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The grand uni%ed theory of classical quantum mechanics

Randell L. Mills ∗;1

BlackLight Power, Inc., 493 Old Trenton Road, Cranbury, NJ 08512, USA

Abstract

A theory of classical quantum mechanics (CQM) is derived from %rst principles that successfully applies physical laws
on all scales. Using Maxwell’s equations, the classical wave equation is solved with the constraint that a bound electron
cannot radiate energy. By further application of Maxwell’s equations to electromagnetic and gravitational %elds at particle
production, the Schwarzschild metric (SM) is derived from the classical wave equation which modi%es general relativity to
include conservation of spacetime in addition to momentum and matter=energy. The result gives a natural relationship between
Maxwell’s equations, special relativity, and general relativity. It gives gravitation from the atom to the cosmos. ? 2002
International Association for Hydrogen Energy. Published by Elsevier Science Ltd. All rights reserved.

1. Introduction

A theory of classical quantum mechanics (CQM), derived
from %rst principles, successfully applies physical laws on
all scales [1]. The classical wave equation is solved with
the constraint that a bound electron cannot radiate energy.
The mathematical formulation for zero radiation based on
Maxwell’s equations follows from a derivation by Haus
[2]. The function that describes the motion of the electron
must not possess spacetime Fourier components that are
synchronous with waves traveling at the speed of light.
CQM gives closed form solutions for the atom including the
stability of the n=1 state and the instability of the excited
states, the equation of the photon and electron in excited
states, the equation of the free electron, and photon which
predict the wave particle duality behavior of particles and
light. The current and charge-density functions of the elec-
tron may be directly physically interpreted. For example,
spin angular momentum results from the motion of nega-
tively charged mass moving systematically, and the equation
for angular momentum, r× p, can be applied directly to the
wave function (a current density function) that describes the
electron. The magnetic moment of a Bohr magneton, Stern
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Gerlach experiment, g factor, Lamb shift, resonant line width
and shape, selection rules, correspondence principle, wave
particle duality, excited states, reduced mass, rotational
energies, and momenta, orbital and spin splitting, spin-
orbital coupling, Knight shift, and spin-nuclear coupling,
ionization energies of two electron atoms, elastic electron
scattering from helium atoms, and the nature of the chemical
bond are derived in closed form equations based on
Maxwell’s equations. The calculations agree with experi-
mental observations.
For any kind of wave advancing with limiting velocity and

capable of transmitting signals, the equation of front prop-
agation is the same as the equation for the front of a light
wave. By applying this condition to electromagnetic and
gravitational %elds at particle production, the Schwarzschild
metric (SM) is derived from the classical wave equation
which modi%es general relativity to include conservation of
spacetime in addition to momentum and matter=energy. The
result gives a natural relationship between Maxwell’s equa-
tions, special relativity, and general relativity. It gives grav-
itation from the atom to the cosmos. The universe is time
harmonically oscillatory in matter, energy and spacetime ex-
pansion and contraction with a minimum radius that is the
gravitational radius. In closed form equations with funda-
mental constants only, CQM gives the deEection of light by
stars, the precession of the perihelion of Mercury, the par-
ticle masses, the Hubble constant, the age of the universe,
the observed acceleration of the expansion, the power of the
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universe, the power spectrum of the universe, the microwave
background temperature, the uniformity of the microwave
background radiation at 2:7 K with the microkelvin spa-
tial variation observed by the DASI, the observed violation
of the GZK cutoJ, the mass density, the large-scale struc-
ture of the universe, and the identity of dark matter which
matches the criteria for the structure of galaxies. In a special
case wherein the gravitational potential energy density of a
blackhole equals that of the Planck mass, matter converts to
energy and spacetime expands with the release of a gamma
ray burst. The singularity in the SM is eliminated.

2. Classical quantum theory of the atom based on
Maxwell’s equations

One-electron atoms include the hydrogen atom, He+,
Li2+, Be3+, and so on. The mass–energy and angular
momentum of the electron are constant; this requires that
the equation of motion of the electron be temporally and
spatially harmonic. Thus, the classical wave equation
applies and[
∇2 − 1

v2
@2

@t2

]
	(r; �; �; t)= 0; (1)

where 	(r; �; �; t) is the time-dependent charge-density
function of the electron in time and space. In general, the
wave equation has an in%nite number of solutions. To ar-
rive at the solution which represents the electron, a suitable
boundary condition must be imposed. It is well known from
experiments that each single atomic electron of a given
isotope radiates to the same stable state. Thus, the physical
boundary condition of nonradiation of the bound electron
was imposed on the solution of the wave equation for the
time-dependent charge-density function of the electron [1].
The condition for radiation by a moving point charge given
by Haus [2] is that its spacetime Fourier transform does
possess components that are synchronous with waves trav-
eling at the speed of light. Conversely, it is proposed that
the condition for nonradiation by an ensemble of moving
point charges that comprises a current-density function is

For nonradiative states, the current-density function
must NOT possess spacetime Fourier components that
are synchronous with waves traveling at the speed of
light.

The time, radial, and angular solutions of the wave equa-
tion are separable. The motion is time harmonic with fre-
quency !n. A constant angular function is a solution to the
wave equation. The solution for the radial function which
satis%es the boundary condition is a radial delta function

f(r)=
1
r2
�(r − rn) (2)

Fig. 1. The orbitsphere is a two-dimensional spherical shell with
the Bohr radius of the hydrogen atom.

which de%nes a constant charge function on a spherical shell
where rn= nr1. Given time harmonic motion and a radial
delta function, the relationship between an allowed radius
and the electron wavelength is given by

2�rn= �n: (3)

Using the observed de Broglie relationship for the electron
mass where the coordinates are spherical,

�n=
h
pn
=
h
mevn

(4)

and the magnitude of the velocity for every point on the
orbitsphere is

vn=
˜
mern
: (5)

The sum of the Li, the magnitude of the angular momentum
of each in%nitesimal point of the orbitsphere of mass mi,
must be constant. The constant is ˜.∑

|Li|=
∑

|r× miv|=mern ˜
mern

= ˜: (6)

Thus, an electron is a spinning, two-dimensional spherical
surface, called an electron orbitsphere, that can exist in a
bound state at only speci%ed distances from the nucleus as
shown in Fig. 1. The corresponding current function shown
in Fig. 2 which gives rise to the phenomenon of spin is
derived in the “Spin Function” section.
Nonconstant functions are also solutions for the angu-

lar functions. To be a harmonic solution of the wave equa-
tion in spherical coordinates, these angular functions must
be spherical harmonic functions. A zero of the spacetime
Fourier transform of the product function of two spherical
harmonic angular functions, a time harmonic function, and
an unknown radial function is sought. The solution for the
radial function which satis%es the boundary condition is also
a delta function given by Eq. (2). Thus, bound electrons
are described by a charge-density (mass-density) function
which is the product of a radial delta function, two angular



R.L. Mills / International Journal of Hydrogen Energy 27 (2002) 565–590 567
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Fig. 2. The current pattern of the orbitsphere from the perspective
of looking along the z-axis. The current and charge density are
con%ned to two dimensions at rn = nr1. The corresponding charge
density function is uniform.

functions (spherical harmonic functions), and a time har-
monic function.

	(r; �; �; t)=f(r)A(�; �; t)=
1
r2
�(r − rn)A(�; �; t);

A(�; �; t)= Y (�; �)k(t): (7)

In these cases, the spherical harmonic functions correspond
to a traveling charge-density wave con%ned to the spherical
shell which gives rise to the phenomenon of orbital angular
momentum. The orbital functions which modulate the con-
stant “spin” function shown graphically in Fig. 3 are given
in the “Angular Functions” section.

3. Spin function

The orbitsphere spin function comprises a constant
charge-density function with moving charge con%ned to
a two-dimensional spherical shell. The current pattern of
the orbitsphere spin function comprises an in%nite se-
ries of correlated orthogonal great circle current loops
wherein each point moves time harmonically with angular
velocity

!n=
˜
mer2n

: (8)

Fig. 3. The orbital function modulates the constant (spin) function
(shown for t=0; cross-sectional view).

The current pattern is generated over the surface by a
series of nested rotations of two orthogonal great circle
current loops where the coordinate axes rotate with the
two orthogonal great circles. Half of the pattern is gen-
erated as the z-axis rotates to the negative z-axis during
a 1st set of nested rotations. The mirror image, sec-
ond half of the pattern is generated as the z-axis rotates
back to its original direction during a 2nd set of nested
rotations.

3.1. Points on great circle current loop one


 x1y1
z1


=


 cos(P�) −sin2(P�) −sin(P�) cos(P�)

0 cos(P�) −sin(P�)
sin(P�) cos(P�) sin(P�) cos2(P�)




 x′1y′1
z′1



(9)

and P�′= − P� replaces P� for
∑√

2�=P�
n=1 P�=

√
2�;∑√

2�=|P�′|
n=1 |P�′|=√

2�.
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3.2. Points on great circle current loop two


 x2y2
z2


=


 cos(P�) −sin2(P�) −sin(P�) cos(P�)

0 cos(P�) −sin(P�)
sin(P�) cos(P�) sin(P�) cos2(P�)




 x′2y′2
z′2




(10)

and P�′= − P� replaces P� for
∑√

2�=P�
n=1 P�=

√
2�;∑√

2�=|P�′|
n=1 |P�′|=√

2�.
The orbitsphere is given by reiterations of Eqs. (9) and

(10). The output given by the nonprimed coordinates is the
input of the next iteration corresponding to each successive
nested rotation by the in%nitesimal angle where the summa-
tion of the rotation about each of the x-axis and the y-axis is∑√

2�=P�
n=1 P�=

√
2� (1st set) and

∑√
2�=|P�′|

n=1 |P�′|=√
2�

(2nd set). The current pattern corresponding to great circle
current loop one and two shown with 8:49

◦
increments of the

in%nitesimal angular variable P�(P�′) of Eqs. (9) and (10)
is shown from the perspective of looking along the z-axis
in Fig. 2. The true orbitsphere current pattern is given as
P�(P�′) approaches zero. This current pattern gives rise to
the phenomenon corresponding to the spin quantum number
of the electron.

