
Jeff W. Murray

C# GaMe
ProGraMMinG
Cookbook for

Unity 3D

Computer Game Development

ISBN: 978-1-4665-8140-1

9 781466 581401

90000

C# Game Programming Cookbook for Unity 3D presents a highly flexible core framework to create just
about any type of game by plugging in different script components. Most scripts function within the
game framework or in your own structures.

The first ten chapters set up the flexible, reusable framework based in C# and suitable for all game
types. The book also explains scripting of generic, reusable, and common functionality.

The remainder of the text adds game-specific code to the framework to create four example games:
a top-down arena shooter, a futuristic racing combat game, a tank arena deathmatch game, and a
classic arcade-style vertical scrolling shoot ’em up. The games encompass artificial intelligence (path
following, target chasing, and line-of-sight patrolling behaviors), game state control, wheel colliders,
and weapon inventory management.

Features

• Provides an industry-level, C#-based framework for many game genres that offers extensibility in
any direction you require

• Includes extensive breakdowns of all core scripts, detailing what they do and how they work

• Illustrates common and important programming concepts, such as singleton patterned scripts,
static variables, and inheritance, in the example games

• Contains utility scripts, including a scene loading manager, timer, waypoint manager, spawning, and
cameras

• Requires some experience with C# programming

• Offers the Unity 3D game project example files on the book’s CRC Press web page

Reducing your recoding, repurposing, or adaptation time, this book provides script-based components
that you can use to jump start your own projects. The book’s modular components can be mixed
and matched to build various kinds of video games for the Unity game engine. The techniques and
concepts discussed also give you a solid foundation in game development.

K18872

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A N A K P E T E R S B O O K

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20140213

International Standard Book Number-13: 978-1-4665-8142-5 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but
the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to
trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained.
If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical,
or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without
written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright
Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a
variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to
infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

This book is dedicated to my boys,
Ethan and William.

Be nice to the cat.

vii

Contents

Acknowledgments xiii

Introduction xv

 1. Making Games the Modular Way 1

1.1 Important Programming Concepts. .2
1.1.1 Manager and Controller Scripts .2
1.1.2 Script Communication. .3
1.1.3 Using the Singleton Pattern in Unity. .5
1.1.4 Inheritance .6
1.1.5 Where to Now? .8

