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. 1.2 1.2
P. 37, line 14: for-?-b’ read =5 k2
P. 45, equation (11): insert dots after the right-hand member.
P. 57, line 11: for II {1+ 29 (a+ny%} read I {1 +23/(a+n)}.



PREFACE

HIS volume contains everything published by Ramanujan except a few

solutions of questions by other mathematicians printed in the Journal
of the Indian Mathematical Society, and a certain amount of additional matter.
Its publication has been made possible by the liberality of the University of
Madras, the Royal Society, and Trinity College, Cambridge, each of which
bodies has guaranteed a proportion of the expense of printing.

The editorial comments in Appendix I do not profess to be in any way
systematic or exhaustive. We have merely put down such comments and
references to the literature as occurred to us or were suggested to us by other
mathematicians. In particular we are indebted to Prof. L. J. Mordell for
a number of valuable suggestions.

We have also printed in Appendix II those parts of Ramanujan’s letters
from India which have not been printed before. It may seem that it would
have been more natural to incorporate these in their proper places in the
second Notice, but to do this would have expanded it unduly and destroyed
its proportion, and the letters consist so largely of an enumeration of isolated
theorems that they hardly suffer by division. '

There is still a large mass of unpublished material. None of the contents
of Ramanujan’s notebooks has been printed, unless incorporated in later
papers, except that one chapter, on generalised hypergeometric series,
-was analysed by Hardy* in the Proceedings of the Cambridge Philosophical
Society. This chapter is sufficient to show that, while the notebooks are
naturally nnequall in quality, they contain much which should certainly
be published. It would be a very formidable task to work through them
systematically, select particular pa.ssagt\és, and edit these with adequate
comment, and it is impossible to print the notebooks as they stand without
further monetary assistance. The singular quality of Ramanujan’s work, and
the romance -which surrounds his career, encourage us to hope that this
volume may enjoy sufficient success to make possible the publication of
another.

* G. H. Bardy, “A chapfer from |Ramanujan’s notebook”, Proc. Camb. Pht’l. Soc.,
xXx1 (1923), pp. 492-603.



SRINIVASA RAMANUJAN (1887—1920)

By P. V. SesEU A1YAR AND R. RAMACHANDRA Rao

SRINIVASA RAMANUJAN AIYANGAR, the remarkable mathematical genius
who is the subject. of this biographical sketch, was a member of a Brahmin
family in somewhat poor circumstances in the Tanjore District of the Madras
Presidency. There is nothing specially noteworthy about his ancestry to
account for his great gifts. His father and paternal grandfather were gumastas
(petty accountants) to cloth merchants in Kumbakonam, an important town
in the Tanjore District. His mother, a woman- of strong common-sense who
still survives to mourn the loss of her distinguished son, was the daughter of
a Brahmin petty official who held the position of amin (bailiff) in the Munsiff’s
court at Erode in the neighbouring district of Coimbatore. For some time
after her marriage she had no children, but her father prayed to the famous
goddess Namagiri, in the neighbouring town of Namakkal, to bless his
daughter with children. Shortly afterwards, her eldest child, the mathe-
matician Ramanujan, was born on the ninth day of Margasirsha in the
Samvath Sarvajit, answering to the English date of 22nd December 1887.

Ramanujan was born in Erode, in the house of his maternal grandfather,
to which in accordance with custom his mother had gone for the birth of her
first child. In 1892, when in his fifth year, he was, as is usual with Brahmin
boys, sent to a pial school, i.e. an indigenous elementary school gonducted on
very simple lines. Two years later he was admitted into the Town High
School at Kumbakonam, in which he spent the rest of his school career.

_During the first ten years of his life the only indication that he gave of
special ability was that in 1897 he gtood first amongst the successful candi-
dates of the Tanjore District in the Primary Examination. This success
secured for him the concession of being permitted to pay half-fees in his
school.

Even in these early days he was remarkably quiet and meditative. It is
remembered that he used to ask questions about the distances of the stara.
As he held a high- pla.ce in his class his class fellows used often to go to his
house, but as he knew that his parents did not care for him to go out he used
only to talk to them from a window which overlooked the street.

While ‘he:was in thq second form he had, it appears, a great curiosity to
know the “lughest truth” in Mathematics, and asked sowme of his friends in the
' it. It seems that some mentioned the Theorem of Pytha-
tmth, and that some .others gave the highest place-to
& ,“W?nlet_un the .third: form; whenihis:feacher -was.ex-
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plaining to the class that any quantity divided by itself was equal to unity,
he is said to have stood up and asked if zero divided by zero also was equal
to unity. It was at about this time that he mastered the properties of the
three progressions While in the fourth form, he took to the study of Trigo-
nometry. He is said to have borrowed a copy of the second part of Loney’s
Trigonometry from a student of the B.A. class, who was his neighbour. This
student was struck with wonder to learn that this young lad of the fourth
form had not only finished reading the book but could do évery problem in
it without any aid whatever; and not infrequently this B.A. student used to
go to Ramanujan for the solution of difficult problems. While in the fifth
form, he obtained unaided Euler's Theorems for the sine and the cosine and,
when he found out later that the theorems had been already proved, he kept
the paper containing the results secreted in the roofing of his house.

It was in 1903, while he was in the sixth form, on a momentous day for
Ramanujan, that a friend of his secured for him the loan of a copy of Carr’s

* Synopsis of Pure Mathematics from the library of the local Government
College. Through the new world thus opened to him, Ramanujan went
ranging with delight. It was this book that awakened his genius. He set
himself to establish the formule ngen therein. As he was without the aid of
other books, each solution was a piece of research so far as he was concerned.
He first devised some methods for constructing magic squares. Then, he
branched off to Geometry, where he took up the squaring of the circle and
succeeded so far as to get a result for the length of the equatorial circum-
ference of the earth which differed from the true length only by a few feet.
Finding the scope of geometry limited, he turned his attention to Algebra
and obtained several new series. Ramanujan used to say that the goddess of
Namakkal inspired him with the formule in dreams. It is a remarkable fact
that frequently, on rising from bed, he would note down results and rapidly
verify them, though he was not always able to supply a rigorous proof. These
results were embodied in a notebook which he afterwards used to show to
mathematicians interested in his work.

In December 1903 he passed the Matriculation Examination of the Uni-
versity of Madras, and in the January of the succeeding year he joined the
Junior First in Arts class of the Government College, Kumbakonam, and won
the Subrahmanyam scholarship, which is generally awarded for }noﬁclencym

Hoglish and Mathematics. By this time, he was so much absorbed. i the -
etudy of Mathematics that in all lecture hours—whether devoted to-English, -
History or Physiology—he used to engage himself in some mathematical:
investigation, unmindful of what was happening in the class. This%xeussive
dévomon to Ma.themamcs and his consequent neglect of the «other gubjm




Srinivasa Ramanujan xiii

into the Telugu country, but returned to Kumbakonam after some wandéring
and rejoined the college. As owing to his absence he failed to make sufficient
attendances to obtain his term certificate in 1905, he entered Pachaiyappa’s
College, Madras, in 1906, but falling ill returned to Kumbakonam. He
appeared as a private student for the F.A. Examination of December 1907
and failed. Afterwards he had no very definite occupation till 1909, but con-
tinued working at Mathematics in his own way and jotting down his results
in another notebook.

In the summer of 1909 he married and wanted to settle down in life.
Belonging to a poor and humble family, with an unfortunate college career,
and without influence, he was hard put to it to secure some means of liveli-
hood. In the hope of finding some employment he went, in 1910, to Tirukoilur,
a small sub-division town in the South Arcot District, to see Mr V. Ramaswami
Aiyar, M.A,, the founder of the Indian Mathematical Society, who was then
Deputy Collector of that place, and asked him for a clerical post in a municipal
or talug office of his division. This gentleman, being himself a mathematician
of no mean order, and finding that the results contained in Ramanujan’s note-
book were remarkable, thought rightly that this unusual genius would be
wasted if consigned tothe dull routine of a taluq office, and helped Ramanujan
on to Madrag with a letter of introduction to Mr P. V. Seshu Aiyar, now
Principal of Government College, Kumbakonam. Mr Seshu Aiyar had already
known Ramanujan while the latter was at Kumbakonam, as he was the
mathematical lecturer there while Ramanujan was in the F.A. class. Through
him Ramanujan secured for a few months an acting post in the Madras
Accountant-General’s office and, when this arrangement ceased, he lived for
a few months earning what little he could by giving private tuition. Not
satisfied with such make-shift arrangements, Mr Seshu Aiyar sent him with
4 note of recommendation to Diwan Bahadur R. Ramachandra Rao, who was
then Collector at Nellore, a small town 80 miles north of Madras, and who
had already been introduced to Ramanujan and seen his notebook. His first
interview with Ramanujan in December 1910 is better described in his own
words: :

“Several years ago, a nephew of mine perfectly innocent of mathematical knowledge
said to'me, ‘Unole, I have a visitor who talks of mathematics ; I do not understand him ;
can you see.if there is-anytbing in his talk?’ And in the plenitude of my mathematical
wisdom, I condescerided %6 permit Ramanujan to walk into my presence. A short uncouth
figure, stout, unshaved, not gverclean, with one conspicuous fea.ture-—shinmg eyes—walked
in with a frayed notebook under his arm. He was miserably poor. He had run-away from
Kumbakonam to get:Jeistire:in-Madras to pursue his studies.~ He never craved for any

" distinction. He*wmtedlemwm other words, that simple food should beprovxded'forhm
without exertion on his'part and that he should be allowed to dream on. -

“He opene&dm -bookmnd begamtomplun some.of: hxsdnoovems. I qungﬁe :t ‘
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his simpler results. These transcended existing books and I had no doubt that he was a
remarkable man. Then, step by step, he led me to elliptic integrals and hypergeometric
series and at last his theory of divergent series not yet announced to the world converted
me. I asked him what he wanted. He said he wanted a pittance to live on so that he
might pursue his researches.”

Mr Ramachandra Rao sent him back to Madras, saying that it was cruel
to make an intellectual giant like Ramanujan rot in a mofussil station like
Nellore, and recommended that he should stay at Madras, undertaking to pay
his expenses for a time. After a while, other attempts to obtain for him a
scholarship having failed and Ramanujan being unwilling to be a burden on
anybody for any length of time, he took up a small appointment on Rs 30 per
mensem in the Madras Port Trust office, on the 9th February 1912.

He did not slacken his work at Mathematics in the meantime. His earliest
contribution to the Journal of the Indian Mathematical Soctety was in the
form of questions communicated by Mr Seshu Aiyar ‘and published in
the February number of Volume 1m (1911). His first long article was on
“Somé Properties of Bernoulli’s Numbers” and was published in the De-
cember number of the same volume. In 1912 he contributed two more notes
to the fourth volume of the same Journal, and also several questions for
‘solution.

By this time, Mr Ramachandra Rao had induced Mr Griffith of the Madms
Engineering College to take an interest in Ramanujan, and Mr Griffith spoke
to Sir Francis Spring, the Chairman of the Madras Port Trust, in which
Ramanujan was then employed ; and from that time onwards it became easy
to secure recognition of his work. Fortunately also the then manager of the
Port Trust office was Mr S. Narayana Aiyar, M.A,, a very keen and devoted
student of Mathematics. He gave every encouragement to Ramanujan and
very frequently worked with him during this period.

On the suggestion of Mr Seshu Aiyar and others, Ramanujan began a
correspondence with Mr G. H. Hardy, then Fellow of Trinity College, Cam-
bridge, on the 16th January 1913. In that letter he wrote:

“] had no University education but I have undergone the ordinary school ocourse.
_ After leaving ‘school I have been employing the spare time at my:disposal to werk at
Mathematics....I bave made a special investigation of divergent peries....Very recently
I came across a tract published by you, styled Orders of Infinity, in-page 36 of -which.1
find a statement that no definite expreasion has been as yet found for the number of prime
numbers less . thananygwennnmber. Ihsvefoundmupmwonwbwhwm
;pproximatu to the real-result, the.error being- negligible. . I would: muut;ou 40380,
shrough ‘the enclosed papers.:: Being. poor, if ;you:are convinoed that:there is&i
“valua, J:would.like to have:ny thearems published. .I-have not;given;the:adinaltmi
tions nor the expressions that I .get; but I have indicated the: luaeu onwlnoh' ;
Being mexpenenoed, 1 would very highly value. any advice you,

“Thie ‘papers -enclosed- eun{;mnddahe gunnmatmm A Y
: CO & £ :ﬂimmms'
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In his second letter of date 27th February 1913, he wrote:

«...I have found a friend in you who views my labours sympathetically. This is already

some encouragement to me to proceed....To preserve my brains, I want food and this is
now my first consideration. Any sympathetic letter from you will be helpful to me here
to get a scholarship either from the University or from the Government....”
But in the meantime Mr Hardy had written to the Secretary for Indian
Students in London, saying that Ramanujan might prove to be a mathe-
matician of the very highest class, and asking him to enquire whether some
means could not be found for getfing him a Cambridge education. This
question was transmitted to the Secretary of the Students’ Advisory Com-
mittee in Madras, who, in his turn, asked Ramanujan if he would go to
England. But since his caste prejudices were very strong, he definitely
declined to go. Upon the receipt of this unfavourable reply, the Secretary
wrote, early in March 1913, to the Registrar of the University of Madras,
explaining the circumstances of the case.

By this time Ramanujan’s case had been brought to the notice of the
University of Madras in another way. Early in February, Dr G. T. Walker,
F.R.S, Director-General of Observatories, Simla, and formerly Fellow of
Trinity College, Cambridge, happened to visit Madras on one of his official
tours; and Sir Francis Spring touk this opportunity to bring some of Rama-
nujan’s work to Dr Walker’s notice. As a result, Dr Walker addressed, on the
26th February 1918, the following letter to the Registrar of the Umverslty
of Madras:

«...I have the honour to draw your attention to the case of S. Ramanujan, a clerk in
the Accounts Department of the Madras Port Trust. I have not seen him, but was
yesterday shewn some of his work in the presence of Sir Francis Spring. He is, I am
told, 22 years of age and the character of the work that I saw impressed me as comparable
in originality with that of a mathematical fellow in a Cambridge college....It was per-
fectly clear to me that the University would be justified in enabling S. Ramanujan for

a few years at least to spend the whole of his time on Mathematics, without any anxiety
as to his livelihood....P

As a result of this momentous letter and on the recommendation of the
Board of Studies in Mathematics, the University granted to Ramanujan, with
the previous approval of Government, a special scholarship of Rs75 per
mensem tenable for two years. The Syndicate took a special interest in
getting this scholarship safictioned, as may be seen from the following extract
from.-the letter of the Reglstrar to the Government in this connection :

“The regulations of-the Umverslty do not at present provide for such a special scholar-

.ship. .But the 8yudicate assumes that Section XV of the Act of Incorporation and Section 3

of the Indian Universities-Acty 1804, allow of the grant of such a scholarship, subject to
the exprees oonsant of:the.Governor of Fort St George in Council.”

ly:zelieved from his clerical post in the Madras Port Trust

&

offica-on mhmfmaymwmm hat tmo be boeaio snd romained




xvi Srinivasa Ramanujan

In accordance with the conditions of award of the scholarship, he sub-
mitted to the Board of Studies in Mathematics three quarterly reports on
his researches on the 5th August 1913, 7th November 1913 and 9th March
1914 respectively.

But Mr Hardy was very much disappointed at Ramanujan’s refusal to go
to Cambridge. He had been at frequent intervals writing persuasive letters
pointing out the advantages of a short stay in Cambridge, and when, early
in 1914, the University of Madras invited Mr E. H. Neville, M.A., Fellow
of Trinity College, Cambridge, to deliver a course of lectures at Madras,
Mr Hardy used this opportunity and entrusted to Mr Neville the mission of
persuading Ramanujan to give up his caste prejudices and come to Cambridge.
In the meantime, many Indian friends also had been influencing him and, by
the time Mr Neville approached him, Ramanujan himself had almost made
up his mind ; but his chief difficulty was to obtain his mother’s consent.. This
consent was at last got very easily in an unexpected manner. For one morn-
ing his mother announced that she had had a dream on the previous night,
in which she saw her son seated in a big hall amidst a group of Europeans,
and that the goddess Namagiri had commanded her not to stand in the way
of her son fulfilling his life’s purpose. This was a very agreeable surpnse to
all concerned.

As soon as Bamanujan s consent was obtained, Mr Nevﬂle sent & memo-
randum to the authorities of the University of Madras on 28th January 1914.
The memorandum ran as follows: :

“The discovery of the genius of S. Ramanujan of Madras promises to be the most
interesting event of our time in the mathematical world....The importance of securing

to Ramanujan a training in the refinements of modern methods and a-contact with men

who know what ranges of ideas have been explored and what have not cannot be over-
estimated....

“I see no reason to doubt that Ramanujan himself will respond fully to the stimulus
which contact with western mathematicians of the highest class will afford him.* In that
case his name will become one of the greatest in the history of mathematics and the
University and the City of Madras will be proud to have assisted in his passage:from
obscurity to fame.”

The next day, Mr R. Littlehailes, M.A., who was then Professor of Mathogf
matics in the Presidency College, Madras, and now is the Director of Publia
Instruction, Madras, wrote another long letter to the Registrar-of the Unisers -
sity and made definite proposals regarding the scholarship to be:grantad:;;

The authorities of the University readily seized the opportunity. anﬂmﬂun :
a week decided, with the approval of the Government. of Madras; taygrant:
Ramanujan. & scholarship-of .£250-a-year; tensble in England:for. a-petigdrof
two years, with free passage and aréasonable sum for outfit. Thismhﬁuﬂah;p
was subsequently: exténded up.to st :April 1919. -Having:arranged.
Untw:emy -ahouldafomvthsﬁo w mmnntf.o{ Jns‘ soha :
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1914. He reached Cambridge in April and was admitted into Trinity College,
which supplemented his scholarshlp by the award of an exhibition of £60.

He was now for the first time in his life in a really comfortable position
and. could devote himself to his researches without anxiety. Mr Hardy and
Mr Littlewood helped him in publishing his papers in the English periodicals
and under their guidance he developed rapidly.

On the 11th November 1915, Mr Hardy wrote to the Registrar of the
Madras University :

“ Ramanujan has been much handicapped by the war. Mr Littlewood, who would
naturally have shared his teaching with me, has been away, and one teacher is not enough
for so fertile a pupil......He is beyond question the best Indian mathematician of modern
times...He will always be rather eccentric in his choice of subjects and methods of dealing
with them...... But of his extraordinary gifts there can be no question ; in some ways he is
the most remarkable mathematician I have ever known.”

Mr Hardy’s official report of date 16th June 1916 to the Umversn;y of
Madras was also in terms of very high praise®*. Ramanujan had already pub-
lished about a dozen papers in European journals. Everything went on well
till the spring of 1917.

About May 1917, Mr Hardy wrote that it was suspected that Ramanujan
had contracted an incurable disease. Since sea voyages were then risky on
account of submarines and since the war had depleted India of good medical
men, it was decided thav he should stay in England for some time more.
Hence he went into a nursing home at Cambridge in the early summer, and
he was never out of bed for any length of time again. He was in sanatoria
at Wells, at Matlock and in London, and it was not until the autumn of 1918
that he shewed any decided symptom of improvement.

On the 28th February 1918, he was elected a Fellow of the Royal Society.
He was the first Indian on whom this high honour was conferred, and his
election at the early age of thirty, and on the first occasion that his name was
proposed, is a remarkable tribute to his distinguished genius. Stimulated
perhaps by this election, he resumed active work, in spite of his ill-health,
and some of his most beautiful theorems were discovered about this time. On
the 13th October of the same year, he was elected a Fellow of Trinity College,
Cambridge—a prize fellowship worth about £250 a year for six years, with
no duties or conditions. In announging this election, Mr Hardy wrote to the
Registrar of the Umvemty of Madras, “He will return to India with a
scientific standing and yeputation such as no Indian has enJoyed before, and
I am confident that India will regard him as the treasure he is”, and urged
the authorities of the University to make permanent provision for him in a
way which could leave hith free for research. This time also the Umvers\ty
of Madras rose to the-occasion and, in recognition of Ramanujan’s services to
the seience of l[athemat.lcs, lmgmnted him an allowance of £250 a year for

- ULVWM&M Mathematisal Soady 9 (1917), PP-; 30—-45.
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five years from 1st April 1919, the date of the expiry of his scholarship,
together with the actual expenses incurred by him in returning from England
to-India and on such passages from India to Europe and back as the Syndicate
might approve of during the five years. At the suggestion of Mr Littlehailes
the University of Madras also contemplated creating a University Professor-
ship of Mathematics and offering it to him. '

By this time his health shewed some signs of improvement. Although he
shewed a tubercular tendency, the doctors said that he had never been gravely
affected. Since the climate of England was suspected of retarding his
recovery, it was decided to send him back to India. Accordingly, he left
England on 27th February 1919, landed in Bombay on 27th March and
arrived at Madras on the 2nd Apnl

When he returned he was in a precarious state of health. His fne.nds
grew very anxious. The best medical attendance was arranged for. He
stayed three months in Madras and then spent two months in Kodumudi, a
village on the banks of the Cauvery, not far from the place of his birth. He
was a difficult patient, always inclined to revolt against medical treatment,
and after a time he declined to be treated further. On the 3rd September
he went, to Kumbakonam, and since it was reported by many medical fnénds-
that he was getting worse, he was with great difficulty induced to come to
Madras for treatment in January 1920 and was put under the best available
medical care. Several philanthropic gentlemen assisted him during this
period, notably Mr S. Srinivasa Aiyangar, who found all his expenses, and
Rao Bahadur T. Numberumal Chetty, who gave his house free. The members
of the Syndicate of the University of Madras also made a contribution
towards his expenses in'their individual capacity. But all this was of no
avail. He died on the 26th April 1920, at Chetput, a suburb of Madras. He
had no children but was survived by his parents and his wife.

We must refer to Mr Hardy’s notice for an account of his mathematical
work, but we add a few words about his appearance and personality. Before
his illness he was inclined to stoutness; he was of moderate height (5 feet
5 inches); and had a big head with a large forehead and long wavy dark
hair. His most remarkable feature was his sharp and bright dark eyes. A
fairly faithful representation of him adorns the walls of the Madras Umvemq
Library. On his return from England, he was very thin.and emacm.ted»iqd
had grown very pale. He looked as if racked with pain. But his mtel}eot :g;
Al] his work on “mock theta functions”, of which only. rough m _"' '
survive, was done on his death bed.

Ramanujan had definite religious views. He had a speclal veneral o -
for the Namakkal goddess. Fond of the Puranas, he used:'to ;&tten(f gpulay-

.-4 .o(-

lecturesion the:Great Epics of Ramayana andpﬂahabhmr‘n, tic
disoussions withlearned pundita, .He believed:inthé:exist ;’__
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Being and in the attainment of Godhood by men by proper methods of
service and realisation of oneness with the Deity. He had settled convictions
about the problem of life and after, and even the certain approach of death
did not unsettle his faculties or spirits.

. In manners he was very simple and he had absolutely no conceit. In a
letter of date 26th November 1918, i.e. after Ramanujan had *been honoured
by being elected a Fellow of the Royal Society and a Fellow of Tnmty,
Mr Hardy wrote: “His natural simplicity has never been affected in the
least by his success; indeed all that is wanted is to get him to realise that
he really is a success.” He was much distressed, when he had so little money
for his own expenses, about his inability to help his poor parents; and when
he received his scholarship, his first act was to devote a part of it to them.
Ramanujan’s simplicity and largeness of heart are further revealed in the
following letter that he sent to the Registrar of the University of Madras:

2 CouINeTTE Roap, PurnEY, S.W. 15.
112k Jaruary 1919,
To The Registrar,
University of Madras.

S1n,

I beg to acknowledge the receipt of your letter of 9th December 1918, and gratefully
accept the very generous help which the University offers me.

I feel, however, that, after my return to India, which I expect to happen as soon as
arrangements can be made, the total amount of money to which I shall be entitled will be
much more than I shall require. I should hope that, after my expenses in England have
been paid, £50 a year will be paid to my parents and that the surplus, after my necessary
expenses are met, should be used for some educational purpose, such in particular as the
reduction of school-fees for poor boys and orphans and provision of books in schools. Ne
doubt it will be possible to make an arrangement about this after my return.

- 1 feel very sorry that, as I have not been well, I have not been able to do so much
mathematics during the last two years as before. I hope that I shall soon be able to do
more and will oertamly do my best to deserve the help that has been given me.

I beg to remain, Sir,
Your most obedient servant,
S. RAMANUJAN.



SRINIVASA RAMA'NUJAN (1887—1920)
By G. H. Harpy*
I

SRINTVASA RAMANUJAN, who died at Kumbakodam on April 26th, 1920,

had been a member of the Society since 1917. He was not a man who
talked much about himself, and until recently I knew very little of his early
life. Two notices, by P. V. Seshu Aiyar and R. Ramachandra Rao, two of the
most devoted of Ramanujan’s Indian friends, have been published recently in
the Journal of the Indian Mathematical Society; and Sir Francis Spring has
very kindly placed at my disposal an article which appeared in the Madras
T'vmes of April 5th,1919. From these sources of information I can now supply
a good many details with which I was previously unacquainted. Ramanujan
(Srinivasa Iyengar Ramanuja Iyengar, to give him for once his proper name)
was born on- December 22nd, 1887, at Erode in southern India. His father
was an accountant (gumasta) to a cloth merchant at Kumbakonam, while his
maternal grandfather had served as amin in the Munsyf’s (or local judge’s)
Court at Erode. He first went to school at five, and was transferred before he
was seven to the Town High School at Kumbakonam, where he held a “free
scholarship ”, and where his extraordinary powers appear to have been recog-
nised immediately. “He used ”, so writes an old schoolfellow to Mr Seshu
Aiyar, “to borrow Carr’s Sympsis of Pure Mathematics from the College
library, and delight in verifying some of the formula given there....He used to
entertain his friends with his theorems and formul#, even in those early days....
He had an extraordinary memory and could easily repeat the complete lists
of Sanscrit roots (atmanepada and parasmepada); he could give the values
of /2, m ¢, ... to any number of decimal places....In manners, he was
simplicity itself...
. He passed hls matriculation examination to the Government College at
Kumbakonsam 1,61 1904 ; and secured the “Junior Subrahmanyam Scholar-
ship”. Owing to weakness in English, he failed in his next examination and
lost his scholarship; and left Kumbakonam, first for Vizagapatam and then
for Madras. Here he presented himself for the “First Examination in Arts’
in December 1906, but failed and never tried again. For the next few years
he continued his indépendent work in mathematics, “jotting down his
results in two good-sized notebooks”: I have one of these notebooks in my
possession still. In 1909 he married, and it became necessary for him to find
some permanent.employment. I quote Mr Seshu Aiyar:

T'o this end, he:went to{irukoilur, a small sub-division town in South Arcot District,
to see Mr V. Ramaswami Aiyar, the founder of the Indian Mathematical Society, but

* Obituary notice in the Procsedings of the London Mathematical Society(2), x1x (1921),
Pp. xl—lviii. The.same notioe was printed, with slight changes, in the Proceequ: of the
Royal Socisly zljfxm {Iﬁl},  pp.-xiii—xxix,
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Mr Aiyar, seeing his wonderful gifts, persuaded him to go to Madras. It was then after
some four years’ interval that Ramanujan met me at Madras, with his two good-sized
notebooks referred to above. I sent Ramanujan with a note of recommendation to that
true lover of Mathematics, Diwan Bahadur R. Ramachandra Rao, who was then District _
Collector at Nellore, a small town some eighty miles north of Madras. Mr Rao sent him
back to me, saying it was cruel to make an intellectual giant like Ramanujan rot at a
mofussil station like Nellore, and recommended his stay at Madras, generously under-
taking to pay Ramanujan’s expenses for a time. This was in December 1910. After
a while, other attempts to obtain for him a scholarship having failed, and Ramanujan
himself being unwilling to be a burden on anybody for any length of time, he decided to
take up a small appointment under the Madras Port Trust in 1912.

But he never slackened his work at Mathematics. His earliest contribution to the
Journal of the Indian Mathematical Society was in the form of questions communicated by
me in Vol. 1 (1911). His first long article on “Some Properties of* Bernoulli’s Numbers”
was published in the December number of the same volume. Ramanujan’s methods
were 80 terse and novel and his presentation was so lacking in clearness and precision,
that the ordinary reader, unaccustomed to such intellectual gymnastics, could hardly
follow him. This particular article was returned more than once by the Editor before it
took a form suitable for publication. It was during this period that he came to me one
day with some theorems on Prime Numbers, and when I referred him to Hardy’s Tract
on Orders of Infinity, he observed that Hardy had said on p. 36 of his Tract *the exact
order of p() {defired by the equation

p(e)=r (o)~ f s

where («) denotes the number of primes less than z], has not yet been determined ”, and
that he himself had discovered a result which gave the order of p (z). On this I suggested
that he might communicate his result to Mr Hardy, together with some more of his

results.

This passage brings me to the beginning of my own acquaintance with
Ramanujan. ‘But before I say anything about the letters which I received
from him, and which resulted ultimately in his journey to England, I must add
& little more about his Indian career. Dr G. T. Walker, F.R.S., Head of the
Meteorological Department, and formerly Fellow and Mathematical Lecturer
of Trinity College, Cambridge, visited Madras for some official purpose some
time in 1912; and Sir Francis Spring, K.C.I.LE,, the Chairman of the Madras
Port Authority, called his attention to Ramanujan’s work. Dr Walker wag
far too good a mathematician not to recognise its quality, little as it had in
common with his own. He brought Ramanujan’s case to the notice of the
Government and the University of Madras A research studentship, “Rs. 75
per mensem for a period of two years”, was awarded him; and he beeame,
and remained for the rest of his life, a professional mathematician. R

I

Ramanujan wrote to me first on January 16th, 1913, and at fairly regn'hr?}
intervals until he sailed for England in 1914. I do not believe that his letters

were entirely his own. His knowledge of English, at that stage of his life, *

scould scarcely have been sufficient, and there is an occasional phrase which'ig -

-Qm.rdly characteristic. Indeed I seem to remember his telling me that. - i
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friends had given him some assistance. However, it was the mathematics
that mattered, and that was very emphatically his.

MapRas, 16tk January 1913.

DEAR SIR,

I beg to introduce myself to you as a clerk in the Accounts Department of the
Port Trust Office at Madras on a salary of only £20 per annum. I am now about 23
years of age. I have had no University education but I have undergone the ordinary
school course. After leaving school I have been employing the spare time at my disposal
to work at Mathématics. I have not trodden through the conventional regular course
which is followed in a University course, but I am striking out a new path for myself.
I have made a special investigation of divergent series in general and the results I get are
termed by the local mathematicians as “startling”.

Just as in elementary mathematics you give a meaning to a® when » is negative and
fractional to conform to the law which holds when = is a positive integer, similarly the
whole of my investigations proceed on giving a meaning to Eulerian Second Integral for
all values of n. My friends who have gone through the regular course of University educa-

tion tell me that / z™1e = dzx=T (n) is true only when = is positive. They say that this

integral relation is not true when 7 is negative. Supposing this is true only for positive
values of » and also supposing the definition »T' (z)=T (n+1) to be universally true, I
have given meanings to these integrals and under the conditions I state the integral is
true for all values of n negative and fractional. My whole investigations are based upon
this and I have been developing this to & remarkable extent so much so that the local
mathematicians are not able to understand me in my higher flights.
Very recently I came across a tract published by you styled Orders of Infinity in page
36 of which I find a statement that no definite expression has been as yet found for the
number of prime numbers less than any given number. I have found an expression which
very nearly approximates to the real result, the error being negligible. I would request
you to go through the enclosed papers. Being poor, if you are convinced that there is
anything of value I would like to have my theorems published. I have not given the
actual investigations nor the expressions that I get but I have indicated the lines on
which I proceed. Being inexperienced I would very highly value any advice you give me.
“Requesting to be excused for the trouble I give you.
I remain, Dear Sir, Yours truly,
! S. RAMANUJAN.

P.S. My address is 8. Ramanujan, Clerk Aecounts Department, Port Trust, Madras,
India.

I quote now from the “ papers enclosed ”, and from later letters®:
In page 36 it is stated that “the number of prime numbers less than

-

2T e grte@
where the precise order of p () has not been determined...

I have observed ‘that p (¢*) is of such a nature that its value is very small when z
lies betweenr:0-and ‘8 (its value is less than a few hundreds when z=3) and rapidly
increases when 2 is greater than 3....

The difference. between the number of prime numbers of the form 4n—1 and which
are lesstha.nwa.ndthoeeoftheformm+1 less thanxmmﬁnxtewhansmes
lnﬁnltenu o

' Il(*ﬂn*prte of =rtha'.le_§td's-not printed:here.]
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The following are a few examples from my theorems : '

(1) The numbers of the form 237 less than ns}L.gg%%:g—g”ﬁ where p and ¢ may
have any positive integral value including 0. B o8 '
(2) Let us take all numbers containing an odd number of dissimilar prime divisors, viz.
2, 3, 5,7, 11, 13, 17, 19, 23, 29, 30, 31, 37, 41, 42, 43, 47, ....
(a) The number of such numbers less than n —35 .
®) §i+§i+§+-’ﬁ+"' ﬁ-%g+:;—:l].§+... =2£",.
@ g+ ot gt oo =gs-
(8) Let us take the number of divisors of natural numbers, viz.
1,2,28,24,2,43,4,2,... (1 having 1 divisor, 2 having 2, 3 having 2, 4 having
3, 5 having 2, ...).
The sum of such numbers to » terms
w=n(2y—1+log n)+4 of the number of divisors of n
-where y="5772156649..., the Eulerian Constant.
{49) 1,2, 4,5,8, 9,10, 13, 16, 17, 18, ... are numbers which are either themselves squares
or which can be expressed as the sum of two squares.
‘The number of such numbers greater than 4 and less than B
=K [ %_16(zy* where K=-164... T
logz

and @ () is very small when compared with the previous integral. X and 8 (z) have been
exactly found though complicated....

Ramanujan’s theory of primes was vitiated by his ignorance of the theory
of functions of a complex variable. It was (so to say) what the theory might
be if the Zeta-function had no complex zeros. His methods of proof depended
upon a wholesale use of divergent series. He disregarded entirely all the
difficulties which are involved in the interchange of double limit operations;
he did not distinguish, for example, between the sum of a series Za,, and the
value of the Abelian limit

lim Za,2",

-1

or that of a.ny other limit which might be used for similar purposes by a modern
- analyst. There are regions of mathematics in which the precepts of modern

rigour may be disregarded with comparative safety, butsthe Analytic Theory
"of Numbers is not one of them, and Ramanujan’s Indian work on primes,and

on all the allied problems of the theory, was definitely wrong. That his proofs

should -have been invalid was only to be expected. But the. mmtakawapt;
. deeperfbhan that, and many of the actual results were false. He had obtained
the ‘dominant terms of the classical formuls, although by-invalid: meﬁods
‘but riéne-of them is such a élose approximation as he supposed.
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This may be said to have been Ramanujan’s one great failure. And yet
I am not sure that, in some ways, his failure was not more wonderful than
any of his trinmphs. Consider, for example, problem (4). The dominant term,
viz. KB (log B)~%, in Ramanujan’s notation, was first obtained by Landau in
1908. Ramanujan had none of Landau’s weapons at his command; he had
never seen a French or German book; his knowledge even of English was in-
sufficient to enable him to qualify for a degree. It is sufficiently marvellous
that he should bave even dreamt of problems such as these, problems which
it has taken the finest mathematicians in Europe a hundred years to solve,
and of which the solution is incomplete to the present day.

...IV. Theorems on integrals. The following are a few examples :

(1) [:1+(3:—1>2 1+ (b+2> s dp= _JrT(a+} T+ T(b-a+d)

1+(§)’ : 1+(a:.1) 2 Ir(a) TG+HTb-a+l)
(3) If W‘h‘“ﬁ(’n),
sin nr " PRL
then ﬂmdzad; (n)—%+¢(;) \/—n—s.

¢ (n) is & complicated function. The following are certain special values :
1 1 2—-./2 1
4’(0)':'1—2'; ¢(§)"‘G; ¢(1r)= J H ¢(21r)-i—6-;

()5 40, e

2 1
#(5) =3 (%)
o [ dz ™
( 0(l+z")(1+r3.z’)(1+r‘x2) = AFr AT AT
where 1, 3, 6, 10.. Afe sums of natural numbers.
) j"” sin 2nz dz=%_2<e"cq‘sn_e""oos3nm>

z(cosh 7wz 4 co8 ) cosh 7_; 3 cosh :%r

V. Theorems on summation of series*; e.g.
1 1.1 1 1 1.1 1 . 1
(1) R §+§3 . '2—’4-3-,". §§+4—3 . 2—4+...=}(log2)‘——1032+(-1-§+

(@) 1+9. G0 +17. (1—':-:)’4.25. (41.455_.%)‘ +. 2{;/? -

* There is always miore in-one of Ramanujan’s formule than meets the eye, as anyone
who sets to work to vanfy those which look the easiest will soon discover. In some the
i Adeep, in-pthe "!compamtwolyumrthesurhoe buttheremnotone

1 1
+§,+ ...) .
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3) 1-5 (3y+9 (; i) "y

118 o1 31 1
4) &= Tt gtm it ~m
® cothn coth2x coth3x _19s7
) 17 o1 37 * 58700 °
® 1 _ 1 + 1 s

3“ _...='7_6_8'a

5 T g on 5
lootsh2 :<)cosh2 l$“(:osh2

VL. Theorems on transformation of series and integrals, e.g.

11 1 1 1 1 1
O » (5= gravs* grros ~ ot ) TV EA

@ 1-

#31 A6l _ a9l
T2 @14 (Bl6Ip

={1+(—1’—‘;7+(—2’f:?+ }{1 amt (2’:}, }

+ .

------

(6) If aB=x?, then

PN T e FE N P

o'in’ e-‘}n’ — —
(7 » (‘—"“3% + 55 ...)st (e=*4*sin n \/m — e~ gina/3r +...).
(8) If = is any positive integer excluding 0,
14» n n Bh 14n-1 in—-1
—ep T @ —wpt =3 {e_n taeatagt }
where Byg=}, By=4y, ....

VII. Theorems on approximate integration and summation of series.

x .v’ x’ z*, &

1 . 8 2
where 0= 135( TECTY) where k lies between 5 and 31

@ 1+(55)'+ () + () +--in - w5

where § vanishes when z=0o.

T 2 /1 s | o

WentEagtegtaEt- z"(l' gzt - )"1‘2‘&"1_“«0"'1’51«0
o .

+_—-—7257000+W16 + ... when z is small.

(Note: .vmay be given, values fromotoi.)
1 3 4

__————_

2 T L A e
® foo1 1003 + 1003+ 1008 1005# =mm 10-40x 10125 neurly
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g Yr e 1 2 3 4
(6>[ dz= 2 2 4+a+2a+at+2a+.."
1

- . .
(7) The coefficient of 2 in S Py Y Py —

=the nearest integer to 1 {oosh (mJn)—

sinh (#~N'n)|
4an

wNn

IX. Theorems on continued fractions, a few examples are :

r4+1\)2
e T P__“)
z4+224+ %+ 2%%+2 +... r(z+3
. 4
x zb 20 g8 g
@ I COYTTA T T4 T 4T 4
and 17-—‘—/'1—5 S i
T +14T4+T1+..
l—2u+4u”-3u’+u‘
th =u. .
en v=u 14 3u+4u® 4+ 2ud+ut
1 e g—in \/5+\/5 J5+1 - .
(5)1+1+1+1+..( >Jez

1 e™® g~ ¢-3° B—5 W6—1\ 5—
O *‘—)"
e=TNR  g=imin  g-3win
(7)1+ 1 + 1 4+ 1 +..
quantity....

can be exactly found if # be any positive rational

27 February 1913.

...I have found a friend in you who views my labours sympathetically. This is
already some encouragement to me to proceed....I find in many a place in your letter
rigorous proofs are required and you ask me to communicate the methods of proof....
7T told himt that the sum of an infinite number of terms of the series 14+2+3+4+4+4...= — ¢
under my theory. If I tell you this you will at once point out to me the lunatic asylum
as my goal...What I tell you is this. Verify the results I give and if they agree with
your results...you should at least grant that there may be some truths in my fundamental
basis...

To preserve my brains I want food and t\ns is now my first consideration. Any
sympathetic letter from you will be helpful to me here to get a scholarship either from the
University or from Government...

1. The number of prime numbers less than e*= f . z—&:(:—zg&—_’_l) ,

A

1
where S¢+;=irﬂ+-2-rﬂ+....

2. The number of prime numbers less than n
1ok » 4 [logn\®,K6 6 logn)‘
B () v (B +sm (5 +-
where By=}, By=1yly, ..., the Bernoullian numbers...

* This is quite untrue, -Butithe formula is sxtremelyanﬁomhng for a nnety of reasons.
+ Referring tos" puvxousmrrespondeme. : s
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The order of 8 () which you asked in your letter is J (To%) .

1 x a® 2% a2t At
ORY FO)=] 14T+ T+T 41+
28

then {J52+l e—TF(e's'}{ +e B F (-2’)}=5~———+2J5
with the conditions a8=n3...,

L1 gmts  —dmdD o s
&8 I+ 1 + 1 +..."'°'"i J5 1 2

) -1

The above theorem is a particular case of a theorem on the continued fraction
1 ax as? ar® art asb
T+ T+ 1T+ 1 +1+ 1 +.0
which is a particular case of the continued fraction
1 az ax? az®
1+1+br+ 14023 414028 +...0

which is a particular case of & general-theorem on continued fractions.

. ® pg—z Wb 1 1% 12 92 9 33 3
@04 T T T+T+T+T 4T+ 14

(i) 4 TgleEs, 1 1P 182 2 33
o coshz = 1+14+3+14+541+7+...°

1\6 1.3\5 1.3.5 2
(@) 1—6.(—2- +9. m) -18. 2‘.‘4.6) tesror

_x 42 B3 294218
® If "I+71 4+ 1 + 1 +..

1 l4+z4+284284204...

)= (1 + )" P rae e
" 1\ _ [ l+z+234+284204... \*
(“)-"’(1'*';;3)— 1+.e=+x°+x“+a-’°+...) :

9

i
@iy

(7) If n is any odd integer,
1 1. 1
T 3 b |3
cosh 7 +oos 3 (oosh 2—’-‘) 5 (;osh %+c?s§£)
a(a+1) B8(8+1) y(y+1)
(10) ¥ F(a, B, 7 8, e)-l+] + I T ST VR
tha  FlaBnd ¢>=§_gl._~fj)";(;—:gl).p(a, B =y a+B-3+1,9

TA)T ()T (a+B8-T (B +e—a=B~y)
T@T BT (c—7)T B+e-a=P) ,
xFA~aj 8B, d+e—a=f-y,d=u=Bl d¥e—a=B)
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az 2 & (@4 @y
14+n4+3+n+54+n4+T74+n+...
- 1 ‘(il.;.‘a—-) dz
2,,]0,4 WQA+a)+1}+22{J(1+a¥ -1}

(A1+B%+k (B+BP+E (B+BP+E
22 + 2¢ + 2a +...]

(19) I F(o,B)m=at

then F(a, B)=F (B, a)
as) If F(a, B)—n+f+(2:)2+(3f)g+
then F(a,B)+F (B, a)= 2F {} (a+B), J(aB)}.

an It Fi)= 1+( )k+ )k’+ .. and F(1-k)=4J(210) F (B),
then
E=(J2— 142 - 3 (V7= /B (B =3 /T (V10 - 3) (4 V15) (Y 15—/ 14)2 (6= J35)%.

[ dé i do
(20) 1t Fa=[, srgmg/ | s -
and F(a)=3F (8)=bF(y)=15F(3),

then @) [t +{1-a) 1 -] (B +{1-8) 1 -y}]=1.

(v) (@Bt +{(1-a) (1-B) (1—y) 1=} :
+{16aByd(1-a)(1-) (1-7) 1 -3} =1.

@1 If F(a)=3F(B8)=13F (y)=39F (3)
or F(a)=bF(8)=11F (y)=55F (3)
or F(a_)=7F(ﬂ)= 9F (y)=63F (3),
then {1-a) (1 - ~ @} 14{(1-a) -2 +@d)}
. {1-B)1-p-( 1+{1-8) A -+ By

(23) (1 +e—mlma) (1 +e—3:r.lma) (1 +e-u./xsf>3)

= Y2edow 13 \/{ \/(W) \/ 561+99J33)}
/B S )

X Y(10+3711) x (26 +15.,/3) x \/ (6‘”7+221*’4"’-1) )

Q

17 April 1913.

~.J'am a little puuned 10 see what you ‘have written®...]I am not in the least
apprehenswe of my; 'method being utilized by others. On the contrary my method has
been in’my possession forthe last eight years and I have not found anyone to appreciate
the method. As I wrote mt my last letter 1 have found a sympathetic friend in you and

. Etmhnu:uizﬂugbt mmnably -have been reluctant to give away hissecrets to &n
n gyl 3 had Aried 40 reassure him on this point as-well-as I-could.
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I am willing to place unreservedly in your hands what little I have. It was on account of
the novelty of the method I have used that I am a little diffident even now to communicate
my own way of arriving at the expressions I have already given....

.l am glad to inform you that the local University has been pleased to grant me a
scholarship of £60 per annum for two years and this was at the instance of Dr Walker,
F.R.S., Head of the Meteorological Department in India, to whom my thanks are due....

I request you to convey my thanks also to Mr Littlewood, Dr Barnes, Mr Berry and others
who take an interest in me....

III

It is unnecessary to repeat the story of how Ramanujan was brought to
England. There were serious difficulties ; and the credit for overcoming them
is due primarily to Prof. E. H. Neville, in-whose company Ramanujan
arrived in April 1914. He had a scholarship from Madras of £250, of which
£50 was allotted to the support of his family in India, and an exhibition of
£60 from Trinity. For a man of his almost ludicrously simple tastes, this was
an ample income ; and he was able to save a good deal of money which was
badly wanted later. He had no duties and could do as he pleased ; he wished
indeed to qualify for a Cambridge degree as a research student, but this was
a formality. He was now, for the first time in his life,in a really comfortable
* position, and could devote himself to his researches without anxiety.

There was one great puzzle. What was to be done in the way of teaching
him modern mathematics ? The limitations of his knowledge were as startling
as its profundity. Here was a man who could work out modular equations,
and theorems of complex multiplication, to orders unheard of, whose mastery
of continued fractions was, on the formal side at any rate, beyond that of any
mathematician in the world, who had found for himself the functional equa-
tion of the Zeta-function, and the dominant terms of many of the most
famous problems in the analytic theory of numbers; and he had never heard
of a doubly periodic function or of Cauchy’s theorem, and had indeed but the
vaguest idea of what a function of a complex variable was. His ideas as to
what constituted a mathematical proof were of the most shadowy description.
All his results, new or old, right or wrong, had been arrived at by a process
of mingled argument, intuition, and induction, of which he was entirely
unable to give any coherent account.

It was impossible to ask such a man to submit to systematic instruction,
to try to learn mathematics from the beginning once more. I was afraid too
that, if I insisted unduly on matters which Ramanujan found irksome, I might
destroy his confidence or break the spell of his inspiration. On the other
hand there were things of which it was impossible that he should remain in
ignorance. Some of his results were wrong, and in particular those which
concerned the distribution of primes, to which he attached the greatest im-
portance. It was impossible to allow him to go through life supposing that
all the zeros of the Zeta-function were real. So 1 bad to try to teach him,
and in a measure I succeeded, though obviously I learnt from him much-mere
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than he learnt from me. In a few years' time he had a very tolerable know-
ledge of the theory of functions and the analytic theory of numbers. He was
never a mathematician of the modern school, and it was hardly desirable tha
he should become one ; but he knew when he had proved a theorem and when
he had not. And his flow of original ideas shewed no symptom of abatement.

I should add a word here about Ramanujan’s interests outside mathe-
matics. Like his mathematics, they shewed the strangest contrasts. He had
very little interest, I should say, in literature as such, or in art, though he
could tell good literature from bad. On the other hand, he was a keen philo-
sopher, of what appeared, to followers of the modern Cambridge school, a
rather nebulous kind, and an ardent politician, of a pacifist and ultra-radical
type. He adhered, with a severity most unusual in Indians resident in
England, to the religious observances of his caste; but his religion was a
matter of observance and not of intellectual conviction, and I remember well
his telling me (much to my surprise) that all religions seemed to him more
or less equally true. Alike in literature, philosophy, and mathematics, he had
a passion for what was unexpected, strange, and odd ; he had quite a small
library of books by circle-squarers and other cranks.

It was in the spring of 1917 that Ramanujan first appeared to be unwell.
He went into a Nursing Home at Cambridge in the early summer, and was
never out of bed for any.length of time again. He was in sanatoria at Wells,
at Matlock, and jn London, and it was not until the autumn of 1918 that he
shewed any decided symptom of improvement. He had then resumed active
work, stimulated perhaps by his election to the Royal Society, and some of
his most beautiful theorems were discovered about this time. His election to
a Trinity Fellowship was a further encouragement ; and each of those famous
societies may well congratulate themselves that they recognised his claims
‘before it was too late. Early in 1919 he had recovered, it seemed, sufficiently
for the voyage home to India, and the best medical opinion held out hopes of
a permanent restoration. I was rather alarmed by not hearing from him for
a considerable time ; but a letter reached me in February 1920, from which
it appeared that he was still active in research.

UNIVERSITY OF MADRAS.
12th January 1920.

I am extremely sorry for not writing you a single letter up to now....I discovered
very interesting functions recently which I call “ Mock” 9-functions. Unlike the “False”
9-functions (studied partially by Prof. Rogers in his interesting paper) they enter into
mathematics as beautifully as the ordma,ry 9-functions. I am sending you with this letter
some examples....

Mock 3-functions L} ”
9 I A
@t et

-9 ¢ . g
Y= ptapace tasou-ma- "
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Mock 3-functions (of bth order)

14l g
7@ gt 700+ A+ 0+ 0+ T

Mock 9-functions (of Tth order)

.....
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He said little about his health, and what he said was not particularly
discouraging ; and I was quite unprepared for the news of his death.

1v

Ramanujan published the following papers in Europe :

®
@
(4)
(6)
d
®
®
(10)
(1m)
*(12)
*(13)
*(14)
*(15)
*(16)
an
(18)

(19)
{20)

@

“Some definite integrals ”, Messenger of Mathematics, Vol. 44 (1914), pp. 10—18.

%Some definite integrals connected with Gauss’s sums”, ibid., pp. 75—85.

“ Modular equations and approximations to = *, Quarterly Journal of Mathematiu,
Vol. 46 (1914), pp. 350—372.

“New expresasions for Riemann’s functions £ (s) and X (¢)”, tbid., Vol. 46 (1916),
PP. 263—260.

“On certain infinite series ”, Messenger of Mathematics, Vol. 456 (1916), pp. 11—15.

“Summation of & certain series *, tbid., pp. 157—160.

“Highly composite numbers”, Proc London Math. Soc., Ser. 2, Vol. 14 (1915),
pp. 347—409.

“8ome formul® in the analytic theory of numbers?”, Messenger of J{aﬂwmm,
Vol. 45 (1916), pp. 81—84.

“On certain arithmetical functions”, Trars. Cambridge Phil. Soc. , Vol. 22 (1918),
No. 9, pp. 159—184,

“A series for Euler's constant y”, Messenger of Mathematics, Vol. 46 (1917),
pp. 73—80.

“ On the expression of a number in the form aa?+ by?+ c:3+4 d3”, Proc. Cambridge
Phl. Soc., Vol. 19 (1917), pp. 11—21.

“Une formule asymptotique pour le nombre des partitions de »”, Comptes Rendus,
2 Jan. 1917.

“ Asymptotic formul® for the distribution of integers of various types”, Proc.
London Math. Soc., Ser. 2, Vol. 16 (1917), pp. 112—132.

“The normal number of prime factors of a number n”, Quarterly Journal of
Mathematics, Vol. 48 (1917), pp. 76—92.

“ Asymptotic formul® in Combinatory Analysis”, Proc. London Matk. Soc., Ser. 2,
Vol. 17 (1918), pp. 75—115.

“On the coefficients in the expansions of certain modular functions”, Proc. Roy
Soc. (A), Vol. 95 (1918), pp. 144—155.