4. Magnetic $eld equations of the electron

The orbitsphere is a shell of negative charge current com-
prising correlated charge motion along great circles. For
‘=0, the orbitsphere gives rise to a magnetic moment of 1
Bohr magneton [3].

�B =
e˜
2me

= 9:274× 10−24 JT−1: (11)

The magnetic %eld of the electron shown in Fig. 4 is given
by

H=
e˜
mer3n

(ir cos �− i� sin �) for r ¡ rn; (12)

H=
e˜
2mer3

(ir2 cos �− i� sin �) for r ¿ rn: (13)

The energy stored in the magnetic %eld of the electron is

Emag =
1
2
�0

∫ 2�

0

∫ �
0

∫ ∞

0
H 2r2 sin � dr d� d$; (14)

Emag total =
��0e2˜2

m2er31
: (15)

5. Stern–Gerlach experiment

The Stern–Gerlach experiment implies a magnetic
moment of one Bohr magneton and an associated angular

Fig. 4. The magnetic %eld of an electron orbitsphere.

momentum quantum number of 1=2. Historically, this
quantum number is called the spin quantum number,
s (s= 1

2 ; ms= ± 1
2 ). The superposition of the vector pro-

jection of the orbitsphere angular momentum on to an axis
S that precesses about the z-axis called the spin axis at
an angle of �= �=3 and an angle of �= � with respect to
〈Lxy〉∑P� is

S=±
√
3
4
˜: (16)

S rotates about the z-axis at the Larmor frequency. 〈Sz〉, the
time averaged projection of the orbitsphere angular momen-
tum onto the axis of the applied magnetic %eld is

〈Lz〉∑P� ± ˜
2
: (17)

6. Electron g factor

Conservation of angular momentum of the orbitsphere
permits a discrete change of its kinetic angular momentum
(r × mv) by the applied magnetic %eld of ˜=2, and con-
comitantly the potential angular momentum (r × eA) must
change by −˜=2.
PL=

˜
2
− r× eA (18)

=
[
˜
2
− e�
2�

]
ẑ: (19)

In order that the change of angular momentum, PL, equals
zero, � must be $0 = h=2e, the magnetic Eux quantum. The
magnetic moment of the electron is parallel or antiparallel to
the applied %eld only. During the spin-Eip transition, power
must be conserved. Power Eow is governed by the Poynting
power theorem,

∇ • (E×H) =− @
@t

[
1
2
�0H •H

]

− @
@t

[
1
2
&0E • E

]
− J • E (20)
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Eq. (21) gives the total energy of the Eip transition which
is the sum of the energy of reorientation of the magnetic
moment (1st term), the magnetic energy (2nd term), the
electric energy (3rd term), and the dissipated energy of a
Euxon treading the orbitsphere (4th term), respectively,

PEspinmag = 2
(
1 +

�
2�
+
2
3
�2
( �
2�

)
− 4
3

( �
2�

)2)
�BB; (21)

PEspinmag = g�BB; (22)

where the stored magnetic energy corresponding to the
@=@t[ 12�0H • H] term increases, the stored electric energy
corresponding to the @=@t[ 12 &0E • E] term increases, and
the J • E term is dissipative. The spin-Eip transition can be
considered as involving a magnetic moment of g times that
of a Bohr magneton. The g factor is redesignated the Euxon
g factor as opposed to the anomalous g factor. The calcu-
lated value of g=2 is 1:001159652137. The experimental
value [4] of g=2 is 1:001159652188(4).

7. Angular functions

The time, radial, and angular solutions of the wave equa-
tion are separable. Also based on the radial solution, the
angular charge and current-density functions of the electron,
A(�; �; t), must be a solution of the wave equation in two
dimensions (plus time),[
∇2 − 1

v2
@2

@t2

]
A(�; �; t)= 0; (23)

where 	(r; �; �; t)=f(r)A(�; �; t)= (1=r2)�(r−rn)A(�; �; t)
and A(�; �; t)= Y (�; �)k(t)[

1
r2 sin �

@
@�

(
sin �

@
@�

)
r;�

+
1

r2 sin2 �

(
@2

@�2

)
r;�

− 1
v2
@2

@t2

]
A(�; �; t)= 0; (24)

where v is the linear velocity of the electron. The
charge-density functions including the time-function factor
are

‘=0;

	(r; �; �; t)=
e
8�r2

[�(r − rn)][Ym‘ (�; �) + Y 00 (�; �)]: (25)

‘¿ 0;

	(r; �; �; t) =
e
4�r2

[�(r − rn)][Y 00 (�; �)

+Re{Ym‘ (�; �)[1 + ei!nt]}]; (26)

Re{Ym‘ (�; �)[1 + ei!nt]}=Re[Ym‘ (�; �) + Ym‘ (�; �)ei!nt]
=Pm‘ (cos �) cosm�+P

m
‘ (cos �) cos(m�+!nt) and !n=0

for m=0.

8. Spin and orbital parameters

The total function that describes the spinning motion of
each electron orbitsphere is composed of two functions. One
function, the spin function, is spatially uniform over the
orbitsphere, spins with a quantized angular velocity, and
gives rise to spin angular momentum. The other function,
the modulation function, can be spatially uniform in which
case there is no orbital angular momentum and the magnetic
moment of the electron orbitsphere is one Bohr magneton or
not spatially uniform in which case there is orbital angular
momentum. The modulation function also rotates with a
quantized angular velocity.
The spin function of the electron corresponds to the non-

radiative n=1, ‘=0 state of atomic hydrogen which is well
known as an s state or orbital. (See Fig. 1 for the charge
function and Fig. 2 for the current function.) For orbitals
with the ‘ quantum number not equal to zero, the constant
spin function is modulated by a time and spherical harmonic
function as given by Eq. (26) and shown in Fig. 3. The
modulation or traveling charge-density wave corresponds to
an orbital angular momentum in addition to a spin angular
momentum. These states are typically referred to as p, d, f,
etc. orbitals. Application of Haus’s [2] condition also pre-
dicts nonradiation for a constant spin function modulated by
a time and spherically harmonic orbital function. There is ac-
celeration without radiation. (Also see Abbott and GriRths
and Goedecke [5,6].) However, in the case that such a state
arises as an excited state by photon absorption, it is radiative
due to a radial dipole term in its current-density function
since it possesses spacetime Fourier Transform components
synchronous with waves traveling at the speed of light [2].
(See Instability of Excited States” section.)

8.1. Moment of inertia and spin and rotational energies

‘=0;

Iz = Ispin =
mer2n
2
; (27)

Lz = I!iz =± ˜
2
; (28)

Erotational = Erotational; spin =
1
2

[
Ispin

(
˜
mer2n

)2]

=
1
2

[
mer2n
2

(
˜
mer2n

)2]
=
1
4

[
˜2

2Ispin

]
: (29)

‘¿ 0;

Iorbital =mer
2
n

[
‘(‘ + 1)
‘2 + ‘ + 1

]1=2
; (30)

Lz =m˜; (31)

Lz total = Lz spin + Lz orbital; (32)
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Erotational;orbital =
˜2

2I

[
‘(‘ + 1)
‘2 + 2‘ + 1

]
; (33)

T =
˜2

2mer2n
; (34)

〈Erotational;orbital〉=0: (35)

From Eq. (35), the time average rotational energy is zero;
thus, the principal levels are degenerate except when a mag-
netic %eld is applied.

9. Nonradiation condition (acceleration without radiation)

The Fourier transform of the electron charge-density
function is a solution of the four-dimensional wave equa-
tion in frequency space (k; ! space). Then the corre-
sponding Fourier transform of the current-density function
K(s; 0; $; !) is given by multiplying by the constant angu-
lar frequency.

K(s; 0; $; !)= 4�!n
sin(2snrn)
2snrn

⊗ 2�
∞∑
1=1

(−1)1−1(� sin0)2(1−1)
(1− 1)!(1− 1)!

2( 12 )2(1+
1
2 )

(� cos0)21+121+1
21!

(1− 1)! s
−21

⊗2�
∞∑
1=1

(−1)1−1(� sin$)2(1−1)
(1− 1)!(1− 1)!

2( 12 )2(1+
1
2 )

(� cos$)21+121+1

× 21!
(1− 1)! s

−21 1
4�
[�(!− !n) + �(!+ !n)]; (36)

sn • vn= sn • c=!n implies rn= �n Spacetime harmonics of
!n=c= k or (!n=c)

√
&=&0 = k for which the Fourier trans-

form of the current-density function is nonzero do not exist.
Radiation due to charge motion does not occur in any
medium when this boundary condition is met. (Nonradiation
is also determined from the %elds based on Maxwell’s equa-
tions [1].)

10. Force balance equation

The radius of the nonradiative (n=1) state is solved us-
ing the electromagnetic force equations of Maxwell relating
the charge and mass-density functions wherein the angular
momentum of the electron is given by Planck’s constant bar.
The reduced mass arises naturally from an electrodynamic
interaction between the electron and the proton.

me
4�r21

v21
r1
=
e
4�r21

Ze
4�&0r21

− 1
4�r21

˜2

mr3n
; (37)

r1 =
aH
Z
: (38)

11. Energy calculations

FromMaxwell’s equations, the potential energy V , kinetic
energy T , electric energy or binding energy Eele are

V =
−Ze2
4�&0r1

=
−Z2e2
4�&0aH

=− Z2 × 4:3675× 10−18 J

=−Z2 × 27:2 eV; (39)

T =
Z2e2

8�&0aH
= Z2 × 13:59 eV; (40)

T =Eele =− 1
2
&0

∫ r1
∞

E2 dv where E=− Ze
4�&0r2

; (41)

Eele =− Z2e2

8�&0aH
=− Z2 × 2:1786× 10−18 J

=−Z2 × 13:598 eV: (42)

The calculated Rydberg constant is 109; 677:58 cm−1; the
experimental Rydberg constant is 109; 677:58 cm−1.