 2. Building the Core Game Framework 9

2.1 Controllers and Managers. .11
2.1.1 Controllers .11
2.1.2 Managers .11

2.2 Building the Core Framework Scripts. .11
2.2.1 BaseGameController.cs .12

2.2.1.1 Script Breakdown .14

viii Contents

2.2.2 Scene Manager. .17
2.2.2.1 Script Breakdown .17

2.2.3 ExtendedCustomMonoBehavior.cs .19
2.2.4 BaseUserManager.cs .20

2.2.4.1 Script Breakdown .22
2.2.5 BasePlayerManager.cs. .22

2.2.5.1 Script Breakdown .23
2.2.6 BaseInputController.cs. .24

2.2.6.1 Script Breakdown .26

 3. Player Structure 29

3.1 Game-Specific Player Controller .31
3.2 Dealing with Input .32
3.3 Player Manager .35

3.3.1 Script Breakdown .36
3.4 User Data Manager (Dealing with Player Stats Such as Health, Lives, etc.) 37

3.4.1 Script Breakdown .39

 4. Recipes: Common Components 41

4.1 Introduction .41
4.2 The Timer Class .43

4.2.1 Script Breakdown .45
4.3 Spawn Scripts .48

4.3.1 A Simple Spawn Controller .49
4.3.1.1 Script Breakdown .52

4.3.2 Trigger Spawner .56
4.3.3 Path Spawner .57

4.3.3.1 Script Breakdown .61
4.4 Set Gravity .66
4.5 Pretend Friction—Friction Simulation to Prevent Slipping Around66

4.5.1 Script Breakdown .68
4.6 Cameras .68

4.6.1 Third-Person Camera .69
4.6.1.1 Script Breakdown .71

4.6.2 Top-Down Camera .74
4.6.2.1 Script Breakdown .74

4.7 Input Scripts .75
4.7.1 Mouse Input. .75

4.7.1.1 Script Breakdown .76
4.7.2 Single Axis Keyboard Input .78

4.8 Automatic Self-Destruction Script. .79
4.8.1 Script Breakdown .79

4.9 Automatic Object Spinner. .79
4.9.1 Script Breakdown .80

ixContents

4.10 Scene Manager .81
4.10.1 Script Breakdown .82

 5. Building Player Movement Controllers 85

5.1 Shoot ’Em Up Spaceship .85
5.2 Humanoid Character .91

5.2.1 Script Breakdown .96
5.3 Wheeled Vehicle .106

5.3.1 Script Breakdown .109
5.3.2 Wheel Alignment .114
5.3.3 Script Breakdown .116

 6. Weapon Systems 121

6.1 Building the Scripts .122
6.1.1 BaseWeaponController.cs .122

6.1.1.1 Script Breakdown .127
6.1.2 BaseWeaponScript.cs .134

6.1.2.1 Script Breakdown .138

 7. Recipe: Waypoints Manager 143

7.1 Waypoint System .143

 8. Recipe: Sound Manager 157

8.1 The Sound Controller. .158
8.1.1 Script Breakdown .160

8.2 The Music Player .163
8.2.1 Script Breakdown .165

8.3 Adding Sound to the Weapons. .167

 9. AI Manager 169

9.1 The AI State Control Script .171
9.2 The Base AI Control Script .172

9.2.1 Script Breakdown .185
9.3 Adding Weapon Control to the AI Controller. .206

9.3.1 Script Breakdown .210

 10. Menus and User Interface 215

10.1 The Main Menu. .215
10.1.1 Script Breakdown .223

10.2 In-Game User Interface. .231

x Contents

 11. Dish: Lazer Blast Survival 233

11.1 Main Menu Scene .235
11.2 Main Game Scene. .236
11.3 Prefabs .237
11.4 Ingredients. .238
11.5 Game Controller .239

11.5.1 Script Breakdown .243
11.6 Player Controller. .250

11.6.1 Script Breakdown .253
11.7 Enemies .259

11.7.1 Script Breakdown .260
11.8 Wave Spawning and Control .261

11.8.1 Script Breakdown .263
11.9 Wave Properties .265
11.10 Weapons and Projectiles .266
11.11 User Interface .266

11.11.1 Script Breakdown .267

 12. Dish: Metal Vehicle Doom 271

12.1 Main Menu Scene .272
12.2 Main Game Scene. .272

12.2.1 Prefabs. .275
12.3 Ingredients. .275

12.3.1 Game Controller .276
12.3.1.1 Script Breakdown .282

12.3.2 Race Controller .291
12.3.2.1 Script Breakdown .297

12.3.3 Global Race Manager .306
12.3.3.1 Script Breakdown .311

12.3.4 Vehicle/Custom Player Control .318
12.3.4.1 Script Breakdown .327

12.3.5 User Interface. .344

 13. Dish: Making the Game Tank Battle 345

13.1 Main Game Scene. .347
13.2 Prefabs .349
13.3 Ingredients. .349
13.4 Game Controller .350

13.4.1 Script Breakdown .356
13.5 Battle Controller .361

13.5.1 Script Breakdown .363
13.6 Global Battle Manager .364

13.6.1 Script Breakdown .368
13.7 Players. .373

13.7.1 Script Breakdown .382

xiContents

13.8 AI Chasing with SetAIChaseTargetBasedOnTag.cs .383
13.8.1 Script Breakdown .385

 14. Dish: Making the Game Interstellar Paranoids 389

14.1 Main Menu .392
14.2 Game Scenes .392
14.3 Prefabs .393

14.3.1 Ingredients .394
14.3.2 Game Controller .395

14.3.2.1 Script Breakdown .401
14.3.3 Player Spaceship .411

14.3.3.1 Script Breakdown .415
14.3.4 Enemies. .423

14.3.4.1 Script Breakdown .424
14.3.5 Waypoint Follower .426

14.3.5.1 Script Breakdown .427

Final Note 429

xiii

I would like to thank my wife for all the encouragement, support, and nice cups of tea.
I would also like to thank my mum and dad, my brother Steve, and everyone else who
knows me. Sophie cat, be nice to the boys.