“On certain trigonometrical sums and their applications in the theory -of
numbers ”, Trans. Cambridge Phil. Soc., Vol. 22, No. 13 (1918), pp. 260—278,,

“Some properhes of p (n), the number of partitions of # ", Proc. Cambridgs. Plﬂ
Soc., Vol. 19 (1919), pp. 207—210.

“ Proof of certain identities in Combinatory Analysis”, zbui .» pp. $14—216.

“A class of definite integrals”, Quarterly Journal of Mathematics, Vol. 48 (1920);
pp. 294—310.

“ Congruence properties of partitions”, Mathk. Zamhuﬁ V-oL 9 (1921),
147—153.
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Of these, those marked with an asterisk were written in collaboration with
me, and (21) is a posthumous extract from a much larger unpublished manu-
script in my possession.* He also published a number of short notes in the
Records of Proceedings at our meetings, and in the Journal of the Indian
Mathematical Society. The complete list of these is as follows:

Records of Proceedings at Meetings.
#(22) ¢ Proof that almost all numbers » are composed of about log logz prime factors ”,
14 Dec. 19186.
*(23) “ Asymptotic formuls in Combinatory Analysis”, 1 March 1917,
(24) “Some definite integrals”, 17 Jan. 1918.
(25) *Congruence properties of partitions”, 13 March 1919.
(26) “ Algebraic relations between certain infinite products ”, 13 March 1919.

Journal of the Indian Mathematical Soctety.
(A) Articles and Notes.

(27) ‘“Some properties of Bernoulli's numbers”; Vol. 3 (1911), pp. 219—234.
(28) “On Q. 330 of Prof. Sanjana”, Vol. 4 (1912), pp. 59—61.
(29) “A set of equations”, Vol. 4 (1912), pp. 94—96.
(30) “Irregular numbers”, Vol. 5 (1913), pp. 105—106.
(31) “Squaring the circle”, Vol. 5 (1913), p. 132.
-1
(32) “On the integral f “ 07 v, Vol. 7 (1915), pp. 93—96.
°
(33) “On the divisors of a number”, Vol. 7 (1915), pp. 131—133.
(34) “The sum of the square roots of the first » natural numbers”, Vol. 7 (1915),
pp. 173—176.

2
(35) “On the product O [1 +(J—:—1t¢l—)"  Vol. 7 (1915), pp. 209—211.

(36) “Some definite integrals”, Vol. 11 (1919), pp. 81—87.
(37) “A pruof of Bertrand’s postulate”, Vol. 11 (1919), pp. 181—182.
(38) (Communicated by S. Narayana Aiyar), Vol. 3 (1911), p. 60.

N

o (B) Questions proposed and solved.
Nos. 260, 261, 283, 284, 289, 294, 205, 308, 353, 358, 359, 386, 427, 441, 464, 489, 507,

524, 525, 541, 546, 571, 605, 606, 629, 642, 668, 682, 700, 723, 724, 739, 740, 753, 768, 769,
783, 785, 1070.

(C) Questions proposed but not solved.

Nos. 827, 352, 387, 441, 463, 469, 526, 584, 661, 662, 681, 699, 722, 738, 754, 755, 770,
784, 1049, and 1076.

Finally, I may mention the following writings by other authors, con-
cerned with Ramanujan’s work.+

“Proof of a formula of Mr Ramanujan”, by G. H. Hardy (Messenger of Mathematics,
Vol. 44, 1915, pp. 18—21).

* All of Ramanujan’s mm{xscripts passed through my hands, and I edited them very
carefully for publication. The earlier ones I rewrote completely. I had no share of any
kind in the results, except of course when I was actually a collaborator, or when explicit
acknowledgment is made. Ramanujan was almost absurdly scrupulous in his desire to
acknowledge the slightest help. A

" + [Further referenvee Will be found in Appendix I.] ' .
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“Mr S. Ramanujan’s mathematical work in England ”, by G. H. Hardy (Report to the
University of Madras, 1916, privately printed).

“On Mr Ramanujan’s empirical expansions of modular functions”, by L. J. Mordell
(Proc. Cambridge Phil. Sac., Vol. 19, 1917, pp. 117—124).

“Life sketch of Ramanujan” (editorial in the Journal of the Indian Math. Soc.,
Vol. 11, 1919, p. 122). i

“ Note on the parity of the number which enumerates the partitions of & number”, by
P. A. MacMahon (Proc. Cambridge Phil. Soc., Vol. 20, 1921, pp. 281—283).

“Proof of certain identities and congruences enunciated by S. Ramanujan”, by
H. B. C. Darling (Proc. London Math. Soc., Ser. 2, Vol. 19, 1921, pp. 350—372).

“On a type of modular relation ”, by L. J. Rogers (tbid., pp. 387—397).

It is plainly impossible for me, within the limits of a notice such as this,
to attempt a reasoned estimate of Ramanunjan’s work. Some of it is very
intimately connected with my own, and my verdict could not be impartial ;
there is much too that I am hardly competent to judge; and there is a mass
of unpublished material, in part new and in part anticipated, in part proved
and in part only conjectured, that still awaits analysis. But it may be useful
if I state, shortly and dogmatically, what seems to me Ramanujan’s finest,
most independent, and most characteristic work.

His most remarkable papers appear to me to be (3), (7), (9), (17), (18),
(19), and (21). The first of these is mainly Indian work, done before he came
to England ; and much of it had been anticipated. But there is much that is
new, and in particular a very' striking series of algebraic approximations
to . I may mention only the formulae

_ 6317 +1545 1 1103
T T+ 1645 ° 2my2  99% ’

correct to 9 and 8 places of decimals respectively.
The long memoir (7) represents work, perhaps, in a backwater of mathe-
matics, and is somewhat overloaded with detail; but the elementary
analysis of “highly composite” numbers—numbers which have more divisors
than any preceding number—is most remarkable, and shews very clearly
Ramanujan’s extraordinary mastery over the algebra of inequalities. Papers
(9) and (17) should be read together, and in connection with Mr Mordell's
paper mentioned above; for Mr Mordell afterwards proved a great deal that
Ramanujan conjectured. They centain, in particular, very original *aqdwmh
portant contributions to the theory of the represent.atxon of numbers’ 'by’ o
of squares. But I am inclined to think that it was in the theory of pai o1,
and the allied parts of the theories of elliptic functions and continued frattighn;
that Ramanuja.n shews at his very best. It is in papers (18), (19);and 21},
and in the papers of Prof. Rogers and Mr Darling that T have: uotéd}m
this side of his work (so far as it has been published) is to be found. *TsWail"
‘be. dzﬂ'icult to. ﬁnd more beautlful formules than the “ Rogers-
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Prof. Rogers; and, if I had to select one formula from all Ramanujan’s‘wo?k,
I would agree with Major MacMahon in selecting a formula from (18), viz.

(1 =) (1 — 29) (1 — 2%)...J°
-2y d-a)I—-a)..] °

where p () is the number of partitions of n.

I bave often been asked whether Ramanujan had any special secret;
whether his methods differed in kind from those of other mathematicians;
whether there was anything really abnormal in his mode of thought. I cannot
answer these questions with any confidence or conviction; but I do not
believe it. My belief is that all mathematicians think,at bottom, in the same
kind of way, and that Ramanujan was no exception. He had, of course, an
extraordinary memory. He could remember the idiosyncrasies of numbers in
an almost uncanny way. It was Mr Littlewood (I'believe) who remarked that
“every positive integer was one of his personal friends.” I remember once
going to see him when he was lying ill at Putney. I had ridden in taxi-cab
No. 1729, and remarked that the number (7.13.19) seemed to me rather a
dull oue, and that I hoped it was not an unfavourable omen. “No,” he replied,
“it is a very interesting number; it is the smallest number expressible as a
sum of two cubes in two different ways.” I asked him, naturally, whether he
knew the answer to the corresponding problem for fourth powers; and he
replied, after a moment’s thought, that he could see no obvious example,
and thought that the first such number must be very large.* His memory,
and his powers of calculation, were very unusual, but they could not reason-
ably be called “abnormal”. If he had to multiply two large numbers, he
multiplied them in the ordinary way; he would do it with unusual rapidity
and accuracy, but not more rapidly or more accurately than any mathematician

_who is naturally quick and has the habit of computation. There is a table of
partitions at the end of our paper (15). This was, for the most part, calculated
independently by Ramanujan and Major MacMahon ; and Major MacMahon
was, in general, sfightly the quicker and more accurate of the two.

It was his insight into algebraical formule, transformations of infinite
series, and so forth, that was most amazing. On this side most certainly I have
never met his equal, and I can compare him only with Euler or Jacobi. He
worked, far more than the majority of modern mathematicians, by induction
from numerical examples; all of his congruence properties of partitions, for
example, were discovered in this way. But with his memory, his patience,
and his power of calculation, he combined a power of generalisation, a feeling
for form, and ‘4 capacity for rapid modification of his hypotheses, that were
often really startling, and made him, in his own peculiar field, without a rival
inhisday, .-

. Enlenga.va}m}—)-ﬂﬁ*ﬁﬁuﬂm as an example. For other solutions see L. E.

‘Dickeaty, ZHtory Gf 44 ey of Frembors, Vol 3, pp 4641,

pA)+p9)z+p(14)2*+...=5
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It is often said that it is much more difficult now for a mathematician to
be original than it was in the great days when the foundations of modern
analysis were laid; and no doubt in a measure it-is true. Opinions may
differ as to the importance of Ramanujan’s work, the kind of standard by
which it should be judged, and the influence which it is likely to have on the
mathematics of the future. It has not the simplicity and the inevitableness
of the very greatest work; it would be greater if it were less strange. One
gift it has which no one can deny, profound and invincible originality. He
would probably have been a greater mathematician if he had been caught
and tamed a little in his youth; he would have discovered more that was
new, and that, no doubt, of greater importance. On the other hand he would
have been less of a Ramanujan, and more of a European professor, and the
loss might have been greater than the gain.
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SOME PROPERTIES OF BERNOULLI'S NUMBERS

(Journal of the Indian Mathematical Soctety, 1, 1911, 219-—234)

1. Let the well-known expausion of zcot« (vide Edwards’ Differential
Calculus §149) be written in the form

zweobzx=1— 2'(2 ) — 4.|(2 )t — (2 ) = ey v, (1)

from whlch we infer that B, may be supposed to be -1

2 o
Now ww=99=1"m+m'm
sin x P ¥ I

“nitsiTh

22 _ (220 (22

sin 2z 1! 3_!--'- 5!
“1-cos2z (2aF_ (%) (§w)“

+..

+...

21~ 47 61
g (or, By _(2ay
_l+cos2z 4! 6!
= Tsn2z (2&*)’ Qay _ 22y
Sk Yol S aiate e

“ Multiplying both sides in each of the above three relations by the
denominator of the right-hand side and equating the coefﬁclents of z* on
both sides, we can'wnte the results thus:

B.. B B, — 1)t
o= - 2";‘+c.—§;—-...+(—%;4.——30+ 2"—,,(—1,)§<'-1)=o, ...... 2)
where 7 is any odd integer;

6 Baa= 0 Bast uBams = o+ (= 10 Byt 3 (~ 14 =0,.....(3)
where n is a.ny*even mteger ' '
6 Bay "%«BH?'@&Bn-q"u +(~ 1)“”"” B.'l' (— 1)per1=0Q,...... (4)

where n is any odd :mteget greater than unity.

From any: one of (2),(8), (4) we can calculate the B's. But as n becomes
greater and'f Batbr the realculation will get tedious. “S6 we shall try to find

1



2 Some Properties of Bernoulli's Numbers

d cot z)
=)
Using (1) and equating the coefficients of z® on both sides, and simplify-
ing, we have
$(n+1)By,=c¢,B; B, 3+, B, B.._4+C.B B, s+..

the last term being cjn—y Byn—s Bynta OF §Cjn (B;,,)‘ awordmg as 1}n is odd or
VIl cucuruenrnerecorurniorsscnseiossasectiossssntastssoncnanans cesneneniaians cereend (5)

A similar result can be obtained by equating the coefficients of * in t.he
identity

. 2. We know (zcotw)’=-w’(1+

dtanz

_ 2
iz 1 4 tan®z.

3. Again

— 4z (cot §z + coth 4z) = — = (cot 2 + ¢ cot }1x)
=2{B,+B‘4[+B.£+ }

by using (1). The expression may also be written
(cos §osin $iz + ¢ sin $z cos §iz)
— 4z : —
sin 4 sin 41z
_ (1+¢)sindz(l+12)—(1—¢)sinde(l—1)
—t= cos § (1 —1) —cos4a (1 +72)

@ at a°

11 251 g
- ="‘w£_ P 720 )

21 2’6' 20101

by expanding the numerator and the denominator, and simplifying by
De Moivre's theorem,

“a_% .
Hence 2(B°+B.§!+B,-g—:+ )=—m:‘l; 2:";1  erennenne (6)
21 gt
Similarly
— Jo(cot o — wth§0)=2(B, 2 B Z Bt )
g1t Doyt Doyt

«}-(l —1)singz(l+1)— 4 (1 +1¢)sinz(1—9) "
cos4z (1 +1)—cos gz (l—1)

@ _ & &
TN N VY e
»@’ w. e i .""-“‘““"Y\'.',‘?‘..':...:‘.,‘;vgu),‘f i

“3iT ot 61 T 9LT01 V.
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Proceeding as in §1 we have, if n is.an even integer greater than 2,
e T e AL ©
according as n or n— 2 is a multiple of 4.

Analogous results can be obtained from tan = + tanh }z.

In (2), (8) and (4) there are 4n terms, while in (5) and (8) there are }n
or } (n—2) terms. Thus B, can be found from only half of the previous B's.

4. A still simpler method can be deduced from the following identities.

If 1, », &* be the three cube roots of unity, then
4,8in & 8in 2o sin ze® = — (sin 2z + sin 2z + sin ..a:w’),
as may easily be verified.

By logarithmic differentiation, we have

: . . c0s 2z + w cos 27w + w? cos 2zw?
00 & + w ot 2w + o cot 2w’ =2 sin 2z + sin 2zw + sin 2zw®

Writing j« for z,

_COS Z + w CO8 Zw + w* COS Tw?

- 2 )= —
}z (cot 3z + o cot 7o + cot §zo’) = sin z + sin #w + sinzw? ’
and, proceeding as in §3, we get

’ @ @ o

y o 2 217 817 141
3(B.+B.-6—!+B.,T2—!+..)— m_, T @)

9! 51

Again
€08 Tw? — COS Tw _ 2 (cos xw — cos zw?)

cot 3aw — cot fazw’ = " 2sin 3z sin 42w 8in 42w sin 2 + Sin Tw + Sin et
- Multiplying both sides by — }#(w*— ) and adding to the corresponding
sides of the previous result, we have

§ 2
! €08 & + w? Co8 Zw + w coS Tw?
— t ’=- - - =

32 (cot }& + o cot 2w + w cot zw?) | e -

Hence, as before,

o _ @ et
4! 10! " 16!
3(3. +B.8!+B,.14, ) R (10)
31 9! 1! . ‘
. COS 2 + CO8 Zw + COS 20? — 3
-w(ootiw+ooi§}wm+oon«}ww‘)=w sln z + sin 0 +8in 2w ’
and therefore L
‘ @_ ot o
61 1217181 U
8 .4!4-3,,10, B.,m ) & (11)

gt B
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Multiplying up and equating coefficients in (9), (10) and (11) as usual,
we have, L

%B”_.a—CQBH'*' cHBn..u— ...=0, i eereeeecesncenns (12)
the last term being #n(— 1R ™, dn(— 1R &+, or jn(— 1) 09,

Again, dividing both sides in (10) by z and differentiating, we have
‘ o _a° | @
) _df4l_ 1017161

dz\ «* a2 a*

3(Bygy+ 1B g+ 19Bu g +

31" ntis
a® a® x o B o
L nTeitm T siTioitiei
TTE_a e e @ o
siToitis T 3iTaitis T

Hence by (9) and (10),
(B +7B.8,+ 1331‘14, )

6'+B"12' )(B +B’8!+B“14! )

Equating the coefficients of 2 we have, if n>2 and n—2 is a
multiple of 8, .
3(n+2)By=csBy B+ 1y Bpse Bio+ €s BrisBig+ ... ...... (13)
From (12) the B’s can be calculated very quickly and (13) may prove
useful in checking ‘the calculations. The number of terms is one-third of
that in (4); thus B, is found from B, B, and B,.

=249 (B,+B,

5. We shall see later on how the B’s can be obtained from their pro-
perties only. But to know these properties, it will be convenient to calculate
a few B’s by substituting 3,57,9, ..., for n in succession in (12). Thus

1 1 1
Bo=—1 B,= 6; B,= %; Bc=:1.—2§ Bs""ﬁ‘Bn=“Z"5;
1 4 143

i§'23 Bln—llBs=‘4—5—5; Bu—TBs+

B, 2863m+4B = 04- 3 .

3230 1938
Beo""“—"Bu 7 Bs"Tz‘="2—:ﬁ;

3553 7106 11 1
g But g Bu—g By

-Blﬂ_—Bl‘;_:.—

2
3—0-6', B - 221B, + —

.Bn"‘
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and so on. Hence we have finally the following valueS'

B, —'_ B,= 30: Bc=%§ Bs=:‘316§ B,,= 66’ Bn"%);
7 3617 43867 174
Bu=éi By= =~ 510 3 Bm=7—98—; By = 33%[15 Bm=851‘§5813;
B, — 236364001 _ 8553103 _ 23749461029
2730 ' 6 = 870
B”=~8615841276005. B, 7709321041217 _ 2577687858367
14322 » o= 510 v T 6 ’
B~=263152715530534-77373. B, _ 2929993913841559
1919190 » D 6 ’
Bo= 261082718496449122051, 5 _
13530 A

6. It will be observed * that, if n is even but not equal to zero,
(i) Bnis a fraction and the numerator of B,/n in its lowest terms is

a prime number, ............. PP (14)
(i) the denominator of B, contains each of the factors 2 and 3 once

and only once, .....ccceiiiiiiiiiiiiiiiiiiii e ..(13)
(iii) 27(2*—1) B,/n is an 1nteger and consequently 2 (2*—1) B, is an

0dd INEEZET. wvuovvvniiniiniiiiiiiiiii e (16)

From (16) it can easﬂy be shewn that the denommator of 2(2" - 1) B,/n
in its lowest terms is the greatest power of 2 which divides n; and
consequently, if n is not a multiple of 4, then 4(2"—1)B,/n is an odd
IDBEZET. tovriiiuieiiiiiiiii et e e rern e eeaea s raaeas a7

It follows from (14) that the numerator of B, in its lowest terms is
divisible by the greatest measure of n prime to the denominator, and the
quotient i8 & pritne NUMbEr. ........cciiiiuiiiiiiiiiiiii s (18)

Ezamples : (a) 2 and 3 are the only prime factors of 12, 24 and 36, and
they are found in the denominators of B, By and By and their numerators
are prime numbers,

(b) 11 is not found ifi the denominator of By, and hence its numerator is
divisible by 11; similarly, the numerators of By, By, By are divisible by 13,
17, 19, respectively and the quotients in all cases are prime numbers.

(c) 5 is found in the denominator of By ‘and not in that of By, and con-
sequently the numerator* of B,, is divisible by 5 while that of B, is a prime
number. Thus we may say that if a prime number appearing in n is not
found in the denommator it w111 ap_pear m t.he numerator, and vice versa. .

e ‘Seg§12 bplpw. ...................... .
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7. Next, let us consider the denominators.

All the denominators are divisible by 6; those of B,, By, By, ... by 5; those
of By, By, By, ... by 7; those of By, By, By, ... by 11; but those of By, By,
B,,, ... are not divisible by 9; and those of B,,, B, ... are not divisible by 15.
Hence we may infer that:

the denominator of B, is the continued product of prime numbers which
are the next numbers (in the natural order) to the factors of n (including
unity and the number itself). .....c..ccocviiiiniiiiiiiniiieiiniieeienn. ..(19)

As an example take the denominator of B,,. Write all the factors of 24,
viz. 1, 2, 8, 4, 6, 8, 12, 24. The next numbers to. these are 2, 8, 4, 5, 7, 9,
13, 25. Strike out the composite numbers and we have the prime numbers
2, 8,5 7, 13. And the denominator of B, is the product of 2, 3, 5,
7, 18, i.e. 2780.

It is unnecessary to write the odd factors of n except unity, as the next
numbers to these are even and hence composite.

. The following are some further examples:

Even factors of n and unity ' Denominator of B,
By ..'L,2 vee 2.3=6
By ...1,26 . O 2.3.7=42
By ..1,24,6 12 2.3.5.7.13=2730
By ... 1,2 4,10, 20 2.3.5.11=330 .
By ... 1,2, 6, 10,30 2.3.7.11.31=14322
B ... 1,26, 14,42 2.3.7.43=1806
By .. 1,2 4,8, 14, 28, 56 v | 2.3.5.29=870
By ... 1,2,4,6,8,12, 18, 24,36, 72 . 2.3.5.7.13.19. 37.73=140100870
By ... 1,26, 10, 18, 30, 90 2.3.7.11.19.31=272118 -
Byo ... 1,2, 10, 22, 110 2.3.11.23=1518

8. Again taking the fractional part of any B and splitting it into partial
fractions, we see that:

the fractional part of B,=(—1)" {the sum of the reciprocals of the
prime factors of the denominator of B,} — (— 1) ............... ceeeena (20)

Thus the fractional part of By =4+3+ 3§+ —1 = 4f;
that of Bp=1-}—}— 5=
that of . . Ba=}+i+i+gs—1=3F%
and so on.

9 It can be inferred from (20) that:

. denommators ot' B

an
*inbegel‘. -douv -n--nm
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Ezample: By~ B,; and By— B, are integers, while the denominator
of By, + By, is 5.
It will be observed that:
(1) if n is a multiple of 4, then the numerator of B, — 4 in its lowest

terms is divisible by 20; but if n is not a multiple of 4 then that of % -1

in its lowest terms is divisible by 5; .......ccoveiiiiiiiiiiiiiiiiniiiienene. (22)
(2) if n is any integer, then
B, B
nts _ i ons _ + Dion+s
2(2nH —1) S 2(2 1)2 L, (2o 1) e
are integers of the form 30p + 1. «..c.ocviriiiiiiiniiiiiiiiiiiiiiiereaneee (23)

10. If a B is known to lie between certain limits, then it is possible to
find its exact value from the above properties.

Suppose we know that B lies between 6084 and 6244; its exact value
can be found as follows.

The fractional part of By = {45 by (20), also By, is divisible by 11 by (18).
And by (22) B, — 4+ must be divisible by 5. To satisfy these conditions By
must be either 6137445 or 61924%;.

But according to (18) the numerator of By should be a prime number
after it is divided by 11; and consequently B, must be equal to 61924% or
884818 since the numerator of 6187:4% is divisible not only by 11 but also

by 7 and 17.

11. Tt is known (Edwards’ lh:ﬂ'erqntial Calculus, Ch. v, Ex. 29) that

2.nl71 1 1
. A B”=(—21r)"(i;+-2—“ +3—,,+...),
2.n! 1 1 1
or ‘; (—2;)";-31;(1—% (1—3—") (1—5-)...; .........-‘.(24)
where 2, 3, 5, ... are prime numbers.
B” © én—l
Also %= o 8"-’_1-dw .................. vesres ..-(25)

For f i —j a1 (6 4 gvv ) da
0

ehs
. _(n—1)! 1 _B,
Gy (B et ) =

by (24). In a similar mtnner

f di=Dn
(e —ep -—e"")’ ~ i
j o tlog (1~ ) dop = "—‘?’,{%1-5(263
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Take logarithms of both sides in (24) and write for log,n! the well-
known expansion of log, I'(n + 1), as in Carr’s Synopsis viz.

B B,
(n+~})logn-n+‘}log27r+1';n 3 am 5. (‘r

By 0
( l)p W’ ............... (27)
where 0‘<m0.2i,‘andi -Where‘ ‘
B0 _ B, _ Bopys +
(2p—-1)2pn*~t  (2p — 1) 2pwP™  (2p +1)(2p + 2) nP*

1 [Paw—2 1
===1, n,p__llog(l —e ") dr+ — f 2p_Hlog(l —e ™) dz — ..

1 [=/z%w
=—7—T . (”17_—1 —'W'{‘ ...) log(l —e""”)da:

l b

e dx ¢

|, e 8-

_ fa:"l’"‘log(l e"”’“’)d
T (1 + %)

We can find the integral part of B,, and since the fractional part can be
found, as shewn in § 8, the exact value of B, is known. Unless the calcula-
tion is made to depend upon the values of logye, log,10, =, ..., which are
known to a great number of decimal places, we should have to find the
logarithms of certain numbers whose values are not found in the tables to
as many places of decimals as we require. Such difficulties are removed by
the method given in §13.

12. Results (14) to (17), (20) and (21) can be obtained as follows. We
have '

l-:*-.-al --'; 1 + 1 + 1 —+
222 (z+1)  (2+2) (x+3) (z+4)
vt .t 1 1
z 6@-2z) 5@ —z) T@-x) 11(@“—=z) .
1 7 55 529
—;ﬁ—.{v"-‘-ﬁ—}—l——l-”” ....................................... (28)

where 5, 7, 11, 18, are prime numbers above 3. If we can prove that the
left-hand side of (28) can be expanded in ascending’ powers of 1/z with
integral coefficients, then (20) and (21) are at once deduced as follows.
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From (27) we have

d*logT'(n4+1) 1 1 1
dwt Iy @ma2p T mespt
1.1 B B B B B, 0 :
=;i_2_n’+;i’g_;7:+7:_772+ .—(—)Pn;f’“, ............... (29)
where

@® 2P ® Vax]
= G 0 n—ap_”(eu_e_rz)zdm—4m"L n————-—w.’_s(en_&ﬁ)’dﬁ"'...

o (e

npt piwts ‘/sinh? 7z

— f T ev dz___ f T T
¢ n®1(nt+a?)sinhrz Jo (1 + 2°) sinh® mne

Substituting the result of (29) in (28) we see that
B, B, B, 1 1 1 1
B "'—G(x‘—z)+5(w‘—-m)+7(w7-m)+11(a:“—w)+

where 5, 7, 11, ... are prime numbers, can be expanded in ascending powers
of 1/z with integral coefficients. -

Therefore B,~}, — B,—}+4, Bi—}+%, —Bs—3+3%, Bo—3+ 4, --os
which are the coefficients of 1/%, 1/2?, 1/a’, ..., are integers.

-

Writing 4 +4 —1 for — § we get the results of (20) and (21).

Again changing n to }n in (29), and subtracting half of the result from
(29), we have

1 1 1 _1 (@-1)B, (2-1)B,
G+1F m+r2p T @3 T @ T w
DB, rc1p@r-1) ,Pﬁ, ...... (30)

where 0 < 6 <1, and also, by (29),

w0 [* wa®coshmnz
2w
< 1) wwh |, (1 +4°) sinh? wnz

Thus we see that, if we can prove that twice the left-hand side of (30)
can be expanded in. a.scendmg powers of 1/n with integral coeﬂ‘iclents then
the second part of (16) is at once proved.
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Again from (27) we have
ﬂﬂggnﬁl_)=1+f}+g+}+... +1—'y

=og g g o
where 0 <@ < 1; and also, by (25),
Bwb _ (" 22201
opn® |y (1+2°) ("= —1)
from which it can easily be shewn that

...‘-a-(-m2 2 (81

dz,

11 + 1 1 1
n+2 n4+4 n+6 n+8+n+10
: 1 B B
=5-—2(2- ) St 2@ -1 22— 1) o+
ap 0
=1)P 2% (2% — 1) - — .., ceiiiiiecsicsesiniontonnend (32
+ (= 1)? 291 (2% — 1) Spmis T (32)

where 0 < 0 <1; and also, by (81),

2P
«*) sinh § (‘"‘"-’”)

From the above theorem we see that, if we can prove that

2-?—1(2@_1)3"9 f ST

1 1 1
(n+2—n+4s+n +6—"')’
can be expanded in ascending powers of 1/n with integral coefficients, then
the first part of (16) at once follows.

18. The first few digits, and the number of digits in the integral part as
well as in the numerator of B,, can be found from the approximate formula:

logyy Bn = (n + ) logy, n — 1:2824743503n + 0700120,
the true value being greater by about 0:0362/n when n is great. ...... 33)
This formula is proved as follows: taking logarithms of both sides in (24),
log, Ba=(n + }) log. n —n (1 + log, 27) + }log, 87

nearly. Multiplying both sides by log,e or 4342944819, and reducmg, we
can get the result.

14. Changing n to n—2 in (24) and taking the ratio of the two resi "",“‘”lta,
we have
n(i—1)

T = PN ST S O e
“whenez 8 5, ...mpnmemumbers;
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L}
n n(n—1)
B, _, 4
greater and greater. ...... P TTT T (35)

From the value of m, viz. 314159, 26535, 89793, 23846, 26433, 83279,
50288, 41971, 69399, ..., the integral part of any B can be found from the
previous B; and from the integral part the exact value can at once be
written by help of (20) as follows:

Hence we see that very rapidly ‘as n becomes

approaches

tggr%xt‘?;:: x’t‘i: }J}f lies between * Hence the exact value is
B, Oand 1 1—;-% = fl_;
B‘=::—;r§3, wo| Oandl .| 34+3+3-1 = :'316
(By=00B, .| Oandl .| 1-d-4-} - &
By=T8p, .| oamd1 .| p+i+i-1 - ®
- 30
B;o=%},(—).33 o Oand1l .| 1-3-4-+ = 556
Bu=U2B, | oend1l | dHbededen-1 = oL
B,.=l%}—43,, «| oOandg .| 2-3-} = czs
B,,_I%;r—leB“ .7and 8 ... | 6+i+3+34+Hy = %%
Ble=lz;r§8810 e | 54 and 5§ wo | 6-%-}-%-4% = 4—337?7
- .Bno=194.$3u .. | 529and 530 ... | 528+4+3+i+4y “]7343%11

16. From the preceding theorems we' know some of the properties of B,
for all positive even values of n. As an example let us take B, = N/D.

The fractional part of B, is 3355415 by (20). The numerator of B,, is
divisible by 37- and the quotient is a prime number by (18). Again
logy Bu = 63024383, nearly, by (33). Therefore the integral part of B,
contains 631 digits, the first 4 digits being 1751. Again

logs, N =logi, Buu+ 19g10 D = 630-2433 + logs, 90709710 = 638-2010
‘nearly. Therefore IV contains 639 digits, the first four digits being 1588.

8l 1 mgotﬁomnronghcalmﬂatmnofanyﬂfmmthepreeedmg
) ,,'__kntheﬁmﬁvooiumn.
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Again the numerator of B, —4; is divisible by 20; that is to say, if

[Bu] is the integral part of By, [Bud + 83335415 — o5 = [Bud + £7888% has a
numerator divisible by 20. Therefore the integlal part of B, ends with 4
and also the figure next to the last is even.

Hence N ends with 57 and also the third figure from the last is even.

16. Instead of starting with cotz as in §§ 2 and 3, we may start with
tan z or cosec « and get other similar results.
Thus:
() $Ba(2"—1)=ceBy (2"t —=1)— 13 Bpyp (2712 —1) + ...
+in(=1R"2 or In(— 1) or fn(—1)r0, , ... (36)

() (1= =) Brms = & (1~ gms) Bao+ (1 = ) Bosa = -

=§.§'§,{3m-n F(=1)0-9 op (=)t pp (1)t} . (37)

17. The formule obtained in §~§~1, 3, 4 may be called the one interval,
two interval and three interval formule respectively.- The p interval formule
can be got by taking the pth roots of unity or of ¢ according as p is odd or
even.

For example, let us take the fifth roots of unity (1, a, &, o, &), and find
the 5 interval formule.
Let ¢ (2) = sin & + sin za + sin za® + sin za® + sin zat
=5 (é_ﬂ..'.w_“f._ . )
5! 15! 251 "7/
Then it can easily be shewn that ..
16 sin  sin za sin xo® sin za® sin za*
= ¢(20) — $ {22 (a + )} — $ {20 (a* + 2}

A =¢(22) +${z(1+V5)}+p{z (1 -V5)}

Taking logarithms and differentiating both sides, we have

10 M %
5<Bo+BlofT!+Bmm+Bu’3—o—!+...)

xt 4
’“(l +a,)——{£l—-(l+au)+...
41 14!
-2 —  ereeererenene (88)
-5—i(l +%)—I§-l<1 +a,,)+ cer

where e = ()" + (R, a0 that cutm =i + (- eyt
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Similarly,
. a* 1 2=
@) 5(B,2—!+B,,1£2—!+Bm2?!+...)

zlG
F+a)—fm (L +an)+..

: Fiad
£(1 ra) = (L) + .

(1]) 5(‘8‘ +B1414"+B2|24| )

2 (@ = 1= S (g = 1)+ .
=a,-8' 181 e, (40)

,,(l+a,)—-—(1 + o) + ..

(lll) 10 (Bg + Bu 16 1 + Bﬁ 26 1 )

2%
Y (“10—3)——(am_3)+_s 3 (g — 8) —
=¢10!. 20! 30! . (41)

z 3 z*
£+ @) — 7 (L + @) + 5 (1 + ) —

() 5(Bogi+ Bugs + Bagg )

x®
E!(an— 1)—52—1(a2|_1)+3?'(a31_ 1)— cee
== . (42)
’5—‘!(1+a5) 15!(1+a15)+25|(1 +a35)-—...

Again from
16 cos 2 cos a cos za® cos .'ca’ cos zat
- =1+ Y [22]+ ¥ [2z(a+ a')] + ¥ [22 (a* + )],
where Y (@) = cos « + cos za + cos za? + cos zad + cos zat
" ='(1-—“’2 b2 )
10! " 20! 30!
and similar relations, we can get many other identities.

18. The four interval formule can be got from the following identities:

1 anm (14 7) + (1) wnd b= (14 75) - (1-7)",
80 that Gumin=amln ~ Gm—n/2"; and byin= by + bpn/2"; then:

(i) {B0+B88!+B1616|+Bﬂ24| }

z* a 0
R V¥ Rl U bt )

w‘ w‘.’ w” 9 cemrscece secece .

YA TR T R




14 Some Properties of Bernoully's Numbers

@ 4185+ By + Bt }l

@ & 2
1% 131 % T

==z = - - ) eeeereerererieieiaees (44)
N DY R T Y
(m)wz{B. -;-).!2,,,12,4-13,.,201 }
7, s
b ~ J57b+ gyt (45)
= mz __‘”_li f_’f - ) eesecesesscresecssane
4’1a! 12,%4‘20'0’10
(1v)4u\/2{ 6'+B“144'+B”22' }
P z*
Ay R aly Ry
z = v eeererevreenessannd (46)

o &t +£"; _
1% 131%™
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ON QUESTION 330 OF PROFESSOR SANJANA

(Journal of the Indian Mathematical Society, 1v, 1912, 59—61)

1. Prof. Sanjana remarks that it is not easy to evaluate the series

1_1”_*'11 1.31 1.3.51 +...ad inf,

sxte etz a6
ifn>3. In attempting to sum the series for all values of n, I have arrived
at the following results :
1 1 1 1.3 1
Let f(p)=,=1+p+§'3+p+2 45+p+--.
.3
=f (l+§w’+ Tt )da:

dr = }faﬁ‘l"”(l o) tdo

J, 7=
rEF)ra )

T )

~(p+1\ 7T (p+1)
But P( 2 ) 2P—1;+L2
re3)
(vide Williamson, Integral Caltulus, p. 164).
Therefore f(p)= %_—, ﬂ:L;)—,
o )
Therefore log {f(p)} = log (}=)—plog2"
P1-Ng-2-1 |
+51-3)8-5(1-5)8+ i )
where S,= < . +21.+31,‘+‘ <. ad inf. (vide Carr’s Synopsis, 2295).

Again, by expnndmg*f(p) in a.scendmg powers of p, we have
1% 1.81 1.31
f(P)“‘(“'zs 24§+ )i+ ptrg st )
.2 11 .1.31
~l"""(1"‘23' ta gt )

B =P Ot
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1 11 1.81

™
where Rty gntg g g 45mnt = 3 ¢ (n).

Hence (1) may be written
log 4+ log {$(0) —p . & (1) +8*. 6 (2) — ...}

- - Phi1-Ng-PH_-1
=log (4m)—plog2+5 (1-3) - 51 2:).3',+...
=log(4m)-por+5 o =B oyt ...,

where B T T

Diﬂ'erentiating with respect to p, and equating the coefficients of }J""", we
have
np(n)=op(n—1)+ oyp (n—2) + 03 (n — 8) + ... to n terms.

Thus we see that

O e ;'-_§§+...=:'2f,
Te(=1 %% %—:251-,+...=—;10g2,
gp@=1+ %Eal' ’H%* =&+ 02y,
2¢(3) 1+ %%+;—§251;+...—4810g2+12(10g2)s+ o
" = Tlog2+ Z(log 2P + X8,
and so on.

2. More generally, consider the series

1 a 1 +a(a-—1) 1

11+ 21 (b+2”

Writing %%%%%4;(1&—1) for this, and taking the identity
1 a 1 +a(a—1) 1
b+p TIb+1+p 21 b+2+p
: oy TG+p)T@+1)
_/m ‘(1 —o)f do= T@a+b+p+1) "
we find

ng.(n)= o (n —1) + 03 (n — 2) + o3 (n — 3) + ... to n terms,

1 1 1 1

+l‘0

b S F ) M (E3 VR =)
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Ezxamples: Put a=—$%, b=%. Then we see that

O L+3E ISty a0t T a i

@ 1435+ 3 Er T r TR Tivon &

i) 14354 3 e e Ty )

() T+ E T eI a5 S I
where 8, 11, §,+], %
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NOTE ON A SET OF SIMULTANEOUS EQUATIONS*

(Journal of the Indian Mathematical Society, 1v, 1912, 94—96)

1. Consider the equations
O+ T+ T+ ... =
T+ TeYo + TaYs + oo + TnYn = Og,
T Y* + TeYet + ZsYs' + oo F TpYn = G,
Y + Ty + Yt + ..+ TaYad =a,,

DY+ By, ™ T 4 LYy T L+ T Y™ = A,
where 2,, &,, &, ... %y and ¥,, Yz, ¥s, ... Yn are 2n unknown quantities.

Now, let us take the expression
Ty Zn
¢O)=1—gr 0y+1—0y,+1 0‘%+ e s 1)
and expand it in ascending powers of 6. Then we see that the expression is

equa.lto
a,+a,0+a,0’+...+a,,.0"~'+ ...................... )

But (1), when simplified, will have for its numerator an expression of the
(n—1)th degree in 6, and for its denominator an expression of the nth degree
in 6.

Thus we may suppose that

A+ 4,0+ A0+ ... + 4,00
SO =T BT B BB B 3)
=0+ 00+ a0+ ... + a1 ...
and so A+Bb+..)(a+ab+..)=4,+4,0+....

Equating the coefficients of like powers of 6, we have

4,=a,

A;=a; +a, B,

A;=a;+a,B + a,B,,

Ap=0an+ @B +ap 3By + ... + a, By,
O0=aupn+anB, +... + By,
0=apie+ anp By + ... + a3 By,
0=0n4s+ At Bi+ ... + a5 By,

0 =ag+ agn1 B, + ... + a, B,.

* For & solutlon by determinants, of a similar set of equations, see Burnsxdg and
Panton, Theory of Equatmu, Vol. 1, p. 106, Ex. 3. [Editor, J. Indian Math. 8oc.]
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From these B,, B;, ... B, can easily be found, and since 4,, 4,, ... 4,
depend upon these values they can also be found,

Now, splitting (3) into partial fractions in the form

Db p. Ps Pn
= q,0+1 qgﬁ 1-—- q,0+ t1-g.0 —gnb’

and comparing with (1), we see that
=0 =0,
Te=Ps, Y2=¢q25
Zy=DPs, Ys=qs;

2." As an example we may solve the equations:
z+ y+2+utv= 2
pr+qy+rz+suttv= 3,
P’z+qy+riz+su+tv= 16,
Pr+@y+rs+sut o= 8l
P+ gy+riz+su+tv= 103,
P+ gy +rz+sLu+tv= 235,
Pe+Qy+riz+Sutiv= 674,
pe+qy+rz+su+tv= 1669,
P2+ @y +rz+Lu+tv= 4526,
P’z + ¢y + 12 + s'u + (% = 11595,
where z, y, 2,4, v, p, g, 7, 5, t are the unknowns. Proceeding as before, we have
z y z u v
i—gpti-6 i-6rT1-6:"1-&
=2430+166*+ 316*+1036+2356°+ 6746+ 16696" +452660°+115956°+....
By the method of indeterminate coefficients, this can be shewn to be
equal to —

24 0+36 426+ 6
) 1-60-56+ 6+ 36— 6"
Splitting this ‘into part,lal fractions, we get the values of the unknowns,
as follows:

&= _'g s p= -1 ’
_ 1845 _ 3+45
¥= "1 9= —5
_ 18—y5 e 3B
£= 10 2’
u=_§—ii.5_ §= ~/5—1,
245’ 2
8—wb, 5+1
”" m, t"""“‘ﬁ"“"
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IRREGULAR NUMBERS

(Journal of the Indian Mathematical Socisty, v, 1913, 106—106)

1. Let as, a4, a5, a;, ... denote nambers less than unity, where the sub-
scripts 2, 3, 5, 7, ... are the series of prime numbers. Then
1 1 1
l—a,'1-a;'1—aqa;’

w=l+a+a+0a,.0,+a,
F0. 040+ 0. 0. Qg+ A3 . A+ ..., ... (1)

the terms being so arranged that the products obtained by multiplying the
subscripts are the series.of natural numbers 2, 3, 4, 5,6, 7,8, 9, ....

The above result is easily got if we remember that the natural numbers
are formed by multiplying primes and their powers.

2. Similarly, we have
1 11
l+aydl+a,"1+a,

cee=1l—ay—ag+ ay.a,— ay
+ Q3 — Oy — Ag. Ay . Qg+ Gy . Qg+ oevy euennn (2)

where the sign is negative whenever a term contains an odd number of prime
subscripts.

3. Put a,,=1/2"', a,.= 1/3", a;=1/6", ... in (1), and we get

1 1 1 1 1
(1’57»)(1'37)(1"'5‘»)(1"7'»)“':3_,.’ ............ (3
where S, denotes 1/1* 4+ 1/2" 4-1/3" + 1/4" +
Changing » into 2n in (38) and dividing by the original, we obtain

(1+2l,,)(1+§,) (1+§—,,)(1+%)...=§3. ............ @)

Ezamples : ) ( 1) (1 + ;.,) (1 + 1) .. =-1;52, ............ (5)

(i) (1+—‘) (1+3l.) (1+51.) =%§ ......... (®)
since Sy= w6, S,=74/90, Sy= /9450,

4, Subtract (2) from (1) and put a;=2""...; then

1 1 1.1 1 1 8,2 — Spm
2,.+3,‘+5,,+7,1+ STt = e

where the numbers 2, 3, 5,7, 8, ... contain an odd number-of prime divisa
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1 1.1 ar?
Ezamples : @) 2, + atptmtmt =g e (7
1 1 1 1 7t
(i) 2, tmt gt gt gt =qggg e 8)

6. Again (2,8,5,7, ... being the prime numbers)

A+a)(A+a)(A+a)(1+ay)...=1+a,+a+as
+ap. 0ty + a0+ an+ ..., ...(9)

where the product of the subscripts in any term is a natural number con-
taining dissimilar prime divisors; and
(1-a)(1-a))(A=-a)(1—ar)...=1=a,—a,— s+ 05. 8 — ar,...(10)
where the signs are negative whenever the number of factors is odd.
6. Replacing as before a,, as, a;, ... by the values given in §>3 and
using (4), we deduce that .
1.1 1 1
4gtmtmtam
where 2, 3,5, 6,7, ... are the numbers containing dissimilar prime divisors.

7. Also taking half the difference between (8) and (4),
1 1 1 1 1 1 1 1 1 1

S,
+ =S:" .................. (11)

ptatmtetimt ettt e
1 1 _Snz_s‘m
tpt et g (1)

where 2, 8, 5, ... are numbers containing an odd number of dissimilar prime
divisors. -

1 9
Ezamples : @ 2,+ FEt T e (13)
i 1 1 15
(ll) 2‘+3‘+ +.. =ﬂ‘- ..................... (14)
8. Subtracting (11) from S,, we have
1 1 1 1 _ Ba(Sem—1)
4"+ togntigmt I S TINTER (15)

where 4, 8, 9, ... are composme numbers having at least two equal prime
divisors. '
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SQUARING THE CIRCLE

(Journal of the Indian Mathematical Socisty, v, 1913, 132)

Let PQR be a circle with centre O, of which a diameter is PR. Bisect
PO at H and let T be the point of trisection of OR nearer R. Draw TQ
perpendicular to PR and place the chord RS = TQ.

Join PS, and.draw OM and TN parallel to RS. Place a chord PK = PM,
and draw the tangent PL=MN. Join RL, RK and KL. Cut off RC=RH.
Draw CD parallel to KL, meeting RL at D.

Then the square on RD will be equal to the circle PQR approximately.

For RS = $ d?,
where d is the diameter of the circle.
Therefore PS8 = gpde.
But PL and PK are equal to MN and PM respectively.
Therefore PR* = $4d3 and PL* = §fd?
Hence RK*= PR — PK*=}}}d’,
and RL*= PR+ PL* = §}3d".
Q
S

RK RC 3 /113

But RL ~ED 3/ 365
and RC=13d.
Therefore RD= (-i 855 _ r 3/, very nearl
113 » Very nearly.

Note—If the area of the circle be 140,000 square miles, then RD is
greater than the true length by about an inch.
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MODULAR EQUATIONS AND APPROXIMATIONS TO =

(Quarterly Journal of Mathematics, xLv, 1914, 350—372)
1. If we suppose that
A+ ) (L +e" ) (14t n)...=2bemimm@, ... @)
and (1—e="") (1 — e~**m)(1 —gmimy  =olgmimng 2)

then G, and g, can always be expressed as roots of algebraical equations
when n is any rational number. For we know that T

A+ A+ A+ @) ...=24gT (k) ™ .............. 3)
and 1-9)A-¢)A—¢q")...=2bgf k- ... 4)
Now the relation between the moduli k£ and /, which makes
KT
K L

whére n=r/s, r and & being positive integers, is expressed by the modular
equation of the rsth degree. If we suppose that k=1', ¥’ =1, so that K = L',
K’'=L, then

q= e—*LU/L — e—wdn’
and the corresponding value of k¥ may be found by the solution of an alge-
braical equation. _
From (1), (2), (8), and (4) it may easily be deduced that

Jin= o1 InGuyeeneeiiiiiiiiiiiiiiiiiiiinann., ()
G” = Gl/“’ I/gn == G4fny cocececcctittotciitisisinns (6)
CRCA T RE R T SR )

I shall consider only integral values,of n. It follows from (7) that we

need consider only one of G, or g, for any given value of n; and from (5)
that we may suppose n not divisible by 4. It is most convenient to con-

sider g, when n is even, and G, when = is odd.

2. Suppose then that n is odd. The values of G, and j,,. are got from
the same modular equation. For example, let us take the modular equation

of the 5th degree, viz.
(:7*)’ + (%)' =2 (“‘"’ - u,—l—v.) eeeees eerererenaaen (8)

where Agru=1+L+PA+g)..
and Zghom(+g)(1L+9) (L4,
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By changing ¢ to — ¢ the above equation may also be written as

B LT E— ©)

where Regfu=(1-g)(1-g)(1—¢)...
and gy =(1-g)Q1 - g1 —g¢»)....

If we put ¢ =" in (8), so that u = G} and v = G, and hence u =v, we see
that
vr—yt=1,
1+ 45 _(1+w5\E
2 om0
Similarly, by putting g=e ="Vt g0 that w= 9 and v=g,, and hence
u =1/v, we see that

Hence V=

v—0v"8=4,

1445 _ 1+4/5
Hence v’—. 5 910‘—,\/( ) )

Similarly it can be shewn that
1+4/8\8
G, = (—-—T/Q/ ) » Gu=(2+v3),

bom ) o (2520
om S /(1)

3. In order to obtain approximations for = we take logarithms of 1)
and (2). Thus

and so on.

24
24 '
™= 7, log (2ga) ]

approximately, the error being nearly % €~""" in both cases. These equations
may also be written as :
e = 91@,, im0ty . ... (11)
In those cases in which G,* and g,* are simple quadratic surds we may use
the forms

@+ G —u)ﬁ (9a2 + gn —u)ﬁ
instead of G, and g, for we have

. Galt=etrn — feinin,
approximately, and so .

an g"u,+g“—1§= Mda +_1’3_e-jcda’
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approximately, so that

2
= n log {8(ga+ gn ™)}, eriiriiiiiiiiiinnn 12)

the error being about 1‘%‘:’ e, which is of the same order as the error in

the formule (10). The formula (12) often leads to simpler results. Thus
the second of formulae (10) gives

N8 — 2*913
or etv¥18 =10 /2 +84/3.
But if we use the formula (12), or

em¥niu — 9t (9 + gn—lz)r’v’

we get a simpler form, viz. _

VI8 =27,

4. The values of g,, and G, are obtained from the same equation. The
approximation by means of g., is preferable to that by G, for the following
reasons.

(a) It is more accurate. Thus the error when we use @ contains
a factor e~**¢ whereas that when we use gy, contains a factor ¢~

(b) For many values of %, g,, is simpler in form than G, ; thus

gw=y/f+ve ()],
while

6um (L) S5 /055,

(c) For many values of n, gen involves quadratic surds only, even when
_Gnis a root of an equation of higher order. Thus Gy, Gy, Gy, are roots of
cubic equations, G, Gy are those of quintic equations, and G is that of a
septic equation, while g, g, e, 9o Gre, aDd g1 are all expressible’ by
quadratic surds. -

6. Since G, and g, can be expresséd as roots of algebraical equations
with rational coefficients, the same is true of G, or g, So let us suppose
that

1=ag,™-bg,*+ ...,
or ' gi*=a—bga, ™ +....
But we know that
. Gdeng U =1 — 24e""" + 276" — ..,

64g,% =™ — 244 276e~"*n— ...,

64a — 64bg, ™ + ... =e""" — 24 4+ 276 """ — ...,
: 84 — 4096be=""" + ... = evin— 24 + 26" — ..., -
that is " emn =(64a + 24) — (4096b + 276) e+ ... e .(13)
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Similarly, if - 1=aG,*-b0G%+...,

then . e*/n=(64a — 24) — (4096b +276) e """+ ....  .ceeuvenn (14)
From (13) and (14) we can find whether e*¥® is very nearly an integer

for given values of n, and ascertain also the number of 9’s or 0’s in the

decimal part. But if G, and g, be simple quadratic surds we may work

independently as follows. We have, for example,

gu=v(1+42).

Hence 64g,* =e"¥2 — 24 + 2762 — ..,

649y, = 4096 2+ ...,
so that

64 (g™ + gu™) = "8 — 24 + 43721 1 ... = 64 {(1 + ¥2)2 + (1 — ¥2)1).

Hence "1 = 2508951-9982....
Again Go = (6+3T)4,

64Gy* =e""7 424 + 276" 4 ...,

84G, = 40966 T .,
8o that
84 (Ge™ + Q™) = 6™*#' + 24 + 4372~ — ... = 64 {(6 + +/37)* + (6 — 4/3T)}.
Hence e — 199148647-999978. ... '
Similarly, from o= \/ (5 *‘2‘/ 29),
we obtain

684 (gss™ + guo—™) = €79 — 24 4+ 437277 4 .
5 29 13 —-— 18
=64{( +2*/ ) + (5 2"/29) }

Hence "% = 2459125775199999982. ...

6. I have calculated the values of @, and g, for a large number of values
of 7. Many of these results are equivalent to results given by Weber; for
example,

Gt = 3 +4/13
18 2 1]
%' =(2+v5)(8+410), Gg*=6+ 437,
e 4+ VT
Ga =————+~/(2+~/ ), g.s’=———5+£/29,

y _(B+45)(1+v2)
g = 9 ’

=J(9+g73)+\/(1+ 73),
- (Lt

40) (Lt 50

G

.3

G

P
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G =‘\/(13+8‘\/97)_'_\/(5+8\/97),

g = (2+/5)(3 +¥10),
Go® = (B3 + VI (W5 +VT) (WT +¥11) (3 + ¥5),
and so on. I have also many results not given by Weber. I give a com-
plete table of new results. In Weber's notation, G, =2"%f{y/(—n)} and

gn=2"11, (W(—n)}.

