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Abstract

The so-called ‘missing heritability problem’ is often characterized by behavior geneticists as a 

numerical discrepancy between alternative kinds of heritability. For example, while ‘traditional 

heritability’ derived from twin and family studies indicates that approximately ~50% of variation 

in intelligence is attributable to genetics, ‘SNP heritability’ derived from genome-wide association 

studies indicates that only ~10% of variation in intelligence is attributable to genetics. This 40% 

gap in variance accounted for by alternative kinds of heritability is frequently referred to as 

what’s “missing.” Philosophers have picked up on this reading, suggesting that “dissolving” the 

missing heritability problem is merely a matter of closing the numerical gap between traditional 

and molecular kinds of heritability. We argue that this framing of the problem undervalues the 

severity of the many challenges to scientific understanding of the “heritability” of human behavior. 

On our view, resolving the numerical discrepancies between alternative kinds of heritability will 

do little to advance scientific explanation and understanding of behavior genetics. Thus, we 

propose a new conceptual framework of the missing heritability problem that comprises three 

independent methodological and explanatory challenges: the numerical gap, the prediction gap, 

and the mechanism gap.

1. Introduction

First coined by Maher (2008), the so-called “missing heritability problem” (MHP) appears 

to refer to a conflict between two different ways of calculating heritability for any given 

phenotype. Traditional ‘quantitative’ genetic heritability, which is derived from twin and 

family studies, is usually significantly higher than its far more recent molecular counterparts, 

which are derived from genome-wide association studies (GWAS). Consider, for example, 

heritability of the Intelligence Quotient (IQ). Dating back nearly a century of human 

behavior genetics, heritability of IQ derived from twin and family studies ranges from .5 

to .7, meaning that at least 50% of variance in IQ scores among related individuals is 

statistically associated with genetic differences between them. In stark contrast, however, 

cutting-edge GWAS have recently estimated that only 10% of variance in IQ is statistically 

associated with differences in DNA between unrelated individuals (Plomin & von Stumm, 

2018; Selzam et al., 2016). This “missing” variance between traditional and molecular 
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heritability – a 40% gap for IQ – is characteristic of the MHP. Importantly, there is not a 

single complex behavioral phenotype today for which there is no missing heritability.

Given the (unwise) tendency of researchers and the general public to interpret heritability as 

a measure of genetic influence on a trait, the MHP poses an interesting conceptual conflict. 

On the one hand, a century of traditional genetics suggests that genetic differences exhibit 

large influences on behavioral differences between individuals – typically 50% to 70% 

for any given behavioral trait. On the other hand, GWAS, which tracks actual differences 

in DNA between individuals, suggest that genes exhibit minimal influence on behavioral 

differences between individuals – typically 1% to 5% for any given behavioral trait. So what 

gives? Where is the missing heritability?

Although it has seen minimal attention from philosophers, we believe prospective 

explanations and resolutions to the MHP have implications for philosophy of biology. If, 

for example, one takes a monistic philosophical perspective of science, then the MHP means 

that something’s got to go: either traditional estimates of heritability derived from twin 

and family studies are approximately correct and molecular estimates are misconstrued, or 

vice versa – it can’t be that the heritability of IQ is both 10% and 50%. If this monistic 

perspective of science were accurate, then resolution of the MHP would have profound 

implications for philosophical debates about genetic causation (DiFrisco & Jaeger, 2020; 

Lynch, 2017; Lynch & Bourrat, 2016; Lynch & Kemp, 2014; Weber, 2005). In effect, 

resolution of the MHP in this case would mean that genetics exert either (a) little to no 

causal influence on human behavior or, conversely, (b) the lion’s share of causal influence 

on human behavior.

Alternatively, on a pluralistic philosophical perspective of behavior genetics – Helen 

Longino’s (2013), for example– explanations for the MHP would look quite different. 

From a pluralistic perspective, perhaps the MHP is no problem at all: traditional and 

molecular heritability are fundamentally different kinds of scientific estimates that are not 

necessarily in conflict. Eslwehere we argue, for example, that the MHP stands to impact 

philosophical literature regarding different kinds of scientific pluralism, such as integrative 

versus ineliminative pluralism (Matthews & Turkheimer, 2019). Plenty of philosophical 

literature hinges on the nature of the MHP and its prospective resolutions.

In what follows, we introduce and categorize the most prominent explanations and responses 

to the MHP. We will highlight a pervasive tendency among geneticists and philosophers of 

biology to assume that resolving the MHP is exclusively a numerical problem. That is, all 

existing literature on the MHP to date assumes that when the day comes that geneticists 

can make traditional heritability and DNA-based molecular heritability match, the MHP 

will be “dissolved.” To return to the IQ example, most researchers today assume that 

when the numerical value associated with the molecular heritability of IQ (currently .1) 

is not so dissimilar from the numerical value associated with traditional heritability of IQ 

(currently .5), then the profound mystery of heritability of IQ will finally be resolved! 

Importantly, most writing on the topic expresses optimism that this day will soon come as 

researchers collect larger datasets and develop more sophisticated statistical genetic models 

of heritability. Plomin & Stumm (2021), for example, highlight that the “missing heritability 
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gap will be narrowed with bigger and better genome-wide association studies and with 

whole-genome sequencing that assesses all DNA differences in the genome rather than 

several hundred thousand SNPs assessed in current studies” (pp. 5–7).

