
CSE 1729 - Introduction to Principles of Programming Due: September 9, 2019

Problem Set 1

1. Re-write the following arithmetic expressions as SCHEME expressions and show the result of the
SCHEME interpreter when invoked on your expressions.

(a) (22+ 42)× (54× 99).
(b) ((22+ 42)× 54)× 99.

(c) 64× 102+ 16× (44/22).
(d) Is the expression in the following limerick, written by recreational mathematician James Mercer,

correct?

A dozen, a gross, and a score
Plus three times the square root of four
Divided by seven
Plus five times eleven
Is nine squared and not a bit more

That is, if you evaluate the following equation as a SCHEME expression with the logical operator
= for the equality symbol, does it evaluate to true (#t)?

12+ 144+ 20+ 3
p

4
7

+(5× 11) = 92+ 0

Note: You can use the built-in SCHEME function sqrt to compute the square root of 4 as follows:
(sqrt 4)

2. Reflect on the expressions above.

(a) Of course, the first two expressions evaluate to the same number. In what sense are they different?
How is this reflected in the SCHEME expression?

(b) In an unparenthesized infix arithmetic expression, like 3+4∗5, we rely on a convention to deter-
mine which operation we apply first (rules of precedence). Are rules of precedence necessary for
arithmetic operations SCHEME ?

3. Write SCHEME definitions for the functions below. Use the interpreter to try them out on a couple
of test cases to check that they work, and include this output with your solutions.

(a) inc, the function inc(x) = x + 1.

(b) inc2, the function inc2(x) = x+2. Show how to write inc2 using your definition of inc instead
of +.

(c) fifth, the function fifth(x) = x5.

(d) p, the polynomial function p(x) = (x5+ 11x4+ 27x3+ x + 7)2.

(e) Using the function fifth, write the function twenty-fifth(x) = x25.

(f) Using the function twenty-fifth, write the function six-hundred-and-twenty-fifth(x) =
x625.



Remark SCHEME provides built-in support for exponentiation (via the expt function, defined so
that (expt x y) yields xy ). For the exercises above, however, please construct the functions x 7→ xk

using only ∗ and function application.

4. Reflect on your definition of six-hundred-and-twenty-fifth above. What would have been the
difficulty of defining this merely in terms of ∗?

5. Write and test the following functions that deal with points and lines in the Cartesian plane.

(a) (y-value x b m), a function of three parameters (an x value, a y-intercept b , and a slope m) that
returns the y value of the line at that x, that is mx + b .

(b) (points-slope x1 y1 x2 y2), a function of four parameters (the x and y values of two points)
that calculates the slope of a line through those points (x1, y1) and (x2, y2). You may assume that
the two points are distinct. (Note: this function is not required to work if the slope of the line is
undefined.)

(c) (points-intercept x1 y1 x2 y2), a function of four parameters (the x and y values of two
points) that calculates the y-intercept of a line through points (x1, y1) and (x2, y2). You may assume
that the two points are distinct. (Note: this function is not required to work if the line does not
have a y-intercept.)

(d) (on-parallels? x1 y1 x2 y2 x3 y3 x4 y4), a function of eight parameters (the x and y val-
ues of four points), returns true if the line through points (x1, y1) and (x2, y2) is parallel to the line
through points (x3, y3) and (x4, y4). You may assume that points (x1, y1) and (x2, y2) are distinct,
as are (x3, y3) and (x4, y4). (Note: this function can use any of the functions defined above, but
should give a correct answer even in the cases where points-slope or points-intercept would
fail.

6. Remember the Quadratic formula, which can be used to find the roots of a quadratic eguation? For a
quadratic equation ax2+ b x + c = 0,a 6= 0, the formula is

x =
−b ±

p
b 2− 4ac

2a

Notice that this gives us two different roots (because of the ±) whenever b 2− 4ac 6= 0.

Write the following SCHEME functions.

(a) (root1 a b c) that gives us the root corresponding to the plus in the± in the quadratic formula

(that is, calculate −b+
p

b 2−4ac
2a ).

(b) (root2 a b c) that gives us the root corresponding to the minus in the ± in the quadratic for-

mula (that is, calculate −b−
p

b 2−4ac
2a ).

(c) (number-of-roots a b c) which calculates the number of distinct roots to the equation ax2+
b x + c = 0,a 6= 0 (which will either be 1 or 2).

(d) (real-roots? a b c) is a boolean function that evaluates to #t when the roots of ax2+ b x+
c = 0,a 6= 0 are real numbers. Note that you do not have to calculate the roots to determine
whether they are real or complex numbers.

Note: there are some common calculations done in the above functions; it may make sense to write
some auxiliary functions to make your code simpler.



7. The Lazy Caterer’s Sequence describes the maximum number of pieces that can be made with n cuts
of a pizza, pancake or any other circular item. For example, if all the cuts meet at a point (e.g. in the
center) then 6 pieces can be made with 3 cuts (see Figure 1). However, the maximum number of pieces
that can be made with three cuts is 7 (see Figure 2). The maximum number of pieces p that can be
made with n cuts is given by:

p =
n2+ n+ 2

2
Define a SCHEME function, named (lazy n), which computes the maximum number of pieces that
can be made from n cuts using the definition of the Lazy Caterer’s Sequence above. The Lazy Caterer’s
Sequence begins (at 0):

1,2,4,7,11,16,22,29,37,46,56,67,79,92,106,121, . . .

Note, application of your function should evaluate to one of the numbers in the sequence.

Figure 1: Pizza with three cuts and 6 pieces. Figure 2: Pizza with three cuts and 7 pieces.

8. A cone is a three-dimensional geometric shape that tapers smoothly from a flat base (frequently, though
not necessarily, circular) to a point called the apex or vertex. Figure 3 shows a cone with a circular
base, referred to as a right circular cone.

(a) Write a SCHEME expression to define a variable named pi for the constant π. You must use the
value 3.14159 for your variable.

(b) Define a SCHEME function, (base r) that takes the radius r of the circle that forms the base of
a right circular cone and returns the area of the cone’s base. You can, of course, just treat this as
a circle. The area of a circle is πr 2.

r

h

Figure 3: A right circular cone with height, h, and radius, r .



(c) Using your base function from part b, define a SCHEME function, (cone-volume r h), which
takes a the radius of the base of the cone, as well as the height of the cone as parameters and
computes the volume of the cone. You must use the base function in your solution. The
cone’s volume is given by: V = 1

3 b h where b is the area of the base and h the height from the
base to the apex.

(d) The lateral height of a right circular cone is the distance from any point on the circle to the apex
of the cone via a straight line along the surface of the cone. It is given by

p
r 2+ h2 where r is the

radius of the base the cone and h is the height. Define a SCHEME function, named (lat-height
r h), to compute the lateral height of a right circular cone.

(e) The lateral surface area of a right circular cone is πr l where r is the radius of the circle at the
bottom of the cone and l is the lateral height of the cone. The surface area of the bottom circle of
a cone is the same as for any circle, πr 2. Thus, the total surface area of a right circular cone can
be expressed as πr 2+πr

p
r 2+ h2. Define a SCHEME function, named (cone-surface-area r

h), to compute the total surface area of a cone. You must use any functions written in previous
parts to define cone-surface-area, if possible.



CSE1729 - Introduction to Programming September 6, 2019

Problem Set 2

Honor code. As a student in 1729, you have pledged to uphold the 1729 honor code. Speci�cally, you have pledged
that any work you hand in for this assignment must represent your individual intellectual e�ort.

1. Consider the following function

f(x) =


x− 2π if x > 2π,
sin(x) if 0 ≤ x ≤ 2π,

x if x < 0.

De�ne a function piecewise so that (piecewise x) returns f(x). In your code, please simply ap-
proximate π with the decimal 3.142. Use the built-in function (sin x) which returns sin(x).
To visualize the function, the plot below shows the values in a region around zero.
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2. Consider that the + and - builtin functions of scheme are broken and that you cannot use them. �e only
mathematical operations that work normally are the usual comparisons and boolean operators (i.e., and,
or, not as well as <,≤, >,≥,= all work �ne). Your task is to rebuild addition (the same as the builtin
+. �ankfully, this “broken” version of Scheme has two working functions to increment an integer by 1 and
decrement an integer by 1. Both could be implemented with

(define (inc x) (+ x 1))
(define (dec x) (- x 1))

Your task is to implement the function add such that, for instance, (add 3 10) produces the answer 13.
Your add function is expected to work on non-negative integers (namely, the naturals). Your function starts
like

(define (add n m) ...)

And can only make use of inc and dec to do any kind of arithmetic. Observe that the following simple
identities

(add n m) =

{
(n− 1) + (m+ 1) ⇔ n > 0
m ⇔ n = 0

1



are true. Namely, if you adopt a set-based interpretation of natural numbers (a natural number is a bag of
pebbles), then to combine two bags of pebbles, one simply needs to move pebbles from one bag to the other,
one by one…

3. Now that you have an addition function working, your next task is to rebuild the equally broken * function of
Scheme that multiplies natural numbers (non-negative). Again, the same assumption apply and you can only
make use of inc,dec and your newly de�ned add. You should implement a function mult such that, for
instance, the form (mult 7 3) evaluates to 21. Your function starts like

(define (mult n m) ...)

Note that, once again, simply arithmetic identities also hold in this case. Simply �nd them and the solution
will pop into existence!

4. Armed with mult, you can now turn your a�ention to the exponentiation function and build a function
power that raises a base b to the integral (and positive) power n. Namely, the form (power b n) outputs
bn. Your function starts like

(define (power b n) ...)