Sincere thanks go to the many people who positively influence my life directly or indi-
rectly: Michelle Ashton, Brian Robbins, George Bray, Nadeem Rasool, Christian Boutin,
James and Anna, Rich and Sharon, Liz and Peter, Rob Fearon (the curator of all things
shiny), everyone on Twitter who RTs my babble (you know who you are, guys!), Matthew
Smith (the creator of Manic Miner), David Braben, Tōru Iwatani, and anyone who made
Atari games in the 1980s.

I would like to thank everyone at AK Peters/CRC Press for the help and support and
for publishing my work.

Finally, a massive thank you goes out to you for buying this book and for wanting
to do something as cool as to make games. I sincerely hope this book helps your game-
making adventures—feel free to tell me about them on Twitter @psychicparrot or drop by
my website at http://www.psychicparrot.com.

Acknowledgments

xv

As I was starting out as a game developer, as a self-taught programmer my skills took
a while to reach a level where I could achieve what I wanted. Sometimes I wanted to do
things that I just didn’t have yet the technical skills to achieve. Now and again, software
packages came along that could either help me in my quest to make games or even make
full games for me; complete game systems such as the Shoot ’Em-Up Construction Kit
(aka SEUCK) from Sensible Software, Gary Kitchen’s GameMaker, or The Quill Adventure
System could bring to life the kinds of games that went way beyond anything that my lim-
ited programming skills could ever dream of building.

The downside to using game creation software was that it was tailored to create games
within their chosen specific genre. If I wanted to do something outside of the limitations
of the software, the source code was inaccessible and there was no way to extend or mod-
ify it. When that happened, I longed for a modular code-based system that I could plug
together to create different types of games but modify parts of it without having to spend a
lot of time learning how the entire system internals work—building block game develop-
ment that I could actually script and modify if I needed to.

After completing my first book, Game Development for iOS with Unity3D, I wanted to fol-
low up by applying a modular style of game building to Unity3D that would provide read-
ers with a highly flexible framework to create just about any kind of game by “plugging in”
the different script components. My intention was to make a more technical second book,
based on C# programming, that would offer extensibility in any direction a developer
might require. In essence, what you are holding in your hands right now is a cookbook

Introduction

xvi Introduction

for game development that has a highly flexible core framework for just about any type of
game.

A lot of the work I put in at the start of writing this book was in designing a frame-
work that not only made sense in the context of Unity but also could easily cope with the
demands of different genres.

Prerequisites
You can get up and running with the required software for the grand total of zero dollars.
Everything you need can be downloaded free of charge with no catches. You may want to
consider an upgrade to Unity Pro at some point in the future, to take advantage of some
of its advanced features, but to get started all you need to do is grab the free version from
the Unity website.

Unity Free or Unity Pro (available from the Unity store at http://www.unity3d.com)

 Unity Free is completely free for anyone or any company making less than
$100,000 per year—it may be downloaded for no charge at all, and you don’t even
need a credit card. It’s a really sweet deal! We are talking about a fully functional
game engine, ready to make 3D or 2D games that may be sold commercially or
otherwise. There are no royalties to pay, either.