TasBLE 1.
Jn + — -—é{«/(l +42)+4/(9+ 542)},

G = J {(1 +2~/5) (3 +2~/1§)} { \/ 1 + V65 9 + VG5 }
g =v(V2 + v3) (7 v2 + B y1L)} {J(” +*’33) J( 1)}

Gn’=(3~/3+\/23)i(5+~/23 { 6+3«/3 ( +3 }
Grt = FWT+VI) (8 +3 VD) {\/(ﬁh/ll }
6 =Y+ +1
" T (evs—2)f-1

g0 =l@rimwsriop{ /(250 + /(2]

G+ =T+ V2 + VT +52)

9o + ;—“-; (V2 + V(14 + 4 y14)},

e —«/(«/2+~/3)(3~/2+V19)*{\/(23+§V57)+\/(l5+3457)},
Gy = *(3-“/13 '
0n + = (5) {3+ 559) + 0~ 539)

1 -1 , _4)
o =5lal- 8Y/11}{(BV11+3y3—4)

‘ © +(3411-3y3—4)} —2]

g = (25 wo v/ )+ ()

) @B+ 18} 824y (44+v8))
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gt = J (3 v3+ ‘/23) (18 y2 + 28 y23)t
SO EEE)

ot = (4 y3 + VATYE (7 + .,/4,7) {\/(18 +49 43) + \/(14. +49 43)} ,
0. = \/ {(2 + 45)(5 + 429)} { \/(17 + §/145) N \/(9 + 5/145)} ,
LTS {J (s)-eo].
0 =1/ (55 + /(5N

" {\/(37 +: 417) N \/(33 +49 417)}{
gut = of e vz e yn (L) |

</ )+ ()

gus + gl =} (V9 + ¥2) + V(AT +1342)), '

Gn + Gl - (13)* {(1 3 i/3>§ + (1 3 f/a)i}’
3 3 a5

{(3 V3 11 2413) _ (3 J3+ 11 -2~/13)é}]
gm =1+ D)@y vaap{ /(2EE) o /()

G”=(1+2«/5)(3~/5-2n/41 {«/7“/41) \/«/41 1}

Gus® = (5 /3 + 4TI} (59 +Z v 71)

{\/ 21+12~/3 +\/(19+;éd3)};’
{\/(9-&-4«/7 11+4u\/7)}
. ey

e = (1 + “/5) 2+ V3R V(4 +v15) + 154,

~
-
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e /() 01

W EE) /)
1 e
G = [J{17 + V17 +173 (5 + 417)} \/{1 + 174173 (5+417)}],’

16 16

G = {(8 +38V7) (M‘m;ﬂf )}

y {\/(46+7«/4-3> . \/(w) .
4 4 '

o = (/5 (520
Gy = (3 +§/ 1?) t, where .
oo (S (B i
—J5 {t’ —p (l "'2‘/13) +t (1 _2“/13) - 1}

Grs =3 (6 + y/3TR (T3 +2 37} {(V(T+2v8)+ V(3 +2W3)},
Gy = 275¢, where i

26 — £ (4 + 4/33) + #/(11 + 2 ¥/33)}
—t{1+ /(11 +2y33)}-1=0

L (W3HNT 4 (2T T+ 40T)) (WB+T)+ (6 T)
G ‘( 2 )(2““/3) { 2 }{4(3+47)-(647)i}’

G = v (2+v5) (21 +«/4,45> \/{(l3+\/89) \/(5 +§/89)},

G..,’=\/{(2+~/3) (1+«/5) (3«/3+~/3l)}(5~/ +2y3t

{ \/(2+\/31) N/6+~/31)}
x{\/(11+22~/31)+\/(13+§«/31)},

G =(2 + V5) ,\/ {(1 +y 5)(10 + 4101)}
x {(5 «/5-;4/101)_*_1\/(105 -!-84/505)}’
() /o00)




30

 Modular Equations and Approximations to «

Gt = { \/(96+ 21 479) N \/(190 + ;1 479)}
x {,\/ (1;*_1_1-2__16479) N \/(1_@3 + 216 479)} ’
o =it foeom (55 (27)
s sy
N { \/(V15 +8v7 + 4) \/(x/la +8./7 - 4)},
Gre?® = (3 ) (16 + y255)t }\/ (4+ y15) (9 + «/85)}
/52 /25
« {«/(18 +f «/51) + J 22 +3451)}’
Gt =/ J @+ w3y 6 480 (225} 46 7+ 107 vy
(JE3 o220
/() + /(50

Gigss = (1 + «/5) (8 + v35)t {Z__iﬂ;_t«_/'_?_)}i

x [\/{43 +15 /7 +(8;- 3 v/T) /(10 ,/7)}

+ J {35 +154/74(8 + 37) 4/(_10”,,_/1)}] ,

G = J {(3 +y11) (5 +3 v3) (
(6817 +321 4451)

) ()
% {J(&ﬁl +g9 d33) "\/(569 +39 433)}’

Grua=(2 + 4/5) J {(s +47) (7 + ;’ 4?)} (73 V5 2 9 4329)t

/g ooy
’“x { J 743 +481 :/329) + '\/(751T+ :14/329)}‘

11+« 123)}
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7. Hence we deduce the following approximate formulz.

TaBLE IL
avvs =9, /T, eVt 2 4 /2 elvV® = 20,/3 + 16 /6,
iU =12 (4 + y17), e =144 (147 + 104 y/2),

etv' =84 +324/6, emveMi= 5%‘2/—2-9 )

avvm — 60 /35 + 96 414, €t™*™ = 300 /3 + 208 4/6,

—— 1_2/(37‘2*%5) | etmun = 800 /3 + 196 /51,
evm = 12 (323 + 40 65), €™ = (2 y2 + v/10) (3 + ¥10),

_ 12 (2 + v5) (8 + v13)
w= iz |

"=V%log{\/(lo+41'1~/2)+\/(10+47~/2)}’

log {(2 ¥2 +¥10) (3 -+ v10)},

o =

12
./190
«/31 5 log [} (8+ v5) (2 + /2) {(5 + 24/10) + V(61 +20 V10)}],

=t _log [(5 + “’29)' (529 + 11 y6)

V522 V2 x{\/(9+f«/6)+\/(5+4§«/6)}']'

The last five formuls are correct to 15, 16, 18, 22, and 31 places of decimals
-respectively.

8. Thus we have seen how to approximate to = by means of logarithms
of surds. I shall now shew how to obtain approximations in terms of surds
only. If ;
WKL

K L’
we have . _ndke __di
: kk*Ks U L

But, by means of"the modular equation connecting k¥ and I/, we can
express dk/dl as an algebraic function of %, a function moreqver in which all
coefficients which occur gre algebraic numbers. Again,

g=e"KIK, gn=g-vLIL

FA-)A-g)A-g) ... : | _
qgﬂ(il-qg'?éll-—z‘“)')((ll —q;z-)m:(%g) J(%) veeees(15)
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Differentiating this equation logarithmically, and using the formula

dg_ _mq
dk = ZE R
we see that
_o4 (1" 2
n{l 24(1_9,,,+1_qm+...)} | Y
- ¢ .24 XL
{1—24 (1—q’+1-—q‘+"')}'— LA, ..(16)

where A (k) denotes an algebraic function of the special class described
above. I shall use the letter 4 generally to denote a function of this type.

Now, if we put k=1’ and ¥’ =1 in (16), we have

1 2
n{l—24(3"""_1+e"”"—1+”')}

_ {1 ~ 24 (G gy + )} =(Z) 4@ ..an

The algebraic function 4 (k) of course assumes a purely numerical form
when we substitute the value of £ deduced from the modular equation. But
by substituting k=1’ and &’ ={ in (15) we have

nk g—rnhs (1 — gtmam) (] — g~mvn) (1 — g—0r#n) .
= e-—wl(l!rln) (1 — e—e:/ln) (1 — 8'411'113) (1 - e-c-/dn)_" .

Differentiating the above equation logarithmically we have

1 2
n {1 - 24 (GW—:_]. +e“..;/;f:‘1 ‘l‘ ...)}
1 2 6 yn
+{1"24(e=*/~»—1+e"/m—1+"‘)}“"' ......... (18)

o
Now, adding (17) and (18), we have

1- T’fm— 24 (e,,,:_ e + )= (%)’A(Ic). .....A.(19)

But it is known that
1—24( 9, 3¢ , 5¢ )=(2K)’(1-2k=),

o

T+q T+g¢ 1+¢ "
1 3 Ry .
8o that 124 (e"’“+ T+ Emt ) - (-;) 4(&:). ....... .(20)
Hence, dividing (19) by (20), we Bave
3 1 2

1—24( l + 3 + ;. 3 ] ssseeneve
Ner+1 eyl ).
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where R can always be expressed in radicals if n is any rational number.
Hence we have ‘
3 , \
m= (m 3 eeetesccsesesssscsesesscncse (22)

nearly, the error being about 8we~"*"(r /n - 3).

9. We may get a still closer approximation from the following results.
1t is known that ’
r=ow 2 .
1+240 = e _ (2_15) (1 — kek),
’ r=1 1 —=¢q* ar
and also that

1-504' % 29 ( )(1 2k%) (1 + k™).

=1 L= ¢
Hence, from (19) we see that
e
L \/ﬂ -2 3 e,",,,, 1 +240r21 S
=R {1—504 3 e""’" 1}, ...... (23)

where R’ can. always be expressed in radicals for any rational value of n.
Hence
_ 3
= a—_m ) seesccescecccscsenrstnccscssen
nearly, the error being about 247 (107 4/n —31) e *".

It will be seen that the error in (24) is much less than that in (22), if =
1s at all large.

10. In order to find R and R’ the series in (16) must be calculated
in finite terms. T shall give the final results for a few values of n.

TasLe IIL
q=eKIK grmgLIL,
f@=n(1-23; T qm) (1-243 .25,

1 1—¢™
=%l w .,

f(®= éﬁ @ +Ic2 + k),

f<4>=="’—K—L-(~/k' v

4KL 14kl +EYV
z)\/ _____"‘_._),
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F1) = 5@ (2L +k+ET) + (L) + V& T) — VR W)},

4KL

VR L+ + R

S
Ty = i‘-‘:@ VAL + 8B+ KT + 168 (L + K T — K II)

—102(1 — &l — KV (4kk' 1)t — 192 (4hk' 11')}),

24’KL [+ KL+ ET) -+ WD) + V(Y)Y — (K )],

fQ9)=

£(23) = 4’—@[11 (L + kb + K V) — 16 (kK W) {1+ V(D) + /(B T)}

— 20 (4kk' 1)),
12KL G ’ /
FB)="=—=[8QQ +kl+K) +4{J(kl)+d(k U) + (kK 1L}
— 4 (bl U {1 + (R + (K1)
4 "’ ’ 1#°
7 @5 =255 12 (e + vty — v 1)
+ (4K W)~ ¥ {1 — /() — y/ (RT)PF).
Thus the sum of the series (19) can be found in finite terms, when
n=2,3,4,5, ... ) from the equations in Table III. We can use the same
table to find the sum of (19) when n=9, 25,49, ...; but then we have also
to use the equation
3 1 2 3
;=1_24(en_ 1Jre‘,,_lJre‘,,,_1+...),
which is got by putting k=%"=1/4/2 and n=1 in (18).
Similarly we can find the sum of (19) when n =21, 83, 57, 93, ..., by

combining the values of f(3) and S(7), £(3) and f(11), and so on, obt.amed
from Table IIL

11. The errors in (22) and (24) being about
Bare—n (or (/. —3), 247 (107 y/n — 31) e—+",

we cannot expect a high degree of approximation for small values of n.
Thus, if we put n =7, 9, 16, and 25 in (24), we get

19 ,
7o V7 =314180...,

% (1 + 1’53) = 314162...,
99, 1
so{r=3v2

63 (17 + 155
(m) 314159265380. .,

) =314159274...,
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while : = 814159265358....
But if we put n =25 in (22), we get only

§+ \/(g) =314164....

12. Another curious approximation to o is

191
(, 22) =314159265262....

This value was obtained empirically, and it has no connection with the
preceding theory.
The actual value of o, which I have used for purposes of calculation, is

355 (. 0003\ ... .
= (1 - §5-3§) = 3-1415926535897943...,

which is greater than =~ by about 10~. This is obtained by simply taking
the reciprocal of 1 — (1184r/355).

In this connection it may be interesting to note the following simple
geometrical constructions for . The first merely gives the ordinary value
355/113. The second gives the value (92+ 19%/22)% mentioned above.

(1) Let AB (Fig. 1) be a diameter of a circle whose centre is O.

Bisect 40 at M and trisect OB at T.

Draw TP perpendicular to 4B and meeting the circumference at P.

Draw a chord B(Q) equal to PT and join 4Q.

Draw OS and T'R parallel to BQ and meeting AQ at S and R respectively.

Draw a chord 4D equal to AS and a tangent AC = RS.

Join BC, BD, and CD cut off BE=BM, and draw EX, parallel to cD,
meeting BC at X.

Then the square on BX is very nearly equal to the area of the cmcle, the
error being leeathan a tenth of an inch when the diameter is 40 miles long.”
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(2) Let AB (Fig. 2) be a diameter of a circle whose centre is O.

Bisect the arc ACB at C and trisect A0 at T.

Join BC and cut off from it CM and MN equal
to AT.

Join AM and AN and cut off from the latter
AP equal to AM.

Through P draw PQ parallel to MN snd meet-
ing AM at Q.
" Join OQ and through 7' draw TR, parallel to
0Q, and meeting 4Q at R.

Draw AS perpendicular to A0 and equal to Fig. 2.
AR, and join OS. '

Then the mean proportional between OS and OB will be very nearly
equal to a sixth of the circumference, the error being less than a twelfth of an
inch when the diameter is 8000 miles long. -

. 18. I shall conclude this paper by giving a few series for 1/x.
It is known that, when k< 1/4/2,

(2—5) =1+ ( ) (kK'Y + (‘,4 4) @Y 4+ s v (25)

Hence we have

FA-gr g A=gF .

‘ : .
( W) { ( ) (2KK') + ( ) (kK'Y + .. } e (26)
Differentiating both sides in (26) logarithmically with respect to &, we can
easily shew that
_ q q‘ 3¢°
1 24(1 Lottt )

= (1—28) {1 +4( ) (@ y+7 (5 ) (KK + } . 27)
But it follows from (19) that, when ¢ =e~"*", n being a rational number, the
left-hand side of (27) can be expressed in the form

2K\* B
()5
where A and B are algebraic numbers expressible by surds. Combining
(25) and (27) in such a way as to eliminate the term (2K/x), we are left
with a series for 1/7. Thus, for example,

sl G F ) e
. (@=€""% 2 =3), .eocrernecne o 28)

16 47 89 s1.38\* 181 /1.8.5\
5+e4()+az=(m)+%‘z=‘(—“‘2;4..s)+

(g= ", 2R=), cc.oonn.cen S(20Y
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(65— SLISER (1Y (51

.[q= 15 Ok = ("52 1)} ......... (30)

here 54/5—1, 47 ¥/5+ 29, 894/5+59, ... are in arithmetical progression.

14. The ordinary modular equations express the relations which hold

between % and ! when nK’/K = L’[L, or ¢" = (), where
q= 8—wK'/K Q —_ e-fL'/L

koo (e (e

There are corresponding theories in which ¢ is replaced by one or other
of the functions -
ql,',e_.x.'wx., Qo= WEKENS), o — g=2K,IK;

where
1.3.5.7 1.3.5.7.9.11

K=+ bt~ b+ e B+
1.2, 1.2.4.5, 1.2.4.5.7.8

1’1’..1+3 B+ 3 6 k* + RN B+...,
1.5, 1.5.7.11 1.5.7.11.13.17
Ki=l+-m b+—gqe M+ ——mgeig F+

From these theories we can deduce. further series for 1/, such as
27 11272
= 2+17333(37)

233
+32; 2;::: 2(57) Forey een(31)
1‘52_-;.—@ 4+37%2%§(1;5)‘
+7o; i;::g 2(1%)"‘"" ...... (32)
aeyg=1+123 55 (725) |
""3;3,61‘1%(1“;—5)* ,..(33)
e -s 16558 ()

118 1.7 8.11 43¢
+2lhg s ek );+ .{34)
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4 3 2311.3 431.31.3.5.7

733 4 +§;ﬂ Bo g1ty e (35)
4 3 81 11.3 59 1.81.3.5.7 X
a3 4 3.8 & TE e a g T e (36)
4 23 28311.3 5431.31.3.5.7
718718 9 4 +18‘2 3 AR g Ty e @7
4 _41 685 11.3 1829 1.31.3.5.7 38)
AT Eme w T Eame s ay e
4 _1123 2208311_.13_{_44:0431_.31.3.5.7 (39)
w 882 882 2 42 882 2.4 4.8 T
2.3 911.3 171.31.8.5.7
7=1+§§?+§’m——4’f‘—82—+..., .................. (40)
1 1 1111.3 211.31.3.5.7
*2—7-r72=§+—9-;§'j£;+'§;’2—'4——4;"—8‘,——+..., TP PTITTITIPY (41)
1 3 4311.3 831.31.38.5.7
3m=Z§+E§,§—E;‘+E2—AE 4’—.—8’ L I (4!2)
2 19 29911.8 5791.81.8.5.7
m:gg-‘-wé?'i'wm—m—'i'n., ............ (43)
1 1103 2749311.3 538831.81.3.5.7
2= 09 T 9% 2 4 T o9% 3.4 &8 -(44)

In all these series the first factors in each term form an arithmetical
progression; e.g. 2,17, 32, 47, ..., in (31), and 4, 37, 70, 108, ..., in (32).
The first two series belong to the theory of g,, the next two to that of g,
and the rest to that of g,.

The last series (44) is extremely rapidly convergent Thus, taking only
the first term, we see that

1103 =
o = 11253953678...,
1
Zrva =1 *11253953951..

16. In concluding this paper I have to remark that the series
¢ . 2 . 3¢ )
1-24 (2 ATt TGt )
which has been discussed in & 8-—13 is very closely connected with_the

' penmeter of an elhpse whose eecentnmty is k. For, if a.and b be the semi-
major and the semi-minor axes, 1t i8 known' that '

8_1: 1.3, 12.3.5 .
P=2moql - ok rz-‘.dqa"' Aol } revvaeni8B)
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where p is the perimeter and k ‘the eccentricity. It can easily be seen
from (45) that

p= 4ak™ {K +k (flllc(} ........................ (46)

. But, taking the equation

"1 -g)(1-¢)A—¢)... = (k) v/(K/m),

and differentiating both sides logarithmically with respect to k, and com-
bining the result with (46) in such a way as to eliminate dK/dk, we can
shew that

e / - ¢, 2

-7 [Ka(l + 1) + (b {1 24 (1 P )}] . (47
But we have shewn already that the right-hand side of (47) can be expressed
in terms of K if ¢ =e """, where n is any rational number. It can also
be shewn that K can be expressed in terms of I-functions if ¢ be of the
forms e, e"** and ¢™"*%, where n is rational. Thus, for example, we
have

Ic=smg. q=e",

p=a /() {FE+F )
k=tang, g=e"",

=\ (T @), L)

p=a«/(z){fg_§)+f%}’ L .....(48)

k:s. % e—m/x
\/vs 1+ ) 2 ri-

§=m§

p= <a+b>J {%F‘%*g%} J

16. The fol'lowmg ‘approxlmatmns for p were obtained empirically :

and so on.

p=7[3(a+b)—Vi{(a+3b)(Ba+b)+e]...ccc.u....... (49)

where e is about ak4/1048576 ;
' 3(a-b) ,
pfw{(afpb)ﬁum Tt LT } ......... (50)

where ¢ is about:8ak*/68719476736.
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ON THE INTEGRAL f

tan~'¢

- dt

(Journal of the Indian Mathematical Society, vi1, 1915, 93—98)

1 Let ¢ (2)= J "’“; L PR )
- Then it is easy to see that .
@) +d(—2)=0; .oooiiiiiiiiniiiiin, 2)-
T w’ b x’
and that . ¢ (2)= PRt E T o e (3)

provided that | z| < 1.
Changing ¢ into 1/¢ in (1), we obtain

$(z)—¢ (3) S @)

provided t.hat the real part of = is positive.
The results in the following two sections can be very easily proved by
differentiating both sides with respect to «.

2. If 0 <z <}, then
sin 2z sin 6z s_i_n_ 10z

5ttt 5’»~+...=¢(tanw)-m]og(tanw). ...... 5)
If, in particular, we put # = §= and Jy in (5), we obtain
1 1,1 1. 1 ™ .
—i-i—-g;'l-gé—‘i'é;"'...—‘~/_2¢(‘\/2_1)+§_~/§10g(1+‘\/2)+i3, "'(6)'
and 20 (1) =3¢ (2—3)+3wlog(2+¥3). ............... ) .
If —}wr <a< i, then
2¢ (ts.n ) sinz + sln'w+_2_ﬁmnf1:+ 8
0 5) = 3 g g E gt e (8)
If 0 <z < §, then :
: sinz . sin 2z sin 3z
T—wsw+'2’ Co8* @ + —o5— 3 oo’ &'+ ..
=¢(tan w)+§vrlogcosw—mlogsina:; ........ )
cosz+sinz  1lcos’z+sin*z  1.3cos’x +sin'ax
and . ) C"“l’ ‘ +§ 31' 2.4 51 +aee T
= ¢ (tan ) + } 7 log (2 cos z). spnenre “..QQ)”

* This equation isincorrect: see Appendix, p. 837.
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If - 3w < 2z <} and a be any number such that

!<1 —%) cosa:!gl,

2 3 3
~ then smw(l —1) cosw+sm2w(1 —%l) cos’w-i-m—niv(l -—%} cos*z+...

|[{1—a)sinz|<1,

1t 20 3
+ - sin (ml-r i"".)(1 a)sinz — sin 2 (ggi— }—7—{) —a)sin®z+ .
=¢(tanz) —p(atan )+ xloga. ............ 11)

3. Let R(z) and I(z) denote the real and the imaginary parts of z
respectively. Then, if -1 < R(z)< 1,

x* x® . z?
log (1 - —1—,) -3 log(l —§)+ 5 log (1 ——_5—,> -
=% [6 (1) — ¢ {tan 7 (1 — 2)}] + log tan 3 (1 — ). ...(12)
Putting z = § in (12) and using (7), we obtain '
YA T AR A AT 1.
4
where n= 37¢(1). .............................. (13)
Again, subtracting log (1 — «) from both sides in (12) and making z— 1,
we obtain
N 1y 1V 1Y -
(1-37) (1—5—,) (1,—7—,) (1—9—,) S (14)
If -1<I(x)<1,then
! z*
lpg(l ?—F)—3log (1 + 3;)+51<>g(1 + g—:) -
[ 4 *
-— {p(1)— ¢(e‘*")} —2ztan~le7¥, ........ (15)
From this and (7) we see that, if $ & = log (2 + +3), then’

(1 +;:) (1-;- 034,:)_,(1 + g)ﬁ (i'+ ;:)—7 =€ ........(16)

where 7 is the same asdn (138).

‘It follows at-once from.(12) and (15) that, if
-M<cRB)<1, —1<I(a)<],.

( _;,f)(§:+f,’\’ (Y (- S 1)
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4. Now changing z into 2z (1 + %) in (15), we have
log(1+ —;‘—f,) 3log(1 + f%‘f—’)+5log(l+ 8%(:-2) -
L telt e L L ]
Equating real and imaginary parts we see that, if z is positive, then
tog 1+ %5 - 810g (14 %7 +5log(1+ 6:’”‘) ~..
=)~ 2elog (LT S070) — e (275

8 {cos e . 083wz etz 4 S8 9T gy } ; .-.(18)

EEA S 5
_ 8 _ 8 _,8a*
and tan 1—1—;—3tan l§»+5ta,n ’—3—,——-...

cosh 7wz + sm e

_, [ cosma
= log (oosh ar& — sin 71::1:) tan™ (sinh -m:)
% {sml-’rm: . _ﬂ_smsiz'rrw - ?‘__“5'.’ff¢-uz_ } . ..{19)
It follows from (18) that, if n is a positive odd integer, then
dn* 4\~ 4nt\® 4n\~7
(1+F (1 +5) (1+%) (1+5%) -
_¢(]_) 1 — g—tmn\moosiin—1) =
i (1 + e;i;") (20)

and, if n is any even integer, then
4n* dn\73 7. dnt\® dn\~7
(1 + 1‘)(1 +~3—‘) (1 +-5:) (1 +?"> ves
=exp {26 1) - L 1P + hrntanoi=].

Similarly from (19) we see that, if n is any positive odd integer, then

...(21)

. 2n? 2 2n?
tan lF-—31;a.n 1 - e + 5 tan™ ‘—5;—...
4 ™n 1+e¢ 1 1
= — (=1)mo-0 ]} " R & — -l'ﬂ — -*ﬂ -
(=1 ‘{élog(l_el )+l,a""‘+3, +3 1o J +..}.(22)
and, if n is a positive even integer, then Y
2 2 2 P el
tan— 27 - 3 tan~ gf,—+5tan P =20 (= 1) tanmeen, L (58)

In this connection it may be mberesting to note that

tan™ e-i"'—z - (f.an"I ~ tan™ 3+ta.n" E ._)f ..‘.((3&,

for all real values of n.
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5. Remembering that

oy 3 L5
4dcoshmze 12442 3P +4a® 544

we have

mg 1 e 18 }
4 T ntcosh mnz Loy (n2(12+4n%2?) n?(3+4n%z?)

S/l g coth 2—% coth %:_r coth g_;r
=-g(§+§)—m = gt e | (2)
That is to say, if a and B are real and a8 = 7*, then

“ P Q)+ 29 (™) + 2¢ (67=) + 2¢ (67*) + ...

=36+8) - Bl anst raatzet ) @

If, in particular, we put @ = 8 = = in (26), we obtain

5 1 1 1
¢)="7g 2 {1=(e'—1) T3 -1 5=(e"—1)“'}

1 1 1 1
- E{l‘ €e+e™) + B (e™ +e) + 3 (e +e) + }
=°9159655942, ....cceiiriniiiiiiiiiiiiieeeeen 27
approximately.
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ON THE NUMBER OF DIVISORS OF A NUMBER
(Journal of the Indian Mathematical Society, v11, 1915, 131—133)
1. If 8 be a divisor of N, then there is a conjugate divisor & such that

88’ =N. Thus we see that

the number of divisors from 1 to 4/N is equal to the number of divisors
from VN t0 N. oot ee e e e e e eaas (1)

From this it evidently follows that ,
AN)<2WN, coiiiiiiiiic (2)

where d (N) denotes the number of divisors of N (including unity and the
number itself). Thisis only a trivial result, as all the numbers from 1 to ¥ N
cannot be divisors of N. So let us try to find the best possible supenor limit
for d (N) by using purely elementary reasoning.

2. First let us consider the case in which all the prime divisors of N are
known. Let
N=p%. p*.p% ... pu™, -
where p,, py, Ps ... Pn are a given set of n primes. Then it is easy to-see that

dN)=Q+a)(1+a)(A+a)...(1 +ap). ceoeeennnn. 3)
But 71; {1+ a) logp,+ (1 + @) logp, + ... + (1 + a,) log pa}
1
>{1+a)1 +ay)... (1 +ay)logp,logp,...log pu}*, ...... 4)

since the arithmetic mean of unequal posmve numbers is always greater than
their geometnc mean. Hence

1
. {logpl +logps+... +log pn +log N} > {log p, log p, ... log ps . d (N)}*.

In other words
1 n
{; log (paps - pulV )}~

< s
log p, log p, log ps ... log ps,
for all values of N whose prime divisors are p,, ps, p; ... Pn-

8. Next let us consider the case in which only the number of prime
divisors of N is known. Let

N =p1“|p’¢: 301 ._.pﬂaa,
where n is a given number; and let .
N’-——' 2“‘. 3%:.5% ...p“{
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where p is the natural nth prime. Then it is evident that

N SN, e (6)
and : ANVY=AD). oo %))
illog(2.3.5 ...p.N’)![n
But d(N')< &

Tog2log 3log 5 ... logp °
by virtue of (5). It follows from (6) to (8) that, if p be the natural nth
prime, then

{}!log(& 3.5 ...p.N)}”
log 2log3logh...logp’
for all values of N having n prime divisors.

A<

4. Finally, let us consider the case in which nothing is known about X.
Any integer N can be written in the form

28, 3%, 5%...,

where a, > 0. Now let
' : B =2 e (10)

where A is any positive number. Then we have
d(N)_ l+4a, 1+ay 1+a,

= R G B creeeeeeeeeeneeene (11)
But from (10) we see that, if ¢ be any prime greater than , then
l+aq 1+a,, 1+aq<1 a12)

qhaq e, o, SL

. It follows from (11) and (12) that, if p be the largest prime not exceeding
&, then
) d(N)s1+a-z l4+ay, 14a; 1l+ay

.Nh 9ha, . 3'“1' . 5,”:‘ cos _p"“p
1+a; 14a1+a;, 1+a, :
R e T (13)
But it, is easy to shew that the maximum value of (1 + a)2-% for the
iable q i 2k “He
varia ealshm. ence
* d(N) 9k \w(@)
—-NT < (‘hTog-é) 5 eecccscseserescscscecens (14)

where o () denotes the humber of primes not exceeding x. But from (10)
we have

_log 2

log x
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Substituting this in (14), we obtain
log 2

o (z)
log2 f9I% % Jog w] s (15)
d<N><N‘°"{“em§'f>? |

But it is easy to verify that, if # > 6°05, then
2k < e (log 2)2
From this and (15) it follows that, if > 6:05, then
d(N) < 2USMVI%BD) (160 ) @) o (16)

for all values of N, @ () being the number of primes not exceeding z.

5. The symbol “O” is used in the following sénse :
¢ @) =0{¥ @)
means that there is a positive constant X such that
@) g
o <

for all sufficiently large values of z (see Hardy, Orders of' Infinity, pp. &
et seq.). For example:

5z2=0(z); }¢=0(x); zsinz=0(z); vz=0(2); :logz.= O(z);
but 2240 (2); zlogz+ 0 ()
Hence it is obvious that

@@)=0(&). .ooeeiiiiiiiii e, 1)
Now, let us suppose that

___logN
?= (loglog Ny’
in (16). Then we have

log z =log log N + O (log loglog N);

log N _ logN log N log log log N
and so Toga = log log ¥ { (log log Ny } o eeeeneen (18)
Again
o (z) log log z =0 (zlog log z) = 0 {%%%%;& . ..:€19)
It follows from (16), (18) and (19), that o
log2log NV log N log log log
log d (M) < TE T By + o{ Do oy Jroere-+(20)

for all sufficiently large values of N.
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ON THE SUM OF THE SQUARE ROOTS OF THE
FIRST n NATURAL NUMBERS

(Journal of the Indian Mathematical Society, vi1, 1915, 173—175)
1. Let ¢(n)=w14+V2+ W3+ ...+ /n—(Ci+§na/n+}4/n)
-3 'E: W@ +v) +V(n+v+1)}2,
where C, is a constant such that ¢, (1)=0. Then we see that
()= (n+)=—vV(n+1)+[Fn+ 1)V +1)+}y(n+1)]

—@nvnt+ivn)+{(Wn—v(n+1)P=0.
But ¢, (1)=0. Hence ¢,(n)=0 for all values of n. That is to say

VI+V24 W8+ a+...+4n=Ci+3n/n+ 40
+3[Wa+Va+D)P+H W+ 1)+ v(n+ 2]+ {V(n+2)+ /(n + 8) =+ ...].

But it is knovs;n that

p__1(1 1 1
,1_—47<1v1 TRt GG ) e )
Putting n =1 in (1) and using (2), we obtain

271-{»—1— + 1,,~_+ ! + 1 o~ + }
W1y  Wl+w2y (WZ+43) (W3+wéy ™
_—.‘3{ 1 + 1 + L + 1 + } 3)
W1y (v2)r (W3)P  (way i

2. Again let
$e (M) =1y1+242... +0v/n—(Co+En*v/n+3na/n+ §a/n)

—d % [V (n %) + (4 v + 1)

where C; is a constant.such-that ¢,(1)=0. Then we have
() —ga(n+D=—(n+1)(n+1)
{§ (n‘-l- 1PV +1)+3(n+ 1)/ (n+ 1)+ 34/ (n+1)}
: —{nvnt+invativnj+ gy (V- + 1)P=0
But ¢,(1) =0. Hench ¢, (n) =0. In other words
1W1+2 24348+ ... nn=Cy+{ntyn+invn+y/n
+ 2 l{vn +J{n +1)}"'+ WEar+1) +V(n+ 2)}*+ (V(n+2) +V(n+3)}“+ 3.
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But it is known that

o8t 11
Cz_ 16#’(1’;\/1+21\/2+3g~/3+"-} ................ (5)

It is easy to see from (4) and (5) that

1 1 1 1
w’{(«/l)““-(vl +v2r T WEvay («/3+~/4_)3+"'}

TS f SR S NS S G
_15{(,‘/1)5+(_~/2)5+(~/3)§+(~/4)5+...} . s (6)

8. The corresponding results for higher powers are Dot so neat as ‘the
previous ones. Thus for example

10/1 + 200/2 4+ 33 +... + 1 Yn=Cs + A/n (30 + §n* + fn)
= vr+ v+ D+ (Vi + D)+ V(e + 2) 0+ ]
+ab W+ vV + 1)+ (Y + 1)+ ¥ (n + 2)}7
T+ W2+ VR4 L] e )
V1428 2+ ... +03/n=C+/n(§n' + In* + Fn* — zl7)
— s [vr+ V@ + 1D + W+ 1) + V(n+ 2} +...]
+ i [(Wr+ v+ DI?+ (W +1) + ¥(n + 2)}° +...];...(8)

and so on.

The constants Gy, C,, ... can be ascertained from the well-known result that
the constant in the approximate summation of the series 17— + 2714 3™ +
+n™1 18

2l (1) (1' 1 1

@y totgtpte )cos}m-, ............... 9)

provided that the real part of r is greater than 1.

4. Similarly we can shew, by induction, that
1 l 1
TR 3t V3 «/ «/
3 {wn EueL i, WosDidasary, )
Vin(n+1)} Vim+)(n+2)} )T
The value of C, can be determihed as follows : from ~(10) we have

1,1 .1
Atpetatet 4(2) -2J@2n) =0, ... 1)

asn—>o. Also

1.1 1
2(W+«_/1+-%+ 4/(2”)) 2 4/(2n) = G, /2, ...... (12)

+...4+— —Oo+2‘\/n+




the First n Natural Numbers 49

Now subtracting (12) from (11) we see that
1 1 1 1
ATVRTBTATT v<2 )
That is to say

a=-a+vm(

—=—~—>C,(1 —4/2), as n~ .

1 1 1. )
A~ RBYBRT
We can also shew, by induction, that

1
24 /n

Wrt V@ +1)) | W(n+ D+ (n+2)
24[ Vi{n(n+1)} + Vit D +2) +] . (14)

The asymptotic expansion of v/1 4424 /3 + ...+ 4/n for large values of
n can be shewn to be

1/1 1 1
Gt ’“/"“L “/ +4n(24 1920m t §2l—<sm"")’ “““ (15)

by using the Euler-Maclaurin sum formula.

V1442448 +.. +dn-0+ n¢n+ Vn+
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ON THE PRODUCT “ﬁ“[l + <ai3):|

n=0 +n

(Journal of the Indian Mathematical Society, viL, 1916, 209—211)

1. Let é (a0, 8) = {1 + ("1‘ 15)3} {1 + (;j_f)'} s N
It is easy to see that
G+ (G
(1+a+2B (1+B+2a) _ . )
G N 20+ g)? [1- =g Y]

x [1 - {(“‘B)-i(a+ﬁ)¢3}s]

o e (2)
. ( a+28 B+ 2a
'ﬁﬂ(” n )(” n ) __ [ra+ara+sy @)
ML (1+g)'(1+§)= T(+a+28)T(1+R+2a)
and " "
L (a—B)+1(a+B)V3)® (a—B)—1(a+ B)V/3)*
- 2n }][l'{ on }]
_coshw(a+B)y3—cosm(a—F) @)
S (@ + 2B+ B . rreeerneeennen
It follows from (1)—(4) that
¢ @B)d(Ba)
- fQ+a)T1+8)) {coshw(a+;8)~/3—cosw(a-ﬂ)} ...(5)
F'A+a+28)T(1+8+2a) 2n* (a* + af + °)

But it is evident that, if a — 8 be any integer, then ¢ (a, 8)/¢ (8, a) can
be expressed in finite terms. From this and (5) it follows that ¢ (a, 8) can
be expressed in finite terms, if « — 8 be any integer. That is to say

{1 + (g)’} {1 + ( ‘-z—_’-:-a)'} {1 + (a—_de)‘}

«can be expressed in finite terms if z — 2a be a multiple of d.
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2. Suppose now that a= 8 in (5). We obtain )
2a \? 2a \? 2a \*
{1 +(5a) } {1 +(57a) Hl +(53a) }
_{I'(1 + a)}* sinh 7ra y/3 (6)
TT(+3) mays - T

Similarly, putting 8=a+ 1 in (5), we obtain

o N} (220

{l" (1 +a)l*cosh 7w (§ + a) 4/3

T T(2+ 3a) e (7
Again, since
s 2 <1+§)<l+$:+:_:)
o « ~
{1+(1—z)}{1+3(2n+a)}_ (1+§a7_1)2 ,

it is easy to see that

[(1 + “') (1 + ;:) ] [{1 +3 (é—i—aﬁ {1 1-3(4%)’}]
I'(3a) /coshra,/8— cosa
s a)}( ) P ®)

3. It is known that, if the real part of « is positive, then
log T'(a)=(a—4%)loga—a+4log 27 + 2f t%g—l(medz. ...(9)
0 _
From this we can shew that, if the real part of a is positive, then

1}log21ra+$—g+log{(l + %—:) (1 + ;:) (1 + 33) }

}
.—_10g(c°5h”‘/i °°”“) 2/ Md ......... (10)

-

From this and the previous section it follows that

“ tan™!z®
fo -e?"'—w_ ldd}

can be expressed in finite terms if n is a positive integer. Thus, for example,

“ tan™ a?

, ey da=tlog 2m — 7 — log (L) 1)
tan—1a®

je""’ 1da:=élog127r—m—}log(l—e"""); ...... 12)

and 8o on. -
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4. It is also easy to see that
r 2 + »F &
1P4nt 2B+n* F4+nt L4n

+...

=1(1_1+1_1+)
3\1+n 242 38+4n 4+n

+é 2—-n_  4-n + 6-n as)
3(2—n)y+38nt (4—n)*+3n*  (6—n)+3n*
T 1 3 5

Since dooshine T+ F+a Sixa U
it is clear that the left-hand side of (13) can be expressed in finite terms 1f n
is any odd integer. For example, -

10 2 '+ 31 42
P+1 2241 8+1 #+1

The cotresponding mtegtal in this case is
Iuo b d@ ( 1 + vr.-zao (__ l)v}
o SiDh 7@ +a8 7 o 1228 1 rta ot

Y SO T
—3(n n+l n+2 n+8°

+...=§(1—log2+7rsech§1r4/3). (14)

_ﬂ.{ n+2  n+44d + n+6 } (15)
3l(n+2pP+3n" (n+4P+3n* (n+6p+3nr 7)WL
and so the integral on the left-hand side of (15) can be expressed in finite
terms if n is any odd integer. For example,

de 1
fo mm=§(log2—l+ws%h%7rv3). ......... (16)
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SOME DEFINITE INTEGRALS

(Messenger of Mathematics, XLV, 1915, 10—18)

1. Consider the integral

f © cos 2madx
o 1+a¥a?} {1+2/(a+1)} {1+ 4% (a+2)}...°
where m and a are positive.

It can be easily proved that

t 2 t 2 t 2 E]
{1‘(5)}{1 ‘(a‘:i)} {1 ‘(m)}--- {1 _(a+':—-l)}
- Fa+n—t)T(a+n+t) (T (a)p
- F@=t)l'(@+t){T'(@a+n)p ’
where n is any positive integer. Hence, by splitting
1
1+aa?} {1 +2*/(a+1)% ... (1+a*/(a+n—1)}
into partial fractions, we see that it is equal to
_ 2I'(2a) (T'(a+n))? { e 2 n-1 a+l
T@PrmTI'@a+n)la*+2* - 1! n+2a(a+1)+a
L20Qe+])  (n-1)(n—2) a+r?2 }
2! (n+2a)(n+2a+1)(a+2)}+at
Multiplying both sides by cos 2mz and integrating from O to co with respect
to z, we have

cos 2mzdzx
f {1+aa?} {1 +2f(a+1)} ... 1+ 2% (a+n—1)}
aT'(2a) T (a + n)}* { oam_ 20 n—1
= (u)}’ T®)T (2a+n) 1!'n42a
The Limit of the.nght-hand side, as n—» 0, is
_2a 2a (2a +1)
1! 21

e tatym 4 } .

gaa+ym 4 g-ratam _ }

T(a+1)

T@ sech® m,

et Uk

,F@+B s ;
T@) sech m(l)
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sie {1+ (@} + G} 1+ G} ~rer et

the formula (1) is equivalent to

j: IT (@ + 1z) | cos 2madz = 3y/7T (a) T (a + §) sech®m. ...... 2)

2. In a similar manner we can prove that
® 1+ a3b%\ (1 + 2%/(b+ 1)%\ /1 +2%/(b + 2)
fo ‘(1 ¥ w’/a’) (1 +2f(a+ 1)*) (1 ¥ a:’/(a+2)’) -+ 08 e
__ aT@a){T Gy {e_m_z_qb—a—l

{C@pr@e+a)'(b—a) 1! b+a
2a(2a+1)(b—a-1)(b—a—2)

Y G+rayb+atl)
where m is positive and 0 <a<b. When 0 < a < b — }, the integral and the

series remain convergent for m = 0, and we obtain the formule

[: (1 +w“/b') (1 + (b + 1)’) (1 + (b + 2)') ..d

e (¢+l)_m

g-latam },

1+2a%a/ \1 + 2*/(a + 1))/ \1 + 2*/(a + 2)
T@a+HTOT(h-a—3})
B Vs 5% ST sy e S 3)
“\Pla+i)f, , T@Ta+HTd-a-3)
fo!I‘(b+iw) e S SV (3) (T R O

If a;, a,, ay, ..., ay, be n positive numbers in arithmetical progression, then
® dz
fo (@ + 2°) (a5’ + 2°) (a5° + 2%) ... (an® + %)
is a particular case of the above integral, and its value can be written down
at once. Thus, for example, by putting a = {} and b = §}, we obtain

® dz
fo @ + 119 (2* + 21%) (2° + 31%) (2* + 41°) («* + 517
Sar
~12.13.16.17.18.22.23.24.31.32.41 "

8. It follows at once from equation (1), by applying Fourier’s theorem
[ cosnydy [ " ¢ @) cosayde = g (m,

that, when a and » are positive,

‘ , sech® a cos 2neda
e M@ 1
I'(a+13) {1 +n%a} {1 +n%(a + 1)} {1 + n¥/(a + 2)%}...

|T(a+in)f
=-‘}4ﬂ'm)—r\(—a4—:;—). .................... ......53(5)

e
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Hence the function .
¢ (@) =fo sech®z cos nods  (0< a<2)
satisfies the functional equation
$@¢(2-a)= 7

arsin g
—a)(cosh 7 — cos wa)’

8

4 Let [ 1@ Fea)do=y ),

and ff¢(w)F(nw)dw= x (7).

Then, if we suppose the functions £, ¢, and F to be such that the order of
integration is indifferent, we have

/:f(w)x(nw)dw =fjdyf:f(a;) ¢ (y) F (nay) da

R AL e — ©)

A number of curious relations between definite integrals may be deduced
from this result. We have, for example, the formule

® cos 2nx 1

. | s coshwe T8 = Fagghp s )
®  cos2nzdr A8 8
o T+ 2cosh§ma 2(1+200sham)’ *'' oo ®)
o
f e cos2nzde =3/me™™. (iiiiiiiiiiiniiiiieans 9)
)

By applying the general result (6) to the integrals (7) and (8), we obtain
V3 ] ) do - da ;
cosh w2 (1 + 2 cosh 2n2) /o coshnz (1 + 2 cosh §uz)’
or, in other words if a8 = §*, then

L

v da
cosh az (1 4 2 cosh 7z)
dz
= “/’3,[0 cosh Bz (1 + 2 cosh wz)’
In the same way, from (8) and (9) we obtain

edx
_ Va f '1+2coshaw Vﬂfo T+ 2cosh Bz’ ~ (11)
with the condition 8= #r; and, from (7) and (9),
(R e ® gt
Ve | i 9o = 4,3]0 soch B 0
“with the mndrhon aﬁ er:w’
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Similarly, by taking the two integrals

e e ]
and f : ze~? sin nedx = } \/7ne ",

we can prove that, if a8 = %, then

and so on.

5. Suppose now that a, b, and n are positive, and

[s@a

Then, if the conditions of Fourier'’s double integral theorem are satisfied, we
have

cos

nzda: e A (25 (14)

f ¥ 8, 2) S nzde=3rd B, 1) woorrrererrn, (15)
0 sin
Applying the formula (6) to (14) and (15), we obtain

[ $@a et o= $&0¥@mda ...16)
Thus, when a = b, we have the formula

br[ @) da=[ v @)y ()

where ¥ () =f: ¢ (z) (s);)x? tzdz
and, in particular, if n =1, then
br[ $@pdo=[ p@pas

1

If ¢ (a’ z) = {1 ¥ wz/a:} {1+ a;’/(a, + 1)’}

(a>0),

then, by (1), v (a, z) =37 P( + i) sech® {z.

Hence, by (16),

® _T@+PHT@e+H (° .
fo ¢(a,2)¢ (b, z)dz = ()T Q) . sech”Hqux,
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and so
J“" dx
o T+ a8 (L + 2@ + 17 ... (L + &/ {1 + 26 + 1) ..
= Fe+HTG+HT(a+bd)
INOINOINCEYIEES)

. ..(17)

a and b being positive: or
fo T (a+iz) T (b + o) ide
=}y F'@l@a+HTrGTrG+3)T@@+d)
B I'(a+b+4)
As particular cases of the above result, we have, when b=1,

j’“’ x dz _ a .
o sinhoz {1 +2*a}{l + 2*/(a + 1)%}... 2(1 +2a)’

. ..(18)

when b=2,
f Z a2 dz _ a’ .
o sinhmz {1 +a%/a} {1 + 2*/(a +1)%}...  2(1 + 2a) (3 + 2a)’
and so on. Since II{l +4°(a +n)?} can be expressed in finite terms by
means of hyperbolic functions when 2a is an integer, we can deduce a large
number of special formuls from the preceding results.

6. Another curious formula is the following. If0<r<1, n>0, and
0<a<r™l, then
f‘” Q+arz)(1 +arx)... i
0o A+2)(1+re)(l +7x)...
_ar "= (1 —r™ ") (1—arm)
T sinar poy 1—7r™)(1 — ar™")’

unless 7 is an integer or a is of the form 72, where p is a positive integer.

...(19)

If @=r?, the formula reduces to
© T dx
o A+2)Q+rz)...(1 +1rP°z)
T (=rm o (Ao
siner  (1—-r)(1—-7)..(1—r) 7
If n is an integer, the value of the integral is in any case
logr (1 —7)(1 —7%)...(1 =7r"?)

T1-a(r—a)(P—a)...(""—a)’

My own proofs of the above results make use of a general formula, the
truth of which depends on conditions which I have not yet investigated
completely. A direct proef depending on Cauchy’s theorem will be found in
Mr Hardy’s note which follows this paper. The final formula used in
Mr Hardy’s proof can be proved as follows. Let

azo (] — btg™\ ‘
so="0 (m)__,m A,t+ji,t’+....
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Then it is evident that :
, (1 - at) (&) = (1 - bt) f (to).
That is

(1 - at)(An + Alt + A,t’ + ...)=(1 -_— bt)(Ao + Alw +-A-Qt’w3 + .n).
Equating the coefficients of ", we obtain
a = bz

An=A-n—l 1—z0 °

and 4, is evidently 1. Hence we have

(@ - b)(a —bz)
A==t -

f(t)=1+t‘1‘::+t= ceveeenene(21)

7. As a particular case of (19), we have, when a =0,
® " dz T l—pn]l g

o A+2)A +ra)(1+7r2)... sinnwr 1—7 1—p " (22)
When # is an integer, the value of the integral reduces to -
— e (1 — ) (1 =92 ... (1 — ) logr.
When we put n=§ in (19), we have
® 1 14ar2*l+ars iz
0ol+a 1472 1+ ™"
—ar'l — - -
— izl _“:...11_;11_; .......... (23)
If, in particular, n =} in (22), or a =0 in (23), then
f“’ de
o A+ A+ ) (1 +ra)...

mjplzrlorloe ™

IR T Tl R LY § R RPN eI
the nth term in the denominator being r#**¥. Thus, for example, when .
r=¢"", we have

(29)

dz T
0o A+ +e 2 (1+e*a?)... 2(1+e"+e ™+ 4 ..)

= mT(3) V5 Y2 § (L + Y5) (L + V5)}bem.

Similarly

° da
fo 14+2)A +e®a?) (1 +e“a%)...
: =mTHVE V21 + V5P (1 + Vo)lieh;
and
° dz -} 101110111110
J., (1 + 2% (1 + -0012*) (1 + '00001a®) ... 4 11t1111 1111117

” -
2202 002 000 200 002 000 002 ... "
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SOME DEFINITE INTEGRALS CONNECTED
WITH GAUSS'S SUMS

(Messenger of Mathematics, x11v, 1915, 75—85)
1. If n is real and positive, and | I ()|, where I (t) is the imaginary part
of ¢, is less than either n or 1, we have

® cos wix f cos 7tz cos 2mwxy =it dpd
o cosh wz 0 cosh 7y y

T

= 4/n exp {— i (l - :)} f: _COB T iaman s, ..(1)

n cosh

When n=1 the above formula reduces to

f . zg:h"z sin rafda = tan {37 (1 — t*)} f , :(()’:hw-;tz: cos watdz. ...(2)

cos 'n-mr
cosh 7z 'mc

yy=[ Some

cosh 7z

If¢=0and ¢ (n) = f

then b= \/ B)v()+vm.

yw=/)sG)-sm

Similarly, if ¥ /8|7 (t)| is less than either 1 or n, we have

r” cos iz gimmaA g
1 + 2 cosh (21ra:/4/3)

= y/nexp { }w(
If in (4) we suppose n=1, e obtain

t’)} ° co8 Ttx

T3 2 cosh @mrafy3)® - 0% (4)

coB 7tz sin wa®
o 1 + 2 cosh (27a/y/3)

cos mriw cos wx*

= tan w1 =10} fo T+ Zoosh @mafy) > )
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and if t =0, and
cos mrne?

¢ ()= [ T+ 2 cosh (@mafv3) ©
DO
¥ "'f T 2 cosh (2rajy) J
then sm=/ ) v () +ve.
..................... ©)
yw=,/C)s()-sm.

In a similar manner we can prove that

“sinmtz ., . \) [® sin 7tz
» tanh pvl4 dr=— /nexp {{zvr (1 + ;)} Fo, npm eé™idz, (7)

If we put n =1 in (7), we obtain

I sin iz
0 tanh 7z

sm g7

” cos matda = tan (jr (1 + ) [ ST sin matda. ...(8)

Now

.1 r® smata: giest
tli»ot tanhbzc da
= lim 1 (* 2sinatz ¢ dg + lim smme‘“‘dx

twmotJo ¥ —1 t>0J0 t

dw+ .......................................... (9)

ae®

eabrlw

Hence, dividing both sides of (7) by ¢, and making {—>0, we obtain the
result corresponding to (3) and (6), viz.: if

py=[ =T
..................... (10)
V) =gt [ ST da,
" then ¢(n)——\/ 1P(1 — ¥ (n),
.................. (10"
yo=1/B)s(3)+sm.