Once again, you can only use inc,dec and your newly minted add and mult. Naturally, recall that

bn = bn−1 · b
b0 = 1

5. �ere is more than one way to achieve an expected result. For instance, you can use di�erent algebraic prop-
erties to achieve the same result. Recall that

bn = b(
n
2 )

2

⇔ n is even
bn = bb

n
2 c

2 · b⇔ n is odd
b0 = 1

�e beauty of this function lies in how much faster it is compared to the version above in Q4. Once again,
you can only use inc,dec and your newly minted add and mult. Note that to compute the �oor (rounded
down value), you can use the Scheme function floor. For division, the builtin Scheme operator / works
�ne.

6. From this point onward, your + and * Scheme functions are working again, feel free to use them!

Recall from class the de�nition of number-sum, which computes the sum of the �rst n numbers:

(define (number-sum n)
(if (= n 0)

0
(+ n (number-sum (- n 1)))))

(a) Adapt the function so that it computes the sum of even numbers less than or equal to n. Call your function
sumEven. When evaluated at 4, your function should return the sum 2+4 = 6. On 10, it should output
2 + 4 + 6 + 8 + 10 = 30.

(b) Now, write a function that computes the sum of odd numbers less than or equal to n. Call your function
sumOdd. When evaluated at 4, your function should return the sum 1 + 3 = 4. On 10, it should output
1 + 3 + 5 + 7 + 9 = 25.
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7. Write a recursive function that, given a positive integer k, returns the product(
1− 1

2

)(
1− 1

3

)
· · ·
(
1− 1

k

)
︸ ︷︷ ︸

k−1

.

Call your function h-product.
(Experiment with the results for some various values of k; this might suggest a simple non-recursive way to
formulate this function. Please hand-in the natural recursive version, though.)

8. Consider the problem of determining how many divisors a positive integer has. For example:

• �e number 4 has three divisors: 1, 2, and 4;
• �e number 5 has two divisors: 1 and 5;
• �e number 10 has four divisors: 1, 2, 5, and 10.

In this problem you will write a Scheme function (divisors n) that computes the number of divisors of
a given number n.
�e �rst tool you will need is a way to �gure out if a given whole number ` divides another whole number n
evenly. We provide the code for this, which you can just use as-is in your solution (it involves a function that
we haven’t talked about in class yet):

(define (divides a b) (= 0 (modulo b a)))

Once you have de�ned this function, (divides a b) will be #t if a divides b evenly, and #f if not. For
example:

> (divides 2 4)
#t
> (divides 3 5)
#f
> (divides 6 3)
#f

At �rst glance, the problem of de�ning (divisors n) appears a li�le challenging, because it’s not at all
obvious how to express (divisors n) in terms of, for example, (divisors (- n 1)); in particular,
it’s not really clear how to express this function recursively.
To solve the problem, you need to introduce some new structure! Here’s the idea. Focus, instead, on the
function (divisors-upto n k) which computes the number of divisors n has between 1 and k (so it
computes the number of divisors of n upto the value k). Now you will �nd that there is a straightforward way
to compute (divisors-upto n k) in terms of (divisors-upto n (- k 1)). Speci�cally,
notice that

(divisors-upto n k) =



0 if k = 0;
0 if n = 0;
1 if k = 1;
1 + (divisors-upto n (- k 1)) if k divides n;
(divisors-upto n (- k 1)) if k does not divide n.

Write the Scheme code for the function divisors-upto; notice then that you can de�ne
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(define (divisors n) (divisors-upto n n))

In this case, we calldivisors-upto a “helper” function. What did it do? It let us “re-structure” the problem
we wish to solve in such a way that we can recursively decompose it.

9. It is a remarkable fact that for all real x,

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

Write a Scheme function new-sin so that (new-sin x n) returns the sum of the �rst (n+ 1) terms of
this power series evaluated at x. Speci�cally, (new-sin x 3), should return

x− x3

3!
+
x5

5!
− x7

7!

and, in general, (new-sin x n) should return

n∑
k=0

(−1)k x2k+1

(2k + 1)!
.

You may use the built-in function (expt x k), which returns xk . It might make sense, also, to de�ne
factorial as a separate function for use inside your new-sin function. (Aesthetic hint: Note that the
value 2k is used several times in the de�nition of the kth term of this sum. Perhaps you can use a let
statement to avoid computing this quantity more than once?)

10. In mathematics, Apéry’s constant is de�ned as the number

ζ(3) =

∞∑
n=1

1

n3
=

1

13
+

1

23
+

1

33
+

1

43
+ · · ·

where ζ is the Riemann zeta function. It has an approximate value of ζ(3) = 1.2020569031 . . .. �is constant
arises naturally in a number of physical problems, including in the second- and third-order terms of the elec-
tron’s gyromagnetic ratio using quantum electrodynamics. But, you don’t need to know anything about that
to solve this problem.
Give a Scheme function, named (apery k) that evaluates to an approximation for Apéry’s constant using
k terms.
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CSE1729 - Introduction to Programming September 13, 2019
Problem Set 3

Remark 1. The Racket interpreter can maintain two different representations of numeric quantities: fractions and
decimal representations. While fractions always represent exact numeric quantities, decimal expansions maintain a
finite number of digits to the right of the decimal point. The Racket interpreter will attempt to infer, when dealing with
numbers, whether to maintain them as fractions or as decimal expansions. For example

> (/ 1 2)
1/2
> (/ 1 2.0)
0.5
> (+ (/ 1 2) (/ 1 3) (/ 1 6))
1
> (+ (/ 1 2) (/ 1 3.0) (/ 1 6)
0.9999999999999999
>

Clearly, the use of fractions (rationals) is more precise because of the rounding errors that occur with decimals. In
general, the interpreter will maintain exact expressions for numeric quantities “as long as possible,” expressing them as
fractions. You can instruct the interpreter that a number is to be treated as a decimal by including a decimal point: thus
1 is treated as an exact numeric quantity, whereas 1.0 is treated as a decimal expansion. The interpreter knows how
to convert fractions to decimals (you can configure the number of digits of accuracy you wish), but will never convert
decimals back to fractions (or integers). (So you know, this process is called type-casting.). You can “force” a conversion
from a fraction to a decimal easily. Indeed, writing (+ (/ 1 3) 0.0) or even (exact->inexact (/ 1 3))
will produce a decimal from the fraction 1

3 .
Arithmetic expressions like (+ 1 1.0) pose a problem because the two arguments are of different “types.” In

this case, the interpreter will transform the exact argument (1) into a decimal value, and then proceed as though all
arguments were decimals (returning a decimal result). Other arithmetic operations are treated similarly.

1. Define Hn =
1
1 +

1
2 + . . .+ 1

n ; these are referred to as the harmonic numbers. A remarkable fact about these
numbers is that as n increases, they turn out to be very close to ln n. (ln n is the natural logarithm of n.) In
particular, as n increases the difference |Hn − ln n| converges to a constant (Euler’s constant).

(a) Give a SCHEME function, called harmonic so that (harmonic n) returns Hn.

(b) Using your function from the previous part, give an estimate of Euler’s constant. Specifically, write
a SCHEME function Eulerest so that (Eulerest n) returns the absolute value of the difference
between Hn and ln n. (You may wish to use the SCHEME function (log x) which returns the natural
logarithm of x .) So you know you are in the ballpark, Euler’s constant is a little over a half.

2. A integer n > 1 is prime if its only positive divisors are 1 and n. (The convention is not to call 1 prime.)
The following SCHEME procedure determines if a number is prime. Note how it uses a nested definition
divisor? (see class) to keep the code clean and tidy.

(define (prime? n)
(define (divisor? k) (= 0 (modulo n k)))
(define (divisors-upto k)

(and (> k 1)
(or (divisor? k) (divisors-upto (- k 1)))))

(not (divisors-upto (- n 1))))

1



(So, it returns #t for prime numbers like 2, 3, 5, 7, and 11 and #f for composite (that is, non-prime) numbers
like 4, 6, 8, and 9.) Using this procedure, write a function count-primes so that (count-primes m)
returns the number of prime numbers between 1 and m.

3. The Lucas numbers are a sequence of integers, named after Édouard Lucas, which are closely related to the
Fibonacci sequence. In fact, they are defined in very much the same way:

Ln =







2 if n= 0,

1 if n= 1,

Ln−1 + Ln−2 if n> 1.

(a) Using the recursive description above, define a SCHEME function Lucas which takes one parameter, n,
and computes the nth Lucas number Ln.

(b) The small change in the “base” case when n= 0 seems to make a big difference: compare the first few
Lucas numbers with the first few Fibonacci numbers. As you can see, the Lucas numbers are larger,
which makes sense, and—in fact—the difference between the nth Lucas number and the nth Fibonacci
number grows as a function of n.
Consider, however, the ratio of two adjacent Lucas numbers; specifically, define

`n =
Ln

Ln−1
.

Write a SCHEME function Lucas-ratio that computes `n (given n as a parameter). Compute a few
ratios like `20, `21, `22, . . . ; what do you notice? (It might be helpful to convince SCHEME to print out
the numbers as regular decimal expansions. One way to do that is to add 0.0 to the numbers.)
Now define

fn =
Fn

Fn−1

where Fn are the Fibonacci numbers. As above, write a SCHEME function Fibonacci-ratio to
compute fn and use it to compute a few ratios like f20, f21, f22, . . . ; what do you notice?

