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Preface

This book is a gentle and relaxed introduction to the two branches of pure
mathematics which dominate the early stages of the subject as it is taught to
undergraduates in many countries. It is not a substitute for more advanced
texts, and has no pretensions to comprehensiveness. There are several places
where I would have liked to press on further, but you have to stop somewhere.
It should, I hope, be easy to read, and to this end the style is decidedly more
colloquial than is traditional in text books. I only hope that the language will
not date too quickly. Thus this is not a book in the relentless theorem-proof
style; it contains discursive commentary.
The ways in which pure mathematicians express themselves, and the cu

mulative nature of the subject, may make pure mathematics seem daunting to
a beginner. The mathematical mode of expression and the deductive method
are vital to pure mathematics. We wish to explore strange geometries, new
algebraic systems, and infinite dimensional spaces. There is no point in em
barking on this enterprise unless we are prepared to be ruthlessly precise, since
otherwise, no-one will have any idea what we are talking about (if anything).
These exotic spaces and objects are not part of everyday experience, unlike,

for example a dog. If we mention that "there is a dog in the garden" , we do not
expect the response "what is a dog, what is a garden, what does is mean in this
sentence, why have you used the indefinite article, and what is the contribution
of the word there?" We know a lot about dogs and gardens, and do not need to
put the sentence under scrutiny in order to understand the meaning. However, if
instead someone says "every linear group is either virtually solvable, or contains
a free subgroup of rank 2", then either you have to live in a world where these
terms are as familiar as dogs and gardens, or you have to take the remark apart,
and analyze every part of it until you understand what it asserts. Of course
there is little point in doing this unless you happen to know that linear groups
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are very interesting - which, incidentally, they are.
There is a web site which supports this book.

http://www.maths.bath.ac.uk/~masgcs/bookl/

If that ever changes, a link to the new site will be put in place. At the web site
you will find additional exercises and solutions, and corrections to any errors
that are discovered after publication.
The material in this book is not always arranged in a logically perfect

sequence. This is deliberate, and is a consequence of trying to make the book
accessible. The ideal way to read the book is from cover to cover. Chapter 1
establishes notation and sets the scene, and Chapter 2 concerns mathematical
proof - many readers will want to read that before proceeding with the main
topics. I have tried to make subsequent chapters (fairly) independent, though
Chapter 6 should definitely be read before either Chapter 7 or Chapter 8. In
consequence of the partial independence, some material is repeated in different
parts of the book, though the treatments vary.
I also felt that this book should contain early chapters on complex numbers

and matrices. These topics are basic to university mathematics, engineering
and science, and are rarely or barely taught at secondary level.

It is standard practice to thank everyone who had anything to do with
the creation of a book. I therefore wish to thank and congratulate my parents
Eileen and Roy. This volume is being published in the year of their golden
wedding anniversary, and Springer-Verlag have kindly agreed to celebrate this
event by supplying a cover of appropriate colour.
Inductively, if I thank anyone, I thank their parents too, thereby acknowl

edging the assistance of a vast number of people, creatures, single-celled or
ganisms and amino acids. Please note that this (thinly spread) gratitude was
expressed with considerable economy (see Section 2.1).
Despite the millions of generations who have already been thanked, there

are some deserving cases who have not yet qualified. I also acknowledge the
help and support of various colleagues at the University of Bath. My 'lEX and
U,TFfC guru is Fran Burstall, and Teck Sin How provided figures at amazing
speed. James Davenport and Aaron Wilson helped to weed out errors, and
suggested improvements. I must also thank John Toland who persuaded me to
write this book with his usual combination of charm, flattery and threats - and
supplied the beautiful question that constitutes Exercise 8.4. Any remaining
errors are mine, and copyright.
I would also like to thank my bright, enthusiastic and frustrated students,

without whom this book would not have been necessary, and my wife Olga
Markovna Tabachnikova, without whom my salary would have been sufficient.

GCS, Bath, ll-xi-1997.
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Added at second printing I thank the following people who have reported ty
pographical errors in the first printing of this book: Verity Jeffery (Meridian
School), Prof Charles F. Miller III (Melbourne University), Martyn Partridge
(Intertype), Carrie Rutherford (Q.M.W., London) and Aaron Wilson (Univer
sity of Bath). These errors have been eliminated. I also wish to thank Prof
Edward Fraenkel FRS (University of Bath) for his tactful attempts to improve
my grammar.
In addition to solutions of problems and amplifications on material in the

book, the web site now contains supplementary material on many topics, some
of which were suggested by Gregory Sankaran and Wafaa Shabana. This mate
rial includes Cardinality and Countability, Functions, Preimages, Unions and
Intersections, the Inclusion-Exclusion Principle, Injections and Surjections, Fer
mat's Two Squares Theorem, Group Actions (and exercises) and the Integers
modulo N.
Added at third printing A few more errors have been dealt with thanks to Dr
Victoria Gould (University of York) and Prof Dave Johnson (University of the
West Indies). The proof of Proposition 6.9 replaces the garbled mush which
disgraced the first two printings.
In this latest iteration we give Dedekind and von Neumann proper credit for

creating the natural numbers. However, the provenance of the whole numbers
is slightly controversial since according to Kronecker the integers were made
by God.
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1
Sets, Functions and Relations

1.1 Sets

We use the language of sets when doing mathematics. Roughly speaking, a set
is a collection of objects. Suppose that the objects we wish to think about are
a, band c. The collection of all these objects is a set and we write it as

{a,b,c}.

We may care to give this set a name, say S. We write

S = {a,b,c}.

The objects which comprise a set are called its elements or members. A special
symbol is used to describe the fact that an object is an element of a set - it
is a straightened version of the small Greek letter epsilon - and it is written
E. Thus we may write a E S. In speech, we vocalize this statement as "a is a
member of S" , or "a is an element of S" , or when pushed for time, even "a in
S" or "s contains a". Elements of a set are often numbers, but they could be
points in space, or lines, or even other sets. By not being specific about what
the elements are, we win in various ways. Our theory will be applicable in many
contexts and, by stripping the ideas to the bare essentials, we can see exactly
what is going on. The process of throwing away unnecessary clutter is called
abstraction - and it underlies the whole of mathematics. Children learn the
abstract idea of number quite early. There is no need to develop one theory of
arithmetic for counting apples and another for oranges - you just construct one

G. Smith, Introductory Mathematics: Algebra and Analysis
© Springer-Verlag London Limited 1998
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general theory of counting and apply it where appropriate. Fractions, negative
numbers and 0 can then be added to the theory without too much difficulty.

1.2 Subsets

Definition 1.1

Suppose that A and B are sets. We say A is a subset of B if whenever x E A,
then x E B.

We use a rounded version of the inequality symbol to describe this situation:

A~B.

Notice that if
A ~ B, and B ~ C,

then A ~ C. We capture this property by saying that ~ is transitive. We will
develop this notion further in Section 1.18. Notice also that for any set A we
have A ~ A.
We often want to be able to state that two sets are the same, and we

accomplish this by inserting an equality symbol between them. We need a rule
to decide when two sets are the same. It turns out that it is convenient to use
subsets to formulate this rule.

Definition 1.2

Suppose that both A ~ B and B ~ A, then we say A and B are equal and
write A =B.

This definition is carefully worded, and it has the consequence that

{3,2,1} = {1,2,3} ={1,2,3,3} = {1,1,1,1,2,2,3,3,3,3,3,3,3}.
Thus we are deeming two sets to be equal even though they do not 'look'
the same. This should not be too disturbing; we do not worry about writing
1 + 1 = 2, even though there are three symbols to the left of the equals sign,
but just one to the right. The equals sign is used with wild abandon during
school days; numbers can be equal, as can line segments. Polynomials can be
equal: (x -1)(x + 1) = x2 -1. In computing one even sees n = n + 1, to mean
that the value of a variable n is incremented by 1. We have been cautious 
and given a precise rule to decide when we are allowed to write an equals sign
between a pair of sets.
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1.3 Well-known Sets

3

Some sets are used so frequently that mathematicians have given them special
names. The most basic one is the set of natural numbers which is the set which
consists of all the positive whole numbers. This set is denoted by N. To be
explicit, we have

N = {1,2,3,4,5,6, ...}. (1.1)

Some mathematicians like to include 0 in the set N. When going to a new
course, or reading a new textbook, make sure you know which convention is
being used. For the purposes of this book, 0 is not a natural number. No-one
has been burnt at the stake over this issue for several years.
The set N is our first example of an infinite set. There are various techni

cal definitions of "infinite", but for our purposes the following explanation will
suffice. A set is finite if you can count, and finish counting, its elements. Thus
{I, 2, 3} is a finite set. Any attempt to count the natural numbers, no matter in
what order you choose to do it, will go on for ever. A set which is not finite is
infinite. The number of (distinct) elements of a set 8 is called its cardinality, or,
more casually, its size. This number is written 181. Thus 1{1,2,3}1 =3 and INI
is infinite. Notice that 1{1, 2, 2, 2, 6}1 = 3 - the extra 2's do not affect the car
dinality. Another example of an infinite set is the set of integers, economically
written as Z. This set consists of all the whole numbers.

Z= {... ,-2,-1,0,1,2, ...}. (1.2)

The letter Z may seem an odd choice; it comes from the German word for
the integers, Zahlen. The integers come in an obvious order - the order which
we happen to have used here when describing Z. This order has the curious
property that there is no first element and no last element. This ordering of Z
is not captured in any way by set notation. We could write

or even

Z ={... ,2, 1,0, -1, -2, ...},

Z ={... ,4325, -214256,3,8765328476872, ...},

(1.3)

(1.4)

though the last description would be less than clever. It is impossible to know
how to interpret the dots in Equation (1.4). Indeed, even in Equations (1.1),
(1.2) and (1.3), we are relying on our prior knowledge of what the natural
numbers and integers are like in order to continue the pattern in our minds.
This is clearly an unsatisfactory state of affairs. Mathematics requires precision.
It is possible to formulate a definition of the natural numbers which does not
include these rather dubious dot-dot-dots. We will explain more in Section 1.6.
Once you have a decent definition of N, it is then a simple matter to build Z.
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This is only a technical point and we shall not pursue it. We allow ourselves to
define subsets of a set by using "properties". We may write

N = {x I x E Z, x > O} or {x : x E Z, x > O}. (1.5)

You read the vertical line or colon as "such that" and the comma as "and" j

thus Equation (1.5) asserts (quite correctly) that the set N has as its elements
exactly those integers which are strictly positive. Similarly one might write

{1,2,3} = {x I x E Z,O< x < 4}

or
{I, 2,3} = {x I x E N,x2 < IO}.

We settle on I rather than : as our symbol for "such that" .

Remark 1.1

Note that we have used a property to slim down the membership of pre-existing
sets - we started with N and Z, and then sorted out which of the elements passed
the property test. We did not simply define a set by saying "the collection of
all things that have this property". As we will see, that is a dangerous game.

Another celebrated set is the set of rational numbers, written Q. This is
easy to remember because you can think of "quotients" . The rational numbers
consist of those numbers which can be written as ratios of integers:

Q = {alb Ia, bE Z,b:/; o}.

Notice that Z ~ Q, because if x E Z, then x = x/I. If you add, subtract or
multiply ql, q2 E Q, then you get more rational numbers. To be explicit, we
have ql + q2,ql - q2 and qlq2 E Q. We say that Q is closed under addition,
subtraction and multiplication. The rationals are also closed under division
where it is legal. Thus if ql, q2 E Q and q2 :/; 0, then qdq2 E Q. The rationals
are an example of an algebraic structure called a field which we will discuss in
Section 3.2.
Not all of the numbers we use can be expressed as ratios of integers. Pointing

out - on the fly - that we negate symbols by putting a slash through them, we
express the truth that 1r is not rational by writing: 1r f/. Q. When you read in a
textbook that "you may assume that 1r = 22/7", you are being told to assume
that there are fairies at the bottom of the garden. It is true that 22/7 is a very
good approximation to 1r, and in fact 355/113 is an even better one. Indeed, if
you specify a positive margin of error, no matter how small, say c, it is possible
to find a rational number which differs from 1r by less than c. Thus 1r can be
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approximated by rational numbers as well as you like. However, 1r itself is not
rational - something which is not that easy to prove. We will explore this idea
of arbitrarily good approximations further in Chapter 6. The impatient and
brave might look at Definition 6.3.
By the way, the lower case Greek c is traditionally used to denote a small

positive quantity, or more precisely, a positive quantity which becomes interest
ing when it happens to be small. Of course, "traditionally" means little more
than "habitually" in this context, and you are not breaking any law if you use
c to mean a negative quantity, or a large positive number. However, you are
likely to test your friendships if you do that.

It was Pythagoras, or at least his school, who discovered the existence of
non-rational numbers - usually called irrational numbers. They did this by
showing that ..j2 was not rational. This result is not hard, and we will give
a proof in Proposition 2.6. The Pythagorean cult was a mystic secret society,
and it had most peculiar rules of behaviour. There is a highly amusing chapter
on these eccentric scholars in Russell's History of Western Philosophy. The
existence of irrational numbers was a dark Pythagorean secret.
When you are doing practical calculations, there is often little harm in ap

proximating 1r, or indeed other numbers. When doing some types ofmathemat
ics, however, this is simply not good enough. There are other familiar numbers
which are not rational; you will, no doubt, be acquainted with e, the base of
natural logarithms, a number which is approximately 2.7183. This number is
also not rational.
Those numbers which can be approximated arbitrarily well by rational num

bers are called real numbers. This is not a very satisfactory definition, but it will
have to do at this stage. Rational numbers can be approximated fantastically
well by rational numbers (no margin of error is necessary at all!). We write IR
for the set of real numbers and observe that Q ~ IR. Notice that 1r, e and ..j2
are all real numbers which are not rational. The real numbers, like the rational
numbers, form a field. Any number which has a finite decimal expansion is
automatically rational. For example,

311.324536547 = 311324536547/1000000000.

That argument generalizes easily of course. There are also numbers with in
finite decimal expansions which are rational - for example, 1/3. Computers,
being only finite in size, cannot store an irrational number by listing its deci
mal expansion. Either the number can be approximated by a rational number,
or it can be handled symbolically - much in the way that we write ..j2 without
worrying about its decimal expansion. All we usually need to know about ..j2
is that (..j2)2 = 2. The representation of irrational numbers in this way is used
in computer algebra. This symbolic technique is a relatively recent develop-
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ment and, at present, most scientific calculations are performed using rational
approximations. It has therefore been very important to analyze the size of
the errors being introduced, and to devise schemes of calculation which mini
mize the eventual error that is delivered. The subject that does this is called
numerical analysis.

1.4 Rationals, Reals and Pictures

We leave the world of mathematics for a moment. Let us try to construct a
mental picture of the real numbers. Imagine an infinite straight line in the
plane, and calibrate it by marking in the integers - in the usual order - spaced
at equal distances along the line in both directions. Now imagine refining this
calibration, marking in all the rational numbers. Infinitely many points on the
line will now be mentally marked, indeed, that is true even if you look at
any segment ofthe line of (non-zero) finite length. Nonetheless, 1r, e, ../2, and
infinitely many other numbers will not be marked. One can think of the rational
numbers as fine mist sprayed on the line.
There are infinitely many irrational numbers, and, in a sense, there are even

more irrational numbers than rational numbers. It may seem peculiar to say
that one infinite set has more elements than another, but a perfectly satisfactory
way of doing this was worked out by a mathematician called Georg Cantor. The
irrational numbers can also be thought of as a mist sprayed on the line, but to
take account of the fact that there are, in some sense, more of them, you may
care to think of the mist as being thicker in this case. Note that if a, b E IR
and a < b, then we can find cEQ and d E IR but d 'I. Q with a < c, d < b.
This notation is supposed to mean that both c and d are between a and b. In
particular, between every two distinct rational numbers is an irrational number,
and between every two distinct irrational numbers is a rational number. Thus
the rationals and irrationals are completely jumbled. We will prove this now,
on the assumption that ../2 is irrational (see Proposition 2.6). In fact we don't
really need to use ../2 - any positive irrational number will do equally well.
However, it is particularly easy to prove that ../2 is irrational.
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Proposition 1.1

Suppose that a, b are real numbers, and that a < b. It follows that there is a
rational number x in the range a < x < b and an irrational number 11 in the
range a < 11 < b.

Proof

Choose N E N sufficiently large that l/N < b - a. Choose the least integer z
such that bN ~ z and so b ~ z/N. Thus z -1 < bN, so (z -l)/N < b. However

a =b - (b - a) < b - l/N ~ z/N - l/N = (z - l)/N.

We conclude that a < (z -l)/N < b. However, x = (z -l)/N is rational so we
are half way home.
We now seek an irrational number 11 in the range a < y < b. It suffices to

find such a y in the range x < y < b. Choose MEN sufficiently large that
...;2 < M(b - x), so ...;2/M < b - x, and let y = x + ...;2/M. The choice of M
ensures that x < x + ...;2/M = y < x + b - x = b, and 11 is not rational, else
...;2 =M (y - x) would be rational.

o

(The symbol 0 is used to denote the end of a proof.)
Perhaps you have studied complex numbers. If so, this paragraph ought to

make sense. If not, skip it. We will be studying complex numbers properly in
Chapter 3. Observe that i =R is not a real number. We define the set of
complex numbers as

C = {a +bi Ia, bE JR.}.

The appropriate mental image of the set C is known as the Aryand diagram
and consists of identifying the points in an infinite plane with the complex
numbers.
Finally, there is one other set which is so important that it merits a special

name. This is the set with no elements at all. It is written 0 and is called the
empty set or null set. Thus 0 = { }. Notice that if A is any set at all, then
o~ A. In particular, we have 0 ~ R. Can you see it sitting there in the real
line?
The empty set is remarkable in many ways, not the least of which is the

opportunity it gives for very precise reasoning. We have used the term "the
empty set", when, from a sufficiently bureaucratic point of view, we should
really have defined "an empty set" , and then proved that if you have two sets,
each with no elements, then they are equal. To do this we need to use carefully
the precise definitions of "subset" and "equal" to be found in Definition 1.1
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and Definition 1.2. The reader is invited to do this while listening to the sound
of one hand clapping. Reasoning about the non-existent elements of the empty
set may seem a little like fraud. However, it is legitimate, and we will pin down
exactly what reasoning is allowed in Section 1.11.

1.5 Set Operations

We can make new sets from old. The most well-known such operations are
union and intersection. Suppose that A and B are sets, we define their union
AuB as

AUB={xlxEAorxEB}.

This is the mathematical usage of the word "or" - it is not exclusive. We have
x E A u B even if x is an element of both A and B. In ordinary English usage,
some people use the word "or" in a slightly different way. Such folk might say to
a small child "you can have an ice-cream or a bar of chocolate" , meaning that
the options were one or the other but not both. This is perfectly acceptable
English, but, in keeping with their compulsion to be precise, mathematicians
have eschewed ambiguity by opting for a specific meaning of the word "or" 
the inclusive one.
Another way of making new sets from old is intersection. If A and B are

sets, we define their intersection, An B, as

AnB = {x I x E A,x E B}.

Remember that the comma is read as 'and' in this context. Special terminology
is used to describe the situation when A and B are two sets such that AnB =0.
We say A and B are disjoint. We are all familiar with certain laws which, say,
the integers obey:

x + Y =Y + x for all integers x and y.

This is called the commutative law of addition - and it has analogues which
hold in the theory of sets:

A u B = B u A for all sets A and B, and

A n B = B n A for all sets A and B.

(1.6)

(1.7)

We term these (respectively) the commutative law of union and the commuta
tive law of intersection.
These laws are not mere assertions. They can be deduced in a few lines from

the definitions of union and intersection. Let us prove that Equation (1.6) is
valid.
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Suppose that x E A U B, then x E A or x E B, so x E B U A. Thus
AuB ~ BuA. Suppose that y E BuA, then y E B or yEA, so y E AuB. Thus
B u A ~ Au B. Putting our two conclusions together, we deduce Au B =B u A
thanks to Definition 1.2.
That was easy. Both union and intersection satisfy associative laws. Recall

that for the integers, the associative law of multiplication is

(x· y) . z = x . (y . z) for all x, y, z E Z.

The corresponding set-theoretic associative laws are

(A u B) u C =Au (B u C) for all sets A, B and C (1.8)

and
(A n B) nC =An (B nC) for all sets A, B and C. (1.9)

The diligent reader is urged to write out proofs of Equations (1.8) and (1.9).
It is fairly obvious (but that is not a proof!) that an extended union (or

intersection) is independent of the bracketing. We will prove this later (Propo
sition 2.4).
For example, for any sets A, B, C and D, we have

(A uB) u (CUD) = Au (Bu (Cu D)).

We may write Au B u CuD unambiguously. Until you have read the proof of
the legitimacy of this practice, or better still supplied one yourself, you should
feel guilty when doing this.
There are laws which show how intersection and union interact; these laws

are analogous to the distributive law

x· (y + z) = (x· y) + (x . z) for all x, y, z E Z.

They are, for all sets A, B and C,

An (B uC) = (A n B) u (A n C)

and
Au (B n C) = (A u B) n (A U C).

(1.10)

(1.11)

Notice that intersection and union both distribute over one another - this is
a happy state of affairs, and is much cleaner than what happens with addition
and multiplication of integers. Addition does not distribute over multiplication
in that context. Anyone who thinks that

x + (y. z) = (x + y) . (x + z) for all x, y, z E Z

is a law of the integers is rather wasting their time reading this book.
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Equation (1.10) is called the distributive law of intersection over union,
and Equation (1.11) is called the distributive law of union over intersection.
We prove Equation (1.10).
Suppose that x E An (B U C), then x E A and either x E B or x E C.

Thus either x E A n B or x E A n C. Thus x E (A n B) U (A n C), so
An (B U C) ~ (A n B) U (A n C).
Conversely, suppose that y E (AnB)u(AnC). This forces yEA. Similarly,

we know that y E B or y E C so Y E B U C. Therefore yEA n (B U C). We
deduce that (A n B) U (A n C) ~ An (B UC).
Putting the two conclusions together yields the desired result.
The empty set enjoys some special properties. Suppose that A is any set,

then we have:
A U 0 = A and A n 0 =0.

We now introduce the notion of the difference of two sets. Suppose that A and
B are two sets, then we write A \ B for {x I x E A,x f/. B}. Notice that A \ B
and B \ A are disjoint.
Suppose that all our discussion takes place about sets which are all subsets

of a given fixed set called the universe U. For example, we might be discussing
subsets of the integers, so it would make sense to put U = Z. If A is a set (so
A ~ U) we put A' = U \ A. The set A' has as elements exactly those elements
of U which are not in A. The set A' is called the complement of A. Clearly
A" = A.
Observe that for any such A we have A U A' = U and A n A' = 0. The

following rules, known as De Morgan's laws, are not quite so obvious:

(A U B)' = A' n B' and

(AnB)' = A/uB'.

(1.12)

(1.13)

Both equations hold for any A, B cU.
Complementation has no meaning unless there is a universe U. Let us illus

trate De Morgan's laws. Suppose that U = Z,A = N and B = {OJ. The first
law is valid because both sides are {x I -x E N} (the set of negative integers).
The second law is valid because both sides are Z.
Warning: Alternative notations to n and U exist. You may see 1\ and V

instead, which may still be pronounced intersection and union, but are some
times pronounced as meet and join. Another variation which you may find is
that some people put a horizontal bar S over the set S to denote its com
plement, but this is not common, since this notation is the usual one when
describing a closure - terminology which arises in analysis and topology.
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1.6 Sets of Sets

It is possible to have sets whose elements are other sets. For example, let

T ={{1,2},{123},{1,2,3},1,2,3}.

11

The set T has six elements. Its elements are 1, 2, 3 which are all numbers,
and three elements which are not numbers at all, but other sets; {1,2}, {123}
and {I, 2, 3}. These latter elements are sets consisting of two, one and three
elements respectively. Notice that 1 and {I} are not the same thing at all. The
first is a number, the second is a set with one element. Similarly we can consider
yet another set called {{I}}. This is a set with one element, that element being
{I }.

If we start with 0, we can form {0}, which is not the same thing. The set 0
has no elements, whereas {0} has one element. On the other hand {0, {0}} has
two elements: 0 and {0}.

Remark 1.2

Where do babies come from? has initiated a difficult conversation or two down
the years. Where do numbers come from? is at least as dangerous. The Peano
Axioms 1 are the currently fashionable method for making the natural numbers.
We skimp heavily on technical detail here, but basically we can implement
Peano's scheme in a way suggested by von Neumann by saying that 0,1,2,3,
etc. are shorthand for

0, {0}, {0, {0}}, {0,{0},{0,{0}}},

and so on. Notice that this sequence of sets is defined by each term being the set
whose elements are its predecessors. What von Neumann is doing is, in a sense,
making something from nothing. This has the entirely accidental consequence
that 0 E 1 E 2 E 3 and so on. This is silly, or more accurately, unnecessary.
What we have here is simply an artifact of the manufacturing process, and
has nothing to do with the usual properties of the natural numbers. It is as if
every infinite plane was imprinted with ©Euclid 303 Be, made in Alexandria
in letters so small that no-one has ever noticed it. This artificiality is worth
it though, since it avoids having to say numbers are "obvious" or "exist in
a mental reality" or the need to make some other vulnerable assertion. The
philosophers know this ground much better than most mathematicians, and
so, rather than let them humiliate us, we use the von Neumann-Peano machine

1 The Peano Axioms were invented by Dedekind
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to reduce everything to pure technique. That way the philosophers don't get a
look in.
You need to be warned about the construction, since otherwise you might

come across a book where you find 0 = 0, which is true in the world of Peano
and von Neumann, but is totally confusing. Having noted this important con
tribution to keeping philosophy at bay, we will quietly forget the Peano-von
Neumann construction, and, making the unusual journey from experience to
innocence, elect to think of 0, 1, 2, 3 (and so on) as atoms, and not as having
some internal structure by which they are mysteriously related via set mem
bership.
The upshot of the preceding two paragraphs is that I am encouraging you

to think about numbers the way you almost certainly did before you read the
preceding two paragraphs, but to be circumspect about when you admit this
fact. Thus we decide that {0} = 1 is wrong because 1 is not a set but {0} is
one. We also decide that 1 E 2 is nonsense because 2 isn't a set so can't have
elements. Read this remark {0, {0}, {0, {0}}} times.

EXERCISES

1.1 Let A = {1,2,3}, B = {1,2}, C = {1,3}, D = {2,3}, E = {I},
F = {2}, G = {3}, H = 0. Simplify the following expressions; in
each case the answer should be one of these sets.

(a) An B

(b) Au C

(c) An (B n C)

(d) (C U A) n B

(e) A \ B

(f) C \ A

(g) (D \ F) U (F \ D)

(h) G \ A

(j) A U «B \ C) \ F)

(k) HuH

(1) AnA

(m) «B U C) n C) U H.
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1.2 In this question, each part contains a description of three sets. In
every case two of the sets are the same, and one is different. Write
down the number of the set which is different. When we say two
sets are the same, we mean that they are equal. See the definition
of equality of sets in Section 1.2.

(a) (i) 0 (ii) { } (Hi) {0}

(b) (i) {x I x E Z, 0 < x < I} (H) {y lyE Z, 0 < y < I}
(iH) {z I z ~ {0}}

(c) (i) {x I x E N, 1 ~ x < 8} (H) {r IrE Z, 1 ~ r2 < 64}
(iii) {( I ( E Z, 1 ~ (3 < 512}

(d) (i) {oX I oX E Z, oX ~ O} (H) N (iii) {v I v E N}

(e) (i) 0u 0 (ii) {0, 0} (iii) 0 \ 0

In part (f), the symbols 1r and e have their usual meanings, connected
with mensuration of the circle and logarithmic growth respectively
(mensuration means measuring, but sounds considerably more im
pressive).

(f) (i) {p I pEN, e < p < 1r} (ii) {u I u E N, -1r < U < -e}
(iii) bl"EN,1r<,,<e}

In part (g), the Universe is N, and so the notion of complementation
makes sense.

(g) (i) {,8 I ,8 ~ N, 1,8'1 < co} (H) {J.l I J.l ~ N, J.l is infinite}
(iii) {v I v ~ N, v" is infinite}

(h) (i) N U {T I - TEN} (ii) Z \ {O} (Hi) {a I there is A ~

N such that a E A}

In parts (j) and (k), the symbol I: (temporarily) denotes the set of
real numbers {1/ I r ~ 1/ < s} where r and s are themselves real
numbers. In part (k) we introduce notation for the intersection of a
collection of sets. This usage is entirely analogous to the notation E
used to specify a sum; E means add this lot up, whereas nmeans
intersect this lot. A similar notation makes sense for any associative
and commutative operation.

(j) (i) IJ n ~1 (ii) IP n 1(;1 (iii) {O}

(k) (i) n.x>o IS (H) n.x~o IS (iii) n.x<o IS
(I) (i) Qn Z (H) Qn N (iii) IR n N

(m) (i) (0 U{0}) U{O} (ii) {0, {0}, O} (iii) {0, O}.
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1.7 Paradox

Introductory Mathematics: Algebra and Analysis

At the start of this book, in the second sentence of Section 1.1, we used the
words "roughly speaking, a set is". We have been a little too naive. We have
never properly defined a set. This can be done, but would take us too far
afield. Our approach - regarding sets as collections of arbitrary objects (either
atoms or other sets) - has its limitations. The greatest fear of mathematicians
is paradox, and careless attempted formation of sets can lead to this.

Remark 1.3

We have, so far, used properties only to describe subsets of a given set. We
have not written S = {x I P(x)}; in words, we have never said S is the set
of elements x which enjoy the property P. We have always written S = {x I
x E A, P(x)}. We have only used properties to define subsets of a pre-existing
set A. If one does that, there is no problem with set theory. The set {x I
x E Z, x is a perfect square} is perfectly harmless. The innocent user of sets
is rather unlikely to stumble upon a paradox - you really have to go looking
for trouble if you want to find it (in this instance). Nonetheless, the danger is
there, and you must know how to guard against it.

If we were recklessly to allow any property to define a set, we would be in
deep trouble - as the following argument of Bertrand Russell shows. Now, by
the way, is a good time to concentrate. A stimulant of some sort may be in
order.
Let S = {x I x is a set }. This is the set whose elements are all possible

sets. Thus S E S. There are other sets which are not members of themselves,
for example {l} (j. ill. We define T = {xl x E S,x (j. x}. Now suppose that
T (j. T, then from the definition of T it follows that T E T. This is impossible,
since we cannot have both T E T and T (j. T. Thus we are led to conclude that
T E T. Now examine the definition of T again. It now follows that T r;. T. We
have the same problem as before.
Paradox, chaos and confusion reign. The reasoning is sound; one escape

route is to prevent S from being a set in the first place. This in turn will
undermine the legitimacy of the definition of T. We can then serenely walk on,
having disposed of the troublesome T - it is not a set so the paradox does not
matter. Nonetheless, Russell's paradox is very disturbing. The fact that we can
dodge it mathematically is all very well, but it is surely rather surprising that
a primitive notion such as "a collection of objects" can lead us so quickly into
the quagmire of unreason. Russell's argument, by the way, was first formulated
in a letter to the German logician Frege. It knocked the foundations out from
under Frege's very substantial book, which was about to appear. That is how
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to make someone's day.
Russell's argument is analogous to the barber's paradox. Consider a village

with one adult male barber, and ponder upon the assertion - "The barber
shaves every man in the village who does not shave himself, and does not shave
anyone else". Now ask yourself the question - who shaves the barber?
Returning to the issue at hand, our objective is to stop S from being a set.

We accomplish this by not allowing sets to be defined by arbitrary properties.
The constructions outlined in this book will not lead to disaster. We do not
want bizarre sets B with the feature that B E B. If you ever see a set even
thinking of having this property, deport it. If you want to read an account of
what exactly one is (and is not) allowed to do when constructing sets, have a
look at Naive Set Theory by Paul Halmos (published by Springer-Verlag).
The sets we have been discussing, N, Z, Q, IR, C, and their subsets do not

cause us difficulties, nor do any sets that we construct from them in sensible
ways.
Let us be clear. You can use a property to define a subset of a pre-existing

set. For example {x I x E N, x is a perfect square}. Here we have a pre-existing
set N and we focus on its elements which enjoy a property. That is allowed.
However, we ban {y I y is a set} since this is an (illegal) attempt to define a
set using a property alone. There is nothing wrong with the property though;
we might consider {x I x E N, x is a set} which, given that Messrs Peano and
von Neumann have been shown the door, and no philosophers are looking, is
the empty set. On the other hand, at inter-faculty parties you can argue that
it is N.

1.8 Set-theoretic Constructions

Despite the warnings in the previous section, there are some set-theoretic con
structions which do not lead to difficulties, and we permit ourselves to use
them. Suppose that A is a set. We allow ourselves to form a new set called the
power set of A. This set is written P(A), and has as its elements exactly the
subsets of the original set. In symbols we have

P(A) = {x I x ~ A}.

Thus if S = {1,2,3}, then
P(S) ={0,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}.

If A is a finite set, then clearly P(A) is finite. If A is an infinite set, then P(A)
is infinite.
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Another construction we often need is that of the Cartesian product of two
(or more) sets. Suppose that A and B are sets, then we form a new set called
A x B which consists of "ordered pairs" , the first element drawn from A, the
second from B. In symbols we write

A x B = {(a,b) I a E A,b E B}

A purist reader might immediately object. So far we have just used properties
and set membership to define new sets from old. Now a new notion - that of
an ordered pair - has suddenly been slipped in. What on earth is an ordered
pair? There is an artificial set-theoretic dodge to avoid the problem. We just
regard (a, b) as notation for the set {a, {a, b}}, and then the problem goes away.
Rather than chase this hare, we will adopt the naIve view and say that (a, b) is
a symbol denoting a pair of elements a and b, that it can so happen that a = b,
and that (a, b) = (c, d) if and only if (i.e. exactly when) both a =c and b=d.
One can continue the process indefinitely. If A, B, and C are sets we can

form (A x B) x C and A x (B x C). In fact these sets are not formally the same
thing, but they are usually identified in the obvious way; we think of either of
them as the set of ordered triples

{(a,b,c) I a E A,b E B,c E C}.

In a similar way we can form the Cartesian product of any finite number of
sets. There is even a way of forming the Cartesian product of infinitely many
sets.
Suppose that A is a set. We refer to A x A as the Cartesian square of A, and

allow the notation A2 for this set. More generally, we call a Cartesian product
with n factors A x A x ... x A a Cartesian power of A, and write the set as
An. We use ordinary "x,y" co-ordinates to study the geometry of the plane
via algebra and calculus. In order to do this we identify the points of the plane
with the Cartesian square of lR, usually called ]R2 .

1.9 Notation

There has already been one notational crisis mentioned in the text. The (fash
ion) question as to whether or not 0 should be considered to be a natural
number has not been resolved. Our convention, which is by no means univer
sal, is that 0 ft N.
There are other issues that deserve (very brief) attention. The subset na

tation is problematic. We have been using ~ to denote "is a subset of". There
are people who use C in this way too. The trouble is that there are yet other



1. Sets, Functions and Relations 17

people lurking in the shadows who read A c B to mean that A is a subset of
B but that A i- B. The jargon for this is that A is a proper subset of B. This
is by analogy with how we use < and $. In the opinion of the author, this nice
distinction between c and ~ just causes trouble, since you often do not know
to which convention the writer adheres.
Another low-level controversy is the notation for set difference; we have

written A \ B for {x I x E A,x ¢ B}. There is a school of thought that this
should instead be written A - B. Watch out for this - especially in computer
graphics for example.

1.10 Venn Diagrams

A B

c
Fig. 1.1. Venn diagram for three sets

I assume that the reader knows what a Venn diagram is. Venn diagrams
are very good aids to thinking. They constitute a picture of what is going on
- if correctly drawn. If there are more than three sets involved, this gets very
tricky. If there are at most three sets involved, all is well. In mathematics you
sometimes need to think about more than three sets at once, and for this reason
you will eventually need to learn to live without Venn diagrams.
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EXERCISES

Introductory Mathematics: Algebra and Analysis

1.3 (a) Use A, B, C together with n and complementation to describe
eight sets corresponding to the regions of Figure 1.1. Note the
existence of the region outside the interlocking circles, and that
we suppose that there is a universe U.

(b) Do the same as in part (a), but use A,B,C together with U and
complementation.

1.4 (a) Prove that {I,2,3} = {I,I,2,3}.

(b) Recall the notation for power sets; the power set of a set
A is written P(A). How many elements are there in the set
P({I, 2, 3})?

(c) Determine the cardinality of P(0).

(d) Determine the cardinality of P(P(0».

(e) Determine the cardinality of P(P(P(P(P(P(0)))))).

1.5 (a) Draw Venn diagrams illustrating the truth of De Morgan's
laws (1.12) and (1.13).

(b) Prove De Morgan's laws. No Venn diagrams allowed!

(c) Find two subsets A, B of the natural numbers N such that both
A \ Band B \ A are infinite sets.

1.6 (Harder) Let A ={I, 2, 3, ... ,n}. What is the cardinality of each of
the following sets?

(a) {(a, B) I a E B, BE P(A)}

(b) {(a,B) I a E A,a f. B,B E P(A)}

(c) {(B,T) I BE P(A),T E p(A),BnT =0}

(d) {(B, T) I BE P(A), T E P(A), BuT =A}.
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1.11 Quantifiers and Negation
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There are two symbols called quantifiers which you come across all the time
in mathematics. They are "land 3. You have a little latitude in how you read
them.
You pronounce V as for each, for every or for all, and for 3 you say there

exist, there exists, there is or there are, depending on the context. Consider the
following two statements.

"Ix E Z 3y E Z such that x < y.

3y E Z such that "Ix E Z x < y.

(1.14)

(1.15)

The "such that" phrases are just padding to make the English read better.
In fact you can take 3x to mean "there exists x such that", and then there is
no real need to put these English words into the mathematical expression. It
is quite a good idea to put the non-quantifier part of the expression in round
brackets, otherwise the stream of symbols can be a bit overwhelming. Our
expressions (1.14) and (1.15) become

"Ix E Z 3y E Z(x < y) and

3yEZVXEZ(x<y).

(1.16)

(1.17)

This is a case where we read from left to right (as in written English), so
Equations (1.14) and (1.16) correctly assert that there is no largest integer. On
the other hand, Equations (1.15) and (1.17) incorrectly assert that there is a
largest integer. Viewed purely symbolically, this tells us that 3 and V do not
commute.
Suppose that P is a proposition, let ...,p denote "not P" , a statement which

is true if and only if P false. We say that we negate P when we place the symbol
..., before it. Thus for real numbers x and y, we have ...,(x < y) is logically
equivalent to x </. y (often written y ~ x). The words logically equivalent
have a technical meaning, but please read them informally. There is a nice
interaction between quantifiers and negation. If P is a proposition, let ...,p
denote its negation. The algebra of quantifiers is as follows.

-Nx(P) is logically equivalent to 3x(...,P)

and similarly
...,3x(P) is logically equivalent to Vx( ...,P).

Thus pushing a ..., through a quantifier changes V to 3 and changes 3 to V.
We use this information to turn the falsehood (1.17) into a truth. According
to our rules

...,(3y E Z "Ix E Z (x < y»
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\ly E Z 3x E Z (y S x).

which asserts that for every integer y there is an integer x which is at least
as big as y. Now let us negate the truthful statement (1.16) and confidently
expect a falsehood to emerge. The negation is

3x E Z\ly E Z (y S x),

which asserts that there is a largest integer. This sort of reasoning really comes
into its own when you have a string of several quantifiers, one after the other,
and you want to negate the statement. There is no need to think about what
the statement means. You can negate it just by pushing symbols around.
Also notice that membership of sets over which quantified variables are

ranging is unchanged by the process of passing a negation through a quantifier.
The (false) assertion that there is a fixed integer which is less than every real
number is written

3xEZVyEIR(x <y)

and when negated becomes the true statement

\Ix E Z 3y E IR(y S x),

which asserts that given any integer x, there is a real number y such that y S x.
Particular care should be taken when reasoning about the empty set. Any

statement about the members of the empty set is true. For example, and readers
of a nervous disposition are warned that they may find this disturbing, the
statements

\Ix E 0(x is a banana)

and
\Ix E 0 (x is not a banana)

are both true statements. We say that both statements are vacuously true. The
informal reasoning goes as follows. The first statement is true because there is
no element of the empty set which is not a banana. The second statement is
true because there is no element of the empty set which is a banana.

It should be admitted that reasoning about non-existent elements may seem
rather brave. The justification is that when P(x) is some proposition concerning
xES, we want \Ix E S (P(x)) to have exactly the same meaning as --,3x E
S --,(P(x)). When S happens to be empty, irrespective of P(x), The statement
--,3x E 0-.(P(x)) has to be true because it begins --,3x E 0. Note that any
statement which asserts the existence of an element of the empty set is false.
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Sets by themselves are not very interesting. In order to explore mathematics,
we need to be able to leap about from set to set. The device that is used to do
this is called a map. It is also called a mapping, and also a function. We will
later give a completely formal definition of a map, but in the first instance we
outline a useful and rather relaxed way of thinking about maps. This way of
thinking about maps is not actually harmful, but since we shall introduce ideas
which are not set-theoretic, a mathematical zealot (gongs sound, prayer wheels
spin, mantras drone) will find this approach distasteful. We embark on this
route for two reasons. First because this is the way almost all mathematicians
think about maps, and second because maps are rather easier to understand if
one is prepared to slum it. We will indicate how we could have kept the faith
in Section 1.15.
Informally then, a map is a rule. You feed in a piece of data, and the rule

responds with an item of output data. The rule can be thought of as living in
a black box with separate input and output devices attached. Maps are utterly
reliable. If you feed in identical pieces of data on two separate occasions, the
output response will be the same in both instances. The jargon for this is to
say that they are deterministic. The rule does not toss a coin to decide how to
respond to a piece of input, nor does it alter its behaviour over time. The item
being fed to the rule is traditionally called the argument (one can imagine an
indignant item of input data objecting to its fate!).

Definition 1.3

The set A (the possible inputs) is called the domain of the map. The set B (the
set from which the outputs will be drawn) is called the codomain of the map.
We say that the mapping is from A to B.

A mapping might be specified by the following statement: "Only feed me data
from the set Z j output is guaranteed to be from the set N." The map therefore
has domain Z and codomain N. We write

f : Z -+ Nj f: x t-+ 1 + x 2 Vx E Z.

This tells us everything we could wish to know. It translates into English as
follows:
The name of the map is f (the colon following f tells us that the name

has finished). The symbols Z -+ N tell us that the domain of f is Z and the
codomain of f is N. The semicolon tells us to expect either a formula or some
other recipe for describing which inputs will yield which outputs. The final piece
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of information is that if the integer x is fed in to the black box, the output
will be 1+ x 2

. We abbreviate the domain of f to dom(f) and the codomain to
cod(f).
The notation f: x t--+ 1+ x 2 'Vx E Z has the virtue of complete clarity, but

is perhaps a little cumbersome. It is important to note the tail on the second
arrow - we use --+ between the domain and codomain, but t--+ in the recipe
section. You can pronounce --+ as "maps to" and t--+ as "goes to" or "is sent
to".
We allow ourselves to denote the output of the function by f(x) when the

input is x. The description could therefore read

f: Z --+ Nj f(x) = 1 + x2 'Vx E Z.

There is one type of map which is so important that we single it out for special
attention.

Definition 1.4

Given any set A we can always form the identity map from A to A. This is the
map IdA: A --+ Aj IdA: a t--+ a 'Va E A.

We list below various other possible descriptions of maps:

a : N --+ Nj a: x t--+ 1 'Vx E N,

b : ~ --+ ~j b: r t--+ M 'Vr E ~,

c:{1,2,3}--+{1,2,3,4}; It--+l, 2t--+2, 3t--+4,

and
d: Z --+ Nu {O}j f(x) = x 'Vx ~ 0, f(x) = -x 'Vx < O.

(1.18)

(1.19)

(1.20)

(1.21)

The map (1.21) is of course the "modulus function", a map from Z to
Nu {O}. Notice that the rule need not be simple. Here is a rather peculiar map:

f : ~ --+ Q f (x) = x if x E Q, f (x) =0 if x ~ Q. (1.22)

1.13 Injective, Surjective and Bijective Maps

Suppose that f : A --+ B is a map. We define the image of f to be

im(f) = {xl x E B, x = f(a) for some a E A}.
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This could equally well be written

im(J) = {f(a)1 a E A}.

Thus im(J) ~ cod(J). Note that we do not require equality here.
It is of course rather interesting when im(J) = cod(J)j in this circumstance

we say that the map is onto or surjective or epic. One can only apologize for
the multiplicity of jargon. It all depends on whether you prefer your English
roots Anglo-Saxon, Latin or Hellenic. We shall use the term surjective in this
book. We shall also write that f is a surjection. The map (1.21) was surjective,
as was the map (1.22), and identity maps are always surjective.
Another way that a map can stand out from the crowd is if different inputs

always give different outputs. More formally, let us suppose that f: A -+ B has
the property that if a, a' E A and a :F a', then f(a) :F f(a'). We say (here we go
again) f is 1-1 or injective or monic. Once again, we plump for the Latin option.
Thus we refer to injective maps and to injections. Another way of saying that
f is injective is to observe that for all a, a' E A, if f(a) = f(a'), then a = a'.
The map (1.20) is an injection, as are all identity maps.
Suppose that f: A -+ B is both injective and surjective, then we say that

it is bijective or a bijection. Those who prefer an earthier tongue may call it a
1-1 correspondence.
We say two maps f and 9 are equal and write f = 9 if and only if three

conditions are satisfied:

dom(g),

cod(g),

= g(x).

dom(J)

cod(J) =
'r/x E dom(J), f(x)

Notice that the map

0:: Z -+ N U {O}i a(x) = x2 'r/x E Z

and the map
(3: Z-+Zjb(x)=x2 'r/xEZ

are not equal even though they are very similar. They have different codomains.

1.14 Composition of Maps

Suppose that f: A -+ B and g: B -+ C, then we can define a map called go f
called the composition of f with g. This map is described formally as follows:

go f: A -+ Cj go f: X t--t g(J(x» 'r/x E A.
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Informally, you feed x into I, take the output and feed it straight into g,

and finally gather the output.
Notice that we can form go I if and only if (i.e exactly when) cod(f) =

dom(g). We do not allow ourselves to be seduced into permitting map compo
sition when cod(f) is a proper subset of dom(g) - tempting though it is. Some
writers are not so strict.

Example 1.1

Suppose that
I: Z -t Zj I(x) =x-I "Ix E Z

and
g: Z -t NU {O}; g(x) = x 2 \Ix E Z,

then
go I: Z -t NU {O}; (g 0 I)(x) = x 2

- 2x + 1 \Ix E Z.