Here we argue that framing the missing heritability problem in this way – as a relatively 

straightforward quantitative challenge of reconciling conflicting kinds of heritability – 

underappreciates the severe explanatory and methodological problems impeding scientific 

examination and understanding of heritability. We are not optimistic that the reconciliation 

of conflicting heritability estimates will confer any profound or meaningful scientific 

understanding of the heritability of human behavior. In the interest of promoting scientific 

humility about the many problems facing human behavior geneticists today, we propose a 

new framing of the MHP as one that comprises three independent scientific challenges, each 

of which vary in severity.

We refer to each independent challenge of the MHP as a kind of “gap,” as each is 

representative of some hole in scientific understanding of heritability that ought to be closed. 

On our proposal, the pervasive characterization of the MHP as a quantitative challenge is 

just the first and most tractable leg of the problem, which we call the numerical gap.1 

Even if the numerical gap is closed, we argue that behavior geneticists face a second, 

greater problem of missing heritability: the prediction gap, which regards the challenge of 

making accurate and reliable prediction from DNA to behavior. Finally, the third and least 

tractable leg of the MHP regards the challenge of elucidating meaningful causal-mechanical 

stories that explain how and why genetic differences between individuals causes behavioral 

differences between individuals – we call this the mechanism gap. Each of the three legs of 

the MHP presents its own unique challenges and prospective solutions. We are pessimistic 

that the MHP will ever be “dissolved” for complex behavioral phenotypes (intelligence, for 

example). Contrary to popular belief, the MHP certainly isn’t going anywhere any time 

soon.

2. Formal Heritability Estimation

Broadly construed, ‘heritability’ is an estimate of the proportion of phenotypic variance that 

is statistically associated with genetic differences (Downes & Matthews, 2020). Historically, 

the paradigm of heritability estimation in humans is derived from Fisher’s (1918) seminal 

unification of discrete Mendelian inheritance with continuous (“biometric”) phenotypes 

(Downes & Turkheimer, in press). Fisher’s ideas were then adapted by the early twin 

researchers to estimate ratios of genetic to phenotypic variance (Newman et al., 1937). 

Lush (1935) refined the concept of heritability and developed it as a tool in artificial 

selection of plants and animals. Notably, traditional heritability today is derived primarily 

from quantitative analyses of pairs of monozygotic (MZ) ‘identical’ twins, who share 100% 

of their DNA, and dizygotic (DZ) ‘fraternal’ twins, who share roughly 50% of their DNA. 

We’ll refer to any kind of formal heritability estimate derived from twin and family studies 

1In an earlier iteration of this this idea, we briefly referred to this numerical gap, instead, as a “statistical gap” (Matthews & 
Turkheimer 2019).
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as ‘twin heritability,’ or h2
Twin.2 As a general rule of thumb, h2

Twin ranges from .30 to .70 

for most behavioral traits (Turkheimer, 2000).

Twin heritability is ‘coarse-grained’ in the sense that it tracks large approximations of 

differences in genetic similarity (100% for MZ twins, 50% for DZ twins, 25% for cousins, 

etc.). In contrast, heritability estimates obtained using molecular (genomic) methods track 

‘fine-grained’ genetic differences: single nucleotide polymorphisms (SNPs), which are the 

smallest units of genetic variation between individuals (i.e., A, C, G, and T). To the extent 

GWAS are conducted in efforts to estimate the amount of phenotypic variance attributable 

to molecular genetic differences, they have been said to provide ‘GWAS heritability’, 

or ‘h2
GWAS.’ Broadly construed, h2

GWAS sums the total effect size of each individual 

SNP that meets the genome-wide significance threshold (P = 5 × 10−8) in a GWAS. 

Because the individual effect sizes of SNPs are miniscule (r2<.05%), h2
GWAS estimates 

are systematically smaller than h2
Twin.

More recently, a new technique has been introduced that increases the amount of 

phenotypic variance accounted by molecular genetic differences derived from GWAS. 

Initially implemented in a software package called genome-wide complex trait analysis 

(GCTA), but now comprising a family of similar approaches, ‘SNP heritability’ (h2
SNP) 

tracks all the genomic differences between SNP chips of unrelated individuals (Yang et al., 

2010, 2011). That is Although h2
GWAS is derived by summing the effects of only SNPs 

that meet the genome-wide P-value significance threshold for the phenotype in question, 

h2
SNP is unrestricted, and analyzes all SNPs simultaneously. Roughly construed, h2

SNP 

is estimated by comparing the overall SNP similarity of unrelated individuals to their 

phenotypic similarity, for any given trait. Thus, h2
SNP is in part derived from ignoring effect 

sizes and statistical significance, in favor overall genomic similarity. For most traits, SNP 

heritability is significantly higher than GWAS heritability; yet still significantly lower that 

twin heritability: h2
GWAS < h2

SNP < h2
Twin.3

3. Explanations and Solutions for Missing Heritability

GWAS proponents often respond to the MHP by downplaying it, either denying that 

heritability is actually missing or expressing optimism that discovery of the missing 

heritability is nigh. While introducing their technique for calculating molecular heritability 

(GCTA), Yang et al. (2010), for example, claim that “most of the heritability is not missing 

but has not previously been detected because the individual effects are too small to pass 

stringent significance tests” (p. 565). Also, elaborating techniques geared toward calculating 

molecular heritability, Lee et al. (2011) claim to “show that a good proportion of the 

heritability is not missing” (p. 303). As sample sizes increase, more SNPs are identified, 

more variance is explained, and, consequently, the numerical gap gets smaller. Although 

optimism about future research is characteristic of most literature on the subject, the 

remainder of this section outlines what we believe to be the five primary categories of 

explanations or prospective solutions to the MHP.

