hierarchy of needs Incentive theory Biological and Sociocultural Factors Food, Sex, and Drugs Components of attitudes Attitude influences behavior Behavior influences attitude Cognitive dissonance Situational approach | | HUMAN
DEVELOPMENT | Egg, sperm, and fertilization Early embryogenesis - Cleavage, blastulation, gastrulation, and neurulation Implantation Germ layer derivatives Genes, environment, and behavior | THEORIES OF
PERSONALITY | Situational approach Psychoanalytic theory Maslow's hierarchy of needs Humanistic theory Biological theory Behavioral theory Trait theory Observational learning: Bobo doll experiment and | | BEHAVIOR &
GENETICS | Temperament, heredity, and genes Twin studies and adoption studies Heritability Regulatory genes Gene environment interaction Adaptive value of behavioral traits | | Observational learning: Bobo don experiment and social cognitive theory Defense mechanisms Freud - Death drive, reality principle, and pleasure principle | | PSYCHOLOGICAL
DISORDERS | What is obsessive compulsive disorder (OCD)? What is post-traumatic stress disorder? Introduction to mental disorders Categories of mental disorders Schizophrenia Biological basis of schizophrenia Biological basis of depression Anxiety disorders and obsessive-compulsive disorder Dissociative identity disorder and disorder and other disorders Somatic symptom disorders Personality disorders Sleep disorders Feward pathway in the brain Drug dependence and homeostasis Tolerance and withdrawal Substance use disorders Biological basis of Parkinson's disease Depression and major depressive disorder Depression and bipolar disorder | NORMATIVE
& NON-
NORMATIVE
BEHAVIOR | What is normal? Exploring folkways, mores, and taboos Perspectives on deviance: Differential association, labeling theory, and strain theory Aspects of Collective Behavior: Fads, Mass Hysteria, and Riots Classical and operant conditioning article Classical conditioning: Neutral, conditioned, and unconditioned stimuli and responses Classical conditioning: Extinction, spontaneous recovery, generalization, discrimination Operant conditioning: Positive-and-negative reinforcement and punishment Operant conditioning: Shaping Operant conditioning: Innate vs learned behaviors Operant conditioning: Escape and avoidance learning Observational learning: Bobo doll experiment and social cognitive theory Long term potentiation and synaptic plasticity Non associative learning Biological constraints on learning | |----------------------------|---|---|---| | SOCIAL
PSYCHOLOGY | Conformity and groupthink Conformity and obedience Asch conformity studies (Asch line studies) Events that inspired the Milgram studies on obedience Milgram experiment on obedience What can we learn from the Milgram experiment? Zimbardo prison study The Stanford prison experiment A closer look at the Stanford prison experiment Factors that influence obedience and conformity Bystander effect Social facilitation and social loafing Agents of socialization | THEORIES OF
ATTITUDE &
BEHAVIOR
CHANGE | Components of attitudes Attitude influences behavior Behavior influences attitude Persuasion, attitude change, and the elaboration likelihood model Reciprocal determinism Locus of control, learned helplessness, and the tyranny of choice Self-control | | FOUNDATIONAL CONCEPT #8:INDIVIDUALS AND SOCIETY | | | | | |---
--|------------------------|---|---| | SELF - IDENTITY | Self-concept, selfidentity, and social identity Self-esteem, selfefficacy, and locus of control Overview of theories of development Freud's psychosexual development Erikson's psychosocial development Vygotsky sociocultural development Kohlberg moral development Social influences George Herbert Mead-The I and the Me Charles Cooley-Looking glass self | SOCIAL
BEHAVIOR | Proximity and the mere exposure effect Physical attraction Similarity Harlow monkey experiments Secure and insecure attachment | Aggression Altruism Social support | | PERCEPTION,
PREJUDICE &
BIAS | Attribution Theory - Basic covariation Attribution theory - Attribution error and culture Stereotypes stereotype threat and self-fulfilling prophecies Emotion and cognition in prejudice Prejudice and discrimination based on race, ethnicity, power, social class, and prestige Stigma - Social and self Social perception - The Halo Effect Social perception - The Just World Hypothesis Ethnocentrism and cultural relativism in group and out group | SOCIAL
INTERACTIONS | Status Role strain and role conflict Primary and secondary groups Ethnocentrism and cultural relativism in group and out group Dramaturgical approach Impression management Aggression Harlow monkey experiments | Altruism Discrimination individual vs institutional Prejudice vs discrimination Prejudice and discrimination based on race, ethnicity, power, social class, and prestige Organizations and bureaucratization Characteristics of an ideal bureaucracy Social support | | BEHA
PER: | RIBUTING
AVIOR TO
SONS OR
UATIONS | Self-esteem, self-efficacy, and locus of control Self-concept, self-identity, and social identity Social influences Locus of control, learned helplessness, and the tyranny of choice | SELF- PRESENTATION & INTERACTING WITH OTHERS | Charles Cooley- Looking glass self George Herbert Mead- The I and the Me Three components of emotion and universal emotions | |---------------------|---|--|--|--| | EXPLA
OF
BEHA | LOGICAL
ANATIONS
SOCIAL
AVIOR IN
NIMALS | Animal behavior: foraging Animal communication Types of animal communication Mating behavior and inclusive fitness Evolutionary game theory | DISCRIMINATION | Examples of discrimination in society today Discrimination individual vs institutional Prejudice and discrimination based on race, ethnicity, power, social class, and prestige Stereotypes stereotype threat, and self-fulfilling prophecy | | | FOUNDATIONAL CONCEPT #9:SOCIETY AND CULTURE | |----------------------|---| | SOCIAL
STRUCTURES | Macrosociology vs microsociology Social institutions Social institutions - education, family, and religion Social institutions - government, economy, health and medicine Functionalism Conflict theory Social constructionism Symbolic interactionism Rational choice-exchange theory Social theories overview (part 1) Social theories overview (part 2) Relating social theories to medicine What are social groups and social networks? | | DEMOGRAPHICS | Demographic structure of society - age Demographic structure of society - race and ethnicity Demographic structure of society - immigration Demographic structure of society - sex, gender, and sexual orientation Demographic structure of society overview Urbanization What is urban growth? Population dynamics Demographic transition Globalization theories Globalization- trade and transnational corporations Social movements Overview of demographics | | CULTURE | Culture and society Overview of culture Subculture vs counterculture Jim goes to college subculture Culture lag and culture shock Diffusion Mass media Evolution and human culture | | FOUNDATIONAL CONCEPT #10: S O C I A L I N E Q U A L I T Y | | |---|---| | SOCIAL
INEQUALITY | Overview of social inequality Upward and downward mobility, meritocracy Intergenerational and intragenerational mobility social mobility Absolute and relative poverty Social reproduction Social exclusion (segregation and social isolation) Environmental justice Residential segregation Global inequality Prejudice and discrimination based on race, ethnicity, power, social class, and prestige Health and healthcare disparities in the US Intersectionality Class consciousness and false consciousness |