In cultures where people write horizontally from left to right, you might think
it perfectly natural that I composed with 9 would be written log - first apply
I and then apply g. In fact we should write (x)1 for the output of the map I
when x was fed in. Happily there is such a world of reason, justice and harmony.
It is called abstract algebra, and in that better place, maps are often written on
the right - so the composition of maps can be written sensibly. Alas, the rest
of mathematics is inhabited by curious people who insist on writing their maps
on the left. Folk have been writing sin(x) for too long to be able to cope with
writing (x) sin. The author is, as always, neutral on this issue. Nonetheless,
having seen colleagues dusting down the thumb-screws, we shall write maps on
the left (under protest) most of the time.
However, there are times when, for good or historical reasons, it makes sense

to write maps on the right. The exclamation mark indicating the application of
the factorial function is usually written on the right, and permutations are best
written on the right, as we will see. Other more exotic notation has become
familiar through usage. For example, to apply the squaring function one usually
writes a small 2 to the right of the argument but raised above the line of
print. We apply the modulus function by writing vertical lines on both sides of
the argument. To apply the square root function we draw a piece-wise linear
ideogram draped over the top and left of the argument: .jX.

It is high time we proved something.
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Proposition 1.2

(a) The composition of two injective maps is injective.

(b) The composition of two surjective maps is surjective.

Proof

Suppose that f: A -t Band g: B -t C are the maps concerned.
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(a) We assume f and 9 are injective. Suppose that a, a' E A and a =I a'.
The map f is injective so f(a) =I f(a'). The map 9 is also injective so
g(f(a)) =I g(f(a')). Thus go f is injective.

(b) We now assume f and 9 are surjective. Choose any c E C. The map 9
is surjective so there exists b E B such that g(b) = c. Also the map f is
surjective so there exists a E A such that f(a) = b. Thus (g 0 fHa) =
g(f (a)) =c, so 9 0 f is surjective.

o

Corollary 1.1

The composition of two bijective maps is bijective.

A new word has crept in - corollary. A corollary is a result that you get for free,
or almost for free, from the previous result. If you cannot see why a corollary
follows from its preceding result, either the writer is mistaken, or you are being
dense.
Now suppose that we have three maps

f: A -t B, g: B -t C, h: C -t D.

Arguably the single most important equation in this book is

(h 0 g) 0 f = h 0 (g 0 1),

for each of these maps sends each x E A to h(g(f(x))) E D. We say that
composition of maps is associative. See Proposition 2.4, where you will find a
formal justification of the fact that brackets can always be omitted from any
repeated application of an associative operation.
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In particular, if we have a map k: A -t A and a natural number n, then
the map

koko···ok: A-tA
... ,..
n copies of k

is unambiguously defined, so it makes sense to call this map kn . You have
to be careful though; if A has a multiplicative structure, there is an excellent
confusion opportunity for the unwary student, as the next example shows.

Example 1.2

Consider the map sin : JR -t JR. In the notation we have just constructed,
sin2x = sin(sinx), whereas conventional usage is that sin2x = (sinx)2. Now

sin(sin-7I"/2) = sin(-l) < 0

whereas (sin( -71" /2))2 is the square of a real number and so is non-negative.
Any lingering flicker of hope that these two functions are the same has just
been extinguished, and we have a genuine problem. There is no easy way out;
you just have to be careful, and to make sure you understand what you are
reading or writing.

EXERCISES

Recall that we make the convention that 0 ¢ N.

1.7 Let f: Z -t Z be defined by f(x) =x 2 Vx E Z and let 9: Z -t Z be
defined by g(x) = x + 1'Ix E Z.
(a) Give the formulas which define the maps fog and go f, carefully
distinguishing which is which.

(b) Let n E N. Give the formulas which define the maps rand gn.

(c) Which of the maps f, g, F and 92 are bijections?

1.8 (a) Define a map from the natural numbers to themselves which is
injective but not surjective (Le. you must name the map, and
explain what value is obtained when the map is applied to each
natural number).

(b) Define a map from the natural numbers to themselves which is
surjective but not injective.
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(c) Define two maps Q and /3 which are both bijections from the
natural numbers to themselves but which enjoy the property
that Q 0 /3 :f; /3 0 Q.

1.9 (a) Define a bijective map from N to Z.

(b) Define a surjective map from Z to Z which is not a bijection.

1.10 (a) Suppose that Q, /3 and "( are all maps from a set A to itself, and
that Q is a bijection. Furthermore, suppose that Q 0 /3 = Q 0 "(.

Does it follow that /3 = "(? Justify your answer.

(b) Suppose that A is a set, and both f and 9 are bijections from A
to A such that p = g2. Does it follow that f = g? Justify your
answer.

(c) Suppose that the conditions of part (b) hold but that also P =
g3. Now does it follow that f = g? Justify your answer.

1.11 LetS={1,2,3,oo.n}.

(a) How many maps are there from S to S?

(b) How many surjective maps are there from S to S?

(c) How many injective maps are there from S to S?

(d) How many bijective maps are there from S to S?

1.12 True or false? Justify your answer.

(a) If f : A -+ B is bijective, then it is surjective.

(b) If f : A -+ A is injective but not surjective, then A is an infinite
set.

(c) If f : A -+ A is such that p is bijective, then f is bijective.

(d) If f : A -+ B is surjective and B is finite, then A is finite.

(e) If f : A -+ B is surjective and B is infinite, then A is infinite.

(f) If f : A -+ B is injective and B is infinite, then A is infinite.

(g) If f : A -+ B is injective and B is finite, then A is finite.

(h) If f : A -+ B is surjective and A is finite, then B is finite.

U) If f : A -+ B is surjective and A is infinite, then B is infinite.

(k) If f : A -+ B is injective and A is infinite, then B is finite.

(1) If f : A -+ B is injective and A is finite, then B is finite.
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1.13 (a) Suppose that f, g, h are all maps from a set U to itself. Suppose
that fog = go f and that f 0 h = h 0 f. Prove that f 0 (g 0 h) =
(goh)of.

(b) Show by example that subject to the hypotheses of part (a), one
cannot deduce that go h = hog.

(c) Let C be a non-empty set and suppose that a : C ~ C has the
property that whenever {3 : C ~ C then a o{3 = {3oa. Prove that
a = Ide. (Hint: AaavJ.t€ <pop Iwvrpa8iKrwv (Jar a f:. Ide; if
you don't get the point about Kovrpa8iKrwv, look ahead to the
v€~r Xa1rnp).

(d) Let D be a set and suppose that 'Y : D ~ D is a bijection which
has the property that whenever 8 : D ~ D is a bijection, then
'Y 0 8 =8 o"f. If 'Y f:. IdD, what can be said about IDI?

1.14 Let W denote the set of finite strings of lower case Roman letters
(i.e. the set of all words that could be written in that alphabet).
Thus dog E Wand wetquytriut E W. Define three maps from W
to W as follows. h : W -+ W concatenates a word with itself,
i.e. h(>') = >.>. V>. E W. For example h(do) = dodo. The map h
removes the first letter of a word if there is one - so h (qbath) = bath
but h applied to the empty word is the empty word. The map h
is like h except that it removes the last letter of a word if there is
one.

The problem is to decide whether or not, starting with the word

abcdefghijklmnopqrstuvwxyz,

one can successively apply these maps (in a judiciously chosen order)
to obtain the word

zyxwvutsrqponmlkjihgfedcba.

Justify your answer.

1.15 In this question we discuss a map f : A ~ B.

(a) Suppose that there is a map 9 : B ~ A such that fog = IdB.
Prove that f is surjective.

(b) Suppose that there is a map h : B ~ A such that h 0 f = IdA.
Prove that f is injective.

(c) Suppose now that the hypotheses of parts (a) and (b) hold si
multaneously. Prove that f is bijective and that 9 = h.
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1.15 Graphs and Respectability Reclaimed
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Definition 1.5

Suppose that j: A ~ B is a map. The graph of the map j is the subset of
A x B defined by

graph(f) = {(a,j(a))1 a E A} = {(a,b)1 b= j(a),a E A}.

Suppose that g : IR ~ IR, then graph(g) is a subset of IR x IR = IR2 and
corresponds exactly to the casual use of the term graph when IR2 is identified
with the plane in the usual way, as in Figure 1.2. Meanwhile, back at the

j(a)

a

(a,j(a»

Fig. 1.2. A =B =IR gives the familiar picture

general case, notice that graph(f) is not an arbitrary subset of Ax B. Let
S =graph(f). It has two special properties.
(i) Given any a E A, 3b E B such that (a, b) E S.

(ii) If (a, b), (a, b/) E S, then b = bl
•

This gives us the appropriate hint about how maps should have been defined
in the first place. All that nonsense about black boxes was of course designed
to appeal to persons with a limited attention span, their minds addled by
television soap-operas and junk-food. One simply defines a graph in A x B to
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be a subset S of Ax B which has properties (i) and (ii). If S is a graph, then
it gives rise to a map Is : A -t B as follows; for any a E A, we write Is(a) for
the unique element of B such that (a, Is (a)) E S. No "rules" are required. This
way we can build the notion of a map straight out of set-theory. In all honesty
though, most people do find that thinking of maps as rules is the easy thing to
do.

1.16 Characterizing Bijections

Suppose that a : X -t Y is a bijection. We can define a map 13 : Y -t X as
follows: for each y E Y, f3(y) is the unique element x E X such that a(x) = y.
In order for 13 to be properly defined it is crucial that a is a bijection. The fact
that im(a) =Y ensures that dom(f3) =Y, and the injectivity of a gives us the
recipe for constructing 13. Notice that 13 0 a = Idx and a 0 13 = Idy. The map
13 is the inverse of a, and we can write 13 =a-I.

We can characterize bijections using maps in the following way:

Proposition 1.3

Let a : X -t Y be a map. The following are equivalent:

(a) The map a is a bijection.

(b) There is 13 :Y -t X such that 13 0 a = Idx and a 013 = Idy.

Proof

The preceding discussion ensures that (a) ~ (b) (the symbol ~ means implies,
it has a rather infectious quality and should be used with extreme restraint 
we will discuss this matter further in Section 2.6).
The heart of the theorem remains to do; we must show (b) ~ (a). First we

shall show that a is surjective. Suppose that y E Y, then a(f3(y)) =Idy(y) =y
so Y E im(a). Thus im(a) =Y and a is surjective. It remains to prove that a
is injective. Suppose that x,x' E X and a(x) = a(x'), then f3(a(x)) = f3(a(x'))
so Idx(x) =Idx(x') and finally x =x'. Thus a is injective.

o
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Corollary 1.2
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The map f3 having property (b) is a bijection, and is the unique map rendering
(b) valid. We say that {3 is the inverse map to 0:, and write {3 as 0:- 1 . An
extremely rich source of error is provided by the chance to write that 0:- 1 is a
map when 0: is not bijective.

1.11 Sets of Maps

We can form sets whose elements are maps. For example, suppose that A and
B are sets, we might consider

maPA,B = {o: I0:: A -+ B}.

This set has various subsets, for example

injA,B =b I 'Y E mapA,B' 'Y is injective}

and
SurA,B = b I 'Y E maPA,B' 'Y is surjective }.

We give the obvious meaning to bijA,B and observe that

bijA,B = injA,B n surA,B·

(1.23)

Notice that surA,B = 0 if IAI < IBI, and that injA,B = 0 if IAI > IBI. This
squares nicely with the fact that bijA,B = 0 unless IAI = IBI.

1.18 Relations

We have studied two of the types of creature in the mathematical jungle, sets
and functions. Next we study a third type, relations. Relations are things like
=, <, ~. That isn't a definition, it's a bit of waffle. When you want to discuss
a function (perhaps f) you need to start off with two sets, the domain and the
codomain (perhaps A and B respectively). Relations are a bit easier, you need
only start with a single set (say S), and then you talk about a relation t><I on
S. The idea is that some elements of S may be related, but others may not. If
5, t E S are related we write 5 t><I t. If not we write 5 ~ t.
An example of a relation is < on the set Z. Here we write a < b exactly

when b - a E N. Notice that 1 < 2 but 2 <J. 1.
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Now, just as functions can have special properties which make them in
teresting and useful (injectivity, surjectivity, bijectivity) there are some fairly
natural properties that a relation might have. A relation lXl on a set S mayor
may not have some or all of the following properties.

(R) [Xl is reflexive if s [Xl s for every s E S.

(S) lXl is symmetric if whenever s lXl t, then t [Xl s.

(T) [Xl is transitive if whenever both s lXl t and t lXl U, then s lXl u.

An easy way to remember these names is to observe that we have listed the
three properties in order of increasing complexity; the first involves only one
element at a time, the second is about two elements and the third is about three.
Simultaneously, the initial letters of the properties come successively in the
alphabet. We look at some examples, some informal and some mathematical.
Let P be the set of all people and write p~q when p, q E P and p is an

ancestor of q. This relation is neither reflexive nor symmetric, yet it is transitive.
Again let P be the set of all people and write p\}q to mean that p loves q.

Now, while it is certainly the case that p\}p for some pEP, it is definitely not
the case for every pEP, at least I hope not. Thus \} is not reflexive. Similarly,
\} is not symmetric (a fact crucial to the lyricists of popular songs). Finally,
\} is not transitive (no doubt the reader can supply an example from personal
experience) .
Now for some mathematical examples. Consider the following relations on

N with their usual meanings: =, <, >, S and ~. The first one satisfies all three
conditions, but the other four do not. Please check to see which condition(s)
each of them fails.
Let L be the set of (infinite) straight lines in the plane. The relation II

satisfies all three conditions (0 111/1 means that the lines 0 and 1/1 are parallel).
Let T be the set of all triangles in the plane. The relation "is congruent to" ,

is often written ~ and satisfies all three conditions.
Inspired by these examples, I hope that you are thinking that a relation

satisfying reflexivity, symmetry and transitivity is really something like equality,
subject to local conditions.

Definition 1.6

A relation [Xl on a set S is called an equivalence relation exactly when it is
simultaneously reflexive, symmetric and transitive.

Equivalence relations are incredibly important, and we will be studying them
at greater length later (see Definition 1.10 and Proposition 1.4).
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Definition 1.7

33

A relation t><l on a set S is called antisymmetric if whenever a, b E S and a t><l b,
then b~ a.

An example of an antisymmetric relation is < on N. One could go on and on.
If a relation occurs naturally in mathematics, you should look to see what (if
any) special properties it has. If it has none, or at any rate you can't find any,
then you are going to have a hard time proving much about it.
So far this Section has been a cheat, because we have not given a proper

definition of a relation (just as Section 1.12 on maps began on shaky ground
with all that persuasive but slightly doubtful stuff about rules). The formal
definition may look a bit weird, but if you think about it, it is utterly clear.

Definition 1.8

A relation R on a set S is a subset of S x S.

Instead of (s, t) E R we often write sRt. This is so-called infix notation where
the relation is placed in between the elements.
This looks a little crazy at first. For the relation equality on the set of

natural numbers we have that = is {(a, a) I a E N} and using infix notation
we can write a = b instead of (a, b) E {(a, a) I a EN}. This may seem a bit
unnatural (you probably didn't think of = as a set before) but you have to
admit it is crisp.
This also gives us a way of deciding if two relations are the same. It is clear.

Two relations on a set S are the same exactly when they are the same subset
of S x S.

Definition 1.9

Let S be a set. A partition of S is a collection C of subsets of S with the
following three properties.

(a) X'" 0 whenever X E C.

(b) If X, Y E C and X '" Y, then X n Y =0.
(c) The union of all the elements of the partition is Sj in symbols we have

u X=S.
XEG
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Thus a partition of S is a collection C of non-empty subsets of S which are
pairwise disjoint (Le. any two distinct ones are disjoint), and the union of all
these subsets of Sis S. In crude terms, you have taken the elements of Sand
sorted them into various non-overlapping subsets. Gender partitions humanity.
The infinite plane can be partitioned into infinitely many parallel lines.
This is a very important idea, and equivalence relations are the technical

gadgets which enable us to reason about partitions.

Definition 1.10

Suppose that"" is an equivalence relation on a set S. For each xES let

[x] = {y lyE S, x "" y} ~ S.

These subsets [x] of S are called equivalence classes, and [x] is called the equiv
alence class of x.

Here is the result which ties things together.

Proposition 1.4

Using the notation of Definition 1.10, the sets [x] (as x varies over S) form a
partition of S.

Proof (tough but worth it)

We need to check that the three conditions of Definition 1.9 are all satisfied.

(a) Consider an arbitrary [y] for yES. Now y "" y so Y E [y] and therefore
[y] :f; 0.

(b) We twist things round. It suffices to show that if [y]n[z] :f; 0, then [y] = [z].
We will assume [y] n [z] :f; 0, and deduce that [z] ~ [y].

Since [y] n [z] is non-empty we may choose x E [y] n [z]. Now y "" x and
z "" x. Use the symmetric law to spin the second of these facts so x "" z.
Now we know both y "" x and x "" z so by the transitive law we can deduce
that y "" z.

Now choose an arbitrary element a E [z]. Now y "" z and z "" a so by
transitivity we have y "" a. Thus a E [y]. This shows that [z] ~ [y].

An entirely similar argument yields the reverse inclusion, so [z] = [y].
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(c) The union of subsets of S is a subset of S. Thus all we need to show is that
if xES, then there is an equivalence class which contains the element x.

However, x '" x by the reflexive law, so x E [x] and we are done.

o

In fact one can reverse the argument of Proposition 1.4 and show that a par
tition C of a set S gives rise to an equivalence relation of S. Just put x '" y
exactly when there is X E C (Le. a set in the given partition of S) with the
property that both x E X and y EX. The diligent reader will check that this is
an equivalence relation on S. The very diligent reader will do a little more. We
now have two procedures: one is a way of making a partition from an equiv
alence relation, the other is a way of making an equivalence relation from a
partition. The enthusiast should show that these two procedures are mutually
inverse. That is to say, if you do one, and then the other, make sure that you
end up where you started. This is really two problems, because you can start
with either procedure!
Finally, when you have a partition of a set S, it is often useful to have one

representative from each set comprising the partition. A set of these represen
tatives is called a transversal for the partition. If humanity is partitioned by
gender, any set consisting of one male and one female is a transversal for the
partition. We view a plane as a set, the elements of which are the geometric
points comprising the plane. The plane can be partitioned into parallel straight
lines, and then any straight line which is skew to the lines in the partition will
suffice as a transversal. Such a skew straight line will intersect each of the
family of parallel lines in exactly one point, as required. One could think of
crazy transversals, where a point is selected from each of the family of parallel
lines in some fashion, but our transversal has the virtue of being geometrically
pleasant.

EXERCISES

1.16 Let A = {1,2, ... ,n}.

(a) How many relations are there on the set A?

(b) How many reflexive relations are there on the set A?

(c) How many symmetric relations are there on the set A?

(d) How many relations are there on the set A which are both re
flexive and symmetric?
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1.17 Let F = Z x N.

(a) Define a relation""" on F by (a, b) ....., (c, d) if and only if ad-bc =
O. Show that....., is an equivalence relation.

(b) Suppose that (al,bt) ....., (a2,b2) and (cl,dt) ....., (c2,d2). Prove
that (al d1+ Clb1,b1dt) ....., (a2d2 + C2b2, b2d2) and moreover that
(alcl,b1dd....., (a2c2,b2d2).

(c) What might a rational person make of this construction?

1.18 Exhibit relations on Z which demonstrate all 23 possibilities of being
reflexive or not, symmetric or not, and transitive or not.

1.19 What, if anything, is wrong with this "proo!,,?
Theorem: If a relation ....., on a set A is both symmetric and transi
tive, then it must also be reflexive.
Proof: Suppose that a E A. Choose any b E A such that a ....., b. Use
the symmetric property to deduce that b ....., a. Now both a ....., band
b....., a so by transitivity we deduce that a ....., a. However, a was an
arbitrary element of A so the relation must be reflexive.

1.20 Suppose that R is a relation on the set of real numbers IR. We write
a ,..., b if and only if (a, b) E R. Consider the set Rj now R ~ ]R2 so
we may give a geometric interpretation of R as a subset of the plane.
What can you say about the subset R of the plane in the event that

(a) R is reflexive,

(b) R is symmetric,

(c) R is both reflexive and symmetric?

1.21 (a) How many equivalence relations are there on a set of size 3?

(b) How many equivalence relations are there on a set of size 4?

1.22 (a) Let f : A ~ B be a function. Define a relation....., on A via
x ,..., y if and only if f(x) = f(y). Determine (with justification)
whether or not,..., is an equivalence relation.

(b) We define a relation on IR2 (= IR x IR) by (a, b) ,..., (c, d) if and
only if (c-a, d- b) E Z2. Prove that,..., is an equivalence relation.
Identifying IR2 with the plane in the usual way, describe the most
natural transversal for,..., which you can find. What, if anything,
has this question to do with doughnuts?

(c) We define a relation on IR3 \ {(O, 0, On by (a, b, c) ....., (d, e, J) if
and only if there is ,\ E IR with ,\ > 0 and a =Ad, b= ,\e and
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C = Af. Show that '" is an equivalence relation. Identifying 1R3

with three-dimensional space in the usual way, find a transversal
for this equivalence relation which is geometrically pleasant.

1.19 Intervals

Definition 1.11

A real interval (or just an interval) is a subset I of the real numbers with the
property that if x E IR and a, bEl are such that a < x < b, then x E I.

We establish some notation. Suppose that a, b E III

Definition 1.12

(a) The open interval (a,b) = {x I x E IR, a < x < b}.

(b) The closed interval [a, b] = {x I x E IR, a S x S b}.

(c) The half open interval [a, b) = {x I x E IR, a S x < b}.

(d) The half open interval (a,b] = {x I x E IR, a < x S b}.

Of course people with a less sunny disposition are welcome to refer to the
intervals (c) and (d) as being half closed. There are language vandals who even
call these intervals clopen. Please don't.
You can introduce artificial symbols 00 and -00 deemed to be respectively

greater than and less than all real numbers. Thus the positive reals can be
written as (0,00), the non-positive reals as (-00,0], the non-negative reals as
[0,00) and IR as (-00,00). Some people actually adjoin 00 and -00 to IR to
form an extended real number system. This sort of behaviour is fairly common
among geometers, topologists and the like, but you would be unlikely to catch
an algebraist doing it (they are very sensitive about °x 00).
Of course, there is a confusion opportunity in the notation for intervals.

Open intervals (a, b) look just like elements of 1R2 • Be careful!
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EXERCISES
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1.23 (a) Show that the empty set is an interval.

(b) Show that {1} is a closed interval.

(c) Show that {1} is not an open interval.

1.24 (a) Prove that the intersection of two intervals is an interval.

(b) Prove that the intersection of two open intervals is an open in
terval.

(c) Prove that the intersection of two closed intervals is a closed
interval.

1.25 [Harder] In this question, union and intersection are not necessarily
of two sets, but rather of arbitrary collections of sets.

(a) Show that the closed interval [0,1] is expressible as the intersec
tion of infinitely many open intervals.

(b) Can the closed interval [0, 1] be expressed as the union of in
finitely many open intervals? Justify your answer.

1.26 Once upon a time a six-year-old child sat in class while the teacher
explained that if you took a ruler, and cut it in two equal pieces, each
part would be the same length. When the lesson was over, the child
went to see the teacher, to explain that you couldn't cut a piece of
wood into two equal pieces, because the middle point would have to
be attached to one piece but not the other. Then one broken piece
would have two ends but the other would only have one because its
end was missing. The teacher was very patient, and tried to explain
again. Discuss this using the interval notation.
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Proof

This chapter is deliberately short, and contains no exercises. This is because it
briefly outlines techniques which will be used throughout the rest of the book.

2.1 Induction

We have already met the set of natural numbers N = {I, 2, 3, ...}, and raised
the vexed question of the dot-dot-dots. We all carry around a mental image of
these numbers going on for ever - there being no last natural number. If you
want to playa game of "who can think of the biggest number" , the person who
goes last will always win. There is a simple procedure for the last player to win
this game - just add one to the largest number mentioned by any other player.
Such a strategy will work until you play the game against some clown who

says "banana" (or more likely "infinity"). This person may assert that banana
is a natural number bigger than all the other natural numbers. There are two
obvious responses to this:

(i) Aggressive and pompous: you lie. There is no such thing. Go and study
some lesser subject.

(ii) Awkward customer: you are wrong there. The natural number orange is
even bigger than banana.

As we mentioned before, mathematicians abhor ambiguity. They have decided
to agree upon two things. First that there is no largest natural number, and

G. Smith, Introductory Mathematics: Algebra and Analysis
© Springer-Verlag London Limited 1998
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second that every natural number other than 1 is the successor of exactly one
other natural number as you count 1,2,3,4,5,6, ... , and that 1 is not the
successor of a natural number.
This does two things. It ensures that the set N is infinite, and it also guar

antees that if anyone mentions a natural number, we can count, starting at 1,
and reach that natural number after a finite amount of time.
This is neat in two ways. First, it clears up any doubt as to what is and

what is not a natural number. Second, it gives us a way of proving things about
the natural numbers. The mathematical way of crystallizing this discussion is
to say that we have adopted the axiom of mathematical induction. This axiom
gives us a way of proving things about properties of the natural numbers. We do
not have to go through a case-by-case analysis; we build a sort of mathematical
"proving machine" which does all the work for us. An axiom is something we
do not have to prove. The axiom of mathematical induction is part of the
definition of the natural numbers.
When we spot a pattern in mathematics, we cannot simply say - "that

is a law of mathematics". Perhaps the pattern is more complex than we at
first suppose. The axiom of mathematical induction gives us a way of taking a
pattern that we think describes something in mathematics, and then proving
that we are right. This method is not available in science, and that is why
scientific knowledge has a different status. Scientific knowledge is provisional;
mathematical knowledge is not. The only possibility for error in mathematics is
human fallibility in the course of calculation or proof. For this reason, to keep
mathematics as certain as possible, great attention is paid to standards of proof.
Enough of this discussion - we now investigate the method of mathematical
induction.

Axiom of (Simple) Induction

Let P(n) be a proposition about the natural number n. Suppose that we can
show two things:

(i) P(l) is true.

(ii) For each r E N, whenever P(r) is true, then P(r + 1) is true.
We can then deduce P(n) is true for each natural number n.
The proposition P(n) is known in the trade as the inductive hypothesis. Let

us immediately see this axiom in action.
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Proposition 2.1

For each natural number n, the sum 1 + 2 + ... + n (= 2:7:1 i) is equal to
n(n + 1)/2.

Proof

P(n) is the proposition that the particular natural number n has the property
that 1+ ... + n = n(n + 1)/2.

(i) P(1) asserts that the sum of the natural numbers, starting at 1 and going
up to 1 is 1. This is true (starting the induction is almost always easy, but
you must never forget to do this part).

(ii) Suppose that for some natural number r, P(r) is true. We must show that
it follows that P(r + 1) is true. Now,

1+ 2+ ... + r + (r + 1) = (1 + 2+ ... + r) + (r + 1).

We know that 1+ 2+ ... + r = r(r + 1)/2 so

1+ 2+ ... + (r + 1) = r(r + 1)/2+ (r + 1) = (r + 1)(r + 2)/2.

which asserts that proposition P(r + 1) is true.

By the axiom of mathematical induction the result is proved.

o

That was all rather formal. As we look at more examples, the expositions of
the proofs will gradually become less stiff, but will still (one hopes) be clear.
Some readers will grasp the idea very quickly, but others may feel that we are
in some way cheating - "you are assuming the answer to prove the result" is a
common cri de coeur. This complaint is not justified, but it easy to see why it
happens. We have used an auxiliary symbol r in the course of the above proof.
In real life, many writers do not bother to do this. They use n. The point is
that the statement is to be proved for all n, but the "counter" r (sometimes
confusingly called n) is a particular natural number. If one uses n as a counter,
the first line of (ii) becomes "Suppose that for some natural number n, P(n)
is true". Perhaps that is still not too bad, because the emphasis is still that
for a particular number n the proposition P(n) holds. However, someone who
"knows what they are doing" might easily write the first line of (ii) as "Suppose
that P(n) is true". That is the sort of thing which can cause panic.

If you are completely at home with induction arguments, such confusing
casual phrasing is (alas) acceptable. Too many mathematicians do it for there
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to be any hope of change in the near future. Nonetheless, this is sloppy practice,
and an auxiliary variable such as r is a relatively small price to pay for clarity.
It all depends on the target readership of course. Writing for experienced math
ematicians one can afford to be very loose. One often sees statements in the
literature such as "this proposition follows by induction", and the argument,
being routine, is completely omitted. A sophisticated reader will then mentally
check that the argument is genuinely routine in her head. On the other hand,
undergraduates write most of their mathematics to convince their tutors that
they (the undergraduates) understand what is going on. If you are at the stage
of your career when the tutor might have grounds to doubt that you completely
understand induction, you must write out the argument in all its gory detail.
There is another point worth making. In order to prove Proposition 2.1

we somehow had to have prior knowledge that the appropriate formula was
n(n + 1)/2. It would be pretty easy to guess that formula by doing a few
experiments. It might not be so easy to spot the formula for the sum of the
first n perfect squares - that is n(n + 1)(2n + 1)/6 by the way. Induction does
have this limitation - you must intelligently guess what you should try to prove.
Let us now do another example. We discussed the power set of a set in

Section 1.8. Recall that if A is a set we let P(A) = {x I x ~ A} and call this
the power set of A. Look back and see that when A has three elements then the
power set of A has eight elements. The general formula is easy. If A is a finite
set with n elements, then P(A) has 2n elements. You can check the plausibility
of this assertion by looking at a few examples. Evidence, however, is not proof.
We shall now banish doubts.

Proposition 2.2

If A is a non-empty finite set of cardinality n, then IP(A)I = 2n
.

Proof

For each natural number r, let Q(r) denote the statement that the result holds
for sets of cardinality r.

(i) The statement clearly holds for a set with one element.

(ii) We deem the statement to hold for the natural number r (this is the
inductive hypothesis). Suppose that IAI = r + 1. We seek to show that
IP(A)I = 2r +l. Select B ~ A such that IBI = r so A = BU{a} and a ¢ B.
We now count the subsets of A. The number of subsets of A which do not
contain a is exactly the same as the number of subsets of B. We know
this number is 2r (by inductive hypothesis). Any other subset of A must
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contain the element a, and will be expressible as S U {a} where S C B.
Conversely, any subset S of B will determine a subset of A containing a
via S U {a}. Thus the number of subsets of A which contain a is the same
as the number of subsets of B, i.e. 2r

.

Now the number of subsets of A is therefore 2r +2r = 2r +1. This is precisely
the content of Q(r + 1) so we are finished by induction.

o

Notice that this proof has been finished with the words "by induction". This
is a very acceptable variant of the more formal "by the axiom of mathematical
induction" . This formula for the size of a power set even holds when A is empty.
We could easily have incorporated this into our statement and proof by allowing
o to be a natural number. It is wise to be flexible in these things.
Another way of thinking about induction is by analogy with an infinite row

of standing dominoes. You show it is possible to knock the first one over, and
you also demonstrate that if the rth domino falls over, then it will collide with
domino r + 1 and knock that over too. If you succeed in demonstrating these
facts, then you know you can knock down the entire row with a flick of a finger.

2.2 Complete Induction

A great fuss is often made about something called complete induction, and the
difference between complete induction and simple induction - which is what
we have been looking at just now. There is nothing substantial going on here. If
you can prove a proposition by one method then you can prove it by the other.
Though it does not merit such exalted status, we will treat it as an axiom
(reluctantly).

Axiom of Complete Induction

Let Q(n) be a proposition about the natural number n. Suppose that we can
show two things:

(i) Q(I} is true.

(ii) Whenever Q(x) is true for all natural numbers x less than r, then Q(r) is
true.
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We can deduce that Q(n) is true for each natural number n. In fact, and whisper
this softly, part (i) is not strictly necessary. This is because applying part (ii)
when r = 1 (and a little vacuous reasoning) gives a proof that Q(l) holds.
However, a beginner would be well advised not to rely on vacuous reasoning,
and checking that Q(l) holds is unlikely to cause much pain.
Before explaining why this is not a genuinely new axiom, we shall demon

strate the axiom of complete induction in action.
We all know what prime numbers are. They are the set of natural numbers

which have no proper factors.

s,p = {2, 3, 5, 7,11,13,17,19,23,29,31,37,41, ...}.

For good reasons, we place a special ban on the number 1. The number 1 is
not a prime. By the way, that letter is a Gothic Pj astonishingly enough, there
is no standard notation for the set of all prime numbers, so we create our own.

Proposition 2.3

Each natural number n is the product of prime numbers. (We deem 1 to be the
product of no prime numbers!)

Proof

We prove this by complete induction. (We are getting more relaxed in our levels
of formality. The slippers are now on.)

(i) The induction starts using the special status of 1.

(ii) Assume that we have proved the proposition in the cases x < r. Now
consider the case x = r > 1. If r E s,p, then the proposition holds. If, on
the other hand, r ¢ s,p, then 3u, v E N, u '" 1 '" v such that r = u . v.
Now u,v < r so (complete induction rearing its head here) each of u and
v is a product of primes (because z is a product of primes '</z E N with
z < r). However r = u· v so r is a product of prime numbers. By (complete)
induction, the proposition is proved.

o

Let us now tackle something a little more ambitious. We asserted in Section 1.5
that in the presence of the associative law we could dispense with brackets. We
shall now prove this. A binary operation on a set A is just a way of multiplying
elements of A together to yield elements of A. The word "binary" is used
because you are multiplying two things together. A more sophisticated point of
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view is that a binary operation on A is a map from A x A to A. For economy,
we will write the product if x, yEA as x . y. This abstract setting includes the
integers under addition or multiplication, the collection of all subsets of the set
U under either union or intersection, and much else besides.

Proposition 2.4

Suppose that the set A is equipped with an associative binary operation denoted
by a dot. If Xl, X2, ... ,Xn E A, then the value of the product

Xl . X2 . X3' •.. . X n (2.1)

is independent of the order in which the multiplications (operations) are per
formed (i.e. how we bracket this expression).

In such a bracketed expression, the last multiplication to be performed must
be indicated by a dot sitting between Xi and Xi+! for a particular value of i.
We say that the expression breaks at i. For example: ((Xl' X2) . X3) . (X4 . xs))
breaks at 3. We have not yet begun the proof of Proposition 2.4. Ifwe had done

so, the word "proof" would have occurred on the left-hand side of the page.
We are still just having a chat. When a theorem or proposition needs a long or
complicated argument to prove, it is a form of cruelty simply to write the thing
out in one go. The poor reader is faced with the prospect of wading through
the entire argument, hoping against hope that life's little intrusions (coffee is
ready, building is on fire, etc.) will not interrupt her train of thought two lines
from the end.
It is also a foolish thing to do from the point of view of the writer. If the

proof is in one piece, it may be difficult to check that it is correct. If you
do find a flaw, then it may be difficult to see what can be salvaged from the
proof. For these reasons, it has become regarded as very classy to break up
proofs into mind-sized pieces which take little time to read or check, and which
stand alone as true propositions. These minitheorems are often not really of
any interest in their own right, but only insofar as they contribute to the proof
of the theorem. For this reason we do not dignify them with the hallowed
title theorem (usually reserved for exceptionally important results), or even
proposition (which is used for a result of interest in its own right). Instead we
call them lemmas. Nonetheless, a good lemma may be re-used, and acquire
fame and stature in its own right; lifted, as it were, from the chorus line to the
limelight. You may sometimes see a phrase like "by Bobker's lemma, blah-blah
is true". You are clearly supposed to know Bobker's lemma. Bobker's lemma is
an internationally famous result, and only its name betrays its humble origins.
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Either Bobker didn't realize how good the result was when he proved it, or
more likely, he was being modest.
In many respects a lemma is rather like a subroutine or function in com

puter science.
Now we address ourselves to the proof of Proposition 2.4. It has been a fair

time since we stated it, so now is a good time to read the statement again 
and to refresh your memory about the notation "break".
As the first stage of our proof, we obtain a lemma (and we will deliberately

be a little sloppy in the course of the argument - if you can still follow it easily,
all is well).

Lemma 2.1

Any product of elements of A,

(2.2)

no matter how it is bracketed, is equal to a product which breaks at 1.

Proof

Let the value of the product (2.2) be X. We proceed by induction on r, where
the original product (2.1) breaks at r. If r = 1 we are done already. If r > 1,
then we suppose that our product is p.q where X r is the last letter of p and Xr+l

is the first letter of q, and both p and q are products in their own right. Now
p breaks at j and of course j < r so p is equal to a product breaking at 1 (by
complete induction) so X = (Xl' s) . q; we can now deploy the associative law
to obtain X = Xl . (s .q), and the product on the right breaks at 1 as required.

o

Proof (of Proposition 2.4)

By Lemma 2.1

X =Xl . P where p is a product in its own right. (2.3)

We now prove (by induction on n) that any product X may be bracketed to
the right; that is X =Xl (X2(' .. (Xn ) ...)).

If n = 1 (or 2) the result is trivially true. Suppose that the proposition is
true for n = r, and consider the case n =r + 1. By Equation (2.3) X =Xl . P
and p contains r terms so the result holds for p. Therefore the result holds for
X and we are done.
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Finally we observe that any X can be rebracketed to the right without
changing the value of the product. The value of X is therefore independent of
the bracketing.

o

We asserted earlier that there was not really much difference between (simple)
induction and complete induction. We now justify this remark. Suppose that
you have a proof a proposition P(n) by simple induction. You can turn it
into a proof by complete induction by replacing the final phrase "by induction
the proof is complete" with the phrase "by complete induction the proof is
complete". The proof will remain valid. You are guilty of overkill of course.
The other way round requires a ruse. Suppose that you have a proposition

P(n) which you prove true for all n E N by complete induction. Consider the
proposition Q(n).

Q(n) : "The proposition P(x) is true 'TIx E N, 1:$ x :$ n"

Your proof of "P(n) is true 'TIn E N" will become a proof that "Q(n) is true
'TIn E N" by replacing P(n) by Q(n) throughout the proof, and deleting the
word "complete" before all references to induction. Now if Q(n) is true for all
natural numbers n, then certainly so too is P(n).

2.3 Counter-examples and Contradictions

Suppose that we consider the proposition: "Every natural number is the sum
of three perfect squares". You can mentally check a few instances:

1 = 12 +02 +02

2 = 12 + 12 + 02

3 = 12 +12 +12

4 = 22 +02 +02

Everything seems to be going well. An optimist might stop looking at examples
and try to prove the proposition. This would be a waste of time, because, as you
may check, 7 is not the sum of three perfect squares. We say that 7 is a counter
example to the proposition. Counter-examples are wonderful things. They are
sometimes easy to find, so can take much less effort than using intelligence,
ingenuity and skill to prove things true. Suppose that someone claims that he
or she has proved a marvellous theorem - and has a beautiful 250-page proof
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(this happens in real life). As a mathematician you have a duty to establish
whether or not the proof is correct. 1£ the proposition is true, then you may
have a lot of work on your hands - checking every line of the proof. 1£ however,
the proposition is false, you can avoid finding the flaw in the proof. Even if you
did find the flaw, it would only establish that the proofwas wrong. You would
still wonder if it might be the case that the theorem was correct, but that a
different proof was needed. Much easier is to find a counter-example to the
alleged theorem. This is usually fast, it increases the sum of human knowledge
(this proposition is false), and shows that there must exist a fault in the proof
being offered. There is no need to find the flaw. The author will usually run
away and find it for himself.
This very efficient, but smacks of intellectual vandalism. However, there is

a very constructive use for the idea of a counter-example.
There is another method of proof which is actually equivalent to induction,

but sometimes yields a slicker proof; that is proof by minimal counter-example.
Suppose that you wish to prove that some proposition P(n) is true for all
natural numbers n. What you do is to use a "contradiction" to accomplish
the proof. You suppose (for the moment, and hoping to be shown that you
are wrong) that there exists a natural number m for which P(m) is false.
There must therefore exist a smallest natural number r such that P(r) is false.
You then trade off the consequences of P(r) being false but P(x) being true
whenever x is a natural number smaller than r. 1£ you manage to show that
this situation is impossible, you can deduce that there is no smallest natural
number r for which P(r) is false, and so that there are no natural numbers m
for which P(m) is false. Thus P(n) is true for all natural numbers n.
Let us see this in action. We shall reprove Proposition 2.3.

Proposition 2.5

This is just Proposition 2.3 (revisited). Each natural number n is the product
of prime numbers. (We deem 1 to be the product of no prime numbers!)

Proof

Suppose (for contradiction) that the proposition is false, and let x be a minimal
counter-example. Now, x f/.llJ (otherwise it would not be a counter-example),
and of course x > 1. Thus x = y. z for y,z E Nand y,z < x. Now, y and z
are products of primes (because x is the smallest counter-example). Thus x is
a product of primes. However, x is not a product of primes by hypothesis. We
have a contradiction. Therefore x does not exist and the proposition is proved.

o
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One must admit that the argument is very similar to proof by induction. Some
mathematicians do not like proofs by contradiction. Reasoning about a non
existent counter-example gives them the philosophical wobblies. If you are one
of these people, you will often find that you can reformulate a "contradiction"
argument in a more straightforward way.
The following challenge was set as problem 6 of the finals of the Interna

tional Mathematical Olympiad 1988 held in Canberra, Australia. This compe
tition can be thought of as the world championship finals for secondary school
mathematicians. This was certainly the most difficult question in the competi
tion, only 11 out of 268 competitors managed it completely. The solution that
follows was not the one that the organizers were expecting, but was found un
der exam conditions by a Bulgarian competitor named Emanuel Atanasov. In
order to appreciate the magnitude of this achievement, you must realize that
there was no hint that this question was amenable to attack by induction or
minimal counter-example. It could have been complex numbers, or geometry,
or indeed any type of mathematics that was appropriate. This competitor both
realized what method would be likely to succeed, and produced an argument
half the length of the "official" answer. You may care to cover up the proof
and have a go yourself. You have the advantage over Atanasov that you know
which type of argument is necessary. If you do find a solution, see if it is as
elegant as the following tour de force.

Problem 2.1

Suppose that (a2 +b2 )/(1 +ab) =tEN for some natural numbers a and
b. Show that t is a perfect square.

Solution 2.1

We fix t and choose b minimal and a ~ b > 0 such that the equation is
satisfied. Thus a is a root of the quadratic polynomial

(2.4)

Let the other root be e. Now, a + e = tb so e E Z. Substitute e into
Equation (2.4) and rearrange to obtain t(l +be) =e2+b2 > 0 so be > -1
and e ~ O. The product of the roots of our quadratic is ae = b2

- t < b2

so b > e ~ O.
Thus (b2 + 2)/(1 + be) violates the minimality of the choice of b

unless c = O. Thus 0 is a root of Equation (2.4) and so t = b2 is a perfect
square.
To phrase this argument in terms of minimal counter-example one

observes that we could have said - choose bEN minimal so that a ~
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b > 0 and (a2 + b2 )/(1 + ab) is a natural number which is not a square.
The above proof then produces the necessary contradiction.

2.4 Method of Descent

The method of descent is closely associated with the mathematician Fermat.
You may well have heard of him because of the celebrated result known as
Fermat's last theorem. This is a misnomer of course, since, no proof was found
and published until 1995.

Theorem 2.1 (Fermat's Last Theorem (Wiles and Taylor-Wiles»

There do not exist x,y,z,n EN, with n ~ 3 such that xn + yn = zn.

Fermat claimed to have found a proof, but no trace of it remains, and no-one
else produced valid proof until 1995. It is just possible that Fermat did have
a proof, but the balance of mathematical opinion (for what that is worth) is
that he had a flawed argument. It is of course possible that Fermat, who was
not stupid, had an idea which no-one has had since. It is not conceivable that
Fermat had a proof which was anything like the modern argument - relying as
it does on sophisticated technical machinery. It would be rather like speculating
that Archimedes had secretly invented the laser.
There is a special term for a result that we believe to be true, but for which

we cannot find a proof. Such propositions are called conjectures - we have
already used the term once in the previous paragraph. Some conjectures have
been standing open for hundreds of years - as Fermat's conjecture did. Others
have a much shorter life (a couple of seconds is the average, and fortunately
most of them don't reach as far as the vocal chords).

Flavour A

Suppose that you want to prove that a proposition P(n) is true for all natural
numbers n. You suppose (for contradiction) that there exists kEN, k > 1
such that P(k) is false. You then show that it follows that there must be
some k' E N, k' < k such that P(k') is false. By repeated application of your
argument, it follows that P(l) must be false. You now examine P(1). If P(1)
is true, you have a contradiction, and P(n) must be true for all n E N.
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Flavour A is equivalent to proof by minimal counter-example. Flavour B is
in some ways more exciting.

Flavour B

Suppose that you have propositions P(n) concerning each natural number n,
and that you want to show that P(l) is true. First, find tEN such that P(t)
is true. Second, you find a proof that if for some SEN, S > 1, P(s) is true
then 3s' E N, s' < s such that P(s') is also true. By repeated application of
your argument you can conclude that P(l) is true.

We asserted in Section 1.3 that the number .j2 was not rational. We shall
demonstrate this fact by using Flavour A of the method of descent.

Proposition 2.6 (Pythagoras)

The number .j2 is not rational - i.e. there do not exist natural numbers a and
b such that a2 = 2b2.

Proof

Suppose that a, bEN and a2 = 2b2. Now a2 is even, so a is even. Let a = 2b'
where b' E N. Thus 4b,2 = 2b2 so b2 = 2b,2. Let a' = b, then a,2 = 2b,2 and
1 ::; a' < a. By the method of descent (applied to a) there must exist dEN
such that 12 = 2d2 . This is nonsense, so the natural numbers a and b could not
have existed in the first place, so .j2 is irrational.

o

If you want to see how the proof of Proposition 2.6 ties in with the description
of Flavour A, consider the following proposition:

P(n): For n E N ,lim E N such that n2 =2m2
•

We illustrate Flavour B by giving a sketch proof of a famous result of
Fermat. All the technical details are omitted so that you can concentrate on
the structure of the proof. This result is certainly striking enough to be called
a "theorem".

Theorem 2.2 (Fermat - two squares)

Let p be a prime number, and suppose that p leaves remainder 1 when divided
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by 4, then p = x 2 + y2 for some natural numbers x and y.

Proof (sketch)

First find n, a, bEN such that np = a2 + b2 (a proof that this can always be
done is not deep - though it would be a remarkable first-year undergraduate
who could discover it unaided). If n = 1 you have finished, so assume n > 1.
Next, show that you can find n',a',b' E N, n' < n such that n'.p = (a')2+(b')2.

Fermat's method of descent yields a proof that the required natural numbers
x and y do exist.

o

As before, we point out the relevant family of propositions which ties the proof
of Theorem 2.2 to the method Flavour B:

P(n) : 3x, yEN such that np = x2 + y2

The remarkable thing about Fermat's method of descent (Flavour B) is that
it is often constructive. It certainly is in this instance. Once you have got your
hands on a, b and n, there is a recipe for producing a', b' and n' using simple
formulas. You repeat the procedure to actually construct x and y. The sensible
way to do this sort of thing is on a computer of course. We not only know that
x and y exist, we can actually find them. In the case of Fermat's two squares
theorem, this is not that wonderful. A crude computer search will find x and y.