2Sometimes referred to as ‘twin study heritability’ (h2TS), ‘family heritability (h2family)’, or just ‘traditional heritability.’
3Witte et al. (2014) and Tropf et al. (2017) offer a similar characterization and distinguish ‘still-missing heritability’ (as the gap 
between h2SNP and h2Twin) from ‘hidden heritability’ (as the gap between h2GWAS and h2SNP).
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3.1 Missed Variants:

a common explanation for missing heritability appeals to the existence of low-penetrance, 

common genetic variants whose effects are too small to be detected by GWAS. GWAS 

are conducted by analyzing SNP microarrays or ‘SNP chips,’ which include only common 

genetic variants occurring at a minor allele frequency (MAF) >1% (Weedon et al., 2021). To 

achieve sufficient statistical power, however, effect sizes need to be proportional to sample 

size: the smaller the effect, the larger the sample required to power an analysis. Thus, 

given miniscule molecular genetic effect sizes, GWAS have been historically underpowered 

to detect the effects of common SNPs. Maher (2008), for example, notes “the possibility 

that there are many more frequent variants that have such a low penetrance that GWAS 

can’t statistically link them to a disease” (p. 19). Conversely, others have proposed high-

penetrance, rare variants as a possible source of missing heritability. Because most GWAS 

to date consider SNP chips composed of common variants, some propose that rare variants 

occurring at frequencies <.5% may be a source of missing heritability (Zuk et al., 2014). The 

solution to the rare variant problem requires either whole genome sequencing or conducting 

GWAS with SNP chips that include low-frequency alleles.

Thus, in both cases – low-penetrance, common variants and high-penetrance, rare variants – 

contemporary methods of genomic investigation inadequately detect existing genetic effects. 

Moreover, although the reasons for the inadequate detection are different, both cases may 

be roughly characterized as a ‘missed variants’ explanation for missing heritability: some 

of the missing heritability is attributable to variants whose effects have been overlooked by 

current molecular techniques.4 Acknowledging that there may be subtle differences between 

the methods and kinds of variants inadequately captured by genomic methods, we believe 

the missed variants explanation is of one of the most prominent explanations for missing 

heritability.

3.2 Copy Number Variants:

(CNVs) are another source of genetic variation not detected by GWAS. A CNV is a 

sequence of nucleotide bases which does not vary in content, but rather in quantity of 

repetitions. The age of onset of Huntington’s disease, for example, is probabilistically 

determined by the quantity of repetitions of the Huntingtin gene (Htt): the more repetitions, 

the earlier the onset (Vittori et al., 2014). A variety of CNV repetitions have been associated 

with schizophrenia (Marshall et al., 2017). This explanation for missing heritability traces 

back to Maher (2008) who noted that CNVs “could begin to explain missing heritability 

in disorders such as schizophrenia and autism, for which GWAS have turned up almost 

nothing” (p. 20).5 Prospective solutions to CNVs as sources of missing heritability may 

include whole genome sequencing, as well as characterizing sequence content and structural 

arrangement (Eichler et al., 2010). We categorize any explanation or prospective solution 

4Elsewhere referred to the ‘Common vs. Rare Allele Hypothesis for Complex Diseases’ (El-Fishawy, 2013) or the ‘rare variants 
hypothesis’ (Yang et al. 2010).
5It’s worth noting that applications of GWAS to schizophrenia and autism have been more successful since Maher’s statement in 
2008. While in 2009 GWAS accounted for 3% variance, polygenic scores today predict 6% of the liability variance for schizophrenia 
(Pardiñas et al., 2018).
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to the MHP that appeals to copy number variants as the CNV explanation for missing 

heritability.

3.3 Epistasis:

The epistasis explanation appeals to non-additive ways in which genetic differences tracked 

by GWAS are interacting in ways that make heritability difficult to interpret (i.e., GxG 

interaction). Zuk et al. (2012) claim that “current estimates of missing heritability are not 

meaningful, because they ignore genetic interactions” (p. 1194). Paradigmatic cases of 

epistasis regard modifier genes or variants that amplify or diminish effects of other genes or 

variants, which cannot be tracked by traditional GWAS. To properly understand the effects 

of epistasis, studies would require assessments of populations of individuals who contain 

the relevant combinations of SNPs. Note, however, that these epistatic effects are potentially 

far more complicated than described above, likely involving hundreds or thousands of 

interacting variants. Thus, the prospective solution to the epistasis explanation for missing 

heritability is the development of unique methods for identifying SNPs subject to GxG 

interaction (e.g., Song et al., 2010, general epistatic model). Despite persistent efforts, little 

progress has been made in statistical modelling of epistasis in human populations. Notably, 

although easily detectable in non-human animal models, there is minimal evidence that 

statistical epistasis detectable in human populations (Sackton & Hartl, 2016; Wei et al., 

2014).

