Namma Kalvi

www.nammakalvi.org

Lord Venkateshwara Matric.Hr.Sec.School, T.Kallupatti BOOK BACK ONE MARK CHEMISTRY 1. Metallurgy

Choose the correct answer:

- 1. Bauxite has the composition
 - a) Al_2O_3 b) Al_2O_3 nH₂O c) Fe₂O₃ 2H₂O d)None of these
- 2. Roasting of sulphide ore gives the gas (A).(A) is a colourless gas. Aqueous solution of (A) is acidic. The gas (A) is
 - a) CO_2 b) SO_3 c) SO_2 d) H_2S
- 3. Which one of the following reaction represents calcinations?

a) $2Zn + O_2 \longrightarrow 2ZnO$ b) $2ZnS + 3O_2 \longrightarrow 2ZnO + 2SO_2$

- c) MgCO₃ \longrightarrow MgO + CO₂ d) Both (a) and (c)
- 4. The metal oxide which cannot be reduced to metal by carbon is
- a) PbO b) Al_2O_3 c) ZnO d) FeO
- 5. Which of the metal is extracted by Hall-Heroult process?
 - a) Al b) Ni c) Cu d) Zn
- 6. Which of the following statements, about the advantage of roasting of sulphide ore before reduction is not true?
 - a) $\Delta G_f \circ f$ sulphide is greater than those for CS_2 and H_2S .
 - b) ΔG_{r^0} is negative for roasting of sulphide ore to oxide
 - c) Roasting of the sulphide to its oxide is thermodynamically feasible.
 - d) Carbon and hydrogen are suitable reducing agents for metal sulphides.
- 7. Match items in column I with the items of column II and assign the correct code.

	Column-I	Column-II	
А	Cyanide process	(i)	Ultrapure Ge
В	Froth floatation process	(ii)	Dressing of ZnS
С	Electrolytic reduction	(iii)	Extraction of Al
D	Zone refining	(iv)	Extraction of Au
		(v)	Purification of Ni

	А	В	С	D
(a)	(i)	(ii)	(iii)	(iv)
(b)	(iii)	(iv)	(ii)	(i)
(c)	(iv)	(ii)	(iii)	(i)
(d)	(ii)	(iii)	(i)	(iv)

8. Wolframite ore is separated from tinstone by the process of

a) Smelting b) Calcination c) Roasting d) Electromagnetic separation 9. Which one of the following is not feasible

a) $Zn(s) + Cu^{2+}$ (aq) $\longrightarrow Cu_{(s)} + Zn_{(aq)}^{2+}$ b) Cu(s) + Zn^{2+} (aq) • $Zn_{(s)} + Cu_{(aq)}^{2+}$ c) $Cu(s) + 2Ag^{+}(aq) \longrightarrow Ag(s) + Cu_{(aq)}^{2+}$ d) Fe(s) + Cu^{2+} (aq) \rightarrow Cu_(s) + Fe_(aq)²⁺ 10. Electrochemical process is used to extract a) Iron b) Lead c) Sodium d) silver 11. Flux is a substance which is used to convert a) Mineral into silicate b) Infusible impurities to soluble impurities c) Soluble impurities to infusible impurities d) All of these 12. Which one of the following ores is best concentrated by froth - floatation method? a) Magnetite b) Hematite c) Galena d) Cassiterite

13. In the extraction of aluminium from alumina by electrolysis, cryolite is added toa) Lower the melting point of aluminab) Remove impurities from aluminac) Decrease the electrical conductivityd) Increase the rate of reduction

14. Zinc is obtained	rom ZnO by			
a) Carbon reducti	on	b) Reduction	on using silver	
c) Electrochemica	l process	d) Acid lead	ching	
15. Cupellation is a p	process used for the re	fining of	-	
a) Silver	b) Lead c) (Copper d) ir	on	
16. Extraction of gold (NEET-2017)	and silver involves lea	aching with cyanide io	on. silver is late	er recovered by
a) Distillation	b) Zone refining	c) Displacement w	vith zinc	d) liquation
17. Considering Ellin alumina? (NEET-:	gham diagram, which 2018)	of the following metal	ls can be used	to reduce
a) Fe	b) Cu	c) Mg		d) Zn
,		, .		FORK
18. The following set	of reactions are used i	n refining Zirconium	Zr (impure) + 2	$2I_2 \xrightarrow{525K} ZrI_4$
ZrI4	Zr (pure) + $2I_2$ This me	thod is known as		
a) Liquation	b) van Arkel pro	cess c) Zone refi	ning d) M	ond's process
19. Which of the follo	wing is used for conce	entrating ore in metall	urgy?	ond o process
a) Leaching	b) Roasting	c) Froth flo	atation d) Bo	th (a) and (c)
20. The incorrect sta	tement among the follo	owing is	,	
a) Nickel is refine	d by Mond's process	b) Titanium is refi	ned by Van Ar	kel's process
c) Zinc blende is o	concentrated by froth f	loatation	5	I
d) In the metallur	gy of gold, the metal is	leached with dilute s	odium chloride	e solution
21. In the electrolytic	refining of copper, wh	nich one of the following	ng is used as a	node?
a) Pure copper	b) Impure coppe	r c) Carbon rod	d) Platinum	electrode
22. Which of the follo	wing plot gives Ellingh	nam diagram	,	
a) ∆S Vs T	b) $\Delta G^0 Vs T$	c) ΔG^0 Vs 1/T	d) $\Delta G^0 Vs T^2$	
23. In the Ellingham	diagram, for the forma	ation of carbon monox	xide	
a) $\Delta S^0/T$ is negat	ive b) $\Delta G^0 / \Delta T$ is pos	sitive c) $\Delta G^0 / \Delta T$ i	s negative	
d) initially $\Delta T / \Delta C$	0° is positive, after 70	OC 0, $\Delta G^0 / \Delta T$ is nega	tive	
24. Which of the follo	wing reduction is not	thermodynamically fe	asible?	
a) Cr_2O_3 + $2Al_2$	$Al_2O_3 + 2Cr$ b) A	1 O + 2Cr Cr O + 2A1	2323	
c) 3TiO + 4Al 2 Al	O + 3Ti 2 2 3 d) ne	one of these		
25. Which of the follo	wing is not true with r	respect to Ellingham of	liagram?	
a) Free energy cha	anges follow a straight	line. Deviation occurs	s when there is	a phase
change.				
b) The graph for t	he formation of CO2 is	a straight line almos	t parallel to fre	e energy axis.
c) Negative slope	of CO shows that it bee	comes more stable wit	th increase in t	emperature.
d) Positive slope o	f metal oxides shows t	hat their stabilities de	ecrease with in	crease in
temperature.				
	<u>2. P – Blo</u>	<u>ock elements - I</u>		
1. An aqueous soluti	on of borax is			
a) neutral	b) acidic	c) basic	d) amphoter	ic
2. Boric acid is an ac	id because its molecul	e (NEET)		
a) contains repla	ceable H+ ion	b) gives up a prote	on	
c) combines with	proton to form water a	molecule		
d) accepts OH- fr	om water ,releasing pr	roton.		
3. Which among the	following is not a borar	ne?		
a) B_2H_6	b)B ₃ H ₆	c)B ₄ H ₁₀	d) none of th	nese
4. Which of the follow	ving metals has the lar	gest abundance in th	e earth's crust	?
a) Aluminium	b) calcium	c) Magnesium	d) sodium	

5. In diborane, the	number of electrons	that accounts for b	anana bonds is			
a) six	b) two	two c) four d) three				
5. The element that does not show catenation among the following p-block elements is						
a) Carbon	b) silicon	b) silicon c) Lead d) germanium				
7. Carbon atoms in	n fullerene with form	ula C60 have				
a) sp3 hybridis	sed b) sp	hybridised				
c) sp2 hybridis	sed d) par	tially sp2 and partia	ally sp3 hybridised			
8. Oxidation state	of carbon in its hydr	ides				
a) +4	b) -4	c) +3	d) +2			
9. The basic struct	tural unit of silicates	is (NEET)				
a) (SiO ₃) ⁻²	b) (SiO ₄) ⁻²	c) (SiO)-	d) (SiO4)-4			
10. The repeating	unit in silicone is v					
a) SiO2	b)	c)	d)			
	R					
	Si	R— 0 — Si — O	—Si—O—O—R			
	Ŕ	R	R			
11. Which of these	e is not a monomer fo	r a high molecular n	nass silicone polymer?			
a) Me ₃ SiCl	b) PhSiCl ₃	c) MeSiCl ₃	d) Me ₂ SiCl ₂			
12. Which of the fo	ollowing is not sp2 hy	vbridised?				
a) Graphite	b) graphene	c) Fullerene	d) dry ice			
13. The geometry a	at which carbon aton	n in diamond are bor	nded to each other is			
a) Tetrahedral	b) hexagonal	c) Octahedra	al d) none of these			
14. Which of the fo	ollowing statements i	s not correct?				
a) Beryl is a cyc	clic silicate	b) Mg	₂ SiO ₄ is an orthosilicate			
c) SiO_4^{4-} is the	basic structural unit	of silicates d) Fel	dspar is not aluminosilicate			
15. AlF3 is soluble	in HF only in the pr	esence of KF. It is du	at to the formation of (NEET)			
a) K [AlF ₃ H ₃]	b) K ₃ [AlF ₆]	c) AlH ₃	d) K [AIFH ₃]			
16						

