

Getting Started with Unity

Learn how to use Unity by creating your very own
"Outbreak" survival game while developing your
essential skills

Patrick Felicia

BIRMINGHAM - MUMBAI

Getting Started with Unity

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2013

Production Reference: 1190813

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-584-8

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

Credits

Author
Patrick Felicia

Reviewer
Marc Schaerer

Acquisition Editors
Saleem Ahmed

Erol Staveley

Commissioning Editor
Sruthi Kutty

Technical Editor
Pratik More

Project Coordinator
Deenar Satam

Proofreader
Lauren Harkins

Indexer
Priya Subramani

Graphics
Ronak Dhruv

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

Patrick Felicia is a lecturer and researcher at Waterford Institute of Technology,
where he teaches and supervises undergraduate and postgraduate students.
He obtained his MSc in Multimedia Technology in 2003 and PhD in Computer
Science in 2009 from University College Cork, Ireland. He has published several
books and articles on the use of video games for educational purposes, including
Handbook of Research on Improving Learning and Motivation through Educational Games:
Multidisciplinary Approaches (published by IGI), and Digital games in schools: a handbook
for teachers, published by European Schoolnet. Patrick is also the Editor-in-chief of the
International Journal of Game-Based Learning (IJGBL), and the Conference Director of
the Irish Symposium on Game-Based Learning, a popular conference on games and
learning organized throughout Ireland.

I would like to thank the staff at Packt Publishing for their help
throughout the writing of this book, as well as Marc Schaerer, the
technical reviewer, for his valuable comments and feedback.

About the Reviewer

Marc Schaerer is an interactive media software engineer delivering interactive
learning, training, and entertainment experiences on mobile, desktop, and web
platforms for customers from all over the world through his company Gayasoft
(http://www.gayasoft.net) located in Switzerland.

He makes use of Unity, which he has been using since the technologies 1.x days in
2007, and has been enhancing its capabilities through extensions where suitable.

Marc Schaerer has a strong background in the 3D graphics, network technology,
software engineering, and interactive media fields; he started building up his
knowledge in these fields right from his teenage years and later on solidified
it with studies in Computational Science and Engineering at the Swiss Federal
Institute of Technology, Zurich.

This knowledge found usage in Popper (http://www.popper.org), an interactive
3D behavioral research platform for Harvard, developed by Gayasoft and powered
by Unity, Mathlab and ExitGames Photon.

With the rise of serious games, Marc is currently focusing his and his company's
efforts to research options and technologies for the next generation of interactive and
immersive experiences through AR and VR technologies (Metaio, OpenCV, Oculus
Rift) and new forms of input (Razer Hydra, Leap Motion).

www.packtpub.com

Support files, eBooks, discount offers and more
You might want to visit www.packtpub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.packtpub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://packtLib.packtpub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.packtpub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

This book is dedicated to my beloved wife, Helena.

Table of Contents
Preface	 1
Chapter 1: Getting to Know Unity3D	 7

Introduction to game engines	 8
Why choose Unity	 8
What's new in Unity3D 4	 9
Downloading Unity3D	 9
Launching Unity3D	 10
Unity3D's interface	 11

The Scene view	 12
Navigating in the scene	 12

The Hierarchy view	 13
The Project view	 14
The Inspector	 14
The Console	 15

Navigating through the AngryBots scene	 15
Creating a new project and scene	 16
Adding objects to a scene	 17

Creating a cube	 18
Adding a texture to objects	 22
Inserting imported objects	 23

Implementing first- and third-person views	 24
Adding a first-person controller	 25
Adding a third-person controller	 27

Summary	 29

Table of Contents

[ii]

Chapter 2: Creating a Maze with Built-in Objects	 31
Creating a maze based on built-in objects	 31
Fine-tuning the level	 38
Understanding colliders	 39
Summary	 42

Chapter 3: Using Scripts to Interact with Objects	 43
Introduction to scripting in Unity3D	 44
Importing necessary assets	 44
Creating our first script	 45
Collecting objects	 52
Adding audio	 55
Creating and displaying an inventory system	 57
Finishing the game	 64
Summary	 65

Chapter 4: Creating and Tracking Objects	 67
Displaying the health bar	 69
Displaying a mini-map of the level	 72
Creating a gun	 79
Allowing for repeated shots	 87
Summary	 88

Chapter 5: Bringing Your Game to Life with AI and Animations	 89
Importing and configuring the 3D character	 90
Animating the character for the game	 91
Creating parameters and transitions	 94
Adding basic AI to enemies	 97
Sending messages to alert other close enemies	 101
Creating additional states	 103
Using waypoints to define a path	 110
Summary	 113

Chapter 6: Finalizing and Optimizing Your Game	 115
Improving the AI using breadcrumbing	 116

Allowing enemies to throw and follow their own breadcrumbs	 116
Allowing enemies to follow the player's breadcrumbs	 121

Creating and updating prefabs	 127
Keeping track of the number of lives	 132
Animating the door that leads to the water section	 133
Creating a menu system for your game	 135
Keeping track of the number of lives	 139
Optimizing the game	 141

Table of Contents

[iii]

Exporting your game to the web	 142
Where to go from here	 143

Game designing	 143
Artificial intelligence	 143
3D characters	 144
Creating your audio files	 144
Learning more about Unity3D	 144

Summary	 145
Index	 147

Preface
Getting Started with Unity will get you up to speed with Unity3D's core features,
using an easy step-by-step approach. Throughout this book, you will progressively
develop your skills to create a survival video game.

From Unity3D's interface to finite state machines with Mecanim, you will learn
all of the necessary features to create a great game, including built-in objects
manipulation, collision detection, textures, scripting, audio, particle effects,
pathfinding, and raycasting.

You will create an indoor environment, where the player can collect objects
(including a gun, ammunitions, or health packs), shoot at enemies, open doors
based on some conditions, and much more.

You will include animated zombies with different levels of intelligence that
follow and attack the player based on a finite state machine and some AI
techniques (for example, breadcrumbing).

You will also learn how to create a menu system for your game, manage and display
the health levels of the character, and keep track of these factors across levels.

What this book covers
Chapter 1, Getting to know Unity3D, is a general introduction to Unity3D. In this
chapter, we will look at Unity3D's interface and how to include assets to scenes,
using both built-in objects and external files, such as sounds and textures. We
will also become familiar with the most commonly used components in Unity3D.

Chapter 2, Creating a Maze with Built-in Objects, illustrates how to create a
simple, (yet challenging) indoor environment using Unity3D's primitives
and standard assets.

Preface

[2]

Chapter 3, Using Scripts to Interact with Objects, explains how to use scripting in
Unity3D to create a user interface, handle user interaction, and display customized
messages on the screen.

Chapter 4, Creating and Tracking Objects, explains how to add more interaction to
our game with special effects, GUI elements, and a mini-map. We will also look
at advanced techniques to handle cameras and camera views.

Chapter 5, Bringing Your Game to Life with AI and Animations, teaches you how to bring
the game to life by animating objects and characters, and by giving NPCs some levels
of artificial intelligence to challenge the player. We will also learn how to set up and
manage a finite state machine with Mecanim to manage these characters.

Chapter 6, Finalizing and Optimizing Your Game, will introduce you to a technique
called breadcrumbing to improve the NPCs' intelligence and pathfinding. You
will also learn how to create menus for the different stages of the game, and how
to navigate through them.

What you need for this book
To complete the projects in this book, you only need Unity 4.x (or a more recent
version) that you can download from www.unity3d.com/download/.

All instructions on how to download and install Unity3D are provided in the
first chapter.

Who this book is for
This book is for game developers who would like to learn how to use Unity3D and
become familiar with its core features. This book is also suitable for intermediate users
who would like to improve their skills. No prior knowledge of Unity3D is required.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Create a new Boolean parameter called
withinReach."