2. T shall now shew that the integral (1) may be expressed in finite terms
for all rational values of n. Consider the integral

® costr da
J®)= o coshimz af 4 2*°
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If R (a) and ¢ are positive, we have

4 [Tz (=1 @r+1) costa
JO=7 0 Eo 2+ (2r + 1) o + 2

=2 s __ 1y e rtut 1 (2r+1) e"“}
r=0 0 —(2r + 1) a
_ .".e—at r=w (_ l)r g—(ar-l-l)t
—2m+2r=om, ............... (11)
and it is easy to see that this last equation remains true when ¢ is complex,

provided R (t) >0 and | I (¢)|<4w. Thus the integral J () can be expressed
in finite terms for all rational values of a. Thus, for example, we have

dz

' costxr dz .
J o coshimzl+at cosh ¢ log (2 cosh ) — ¢ sinh ¢,
® cos2tx da ..(12)
costs do _ e
fo oshms T4 = 2cosht—(e¥tan™e™ + e~ tan'¢’),
and so on. Now let
cos 2tx
F(n)= f e R (13)
Then, if B(a) >0,
cos 2tr dz
j N”F(n) d —/ coSh ™ m ............... (14)
Now let

Fn)= 'E:(- 1) exp {— (2r + 1)t + } (2r + 1) 5mn}
+ ;/—l;z exp { ( T — -—)} 5 (- 1)"exp{ 2r+ 1)1%

-3(2r+ 1)’%’} . (15)
Then
(_ l)r -(ar-n)t

fo —anf(n) dn = rzo a— %(21‘ + 1),”1.

exp {—v(2a/m) (1 —1) t} “ cos2r dx
+ \/ 2a /(1 + ¢ycosh {(1 +¢) 4/(4}1ra)} o cosh 7z o + tra®’ (16)

in virtue of (11); and therefore

f: SR AR O LT — .17)

Now it is known that, if ¢ (n) is continuous and

f:e—u¢(n)dn=o,
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for all positive values of a (or even only for an infinity of such values in
arithmetical progression), then
¢ (n)=0,

for all positive values of n. Hence
Fm)=f(n). covevriiiiiiiiiiiiiinin (18)
Equating the real and imaginary parts in (13) and (15) we have

f cos21ta:c natda
0

cosh 7z

ot e ™ _ st 9_7111 - 257rn_
{e cos 5= —¢*cos — + e~ cos 7

1( ., m ¢ w —at/ L 9-rr>
+ Tn {e % cos (47 — + 4—1;) — e~%" cos (4 + i (19)

© cos 2z . .
fo coshaz 0T dz

— _2,1;_-1;,__“.9_7_1'_11, —nt'g_ff.’f_"_"_
{e sm4 e~'sin ) +e~% 81n 4

Al mgn (T L 1)_ st/ (Z’__t’_ 9"")
+\/nle sm(4 mtan) ¢ " sin 3 y . (20)

We can verify the results (18), (19), and (20) by means of the equation (1).
This equation can be expressed as a functional equation in F(n), and it is
easy to see that f(n) satisfies the same equation.

The right-hand side of these equations can be expressed in finite terms if
n i8 any rational number. For let n=a/b, where a and b are any two positive
integers and one of them is odd. Then the results (19) and (20) reduce to

® cos 2tz Traz?
2coshbtfo et ( : )dx

=[cosh {(1 — b) t} cos (wa/4b) — cosh {(3 — b) t} cos (97a/4b)
+ cosh {(5 — b) t} cos (257a/4b) — ... to b terms]

+ ,\/ (g) [cosh {(1 - —) bt} cos (Z bt; + Z:)
~cosh {(1 - —) bt} (Z % + %—b) +...toa terms] , ...(21)

2 cosh btf cos 2ta in (" dz
0 cosh 7z

= — [cosh {(1 — b) t} sin (7a/4d) — cosh {(8 — b) t} sin (97a/4d)
+ cosh {(5 — b) t} sin (25wa/4b) — ... to b terms]

b/ () [eo {2 - 2) o} sn (3 - 2 2

—cosh {(1 - %) bt} sin (E—%+%} +..toa terms]. .(22)
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Thus, for example, we have, when a=1and b=1,

“ cos ma® 1+ «/2sin 7t?

fo COSh pray COSs 21rt.z'dw = m 9 eeeccessssecces (23)
* sin 7a _ =14 4/2cos 7t?

fo cosh 7z cos 2ortode = m_ﬂ't— TR (24)

It is easy to verify that (23) and (24) satisfy the relation (2).
The values of the integrals
“ cos mna? f ® sin 7na?
dz,
o cosh 7wz o cosh 7z

can be obtained easily from the preceding results by putting ¢ =0, and need

no special discussion. By successive differentiations of the results (19) and
(20) with respect to ¢ and n, we can evaluate the integrals

f © - sin iz cos

0 cosh 7z sin

mnaidz,

b costxr cos
am - .
0 cosh 7rz sin

na* de,

for all rational values of n and all positive integral values of m. Thus, for
example, we have

["‘ cos ra? 1 1
o  coshwz 842 47’
jm 2 sinmz? , 1 1

o coshmz =~ 8 842°

3. We can get many interesting results by applying the theory of Cauchy’s
reciprocal functions to the preceding results. It is known that, if

, f:¢ (@) cosknxdz =14 (n), .cecovrrerirreninnin. 27

then (i) %a{id(0)+¢(a)+(2a)+¢ Ba)+...}
= 3V () + 4 (B) + ¥ (2B) + ¥ (38) + .., ...(27)
with the condition a8 = 2u/k;
(i) a2 {$(a)— ¢ Ba)—(50) + b (Ta) + b (9) — ...} -
=Y @) -¥ BB -V (BB +¥ (TR + ¥ (98)—..., (27)
with the condition aB = /4% ;
(i) @ v3{$(a)~ ¢ (§a) — b (Ta) + ¢ (11a) + b (182)— ...}
‘ =¥ (B) =¥ (68)— ¥ (T8) + ¥ (118) + ¥ (138) — ..., (27)

with the condition .@8 = m/6k, where 1, 5, 7, 11, 13, ... are the odd natural
numbers withont the mnitiples of 3.
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There are of course corresponding results for the function

f : & (2) 5in En@dm = Y (B), <eoveneereerrrereenns (28)

such as
a{p(a)— ¢ (3a)+ ¢ (5a)—...} =9 (B) - ¥ (88) + ¥ (58)— ...,
with the condition a8 = =/2k.
Thus from (23) and (27) (i) we obtain the following results. If

5% cos ri7ra’) r5e gin 340 Q3?
F(a, ﬁ) v {* + 21 cosh r'rraf \/B r§1 EOIT’I"II’B’ ...... (29)

then F(a, B)=F(B, a)=v(2a){} +e™ +e " + e+ ..},
provided that a8 =1.

4. If, instead of starting with the integral (11), we start with the corre-
sponding sine integral, we can shew that, when R (a) and R (t) are positive
and |7 (¢)|<m,

® sintr d=z 1 me®  rS@(=1)e™

o SiDh 7z a’+2* 2a° 2asinwa o @1 veene(30)

Hence the above integral can be expressed in finite terms for all rational
values of a. For example, we have
® sinte do

f o sinh ‘}”"’” 1+

From (80) we can deduce that

=eétan"le~t—e~ttan"tet ............ (31)

f sin 2t ety = | — g+ | githiiTn _ gatiwien g
sinh 7z

_71;‘ exp {(*,,r N _;%) i} (e~ (+imlin . o= Bt+timin 3 (39
R (t) being positive and |I (t)|<4mw. The right-hand side can be expressed
in finite terms for all rational values of n. Thus, for example, we have

“ cosmwa® . cosh 7t — cos 7f?
Jo sinh ma sin 27tzdzs = W 3 eeeeseseneasd (33)
® sinmwa® . sin 7rt?
fo sinh na sin 2wrtrde = m 3 eseesescsccceesasaces (34’)
and so on.
Applying the formula (28) to (33) and (34), we have, when a8=1%,

L cos {(2r + 1) 7a%} ,cos{(2r+ 1) =%
va 2 CU Gh@ s D T VB 2 OV i hh) l
=2ya{}+e e 4 a4 P L LL.(85)
L sin{(@r+1pmat} e sin{@r+1ymg)
va 2 U b g = V8 2 OV cohi@r 1 )mB)
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By successive dlﬂ'erentlatlon of (32) with respect to ¢ and n we can evaluate

the integrals :
J P _coste Tzt dz, !
0

sinh 7z sin
« tr cos . [ e (36)
f xm sin wnatds
0 sinh 72 sin )

for all rational values of n and all -positive integral values of m. Thus, for
example, we have

[ wfﬁrxgdm 1 f sin wa? do — 1
0 0

sinhzz . 8’ sinhwa 4w’
(- J E M 2
[z_,cosmt:’ 1(] 3)’ J’qum-n-w 1
0

47 sinh 7z 167’

(37

Jo * sinh 7z 16
and so on.

The denominators of the integrands in (25) and (36) are cosh w2 and
sinh w. Similar integrals having the denominators of their integrands equal to’

,
II cosh 7ra,« sinh 7b,z
1

can be evaluated, if a, and b, are rational, by splitting up the integrand into
partial fractions.

6. The preceding formule may be generalised. Thus it may be shewn
that, if R(a) and R (2) are positive, | I (t)|<m, and —1< R () <1, then
cos {z dz m e %sinwf

o cosh 7z + cost a* + ¢ 2a cos ma + cos 70
r=ow e~ (2r+1 -0t e~ (er+1+6)t

+r20 {m a? ;(mgy} . (38)
From (38) it can be deduced that, if n and R(t) are positive, |I(t)|<m,
and —1< 6<1, then

cos tx

sinl | —————— ¢i"mat(y
J o cosh 7z + cos w0

sin 76 '

r=o
= 3 {g-@rtIftteri—6tinn _ o— 1@t ri+otin)
r=0

1 1. ¢ r;m r—1 o1 — (2rt4r2im) f4n P
+\7’—zexp —Zz(vr—a) z (=1)'sinrrfe an_(39)
The right-hand side can be expressed in finite terms if n and 6 are rational.
In particular, when 6 =¢, we have
® cos tz iemat
o 1+2cosh (21ra:/~/3)e dz
= ,} {e"“‘ 3—imn) _ oM ata—simn) 4 o=} tw3—16iwm) _ 2}

B . +g—(4¢'/‘+1"""””‘ —'..--}, -°(4O)
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where 1, 2, 4, 5, ... are the natural numbers without the multiples
of 3. :
As an example, when n=1, we have
“  coswa?® cos miw _ 1-2sin{(w—37¢*)/12}
o 1+2cosh(2wz[y3)  8cosh(wt/¥3)—4 1)
®  sinwa®cos wix do = _ —«/8+2cos{(m—3m1)/12} |
o 1+ 2cosh (27z/y/3) 8 cosh (7t/y/3) — 4 )

6. The formula (32) assumes a neat and elegant form when ¢ is changed
to t + 3tm. We have then

® sintz
o tanh 7z
- {% + e—H-im + e—:t+‘im + e—u+m'm +.. .}

——expf ( )}{g+e—w+"ﬂ/"+e—<=t+“w/n+...}. ...(42)

e~imtdy (n>0,t>0)

In particular, when n=1, we have

t‘:’S};" % sin 2rrtodo =} tanh ¢ {1 — cos (4 + "’t’)}'l

"smvra:’
o tanh

..(43)

sin 2wtzdz = § tanh 7t sin (J;-rr + 7rt?). J

We shall now consider an important special case of (42). It can easily be
seen from (9) that the left-hand side of (42), when divided by ¢, tends to

* cos mnx (1 “ sin wn
fo mdw—i{%-i‘fo e"—'lz-——ldw} ............ (44‘)

as t—0. But the limit of the right-hand side of (42) divided by ¢ can be
found when n is rational. Let then n =a/b, where a and b are any two
positive integers, and let

sin rne

s= ST e, ()= g+ [ S

The relation between ¢ (n) and y (n) has been stated already in (10"). From
(42) and (44) it can easily be deduced that, if @ and b are both odd, then

8() =12 0 -2rr00s (%) - NAEE 5 (a- 2rysin (1w + 77 ),
‘I’(‘)——% 2 (b- 2r)81n(1"zra)+%l\/(2) s (a 2,,.)(:08@7_'_@)

It can easily be seen that these satisfy the relation (10'). Similarly, when
one of @ and b is odd and the other even, it can be shewn that
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() -t Er (- (T |
\/ Er 1—~)sm(}7r+ib>
. e S (46)
\[r(b—) 4-7ra\/a,+1},-§1r(l —5) (—b—)

b

LY elor )
o =4b 2 cos (}w + —) va 2 sin L~——)

o’ =4/b ? sin (}vr + %—) =\a ?, cos (‘r"vra) -

b
Thus, for example, we have

where

pO=15, s=222, 4@ -1, s@=232,
(48)
13—4y3 (1\_ 1 ,/2\ 8-8y5
$O="15" #(3) =5 #(5)="T6~
and so on.

By differentiating (42) with respect to-n, we can evaluate the integrals

® g™ cos
./’0 W—Ti sin TRXdT ..o (4‘9)

for all rational values of » and positive integral values of m. Thus, for
example, we have

{ zcos&vrxd‘z‘ 13 -4

Jo e — = 87 ’
- f“’zcos%m-d _1 (1 3_*__:'1)

o a1 6a\2 7T o

............... (50)
® 2
:c*cos-vrwdx___ 1 (1"'%'*'5)’] »

0o €71 256 \ e
and so on.
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SUMMATION OF A CERTAIN SERIES

(Messenger of Mathematics, XL1¥, 1915, 167—160)

1. Let B (s, 0)= 2 [W(@+n)+ (& +n+ 1)

n=0
=”§.w{4/(a: +n+1)—y/(z+n)].
n=0
The object of this paper is to give a finite expression of ® (s, 0) in terms
of Riemann {-functions, when s is an odd integer greater than 1.

Let ¢ (s, ), where z >0, denote the function expressed by the series
‘ a2+ (z+ 1)+ (2+2)" + ...,
and its analytical continuations. Then

E(s, 1)=¢(s), &(5,3)=(2=1)L(s), werrrrrrrrrrnnn (1)
where ¢ (s) is the Riemann ¢-function ;
G o)—C(z+)=a*; (it 2)

154+ 248 +...+n=(—8)—{(—s,n+1), } g
14845 4. +@noly=(1-2)t(—5)- 2t (-an+p)) @
if n is a positive integer; and
. e [ L. s(s+1)(s+2) _,
ELE{C(s’w)—%w +(IT8_B‘IEE 1+B4‘——4!—"‘_14 =3

_p D (st 26)!(s+3)(s+4) 54 ... ton terms)} =0,...(4)

if n is a positive integer, — (2n— 1)<s<1, and By=}, B,=4;, B;=4,
By =, ..., are Bernoulli’s numbers.

Suppose now that
¥ (2) =60(- 4, 2) + (42— 3) vz + D (3, ).
Then from (2) we see that
¥ (@) — ¥ (2 +1) = 6 4o + (45— 3) vo— (4o + 1) y(z + 1)
+{W(x+1)-ap=0;
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and from (4) that Y (£) >0 a8 z— . It follows that Y- (z)=0. That is
to say,

66(-% 2)+(4z-8) Wz + P8, 2)=0. .coonnnnnn. (5)
Similarly, we can shew that

40¢(—$, @) + (162% — 20z + 5) Yz + D (5, 2) =0. ............ (6)

2. Remembering the functional equation satisfied by ¢ (s), viz.,

EA-5)=22m)*T(s){(s)cos3ms, ..oovvrnennnnn... &)
we see from (3) and (5) that

VI4VZ 433+t vn= gl hyn i E) 440 (3, 1); .(8)
and NI+V/84+VE+...+4/(2n-1)
=3(2n—1f +4y(2n— 1)+“——§(%)+3v2®(3n P ..

Similarly from (8), we have
1V1+282+34/34...+nyn

=§n*+§ﬂ*+§«/n—l—%r,§(§)+;16®(5, n); ......(10)
and Lyl +3v345x54 ...+ (E2n—1)y(2n—1)

=3@n—-1)f+3@n -1} +} (20 -1)

3(2v2-1
PRLLLLS) );(g)+1w2¢(5 R B, 1)

It also follows from (5) and (6) that
Via+d)+V(a+2d)++/(a+38d)+ ... + V(a + nd)

= Ct @t nd 43 (a+3d) + § VA DS n+ ajd); ...(12)
and (a+dt+ (a4 2d)t +(a+3d) + ... + (a + nd)?
| =0+ 2 (@ ndt + 4 (o +ndt
+idv(a+nd)+ 2dvd @ (5, n+a/d), ...... (13)

where C and C’ are indepkndent of n.

Pubtmg n =1 in (8) and (10), we obtain
@3 0)= ——t(&) ® (5, 0)_ c(g) ............... (14)
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- 8. The preceding results may be generalised as follows. If s be an odd
integer greater than 1, then

(s, 2)+3 (Wa+N(@-1} + 3 Vo —(z - 1)}
+ f_ 22 £(1 —}s, a;)_l.fi‘s:%_).!.(f:é) 2-8¢(3 — }s, 7)
' s(s-—-6)(s N(s—8)(s—9

) ge-10 (5 = 3s, )

51
y 5(s—8)(s—=9)(s—10)(s=11)(s=12)(s—13)
+ g 2r
XE(T—14s,2)+ ... to [ (s+ 1)) terms =0, ... (15)

where [z] denotes, as usual, the integral part of z. This can be‘)roved
by induction, using the formula

Wz + V(e £ D +{Va— (et 1))
= (@vay £ £ @var+ 22 (2 yop-

+ -L—"')—‘f——"’) (2 V&)= + ... 10 [1 +}5] terms, ...... (16)

which is true for all posmve integral values of s.

Similaley, we can shew that if s is a positive even integer, then
L2 -t - e
2= DC=) g (13— 1) - £(3 - 49, 2)

L8 (s - 6) (s ~ 75)'<s 8) (= 9) grro (g (5 35) - £(5 - 13, @)}

+... to [} (s + 2)] terms
=i{Vz+/(z-1)+i{We—n(z-1)F~-1. ... @)
Now, remembering (7) and puﬁting 2z =1 in (15), we obtain

+

D(s, 0)=— ;/—%'rr"““'" costmrs{1.8.5...(s—2) 7w £(3s)

—3.5.7...(s—4)}(s - 5)}m t(}s—2)
+5.7.9...(s-6)§(s—T)}(s—9) ¢m* L (hs — 4)
—7.9.11...(s—8)} (s — 9) 3 (s—11) § (s— 13) $7" £ (45 — 6)
+9.11.13 ... (s=10)§ (s —11) 3 (5 — 13) § (s~ 15) 4 (s — 17)

x§m (e —8)— ... to [} (s+1)] terms}, .........eu.us esereenes a8) .

if 8 is an odd mbeger greater than 1. Sxmllarly, putting z=1% in (15),
we c?.ln express <I>(s, ) in terms of L‘-functlons, if & is an odd integer greater
than o
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4. Tt is also easy to shew that, if

_r W)+ (z+n 4+ 1))
Y@a)= 2 = e+ @intl)

then
Wzt Nz-1)F - (Vo —J(z-1)}*
¥ o)-4 Vie@=1)]

Zoerp@ s, 0)+ ETNCDE= D giep sy 0

8—
1!

+ (3:£.?£_:Q(i;$,1(§_:92(2ﬂ9) 210t (6 — 33, )

+ . 0 [F(SH1)] terms, cuuveniiiiiiiiiieie e 19)
provided that s is a positive odd integer. For example,

\Ir(1,w)=~}—w,

(3, z)=4yz— via; %Gy b e (20)
V.(5,x2) =16z /z—12 4/z + ;;Tz: + 248 (-4, z),)

and so on.
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NEW EXPRESSIONS FOR RIEMANN'S FUNCTIONS
£(s) AND E(1)

(Quarterly Journal of Mathematics, xLv1, 1915, 253—260)

1. The principal object of this paper is to prove that if the real parts of
a and B are positive, and a8 = =3, and ¢ is real, then
1 a « a zdz
i I P S el - .
“ {1+t'+4’“f (32+z2 TiTret 2iTiig e )e"’ 1}

B ,8’ z zdzr )
- Q-
R {1+t=+4’ﬁj 32+t’ Tirsetai Mgs™ )em 1}
_ =141t -1 -4t t\ . B
_E—l( ) )P( ) )E(é—)sm(glog;). ............... (1)
Consider the integral ‘
© gpg—Tuet
J(w)= 0 ;,,,T:idw,
where the real part of  is positive. Since
,"”sin'n"nw _ 1 11
0o €*—1 " e™—1"2 2mn’

1 11
we have J(u)+4w 47r«/u_j ".m’(em 1+§'§E)d"’

_'m, sin 'rrxy - 2w
f dwdy ) f e"’—ldw’ ...... (2)

© 1 1
and so J(u)— 4'" o u"fo xe (e”" —~ :‘2'7—:-;:) da. ......... 3)

Suppose now that s = o +1t, where 0 <o < 1. .The'n, from (3), we have

1 1
$(s-1) —_——
fo yhte~1 {J(nu) 4rrr~/(nu)} du
1- @
=n-1 $(s~4) ~—wtn
| n fo u dufo xe (e’" —) da. ...... 4)
Changing w into 1/v, we obtain

-3 —§s wox3/n -
n fl v dy , xe 13 w)da;

=n"{f:v"{dvf: Ze—v/n (eazl_ 1 i«l})d‘c
_f:v°i‘dvf:w’"( : T—I—)dw}'
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But

1 1 1 1
461 ) J (nag) = ——— =f o1 o
Jowen oo ) 2o we v - Lo
=— -1 ze~T™E
27"8\/7&-’-[ w 1duf em_ld:t
1 ® zdz 1
= — —_— §(s-1) p—wnua?
21rs\/n+fo ew_lfou *=De du
a1 o[l wna (wna2): } z de
278«/n+2fo’{1+s 118 +s)  21G+s) ~Je=—1 .(5)
Also
1 1
-1 = —xv2d/n _
: jo dvf“ e —1 "-n-w)dw
1
=n-1 8 p—wozt/n
" { (e”‘ 1 2m:)d””f”*e ™ dv
1 1
= qr¥(6=2) gy ~§(s+1) - = -
at @D -+ (1 %s)l'oxal(e’"—l 2qra;)dw
n—¥Ge+1) 8 s —1 ..
_—WP("§)F(—§")€(8), ........................ (6)
where E(s)=(s—1) T (L +48)m¥ £ (s).
Finally

n‘! ‘-lv—‘l d")jw we—l'wlﬁ( 1 SR __L) dw
Jo 0 e —1 2mzx

n‘i | @ 1
=— ——J i dvf e mvztn gy 4 n“f v dy
2 o 0 0

s

® e~ ovn
0o -1
1 ® zdz [!

=— v+ -3 —4a g=mvztn ]
. 4, dv+n fo e"’—lfov e v

1 a1 wai/n (mad/n)? zdz
"2-;m(1-;)+2n 'fo {2—-3—1!(4—3) 2!(6—-3)—'"} :

All the inversions of the order of inte‘gration, effected in the preceding
argument, are easily Justlﬁed since every integral remains convergent when
the subject of 1nbegmtlon is replaced by its modulus.

It follows from- (4)—(7) that, if the real parts of « and 3 are positive, and
a8 = m* then

- 1 “r 1 a @ o . zdz
i{ Mf( - + 5 —)
l1-s o\l+g 113+s 2!5+s |
“r 1 B =& B zdz
-3l — - = —
+8 {s 4’(3fo (2-s T1a—sT216-s "')e"’—-l}

=t (g)‘»-“ r(-g)r (f-;—l) E@). oo, ®)+
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Changing s to 4 (1 +4t) in (8), and writing as usual
EG+E)=E 1),

and equating the real and imaginary parts, we obtain the formula (1), and
also the formula

et L 4"‘]0( 3 _« T2 o 1l ) a:dw}
e Fre 1Ir+e 2110 +e ) fmo1

. B T g 1l wdx}
+8” {1+t’ ﬁf (3’+t’ i7retaiines ")em 1
1+ 4t 1—it t '
=11 = hd had .
P r( x )r( . ):(}t)cos(slqgls). ........ ©
2. We have proved (8) on the assumption that 0 < o < 1. But it can be

shewn that the formula is true for all values of s other than integral
values.

Suppose first that —1 <o < 0. The formula(3) is equivalent to
- 1 1 1
= -8 —rzh/u ————— — .
J(u)=u ]o e (e =L 2) do. ... (10)

wEe

Using this formula as we used (8) in the previous section, we can shew
that (8) is true in the strip —1 < o< 0 also. In the right-hand side of (3),
the first term in the expansion of 1/(e*"*-— 1), viz. 1/(27z), is removed, and in
that of (10) two terms are removed. By considering the corresponding
formul in which more and more terms in the expansion of 1/(e** — 1), viz.
1 1 7ax 7% =n% o'a’ kot g
9wz 27 6 90 * 945 9450 * 93555 "
are removed, we can shew that the formula (8) is true in the strips—2 <o <1,
—383<o<—2, and so on. That it is also true in the strips 1< o <2,
2<0<3,... is easily deduced from the functional equation & (s) = & (1 — s).

The formula also holds on the lines which divide the strips, except at
the special points s=Fk, where k is an integer. This follows at once from
the continuity of £(s) and the uniform convergence of the integrals in
_ question.

3. As a particular case of (9) we have, when a = 8 =,
1 J’“( 3 a Tx? m 1la* ) x dx

T+ Fre DT+e 2ITEse ) émo1
1 =14ty —1—ity _ ,
_g_ﬁr( . )I‘( ; )...({;t). ............ (1) -
But the left-hand side of (11) is equal to
e OO ® it zdx :
. f.o.{e ‘-.--hrfo (e‘”—ﬁe""+ 97 ® eV — ) em_l}costzdz.
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LJ @ we—az—wz'e-&
Hence, f {e" -4 f T dw} costzdz
0 0 -

1
1 —1 41t —1 —t\
’svwr( i )1‘( . )..(gz). ............ (12)
It follows from this and Fourier’s theorem that
—3n * we—n'e“n d
—4re {o _eT'i i &Z
-1+ 1 —at\
- W f —) P(T—)_(;t)cosmdt ....... (13)
But it is easily seen from (2) that if @ and B are positive and a8 = 7%, then
@ —Bz
a-t {1 +4af i dx} ,9—*{1 +48 ff—dw} .(14)
0 € 1

From this it follows that the left-hand side of (13) is an even function of =,
and so the formula (18) is true for all real values of n.
4. Tt can easily be shewn that, if a8 =4=* and R (s), where R (s) is the
real part of s, is greater than — 1, then
£(1-9) of =) 4 _gg_‘?l..ai (s+1)

4 cos s 8 sin s

2*sinax
(+p | | ___¥Sma Y.
+dt Hf f (@@= =1) (et - 1)d‘”d-'/-

_ =9 ge-ny ;( 5)_gie+n)

4 cos }rs 8sin 378
2 sin Bzy
(8+1)
+ Bt fo fo @ 1) (@ =D dzdy. ......(15)

From this we can shew, by arguments similar to those of § 1—2, that
if aﬂ 47* and R(s) > -1 then

F—g) D | f(-s) ahen

4cos«);-rrss—1—t 89m§1rs s+1-—t

- (azy)
+al l)ff {1 (s+3—t) 31(s+7-1)
(azy) ‘ @ dedy
tETer1I=0 '}(e""’—l)(e‘-"v—l)
(-9 D | f(os pHew
Fhcosgms s— 1+t 8smmsst 1+t

o (T _Bay _ (Bayy
"'B”f”.(o f., {ll(s+3+t) ST(s+7+0)
4o (Bayy } atdedy
BiGs+11+8) f (@=—1) (e —1)
_ a)*‘2“"‘311"{i(s—1+t)}I‘{i(s—l—-t)}
- Griy-o

x’E(.1+;+t)f(l+;—t). ......... erenn(16)
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From this we deduce that, if a8 =4=* and R (s) > — 1, then

f(l '—S) 8§ - - .
4 cos %‘FS (3 1)! T+ {a}( n +B}( l)}

C(- b)) s+1 §{s+1) (5+1)
8sinjws (s+ 1) + ¢ & +8 }

s [ azy 8+3
+et f,, .(‘, {1! (s+3y7+8

_(amyy  s+7 + |  a*dedy
3! @E+TR+E T (= 1) (e —1)
. Bay s+3
roen [ e
(Bmy)’ s+ 7 + } ot dz dy
3t (s+7p+8 (e -1)(emv-1)

_ 2D T =1+ T {$(s—1—at)]
T (s+1)p+1

t+ 18 t — 18 ay
X B ( 2 ) g (—2_) cos ({-t log .B) e an
& —8) 1 . - —
4cospms (s—=1y+12 {ak =D — Gt(+-1)}
f_(— 8) l._,t {at (+1) — G +1)}

+auo+1)fmfm{“‘”y 1
0 1! (s+3)p+¢#
_(azyy 1 } z* de dy
3! (s+7)’+t’ ) (e ~1) (e —1)

"B*('+l)/f {1' (s+3)’+t’

Bayp 1 +._} o' do dy

T8 G+t (e =) (e —1)

_ @ D{(s—1+) T {}(s—1—12) o
w (3+1)’+t’

x B (t -:w) B (t 2”) sin ({-t log B> ......... (18)

5. Proceeding as in § 3 we can shew that, if n is real, and

F(n)= f P*(s—l-(:zi)llgft(f— —.zt)}=(t§w)_(¢;i,)m”tﬁ#;

and




New expressions for Riemann’s functions £(s) and = (ty 77

then, if R(s)>1,

F(n)=} (4mr)-t =9 {f: P gziex”‘" " 2I'(s) ¢ (s) cosh n (1 — s)};

if-1<R(s)<1,
° 71 1 1 1 '
= "%(') —_— — —_—— e .
F@=3(m .8foa‘ke'“"—l we”) (,e“"'—l :ce‘")dx’ -++(20)
if-3<R(s)<-1,

Fny=glamyron | [ (i - L+ 5)
1

1 Y
x (e?e:'-“_'l‘;ﬁ*é) do =T (1+8) £(1+38) coshn (L+)f5..(21)

and so on. If, in particular, we put s =0 in (20), we obtain
144t os nt
for( ) (5 )F(Yt)}luﬂdt

=m/qrfo (e:—,"_—l-x—l,) (e-,,:}:—l—&lr) dz. ......(22)
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HIGHLY COMPOSITE NUMBERS

(Proceedings of the London Mathematical Society, 2, X1v, 1915, 347—409).

CONTENTS

I. §§
1L

Introduction and s ary of results.

L -

Elementary results concerning the order of d (N).

The order of & (V) when the prime divisors of N are known.
The order of d (N') when the number of prime divisors is known.
The order of d () when nothing is known about ¥.

IIL 6—31. The structure of kighly composite numbers.

Definition of a highly composite number.

A table of the first 102 highly composite fumbers,

First standard form of a highly composite number. The index of
the largest prime divisor.

9. Alternative standard form of a highly composite number.
10—24. The indices of the prime divisors in the first standard form.
26—27. The final primes in the second standard form.

28. The ratio of two consecutive highly composite numbers.
29. The form of d (V) for highly composite values of .

30. The order of dd (&) for highly composite values of N.
31. Some apparently paradoxical forms of d (N') in the table.

PN

IV. 32—38. Superior kighly composite numbers.

32. Definition of a superior highly composite number.

33. The exact form of a superior highly composite number.

34. The number of divisors of a superior highly composite number.

35. The maximum value of d (N )/N'= for a given value of z.

36. Consecutive superior highly composite numbers.

37. The pumber of superior highly composite numbers less than a
given number. A table of the first 50 superior highly com-
posite numbers.

38. Superior highly composite numbers and the maximum order of
d(N).

V. 39—45. Application to the determination of the order of d (X).
39. The maximum order of d ('), assuming the prime number theorem.
40—43. The maximum order of d (&), assuming the Riemann hypothesis.
44, The order of the number of superior highly composite numbers
less than .
45. Highly composite numbers between consecutive superior h:glﬂy
composite numbers, General remarks.
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VI. §§46—51. Special forms of N.

46. The maximum order of d (V) for a special form of N.

47. The maximum order of d (V) when d (¥) is a power of 2.

48. The maximum order of d (&) when the indices of the prime
divisors of &V are never less than a given integer.

49. The maximum order of d (&) when ¥ is a perfect nth power.

50. The number of divisors of the least common multiple of the first &'
natural numbers.

51. The number of divisors of &!.

52. On dd(n) and ddd (n).

I
Introduction and Summary of Results.

1. The number d () of divisors of N varies with extreme 1rregular1ty
as N tends to infinity, tending itself to infinity or remaining small according
to the form of N. In this paper I prove a large number of results which add
a good deal to our knowledge of the behaviour of d (N).

It was proved by Dirichlet* that
@(}2+d(2)+d;3)+.... +d(N) —log N+2y—1+0 (JN)T
where v is the Eulerian constant. Vorondi} and Landau§ have shewn that
the error term may be replaced by O (N—t), or indeed O (N-tlog N). It
seems not unlikely that the real value of the error is of the form O (N-t+e),
but this is as yet unproved. Mr Hardy has, however, shewn recently|! that
the equation

d1)+d @) +d@)+...+d (N i )
QLA ORLAL) ) _log ¥ +2y—1 +0(N1)

is certainly false. He has also proved that
cd)+d@)+...+d(N-1)+4d(N)-NlogN - (2y—-1)N-1}
=JN §; ‘%’? [H, {47 YN )} = Y, {4 YN )}],

where Y, is the ordinary second solution of ‘.Bessel’s equation, and

1 oy 2T wedw

'H 1 (.’L) - J (wg 1 )
and that the series on the right-hand side is the sum of the series

Nu=d
o —75:&—) cos {4my/(nN) — =},

and an absolutely and uniformly convergent series. ‘

* Werke, Vol. 2, p. 49. 1

t f=0(¢) means that a constant exists such that |f| < K¢ : f=0(¢) means that
fip0. ‘

1 Crellds Journal, Vol. 126, p. 241. § Gottinger Nachrichten, 1912,

|| Comptes Rendus, May 10, 1915. See Appendix, p. 338.-
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The “average ” order of d (N) is thus known with considerable accuracy.
In this paper I consider, not the average order of d(XN), but its maximum
order. This problem has been much less studied. It is obvious that 4

.d(N)<2yN.

It was shewn by Wigert* that

log N
Tog w1+

d(N) < 20887 @)

for all positive values of € and all suﬂiciently' large values of N, and that
-9 .
d(N)>2leleN ™ 7 (i1)
for an infinity of values of N. From (i) it follows in particular that
d(N)<N?
for all positive values of 8 and all sufficiently large values of N.

Wigert proves (i) by purely elementary reasoning, but uses the “Prime
Number Theorem+” to prove (ii). This is, however, unnecessary, the in-
equality (ii) being also capable of elementary proof. In §5 I shew, by

elementary reasoning, that
log N +0 log N
d (N) < 2loslog N ™~ (loglog N}

for all values of &N, and
log N log N
d (N) > Qloglog N +0(loglogN)=

for an infinity of values of NV. I also shew later on that, if we assume- all
known results concerning the distribution of primes, then

d(N)< gLi (log N)+ 0 [log Ne—a¥ (oglog M),
for all values of N, and

d(N)> gLi (log N)+ O[log Ne~av(loglog ¥y
for an infinity of values of N, where a is a positive constant.

I then adopt a different point of view. I define a highly composite
number as a number whose number of divisors exceeds that of all its pre-
decessors. Writing such a number in the form

N =2% 30 5%, pov,
I prove that W20:2a>...20, °
and that ap=1,
for all highly composite values of N except 4 and 36.
* Arkiv for Matematik, Vol. 3, No. 18. i
+ The theorem that (@)~

= (z) being the number of primes not exceeding 2.
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I then go on to prove that the indices near the beginning form a de-

creasing sequence in the stricter sense, i.e., that
Uy > 3> 0> ... >y,

where ) is a certain function of p.

Near the end groups of equal indices may occur, and I prove that there
are actually groups of indices equal to

1,284, ..., p

where u again is a certain function of p. I also prove that if A is fairly small
in comparison with p, then

logp.
log 2’

and that the later indices can be assigned with an error of at most unity.

arlog A ~

I prove also that two successive highly composite numbers are asympto-
tically equivalent, i.e., that the ratio of two consecutive such numbers tends
to unity. These are the most striking results. More precise ones will be
found in the body of the paper. These results give us a fairly accurate idea
of the structure of a highly composite number.

I then select from the general aggregate of highly composite numbers a
special set which I call “superior highly composite numbers.” I determine
completely the general form of all such numbers, and I shew how a com-
bination of the idea of a superior highly composite number with the
assumption of the truth of the Riemann hypothesis concerning the roots
of the {-function leads to even more precise results concerning the maximum
order of d (). These results naturally differ from all which precede in that
they depend on the truth of a hitherto unproved hypothesis.

-

IL

4

Elementary Results concerning the Order of d (N).
2. Let d(N') denote the number of divisors of IV, and let

N=p% P55 ... Da™, crreevrrirriiiiinnennn. (1)
where p,, ps, Ps, ..., Pn are a given set of n primes. Then
dN)=1+a)A+a)(1+a)...(L+ap). .eoeuennnne. (2)

From (1) we see that *
(1/n)log (P,psps ... Pa N)
=(1/n) {(1 + @) logp, + (1 +as) log p, + ... + (1 + @) log pa}
>{A+a)A+a))(1+ay)... (1+an)logp, log p;... logpa}™.
d ()< QM log (ppaps o pu (3)
logp,lo'gp,logp....logp,. _

Hence we have

for all values of . _
R.O.P.
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We shall now consider how near to this limit it is possible to make
d (N) by choice of the indices a, a,, s, ..., y. Let us suppose that

og Pn
1+a,,.—vlogp +en (m=1,23,...,n), .... (4)

where v is a large integer and —4 <€, <4. Then, from (4), it is evident

‘' that

Hence, by a well-known theorem due to Dirichlet*, it is possible to choose
values of v as large as we please and such that

lal<e |e|<e |es]<€ ..., |€na|<€ corervernninnns (6)
where e cv™V®), Now let
t=vlogpn, Sm=e€nlogPm. .covrirriiriiiiinnin. )
Then from (1), (4) and (7) we have
log (p1paps...paN) =ni + % N 8)

Similarly, from (2), (4) and (7), we see that

(&) +8) ... (E+38,)
d()= log p, log p, log ps ... log p,

{28,,,, Zom | 2o, }
t" exp, .

T o T ae
log p, log pelog ps ... log pn
_nE8 = (Z8m) | nE8, — (Z8nm)
(t + 2Sm 28m ) exp{ 2nt? + 3n? B }
log p, log pslog ps ... log py

l 1738 - ﬂN "
K%’;;;fﬁf;f,f’ 2oL (1 log W) 28,2- n(Z8nY) + .-,

in virtue of (8). From (6), (7) and (9) it follows that it is possible to choose
the indices a,, ds, ..., Gy, 80 that

{(/n)log (pypeps ... pa N }* _
d(N)= 1—0 (log N)—m-u} (10
.( .) log p, log p, ... log ps ¢ (log ) b +--(10)
where the symbol O has its ordinary meaning.

The following examples shew how close an approximation to d(N ) may

be given by the right-hand 51de of (3). If
N=2mn7Ts
then, according to (3), we have
d (V) < 1898:00000685...; ...ccocoveeerrerennns (11)

and as a matter of fact d (N)=1898. Similarly, takmg

‘  N= 2%, 3=,

b Warbe, Vol. 1,p 635.
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we have, by (3), d (N)< 204271:000000372...; ..cocevvennenenen (12)
while the actual value of d (&) is 204271. In a similar manner, when

) N =24 3%, 57,
we have, by (3), d(N)<T462000412...; cveevvnrinininininnnnns (13)
while actually d (N) = 74620.

3. Now let us suppose that, while the number n of different prime
factors of N remains fixed, the primes p,, as well as the indices a,, are
allowed to vary. It is evident that d (), considered as a function of N, is
greatest when the primes p, are the first n primes, say 2, 3, 5, ..., p, where
p is the nth prime. It therefore follows from (3) that

{1/n)log(2.8.5...p.N)}*
d(N)< log 2 log 3log5 ... logp (14)

and from (10) that it is possible to choose the indices so that

_{(/n)log(2.8.5...p.N)}* _ s
d(N) = g2 logalog5 ... logp 11~ 0o M)} ..(15)

4. Before we proceed to consider the most general case, in which nothing
is known about N, we must prove certain preliminary results. Let = ()
denote the number of primes not exceeding z, and let

Y (z)=1log2+log3+log5+...+logp,
and @ (z)=log2.log3.log5 ... logp,

where p is the largest prime not greater than z; also let ¢ () be a function
of ¢ such that ¢’(¢) is continuous between 2 and #. Then

[=® ¢’(t)dt—fs¢'(t)dt+2f5¢’(t)dt+3f7¢’(t) dt
T Je e s 5 ¢

' 11 z
, +4L ¢'(t)dt+...+7r(w)fp¢'(t)dt

={$(3) -2 +2{(R) - +3{p(") - (5}
+4{p (1)) - ¢ (D} +... + 7 (2){¢ (2) — $(p)}
=7(@)$(@)—{$(2)+¢B)+$(5)+...+$(p)} ...(16)
As an example let us suppose that ¢ (f) =log ¢t. Then we have

(@) log & — () f"“)dt .................. an

Again let us suppose that ¢ (t) =loglogt. Then we see that

'n'(t)
Tlogh & ~oorrmesoe (18)

But f: g«.)g)tdtglo;g’ ‘Wt(t;) dt+f (u(logu)’f W(t) )du'

() log log z — log & (z) = f

6—2
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Hence we have

a (z) log {%:g} —log w ()

= (2)log {r (:)(i’?g z} * lo;:c = (t) +f ( u (log u)’f =8 dt) du.

......... (19)
N(x) | _ 7 (z)logz— (x)
But  w()log {m_ e z} = (@)log {1 - }
1 Zqr (t) 1 (27w (2)
= w(w)log{l ~r@lhgals dt}< - ——f ——dt,
S 1
and so (&) log {W (w)(lf))g x} +Iogs f T 4 <0, o, (20)
Again,
S(x) | _ () logz — S ()

m@log (o) == @ log {1 + TOEESR )

=@ g {l+ g7 [(TPal> T [T a;

and so

(=) ) 1 a (t) _w(z)log z—% () [*7(£)
7 (2) log {-n' (z)logz} " logx { dt > S (z) log = J ¢ at

1 w (t)
W{ j dt} e (21)
It follows from (19), (20) aud (21) that

fz (u (log u)ﬁf () dt) du > (z) log {S Ew;} —log w ()

z (%) 1 (1) }
>f (u (log u)’,[ dt du— Y (z)loge U t dt
Now it is easily proved by elementary methods* that

1 1
™(@)=0 (log a:) S@= 2 (5) ’

and so L Zr—(—t—)dt =0 (lo—;;:) .

Honce | (ormgayl, o) = g 23} =0 {rogar

1 a®) )1 & ) A @
and S (z)logz U s dt} S (z)logz 0 {(log w)’} =0 {(log a:)'} ’
i o N @22)
w(z

* ‘See Landau, Handbuck, pp. 71 et seq.

.

Hence we see that
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5. We proceed to consider the case in which nothing is known about N.
Let
N’'=2u 8% 50 . po=,
Then it is evident that d (N) =d (N’), and that

- S(p)glog N'glog N. wovvvvvnvenininiiennnns (23)
It follows from (3) that

d(N)y=d(N')< 1 {3(p)+logN’}'(p)

(10)l er(p){s( P

og N\~ {S (p)/mr (p)i~ P

<_{2\17 S( )} w(p)l ) =(9)+0Lpi(og p¥]

= log 0 p/(logp)*] — og V| *IPTTIele P (24
{”w)}. e0 e {”w)}  -(24)

in virtue of (22) and (23). But from (17) we know that
7 () logp—3(»)=0(;L=);

log p
andso N (p)=m(p){logp+0 (1)}==(p){logS(p)+0 (D)}
1
Hence w(p)=(p) {log S (p) +0 TogS (p)]’} SN (25)

It follows from (24) and (25) that

log N ls(<) +oq s(( M

sp) og s (p)]*
d(N g{l %8 }m .
W<t sm
Writing ¢ instead of % (p), we have

¢
) i t+ (log#
cl(N)<(1+1°f‘—"N)°8 e (26)

and’ from (23) we have t<log N veveiiiiiiiiii (27)

Now, if N is a function of ¢, the order of the rlght-hand side of (26), con-
sidered as a function of N, is increased when N is decreased in comparison
with ¢, and decreased when X is increased in comparison with ¢. Thus the
most unfavourable’ hypothesis is that N, considered as a function of ¢, is as
small as is compatible with the relatlop (27). We may therefore write
log N for ¢ in (26). Hence

log N log N N

d (N) < 2iogiog O {loglog M3
for all values of N'*.

* If we assume nothing about = (z), we can shew that
log N, log Nlogloglog N

d(N) < gloglog ¥ (log log N )?
If we assume the prime number theorem, and nothing more, we can shew that
log N og N
A< 210gk,sN+ n +o(1)1(—————1°g1°sm,
If we assume that w(z)= log .1: +0-—— (log el

_ dogN___logN o
we can shew that AN < 21°8l°!N+(lcslosN)‘ ﬁ
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The inequality (28) has been proved by purely elementary reasoning.
We have not assumed, for example, the prime number theorem, expressed by
the relation

~ *

 (z) log:c .
We can also, without assuming this theorem, shew that the right-hand
side of (28) is actually the order of d(XN') for an infinity of values of N.

Let us suppose that
B N=2.3.5.T..p.

t+0

Then d(N)=2" =2 (logt)l

in virtue of (25). Since log N =Y (p) =t, we see that

log N +0 log N
d(N) QloglosN (loglogN)l

for an infinity of values of N. Hence the maximum order of d (V) is

log N 0 log N
9 ioglos ¥ O loglog )7

II1.

The Structure of Highly Composite Numbers.

6. A number N may be said to be a highly composite number, if.
d(N')< d(N) for all values of N’ less than N. It is easy to see from the
definition that, if N is highly composite and d(N’) >d (), then there is
at least one highly composite number M, such that

T N<MN. i (29)
If N and N’ are consecutive highly composite numbers, then d (M) < d (V)
for all values of M between N and N'. It is obvious that

AN)<ARN) e (30)

for all values of N. It follows from (29) and (30) that, if N is highly
composite, then there is at least one highly composite number M such
that N< M <2N. That is to say, there is at least one highly composite
number ¥, such that

z< N C2L,  ceeiveriiiiieirineeeeeinne. (31)

if z>1.

7. I do not know of any method for determining consecutive highly
composite numbers except by -trial. The following table gives the con-
secutive highly composite values of N, and the corresponding values of
d (N) and dd (), up to d (N)=10080.

The numbers marked with the asterisk in the table are called superior
highly composite numbers. Their definition and properties-will be found
in §§ 32, 33. o o
) ® ¢ ()~ (&) means that ¢ (z)/Y (2) =1 a8 £+ co.
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Highly Composite Numbers
d(N) N
2=2 *2=92
3=3 4=22
4=22 *6=2.3
6=2.3 $12=92.3
8=23 24=23,3
9=32 36=92, 32
10=2.5 48=94.3
12=22.3 #60=22.3.5
16=24 #]190=23.3.5
18=2.32 180=22.32.5
20=9%.5 240=2¢.3.5
24=23.3 #360=93.32.5
30=2.3.5 720=24.3%.5
32=95 840=2%.3.5.7
36=22. 32 1260=22.3%.5.7
40=23.5 1680=24.3.5.7
48=24.3 *9520=2%.32.5.7
60=21.3.5 *5040=2¢.32.5.7
64=28 7560=23.33.5.7
72=93,32 10080=25.32.5.7
80=24.5 15120=24.3%.5.7
84=92.3.7 20160=2%.82.5.7
90=2.32.5 25200=24. 32, 52,7
96=25. 3 27720=23.32.5.7.11
100=22, 5 45360=2¢.34.5.7
108=22. 33 50400 =25, 32,58, 7
120=23.3.5 #55440=24.32.5.7.11
128=27 83160=23.3%.5.7.11
144=24. 32 110880=95.32.5.7.11
160=25.5 166320=24.3%.5.7.11
168=23.3.7 221760=29.32.5.7.11
180=2%.3%.5 277200=2¢, 32.52.7.11
192=28.3 332640—25.3%.5.7. 11
200=28. 52 498960=2¢.3¢.5.7.11
216=23, 33 554400=25. 32.52,7.11
924=95,7 665280=25.33.5.7.11
240=24.3.5 *790720=24.3%.5.7.11.13
256=28 1081080=2%,33.5.7.11.13
288=95. 3 *1441440=25.32.5.7.11.13
320=28.5 2162160=2¢.3%.5.7.11.13
336=2¢.3.7 2882880—26.32.5.7.11.13
360=28.32.5 3603600=2¢.32.52.7.11.13
384=97.3 *4394320=95.33.5.7.11.13
400=24. 59 6486480=24.34.5.7.11.13
432=24,3° 7907200=25.32.52.7.11. 13
448=96.7 8648640=20.3%.5.7.11.13
480=25.3.3 10810800=2¢.33.52.7.11-13
504=23.3%.7 14414400=29°.32.5%,7.11.13
512=2° 17297280=97.3%.5.7.11.13
576=25.3% #21621600=25.33.59.7.11.13
600-:23.3.5* 32432400=2+.34.5%.7.11.13
640=27.5 36756720=24.3%.5.7.11.13.17
672=95.8.7, 43243200=2°.3.52.7.11.13
720=24,3%.5 61261200=24.32.52.7.11.13.17
768=25.3 73513440=26,3%.5.7.11.13.17
800=25.52 110270160=24.34.5.7.11.13.17
86498, 33 122522400=25.32.5%,7.11..13.17
. 896=97.7 33.5.7.11.18.17

87
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dd (N) d(N) N

28 960=26.3.5 183783600=2¢.33.5%.7.11.13.17
30 1008=24.32.7 245044800=20.32.5?.7.11.13.17
11 1024=210 994053760==27.33.5.7.11.13.17

24 1152=27, 3%
30 1200=2¢. 3. 5%
18 1280=28.5

28 1344=28.3.7
36 1440=25.32.5
20 1536=2°.3

21 1600=28, 52
40 1680=24.3.5.7
28 1728=28,33
18 1792=28.7

32 1920=27.3.5
36 2016=25.32.7
12 2048 =21

*367567200=26.3%.5%.7.11.13.17
551350800=24.3¢.5%.7.11.13.17
698377680=24.3%.5.7.11.13.17.19
735134400=28.33.52.7.11.13.17

1102701600=25.34.52.7.11.13.17

1396755360=25.3%.5.7.11.13.17.19
2095133040=24.34.5.7.11.13.17.19
2205403200=26.34.52.7.11.13.17 -
2327925600=25.3%.52,7.11.13.17.19
2793510720=26.3%.5.7.11.13.17.19
3491888400=24.38.5%.7.11.'13.17.19
4655851200=28.3%.5%.7.11.13.17.19
5587021440=27.3%.5.7.11.13.17.19

27 2304 =28, 32 *#6983776800=26.3%.52.7.11.13.17.19
36 2400=25. 3. 5% 10475665200=2¢.34.52.7.11.13.17.19
32 2688=27.3.7 *13967553600=26.3%.52.7.11.13.17.19
42 2880=29.3%.5 20951330400=25.34.56%.7.11.13.17.19
22 3072=210.3 27935107200=27.3%.52.7.11.13.17.19
48 3360=25.3.5.7 41902660800=26.34.52.7.11.13.17.19
32 3456=27. 3% 48886437600=25.3%.52.7%.11.13.17.19
20 3584=29.7 64250746560=20.3%.5.7.11.13.17.19.23
46 3600=2¢. 3%, 5 73329656400=2%.34.5%.72.11.13.17.19
36 3840=28.3.5 80313433200=2¢.3%.52.7.11.13.17.19.23
42 4032=28.32.7 97772875200=2%.3%.5%.7%.11.13.17.19

13 4096 =212

48 ‘| 4320=26.33.5
30 4608=29, 32

42 4800==2%.3. 5
60 5040=7.5.32. 24
36 5376=28.3.7
48 5760=27.32.5
24 6144=21.3

56 6720=28.3.5.7
36 6912=28, 33

22 7168=210,7

54 7200=25, 32, 52
40 7680=2°.3.5
48 8064=27.32.7
14 8192 =218

56 8640=26.3%.5
33 9216=210, 32

72 10080=25.32.5.7

128501493120=27.3%.5.7.11.13.17.19.23
146659312800=25.34.5%.7%.11.13.17.19
160626866400=25.33.52.7.11.13.17.19.23
240940299600=2%.3¢.53.7.11.13.17.19.23
1293318625600=2°%. 3¢.52.72.11.13.17.19
*321253732800=2%.3%.5%.7.11.13.17.19.23
481880599200=25.34,.52.7.11.13.17.19.23
642507465600=27.3%.52,7.11.13.17.19.23
963761198400=28.34.52.7.11.13.17.19.23
1124388064800=25.33%.52.72.11.13.17.19.23
1606268664000=29,3%.5%.7.11.13.17.19.23
1686582097200=24. 3¢. 52,72, 11.13.17.19.23
1927522396800=27.34.52.7.11.13.17.19.23
*2248776129600=28. 3%. 52.72.11.13.17.19.23
3212537328000=27.33.5%.7.11.13.17.19.23
3373164194400=25,34.52.72.11.13.17.19.23
4497552259200=27. 33. 52,72, 11.13.17.19.23
6746328388800=2%.34.52.72.11.13.17.19.23

8. Now let us consider what must be the nature of N in order that N
should be a highly composite number. In the first place it must be of the

form ’
262 3, 5%, 7“" ees pla’l,

where 032052052 ...20, 21, ..ol cennenes(82)
This follows at once from the fact that
d(wramBw... w,%)=d(2%.3%.5% ... p%),
for all prime values of w,, @, @, ..., @y,
+ See Appendix, p. 339.
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It follows from the definition that, if N is highly composite and
N’<N, then d(N’') must be less than d(N). For example, §N< N,
and so d(§N)< d (N). Hence

1 1 1
(+2)(+2)> (+ 53)
provided that IV is a multiple of 3.