	Column-I	Column-II	
А	Borazole	1	B(OH) ₃
В	Boric acid	2	$B_3N_3H_6$
С	Quartz	3	$Na_2[B_4O_5(OH)_4]8H_2O$
D	Borax	4	SiO_2

	А	В	С	D
(a)	2	1	4	3
(b)	1	2	4	3
(c)	1	2	3	4
(d)	None of these			

17. Duralumin is an alloy of

a) Cu,Mn	b) Cu,Al,Mg	c) Al,Mn d)	Al,Cu,Mn,Mg
18. Thermodynamic	cally the most stable form of	of carbon is	
a) Diamond	b) graphite	c) Fullerene	d) none of these
19. The compound	that is used in nuclear rea	ctors as protective shields a	and control rods is
a) Metal borides carbide	b) metal oxides	c) Metal carbonates	d) metal
20. The stability of $-$	+1 oxidation state increase	s in the sequence	

<u>3. P – Block elements – II</u>

1. In which of the following	ng , NH3 is not used?			
a) Nessler's reagent	b) Rea	agent for the analysis	s of IV group basic radical	
c) Reagent for the ana	lysis of III group bas	ic radical d) Toll	en's reagent	
2. Which is true regarding	g nitrogen?			
a) least electronegative	e element	b) has low ionisatio	n enthalpy than oxygen	
c) d- orbitals available		d) ability to form <i>p</i> ₇	z - $p\pi$ bonds with itself	
3. An element belongs to	group 15 and 3 rd p	eriod of the periodic	table, its electronic	
configuration would be	e			
a) $1s^2 2s^2 2p^4$ b) $1s^2$	$^{2} 2s^{2} 2p^{3}$ c) $1s^{2}$	$2s^2 \ 2p^6 \ 3s^2 \ 3p^2$	d) $1s^2 2s^2 2p^6 3s^2 3p^3$	
4. Solid (A) reacts with str	rong aqueous NaOH	liberating a foul sme	lling gas(B) which	
spontaneously burn ir	ı air giving smoky rir	ngs. A and B are resp	pectively	
a) P_4 (red) and PH_3	b) P ₄ (white) and PH	I_3 c) S_8 and H_2S	d d) P ₄ (white) and H ₂ S	
5. In the brown ring test,	brown colour of the	ring is due to		
a) a mixture of No and	NO ₂ b) Nitroso fe	rrous sulphate	c) Ferrous nitrate d)	
Ferric nitrate				
6. On hydrolysis, PCl3 giv	ves			
a) H ₃ PO ₃	b) PH ₃	c) H ₃ PO ₄	d) POCl ₃	
7. P4O6 reacts with cold	water to give			
a) H ₃ PO ₃	b) H ₄ P ₂ O ₇	c) HPO ₃	d) H ₃ PO ₄	
8. The basicity of pyropho	osphorous acid (H4F	205) is		
a) 4	b) 2	c) 3	d) 5	
9. The molarity of given of	rthophosphoric acid	solution is 2M. its n	ormality is	
a) 6N	b) 4N	c) 2N	d) none of these	
10. Assertion : bond disso	ociation energy of flu	orine is greater than	chlorine gas	
Reason: chlorine has a	nore electronic repu	lsion than fluorine		
a) Both assertion and	reason are true and	reason is the correct	explanation of assertion.	
b) Both assertion and	reason are true but	reason is not the cor	rect explanation of	
assertion.				
c) Assertion is true bu	t reason is false.			
d) Both assertion and	reason are false.			
11. Among the following,	which is the stronge	st oxidizing agent?		
a) Cl ₂	b) F ₂	c) Br ₂	d) I ₂	
12. The correct order of the	ne thermal stability of	of hydrogen halide is		
a) HI > HBr > HCl > H	F b) HF	> HCl $>$ HBr $>$ HI		
c) HCl > HF > HBr > H	.I d) HI	> HCl > HF > HBr		
13. Which one of the follo	wing compounds is	not formed?		
a) XeOF ₄	b) XeO ₃	c) XeF ₂	d) NeF ₂	
14. Most easily liquefiable	e gas is			
a) Ar	b) Ne	c) He	d) Kr	
15. XeF6 on complete hyd	Irolysis produces			
a) XeOF ₄	b) XeO ₂ F ₂	c) XeO ₃	d) XeO ₂	
16. On oxidation with iod	ine, sulphite ion is t	ransformed to		
a) S ₄ O ₆ ²⁻	b) S ₂ O ₆ ²⁻	c) SO ₄ ²⁻	d) SO ₃ ²⁻	
17. Which of the following	g is strongest acid an	nong all?		
a) HI	b) HF	c) HBr	d) HCl	
18. Which one of the follo	18. Which one of the following orders is correct for the bond dissociation enthalpy of halogen			
molecules? (NEET)				
a) $Br_2>I_2>F_2>Cl_2$	b) F_2 > Cl_2 > Br_2 > I_2	c) I ₂ >Br ₂ >Cl ₂ >F ₂	d) $Cl_2 > Br_2 > F_2 > I_2$	

19. Among the following the correct order of a	acidity is (NEET)	
a) $HClO_2 < HClO < HClO_3 < HClO_4$	b) $HClO_4 < HClO_2 < HClO$	< HClO ₃
c) $HClO_3 < HClO_4 < HClO_2 < HClO$	d) HClO < HClO ₂ < HClO ₃	< HClO ₄
20. When copper is heated with conc HNO3 in	t produces	
a) $Cu(NO_3)_2$, NO and NO_2 b) Cu	$(NO_3)_2$ and N_2O_3	
c) $Cu(NO_3)_2$ and NO_2 d) Cu	$(NO_3)_2$ and NO	
<u>4. Transition And In</u>	ner Transition Elem	<u>ents</u>
1. Sc(Z=21) is a transition element but Zinc	(z=30) is not because	
a) both Sc ³⁺ and Zn ²⁺ ions are colourless a	and form white compounds.	
b) in case of Sc, 3d orbital are partially fill	ed but in Zn these are com	pletely filled
c) last electron as assumed to be added to	4s level in case of zinc	
d) both Sc and Zn do not exhibit variable	oxidation states	
2. Which of the following d block element has	s half filled penultimate d s	ub shell as well as half
filled valence sub shell?		
a) Cr b) Pd	c) Pt	d) none of these
3. Among the transition metals of 3d series, t	he one that has highest neg	gative (M /M ²⁺)
standard electrode potential is		
a) Ti b) Cu	c) Mn	d) Zn
4. Which one of the following ions has the sat V^{3+} ?	me number of unpaired elec	ctrons as present in
a) Ti ³⁺ b) Fe ³⁺	c) Ni ²⁺	d) Cr ³⁺
5. The magnetic moment of Mn ²⁺ ion is		
a) 5.92BM b) 2.80BM	c) 8.95BM	d) 3.90BM
6. Which of the following compounds is colou	rless?	
a) Fe ³⁺ b) Ti ⁴⁺	c) Co ²⁺	d) Ni ²⁺
7. the catalytic behaviour of transition metals	and their compounds is as	scribed mainly due to
a) their magnetic behaviour	b) their unfi	lled d orbitals
c) their ability to adopt variable oxidation	states d) their cher	nical reactivity
8. The correct order of increasing oxidizing po	ower in the series	
a) $VO_{2^+} < Cr_2O_{7^{2^-}} < MnO_{4^-}$	b) $Cr_2O_7^{2-} < VO_2^+ < MnO_4^-$	-
c) $Cr_2O_7^{2-}$ $MnO_4^- < VO_2^+$	d) $MnO_4^- < Cr_2O_7^{2-} < VO_2^+$	
9. The alloy of copper that contain Zinc is		
a) Monel metal b) Bronze	c) bell metal	d) brass
10. Which of the following does not give oxyge	en on heating?	
a) $K_2Cr_2O_7$ b) $(NH_4)_2Cr_2O_7$	c) KClO ₃	d) Zn(ClO ₃) ₂
11. In acid medium, potassium permanganat	e oxidizes oxalic acid to	
a) oxalate b) Carbon dioxide	c) acetate	d) acetic acid
12. Which of the following statements is not t	rue?	
a) on passing H ₂ S, through acidified K ₂ Cr ₂	2O7 solution, a milky colour	is observed.
b) $Na_2Cr_2O_7$ is preferred over $K_2Cr_2O_7$ in ve	olumetric analysis	
c) K ₂ Cr ₂ O ₇ solution in acidic medium is or	ange in colour	
d) $K_2Cr_2O_7$ solution becomes yellow on inc	creasing the PH beyond 7	
13. Permanganate ion changes to in	acidic medium	
a) $MnO_{4^{2^{-}}}$ b) $Mn^{2^{+}}$	c) Mn ³⁺	d) MnO ₂
14. A white crystalline salt (A) react with dif	ute HCl to liberate a suffoc	cating gas (B) and also
forms a yellow precipitate . The gas (B)) turns potassium dichron	nate acidified with dil
H_2SO_4 to a green coloured solution(C). A,E	3 and C are respectively	
a) Na ₂ SO ₃ ,SO ₂ ,Cr ₂ (SO ₄) ₃	b) $Na_2S_2O_3, SO_2, Cr_2(SO_4)_3$	
c) Na ₂ S,SO ₂ ,Cr ₂ (SO ₄) ₃	d) $Na_2SO_4, SO_2, Cr_2(SO_4)_3$	

