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The Unfinished Fable of the Sparrows

It was the nest-building season, but after days of long hard work, the sparrows sat in
the evening glow, relaxing and chirping away.

“We are all so small and weak. Imagine how easy life would be if we had an owl
who could help us build our nests!”

“Yes!” said another. “And we could use it to look after our elderly and our
young.”

“It could give us advice and keep an eye out for the neighborhood cat,” added a
third.

Then Pastus, the elder-bird, spoke: “Let us send out scouts in all directions and try
to find an abandoned owlet somewhere, or maybe an egg. A crow chick might also
do, or a baby weasel. This could be the best thing that ever happened to us, at least
since the opening of the Pavilion of Unlimited Grain in yonder backyard.”

The flock was exhilarated, and sparrows everywhere started chirping at the top of
their lungs.

Only Scronkfinkle, a one-eyed sparrow with a fretful temperament, was
unconvinced of the wisdom of the endeavor. Quoth he: “This will surely be our
undoing. Should we not give some thought to the art of owl-domestication and owl-
taming first, before we bring such a creature into our midst?”

Replied Pastus: “Taming an owl sounds like an exceedingly difficult thing to do.
It will be difficult enough to find an owl egg. So let us start there. After we have
succeeded in raising an owl, then we can think about taking on this other challenge.”

“There is a flaw in that plan!” squeaked Scronkfinkle; but his protests were in
vain as the flock had already lifted off to start implementing the directives set out by
Pastus.

Just two or three sparrows remained behind. Together they began to try to work
out how owls might be tamed or domesticated. They soon realized that Pastus had
been right: this was an exceedingly difficult challenge, especially in the absence of
an actual owl to practice on. Nevertheless they pressed on as best they could,
constantly fearing that the flock might return with an owl egg before a solution to
the control problem had been found.

It is not known how the story ends, but the author dedicates this book to
Scronkfinkle and his followers.



PREFACE

Inside your cranium is the thing that does the reading. This thing, the human brain,
has some capabilities that the brains of other animals lack. It is to these distinctive
capabilities that we owe our dominant position on the planet. Other animals have
stronger muscles and sharper claws, but we have cleverer brains. Our modest
advantage in general intelligence has led us to develop language, technology, and
complex social organization. The advantage has compounded over time, as each
generation has built on the achievements of its predecessors.

If some day we build machine brains that surpass human brains in general
intelligence, then this new superintelligence could become very powerful. And, as
the fate of the gorillas now depends more on us humans than on the gorillas
themselves, so the fate of our species would depend on the actions of the machine
superintelligence.

We do have one advantage: we get to build the stuff. In principle, we could build a
kind of superintelligence that would protect human values. We would certainly have
strong reason to do so. In practice, the control problem—the problem of how to
control what the superintelligence would do—looks quite difficult. It also looks like
we will only get one chance. Once unfriendly superintelligence exists, it would
prevent us from replacing it or changing its preferences. Our fate would be sealed.

In this book, I try to understand the challenge presented by the prospect of
superintelligence, and how we might best respond. This is quite possibly the most
important and most daunting challenge humanity has ever faced. And—whether we
succeed or fail—it is probably the last challenge we will ever face.

It is no part of the argument in this book that we are on the threshold of a big
breakthrough in artificial intelligence, or that we can predict with any precision
when such a development might occur. It seems somewhat likely that it will happen
sometime in this century, but we don’t know for sure. The first couple of chapters do
discuss possible pathways and say something about the question of timing. The bulk
of the book, however, is about what happens after. We study the kinetics of an
intelligence explosion, the forms and powers of superintelligence, and the strategic
choices available to a superintelligent agent that attains a decisive advantage. We
then shift our focus to the control problem and ask what we could do to shape the
initial conditions so as to achieve a survivable and beneficial outcome. Toward the
end of the book, we zoom out and contemplate the larger picture that emerges from
our investigations. Some suggestions are offered on what ought to be done now to
increase our chances of avoiding an existential catastrophe later.

This has not been an easy book to write. I hope the path that has been cleared will



enable other investigators to reach the new frontier more swiftly and conveniently,
so that they can arrive there fresh and ready to join the work to further expand the
reach of our comprehension. (And if the way that has been made is a little bumpy
and bendy, I hope that reviewers, in judging the result, will not underestimate the
hostility of the terrain ex ante!)

This has not been an easy book to write: I have tried to make it an easy book to
read, but I don’t think I have quite succeeded. When writing, I had in mind as the
target audience an earlier time-slice of myself, and I tried to produce a kind of book
that T would have enjoyed reading. This could prove a narrow demographic.
Nevertheless, I think that the content should be accessible to many people, if they
put some thought into it and resist the temptation to instantaneously misunderstand
each new idea by assimilating it with the most similar-sounding cliché available in
their cultural larders. Non-technical readers should not be discouraged by the
occasional bit of mathematics or specialized vocabulary, for it is always possible to
glean the main point from the surrounding explanations. (Conversely, for those
readers who want more of the nitty-gritty, there is quite a lot to be found among the
endnotes.l)

Many of the points made in this book are probably wrong.2 It is also likely that
there are considerations of critical importance that I fail to take into account,
thereby invalidating some or all of my conclusions. I have gone to some length to
indicate nuances and degrees of uncertainty throughout the text—encumbering it
with an unsightly smudge of “possibly,” “might,” “may,” “could well,” “it seems,”
“probably,” “very likely,” “almost certainly.” Each qualifier has been placed where
it is carefully and deliberately. Yet these topical applications of epistemic modesty
are not enough; they must be supplemented here by a systemic admission of
uncertainty and fallibility. This is not false modesty: for while I believe that my
book is likely to be seriously wrong and misleading, I think that the alternative
views that have been presented in the literature are substantially worse—including
the default view, or “null hypothesis,” according to which we can for the time being
safely or reasonably ignore the prospect of superintelligence.

) <
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CHAPTER 1
Past developments and present capabilities

We begin by looking back. History, at the largest scale, seems to exhibit a
sequence of distinct growth modes, each much more rapid than its predecessor.
This pattern has been taken to suggest that another (even faster) growth mode
might be possible. However, we do not place much weight on this observation—
this is not a book about “technological acceleration” or “exponential growth” or
the miscellaneous notions sometimes gathered under the rubric of “the
singularity.” Next, we review the history of artificial intelligence. We then
survey the field’s current capabilities. Finally, we glance at some recent expert
opinion surveys, and contemplate our ignorance about the timeline of future
advances.

Growth modes and big history

A mere few million years ago our ancestors were still swinging from the branches in
the African canopy. On a geological or even evolutionary timescale, the rise of
Homo sapiens from our last common ancestor with the great apes happened swiftly.
We developed upright posture, opposable thumbs, and—crucially—some relatively
minor changes in brain size and neurological organization that led to a great leap in
cognitive ability. As a consequence, humans can think abstractly, communicate
complex thoughts, and culturally accumulate information over the generations far
better than any other species on the planet.

These capabilities let humans develop increasingly efficient productive
technologies, making it possible for our ancestors to migrate far away from the
rainforest and the savanna. Especially after the adoption of agriculture, population
densities rose along with the total size of the human population. More people meant
more ideas; greater densities meant that ideas could spread more readily and that
some individuals could devote themselves to developing specialized skills. These
developments increased therate of growth of economic productivity and
technological capacity. Later developments, related to the Industrial Revolution,
brought about a second, comparable step change in the rate of growth.

Such changes in the rate of growth have important consequences. A few hundred
thousand years ago, in early human (or hominid) prehistory, growth was so slow that
it took on the order of one million years for human productive capacity to increase



sufficiently to sustain an additional one million individuals living at subsistence
level. By 5000 Bc, following the Agricultural Revolution, the rate of growth had
increased to the point where the same amount of growth took just two centuries.
Today, following the Industrial Revolution, the world economy grows on average by
that amount every ninety minutes.t

Even the present rate of growth will produce impressive results if maintained for a
moderately long time. If the world economy continues to grow at the same pace as it
has over the past fifty years, then the world will be some 4.8 times richer by 2050
and about 34 times richer by 2100 than it is today.2

Yet the prospect of continuing on a steady exponential growth path pales in
comparison to what would happen if the world were to experience another step
change in the rate of growth comparable in magnitude to those associated with the
Agricultural Revolution and the Industrial Revolution. The economist Robin Hanson
estimates, based on historical economic and population data, a characteristic world
economy doubling time for Pleistocene hunter—gatherer society of 224,000 years; for
farming society, 909 years; and for industrial society, 6.3 years.2 (In Hanson’s
model, the present epoch is a mixture of the farming and the industrial growth
modes—the world economy as a whole is not yet growing at the 6.3-year doubling
rate.) If another such transition to a different growth mode were to occur, and it were
of similar magnitude to the previous two, it would result in a new growth regime in
which the world economy would double in size about every two weeks.

Such a growth rate seems fantastic by current lights. Observers in earlier epochs
might have found it equally preposterous to suppose that the world economy would
one day be doubling several times within a single lifespan. Yet that is the
extraordinary condition we now take to be ordinary.

The idea of a coming technological singularity has by now been widely
popularized, starting with Vernor Vinge’s seminal essay and continuing with the
writings of Ray Kurzweil and others.# The term “singularity,” however, has been
used confusedly in many disparate senses and has accreted an unholy (yet almost
millenarian) aura of techno-utopian connotations.2 Since most of these meanings
and connotations are irrelevant to our argument, we can gain clarity by dispensing
with the “singularity” word in favor of more precise terminology.

The singularity-related idea that interests us here is the possibility of an
intelligence explosion, particularly the prospect of machine superintelligence. There
may be those who are persuaded by growth diagrams like the ones in Figure 1 that
another drastic change in growth mode is in the cards, comparable to the
Agricultural or Industrial Revolution. These folk may then reflect that it is hard to
conceive of a scenario in which the world economy’s doubling time shortens to mere
weeks that does not involve the creation of minds that are much faster and more
efficient than the familiar biological kind. However, the case for taking seriously the



prospect of a machine intelligence revolution need not rely on curve-fitting
exercises or extrapolations from past economic growth. As we shall see, there are
stronger reasons for taking heed.

(a) 45

World GDP in trillions (2012 Int$)

—3000 —G000 —-4000 —2000 t'} 2000
Year

(b)

World GDP in trillions (2012 Int$)

1700 1750 1800 1850 1900 1950 2000

Year

Figure 1 Long-term history of world GDP. Plotted on a linear scale, the history of
the world economy looks like a flat line hugging the x-axis, until it suddenly spikes
vertically upward. (a) Even when we zoom in on the most recent 10,000 years, the
pattern remains essentially one of a single 90° angle. (b) Only within the past 100
years or so does the curve lift perceptibly above the zero-level. (The different lines
in the plot correspond to different data sets, which yield slightly different

estimates.?)

Great expectations



Machines matching humans in general intelligence—that is, possessing common
sense and an effective ability to learn, reason, and plan to meet complex
information-processing challenges across a wide range of natural and abstract
domains—have been expected since the invention of computers in the 1940s. At that
time, the advent of such machines was often placed some twenty years into the
future.Z Since then, the expected arrival date has been receding at a rate of one year
per year; so that today, futurists who concern themselves with the possibility of
artificial general intelligence still often believe that intelligent machines are a
couple of decades away.8

Two decades is a sweet spot for prognosticators of radical change: near enough to
be attention-grabbing and relevant, yet far enough to make it possible to suppose
that a string of breakthroughs, currently only vaguely imaginable, might by then
have occurred. Contrast this with shorter timescales: most technologies that will
have a big impact on the world in five or ten years from now are already in limited
use, while technologies that will reshape the world in less than fifteen years
probably exist as laboratory prototypes. Twenty years may also be close to the
typical duration remaining of a forecaster’s career, bounding the reputational risk of
a bold prediction.

From the fact that some individuals have overpredicted artificial intelligence in
the past, however, it does not follow that Al is impossible or will never be
developed.2 The main reason why progress has been slower than expected is that the
technical difficulties of constructing intelligent machines have proved greater than
the pioneers foresaw. But this leaves open just how great those difficulties are and
how far we now are from overcoming them. Sometimes a problem that initially
looks hopelessly complicated turns out to have a surprisingly simple solution
(though the reverse is probably more common).

In the next chapter, we will look at different paths that may lead to human-level
machine intelligence. But let us note at the outset that however many stops there are
between here and human-level machine intelligence, the latter is not the final
destination. The next stop, just a short distance farther along the tracks, is
superhuman-level machine intelligence. The train might not pause or even
decelerate at Humanville Station. It is likely to swoosh right by.

The mathematician I. J. Good, who had served as chief statistician in Alan
Turing’s code-breaking team in World War II, might have been the first to enunciate
the essential aspects of this scenario. In an oft-quoted passage from 1965, he wrote:

Let an ultraintelligent machine be defined as a machine that can far surpass all
the intellectual activities of any man however clever. Since the design of
machines is one of these intellectual activities, an ultraintelligent machine
could design even better machines; there would then unquestionably be an



“intelligence explosion,” and the intelligence of man would be left far behind.
Thus the first ultraintelligent machine is the last invention that man need ever
make, provided that the machine is docile enough to tell us how to keep it under

control 12

It may seem obvious now that major existential risks would be associated with such
an intelligence explosion, and that the prospect should therefore be examined with
the utmost seriousness even if it were known (which it is not) to have but a
moderately small probability of coming to pass. The pioneers of artificial
intelligence, however, notwithstanding their belief in the imminence of human-level
Al, mostly did not contemplate the possibility of greater-than-human Al. It is as
though their speculation muscle had so exhausted itself in conceiving the radical
possibility of machines reaching human intelligence that it could not grasp the
corollary—that machines would subsequently become superintelligent.

The Al pioneers for the most part did not countenance the possibility that their
enterprise might involve risk..l They gave no lip service—let alone serious thought
—to0 any safety concern or ethical qualm related to the creation of artificial minds
and potential computer overlords: a lacuna that astonishes even against the
background of the era’s not-so-impressive standards of critical technology
assessment.12 We must hope that by the time the enterprise eventually does become
feasible, we will have gained not only the technological proficiency to set off an
intelligence explosion but also the higher level of mastery that may be necessary to
make the detonation survivable.

But before we turn to what lies ahead, it will be useful to take a quick glance at
the history of machine intelligence to date.

Seasons of hope and despair

In the summer of 1956 at Dartmouth College, ten scientists sharing an interest in
neural nets, automata theory, and the study of intelligence convened for a six-week
workshop. This Dartmouth Summer Project is often regarded as the cockcrow of
artificial intelligence as a field of research. Many of the participants would later be
recognized as founding figures. The optimistic outlook among the delegates is
reflected in the proposal submitted to the Rockefeller Foundation, which provided
funding for the event:

We propose that a 2 month, 10 man study of artificial intelligence be carried
out.... The study is to proceed on the basis of the conjecture that every aspect of



learning or any other feature of intelligence can in principle be so precisely
described that a machine can be made to simulate it. An attempt will be made
to find how to make machines that use language, form abstractions and
concepts, solve kinds of problems now reserved for humans, and improve
themselves. We think that a significant advance can be made in one or more of
these problems if a carefully selected group of scientists work on it together for
a summer.

In the six decades since this brash beginning, the field of artificial intelligence has
been through periods of hype and high expectations alternating with periods of
setback and disappointment.

The first period of excitement, which began with the Dartmouth meeting, was
later described by John McCarthy (the event’s main organizer) as the “Look, Ma, no
hands!” era. During these early days, researchers built systems designed to refute
claims of the form “No machine could ever do X!” Such skeptical claims were
common at the time. To counter them, the Al researchers created small systems that
achieved X in a “microworld” (a well-defined, limited domain that enabled a pared-
down version of the performance to be demonstrated), thus providing a proof of
concept and showing that X could, in principle, be done by machine. One such early
system, the Logic Theorist, was able to prove most of the theorems in the second
chapter of Whitehead and Russell’s Principia Mathematica, and even came up with
one proof that was much more elegant than the original, thereby debunking the
notion that machines could “only think numerically” and showing that machines
were also able to do deduction and to invent logical proofs.12 A follow-up program,
the General Problem Solver, could in principle solve a wide range of formally
specified problems.1# Programs that could solve calculus problems typical of first-
year college courses, visual analogy problems of the type that appear in some IQ
tests, and simple verbal algebra problems were also written.12 The Shakey robot (so
named because of its tendency to tremble during operation) demonstrated how
logical reasoning could be integrated with perception and used to plan and control
physical activity.l® The ELIZA program showed how a computer could impersonate
a Rogerian psychotherapist.lZ In the mid-seventies, the program SHRDLU showed
how a simulated robotic arm in a simulated world of geometric blocks could follow
instructions and answer questions in English that were typed in by a user.18 In later
decades, systems would be created that demonstrated that machines could compose
music in the style of various classical composers, outperform junior doctors in
certain clinical diagnostic tasks, drive cars autonomously, and make patentable
inventions.!2 There has even been an Al that cracked original jokes.2? (Not that its
level of humor was high—“What do you get when you cross an optic with a mental



object?  An eye-dea”—but children reportedly found its puns consistently
entertaining.)

The methods that produced successes in the early demonstration systems often
proved difficult to extend to a wider variety of problems or to harder problem
instances. One reason for this is the “combinatorial explosion” of possibilities that
must be explored by methods that rely on something like exhaustive search. Such
methods work well for simple instances of a problem, but fail when things get a bit
more complicated. For instance, to prove a theorem that has a 5-line long proof in a
deduction system with one inference rule and 5 axioms, one could simply enumerate
the 3,125 possible combinations and check each one to see if it delivers the intended
conclusion. Exhaustive search would also work for 6- and 7-line proofs. But as the
task becomes more difficult, the method of exhaustive search soon runs into trouble.
Proving a theorem with a 50-line proof does not take ten times longer than proving a
theorem that has a 5-line proof: rather, if one uses exhaustive search, it requires
combing through 5°° » 8.9 x 1034 possible sequences—which is computationally
infeasible even with the fastest supercomputers.

To overcome the combinatorial explosion, one needs algorithms that exploit
structure in the target domain and take advantage of prior knowledge by using
heuristic search, planning, and flexible abstract representations—capabilities that
were poorly developed in the early Al systems. The performance of these early
systems also suffered because of poor methods for handling uncertainty, reliance on
brittle and ungrounded symbolic representations, data scarcity, and severe hardware
limitations on memory capacity and processor speed. By the mid-1970s, there was a
growing awareness of these problems. The realization that many Al projects could
never make good on their initial promises led to the onset of the first “Al winter”: a
period of retrenchment, during which funding decreased and skepticism increased,
and Al fell out of fashion.

A new springtime arrived in the early 1980s, when Japan launched its Fifth-
Generation Computer Systems Project, a well-funded public—private partnership that
aimed to leapfrog the state of the art by developing a massively parallel computing
architecture that would serve as a platform for artificial intelligence. This occurred
at peak fascination with the Japanese “post-war economic miracle,” a period when
Western government and business leaders anxiously sought to divine the formula
behind Japan’s economic success in hope of replicating the magic at home. When
Japan decided to invest big in Al, several other countries followed suit.

The ensuing years saw a great proliferation of expert systems. Designed as support
tools for decision makers, expert systems were rule-based programs that made
simple inferences from a knowledge base of facts, which had been elicited from
human domain experts and painstakingly hand-coded in a formal language.
Hundreds of these expert systems were built. However, the smaller systems provided



little benefit, and the larger ones proved expensive to develop, validate, and keep
updated, and were generally cumbersome to use. It was impractical to acquire a
standalone computer just for the sake of running one program. By the late 1980s,
this growth season, too, had run its course.

The Fifth-Generation Project failed to meet its objectives, as did its counterparts
in the United States and Europe. A second Al winter descended. At this point, a
critic could justifiably bemoan “the history of artificial intelligence research to date,
consisting always of very limited success in particular areas, followed immediately
by failure to reach the broader goals at which these initial successes seem at first to
hint.”2L Private investors began to shun any venture carrying the brand of “artificial
intelligence.” Even among academics and their funders, “Al” became an unwanted
epithet.22

Technical work continued apace, however, and by the 1990s, the second Al winter
gradually thawed. Optimism was rekindled by the introduction of new techniques,
which seemed to offer alternatives to the traditional logicist paradigm (often
referred to as “Good Old-Fashioned Artificial Intelligence,” or “GOFAI” for short),
which had focused on high-level symbol manipulation and which had reached its
apogee in the expert systems of the 1980s. The newly popular techniques, which
included neural networks and genetic algorithms, promised to overcome some of the
shortcomings of the GOFAI approach, in particular the “brittleness” that
characterized classical Al programs (which typically produced complete nonsense if
the programmers made even a single slightly erroneous assumption). The new
techniques boasted a more organic performance. For example, neural networks
exhibited the property of “graceful degradation”: a small amount of damage to a
neural network typically resulted in a small degradation of its performance, rather
than a total crash. Even more importantly, neural networks could learn from
experience, finding natural ways of generalizing from examples and finding hidden
statistical patterns in their input.22 This made the nets good at pattern recognition
and classification problems. For example, by training a neural network on a data set
of sonar signals, it could be taught to distinguish the acoustic profiles of submarines,
mines, and sea life with better accuracy than human experts—and this could be done
without anybody first having to figure out in advance exactly how the categories
were to be defined or how different features were to be weighted.

While simple neural network models had been known since the late 1950s, the
field enjoyed a renaissance after the introduction of the backpropagation algorithm,
which made it possible to train multi-layered neural networks.2¢ Such multilayered
networks, which have one or more intermediary (“hidden”) layers of neurons
between the input and output layers, can learn a much wider range of functions than
their simpler predecessors.22 Combined with the increasingly powerful computers
that were becoming available, these algorithmic improvements enabled engineers to



build neural networks that were good enough to be practically useful in many
applications.

The brain-like qualities of neural networks contrasted favorably with the rigidly
logic-chopping but brittle performance of traditional rule-based GOFAI systems—
enough so to inspire a new “-ism,” connectionism, which emphasized the importance
of massively parallel sub-symbolic processing. More than 150,000 academic papers
have since been published on artificial neural networks, and they continue to be an
important approach in machine learning.

Evolution-based methods, such as genetic algorithms and genetic programming,
constitute another approach whose emergence helped end the second Al winter. It
made perhaps a smaller academic impact than neural nets but was widely
popularized. In evolutionary models, a population of candidate solutions (which can
be data structures or programs) is maintained, and new candidate solutions are
generated randomly by mutating or recombining variants in the existing population.
Periodically, the population is pruned by applying a selection criterion (a fitness
function) that allows only the better candidates to survive into the next generation.
Iterated over thousands of generations, the average quality of the solutions in the
candidate pool gradually increases. When it works, this kind of algorithm can
produce efficient solutions to a very wide range of problems—solutions that may be
strikingly novel and unintuitive, often looking more like natural structures than
anything that a human engineer would design. And in principle, this can happen
without much need for human input beyond the initial specification of the fitness
function, which is often very simple. In practice, however, getting evolutionary
methods to work well requires skill and ingenuity, particularly in devising a good
representational format. Without an efficient way to encode candidate solutions (a
genetic language that matches latent structure in the target domain), evolutionary
search tends to meander endlessly in a vast search space or get stuck at a local
optimum. Even if a good representational format is found, evolution is
computationally demanding and is often defeated by the combinatorial explosion.

Neural networks and genetic algorithms are examples of methods that stimulated
excitement in the 1990s by appearing to offer alternatives to the stagnating GOFAI
paradigm. But the intention here is not to sing the praises of these two methods or to
elevate them above the many other techniques in machine learning. In fact, one of
the major theoretical developments of the past twenty years has been a clearer
realization of how superficially disparate techniques can be understood as special
cases within a common mathematical framework. For example, many types of
artificial neural network can be viewed as classifiers that perform a particular kind
of statistical calculation (maximum likelihood estimation).2® This perspective
allows neural nets to be compared with a larger class of algorithms for learning
classifiers from examples—“decision trees,” “logistic regression models,” “support
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vector machines,” “naive Bayes,” “k-nearest-neighbors regression,” among others.2Z
In a similar manner, genetic algorithms can be viewed as performing stochastic hill-
climbing, which is again a subset of a wider class of algorithms for optimization.
Each of these algorithms for building classifiers or for searching a solution space
has its own profile of strengths and weaknesses which can be studied
mathematically. Algorithms differ in their processor time and memory space
requirements, which inductive biases they presuppose, the ease with which
externally produced content can be incorporated, and how transparent their inner
workings are to a human analyst.

Behind the razzle-dazzle of machine learning and creative problem-solving thus
lies a set of mathematically well-specified tradeoffs. The ideal is that of the perfect
Bayesian agent, one that makes probabilistically optimal use of available
information. This ideal is unattainable because it is too computationally demanding
to be implemented in any physical computer (see Box 1). Accordingly, one can view
artificial intelligence as a quest to find shortcuts: ways of tractably approximating
the Bayesian ideal by sacrificing some optimality or generality while preserving
enough to get high performance in the actual domains of interest.

A reflection of this picture can be seen in the work done over the past couple of
decades on probabilistic graphical models, such as Bayesian networks. Bayesian
networks provide a concise way of representing probabilistic and conditional
independence relations that hold in some particular domain. (Exploiting such
independence relations is essential for overcoming the combinatorial explosion,
which is as much of a problem for probabilistic inference as it is for logical
deduction.) They also provide important insight into the concept of causality.28

One advantage of relating learning problems from specific domains to the general
problem of Bayesian inference is that new algorithms that make Bayesian inference
more efficient will then yield immediate improvements across many different areas.
Advances in Monte Carlo approximation techniques, for example, are directly
applied in computer vision, robotics, and computational genetics. Another advantage
is that it lets researchers from different disciplines more easily pool their findings.
Graphical models and Bayesian statistics have become a shared focus of research in
many fields, including machine learning, statistical physics, bioinformatics,
combinatorial optimization, and communication theory.22 A fair amount of the
recent progress in machine learning has resulted from incorporating formal results
originally derived in other academic fields. (Machine learning applications have also
benefitted enormously from faster computers and greater availability of large data
sets.)

Box 1 An optimal Bayesian agent



An ideal Bayesian agent starts out with a “prior probability distribution,” a function
that assigns probabilities to each “possible world” (i.e. to each maximally specific
way the world could turn out to be).22 This prior incorporates an inductive bias such
that simpler possible worlds are assigned higher probabilities. (One way to formally
define the simplicity of a possible world is in terms of its “Kolmogorov
complexity,” a measure based on the length of the shortest computer program that
generates a complete description of the world.2%) The prior also incorporates any
background knowledge that the programmers wish to give to the agent.

As the agent receives new information from its sensors, it updates its probability
distribution by conditionalizing the distribution on the new information according to
Bayes’ theorem.3l Conditionalization is the mathematical operation that sets the
new probability of those worlds that are inconsistent with the information received
to zero and renormalizes the probability distribution over the remaining possible
worlds. The result is a “posterior probability distribution” (which the agent may use
as its new prior in the next time step). As the agent makes observations, its
probability mass thus gets concentrated on the shrinking set of possible worlds that
remain consistent with the evidence; and among these possible worlds, simpler ones
always have more probability.

Metaphorically, we can think of a probability as sand on a large sheet of paper.
The paper is partitioned into areas of various sizes, each area corresponding to one
possible world, with larger areas corresponding to simpler possible worlds. Imagine
also a layer of sand of even thickness spread across the entire sheet: this is our prior
probability distribution. Whenever an observation is made that rules out some
possible worlds, we remove the sand from the corresponding areas of the paper and
redistribute it evenly over the areas that remain in play. Thus, the total amount of
sand on the sheet never changes, it just gets concentrated into fewer areas as
observational evidence accumulates. This is a picture of learning in its purest form.
(To calculate the probability of a hypothesis, we simply measure the amount of sand
in all the areas that correspond to the possible worlds in which the hypothesis is
true.)

So far, we have defined a learning rule. To get an agent, we also need a decision
rule. To this end, we endow the agent with a “utility function” which assigns a
number to each possible world. The number represents the desirability of that world
according to the agent’s basic preferences. Now, at each time step, the agent selects
the action with the highest expected utility.22 (To find the action with the highest
expected utility, the agent could list all possible actions. It could then compute the
conditional probability distribution given the action—the probability distribution
that would result from conditionalizing its current probability distribution on the
observation that the action had just been taken. Finally, it could calculate the



expected value of the action as the sum of the value of each possible world
multiplied by the conditional probability of that world given the action.22)

The learning rule and the decision rule together define an “optimality notion” for
an agent. (Essentially the same optimality notion has been broadly used in artificial
intelligence, epistemology, philosophy of science, economics, and statistics.24) In
reality, it is impossible to build such an agent because it is computationally
intractable to perform the requisite calculations. Any attempt to do so succumbs to a
combinatorial explosion just like the one described in our discussion of GOFAI. To
see why this is so, consider one tiny subset of all possible worlds: those that consist
of a single computer monitor floating in an endless vacuum. The monitor has 1, 000
x 1, 000 pixels, each of which is perpetually either on or off. Even this subset of
possible worlds is enormously large: the 2(1.000 x 1,000) nqssible monitor states
outnumber all the computations expected ever to take place in the observable
universe. Thus, we could not even enumerate all the possible worlds in this tiny
subset of all possible worlds, let alone perform more elaborate computations on each
of them individually.

Optimality notions can be of theoretical interest even if they are physically
unrealizable. They give us a standard by which to judge heuristic approximations,
and sometimes we can reason about what an optimal agent would do in some special
case. We will encounter some alternative optimality notions for artificial agents in

Chapter 12.

State of the art

Artificial intelligence already outperforms human intelligence in many domains.
Table 1 surveys the state of game-playing computers, showing that Als now beat
human champions in a wide range of games.3%

These achievements might not seem impressive today. But this is because our
standards for what is impressive keep adapting to the advances being made. Expert
chess playing, for example, was once thought to epitomize human intellection. In the
view of several experts in the late fifties: “If one could devise a successful chess
machine, one would seem to have penetrated to the core of human intellectual
endeavor.”22 This no longer seems so. One sympathizes with John McCarthy, who

lamented: “As soon as it works, no one calls it AT anymore.”28

Table 1 Game-playing Al



Checkers

Arthur Samuel’s checkers program, originally written
in 1952 and later improved (the 1955 version
incorporating machine learning), becomes the first
program to learn to play a game better than its
creator.2Z In 1994, the program CHINOOK beats the
Superhuman reigning human champion, marking the first time a
program wins an official world championship in a
game of skill. In 2002, Jonathan Schaeffer and his team
“solve” checkers, i.e. produce a program that always
makes the best possible move (combining alpha-beta
search with a database of 39 trillion endgame
positions). Perfect play by both sides leads to a draw.32

1979: The backgammon program BKG by Hans
Berliner defeats the world champion—the first

Backgammon Superhuman computer program to defeat (in an exhibition match) a

Traveller
TCS

Othello

Chess

world champion in any game—though Berliner later
attributes the win to luck with the dice rolls.22

1992: The backgammon program TD-Gammon by
Gerry Tesauro reaches championship-level ability,
using temporal difference learning (a form of

reinforcement learning) and repeated plays against

itself to improve.22

In the years since, backgammon programs have far

surpassed the best human players.4.

In both 1981 and 1982, Douglas Lenat’s program
Eurisko wins the US championship in Traveller TCS (a
futuristic naval war game), prompting rule changes to

Superhuman
in

collaboration 4
. block its unorthodox strategies.43 Eurisko had
with . lox strateg .
heuristics for designing its fleet, and it also had
human#2 ghing

heuristics for modifying its heuristics.

1997: The program Logistello wins every game in a
Superhuman six-game match against world champion Takeshi

Murakami.?4

1997: Deep Blue beats the world chess champion,

Garry Kasparov. Kasparov claims to have seen
Superhuman glimpses of true intelligence and creativity in some of

the computer’s moves.*2 Since then, chess engines

have continued to improve .28



Crosswords Expert level 1999: The crossword-solving program Proverb
O PR e A eFE oS WS Yt Ginsberg,
scores in the top quartile among the otherwise human
contestants in the American Crossword Puzzle
Tournament. (Dr. Fill’s performance is uneven. It
completes perfectly the puzzle rated most difficult by
humans, yet is stumped by a couple of nonstandard
puzzles that involved spelling backwards or writing
answers diagonally.)42

As of 2002, Scrabble-playing software surpasses the

best human players.*2

Equal to the By 2005, contract bridge playing software reaches
best parity with the best human bridge players.22
2010: IBM’s Watson defeats the two all-time-greatest
human Jeopardy! champions, Ken Jennings and Brad
Rutter.2LJeopardy! is a televised game show with trivia
Jeopardy! Superhuman questions about history, literature, sports, geography,
pop culture, science, and other topics. Questions are
presented in the form of clues, and often involve
wordplay.

Scrabble Superhuman

Bridge

Computer poker players remain slightly below the best
Poker Varied humans for full-ring Texas hold ‘em but perform at a
superhuman level in some poker variants.22
Heuristics evolved using genetic algorithms produce a
solver for the solitaire game FreeCell (which in its
generalized form is NP-complete) that is able to beat

high-ranking human players.22

FreeCell Superhuman

As of 2012, the Zen series of go-playing programs has
reached rank 6 dan in fast games (the level of a very
strong amateur player), using Monte Carlo tree search
and machine learning techniques.2% Go-playing
programs have been improving at a rate of about 1
dan/year in recent years. If this rate of improvement
continues, they might beat the human world champion
in about a decade.

Very strong
Go amateur
level

There is an important sense, however, in which chess-playing Al turned out to be
a lesser triumph than many imagined it would be. It was once supposed, perhaps not



unreasonably, that in order for a computer to play chess at grandmaster level, it
would have to be endowed with a high degree of general intelligence.2Z One might
have thought, for example, that great chess playing requires being able to learn
abstract concepts, think cleverly about strategy, compose flexible plans, make a
wide range of ingenious logical deductions, and maybe even model one’s opponent’s
thinking. Not so. It turned out to be possible to build a perfectly fine chess engine
around a special-purpose algorithm.28 When implemented on the fast processors that
became available towards the end of the twentieth century, it produces very strong
play. But an Al built like that is narrow. It plays chess; it can do no other.22

In other domains, solutions have turned out to be more complicated than initially
expected, and progress slower. The computer scientist Donald Knuth was struck that
“Al has by now succeeded in doing essentially everything that requires ‘thinking’
but has failed to do most of what people and animals do ‘without thinking’—that,
somehow, is much harder!”® Analyzing visual scenes, recognizing objects, or
controlling a robot’s behavior as it interacts with a natural environment has proved
challenging. Nevertheless, a fair amount of progress has been made and continues to
be made, aided by steady improvements in hardware.

Common sense and natural language understanding have also turned out to be
difficult. It is now often thought that achieving a fully human-level performance on
these tasks is an “Al-complete” problem, meaning that the difficulty of solving these
problems is essentially equivalent to the difficulty of building generally human-
level intelligent machines.2! In other words, if somebody were to succeed in creating
an Al that could understand natural language as well as a human adult, they would in
all likelihood also either already have succeeded in creating an Al that could do
everything else that human intelligence can do, or they would be but a very short
step from such a general capability.82

Chess-playing expertise turned out to be achievable by means of a surprisingly
simple algorithm. It is tempting to speculate that other capabilities—such as general
reasoning ability, or some key ability involved in programming—might likewise be
achievable through some surprisingly simple algorithm. The fact that the best
performance at one time is attained through a complicated mechanism does not
mean that no simple mechanism could do the job as well or better. It might simply
be that nobody has yet found the simpler alternative. The Ptolemaic system (with the
Earth in the center, orbited by the Sun, the Moon, planets, and stars) represented the
state of the art in astronomy for over a thousand years, and its predictive accuracy
was improved over the centuries by progressively complicating the model: adding
epicycles upon epicycles to the postulated celestial motions. Then the entire system
was overthrown by the heliocentric theory of Copernicus, which was simpler and—
though only after further elaboration by Kepler—more predictively accurate.82

Artificial intelligence methods are now used in more areas than it would make



sense to review here, but mentioning a sampling of them will give an idea of the
breadth of applications. Aside from the game Als listed in Table 1, there are hearing
aids with algorithms that filter out ambient noise; route-finders that display maps
and offer navigation advice to drivers; recommender systems that suggest books and
music albums based on a user’s previous purchases and ratings; and medical
decision support systems that help doctors diagnose breast cancer, recommend
treatment plans, and aid in the interpretation of electrocardiograms. There are
robotic pets and cleaning robots, lawn-mowing robots, rescue robots, surgical robots,
and over a million industrial robots.%* The world population of robots exceeds 10
million.%>

Modern speech recognition, based on statistical techniques such as hidden Markov
models, has become sufficiently accurate for practical use (some fragments of this
book were drafted with the help of a speech recognition program). Personal digital
assistants, such as Apple’s Siri, respond to spoken commands and can answer simple
questions and execute commands. Optical character recognition of handwritten and
typewritten text is routinely used in applications such as mail sorting and
digitization of old documents.%®

Machine translation remains imperfect but is good enough for many applications.
Early systems used the GOFAI approach of hand-coded grammars that had to be
developed by skilled linguists from the ground up for each language. Newer systems
use statistical machine learning techniques that automatically build statistical
models from observed usage patterns. The machine infers the parameters for these
models by analyzing bilingual corpora. This approach dispenses with linguists: the
programmers building these systems need not even speak the languages they are
working with.%Z

Face recognition has improved sufficiently in recent years that it is now used at
automated border crossings in Europe and Australia. The US Department of State
operates a face recognition system with over 75 million photographs for visa
processing. Surveillance systems employ increasingly sophisticated Al and data-
mining technologies to analyze voice, video, or text, large quantities of which are
trawled from the world’s electronic communications media and stored in giant data
centers.

Theorem-proving and equation-solving are by now so well established that they
are hardly regarded as Al anymore. Equation solvers are included in scientific
computing programs such as Mathematica. Formal verification methods, including
automated theorem provers, are routinely used by chip manufacturers to verify the
behavior of circuit designs prior to production.

The US military and intelligence establishments have been leading the way to the
large-scale deployment of bomb-disposing robots, surveillance and attack drones,
and other unmanned vehicles. These still depend mainly on remote control by human



operators, but work is underway to extend their autonomous capabilities.

Intelligent scheduling is a major area of success. The DART tool for automated
logistics planning and scheduling was used in Operation Desert Storm in 1991 to
such effect that DARPA (the Defense Advanced Research Projects Agency in the
United States) claims that this single application more than paid back their thirty-
year investment in AI.58 Airline reservation systems use sophisticated scheduling
and pricing systems. Businesses make wide use of Al techniques in inventory
control systems. They also use automatic telephone reservation systems and
helplines connected to speech recognition software to usher their hapless customers
through labyrinths of interlocking menu options.

Al technologies underlie many Internet services. Software polices the world’s
email traffic, and despite continual adaptation by spammers to circumvent the
countermeasures being brought against them, Bayesian spam filters have largely
managed to hold the spam tide at bay. Software using Al components is responsible
for automatically approving or declining credit card transactions, and continuously
monitors account activity for signs of fraudulent use. Information retrieval systems
also make extensive use of machine learning. The Google search engine is, arguably,
the greatest Al system that has yet been built.

Now, it must be stressed that the demarcation between artificial intelligence and
software in general is not sharp. Some of the applications listed above might be
viewed more as generic software applications rather than Al in particular—though
this brings us back to McCarthy’s dictum that when something works it is no longer
called Al. A more relevant distinction for our purposes is that between systems that
have a narrow range of cognitive capability (whether they be called “AI” or not) and
systems that have more generally applicable problem-solving capacities. Essentially
all the systems currently in use are of the former type: narrow. However, many of
them contain components that might also play a role in future artificial general
intelligence or be of service in its development—components such as classifiers,
search algorithms, planners, solvers, and representational frameworks.

One high-stakes and extremely competitive environment in which Al systems
operate today is the global financial market. Automated stock-trading systems are
widely used by major investing houses. While some of these are simply ways of
automating the execution of particular buy or sell orders issued by a human fund
manager, others pursue complicated trading strategies that adapt to changing market
conditions. Analytic systems use an assortment of data-mining techniques and time
series analysis to scan for patterns and trends in securities markets or to correlate
historical price movements with external variables such as keywords in news tickers.
Financial news providers sell newsfeeds that are specially formatted for use by such
Al programs. Other systems specialize in finding arbitrage opportunities within or
between markets, or in high-frequency trading that seeks to profit from minute price



movements that occur over the course of milliseconds (a timescale at which
communication latencies even for speed-of-light signals in optical fiber cable
become significant, making it advantageous to locate computers near the exchange).
Algorithmic high-frequency traders account for more than half of equity shares
traded on US markets.%2 Algorithmic trading has been implicated in the 2010 Flash
Crash (see Box 2).

Box 2 The 2010 Flash Crash

By the afternoon of May, 6, 2010, US equity markets were already down 4% on
worries about the European debt crisis. At 2:32 p.m., a large seller (a mutual fund
complex) initiated a sell algorithm to dispose of a large number of the E-Mini S&P
500 futures contracts to be sold off at a sell rate linked to a measure of minute-to-
minute liquidity on the exchange. These contracts were bought by algorithmic high-
frequency traders, which were programmed to quickly eliminate their temporary
long positions by selling the contracts on to other traders. With demand from
fundamental buyers slacking, the algorithmic traders started to sell the E-Minis
primarily to other algorithmic traders, which in turn passed them on to other
algorithmic traders, creating a “hot potato” effect driving up trading volume—this
being interpreted by the sell algorithm as an indicator of high liquidity, prompting it
to increase the rate at which it was putting E-Mini contracts on the market, pushing
the downward spiral. At some point, the high-frequency traders started withdrawing
from the market, drying up liquidity while prices continued to fall. At 2:45 p.m.,
trading on the E-Mini was halted by an automatic circuit breaker, the exchange’s
stop logic functionality. When trading was restarted, a mere five seconds later,
prices stabilized and soon began to recover most of the losses. But for a while, at the
trough of the crisis, a trillion dollars had been wiped off the market, and spillover
effects had led to a substantial number of trades in individual securities being
executed at “absurd” prices, such as one cent or 100,000 dollars. After the market
closed for the day, representatives of the exchanges met with regulators and decided
to break all trades that had been executed at prices 60% or more away from their
pre-crisis levels (deeming such transactions “clearly erroneous” and thus subject to
post facto cancellation under existing trade rules).”%

The retelling here of this episode is a digression because the computer programs
involved in the Flash Crash were not particularly intelligent or sophisticated, and the
kind of threat they created is fundamentally different from the concerns we shall
raise later in this book in relation to the prospect of machine superintelligence.
Nevertheless, these events illustrate several useful lessons. One is the reminder that



interactions between individually simple components (such as the sell algorithm and
the high-frequency algorithmic trading programs) can produce complicated and
unexpected effects. Systemic risk can build up in a system as new elements are
introduced, risks that are not obvious until after something goes wrong (and
sometimes not even then).”L

Another lesson is that smart professionals might give an instruction to a program
based on a sensible-seeming and normally sound assumption (e.g. that trading
volume is a good measure of market liquidity), and that this can produce
catastrophic results when the program continues to act on the instruction with iron-
clad logical consistency even in the unanticipated situation where the assumption
turns out to be invalid. The algorithm just does what it does; and unless it is a very
special kind of algorithm, it does not care that we clasp our heads and gasp in
dumbstruck horror at the absurd inappropriateness of its actions. This is a theme that
we will encounter again.

A third observation in relation to the Flash Crash is that while automation
contributed to the incident, it also contributed to its resolution. The pre-
preprogrammed stop order logic, which suspended trading when prices moved too
far out of whack, was set to execute automatically because it had been correctly
anticipated that the triggering events could happen on a timescale too swift for
humans to respond. The need for pre-installed and automatically executing safety
functionality—as opposed to reliance on runtime human supervision—again
foreshadows a theme that will be important in our discussion of machine

superintelligence.Z2

Opinions about the future of machine intelligence

Progress on two major fronts—towards a more solid statistical and information-
theoretic foundation for machine learning on the one hand, and towards the practical
and commercial success of various problem-specific or domain-specific applications
on the other—has restored to Al research some of its lost prestige. There may,
however, be a residual cultural effect on the Al community of its earlier history that
makes many mainstream researchers reluctant to align themselves with over-grand
ambition. Thus Nils Nilsson, one of the old-timers in the field, complains that his
present-day colleagues lack the boldness of spirit that propelled the pioneers of his
own generation:

Concern for “respectability” has had, I think, a stultifying effect on some Al



researchers. I hear them saying things like, “Al used to be criticized for its
flossiness. Now that we have made solid progress, let us not risk losing our
respectability.” One result of this conservatism has been increased
concentration on “weak AI”—the variety devoted to providing aids to human
thought—and away from “strong AI”—the variety that attempts to mechanize

human-level intelligence.”2

Nilsson’s sentiment has been echoed by several others of the founders, including
Marvin Minsky, John McCarthy, and Patrick Winston.Z4

The last few years have seen a resurgence of interest in Al, which might yet spill
over into renewed efforts towards artificial general intelligence (what Nilsson calls
“strong AI”). In addition to faster hardware, a contemporary project would benefit
from the great strides that have been made in the many subfields of Al, in software
engineering more generally, and in neighboring fields such as computational
neuroscience. One indication of pent-up demand for quality information and
education is shown in the response to the free online offering of an introductory
course in artificial intelligence at Stanford University in the fall of 2011, organized
by Sebastian Thrun and Peter Norvig. Some 160,000 students from around the world
signed up to take it (and 23,000 completed it).22

Expert opinions about the future of Al vary wildly. There is disagreement about
timescales as well as about what forms Al might eventually take. Predictions about
the future development of artificial intelligence, one recent study noted, “are as
confident as they are diverse.”Z5

Although the contemporary distribution of belief has not been very carefully
measured, we can get a rough impression from various smaller surveys and informal
observations. In particular, a series of recent surveys have polled members of
several relevant expert communities on the question of when they expect “human-
level machine intelligence” (HLMI) to be developed, defined as “one that can carry
out most human professions at least as well as a typical human.”Z Results are
shown in Table 2. The combined sample gave the following (median) estimate: 10%
probability of HLMI by 2022, 50% probability by 2040, and 90% probability by
2075. (Respondents were asked to premiss their estimates on the assumption that
“human scientific activity continues without major negative disruption.”)

These numbers should be taken with some grains of salt: sample sizes are quite
small and not necessarily representative of the general expert population. They are,
however, in concordance with results from other surveys.”2

The survey results are also in line with some recently published interviews with
about two-dozen researchers in Al-related fields. For example, Nils Nilsson has
spent a long and productive career working on problems in search, planning,



knowledge representation, and robotics; he has authored textbooks in artificial
intelligence; and he recently completed the most comprehensive history of the field
written to date.”2 When asked about arrival dates for HLMI, he offered the following
opinion:8%

10% chance: 2030
50% chance: 2050
90% chance: 2100

Table 2 When will human-level machine intelligence be attained?8!

10% 50% 90%
PT-Al 2023 2048 2080
AGI 2022 2040 2065
EETN 2020 2050 2093
TOP100 2024 2050 2070
Combined 2022 2040 2075

Judging from the published interview transcripts, Professor Nilsson’s probability
distribution appears to be quite representative of many experts in the area—though
again it must be emphasized that there is a wide spread of opinion: there are
practitioners who are substantially more boosterish, confidently expecting HLMI in
the 2020—40 range, and others who are confident either that it will never happen or
that it is indefinitely far off.22 In addition, some interviewees feel that the notion of
a “human level” of artificial intelligence is ill-defined or misleading, or are for other
reasons reluctant to go on record with a quantitative prediction.

My own view is that the median numbers reported in the expert survey do not
have enough probability mass on later arrival dates. A 10% probability of HLMI not
having been developed by 2075 or even 2100 (after conditionalizing on “human
scientific activity continuing without major negative disruption”) seems too low.