3.4 Epigenetics:

The epigenesis explanation for missing heritability appeals to a broad array of ways in 

which genetic variants interact with cellular or environmental factors, which are not detected 

by traditional GWAS. Many researchers have listed or mentioned epigenesis as a possible 

explanation for missing heritability, but do little to flesh it out (Bloom et al., 2013; Clarke 

& Cooper, 2010; Liu et al., 2008; McCarthy & Hirschhorn, 2008). Others describe formal 

and theoretical challenges of accommodating how epigenetic factors influence molecular 

heritability estimates. Slatkin (2009), for example, offers a formal model that permits 

exploration of transgenerational epigenetic inheritance risk and recurrence of complex 

disease. Petronis (2010) offers a detailed analysis of epigenetic effects on heritability 

in the context of the MHP, including discussion of specific mechanisms through which 

environmental influences may lead to epigenetic inheritance of both sporadic and familial 

diseases. Furrow et al. (2011) construct a formal model of standard epigenetic and 

environment-sensitive epigenetic inheritance as factors contributing to the MHP.

3.5 Twin Heritability Overestimation:

Another common response to the MHP appeals to various ways in which twin heritability 

may be inflated or overestimated (Maher, 2008; Manolio et al., 2009; Yang et al., 2015). The 

numerical gap arises, in part, because twin estimates are very high, for a number of reasons. 

Notably, twin heritability includes epistasis, epigenesis, and gene-environment correlations, 

as these non-linear or non-additive factors cannot be disentangled using traditional twin 

methods. Some authors have questioned the validity of the equal environments assumption 

of MZ twins, which may inflate twin heritability (Borkenau et al., 2002; Horwitz et al., 
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2003; Kendler et al., 1993; Scarr & Carter-Saltzman, 1979). Some commentators have noted 

that assortative mating may result in twin heritability overestimation as well.

4. Three Legs of the Missing Heritability Problem

In a boldly titled manuscript, “Dissolving the Missing Heritability Problem,” Bourrat & 

Lu (2017) claim “the missing heritability problem can largely be dissolved” (p. 1055). 

Although it remains a matter of fact that the numerical gap between twin heritability 

and SNP or GWAS heritability still exists for all behavioral phenotypes, Bourrat and Lu 

present a two-part explanation for missing heritability. Their account combines some of the 

aforementioned responses to suggest that dissolving the MHP is a matter of (1) decreasing 

twin heritability (because it is overestimated) and (2) increasing GWAS heritability (by 

modelling non-additive and non-linear molecular genetic interactions). Effectively, Bourrat 

and Lu’s explanation combines the twin heritability overestimation explanation for missing 

heritability with epigenesis and epistasis explanations.

Bourrat and Lu’s dissolution aligns with an underlying assumption of all the explanations 

and solutions: the missing heritability problem is a statistical problem. That is, each 

prospective solution to the MHP includes suggestions for how mathematical or statistical 

techniques might be tweaked or developed to close the numerical gap between heritability 

derived from either traditional twin and family studies, or molecular genetics (Génin, 2019). 

Although framing the issue numerically provides a quantifiable (and, therefore, potentially 

dissolvable) characterization of the MHP, our goal here is to bring attention to what we 

believe to be the more important and difficult challenges facing scientific efforts to elucidate 

the genetic underpinnings of human behavior – to fill the ‘gaps’ of what’s missing in current 

scientific and philosophical understanding of heritability.

The heritability of human behavior is a mystery machine. Honest geneticists will admit 

that although there are many leads, and genetical science has made wonderful leaps of 

technological progress in recent years, the relationship between genetics and behaviors 

remains one of the greatest challenges of modern biology. It is true: traditional genetics has 

revealed that all human behavioral traits are heritable, which is the first law of behavior 

genetics (Turkheimer 2000). It is true: hundreds of thousands of SNPs are statistically 

correlated with behavioral differences, which is the fourth law of behavior genetics (Chabris 

et al., 2015). It is also true, however: molecular genotypes are only weakly predictive 

of behavioral phenotypes. Importantly, it is also true: explanatory mechanisms that link 

molecular genotypes to behavioral phenotypes remain to be discovered. Our proposal 

is to reframe the missing heritability problem in a way that articulates these major 

methodological, practical, and explanatory impediments to understanding the heritability 

of human behavior. On our view, there are three primary aspects missing from even the most 

promising scientific accounts of heritability.

4.1 The Numerical Gap:

Conflicting results between alternative kinds of heritability is just one leg of the MHP, which 

we call the numerical gap (Figure 1, A). The challenge is ‘numerical’ in the sense that 

it is not grounded in alternative theories of heritability; bur rather, alternative numerical 
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values derived from different methods of estimating heritability for the same phenotype. 

Thus, closing the numerical gap is a matter of finding ways to make traditional heritability 

(h2
Twin) and molecular heritability (h2

SNP) more similar. Recall that the current numerical 

gap regarding the MHP of IQ is approximately 40% (h2
Twin = 50% versus h2

SNP = 10%).

As outlined in Section 3, all the explanations and solutions to the MHP are concerned 

with the numerical gap. Four of the five common responses to the MHP – missed variants, 

CNVs, epistasis, and epigenesis – for example, describe genetic effects that may account 

for missing heritability, were they amenable to investigation by GWAS or related methods. 

Relatedly, the twin heritability overestimation explanation suggests that the numerical value 

conferred by traditional statistical genetic methods is simply inaccurate. Thus, resolving 

the numerical gap would be a methodological challenge for statistical geneticists interested 

in finding ways to make traditional and molecular heritability values more similar. For 

example, if both the twin and molecular heritability of IQ were approximately .5, then the 

numerical gap of the MHP would be resolved.