P.Irulappan., PG Asst.in Chemistry., Lord Venkateshwara Matric.Hr.Sec.School, T.Kallupatti

- 15. MnO₄- react with Br in alkaline PH to give a) $BrO_3^- MnO_2$, b) $Br_2, MnO_4^$ c) Br_2, MnO_2 d) BrO-,MnO₄²⁻ 16. How many moles of I₂ are liberated when 1 mole of potassium dichromate react with potassium iodide? a) 1 b) 2 c) 3 d) 4 17. The number of moles of acidified KMnO₄ required to oxidize 1 mole of ferrous oxalate (FeC_2O_4) is a) 5 b) 3 c) 0.6 d) 1.5 18. When a brown compound of Mn (A) ids treated with HCl, it gives a gas (B). The gas (B) taken in excess reacts with NH_3 to give an explosive compound (C). The compound A, B and C are a) MnO_2, Cl_2, NCl_3 b) MnO_2 , Cl_2 , NH_4Cl c) Mn_3O_4 , Cl_2 , NCl_3 d) Mn_3O_4, Cl_2, NCl_2 19. Which one of the following statements related to lanthanons is incorrect? a) Europium shows +2 oxidation state. b) The basicity decreases as the ionic radius decreases from Pr to Lu. c) All the lanthanons are much more reactive than aluminium. d) Ce^{4+} solutions are widely used as oxidising agents in volumetric analysis. 20. Which of the following lanthanoid ions is diamagnetic? a) Eu²⁺ b) Yb²⁺ c) Ce2+ d) Sm2+ 21. Which of the following oxidation states is most common among the lanthanoids? b) 2 c) 5 d) 3 a) 4 22. Assertion : Ce⁴⁺ is used as an oxidizing agent in volumetric analysis. Reason: Ce⁴⁺ has the tendency of attaining +3 oxidation state. a) Both assertion and reason are true and reason is the correct explanation of assertion. b) Both assertion and reason are true but reason is not the correct explanation of assertion. c) Assertion is true but reason is false. d) Both assertion and reason are false. 23. The most common oxidation state of actinoids is a) +2 b) +3 c) +4 d) +6 24. The actinoid elements which show the highest oxidation state of +7 are b) U, Fm, Th a) Np,Pu,Am c) U, Th, Md d) Es, No, Lr 25. Which one of the following is not correct? a) $La(OH)_2$ is less basic than $Lu(OH)_3$ b) In lanthanoid series ionic radius of Ln3+ ions decreases c) La is actually an element of transition metal series rather than lanthanide series d) Atomic radii of Zr and Hf are same because of lanthanide contraction 5. Coordination chemistry
- 1. The sum of primary valance and secondary valance of the metal M in the complex $[M(en)_2(Ox)]$ Cl is L
- a) 3
 b) 6
 c) -3
 d) 9
 2. An excess of silver nitrate is added to 100ml of a 0.01M solution of pentaaquachlorido chromium(III)chloride. The number of moles of AgCl precipitated would be a)0.02
 b) 0.002
 c) 0.01
 d) 0.2
- 3. A complex has a molecular formula MSO₄Cl. 6H₂O.The aqueous solution of it gives white precipitate with Barium chloride solution and no precipitate is obtained when it is treated with silver nitrate solution. If the secondary valence of the metal is six, which one of the following correctly represents the complex?
 - a) $[M (H_2O)_4Cl]SO_4.2H_2O$ c) $[M (H_2O)_5Cl]SO_4.H_2O$ b) $[M (H_2O)_6]SO_4$ c) $[M (H_2O)_5Cl]SO_4.H_2O$ b) $[M (H_2O)_3Cl]SO_4.3H_2O$