Preface

[3]

A block of code is set as follows:

public var walking:boolean = false;
public var anim:Animator;
public var currentBaseState:AnimatorStateInfo;
public var walkForwardState:int = Animator.StringToHash("Base
 Layer.WalkForward");
public var idleState:int = Animator.StringToHash("Base
 Layer.Idle");
private var playerTransform:Transform;
private var hit:RaycastHit;

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

case:walkForwardState
 var zombies:GameObject [] = GameObject.FindGameObjectsWithTag("zomb
ie");
 for (var zombie:GameObject in zombies)
 {
 if (Vector3.Distance(transform.position, zombie.transform.
position) < 8.0f)
zombie.GetComponent(controlZombie).setWalking(true);
 }
 break;

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Click
on the Animations tab, and then click on the label attack; this label will provide
information on the attack clip."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works, in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting to Know Unity3D
This chapter is a general introduction to Unity3D, explaining the concepts of game
engines and the general benefits that can be obtained from such a software. It
presents some of the most interesting features of Unity3D, along with the novelties
brought by Unity3D 4. In this chapter, we will look at Unity3D's interface, and how
to include assets to scenes, using both built-in objects and primitives (for example,
shapes, cameras, or lights) and external files such as 3D models, sounds, or textures.
We will also become familiar with the most commonly used components in Unity3D.
After completing this chapter we should be able to:

•	 Become familiar with Unity3D's interface and its different windows
and menus

•	 Understand the different windows and layouts available in Unity3D
•	 Understand the main differences between the Hierarchy, Project, Console,

and Inspector windows
•	 Navigate to the Scene view using shortcuts, create placeholders and

duplicate objects in the Hierarchy window
•	 Monitor messages displayed in the console
•	 Understand and apply the concept of GameObjects
•	 Differentiate, choose between, and combine different GameObjects

and components
•	 Apply transformations to objects (for example, moving, rotating, or scaling)
•	 Add textures to objects
•	 Add lights
•	 Add and use first- or third-person controllers

Getting to Know Unity3D

[8]

Introduction to game engines
Unity3D is a game engine and makes it possible for indie game developers,
hobbyists, and those new to programming, to design and develop video
games, focusing essentially on the game mechanics, rather than the underlying
layers necessary to build a game. Game engines usually provide an Integrated
Development Environment (IDE), where all activities and tasks related to game
development are seamlessly integrated using coding, objects, and environment
creation. They usually make it possible for designers to control the logic of their
game using high-level programming or scripting languages, hence decreasing the
learning curve and improving the workflow. With the evolution of technology,
many game designers have used game engines. While game engines were initially
essential for the production of video games, they are now used for a wide range of
applications, with purposes other than gaming. For example, game engines are now
employed for simulation, teaching, and training, as they often make it possible to
create and manage very realistic environments easily. Moreover, such tools provide
means for the creation of universally accessible environments, thanks notably to
popular export formats for web and mobile devices.

Why choose Unity
Unity3D has been around for several years, with a growing number of users and
several highly regarded video games produced till date. Many of these games are
listed on the Unity3D website (http://unity3d.com/gallery/made-with-unity/
game-list). Unity3D is built with simplicity and effectiveness in mind to allow both
novice and advanced developers to maximize their game creation experience. It
makes it possible to develop games of different genres (for example, platformers, role
playing games, first-person shooters, massive multiplayer online role playing games,
simulations, or strategy games), and for a comprehensive number of platforms (for
example, Android, iOS, Windows Phone 8, PC, Mac, Linux, PS3, or XBOX 360). There
are many game engines available out there, but Unity3D is one of the very few that
provides a significant number of tools and techniques that simplify the development
process, help to produce high-quality games, and addresses many aspects of game
development, including an Integrated Development Environment (IDE), Artificial
Intelligence (AI), animations, or lighting. As for other game engines, Unity3D makes
it possible to code the game using relatively high-level programming and scripting
languages, including JavaScript, Boo, or C#. While C# may require prior knowledge
of Object Oriented Programming (OOP), JavaScript is an ideal scripting language for
those with no or little background in programming. In this book, we will create our
game using JavaScript.

Chapter 1

[9]

In addition to its built-in capabilities, Unity3D offers the possibility to employ
third-party plugins that greatly enhance the workflow and add some very
interesting effects and functionalities. We will have the opportunity to
discover some of these libraries throughout this book.

Finally, Unity3D includes a built-in access to the assets store (https://www.
assetstore.unity3d.com/), an online store that provides material for our Unity
projects (for example, textures, characters, GUI systems, or scripts). While the
majority of these items have to be purchased, some of them can be imported in our
project for free, so that we can create a game with a small budget. Most of these items
can be integrated seamlessly in our game.

What's new in Unity3D 4
As I am writing this book, Unity3D is in its 4th version. The current version is the
fruit of a rapid and consistent evolution. Although each version offers significant
novelties and functionalities, the main components and layouts are rather similar
across all versions, which means that what we will learn in this book should still be
relevant for subsequent versions of Unity3D.

Unity3D 4 includes a number of very exciting features such as Mecanim, a new
system to animate both objects and characters, enabling users to retarget animations,
apply state machines and smooth transitions between these (blend trees), and Inverse
Kinematics (IK).

Downloading Unity3D
We can download Unity3D from the Unity3D website (http://unity3d.com/
unity/download/).

Before we download it, it is a good idea to check the requirements to make
sure that our system (that is, software and hardware) is up-to-date. We can
visit http://unity3d.com/unity/system-requirements to check whether our
system complies with the requirements. Once we have checked the requirements,
we can download the latest version of Unity3D for either Mac OS (http://unity3d.
com/unity/download/download-mac) or Windows (http://unity3d.com/
unity/download/download-windows). Opening either of these URLs will start the
download of Unity3D automatically.

Getting to Know Unity3D

[10]

While the latest version of Unity3D is available on the official website, it is also
possible to download previous versions of Unity3D from the following link:
http://unity3d.com/unity/download/archive. If we use this book as a
support for a course, it may be the case that the college or university where
we study may have a previous version installed in the labs, and we may want
to work on the project we have created during class from home. Another
reason for this is that when we open a Unity3D project with a new version of
the software, we may not be able to reopen it with the previous version.

Once we have downloaded Unity3D, launch the installer.

Launching Unity3D
Once the installation is complete, we can launch Unity3D. The first time Unity3D
is launched, we may be required to register the software and to provide an e-mail
address, so that we can receive frequent updates on Unity3D. Once the registration
process is complete, we can then start using Unity3D. The first time we open Unity3D,
a pop-up window labeled Welcome to Unity will appear. This window can provide
us with useful links to tutorials, the assets store, and additional help on Unity3D.
However, if we don't want to display this window every time Unity3D is launched,
we may uncheck the box located at the bottom right hand corner of the window,
as we can see in the following screenshot, and close the window:

Chapter 1

[11]

Unity3D's interface
By default, when we launch Unity3D for the first time, the project AngryBots should
be open. The default layout is applied in Unity3D, and you will notice that the screen
is divided into several sections or views (as highlighted in the following screenshot),
including the following:

•	 The Scene view labeled as 1, where we can visualize and modify the scene
we have created for our game

•	 The Hierarchy view labeled as 2, where we can see a list of all the objects
included in our scene

•	 The Project view labeled as 3, which contains all assets used in the
current project

•	 The Inspector window labeled as 4, which displays the properties of the
object selected

Getting to Know Unity3D

[12]

The layout of this window can be modified using Window | Layouts. We can also
resize the different windows and save our layout for a later use by navigating to
Windows | Layout | Save.

The Scene view
The Scene view displays the scene and makes it possible to navigate through
it. Scenes are comparable to game levels and include all relevant objects and
environments. To the right of the tab Scene, we can find a tab labeled Game. This
view displays the scene just the way it would appear when the game is launched
(that is, from the active camera). For example, if we click on the Game tab, the view
should switch to the camera used in the game to follow the player, as illustrated in
the following image:

Navigating in the scene
Unity3D provides several means and shortcuts to navigate through the scene,
including the arrow keys from our keyboard. This mode is similar to the controls
used in a First-Person Shooter (FPS), except that there is no mouselook option in this
mode. Holding down the Shift key in this mode will increase our speed. To navigate
in a mode that is closer to the controls usually found in FPS games, we can use the
Fly mode, which is similar to the previous mode, except that it includes a mouselook
feature. We can access this mode by holding down the mouse right button inside
the scene. We can then navigate through the scene using the keys W, A, S, and D;
float up and down using the keys Q and E, or look around by moving the mouse
left, right, forward, or back. In addition to navigating through the scene, we can also
focus on one object by double-clicking on this object in the Hierarchy window or by
selecting this object in the hierarchy (by clicking on it once), and moving the mouse
over the Scene view and pressing the F (focus) key (this will cause Unity3D to move
the camera so that the object is displayed on the screen). We can zoom in and out by
scrolling the mouse wheel; pan the view by clicking and dragging the mouse (note
that panning the view works essentially when the hand tool is selected after pressing
the Q key).

Chapter 1

[13]

We can rotate the view by pressing the Alt key and clicking and dragging the mouse,
or view the scene from the x, y, or z axes using the gizmo located in the top-right
corner of the window, as illustrated in the following screenshot. Clicking on the y
(green) arrow will display the view from the y-axis; the same applies to the z (blue),
and x (red) axes. Clicking on the box in the middle of the gizmo will toggle the view
between perspective and isometric modes.