 Unity Pro adds a whole host of professional functionality to the engine, such as
render culling and profiling. If you are a company with more than $100,000 per
year of turnover, you will need a Pro license, but if you find that Unity Free doesn’t
pack quite enough power, you may also want to consider going Pro. You can
arrange a free trial of the Pro version right from the Unity website to try before
you buy. If the trial licence runs out before you feel you know enough to make a
purchase, contact Unity about extending it and they are usually very friendly and
helpful about it (just don’t try using a trial license for 6 months at a time, as they
may just figure it out!).

C# programming knowledge

 Again, to reiterate this very important point, this is not a book about learn-
ing how to program. You will need to know some C#, and there are a number
of other books out there for that purpose, even if I have tried to make the
examples as simple as possible! This book is about making games, not about
learning to program.

What This Book Doesn’t Cover
This is not a book about programming and it is not a book about the right or wrong way
to do things. We assume that the reader has some experience with the C# programming
language. I am a self-taught programmer, and I understand that there may well be better
ways to do things.

xviiIntroduction

This is a book about concepts, and it is inevitable that there will be better methods for
achieving some of the same goals. The techniques and concepts offered in this book are
meant to provide solid foundation, not to be the final word on any subject. It is the author’s
intention that, as you gain your own experiences in game development, you make your
own rules and draw your own conclusions.

Additional material is available from the CRC Press Web site: http://www.crcpress.
com/product/isbn/9781466581401.

1

1 Making Games the
Modular Way

When I first started making games, I would approach development on a project-to-project
basis, recoding and rebuilding everything from scratch each time. As I became a pro-
fessional developer, landing a job at a game development studio making browser-based
games, I was lucky enough to work with a guy who was innovating the scene. He was a
master at turning out great games (both visually and gameplay-wise) very quickly. One
secret to his success lay in the development of a reusable framework that could easily
be refactored to use on all of his projects. His framework was set up to deal with server
communication, input handling, browser communication, and UI among other things,
saving an incredible amount of time in putting together all of the essentials. By reusing
the framework, it allowed more time for him and his team to concentrate on great game-
play and graphics optimization, resulting in games that, at the time, blew the competi-
tion away. Of course, the structure was tailored to how he worked (he did build it, after
all), and it took me a while to get to grips with his style of development; but once I did,
it really opened my eyes. From then on, I used the framework for every project and even
taught other programmers how to go about using it. Development time was substantially
reduced, which left more time to concentrate on making better games.

This book is based on a similar concept of a game-centric framework for use with
many different types of games, rather than a set of different games in different styles. The
overall goal of this book is to provide script-based components that you can use within
that framework to make a head start with your own projects in a way that reduces recod-
ing, repurposing, or adaptation time.

2 1. Making Games the Modular Way

In terms of this book as a cookbook, think of the framework as a base soup and the
scripting components as ingredients. We can mix and match script components from dif-
ferent games that use the same framework to make new games, and we can share several of
the same core scripts in many different games. The framework takes care of the essentials,
and we add a little “glue” code to pull everything together the way we want it all to work.

This framework is, of course, optional, but you should spend some time familiarizing
yourself with it to help understand the book. If you intend to use the components in this
book for your own games, the framework may serve either as a base to build your games
on or simply as a tutorial test bed for you to rip apart and see how things work. Perhaps
you can develop a better framework or maybe you already have a solid framework in place.
If you do, find a way to develop a cleaner, more efficient framework or even a framework
that isn’t quite so efficient but works better with your own code, and do it.

In this chapter, we start by examining some of the major programming concepts used
in this book and look at how they affect the design decisions of the framework.

1.1 Important Programming Concepts
I had been programming in C# for a fairly long time before I actually sat down and figured
out some of the concepts covered in this chapter. It was not because of any particular prob-
lem or difficulty with the concepts themselves but more because I had solved the prob-
lems in a different way that meant I had no real requirement to learn anything new. For
most programmers, these concepts will be second nature and perhaps something taught
in school, but I did not know how important they could be. I had heard about things like
inheritance, and it was something I put in the to-do list, buried somewhere under “finish
the project.” Once I took the time to figure them out, they saved me a lot of time and led to
much cleaner code than I would have previously pulled together. If there’s something you
are unsure about, give this chapter a read-through and see whether you can work through
the ideas. Hopefully, they may save some of you some time in the long run.