	n [Fe(H ₂ O) ₅ NO]SO ₄ are
a) +2 and 0 respectively b) +3 and 0 r	respectively
c) +3 and -1 respectively d) +1 and +1	respectively
5. As per IUPAC guidelines, the name of the complex [Co (en)2(ONO)Cl] Cl is
a) chlorobisethylenediaminenitritocobalt(III) chloride	
b) chloridobis(ethane-1,2-diamine)nitro k- Ocobaltate(III)	chloride
c) chloridobis(ethane-1,2-diammine)nitrito k- Ocobalt(II) o	chloride
d) chloridobis(ethane-1,2-diamine)nitro k- Ocobalt(III) chl	oride
6. IUPAC name of the complex $K_3[Al(C_2O_4)_3]$ is	
a) potassiumtrioxalatoaluminium(III)	
b) potassiumtrioxalatoaluminate(II)	
c) potassiumtrisoxalatoaluminate(III)	
d) potassiumtrioxalatoaluminate(III)	
7. A magnetic moment of 1.73BM will be shown by one amor	ng the following (NEET)
a) TiCl ₄ b) $[CoCl_6]^{-4}$ c) $[Cu(NH_3)_4]^+$	2 d) [Ni(CN) ₄] ⁻²
8. Crystal field stabilization energy for high spin d ⁵ octahedr.	al complex is
a) $-0.60 \Lambda_0$ b) 0 c) 2 (P $-\Lambda_0$)	d) 2 (P+ Λ_0)
9. In which of the following coordination entities the magnitu	$\Delta = 0$ Δ_0 will be maximum?
a) $[C_0(CN)_{6}]^{3-}$ b) $[C_0(C_2O_4)_3]^{3-}$ c) $[C_0(H_2O)_{6}]^{3-}$	d (Co (NH ₃)e ³⁺
10. Which one of the following will give a pair of enantiomorr	a) [00 (0)0]
a) $[Cr(NH_3)_6]$ $[Co(CN)_6]$ b) $[Co(en)_2Cl_2]$ Cl_2 c) $[Pt(NH_3)_4][P$	tCl ₄] d) [Co(NH ₃) ₄ Cl]NO ₂
11. Which type of isomerism is exhibited by $[Pt(NH_3)_2Cl_2]$?	
a) Coordination isomerism b) Linkage isomeris	m
c) Optical isomerism d) Geometrical isome	erism
12. How many geometrical isomers are possible for< <eva03.< td=""><td>5 eps>>?</td></eva03.<>	5 eps>>?
a) 3 b) 4 c) 0	a) 15
13. Which one of the following pairs represents linkage isom	ers?
13. Which one of the following pairs represents linkage isometa) [C11 (NH3)4][PtCl4] and [Pt(NH3)4][C11Cl4] b) [C0(N]	ers? H $_3$ (NO $_3$)]SO $_4$ and [Co(NH $_3$) $_5$ (ONO)]
 13. Which one of the following pairs represents linkage isoma. a) [Cu (NH₃)₄][PtCl₄] and [Pt(NH₃)₄][CuCl₄] b) [Co(NH₃)₄(NCS)₂]Cl and [Co(NH₃)₄(SCN)₂]Cl d) both 	ers? H ₃) $_{5}(NO_{3})$]SO ₄ and [Co(NH ₃) $_{5}(ONO)$]
 13. Which one of the following pairs represents linkage isometal [Cu (NH₃)₄][PtCl₄] and [Pt(NH₃)₄][CuCl₄] b) [Co(NH₃)₄(NCS)₂]Cl and [Co(NH₃)₄ (SCN)₂]Cl b) both 14. Which kind of isomerism is possible for a complex<<eva< li=""> </eva<>	ers? H ₃) ₅ (NO ₃)]SO ₄ and [Co(NH ₃) ₅ (ONO)] (b) and (c) 0.039.eps>>?
 13. Which one of the following pairs represents linkage isoma. a) [Cu (NH₃)₄][PtCl₄] and [Pt(NH₃)₄][CuCl₄] b) [Co(NH₃)₄ (NCS)₂]Cl and [Co(NH₃)₄ (SCN)₂]Cl d) both 14. Which kind of isomerism is possible for a complex<<eva a)="" and="" b)="" geometrical="" geometrical<="" ionization="" li=""> </eva>	ers? H ₃) ₅ (NO ₃)]SO ₄ and [Co(NH ₃) ₅ (ONO)] (b) and (c) .039.eps>>? 1 and optical
 13. Which one of the following pairs represents linkage isomatical and [Cu (NH₃)₄][PtCl₄] and [Pt(NH₃)₄][CuCl₄] b) [Co(NH₃)₄ (NCS)₂]Cl and [Co(NH₃)₄ (SCN)₂]Cl d) both 14. Which kind of isomerism is possible for a complex<<eva a)="" and="" b)="" c)="" d)="" geometrical="" geometrical<="" ionization="" li="" optical=""> </eva>	ers? H ₃) ₅ (NO ₃)]SO ₄ and [Co(NH ₃) ₅ (ONO)] (b) and (c) .039.eps>>? 1 and optical 1 only
 13. Which one of the following pairs represents linkage isoma a) [Cu (NH₃)₄][PtCl₄] and [Pt(NH₃)₄][CuCl₄] b) [Co(NI c) [Co(NH₃)₄(NCS)₂]Cl and [Co(NH₃)₄ (SCN)₂]Cl d) both 14. Which kind of isomerism is possible for a complex<<eva< li=""> a) geometrical and ionization b) geometrical c) optical and ionization d) geometrical 15. Which one of the following complexes is not expected to end </eva<>	ers? H ₃) ₅ (NO ₃)]SO ₄ and [Co(NH ₃) ₅ (ONO)] (b) and (c) .039.eps>>? l and optical l only exhibit isomerism?
 13. Which one of the following pairs represents linkage isoma a) [Cu (NH₃)₄][PtCl₄] and [Pt(NH₃)₄][CuCl₄] b) [Co(NI₃)₄ (NCS)₂]Cl and [Co(NH₃)₄ (SCN)₂]Cl d) both 14. Which kind of isomerism is possible for a complex<<eva a)="" and="" b)="" geometrical="" geometrical<="" ionization="" li=""> c) optical and ionization d) geometrical 15. Which one of the following complexes is not expected to e a) [Ni(NH₃)₄(H₂O)₂]⁺² b) <<eva041.eps>> c)[Co(NI₃)₄(H₂O)₂]⁺²</eva041.eps> </eva>	ers? H ₃) ₅ (NO ₃)]SO ₄ and [Co(NH ₃) ₅ (ONO)] (b) and (c) .039.eps>>? 1 and optical 1 only exhibit isomerism? NH ₃) ₄ SO ₄] Cl d) [Fe(en) ₃] ³⁺
 13. Which one of the following pairs represents linkage isoma. a) [Cu (NH₃)₄][PtCl₄] and [Pt(NH₃)₄][CuCl₄] b) [Co(NI c) [Co(NH₃)₄(NCS)₂]Cl and [Co(NH₃)₄ (SCN)₂]Cl d) both 14. Which kind of isomerism is possible for a complex<<eva a)="" and="" b)="" c)="" d)="" geometrical="" geometrical<="" ionization="" li="" optical=""> 15. Which one of the following complexes is not expected to a [Ni(NH₃)₄(H₂O)₂]⁺² b) <<eva041.eps>> c)[Co(NI c)[Co(NI c)]</eva041.eps> 16. A complex in which the oxidation number of the metal is </eva>	ers? H ₃) ₅ (NO ₃)]SO ₄ and [Co(NH ₃) ₅ (ONO)] (b) and (c) .039.eps>>? 1 and optical 1 only exhibit isomerism? NH ₃) ₄ SO ₄] Cl d) [Fe(en) ₃] ³⁺ . zero is
 13. Which one of the following pairs represents linkage isoma a) [Cu (NH₃)₄][PtCl₄] and [Pt(NH₃)₄][CuCl₄] b) [Co(NI₃)₄ (NCS)₂]Cl and [Co(NH₃)₄ (SCN)₂]Cl d) both 14. Which kind of isomerism is possible for a complex<<eva a)="" and="" b)="" geometrical="" geometrical<="" ionization="" li=""> c) optical and ionization d) geometrical 15. Which one of the following complexes is not expected to e a) [Ni(NH₃)₄(H₂O)₂]⁺² b) <<eva041.eps>> c)[Co(NI₃)₄(H₂O)₂]⁺² b) <<eva041.eps>> c)[Co(NI₃)₄(H₂O)₂]⁺² b) [Fe(CN)₃(NH₃)] c)[Fe(CN)₃(NH₃)]</eva041.eps></eva041.eps> </eva>	ers? H ₃) ₅ (NO ₃)]SO ₄ and [Co(NH ₃) ₅ (ONO)] (b) and (c) .039.eps>>? 1 and optical 1 only exhibit isomerism? NH ₃) ₄ SO ₄] Cl d) [Fe(en) ₃] ³⁺ . zero is O) ₅] d) both (b) and (c)
 13. Which one of the following pairs represents linkage isoma. a) [Cu (NH₃)₄][PtCl₄] and [Pt(NH₃)₄][CuCl₄] b) [Co(NI c) [Co(NH₃)₄(NCS)₂]Cl and [Co(NH₃)₄ (SCN)₂]Cl d) both 14. Which kind of isomerism is possible for a complex<<eva a)="" and="" b)="" c)="" d)="" geometrical="" geometrical<="" ionization="" li="" optical=""> 15. Which one of the following complexes is not expected to a [Ni(NH₃)₄(H₂O)₂]⁺² b) <<eva041.eps>> c)[Co(II</eva041.eps> 16. A complex in which the oxidation number of the metal is a) K₄Fe(CN)₆ b) [Fe(CN)₃(NH₃)] c)[Fe(C 17. Formula of tris(ethane-1.2-diamine)iron(II)phosphate </eva>	ers? H ₃) ₅ (NO ₃)]SO ₄ and [Co(NH ₃) ₅ (ONO)] (b) and (c) .039.eps>>? 1 and optical 1 only exhibit isomerism? NH ₃) ₄ SO ₄] Cl d) [Fe(en) ₃] ³⁺ zero is O) ₅] d) both (b) and (c)