The theorem simply guarantees that the search will succeed. Nonetheless, the
proof method does actually find x and y by successively "improving" a first
guess at a solution - a and b. This illustrates a technique of which computer
scientists are very fond - for they usually need to be able to construct solutions.
Some mathematicians (especially of the computing variety) do not really

care for proofs which are not constructive. They take the view that if you
cannot actually "calculate an answer" , then you are whistling in the wind.
Other mathematicians (especially of the analysis variety - analysis is cal

culus made interesting) disagree completely. They often take the view that a
proof of the existence of something is quite sufficient, thank you very much.
Only a grubby calculator would want to actually lay her hands on the relevant
numbers.
Fortunately, the planet is big enough for both views.
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2.5 Style
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In the course of this book, we repeatedly give proofs of results. Perhaps the
time has come to discuss what proof is about. A mathematical proof is an
utterly convincing argument that some proposition is true. An argument which
is merely persuasive or fairly convincing simply will not do. It should not only
be logically perfect - it should also be clear.
Clarity is a matter of style. It takes time and trouble to learn how to write

mathematics beautifully. Remember that you are writing for other people, and
that your work will be enjoyed only if your exposition gives pleasure to the
reader. It is perfectly possible to write correct mathematics in an ugly way, but
it is horribly antisocial. The "other" person most likely to read your work is
yourself, but not your current self. It is yourself six months or a year older. By
that time you will most likely have forgotten details which are obvious to you
now. In this respect you will be a different person. Write for that person now,
and you will be grateful to yourself later. The same remarks apply to computer
programming. Comment the code!
First state exactly what you are trying to prove. Give your statement a

label to distinguish it from other material - a label such as Theorem, Lemma,
Result or Proposition. When writing casually, a good label is Claim. If you are
not sure that the result is true, then call it a Conjecture. Thus, on the back of
the proverbial envelope, you might write:

Conjecture 2.1

If n is a natural number, then there is a prime number p such that n ~ p ~ 2n.

In fact this conjecture is true. After stating the proposition you wish to prove,
write the word Proof boldly. Then make your utterly convincing submission,
and finish it off with an end-of-proof symbol - anything that clearly marks the
end of the proof will do. Some people use a couple of slashes, and others prefer
Q.E.D. (Quod Erat Demonstrandum).
In the course of your proof, decorate the lines of mathematics with well

chosen English words and phrases to render the meaning as transparent as
possible. Useful pointers include but, conversely, it follows that, hence, however,
since, so, then, therefore, we see that, whence, whereas and many other friends
and relatives.
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2.6 Implication
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Some arguments or proofs take a linear form - you deduce each line from its
immediate predecessor. A legitimate (though very dull) tactic is to prepend
to each line the word "therefore" or its symbol (:.), or alternatively append to
each line the slightly dilatory "since" or its symbol ('.'). Try to introduce a little
variety into your exposition - pepper the page with appropriate conjunctions.
The word "implies" is very widely misused - even by mathematics un

dergraduates. If you cannot use it selectively and correctly, perhaps the best
stratagem might be to banish it from your vocabulary completely. Even worse
is the widely used implication symbol => . There is little in life more unpleasant
than a page of purported mathematics in which each line begins with => . Some
undergraduates just dump it down on the page as if to say "I am going to start
another line now. I wonder if the reader is clever enough to work out if and
how this line is related to the other lines on this page" .
The implication symbol => is a fine thing in the proper context. It is a

symbol borrowed from mathematical logic in fact. If you use it at all, use it
sparingly. There is one circumstance when this symbol really is rather useful.
We will come to that shortly.

2.7 Double Implication

Suppose that A and B are two propositions. You may be asked to show that
A is true if and only if B is true. This means that you will almost certainly
have to do two pieces of work. You must demonstrate both of the following
propositions.

1 If A is true, then B is true.

2 If B is true, then A is true.

The phrase if and only if is used so frequently that a notational convention
has been adopted which saves time, trees and ink. We write iff to mean "if and
only if". A symbolic synonym for iff is ¢::> (implies and is implied by). There
is nothing wrong with ¢::>, save that it can encourage the wanton use of => .
Another useful synonym for iff which looks less like a spelling error is exactly
when.
When doing the two parts of an "if and only if" proof, it is polite to tell the

reader which part you are doing first and which second. This is an opportunity
to use => and ~ (is implied by) to rather good effect. Perhaps this is best
illustrated by an example:
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First a quick definition. If n and d are natural numbers and there exists a
third natural number q such that n = qd, then we say that d is a divisor of n.
This is written din.

Proposition 2.7

Suppose that n is a natural number. The number of distinct divisors of n is
odd if and only if n is a perfect square.

Remark 2.1

In terms of the general set-up described above, A is the proposition "the number
of distinct divisors ofn is odd"; the proposition B is that "n is a perfect square" .
We must show that if A is true (for some particular n), then B must be true.
Then we will have done exactly half the problem. To finish we must show that
if B is true (for some particular natural number n), then A must be true. Thus
our plan is first to show A ~ B and then A ¢: B. We can use these implication
symbols to inform the reader what is going on.

Proof

=}) If din, then let d' = n/d E N. Notice that dd' = n so d' is also a divisor of
n. Also observe that dll = d so the divisors of n occur in pairs - except possibly
in the case d = d'. We are assuming that the number of distinct divisors of n is
odd, so there must exist a divisor d of n such that d = d'. Thus n = dd' = rF
is a perfect square.
¢:) Now we assume that n is a perfect square. We use the notation outlined
in the first half of the proof. The number of divisors of n with the property
that d i' d' is even, so it suffices to show that the number of divisors d such
that d = d' is odd. In fact a stronger statement is true. The number of distinct
divisors d of n such that d =d' is exactly one. Certainly there is such a divisor
f (since n is a perfect square). Suppose 9 were a rival divisor such that 9 = g'.
Then n = f f' = gg' = p = g2. Thus P = g2 so P - g2 = 0 and thus
(f - g)(f + g) = O. Now f + 9 is strictly positive so f - 9 = 0 and f = g.
Therefore f is the unique divisor of n with the property that f = f'. Thus the
number of divisors of n must be odd.
Thus the number of divisors of n is odd if and only if n is a perfect square.

o
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2.8 The Master Plan
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When you are planning to write down a proof that is more than a few lines
long, it is a good idea to spell out the plan of the proof. A short comment such
as "we will prove this proposition by simple induction on x" , or perhaps "we
will use a contradiction argument to establish this proposition. We therefore
suppose that the proposition is false, and produce a contradiction as follows"
or more succinctly "Assume, for contradiction, that the result is false" .
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Complex Numbers and Related Functions

3.1 Motivation

Think back to when you first started doing algebra. No doubt you were taxed
with problems such as "find x such that 3x = 12". When you had learned
to deal with those, the teacher may have produced more tricky ones such as
2x = 3 or even 2x + 4 = O. You can't solve either of these equations using the
natural numbers, and if either equation is supposed to tell you the number of
people in the room, you know there is a mistake somewhere. To solve these
equations you need more extensive number systems, involving fractions in the
first case, and negative numbers in the second. These equations are all linear
equations, in other words, the graphs of the functions defined by the left-hand
sides of these equations are straight lines. The algebra which grows out of the
study of these equations is called linear algebra.
In this way we are driven to work in Q rather than fill when doing linear

algebra. Any equation of the form ax + b = 0 with a, b E Q and a =I- 0 has
exactly one rational solution -bla. If a, b are restricted to be in fill (or Z), and
we look for a solution in the same set, we find a complete mess; sometimes
there is a solution, sometimes not.
So, the rationals are a great place to work in if you are doing linear algebra.

Also lR is just as good. There are intermediate sets which are also perfectly
satisfactory places to do linear algebra; for example F = {a + bV2 I a, b E Q}
is fine; you should check that F is closed under addition, subtraction, multi
plication and division by a non-zero quantity. There are infinitely many sets

G. Smith, Introductory Mathematics: Algebra and Analysis
© Springer-Verlag London Limited 1998
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-b ± v'b2 - 4ac
2a

intermediate between Q and IR which are good places to do linear algebra; can
you find another one?
Anyway, let's make life more difficult, and worry about quadratic equations

of the form ax2 + bx + c =0 where the coefficients a, b, c are in some specified
set - say IR. As you should know, if a # 0 this equation has solutions of
the form -b±~ provided v'b2 - 4ac exists. In fact these are the only
possible solutions, so there are either two solutions, or a repeated solution
(when b2 - 4ac =0) or no solutions when b2 - 4ac < O. This is all a bit untidy.
There is not much you can do about x 2 - 2x + 1 = (x - 1)2 = 0 having a
repeated solution, but it seems a bit awkward that a quadratic equation will
sometimes have two solutions and sometimes none.
The solutions of an equation are sometimes called its roots. There is a

strong relationship between functions (i.e. maps) and equations. For example,
suppose that you are told to find all the real roots of 2x2 - 5x + 1 = 0; this
problem can be cast in the language of maps. Consider f : IR -+ IR defined by
f(x) = 2x2 - 5x + 1 \Ix E IR. The solutions of the equation are the elements of
{a Ia E IR, f(a) =O}.
Just in case you don't know it, here is a proof that the roots ofax2 +bx+c =

oare given by the usual formula.

Proposition 3.1

Consider the equation

ax2 + bx + c =awhere a,b,c E IR and a # O. (3.1)

This equation has no roots in IR if b2 - 4ac < O. The real roots are given by the
formula

if b2 - 4ac ~ O.

Proof

Assume (possibly, but not necessarily, for contradiction) that a E IR is a root
of Equation (3.1) so aa2 + ba + c = 0 and a # O. Divide through by a and
rearrange slightly to see that

2 b c
a + -a = --.

a a

Now add (2:) 2 to each side to get

a 2 + ~a + (l!.-) 2 = (l!.-) 2
a 2a 2a

c
a
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Tidy up to obtain

-b ± Jb2 - 4ac0=
2a

(O+:ar = b2~a;ac
If the right hand side is negative we have a contradiction, since the square

of a real number is not negative. In this event the initial assumption that there
is a real root a must have been nonsense so there are no real roots.
On the other hand, if the right hand side is positive we have

Now in lR we have u2= v2 if and only if u = ±v because u2_v2 = (u-v)(u+v)
and the product of two reals is 0 exactly when at least one of the quantities
being multiplied is O.
Thus (0 + 2

ba) = ±~. We have proved that if a E lR is a root of
Equation (3.1), then

and b2 - 4ac > O.
This is not-quite the end of the story. We also need to show that -b±~

is a real solution of Equation (3.1) provided b2 - 4ac 2: O. This can be done in
two ways. Either you can retrace the argument in reverse (which is probably the
quickest thing to do) or the devoted reader can simply substitute the alleged
roots into Equation (3.1) and verify that a02 + bo + c =O.

o

The fuss in the last paragraph when we insisted on verifying that a02 +ba+c =
omay have come as a surprise. We will now try to convince you that it was
necessary.

Example 3.1

You are asked to find all x E lR such that Ixl = -1. The correct answer is that
no real number has modulus -1. However, we may reason like this. Suppose
that a E lR and 101 = -1. Take the modulus of each side so lIall = I - 11. Now
11011 = 101 and 1-11 = 1so 101 = 1. It follows that a =1or 0= -1. This might
cause an eyebrow to quiver, but there is no fault in the reasoning. The point
is that the original assumption that there was a real number a satisfying the
equation was false. From a false premise, you can deduce anything at all, and
in particular you can deduce that a = 1 or -1. You pick up the fact that the
assumption was wrong by substituting 1 and -1 into the equation and finding
that it is broken.
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False assumptions are not the only way you can generate trouble.

Example 3.2

You are asked to find all x E Ii such that x - 1 = O. Suppose that 0 E Ii
is a solution of this equation. Now, the more astute reader may have already
observed that this equation has a real solution, so perhaps we can avoid the
unpleasantness of the preceding example. We know that 0 - 1 = o. Multiply
both sides by 0 +1 to yield 0 2 - 1 =o. Add one to each side so 0 2 = 1 and thus
o is either 1 or -1. At this point you must not fall into the trap of thinking
that -1 is a solution of the equation. Our argument shows that if 0 is a real
root, then 0 is 1 or -1. This is right, since the only root is 1 and it is true that
1 = 1 or 1 = -1. That is how "or" works.

y

x

Fig. 3.1. Nose-down parabolic graph of a quadratic polynomial with two roots

Now we address the issue of finding a geometric interpretation of solving
a quadratic equation. Suppose a "I 0 and f : Ii -t Ii is defined by f(x} =
ax2 + bx +c 'Ix E lit The graph of this function is {(x,j(x}) I x E Ii} to which,
thanks to Descartes, you can give a geometric interpretation as a subset of the
x, y plane. The picture of the graph (what you might call the graph itself) is a
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parabola, with axis of symmetry parallel to the y-axis, as shown in Figure 3.1.
This parabola will be nose down or nose up as a is positive or negative. The
equation ax2 + be + e = 0 will have a solution a exactly when (a,O) is in the
graph of the function. In the picture, ax2 + bx + e =0 has a solution precisely
when the parabola meets the x-axis. This gives you two solutions or no solutions
in general, but you can have a repeated solution if the parabola just kisses (is
tangent to) the x-axis.
Returning to the algebraic view, the obstruction to using the formula to

solve a quadratic is that you can be asked to extract the square root of a
negative real number. The way forward is to extend our number system yet
again in such a way that we can do this. This may seem a little uncomfortable at
first: personally I can recall feeling very suspicious about negative numbers and
their arithmetic. It was all very well being told to think of negative quantities as
debts, but how can you multiply two debts together to get a credit? The point
is that it is intellectually crippling to give symbols real-world interpretations
all the time. It may be useful to invest symbols with meaning temporarily as
a psychological prop, or to help you gain inspiration about how to solve a
mathematical problem, but ultimately the symbols are symbols and nothing
else.
A teacher who tries to explain that a piece of mathematics is easy because

x is really temperature and y is really height above sea-level and so the equa
tion means something or other may be very effective at getting across an idea.
However, this is not mathematics. The negative numbers are symbols, nothing
more, and we endow them with multiplication, division, addition and subtrac
tion as we see fit. We do it in such a way that the laws of algebra (associativity,
distributivity, etc.) continue to be valid in Z just as they were in N. When we
try to extend IR to build a larger system where you can extract a square root of
anything you fancy, our obligation is to do it in such a way that the algebraic
properties of IR continue to be valid in the new world. That way we can carry
on doing mathematics.
Of course, there is a strong association in our minds between the real num

bers and a powerful image, the infinite line. We should not be surprised if a
sufficiently sweet generalization of IR has a fine geometric interpretation. That
is written with the benefit of hindsight of course. In every case I have ever
seen, a good geometric interpretation of symbols has been a useful inspiration,
and notwithstanding the previous paragraph, it seems to be a good strategy to
keep track of any relevant geometry. I have no idea whether this is intrinsic to
thought, or because vision is by far the most developed of human senses.



62 Introductory Mathematics: Algebra and Analysis

3.2 Creating the Complex Numbers

Recall from Chapter 1 that ]R.2 consists of ordered pairs of real numbers, and
that two ordered pairs are equal if and only if their corresponding entries are
equal. We endow ]R.2 with addition co-ordinatewise, by

(a, b) + (e, d) = (a + e, b + d) Va, b, e, dE IR.

It easy to check that this operation is associative and commutative. The element
(0,0) acts as an additive identity element and the additive inverse of (a, b) is
(-a, -b). Now, more ambitiously, give ]R.2 a multiplication via

(a, b) * (e, d) = (ae - bd, ad + be) Va, b, e, dE Ilt

This is a commutative operation since (e, d) * (a, b) = (ea - db, da + eb) =
(ae - bd, ad + be). The element (1,0) acts as a multiplicative identity. It is also
true that this multiplication is associative. We shall stay honest and check this;
for all a, b, e, d, e, f E ]R. we have

«a, b) * (e,d)) * (e, I) = (ae - bd, ad + be) * (e, I)

=«ae - bd)e - (ad + be)f, (ae - bd)f + (ad + be)e)

= (a(ee - dl) - b(ef + de), a(ef + de) + b(ee - dl))

=(a, b) * (ee - df, ef + de) = (a, b) * «e, d) * (e, I)).

Finally, note that we have a multiplicative inverse for (a, b) ::j; (0,0). It is

( a2~b2 ' a2-tb2) because

(a,b)· (a2:b2'a2~\2)= (:~::~, ~~b:b~a) =(1,0).

This multiplication is thus a splendid operation. Ordinary multiplication
of real numbers interacts with addition via the distributive law: Va, b, e E ]R.

we have a· (b + e) = (a· b) + (a . e), or just a· b + a . e subject to the usual
conventions about priority of operations. We now check that our addition and
multiplication on ]R.2 is just as good.

(a, b) * «e, d) + (e, I)) = (a, b) * (e + e, d + I)

=(ae+ae-bd-bf,ad+af+be+be)

= (ae - bd,ad + be) + (ae - bf,af + be)

=(a, b) * (e, d) + (a, b) * (e, I) Va, b,e,d, e, f E Ilt

Consider the map 0 : ]R. ~ ]R.2 defined by O(r) = (r,O). This is an injective
map, and it preserves all the algebraic features of Ilt In fact you can think of ]R.
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as simply acquiring a bit of decoration; a left bracket in front, and a comma, a
zero and a right bracket behind. We'll use a bold font x as shorthand for (x,O)
and use juxtaposition or a dot to denote multiplication of these symbols in bold
print. We will also use + to denote addition of ordered pairs. We will use R to
denote {(x, 0) I x E IR}. Using our definitions of addition and multiplication in
1R2 it is still the case that 2 + 3 = 5 and 6·7 =42 because (2, 0)+{3, 0) = (5,0)
and (6,0) . (7,0) = (6· 7 - 0·0,6·0 + 0·7) = {42, 0). Our set R is just a copy
of IR and is every bit as good as JR.
Let i = (O, 1), then i2 = i· i = (O· 0 -1·1,0·1 + 0 ·1) = (-1,0) = -1.
Notice that every element of 1R2 can be expressed in terms of bold symbols

by (a, b) = {a, 0) + (O, b) = (a,O) + (O, 1) * (b, 0) =a + ib.

Definition 3.1

The set C of complex numbers is the set ]R2 of ordered pairs endowed with
addition and multiplication as above.

We have the usual geometric picture of]R2 where two axes are drawn at right
angles in the plane, and points are associated to pairs (x, y). In this case how
ever, (x,y) = {x, 0) + (0,1) * (y,O) = x + iy.

Definition 3.2

The Argand diagram (Figure 3.2) is the usual x, y plane corresponding to ]R2,
except that each point is labelled with a complex number a + ib rather than
the ordered pair (a, b) .

Thus complex numbers are things that look like x + iy, where x, y E R.
Notice that R ~ C. The addition and multiplication work like this. Suppose
that v =3 - 2i and J.L =3/2 + i, then v+J.L =9/2 - i and

v·J.L =3{3/2) + 3i + (-2i)(3/2) + {-2i)i =9/2 + 2 + {3 - 3)i = 13/2.
In other words, you can add and multiply these complex numbers by think

ing of 3 - 2i and 3/2 + i as linear polynomial expressions in the variable i,
but with the extra proviso that you replace i2 by -1 whenever it occurs. This
always works, and applies to subtraction and division as well.
We don't need our old real numbers any more. The new copy R has all

the properties of the old real numbers, with the bonus that it is a subset of
C. We now discard for ever our old real numbers, and use the ones in bold
print instead. Having done that, there is no need to use bold type any more,
so i gets written as i and 3! as 3!. Since the symbol ]R is now redundant, it
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Fig. 3.2. The Argand diagram

is harmless to recycle it and write JR instead of R. Now JR ~ C. So, we have
gone to considerable trouble to construct C properly. Having laid these secure
foundations, we will be able to take a confident and relaxed attitude to C. We
will not have to think of C as consisting of ordered pairs of real numbers; the
elements of C are just expressions of the form a +bi with a, b E JR, and we have
simple rules for doing algebra with these symbols.

Definition 3.3

If a, b E JR, then the real and imaginary parts of z = a + ib E C are a and
b respectively. We write Re(z) = a and Im(z) = b. We say that the complex
number z is real if Im(z) = 0, and that z is purely imaginary if Re(z) = O.

Note the slightly strange fact that the imaginary part of a complex number is
always real. Also observe that the imaginary part of a real number is O. If you
see a phrase such as "Consider the complex number a + ib" the author often
means to imply that a, b E lR, but that may accidentally be omitted in the rush,
especially in a lecture course. If this is not specified, there is the danger that a

and b might be complex numbers which are not real. As long as you are alert
to the possibility of ambiguity, it should be possible to work out the intended
meaning from the context.

If we are going to do mathematics with C we had better make sure which
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laws of algebra it satisfies. In fact it is an example of a field.

Definition 3.4

65

A set F is called a field if it is endowed with binary operations + and *, and
contains elements 0 and 1 so that the following axioms are all satisfied.

The Field Axioms

a + b=b + a Va, bE F (addition is commutative)
a + (b + c) = (a + b) + eVa, b, c E F (addition is associative)
30 E F such that a + 0 = a Va E F (0 is an additive identity)

Va E F 3 - a E F such that - a + a = 0 (there are additive inverses)
a *b = b *a Va, bE F (multiplication is commutative)

a * (b * c) = (a * b) * eVa, b, c E F (multiplication is associative)
31 E F such that a * 1 =a Va E F (1 is a multiplicative identity)
Va E F \ {O} 3a-1 E F such that a-I *a = 1 (multiplicative inverses)

a * (b + c) = a * b+ a * eVa, b, c E F (distributive law)

and, last but not least, 0 :F l.
We have given the usual priority to * over + to lose a few brackets, and

from now on, * will be replaced by juxtaposition, x or a central dot.

The pattern is clear. The first four and second four axioms tell us that addition
and multiplication are good operations. The distributive axiom tells us that
they interact well, and the final axiom is a purely technical one to preclude the
unwanted case that F = {O}. We now have have a formal characterization of
the golden lands ("good places to do linear algebra") mentioned in Section 3.1.
Notice that Q forms a field, but Z does not (since 2 has no multiplicative

inverse in Z). We are a little hazy about the real numbers lR, but let us agree
that they satisfy the field axioms. On that assumption, C is also a field - we
have checked almost all of the details already.
There is a considerable advantage in using axiom systems to study math

ematics. Not only do they clarify ideas, but they also permit the following
strategy. Try to prove a theorem about an arbitrary system satisfying a given
collection of axioms. If you succeed, then the theorem becomes true of all those
systems at once - including systems which no-one has ever invented or consid
ered. The following result is well known for the rational numbers and indeed
for JR. However, if you have never worked with C before it may not be obvious
to you that it works for the complex numbers too, but C is a field so it does.
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Proposition 3.2

Let F be a field.

(i) For all / E F we have / . 0 =O.
(ii) If h, kEF and hk = 0, then h = 0 or k = O.

Proof

(i) For any / we have

/ . 0 = / . (0 + 0) by definition of 0

so
/·0= /·0 + /·0 by distributivity.

Now add the additive inverse of / . 0 to each side and then use additive
associativity to yield

-(f·O) + / ·0= -(f. 0) + (f. 0 + / ·0) = (-(f. 0) + / ·0) + / . o.

The definitions of an additive inverse and 0 ensure that

0=0+/·0=/·0

and we are done.

(ii) Suppose that h, kEF and hk = O. Either h = 0 (and we are done) or
there exists h-1 E F such that h-1h = 1. Now h-1(hk) = h-10 so by
associativity we have h-10 = (h-1h)k = lk = k. Thus we can deduce
k =0 because of (i).

o

The algebraic argument that we used to find the roots of a quadratic equation
is valid for any field (except for those fields where 1 + 1 = 0; we won't be
working with these monsters, but they do exist, and division by 2 = 1+ 1 is
impossible in such fields). In fields where 1 + 1 ::f; 0 the delicate moment is
where, if you recall, you have to deduce that u = ±v from u2 = v2 • The point
is that u2 - v2 = 0 so (u - v)(u + v) = O. Now you use Proposition 3.2 (ii) to
see that either u - v = 0 or u + v = 0, from which it follows that u = ±v.
In order to be able to solve all quadratic equations with coefficients in IR

we need to be able to extract square roots of negative numbers. If you want to
solve quadratic equations where the coefficients are in C, then you will need to
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be able to extract square roots of complex numbers. We shall now see that this
is always possible.

Proposition 3.3

Suppose that a, bE III The square roots of a + ib are ±(x+ iy) where

.1a + J a2 + b2 . .I-a + J a2 + b2
x =Y 2 ' y =slgn(b)y 2

and sign(b) is -1 if b is negative and otherwise is +1 .

Proof

The result is straightforward when b=0, and we leave that case to the reader.
Thus we assume that b =F O. Suppose that (,17 E C with ( = a+ib and 17 = x+iy

where a, b, x, y E IR and ( = 172 , so Re() = Re(172 ) and Im() = Im(172 ). Thus
a = x 2 - y2 and b = 2xy. We eliminate y between these equations by observing
that 4ax2 + b2 = 4x4 - 4x2y2 + 4X2y2 = 4x4 . Thus

4x4
- 4ax2 - b2 =4(x2)2 - 4ax2 - b2 =O.

Although this is a quartic equation, it is actually a quadratic equation in the
variable x 2 so

2 _ 4a ± J16a2 + 16b2 _ a ± Ja2 + b2
x - 8 - 2 .

We are looking for x E III so x 2 ~ O. One of the two candidate values for x 2

looks doubtful. Remember that a and b are real, so lal = ..,fO.2 < Ja2 + b2 since
b =F O. Thus a - J a2 + b2 < a - lal $ 0 and so

a - Ja2 + b2

2

is not the square of a real number. Thus we have eliminated one possibility and
are left with the other which is

a+Ja2 +b2x 2 =_----:.. _
2

and extracting square roots yields

va + Ja
2

+b
2

x=± 2 .
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Now x2 - y2 = a so we have
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and so

-a+ va2 + b2
y2 =x2 -a= __....:.... _

2

J-a+ va2 + b2

y = ± 2 .

Suppose that b > 0, then you want b = 2xy > 0 and this can be accomplished
by choosing the signs consistently; both + or both -. Conversely if b is negative
the signs must be chosen opposite in order to obtain 2xy < O.
We now have the candidate square roots mentioned in the proposition. By

reversing the reasoning, or by directly verifying that (x + iy)2 =a + ib, we are
done.

o

We are now in a happy state. Just as any linear equation with real coefficients
can be solved with a real solution, any quadratic equation with complex coeffi
cients can be solved using the complex numbers. At this point, the reader with a
good mathematical imagination might be thinking that in order to solve cubics
and then quartic and higher degree equations, we will need to construct larger
and larger number systems, progressively more exotic generalizations of Ii and
C. Happily or unhappily (it depends upon your taste), this doesn't happen.
A polynomial equation of degree n with coefficients in C is one of the form

with ai E C'Vi E {O, ... ,n}, x being an unknown and an ::j:. O.
Such an equation has exactly n solutions (possibly allowing for repetitions)

in C. In this sense, C is the end of the road. This result is called the Fundamental
Theorem of Algebra and we will not prove it here; it is too deep. However, it is
not beyond mortal range, and can be proved using a variety of techniques. It
was first proved by the great Hanoverian mathematician Carl Friederich Gauss.

EXERCISES

3.1 Put the following expressions into the shape a + ib with a, bE IR.

(a) i 3

(b) (1 - i)i
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(c) (1 + i)2
(d) (1 + i)8
(e) (1-i)8

(f) (1 - 2i)(3 - 4i) - i3

(g) (-lt0)2

(h) (-lt0 )3

U) (-ItO )999

(k) l~i (Hint: MVAr£7rA£ r01r aviS {3OTroJ-t (3£ OVt J-twva i.)

(I) l~i + l:i (Hint: Ett 7rptlpwva wr.)

(m) 21':;i (Hint: Aa (3tlpOpt.)

3.2 Find all complex numbers satisfying each of the following equations
in the unknown x.

(a) x 2 = -1

(b) x 2 = -2

(c) x 2 = i

(d) x 2 + x + 1

(e) x3 - 1 =0
(f) x 2 + 4ix + 5 = 0

(g) x 2 + 4ix - 5 =0
3.3 Use the field axioms (and Proposition 3.2) to prove each of the follow
ing statements about a field F. Justify every step of your argument
by appealing to an axiom or a previously proved result.

(a) (-1)(-1) = 1 (Hint: Erapr O<Plp v(wy vqaT£cp OVt 7rAVa OVt
t/{,aAa (tpo.)

(b) "If E F we have - f = (-l)f.

(c) Vf,g E F we have (-f). 9 = -(/g).

(d) Vf,g E F we have (-f). (-g) = fg.

(e) If f,g E F and f9 = g, then either 9 =0 or f = l.

(f) If f,g, hE F and fg = hg, then either 9 =0 or f = h.
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3.3 A Geometric Interpretation

Let's see what all this means geometrically. First we go back to IR, and think
about the real line. Addition has an easy interpretation. If you add 5 to a real
number, the answer is the number situated distance 5 to the right on the real
line. You can think of adding 5 as a map. We call it adds or more formally
adds: IR ~ IR defined by adds (x) = x + 5 '<Ix E IR.
The map adds is a bijection, and its inverse is the map add_so Using this

notation, addo would be the identity map from IR to IR. One very special feature
of adds is that it preserves distances. The distance between x and y is the same
as between x+5 and y+5 because Ix-yl = l(x+5) - (y+5)1. The same is true
for addr whenever r is a real number - it always preserves distances. Think of
the real line as having a house at each real number, and each house having a
single occupant. The map adds tells everyone to move to the house situated
distance 5 to the right. When this is done, the people find that in their new
homes, the neighbours seem rather familiar. The fact that Yin Luthra used to
live a distance 7r from Pete Whitelock is still true after the application of adds.
Maps of the form addr simply translate people (or numbers) in a rigid way.

EXERCISES

3.4 (a) Let f : IR ~ IR be a map which preserves distances. Prove that
there are numbers a E {I, -I} and b E IR such that f(x) =
ax + b '<Ix E IR. Conversely, show that any map defined by a
formula of this type will preserve distances.

(b) What happens if you replace IR by Q or Z in part (a)?

3.5 Try to classify (list or describe) all maps from 1R2 to 1R2 which fix
the origin and preserve distances.

The jargon for a distance-preserving bijection is that it is an isometry.
Next consider multiplication. Fix a real number, perhaps 2 E IR and consider
the effect of multiplying by 2. The map muh : IR ~ IR is defined by muh(x) =
2x '<Ix E IR. In terms of the house, the person in the house at x is told to move
to the house at 2x. This certainly does not preserve all distances. For example,
17 - 31 = 4 but 114 - 61 = 8. The effect of this map is to stretch numbers
(or people) apart. This map is a bijection, and its inverse mull/2 shrinks the
distances between numbers (or people). Notice that muh =addo. Also mulo is
not a bijection, but rather a sort of black hole which sucks everything to O.
We want a similar geometric picture for addition and multiplication in the
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Argand diagram. This is no exotic 17-dimensional confection, but simply the
ordinary plane labelled with complex numbers in the obvious way.
Addition in C has a very straightforward interpretation in the Argand di

agram. If you are familiar with vectors you will see that addition of complex
numbers Zl and Z2 to get Zl + Z2 corresponds to vector addition. We will go
into that topic in great detail in Chapter 4.
This time you need to imagine that there is a house at each point of the

Argand diagram. Choose and fix a complex number; perhaps 1 - i. Consider
the map addl- i : C -+ C. This is defined by addl_i(z) =z+l-i Vz E C. What
happens is that all the points of the plane are subject to a translation. Thinking
of our plane as being inhabited, adding l-i tells the occupants to move distance
1 to the right and distance 1 down. The net effect is that everyone moves a
distance of v'2 in a south-easterly direction. Notice that the distance between
complex numbers p, q is unchanged if you add the same complex number to
each of them. The story about people having the same neighbours holds good.
Multiplying complex numbers by a fixed positive real number simply pushes

them directly away from or towards the origin, as the real number is bigger than
or less than 1. Multiplication by a fixed negative real number sends points to
the other side of the origin, and as before multiplication by 0 has a dramatic as
tronomical analogy. Multiplication by a non-real complex number is not nearly
so obvious. For example, what does the map mull-i do? It maps 0 to 0, and 1
to 1 - i, and you can do experiments to try to guess the geometric rule. Rather
than reading the explanation immediately, you are asked to break off from the
text and do some experiments.
In order to understand the geometry of complex multiplication, we will

develop some machinery. In particular, the notion of distance in the Argand
diagram ought to be captured in C itself.

Definition 3.5

If Z = a + ib E C with a,b E IR, then the modulus of z is Izi = va2 + b2.
Geometrically this is the distance from 0 to z in the Argand diagram, thanks
to a theorem of Pythagoras.

Observe that this definition is consistent with the use of Ixl for x E III Also
notice that if u, vEe, then the distance from u to v in the Argand diagram is
lu - vi· This is extremely important. Please draw a picture to convince yourself
that we have captured the notion of distance properly.
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Definition 3.6
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If Z =a + ib E C with a, b E IR, then the complex conjugate of z is Z =a - ib.

As usual it is interesting to look at the geometric interpretation of what we
have just defined. Complex conjugation is a map from C to C which corre
sponds to reflection in the real axis in the Argand diagram. In terms of our
analogy, complex conjugation amounts to a home exchange, where northerners
and southerners swap homes, and the unadventurous folk on the real line swap
homes with themselves. Notice that if Z = a + ib E C with a, b E IR, then
ZZ = a2 + b2 = IzI2 is the square of the distance of Z from the origin in the
Argand diagram.

Proposition 3.4

(i) Zl + Z2 =Zl + Z2 'rJzt. Z2 E C.

(ii) Z = z if and only if Z E lR.

(iii) Z = -z if and only if Z is purely imaginary.

(iv) Z + z E IR 'rJz E C.

(v) Z - z is purely imaginary 'rJz E C.

(vi) ZlZ2 =Zl Z2 'rJzt. Z2 E C.

(vii) IZ1Z21 = IZ11·lz21 'rJZt.Z2 EC.
(viii) IZl + z21 $ IZll + IZ21 'rJzt. Z2 E C (the triangle inequality).

Proof

(i) - (vi) are straightforward application of the definitions. Each one takes a
line or two to justify, and the reader is strongly urged to do that now.
Part (vii) is more interesting. The naive solution might be to let Zl = a + ib

and Z2 = C+ id with a, b, c, d E lR. Work out both sides and notice that you get
the same answer. That is far too much effort. Here is a neat way to do it.
Observe that IZ1Z212 = ZlZ2Z1Z2 and in turn this is ZlZ2Z1 Z2. Now use the

commutativity of multiplication to recast our expression as ZlZlZ2Z2 which is
IZl121z212. Take the square roots of these real numbers and we are done.
Part (viii) has the interesting geometrical interpretation that the length

of the longest side of a triangle cannot exceed the sum of the lengths of the
other two sides. We give an algebraic proof. Suppose that Q E C. Notice that
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o - 0 is purely imaginary so (0 - 0)2 is a non-positive real number. Thus
(0 - 0)2 + 400 ~ 400. We deduce that (0 + 0)2 ~ 41012. It follows that

o +0 ~ 2101.

Now put 0 = ZlZ2 so our inequality reads

ZlZ2 +ZlZ2 ~ 21z1Z21 = 21z11lz21·
Add ZlZl +Z2Z2 to each side to obtain that (Zl +Z2)(Zl +Z2) ~ IZlI2+2Iz1Ilz21+
IZ212 or in other words

The result now follows.

o

It is instructive to check the validity of each of the eight parts of the Proposition
when it so happens that z, Zll Z2 E III

If Z E C and Z ::f; 0 let z = z/Izl so Iii = 1 by a geometrical argument
or because :;$:; = 1. Multiplication by z = Izli can be accomplished in two
stages: first multiply by Izi and then by i. We know the geometric interpretation
of multiplication by a real number, so the problem reduces to understanding
multiplication by a complex number u of modulus 1.
Let the paths round the unit circle from 1 to u have lengths (J + 2k1r (where

k E Z) measured in an anticlockwise direction. We allow negative lengths be
cause of clockwise paths, and infinitely many lengths because you can go round
the circle as many times as you wish in either direction before stopping at u.

Definition 3.7

In this notation, we define the argument of u to be arg(u) = {(J+ 2k1r IkE Z}.
The unique element of arg(u) in the interval (-1r, 1r] is called the principal
argument of u, and is written capitalized as Arg(u). If you don't remember
interval notation, look back to Section 1.19.

If z E C\ {O}, then we have z =Izli for a unique i and notice that Iii = 1. We
define arg(z) and Arg(z) to be arg(z) and Arg(i) respectively. The length (J is
also the size of the angle shown in Figure 3.3 measured in radians.
We now have the language to address our geometric problem. The map from

C to C defined by multiplication by u of modulus 1 corresponds to a rotation
about the origin through Arg(u) - and we will have to justify this bold claim.
Multiplication by 1 is a trivial rotation through 0 =Arg(l). Multiplication by i
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Fig. 3.3. Angle measure defined by arc length

rotates a point about the origin anti-clockwise through 11"/2; to see this simply
inspect the effect of multiplying x + iy by i as x + iy lives in each of the four
quadrants in turn. However, Arg(i) =11"/2 so all is well so far. We have verified
this assertion about u inducing a rotation through Arg(u) when u happens to
be 1 or i, but that is just two cases, and there are infinitely many other cases
to worry about.
The key is provided by the distributive law of complex multiplication. Sup

pose that u E C is such that lui = 1. We consider the map mul.. : C --+ C.
We claim that it is an isometry. Consider an arbitrary pair a,f3 E C. We must
compare la - 131 with Imul.. (a) - mul.. (f3)l. However, the distributive law tells
us that u(a - f3) =ua - uf3 and taking moduli we have

Imul.. (a) - mul.. (f3) I = julia - 131 = la - 131

because lui = 1. Thus multiplication by u preserves distances.
We want to show that multiplication by u is a rotation through Arg(u)

radians in the Argand diagram. Now arg(ui) = {Arg(u) + 11"/2 + 2k1r IkE Z}
and arg(i) = {11"/2 + 2k1r IkE Z}. Of course luil = lullil = 1. This is good
news, since it means that multiplication by u rotates i anti-clockwise through
Arg(u).
We finish off the proof using geometrical arguments. Suppose that z is any

complex number, then z determines a triple (Iz - 11, Iz - 01, Iz - il). These
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are the three distances from z to 1, 0 and i respectively. The important point
is that no other z E C yields the same three numbers in that order. This
is a nice geometrical exercise in drawing circles, and the reader should fill in
the details. It amounts to showing that three circles whose centres are not
concurrent cannot meet in more than one point.
Now, (Iuz-ul, luz-Ol, luz-uil) =(lz-ll, Iz-OI, Iz-il) since multiplication

by u preserves distances. The unique point w satisfying the condition (Iw 
ul, Iw - 01, Iw - uil) = (Iz - 11, Iz - 01, Iz - il) has modulus Izl and arg(w) =
{Arg(u) + Arg(z) + 2k7r IkE il}, again by a geometrical argument. The idea is
that the triangle with vertices at 1, i and 0 is rotated about 0 through Arg(u),
and therefore so is the quadrilateral with vertices at 1, i, 0 and z.
Finally, we conclude that multiplication by u has the effect of rotating points

in the Argand diagram about the origin through Arg(u).

EXERCISES

3.6 Suppose that a, b E C.

(a) Show that la + bl 2 = lal 2 + Ibl 2 + ab + abo

(b) Show that la +W + la - bl 2 = 21al2 + 21W·
(c) Give an elegant geometrical interpretation of part (b) involving
a parallelogram, and the lengths of its sides and diagonals.

3.7 Suppose that z = c + id E C with c, d E llt Recall that Izl2 = zz =
c2 +~.

(a) Suppose that m and n are natural numbers and each of them is
the sum of two perfect squares. Prove that the natural number
mn is also the sum of two perfect squares. (Definition: A perfect
square is the square of an integer.)

(b) Express 97,000,097 as the sum of two perfect squares without
the aid of a calculator.

(c) Suppose that a, b, c, d E JR. Prove that

ac+bd~ Ja2 +b2 Jc2 +d2.
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3.4 Sine, Cosine and Polar Form

We now define the functions sine and cosine, so the reader should temporarily
forget everything hitherto known about these functions. Take any 0 E IR and
let u be the unique complex number such that luI = 1 and 0 E arg(u). We
define maps sin: IR -t IR and cos: IR -t IR. In the notation we have just set up,
u =cos 0 + isin O. Notice that this definition is consistent with the definitions
of cosine and sine of acute angles using right-angled triangles. For acute angles
the length of the circular path from 1 to u is same thing as the angle (or more
precisely the measure of the angle) in radians. This is the reason why radians
are a great way to measure angles.
Of course if 01 and O2 differ by an integer multiple of 211", then sin 01 =sin O2

and cos 01 = cos O2 , The triangular definitions of sine and cosine were fine for
angles in the interval [0,11"/2) radians, but for larger angles that business about
the angles of a triangle summing to 11" is a bit of a problem, as are negative
angles. You may have seen the following formulas before, but it is possible that
the only proofs you have seen assumed that 0.,13,0. + 13 E [0,11"/2).

Proposition 3.5

Suppose that 0.,13 E IR, then

(i) cos(o. + 13) =cos a cos 13 - sino.sinf3, and

(ii) sin(o. + 13) = sin a cos 13 + sin 13 cos o..

Proof

Since sine and cosine have been defined geometrically, we need a geometric
proof. Let u = cos a + i sin a and v = cos 13 + i sin 13. Recall that a and 13 are
the lengths of paths from the origin to u and v respectively round the unit
circle. The geometric effect of multiplying by u and then by v is to rotate the
Argand diagram about the origin through a and then through 13. The combined
effect will be to rotate it through 0.+13. The only complex number of modulus
1 which contains 0.+13 in its set of arguments is cos(0.+ 13) + i sin(0.+ 13). Thus
we may equate real and imaginary parts of

cos(o. + 13) + i sin(o. + 13) = (COSo. + i sin o.)(cos 13 + i sin 13)·

o

There are various well-known (or ought to be well-known) trigonometric for-
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mulas which follow from Proposition 3.5. Among them is

( (3)
sin(a + {3) sin a cos {3 + sin {3 cos a tan a + tan {3

tan a+ = = = --------:.~
cos(a + {3) cos a cos (3 - sin a sin (3 1 - tan a tan {3'

Perhaps the most celebrated variation on this theme is the result often known
as De Moivre's theorem.

Proposition 3.6 (De Moivre)

Suppose that () E IR and n E N, then

(cos() + i sin (})n =cos n() + i sin n(}.

Proof

We prove this result by induction. The case n = 1 is trivially true. Assume
that the result holds when n =mEN and try to deduce that the result holds
when n =m+ l.
Now

(cos () + i sin (})m+l = (cos () + i sin (})m (cos () + i sin(})
= (cos m() + i sinm(}) (cos () + i sin ())

by inductive hypothesis. Next use Proposition 3.5, so

(cos () + i sin ())n = (cos m() cos () - sin m(} sin (}) + i (sin m() cos () + sin () cosm(})

=cos(m + 1)(} + isin(m + 1)(}
as required. Thus by mathematical induction the proof is complete.

o

Definition 3.8

Suppose that z E C and z :f; O. Let r = Izi and choose () E arg(z). The polar
form of z is its expression as r(cos () + isin (}).

Note that r is uniquely determined by z but that there is ambiguity in the
choice of () since you may add or subtract an arbitrary integer multiple of 27l'.

If you want to multiply or divide non-zero complex numbers, it is often
best to put them in polar form r(cos a + isin a) and s(cos {3 + isin (3) so that
their product is rs(cos(a + {3) + isin(a + {3», as shown in Figure 3.4 and their
quotient is (r/s)(cos(a -{3) + isin(a -{3».
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1m
uv

u

Re

Fig. 3.4. Geometry of complex multiplication. Note that lullvl = luvl

Note that the inverse of r(cos ()+i sin () is (1/r) (cos(-() + i sin(-()). How
ever, from the geometry of the Argand diagram we see that cos( -() = cos ()
and sin(-() = - sin () for all () E lR. Thus this inverse can also be written as
r-1 (cos () - i sin(). Thus complex conjugates and inverses are related. However,
this is clear because zz = Izl2 so when z =j:. 0 we have Z-l = Izl-2z.
The fact that the functions sine and cosine repeat every 27l" is very impor

tant.

Definition 3.9

Suppose that f : IR --* X where X is any set. We say f is periodic if there exists
a positive p E IR such that f(x + p) = f(x) 'rIx E IR, and p is called a period of
the function. If f is periodic, and there exists a smallest period, the smallest
period is called the fundamental period.

We leave it as an easy exercise to show that sin: IR --* IR and cos: IR -t JR have
fundamental period 27l" (actually people are sloppy about this, and might easily
say "have period 27l"").
Notice that sin(x + 7l") = -sin x and cos(x + 7l") = -cos x for all x E JR.

Thus tan x = sin x/cos x has period 7l", and in fact this is its shortest period.
There is a minor problem with tan because it blows up (jargon - it has a
singularity) at odd integer multiples of 7l" /2 so it is not really a function from IR



3. Complex Numbers and Related Functions 79

to IR; an easy solution is to invent a meaningless symbol such as 00 and decide
that at odd integer multiples of 1r the value of tan will be 00 rather than the
undefined ratio formerly suggested. That way tan becomes a function again,
and tan: IR -+ lR U {oo}. Alternatively you can eject odd integer multiples of
1r/2 from the domain of tan.

Definition 3.10

Let f : IR -+ IR (or C) be a map. We say f is even if f(x) = f( -x) for every
x E IR. We say f is odd if f(x) =- f( -x) for every x E IR.

Thus cosine is an even function but sine is an odd function.

EXERCISES

3.8 For all real (J it happens to be true that cos 4(J = 8cos4(J - 8cos2 (J +1.
(a) Verify this formula in the cases when (J =O,1r/2,1r/3 and 1r.

(b) Prove the formula is valid for all (J E IR by considering the in
stance

cos 4(J + isin 4(J = (cos (J + isin (J)4

of De Moivre's theorem.

3.9 The "integer part" of a real number x is written lxJ, and is defined
to be the largest integer not greater than x. Define 'Y : IR -+ IR by
'Y(x) = x - lxJ.
(a) Sketch a graph of this function.

(b) Find all of the periods of 'Y.

(c) Does'Y have a fundamental period, and if so what is it?

3.10 Consider the function E : IR -+ IR defined by E(r) = 1 if r E Q but
E (r) =0 if r ~ Q.

(a) Show that E is a periodic function.

(b) Find all of the periods of E.

(c) Does E have a fundamental period, and if so what is it?

3.11 Consider a function f : IR -+ IR.
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3.5 e
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(a) Show that if f is both even and odd, then it is the constant
function which always takes the value o.

(b) Show that the function defined by the formula e(x) = (f(x) +
f( -x»/2 is an even function.

(c) Show that f may be written as a sum of an even function and
an odd function.

(d) Show that f may be written as a sum of an even function and
an odd function in only one way. (Thus we may talk about the
even part and the odd part of a function such as f.)

(e) Discuss your answers in the case that f is an even function.

(f) Suppose that p : III --+ III is defined by p(x) = 2x5 - x 4 + 3x2 +
sin(_x2 ) + cos(x3 ) '<Ix E IR. Describe the even and odd parts of
p.