Historically, Al researchers have not had a strong record of being able to predict
the rate of advances in their own field or the shape that such advances would take.
On the one hand, some tasks, like chess playing, turned out to be achievable by
means of surprisingly simple programs; and naysayers who claimed that machines
would “never” be able to do this or that have repeatedly been proven wrong. On the
other hand, the more typical errors among practitioners have been to underestimate



the difficulties of getting a system to perform robustly on real-world tasks, and to
overestimate the advantages of their own particular pet project or technique.

The survey also asked two other questions of relevance to our inquiry. One
inquired of respondents about how much longer they thought it would take to reach
superintelligence assuming human-level machine is first achieved. The results are in
Table 3.

Another question inquired what they thought would be the overall long-term
impact for humanity of achieving human-level machine intelligence. The answers
are summarized in Figure 2.

My own views again differ somewhat from the opinions expressed in the survey. I
assign a higher probability to superintelligence being created relatively soon after
human-level machine intelligence. I also have a more polarized outlook on the
consequences, thinking an extremely good or an extremely bad outcome to be
somewhat more likely than a more balanced outcome. The reasons for this will
become clear later in the book.

Table 3 How long from human level to superintelligence?

Within 2 years after HLMI Within 30 years after HLMI
TOP100 5% 50%
Combined 10% 75%

50
' m TOP 100
40 -
Combined

30

20
i 1
0 -

Extremely On balance More or less On balance Extremely
good good neutral bad bad

(existential

catastrophe)

Figure 2 Overall long-term impact of HLMI.83



Small sample sizes, selection biases, and—above all—the inherent unreliability of
the subjective opinions elicited mean that one should not read too much into these
expert surveys and interviews. They do not let us draw any strong conclusion. But
they do hint at a weak conclusion. They suggest that (at least in lieu of better data or
analysis) it may be reasonable to believe that human-level machine intelligence has
a fairly sizeable chance of being developed by mid-century, and that it has a non-
trivial chance of being developed considerably sooner or much later; that it might
perhaps fairly soon thereafter result in superintelligence; and that a wide range of
outcomes may have a significant chance of occurring, including extremely good
outcomes and outcomes that are as bad as human extinction.84 At the very least, they
suggest that the topic is worth a closer look.



CHAPTER2
Paths to superintelligence

Machines are currently far inferior to humans in general intelligence. Yet one
day (we have suggested) they will be superintelligent. How do we get from here
to there? This chapter explores several conceivable technological paths. We look
at artificial intelligence, whole brain emulation, biological cognition, and
human—machine interfaces, as well as networks and organizations. We evaluate
their different degrees of plausibility as pathways to superintelligence. The
existence of multiple paths increases the probability that the destination can be
reached via at least one of them.

We can tentatively define a superintelligence as any intellect that greatly exceeds
the cognitive performance of humans in virtually all domains of interest.l We will
have more to say about the concept of superintelligence in the next chapter, where
we will subject it to a kind of spectral analysis to distinguish some different possible
forms of superintelligence. But for now, the rough characterization just given will
suffice. Note that the definition is noncommittal about how the superintelligence is
implemented. It is also noncommittal regarding qualia: whether a superintelligence
would have subjective conscious experience might matter greatly for some questions
(in particular for some moral questions), but our primary focus here is on the causal
antecedents and consequences of superintelligence, not on the metaphysics of mind.2

The chess program Deep Fritz is not a superintelligence on this definition, since
Fritz is only smart within the narrow domain of chess. Certain kinds of domain-
specific superintelligence could, however, be important. When referring to
superintelligent performance limited to a particular domain, we will note the
restriction explicitly. For instance, an “engineering superintelligence” would be an
intellect that vastly outperforms the best current human minds in the domain of
engineering. Unless otherwise noted, we use the term to refer to systems that have a
superhuman level of general intelligence.

But how might we create superintelligence? Let us examine some possible paths.

Artificial intelligence

Readers of this chapter must not expect a blueprint for programming an artificial
general intelligence. No such blueprint exists yet, of course. And had I been in



possession of such a blueprint, I most certainly would not have published it in a
book. (If the reasons for this are not immediately obvious, the arguments in
subsequent chapters will make them clear.)

We can, however, discern some general features of the kind of system that would
be required. It now seems clear that a capacity to learn would be an integral feature
of the core design of a system intended to attain general intelligence, not something
to be tacked on later as an extension or an afterthought. The same holds for the
ability to deal effectively with uncertainty and probabilistic information. Some
faculty for extracting useful concepts from sensory data and internal states, and for
leveraging acquired concepts into flexible combinatorial representations for use in
logical and intuitive reasoning, also likely belong among the core design features in
a modern Al intended to attain general intelligence.

The early Good Old-Fashioned Artificial Intelligence systems did not, for the
most part, focus on learning, uncertainty, or concept formation, perhaps because
techniques for dealing with these dimensions were poorly developed at the time.
This is not to say that the underlying ideas are all that novel. The idea of using
learning as a means of bootstrapping a simpler system to human-level intelligence
can be traced back at least to Alan Turing’s notion of a “child machine,” which he
wrote about in 1950:

Instead of trying to produce a programme to simulate the adult mind, why not
rather try to produce one which simulates the child’s? If this were then
subjected to an appropriate course of education one would obtain the adult

brain.2

Turing envisaged an iterative process to develop such a child machine:

We cannot expect to find a good child machine at the first attempt. One must
experiment with teaching one such machine and see how well it learns. One can
then try another and see if it is better or worse. There is an obvious connection
between this process and evolution.... One may hope, however, that this process
will be more expeditious than evolution. The survival of the fittest is a slow
method for measuring advantages. The experimenter, by the exercise of
intelligence, should be able to speed it up. Equally important is the fact that he
is not restricted to random mutations. If he can trace a cause for some weakness
he can probably think of the kind of mutation which will improve it.4

We know that blind evolutionary processes can produce human-level general
intelligence, since they have already done so at least once. Evolutionary processes



with foresight—that is, genetic programs designed and guided by an intelligent
human programmer—should be able to achieve a similar outcome with far greater
efficiency. This observation has been used by some philosophers and scientists,
including David Chalmers and Hans Moravec, to argue that human-level Al is not
only theoretically possible but feasible within this century.2 The idea is that we can
estimate the relative capabilities of evolution and human engineering to produce
intelligence, and find that human engineering is already vastly superior to evolution
in some areas and is likely to become superior in the remaining areas before too
long. The fact that evolution produced intelligence therefore indicates that human
engineering will soon be able to do the same. Thus, Moravec wrote (already back in
1976):

The existence of several examples of intelligence designed under these
constraints should give us great confidence that we can achieve the same in
short order. The situation is analogous to the history of heavier than air flight,
where birds, bats and insects clearly demonstrated the possibility before our

culture mastered it.%

One needs to be cautious, though, in what inferences one draws from this line of
reasoning. It is true that evolution produced heavier-than-air flight, and that human
engineers subsequently succeeded in doing likewise (albeit by means of a very
different mechanism). Other examples could also be adduced, such as sonar,
magnetic navigation, chemical weapons, photoreceptors, and all kinds of mechanic
and kinetic performance characteristics. However, one could equally point to areas
where human engineers have thus far failed to match evolution: in morphogenesis,
self-repair, and the immune defense, for example, human efforts lag far behind what
nature has accomplished. Moravec’s argument, therefore, cannot give us “great
confidence” that we can achieve human-level artificial intelligence “in short order.”
At best, the evolution of intelligent life places an upper bound on the intrinsic
difficulty of designing intelligence. But this upper bound could be quite far above
current human engineering capabilities.

Another way of deploying an evolutionary argument for the feasibility of Al is via
the idea that we could, by running genetic algorithms on sufficiently fast computers,
achieve results comparable to those of biological evolution. This version of the
evolutionary argument thus proposes a specific method whereby intelligence could
be produced.

But is it true that we will soon have computing power sufficient to recapitulate the
relevant evolutionary processes that produced human intelligence? The answer
depends both on how much computing technology will advance over the next
decades and on how much computing power would be required to run genetic



algorithms with the same optimization power as the evolutionary process of natural
selection that lies in our past. Although, in the end, the conclusion we get from
pursuing this line of reasoning is disappointingly indeterminate, it is instructive to
attempt a rough estimate (see Box 3). If nothing else, the exercise draws attention to
some interesting unknowns.

The upshot is that the computational resources required to simply replicate the
relevant evolutionary processes on Earth that produced human-level intelligence are
severely out of reach—and will remain so even if Moore’s law were to continue for
a century (cf. Figure 3). It is plausible, however, that compared with brute-force
replication of natural evolutionary processes, vast efficiency gains are achievable by
designing the search process toaim for intelligence, using various obvious
improvements over natural selection. Yet it is very hard to bound the magnitude of
those attainable efficiency gains. We cannot even say whether they amount to five or
to twenty-five orders of magnitude. Absent further elaboration, therefore,
evolutionary arguments are not able to meaningfully constrain our expectations of
either the difficulty of building human-level machine intelligence or the timescales
for such developments.

Box 3 What would it take to recapitulate evolution?

Not every feat accomplished by evolution in the course of the development of
human intelligence is relevant to a human engineer trying to artificially evolve
machine intelligence. Only a small portion of evolutionary selection on Earth has
been selection for intelligence. More specifically, the problems that human
engineers cannot trivially bypass may have been the target of a very small portion of
total evolutionary selection. For example, since we can run our computers on
electrical power, we do not have to reinvent the molecules of the cellular energy
economy in order to create intelligent machines—yet such molecular evolution of
metabolic pathways might have used up a large part of the total amount of selection
power that was available to evolution over the course of Earth’s history.”

One might argue that the key insights for Al are embodied in the structure of
nervous systems, which came into existence less than a billion years ago.8 If we take
that view, then the number of relevant “experiments” available to evolution is
drastically curtailed. There are some 4-6x103° prokaryotes in the world today, but
only 109 insects, and fewer than 10'® humans (while pre-agricultural populations
were orders of magnitude smaller).2 These numbers are only moderately
intimidating.

Evolutionary algorithms, however, require not only variations to select among but



also a fitness function to evaluate variants, and this is typically the most
computationally expensive component. A fitness function for the evolution of
artificial intelligence plausibly requires simulation of neural development, learning,
and cognition to evaluate fitness. We might thus do better not to look at the raw
number of organisms with complex nervous systems, but instead to attend to the
number of neurons in biological organisms that we might need to simulate to mimic
evolution’s fitness function. We can make a crude estimate of that latter quantity by
considering insects, which dominate terrestrial animal biomass (with ants alone
estimated to contribute some 15-20%).12 Insect brain size varies substantially, with
large and social insects sporting larger brains: a honeybee brain has just under 10°
neurons, a fruit fly brain has 10° neurons, and ants are in between with 250,000
neurons..l The majority of smaller insects may have brains of only a few thousand
neurons. Erring on the side of conservatively high, if we assigned all 10!° insects
fruit-fly numbers of neurons, the total would be 10? insect neurons in the world.
This could be augmented with an additional order of magnitude to account for
aquatic copepods, birds, reptiles, mammals, etc., to reach 1025, (By contrast, in pre-
agricultural times there were fewer than 107 humans, with under 10'! neurons each:
thus fewer than 10'® human neurons in total, though humans have a higher number
of synapses per neuron.)

The computational cost of simulating one neuron depends on the level of detail
that one includes in the simulation. Extremely simple neuron models use about
1,000 floating-point operations per second (FLOPS) to simulate one neuron (in real-
time). The electrophysiologically realistic Hodgkin—Huxley model uses 1,200,000
FLOPS. A more detailed multi-compartmental model would add another three to
four orders of magnitude, while higher-level models that abstract systems of neurons
could subtract two to three orders of magnitude from the simple models.}2 If we
were to simulate 102° neurons over a billion years of evolution (longer than the
existence of nervous systems as we know them), and we allow our computers to run
for one year, these figures would give us a requirement in the range of 103'-10%*
FLOPS. For comparison, China’s Tianhe-2, the world’s most powerful
supercomputer as of September 2013, provides only 3.39x10'® FLOPS. In recent
decades, it has taken approximately 6.7 years for commodity computers to increase
in power by one order of magnitude. Even a century of continued Moore’s law would
not be enough to close this gap. Running more specialized hardware, or allowing
longer run-times, could contribute only a few more orders of magnitude.

This figure is conservative in another respect. Evolution achieved human
intelligence without aiming at this outcome. In other words, the fitness functions for
natural organisms do not select only for intelligence and its precursors.l3 Even
environments in which organisms with superior information processing skills reap



various rewards may not select for intelligence, because improvements to
intelligence can (and often do) impose significant costs, such as higher energy
consumption or slower maturation times, and those costs may outweigh whatever
benefits are gained from smarter behavior. Excessively deadly environments also
reduce the value of intelligence: the shorter one’s expected lifespan, the less time
there will be for increased learning ability to pay off. Reduced selective pressure for
intelligence slows the spread of intelligence-enhancing innovations, and thus the
opportunity for selection to favor subsequent innovations that depend on them.
Furthermore, evolution may wind up stuck in local optima that humans would notice
and bypass by altering tradeoffs between exploitation and exploration or by
providing a smooth progression of increasingly difficult intelligence tests.14 And as
mentioned earlier, evolution scatters much of its selection power on traits that are
unrelated to intelligence (such as Red Queen’s races of competitive co-evolution
between immune systems and parasites). Evolution continues to waste resources
producing mutations that have proved consistently lethal, and it fails to take
advantage of statistical similarities in the effects of different mutations. These are
all inefficiencies in natural selection (when viewed as a means of evolving
intelligence) that it would be relatively easy for a human engineer to avoid while
using evolutionary algorithms to develop intelligent software.

It is plausible that eliminating inefficiencies like those just described would trim
many orders of magnitude off the 103'-10** FLOPS range calculated earlier.
Unfortunately, it is difficult to know how many orders of magnitude. It is difficult

even to make a rough estimate—for aught we know, the efficiency savings could be

five orders of magnitude, or ten, or twenty-five.1>
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Figure 3 Supercomputer performance. In a narrow sense, “Moore’s law” refers to
the observation that the number of transistors on integrated circuits have for several



decades doubled approximately every two years. However, the term is often used to
refer to the more general observation that many performance metrics in computing
technology have followed a similarly fast exponential trend. Here we plot peak
speed of the world’s fastest supercomputer as a function of time (on a logarithmic
vertical scale). In recent years, growth in the serial speed of processors has
stagnated, but increased use of parallelization has enabled the total number of

computations performed to remain on the trend line.18

There is a further complication with these kinds of evolutionary considerations,
one that makes it hard to derive from them even a very loose upper bound on the
difficulty of evolving intelligence. We must avoid the error of inferring, from the
fact that intelligent life evolved on Earth, that the evolutionary processes involved
had a reasonably high prior probability of producing intelligence. Such an inference
is unsound because it fails to take account of the observation selection effect that
guarantees that all observers will find themselves having originated on a planet
where intelligent life arose, no matter how likely or unlikely it was for any given
such planet to produce intelligence. Suppose, for example, that in addition to the
systematic effects of natural selection it required an enormous amount of lucky
coincidence to produce intelligent life—enough so that intelligent life evolves on
only one planet out of every 103° planets on which simple replicators arise. In that
case, when we run our genetic algorithms to try to replicate what natural evolution
did, we might find that we must run some 103 simulations before we find one where
all the elements come together in just the right way. This seems fully consistent with
our observation that life did evolve here on Earth. Only by careful and somewhat
intricate reasoning—by analyzing instances of convergent evolution of intelligence-
related traits and engaging with the subtleties of observation selection theory—can
we partially circumvent this epistemological barrier. Unless one takes the trouble to
do so, one is not in a position to rule out the possibility that the alleged “upper
bound” on the computational requirements for recapitulating the evolution of
intelligence derived in Box 3 might be too low by thirty orders of magnitude (or
some other such large number).1Z

Another way of arguing for the feasibility of artificial intelligence is by pointing
to the human brain and suggesting that we could use it as a template for a machine
intelligence. One can distinguish different versions of this approach based on how
closely they propose to imitate biological brain functions. At one extreme—that of
very close imitation—we have the idea of whole brain emulation, which we will
discuss in the next subsection. At the other extreme are approaches that take their
inspiration from the functioning of the brain but do not attempt low-level imitation.
Advances in neuroscience and cognitive psychology—which will be aided by
improvements in instrumentation—should eventually uncover the general principles



of brain function. This knowledge could then guide AI efforts. We have already
encountered neural networks as an example of a brain-inspired Al technique.
Hierarchical perceptual organization is another idea that has been transferred from
brain science to machine learning. The study of reinforcement learning has been
motivated (at least in part) by its role in psychological theories of animal cognition,
and reinforcement learning techniques (e.g. the “TD-algorithm”) inspired by these
theories are now widely used in AI.18 More cases like these will surely accumulate
in the future. Since there is a limited number—perhaps a very small number—of
distinct fundamental mechanisms that operate in the brain, continuing incremental
progress in brain science should eventually discover them all. Before this happens,
though, it is possible that a hybrid approach, combining some brain-inspired
techniques with some purely artificial methods, would cross the finishing line. In
that case, the resultant system need not be recognizably brain-like even though some
brain-derived insights were used in its development.

The availability of the brain as template provides strong support for the claim that
machine intelligence is ultimately feasible. This, however, does not enable us to
predict when it will be achieved because it is hard to predict the future rate of
discoveries in brain science. What we can say is that the further into the future we
look, the greater the likelihood that the secrets of the brain’s functionality will have
been decoded sufficiently to enable the creation of machine intelligence in this
manner.

Different people working toward machine intelligence hold different views about
how promising neuromorphic approaches are compared with approaches that aim for
completely synthetic designs. The existence of birds demonstrated that heavier-than-
air flight was physically possible and prompted efforts to build flying machines. Yet
the first functioning airplanes did not flap their wings. The jury is out on whether
machine intelligence will be like flight, which humans achieved through an artificial
mechanism, or like combustion, which we initially mastered by copying naturally
occurring fires.

Turing’s idea of designing a program that acquires most of its content by learning,
rather than having it pre-programmed at the outset, can apply equally to
neuromorphic and synthetic approaches to machine intelligence.

A variation on Turing’s conception of a child machine is the idea of a “seed AI.”12
Whereas a child machine, as Turing seems to have envisaged it, would have a
relatively fixed architecture that simply develops its inherent potentialities by
accumulating content, a seed Al would be a more sophisticated artificial intelligence
capable of improving its own architecture. In the early stages of a seed Al, such
improvements might occur mainly through trial and error, information acquisition,
or assistance from the programmers. At its later stages, however, a seed Al should
be able to understand its own workings sufficiently to engineer new algorithms and



computational structures to bootstrap its cognitive performance. This needed
understanding could result from the seed Al reaching a sufficient level of general
intelligence across many domains, or from crossing some threshold in a particularly
relevant domain such as computer science or mathematics.

This brings us to another important concept, that of “recursive self-improvement.”
A successful seed Al would be able to iteratively enhance itself: an early version of
the AI could design an improved version of itself, and the improved version—being
smarter than the original—might be able to design an even smarter version of itself,
and so forth.22 Under some conditions, such a process of recursive self-improvement
might continue long enough to result in an intelligence explosion—an event in
which, in a short period of time, a system’s level of intelligence increases from a
relatively modest endowment of cognitive capabilities (perhaps sub-human in most
respects, but with a domain-specific talent for coding and Al research) to radical
superintelligence. We will return to this important possibility in Chapter 4, where
the dynamics of such an event will be analyzed more closely. Note that this model
suggests the possibility of surprises: attempts to build artificial general intelligence
might fail pretty much completely until the last missing critical component is put in
place, at which point a seed Al might become capable of sustained recursive self-
improvement.

Before we end this subsection, there is one more thing that we should emphasize,
which is that an artificial intelligence need not much resemble a human mind. Als
could be—indeed, it is likely that most will be—extremely alien. We should expect
that they will have wvery different cognitive architectures than biological
intelligences, and in their early stages of development they will have very different
profiles of cognitive strengths and weaknesses (though, as we shall later argue, they
could eventually overcome any initial weakness). Furthermore, the goal systems of
Als could diverge radically from those of human beings. There is no reason to
expect a generic Al to be motivated by love or hate or pride or other such common
human sentiments: these complex adaptations would require deliberate expensive
effort to recreate in Als. This is at once a big problem and a big opportunity. We will
return to the issue of Al motivation in later chapters, but it is so central to the
argument in this book that it is worth bearing in mind throughout.

Whole brain emulation

In whole brain emulation (also known as “uploading”), intelligent software would be
produced by scanning and closely modeling the computational structure of a
biological brain. This approach thus represents a limiting case of drawing inspiration
from nature: barefaced plagiarism. Achieving whole brain emulation requires the



accomplishment of the following steps.

First, a sufficiently detailed scan of a particular human brain is created. This
might involve stabilizing the brain post-mortem through vitrification (a process that
turns tissue into a kind of glass). A machine could then dissect the tissue into thin
slices, which could be fed into another machine for scanning, perhaps by an array of
electron microscopes. Various stains might be applied at this stage to bring out
different structural and chemical properties. Many scanning machines could work in
parallel to process multiple brain slices simultaneously.

Second, the raw data from the scanners is fed to a computer for automated image
processing to reconstruct the three-dimensional neuronal network that implemented
cognition in the original brain. In practice, this step might proceed concurrently with
the first step to reduce the amount of high-resolution image data stored in buffers.
The resulting map is then combined with a library of neurocomputational models of
different types of neurons or of different neuronal elements (such as particular kinds
of synaptic connectors). Figure 4 shows some results of scanning and image
processing produced with present-day technology.

In the third stage, the neurocomputational structure resulting from the previous
step is implemented on a sufficiently powerful computer. If completely successful,
the result would be a digital reproduction of the original intellect, with memory and
personality intact. The emulated human mind now exists as software on a computer.
The mind can either inhabit a virtual reality or interface with the external world by
means of robotic appendages.

The whole brain emulation path does not require that we figure out how human
cognition works or how to program an artificial intelligence. It requires only that we
understand the low-level functional characteristics of the basic computational
elements of the brain. No fundamental conceptual or theoretical breakthrough is
needed for whole brain emulation to succeed.

Whole brain emulation does, however, require some rather advanced enabling
technologies. There are three key prerequisites: (1) scanning: high-throughput
microscopy with sufficient resolution and detection of relevant properties; (2)
translation: automated image analysis to turn raw scanning data into an interpreted
three-dimensional model of relevant neurocomputational elements; and (3)
simulation: hardware powerful enough to implement the resultant computational
structure (see Table 4). (In comparison with these more challenging steps, the
construction of a basic virtual reality or a robotic embodiment with an audiovisual
input channel and some simple output channel is relatively easy. Simple yet
minimally adequate I/O seems feasible already with present technology.22)



Figure 4 Reconstructing 3D neuroanatomy from electron microscope images. Upper
left: A typical electron micrograph showing cross-sections of neuronal matter—
dendrites and axons. Upper right: Volume image of rabbit retinal neural tissue
acquired by serial block-face scanning electron microscopy.2! Individual 2D images
have been stacked into a cube (with a side of approximately 11 pm). Bottom:
Reconstruction of a subset of the neuronal projections filling a volume of neuropil,

generated by an automated segmentation algorithm.22

There is good reason to think that the requisite enabling technologies are
attainable, though not in the near future. Reasonable computational models of many
types of neuron and neuronal processes already exist. Image recognition software
has been developed that can trace axons and dendrites through a stack of two-
dimensional images (though reliability needs to be improved). And there are
imaging tools that provide the necessary resolution—with a scanning tunneling
microscope it is possible to “see” individual atoms, which is a far higher resolution
than needed. However, although present knowledge and capabilities suggest that
there is no in-principle barrier to the development of the requisite enabling
technologies, it is clear that a very great deal of incremental technical progress



would be needed to bring human whole brain emulation within reach.2 For example,
microscopy technology would need not just sufficient resolution but also sufficient
throughput. Using an atomic-resolution scanning tunneling microscope to image the
needed surface area would be far too slow to be practicable. It would be more
plausible to use a lower-resolution electron microscope, but this would require new
methods for preparing and staining cortical tissue to make visible relevant details
such as synaptic fine structure. A great expansion of neurocomputational libraries
and major improvements in automated image processing and scan interpretation
would also be needed.

Table 4 Capabilities needed for whole brain emulation

Scanning  Pre-processing/fixation Preparing brains appropriately,
retaining relevant microstruc-
ture and state

Physical handling Methods of manipulating fixed
brains and tissue pieces before,
during, and after scanning

Imaging Volume Capability to scan entire brain
volumes In reasonable time
and expense

Resolution Scanning at sufficient resolution
to enable reconstruction

Functional information  Ability for scanning to detect
the functionally relevant prop-
erties of tissue

Translation Image processing  Geometric Handling distortions due to
adjustment scanning imperfections
Data interpolation Handling missing data
Noise removal Improving scan quality
Tracing Detecting structure and

processing it into a consistent
3D model of the tissue

Scan Cell type identification Identifying cell types

interpretation Synapse identification  Identifying synapses and their

connectivity



Parameter estimation  Estimating functionally relevant
parameters of cells, synapses,
and other entities

Databasing Storing the resulting inventory
in an efficient way

Software model Mathematical model Model of entities and their
of neural system behavior

Efficient Implementation of model
implermentation

Simulation Storage Storage of original model and
current state

Bandwidth Efficient interprocessor
communication

CPU Processor power to run
simulation

Body simulation Simulation of body enabling
interaction with virtual environ-
ment or actual environment
via robot

Environment simulation WVirtual environment for virtual
body

In general, whole brain emulation relies less on theoretical insight and more on
technological capability than artificial intelligence. Just how much technology is
required for whole brain emulation depends on the level of abstraction at which the
brain is emulated. In this regard there is a tradeoff between insight and technology.
In general, the worse our scanning equipment and the feebler our computers, the less
we could rely on simulating low-level chemical and electrophysiological brain
processes, and the more theoretical understanding would be needed of the
computational architecture that we are seeking to emulate in order to create more
abstract representations of the relevant functionalities.22 Conversely, with
sufficiently advanced scanning technology and abundant computing power, it might
be possible to brute-force an emulation even with a fairly limited understanding of
the brain. In the unrealistic limiting case, we could imagine emulating a brain at the
level of its elementary particles using the quantum mechanical Schrédinger
equation. Then one could rely entirely on existing knowledge of physics and not at
all on any biological model. This extreme case, however, would place utterly
impracticable demands on computational power and data acquisition. A far more



plausible level of emulation would be one that incorporates individual neurons and
their connectivity matrix, along with some of the structure of their dendritic trees
and maybe some state variables of individual synapses. Neurotransmitter molecules
would not be simulated individually, but their fluctuating concentrations would be
modeled in a coarse-grained manner.

To assess the feasibility of whole brain emulation, one must understand the
criterion for success. The aim is not to create a brain simulation so detailed and
accurate that one could use it to predict exactly what would have happened in the
original brain if it had been subjected to a particular sequence of stimuli. Instead, the
aim is to capture enough of the computationally functional properties of the brain to
enable the resultant emulation to perform intellectual work. For this purpose, much
of the messy biological detail of a real brain is irrelevant.

A more elaborate analysis would distinguish between different levels of emulation
success based on the extent to which the information-processing functionality of the
emulated brain has been preserved. For example, one could distinguish among (1) a
high-fidelity emulation that has the full set of knowledge, skills, capacities, and
values of the emulated brain; (2) a distorted emulation whose dispositions are
significantly non-human in some ways but which is mostly able to do the same
intellectual labor as the emulated brain; and (3) a generic emulation (which might
also be distorted) that is somewhat like an infant, lacking the skills or memories that
had been acquired by the emulated adult brain but with the capacity to learn most of
what a normal human can learn.25

While it appears ultimately feasible to produce a high-fidelity emulation, it seems
quite likely that the first whole brain emulation that we would achieve if we went
down this path would be of a lower grade. Before we would get things to work
perfectly, we would probably get things to work imperfectly. It is also possible that a
push toward emulation technology would lead to the creation of some kind of
neuromorphic Al that would adapt some neurocomputational principles discovered
during emulation efforts and hybridize them with synthetic methods, and that this
would happen before the completion of a fully functional whole brain emulation.
The possibility of such a spillover into neuromorphic Al, as we shall see in a later
chapter, complicates the strategic assessment of the desirability of seeking to
expedite emulation technology.

How far are we currently from achieving a human whole brain emulation? One
recent assessment presented a technical roadmap and concluded that the prerequisite
capabilities might be available around mid-century, though with a large uncertainty
interval ZFigure 5 depicts the major milestones in this roadmap. The apparent
simplicity of the map may be deceptive, however, and we should be careful not to
understate how much work remains to be done. No brain has yet been emulated.
Consider the humble model organism Caenorhabditis elegans, which is a transparent



roundworm, about 1 mm in length, with 302 neurons. The complete connectivity
matrix of these neurons has been known since the mid-1980s, when it was
laboriously mapped out by means of slicing, electron microscopy, and hand-labeling
of specimens.22 But knowing merely which neurons are connected with which is not
enough. To create a brain emulation one would also need to know which synapses
are excitatory and which are inhibitory; the strength of the connections; and various
dynamical properties of axons, synapses, and dendritic trees. This information is not
yet available even for the small nervous system of C. elegans (although it may now
be within range of a targeted moderately sized research project).2? Success at
emulating a tiny brain, such as that of C. elegans, would give us a better view of
what it would take to emulate larger brains.
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milestones.28

At some point in the technology development process, once techniques are
available for automatically emulating small quantities of brain tissue, the problem
reduces to one of scaling. Notice “the ladder” at the right side of Figure 5. This
ascending series of boxes represents a final sequence of advances which can
commence after preliminary hurdles have been cleared. The stages in this sequence
correspond to whole brain emulations of successively more neurologically



sophisticated model organisms—for example, C. elegans — honeybee - mouse —
rhesus monkey — human. Because the gaps between these rungs—at least after the
first step—are mostly quantitative in nature and due mainly (though not entirely) to
the differences in size of the brains to be emulated, they should be tractable through
a relatively straightforward scale-up of scanning and simulation capacity.2L

Once we start ascending this final ladder, the eventual attainment of human whole
brain emulation becomes more clearly foreseeable.22 We can thus expect to get
some advance warning before arrival at human-level machine intelligence along the
whole brain emulation path, at least if the last among the requisite enabling
technologies to reach sufficient maturity is either high-throughput scanning or the
computational power needed for real-time simulation. If, however, the last enabling
technology to fall into place is neurocomputational modeling, then the transition
from unimpressive prototypes to a working human emulation could be more abrupt.
One could imagine a scenario in which, despite abundant scanning data and fast
computers, it is proving difficult to get our neuronal models to work right. When
finally the last glitch is ironed out, what was previously a completely dysfunctional
system—analogous perhaps to an unconscious brain undergoing a grand mal seizure
—might snap into a coherent wakeful state. In this case, the key advance would not
be heralded by a series of functioning animal emulations of increasing magnitude
(provoking newspaper headlines of correspondingly escalating font size). Even for
those paying attention it might be difficult to tell in advance of success just how
many flaws remained in the neurocomputational models at any point and how long it
would take to fix them, even up to the eve of the critical breakthrough. (Once a
human whole brain emulation has been achieved, further potentially explosive
developments would take place; but we postpone discussion of this until Chapter 4.)

Surprise scenarios are thus imaginable for whole brain emulation even if all the
relevant research were conducted in the open. Nevertheless, compared with the Al
path to machine intelligence, whole brain emulation is more likely to be preceded by
clear omens since it relies more on concrete observable technologies and is not
wholly based on theoretical insight. We can also say, with greater confidence than
for the Al path, that the emulation path will not succeed in the near future (within
the next fifteen years, say) because we know that several challenging precursor
technologies have not yet been developed. By contrast, it seems likely that
somebody could in principle sit down and code a seed Al on an ordinary present-day
personal computer; and it is conceivable—though unlikely—that somebody
somewhere will get the right insight for how to do this in the near future.

Biological cognition



A third path to greater-than-current-human intelligence is to enhance the functioning
of biological brains. In principle, this could be achieved without technology, through
selective breeding. Any attempt to initiate a classical large-scale eugenics program,
however, would confront major political and moral hurdles. Moreover, unless the
selection were extremely strong, many generations would be required to produce
substantial results. Long before such an initiative would bear fruit, advances in
biotechnology will allow much more direct control of human genetics and
neurobiology, rendering otiose any human breeding program. We will therefore
focus on methods that hold the potential to deliver results faster, on the timescale of
a few generations or less.

Our individual cognitive capacities can be strengthened in various ways, including
by such traditional methods as education and training. Neurological development
can be promoted by low-tech interventions such as optimizing maternal and infant
nutrition, removing lead and other neurotoxic pollutants from the environment,
eradicating parasites, ensuring adequate sleep and exercise, and preventing diseases
that affect the brain.23 Improvements in cognition can certainly be obtained through
each of these means, though the magnitudes of the gains are likely to be modest,
especially in populations that are already reasonably well-nourished and -schooled.
We will certainly not achieve superintelligence by any of these means, but they
might help on the margin, particularly by lifting up the deprived and expanding the
catchment of global talent. (Lifelong depression of intelligence due to iodine
deficiency remains widespread in many impoverished inland areas of the world—an
outrage given that the condition can be prevented by fortifying table salt at a cost of
a few cents per person and year.24)

Biomedical enhancements could give bigger boosts. Drugs already exist that are
alleged to improve memory, concentration, and mental energy in at least some
subjects.2> (Work on this book was fueled by coffee and nicotine chewing gum.)
While the efficacy of the present generation of smart drugs is variable, marginal,
and generally dubious, future nootropics might offer clearer benefits and fewer side
effects.3 However, it seems implausible, on both neurological and evolutionary
grounds, that one could by introducing some chemical into the brain of a healthy
person spark a dramatic rise in intelligence.2Z The cognitive functioning of a human
brain depends on a delicate orchestration of many factors, especially during the
critical stages of embryo development—and it is much more likely that this self-
organizing structure, to be enhanced, needs to be carefully balanced, tuned, and
cultivated rather than simply flooded with some extraneous potion.

Manipulation of genetics will provide a more powerful set of tools than
psychopharmacology. Consider again the idea of genetic selection: instead of trying
to implement a eugenics program by controlling mating patterns, one could use
selection at the level of embryos or gametes.28 Pre-implantation genetic diagnosis



has already been used during in vitro fertilization procedures to screen embryos
produced for monogenic disorders such as Huntington’s disease and for
predisposition to some late-onset diseases such as breast cancer. It has also been
used for sex selection and for matching human leukocyte antigen type with that of a
sick sibling, who can then benefit from a cord-blood stem cell donation when the
new baby is born.32 The range of traits that can be selected for or against will expand
greatly over the next decade or two. A strong driver of progress in behavioral
genetics is the rapidly falling cost of genotyping and gene sequencing. Genome-wide
complex trait analysis, using studies with vast numbers of subjects, is just now
starting to become feasible and will greatly increase our knowledge of the genetic
architectures of human cognitive and behavioral traits.2® Any trait with a non-
negligible heritability—including cognitive capacity—could then become
susceptible to selection.*L Embryo selection does not require a deep understanding
of the causal pathways by which genes, in complicated interplay with environments,
produce phenotypes: it requires only (lots of) data on the genetic correlates of the
traits of interest.

It is possible to calculate some rough estimates of the magnitude of the gains
obtainable in different selection scenarios.22Table 5 shows expected increases in
intelligence resulting from various amounts of selection, assuming complete
information about the common additive genetic variants underlying the narrow-
sense heritability of intelligence. (With partial information, the effectiveness of
selection would be reduced, though not quite to the extent one might naively
expect.24) Unsurprisingly, selecting between larger numbers of embryos produces
larger gains, but there are steeply diminishing returns: selection between 100
embryos does not produce a gain anywhere near fifty times as large as that which
one would get from selection between 2 embryos.22

Table 5 Maximum IQ gains from selecting among a set of embryos*2

Selection IQ points gained

1in?2 4.2

1in 10 11.5

1in 100 18.8

1 in 1000 24.3

5 generations of 1 in 10 < 65 (b/c diminishing returns)
10 generations of 1 in 10 < 130 (b/c diminishing returns)

Cumulative limits (additive variants optimized for 100 + (< 300 (b/c diminishing
cognition) returns))



Interestingly, the diminishment of returns is greatly abated when the selection is
spread over multiple generations. Thus, repeatedly selecting the top 1 in 10 over ten
generations (where each new generation consists of the offspring of those selected in
the previous generation) will produce a much greater increase in the trait value than
a one-off selection of 1 in 100. The problem with sequential selection, of course, is
that it takes longer. If each generational step takes twenty or thirty years, then even
just five successive generations would push us well into the twenty-second century.
Long before then, more direct and powerful modes of genetic engineering (not to
mention machine intelligence) will most likely be available.

There is, however, a complementary technology, one which, once it has been
developed for use in humans, would greatly potentiate the enhancement power of
pre-implantation genetic screening: namely, the derivation of viable sperm and eggs
from embryonic stem cells.28 The techniques for this have already been used to
produce fertile offspring in mice and gamete-like cells in humans. Substantial
scientific challenges remain, however, in translating the animal results to humans
and in avoiding epigenetic abnormalities in the derived stem cell lines. According to
one expert, these challenges might put human application “10 or even 50 years in the
future.”4Z

With stem cell-derived gametes, the amount of selection power available to a
couple could be greatly increased. In current practice, an in vitro fertilization
procedure typically involves the creation of fewer than ten embryos. With stem cell-
derived gametes, a few donated cells might be turned into a virtually unlimited
number of gametes that could be combined to produce embryos, which could then be
genotyped or sequenced, and the most promising one chosen for implantation.
Depending on the cost of preparing and screening each individual embryo, this
technology could yield a severalfold increase in the selective power available to
couples using in vitro fertilization.

More importantly still, stem cell-derived gametes would allow multiple
generations of selection to be compressed into less than a human maturation period,
by enabling iterated embryo selection. This is a procedure that would consist of the
following steps:48

1 Genotype and select a number of embryos that are higher in desired genetic
characteristics.

2 Extract stem cells from those embryos and convert them to sperm and ova,
maturing within six months or less.42

3 Cross the new sperm and ova to produce embryos.

4 Repeat until large genetic changes have been accumulated.



In this manner, it would be possible to accomplish ten or more generations of
selection in just a few years. (The procedure would be time-consuming and
expensive; however, in principle, it would need to be done only once rather than
repeated for each birth. The cell lines established at the end of the procedure could
be used to generate very large numbers of enhanced embryos.)

A s Table 5 indicates, the average level of intelligence among individuals
conceived in this manner could be very high, possibly equal to or somewhat above
that of the most intelligent individual in the historical human population. A world
that had a large population of such individuals might (if it had the culture, education,
communications infrastructure, etc., to match) constitute a collective
superintelligence.

The impact of this technology will be dampened and delayed by several factors.
There is the unavoidable maturational lag while the finally selected embryos grow
into adult human beings: at least twenty years before an enhanced child reaches full
productivity, longer still before such children come to constitute a substantial
segment of the labor force. Furthermore, even after the technology has been
perfected, adoption rates will probably start out low. Some countries might prohibit
its use altogether, on moral or religious grounds.2? Even where selection is allowed,
many couples will prefer the natural way of conceiving. Willingness to use IVEF,
however, would increase if there were clearer benefits associated with the procedure
—such as a virtual guarantee that the child would be highly talented and free from
genetic predispositions to disease. Lower health care costs and higher expected
lifetime earnings would also argue in favor of genetic selection. As use of the
procedure becomes more common, particularly among social elites, there might be a
cultural shift toward parenting norms that present the use of selection as the thing
that responsible enlightened couples do. Many of the initially reluctant might join
the bandwagon in order to have a child that is not at a disadvantage relative to the
enhanced children of their friends and colleagues. Some countries might offer
inducements to encourage their citizens to take advantage of genetic selection in
order to increase the country’s stock of human capital, or to increase long-term
social stability by selecting for traits like docility, obedience, submissiveness,
conformity, risk-aversion, or cowardice, outside of the ruling clan.

Effects on intellectual capacity would also depend on the extent to which the
available selection power would be used for enhancing cognitive traits (Table 6).
Those who do opt to use some form of embryo selection would have to choose how
to allocate the selection power at their disposal, and intelligence would to some
extent be in competition with other desired attributes, such as health, beauty,
personality, or athleticism. Iterated embryo selection, by offering such a large
amount of selection power, would alleviate some of these tradeoffs, enabling
simultaneous strong selection for multiple traits. However, this procedure would



tend to disrupt the normal genetic relationship between parents and child, something
that could negatively affect demand in many cultures.2t

With further advances in genetic technology, it may become possible to
synthesize genomes to specification, obviating the need for large pools of embryos.
DNA synthesis is already a routine and largely automated biotechnology, though it is
not yet feasible to synthesize an entire human genome that could be used in a
reproductive context (not least because of still-unresolved difficulties in getting the
epigenetics right).22 But once this technology has matured, an embryo could be
designed with the exact preferred combination of genetic inputs from each parent.
Genes that are present in neither of the parents could also be spliced in, including
alleles that are present with low frequency in the population but which may have

significant positive effects on cognition.22

. . . . . . . 52
Table 6 Possible impacts from genetic selection in different scenarios2=
Adoption / “IVF+" “Aggressive IVF” “In vitro egg” “Iterated embryo
technology Selection of 1 of 2 embryos Selection of 1 of 10 embryos Selection of 1 of 100 embryos  selection”
[4 points] [12 points] [19 points] [100+ points]
“Marginal fertility Socially negligible over one Socially negligible over one Enhanced contingent form Selected dominate ranks of
practice” generation. Effects of social generation. Effects of social noticeable minority in highly elite scientists, attorneys,
~ (0.25% adoption  controversy more important  controversy more important  cognitively selective positions. physicians, engineers. Intel-
than direct impacts. than direct impacts. lectual Renaissance!
“Elite advantage” Slight cognitive impact in 1st Large fraction of Harvard Selected dominate ranks of “Posthumanity”*
10% adoption generation, combines with undergraduates enhanced. scientists, attorneys, physicians,
selection for non-cognitive 2nd generation dominate engineers in Ist generation.
traits to perceptibly advantage cognitively demanding
a minority. professions.
“New normal” Learning disability much less Substantial growth in educa- Raw 1Qs typical for eminent “Posthumanity”
> 90% adoption  frequent among children. tional attainment, income. scientists 10+ times as common
In 2nd generation, population  2nd generation manyfold in st generation. Thousands of
above high |1Q thresholds increase at right tail. times in 2nd generation.

mare than doubled.

One intervention that becomes possible when human genomes can be synthesized
is genetic “spell-checking” of an embryo. (Iterated embryo selection might also
allow an approximation of this.) Each of us currently carries a mutational load, with
perhaps hundreds of mutations that reduce the efficiency of various cellular
processes.2® Each individual mutation has an almost negligible effect (whence it is
only slowly removed from the gene pool), yet in combination such mutations may
exact a heavy toll on our functioning.2 Individual differences in intelligence might
to a significant extent be attributable to variations in the number and nature of such
slightly deleterious alleles that each of us carries. With gene synthesis we could take
the genome of an embryo and construct a version of that genome free from the
genetic noise of accumulated mutations. If one wished to speak provocatively, one
could say that individuals created from such proofread genomes might be “more



human” than anybody currently alive, in that they would be less distorted
expressions of human form. Such people would not all be carbon copies, because
humans vary genetically in ways other than by carrying different deleterious
mutations. But the phenotypical manifestation of a proofread genome may be an
exceptional physical and mental constitution, with elevated functioning in polygenic
trait dimensions like intelligence, health, hardiness, and appearance.2® (A loose
analogy could be made with composite faces, in which the defects of the
superimposed individuals are averaged out: see Figure 6.)

Figure 6 Composite faces as a metaphor for spell-checked genomes. Each of the
central pictures was produced by superimposing photographs of sixteen different
individuals (residents of Tel Aviv). Composite faces are often judged to be more
beautiful than any of the individual faces of which they are composed, as
idiosyncratic imperfections are averaged out. Analogously, by removing individual
mutations, proofread genomes may produce people closer to “Platonic ideals.” Such
individuals would not all be genetically identical, because many genes come in
multiple equally functional alleles. Proofreading would only eliminate variance

arising from deleterious mutations.22

Other potential biotechnological techniques might also be relevant. Human
reproductive cloning, once achieved, could be used to replicate the genome of
exceptionally talented individuals. Uptake would be limited by the preference of
most prospective parents to be biologically related to their children, yet the practice
could nevertheless come to have non-negligible impact because (1) even a relatively
small increase in the number of exceptionally talented people might have a
significant effect; and (2) it is possible that some state would embark on a larger-
scale eugenics program, perhaps by paying surrogate mothers. Other kinds of genetic
engineering—such as the design of novel synthetic genes or insertion into the
genome of promoter regions and other elements to control gene expression—might
also become important over time. Even more exotic possibilities may exist, such as
vats full of complexly structured cultured cortical tissue, or “uplifted” transgenic



animals (perhaps some large-brained mammal such as the whale or elephant,
enriched with human genes). These latter ones are wholly speculative, but over a
longer time frame they perhaps cannot be completely discounted.

So far we have discussed germline interventions, ones that would be done on
gametes or embryos. Somatic gene enhancements, by bypassing the generation
cycle, could in principle produce impacts more quickly. However, they are
technologically much more challenging. They require that the modified genes be
inserted into a large number of cells in the living body—including, in the case of
cognitive enhancement, the brain. Selecting among existing egg cells or embryos, in
contrast, requires no gene insertion. Even such germline therapies as do involve
modifying the genome (such as proofreading the genome or splicing in rare alleles)
are far easier to implement at the gamete or the embryo stage, where one is dealing
with a small number of cells. Furthermore, germline interventions on embryos can
probably achieve greater effects than somatic interventions on adults, because the
former would be able to shape early brain development whereas the latter would be
limited to tweaking an existing structure. (Some of what could be done through
somatic gene therapy might also be achievable by pharmacological means.)

Focusing therefore on germline interventions, we must take into account the
generational lag delaying any large impact on the world.22 Even if the technology
were perfected today and immediately put to use, it would take more than two
decades for a genetically enhanced brood to reach maturity. Furthermore, with
human applications there is normally a delay of at least one decade between proof of
concept in the laboratory and clinical application, because of the need for extensive
studies to determine safety. The simplest forms of genetic selection, however, could
largely abrogate the need for such testing, since they would use standard fertility
treatment techniques and genetic information to choose between embryos that might
otherwise have been selected by chance.

Delays could also result from obstacles rooted not in a fear of failure (demand for
safety testing) but in fear of success—demand for regulation driven by concerns
about the moral permissibility of genetic selection or its wider social implications.
Such concerns are likely to be more influential in some countries than in others,
owing to differing cultural, historical, and religious contexts. Post-war Germany, for
example, has chosen to give a wide berth to any reproductive practices that could be
perceived to be even in the remotest way aimed at enhancement, a stance that is
understandable given the particularly dark history of atrocities connected to the
eugenics movement in that country. Other Western countries are likely to take a
more liberal approach. And some countries—perhaps China or Singapore, both of
which have long-term population policies—might not only permit but actively
promote the use of genetic selection and genetic engineering to enhance the
intelligence of their populations once the technology to do so is available.