 13. Which one of the following pairs represents linkage isoma. a) [Cu (NH₃)₄][PtCl₄] and [Pt(NH₃)₄][CuCl₄] b) [Co(NI₃)₄ (NCS)₂]Cl and [Co(NH₃)₄ (SCN)₂]Cl d) both 14. Which kind of isomerism is possible for a complex<<eva a)="" and="" b)="" c)="" d)="" geometrical="" geometrical<="" ionization="" li="" optical=""> 15. Which one of the following complexes is not expected to e a) [Ni(NH₃)₄(H₂O)₂]⁺² b) <<eva041.eps>> c)[Co(II</eva041.eps> 16. A complex in which the oxidation number of the metal is a) K₄Fe(CN)₆ b) [Fe(CN)₃(NH₃)] c)[Fe(CIII) 17. Formula of tris(ethane-1,2-diamine)iron(II)phosphate a) [Fe(CH₃-CH(NH)₂)₂]₃ (PO₄)₃ b)[Fe(H₂N-CH₂</eva>	ers? H ₃) ₅ (NO ₃)]SO ₄ and [Co(NH ₃) ₅ (ONO)] (b) and (c) .039.eps>>? 1 and optical 1 only exhibit isomerism? NH ₃) ₄ SO ₄] Cl d) [Fe(en) ₃] ³⁺ . zero is O) ₅] d) both (b) and (c) -NH ₂) ₃](PO ₄)
 13. Which one of the following pairs represents linkage isoma. a) [Cu (NH₃)₄][PtCl₄] and [Pt(NH₃)₄][CuCl₄] b) [Co(NI c) [Co(NH₃)₄(NCS)₂]<i>Cl</i> and [Co(NH₃)₄ (SCN)₂]<i>Cl</i> d) both 14. Which kind of isomerism is possible for a complex<<eva a)="" and="" b)="" c)="" d)="" distrib<="" distribution="" geometrical="" ionization="" optical="" td=""><td>ers? H₃)₅(NO₃)]SO₄ and [Co(NH₃)₅(ONO)] (b) and (c) .039.eps>>? 1 and optical 1 only exhibit isomerism? NH₃)₄SO₄]Cl d) [Fe(en)₃]³⁺ . zero is O)₅] d) both (b) and (c) -NH₂)₃](PO₄) -NH₂)₃](PO₄)</td></eva>	ers? H ₃) ₅ (NO ₃)]SO ₄ and [Co(NH ₃) ₅ (ONO)] (b) and (c) .039.eps>>? 1 and optical 1 only exhibit isomerism? NH ₃) ₄ SO ₄] Cl d) [Fe(en) ₃] ³⁺ . zero is O) ₅] d) both (b) and (c) -NH ₂) ₃](PO ₄) -NH ₂) ₃](PO ₄)
 13. Which one of the following pairs represents linkage isoma a) [Cu (NH₃)₄][PtCl₄] and [Pt(NH₃)₄][CuCl₄] b) [Co(NI₃)₄ (NCS)₂]Cl and [Co(NH₃)₄ (SCN)₂]Cl d) both 14. Which kind of isomerism is possible for a complex<<eva a)="" and="" b)="" geometrical="" geometrical<="" ionization="" li=""> c) optical and ionization d) geometrical 15. Which one of the following complexes is not expected to a a) [Ni(NH₃)₄(H₂O)₂]⁺² b) <<eva041.eps>> c)[Co(NI₃)₄(H₂O)₂]⁺² b) <<eva041.eps>> c)[Co(NI₃)₄(H₂O)₂]⁺² b) [Fe(CN)₃(NH₃)] c)[Fe(CI)</eva041.eps></eva041.eps> 16. A complex in which the oxidation number of the metal is a) K₄Fe(CN)₆ b) [Fe(CN)₃(NH₃)] c)[Fe(CI) 17. Formula of tris(ethane-1,2-diamine)iron(II)phosphate a) [Fe(CH₃-CH(NH)₂)₂)₃] (PO₄)₃ b)[Fe(H₂N-CH₂-CH₂ - CH₂-</eva>	ers? H ₃) ₅ (NO ₃)]SO ₄ and [Co(NH ₃) ₅ (ONO)] (b) and (c) .039.eps>>? 1 and optical 1 only exhibit isomerism? NH ₃) ₄ SO ₄] Cl d) [Fe(en) ₃] ³⁺ . zero is O) ₅] d) both (b) and (c) -NH ₂) ₃](PO ₄) NH ₂) ₃] ₃ (PO ₄) ₂
 13. Which one of the following pairs represents linkage isoma. a) [Cu (NH₃)₄][PtCl₄] and [Pt(NH₃)₄][CuCl₄] b) [Co(NI₃)₄ (NCS)₂]<i>Cl</i> and [Co(NH₃)₄ (SCN)₂]<i>Cl</i> d) both 14. Which kind of isomerism is possible for a complex<<eva a)="" and="" b)="" c)="" d)="" geometrical="" geometrical<="" ionization="" li="" optical=""> 15. Which one of the following complexes is not expected to e a) [Ni(NH₃)₄(H₂O)₂]⁺² b) <<eva041.eps>> c)[Co(NI₃)₄(H₂O)₂]⁺² b) <<eva041.eps>> c)[Co(NI₃)₄(H₂O)₂]⁺² b) <[Fe(CN)₃(NH₃)] c)[Fe(C</eva041.eps></eva041.eps> 17. Formula of tris(ethane-1,2-diamine)iron(II)phosphate a) [Fe(CH₃-CH(NH)₂)₂)₃] (PO₄)₃ b)[Fe(H₂N-CH₂-CH₂-CH₂-C)[Fe(H₂N-CH₂-CH₂-NH₂)₃](PO₄)₂ d) [Fe(H₂N-CH₂-CH₂-CH₂-NH₂)₃](PO₄)₂ d) [Fe(H₂N-CH₂-CH₂-CH₂-R) a) K₄het of the following is paramagnetic in nature? a) [Zn(NH₃)₄]²⁺ b)[Co(NH₃)₆]³⁺ c)[Ni(H₂)³⁺ </eva>	ers? H ₃) ₅ (NO ₃)]SO ₄ and [Co(NH ₃) ₅ (ONO)] (b) and (c) .039.eps>>? 1 and optical 1 only exhibit isomerism? NH ₃) ₄ SO ₄] Cl d) [Fe(en) ₃] ³⁺ zero is O) ₅] d) both (b) and (c) -NH ₂) ₃](PO ₄) -NH ₂) ₃](PO ₄) ₂ 2O) ₆] ²⁺ d)[Ni(CN) ₄] ²⁻
 13. Which one of the following pairs represents linkage isoma. a) [Cu (NH₃)₄][PtCl₄] and [Pt(NH₃)₄][CuCl₄] b) [Co(NI₃)₄ (NCS)₂]<i>Cl</i> and [Co(NH₃)₄ (SCN)₂]<i>Cl</i> d) both 14. Which kind of isomerism is possible for a complex<<eva a)="" and="" b)="" geometrical="" geometrical<="" ionization="" li=""> c) optical and ionization d) geometrical 15. Which one of the following complexes is not expected to e a) [Ni(NH₃)₄(H₂O)₂]⁺² b) <<eva041.eps>> c)[Co(I</eva041.eps> 16. A complex in which the oxidation number of the metal is a) K₄Fe(CN)₆ b) [Fe(CN)₃(NH₃)] c)[Fe(C 17. Formula of tris(ethane-1,2-diamine)iron(II)phosphate a) [Fe(CH₃-CH(NH)₂)₂)₃] (PO₄)₃ b)[Fe(H₂N-CH₂-CH₂-CH₂-C)[Fe(H₂N-CH₂-CH₂-NH₂)₃](PO₄)₂ d) [Fe(H₂N-CH₂-CH₂-CH₂-CH₂-C)[Fe(H₂N-CH₂-CH₂-NH₂)₃](PO₄)₂ d) [Fe(H₂N-CH₂-CH₂-CH₂-CH₂-C)[Fe(H₂N-CH₂-CH₂-NH₂)₃](PO₄)₂ d) [Fe(H₂N-CH₂-CH₂-CH₂-CH₂-C)[Fe(H₂N-CH₂-CH₂-NH₂)₃](PO₄)₂ d) [Fe(H₂N-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-NH₂)₃](PO₄)₂ d) [Fe(H₂N-CH₂-CH₂-CH₂-CH₂-CH₂-NH₂)₃](PO₄)₂ d) [Fe(H₂N-CH₂-C</eva>	ers? H ₃) ₅ (NO ₃)]SO ₄ and [Co(NH ₃) ₅ (ONO)] (b) and (c) .039.eps>>? 1 and optical 1 only exhibit isomerism? NH ₃) ₄ SO ₄] Cl d) [Fe(en) ₃] ³⁺ zero is O) ₅] d) both (b) and (c) -NH ₂) ₃](PO ₄) -NH ₂) ₃](PO ₄) 2O) ₆] ²⁺ d)[Ni(CN) ₄] ²⁻
 13. Which one of the following pairs represents linkage isoma. a) [Cu (NH₃)₄][PtCl₄] and [Pt(NH₃)₄][CuCl₄] b) [Co(NI c) [Co(NH₃)₄(NCS)₂]<i>Cl</i> and [Co(NH₃)₄(SCN)₂]<i>Cl</i> d) both 14. Which kind of isomerism is possible for a complex<<eva a)="" and="" b)="" c)="" d)="" geometrical="" geometrical<="" ionization="" li="" optical=""> 15. Which one of the following complexes is not expected to e a) [Ni(NH₃)₄(H₂O)₂]⁺² b) <<evao41.eps>> c)[Co(I</evao41.eps> 16. A complex in which the oxidation number of the metal is a) K₄Fe(CN)₆ b) [Fe(CN)₃(NH₃)] c)[Fe(C 17. Formula of tris(ethane-1,2-diamine)iron(II)phosphate a) [Fe(CH₃-CH(NH)₂)₂)₃] (PO₄)₃ b)[Fe(H₂N-CH₂-CH₂-CH₂-c)[Fe(H₂N-CH₂-CH₂-NH₂)₃](PO₄)₂ d) [Fe(H₂N-CH₂</eva>	ers? H ₃) ₅ (NO ₃)]SO ₄ and [Co(NH ₃) ₅ (ONO)] (b) and (c) .039.eps>>? 1 and optical 1 only exhibit isomerism? NH ₃) ₄ SO ₄] Cl d) [Fe(en) ₃] ³⁺ zero is O) ₅] d) both (b) and (c) -NH ₂) ₃](PO ₄) -NH ₂) ₃](PO ₄) ₂ ₂ O) ₆] ²⁺ d)[Ni(CN) ₄] ²⁻ [H ₃) ₃ (Cl) ₃] d)[Co(NH ₃) ₅ Cl] SO ₄
 13. Which one of the following pairs represents linkage isoma. a) [Cu (NH₃)₄][PtCl₄] and [Pt(NH₃)₄][CuCl₄] b) [Co(NI c) [Co(NH₃)₄(NCS)₂]<i>Cl</i> and [Co(NH₃)₄ (SCN)₂]<i>Cl</i> d) both 14. Which kind of isomerism is possible for a complex<eva a)="" and="" b)="" c)="" d)="" geometrical="" geometrical<="" ionization="" li="" optical=""> 15. Which one of the following complexes is not expected to e a) [Ni(NH₃)₄(H₂O)₂]⁺² b) <<eva041.eps>> c)[Co(II</eva041.eps> 16. A complex in which the oxidation number of the metal is a) K₄Fe(CN)₆ b) [Fe(CN)₃(NH₃)] c)[Fe(C 17. Formula of tris(ethane-1,2-diamine)iron(II)phosphate a) [Fe(CH₃-CH(NH)₂)₂)₃] (PO₄)₃ b)[Fe(H₂N-CH₂-C</eva>	ers? H ₃) ₅ (NO ₃)]SO ₄ and [Co(NH ₃) ₅ (ONO)] (b) and (c) 039.eps>>? 1 and optical 1 only exhibit isomerism? NH ₃) ₄ SO ₄] Cl d) [Fe(en) ₃] ³⁺ zero is O) ₅] d) both (b) and (c) -NH ₂) ₃](PO ₄) -NH ₂) ₃](PO ₄) 2O) ₆] ²⁺ d)[Ni(CN) ₄] ²⁻ H ₃) ₃ (Cl) ₃] d)[Co(NH ₃) ₅ Cl] SO ₄