We now introduce the number e, which is a number ofmysterious mathematical
ubiquity fourth only to 0,1 and 11". This number is about 2.718, and has the
property that d~e'" = e"'. Here x is supposed to be a real variable and it is time
to worry a little. What is a" when a, b E Ill? To concentrate our minds, what is
e1f? You can try to work it out, but you will only be using approximations to e
and 1f. The trouble with e and 1f is that they are real numbers but not rational
numbers, and since we haven't got a proper definition of real numbers, the ice
is a little thin. However, with a little goodwill perhaps we can overcome this
difficulty.
We will regard it as given that for every positive r E III and any n E N,

there exists a unique positive s E III such that sn = r.
So, what could we be driving at when writing a" with a, b E 1R? Well, even

if b isn't rational, it can be approximated arbitrarily well by rationals. For
example, 22/7 is a good stab at 1f and 355/113 is even better. Thus if you
want to work out e1f

, then it should be close to (272/100)22/7 and closer yet to
(271828/100000)355/113. The latter is the real 113th root of (271828/100000)355.
As you refine the approximations to e and 1f the value of the approximate
exponentiation settles down towards a number. That number is e1f

• That is a
bit fluffy, and all sorts of questions arise about what a good approximation
actually is, and what "settles down towards" means, but I hope the reader
will go along with this for now. These issues will be explored from Chapter 6
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onwards.
So, with a fair wind we know what the expression eX means for real x. If we

write e1/ 2 we definitely mean the positive real number whose square is e. We
haven't given a formal construction of the calculus either, but it may help to
see how to get at e from a calculus perspective, and to see why d/dx(eX) = eX.
We first investigate the natural logarithm function log: (0,00) -t IR defined

by log(x) = f; l/tdt (see Figure 3.5). This function is sometimes written In
or loge to emphasize its connection with the yet undefined number e. Suppose
that Yl, Y2 > 0, then

j
YIY2 1 jYl 1 l Y1Y2 1

IOg(YIY2) = -dx = -dx + -dx
1 x 1 X Yl X

jY2 1= log(yd + -dv.
1 v

In the second integral we have made the change of variable v = x /Yl. Of course,
the name of the variable of integration is irrelevant so

IOg(YIY2) = jYl .!:.dx + jY2 .!:.dx = log(yd + log(Y2)
1 x 1 x

which is a wonderful formula and holds for all Yl, Y2 > O.

y

(3.2)

1

y=l/x

a x

Fig. 3.5. log a = J:' l/xdx

Notice that log(l) = O. Now log is a strictly increasing function of x (be
cause of its definition as an area under the graph of a positive function (see
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Figure 3.5), and so is injective. By induction on n it follows from Equation (3.2)
that log(nx) = nlog(x) 'In E N. Since log(2) > 0 this means that for natural
numbers m the quantity 10g(2m) =m 10g(2) can be made arbitrarily large by
choosing bigger and bigger m. For x > 0 we have

0= log(l) = log(x . (ljx» = log(ljx) + log(x)

so log(ljx) = -log(x). This means that for sufficiently large numbers x we
have that log(ljx) will assume arbitrarily large negative values.
Thus log is a continuous function (there are no jumps in its values) which

assumes arbitrarily large positive and negative values, and therefore log takes
all real values. It is therefore surjective. We already knew it was injective so it
is bijective, and has an inverse which we call exp:1R -+ (0,00).

Definition 3.11

The number e is the unique natural number with the property that log(e) =1,
or equivalently e =exp(l).

If you want to see e concretely, observe that it is alive and well in a picture of
the integral

I e 1
-dt = l.

I t

Next we study the function expo In fact exp(x) will turn out to be the same
thing as eX, but we don't know that yet!
Let Xl =10g(YI) and X2 =10g(Y2) and substitute into Equation (3.2) to get

10g(Y1Y2) = Xl + X2· Apply the map exp to each side so Y1Y2 =exp(xl + X2).

However, since log and exp are inverse maps YI = exp(xd and Y2 = exp(x2)'
We conclude that

It follows by induction that exp(n) =exp(l)n =en for all natural numbers
n. Also when n E N we have exp(-n)exp(n) =exp(O) = 1, so exp(-n) =e-n .

Thus eZ = exp(l)Z = exp(z) whenever z E Z. That is good progress, but we
need equality whenever z E IR. We next examine exp(ljn) when n E N. Now
exp(ljn) is real and positive, and (exp(ljn»n = exp(njn) = exp(l) = e. Thus
exp(ljn) must be the unique real n-th root of e. Next consider the rationalmjn
with mE Z and n EN. Now exp(mjn) = exp(ljn)m = exp(l)m/n = em/no We
now know that the functions defined by the formulas exp(x) and eX coincide at
all rational values of X. However, these functions are continuous, and all real
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numbers may be approximated by rational numbers, so exp(x) and eX define
the same function from JR to (0, 00) .
The celebrated property of e is that d/dx(eX) = eX. This follows because

eX = exp(x). Put y = exp(x) so log(y) = x. Differentiating we obtain that
l/y· dy/dx = 1 so dy/dx = y. In other words

d
dx exp(x) =exp(x)

and we are done.
We next want to define eZ for an arbitrary z E C, and we need to make sure

that we select a definition which is consistent with the important properties of
the function given by eX when x E JR.

Definition 3.12

Suppose that z = u + iO where u, 0 E JR. We write eZ to mean eU . (cos 0+ i sin 0).

This looks rather brave. Our definition of eZ when z E C is consistent with this
when z happens to be real since cos 0 + isin 0 = 1 + 0 = 1. In fact there are
very compelling reasons for defining e Z for z E C as we have done. If you go on
to study complex analysis you will learn theorems which tell you that this is
the best possible definition of eZ

• Notice that when z = iO is purely imaginary
we have ei8 = cos 0 + isin O.
A minor fuss is traditional. Our definition of e Z yields the celebrated equa

tion e i = cos 1T + isin 1T = -lor equivalently e"i + 1 = 0, an equation relating
the seven most interesting objects of human thought. Given the way we have
developed the subject this a really a bit of a cheat, since we have cooked the
definition to make it happen. If you construct this subject by another route,
it is possible to make this equation seem considerably more dramatic. From
our point of view, the marvellous thing is that this definition of eZ proves so
attractive. We immediately supply solid algebraic evidence of this.

Proposition 3.7

Suppose that Zl = Ul + iOl and Z2 = U2 + i02 with Ul,U2,lh, O2 E IR. Moreover
suppose that k E Z. The following equations are valid.

(i) e Z1 e Z2 = e Z1 +Z2

(ii) (eZ1)k = e kZ1 •
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Proof

(i)
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eZ1 eZ2 =eU1 (COS lh + isin 81) . eU2 (cos 82 + isin 82)
= eU1eU2(cos 81+ isin 8d . (cos 82 + isin 82)
= eUl+U2(cos(81 + 82) + isin(81+ 82))'
= eUl+U2ei(lh+1I2) = eZ1 +Z2 •

(ii) This is little more than De Moivre's theorem for k positive. For k = 0 the
result is trivial, and the case when k < 0 follows from the case k > 0 since
(e z )-1 = e-Z\;/z E C.

o

Polar Form Revisited

We know that for real 8 we have eill = cos 8 + isin 8; it follows that the polar
form of a non-zero complex number

r(cos 8 + isin 8)

simplifies to reill . We have (reill )-1 = (r-1)e- ill and

re ill . seN) = (rs )ei (II+1/».

It follows that the rule for division is

We will return to this topic later when we discuss finding roots of complex
numbers.
Since eill =cos 8+ isin 8 we have e- ill =cos( -8)+ isin( -8) =cos 8 - isin 8.

Thus eill +e-ill = 2cos 8 and eill - e-ill =2isin 8. Rearranging these expressions
we discover the important facts that

eill + e-i9 ei9 _ e- i9

cos 8 = 2 and sin 8 = 2i

These handy formulas facilitate the derivation of multiple angle formulas.
For example we have

ei29 + e-i29
cos(28) + 1 = 2 + 1
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------ =-----::------
2 2

(ei9 +e-i9 )2 (ei9 +e-i9 )2 2= = 2 = 2cos O.
2 2

We recover the standard result that for any () E IR we have cos 2() = 2 cos2 () - 1.
This characterization of sine and cosine in terms of ei9 gives us a wonderful

opportunity to define cos : C ~ C and sin : C ~ C in such a way as to
extend the usual real functions. We simply put cos z = (eiz + e-iZ )/2 and
sin z = (eiz - e- iZ )/2i.

EXERCISES

3.12 Prove that cos 40 = 8 cos4 0 - 8 cos2 0 + 1 for all real () by using the
expression we have developed for cos 1/J in terms of eit/J.

3.13 Find all z E C such that sinz = 2.

3.6 Hyperbolic Sine and Hyperbolic Cosine

Inspired by the relationship between ei9 , sinO and cosO, we examine what hap
pens if you replace ei9 by e9 for 0 E lit
Given any function f : IR ~ C we can express it as a sum of an even function

ef(x) and an odd function Of (x) by putting ef(x) = (f(x) + f( -x)) /2 and
Of (x) = (f(x) - f(-x)) /2. Cosine and sine are the even and odd parts of the
function given by the formula ei9 .

We define cosh t and sinh t to be the even and odd parts of the function
defined by the formula et . Thus

et + e-t et _ e-t
cosh t = 2 and sinh t = 2

Notice that

(
et +e-t )2 (et_e-t)2 2 -2

cosh 2 t - sinh 2 t = 2 - 2 = 4: - 4"" = 1

so cosh 2 t - sinh 2 t = 1, a formula which is chillingly similar to Pythagoras's
theorem which asserts that cos2 t + sin2 t = 1.

If you consider the points in ]R2 of the form (cos t, sin t) as t varies over
IR you obtain the unit circle (traced over and over again). On the other hand,
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the points (cosh t, sinh t) describe one of the two branches of the hyperbola
consisting of points (x, y) satisfying x2 - y2 =1. The other branch is described
by (-cosh t, sinh t) as t ranges over lit Hence the name hyperbolic Junctions
for cosh t, sinh t, and their kindred functions such as the hyperbolic tangent,
cotangent, secant and cosecant defined by

sinh t 1
tanh t = --h-' coth t = --h-'

cos t tan t

1 1
sech t = --h-' cosech t = --=--h .

cos t sm t
How you pronounce these is a matter of personal taste, but I use the speech

of a stage drunk; shine, coshine, thangent, cothangent, shecant and coshecant
- with written abbreviations sinh, cosh, tanh, coth, sech and cosech.

If you know something about the geometric curves known as conic sections,
you might suppose that there would be a class of elliptic functions correspond
ing to a parameterization of an ellipse, or a class of parabolic functions corre
sponding to a parabola. This is not the case. There are things called elliptic
functions but they are something completely different. If you want to parame
terize an ellipse, you can do it using circular Junctions. The circular functions
are just the functions which arise naturally when studying the circle: sine, co
sine, tangent, cotangent, secant and cosecant. For example, as t varies over ~,
the points of the form (2cos t,3sin t) trace an ellipse of points in ~2 satisfy
ing 9x2 + 4y2 = 36. To parameterize a parabola is even easier, for example
{(t, t2 ) I t E ~} does the job.
Notice that

d d (eX +e-X) eX _e-X
dx cosh x = dx 2 = 2 = sinh x

and similarly ix sinh x = cosh x. Combining this with cosh 2x - sinh 2x = 1,
yields the interesting result that

~ sinh x = VI + sinh 2 X .

Thus sinh x = foX VI + sinh 2 t dt. We can twist this around, since it is easy to
show that sinh : ~ ~ ~ is an injective function, and so has an inverse function
arcsinh. Now, just as arcsin leads to a standard integral, so does arcsinh. Here
we go.
Suppose that y = arcsinh x so sinh y = x. Differentiate with respect to x to

obtain that cosh y*= 1. Thus

dy 1

dx coshy
1

VI + sinh 2y

1

VI +x2 '
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Thus

i t 1
arcsinh t = ~dx.

o vI + x 2

Perhaps this reminds you of

87

arcsint = t h dX ,Jo 1 -x2

which is a more feeble formula because it is only valid for t E (-1, 1). The
robust formula for arcsinh t is valid for all real t. Why is one so much better
than the other? Well, the simple explanation is that sinh(x) assumes all real
values but sin x takes values only in [-1, I). However, it is interesting to examine
the integrands (the formulas nestling after the integral signs and before the
dx). The expression VI + x 2 never vanishes when x E IR and, since we are
integrating along a portion of the real axis, this is good news. However, the
(dodgy) function defined by v'1~:Z:2 isn't quite a function from III to IR at all.

It has a singularity when x = ±1 because vI - x 2 vanishes there. What is
happening is this; the formula arcsin t = J; v'1~:Z:2 dx is valid when t = 0,
and for small t. It does its best to be true for all real t but when t reaches a
singularity at ±1 all is lost.
What we have been discussing is not a special situation. The study of func

tions which are nice in most places but have singularities is central to the study
of calculus in the context of C-
On a less philosophical note, we observe that we are only touching upon

hyperbolic functions and their associated inverse functions. Whenever there
is a valid formula involving circular functions, there will be an analogous one
involving hyperbolic functions. The reader who needs drill should find a calculus
text which contains a substantial section on hyperbolic functions, and do the
exercises. We append a couple below to get you started.

EXERCISES

3.14 Express the functions sinh(2x), cosh(2x), and tanh(2x) in terms of
sinh(x), cosh(x), and tanh(x) to get formulas which remind you of
the ones for the corresponding circular functions.

3.15 Show that tanh (x) E (-I,I)Vx E IR.
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3.7 Integration Tricks
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This section does not develop the theory of complex numbers, but rather il
lustrates how they can be used to evaluate integrals. What you see here is the
protrusion of an iceberg. The reasoning here is not supposed to be completely
rigorous - but rather we introduce a technique which is very useful and can be
properly justified.
Suppose that f : IR -+ C and suppose that the value of the function at

the point x E IR is written f(x). Though we have not formally developed
the calculus, we sketch how to proceed. Write f(x) = u(x) + iv(x) where u
and v are real-valued functions of a real variable x. Define *= ~: + i ~~ ,
so differentiation of real and imaginary parts is done separately. Equally well,
integration is defined by

lb

f(t)dt =lb

u(t)dt + i lb

v(t)dt.

Just as in the real case, differentiation and integration are inverse procedures. It
turns out that differentiation and integration formulas valid for real constants
are equally good when complex constants are involved.
Recall that whenever m is a real constant

d
_em", =mem ",.
dx

Consider the function f : IR -+ C defined by f(O) = ei9 = cos 0 + isin O.
Now, differentiation with respect to 0 can be shown to respect addition and
multiplication by constants (even complex ones - have faith).

d i9 d ( 0 .. 0) dO' d . 0dOe = dO cos + lsm = dO cos + l dO sm

= -sinO + icosO = i(cosO + isinO) = iei9
.

This is exactly as we would wish, and incidentally is yet more evidence that
our definition of e Z for z E C was sensible.
We now demonstrate how powerful this technique can be for evaluating

integrals.

Example 3.3

Suppose that you are confronted with I = Ie: e'" sin(x)dx. Now, a charming
method of evaluation is to integrate by parts twice (do it!), but instead we
could observe that sin x is the imaginary part of e i

",. Thus

1= Im( r e"'(l+i)dx) = 1m ([e"'(l+~)] 7r) = 1m (e7re"'i ~ 1)
Jo 1+ l 0 1+ l
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=1m ((_elf -1)(1- i)) = elf + 1
(1 + i)(l - i) 2'

3.8 Extracting Roots and Raising to Powers

89

If you work exclusively in lR, then you can't find square roots of negative num
bers. If x > 0, then there are exactly two real numbers which square to y, the
positive one called X 1/ 2 and the negative one _X1/ 2 . There is only one number
which has 0 as its square, and that is O.
Any z E C\ {O} can be written in polar form as reiD for any 0 E arg(z). For

each natural number n we seek all 71 E C such that 71n = z = reiD. Now, any
such 71 must be non-zero. Also 171ln =r so 1711 = r 1/ n

. Choosing t/J E arg(71) we
find that 71n = z exactly when reiD = (r1/nei"')n = rein'" which happens if and
only if 0 - nt/J is an integer multiple of 21T.
Thus 71 = r1/nei'" will be an n-th root of z if and only if t/J = (0 + 2k1T)ln

for some integer k. Now although there are infinitely many elements of this set,
there are exactly n possible values of 71. The reason is that values of t/J give rise
to the same 'TJ exactly when they differ by an integral multiple of 21TIn.
Thus the n-th roots of z are r 1/ n e i(D+2k1r)/n for k = 0,1, ... ,n - 1. Any

non-zero complex number therefore has exactly n different n-th roots.
As usual we seek a geometric interpretation in the Argand diagram. The

n numbers r 1/ n e i(8+2k1r)/n (k =0,1, ... ,n - 1) all have modulus r 1/ n so they
are on a circle centred at the origin of radius r 1/ n

. Their arguments are evenly
spaced (with a common difference of 21TIn) so they form the vertices of a regular
n-gon. This determines the positions of these points up to a rotation about the
origin. The last uncertainty is removed when we observe that rl/neiD/n is a
vertex.
We are going to give a definition of W Z where w, z E C and w is not O. Now,

we already have a definition of e Z where e is the base of natural logarithms.
Our definition must be consistent with that.
Write w in its infinitely many polar forms as e U ei (D+2k1r) as k ranges over Z.

We try (unsuccessfully) to define W Z to be eUZ
• e i (8+2k1r)z Vk E Zj this usually

has infinitely many values, rather than just one value, which is what we have
in mind. However, when z E Z, then e2k1riz = 1 and this first attempt at a
definition works because then it defines just one value for W Z

•

The way out in general is to insist that k = 0 and 0 E (-1T,1Tj. This
unnatural intrusion will cause a few problems for us, but we have no choice.
First the good news.
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Proposition 3.8

Suppose that wEe and w ¥ O.

(i) W Z1 +Z2 =W Z1 • W Z2 \fzl, Z2 E C.

(ii) (wz)k =w kz \fz E C, \fk E Z.

Proof

Introductory Mathematics: Algebra and Analysis

(i) Put w = e
U

e
i9 in polar form with the restriction on B. Now WZ1 + Z2 =

e U (Zl+Z2)ei9(Zl+Z2) using Proposition 3.7 (i) we have

(ii) Now we use part (ii) of Proposition 3.7 and

(wz)k = (euzei9z)k = eukzeikz9 = (euei9 )kz =wkz •

o

Now the bad news. The problem arises when you study (WlW2)z. In general
this is not the same thing as Wl zW2z, and, as we should expect, our intrusion
on the value of (J in the definition of W Z has caused pain.

EXERCISES

3.16 Suppose that Z E C has the property that for all Wl,W2 E C we have
(WlW2Y =Wl z W2 z . What can you say about z?

3.9 Logarithm

There is an obvious connection between logarithms and raising numbers to a
power in the context of the reals. We have already had a minor problem with
complex exponentiation. No doubt this means there will be problems with
complex logarithms.
Consider the function exp: IR --+ (0,00) defined by exp(x) = eX. Recall that

this is a bijective function and its inverse map is called the (natural) logarithm,
and is written log, loge or In.
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Now, if z = u + iv with u,v E JR, then eZ = eUe iv
• We can recycle the

notation to define a map exp: C ~ C* = C \ {O} by exp(z) = eZ 'Vz E C. This
is certainly a surjective function since any non-zero complex number can be
written as eUei6 for some u, () E IR.
Suppose that z' = u' + iv' with u', v' E JR, then in order to examine the

injectivity (or otherwise) of this complex version of exp, we consider the equa
tion eZ =e Z

' or equivalently the pair of equations eU = eU
' and e iv = e iv

'. The
injectivity of exponentiation of real numbers yields the promising start that
u = u'. However, e iv = e iv ' holds exactly when v and v' differ by an integer
multiple of 211". In other words, eZ = eZ

' if and only if z - z' is an integer multiple
of 211"i.
We can render exp a bijective function by restricting its domain to an

infinitely wide horizontal strip in the Argand diagram of height 211" containing
one but not the other of its boundaries. For example -11" < Im(z) :::; 11".

If z E C· we define (capital L) Log z to be the unique w E {a I a E
C, Im(a) E [-11",11")} with the property that eW = z. Now w = log(r) +iArg(z).
By construction exp(Log(z») = z for all z E C·. However, it is not in general the
case that Log(exp(w» =w - but the discrepancy must be an integer multiple
of 211"i.
Here is a concrete example of the problem. Let x = y = eZ1r /3 so xy =

e41r / 3 =e-Z1ri / 3 • Now, using the definition of Log we see that Log(x) + Log(y) =
211"i/3 + 211"i/3 = 411"i/3. However, Log(xy) = -211"i/3 (and not 411"i/3).

If you want to rescue the situation, you can define log(z) to be a set, as
opposed to Log(z) which is a particular number, just as arg(z) is a set but
Arg(z) is a number. For a non-zero complex number z you would need to put
log(z) = {log(lzl) + it/; I t/; E arg(z)}. Note that the log on the right hand side
of the equation is an uncontroversial logarithm of a positive real number; log
on the left is being defined.
This rescues the situation, provided you are prepared to add sets element

wise. In the case which caused us a problem log(x) = log(y) = {211"/3 + 2k7r I
k E Il} and log(xy) = {-411"/3 + 2111" II E Z}. Now we define the sum of two
sets in the obvious way as

log(x) + log(y) = {a + b Ia E log(x), bE log(y)}

and we see that
log(xy) = log(x) + log(y).

Order has been restored, but at the price of defining log(x) to be a set, or if
you prefer a "many-valued function" .
As z varies continuously the set log(z) will vary in a continuous way, which

is more than can be said for Log(z) which has horrible jumps though 211"i every
time Im(z) passes through an odd multiple of 11".
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Finally, note the connection between complex IOiarithms and exponentia
tion. For each wEe and z E C we have W Z = eZ og(w). Observe that the
intrusion to define Log matches exactly the intrusion which selected W Z from
the available candidates.

3.10 Power Series

This section is not tightly reasoned, and is to let you see ahead. You may have
come across power series before. An example of such a thing is

1+ x + x2 + x3 + ....

You can think of a power series as a purely formal object, just decoration on
the page. Alternatively, you can think of x as coming from a domain, and then
the power series is an attempt to define a function. There is a problem though,
as illustrated by our power series. When x = °it is uncontroversial to assert
that the sum of the series is 1, though you do have to go along with the idea
that the sum of infinitely many zeros is zero. When x = 1/2, the series is
1 + ~ + t + ~ + .... Now, we will not address the problem of giving a formal
definition of an infinite sum until Chapter 6. However, in this case it is fairly
clear what is happening. The sum of the first n terms is 2 - (~)n-l and as n
gets larger and larger the contribution of (~)n-l will get smaller and smaller.
It is therefore not unreasonable to assert that the sum of the series is 2 when
x = ~. When x = 1, the infinite sum is not co-operating at all. When x = -1,
the sum is 1 - 1+ 1 - 1+ 1 - 1+ .... This is quite interesting; if you look at the
partial sums (the sequence whose terms are the sum of the first n terms of the
sum) you get 1,0,1,0,1,0, .... In a sense, ~ is a reasonable compromise value
for this sum, but using the most common definitions this infinite sum will not
exist.
All this is quite a mess. For some values of x the series appears to have

meaning. In fact this happens for real x in the range x E (-1, 1).
Now consider the infinite sum

z Z2 z3

1 + I! + 2! + 3! + ....

It will turn out that this sum has a sensible meaning for all z E C and that
it coincides with our function eZ

• Pretend to be brave, and try differentiating
the power series term by term. Is that allowed? Well that is a serious question,
but just go ahead. Also ignore the concern that z is a complex variable not a
real one. Do it quietly while nobody is looking.
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You should find that resolute differentiation yields that the derivative of
the power series is itself. That is very encouraging of course, since we claimed
that the power series defines eZ

• Using cos () == e'· +2e-'· , and sin () == e'· -;r'·
and putting trust in the way power series might add and subtract you should
discover that

(}2 94 00 (}2n ( -1 )n
cos () == 1 - -21 + .. - ... == I: (2 )'

. 4. 0 n.
n=

and
. (j3 (Js 00 (J2n+l( _1)n

sm(}==(}-3!+5,-···==I: (2n+l)!
n=O

These power series for sine and cosine are very well behaved (the jargon is
that they converge) for all () E IR., and even for all (J E C. Moreover, it turns out
that these series sum to the values of cos () and sin (J.

In fact everything we did can be properly justified, but there are plenty
of similar looking cases where simple ignorant manipulation leads to wrong
answers. There is clearly much work to be done here, and we will start to address
it in Chapters 6 and 7 of this book. To understand this material properly is to
command subjects called mathematical analysis and complex analysis.



4
Vectors and Matrices

This topic is very substantial, but we will try to give the spirit of this important
area in one short chapter.

4.1 Row Vectors

The notion of a vector is geometrically inspired. A geometric vector in our 3
dimensional world (or the 2-dimensional world of this page) is an arrow i.e. a
straight line segment of finite length, with orientation. A geometric vector has
direction but not position. Thus parallel geometric vectors of the same length,
pointing in the same direction, are deemed to be equal.
The method of adding geometric vectors is "nose to tail" as in Figure 4.1.

We need to liberate ourselves from the tyranny of pictures for at least two
reasons. First, because they can be difficult to draw, and second because we
must escape from the 2- and 3-dimensional prisons in which our geometric
imaginations are trapped. We do this by capturing the geometric notion of a
vector in purely algebraic terms.
To this end we define a row vector to be an element of IRn . Thus a row

vector is a finite sequence (XI,X2, ... ,xn) of real numbers. Sequences of the
same length can by added (or subtracted) co-ordinatewise. Thus

(XI, ... ,Xn)+(YI,.·.,Yn) = (Xl +YI, ... ,Xn+Yn) (4.1)

G. Smith, Introductory Mathematics: Algebra and Analysis
© Springer-Verlag London Limited 1998
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u

Fig. 4.1. Geometric vector addition: u + v =w

(Xl, ... ,Xn) - (YI, ... ,Yn) = (Xl - Yl,'" ,Xn - Yn).

There is also a way of multiplying a row vector by a real number Aaccording
to the recipe

A' (Xl, X2,' .. ,Xn ) = (AXI, AX2,' .. ,AXn ). (4.2)

We now show that this algebraic version of the theory of vectors captures
the geometry correctly. We work in 3-dimensional space but 2- or I-dimensional
space would do just as well. Set up a co-ordinate system with an origin and
mutually perpendicular axes. Calibrate the axes - which is a way of saying that
you will regard each axis as a copy of the real line with 0 at the origin. Take
any geometric vector v (we will write all vectors in bold type) and translate
it until its tail is parked at the origin. Here translate means that you must
not change the length, direction or orientation of the geometric vector when
you move its tail to the origin. The co-ordinates of the tip of the vector are
now at (Xl, X2, X3). This sets up a bijection between geometric vectors and
ordered triples of real numbers (i.e. ]R3). It is easy to check that the addition
of row vectors exactly captures addition of geometric vectors. Thus you can
add geometric vectors the geometric way, and then read off the row vector
equivalent - or alternatively take the two geometric vectors to be added, turn
them into elements of ]R3 by the specified procedure, and then add the row
vectors using Equation (4.1). It doesn't matter which you do, you get the same
answer.
In this context, the real numbers are called scalars because of their role in

Equation (4.2). The reason is that multiplication by a scalar quantity scales
the length of the vector, without changing its direction. The orientation will
reverse if you multiply by a negative real number. If you multiply any row
vector by 0 you will obtain the zero vector 0 = (0,0, ... ,0) which acts as an
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additive identity for the vectors. The scalars could come from any field, for
example from Q or C. We will stick to the concrete case where the field is a to
fix ideas.

4.2 Higher Dimensions

We have now found a route to higher dimensional worlds. We think of an as
being n-dimensional space. You use the algebraic definitions of vector addi
tion and scalar multiplication to do geometry in a place which my mind (and
probably yours) cannot envisage pictorially.
Do you have to write elements of lR.n as rows? Well no, of course not. You

(

X

::'n: )
can write them as columns, but uses up a lot of space in cultures

where people normally write from side to side. Even so, it is sometimes very
useful to use these column vectors. It is obvious how to modify our definitions
of addition and scalar multiplication so that they apply to column vectors.
However, we don't want to mix things up, so we forbid adding a row vector to
a column vector (unless n = 1 of course, when the two notions coincide).

If the number n is not prime, you also have the option of writing your
vectors as rectangular arrays. For example, an element of JR6 might be written
as (XI,X2,X3,X4,XS,X6), or as

Xl

X2

)),"'(:: X2
X3 ( Xl X2 X3, or X4
X4 X4 Xs X6

Xs X6
Xs

X6

One can define addition and scalar multiplication in the usual entry-by-entry
fashion. Each rectangular array of numbers is called a matrix. Even row vectors
and column vectors are really matrices. They are merely rather short or thin
(respectively). We say that we have an n by m matrix if there are n rows and
m columns, and so our matrix is really an element of anm . Note that scalar
multiplication by Ahas the effect of multiplying each matrix entry by A.
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We list various algebraic laws which vectors enjoy (whether they are geometric
vectors, row vectors, column vectors or matrices). In what follows, all vectors
must be of the same type (e.g. row vectors of the form (Xl, • •• , X7». We will
use bold lower case letters as names for vectors, and lower case Greek letters
as names for scalars (i.e. real numbers).

VU, v we have U + v = v+U
Vu, v, w we have (u + v) + w = U+ (v +w)
30 such that Vu we have 0 + U = U

Vu 3-u such that u + -u = 0

Vu, '0" JJ E lR we have (A + JJ)u = (Au) + (JJu)

Vu, v, VA E lR we have A(u + v) = (Au) + (Av)

Vu l·u = U

VA, JJ E IR, Vu we have (AJJ)u = A(JJu)

Remark 4.1

From a more sophisticated point of view, we can take the laws and turn them
into axioms (and the scalars can be drawn from any field). An abstract vector
space will be a set V (of vectors) equipped with addition and scalar multipli
cation so that these axioms are satisfied. However, at this stage it is probably
best to stay firmly grounded in lRn .

4.4 Lengths and Angles

Let us suppose that we are working with lRn , written as row vectors.

Definition 4.1

The modulus or length of the vector x = (Xl, X2,' •. ,xn ) is the real number

Ilxll = ~ t,x1= Jxl + x! + ... +x~.

This notion of length coincides with the geometric definition of length when
n = 1. It also coincides when n = 2 by Pythagoras's theorem. One can use
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Pythagoras's theorem twice to show that it also works when n =3. After that,
there is no pictorial definition of length, but our definition becomes a platform
on which higher dimensional Euclidean geometry can be built.
There is a notion of multiplying two vectors together to obtain a scalar.

This product suffers from notational proliferation. It is variously called the dot
product, scalar product or inner product, and the notation for the product
of x, y E IRn can be (x,y), (x,y), x· y or x.y. We plump for the following
notation.

Definition 4.2

Suppose that x, y E IRn . We define the scalar product of these two vectors by

n

(x, y) =E XiYi =X1Yl + X2Y2 + ... + XnYn.

i=l

(4.3)

There are some purely formal consequences of this definition which will come
in handy from time to time. Each equation holds for all row vectors x, y and
z, and for all scalars A.

IIxll2 = (x, x)
IIAxll = IAI . IIxll
(x, y) = (y, x)

(x+y,z) = (x,z) + (y,z)

(x,y + z) = (x,y) + (x,z)
A(X, y) = (AX, y)
A(X, y) = (x, AY)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

This notation (x, y) therefore obeys some nice algebraic laws, so we should
be able to do mathematics with it. There is also a geometric interpretation
when n ~ 3. This is perhaps best seen when n = 2. Suppose that x, y E 1R2 are
unit vectors, i.e. assume that Ilxll = lIyll = 1. Thus Xl = cos1/J and X2 =sin1/J.
Similarly y = (Yl,Y2) = (cos <p, sin <p). Here 1/J and <p are the angles between
(1,0) and the corresponding unit vectors, measured in an anti-clockwise direc
tion. In fact you are at liberty to add or subtract multiples of 211" to or from
these angles; it does not matter. Now

(X,y) = cos1/Jcos<p + sin1/J sin <p =cos(1/J - <p).

This gives the proof of most of

(4.11)
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u

Fig. 4.2. The angle between the vectors is (}

Proposition 4.1

Suppose that u, v E ]R2, then (u, v) = \lull' Ilvll . cosO where 0 is the angle
between the vectors u and v.

Proof

Our discussion shows that the result -is true provided u and v are of length 1.
However, u = Ilu\l' ti and v = Ilvll' v with ti and v both unit vectors. Thus
(u, v) = Ilull'llvll' (ti, v) = \Iull'\Iv\l' cosO as required.

o

We could look at it another way, using the happy chance that we have a natural
identification between ]R2 and C, the set of complex numbers. The heart of the
proof is that the scalar product of two vectors of unit length is the cosine of
the angle between them. Thought of as a complex number, the unit vector
u corresponds to ei(3 and the unit vector v corresponds to eia as shown in
Figure 4.3.
Now

(u, v) = ((Ul, U2), (Vl, V2)) =UlVl + U2V2'

This is the real part of (Ul + iU2)(Vl - iV2) and so the real part of eiae-i(3 =
e i (a-(3). This is, of course, the cosine of the angle between u and v.
In three dimensions it is not quite so obvious that Proposition 4.1 still holds,

but in fact it does. The reader with a flair for 3-dimensional trigonometry might
like to fill in the details.
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i

o Re

Fig. 4.3. A dot product in the Argand diagram

EXERCISES

These exercises were already mentioned in the text.

4.1 Verify Equations (4.5) to (4.10).

4.2 Show that Proposition 4.1 holds in 1R3 •

We would like to define the angle between non-zero vectors x, y E IRn to be
that angle (J in the range 0 :S (J :S 1f' such that

(x,y)
cos(J = IIxll.llyll.

However, that will only work if

(x,y)
-1 :S IIxll'lIyll :S 1,

but we are in luck. A celebrated inequality comes to our aid.

Proposition 4.2 (Cauchy, Schwarz)

Suppose that x, y E IRn
, then

I(x, y)1 :S IIxll' lIyll·
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The result is clear if either x =0 or y =0, so we may assume x ::j; 0 ::j; y. We
have Ilx + Ayl12 2: 0 for all values of A, since it the square of a real number.
Thus (x + AY, x + AY) 2: O. Expand this out using various properties of the
scalar product to obtain

(4.12)

The left hand side of this inequality is a quadratic polynomial in Awith positive
coefficient of A2 . Its graph is therefore a nose-down parabola. This polynomial
cannot have two distinct roots, else any value of A between the roots would
violate inequality (4.12).
Since it has at most one real root, we deduce that its discriminant ("b2 

4ac") is non-positive. Thus

4(x, y)2 - 411xWIlYl12 ::; o.
Divide by 4, rearrange to put IIxl1211yl12 on the right and take the (non-negative)
square root to obtain l(x,y)1 ::; Ilxll·llyll.

o

Thus we can assign meaning to "angle" in higher dimensions. Now we can
deduce the following important result.

Proposition 4.3 (triangle inequality for row vectors)

If x, Y E IRn
, then

IIx + yll ::; Ilxll + Ilyll· (4.13)

Note: This is the n-dimensional generalization of the assertion that each side
of a triangle has length less than or equal to the sum of the lengths of the other
two sides.

Proof

For any vectors x and y we have

Ilx+Y112 = (x+y,x+y) = IIxl12+2(x,y) + IIyl!2
::; IlxW + 21(x,y)1 + IIYl12 ::; IIxl12+ 211xll·llyll + Ily112.

The final inequality uses the Cauchy-Schwarz result. Now take square roots
and we are done.

o
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Although geometric vectors do not have position, you can elect to nail the tail
down to an origin, and the arrow then does point to a specific place. Such a
vector is called a position vector.

Example 4.1

Find the equation of the straight line in the plane going through the point with
co-ordinates (1,2) and the point with co-ordinates (3,4).
Happily, the position vector of the first point is the vector a = (1,2) and

the position vector of the second point is b = (3,4) (see Figure 4.4). The vector
you need to add to a to get b is b - a, a vector which is the direction of the line
under discussion. Points P on this line have position vector r = a + A(b - a).
When A=0, r =a. When A=1, r =b. When 0 < A < 1 the position vector r
points to places on the line strictly between (1,2) and (3,4).

\

\
\

\
\ p

o

\
\

\
\

\
\
\

\
\

\
\

Fig. 4.4. Line through points with position vectors a and b
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One very attractive way to define a line in the plane which does not pass though
the origin is as follows. See Figure (4.5) Let the nearest point in the plane to
the origin be C. Let the position vector of C be c. Now a point with position
vector r is on the line exactly when r - c is perpendicular to c. This is given
by the simple condition

(r - c,c) =O.
Now, this can be rearranged into the equivalent condition (r, c) = (c, c) or, if
you prefer, (r, c) = Ilcll2 •

o

Fig. 4.5. Line (or plane) perpendicular to c

In ]R3 we can use exactly the same construction to write down the equation
of a plane not passing through the origin. The equation of a circle in ]R2 is quite
straightforward. If its centre has position vector a and the radius of the circle
is c, then the equation of the circle is IIr - all = c. The same equation in ]R3

defines a sphere. The inequality Ilr - all ~ c defines a disk in ]R2 and a ball in
]R3.

4.6 Matrix Operations

We need a good way of describing any rectangular matrix. We will start off
with a concrete example. Suppose

M=(112).
-1 7 2
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We give the entries names in a systematic way, so

M = (mll m12 m13 ).
m21 m22 m23
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Thus mll = 1, m21 = -1 and so on. This is still cumbersome, since you might
be dealing with a 100 by 100 matrix. The neat way to write M in terms of
its entries is (mij). This means that the entry in row i and column j is mij

whenever i is a legal row number, and j a legal column number. The row
numbers always run from top to bottom and the column numbers from left to
right.
Using this notation, we can write down how to add matrices together very

cleanly. Suppose that A = (aij) and B = (bij ) are both n by m matrices. Let
(Cij) = C = A + B be defined by Cij = aij + bij for each legal i and j.
There is a way of multiplying matrices which allows the multiplication of

matrices of various shapes, but the shapes must be compatible. Suppose that
A = (aij) and B = (bij ) are matrices, where A has shape n by m, and B has
shape m by p. Their product AB is a matrix C = (Cij) of shape n by p. Its
entries are given by the formula

m

Cij = L aikbkj
k=l

which probably looks a bit intimidating if you have not seen it before. We
expand it out and discover that

Thus to calculate the entry in row i and column j of the product, use ingredients
from the i-th row of the first matrix and the j-th column of the second matrix.
What you do is to take the j-th column of the second matrix, and turn it round
so it becomes a row vector, and then form the scalar product with the i-th row
of the first matrix. Concretely, we have

because

«1,1,2),(1,0,2» = 5,

«1,1,2), (0, 1,3» = 7,

«-1,7,2),(1,0,2)} = 3,

«-1,7,2),(0,1,3» = 13.
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We need a more formal way of saying "turn round" a column vector to make
it a row vector.

Definition 4.3

Let A = (aij) be an n by m matrix. The transpose of A, written AT is the m
by n matrix whose entry in the i-th row and j-th column is aji.

Suppose that the rows of A are the row vectors aI, a2, ... ,an reading from top
to bottom, and the columns of B are the column vectors bi, bf, ... ,b~. Our
vectors are row vectors unless we state otherwise, so each b j is a row vector
and each bJ is a column vector. The entry in the i-th row and j-th column of
AB is the scalar product (ai, bj). Thus multiplication of an n by m matrix by
an m by p matrix can be performed by working out np scalar products.

4.7 Laws of Matrix Algebra

In what follows A, B and C are supposed to be matrices of such shapes that
the operations of matrix addition and matrix multiplication mentioned in the
equations are allowed. Subject to this condition, the following equations always
hold.

A(B + C) = (AB) + (AC)

(A + B)C = (AB) + (AC)

(AB)C =A(BC)

(4.14)

(4.15)

(4.16)

Equations (4.14) and (4.15) are routine consequences ofthe definitions of matrix
addition and matrix multiplication. However, Equation (4.16) is perhaps more
mysterious. It is not clear at first why this recipe for multiplication should yield
an associative operation. One can look at a few examples, and you are urged to
do so. However, the fact that it works out in a few special cases is not a proof
that it will always work.

Proposition 4.4

Suppose that A, B and C are matrices. We use the usual notation A = (aij)

and so on. We also suppose that A has r columns and B has r rows, and that
B has s columns and C has s rows. It follows that A(BC) = (AB)C.
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and

Both products are matrices of the same shape, the number of rows being the
number of rows of A, and the number of columns being the number of columns
ofC.
We write out formulas for Xij and Yij, the typical entries of the two respec

tive matrix products

Xij =t aiu (t bUVCVj)
u=l v=l

Yij =t (t aiubuv) Cvj·
v=l u=l

Both of these expressions are different ways of writing the sum of all possible
terms of the form aiubuvCvj where i and j are fixed but u and v take all possible
legal values. There are r possible values of u and s possible values of v so there
are rs terms to be summed.

o

The proof is complete, but we will use a concrete example just to make sure
the point is understood.

Example 4.2

Suppose that

) , B = (~: ~:),c = ( ~::
We look at corresponding entries of the 2 by 2 matrices A(BC) and (AB)C.

The entry in row i and column j of the first is

3 2

L aiu(L buvCvj)

u=l v=l

3

= L aiu (bul Clj + bu2C2j)

u=l

= ail (bllClj + b12C2j)

+ai2(b2lClj + b22C2j)

+ai3(b3lClj + b32 C2j)

= ail bllClj + ailbl2C2j

+ai2b2lClj + ai2b22C2j

+ai3b31Clj + ai3b32C2j
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whereas the entry in row i and column j of the second is

2 3

L:(L: aiubuv)Cvj
v=l u=l

2

= L:(ailblV + ai2b2v + ai3b3v)Cvj
v=l

= (ailbll + ai2b21 + ai3 b31)clj

+(ai1 b12 + ai2b22 + ai3 b32)C2j

= ailbllClj + ai2b21Clj + ai3 b31Clj

+ailb12C2j + ai2b22C2j + ai3b32C2j.

Thanks to the commutative law of addition, we are done.

4.8 Identity Matrices and Inverses

First a piece of useful notation. The Kronecker delta is the symbol Oij where
Oij =1 if i = j, and otherwise Oij =o.

Definition 4.4

The n by n identity matrix is In = (Oij).

Thus It = (1),

13 = (001 001 ~1) and so on.h=(~ ~),

The reason we call each of these matrices an identity matrix is the following
result.

Proposition 4.5

Let X be an n by m matrix. It follows that InX =X =XIm.

Proof

The entry in the i-th row and j-th column of InX is Lk OikXkj = Xij so
InX =X. The proof that XIm =X is similar.

o
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X-I = (dl,1 -bl,1).
-c/,1 a/,1

Matrices which are square playa special role in the theory. For fixed n the set
of n by n matrices is closed under multiplication (i.e. the product of two n by
n matrices is an n by n matrix). Another reason is that In plays the role of a
two-sided multiplicative identity, just like 1 does in Z, (fl, IR and C.

Definition 4.5

Suppose that X is an n by n matrix. An inverse matrix Y for X is an n by n
matrix such that XY = In.

Now for a little peering into the future; the following assertions are correct,
but we will not prove them for a few pages yet. If such an inverse matrix Y
exists, then it is unique (Le. it is the only matrix which will do the job). Since
there is no ambiguity, we may write Y as X-I. Moreover (and this is not at
all obvious), X-I is also the unique matrix such that X-I X = In.
The I by I matrices are just elements of IR with brackets as adornments.

Addition and multiplication are just as in R The matrix (c) is invertible, with
inverse (lie) unless c =O. If course (O) has no multiplicative inverse.
Now step up to the 2 by 2 case. Just as before, the zero matrix 02 =

(~ ~) fails to be invertible for obvious reasons. However, this time there
are matrices other than O2 which are not invertible. It works like this. Suppose

Let ,1 =ad - be. If ,1 =0, then the matrix is not invertible. If ,1 =I- 0, then X
is invertible and

Definition 4.6

The quantity ,1 is called the determinant of the 2 by 2 matrix X, and we write
it as det{X) or IXI.

There is an analogous notion of determinant for n by n matrices. We will
explore this later.
Suppose that you want to study a system of two linear equations in two

unknowns. We fix our notation:

aX +bY = r,

eX +dY = s.
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We simplify these two equations by writing down one matrix equation. Let

A = (~ ~), z = ( ~ ) and C = ( : ) .

The relevant matrix equation is Az =c. Provided you know A-I you can solve
for z immediately because

Notice the crucial use of the associativity of matrix multiplication in that anal
ysis. Thus being able to calculate the inverse of a square matrix is intimately
related to solving systems of linear equations.

Example 4.3

Consider the simultaneous linear equations 2x + y = 1 and 3x - y =O. Let

Notice that if you vary the constant terms in these linear equations, you
can find the new solutions immediately since you already have A-I to hand.
When dealing with larger systems of linear equations, working out A-I can be
a big problem. There are formulas for 3 by 3, 4 by 4 and so on, but it gets very
complicated very quickly.

4.9 Determinants

We first give a purely mechanical definition of determinants, and then after
wards we will explain more about what is going on.

Definition 4.7

Suppose that A = (aij) is an n by n matrix. We define the determinant IAI
(also written det(A) or laijl) inductively. Thus we assume that we know how
to calculate a determinant IXI where X is an n - 1 by n -1 matrix, and start
the induction off by defining the determinant of a 1 by 1 matrix (a) to be a.
Pick any row ofA, say the i-th row. We will work out IAI by using the entries

of the i-th row of A and the determinants of some n - 1 by n - 1 matrices. For
each entry aij in the i-th row, let Aij be the n - 1 by n - 1 matrix obtained
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by striking out the i-th row and j-th column of A. Let Cij = (-l)i+jIAij I. Now
let IAI =E7=1 aijCij·

The stunning thing about this definition is that you are allowed to choose the
row you work with. In fact you could use a column instead; it doesn't matter,
you will always get the same answer. This may seem slightly magical- but the
reason everything works is just that multiplication distributes over addition in
the real numbers.

Remark 4.2

A matrix obtained by striking out the same number of rows and columns of
a matrix is called a minor of the matrix. Our our case, we are only striking
out one row and one column at a time. The quantities Cij mentioned above,
obtained by adjusting the signs of the determinants of n - 1 by n - 1 minors,
are called co/actors of the corresponding entries aij of A.

Let us look at a specific example.

Example 4.4

Suppose that

A= ( ~1 : D
We expand using the third row.

IAI=o·1 ~ ~ 1+ 1(-1).1 ~l
Now expand using the first column.

1
-1 ~ 1 = -3.