12. Excited states

CQM gives closed form solutions for the resonant photons
and excited state electron functions. The angular momentum
of the photon given by

m=
1
8�
Re[r× (E× B∗)]= ˜ (43)

is conserved [7, pp. 739–779]. The change in angular ve-
locity of the electron is equal to the angular frequency of
the resonant photon. The energy is given by Planck’s equa-
tion. The predicted energies, Lamb shift, hyper%ne structure,
resonant line shape, line width, selection rules, etc. are in
agreement with observation.
The orbitsphere is a dynamic spherical resonator cavity

which traps photons of discrete frequencies. The relationship
between an allowed radius and the photon standing wave
wavelength is

2�r= n�; (44)

where n is an integer. The relationship between an allowed
radius and the electron wavelength is

2�(nr1)= 2�rn= n�1 = �n; (45)

where n=1; 2; 3; 4; : : : : The radius of an orbitsphere in-
creases with the absorption of electromagnetic energy. The
radii of excited states are solved using the electromagnetic
force equations of Maxwell relating the %eld from the charge
of the proton, the electric %eld of the photon, and charge-
and mass-density functions of the electron wherein the
angular momentum of the electron is given by Planck’s
constant bar (Eq. (37)). The solutions to Maxwell’s equa-
tions for modes that can be excited in the orbitsphere
resonator cavity give rise to four quantum numbers, and
the energies of the modes are the experimentally known
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hydrogen spectrum. The relationship between the electric
%eld equation and the trapped photon source charge-density
function is given by Maxwell’s equation in two dimensions.

n • (E1 − E2)=
5
&0
: (46)

The photon standing electromagnetic wave is phase matched
with the electron

Er photon n; l;m =
e(naH )‘

4�&0
1
r(‘+2)

[
−Y 00 (�; �) + 1n [Y

0
0 (�; �)

+Re{Ym‘ (�; �)[1 + ei!nt]}]
]
�(r − rn); (47)

!n=0 for m=0;

‘=1; 2; : : : ; n− 1;

m=− ‘;−‘ + 1; : : : ; 0; : : : ;+‘;

Er total =
e

4�&0r2
+
e(naH )‘

4�&0
1
r(‘+2)

[
−Y 00 (�; �)+ 1n [Y

0
0 (�; �)

+Re{Ym‘ (�; �)[1 + ei!nt]}]
]
�(r − rn); (48)

!n=0 for m=0:

For r= naH and m=0, the total radial electric %eld is

Er total =
1
n

e
4�&0(naH )2

: (49)

The energy of the photon which excites a mode in the
electron spherical resonator cavity from radius aH to radius
naH is

Ephoton =
e2

8�&0aH

[
1− 1
n2

]
= h8= ˜!: (50)

The change in angular velocity of the orbitsphere for an
excitation from n=1 to n is

P!=
˜

me(aH )2
− ˜
me(naH )2

=
˜

me(aH )2

[
1− 1
n2

]
: (51)

The kinetic energy change of the transition is

1
2
me(Pv)

2 =
e2

8�&0aH

[
1− 1
n2

]
= ˜!: (52)

The change in angular velocity of the electron orbitsphere is
identical to the angular velocity of the photon necessary for
the excitation, !photon. The correspondence principle holds.
It can be demonstrated that the resonance condition between
these frequencies is to be satis%ed in order to have a net
change of the energy %eld [8].

13. Orbital and spin splitting

The ratio of the square of the angular momentum, M 2, to
the square of the energy, U 2, for a pure (‘; m) multipole is

[7, pp. 739–752]

M 2

U 2
=
m2

!2
: (53)

The magnetic moment is de%ned as

�=
charge× angular momentum

2×mass : (54)

The radiation of a multipole of order (‘;m) carries m˜ units
of the z component of angular momentum per photon of
energy ˜!. Thus, the z component of the angular momentum
of the corresponding excited state electron orbitsphere is

Lz =m˜: (55)

Therefore,

�z =
em˜
2me

=m�B; (56)

where �B is the Bohr magneton. The orbital splitting energy
is

Eorbmag =m�BB: (57)

The spin and orbital splitting energies superimpose; thus, the
principal excited state energy levels of the hydrogen atom
are split by the energy Espin=orbmag .

Espin=orbmag =m
e˜
2me
B + msg

e˜
me
B where (58)

n=2; 3; 4; : : : ;

‘=1; 2; : : : ; n− 1;

m=− ‘;−‘ + 1; : : : ; 0; : : : ;+‘;

ms=± 1
2
:

For the electric dipole transition, the selection rules are

Pm=0;±1; (59)

Pms=0:

14. Resonant line shape and lamb shift

The spectroscopic linewidth shown in Fig. 5 arises from
the classical rise-time band-width relationship, and the Lamb
shift is due to conservation of energy and linear momen-
tum and arises from the radiation reaction force between the
electron and the photon. It follows from the Poynting power
theorem with spherical radiation that the transition proba-
bilities are given by the ratio of power and the energy of the
transition [7, pp. 758–763]. The transition probability in the
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ω

Γ

∆ω

ωο

dI

dω
(ω)

Fig. 5. Broadening of the spectral line due to the rise-time and
shifting of the spectral line due to the radiative reaction. The res-
onant line shape has width 2. The level shift is P!.

case of the electric multipole moment is

1
;
=
power
energy

; (60)

1
;
=
[ 2�c
[(2l+1)!!]2 (

l+1
l )k

2l+1|Qlm + Q′
lm|2]

[˜!]

= 2�
(
e2

h

)√
�0
&0

2�
[(2l+ 1)!!]2

(
l+ 1
l

)

×
(

3
l+ 3

)2
(krn)

2l!; (61)

E(!)˙
∫ ∞

0
e−�te−i!t dt=

1
�− i!: (62)

The relationship between the rise-time and the band-width
for exponential decay is

;2=
1
�
: (63)

The energy radiated per unit frequency interval is

dI(!)
d!

= I0
2
2�

1
(!− !0 −P!)2 + (2=2)2 : (64)

15. Lamb shift

The Lamb shift of the 2P1=2 state of the hydrogen atom
is due to conservation of linear momentum of the electron,
atom, and photon. The electron component is

Pf=
P!
2�

=
Eh8
h
=3

(Eh8)2

h2mec2
= 1052 MHz; (65)

where Eh8 is

Eh8=13:6
(
1− 1
n2

)
1

|Xlm|2‘=1
− hPf; (66)

Eh8=13:6
(
1− 1
n2

)
3
8�

− hPf; (67)

hPf¡¡¡ 1: (68)

Therefore,

Eh8=13:6
(
1− 1
n2

)
3
8�
: (69)

The atom component is

Pf=
P!
2�

=
Eh8
h
=
1
2
(Eh8)2

2mHc2
= 6:5 MHz: (70)

The sum of the components is

Pf=1052 MHz + 6:5 MHz=1058:5 MHz: (71)

The experimental Lamb shift is 1058 MHz.

16. Instability of excited states

For the excited energy states of the hydrogen atom, 5photon,
the two-dimensional surface charge due to the trapped pho-
tons at the electron orbitsphere, given by Eqs. (46) and (47)
is

5photon =
e

4�(rn)2

[
Y 00 (�; �)− 1

n
[Y 00 (�; �)

+Re{Ym‘ (�; �)[1 + ei!nt]}]
]
�(r − rn); (72)

where n=2; 3; 4; : : : ; : Whereas, 5electron, the two-
dimensional surface charge of the electron orbitsphere given
by Eq. (26) is

5electron =
−e

4�(rn)2
[Y 00 (�; �)

+Re{Ym‘ (�; �)[1 + ei!nt]}]�(r − rn): (73)

The superposition of 5photon (Eq. (72)) and 5electron is equiv-
alent to the sum of a radial electric dipole represented by a
doublet function and a radial electric monopole represented
by a delta function.

5photon + 5electron

=
e

4�(rn)2

[
Y 00 (�; �)

•
�(r − rn)− 1

n
Y 00 (�; �)�(r − rn)

−
(
1 +

1
n

)
[Re{Ym‘ (�; �)[1 + ei!nt]}]�(r − rn)

]
;

(74)
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where n=2; 3; 4; : : : ; : Due to the radial doublet, excited
states are radiative since spacetime harmonics of !n=c= k
or (!n=c)

√
&=&0 = k do exist for which the spacetime Fourier

transform of the current-density function is nonzero.

17. Photon equations

The time-averaged angular-momentum density, m, of an
emitted photon is

m=
1
8�
Re[r× (E× B∗)]= ˜: (75)

A linearly polarized photon orbitsphere is generated from
two orthogonal great circle %eld lines shown in Fig. 6 rather
than two great circle current loops as in the case of the
electron spin function. The right-handed circularly polar-
ized photon orbitsphere shown in Fig. 7 corresponds to the
case wherein the summation of the rotation about each of
the x-axis and the y-axis is

∑√
2�=P�

n=1 P�=
√
2�, and the

mirror image left-handed circularly polarized photon or-
bitsphere corresponds to the case wherein the summation
of the rotation about each of the x-axis and the y-axis is∑√

2�=|P�′|
n=1 |P�′|=√

2�.

17.1. Nested set of great circle :eld lines generates the
photon function

H Field
 x1y1
z1


=


 cos(P�) −sin2(P�) −sin(P�) cos(P�)

0 cos(P�) −sin(P�)
sin(P�) cos(P�) sin(P�) cos2(P�)




 x′1y′1
z′1




(76)

and P�′= − P� replaces P� for
∑√

2�=P�
n=1 P�=

√
2�;∑√

2�=|P�′|
n=1 |P�′|=√

2�.
E Field

 x2y2
z2


 =


 cos(P�) −sin2(P�) −sin(P�) cos(P�)

0 cos(P�) −sin(P�)
sin(P�) cos(P�) sin(P�) cos2(P�)




 x′2y′2
z′2




(77)

and P�′= − P� replaces P� for
∑√

2�=P�
n=1 P�=

√
2�;∑√

2�=|P�′|
n=1 |P�′|=√

2�.
The %eld lines in the lab frame follow from the relativistic

invariance of charge as given by Purcell [9]. The relationship

Fig. 6. The Cartesian coordinate system wherein the %rst great
circle magnetic %eld line lies in the yz-plane, and the second great
circle electric %eld line lies in the xz-plane is designated the photon
orbitsphere reference frame of a photon orbitsphere.