 13. Which one of the following pairs represents linkage isoma. a) [Cu (NH₃)₄][PtCl₄] and [Pt(NH₃)₄][CuCl₄] b) [Co(NI c) [Co(NH₃)₄(NCS)₂]<i>Cl</i> and [Co(NH₃)₄ (SCN)₂]<i>Cl</i> d) both 14. Which kind of isomerism is possible for a complex<<eva a)="" and="" b)="" c)="" d)="" geometrical="" geometrical<="" ionization="" li="" optical=""> 15. Which one of the following complexes is not expected to e a) [Ni(NH₃)₄(H₂O)₂]⁺² b) <<eva041.eps>> c)[Co(II</eva041.eps> 16. A complex in which the oxidation number of the metal is a) K₄Fe(CN)₆ b) [Fe(CN)₃(NH₃)] c)[Fe(C 17. Formula of tris(ethane-1,2-diamine)iron(II)phosphate a) [Fe(CH₃-CH(NH)₂)₂)₃] (PO₄)₃ b)[Fe(H₂N-CH₂-CH₂-CH₂ - c)[Fe(H₂N-CH₂-CH₂-NH₂)₃](PO₄)₂ d) [Fe(H₂N-CH₂-CH₂-CH₂ 18. Which of the following is paramagnetic in nature? a) [Zn(NH₃)₄]²⁺ b)[Co(NH₃)₆]³⁺ c)[Ni(H₂)⁴] 19. Fac-mer isomerism is shown by a) [Co(en)₃]³⁺ b)[Co(NH₃)₄(<i>Cl</i>)₂]⁺ c)[Co(N 20. Choose the correct statement. a) Square planar complexes are more stable than octahed </eva>	ers? H ₃) ₅ (NO ₃)]SO ₄ and [Co(NH ₃) ₅ (ONO)] (b) and (c) .039.eps>>? 1 and optical 1 only exhibit isomerism? NH ₃) ₄ SO ₄] Cl d) [Fe(en) ₃] ³⁺ zero is O) ₅] d) both (b) and (c) -NH ₂) ₃](PO ₄) -NH ₂) ₃](PO ₄) ₂ 2O) ₆] ²⁺ d)[Ni(CN) ₄] ²⁻ H ₃) ₃ (Cl) ₃] d)[Co(NH ₃) ₅ Cl] SO ₄ dral complexes
 13. Which one of the following pairs represents linkage isoma. a) [Cu (NH₃)₄][PtCl₄] and [Pt(NH₃)₄][CuCl₄] b) [Co(NI c) [Co(NH₃)₄(NCS)₂]<i>Cl</i> and [Co(NH₃)₄ (SCN)₂]<i>Cl</i> d) both 14. Which kind of isomerism is possible for a complex<<eva a)="" and="" b)="" geometrical="" geometrical<="" ionization="" li=""> c) optical and ionization d) geometrical 15. Which one of the following complexes is not expected to e a) [Ni(NH₃)₄(H₂O)₂]⁺² b) <<eva041.eps>> c)[Co(II</eva041.eps> 16. A complex in which the oxidation number of the metal is a) K₄Fe(CN)₆ b) [Fe(CN)₃(NH₃)] c)[Fe(C 17. Formula of tris(ethane-1,2-diamine)iron(II)phosphate a) [Fe(CH₃-CH(NH)₂)₂)₃] (PO₄)₃ b)[Fe(H₂N-CH₂-CH₂-CH₂-C)[Fe(H₂N-CH₂-CH₂-NH₂)₃](PO₄)₂ d) [Fe(H₂N-CH₂</eva>	ers? H ₃) ₅ (NO ₃)]SO ₄ and [Co(NH ₃) ₅ (ONO)] (b) and (c) 0.039.eps>>? 1 and optical 1 only exhibit isomerism? NH ₃) ₄ SO ₄] <i>Cl</i> d) [Fe(en) ₃] ³⁺ zero is O) ₅] d) both (b) and (c) -NH ₂) ₃](PO ₄) -NH ₂) ₃](PO ₄) 2O) ₆] ²⁺ d)[Ni(CN) ₄] ²⁻ H ₃) ₃ (<i>Cl</i>) ₃] d)[Co(NH ₃) ₅ <i>Cl</i>] SO ₄ dral complexes BM and it has square planar
 13. Which one of the following pairs represents linkage isoma. a) [Cu (NH₃)₄][PtCl₄] and [Pt(NH₃)₄][CuCl₄] b) [Co(NI c) [Co(NH₃)₄(NCS)₂]<i>Cl</i> and [Co(NH₃)₄ (SCN)₂]<i>Cl</i> d) both 14. Which kind of isomerism is possible for a complex<<eva a)="" and="" b)="" c)="" d)="" geometrical="" geometrical<="" ionization="" li="" optical=""> 15. Which one of the following complexes is not expected to a [Ni(NH₃)₄(H₂O)₂]⁺² b) <<eva041.eps>> c)[Co(NI 6. A complex in which the oxidation number of the metal is a) K₄Fe(CN)₆ b) [Fe(CN)₃(NH₃)] c)[Fe(C</eva041.eps> 17. Formula of tris(ethane-1,2-diamine)iron(II)phosphate a) [Fe(CH₃-CH(NH)₂)₂)₃] (PO₄)₃ b)[Fe(H₂N-CH₂-C</eva>	ers? H ₃) ₅ (NO ₃)]SO ₄ and [Co(NH ₃) ₅ (ONO)] (b) and (c) .039.eps>>? 1 and optical 1 only exhibit isomerism? NH ₃) ₄ SO ₄] Cl d) [Fe(en) ₃] ³⁺ zero is O) ₅] d) both (b) and (c) -NH ₂) ₃](PO ₄) -NH ₂) ₃](PO ₄) ₂ 2O) ₆] ²⁺ d)[Ni(CN) ₄] ²⁻ H ₃) ₃ (Cl) ₃] d)[Co(NH ₃) ₅ Cl] SO ₄ dral complexes BM and it has square planar
13. Which one of the following pairs represents linkage isoma a) [Cu (NH ₃) ₄][PtCl ₄] and [Pt(NH ₃) ₄][CuCl ₄] b) [Co(NI c) [Co(NH ₃) ₄ (NCS) ₂] <i>Cl</i> and [Co(NH ₃) ₄ (SCN) ₂] <i>Cl</i> d) both 14. Which kind of isomerism is possible for a complex< <eva a) geometrical and ionization b) geometrical c) optical and ionization d) geometrical 15. Which one of the following complexes is not expected to e a) [Ni(NH₃)₄(H₂O)₂]⁺² b) <<eva041.eps>> c)[Co(I 16. A complex in which the oxidation number of the metal is a) K₄Fe(CN)₆ b) [Fe(CN)₃(NH₃)] c)[Fe(C 17. Formula of tris(ethane-1,2-diamine)iron(II)phosphate a) [Fe(CH₃-CH(NH)₂)₂)₃] (PO₄)₃ b)[Fe(H₂N-CH₂-CH₂- c)[Fe(H₂N-CH₂-CH₂-NH₂)₃](PO₄)₂ d) [Fe(H₂N-CH₂-CH₂- the following is paramagnetic in nature? a) [Zn(NH₃)₄]²⁺ b)[Co(NH₃)₆]³⁺ c)[Ni(H₂ 19. Fac-mer isomerism is shown by a) [Co(en)₃]³⁺ b)[Co(NH₃)₄(<i>Cl</i>)₂]⁺ c)[Co(N 20. Choose the correct statement. a) Square planar complexes are more stable than octahed b) The spin only magnetic moment of [Cu(Cl)₄]²⁻ is 1.732 structure. c) Crystal field splitting energy (Δ_0) of [FeF6]⁴⁻is higher that</eva041.eps></eva 	ers? H ₃) ₅ (NO ₃)]SO ₄ and [Co(NH ₃) ₅ (ONO)] (b) and (c) .039.eps>>? 1 and optical 1 only exhibit isomerism? NH ₃) ₄ SO ₄] <i>Cl</i> d) [Fe(en) ₃] ³⁺ zero is O) ₅] d) both (b) and (c) -NH ₂) ₃](PO ₄) -NH ₂) ₃](PO ₄) -NH ₂) ₃] ₃ (PO ₄) ₂ 2O) ₆] ²⁺ d)[Ni(CN) ₄] ²⁻ H ₃) ₃ (<i>Cl</i>) ₃] d)[Co(NH ₃) ₅ <i>Cl</i>] SO ₄ dral complexes BM and it has square planar an the (Δ_0) of [Fe(CN) ₆] ⁴⁻
 13. Which one of the following pairs represents linkage isoma a) [Cu (NH₃)4][PtCl4] and [Pt(NH₃)4][CuCl4] b) [Co(NI c) [Co(NH₃)4(NCS)₂]<i>Cl</i> and [Co(NH₃)4 (SCN)₂]<i>Cl</i> d) both 14. Which kind of isomerism is possible for a complex<<eva a)="" and="" b)="" c)="" d)="" geometrica<="" geometrical="" ionization="" li="" optical=""> 15. Which one of the following complexes is not expected to e a) [Ni(NH₃)4(H₂O)₂]⁺² b) <<eva041.eps>> c)[Co(I</eva041.eps> 16. A complex in which the oxidation number of the metal is a) K₄Fe(CN)₆ b) [Fe(CN)₃(NH₃)] c)[Fe(C 17. Formula of tris(ethane-1,2-diamine)iron(II)phosphate a) [Fe(CH₃-CH(NH)₂)₂)₃] (PO4)₃ b)[Fe(H₂N-CH₂-CH₂-CH₂-CH₂-NH₂)₃](PO4)₂ d) [Fe(H₂N-CH₂-CH₂-CH₂-RH₂)₃](PO4)₂ d) [Fe(H₂N-CH₂-CH₂-CH₂-RH₂)₃](PO4)₂ d) [Fe(H₂N-CH₂-CH₂-CH₂-RH₂)₃](PO4)₂ d) [Fe(H₂N-CH₂-CH₂-CH₂-RH₂)₃](PO4)₂ d) [Fe(H₂N-CH₂-CH₂-CH₂-RH₂)₃](PO4)₂ d) [Fe(H₂N-CH₂-CH₂-RH₂)₃](PO4)₂ d) [Fe(H₂N-CH₂-CH₂-CH₂-RH₂)₃](PO4)₂ d) [Fe(H₂N-CH₂-CH₂-CH₂-RH₂)₃](PO4)₂ d) [Fe(H₂N-CH₂-CH₂-CH₂-RH₂)₃](PO4)₂ d) [Fe(H₂N-CH₂-CH₂-CH₂-RH₂)₃](PO4)₂ d) [Fe(H₂N-CH₂-CH₂-CH₂-RH₂)₃](PO4)₂ d) [Fe(H₂N-CH₂-CH₂-CH₂-RH₂)₃](PO4)₂ d) [Fe(H₂N-CH₂-CH₂-RH₂)₃](PO4)₂ d) [Fo(NH₃)4](Cl)₂]⁴ c)[Co(NH₃)4(Cl)₂]⁴ c)[Co(NH₃)4(Cl)₂]⁴ c)[Co(NH₃)4(Cl)₂]⁴ c)[Co(NH₃)4(Cl)₂]⁴ c)[Co(NH₃)4(Cl)₂]⁴ c)[Co(NH₃)4(Cl)₂]⁴ is 1.732 structure. c) Crystal field splitting energy (Δ₀) of [FeF6]⁴</eva>	ers? H ₃) ₅ (NO ₃)]SO ₄ and [Co(NH ₃) ₅ (ONO)] (b) and (c) .039.eps>>? 1 and optical 1 only exhibit isomerism? NH ₃) ₄ SO ₄] <i>Cl</i> d) [Fe(en) ₃] ³⁺ zero is O) ₅] d) both (b) and (c) -NH ₂) ₃](PO ₄) -NH ₂) ₃](PO ₄) -NH ₂) ₃] ₃ (PO ₄) ₂ 2O) ₆] ²⁺ d)[Ni(CN) ₄] ²⁻ H ₃) ₃ (<i>Cl</i>) ₃] d)[Co(NH ₃) ₅ <i>Cl</i>] SO ₄ dral complexes BM and it has square planar an the (Δ_0) of [Fe(CN) ₆] ⁴⁻ than the crystal field stabilization