There are many other shortcuts for Unity3D and we can find them in the
documentation provided by Unity by selecting Help | Unity Manual from
Unity3D and the pages dedicated to scene view navigation in Unity3D (http://
docs.unity3d.com/Documentation/Manual/SceneViewNavigation.html). This
being said, the shortcuts and controls described previously should be sufficient for
us to start navigating through a Unity3D scene.

The Hierarchy view
This view lists all objects present in the scene. By default, a camera is present
and the scene is viewed through its lens. Any subsequent object created or
imported will appear in this view (for example, light, camera, or box) as
illustrated in the following screenshot:

Note that objects can be duplicated in this window using the keys Ctrl + D
(or right-click + duplicate). Groups can be created in this window; for example,
when a group of objects need to share the same position or orientation (for example,
transform properties), an empty object can be created, and these objects can then be
added to the empty object. This way, any transformation applied to the empty object
(container or parent) will be recursively applied to the children.

Getting to Know Unity3D

[14]

For example, in the AngryBots scene in the folder labeled Environment (static)
we will notice a container labeled barrels that includes all barrels featured in the
scene. If we apply a transformation to this container, this transformation will be
applied to all objects included within this folder.

Throughout this book, Mac OS users need to use the command
key or Apple key instead of the Ctrl key for keyboard shortcuts.

The Project view
This view features all assets used in the current project, including textures, audio,
other scenes, prefabs (these are comparable to templates and will be explained later),
fonts, or scripts (for example, JavaScript or C#). A project can include several scenes.

The Inspector
When an object is selected, its properties are displayed (and can be modified) in the
Inspector window as illustrated in the following screenshot:

Chapter 1

[15]

Any modification applied to an object at runtime (when the scene is
played), will not be saved. As a result, it is good practice to modify
the properties of our objects before or after the scene is played, so
that the changes are saved.

The Console
The Console window displays warnings, script errors, or user-generated messages
for debugging purposes. We will look into this option later in this book. This
window is accessible using Window | Console (or Shift + Ctrl + C).

Navigating through the AngryBots scene
To become familiar with navigation controls and shortcuts, let's navigate through the
AngryBots scene and do the following:

1.	 Open the AngryBots scene. If the AngryBots project is open, this
scene should be located inside the Assets folder as illustrated in
the following screenshot:

2.	 If, for some reason, you don't have the project AngryBot, you can download
it from http://unity3d.com/gallery/demos/demo-projects.

3.	 Navigate through the AngryBots scene using the different navigation modes
explained earlier. Select some of the items and look at their features using
the Inspector. Look at the scene from the x, y, and z axes. Open the Console
window and look for any message in this window. Play the scene using the
play icon located at the top of the window (that is, black triangle pointing
right) or by pressing Ctrl + P.

4.	 To exit the play mode, we can either click on the play icon or use the
shortcut Ctrl + P.

Getting to Know Unity3D

[16]

We can also play the scene in fullscreen mode by clicking on the
option Maximize On Play available at the top-right corner of the
game view. This mode makes it easier to test our game and to
assess how it will look once it has been exported.

Creating a new project and scene
We will now create a new project for our first game, a 3D maze. Let's go through the
following steps:

1.	 Select File | New Project. A window labeled Project Wizard should appear.
This window provides a default directory for our project; however, we can set
the location of our project by clicking on the Set button. By default, the name
of the project is New Unity Project, but this can also be changed. At this stage,
it is also possible to select and add the packages to include in our game. If we
scroll down through the list below the label Import the following packages,
we will see several packages, which consist of assets that can be used to
enhance our game. These assets can be imported into our project at a later
stage. Therefore, we will not select any of these for the time being.

Chapter 1

[17]

2.	 Choose and set a directory and a name for our project (in the previous
screenshot the project is called maze and is located in the directory
/Users/pfelicia/).

3.	 Once you are happy with the project directory and its name, click on
Create Project.

4.	 If you have made any changes to the AngryBots project, you may be asked
whether you would like to save you changes. If this is the case, click on
Don't Save.

5.	 After a few seconds, a new window should appear with our new project.

Adding objects to a scene
Now that we know how to navigate through the scene, we will learn how to create
objects and add them to the scene. Unity3D makes it possible to add different types
of built-in objects, including 3D primitives (for example, spheres, cubes, cylinders,
or planes), lights (for example, point, directional, or area lights), Graphical User
Interface (GUI) elements (for example, text or textures), or cameras. Each object
can be added by selecting: Game Object | Create Other. Once an object has been
created, we can change its properties using the Inspector or by directly moving,
rotating, or scaling this object in the scene view. Once an object is selected, we
can use the buttons located at the top-left corner of the scene view to apply
transformations, as illustrated in the following screenshot:

The three buttons illustrated in the previous screenshot can be used to move,
rotate, or scale the selected object, and can be accessed using the keys W, E, and R
respectively. For example, if we select an object and click on the first button (or press
the W key), three axes will appear on the object: a green axis (y), a blue axis (z), and
a red axis (x). Dragging any of these axes will move the object in the corresponding
direction. The same applies to rotating and scaling an object. Note that we can also
constrain the object to a particular plan using the same technique but by dragging
one of the colored plans that appear at the center of the object (for example,
dragging the green box will move the objects in the horizontal x-z plane). For more
information on the Unity3D interface, we can visit: http://docs.unity3d.com/
Documentation/Manual/LearningtheInterface.html.

Getting to Know Unity3D

[18]

Creating a cube
We will now create and texture a cube using Unity3D's built-in objects.

First, let's add a cube to the scene:

1.	 Select: Game Object | Create Other | Cube.
2.	 In the Hierarchy window, change the name of this cube from Cube to box1

(right-click on the object then select Rename from the contextual menu, or
select the object in the hierarchy, left-click on the object, and type the new
name). We can also rename an object by selecting this object in the hierarchy
and by pressing Enter for Mac OS or F2 for Windows.

3.	 Make sure that the object is selected by clicking on it in the Hierarchy or in
the Scene view.

4.	 In the Inspector window, change the x, y, and z position parameters of this
object to (x=0, y=0, z=0).

5.	 Double-click on this object in the hierarchy to focus the camera on it.

Add a color to this box:

1.	 Our box looks pretty dull, and it would be great to add a color to it. This
can be achieved by creating and applying a material (for example, color or
texture) to the box.

2.	 From the Project window, select Create | Material as shown in the
following screenshot:

3.	 This will create a new material labeled New Material in the Assets window.
4.	 Change the name of this new material to red (right-click on the object and

select Rename from the contextual menu, or left-click on the object).

Chapter 1

[19]

5.	 Make sure that this material is selected, and look at its properties in the
Inspector window.

6.	 One of the properties of this object is Main Color. We will modify
this property by clicking on the white rectangle to the right of the
label Main Color.

7.	 This should open a window labeled Color. This window makes it possible to
pick a color for this material as shown in the following screenshot:

8.	 Pick a red color (for example, click on a red area) and close the Color
window. We should see that the Preview of the material now shows
a red sphere as shown in the following screenshot:

Getting to Know Unity3D

[20]

9.	 Apply the material to the box; this can be done in at least two ways.
°° The first way in which we can do is as follows:

1.	 Make sure that we are in the Scene view.
2.	 Select the box (box1) and drag-and-drop the material from

the Assets window to the box created.

°° The second way is as follows:
1.	 Click on the object box1.
2.	 Look at the Inspector window and click on the Materials

attribute of the Mesh Renderer component for this object
as illustrated in the following screenshot:

3.	 Click on the circle to the right of the label Default-Diffuse so
that we can change the material. A new window will appear.

4.	 From the new window, click on the tab labeled Assets and
type the text red in the search field located at the top of this
window as shown in the following screenshot:

5.	 This should return one result, which is the material we have
just created. Click on the material red and close the window.
The cube should turn to red.

It is also possible to apply a texture to an object by
dragging-and-dropping the texture on the object.

Chapter 1

[21]

Add a light of our choice to the scene as shown in the following steps:

1.	 Select: Game Object | Create Other | Directional Light.
2.	 In the Hierarchy view, change the name of this light from Directional Light

to light1.
3.	 In the Inspector window, change the position of this light to (x=0, y=4, z=0).
4.	 In the Inspector window, change the rotation parameters of this object to

(x=90, y=0, z=0). This will rotate the light around the x axis, so that it points
downwards (that is, toward the cube).

Any of these properties (for example, position or rotation) can be
amended in the Inspector window by either entering the value in
the text field, or by dragging the parameter we need to modify. For
example, to change the x value of the position, we could position
our mouse over the x label (the cursor will then turn into a double
arrow) in the Inspector window and then drag-and-drop it to the
right (to increase the value) or to the left (to decrease the value).