1.1.1 Manager and Controller Scripts
I am a strong believer in manager and controller scripts. I like to try and split things out
into separate areas; for example, in the Metal Vehicle Doom game, I have race controller
scripts and a global race controller script. The race controller scripts are attached to the
players and track their positions on the track, waypoints, and other relevant player-specific
race information. The global race controller script talks to all the race controller scripts
attached to the players to determine who is winning and when the race starts or finishes.
By keeping this logic separate from the other game scripts and contained in their own
controller scripts, it makes it easier to migrate them from project to project. Essentially, I
can take the race controller and global race controller scripts out of the game and apply
them to another game, perhaps one that features a completely different type of gameplay—
for example, alien characters running around a track instead of cars. As long as I apply
the correct control scripts, the race logic is in place, and I can access it in the new game.

In the framework that this book contains, there are individual manager and control-
ler scripts dealing with user data, input, game functions, and user interface. We look at
those in detail in Chapter 2, but as you read this chapter, you should keep in mind the idea
of separated scripts dedicated to managing particular parts of the game structure. It was

31.1 Important Programming Concepts

important to me to design scripts as standalone so that they may be used in more than one
situation. For example, our weapon slot manager will not care what kind of weapon is in
any of the slots. The weapon slot manager is merely an interface between the player and the
weapon, taking a call to “fire” and responding to it by telling the weapon in the currently
selected weapon slot to fire. What happens on the player end will not affect the slot man-
ager just as anything that happens with the weapon itself will not affect the slot manager.
It just doesn’t care as long as your code talks to it in the proper way and as long as your
weapons receive commands in the proper way. It doesn’t even matter what type of object
the slot manager is attached to. If you decide to attach the weapon slot manager to a car, a
boat, a telegraph pole, etc., it doesn’t really matter just as long as when you want them to
fire, you use the correct function in the slot manager to get it to tell a weapon to fire.

Since our core game logic is controlled by manager and controller scripts, we need to
be a little smart about how we piece everything together. Some manager scripts may ben-
efit from being static and available globally (for all other scripts to access), whereas others
may be better attached to other scripts. We deal with these on a case-by-case basis. To get
things started, we will be looking at some of the ways that these manager scripts can com-
municate with each other.

As a final note for the topic in this section, you may be wondering what the differ-
ence is between managers and controllers. There really isn’t all that much, and I have only
chosen to differentiate for my own sanity. I see controllers as scripts that are larger global
systems, such as game state control, and managers as smaller scripts applied to gameOb-
jects, such as weapon slot management or physics control. The terms are applied loosely, so
don’t worry if there appear to be inconsistencies in the application of the term in one case
versus another. I’ll try my best to keep things logical, but that doesn’t mean it’ll always
make sense to everyone else!

1.1.2 Script Communication
An important part of our manager- and component-based structures is how our scripts
are going to communicate with each other. It is inevitable that we will need to access our
scripts from a multitude of other areas of the game, which means we should try to provide
interfaces that make the most sense. There are several different ways of communicating
between scripts and objects in Unity:

 1. Direct referencing manager scripts via variables set in the editor by the Inspector
window.

 The easiest way to have your scripts talk to each other is to have direct references
to them in the form of public variables within a class. They are populated in the
Unity editor with a direct link to another script.