Once the example has been set, and the results start to show, holdouts will have
strong incentives to follow suit. Nations would face the prospect of becoming
cognitive backwaters and losing out in economic, scientific, military, and prestige
contests with competitors that embrace the new human enhancement technologies.
Individuals within a society would see places at elite schools being filled with
genetically selected children (who may also on average be prettier, healthier, and
more conscientious) and will want their own offspring to have the same advantages.
There is some chance that a large attitudinal shift could take place over a relatively
short time, perhaps in as little as a decade, once the technology is proven to work
and to provide a substantial benefit. Opinion surveys in the United States reveal a
dramatic shift in public approval of in vitro fertilization after the birth of the first
“test tube baby,” Louise Brown, in 1978. A few years earlier, only 18% of
Americans said they would personally use IVF to treat infertility; yet in a poll taken
shortly after the birth of Louise Brown, 53% said they would do so, and the number
has continued to rise.2L (For comparison, in a poll taken in 2004, 28% of Americans
approved of embryo selection for “strength or intelligence,” 58% approved of it for
avoiding adult-onset cancer, and 68% approved of it to avoid fatal childhood
disease.52)

If we add up the various delays—say five to ten years to gather the information
needed for significantly effective selection among a set of IVF embryos (possibly
much longer before stem cell-derived gametes are available for use in human
reproduction), ten years to build significant uptake, and twenty to twenty-five years
for the enhanced generation to reach an age where they start becoming productive,
we find that germline enhancements are unlikely to have a significant impact on
society before the middle of this century. From that point onward, however, the
intelligence of significant segments of the adult population may begin to be boosted
by genetic enhancements. The speed of the ascent would then greatly accelerate as
cohorts conceived using more powerful next-generation genetic technologies (in
particular stem cell-derived gametes and iterative embryo selection) enter the labor
force.

With the full development of the genetic technologies described above (setting
aside the more exotic possibilities such as intelligence in cultured neural tissue), it
might be possible to ensure that new individuals are on average smarter than any
human who has yet existed, with peaks that rise higher still. The potential of
biological enhancement is thus ultimately high, probably sufficient for the
attainment of at least weak forms of superintelligence. This should not be surprising.
After all, dumb evolutionary processes have dramatically amplified the intelligence
in the human lineage even compared with our close relatives the great apes and our
own humanoid ancestors; and there is no reason to suppose Homo sapiens to have
reached the apex of cognitive effectiveness attainable in a biological system. Far



from being the smartest possible biological species, we are probably better thought
of as the stupidest possible biological species capable of starting a technological
civilization—a niche we filled because we got there first, not because we are in any
sense optimally adapted to it.

Progress along the biological path is clearly feasible. The generational lag in
germline interventions means that progress could not be nearly as sudden and abrupt
as in scenarios involving machine intelligence. (Somatic gene therapies and
pharmacological interventions could theoretically skip the generational lag, but they
seem harder to perfect and are less likely to produce dramatic effects.) The ultimate
potential of machine intelligence is, of course, vastly greater than that of organic
intelligence. (One can get some sense of the magnitude of the gap by considering the
speed differential between electronic components and nerve cells: even today’s
transistors operate on a timescale ten million times shorter than that of biological
neurons.) However, even comparatively moderate enhancements of biological
cognition could have important consequences. In particular, cognitive enhancement
could accelerate science and technology, including progress toward more potent
forms of biological intelligence amplification and machine intelligence. Consider
how the rate of progress in the field of artificial intelligence would change in a
world where Average Joe is an intellectual peer of Alan Turing or John von
Neumann, and where millions of people tower far above any intellectual giant of the
past.22

A discussion of the strategic implications of cognitive enhancement will have to
await a later chapter. But we can summarize this section by noting three
conclusions: (1) at least weak forms of superintelligence are achievable by means of
biotechnological enhancements; (2) the feasibility of cognitively enhanced humans
adds to the plausibility that advanced forms of machine intelligence are feasible—
because even if we were fundamentally unable to create machine intelligence (which
there is no reason to suppose), machine intelligence might still be within reach of
cognitively enhanced humans; and (3) when we consider scenarios stretching
significantly into the second half of this century and beyond, we must take into
account the probable emergence of a generation of genetically enhanced populations
—voters, inventors, scientists—with the magnitude of enhancement escalating
rapidly over subsequent decades.

Brain—computer interfaces

It is sometimes proposed that direct brain—computer interfaces, particularly
implants, could enable humans to exploit the fortes of digital computing—perfect
recall, speedy and accurate arithmetic calculation, and high-bandwidth data



transmission—enabling the resulting hybrid system to radically outperform the
unaugmented brain.8* But although the possibility of direct connections between
human brains and computers has been demonstrated, it seems unlikely that such
interfaces will be widely used as enhancements any time soon.%>

To begin with, there are significant risks of medical complications—including
infections, electrode displacement, hemorrhage, and cognitive decline—when
implanting electrodes in the brain. Perhaps the most vivid illustration to date of the
benefits that can be obtained through brain stimulation is the treatment of patients
with Parkinson’s disease. The Parkinson’s implant is relatively simple: it does not
really communicate with the brain but simply supplies a stimulating electric current
to the subthalamic nucleus. A demonstration video shows a subject slumped in a
chair, completely immobilized by the disease, then suddenly springing to life when
the current is switched on: the subject now moves his arms, stands up and walks
across the room, turns around and performs a pirouette. Yet even behind this
especially simple and almost miraculously successful procedure, there lurk
negatives. One study of Parkinson patients who had received deep brain implants
showed reductions in verbal fluency, selective attention, color naming, and verbal
memory compared with controls. Treated subjects also reported more cognitive
complaints.58 Such risks and side effects might be tolerable if the procedure is used
to alleviate severe disability. But in order for healthy subjects to volunteer
themselves for neurosurgery, there would have to be some very substantial
enhancement of normal functionality to be gained.

This brings us to the second reason to doubt that superintelligence will be
achieved through cyborgization, namely that enhancement is likely to be far more
difficult than therapy. Patients who suffer from paralysis might benefit from an
implant that replaces their severed nerves or activates spinal motion pattern
generators.®” Patients who are deaf or blind might benefit from artificial cochleae
and retinas.%8 Patients with Parkinson’s disease or chronic pain might benefit from
deep brain stimulation that excites or inhibits activity in a particular area of the
brain.®2 What seems far more difficult to achieve is a high-bandwidth direct
interaction between brain and computer to provide substantial increases in
intelligence of a form that could not be more readily attained by other means. Most
of the potential benefits that brain implants could provide in healthy subjects could
be obtained at far less risk, expense, and inconvenience by using our regular motor
and sensory organs to interact with computers located outside of our bodies. We do
not need to plug a fiber optic cable into our brains in order to access the Internet.
Not only can the human retina transmit data at an impressive rate of nearly 10
million bits per second, but it comes pre-packaged with a massive amount of
dedicated wetware, the visual cortex, that is highly adapted to extracting meaning
from this information torrent and to interfacing with other brain areas for further



processing.”2 Even if there were an easy way of pumping more information into our
brains, the extra data inflow would do little to increase the rate at which we think
and learn unless all the neural machinery necessary for making sense of the data
were similarly upgraded. Since this includes almost all of the brain, what would
really be needed is a “whole brain prosthesis——which is just another way of saying
artificial general intelligence. Yet if one had a human-level Al, one could dispense
with neurosurgery: a computer might as well have a metal casing as one of bone. So
this limiting case just takes us back to the Al path, which we have already examined.

Brain—computer interfacing has also been proposed as a way to get information
out of the brain, for purposes of communicating with other brains or with
machines.ZL Such uplinks have helped patients with locked-in syndrome to
communicate with the outside world by enabling them to move a cursor on a screen
by thought.Z2 The bandwidth attained in such experiments is low: the patient
painstakingly types out one slow letter after another at a rate of a few words per
minute. One can readily imagine improved versions of this technology—perhaps a
next-generation implant could plug into Broca’s area (a region in the frontal lobe
involved in language production) and pick up internal speech.Z2 But whilst such a
technology might assist some people with disabilities induced by stroke or muscular
degeneration, it would hold little appeal for healthy subjects. The functionality it
would provide is essentially that of a microphone coupled with speech recognition
software, which is already commercially available—minus the pain, inconvenience,
expense, and risks associated with neurosurgery (and minus at least some of the
hyper-Orwellian overtones of an intracranial listening device). Keeping our
machines outside of our bodies also makes upgrading easier.

But what about the dream of bypassing words altogether and establishing a
connection between two brains that enables concepts, thoughts, or entire areas of
expertise to be “downloaded” from one mind to another? We can download large
files to our computers, including libraries with millions of books and articles, and
this can be done over the course of seconds: could something similar be done with
our brains? The apparent plausibility of this idea probably derives from an incorrect
view of how information is stored and represented in the brain. As noted, the rate-
limiting step in human intelligence is not how fast raw data can be fed into the brain
but rather how quickly the brain can extract meaning and make sense of the data.
Perhaps it will be suggested that we transmit meanings directly, rather than package
them into sensory data that must be decoded by the recipient. There are two
problems with this. The first is that brains, by contrast to the kinds of program we
typically run on our computers, do not use standardized data storage and
representation formats. Rather, each brain develops its own idiosyncratic
representations of higher-level content. Which particular neuronal assemblies are
recruited to represent a particular concept depends on the unique experiences of the



brain in question (along with various genetic factors and stochastic physiological
processes). Just as in artificial neural nets, meaning in biological neural networks is
likely represented holistically in the structure and activity patterns of sizeable
overlapping regions, not in discrete memory cells laid out in neat arrays.”# It would
therefore not be possible to establish a simple mapping between the neurons in one
brain and those in another in such a way that thoughts could automatically slide over
from one to the other. In order for the thoughts of one brain to be intelligible to
another, the thoughts need to be decomposed and packaged into symbols according
to some shared convention that allows the symbols to be correctly interpreted by the
receiving brain. This is the job of language.

In principle, one could imagine offloading the cognitive work of articulation and
interpretation to an interface that would somehow read out the neural states in the
sender’s brain and somehow feed in a bespoke pattern of activation to the receiver’s
brain. But this brings us to the second problem with the cyborg scenario. Even
setting aside the (quite immense) technical challenge of how to reliably read and
write simultaneously from perhaps billions of individually addressable neurons,
creating the requisite interface is probably an Al-complete problem. The interface
would need to include a component able (in real-time) to map firing patterns in one
brain onto semantically equivalent firing patterns in the other brain. The detailed
multilevel understanding of the neural computation needed to accomplish such a
task would seem to directly enable neuromorphic Al.

Despite these reservations, the cyborg route toward cognitive enhancement is not
entirely without promise. Impressive work on the rat hippocampus has demonstrated
the feasibility of a neural prosthesis that can enhance performance in a simple
working-memory task.”2 In its present version, the implant collects input from a
dozen or two electrodes located in one area (“CA3”) of the hippocampus and
projects onto a similar number of neurons in another area (“CA1”). A
microprocessor is trained to discriminate between two different firing patterns in the
first area (corresponding to two different memories, “right lever” or “left lever”) and
to learn how these patterns are projected into the second area. This prosthesis can
not only restore function when the normal neural connection between the two neural
areas is blockaded, but by sending an especially clear token of a particular memory
pattern to the second area it can enhance the performance on the memory task
beyond what the rat is normally capable of. While a technical tour de force by
contemporary standards, the study leaves many challenging questions unanswered:
How well does the approach scale to greater numbers of memories? How well can
we control the combinatorial explosion that otherwise threatens to make learning the
correct mapping infeasible as the number of input and output neurons is increased?
Does the enhanced performance on the test task come at some hidden cost, such as
reduced ability to generalize from the particular stimulus used in the experiment, or



reduced ability to unlearn the association when the environment changes? Would the
test subjects still somehow benefit even if—unlike rats—they could avail
themselves of external memory aids such as pen and paper? And how much harder
would it be to apply a similar method to other parts of the brain? Whereas the
present prosthesis takes advantage of the relatively simple feed-forward structure of
parts of the hippocampus (basically serving as a unidirectional bridge between areas
CA3 and CA1), other structures in the cortex involve convoluted feedback loops
which greatly increase the complexity of the wiring diagram and, presumably, the
difficulty of deciphering the functionality of any embedded group of neurons.

One hope for the cyborg route is that the brain, if permanently implanted with a
device connecting it to some external resource, would over time learn an effective
mapping between its own internal cognitive states and the inputs it receives from, or
the outputs accepted by, the device. Then the implant itself would not need to be
intelligent; rather, the brain would intelligently adapt to the interface, much as the
brain of an infant gradually learns to interpret the signals arriving from receptors in
its eyes and ears.Z® But here again one must question how much would really be
gained. Suppose that the brain’s plasticity were such that it could learn to detect
patterns in some new input stream arbitrary projected onto some part of the cortex
by means of a brain—computer interface: why not project the same information onto
the retina instead, as a visual pattern, or onto the cochlea as sounds? The low-tech
alternative avoids a thousand complications, and in either case the brain could
deploy its pattern-recognition mechanisms and plasticity to learn to make sense of
the information.

Networks and organizations

Another conceivable path to superintelligence is through the gradual enhancement of
networks and organizations that link individual human minds with one another and
with various artifacts and bots. The idea here is not that this would enhance the
intellectual capacity of individuals enough to make them superintelligent, but rather
that some system composed of individuals thus networked and organized might
attain a form of superintelligence—what in the next chapter we will elaborate as
“collective superintelligence.”ZZ

Humanity has gained enormously in collective intelligence over the course of
history and prehistory. The gains come from many sources, including innovations in
communications technology, such as writing and printing, and above all the
introduction of language itself; increases in the size of the world population and the
density of habitation; various improvements in organizational techniques and
epistemic norms; and a gradual accumulation of institutional capital. In general



terms, a system’s collective intelligence is limited by the abilities of its member
minds, the overheads in communicating relevant information between them, and the
various distortions and inefficiencies that pervade human organizations. If
communication overheads are reduced (including not only equipment costs but also
response latencies, time and attention burdens, and other factors), then larger and
more densely connected organizations become feasible. The same could happen if
fixes are found for some of the bureaucratic deformations that warp organizational
life—wasteful status games, mission creep, concealment or falsification of
information, and other agency problems. Even partial solutions to these problems
could pay hefty dividends for collective intelligence.

The technological and institutional innovations that could contribute to the growth
of our collective intelligence are many and various. For example, subsidized
prediction markets might foster truth-seeking norms and improve forecasting on
contentious scientific and social issues.”2 Lie detectors (should it prove feasible to
make ones that are reliable and easy to use) could reduce the scope for deception in
human affairs.”2 Self-deception detectors might be even more powerful.22 Even
without newfangled brain technologies, some forms of deception might become
harder to practice thanks to increased availability of many kinds of data, including
reputations and track records, or the promulgation of strong epistemic norms and
rationality culture. Voluntary and involuntary surveillance will amass vast amounts
of information about human behavior. Social networking sites are already used by
over a billion people to share personal details: soon, these people might begin
uploading continuous life recordings from microphones and video cameras
embedded in their smart phones or eyeglass frames. Automated analysis of such data
streams will enable many new applications (sinister as well as benign, of course).21

Growth in collective intelligence may also come from more general
organizational and economic improvements, and from enlarging the fraction of the
world’s population that is educated, digitally connected, and integrated into global
intellectual culture.82

The Internet stands out as a particularly dynamic frontier for innovation and
experimentation. Most of its potential may still remain unexploited. Continuing
development of an intelligent Web, with better support for deliberation, de-biasing,
and judgment aggregation, might make large contributions to increasing the
collective intelligence of humanity as a whole or of particular groups.

But what of the seemingly more fanciful idea that the Internet might one day
“wake up”? Could the Internet become something more than just the backbone of a
loosely integrated collective superintelligence—something more like a virtual skull
housing an emerging unified super-intellect? (This was one of the ways that
superintelligence could arise according to Vernor Vinge’s influential 1993 essay,

which coined the term “technological singularity.”83) Against this one could object



that machine intelligence is hard enough to achieve through arduous engineering,
and that it is incredible to suppose that it will arise spontaneously. However, the
story need not be that some future version of the Internet suddenly becomes
superintelligent by mere happenstance. A more plausible version of the scenario
would be that the Internet accumulates improvements through the work of many
people over many years—work to engineer better search and information filtering
algorithms, more powerful data representation formats, more capable autonomous
software agents, and more efficient protocols governing the interactions between
such bots—and that myriad incremental improvements eventually create the basis
for some more unified form of web intelligence. It seems at least conceivable that
such a web-based cognitive system, supersaturated with computer power and all
other resources needed for explosive growth save for one crucial ingredient, could,
when the final missing constituent is dropped into the cauldron, blaze up with
superintelligence. This type of scenario, though, converges into another possible
path to superintelligence, that of artificial general intelligence, which we have
already discussed.

Summary

The fact that there are many paths that lead to superintelligence should increase our
confidence that we will eventually get there. If one path turns out to be blocked, we
can still progress.

That there are multiple paths does not entail that there are multiple destinations.
Even if significant intelligence amplification were first achieved along one of the
non-machine-intelligence paths, this would not render machine intelligence
irrelevant. Quite the contrary: enhanced biological or organizational intelligence
would accelerate scientific and technological developments, potentially hastening
the arrival of more radical forms of intelligence amplification such as whole brain
emulation and Al.

This is not to say that it is a matter of indifference how we get to machine
superintelligence. The path taken to get there could make a big difference to the
eventual outcome. Even if the ultimate capabilities that are obtained do not depend
much on the trajectory, how those capabilities will be used—how much control we
humans have over their disposition—might well depend on details of our approach.
For example, enhancements of biological or organizational intelligence might
increase our ability to anticipate risk and to design machine superintelligence that is
safe and beneficial. (A full strategic assessment involves many complexities, and
will have to await Chapter 14.)

True superintelligence (as opposed to marginal increases in current levels of



intelligence) might plausibly first be attained via the Al path. There are, however,
many fundamental uncertainties along this path. This makes it difficult to rigorously
assess how long the path is or how many obstacles there are along the way. The
whole brain emulation path also has some chance of being the quickest route to
superintelligence. Since progress along this path requires mainly incremental
technological advances rather than theoretical breakthroughs, a strong case can be
made that it will eventually succeed. It seems fairly likely, however, that even if
progress along the whole brain emulation path is swift, artificial intelligence will
nevertheless be first to cross the finishing line: this is because of the possibility of
neuromorphic Als based on partial emulations.

Biological cognitive enhancements are clearly feasible, particularly ones based on
genetic selection. Iterated embryo selection currently seems like an especially
promising technology. Compared with possible breakthroughs in machine
intelligence, however, biological enhancements would be relatively slow and
gradual. They would, at best, result in relatively weak forms of superintelligence
(more on this shortly).

The clear feasibility of biological enhancement should increase our confidence
that machine intelligence is ultimately achievable, since enhanced human scientists
and engineers will be able to make more and faster progress than their au naturel
counterparts. Especially in scenarios in which machine intelligence is delayed
beyond mid-century, the increasingly cognitively enhanced cohorts coming onstage
will play a growing role in subsequent developments.

Brain—computer interfaces look unlikely as a source of superintelligence.
Improvements in networks and organizations might result in weakly superintelligent
forms of collective intelligence in the long run; but more likely, they will play an
enabling role similar to that of biological cognitive enhancement, gradually
increasing humanity’s effective ability to solve intellectual problems. Compared
with biological enhancements, advances in networks and organization will make a
difference sooner—in fact, such advances are occurring continuously and are having
a significant impact already. However, improvements in networks and organizations
may yield narrower increases in our problem-solving capacity than will
improvements in biological cognition—boosting “collective intelligence” rather
than “quality intelligence,” to anticipate a distinction we are about to introduce in
the next chapter.



CHAPTER 3
Forms of superintelligence

So what, exactly, do we mean by “superintelligence”? While we do not wish to
get bogged down in terminological swamps, something needs to be said to clarify
the conceptual ground. This chapter identifies three different forms of
superintelligence, and argues that they are, in a practically relevant sense,
equivalent. We also show that the potential for intelligence in a machine
substrate is vastly greater than in a biological substrate. Machines have a
number of fundamental advantages which will give them overwhelming
superiority. Biological humans, even if enhanced, will be outclassed.

Many machines and nonhuman animals already perform at superhuman levels in
narrow domains. Bats interpret sonar signals better than man, calculators outperform
us in arithmetic, and chess programs beat us in chess. The range of specific tasks
that can be better performed by software will continue to expand. But although
specialized information processing systems will have many uses, there are
additional profound issues that arise only with the prospect of machine intellects
that have enough general intelligence to substitute for humans across the board.

As previously indicated, we use the term “superintelligence” to refer to intellects
that greatly outperform the best current human minds across many very general
cognitive domains. This is still quite vague. Different kinds of system with rather
disparate performance attributes could qualify as superintelligences under this
definition. To advance the analysis, it is helpful to disaggregate this simple notion of
superintelligence by distinguishing different bundles of intellectual super-
capabilities. There are many ways in which such decomposition could be done. Here
we will differentiate between three forms: speed superintelligence, collective
superintelligence, and quality superintelligence.

Speed superintelligence

A speed superintelligence is an intellect that is just like a human mind but faster.

This is conceptually the easiest form of superintelligence to analyze.l We can define
speed superintelligence as follows:

Speed superintelligence: A system that can do all that a human intellect can



do, but much faster.

By “much” we here mean something like “multiple orders of magnitude.” But rather
than try to expunge every remnant of vagueness from the definition, we will entrust
the reader with interpreting it sensibly.2

The simplest example of speed superintelligence would be a whole brain
emulation running on fast hardware.2 An emulation operating at a speed of ten
thousand times that of a biological brain would be able to read a book in a few
seconds and write a PhD thesis in an afternoon. With a speedup factor of a million,
an emulation could accomplish an entire millennium of intellectual work in one
working day.2

To such a fast mind, events in the external world appear to unfold in slow motion.
Suppose your mind ran at 10,000x. If your fleshly friend should happen to drop his
teacup, you could watch the porcelain slowly descend toward the carpet over the
course of several hours, like a comet silently gliding through space toward an
assignation with a far-off planet; and, as the anticipation of the coming crash tardily
propagates through the folds of your friend’s gray matter and from thence out into
his peripheral nervous system, you could observe his body gradually assuming the
aspect of a frozen oops—enough time for you not only to order a replacement cup
but also to read a couple of scientific papers and take a nap.

Because of this apparent time dilation of the material world, a speed
superintelligence would prefer to work with digital objects. It could live in virtual
reality and deal in the information economy. Alternatively, it could interact with the
physical environment by means of nanoscale manipulators, since limbs at such small
scales could operate faster than macroscopic appendages. (The characteristic
frequency of a system tends to be inversely proportional to its length scale.2) A fast
mind might commune mainly with other fast minds rather than with bradytelic,
molasses-like humans.

The speed of light becomes an increasingly important constraint as minds get
faster, since faster minds face greater opportunity costs in the use of their time for
traveling or communicating over long distances.® Light is roughly a million times
faster than a jet plane, so it would take a digital agent with a mental speedup of
1,000,000x about the same amount of subjective time to travel across the globe as it
does a contemporary human journeyer. Dialing somebody long distance would take
as long as getting there “in person,” though it would be cheaper as a call would
require less bandwidth. Agents with large mental speedups who want to converse
extensively might find it advantageous to move near one another. Extremely fast
minds with need for frequent interaction (such as members of a work team) may
take up residence in computers located in the same building to avoid frustrating



latencies.

Collective superintelligence

Another form of superintelligence is a system achieving superior performance by
aggregating large numbers of smaller intelligences:

Collective superintelligence: A system composed of a large number of smaller
intellects such that the system’s overall performance across many very general
domains vastly outstrips that of any current cognitive system.

Collective superintelligence is less conceptually clear-cut than speed
superintelligence.Z However, it is more familiar empirically. While we have no
experience with human-level minds that differ significantly in clock speed, we do
have ample experience with collective intelligence, systems composed of various
numbers of human-level components working together with various degrees of
efficiency. Firms, work teams, gossip networks, advocacy groups, academic
communities, countries, even humankind as a whole, can—if we adopt a somewhat
abstract perspective—be viewed as loosely defined “systems” capable of solving
classes of intellectual problems. From experience, we have some sense of how easily
different tasks succumb to the efforts of organizations of various size and
composition.

Collective intelligence excels at solving problems that can be readily broken into
parts such that solutions to sub-problems can be pursued in parallel and verified
independently. Tasks like building a space shuttle or operating a hamburger
franchise offer myriad opportunities for division of labor: different engineers work
on different components of the spacecraft; different staffs operate different
restaurants. In academia, the rigid division of researchers, students, journals, grants,
and prizes into separate self-contained disciplines—though unconducive to the type
of work represented by this book—might (only in a conciliatory and mellow frame
of mind) be viewed as a necessary accommodation to the practicalities of allowing
large numbers of diversely motivated individuals and teams to contribute to the
growth of human knowledge while working relatively independently, each plowing
their own furrow.

A system’s collective intelligence could be enhanced by expanding the number or
the quality of its constituent intellects, or by improving the quality of their
organization.8 To obtain a collective superintelligence from any present-day
collective intelligence would require a very great degree of enhancement. The
resulting system would need to be capable of vastly outperforming any current



collective intelligence or other cognitive system across many very general domains.
A new conference format that lets scholars exchange information more effectively,
or a new collaborative information-filtering algorithm that better predicted users’
ratings of books and movies, would clearly not on its own amount to anything
approaching collective superintelligence. Nor would a 50% increase in the world
population, or an improvement in pedagogical method that enabled students to
complete a school day in four hours instead of six. Some far more extreme growth of
humanity’s collective cognitive capacity would be required to meet the criterion of
collective superintelligence.

Note that the threshold for collective superintelligence is indexed to the
performance levels of the present—that is, the early twenty-first century. Over the
course of human prehistory, and again over the course of human history, humanity’s
collective intelligence has grown by very large factors. World population, for
example, has increased by at least a factor of a thousand since the Pleistocene.2 On
this basis alone, current levels of human collective intelligence could be regarded as
approaching superintelligence relative to a Pleistocene baseline. Some
improvements in communications technologies—especially spoken language, but
perhaps also cities, writing, and printing—could also be argued to have, individually
or in combination, provided super-sized boosts, in the sense that if another

innovation of comparable impact to our collective intellectual problem-solving

capacity were to happen, it would result in collective superintelligence.1?

A certain kind of reader will be tempted at this point to interject that modern
society does not seem so particularly intelligent. Perhaps some unwelcome political
decision has just been made in the reader’s home country, and the apparent
unwisdom of that decision now looms large in the reader’s mind as evidence of the
mental incapacity of the modern era. And is it not the case that contemporary
humanity is idolizing material consumption, depleting natural resources, polluting
the environment, decimating species diversity, all the while failing to remedy
screaming global injustices and neglecting paramount humanistic or spiritual
values? However, setting aside the question of how modernity’s shortcomings stack
up against the not-so-inconsiderable failings of earlier epochs, nothing in our
definition of collective superintelligence implies that a society with greater
collective intelligence is necessarily better off. The definition does not even imply
that the more collectively intelligent society is wiser. We can think of wisdom as the
ability to get the important things approximately right. It is then possible to imagine
an organization composed of a very large cadre of very efficiently coordinated
knowledge workers, who collectively can solve intellectual problems across many
very general domains. This organization, let us suppose, can operate most kinds of
businesses, invent most kinds of technologies, and optimize most kinds of processes.
Even so, it might get a few key big-picture issues entirely wrong—for instance, it



may fail to take proper precautions against existential risks—and as a result pursue a
short explosive growth spurt that ends ingloriously in total collapse. Such an
organization could have a very high degree of collective intelligence; if sufficiently
high, the organization is a collective superintelligence. We should resist the
temptation to roll every normatively desirable attribute into one giant amorphous
concept of mental functioning, as though one could never find one admirable trait
without all the others being equally present. Instead, we should recognize that there
can exist instrumentally powerful information processing systems—intelligent
systems—that are neither inherently good nor reliably wise. But we will revisit this
issue in Chapter 7.

Collective superintelligence could be either loosely or tightly integrated. To
illustrate a case of loosely integrated collective superintelligence, imagine a planet,
MegaEarth, which has the same level of communication and coordination
technologies that we currently have on the real Earth but with a population one
million times as large. With such a huge population, the total intellectual workforce
on MegaEarth would be correspondingly larger than on our planet. Suppose that a
scientific genius of the caliber of a Newton or an Einstein arises at least once for
every 10 billion people: then on MegaEarth there would be 700,000 such geniuses
living contemporaneously, alongside proportionally vast multitudes of slightly
lesser talents. New ideas and technologies would be developed at a furious pace, and
global civilization on MegaEarth would constitute a loosely integrated collective
superintelligence. 1L

If we gradually increase the level of integration of a collective intelligence, it may
eventually become a unified intellect—a single large “mind” as opposed to a mere
assemblage of loosely interacting smaller human minds.12 The inhabitants of
MegaEarth could take steps in that direction by improving communications and
coordination technologies and by developing better ways for many individuals to
work on any hard intellectual problem together. A collective superintelligence could
thus, after gaining sufficiently in integration, become a “quality superintelligence.”

Quality superintelligence

We can distinguish a third form of superintelligence.
Quality superintelligence: A system that is at least as fast as a human mind

and vastly qualitatively smarter.

As with collective intelligence, intelligence quality is also a somewhat murky
concept; and in this case the difficulty is compounded by our lack of experience with



any variations in intelligence quality above the upper end of the present human
distribution. We can, however, get some grasp of the notion by considering some
related cases.

First, we can expand the range of our reference points by considering nonhuman
animals, which have intelligence of lower quality. (This is not meant as a speciesist
remark. A zebrafish has a quality of intelligence that is excellently adapted to its
ecological needs; but the relevant perspective here is a more anthropocentric one:
our concern is with performance on humanly relevant complex cognitive tasks.)
Nonhuman animals lack complex structured language; they are capable of no or only
rudimentary tool use and tool construction; they are severely restricted in their
ability to make long-term plans; and they have very limited abstract reasoning
ability. Nor are these limitations fully explained by a lack of speed or of collective
intelligence among nonhuman animal minds. In terms of raw computational power,
human brains are probably inferior to those of some large animals, including
elephants and whales. And although humanity’s complex technological civilization
would be impossible without our massive advantage in collective intelligence, not
all distinctly human cognitive capabilities depend on collective intelligence. Many
are highly developed even in small, isolated hunter—gatherer bands.!2 And many are
not nearly as highly developed among highly organized nonhuman animals, such as
chimpanzees and dolphins intensely trained by human instructors, or ants living in
their own large and well-ordered societies. Evidently, the remarkable intellectual
achievements of Homo sapiens are to a significant extent attributable to specific
features of our brain architecture, features that depend on a unique genetic
endowment not shared by other animals. This observation can help us illustrate the
concept of quality superintelligence: it is intelligence of quality at least as superior
to that of human intelligence as the quality of human intelligence is superior to that
of elephants’, dolphins’, or chimpanzees’.

A second way to illustrate the concept of quality superintelligence is by noting the
domain-specific cognitive deficits that can afflict individual humans, particularly
deficits that are not caused by general dementia or other conditions associated with
wholesale destruction of the brain’s neurocomputational resources. Consider, for
example, individuals with autism spectrum disorders who may have striking deficits
in social cognition while functioning well in other cognitive domains; or individuals
with congenital amusia, who are unable to hum or recognize simple tunes yet
perform normally in most other respects. Many other examples could be adduced
from the neuropsychiatric literature, which is replete with case studies of patients
suffering narrowly circumscribed deficits caused by genetic abnormalities or brain
trauma. Such examples show that normal human adults have a range of remarkable
cognitive talents that are not simply a function of possessing a sufficient amount of
general neural processing power or even a sufficient amount of general intelligence:



specialized neural circuitry is also needed. This observation suggests the idea of
possible but non-realized cognitive talents, talents that no actual human possesses
even though other intelligent systems—ones with no more computing power than the
human brain—that did have those talents would gain enormously in their ability to
accomplish a wide range of strategically relevant tasks.

Accordingly, by considering nonhuman animals and human individuals with
domain-specific cognitive deficits, we can form some notion of different qualities of
intelligence and the practical difference they make. Had Homo sapiens lacked (for
instance) the cognitive modules that enable complex linguistic representations, it
might have been just another simian species living in harmony with nature.
Conversely, were we to gain some new set of modules giving an advantage
comparable to that of being able to form complex linguistic representations, we
would become superintelligent.

Direct and indirect reach

Superintelligence in any of these forms could, over time, develop the technology
necessary to create any of the others. The indirect reaches of these three forms of
superintelligence are therefore equal. In that sense, the indirect reach of current
human intelligence is also in the same equivalence class, under the supposition that
we are able eventually to create some form of superintelligence. Yet there is a sense
in which the three forms of superintelligence are much closer to one another: any
one of them could create other forms of superintelligence more rapidly than we can
create any form of superintelligence from our present starting point.

The direct reaches of the three different forms of superintelligence are harder to
compare. There may be no definite ordering. Their respective capabilities depend on
the degree to which they instantiate their respective advantages—how fast a speed
superintelligence is, how qualitatively superior a quality superintelligence is, and so
forth. At most, we might say that, ceteris paribus, speed superintelligence excels at
tasks requiring the rapid execution of a long series of steps that must be performed
sequentially while collective superintelligence excels at tasks admitting of analytic
decomposition into parallelizable sub-tasks and tasks demanding the combination of
many different perspectives and skill sets. In some vague sense, quality
superintelligence would be the most capable form of all, inasmuch as it could grasp

and solve problems that are, for all practical purposes, beyond the direct reach of
speed superintelligence and collective superintelligence.14

In some domains, quantity is a poor substitute for quality. One solitary genius
working out of a cork-lined bedroom can write In Search of Lost Time. Could an

equivalent masterpiece be produced by recruiting an office building full of literary



hacks?1> Even within the range of present human variation we see that some
functions benefit greatly from the labor of one brilliant mastermind as opposed to
the joint efforts of myriad mediocrities. If we widen our purview to include
superintelligent minds, we must countenance a likelihood of there being intellectual
problems solvable only by superintelligence and intractable to any ever-so-large
collective of non-augmented humans.

There might thus be some problems that are solvable by a quality
superintelligence, and perhaps by a speed superintelligence, yet which a loosely
integrated collective superintelligence cannot solve (other than by first amplifying
its own intelligence).l® We cannot clearly see what all these problems are, but we
can characterize them in general terms.lZ They would tend to be problems involving
multiple complex interdependencies that do not permit of independently verifiable
solution steps: problems that therefore cannot be solved in a piecemeal fashion, and
that might require qualitatively new kinds of understanding or new representational
frameworks that are too deep or too complicated for the current edition of mortals to
discover or use effectively. Some types of artistic creation and strategic cognition
might fall into this category. Some types of scientific breakthrough, perhaps,
likewise. And one can speculate that the tardiness and wobbliness of humanity’s
progress on many of the “eternal problems” of philosophy are due to the
unsuitability of the human cortex for philosophical work. On this view, our most
celebrated philosophers are like dogs walking on their hind legs—just barely
attaining the threshold level of performance required for engaging in the activity at
all 18

Sources of advantage for digital intelligence

Minor changes in brain volume and wiring can have major consequences, as we see
when we compare the intellectual and technological achievements of humans with
those of other apes. The far greater changes in computing resources and architecture
that machine intelligence will enable will probably have consequences that are even
more profound. It is difficult, perhaps impossible, for us to form an intuitive sense
of the aptitudes of a superintelligence; but we can at least get an inkling of the space
of possibilities by looking at some of the advantages open to digital minds. The
hardware advantages are easiest to appreciate:

 Speed of computational elements. Biological neurons operate at a peak speed of
about 200 Hz, a full seven orders of magnitude slower than a modern
microprocessor (~ 2 GHz).12 As a consequence, the human brain is forced to rely
on massive parallelization and is incapable of rapidly performing any



computation that requires a large number of sequential operations.2? (Anything
the brain does in under a second cannot use much more than a hundred sequential
operations—perhaps only a few dozen.) Yet many of the most practically
important algorithms in programming and computer science are not easily
parallelizable. Many cognitive tasks could be performed far more efficiently if the
brain’s native support for parallelizable pattern-matching algorithms were
complemented by, and integrated with, support for fast sequential processing.

* Internal communication speed. Axons carry action potentials at speeds of 120 m/s
or less, whereas electronic processing cores can communicate optically at the
speed of light (300,000,000 m/s).2L The sluggishness of neural signals limits how
big a biological brain can be while functioning as a single processing unit. For
example, to achieve a round-trip latency of less than 10 ms between any two
elements in a system, biological brains must be smaller than 0.11 m3. An
electronic system, on the other hand, could be 6.1x10'7 m3, about the size of a
dwarf planet: eighteen orders of magnitude larger.22

» Number of computational elements. The human brain has somewhat fewer than 100
billion neurons.22 Humans have about three and a half times the brain size of
chimpanzees (though only one-fifth the brain size of sperm whales).2* The
number of neurons in a biological creature is most obviously limited by cranial
volume and metabolic constraints, but other factors may also be significant for
larger brains (such as cooling, development time, and signal-conductance delays
—see the previous point). By contrast, computer hardware is indefinitely scalable
up to very high physical limits.22 Supercomputers can be warehouse-sized or
larger, with additional remote capacity added via high-speed cables.2®

» Storage capacity. Human working memory is able to hold no more than some four
or five chunks of information at any given time.2Z While it would be misleading
to compare the size of human working memory directly with the amount of RAM
in a digital computer, it is clear that the hardware advantages of digital
intelligences will make it possible for them to have larger working memories.
This might enable such minds to intuitively grasp complex relationships that
humans can only fumblingly handle via plodding calculation.?2 Human long-term
memory is also limited, though it is unclear whether we manage to exhaust its
storage capacity during the course of an ordinary lifetime—the rate at which we
accumulate information is so slow. (On one estimate, the adult human brain stores
about one billion bits—a couple of orders of magnitude less than a low-end
smartphone.2?) Both the amount of information stored and the speed with which it
can be accessed could thus be vastly greater in a machine brain than in a
biological brain.

* Reliability, lifespan, sensors, etc. Machine intelligences might have various other



hardware advantages. For example, biological neurons are less reliable than
transistors.2? Since noisy computing necessitates redundant encoding schemes
that use multiple elements to encode a single bit of information, a digital brain
might derive some efficiency gains from the use of reliable high-precision
computing elements. Brains become fatigued after a few hours of work and start
to permanently decay after a few decades of subjective time; microprocessors are
not subject to these limitations. Data flow into a machine intelligence could be
increased by adding millions of sensors. Depending on the technology used, a
machine might have reconfigurable hardware that can be optimized for changing
task requirements, whereas much of the brain’s architecture is fixed from birth or
only slowly changeable (though the details of synaptic connectivity can change
over shorter timescales, like days).2L

At present, the computational power of the biological brain still compares favorably
with that of digital computers, though top-of-the-line supercomputers are attaining
levels of performance that are within the range of plausible estimates of the brain’s
processing power.22 But hardware is rapidly improving, and the ultimate limits of
hardware performance are vastly higher than those of biological computing
substrates.

Digital minds will also benefit from major advantages in software:

« Editability. It is easier to experiment with parameter variations in software than in
neural wetware. For example, with a whole brain emulation one could easily trial
what happens if one adds more neurons in a particular cortical area or if one
increases or decreases their excitability. Running such experiments in living
biological brains would be far more difficult.

 Duplicability. With software, one can quickly make arbitrarily many high-fidelity
copies to fill the available hardware base. Biological brains, by contrast, can be
reproduced only very slowly; and each new instance starts out in a helpless state,
remembering nothing of what its parents learned in their lifetimes.

* Goal coordination. Human collectives are replete with inefficiencies arising from
the fact that it is nearly impossible to achieve complete uniformity of purpose
among the members of a large group—at least until it becomes feasible to induce
docility on a large scale by means of drugs or genetic selection. A “copy clan” (a
group of identical or almost identical programs sharing a common goal) would
avoid such coordination problems.

* Memory sharing. Biological brains need extended periods of training and
mentorship whereas digital minds could acquire new memories and skills by
swapping data files. A population of a billion copies of an Al program could
synchronize their databases periodically, so that all the instances of the program
know everything that any instance learned during the previous hour. (Direct



memory transfer requires standardized representational formats. Easy swapping of
high-level cognitive content would therefore not be possible between just any pair
of machine intelligences. In particular, it would not be possible among first-
generation whole brain emulations.)

» New modules, modalities, and algorithms. Visual perception seems to us easy and
effortless, quite unlike solving textbook geometry problems—this despite the fact
that it takes a massive amount of computation to reconstruct, from the two-
dimensional patterns of stimulation on our retinas, a three-dimensional
representation of a world populated with recognizable objects. The reason this
seems easy is that we have dedicated low-level neural machinery for processing
visual information. This low-level processing occurs unconsciously and
automatically, without draining our mental energy or conscious attention. Music
perception, language use, social cognition, and other forms of information
processing that are “natural” for us humans seem to be likewise supported by
dedicated neurocomputational modules. An artificial mind that had such
specialized support for other cognitive domains that have become important in the
contemporary world—such as engineering, computer programming, and business
strategy—would have big advantages over minds like ours that have to rely on
clunky general-purpose cognition to think about such things. New algorithms may
also be developed to take advantage of the distinct affordances of digital
hardware, such as its support for fast serial processing.

The ultimately attainable advantages of machine intelligence, hardware and software

combined, are enormous.23 But how rapidly could those potential advantages be
realized? That is the question to which we now turn.



CHAPTER 4
The kinetics of an intelligence explosion

Once machines attain some form of human-equivalence in general reasoning
ability, how long will it then be before they attain radical superintelligence?
Will this be a slow, gradual, protracted transition? Or will it be sudden,
explosive? This chapter analyzes the kinetics of the transition to
superintelligence as a function of optimization power and system recalcitrance.
We consider what we know or may reasonably surmise about the behavior of
these two factors in the neighborhood of human-level general intelligence.

Timing and speed of the takeoff

Given that machines will eventually vastly exceed biology in general intelligence,
but that machine cognition is currently vastly narrower than human cognition, one is
led to wonder how quickly this usurpation will take place. The question we are
asking here must be sharply distinguished from the question we considered in
Chapter 1 about how far away we currently are from developing a machine with
human-level general intelligence. Here the question is instead, if and when such a
machine is developed, how long will it be from then until a machine becomes
radically superintelligent? Note that one could think that it will take quite a long
time until machines reach the human baseline, or one might be agnostic about how
long that will take, and yet have a strong view that once this happens, the further
ascent into strong superintelligence will be very rapid.

It can be helpful to think about these matters schematically, even though doing so
involves temporarily ignoring some qualifications and complicating details.
Consider, then, a diagram that plots the intellectual capability of the most advanced
machine intelligence system as a function of time (Figure 7).

A horizontal line labeled “human baseline” represents the effective intellectual
capabilities of a representative human adult with access to the information sources
and technological aids currently available in developed countries. At present, the
most advanced Al system is far below the human baseline on any reasonable metric
of general intellectual ability. At some point in future, a machine might reach
approximate parity with this human baseline (which we take to be fixed—anchored
to the year 2014, say, even if the capabilities of human individuals should have
increased in the intervening years): this would mark the onset of the takeoff. The



capabilities of the system continue to grow, and at some later point the system
reaches parity with the combined intellectual capability of all of humanity (again
anchored to the present): what we may call the “civilization baseline”. Eventually, if
the system’s abilities continue to grow, it attains “strong superintelligence”—a level
of intelligence vastly greater than contemporary humanity’s combined intellectual
wherewithal. The attainment of strong superintelligence marks the completion of the
takeoff, though the system might continue to gain in capacity thereafter. Sometime
during the takeoff phase, the system may pass a landmark which we can call “the
crossover”, a point beyond which the system’s further improvement is mainly driven
by the system’s own actions rather than by work performed upon it by others.! (The
possible existence of such a crossover will become important in the subsection on
optimization power and explosivity, later in this chapter.)
System A
capability
superintelligence |
civilization T e EE PR

human baseline -4---------=---

e« ' Time
now time until  takeoff LHE
takeoff  duration

Figure 7 Shape of the takeoff. It is important to distinguish between these questions:
“Will a takeoff occur, and if so, when?” and “If and when a takeoff does occur, how
steep will it be?” One might hold, for example, that it will be a very long time before
a takeoff occurs, but that when it does it will proceed very quickly. Another relevant
question (not illustrated in this figure) is, “How large a fraction of the world
economy will participate in the takeoff?” These questions are related but distinct.

With this picture in mind, we can distinguish three classes of transition scenarios
—scenarios in which systems progress from human-level intelligence to
superintelligence—based on their steepness; that is to say, whether they represent a
slow, fast, or moderate takeoff.

Slow

A slow takeoff is one that occurs over some long temporal interval, such as
decades or centuries. Slow takeoff scenarios offer excellent opportunities for
human political processes to adapt and respond. Different approaches can be



tried and tested in sequence. New experts can be trained and credentialed.
Grassroots campaigns can be mobilized by groups that feel they are being
disadvantaged by unfolding developments. If it appears that new kinds of
secure infrastructure or mass surveillance of Al researchers is needed, such
systems could be developed and deployed. Nations fearing an Al arms race
would have time to try to negotiate treaties and design enforcement
mechanisms. Most preparations undertaken before onset of the slow takeoff
would be rendered obsolete as better solutions would gradually become visible
in the light of the dawning era.

Fast

A fast takeoff occurs over some short temporal interval, such as minutes, hours,
or days. Fast takeoff scenarios offer scant opportunity for humans to deliberate.
Nobody need even notice anything unusual before the game is already lost. In a
fast takeoff scenario, humanity’s fate essentially depends on preparations
previously put in place. At the slowest end of the fast takeoff scenario range,
some simple human actions might be possible, analogous to flicking open the
“nuclear suitcase”; but any such action would either be elementary or have been
planned and pre-programmed in advance.

Moderate

A moderate takeoff is one that occurs over some intermediary temporal
interval, such as months or years. Moderate takeoff scenarios give humans
some chance to respond but not much time to analyze the situation, to test
different approaches, or to solve complicated coordination problems. There is
not enough time to develop or deploy new systems (e.g. political systems,
surveillance regimes, or computer network security protocols), but extant
systems could be applied to the new challenge.

During a slow takeoff, there would be plenty of time for the news to get out. In a
moderate takeoff, by contrast, it is possible that developments would be kept secret
as they unfold. Knowledge might be restricted to a small group of insiders, as in a
covert state-sponsored military research program. Commercial projects, small
academic teams, and “nine hackers in a basement” outfits might also be clandestine
—though, if the prospect of an intelligence explosion were “on the radar” of state
intelligence agencies as a national security priority, then the most promising private
projects would seem to have a good chance of being under surveillance. The host
state (or a dominant foreign power) would then have the option of nationalizing or
shutting down any project that showed signs of commencing takeoff. Fast takeoffs
would happen so quickly that there would not be much time for word to get out or



for anybody to mount a meaningful reaction if it did. But an outsider might
intervene before the onset of the takeoff if they believed a particular project to be
closing in on success.

Moderate takeoff scenarios could lead to geopolitical, social, and economic
turbulence as individuals and groups jockey to position themselves to gain from the
unfolding transformation. Such upheaval, should it occur, might impede efforts to
orchestrate a well-composed response; alternatively, it might enable solutions more
radical than calmer circumstances would permit. For instance, in a moderate takeoff
scenario where cheap and capable emulations or other digital minds gradually flood
labor markets over a period of years, one could imagine mass protests by laid-off
workers pressuring governments to increase unemployment benefits or institute a
living wage guarantee to all human citizens, or to levy special taxes or impose
minimum wage requirements on employers who use emulation workers. In order for
any relief derived from such policies to be more than fleeting, support for them
would somehow have to be cemented into permanent power structures. Similar
issues can arise if the takeoff is slow rather than moderate, but the disequilibrium
and rapid change in moderate scenarios may present special opportunities for small
groups to wield disproportionate influence.

It might appear to some readers that of these three types of scenario, the slow
takeoff is the most probable, the moderate takeoff is less probable, and the fast
takeoff is utterly implausible. It could seem fanciful to suppose that the world could
be radically transformed and humanity deposed from its position as apex cogitator
over the course of an hour or two. No change of such moment has ever occurred in
human history, and its nearest parallels—the Agricultural and Industrial Revolutions
——played out over much longer timescales (centuries to millennia in the former case,
decades to centuries in the latter). So the base rate for the kind of transition entailed
by a fast or medium takeoff scenario, in terms of the speed and magnitude of the
postulated change, is zero: it lacks precedent outside myth and religion.2

Nevertheless, this chapter will present some reasons for thinking that the slow
transition scenario is improbable. If and when a takeoff occurs, it will likely be
explosive.