(c) Computing with a promise. Ask your SCHEME interpreter to compute L30, then L35, then L40. What
would you suspect to happen if you asked it to compute L50?
Consider the following SCHEME code for a function of four parameters called fast-Lucas-help. The
function call

(fast-Lucas-help n k lucas-a lucas-b)

is supposed to return the nth Lucas number under the promise that it is provided with any pair of previous
Lucas numbers. Specifically, if it is given a number k ≤ n and the two Lucas number Lk and Lk−1 (in
the parameters lucas-a and lucas-b), it will compute Ln. The idea is this: If it was given Ln and
Ln−1 (so that k = n), then it simply returns Ln, which is what is was supposed to compute. Otherwise
assume k < n, in which case it knows Lk and Lk−1 and wishes to make some “progress” towards the
previous case; to do that, it calls fast-Lucas-help, but provides Lk+1 and Lk (which it can compute
easily from Lk and Lk−1). The code itself:

(define (fast-Lucas-help n k luc-a luc-b)
(if (= n k)

luc-a
(fast-Lucas-help n (+ k 1) (+ luc-a luc-b) luc-a)))

With this, you can define the function fast-Lucas as follows:
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(define (fast-Lucas n) (fast-Lucas-help n 1 1 2))

(After all, L0 = 2 and L1 = 1.)
Enter this code into your SCHEME interpreter. First check that fast-Lucas agrees with your previous
recursive implementation (Lucas) of the Lucas numbers (on, say, n = 3,4,5,6). Now evaluate
(fast-Lucas 50) or (fast-Lucas 50000).
There seems to be something qualitatively different between these two implementations. To explain it,
consider a call to (Lucas k); how many total recursive calls does this generate to the function Lucas
for k = 3, 4, 5, 6? Now consider the call to (fast-Lucas-help k 1 1 2); how many recursive calls
does this generate to fast-Lucas-help for k = 3,4,5,6? Specifically, populate the following table
(values for k = 1, 2 have been filled-in):

Recursive calls made by
(Lucas k)

Recursive calls made by
(fast-Lucas-help k 1 1 2)

k = 1 0 0
k = 2 2 1
k = 3
k = 4
k = 5
k = 6

4. In mathematics and other fields, two quantities a > b are said to have the golden ratio if

a+ b
a
=

a
b

.

For example, the heights of adjacent floors of Notre Dame cathedral are in this proportion, as are the spacings
of the turrets; the side-lengths of the rectangular area of the Parthenon have this ratio.

Mathematically, it is easy to check that if a and b have this relationship then the ratio φ = a/b is the unique
positive root of the equation φ + 1= φ2, which is approximately 1.618.

(a) The golden ratio also satisfies the equation φ = 1+ 1
φ . This formula can be expanded recursively to

the continued fraction:

φ = 1+
1

1+ 1

1+
...

Define a recursive SCHEME function which takes one parameter, n, and computes an approximation to
the value of this repeated fraction by expanding it to depth n. To be precise, define

Φ1 = 1+
1
1
= 2 ,

Φ2 = 1+
1

1+ 1
1

=
3
2

,

Φ3 = 1+
1

1+ 1
1+ 1

1

= 1
2
3

,

. . .

or, more elegantly,

Φ1 = 2 ,

Φn = 1+
1
Φn−1

for n> 1.

Your function, called golden, when given n, should return Φn.

3



(b) As mentioned above, the golden ratio satisfies the equation φ2 = 1+φ. This can be expanded into a
different recursive formula that yields a “continued square root”:

φ =

s

1+

r

1+
q

1+
p

1+ · · ·

Define a SCHEME function that takes one parameter, n, and computes the nth convergent of the golden
ratio using the continued square root. To be more precise, define:

Φn =

¨

1 if n= 0,
p

1+Φn−1 if n> 0.

(Note that these Φi are different from those in the previous part of the problem.) Now define a SCHEME

function golden-sqrt so that (golden-sqrt n) returns the value Φn. (Use the SCHEME function
(sqrt x) which returns the square root of x .)

5. Consider the problem of defining a function interval-sum so that (interval-sum m n) returns the
sum of all the integers between m and n. (So, for example (interval-sum 10 12) should return the
value 33= 10+ 11+ 12.) One strategy is

(define (interval-sum m n)
(if (= m n)

m
(+ n (interval-sum m (- n 1)))))

and another solution, which recurses the “other direction” is

(define (interval-sum m n)
(if (= m n)

m
(+ m (interval-sum (+ m 1) n))))

These both work. It seems like one should be able to combine these to produce another version:

(define (interval-sum m n)
(if (= m n)

m
(+ m

(interval-sum (+ m 1) (- n 1))
n)))

But this only works for certain pairs of input numbers. What’s going on?

6. Define a SCHEME procedure (mth-summation n m) to compute the mth summation of the first n natural
numbers. That is,

sum(n, m) =







0 if n= 0,

n+ sum(n− 1, 1) if m= 1,

sum(sum(n, m− 1), 1) otherwise.

7. The famous Ackermann Function, named for Wilhelm Ackermann whose doctoral advisor was David Hilbert
(a famous mathematician) is generally expressed today as:
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ack(m, n) =







n+ 1 if m= 0,

ack(m− 1, 1) if m> 0 and n= 0,

ack(m− 1, ack(m, n− 1)) if m> 0 and n> 0.

What makes this function absolutely recursive is the second parameter to the recursive call to ack in the
last case. The second parameter to ack in this case is itself a recursive call to ack. Notice, that in each
recursive call, either m or n are decreased and neither are ever increased. Therefore, this algorithm will
always terminate, eventually. Because of the diabolical recursive second parameter to the recursive call in
the last case, computing this function for any values other than fairly small values of m and n takes more
time to compute than any reasonable human being would wait. In fact, computing ack(4, 1) took longer than
three minutes on my laptop. Note, however, that even though we can not realistically compute Ackermann’s
function for fairly large values for m and n, we do know that if we could build a computer that would last
long enough and could store extremely large integer values, the algorithm would eventually terminate with
the solution.

Define a SCHEME function, named (ack m n), that computes the Ackermann function as defined above.
For testing, your function should be able to compute the following:

>(ack 3 4)
125
>(ack 4 0)
13

8. The persistence of a number is the number of times you must apply an operation to that number until the
result of applying that operation no longer changes the number. For this problem, you will count the number
of times one must multiply the digits of a positive integer until the result is the same as the integer.

For example, the multiplicative persistence of the number 39 is 3 because 3 · 9 = 27, 2 · 7 = 14, and 1 · 4 = 4.
You stop at 4 because multiplying 4 (by the multiplicative identity, which is 1) equals 4. Try it in the SCHEME

interpreter.

Define a SCHEME procedure, named (mult-persistence n), which accepts a positive integer, n, and
evaluates to the multiplicative persistence of n.

5



CSE1729 - Introduction to Programming September 20, 2019
Problem Set 4

1. In a certain school, there are 1,000 lockers, numbered 1, 2, . . . , 1,000. Happily, there are also 1,000 students.
When the first student enters the building in the morning, she opens each locker as she walks by. Simple enough.
When the second student enters the building, however, she decides to toggle the state of every second locker:
to be precise, if 2 divides the name of the locker, she changes the locker’s state (if was open, she closes it, if
it was closed, she opens it). Similarly, when the 3rd student enters, she toggles the state of every third locker.
This process continues, with the kth student toggling the state of all lockers whose name is evenly divisible by
k. We’d like to determine the the state of the `th locker after all the students have entered the school and done
their quixotic locker adjustments.
Notice that locker ` can only touched by the kth student if k divides into ` evenly; in particular, once the first `
students have handled the lockers, the `th locker is in its final state—no further students will toggle it.
To make sure you understand the problem, see that you agree that after all students have had their turn to toggle
the lockers,

(a) locker 1 is open,
(b) locker 2 is closed,
(c) locker 3 is closed,
(d) locker 4 is open, and
(e) locker 5 is closed.

(a) Write a Scheme function (locker-open k) that determines if the kth locker is open after all the students
have had their turns. (It should return a Boolean value, #t if the locker is open and #f if the locker is
closed.) (Hint: You might start by defining a function (locker-state l k) which computes the state of
the `th locker after the first k students have made their pass on the lockers. If you do use such a subordinate
function, be sure to hide its definition inside your definition of locker-closed so as not to clutter the
containing environment.)

(b) Write a Scheme function (find-open k) that prints on the standard output the first k lockers that are
open after all students entered the school. Follow your printout by the word “done”. You can make use of
the Scheme function (display f) which prints the value of f on the standard output. For instance, the
fragment:

(display "hello ")
(display 2)
(display " you\n")

prints on the standard output the string

hello 2 you

followedby a line feed (the ’\n’ character). Youmay, once again, find that a helper function(enum-locker i n)
can be quite handy to print the next n lockers that happen to be open when starting from locker i. Nat-
urally, do hide enum-locker within your implementation of find-open. For instance, the output for
(find-open 2) should be

1
4
done

2. The Gauss-Legendre algorithm is an algorithm to compute the digits of π. It is notable for being rapidly
convergent, with only 25 iterations producing 45 million correct digits of π. The algorithm starts with the
following initial values for four variables:

1



a0 = 1 b0 =
1
√

2
t0 =

1
4

p0 = 1

Next, the following instructions are repeated until the difference of an and bn are within the desired accuracy:

an+1 =
an + bn

2
bn+1 =

√
anbn

tn+1 =tn − pn(an − an+1)
2 pn+1 =2pn

Then, π is approximated by π ≈ (an+1+bn+1)
2

4tn+1

Define a Scheme function, named (gauss-legendre tol), that takes one parameter representing the tolerance
(i.e. the desired accuracy) and computes an approximation to π using the Gauss-Legendre algorithm. You may
once again find that a helper function makes this easier. If you do, make sure it gets hidden within the
implementation of gauss-legendre.