Now we will try to demystify this. We work with the 3 by 3 case X = (Xij) for
clarity. No matter how you work out IXI you get

Perhaps you can see the pattern now. The determinant consists of a sum of
products (sometimes multiplied by -1). The products range over all possible
ways of multiplying n matrix entries which have the property that no two are
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in the same row or column. There are n! such products. Half the terms are
multiplied by -1 and half are not.
We need to think about even and odd permutations in order to see where

these minus signs should go. There is much material on permutations in Chap
ter 5, but we only need a small amount of the theory of permutations here,
so you shouldn't need to look ahead. We think of the subscripts in a given
product as defining a permutation of {1,2,3}. Thus XUX22X33 defines the iden
tity permutation but XUX23X32 defines the permutation which fixes 1 (because
of xu), sends 2 to 3 (because of X23) and sends 3 to 2 (because of X32)' In
the order we have written the products, the permutations which arise are Id,
(2,3), (1,2,3), (1,2), (1, 3,2) and (1,3). We hope the notation is obvious, so
(1,2,3) is the permutation which sends 1 to 2, 2 to 3 and (wrapping round) 3
to 1. On the other hand (2,3) fixes 1, and swaps 2 and 3. A permutation which
swaps two things and fixes everything else is called a transposition. It turns out
that every permutation is a product of transpositions (see Section 5.4). For ex
ample (1,2,3) can be obtained by first applying (1,2) and then (1,3). The odd
permutations are those which can be written as a product of an odd number
of transpositions, and the even permutations are those which can be written
as a product of an even number of transpositions. It is a slightly mysterious
fact that there are no permutations which are both even and odd. To see this,
consider a polynomial p in n commuting variables Xl, ... , X n . Explicitly

p = II(xi - xi)'
i<i

We need only be worrying about n ~ 2. When n = 2 our polynomial p is
just Xl - X2, and when n = 3 it is (Xl - X2)(XI - X3)(X2 - X3) and so on.
Now suppose that U is a permutation of {I, 2, ... ,n}. If you apply u to the
subscripts of p, the resulting polynomial is ±p.Moreover, the effect of applying
Ul then U2 is the same as composing the permutations (maps) Ul with U2 and
then applying the result to the subscripts. A careful examination (do it!) shows
that a transposition charIges the sign of p. It therefore follows that any U which
changes the sign of p is the product of arI odd number of transpositions, and
that any U which does not change the sign of p is the product of an even number
of transpositions.
Back to the issue at hand: determinants. Each of our six products gives rise

to a permutation, and you have to insert a factor of -1 when the permutation
is odd.
Perhaps you can now see why you can use arIy row or column to expand a

determinant. It is because of the distributive law. For example, in
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you might focus on the second column of the matrix. Each of the six products
forming the sum contains exactly one entry from the second column. You see
what multiplies each one of these second column entries and tidy up. You get

To remember the signs you have to use, just think of the pattern below,
starting with a + in the top left corner.

+ + +
+ + +

+ + +
+ + +

+ + +
+ + +

An immediate consequence of the fact that you can expand a determinant using
any row or column is that the determinant is a "linear function" of the rows, and
of the columns, of a matrix. To be explicit, suppose that a1, ... ,an E JRn then
we can use these row vectors to form an n by n matrix with these rows. This

a1 a1

matrix is A = and its determinant is A = aj . Now if aj = hj +Cj,

an an

then
a1 a1 a1

aj = h j + Cj

an an an

Of course i is arbitrary, and the same argument works for columns. The
same remarks apply to the observation that if >. E JR, then
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Something which is a little more tricky to see is that if you swap two rows or
two columns of a square matrix, then in the expanded determinant, every single
permutation gets multiplied by a transposition. Thus all the odd permutations
become even and vice versa, so the determinant is multiplied by -1. Now if two
rows are equal (or two columns are equal), swapping them simultaneously does
nothing at all, and also multiplies the determinant by -1. The only number
which is unchanged by multiplication by -1 is 0 so the determinant vanishes.
Finally, if you add any multiple of any row to any other row, or any multiple of
any column to any column, you do not change the determinant. This is because

a1 a1 a1 a1 a1 a1

aj aj aj aj a\ a\

= +,\ = + =

aj aj aj aj '\aj aj + Aaj

an an an an an an

Remark 4.3

Let us summarize some of the properties of the determinant.

(a) It is a function IRn2 -* IR.

(b) You can view det as a function

with the factors in the Cartesian product coming from the rows of the
matrix. In this way, you can think of det as a function with n arguments,
each argument being an element of IR" .

(c) The map is multilinear in each of the n row vector variables. In other words,
if you choose i in the range 1 :::; i :::; n and keep all arguments fixed except
the variable in position i, you obtain a linear map from IR" to IR. To be
explicit, if we fix all rows except one, determinant defines a function a
from IR" to IR by varying the distinguished row. To say that a is linear is
to assert that

a(AX+ JLY) =Aa(x) + JLa(y)'tA,JL E IR, 'tx,y E IR".

(d) Swapping the values of two arguments changes the sign of the value of the
function.
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(e) If two arguments take the same value, then the value of the function is O.

In fact the same remarks are valid if we use the columns instead of the
rows, but we do not want to concern ourselves with columns in our future
applications.

Remark 4.4

In the light of these properties of determinant, we calculate IXI again where
X = (Xij) is a 3 by 3 matrix. Instead of using Definition 4.7, let us see how far
we get in an attempt to evaluate IXI using Remark 4.3.
Think of X as a column vector, its entries being row vectors. Let the i-th

row be Xi. Now let ei be the i-th row of In, so that Xi =E j Xijej. We now use
property (c) in Remark 4.3 to find that IXI is

100
o 1 0 + XllX23X32

001

010
o 0 1 + X12X21X33

100

001
1 0 0 + X13X22X31

010

100
001
010

010
100
001

o 0 1
010
100

In fact there are terms missing from this expression, for example terms such as

001
+X13X23X31 0 0 1

100

should really be mentioned, but thanks to Property (e) of Remark 4.3 we know
that the determinant of a matrix with a repeated row must be O. So, there
are these vital 6 determinants consisting of zeros and ones, and if we know
their values, then we know IXI where X is an arbitrary 3 by 3 matrix. One of
these all-important 6 determinants is that of the identity matrix. The other 5
important matrices can all be obtained form the identity matrix by swapping
rows. Thus, thanks to Remark 4.3 Property (d), we can calculate IXI once we
know 113 1. Our definition of determinant ensures that all identity matrices have
determinant 1. In that analysis, the fact that we were working with a 3 by 3
matrix was of no significance. The same argument would work for any square
matrix. We have laid the ground for a slightly tricky argument. We seek to
prove the following beautiful result.
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Proposition 4.6
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If X and Y are n by n matrices, then

det(XY) = det(X) det(Y). (4.17)

Proof (harder)

We construct a function f from JRn
2
-t JR which satisfies all the properties

listed in Remark 4.3.
Think of the n by n matrix X as being a column vector, each entry being

a row vector. Thus X = (Xl, X2, ... , Xn)T where Xi is the i-th row. Define the
function f by

(4.18)

This looks far worse than it is. All we have done is to calculate \(XY)I 
IXIIYI. Our reason for writing the formula in this way is that it is clear (from
staring at Equation (4.18)) that our function satisfies all the conditions listed in
Remark 4.3. Now we can use these properties to evaluate the function exactly
as was done in Remark 4.4. It therefore turns out that the value of f(X) is
determined by the value of fUn). Now fUn) = IInYI - IInl . IYI = IYI 
IYI = o. Thus f vanishes at all matrices obtained by swapping the rows of In
(repeatedly), and so f(X) =0 for all matrices X.
We conclude that for all n by n matrices X and Y, we have IXY\ = \XIIYI,

or in a slightly more descriptive notation, det(XY) = det(X) det(Y). The
proof is complete.

o

EXERCISES

4.3 Evaluate the following determinant in four different ways: I
4.4 Evaluate the following determinant without working hard.

1 2\
34'

1
3
4
7
-11

2 3 4
5 7 -2
7 10 2
1r 22 Vl3
14.3 97 1

5
1
6

_1060

o
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If you take the transpose of a square matrix, the value of its determinant
does not change.

Proposition 4.7

Suppose that A = (aij) is an n by n square matrix. It follows that IAI = IATI.

Proof

IAI = L:7=1 aijCij is the expansion of the determinant of A using its i-th row
and the relevant cofactors. It is also the expansion of the determinant of AT
using its i-th column. There is an implicit induction here, since Cij is (up to
sign) the determinant of an (n - 1) by (n - 1) square matrix. Thus IAI = IATI
and we are done.

o

Definition 4.8

Suppose that A = (aij) is an n by n square matrix. Let A* (the adjugate of A) be
the n by n matrix whose entry in row i and column j is a:j = Cji = IAji I(-I)i+j.

Here A ij is the minor mentioned in Definition 4.7. Thus you obtain the adjugate
of A by replacing each entry of A by its corresponding cofactor, and then
transposing the matrix. This operation is largely of theoretical interest, since
you would not wish to perform it on an actual matrix unless n were very small.
However, the construction is of great theoretical importance as you are about
to see. We remind the reader that if X = (Xij) is a matrix and A is a real
number, then AX has entry AXij in the i-th row and j-th column.

Proposition 4.8

Let A = (aij) be an n by n matrix, with adjugate matrix A* as defined above.

(a) AA* = A* A = detA· In.

(b) A has a right inverse if and only if IAI ::f; O.
(c) If A has a right inverse X, then X is also a left inverse of A, and is also
the unique inverse on either side.
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Proof
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(a) Let Z = (Zij) = AA*. The entry Zij is given by the formula

n n

Zij =L aikaZj =L aikCjk

k=1 k=1

(4.19)

Now, if i = j this is a definition of IAI. However, if i ::f; j, then Equa
tion (4.19) can be viewed as a calculation of the determinant of a matrix.
That matrix is almost the same as A, except that the j-th row of A has
been discarded and replaced by a duplicate of the i-th row, and the deter
minant is being calculated by expanding along the row which has suffered
this change. However, this must yield 0 since we are calculating the deter
minant of a matrix with a repeated row. Thus Zij =15ij lAI and Z = IAI·ln .

If IAI ::f; 0, then A . (1/IADA* = In. A similar calculation yields that
A* A = In. You find yourself manipulating columns rather than rows, and,
perhaps not surprisingly, you need to use Proposition 4.7 on the way.

(b) Suppose that IAI = O. Suppose, for contradiction, that there is an n by
n matrix B such that AB = In. Using Proposition 4.6, we see that 0 =
IAI ·IBI = IInl = 1. This is absurd, so A has no right inverse. Conversely,
if IAI ::f; 0, then (1/IADA* is a right inverse of A by part (a).

(c) Suppose AY = In, so IAI ::f; O. Pre-multiplication by (1/IADA* yields that
Y = (1/IADA*. A similar argument works if Y A = In.

o

In the light of Proposition 4.8, if A is an invertible n by n matrix, its unique
two-sided inverse can be written A-I. Observe that if B is another invertible
matrix of the same shape, then AB is also invertible and (AB)-1 = B-1A-I.
This is because

The theory tells us that B-1A-I should also be a left inverse for AB, and of
course it is. Also observe that if A is an an invertible n by n matrix then A-I
is invertible, and (A -1) -1 = A.
Suppose that B is an n by n matrix and there is kEN such that B k =

On where On is the matrix of zeros. Observe that In - B is invertible, since
In + B + ... + B k - l is its inverse.
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4.10 Geometry of Determinants
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This short section is just a discussion; we will not prove the assertions made
here. Suppose that X is a 2 by 2 real matrix. Define a map mx : JR.2 -+ JR.2
via aT t-t XaT for every aT E JR.2 (we are working with column vectors). Thus
we multiply a column vector on the left by a square matrix to yield another
column vector. Suppose that S ~ JR.2; define mx(S) = {mx(s) I s E S}. This
is definitely abuse of notation, but no-one is looking. So mx (S) ~ JR.2. The
remarkable fact about the map mx is that it sends any region of area d to a
region of area det(X) . d. If det(X) = 0, then either X = O2 and mx sends all
of JR.2 to (0,0), or mx =1= O2 and the image ofmx is a straight line through the
origin. In either circumstance, all subsets of JR.2 are either shrunk to a point
or flattened to become a subset of a line. Thus the area of the image must
vanish, and that is the geometric reason why det(X) =0. On the other hand,
if det(X) =1= 0, then it turns out that mx is a bijection, and enjoys the curious
property that it multiplies area by a fixed quantity.
Notice that m/2 is the identity map from JR.2 to JR.2, and that det(I2) = 1.

Furthermore, notice that if X and Y are both 2 by 2 matrices, then mXY =
mx 0 my. This is because you can multiply a column vector on the left by the
matrix XY by first multiplying it by Y, and then by X. If you accept the truth
of the assertions about area, it follows that det(XY) = det(X) det(Y).
An entirely similar story is true in the case ofn by n matrices. Thus from this

geometric point of view, the fact that det(XY) = det(X) det(Y) is completely
clear. The subtlety of the algebraic proof of Proposition 4.6 is not needed. Of
course, you would have to go to the trouble of setting up the notion of volume in
JR.n, and that is the main reason we have avoided the geometric route. Another
point in favour of the algebraic proof is that it works for matrices with entries
in any field.

EXERCISES

4.5 Show that if a, b E JR.2 and oX E JR., then we have both of the following
equations.

(a) mx(a + b) =mx(a) + mx(b).

(b) mx(oXa) = oXmx(a) for all oX E lIt
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4.11 Linear Independence

We will work with row vectors in IRn
.

Definition 4.9

We say that a finite sequence VI, V2, ... , Vm of vectors is linearly dependent if
there are real numbers AI, A2,' .. ,Am which are not all 0, such that

m

LAivi = O.
i=I

The reason for the terminology is this. Suppose that Al i- 0, then

(4.20)

so you can express VI as a linear combination of the other vectors in the se
quence; if you like, VI depends on the other vectors. Of course, it needn't be VI
which can be expressed as a linear combination of the others. Given that our
finite sequence of vectors is linearly dependent, all you know is that at least
one of the vectors can be expressed as a linear combination of the others.

Definition 4.10

If a finite sequence VI, V2, ... , Vm of vectors is not linearly dependent, we say
that it is linearly independent.

This a very powerful idea; if you know that VI, V2,.'" Vm is a linearly inde
pendent sequence of vectors, and that you have real numbers aI, ... ,am such
that ~i aVi =0, then you can immediately deduce that ai =0 for every i.

Proposition 4.9

Suppose that VI, V2, ... , Vm is a linearly independent sequence of vectors, and
that there is a vector u which you can write as a linear combination u =
~i f3i V i, then this representation is unique (Le. you can't do the same thing
using other scalars).



4. Vectors and Matrices

Proof

121

Suppose that there is a rival expression u = Ei "IiVi, then subtract the two
competing equations to obtain

Now apply the definition of linear independence to deduce that f3i - "Ii = 0 for
every i. Thus f3i = "Ii for 1 $ i $ m as required.

o

4.12 Vector Spaces

Definition 4.11

A concrete vector space is a subset V of JRn which satisfies the following three
conditions.

(i) If u, v E V, then u + v E V.

(ii) If u E V and A E JR, then AU E V.

(iii) OEV.

Of course, there is an entirely analogous notion of a geometric vector space
(this being a subset of the 3-dimensional space of geometric vectors which
obeys these same axioms). Moreover, the only such subsets are {O}, straight
lines through the origin, planes through the origin and all of 3-dimensional
Euclidean space. Moreover, moving up the ladder to get a better view, a subset
of an abstract vector space which satisfies our axioms will itself be an abstract
vector space; this is simply a matter of checking definitions.

Definition 4.12

Suppose that we have a finite sequence VI, V2 ... , Vt E V of vectors in a concrete
vector space V. We define the span of this sequence to be the set of vectors

t

(Vl,V2, ... ,Vt) = {L':AiVi IAi E JR'v'i = l, ... ,t}.
i=1
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The most important sequences of linearly independent vectors in a subspace V
are those which also span V. Such a sequence is called a basis of V. In view of
Proposition 4.9, every element of V will be uniquely representable as a linear
combination of basis elements.

It is true that (a) every concrete vector space has a basis containing finitely
many vectors, and (b) any two bases of a concrete vector space are sequences
of the same length. The length of a sequence forming a basis is therefore an
important number; it is called the dimension of the subspace. Working in 1R3

this terminology agrees with the casual idea of dimension. Note that we have
not proved these statements about dimension - but have merely asserted them.
We give a proof of (b).

Theorem 4.1

Any two bases of a concrete vector space are sequences of the same length.

Proof

Suppose that V is a concrete vector space with bases Ul,' .. ,Ur and VI, ... , V s.

We express the terms of each basis as linear combinations of the other basis
via Ui = Lj aijVj and Vi =Lj bijuj for every legal i, and the sums are taken
over every legal j. Thus A = (aij) is an r by s matrix and B = (bij) is an s by
r matrix. Assume, for contradiction, that r > s. Now AB expresses each Ui in
terms of Ul, .. " Un so AB = I r • Pad the right of A with O's, and the bottom
of B with A's (where ..\ E IR) to obtain square matrices A and B(..\). Moreover,
those O's ensure that A· B(..\) = I r . However, ..\ is arbitrary, so A has infinitely
many, and so more than one, right inverse. This contradicts Proposition 4.8.
We deal with the case r < s similarly, so r = s as required.

o

For a full development of this theory, the reader should consult a textbook
on linear algebra.
As we have already mentioned, when viewed geometrically, the subspaces

of 1R3 are exactly its subsets of the following types: {O}, straight lines through
the origin, planes through the origin and the whole of 1R3 . These subspaces
have dimension 0, 1,2, and 3 respectively. To get that the {O} is O-dimensional
requires a little faith, but that is the best way to define it since statements of
theorems then work out cleanly.
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4.6 Prove the following. The rows of the n by n identity matrix are
linearly independent and span jRn.

4.7 Any subsequence of a linearly independent sequence of vectors is lin
early independent (a subsequence of a sequence of vectors is obtained
by omitting some vectors).

4.13 Transposition

Definition 4.13

A square matrix X is symmetric if X =XT.

Definition 4.14

A square matrix X is alternating or antisymmetric if X = - X T .

The entries on the leading diagonal of an alternating matrix must vanish.

Proposition 4.10

Suppose that A and B are square matrices of the same size. It follows that
both

(i) (A + B)T =AT + BT and

(ii) (AB)T =B TAT.

Proof

(i) is a triviality and we omit the proof.

(ii) Let A = (aij), B = (bij), X = (Xij) =AT and Y = (Yij) =BT. The entry
in the i-th row and j-th column of (AB)T is the entry in row j and column
i of AB. This is Ek ajkbki. On the other hand, the entry in the i-th row
and j-th column of BTAT is Ek YikXkj =Ek bkiajk =Ek ajkbki. 0
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Definition 4.15
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A square matrix X is said to be orthogonal if X X T = I where I is the appro
priate identity matrix.

Here is an example of a family of interesting orthogonal matrices:

{( C?SB - sinB ) I0 E 1R} .
smB cosO

Proposition 4.11

For a fixed natural number n, the n by n orthogonal matrices enjoy the following
properties.

(i) If X is orthogonal, then IXI =±l.

(ii) If X, Yare orthogonal, then XY is orthogonal.

(iii) The identity matrix In is orthogonal.

(iv) Orthogonal matrices are invertible, and their inverses are orthogonal ma
trices.

Proof

(i) X X T = In so IXXTI = 1 and therefore IXIIXTI = 1 by Proposition 4.6.
Also /XTI = IXI by Proposition 4.7 so IXI2 = 1 and we are done.

(ii) XY(Xy)T = XyyTXT = X(yyT)XT = XlnXT = XXT = In.

(iii) IntI = Inln = In.

(iv) XXT = 1 so X is invertible, and its inverse is X T . Now XT(XT)T =
X T X =X-I X = In so X T is an orthogonal matrix.

When you have understood Chapter 5, Proposition 4.11 will assume more mean
ing.



5
Group Theory

5.1 Permutations

We now discuss permutations, and rather than use the language of functions
developed in Chapter 1, we will first try to get the idea across without using
fancy notation.
We are all familiar with the idea of swapping things round. Suppose that

you have three boxes labelled 1, 2 and 3. Put three different items into the
boxes, perhaps an apple in box 1, a banana in box 2 and a cantaloup in box 3.
Consider the operation of swapping the contents of boxes 1 and 2. We need

a snappy name for this operation. Let's be original and call it x. We let y denote
the operation of swapping the contents of box 2 and box 3. Now look at the
effect on the fruit of first doing x and then y. The apple will end up in box 3,
the banana in box 1 and (by elimination or thinking) the cantaloup in box 2.
Each operation of rearranging the contents of the boxes is called a permutation.
We must also decide how to write the operation that consists of first doing x

then doing y. There are two obvious choices; x·y or y·x. Partly because we read
from left to right, and partly because it turns out to make life simpler later, we
will write "first x, then y" as x· y. The little central dot is supposed to remind
you of multiplication, but what is going on is really composition of maps. The
way in which we combine permutations guarantees that this operation will be
associative; this also clear from the "composition of maps" perspective; if you
can't see it, look ahead to Section 5.3.
Rewind time back to the start, so that the apple is parked in box 1 once
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more. This time consider the effect of first doing y then x on the apple. Doing y
has no effect on the contents of box 1, and the turmoil in the other boxes leaves
the apple undisturbed. Next the application of x moves the apple to box 2. In
summary, "x then y" leaves the apple in box 3 but "y then x" puts the apple
in box 2. We have not considered the effects on the banana and the cantaloup,
but we do know that "x then y" does not yield the same rearrangement as "y
then x".

Definition 5.1

Suppose that u and v are permutations of the same collection of objects. We
write u = v if u and v have exactly the same effect on each item being permuted.

Thus it follows that x . y i= y . x.
In a cunning notational manoeuvre that the reader may have sensed immi

nent, we shall replace each fruit by the capitalized initial letter of its name.

1 2 3

A B C

X ~
B A C

~ X
B C A

Fig. 5.1. x then y

x

y

If you compare the effects of x . y and y . x on each one of A, B or C you
find that you get different answers. See Figures 5.1 and 5.2. Now compare x
and y . x. We examine the effect on A. Well, in each case A ends up in box
2, so as far as A is concerned, there is no difference between x and y . x. Any
temptation to write x = y. x is removed if we consider their effects on B. Please
check that x and x . x . x have the same effect on each of A, B and C so we
are allowed to write x = x· x· x. This last expression is a bit cumbersome - we
shorten it to x3 , so X = x3 . Notice that associativity is not really an issue here.
We say that x· y is the product of x and y and that we have multiplied x by y.
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1 2 3

A B C

! X y

A C B

X ! X

C A B

Fig. 5.2. y then x
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We now introduce an even slicker way of describing permutations, and to
give ourselves a bit more room, let us suppose that we have six boxes labelled
1 through 6, containing six objects labelled A to F. Consider the permutation
p which leaves box 1 alone, puts the contents of box 2 in box 4, the contents
of box 3 in box 6, the contents of box 4 in box 5, the contents of box 5 in box
2 and the contents of box 6 in box 3.

A

!
A

B

E

c

F

D

B

E

D

F

c

Fig. 5.3. Six objects being permuted

This isn't a very economical way of describing this permutation. Here is
the slick way: (2,4,5)(3,6). You read this notation like this; the fact that 1 is
not mentioned means that you leave the contents of box 1 alone. The contents
of box 2 gets put in box 4 because 4 is on the right of 2, and the contents of
box 4 gets put in box 5 for the same reason. We have a little problem with the
contents of box 5 - but the game is to regard 2, 3 and 5 as being arranged in
a circle - if you like 2 wraps around and is deemed to be immediately to the
right of 5 for these purposes. So far we know what happens to the contents of
boxes 1, 2, 4 and 5. The final part tells us that the contents of boxes 3 and 6
are swapped because 6 is written to the right of 3, and in the "wrap around"
sense, 3 is also to the right of 6.
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A cycle is a permutation which is of the form (*, *, ... , *). If a cycle has n
entries it is called an n-cycle. Two cycles are disjoint if they have no entry in
common.

Notice that every permutation can be written as a product of pairwise disjoint
cycles, and that disjoint cycles commute. The first fact follows from our new
procedure used to write down permutations, and the second is clear.
By the way, sometimes it is convenient to put the unmentioned numbers

back in the notation, so (2,4,5)(3,6) could be written (1)(2,4,5)(3,6) and the
initial (1) serves to remind you that the contents of box 1 must be left alone.
Notice that (4,5,2)(6,3) is exactly the same permutation as (5,2,4)(3,6)

and it is also the same as (6,3)(4,5,2). If you want to write your notation in a
standard form, then the trick is to write each cycle with the smallest number at
the beginning, and then to sort the cycles according to their first entry. If you do
that in this case, you write the cycles as (2,4,5) and (3,6) and since 2 is smaller
than 3 you write the permutation as (2,4,5)(3,6). Notice, by the way, that both
(2,4,5) and (3,6) considered as permutations themselves are both written in
standard form, and their product is obtained by erasing the multiplication sign,
since (2,4,5) . (3,6) = (2,4,5)(3,6). If you do the multiplication the other way
round you have (3,6) . (2,4,5) = (3,6)(2,4,5) = (2,4,5)(3,6).
The other great advantage of this way of writing permutations is that it

makes it very easy to work out the result of first doing one then another. Also
notice that the Roman letters have completely disappeared from the notation.
This is not that surprising really, since it doesn't really matter what the objects
in the boxes are, as long as they are different.
Now we will demonstrate that combining permutations is very easy in our

notation. Let p = (2,4,5)(3,6) and q = (1,3,4)(2,6). We will show that p' q =
(1,3,2)(4,5,6). You write p and q next to one another like this

(2,4,5)(3,6)(1,3,4)(2,6)

and then run your eye from left to right. Start of with the contents of box 1. The
initial segment (2,4,5)(3,6) tells you to leave the contents of box 1 alone, but
life starts to get more interesting when you reach (1,3,4). This tells you to put
the contents of box 1 into box 3. In future we shall be looking for instructions
telling us what to do with the contents of box 3, since that is where the original
contents of box 1 now resides. Read on. We have the final instruction (2,6),
which tells us to leave the contents of box 3 alone. The upshot of this paragraph
is that the contents of box 1 is now in box 3. Exciting isn't it? Well, of course
not, but it is easy. You can begin to write down the answer (1,3 - but you
don't yet know what will happen to the contents of box 3.
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Now let us find out. Start again with (2,4,5)(3,6)(1,3,4)(2,6) and read
from left to right, looking for instructions on what to do with the original
contents of box 3. The first interest is when you get to (3,6) which tells you
to put the contents of box 3 into box 6. Now you refocus your interest on the
contents of box 6. The next instruction (1,3,4) tells you to leave it alone but
the final one (2,6) tells you to put it in box 2. Thus the original contents of
box 3 ends up in box 2 (after a brief and irrelevant sojourn in box 6). We can
write more of the answer now. It is (1,3,2 - and we are getting there. Now
start again with (2,4,5)(3,6)(1,3,4)(2,6) and focus on the original contents of
box 2. It immediately is put in box 4 by (2,4,5) and is moved on to box 1 by
(1,3,4). The upshot is that we are able to close off our partial answer (1,3,2)
like that. It remains to see what happens to the original contents of boxes 4, 5
and 6. First focus on box 4. The first instruction (2,4,5) sends it to box 5 and
the contents of box 5 is never subsequently moved. Thus our partial answer is
(1,3,2)(4,5- nearly there. Now the original contents of box 5 doesn't have too
many choices in life. It must end up in box 4 or box 6, since we have established
that there are going to be other objects parked in boxes 1, 2, 3 and 5 when
this is allover. Let's find out which. The original contents of box 5 gets put
into box 2 by (2,4,5) and is unmoved for a while until we reach (2,6) and it is
put in box 6. Our partial answer is now (1,3,2)(4,5,6. Now you can calculate
yourself that the original contents of box 6 will end up in box 4, or you can just
observe that it must end up in box 4 since all the other boxes will be occupied.
In any event our answer is (1,3,2)(4,5,6) and that took far longer to explain
than to do.

EXERCISES

In these exercises, each permutation is deemed to be a permutation of
the contents of five boxes.

5.1 Simplify the following products of permutations.

(a) (1,3,5,4,2)· (1,3,2,5,4)

(b) (1,2,3)· (2,4)(1,3,5)

(c) (1,3,4)(2,5)· (2,3,4)(1,5)

(d) (1,2)(3,4)· (1,2).

5.2 Find a permutation A with the property that A' (1,2,3)(4,5) =
(1,3,5,4,2).
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5.3 Find a permutation p with the property that

(1,2,3)(4,5) . P = (1,3,5,4,2).

5.4 Find a permutation a with the property that

a· (1,2,3) = (1,2,3)· a.

There is a special permutation which is so dull that it deserves a distin
guished name. This is the identity permutation of the contents of the boxes
which leaves everything where it is. In our slick notation it is written as noth
ing at all!This is elegant but drastic. On the other hand, writing it as a product
of I-cycles is too cumbersome; if you have five boxes the identity permutation
could be written as (1)(2)(3)(4)(5). We write it as id, an obvious abbreviation.
Notice that no matter what the permutation x, we have x . id = x =id . x.

5.2 Inverse Permutations

The inverse of a permutation can be worked out with a video camera. Record a
permutation taking place, then play back the recording in reverse. The inverse
of (1,2,3)(4,5) sends the contents of box 1 to box 3 (where it came from via
(1,2,3)(4,5)), the contents of box 3 to box 2, and so on.
We write the inverse of the permutation 1r as 1r-1 , and then 1r '1r-1 = id =

1r-1 . 1r.

The easy way to work out the inverse of a permutation is to write the whole
thing backwards - write the cycles in reverse order and reverse the contents
of each cycle - and then tidy up into standard form if you want to. In this
case the inverse of (1,2,3)(4,5) is (5,4)(3,2,1) and in standard form this is
(1,3,2)(4,5). This even works if you haven't simplified a product; for example,
suppose that () = (1,2,3)(2,3)(1,2,3). You can simplify () to get () = (2,3)
and so ()-l = (3,2) = (2,3). On the other hand you can work this out by
writing the original expression for () backwards, and then simplifying; in this
case ()-l = (3,2,1)(3,2)(3,2,1) = (2,3) which is the same answer, as promised.
We make the convention that 1r0 = id for all permutations 1r. We want to

give meaning to 1r- t where tEN. There are two candidates for 1r- t ; it could be
(1rt)-l or (1r-1)t. Fortunately these last two permutations coincide, since they
are each the inverse permutation of 1rt so we can unambiguously assign 1r-

t to
either of them.
The usual algebra of exponents works perfectly well. If a, {3 E Z and 1r is

a permutation then (1ro:)13 = 1r(o:l3) and we often write the latter as 1ro:13 in the
usual way. Similarly 1ro:+13 = 1r(o:+l3l = 1ro: . 1r13 •
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EXERCISES

5.5 Work out the inverse of each of the following permutations.
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(a) (1,2,5)(2,3)

(b) (1,2,5)· (2,3)

(c) (1,2,3,4)5

(d) id

(e) (1,2,3,4)· (2,3,4,5)· (1,3,5)

5.6 (A little harder). Find a permutation tP such that tP-1 ·(1, 2, 3, 4)·tP =
(1,3,2,4).

Now let's see how we could have expressed all this slickly using sets and
functions. Suppose that we want to describe the permutation (1,2)(3,4,5) as
a map 1r : {I, 2, 3, 4, 5} -t {I, 2, 3, 4, 5}. Let 1r : 1 1-+ 2, 2 1-+ 1, 31-+ 4, 41-+ 5,
and 5 1-+ 3. Since we are composing permutations from left to right it makes
sense to write 1r on the right of its argument, so (1)1r = 2, etc.
So, what is it about this map 1r : {I, 2,3,4, 5} -t {I, 2, 3, 4, 5} which makes

it a permutation? It should now be clear; it is the fact that it is a bijection. A
permutation is just a bijection from {I, 2, ... ,n} to itself.

5.3 The Algebra of Permutations

We have a way of multiplying permutations together, and we can invert them.
We have briefly mentioned the associative law for permutation multiplication.
We remind you of the issue here. The symbols a, {3 and 1 denote permutations,
and we want to work out 0:' {3.1. Someone who is very officious might say "Hold
on a minute, what do you mean by 0: . {3. 1 - it could be (a· {3) .1 or a· ({3. 1)
and you haven't said which so I am totally confused". Well, it's time to get
unconfused. The point is that (a . {3) . 1 = a . ({3 . 1) so it doesn't matter.
Both sides mean do 0:, then {3, then 1, they just tell you to do that in slightly
different ways.
However, we should be able to see this another way now. Permutations

are really maps (bijections in fact but that is irrelevant). Permutations are
composed as maps, and map composition is associative. Thus permutation
composition is associative. There will come a time when you will want to simply
omit brackets on the ground that they don't matter. Fair enough, but not yet
please.
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Another rather obvious but important property of the multiplication of
permutations is that it is a closed operation, in other words, when you do one
permutation then another, the result amounts to doing a single permutation,
and not something which is not a permutation, like a waltz for example. This is
clear if you think in terms of rearrangements. Rearranging the contents of the
boxes, and then rearranging the contents again could have been accomplished
by a single rearrangement.
There is the distinguished identity permutation which is just the identity

map from the underlying set to itself.
Each permutation has a two-sided inverse. This is just the inverse map

which exists since permutations are bijections.
These four algebraic properties (closure, associativity, identity, inverses)

form the basis of what will become group theory.

Definition 5.3

A permutation group 5 is a non-empty collection of permutations (of distinct
objects in n boxes) which is closed under multiplication and inversion.

Note that it follows that the relevant identity permutation is in the permutation
group.

Definition 5.4

The order of a permutation group 5 is simply 151. The degree of a permutation
group is the number of boxes involved.

The set of all permutations of the n boxes is called the symmetric (permutation)
group of degree n, and we shall write it as 5n • It is not hard to see that
15n l = n!' The permutation group 51 is not worth writing home about, and
52 = {id, (1, 2)} doesn't stir the blood either. We pick the smallest interesting
value of n, which is of course 3, and try to understand everything there is to
be known about 53.
This little central dot . can get a bit irritating. From now on we will usually

just omit it.
First of all, we give short names to the 3! = 6 elements of this set. One

is called id already, so is well equipped. Let Q = (1,2), f3 = (2,3), 'Y = (1,3),
8 = (1,2,3) and e = (1,3,2). We will make a table which gives all possible
products. Notice, for example, that Q'Y = (1,2)(1,3) = (1,2,3) = 8. Thus
where the row labelled Q meets the column labelled 'Y we write the letter 8.
The only way you can get this wrong is to get rows and columns confused. So
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don't.

EXERCISES

83 id a f3 "I ~ e
id id a f3 "I ~ e
a a id e ~ "I {3
(3 f3 ~ id e a "I
"I "I e ~ id f3 a
~ ~ f3 "I a e id
e e "I a f3 id ~
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Simplify the following expressions, using the notation given for the per
mutations in 83 , In each case your answer should be a single Greek
letter.

5.7 (a) a({3'Y)

(b) (af3h

(c) a 2

(d) a 3

(e) ~2

(f) ~3

(g) (a{3q~)6

(h) (f3af3e )216

5.4 The Order of a Permutation

In the group 83 discussed in Section 5.3 we have

id1 = a 2 = f32 = "12 = ~3 = e3 = id.

By inspection of the multiplication table of 83 we find that the exponents
given are the smallest positive natural numbers such that raising each given
permutation to that power yields the identity element.
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Suppose that 1f E Sn is a permutation. The order of 1f, written 0(1f), is the
smallest natural number n such that 1fn = id.

Now, this looks slightly worrying - might it not be the case that no positive
power of some particularly perverse permutation is the identity? In fact that
cannot happen. Also, the word "order" is getting heavy use, but in fact this is
a good idea, as we will see in Section 5.9.

Theorem 5.1

Every permutation 1f E Sn has an order o(1f).

Proof

First consider a cycle 'Y = (*, *, *, ... , *) containing m entries. Now'Ym = id
and no smaller positive exponent has that property so 0('Y) exists and is m. It
is easy to show that if u E Z, then there are q, r E Z with 0 ~ r < m such that
u = qm + r. Now 'Yu = (-ym)q ..yr = 'Yr so 'Yu = id if and only if m divides u.
From the theory, any permutation 1f can be expressed as a product of disjoint
cycles 'Yi so 1f = n:=l 'Yi = 'Yl ... 'Yt and as we have already observed, disjoint
cycles commute. Raising such a product to a positive power u is very easy:

Since different 'Yi move different numbers, we have that 1fU = id if and only if
'Yi = id for each i = 1, ... , t. Each 'Yi is a cycle of order mi. Now 1fu = id if
and only if u is a multiple of each mi. The order of 1f therefore exists and is
the lowest common multiple of the lengths of the disjoint cycles comprising 1f.

o

For example, the order of (1,2)(3,4,5)(6,7,8,9) is the lowest common multiple
of 2, 3 and 4 and so is 12. Notice, by the way, that a power of a cycle need not
be a cycle, since (1,2,3,4)2 = (1,3)(2,4).

Definition 5.6

A cycle of length 2 is called a tmnsposition.
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EXERCISES

5.8 Which permutations are positive powers of cycles?

5.9 In each case, find the order of the given permutation.
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(a) (1,2)(3,4)

(b) (1,2,3)(4,5,6)

(c) (1,2)(1,3)

(d) (1,2,3)(1,3,2)

(e) (1,2,3)(2,3,4)(3,4,5)(4,5,1)(1,4,5)

(f) (1,2)(1,3)(1,4)(1,5).

5.10 (a) A permutation of order 2 must be transposition. True or false?

(b) Show that any cycle is a product of transpositions.

(c) Show that any permutation is a product of transpositions.

5.5 Permutation Groups

Recall from Definition 5.3 that a permutation group of degree n is a non-empty
subset 8 of 8n which is closed under multiplication and inversion. In symbols
we could write 8 :I 0, and if x, y E 8, then xy E 8 and X-I E 8.
When someone defines a concept abstractly, it often helps to have concrete

examples in mind, at least initially. There are two obvious examples of permu
tation groups of degree n. They are 8n itself, and its subset {id}.
However, there are examples which sit between these two extremes. Let T =

(1,2,3,4)(5,6) E 86 and let T be the set ofall powers ofT, so T = {TZ I Z E Z}.
Now T is visibly closed under multiplication and inversion, and contains the
identity element TO so T is itself a permutation group.
Similarly, the set of all powers of an arbitrary permutation is a permutation

group. There are interesting groups which do not arise in this way. For example
the four elements id, .x, 1-£, v of 84 form a group where .x = (1,2)(3,4), 1-£ =
(1,3)(2,4), and v = (1,4)(2,3). The group K = {id,.x, 1-£, v} has the property
that all of its elements commute with one another.
To see it arise geometrically, take a rectangular piece of plain paper with

out any holes in it, and which is not square. Label the four corners 1,2,3,4
clockwise, and label the back of the paper with the same numbers so that a



136 Introductory Mathematics: Algebra and Analysis

given corner has the same label on both sides. If you cannot tell clockwise from
anti-clockwise, it is your lucky day.
Now imagine that the universe is completely empty apart from this piece

of paper. Now remove the piece of paper from the universe, leaving (obviously)
a piece-of-paper shaped hole in the void. Now put the paper back in the hole
in any way it will fit. Now, there are exactly four ways to do this, two with
the paper turned over and two with it the same way up. These four moves
correspond to id, A, J.L, and v when you keep track of the labels on the corners.
Don't let life pass you by; do it! The four group elements are the four symmetries
of the piece of paper.

EXERCISES

5.11 Repeat the procedure with a square piece of paper. How big is the
group that you get? What are its elements (as permutations)?

5.12 Repeat the procedure with a regular pentagonal piece of paper. How
big is the group that you get? What are its elements (as permuta
tions)?

5.13 Repeat the procedure with a triangular piece of paper. In each of
the following cases, how big is the group that you get? What are its
elements (as permutations)?

(a) The triangle is equilateral.

(b) The triangle is isosceles but not equilateral.

(c) The triangle is scalene.

Confession time: We defined a permutation group to be a group consisting
of permutations in Sn for some n E N. The fact that the labels on the boxes
were 1,2, ... ,n was not very important. You could use the elements of any finite
set of appropriate size. You can always rename the set as 1,2,3, ... n of course.

5.6 Abstract Groups

The great thing about permutation groups is that the elements are really con
crete things. You know how to multiply them and that is that. Now we will
explore the idea of an abstract group - which is one level of abstraction up from
permutation groups. Abstract groups are usually just called groups.
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This is how to make an abstract group. You need a set, often called G,
and a binary operation * on G. A binary operation on a set G is a rule which
allows you to "multiply" any two elements a, bof the set G together to produce
something called a * b. The fancy view is that it is a map JL : G x G -+ H for
some set H, and a * b is another name for JL( (a, b» - or if you are less fussy,
JL(a, b). Moreover, H is a set sufficiently big to hold each a * b, and may have
other stuff in it too. Of course these two perspectives amount to the same thing.
After about 10 minutes, it is usual to get fed up with writing a * b and write
ab instead.
As you might have guessed, there are four axioms (rules) which this binary

operation * must satisfy: closure, associativity, identity and inverses. Such is
the passion for habit of our species that these axioms are invariably listed in
that order.

Definition 5.7

A set G equipped with a binary operation * is called a group if all of the
following axioms are satisfied;

Va,b E G a*b E G. (closure)

Va, b, c E G (a * b) * c = a * (b * c). (associativity)

3eEGVaEG e*a=a=a*e. (identity)

Va E G 3b E G a*b = e =b*a. (inverses)

Let elaborate on these axioms. First a translation into English. We put them
in words.

closure: For every a, bEG their product a *b is in G.

associativity: For every a, b, c E G it follows that (a * b) * c = a * (b * c).

identity: There is e E G such that e * a =a =a * e whenever a E G.

inverses: Given any a E G there is bEG such that a * b = e = b* a.

Now, any permutation group satisfies these axioms, so anything you can
prove true about a group must be true about a permutation group. However,
the set Q" of non-zero rational numbers under multiplication also satisfies the
axioms, and that isn't a permutation group (or rather it isn't usually thought
of as a permutation group). In this case e = 1 E Q" and if q = r IsEQ" with
r, s E Z then q-l = sir E Q" as required. Groups arise allover mathematics.
For example, Proposition 4.11 shows that for each n E N the n by n orthogonal
matrices form a group under matrix multiplication.
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You can add extra axioms, which corresponds to looking at a more spe
cial type of group. Perhaps the most obvious one is to append the axiom of
commutativity:

commutative: a * b = b* a '<la, bEG.

A group which satisfies this extra axiom is called a commutative group (a bit of
a surprise there) or, more usually, an abelian group. Now this concept is named
in honour of the Norwegian mathematician N. H. Abel. You might expect that
as a proper adjective, it should begin with a capital letter. In fact common
usage has it with a small letter, a tribute to the importance of the concept.
When we use the unadorned term group we do not specify whether or not the
group is abelian.
Another point: if A, B S;; G then let AB = {a*b I a, bEG}. Thus subsets of

G may be multiplied to give subsets of G. The associativity of * is transmitted
and multiplication of subsets is also associative since

(A *B) * C = {(a * b) * c I a E A, bE B, c E C}

= {a * (b * c) Ia E A, bE B, c E C} = A * (B * C).

Abuses of notation: In the event that a subset is a singleton set, we will
happily abuse notation to write x instead of {x}. If A S;; G and x E G we write
Ax rather than the correct but cumbersome A{x}. This is also particularly
important as far as the identity element e of a group G is concerned. We are
sometimes led to think about the group {e}, a so-called trivial group. It gets
tiresome to write the brackets all the time, and this subset ofG is often written
just as e.
Flexibility of notation: The identity element of a group G, or the set which

contains it, is often written ea to emphasize the group in question. If the
group operation is written as multiplication or juxtaposition then we can use
la or even, provided the group is either clear or irrelevant, simply 1. When
the operation is commutative, groups are sometimes written using additive
notation, in which case it makes sense to use Oa or just O.
We are now going to develop some group theory. Notice that we know

absolutely nothing about the set G, except that it is non-empty - this is true
because 1 E G. We are now going to omit the stars. We make an important
definition for later use.

Definition 5.8

Let G be a group and suppose that 9 E G. The order of G is IGI. The order of 9
is the smallest natural number 0(9) (if any) with the property that 9 0

(9) = 1.
If no such natural number exists, we write 0(9) = 00, and say that 9 has infinite
order.
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So, now we will build up some theory from the axioms. What follows will
become very familiar to those readers who go on to specialize in Pure Mathe
matics. The relentless application of logic gradually builds a better and better
understanding of the consequences of a set of axioms.

Proposition 5.1 (The cancellation law)

Let G be a group and suppose that x, y, z E G are such that either (a) xy = xz
or (b) yx =zx, then y = z.

Proof

Suppose that (a) holds. By inverses there is w E G such that wx = 1. We are
given that xy = xz. Pre-multiply by w so we learn that w(xy) = w(xz). Use
the associative axiom on each side so (wx)y = (wx)z. By the choice of w we
have ly = lz. By the definition of 1 we have y = z and we are done. Part (b)
is entirely similar.

o

Notice that we have justified every step of the argument. This was easy to do
because we had no knowledge about G, and couldn't make the error of slipping
in some unmentioned and possibly flawed "knowledge" about G. If you are
dealing with Z or Q this is much harder to do. We get so used to thinking
about integers and rationals, and acquire such strong intuition concerning their
structure, that it is quite tricky to learn to argue logically from the axioms. It
is the same problem that self-taught guitarists or two-finger typists face when
they decide to take proper lessons. You have to throwaway reasonably effective
techniques in order to learn very good ones, and this will slow you down for a
while. It is, of course, worth the trouble.

Proposition 5.2

Let G be a group and suppose that h E G has the property that there exists
9 E G with either (a) gh = h or (b) hg = h, then 9 =e.

Proof

(a) We have h = eh by definition of e so gh = eh. Now apply the cancellation
law to obtain 9 =e as required. Part (b) is entirely similar.

o
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Now think about Proposition 5.2. It says that if an element 9 masquerades as
a multiplicative identity, then it is the particular element e mentioned in the
group axioms.

Corollary 5.1

(a) A group G contains a unique element e which acts as a multiplicative
identity on both sides.
(b) In the inverse axiom there is no freedom in the choice of b, since if ab =
e = ab then b=b by the cancellation law.

Both corollaries are very important. We now know that given any a E G there
is a unique b such that ab = e = ba. More formally we can define a function
i : G -t G by letting i(a) be the unique two-sided inverse of a.

Proposition 5.3

The map i which we have just defined is a bijection.

Proof

First for surjectivity. Suppose that 9 E G. We need to show that 9 = i(h) for
some h E G. Now gi(g) =e = i(g)g so 9 is the (unique) two-sided inverse of
i(g) so 9= i(i(g». Put h = i(g) and we have 9 = i(h), so i is surjective.
Now for injectivity. We need to show that if i(x) = i(y), then x = y. Now

we multiply the equation i(x) = i(y) on the left by x. Thus xi(x) =xi(y). Now
xi(x) =e so xi(y) =e = yi(y). The cancellation law yields that x = y and we
are done.

o

So inversion simply permutes the elements of G. Let's see this in concrete terms
using a particular group. If we had been given that G was finite, then we could
have quit the proof half-way through, since a surjective map from a finite set
to itself must also be injective.
An alternative mature proof to Proposition 5.3 is to observe that i 0 i = id

so i has a two-sided inverse and so must be a bijection, using Proposition 1.3.
This is serene, perhaps a little too serene at this stage.
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Example 5.1

In 53 we have i(id) = id, i(a) = a, i(f3) = f3, i(')') = ')', i(~) = e, and i(e) =~.
The map i : G -+ G has served its purpose, but it is time to move on. The
usual name for i(g) is g-l, and from now on that is the notation we will use.

Remark 5.1

For 9 E G and n E N we have (gn)-1 = (g-l)n. Each of them is the unique
multiplicative inverse of gn. Also we put gO = la.