Move the camera so that the objects can be seen from the camera:

1.	 The camera is already present in the Scene and is labeled as Main Camera
by default.

2.	 Select this camera (from the Hierarchy or Scene view).
3.	 In the Inspector window, change the position of this camera to

(x=0, y=4, z=0).
4.	 In the Inspector window, change the rotation of this camera to (x=90, y=0,

z=0). This will, as it was done for the light, rotate the camera around the x
axis, so that it points downwards (that is, toward the cube). We can check
the camera by looking at the camera view (that is, the rectangle located at
the bottom-right corner of the Scene view), or by clicking on the Game tab
(to display the game view).

Getting to Know Unity3D

[22]

Adding a texture to objects
So far, we have learned how to include objects and apply colors; however, for more
realism, it would be better to use textures instead. Thankfully, adding textures is
relatively easy in Unity3D. Before we can add a texture, we need to identify and
acquire a texture. For many game programmers who need to create a prototype
quickly and who prefer to focus on the mechanics of the game, it is often more
convenient to use free online assets for games. For our first level, we will be using
one of these resources:

When looking for free assets and textures, you can visit: http://wiki.unity3d.
com/index.php?title=Free_Game_Content.

This wiki includes links to textures, models, music, sound effects, and fonts.

For our textures, we will use the site www.cgtextures.com as follows:

1.	 Launch your web browser and open the page http://cgtextures.com.
2.	 In order to use textures from this website, we need to create an account and

register. If you already have an account on www.cgtextures.com, just log
in (Members | Login); otherwise, you can create an account (Members |
Free Account). The registration process should be relatively short. Once it is
complete, use your new user name and password to log in (Members | Login).

3.	 On the left-hand side of the window, we can enter keywords to look for
particular textures.

4.	 In the Search field, enter plywood new 36438. The site should return one
match for the search.

1.	 Click on the image returned from the search (in the right frame). A
new window should now appear, displaying eight different textures.

2.	 Click on the first texture (image1: 640x640); this will download the
texture to our computer (PlywoodNew0046_1_S.jpg).

Import this image to your project as follows:

1.	 Switch to Unity3D.
2.	 Select the folder labeled Assets in the Project view (click on it once).
3.	 Create a new folder within this folder (from the Project window, select

Create | Folder).

Chapter 1

[23]

4.	 Rename the new folder chapter1.
5.	 Select this folder (that is, click on this folder once).
6.	 Select: Assets | Import New Asset.
7.	 Browse to the location where the texture was saved on our computer

(for example, the Download folder).
8.	 Select the texture (PlywoodNew0046_1_S.jpg) and click on Import.
9.	 An asset labeled with the name of the texture (PlywoodNew0046_1_S)

should now appear in the folder chapter1.
10.	 In the Hierarchy view, duplicate the game object labeled box1.
11.	 Call this new object box2.
12.	 Change this object's position to (x=4, y=0, z=0).
13.	 Drag-and-drop the plywood texture that we have just imported to the object

box2 either in the Scene view or in the Hierarchy view.
14.	 The object labeled box2 should now feature a wooden texture.

It is also possible to import assets in a project by simply
dragging-and-dropping the assets (or folders) from the
explorer (or finder) to the Unity3D Project window. It may
be more efficient when importing folders with many assets.

Inserting imported objects
Unity3D also makes it possible to import 3D objects from many different formats,
including .fbx, .dae, .2ds, .dxf, and .obj. We can import objects by selecting
Assets | Import New Asset. Both static and animated objects can be imported and
animated (when applicable). For conversion to/from these formats, we can visit
the Unity3D page dedicated to 3D object imports: http://docs.unity3d.com/
Documentation/Manual/HOWTO-importObject.html.

Getting to Know Unity3D

[24]

Implementing first- and third-person
views
In some cases, we may need to navigate through the game using a first- or
third-person view. This requires using a camera and the ability to move it based
on the players' keyboard entries. Thankfully, Unity3D includes built-in objects to
implement both types of navigation. If we have chosen to import these assets when
creating our project (see previous sections), these assets are located in the Project
view, inside the folder Standard Assets, and are named 3rd Person Controller
and First Person Controller. If you haven't done so yet, we will need to import the
character controller package as follows:

1.	 Select: Assets | Import Package | Character Controller.
2.	 A new window labeled Importing package will appear.

3.	 Click on the button labeled Import.

Chapter 1

[25]

4.	 This will import the character controllers in our project as illustrated in the
following screenshot:

Once we have imported this package, both controllers appear with a blue box to their
left. This indicates that they are prefabs. Prefabs are comparable to templates, and
make it possible to reproduce similar objects based on the same template, without
the need to recreate them. Once a template is created and instantiated, if the prefab
is modified, all instances will also be modified accordingly, thus saving time of the
game developer. We will look at the concept of prefabs in the next chapters.

If we click on any of these prefabs, we will see in the Inspector window that they
include a set of components and attributes such as gravity, walk speed, or run speed,
which can be modified and affect the behavior of the controller accordingly.

Adding a first-person controller
Before we add our first-person controller to the scene, we will create an object that
will act as the ground on which the player will be able to walk or run.

1.	 Create a new box (Game Object | Create Other | Cube).
2.	 Rename this box floor.
3.	 Scale-up this cube by 20 on the x and z axes:

1.	 Select the cube labeled floor.
2.	 In the Inspector window, change the position of this object to (x=0,

y=-1, z=0) and its scale properties to (x=20, y=1, z=20). This will scale
the cube on the x and z axes. Apply a texture to this cube.

4.	 Open the site www.cgtextures.com.
5.	 Search a tile texture using the keywords tile 64722.
6.	 Click on the image returned from the search. A new window should now

appear, displaying three different textures.

Getting to Know Unity3D

[26]

7.	 Click on the first texture (Image1: 700x700); this will download the texture to
your hard drive (TilesPlain0072_5_S.jpg).

8.	 In Unity3D, select the folder chapter1 in the Project window, so that the
image can be imported in this folder.

9.	 Import this texture as explained in the previous section (for example, Assets
| Import new Asset).

10.	 Apply the texture to the object labeled floor.
11.	 Click on the object labeled floor and look at its properties in the

Inspector window.

By importing these two images, Unity3D has automatically created the corresponding
textures that will be used in the project. These textures are located in a folder called
material, which is within the folder chapter1 that was created previously.

Let's change the tiling properties of the texture used for the floor:

1.	 Click once on the object floor in the Hierarchy window.
2.	 In the Inspector window, click once on the component labeled

TilesPlain0072_5_S, this should display more properties for this
texture as illustrated in the following screenshot:

3.	 Change the tiling properties to (x=20, y=20).

Add First Person Controller to the scene:

1.	 Drag-and-drop the First Person Controller prefab (that is, blue box
labeled First Person Controller) by selecting Standard Assets | Character
Controllers onto the Scene view (or the Project view).

2.	 Move this First Person Controller to the position (x=0, y=0.6, z=-5) using the
position properties in the Inspector window. This should place First Person
Controller slightly above the ground; if it is too low, the collision may not be
detected and the controller will fall indefinitely.

Chapter 1

[27]

Test the scene:

1.	 Press the Play button located at the top of the window (or Ctrl + P).
2.	 Navigate through our scene using the keys W, A, S, and D, the arrow keys, or

the mouse.

3.	 Quit the Play mode by clicking on the Play button or Ctrl + P.

Adding a third-person controller
In this section, we will add a third-person controller to the scene.

First, let's deactivate the third-person controller:

1.	 The scene already includes a First Person Controller. To avoid any conflict
between these, it is better to deactivate the First Person Controller.

2.	 Select First Person Controller in our scene, and uncheck the box to the right
of the label First Person Controller in the Inspector window as highlighted
on the following screenshot:

3.	 This will deactivate this object, which means that it will still be present in the
project, but not used or seen when the scene is played until it is reactivated.

Getting to Know Unity3D

[28]

Add the third-person controller:

1.	 Open the folder Character Controllers, which is located in the folder
Standard Assets. This folder should include two prefabs symbolized
by a blue cube (3rd Person Controller and First Person Controller)
and one folder (sources).

2.	 Drag-and-drop 3rd Person Controller onto the Scene view (or the
Project view).

3.	 Move this 3rd Person Controller to the position (x=0, y=0.6, z=-5). This
should place the controller slightly above the ground.

Test the scene:

1.	 Press the Play button located at the top of the window or (Ctrl + P).
2.	 Navigate through our scene using the keys W, A, S, D, or the arrow keys as

illustrated in the following screenshot:

3.	 Quit the Play mode by clicking on the Play button or use the corresponding
shortcut (Ctrl + P).

4.	 Save our scene (File | Save Scene As) and name it chapter1.

To use and develop the skills acquired in this chapter, we could
create a simple platform game, using a third-person view, where
the player has to jump from platform to platform to reach the end
of the level.