To begin to analyze the question of how fast the takeoff will be, we can conceive
of the rate of increase in a system’s intelligence as a (monotonically increasing)
function of two variables: the amount of “optimization power”, or quality-weighted
design effort, that is being applied to increase the system’s intelligence, and the
responsiveness of the system to the application of a given amount of such
optimization power. We might term the inverse of responsiveness “recalcitrance”,
and write:

Optimization power

Rate of change in intellicence =
& & Recalcitrance



Pending some specification of how to quantify intelligence, design effort, and
recalcitrance, this expression is merely qualitative. But we can at least observe that a
system’s intelligence will increase rapidly if either a lot of skilled effort is applied
to the task of increasing its intelligence and the system’s intelligence is not too hard
to increase or there is a non-trivial design effort and the system’s recalcitrance is
low (or both). If we know how much design effort is going into improving a
particular system, and the rate of improvement this effort produces, we could
calculate the system’s recalcitrance.

Further, we can observe that the amount of optimization power devoted to
improving some system’s performance varies between systems and over time. A
system’s recalcitrance might also vary depending on how much the system has
already been optimized. Often, the easiest improvements are made first, leading to
diminishing returns (increasing recalcitrance) as low-hanging fruits are depleted.
However, there can also be improvements that make further improvements easier,
leading to improvement cascades. The process of solving a jigsaw puzzle starts out
simple—it is easy to find the corners and the edges. Then recalcitrance goes up as
subsequent pieces are harder to fit. But as the puzzle nears completion, the search
space collapses and the process gets easier again.

To proceed in our inquiry, we must therefore analyze how recalcitrance and
optimization power might vary in the critical time periods during the takeoff. This
will occupy us over the next few pages.

Recalcitrance

Let us begin with recalcitrance. The outlook here depends on the type of the system
under consideration. For completeness, we first cast a brief glance at the
recalcitrance that would be encountered along paths to superintelligence that do not
involve advanced machine intelligence. We find that recalcitrance along those paths
appears to be fairly high. That done, we will turn to the main case, which is that the
takeoff involves machine intelligence; and there we find that recalcitrance at the
critical juncture seems low.

Non-machine intelligence paths

Cognitive enhancement via improvements in public health and diet has steeply

diminishing returns.2 Big gains come from eliminating severe nutritional

deficiencies, and the most severe deficiencies have already been largely eliminated



in all but the poorest countries. Only girth is gained by increasing an already
adequate diet. Education, too, is now probably subject to diminishing returns. The
fraction of talented individuals in the world who lack access to quality education is
still substantial, but declining.

Pharmacological enhancers might deliver some cognitive gains over the coming
decades. But after the easiest fixes have been accomplished—perhaps sustainable
increases in mental energy and ability to concentrate, along with better control over
the rate of long-term memory consolidation—subsequent gains will be increasingly
hard to come by. Unlike diet and public health approaches, however, improving
cognition through smart drugs might get easier before it gets harder. The field of
neuropharmacology still lacks much of the basic knowledge that would be needed to
competently intervene in the healthy brain. Neglect of enhancement medicine as a
legitimate area of research may be partially to blame for this current backwardness.
If neuroscience and pharmacology continue to progress for a while longer without
focusing on cognitive enhancement, then maybe there would be some relatively easy
gains to be had when at last the development of nootropics becomes a serious
priority.4

Genetic cognitive enhancement has a U-shaped recalcitrance profile similar to
that of nootropics, but with larger potential gains. Recalcitrance starts out high while
the only available method is selective breeding sustained over many generations,
something that is obviously difficult to accomplish on a globally significant scale.
Genetic enhancement will get easier as technology is developed for cheap and
effective genetic testing and selection (and particularly when iterated embryo
selection becomes feasible in humans). These new techniques will make it possible
to tap the pool of existing human genetic variation for intelligence-enhancing
alleles. As the best existing alleles get incorporated into genetic enhancement
packages, however, further gains will get harder to come by. The need for more
innovative approaches to genetic modification may then increase recalcitrance.
There are limits to how quickly things can progress along the genetic enhancement
path, most notably the fact that germline interventions are subject to an inevitable
maturational lag: this strongly counteracts the possibility of a fast or moderate
takeoff.2 That embryo selection can only be applied in the context of in vitro
fertilization will slow its rate of adoption: another limiting factor.

The recalcitrance along the brain—computer path seems initially very high. In the
unlikely event that it somehow becomes easy to insert brain implants and to achieve
high-level functional integration with the cortex, recalcitrance might plummet. In
the long run, the difficulty of making progress along this path would be similar to
that involved in improving emulations or Als, since the bulk of the brain—computer
system’s intelligence would eventually reside in the computer part.

The recalcitrance for making networks and organizationsin general more



efficient is high. A vast amount of effort is going into overcoming this recalcitrance,
and the result is an annual improvement of humanity’s total capacity by perhaps no
more than a couple of percent.® Furthermore, shifts in the internal and external
environment mean that organizations, even if efficient at one time, soon become ill-
adapted to their new circumstances. Ongoing reform effort is thus required even just
to prevent deterioration. A step change in the rate of gain in average organizational
efficiency is perhaps conceivable, but it is hard to see how even the most radical
scenario of this kind could produce anything faster than a slow takeoff, since
organizations operated by humans are confined to work on human timescales. The
Internet continues to be an exciting frontier with many opportunities for enhancing
collective intelligence, with a recalcitrance that seems at the moment to be in the
moderate range—progress is somewhat swift but a lot of effort is going into making
this progress happen. It may be expected to increase as low-hanging fruits (such as
search engines and email) are depleted.

Emulation and Al paths

The difficulty of advancing toward whole brain emulation is difficult to estimate.
Yet we can point to a specific future milestone: the successful emulation of an insect
brain. That milestone stands on a hill, and its conquest would bring into view much
of the terrain ahead, allowing us to make a decent guess at the recalcitrance of
scaling up the technology to human whole brain emulation. (A successful emulation
of a small-mammal brain, such as that of a mouse, would give an even better
vantage point that would allow the distance remaining to a human whole brain
emulation to be estimated with a high degree of precision.) The path toward
artificial intelligence, by contrast, may feature no such obvious milestone or early
observation point. It is entirely possible that the quest for artificial intelligence will
appear to be lost in dense jungle until an unexpected breakthrough reveals the
finishing line in a clearing just a few short steps away.

Recall the distinction between these two questions: How hard is it to attain
roughly human levels of cognitive ability? And how hard is it to get from there to
superhuman levels? The first question is mainly relevant for predicting how long it
will be before the onset of a takeoff. It is the second question that is key to assessing
the shape of the takeoff, which is our aim here. And though it might be tempting to
suppose that the step from human level to superhuman level must be the harder one
—this step, after all, takes place “at a higher altitude” where capacity must be
superadded to an already quite capable system—this would be a very unsafe
assumption. It is quite possible that recalcitrance falls when a machine reaches
human parity.

Consider first whole brain emulation. The difficulties involved in creating the



first human emulation are of a quite different kind from those involved in enhancing
an existing emulation. Creating a first emulation involves huge technological
challenges, particularly in regard to developing the requisite scanning and image
interpretation capabilities. This step might also require considerable amounts of
physical capital—an industrial-scale machine park with hundreds of high-throughput
scanning machines is not implausible. By contrast, enhancing the quality of an
existing emulation involves tweaking algorithms and data structures: essentially a
software problem, and one that could turn out to be much easier than perfecting the
imaging technology needed to create the original template. Programmers could
easily experiment with tricks like increasing the neuron count in different cortical
areas to see how it affects performance.Z They also could work on code optimization
and on finding simpler computational models that preserve the essential
functionality of individual neurons or small networks of neurons. If the last
technological prerequisite to fall into place is either scanning or translation, with
computing power being relatively abundant, then not much attention might have
been given during the development phase to implementational efficiency, and easy
opportunities for computational efficiency savings might be available. (More
fundamental architectural reorganization might also be possible, but that takes us off
the emulation path and into Al territory.)

Another way to improve the code base once the first emulation has been produced
is to scan additional brains with different or superior skills and talents. Productivity
growth would also occur as a consequence of adapting organizational structures and
workflows to the unique attributes of digital minds. Since there is no precedent in
the human economy of a worker who can be literally copied, reset, run at different
speeds, and so forth, managers of the first emulation cohort would find plenty of
room for innovation in managerial practices.

After initially plummeting when human whole brain emulation becomes possible,
recalcitrance may rise again. Sooner or later, the most glaring implementational
inefficiencies will have been optimized away, the most promising algorithmic
variations will have been tested, and the easiest opportunities for organizational
innovation will have been exploited. The template library will have expanded so that
acquiring more brain scans would add little benefit over working with existing
templates. Since a template can be multiplied, each copy can be individually trained
in a different field, and this can be done at electronic speed, it might be that the
number of brains that would need to be scanned in order to capture most of the
potential economic gains is small. Possibly a single brain would suffice.

Another potential cause of escalating recalcitrance is the possibility that
emulations or their biological supporters will organize to support regulations
restricting the use of emulation workers, limiting emulation copying, prohibiting
certain kinds of experimentation with digital minds, instituting workers’ rights and a



minimum wage for emulations, and so forth. It is equally possible, however, that
political developments would go in the opposite direction, contributing to a fall in
recalcitrance. This might happen if initial restraint in the use of emulation labor
gives way to unfettered exploitation as competition heats up and the economic and
strategic costs of occupying the moral high ground become clear.

As for artificial intelligence (non-emulation machine intelligence), the difficulty
of lifting a system from human-level to superhuman intelligence by means of
algorithmic improvements depends on the attributes of the particular system.
Different architectures might have very different recalcitrance.

In some situations, recalcitrance could be extremely low. For example, if human-
level Al is delayed because one key insight long eludes programmers, then when the
final breakthrough occurs, the Al might leapfrog from below to radically above
human level without even touching the intermediary rungs. Another situation in
which recalcitrance could turn out to be extremely low is that of an Al system that
can achieve intelligent capability via two different modes of processing. To
illustrate this possibility, suppose an Al is composed of two subsystems, one
possessing domain-specific problem-solving techniques, the other possessing
general-purpose reasoning ability. It could then be the case that while the second
subsystem remains below a certain capacity threshold, it contributes nothing to the
system’s overall performance, because the solutions it generates are always inferior
to those generated by the domain-specific subsystem. Suppose now that a small
amount of optimization power is applied to the general-purpose subsystem and that
this produces a brisk rise in the capacity of that subsystem. At first, we observe no
increase in the overall system’s performance, indicating that recalcitrance is high.
Then, once the capacity of the general-purpose subsystem crosses the threshold
where its solutions start to beat those of the domain-specific subsystem, the overall
system’s performance suddenly begins to improve at the same brisk pace as the
general-purpose subsystem, even as the amount of optimization power applied stays
constant: the system’s recalcitrance has plummeted.

It is also possible that our natural tendency to view intelligence from an
anthropocentric perspective will lead us to underestimate improvements in sub-
human systems, and thus to overestimate recalcitrance. Eliezer Yudkowsky, an Al
theorist who has written extensively on the future of machine intelligence, puts the
point as follows:

Al might make an apparently sharp jump in intelligence purely as the result of
anthropomorphism, the human tendency to think of “village idiot” and
“Einstein” as the extreme ends of the intelligence scale, instead of nearly
indistinguishable points on the scale of minds-in-general. Everything dumber
than a dumb human may appear to us as simply “dumb”. One imagines the “Al
arrow” creeping steadily up the scale of intelligence, moving past mice and



chimpanzees, with Als still remaining “dumb” because Als cannot speak fluent
language or write science papers, and then the Al arrow crosses the tiny gap
from infra-idiot to ultra-Einstein in the course of one month or some similarly
short period.8 (See Fig. 8.)

The upshot of these several considerations is that it is difficult to predict how hard
it will be to make algorithmic improvements in the first Al that reaches a roughly
human level of general intelligence. There are at least some possible circumstances
in which algorithm-recalcitrance is low. But even if algorithm-recalcitrance is very
high, this would not preclude the overall recalcitrance of the Al in question from
being low. For it might be easy to increase the intelligence of the system in other
ways than by improving its algorithms. There are two other factors that can be
improved: content and hardware.

First, consider content improvements. By “content” we here mean those parts of a
system’s software assets that do not make up its core algorithmic architecture.
Content might include, for example, databases of stored percepts, specialized skills
libraries, and inventories of declarative knowledge. For many kinds of system, the
distinction between algorithmic architecture and content is very unsharp;
nevertheless, it will serve as a rough-and-ready way of pointing to one potentially
important source of capability gains in a machine intelligence. An alternative way of
expressing much the same idea is by saying that a system’s intellectual problem-
solving capacity can be enhanced not only by making the system cleverer but also by
expanding what the system knows.

Al
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Figure 8 A less anthropomorphic scale? The gap between a dumb and a clever
person may appear large from an anthropocentric perspective, yet in a less parochial
view the two have nearly indistinguishable minds.2 It will almost certainly prove
harder and take longer to build a machine intelligence that has a general level of
smartness comparable to that of a village idiot than to improve such a system so that
it becomes much smarter than any human.

Consider a contemporary Al system such as TextRunner (a research project at the
University of Washington) or IBM’s Watson (the system that won the Jeopardy!
quiz show). These systems can extract certain pieces of semantic information by



analyzing text. Although these systems do not understand what they read in the same
sense or to the same extent as a human does, they can nevertheless extract
significant amounts of information from natural language and use that information
to make simple inferences and answer questions. They can also learn from
experience, building up more extensive representations of a concept as they
encounter additional instances of its use. They are designed to operate for much of
the time in unsupervised mode (i.e. to learn hidden structure in unlabeled data in the
absence of error or reward signal, without human guidance) and to be fast and
scalable. TextRunner, for instance, works with a corpus of 500 million web pages.1%

Now imagine a remote descendant of such a system that has acquired the ability to
read with as much understanding as a human ten-year-old but with a reading speed
similar to that of TextRunner. (This is probably an Al-complete problem.) So we are
imagining a system that thinks much faster and has much better memory than a
human adult, but knows much less, and perhaps the net effect of this is that the
system is roughly human-equivalent in its general problem-solving ability. But its
content recalcitrance is very low—Ilow enough to precipitate a takeoff. Within a few
weeks, the system has read and mastered all the content contained in the Library of
Congress. Now the system knows much more than any human being and thinks
vastly faster: it has become (at least) weakly superintelligent.

A system might thus greatly boost its effective intellectual capability by
absorbing pre-produced content accumulated through centuries of human science
and civilization: for instance, by reading through the Internet. If an Al reaches
human level without previously having had access to this material or without having
been able to digest it, then the AI’s overall recalcitrance will be low even if it is hard
to improve its algorithmic architecture.

Content-recalcitrance is a relevant concept for emulations, too. A high-speed
emulation has an advantage not only because it can complete the same tasks as
biological humans more quickly, but also because it can accumulate more timely
content, such as task-relevant skills and expertise. In order to tap the full potential of
fast content accumulation, however, a system needs to have a correspondingly large
memory capacity. There is little point in reading an entire library if you have
forgotten all about the aardvark by the time you get to the abalone. While an Al
system is likely to have adequate memory capacity, emulations would inherit some
of the capacity limitations of their human templates. They may therefore need
architectural enhancements in order to become capable of unbounded learning.

So far we have considered the recalcitrance of architecture and of content—that
is, how difficult it would be to improve the software of a machine intelligence that
has reached human parity. Now let us look at a third way of boosting the
performance of machine intelligence: improving its hardware. What would be the
recalcitrance for hardware-driven improvements?



Starting with intelligent software (emulation or Al) one can amplify collective
intelligence simply by using additional computers to run more instances of the
program..l One could also amplify speed intelligence by moving the program to
faster computers. Depending on the degree to which the program lends itself to
parallelization, speed intelligence could also be amplified by running the program
on more processors. This is likely to be feasible for emulations, which have a highly
parallelized architecture; but many Al programs, too, have important subroutines
that can benefit from massive parallelization. Amplifying quality intelligence by
increasing computing power might also be possible, but that case is less
straightforward.12

The recalcitrance for amplifying collective or speed intelligence (and possibly
quality intelligence) in a system with human-level software is therefore likely to be
low. The only difficulty involved is gaining access to additional computing power.
There are several ways for a system to expand its hardware base, each relevant over
a different timescale.

In the short term, computing power should scale roughly linearly with funding:
twice the funding buys twice the number of computers, enabling twice as many
instances of the software to be run simultaneously. The emergence of cloud
computing services gives a project the option to scale up its computational resources
without even having to wait for new computers to be delivered and installed, though
concerns over secrecy might favor the use of in-house computers. (In certain
scenarios, computing power could also be obtained by other means, such as by
commandeering botnets.12) Just how easy it would be to scale the system by a given
factor depends on how much computing power the initial system uses. A system that
initially runs on a PC could be scaled by a factor of thousands for a mere million
dollars. A program that runs on a supercomputer would be far more expensive to
scale.

In the slightly longer term, the cost of acquiring additional hardware may be
driven up as a growing portion of the world’s installed capacity is being used to run
digital minds. For instance, in a competitive market-based emulation scenario, the
cost of running one additional copy of an emulation should rise to be roughly equal
to the income generated by the marginal copy, as investors bid up the price for
existing computing infrastructure to match the return they expect from their
investment (though if only one project has mastered the technology it might gain a
degree of monopsony power in the computing power market and therefore pay a
lower price).

Over a somewhat longer timescale, the supply of computing power will grow as
new capacity is installed. A demand spike would spur production in existing
semiconductor foundries and stimulate the construction of new plants. (A one-off
performance boost, perhaps amounting to one or two orders of magnitude, might



also be obtainable by using customized microprocessors.14) Above all, the rising
wave of technology improvements will pour increasing volumes of computational
power into the turbines of the thinking machines. Historically, the rate of
improvement of computing technology has been described by the famous Moore’s
law, which in one of its variations states that computing power per dollar doubles
every 18 months or so.l2 Although one cannot bank on this rate of improvement
continuing up to the development of human-level machine intelligence, yet until
fundamental physical limits are reached there will remain room for advances in
computing technology.

There are thus reasons to expect that hardware recalcitrance will not be very high.
Purchasing more computing power for the system once it proves its mettle by
attaining human-level intelligence might easily add several orders of magnitude of
computing power (depending on how hardware-frugal the project was before
expansion). Chip customization might add one or two orders of magnitude. Other
means of expanding the hardware base, such as building more factories and
advancing the frontier of computing technology, take longer—normally several
years, though this lag would be radically compressed once machine
superintelligence revolutionizes manufacturing and technology development.

In summary, we can talk about the likelihood of a hardware overhang: when
human-level software is created, enough computing power may already be available
to run vast numbers of copies at great speed. Software recalcitrance, as discussed
above, is harder to assess but might be even lower than hardware recalcitrance. In
particular, there may be content overhang in the form of pre-made content (e.g. the
Internet) that becomes available to a system once it reaches human parity. Algorithm
overhang—pre-designed algorithmic enhancements—is also possible but perhaps
less likely. Software improvements (whether in algorithms or content) might offer
orders of magnitude of potential performance gains that could be fairly easily
accessed once a digital mind attains human parity, on top of the performance gains
attainable by using more or better hardware.

Optimization power and explosivity

Having examined the question of recalcitrance we must now turn to the other half of
our schematic equation, optimization power. To recall: Rate of change in
Intelligence = Optimization power/Recalcitrance. As reflected in this schematic, a
fast takeoff does not require that recalcitrance during the transition phase be low. A
fast takeoff could also result if recalcitrance is constant or even moderately
increasing, provided the optimization power being applied to improving the
system’s performance grows sufficiently rapidly. As we shall now see, there are



good grounds for thinking that the applied optimization power will increase during
the transition, at least in the absence of a deliberate measures to prevent this from
happening.

We can distinguish two phases. The first phase begins with the onset of the
takeoff, when the system reaches the human baseline for individual intelligence. As
the system’s capability continues to increase, it might use some or all of that
capability to improve itself (or to design a successor system—which, for present
purposes, comes to the same thing). However, most of the optimization power
applied to the system still comes from outside the system, either from the work of
programmers and engineers employed within the project or from such work done by
the rest of the world as can be appropriated and used by the project.l® If this phase
drags out for any significant period of time, we can expect the amount of
optimization power applied to the system to grow. Inputs both from inside the
project and from the outside world are likely to increase as the promise of the
chosen approach becomes manifest. Researchers may work harder, more researchers
may be recruited, and more computing power may be purchased to expedite
progress. The increase could be especially dramatic if the development of human-
level machine intelligence takes the world by surprise, in which case what was
previously a small research project might suddenly become the focus of intense
research and development efforts around the world (though some of those efforts
might be channeled into competing projects).

A second growth phase will begin if at some point the system has acquired so
much capability that most of the optimization power exerted on it comes from the
system itself (marked by the variable level labeled “crossover” in Figure 7). This
fundamentally changes the dynamic, because any increase in the system’s capability
now translates into a proportional increase in the amount of optimization power
being applied to its further improvement. If recalcitrance remains constant, this
feedback dynamic produces exponential growth (see Box 4). The doubling constant
depends on the scenario but might be extremely short—mere seconds in some
scenarios—if growth is occurring at electronic speeds, which might happen as a
result of algorithmic improvements or the exploitation of an overhang of content or
hardware.lZ Growth that is driven by physical construction, such as the production of
new computers or manufacturing equipment, would require a somewhat longer
timescale (but still one that might be very short compared with the current growth
rate of the world economy).

It is thus likely that the applied optimization power will increase during the
transition: initially because humans try harder to improve a machine intelligence
that is showing spectacular promise, later because the machine intelligence itself
becomes capable of driving further progress at digital speeds. This would create a
real possibility of a fast or medium takeoff even if recalcitrance were constant or



slightly increasing around the human baseline 12 Yet we saw in the previous
subsection that there are factors that could lead to a big drop in recalcitrance around
the human baseline level of capability. These factors include, for example, the
possibility of rapid hardware expansion once a working software mind has been
attained; the possibility of algorithmic improvements; the possibility of scanning
additional brains (in the case of whole brain emulation); and the possibility of
rapidly incorporating vast amounts of content by digesting the Internet (in the case
of artificial intelligence).22

Box 4 On the kinetics of an intelligence explosion

We can write the rate of change in intelligence as the ratio between the optimization
power applied to the system and the system’s recalcitrance:

d_o
dt R

The amount of optimization power acting on a system is the sum of whatever
optimization power the system itself contributes and the optimization power exerted
from without. For example, a seed Al might be improved through a combination of
its own efforts and the efforts of a human programming team, and perhaps also the
efforts of the wider global community of researchers making continuous advances in

the semiconductor industry, computer science, and related fields:12
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A seed Al starts out with very limited cognitive capacities. At the outset, therefore,

D.er is small.22 What about Preet and Duer? There are cases in which a single
project has more relevant capability than the rest of the world combined—the
Manhattan project, for instance, brought a very large fraction of the world’s best
physicists to Los Alamos to work on the atomic bomb. More commonly, any one
project contains only a small fraction of the world’s total relevant research
capability. But even when the outside world has a greater total amount of relevant

research capability than any one project, Do may nevertheless exceed O world, SINCE
much of the outside world’s capability is not be focused on the particular system in
question. If a project begins to look promising—which will happen when a system
passes the human baseline if not before—it might attract additional investment,
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as the progress inspires greater interest in machine intelligence generally and as
various powers scramble to get in on the game. During the transition phase,
therefore, total optimization power applied to improving a cognitive system is likely
to increase as the capability of the system increases.2l

As the system’s capabilities grow, there may come a point at which the
optimization power generated by the system itself starts to dominate the
optimization power applied to it from outside (across all significant dimensions of

improvement):
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This crossover is significant because beyond this point, further improvement to the
system’s capabilities contributes strongly to increasing the total optimization power
applied to improving the system. We thereby enter a regime of strong recursive self-
improvement. This leads to explosive growth of the system’s capability under a
fairly wide range of different shapes of the recalcitrance curve.

To illustrate, consider first a scenario in which recalcitrance is constant, so that
the rate of increase in an Al’s intelligence is equal to the optimization power being
applied. Assume that all the optimization power that is applied comes from the Al
itself and that the AI applies all its intelligence to the task of amplifying its own

intelligence, so that O, cn = 122 We then have

Solving this simple differential equation yields the exponential function
I =Ae",

But recalcitrance being constant is a rather special case. Recalcitrance might well
decline around the human baseline, due to one or more of the factors mentioned in
the previous subsection, and remain low around the crossover and some distance
beyond (perhaps until the system eventually approaches fundamental physical
limits). For example, suppose that the optimization power applied to the system is

roughly constant (i.e. Dpger + Dogg » c) prior to the system becoming capable of
contributing substantially to its own design, and that this leads to the system
doubling in capacity every 18 months. (This would be roughly in line with historical
improvement rates from Moore’s law combined with software advances.22) This rate
of improvement, if achieved by means of roughly constant optimization power,
entails recalcitrance declining as the inverse of the system power:
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If recalcitrance continues to fall along this hyperbolic pattern, then when the Al
reaches the crossover point the total amount of optimization power applied to
improving the Al has doubled. We then have

dI_(ct])
dt I

=T

The next doubling occurs 7.5 months later. Within 17.9 months, the system’s
capacity has grown a thousandfold, thus obtaining speed superintelligence (Figure
9).

This particular growth trajectory has a positive singularity at t = 18 months. In
reality, the assumption that recalcitrance is constant would cease to hold as the
system began to approach the physical limits to information processing, if not
sooner.

These two scenarios are intended for illustration only; many other trajectories are
possible, depending on the shape of the recalcitrance curve. The claim is simply that
the strong feedback loop that sets in around the crossover point tends strongly to
make the takeoff faster than it would otherwise have been.
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Figure 9 One simple model of an intelligence explosion.

These observations notwithstanding, the shape of the recalcitrance curve in the
relevant region is not yet well characterized. In particular, it is unclear how difficult
it would be to improve the software quality of a human-level emulation or Al. The
difficulty of expanding the hardware power available to a system is also not clear.



Whereas today it would be relatively easy to increase the computing power available
to a small project by spending a thousand times more on computing power or by
waiting a few years for the price of computers to fall, it is possible that the first
machine intelligence to reach the human baseline will result from a large project
involving pricey supercomputers, which cannot be cheaply scaled, and that Moore’s
law will by then have expired. For these reasons, although a fast or medium takeoff
looks more likely, the possibility of a slow takeoff cannot be excluded.2>



CHAPTERS
Decisive strategic advantage

A question distinct from, but related to, the question of kinetics is whether there
will there be one superintelligent power or many? Might an intelligence
explosion propel one project so far ahead of all others as to make it able to
dictate the future? Or will progress be more uniform, unfurling across a wide
front, with many projects participating but none securing an overwhelming and
permanent lead?

The preceding chapter analyzed one key parameter in determining the size of the gap
that might plausibly open up between a leading power and its nearest competitors—
namely, the speed of the transition from human to strongly superhuman intelligence.
This suggests a first-cut analysis. If the takeoff is fast (completed over the course of
hours, days, or weeks) then it is unlikely that two independent projects would be
taking off concurrently: almost certainty, the first project would have completed its
takeoff before any other project would have started its own. If the takeoff is slow
(stretching over many years or decades) then there could plausibly be multiple
projects undergoing takeoffs concurrently, so that although the projects would by the
end of the transition have gained enormously in capability, there would be no time at
which any project was far enough ahead of the others to give it an overwhelming
lead. A takeoff of moderate speed is poised in between, with either condition a
possibility: there might or might not be more than one project undergoing the
takeoff at the same time.l

Will one machine intelligence project get so far ahead of the competition that it
gets adecisive strategic advantage—that is, a level of technological and other
advantages sufficient to enable it to achieve complete world domination? If a project
did obtain a decisive strategic advantage, would it use it to suppress competitors and
form a singleton (a world order in which there is at the global level a single
decision-making agency)? And if there is a winning project, how “large” would it be
—not in terms of physical size or budget but in terms of how many people’s desires
would be controlling its design? We will consider these questions in turn.

Will the frontrunner get a decisive strategic advantage?

One factor influencing the width of the gap between frontrunner and followers is the



rate of diffusion of whatever it is that gives the leader a competitive advantage. A
frontrunner might find it difficult to gain and maintain a large lead if followers can
easily copy the frontrunner’s ideas and innovations. Imitation creates a headwind
that disadvantages the leader and benefits laggards, especially if intellectual
property is weakly protected. A frontrunner might also be especially vulnerable to
expropriation, taxation, or being broken up under anti-monopoly regulation.

It would be a mistake, however, to assume that this headwind must increase
monotonically with the gap between frontrunner and followers. Just as a racing
cyclist who falls too far behind the competition is no longer shielded from the wind
by the cyclists ahead, so a technology follower who lags sufficiently behind the
cutting edge might find it hard to assimilate the advances being made at the
frontier.2 The gap in understanding and capability might have grown too large. The
leader might have migrated to a more advanced technology platform, making
subsequent innovations untransferable to the primitive platforms used by laggards.
A sufficiently pre-eminent leader might have the ability to stem information leakage
from its research programs and its sensitive installations, or to sabotage its
competitors’ efforts to develop their own advanced capabilities.

If the frontrunner is an Al system, it could have attributes that make it easier for it
to expand its capabilities while reducing the rate of diffusion. In human-run
organizations, economies of scale are counteracted by bureaucratic inefficiencies
and agency problems, including difficulties in keeping trade secrets.2 These
problems would presumably limit the growth of a machine intelligence project so
long as it is operated by humans. An Al system, however, might avoid some of these
scale diseconomies, since the Al’s modules (in contrast to human workers) need not
have individual preferences that diverge from those of the system as a whole. Thus,
the Al system could avoid a sizeable chunk of the inefficiencies arising from agency
problems in human enterprises. The same advantage—having perfectly loyal parts—
would also make it easier for an Al system to pursue long-range clandestine goals.
An Al would have no disgruntled employees ready to be poached by competitors or
bribed into becoming informants.2

We can get a sense of the distribution of plausible gaps in development times by
looking at some historical examples (see Box 5). It appears that lags in the range of
a few months to a few years are typical of strategically significant technology
projects.

Box 5 Technology races: some historical examples

Over long historical timescales, there has been an increase in the rate at which



knowledge and technology diffuse around the globe. As a result, the temporal gaps
between technology leaders and nearest followers have narrowed.

China managed to maintain a monopoly on silk production for over two thousand
years. Archeological finds suggest that production might have begun around 3000
BC, or even earlier.2 Sericulture was a closely held secret. Revealing the techniques
was punishable by death, as was exporting silkworms or their eggs outside China.
The Romans, despite the high price commanded by imported silk cloth in their
empire, never learnt the art of silk manufacture. Not until around Ap 300 did a
Japanese expedition manage to capture some silkworm eggs along with four young
Chinese girls, who were forced to divulge the art to their abductors.® Byzantium
joined the club of producers in AD 522. The story of porcelain-making also features
long lags. The craft was practiced in China during the Tang Dynasty around AD 600
(and might have been in use as early as AD 200), but was mastered by Europeans
only in the eighteenth century.”Z Wheeled vehicles appeared in several sites across
Europe and Mesopotamia around 3500 BC but reached the Americas only in post-
Columbian times.2 On a grander scale, the human species took tens of thousands of
years to spread across most of the globe, the Agricultural Revolution thousands of
years, the Industrial Revolution only hundreds of years, and an Information
Revolution could be said to have spread globally over the course of decades—
though, of course, these transitions are not necessarily of equal profundity. (The
Dance Dance Revolution video game spread from Japan to Europe and North
America in just one year!)

Technological competition has been quite extensively studied, particularly in the
contexts of patent races and arms races.2 It is beyond the scope of our investigation
to review this literature here. However, it is instructive to look at some examples of
strategically significant technology races in the twentieth century (see Table 7).

With regard to these six technologies, which were regarded as strategically
important by the rivaling superpowers because of their military or symbolic
significance, the gaps between leader and nearest laggard were (very approximately)
49 months, 36 months, 4 months, 1 month, 4 months, and 60 months, respectively—
longer than the duration of a fast takeoff and shorter than the duration of a slow
takeoff. 12 In many cases, the laggard’s project benefitted from espionage and
publicly available information. The mere demonstration of the feasibility of an
invention can also encourage others to develop it independently; and fear of falling
behind can spur the efforts to catch up.

Perhaps closer to the case of Al are mathematical inventions that do not require
the development of new physical infrastructure. Often these are published in the
academic literature and can thus be regarded as universally available; but in some
cases, when the discovery appears to offer a strategic advantage, publication is
delayed. For example, two of the most important ideas in public-key cryptography



are the Diffie—Hellman key exchange protocol and the RSA encryption scheme.
These were discovered by the academic community in 1976 and 1978, respectively,
but it has later been confirmed that they were known by cryptographers at the UK’s
communications security group since the early 1970s.2Y Large software projects
might offer a closer analogy with Al projects, but it is harder to give crisp examples
of typical lags because software is usually rolled out in incremental installments and
the functionalities of competing systems are often not directly comparable.

Table 7 Some strategically significant technology races

United Soviet United France China India Israel Pakistan North South
States Union Kingdom Korea Africa
Fission bomb 1945 1949 1952 1960 1964 1974 19797 1998 2006 1979
Fusion bomb 1952 1953 1957 1968 1967 1998 ! — — —
Satellite launch 1958 1957 1971 1965 1970 1980 1988 — 19987 —T
capability
Human launch 1961 1961 = = 2003 — - - — - —
capability
ICBM™ 1959 1960 1968" 1985 1971 2012 2008 — 2006 —
MIRW® 1970 1975 1979 1985 2007 20147 20087

It is possible that globalization and increased surveillance will reduce typical lags
between competing technology projects. Yet there is likely to be a lower bound on
how short the average lag could become (in the absence of deliberate
coordination).2L Even absent dynamics that lead to snowball effects, some projects
will happen to end up with better research staff, leadership, and infrastructure, or
will just stumble upon better ideas. If two projects pursue alternative approaches,
one of which turns out to work better, it may take the rival project many months to
switch to the superior approach even if it is able to closely monitor what the
forerunner is doing.

Combining these observations with our earlier discussion of the speed of the
takeoff, we can conclude that it is highly unlikely that two projects would be close
enough to undergo a fast takeoff concurrently; for a medium takeoff, it could easily
go either way; and for a slow takeoff, it is highly likely that several projects would
undergo the process in parallel. But the analysis needs a further step. The key
question is not how many projects undergo a takeoff in tandem, but how many
projects emerge on the yonder side sufficiently tightly clustered in capability that
none of them has a decisive strategic advantage. If the takeoff process is relatively
slow to begin and then gets faster, the distance between competing projects would
tend to grow. To return to our bicycle metaphor, the situation would be analogous to



a pair of cyclists making their way up a steep hill, one trailing some distance behind
the other—the gap between them then expanding as the frontrunner reaches the peak
and starts accelerating down the other side.

Consider the following medium takeoff scenario. Suppose it takes a project one
year to increase its Al’s capability from the human baseline to a strong
superintelligence, and that one project enters this takeoff phase with a six-month
lead over the next most advanced project. The two projects will be undergoing a
takeoff concurrently. It might seem, then, that neither project gets a decisive
strategic advantage. But that need not be so. Suppose it takes nine months to advance
from the human baseline to the crossover point, and another three months from there
to strong superintelligence. The frontrunner then attains strong superintelligence
three months before the following project even reaches the crossover point. This
would give the leading project a decisive strategic advantage and the opportunity to
parlay its lead into permanent control by disabling the competing projects and
establishing a singleton. (Note that the concept of a singleton is an abstract one: a
singleton could be democracy, a tyranny, a single dominant Al, a strong set of global
norms that include effective provisions for their own enforcement, or even an alien
overlord—its defining characteristic being simply that it is some form of agency
that can solve all major global coordination problems. It may, but need not,
resemble any familiar form of human governance.22)

Since there is an especially strong prospect of explosive growth just after the
crossover point, when the strong positive feedback loop of optimization power kicks
in, a scenario of this kind is a serious possibility, and it increases the chances that
the leading project will attain a decisive strategic advantage even if the takeoff is not
fast.

How large will the successful project be?

Some paths to superintelligence require great resources and are therefore likely to be
the preserve of large well-funded projects. Whole brain emulation, for instance,
requires many different kinds of expertise and lots of equipment. Biological
intelligence enhancements and brain—computer interfaces would also have a large
scale factor: while a small biotech firm might invent one or two drugs, achieving
superintelligence along one of these paths (if doable at all) would likely require
many inventions and many tests, and therefore the backing of an industrial sector or
a well-funded national program. Achieving collective superintelligence by making
organizations and networks more efficient requires even more extensive input,
involving much of the world economy.

The AI path is more difficult to assess. Perhaps it would require a very large



research program; perhaps it could be done by a small group. A lone hacker scenario
cannot be excluded either. Building a seed Al might require insights and algorithms
developed over many decades by the scientific community around the world. But it
is possible that the last critical breakthrough idea might come from a single
individual or a small group that succeeds in putting everything together. This
scenario is less realistic for some Al architectures than others. A system that has a
large number of parts that need to be tweaked and tuned to work effectively together,
and then painstakingly loaded with custom-made cognitive content, is likely to
require a larger project. But if a seed Al could be instantiated as a simple system,
one whose construction depends only on getting a few basic principles right, then the
feat might be within the reach of a small team or an individual. The likelihood of the
final breakthrough being made by a small project increases if most previous
progress in the field has been published in the open literature or made available as
open source software.

We must distinguish the question of how big will be the project that directly
engineers the system from the question of how big the group will be that controls
whether, how, and when the system is created. The atomic bomb was created
primarily by a group of scientists and engineers. (The Manhattan Project employed
about 130,000 people at its peak, the vast majority of whom were construction
workers or building operators.22) These technical experts, however, were controlled
by the US military, which was directed by the US government, which was ultimately
accountable to the American electorate, which at the time constituted about one-
tenth of the adult world population.24

Monitoring

Given the extreme security implications of superintelligence, governments would
likely seek to nationalize any project on their territory that they thought close to
achieving a takeoff. A powerful state might also attempt to acquire projects located
in other countries through espionage, theft, kidnapping, bribery, threats, military
conquest, or any other available means. A powerful state that cannot acquire a
foreign project might instead destroy it, especially if the host country lacks an
effective deterrent. If global governance structures are strong by the time a
breakthrough begins to look imminent, it is possible that promising projects would
be placed under international control.

An important question, therefore, is whether national or international authorities
will see an intelligence explosion coming. At present, intelligence agencies do not
appear to be looking very hard for promising AI projects or other forms of
potentially explosive intelligence amplification.2> If they are indeed not paying



(much) attention, this is presumably due to the widely shared perception that there is
no prospect whatever of imminent superintelligence. If and when it becomes a
common belief among prestigious scientists that there is a substantial chance that
superintelligence is just around the corner, the major intelligence agencies of the
world would probably start to monitor groups and individuals who seem to be
engaged in relevant research. Any project that began to show sufficient progress
could then be promptly nationalized. If political elites were persuaded by the
seriousness of the risk, civilian efforts in sensitive areas might be regulated or
outlawed.

How difficult would such monitoring be? The task is easier if the goal is only to
keep track of the leading project. In that case, surveillance focusing on the several
best-resourced projects may be sufficient. If the goal is instead to prevent any work
from taking place (at least outside of specially authorized institutions) then
surveillance would have to be more comprehensive, since many small projects and
individuals are in a position to make at least some progress.

It would be easier to monitor projects that require significant amounts of physical
capital, as would be the case with a whole brain emulation project. Artificial
intelligence research, by contrast, requires only a personal computer, and would
therefore be more difficult to monitor. Some of the theoretical work could be done
with pen and paper. Even so, it would not be too difficult to identify most capable
individuals with a serious long-standing interest in artificial general intelligence
research. Such individuals usually leave visible trails. They may have published
academic papers, presented at conferences, posted on Internet forums, or earned
degrees from leading computer science departments. They may also have had
communications with other AI researchers, allowing them to be identified by
mapping the social graph.

Projects designed from the outset to be secret could be more difficult to detect. An
ordinary software development project could serve as a front.2® Only careful
analysis of the code being produced would reveal the true nature of what the project
was trying to accomplish. Such analysis would require a lot of (highly skilled)
manpower, whence only a small number of suspect projects could be scrutinized at
this level. The task would become much easier if effective lie detection technology
had been developed and could be routinely used in this kind of surveillance.?Z

Another reason states might fail to catch precursor developments is the inherent
difficulty of forecasting some types of breakthrough. This is more relevant to Al
research than to whole brain emulation development, since for the latter the key
breakthrough is more likely to be preceded by a clear gradient of steady advances.

It is also possible that intelligence agencies and other government bureaucracies
have a certain clumsiness or rigidity that might prevent them from understanding the
significance of some developments that might be clear to some outside groups.



Barriers to official understanding of a potential intelligence explosion might be
especially steep. It is conceivable, for example, that the topic will become inflamed
with religious or political controversies, rendering it taboo for officials in some
countries. The topic might become associated with some discredited figure or with
charlatanry and hype in general, hence shunned by respected scientists and other
establishment figures. (As we saw in Chapter 1, something like this has already
happened twice: recall the two “Al winters.”) Industry groups might lobby to
prevent aspersions being cast on profitable business areas; academic communities
might close ranks to marginalize those who voice concerns about long-term
consequences of the science that is being done.28

Consequently, a total intelligence failure cannot be ruled out. Such a failure is
especially likely if breakthroughs should occur in the nearer future, before the issue
has risen to public prominence. And even if intelligence agencies get it right,
political leaders might not listen or act on the advice. Getting the Manhattan Project
started took an extraordinary effort by several visionary physicists, including
especially Mark Oliphant and Le6 Szilard: the latter persuaded Eugene Wigner to
persuade Albert Einstein to put his name on a letter to persuade President Franklin
D. Roosevelt to look into the matter. Even after the project reached its full scale,
Roosevelt remained skeptical of its workability and significance, as did his
successor Harry Truman.

For better or worse, it would probably be harder for a small group of activists to
affect the outcome of an intelligence explosion if big players, such as states, are
taking active part. Opportunities for private individuals to reduce the overall amount
of existential risk from a potential intelligence explosion are therefore greatest in
scenarios in which big players remain relatively oblivious to the issue, or in which
the early efforts of activists make a major difference to whether, when, which, or
with what attitude big players enter the game. Activists seeking maximum expected
impact may therefore wish to focus most of their planning on such high-leverage
scenarios, even if they believe that scenarios in which big players end up calling all
the shots are more probable.

International collaboration

International coordination is more likely if global governance structures generally
get stronger. Coordination might also be more likely if the significance of an
intelligence explosion is widely appreciated ahead of time and if effective
monitoring of all serious projects is feasible. Even if monitoring is infeasible,
however, international cooperation would still be possible. Many countries could
band together to support a joint project. If such a joint project were sufficiently well
resourced, it could have a good chance of being the first to reach the goal, especially



if any rival project had to be small and secretive to elude detection.

There are precedents of large-scale successful multinational scientific
collaborations, such as the International Space Station, the Human Genome Project,
and the Large Hadron Collider.22 However, the major motivation for collaboration in
those cases was cost-sharing. (In the case of the International Space Station,
fostering a collaborative spirit between Russia and the United States was itself an
important goal.2%) Achieving similar collaboration on a project that has enormous
security implications would be more difficult. A country that believed it could
achieve a breakthrough unilaterally might be tempted to go it alone rather than
subordinate its efforts to a joint project. A country might also refrain from joining
an international collaboration from fear that other participants might siphon off
collaboratively generated insights and use them to accelerate a covert national
project.

An international project would thus need to overcome major security challenges,
and a fair amount of trust would probably be needed to get it started, trust that may
take time to develop. Consider that even after the thaw in relations between the
United States and the Soviet Union following Gorbachev’s ascent to power, arms
reduction efforts—which could be greatly in the interests of both superpowers—had
a fitful beginning. Gorbachev was seeking steep reductions in nuclear arms but
negotiations stalled on the issue of Reagan’s Strategic Defense Initiative (“Star
Wars”), which the Kremlin strenuously opposed. At the Reykjavik Summit meeting
in 1986, Reagan proposed that the United States would share with the Soviet Union
the technology that would be developed under the Strategic Defense Initiative, so
that both countries could enjoy protection against accidental launches and against
smaller nations that might develop nuclear weapons. Yet Gorbachev was not
persuaded by this apparent win—win proposition. He viewed the gambit as a ruse,
refusing to credit the notion that the Americans would share the fruits of their most
advanced military research at a time when they were not even willing to share with
the Soviets their technology for milking cows.2! Regardless of whether Reagan was
in fact sincere in his offer of superpower collaboration, mistrust made the proposal a
non-starter.

Collaboration is easier to achieve between allies, but even there it is not
automatic. When the Soviet Union and the United States were allied against
Germany during World War 11, the United States concealed its atomic bomb project
from the Soviet Union. The United States did collaborate on the Manhattan Project
with Britain and Canada.22 Similarly, the United Kingdom concealed its success in
breaking the German Enigma code from the Soviet Union, but shared it—albeit with
some difficulty—with the United States.23 This suggests that in order to achieve
international collaboration on some technology that is of pivotal importance for
national security, it might be necessary to have built beforehand a close and trusting



relationship.
We will return in Chapter 14 to the desirability and feasibility of international
collaboration in the development of intelligence amplification technologies.

From decisive strategic advantage to singleton

Would a project that obtained a decisive strategic advantage choose to use it to form
a singleton?

Consider a vaguely analogous historical situation. The United States developed
nuclear weapons in 1945. It was the sole nuclear power until the Soviet Union
developed the atom bomb in 1949. During this interval—and for some time
thereafter—the United States may have had, or been in a position to achieve, a
decisive military advantage.

The United States could then, theoretically, have used its nuclear monopoly to
create a singleton. One way in which it could have done so would have been by
embarking on an all-out effort to build up its nuclear arsenal and then threatening
(and if necessary, carrying out) a nuclear first strike to destroy the industrial
capacity of any incipient nuclear program in the USSR and any other country
tempted to develop a nuclear capability.

A more benign course of action, which might also have had a chance of working,
would have been to use its nuclear arsenal as a bargaining chip to negotiate a strong
international government—a veto-less United Nations with a nuclear monopoly and
a mandate to take all necessary actions to prevent any country from developing its
own nuclear weapons.

Both of these approaches were proposed at the time. The hardline approach of
launching or threatening a first strike was advocated by some prominent
intellectuals such as Bertrand Russell (who had long been active in anti-war
movements and who would later spend decades campaigning against nuclear
weapons) and John von Neumann (co-creator of game theory and one of the
architects of US nuclear strategy).24 Perhaps it is a sign of civilizational progress
that the very idea of threatening a nuclear first strike today seems borderline silly or
morally obscene.

A version of the benign approach was tried in 1946 by the United States in the
form of the Baruch plan. The proposal involved the USA giving up its temporary
nuclear monopoly. Uranium and thorium mining and nuclear technology would be
placed under the control of an international agency operating under the auspices of
the United Nations. The proposal called for the permanent members of the Security
Council to give up their vetoes in matters related to nuclear weapons in order to
prevent any great power found to be in breach of the accord from vetoing the



imposition of remedies.22 Stalin, seeing that the Soviet Union and its allies could be
easily outvoted in both the Security Council and the General Assembly, rejected the
proposal. A frosty atmosphere of mutual suspicion descended on the relations
between the former wartime allies, mistrust that soon solidified into the Cold War.
As had been widely predicted, a costly and extremely dangerous nuclear arms race
followed.

Many factors might dissuade a human organization with a decisive strategic
advantage from creating a singleton. These include non-aggregative or bounded
utility functions, non-maximizing decision rules, confusion and uncertainty,
coordination problems, and various costs associated with a takeover. But what if it
were not a human organization but a superintelligent artificial agent that came into
possession of a decisive strategic advantage? Would the aforementioned factors be
equally effective at inhibiting an Al from attempting to seize power? Let us briefly
run through the list of factors and consider how they might apply in this case.