Proposition 5.4

Let G be a group and suppose that a, bEG and a, {3 E Z, then (a) (ab)-1 =
b-1a- 1, (b) aOt a/3 =aOt+/3 and (c) (aOt )/3 =a(Ot/3).

Proof

(a) This part is a triviality since

(ab)(b-1a- 1) = a(bb-1)a-1 = aea-1 = aa-1 = e.

Notice the use of associativity. Similarly (b-1a-1)(ab) = e. Parts (b) and (c)
are easy exercises. Please fill in the details.

o

The apparently dull parts (b) and (c) of Proposition 5.4 are the reason why
writing g-l for i(g) was a good move. The familiar laws of exponentiation can
be wheeled out and used without error.

Proposition 5.5

Let G be a group and fix some h E G. Now suppose that 9 E G, then there
exist elements x, y E G such that 9 = xh = hy.

Proof

Let x = gh-1 and y = h-1g.

o

Let's pause for a moment and try to take in Proposition 5.5. Let G be a group
and choose h E G. Multiplication by h defines a map from G to G, but you have
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to choose whether you will multiply on the right or left. Let's multiply by h on
the left, so we have a map>. : G --t G defined by >.(g) = hg. Proposition 5.1
tells you that this map is injective and Proposition 5.5 tells you it is surjective.
Thus multiplication by h on the left is a bijection from G to G, a permutation
of G if you like. Of course you could say the same about the map defined by
multiplying by h on the right, and it would make sense to call that map p.

These bijections >. and P are manufactured from the ingredient h E G. If
you choose a different h you will build different >. and P, so it makes sense to
emphasize the dependence on the particular h E G by calling the maps >'h and
Ph·

Example 5.2

Let G = S3, and choose the element 8 to create the maps >'0 and Po. Using
the multiplication table in Section 5.3 the map >'0 is defined by >'o(id) = 8,
>'0(0:) = (3, >'0((3) = 'Y, >'0(7) = 0:, >'0(8) = c and >'o(c) = id.

EXERCISES

5.14 In the notation of Example 5.2, describe the map Po.

5.15 Return to the general case where G is an arbitrary group and x, y E

G. Show that the maps >'x and Py commute.

5.7 Subgroups

Definition 5.9

Let G be a group. A subgroup H of G is a subset H ~ G with the property
that the binary operation of G, restricted to H, renders H a group.

Example 5.3

(a) Let G be a group. G is a subgroup of itself.

(b) Let G be a group with identity element e. The set {e} is a subgroup -



5. Group Theory 143

abusively called e.

(c) The non-zero real numbers form a group under multiplication. The non
zero rational numbers form a subgroup.

In order to check that a subset H of a group G is actually a subgroup, you
needn't check all four of the group axioms, since associativity is automatic. The
other three axioms can be rolled up into two things to check, one of which is
usually easy to do, but unfortunately easy to forget.

Proposition 5.6

Let G be a group. A subset H of G is a subgroup of G if and only if both
(i) H i= 0 and (ii) Yh, k E H we have hk- l E H.

Proof

If H is a subgroup ofG then obviously (i) and (ii) are satisfied.
Conversely, suppose that (i) and (ii) hold. Choose a E H i= 0 (by (i)), then

by (ii) aa-1 = e E H so H contains the identity element of G. Now suppose
that c E H, then by (ii) we have ec- 1 = c-1 E H so H is closed under inversion.
Finally, if f,9 E H, then f,9- 1 E H so f(9- 1)-1 = f9 E H and H is closed
under multiplication and we are done.

o

That is a great way to check that a subset is a subgroup, but you must not
overlook the unfortunately unmemorable non-emptiness condition.

5.8 Cosets

Let G be a group and suppose that H is a subgroup of G. Now suppose that
x E G. Consider Hx. Well, the first thing you have to do is to work out what
it might mean. Look away from the page and think about it now. Let's see if
you guessed (or remembered!) correctly. The subgroup H is a subset ofG, and
H x is what you get when you multiply all the elements of H by x on the right.
More formally

H x = {hx I h E H}.

Notice that if hI, h2 E H and h1x = h2x then hI = h2 by the cancellation
property. This means that multiplying the elements of H on the right by x
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doesn't cause any of them to "stick together". In serene form, multiplication
on the right by x induces an injection from H to H x. This is obviously also an
onto map, and so is a bijection. That is a particularly interesting fact in the
event that H happens to be finite of size m, since it follows that H and H x both
have size m. There is an inverse bijection induced from right multiplication by
X-I.

A set of the form H x is called a right coset of H in G. Now H was a group
in its own right, but H x need not be a group - but it is a subset of G of course.
Let's look at an example from permutation group theory. Let 8 = 84 be the

symmetric group, and let K be the so-called Klein 4-group, so K = {id,.x, JL, l/ }

where .x = (1,2)(3,4), JL = (1,3)(2,4), and l/ = (1,4)(2,3). The diligent reader
will check that the six cosets K, K(1,2), K(1,3), K(1,4), K(1,2,3), K(1,3,2)
are distinct, pairwise disjoint, all have size 4 and have union the whole of S.
Moreover, if 1] E 8 then K 1] is one of the six cosets in our list (this can be hard
work, unless you think about it of course).
This is so important; let's say it again a slightly different way. We see that

if you look at the 24 right cosets K x in turn as x ranges over 8, you do not get
24 different sets. You get just 6 different cosets, each occurring 4 times. These
6 cosets are disjoint from one another (different ones don't overlap) and their
union is 8. The six cosets therefore partition 8 into 6 sets of size 4, which is
consistent with 181 =24.
In this example then, the right cosets of K in 8 have these very special

properties. Our next task is to show that this was no accident; that it was not
really anything to do with the particular groups in question, but that we have
been looking at the footprint of a general theorem about groups.
Suppose that G is a group and H is a subgroup. It follows from the cancel

lation law (Proposition 5.1) that right multiplication by x induces a bijection
from H to Hx. The right coset Hx is just H whenever x E H; this follows
because right multiplication by x is then a bijection from H to itself. On the
other hand if x ~ H then H 1:- Hx. This is because x = ex E Hx but x ~ H.
That is worth knowing, but it doesn't help us very much.

If 9 E G then 9 = eg E H g so every element of G is in at least one right
coset of H in G. Of course, all the right cosets are subsets of G, so the union
of all the cosets is therefore G.
We need to sort out the business that distinct cosets are disjoint. The neat

way to do this is take an arbitrary pair of cosets Hx and Hy, assume that they
are not disjoint, and then try to deduce that Hx =Hy.
Now Hx = Hy if and only if Hxy-I = H, and the latter condition holds if

and only if xy-I E H.
Since HxnHy 1:- 0 it follows that there is z E HxnHy. Thus zx- I , zy-I E

H. The previous paragraph comes to our rescue and we deduce both Hz = H x
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and Hz = Hy. It follows that Hx = Hy. Thus the right cosets of H in G form
a partition of G.

Definition 5.10

The number of right cosets of H in G is called the index of H in G and is
written IG : HI·

If IGI is finite then both IHI and IG : HI will be finite and, since G is the
disjoint union of IG : HI sets each size IHI, we have proved a celebrated result.

Theorem 5.2 (Lagrange)

LetGbe a finite group and H a subgroup ofG. It follows that IGI = IG : HIIHI.

Continue to suppose, for the moment, that G is finite. Lagrange's theorem tells
us that IG : HI is IGI divided by IHI, so IHI divides IGI exactly - just as 4
divided 24 in our example. This tells us something very strong: a finite group
can only have subgroups of certain sizes. A group of order a prime p can only
have subgroups of order 1 or p.
All this was with right cosets. It doesn't take a lot of imagination to see

that we could have done the whole thing with left cosets instead, and obtained
a left index instead of what we called the index but really should be the right
index. However, since both indices are IGI/IHI, they coincide.
Well, that's all very well for finite groups, but what happens if G is infinite?

Could it be that there are finitely many right cosets of H in G but infinitely
many left cosets? Perhaps as bad, could it be that there are finitely many of
each type of coset but the numbers differ? No. There is a bijection between the
set of right cosets of H in G and the set of left cosets of H in G, as you will
see in a forthcoming exercise.

EXERCISES

5.16 Suppose that X and Y are subgroups of a finite group G. Let XY =
{xy I x E X,y E Y}. In this question, the early parts help you with
the later parts.

(a) Suppose that a, b, c, d E G and ab = cd. Prove that there is a
unique hE G such that c =ah and d = h-1b.
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(b) Suppose that Xl, X2 E X and Yl, Y2 E Y, Show that Xl Yl = X2Y2

if and only if there is a E X nY such that X2 =Xl a and Y2 =
a-1Yl.

(c) Show that X n Y is a subgroup of G.

(d) Show that

IXYI = IXI . WI
IXnY,·

(e) Now suppose that IGI = 256. Suppose that IXI = WI = 32.
Show that IXnYI 2: 4, and that there are at most four possible
values of IX n YI.

5.17 (a) Suppose that H is a subgroup of a group G, and that U is a
right coset of H in G. Prove that {u- l I u E U} is a left coset
of H in G.

(b) Show that there is a bijection between the right cosets of H in
G and the left cosets of H in G. You are not allowed to assume
that G is a finite group.

5.9 Cyclic Groups

Definition 5.11

Let G be a group and suppose that g E G. Let (g) be {gi liE IE}, the set
of powers of g. Notice that (g) is a subgroup of G, called the cyclic subgroup
generated by g. If G = (g) we say that G is cyclic.

Recall the notation o(g) for the order of g, explained in Definition 5.8. This ter
minology is quite sensible, as we see next, because the order of g E G coincides
with l(g)l, the order (size) of the cyclic group generated by g.

Proposition 5.7

Let C be a cyclic group generated by c. Either C is infinite, in which case
the elements ci (i E IE) are distinct, or ICI = n < 00. In the latter case
C = {id, c, c2 , ... , cn -

l }, and n = o(c).
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Suppose that for distinct i,j E Z we have ei = d. We may assume i < j and
ehoose such a pair i and j so that n = j - i is minimal. Now en = 1 and
co, ... , cn- 1 are distinct by choice of i and j. Finally, if k E Z, then there are
q,r E Z such that k = qn + rand 0 ~ r < n. It follows that ek = (en)qer =
er E {eo, . .. , en-I}. Thus C ={eO, ... , en-I} and we are done.

o

The following beautiful result tells us that the structure of finite cyclic
groups is very easy to understand.

Proposition 5.8

Let C be a finite cyclic group of order n, then C has exactly one subgroup of
every given order dividing n.

Proof

Suppose that e is a generator of C so the elements ci for 0 ~ i < n are distinct
by Proposition 5.7. If d divides n, then the cyclic group generated by enid has
order d and so there is at least one subgroup of order d.
Now suppose that H is a subgroup of order d, and notice that every element

of H has order dividing d by Lagrange's theorem. Thus if h = d E H then
n divides dj and thus n/d divides j. It follows that h is a power of enid and
so H ~ (enid). However, both these sets have size d and so H = (enid) and
uniqueness is established.

o

Corollary 5.2

Every subgroup of a finite cyclic group is cyclic.

In fact the finiteness assumption is not necessary, as the reader sensible
enough to tackle Exercise 5.18 will discover.
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EXERCISES
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5.18 Let C = (c) be an infinite cyclic group, and let H be a subgroup of
C. Prove that H must be cyclic. (Hint: We may assume that H U7

VOV - TpL<p£O:>'. Next show that H contains a 1ro(un<p 1rO:VEp o<p C

O:V~ <pOKVU OV (If. Uj.LO:>'>'EUT OVE.)

5.19 Prove that a cyclic group is abelian.

5.20 Let Cn be a cyclic group of order n. Find a formula for the number of
elements c E Cn such that Cn = (c). (Hint: 1rpLJ.Lf. <pO:KTOpt(o:uov.)

5.10 Isomorphism

Consider the integers under addition, a group usually called Z. This is an infi
nite group, and its binary operation * is invariably written as + and its iden
tity element is written o. Now consider a second groupj this is the cyclic group
T = (10) consisting of all integer powers of 10, a subgroup of the multiplicative
group of non-zero rationals Q*. In T the identity element is 1.
These groups are not the same; their underlying sets are different, and their

operations x and + are different, but even so, there is a certain "sameness"
about them. That sameness is, informally, isomorphism - they have the same
structure, which is what isomorphism means.
Consider the map <p : Z ~ T defined by <p(z) = 10% 'Vz E Z. It is easy to

check that this map is a bijection. Now, this bijection is compatible with the
two group structures in the sense that

<p(n +m) =<p(n) x <p(m) 'Vn,mE Z.

Thus you can combine n and m using the binary operation of Z and then
apply the map <p, or, starting over, you can first apply the map <p to each of
m and n individually and then combine the resulting elements of T using the
binary operation of that group. It doesn't matter which you do because you get
the same answer either way. Notice that the inverse map <p-l from T to Z,
sometimes called loglO, is also a bijection and

10glO(10i1oJ) =10gIO(lOi) + 10glO(1oJ) 'Vi,j E Z

because both sides are just i + j. We now see that all <p does is to rename the
elements of Zj if you want to do a calculation in Z you can do it there, or use
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<p to transport everything into T, do the calculation there, and use <p-l (also
known as 10glO) to drag yourself back into Z.
In ancient times before the invention of the pocket calculator, our ancestors

used the map 10glO to multiply decimals together. This function was called
logarithm. To work out 3.14159 x 2.1828 they would look up loglO(3.14159)
and IOglO(2.1828) in tables. They would then add these decimal quantities,
because adding numbers is easy - much easier than multiplying them. From
the isomorphism property, this sum is loglO(3;14159 x 2.1828). These primitive
creatures would then use tables again to find out what number has the specified
logarithm and that is the answer (subject to minor rounding errors). These days
you rarely see 10glO mentioned because loge has better mathematical properties;
the only advantage of 10glO concerned bijections between digits and digits (in
not so different senses).
Another two group isomorphisms can be manufactured from complex con

jugation. Let c : C -t C be the map Z t-t Z that sends each complex number
to its complex conjugate. This is an isomorphism from the additive group of C
to itself. The fact that this map is bijective is clear, and the group structure is
preserved because Zl + Z2 = Zl + Z2 for every Zl, Z2 E C.
Now puncture C by removing 0 to form C* , a group under complex multi

plication. Note that we have to remove 0 since it has no multiplicative inverse.
Again complex conjugation induces an isomorphism from C* to C* , the struc
tural point being that ZlZ2 = ZlZ2 for every Zl, Z2 E C· .
Now for a geometrical example. We consider maps from ]R2 to itself. These

are IR 2 the identity map, and three other maps L, M, N : ]R2 -t ]R2 defined
as follows. These maps send an arbitrary point (x,y) to (-x,y), (x,-y) and
(-x, -y) respectively. The four maps form a group V = {IR 2, L, M, N}. The
reader is urged to verify that this group is isomorphic to the Klein 4-group of
Section 5.8, where the non-identity elements match up literally. In fact you can
match up the non-identity elements in any way you like, since in each group
the product of any pair of distinct ones is the third, and each has order 2.
So, let's think about isomorphism from a group G to a group H for a mo

ment. In terms of multiplication tables, the fact that the map is an isomorphism
means that you can take a multiplication table of G, and systematically replace
the entries in the table and the labels of the rows and columns using the given
map, and obtain a correct multiplication table of H. It is a bit like writing out
the table of G again, but using green ink the second time.

If a property of a group G is mathematically interesting (e.g. it is abelian)
then it will be preserved by isomorphism, i.e. an isomorphic copy of an abelian
group will be abelian. If a property of G is not of mathematical interest - for
example, the fact that you first thought about the group on a Thesday - then
isomorphism may not preserve it.



150 Introductory Mathematics: Algebra and Analysis

Intuitively, it is clear that the composition of two isomorphisms is an iso
morphism, and that the inverse of an isomorphism is an isomorphism. We show
the first result here, and ask you to produce the second in Exercise 5.21. The
self-isomorphisms of a group G with itself are particularly interesting, and they
form a group under composition of maps. This new group is called the group
of automorphisms of G. We do not pursue this topic in this book. You might
like to work out the automorphism groups of the additive groups of Z and Q.

Proposition 5.9

Suppose that G, Hand J are groups and that 'r/J : G -+ H and <p : H -+ J are
isomorphisms. It follows that <p'r/J : G -+ J is an isomorphism (the juxtaposition
of <p and 'r/J denotes composition of maps).

Proof

The composition of two bijections is a bijection by Corollary 1.1, so <p'r/J is
bijective. Now for structurej let the operations of G, Hand J be *, 0 and *
respectively. Suppose that X, y E G, then

(<p'r/J)(x * y) = <p('r/J(x * y)) (by definition of composition)

= <p('r/J(x) 0 'r/J(y)) (since'r/J preserves structure)

=<p('r/J(x)) *<p('r/J(y)) (since <p preserves structure).

Thus <p'r/J is a bijective structure-preserving map and so is an isomorphism.

o

EXERCISES

5.21 Let ( : G -+ H be an isomorphism of groups. Consider the map
(-1 : H -+ Gj show that it is an isomorphism of groups.

5.22 Consider the map r : Z -+ Z defined by r(x) = -xVx E Z. Show
that r is an isomorphism from the additive group of Z to itself.

5.23 Let P denote the group of strictly positive reals under multiplication.
Consider the map a : P -+ P defined by a(r) = r2 • Is this an
isomorphism? What happens if you replace P by U, the group of
positive rationals under multiplication? Justify your answers to each
question.
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A homomorphism 0 : G ~ H from a group G to a group H is a map which
preserves structure in the same sense that an isomorphism does, but we do
not insist that 0 be a bijection. Thus an isomorphism is a special kind of
homomorphism, and theorems proved about homomorphisms will be true of
isomorphisms.

Proposition 5.10

Let 0 : G ~ H be a homomorphism of groups and x E G. It follows that
O(ea) =eH and O(x- 1 ) =O(X)-l.

Proof

O(ea)O(ea) =O(eb) =O(ea) so by the cancellation law in H we have O(ea) =
eH and we are half way there. Next observe that

so O(x-1) is the multiplicative inverse of O(x) as required.

o

Definition 5.12

Let TJ : G --+ H be a homomorphism of groups. The kernel of TJ, written Ker(TJ),
is {g I 9 E G, TJ(g) = eH} where eH is the identity element of H. More pre
dictably, Im(TJ) = {TJ(x) I x E G} is called the image of Gunder TJ.

In that definition, TJ was a homomorphism, a map that preserves structure.
Thus there is reason to think that subsets defined in natural ways in terms of
TJ might be subgroups.

Proposition 5.11

In the notation of the previous definition, both Ker(TJ) and Im(TJ) are groups,
and are subgroups of G and H respectively.
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From Proposition 5.10, eo E Ker(1J) # 0 so we have done the forgettable bit.
Next suppose that x, y E Ker(1J). Again by Proposition 5.10, 1J(y-l) = eH so

1J(xy-l) = 1J(x)1J(y-l) = e~ = eH

so xy-l E Ker(1J) as required.
Now for Im(1J). From Proposition 5.10 we have eH =1J(eo) E Im(1J) so that

set is not empty and we are on our way. Next suppose that 11(X), 1J(Y) E Im(11)
then

11(X)1J(y)-l =11(X)T/(y-l) =T/(xy-l) E Im(T/)

so all is well.

o

Example 5.4

Let 'ljJ : lR --* C· be the map defined by 'ljJ(0) = e21ri8 . Recall that C· denotes
the group of non-zero complex numbers under multiplication. The reader can
easily verify that 'ljJ is a group homomorphism. The image is {z I z E C,lzl = 1},
the set of complex numbers of unit modulus. This is a subgroup of C·. Also
Ker('ljJ) = Z which is a subgroup of the additive group of reals. Thus no error
is exposed.

The reason that the kernel of a group homomorphism p, : G --* H is so impor
tant is that it detects injectivity, in the sense that IKer(p,)I = 1 if and only if
p, is injective. If p, is injective then obviously IKer(p,)I = 1. It is less obvious
that the converse holds. Suppose that p,(x) E Im(p,) then p,(x) = p,(y) if and
only if p,(x)p,(y)-l =1H. In turn this happens if and only if p,(xy-l) =1H Le.
xy-l E Ker(p,). Thus p,(x) = p,(y) if and only if x = ky for some k E Ker(p,),
in other words if and only if y E Ker(p,)x.
Let K =Ker(p,). The coset Kx is in bijective correspondence with K. Now,

p, is injective if and only if at most one element of G maps to each element of
H, and this happens exactly when K = {eo}.



6
Sequences and Series

6.1 Denary and Decimal Sequences

There is a wonderful little book by J. A. Green entitled Sequences and Series.
It is admirably short, unfashionably old and surely out of print. However, your
local library may well have a battered copy. If so, I urge you to read it.
We usually think about numbers one at a time. In particular, a lot of atten

tion is sometimes given to 1729. If you are sufficiently open minded, you may
think of 1729 not as a natural number, but as a piece of notation, consisting
of a sequence of four symbols 1, 7, 2, 9. The denary (base 10) notation allows
us to use finite sequences of symbols 0, 1, 2, ... ,9 to represent all the natural
numbers. This is a very clever move, since otherwise we would have to think up
infinitely many names for all of the natural numbers. There are well-established
procedures for doing arithmetic when natural numbers are represented in this
familiar notation, even in the absence of a pocket calculator. For example, if
you have two natural numbers x and y you may wish to multiply them. You
describe x and y in denary notation and invoke the procedures. Thus in order
to multiply 37 by 121 it is not necessary to know your 37 times table. You
invoke the method drummed into you as a child (I hope) to conclude that
the product, written in denary, is 4477. In fact, in order to multiply any pair
of natural numbers, the largest multiplicative fact you need to know is that
9 x 9 = 81. You also need to be able to do some addition of course.
One could use this arithmetical procedure as the definition of the product

37 x 121, but that would be a little silly. After all, this arithmetical procedure
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hides all the interesting mathematical properties of multiplication. In particu
lar, it is not at all clear that 37 x 121 = 121 x 37 from this point of view. Indeed,
it seems almost magical that the two calculations yield the same result. A more
appealing definition of multiplication might involve looking at the area of a box
which is x units wide by y units high. If you don't want to get involved with
areas, you can simply make rectangles of dots, and then count them. From this
point of view, the commutative law of multiplication is clear, since the area of
the rectangle (or the number of dots in the rectangle) is unchanged if you turn
it round. On the other hand, this procedure with rectangles is feeble from a
computational point of view. Imagine working out 37 x 121 in this fashion. It
would involve doing all that drawing, and then counting from 1 to 4477.
Following the success of denary notation, we can easily embellish it a little

with decimal points and minus signs to make a way of representing real num
bers. Before we start worrying about the decimal representation of 1T, we first
look at less exalted numbers. For example, 2/5 is written as 0·4 and -11/8
is written as -1.375. Again there are simple, mechanical procedures for doing
arithmetic with these decimal expressions. One of the most minor sources of
international tension is the trichotomy exemplified by 3.142, 3·142 and 3,142.
You can make a case for the first and the second representations being 426.
The third representation can be worrying too, since in some places it means a

number close to 1T, and in other parts of the world it means the smallest nat
ural number more than one thousand times bigger than 1T. Different cultures
struggle to exert dominance by the choice of the decimal punctuation mark.
Let us be clear about what a finite decimal expansion means. For example,

12.345 = 1 x 101 + 2 x 10° + 3 X 10-1 + 4 X 10-2 + 5 X 10-3 •

Any natural number has a denary representation which is really a sum of expres
sions, each of which is a digit in the range 0 to 9 multiplied by a non-negative
power of 10. A decimal representation is a more general beast, and you permit
negative powers of 10.
We soon get into trouble with decimal notation, because 1/3 does not admit

a finite decimal expansion. The number 0.3 is too small, but 0.4 is too big. in
fact we find ourselves wanting to represent 1/3 as 0.3333333 ... , economically
written as 0.3. In a sense this isn't too bad, since at least the terms of the
decimal expansion are predictable. However, there is something a little tricky
going on here. As a sum 0.3 is

3 x 10-1 + 3 X 10-2 + 3 X 10-3 + ....

Now, I hope that you feel uncomfortable about infinite sums. Adding up two
numbers is fine, and adding three numbers is also fine because you can break
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it up into two sums of two numbers:

a + b+ c = (a + b) + c.
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Notice that the associative law of addition means that you don't have to worry
about brackets. By induction, there is no problem about adding up m numbers
where m is a natural number. The difficulty arises when you try to add up in
finitely many numbers. Let us skip to the answer: yes, you can do it sometimes,
but you have to be careful, because sometimes you cannot. Troublesome sums
include

1+1+1+ ...

which has the merit of being absurd. No-one would dream of thinking that you
could add up infinitely many 1's and get an answer which is a number. More
refined trouble arises from

1-1+1-1+1-1. ...

You can make out a case for this to be 0, 1 or 1/2.
t Warning! Flawed arguments coming. To see this, observe that one may
bracket the expression as

(1 - 1) + (1 - 1) + (1 - 1) + ...

or
1 - (1 - 1) - (1 - 1) - (1 - 1) - ... ,

and these sloppy arguments support the first two answers.
Trying to get the answer 1/2 requires a bit more sophistry, though it is very

instructive. Recall the following fact from school days:

(1 - x)(1 + x + x 2 + x3 + ... + x m
) = 1 _ xm +1 .

Now assume Ixl < 1 and let m wander off towards infinity. Notice that xm+l
will become vanishingly small, so we have (1 - x)(1 + x + x2 + x 3 + ...) = 1.
Now rearrange this as

23 1
1 + x + x + x + ... = --.

I-x

This equation is only valid for Ixl < 1, so we cannot just plug in x = -1 to
get the third answer. However, the equation is valid for values of x in the range
-1 < x < 1. Let x take such values, and see what happens as x approaches
-1. The right hand side of the equation approaches 1/2, and the left hand side
approaches 1 - 1 + 1 - 1 + 1 - 1 + ....
All of the argument since t is highly suspect. This process of taking limits,

and trying to add up infinite sums is very important, and very useful. The
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problem is obvious though. If we just blunder around we are likely to come
up with contradictory answers. It is necessary to develop some mathematics
which will tell us exactly what we are and are not allowed to do with infinite
processes, taking limits and so on.

6.2 The Real Numbers

The real numbers are an infinite field. They also come equipped with an order
ing; an antisymmetric transitive relation ("less than") which has the property
that if x, y E IR and x :f. y then either x < y or y < x, but not both. The
algebra and the ordering interact nicely, and we list some key laws below.
These laws hold for all real numbers a, b and c.

(i) If a < band 0 < e, then ae < be.

(ii) If a < band e < 0, then be < ac.

(iii) If a < b, then a + c < b+ e.
(iv) If a < band c < d, then a + c < b + d.

All remain valid if we relax < to ::; . There is a well-known variation on the
notation: b > a means a < b. Similarly b ~ a means a ::; b.
The notion of the modulus of a number was introduced in Chapters 1 and

3, but that was long ago. Without apology, we address this important matter
again (but not in quite the same way!).

Definition 6.1

The modulus Ixl of the real number x is x if x ~ 0, and is -x if x < o.

If you think of the real numbers as being the names of points on a number line,
then Ixl is just the distance of x from O. This comment explains why this is
such an important idea. Notice that if x and y are any pair of real numbers,
then Ix - yl (also known as Iy - xl) is their distance apart.
The function I : IR -t IR defined by I(x) = Ixl "Ix E IR is not surjective,

because Ixl is never negative. It is not injective either, because 111 = I - 11. If
you have read this book in sequence, then you will know much about modulii
(the plural of modulus). However, we can't assume that, so we distill a few
important properties of the modulus function.
For every real number x we have

Ixl = I-xl
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Ixl = x or - x

x s Ixl
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(6.1)

On the basis that you cannot have too much of a good thing, we will give
yet another proof of the triangle inequality.

Proposition 6.1

For all real numbers x and y we have Ix + yl s Ixl + Iyl·

Proof

For any real numbers x, we have x S Ixl and y S Iyl. Now apply law (iv)
from the start of this section, so x + Y s Ixl + Iyl. Similarly we observe that
-x S Ixl and -y S Iyl· Now apply law (iv) again so -(x + y) s Ixl + Iyl. Now
by Equation (6.1) either x + y = Ix + yl or -(x + y) = Ix + yl. In either event,
we can deduce that Ix + yl s Ixl + Iyl·

o

Proposition 6.2

For all real numbers x and y we have Ilxl-lyll s Ix - yl·

Proof

Ixl = I(x - y) + yl s Ix - yl + Iyl· Subtract Iyl from each side, or if you want to
be really precise, add -Iyl to each side. Either way you obtain Ixl-Iyl s Ix-yl·
Now swap the roles of x and y in that argument, so we obtain Iyl-Ixl s Iy - xl,
but this can be recast as -(Ixl-Iyl) s Ix - yl. Now we employ the same trick
as in the preceding proof. Either Ixl-Iyl = Ilxl-lyll or -(Ixl-Iyl) = Ilxl-lyll·
In either event, we can deduce that Ilxl -Iyll s Ix - yl·

o

Corollary 6.1

Both Ix + yl and Ix - yl can be bounded above and below using expressions
involving Ixl and Iyl because

IIxl-lyll six - yl = Ix + (-y)1 $Ixl + Iyl
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Ilxl -Iyll ::; Ix - (-y)1 = Ix + yl ::; Ixl + Iyl·
This places both expressions in the same sandwich.

6.3 Notation for Sequences

We consider the sequence aI, a2, a3, . .. where each ai is a real number, and
there is a real number an for each natural number n. When n E N, we say
that an is the n-th term of our sequence. For example, we might consider the
sequence b1 , b2 , b3 , ..• where bi =1/i for every i E N. This is the sequence

1,1/2,1/3,1/4,1/5, ....

We say that two sequences (Ci)~l and (di)~l are equal if and only if Ci = di
for every i E N. If this happens, we write (Ci)~l = (di)~l'

We can write our original sequence as simply as (ai)~l' or as (ai)iEN. In
our notation, the sequence of reciprocals of natural numbers can be written in
these four ways: (bi)~l' (bi)iEN' (l/i)~l' or (l/i)iEN. The actual letter used
as the "counter" doesn't matter at all. The sequence (ai)~l and the sequence
(aj )~l both mean the sequence aI, a2, a3, ... , as do (au)uEN and (av )vEN.
Given that our sequences are all understood to be labelled by the natural

numbers, we can elect to omit that fact. Thus we can write just (ai) as a fast
notation for (ai)~l' You have to adopt the convention that the subscript i in
the expression (ai) is automatically allowed to range over the natural numbers.
You must not leave off the brackets of course, since you want ai to denote
the i-th term of the sequence, and not the whole sequence as described by
(ai)' Notice the following slightly unnerving consequence of our notation. It
is always true that (ai) = (aj), but ai = aj in not necessarily the case. The
statement (ai) = (aj) is the assertion that a sequence is equal to itself, but
we have elected to describe the sequence slightly differently on either side of
the symbol =. The statement that ai = aj asserts that the i-th term of the
sequence and the j-th term of the sequence happen to have the same value.
There are special sequences which we should make note of; these are the

constant sequences, where all terms are equal. The notation for a sequence
where every term is x is (x). Thus (1) is an infinite sequence of ones, and (0)
is an infinite sequence of zeros.
We can perform algebraic operations on sequences term by term. Suppose

that (Ci) and (di) are sequences. Their sum is (ei) where ei = Ci + di for every
i E N. One can also write this as (Ci) + (di ) = (Ci + di ). Similarly the product
of (Ci) and (di) is (li) where h = Cidi for every i E N. Equally well, we can
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write (Ci)' (di ) = (cidi). These term-by-term operation inherit various algebraic
laws of lR. For example, addition is commutative and associative, the constant
sequence (0) is an additive identity, and the additive inverse of (ai) is (-ai)'
In the language of Chapter 5, sequences form an abelian group under addition.
Note that subtraction of sequences is effected by (Ci) - (di) = (Ci) + (-di) =
(Ci - di ).

The constant sequences form a copy of lR from the algebraic point of view;
(3/7) + (4/7) = (1) and so on. The constant sequences therefore form a field,
and regarding them as scalars, the reader can check that the set of all real
sequences forms an abstract vector space because the vector laws of Section 4.3
all hold.
There is an enormous range of interesting properties which a sequence might

have. In this book we will focus on certain attributes which arise naturally when
you investigate limiting processes. There are other properties too though. For
example, a sequence (ai) might be periodic - this means that there is a nat
ural number p such that ai+p = ai for every i E N. On the other hand, a
sequence might be alternating, so its entries are alternately non-positive and
non-negative. We are concentrating on the case where all the entries of a se
quence are real numbers. This need not be the case in general of course, you
can have sequences of anything - sequences of functions, sequences of matrices,
even sequences of sequences, and sequences of sequences of sequences.
We make a definition for forthcoming exercises and for other future use.

Definition 6.2

There are various types of boundedness.

(a) A sequence (ai) or set {ai liE I} of real numbers is bounded if there is a
real number M so that lail ~ M for every i.

(b) A sequence (ai) or set {ai liE I} of real numbers is bounded above if there
exists a E lR such that ai ~ a for every i.

(c) A sequence (ai) or set {ai liE I} of real numbers is bounded below if there
exists bE lR such that b ~ ai for every i.

EXERCISES

6.1 (a) Give an example of a sequence which has period l.

(b) Give an example of a sequence which has period 2 but which



6.3 (a)

(b)

(c)

(d)

(e)

6.4 (a)

(b)

(c)

(d)
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does not have period 1.

(c) Give an example of an alternating sequence of period 2.

(d) Can you give an example of an alternating sequence of period
3?

6.2 (a) Show that the sequence (sin(i» is bounded.

(b) Give an example of a sequence which is not bounded above or
below.

(c) Prove that the sequence (ai) is bounded if and only if it is
bounded above and below.

Give an example of an infinite bounded subset of lR

Is the empty set a bounded subset of JR.?

Is the empty set an unbounded subset of JR.?

Is the union of two bounded subsets of JR. a bounded subset of
JR.? Justify your answer.

Is the intersection of two bounded subsets of JR. a bounded subset
of JR.? Justify your answer.

Give an example of a bounded sequence (ai) where the set {ai I
i E N} is infinite.

Prove that if the sequence (bi ) is such that {bi liE N} is finite,
then (bi ) is bounded.

Show that a bounded sequence can be the sum of two unbounded
sequences.

Show that the sum of two bounded sequences is bounded.

6.4 Limits of Sequences

We first explore the notion of a limit from an informal point of view, to try to
see how best to capture the idea in a formal definition. Consider the sequence
(8i) =81,82,83,'" where 8i =1- 2-i , so

1 1 1 1
(8i) = 1 - 2,1 - 4,1 - 8,1 - 16""

It should be clear to you that as you look along this sequence, the terms get
steadily closer to 1. However, you can equally well say that as you look further
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along the sequence, the terms get progressively closer to 37 since numbers
137 - 8il form a strictly decreasing sequence! This is an important lesson; you
can get closer to something forever, and yet it may be that you never get near
it. If instead we look at the sequence of numbers 11 - 8il, in other words the
sequence (1/2 i

), we find a sequence which approaches °very well, but never
gets there. Thus the sequence (8i) is approaching 1 very well, but it never gets
there. This is another lesson; you can get as close as you like to something, but
you may never reach it.
Now let us think about the sequence tl, t2, t3," . where ti =°when i is odd

and l/i when i is even. Thus the first few terms look like

0,1/2,0,1/4,0,1/6,0,1/8, ....

What happens is that the terms are settling towards 0 (approaching 0 in the
limit) as you look along the sequence. However, it is not the case that the terms
are progressively better and better approximations to 0 (unlike the sequence
81,82,83, .. ' where the terms are steady improvements towards 1). What is hap
pening with (ti) is that the alternate terms which are 0 are actually achieving
the limit. Insinuated between them is another sequence which is also steadily
closing on O. However, the interlacing of the two sequences has the effect that
as you pass from 0 to a non-zero term, your approximation to the limit deteri
orates.

1+ E

1
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Fig. 6.1. Picture of a limit
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We now give the formal definition of convergence, and of a limit of a se
quence.

Definition 6.3

We say that the sequence (ai) of real numbers converges to a limit I exactly
when the following condition holds: for every e > 0 there is a natural number
N such that lai - II < e when i 2:: N. Here we implicitly assume that IE E IR.
and n E N.

In order to see how this definition works, you have to notice that N must be
chosen after e has been selected. The idea is that for any particular e you can
always find an N to do the job. You do not have to find a single N which will
do the job for every e simultaneously. See Figure 6.1.
Let us see what happens if you misremember the definition in the most

obvious way.

Definition 6.4 (confused convergence - non-standard notation)

We say that the sequence (ai) of real numbers confusedly converges to a limit
I exactly when the following condition holds: there is a natural number N such
that for every e > 0 we have lai - II < e when i 2:: N.

If (ai) is a sequence which confusedly converges to I, then ai = I for all except
finitely many values of i. This means that the terms of the sequence may wander
about at first, but after finitely many terms have gone by, the sequence must
consist of I repeated for ever. Thus a confusedly convergent sequence must be
"ultimately constant". To see this, we argue as follows.
For each n 2:: N we have Ian -II < e for every positive real number e. In

other words, I - e < an < I + e for each n 2:: N and for each positive e. Now,
since e may be as small as you please, it must be that an is neither greater
than nor less than I. The only way this can happen is that an = I whenever
n 2:: N. Of course, we have nothing to say about ai when i < N, which is why
the terms of the sequence may vary at first.
Now, there is nothing wrong with confused convergence, but it is not such

a widely used concept as convergence. The reason is obvious: most people have
found it too strict a definition of "settling down towards". Now we return to
the proper definition of convergence, and explore some of its consequences.
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Proposition 6.3

Suppose that the sequence (an) converges to the limit l, and that also (an)
converges to the limit m, then l =m.

Remark 6.1

This means that a sequence (an) can converge to at most one number. Once
we have proved this theorem, we can call l (or m) the limit of the sequence,
and write l = lim(an ) = limn -+oo an = lim an, all of which are common ways
of writing this limit. Thus every convergent sequence converges to exactly one
limit.

Proof

We will begin by using the triangle inequality of Proposition 6.1. As you will
see, it is a very powerful tool when proving results concerning convergence and
(in Chapter 7) continuity. Suppose that a, b and x are real numbers, then it
follows that

la - bl = I(a - x) + (x - b)1 :5 la - xl + Ix - bl· (6.2)

Suppose that (an) converges to l and m. We want to show that l =m. Suppose
that c > 0, then there exists L,MEN such that lai - II < c when i 2: L, and
moreover lai - ml < c when i 2: M. Let N = max{L,M}. When i 2: N we
have Il - ml :5 Il - ail + lai - ml < 2c using Equation (6.2).
Thus 0 :5 Il - ml < 2c for all positive c (no matter how small). Now we can

not have Il - ml > 0 because then putting c = Il - ml/2 violates the condition
that 0 :5 Il - ml < 2c for all positive c. Thus Il - ml = O. We conclude that
l =m.

o

You can do a finite amount of damage to a convergent sequence without
changing its limit. This is a loose way of saying that if you take a convergent
sequence, and change a finite number of its terms to other values, then the
resulting sequence is still convergent, and its limit is unchanged. We will now
clarify and prove these remarks.
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Suppose that (ai) is a sequence of real numbers converging to t.

(a) Form a new sequence (bi ) by discarding finitely many terms from the begin
ning of the sequence (ai), so for some mENU{O} we have bi = ai+m'Vi E N.
It follows that (bi ) converges to t.

(b) Start again with (ai)' Form a new sequence (Ci) by inserting finitely many
extra terms at the beginning of the sequence (ai), so for some mENU {O}
we have Cm+i =ai'Vi E N. It follows that (Ci) converges to t.

Proof

(a) Suppose that we are given some c > O. We must show that there is N EN
with the property that Ibn -ll < c when n ~ N. Now, we know that we can
choose N E N with the property that if n ~ N, then Ian -tl < c. This very
N will do the job, because if n ~ N, then bn = an+m and n +m ~ n ~ N.
Thus

Ibn - tl = lan+m - II < c.

(b) Given any c > 0, choose N 1 E N so that if n ~ N 1 , then Ian - II < c.
Let N = N 1 +m. Now if n ~ N we have len - II = lan - m - 11, but also
since n ~ N it follows that n - m ~ N - m = N1 . It now follows that
lan - m - tl < c and we are done.

o

Corollary 6.2

Given a sequence (ai) converging to t you can insert or delete finitely many
terms in the sequence and the resulting sequence will still converge to t. This
is because any changes that you make can be excised by pruning an initial
segment of the altered sequence, and this same shortened sequence could also
have been obtained by deleting an initial fragment of the original sequence.
Now apply both parts of Proposition 6.4.

Thus the convergence or otherwise of a sequence is determined solely by its
tail, i.e. the behaviour of the terms an when n is large.
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Proposition 6.5

Suppose that (an) is a convergent sequence. It follows that (ai) is bounded.

Proof

Let the limit of the sequence be l. Taking e to be 1, we know that there is a
natural number N with the property that if i ~ N, then lai - II < 1, and so
l - 1 < ai < l + 1 :5 III + 1. For these values of i we have -ai < -l + 1 :5 III + 1.
Thus both ai and -ai are bounded above by III + 1 when i ~ N. We conclude
that jail < III + 1 when i ~ N.
Let M = max{lll + 1, lail11 :5 i < N}. Thus M is the maximum of a non

empty finite set of real numbers, so it is properly defined, and by the choice of
M we have jail :5 M for every i E N.

o

EXERCISES

6.5 (a) Give an example of a sequence (an) which is not convergent,
but with the property that the sequence (laiD (Le. the sequence
whose i-th term is lad) is convergent.

(b) Give an example of two unbounded sequences (ai) and (bi ) with
the property that the sequence (aibi) (the sequence whose i-th
term is aibi) is bounded.

(c) Give an example of two unbounded sequences (ai) and (bi) with
the property that the sequence (aibi ) (the sequence whose i-th
term is aibi) is convergent.

6.6 Suppose that (an) is a sequence converging to a limit l.

(a) Prove that the sequence (laiD converges to Ill.

(b) If (an) confusedly converges to l, then (an) converges to l. How
ever, if (an) converges to l, it does not follow that (an) confusedly
converges to l. Justify these remarks.

You can go on to prove a variety of theorems about convergent sequences.
We have already remarked that sequences can be added, subtracted and mul
tiplied term by term. You have to be a little cautious about division, because
of the possibility that some entries may be 0 even though the whole sequence
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is not the sequence (0) consisting solely of zeros. From the point of view of
convergence, we can always discard finitely many terms of a sequence without
changing the limit; this gives us a route to division in favourable circumstances.

Proposition 6.6

Suppose that (an) and (bn) are sequences, and that they converge to I and m
respectively. For each n E N let en =an + bn, and dn =anbn. It follows that
(en) converges to 1+ m and dn converges to 1m.

Remark 6.2

As you would expect!

Proof

First we deal with the sum of (an) and (bn). Suppose that c > O. Let cI =c/2.
Choose NI E N such that if n ~ N I , then Ian -II < Cl' Choose N2 E N such
that if n ~ N2' then Ibn - ml < Cl' We are allowed to select NI and N2 since
we are given the convergence of (an) and (bn) to their respective limits.
Let N = max{N}, N2}, so if n ~ N, then n ~ NI and n ~ N2. Thus for

n ~ N we have

len - (I +m)1 = I(an+ bn) - (I +m)1 = I(an-I) + (bn - m)l

::; Ian - II + Ibn - ml < CI + CI =C
and this part of the result is proved.
Now for (dn ). This will require a little more cunning, so we prepare the

ground. Notice the crucial use of the triangle inequality in what follows.

Idn- Iml = lanbn- Iml = lanbn - Ibn + Ibn - Iml

::; lanbn-lbnl + Ilbn -lml = Ibnllan-II + Illibn- mi. (6.3)

Aside: Now we break off from the official proof, to discuss how we are going
to tackle this. We want to argue that for sufficiently large n, the expression
Ibnllan- II + Illibn- ml can be made as small as you like. This will put the
squeeze on Idn - Iml. By looking sufficiently far along the two sequences (an)
and (bn ) we will be able to make Ian - II and Ibn - ml as small as we please.
Now III is a constant, so we will be able to make Illibn - ml small. The problem
is with the other term Ibnllan-II. Far along the sequence, Ian -II will become
small. However, there is an irritating multiplier Ibnl to worry about. Might it
be that Ibnl gets big and so neutralizes the attempts of Ian - II to force the
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(6.4)

product to be small? Well no, that cannot happen, because (bn ) converges to a
limit, so that Ibnl will also converge to a limit - and will not be able to wander
off becoming bigger and bigger (see Proposition 6.5). Enough of this chatter!
Let us put on formal attire, and write out the proof properly. End of aside.
Choose No E N such that if n ~ No, then Ibn - ml < 1. For these values of

n we have
Ilbnl -Imll :5 Ibn - ml < 1,

and so -1 + Iml < Ibnl < Iml + 1. We isolate the important fact that if n ~ No,
then Ibnl < Iml + 1, and moreover Iml + 1 is at least 1 and so is not O.
Now suppose that we have an arbitrary c > O. Let

c c
C1 = 2(lml + 1) and C2 = 2(111 + 1)

Note that III + 1 is non-zero for the same reason that Iml + 1 is non-zero, and
that C1, C2 > O. Choose N1 E N such that if n ~ N1 , then Ian -1\ < C1' Choose
N 2 E Nsuch that ifn ~ N2 , then Ibn-ml < C2. Now put N =max{No,N1>N2 }.

Now if n ~ N, then by the inequality (6.3) we have

Idn- Iml :5 Ibnllan-II + Illibn - ml
c c c c

< (Iml + 1)20ml + 1) + 1112(111 + 1) :5 2+ 2=c.
This is exactly what was required.

o

The fact that multiplying convergent sequences leads to a convergent sequence
has various consequences. For example, a constant sequence (c), where every
term is c, is certainly convergent, and its limit is c. Thus if (ai) is convergent
and c E IR, then (cai) is convergent. Moreover, if the limit of the first sequence
is I, then the limit of the second sequence is cl.
In fact an energetic reader might verify that the collection of all convergent

sequences of real numbers forms an abstract vector space over the field of
real numbers. Scalar multiplication is effected via the constant sequences. In
particular, the constant sequence whose entries are all -1 is convergent, so if
(ai) converges, then so does (-ai)' Recall from Remark 4.1 what you have to
check in order to verify that a set is a vector space.

Definition 6.5 (non-standard)

We say that a sequence (ai) bonverges to a limit I exactly when for all c > 0
we have lai - II < c for all except for finitely many values of i.
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The phrase "for all except for finitely many values of i" deserves some ampli
fication. In this context, it means that the set {i liE N, lai - II 2: c} is finite.
Notice that the empty set is finite, so it may be that {i liE N, lai - II 2: c} is
empty, and so lai -11 < c for all i E N.
Instead of developing the concept of bonvergence, we immediately show that

it is not a new idea at all, so that no-one will bother to talk about bonvergence.

Proposition 6.7

The sequence (ai) converges to the limit 1 if and only if the sequence (ai)
bonverges to the limit 1.