 Here is an example of direct referencing:

 public void aScript otherScript;

 In the editor window, the Inspector shows the otherScript field. We drag and drop
an object containing the script component that we want to talk to. Within the
class, function calls are made directly on the variable, such as

otherScript.DoSomething();

4 1. Making Games the Modular Way

 2. GameObject referencing using SendMessage.
 SendMessage is a great way to send a message to a gameObject and call a func-

tion in one of its attached scripts or components when we do not need any kind of
return result. For example,

SomeGameObject.SendMessage("DoSomething");

 SendMessage may also take several parameters, such as setting whether or not the
engine should throw an error when there is no receiver, that is, no function in any
script attached to the gameObject with a name matching the one in the SendMessage
call. (SendMessageOptions). You can also pass one parameter into the chosen func-
tion just as if you were passing it via a regular function call such as

SomeGameObject.SendMessage("AddScore",2);
SomeGameObject.SendMessage("AddScore",
SendMessageOptions.RequireReceiver);
SomeGameObject.SendMessage("AddScore",
SendMessageOptions.DontRequireReceiver);

 3. Static variables.
 The static variable type is useful in that it extends across the entire system; it will

be accessible in every other script. This is a particularly useful behavior for a game
control script, where several different scripts may want to communicate with it to
do things such as add to the player’s score, lose a life, or perhaps change a level.

 An example declaration of a static variable might be

private static GameController aController;

 Although static variables extend across the entire program, you can have private
and public static variables. Things get a little tricky when you try to understand
the differences between public and private static types—I was glad to have friends
on Twitter that could explain it all to me, so let me pass on what I was told:

 Public static
 A public static variable exists everywhere in the system and may be accessed from

other classes and other types of script.
 Imagine a situation where a player control script needs to tell the game con-

troller script whenever a player picks up a banana. We could deal with it like this:

 1. In our gamecontroller.cs game controller script, we set up a public static:

public static GameController gateway;

 2. When the game controller (gamecontroller.cs) runs its Start() function, it
stores a reference to itself in a public static variable like this:

gateway = this;

 3. In any other class, we can now access the game controller by referring to its
type followed by that static variable (GameController.gateway) such as

GameController.gateway.GotBanana();

51.1 Important Programming Concepts

 Private static
 A private static variable exists within the class it was declared and in any other

instances of the same class. Other classes/types of script will not be able to access
it.

 As a working example, try to imagine that a script named player.cs directly
controls player objects in your game. They all need to tell a player manager script
when something happens, so we declare the player manager as a static variable in
our player.cs script like this:

private static PlayerManager playerManager;

 The playerManager object only needs to be set up once, by a single instance of the
player class, to be ready to use for all the other instances of the same class. All
player.cs scripts will be able to access the same instance of the PlayerManager.

 4. The singleton design pattern.
 In the previous part of this section, we looked at using a static variable to share a

manager script across the entire game code. The biggest danger with this method
is that it is possible to create multiple instances of the same script. If this happens,
you may find that your player code is talking to the wrong instance of the game
controller.

 A singleton is a commonly used design pattern that allows for only one instance
of a particular class to be instantiated at a time. This pattern is ideal for our game
scripts that may need to communicate (or be communicated with) across the entire
game code. Note that we will be providing a static reference to the script, exactly
as we did in the “Static Variables” method earlier in this section, but in implement-
ing a singleton class, we will be adding some extra code to make sure that only one
instance of our script is ever created.

1.1.3 Using the Singleton Pattern in Unity
It is not too difficult to see how useful static variables can be in communication between
different script objects. In the public static example cited earlier, the idea was that we had
a game controller object that needed to be accessed from one or more other scripts in our
game.

The method shown here was demonstrated on the Unity public wiki* by a user named
Emil Johansen (AngryAnt). It uses a private static variable in conjunction with a public
static function. Other scripts access the public function to gain access to the private static
instance of this script, which is returned via the public function so that only one instance
of the object will ever exist in a scene regardless of how many components it is attached to
and regardless of how many times it is instantiated.

A simple singleton structure:

public class MySingleton
{
 private static MySingleton instance;

 public MySingleton ()

* http://wiki.unity3d.com/index.php/Singleton.