3. Consider the harmonic numbers Hn =
1
1 +

1
2 +

1
3 + · · · +

1
n . Last week you wrote a recursive Scheme function

(named harmonic) which, given a number n, computes Hn. Revise your harmonic function to take advantage
of the sum function seen in class and shown below:

(define (sum f n)
(if (= n 0)

(f 0)
(+ (f n) (sum f (- n 1)))))

Of course, your new and improved definition should not be recursive and should rely on sum to do the hard work.
Your new function should be called harmonic (and take one argument).

4. For two functions f and g and an integer n ≥ 0 we are interested in the sum of fractions of the form:

f (−n)
g(−n)

+ · · · +
f (n)
g(n)

.

(Note that this sum has 2n + 1 terms in it, as it evaluates the fraction f (x)/g(x) at all points between −n and
n.) Note that a little care is required here, because the quantity is not even defined if g(k) = 0 for one of the
k ∈ {−n, . . . , n}. To work around this issue, we define

R( f , g; n) = q(−n) + · · · + q(n)

where

q(k) =

{
0 if g(k) = 0, and
f (k)
g(k) otherwise.

Write a Scheme program, called frac-sum so that (frac-sum f g n) returns the value R( f , g; n) as defined
above.

5. Recall the definition of the derivative of a function from calculus (you will not need to know any calculus to
solve this problem):

f ′(x) = lim
h→0

f (x + h) − f (x)
h

By choosing very small values for h in the above equation, we can get a good approximation of f ′(x).
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(a) Write a function (call it der for derivative) in Scheme that takes a function f and a value for h as formal
parameters and returns the function g defined by the rule

g(x) =
f (x + h) − f (x)

h
.

As mentioned above, for small h, g is a good approximation for the derivative of f .
Important note: Your function should take a function and a number as arguments (for example (der f h)
where f is a function and h is a number) and return a function.

(b) Now take it a step further and write a function which takes three formal parameters f , n and h and returns
an approximation of the nth derivative of f . Call your function der-n; then (der-n f n h) is an example
call to the function. Make use of the derivative function you just wrote. (Specifically, you wish to return
the function obtained by applying der to your function n times.)

6. Newton’s Method is an iterative method for finding successively better approximations to the roots (that is, the
zeroes) of a real-valued function. To be more precise, given a function f , Newton’s Method is an approach to
find a value x for which f (x) ≈ 0. Newton’s Method requires an initial guess for the root (x0) and determines a
sequence of values x1, x2, . . . defined by the recursive rule:

xn+1 = xn −
f (xn)
f ′(xn)

.

For many functions of interest, these “iterates” converge very quickly to a root.
For example, consider the polynomial p(x) = x2 − x − 1. It turns out that the positive root of p is the number
1.618... that you computed in many ways on the last problem set (the golden ratio). Let’s see Newton’s method
in action. It turns out that the derivative of p is the polynomial p′(x) = 2x − 1. (You don’t need to know how to
determine the explicit derivative of functions for this problem—you’ll be using instead the code you generated
in the last problem.) Starting with the guess x0 = 2, we may run Newton’s method forward to find that:

x0 = 2

x1 = x0 −
p(x0)

p′(x0)
= 2 −

p(2)
p′(2)

=
5
3
= 1.666 . . .

x2 = x1 −
p(x1)

p′(x1)
=

5
3
−

p(5/3)
p′(5/3)

= 1 13
21 = 1.61904 . . .

. . .

Write a Scheme function that implements Newton’s Method–call it newton. Your function should accept three
formal parameters, a function f , an initial guess for the root x0 and the number of iterations to run, n. You can
make use of the derivative function from the previous problem (with h set to .01).
Specifically, the call (newton f x n) should return the nth iterate, as defined above, of Newton’s method.
(Thus (newton f x 0) should return x.)
To test your implementation, you can try the following in DrRacket.

(a) Use your implementation can find the root of the function f (x) = 2x2 − 1. (start with an initial guess of 4).
(b) Use your solution to find a good approximation to the golden ratio by working with the polynomial

g(x) = x2 − x − 1 (start with the guess 2).

7. SICP, Problem 1.29 (Simpson’s rule). Recall that the integral of a function f between a and b (with a < b) is
the area underneath the function on the interval [a, b]. See Figure 1. Simpson’s rule, described in your book, is
a method for approximating this value.
To begin with, define a function (sum-term term a b) that takes a function term and two integers a and b as
arguments and returns the sum term(a) + term(a + 1) + · · · + term(b). Use this in your solution by defining a
function that computes the Simpson’s rule terms and passing this to sum-term.
Once sum-term is defined, as above, use this to construct a function simpson-integrate so that

3



(simpson-integrate f a b n)

returns the estimate to the integral of the function f , on the interval [a, b]with n samples, according to Simpson’s
rule. Recall that Simpson’s rule is simply:∫ b

a

f (x)dx =
∆x
3
· ( f (x0) + 4 · f (x1) + 2 · f (x2) + 4 · f (x3) + 2 · f (x4) + . . . + 4 · f (xn−1) + f (xn))

where ∆x = b−a
n and xi = a + i · ∆x.

Figure 1: The integral of f from a to b is the area of the shaded region above.

To check your solution, you might try integrating the functions f1(x) = x, f2(x) = x2, and f4(x) = x4 on the
interval [0, 1] (so a = 0 and b = 1). You should find that the integral of f1 is 1/2 (the area of the triangle), the
integral of f2 is 1/3, and the integral of f4 is 1/5.

8. Adapt your Simpson’s rule integrator so that the computation is tail-recursive. All that is necessary is to
rewrite your sum function so that it is tail-recursive (cf. SICP Exercise 1.30.). Specifically, name your function
(new-sum-term term a b) where term is the univariate function and a and b give the bounds of the range to
accumulate.
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CSE1729 - Introduction to Programming October 11, 2019
Problem Set 5

1. item Define a SCHEME function, zip, which takes as arguments two lists (a1 . . . an) and (b1 . . . bn) of the
same length, and produces the list of pairs ((a1.b1) . . . (an.bn)).

2. Define a SCHEME function, unzip, which takes a list of pairs ((a1.b1) . . . (an.bn)) and returns a pair con-
sisting of the two lists (a1 . . . an) and (b1 . . . bn). Note that these functions are not exactly inverses of each
other, since zip takes its lists as a two arguments, while unzip produces a pair of lists. Finally, it is wise to
realize how SCHEME prints out a pair of lists. Consider the statement (cons (list 1 2) (list 3 4))
which denotes a pair of lists. It prints as ((1 2) 3 4).

3. Consider again the problem of making change. Given a list of “denominations” (d1d2 . . . dk) values and a
positive integer n, the problem is to determine the number of ways that n can be written as a sum of the di .
For example, if we consider US coins, (1 5 10 25), the number 11 can be written in 4 ways:

10+ 1, 5+ 5+ 1, 5+ 1+ · · ·+ 1
︸ ︷︷ ︸

6

, and 1+ · · ·+ 1
︸ ︷︷ ︸

11

.

Note that we do not consider 10 + 1 and 1 + 10 as “different” ways to write 11: all that matters is the
number of occurrences of each denomination, not their order. Write a SCHEME function (change k `)
that returns the number of ways to express k as a sum of the denominations appearing in the list `. This is
a generalization of the version seen in class early on this semester.

4. Now that you can count the number of ways to give change, it is time to compute each way to give change!
Write a SCHEME function (make-change n den) which outputs a list of change specifications. Namely,
a call (make-change 11 (list 25 10 5 1)) produces the list

((1 1 1 1 1 1 1 1 1 1 1) (1 1 1 1 1 1 5) (1 5 5) (1 10))

Hints: a helper function (helper n den cur) that takes as input cur, a list of coins given out so far will
surely come in handy! Also, the order in which the “options” appear in the top list is immaterial.

5. While getting the output above is helpful, it is not particularly readable. Indeed, the list (1 1 1 1 1 1 5)
that states 6 pennies and 1 nickel could be far more readable as ((6 . 1) (1 . 5)) also stating 6 pennies
and 1 nickel. That is, this is a list of pairs telling us how many of each denomination. Thankfully, the former
can be translated into the latter by a conversion known as run length encoding that replaces sequences
of an identical value by a pair giving the number of repetition of the value. Write a SCHEME function
(rle coins) which, given a list of coins, returns a list of pairs denoting the number of repetitions of each
sequence of consecutive values. As a last example, the list

(list 1 1 1 1 1 1 1 5 5 5 5 1 1 1 10 10 10 1 1 25 25 25 25 25 25)

would be encoded as

((7 . 1) (4 . 5) (3 . 1) (3 . 10) (2 . 1) (6 . 25))

Note how the tree sub-sequences of pennies are not collapsed into a single value. Those are kept as separate
pairs. Naturally, this function only works for one element of the output from make-change.

6. Naturally, it would be nice to convert the entire output of make-change to the RLE format. Write a SCHEME

function (rle-all lcoins) which, when given a list of coin changes, produces a list of RLE encoded
coin-changes. For instance the call

1



(rle-all (make-change 11 '(25 10 5 1)))

produces

(((11 . 1)) ((6 . 1) (1 . 5)) ((1 . 1) (2 . 5)) ((1 . 1) (1 . 10)))

which is a list of 4 lists (since there are four ways to give change on 11 cents) where each list is an RLE
encoding.

7. Write a SCHEME function positives which takes a list—call it `—as an argument and returns a list con-
sisting of all elements of ` that are positive. In particular, once you have positives defined correctly, you
should be able to reproduce the following behavior.

> (positives (list -2 -1 0 1 2))
'(1 2)
> (positives (list 2 1 0 -2 -1))
'(2 1)
> (positives '(3 1 -1 1 -1))
'(3 1 1)

To keep things simple, it’s fine if your function just removes from the list all numbers that are zero or less
(leaving duplicates in the remaining list, as shown above).