The numerical gap is the most tractable leg of the MHP. This is the case, in part, 

because geneticists have already had some success closing the gap for some basic physical 

phenotypes, such as height and weight (Wainschtein et al., 2019). More importantly, 

however, the numerical gap is the most tractable leg of the MHP because its resolution 

requires the least demand of researchers working to resolve the problem. Resolution of 

the numerical gap does not require that researchers can explain or understand the causal 

relationships between the genotype and phenotype in question. Nor does resolution of 

the numerical gap require that researchers can demonstrate any practical applications of 

heritability, such as genetic prediction – h2 is a strictly theoretical construct. Finally, 

resolution of the numerical gap requires no experimental intervention or biological assays 

involving the genotype-phenotype relationship in question; heritability works from a black 

box, independent of knowledge of underlying causes. Although resolution of the numerical 

gap of the MHP is an important scientific challenge, we also believe that there are far greater 

and more fruitful challenges to investigating, understanding, and explaining the heritability 

of human behavior.

4.2 The Prediction Gap:

Distinct from the challenge of reconciling numerical heritability discrepancies is a problem 

of genetic prediction (Turkheimer, 2015). At least one useful step toward explaining the 

overwhelmingly complex relationships between genes and behavior is found in the capacity 

to predict the latter from the former. On our framing of the missing heritability problem, the 

prediction gap regards the challenge of making useful and reliable predictions of complex 

human behavior from genomic data. The prediction gap for the MHP of IQ, for example, 

would be resolved on the day that it were possible to accurately predict any individual’s 

IQ from a sample of DNA across wide range of populations and environments. As we will 

discuss in further detail in Section 5, polygenic scores are currently the best tools in this 

respect, as they permit prediction of behavioral phenotypes from genomic data.

As of today, however, the prediction gap remains daunting. Although our best methods 

of polygenic prediction have increased SNP-to-behavior prediction in recent years, this 
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predictive validity remains practically useless for complex behavioral traits. As of the 

writing of this manuscript, the most tractable prediction gap for a complex behavioral 

phenotype regards educational attainment. A polygenic score for educational attainment 

(EA-PGS) accounts for approximately 15% of variance in EA (J. J. Lee et al., 2018; Selzam 

et al., 2016; Stumm et al., 2020).

Among behavioral geneticist, that predictive value is astounding – especially given the 

fact that the predictive value of any given SNP is so small. From a practical perspective, 

however, 15% variance is useless. It is practically useless, in part, because of the minimal 

amount of variance accounted for: on average, populations of individuals with higher EA-

PGS are likely to complete more years of schooling in their lifetime than populations of 

individuals with lower EA-PGS. The flip side of this meager population-level statistic, 

however, is that any single individual’s EA-PGS does not provide useful information about 

that particular individual’s likelihood of doing well in educational settings. With only 15% 

variance explained, there will inevitably be many high EA-PGS individuals who accrue 

below-average years of schooling and many low EA-PGS individuals who accrue above-

average years of schooling.

Aside from the group-to-individual problem of genetic prediction, polygenic scores are 

currently subject to a severe problem of portability (Bitarello & Mathieson, 2020; Coop, 

2019; Majara et al., 2021; Manrai et al., 2016; Martin et al., 2017; Martschenko & 

Matthews, 2021; Matthews, 2022; Mostafavi et al., 2019; Schultz et al., 2021; Scutari et 

al., 2016). The problem of portability is grounded in the diminishing predictive validity of 

polygenic scores in populations that are different than the original GWAS population sample 

from which the PGS is derived. Problems of portability have been demonstrated for a variety 

of population characteristics including genetic ancestry, sex, age, and socioeconomic status 

(Mostafavi et al., 2019). Most notably, PGS derived from European-ancestry GWAS are 

far less predictive in individuals of African ancestry than individuals of European ancestry. 

This particular challenge of portability has been most profoundly exemplified in a study 

demonstrating that PGS for height genetically predicts individuals of African ancestry to be 

shorter than all Europeans and only minimally taller than individuals of Asian ancestry – a 

demonstrably false prediction (Martin et al., 2017).

The prediction gap is the second-most tractable leg of the MHP. Again, this is in part 

because resolution of any given prediction gap does not demand that scientists explain 

or understand a putatively causal genotype-phenotype relationship – prediction does not 

entail explanation, nor does explanation entail prediction. The prediction gap is a practical 

problem, which is demonstrated by the manner in which geneticists have worked to improve 

the predictive validity of PGS at the cost of statistical and explanatory scientific rigor. In 

efforts to improve PGS predictive validity, behavior geneticists routinely include SNPs that 

do not meet the criteria for statistical significance, for example. Regardless of whether any 

given SNP is putatively causal or statistically significant, it is included in the construction of 

a PGS as long as it improves the predictive validity of the PGS (Plomin & Stumm, 2021).
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4.3 The Mechanism Gap:

Heritability values and polygenic prediction say nothing about the underlying biological 

etiology of human behavior. Like most behavior geneticists, we believe that there is at least 

some causal-mechanical relationship between SNPs and behavioral differences between 

individuals, although the specifics of those relationships and their magnitude remain 

unknown. The mechanism gap is the formidable scientific and philosophical challenge 

of identifying and elucidating a meaningful causal-mechanical, biological pathway from 

genotype to phenotype. To dissolve the mechanism gap of the MHP for IQ, for example, 

would be grounded in the capacity to describe a mechanism that helps explain how and why 
individuals with high-percentile IQ-PGS perform better on IQ tests than individuals with 

low-percentile IQ-PGS.