Chapter 1

[29]

Summary
In this chapter, you have learned about Unity3D. We have looked at the user interface
employed in Unity3D, the different windows available, as well as useful shortcuts.
Then, we have learned how to create and manipulate built-in objects, using both the
inspector and contextual commands and menus. We have also learned how to apply
colors and textures. Building on these skills, we then added both first- and third-person
controllers for the player to navigate through the scene.

In the next chapter, we will combine the skills that we have acquired so far to create
an indoor environment for our game including walls, doors, and water.

Creating a Maze with
Built-in Objects

This chapter will illustrate how to create a simple indoor environment using
Unity3D's primitives and standard assets. After completing this chapter, you
should be able to:

•	 Transform basic shapes to create an indoor environment
•	 Understand how to modify the render settings for a scene
•	 Add and configure point lights in a scene
•	 Understand and use colliders for our game
•	 Add built-in water objects

Creating a maze based on built-in objects
Based on the skills we have covered in the previous chapter, let's create a maze for
our game. The layout of our maze is described in the following diagram. The level
will consist of two main rooms connected by a bridge. The different sections include
the following:

•	 A platform from where the player will start
•	 Water surrounding the platform
•	 A maze where the player can find ammunition and eliminate all enemies

Creating a Maze with Built-in Objects

[32]

•	 An exit door for which the player will need to find the keys

This simple layout can be achieved by moving, scaling, and duplicating basic shapes.
Before we start creating the maze, we will create a new scene and folder for this
chapter as follows:

1.	 Open our previous project (maze), created in the previous chapter, if it is not
open yet.

2.	 In the Project window, create a new scene (File | New Scene) and save
it as chapter2 (File | Save Scene as). In the Project window, click once
on the Assets folder.

3.	 Select: Create | Folder from the Project window. Rename this
folder chapter2.

Chapter 2

[33]

Then, we will download all the textures required for the maze. We will need four
textures for the walls, floor, ceiling, and doors. As per previous sections, we will
download these textures from the website www.cgtextures.com, import them into
our project and rename them to simplify their use. While some textures are specified
in the next section, we can choose other textures of our choice.

1.	 Open the URL http://cgtextures.com.
2.	 If you are not already logged in, log in with your previous details by

selecting Members | Login.
3.	 Once you have successfully logged in, we will search for our textures.
4.	 Add the keyword MetalFloorsOthers0006 to the Search field located on the

left-hand side of the window, and click on Search.
5.	 Doing so should return one result. Click on the image and download the first

texture (that is, tiled) in the next window (Image 1; 640x640) to download it.
6.	 Once the file has been downloaded to your computer,

(MetalFloorsOther0006_1_S.jpg), rename it texture_floor.jpg.
7.	 Repeat steps 4-6 using the following keywords, settings, and texture names:

°° Second texture (walls): Use the keyword concretebare0280,
choose image1 (ConcreteBare0280_39_S), and rename the
texture texture_walls

°° Third texture (ceiling): Use the keyword ConcreteBare0314, choose
image1 and rename the texture texture_ceiling

°° Fourth texture (door): Use the keyword DoorsMetalBig0183, and
rename the texture texture_door

Next, we need to import these images inside Unity3D, so that they can be applied
to objects:

1.	 Switch to Unity3D.
2.	 Select the folder chapter2 that we created earlier (located in the

Assets folder).
3.	 Select: Assets | Import New Asset.
4.	 Browse to the folder where we downloaded the textures.
5.	 Select the texture labeled texture_floor and click on Import.
6.	 Repeat steps 3-5 for the textures texture_walls, texture_door, and

texture_ceiling.

Creating a Maze with Built-in Objects

[34]

The previous steps could also have been achieved by downloading the
textures to the computer, and then renaming and dragging-and-dropping
these textures in the folder chapter2 inside Unity3D.

We can create the floor for our maze as shown in the following steps:

1.	 Create a new cube and rename it floor.
2.	 Change its position to (x=0, y=-1, z=0) and its scale to (x=49, y=1, z=49).
3.	 Apply the texture texture_floor to this object (drag-and-drop the texture

on the object).
4.	 Change the tiling property of the texture to (x=20, y =20) in the

Inspector window.

Then, we can create the blocks to be included in section 3 from the previous screenshot:

1.	 Create a new cube and rename it block.
2.	 Change the position of this cube to (x=-14, y=1, z=16) and its scale to (x=10,

y=4, z=10).
3.	 Apply the texture texture_walls to this object.
4.	 Change the tiling property of the texture to (x=10, y=1).
5.	 Duplicate this object seven times (Ctrl + D) to the following locations:

1.	 (x=0, y=1, z=16)
2.	 (x=14, y=1, z=16)
3.	 (x=-14, y=1, z=0)
4.	 (x=14, y=1, z=0)
5.	 (x=-14, y=1, z=-16)
6.	 (x=0, y=1, z=-16)
7.	 (x=14, y=1, z=-16)

6.	 We should now have eight blocks, arranged in a square.

Create the rocks that will be used as a bridge to access the area labeled as 1 on the
previous screenshot:

1.	 Create a new cube and rename it bridge.
2.	 Apply the texture texture_floor to this object.
3.	 Change the tiling properties of this texture to (x=10, y=10).

Chapter 2

[35]

4.	 Change the position of this cube to (x=-13, y=-1, z=50) and its scale to
(x=2, y=1, z=2).

5.	 Duplicate this cube 10 times to the following locations:
1.	 (x=-10, y=-1, z=50)
2.	 (x=-7, y=-1, z=50)
3.	 (x=7, y=-1, z=50)
4.	 (x=10, y=-1, z=50)
5.	 (x=13, y=-1, z=50)
6.	 (x=0, y=-1, z=42)
7.	 (x=0, y=-1, z=38)
8.	 (x=0, y=-1, z=34)
9.	 (x=0, y=-1, z=30)
10.	 (x=0, y=-1, z=26)

6.	 Duplicate the last object labeled bridge and rename it platform.
7.	 Modify the position of this object (platform) to (x=0, y=-1, z=49) and its scale

to (x=9, y=1, z=9).

Create horizontal walls as shown in the following steps:

1.	 Create a new cube and rename it h_wall_water_long.
2.	 Change its position to (x=0, y=0, z=57), its rotation to (x=0, y=90, z=0), and its

scale to (x=2, y=6, z=50).
3.	 Apply the texture texture_walls to this object.
4.	 Duplicate this object and rename the duplicate h_wall_water_short_left.
5.	 Change the position of this new object to (x=-13, y=0, z=24), its scale to

(x=2, y =6, z=24), and keep the rotation attributes (x=0, y=90, z=0).
6.	 Duplicate this object, and rename the copy h_wall_water_short_right.
7.	 Change the position of this new object to (x=13, y=0, z=24) and its scale to

(x=2, y =6, z=24).
8.	 Duplicate this object and rename the duplicate h_wall_short_right.
9.	 Change the position of this new object to (x=13, y=1, z=-24) and its scale to

(x=2, y =4, z=24).
10.	 Duplicate this object and rename the duplicate h_wall_short_left.
11.	 Change the position of this new object to (x=-13, y=1, z=-24) and its scale to

(x=2, y =4, z=24).

Creating a Maze with Built-in Objects

[36]

Create vertical walls as shown in the following steps:

1.	 Create a new cube and rename it v_wall_left.
2.	 Apply the texture texture_walls to this object.
3.	 Change the position of this object to (x=-24, y=1, z=0) and its scale to

(x=2, y=4, z=50).
4.	 Duplicate this object and rename the duplicate v_wall_right.
5.	 Change the position of this object (v_wall-right) to (x=24, y=1, z=0) and its

scale to (x=2, y=4, z=50).
6.	 Duplicate this object and rename the duplicate v_wall_water_right.
7.	 Change the position of the object v_wall_water_right to (x=24, y=0, z=40)

and its scale to (x=2, y=6, z=32).
8.	 Duplicate this object and rename the duplicate v_wall_water_left.
9.	 Change the position of the object v_wall_water_left to (x=-24, y=0, z=40)

and its scale to (x=2, y=6, z=32).

Create doors as shown in the following steps:

1.	 Create a new cube and rename it exit_door.
2.	 Apply the texture texture_door to this object and check the tiling property

of the texture (x=1, y =1).
3.	 Change the position of this object to (x=0, y=1, z=-24) and its scale to (x=2,

y=4, z=2).
4.	 Duplicate this door and rename the duplicate door1.
5.	 Change the position of this object (door1) to (x=-2.2, y =1, z=24) and its scale

to (x=2, y=4 and z=1.2). This door will open and close automatically.