6 1. Making Games the Modular Way

 {
 if (instance != null)
 {
 Debug.LogError ("Cannot have two instances of singleton.");
 return;
 }

 instance = this;
 }

 public static MySingleton Instance
 {
 get
 {
 if (instance == null)
 {
 new MySingleton ();
 }

 return instance;
 }
 }
}

The singleton instance of our script may be accessed anywhere, by any script, simply
with the following syntax:

MySingleton.Instance.MySingletonMember;

1.1.4 Inheritance
Inheritance is a complex concept, which demands some explanation here because of its key
role within the scripts provided in this book. Have a read through this section, but don’t
worry if you don’t pick up inheritance right away. Once we get to the programming, it will
most likely become clear.

The bottom line is that inheritance is used in programming to describe a method
of providing template scripts that may be overridden, or added to, by other scripts. As a
metaphor, imagine a car. All cars have four wheels and an engine. The types of wheels may
vary from car to car, as will the engine, so when we say “this is a car” and try to describe
how our car behaves, we may also describe the engine and wheels.

These relationships may be shown in a hierarchical order:

Car

-Wheels
-Engine

Now try to picture this as a C# script:

Car class

Wheels function
Engine function

71.1 Important Programming Concepts

If we were building a game with lots of cars in it, having to rewrite the car class for
each type of car would be silly. A far more efficient method might be to write a base class
and populate it with virtual functions. When we need to create a car, rather than use this
base class, we build a new class, which inherits the base class. Because our new class is
inherited, it is optional whether or not we choose to override the Wheels or Engine func-
tion to make them behave in ways specific to our new class. That is, we can build “default”
functions into the base class, and if we only need to use a default behavior for an engine,
our new class doesn’t need to override the engine function.

The base class might look something like this:

public class BaseCar : MonoBehavior {

 public virtual void Engine () {
 Debug.Log("Vroom");
 }

 public virtual void Wheels () {
 Debug.Log("Four wheels");
 }
}

There are two key things to notice in the above script. One is the class declaration
itself and the fact that this class derives from MonoBehavior. MonoBehavior is itself a
class—the Unity documentation describes it as “the base class every script derives from”—
this MonoBehavior class contains many engine-specific functions and methods such as
Start(), Update(), FixedUpdate(), and more. If our script didn’t derive from MonoBehavior,
it would not inherit those functions, and the engine wouldn’t automatically call functions
like Update() for us to be able to work with. Another point to note is that MonoBehavior
is a class that is built in to the engine and not something we can access to edit or change.

The second point to note is that our functions are both declared as virtual functions.
Both are public and virtual. Making virtual functions means that the behavior in our base
class may be overridden by any scripts that derive from it. The behavior we define in this
base class could be thought of as its default behavior. We will cover overriding in full a
little further on in this section.

Let’s take a look at what this script actually does: If we were to call the Engine() func-
tion of our BaseCar class, it would write to the console “Vroom.” If we called Wheels, the
console would read “Four wheels.”

Now that we have our BaseCar class, we can use this as a template and make new ver-
sions of it like this:

public class OctoCar : BaseCar {
 public override void Wheels () {
 Debug.Log("Eight wheels");
 }
}

The first thing you may notice is that the OctoCar class derives from BaseCar rather
than from MonoBehavior. This means that OctoCar inherits the functions and methods
belonging to our BaseCar script. As the functions described by BaseCar were virtual, they
may be overridden. For OctoCar, we override Wheels with the line:

public override void Wheels () {

8 1. Making Games the Modular Way

Let’s take a look at what this script actually does: In this case, if we were to call the
Engine() function on OctoCar, it would do the same as the BaseCar class; that is, it would
write “Vroom” to the console. It would do this because we have inherited the function but
have not overridden it, which means we keep that default behavior. In OctoCar, however,
we have overridden the Wheels() function. The BaseCar behavior of Wheels would print
“Four wheels” to the console, but if we call Wheels() on OctoCar, the overridden behavior
will write “Eight wheels” instead.