We defer to the growing body of philosophical literature on the so-called new philosophy of 

mechanisms in regards to the details of what it might look like to close any given mechanism 

gap (Craver & Tabery, 2016; Machamer et al., 2000). In most cases we anticipate that 

the mechanism gap will be closed if scientists have thoroughly elucidated at least one 

organized set of entities/parts that give rise to differences in behavior between individuals. 

Huntington’s disease (HD) provides an uncommon example of a behavioral phenotype for 

which the mechanism gap is mostly resolved. Individuals with HD share a specific genotype 

that results in mutation of the Huntingtin (Htt) protein, which causes damage to neurological 

cells and manifests phenotypically as hyperkinetic movement (chorea), lack of coordination, 

and dementia. Robust details of the underlying biological etiology aside, the important point 

is that there is minimal mechanism gap with respect to the genotype-phenotype HD causal 

pathway.

The mechanism gap is, by far, the greatest challenge of the three legs of the MHP. This is 

the case, in part, because historically the mechanism gap has seen the fewest resolutions in 

practice. Human behavioral traits for which there is a well-established genotype-phenotype 

mechanistic pathway are extremely rare. Rather, the norm of behavioral genetics is that all 

behavioral phenotypes are correlated with genetic differences, but only putative mechanistic 

explanations – at best – are on offer. Although many in the field believe that genetic 

mechanisms play a key role in IQ, for example, the mechanism gap is poorly understood 

(Haier, 2017; Plomin & von Stumm, 2018; Ritchie, 2015). The reasoning goes, perhaps, 

that specific differences in genotype produce proteins that influence synaptic connectivity or 

grey matter in such a way that ultimately results in differences in how well individuals score 

on IQ tests. Unlike HD, however, robust biological mechanisms that explain IQ variation 

have not been discovered. Rather, in most cases researchers note some relationship between 

the phenotype in question and the kind of cell in which it is expressed. Regarding SNPs 

associated with EA, for example, researchers note that, “relative to other genes, genes near 

our lead SNPs were overwhelmingly enriched for expression in the central nervous system” 

(Lee et al. 2018, p. 1114).
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5. Discussion of Interrelations Among Heritability, Prediction, and 

Mechanism

Our tripartite characterization of the MHP lends itself to analyses of the interrelations 

between each of the three legs: the numerical gap, the prediction gap, and the mechanism 
gap. A key aspect of our characterization is that each of the three legs of the MHP present 

independent scientific, explanatory, and methodological challenges: progress in any single 

leg of the problem does not entail progress in any of the other legs. In this section we 

explore some of these interrelationships between the three legs of the MHP.

5.1 Heritability ←→ Prediction:

There are two ingredients to successful genetic prediction: substantial heritability, which 

is relatively easy to come by, and the availability of a close genetic replicate to predict 

from, which is not. The allure of twin studies can be understood in these terms, because 

they have both heritable traits and the extraordinary fact of identical twinning. The magic 

of twin studies – the satisfying specification of r = 1.0 for MZ pairs and r = .5 for 

DZ, the remarkable similarities of separated twins who have never met – occurs because 

of the conjunction of these two factors. Heritability does not necessitate predictability, 

however. Suppose there were no identical twins, so quantitative geneticists had to base 

their investigations on the similarity of half-siblings and cousins. Given a few simplifying 

assumptions, half-sibling studies would yield the same heritabilities as twin studies, but 

strong prediction would not be possible. The heritability of height may be quite high but 

predicting your height from that of your second cousin is never going to work very well.

This point is important for understanding the predictive limitations of SNP heritability. It 

is tempting to think that if a matrix of SNP-based genetic similarities produces an estimate 

of the heritability of IQ of .5, then it ought to be possible to predict an individual’s IQ 

score at r = .5, but such is not the case. The problem, as above, is that in a SNP heritability 

matrix there is by design no close replicate from which to predict. The prediction protocol 

corresponding to a SNP heritability is a polygenic score (PGS); SNP heritability provides 

an upper limit on the validity of a PGS. The difference between a SNP heritability and 

a polygenic score is the difference between all information about similarity that can be 

extracted from a SNP chip and that which is comprised by a linear sum. Twins extract 

all the available information from a genetic sequence by actually growing an organism 

from it, which is why twins are the most effective means of generating genetic predictions 

(Turkheimer, 2015).

5.2 Mechanism ←→ Prediction:

On a simplified characterization, resolution of what we call the mechanism gap requires 

knowledge of mechanism. Again, we defer to the burgeoning philosophical literature on 

mechanisms and mechanistic explanation to cash out in precise terms what it means to 

have knowledge of mechanism (e.g., Craver & Tabery, 2016). The important point is that 

for any putatively causal genotype-phenotype pathway – from SNPs statistically associated 

with IQ, to genes, to brain development, to actual IQ differences between individuals, for 

example – the presumption of most behavior geneticists today is that there is some robust 
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set of biological mechanisms to be discovered and detailed. Definitional details of what 

mechanisms are and how they interact aside, simply “knowledge of mechanism” suits the 

purposes of our analysis.