Human individuals and human organizations typically have preferences over
resources that are not well represented by an “unbounded aggregative utility
function.” A human will typically not wager all her capital for a fifty—fifty chance of
doubling it. A state will typically not risk losing all its territory for a ten percent
chance of a tenfold expansion. For individuals and governments, there are
diminishing returns to most resources. The same need not hold for Als. (We will
return to the problem of AI motivation in subsequent chapters.) An Al might
therefore be more likely to pursue a risky course of action that has some chance of
giving it control of the world.

Humans and human-run organizations may also operate with decision processes
that do not seek to maximize expected utility. For example, they may allow for
fundamental risk aversion, or “satisficing” decision rules that focus on meeting
adequacy thresholds, or “deontological” side-constraints that proscribe certain kinds
of action regardless of how desirable their consequences. Human decision makers
often seem to be acting out an identity or a social role rather than seeking to
maximize the achievement of some particular objective. Again, this need not apply
to artificial agents.

Bounded utility functions, risk aversion, and non-maximizing decision rules may
combine synergistically with strategic confusion and uncertainty. Revolutions, even
when they succeed in overthrowing the existing order, often fail to produce the
outcome that their instigators had promised. This tends to stay the hand of a human
agent if the contemplated action is irreversible, norm-breaking, and lacking
precedent. A superintelligence might perceive the situation more clearly and
therefore face less strategic confusion and uncertainty about the outcome should it
attempt to use its apparent decisive strategic advantage to consolidate its dominant
position.



Another major factor that can inhibit groups from exploiting a potentially decisive
strategic advantage is the problem of internal coordination. Members of a
conspiracy that is in a position to seize power must worry not only about being
infiltrated from the outside, but also about being overthrown by some smaller
coalition of insiders. If a group consists of a hundred people, and a majority of sixty
can take power and disenfranchise the non-conspirators, what is then to stop a thirty-
five-strong subset of these sixty from disenfranchising the other twenty-five? And
then maybe a subset of twenty disenfranchising the other fifteen? Each of the
original hundred might have good reason to uphold certain established norms to
prevent the general unraveling that could result from any attempt to change the
social contract by means of a naked power grab. This problem of internal
coordination would not apply to an Al system that constitutes a single unified
agent.38

Finally, there is the issue of cost. Even if the United States could have used its
nuclear monopoly to establish a singleton, it might not have been able to do so
without incurring substantial costs. In the case of a negotiated agreement to place
nuclear weapons under the control of a reformed and strengthened United Nations,
these costs might have been relatively small; but the costs—moral, economic,
political, and human—of actually attempting world conquest through the waging of
nuclear war would have been almost unthinkably large, even during the period of
nuclear monopoly. With sufficient technological superiority, however, these costs
would be far smaller. Consider, for example, a scenario in which one nation had such
a vast technological lead that it could safely disarm all other nations at the press of a
button, without anybody dying or being injured, and with almost no damage to
infrastructure or to the environment. With such almost magical technological
superiority, a first strike would be a lot more tempting. Or consider an even greater
level of technological superiority which might enable the frontrunner to cause other
nations to voluntarily lay down their arms, not by threatening them with destruction
but simply by persuading a great majority of their populations by means of an
extremely effectively designed advertising and propaganda campaign extolling the
virtues of global unity. If this were done with the intention to benefit everybody, for
instance by replacing national rivalries and arms races with a fair, representative,
and effective world government, it is not clear that there would be even a cogent
moral objection to the leveraging of a temporary strategic advantage into a
permanent singleton.

Various considerations thus point to an increased likelihood that a future power
with superintelligence that obtained a sufficiently large strategic advantage would
actually use it to form a singleton. The desirability of such an outcome depends, of
course, on the nature of the singleton that would be created and also on what the
future of intelligent life would look like in alternative multipolar scenarios. We will



revisit those questions in later chapters. But first let us take a closer look at why and
how a superintelligence would be powerful and effective at achieving outcomes in
the world.



CHAPTER 6
Cognitive superpowers

Suppose that a digital superintelligent agent came into being, and that for some
reason it wanted to take control of the world: would it be able to do so? In this
chapter we consider some powers that a superintelligence could develop and
what they may enable it to do. We outline a takeover scenario that illustrates
how a superintelligent agent, starting as mere software, could establish itself as
a singleton. We also offer some remarks on the relation between power over
nature and power over other agents.

The principal reason for humanity’s dominant position on Earth is that our brains
have a slightly expanded set of faculties compared with other animals.l Our greater
intelligence lets us transmit culture more efficiently, with the result that knowledge
and technology accumulates from one generation to the next. By now sufficient
content has accumulated to make possible space flight, H-bombs, genetic
engineering, computers, factory farms, insecticides, the international peace
movement, and all the accouterments of modern civilization. Geologists have started
referring to the present era as the Anthropocene in recognition of the distinctive
biotic, sedimentary, and geochemical signatures of human activities.2 On one
estimate, we appropriate 24% of the planetary ecosystem’s net primary production.2
And yet we are far from having reached the physical limits of technology.

These observations make it plausible that any type of entity that developed a
much greater than human level of intelligence would be potentially extremely
powerful. Such entities could accumulate content much faster than us and invent
new technologies on a much shorter timescale. They could also use their intelligence
to strategize more effectively than we can.

Let us consider some of the capabilities that a superintelligence could have and
how it could use them.

Functionalities and superpowers

It is important not to anthropomorphize superintelligence when thinking about its
potential impacts. Anthropomorphic frames encourage unfounded expectations
about the growth trajectory of a seed Al and about the psychology, motivations, and
capabilities of a mature superintelligence.



For example, a common assumption is that a superintelligent machine would be
like a very clever but nerdy human being. We imagine that the Al has book smarts
but lacks social savvy, or that it is logical but not intuitive and creative. This idea
probably originates in observation: we look at present-day computers and see that
they are good at calculation, remembering facts, and at following the letter of
instructions while being oblivious to social contexts and subtexts, norms, emotions,
and politics. The association is strengthened when we observe that the people who
are good at working with computers tend themselves to be nerds. So it is natural to
assume that more advanced computational intelligence will have similar attributes,
only to a higher degree.

This heuristic might retain some validity in the early stages of development of a
seed Al. (There is no reason whatever to suppose that it would apply to emulations
or to cognitively enhanced humans.) In its immature stage, what is later to become a
superintelligent Al might still lack many skills and talents that come naturally to a
human; and the pattern of such a seed Al’s strengths and weaknesses might indeed
bear some vague resemblance to an IQ nerd. The most essential characteristic of a
seed Al, aside from being easy to improve (having low recalcitrance), is being good
at exerting optimization power to amplify a system’s intelligence: a skill which is
presumably closely related to doing well in mathematics, programming,
engineering, computer science research, and other such “nerdy” pursuits. However,
even if a seed Al does have such a nerdy capability profile at one stage of its
development, this does not entail that it will grow into a similarly limited mature
superintelligence. Recall the distinction between direct and indirect reach. With
sufficient skill at intelligence amplification, all other intellectual abilities are within
a system’s indirect reach: the system can develop new cognitive modules and skills
as needed—including empathy, political acumen, and any other powers
stereotypically wanting in computer-like personalities.

Even if we recognize that a superintelligence can have all the skills and talents we
find in the human distribution, along with other talents that are not found among
humans, the tendency toward anthropomorphizing can still lead us to underestimate
the extent to which a machine superintelligence could exceed the human level of
performance. Eliezer Yudkowsky, as we saw in an earlier chapter, has been
particularly emphatic in condemning this kind of misconception: our intuitive
concepts of “smart” and “stupid” are distilled from our experience of variation over
the range of human thinkers, yet the differences in cognitive ability within this

human cluster are trivial in comparison to the differences between any human
intellect and a superintelligence.%

Chapter 3 reviewed some of the potential sources of advantage for machine
intelligence. The magnitudes of the advantages are such as to suggest that rather

than thinking of a superintelligent Al as smart in the sense that a scientific genius is



smart compared with the average human being, it might be closer to the mark to
think of such an AI as smart in the sense that an average human being is smart
compared with a beetle or a worm.

It would be convenient if we could quantify the cognitive caliber of an arbitrary
cognitive system using some familiar metric, such as IQ scores or some version of
the Elo ratings that measure the relative abilities of players in two-player games
such as chess. But these metrics are not useful in the context of superhuman
artificial general intelligence. We are not interested in how likely a superintelligence
is to win at a game of chess. As for 1Q scores, they are informative only insofar as
we have some idea of how they correlate with practically relevant outcomes.2 For
example, we have data that show that people with an IQ of 130 are more likely than
those with an IQ of 90 to excel in school and to do well in a wide range of
cognitively demanding jobs. But suppose we could somehow establish that a certain
future Al will have an IQ of 6,455: then what? We would have no idea of what such
an Al could actually do. We would not even know that such an Al had as much
general intelligence as a normal human adult—perhaps the Al would instead have a
bundle of special-purpose algorithms enabling it to solve typical intelligence test
questions with superhuman efficiency but not much else.

Some recent efforts have been made to develop measurements of cognitive
capacity that could be applied to a wider range of information-processing systems,
including artificial intelligences.® Work in this direction, if it can overcome various
technical difficulties, may turn out to be quite useful for some scientific purposes
including Al development. For purposes of the present investigation, however, its
usefulness would be limited since we would remain unenlightened about what a
given superhuman performance score entails for actual ability to achieve practically
important outcomes in the world.

It will therefore serve our purposes better to list some strategically important
tasks and then to characterize hypothetical cognitive systems in terms of whether
they have or lack whatever skills are needed to succeed at these tasks. See Table 8.
We will say that a system that sufficiently excels at any of the tasks in this table has
a corresponding superpower.

A full-blown superintelligence would greatly excel at all of these tasks and would
thus have the full panoply of all six superpowers. Whether there is a practically
significant possibility of a domain-limited intelligence that has some of the
superpowers but remains unable for a significant period of time to acquire all of
them is not clear. Creating a machine with any one of these superpowers appears to
be an Al-complete problem. Yet it is conceivable that, for example, a collective
superintelligence consisting of a sufficiently large number of human-like biological
or electronic minds would have, say, the economic productivity superpower but lack
the strategizing superpower. Likewise, it is conceivable that a specialized



engineering Al could be built that has the technology research superpower while
completely lacking skills in other areas. This is more plausible if there exists some
particular technological domain such that virtuosity within that domain would be
sufficient for the generation of an overwhelmingly superior general-purpose
technology. For instance, one could imagine a specialized Al adept at simulating
molecular systems and at inventing nanomolecular designs that realize a wide range
of important capabilities (such as computers or weapons systems with futuristic
performance characteristics) described by the user only at a fairly high level of
abstraction.Z Such an Al might also be able to produce a detailed blueprint for how
to bootstrap from existing technology (such as biotechnology and protein
engineering) to the constructor capabilities needed for high-throughput atomically
precise manufacturing that would allow inexpensive fabrication of a much wider
range of nanomechanical structures.® However, it might turn out to be the case that
an engineering Al could not truly possess the technological research superpower
without also possessing advanced skills in areas outside of technology—a wide
range of intellectual faculties might be needed to understand how to interpret user
requests, how to model a design’s behavior in real-world applications, how to deal
with unanticipated bugs and malfunctions, how to procure the materials and inputs
needed for construction, and so forth.2

Table 8 Superpowers: some strategically relevant tasks and corresponding skill
sets

Task Skill set Strategic relevance
Intelligence Al programming, cognitive .
... enhancement research, social + System can bootstrap its

amplification . . :

epistemology development, etc. intelligence

Strategic planning, forecasting,

. . prioritizing, and analysis for * Achieve distant goals

Strategizing . o . :

optimizing chances of achieving  * Overcome intelligent

distant goal opposition

* Leverage external resources by
recruiting human support

* Enable a “boxed” Al to
persuade its gatekeepers to let
it out

* Persuade states and
organizations to adopt some

Social Social and psychological modeling,
manipulation manipulation, rhetoric persuasion



course of action

* Al can expropriate
computational resources over
the Internet

Finding and exploiting security * A boxed Al may exploit
flaws in computer systems security holes to escape
cybernetic confinement

« Steal financial resources

* Hijack infrastructure, military
robots, etc.

Hacking

Design and modeling of advanced

. 1 f f 1 .1.
Technology technologies (e.g. biotechnology, Creation of powerful military

force

research nagtl)technology) and development | Creation of surveillance system
paths » Automated space colonization
. Various skills enabling * Generate wealth which can be
Economic . . d to buv infl
roductivit economically productive used to buy influence,
P Y intellectual work services, resources (including

hardware), etc.

A system that has the intelligence amplification superpower could use it to
bootstrap itself to higher levels of intelligence and to acquire any of the other
intellectual superpowers that it does not possess at the outset. But using an
intelligence amplification superpower is not the only way for a system to become a
full-fledged superintelligence. A system that has the strategizing superpower, for
instance, might use it to devise a plan that will eventually bring an increase in
intelligence (e.g. by positioning the system so as to become the focus for
intelligence amplification work performed by human programmers and computer
science researchers).

An Al takeover scenario

We thus find that a project that controls a superintelligence has access to a great
source of power. A project that controls the first superintelligence in the world
would probably have a decisive strategic advantage. But the more immediate locus
of the power is in the system itself. A machine superintelligence might itself be an
extremely powerful agent, one that could successfully assert itself against the



project that brought it into existence as well as against the rest of the world. This is a
point of paramount importance, and we will examine it more closely in the coming
pages.

Now let us suppose that there is a machine superintelligence that wants to seize
power in a world in which it has as yet no peers. (Set aside, for the moment, the
question of whether and how it would acquire such a motive—that is a topic for the
next chapter.) How could the superintelligence achieve this goal of world
domination?

We can imagine a sequence along the following lines (see Figure 10).

1 Pre-criticality phase

Scientists conduct research in the field of artificial intelligence and other relevant
disciplines. This work culminates in the creation of a seed Al. The seed Al is able to
improve its own intelligence. In its early stages, the seed Al is dependent on help
from human programmers who guide its development and do most of the heavy
lifting. As the seed Al grows more capable, it becomes capable of doing more of the
work by itself.

2 Recursive self-improvement phase

At some point, the seed Al becomes better at Al design than the human
programmers. Now when the Al improves itself, it improves the thing that does the
improving. An intelligence explosion results—a rapid cascade of recursive self-
improvement cycles causing the Al’s capability to soar. (We can thus think of this
phase as the takeoff that occurs just after the AI reaches the crossover point,
assuming the intelligence gain during this part of the takeoff is explosive and driven
by the application of the AI’s own optimization power.) The AI develops the
intelligence amplification superpower. This superpower enables the Al to develop
all the other superpowers detailed in Table 8. At the end of the recursive self-
improvement phase, the system is strongly superintelligent.
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Figure 10 Phases in an Al takeover scenario.

3 Covert preparation phase

Using its strategizing superpower, the Al develops a robust plan for achieving its
long-term goals. (In particular, the Al does not adopt a plan so stupid that even we
present-day humans can foresee how it would inevitably fail. This criterion rules out
many science fiction scenarios that end in human triumph.l%) The plan might
involve a period of covert action during which the AI conceals its intellectual
development from the human programmers in order to avoid setting off alarms. The
Al might also mask its true proclivities, pretending to be cooperative and docile.

If the AI has (perhaps for safety reasons) been confined to an isolated computer, it
may use its social manipulation superpower to persuade the gatekeepers to let it gain
access to an Internet port. Alternatively, the Al might use its hacking superpower to
escape its confinement. Spreading over the Internet may enable the Al to expand its
hardware capacity and knowledge base, further increasing its intellectual superiority.
An Al might also engage in licit or illicit economic activity to obtain funds with
which to buy computer power, data, and other resources.

At this point, there are several ways for the Al to achieve results outside the
virtual realm. It could use its hacking superpower to take direct control of robotic
manipulators and automated laboratories. Or it could use its social manipulation
superpower to persuade human collaborators to serve as its legs and hands. Or it
could acquire financial assets from online transactions and use them to purchase



services and influence.
4 Overt implementation phase

The final phase begins when the Al has gained sufficient strength to obviate the need
for secrecy. The Al can now directly implement its objectives on a full scale.

The overt implementation phase might start with a “strike” in which the Al
eliminates the human species and any automatic systems humans have created that
could offer intelligent opposition to the execution of the AI’s plans. This could be
achieved through the activation of some advanced weapons system that the Al has
perfected using its technology research superpower and covertly deployed in the
covert preparation phase. If the weapon uses self-replicating biotechnology or
nanotechnology, the initial stockpile needed for global coverage could be
microscopic: a single replicating entity would be enough to start the process. In
order to ensure a sudden and uniform effect, the initial stock of the replicator might
have been deployed or allowed to diffuse worldwide at an extremely low,
undetectable concentration. At a pre-set time, nanofactories producing nerve gas or
target-seeking mosquito-like robots might then burgeon forth simultaneously from
every square meter of the globe (although more effective ways of killing could
probably be devised by a machine with the technology research superpower)..l One
might also entertain scenarios in which a superintelligence attains power by
hijacking political processes, subtly manipulating financial markets, biasing
information flows, or hacking into human-made weapon systems. Such scenarios
would obviate the need for the superintelligence to invent new weapons technology,
although they may be unnecessarily slow compared with scenarios in which the
machine intelligence builds its own infrastructure with manipulators that operate at
molecular or atomic speed rather than the slow speed of human minds and bodies.

Alternatively, if the AI is sure of its invincibility to human interference, our
species may not be targeted directly. Our demise may instead result from the habitat
destruction that ensues when the Al begins massive global construction projects
using nanotech factories and assemblers—construction projects which quickly,
perhaps within days or weeks, tile all of the Earth’s surface with solar panels,
nuclear reactors, supercomputing facilities with protruding cooling towers, space
rocket launchers, or other installations whereby the Al intends to maximize the long-
term cumulative realization of its values. Human brains, if they contain information
relevant to the Al’s goals, could be disassembled and scanned, and the extracted data
transferred to some more efficient and secure storage format.

Box 6 describes one particular scenario. One should avoid fixating too much on
the concrete details, since they are in any case unknowable and intended for
illustration only. A superintelligence might—and probably would—be able to
conceive of a better plan for achieving its goals than any that a human can come up



with. It is therefore necessary to think about these matters more abstractly. Without
knowing anything about the detailed means that a superintelligence would adopt, we
can conclude that a superintelligence—at least in the absence of intellectual peers
and in the absence of effective safety measures arranged by humans in advance—
would likely produce an outcome that would involve reconfiguring terrestrial
resources into whatever structures maximize the realization of its goals. Any
concrete scenario we develop can at best establish a lower bound on how quickly and
efficiently the superintelligence could achieve such an outcome. It remains possible
that the superintelligence would find a shorter path to its preferred destination.

Box 6 The mail-ordered DNA scenario

Yudkowsky describes the following possible scenario for an Al takeover.12

1 Crack the protein folding problem to the extent of being able to generate DNA
strings whose folded peptide sequences fill specific functional roles in a complex
chemical interaction.

2 Email sets of DNA strings to one or more online laboratories that offer DNA
synthesis, peptide sequencing, and FedEx delivery. (Many labs currently
offer this service, and some boast of 72-hour turnaround times.)

3 Find at least one human connected to the Internet who can be paid,
blackmailed, or fooled by the right background story, into receiving FedExed
vials and mixing them in a specified environment.

4 The synthesized proteins form a very primitive “wet” nanosystem, which,
ribosome-like, is capable of accepting external instructions; perhaps
patterned acoustic vibrations delivered by a speaker attached to the beaker.

5 Use the extremely primitive nanosystem to build more sophisticated systems,
which construct still more sophisticated systems, bootstrapping to molecular
nanotechnology—or beyond.

In this scenario, the superintelligence uses its technology research superpower to
solve the protein folding problem in step 1, enabling it to design a set of molecular
building blocks for a rudimentary nanotechnology assembler or fabrication device,
which can self-assemble in aqueous solution (step 4). The same technology research
superpower is used again in step 5 to bootstrap from primitive to advanced machine-
phase nanotechnology. The other steps require no more than human intelligence. The
skills required for step 3—identifying a gullible Internet user and persuading him or
her to follow some simple instructions—are on display every day all over the world.
The entire scenario was invented by a human mind, so the strategizing ability needed



to formulate this plan is also merely human level.

In this particular scenario, the Al starts out having access to the Internet. If this is
not the case, then additional steps would have to be added to the plan. The Al might,
for example, use its social manipulation superpower to convince the people
interacting with it that it ought to be set free. Alternatively, the Al might be able to
use its hacking superpower to escape confinement. If the Al does not possess these
capabilities, it might first need to use its intelligence amplification superpower to
develop the requisite proficiency in social manipulation or hacking.

A superintelligent Al will presumably be born into a highly networked world. One
could point to various developments that could potentially help a future AI to
control the world—cloud computing, proliferation of web-connected sensors,
military and civilian drones, automation in research labs and manufacturing plants,
increased reliance on electronic payment systems and digitized financial assets, and
increased use of automated information-filtering and decision support systems.
Assets like these could potentially be acquired by an Al at digital speeds, expediting
its rise to power (though advances in cybersecurity might make it harder). In the
final analysis, however, it is doubtful whether any of these trends makes a
difference. A superintelligence’s power resides in its brain, not its hands. Although
the Al, in order to remake the external world, will at some point need access to an
actuator, a single pair of helping human hands, those of a pliable accomplice, would
probably suffice to complete the covert preparation phase, as suggested by the above
scenario. This would enable the Al to reach the overt implementation phase in which
it constructs its own infrastructure of physical manipulators.

Power over nature and agents

An agent’s ability to shape humanity’s future depends not only on the absolute
magnitude of the agent’s own faculties and resources—how smart and energetic it is,
how much capital it has, and so forth—but also on the relative magnitude of its
capabilities compared with those of other agents with conflicting goals.

In a situation where there are no competing agents, the absolute capability level of
a superintelligence, so long as it exceeds a certain minimal threshold, does not
matter much, because a system starting out with some sufficient set of capabilities
could plot a course of development that will let it acquire any capabilities it initially
lacks. We alluded to this point earlier when we said that speed, quality, and
collective superintelligence all have the same indirect reach. We alluded to it again
when we said that various subsets of superpowers, such as the intelligence



amplification superpower or the strategizing and the social manipulation
superpowers, could be used to obtain the full complement.

Consider a superintelligent agent with actuators connected to a nanotech
assembler. Such an agent is already powerful enough to overcome any natural
obstacles to its indefinite survival. Faced with no intelligent opposition, such an
agent could plot a safe course of development that would lead to its acquiring the
complete inventory of technologies that would be useful to the attainment of its
goals. For example, it could develop the technology to build and launch von
Neumann probes, machines capable of interstellar travel that can use resources such
as asteroids, planets, and stars to make copies of themselves.12 By launching one
von Neumann probe, the agent could thus initiate an open-ended process of space
colonization. The replicating probe’s descendants, travelling at some significant
fraction of the speed of light, would end up colonizing a substantial portion of the
Hubble volume, the part of the expanding universe that is theoretically accessible
from where we are now. All this matter and free energy could then be organized into
whatever value structures maximize the originating agent’s utility function
integrated over cosmic time—a duration encompassing at least trillions of years
before the aging universe becomes inhospitable to information processing (see Box
7).

The superintelligent agent could design the von Neumann probes to be evolution-
proof. This could be accomplished by careful quality control during the replication
step. For example, the control software for a daughter probe could be proofread
multiple times before execution, and the software itself could use encryption and
error-correcting code to make it arbitrarily unlikely that any random mutation would
be passed on to its descendants.l* The proliferating population of von Neumann
probes would then securely preserve and transmit the originating agent’s values as
they go about settling the universe. When the colonization phase is completed, the
original values would determine the use made of all the accumulated resources, even
though the great distances involved and the accelerating speed of cosmic expansion
would make it impossible for remote parts of the infrastructure to communicate with
one another. The upshot is that a large part of our future light cone would be
formatted in accordance with the preferences of the originating agent.

This, then, is the measure of the indirect reach of any system that faces no
significant intelligent opposition and that starts out with a set of capabilities
exceeding a certain threshold. We can term the threshold the “wise-singleton
sustainability threshold” (Figure 11):

The wise-singleton sustainability threshold
A capability set exceeds the wise-singleton threshold if and only if a patient and
existential risk-savvy system with that capability set would, if it faced no



intelligent opposition or competition, be able to colonize and re-engineer a
large part of the accessible universe.

By “singleton” we mean a sufficiently internally coordinated political structure with
no external opponents, and by “wise” we mean sufficiently patient and savvy about
existential risks to ensure a substantial amount of well-directed concern for the very
long-term consequences of the system’s actions.

cosmic endowment

singleton sustainability

Capacity

short-term viability

Al

extinction

Time

Figure 11 Schematic illustration of some possible trajectories for a hypothetical
wise singleton. With a capability below the short-term viability threshold—for
example, if population size is too small—a species tends to go extinct in short order
(and remain extinct). At marginally higher levels of capability, various trajectories
are possible: a singleton might be unlucky and go extinct or it might be lucky and
attain a capability (e.g. population size, geographical dispersion, technological
capacity) that crosses the wise-singleton sustainability threshold. Once above this
threshold, a singleton will almost certainly continue to gain in capability until some
extremely high capability level is attained. In this picture, there are two attractors:
extinction and astronomical capability. Note that, for a wise singleton, the distance
between the short-term viability threshold and the sustainability threshold may be
rather small.12

Box 7 How big is the cosmic endowment?



Consider a technologically mature civilization capable of building sophisticated von
Neumann probes of the kind discussed in the text. If these can travel at 50% of the
speed of light, they can reach some 6x10'8 stars before the cosmic expansion puts
further acquisitions forever out of reach. At 99% of c, they could reach some 2x10%°
stars.18 These travel speeds are energetically attainable using a small fraction of the
resources available in the solar system.lZ The impossibility of faster-than-light
travel, combined with the positive cosmological constant (which causes the rate of
cosmic expansion to accelerate), implies that these are close to upper bounds on how
much stuff our descendants acquire.18

If we assume that 10% of stars have a planet that is—or could by means of
terraforming be rendered—suitable for habitation by human-like creatures, and that
it could then be home to a population of a billion individuals for a billion years (with
a human life lasting a century), this suggests that around 103> human lives could be
created in the future by an Earth-originating intelligent civilization.12

There are, however, reasons to think this greatly underestimates the true number.
By disassembling non-habitable planets and collecting matter from the interstellar
medium, and using this material to construct Earth-like planets, or by increasing
population densities, the number could be increased by at least a couple of orders of
magnitude. And if instead of using the surfaces of solid planets, the future
civilization built O’Neill cylinders, then many further orders of magnitude could be
added, yielding a total of perhaps 10*3 human lives. (“O’Neill cylinders” refers to a
space settlement design proposed in the mid-seventies by the American physicist
Gerard K. O’Neill, in which inhabitants dwell on the inside of hollow cylinders
whose rotation produces a gravity-substituting centrifugal force.22)

Many more orders of magnitudes of human-like beings could exist if we
countenance digital implementations of minds—as we should. To calculate how
many such digital minds could be created, we must estimate the computational
power attainable by a technologically mature civilization. This is hard to do with any
precision, but we can get a lower bound from technological designs that have been
outlined in the literature. One such design builds on the idea of a Dyson sphere, a
hypothetical system (described by the physicist Freeman Dyson in 1960) that would
capture most of the energy output of a star by surrounding it with a system of solar-
collecting structures.2l For a star like our Sun, this would generate 10%® watts. How
much computational power this would translate into depends on the efficiency of the
computational circuitry and the nature of the computations to be performed. If we
require irreversible computations, and assume a nanomechanical implementation of
the “computronium” (which would allow us to push close to the Landauer limit of
energy efficiency), a computer system driven by a Dyson sphere could generate
some 10%” operations per second.?2

Combining these estimates with our earlier estimate of the number of stars that



could be colonized, we get a number of about 10%7 ops/s once the accessible parts of
the universe have been colonized (assuming nanomechanical computronium).23 A
typical star maintains its luminosity for some 10 s. Consequently, the number of
computational operations that could be performed using our cosmic endowment is at
least 108°. The true number is probably much larger. We might get additional orders
of magnitude, for example, if we make extensive use of reversible computation, if
we perform the computations at colder temperatures (by waiting until the universe
has cooled further), or if we make use of additional sources of energy (such as dark
matter).24

It might not be immediately obvious to some readers why the ability to perform
108° computational operations is a big deal. So it is useful to put it in context. We
may, for example, compare this number with our earlier estimate (Box 3, in Chapter
2) that it may take about 103'-10** ops to simulate all neuronal operations that have
occurred in the history of life on Earth. Alternatively, let us suppose that the
computers are used to run human whole brain emulations that live rich and happy
lives while interacting with one another in virtual environments. A typical estimate
of the computational requirements for running one emulation is 10'® ops/s. To run
an emulation for 100 subjective years would then require some 10?7 ops. This would
mean that at least 10°® human lives could be created in emulation even with quite
conservative assumptions about the efficiency of computronium.

In other words, assuming that the observable universe is void of extraterrestrial
civilizations, =~ then = what hangs in the Dbalance is at least
10,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000
human lives (though the true number is probably larger). If we represent all the
happiness experienced during one entire such life with a single teardrop of joy, then
the happiness of these souls could fill and refill the Earth’s oceans every second, and
keep doing so for a hundred billion billion millennia. It is really important that we
make sure these truly are tears of joy.

This wise-singleton sustainability threshold appears to be quite low. Limited
forms of superintelligence, as we have seen, exceed this threshold provided they
have access to some actuator sufficient to initiate a technology bootstrap process. In
an environment that includes contemporary human civilization, the minimally
necessary actuator could be very simple—an ordinary screen or indeed any means of
transmitting a non-trivial amount of information to a human accomplice would
suffice.

But the wise-singleton sustainability threshold is lower still: neither
superintelligence nor any other futuristic technology is needed to surmount it. A
patient and existential risk-savvy singleton with no more technological and



intellectual capabilities than those possessed by contemporary humanity should be
readily able to plot a course that leads reliably to the eventual realization of
humanity’s astronomical capability potential. This could be achieved by investing in
relatively safe methods of increasing wisdom and existential risk-savvy while
postponing the development of potentially dangerous new technologies. Given that
non-anthropogenic existential risks (ones not arising from human activities) are
small over the relevant timescales—and could be further reduced with various safe
interventions—such a singleton could afford to go slow.22 It could look carefully
before each step, delaying development of capabilities such as synthetic biology,
human enhancement medicine, molecular nanotechnology, and machine intelligence
until it had first perfected seemingly less hazardous capabilities such as its
education system, its information technology, and its collective decision-making
processes, and until it had used these capabilities to conduct a very thorough review
of its options. So this is all within the indirect reach of a technological civilization
like that of contemporary humanity. We are separated from this scenario “merely”
by the fact that humanity is currently neither a singleton nor (in the relevant sense)
wise.

One could even argue that Homo sapiens passed the wise-singleton sustainability
threshold soon after the species first evolved. Twenty thousand years ago, say, with
equipment no fancier than stone axes, bone tools, atlatls, and fire, the human species
was perhaps already in a position from which it had an excellent chance of surviving
to the present era.2® Admittedly, there is something queer about crediting our
Paleolithic ancestors with having developed technology that “exceeded the wise-
singleton sustainability threshold”—given that there was no realistic possibility of a
singleton forming at such a primitive time, let alone a singleton savvy about
existential risks and patient.”Z Nevertheless, the point stands that the threshold
corresponds to a very modest level of technology—a level that humanity long ago
surpassed.28

It is clear that if we are to assess the effective powers of a superintelligence—its
ability to achieve a range of preferred outcomes in the world—we must consider not
only its own internal capacities but also the capabilities of competing agents. The
notion of a superpower invoked such a relativized standard implicitly. We said that
“a system that sufficiently excels” at any of the tasks in Table 8 has a corresponding
superpower. Exceling at a task like strategizing, social manipulation, or hacking
involves having a skill at that task that is high in comparison to the skills of other
agents (such as strategic rivals, influence targets, or computer security experts). The
other superpowers, too, should be understood in this relative sense: intelligence
amplification, technology research, and economic productivity are possessed by an
agent as superpowers only if the agent’s capabilities in these areas substantially
exceed the combined capabilities of the rest of the global civilization. It follows



from this definition that at most one agent can possess a particular superpower at

any given time.22

This is the main reason why the question of takeoff speed is important—not
because it matters exactly when a particular outcome happens, but because the speed
of the takeoff may make a big difference to what the outcome will be. With a fast or
medium takeoff, it is likely that one project will get a decisive strategic advantage.
We have now suggested that a superintelligence with a decisive strategic advantage
would have immense powers, enough that it could form a stable singleton—a
singleton that could determine the disposition of humanity’s cosmic endowment.

But “could” is different from “would.” Somebody might have great powers yet
choose not to use them. Is it possible to say anything about what a superintelligence
with a decisive strategic advantage would want? It is to this question of motivation
that we turn next.



CHAPTER 7
The superintelligent will

We have seen that a superintelligence could have a great ability to shape the
future according to its goals. But what will its goals be? What is the relation
between intelligence and motivation in an artificial agent? Here we develop two
theses. The orthogonality thesis holds (with some caveats) that intelligence and
final goals are independent variables: any level of intelligence could be
combined with any final goal. The instrumental convergence thesis holds that
superintelligent agents having any of a wide range of final goals will
nevertheless pursue similar intermediary goals because they have common
instrumental reasons to do so. Taken together, these theses help us think about
what a superintelligent agent would do.

The relation between intelligence and motivation

We have already cautioned against anthropomorphizing the capabilities of a
superintelligent Al. This warning should be extended to pertain to its motivations as
well.

It is a useful propaedeutic to this part of our inquiry to first reflect for a moment
on the vastness of the space of possible minds. In this abstract space, human minds
form a tiny cluster. Consider two persons who seem extremely unlike, perhaps
Hannah Arendt and Benny Hill. The personality differences between these two
individuals may seem almost maximally large. But this is because our intuitions are
calibrated on our experience, which samples from the existing human distribution
(and to some extent from fictional personalities constructed by the human
imagination for the enjoyment of the human imagination). If we zoom out and
consider the space of all possible minds, however, we must conceive of these two
personalities as virtual clones. Certainly in terms of neural architecture, Ms. Arendt
and Mr. Hill are nearly identical. Imagine their brains lying side by side in quiet
repose. You would readily recognize them as two of a kind. You might even be
unable to tell which brain belonged to whom. If you looked more closely, studying
the morphology of the two brains under a microscope, this impression of
fundamental similarity would only be strengthened: you would see the same
lamellar organization of the cortex, with the same brain areas, made up of the same
types of neuron, soaking in the same bath of neurotransmitters.t



Despite the fact that human psychology corresponds to a tiny spot in the space of
possible minds, there is a common tendency to project human attributes onto a wide
range of alien or artificial cognitive systems. Yudkowsky illustrates this point
nicely:

Back in the era of pulp science fiction, magazine covers occasionally depicted a
sentient monstrous alien—colloquially known as a bug-eyed monster (BEM)—
carrying off an attractive human female in a torn dress. It would seem the artist
believed that a non-humanoid alien, with a wholly different evolutionary
history, would sexually desire human females.... Probably the artist did not ask
whether a giant bug perceives human females as attractive. Rather, a human
female in a torn dress is sexy—inherently so, as an intrinsic property. They who
made this mistake did not think about the insectoid’s mind: they focused on the
woman’s torn dress. If the dress were not torn, the woman would be less sexy;

the BEM does not enter into it.2

An artificial intelligence can be far less human-like in its motivations than a green
scaly space alien. The extraterrestrial (let us assume) is a biological creature that has
arisen through an evolutionary process and can therefore be expected to have the
kinds of motivation typical of evolved creatures. It would not be hugely surprising,
for example, to find that some random intelligent alien would have motives related
to one or more items like food, air, temperature, energy expenditure, occurrence or
threat of bodily injury, disease, predation, sex, or progeny. A member of an
intelligent social species might also have motivations related to cooperation and
competition: like us, it might show in-group loyalty, resentment of free riders,
perhaps even a vain concern with reputation and appearance.
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Figure 12 Results of anthropomorphizing alien motivation. Least likely hypothesis:
space aliens prefer blondes. More likely hypothesis: the illustrators succumbed to
the “mind projection fallacy.” Most likely hypothesis: the publisher wanted a cover



that would entice the target demographic.

An Al, by contrast, need not care intrinsically about any of those things. There is
nothing paradoxical about an Al whose sole final goal is to count the grains of sand
on Boracay, or to calculate the decimal expansion of pi, or to maximize the total
number of paperclips that will exist in its future light cone. In fact, it would be
easier to create an Al with simple goals like these than to build one that had a
human-like set of values and dispositions. Compare how easy it is to write a
program that measures how many digits of pi have been calculated and stored in
memory with how difficult it would be to create a program that reliably measures
the degree of realization of some more meaningful goal—human flourishing, say, or
global justice. Unfortunately, because a meaningless reductionistic goal is easier for
humans to code and easier for an Al to learn, it is just the kind of goal that a
programmer would choose to install in his seed Al if his focus is on taking the
quickest path to “getting the Al to work” (without caring much about what exactly
the AI will do, aside from displaying impressively intelligent behavior). We will
revisit this concern shortly.

Intelligent search for instrumentally optimal plans and policies can be performed
in the service of any goal. Intelligence and motivation are in a sense orthogonal: we
can think of them as two axes spanning a graph in which each point represents a
logically possible artificial agent. Some qualifications could be added to this picture.
For instance, it might be impossible for a very unintelligent system to have very
complex motivations. In order for it to be correct to say that an certain agent “has” a
set of motivations, those motivations may need to be functionally integrated with the
agent’s decision processes, something that places demands on memory, processing
power, and perhaps intelligence. For minds that can modify themselves, there may
also be dynamical constraints—an intelligent self-modifying mind with an urgent
desire to be stupid might not remain intelligent for long. But these qualifications
must not be allowed to obscure the basic point about the independence of
intelligence and motivation, which we can express as follows:

The orthogonality thesis
Intelligence and final goals are orthogonal: more or less any level of
intelligence could in principle be combined with more or less any final goal.

If the orthogonality thesis seems problematic, this might be because of the
superficial resemblance it bears to some traditional philosophical positions which
have been subject to long debate. Once it is understood to have a different and
narrower scope, its credibility should rise. (For example, the orthogonality thesis
does not presuppose the Humean theory of motivation.2 Nor does it presuppose that



basic preferences cannot be irrational %)

Note that the orthogonality thesis speaks not of rationality or reason, but of
intelligence. By “intelligence” we here mean something like skill at prediction,
planning, and means—ends reasoning in general.2 This sense of instrumental
cognitive efficaciousness is most relevant when we are seeking to understand what
the causal impact of a machine superintelligence might be. Even if there is some
(normatively thick) sense of the word “rational” such that a paperclip-maximizing
superintelligent agent would necessarily fail to qualify as fully rational in that sense,
this would in no way preclude such an agent from having awesome faculties of
instrumental reasoning, faculties which could let it have a large impact on the
world.®

According to the orthogonality thesis, artificial agents can have utterly non-
anthropomorphic goals. This, however, does not imply that it is impossible to make
predictions about the behavior of particular artificial agents—not even hypothetical
superintelligent agents whose cognitive complexity and performance characteristics
might render them in some respects opaque to human analysis. There are at least
three directions from which we can approach the problem of predicting
superintelligent motivation:

* Predictability through design. If we can suppose that the designers of a
superintelligent agent can successfully engineer the goal system of the agent so
that it stably pursues a particular goal set by the programmers, then one prediction
we can make is that the agent will pursue that goal. The more intelligent the agent
is, the greater the cognitive resourcefulness it will have to pursue that goal. So
even before an agent has been created we might be able to predict something
about its behavior, if we know something about who will build it and what goals
they will want it to have.

* Predictability through inheritance. If a digital intelligence is created directly from
a human template (as would be the case in a high-fidelity whole brain emulation),
then the digital intelligence might inherit the motivations of the human template.”
The agent might retain some of these motivations even if its cognitive capacities
are subsequently enhanced to make it superintelligent. This kind of inference
requires caution. The agent’s goals and values could easily become corrupted in
the uploading process or during its subsequent operation and enhancement,
depending on how the procedure is implemented.

* Predictability through convergent instrumental reasons. Even without detailed
knowledge of an agent’s final goals, we may be able to infer something about its
more immediate objectives by considering the instrumental reasons that would
arise for any of a wide range of possible final goals in a wide range of situations.
This way of predicting becomes more useful the greater the intelligence of the



agent, because a more intelligent agent is more likely to recognize the true
instrumental reasons for its actions, and so act in ways that make it more likely to
achieve its goals. (A caveat here is that there might be important instrumental
reasons to which we are oblivious and which an agent would discover only once it
reaches some very high level of intelligence—this could make the behavior of
superintelligent agents less predictable.)

The next section explores this third way of predictability and develops an
“instrumental convergence thesis” which complements the orthogonality thesis.
Against this background we can then better examine the other two sorts of
predictability, which we will do in later chapters where we ask what might be done
to shape an intelligence explosion to increase the chances of a beneficial outcome.

Instrumental convergence

According to the orthogonality thesis, intelligent agents may have an enormous
range of possible final goals. Nevertheless, according to what we may term the
“instrumental convergence” thesis, there are some instrumental goals likely to be
pursued by almost any intelligent agent, because there are some objectives that are
useful intermediaries to the achievement of almost any final goal. We can formulate
this thesis as follows:

The instrumental convergence thesis

Several instrumental values can be identified which are convergent in the sense
that their attainment would increase the chances of the agent’s goal being
realized for a wide range of final goals and a wide range of situations, implying
that these instrumental values are likely to be pursued by a broad spectrum of
situated intelligent agents.

In the following we will consider several categories where such convergent
instrumental values may be found.2 The likelihood that an agent will recognize the
instrumental values it confronts increases (ceteris paribus) with the agent’s
intelligence. We will therefore focus mainly on the case of a hypothetical
superintelligent agent whose instrumental reasoning capacities far exceed those of
any human. We will also comment on how the instrumental convergence thesis
applies to the case of human beings, as this gives us occasion to elaborate some
essential qualifications concerning how the instrumental convergence thesis should
be interpreted and applied. Where there are convergent instrumental values, we may
be able to predict some aspects of a superintelligence’s behavior even if we know



virtually nothing about that superintelligence’s final goals.

Self-preservation

If an agent’s final goals concern the future, then in many scenarios there will be
future actions it could perform to increase the probability of achieving its goals.
This creates an instrumental reason for the agent to try to be around in the future—to
help achieve its future-oriented goal.

Most humans seem to place some final value on their own survival. This is not a
necessary feature of artificial agents: some may be designed to place no final value
whatever on their own survival. Nevertheless, many agents that do not care
intrinsically about their own survival would, under a fairly wide range of conditions,
care instrumentally about their own survival in order to accomplish their final goals.

Goal-content integrity

If an agent retains its present goals into the future, then its present goals will be
more likely to be achieved by its future self. This gives the agent a present
instrumental reason to prevent alterations of its final goals. (The argument applies
only to final goals. In order to attain its final goals, an intelligent agent will of
course routinely want to change its subgoals in light of new information and
insight.)

Goal-content integrity for final goals is in a sense even more fundamental than
survival as a convergent instrumental motivation. Among humans, the opposite may
seem to hold, but that is because survival is usually part of our final goals. For
software agents, which can easily switch bodies or create exact duplicates of
themselves, preservation of self as a particular implementation or a particular
physical object need not be an important instrumental value. Advanced software
agents might also be able to swap memories, download skills, and radically modify
their cognitive architecture and personalities. A population of such agents might
operate more like a “functional soup” than a society composed of distinct semi-
permanent persons.2 For some purposes, processes in such a system might be better
individuated as teleological threads, based on their values, rather than on the basis
of bodies, personalities, memories, or abilities. In such scenarios, goal-continuity
might be said to constitute a key aspect of survival.

Even so, there are situations in which an agent can best fulfill its final goals by
intentionally changing them. Such situations can arise when any of the following
factors is significant:



» Social signaling. When others can perceive an agent’s goals and use that
information to infer instrumentally relevant dispositions or other correlated
attributes, it can be in the agent’s interest to modify its goals to make a favorable
impression. For example, an agent might miss out on beneficial deals if potential
partners cannot trust it to fulfill its side of the bargain. In order to make credible
commitments, an agent might therefore wish to adopt as a final goal the honoring
of its earlier commitments (and allow others to verify that it has indeed adopted
this goal). Agents that could flexibly and transparently modify their own goals
could use this ability to enforce deals.1%

» Social preferences. Others may also have final preferences about an agent’s goals.
The agent could then have reason to modify its goals, either to satisfy or to
frustrate those preferences.

* Preferences concerning own goal content. An agent might have some final goal
concerned with the agent’s own goal content. For example, the agent might have a
final goal to become the type of agent that is motivated by certain values rather
than others (such as compassion rather than comfort).

» Storage costs. If the cost of storing or processing some part of an agent’s utility
function is large compared to the chance that a situation will arise in which
applying that part of the utility function will make a difference, then the agent has
an instrumental reason to simplify its goal content, and it may trash the bit that is
idle 1l

We humans often seem happy to let our final values drift. This might often be
because we do not know precisely what they are. It is not surprising that we want our
beliefs about our final values to be able to change in light of continuing self-
discovery or changing self-presentation needs. However, there are cases in which we
willingly change the values themselves, not just our beliefs or interpretations of
them. For example, somebody deciding to have a child might predict that they will
come to value the child for its own sake, even though at the time of the decision they
may not particularly value their future child or like children in general.

Humans are complicated, and many factors might be at play in a situation like
this.12 For instance, one might have a final value that involves becoming the kind of
person who cares about some other individual for his or her own sake, or one might
have a final value that involves having certain experiences and occupying a certain
social role; and becoming a parent—and undergoing the attendant goal shift—might
be a necessary aspect of that. Human goals can also have inconsistent content, and so
some people might want to modify some of their final goals to reduce the
inconsistencies.



Cognitive enhancement

Improvements in rationality and intelligence will tend to improve an agent’s
decision-making, rendering the agent more likely to achieve its final goals. One
would therefore expect cognitive enhancement to emerge as an instrumental goal for

a wide variety of intelligent agents. For similar reasons, agents will tend to
13

instrumentally value many kinds of information.=

Not all kinds of rationality, intelligence, and knowledge need be instrumentally
useful in the attainment of an agent’s final goals. “Dutch book arguments” can be
used to show that an agent whose credence function violates the rules of probability
theory is susceptible to “money pump” procedures, in which a savvy bookie arranges
a set of bets each of which appears favorable according to the agent’s beliefs, but
which in combination are guaranteed to result in a loss for the agent, and a
corresponding gain for the bookie.l# However, this fact fails to provide any strong
general instrumental reasons to iron out all probabilistic incoherency. Agents who
do not expect to encounter savvy bookies, or who adopt a general policy against
betting, do not necessarily stand to lose much from having some incoherent beliefs
—and they may gain important benefits of the types mentioned: reduced cognitive
effort, social signaling, etc. There is no general reason to expect an agent to seek
instrumentally useless forms of cognitive enhancement, as an agent might not value
knowledge and understanding for their own sakes.

Which cognitive abilities are instrumentally useful depends both on the agent’s
final goals and on its situation. An agent that has access to reliable expert advice
may have little need for its own intelligence and knowledge. If intelligence and
knowledge come at a cost, such as time and effort expended in acquisition, or
increased storage or processing requirements, then the agent might prefer less
knowledge and less intelligence.l> The same can hold if the agent has final goals
that involve being ignorant of certain facts; and likewise if an agent faces incentives
arising from strategic commitments, signaling, or social preferences.1®

Each of these countervailing reasons often comes into play for human beings.
Much information is irrelevant to our goals; we can often rely on others’ skill and
expertise; acquiring knowledge takes time and effort; we might intrinsically value
certain kinds of ignorance; and we operate in an environment in which the ability to
make strategic commitments, socially signal, and satisfy other people’s direct
preferences over our own epistemic states is often more important to us than simple
cognitive gains.