Let's add water to the water area as shown in the following steps:

1.	 Select: Assets | Import package | Water (Basic).
2.	 A new window labeled Importing package will appear.
3.	 Click on the Import button.
4.	 This will import all necessary assets to simulate water.
5.	 In the Project window, select Assets | Standard Assets | Water (Basic).
6.	 It should include two prefabs, Daylight Simple Water and Nighttime

Simple Water.

Chapter 2

[37]

7.	 Drag-and-drop the prefab Daylight Simple Water to the Scene view and
rename it water.

8.	 Change its position to (x=0, y=-2, z=42) and its scale property to
(x=26, y=1, z=35).

Add lights as shown in the following steps:

1.	 We will start by adding lights to the four corners of the maze.
2.	 Add a point light by selecting GameObject | Create Other | Point Light.
3.	 Rename this light light_corner.
4.	 Change its position to (x=21, y=2, z=-21) and its range to 30.
5.	 Duplicate this object three times to obtain three additional lights at the

positions (x=-21, y=2, z=21), (x=21, y=2, z=21), and (x=-21, y=2, z=-21).
6.	 Duplicate one of the objects labeled light_corner and rename it

light_middle.
7.	 Change the position of this object (light_middle) to (x=0, y=2, z=0) and its

range to 50.
8.	 Check the scene in the Scene view and add other lights as you like.

Now that all necessary objects have been added to the maze, we need to include
a ceiling.

1.	 Create a new cube and rename it ceiling.
2.	 Apply the texture texture_ceiling to this object (by selecting

Assets | chapter2).
3.	 Change the tiling property of the texture to (x=20, y =20).
4.	 Change the position of the ceiling to (x=0, y=3.5, z=16) and scale to

(x=50, y=1, z=83).
5.	 Add a first-person controller to the scene (drag-and-drop the prefab First

Person Controller from the folder Assets | Standard Assets | Character
Controllers) and change its position to (x=3, y=0.6, z=3).

Creating a Maze with Built-in Objects

[38]

6.	 Play the scene (Ctrl + P) and navigate through the maze.

Navigate to the water area and try to reach the platform by jumping on the
successive blocks.

Fine-tuning the level
We have created a very interesting level, using built-in shapes; however, we
could modify some details. For example, you will notice that although the maze
is sealed-off, we can still see some light in parts where there are no point lights.
This is essentially due to ambient light, which can be modified in Unity3D. We
can change the properties of the ambient light as follows:

1.	 Select: Edit | Render Settings.
2.	 A window labeled Render Settings should be displayed in the Inspector

window, with several attributes available, including Ambient Light.

Chapter 2

[39]

3.	 Click on the rectangle to the right of the label Ambient Light.
4.	 A new window labeled Color should appear.
5.	 Under the option labeled Sliders, we can see values for each component

of the color of the ambient light expressed using the RGB code. The field
labeled R provides the amount of red included in the color, the field labeled
G provides the amount of green included in the color, the field labeled B
provides the amount of blue included in the color, and the field A is for the
alpha channel (transparency). For our game, we will set the ambient light to a
dark gray, which means that the values for the fields R, G, and B components
can all be set to 60.

6.	 Close the Color window.
7.	 We could also enable the fog by checking the box to the right of the label Fog,

and setting its density to .05.
8.	 Play the scene (Ctrl + P).

You may also notice that some lights are flickering and that the lighting changes
constantly, especially on the floor. This is because at any given time, the floor may be
lit by several point lights. We can solve this problem by changing the quality settings
of our scene: select Edit | Project | Settings | Quality, and in the section Rendering,
increasing the Pixel Light Count (for example, to 5).

The render settings the render settings can increase the visual impact
of your game, so it is good practice to tweak these settings until we
are happy with the look and feel of our game. Render settings need to
be defined for each scene and are also available through scripting, so
that we can adjust these dynamically. For example, we could simulate
a fog with increasing density over time, or ambient light with variable
intensity overtime.

Understanding colliders
So far, we have managed to create a level on which the first-person controller can
navigate and collide with both walls and the floor. However, this would not be
possible without colliders. When we added the different component of the maze
(for example, wall or ground), a collider was added by default to these objects. This
makes it possible to detect collision between objects. In our case, the first-person
controller includes a default collider. As a result, this character controller collided
with the walls. There are several types of colliders in Unity3D, including box, sphere,
capsule, wheel, or terrain colliders. Some of these colliders are based on basic shapes
such as boxes (for example, box colliders), spheres (for example, sphere colliders), or
capsule (for example, capsule colliders).

Creating a Maze with Built-in Objects

[40]

It is usually a good practice to use colliders with a shape that is
similar to the object on which they are applied. For example, we
could use a box collider for a door, or a sphere collider for a ball.
Using these basic shapes for collision also has some performance
advantages, as they require less computational resources than more
customized and precise colliders such as mesh colliders. Note that
when the object attached to this collider is resized, the collider is
resized accordingly.

Let's look at the floor object and its collider by following these steps:

1.	 In the Scene view, click on one object labeled floor.
2.	 In the Inspector window, we can see a list of components for this object.

Components can be added to objects either by default (when they are
created) or after creation (using the Component menu).

3.	 We can see that one of these components is a Box Collider as illustrated in
the following screenshot:

Let's test the effect of colliders on walls by doing the following:

1.	 Select one of the walls in the hierarchy.
2.	 Identify its box collider in the Inspector window.
3.	 Deactivate the box collider (by checking the box to the right of the label Box

Collider in the Inspector window).
4.	 Test the scene.
5.	 We should be able to walk through this wall.
6.	 Stop the scene and reactivate the box collider on this object.

Chapter 2

[41]

We can select several objects and change their properties simultaneously
in Unity3D, provided that the property that we need to modify is
available in all objects. For example, if we want to deactivate the colliders
for two different walls, we could select the two walls (press Ctrl and click
on the objects in the Hierarchy view) and deactivate the component Box
Colliders once; this change will then be applied to both walls.

We will now remove the collider and add another collider to the object:

1.	 Select one of the walls in the hierarchy, identify its box collider in the
Inspector window and remove the collider: right-click on the label Box
Collider and select Remove Component from the contextual menu; doing
so should remove the collider.

2.	 Test the scene; we should be able to walk through the wall.
3.	 Stop the scene.
4.	 Add a new collider to this object:

1.	 Select the wall in the hierarchy.
2.	 Select: Component | Physics | Box Collider.
3.	 This should add a new box collider to the object.

5.	 Test the scene.
6.	 We should now be able to collide with the wall again.

We could do the same for the ground as shown in the following steps:

1.	 Select the object labeled floor in the Hierarchy view.
2.	 Deactivate its box collider in the Inspector window.
3.	 Test the scene.
4.	 Our character should literally fall indefinitely (because there is no

collision detected with the floor).

Colliders can help to make our scene realistic. When colliders are activated (that
is, during a collision), built-in functions are called so that we can in turn perform
specific actions when this collision occurs (for example, destroy an object or play a
sound). We will cover this aspect in the next chapters.

Creating a Maze with Built-in Objects

[42]

Summary
In this chapter, we have learned to create an indoor environment using basic shapes
and standard assets. We have applied different transformations, including moving,
scaling, and rotating. We have also learned about colliders and their importance for
our game. Finally, we have used a built-in water object or prefab to simulate water in
our game. In the next chapter, we will learn how to use JavaScript and interact with
objects within the Unity3D scene.

Using Scripts to
Interact with Objects

In this chapter, we will learn how to use scripting in Unity3D to create a user
interface, handle user interaction, and display customized messages. After
completing this chapter, we will be able to:

•	 Create, store, and execute scripts in Unity3D using JavaScript
•	 Know the main functions necessary for our game
•	 Know how to select and modify game objects' properties through scripts
•	 Know the syntax required for scripts
•	 Know how to use the console for debugging purposes or custom messages
•	 Know how to pass variables and call functions between scripts
•	 Create and update Heads-Up-Display information using text and textures

Throughout this chapter, we will code our first scripts. We will learn how to display
messages in the console window, and also to create a counter (that is, a timer) that
will be used for our game. Finally, we will learn to access objects' properties through
scripts (for example, text, texture, or position) and attach a script that rotates an
object indefinitely. We will then improve our game and create the Graphical User
Interface (GUI), including a Heads-Up-Display (HUD) with the images of the objects
collected, the time, or notifications to the player.

All material required to complete this chapter is available for free download on the
companion website: http://patrickfelicia.wordpress.com/publications/
books/unity-outbreak/.