8. Write a SCHEME function remove-duplicates that removes all duplicates from a list. (Hint: you might
start by defining a function which removes all duplicates of a particular given value v from a list; then
what?)

So, for example,

> (remove-duplicates '(1 2 3 4 5 3 1))
'(1 2 3 4 5)

2



CSE1729 Introduction to Programming October 18, 2019
Problem Set 6

1. Pearson’s Coefficient is widely used in the natural sciences as a measure of “correlation” between two
variables. For example, it is reasonable to expect that human height and weight are correlated, which
is to say that—on average—taller humans tend to weigh more. As an example, consider the heights
and weights of a small population of humans, as shown in the table below:

A B C D E F G
height (cm) 160 186 172 202 177 186 191
weight (kg) 51 79 69 100 66 80 83

Examining the data you can see that, as a rule, weight does increase with height, though there are
some exceptions.

The Pearson coefficient (of a collection of samples with two features, like height and weight above)
is always between −1 and 1. A Pearson coefficient of exactly 1 (or exactly −1) indicates a perfectly
linear relationship between the two quantities, whereas a coefficient near zero indicates that there is
no such nice relationship. The data above has a Pearson coefficient of ≈ .98, indicating an extremely
strong relationship between the variables.

Given two lists, X = (x1 x2 . . . xn) and Y = (y1 y2 . . . yn), each containing n values, Pearson’s
Coefficient is defined by the expression:∑n

i=1 (xi − X̄)(yi − Ȳ )√∑n
i=1 (xi − X̄)2

√∑n
i=1 (yi − Ȳ )2

,

where X̄ and Ȳ denote the averages of the xi and the yi, which is to say that

X̄ =
1

n

∑
i

xi and Ȳ =
1

n

∑
i

yi .

(a) Write a function, list-sum, that takes a list and returns its sum.

(b) Write a function that takes a list X = (x1 x2 . . . xn) and returns the average X̄. (Note: You
will have to compute the length of the list in order to compute the average.) Call your function
average.

(c) Write a function, var-map, that maps a list X to the “square of its deviation.” Thus the list
X = (x1 x2 . . . xn) should be carried to the list

((x1 − X̄)2 . . . (xn − X̄)2) .

You should use the map function. (For example, your function, when evaluated on the list
(1 2 3 4 5), should return (4 1 0 1 4).)

(d) Write a function stdev that returns the standard deviation of a list. Specifically, given the list
(x1 . . . xn), your functions should return√√√√ 1

n

n∑
i=1

(xi − X̄)2 .

This should be easy, you already have the functions you need.

1



(e) Write a new version (called map2) of the map function which operates on two lists. Your function
should accept three parameters, a function f and two lists X and Y , and return a new list
composed of the function f applied to corresponding elements of X and Y . For concreteness, place
the function first among the parameters, so that a call to the function appears as (map2 f X Y).
Your function may assume that the two lists have the same length. In particular, given two lists
(x1 x2 . . . xn) and (y1 y2 . . . yn) (and the function f), map2 should return

(f(x1, y1) . . . f(xn, yn)) .

(f) Write a function, covar-elements, that, given two listsX = (x1 x2 . . . xn) and Y = (y1 y2 . . . yn),
returns the covariance list:

((x1 − X̄)(y1 − Ȳ ) . . . (Xn − X̄)(Yn − Ȳ )) .

Note that the resulting list should have the same length as the two input lists; the ith element of
the resulting list is the product (xi −X)(yi − Y ).

(g) Write a function, pearson, that computes Pearson’s Coefficient. It might be useful to observe
that an equivalent way to write Pearson’s coefficient, by dividing the top and bottom by n, is

1/n
∑n

i=1(xi − X̄)(yi − Ȳ )

σ(X)σ(Y )
.

(Thus, your function should take two lists as arguments, and return the value indicated above.)

2. Least-Squares Line Fitting. Line fitting refers to the process of finding the “best” fitting line for a set
of points. This is one of the most fundamental tools that natural scientists use to fit mathematical
models to experimental data.

As an example, consider the red points in the scatter plot of Figure 1. They do not lie on a line, but
there is a line that “fits” them very well, shown in black. This line has been chosen—among all possible
lines—to be the one that minimizes the sum of squares of the vertical distances from the points to the
line. (This may seem like an odd thing to minimize, but it turns out that there are several reasons
that it is the “right” thing minimize.)

160 180 200 220 240 260 280

20

40

60

80

100

120

140

Figure 1: An example of a scatter plot and a best-fit line.

Since the equation of a line is y = ax + b, this boils down to finding a slope a and x-intercept b for
given lists X and Y corresponding to point data. It turns out that the best fitting line can be found

2



with the following two equations:

a = r · σ(Y )

σ(X)
, and b = Ȳ − aX̄ ,

where σ(X) and σ(Y ) refer to the standard deviations of X and Y and r is Pearson’s Coefficient.

(a) Write a function best-fit that takes two lists X and Y (of the same length) and returns a pair
(a, b) corresponding to the (slope and intercept of the) best fit line for the data.

(b) Write an alternate version of best-fit that returns the best fitting line as a function. Specifically,
write a new function best-fit-fn so that (best-fit-fn pX pY) returns the function which,
given a number x, returns ax+ b where a and b are the best fit coefficients.
Use this to the best fit line for the following data:

X = {160, 180, 200, 220, 240, 260, 280} , Y = {126, 103, 82, 75, 78, 40, 20} .

Call the function fitline so that you can graph it in the next problem.

3. Define a Scheme function (insert x l) which takes a value x (an integer) and a sorted list ` (in
increasing order) and inserts x at the right location within ` so that the list remains sorted. Note that
insert produces a new list `′ identical to ` except for the addition of x at the right spot. For instance,
the call

(insert 5 (list 1 2 4 6 7))

produces the list

(1 2 4 5 6 7)

As before, this leaves the input list ` in pristine condition.

4. Armed with insert, you are now ready to implement another sorting algorithm knows as insertion
sort. The idea of the algorithm is straightforward. Given an unsorted list `, it proceeds by peeling off
elements from the front of ` and inserting them (one at a time of course) at their “sweet spot” within
a sorted list `′ that starts off as an empty list. For instance the call

(insSort (list 3 5 1 6 9 0 2 7))

produces the list

(0 1 2 3 5 6 7 9)

Unsurprisingly, insertion sort is closely related to selection sort which we covered in class. Write a
Scheme function (insSort l) which, given a list ` of integers, produces a sorted permutation of ` (in
increasing order).

5. Define a Scheme function, merge, which takes two lists `1 and `2 as arguments. Assuming that each
of `1 and `2 are sorted lists of integers (in increasing order, say), merge must return the sorted list
containing all elements of `1 and `2.

To carry out the merge, observe that since `1 and `2 are already sorted, it is easy to find the smallest
element among all those in `1 and `2: it is simply the smaller of the first elements of `1 and `2.
Removing this smallest element from whichever of the two lists it came from, we can recurse on the
resulting two lists (which are still sorted), and place this smallest element at the beginning of the result.

3



6. You guessed it! There is a third sorting algorithm that one can build from the Scheme function merge.
It is aptly named merge sort. Its architecture is based on the simple principle known as “divide and
conquer” (like quickSort, also covered in class). It works as follows: given a list `, split the list into
two sub-lists `1 and `2 of approximately the same length (a difference of 1 at most) such that all
elements of ` appear in either `1 or `2. For instance, a list ` =(1 6 7 3 9 0 2) could be split into
`1 =(1 7 9 2) and `2 =(6 3 0). Then one can recursively sort `1 and `2 to obtain sorted versions `′1
and `′2 and merge them to recover a fully sorted list. Write a Scheme function (mergeSort l) which,
given an unsorted list ` of integers, returns a sorted version of `’s content. Hint: writing a helper
function to carry out the splitting would be a wise first step. Hiding that helper function in the bowels
of mergeSort would be even better! A whimsical illustration of mergeSort is shown in Figure 2.

Figure 2: mergeSort at work!

7. Given a list ` = (x1 x2 . . . xn−1 xn), we define two rotations of the list: The left-rotation is (x2 . . . xn−1 xn x1)
and, likewise, the right-rotation is (xn x1 x2 . . . xn−1). (These rotation operations do not change the
empty list, or any list of length 1.) Define the functions rotate-right and rotate-left to carry out
these operations on a list. Once your functions have been correctly defined, you should find that

> (rotate-right '(1 2 3))
'(3 1 2)
> (rotate-right '(1))
'(1)
> (rotate-left '(1 2 3))
'(2 3 1)
> (rotate-left '(1))
'(1)
> (rotate-right (rotate-left '(1 2 3 4 5)))
'(1 2 3 4 5)
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CSE1729 – Introduction to Programming October 25, 2019
Problem Set 7

Recall the conventions we have adopted in class for maintaining trees. We represent the empty tree with the
empty list (); a nonempty tree is represented as a list of three objects

(value left-subtree right-subtree)

where value is the value stored at the root of the tree, and left-subtree and right-subtree are the two
subtrees. We introduced some standardized functions for maintaining and accessing this structure, which we
encourage you to use in your solutions below.

(define (make-tree value left right) (list value left right))
(define (value tree) (car tree))
(define (left tree) (cadr tree))
(define (right tree) (caddr tree))

1. SICP Exercise 2.31. Define a SCHEME procedure, named tree-map, which takes two parameters, a tree, T,
and a function, f, and is analogous to the map function for lists. Namely, it returns a new tree T ′ with a
topology identical to that of T but where each node n ∈ T ′ contains the image under f of the value stored
in the corresponding node in T. For instance, if the input tree is shown in Example 1 and the function f is
f (x) = x2. then the tree returned by tree-map is shown in Example 2.