So how does the mechanism gap relate to the prediction gap? Knowledge of mechanism 

and validity of prediction are inversely related, for two main reasons. The first is that 

prediction requires variation. Rare events are difficult to predict, and it is difficult to predict 

even common outcomes from rare events. Consider Down’s Syndrome, which has a large 

and relatively well-understood effect on IQ of about 30 points. Given such a large effect, 

shouldn’t we be able to predict people’s IQs by noting whether or not they are afflicted 

with Down’s Syndrome? The answer is no. Although Down’s syndrome has a large causal 

effect, its relative rarity means that it has very little variance in the general population. 

Knowing that a given individual does not have Down’s Syndrome tells us next to nothing 

about his or her IQ because the same can be said of practically everyone. To be a good 

predictor a mechanism would have to vary in the general population, which is exactly what 

doesn’t exist for complex polygenic traits. The second reason mechanism and prediction 

are inversely related is that statistical prediction works best in a black box, without the 

constraints of explanation. As we have noted, polygenic prediction is optimized when all 

SNPs are included in the predictor, regardless of their statistical significance, never mind 

their biological relevance.

5.3 Heritability ←→ Mechanism:

Closing the numerical gap would be a matter of mitigating discrepancies between alternative 

kinds of heritability; namely, traditional heritability versus any kind of heritability derived 

from molecular genetics. The development of SNP heritability was the first step toward 

closing this gap, as it provides a method for bringing heritability estimates informed 

by molecular genetics closer to those estimates derived from twin studies. Importantly, 

though, there is no strong or informative relationship between heritability and mechanism 

discovery. Increasing SNP heritability does nothing to unravel biological etiology and 

vice versa. One does not generally speak of the heritability of genetic conditions such as 

Huntington’s disease for which the mechanism is known. The reason for this is because 

knowledge of mechanism underlying any given genotype-phenotype pathway is the eye of 

the geneticist’s prize. Heritability is at best a biologically vacuous, rough approximation of 

genetic influence.

Moreover, heritability takes a back seat to mechanism when both are known. The concept 

of numerical heritability applies much more directly to common traits that vary according 

to the fourth Law of behavior genetics, as the binomial combination of an uncountable 

number of loci.6 Such traits have reliably high heritabilities, yet underlying mechanisms 

remain unknown. There is evidence that the most heritable cancers are common and 

polygenic, as opposed to rare and therefore relatively invariant cancers that are the result 

of a single variant or mutation (Risch, 2001). The former are heritable in the usual sense 

but lack mechanisms; the latter have mechanisms but lack statistical heritabilities because 

6Recall that the fourth law of behavior genetics is that a typical human behavioral trait is associated with very many genetic variants, 
each of which accounts for a very small percentage of the behavioral variability (Chabris et al., 2015).
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there is little reason in practice to estimate the heritability of a phenotype for which the 

mechanism has already known (Claus et al., 1996). The reason for this is because heritability 

becomes an afterthought in the presence of a robustly elucidated causal mechanism for the 

phenomenon in question.

We see here for the first time an important theme: opposition between mechanistic accounts 

that are well-specified causally, and statistical models that can “account for” variability 

while remaining black boxes. This inverse relationship is no accident. The less attention one 

is compelled to pay to the causal meaning of genetic variance, the more of it can be put 

in the numerator of a heritability ratio. Identical twins comprise all genetic similarity and 

all the ways genes can combine. Twins could thus be used to estimate large heritabilities 

long before DNA was discovered. Genetic variation based on candidate genes obviously 

requires knowledge of the specific gene or SNP in question, and as a consequence the 

“heritabilities” based on candidate genes are much smaller. Combining individual SNPs 

into a polygenic score sacrifices knowledge of the action of the individual SNPs for the 

added variance one can “explain” by combining them. Finally, SNP heritability abandons 

any interest in mechanisms, using the SNPs only to estimate pairwise genetic similarities in 

the same causally agnostic sense as twin studies, and therefore produces larger heritabilities. 

In many ways, this places the field back where it started.

Thus, an important aspect of our tripartite take on the MHP is that each of the three 

legs represent distinct and independent practical, scientific, and explanatory challenges. 

Reconciling conflicting heritability estimates (i.e., closing the numerical gap) does not 

entail genetic prediction. The MHP of height, for example, presents an elegant example of 

this. In large part, the numerical gap for the MHP of height has been closed: traditional 

and molecular estimates of heritability of height are approximately similar. Despite that 

impressive scientific achievement, genetic prediction of height has yet to demonstrate 

clinical utility in comparison to alternative predictors, such as mid-parental height (Lu et 

al., 2021).

Similarly, closing the prediction gap for any given phenotype does not entail any resolution 

of the mechanism gap for the same trait. As the predictive accuracy of PGS improve 

with time, there may come a day when it is possible to accurately and reliably predict 

an individual’s height from a sample of their DNA. As described previously, however, 

PGS are not explanatory – quite the opposite actually. One may be capable of explaining 

a genotype-phenotype pathway by describing a mechanism without being able to make 

accurate predictions about that pathway, and vice versa.