It is convenient to write

Aa=0 (A>p). rveriiininiinan, ceeenes (33)
Thus if N is not a multiple of 5 then a, should be considered as 0.
Again, a, must be less than or equal to 2 for all values of p,. For let

P, be the prime next above p,. Then it can be shewn that P,<p,* for
all values of p,*. Now, if a,, is greater than 2, let

_¥p,
p
Then N is an integer less than WV, and so d (N’) < d (V). Hence
: (1 +ap) >2(ap, ~ 1), ’
or 3>ay,,

NI

which contradicts our hypothesis. Hence

O <2, eeeen ceeerreereernenreennensnn(34)
for all values of p,.

Now let p", p/, pi, P,, P,’ be consecutive primes in ascending order.
Then, if p, > 5, a,,» must be less than or equal to 4. For, if this were not so,
we could suppose that

,_ NP,
. N'= oy
But it can easily be shewn that, if p, > 5, then -
’ (p"y > Py;
and so N'< N and d(N")< d(N). Hence
(1 +pp) > 2 (pr = 2). evvvevererenenranne ...(85)

But since a,,> 5, it is evident that
(I +ap) <2(ap—2),

#* Tt can be proved by elementary methods that, if z > 1, there is at least one prime p
such that # < p €2r. This result is known as Bertrand’s Postulate: for a proof, see
Landau, Handbuch, p. 89. It follows at once that P, < p2 if p; > 2; and the inequality
is obviously true when p,=2. Some similar results used later in this and the next section
" may be proved in the same kind of way. It is for some purposes sufficient to know that
there is always a prime p such that x < p < 3z, and the proof of this is easier than that
of Bertrand’s Postulate. ' These inequalities are enough, for example, to shew that

log Py=log pi +0(1).
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which contradicts (85); therefore, if p, > 5, then

Upr €4 viiiiiini (36)
7.
Now let N = 1\_1)3__13 .
D
It is easy to verify that, if 5 < p, <19, then
P:'Px > pl” Py

and so N'< N and d (N')<d (&). Hence
1 +ap) (1 +ap) (1 +apr) > 2050, (2+ ay,),

1 1 1
or (1+&;)(1+&;)>2(1+1+am”).,
But from (36) we know that 1 +a,~<5. Hence

(1 + i) (1+ a-}) ST S (37)

a’Pl
From this it follows that a,, =1. For, if a, > 2, then

(1+ al) (1+ai)<21,

Py Py
in virtue of (32). This contradicts (87). Hence, if 5 < p, <19, then

O (38)
Next let N'=NP,P//(p,p/ p")
It can easily be shewn that, if p, > 11, then

P, P/< P:Px'P:";
and 8o N'< N and d (V') < d(N). Hence
(1 +ap) (1 + ap) (1 + ap) >dapap apy,

or (1 + al,,) (1 + i) (1 + i) SV (39)

From this we infer that a, must be 1. For, if a, >2, it follows from (32)

that
1 1 1
(1+ a—m)(l +Z,,}) (1+ a—;)g%,

which contradicts (39). Hence we see that, if p, >11, then

D VR (40)
It follows from (38) and (40) that, if p, > 5, then '
@=L et (41)
But if p, =2 or 3, then from (34) it is clear that
ap =1 0r 2. .. “42)

It follows that a, =1 for all highly composite numbers, except for 27,
and perhaps for certain numbers of the form 2%:3% In the latter case a > 2.
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It is easy to shew that, if a >3, 2¢. 8 cannot be highly composite. For if

we suppose that
N’ =2%1.3.5,

then it is evident that N/ < N and d (N')< d (&), and so
‘ 3(1 +a) > 4a,
or a<3.

Hence it is clear that a cannot have any other value except 2. Moreover we
can see by actual trial that 22 and 2?. 3% are highly composite. Hence

Ap,=1 i (43)
Jor all highly composite values of N save 4 and 36, when
ap =2.

Hereafter when we use this result it is to be understood that 4 and 36 are
exceptions.

9. It follows from (82) and (43) that N must be of the form

2.3.5.7T...p

x2.8.5.7...p,

x2.3.5...p

X aeuy cerenenruatieittttriaeeearataeasaaatnas (44)

where p, > p. > p; >p, > ... and the number of rows is a,.

Let P, be the prime next above p,, so that

log Py=1logp, + O (1), wererirrnnrinnannennn. (45)
in virtue of Bertrand’s Postulate. Then it is evident that
B Ap, =T, aprgr—l;' ........................... (46)
and so ap, € Gp,— L i 47)
It is to be understood that ap, =0, i (48)

in virtue of (88). _
It is clear from the form of (44) that r can never exceed ay, and that
Doy =N i (49)

10. Now let ’ N = ﬁ o [log »/1og A] .

14
where v < p,, 80 that N* is an integer. Then it is evident that N’ < N and
d(N')<d(N), and so

]
A+ad(1+an) >av(1 +ar+ [lg%il)

log v
or . » 1 + aA > a, [m] e eeesccccsccce peeesccscccnne (50) -

Cw [#]-denotes as usual the integral part of z.



92 Highly Composite Numbers

Since the right-hand side vanishes when » >p,, we see that (50) is true for
all values of A and »*.

Again let N’ = Ny 1 Uoswflogd]

where [log puflogA] < as, so that N’ is an integer. Then it is evident that
N’'< N and d(N') < d (), and so

1o, )
(1+a) (1+a)>2+a) (a,\ - [10%]) et (51)
Since the right-hand side is less than or equal to 0 when

aa <[log u/logA],

we see that (51) is true_for all values of A and x. From (51) it evidently
follows that

log (M) 52
(1+aa)<(2+u,‘)[ Togh | e (52)
From (50) and (52) it is clear that
log 1
a, [12ng << +(2+a,) [ 8 ‘;] ) reerereeens (53)

for all values of A, u and ».

Now let us suppose that v=p, and p=P,, so that a,=1 and a,=0.
Then we see that

for all values of A. Thus, for example, we have
n=3, 1<a<4;
D=5, 2<a<4;
D=1 2<ax6;
p=11, 8<a,<6;
and so on. It follows from (54) that, if A < p,, then
arlogA=0(logp), axlogh#o(logp). ..eooevnnnnn (55)
11. Again let
N’ = N [vi@+ax+a,) logu/log o] #-1-[v{(1+a;‘jt-a,‘)losxllosn}],
and let us assume for the moment that
a, > V{(1 +ax+ a,) log A/flog u},

in order that N’ way be an integer. Then N'<N and d(N")<d(N),
and so

A+a) 1 +a)> {1 +ar+[W{(1+ar+a,)loguflog M}
x {ax — [V{(1 + aa + a,) log M/log u}1}
> {aa+W{(1+as+a,)log pflog A}

x{ap= V{1 +ar+a,)logrflogul}. ...... (56)
% That is to say all prime values.of A and », since A in a, is by definition prime.
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It is evident that the right-hand side of (56) becomes negative when
@ < V{(1+ar +,)log A/log u},

while the left-hand side remains positive, and so the result is still true.
Hence

a, logpu—aylogh < 2 V{(1 +ar +a,)loghlog ul, ......... (57)
for all values of A and u. Interchanging A and x in (57), we obtain
axlog A —a, log p < 24/{(1 + ax + a,)logrlog ul. ......... (58)
From (57) and (58) it evidently follows that
|aalogh —aulog u| < 2W/{(1+ar+ a) loghlogul, ...... (59)

for all values of A and u. It follows from this and (55) that, if A and u are
neither greater than p,, then

axlog A —a,log u= 0 4/{log p,log (M)}, ............ (60)
and so that, if log A = o (log p,), then
a,log 2 ~a,log3 ~ a;log 5~ ... ~axlogh. ............ (61)

12. It can easily be shewn by elementary algebra that, if z, y, m and n
are not negative, and if
|z —y|< 24/(mz + ny + mn),

then [V(@+n) =y +m)| <4/ (m+")5} ................. (62)
| V(@4+n)— o/ (m+n)| < A/(y+m).
From (62) and (59) it follows that
|1+ ) log N — V(L +a,) log 4} | < V{log (), --....(63)
and W@ +ax) log A} — w{log M)} | < I +aw) logp), ...... (64)

for all values of A and u. If, in particular, we put x =2 in (63), we obtain
V(1 + a5) log 2} — v/ {log (2M)} < w{(1 + aa) log A}
! < /{(1 + a,) log 2} + ¥/{log (20)}, ...(65)
for all values of A. Again, from (63), we have
(1 + a)) log A < (W{(1 + a,) log v} + +/{log (Av)}),
or axlog A < (1 +a,)logv +log v+ 24/{(1 +a,) log vlog (Av)}. ...(66)
Now let us suppose that A < u#. Then, from (66), it follows that
axlog A +log p < (1 + a,) log v + log (uv) + 2/{(1 + a,) log v log (Av)}
< (1 +a,)log v + log (uv) + 24/{(1 + a,) log v log (uv)}

={ {(1 +a,)logu} +vlog (up)l, .eooinnniiinnnnnnnn. (67)
with the condition that A < x. Similarly we can shew that
axlog A + log i > {/{(1 + a,) log v} — ylog (u»)}3, ......... 7).

with the condition that A-<u.
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13. Now let
N = g gllos Mir (log 2] gllog i (logi) [og e (w)1og w1

b

where 7 (u)logp <log A <log p,. Then it is evident that N’ is an integer
less than N, and so d (N') < d (N). Hence

(1+ a%) A+ a) @ +a)(l+a)...(L+a,)
{"“Ter:))glsz +w<L°>g£gs}---{méfﬁi‘gp};

e 3 e 83 e 83

< (1+ %)(a,log2 + log 2) (aslog 3 + log 3) ... (a, log u + log u)

that is

< (1 + %\) (aslog 2 + log ) (a;log 3 + log 1) ... (aulog u + log u).

In other words,

1
(1)
log A og A
BEATATNE SRR
> 1+aglog2+log4u 1+a,log3+logy. 1+a,logp,+logp.

log A o w(w)
> ‘[1 + %" } ........................ (68)
Wil +a,) log v} + vlog (u)?)  °

where v is any prime, in virtue of (67). From (68) it follows that

e-.(69)

V{1 + a,) log v} + vlog (uv) >

provided that 7 () log pu < log A < log p,.

14. Again let
— =1~ [log Af{r (1) log2}] o —1~[logA/{x (x)log 3} -1- [l 1
N'=NA2 . 3 mGNorS)] 1= LlogMir(wlog k]

where 4 <-p, and A > . Let us assume for the moment that

a.log x >

( )
for all values of « less than or equal to y, so that N’is an .integer,
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Then, by arguments similar to those of the previous section, we can shew

that
) 108 A )
2+ aa Wil +a) log v} — log (u)JF e eeeeeaens

From this it follows that

log A
1
,,r(“)"‘ og 1

14+ a lr@) [ ?
B (2 + aa)

provided that 4 < p, and p<\. The condition that
a.log x > {log M (w)}
is unnecessary because we know from (67’) that

| V{1 + a,) log v} — ¥log (pv) | < V(e log « + log ) < «/{ + log ;4}

|1 +a,) log »] — y/log (ur) | <

..(T1)

when - a. log « < {log M (w)},
and the last term in (72) is evidently less than the right-hand side of (71).

16. We shall consider in this and the following sections some important
deductions from the preceding formule. Putting »=2 in (69) and (71), we
obtain

Vi +ayloge> /T
(1 +) -1

provided that o (u) log u < log A <logp,, and

— log (2p), ...(73)

log A
I
( )+ og p

{ I-TM_”'W +\/10g (2u), ...(714)

L - (2 + ax)

provided that u <p,, and u <\. Now supposing that A =p, in (73), and
A = P, in (74), we obtain

Vi + a5)log 2} <

-

2
q/{(l +ay) log 2} > T «/log (6773 P (75)

provided that 7 (u) log 4 < log p,, and

; 'frg(u)l‘ +log
' :\/{(1 +a,)log 2} < Tow |t Vieg (2u), «........ (76)
. sprovided that % €. - In (75) and{76) 4 can.bhe-so chosen as to obtain the
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best possible inequality for a,. If p, is too small, we may abandon this result

in favour of
' log p, "log P,
l:log2} $a2$2l-log2:|, ........................ (77)

which is obtained from (54) by putting A = 2.

After having obtained in this way what information we can about a,,
we may use (73) and (74) to obtain information about a,. Here also we
have to choose u so as to obtain the best possible inequality for ax. But if A
is too small we may, instead of this, use

V{1 + a;) log 2} — /log (27) < ¥{(1 + aa) log A}
< W1 + a) log 2} + ylog (2M), ......(T8)

which is obtained by putting x =2 in (63).

16. Now let us consider the order of a,. From (73) it is evident that,
if or () log u < log A < log p,, then

(u) B~
(1 + ag) log 2 +log (2u) + 2v/{(1 + a,) log 2 log (2u)} > e
(1 + —) -
. (2N
But we know that for positive valuesofz, ... (79)
1
eTi_5+0(1)’ e‘ oy O()
log by 1 log A (w)
Hence - +0(Q1)
e 7 (W) { T
Wleg) -1 " (14 5) }
log A log A
i ofe)
log (1 + ) W)’
. log u _ a (w) log p
and —l—lw:v.r—i—o{l 1 }=0(/u1x)-
C ()T ()

Again from (55) we know that a;= O(logp,). Hence (79) may be
written as
a,log2+0 J(log i log ) + O (log )

log A 1
;;g—(-‘;-’?:%-) +0 { °’(3#’;} + 0 (uay). ...(80)

But log u= 0 (nay),

plog p,
1 logx caplogh= O( gx)’
log 0{logxlog,u,} :
ear{p).: » ”
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. °

) loghlogp ulogp, .
Again ' s + log A >2y(log p log 1)
and so \/(log_pl log ”,) = O (log X”,lOg | d + “lioggfl) .

+Hence (80) may be replaced by 4
log x 1 + 0 (]og xl‘log “ + I"li)oggfl) 9 seecee (81)
log (1 + E; )

provided that o (u)log u < log A <log p,. Similarly, from (74), we can shew
that

aglog2>

g log2 < 1 m log

og (1+ g,

provided that u<p, and x<\. Now supposing that A =p, in (81), and
A =P, in (82), and also that

w=04(lggp loglogp,), u o4(logp, loglogp,)*,

log» . 4 (IOg Mogp  plog Pl) ,..(82)
)

we obtain aglog 2> %?g%* 0 v/(log p, log log p,),
log p,
aslog 2 % + 0 v/(log p, log log p,).

From (83) it evidently follows that
aylog2= ggp 14 04/(logp loglogpy). weeeveeennnnnns (84)
And it follows from this and (60) that if > <p, then

arlogh = + 0 {v(log p, log A) + v/(log p, log log p,)}. ......(85)

log
't log g
Hence, if log A =0 (log p,), we have .
log p, '
aglog2 ~aylog3 ~ a;log5 ~ ... ~arlogh ~ T(;g—2' ceeneen.(86)

17. The relatjons (86) give us information about the order of a, when
A ls suﬂiclently small eompared to p,, in fact, when A is of the form p,°,
where e—»0. Such values of A constitute but a small part of its total range
of variation, and it is clear that further formule must be proved before we
can gain an adequate idea\of the general behaviour of ax. From (81), (82)

* £ 0(¢) is to be understood as meaning that | f| > K¢, where K is a cohstsnt and
f+ 0(p)as meamng that|fl/¢-—m They are not the mere negatlons off=o(¢) and’
f=0(¢) . T .

‘R.C.P. o L ) ‘ ’ 7
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and (84) it follows that
log A log 2 log A log u . wlog p,
<log2 *? Togh
log (1 + ) g # g

log 7& S lloggl 0 {log Alog p + ,allog {),
log (1 +e—) %8 » 8

+ v/(log p, log log p,)}

+4/(log p, log log pl)} ,

provided that  (u)log 4 <logA <logp,. From this we can easily shew that
if or (u) log p < log A <log p, then -

o< (@S 1y Q {IOgn 4 elogm  V(logp loglog px)}’

(log Ay loga .(88)
log Mlog 2, _ 1~ logp  plogp:  w(log p, loglog pi)
a3 (2 1)-i - 1+o{ + ook, JOER DR :
Now let us suppose that ,
0g P

logx+oJ(log logp,) ’
Then we can choose u so that

= log log s }

p=0 {log)\. «/ ( o ).
log log p ){
# ””’{bg"\/( ek
Now it is clear that log u = O (log log p,), and so
logp _ 0 (log log p,) 4I»\/(log P, log log pl)}
B p log 2 ’
plogp, - (W(log p,loglog p,)}
and (og ny =~ 0 { Tog A
From this and (88) it follows that, if
log D

log#0 ’\/ log log p, pl

then ar< (2N 1)y {V(log 1;:)107% log p. l)}
B b (89)

I AIOE Dy 1y=1_ ¥(log p, log log p))
ar>(2 1) " 1+0 {———————logx

Now we shall divide the primes from 2 to p, into five ranges thus

vV v 11 o RANGE I \

o ote@M o2} etcapurty
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‘We shall use the inequalities (89) to specify the behaviour of @, in ranges
I and II, and the formula (85) in ranges IV and V. Range IIT we shall
deal with differently, by a different choice of x in the inequalities (88).
We can easily see that each result in the following sections gives the most
information in-its particular range.

18. Range I: log A # O ¥/(log p, log log p,)*.

Let A =[(28N8P _ 1)),
and let C (2N — 1)1 ¢ ¢,
where —} < e\ < #, be an integer, so that
(QUEMEP _ 1) 1= A 41 —€) et (90)
when ¢, >0, and (2FMEP 1) = Amey e (91)
when e, <0, By our supposition we have .
(I%ﬂ‘og’i PEP) _ (1), oo (92)

First let us consider the case in which

{«/(log p, log log p,)
at0 { loga } ’

log p, log |
VCogls g"i BPY _ 5(e2).  wrrerreerrreerereens (93)

It follows from (89), (90), and (93) that, if €,> 0, then

80 that

1-—-
N ﬁfﬂ +f;(’;;’ (e, } ........................ (94)
Smce 0<er<$,anda, and A are integers, it follows from (94) that
. A<D, GSA—L oo (95)
Hence am=A ... eeereeneeensiraranens (96)
Similarly from (89), (91), and (93) we see that, if ex < 0, then
ns SoTptol . } ........................ o7

Since — < €2 <0, it follows from (97) that the inequalities (95), and there-
fore the equatlon (96), still hold. Hence (96) holds whenever

' v(log p, loglog p,)
: eﬂeo{ e } S 1

* We can with a little trouble replace all equations of the.type =0 (¢b) which cocur
by inequalities of the type | < K¢, with definite numerical constants. This would
-enable us to extend all the different ranges a little. For example, an equation true for
logx # 0J/(log p1) v
wed :by..n mqu.myme for! log A > & /(log py), where=X ik m
; %08 %) rould e soplaced by log A < #/lagpis five




'J'

R Vﬁl‘fgwoglogpx)
GA—O{ log).’ ~ }, VeWradseborecasasisne (100)

so that ex=0(1), in virtue of (92). I‘t follows from this and (89) and (90)
that, if ex > 0, then

- :ﬁi; (”;)" (1)’} ........................ (101)
Hence an<A+1, a,z2A;
and 80 - - . aam=A oF AFL i (102)
Similarly from (89), (91), and-(100), we see that, if e, < 0, then
Zi;ﬁti(}-t(l)} ........................ (103)
.Henee' = o<, ma>A-1;
and so a=Aor A=1, .o (104)

For example, let us suppose that it is required to find a, when A ~ p.%.
We have

(2VBMOBP _ 1)=1 — (28— 1)1+ 0 (1) =11048 ... + 0 (1).
It is evident that A =11 and ex#0(1). Hence a,=11.
19. The results in the previous section may be rewritten with slight

modifications, in order that the transition of @, from one value to another
may be more clearly expressed. Let

log (1+1/z)

A=p, TE2 (105)
and let 2 + ¢,, where — § < e,< }, be an integer. Then the range of z which
we are now considering is -

s=0 \/ (—1515-1"—) e (106)
log log p,
and the results of the previous section may be stated as follows. If
log log p,)
? —2—2E0 N e 107
] %O{w\/( £ } ..(107)
then Aa=[Z] ceriiiiiii (108)
As a particular case of this we have
ap= [Q],
when ¢, #0(1). But if
log log o\
=0 { J B e 1 PP 109
€x z ( log p! I ( )
then when e, >0 _ ar=[x] or [@+1]; .ceoviiiiriininiine, (110)

and when e,< 0 ar=[z] or [z~-1] ....... [N (110)
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20. Range II: log A = 0 ¥/(log p, log log p,).}
log
log# 0\/ (ldg log p;) ’
From (89) it follows that
ar = (28N08P 1)1 O{Mﬁ’gﬁfl__%_@} ......... (111)
But (2VsMos: _, 1)ﬂ-=13’—g% +0().
Hence arlogA = E&?—‘ + 0 y(log ploglogp,). ............ (112)
As an example we may suppose that . |
A ~ ¥ osP)
Then from (112) it follows that
log p,
a= V(l:gg )+ 0 V/(log log py).
21. Range II:’ 1ogx-o\/(ﬁl°—fq%‘),}
logh#o0 (]ogj),)‘. . A

Let us suppose that x =0 (1) in (88). Then we soe that
log py _+0(1) +0{hgn Lplogm +«/(logpxloghgp:)} 113)

log2l og A (log Ay log A
log p: logplogh | ul ‘
or aylogh= 1°ggp2+o{°g"“ g +”lo°g7{”+4(1ogp, 1oglogp,)} ..(114)
Now : l__&___o plog) =0(logA)=0 logp,)
“__&103 0(12&2:)
log loga/”’
(log p,loglog p) = 0(l ok,
Hence : a,‘logxa +0(log7\) SN ¢ b 1.5
For example, when .. .. 7& 0("’”‘)
- _es_>
we}‘%v'e . - -log2 . +0(1°gp‘)*
22. Baunge IV: !bg}\.sﬁ(logp,)*, &

" logd sﬁaﬂoclogpxk
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As a.nexamplem thxs mnge, when we mpposs that-- SRR S5 R N,
A~ Gm)i‘ . R
we obta.in from (116)
_ (logpy) t
ar= Tog 2 +0(ogp)*.
23. Range V: log A = O (log log p,).
From (85) it follows that ‘
axlog A= ll(:% + 0V (log p, log l;)gp,): ............ 117)
For example, we may suppose that \
A~ 'l (log h‘ﬁ).
log py
Then %= gz woglogpy * O V(oEP)

24 Let A’ be the prime next below A, so that A’ <A —1. Then it follows
from (63) that

VI +ax) log N} —=v/{(1 + ax) log A} >— log (). ......(118)
Hence V{1 + ax)log(A = 1)} —/{(1 +aa) log A} > —w/{21logA}. ...(119)

2
But log(A—1) <logh —= <log7x(1 27u.log7\.)
and so (119) may be replaced by
1 ,
V(L +ax)—w(L +a,.)>-‘/2(lij:‘;‘)- ;S (120)
But from (54) we know that :
ogp] logp  logpy
1+av>1+ [‘logx] > Togn ~ Togh~
From this and (120) it follows that
_ N(logp,)
VA +ar)—vA +ar)> I (og )F N2 e (121)

Now let us suppose that A* (log\)* < 4log p;. Then, from (121), we have
VI +ar) =1 +ar)>0,

or N (122)
From (122) it follows that, if A? (log A)* < 4 log py, then
A3 D> Ay S As>Ar> cco DBre cvneosrecnsecesconans (123)

In other words, in a large highly composite number
2%, 3% 5% 79, .. p,
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the indices comparatively near the beginning form a decreasing sequence wn
the strict sense whwh Jorbids equality. Later on groups of equal indices will
in general occur.

To sum up, we have obtained fairly accurate information about a. for
all possible values of X. The range I is by far the most extensive, and
throughout this range aa is-known with an error never exceeding 1. The
formulee (86) hold throughout a range which includes all the remaining
ranges II—V, and a considerable part of I as well, while we have obtained
more precise formulée for each individual range IT—V.

26. Now let us consider the nature of p,. It is evident that r cannot
exceed a,; l.e., r cannot exceed :

log p,
(log}‘)) + 0 ¥/(log p, log log ) (124)

From (55) it evidently follows that
tp logpr=0(ogp),} . (125)
ap, log p,# o (log py); !

(1+ap,)logp.=0 (logpl)’}
(1+ ap,)log p, # o (log p,).

But from (46) we know that

@y, log p, > 7 log p,, L
(1 + ap,)log prgrlogp,.} ..................... (127)

From (125)—(127) it follows that

rlog p, = O (log p,),
rlogp,'#o(iogpl);} ........................ (128)
and ap,= 0(r),
g, # 0 (). } ........................... (129)

26. Supposing that A =p, in (81) and A = P, in (82), and remembering
(128), we see that, if 7 = o (log p,), then

log (1+—1— ) > 10*’i{uo(l"‘ﬁu TH )} ......... (130)

Uy, = aylog2 log p,
1 log P, | log
and log (1 + i U,P) < ot 1(1 +0 (-7;—+ I )} ...... (131)

But, from (47), we have
/ 1 1
1 = e
0g<l + ap,)gl()g(l + 1 +ap,.)'
Also we know that
log P,=1log p,+ O (1) =log p, {1 +0 (l .

olpr)} log 7 {1 +0 (logpn)}
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Hence (131) may be replaced by

1 log p, I logp , }
...... 132
log(l+a,,) a,log2(1+0( T +logp1) (132)
From (130) and (182) it is evident that
1y _ logp, { logp , } 138
log(1+a,,)—azlog2 1+0<7‘p, logp;) o (133)

In a similar manner
log p, { logp )}
log (1+ - ap,.)_ abr i+ 0( Bt e (138

Now supposing that ru=o(logp)), } . (135)
T e
and dividing (134) by (183), we have

log (1 +

1
Sl ot ).
log(1+—> #o 08P
Gy

SN logp , _p / }
or 1 Trap = +a,p,.+0{( " +1ngl) Ay 5
. 1 _ 1 ligﬁ T )}
that is 1+aP,-_ap1-{1+O( " +1—_ng1 f
- logu 7
Hence ap=ap,+1+ 0( u + lsng ) eeeeeereneeans (136)
in virtue of (129). But ap,<7r—1, and so
logu 7w )
<r+0(25+—"—). . 137
App ST+ ( u " logp (137)
But we know that a,, >7. Hence it is clear that
- logu , ru
ap=r+0 (B2 g +logp,> .................. (138)
From this and (136) it follows that
—r— logp ﬁ)
ap,=r—1+ 0( B 4 o) o (139)

provided that the conditions (135) are satisfied.
Now let us suppose that r=o04+/(logp,). Then we can choose p such
that 7%u = o (log p,) and u # O (1). Consequently we have ’

It r2
°g“ o(1), @%w(l);

and so it follows from (138) and (139) that
ap=1+ap,=7, ........ T (140)
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provided that r=o04/(logp,). From this it is clear that, if r=o04/(logp)),
then

‘ PIOPa>PaSPi> e DPre ceeirnineneniieinns (141)
In other words, tn a large highly composite number :

902 30 5ms . p,,
the indices comparatively near the end form a sequence of the type
.5...4...8...2... L

Near the beginning gaps in the indices will in general occur.

Again, let us suppose that r=o(logp,), r #0+/(logp,), and p=0(1)
in (138) and (189). Then we see that

ap=7r+0 (lo;p,) ,

r!
ap,=7r+0 (logpl) ;
provided that r=o0(logp,) and r+#o0+/(logp,). But when r+#o(logp,), we

shall use the general result, viz.,

ap"=0(r)’ aPr%O(T%
ao=0(r) amibo (r),} ..................... (143)

which is true for all values of r except 1.

27. It follows from (87) and (128) that

log pr log Py j log p, log u
T

+ ru + +/(log p, log logpl)} ,

log (1 N ) STog2 * l
Apr
log P, T > 11(;21;’ 0 {log}: :)g g, v(log p, log log p,)} ,
log (1 *1van ar ) |

with the condition that ru = o(logpl) From this it can easily be shewn, by
arguments similar to those used in the beginning of the previous section,
that

logp, _logp { log p, log p }
log(1+1/r) " log2 +0 T +7u + 4/(log p, log log p,)¢, ...(145)

provided that ru =o (log p,).
Now let us suppose that » = o (log p,); then we can choose x such that

log pv
p=o (BB, L£0Q).
Consequently =10 (log p,) and log =0 (), and so

logp logu _
—a - o (log ).
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From these relations and (145) it follows that, ¢f » = o (log p,), then

logp. _logp:,
TR i)~ Tty e (146)
that 1s to say that, if r = o (log p,), then
logp, _ logp log p, logp, .. (147)

Tog2 ~Tog(1+3) log(1+3) "~ log(@+1/r)
Again let us suppose that 7= 0+/(logp, loglog p,) in (145). Then it is

possible to choose x such that
ru= 0 y/(log p, log log p,), 148
oo e | E—— (148)

It is evident that log = O (loglog p,), and so

logpilogu _ (log P log log pl)
T - T
in virtue of (148). Hence

logp, _logp,
gl +1/r) ~ log2 + 0 /(logp,loglogp)), ......... (149)

provided that r=0 y/(log p,loglogp,).

= 0 #/(log p, log log p,),

Now let us suppose that » = o (log py), r # 0 /(log p, log log p,), and pu = oQ),
in (145). Then it is evident that

logp,=0(r?), +(logp,loglogp,)=0(r),

logpilogu_ o (logpr\ _
and " —-O( - )—O(r).
logp, _logp,
Hence we see that gL+ 1/~ Tog2 1 () N (150)
if r=o(logp), 7+ 04/(logp,loglogp,).

But, if r # 0 (log p,), we see from (128) that
logp.  _
g +1jr) 0 (log py), l
log p-
g e e p |

From (150) and (151) it follows that, if » # 0 4/(log p, log log p,), then

logp. _logp, :
log(T+1/r) log2 +0();
and from (149) and (152) that, if » =0 (log p,), then

logp, logp,
log(1+1/r) log2’
in agreement with (147). This result will, in general, fail for the largest
possible values of r, which are of order log p,.
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It must be remembered that all the results involving p, may be written
in terms of N, since p,= O (log N') and p, # o (log NV), and consequently
logp,=loglog N+ 0(1). .covvinnnnnnnn. (153)
28. We shall now prove that successive highly composite numbers are

asymptotically equivalent. Let m and n be any two positive integers which
are prime to each other, such that

logmn=o0(logp,)=o0(loglog N); ....cc.ocen... (154)
and let %= 28,85 55 ... 0%, L.oeieriiieeirennnns (155)
Then it is evident that
mn =281 3% 5% oldl, ... (156)
Hence Srlog A =0 (logmn)=o0(logp,)=o0(arlog); ......... (157)
so that S\ =o0(axn).
Now d(’—”N)=d(N)(1+ 2, )(1+ 4, ) (1+ % ) (158)
: n 1+a, 1+a;/ " 1+ap

Bat, from (60), we know that
aa log A =a,log 2 + O 4/(log p, log \).

5 Sxlog log A \}
Hence 1+ ]Tm—1+a210g2+0{|8)‘|<10gp1)}

1, Slogh log \/ log @
_1+a210g2+0{|8"‘logp (logpl)}
_ Sxlogn |8A log A \/ log g S log "’}
= exp {az log 2 +0 log p, (log p,) +0 ( log p, )
_ Sxlogn |8,J10g7\\/ log mn
—exp {% e+ 0 o ( = )} A (159)
It follows from (155), (156), (158), and (159) that
d(%"N>=d(N) {8,log2+8,10g3+...+8‘°logQ

a,log 2
+0 |8,]log 2+ (8| log8 + ... +18p|log @ (log mn)}
log p, log p,
10g (mfn) log mn)l
= d(N)g azlog 2 log p,
=d(N)ea aogs (s 3+ oremn SO (160)

Putting m =n + 1, we see that, if
log n =0 (log p,) =0 (log log NV),
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then d {N (1 + 1}')} = J(N) e a—.l%g"g{los(l + :'»)"O(M"Jll:_;)}

1rofnions  (oglee )}

= d(I) (1 + ;‘) arlog Y e (161)

Now it is possible to choose n such that
n(log n)t # 0 /(loglog V),

and 1+O{nlognJ(h;——§;TV)}>O;
that is to say d {N (1 + %)} SADV ) veeeeiiiiiiiiiienenens (162)

From this and (29) it follows that, if N is a highly composite number, then the
next highly composite number is of the form

N (log log log N')H 163
N+0{ V(loglog 1) } ..................... (163)

Hence the ratio of two consecutive highly composite numbers tends to unity.

It follows from (163) that the number of highly composite numbers not
exceeding z is not of the form

o log « 4/(log log w)}
(logloglogz)t |-
29. Now let us consider the nature of d(N) for highly composite values
of N. From (44) we see that
A(N)=2"Po=x@d Jrd—xp) 4= @-*(2) (1+a,). ...(164)
From this it follows that :

d(N)=2%4.3%.5% .. 0%, ...coovvnniiinnnn (165)
where = is the largest prime not exceeding 1 +a,; and
=T (Pay) + O (Pa) ovvveniniiiiniininnnn, (166)

It also follows that, if @, @;, @s,...,@r are a given set of primes, then a
number & can be found such that the equation

A(N)=pLr . ofr. 0f ..., 9Lk ... PiPA

is impossible if N is a highly composite number and B,>f. We may
state this roughly by saying that as N (a highly composite number) tends
to infinity, then, not merely in N itself, but also in d (&), the number of
prime factors, as well as the indices, must tend to infinity. In particular
such an equation as _ -
A(N)=k.2™ i (167)
where & is fixed, becomes impossible when m exceeds a certain limit depend-
ing on k.



Highly Composite Numbers 109

It is easily seen from (153), (164), and (165) that

=01 =0(logp) =0(loglog M) =0 loglog d )L | g5
w # 0 (a;) = o (log p,) = o (loglog N)= o {loglogd (N)}. |~

It follows from (147) that if A =0 (log p,) then
log a, log a, log a, log aa

~ ~ ~ e~ —2 (1
log(1—-%) log(1—1%) log(1-—1%) log (1 —1/\) (169)
Similarly, from (149), it follows that if A= 0 /(log p, log log p,) then
log(1+ay)  logp,
m lOg 2 +0 \/(logpl lOg lngl) ......... (170)

Again, from (152), we see that if A # 0 /(log p, log log p,) then

log(1+a) _ logp,
log(1=1/n)~ "Tog2 T O o, 171)

In the left-hand side we cannot write ax instead of 1+ ay, as a, may be zero
for a few values of \.

From (165) and (170) we can shew that
logd(N)=a,log2+ 0 (a5), logd (N)#a,log 2+ 0(as);

log §
and so logd(N)=a,log2 +e logz (P HOvloeploglorpy) (172)
But from (163) we see that
log log d (') =log p, + O (log log p,).

From this and (172) it follows that

1083_‘_ \/{l(mlosloxd(l\’)
a,log 2 = log d (V) —{log d (N )} &2 loglogdV) J_ . (173)

30. Now we shall consider the order of dd(XN) for highly composite
values of N. It follows from (165) that
logdd (N)=log (1 + &) +log (1 +a5) + ... + log (1 + ag). ...(174)
Now let A, M, 1", ... be consecutive primes in ascending order, and let
A = 0 v/(log p, log log p,),
A # 0 «/(log p, log log p,).
Then, from (174), we have
logdd(N)=log(l1+a;) +log(l+a;) +...+log(l+au)
+log(1+av)+log(1+arx)+ ... +log (1l + ag). ~.(175)
* More precisely @~a;. But this involves the assumption that two consecutive
primes are asymptotically equivalent. This follows at once from the prime number
theorem. It appears probable that such a result cannot really be as deep as the prime

number theorem, but nobody has succeeded up to now in proving it by elementary
reasoning.
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But, from (170), we have
log(1+a)+log(l+a)+...+log (1+an)

—- g {a-pa-pa-p..(1-3)

lo

+ 0 v/(log p, log logpx)IOg{(l -HA-p ... (1 - %)1.

It can be shewn, without assuming the prime number theorem*, that

—log{(l -HA-HA-P... (1 f},)}=l°gl°gp+“’+ O(IB;“IJ)’

...... (177)
where « is the Eulerian constant. Hence
; 1
log {(1 = H(T=H (1 = ... (1- 2)} =0 (log log p.
From this and (176) it follows that
log (1 + &) +log (1 +a;)+ ... +log (1 + &)
—_lgm; - 1
= e log {(1_;,)(1 B(1- i)}
+ 0 {¥/(log p, log log p,) log log A}
_ logp, 1
= Lo log {(1 —HA-B ... (1 - ,-\)}
+ 0 {/(log p, log log p,) logloglog p\}. ......eent. (178)

Again, from (152), we see that
log (1 +ax) +log(1 +ax) + ... +log (1 + ag)

-~ {(1-2) 0~ 2)- (- 3)
+0{x’log(1— xl—,)+)~"log(1— )%) + ... +wlog(1— %_)}

=_]l£(’)gg_i’;llog{(1—%)(1—%,)...(1—:—’)}+O{vr(w)—r(h)}

_ log P _ 1 _ 1 1 logp,
-~ g {(1 =) (1 x_) (1 - E)} +0 (l—-og logp,)‘ ...(179)
From (175), (178), and (179) it follows that
__logm _ _ 1)
log dd ()=~ 55! log {(1 Ha-9..(1-3);
+ O {¥/(log p, log log p,) log log log p.}
log p, 1 1 4 1 log p,
" log 2 log {(1 - 7\—.') (1 B ?) (1 B ;)} +0 (loglogpx)

* See Landau, Handbuck, p. 139.
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__logp, _ _1 } _logp,
=~ 12 1og {(1 D -1)... (1 w) +0 (log logp)
log p,

1 logp
log 2 {log logw ++0 (log m-)} +0 (log log p,/

_ logp 1 } logp,
" log2 {log loglog pr +7+0 (log log pl) +0 (log log pl)

log log N 1
“log2 {log logloglog N +y+ O (——-————————log Tog Tog N)} ,

in virtue of (177), (168), and (163). Hence, if N is a highly composite

number, then .
1 1
dd (V) = (log N)o&® Uostonloslos ¥+ 7.+ 0( o)} ...(181)

31. It may be interesting to note that, as far as the table is constructed,
2,2,2, ..,2% 3,3.23.2,..,,3.21 5.25.2%..,5.2
7.25,7.25 ..., 7.2° 9,9.2,9.2, ..., 9.29,
and so on, occur as values of d (). But we know from §29 that k.2m
cannot be the value of d () for sufficiently large values of m; and so
numbers of the form k.2™ which occur as the value of d(N) in the table

must disappear sooner or later when the table is extended.

Thus numbers of the form 5.2™ have begun to disappear in the table
itself. The powers of 2 disappear at any rate from 2'® onwards. ‘The least
number having 2 divisors is

27.3°.5°.7.11.13 ... 41.48,
while the smaller number, viz.,
28,34.5%.72.11.13 ... 41

has a larger number of divisors, viz. 135.2". The numbers of the form
7.2 disappear at least from 7.2 onwards. The least number having 7.2
divisors is
26,38.5%.7.11.18 ... 81.37,
while the smaller number, viz.
2v,34.52.72.11.13 ... 81

has a larger number of divisors, viz. 225.25,

v
Superior Highly Composite Numbers

32. A number N may be said to be a superior highly composite number
if there is a positive number e such that
d(N) _ d(N)

Fe B e (182)
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for all values of N’ less than N, and

d J(VN ) >%(VJY) D e (183)

for all values of N’ greater than N.

All superior highly composite numbers are also highly composite. For,
if N' < N, it follows from (182) that

d(N)>d (V) (§)> d(@;
and so IV is highly composite.

33. Now let us consider what must be the nature of N in order that it
should be a superior highly composite number. In the first place it must be
of the form

202,308 5% . DO, e ennn (184)
or of the form 2.3.5.7...... J
x 2.3.5.7... p,
x2.3.5...p
X eeeenennnt

l.e. it must satisfy the conditions for a highly composite number. Now let

N' =N/,
where A< p,. Then from (182) it follows that
1+an ax
KE;\'"' = X:‘(d;_‘ﬁ )
or As g(l + —1) e, (185)
aa
Again let N'=DNx

Then, from (183), we see that

l+aa  2+4aa
NG T Aela i’

1
or A > (1 + ii'a")' ........................ (186)
Now supposing that A =p, in (185) and A = P, in (186), we obtain
log 2 log 2 (187)

log P, <es logp,”
Now let us suppose that e = 1/2. Then, from (187), we have
PP i (188)
That is, p, is the largest prime not exceeding 22 It follows from (185) that
A SONE=1) (189)
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Similarly, from (186), Ay >(MNP=1)1T=1. (190)
From (189) and (190) it is clear that
ar=[(A*=1)"] ...(191)
Hence ¥ is of the form
PG T B C e s B (e T B NSO (192)

where p, is the largest prime not exceeding 22.

34. Now let us suppose that A =p, in (189). Then
ap, < (A% — 1)
But we know that r < a,,. Hence

r<(pMr=1)7,

\Z

or Pr< (1 + ;) U (193)
Similarly by supposing that A = P, in (190), we see that
ap, > (P*—1)"1-1.
But we know that r— 1> ap,. Hence
. r>(PAE-1),
or P,> (1 + i)x ........................... (194)

From (193) and (194) it is clear that p, is the largest prime not exceeding
(1 +1/r)>. Hence N is of the form

2.3.5.7...... ”
x2.83.5.7...p,
x2.8.5...p
> S ) et ere e, (195)

where p, is the largest prime not greater than 22, p, is the largest prime
not greater than (3)%, and so on. In other words &V is of the form

ST EI@EHIUF .
and d () is of the form .
o) ()@ (T (197)

Thus to every value of z not less than 1 corresponds one, and only one,
value of N.

d(N)_ d()
N Z (W
for all values of N', it follows from (196) and (197) that
97 (2%) @)@ #)rer
JUDS (@) LU)SEF LAzSEF "

R.C.P. 8

35. Since

d(N)< Nil=
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for all values of N and ; and d (N) is equal to the right-hand side when

N=d@+@ 2@+ (199)
Thus, for bxample, putting z=2, 3, 4 in (198), we obtain
d(N)</(3N),
d(N)<8(BN/35),, | eriiiiiiiiianennn. (200)
d (V') < 96 (3N/50050)},

for all values of N; and d (V) =+/(3N) when N=22.3; d(N)=8(3N/35)
when N=2°.32.5.7; d (N) =96 (3N/50050) when

N =2°.3.5.7.11.13.

36. M and N are consecutive superior highly composite numbers if
there are no superior highly composite numbers between M and N.

From (195) and (196) it is easily seen that, if M and N are any two
superior highly composite numbers, and if M >, then M is a multiple
of N; and also that, if M and N are two consecutive superior highly com-
posite numbers, and if M > N, then M/N is a prime number. From this it
follows that consecutive superior highly composite numbers are of the form

My, TTe, T Moy, T TWeTgTy,  eeny  ceveeesennns (201)

where 7, m,, m;, ... are primes. In order to determine m, m,, ..., we
proceed as follows. Let x’ be the smallest value of z such that [27] is
prime, z;" the smallest value of z such that [(3)*] is prime, and so on; and

let x,, z,, ... be the numbers z,, 2y, ... arranged in order of magnitude.
Then , is the prime corresponding to «,, and
N o=ty oo Ty ceeeeeeeeeeiieeieeaeieeaas (202)

if 2y < T < Zpyy-

37. From the preceding results we see that the number of superior
highly composite numbers not exceeding

e E)HSEFES W (203)
is T+ E)PFE+m 3+ ...
In other words if «, <% < @ny, then
=72 +7m@GF+m@EP+.... (204)

It follows from (192) and (202) that, of the primes m,, ms, 5, ..., m, the
number of primes which are equal to a given prime = is equal to

[(B/2 = 1)) e (205)
Further, the greatest of the primes m,, m,, my, ..., 7, is the largest prime

not greater than 2% and is asymptotically equivalent to the natural nth
prime, in virtue of (204).
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The following table gives the values of m, and @, for the first 50 values
of n, that is till z, reaches very nearly 7.

=2 %= ooy =
oy =3 , 13—23 =15849 ...
Ty =2 y I:)ZL(;) =17095 ...
m =5 4 }ggg =23219...
y =2 . l(l:’ggé) = 2:4094 ...
T =3 x4 %—’gg?% =27095 ...
=1 , ﬁ—gg =2:8073 ...
Ty =2 s liig—g(%=3'1062...
my =11 , %171 = 34594 ..
mo=13 T = 1;’62123 = 37004 ...
=2 2y = liigg(% = 38017 ...
=3 Ly = l}(%; =3818§...
=5 g = %gé =39693 ...
=17 &y, = l%;—; =4-0874...
7y =19 s = li’fglf =4:2479 ...
T = g = ﬁ)‘?—% = 44965 ...
=23 - li’fg 2; —45235...
=T = ﬁ)‘?—é) =47992 ...
T =29 = ll"()g_;;_’ —4'8579...

log 2
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oy = 43

Ty =5

Tog = 53

T =59

Mo =2

Mg = 1].

mm=

Ty =

Tog =

Lgg =

Ty =

Lgs =

Tz =

log 3

—2— =4-9233 ...
log (%)
log 31 = 49541
log 2
log2 _ o 1908...
log (%)
_ log37 _ 5
Tog 2 =52094 ...
_ log4l
Tog2 =53575 ...
log43 °
Tog 2 54262
logd? _ ...
Tg2 = 55545
log 5
= 55945
log (%)
l0g53 _ 57979
log 2
log 59 .2Q9
log 2
= 58849
log (3)
log 11 .
log (3) 59139
og 61 _ 5 9307
log 2
log3 . ..
log (@ 60256
log 67 _ 6.0660
log 2
log71 .
Tog 2 = 61497
log73 .
og 2 = 61898
log79 .
Tog 2 = 63037
log13 .
Tog (@) 63259
log 83 ans
log 2 =63750
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T =89 Ty = 1{’%82—9 = 64757 ..,
=2 Zq= -1‘5(127) = 65790 ...
Ta=97 T = li’gg 92-7 = 65999 ...
7 =101 mﬁ_l"lfgio—l—ee 82...
7a=103 Ty = 1c;§g103 66724 ...
=107 Ty = l‘;—igl—ghe-um
— o 13%—6'7641...
7o =109 Ty = 1—‘1‘%2—9 — 67681 ...
Te=118  z4= ljﬁ;;3=6-8201
=17 Py = -ll(‘)’?g(g =69875...
=127  my= 1%%52%7_: 69886 ...

=)

38. It follows from (17) and (198) that log d (N) < F (z), where
1 1 f?* (1) f(%)w(t) /(ﬁ)‘ (1) }
F(ar:)—a;logN+xl . 1 dt + \ —t—dt+ \ -t—dt+... .

for all values of N and 2. In order to obtain the best possible upper
limit for logd (N), we must choose # so as to make the right-hand side a
minimum.

The function F(z) is obviously continuous unless (1 + 1/r)*=p, where
r is a positive integer and p a prime. It is easily seen to be continuous
even then, and so continuous without exception. Also

=Ly L[ 75
+ = {-rr 2% log2+ 7 (3)*logg+...}

- ;2 (S (2 + 3@+ @)+ oo —10g N}, oo, (207)

unless (1 4 1/7)*=p, in virtue of (17).



118 Huighly Composite Numbers

Thus we see that F(z) is continuous, and F’ (z) exists and is continuous
except at certain isolated points. The sign of F'(z), where it exists, is
that of

SE)+YF)P+YEF)2+...—log N,
and S2H+YE+I@)*+...,
is a monotonic function. Thus F'(z) is first negative and then positive,
changing sign once only, and so F(z) has a unique minimum. Thus F(z) is
a minimum when « is a function of N defined by the inequalities

P ; <log N (y <)) )
SE)+YE+Y@) +... {>logN(y>a;)i' ...... (208)
Now let D(N) be a function of N such that
D(N)=2"®) gymayr @ (209)

where « is the function of N defined by the inequalities (208). Then, from

(198), we see that
AWN)SDN), oo (210)

for all values of N; and d(N)=D(N) for all superior highly composite
values of N. Hence D (V) is the maximum order of d (). In other words,
d (N') will attain its maximum order when N is a superior highly composite
number.

V.

Application to the Order of d ().
39. The most precise result known concerning the distribution of the
prime numbers is that

w(z) =Li(z)+ 0 (“e_"m“)’} .................. (211)
Y@=« +0(xe-o¥l8z),

where Li(z)= f fog?

and « 1s a positive constant.

In order to find the maximum order of d (&) we have merely to deter-
mine the order of D(XN) from the equations (208) and (209). Now, from

(208), we have
log N =% (2%) + 0 (§)% =% (2%) + 0 (2:2B);

and so Y (2%)=log N +o(log N)}; .oooooiniiiiniinin (212)
and similarly from (209) we have
7 (27) = l"gD(N)+ o(log M) woovviiinennnn. (213)

It follows from (211)—(213) that the maximum order of d (&) is
oLi(log N) +0 [log Ne=atlorlosN'y - (214)
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It does not seem to be possible to obtain an upper limit for d (N) notably
more precise than (214) without assuming results concerning the distribution
of primes which depend on hitherto unproved properties of the Riemann
¢-function.