2

31

Figure 1: T, the tree passed to tree-map

4

91

Figure 2: T ′, the tree returned by tree-map when
passed T and the squaring function as parameters.

2. Define a SCHEME procedure, named tree-equal?, which takes two trees as parameters and returns #t if
the trees are identical (same values in the same places with exactly the same structure) and #f otherwise.
Use the SCHEME eq? function to test equality for the values of the nodes.

3. Define a SCHEME procedure, named (tree-sort l), which takes a list of numbers and outputs the same
list, but in sorted order. Your procedure should sort the list by

(a) inserting the numbers into a binary search tree and, then,

(b) extracting from the binary search tree a list of the elements in sorted order.

To get started, write a procedure called (insert-list L T) which takes a list of numbers L and a binary
search tree T , and returns the tree that results by inserting all numbers from L into T . (Place the argument
L first, so a call to your function should have the form (insert-list L T), where L is a list and T is a
(perhaps empty) binary search tree.)

Then write a function called sort-extract which takes a binary search tree and outputs the elements of
the tree in sorted order. (We did this in class!)

Finally, put these two functions together to achieve (tree-sort l). (Note, all three of these functions
will be graded, so your solutions must consist of three top-level functions, insert-list, sort-extract,
and tree-sort.)

1



4. Define a SCHEME procedure, named (delete-value T v), that takes a binary search tree, T, and a value,
v, as arguments and returns the binary search tree that results from removing the node containing the value
v. (The tree T should be the first argument.) You may assume that the tree contains no more than one
node with value v, but your procedure should be well-behaved if called with a tree T that does not contain
the value v: in this case, it should return the tree unchanged. Note that the tree your function returns must
maintain the binary search tree property. Removing interior (that is, non-leaf) nodes requires a little care.
(See Example 3 for an example.) Details are given below.

Deleting nodes from trees The delete-value function must remove the one occurrence of v from the
input binary search tree T . Naturally, if T has n nodes, the output tree T ′ has n − 1 nodes; note that T ′

must satisfy the binary search tree property (for every node w, the nodes in the left sub-tree of w hold values
smaller than the value held in w and the nodes in the right-subtree of w hold values larger than the value held
in w). There are number of cases that need to be handled separately: the node n may have no sub-trees,
exactly one subtree, or two subtrees. (See Example 5.) The first two situations can be handled easily; just
remove the node and “replace” it with its single subtree. The third case, illustrated below in Example 4,
requires that you restructure the tree a bit to reattach the two “orphaned” subtrees of n in an appropriate
way. There are two natural choices: either replace the value at the deleted node with the largest value in
the left subtree or the smallest value in the right subtree while removing the corresponding leaf node. In
your implementation, please adopt the first of these conventions: specifically, in order to remove a node n
with two subtrees, replace the value of n with the largest value in the left subtree, and then remove this
value from the left subtree. (See the example below.)
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11

15

17

8

96

2

31

Example 3: An example of a binary search
tree.
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17
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31

Example 4: The same binary search tree after
the removal of the value 11. Note, we chose
to promote the largest value in the left subtree
(9) to the node vacated by the value 11.

2 2

1

2

3

2

31

Example 5: Three possibilities when finding a node to remove. (The middle two cases are treated as one.)

5. This problem concerns ways to represent arithmetic expressions using trees. For this purpose, we will
consider 4 arithmetic operations: + and ∗, both of which take two arguments, and − and 1/�, both of which
take one argument. (As an example of how these one-argument operators work, the result of applying the
operator− to the number 5 is the number−5; likewise, the result of applying the 1/� operator to the number
5 is the number 1/5.)
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An arithmetic parse tree is a special tree in which every node has zero, one, or two children and:

• each leaf contains a numeric value, and
• every internal node with exactly two children contains one of the two arithmetic operators + or ∗,
• every internal node with exactly one child contains one of the two arithmetic operators − or 1/�.

(You may assume, for this problem and the next, that when a node has a single child, this child appears as
the left subtree.)

If T is an arithmetic parse tree, we associate a value with T (which we call value(T )) by the following
recursive rule:

• if T has a single (leaf) node, value(T ) is equal to the numeric value of the node,
• if T has two subtrees L and R, and its root is the operator +, then value(T ) = value(L) + value(R),
• if T has two subtrees L and R, and its root is the operator ∗, then value(T ) = value(L) ∗ value(R),
• if T has one subtree, S, and its root is the operator −, then value(T ) = −value(S),
• if T has one subtree, S, and its root is the operator 1/�, then value(T ) = 1/value(S).

You can see how to associate with any arithmetic expression a natural arithmetic parse tree. Note that
since − and 1/� are unary operators (take only one argument), you have to give a little thought to how to
represent expressions such as 3− 5 or 3/5. For example, the arithmetic parse tree for the expression

2× 3+
4− 5

6

is shown in Example 6.

+

×

1/�

6

+

−

5

4

×

32

Example 6: An arithmetic parse tree for the expression 2× 3+ (4+ (−5))× (1/6).

Write a SCHEME function (arithvalue T) which, given an arithmetic parse tree T , computes the value
associated with the tree. You may assume that the operators +, ×, −, and 1/� appear in the tree as the
characters #\+, #\*, #\-, and #\/. (See the comments at the end of the problem set concerning the
SCHEME character type.) To test your code, try it out on the parse tree

(define example (list #\+ (list #\*
(list 4 '() '())
(list 5 '() '()))

(list #\+
(list #\/ (list 6 '() '()) '())
(list 7 '() '()))))
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6. (A continuation of the previous problem; pre-, in-, and post-order traversal.) Such (arithmetic) trees can be
traversed recursively (which you will have done in the solution to your previous problem). In this problem,
you will print out the expression associated with a parse tree, using several different conventions for writing
arithmetic expressions.

There are three conventional orders in which nodes and subtrees can be “visited” during a recursive traversal
of a tree. Note that at each node, there three tasks to carry out: visit (in this case, that means print out) the
node, traverse the left subtree, and traverse the right subtree. For instance, an inorder traversal of a binary
tree will:

1) recursively traverse the left subtree,

2) visit the node, and then

3) recursively traverse the right subtree.

Therefore, an inorder traversal yields infix notation. Likewise, a preorder traversal visits each node first and
then recursively traverses the left and then the right subtrees. A preorder traversal produces the expression
in prefix notation as shown in Example 7. And, yes, as you may have guessed, a postorder traversal examines
the left subtree, then the right subtree and finally visits the root node itself. A postorder traversal produces
the same expression in postfix notation. The postfix notation for the example expression is “23×45−+6 1

�×
+”.

(a) Define a SCHEME function arith-prefix that takes an arithmetic expression tree and uses a preorder
scan on the tree to produce the expression in prefix (also called “Polish”) notation. Your function
should return a string containing the expression in prefix notation. See the following section regarding
characters and strings in SCHEME.
One difficulty is that your tree has values of different “types”—the leaves have numbers, the internal
nodes have characters. You will need to convert everything to strings. You could do this by hand, or
you can map the following function on your tree (using your previous solution to tree-map).

(define (prepare x)
(cond ((number? x) (number->string x))

((char? x) (string x))))

This function will convert all characters and numbers to strings, so that your tree contains only string
labels. Once the tree contains only strings, you can build the final expression by appending the strings
together to build your final expression.
(Note that the function number? returns true if its argument is a number; likewise, the function
char? returns true if its argument is a character. The function number->string converts a number
to a string.)
As an example, applied to the example tree of Figure 6 above, your function arith-prefix should
produce the string output "+*23*+4-5/6".

(b) Define a SCHEME function arith-postfix that takes an arithmetic expression tree as a parameter
and uses a postorder traversal to produce a string representing the expression in postfix notation (also
called “Reverse Polish Notation,” or RPN). After the previous problem, this is easy! Incidentally, several
early computer and calculator architectures were designed with RPN. Several current languages such
as PostScript and software programs including the MacOSX calculator, the Unix dc calculator program
and several Android and iPhone apps make use of RPN.
As an example, applied to the example tree of Figure 6 above, your function arith-postfix should
produce the string output "23*45-+6/*+".

(c) It is an interesting fact that when the numbers are only a single digit long, the postfix expression asso-
ciated with an arithmetic tree completely determines the tree; that same is true for the prefix expression.
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+1

×5

1/�
10

611

+6

−8

59

47

×2

3423

Example 7: An arithmetic parse tree showing “preorder” numbering of the nodes (in red). This gives the expres-
sion in prefix notation as “+× 23×+4− 5 1

�6.”

This is not true for infix expressions: “2+3*6” can be generated from two different arithmetic trees
(which given different values!). Define a SCHEME function, named arith-infix, which converts a
tree into an infix expression but adds parentheses around the arguments of every +, ×, −, and 1

� . To
be more precise, a × or + operator produces output of the form (a1 × a2) (or (a1 + a2)), whereas the
operators − and 1

� produce output of the form −(a1) (or /(a1)). Thus, your algorithm, when applied
to the tree pictured above, should yield the string "((2*3)+((4+-(5))*/(6)))". Note that the
parentheses do uniquely determine the tree from which the expression arose.

Strings and characters in SCHEME SCHEME has the facility to work with strings and characters (a string
is just a sequence of characters). In particular, SCHEME treats characters as atomic objects that evaluate to
themselves. They are denoted: #\a, #\b, . . . . Thus, for example,

> #\a
#\a
> #\A
#\A
> (eq? #\A #\a)
#f
> (eq? #\a #\a)
#t

The “space” character is denoted #\space. A “newline” (or carriage return) is denoted #\newline.