Using Scripts to Interact with Objects

[44]

Introduction to scripting in Unity3D
While we have learned how to create and transform assets in Unity3D in the
previous chapters, we will now discover how to code and use scripts. Scripts make
it possible to add logic and more interactivity to our games, as well as customize
interaction based on the players' actions. In Unity3D, we can create scripts using both
JavaScript and C#. While JavaScript is usually considered an easy and accessible
scripting language, C# is usually favored by intermediate and advanced Unity3D
programmers, as it facilitates the programming workflow and makes it possible
to develop more complex programs and interaction paradigms, notably due to
its Object-Oriented Programming (OOP) capabilities. For these reasons, it is often
difficult for beginners to know and decide what language they will start using. Both
of these languages have their advantages and limitations.

All code created in this chapter is available from the companion website
http://patrickfelicia.wordpress.com/publications/books/unity-outbreak/.

In this chapter, we will start to flesh-out the mechanics for the level we have created
in the previous chapter, with the following features:

•	 The player will try to find the exit of the maze
•	 The player will have limited time
•	 Time will be displayed onscreen
•	 The player will need to find and collect different items
•	 Objects collected will be displayed onscreen

Importing necessary assets
Open our previous project, if it is not already open, save the scene we have been
working on so far (File | Save Scene), and duplicate this scene by saving the current
scene as chapter3 (File | Save Scene As).

We will now create a container for all objects we created for the maze in the previous
chapter, so that it looks tidier:

1.	 Create an empty object (Game Object | Create Empty) and change its name
to maze.

2.	 Change its position to (x=0, y=0, z=0).
3.	 In the Hierarchy window, select all objects except the one we have just

created (maze), and drag-and-drop these objects on the object labeled maze.

Chapter 3

[45]

Before we start creating our level, we will need to download the necessary assets
from the companion website as shown in the following steps:

1.	 Open the link for the companion website: http://patrickfelicia.
wordpress.com/publications/books/unity-outbreak/.

2.	 Download the material for this chapter by clicking (or right-clicking and
selecting download to from the contextual menu) on the package for
chapter3. Doing so will download a file labeled chapter3.unitypackage.

3.	 In Unity3D, create a new folder called chapter3, inside the Assets folder,
and select this folder (chapter3).

4.	 Import the package we have just downloaded into Unity3D by selecting
Assets | Import Package | Custom Package. Browse to the directory where
we have saved the package downloaded from the companion website, select
it, and click on Open.

5.	 A new window labeled Importing package will appear; click on Import.
6.	 This step should create a folder chapter3_pack within the folder

labeled chapter3.

Creating our first script
Scripts can be created in several ways in Unity3D, including from the main menu
(Assets | Create | JavaScript/C# Script/Boo Script) or from the Project window
(Create | JavaScript/C# Script/Boo Script).

Once the script is created, it needs to be linked to an object.

Using Scripts to Interact with Objects

[46]

From the scene we have created in the previous chapter, we will create a new script
that displays a message in the console. Using scripts usually involves creating the
script, and attaching the script to an object. The script is called (or executed) when
the object is created in the scene; however, we won't be able to play the scene until
all scripts included contain no errors (errors are displayed in the Console window).
Before creating a new script, we will create a new folder in the project folder, so
that we can locate the scripts easily:

1.	 Select the folder chapter3 that we created earlier.
2.	 From the Project window, select Create | Folder.
3.	 Rename this folder Scripts.
4.	 Click once on this folder (so that the next script is created inside it).

We can now create a new script:

1.	 Check that the folder Scripts is selected.
2.	 From the top menu, select Assets | Create | JavaScript.
3.	 Doing so should create a new JavaScript script within the folder

labeled Scripts.
4.	 Rename this script timer.

When the script has been created, we can see its content in the Inspector window.

Let's edit its content as shown in the following steps:

1.	 Double-click on the script labeled timer. Doing so should open MonoDevelop,
which is the default editor for Unity3D scripts. There are several advantages to
using MonoDevelop, including code auto-completion, so that we don't have to
remember all of Unity3D's built-in functions and variables. However, if we had
preferred to use other editors, we could have changed Unity3D's preferences
accordingly (for example, Unity | Preferences | External Tool).

2.	 Once in MonoDevelop, we can see that there are two functions created in the
timer script by default: these are the functions Start and Update. The Start
function is called when the script is first called. For example, if this script is
linked to an object, this function will be called when the object is created or
added to the scene. The second function, Update, is called every frame (that
is, when the screen is refreshed). It can be used to detect keystrokes or to
create timers, as we will see later in this chapter.

Chapter 3

[47]

3.	 Modify the timer script as follows:
private var time: float;
function Start ()
{
}
function Update ()
{
 time++;
 print(time);
}

°° In statement 1 of the previous code, we declare a new variable, time,
of type float. It is only accessible within this script (that is, the type
is private).

°° In statement 7 of the previous code, the variable time is incremented
by 1 every frame (that is, every time the screen is refreshed).

°° In statement 8 of the previous code, the value of the variable time is
displayed in the Console window.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

To be able to run this script, it needs to be attached to an object:

1.	 In Unity3D, create an empty object (Game Object | Empty Object) and
rename it timer.

2.	 We can now attach the script by either dragging-and-dropping the script
from the Scripts folder to the empty object labeled timer, or by selecting
the object labeled timer and selecting Component | Scripts | timer from
the top menu.

3.	 Once this step is done, if we click once on the timer object, the Inspector will
reveal an additional component for this object, a script labeled timer.

4.	 Play the scene (Ctrl + P). If we open the Console window (Ctrl + Shift + S)
while the scene is being played, we can see that the counter is displayed and
that its value increases over time.

Using Scripts to Interact with Objects

[48]

You will also notice a message in the Console window stating that
There are 2 audio listeners in the scene… the reason being that
each camera in the scene includes an audio listener, which can be
compared to a microphone. We currently have two cameras in the
scene, each with an audio listener component. However, Unity3D
requires that only one audio listener be active at any given time. To
avoid this warning message, we could deactivate the audio listener
for the camera attached to the First Person Controller or the one for
the other camera labeled Main Camera.

This is great; however, the value displayed in the console is the number of frames
since the game has started. Instead, we need to display the number of seconds
and minutes. To do so, we can use a built-in variable called Time.deltaTime. This
variable provides the number of seconds elapsed since the last frame was displayed;
effectively, the number of seconds is calculated every time the screen is refreshed.
Let's modify our script accordingly as described in the following code snippet:

function Update ()
{
time = time +Time.deltaTime;
print(time);
}

In the previous code, the timer is incremented by the number of seconds elapsed
since the last frame was displayed. If we play the scene (Ctrl + P), we should
now see seconds displayed in the Console window (Ctrl + Shift + C). We are
almost there and we need to create two variables (that is, for minutes and seconds),
and calculate the minutes and seconds elapsed based on the variable timer. Modify
the script as follows:

private var time: float;
private var minutes:int;
private var seconds:int;
function Start ()
{
}
function Update ()
{
 time = time + Time.deltaTime;
 minutes = time/60;
 seconds = time%60;
 print(minutes+":"+ seconds);
}

Chapter 3

[49]

•	 In statements 1-3 of the previous code, the variables time, minutes, and
seconds are declared

•	 In statements 10-11 of the previous code, minutes and seconds are calculated
(the operand % is called a modulo; it will provide the reminder of the division)

•	 In statement 12 of the previous code, both variables minutes and seconds
are displayed in the console

Play the scene and check that the minutes and seconds are displayed in the
Console window.

At this stage, we have a script that displays the time in the console; however,
for our game, it would be better if this script could be displayed on the screen
using a graphical interface. As mentioned in the previous sections, Unity3D
provides several game objects for the creation of graphical interface objects,
including GUIText and GUITexture:

1.	 Create a GUIText object: select GameObject | Create Other | GUI Text.
2.	 Doing so should create a new GUIText object. Rename it GUIText_timer.
3.	 If we switch to the game view, we should now see the text GUI Text in the

middle of the screen (this is the default text).
4.	 Switch to the Scene view, select the object (GUIText_timer) in the Hierarchy

view, and look at the Inspector window; we can see several components for
this object, including its transform. Within this component, we can also see
the position attributes of the object. The position of the GUIText objects is a
proportion of width and height of the screen, and the origin (0,0) is located
at the bottom-left corner of the screen, which means that a position (x=0.5,
y=0.5) corresponds to the middle of the screen. For our game, we would
like the time to be displayed in the top-left corner, so we will modify its
coordinates to (x=0.02, y=0.9).

5.	 In the Inspector window, open the GUIText component of this object by
clicking on the arrow to the left of the label GUIText. We can see several
attributes including Text (that is, the text that will be displayed), Anchor,
Alignment, Font, and Font-size. Change the Font-size attribute to 30.