6. Concluding remarks: on the particularly formidable case of human 

behavior

Although it may be tempting to characterize the missing heritability problem as no more 

than a numerical issue of conflicting estimates of heritability (h2
GWAS < h2

SNP < h2
Twin), 

here we encourage a more sobering perspective of the challenges facing scientific efforts to 

account for the “heritability” of human behavior. We are motivated by a tendency among 

geneticists and philosophers to maintain that the longstanding mysteries regarding the 
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genetic bases of complex human behaviors, such as IQ, will soon be resolved. Importantly, 

we are not optimistic that, perhaps with the advent of more sophisticated statistical models 

and bigger data, the capacity to match traditional and GWAS or SNP-based estimates 

of heritability will drastically advance scientific understanding of the genetics of human 

behavior. It won’t.

Rather, the gap between alternative methods of heritability estimates – what we call the 

numerical gap – is an issue independent of a greater scientific challenge: making accurate 

individual-level genetic prediction of behavioral phenotypes. Polygenic scores have made 

large gains in this respect, but, realistically, they’re not even close to resolving what we refer 

to as the prediction gap of the missing heritability problem. Finally, an old lesson from the 

philosophy of science: prediction does not entail explanation. We take it to be a crucial goal 

of scientific practice to develop meaningful explanations of why genetic differences between 

individuals correlate to behavioral differences between individuals. Although there is ample 

optimism in the genomics community, GWAS and PGS have also failed to deliver on this 

front. As of the writing of this manuscript, over 1,200 SNPs are statistically associated 

with the number of years of schooling a person completes in their lifetime (i.e., educational 

attainment), yet the putatively causal relationship between those SNPs and differences in 

educational outcomes is entirely opaque, other than the very general assertion that many 

of the SNPs are close to genes that are expressed in neural tissue. Until scientists have 

identified, described, and substantiated causal-mechanical etiologies that would explain why 

countless SNPs are correlated with behavioral outcomes like IQ and educational attainment, 

then what we call the mechanism gap of the missing heritability problem remains a daunting 

and persistent scientific challenge.

Thus, on our view the MHP is far from dissolved, nor will it be any time soon. The 

many challenges related to the heritability of human behavior are quite alive and well. 

Moreover, it is not that there is just one MHP that may someday be solved in one fell 

swoop of elegant science. Rather, there is a different MHP for each phenotype of interest 

to genetic researchers. For example, the numerical gap for height is drastically smaller 

than the numerical gap for educational attainment. Because each of the three legs of any 

given MHP are independent, so are problems of missing heritability independent from one 

another: resolving the MHP of height does not entail resolution of the MHP of educational 

attainment, or any other phenotype for that matter. There’s a different missing heritability 

problem for literally every single phenotype of scientific interest.

Moreover, just as each of the three legs of the MHP vary in difficulty and tractability – 

the numerical gap being the most tractable and the mechanism gap being the least so – 

some cases of missing heritability are more problematic than others. As a general rule of 

thumb: the more complex the phenotype, there more difficult the MHP. Highly complex 

human behavioral traits and outcomes such as intelligence and educational attainment are 

farthest from dissolution: the numerical gaps, predictions gaps, and mechanism gaps for 

these cases may never be resolved. At least one rung down the ladder of MHP difficulty 

would be basic, human physical phenotypes, such as height, weight, and cardiovascular 

disease. Although alarmingly complex in their own ways, basic physical phenotypes are 

much more investigatively tractable. As previously mentioned, the numerical gap for the 
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MHP of height is all but closed – and we would not be surprised if one day it were possible 

to accurately and reliably predict an individual’s height from their DNA.

The elucidation of meaningful biological etiologies that underly phenotypes of scientific 

interest – i.e., closing mechanism gaps – however, will inevitably remain a persistent 

challenge for human genetics. The reason why this is the case speaks to the severity of the 

MHP beyond human phenotypes to the genetics of non-human animals more broadly: the 

ethics of experimentation precludes the elucidation of mechanistic pathways for most human 

phenotypes. The MHP of non-human animals is far less severe and far more tractable than 

it is for any human phenotype precisely because a wide array of experimental interventions 

and assays are on the table. Although scientists may poke and prod nematodes to their 

heart’s desire – conducting gene knockouts to elucidate genotype-phenotype mechanistic 

pathways, for example – there will never be a day when it is ethically permissible to conduct 

the kinds of experiments in human that would be required to close any given mechanism 

gap.7 The missing heritability problem isn’t going anywhere any time soon.
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Figure 1: The Three Legs of the Missing Heritability Problem.
(A) The numerical gap regards the quantitative discrepancies that arise when different 

kinds of heritability are estimated for the same phenotype. GWAS Heritability is 

systematically lower than SNP heritability, which is systematically lower than traditional 

quantitative genetic heritability. For any given phenotype, the numerical gap would be closed 

if heritability derived from genomic data (h2
GWAS or h2

SNP) were approximately similar 

to heritability derived from twin and family studies (h2
TWIN). (B) The prediction gap 

regards the practical challenge of making accurate and reliable prediction of behavioral 

phenotypes from molecular genotypes (i.e., DNA). The dotted line represents a predictive 

relationship. For any given phenotype, the prediction gap would be closed if it were 

possible to make useful individual-level DNA-based prediction across most populations 
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and environments. (C) The mechanism gap regards the methodological and explanatory 

challenges of identifying and detailing a causal-mechanical pathway from genotype to 

behavioral phenotype. The solid arrows represent causal relationships and the black box 

represents undiscovered mechanism(s). For any given phenotype, the mechanism gap would 

be closed if mechanism(s) or mechanistic information were identified and detailed for the 

genotype-phenotype pathway of investigative interest.
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