Fig. 7. The %eld line pattern from the perspective of looking along
the z-axis of a right-handed circularly polarized photon.

between the relativistic velocity and the electric %eld of
a moving charge shown schematically in Fig. 8. From
Eqs. (76)–(77) with

∑√
2�=P�
n=1 P�=

√
2�, the photon equa-

tion in the lab frame of a right-handed circularly polarized
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Fig. 8. The electric %eld of a moving point charge (v= 4
5 c).

Fig. 9. The electric %eld lines of a right-handed circularly polarized
photon orbitsphere as seen along the axis of propagation in the lab
inertial reference frame as it passes a %xed point.

photon orbitsphere is

E=E0[x + iy]e−jkzze−j!t ; (78)

H=
(
E0
>

)
[y − ix]e−jkzze−j!t =E0

√
&
�
[y − ix]e−jkzze−j!t

(79)

with a wavelength of

�=2�
c
!
: (80)

The relationship between the photon orbitsphere radius and
wavelength is

2�r0 = �0: (81)

The electric %eld lines of a right-handed circularly polarized
photon orbitsphere as seen along the axis of propagation in
the lab inertial reference frame as it passes a %xed point is
shown in Fig. 9.

17.2. Spherical wave

Photons superimpose, and the amplitude due to N photons
is

Etotal =
N∑
n=1

e−ikr |r−r′ |
4�|r− r′|f(�; �): (82)

In the far %eld, the emitted wave is a spherical wave

Etotal =E0
e−ikr

r
: (83)

The Green Function is given as the solution of the wave
equation. Thus, the superposition of photons gives the
classical result. As r goes to in%nity, the spherical wave be-
comes a plane wave. The double slit interference pattern is
predicted. From the equation of a photon, the wave–particle
duality arises naturally. The energy is always given by
Planck’s equation; yet, an interference pattern is observed
when photons add over time or space.

18. Equations of the free electron

18.1. Charge-density function

The radius of an electron orbitsphere increases with the
absorption of electromagnetic energy [10]. With the absorp-
tion of a photon of energy exactly equal to the ionization
energy, the electron becomes ionized and is a plane wave
(spherical wave in the limit) with the de Broglie wave-
length. The ionized electron traveling at constant velocity
is nonradiative and is a two-dimensional surface having a
total charge of e and a total mass of me. The solution of the
boundary value problem of the free electron is given by the
projection of the orbitsphere into a plane that linearly prop-
agates along an axis perpendicular to the plane where the
velocity of the plane and the orbitsphere is given by

v=
˜
me	0

(84)

and the radius of the orbitsphere in spherical coordinates is
equal to the radius of the free electron in cylindrical coor-
dinates (	0 = r0). The mass-density function of a free elec-
tron shown in Fig. 10 is a two-dimensional disk having the
mass-density distribution in the xy(	)-plane

	m(	; �; z)=
me
2
3�	

3
0

�
(
	
2	0

)√
	20 − 	2�(z) (85)

and charge-density distribution, 	e(	; �; z), in the xy-plane
given by replacing me with e. The charge-density distri-
bution of the free electron has recently been con%rmed
experimentally [11,12]. Researchers working at the Japanese
National Laboratory for High Energy Physics (KEK)
demonstrated that the charge of the free electron increases
toward the particle’s core and is symmetrical as a function
of �. In addition, the wave–particle duality arises naturally,
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Fig. 10. The front view of the magnitude of the mass (charge) density function in the xy-plane of a free electron; side view of a free
electron along the axis of propagation — z-axis.

and the result is consistent with scattering experiments from
helium and the double split experiment [1].

18.2. Current-density function

Consider an electron initially bound as an orbitsphere of
radius r= rn= r0 ionized from a hydrogen atom with the
magnitude of the angular velocity of the orbitsphere is given
by

!=
˜
mer2

: (86)

The current-density function of the free electron propagating
with velocity vz along the z-axis in the inertial frame of the
proton is given by the vector projection of the current into
xy-plane as the radius increases from r= r0 to r=∞. The
current-density function of the free electron, is

J(	; �; z; t)=

[
�
(
	
2	0

)
e

4
3�	

3
0

˜
me
√
	20 − 	2

i�

]
; (87)

where 	0 = r0. The angular momentum, L, is given by

Liz =mer2!: (88)

Substitution of me for e in Eq. (87) followed by substitu-
tion into Eq. (88) gives the angular momentum density
function, L

Liz = �
(
	
2	0

)
me
4
3�	

3
0

˜
me
√
	20 − 	2

	2: (89)

The total angular momentum of the free electron is given by
integration over the two-dimensional disk having the angular
momentum density given by Eq. (89).

Liz=
∫ 2�

0

∫ 	0
0
�
(
	
2	0

)
me
4
3�	

3
0

˜
me
√
	20−	2

	2	d	d�= ˜:

(90)

The four-dimensional spacetime current-density function of
the free electron that propagates along the z-axis with veloc-
ity given by Eq. (84) corresponding to r= r0 = 	0 is given
by substitution of Eq. (84) into Eq. (88).

J(	; �; z; t) =

[
�
(
	
2	0

)
e

4
3�	

3
0

˜
me
√
	20 − 	2

i�

]

+
e˜
me	0

�
(
z − ˜
me	0

t
)
iz : (91)
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Table 1
The calculated electric (per electron), magnetic (per electron), and ionization energies for some two-electron atoms

Atom r1 Electric Magnetic Calculated Experimental
(a0)a energyb energyc ionization ionization [13,14]

(eV) (eV) energyd (eV) energy (eV)

He 0.567 −23:96 0.63 24.59 24.59
Li+ 0.356 −76:41 2.54 75.56 75.64
Be2+ 0.261 −156:08 6.42 154.48 153.89
B3+ 0.207 −262:94 12.96 260.35 259.37
C4+ 0.171 −396:98 22.83 393.18 392.08
N5+ 0.146 −558:20 36.74 552.95 552.06
O6+ 0.127 −746:59 55.35 739.67 739.32
F7+ 0.113 −962:17 79.37 953.35 953.89
aFrom Eq. (96).
bFrom Eq. (98).
cFrom Eq. (99).
dFrom Eqs. (97) and (100).

The spacetime Fourier Transform is

e
4
3�	

3
0

˜
me
sinc(2�s	0) + 2�e

˜
me	0

�(!− kz • vz): (92)

The boundary condition is spacetime harmonics of !n=c= k
or (!n=c)

√
&=&0 = k do not exist. Radiation due to charge

motion does not occur in any medium when this boundary
condition is met. Thus, no Fourier components that are syn-
chronous with light velocity with the propagation constant
|kz|=!=c exist, and radiation due to charge motion of the
free electron does not occur when this boundary condition is
met. It follows from Eq. (84) and the relationship 2�	0 = �0
that the wavelength of the free electron is the de Broglie
wavelength.

�0 =
h
mevz

=2�	0: (93)

In the presence of a z-axis applied magnetic %eld, the
free electron precesses. The time average vector projection
of the total angular momentum of the free electron onto

an axis S that rotates about the z-axis is ±
√

3
4˜, and the

time averaged projection of the angular momentum onto the
axis of the applied magnetic %eld is ±˜=2. Magnetic Eux is
linked by the electron in units of the magnetic Eux quantum
with conservation of angular momentum as in the case of
the orbitsphere as the projection of the angular momentum
along the magnetic %eld axis of ˜=2 reverses direction. The
energy, PEspinmag, of the spin Eip transition corresponding to
the ms = 1

2 quantum number is given by Eq. (22).

PEspinmag = g�BB: (94)

The Stern–Gerlach experiment implies a magnetic moment
of one Bohr magneton and an associated angular momentum
quantum number of 1=2. Historically, this quantum number
is called the spin quantum number, ms, and that designation
is maintained.

19. Two electron atoms

Two electron atoms may be solved from a central force
balance equation with the nonradiation condition. The force
balance equation is

me
4�r22

v22
r2
=
e
4�r22

(Z − 1)e
4�&0r22

+
1
4�r22

˜2

Zmer32

√
s(s + 1) (95)

which gives the radius of both electrons as

r2 = r1 = a0

(
1
Z − 1 −

√
s(s + 1)
Z(Z − 1)

)
; s=

1
2
: (96)

19.1. Ionization energies calculated using the Poynting
power theorem

For helium, which has no electric %eld beyond r1

ionization energy(He)=− E(electric) + E(magnetic):
(97)

where,

E(electric)=− (Z − 1)e2
8�&0r1

; (98)

E(magnetic)=
2��0e2˜2

m2er31
: (99)

For 36 Z

ionization energy =−electric energy

− 1
Z
magnetic energy: (100)

The energies of several two-electron atoms are given in
Table 1.
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20. Elastic electron scattering from helium atoms

The aperture distribution function, a(	; �; z), for the elas-
tic scattering of an incident electron plane wave represented
by �(z) by a helium atom represented by

2
4�(0:567a0)2

[�(r − 0:567a0)] (101)

is given by the convolution of the plane wave with the helium
atom function:

a(	; �; z)= �(z)⊗ 2
4�(0:567a0)2

[�(r − 0:567a0)]: (102)

The aperture function is

a(	; �; z) =
2

4�(0:567a0)2√
(0:567a0)2 − z2�(r −

√
(0:567a0)2 − z2):

(103)

20.1. Far :eld scattering (circular symmetry)

Applying Huygens’ principle to a disturbance caused by
the plane wave electron over the helium atom as an aperture
gives the amplitude of the far %eld or Fraunhofer diJraction
pattern F(s) as the Fourier Transform of the aperture distri-
bution. The intensity I ed1 is the square of the amplitude.