Proof

This is an "if and only if" result, so we have to prove the implication both
ways. First suppose that (ai) converges to the limit 1. Given any c > 0 there is
a natural number N with lai -11 < c whenever n 2: N - we know this because
(ai) converges to I. Thus, except (possibly) for the finite number of terms ai
where i < N we have lai -II < c. Thus (ai) bonverges to I.
Now for the other half of the proof. Suppose that (ai) bonverges to the

limit I. Given any c > 0 there are only finitely many subscripts r such that
lar -II 2: c. Call the largest of these troublesome subscripts N (if there are no
troublesome subscripts, let N = 0). Now if n 2: N + 1 we have Ian - II < c.
Thus (ai) converges to 1.

o

Now, you could react by thinking that you have just wasted your time by
thinking about a concept which is not new. However, this is not the point.
Look at the definition of bonvergence again. It does not depend on the order in
which the terms of the sequence occur. You can rearrange a sequence how you
please; it does not alter whether or not it bonverges to I. However, thanks to
Proposition 6.7 we can deduce that the same is true of convergence to I. Thus
we have discovered an important consequence.

Corollary 6.3

A sequence (ai) converges to 1if and only if any rearrangement of the sequence
converges to 1.

By the way, I invented the terms bonvergence and confused convergence to make
a point. This terminology is not standard, and if you use it in mathematical
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circles, please do not expect to be understood.

6.5 The Completeness Axiom
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Examples of sets which are bounded above include all finite subsets of lR,
the set of negative integers, and {x I x E lR, x 2 < 2}.
Throughout this chapter we have apparently been talking about lit How

ever, looking back, you will see that every single thing we have done works just
as well in Q, or indeed in any field intermediate between Q and lit We now in
troduce an important special property of IR called completeness. The rationals
do not have this property. Completeness can be expressed in many equivalent
ways, and we choose one which is easy to understand.

The Completeness Axiom

Suppose that S is a non-empty subset of the real numbers, and that S is
bounded above. Let

U(S) = {u I u E lR, s 5 u Vs E S}.

Thus U(S) is the set of all upper bounds for S. The completeness axiom asserts
that U(S) contains a least element Umin.

Remark 6.3

In the notation ofthe completeness axiom, we see that Umin E U(S) and Umin 5
U \:Iu E U(S). The real number Umin is called (depending on your whim) either
the supremum of S or the least upper bound of S. The choice is a matter oftaste.
Those who prefer the descriptive phrase tend to abbreviate it to l.u.b.j perhaps
the "supremum" terminology is slightly better, because it relates directly to S,
rather than to U(S), and we have the neat notation supS for the supremum
of S.

Example 6.1

(a) sup 0 does not exist since 0 is not non-empty.

(b) sup N does not exist, since N is not bounded above.
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(c) sup{I,2,3}=3.

(d) sup{x I x E lR,x2 < 2} = .J2.
(e) sup{x I x E lR, x2 :5 2} = .J2.

Introductory Mathematics: Algebra and Analysis

These examples are extremely instructive. To start with, when a set has a
supremum, the supremum mayor may not be in the set. Moreover, it is now
plain that Q does not satisfy the completeness axiom by Example 6.1(d) with
IR replaced by Q. Recall that .J2 fI Q by Proposition 2.6.
The real numbers also satisfy a lower bound analogue of the completeness

axiom. This is easy to see; multiply by -1, apply the completeness axiom, then
multiply by -1 again. Thus if 5 is a non-empty subset of the real numbers,
and 5 is bounded below, then there is a greatest lower bound for 5. This is also
called the infimum of 5, and is written inf 5.

6.6 Limits of Sequences Revisited

The joy of the completeness axiom is that it has the consequence, put infor
mally, that if a sequence looks like it wants to converge, then it does converge.
Let us see what this means, and build towards formalizing this glib summary
in Theorem 6.2.

Definition 6.6

A sequence (ai) is said to be monotone increasing if whenever i < j, then

ai :5 aj'

Thus as you look along a monotone increasing sequence the terms never get
smaller. The sequence (bi ) where bi = i 'Vi E N is an example of a monotone
increasing sequence, as are constant sequences. In a perfect world, we might
have called our notion monotone non-decreasing, since we are allowing i < j
and ai = aj, but life is too short. We use the terminology that (ai) is strictly
monotone increasing to mean that if j < k, then aj < ak.

Proposition 6.8

Let (ai) be a monotone increasing sequence and suppose that (ai) is bounded
above (see Definition 6.2). It follows that (ai) is a convergent sequence.
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Proof
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Let a = sup{ai liE N}, which exists by the completeness axiom. We shall
show that (ai) converges to a. Suppose that c > 0 is given. There must exist
N E N such that a - c < aN, otherwise a - c would be an upper bound for
{ai liE N}, and yet be smaller that the least such upper bound a. Now if
n ~ N we have a - c < aN :5 an :5 a so Ian - al < c and we are done.

o

Observe that there is a corresponding notion of a (strictly) monotone decreasing
sequence, and a decreasing analogue of Proposition 6.8.

Definition 6.7

Suppose that (ai) is a sequence of real numbers, and that a is an order
preserving injection from N to N. A sequence (b i ) whose i-th term is aO/(i)
is called a subsequence of (ai).

To say that a is order preserving means that when j, kEN and j < k then
a(j) < a(k). This will probably be a bit abstract for some tastes. Informally
then, a subsequence of a sequence (ai) is obtained by omitting some entries,
but still leaving infinitely many terms (in the same order that they appeared in
the original sequence) to form the subsequence. You might omit the first billion
terms, or omit alternate terms, or omit all but the terms ap where p is a prime
number. A good notation for a subsequence is (an,), where the i-th term is the
ni-th term of (aj), and it is understood that if il < i2 then nil < ni2.
We gather together some useful observations in the next result.

Lemma 6.1

Suppose that (ai) is a sequence with subsequence (an,).

(a) If (ai) is bounded, then (an,) is bounded.

(b) If (ai) converges to l, then (an,) converges to I.

(c) If (ai) converges to I, and each ai E I, where I = [e,d] is a closed interval,
then lEI.

Proof

The proofs of parts (a) and (b) are immediate from the definitions. As for part
(c), we suppose (for contradiction) that I > d (the case I < e is similar). Let
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e = [ - d > o. Thus lai - [I ~ e for all i E N, so (ai) does not converge to [
which is absurd.

o

The following result is a gem. The result itself is interesting, the proof is sweet,
and the proposition has important consequences.

Proposition 6.9

Any sequence (ai) has a monotone subsequence.

Remark 6.4

The strategy for showing this is as follows. We set up a dichotomy between two
situations, exactly one of which must occur. In one case we exhibit a strictly
monotone decreasing subsequence of (ai), and in the other case we exhibit a
(non-strictly) increasing subsequence of (ai).

Proof

Let J = {j Iaj > aNi> j} ~ N. The set J is either finite or infinite.
If J is infinite, let the k-th element of J in ascending order be nk. Now

if u,V E N and u < v, then nu < n" so an" > anv . Thus (ank ) is a strictly
monotone decreasing subsequence of (ai).
On the other hand, if J is finite (this includes the case that J is empty),

then we put m = Max(J U {OJ). Let ml = m + 1. Suppose that mi E N is
defined, then we may choose a natural number mi+l such that mi+l > mi, and
am; :s; am;+l since mi > m. It follows that (am,) is a (non-strictly) monotonic
increasing sequence. Thus either we construct a strictly monotone decreasing
subsequence, or we fail but discover a (not necessarily strictly) increasing sub
sequence instead.

o

As a corollary we obtain a famous result. Note that a bounded sequence is one
which is bounded both above and below.

Theorem 6.1 (Bolzano-Weierstrass)

Any bounded sequence has a convergent subsequence.
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Proof

This follows directly from Propositions 6.8 and 6.9 and Lemma 6.1(a).
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o

This leads us to the highlight of this section. There is a nasty weakness in
the definition of a convergent sequence. If you want to show that a sequence
is convergent, you have to know the number I to which it converges, otherwise
you can't apply Definition 6.3. Now, when you are doing mathematics, and
you stumble across a sequence which you hope converges, it is highly unlikely
that your invisible friend will whisper the limit in your ear. What you need is
an intrinsic criterion of convergence; something which depends only upon the
sequence itself, and not on the knowledge of I.
We make the key definition.

Definition 6.8

A sequence (an) of real numbers is called a Cauchy sequence exactly when
the following condition is satisfied: for any 10 > 0 there is N E N such that if
n,m EN and both n,m ~ N, then Ian - ami < e.

Informally, you don't know that the terms are approaching a limit, but you do
know that the terms are approaching one another.

Theorem 6.2

The sequence (an) of real numbers is convergent if and only if it is a Cauchy
sequence.

Proof

=?) If (an) converges to I, and 10 > 0, choose N E N such that if n ~ N, then
Ian -II < 10/2. Now if n,m ~ N, then Ian - ami ~ Ian -II + 11- ami < e.
~) Set 10 =1. There is N E N such that for all n,m ~ N we have Ian -ami < 1.
In particular IIanl - laNII ~ Ian - aNI < 1. Thus for every i E N we have
lail ~ max{lajl + 1 11 ~ j ~ N}.
The sequence (ai) also contains a monotone subsequence (anJ by Propo

sition 6.9, which is also bounded by Lemma 6.1. The monotone subsequence
converges to a limit I by Proposition 6.8. Now we show that I is the limit of the
Cauchy sequence (an)' Suppose that e > 0 is given. Choose M l E N so that if
n,m ~ M l , then Ian - ami < e/2. We can do this by the Cauchy condition.
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Now choose M2 so that if i ~ M2 then Ian. -ll < e/2. Let M =max{Mll M2 }.

Select k ~ M so that nk ~ M. Now we deploy the triangle inequality using a
standard ruse. For n ~ M we have

and we are done.

o

EXERCISES

6.7 Let ak be the truncation of the decimal representation of 7r after
the k-th decimal place. Show that (ak) is a Cauchy sequence, and
conclude that this sequence converges to a real number.

6.8 (a) Suppose that (an) is a bounded sequence. For each j E N let
bj =sup{am Im ~ j}. Show that (bn ) is a convergence sequence,
the limit of which is called the limit supremum of (an), written
as limsup(an ).

(b) Define an analogous sequence using infima instead of suprema.
Show that liminf(an ) ~ limsup(an ) in the obvious notation.

(c) Show that liminf(an ) =limsup(an ) if and only if (an) is a con
vergent sequence, and in that event, both limits are lim(an ).

6.7 Series

One of the main reasons for studying sequences is to study infinite sums. For
example,

1+ 1/2 + 1/4 + 1/8 + ...
or put more neatly 2::'0 2- i , or even 2: 2- i provided that the range of sum
mation is clear from the context. No amount of staring into space will tell you
what this infinite sum is. Infinite processes must be tamed by definitions. We
use our knowledge of sequences to assign a meaning to the sum. You simply
form the sequence of partial sums. This sequence is

1, (1+~), (1+~+~), (1+~+~+~), ...
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or rather
1, 3/2, 7/4, 15/8, ....
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You define the infinite sum to be the limit of this sequence - if it converges.
In this case it does, the limit is 2 and, once we have made a proper definition
(and not before), we will be able to write E:o 2- i =2.
We make the definition formally.

Definition 6.9

Suppose that E:l ai is an infinite series. Form a sequence (Sj) by letting
Sj = E1=1 ai for every j EN. We say the seriesE:l ai converges to the sum
1 exactly when the sequence (Sj) converges to the limit 1. If the sequence (Sj)
does not converge, then we say that the seriesE:l ai is not convergent.

In this definition, the quantities Sj are called partial sums, because they are
obtained by adding up a finite part of the series. In fact Sj is the sum of the
first j terms of the series. The sequence (Sj) is called the sequence of partial
sums ofE:l ai·
Whenever you are staring at an infinite series, remember that it is a se

quence in disguise. In particular, the routine results about sequences carry
over, and you can add and subtract convergent infinite series term by term and
get predictable results. Multiplication is a more delicate business, though there
is a sensible way to define the product of two infinite series, but it is not term
by term.
We have an easy necessary condition for the convergence of a series.

Proposition 6.10

If the series Ei ai converges, then the sequence (ai) converges to O.

Proof

The sequence (Si) of partial sums of the series must be a Cauchy sequence.
Thus for any c > 0, there is MEN such that if n,m ~ M, then ISn - sml < c.
Let N = M + 1, then if n ~ N we have lanl = ISn - sn-ll < c. Thus (ai)
converges to O.

o

One of the most striking results about infinite sequences is Corollary 6.3 which
ensures that you can rearrange the terms of a convergent sequence and be
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confident that the new sequence will converge to the same limit. You might
expect that if al + a2 + a3 + ... is a convergent infinite sum, then you should
be able to rearrange the summands as you please and get the same answer.
After all, addition is commutative, so this looks very likely. Astonishingly, it is
false. For example, consider the sequence 1- 1/2+ 1/3 -1/4+ 1/5 - ... which
of course means 1+ (-1/2) + (1/3) + (-1/4) + (1/5) + .... One can show that
this series sums to loge2. However, you can rearrange the order of the terms
so that the series sums to 71", or -13, or indeed any real number which you
nominate.
We explore this series in some detail, since it is highly instructive. Consider

the infinite series
00

L l/n = 1+ 1/2 + 1/3 + 1/4 + ...
n=!

The terms being added are getting smaller and smaller, so it looks as though
it might be possible to add up this series - at least Proposition 6.10 is not an
obstruction to convergence. Let

22r+1

t r = L l/n.
n=22r - 1+l

This looks a little intimidating. t r is the sum of the reciprocals of consecutive
natural numbers, the smallest being 22r- 1 + 1 and the largest being 22r+1. The
first couple of terms are

tl = (1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) ~ 1/2 + 1/2 =1
and

t2 = (1/9 + ... + 1/16) + (1/17 + ... + 1/32) ~ 1/2 + 1/2 = 1.

An induction argument shows that tk ~ 1 for all kEN. Thus

8

L l/n =1+ 1/2 + tl > 2,
n=l

32

L l/n =1+ 1/2 + tl + t2 > 3
n=l

22k - 1

and an induction on k shows that L:n=l l/n ~ k for every natural number
k. Thus the partial sums of L: l/n are not bounded above and so the sum
does not converge, since, thanks to Proposition 6.5, a convergent sequence is
bounded.
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Note that it follows that starting with any given 1/k, one can add reciprocals
of consecutive natural numbers so that (l/k + l/(k + 1) + .. . 1/m) is larger
than any natural number you please.
Suppose that we look at alternate terms

2 (1 + ~ + ... + 1 ) = (1 + ~ + ... + 1 )
3 2m-132m-1

+ (1 + ~ + ... + 1 )
3 2m-1

> (1 + ~ + ... + 1 ) + (~ + ~ + ... + _1_)
- 3 2m -1 242m

= (1 + ~ + ~ + ~ + ... + _1_) .
2 342m

It follows that the partial sums of E~o 2k~1 are not bounded above and so
also do not converge. Similarly

2 (~ + ~ + ... + _1_) = (~ + ~ + ... + _1_) + (~ + ~ + ... + _1_)
242m 242m 242m

>(~+~+ ... +_1_)+(~+~+... + 1 )=~+~+~+ ... + 1
- 242m 352m+ 1 2 342m + 1
By the same reasoning as before we see that the sum 1/k + 1/(k + 2) + ... +

l/(k + 2t) of alternate reciprocals, starting with any natural number k, can be
made larger than any natural number you please by suitable choice of t.
We now illustrate how to rearrange the sum E(_l)n /n to add to 2. The

same method would work, when modified, to make the sum converge to the
real number of your choice. Start by adding the reciprocals of the odd numbers
until you overshoot the target, which is 2.

1 + 1/3 + 1/5 + ... + 1/13 ~ 2

is not quite far enough but

1 + 1/3 + 1/5 + ... + 1/13 + 1/15 > 2

takes us home. Now start adding in reciprocals of negative even numbers until
you first undershoot 2. You do this immediately because

1 + 1/3 + 1/5 + ... + 1/13 + 1/15 - 1/2 < 2.

Now go back to the original plan, and add on reciprocals of odd numbers until
you overshoot again. This happens with

27438157533868993
(1 + 1/3+ ...+ 1/15) +(-1/2)+(1/17+ 1/19+...+ 1/41) = 13691261858724450
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which is a touch bigger than 2.
Repeat this procedure for ever. You will overshoot and undershoot 2 in

finitely many times. However, when you overshoot, you do so by at most the
last number to be added. Similarly, when you undershoot, you undershoot by
at most the number being subtracted. These "errors" shrink towards 0 as the
process continues, and so the sequence converges to 2.
The series

1+ 1/2+ 1/3+ 1/4+ ...
is called the harmonic series. Its partial sums are intimately related to the
logarithm function. In fact the sequence whose n-th term is (~~=l 1/k) / log n
is a convergent sequence whose limit is 1. Informally then, log n is a very good
approximation to ~~=l l/k.

Definition 6.10

A series ~ an is absolutely convergent if and only if ~ lanl is convergent.

Notice that a convergent series of non-negative terms is automatically abso
lutely convergent. It turns out that you can rearrange the order of the terms
in an absolutely convergent series, and it will still converge to the same limit.
We do not prove that in this book, though you might like to think about why
this is true.
We now show that an absolutely convergent series is convergent.

Proposition 6.11

Let ~:l ai be an infinite series of real numbers. Suppose that the series
~:l lail converges. It follows that the series ~:l ai converges.

Proof

Since ~:l lad converges, it follows that its sequence of partial sums must be
a Cauchy sequence by Theorem 6.2. Our strategy is to show that the partial
sums of ~:l ai also form a Cauchy sequence, and then another application of
Theorem 6.2 takes us home.
Suppose that c > o. There is N E N such that if n,m ~ N, then
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We seek to show that if n,m ~ N, then

I~ai - ~ail < c.

If n = m, this is clear. We suppose, without loss of generality, that n < m,
then for N :5 n < m we have

The final inequality is by an induction argument based on the triangle inequal
ity. Now for N :5 n < m we have

ifl1ail = I~ lail-~ laill < c.

Our strategy is successful and the proof is complete.

o

EXERCISES

6.9 Suppose that 0 :5 an :5 bn 'fin E N. Suppose furthermore that
E:I bn is convergent. Prove that E:I an is convergent.

n1 in 1
~ -:-:5 -dx.
~ ~Ct xCt
.=2 I

Show that there is M such that It xl", dx < M for all n E Nand
conclude that E:I n-Ct is convergent.

6.10 (a) Suppose Q > 1 is fixed. By drawing a graph or otherwise, prove
that

(b) Suppose now that Q = 1. Use a similar argument to show that
E:I n- l is not convergent.

6.11 A piece of elastic is 1 metre long. It is fixed to a point, and held
horizontally. A very lazy spider tries to walk from the fixed end
along the elastic at a constant speed of 1 cm per day. At the end
of 24 hours, and at the end of every subsequent 24-hour period, an
arachnophobe hand stretches the far end of the elastic away from
the fixed point by a distance of 1 metre. You should either estimate
how long it will take the spider to reach the far end of the elastic,
or prove that it will never do so.
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Mathematical Analysis

Mathematical analysis - or just analysis - is calculus with attitude. It is the
subject which picks up the calculus, and shines a blazing light on every tiny
detail of how it works, justifying many familiar methods of differentiation and
integration in the process. After that, once we have a way of understanding
what happens, we can move into new areas - calculus in many dimensions, or
the study of solutions of differential equations. All the time you carry with you
your analysis skills. These keep you honest, and force you to check that your
mathematical activities are legitimate.
Do you remember the definition of a function? It is a rule f : A -+ B which

assigns to each element x E A a specific element of the set B. We focus on the
case that A £;; B = lR. Everyday functions include those which send x to x 2 , Y
to sin y, and z to 14 If you draw graphs of these functions you will see that
the first two are very nice - you can draw the graphs without taking your pen
from the paper and without making any sharp turns. What you actually draw
is a bit of the graph near the origin - since your paper is of finite extent, you
have no choice.

7.1 Continuity

The graph of the function which sends x to Ixl is an infinite V-shape with the
sharp bit at the origin. You can draw it in one go, but there is one particular
place where things take a dramatic turn.

G. Smith, Introductory Mathematics: Algebra and Analysis
© Springer-Verlag London Limited 1998
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Now think about the Heaviside step function H(x). This is a function of
which electrical engineers are very fond. We define it by H(x) =1 if x> 0 and
H(x) = 0 if x ~ O. Please draw its graph now. It consists of two horizontal
lines, or rather half-lines. This is very dull function once you are away from 0
since there is no difficulty in drawing the graph without taking the pen from
the paper. There are no kinks, nor anything but unremitting dullness. Where
does the leap happen? Well, not until after 0, but before any positive number,
as you pass from left to right.
Let us isolate two features concerned with the smoothness of the graph of

a function. The idea of drawing the graph without removing the pen will be
captured by the mathematical notion of continuity. Of course it may be that
the graph can be drawn without removing the pen in one region, but not in
another. Thus continuity is a local idea, and we should first get control of the
idea of a function being continuous at a particular value a in its domain. Once
that is done, we can then consider what happens if the function is continuous
at all points of its domain. The idea that the graph of a function is free of leaps
and sharp kinks sufficiently near a E dom(f) corresponds to the function being
differentiable at a. The function defined by the formula Ixl is continuous for all
real values of x. It is also differentiable except when x =O. Geometrically there
is no reasonable definition of the tangent to the graph of Ixl at the origin.
Let us make some proper definitions.

Definition 7.1

A function f(x) is continuous at the real number a exactly when the following
condition holds: given any e > 0 there is 0 > 0 such that If(x) - f(a)1 < e
when Ix - al < 0. Here we implicitly insist that not only is Ix - al < 0, but also
x E dom(f), a condition which we may omit as "understood" in future.

You can also phrase this in other ways.

Definition 7.2 (different form of words)

A function f(x) is continuous at the real number a exactly when the following
condition holds: given any e > 0 there is 0 > 0 such that if Ix - al < 0, then
If(x) - f(a)1 < e.

Note that you are allowed to choose 0 in response to e, just as when dealing
with sequences when you are allowed to choose N E N in response to e. This
is very important. This definition may look a little scary at first, but perhaps
Figure 7.1 will help. We will try to tame the definition. First of all, there are a
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Fig. 7.1. A snapshot of e5 doing the job for a particular e

couple of expressions involving the modulus symbol. Remember that if x and
yare real numbers, then Ix - yl = Iy - xl is just the distance between x and y
when you think of x and y as being points on the real line. Geometrically then,
Ix - al < 0 means that the distance from x to a is less than o. We know that
there is an open interval centred on a of length 20 inside which x lives.
Now read the definition again: given any e > 0 (think of e as a bound on

the allowable error), there is 0 > 0 (think of 0> 0 as a oeviation from a) such
that if Ix - al < 0, then If(x) - f(a)l < e.
Now we put it conceptually: given any e > 0, a bound on allowable error,

there is a permitted deviation 0 so that if the distance of x from a is less than
the permitted deviation 0, then the distance of f(x) from f(a) is less than the
allowable error e.
Note, by the way, that small margins of error are more difficult to arrange

than big ones. What matters is what happens when e shrinks towards O. A 0
which works for a particular value of e will also work for any larger value of e.
We look at some reassuring examples.

Example 7.1

The most boring function of all: a constant function. Consider the function h
defined by h(x) = c for some fixed c E IR and for all x E III Choose and fix a
real number a. We will show that h is continuous at a. Given any e > 0, let
0=1 (or any positive real number which takes your fancy). Now if Ix - al < 0,
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then Ih(x) - h(a)1 = 101 = °< e.
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That was quite simple; we didn't learn much because constant functions
are so easy to handle. However, it is reassuring that constant functions are
continuous at all a E lR, according to our definition.

Example 7.2

The Heaviside function H(x) takes only two distinct values, one when x > 0,
and another when x ~ 0. In this sense it is almost, but not exactly, constant.
Arguments similar to those used in the previous example show that if a E IR
and a # 0, then H(x) is continuous at a. However, we expect things to go
wrong at a =0.
Let e = 1/2 and suppose that ~ > 0. Let x = ~/2, so Ix - 01 = ~/2 < ~.

However IH(x) - H(O)I =1 > 1/2 =e. Thus no ~ >°will do the job required
in the definition of continuity when e = 1/2, so H(x) is not continuous at 0.
Note that the same problem would arise for any e E (0,1]. If however, we look
at e > 1 then any positive ~ will do the job. For continuity, you need to able
to find a ~ in response to any e. Also, you expect it to be more difficult to find
~ when e is small, as in this example.

Example 7.3

Consider the identity function i : IR -t IR defined by i(x) = x for every x E III
The graph of this function is (geometrically) a straight line through the origin.
This time there is a little more work to do. Choose and fix a real number a. We
will show that i is continuous at a. Given any e > 0, let ~ = e. Note that this
time we are choosing 8 which actually depends on e - this is the 'USual state of
affairs. Now suppose that Ix - al < 8 = e, then li(x) - i(a)1 = Ix - al < e. Thus
i is continuous at a. However, a was arbitrary so i is continuous everywhere.

In that example, we need not have chosen 8 to be the same as e. The only
property that the positive real number 8 needs to have is that 8 ~ e. Thus we
might have chosen ~ to be e/2, 34e/55 , min{y'e,e2 } or in anyone of myriad
ways. Of course, you have a duty not to generate irrelevant complications. If
you have a choice, choose naturally or elegantly wherever possible.

Example 7.4

Now be brave, and consider the squaring function defined by the formula s(x) =
x2 for every x E III You should be very familiar with the graph of this function.
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Its graph is a nose-down parabola. and the lowest point of the graph is at the
origin. Continuity at each a E IR is clear. However, clear is not good enough;
we have to use our definition. Choose and fix a real number a. We will show
that s is continuous at a.

If a=0, then put fJ = .ft. Now if Ix - al = Ix - 01 = Ixl < fJ = .ft, then
Ix2 - a2 1= Ix2 1= Ixl 2 < (.ft)2 =e and we are done.
Now for the main case. We assume that a:/; O. Given any e > 0, abracadabra

let fJ = min{e/3Ial,lall > O. Where did that come from? Wait and see. Notice
we have used the fact that a :/; O.
Suppose that Ix - al < fJ. We need to show that it follows that Ix2 - a21< e.

First a little algebra on the side. Observe that

Ix2
- a21= I(x - a)(x + a)1 = Ix - allx + al·

It seems that in order to force Ix2 - a21to be small, you have to worry about
the size of Ix + al. The triangle inequality will rush to our aid.

Ix + al = Ix - a + 2al 5 Ix - al + 12al = Ix - al + 21al·
Under the assumption that Ix-al < fJ we conclude that Ix+al 5 fJ+2lal S31al.
Here we have just used the fact that fJ Sial which is true by definition of fJ. It
also follows that

Ix
2

- a2
1= Ix - allx + al < fJ· 31al 5 3~al . 31al = e.

Think about what you have to do; you have to select fJ so that at a later
stage, everything will work out well. Sometimes the later argument may be very
complicated, and you many want to choose fJ to satisfy a variety of conditions.
What you do is to select fJ to be the minimum of a finite number of expressions,
each one carefully chosen so that a fragment of the argument will work out
nicely. This technique is illustrated by the next example.

Example 7.5

Consider the function g(x) = xn for some fixed natural number n and all x E IR.
We will show that this function is continuous (irrespective of the value of n),
using induction on n. The base case has been done already (n = 1), and so
has the next case (n = 2). That is logically irrelevant, but was good exercise.
Assume that n ~ 2, then

Ixn - ani = Ixn - xan- 1 + xan- 1
- ani 5 Ixn - xan-11 + Ixan- 1 - ani

using the triangle inequality. This simplifies to say that

Ixn - ani 5 Ixllxn- l - an-II + laln-1lx - aI-
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The occurrence of Ixl is a bit awkward, so we use the triangle inequality again
via Ixl ::; Ix - al + lal to get rid of it. Thus

Ixn - ani::; Ix - allxn- 1
- an-II + lallxn-1- an-II + laln-1lx - al.

Choose 01 > 0 such that if Ix - al < 01, then Ixn-1- an-II < c/3. You can
do this by induction on n.
Choose Oz > 0 such that if Ix - al < oz, then lallxn-1- an-II < c/3. If

a =0 you choose any value of Oz which you please. If a f:: 0 you just choose Oz
so that Ixn-1- an-II < c/3lal by induction on n.
Choose 03 > 0 such that if Ix - al < 03, then laln-1lx - al < c/3. If a = 0

you can select 03 arbitrarily. If a f:: 0 then let 03 = c/3Ialn-1.
Now put 0= min{01,oZ,03, I}. If Ix - al < 0, then

Ixn-anl < 1·c/3+c/3+c/3=c
and we are done.

After these examples, some theory is refreshing.

Proposition 7.1

Suppose that f : I -+ IR where I is an open interval. Suppose that a E I and
that f is continuous at a. It follows that there is 11 > 0 such that f is a bounded
function when you restrict its domain to I n (a -11, a + 11).

Proof

Let M = If(a)1 + 1. Let c = 1 and choose 11 > 0 so that if x E I and Ix -al < 11,
then If(x) - f(a)1 < 1. Thus, for such x we have

f(a) - 1< f(x) < f(a) + 1< If(a)1 + 1= M.

Also - f(a) - 1 < - f(x) < - f(a) + 1 so

- f(x) < - f(a) + 1 ::; If(a)1 + 1=M.

In any event, If(x)1 < M for x in the specified range and we are done.

o

Example 7.6

Consider the function defined by f(x) = l/x. We must worry about f(O). Well,
you have two choices: patch or discard. You can make a special case out of 0, and
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la-xl11/x - l/al =~

11/x _ l/al = Ia - x I= ! . la - xl
xa x a

Now by virtue of x > a/2 we know that l/x < 2/a, and the condition that
fJ :S a~E can come into play via

put j(O) = 42 for example. Alternatively, you can throwaway 0 (and possibly
other stuff) from the domain. You might want to decide that the domain of the
function is the positive reals lllr. We (arbitrarily) adopt the second strategy.
However, in the light of Proposition 7.1, we know that no definition of j(O)
will render our function continuous at the origin, since it is not bounded in any
interval surrounding 0, even though 0 is removed from the interval.
We shall show that this function is continuous at each positive real number

a. Suppose that c > O. We want to show that there is fJ > 0 with the property
that if x E lllr and Ix - al < fJ, then 11/x - l/al < c.
We investigate the expression 11/x - l/al which we need to bound by c.

Now

so adopt the strategy of letting fJ =min {~, a~E}. This may look a little like
magic, so we explain the idea. By selecting fJ :S ~ the condition Ix - al < fJ will
ensure that x > a/2. This in turn ensures that x cannot be close to 0 where
the trouble lives.
We have

2 a2c
11/x - l/al < - . - =c.

a 2a

That was slightly cunning.
We now have a list of many functions which ought to be continuous at

sensibly chosen points of their domains, and now we know they are. Here is a
more disturbing example.
Consider the function j : IR --t IR defined by j (r) = 0 if r E IR \ (11, and if

q = alb with a E Z and bEN in lowest terms (the greatest common divisor of
a and b is 1), then j(q) = l/b.
This function will give our definition of continuity a thorough test. First of

all, let us imagine the graph of j. Loosely speaking, "most" numbers are irra
tional. Ifwe throw out all the rational numbers from our "x-axis" , the function
is constant, and its graph coincides with the "x-axis". However, putting the
rationals back in, there are points marked in the upper half plane above each
non-zero rational number. Above 1 is (1,1), above 2 is (2,1), above 14/91 is
(14/91,1/13) = (2/13,1/13) and above -3/4 is (-3/4,1/4). This function is
very jumpy, but the following result holds.
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Proposition 7.2
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This function f is continuous at all irrational points a, and at O. It is not
continuous at any non-zero rational point.

Proof

Suppose that a is an irrational number, and that we are given c > O. Choose
MEN such that l/M < c. For each natural number y let Sy = {z/y I Z E Z}.
Thus each Sy is an infinite set but its intersection with any bounded interval
is finite (since its elements are spaced out regularly, at distances l/y apart).
Now consider the interval (a - c,a + c). Let TM = U~l Si and define T M =
(a - c, a + c) n TM =U~l (a - c, a + c) n Si which is the union of finitely many
finite sets and so is finite. Now consider DM = {It-all t E TM}. Now elements
of TM are rational and a is not rational so 0 (j. DM. Thus, DM is a finite set
of positive numbers. It therefore has a positive minimum element 6.
Now if x E IR and Ix - al < 6 then x (j. TM (otherwise we would violate

the minimality of 6). Thus x is either irrational, or it is rational in lowest
terms u/v with u E Z and v E N with v > M. Thus either f(x) = 0 < c
or f(x) = l/v < l/M < c, and this part of the proof is complete. We point
out that a similar but simpler analysis will yield the result that the function is
continuous at O. We leave the details as an exercise.
Now suppose instead that a is a non-zero rational number. Thus a = p/q,

the latter being a ratio of integers in lowest terms with q E N and p f. O. Now
f(a) = l/q > O. Let c = l/q. Now suppose (for contradiction) that there is
6> 0 such that if Ix-al < 6, then If(x) -l/ql < l/q. Choose N EN sufficiently
large so that v'2/N < 6. Put t = 1/q+v'2/N so t is irrational (if t were rational
then N(t - l/q) = v'2 would be rational which is absurd). Thus It - l/ql < 6
and t is irrational so f(t) =0 and so If(t) -l/ql = l/q =c and so it is not the
case that If(t) - l/ql < c. Thus no 6 will do the job, and f is not continuous
at irrational a.

o

Proposition 7.2 is quite remarkable in view of Proposition 1.1. The rational
and irrational points are completely intermingled, and the function switches
between continuity and discontinuity infinitely many times as a, the point in
question, moves through any interval of positive length.
There are ways to make new functions from old. For example you can add,

subtract, multiply and compose functions from IR to IR. Thus from functions
defined by the formulas x2 and x 3 you can build functions defined by formulas
x 2+x3 , x2 _x3 , x5 and x6 corresponding, respectively, to these four procedures.



7. Mathematical Analysis 189

As you might expect, continuity at a point of the domain is preserved by these
operations. The next theorem says it precisely.

Theorem 7.1

Suppose that f, 9 : IR -t IR are functions which are continuous at a E III
It follows that the sum f + 9 and the product fg are both continuous at a.
Moreover the composition fog is continuous at a provided f is continuous at
g(a) (and for this part the continuity of f at a is irrelevant - unless g(a) = a).

Proof

We begin, as usual, with an application of the triangle inequality. We have

l(f + g)(x) - (f + g)(a) I= If(x) + g(x) - f(a) - g(a)1

=If(x) - f(a) + g(x) - g(a)1 :5 If(x) - f(a)1 + Ig(x) - g(a)l·

Thus you can make (f+g)(x) close to (f+g)(a) by forcing f(x) close to f(a)
and g(x) close to g(a). Given any c > 0, choose (h,(h > 0 so that if Ix-al < (h,
then If(x) - f(a)1 < e/2 while if Ix - al < <52 , then Ig(x) - g(a)1 < e/2.
Let <5 = min{<51 , <52 }. Now if Ix - al < <5, then l(f + g)(x) - (f + g)(a)1 :5
If(x) - f(a)1 + Ig(x) - g(a)1 < c/2 + c/2 =c.
Now for the product. Notice that

If(x)g(x) - f(a)g(a)1 = If(x)g(x) - f(x)g(a) + f(x)g(a) - f(a)g(a)1

:5 If(x)g(x) - f(x)g(a)1 + If(x)g(a) - f(a)g(a)1

= If(x)llg(x) - g(a)1 + Ig(a)llf(x) - f(a)l·

By continuity we know how to force g(x) to be close to g(a) and f(x) to be
close to f(a). The trouble is caused by the term If(x)l. We need a ruse.
Choose <51 > 0 so that if Ix - al < <51 , then If(x) - f(a)1 < 1. Now by the

variation on the triangle inequality IIf(x)1 - If(a)1I :5 If(x) - j(a)1 < 1. Thus
If(a)1 - 1 < If(x)1 < If(a)1 + 1. The final inequality is what we want. Notice
that If(a)1 + 1 is not 0 so we can take its reciprocal.
Now we are in business. Choose <52 so that if Ix-al < <52 , then Ig(x)-g(a)1 <

c/2(lf(a)1 +1). Choose <53 so that if Ix -al < <53 , then Ig(a)llf(x) - f(a)1 < c/2.
We have seen something like this before. If g(a) =0, then you choose <53 = 1 or
indeed how you please. If g(a) =f. 0, then you choose <53 so that if Ix - al < 83 ,
then If(x) - f(a)1 < c/2Ig(a)l·
Now putting <5 = min{<51 , <52 , <53}, we finish in the same way we did in Ex

ample 7.5.
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Composition of functions turns out to be relatively easy. Suppose that you
wish to force Ij(g(x)) - j(g(a))1 < c. You choose <Sl so that if Iz - g(a)1 < <Sl,
then Ij(z) - j(g(a))1 < c. This works because j is continuous at g(a). Now let
Cl =<Sl, and select <S so that if Ix - al < <S, then Ig(x) - g(a)1 < Cl =<Sl' It then
follows of course that Ij(g(x)) - j(g(a))1 < C and we are done.

o

In hindsight, much of our earlier work is rendered pointless. Constant functions
are continuous, and if j is continuous so is the function 2j, or indeed cj where c
is any real number. The function x I---t x (the identity function) is continuous, so
by the product result, the function defined by the formula x 2 , and by induction
the functions defined by the formula xn , are all continuous at all points a E III
In fact both sine and cosine are continuous functions at all a E lR, as is the

exponential function (sin x, cos x and eX). Using our results we now know that
functions we build from these using addition, multiplication and composition
will all be continuous. Thus the function defined by the formula sin(cos(x13 +
eX)) is continuous at all a E III
The expressions sec x, cosec x, tan x and cot x do not define maps from

~ to ~ (remember these are respectively 1/ cosx, 1/ sinx, and the quotients
sin x/cos x, and cos x/sin x. The problem in each case is the same; at certain
places the denominator is zero. For example, sin x vanishes at all integer multi
ples of 7r (and nowhere else). The easy way to define the cosecant (cosec) func
tion is to jettison these multiples of 7r from the domain. Let A = ~\ {k7r IkE Z}
so cosec: A -+ ~ is the map defined by cosec(x) =1/ sinx.
Since continuity is all about what happens near to a point of the domain,

everything works just as well for cosecant. This is a function (with a slightly
peculiar domain) which is continuous at every point of its domain.

EXERCISES

7.1 Prove that the function defined by the formula Ixl is continuous at
all x E III

7.2 Using the definition of the sine and cosine functions given at the
beginning of Section 3.4, prove that sine and cosine are continuous
functions at all points a E ~.

7.3 (a) Suppose that a, bE lit Show that

{ b}
a+ b la - bl

max a, = -2- + -2-'
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(b) Suppose that f, 9 : Ii -+ Ii are continuous at the point a E R
Define a new function by h: Ii -+ Ii by h(x) =max{f(x), g(x)}.
Prove that h is continuous at a.

Definition 7.3

Suppose that I is an interval. A function f : I -+ Ii is continuous on I if it is
continuous at each point a E I.

We now introduce a way of taking discussion about continuity, and turning it
into an equivalent discussion about sequences. This is an attractive move, be
cause all those excellent notions and theorems of Chapter 6 (Cauchy sequences,
bounded sequences have convergent subsequences, and so on) can come into
play when we are reasoning about continuity. It may also be that you find the
following sequential characterization of continuity at a E Ii more appealing
than the classical "e, fJ" Definition 7.1. Read on, and make a judgement.

Proposition 7.3

Suppose that I is an interval. A function f : I -+ IR is continuous at a E I if
and only if the following condition is satisfied: whenever (ai) is a sequence of
elements of I converging to a, it follows that the sequence (f(ai)) converges to
f(a).

Proof

Suppose that f is continuous at a and that (ai) is a sequence in I converging
to a. We need to show that (f(ai)} converges to f(a}. Given any e > 0 we
must find N EN with the property that if n ~ N, then If(ai) - f(a)1 < e. By
the continuity of f at a we may find fJ > 0 such that If(x) - f(a)1 < e when
x E I and Ix - al < fJ. Let this fJ play the role of e in the the definition of (ai)
converging to a. Thus there is N E N with the property that if i ~ N, then
lai - al < fJ, and so If(ai) - f(a)1 < e and we are exactly half way home.
Start again, and suppose that whenever (ai) is a sequence of elements of

I converging to a, it follows that the sequence (f(ai)) converges to f(a). We
need to show that f is continuous at a E I. Given any e > 0, we must show
there is fJ > 0 such that if Ix - al < fJ, then If(x) - f(a)1 < e. Suppose, for
contradiction, that this is not the case. Now our remarks about quantifiers in
Section 1.11 come into their own. We seek the negation of a rather complex
statement. The statement itself is
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"Ia E I "Ie > 0 38 > 0 "Ix E (a - 8,a + 8) n I Of(x) - f(a)J < e). (7.1)

The negation of this statement is

3a E I 3e > 0 "18 > 0 3x E (a - 8, a + 8) n I Of(x) - f(a)1 ~ e). (7.2)

Now our assumption (for contradiction) is that condition (7.2) holds. Focus
upon the a and e mentioned in condition (7.2). Construct a sequence (ai) as
follows. For each i, let 8 = Iii, and let ai be an x having the property described
in condition (7.2). Now la - ail < Iii for every i E N, so it follows that (ai)
converges to a. On the other hand If(ai) - f(a)1 > e"li E N. Thus it cannot be
that f(ai) converges to f(a). This is absurd by hypothesis. This contradiction
brings the argument to a close.

o

Theorem 7.2

Let I be a closed interval, and f : I -+ IR be continuous on I. It follows that
the function is bounded above, and there is a E I such that f(a) = sup{j(x) I
x E I}.

Proof

We first show that f(x) is bounded above. Suppose (for contradiction) that
it is not. Choose Xl E I such that f(xd > 1. Suppose that Xk E I has been
defined. Choose Xk+l E I such that f(Xk+d > max{j(xk), k + I}. We have
constructed a sequence (Xi) of points of I. It also follows that the sequence
(f(Xi)) is strictly monotone increasing.
Now (Xk) is a bounded sequence and so has a convergent subsequence (Xk;)

thanks to Theorem 6.1. Let the limit be b. Now bEl since I is a closed interval
and Lemma 6.1 applies. Using Proposition 7.3 we know that (f(Xk,)) converges
to a limit, so it is a bounded sequence by Proposition 6.5. However k i ~ i for
all i E N (that being the nature of subsequences), so f(Xk,) ~ f(Xi) > i
since (f(Xi)) is monotone increasing. Thus (f(Xk,)) is not a bounded sequence.
Earlier we proved it was. This contradiction establishes that f is bounded
above.
Let M =sup{j(x) I X E I}. Thus for every 1J > 0 there is y E I such that

fey) E (M -1J, M). Choose a a sequence (ai) of points of I where for each k
we insist that ak =Y in the condition when 1J = 11k.
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We have constructed a sequence (ai) of elements of I with the property that
(f(ai)) is a sequence converging to M. Choose a convergent subsequence (am.)
of the bounded sequence (ai), and let (am.) have limit a E I using Lemma 6.1.
The sequence (f(am.)) is a subsequence of a sequence converging to M, and so
converges to M itself by Lemma 6.1. Now by Proposition 7.3 we conclude that
f(a) =M and we are done.

o

We are now in a position to prove one of the major theorems of basic analysis.
First, a non-mathematical perspective. Suppose that you note the temperature
outside every day at noon. Suppose that yesterday it registered 15° and today
it registered 28°. Perhaps you live in Alaska and use the Fahrenheit scale, or
somewhere more temperate and use the Celsius scale. Notice that temperature
as registered by a mercury thermometer varies in a continuous way - and here
we are using the word continuous in a non-technical sense. As time goes by,
the temperature may rise or fall. You can (informally) deduce that at at least
one time between those two midday measurements the temperature outside
was exactly 17.29°. You know this because the mercury level rises and falls
smoothly, so if it is going to change from 15° to 28° it is going to have to pass
through 17.29° on the way.
We have a highly technical mathematical definition of continuity. Ifwe have

captured the intuitive idea of continuity well, then we would expect to be able
to turn this example about temperature into a mathematical theorem. Evidence
that we have made a fine definition of continuity is provided by the next result.
Figure 7.2 may be suggestive.

Theorem 7.3 (Intermediate Value Theorem)

Suppose that f : [a, b) -+ IR is a continuous function on I = [a, b). Suppose that
c E (f(a), f(b)). It follows that there is x E I such that f(x) =c.

Proof

Since c E (f(a), f(b)) it follows that f(a) < f(b). Let T = {y lyE I, f(y) < c}.
Notice that T is non-empty because a E T. Also T is bounded above by b and so
x =sup T exists. Moreover, since I is a closed interval, we have x E I. Construct
a sequence in T inductively. Choose Xi E T such that Xi E (x -Iii, x). This can
be done because x -Iii is not an upper bound for T. By design, (Xi) converges
to x. Using Proposition 7.3 we conclude that (f(Xi)) converges to f(x) =wand
f(Xi) < c for all i E N. It cannot be that w > cor else Iw- f(Xi)1 ;::: w-cVi E N
which is absurd. Thus w $ c.
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y

o a b x

Fig. 1.2. A picture of the Intermediate Value Theorem

Notice that w ~ c < f(b) so x =1= b. Now define another sequence inductively.
Choose Zi E (x, b] such that IX-Zil < I/i. Now (Zi) converges to x and so (f(Zi))
converges to f(x) = w. Now f(Zi) ~ cVi E N so by an argument similar to that
in the previous paragraph, w = f(x) =lim f(Zi) ~ c.
We have now proved that c ~ w ~ c so f(x) = w = c as required.

o

7.2 Limits

Sometimes you want to investigate "functions" which are not defined at a
particular point. For example, the formula (sinx)/x does not define a map
from IR to IR. You can't evaluate the formula at x = a because % is not
defined. Alternatively, you might be interested in what happens to (x3 - 6x +
2)/(2x3 - 1) as x gets arbitrarily large or arbitrarily negative, and you can not
simply evaluate at ±oo.
We need proper definitions, otherwise we do not know what we are talking

about. In this next definition, we need to talk about a punctured open interval.
This means an open interval with a point removed. Similarly one can talk about
a punctured plane, which is IR2 with a point removed.
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Definition 7.4

Suppose that a < b < e are real numbers, and f : (a,e) \ {b} -+ III Thus f
is a function from a punctured open interval to III The puncture is at b, and
we do not care whether f is not defined at b, or f was defined at b but we are
ignoring the fact. Even if f(b) exists, it is irrelevant to this definition. We say
that f(x) tends to the limit I as x tends to b if the following condition holds.

'ifc> 030 > 0 such that if x E (a,e) and 0 < Ix - bl < 0, then If(x) -II < c.

In words then, for every c > 0 (no matter how small, and the smaller c is, the
tougher things will be), we can always find 0 > 0 (and we are allowed to know
what c is before we choose 0), so that if x is in the domain but is not b, and
the distance between b and x is smaller than 0, then the distance between f(x)
and I is less than c.

Remark 7.1

We write f(x) -+ I as x -+ b or equivalently limx-+b f(x) = l.

You can then develop a theory of limits along the lines of the theory of limits
of sequences as we did in Chapter 6.