6. Solid State

1. Graphite and diamond are
a) Covalent and molecular crystals b) ionic and covalent crystals
c) both covalent crystals d) both molecular crystals
2. An ionic compound $A_x B_y$ crystallizes in fcc type crystal structure with B ions at the centre
of each face and A ion occupying entre of the cube. the correct formula of $A_x B_y$ is
a) AB b) AB_3 c) A_3B d) A_8B_6
3. The ratio of close packed atoms to tetrahedral hole in cubic packing is
a) 1:1 b) 1:2 c) 2:1 d) 1:4
4. Solid CO ₂ is an example of
a) Covalent solid b) metallic solid c) molecular solid d) ionic solid
5. Assertion : monoclinic sulphur is an example of monoclinic crystal system
Reason: for a monoclinic system, $a\neq b\neq c$ and $\alpha=\gamma=90^{\circ},\beta\neq90^{\circ}$,
a) Both assertion and reason are true and reason is the correct explanation of assertion.
b)Both assertion and reason are true but reason is not the correct explanation of assertion.
c) Assertion is true but reason is false. d) Both assertion and reason are false.
6. In calcium fluoride, having the flurite structure the coordination number of Ca ²⁺ ion and F-
Ion are (NEET)
a) 4 and 2 b) 6 and 6 c) 8 and 4 d) 4 and 8
7. The number of unit cells in 8 gm of an element X (atomic mass 40) which crystallizes in
bcc pattern is (N _A is the Avogadro number)
a) 6.023 X 10 ²³ b) 6.023 X 10 ²² c) 60.23 X 10 ²³ d) (6.023 X 10 ²³ /8 X 40)
8. The number of carbon atoms per unit cell of diamond is
a) 8 b) 6 c) 1 d) 4
9. In a solid atom M occupies ccp lattice and $(1/3)$ of tetrahedral voids are occupied by atom
N. find the formula of solid formed by M and N.
a) MN b) M_3N c) MN_3 d) M_3N_2
10. The composition of a sample of wurtzite is Fe $_{0.93}O_{1.00}$ what % of Iron present in the form
of Fe ³⁺ ?
a) 16.05% b) 15.05% c) 18.05% d) 17.05%
11. The ionic radii of A^+ and B^- are 0.98X10 ^{-10}m and 1.81 X 10 ^{-10}m . the coordination number
of each ion in AB is
a) 8 b) 2 c) 6 d) 4
12. CsCl has bcc arrangement, its unit cell edge length is 400pm, its inter atomic distance is
a) 400pm b) 800pm c) $\sqrt{3}$ 100×pm d) ($\sqrt{3}/2$) X400 pm
13. A solid compound XY has NaCl structure. if the radius of the cation is 100pm , the radius
of the anion will be
a) (100/ 0.414) b) (0.732/100) c) 100 X 0414 d) (0.414/100)
14. The vacant space in bcc lattice unit cell is
a) 48% b) 23% c) 32% d) 26%
15. The radius of an atom is 300pm, if it crystallizes in a face centered cubic lattice, the length
oif the edge of the unit cell is
a) 488.5pm b) 848.5pm c) 884.5pm d) 484.5pm
16. The fraction of total volume occupied by the atoms in a simple cubic is
a) $(\pi/4\sqrt{2})$ b) $(\pi/6)$ c) $(\pi/4)$ d) $(\pi/3\sqrt{2})$
17. The yellow colour in NaCl crystal is due to
a) excitation of electrons in F centers
b) reflection of light from Cl- ion on the surface
c) refraction of light from Na+ ion
d) all of the above

18. if 'a' stands for the edge length of the cubic system ; sc , bcc, and fcc. Then the ratio of radii of spheres in these systems will be respectively.

a) $(\frac{1}{2}a:\frac{\sqrt{3}}{2}a:\frac{\sqrt{2}}{2}a)$ b) $(\sqrt{1}a:\sqrt{3}a:\sqrt{2}a)$ c) $(\frac{1}{2}a:\frac{\sqrt{3}}{4}a:\frac{1}{2\sqrt{2}}a)$ d) $(\frac{1}{2}a:\sqrt{3}a:\frac{1}{\sqrt{2}}a)$

19. if 'a' is the length of the side of the cube, the distance between the body centered atom and one corner atom in the cube will be

a) $(2/\sqrt{3})a$ b) $(4/\sqrt{3})a$ c) $(\sqrt{3}/4)a$ d) $(\sqrt{3}/2)a$

- 20. Potassium has a bcc structure with nearest neighbor distance 4.52 A⁰. its atomic weight is39. its density will be
 - a) 915 kg m⁻³ b) 2142 kg m⁻³ c) 452 kg m⁻³ d) 390 kg m⁻³
- 21. Schottky defect in a crystal is observed when
 - a) unequal number of anions and anions are missing from the lattice
 - b) equal number of anions and anions are missing from the lattice
 - c) an ion leaves its normal site and occupies an interstitial site
 - d) no ion is missing from its lattice.
- 22. The cation leaves its normal position in the crystal and moves to some interstitial position, the defect in the crystal is known as
- a) Schottky defect b) F center c) Frenkel defect d) non-stoichiometric defect 23. Assertion: due to Frenkel defect, density of the crystalline solid decreases.
 - Reason: in Frenkel defect cation and anion leaves the crystal.
 - a) Both assertion and reason are true and reason is the correct explanation of assertion.
 - b)Both assertion and reason are true but reason is not the correct explanation of assertion.
 - c) Assertion is true but reason is false.
 - d) Both assertion and reason are false
- 24. The crystal with a metal deficiency defect is
- a) NaCl b) FeO c) ZnO d) KCl
- 25. A two dimensional solid pattern formed by two different atoms X and Y is shown below. The black and white squares represent atoms X and Y respectively. the simplest formula for the compound based on the unit cell from the pattern is

 a) XY₈
 b) X₄Y₉
 c) XY₂
 d) XY₄

7. Chemical Kinetics

1. For a first order reaction AB ____ the rate constant is $x \min^{-1}$. If the initial concentration of A is 0.01M, the concentration of A after one hour is given by the expression.