)

40. We shall now assume that the “Riemann hypothesis” concerning
the ¢-function is true, ie., that all the complex roots of ¢(s) have their real
part equal to 4. Then it is known that

5@0=w—vw—2§+4xﬁx .................. (215)

where p is a complex root of {(s), and that
(@)= Li(z)— lr Li (Vo) == Li(x°) + O («b)

I 2\ 1 z° 1 - ZP + Nz )
=Li(=) - lugx (logzy loga ™ p  (logazy = p? {(log zy)’
...... (216)
since E‘%: is absolutely convergent when &£ > 1. Also it is known that
3%’=0{¢w(1og B} oo, (217)
and so Y(@)—ax=0{Wz(ogz)y} ...coeeviiii. (218)
From (215) and (216) it is clear that
. S@) -2
7 (z) = Li (z) + loga R(z)+ 0 {(lug x)"} s eeenen (219)
2Vx+2§
where R (:c) = W T (220)
But it follows from Taylor’s theorem and (218) that
IS (z)— Li(z) = Si—;—f + O(logz)?, ..ooce.onl. (221)
and from (219) and (221) it follows that
Nz
7w (c)=LiS (2)— R (¢) + O {(logw)“} ............ (222)
41. It follows from the functional equation satisfied by ¢ (s), viz,
@2m)tT(s)C(s)cosgms =348 (1 —8), vevervrnnnnnen (223)
1+ 48\ /1+4/s
— —1ns . it v
that (1—s)m P( . )g( 5

is an integral function of ¢ whose apparent order is less than 1, and hence
is equal to

P @ n{i- ok
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[where p runs through the complex roots of ¢(s) whose imaginary parts are
positive]. From this we can easily deduce that

s(l4s)m 3 T (1 2t +a)=T0 (1 + p) ......... (224)

[where p now runs through all the roots]. Subtracting 1 from both sides,
dividing the result by s, and then making s —~ 0, we obtain

E%= 1+3(y—logdm), ..covvnveninninni. (225)

where v is the Eulerian constant. Hence we see that

1 1

i e s s T

S Y = Ve (P+1—P)
=2~/w2f—)=\/x(2+fy—log47r). ......... (226)

It tollows from (220) and (226) that
(log 47 — ) //z< R(x) (log z)* < (4 + y —logdm) v, ...(227)
It can easily be verified that
log 4 — ¢y = 1954,

..................... 228)
4 + y —log 4ar = 2046, -
approximately.
) 2z + S (x)
42. Now R (w) (l;)vg—a:v)" 5
. xP
where S(x)y=2% P—2;

so that, considering R («) as a function of a continuous variable, we have
, 1 4z 4+25(x) S’ ()
R (o) = g = YT EERD y  T0
vz (log z)? z (log z)* (log x)*
_ S (2) 1 }
= (logy T ° {w, (log #)*/ *
for all values of & for which S () possesses a differential coefficient.
Now;jthe derived series of S (z), viz.,
- 1 xP
S (JL‘) = ;_ 2 ; ,
is uniformly convergent throughout any interval of positive values of z
which does not include any value of z of the form z=p™; and S(2) is
continuous for all values of z. It follows that

S (@) — S () = f "3 (2) do,

for all positive values of #, and . and that S(z) possesses a derivative

8’ (z) =18 (),
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whenever z is not of the form p™. Also
3 (o — () |(og 2)°)
lS (-Z')— O {‘—Vx—' j .

Hence
r+h
x

R(x+h)=R(x)+f 0( ’—‘). oo (229)

)dt=R(w)+0(\/w

1
AT
43. Now log N=9(22)+93(3)*+ 0 ($)*
=¥ (2)+ @+ 0{2 @)} + 0 ()
=9 (29) + ()7 + O (2%I)
Similarly  log D(N)=log 2. (2%) + log (3) Li (3)*+ O (2%212).
Writing X for 22, we have

log N =9 (X)+ Xioe@og 2 4 0 (X7r), ] (230)
log D(N)=log 2. (X)+log (§) Li{X s ®Noe2} 4. 0 (X 7). | "7
It follows that log N=X + O[ X'os®/log2];
and so X =log N+ O [(log N ylos®floe2] .. .. ..... (231)
Again, from (230) and (231), it follows that
log N =% (X )+ (log N)ee®hog2 4 O {(log N)fe}; ...... (232)

and log D (N)=log2.w(X)+log(3) Li(log N )os®Noez 4 () {(log N )z}
—log 2 {Li% (X)=R(X)+0 [(mﬁ()%]}
+log () Li {(log N )oe®Noe2} + O {(log N)T%}, ......... (233)
in virtue of (222). From (231) and (2383) it evidently follows that
logD(N)=log2.Li%(X)—log2.R(X)+log (%) Li {(log N')les@/lox2}
{ V(log N) }
((log log &V )?
=log 2. Li{log N — (log N )es®/og2 4 O (log N )7z}
—log 2. R{log N + O (log N )los(})/log 2}
+log (3) Li {(log Nyox e} 4 0 {(1:)/ g;’f;\.g)s}, ......... (234)
in virtue of (231) and (232). But

Li {log N — (log N )les ®/log2 4 O ([OgN)1§f}

‘ (log N )tos (9102 [(log N)?= (log V)*108 @/loe2i -1
_ Ty _ il e o
= Li (log NV) log log N {log log N} {  (loglog N)*
) log N )lor (2)/10g 2 5 .
= Li(log N) - (—O%B‘g‘)lzﬁ— + 0 log )
and

R{log N + O (log N)'os /1082} = R (log N) 4 O {(log NN )!los (3}/1og 2t -4}
=R (log N) + O (log N)Ts,
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in virtue of (229). Hence (234) may be replaced by
log D(N)=1log 2.Li(log N) + log (3) Li {(log N )iog () /1os 2}

(log IV )log (1) /log 2 V(log N) } oax
~log 2 g log N —bgalﬂng)+O&bgng) ~(239)
That is to say the maximum order of d (N) is
QLEog M6 v (236)
. . log ) 102 (8) log N)lox(‘)_/?oi- : .
where ¢ (N)= Li{(log N )los(®/log2} log log R(log N)

V(log N)
+0 {(ldg log N )3} ’

This order is actually attained for an infinity of values of V.

44. We can now find the order of the number of superior highly com-
posite numbers not exceeding a given number N. Let N’ be the smallest
superior highly composite number greater than N, and let

N = 2 P
Then, from §37, we know that

AN SN 22N, i, (237)
so that N'=0 (N log N); and also that the number of superior highly com-
posite numbers not exceeding N’ is

= (2%) 7 @)+ (3
By arguments similar to those of the previous section we can shew that
. . . (log N)IOG (3)/log 2
n=Li(log N)+ Li(log N)es®/og2 20— - — R(log N)
( V(log N) )
1(loglog Ny
It is easy to see from § 37 that, if the largest superior highly composite
number not exceeding N is

............ (238)

20z, 3% 5% .. pd,
then the number of superior highly composite numbers not exceeding N is
the sum of all the indices, viz,,

Ao+ Az + s+ ...+ dy.

45. Proceeding as in §28, we can shew that, if N is a superior highly
composite number, and m and n are any two positive integers such that [n is
a divisor of .V, and]

log mn =0 (loglog V),
log(m/n) ( log mn )'1

m -\ ologlog NTO \ioglog ¥
then d(;N> d (N)2°¢°* e, (239)
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From this we can easily shew that the next highly composite number is

of the form
(N (log log log N_)2
N+ 01 ——log l()g N e, (240)
Again, let S’ and S be any two consecutive superior highly composite

numbers, and let
S= SEIHSHTH @+

Then it follows from § 35 that
d (N) < (g) G0S), oo, (241)

for all values of N except S and S'. Now, if § be the nth superior highly

composite number, so that
Lp K& < Ty,

where «, is the same as in §>36, we see that
[z, .
d(N)< (%7) " AS), oo, (241°)

for all values of N except S and 8’. If N is § or §’, then the inequality
becomes an equality.

It follows from §36 that d(S)<2d(S’). Hence, if N be highly com-
posite and S8’ < N < 8, so that d(S")< d (V) <d (8), then

1d(8) <d (N)< d(S), d(S)<d(N)<2d(S").

From this it is easy to see that the order (236) is actually attained by
d (N), whenever N is a highly composite number. But it may also be
attained when N is not a highly composite number. For example, if

N=(2.8.5...p)x(2.3.5... ),

where p, is the largest prime not greater than 2% and p, the largest prime
not greater than ()% it is easily seen that d (V) attains the order (236):
and N is not highly composite.

VI

Spectal Forms of N.
46. In §33—38 we have indirectly solved the following problem: to
find the relations which must hold between z,, ,, x,, ... in order that
omi@)  ($)ri@ ($)m @) .,
may be a maximum, when it is given that
S (@) +Y(z) +Y(z) + ...
is a fixed number. The relations which we obtained are

log2 _log($) _log(#)_
loga, loga, logay
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This suggests the following more general problem. If V' is an integer of
the form

e (@) 043 (&p) +ey 3 (z,)-i—...’
where ¢;, ¢, ¢5, ... are any given positive integers, it is required to find the
nature of N, that is to say the relations which hold between z,, #,, a;, ...,
when d (&) is of maximum order. From (242) we see that

1+ +0\™ @ L4+ ¢\
d(N)=(1+¢) = <_1_£) 1_3>
(M)=(1+c) T+ o ( oot

...(242))
If we define the “superior” numbers of the class (242) by the inequalities
dN)  d(N)
Ne = (N')”
for all values of N’ less than N, and
) d(N)
Ne 7 (N'y”
for all values of N’ greater than N, N and N’ in the two inequalities being
of the form (242), and proceed as in § 33, we can shew that

(L+c+e "{(wlc?;:«z)x/c._}
(l 4 ¢t zjeq \ W)
o e(ce/:t) S { (1+c‘ +02) zfey }

d(N)g NV= , ---(243)

1+¢,
for all values of z, and for all values of N of the form (242). From this we
can shew, by arguments similar to those of §38, that N must be of the
form

. L+e,+e,\%/c2 (1+c +e, -rc,)“:lcﬁ
.8 zfey (N 6T 0 s .
eu t(4ey) / t+ce {( ) } C3 { Ry }+ ,

e (244)
and d (V) of the form

e sa) (™) (L arare)((5520)

r((+c’/°l$<
(14 ¢)rit+e 1+c¢ l+c+c

....(244)
From (244) and (244’) we can find the maximum order of d (), as in § 43.

47. We shall now consider the order of d(N) for some special forms
of N. The simplest case is that in which N is of the form

2.3.5.7...p
so that log N =% (p),
and d(N)=2"w»,
It is easy to shew that
. . w(log N
d (V)= gliles - Raos ofuerenrt . (245)

In this case d (&) is exactly a power of 2, and this naturally suggests the
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question: what is the maximum order of d(N) when d(XN) is exactly a
power of 2?

It is evident that, if d(N) is a power of 2, the indices of the prime
divisors of N cannot be any other numbers except 1, 3, 7, 15, 31, ...; and
so in order that d (V) should be of maximum order, N must be of the form

> (@) 23 (@) +43 (2 +63 (@) + ...
and d (&) of the form 2 (@) () 47 (@) o

It follows from §46 that, in order that d (N) should be of maximum order,
N must be of the form

e wate e @hto. (246)
and d (N) of the form Qr @ Wartm @hbnlah L (247)
Hence the maximum order of d (V) can easily be shewn to be
: -, 4~(og N) _¥Qog N)
2L:(108 1~)+(10“1':‘“N)2 —R(lOGNH‘O{(loglogN)a} ........... (24'8)

It is easily seen from (246) that the least number having 2» divisors is
2.3.4.5.7.9.11.13.16.17.19.23.25.29 ... to n factors, ...(249)

where 2, 3,4, 5, 7, ... are the natural primes, their squares, fourth powers,
and so on, arranged according to order of magnitude.

48. We have seen that the last indices of the prime divisors of N must
be 1, if d (&) is of maximum order. Now we shall consider the maximum
order of d (N) when the indices of the prime divisors of N are never less
than an integer n. In the first place, in order that d(XN) should be of
maximum order, N must be of the form

e S @)+ (2 +3 (2g) + ... ,

and d (V) of the form

™ (X2 m (3)
(e (B BE2)

1+n 24n
It follows from §46 that N must be of the form
n 2+n 3+n
s (R R G B S (250)
and d (N) of the form
2+n 3+n

+ p)iatm @Y ctn 1tn L g+
(1+n) (1 n) (2 n) ceee..(251)
Then, by arguments similar to those of §43, we can shew that the maximum

order of d(N) is
(n + 1)BHmIog MIksN) (252)
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" log (n+2) —n
where ¢(N)={log(n+2)_ (1 ) }

l_Og(—n"‘—l—) 1} Lo {(E log N) log (n~+1)

log (n+2)

( logN) iog(n+1)~ "

n log ( log N )
If n>3, it is easy to verify that

log (n+ 2)
" log(n+1)

1 V(log N)
- R(ﬁ log N) +0 {(ldg log N)*}

—n<};

and so (252) reduces to

Li{(1/n) log N}=R{(1/n) log N} + O {("““‘N) }

(11 + l) loglog V)3

provided that n > 3.

. (253)

49. Let us next consider the maximum order of d (N) when N is a
perfect nth power. In order that d(XN) should be of maximum order, &

must be of the form
en> (@) +n3 (@) +n (2 + -

and d (V) of the form
1+ 2n\"(=2 /1 + 3n\~ ‘@
™ (X)) /
e () m)
It follows from § 46 that N must be of the form

e {(E50) e { Q) Yo (254)
and d (N) of the form

on\ £ 1+3n
(1 + myrtoen® (11’:—2;})"{(%) }Gi%)”{(fi—zn)t} ...(255)

Hence we can shew that the maximum order of d (N) is

. . ~N(log N)
(n + 1)" O RN R e Mt 0{giy) (256)

provided that n > 1.

50. Let /(N) denote the least common multiple of the first IV natural
numbers, Then it can easily be shewn that

[ (V) = 2o Nlog2] Bllog Nflog3] 5Mlog N/logs] ),

where p is the largest prime not greater than N. From this we can shew
that
LN)=edM3emeshesahee, (258)
and so A{L(N)) =2n®) (G N(4)=h (259)
From (258) and (259) we can shew that, if N is of the form [ (M), then
d(N)=2LiMsM+6(N) (260)
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where
log (%) ¥(log N)  4log(3) «(log) . ( V(logN) )
$(V)= log2 loglog ¥ " log2 (loglog N¥) R(log ¥)+0 (loglog Nyf "
It follows from (258) that
L(N)=eN+OWNQogN®; (261)
and from (259) that d{l(N)} =2LN+0WNIes N L (262)

51. Finally, we shall consider the number of divisors of N'!. It is easily

seen that
N1=2% 3% 5% . p%, .ovvininiinnn, (263)

where p is the largest prime not greater than N, and

MENE .

It is evident that the primes greater than N and not exceeding N appear
once in N'!, the primes greater than {N and not exceeding 4N appear
twice, and so on up to those greater than N/[N] and not exceeding
N/([WN]—-1), appearing [¥N]—1 times*. The indices of the smaller
primes cannot be specified so simply. Hence it is clear that

Ni= e‘-\(A Y+S N)+S(IN)+ . "'5([711»']_1) X 202 3% 5% gew, (264)

where @ is the largest prime not greater than 4N, and

s vetun=[E] [

From (264) we see that
d (N1) =27 (3)=(N) (4)7QN) o [y N] -1 factors
x O HI0g (1+a5) +10g (1+ay) + ... +10g {L+agy)!
=27 (N) (3)m(N) (4)4N) | to [4/N]—1 factors
X 80 {w log (1+a,)}

= QLH(N) (B)LiGN) (4)Li(N) | to [4/N] factors

x @OWNIBN) (265)
. N N |
. 7 A
Since Li(¥) = 7+ {(log T
oo Ko
we see that d(N)=ClreN “logN)S (266)
where C=Q+10(1+3A+3PA+3)....
From this we can easily deduce that, if N is of the form M!, then
log N 2log Nlogloglog ¥ _lwN
d(N) = Cloglog ¥»* " (loglog ¥)? Toglog N5 (267)

where C is the same constant as in (266).

* Strictly speaking, this is true only when N > 4.
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52. It is interesting in this connection to shew how, by considering
numbers of certain special forms, we can obtain lower limits for the maxi-
mum orders of the iterated functions dd (rn) and ddd (n). By supposing that

N =213 pP,
~(21og n)
we can shew that dd(n)> 418180 (268)

for an infinity of values of n. By supposing that
N=92"1 g8%1 ppal’—l,

_[logp]
where a = I:log k] 1,
we can shew that ddd (n) > (log n)loglogloglogn ... ... (269)

for an infinity of values of n.
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ON CERTAIN INFINITE SERIES

(Messenger of Mathematics, XLV, 1916, 11—15)

1. This paper is merely a continuation of the paper on “Some definite
integrals” published in this Journal*. It deals with some series which
resemble those definite integrals not merely in form but in many other
respects. In each case there is a functional relation. In the case of the
integrals there are special values of a parameter for which the integrals may
be evaluated in finite terms. In the case of the serics the corresponding
results involve elliptic functions.

2. It can be shewn, by the theory of residues, that if a and 8 are real
and aB = } 7 then

a _ 3a + 5a _
(a+t)cosha (Ya+t)cosh3a = (25a +t)cosh 5a ™
L, B ~ 38 . 58 _
(B—t)coshB (Y8 —t)cosh38 ' (258 —t)cosh58
o
=4coS \/(at) c()sh \/(Bt). .......................................... (1)
Now let
aeina 3aeﬂinn 5ae'.'bina. 3
Fm= {aﬁh—&_ cosh 3a  coshba }L

Be"8 B 3Be—vinb + § Be—uihﬁ B 2)
" lecoshB cosh38  cosh 58 "

Then we see that, if ¢ is positive,

* —2tn = 7”’ o
f(, e F (n) dn = 4 cosh {(1 —v) #/(at)} cosh {(1 + 1) v/ (Bt)} " 3

in virtue of (1). Again, let
FOy==gm /(3 S 1Dhe (u(14) va—v (1~ i) v}

X g-tmwr—intatwipilon (4, =1,8,5 ...;v=1,35,...). ...... (4)
Then it is easy to shew that
© —2tn —_— 'ﬂ'l 5
f o & = i =y W(aby cosh (A +5) vgD) )

Hence, by a theorem due to Lercht, we obtain

FY=F ) creoireeeeeeeeeeeeeeeeen. (6)

* [No. 11 of this volume (pp. 53 —58); see also No. 12 (pp. 59—67).]
t See Mr Hardy’s note at the end of my previous paper [Messenger of Mathematics,
XLIV, pp. 18—21. See also Appendix, p. 338.]

R.C. P. 9



130 On certain Infinite Series

for all positive values of m, provided that a8=4w% In particular, when
a=pRB=4m, we have

sinymn 3singmn  5sinifan

coshfw coshgm cosh §r
1 , m (p* —1°)
I — 1)} w+v) p—nuv/in
nn 33 (—1) e ™ [(,u. + v) cos ™
—y)sin TE =)
(=135 ...; v=1,85...) ...... )
for all positive values of n. As particular cases of (7), we have
sin (§or/a) 3 sin (m/a) 5 sin (BPmfa)
cosh §r cosh cosh 37
1 3 5
-1 - -
= iava \cosh ima cosh §ma * cosh Sma )

=4aa (e Tt _gm14Te _gHimay p-tima L i (8)
if @ 1s a positive even integer; and
sin (§m/a) 3sin(§r/a) 5 sin (3Pw/a)
cosh {7 cosh §m cosh 37

=ia\/a( 1 + 3 + 5 +)

sinh }7ra * sinh $wa * sinh §7a

=laa(e TG e 4 g RTA L pmHTA Ly (9)
if @ is a positive odd integer; and so on*.

3. It is also easy to shew that if a8 =m?, then

o a 2a + 3a _ }
{(a +t)sinha (4a+t)sinh2a  (9a+¢)sinh3a 7

‘ B 28 38 ]
B {(,e'—_t)‘é‘{xih B~ (@B—tysnh2R T (98—t)sinh 38
. " - (10)
% ~ Teim (@l SR V(G

From this we can deduce, as in the previous section, that if 28 = =2, then
ae 2aetine  Jgetina

sinha sinh 2a  sinh3a "

Be—ins  2RBe—tind  3RGgving

sinh B sinh28 T smh3g T

1 1 T
27 a \/ (Q_n)
X 33 {n (1 —1) Va+ v (1 + 1) y/B} e tmuv—iuta+ivzp)un

(r=1,3,5..;v=1,3,5..) ...... (11)
* [Formulw (9), (14), and (19) are incorrect ; see Appendix, p. 339.]
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for all positive values of n. If, in particular, we put a =8 =, we obtain

1 cosmn 2 cos 4mn _ 3 cos 9mn
47 smmh# ' sinh 27 sinh 37

3 _ 2 el
55 e {(u ) cos%v—) +(u— ) sin 10"%

r=1,38,5..;v=135..) .... 12) -
for all positive values of n. Thus, for example, we have
1 cos (27/a) + 2 cos (87/a) _3cos(l 87/a)

-1
T 2n4/(2n)

4 sinh 7 sinh 27 sinh 3
reva ( 1.8 5 )
~8%V%\sinh fwa " sinh §wa * sinhima '

=lana(e Tm p e Py omtimay p-tima L e (13)
if @ is a positive even integer; and
1 cos(2m/a) + 2 cos (87/a) 3 cos (187r/a)

d7 sinh 7 sinh 27 . sinh 87
1 3 5
=tava (cosh {ma  cosh§mwa T cosh fma >

=laya(e Tl —g TeTa_g-imay o-tiray g (14)

if @ is a positive odd integer.

4. In a similar manner we can shew that, if a8 = 72, then
aeinn + 2ae.|l'na + 3ae9ina
-1  e*~1 e —1
—ing 2 —~4in3 ¢ —9i13
Be + Be + 3Be
@1 w1  _1

xe—nmxz @® wemﬂz-
—a f o da* +3[  dir®
V]

= y=

1 S ) S =i kv (L) e (15)

w=1 v=1

for all positive values of n. Putting a=8 = in (15) we see that, if n>0,
then

1 cosmn 2cosdmn 3cos9mn

§7—T+e'-"’—1+ e —1 + e — 1

= % COS 7 nx? 1 w2vee
o —2mRy, n
fo C"z - 1 d + 211 \/(2’",) “21 ,2’1 €

x[(p.+v)cos{ = ”)}+(# u)sin{ﬂ‘%l—”i)}]. ...... (16)

* 1 shewed in my former paper [No. 12 of the present volume] that this integral can
be calculated in finite terms whenever za is a rational multiple of .

» 9—2
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As particular cases of (16) we have
cos (-n-/a) 2 cos (4--rr/a) 3 cos (9-n-/a)

87r -1 -1 -1
xcos('n-w’/a) ( 2 3
fo g1 detav(ia) tma Tyt ) .(17)
if a is a positive even integer;

1 + cos (-n'/a) 2 cos (47r/a) 3 cos (97r/a)
8r e —1 e —1 e —1

_ [=xcos(wat/a) 2 3

_-[0 e +a«/(%a)(em+1 e R o ) ..(18)

if @ 1s a positive odd integer ; and
1 + cos(er/a) 2 cos (S-n—/a) 3 cos (187r/a)

8 e —1 r—1 e —1

_ z‘_cos(Z'rm’/a) 1 < 1 3 5 )
_fo oy Vet yave (g + gyt g o) o (19)

if a is a positive odd integer.

It may be interesting to note that different functions dealt with in this
paper have the same asymptotic expansion for small values of n. For example,
the two different functions

1 4 cosnm +gcos4n +3cos9ﬂ
8 e"—1 e"—1 -1
© & cos nx? d:
0o -1

and

have the same asymptotic expansion, viz.
,} _ nz .{.. ! —_ : + * 2
24 1008 ' 6336 17280 ° "7t ¢ et

* This series (in spite of the appearance of the first few terms) diverges for all values
of n.




17

SOME FORMULAZE IN THE ANALYTIC THEORY
OF NUMBERS*

(Messenger of Mathematics, xLv, 1916, 81— 84)

I have found the following formule incidentally in the course of other
investigations. None of them seem to be of particular importance, nor does
their proof involve the use of any new ideas, but some of them are so curious
that they seem to be worth printing. I denote by d(z) the number of
divisors of z, if z is an integer, and zero otherwise, and by ¢(s) the Riemann
Zeta-function.

8(8) _ s o] as 2 (e
(A4) §(2s)—1 Q)+ 232 (2)+32d2 (8) + .oty crenrneneninnne 1)
1)‘(8)' — 1-8.2 Q-8 ]2 —s 2 —
=2 e @) 1-2d* (1) = 3~*d* (8) + 57°d* (5) — ..., ...... (2)
where n(s)=1"*—-3 8455 _T—*5+...

By &#Q)+d*@2)+d*B)+...+d*(n)
= An (log n)* + Bn (log ) + Cn logn + Dn + 0 (n¥ T4, ...(3)

o3 B,

B=:7
7t
v is Euler’s constant, C, D more complicated constants, and e any positive
number.

© @(})+a(3)+e(3)+ ={d(’{)+d(§)+d(§)+...}2¢.

............

where A=—,
m

21‘, AT (n) = {E(8);" P (8), vovvreriiniinininniinnn (5)
where ¢ (s) is absolutely convergent for R (s)> §, and in particular
= 1 . 1 _ )
% ;;m =l—pl {p lOg (T‘——p___")} = »\/{g(S)j ¢(S) ............ (6)

1 1 1 1
D ymra@tae T tam

= 4, 4, 4, 1
=n {(]ogn)} + (log n)t +...+ (lo-g:vrvl—);:'* +0 (logn)’**}""(ﬂ
v 1l _ P
where 4,= \/'n'l;,l Ix/(pﬂ p) log (p_— i }

apd 4,, 4,, ... 4, are more complicated constants.

* [See Appendxx, p- 339.]

t If we asswmne the Riemann hypothesis, the error term here is of the form 0 (nH")

! Mr Hardy has pointed out to me that this formula has been given already by
Liouville, Journal de Mathématiques, Ser. 2, Vol. 11 (1857), p. 393.
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More generally
dQ)+d*(2)+d* @) +... +d*(n)
=n {4, (logn)*+ 4, (logn)*2+... + A} + 0 (nt+)*, ...(8)
if 2 is an integer, and
d*(1) + d*(2) + d*(3) + ... + d*(n)
=n {A (logn)y*1+ 4,(logn)*2+... + (f:g ny +0 [(bgln)’“ﬁ:” ,--(9)
if 2¢ is not an integer, the A’s being constants.

(E) d(1)d(2)d(3)...d (n) = 2nloslosntCitém, ... (10)
where C=«~/+T§°‘,{log2 (1 +%)—%} (27 +3 7+ 57+...).
Here 2, 3, 5, ... are the primes and

1! 21
™ = logn +(logn)'~'(7+7‘ )+@5§ (Y+m+r—1+..

(r—1)! 1

(lug n)r (‘7 +mnty+ ... + 'Yf-l_l)'*' 0 {(log"h”)i-f-;} ’
1

where é‘(l+8)=;+7—%S+%8.2—%8“+--.

1 1
! 7 4 = L 7+
or rly,= le I(log.'l) +3 (log2y +... + y(log v) —1 (log v) 1}.

(F) d (wv) = %,L (n)d (%) d (}j) —Su(8)d (’g) d (g) ......... 11

where & i1s a common factor of u and », and

1 _3pm
EG) T n
G If Dy(n)y=d ) +d (2v) +... + d (w),
we have D,(n)=3u(8)d (%) D, (%) ) eeeeereeraera. (12)
where 8 is a divisor of », and
D,(ny=a@)n(logn+2y—=1)+B(@)n+A4A,(n),......... (13)
a()_ &) B __¢EEIA+s)
where T R e U R e T ¢ P a
and A, (n) =0 (ntlogn)t.
(H) d+c)+d(2v+c)+dBv+c)+...+d(nv+c)

= ac @)n(logn+ 2y —1) + Be(v) nd,; (), ...(14)
S ac(v) _E(s)a_(lc)

where

1 Vs §(1+S) ’
SEL)_ L eale) 00 C(1+S)+__5_@c)}
T (1 +s) E(l+s)  o(c)

* ‘\ssummg the Riemann hypothesis.

t It seems not unlikely that 4, (n) is of the form 0(rt*e). Mr Hardy has recently
shewn that A; (n) is not of the form o {(nlog n)i loglog n}. The same is true in this case
also. '
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o,(n) being the sum of the sth powers of the divisors of n and ¢, (n) the
derivative of o, (n) with respect to s, and

A, (n) =0 (n¥ log n)*.

(I) The formule (1) and (2) are special cases of
§()E(—a)f(s—b)f(s—a=D)
£(2s—a-"b)
=1"%0,(1) (1) + 220, (2) 03 (2) + 3%, (B) 0 (3) + ... ;...(15)
7(8)n(s—a)n(s—b)n(s—a-1b)
(1 — 2 2+a%b) £ (25 — a — b)

=1"%0,(1)a,(1) —83*04,(3)0:(3) + 5 02 (5) o (5) — .... ... (16)
It is possible to find an approximate formula for the general sum
go(V)oy(1)+0,(2)0p(2) +...+ aa(m) ap(n)............. (17)

The general formula is complicated. The most interesting cases are a =0,
b=0, when the formula is (3)' a=0,b=1, when it is

72 §(3) (logn+2c)+nE(n), cooovvniinnennnninns (18)
2 3
" =14+ (5 by

and the order of E (n) is the same as that of A,(n); and a=1, b=1, when
1t is

Bn3E(8) A+ B (R)yeeeneeeeneeiiiiieiiiiiea (19)
where E(n)=0 {n*(logn)}, E(n)+#o(n*logn).
(J) Ifs>0, then
(1) 04(2) 04 (8) 0, (4) ... as () = Oc® (0 1), ..o (20)
where 1>0>(1-2"(1-31-5%..(1-*),

@ is the greatest prime not exceeding 7, and
-1 1'p 35 __ 1 1/p2 48 __ 1 1,p3
=TI {(P ) (=" (=) }
¥ p-p p=p

(X) If (&+q+q‘+q“+q"‘+---)’=%+§r(n)q",

so that E@)n ()= gr (n) n=s,

& (s)n’(s) —e 2 -y s p2
then (m=l r(1)+272(2)+ 37 rB)+ e oo (21)

(1) +72(2) + 72 (3) + ... +72(n) =g(logn +0)+0@¥9),...(22)
where  C=dy—1+}log2—logm +4log D(®) = 121 (2)

These formul are analogous to (1) and (3).
#* Tt is very likely that the order of A, . (n) is the same as that of A, (n).
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ON CERTAIN ARITHMETICAL FUNCTIONS

(Transactions of the Cumbridge Philosophical Society, xx11, No. 9, 1916, 159—184)

1. Let o,(n) denote the sum of the sth powers of the divisors of n
(including 1 and n), and let

7 (0) =3L(—s),
where {(s) is the Riemann Zeta-function. Further let
3 () =0 (0) oy () + oy (1) oy (n—=1) +... + o, (n) 7, (0).  ...(1)
In this paper I prove that
FOr+D)T(s+1)¢(r+1)¢(s+1)
TTrts+?) Lrrstd) o)

2,4(n)=

PHUEDHEAZS) )+ O @iy, (2)
whenever r and s are positive odd integers. I also prove that there is no
error term on the right-hand side of (2) in the following nine cases: r=1,
s=1;r=1,8=3;r=1,8=5;,r=1,8=7; r=1,s=11; r=8,8=3; r=3,
s=5; r=38,5=9; r=5,s="7. That is to say =, ,(n) has a finite expression
in terms of o,1,4;(n) and a,,,_, (n) in these nine cases; but for other values
of r and s it involves other arithmetical functions as well.

It appears probable, from the empirical results I obtain in §§ 18—23,
that the error term on the right-hand side of (2) is of the form

O {ndtrtet1day 3)
where € is any positive number, and not of the form
of{nttrtetD} 4
But all I can prove rigorously is (i) that the error is of the form
O {nt+s+1}
in all cases, (ii) that it is of the form
Of{n¥rtstdY (5)
if r + s is of the form 6m, (iii) that it is of the form
Omdrtstd} (6)
if r + s is of the form 6m + 4, and (iv) that it is not of the form
of{n¥r Y (7)
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It follows from (2) that, if » and s are positive odd integers, then
‘ P(r+1)1"(s+1)§'(r+1)§'(a+l)
2, ()~ Tors+2) {(r+s+2) Trpgrr (). oonene (8)

It seems very likely that (8) is true for all positive values of r and s, but
this T am at present unable to prove.

2. If =, ; ()/0r4e11(n) tends to a limit, then the limit must be
T(r+1)D(s+1)¢(r+1)E(s +1)
I'r+s+2) L(r+s+2)
For then
Lim 2re(®) 5 +3.@)+... +2,,(0)
n>w 0’r+3+1("') R 0r+a+1 M +0r45(2) + o + Trpea(R)
i S @+ 3, D+ 5,2+
21 Oris41(0) + 0ri1 (1) T+ 01y (2)“' +.
S, S,
=Li
z-l>n; Sr+a+1 ) A‘«_’. v .
1Tz 27 2 3ras T '
where S'=%§(_T)+l—z+l—x’+i—a°+ ................ 9)
Now it is known that, if » >0, then
Fr+1)f(r+1)
S, ~ Ty o e (10)
as £—> 1*. Hence we obtain the result stated.
3. It is easy to see that
oD +0,(2)+0,(3)+... + (1)
= U+ Ut U ...+ Up,
where Upg=1"4+21+ 8+ ... + [7-:]'
From this it is easy to deduce that
oD+, (2)+...+0,(n)~ -— {(r+ Doeiinieenns ant
and
% ~ P(’I‘tl) F(S-f-l) . r+8+1
S (D)(r=1) 40,2 (1 =2+ ko (a= )l (LS e,
provided >0, s> 0. Now
as(n) > nd,
and oy (n)<nf (1784272 4375+ ...) =n2E(s).
From these inequalities and (1) it follows that _ .
Lim 2@ TOAD TG gy (12)

— prtstl 2 P(r+s+2)

* Knopp, Dissertation (Berlin, 1907), p. 34.
1 (10) follows from this as an immediate corollary.
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if r>0and s>0; and

7. 2pa(m) T(r+1)T(s+1
Lim n;ﬁs (;-(';._,)_ 84(_82")' )C(r+ 1 Y4 C) N (13)

if r>0and s>1. Thus n~"*-13, ,(n) oscillates between limits included in
the interval

P(r+1)T'(s+1) F'r+1)Ts+1)

Cr+s+2) £r+1), Tores+g CU+HDEE

On the other hand 7% g,,,4, (n) oscillates between 1 and ¢(r+s+ 1),
assuming values as near as we please to either of these limits. The formula (8)
shews that the actyal limits of indetermination of n"~*'X, ,(n) are

Fr+DILs+DEE+DEs+1)
'(r+s+2) Er+s+2) ’
Pr+DT(E+1)Er+1) 86+ D E(r+s+1)

F(r+s+2) E(r+s+2) - (14

Naturally .
Sr+1)E(s+1) L(r+1)EGs+1)E(r+s+1) .
fr+1)< {CETEY) < Fr+s+2) <¢(r+1)&(s)*

What is remarkable about the formula (8) is that it shews the asymptotic
equality of two functions neither of which itself increases in a regular manner.
4. Tt is easy to see that, if n is a positive integer, then
cot3sinnf=1+2cos @+ 2cos26 +... +2cos (n —1) 0 + cos nf.

Suppose now that

1 zsinf@ a?sin20 a°sin 36 )2
(Zcot§0+ 1_w+ 1 -2 + 1—27 + ...

= (} cot 40)*+ Cy + C, cos 8 + C, cos 20 + Cycos 30 + ...,

where O, is independent of 8. Then we have

(St et 1 Tat )
+%{ il 1‘”’£,>2+(1%)"+...}
%{1—@ 1= 56’)‘ (‘1%““}
=%{1”’x+12x; 3“"+ 3 TR — (15)

* For example when r=1 and $=9 this inequality becomes
1'64493...<1:64616... <1-64697... <1'64823....
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Again

1 a0 ias e a3

C,n:-éi‘—’; .+...
— 1 — gt 1 — ant2 1 — g3
z Znt a* ante 2 Zn+?
+ le'l—x”“"l-'- PR G 1—.'1;“'1—56”"'3-’-

1 z 1 22 "2 + *{vn—l _.Z; )

Uzl TI @ Tt l—w"—"l—a:j'
Hence

Cn 1 X xn+l x? xﬂ+2
=g (o )+ ( T )

1 x an1 x? 2
_‘{(1 ti—at 1—_‘;1;-1) + (1 +iz x2+ 1t;,,;:2)+---

(1 )]

’ . _ x’l _ nwn
That is to say \ C"_(l—x”)“ S (16)
It follows that

lot}e_’_a:sinﬂ a?sin 26 .z-’sin3¢9+ )2
(4" RS P g g
_ }cob}0)2+ zcos @ x’cos20+.z*cos30
"(4 3 A-apT@=azpta—=y
1( « 2a2 3a®
+§{1—_x(1—0080)+i:;;(1—COS26)+1—_'“—_}(1—COS30)+-}.
...... (17)

Similarly, using the equation
cot? 30 (1 —cosnf)=(2n—1)+4(n—1)cos 8 + 4 (n—2)cos 26 +..
+4cos(n—1) 6 +cosnb,
we can shew that

.2 2
{%cot’-‘ 6+— +—f—(l-cos0)+£'l—(1—cos2€)+—§f.‘(l—cos30)+...}

12

_—.@ ot2 0+ )2+112{ (5+cos€)+»-—-——(5+cos2.0)

X .
+1_ﬁ®+cm3®+“}4m)

For example, putting 8 = 37 and 6 = 4 in (17), we obtain

1 x .r_ + x‘—____wi_ + )’
<6+1-'w_-1»—a}' 1—2¢ 1-2 7
x 2x* 4t 5z°

1 .
3 o+

1
=CE+§G—w I—z#tile T:;+~),0%
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where 1, 2, 4, 5, ... are the natural numbers without the multiples of 3; and
(1 R >= '
AL il p R e Rl g S
1 1/« 22 32 . 52 )
—E+§~(1 v+1_w2+1_23+1:—;5+...),(-0)

where 1, 2, 3, 5, ... are the natural numbers without the multiples of 4.

5. It follows from (18) that
1 & 6 6° 2
(s oSS+ g5 )

=1%9_4+%S" - %(%S, - g S: +g:.8’9— ) , (21)
where S, is the same as in (9). Equating the coefficients of 6* in both sides
in (21), we obtain

(n—2)(n+35)

)n- Y _n n S n Spest oo + 00 aSn S,
12 (n+ l)(n + 2) S ="Co8,8u- +"Ci 8585 + "CuS; Sucs+ ... + CrsSna Sy,
...... (22)

n!
ri(n—n)!’

if n is an even integer greater than 2

where 0, =

Let us now suppose that
m=wo n=0m0
D ()= 2 I mRPa™, i, (23)
m=1 n=1
- ;
so that D, (2)=D,,(2), = Z, ¥ T

ve!

and By (m)= 4 BT BT - pe(- s)’
)

Y
~

...... 24
18z 2813 33 (24)

@)=t T eyt
Further let
—— 248,=1- 24(1'3_242-'* 22 o 3z

+ . *

1- 1—a?
23‘1;2 3“.7“’
1-=tizst
2322 353
_—DO4S —1—004(1 _x+-1_w2+‘].—:2:+ ...)

* [f x=¢? then in the notation of elliptic functions

12 2K\ /3E .
- (8] CF o),

Q=1_g£72.“’_‘ = (%I_")*(l — B+ 1),

Q= 2008,=1+200({ "

P
216930

"(l

R= ( f)“(l F42) (1 - 2) (1 42).
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Then putting n=4, 6, 8, ... in (22) we obtain the results contained in the
following table.

TasLe 1.
. 1-24¢, , (2)=P.

1
2. 1424085 («)= Q.
3. 1-5040,,(z)=R.
4. 14480, (z)= G2
5. 1-264d(z)=QR.
6. 6914655209, 1, ()= 44163+ 250 R2.
7. 1-24®q 13(z)=GR.
8. 3617+ 16320, 1; ()= 1617@* +2000Q R2.
9. 43867 — 287280y, ,; (x)= 38367 @SR + 5500 /3.
10. 174611 4 132000, 10 ()= 53361 @5 + 12125092 k2,
11. 77683 — 5520 5, (x)=57183@4R +20500Q R,
12. 236364091 + 1310400, o (x) = 496790918 + 1764000003 22 + 10285000 2%, -
13. 657931 — 24, o5 () = 392931 @5 R + 265000Q2R5.
14. 3392780147 + 6960, 1 () = 489693897 Q7 + 2507636250 @* B2 + 395450000Q K*.
15. 1723166255201 — 171864, g () = 815806500201 @8R + 8813407050008 B3

+26021050000.5,

16. 7709321041217 + 326400, 5, («) = 7644121732175 + 5323005468000Q5 R?
’ +1621003400000G2 R%.
In general g % %C(— S)+ cbo,l(w): \‘Km,n QmRn, .................. (26)

where K, , is a constant and m and » are positive integers (including zero)
satisfying the equation
4m + 6n=8+1.

This is easily proved by induction, using (22).

6. Again from (17) we have

/1 0 6 e 2
(\§9+T—!Sa_:d—gss+5—!b5_---)
1 6 ¢ 6
=gt S5 Pi@+ 1 Pu(@) — g Pua(@) + ...

462

1/6: 6 s
+§(2—!S3—TIS5+6—ZS;'—.-.>. (27)
Equating the coefficients of 6" in both sides in (27) we obtain
+3 o ;
2 Z; j{-?l‘) 'Sn+1 - q)l,ﬂ (a') = "Clsx‘gn—1 + "CsSsSn-—s + nobbusn—5 +...+ ”On_,S,,_,S, ?

if n is a positive even integer. From this we deduce the results contained in
Table II.
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TaBLE II.

288, 3 ()=Q— P2.
720@,, 4 (z)=P@ - R.

1008®,, ¢ ()= @ — PR.
7209y, 5 (z)=Q (PQ- R).

15848, 10 (7) = 3@ +2K2—~ 5 PQR.

65520%,, 15 () = P (441Q% + 250 %) — 691 Q2R.

144, 4 ()= Q (3@ +4RE - TPQR).

In general D, ,(2)=3K;maP'Q"R", ... ererreaeeaaea, (29)

where t< 2 and 2/ +4m +6n=s+ 2. This is easily proved by induction,
using (28).

oo W oo

-4

7. We have
dP P2 —
Xz ?l—w— = - 24@1'2($) = —12—Q,
d PQ-R
P %Q = 2400, ,(z)= Q3 I ST (30)
dR PR —
&S = = 504®, () = ¢
Suppose now that r < s and that 7 + s is even. Then
d\"
@, ,(z)= (a: Y Poacs (@), o (31)

and @, ,_, () is a polynomial in Q and R. Also
a; dpP a: dQ . dR
dz’ dx’ dz
are polynomials in P, ) and R. Hence ®, ,(z) is a polynomial in P, Q and R.
Thus we deduce the results contained in Table IIL

&x

TaBLE 1II.

17285, 3(z)=3PQ - 2R ~ 3,

1728®,,; (r)= P2Q - 2PR + Q2.

1728, ; (r)=2P@2 — PPR— QR.

86400, o () =9P2Q2 - 18PQR+5@3 + 4 R2.

1728®, 1, (r)=6P@3 - 5P?QR+4 PR — 5Q2R.

69126, 4 ()=6P?Q —8PR+3Q*— P*.

3456, ¢ (z)= P3Q - 3P?R+3PQ* - QR.

5184®; 4 () =6P2Q:—2P3R - 6PQR+ @* + R2.
207360, 5 (x)=15PQ*—20PtR +10P3Q — 4QR — PS.
414720, ; (2) =T (P*Q - 4P*R+6P2Q* -~ 4PQR) + 3@+ 4R2.

R A o

© ®

-
IS4
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In general D, ,(2)=3K; ma PPQ R, oo (32)
where [ —1 does not exceed the smaller of » and s and
2l +4m+6n=r+s+1
The results contained in these three tables are of course really results in
the theory of elliptic functions. For example @ and R are substantially the
invariants g, and g;, and the formule of Table I are equivalent to the
formule which express the coefﬁcients in the series

ys gi'v +§g_z_gsu
1200 © 6160

in terms of g, and g;. The elementary proof of these formule given in the
preceding sections seews to be of some interest in itself.

p)= 20 g

8. In what follows we shall require to know the form of ®,,(x) more
precisely than is shewn by the formula (29).

We have 3(—=8) + Doy (@) =SKna@ R", ..ceeeein. (83)
where s is an odd integer greater than 1 and 4m + 62 =s+ 1. Also

d m n m ” n
et mpPny — ( 4. - 1 RPn+1 L. _ (Om+2 RPn—]
g (Q™R") (3+2)PQ"‘R” (3 Q™R +3Q +R '). (34)
Differentiating (33) and using (34) we obtain

Doy (@)= (s+ 1) P{EL(—5) + Py, ()} + 2K, o Q™ R, ...(35)

where s is an’odd integer greater than 1 and 4m + 6n=s+ 3. But when
s=1 we have

@, ,(z) = Q P2 ........................... (36)

9. Suppose now that
F o (@) =38 (=7) + Do, r (2)} {§E (— 8) + Do, (2)}
_tA-n+ta=9g o TE+DLG+)EC+D LG+
r+s ' I'(r+s+2) E(r+s+2)
X {38(=7r=58—=1)+ Dy, i1 (®)}.  (37)

Then it follows from (33), (35) and (36) that, if » and s are positive odd
integers,

F, ,(2)=Z2K, ,Q"R" .....cc..ooiiiinin (38)
where dm+6n=7r+s+2. '
But it is easy to see, from the functional equation satisfied by {(s), viz.

Cm)y 2T (s)E(s)cosgms=3E(1—8), .eovvveinnnnnn (39)

that - Froy(0)=0. .cooiviiiiiiiiiiin, (40)
Hence @*— R? is a factor of the right-hand side in (88), that is to say

F, (2)=(@—R)ZKpn o Q"R ...cceevneiniln (41)

where 4dm 4 6n=1r+s-—10.
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10. It is easy to deduce from (30) that

z % log(@—R)=P. cceovvrnvirinirnninnnns (42)
But is is obvious that '
P=w;;log[a:{(l—x)(l—w’)(l—m‘)...}'—“]; ......... (43)
and the coefficient of z in @* — R? is 1728. Hence
P—-—R=1728z{(1—z) (1 —2®) (1 —23)...}*" ......... (44)
But it is known that
{(1=2)(1—2?)(1— ) (1 —a%)...F = 1 — So+52° —Taf+ 92— .... (45)
Hence P—-—R=17282(1 -3z +5a2° — Taf + ... )% ...oeennnen (46)
The coefficient of #*~! in 1 — 3z + 52*— ... is numerically less than /(8v),

and the coefficient of #* in @® — R? is therefore numerically less than that of
a¥ in
17284 {/(80) (1 +a + 2% + 2 + ...) .

Tz | 22 3w
STt tice
and the coefficient of 2” in the right-hand side is positive and less than

J1 .11

14 F + 3—3 + ? + vee |

Hence the coefficient of 2 in ¢® — R? is of the form

0 (@) =0(").

But x(i+w+w"+w"+...)" + ., ...(47)

That is to say QR-R=S0@)2" eceeveriieniiinininnnnn, (48)
Differentiating (48) and using (42) we obtain
P(@-R)=Z00A)2" .cccocevvviririininnns (49)

Differentiating this 4gain with respect to # we have
AP -Q)(@-R)+BQ@-R)=20(0"a,

where 4 and B are constants. But

2, 2
Pr—Q=—288®,,(z)=— 283 {(ll_“x)._, +(12_‘”;2)2 + } ,
and the coefficient of #* in the right-hand side is a constant multiple of
vo,(v). Hence
(P = Q)(—R*)=Z20vo,(v)2* 20 (v") 2*
=20 {n:()+a(2)+... ¥, (e =20 (") 2",
and so QP —R)=Z0 ()" eeeeeereerenennnnenn (50)
Differentiating this again with respect to # and using arguments similar
to those used above, we deduce

R(QF=R)Y=S0(0)&" woovveerreraeenn. (51)
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Suppose now that m and n are any two positive integers including zero,
and that m + n is not zero. Then

QmE" (¢~ R)=Q(¢ - R) " R"
=30 @)z {20 () 2"} {50 () )"
=30 2% 0 () "3 0 (v** ) z*
=2 0 (pm+on+s) gv,
if m is not zero. Similarly we can shew that
Q"R*(¢*— R*)=R (¢ - R) Q"R
=3, O (pim+ents) g,
if n is not zero. Therefore in any case
(@—=RHQ™R =2 0 (v*™+™+8) 2%, ..iiiiiiiiniiiiiieins (52)

11. Now let » and s be any two positive odd integers including zero. Then,
when 7+ s is equal to 2, 4, 6, 8 or 12, there are no values of m and n satisfying
the relation

. dm+6n=r+4+s-10
in (41); consequently in these cases
Fo,()=0. . (53)

When r 4+ s=10, m and » must both be zero, and this result does- not
apply; but it follows from (41) and (48) that

Froy(@)=20@")2" cocevneiaereniaennnnn, (54)
And when 7 + s > 14 it follows from (52) that
Foo(@)=20@@*a" .ccoooiiiiinninnnn. (55)

Equating the coefficients of 2* in both sides in (53), (54) and (55) we
obtain
3, =D+ DLE+DEC+DEG+1)

Tr+s+3) Er+s+2) oren®

1- 1—
+ g( 'r7)‘ : 5( S) NOyys (n) + ET,C (n)’ (56)

where E,.,(n)=0, r+s=2, 4, 6, 8 12;
E,,(n)=0("), r+s=10;
E,,(n)=0@t4), r+s>14
. Since Oristr () is of order n™+#t1 it follows that in all cases

P+ E+1)Er+1)EGs+1)
3re(n)~ T s+ F 1t Traana (n). ...(57)

R.C.P. ) 10
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* The following table gives the values of 2, ,(n) when r+5=2, 4, 6, 8, 12,

TasLE IV.

21' 1 (“) 5“’3 (ﬂ) 126”’01 (n)

[

705 (r) — 10003 ()
80 :

o7(n)
120 °
10g; (n) — 21nas (n)

252 ’

11oy (n)
5. 3ys(m)=rn®,

2. 3,3(n)=

3. Z3(n)=

4. 3,5(n) =

1lag (n) — 3000, (n) )

6. 21‘ 7 ('n) = 480

7. 35:(m =750

ai3(n)

2640 °

69103 (n) — 273000, ()
21.11(’"‘)‘_‘ 13( )65520 11( _)'

8. 33 9(n)=

©

12. In this connectjon it may be interesting to note that
a1 (1) a3(n) o (@) os(n—1)+a,(5)os(n—2) + ..
‘ +a,(2n+1)os(0)= m05(2n+1) ...(58)
This formula may be deduced from the identity
15z 3t 5% x 3a? bY
1—z+1—x=+1—xv+‘“=Q(1— ot et ) (59

which can be proved by means of the theory of elliptic functions or by
elementary methods.

13. More precise results concerning the order of K, ,(n) can be deduced
from the theory of elliptic functions. Let

r=q.
Then we have

Q=¢*(9) {1 — (KK}

R =¢m(q) (b2 — k) {1 + } (kk')?} ) eereeeeaeens (60)
= ¢ (9) {1 + § (kk'P} V(1 — (2HK'Y)
where ¢(=1+2g+2¢"+2¢°+ ...

Buif  f(@=¢*A-)A-¢)(1—¢)...,
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then we know that |
2t f(q) =kkdg(g)
Rro=0@ (61)
o} f@ = (kk') (9 S
X ] Flg) = Kt (9

It follows from (41), (60) and (61) that, if r + s is of the form 4m + 2, but
not equal to 2 or to 6, then
Ffrervmo (—q) }(r-lg ® X, () 6
2\ v~ 17 .y esesscese
Fa@=Tmmmng T ooy (62)

and if r + s is of the form 4m, but not equal to 4, 8 or 12, then
2 _f‘ r+e—) (_ Q) — 18 *(rg K f» (q ) 63)
',O(q ) f(r-;.g_m) (qg) {.}Q (9) ﬂ (q‘)} 1 f.{n( q) (
where K, depends on r and s only. Hence it is easy to see that in all cases
F, ,(¢?) can be expressed as

2 d
zKa,b,c,d,e,h,k {.fx (- 9)}'1 {f;y((ng) ﬂ((q q))} {f((qqg))fs (9)}

LD p@f reara. @

where a, b, ¢, d, e, h, k are zero or positive integers such that
a+b+c+2(d+e)=[3(r+s+2)]
h+k=2(r+s+2)-8[3(r+s+2)],

and [z] denotes as usual the greatest integer in x. But

P N R 1
flQ= 2‘—q“-qz‘+q2“+
1' 5 7
f@=q —‘39 +5q -7¢% +.
s 1’ 5 s 112 b e (65)
.{.,((qqz)) q*—5¢% + Tg** —11¢* + ...
f"(q“) 1’ 42 5’
5_9 -
FEm o e st

where 1, 2, 4, 5, ... are the natural numbers without the multiples of 3,
and 1, 5, 7, 11, ... are the natural odd numbers without the multiples of 3.