EXERCISES

7.4 In the notation we have just established, show that if both f(x) -+ [
as x -+ a and f(x) -+ m as x -+ a, then I =m.

7.5 Suppose that we have two functions fl, 12, both from the punctured
(a, e) to lR, the puncture being at b in both cases. Suppose that as
x -+ b we have fl(x) -+ II and h(x) -+ [2'

(a) Let 9 be the sum of these functions, so g(x) = fl(x) + h(x).
Show that g(x) -+ it + h as x -+ b.

(b) Let h be the product of these functions, so h(x) = fl(x)h(x).
Show that h(x) -+ Ilh as x -+ b.

Now for the very beginning of the theory of differentiation.
Let f : R. -+ R. be a function, and suppose that a E III Suppose that f is

continuous at a. Thus as x gets close to a then f(x) gets close to f(a). Dif
ferentiation can be viewed as analysing the relationship between these two ap
proaches. Does f(x) approach f(a) at exactly the same rate that x approaches
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a? Does it matter if x approaches a from above or below (right or left in the
usual picture)? It might be that as x approaches a at a steady rate, f(x) enjoys
a wild and jerky path approaching f(a).
We measure the approach by looking at the ratio

f(x) - f(a)
x-a

as x gets closer and closer to a. This quantity has geometric meaning. It is
the slope of the chord joing (a, f(a») to (x, f(x» in the graph of f. There is a
picture of this in Figure 7.3.

y

I (x)

I (a)

a x

Fig. 7.3. Genesis of differentiation

x

There is no point in trying to calculate this ratio when x = a because you
are faced with % which is not defined. However, we have introduced exactly
the right tool in the form of a limit.

Definition 7.5

Suppose that f(x) is defined in an open interval surrounding a, and that

lim f(x) - f(a) = i,
x--ta X - a

then we say that f is differentiable at a, and i is called the derivative of f at a.
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Creating the Real Numbers

In this final chapter we give, in kit form only, two sound constructions of the
real numbers III This takes us back to the spirit of Chapter 1. Recall that
we can build N from 0, and that it is an easy step to build Z from N. If you
have done all the exercises, you will know how to build Q from Z. We also
showed how to construct C from IR in Chapter 3. The glaring omission is the
construction of III So far we have relied on our intuition about III If you want
to be sure about the existence and nature of lR, read on.
The first construction, due to Dedekind, is both quick and easy to under

stand, and uses the usual ordering of Q as its main ingredient. The second
method, which uses devices called Cauchy sequences already introduced in
Chapter 6, is a little more difficult conceptually. However, it wins in the long
run because the construction generalizes to many more situations. We give an
example of this in Section 8.3.

8.1 Dedekind's Construction

Definition 8.1

A Dedekind cut or cut C of Q consists of a partition of Q into two non-empty
subsets C_ and C+. These sets are required to have two properties.

G. Smith, Introductory Mathematics: Algebra and Analysis
© Springer-Verlag London Limited 1998
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(i) If x E C_ and y E C+, then x < y.

(ii) C_ has no maximum.

What we would like to do is to let each real number correspond to one of
these cuts. The square root of 2 would correspond to (or be!) the cut A_, A+
consisting of

A_ = {q I q E Q,q :::; o} U {q Iq E Q,q > O,q2 < 2}.

and
A+ = {q Iq E Q,q > O,q2 ~ 2}.

The rational number t corresponds to a cut B _, B+ where B+ has a minimal
element. Specifically we have

B_ = {q I q EQ,q < t} and B+ = {q I q E Q,q ~ t}.

We need to be able to do everything with cuts that we want to do with real
numbers. Addition and multiplication must be available, just to start with.
Then we need to check that all field axioms are satisfied, and that the order
< which we want to use in the real numbers can be captured in some way by
these cuts. We have to show that the ordering interacts with the algebraic laws
in exactly the way we want. This is a great pile of routine and uninspiring (but
important) work. If you want to be really sure that the real numbers exist, you
have to run away and do all that. Of course, some very careful people have
done it already, but if you have the appropriate psychology, you may have no
choice but to do it yourself.
Addition is easy. If C_,C+ and D _, D+ are two cuts, define their sum to

be E_, E+ where

Additive inverses are a little delicate. Suppose that A_, A+ is a cut. You
can consider -A+, -A_ where -X = {-x I x E X}. This may not quite be a
cut, because it is possible that -A+ has a maximal element. If so, let it migrate
over to -A_. When this is done, you have the additive inverse of A_, A+.
Multiplication of C_,C+ and D_,D+ is a little more delicate. You must

not simply multiply the sets together, element by element, to form (as it were)
C_D_ and C+D+, because these sets will not be disjoint (why?). In this na
tation XY = {xy I x E X and y E Y}.

If either C+ or D+ contains no negative rationals, then define the product
of C_,C+ and D_,D+ to be E_,E+ where E+ =C+D+ and E_ =Q\E+. In
the event that both C+ or D+ contain negative rationals, define the product
of C_, C+ and D_, D+ to be the product of their additive inverses.
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We have an ordering via A_, A+ 5 B_, B+ if and only if A_ ~ B_. It is a
purely mechanical procedure to check that the field axioms work for the cuts,
and that < interacts correctly with the algebra.
The completeness axiom (what this game is all about) is fine. Suppose that

{A(i)_,A(i)+ liE I} is a non-empty collection of cuts. To say that this
collection is bounded above means that there is a cut X_,X+ with A(i)_ ~

X_ '<Ii E I. Now the supremum S_, S+ of our collection will be defined by
S_ = UiEIA(i)cX_, and S+ =Q \ S_. Notice that S_ is a union of a non
empty collection of non-empty sets and so is non-empty, and S_ ~ X_ so
S_ f:; Q since X+ f:; 0 and S_ n X+ =0.

8.2 Construction via Cauchy Sequences

Now, throwaway Dedekind's construction, and start again. We can't talk about
sequences of rational numbers converging to .j2 because .j2 doesn't exist yet!
However, Pythagoras's Theorem requires .j2 to exist in any number system
capable of measuring length in the plane. Now, measuring lengths in the plane
is a fundamental activity, and if we can't even do that, we might as well give
up mathematics. This highlights the inadequacy of Q, and makes it imperative
that we construct a number system which is up to the task.
So, we are temporarily back in the mathematical dark ages before anyone

has constructed the real numbers. All we have is Q. From this point of view,
a sequence of rationals either converges to a rational number, or it doesn't
converge at all. Our problem is to somehow get round the problem that we
want sequences to converge to limits which don't yet exist, and then define
these limits to be the real numbers, which will then exist. Well, that looks very
doubtful, and is not quite what we do, but it is close. We remind the reader of
a definition given in Chapter 6.

Definition 8.2

A sequence (an) of rational numbers is called a Cauchy sequence exactly when
the following condition is satisfied: for any e > 0 there is N E N such that if
n,m E N and both n,m ~ N, then Ian - ami < e.
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EXERCISES
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8.1 Show that the sum and product of Cauchy sequences are Cauchy
sequences.

Notice that any convergent sequence of rationals is a Cauchy sequence. We
have a (rational) limit I, and given any e we can choose N such that if n,m ~ N,
then Ian - II < e/2. In turn, this ensures that

Ian - ami = Ian -I + 1- ami S Ian -II + lam -II < e/2 + e/2 = e.

The plan is to define an equivalence relation on our Cauchy sequences, and
these equivalence classes will be our newly minted real numbers. We first need
a definition on the way to defining the equivalence relation.

Definition 8.3

A null sequence is a sequence of rational numbers which converges to O.

Now for the equivalence relation. Suppose that (an) and (bn) are Cauchy se
quences of rationals. We write (an) "V (bn) if and only if (an - bn) is a null
sequence. Thus (an) "V (bn) means that the terms of the two sequences are
ultimately close together. Now, there is checking to be done here. Reflexivity
and symmetry are trivial, and transitivity comes easily enough with a little
help from the triangle inequality. Details are omitted.
Let IR be the set consisting of all the equivalence classes. We now need to

define various operations. This is routine and dull, much as in the method that
uses Dedekind cuts. However, let us sketch what must be done.
First the algebra; given two real numbers (equivalence classes) x and y,

choose any rational Cauchy sequence (ai) E x and any rational Cauchy sequence
(bi ) E y. Form the Cauchy sequence (ai + bi ), and then define x + y to be the
equivalence class of (ai + bi ). Define products in a similar manner. There is
one important detail that must be verified. We have, as it were, intruded on
the privacy of x and y by making selections of (ai) E x and (bi ) E y. We
have to worry that if we were to make a different selection, and follow our
procedure, then we might end up with a different value of x+y. Well, by careful
bookkeeping, you can show that the intrusion has not caused any trouble, and
x + y is independent of the choices of (ai) and (bi ).
There is also a technical difficulty with multiplicative inverses. Suppose that

(ai) is a Cauchy sequence in the equivalence class x ¥ O. We want to let X-I
be the equivalence class that contains the Cauchy sequence (ail). There are
two problems: if some number aj is 0, then ajl does not exist. Even if this
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problem is solved, there is still the matter of showing that the sequence (ail)
is a Cauchy sequence. The first problem is solved by observing that as x '" 0,
we do not have x '" (0) where (0) is the zero sequence. After a little argument
it follows that in the sequence (ai), the entry 0 can occur only finitely many
times. The trick is to throwaway finitely many (but enough) terms from the
start of the sequence to get rid of all zero entries. You have to check that the
resulting pruned sequence is in the same equivalence class of course, but that is
routine, and so is the verification that the sequence of the inverses of its terms
is a Cauchy sequence.
We need to define an ordering on our newborn reals. Suppose then that

x, y are equivalence classes of Cauchy sequences. Choose (ai) E x and (bi ) E y.
Write x < y if and only if ai < bi for all except finitely many values of i.
One should now go in for deep accountancy, and verify all the axioms and

interactions.

EXERCISES

8.2 Show that every real number has a unique decimal representation,
provided we stipulate that representations ending in infinitely many
9s are not permitted (else 0.9 = 1.0 and so on).

8.3 Show that every real number has a unique "binary equivalent of a
decimal" expansion. Thus every real number can be uniquely repre
sented as

for some integer k, with each ai being 0 or 1, and (ai) is not ulti
mately the constant sequence (1).

8.4 (J. F. Toland) By mixing up the ideas in the previous two questions,
and those in the discussion following Proposition 6.10 (or otherwise),
construct a function f : IR -+ IR which has the property that it as
sumes every real value infinitely often on each interval of positive
length in the domain. Conclude that a function can satisfy the (in
termediate value) Theorem 7.3 without being continuous.
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8.3 A Sting in the Tail: p-adic numbers

By now you have done a lot of reading, and many exercises, and perhaps it is
time we had a conversation. "Did you ever want to write

1+ 2+ 22+ 23 + ... = -I?
After all

1 00
.- =""'x'

I-x L.J
i=O

(8.1)

so putting x =2 in Equation (8.1) yields the result."
"Hang on", I hear you cry, "you can't do that because the sum in Equa

tion (8.1) only converges when Ixl < 1."
"That's all right then", I reply, "because 121 < 1."
At this point I imagine that an uneasy silence fills the room, and you are

probably wondering if you should have been reading this book after all. After
a little time, I helpfully add "But what I mean by 121 is 1/2."
We make a new definition of Iql for q E Q \ {O}. Now q = 2 i (a/b) where

a and b are odd integers and i E BbbZ. Since what follows is not the same as
the old definition of modulus, we should not really use exactly the same name
notation. We will use a subscript 2. Define 12i (a/b)12 to be 2- i

. In addition, we
define 1012 to be 0. Now we isolate some of the features of this new function
from Q to Q.

Proposition 8.1

The new modulus function satisfies the following conditions for all x, y E Q.

(a) Ixl2 2: 0, and Ixl2 = 0 exactly when x =0.
(b) Ixyl2 = Ix121y12'
(c) Ix + yI2 $ max{lxI2, lyl2}

(d) Ix + yI2 $ Ixl2 + lyl2.

Proof

Parts (a) and (b) are easy exercises, left to the reader, and part (d) follows
immediately from parts (a) and (c). It remains to discuss part (c).
Suppose that x = 2i a/b and y = 2j e/d with i, j integers, a, b, e, d all odd

integers and b, d > 0. Suppose, without loss of generality, that Ixl2 $ IYI2, so
i 2: j. Now Ix + yl2 = 12j (2 i

-
j ad + be)/bd)12' If i > j then 2i

-
j ad + be is odd
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so Ix + Yl2 = 2- j = max{lxI2, lyI2}' On the other hand, if i = j then ad + be is
even and so then Ix + yl2 < 2-j =max{lxI2, lyI2}' 0

We now give Q a new "geometry". Well, you will have to be a little generous
to call it a geometry, but what we are going to do is to define the distance
between each pair of rational numbers x and y not to be Ix - yl, but instead to
be Ix-yI2. This is an interesting "geometry" to work in. The triangle inequality
holds because

as do many of the algebraic properties of the ordinary modulus function. In
this strange 'geometry', which is not easy to visualize, all triangles are isosceles,
thanks to the proof of part (c). To be explicit, if a, b,cEQ let a - b = x,
b - c =y. The proof of Proposition 8.1 shows that either Ixl2 = lyl2 (and ..1abc
is isosceles), or la - Cl2 =max{lxI2, lyl2} (and ..1abc is isosceles).
In this geometry 1024 is very close to 0, because 1024 = 210 so 11024-012 =

2-10 , but 1023 is distance 1 from O. The distances between points are completely
unrelated to the usual distance when you think of Q as embedded in lR, and
identify IR with the real line.

It gets better. The function "12 has sufficiently many properties in common
with the ordinary modulus function I . I that one can build equivalence classes
of Cauchy sequences, and construct a number system l(b (the 2-adic numbers)
in just the same way that we constructed IR. In fact there is nothing special
about 2; given any prime number p you can build the p-adic numbers Q,. All
you have to do is to begin by writing each non-zero rational as pialb where
i, a E Z, bEN and p divides neither a nor b. Define Ipialbl p =p-i and follow
your nose. You can then go on to study sequences and series in Q,. In Q, we
have E:o pi = (1 - p)-1. In fact Q, is easier to work in than IR. For example,
any sequence in Q, which converges to 0 can be turned into a convergent
series by insinuating plus signs. Compare this with IR where the sequence (lin)
converges to 0, but E lin does not converge.
These fields Q, are not just accidents caused by a lucky definition of Ixlp .

They play an important role in the theory of numbers.
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In all cases, the editions mentioned are the cheapest currently available (1997) ac
cording to their list price. Many of these books are therefore the paperback editions
of books also available in hard cover. Moreover, some books may come back into print
in the future. Watch the book web site for updated information.
First, we mention one non-mathematical book in this text. That is Bertrand Rus

sell's History of Western Philosophy. This book is a lot funnier than its title might
suggest. A recent edition was published by Routledge in 1993 (ISBN 0415078547).
This large volume contains information on various mathematician-philosophers, in
cluding the school of Pythagoras.
Another non-specialist book which definitely merits attention is What is mathe

matics? by R. Courant and H. Robbins. Oxford Universitry Press published an edition
revised by I. Stewart in 1996 (ISBN 0195105192). This is a wide-ranging exploration
of mathematical ideas.
An inspiring but demanding undergraduate algebra text is I. N. Herstein's Topics

in Algebra, Wiley, 1975 (ISBN 0471010901). This marvellous book does assume that
you are very interested. A more accessible text is J. B. Fraleigh's First course in
abstract algebra, the 5th revised edition was published by Addison-Wesley in 1994
(ISBN 0201592916).
There are many linear algebra texts available. The classic text for the good student

who enjoys pure mathematics is Finite Dimensional Vector Spaces by P. R. Halmos
published by Springer UTM (ISBN 0387 90093 4). This is not a book for the faint
hearted, and the gothic lettering of the vector spaces can be a little intimidating at
first. There are many other linear algebra texts suitable for students with a wide
range of abilities. For example, a very accessible text for those whose tastes are not
so abstract is T. S. Blyth and E. F. Robertson's Basic Linear Algebra published by
Springer in 1998 (ISBN 3540761225).
For analysis, an excellent starting book is J. A. Green's Sequences and Series

currently out of print. It was published by Routledge and Kegan Paul. It was once very
common, so libraries may have it. You may wish to pursue the topic through one of the
many modern texts. For example W. Y. Hsiang's A Concise Introduction to Calculus
was published by World Scientific 1995 (ISBN 9810219016). M. Spivak's Calculus has
been a modern standard, but is (amazingly) out of print. However, the world is full
of Spivak's Calculus, and if you look in a second hand bookshop near a university,
you should be able to find a copy (with luck). A strong student may wish to look at
T. Apostol's Mathematical Analysis, Addison-Wesley, 1974 (ISBN 0201002884). The
truly exceptional student may wish to read Principles of Mathematical Analysis by
W. Rudin, published by McGraw in 1976 (ISBN 0070856133). This book takes no
prisoners.
For those students interested in the set theoretic foundations of mathematics,

an obvious starting point is Naive Set Theory by P. Halmos, published by Springer
Verlag. The most recent edition came out in 1994 (ISBN 0387900926). However, from
a completely different perspective, in order to understand how to construct a proof,
one cannot do better than D. L. Johnson's Elements of Logic via Numbers and Sets
which is a Springer SUMS book published in 1998 (ISBN 3540761233).



Solutions

Chapter 1

1.1 (a) B, (b) A, (c) E, (d) B, (e) G, (f) H, (g) G, (h) H, U) A, (k) H, (I) A, (m) C.

1.2 (a) (iii), (b) (iii), (c) (ii), (d) (i), (e) (ii), (f) (i), (g) (i), (h) (iii), U) (iii), (k) (i),
(I) (i), (m) (ii).

1.3 (a) AnBnC, A'nBnC, AnB'nC, AnBnC', A'nB'nC, AnB'nC',
A' nBnC', A'nB' nc'.
(b) Use De Morgan's laws (generalized to apply to three sets, and even to arbi
trary collections of sets) on the answers to part (a). For example, An B n C =
(A n B n C)" = (A' U B' u C')'. The others are entirely similar.

1.4 (a) This is not a proof, but an instruction on how to perform the proof (to save
paper). Take each element of {I, 2, 3} and check that it is an element of {I, 1,2, 3}.
Next take each element of {I, 1, 2, 3} and check that it is an element of {I, 2, 3}.
When you have donethis,you have verified that {1,2,3} = {1,1,253~. (b) 23 =8.
(c) 1 (since P(0) = {0}). (d) 2 (since P({0}) = {0,{0}}). (e) 26 Ii 6 (Don't try
to write it out!).

1.5 (a) Pictures omitted. (b) Claim: For all X, Y subsets of a universe U we have
that (X UY)' =X' nY'. First we prove (X UY)' ~ X' nY'. Choose a E (X UY)'
so a 't X and a 't Y. Thus a E X' n Y'. The reverse inclusion is similar, as is
the other law of De Morgan. (c) Let A = {2x I x E N} and B =III \ A. There are
many other examples.

1.6 (a) n2,,-1 since there are n choices for a, and 2,,-1 choices for S, since we can
choose the set S \ {a} in 2,,-1 ways. (b) Same as part (a). (c) 3" because you
wish to count the ways in which you can build S, T and A \ (S UT) with S and
T disjoint. You have three choices as to where each of the n elements are placed,
and so 3" possibilities altogether. Try small n to convince yourself. (d) 3". This
follows from part \c) by looking at S' and T' in the universe A.

1.7 (a) (f 0 g)(x) = x + 2x + 1 'Ix E Z. (g 0 /)(x) = x 2 + 1 'Ix E Z. (b) I"(x) =
x
2R 'Ix E Z. Note that this means x(2

R
) and not (x2

)". g"(:I:) = X + n'V'x E Z. (c)
9 and g2 are bijections.

1.8 There are many possible answers. (a) /(x) = 2x'V'x E N. (b) /(1) = 1 and
/(x) = x-I if x E III and x > 1. (c) We define maps / and 9 as follows.
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1(1) = 2, 1(2) = I, and I(i) = i if i ~ 3. g(l) = 1, g(2) = 3, g(3) = 2 and
g(i) = i if t ~ 4. Now (f 0 g)(l) =2 ::13 = (g 0 /)(1), so log ::I 9 0 f.

1.9 There are many answers. (a) Define I by 1(1) = 0, 1(2n) = n \:In E Nand
1(2n + 1) = -n\:ln EN. (b) Define 9 by g(x) =x-I if x E N, and g(x) = x if
x E Z\N.

1.10 (a) Yes it does follow. For if there is x E A with (3(x) ::I '"Y(x), then a((3(x» ::I
a(-y(x» since a is injective. This is absurd because a 0 (3 = a 0 '"Y. Therefore
(3(x) = '"Y(x) for every x E A, so (3 = '"Y. This is an argument by contradiction (see
Chapter 2). (b) No. Let A = Z, let I be the identity map and 9 be defined by
g~x) = -x \:Ix E Z. (c) Yes. We know 12= g2 and 13 = g3. Now 120 1= g2 og =
log. If x E A, then 12(f(x» =12(g(x». However, 12 is the composition of two
injections so is injective. Thus I(x) = g(x). Now x was arbitrary so I = g. Note
that we only needed 12 injective. Surjectivity is irrelevant.

1.11 (a) nn, (b) n!, (c) n!, (d) n!.
1.12 (a) T, (b) T, (c) T, (d) F, (e) T, (f) F, (g) T, (h) T, (j) F, (k) F, (I) F.
1.13 (a) Use associativity three times. (b) Let U = {1,2,3}. Let I be the identity

map, let 9 swap 1 and 2 and fix 3. Let h swap 2 and 3 and fix 1. (c) Assume,
for contradiction, that a::l Ide. Thus there is c E C with a(c) ::I c. Define
(3 : C ~ C by (3(x) = c\:lx E C. Now (a 0 (3)(c) = a(c) but ((30 a)(c) =c. Thus
a 0 (3::1 (30 a. This is absurd, by hypothesis, so a = Ide. (d) IDI =2. You need
IDI ~ 2 else you can't have a non-identity bijection from D to D. The situation
does happen when D =2 and there only two bijections to consider. When D ~ 3
no non-identity bijection from D to D commutes with all the others. In fact, for
such D and non-identity bijection f, consider a pair of elements of D not swapped
by I. Now consider the bijection which swaps this pair, and leaves everything else
fixed. When you have finished considering, you are done.

1.14 Yes, you can do it. Make 26 adjacent copies of the word by applying /l 5 times
(to create 32 copies of the word) and then erasing 6 copies of the word using h
repeatedly. Next erase the first 25 letters until you have a z at the front. Move
that z to the rear by duplicating the whole current word and then deleting from
the rear until you stop just before the z which is a copy of the one at the front.
Now delete from the front until you reach the first y and so on. At the end you
delete from the front to leave the alphabet reversed. Note that this method will
enable you to generate any finite sequence of letters (including repetitions) from
the original alphabet in the correct order.

1.15 (a) Suppose b E B. Now f(g(b» = b so b is in the image of f. However, b was
arbitrary so I is surjective. (b) Suppose that al,a2 E A and I(ad = l(a2). Now
h(f(aI) = h(f(a2» so IdA(ad = IdA(a2). Thus al = a2 and so f is injective.
(c) Bijectivity is immediate.

h =holds = h 0 (f 0 g) = (h 0 f) 0 9 =IdA 0 9 = g.

1.16 (a) A x A has cardinality n2
• A relation is a subset of Ax A, so is a subset of a

set of size n 2 . The power set of a set of size n 2 has cardinality 2n2 . (b) 2n2 - n.
(c) 2(n2+n)/2. (d) 2(n2-n)/2.

1.17 (a) and (b) are routine. (c) is more interesting. The equivalence classes are the
rational numbers. You have just built Q from Nand Z. Congratulations.

1.18 Many answers. RST use =j RS say x '" x \:Ix, and 0 '" I, 1", 0, 1", 2, 2", 1 and
nothing elsej RT use :5; ST say a '" b if and only if ab ::I 0 (notice that 0 -f 0);
R say x '" x\:lx E Z, 0", 1,1 '" 2 and nothing else; S say a '" b if and only if
a ::I bj T say <; an example of a relation which is neither reflexive, symmetric
nor transitive is a '" b if and only if a - b is a prime number.

1.19 The "proof" breaks down at the stage "Choose any b E A such that a '" b". You
have no reason to suppose that any such b exists.
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1.20 (a) R is reflexive if and only if R includes the line "y = x". (b) R is symmetric
if and only if R is unchanged if you reflect it in the line "y =x". (c) Both of (a)
and (b) hold simultaneously.

1.21 (a) There are five equivalence relations because there are 5 partitions of a set
with 3 objects. The partitions can be the two trivial ones: three singleton sets, or
the whole set. The non-trivial partitions consist of the singleton and a disjoint set
containing two elements. There are 3 such partitions. (b) There are 15 equivalence
classes on a set with 4 elements. The equivalence classes must have one of the
following shapes: four singletons (1), one doubleton and two singletons (6), two
doubletons (3), one triple and one singleton (4), and the whole set (1).

1.22 (a) Yes it is. Routine check. (b) A natural transversal is I x I where I = {r I
r E R, 0 ::; r < I}. Join the top and bottom of I to form a tube, and bend the
tube round to join the two circles as well. You have the surface of a doughnut (a
torus in mathematical language). As a point moves around R2 in a continuous
way, keep track of where its representative in the transversal goes. Ifyou don't do
this joining process, the dot may go off the top of the square I x I and reappear
instantly on the bottom, or disappear from the left edge and reappear magically
on the right. Ifyou make the identifications as suggested, the representative in the
transversal will move continuously on the torus without any disturbing jumps.
(c) Any sphere centred at the origin (or even with the origin in its interior) will
do nicely.

1.23 (a) 0 = (2,1). (b) {I} = [1, IJ. (c) If (a,b) '" 0 then a < b. Thus (a,b) contains
at least two distinct points by Proposition 1.1. However {I} contains exactly one
point, so is neither empty nor infinite. Thus {I} is not an open interval.

1.24 (a) Let I, J be intervals. Suppose that a, bE In J and a < x < b. It follows that
x E I since I is an interval, and similarly x E J. Thus x E I n J so I n J is an
interval. (b) Let II = (a, b) and 12 = (e, d) then IInI2 = (max{a, e},min{b, d}) is
an open interval. (c) Take the answer to part (b) and use square brackets instead
of round ones.

1.25 (a)
[O,IJ =n~l (0 - l/n, 1 + l/n).

(b) No. If x E U>.EAl>, where each 1>. is an open interval, then there is 1.1. E A such
that x E Ip.- Now there is TJ > 0 so that (x - TJ, x + TJ) ~ I,. and so (x - TJ, x + TJ) ~
U>.EA1>.. However, if we apply this (for contradiction) to [0, IJ = U>.EA1>. and put
x = 1 we obtain an absurdity.

1.26 The child was right if the original ruler was either open (0,1) or closed [O,IJ.
However, if the ruler was half-open, the teacher (unknowingly) had a point:
(0, IJ = (0, 1/2J U (1/2, IJ.

Chapter 3

3.1 (a) -i, (b) 1 + i, (c) 2i, (d) 16, (e) 16, (f) -5 - 9i, (g) (-1 - iV3)/2, (h) 1, (j)
1, (k) (1 - i)/2, (I) 1, (m) (5 + i)/13.

3.2 (a) i, -i (b) ±iv'2 (c) ±(I+i)/v'2 (d) (-I±iV3)/2 (e) 1, (-I±iV3)/2 (f) i, -5i
(g) -2i ± 1.

3.3 (a) By definition, 1 + (-1) = O. Multiply by (-1) and use Proposition 3.2.
Thus (-1) + (-1)(-1) = O. Add 1 to each side on the left, and use additive
associativity and the fact that 0 is an additive identity. (b) Feom Proposition 3.2
we have 0 = O· / = (1 + (-1»· / = / + (-I)f. Add -/ to each side on the
left, and use additive associativity, and the fact that 0 is an additive identity,
so -/ = (-l)f. (c) Use part (b) twice, and multiplicative associativity. (d) Use
part (b), and both associativity and commutativity of multiplication to obtain
(-1)(-9) = (-1)2(19)' Using part (a) (_1)2 = 1, and 1 is a multiplicative
identity so (-1)(-9) = /9, (e) Add -9 to each side. Use part (b) so (1+( -1»9 =



208 Introductory Mathematics: Algebra and Analysis

O. Either 9 =0 or 9 has a multiplicative inverse g-l. In the latter event, multiply
by g-1 on the right, use associativity of multiplication so (J + (-1»·1 = 1+
(-1) =O. Add 1 to each side on the right, and use associativity of addition, and
finally the fact that 0 is an additive identity to yield that I =1. (f) Very similar
to part (e).

3.4 (a) Suppose I is an isometry (a distance-preserving map). Let b = 1(0) and
a = 1(1) - 1(0). 11-01 = 1 so 1(1) - 1(0) = ±1. Define a map h by h(x) = ax+b.
Check that h preserves distances. Also h agrees with I at 0 and 1, so h = /.
Conversely, we have already checked that a map h given by such a linear formula
preserves distances. (b) Same as part (a).

3.5 There are reflections in straight lines through the origins, and rotations about
the origin. Use geometrical arguments.

3.6 (a) Expand (a + b)(a + b) in two ways. (b) Replace b by -b in part (a), and add
this equation to the old part (a) equation. (c) The sum of the squares of the
diagonals of a parallelogram is equal to the sum of the squares of the four sides
of the parallelo~ram.

3.7 (a) m = a2 + b and n = c2 + d2 for inte~ers a, b, c, d. Thus m = la + ibl2 and
n = Ie + idl2. Now mn = I(a + ib)(c + id)1 is the sum of the squares of the real
and imaginary parts of (a + ib)(c + id)~= ac - bd + i(ad + bc)~, and so is the sum
of two perfect squares. (b) 97 =92+ 4 and 1000001 =1000 + 12. Use part (a)
to discover that 97,000, 097 =89962+ 40092. (c) If z is a complex number, then
Re(z) ~ Izi. Now let z = (a + ib)(c - id).

3.8 (a) cosO = 1, cosorr/2 = 0, cosorr/3 = 1/2, cos orr = -1. Also cos 4 . 0 = 1, cos 4 .
orr/2 = cos 20rr = 1, cos 4 . orr /3 = cos 40rr /3 = -1/2, and cos 40rr = 1. Plug in the
numbers. (b) Take the real parts. Thus cos49 = cos4 9 - 6cos29sin29 + sin4 9
=cos4 9 - 6cos29 + 6cos4 9 + (1 - cos29)2 =8cos4 9 - 8cos29 + 1.

3.9 (all parts) It is a saw tooth; 0 at integer values x, then climbing to the value JL
at x + JL for JL in the range 0 ~ JL < 1. This function has period p for all p E No
The fundamental period is 1.

3.10 (all parts) 5 has all positive rationals as periods, and no others. This is easy to
check. There is no shortest period so no fundamental period.

3.11 (a) "Ix E R we have I(x) = I( -x) and I(x) = - I( -x). Thus I(x) = o"Ix E R. (b)
g(-x) = g(x) "Ix E R so g(x) is even. (c) even(x) = (f(x) + 1(-x»/2. odd(x) =
(J(x) - 1(-x»/2. By design, these are even and odd functions (respectively),
and I(x) = even(x) + odd(x). (d) Suppose I = el + 01 = e2 + 02 are two rival
expressions of I as sums of even and an odd functions in the obvious notation.
Now el - e2 = 02 - 01 is both an even and odd function, so by part (a) is O. Thus
el =e2 and 01 = 02. (e) If I is even, then its even part is I and its odd part is
O. ~f) The even part of p(x) is _x4 + 3x2 + sin(_x2

) + cos(x3
). The odd part is

2x .
3.12 cos 9 = (e i8 + e- i8 )/2. Similarly for cos 49. Substitute in.
3.13 Let W = ei

% , then W satisfies w 2
- 4iw - 1 = O. Thus w = i(2 ± v'3). Let z = a + ib

for real a and b so e-beiG = (2+v'3)e i"/2 or \2_v'3lei
"/2. Thus b=-log(2±J3)

and a =orr/2 + 2korr.
3.14 2sinhxcoshx = 2(e'" + e-"')(e'" - e-"')/4 = (e 2

'" - e- 2"')/2 = sinh2x. Next we
can differentiate this equation, or verify by direct calculation, that cosh 2x =
cosh2X + sinh2x. Finally tanh 2x =sinh 2x/cosh 2x =2tanh xl(1 + tanh2x).

3.15 For all x E R we have -coshx = (-e'" - e-"')/2 < (e'" - e-"')/2 = sinhx <
(e'" + e-"')/2 = cosh x. Divide through by the positive quantity cosh x and you
are done.

3.16 We seek all z E C such that (WIW2)% =WiW2 for all Wl,W2 E C. There is only a
problem when WI =F 0 =F W2. Let Wj = e";ei8

; for j = 1,2 in standard form, so
9j E (-orr, orr] for j = 1,2. When 91+ 92 ¢ (-orr, orr] we will have that 91 + 92 differs
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from an element of (-71", 7I"J by 271". For our equation to always be valid, we need
that e2". •• = 1. This happens if and only if Z E Z.

Chapter 4

4.1 (4.4) IIxW = L. x~ = (x, x). (4.5) IIAxIi = JE. A~X~ = IAI . IIxli. (4.6) (x, y)
=L.x.y. = L.YiXi = (y,x). (4.7) (x+y,z) = L.(x.+y.)z. = L.{x.z.+y.z;)
= Lo X.Z' + L. y.z. = (x,z) + (y, z). (4.8) (x,y + z) = (x,y) + (x,z) by an
argument similar to the previous answer. (4.9) A(X, y) = L. AX.Y. = (AX, y).
(4.1O) A(X,y) = (X,Ay) by an argument similar to the previous answer.

4.2 It is enough to do the problem when u, v are unit vectors (i.e. have length 1).
The reader should construct the geometrical picture from the instructions which
follow. Let the angle between u and v be O. Let i,j and k be unit vectors in the
direction of the co-ordinate axes. Observe that u = cos ai+cos IJj +cos -yk where
a, (3 and -y are the angles between u and the axes. This is just a matter of dropping
perpendiculars, and reading the result off from the right-angled triangles. Drop a
perpendicular from the tip of the position vector u to the line through the position
vector v. The side of this triangle in the direction of v will have length cos o.
Let v make angles a', IJ' and -y' with the axes. If perpendiculars are dropped to
the line through v from the tips of the position vectors cos ai, cos (3j and cos -yk,
the resulting triangles will have sides in the direction of v of lengths cos a cos a' ,
cos (3 cos (3' and cos-ycos-y'. From the picture, which you should draw, it follows
that cos a cos a' + cos (3 cos (3' + cos -y cos -y' =cosO. Thus (u, v) =cosO.

4.3 The answer is -2 no matter how you do it.
4.4 Subtract the first and then the second rows from the third and get a row of zeros.
Expand using this row to see that the determinant is O.

4.5 (a) mx{a +b) = X{a + b)T = X{aT + bT ) = XaT + XbT = mx{a) + mx{b).
(b) mX{Aa) = X«Aa)T) = AX{aT ) = Amx{a).

4.6 Let the i-th row be e •. Ifx E R", then x = (Xl,X2, ... ,X,,) = L.x.e. so the
rows of the identity matrix span R". As for linear independence, suppose that
L. A.e. = 0, then (At, A2, ... , A,,) = 0 so A. = 0 Vi E {I, 2, ... , n}.

4.7 A non-trivial linear relation among the terms of the subsequence would be a
non-trivial linear relation among the terms of the original linearly independent
sequence.

Chapter 5

5.1 (a) (1,2,3,4,5), (b) (1,4,2,5), (c) (1,4,5,3,2), (d) (3,4).
5.2 (I, 2, 3, 4).
5.3 (1,5,2,3).
5.4 (1,2,3) or (1,3,2) or Id or {23, 45, 666) for example.
5.5 (a) (1,5,2,3), (b) (1,5,2,3), (c) (1,4,3,2) (d) id (e) (1,3,4,2,5).
5.6 (2,3).
5.7 (a) (3, (b) (3, (c) id, (d) a, (e) e, (f) id, (g) id, (h) id.
5.8 Permutations which are products of disjoint cycles of the same length.
5.9 (a) 2 (b) 3 (c) 3 (d) 1 (e) 2 (f) 5.
5.10 (a) False (b) (1,2)(1,3)(1,4) ... (1, n) =(1,2,3,4, ... ,n). (c) Any permutation is

a product of cycles, and now use part (b).
5.11 The group has order (= size) 8. Let the corners of the paper be labelled 1,2,3,4

consecutively. The elements of the group are id, (1,2,3,4), (I, 4, 3,2), (1,3)(2,4),
(1,3), (2,4), (1,4)(2,3), (1,2)(3,4). This is the dihedral group of order 8.

5.12 The group has order (= size) 10. Let the corners of the paper be labelled 1, 2, 3, 4,
5 consecutively. The group elements are id, (1,2,3,4,5), (1,3,5,2,4), (1,4,2,5,3),
(I, 5, 4, 3,2), (2, 5)(3, 4), (1,3)(4,5), (I, 5)(2, 4), (I, 2)(3, 5), (I, 4)(2, 3). This is the
dihedral group of order 10.
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5.13 (a) 6, elements id, (1,2), (1,3), (2,3), (1,2,3), and (1,3, 2).(b) 2, elements id,
(1,2). (c) 1. element id.

5.14 Routine
5.15 This is really the associative law of multiplication. Notice that associativity and

commutativity are therefore intimately related.
5.16 (a) c = ah and d = k- 1b for unique h and k. Thus h = a- 1c and k = bd- 1

. Now
ab = cd iff a- 1c = bd- 1

. This happens iff k = h- 1
• (b) Using part (a), we see

that we will have such an inequality iff hEX and h-1 E Y, i.e. iff hEX n Y.
(b) Routine. Apply Proposition 5.6 Count X x Y in two ways. It is both IXI·IYI
(obviously) and IXYI·IXnYI (since, using part ~b), every product xy is repeated
IX nYI times). (d) By part (c) we have that 21 IIX n YI ~ 28 , so IX n YI ~ 4.
Also IX nYI divides 32 by Lagrange's Theorem so IX n YI = 4,8, 16 or 32.

5.17 (a) Choose x E U so U = Ihx I h E H}. Now {u-1 I U E U} = {x- 1h- 1 I hE H}.
Thus {u-1 I U E U} = x- H is a left coset. (b) Inversion (as in part (a» induces
the appropriate bijection.

5.18 Assume H 'f. 1. Choose m E Z \ {O} with em E H. Inverting if necessary, we
may assume mEN. Now revise m to be the minimal natural number such that
em E H (since there is one, there must be a minimal one!). Now suppose et E H
for t E Z. Divide t by m with remainder T in the range 0 ~ T < m. Thus for some
q E Z we have t = qm + T. Now et(em)-q =er E H since both et , em E H. Thus
er E H. Now 0 ~ T < m contradicts the minimality of m unless T = O. Now m
divides t and et is a power of em. Thus H = (em).

5.19 Suppose G = (x) is cyclic. For any integers n, m we have x"xm = x"+m = xmx"
so G is abelian.

5.20 Let the distinct prime divisors of n be pl,p2, ... ,Pk. The number we want is

1 11
k

1
n(1 - -)(1 - -) ... (1 - -) = n II(1 - -).

Pi P2 Pk . Pi
1=1

5.21 ( is a bijection, and so too therefore is C 1
. Suppose x, Y E G. Thus x = (a)

and y =(b) for some a, bEG. Now

Thus (-1 preserves structure as required.
5.22 T 2 = idz so T is a bijection by Proposition 1.3.

T(X + y) = -(x+y) = (-x) + (-y) = T(X) +T(y),

Thus T is an isomorphism of groups.
5.23 u; P --+ P is an isomorphism (check). If P is replaced by Q it is not a surjection,

so cannot be an isomorphism. Recall that 2 is not the square of a rational number
by Theorem 2.6.

Chapter 6

6.1 (a) The constant sequence (0). (b) «_I)i). (c) See the answer to part (b). (d)
No, since if (ai) were such a sequence, then for each i we would have ai =ai+3
but ai+3 would have the opposite sign to ai. This is absurd. .

6.2 (a) Isin(i) I ~ l\fi E N since Isin xl ~ 1 for all real x. (b) (i(-I)'). (c) If (a;) is
bounded, then there is M E IR such that lad ~ M \fi E N. Thus - M ~ a; ~

M\fi E N so (a;) is bounded above and below. Conversely, if (a;) is bounded
above and below, there are L,K E R such that L ~ a; ~ K\fi E N. Thus
-a; ~ -L and lad ~ max{-L, K} for all i E N.
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6.3 (a) {x I x E R, Ixl < I}. (b) Yes. This is because Ixl < -I7'v'x E 0. This is an
example of vacuous reasoning. The elements of the empty set have any properties
you like, because there are no such elements, so you cannot find one (there does
not exist one) with the property that it does not have the property! Thus they
all have the property! (c) No. We have just shown that the empty set is bounded.
It is therefore not unbounded. If you were under the illusion that you can use
vacuous reasoning to deduce whatever you like about the empty set, read on, for
that is wrong. The point is that if you wanted to prove that the empty set was
not bounded by 3, you would have to exhibit y E 0 such that Iyl ;::: 3. You can't
do this, since there are no elements in 0. The same argument works with any
real number instead of 3. Another property the empty set doesn't enjoy is being
non-empty. (d) Yes. Let the subsets of R be A and B, and be bounded by a and
b respectively. Now Ixl $ max{a,b} 'v'x E AU B so AU B is bounded. (e) Yes.
Since AnB ~ AuB we know y $ max{h, b} 'v'y E AnB.

6.4 (a) (I/i). (b) The bound max{lbd liE I} will do. Note that {Ibd + 1 liE I}
is a finite set of real numbers so we can take its maximum. (c) Let ai = i and
bi =-i for every i E {N}. Now (ai) and (bi) are unbounded but (ai) + (bi) =(0)
is bounded since 101 $ 0. (d) Suppose (ai) and (bi) are sequences and that
lad < L'v'i E I'll, and that Ibd < M'v'i E N. Now lai + bd $ lad + Ibd < L + M for
every i E No Note the use of the triangle inequality.

6.5 (a) «_I)i). (b) Let a2n = n'v'n E I'll, and a2n-1 = O'v'n E N. Thus (a;) is
unbounded. Let b2n =°'v'n E N, and ba2n-1 =n'v'n E No Thus (bn) is unbounded.
However (anbn) = (0) is bounded. (c) See part (b).

6.6 (a) Given c > 03N E I'll such that if i ;::: N, then lai - II < c, so lIa;1 - IllI $
lai - II < c. We have used Proposition 6.2. (b) If (an) confusedly converges to
l, then there exists N E I'll such that if n ;::: N, then an = l, so Ian -ll =°< c
irrespective of the value of the positive quantity c. Thus (an) converges to l.
Conversely, (I/n) converges to 0, but does not confusedly converge to 0.

6.7 (ak) is a Cauchy sequence since terms beyond the k-th differ only in the decimal
places k + 1 onwards; differences are therefore bounded by IO- k

. The sequence
therefore converges (by which result?).

6.8 (a) (bn) is monotone decreasing by design, and bounded below by (inf{ai liE
N}). Thus (bn ) converges (by which result?). (b) Similar, using a monotone
increasing sequence (cn ). (c) Notice that en $ bn for all n E No Argue that
lim(cn ) $ lim(bn ) by assuming the opposite (for contradiction). For the rest of
the argument, and some discussion, see the web site.

6.9 Let b = E bi then b is the supremum of the partial sums E{=l bi by the proof

of Proposition 6.8. Now E{=l ai < E{=l bi'v'j E N. Thus the sequence of par
tial sums of the series E ai is monotone increasing and bounded above, and so
convergent by Proposition 6.8.

6.10 (a) The relevant diagram consists of the portion of the graph of I/xO: in the
first quadrant. You can fit a box of height 1/2 and width 1 between 1 and 2
and under the graph. To the right you fit a box of height 1/3 and width 1
and so on. Compare the area in the first n - 1 boxes with the area under the
graph to obtain the desired inequality (note that I/xO: is a decreasing function in
this quadrant). Now fIn x-O:dx = [xl-O: /(1 - o)]i = 1/(0 - 1)(1 - nl-O:). Thus
fIn x-adx $ M = I/(o-I)'v'n EN. The partial sums ofEn-a form a monotone
increasing sequence bounded above by M, and so converge by Proposition 6.8. (b)
This time you insert a box of height 1/2 and width 1 between 2 and 3, and a box
of height 1/3 and width 1 between 3 and 4 etc. Now show that the partial sums
of E I/n can be made arbitrarily large, by comparing them with the area under
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the graph. The point is that log n assumes arbitrarily large values for sufficiently
large n.

6.11 A little algebra shows that the spider will travel along a proportion of 0.01(1 +
(1/2)+ (1/3) +... + (l/k)) of the elastic after k days. We need to estimate when
the sum of the first k terms of the harmonic series will exceed 100. Using the
(excellent) approximation of log k we conclude that the spider will reach the end
of the elastic after e100 days. We crudely estimate this as follows (this is not
sound, but gives the general idea). e2 is about 8 = 23 , and 210 is about 1000.
Thus our (very loose) estimate for e100 is 2150 which is about 1045 . Say there are
1000/3 days in a year; our estimate is 3 x 1042 years. Current estimates of the
age of our universe are about 13 x 109 years, so the spider has a way to go yet.

Chapter 1

7.1 For anye > 0 let 8 = e. If Ix - al < 8, then Ilxl-lall :5 Ix - al < 6 = e.
7.2 Draw a picture. (cosx - cosa)2 + (sin x - sina)2 is the square of the distance
between (cosa,sina) and (cosx,sinx). The straight line distance between these
points is bounded by the length of the arc of the unit circle joining these points.
Thus

(cos x - cosa)2 + (sin x - sina)2 :5 Ix - a12.

Thus both Icos x - cosal < Ix - al and Isinx - sinal < Ix - al· Given any e, let
6 = e, and check that everything works.

7.3 (a) Test the two cases a :5 b and b < a. (b) Use part (a), and the answer to
Exercise 7.1, and the results in the chapter about how to build new continuous
functions from old ones. You therefore need not get involved with e, 6 arguments.

7.4 Routine.
7.5 Routine.

Chapter 8

8.1 For the sum use Ian + bn - am - bml :5 Ian - ami + Ibn - bml by the triangle
inequality. For the product use lanbn - ambml = lanbn - anbm +anbm - ambml :5
lanllbn - bml + Ibmllan - ami· The differences are good news, the multipliers lanl
and Ibml are not. However, use Proposition 6.5 to tame the problem.

8.2 Tedious. See the web site mentioned in the preface.
8.3 Similar to the previous question.
8.4 For each x, let the binary (binary-decimal) expansion of the fractional part of x

(x - lx J) be E::1 ai2-i . Map x to Ei= (-1 )C. i /i if the sum converges, and 0 if
it doesn't. This function assumes all re~ values on any interval which contains
all real numbers represented by an initial starting string b1b2 ... bk followed by
a tail of any legal form. This stems from the ideas following Proposition 6.10.
Any interval will contain such a collection of real numbers, provided k is chosen
sufficiently large. Any non-trivial interval may be partitioned into an arbitrary
number of non-trivial subintervals, so every real number is assumed as a value
infinitely often.
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