A string in SCHEME is a sequence of characters, but the exact relationship between strings and characters re-
quires an explanation. A string is denoted, for example, "Hello!". You can build a string from characters
by using the string command as shown below. An alternate method is to use the list->string com-
mand, which constructs a string from a list of characters, also modeled below. Likewise, you can “explode”
a string into a list of characters by the command string->list:

> (string #\S #\c #\h #\e #\m #\e)
"Scheme"
> (list->string '(#\S #\c #\h #\e #\m #\e))
"Scheme"
> (string->list "Scheme")
(#\S #\c #\h #\e #\m #\e)
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> "Scheme"
"Scheme"

Finally, given two strings, you can append them together using the string-append function (alternatively,
you could turn them in to lists, append those, and convert back):

> (string-append "book" "worm")
"bookworm"
> (list->string (append (string->list "book") (string->list "worm")))
"bookworm"

Note that strings, like characters, numbers, and Boolean values, evaluate to themselves.
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CSE1729 – Introduction to Programming October 31, 2019
Problem Set 8

Recall the discussion from class on Huffman trees. In particular, to construct an optimal encoding tree for a family
of symbols σ1, . . . ,σk with frequencies f1, . . . , fk, carry out the following algorithm:

1. Place each symbol σi into its own tree; define the weight of this tree to be fi .

2. If all symbols are in a single tree, return this tree (which yields the optimal code).

3. Otherwise, find the two current trees of minimal weight (breaking ties arbitrarily) and combine them into
a new tree by introducing a new root node, and assigning the two light trees to be its subtrees. The weight
of this new tree is defined to be the sum of the weights of the subtrees. Return to step 2.

Strings and characters in SCHEME SCHEME has the facility to work with strings and characters (a string is just
a sequence of characters). In particular, SCHEME treats characters as atomic objects that evaluate to themselves.
They are denoted: #\a, #\b, . . . . Thus, for example,

> #\a
#\a
> #\A
#\A
> (eq? #\A #\a)
#f
> (eq? #\a #\a)
#t

The “space” character is denoted #\space. A “newline” (or carriage return) is denoted #\newline. A string
in SCHEME is a sequence of characters, but the exact relationship between strings and characters requires an
explanation. A string is denoted, for example, "Hello!". You can build a string from characters by using the
string command as shown below. An alternate method is to use the list->string command, which constructs
a string from a list of characters, also modeled below. Likewise, you can “explode” a string into a list of characters
by the command string->list:

> (string #\S #\c #\h #\e #\m #\e)
"Scheme"
> (list->string '(#\S #\c #\h #\e #\m #\e))
"Scheme"
> (string->list "Scheme")
(#\S #\c #\h #\e #\m #\e)
> "Scheme"
"Scheme"

Note that strings, like characters, numbers, and Boolean values, evaluate to themselves.

1. Write a SCHEME function (get-count text) which, given a string text computes a list of character
counts appearing in the text. Namely, the call (get-count "hello") returns the list
((#\o . 1) (#\l . 2) (#\e . 1) (#\h . 1)).

2. Write a SCHEME function which, given a list of character counts, returns a list of character frequencies.
Namely, a call (get-freq (get-count "hello")) returns the list
((#\o . 1/5) (#\l . 2/5) (#\e . 1/5) (#\h . 1/5)).
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3. Write a SCHEME function (huffman freqs) which, given a list of characters and frequencies, constructs
and returns a Huffman encoding tree. You may assume that the characters and their frequencies are given
in a list of pairs: for example, the list

((#\a . 1/5) (#\b . 1/7) (#\c . 1/9) (#\d . 172/315))

represents the 4 characters a, b, c, and d, with frequencies 1/5, 1/7, 1/9, and 172/315, respectively. Given
such a list, you wish to compute the tree that results from the above algorithm. I suggest that you maintain
nodes of the tree as lists: internal nodes can have the form

('internal weight 0-tree 1-tree)

where internal is a token that indicates that this is an internal node, and 0-tree and 1-tree are the
two subtrees; leaf nodes can have the form

('leaf weight symbol)

where symbol is the character held by the leaf. Note that you will have to use the SCHEME quote command
to construct both types of nodes: for example, to construct an internal node with the two subtrees 0-tree
and 1-tree, you could use the procedures below

(define (htree-leaf letter weight) (list 'leaf weight letter))
(define (htree-node t0 t1) (list 'internal (+ (htree-weight t0)

(htree-weight t1)) t0 t1))
(define (htree-weight t) (cadr t))

Observe how the weight of an internal node is simply the sum of the weights of the sub-trees. For conve-
nience, you will also see above a helper function (htree-weight t) meant to return the weight of a tree.
Note how the weight is always the second value in the list describing a tree node (whether internal or a
leave). When you traverse a Huffman coding tree, you can determine if a given node is an internal node by
deciding if the car of the list associated with that node is the token internal (Similarly, you can check if
a node is a leaf). The process for building a Huffman tree simply processes a work queue of weighted trees
selecting the two lightest trees (smallest weights), combining them and placing the composite back into the
work queue. The process ends when the work queue has a single tree (and that tree is the result of your
function!). (Hint: since we are interested in light trees, a heap might come in handy!).

4. Define a SCHEME function (codeWords t) that takes, as input, a Huffman coding tree t and outputs a list
of pairs 〈s ymbol, code$rangle containing the elements at the leaves of the tree (s ymbol) along with their
associated encodings as a string over the characters #\0 and #\1 (the code). For example, given the tree
of Figure 1, your function should return the list

((#\a . "0") (#\b . "10") (#\c . "10")) .

a

b c

Figure 1: A Huffman tree yielding an encoding of the three symbols a, b, and c.
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CSE1729 - Introduction to Programming November 15, 2019
Problem Set 9

Practice with SCHEME objects

1. Encapsulation - protecting object state (data) behind an abstraction barrier.
Define a SCHEME object, named make-rat, which creates an object representing a rational number. Recall
that when we introduced pairs, we discussed a representation of rationals using a SCHEME pair. Here, your
rational numbers will be represented with objects. Your rational object should expose the following capa-
bilities for a rational number: get numerator, get denominator, get reciprocal, add, subtract, and multiply.
Thus, your object should expose the following methods in its dispatcher:

(define (make-rat a b)
...

(lambda (method)
(cond ((eq? method 'numer) get-numer)

((eq? method 'denom) get-denom)
((eq? method 'reciprocal) reciprocal)
((eq? method 'add) add)
((eq? method 'sub) sub)
((eq? method 'mult) mult)))))

Note, your rational number object should represent rationals in reduced form. You may find SCHEME builtin
function (gcd a b), which computes the greatest common divisor of its two arguments a and b, useful.

2. Define a SCHEME object—call it basic-set—that maintains an (initially empty) set of numbers. Your
object should have methods that correspond to

• empty, which should return #t if the set is empty, and #f otherwise;

• insert, which should insert a new element into the set; and

• delete, which should delete a particular element from the set; and

• element?, which should determine if a given element is in the set.

Implement the set as a standard SCHEME list, and return a dispatcher that provides access to your methods,
as we have done in class, via a token.

Thus, your object should behave as follows:

> (define newset (basic-set))
> ((newset 'empty))
#t
> ((newset 'insert) 2)
> ((newset 'element?) 2)
#t
> ((newset 'delete) 2)
> ((newset 'empty))
#t

3. Define a SCHEME object—call it stat-set—that maintains an (initially empty) set of numbers along with
several statistics pertaining to the set. Your object should have methods that correspond to

1



• empty, which should return #t if the set is empty, and #f otherwise;

• insert, which should insert a new element into the set;

• element?, which should determine if a given element is in the set;

• largest, which should return the largest element in the set;

• smallest, which should return the smallest element in the set;

• size, which should return the size of the set; and

• average, which should return the average of the elements in the set.

Note that your set does not need to implement delete. Implement the set as a standard SCHEME list, and
return a dispatcher that provides access to your methods, as we have done in class, via a token.

Important amplification. Your stat-set methods that implement largest, smallest, size, and
average, should use only a constant amount of computation to determine their return value: specifically,
the amount of time they take to return should not depend on the size of the set. (Thus you cannot scan the
list to determine its length, or the maximum element of the list.)

How is this possible? One strategy is to set up some “private variables” in your object called, e.g.
current-max, current-min, current-length, etc. These variables should maintain, at all times, the
current values of these quantities. When a new number is inserted, you will have to update your list (that
maintains the set) and, in addition, update each of these statistics appropriately.

I think that the easiest way to “maintain” the current average is to actually maintain the current sum of all
the elements in the set, and—when the user asks for the average—return the sum divided by the current
size.

Incidentally, why didn’t we ask you to implement the delete operation?

4. Using the conventional set notation {1,2, 2} and {1,2} denote the same set (which contains the numbers
1 and 2 and no others): specifically, as far as a set is concerned, an element either appears or it does
not—there is no notion of an object appearing more than once.

A multiset is like a set in which elements can appear more than once. People often use the same “set style”
notation for multisets: e.g., {1,2, 2} denotes the multiset in which 1 appears once and 2 appears twice. Of
course, as multisets {1, 2,2} and {1, 2} are different.

Notice that to maintain a multiset (of numbers, say), one needs to keep track of how many times each
number appears in the set (which could be zero).

Consider the representation of a multiset as a sorted list of pairs, where the first part of each pair represents
an integer, and the second represents the number of times it appears (a non-negative integer). Thus the
multiset {1,2, 2,3, 8,8} would be represented as the list ((1 . 1) (2 . 2) (3 . 1) (8 . 2)).
(Note that numbers which do not appear at all in the multiset do not have a pair in the list.)