F(s) =
2

4�(0:567a0)2
2�
∫ ∞

0

∫ ∞

−∞√
(0:567a0)2 − z2�(	−

√
(0:567a0)2 − z2)

×J0(s	)e−iwz	 d	 dz; (104)

I ed1 =F(s)
2 =

Ie




[
2�

(z0w)2 + (z0s)2

]1=2
{
2
[

z0s
(z0w)2 + (z0s)2

]
J3=2[((z0w)

2 + (z0s)
2)1=2]

−
[

z0s
(z0w)2 + (z0s)2

]2
J5=2[((z0w)

2 + (z0s)
2)1=2]

}




2

;

(105)

s=
4�
�
sin
�
2
; w=0 (units of WA

−1
): (106)

The experimental results of Bromberg [15], the extrapolated
experimental data of Hughes [15], the small angle data of
Geiger [16] and the semiexperimental results of Lassettre
[15] for the elastic diJerential cross-section for the elastic
scattering of electrons by helium atoms is shown graphically
in Fig. 11. The elastic diJerential cross-section as a function
of angle numerically calculated by Khare [15] using the %rst
Born approximation and %rst-order exchange approximation
also appear in Fig. 11. These results which are based on a

Fig. 11. The experimental results for the elastic diJerential
cross-section for the elastic scattering of electrons by helium atoms
and a Born approximation prediction.

quantum mechanical model are compared with experimen-
tation [15,16]. The closed form function (Eqs. (105) and
(106)) for the elastic diJerential cross-section for the elas-
tic scattering of electrons by helium atoms is shown graph-
ically in Fig. 12. The scattering amplitude function, F(s)
(Eq. (104), is shown as an insert. It is apparent from Fig.
11 that the quantum mechanical calculations fail completely
at predicting the experimental results at small scattering
angles; whereas, there is good agreement between Eq. (105)
and the experimental results.

21. The nature of the chemical bond of hydrogen

The hydrogen molecule charge and current-density
functions, bond distance and energies are solved from the
Laplacian in ellipsoidal coordinates with the constraint of
nonradiation.

(>− C)RD @@D
(
RD
@�
@D

)
+ (C− D)R> @@>

(
R>
@�
@>

)

+(D− >)RC @@C
(
RC
@�
@C

)
=0: (107)

The force balance equation for the hydrogen molecule is

˜2

mea2b2
2ab2X =

e2

4�&0
X +

˜2

2mea2b2
2ab2X; (108)

where

X =
1√
D+ a2

1√
D+ b2

1
c

√
D2 − 1
D2 − >2 : (109)

Eq. (108) has the parametric solution

r(t)= ia cos!t + jb sin!t (110)

when the semimajor axis, a, is

a= a0: (111)



578 R.L. Mills / International Journal of Hydrogen Energy 27 (2002) 565–590

Fig. 12. The closed form function (Eqs. (105) and (106)) for the elastic diJerential cross section for the elastic scattering of electrons by
helium atoms. The scattering amplitude function, F(s) (Eq. (104), is shown as an insert.

The internuclear distance, 2c′, which is the distance between
the foci is

2c′=
√
2a0: (112)

The experimental internuclear distance is
√
2a0. The

semiminor axis is

b=
1√
2
a0: (113)

The eccentricity, e, is

e=
1√
2
: (114)

21.1. The energies of the hydrogen molecule

The potential energy of the two electrons in the central
%eld of the protons at the foci is

Ve =
−2e2

8�&0
√
a2 − b2 ln

a+
√
a2 − b2

a−√
a2 − b2 =− 67:813 eV:

(115)

The potential energy of the two protons is

Vp =
e2

8�&0
√
a2 − b2 = 19:23 eV: (116)

The kinetic energy of the electrons is

T =
˜2

2mea
√
a2 − b2 ln

a+
√
a2 − b2

a−√
a2 − b2 = 33:906 eV: (117)

The energy, Vm, of the magnetic force between the electrons
is

Vm =
−˜2

4mea
√
a2 − b2 ln

a+
√
a2 − b2

a−√
a2 − b2 =− 16:9533 eV:

(118)

The total energy is

ET =Ve + T + Vm + Vp; (119)

ET =−13:6 eV
[(
2
√
2−

√
2 +

√
2
2

)
ln

√
2 + 1√
2− 1 −

√
2
]

=−31:63 eV: (120)

The energy of two hydrogen atoms is

E(2H [aH ])=− 27:21 eV: (121)

The bond dissociation energy, ED, is the diJerence between
the total energy of the corresponding hydrogen atoms
(Eq. (121)) and ET (Eq. (120)).

ED =E(2H [aH ])− ET = 4:43 eV: (122)

The experimental energy determined by calorimetry is

ED = 4:45 eV: (123)

22. Cosmological theory based on Maxwell’s equations

Maxwell’s equations and special relativity are based on
the law of propagation of a electromagnetic wave front in
the form

1
c2

(
@!
@t

)2
−
[(
@!
@x

)2
+
(
@!
@y

)2
+
(
@!
@z

)2]
=0: (124)

For any kind of wave advancing with limiting velocity and
capable of transmitting signals, the equation of front prop-
agation is the same as the equation for the front of a light
wave. Thus, the equation

1
c2

(
@!
@t

)2
− (grad!)2 = 0 (125)



R.L. Mills / International Journal of Hydrogen Energy 27 (2002) 565–590 579

acquires a general character; it is more general than
Maxwell’s equations from which Maxwell originally
derived it.
A discovery of the present work is that the classical wave

equation governs: (1) the motion of bound electrons, (2) the
propagation of any form of energy, (3) measurements be-
tween inertial frames of reference such as time, mass, mo-
mentum, and length (Minkowski tensor), (4) fundamental
particle production and the conversion of matter to energy,
(5) a relativistic correction of spacetime due to particle pro-
duction or annihilation (Schwarzschild metric), (6) the ex-
pansion and contraction of the universe, (7) the basis of the
relationship between Maxwell’s equations, Planck’s equa-
tion, the de Broglie equation, Newton’s laws, and special,
and general relativity.
The relationship between the time interval between ticks
t of a clock in motion with velocity v relative to an observer
and the time interval t0 between ticks on a clock at rest
relative to an observer is [17]

(ct)2 = (ct0)
2 + (vt)2: (126)

Thus, the time dilation relationship based on the constant
maximum speed of light c in any inertial frame is

t=
t0√

1− v2=c2 : (127)

The metric g�8 for Euclidean space is the Minkowski tensor
>�8. In this case, the separation of proper time between two
events x� and x� + dx� is d;2 =− >�8 dx� dx8.

23. The equivalence of the gravitational mass and the
inertial mass

The equivalence of the gravitational mass and the iner-
tial mass, mg=mi = universal constant, which is predicted by
Newton’s law of mechanics and gravitation is experimen-
tally con%rmed to less 1×10−11 [18]. In physics, the discov-
ery of a universal constant often leads to the development of
an entirely new theory. From the universal constancy of the
velocity of light, c the special theory of relativity was de-
rived; and from Planck’s constant h, the quantum theory was
deduced. Therefore, the universal constant mg=mi should be
the key to the gravitational problem. The energy equation
of Newtonian gravitation is

E=
1
2
mv2 − GMm

r
=
1
2
mv20 − GMmr0 = constant: (128)

Since h, the angular momentum per unit mass, is

h= L=m= |r× v|= r0v0 sin�
the eccentricity e may be written as

e=
[
1 +
(
v20 − 2GM

r0

)
r20v

2
0 sin

2 �
G2M 2

]1=2
; (129)

where m is the inertial mass of a particle, v0 is the speed of
the particle, r0 is the distance of the particle from a massive
object, � is the angle between the direction of motion of the
particle and the radius vector from the object, and M is the
total mass of the object (including a particle). The eccentric-
ity e given by Newton’s diJerential equations of motion in
the case of the central %eld permits the classi%cation of the
orbits according to the total energy E [19] (column 1) and
the orbital velocity squared, v20, relative to the gravitational
velocity squared, 2GM=r0 [19] (column 2):

E¡ 0 v20¡
2GM
r0

e¡ 1 ellipse;

E ¡ 0 v20¡
2GM
r0

e=0 circle (special case of ellipse);

E=0 v20 =
2GM
r0

e=1 parabolic orbit;

E ¿ 0 v20¿
2GM
r0

e¿ 1 hyperbolic orbit: (130)

24. Continuity conditions for the production of a
particle from a photon traveling at light speed

A photon traveling at the speed of light gives rise to a par-
ticle with an initial radius equal to its Compton wavelength
bar.

r=�C =
˜
mc
r∗� : (131)

The particle must have an orbital velocity equal to Newto-
nian gravitational escape velocity vg of the antiparticle.

vg =

√
2Gm
r
=

√
2Gm0
�C
: (132)

The eccentricity is one. The orbital energy is zero. The par-
ticle production trajectory is a parabola relative to the center
of mass of the antiparticle.

24.1. A gravitational :eld as a front equivalent to
light wave front

The particle with a %nite gravitational mass gives rise to
a gravitational %eld that travels out as a front equivalent to
a light wave front. The form of the outgoing gravitational
%eld front traveling at the speed of light is f(t − r=c), and
d;2 is given by

d;2 =f(r) dt2 − 1
c2
[f(r)−1 dr2 + r2 d� 2 + r2 sin2 � d�2]:

(133)

The speed of light as a constant maximum as well as phase
matching and continuity conditions of the electromagnetic
and gravitational waves require the following form of the
squared displacements:

(c;)2 + (vgt)
2 = (ct)2; (134)

f(r)=
(
1−

( vg
c

)2)
: (135)
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In order that the wave front velocity does not exceed c in
any frame, spacetime must undergo time dilation and length
contraction due to the particle production event. The deriva-
tion and result of spacetime time dilation is analogous to
the derivation and result of special relativistic time dilation
wherein the relative velocity of two inertial frames replaces
the gravitational velocity.
The general form of the metric due to the relativistic eJect

on spacetime due to mass m0 with vg given by Eq. (132) is

d;2 =
(
1−

( vg
c

)2)
dt2 − 1

c2

[(
1−

( vg
c

)2)−1
dr2

+r2 d� 2 + r2 sin2 � d�2
]
: (136)

The gravitational radius, rg, of each orbitsphere of the parti-
cle production event, each of mass m0, and the correspond-
ing general form of the metric are respectively

rg =
2Gm
c2
; (137)

d;2 =
(
1− rg

r

)
dt2 − 1

c2

[(
1− rg

r

)−1
dr2 + r2 d� 2

+r2 sin2 � d�2
]
: (138)

The metric g�8 for non-Euclidean space due to the relativistic
eJect on spacetime due to mass m0 is

g�8=




−(1− 2Gm0
c2r ) 0 0 0

0 1
c2 (1− 2Gm0

c2r )
−1 0 0

0 0 1
c2 r

2 0
0 0 0 1

c2 r
2 sin2 �


:
(139)

Masses and their eJects on spacetime superimpose. The
separation of proper time between two events x� and x�+dx�

is

d;2 =
(
1− 2GM

c2r

)
dt2− 1

c2

[(
1− 2GM

c2r

)−1
dr2 + r2d� 2

+r2 sin2 � d�2
]
: (140)

The Schwarzschild metric (Eq. (140)) gives the rela-
tionship whereby matter causes relativistic corrections to
spacetime that determines the curvature of spacetime and
is the origin of gravity.