a) $0.01 \cdot e^{-x}$ b) $1X10^{-2}(1-e^{-60^{\times}})$ c) $(1X10^{-2})e^{-60^{\times}}$ d) none of these

- 2. A zero order reaction XProduct _____, with an initial concentration 0.02M has a half life of 10 min. if one starts with concentration 0.04M, then the half life is
 - a) 10 s b) 5 min c) 20 min
 - d) cannot be predicted using the given information
- 3. Among the following graphs showing variation of rate constant with temperature (T) for a reaction, the one that exhibits Arrhenius behavior over the entire temperature range is

4. For a first order reaction A \longrightarrow product with initial concentration x mol L ⁻¹ , has a half life
period of 2.5 hours . For the same reaction with initial concentration $(x/2)$ mol L ⁻¹ the half
life is
a) (2.5 x 2) hours b) (2.5/2) hours c) 2.5 hours
d) Without knowing the rate constant, $t_{1/2}$ cannot be determined from the given data
5. For the reaction, $2NH_3 \longrightarrow N_2 + 3H_2$, if $-d[NH_3] / dt = k[NH_3] d[N_2] / dt = k_2 [NH_3]$,
$d[H_2]/dt = k[NH_3]$ then the relation between k_1, k_2 and k_3 is
a) $k_1 = k_2 = k_3$ b) $k_1 = 3 k_2 = 2k_3$ c) $1.5 k_1 = 3 k_2 = k_3$ d) $2k_1 = k_2 = 3k_3$
6. The decomposition of phosphine (PH_3) on tungsten at low pressure is a first order reaction
It is because the (NEET)
a) rate is proportional to the surface coverage
b) rate is inversely proportional to the surface coverage
c) rate is independent of the surface coverage d) rate of decomposition is slow
7. For a reaction Rate = k [acetone] ^{$3/2$} then unit of rate constant and rate of reaction
respectively is
a)(mol $L^{-1}s^{-1}$), (mol $L^{-1/2}L^{1/2}s^{-1}$), b) (mol $L^{-1/2}L^{1/2}s^{-1}$), mol $L^{-4}s^{-4}$)
c) $(mol^{1/2} L^{1/2} s^{-1})$, $(mol L^{-1} s^{-1})$ d) $(mol L s^{-1})$, $(mol^{1/2} L^{1/2} s)$
8. The addition of a catalyst during a chemical reaction alters which of the following
quantities? (NEET)
a) Enthalpy b) Activation energy c) Entropy d) Internal energy
9. Consider the following statements :
(i) increase in concentration of the reactant increases the rate of a zero order reaction.
(ii) rate constant k is equal to collision frequency A if $Ea = 0$
(iii) rate constant k is equal to collision frequency A if Ea = $^{\circ}$
(iv) a plot of ln (k) vs T is a straight line.
(v) a plot of ln (k) vs $(1/T)$ is a straight line with a positive slope.
Correct statements are
a) (ii) only b) (ii) and (iv) c) (ii) and (v) d) (i), (ii) and (v)
10. In a reversible reaction, the enthalpy change and the activation energy in the forward
direction are respectively - x kJ mol ⁻¹ and y kJ mol ⁻¹ . Therefore , the energy of activation in
the backward direction is
a) $(y - x)$ kJ mol ⁻¹ b) $(x + y)$ J mol ⁻¹ c) $(x - y)$ kJ mol ⁻¹ d) $(x + y) \times 10^{3}$ J mol ⁻¹ .
11. What is the activation energy for a reaction if its rate doubles when the temperature is
raised from 200 K to 400 K? (R = $8.314 \text{ JK}^{-1}\text{mol}^{-1}$)
a) 234.65 kJ mol ⁻¹ b) 434.65 kJ mol ⁻¹ c) 434.65 kJ mol ⁻¹ d) 334.65 kJ mol ⁻¹
\sim ; This reaction follows first order kinetics. The rate constant at particular
temperature is 2.303 x 10^{-2} nour ⁻¹ . The initial concentration of cyclopropane is 0.25 M.
what will be the concentration of cyclopropane after 1806 minutes? (log $2 = 0.3010$)
a) 0.125 M b) 0.215 M c) $0.252.303$ M × d) 0.05 M
12. For a first order reaction, the rate constant is 0.909 filler the time taken for 75%
conversion in minutes is $a_1(2/2) \log 2$, $b_2(2/2) \log 2$, $a_2(2/2) \log (2/4)$, $d_1(2/2) \log (4/2)$
a) $(5/2) \log 2$ b) $(2/3) \log 2$ c) $(5/2) \log (5/4)$ d) $(2/3) \log (4/3)$
13. In a first order reaction $xy_{}$, it is the rate constant and the initial concentration of the reaction x_{i} of 1M, then the half life is
$\frac{1}{100} \frac{1}{12} = \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} = \frac{1}{100} \frac$
14 Dredict the rate law of the following reaction based on the data given below
$2A + B \longrightarrow C + 3D$

Reaction number	[A] (min)	[B] (min)	Initial rate (M s-1)
1	0.1	0.1	x
2	0.2	0.1	2x
3	0.1	0.2	4 <i>x</i>
4	0.2	0.2	8 <i>x</i>

a) rate = k [A]² [B]
b) rate = k [A] [B]²
c) rate = k [A][B]
d) rate = k [A]^{1/2} [B]^{3/2}
15. Assertion: rate of reaction doubles when the concentration of the reactant is doubles if it is a first order reaction.

Reason: rate constant also doubles

- a) Both assertion and reason are true and reason is the correct explanation of assertion.
- b) Both assertion and reason are true but reason is not the correct explanation of assertion.
- c) Assertion is true but reason is false.
- d) Both assertion and reason are false.
- 16. The rate constant of a reaction is 5.8 x 10-2 s-1. The order of the reaction isa) First orderb) zero orderc) Second orderc) Third order
- 17. For the reaction N₂O_{5(g)} → 2NO_{2(g)} + 1/2O_{2(g)}, the value of rate of disappearance of N₂O₅ is given as 6.5 x 10⁻² mol L ⁻¹s⁻¹. The rate of formation of NO₂ and O₂ is given respectively as
 - a) (3.25 x 10⁻² mol L⁻¹ s⁻¹) and (1.3 x 10⁻² mol L⁻¹ s⁻¹).
 - b) $(1.3 \times 10^{-2} \text{ mol } L^{-1} \text{ s}^{-1})$ and $(3.25 \times 10^{-2} \text{ mol } L^{-1} \text{ s}^{-1})$
 - c) $(1.3 \times 10^{-1} \text{ mol } L^{-1} \text{ s}^{-1})$ and $(3.25 \times 10^{-2} \text{ mol } L^{-1} \text{ s}^{-1})$ d) None of these
- 18. During the decomposition of H_2O_2 to give dioxygen, 48 g O_2 is formed per minute at certain point of time. The rate of formation of water at this point is
 - a) $0.75 \text{ mol min}^{-1}$ b) 1.5 mol min^{-1} c) $2.25 \text{ mol min}^{-1}$ d) 3.0 mol min^{-1}
- 19. If the initial concentration of the reactant is doubled, the time for half reaction is also doubled. Then the order of the reaction isa) Zerob) onec) Fractiond) none
- 20. In a homogeneous reaction A B + C + D, the initial pressure was P₀ and after time t it was P. expression for rate constant in terms of P₀, P and t will be

b)
$$k = (2.303/t) \log (2P_0/3P_0 - P)$$
 b) $k = (2.303/t) \log (2P_0/P_0 - P)$

c)
$$k = (2.303/t) \log (3P_0 - P/2P_0)$$
 d) $k = (2.303/t) \log (2P_0 / 3P_0 - 2P)$

- 21. If 75% of a first order reaction was completed in 60 minutes , 50% of the same reaction under the same conditions would be completed in

 a) 20 minutes
 b) 30 minutes
 c) 35 minutes
 d) 75 minutes
- 22. The half life period of a radioactive element is 140 days. After 560 days , 1 g of element will be reduced to
 - a) (1/2) g
 - 2) g b) (1/4) g c) (1/8) g d) (1/16) g
- 23. The correct difference between first and second order reactions is that (NEET)
 - a) A first order reaction can be catalysed; a second order reaction cannot be catalysed.
 - b) The half life of a first order reaction does not depend on [A0]; the half life of a second order reaction does depend on [A0].
 - c) The rate of a first order reaction does not depend on reactant concentrations; the rate of a second order reaction does depend on reactant concentrations.
 - d) The rate of a first order reaction does depend on reactant concentrations; the rate of a second order reaction does not depend on reactant concentrations.
- 24. After 2 hours, a radioactive substance becomes (1/16) th of original amount. Then the half life (in min) is
 a) 60 minutes
 b) 120 minutes
 c) 30 minutes
 d) 15 minutes