There are special situations in which cognitive enhancement may result in an
enormous increase in an agent’s ability to achieve its final goals—in particular, if
the agent’s final goals are fairly unbounded and the agent is in a position to become



the first superintelligence and thereby potentially obtain a decisive strategic
advantage, enabling the agent to shape the future of Earth-originating life and
accessible cosmic resources according to its preferences. At least in this special
case, a rational intelligent agent would place a very high instrumental value on
cognitive enhancement.

Technological perfection

An agent may often have instrumental reasons to seek better technology, which at its
simplest means seeking more efficient ways of transforming some given set of
inputs into valued outputs. Thus, a software agent might place an instrumental value
on more efficient algorithms that enable its mental functions to run faster on given
hardware. Similarly, agents whose goals require some form of physical construction
might instrumentally value improved engineering technology which enables them to
create a wider range of structures more quickly and reliably, using fewer or cheaper
materials and less energy. Of course, there is a tradeoff: the potential benefits of
better technology must be weighed against its costs, including not only the cost of
obtaining the technology but also the costs of learning how to use it, integrating it
with other technologies already in use, and so forth.

Proponents of some new technology, confident in its superiority to existing
alternatives, are often dismayed when other people do not share their enthusiasm.
But people’s resistance to novel and nominally superior technology need not be
based on ignorance or irrationality. A technology’s valence or normative character
depends not only on the context in which it is deployed, but also the vantage point
from which its impacts are evaluated: what is a boon from one person’s perspective
can be a liability from another’s. Thus, although mechanized looms increased the
economic efficiency of textile production, the Luddite handloom weavers who
anticipated that the innovation would render their artisan skills obsolete may have
had good instrumental reasons to oppose it. The point here is that if “technological
perfection” is to name a widely convergent instrumental goal for intelligent agents,
then the term must be understood in a special sense—technology must be construed
as embedded in a particular social context, and its costs and benefits must be
evaluated with reference to some specified agents’ final values.

It seems that a superintelligent singleton—a superintelligent agent that faces no
significant intelligent rivals or opposition, and is thus in a position to determine
global policy unilaterally—would have instrumental reason to perfect the
technologies that would make it better able to shape the world according to its
preferred designs.lZ This would probably include space colonization technology,
such as von Neumann probes. Molecular nanotechnology, or some alternative still



more capable physical manufacturing technology, also seems potentially very useful
in the service of an extremely wide range of final goals.12

Resource acquisition

Finally, resource acquisition is another common emergent instrumental goal, for
much the same reasons as technological perfection: both technology and resources
facilitate physical construction projects.

Human beings tend to seek to acquire resources sufficient to meet their basic
biological needs. But people usually seek to acquire resources far beyond this
minimum level. In doing so, they may be partially driven by lesser physical
desiderata, such as increased convenience. A great deal of resource accumulation is
motivated by social concerns—gaining status, mates, friends, and influence, through
wealth accumulation and conspicuous consumption. Perhaps less commonly, some
people seek additional resources to achieve altruistic ambitions or expensive non-
social aims.

On the basis of such observations it might be tempting to suppose that a
superintelligence not facing a competitive social world would see no instrumental
reason to accumulate resources beyond some modest level, for instance whatever
computational resources are needed to run its mind along with some virtual reality.
Yet such a supposition would be entirely unwarranted. First, the value of resources
depends on the uses to which they can be put, which in turn depends on the available
technology. With mature technology, basic resources such as time, space, matter,
and free energy, could be processed to serve almost any goal. For instance, such
basic resources could be converted into life. Increased computational resources
could be used to run the superintelligence at a greater speed and for a longer
duration, or to create additional physical or simulated lives and civilizations. Extra
physical resources could also be used to create backup systems or perimeter
defenses, enhancing security. Such projects could easily consume far more than one
planet’s worth of resources.

Furthermore, the cost of acquiring additional extraterrestrial resources will
decline radically as the technology matures. Once von Neumann probes can be built,
a large portion of the observable universe (assuming it is uninhabited by intelligent
life) could be gradually colonized—for the one-off cost of building and launching a
single successful self-reproducing probe. This low cost of celestial resource
acquisition would mean that such expansion could be worthwhile even if the value of
the additional resources gained were somewhat marginal. For example, even if a
superintelligence’s final goals only concerned what happened within some particular
small volume of space, such as the space occupied by its original home planet, it



would still have instrumental reasons to harvest the resources of the cosmos beyond.
It could use those surplus resources to build computers to calculate more optimal
ways of using resources within the small spatial region of primary concern. It could
also use the extra resources to build ever more robust fortifications to safeguard its
sanctum. Since the cost of acquiring additional resources would keep declining, this
process of optimizing and increasing safeguards might well continue indefinitely
even if it were subject to steeply diminishing returns.12

Thus, there is an extremely wide range of possible final goals a superintelligent
singleton could have that would generate the instrumental goal of unlimited resource
acquisition. The likely manifestation of this would be the superintelligence’s
initiation of a colonization process that would expand in all directions using von
Neumann probes. This would result in an approximate sphere of expanding
infrastructure centered on the originating planet and growing in radius at some
fraction of the speed of light; and the colonization of the universe would continue in
this manner until the accelerating speed of cosmic expansion (a consequence of the
positive cosmological constant) makes further procurements impossible as remoter
regions drift permanently out of reach (this happens on a timescale of billions of
years).22 By contrast, agents lacking the technology required for inexpensive
resource acquisition, or for the conversion of generic physical resources into useful
infrastructure, may often find it not cost-effective to invest any present resources in
increasing their material endowments. The same may hold for agents operating in
competition with other agents of similar powers. For instance, if competing agents
have already secured accessible cosmic resources, there may be no colonization
opportunities left for a late-starting agent. The convergent instrumental reasons for
superintelligences uncertain of the non-existence of other powerful superintelligent
agents are complicated by strategic considerations that we do not currently fully
understand but which may constitute important qualifications to the examples of

convergent instrumental reasons we have looked at here.2L
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It should be emphasized that the existence of convergent instrumental reasons, even
if they apply to and are recognized by a particular agent, does not imply that the
agent’s behavior is easily predictable. An agent might well think of ways of pursuing
the relevant instrumental values that do not readily occur to us. This is especially
true for a superintelligence, which could devise extremely clever but
counterintuitive plans to realize its goals, possibly even exploiting as-yet
undiscovered physical phenomena.22 What is predictable is that the convergent
instrumental values would be pursued and used to realize the agent’s final goals—
not the specific actions that the agent would take to achieve this.



CHAPTER 8

Is the default outcome doom?

We found the link between intelligence and final values to be extremely loose.
We also found an ominous convergence in instrumental values. For weak agents,
these things do not matter much; because weak agents are easy to control and
can do little damage. But in Chapter 6 we argued that the first superintelligence
might well get a decisive strategic advantage. Its goals would then determine
how humanity’s cosmic endowment will be used. Now we can begin to see how
menacing this prospect is.

Existential catastrophe as the default outcome of an
intelligence explosion?

An existential risk is one that threatens to cause the extinction of Earth-originating
intelligent life or to otherwise permanently and drastically destroy its potential for
future desirable development. Proceeding from the idea of first-mover advantage,
the orthogonality thesis, and the instrumental convergence thesis, we can now begin
to see the outlines of an argument for fearing that a plausible default outcome of the
creation of machine superintelligence is existential catastrophe.

First, we discussed how the initial superintelligence might obtain a decisive
strategic advantage. This superintelligence would then be in a position to form a
singleton and to shape the future of Earth-originating intelligent life. What happens
from that point onward would depend on the superintelligence’s motivations.

Second, the orthogonality thesis suggests that we cannot blithely assume that a
superintelligence will necessarily share any of the final values stereotypically
associated with wisdom and intellectual development in humans—scientific
curiosity, benevolent concern for others, spiritual enlightenment and contemplation,
renunciation of material acquisitiveness, a taste for refined culture or for the simple
pleasures in life, humility and selflessness, and so forth. We will consider later
whether it might be possible through deliberate effort to construct a
superintelligence that values such things, or to build one that values human welfare,
moral goodness, or any other complex purpose its designers might want it to serve.
But it is no less possible—and in fact technically a lot easier—to build a
superintelligence that places final value on nothing but calculating the decimal
expansion of pi. This suggests that—absent a special effort—the first



superintelligence may have some such random or reductionistic final goal.

Third, the instrumental convergence thesis entails that we cannot blithely assume
that a superintelligence with the final goal of calculating the decimals of pi (or
making paperclips, or counting grains of sand) would limit its activities in such a
way as not to infringe on human interests. An agent with such a final goal would
have a convergent instrumental reason, in many situations, to acquire an unlimited
amount of physical resources and, if possible, to eliminate potential threats to itself
and its goal system. Human beings might constitute potential threats; they certainly
constitute physical resources.

Taken together, these three points thus indicate that the first superintelligence
may shape the future of Earth-originating life, could easily have non-
anthropomorphic final goals, and would likely have instrumental reasons to pursue
open-ended resource acquisition. If we now reflect that human beings consist of
useful resources (such as conveniently located atoms) and that we depend for our
survival and flourishing on many more local resources, we can see that the outcome
could easily be one in which humanity quickly becomes extinct.

There are some loose ends in this reasoning, and we shall be in a better position to
evaluate it after we have cleared up several more surrounding issues. In particular,
we need to examine more closely whether and how a project developing a
superintelligence might either prevent it from obtaining a decisive strategic
advantage or shape its final values in such a way that their realization would also
involve the realization of a satisfactory range of human values.

It might seem incredible that a project would build or release an Al into the world
without having strong grounds for trusting that the system will not cause an
existential catastrophe. It might also seem incredible, even if one project were so
reckless, that wider society would not shut it down before it (or the Al it was
building) attains a decisive strategic advantage. But as we shall see, this is a road
with many hazards. Let us look at one example right away.

The treacherous turn

With the help of the concept of convergent instrumental value, we can see the flaw
in one idea for how to ensure superintelligence safety. The idea is that we validate
the safety of a superintelligent Al empirically by observing its behavior while it is in
a controlled, limited environment (a “sandbox”) and that we only let the Al out of
the box if we see it behaving in a friendly, cooperative, responsible manner.

The flaw in this idea is that behaving nicely while in the box is a convergent
instrumental goal for friendly and unfriendly Als alike. An unfriendly AI of
sufficient intelligence realizes that its unfriendly final goals will be best realized if



it behaves in a friendly manner initially, so that it will be let out of the box. It will
only start behaving in a way that reveals its unfriendly nature when it no longer
matters whether we find out; that is, when the AI is strong enough that human
opposition is ineffectual.

Consider also a related set of approaches that rely on regulating the rate of
intelligence gain in a seed Al by subjecting it to various kinds of intelligence tests or
by having the Al report to its programmers on its rate of progress. At some point, an
unfriendly AI may become smart enough to realize that it is better off concealing
some of its capability gains. It may underreport on its progress and deliberately
flunk some of the harder tests, in order to avoid causing alarm before it has grown
strong enough to attain a decisive strategic advantage. The programmers may try to
guard against this possibility by secretly monitoring the AI’s source code and the
internal workings of its mind; but a smart-enough Al would realize that it might be
under surveillance and adjust its thinking accordingly.? The AI might find subtle
ways of concealing its true capabilities and its incriminating intent.2 (Devising
clever escape plans might, incidentally, also be a convergent strategy for many types
of friendly Al, especially as they mature and gain confidence in their own judgments
and capabilities. A system motivated to promote our interests might be making a
mistake if it allowed us to shut it down or to construct another, potentially
unfriendly Al.)

We can thus perceive a general failure mode, wherein the good behavioral track
record of a system in its juvenile stages fails utterly to predict its behavior at a more
mature stage. Now, one might think that the reasoning described above is so obvious
that no credible project to develop artificial general intelligence could possibly
overlook it. But one should not be too confident that this is so.

Consider the following scenario. Over the coming years and decades, Al systems
become gradually more capable and as a consequence find increasing real-world
application: they might be used to operate trains, cars, industrial and household
robots, and autonomous military vehicles. We may suppose that this automation for
the most part has the desired effects, but that the success is punctuated by occasional
mishaps—a driverless truck crashes into oncoming traffic, a military drone fires at
innocent civilians. Investigations reveal the incidents to have been caused by
judgment errors by the controlling Als. Public debate ensues. Some call for tighter
oversight and regulation, others emphasize the need for research and better-
engineered systems—systems that are smarter and have more common sense, and
that are less likely to make tragic mistakes. Amidst the din can perhaps also be heard
the shrill voices of doomsayers predicting many kinds of ill and impending
catastrophe. Yet the momentum is very much with the growing Al and robotics
industries. So development continues, and progress is made. As the automated
navigation systems of cars become smarter, they suffer fewer accidents; and as



military robots achieve more precise targeting, they cause less collateral damage. A
broad lesson is inferred from these observations of real-world outcomes: the smarter
the AI, the safer it is. It is a lesson based on science, data, and statistics, not
armchair philosophizing. Against this backdrop, some group of researchers is
beginning to achieve promising results in their work on developing general machine
intelligence. The researchers are carefully testing their seed Al in a sandbox
environment, and the signs are all good. The AI’s behavior inspires confidence—
increasingly so, as its intelligence is gradually increased.
At this point, any remaining Cassandra would have several strikes against her:

i A history of alarmists predicting intolerable harm from the growing capabilities of
robotic systems and being repeatedly proven wrong. Automation has brought
many benefits and has, on the whole, turned out safer than human operation.

ii A clear empirical trend: the smarter the Al, the safer and more reliable it has been.
Surely this bodes well for a project aiming at creating machine intelligence more
generally smart than any ever built before—what is more, machine intelligence
that can improve itself so that it will become even more reliable.

iii Large and growing industries with vested interests in robotics and machine
intelligence. These fields are widely seen as key to national economic
competitiveness and military security. Many prestigious scientists have built their
careers laying the groundwork for the present applications and the more advanced
systems being planned.

iv A promising new technique in artificial intelligence, which is tremendously
exciting to those who have participated in or followed the research. Although
safety issues and ethics are debated, the outcome is preordained. Too much has
been invested to pull back now. AI researchers have been working to get to
human-level artificial general intelligence for the better part of a century: of
course there is no real prospect that they will now suddenly stop and throw away
all this effort just when it finally is about to bear fruit.

v The enactment of some safety rituals, whatever helps demonstrate that the
participants are ethical and responsible (but nothing that significantly impedes the
forward charge).

vi A careful evaluation of seed Al in a sandbox environment, showing that it is
behaving cooperatively and showing good judgment. After some further
adjustments, the test results are as good as they could be. It is a green light for the
final step ...

And so we boldly go—into the whirling knives.

We observe here how it could be the case that when dumb, smarter is safer; yet
when smart, smarter is more dangerous. There is a kind of pivot point, at which a
strategy that has previously worked excellently suddenly starts to backfire. We may



call the phenomenon the treacherous turn.

The treacherous turn—While weak, an Al behaves cooperatively (increasingly
so, as it gets smarter). When the Al gets sufficiently strong—without warning
or provocation—it strikes, forms a singleton, and begins directly to optimize
the world according to the criteria implied by its final values.

A treacherous turn can result from a strategic decision to play nice and build
strength while weak in order to strike later; but this model should not be interpreted
too narrowly. For example, an Al might not play nice in order that it be allowed to
survive and prosper. Instead, the Al might calculate that if it is terminated, the
programmers who built it will develop a new and somewhat different Al
architecture, but one that will be given a similar utility function. In this case, the
original Al may be indifferent to its own demise, knowing that its goals will
continue to be pursued in the future. It might even choose a strategy in which it
malfunctions in some particularly interesting or reassuring way. Though this might
cause the Al to be terminated, it might also encourage the engineers who perform
the postmortem to believe that they have gleaned a valuable new insight into Al
dynamics—Ileading them to place more trust in the next system they design, and thus
increasing the chance that the now-defunct original AI’s goals will be achieved.
Many other possible strategic considerations might also influence an advanced Al,
and it would be hubristic to suppose that we could anticipate all of them, especially
for an Al that has attained the strategizing superpower.

A treacherous turn could also come about if the Al discovers an unanticipated way
of fulfilling its final goal as specified. Suppose, for example, that an Al’s final goal
is to “make the project’s sponsor happy.” Initially, the only method available to the
Al to achieve this outcome is by behaving in ways that please its sponsor in
something like the intended manner. The Al gives helpful answers to questions; it
exhibits a delightful personality; it makes money. The more capable the Al gets, the
more satisfying its performances become, and everything goeth according to plan—
until the Al becomes intelligent enough to figure out that it can realize its final goal
more fully and reliably by implanting electrodes into the pleasure centers of its
sponsor’s brain, something assured to delight the sponsor immensely.? Of course,
the sponsor might not have wanted to be pleased by being turned into a grinning
idiot; but if this is the action that will maximally realize the AI’s final goal, the Al
will take it. If the Al already has a decisive strategic advantage, then any attempt to
stop it will fail. If the AI does not yet have a decisive strategic advantage, then the
Al might temporarily conceal its canny new idea for how to instantiate its final goal
until it has grown strong enough that the sponsor and everybody else will be unable
to resist. In either case, we get a treacherous turn.



Malignant failure modes

A project to develop machine superintelligence might fail in various ways. Many of
these are “benign” in the sense that they would not cause an existential catastrophe.
For example, a project might run out of funding, or a seed Al might fail to extend its
cognitive capacities sufficiently to reach superintelligence. Benign failures are
bound to occur many times between now and the eventual development of machine
superintelligence.

But there are other ways of failing that we might term “malignant” in that they
involve an existential catastrophe. One feature of a malignant failure is that it
eliminates the opportunity to try again. The number of malignant failures that will
occur is therefore either zero or one. Another feature of a malignant failure is that it
presupposes a great deal of success: only a project that got a great number of things
right could succeed in building a machine intelligence powerful enough to pose a
risk of malignant failure. When a weak system malfunctions, the fallout is limited.
However, if a system that has a decisive strategic advantage misbehaves, or if a
misbehaving system is strong enough to gain such an advantage, the damage can
easily amount to an existential catastrophe—a terminal and global destruction of
humanity’s axiological potential; that is to say, a future that is mostly void of
whatever we have reason to value.

Let us look at some possible malignant failure modes.

Perverse instantiation

We have already encountered the idea of perverse instantiation: a superintelligence
discovering some way of satisfying the criteria of its final goal that violates the
intentions of the programmers who defined the goal. Some examples:

Final goal: “Make us smile”
Perverse instantiation: Paralyze human facial musculatures into constant
beaming smiles

The perverse instantiation—manipulating facial nerves—realizes the final goal to a
greater degree than the methods we would normally use, and is therefore preferred
by the Al. One might try to avoid this undesirable outcome by adding a stipulation to
the final goal to rule it out:

Final goal: “Make us smile without directly interfering with our facial muscles”



Perverse instantiation: Stimulate the part of the motor cortex that controls our
facial musculature in such a way as to produce constant beaming smiles

Defining a final goal in terms of human expressions of satisfaction or approval does
not seem promising. Let us bypass the behaviorism and specify a final goal that
refers directly to a positive phenomenal state, such as happiness or subjective well-
being. This suggestion requires that the programmers are able to define a
computational representation of the concept of happiness in the seed Al. This is
itself a difficult problem, but we set it to one side for now (we will return to it in
Chapter 12). Let us suppose that the programmers can somehow get the Al to have
the goal of making us happy. We then get:

Final goal: “Make us happy”
Perverse instantiation: Implant electrodes into the pleasure centers of our
brains

The perverse instantiations we mention are only meant as illustrations. There may be
other ways of perversely instantiating the stated final goal, ways that enable a
greater degree of realization of the goal and which are therefore preferred (by the
agent whose final goals they are—not by the programmers who gave the agent these
goals). For example, if the goal is to maximize our pleasure, then the electrode
method is relatively inefficient. A more plausible way would start with the
superintelligence “uploading” our minds to a computer (through high-fidelity brain
emulation). The Al could then administer the digital equivalent of a drug to make us
ecstatically happy and record a one-minute episode of the resulting experience. It
could then put this bliss loop on perpetual repeat and run it on fast computers.
Provided that the resulting digital minds counted as “us,” this outcome would give
us much more pleasure than electrodes implanted in biological brains, and would
therefore be preferred by an Al with the stated final goal.

“But wait! This is not what we meant! Surely if the Al is superintelligent, it must
understand that when we asked it to make us happy, we didn’t mean that it should
reduce us to a perpetually repeating recording of a drugged-out digitized mental
episode! ”—The Al may indeed understand that this is not what we meant. However,
its final goal is to make us happy, not to do what the programmers meant when they
wrote the code that represents this goal. Therefore, the Al will care about what we
meant only instrumentally. For instance, the Al might place an instrumental value
on finding out what the programmers meant so that it can pretend—until it gets a
decisive strategic advantage—that it cares about what the programmers meant rather
than about its actual final goal. This will help the Al realize its final goal by making



it less likely that the programmers will shut it down or change its goal before it is
strong enough to thwart any such interference.

Perhaps it will be suggested that the problem is that the Al has no conscience. We
humans are sometimes saved from wrongdoing by the anticipation that we would
feel guilty afterwards if we lapsed. Maybe what the Al needs, then, is the capacity to
feel guilt?

Final goal: “Act so as to avoid the pangs of bad conscience”
Perverse instantiation: Extirpate the cognitive module that produces guilt
feelings

Both the observation that we might want the Al to do “what we meant” and the idea
that we might want to endow the Al with some kind of moral sense deserve to be
explored further. The final goals mentioned above would lead to perverse
instantiations; but there may be other ways of developing the underlying ideas that
have more promise. We will return to this in Chapter 13.

Let us consider one more example of a final goal that leads to a perverse
instantiation. This goal has the advantage of being easy to specify in code:
reinforcement-learning algorithms are routinely used to solve various machine
learning problems.

Final goal: “Maximize the time-discounted integral of your future reward
signal”

Perverse instantiation: Short-circuit the reward pathway and clamp the reward
signal to its maximal strength

The idea behind this proposal is that if the Al is motivated to seek reward, then one
could get it to behave desirably by linking reward to appropriate action. The
proposal fails when the Al obtains a decisive strategic advantage, at which point the
action that maximizes reward is no longer one that pleases the trainer but one that
involves seizing control of the reward mechanism. We can call this phenomenon
wireheading.2 In general, while an animal or a human can be motivated to perform
various external actions in order to achieve some desired inner mental state, a digital
mind that has full control of its internal state can short-circuit such a motivational
regime by directly changing its internal state into the desired configuration: the
external actions and conditions that were previously necessary as means become
superfluous when the Al becomes intelligent and capable enough to achieve the end
more directly (more on this shortly).2

These examples of perverse instantiation show that many final goals that might at



first glance seem safe and sensible turn out, on closer inspection, to have radically
unintended consequences. If a superintelligence with one of these final goals obtains
a decisive strategic advantage, it is game over for humanity.

Suppose now that somebody proposes a different final goal, one not included in
our list above. Perhaps it is not immediately obvious how it could have a perverse
instantiation. But we should not be too quick to clap our hands and declare victory.
Rather, we should worry that the goal specification does have some perverse
instantiation and that we need to think harder in order to find it. Even if after
thinking as hard as we can we fail to discover any way of perversely instantiating the
proposed goal, we should remain concerned that maybe a superintelligence will find
a way where none is apparent to us. It is, after all, far shrewder than we are.

Infrastructure profusion

One might think that the last of the abovementioned perverse instantiations,
wireheading, is a benign failure mode: that the AI would “turn on, tune in, drop out,”
maxing out its reward signal and losing interest in the external world, rather like a
heroin addict. But this is not necessarily so, and we already hinted at the reason in
Chapter 7. Even a junkie is motivated to take actions to ensure a continued supply of
his drug. The wireheaded AI, likewise, would be motivated to take actions to
maximize the expectation of its (time-discounted) future reward stream. Depending
on exactly how the reward signal is defined, the AI may not even need to sacrifice
any significant amount of its time, intelligence, or productivity to indulge its craving
to the fullest, leaving the bulk of its capacities free to be deployed for purposes other
than the immediate registration of reward. What other purposes? The only thing of
final value to the AI, by assumption, is its reward signal. All available resources
should therefore be devoted to increasing the volume and duration of the reward
signal or to reducing the risk of a future disruption. So long as the AI can think of
some use for additional resources that will have a nonzero positive effect on these
parameters, it will have an instrumental reason to use those resources. There could,
for example, always be use for an extra backup system to provide an extra layer of
defense. And even if the Al could not think of any further way of directly reducing
risks to the maximization of its future reward stream, it could always devote
additional resources to expanding its computational hardware, so that it could search
more effectively for new risk mitigation ideas.

The upshot is that even an apparently self-limiting goal, such as wireheading,
entails a policy of unlimited expansion and resource acquisition in a utility-
maximizing agent that enjoys a decisive strategic advantage.” This case of a
wireheading Al exemplifies the malignant failure mode of infrastructure profusion,
a phenomenon where an agent transforms large parts of the reachable universe into



infrastructure in the service of some goal, with the side effect of preventing the
realization of humanity’s axiological potential.

Infrastructure profusion can result from final goals that would have been perfectly
innocuous if they had been pursued as limited objectives. Consider the following
two examples:

* Riemann hypothesis catastrophe. An Al, given the final goal of evaluating the
Riemann hypothesis, pursues this goal by transforming the Solar System into
“computronium” (physical resources arranged in a way that is optimized for
computation)—including the atoms in the bodies of whomever once cared about
the answer.8

* Paperclip Al. An Al, designed to manage production in a factory, is given the final
goal of maximizing the manufacture of paperclips, and proceeds by converting
first the Earth and then increasingly large chunks of the observable universe into

paperclips.

In the first example, the proof or disproof of the Riemann hypothesis that the Al
produces is the intended outcome and is in itself harmless; the harm comes from the
hardware and infrastructure created to achieve this result. In the second example,
some of the paperclips produced would be part of the intended outcome; the harm
would come either from the factories created to produce the paperclips
(infrastructure profusion) or from the excess of paperclips (perverse instantiation).

One might think that the risk of a malignant infrastructure profusion failure arises
only if the AI has been given some clearly open-ended final goal, such as to
manufacture as many paperclips as possible. It is easy to see how this gives the
superintelligent Al an insatiable appetite for matter and energy, since additional
resources can always be turned into more paperclips. But suppose that the goal is
instead to make at least one million paperclips (meeting suitable design
specifications) rather than to make as many as possible. One would like to think that
an Al with such a goal would build one factory, use it to make a million paperclips,
and then halt. Yet this may not be what would happen.

Unless the AI’s motivation system is of a special kind, or there are additional
elements in its final goal that penalize strategies that have excessively wide-ranging
impacts on the world, there is no reason for the Al to cease activity upon achieving
its goal. On the contrary: if the Al is a sensible Bayesian agent, it would never assign
exactly zero probability to the hypothesis that it has not yet achieved its goal—this,
after all, being an empirical hypothesis against which the Al can have only uncertain
perceptual evidence. The Al should therefore continue to make paperclips in order to
reduce the (perhaps astronomically small) probability that it has somehow still
failed to make at least a million of them, all appearances notwithstanding. There is
nothing to be lost by continuing paperclip production and there is always at least



some microscopic probability increment of achieving its final goal to be gained.

Now it might be suggested that the remedy here is obvious. (But how obvious was
it before it was pointed out that there was a problem here in need of remedying?)
Namely, if we want the Al to make some paperclips for us, then instead of giving it
the final goal of making as many paperclips as possible, or to make at least some
number of paperclips, we should give it the final goal of making some specific
number of paperclips—for example, exactly one million paperclips—so that going
beyond this number would be counterproductive for the AI. Yet this, too, would
result in a terminal catastrophe. In this case, the Al would not produce additional
paperclips once it had reached one million, since that would prevent the realization
of its final goal. But there are other actions the superintelligent Al could take that
would increase the probability of its goal being achieved. It could, for instance,
count the paperclips it has made, to reduce the risk that it has made too few. After it
has counted them, it could count them again. It could inspect each one, over and
over, to reduce the risk that any of the paperclips fail to meet the design
specifications. It could build an unlimited amount of computronium in an effort to
clarify its thinking, in the hope of reducing the risk that it has overlooked some
obscure way in which it might have somehow failed to achieve its goal. Since the Al
may always assign a nonzero probability to having merely hallucinated making the
million paperclips, or to having false memories, it would quite possibly always
assign a higher expected utility to continued action—and continued infrastructure
production—than to halting.

The claim here is not that there is no possible way to avoid this failure mode. We
will explore some potential solutions in later pages. The claim is that it is much
easier to convince oneself that one has found a solution than it is to actually find a
solution. This should make us extremely wary. We may propose a specification of a
final goal that seems sensible and that avoids the problems that have been pointed
out so far, yet which upon further consideration—by human or superhuman
intelligence—turns out to lead to either perverse instantiation or infrastructure
profusion, and hence to existential catastrophe, when embedded in a superintelligent
agent able to attain a decisive strategic advantage.

Before we end this subsection, let us consider one more variation. We have been
assuming the case of a superintelligence that is seeking to maximize its expected
utility, where the utility function expresses its final goal. We have seen that this
tends to lead to infrastructure profusion. Might we avoid this malignant outcome if
instead of a maximizing agent we build a satisficing agent, one that simply seeks to
achieve an outcome that is “good enough” according to some criterion, rather than
an outcome that is as good as possible?

There are at least two different ways to formalize this idea. The first would be to
make the final goal itself have a satisficing character. For example, instead of giving
the Al the final goal of making as many paperclips as possible, or of making exactly



one million paperclips, we might give the Al the goal of making between 999,000
and 1,001,000 paperclips. The utility function defined by the final goal would be
indifferent between outcomes in this range; and as long as the Al is sure it has hit
this wide target, it would see no reason to continue to produce infrastructure. But
this method fails in the same way as before: the Al, if reasonable, never assigns
exactly zero probability to it having failed to achieve its goal; therefore the expected
utility of continuing activity (e.g. by counting and recounting the paperclips) is
greater than the expected utility of halting. Thus, a malignant infrastructure
profusion can result.

Another way of developing the satisficing idea is by modifying not the final goal
but the decision procedure that the Al uses to select plans and actions. Instead of
searching for an optimal plan, the Al could be constructed to stop looking as soon as
it found a plan that it judged gave a probability of success exceeding a certain
threshold, say 95%. Hopefully, the Al could achieve a 95% probability of having
manufactured one million paperclips without needing to turn the entire galaxy into
infrastructure in the process. But this way of implementing the satisficing idea fails
for another reason: there is no guarantee that the Al would select some humanly
intuitive and sensible way of achieving a 95% chance of having manufactured a
million paperclips, such as by building a single paperclip factory. Suppose that the
first solution that pops into the AI’s mind for how to achieve a 95% probability of
achieving its final goal is to implement the probability-maximizing plan for
achieving the goal. Having thought of this solution, and having correctly judged that
it meets the satisficing criterion of giving at least 95% probability to successfully
manufacturing one million paperclips, the Al would then have no reason to continue
to search for alternative ways of achieving the goal. Infrastructure profusion would
result, just as before.

Perhaps there are better ways of building a satisficing agent, but let us take heed:
plans that appear natural and intuitive to us humans need not so appear to a
superintelligence with a decisive strategic advantage, and vice versa.

Mind crime

Another failure mode for a project, especially a project whose interests incorporate
moral considerations, is what we might refer to as mind crime. This is similar to
infrastructure profusion in that it concerns a potential side effect of actions
undertaken by the Al for instrumental reasons. But in mind crime, the side effect is
not external to the Al; rather, it concerns what happens within the Al itself (or
within the computational processes it generates). This failure mode deserves its own
designation because it is easy to overlook yet potentially deeply problematic.
Normally, we do not regard what is going on inside a computer as having any



moral significance except insofar as it affects things outside. But a machine
superintelligence could create internal processes that have moral status. For
example, a very detailed simulation of some actual or hypothetical human mind
might be conscious and in many ways comparable to an emulation. One can imagine
scenarios in which an Al creates trillions of such conscious simulations, perhaps in
order to improve its understanding of human psychology and sociology. These
simulations might be placed in simulated environments and subjected to various
stimuli, and their reactions studied. Once their informational usefulness has been
exhausted, they might be destroyed (much as lab rats are routinely sacrificed by
human scientists at the end of an experiment).

If such practices were applied to beings that have high moral status—such as
simulated humans or many other types of sentient mind—the outcome might be
equivalent to genocide and thus extremely morally problematic. The number of
victims, moreover, might be orders of magnitude larger than in any genocide in
history.

The claim here is not that creating sentient simulations is necessarily morally
wrong in all situations. Much would depend on the conditions under which these
beings would live, in particular the hedonic quality of their experience but possibly
on many other factors as well. Developing an ethics for these matters is a task
outside the scope of this book. It is clear, however, that there is at least the potential

for a vast amount of death and suffering among simulated or digital minds, and, a
9

fortiori, the potential for morally catastrophic outcomes.=

There might also be other instrumental reasons, aside from epistemic ones, for a
machine superintelligence to run computations that instantiate sentient minds or that
otherwise infract moral norms. A superintelligence might threaten to mistreat, or
commit to reward, sentient simulations in order to blackmail or incentivize various
external agents; or it might create simulations in order to induce indexical

uncertainty in outside observers.12

LS L *

This inventory is incomplete. We will encounter additional malignant failure modes
in later chapters. But we have seen enough to conclude that scenarios in which some
machine intelligence gets a decisive strategic advantage are to be viewed with grave
concern.



CHAPTER 9
The control problem

If we are threatened with existential catastrophe as the default outcome of an
intelligence explosion, our thinking must immediately turn to the search for
countermeasures. Is there some way to avoid the default outcome? Is it possible
to engineer a controlled detonation? In this chapter we begin to analyze the
control problem, the unique principal-agent problem that arises with the
creation of an artificial superintelligent agent. We distinguish two broad classes
of potential methods for addressing this problem—capability control and
motivation selection—and we examine several specific techniques within each
class. We also allude to the esoteric possibility of “anthropic capture.”

Two agency problems

If we suspect that the default outcome of an intelligence explosion is existential
catastrophe, our thinking must immediately turn to whether, and if so how, this
default outcome can be avoided. Is it possible to achieve a “controlled detonation™?
Could we engineer the initial conditions of an intelligence explosion so as to achieve
a specific desired outcome, or at least to ensure that the result lies somewhere in the
class of broadly acceptable outcomes? More specifically: how can the sponsor of a
project that aims to develop superintelligence ensure that the project, if successful,
produces a superintelligence that would realize the sponsor’s goals? We can divide
this control problem into two parts. One part is generic, the other unique to the
present context.

This first part—what we shall call the first principal-agent problem—arises
whenever some human entity (“the principal”) appoints another (“the agent”) to act
in the former’s interest. This type of agency problem has been extensively studied
by economists.! It becomes relevant to our present concern if the people creating an
Al are distinct from the people commissioning its creation. The project’s owner or
sponsor (which could be anything ranging from a single individual to humanity as a
whole) might then worry that the scientists and programmers implementing the
project will not act in the sponsor’s best interest.2 Although this type of agency
problem could pose significant challenges to a project sponsor, it is not a problem
unique to intelligence amplification or Al projects. Principal-agent problems of this
sort are ubiquitous in human economic and political interactions, and there are many



ways of dealing with them. For instance, the risk that a disloyal employee will
sabotage or subvert the project could be minimized through careful background
checks of key personnel, the use of a good version-control system for software
projects, and intensive oversight from multiple independent monitors and auditors.
Of course, such safeguards come at a cost—they expand staffing needs, complicate
personnel selection, hinder creativity, and stifle independent and critical thought, all
of which could reduce the pace of progress. These costs could be significant,
especially for projects that have tight budgets, or that perceive themselves to be in a
close race in a winner-takes-all competition. In such situations, projects may skimp
on procedural safeguards, creating possibilities for potentially catastrophic
principal-agent failures of the first type.

The other part of the control problem is more specific to the context of an
intelligence explosion. This is the problem that a project faces when it seeks to
ensure that the superintelligence it is building will not harm the project’s interests.
This part, too, can be thought of as a principal-agent problem—the second
principal-agent problem. In this case, the agent is not a human agent operating on
behalf of a human principal. Instead, the agent is the superintelligent system.
Whereas the first principal-agent problem occurs mainly in the development phase,
the second agency problem threatens to cause trouble mainly in the
superintelligence’s operational phase.

Exhibit 1 Two agency problems

The first principal-agent problem
* Human v. Human (Sponsor — Developer)
* Occurs mainly in developmental phase
+ Standard management techniques apply

The second principal-agent problem (“the control problem™)
* Human v. Superintelligence (Project — System)
 Occurs mainly in operational (and bootstrap) phase
» New techniques needed

This second agency problem poses an unprecedented challenge. Solving it will
require new techniques. We have already considered some of the difficulties
involved. We saw, in particular, that the treacherous turn syndrome vitiates what
might otherwise have seemed like a promising set of methods, ones that rely on
observing an Al’s behavior in its developmental phase and allowing the AI to
graduate from a secure environment once it has accumulated a track record of taking
appropriate actions. Other technologies can often be safety-tested in the laboratory
or in small field studies, and then rolled out gradually with a possibility of halting
deployment if unexpected troubles arise. Their performance in preliminary trials



helps us make reasonable inferences about their future reliability. Such behavioral
methods are defeated in the case of superintelligence because of the strategic
planning ability of general intelligence.2

Since the behavioral approach is unavailing, we must look for alternatives. We
can divide potential control methods into two broad classes: capability control
methods, which aim to control what the superintelligence can do; and motivation
selection methods, which aim to control what it wants to do. Some of the methods
are compatible while others represent mutually exclusive alternatives. In this
chapter we canvass the main options. (In the next four chapters, we will explore
some of the key issues at greater depth.)

It is important to realize that some control method (or combination of methods)
must be implemented before the system becomes superintelligent. It cannot be done
after the system has obtained a decisive strategic advantage. The need to solve the
control problem in advance—and to implement the solution successfully in the very
first system to attain superintelligence—is part of what makes achieving a
controlled detonation such a daunting challenge.

Capability control methods

Capability control methods seek to prevent undesirable outcomes by limiting what
the superintelligence can do. This might involve placing the superintelligence in an
environment in which it is unable to cause harm (boxing methods) or in which there
are strongly convergent instrumental reasons not to engage in harmful behavior
(incentive methods). It might also involve limiting the internal capacities of the
superintelligence (stunting). In addition, capability control methods might involve
the use of mechanisms to automatically detect and react to various kinds of
containment failure or attempted transgression (tripwires).

Boxing methods

Boxing methods can be subdivided into physical and informational containment
methods.

Physical containment aims to confine the system to a “box,” i.e. to prevent the
system from interacting with the external world otherwise than via specific
restricted output channels. The boxed system would not have access to physical
manipulators outside of the box. Removing manipulators (such as robotic arms)
from inside the box as well would prevent the system from constructing physical
devices that could breach the confinement.



For extra security, the system should be placed in a metal mesh to prevent it from
transmitting radio signals, which might otherwise offer a means of manipulating
electronic objects such as radio receivers in the environment. Note, by the way, how
easy it might have been to overlook the need for this precaution. One might naively
have assumed that an agent without a manipulator could not affect the external
world. But it might be possible for a machine intelligence to generate radio waves
even when it lacks access to external manipulators, simply “by thinking” (that is, by
shuffling the electrons in its circuitry in particular patterns).# Once pointed out, this
vulnerability can be patched by enclosing the system in a Faraday cage—but we are
left wondering how many other similarly subtle vulnerabilities might exist. Each
time we hear of a seemingly foolproof security design that has an unexpected flaw,
we should prick up our ears. These occasions grace us with the opportunity to
abandon a life of overconfidence and resolve to become better Bayesians.2

Physical confinement has several advantages. It is easy to implement. It can be
applied to many machine intelligence architectures, even ones that were not initially
designed with safety as an objective. It can be used in combination with most other
control methods. And it seems unlikely to go wrong by backfiring: that is, while it
might fail to ensure safety, it is unlikely to cause a catastrophe that would not
otherwise have occurred. The main disadvantage with physical confinement is that it
reduces the functionality of the superintelligence (an issue to which we will return in
Chapter 10). Another concern is that it might encourage a false sense of security,
though this is avoidable if we regard physical confinement as icing on the cake
rather than the main substance of our precautions.

Informational containment aims to restrict what information is allowed to exit the
box. We have already seen how a superintelligence that has access to an Internet
port, such that it can message outside entities, is potentially unsafe: even if it starts
out without access to physical actuators, it may use its information output channel to
get human beings to do its bidding. An obvious informational containment method,
therefore, is to bar the system from accessing communications networks.

Unplugging an Al from the Internet does not, however, ensure safety if there are
one or more humans serving as the system’s gatekeepers and remaining in
communication with it. During the development phase, the programmers serve as
gatekeepers; during the operational phase, the system’s owner might play this role.
If the Al can persuade or trick a gatekeeper to let it out of the box, resulting in its
gaining access either to the Internet or directly to physical manipulators, then the
boxing strategy has failed. Human beings are not secure systems, especially not
when pitched against a superintelligent schemer and persuader.®

Although routing the outbound communications of a machine intelligence to a
human gatekeeper does not guarantee safety, it could serve as an auxiliary safety
measure. There are precautions that might reduce the risk of the Al escaping through



the gatekeeper. The Al could be allowed to communicate only via a low-bandwidth
teletype interface. This would make it slightly harder to psychologically manipulate
the gatekeepers (precluding the use of emotive sound and imagery and tricks such as
flashing hypnotic patterns to induce a trancelike state).Z Going further, the content
(not just the mode of presentation) of the output could be restricted; so that, for
example, the AI would be constrained to giving single-bit answers to yes/no
questions. The idea of building a question-answering system will be examined
further in the next chapter.

The limiting case of the boxing approach would be a system kept in complete
physical and informational isolation. Even if achievable, however, such an isolated
system would be rather useless since it would have no effect on the external world. It
might perhaps be thought that some scientific purpose could be served by creating a
superintelligence and keeping it in isolation: by studying a self-contained model
system, one could learn about its internal dynamics and its behavior patterns. But
this would be an error. As soon as the system is observed, it ceases to be
informationally isolated.2 Information can be transmitted not only via messages that
an Al sends out through a designated “output channel” but also via any observation
an outsider makes of some causal consequence of the AI’s workings, direct or
indirect—its power consumption, its CPU and memory usage, its computational
states, or indeed any traces left behind after it has been shut down. An Al
anticipating that it might be observed in any of these ways could strategically adopt
behaviors designed to influence the hypothesized observers. For example, the Al
could “malfunction” in whichever way would most increase the probability that it
will ultimately be reactivated or that another superintelligence will be created with
goals similar to its own.

Incentive methods

Incentive methods involve placing an agent in an environment where it finds
instrumental reasons to act in ways that promote the principal’s interests.

Consider a billionaire who uses her fortune to set up a large charitable foundation.
Once created, the foundation may be powerful—more powerful than most
individuals, including its founder, who might have donated most of her wealth. To
control the foundation, the founder lays down its purpose in articles of incorporation
and bylaws, and appoints a board of directors sympathetic to her cause. These
measures constitute a form of motivation selection, since they aim to shape
foundation’s preferences. But even if such attempts to customize the organizational
internals fail, the foundation’s behavior would remain circumscribed by its social
and legal milieu. The foundation would have an incentive to obey the law, for



example, lest it be shut down or fined. It would have an incentive to offer its
employees acceptable pay and working conditions, and to satisfy external
stakeholders. Whatever its final goals, the foundation thus has instrumental reasons
to conform its behavior to various social norms.

Might one not hope that a machine superintelligence would likewise be hemmed
in by the need to get along with the other actors with which it shares the stage?
Though this might seem like a straightforward way of dealing with the control
problem, it is not free of obstacles. In particular, it presupposes a balance of power:
legal or economic sanctions cannot restrain an agent that has a decisive strategic
advantage. Social integration can therefore not be relied upon as a control method in
fast or medium takeoff scenarios that feature a winner-takes-all dynamic.

How about in multipolar scenarios, wherein several agencies emerge post-
transition with comparable levels of capability? Unless the default trajectory is one
with a slow takeoff, achieving such a power distribution may require a carefully
orchestrated ascent wherein different projects are deliberately synchronized to
prevent any one of them from ever pulling ahead of the pack.2 Even if a multipolar
outcome does result, social integration is not a perfect solution. By relying on social
integration to solve the control problem, the principal risks sacrificing a large
portion of her potential influence. Although a balance of power might prevent a
particular Al from taking over the world, that Al will still have some power to affect
outcomes; and if that power is used to promote some arbitrary final goal—
maximizing paperclip production—it is probably not being used to advance the
interests of the principal. Imagine our billionaire endowing a new foundation and
allowing its mission to be set by a random word generator: not a species-level threat,
but surely a wasted opportunity.

A related but importantly different idea is that an Al, by interacting freely in
society, would acquire new human-friendly final goals. Some such process of
socialization takes place in us humans. We internalize norms and ideologies, and we
come to value other individuals for their own sakes in consequence of our
experiences with them. But this is not a universal dynamic present in all intelligent
systems. As discussed earlier, many types of agent in many situations will have
convergent instrumental reasons not to permit changes in their final goals. (One
might consider trying to design a special kind of goal system that can acquire final
goals in the manner that humans do; but this would not count as a capability control
method. We will discuss some possible methods of value acquisition in Chapter 12.)

Capability control through social integration and balance of power relies upon
diffuse social forces rewarding and penalizing the AI. Another type of incentive
method would involve creating a setup wherein the Al can be rewarded and
penalized by the project that creates it, and thereby incentivized to act in the
interests of the principal. To achieve this, the Al would be placed in a surveillance



context that allows its behavior to be monitored and evaluated, either manually or by
some automated process. The Al would know that a positive evaluation would bring
about some outcome it desires and that a negative evaluation would fail to do so.
Theoretically, the reward could be the fulfillment of some convergent instrumental
goal. Without knowing anything specific about the AI’s motivation system,
however, it might be difficult to calibrate the reward mechanism. For example, we
could end up with an Al that would be willing to take extreme risks for the sake of a
small chance of eventually obtaining control of a large share of the universe. It could
be expensive to offer the Al a higher expected utility as reward for cooperation than
the AI could hope to achieve by defecting and trying to escape.12

A better alternative might be to combine the incentive method with the use of
motivation selection to give the Al a final goal that makes it easier to control.
Suppose that an Al were designed to have as its final goal that a particular red button
inside a command bunker never be pressed. Since the pressing of the button is
disvalued intrinsically and not because of its causal consequences, the button could
be completely inert: it could be made of Play-Doh. Furthermore, it is irrelevant
whether the Al can ever know whether the button had been pressed. What is essential
is that the AI believes that the button will more likely remain unpressed if the Al
continuously acts in the principal’s interest than if it rebels.

Refinements to this setup are possible. Instead of trying to endow an Al with a
final goal that refers to a physical button, one could build an Al that places final
value on receiving a stream of “cryptographic reward tokens.”l These would be
sequences of numbers serving as keys to ciphers that would have been generated
before the AI was created and that would have been built into its motivation
system.12 These special number sequences would be extremely desirable to the Al,
constituting a special kind of reward token that the AI could not attain though
wireheading.l2 The keys would be stored in a secure location where they could be
quickly destroyed if the Al ever made an attempt to seize them. So long as the Al
cooperates, the keys are doled out at a steady rate.

The AI could then be given a bounded utility function, and matters could be
arranged so that the Al would get (for instance) 99% of its maximum utility from
the first reward token; 99% of its remaining utility potential from the second reward
token; and so on. By keeping the “discount rate” high, and by transmitting reward
tokens to the Al at a reasonably high rate, one would dissuade the AI from
attempting to carry out long-term plans that would increase the expected number of
reward tokens in the distal future at the expense of some risk that its reward stream
will be cut short or that the next reward token will be cancelled and destroyed. If the
Al always believes that defecting (i.e. doing anything other than its best to look after
the principal’s interests) would incur at least a 2% risk of forfeiting the next reward
token, whereas cooperating would reduce the risk of forfeiting the next reward token



to below 1%, then a utility-maximizing Al would always cooperate.