24.2. Particle production continuity conditions from
Maxwell’s equations, and the Schwarzschild metric

The photon to particle event requires a transition state
that is continuous wherein the velocity of a transition state
orbitsphere is the speed of light. The radius, r, is the Comp-
ton wavelength bar,�C, given by Eq. (131). At production,
the Planck equation energy, the electric potential energy,
and the magnetic energy are equal to m0c2.

The Schwarzschild metric gives the relationship whereby
matter causes relativistic corrections to spacetime that
determines the masses of fundamental particles. Sub-
stitution of r=�C; dr=0; d�=0; sin2 �=1 into the
Schwarzschild metric gives

d;=dt
(
1− 2Gm0

c2r∗�
− v

2

c2

)1=2
(141)

with v2 = c2, the relationship between the proper time and
the coordinate time is

;= ti

√
2GM
c2r∗�

= ti

√
2GM
c2�C

= ti
vg
c
: (142)

When the orbitsphere velocity is the speed of light,
continuity conditions based on the constant maximum
speed of light given by Maxwell’s equations are mass
energy =Planck equation energy = electric potential
energy =magnetic energy =mass=spacetime metric en-
ergy. Therefore,

m0c
2 = ˜!∗=V =Emag =Espacetime; (143)

m0c
2 = ˜!∗=

˜2

m0�2C
= �−1

e2

4�&0�C
= �−1

��0e2˜2

(2�m0)2�3C

=
�h
1 sec

√
�Cc2

2Gm
: (144)

The continuity conditions based on the constant maximum
speed of light given by the Schwarzschild metric are:

proper time
coordinate time

=
gravitational wave condition
electromagnetic wave condition

=
gravitational mass phase matching
charge=inertial mass phase matching

;

proper time
coordinate time

= i

√
2Gm=c2�C
�

= i
vg
�c
: (145)

25. Masses of fundamental particles

Each of the Planck equation energy, electric energy,
and magnetic energy corresponds to a particle given by
the relationship between the proper time and the coordi-
nate time. The electron and down-down-up neutron cor-
respond to the Planck equation energy. The muon and
strange-strange-charmed neutron correspond to the electric
energy. The tau and bottom-bottom-top neutron correspond
to the magnetic energy. The particle must possess the
escape velocity vg relative to the antiparticle where vg¡c.
According to Newton’s law of gravitation, the eccentricity
is one and the particle production trajectory is a parabola
relative to the center of mass of the antiparticle.
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25.1. The electron–antielectron lepton pair

A clock is de%ned in terms of a self-consistent system of
units used to measure the particle mass. 2 The proper time of
the particle is equated with the coordinate time according to
the Schwarzschild metric corresponding to light speed. The
special relativistic condition corresponding to the Planck
energy gives the mass of the electron.

2�
˜
mc2

= sec

√
2Gm2

c�2˜ ; (146)

me =
(
h�
sec c2

)1=2 ( c˜
2G

)1=4
= 9:1097× 10−31 kg; (147)

me = 9:1097×10−31 kg−18 eV(8e) = 9:1094×10−31 kg;
(148)

me experimental = 9:1095× 10−31 kg: (149)

25.2. Down-down-up neutron (DDU)

The corresponding equation for production of the neutron
is

2�
2�˜

(mN =3)[1=2�− �=2�]c2

= sec

√
2G[(mN =3)[1=2�− �=2�]]2

3c(2�)2˜ ; (150)

mNcalculated = (3)(2�)
(

1
1− �

)(
2�h
sec c2

)1=2 (2�(3)ch
2G

)1=4

= 1:6744× 10−27 kg; (151)

mNexperimental = 1:6749× 10−27 kg: (152)

26. Gravitational potential energy

The gravitational radius, �G or rG, of an orbitsphere of
mass m0 is de%ned as

�G = rG =
Gm0
c2
: (153)

2 Presently the second is de%ned as the time required for
9,192,631,770 vibrations within the cesium-133 atom. The “sec” as
de%ned in Eq. (146) is a fundamental constant, namely, the metric
of spacetime (it is almost identically equal to the present value for
reasons explained in Ref. [1]). A uni%ed theory can only provide
the relationships between all measurable observables in terms of a
clock de%ned in terms of fundamental constants according to those
observables and used to measure them. The so de:ned “clock”
measures “clicks” on an observable in one aspect, and in another,
it is the ruler of spacetime of the universe with the implicit depen-
dence of spacetime on matter–energy conversion as shown in the
Relationship of Matter to Energy and Spacetime Expansion section.

When rG = r∗� =�C, the gravitational potential energy equals
m0c2

rG =
Gm0
c2

=�C =
˜
m0c
; (154)

Egrav =
Gm20
r
=
Gm20
�C

=
Gm20
r∗�

= ˜!∗=m0c
2: (155)

The mass m0 is the Planck mass, mu,

mu=m0 =

√
˜c
G
: (156)

The corresponding gravitational velocity, vG, is de%ned as

vG =

√
Gm0
r
=

√
Gm0
�C

=

√
Gmu
�C
: (157)

26.1. Relationship of the equivalent Planck mass
particle production energies

For the Planckmass particle, the relationships correspond-
ing to Eq. (144) are: (mass energy = Planck equation energy
= electric potential energy = magnetic energy = gravita-
tional potential energy = mass=spacetime metric energy)

m0c
2 = ˜!∗=V =Emag =Egrav =Espacetime (158)

m0c
2 = ˜!∗=

˜2

m0�2C
= �−1

e2

4�&0�C
= �−1

��0e2˜2

(2�m0)2�3C

= �−1
�0e2c2

2h

√
Gm0
�C

√
˜c
G
=
�h
1 sec

√
�Cc2

2Gm
: (159)

These equivalent energies give the particle masses in terms
of the gravitational velocity, vG and the Planck mass, mu

m0 = �
−1 �0e

2c
2h

√
Gm0=�C
c

mu= �
−1 �0e

2c
2h

√
Gm0
c2�C
mu

= �−1
�0e2c
2h
vG
c
mu=

vG
c
mu: (160)

26.2. Planck mass particles

A pair of particles each of the Planck mass correspond-
ing to the gravitational potential energy is not observed
since the velocity of each transition state orbitsphere is the
gravitational velocity vG that in this case is the speed of
light; whereas, the Newtonian gravitational escape velocity
vg is

√
2 the speed of light. In this case, an electromag-

netic wave of mass energy equivalent to the Planck mass
travels in a circular orbit about the center of mass of an-
other electromagnetic wave of mass energy equivalent to the
Planck mass wherein the eccentricity is equal to zero and
the escape velocity can never be reached. The Planck mass
is a measuring stick. The extraordinarily high Planck mass
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(
√
˜c=G=2:18× 10−8 kg) is the unobtainable mass bound

imposed by the angular momentum and speed of the photon
relative to the gravitational constant. It is analogous to the
unattainable bound of the speed of light for a particle pos-
sessing %nite rest mass imposed by the Minkowski tensor.

26.3. Astrophysical implications of Planck mass particles

The limiting speed of light eliminates the singularity prob-
lem of Einstein’s equation that arises as the radius of a black-
hole equals the Schwarzschild radius. General relativity with
the singularity eliminated resolves the paradox of the in%-
nite propagation velocity required for the gravitational force
in order to explain why the angular momentum of objects
orbiting a gravitating body does not increase due to the %nite
propagation delay of the gravitational force according to spe-
cial relativity [20]. When the gravitational potential energy
density of a massive body such as a blackhole equals that of
a particle having the Planck mass, the matter may transition
to photons of the Planck mass. Even light from a blackhole
will escape when the decay rate of the trapped matter with
the concomitant spacetime expansion is greater than the ef-
fects of gravity which oppose this expansion. Gamma-ray
bursts are the most energetic phenomenon known that can
release an explosion of gamma rays packing 100 times more
energy than a supernova explosion [21]. The annihilation of
a blackhole may be the source of gamma-ray bursts. The
source may be due to conversion of matter to photons of
the Planck mass=energy which may also give rise to cosmic
rays which are the most energetic particles known, and their
origin is also a mystery [22]. According to the GZK cutoJ,
the cosmic spectrum cannot extend beyond 5×1019 eV, but
AGASA, the world’s largest air shower array, has shown that
the spectrum is extending beyond 1020 eV without any clear
sign of cutoJ [23]. Photons each of the Planck mass may be
the source of these inexplicably energetic cosmic rays.

27. Relationship of matter to energy and spacetime
expansion

The Schwarzschild metric gives the relationship whereby
matter causes relativistic corrections to spacetime. The lim-
iting velocity c results in the contraction of spacetime due
to particle production, which is given by 2�rg where rg is
the gravitational radius of the particle. This has implica-
tions for the expansion of spacetime when matter converts to
energy. Q the mass=energy to expansion=contraction quo-
tient of spacetime is given by the ratio of the mass of a par-
ticle at production divided by T , the period of production.