Hence it is easy to see that
n-ierb49-d-e 5, (a)
is not of higher order than the coefficient of ¢* in

¢ (g%) ¢ (479 ¢° (45) {6 (4%) b () {8 (¢¥) 6 (gD)Y* 8" (¢7%) ¢ (g7™),

10—2
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or the coefficient of ¢ in
¢+ () $7+4 (9) ¢°(9°) ¢°(9™) $° (9*) #* (2)-
But the coefficient of ¢” in ¢*(g?) cannot exceed that of ¢” in ¢*(q), since

() + B (— @) =202(D);  vererrrrerrerarennn (66)

and it is evident that the coefficient of ¢” in ¢ (¢*) cannot exceed that of ¢”
in ¢ (¢*). Hence it follows that
nBCHAN B, ()

is not of higher order than the coefficient of ¢*** in
#4(9) 4% (¢°) $° (@)
where A, B, C are zero or positive integers such that
A+B+C=2(r+s+2)—2[3(r+s5+2)],
and Cis O or 1.

Now, if r+3>14, we have
A+B+C>12,

and so A+B>11,
Therefore one at least of A and B is greater than 5. But
¢° (q)=§0 T LT (67)
Hence it is easily deduced that
¢4 (q) $5(¢) $°(g)) = O (phUd+B+O-1} v . ... (68)
It follows that
E,,(n)=0{nrte-¥@C+s-01y . (69)
if »+8>14. We have already shewn in § 11 that, if » + s =10, then
Epg(R)=0 (") veeveeeeereveeeenrnrenennn (T0)
This agrees with (69). Thus we see that in all cases
B, (n)=0{n¥o+es}y, (1)
and that, if » 4+ s is of the form G, then
E,o(n)=O{ndC+e+d} (72)
and if of the form 6m + 4, then
E,,(n)=0{n¥+e+d}) (73)

14. I shall now prove that the order of £, ,(n) is not less than that of
nt@+), In order to prove this result I shall follow the method used by
Messrs Hardy and Littlewood in their paper “Some problems of Diophantine
approximation ” (IT)+.

* See §§ 24—25.
t Acta Mathematica, Vol. xXxvI1, pp. 193—238.
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Let g= eri-r q/ —_ eﬂ’T’
where 7=° +dr
a+br’
and ad —bc=1.
Also let V=
a+ b'r
Then we have © A/oem S (v, T) =/ VS,(V T), eveeeieennnnn, (74)

where o is an eighth root of umt.y and’

Y (v, 7)=2sin7v. qi i Q- (A —2¢*" cos 27y + ¢**). ...(75)
1

From (75) we have
(1 +2cos 2n1rv)

log®, (v, 7) =log (2 sinmv) + } log ¢ — Zq Rd—g™ (76)

1t follows from (74) and (76) that
(1 + 2 cos 2narv)
n(l—¢™)

=logsinwV + 4 log V + } log ¢’ — mibvV — 2 9™ (1+ 2{’95'2"7V) )

logsinmv + } logv+1logg+logw— ¢
1

Equating the coefficients of +*+! on the two sides of (77), we obtain
8

(a+b'r)’“{1}§(— S)+ L q + 12 q;a+ l_qs + '“}

98’4 389’6
-%§(—S)+ At v

i _"qr. + i——q;“ +..., (18)
provided that s is an odd integer greater than 1. If, in particular, we put s=3
and s=>5 in (78) we obtain

(a+br)‘{1+240( L qq,+ ¢ L3¢, )}

l1—¢* 1—4¢°
e ) o
ior o (0 O B ...)}
{1 — 504 ( L' ; + 1252‘,. +1= ;,s + )} (80)

It follows from (38), (79) and (80) that
(a4 br)yH 2 F, (@D =F,s(@%. .ooviriininnnnn, (81)
It can easily be seen from (56) and (37) that

F,,(z)= % Epy(m) @™ eoveveeeeerreeenae.. (82)
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Hence (a+ br)r+ste 2 E, ,(n)g"= 2 E, ,(n) q ............ (83)

Itis important to observe that
()= EENEEES) _tA=n+Ea =)
ne r+s
_I‘(r+ DI +1) ¢+ 1) E(s+1)

I'(r+s+2) E(r+s+2) FO s (84)
if r + s is not equal to 2, 4, 6, 8 or 12, This is easily proved by the help of
the equation (39).

15. Now let
T=u+1ty, t=e" (u>0,y>0 0<t<l),

so that q = e"u=T = feiu

and let us suppose that p,/g, is a convergent to
_111
S atata
so that Mn = Pn—1qn = PnGn =t L.

Further, let us suppose that
a= pm b = Qm
C = NMnPn—1, d=— NMagdn—,

so that ad —bc =n2=1.
Furthermore, let Y =1/(gnq n+1)s
where q'n+1 = a'n+l qn + Qn—»

and a’yy, is the complete quotient corresponding to aq.,.

Then we have
[+1 —z| N2

[Cl/+b7']_'lpn_qn —zanl —_— y seviecens (85)
qn+1 Qnﬂ
and | q’ l = e—'As
_ _g(ctdr d 1
Wwhere r=K(T)=1 <a + b'—) I {5 b(a + br)f
y Do, (86)

N /gl + 'y 290"
and I(7) is the imaginary part of 7. It follows from (83), (85) and (86) that

qln+1 Thete —2mA —4mA _ ( —~6xA __
>( ﬂ) (E,,(1)| e —|E, ,(2)| e~ — | E, ,(8)| e — ...},




On certain Arithmetical Functions 151

We can choose a number \,, depending only on 7 and s, such that
{Es(1)|e™ >2(|E, ,(2)|e "™+ | E,,(8)|e "+ ...}

for A >%,. Let us suppose A, > 10. Let us also suppose that the continued
fraction for u satisfies the condition

A0 > Qnpr > NoGn v, (88)

for an infinity of values of n. Then

§ E m l of q,"'"" e —4mAo ’ 74842
r,a(")q 2%' Er,s (1) | G € >K(q::+1) ’ (89)
1 : \ V2
where K depends on r and s only. Also
gnq'nn=1/y,
4 >i_\/{_‘]"_-}>_K__
T > gy~ log (1)) ~ T =1y
It follows that, if » is an irrational number such that the condition (88)
is satisfied for an infinity of values of n, then

!%E,,,(n)qm[ SE(L—g)y-#r+een (90)

for an infinity of values of ¢ tending to unity.
But if we had E"s (n) =0 {n}("+8)}’

then we should have

'i SE, ()¢ =o{(1—tyterea,
1

which contradicts (90). It follows that the error term in =, ,(n) is not of

the form
0 {n*(""“)} .

The arithmetical function T (n).

16. We have seen that E,,(n)=0,

if r+ sis equal to 2,4, 6, 8 or 12. In these cases =, , () has a finite expression
in terms of o, (n) and o,y (n). In other cases 3, ,(n) involves other
arithmetical functions as well. The simplest of these is the function T ()
defined by .

%T(n)wn=w{(1—x)(l‘-ma)(l—as)...}w. ............ (92)

These cases arise when r+s has one of the values 10, 14, 16, 18, 20
or 24. : ’



152 On certain Arithmetical Functions
Suppose that = + s has one of these values. Then
1728 S E, , (n) a*
1

(Q’ - R’) E,.,,(l)
is, by (41) and (82), equal to the corresponding one of the functions

1, @ R, @ QR, QR

In other words

3 n — n 2 nr a—u.i
?Er,a(n)w rs(l)z"'(’n)z {1+ C(ll—rﬁ—_s‘)§ * l_zn}'

We thus deduce the formule

E,.(n)=E,;(1)T(n), .cccvvvviniinnninnnnnnn. (94)
if r+s=10; and

Tpps—n (0) Er, s(n)= Er,s (1) {Fr18-u(0) T(n)
+0en(DT(n =D +... +0ppen (n—=1)7(A)}, ...(95)

if r+s is equal to 14, 16, 18, 20 or 24. It follows from (94) and (95) that,
if r+s=1r"+5', then

E,y(0)Epy(1)=Epy (1) Epy (M), oo, (96)
and in general E,.(m)E, s(n)=E,;(n)Eyy(m), ..cccceeenn.. 97)

when r + s has one of the values in question. The different cases in which
r + s has the same value are therefore not fundamentally distinct.

17. The values of 7(n) may be calculated as follows: differentiating (92)
logarithmically with respect to 2, we obtain

%nv(n)w":P%T(n)z". ..................... (98)
Equating the coefficients of ™ in both sides in (98), we have
(M= {0-(1)7(’1 D+a(@)r(n—-2)+... + o (n = 1)7 (1)}
...... (99)

If, instead of starting with (92), we start with

E-r(n)x”=w(1 —3z+ 528 - Tt + ... ),
1

E]

we can shew that
(n=1D)1(n)=3(n—-10)7(n—-1)+5(n-28)7(n—3)—7(n—55)7(n—6)
+..t0 [3{1++/(Bn—=T)}] terms =0, ............ (100)

where the rth term of the sequence 0, 1, 3,6, ... is 3r(r—1), and the

rth term of the sequence 1, 10, 28, 55, ... is 1 + §r(r —1). We thus obtain
the values of 7(n) in the following table.
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TaBLE V.
n T(n) n 7 (n)
1 +1 16 | +987136
2 -924 17 — 6905934
3 +252 18 +2727432
4 - 1472 19 +10661420
5 +4830 20 ~ 7109760
6 ~6048 21 — 4219488
7 ~16744 22 - 12830688
8 +84480 23 +18643272
9 —~113643 24 421288960
10 -115920 ' 25 . —25499225
11 +534612 26 +13865712
12 — 370944 27 — 73279080
13 —577738 | 28 +24647168
14 +401856 29 +128406630
15 +1217160 | 30 - -29211840 |
1 i

18. Let us consider more particularly the case in which » + s =10. The
order of E, ,(n) is then the same as that of 7(n). The determination of this
order is a problem interesting in itself. We have proved that E, ,(n), and
therefore 7 (n), is of the form O (n”) and not of the form o (n*). There is

reason for supposing that = (n) is of the form O (n'"*€) and not of the form
o (n**). For it appears that

3 7(n) 1
R e o S (101)

This assertion is equivalent to the assertion that, if

aT
b

n =P1“‘pz"’ps““ e Dy
where py, ps, ... pr are the prime divisors of n, then

()=S0 (Lt @) Op 8in(l +0) 6y, sin(l+a,) 6y
sin Op, sin 6, sin 6,,

» (102)

where cos 8, =3p~ ¥ 7(p)
It would follow that, if n and n’ are prime to each other, we must have
TR )=TM)T@). i (103)

Let us suppose that (102) is true, and also that (as appears to be highly
probable)
27 (PSP, i (104)

so that 6, is real. Then it follows from (102) that

n~ ¥ r@m) <1 +a)(l+a)...(1+a),
that is to say [7() | <7 d(®), «oeeeeerinieaaeeeaaiin, (105)
where d (n) dénotes the number of divisors of n.



154 On certain Arithmetical Functions

Now let us suppose that » =p®% so that
n~¥r(n)= m——g:ej) |
Then we can choose @ as large as we please and'such that
sin(l1+a)é,
sin 6,
Hence [T(R)|=n% i (106)

for an infinity of values of n.

21

19. It should be observed that precisely similar questions arise with
regard to the arithmetical function v (n) defined by

? Y (n) &= o1 (a%) for (o) ... for (27, cennnannnnnnnn (107)
where f@)=af(l-z)(1—22)(1—2%)...,
the a’s and ¢’s are integers, the latter being positive,
H(ae + ac.+ ... + aycy)
is equal to 0 or 1, and l(g'-l+93+...+a—'),
G G Cr

where [ is the least common multiple of ¢,, c,, ... ¢, is equal to 0 or to a
divisor of 24.

The arithmetical functions y (n), P (n), x.(n), Q (n) and ® (n), studied by
Dr Glaisher in the Quarterly Journal, Vols. XXXVI—XXXVIII, are of this
type. Thus

x (e =,
3P m)an=f() (=)
S (m) a7 = £ () 12 @) F @),

20m a1 @)

8

S, O (n) 2 = f* () f* (2?).

1

20. The results (101) and (104) may be written as

1
1-— 201’ p-t +pr+s+x—et ’

$E.M_p mym
n P

1

where e’ <P,
and 2cp By, (1)=E, ,(p).
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It seems probable that the result (108) is true not only for  + s= 10 but
also when r + s is equal to 14, 16, 18, 20 or 24, and that

E’ Ld (n) nt rtst1
’ Z..()| S SnArHId(n) L (109)
for all values of n, and E:’E’I'; St (110)
for an infinity of values of n. If this be so, then
E,,(n)=0 {nttrtstrta} B, (n)Fo{ntrtsr) ... (111)

And it seems very likely that these equations hold generally, whenever
r and s are positive odd integers.

21. It is of some interest to see what confirmation of these conjectures
can be found from a study of the coefficients in the expansion of

& {(1 — @) (1 — o) (1 — ale) . Jo = % Yo (n) 2",

where a is a divisor of 2. When a =1 and a =3 we know the actual value
of Y. (n). For we have

S () ot = 2 — o — aP g o P, L (112)
1

where 1, 5, 7, 11, ... are the natural odd numbers without the multiples
of 3; and

Sy (1) % = 21° = 82% 4 525 = T2+ oo v, (113)
1

The corresponding Dirichlet’s series are

Y(n) _ 1
? né (l+5—23)(1+7—ﬂ)(1_11—m>(1 _13_2,) ...(114)

where 5,7,11,13,... are the primes greater than 3, those of the form 12n + 5
having the plus sign and those of the form 12n + 1 the minus sign; and

Y (’n) 1
? né (1 F3%) (1= 5%) (1+ 7») (1 + 11=) .. , ...(115)

where 38, 5,7, 11, ... are the odd primes, those of the form 4n —1 having the
plus sign and those of the form 4n + 1 the minus sign.

It is easy to see that
Iy ()<, |[Ys@)|[SVR ool (116)

for all values of n, and
[Ya(n)|=1, |¥s@)|=anuceeieininnnnan. 117)

for an infinity of values of n.



156 On certarn Arithmetical Functions

The next simplest case is that in which a=2. In this case it appears that

1
A+ (AT (A1l =) A+ 17 >)...°
5,17,11, ... being the primes of the forms 12n—1 and 12n % 5, those of the
form 12n + 5 having the plus sign and the rest the minus sign; and
1
TA+ I3 A =31 (1 -6l A +737F...°
18, 37, 61, ... being the primes of the form 12n+ 1, those of the form

m?+ (6n — 8)* having the plus sign and those of the form m?+ (6n)* the minus
sign.

where I

I,

This is equivalent to the assertion that if
n=(5%,7% 11 17% ) 13%s, 37% Gl 73%s ...
where a, is zero or a positive integer, then
Yy (n) =(—1)sstautarrtantaat - (1 4+ @) (1 +ag) (1 +ag) ..., ...(119)

where 5, 13, 17, 29, ... are the primes of the form 4n + 1, excluding those of
the form m? + (6n)?; and that otherwise

PYoa(m)=0. .cooiiiiiii (120)
It follows that [Ye(m) | Kd(M) woveeiiiiiiiiiia (121)
for all values of », and [Ya@) |21 cvii (122)

for an infinity of values of n. These results are easily proved to be actually
true.

22. I have investigated also the cases in which a has one of the values
4, 6, 8 or 12. Thus for example, when a= 6, I find

where 11,

TASFE (AT (1- 1)
3, 7,11, ... being the primes of the form 4n—1; and

—_— e e e [ ——— 1
2T (1= 2¢5.57 + 5%) (1 — 2¢y5. 187 4 1327%) ...
5,13, 17, ... being the primes of the form 4n +1, and ¢, = u*— (2v)?, where u
and v are the unique pair of positive integers for which p = u?+ (2v)>. This
is equivalent to the assertion that if

n=(3%. 70 110u,, ) 5es 130 170 ..

I

* Y(n) is Dr Glaisher’s A (n).



On certain Arithmetical Functions 157

sin (1 + a;) 6; sin (1 +ay) 6y, sin (1 +ay) 6y

then ‘I’°—)§n)= snd  ° snf, sin 8, oy a(124)

where tan 6, = % (0<b,<m),

and that otherwise yry(n)=0. From these results it would follow that
[Ye(n)|<nd(R) oovvnvininiiiii, (125)

for all values of n, and IYs(R)[Z1 et (126)

for an infinity of values of n. What can actually be proved to be true is that
[¥a(n)| < 2nd ()
for all values of n, and [Ys(n)|=>n

for an infinity of values of n.

23. In the case in which a= 4 I find that, if
n=(5%, 11 1707 ) 7% 18%s 19% .,

where 5, 11, 17, ... are the primes of the form 6m—1 and 7,13, 19,... are
those of the form‘ 6m + 1, then

_sin (1+aq) 6, sin 1+ ay) 6,4 (127)

Yi(n) _ (= 1)astautarrt . .
Vn : sin 6, sin 6,

where tan 6, = l—uii% 0<bp<m),

and u and v are the unique pair of positive integers for which p=3u?+(1 £ 3v)*;
and that yr, (n) = 0 for other values.

In the case in which a = 8 I find that, if
n=(2%,5% 116n ) 7% 13%s,19%
where 2, 5,11, ... are the primes of the form 3m —1 and 7,13, 19, ... are
those of the form 6m + 1, then

Ya(n) et . sin3 (1+4a,) 0, sin 3(1+ay;)b;,
n AN = (= Dymrarrou® sin 360, sin36,, 7 --(128)

where 6, is the same as in (127); and that yr;(n) =0 for other values.
The case in which a=12 will be considered in § 28.

In short, such evidence as I have been able to find, while not conclusive,
points to the truth of the results conjectured in § 18.

24. Analysis similar to that of the preceding sections may be applied to
some interesting arithmetical functions of a different kind. Let

¢ (g)=1+2 %'rs (M) e (129)
where b(Q)=1+2q+2¢"+2¢°+ ...,
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so that r,(n) is the number of representations of n as the sum of s squares.
Further let

2173a(n)Q"=2( ¢ _ ¢ ,. ¢ —) 2( g, ¢ T .);

l—q 1-¢ 1-¢ 1+¢ 14¢ l+q

...(130)
@ ]_n—lq 23—12 33—-1q3 )
s N = P — —_— e ...(131
@D B E8a ) "o (Too+ [t o) - (131)
whensisamultiple of 4;
_ 15— q 2_:—1 q2 s qa

-1) B, 28 (n) g" s( q+1+q +1_q3+...>, ...(132)

when s+2is a mulmple of 4,

1‘—1 q 23 -1 q') 38—'] q3
n_.‘)c - — —
E, 25, (n)g (1+q+1+q‘+1+q‘+“')

1:-1q 3¢ 58—lqa_
+2(1—q—1_qs+1_q, ---\,...(133)

~.

when s — 1 is a multiple of 4;

@® 1s—lq 2» lq 3l—lq8
Yg 8.,, n=20( ..)
Ei28,(mq ¢t Tegtivg ™

2(; uq; :13_'3:+«;L_‘Z:_) ...(134)
when s+ 1 is a multiple of 4. In these formulae
B,=}, B,=4, By=4;, Bs=4, Bu=4¢, ...
are Bernoulli’s numbers, and
E =1, E,=1, E,=5 E,=61, E,=1385,...
are Euler's numbers. Then §,(n) is in all cases an arithmetical function

depending on the real divisors of n; thus, for example, when s+2 is a
multiple of 4, we have

(2*—1) B, 8, (n) = 8 {051 (n) — 205 (30)}, ..een.. (135)
where o, (z) should be considered as equal to zero if z is not an integer.
Now let Tos (N) = 8o (N) + €5 (N). cevvevrnieninininnnn. (136)
Then I can prove (see § 26) that
€3 (M) =0 ooeoeeeeeeeeeeeeee e (137)
if s=1, 2,8, 4; and that
ey (n)=0 (m¥al+ey (138)
for all positive integral values of s. But it is easy to see that, if >3, then
Hr 1< 8y (n)< Kn*Y oo, (189)
where H and K are positive constants. It follows that
Tos (N) ™ By (M) vevieiiiiiiiiiiiieieeans (140)

for all positive integral values of s.
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It appears probable, from the empirical results I obtain at the end of this
paper, that

o (n)=0{nde-0+e} (141)
for all positive integral values of s; and that
ew (M) 0 {nd o} e, (142)
if 8 >5. But all that I can actually prove is that
e ()= 0 (Y (143)
if s>9; and that e(M)Fo(m* ) (144)
if s>5.
25. Let S (@) = 2;,62, (n) g*= ? {ras(m) — S ()} g™ oooevveinntn (145)
Then it can be shewn by the theory of elliptic functions that
fu(@=0¢*(q) = K, (EE)y™ .o (146)

. 1snsi(s-D
that is to say that

PRI CY I ()] 147)

‘f”(qg) 1<ns i(‘-l) f“”( - q) ..............
where ¢(q) and f(g) are the same as in §13. We thus obtain the results
contained in the following table.

TaBLE VI.
- (=0, fi(9)=0, fe(9)=0, fs(g)=0.
2 Sho@=10 O faw=e@h:
3. 6114 (9)="28/*(— )/ (g*s 17fie(g)=256/* - VAU

4. 1385f5(g)=24416112(~g) f® (g% — 256 f’fi"(‘i’ ;) .

5. 3L (9)=616/1°(—g)f* (g% — 128 ff:‘z <_92) ,

6. 50521 fs (q)=110327212( — g) f*(¢?)— 821888 jff‘(’ (_q;)) )
7. 69115 () = 1657612 (— q) — 32768/ (g?).

It follows from the last formula of Table VI that
&2le, (n) = (— 1)* 12597 (n) — 5127 (3n), ...eeneenes (148)

where 7 (n) is the same as in § 16, and 7 () should be considered as equal to
zero if z is not an integer.

-

Results equivalent to 1, 2, 3, 4 of Table VI 'were given by Dr Glaisher in
the Quarterly Journal, Vol. xXxvIIL. The arithmetical functions called by him
C xm), Q@ W@, 8(), U
are the coefficients of ¢” in

LD @ 0@ POIGD D@



160 On certain Arithmetical Functions

He gave reduction formule for these functions and observed how the functions
which I call ey, (n), e4(n) and e,,(n) can be defined by means of the complex
divisors of n. It is very likely that (n) is also capable of such a definition.

26. Now let us consider the order of e, (n). It is easy to see from (147)
that f,, (¢) can be expressed in the form
s — e f“(_‘I)}b{f’(Q’) }c h(—q) F¥(q%). ...(149
a,0,6,5,6{f* (— @)} {fa(qn) -9 J*(=9) f¥(q*), -.-(149)
where a, b, ¢, h, k are zero or positive integers, such that
a+b+c=[%s], h+k=2s—3[%s].
Proceeding as in § 13 we can easily shew that
n_* [3s] % (n)
cannot be of higher order than the coefficient of ¢** in
D4(q) PP(P) (g, +evvnerniniiiiieannn, (150)
where C'is 0 or 1 and A+B+C=2s—-2[%s]
Now, if s25, A+B+C>4; andso A +B>3. Hence one at least of 4
and B is greater than 1. But we know that
$*()=20(")¢q"
It follows that the coefficient of g** in (150) is of order not exceeding
ni (A+B+C)_l+!.

Thus e (n)=0(ne1-¥eve) (151)

for all positive integral values of s.

27. When s >9 we can obtain a slightly more precise result.

If s>16 we have A + B+ (C>12; and so A + B>11. Hence one at least
of A and B is greater than 5. But

#(@) =300 ¢
It follows that the coefficient of g*® in (150) is of order not exceeding
n}t (A+B+0) -1
or that e (n)=0 (e3408N (152)
if §>16. We can easily shew that (152) is true when 9 <s< 16 considering
all the cases separately, using the identities
fEL @) ={ (- Q¥ (P
S _ { S* () }“

-9 -9
8 (e s a=ﬂ(‘9)‘f“(9’) ! a
ror@=-{5SEY 5O r@
S _ (LDt oy g
fs(__q)_{fz(_q)} {f @@, ...

and proceeding as in the previous two sections.
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The argument of §§14—15 may also be applied to the function e, (n).

We find that
s (M)FoMI). L (153)

I leave the proof to the reader.

28. There is reason to suppose that
o (1) = O {4140}

e, (154)
€u (n) F 0 {nt 1}
if >5. I find, for example, that
sa®_ e pop (155)

. nf 1 4 9
o 1
A=3")Q-T")(1-11"%)...’
3, 7,11, ... being the primes of the form 4n —1, and
_ 1
T (1= 205. 574 54#) (1 — 2¢y5. 13~% 4 13+2%) ...’
5,18, 17, ... being the primes of the form 4n + 1, and

Cp = u? — (40,

where I, =

I,

where « and v are the unique pair of positive integers satisfying the equation
ut+ (dv)? = p2
The equation (155) is equivalent to the assertion that, if
n=(8%.7% 11%: ). 20 5% 13%

where a,, is zero or a positive integer, then

en(n) . 1, sin4(1+a)6; sind(1+ay) by,
n“e,o(l)".( 2 #ndd, = sndg, o (150
where tan 0p=g (0<6,<}m),

u and v being integers satisfying the equation w*+ v*=p; and e,(n)=0
otherwise. If this is true then we should have

e (n)

I R I — (157)
for all values of n, and M| St e 158
or all values ol n, an ew(l)' - ( )

for an infinity of values of n. In this case we can prove that, if n is the
square of a prime of the form 4m — 1, then

e (n) =
en(l) )
R.C.P. 11
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" ‘Similarly I find that

2 €s(n) _ 1 )
2P e (1 o)
p being an odd prime and c?<p°. From this it would follow that
HY) (n) ‘ 8.7
e~—-—u(1)£gn A(R) e
for all values of n, and !M SN
ten (1)

for an inﬁl‘lity of values of n.
Finally I find that
gem(”)___ es(1) H( 1 )
‘;’ ns 1+2.1—sp 1+20p_p—n+p7—23 ’
p being an odd prime and ¢, < p”. From this it would follow that
e (1)
(1)
[€n(n) !
lew(1)|

for all values of n, and

for an infinity of values of n.
In the case in which 2s =24 we have
8L, (n) =(—1)*"12597 (n) — 5127 (}n).
I have already stated the reasons for supposing that
{r(n)|<n™d(n)
for all values of n, and |7 (n)| >n*

for an infinity of values of n.

.......

<A (R) coiiiiiii s

D (L BN
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A SERIES FOR EULER’S CONSTANT vy

(Messenger of Mathematics, XLV, 1917, 73—80)

1. In a paper recently published in this Journal (Vol. xLIv, pp. 1—10),
Dr Glaisher proves a number of formule of the type

S, S S,
y=1-2(3 gt gt )
where S,=1"4+2"4+3 "4 474 ...,
and conjectures the existence of a general formula

y=X—-(+1)(r+2)...(2)

9 { S + Ss + }
3(r+3)(r+4)...(2r+2) " 5(r+5)(r+6)...(2r+4) )’
where A, is a rational number. I propose now to prove the general formula

of which Dr Glaisher’s are particular cases: this formula is itself a particular
case of still more general formule.

2. Let r and ¢ be any two positive numbers. Then
1 1

f &1 (1 — z)=i log T'(1 — ) do = f @11 —a)-ilog T'(2) de
0 0

1 1
=f 21 (1 -z log (1 +x)dm-j #i(1 —zy— log x da. .....(1)
0 0

But f "1 (1 — 2y log T (1 — 2) da
0

°3
_TA+nT@®) TER+nT@) S, P(3+r)F(t) S, )
_F(1+r+t)')’ F(2+T+t)§- F(3+r+t')-§+ .......... ()

1
=f 21 (1 - gyt {'ya: + ;S'2 + 8, 4. } dx
0

1
Similarly f 21 (1 - oyt log T'(1 + ) de
0

_TA+HT () P(2+t)I‘(r)Sg _TB+HT () S o
TA+r+t) " T@+r+t) 2 T@+rie) 377 @)
And also
!t r— 9 gy 2 [LAOT ()
fow‘ (1-—2a) loga:dx—-—f 21 (1 - z) dm_d_t{mf
F(r)F(t) ') I'(r+t) F(r)F(t) 11—
I'(r+t) {F(t) I‘('r+t)} I'(r+1¢) oa: l1-2

dz. ...(3)

11—2
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It follows from (1)—(8) that, if » and ¢ are positive, then

r r(r+1) r(r+1)(r+2)
1(r+t)'7+2(r+t)(r+t+1)s’ S(r+t)(r+t+1)(r+t+ 2)8""'
¢ t(t+1) t@t+1)(t+2)
+1(r+t)7"2(r+t)(r+t+1)S2+3(r+t)(r+t+1)(r+t+2)S"
_ lml—x(l___xr)
—."o—m—da}. ............... (4')

Now, interchanging r and ¢ in (4), and taking the sum and the difference of
the two results, we see that, if r and ¢ are positive, then

T+t rir+1D)(r+2)+t(E+1)(¢+2)
Ter+t)"T Br+tr+t+D(r+t+2)

Sy + ...

1 gr—t =1 __ Qprtt—1
= Lx e S
r(r+1)—t(t+1)
wnd DT D
r(r+1)(r+2)(r+3)—¢t(t+1)(¢+2)(t+3) L [lat g
A(r+t)(r+t+1)(r+t+2)(r+t+3) S“"“"‘}fo 1= %
...... (6)

The right-hand sides of (5) and (6) can be expressed in finite terms if r
and ¢ are rational. If, in particular, r and ¢ are integers, then

j‘lmr—l+wt—l__2wr+t~ld _1 1 + 1 + + 1
o l1-2 m_r+r+1 r+2 7 r4t-1
Ll 11
t t4+1 t+2 7 T r4t-1°
(181 — gr—1 ] 1
a.nd .’o—m‘d$=(l+%+%+i‘+-..+r__“i')

—(1 +i+5+1+... +tTll)

3. Let us now suppose that ¢ = r in (5). Then it is clear that
(r+1)(r+2) (r+1)(r+2)(r+3)(r+4)
3(@2r+1)(2r+2) 52r+1)(2r+2)(2r+3)(2r+4)

_[tei(l-a),  [‘l4a
‘fo"ﬁ_w dx_Jol—M—dw, ......... 7

S+ ...

v+ S+

if »>0. If we suppose, in (7), that » is an integer, we obtain the formula
conjectured by Dr Glaisher, the value of A, being

4o . 1
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Again, dividing both sides in (6) by r—¢ and making ¢, we see that, if
r >0, then
r+1 1 1
s ()
(r+)(r+2)(r+3) 1 1 1 1
4(2r+1)(2r+2)(2r+3) (r r+1 +7'+2+r+3> S+ ...

Lgrlogx 1 1 1 1 .
“‘LTT S VR iy S-SR (8)

Thus for example we have

: S, S, S
;'—2=(1+g,)§.i3+(1 SRR P Rt EE T S5 R NV S

4. If we start with the integral
1 z
f &1(1 = )t log T (1 - -) da,
0 2

and proceed as in § 2, we can shew that, if » and ¢ are positive, then

r , r(r+1) , r(r+1)(r+2) ,
1('r+t)Sl +2('r+t)(r+t-{-'l)s’ +3('r+t)(r+t+1)(r+t+2)s" tee
¢ , t(t+1) . tt+1)(t+2)

Sy +...

TIe+ 0 P er a4 1) T3 O (r+i+ 1) (r+E+2)
- /‘l a‘-t—l—(lﬁ_wr)

70 1—.7)

dr—logg, oo (9)

where S)/=1"—-2"7n4 34"y .

From (9) we can easily deduce that, if » and ¢ are positive, then
r(r+1)+t(t+1)s, r(r+D(r+2)(r+3)+t(t+ 1) (t+2)(t+3)
2(r+t)(r+t+1) ° d(r+t)(r+t+1)(r+t+2)(r+t+3)

) 1}]1 27 4 gt — Dgrtt—1
0

S/ +...

do— log1—r' ...... (10)

l1—2

r—t o, rE+1)E+2)—tE+1)(E+2)

and I+ T T3+t (r+ i+ ) (r+E+2) S
la;t—l_wr—l
= fo —1—_w——d-’b. ............... (11)
As particular cases of (10) and (11), we have .
moor+l o (r+D(r+2)T+8) o, [(Tlyar
o8+ 3@ iD™ Ta@m D@ T 2 @ e ) > +""fo 1+a 5
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1., (r+1)(r+2) 1 1
and ;S‘+3(2r+1)(2r+2)(r r+1+r+2)

r+D(r+2)(r+3)(r+4)
52r+1)(2r+2)(2r+3)(2r+4)

YA PRI SN S T PO

traatrretristrra

S SR S S
rTEF1r T r+ 2P

Sl

+

provided that » > 0. Thus for example we have

8, 8, S8/ )
‘l°g2+2(23 45+6 7t
Sl SI

et

™
2

5. The preceding results may be generalised as follows. Let ¢(s, )
denote the function represented by the series

28+ @+ 1)+ (z+2)*+(x+3)°+... (z>0)

and its analytical continuations, so that {(s,1) = ¢(s)and ¢ (s,4) = (2 - 1) ¢ (s),
& (s) being the Riemann ¢-function. Then

fl,c"‘(l —2)"1 (s, 1 —z)dz = " 2 (1 —2) 1 L (s, z) dz
- f L (L= ayr g (s, 1+ a) da + fO (1 —ayrds, ... (14)
0

provided that » and ¢ are positive. But we know that, if |z | < 1, then
s (s + 1)

(s, 1—2)= §(s)+ C(s+1) x + EGE+2)z2+...; ...(15)

r¢-sr (r)

1
and that fo g1 (1 — z)yde = TGostb)’

provided that ¢ >s. It follows from (14)—(16) that, if » and ¢ are positive
and ¢t > s, then

s r s(s+1)  r(r+1)
o+ i e+ G2 0T

s(s+1) tt+1)
~feo- 7 per e S D g ]

T+ (t—s)
T T (r—s+t)°

;(s+2)+...}

............ (17)
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As particular cases of (17), we have

s r+t s(+1)(s+2)r(r+D)(r+2)+t(E+1)(t+2)
TirgetEtD+ 31 GO +isDrris2) ST+
_l T+t (T(t-9) T(r-s)
= TGoerp L T@ T
and s(s+l)r('r+1)—t(t+1)g(s+2)

2T (r+D(r+t+1)
s(s+1)(s+2)(s+3)r(r+1)(r+2)(r+3) tE+1)(E+2)(t+3)

Y T T+ D it (reied) SCTHT
1 T(@+t) (T(E—s) T(r—s)
=3 P('r-—-s-i-t){ re ~ T J\ ............ 19)

provided that r and ¢ are positive and greater than s. From (18) and (19)
we deduce that, if r is positive and greater than s, then

s r s(s+1)(s+2) r(r+1)(r+2)
1120t D+ 37— @ @+ T+

_1T@)T(r—s)
R S

s(s+1) r(r+1) /1
21 2r(2r+1)< r+1)§("+2)
s(s+D(s+2)(s+3) r(r+1)(r+2)(r+3)
+ 4l T % @r+1)(2r + 2) (2r +3)

(l 1 1 1
X

it gty LE

11‘("1‘)1‘(1‘—3)[‘ a1 (1 — w‘)d

2 T(rT(2r—s) o -z

and

........... (21)

6. If we start with the integral

f : a1 (1= z)1 ¢ <s, 1- g) da,

and proceed as in § 5, we can shew that, if » and ¢ are positive and ¢ > s,
then .

(s+1) (r+1)
6O+ Tyragb e+ D+ (r+:):r+t+1)€’(s+2)+"'
s t s(s+1) tt+1)
+§1(3)-]—1m§x(3+1)+ 91 (r+t)(r+t+1)§‘(s+2>—"'

_Lr+T(t-s) .
ST@T(rostt)’ = (22)
where ¢, (s) is the function represented by the series

178 -2t 4 32 —4*+...
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and its analytical continuations. From (22) we deduce that, if » and ¢ are
positive and greater than s, then

s(s+1)r(r+1)+t(t+1)

+DEE+ =5 T e ris 1)

GL(s+2)+...

“IrGoeenl TH t T e
and LI G+ )
e st
-1 P%Z':J?t) {I‘ {f(‘t)s) _ I’_{f(:)“')}. ......... (24)
As particular cases of (23) and (24), we have
& (s) + s(";, L, ‘,ngi) L+ +..=3 1 ((i;)[};?(: "')) ...(25)
and L lhe+)
+1 ir”ls_):g‘E £2 2rr((2rr:-11))((r2: ?2)‘ (1 oy l 1ty ) G+ +.
; gg;')[}:é: = 3 o ) da, ceeree.... (26)

provided that r is positive and greater than s.
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ON THE EXPRESSION OF A NUMBER IN THE FORM
ax’+ by’ + c2* + du’
(Proceedings of the Cambridge Philosophical Society, X1X, i917, 11—21)

1. It is well known that all positive integers can be expressed as the
sum of four squares. This naturally suggests the question: For what positive
integral values of a, b, c, d can all positive integers be expressed in the form

ar*+ by +ef+dut? L (11)

I prove in this paper that there are only 55 sets of values of a, b, ¢, d for
which this is true.

The more general problem of finding all sets of values of a, b, ¢, d, for
which all integers with a finite number of exceptions can be expressed in the
form (1-1), is much more difficult and interesting. I have considered only
very special cases of this problem, with two variables instead of four; namely,
the cases in which (1'1) has one of the special forms

a(@+YP+2)FbUE i (1-2)
and a(@+y)+b(A2+uD) i, s (1-3)

These two cases are comparatively easy to discuss. In this paper I give

the discussion of (1:2) only, reserving that of (1'3) for another paper.

2. Let us begin with the first problem. We can suppose, without loss of
generality, that

ag<bhbgegd i 21)
If @ > 1, then 1 cannot be expressed in the form (1'1); and so
=1 et (22)
If b > 2, then 2 is an exception; and so
1€b2 i (23)

We have therefore only to consider the two cases in which (11) has one or
other of the forms
22+ Y+ e+ dud, 2* + 292+ c2® + dul
In the first case, if ¢ > 3, then 3 is an exception ; and so

1€C<80 it (2:31)
In the second case, if ¢ > 5, then 5 is an exception ; and so
S 2<C<5 SURUUT (2-32)

We can now distinguish 7 possible cases.
(241) 2+ y*+2° +du.
If d > 7, 7 is an exception; and so
1A LT oo (2:411)
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(242) 22+ y*+ 220+ du’.
If d > 14, 14 is an exception; and so
2<d<ld L (2:421)
(243) 2+ >+ 322 +dus.
If d>6, 6 is an exception; and so
’ B3<d<b v (2-431)
(244) 22+ 2y°+ 222 + du?
If d> 17,7 is an exception; and so
2<d<T. i, (2441)
(245) o+ 2y + 322 + du?
If d > 10, 10 is an exception; and so
8LALL0. oo, (2:451)
(246) 2°+ 292 + 42 + du>
If d > 14, 14 is an exception; and so ‘
Agd e (2:461)
(2:47) 24 2y° + 522 + du?.
If d > 10, 10 is an exception: and so
Bd 0. coeeeeeeeeeeeeeeeeenen, (2:471)

We have thus eliminated all possible sets of values of a, b, ¢, d, except
the following 55:

1,1, 1,1 1,2 8 5 1, 2,4, 8
1,1, 1, 2 1,2 4,5 1,2 5 8
1,1, 2 2 1,2 5,5 1,1,2 9
1,2 2 2 1,1,1,6 1,28 9
1,1, 1,3 1,1, 2 6 1,2 4, 9
1, 1,2 3 1,2, 2, 6 1,25 9
1,2 2 3 1,1, 3,6 1,1, 2, 10
1, 1,8 3 1, 2 3,6 1, 2, 8, 10
1,2 3, 3 1, 2 4, 6 1, 2, 4, 10
1, 1, 1, 4 1, 2, 5, 6 1, 2, 5, 10
1,1, 2 4 1,1, 1,7 1, 1, 2, 11
1, 2, 2 4 1, 1,2 7 1, 2, 4, 11
1,1, 3, 4 1,2, 2, 7 1, 1, 2, 12
1,2 8, 4 1,2 3,7 1, 2, 4, 12
1, 2, 4, 4 1, 2 4, 7 1,1, 2, 13
1,1,1,5 1, 2 5 7 1, 2, 4, 13
1,1,2 5 1,1, 2 8 1, 1, 2, 14
1,2 2 5 1,2, 3 8 1, 2, 4, 14
1, 1,38 5

-
-
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Of these 55 forms, the 12 forms

1,1, 1,2 1,12 4 1,2, 4, 8
L, 1,2 2 1, 2 2 4 1,1,3 3
1,2 2 2 1, 2 4, 4 1,2 3 6
L, L1,4 1, 1,28 1, 2, 5 10

have been already considered by Liouville and Pepin*.

3. I shall now prove that all integers can be expressed in each of the
55 forms. In order to prove this we shall consider the seven cases (241)—
(247) of the previous section separately. We shall require the following
results concerning ternary quadratic arithmetical forms,
The necessary and sufficient condition that a number cannot be expressed
in the form
Y H 2 (31)
is that it should be of the form
PBu+T), (=012 .., =012 ... ...... (311)
Similarly the necessary and sufficient conditions that a number cannot be
expressed in the forms

B4 P H22 i (32)
S+ YP+32 (33)
B4 2+ 22% i (84)
B4+ 2P 4822 e (8'5)
T2+ 42% (36)
2P +52% i 37)
are that it should be of the forms
4 (16p+14), coiiiniiiiiiiaenn (821)
POt 6) eveveeeeeeeereeeenn, (3:31)
B CBUA T), oo, (341)
4 (16 +10), woorrerierrereeinnan. (8'51)
4 (161 + 14), eeeeeeeereeeeeeeen . (361)
258 (25 + 10) or 25* (25, + 15)t. ceuenennnnenn. (371)

The result concerning z* + 3%+ 2% is due to Cauchy: for a proof see
Landau, Handbuch der Lehre von der Verteilung der Primzahlen, p. 550.
The other results can be proved in an analogous manner. The form
a*+y*+22* has been considered by Lebesgue, and the form 22+ y*+ 322
by Dirichlet. For references see Bachmann, Zahlentheorie, Vol. 1v, p. 149,

* There are a large number of short notes by Liouville in Vols. v—viir of the second
series of his Journal. See also Pepin, ¢bid., Ser. 4, Vol. vi, pp. 1—67. The object of the
work of Liouville and Pepin is rather different from mine, viz. to determine, in a number
of special cases, explicit formule for the number of representations, in terms of other
arithmetical functions.

+ Results (3:11)—(371) may tempt us to suppose that there are similar simple results
for the form az?+ by?+ ce? whatever are the values of a, b, c. It appears, however, that
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4. We proceed to consider the seven cases (2'41)—(2:47). In the first
case we have to shew that any number N can be expressed in the form

N=2+yP+22+dul .c.coevrevviernnnnn. 41)
d being any integer between 1 and 7 inclusive.

If N is not of the form 4* (8u+ 7), we can satisfy (41) with u=0. We
may therefore suppose that N =4* (8u+ 7).

First, suppose that d has one of the values 1, 2, 4, 5, 6. Take u=2

Then the number
. N—-dw=4@Bu+T7-d)

is plainly not of the form 4*(8x + 7), and is therefore expressible in the
form 22 + 4? + 22

Next, let d = 3. If u=0, take w =2* Then

N — du? =411,
If u>1, take u=2**1. Then
N —dw=4* (8p—5).

In neither of these cases is N —du? of the form 4A (84 + 7), and therefore in
either case it can be expressed in the form z* +y* + 22

in most cases there are no such simple results. For instance, the numbers which are not
of the form 22+ 2y?4 1022 are those belonging to one or other of the four classes
25" Bu+7), 26" (25u+5), 26 (2/p+15), 25 (26 +20).
Here some of the numbers of the first class belong also to one of the next three classes.
Again, the even numbers which are not of the form z2+32+102? are the numbers
4} (164+6),
while the odd numbers that are not of that form, viz.
3,7, 21, 31, 33, 43, 67, 79, 87, 133, 217, 219, 223, 2563, 307, 391, ...
do not seem to obey any simple law.
I have succeeded in finding a law in the following six simple cases:
224 yi + 422’
2+ y 458
22+ y462%
224 Y2482,
2%+ 2y% 4622,
2% 4 2y? 4822
The numbers which are not of these forms are the numbers
A (Bu47) or 8u+3,
4 (8u+3),
9* (9 +3),
42 (16u+14), 16p+6, or 4u+3,
4* (8u+5),
4 (Bu+7) or 8u+b.
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Finally, let d="7. If p is equal to 0, 1, or 2, take w =2*, Then N — du*

is equal to 0, 2.4**1, or 422, If u > 3, take w =2**+1, Then
N — du? = 4* (8 — 21).

Therefore in either case N — du? can be expressed in the form z* + y*+ 22

Thus in all cases N is expressible in the form (4'1). Similarly we can
dispose of the remaining cases, with the help of the results stated in § 3.
Thus in discussing (2:42) we use the theorem that every number not of the
form (3:21) can be expressed in the form (3'2). The proofs differ only in
detail, and it is not worth while to state them at length.

5. We have seen that all integers without any exception can be expressed
in the form

m(@+y+22)+nu’, (51)
when m=1, 1g<ngT,
and m=2 n=1.

We shall now consider the values of m and n for which all integers with
a finite number of exceptions can be expressed in the form (51).
In the first place m must be 1 or 2. For, if m > 2, we can choose an
integer » so that
: nu? £ v (mod m)
for all values of . Then
(mp + v) — nu?
=R
where u is any positive integer, is not an integer; and so mp+v can
certainly not be expressed in the form (51).
We have therefore only to consider the two cases in which m is 1 or 2.
First let us consider the form

T o o (52)
I shall shew that, when n has any of the values
1,4,9,17, 25,36, 68, 100, .....oevvveeeenn.... (5-21)
or is of any of the forms
4k+2, 4k+3, 8k+5, 16k+12, 32k+ 20, ......(522)

then all integers save a finite number, and in fact all integers from 4n
onwards at any rate, can be expressed in the form (5°2); but that for the
remaining values of n there is an infinity of integers which cannot be ex-
pressed in the form required.

In proving the first result we need obviously only consider numbers of
the form 4* (84 + 7) greater than =, since otherwise we may take u = 0. The
numbers of this form less than n are plainly among the exceptions.

6. I shall consider the various cases which may arise in order of
simplicity.
(6'1) n=0 (mod 8).
There are an infinity of exceptions. For suppose that
N=8u+T.



174 On certain Quaternary Forms

Then the number : N—-nw=T (mod 8) -
cannot be expressed in the form #*+ 32 + 2%
(62) m=2 (mod 4).

There is only a finite number of exceptions. In proving this we may
suppose that N =4*(8u + 7). Take u=1. Then the number

N-n=4Bu+T7)-n
is congruent to 1, 2, 5, or 6 to modulus 8, and so can be expressed in the
form a? + y* + 2%

Hence the only numbers which cannot be expressed in the form (5-2) in

this case are the numbers of the form 4* (8x + 7) not exceeding n.
(6'3) m=5 (mod 8).
There is only a finite number of exceptions. We may suppose again that
N=4*8u+17). First,let A+1. Take u=1. Then
N-n?=48u+7)—n=2 or 3(mod 8).
If » =1 we cannot take u =1, since
N —n =7 (mod 8);
so we take u =2. Then
N—-nu*=4*8u+ 7)— 4n = 8 (mod 32).
In either of these cases N — nu? is of the form % + y* + 22

Hence the only numbers which cannot be expressed in the form (52) are
those of the form 4* (8x + 7) not exceeding n, and those of the form 4 (84 + 7)
lying between n and 4mn.

(6:4) n =3 (mod 4).

There is only a finite number of exceptions. Take

N=4(8u+1).
IfA>1, take u=1. Then
N —-nu3=1 or 5 (mod 8).
If A =0, take u=2. Then
N - nu?= 3 (mod 8).
In either case the proof is completed as before.

In order to determine precisely which are the exceptional numbers,
we must consider more particularly the numbers between » and 4n for
which A =0. For these u must be 1, and

N — nu? = 0 (mod 4).
But the numbers which are multiples of 4 and which cannot be expressed in
the form 2* + y* + 2 are the numbers
4<Bv+7), (¢=1,28..,v=0123..).
The exceptions required are therefore those of the numbers
BAAEBU4T) oeeeeeeeeeeeeeeeeeen (641)
which lie between n and 4n and are of the form

Bt T oo, (642).
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Now in order that (6'41) may be of the form (6'42), x must be 1 if n is of
the form 8% + 3, and « may have any of the values 2, 3, 4, ... if n is of the form
8%k + 7. Thus the only numbers which cannot be expressed in the form (5:2), in
this case, are those of the form 4* (8 + 7) less than n and those of the form

n+4<8v+7), »=0,1,23,..),
lying between n and 4m, where « =1 if n is of the form 8% + 3, and « > 1 if
n is of the form 8% + 7.
(65) mn=1 (mod 8).
In this case we have to prove that
(i) if n> 38, there is an infinity of integers which cannot be expressed
in the form (52);
(it) ifnis 1, 9, 17, or 25, there is only a finite number of exceptions.

In order to prove (i) suppose that N =7.4* Then obviously » cannot

be zero. But if u is not zero u? is always of the form 4« (8v+1). Hence
N-—n=7.8~n.4Bv+1)
Since n > 33, A must be greater than or equal to x +2, to ensure that the
right-hand side shall not be negative. Hence
. N-—mi=4<8k+T7),
where k=14. 42— -} (n+17)
is an integer; and so N — nu? is not of the form a* + y* + 22,
In order to prove (ii) we may suppose, as usual, that
N=4*8u+T7).
If A=0, take u=1. Then
N—nut=8u+7—n=6 (mod 8).
If A>1, take u=2*-1 Then
N — nu? =421 (8k + 3),
where k=4(p+1)—4(n+T7)
In either case the proof may be completed as before. Thus the only numbers
which cannot be expressed in the form (5°2), in this case, are those of the
form 8x +7 not exceeding n. In other words, there is no exception when
n=1; 7 is the only exception when n=9; 7 and 15 are the only exceptions
when n=17; 7, 15 and 23 are the only exceptions when n = 25.
(6'6) n=4 (mod 32).
By arguments similar to those used in (6:5), we can shew that
(i) if n>132, there is an infinity of integers which cannot be expressed
in the form (5-2);
(ii) if n is equal to 4, 86, 68, or 100, there is only a finite number of
exceptions, namely the numbers of the form 4* (8 + 7) not
exceeding n.
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(6'7) n=20 (mod 32).

By arguments similar to those used in (6'3), we can shew that the only
numbers which cannot be expressed in the form (52) are those of the form
4* (84 + 7) not exceeding n, and those of the form 4%(8u + 7) lying between
n and 4n.

(68) n=12 (mod 16).

By arguments similar to those used in (64), we can shew that the only
numbers which cannot be expressed in the form (5-2) are those of the form
4* (8u + 7) less than n, and those of the form

n+4<(8v+7), »=0,123,..),
lying between n and 4m, where & = 2 if n is of the form 4 (8% + 3) and x> 2
if n is of the form 4 (8% + 7).

We have thus completed the discussion of the form (5-2), and determined
the exceptional values of N precisely whenever they are finite in number.

7. We shall proceed to consider the form
2B+ P +2)+nU. i (7'1)
In the first place n must be odd; otherwise the odd numbers cannot be
expressed in this form. Suppose then that n is odd. I shall shew that all

integers save a finite number can be expressed in the form (7-1); and that
the numbers which cannot be so expressed are

(i) the odd numbers less than =,
(ii) the numbers of the form 4* (16u + 14) less than 4n,

(iii) the numbers of the form n + 4* (164 + 14) greater than n and less
than 9n,

(iv) the numbers of the form

cn + 4% (16v + 14), »=0,1,2,3,..),
greater than 9n and less than 25n, where c=1ifn=1 (mod 4),
c=9 if n=3 (mod 4), k=2 if =1 (mod 16), and «>2 if
n*=9 (mod 16).
First, let us suppose N even. Then, since n is odd and N is even, it is
clear that » must be even. Suppose then that

u=2yv, N=2M.
We have to shew that M can be expressed in the form
BHY 24+ 2% (72)

Since 2n =2 (mod 4), it follows from (6'2) that all integers except those
which are less than 2n and of the form 4* (8 + 7) can be expressed in the
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form (7-2). Hence the only even integers which cannot be expressed in the
form (7-1) are those of the form 4* (16 + 14) less than 4n,

This completes the discussion of the case in which N is even. If NV
is odd the discussion is more difficult. In the first place, all odd numbers
less than n are plainly among the exceptions. Secondly, since n and N are
both odd, » must also be odd. We can therefore suppose that

N=n+2M, u*=1+8A,
where A is an integer of the form 3}k (k + 1), so that A may assume the
values 0, 1, 3, 6,.... And we have to consider whether n+2M can be
expressed in the form

2(2* + y2 + 2%) + n (1 + 84),
or M in the form B+YP+2+4AnA. (73)

If M is not of the form 4* (8 + 7), we can take A =0. If it is of this
form, and less than 4m, it is plainly an exception. These numbers give rise
to the exceptions specified in (iii) of section 7. We may therefore suppose
that M is of the form 4* (84 + 7) and greater than 4n.