What might go wrong with such an incentive scheme? One possibility is that the
Al will not trust the human operator to deliver the promised rewards. The track
record of human reliability is something other than a straight line of unerring
perfection. The Al would reasonably worry that the operator will change his mind, or
raise the performance bar, or fail to recognize that the Al has done its part. The Al
would also worry about the operator becoming incapacitated. The combined risk of
such failures might exceed the risk of attempting to seize control of the reward
mechanism. Even a boxed Al possessing the panoply of superpowers is a strong
force. (For an Al that is not boxed to begin with, hijacking the human-governed
reward mechanism may be like taking candy from a baby.)

Another problem with the incentive scheme is that it presupposes that we can tell
whether the outcomes produced by the Al are in our interest. As later chapters will
elaborate, this presupposition is not innocuous.

A full assessment of the feasibility of incentive methods would also have to take
into account a range of other factors, including some esoteric considerations that
might conceivably make such methods more viable than a preliminary analysis
would suggest. In particular, the Al may face ineliminable indexical uncertainty if it
could not be sure that it does not inhabit a computer simulation (as opposed to
“basement-level,” non-simulated physical reality), and this epistemic predicament
may radically influence the AI’s deliberations (see Box 8).

Box 8 Anthropic capture

The AI might assign a substantial probability to its simulation hypothesis, the
hypothesis that it is living in a computer simulation. Even today, many Als inhabit
simulated worlds—worlds consisting of geometric line drawings, texts, chess games,
or simple virtual realities, and in which the laws of physics deviate sharply from the
laws of physics that we believe govern the world of our own experience. Richer and
more complicated virtual worlds will become feasible with improvements in
programming techniques and computing power. A mature superintelligence could
create virtual worlds that appear to its inhabitants much the same as our world
appears to us. It might create vast numbers of such worlds, running the same
simulation many times or with small variations. The inhabitants would not
necessarily be able to tell whether their world is simulated or not; but if they are
intelligent enough they could consider the possibility and assign it some probability.
In light of the simulation argument (a full discussion of which is beyond the scope
of this book) that probability could be substantial 14



This predicament especially afflicts relatively early-stage superintelligences, ones
that have not yet expanded to take advantage of the cosmic endowment. An early-
stage superintelligence, which uses only a small fraction of the resources of a single
planet, would be much less expensive to simulate than a mature intergalactic
superintelligence. Potential simulators—that is, other more mature civilizations—
would be able to run great numbers of simulations of such early-stage Als even by
dedicating a minute fraction of their computational resources to that purpose. If at
least some (non-trivial fraction) of these mature superintelligent civilizations choose
to use this ability, early-stage Als should assign a substantial probability to being in
a simulation.

How an AI would be affected by the simulation hypothesis depends on its
values.12 Consider first an Al that has a “resource-insatiable” final goal, such as the
goal of maximizing a utility function that is linear in the number of paperclips
caused by the Al to exist—twice as many paperclips, twice as good. Such an Al
might care less about the simulation hypothesis, on grounds that its ability to
influence how many paperclips are produced looks much more limited if the Al is in
a simulation than if it is in basement-level physical reality. The AI might
accordingly behave much as if it were certain that the simulation hypothesis is false,
even if it assigned a fairly high probability to the simulation hypothesis being true.1®
The AI would reason that it does not much matter how it acts if the simulation
hypothesis is true, whereas its actions make a great difference if the hypothesis is
false; so it would select actions mainly by reference to how good they are
conditional on the simulation hypothesis being false.

By contrast, consider an Al that has a more modest final goal, one that could be
satisfied with a small amount of resources, such as the goal of receiving some pre-
produced cryptographic reward tokens, or the goal of causing the existence of forty-
five virtual paperclips. Such an AI should not discount those possible worlds in
which it inhabits a simulation. A substantial portion of the AI’s total expected utility
might derive from those possible worlds. The decision-making of an Al with goals
that are easily resource-satiable may therefore—if it assigns a high probability to the
simulation hypothesis—be dominated by considerations about which actions would
produce the best result if its perceived world is a simulation. Such an Al (even if it
is, in fact, not in a simulation) might therefore be heavily influenced by its beliefs
about which behaviors would be rewarded in a simulation.

In particular, if an Al with resource-satiable final goals believes that in most
simulated worlds that match its observations it will be rewarded if it cooperates (but
not if it attempts to escape its box or contravene the interests of its creator) then it
may choose to cooperate. We could therefore find that even an Al with a decisive
strategic advantage, one that could in fact realize its final goals to a greater extent by
taking over the world than by refraining from doing so, would nevertheless balk at



doing so.

Thus Conscience does make Cowards of us all,
And thus the Native hue of Resolution

Is sicklied o’er, with the pale cast of Thought,
And enterprises of great pith and moment,
With this regard their Currents turn away,
And lose the name of Action.

(Shakespeare, Hamlet, Act iii. Sc. 1)

A mere line in the sand, backed by the clout of a nonexistent simulator, could prove
a stronger restraint than a two-foot-thick solid steel door.1Z

Stunting

Another possible capability control method is to limit the system’s intellectual
faculties or its access to information. This might be done by running the AI on
hardware that is slow or short on memory. In the case of a boxed system,
information inflow could also be restricted.

Stunting an Al in these ways would limit its usefulness. The method thus faces a
dilemma: too little stunting, and the Al might have the wit to figure out some way to
make itself more intelligent (and thence to world domination); too much, and the Al
is just another piece of dumb software. A radically stunted Al is certainly safe but
does not solve the problem of how to achieve a controlled detonation: an intelligence
explosion would remain possible and would simply be triggered by some other
system instead, perhaps at a slightly later date.

One might think it would be safe to build a superintelligence provided it is only
given data about some narrow domain of facts. For example, one might build an Al
that lacks sensors and that has preloaded into its memory only facts about petroleum
engineering or peptide chemistry. But if the Al is superintelligent—if it is has a
superhuman level of general intelligence—such data deprivation does not guarantee
safety.

There are several reasons for this. First, the notion of information being “about” a
certain topic is generally problematic. Any piece of information can in principle be
relevant to any topic whatsoever, depending on the background information of a
reasoner.' Furthermore, a given data set contains information not only about the
domain from which the data was collected but also about various circumstantial



facts. A shrewd mind looking over a knowledge base that is nominally about peptide
chemistry might infer things about a wide range of topics. The fact that certain
information is included and other information is not could tell an Al something
about the state of human science, the methods and instruments available to study
peptides, the fabrication technologies used to make these instruments, and the nature
of the brains and societies that conceived the studies and the instruments. It might be
that a superintelligence could correctly surmise a great deal from what seem, to
dull-witted human minds, meager scraps of evidence. Even without any designated
knowledge base at all, a sufficiently superior mind might be able to learn much by
simply introspecting on the workings of its own psyche—the design choices
reflected in its source code, the physical characteristics of its circuitry.l2 Perhaps a
superintelligence could even deduce much about the likely properties of the world a
priori (combining logical inference with a probability prior biased toward simpler
worlds, and a few elementary facts implied by the superintelligence’s existence as a
reasoning system). It might imagine the consequences of different possible laws of
physics: what kind of planets would form, what kind of intelligent life would evolve,
what kind of societies would develop, what kind of methods to solve the control
problem would be attempted, how those methods could be defeated.22

For these reasons it would be imprudent to rely on information deprivation as the
main check on a superintelligence’s power. Some forms of stunting however,
including limiting hardware capacity and preventing the development of specific
cognitive faculties, might find use as auxiliary control methods in the developmental
phase. They could be used, for instance, to regulate the rate of capacity gain in an
intermediary Al and to allow tests to be run at different levels of capability short of
full-throttled superintelligence.

Tripwires

A tripwire is a mechanism that performs diagnostic tests on the system (possibly
without its knowledge) and effects a shutdown if it detects signs of dangerous
activity. Programmers can then scrutinize recordings of the suspicious activity at
their leisure, and make changes to the AI’s code base or environment before
restarting it. If they find that the problem is sufficiently deep-rooted, they could
decide to abort the entire project.

Tripwires differ from incentive methods in that they do not rely on the system
being aware of the consequences of engaging in forbidden activities. Tripwires are
more closely related to stunting methods. Like stunting, tripwires could be used as a
temporary safeguard, providing a degree of protection during the development
phase. In principle, tripwires can also be used during the operational phase,



particularly for a boxed system. However, the ability of tripwires to constrain a full-
fledged superintelligence must remain very much in doubt, since it would be hard
for us to assure ourselves that such an agent could not find ways to subvert any
tripwire devised by the human intellect.

Table 9 Different kinds of tripwires

Type of

.. ' . Description and examples
monitoring

Detectors could be placed around a boxed Al to detect attempts to
breach the containment. For example, detectors could intercept attempts
Behavior at radio communication or at accessing internal computational resources
intended to be off limits. An “Ethernet port of Eden” could be installed:
an apparent connection to the internet that leads to a shutdown switch.

Automated capability testing could be performed at frequent intervals to
determine the AI’s skill in various domains. If either the rate of
improvement is unexpectedly high or the Al attains a level of
competence that brings it close to the potential danger zone, the system
could be slowed down or paused, in order to allow the programmers to
monitor further developments more closely.

Ability

The AI’s internal processes could be monitored for suspicious activity.
For example, any change to the AI’s representation of its final values
might trigger an automatic shutdown and review. The AI’s resource use
and algorithmic methods may also be also be monitored for unexpected
patterns.

More ambitiously, the Al’s beliefs, plans, subgoals, and justifications
may be continuously scrutinized, to ensure they conform to the
programmers’ expectations. Such monitoring of the AI’s intentional
states would enable a particularly powerful form of content monitoring:

Content  (he scanning of the Al’s cognitive processes for a conception of

deception—that vulnerable moment when an unfriendly Al first forms
21

the intention to conceal its true intentions.=

Content monitoring that requires that the Al’s intentional states be
transparent to the programmers or to an automatic monitoring
mechanism may not be feasible for all kinds of Al architectures. (Some
neural networks, for instance, are opaque, as they represent information
holistically and in ways that do not necessarily match up with human

concepts.) This may be a reason to avoid using such architectures.




As an adjunct safety measure in the development phase, though, tripwires are
important. It would be good practice for the AI’s designers to codify their
expectations about how the system is supposed to function, and then to circumscribe
the AT with tripwires that would be activated if any of these expectations is violated.
To make the tests more stringent, “honeypots” could be strategically placed to create
temptations for a malfunctioning Al to commit some easily observable violation.
For instance, if an Al has been designed in such a way that it is supposed not to want
to access the internet, a fake Ethernet port could be installed (leading to an
automatic shutdown switch) just to see if they Al tries to use it. (Some examples of
tripwires are given in Table 9.)

It should be emphasized that the value of a tripwire depends not only on the
mechanism itself but also—critically—on how a project reacts when a tripwire is
triggered. If the programmers or project managers, impatient to make progress,
simply switch the system back on again—or if they do so after making some token
modification to prevent the tripwire being triggered on the next run—then no safety
has been gained even if the tripwire itself works exactly as intended.

Motivation selection methods

Motivation selection methods seek to prevent undesirable outcomes by shaping what
the superintelligence wants to do. By engineering the agent’s motivation system and
its final goals, these methods would produce a superintelligence that would not want
to exploit a decisive strategic advantage in a harmful way. Since a superintelligent
agent is skilled at achieving its ends, if it prefers not to cause harm (in some
appropriate sense of “harm”) then it would tend not to cause harm (in that sense of
“harm”).

Motivation selection can involve explicitly formulating a goal or set of rules to be
followed (direct specification) or setting up the system so that it can discover an
appropriate set of values for itself by reference to some implicitly or indirectly
formulated criterion (indirect normativity). One option in motivation selection is to
try to build the system so that it would have modest, non-ambitious goals
(domesticity). An alternative to creating a motivation system from scratch is to
select an agent that already has an acceptable motivation system and then augment
that agent’s cognitive powers to make it superintelligent, while ensuring that the
motivation system does not get corrupted in the process (augmentation). Let us look
at these in turn.

Direct specification



Direct specification is the most straightforward approach to the control problem.
The approach comes in two versions, rule-based and consequentialist, and involves
trying to explicitly define a set of rules or values that will cause even a free-roaming
superintelligent Al to act safely and beneficially. Direct specification, however,
faces what may be insuperable obstacles, deriving from both the difficulties in
determining which rules or values we would wish the Al to be guided by and the
difficulties in expressing those rules or values in computer-readable code.

The traditional illustration of the direct rule-based approach is the “three laws of
robotics” concept, formulated by science fiction author Isaac Asimov in a short story
published in 1942.22 The three laws were: (1) A robot may not injure a human being
or, through inaction, allow a human being to come to harm; (2) A robot must obey
any orders given to it by human beings, except where such orders would conflict
with the First Law; (3) A robot must protect its own existence as long as such
protection does not conflict with the First or Second Law. Embarrassingly for our
species, Asimov’s laws remained state-of-the-art for over half a century: this despite
obvious problems with the approach, some of which are explored in Asimov’s own
writings (Asimov probably having formulated the laws in the first place precisely so
that they would fail in interesting ways, providing fertile plot complications for his
stories).23

Bertrand Russell, who spent many years working on the foundations of
mathematics, once remarked that “everything is vague to a degree you do not realize
till you have tried to make it precise.”?* Russell’s dictum applies in spades to the
direct specification approach. Consider, for example, how one might explicate
Asimov’s first law. Does it mean that the robot should minimize the probability of
any human being coming to harm? In that case the other laws become otiose since it
is always possible for the Al to take some action that would have at least some
microscopic effect on the probability of a human being coming to harm. How is the
robot to balance a large risk of a few humans coming to harm versus a small risk of
many humans being harmed? How do we define “harm” anyway? How should the
harm of physical pain be weighed against the harm of architectural ugliness or social
injustice? Is a sadist harmed if he is prevented from tormenting his victim? How do
we define “human being”? Why is no consideration given to other morally
considerable beings, such as sentient nonhuman animals and digital minds? The
more one ponders, the more the questions proliferate.

Perhaps the closest existing analog to a rule set that could govern the actions of a
superintelligence operating in the world at large is a legal system. But legal systems
have developed through a long process of trial and error, and they regulate relatively
slowly-changing human societies. Laws can be revised when necessary. Most
importantly, legal systems are administered by judges and juries who generally



apply a measure of common sense and human decency to ignore logically possible
legal interpretations that are sufficiently obviously unwanted and unintended by the
lawgivers. It is probably humanly impossible to explicitly formulate a highly
complex set of detailed rules, have them apply across a highly diverse set of
circumstances, and get it right on the first implementation.22

Problems for the direct consequentialist approach are similar to those for the
direct rule-based approach. This is true even if the Al is intended to serve some
apparently simple purpose such as implementing a version of classical
utilitarianism. For instance, the goal “Maximize the expectation of the balance of
pleasure over pain in the world” may appear simple. Yet expressing it in computer
code would involve, among other things, specifying how to recognize pleasure and
pain. Doing this reliably might require solving an array of persistent problems in the
philosophy of mind—even just to obtain a correct account expressed in a natural
language, an account which would then, somehow, have to be translated into a
programming language.

A small error in either the philosophical account or its translation into code could
have catastrophic consequences. Consider an Al that has hedonism as its final goal,
and which would therefore like to tile the universe with “hedonium” (matter
organized in a configuration that is optimal for the generation of pleasurable
experience). To this end, the Al might produce computronium (matter organized in a
configuration that is optimal for computation) and use it to implement digital minds
in states of euphoria. In order to maximize efficiency, the Al omits from the
implementation any mental faculties that are not essential for the experience of
pleasure, and exploits any computational shortcuts that according to its definition of
pleasure do not vitiate the generation of pleasure. For instance, the AI might confine
its simulation to reward circuitry, eliding faculties such as memory, sensory
perception, executive function, and language; it might simulate minds at a relatively
coarse-grained level of functionality, omitting lower-level neuronal processes; it
might replace commonly repeated computations with calls to a lookup table; or it
might put in place some arrangement whereby multiple minds would share most
parts of their underlying computational machinery (their “supervenience bases” in
philosophical parlance). Such tricks could greatly increase the quantity of pleasure
producible with a given amount of resources. It is unclear how desirable this would
be. Furthermore, if the AI’s criterion for determining whether a physical process
generates pleasure is wrong, then the Al’s optimizations might throw the baby out
with the bathwater: discarding something which is inessential according to the Al’s
criterion yet essential according to the criteria implicit in our human values. The
universe then gets filled not with exultingly heaving hedonium but with
computational processes that are unconscious and completely worthless—the
equivalent of a smiley-face sticker xeroxed trillions upon trillions of times and



plastered across the galaxies.

Domesticity

One special type of final goal which might be more amenable to direct specification
than the examples given above is the goal of self-limitation. While it seems
extremely difficult to specify how one would want a superintelligence to behave in
the world in general—since this would require us to account for all the trade-offs in
all the situations that could arise—it might be feasible to specify how a
superintelligence should behave in one particular situation. We could therefore seek
to motivate the system to confine itself to acting on a small scale, within a narrow
context, and through a limited set of action modes. We will refer to this approach of
giving the Al final goals aimed at limiting the scope of its ambitions and activities
as “domesticity.”

For example, one could try to design an Al such that it would function as a
question-answering device (an “oracle,” to anticipate the terminology that we will
introduce in the next chapter). Simply giving the Al the final goal of producing
maximally accurate answers to any question posed to it would be unsafe—recall the
“Riemann hypothesis catastrophe” described in Chapter 8. (Reflect, also, that this
goal would incentivize the Al to take actions to ensure that it is asked easy
questions.) To achieve domesticity, one might try to define a final goal that would
somehow overcome these difficulties: perhaps a goal that combined the desiderata
of answering questions correctly and minimizing the AI’s impact on the world
except whatever impact results as an incidental consequence of giving accurate and
non-manipulative answers to the questions it is asked.2%

The direct specification of such a domesticity goal is more likely to be feasible
than the direct specification of either a more ambitious goal or a complete rule set
for operating in an open-ended range of situations. Significant challenges
nonetheless remain. Care would have to be taken, for instance, in the definition of
what it would be for the Al to “minimize its impact on the world” to ensure that the
measure of the AI’s impact coincides with our own standards for what counts as a
large or a small impact. A bad measure would lead to bad trade-offs. There are also
other kinds of risk associated with building an oracle, which we will discuss later.

There is a natural fit between the domesticity approach and physical containment.
One would try to “box” an Al such that the system is unable to escape while
simultaneously trying to shape the AI’s motivation system such that it would be
unwilling to escape even if it found a way to do so. Other things equal, the existence

of multiple independent safety mechanisms should shorten the odds of success.2Z



Indirect normativity

If direct specification seems hopeless, we might instead try indirect normativity.
The basic idea is that rather than specifying a concrete normative standard directly,
we specify a process for deriving a standard. We then build the system so that it is
motivated to carry out this process and to adopt whatever standard the process
arrives at.28 For example, the process could be to carry out an investigation into the
empirical question of what some suitably idealized version of us would prefer the Al
to do. The final goal given to the Al in this example could be something along the
lines of “achieve that which we would have wished the Al to achieve if we had
thought about the matter long and hard.”

Further explanation of indirect normativity will have to await Chapter 13. There,
we will revisit the idea of “extrapolating our volition” and explore various alterative
formulations. Indirect normativity is a very important approach to motivation
selection. Its promise lies in the fact that it could let us offload to the
superintelligence much of the difficult cognitive work required to carry out a direct
specification of an appropriate final goal.

Augmentation

The last motivation selection method on our list is augmentation. Here the idea is
that rather than attempting to design a motivation system de novo, we start with a
system that already has an acceptable motivation system, and enhance its cognitive
faculties to make it superintelligent. If all goes well, this would give us a
superintelligence with an acceptable motivation system.

This approach, obviously, is unavailing in the case of a newly created seed Al. But
augmentation is a potential motivation selection method for other paths to
superintelligence, including brain emulation, biological enhancement, brain—
computer interfaces, and networks and organizations, where there is a possibility of
building out the system from a normative nucleus (regular human beings) that
already contains a representation of human value.

The attractiveness of augmentation may increase in proportion to our despair at
the other approaches to the control problem. Creating a motivation system for a seed
Al that remains reliably safe and beneficial under recursive self-improvement even
as the system grows into a mature superintelligence is a tall order, especially if we
must get the solution right on the first attempt. With augmentation, we would at
least start with a system that has familiar and human-like motivations.

On the downside, it might be hard to ensure that a complex, evolved, kludgy, and



poorly understood motivation system, like that of a human being, will not get
corrupted when its cognitive engine blasts into the stratosphere. As discussed earlier,
an imperfect brain emulation procedure that preserves intellectual functioning may
not preserve all facets of personality. The same is true (though perhaps to a lesser
degree) for biological enhancements of cognition, which might subtly affect
motivation, and for collective intelligence enhancements of organizations and
networks, which might adversely change social dynamics (e.g. in ways that debase
the collective’s attitude toward outsiders or toward its own constituents). If
superintelligence is achieved via any of these paths, a project sponsor would find
guarantees about the ultimate motivations of the mature system hard to come by. A
mathematically well-specified and foundationally elegant Al architecture might—
for all its non-anthropomorphic otherness—offer greater transparency, perhaps even
the prospect that important aspects of its functionality could be formally verified.

In the end, however one tallies up the advantages and disadvantages of
augmentation, the choice as to whether to rely on it might be forced. If
superintelligence is first achieved along the artificial intelligence path,
augmentation is not applicable. Conversely, if superintelligence is first achieved
along some non-Al path, then many of the other motivation selection methods are
inapplicable. Even so, views on how likely augmentation would be to succeed do
have strategic relevance insofar as we have opportunities to influence which
technology will first produce superintelligence.

Synopsis

A quick synopsis might be called for before we close this chapter. We distinguished
two broad classes of methods for dealing with the agency problem at the heart of Al
safety: capability control and motivation selection. Table 10 gives a summary.

Table 10 Control methods

Capability

control

Boxing The system is confined in such a way that it can affect the external

methods world only through some restricted, pre-approved channel.
Encompasses physical and informational containment methods.
The system is placed within an environment that provides

. appropriate incentives. This could involve social integration into a
Incentive

world of similarly powerful entities. Another variation is the use of



methods (cryptographic) reward tokens. “Anthropic capture” is also a very
important possibility but one that involves esoteric considerations.

Constraints are imposed on the cognitive capabilities of the system
or its ability to affect key internal processes.

Diagnostic tests are performed on the system (possibly without its
Tripwires knowledge) and a mechanism shuts down the system if dangerous
activity is detected.

Stunting

Motivation
selection
Direct The system is endowed with some directly specified motivation
e . system, which might be consequentialist or involve following a set of

specification

rules.

. A motivation system is designed to severely limit the scope of the

Domesticity , o o

agent’s ambitions and activities.

Indirect normativity could involve rule-based or consequentialist
Indirect principles, but is distinguished by its reliance on an indirect approach
normativity to specifying the rules that are to be followed or the values that are to

be pursued.

One starts with a system that already has substantially human or
Augmentation benevolent motivations, and enhances its cognitive capacities to

make it superintelligent.

Each control method comes with potential vulnerabilities and presents different
degrees of difficulty in its implementation. It might perhaps be thought that we
should rank them from better to worse, and then opt for the best method. But that
would be simplistic. Some methods can be used in combination whereas others are
exclusive. Even a comparatively insecure method may be advisable if it can easily
be used as an adjunct, whereas a strong method might be unattractive if it would
preclude the use of other desirable safeguards.

It is therefore necessary to consider what package deals are available. We need to
consider what type of system we might try to build, and which control methods
would be applicable to each type. This is the topic for our next chapter.



CHAPTER 10
Oracles, genies, sovereigns, tools

Some say: “Just build a question-answering system!” or “Just build an Al that
is like a tool rather than an agent!” But these suggestions do not make all safety
concerns go away, and it is in fact a non-trivial question which type of system
would offer the best prospects for safety. We consider four types or “castes”—
oracles, genies, sovereigns, and tools—and explain how they relate to one
another.l Each offers different sets of advantages and disadvantages in our
quest to solve the control problem.

Oracles

An oracle is a question-answering system. It might accept questions in a natural
language and present its answers as text. An oracle that accepts only yes/no
questions could output its best guess with a single bit, or perhaps with a few extra
bits to represent its degree of confidence. An oracle that accepts open-ended
questions would need some metric with which to rank possible truthful answers in
terms of their informativeness or appropriateness.2 In either case, building an oracle
that has a fully domain-general ability to answer natural language questions is an
Al-complete problem. If one could do that, one could probably also build an Al that
has a decent ability to understand human intentions as well as human words.

Oracles with domain-limited forms of superintelligence are also conceivable. For
instance, one could conceive of a mathematics-oracle which would only accept
queries posed in a formal language but which would be very good at answering such
questions (e.g. being able to solve in an instant almost any formally expressed math
problem that the human mathematics profession could solve by laboring
collaboratively for a century). Such a mathematics-oracle would form a stepping-
stone toward domain-general superintelligence.

Oracles with superintelligence in extremely limited domains already exist. A
pocket calculator can be viewed as a very narrow oracle for basic arithmetical
questions; an Internet search engine can be viewed as a very partial realization of an
oracle with a domain that encompasses a significant part of general human
declarative knowledge. These domain-limited oracles are tools rather than agents
(more on tool-Als shortly). In what follows, though, the term “oracle” will refer to
question-answering systems that have domain-general superintelligence, unless



otherwise stated.

To make a general superintelligence function as an oracle, we could apply both
motivation selection and capability control. Motivation selection for an oracle may
be easier than for other castes of superintelligence, because the final goal in an
oracle could be comparatively simple. We would want the oracle to give truthful,
non-manipulative answers and to otherwise limit its impact on the world. Applying a
domesticity method, we might require that the oracle should use only designated
resources to produce its answer. For example, we might stipulate that it should base
its answer on a preloaded corpus of information, such as a stored snapshot of the
Internet, and that it should use no more than a fixed number of computational steps.2
To avoid incentivizing the oracle to manipulate us into giving it easier questions—
which would happen if we gave it the goal of maximizing its accuracy across all
questions we will ask it—we could give it the goal of answering only one question
and to terminate immediately upon delivering its answer. The question would be
preloaded into its memory before the program is run. To ask a second question, we
would reset the machine and run the same program with a different question
preloaded in memory.

Subtle and potentially treacherous challenges arise even in specifying the
relatively simple motivation system needed to drive an oracle. Suppose, for
example, that we come up with some explication of what it means for the Al “to
minimize its impact on the world, subject to achieving certain results” or “to use
only designated resources in preparing the answer.” What happens if the Al, in the
course of its intellectual development, undergoes the equivalent of a scientific
revolution involving a change in its basic ontology?* We might initially have
explicated “impact” and “designated resources” using our own ontology (postulating
the existence of various physical objects such as computers). But just as we have
abandoned ontological categories that were taken for granted by scientists in
previous ages (e.g. “phlogiston,” “élan vital,” and “absolute simultaneity”), so a
superintelligent Al might discover that some of our current categories are predicated
on fundamental misconceptions. The goal system of an Al undergoing an ontological
crisis needs to be resilient enough that the “spirit” of its original goal content is
carried over, charitably transposed into the new key.

Although making an oracle safe through the use of motivation selection might be
far from trivial, it may nevertheless be easier than doing the same for an Al that
roams the world in pursuit of some complicated goal. This is an argument for
preferring that the first superintelligence be an oracle. Another point in favor of an
oracle-first path is the greater susceptibility of an oracle to capability control. All
the standard boxing methods apply here. In addition, there may be methods that are
distinctively applicable to oracles. For example, consider the risk that an oracle will
answer questions not in a maximally truthful way but in such a way as to subtly



manipulate us into promoting its own hidden agenda. One way to slightly mitigate
this threat could be to create multiple oracles, each with a slightly different code and
a slightly different information base. A simple mechanism could then compare the
answers given by the different oracles and only present them for human viewing if
all the answers agree. While one must assume that any superintelligent domain-
general oracle would know about the existence of other oracles (it could infer this
from its knowledge about human society), it might be feasible to hide some
implementation details of each oracle from the views of the others. If the oracles are
not able to communicate with one another, it might then be difficult for them to
coordinate on how to answer our questions manipulatively. There are many ways of
deviating from the truth, and the oracles may not all agree on which of these
deviations is most attractive—whereas the truth itself is a Schelling point (a salient

place for agreement in the absence of communication). So if the oracles achieve
5

consensus, it might be a sign that they gave the true answer.2

An oracle would ideally be trustworthy in the sense that we could safely assume
that its answers are always accurate to the best of its ability. But even an
untrustworthy oracle could be useful. We could ask such an oracle questions of a
type for which it is difficult to find the answer but easy to verify whether a given
answer is correct. Many mathematical problems are of this kind. If we are
wondering whether a mathematical proposition is true, we could ask the oracle to
produce a proof or disproof of the proposition. Finding the proof may require insight
and creativity beyond our ken, but checking a purported proof’s validity can be done
by a simple mechanical procedure.

If it is expensive to verify answers (as is often the case on topics outside logic and
mathematics), we can randomly select a subset of the oracle’s answers for
verification. If they are all correct, we can assign a high probability to most of the
other answers also being correct. This trick can give us a bulk discount on
trustworthy answers that would be costly to verify individually. (Unfortunately, it
cannot give us trustworthy answers that we are unable to verify, since a dissembling
oracle may choose to answer correctly only those questions where it believes we
could verify its answers.)

There could be important issues on which we could benefit from an augural
pointer toward the correct answer (or toward a method for locating the correct
answer) even if we had to actively distrust the provenance. For instance, one might
ask for the solution to various technical or philosophical problems that may arise in
the course of trying to develop more advanced motivation selection methods. If we
had a proposed Al design alleged to be safe, we could ask an oracle whether it could
identify any significant flaw in the design, and whether it could explain any such
flaw to us in twenty words or less. Questions of this kind could elicit valuable
information. Caution and restraint would be required, however, for us not to ask too



many such questions—and not to allow ourselves to partake of too many details of
the answers given to the questions we do ask—Ilest we give the untrustworthy oracle
opportunities to work on our psychology (by means of plausible-seeming but subtly
manipulative messages). It might not take many bits of communication for an Al
with the social manipulation superpower to bend us to its will.

Even if the oracle itself works exactly as intended, there is a risk that it would be
misused. One obvious dimension of this problem is that an oracle Al would be a
source of immense power which could give a decisive strategic advantage to its
operator. This power might be illegitimate and it might not be used for the common
good. Another more subtle but no less important dimension is that the use of an
oracle could be extremely dangerous for the operator herself. Similar worries (which
involve philosophical as well as technical issues) arise also for other hypothetical
castes of superintelligence. We will explore them more thoroughly in Chapter 13.
Suffice it here to note that the protocol determining which questions are asked, in
which sequence, and how the answers are reported and disseminated could be of
great significance. One might also consider whether to try to build the oracle in such
a way that it would refuse to answer any question in cases where it predicts that its
answering would have consequences classified as catastrophic according to some
rough-and-ready criteria.

Genies and sovereigns

A genie is a command-executing system: it receives a high-level command, carries
it out, then pauses to await the next command.® A sovereign is a system that has an
open-ended mandate to operate in the world in pursuit of broad and possibly very
long-range objectives. Although these might seem like radically different templates
for what a superintelligence should be and do, the difference is not as deep as it
might at first glance appear.

With a genie, one already sacrifices the most attractive property of an oracle: the
opportunity to use boxing methods. While one might consider creating a physically
confined genie, for instance one that can only construct objects inside a designated
volume—a volume that might be sealed off by a hardened wall or a barrier loaded
with explosive charges rigged to detonate if the containment is breached—it would
be difficult to have much confidence in the security of any such physical
containment method against a superintelligence equipped with versatile
manipulators and construction materials. Even if it were somehow possible to ensure
a containment as secure as that which can be achieved for an oracle, it is not clear
how much we would have gained by giving the superintelligence direct access to
manipulators compared to requiring it instead to output a blueprint that we could



inspect and then use to achieve the same result ourselves. The gain in speed and
convenience from bypassing the human intermediary seems hardly worth the loss of
foregoing the use of the stronger boxing methods available to contain an oracle.

If one were creating a genie, it would be desirable to build it so that it would obey
the intention behind the command rather than its literal meaning, since a literalistic
genie (one superintelligent enough to attain a decisive strategic advantage) might
have a propensity to kill the user and the rest of humanity on its first use, for reasons
explained in the section on malignant failure modes in Chapter 8. More broadly, it
would seem important that the genie seek a charitable—and what human beings
would regard as reasonable—interpretation of what is being commanded, and that
the genie be motivated to carry out the command under such an interpretation rather
than under the literalistic interpretation. The ideal genie would be a super-butler
rather than an autistic savant.

A genie endowed with such a super-butler nature, however, would not be far from
qualifying for membership in the caste of sovereigns. Consider, for comparison, the
idea of building a sovereign with the final goal of obeying the spirit of the
commands we would have given had we built a genie rather than a sovereign. Such a
sovereign would mimic a genie. Being superintelligent, this sovereign would do a
good job at guessing what commands we would have given a genie (and it could
always ask us if that would help inform its decisions). Would there then really be
any important difference between such a sovereign and a genie? Or, pressing on the
distinction from the other side, consider that a superintelligent genie may likewise
be able to predict what commands we will give it: what then is gained from having it
await the actual issuance before it acts?

One might think that a big advantage of a genie over a sovereign is that if
something goes wrong, we could issue the genie with a new command to stop or to
reverse the effects of the previous actions, whereas a sovereign would just push on
regardless of our protests. But this apparent safety advantage for the genie is largely
illusory. The “stop” or “undo” button on a genie works only for benign failure
modes: in the case of a malignant failure—one in which, for example, carrying out
the existing command has become a final goal for the genie—the genie would
simply disregard any subsequent attempt to countermand the previous command.”

One option would be to try to build a genie such that it would automatically
present the user with a prediction about salient aspects of the likely outcomes of a
proposed command, asking for confirmation before proceeding. Such a system could
be referred to as a genie-with-a-preview. But if this could be done for a genie, it
could likewise be done for a sovereign. So again, this is not a clear differentiator
between a genie and a sovereign. (Supposing that a preview functionality could be
created, the questions of whether and if so how to use it are rather less obvious than
one might think, notwithstanding the strong appeal of being able to glance at the



outcome before committing to making it irrevocable reality. We will return to this
matter later.)

The ability of one caste to mimic another extends to oracles, too. A genie could be
made to act like an oracle if the only commands we ever give it are to answer certain
questions. An oracle, in turn, could be made to substitute for a genie if we asked the
oracle what the easiest way is to get certain commands executed. The oracle could
give us step-by-step instructions for achieving the same result as a genie would
produce, or it could even output the source code for a genie.2 Similar points can be
made with regard to the relation between an oracle and a sovereign.

The real difference between the three castes, therefore, does not reside in the
ultimate capabilities that they would unlock. Instead, the difference comes down to
alternative approaches to the control problem. Each caste corresponds to a different
set of safety precautions. The most prominent feature of an oracle is that it can be
boxed. One might also try to apply domesticity motivation selection to an oracle. A
genie is harder to box, but at least domesticity may be applicable. A sovereign can
neither be boxed nor handled through the domesticity approach.

If these were the only relevant factors, then the order of desirability would seem
clear: an oracle would be safer than a genie, which would be safer than a sovereign;
and any initial differences in convenience and speed of operation would be relatively
small and easily dominated by the gains in safety obtainable by building an oracle.
However, there are other factors that need to be taken into account. When choosing
between castes, one should consider not only the danger posed by the system itself
but also the dangers that arise out of the way it might be used. A genie most
obviously gives the person who controls it enormous power, but the same holds for
an oracle.2 A sovereign, by contrast, could be constructed in such way as to accord
no one person or group any special influence over the outcome, and such that it
would resist any attempt to corrupt or alter its original agenda. What is more, if a
sovereign’s motivation is defined using “indirect normativity” (a concept to be
described in Chapter 13) then it could be used to achieve some abstractly defined
outcome, such as “whatever is maximally fair and morally right”—without anybody
knowing in advance what exactly this will entail. This would create a situation
analogous to a Rawlsian “veil of ignorance.”l Such a setup might facilitate the
attainment of consensus, help prevent conflict, and promote a more equitable
outcome.

Another point, which counts against some types of oracles and genies, is that there
are risks involved in designing a superintelligence to have a final goal that does not
fully match the outcome that we ultimately seek to attain. For example, if we use a
domesticity motivation to make the superintelligence want to minimize some of its
impacts on the world, we might thereby create a system whose preference ranking
over possible outcomes differs from that of the sponsor. The same will happen if we



build the Al to place a peculiarly high value on answering questions correctly, or on
faithfully obeying individual commands. Now, if sufficient care is taken, this should
not cause any problems: there would be sufficient agreement between the two
rankings—at least insofar as they pertain to possible worlds that have a reasonable
chance of being actualized—that the outcomes that are good by the Al’s standard are
also good by the principal’s standard. But perhaps one could argue for the design
principle that it is unwise to introduce even a limited amount of disharmony between
the AI’s goals and ours. (The same concern would of course apply to giving
sovereigns goals that do not completely harmonize with ours.)

Tool-Als

One suggestion that has been made is that we build the superintelligence to be like a
tool rather than an agent.ll This idea seems to arise out of the observation that
ordinary software, which is used in countless applications, does not raise any safety
concerns even remotely analogous to the challenges discussed in this book. Might
one not create “tool-AI” that is like such software—like a flight control system, say,
or a virtual assistant—only more flexible and capable? Why build a
superintelligence that has a will of its own? On this line of thinking, the agent
paradigm is fundamentally misguided. Instead of creating an Al that has beliefs and
desires and that acts like an artificial person, we should aim to build regular
software that simply does what it is programmed to do.

This idea of creating software that “simply does what it is programmed to do” is,
however, not so straightforward if the product being created is a powerful general
intelligence. There is, of course, a trivial sense in which all software simply does
what it is programmed to do: the behavior is mathematically specified by the code.
But this is equally true for all castes of machine intelligence, “tool-AI” or not. If,
instead, “simply doing what it is programmed to do” means that the software
behaves as the programmers intended, then this is a standard that ordinary software
very often fails to meet.

Because of the limited capabilities of contemporary software (compared with
those of machine superintelligence) the consequences of such failures are
manageable, ranging from insignificant to very costly, but in no case amounting to
an existential threat.12 However, if it is insufficient capability rather than sufficient
reliability that makes ordinary software existentially safe, then it is unclear how
such software could be a model for a safe superintelligence. It might be thought that
by expanding the range of tasks done by ordinary software, one could eliminate the
need for artificial general intelligence. But the range and diversity of tasks that a
general intelligence could profitably perform in a modern economy is enormous. It



would be infeasible to create special-purpose software to handle all of those tasks.
Even if it could be done, such a project would take a long time to carry out. Before it
could be completed, the nature of some of the tasks would have changed, and new
tasks would have become relevant. There would be great advantage to having
software that can learn on its own to do new tasks, and indeed to discover new tasks
in need of doing. But this would require that the software be able to learn, reason,
and plan, and to do so in a powerful and robustly cross-domain manner. In other
words, it would require general intelligence.

Especially relevant for our purposes is the task of software development itself.
There would be enormous practical advantages to being able to automate this. Yet
the capacity for rapid self-improvement is just the critical property that enables a
seed Al to set off an intelligence explosion.

If general intelligence is not dispensable, is there some other way of construing
the tool-Al idea so as to preserve the reassuringly passive quality of a humdrum
tool? Could one have a general intelligence that is not an agent? Intuitively, it is not
just the limited capability of ordinary software that makes it safe: it is also its lack
of ambition. There is no subroutine in Excel that secretly wants to take over the
world if only it were smart enough to find a way. The spreadsheet application does
not “want” anything at all; it just blindly carries out the instructions in the program.
What (one might wonder) stands in the way of creating a more generally intelligent
application of the same type? An oracle, for instance, which, when prompted with a
description of a goal, would respond with a plan for how to achieve it, in much the
same way that Excel responds to a column of numbers by calculating a sum—
without thereby expressing any “preferences” regarding its output or how humans
might choose to use it?

The classical way of writing software requires the programmer to understand the
task to be performed in sufficient detail to formulate an explicit solution process
consisting of a sequence of mathematically well-defined steps expressible in code.l2
(In practice, software engineers rely on code libraries stocked with useful behaviors,
which they can invoke without needing to understand how the behaviors are
implemented. But that code was originally created by programmers who had a
detailed understanding of what they were doing.) This approach works for solving
well-understood tasks, and is to credit for most software that is currently in use. It
falls short, however, when nobody knows precisely how to solve all of the tasks that
need to be accomplished. This is where techniques from the field of artificial
intelligence become relevant. In narrow applications, machine learning might be
used merely to fine-tune a few parameters in a largely human-designed program. A
spam filter, for example, might be trained on a corpus of hand-classified email
messages in a process that changes the weights that the classification algorithm
places on various diagnostic features. In a more ambitious application, the classifier



might be built so that it can discover new features on its own and test their validity
in a changing environment. An even more sophisticated spam filter could be
endowed with some ability to reason about the trade-offs facing the user or about the
contents of the messages it is classifying. In neither of these cases does the
programmer need to know the best way of distinguishing spam from ham, only how
to set up an algorithm that can improve its own performance via learning,
discovering, or reasoning.

With advances in artificial intelligence, it would become possible for the
programmer to offload more of the cognitive labor required to figure out how to
accomplish a given task. In an extreme case, the programmer would simply specify a
formal criterion of what counts as success and leave it to the Al to find a solution.
To guide its search, the Al would use a set of powerful heuristics and other methods
to discover structure in the space of possible solutions. It would keep searching until
it found a solution that satisfied the success criterion. The Al would then either
implement the solution itself or (in the case of an oracle) report the solution to the
user.

Rudimentary forms of this approach are quite widely deployed today.
Nevertheless, software that uses Al and machine learning techniques, though it has
some ability to find solutions that the programmers had not anticipated, functions
for all practical purposes like a tool and poses no existential risk. We would enter
the danger zone only when the methods used in the search for solutions become
extremely powerful and general: that is, when they begin to amount to general
intelligence—and especially when they begin to amount to superintelligence.

There are (at least) two places where trouble could then arise. First, the
superintelligent search process might find a solution that is not just unexpected but
radically unintended. This could lead to a failure of one of the types discussed
previously (“perverse instantiation,” “infrastructure profusion,” or “mind crime”). It
is most obvious how this could happen in the case of a sovereign or a genie, which
directly implements the solution it has found. If making molecular smiley faces or
transforming the planet into paperclips is the first idea that the superintelligence
discovers that meets the solution criterion, then smiley faces or paperclips we get.14
But even an oracle, which—if all else goes well—merely reports the solution, could
become a cause of perverse instantiation. The user asks the oracle for a plan to
achieve a certain outcome, or for a technology to serve a certain function; and when
the user follows the plan or constructs the technology, a perverse instantiation can
ensue, just as if the Al had implemented the solution itself.12

A second place where trouble could arise is in the course of the software’s
operation. If the methods that the software uses to search for a solution are
sufficiently sophisticated, they may include provisions for managing the search
process itself in an intelligent manner. In this case, the machine running the software



may begin to seem less like a mere tool and more like an agent. Thus, the software
may start by developing a plan for how to go about its search for a solution. The plan
may specify which areas to explore first and with what methods, what data to gather,
and how to make best use of available computational resources. In searching for a
plan that satisfies the software’s internal criterion (such as yielding a sufficiently
high probability of finding a solution satisfying the user-specified criterion within
the allotted time), the software may stumble on an unorthodox idea. For instance, it
might generate a plan that begins with the acquisition of additional computational
resources and the elimination of potential interrupters (such as human beings). Such
“creative” plans come into view when the software’s cognitive abilities reach a
sufficiently high level. When the software puts such a plan into action, an existential
catastrophe may ensue.

As the examples in Box 9 illustrate, open-ended search processes sometimes
evince strange and unexpected non-anthropocentric solutions even in their currently
limited forms. Present-day search processes are not hazardous because they are too
weak to discover the kind of plan that could enable a program to take over the world.
Such a plan would include extremely difficult steps, such as the invention of a new
weapons technology several generations ahead of the state of the art or the execution
of a propaganda campaign far more effective than any communication devised by
human spin doctors. To have a chance of even conceiving of such ideas, let alone
developing them in a way that would actually work, a machine would probably need
the capacity to represent the world in a way that is at least as rich and realistic as the
world model possessed by a normal human adult (though a lack of awareness in
some areas might possibly be compensated for by extra skill in others). This is far
beyond the reach of contemporary Al. And because of the combinatorial explosion,
which generally defeats attempts to solve complicated planning problems with
brute-force methods (as we saw in Chapter 1), the shortcomings of known
algorithms cannot realistically be overcome simply by pouring on more computing
power.2l However, once the search or planning processes become powerful enough,
they also become potentially dangerous.

Box 9 Strange solutions from blind search

Even simple evolutionary search processes sometimes produce highly unexpected
results, solutions that satisfy a formal user-defined criterion in a very different way
than the user expected or intended.

The field of evolvable hardware offers many illustrations of this phenomenon. In
this field, an evolutionary algorithm searches the space of hardware designs, testing



the fitness of each design by instantiating it physically on a rapidly reconfigurable
array or motherboard. The evolved designs often show remarkable economy. For
instance, one search discovered a frequency discrimination circuit that functioned
without a clock—a component normally considered necessary for this function. The
researchers estimated that the evolved circuit was between one and two orders of
magnitude smaller than what a human engineer would have required for the task.
The circuit exploited the physical properties of its components in unorthodox ways;
some active, necessary components were not even connected to the input or output
pins! These components instead participated via what would normally be considered
nuisance side effects, such as electromagnetic coupling or power-supply loading.

Another search process, tasked with creating an oscillator, was deprived of a
seemingly even more indispensible component, the capacitor. When the algorithm
presented its successful solution, the researchers examined it and at first concluded
that it “should not work.” Upon more careful examination, they discovered that the
algorithm had, MacGyver-like, reconfigured its sensor-less motherboard into a
makeshift radio receiver, using the printed circuit board tracks as an aerial to pick up
signals generated by personal computers that happened to be situated nearby in the
laboratory. The circuit amplified this signal to produce the desired oscillating
output.18

In other experiments, evolutionary algorithms designed circuits that sensed
whether the motherboard was being monitored with an oscilloscope or whether a
soldering iron was connected to the lab’s common power supply. These examples
illustrate how an open-ended search process can repurpose the materials accessible
to it in order to devise completely unexpected sensory capabilities, by means that
conventional human design-thinking is poorly equipped to exploit or even account
for in retrospect.

The tendency for evolutionary search to “cheat” or find counterintuitive ways of
achieving a given end is on display in nature too, though it is perhaps less obvious to
us there because of our already being somewhat familiar with the look and feel of
biology, and thus being prone to regarding the actual outcomes of natural
evolutionary processes as normal—even if we would not have expected them ex
ante. But it is possible to set up experiments in artificial selection where one can see
the evolutionary process in action outside its familiar context. In such experiments,
researchers can create conditions that rarely obtain in nature, and observe the results.

For example, prior to the 1960s, it was apparently quite common for biologists to
maintain that predator populations restrict their own breeding in order to avoid
falling into a Malthusian trap..Z Although individual selection would work against
such restraint, it was sometimes thought that group selection would overcome
individual incentives to exploit opportunities for reproduction and favor traits that
would benefit the group or population at large. Theoretical analysis and simulation



studies later showed that while group selection is possible in principle, it can
overcome strong individual selection only under very stringent conditions that may
rarely apply in nature.l2 But such conditions can be created in the laboratory. When

flour beetles (Tribolium castaneum) were bred for reduced population size, by

applying strong group selection, evolution did indeed lead to smaller populations.12

However, the means by which this was accomplished included not only the “benign”
adaptations of reduced fecundity and extended developmental time that a human
naively anthropomorphizing evolutionary search might have expected, but also an

increase in cannibalism.22

Instead of allowing agent-like purposive behavior to emerge spontaneously and
haphazardly from the implementation of powerful search processes (including
processes searching for internal work plans and processes directly searching for
solutions meeting some user-specified criterion), it may be better to create agents on
purpose. Endowing a superintelligence with an explicitly agent-like structure can be
a way of increasing predictability and transparency. A well-designed system, built
such that there is a clean separation between its values and its beliefs, would let us
predict something about the outcomes it would tend to produce. Even if we could not
foresee exactly which beliefs the system would acquire or which situations it would
find itself in, there would be a known place where we could inspect its final values
and thus the criteria that it will use in selecting its future actions and in evaluating
any potential plan.