Q=
m0
T
=
m0
2�rg
c

=
m0

2�
2Gm0
c2

c

=
c3

4�G
=3:22× 1034 kg=sec:

(161)

The gravitational equations with the equivalence of the parti-
cle production energies (Eq. (144)) permit the conservation

of mass=energy (E=mc2) and spacetime (c3=4�G=3:22×
1034 kg=sec). With the conversion of 3:22×1034 kg of mat-
ter to energy, spacetime expands by 1 sec. The photon has
inertial mass and angular momentum, but due to Maxwell’s
equations and the implicit special relativity it does not have
a gravitational mass. The observed gravitational deEection
of light is predicted [1].

27.1. Cosmological consequences

The universe is closed (it is :nite but with no boundary).
It is a 3-sphere universe–Riemannian three-dimensional hy-
perspace plus time of constant positive curvature at each
r-sphere. The universe is oscillatory in matter=energy and
spacetime with a %nite minimum radius, the gravitational
radius. Spacetime expands as mass is released as energy
which provides the basis of the atomic, thermodynamic, and
cosmological arrows of time. DiJerent regions of space are
isothermal even though they are separated by greater dis-
tances than that over which light could travel during the
time of the expansion of the universe [24]. Presently, stars
and large-scale structures exist which are older than the
elapsed time of the present expansion as stellar, galaxy,
and supercluster evolution occurred during the contraction
phase [25–31]. The maximum power radiated by the uni-
verse which occurs at the beginning of the expansion phase
is PU = c5=4�G=2:89 × 1051 W. Observations beyond the
beginning of the expansion phase are not possible since the
universe was entirely matter %lled.

27.2. The period of oscillation of the universe based on
closed propagation of light

Mass=energy is conserved during harmonic expansion and
contraction. The gravitational potential energy Egrav given by
Eq. (155) with m0 =mU is equal to mUc2 when the radius of
the universe r is the gravitational radius rG. The gravitational
velocity vG (Eq. (157) with r= rG andm0 =mU) is the speed
of light in a circular orbit wherein the eccentricity is equal
to zero and the escape velocity from the universe can never
be reached. The period of the oscillation of the universe and
the period for light to transverse the universe corresponding
to the gravitational radius rG must be equal. The harmonic
oscillation period, T , is

T =
2�rG
c
=
2�GmU
c3

=
2�G(2× 1054 kg)

c3

= 3:10× 1019 sec= 9:83× 1011 years; (162)

where the mass of the universe, mU, is approximately 2 ×
1054 kg. (The initial mass of the universe of 2× 1054 kg is
based on internal consistency with the size, age, Hubble con-
stant, temperature, density of matter, and power spectrum.)
Thus, the observed universe will expand as mass is released
as photons for 4:92 × 1011 years. At this point in its world
line, the universe will obtain its maximum size and begin to
contract.
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Fig. 13. The radius of the universe as a function of time.

28. The di;erential equation of the radius of the universe

Based on conservation of mass=energy (E=mc2) and
spacetime (c3=4�G=3:22× 1034 kg=sec). The universe be-
haves as a simple harmonic oscillator having a restoring
force, F, which is proportional to the radius. The propor-
tionality constant, k, is given in terms of the potential en-
ergy, E, gained as the radius decreases from the maximum
expansion to the minimum contraction.
E
ℵ2 = k: (163)

Since the gravitational potential energy Egrav is equal tomUc2

when the radius of the universe r is the gravitational radius
rG

F =− kℵ=− mUc
2

r2G
ℵ=− mUc2

(GmU=c2)2
ℵ: (164)

And, the diJerential equation of the radius of the universe,
ℵ is

mU
••
ℵ + mUc

2

r2G
ℵ=mU

••
ℵ + mUc2

(GmU=c2)2
ℵ=0: (165)

The maximum radius of the universe, the amplitude, r0,
of the time harmonic variation in the radius of the universe,
is given by the quotient of the total mass of the universe and
Q (Eq. (161)), the mass=energy to expansion=contraction
quotient.

r0 =
mU
Q
=
mU
c3=4�G

=
2× 1054 kg
c3=4�G

= 1:97× 1012 light years: (166)

The minimum radius which corresponds to the gravita-
tional radius, rg, given by Eq. (137) with m0 =mU is

rg =
2GmU
c2

= 2:96× 1027 m=3:12× 1011 light years:
(167)

When the radius of the universe is the gravitational radius, rg,
the proper time is equal to the coordinate time by Eq. (142),
and the gravitational escape velocity vg of the universe is
the speed of light. The radius of the universe as a function
of time as shown in Fig. 13 is

ℵ=
(
rg +

cmU
Q

)
− cmU
Q
cos
(

2�t
(2�rG=c)

)

=
(
2GmU
c2

+
cmU

(c3=4�G)

)
− cmU
(c3=4�G)

cos
(

2�t
(2�GmU=c3)

)
:

(168)

The expansion=contraction rate,
•
ℵ, as shown in Fig. 14 is

given by time derivative of Eq. (168)

•
ℵ=4�c × 10−3 sin

(
2�t

(2�GmU=c3)

)
km=sec: (169)

29. The Hubble constant

TheHubble constant is given by the ratio of the expansion
rate given in units of km=sec divided by the radius of the
expansion in Mpc. The radius of expansion is equivalent
to the radius of the light sphere with an origin at the time
point when the universe stopped contracting and started to
expand.

H = ℵ•

tMpc
=
4�c × 10−3 sin

(
2�t

(2�GmU =c3)

)
km=sec

tMpc
: (170)

For t=1010 light years= 3:069×103 Mpc, the Hubble con-
stant, H0, is

H0 = 78:6 km=sec (Mpc): (171)
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Fig. 14. The expansion=contraction rate of the universe as a function of time.

Fig. 15. The Hubble constant of the universe as a function of time.

The experimental value [32] as shown in Fig. 15 is

H0 = 80± 17 km=sec (Mpc): (172)

30. The density of the universe as a function of time

The density of the universe as a function of time 	U(t)
given by the ratio of the mass as a function of time and the
volume as a function of time as shown in Fig. 16 is

	U(t)=
mU(t)
V (t)

=
mU(t)
4
3�ℵ(t)3

=

mU
2

(
1 + cos

(
2�t

2�GmU
c3

))

4
3�

((
2GmU
c2 + cmU

c3

4�G

)
− cmU

c3

4�G

cos

(
2�t

2�GmU
c3

))3 :

(173)

For t=1010 light years, 	U = 1:7× 10−32 g=cm3. The den-
sity of luminous matter of stars and gas of galaxies is about
	U = 2× 10−31 g=cm3 [33,34].

31. The power of the universe as a function of timePU(t)

From E=mc2 and Eq. (161),

PU(t)=
c5

8�G

(
1 + cos

(
2�t
2�rG=c

))
: (174)

For t=1010 light years, PU(t)= 2:88 × 1051 W. The
observed power is consistent with that predicted. The
power of the universe as a function of time is shown
in Fig. 17.
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Fig. 16. The density of the universe as a function of time.

Fig. 17. The power of the universe as a function of time.

32. The temperature of the universe as a function of time

The temperature of the universe as a function of time,
TU(t), as shown in Fig. 18, follows from the Stefan–
Boltzmann law.

TU(t) =

(
1

1 + GmU(t)
c2ℵ(t)

)[
RU(t)
e5

]1=4

=

(
1

1 + GmU(t)
c2ℵ(t)

)[ PU(t)
4�ℵ(t)2
e5

]1=4
: (175)

The calculated uniform temperature is about 2:7 K which
is in agreement with the observed microwave background
temperature [24].

33. Power spectrum of the cosmos

The power spectrum of the cosmos, as measured by
the Las Campanas survey, generally follows the predic-
tion of cold dark matter on the scales of 200–600 million
light-years. However, the power increases dramatically on
scales of 600–900 million light-years [31]. This discrep-
ancy means that the universe is much more structured on
those scales than current theories can explain.
The universe is oscillatory in matter=energy and space-

time with a %nite minimum radius. The minimum radius
which corresponds to the gravitational radius, rg, given
by Eq. (167) is 3:12 × 1011 light years. The minimum ra-
dius is larger than that provided by the current expansion,
approximately 10 billion light years [32]. The universe is
a four-dimensional hyperspace of constant positive curva-
ture at each r-sphere. The coordinates are spherical, and
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Fig. 18. The temperature of the universe as a function of time during the expansion phase.

the space can be described as a series of spheres each of
constant radius r whose centers coincide at the origin. The
existence of the mass mU causes the area of the spheres to
be less than 4�r2 and causes the clock of each r-sphere to
run so that it is no longer observed from other r-spheres to
be at the same rate. The Schwarzschild metric given by Eq.
(140) is the general form of the metric which allows for
these eJects. Consider the present observable universe that
has undergone expansion for 10 billion years. The radius
of the universe as a function of time from the coordinate
r-sphere is of the same form as Eq. (168). The average size
of the universe, rU, is given as the sum of the gravitational
radius, rg, and the observed radius, 10 billion light years.

rU = rg + 10
10 light years= 3:12× 1011 light years

+1010 light years= 3:22× 1011 light years: (176)

The frequency of Eq. (168) is one-half the amplitude of
spacetime expansion from the conversion of the mass of uni-
verse into energy according to Eq. (161). Thus, keeping the
same relationships, the frequency of the current expansion
function is the reciprocal of one-half the current age. Substi-
tution of the average size of the universe, the frequency of
expansion, and the amplitude of expansion, 10 billion light
years, into Eq. (168) gives the radius of the universe as a
function of time for the coordinate r-sphere.