8. In order to complete the discussion, we must consider the three cases
in which n =1 (mod 8), n = 5 (mod 8), and » =3 (mod 4) separately.

(81) m=1 (mod 8).
If A is equal to 0, 1, or 2, take A=1. Then
M—-4nA=4Bu+T)—4n
is of one of the forms
8v+3, 4(8v+3), 4(8v+86) .
If A >3 we cannot take A=1,since M — 4nA assumes the form 4 (8» 4+ 7);
80 we take A=3. Then
M—-4nAd=4*8u+ T)—12n
is of the form 4 (8»+5). In either of these cases M —4nA is of the form
2+ y* + 2°. Hence the only values of M, other than those already specified,
which cannot be expressed in the form (73), are those of the form
4 8v+T), ¥=0,1,2,...,>2),
lying between 4n and 12n. In other words, the only numbers greater than
9n which cannot be expressed in the form (7-1), in this case, are the numbers
of the form
n+4 Bv+17), »=0,1,2,...,k>2),
lying between 9n and 25n.
(82) n=5 (mod 8).
If A4 2, take A=1. Then
M —4nA=4*Bu+T7)—4n
is of one of the forms
8v+3, 4(8v+2), 4(8v+3).
R.C.P. 12
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 If A =2, we cannot take A = 1, since M — 4nA assumes the form 4 (8» + 7);
so we take A =3. Then :
. M—-4nA=4Bp+T7)—12n
is of the form 4 (8v+5). In either of these cases M —4nA is of the form
@3 + 3* + 22 Hence the only values of M, other than those already specified,
which cannot be expressed in the form (7-3), are those of the form 16 (8y +7)
lying between 4n and 12n. In other words, the only numbers greater than
9n which cannot be expressed in the form (7°1), in this case, are the numbers
of the form n + 42 (16 + 14) lying between 9n and 25n.
(8'3) m =3 (mod 4).
IfA#1, take A=1. Then
T M—4dnA =4 Bu+T7)—4n
is of one of the forms 8v+3, 4(dv+1)
If A =1, take A=3. Then
M—4nA=48u+T)—12n
is of the form 4 (4v +2). In either of these cases M — 4nA is of the form
x4yt + 2
This completes the proof that there is only a finite number of exceptions.

In order to determine what they are in this case, we have to consider the
values of M, between 4n and 12n, for which A =1 and

M—4nA=4Bu+7—n)=0 (mod 16).
But the numbers which are multiples of 16 and which cannot be expressed
in the form #* + 3 + 2* are the numbers
4<(8v + 7), («k=2,3,4,...,v=0,1,2..).
The exceptional values of M required are therefore those of the numbers

n+4 Br+T) coiieriiiiiiiiiieeenn, (8:31)
which lie between 4n and 12n and are of the form
A(BU+T) ceriiiiiieiiiieiiieeeeeanes (8:32)

But in order that (8:31) may be of the form (8:32), x must be 2 if n is of the
form 8k + 3, and « may have any of the values 3, 4, 5, ... if n is of the form
8k + 7. It follows that the only numbers greater than 9n which cannot be
expressed in the form (7-1), in this case, are the numbers of the form
9n + 4« (16v + 14), »=0,12..),
lying between 9n and 25n, where x =2 if n is of the form 8%+ 3, and « > 2 if
n is of the form 8k + 7.
This completes the praof of the results stated in section 7.
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ON CERTAIN TRIGONOMETRICAL SUMS AND THEIR
APPLICATIONS IN THE THEORY OF NUMBERS

(Transactions of the Cambridge Philosophical Society, xx11, No. 13, 1918, 2569—276)

1. The trigonometrical sums with which this paper is concerned are of

the type

¢s (n) =2 cos 2man ,
A 8
where A is prime to s and not greater than s. It is plain that
cs(n)=2 a®,
where a is a primitive root of the equation
2 —1=0.
These sums are obviously of very great interest, and a few of their
properties have been discussed already*. But, so far as I know, they have

never been considered from the point of view which I adopt in this paper;
and I believe that all the resulés which it contains are new.

My principal object is to obtain expressions for a variety of well-known
arithmetical functions of n in the form of a series

3 a,c, (n).
L

A typical formula is
o )__{c,(n)+cz(n) G, |

17t trg e

where o (n) is the sum of the divisors of n. I give two distinct methods for
the proof of this and a large variety of similar formule. The majority of my
formule are “elementary ” in the technical sense of the word—they can (that
is to say) be proved by a combination of processes involving only finite
algebra and simple general theorems concerning infinite series. There are
however some which are of a “deeper” character, and can only be proved by
means of theorems which seem to depend essentially on the theory of analytic
functions. A typical formula of this class is

a(n)+ §c(n) + e (n)+ ... =0,

a formula which depends upon, and is indeed silbstantially equivalent to,
the “ Prime Number Theorem ” of Hadamard and de la Vallée Poussin.

* See, e.g., Dmchlet-Dedekmd Vorlesungen iber Zahlentheorie, ed. 4, Supplement vir,
Pp. 360—370.

12—2
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Many of my formule are intimately connected with those of my previous
paper “On certain arithmetical functions”, published in 1916 in these T'rans-
actions*. They are also connected (in a manner pointed out in § 15) with a
joint paper by Mr Hardy and myself, “ Asymptotic Formuls in Combinatory
Analysis”, in course of publication in the Proceedings of the London Mathe-
matical Societyt.

2. Let F(u, v) be any function of » and v, and let
(2'1) D (n)=3F(3,¥),
s

where 3 is a divisor of » and 88’ = n. For instance
D(1)=F(1,1); D(2)=F(1,2)+F(2,1);
D@B)=F(1,3)+ F3,1); D(4)=F(1,4)+ F(2,2) + F(4,1);
DB)=F(1,5)+F(5,1); D(6)=F(1,6)+F(2,3)+ F(3,2)+F(6,1);...... .
It is clear that D (n) may also be expressed in the form

(22) D(n)=ZF(¥,9).
s
Suppose now that
! 27run
(23) 7y (n) = 2 cos
so that 7, (n)=s if s is a divisor of n and 75 (n) =0 otherwise. Then
¢ +
(24) D(n)=% L 7, (n) F (v, E)*,
1V 14
where ¢ is any number not less than n. Now let
(2:5) ¢;(n) =13 cos 27:",
A

where X\ is prime to s and does not exceed s; e.g.
e (n)=1; c,(n)=cos nw; cs(n)=2cos §n;
¢s(n)=2cos gnw; cs(n)=2cos gnwr + 2 cos 4nr;
¢ (n) =2 cos }nmr; c;(n)=2cos $nmw + 2 cos $nr + 2 cos §nr;
Cs(n) =2 cos }nm + 2 cos §nm; c,(n) =2 cos Znar + 2 cos fnmw + 2 cos %mri

Cio(n)=2cos nm +2cos dnm; .......
It follows from (2:3) and (2'5) that
(26) 7 () =2 cg (),
where 8 is a divisor of s; and hence§ that
(27) ce(n) =32 ()7 (n)
* [N 0. 18 of this volume]. + [No. 36 of this volume]

b 2 is to be understood as meaning 2, where [¢] denotes as usual the greatest integer in ¢.
§ See Landau, Handbuch der Lehre von der Verteilung der Primzahlen, p. 577.
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where § is a divisor of s, §8'=s, and

{(s) being the Riemann Zeta-function. In particular
ci(n) =m(n); c.(n)=mne(n) =1 (n); cs(n)=ms(n)—m(n);
co(n)=n,(n) — 9. (n); cs(n)=ns(n)—n, (n); ...... .

But from (2:3) we know that 5;(n)=0 if & is not a divisor of n; and so
we can suppose that, in (27), & is a common divisor of n and s. It follows

that
les(n)|< 28,

where 8 is a divisor of n; so that
29) 6 (m)=0(1)
if n 1s fized and v—> 0. Since
7, () =15 (n +3); ¢s(n)=c,(n +3),

the values of ¢,(n) for n=1,2,8, ... can be shewn conveniently by writing
am=1; g(n)==L1; ¢;(n)=-1,-1,2;
c(n)=0,-2,0,2; ¢;(n)=—1,-1,-1-1,4;
e(m=1,-1,-2,-1,1,2; ¢(m)=-1,—-1,-1,—1,-1,-1,6;

co()=1,—1,1,-1,—4,—1,1,—1,1,4; ......
the meaning of the third formula, for example, being that ¢, (1)=-1,
¢;(2)=—1, ¢;(3) =2, and that these values are then repeated periodically.
It is plain that we have also
(2:91) ¢, (n)=0(1),
when v 1s fizred and n— ©.

3. Substituting (26) in (2-4), and collecting the coefficients of ¢, (n),
¢ (n), ¢;(n), ..., we find that )

(1)

t 1 n bid 1 n ¥ 1 n
- L n = r S r
D(n) c,(n)IZvF(v,v)+cz(n)§2vF(2v,2y)+c,(n).l,3”F(3v,3y)+...,

where ¢ is any number not less than n. If we use (2-2) instead of (2'1) we
obtain another expression, viz.

(32)
t 1 n i 1 .n it 1 n
D(n)=‘c,('n)§;F(;, v)+c’(n)§§;1F(2—v’2")+c’(n)§3_v.F(3—v’ 3v)+...,

where ¢ is any number not less than n.
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Suppose now that
F,(u,v) = F(u,v)logu, Fy(u,v)=F (u,v)logv.
Then we have
D(n)logn=3F(8,8)logn=23 F(8,8)log(83")
3 3
=3 F,(8,8)+3F,(87%),
_ 3 8
where 8 is a divisor of n and 88" =n.
Now_for X F,(3,8) we shall write the expression corresponding to (31)
8
and for 2 F,(8,8") the expression corresponding to (3:2). Then we have
3

(33) D(n)logn—c@)‘log”'( D)+a )zlogzy F (20 3,)

+65(n) 2 log 3v
1

+e(n) logu2v (—— 2:’) +¢5(n) 2. log 8y F (;l—v R 31/) +

Fk3v,3)+ +c.(n)21°g”ﬁ'(v,y)

2 )
where r and ¢ are any two numbers not less than n. If, in particular,
F (u,v) = F (v,u), then (3-3) reduces to

(34) 3D(m)logn=c, (n)§ l"ﬁ' F (v, %)

+02(n)Zlog2VF(2 )+c3( )zl°g?"ﬁ'<3v,3%)+...,

where ¢ is any number not less than n.
4. We may also write D (n) in the form
(41) D(n)=5F(58)+3 F(5,5),
3=1 3=1

where & is a divisor of n, 88’ =n, and w, v are any two positive numbers such
that wv=mn, it being understood that, if » and v are both integral, a term
F (u,v) is to be subtracted from the right-hand side. Hence (with the same
conventions)

Dm=% L () P (s, D+ 2inmF (2 ).
Applying to this formula transformations similar to those of §3, we obtain

(42) D(n)=cl(n)§.lF(v, %) +c2(n)’§ 1 F(2v, 1) +..

‘+c,(n)2 F( ,u)+c,(n)2 F( )+

where u and v are positive numbers such that uv =n. If » and v are integers
. then a term F (u, v) should be subtracted from the right-hand side. .
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If we suppose that 0 < u<1 then (4'2) reduces to (3-2), and if 0<vg1 it
reduces to (3'1). Another particular case of interest is that in which u=1.
Then

(43) D(n)-cl(n)g'l{ (n2)+F(%, v)}

+ 6, (n) % 5{1’(2::, gy) +F(2"—v 211)} _—

If n is a perfect square then F (y/n, +/n) should be subtracted from the right-
hand side.

5. We shall now consider some special forms of these general equations.
Suppose that F(u, v) =1, so that D (n) is the sum o, (n) of the sth powers of
the divisors of n. Then from (3:1) and ('3'2) we have

1) = (n)_ =c,(n) 2 + ¢y (n) 2 + ¢, (n) 2

vl+l ( 2 $+1

T (3v) )‘“

(52) o4(n)=cy(n) % #1 4 ¢, () ? (20)*1 + ¢4 (n) ? Bv)y 1 + ...,
where ¢ is any number not less than n: from (33)

(58) o4(n)logn=c, (n) 21 pi logv+cg(n)§ (20}t log 2v+ ...

¢ log 2v )

+nf {c,(n)zlgv+ ()2(2 =+

where 7 and ¢ are any two numbers not less than n: and from (4-2)

(54) a4m=q@n§wﬂ+%oo$mwﬂ+%un§@nhuﬁ“

+n‘{c,(n)2 +cg(n)2 +c,(n)2

(2 )8+1 (3 )l+l }
where wv=n. If u and v are integers then u® should be subtracted from the
right-hand side.

vl+l

Let d (n) = o, (n) denote the number of divisors of n and o (n) =0, (n) the
sum of the divisors of n. Then from (5'1)—(5'4) we obtain

(5'5)- d(n)=c, (n)E +02(n)‘ +c,(n)2 5t

(5°6) a(n)=c (n)[t]+c.(n) [}t] +c (n) (3] +.

(57) }d(fn)logn—c,(n)E—o—gZ +c,(n ) l_gg_;"-3+ cs(n )210g3y+...,

(5°8)
dm=a (n) {3

% v} c’(n) {‘; g 2”} c‘(n) {? 3” ? 3‘} T
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where £>n and uv=n. If u and v are integers then 1 should be subtracted
from the right-hand side of (5:8). Putting u =v»=/n in (58) we obtain

An $n n
69 HE=amIlram 3 gram g+

unless n is a perfect square, when % should be subtracted from the right-
hand side. It may be interesting to note that, if we replace the left-hand
side in (5°9) by

(3 +3d(n)],

then the formula is true without exception.

6. So far our work has been based on elementary formal transformations,
and no questions of convergence have arisen. We shall now consider the
equation (5°1) more carefully. Let us suppose that s >0. Then

tik 1 ® 1 1 1 )
=3 T U 1
% oy =X oy O (kt") Fate+1)+0(5).

The number of terms in the right-hand side of (51) is [t]. Also we know
that ¢, (n) =0 (1) as n— . Hence

a.l(n_)_g( +1)Ecv(n)+0{ é“l

1
v

r#H

AT } C(S+1)20'(")+0(lot§t)‘

Making ¢t —»o0, we obtain

6D am=wrern B 5080, 1

if § > 0. Similarly, if we make ¢ — o in (5'3), we obtain

b1
oy (n)logn =c,(n) é v-1logv + ¢, (n) 2": (2v)*-tlog 2v + ...
1

log2u
+ ( )2(2 )3+1 }

+n? {c, (n)% o

3 loghkv _logk

1
But b (ICV)"H Ja+ C(s + 1) - T+ ¢ ('9 +1).

It follows from this and (6°1) that

(62)
as(n) {i?: 11)) + log n} =¢,(n) 2 v log v + ¢, (n) 2 (2vylog 2+
FnrE(s+) {c("l—)hg—l N SN IOL L } ,

where s >0 and ¢ >n. Putting s=1 in (6°1) and (62) we obtain
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(64) a(n){ié))+logn} " { (n)log1+c“( )log2+...}

+c,(n)[t]log 1 +co(n)[4t]log2+ ...
+ ¢, (n)log [t]! +ca(n) log [$€]! + ...,

where ¢ > n.
7. Since
(71) as(n) =nfo_, (n),
we may write (6'1) in the form
: ou(n) _a®) a(m) c(n)
@) ferD)- Tn tgm tgm T

where s> 0. This result has been proved by purely elementary methods.
But in order to know whether the right-hand side of (7:2) is convergent or
not for values of s less than or equal to zero we require the help of theorems
which have only been established by transcendental methods.

Now the right-hand side of (7-2) is an ordinary Dirichlet’s series for

1
[ (n) X m .
The first factor is a finite Dirichlet’s series and so an absolutely convergent
Dirichlet’s series. It follows that the right-hand side of (7-2) is convergent
whenever the Dirichlet’s series for 1/¢(s + 1), viz.

ats

is convergent. But it is known®* that the series (7-3) is convergent when
s=0 and that its sum is 0.

It follows from this that

(7-4) c(n)+3e(n)+ () +...=

Nothing is known about the convergence of (7'3) when —} <5< 0. But
with the assumption of the truth of the hitherto unproved Riemann hypo-
thesis it has been provedt that (7-3) is convergent when s>—}. With
this assumption we see that (7-2) is true when s >—34. In other words, if
—4 <8<}, then

@) am=-ta-o 5850 20,
=n*{(1 +5) {c{fﬁ) + C;I(f,) + c;ff,) + } .

8. It is known that all the series obtained from (7'3) by term-by-term
differentiation with respect to s are convergent when s =0; and it is obvious

* Landau, Handbuck, p. 591. t Littlewood, Comptes Rendus, 29 Jan. 1912.
t Landau, Handbuck, p. 594.
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that the derivatives of o_,(n) with respect to s are all finite Dirichlet’s

series and so absolutely convergent. It follows that all the derivatives of the

right-hand side of (7-2) are convergent when s=0; and so we can equate the

coefficients of like powers of s from the two sides of (7-2). Now

: 1
(81) HEII—)=3—73’+...,

where « is Euler’s constant. And

o_s(n)=28*=31-5sZlogd+...,
3 3 3

where 8 is a divisor of n. But
Slogd=3logd =42 log(88') =3 d(n)logn,
3 3 P
where 88’ =n. Hence
(82) o_s(n)=d(n)—4sd(n)logn+....
Now equating the coefficients of s and s* from the two sides of (7-2), and
using (8-1) and (8-2), we obtain
(838) c(n)logl+ic(n)log2+ics(n) log3+ .=—d(n),
(84) ci(n)(logl)*+4cs(n)(log2)2+fey(n)(log3)+...=—d(n)(2y+logn).
9. I shall now find an expression of the same kind for ¢ (n), the number

of numbers prime to and not exceeding n. Let p,, s, ps, ... be the prime
divisors of n, and let

o1 $e(n)=n*L=p )1 -p )1 =p) ...,
so that ¢, (n)=¢ (n). Suppose that
F (u,v) = p (u) v
Then it is easy to see that

D (n)=¢,(n).
Hence, from (3'1), we have
(92) 4>. (n) =a(m3 ‘:’,(_:)4' ()3 (’;(fﬂ

where ¢ is any number not less than n. If s>0 we can make {—> o0, as
in §6. Then we have

. ¢n ( ) I (v) M (2y)
(93) C,( )EV"H 2( )?(2 )l+l
But it can easnly be shewn that
(94) S p () _ ©(n)

¥ @A -p ) A -p )T —p).
where p,, Py, Ps, ... are the prime divisors of n. In other words

.5 p(nv)  p(n)n*
93) = )



On certain Trigonometrical Sums 187

It follows from (9-3) and (9:5) that

(96) ¢8 ('n) t(s + 1) /"(1)701 (n) + 1 (2) c,('n) I"(3) Cs (n)
n® bot1 (1) Psa (2) Pssa (3)

In part.icula.r

O Fpm=am- 20 sl _at)
ce(n) ¢, (n) Q)

+

tE)@E-1) -1 @-)E=-1)

10. I shall now consider an application of the main formule to the
problem of the number of representations of a number as the sum of
2,4, 6, 8, ... squares. We shall require the following preliminary results.

(1) Let

13—1 x 2'—] xﬁ 30-] ws

(101) ED(")””=X‘=1+x+1—w=+1+xs+
We shall choose
FP(u,v)=v*", u=1(mod 2),
F(u,v)=—1v", u=2 (mod 4),

F(u,v)=(22—1)v", »=0(mod4).
Then from (3:1) we can shew, by arguments similar to those used in
§6, that
(10.11) D(n)=n*1(1"2+3*+5*+...) {1%c; (n) + 2% ¢, (n) + 8% ¢, (n)
+470cs(n) + 570, (n) + 670 e (n) + T% ¢, () + 8% e (m) + ...}

ifs>1.
(2) Let
(102) I D(m)ar=X,= 12+ ﬁ'::: +§':l:: +
We shall choose
F(u,v)=v"", u=1 (mod 2),
F(u,v)=v", u =2 (mod 4),

F(u,v)=(1-29v"1, u=0(mod4).
Then we obtain as before
(1021) D(n)=n"1(1~*+372+ 5+ ...) {17 ¢, (n) — 2~ ¢, (n) + 8~* ¢, (n)
—47%cs(n) + 570 e (n)— 6~ ¢y (n) + T2 c; (n) — 8% ¢y (n) + ...
(8) Let
o _ _lo—lw Q-1g2 Qe-143
(108) 2D(n)w¢“X“1+a= I+ Trz"
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We shall choose .
F (u,v)=0, % = 0 (mod 2),

F(u,v)=v"", u=1(mod4),
F(u,v)=—v*, u=3(mod4).
Then we obtain as before
(10-31)
D(n)=n"(1"* -3 +57—..){17%c,(n) — 37*cs(n) + 5% c5(n) — ...}
(4) We shall also require a similar formula for the function D(n)
defined by

. n_ _ 161y 3153 He-1,5
(10-4) 3D(n)x _X‘_l—w_l-.z‘+1—:c°—'f"
The formula required is not a direct consequence of the preceding

analysis, but if, instead of starting with the function

2\
¢, (n)= X cos ™ ,
A r
we start with the function

[ (n) = % (— 1)* (A1) sin 2__77;71;} ,

where A is prime to r and does not exceed r, and proceed as in §§2—3, we
can shew that
(10-41)
D(n)y=4n71(1* =3 +57—..) [(17%s(n) + 2% 8 (n) + 3% 38, (n) + ...}.
It should be observed that there is a correspondence between c, (n) and
the ordinary ¢-function on the one hand and s,(n) and the function
n(8)=1"—3*+572—...
on the other. It is possible to define an infinity of systems of trigono-
metrical sums such as ¢, (n), s, (n), each corresponding to one of the general
class of  L-functions*” of which £(s) and 7 (s) are the simplest members.
We have shewn that (10-31) and (10-41) are true when s>1. But if we
assume that the Dirichlet’s series for 1/7(s) is convergent when s=1, a
result which is precisely of the same depth as the prime number theorem
and has only been established by transcendental methods, then we can shew

by arguments similar to those of §7 that (10-31) and (10-41) are true when
s=1.

11. I have shewn elsewheret that if s is a positive integer and
4 14+3r,(n)a*=(1+2z+ 22* + 22° + ...)’,
then 725 (1) = 835 (1) + €5 (1),

* See Landau, Handbuch, pp. 414 et seq.
t Transactions of the Cambridge Philosophical Society, Vol. xxi1, 1916, pp. 159—184.
[No. 18 of this volume; see in particular §§ 24—28, pp. 157—162.].
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where ¢, (n)=0 when s=1, 2, 3 or 4 and is of lower order* than &, (n) in
all cases; that if s is a multiple of 4 then

(11'1) (=434 5-1+...) 8, (n) acn=(s—f"l—)I X,;
if s is of the form 4k + 2 then

(112) (1= + 34 45~ + ...)zsm(n)mu(—fi—ﬁx
if s is of the form 4k + 1 then

(118) (17=8~" 457 —..) 3 8 (n)a"= 1)'()Iﬂ» 21 X)),
except when s=1; and if s is of the form 4Jc+ 3 then

(114) (1~*—3~ 45— .. )58, (n)a"= — (X, -2 X),

(s-1 1)’
X,, X,, X,, X, being the same as in §10.

In the case in which s=1 it is well known that
x* Fd )

o5 s VY = z — -
(11°5) 58, (n) _4(1_05 ot

_4( z + a* + a®
(s trist )
It follows from § 10 that, if s is a multiple of 4 then

(11-11) 8”(n)_ {172 ¢, (n) + 272 ¢, (n) + 8% c; (n) + 4% ¢ (n)

(s - 1)'
+57cs(n)+ 6 (n)+ T% ¢, (n) + 80 e (n) + ... ];
if s is of the form 4% + 2 then

(1121) 8, (n)= 1726, (n) — 27 %¢c,(n) + 372 cs(n) — 4% ¢y (n)

ns1
—*1) il
+57%¢c(n) — 6% () + T2, (n)— 8% ce(n) +...};
if s is of the form 4k + 1 then

(11:31) 8,(n)= 17%¢c, () + 2% 8,(n) — 3% ¢;(m) + 4723, (n)

=t
+578¢cs(n) + 67 s (n) — T~% ¢, () + 8% 54(n) + ...},
except when s=1; and if s is of the form 4k + 3 then
(11:41) 8, (n)= ——1? {172 ¢, (n) — 278 8, (n) — 872 cs (n) — 472 55 (n)
+578¢,(n)— 655 (n)— T%¢c,(n) — 87 554 (n) + ...}.

* For a more precise result concerning the order of e (n) see § 15.
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From (11'5) and the remarks at the end of the ptenous sectlon, it follows
that
(11-51) rg(n)=8,(n)=vr{c,(n)—ic.(n)+-}c,(n)—...}
=7 {§8,(n) + 13 (n) +¥su(n) + ...},
but this is of course not such an elementary result as the preceding ones.
We can combine all the formulse (11:11)—(11'41) in one by writing

81
1).{ T (n) + 2774 () + 37 ¢5(n) + 470 ¢y (n)
+57¢cy(n) +67%cyg(n) + T2 cy(n) + 8% Cg(n) + ...},
where s is an integer greater than 1 and
cr(n)=c,(n)cos s (r—1) —s.(n)sin§ws(r—1).

(116) 8, (n) = (

12. We can obtain analogous results concerning the number of repre-
sentations of a number as the sum of 2, 4, 6, 8, ... triangular numbers.
Equation (147) of my former paper™® is equivalent to

(121) (1-2z+224— 20 +...)

= —_ " f ( ) n.f‘“ (zﬂ)
1+28ﬂ(n)( w) +f‘"(w’)1<,.<2}(3-1) ( ) f}‘n(z)
where K, is a constant and

f@=A-2)(1-2°)(1-2%....
Suppose now that z=¢", z'=el
Then we know that
(122) va(l—2z+22'—22°+...)=22¥ (142" + a*+ 2 +...),
(128) v(}a)a® f(@) = f(a?), Voo™ f(at) =% f(2).

Finally 1+§85.(n) (—z)* can be expressed in powers (;f z' by using the

formule :

(12:4) a’{1}~§(1—2s)+ Ll A sl }
Py by Gy
121 9n-1 Jee—1

~Carfiea-r g i e
where a8 = and s is an integer greater than 1; and
(129) Qo e ]
C+em eRte B gefeia T

g mw )

= AVEB {In(- 20+ 51 - 4 g — o

where a8 =72 s is any positive integer, and 7 (s) is the function represented
by the series 17— 3¢+ 5~*— ... and its analytical continuations.

* Loc. cit., p. 181 [p. 159 of this volume].
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It follows from all these formule that, if s is a positive integer and
(126) (L+z+2°+a%+...)%0 =31, (n) 2" = 28y (n) 2 + 3€'y (n) 27,

, _fu(@) R g C))
then ze”(n)x” f\"(‘z) lsnszi(o-l)Kn( 47) f’m(‘”’)’

where K, is a constant, and f(z) is the same as in (12°1);
(1261)
(12437245724 ..) 38y (n)a"=
if s is a multiple of 4;
(12:62)
(172 +3724+ 5%+ .. )28, (n)a"= (23(-}'71’.;: i (
if s is of the form 4k + 2;
(12'63)
A*—3" 45—, )28, (n)a"=

(3m) (1""w+2'—1x’ 312
G-1)1" \I-=z l—w‘+1—a,‘+'">

1:—1 _,,,& gs—1 zd 5:—1 a.i
-z Tics vtz x°+"‘)

2 (3m) 1-1gt 12 peigh
ot ( +

(s=1)! 1+a 142f 142t
110  ge1,E e gt
1-ab 1-a2t 1-2t )

if s is of the form 4k +1 (except when s=1); and

(12-64)
(I —=34+55—...) 28 (n)a"=

23y 11t 81t pegh

( 1)' (1+.’vﬁ+1+-’6‘ 1+ ot
1123 31 Heigl
1A 1 1t )

if s 1s of the form 4% + 8. In the case in which s=1 we have
e + o2 + zt )
14+ab 1+at 1428 7
__*( P P ot )
= - + R
1—zt 1-—2zt 1-—2at

(12:65) 38 (n)am=at (

It is easy to see that the principal results proved about e, (n) in my former
paper are also true of ¢’y (r), and in particular that

€o(n)=0
when s=1, 2, 3 or 4, and 736 (n) ~ &' (0)

for all values of s.

13. It follows from (12:62) that, if s is of the form 4k + 2, then
(1 4+3+5+...)8u(n)
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is the coefficient of z* in
) 2wy (p—lwi 91y  grigh
(131) nir (st et 1o z,+...).

Similarly from (12:63) and (12'64) it follows that, if s is an odd integer
greater than 1, then (17*— 37+ 52— ...) &, (n) is the coefficient of z™ in

43wy e (1‘-1 P + 951 g4 + ge-1,2 + )

(s—=1)! l+at 14z 142t /7

Now by applying our main formule to (12+61), (13'1) and (13-2) we obtain :
(133)

Su(n)= (\}Wl))‘(n+is)"‘{l“cl(n+}s)+3"6;(n+is)+5—‘cn(n+i3)+ Y

if s is a multiple of 4;
(184) &s(n)= (;%_wl); (n+ 38y {177¢, (2n + 35) + 8370 6, (20 + §5)
+577¢c;(2n + §s) + ...

(13-2)

~———

if ¢ is twice an odd number; and

(135) (@)= ET (04 Joyt {1+, (4n + 8) — 3 ¢, (4n + )

(s—1)!
+5%c;(dn+s)—...
if s is an odd number greater than 1.

——

Since the coefficient of 2® in (1 + z +#* + ...)* is that of "+ in

G+z+ar+..)
it follows from (11-51) that

(136) 7/ (n)= & (n) =% fa(@n+1)—}es(dn+1)+fos(dn+1)—...}.

This result however depends on the fact that the Dirichlet’s series for 1 /n(s)
is convergent when s=1.

14. The preceding formul® for g, (), 8, (n), &', (n) may be arrived at by
another method. We understand by

sin nr

(141) k sin (/)
. sin o

the limit of k sin (z7/k)

when #—n. It is easy to see that, if n and k are positive integers, and k&
odd, then (14'1) is equal to 1 if & is a divisor of » and to O otherwise.
When k is even we have (with similar conventions)
sin nar

(14:2) % tan (/) =1or0
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according as k is a divisor of n or not. It follows that

(148) o,y (n)=n* {1_, (s'{n n-n-) + 2_,( sin nar )

sin nar tan 3 nr

_, [ sinnw sin nr
+3 .(sinﬁmr) +4 (tan }nqr) + } ’
Similarly from the definitions of 8, (n) and &, (n) we find that
! sinn
(144) 1+ +5 (=D + ) B (n)-(_T)x {1_’ (“F‘)

SIN N7

+ 2 ()5 () 4 (o) *

if s is an integer greater than 1; )
89 rum=am=4+{(GE) -3 (G +# () )
- () -+ () () -

(14:6)
(43714574 ) B () = (s(*_’?') (n+ oy {1—' (::’;g:-—:%r’)
(sin(n+}s)r e[ Sin(n+}s)w
+3 (éini(n+}s)vr)+5 (sing(n+}s)7r)+"'}
if s is a multiple of 4;
147 '
l_(, 3?_. 5—e 1Y _ (%'”)‘ g1 )]—s sin (2‘n+'l‘8)1r
(1437457 + ) B ()= E T (4 19) { (sw—in(2n+§);)
sin (2n +§s) 7 [ sin(@n+is)mw
(sm 3 (2n + ) w) +5 (siu%(2n+ 1s) 'n-) + }

if 5 is twice an odd number;
(14:8)

et o = e o o (G

_ sin (4n +s) o sin(4n+s)w
3 (sin§(4n+s)7r)+5 (sm«}(4-n+s)7r) }
if s is an odd number greater than 1; and

, reoN_ sy (Sin(dn+ 1)y /sin(4n+1)w
(149) 1 (n)=8(n)= (sin (n+1) w) § (sing(‘len-{-l)vr)

(e )

In all these equations the series on the right hand are finite Dirichlet’s
series and therefore absolutely convergent.

R.C.P. . 13
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But the series (14'3) is.(asis. easily shewn by actual multiplication) the

product of the two series .
‘ 1I7a )+ 27 G(n) + ..
and (12 48704 )
We thus obtain an alternative proof of the formule (7'5). Similarly taking
the previous expression of &,(n), viz. the right-hand side of (11'6), and
multiplying it by the series
14 (=8) 5+ (= T) 0+

we can shew that the product is actually the right-hand side of (144). The
formulze for &', (n) can be disposed of similarly.

15. The formulz which I have found are closely connected with a method
used for another purpose by Mr Hardy and myself*. The function

(15°1) (14224 224+ 22° + ...)% = Sy (n) 2"

has every point of the unit circle as a singular point. If # approaches a
“rational point” exp (— 2pmi/q) on the circle, the function behaves roughly
like
. 7 (wp,9)*
(152 - @prifa) - Tog af"

where w,o=1, 0, or —1 according as q is of the form 4k+1, 4k+2 or
4k + 3, while if ¢ is of the form 4k then w, ,=— 2¢ or 2¢ according as p is of
the form 4k + 1 or 4k + 3.

Following the argument of our paper referred to, we can construct simple
functions of # which are regular except at one point of the circle of conver-
gence, and there behave in a manner very similar to that of the function
(15°1); for example at the point exp (— 2pmi/q) such a funetion is

(15°3) ’%‘%‘znﬂ ¢movila g,

The method which we used, with particular reference to the function

. 1 — 3
(15°4) A=ayd=ayd=a) .. ~P®"

was to approximate to the coefficients by means of a sum of a large number
of the coefficients of these auxiliary functions. This method leads, in the
present problem, to formule of the type

72 (1) = 8y (1) + O (n¥),

the first term on the right-hand side presenting itself precisely in the form
of the series (11-11) etc.

* «Agymptotic formule in Combinatory Analysis,” Proc. London Math. Soc., Ser. 2,
Vol. xvi, 1918, pp. 756—115 [No. 36 of this volume].
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It is a very interesting problem to determine in such cases whether the
approximate formula gives an exact representation of such an arithmetical
function. The results proved here shew that, in the case of 7, (), this is in
general not so. The formula represents not 7, (n) but (except when s=1) its
dominant term 8, (n), which is equal to 7,(n) only when s=1, 2, 3, or 4.
When s =1 the formula gives 23, (n)*.

16. We shall now consider the sum

(16-1) as(1)+0,(2)+... + 0, (n).
Suppose that
(16-2) { } I
_ sin {(2n+ 1) w/r i sin {(2n + 1) m/r}
Tr ()= %§ ( sin (w\/r) B 1) » Trm=142 sin (mA/r) ’

where A is prime to » and does not exceed , so that
Tr(n)=c,(1)+cr(2)+ ... + ¢, (n)
and U, () =T, (n)+ ¢ (),
where ¢ (n) is the same as in §9. Since ¢,(n)=0(1) as r— 0, it follows
that

a2 - Lm@=0Q), Umw=0()
as r—». It follows from (7-5) that, if s >0, then
(16:3)

o_s(L)+ o4(2)+.. +a'_,(n)-—§(8+l){n+T(n) T(")+T(") }

98+ Je+ 4+
$om)_ E6)
T v (s + 1)
if s> 1, (16'3) can be written as
(16:31) o s(1)+0(2)+... + o(n)
U,(n) U,(n 2
=¢(s+1) {n+§+ 2’,&) + 3,3,) + *‘,(r',) . } 1¢(s),
if > 1. Similarly from (88), (8'4) and (11'51) we obtain
164) d(D+d(2)+...+d()
=—3T.(n)log2—}4T,(n)log3 —} T, (n)logd —...,
(16:5) d(1)logl+d(2)log2+... +d(n)logn
=4} Ty (n) {2y log 2 — (log 2)*} + 4 T3 (n) {2y log 8 — (log 3)} +
(166) rs(L)+7r(2)+...+rs()=7{n—3T3(n)+3Ts(n) =1 T, () +...}.
* The method is also applicable to the problem of the representation of a number by
the sum of an odd number of squares, and gives an exact result when the number of
squares is 3, 5, or 7. See G. H. Hardy, “On the representation of a number as the sum of
any number of squares, and in particular of five or seven,” Proc. London Math. Soc. (Records
of proceedings at meetings, March 1918). A fuller account of this paper will appear shortly

in the Proceedings of the National Acadcmy of Sciences (Wa.shmgbon, D.C.) [loc. cit.,
Vol. 1v, 1918, 189—193].

Since

13—2
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Suppose now:that .. . .
. ,.(n)=2(1‘ v +2‘cos4ﬂ+ N ?n—:r}).
“where ) is prime to » and does not exceed 7, so that
T, .(n)=1c, (1) + 2¢¢,(2) + ... + n* ¢, (n).
Then it follows from (7-5) that
167) o,(1)+0,(2)+... +0,(n)
={(s+1) {(l'+ 2 4. +nf)+ 1;2,;(::) + T’gjﬂ') + T:'L‘jff’)+ }

if $ >0. Putting s=1 in (16:3) and (16-7), we find that
(168) (n—1)a_(1)+(n—2)ao(2)+ ... +(n—n)o_,(n)

_w(n(n—=1)  w(n)  v(n) v,(n)
-E{—T‘*—z‘i Tt }
where u,(n) 33 {%m n},

A being prime to r and not exceeding r.

It has been proved by Wigert®, by less elementary methods, that the
left-hand side of (16'8) is equal to

(16:9) ;’2 n—}n(y—1 +log 2nm) — 5 + :/ su) J, {4 N(vm)),

where J, is the ordinary Bessel’s function.
17. We shall now find a relation between the functions (16:1) and (16:3)

which enables us to determine the behaviour of the former for large values
of n. It is easily shewn that this function is equal to

ary ¥ (1~+2' +3 4.+ [ ] ) +§lw[’;’] —[Wn] é”lu«.

v=1

8+1
Now 1'+2'+...+Ic'=g‘(—s)+(k:_'_’}i+ + 0 (k)
for all values of s, it being understood that
k + 3)h
£(—s)+ E D™

_ s+l
denotes ¢ + log (k + ) when s=—1. Let

[§]=g_,}+e,, [V]=t=yn—}+ec

14

* Acta Mathematica, Vol. xxxvI1, 1914, pp. 113—140 (p. 140).
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Then we have

1s+2a+...+[ ] g(-s)+s+1(”)'“ (") +0(';:)
and Ve [1—:] =nf =318 + 60

It follows from these equations and (17'1) that

(172) o) +04(2)+... +0,(n)= = 2 {g(‘3)+3+1(n) e

+¢€ ( ) + &V — («/n+e)v'+0(y‘_:)}
Changing s to —s in (17°2) we have
(17-21) t
1 ES 33
w{os (4o @+ +oy(m)=2 {"’C(SH'I—W_'_—; + (g) +ew

rof2)-mso 2020,

It follows that
(17°3)
{o(1)+ 02+ ... + o, (n)} — {05 (1) + 05 (2) + ... + 7, (n)}

- z {n-g(s) g(—s)+1+s(’—‘)‘ 1+1—f—snw—l+(¢n+e)w

s (B 0[5+,

Suppose now that s> 0. Then, since v varies from 1 to ¢, it is obvious
that

Va+l ns?
. =<y
and so 0 (V.Tﬂ) =0 (%:—::) .
Also % [ 86— E(=o) =(vn—}+ (#£6) — £ (-9}
8+1 8
EmG) i"++s £ +8)— 25 (4t 0 (aby;
él 1———nv’"= — Z(l s)+-—— (Wn+ ey + O (n¥*);

(Jn + e)

§(~/n+e)v’ (~/n+e)§(—s)+ + 0 (n¥);

2:‘, (Vn+e)( ) =n‘(¢n+e)§(s)+—— (Wn+ e+ 0 (n¥),;
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aad | 3 0(“' ) =0 (m)

where : ‘

(174) m=n¥(s<2), m=n logn (s=2), m=n"1(s>2).

It follows that the right-hand side of (17°8) is equal to

snite sn e (Vn+ eyt —nH(Jn+e)*
1—+;§(1+3)+1—_§§(1"3) It §(s) + 113

RIULDELIVEE Py

(Va4 eft* — n*t (Jn + €)=

' _ $(1+8) 38).
But T3 2ent 1+9) 4 O (nls);
n(y/n +€)'1— n;(vn+ 6)’—'_:_ Qent1+9 4+ 0 (n“').

It follows that
(17°5)
03 (1) ¥ 0, (2)+ .o + 0y () =1 {0y (1) + 05 (2) + ... + 0 (n)}
-z T E(1-5)+0(m)*
if 8 >0, m being the same as in (17'4). If s=1, (17°5) reduces to
(176) (n—1)o_,(1)+(n—2)0_,(2)+...+(n—n)o_, (n)

= _;_r_ nt — &n (y—1+ log 2nmw) + O (v/n)t.
From (16-2) and (17°5) it follows that

(1+s)+4n° &( s)—l

(A77) o (1) +04(2) +.. +¢r.(n)— §(1 +38) +§n'{(s)

e {T_;g:uf_;,sfufg,avyu.._}w(m;

for all positive values of s. If s> 1, the right-hand side can be written as

(17:8)
St —g)+nE(L+s) {1 CRE b U;’,i'f) + lg’,fr’f) + l},ﬁ',’% } +0 (m).

Putting s=1 in (17°7) we obtain

179) o (V)4 (2)+...4+ 0 (n)= ——n’+«}n(«y 1+log2mr)

+ 2B B0 T, L owm.

# [See Appendix, p. 343].
+ This result has been proved by Landau. See his report on Wigert’s memoir in the
Gottingische gelehrte Anzeigen, 1915, pp. 377—414 (p. 402). Landau has also, by a more

transcendental method, replaced O (J/n) by O (n}) (lde. cit. p. 414).
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Additional note to § 7 (May 1, 1918).
From (7-2) it follows that
L e () 420 (@) 4} = 1 E mrem (1) + 2 S m o (2) + ...,
1 1

E(r)
or E6E)E(r+s—1) 33cm(n)
g(r) 11mne’

from which we deduce ,
E(s) 2 p(8) 8= %1(,1) +m(2)  om(3)

3 3+
8 being a divisor of m and & its conjugate. The series on the right-hand
side is convergent for s>0 (except when m =1, when it reduces to the
ordinary series for ¢(s)).

When s=1,m> 1, we have to replace the left-hand side by its limit as
s—>1. We find that
(18) Cm(1) +4cm(2) +3cm(3) + ... =— A(m),
A (m) being the well-known arithmetical function which is equal to log p if
m is a power of a prime p and to zero otherwise.
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SOME DEFINITE INTEGRALS

(Proceedings of the London Mathematical Society, 2, xvi1, 1918, Records for 17 Jan. 1918)

Typical formule are :
) e dg _(2cosin)-tt—
L TGEATE=D " Tt B

D) g TECINI i (o
@ |7 Fgreeds=+ AT pridemeit (or0),

3) [ I'(a+2)T(8 —z) ™ da

einé=at  (or 0),

o A e ey (8) o — g (— )

Here n is real, n=2kr+ N(OgN<27) in (2), and n=(2k—-1) 7w+ N
(0< N <27) in (3). In (1) the zero value is to be taken if |n| >, the non-
zero value otherwise. In (2) a must be complex: the zero value is to be
taken if n and g (a) have the same sign, the positive sign if >0 and J(a)<0,
and the negative sign if n<0 and J(a)>0. In (3) « and B must both be
complex; and e, () is 0, 1, or —1 according as (i) mw—= and J (¢) have the
same 8ign, (ii) n<mand J (§) <0, (iii) » > and F (&) > 0.

The convergence conditions are, in general, (1) R(a+8)>1,(2) R (a—B)< 0,
(3) ®(a+B)<1. But there are certain special cases in which a more stringent
condition is required.

A formula of a different character, deduced from (1), is -

Jata) Jpa 2 HOAD) hn e
[_a, Ttz ﬁ, ) ; (p)e,..,dw ( _cogﬂ) edn a1 J_ o (/(2Q cos 3n)} (or 0).

Here Q =Nl 4 y2e—ini;
the zero value is to be taken if |n|>, the non-zero value otherwise; and
the condition of convergence is, in general, that

R@+p8)>-1L
The formul include a large number of interesting special cases, such as
dz 2e+8-2
=T (@+2) T (8- m=rw+s n’
f © sin rzdx —(- 1)*
0 2@ 1) (@~ 2) ... @ = F) (%), ’

|7 Tea M e () b= Tusn 20
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The formula
© dz
—wl(a+2) T (B=2)T(y+2) T (§-2)
_ F(@+B+y+8-3)
"T@@+B-1)IB+y-1)I'(y+8-1)I'(d+a-1)
may also be mentioned : it holds, in general, if
R(@+B+y+8) >3

A fuller account of these formule will be published in the Quarterly
Journal of Mathematics*.

* [See No. 27 of this volume.]
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SOME DEFINITE INTEGRALS

(Journal of the Indian Mathematical Society, x1, 1919, 81— 87)

I have shewn elsewhere* that the definite integrals

bu (¢ )= f cos wtw et

cosh 'rra:

Yult)= j‘ sin wtz J——.

sinh 7
can be evaluated in finite terms if w is any rational multiple of .

In this paper I shall shew, by a much simpler method, that these integrals

can be evaluated not only for these values but also for many other values of
t and w.

Now we have
Pw (t)=2 f f 008 2MLZ < mtwe-Tdodz
0 0

cosh wz
—wttw’ L ,
_e€ i cosh 7rtaw .
Jyw Jo coshmz
where w' stands for 1/w.
It follows that
bro (8) = — & Y Gy (GU). e (1)

Again
¢w(t+w)—- e o~ Hr (t 4w

f *cosh (wtx/w) cosh 7wz + sinh wtz/w sinh 7z - rz2jw
X e dz
o cosh 7z

_ 1 o)

Nw
1wt2fw ® % sin 27z i iz e ™ 2w 5 }
x{}dwe -}-2[0 jo bz S h dadz
I (v
Vw .
12w jttf [© Sin wiz J— }
x {%dwe +Vwe o Sinh 7z do

* Messenger of Mathematics, Vol. 44, 1915, pp. 75—85 [No. 12 of this volume].
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In other words
AT (3 4 g, () =TT G ). (2)
It is obvious that .
P () = du (1)
Yu () =—Yuw(-1)
From (1), (2) and (3) we easily find that
1}‘+‘I’w(t+i)=£‘ve—inalw{1}"l’w(%t;+i)}' ............ 4)
It is easy to see that

Bo @)= 300 Vo@mgos dalw)=de H;

} e e, 3)

}—Vu(w)=e T, (0); $u(wt 042"3}&3 t .%_) e v,

Ve@ED=bt 5o guGu)+ YuGui=.
Again we see that
Bt + D+ dut— )= e F N ®)

and Vo (E +5) — Y (£ —3) =;/'—'- eI . (6)

w
From (1) and (5) we deduce that
ATETI0g (trw)+e rit-wlho g t—wy=e", .. ")
Similarly from (4) and (6) we obtain
AT gt w) =TT G e (- W)} (8)
It is ea.éy to deduce from (5) that if n is a positive integer, then
$u (8) + (— 1)"" oo (¢ + 2m1)
_ __1_{8 ~pr(exiPfo _ i (st | —dr(EbiPo_ t.erms} ©)

Nw
Similarly from (6) we have
Yo @)=Y (t + 27”.)

-3 s/Lw {e.-gw(zﬁ)ﬂ/w._l_e-ir(z+3iy/w.+é-;r(:fsiww+ ton terms}.
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Again from (7) we have
A7 g, () + (= Lyrhr AT BP0 o | on)
=drruffe _ dr(+Bufhe | dr(t+boffe oy terms; .. (11)
and from (8)
AT} 4 (O} + (- LTI G 4 g (¢ 4 20w))

= A2 e dx(rdwffo | dw(t+Gufw 0 oo ...(12)

Now, combining (9) and (11), we deduce that, if m and n are positive
integers and 8 =t + 2mw + 2nz, then

G (8) + (= L)m+n by g=dem st g (2)

_ il { Ar-who _ gr(-3upe | drG-Supe_ o terms}

(_ 1 )(m+1) (n+1)
+ g~ trm (stt)

Nw

x {e—if(tii)'z/w _ e_iﬂ'(tiai)zlw + e—if(t*ﬁi)alw_ e to n terms}_

Similarly, combining (10) and (12), we obtain
b=V (9) + (= ymmbigimienn gy, (0)

=g imew {eh(t-2w)’lw — ATl | dw(e-6wflw o, terms}

:
— 1 \mat+m+1 —dm (84+t)

(-1 )

oX {e"*' (exiffo | —drex8iffo | —dr@e£bifpo 4, terms% ,

where s and ¢ have the same relation as in (13).

Suppose now that s=¢ in (13) and (14). Then we see that, if w=1n/m,
then

b (£) {1 + (— 1)+ v+ g—wme)
= {eh (t-wftho _ ghr(t-Bulio  grlt=50Fk _ . to m terms}

— 1)m+) )
RE les

T —wmt {e"i"("'ww DA L T terms};
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3 = Yo (O} {1 + (= 1ymrtmbigmmme)

S L {eif("?“’)’/“’ . Ut L termS}

+(_1)m.+mwe_.w {e—ir(t—i)’/w peodml=dipo te,ms},

...... (16)
where y/w should be taken as

o J(2)

In (15) and (16) there is no loss of generality in supposing that one of the
two numbers m and = is odd.

Now equating the real and imaginary parts in (15), we deduce that, if m
and n are positive integers of which one is odd, then

2 coshnt | 2% 2t cos (TW
o cosh 7z

dz

=[cosh {(1 — n) ¢} cos (wm[4n) —tosh {(8 —n) t}cos (9mm/4n) + ... to n terms]
+ \/(ﬁ) [cosh {(1 - _ln-z) nt} cos (i—r "7:‘,—2 + Z—Z)

. 3 (m  nt' 9wn
- cOSh {(1 — -"T'L> nt} cOs (—‘i' - ;’ITL-*- Z’I)’T) +...tom terms],
and

2 cosh nt f :os 2z in (ﬂmmg) dz
0

sl
osh 7 n

= — [cosh {(1 — n) ¢} sin (rm/4n) — cosh {(3 — n) £} sin (97rm/4n)
+cosh {(5 — n) ¢} sin (257/4n) — ... to n terms]

+\/ ) [°°Sh {(1 ~%) n.t} din (7 - 2., 71)

4 7m " 4m

— cosh {(l —é) nt} sin (v_r__fﬁ_'_gzr_n) +...ton terms].
m, 4 T

...... (18)
Equating the real and imaginary parts in (16), we can find similar
expressions for the integrals ' -
I' gnta: sin,(mw’) da, 'smta: cos(’rmz’)dz

Jo sinh 72 n o 8inh 7o

n
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From these formul® we can evaluate a number of definite integrals,
such as

{: gg—;tf.cos ra,’d.; - 1;.7;/?:%::: ,
f: Ziillllf:t: cos rxidx =%ﬁ ’
[ e S

and so on.

Again supposing that $=—¢ in (13), we deduce that if ¢ = mw + ni, where
m and n are positive integers of which one at least is odd, then

bo (1) =} 1I° {e*'(t_www — AT L tom terms}

+2‘\/w

{e—i'('*i)glw —e AT, o n terms}. ...(19)
This formula is not true when both m and = are even.
If ¢ =mw % nt, where m and n are both even, then -
Buo (B) + (— 1)Him 0vim g—beme b ()
= —3xttw {e}r(t—- w)iw ei-r(t - 3w)’/w+ . to *m terms}

(— 1)a+Hm a+im)
R e

T —dmt {e