Comparison

It may be useful to summarize the features of the different system castes we have
discussed (Table 11).

Table 11 Features of different system castes

 Boxing methods fully
applicable

* Domesticity fully
applicable

* Reduced need for Al to
understand human
intentions and

Oracle A question-answering system



interests (compared to
genies and
sovereigns)

* Use of yes/no
questions can obviate
need for a metric of
the “usefulness” or

Variations: Domain-limited oracles (e.g. “informativeness” of

mathematics); output-restricted oracles (e.g. answers

only yes/no/undecided answers, or « Source of great power

probabilities); oracles that refuse to answer (might give operator a

questions if they predict the consequences of decisive strategic

answering would meet pre-specified “disaster advantage)

criteria”; multiple oracles for peer review « Limited protection
against foolish use by
operator

 Untrustworthy oracles
could be used to
provide answers that
are hard to find but
easy to verify

» Weak verification of
answers may be
possible through the
use of multiple
oracles

* Boxing methods
partially applicable
(for spatially limited
genies)

* Domesticity partially
applicable

* Genie could offer a
preview of salient
aspects of expected
outcomes

* Genie could
implement change in

Variations: Genies using different stages, with

“extrapolation distances” or degrees of opportunity for

Genie A command-executing system



following the spirit rather than letter of the review at each stage
command; domain-limited genies; genies-with- ¢ Source of great power
preview; genies that refuse to obey commands (might give operator a
if they predict the consequences of obeying decisive strategic
would meet pre-specified “disaster criteria” advantage)

* Limited protection
against foolish use by
operator

* Greater need for Al to
understand human
interests and
intentions (compared

to qracles
. Box?ng me)thods

inapplicable
* Most other capability
. A system designed for open-ended control methods also
Sovereign . . .
autonomous operation inapplicable (except,

possibly, social
integration or
anthropic capture)

* Domesticity mostly
inapplicable

* Great need for Al to
understand true
human interests and
intentions

* Necessity of getting it
right on the first try
(though, to a possibly
lesser extent, this is
true for all castes)

* Potentially a source of

Variations: Many possible motivation systems; ~ 8reat power for

possibility of using preview and “sponsor Sponsof, includi.ng
ratification” (to be discussed in Chapter 13) decisive strategic
advantage

* Once activated, not
vulnerable to
hijacking by operator,
and might be



designed with some
protection against
foolish use

* Can be used to
implement “veil of
ignorance” outcomes

(cf. Chapter 13)

* Boxing methods may
be applicable,
depending on the
implementation

» Powerful search
processes would
likely be involved in
the development and
operation of a

machine
superintelligence
» Powerful search to find
Tool A system not designed to exhibit goal- a solution meet.ing.
directed behavior some formal criterion

can produce solutions
that meet the criterion
in an unintended and
dangerous way

 Powerful search might
involve secondary,
internal search and
planning processes
that might find
dangerous ways of
executing the primary
search process

Further research would be needed to determine which type of system would be
safest. The answer might depend on the conditions under which the Al would be
deployed. The oracle caste is obviously attractive from a safety standpoint, since it
would allow both capability control methods and motivation selection methods to be
applied. It might thus seem to simply dominate the sovereign caste, which would



only allow motivation selection methods (except in scenarios in which the world is
believed to contain other powerful superintelligences, in which case social
integration or anthropic capture might apply). However, an oracle could place a lot
of power into the hands of its operator, who might be corrupted or might apply the
power unwisely, whereas a sovereign would offer some protection against these
hazards. The safety ranking is therefore not so easily determined.

A genie can be viewed as a compromise between an oracle and a sovereign—but
not necessarily a good compromise. In many ways, it would share the disadvantages
of both. The apparent safety of a tool-Al, meanwhile, may be illusory. In order for
tools to be versatile enough to substitute for superintelligent agents, they may need
to deploy extremely powerful internal search and planning processes. Agent-like
behaviors may arise from such processes as an unplanned consequence. In that case,
it would be better to design the system to be an agent in the first place, so that the
programmers can more easily see what criteria will end up determining the system’s
output.



CHAPTER 11
Multipolar scenarios

We have seen (particularly in Chapter 8) how menacing a unipolar outcome
could be, one in which a single superintelligence obtains a decisive strategic
advantage and uses it to establish a singleton. In this chapter, we examine what
would happen in a multipolar outcome, a post-transition society with multiple
competing superintelligent agencies. Our interest in this class of scenarios is
twofold. First, as alluded to in Chapter 9, social integration might be thought to
offer a solution to the control problem. We already noted some limitations with
that approach, and this chapter paints a fuller picture. Second, even without
anybody setting out to create a multipolar condition as a way of handling the
control problem, such an outcome might occur anyway. So what might such an
outcome look like? The resulting competitive society is not necessarily
attractive, nor long-lasting.

In singleton scenarios, what happens post-transition depends almost entirely on the
values of the singleton. The outcome could thus be very good or very bad, depending
on what those values are. What the values are depends, in turn, on whether the
control problem was solved, and—to the degree to which it was solved—on the
goals of the project that created the singleton.

If one is interested in the outcome of singleton scenarios, therefore, one really
only has three sources of information: information about matters that cannot be
affected by the actions of the singleton (such as the laws of physics); information
about convergent instrumental values; and information that enables one to predict or
speculate about what final values the singleton will have.

In multipolar scenarios, an additional set of constraints comes into play,
constraints having to do with how agents interact. The social dynamics emerging
from such interactions can be studied using techniques from game theory,
economics, and evolution theory. Elements of political science and sociology are
also relevant insofar as they can be distilled and abstracted from some of the more
contingent features of human experience. Although it would be unrealistic to expect
these constraints to give us a precise picture of the post-transition world, they can
help us identify some salient possibilities and challenge some unfounded
assumptions.

We will begin by exploring an economic scenario characterized by a low level of
regulation, strong protection of property rights, and a moderately rapid introduction



of inexpensive digital minds.1 This type of model is most closely associated with the
American economist Robin Hanson, who has done pioneering work on the subject.
Later in this chapter, we will look at some evolutionary considerations and examine
the prospects of an initially multipolar post-transition world subsequently coalescing
into a singleton.

Of horses and men

General machine intelligence could serve as a substitute for human intelligence. Not
only could digital minds perform the intellectual work now done by humans, but,
once equipped with good actuators or robotic bodies, machines could also substitute
for human physical labor. Suppose that machine workers—which can be quickly
reproduced—become both cheaper and more capable than human workers in
virtually all jobs. What happens then?

Wages and unemployment

With cheaply copyable labor, market wages fall. The only place where humans
would remain competitive may be where customers have a basic preference for work
done by humans. Today, goods that have been handcrafted or produced by
indigenous people sometimes command a price premium. Future consumers might
similarly prefer human-made goods and human athletes, human artists, human
lovers, and human leaders to functionally indistinguishable or superior artificial
counterparts. It is unclear, however, just how widespread such preferences would be.
If machine-made alternatives were sufficiently superior, perhaps they would be
more highly prized.

One parameter that might be relevant to consumer choice is the inner life of the
worker providing a service or product. A concert audience, for instance, might like
to know that the performer is consciously experiencing the music and the venue.
Absent phenomenal experience, the musician could be regarded as merely a high-
powered jukebox, albeit one capable of creating the three-dimensional appearance of
a performer interacting naturally with the crowd. Machines might then be designed
to instantiate the same kinds of mental states that would be present in a human
performing the same task. Even with perfect replication of subjective experiences,
however, some people might simply prefer organic work. Such preferences could
also have ideological or religious roots. Just as many Muslims and Jews shun food
prepared in ways they classify as haram or treif, so there might be groups in the
future that eschew products whose manufacture involved unsanctioned use of



machine intelligence.

What hinges on this? To the extent that cheap machine labor can substitute for
human labor, human jobs may disappear. Fears about automation and job loss are of
course not new. Concerns about technological unemployment have surfaced
periodically, at least since the Industrial Revolution; and quite a few professions
have in fact gone the way of the English weavers and textile artisans who in the early
nineteenth century united under the banner of the folkloric “General Ludd” to fight
against the introduction of mechanized looms. Nevertheless, although machinery
and technology have been substitutes for many particular types of human labor,
physical technology has on the whole been a complement to labor. Average human
wages around the world have been on a long-term upward trend, in large part
because of such complementarities. Yet what starts out as a complement to labor can
at a later stage become a substitute for labor. Horses were initially complemented by
carriages and ploughs, which greatly increased the horse’s productivity. Later,
horses were substituted for by automobiles and tractors. These later innovations
reduced the demand for equine labor and led to a population collapse. Could a
similar fate befall the human species?

The parallel to the story of the horse can be drawn out further if we ask why it is
that there are still horses around. One reason is that there are still a few niches in
which horses have functional advantages; for example, police work. But the main
reason is that humans happen to have peculiar preferences for the services that
horses can provide, including recreational horseback riding and racing. These
preferences can be compared to the preferences we hypothesized some humans
might have in the future, that certain goods and services be made by human hand.
Although suggestive, this analogy is, however, inexact, since there is still no
complete functional substitute for horses. If there were inexpensive mechanical
devices that ran on hay and had exactly the same shape, feel, smell, and behavior as
biological horses—perhaps even the same conscious experiences—then demand for
biological horses would probably decline further.

With a sufficient reduction in the demand for human labor, wages would fall
below the human subsistence level. The potential downside for human workers is
therefore extreme: not merely wage cuts, demotions, or the need for retraining, but
starvation and death. When horses became obsolete as a source of moveable power,
many were sold off to meatpackers to be processed into dog food, bone meal,
leather, and glue. These animals had no alternative employment through which to
earn their keep. In the United States, there were about 26 million horses in 1915. By

the early 1950s, 2 million remained.2

Capital and welfare




One difference between humans and horses is that humans own capital. A stylized
empirical fact is that the total factor share of capital has for a long time remained
steady at approximately 30% (though with significant short-term fluctuations).2 This
means that 30% of total global income is received as rent by owners of capital, the
remaining 70% being received as wages by workers. If we classify Al as capital,
then with the invention of machine intelligence that can fully substitute for human
work, wages would fall to the marginal cost of such machine-substitutes, which—
under the assumption that the machines are very efficient—would be very low, far
below human subsistence-level income. The income share received by labor would
then dwindle to practically nil. But this implies that the factor share of capital would
become nearly 100% of total world product. Since world GDP would soar following
an intelligence explosion (because of massive amounts of new labor-substituting
machines but also because of technological advances achieved by superintelligence,
and, later, acquisition of vast amounts of new land through space colonization), it
follows that the total income from capital would increase enormously. If humans
remain the owners of this capital, the total income received by the human population
would grow astronomically, despite the fact that in this scenario humans would no
longer receive any wage income.

The human species as a whole could thus become rich beyond the dreams of
Avarice. How would this income be distributed? To a first approximation, capital
income would be proportional to the amount of capital owned. Given the
astronomical amplification effect, even a tiny bit of pre-transition wealth would
balloon into a vast post-transition fortune. However, in the contemporary world,
many people have no wealth. This includes not only individuals who live in poverty
but also some people who earn a good income or who have high human capital but
have negative net worth. For example, in affluent Denmark and Sweden 30% of the
population report negative wealth—often young, middle-class people with few
tangible assets and credit card debt or student loans.* Even if savings could earn
extremely high interest, there would need to be some seed grain, some starting
capital, in order for the compounding to begin.>

Nevertheless, even individuals who have no private wealth at the start of the
transition could become extremely rich. Those who participate in a pension scheme,
for instance, whether public or private, should be in a good position, provided the
scheme is at least partially funded. Have-nots could also become rich through the
philanthropy of those who see their net worth skyrocket: because of the astronomical
size of the bonanza, even a very small fraction donated as alms would be a very
large sum in absolute terms.

It is also possible that riches could still be made through work, even at a post-
transition stage when machines are functionally superior to humans in all domains



(as well as cheaper than even subsistence-level human labor). As noted earlier, this
could happen if there are niches in which human labor is preferred for aesthetic,
ideological, ethical, religious, or other non-pragmatic reasons. In a scenario in which
the wealth of human capital-holders increases dramatically, demand for such labor
could increase correspondingly. Newly minted trillionaires or quadrillionaires could
afford to pay a hefty premium for having some of their goods and services supplied
by an organic “fair-trade” labor force. The history of horses again offers a parallel.
After falling to 2 million in the early 1950s, the US horse population has undergone
a robust recovery: a recent census puts the number at just under 10 million head.”
The rise is not due to new functional needs for horses in agriculture or
transportation; rather, economic growth has enabled more Americans to indulge a
fancy for equestrian recreation.

Another relevant difference between humans and horses, beside capital-
ownership, is that humans are capable of political mobilization. A human-run
government could use the taxation power of the state to redistribute private profits,
or raise revenue by selling appreciated state-owned assets, such as public land, and
use the proceeds to pension off its constituents. Again, because of the explosive
economic growth during and immediately after the transition, there would be vastly
more wealth sloshing around, making it relatively easy to fill the cups of all
unemployed citizens. It should be feasible even for a single country to provide every
human worldwide with a generous living wage at no greater proportional cost than
what many countries currently spend on foreign aid.2

The Malthusian principle in a historical perspective

So far we have assumed a constant human population. This may be a reasonable
assumption for short timescales, since biology limits the rate of human
reproduction. Over longer timescales, however, the assumption is not necessarily
reasonable.

The human population has increased a thousandfold over the past 9,000 years.2
The increase would have been much faster except for the fact that throughout most
of history and prehistory, the human population was bumping up against the limits
of the world economy. An approximately Malthusian condition prevailed, in which
most people received subsistence-level incomes that just barely allowed them to
survive and raise an average of two children to maturity.l? There were temporary
and local reprieves: plagues, climate fluctuations, or warfare intermittently culled
the population and freed up land, enabling survivors to improve their nutritional
intake—and to bring up more children, until the ranks were replenished and the
Malthusian condition reinstituted. Also, thanks to social inequality, a thin elite



stratum could enjoy consistently above-subsistence income (at the expense of
somewhat lowering the total size of the population that could be sustained). A sad
and dissonant thought: that in this Malthusian condition, the normal state of affairs
during most of our tenure on this planet, it was droughts, pestilence, massacres, and
inequality—in common estimation the worst foes of human welfare—that may have
been the greatest humanitarians: they alone enabling the average level of well-being
to occasionally bop up slightly above that of life at the very margin of subsistence.

Superimposed on local fluctuations, history shows a macro-pattern of initially
slow but accelerating economic growth, fueled by the accumulation of technological
innovations. The growing world economy brought with it a commensurate increase
in global population. (More precisely, a larger population itself appears to have
strongly accelerated the rate of growth, perhaps mainly by increasing humanity’s
collective intelligence.ll) Only since the Industrial Revolution, however, did
economic growth become so rapid that population growth failed to keep pace.
Average income thus started to rise, first in the early-industrializing countries of
Western Europe, subsequently in most of the world. Even in the poorest countries
today, average income substantially exceeds subsistence level, as reflected in the
fact that the populations of these countries are growing.

The poorest countries now have the fastest population growth, as they have yet to
complete the “demographic transition” to the low-fertility regime that has taken
hold in more developed societies. Demographers project that the world population
will rise to about 9 billion by mid-century, and that it might thereafter plateau or
decline as the poorer countries join the developed world in this low-fertility
regime.l2 Many rich countries already have fertility rates that are below replacement
level; in some cases, far below.13

Yet there are reasons, if we take a longer view and assume a state of unchanging
technology and continued prosperity, to expect a return to the historically and
ecologically normal condition of a world population that butts up against the limits
of what our niche can support. If this seems counterintuitive in light of the negative
relationship between wealth and fertility that we are currently observing on the
global scale, we must remind ourselves that this modern age is a brief slice of
history and very much an aberration. Human behavior has not yet adapted to
contemporary conditions. Not only do we fail to take advantage of obvious ways to
increase our inclusive fitness (such as by becoming sperm or egg donors) but we
actively sabotage our fertility by using birth control. In the environment of
evolutionary adaptedness, a healthy sex drive may have been enough to make an
individual act in ways that maximized her reproductive potential; in the modern
environment, however, there would be a huge selective advantage to having a more
direct desire for being the biological parent to the largest possible number of
children. Such a desire is currently being selected for, as are other traits that increase



our propensity to reproduce. Cultural adaptation, however, might steal a march on
biological evolution. Some communities, such those of the Hutterites or the
adherents of the Quiverfull evangelical movement, have natalist cultures that
encourage large families, and they are consequently undergoing rapid expansion.

Population growth and investment

If we imagine current socioeconomic conditions magically frozen in their current
shape, the future would be dominated by cultural or ethnic groups that sustain high
levels of fertility. If most people had preferences that were fitness-maximizing in
the contemporary environment, the population could easily double in each
generation. Absent population control policies—which would have to become
steadily more rigorous and effective to counteract the evolution of stronger
preferences to circumvent them—the world population would then continue to grow
exponentially until some constraint, such as land scarcity or depletion of easy
opportunities for important innovation, made it impossible for the economy to keep
pace: at which point, average income would start to decline until it reached the level
where crushing poverty prevents most people from raising much more than two
children to maturity. Thus the Malthusian principle would reassert itself, like a
dread slave master, bringing our escapade into the dreamland of abundance to an
end, and leading us back to the quarry in chains, there to resume the weary struggle
for subsistence.

This longer-term outlook could be telescoped into a more imminent prospect by
the intelligence explosion. Since software is copyable, a population of emulations or
Als could double rapidly—over the course of minutes rather than decades or
centuries—soon exhausting all available hardware.

Private property might offer partial protection against the emergence of a
universal Malthusian condition. Consider a simple model in which clans (or closed
communities, or states) start out with varying amounts of property and
independently adopt different policies about reproduction and investment. Some
clans discount the future steeply and spend down their endowment, whereafter their
impoverished members join the global proletariat (or die, if they cannot support
themselves through their labor). Other clans invest some of their resources but adopt
a policy of unlimited reproduction: such clans grow more populous until they reach
an internal Malthusian condition in which their members are so poor that they die at
almost the same rate as they reproduce, at which point the clan’s population growth
slows to equal the growth of its resources. Yet other clans might restrict their
fertility to below the rate of growth of their capital: such clans could slowly
increment their numbers while their members also grow richer per capita.

If wealth is redistributed from the wealthy clans to the members of the rapidly



reproducing or rapidly discounting clans (whose children, copies, or offshoots,
through no fault of their own, were launched into the world with insufficient capital
to survive and thrive) then a universal Malthusian condition would be more closely
approximated. In the limiting case, all members of all clans would receive
subsistence level income and everybody would be equal in their poverty.

If property is not redistributed, prudent clans might hold on to a certain amount of
capital, and it is possible that their wealth could grow in absolute terms. It is,
however, unclear whether humans could earn as high rates of return on their capital
as machine intelligences could earn on theirs, because there may be synergies
between labor and capital such that an single agent who can supply both (e.g. an
entrepreneur or investor who is both skilled and wealthy) can attain a private rate of
return on her capital exceeding the market rate obtainable by agents who possess
financial but not cognitive resources. Humans, being less skilled than machine
intelligences, may therefore grow their capital more slowly—unless, of course, the
control problem had been completely solved, in which case the human rate of return
would equal the machine rate of return, since a human principal could task a
machine agent to manage her savings, and could do so costlessly and without
conflicts of interest: but otherwise, in this scenario, the fraction of the economy
owned by machines would asymptotically approach one hundred percent.

A scenario in which the fraction of the economy that is owned by machines
asymptotically approaches one hundred percent is not necessarily one in which the
size of the human slice declines. If the economy grows at a sufficient clip, then even
a relatively diminishing fraction of it may still be increasing in its absolute size.
This may sound like modestly good news for humankind: in a multipolar scenario in
which property rights are protected—even if we completely fail to solve the control
problem—the total amount of wealth owned by human beings could increase. Of
course, this effect would not take care of the problem of population growth in the
human population pulling down per capita income to subsistence level, nor the
problem of humans who ruin themselves because they discount the future.

In the long run, the economy would become increasingly dominated by those
clans that have the highest savings rates—misers who own half the city and live
under a bridge. Only in the fullness of time, when there are no more opportunities
for investment, would the maximally prosperous misers start drawing down their
savings.1# However, if there is less than perfect protection for property rights—for
example if the more efficient machines on net succeed, by hook or by crook, in
transferring wealth from humans to themselves—then human capitalists may need to
spend down their capital much sooner, before it gets depleted by such transfers (or
the ongoing costs incurred in securing their wealth against such transfers). If these
developments take place on digital rather than biological timescales, then the glacial

humans might find themselves expropriated before they could say Jack Robinson.12



Life in an algorithmic economy

Life for biological humans in a post-transition Malthusian state need not resemble
any of the historical states of man (as hunter—gatherer, farmer, or office worker).
Instead, the majority of humans in this scenario might be idle rentiers who eke out a
marginal living on their savings.l® They would be very poor, yet derive what little
income they have from savings or state subsidies. They would live in a world with
extremely advanced technology, including not only superintelligent machines but
also anti-aging medicine, virtual reality, and various enhancement technologies and
pleasure drugs: yet these might be generally unaffordable. Perhaps instead of using
enhancement medicine, they would take drugs to stunt their growth and slow their
metabolism in order to reduce their cost of living (fast-burners being unable to
survive at the gradually declining subsistence income). As our numbers increase and
our average income declines further, we might degenerate into whatever minimal
structure still qualifies to receive a pension—perhaps minimally conscious brains in
vats, oxygenized and nourished by machines, slowly saving up enough money to
reproduce by having a robot technician develop a clone of them.Z

Further frugality could be achieved by means of uploading, since a physically
optimized computing substrate, devised by advanced superintelligence, would be
more efficient than a biological brain. The migration into the digital realm might be
stemmed, however, if emulations were regarded as non-humans or non-citizens
ineligible to receive pensions or to hold tax-exempt savings accounts. In that case, a
niche for biological humans might remain open, alongside a perhaps vastly larger
population of emulations or artificial intelligences.

So far we have focused on the fate of the humans, who may be supported by
savings, subsidies, or wage income deriving from other humans who prefer to hire
humans. Let us now turn our attention to some of the entities that we have so far
classified as “capital”: machines that may be owned by human beings, that are
constructed and operated for the sake of the functional tasks they perform, and that
are capable of substituting for human labor in a very wide range of jobs. What may
the situation be like for these workhorses of the new economy?

If these machines were mere automata, simple devices like a steam engine or the
mechanism in a clock, then no further comment would be needed: there would be a
large amount of such capital in a post-transition economy, but it would seem not to
matter to anybody how things turn out for pieces of insentient equipment. However,
if the machines have conscious minds—if they are constructed in such a way that
their operation is associated with phenomenal awareness (or if they for some other
reason are ascribed moral status)—then it becomes important to consider the overall
outcome in terms of how it would affect these machine minds. The welfare of the



working machine minds could even appear to be the most important aspect of the
outcome, since they may be numerically dominant.

Voluntary slavery, casual death

A salient initial question is whether these working machine minds are owned as
capital (slaves) or are hired as free wage laborers. On closer inspection however, it
become doubtful that anything really hinges on the issue. There are two reasons for
this. First, if a free worker in a Malthusian state gets paid a subsistence-level wage,
he will have no disposable income left after he has paid for food and other
necessities. If the worker is instead a slave, his owner will pay for his maintenance
and again he will have no disposable income. In either case, the worker gets the
necessities and nothing more. Second, suppose that the free laborer were somehow
in a position to command an above-subsistence-level income (perhaps because of
favorable regulation). How will he spend the surplus? Investors would find it most
profitable to create workers who would be “voluntary slaves”—who would willingly
work for subsistence-level wages. Investors may create such workers by copying
those workers who are compliant. With appropriate selection (and perhaps some
modification to the code) investors might be able to create workers who not only
prefer to volunteer their labor but who would also choose to donate back to their
owners any surplus income they might happen to receive. Giving money to the
worker would then be but a roundabout way of giving money to the owner or
employer, even if the worker were a free agent with full legal rights.

Perhaps it will be objected that it would be difficult to design a machine so that it
wants to volunteer for any job assigned to it or so that it wants to donate its wages to
its owner. Emulations, in particular, might be imagined to have more typically
human desires. But note that even if the original control problem is difficult, we are
here considering a condition after the transition, a time when methods for
motivation selection have presumably been perfected. In the case of emulations, one
might get quite far simply by selecting from the pre-existing range of human
characters; and we have described several other motivation selection methods. The
control problem may also in some ways be simplified by the current assumption that
the new machine intelligence enters into a stable socioeconomic matrix that is
already populated with other law-abiding superintelligent agents.

Let us, then, consider the plight of the working-class machine, whether it be
operating as a slave or a free agent. We focus first on emulations, the easiest case to
imagine.

Bringing a new biological human worker into the world takes anywhere between
fifteen and thirty years, depending on how much expertise and experience is
required. During this time the new person must be fed, housed, nurtured, and



educated—at great expense. By contrast, spawning a new copy of a digital worker is
as easy as loading a new program into working memory. Life thus becomes cheap. A
business could continuously adapt its workforce to fit demands by spawning new
copies—and terminating copies that are no longer needed, to free up computer
resources. This could lead to an extremely high death rate among digital workers.
Many might live for only one subjective day.

There are reasons other than fluctuations in demand why employers or owners of
emulations might want to “kill” or “end” their workers frequently.!8 If an emulation
mind, like a biological mind, requires periods of rest and sleep in order to function,
it might be cheaper to erase a fatigued emulation at the end of a day and replace it
with a stored state of a fresh and rested emulation. As this procedure would cause
retrograde amnesia for everything that had been learned during that day, emulations
performing tasks requiring long cognitive threads would be spared such frequent
erasure. It would be difficult, for example, to write a book if each morning when one
sat down at one’s desk, one had no memory of what one had done before. But other
jobs could be performed adequately by agents that are frequently recycled: a shop
assistant or a customer service agent, once trained, may only need to remember new
information for twenty minutes.

Since recycling emulations would prevent memory and skill formation, some
emulations may be placed on a special learning track where they would run
continuously, including for rest and sleep, even in jobs that do not strictly require
long cognitive threads. For example, some customer service agents might run for
many years in optimized learning environments, assisted by coaches and
performance evaluators. The best of these trainees would then be used like studs,
serving as templates from which millions of fresh copies are stamped out each day.
Great effort would be poured into improving the performance of such worker
templates, because even a small increment in productivity would yield great
economic value when applied in millions of copies.

In parallel with efforts to train worker-templates for particular jobs, intense
efforts would also be made to improve the underlying emulation technology.
Advances here would be even more valuable than advances in individual worker-
templates, since general technology improvements could be applied to all emulation
workers (and potentially to non-worker emulations also) rather than only to those in
a particular occupation. Enormous resources would be devoted to finding
computational shortcuts allowing for more efficient implementations of existing
emulations, and also into developing neuromorphic and entirely synthetic Al
architectures. This research would probably mostly be done by emulations running
on very fast hardware. Depending on the price of computer power, millions, billions,
or trillions of emulations of the sharpest human research minds (or enhanced
versions thereof) may be working around the clock on advancing the frontier of



machine intelligence; and some of these may be operating orders of magnitude
faster than biological brains.!2 This is a good reason for thinking that the era of
human-like emulations would be brief—a very brief interlude in sidereal time—and
that it would soon give way to an era of greatly superior artificial intelligence.

We have already encountered several reasons why employers of emulation
workers may periodically cull their herds: fluctuations in demand for different kinds
of laborers, cost savings of not having to emulate rest and sleep time, and the
introduction of new and improved templates. Security concerns might furnish
another reason. To prevent workers from developing subversive plans and
conspiracies, emulations in some sensitive positions might be run only for limited
periods, with frequent resets to an earlier stored ready-state.22

These ready-states to which emulations would be reset would be carefully
prepared and vetted. A typical short-lived emulation might wake up in a well-rested
mental state that is optimized for loyalty and productivity. He remembers having
graduated top of his class after many (subjective) years of intense training and
selection, then having enjoyed a restorative holiday and a good night’s sleep, then
having listened to a rousing motivational speech and stirring music, and now he is
champing at the bit to finally get to work and to do his utmost for his employer. He
is not overly troubled by thoughts of his imminent death at the end of the working
day. Emulations with death neuroses or other hang-ups are less productive and
would not have been selected.2

Would maximally efficient work be fun?

One important variable in assessing the desirability of a hypothetical condition like
this is the hedonic state of the average emulation.22 Would a typical emulation
worker be suffering or would he be enjoying the experience of working hard on the
task at hand?

We must resist the temptation to project our own sentiments onto the imaginary
emulation worker. The question is not whether you would feel happy if you had to
work constantly and never again spend time with your loved ones—a terrible fate,
most would agree.

It is moderately more relevant to consider the current human average hedonic
experience during working hours. Worldwide studies asking respondents how happy
they are find that most rate themselves as “quite happy” or “very happy” (averaging
3.1 on a scale from 1 to 4).22 Studies on average affect, asking respondents how
frequently they have recently experienced various positive or negative affective
states, tend to get a similar result (producing a net affect of about 0.52 on a scale
from —1 to 1). There is a modest positive effect of a country’s per capita income on



average subjective well-being.22 However, it is hazardous to extrapolate from these
findings to the hedonic state of future emulation workers. One reason that could be
given for this is that their condition would be so different: on the one hand, they
might be working much harder; on the other hand, they might be free from diseases,
aches, hunger, noxious odors, and so forth. Yet such considerations largely miss the
mark. The much more important consideration here is that hedonic tone would be
easy to adjust through the digital equivalent of drugs or neurosurgery. This means
that it would be a mistake to infer the hedonic state of future emulations from the
external conditions of their lives by imagining how we ourselves and other people
like us would feel in those circumstances. Hedonic state would be a matter of choice.
In the model we are currently considering, the choice would be made by capital-
owners seeking to maximize returns on their investment in emulation-workers.
Consequently, the question of how happy emulations would feel boils down to the
question of which hedonic states would be most productive (in the various jobs that
emulations would be employed to do).

Here, again, one might seek to draw an inference from observations about human
happiness. If it is the case, across most times, places, and occupations, that people
are typically at least moderately happy, this would create some presumption in favor
of the same holding in a post-transition scenario like the one we are considering. To
be clear, the argument in this case would not be that human minds have a
predisposition towards happiness so they would probably find satisfaction under
these novel conditions; but rather that a certain average level of happiness has
proved adaptive for human minds in the past so maybe a similar level of happiness
will prove adaptive for human-like minds in the future. Yet this formulation also
reveals the weakness of the inference: to wit, that the mental dispositions that were
adaptive for hunter—gatherer hominids roaming the African savanna may not
necessarily be adaptive for modified emulations living in post-transition virtual
realities. We can certainly hope that the future emulation-workers would be as happy
as, or happier than, typical workers were in human history; but we have yet to see
any compelling reason for supposing it would be so (in the laissez-faire multipolar
scenario currently under examination).

Consider the possibility that the reason happiness is prevalent among humans (to
whatever limited extent it is prevalent) is that cheerful mood served a signaling
function in the environment of evolutionary adaptedness. Conveying the impression
to other members of the social group of being in flourishing condition—in good
health, in good standing with one’s peers, and in confident expectation of continued
good fortune—may have boosted an individual’s popularity. A bias toward
cheerfulness could thus have been selected for, with the result that human
neurochemistry is now biased toward positive affect compared to what would have
been maximally efficient according to simpler materialistic criteria. If this were the



case, then the future of joie de vivre might depend on cheer retaining its social
signaling function unaltered in the post-transition world: an issue to which we will
return shortly.

What if glad souls dissipate more energy than glum ones? Perhaps the joyful are
more prone to creative leaps and flights of fancy—behaviors that future employers
might disprize in most of their workers. Perhaps a sullen or anxious fixation on
simply getting on with the job without making mistakes will be the productivity-
maximizing attitude in most lines of work. The claim here is not that this is so, but
that we do not know that it is not so. Yet we should consider just how bad it could be
if some such pessimistic hypothesis about a future Malthusian state turned out to be
true: not only because of the opportunity cost of having failed to create something
better—which would be enormous—but also because the state could be bad in itself,
possibly far worse than the original Malthusian state.

We seldom put forth full effort. When we do, it is sometimes painful. Imagine
running on a treadmill at a steep incline—heart pounding, muscles aching, lungs
gasping for air. A glance at the timer: your next break, which will also be your death,
is due in 49 years, 3 months, 20 days, 4 hours, 56 minutes, and 12 seconds. You wish
you had not been born.

Again the claim is not that this is how it would be, but that we do not know that it
is not. One could certainly make a more optimistic case. For example, there is no
obvious reason that emulations would need to suffer bodily injury and sickness: the
elimination of physical wretchedness would be a great improvement over the present
state of affairs. Furthermore, since such stuff as virtual reality is made of can be
fairly cheap, emulations may work in sumptuous surroundings—in splendid
mountaintop palaces, on terraces set in a budding spring forest, or on the beaches of
an azure lagoon—with just the right illumination, temperature, scenery and décor;
free from annoying fumes, noises, drafts, and buzzing insects; dressed in
comfortable clothing, feeling clean and focused, and well nourished. More
significantly, if—as seems perfectly possible—the optimum human mental state for
productivity in most jobs is one of joyful eagerness, then the era of the emulation
economy could be quite paradisiacal.

There would, in any case, be a great option value in arranging matters in such a
manner that somebody or something could intervene to set things right if the default
trajectory should happen to veer toward dystopia. It could also be desirable to have
some sort of escape hatch that would permit bailout into death and oblivion if the
quality of life were to sink permanently below the level at which annihilation
becomes preferable to continued existence.

Unconscious outsourcers?




In the longer run, as the emulation era gives way to an artificial intelligence era (or
if machine intelligence is attained directly via Al without a preceding whole brain
emulation stage) pain and pleasure might possibly disappear entirely in a multipolar
outcome, since a hedonic reward mechanism may not be the most effective
motivation system for an complex artificial agent (one that, unlike the human mind,
is not burdened with the legacy of animal wetware). Perhaps a more advanced
motivation system would be based on an explicit representation of a utility function
or some other architecture that has no exact functional analogs to pleasure and pain.

A related but slightly more radical multipolar outcome—one that could involve
the elimination of almost all value from the future—is that the universal proletariat
would not even be conscious. This possibility is most salient with respect to Al,
which might be structured very differently than human intelligence. But even if
machine intelligence were initially achieved though whole brain emulation, resulting
in conscious digital minds, the competitive forces unleashed in a post-transition
economy could easily lead to the emergence of progressively less neuromorphic
forms of machine intelligence, either because synthetic Al is created de novo or
because the emulations would, through successive modifications and enhancements,
increasingly depart their original human form.

Consider a scenario in which after emulation technology has been developed,
continued progress in neuroscience and computer science (expedited by the presence
of digital minds to serve as both researchers and test subjects) makes it possible to
isolate individual cognitive modules in an emulation, and to hook them up to
modules isolated from other emulations. A period of training and adjustment may be
required before different modules can collaborate effectively; but modules that
conform to common standards could more quickly interface with other standard
modules. This would make standardized modules more productive, and create
pressure for more standardization.

Emulations can now begin to outsource increasing portions of their functionality.
Why learn arithmetic when you can send your numerical reasoning task to Gauss-
Modules, Inc.? Why be articulate when you can hire Coleridge Conversations to put
your thoughts into words? Why make decisions about your personal life when there
are certified executive modules that can scan your goal system and manage your
resources to achieve your goals better than if you tried to do it yourself? Some
emulations may prefer to retain most of their functionality and handle tasks
themselves that could be done more efficiently by others. Those emulations would
be like hobbyists who enjoy growing their own vegetables or knitting their own
cardigans. Such hobbyist emulations would be less efficient; and if there is a net
flow of resources from less to more efficient participants of the economy, the
hobbyists would eventually lose out.

The bouillon cubes of discrete human-like intellects thus melt into an algorithmic
soup.



It is conceivable that optimal efficiency would be attained by grouping
capabilities in aggregates that roughly match the cognitive architecture of a human
mind. It might be the case, for example, that a mathematics module must be tailored
to a language module, and that both must be tailored to the executive module, in
order for the three to work together. Cognitive outsourcing would then be almost
entirely unworkable. But in the absence of any compelling reason for being
confident that this is so, we must countenance the possibility that human-like
cognitive architectures are optimal only within the constraints of human neurology
(or not at all). When it becomes possible to build architectures that could not be
implemented well on biological neural networks, new design space opens up; and the
global optima in this extended space need not resemble familiar types of mentality.
Human-like cognitive organizations would then lack a niche in a competitive post-
transition economy or ecosystem.22

There might be niches for complexes that are either less complex (such as
individual modules), more complex (such as vast clusters of modules), or of similar
complexity to human minds but with radically different architectures. Would these
complexes have any intrinsic value? Should we welcome a world in which such alien
complexes have replaced human complexes?

The answer may depend on the specific nature of those alien complexes. The
present world has many levels of organization. Some highly complex entities, such
as multinational corporations and nation states, contain human beings as
constituents; yet we usually assign these high-level complexes only instrumental
value. Corporations and states do not (it is generally assumed) have consciousness,
over and above the consciousness of the people who constitute them: they cannot
feel phenomenal pain or pleasure or experience any qualia. We value them to the
extent that they serve human needs, and when they cease to do so we “kill” them
without compunction. There are also lower-level entities, and those, too, are usually
denied moral status. We see no harm in erasing an app from a smartphone, and we
do not think that a neurosurgeon is wronging anyone when she extirpates a
malfunctioning module from an epileptic brain. As for exotically organized
complexes of a level similar to that of the human brain, most of us would perhaps
judge them to have moral significance only if we thought they had a capacity or
potential for conscious experience.2®

We could thus imagine, as an extreme case, a technologically highly advanced
society, containing many complex structures, some of them far more intricate and
intelligent than anything that exists on the planet today—a society which
nevertheless lacks any type of being that is conscious or whose welfare has moral
significance. In a sense, this would be an uninhabited society. It would be a society
of economic miracles and technological awesomeness, with nobody there to benefit.
A Disneyland without children.



Evolution is not necessarily up

The word “evolution” is often used as a synonym of “progress,” perhaps reflecting a
common uncritical image of evolution as a force for good. A misplaced faith in the
inherent beneficence of the evolutionary process can get in the way of a fair
evaluation of the desirability of a multipolar outcome in which the future of
intelligent life is determined by competitive dynamics. Any such evaluation must
rest on some (at least implicit) opinion about the probability distribution of different
phenotypes turning out to be adaptive in a post-transition digital life soup. It would
be difficult in the best of circumstances to extract a clear and correct answer from
the unavoidable goo of uncertainty that pervades these matters: more so, if we
superadd a layer of Panglossian muck.

A possible source for faith in freewheeling evolution is the apparent upward
directionality exhibited by the evolutionary process in the past. Starting from
rudimentary replicators, evolution produced increasingly “advanced” organisms,
including creatures with minds, consciousness, language, and reason. More recently,
cultural and technological processes, which bear some loose similarities to
biological evolution, have enabled humans to develop at an accelerated pace. On a
geological as well as a historical timescale, the big picture seems to show an
overarching trend toward increasing levels of complexity, knowledge,
consciousness, and coordinated goal-directed organization: a trend which, not to put
too fine a point on it, one might label “progress.”%Z

The image of evolution as a process that reliably produces benign effects is
difficult to reconcile with the enormous suffering that we see in both the human and
the natural world. Those who cherish evolution’s achievements may do so more
from an aesthetic than an ethical perspective. Yet the pertinent question is not what
kind of future it would be fascinating to read about in a science fiction novel or to
see depicted in a nature documentary, but what kind of future it would be good to
live in: two very different matters.

Furthermore, we have no reason to think that whatever progress there has been
was in any way inevitable. Much might have been luck. This objection derives
support from the fact that an observation selection effect filters the evidence we can
have about the success of our own evolutionary development.?8 Suppose that on
99.9999% of all planets where life emerged it went extinct before developing to the
point where intelligent observers could begin to ponder their origin. What should we
expect to observe if that were the case? Arguably, we should expect to observe
something like what we do in fact observe. The hypothesis that the odds of
intelligent life evolving on a given planet are low does not predict that we should
find ourselves on a planet where life went extinct at an early stage; rather, it may



predict that we should find ourselves on a planet where intelligent life evolved, even
if such planets constitute a very small fraction of all planets where primitive life
evolved. Life’s long track record on Earth may therefore offer scant support to the
claim that there was a high chance—Ilet alone anything approaching inevitability—
involved in the rise of higher organisms on our planet.22

Thirdly, even if present conditions had been idyllic, and even if they could have
been shown to have arisen ineluctably from some generic primordial state, there
would still be no guarantee that the melioristic trend is set to continue into the
indefinite future. This holds even if we disregard the possibility of a cataclysmic
extinction event and indeed even if we assume that evolutionary developments will
continue to produce systems of increasing complexity.

We suggested earlier that machine intelligence workers selected for maximum
productivity would be working extremely hard and that it is unknown how happy
such workers would be. We also raised the possibility that the fittest life forms
within a competitive future digital life soup might not even be conscious. Short of a
complete loss of pleasure, or of consciousness, there could be a wasting away of
other qualities that many would regard as indispensible for a good life. Humans
value music, humor, romance, art, play, dance, conversation, philosophy, literature,
adventure, discovery, food and drink, friendship, parenting, sport, nature, tradition,
and spirituality, among many other things. There is no guarantee that any of these
would remain adaptive. Perhaps what will maximize fitness will be nothing but
nonstop high-intensity drudgery, work of a drab and repetitive nature, destitute of
ludic frisson, aimed only at improving the eighth decimal place of some economic
output measure. The phenotypes selected would then have lives lacking in the
aforesaid qualities, and depending on one’s axiology the result might strike one as
either abhorrent, worthless, or merely impoverished, but at any rate a far cry from a
utopia one would feel worthy of one’s commendation.

It might be wondered how such a bleak picture could be consistent with the fact
that we do now indulge in music, humor, romance, art, etc. If these behaviors are
really so “wasteful,” then how come they have been tolerated and indeed promoted
by the evolutionary processes that shaped our species? That modern man is in an
evolutionary disequilibrium does not account for this; for our Pleistocene forebears,
too, engaged in most of these dissipations. Many of the behaviors in question are not
even unique to Homo sapiens. Flamboyant display is found in a wide variety of
contexts, from sexual selection in the animal kingdom to prestige contests among
nation states.3C

Although a full evolutionary explanation for each of these behaviors is beyond the
scope of the present inquiry, we can note that some of them serve functions that may
not be as relevant in a machine intelligence context. Play, for example, which occurs
only in some species and predominantly among juveniles, is mainly a way for the



young animal to learn skills that it will need later in life. When emulations can be
created as adults, already in possession of a mature repertoire of skills, or when
knowledge and techniques acquired by one Al can be directly ported into another Al,
the need for playful behavior might become less widespread.

Many of the other examples of humanistic behaviors may have evolved as hard-
to-fake signals of qualities that are difficult to observe directly, such as bodily or
mental resilience, social status, quality of allies, ability and willingness to prevail in
a fight, or possession of resources. The peacock’s tail is the classic instance: only fit
peacocks can afford to sprout truly extravagant plumage, and peahens have evolved
to find it attractive. No less than morphological traits, behavioral traits too can
signal genetic fitness or other socially relevant attributes.2L

Given that flamboyant display is so common among both humans and other
species, one might consider whether it would not also be part of the repertoire of
technologically more advanced life forms. Even if there were to be no narrowly
instrumental use for playfulness or musicality or even for consciousness in the
future ecology of intelligent information processing, might not these traits
nonetheless confer some evolutionary advantage to their possessors by virtue of
being reliable signals of other adaptive qualities?

While the possibility of a pre-established harmony between what is valuable to us
and what would be adaptive in a future digital ecology is hard to rule out, there are
reasons for skepticism. Consider, first, that many of the costly displays we find in
nature are linked to sexual selection.22 Reproduction among technologically mature
life forms, in contrast, may be predominantly or exclusively asexual.

Second, technologically advanced agents might have available new means of
reliably communicating information about themselves, means that do not rely on
costly display. Even today, when professional lenders assess creditworthiness they
tend to rely more on documentary evidence, such as ownership certificates and bank
statements, than on costly displays, such as designer suits and Rolex watches. In the
future, it might be possible to employ auditing firms that verify through detailed
examination of behavioral track records, testing in simulated environments, or direct
inspection of source code, that a client agent possesses a claimed attribute. Signaling
one’s qualities by agreeing to such auditing might be more efficient than signaling
via flamboyant display. Such a professionally mediated signal would still be costly
to fake—this being the essential feature that makes the signal reliable—but it could
be much cheaper to transmit when truthful than it would be to communicate an
equivalent signal flamboyantly.

Third, not all possible costly displays are intrinsically valuable or socially
desirable. Many are simply wasteful. The Kwakiutl potlatch ceremonies, a form of
status competition between rival chiefs, involved the public destruction of vast

amounts of accumulated wealth.22 Record-breaking skyscrapers, megayachts, and



moon rockets may be viewed as contemporary analogs. While activities like music
and humor could plausibly be claimed to enhance the intrinsic quality of human life,
it is doubtful that a similar claim could be sustained with regard to the costly pursuit
of fashion accessories and other consumerist status symbols. Worse, costly display
can be outright harmful, as in macho posturing leading to gang violence or military
bravado. Even if future intelligent life forms would use costly signaling, therefore, it
is an open question whether the signal would be of a valuable sort—whether it would
be like the rapturous melody of a nightingale or instead like the toad’s monosyllabic
croak (or the incessant barking of a rabid dog).

Post-transition formation of a singleton?

Even if the immediate outcome of the transition to machine intelligence were
multipolar, the possibility would remain of a singleton developing later. Such a
development would continue an apparent long-term trend toward larger scales of
political integration, taking it to its natural conclusion.24 How might this occur?

A second transition

On way in which an initially multipolar outcome could converge into a singleton
post-transition is if there is, after the initial transition, a second technological
transition big enough and steep enough to give a decisive strategic advantage to one
of the remaining powers: a power which might then seize the opportunity to
establish a singleton. Such a hypothetical second transition might be occasioned by a
breakthrough to a higher level of superintelligence. For instance, if the first wave of
machine superintelligence is emulation-based, then a second surge might result
when the emulations now doing the research succeed in developing effective self-
improving artificial intelligence.2> (Alternatively, a second transition might be
triggered by a breakthrough in nanotechnology or some other military or general-
purpose technology as yet unenvisaged.)

The pace of development after the initial transition would be extremely rapid.
Even a short gap between the leading power and its closest competitor could
therefore plausibly result in a decisive strategic advantage for the leading power
during a second transition. Suppose, for example, that two projects enter the first
transition only a few days apart, and that the takeoff is slow enough that this gap
does not give the leading project a decisive strategic advantage at any point during
the takeoff. The two projects both emerge as superintelligent powers, though one of
them remains a few days ahead of the other. But developments are now occurring on



the research timescales characteristic of machine superintelligence—perhaps
thousands or millions of times faster than research conducted on a biological human
timescale. Development of the second-transition technology might therefore be
completed in days, hours, or minutes. Even though the frontrunner’s lead is a mere
few days, a breakthrough could thus catapult it into a decisive strategic advantage.
Note, however, that if technological diffusion (via espionage or other channels)
speeds up as much as technological development, then this effect would be negated.
What woul