ℵ=3:22× 1011 − 1× 1010

cos
(

2�t
5× 109 light years

)
light years: (177)

The Schwarzschild metric gives the relationship between
the proper time and the coordinate time. The in%nitesimal

temporal displacement, d;2, is given by Eq. (140). In the
case that dr2 = d� 2 = d�2 = 0, the relationship between the
proper time and the coordinate time is

d;2 =
(
1− 2GmU

c2r

)
dt2; (178)

;= t

√
1− rg

r
: (179)

The maximum power radiated by the universe is given by
Eqs. (174) which occurs when the proper radius, the co-
ordinate radius, and the gravitational radius rg are equal.
For the present universe, the coordinate radius is given by
Eq. (176). The gravitational radius is given by Eq. (167).
The maximum of the power spectrum of a trigonometric
function occurs at its frequency [35]. Thus, the coordi-
nate maximum power according to Eq. (177) occurs at
5× 109 light years. The maximum power corresponding to
the proper time is given by the substitution of the coordi-
nate radius, the gravitational radius rg, and the coordinate
power maximum into Eq. (179). The power maximum in
the proper frame occurs at

;=5× 109 light years
√
1− 3:12× 1011 light years

3:22× 1011 light years ;

;=880× 106 light years:
(180)

The power maximum of the current observable universe is
predicted to occur on the scale of 880 × 106 light years.
There is excellent agreement between the predicted value
and the experimental value of 600–900 × 106 light years
[31].
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Fig. 19. The diJerential expansion of the light sphere due to the acceleration of the expansion of the cosmos as a function of time.

34. The expansion=contraction acceleration,
••
ℵ

The expansion=contraction acceleration rate,
••
ℵ , as shown

in Fig. 19, is given by the time derivative of Eq. (169).
••
ℵ = 2� c

4

GmU
cos
(

2�t
2�GmU=c3

sec
)
=Ho

= 78:7 cos
(

2�t
3:01× 105 Mpc

)
km=sec (Mpc): (181)

The diJerential in the radius of the universe, Pℵ, due
to its acceleration is given by Pℵ=1=2 Xℵt2. The diJeren-
tial in expanded radius for the elapsed time of expansion,
t=1010 light years corresponds to a decease in brightness
of a supernova standard candle of about an order of mag-
nitude of that expected where the distance is taken as Pℵ.
This result based on the predicted rate of acceleration of the
expansion is consistent with the experimental observation
[36–38].
Furthermore, the microwave background radiation image

obtained by the Boomerang telescope [39] is consistent with
a universe of nearly Eat geometry since the commencement
of its expansion. The data is consistent with a large oJset
radius of the universe with a fractional increase in size since
the commencement of expansion about 10 billion years ago.

35. Power spectrum of the cosmic microwave background

When the universe reaches the maximum radius corre-
sponding to the maximum contribution of the amplitude,
r0, of the time harmonic variation in the radius of the uni-
verse, (Eq. (166)), it is entirely radiation %lled. Since the
photon has no gravitational mass, the radiation is uniform.
As energy converts into matter the power of the universe
may be considered negative for the %rst quarter cycle
starting from the point of maximum expansion as given by

Eq. (187), and spacetime contracts according to Eq. (161).
The gravitational %eld from particle production travels as
a light wave front. As the universe contracts to a mini-
mum radius, the gravitational radius given by Eq. (167),
constructive interference of the gravitational %elds occurs
for distances which are integers of the amplitude, r0, of
the time harmonic variation in the radius of the universe
for the times when the power is negative according to
Eq. (187). The resulting slight variations in the density of
matter are observed from our present r-sphere. The ob-
served radius of expansion is equivalent to the radius of
the light sphere with an origin at the time point when the
universe stopped contracting and started to expand. The
spherical harmonic parameter ‘ is given by the ratio of
the amplitude, r0, of the time harmonic variation in the
radius of the universe, (Eq. (166)) divided by the present
radius of the light sphere where the universe is a 3-sphere
universe–Riemannian three-dimensional hyperspace plus
time of constant positive curvature at each r-sphere. For
t=1010 light years= 3:069 × 103 Mpc, the fundamental ‘
is given by

‘ =
r0
t
=
(2× 1054 kg)4�G=c3

t

=
1:97× 1012 light years
1010 light years

= 197: (182)

The number of constructive interferences is given by the
maximum integer of the ratio of the amplitude, r0, of the
time harmonic variation in the radius of the universe, (Eq.
(166)) divided by the minimum radius, the gravitational
radius (Eq. (167)). The number of peaks are

r0
rg
=

2×1054 kg
c3=4�G

2GmU=c2
=
1:97× 1012 light years
3:12× 1011 light years = 6:3→ 6: (183)
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Table 2
Predicted harmonic parameters ‘ and relative intensities I(n) as a
function of peak n

n ‘a I(n)b

1 197 1
2 591 0.50
3 788 0.33
4 985 0.25
5 1182 0.20
6 1379 0.17

aEq. (184).
bEq. (188).

The peaks are predicted to occur at the fundamental plus har-
monics of the fundamental-integer multiples, n=2; 3; 4; 5,
and 6, of the fundamental ‘=197.

‘=197 (fundamental);
‘=197 + n197 n=2; 3; 4; 5; and 6 (harmonics):

(184)

From Eq. (184), the predicted harmonic parameters ‘ are
given in Table 2.
The harmonic peaks correspond to the condition that the

amplitude of the harmonic term of the radius of the universe
r0(n) is a reciprocal integer that of the maximum amplitude
r0. Thus, r0(n) is given by

r0(n)=
r0
n
=

2×1054 kg
c3=4�G

n
=
1:97× 1012 light years

n
: (185)

The power Eow of radiant energy into mass decreases
as the radius contracts, and the relative intensities of the
peaks follow from the power Eow. The relative intensities
are given by the normalized power as a function of t(n),
the time at which the magnitude of the amplitude of the
harmonic term of the radius of the universe r0(n) is given by
Eq. (185) corresponding to each contracted radius at which
constructive interference occurs. Starting the clock at the
point of the maximum expansion wherein the universe is
entirely radiation %lled and the CMB is uniform, the time at
which the magnitude of the amplitude of the harmonic term
of the radius of the universe r0(n) is given by Eq. (185)
follows from Eq. (168).

r0(n) =
r0
n
=
1:97× 1012

n

= 1:97× 1012 cos
(

2�t(n)
9:83× 1011 years

)
light years;

t(n) =
9:83× 1011

2�
cos−1

(
1
n

)
years

= 1:564× 1011 cos−1
(
1
n

)
years: (186)

The power of the universe as a function of time is given by
Eq. (174) and is shown in Fig. 17. To express the negative
power Eow relative to the radiant energy of the universe
corresponding to the conversion of energy into matter, the
power of the universe as a function of time may be expressed
as

PU(t)=− c5

4�G
cos
(

2�t
9:83× 1011 years

)
W;

PU(t)=− 2:9× 1051 cos
(

2�t
9:83× 1011 years

)
W; (187)

where t=0 corresponds to the time when the universe
reaches the maximum radius corresponding to the max-
imum contribution of the amplitude, r0, of the time har-
monic variation in the radius of the universe (Eq. (166)).
At t=0 as de%ned, the universe is entirely radiation %lled,
and the power into particle production is a maximum. At
t=(�=2)=(2�=9:83 × 1011 years) according to Eq. (187),
particle production is in balance with matter to energy
conversion, and the latter dominates for the following half
cycle.
The relative intensities are given by substitution of

Eq. (186) into Eq. (187) that is normalized by the magnitude
of the maximum power which occurs at the maximum
radius. Thus, the relative intensities are given by

I(n)= cos

(
2�(1:564× 1011 cos−1( 1n )years)

9:83× 1011 years

)
=
1
n
: (188)

The relative intensities I(n) as a function of peak n are given
in Table 2.
The cosmic microwave background radiation is an aver-

age temperature of 2:7 K, with deviations of 30 or so �K
in diJerent parts of the sky representing slight variations in
the density of matter. The measurements of the anisotropy
in the Cosmic Microwave Background (CMB) have been
measured with the Degree Angular Scale Interferometer
(DASI) [40]. The angular power spectrum was measured in
the range 100¡‘¡ 900, and peaks in the power spectrum
from the temperature Euctuations of the cosmic microwave
background radiation appear at certain values of ‘ of spher-
ical harmonics. Peaks were observed at ‘ ≈ 200; ‘ ≈ 550,
and ‘ ≈ 800 with relative intensities of 1, 0.5, and 0.3, re-
spectively (Fig. 1 of Ref. [40]). There is excellent agreement
between the predicted parameters given in Table 2 and the
observed peaks.

36. The periods of spacetime expansion=contraction and
particle decay=production for the universe are equal

The period of the expansion=contraction cycle of the
radius of the universe, T , is given by Eq. (162). It follows
from the Poynting power theorem with spherical radiation
that the transition lifetimes are given by the ratio of energy
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and the power of the transition (Eqs. (60)–(61)). Exponen-
tial decay applies to electromagnetic energy decay

h(t)= e−(1=T )tu(t): (189)

The coordinate time is imaginary because energy transitions
are spacelike due spacetime expansion from matter to en-
ergy conversion. For example, the mass of the electron (a
fundamental particle) is given by
2��C√
2Gme=�C

=
2��C
vg

= i�−1 sec; (190)

where vg is Newtonian gravitational velocity (Eq. (132)).
When the gravitational radius rg is the radius of the universe,
the proper time is equal to the coordinate time by Eq. (142),
and the gravitational escape velocity vg of the universe is
the speed of light. Replacement of the coordinate time, t, by
the spacelike time, it, gives

h(t)=Re[e−i(1=T )t] = cos
2�
T
t; (191)

where the period is T (Eq. (162)). The continuity con-
ditions based on the constant maximum speed of light
(Maxwell’s equations) are given by Eqs. (143)–(144). The
continuity conditions based on the constant maximum speed
of light (Schwarzschild metric) are given by Eq. (145).
The periods of spacetime expansion=contraction and par-
ticle decay=production for the universe are equal because
only the particles which satisfy Maxwell’s equations and
the relationship between proper time and coordinate time
imposed by the Schwarzschild metric may exist.

37. Wave equation

The general form of the light front wave equation is given
by Eq. (124). The equation of the radius of the universe, ℵ,
may be written as

ℵ=
(
2GmU
c2

+
cmU

(c3=4�G)

)

− cmU
c3=4�G

cos
(

2�
(2�GmU=c3) sec

(
t − ℵ
c

))
m; (192)

which is a solution of the wave equation for a light wave
front.

38. Conclusion

Maxwell’s equations, Planck’s equation, the de Broglie
equation, Newton’s laws, and special, and general relativity
are uni%ed. Classical Physical laws apply on all scales.
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