Define a multiset object, which provides the methods:

• empty, which should return \#t if the multiset is empty, and \#f otherwise;

• insert, which should insert a new element into the set; of course, if the element already exists in the
multiset, the number of times it appears in the set should increase;

• multiplicity?, which should return the number of times a given element appears in the multiset (it
should return 0 if the element does not appear at all);

• delete, which should delete one appearance of a particular element from a multiset; and

• delete-all, which remove all appearances of an element in a multiset.
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Stack Applications

5. In this problem you will define an object that implements the Stack abstract data type using a list to store
the elements. When the object is created, it starts as an empty stack.

To implement the stack, the object will initially create an empty list, which it will store the elements of
the stack. The stack contents are then maintained with the following convention: to represent the stack
containing the elements e1, e2, . . . , en (where e1 is the top of the stack and en is the bottom of the stack) the
list will contain the elements as shown in Figure 1, just below. Observe that the bottom element of the stack

’(e1 e2 e3 . . . ek )

Figure 1: Layout of a stack in a list.

is always at the end of the list. The top element of the stack can be accessed at the front of the list. To place
a new element on the top of the stack, one needs only add it to the front of the list. Popping an element off
the top of the stack is handled by returning the appropriate element (take particular care to ensure you are
returning the proper value when using destructive assignment) and “removing” that element from the front
of the list. Your object should expose methods for

empty? Returns a Boolean value (\#t or \#f) depending on whether the stack is empty.

push Pushes a new element onto the top of the stack.

pop Pops off the top element from the stack and returns it.

top Returns the value of the top of the stack (without changing the contents of the stack).

Thus, your object should have the form:

(define (make-stack)
(let (...) ;; internal stack variables

(define (empty?) ...) ;; stack methods
(define (push x) ...)
(define (pop) ...)
(define (top) ...)
(define (dispatcher ...) ...) ;;the dispatcher
dispatcher))

6. (Evaluation of Postfix Expressions) Given a list of operands and operators that represent a postfix ex-
pression, one can use a stack to evaluate the postfix expression. Its true! The algorithm to do this is as
follows:

Algorithm 1 Evaluate Postfix Expression
repeat

if operand at front of input string then
push operand onto stack

else
pop stack to remove operands
apply operator to operand(s)
push result onto stack

end if
until input string is empty

3



For example, to evaluate the expression “23 15 +” we would:

(a) Push 23 onto the stack

(b) Push 15 onto the stack

(c) “+” is an operator, so

i. Pop second operand (note the operands are popped in reverse order)
ii. Pop first operand

iii. Apply the operator (in this case, addition)
iv. Push the result back onto the stack

(d) Once the expression has been evaluated, the result is on the top of the stack.

Define a SCHEME function, named (eval-postfix p), that will take a postfix expression (stored in a
list of integers representing operands and characters representing operators), evaluate that expression, and
return the result.
Your function should support the operations of addition (#\+), subtraction (#\-), multiplication (#\*),
division(#\/), and exponentiation(#\^).
You may want to work incrementally by starting with a function that takes a character representing an
operator and can pop two operands off of a stack, evaluate the operator and push the result back on the
stack. Next you can add a function that evaluates a postfix expression by pushing operands onto the stack
and evaluating operators when encountered. Note, you may want to use the number? function to determine
whether an item in the list is an operand or an operator.
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CSE1729 Introduction to Programming December 1, 2019
Problem Set 10

STREAM REFRESHER

Recall1 that a SCHEME stream is a pair of the form

(a . (lambda () ...)) .

The car of the pair is the first element of the stream. The job of the cdr of the pair (the lambda expression) is
to return the rest of the stream (which is another stream, and must have exactly the same structure) when it is
called with no arguments. As you recall, SCHEME provides two keywords delay and force that automate the
process of creating a delaying lambda (the cdr of a pair) and triggering its execution. Namely, the following

(define s (cons 1 (delay (...))))
(force (cdr s))

is equivalent to

(define s (cons 1 (lambda () (...))))
((cdr s))

i.e., delay creates a lambda while force forces its execution. In this assignment you will make use of delay
and force to implement a whole array of streams.

Using the stream representation convention (a pair), one can define

(define (head stream) (car stream))
(define (rest stream) (force (cdr stream)))

As an example, the function integer-stream returns the stream of positive integers a, a+ 1, a+ 2, . . .:

(define (integer-stream a) (cons a (delay (integer-stream (+ 1 a)))))

To wrap up our example

> (define a (integer-stream 5))
> a
'(5 . #<promise>)
> (rest a)
'(6 . #<promise>)
> (rest (rest a))
'(7 . #<promise>)
> (head (rest (rest a)))
7

Where a promise is just the lambda waiting to be forced.

1The material will be covered during the two upcoming lectures!
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There are natural ways to operate on streams. For example, the following function shifts a stream of integer by a
constant

(define (shift s c)
(cons (+ (head s) c)

(delay (shift (rest s) c))))

Then, for example

> (define a (shift (integer-stream 0) 42))
> a
'(42 . #<procedure>)
> (rest a)
'(43 . #<procedure>)
> (rest (rest a))
'(44 . #<procedure>)

You will notice that in the example above, we created a function shift that returned the stream; when such
a stream is created, it will have embedded in the cdr of the stream a call to this function. We mention that there
are circumstances where it may be helpful for the definition of the stream to carry additional information (beyond
simply the first element of the stream). As an example, consider the stream of Fibonacci numbers.

(define (fib-stream current next)
(cons current (delay (fib-stream next (+ current next)))))

To generate the stream of regular Fibonacci numbers, you would use the call (fib-stream 0 1).
Please use the stream conventions above. Do not use lambdas directly as we cannot mix both conventions

and this will break your submission when graded. Everything should be done in term of delay and force.
In all of the following, you can assume the existence of a stream named nat and defined as follows:

(define (integer-stream x)
(cons x (delay (integer-stream (+ 1 x)))))

(define nat (integer-stream 0))

1. Write a function (take s k) which, given a stream s and an integer k extracts from s the list of the first
k elements. For instance, the call (take nat 5) produces (0 1 2 3 4)

2. Write a function (square s) which, given a stream s computes a new stream consisting of the squares of
all the values in s. For instance, the call (take (square nat) 5) produces (0 1 4 9 16)

3. Write a function (cube s) which, given a stream s computes a new stream consisting of the cubes of all
the values in s. For instance, the call (take (cube nat) 5) produces (0 1 8 27 64)

4. Write a function (merge-streams s t) that merges two streams. Specifically, if s and t are two streams of
positive numbers in increasing order, (merge-streams s t) should be the stream containing all elements
appearing in either s or t, also in increasing (sorted) order. For example, if s is the stream of all perfect
squares

0,1, 4,9, 16,25, 36, . . .

and t is the stream of all perfect cubes

0, 1,8, 27,64, 125,216, . . .
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then (merge-streams s t) would be the stream

0,0, 1,1, 4,8, 9,16, 25,27, 36, . . . .

Note that there are numbers, such as 1 and (23)2 = (22)3 = 26 = 64 that are both perfect squares and
perfect cubes. In this case, your merged stream should produce the number twice.

5. Write a function (repeat x) which, given a value x , produces a stream that repeats x ad infinitum. For
instance, the call (take (repeat 42) 5) produces (42 42 42 42 42)

6. Write a function (weave s1 s2) which, given two streams s1 and s2 produces a new stream interlacing
the two streams perfectly. Namely, the new stream alternates the values from s1 and s2. For instance, the
call (take (weave (rest nat) (repeat 0)) 10) produces (1 0 2 0 3 0 4 0 5 0).

7. Write a function (mul s1 s2) which, given two streams s1 and s2 produces a new stream of the point wise
products of values from s1 and s2. Namely, given the statement

(take (mul nat (repeat 2)) 10)

One would obtain the stream extract: (0 2 4 6 8 10 12 14 16 18).

8. Write a function (frac s) which, given a stream s produces a new stream of the inverse of each value in
s Namely, given the statement

(take (frac (rest nat)) 10)

One would obtain the stream extract: (1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10).

9. Write a SCHEME function (pow x) which, given a value x computes the stream of powers of x , i.e., it
computes the infinite stream x0, x1, x2, x3, .... Importantly, you cannot use the SCHEME function expt.
Instead, you should define the power purely in term of streaming operations. There are several ways to
achieve this. For instance, you can realize that the stream seeded at x i is easily derived from the stream
seeded at x i−1 as it suffices to multiply its seed by x to obtain x i = x i−1 · x . The mul and repeat streams
may come in handy! The same identity x i = x i−1 · x can also help you define an auxiliary function to obtain
the next value in the stream and see it manually (all from first principles).

10. Write a SCHEME function facts (no arguments!) which produces the stream (0!1!2!3!4!5!..., i.e., it is the
stream of factorial values. Interestingly, the idea to produce the stream is related to how you might have
implemented the pow streamer. Namely, The i th entry of the stream of factorials is the result of the product
of the (i − 1)th value of the stream and the i th entry of the stream of naturals (starting from 1). Indeed,
i!= (i − 1)! · i.

11. The Return of The Power Series. As you surely recall, one can use a power series to approximate some
classic functions. Indeed, we know that

ex =
∞
∑

i=0

x i

i!

And one can write a classic function that approximates ex by using a finite number of terms in the sum-
mation. Namely, if we have a list lst of k values representing the first k terms of this summation, then
ex ≈(fold-right lst + 0). The more terms we have, the more precise the approximation is. If we
only produce the stream t of summation terms, a call like (define lst (take t 20)) would bind lst
to the first 10 terms of the summation. Our task is clear! Write a SCHEME function (expts x k) which,
given a value x and a number of terms k computes an approximation of ex with k terms. The code should
have this general shape (add the meaty part!)
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(define (expts x k)
(fold-right (take ... k) + 0))

where the ellipsis is replaced by the required stream.
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