Inheritance plays a huge part in how our core game framework is structured. The idea
is that we have basic object types and specific elaborated versions of these objects inherit-
ing the base methods, properties, and functions. By building our games in this manner,
the communication between the different game components (such as game control scripts,
weapon scripts, projectile controllers, etc.) becomes universal without having to write out
the same function declarations over and over again for different variations of the script.
For the core framework, our main goal is to make it as flexible and extensible as possible,
and this would be much more difficult if we were unable to use inheritance.

The subject doesn’t stop here, but that is as far as we will be going here. Each method
will be useful in different areas of game development. For example, in cases where a com-
ponent requires a reference to another object such as a material or a texture, it makes
sense to set this via the Unity editor. In cases where we are developing classes that are
not applied to gameObjects, we may use a static variable to make it accessible to all other
scripts. For the sake of sanity, it is probably likely that we will never use a static object
reference without using it as a singleton.

1.1.5 Where to Now?
Think about how your objects work together in the game world and how their scripts need
to communicate with each other. I find that it helps to make flow diagrams or to use mind-
mapping software to work things out beforehand. A little planning early on can reduce a
whole lot of code revisions later on, so try to plan ahead. That said, it is perfectly okay for
your structure to grow and evolve as you develop it further. The framework shown in this
book ended up going through many revisions along the way before reaching its final form.

Try to break up your scripts into smaller components to help with debugging and
for flexibility. Also, try to design for reusability; hard-coding references to other scripts
reduces the portability of the script and increases the amount of work you will need to do
in the future when you want to carry it over into another project.

9

2 Building the Core
Game Framework

In this chapter, we look at the structure of the base project, to which we will be adding all
of the game script components, and the thinking behind it. This chapter will give context
to the design decisions made in the core framework as well as provide a good base for
understanding how the individual code recipes work together and why they may some-
times have dependencies on other components.

The framework for this book (as seen in Figure 2.1) features six main areas:

 1. Game Controller
 The game controller acts like a central communication script for all of the differ-

ent parts of the game. In a way, it is the main glue that holds together the various
components that make up the game.

 2. Scene Manager
 This script deals with the loading and saving of scenes. Scenes are what Unity calls

its level files.

 3. UI Manager
 The UI manager draws all of the main in-game user interface elements, such as

score display and lives.

 4. Sound Manager
 The sound manager handles sound playback. The manager holds an array con-

taining the AudioClips of possible sounds to play. When the game first begins, the

10 2. Building the Core Game Framework

sound manager creates one individual AudioSource per sound in the array. When
we need to play a sound, the index number referring to a sound’s place in the array
is passed to the manager. It uses the sound’s individual AudioSource to play the
source, which helps to alleviate problems that may be caused by playing too many
sound files from a single source.

 5. Players
 Players may already be present in the game scene or may be instantiated by the

game controller. The players have a relatively complex structure that will be
explored later in Chapter 3.

 6. AI and Enemies
 As with players, AI-controlled characters or enemies may already be present in

the scene at load time or they may be created at runtime by the game controller or
other script.

Although you may choose to work with your own framework, understanding the one
used in this book will help in seeing how the components work alongside each other and
how they work together. To maximize flexibility, the base classes need to be able to accom-
modate a host of different configurations. For example, a player control script should allow
for input to be passed in from another script so that control systems may easily be switched
out. The main player script does not need to know where the input is coming from, but it
needs to provide a common interface for an input script to communicate with. The input
script may take its input from the keyboard, mouse, artificial intelligence, networked input,
etc., and just as long as a common interface is used to communicate with the player control-
ler; it doesn’t matter to the player controller as to where the input actually comes from.

Players

Scene manager

AI and enemies etc.

Game environment

Scene objects
Manager and control objects

UI manager Sound
manager

Game controller

(Depending on the requirements of the
specific game, the game controller may

either persist across scenes or be generated
per scene)

Figure 2.1 Diagram of the game framework.

	Front Cover
	Contents
	Acknowledgments
	Introduction
	Chapter 1: Making Games the Modular Way
	Chapter 2: Building the Core Game Framework