We can also change the font of the text displayed by dragging-and-dropping a new
font on this variable. Let's use a new font for our timer:

1.	 Open the site www.dafont.com in your web browser. This site offers free
fonts that can be used for personal purposes (that is, non-commercial).

2.	 Look for the font Oh The Horror.
3.	 Once you have found this font, make sure you read the terms and conditions.

Using Scripts to Interact with Objects

[50]

4.	 Download this font using the Download button located on the right-hand
side of the page and unzip the file (OhTheHorror.ttf).

5.	 Switch back to Unity3D, select the folder chapter3, and import the font into
Unity3D (that is, select Assets | Import New Asset). Doing so should create
a new font in the Project window (that is, Oh the horror).

6.	 Select the GUIText object labeled GUIText_timer.
7.	 In the Inspector window, click on the small circle to the right of the label

Font as illustrated in the following screenshot:

8.	 This should open a window labeled Select font that includes the new font
Oh The Horror. Select this font (that is, click once on the font) and close the
font selection window. The new font should now appear in the Font property
of the previous object.

Last but not least, we need to link our timer script to the GUIText, so that the time
is displayed onscreen. For this, we will use a new command called GameObject.
Find(). This built-in function makes it possible to find an object and access its
components and attributes from a script. In our case, we need to access the object
GUIText_timer and its GUIText component, and modify its attribute text. The
following code illustrates how this can be done and how it can be added at the end
of the function Update in the script timer:

var textToDisplay:String = minutes+":"+seconds;
GameObject.Find("GUIText_timer").guiText.text=textToDisplay;

In the previous code snippet, we modify the guiText variable, which is in the
component GUIText, attached to the object GUIText_timer. Accessing variables
is done through a hierarchy: Object | Component | Attribute. Note that we use
lowercase for the term guiText when referring to the GUItext from the object
GUITextTimer. The first three letters (that is, gui) are in lower case, because we
are accessing this particular guiText (it has been created).

If we create a script and link it to an object, all of the object's
components and attributes are accessible from this script using
the syntax gameObject.GetComponent or GetComponent.
The later format does not include the keyword gameObject, as
Unity3D assumes that we want to access a component from the
current object (that is, the one linked to the script).

Chapter 3

[51]

The full code for the function timer should look as follows:

private var time: float;
private var minutes:int;
private var seconds:int;
function Start ()
{
}
function Update ()
{
 time = time + Time.deltaTime;
 minutes = time/60;
 seconds = time%60;
 var textToDisplay : String = minutes + ":" + seconds;
 GameObject.Find("GUIText_timer").guiText.text = textToDisplay;

}

Play the scene and we should now see the time on the screen.

Note that while the code we have created to update the object GUIText_timer
(that is, time onscreen) is syntactically correct, it generates memory garbage, as
the GUITexture is searched for every frame and stored over and over. The same
applies to the variable textToDisplay. Instead, a better practice would be to look
for this object once, store it, and refer to this object in the Update function (that is,
without calling GameObject.Find indefinitely. We could also declare the variable
textToDisplay once.

It is good practice to use the function GameObject.Find and
similar functions outside the Update function, as it may impact
negatively on the performance of your game otherwise.

Let's modify our code accordingly:

Add two new variables at the start of the script as follows:

private var guiTextToDisplayTime : GameObject;
private var textToDisplay : String;

Add the following code to the Start function:

guiTextToDisplayTime = GameObject.Find("GUIText_timer");

In the Update function, replace the following line:

GameObject.Find("GUIText_timer").guiText.text = textToDisplay;

Using Scripts to Interact with Objects

[52]

With this line:

guiTextToDisplayTime.guiText.text = textToDisplay;

Replace the following line:

var textToDisplay : String = minutes + ":" + seconds;

With this line:

textToDisplay = minutes + ":" + seconds;

Play the scene and check that our code works properly.

It is good practice not to include any empty spaces in the
name of a script, to end a statement with a semi-colon, and
to be aware of case sensitivity: all variables, objects, and
functions are case-sensitive, which means that if we refer to a
variable but use the incorrect case, an error will be generated.

Collecting objects
So far, we have managed to implement navigation around the maze as well as a
timer. As we initially planned, we will now need to make it possible for the player
to collect objects (for example, med packs and keys) to escape the maze. To collect
the objects, we will use collision detection and a script that will destroy the objects
collected. First, let's create some items and add them to the scene:

1.	 Create a new cube, rename it medpack, then change its position to (x=3, y=1,
z=6), and its scale to (x=0.5, y=0.5, z=0.2).

2.	 Locate the texture labeled texture_medpack in the folder Assets | chapter3
| chapter3_pack. Apply the texture texture_medpack to the cube.

3.	 Create a new script inside the folder chapter3 | Scripts and rename it rotate.

Open this script (double-click on it) and add the following code:

function Start ()
{
}
function Update ()
{
 transform.Rotate(Vector3(0,1,0), 180*Time.deltaTime);
}

Chapter 3

[53]

•	 In statement 4 of the previous code, the function Update will be called every
frame and modify the rotation of the object attached to the script.

•	 In statement 6 of the previous code, a rotation of 180 degrees per second
around the y axis is applied to the transform of the object linked to this
script. The y axis is specified as the axis of rotation using the syntax
Vector3(0,1,0). A transform component relates to any transformation
applied to the object including translation, rotation, and scaling.

Link the script to the object labeled medpack, and play the scene (either by
dragging-and -dropping the script onto the object or by selecting the object
and then Component | Scripts | Rotate). Play the scene, and check that the
med pack is rotating.

Now that we have made this med pack more visible, we need to detect collisions
with the player as follows: objects will be given a tag (that is, a label), and when the
collision occurs, a built-in function will be called to obtain information on the collider
involved in the collision; we will then check the tag of the object we are colliding
with based on the collider mentioned previously, and if this object can be collected,
then we will destroy it and update the game information accordingly (for example,
increase the score, update the inventory, or display a customized message).

It is good practice to give a tag to the objects used in your game; it
makes it easier to identify them, to group objects based on common
properties, and to create custom behaviors or scripts accordingly.

To add a tag, we can proceed as follows:

1.	 Select the object labeled medpack in the Hierarchy window (click once on
the object).

2.	 In the Inspector window, click on the drop-down menu to the right of the
label Tag.

3.	 From the drop-down menu, select the option Add tag.
4.	 This should open a window called Tag Manager.
5.	 In this window, click on the arrow to the left of the label Tags; this will

display a list of elements (or tags) available.
6.	 Click to the right of the last elements listed (for example, Element0), type

medpack, and press Enter. This will create a new tag named medpack.
7.	 To apply this tag, click on the object labeled medpack in the Hierarchy

window and click on the drop-down menu to the right of the label Tag
in the Inspector window. This time the new tag medpack should appear.

8.	 Click on this tag to select it for our object.

Using Scripts to Interact with Objects

[54]

To handle the collision, we will now create a script to be added to the First Person
Controller object:

1.	 Create a new script inside the folder Assets | chapter3 | Scripts and rename
it collisionDetection.

2.	 Add the following code to the script:
function OnControllerColliderHit(c : ControllerColliderHit)
{
 print("collided with "+c.gameObject.tag);
}

°° In statement 1 of the previous code, the function
OnControllerColliderHit is declared. It is a built-in function
that is used to handle collisions between a character controller
and other objects. The parameter c is the collider of the object
colliding with the controller.

°° In statement 3 of the previous code, we print a message in the console
that indicates the tag of the object the controller is colliding with. The
tag is obtained from the object, which is obtained from the collider
(that is, collider | object | tag).

OnControllerColliderHit is a built-in function that Unity3D
will call in case of a collision between the controller and other objects.
If we misspell the name of this function (for example, use a lowercase
o for its initial instead of an uppercase O, the function may not
generate any error, but collision will not be handled in this function.
The collision will not be handled because Unity3D will assume that
we created a function called onControlerColliderHit rather
than the one it is expecting.

Attach the script to the First Person Controller object (that is, to the top-most level)
located in the folder (or empty object) labeled maze, open the Console window (Shift
+ Ctrl + C) and test the scene (Ctrl + P). After colliding with the med pack, we should
see a message in the Console window saying collided with medpack.

Because the player is constantly walking (and colliding with the
ground), and that the ground has no tag assigned yet, the Console
window will display the message collided with untagged. Because this
collision happens constantly (unless the player is jumping), the Console
window may be flooded with messages. We may enable the option
collapse in the Console window (button located at the top-left corner of
the Console window); this will prevent messages from being displayed
repeatedly and collapse identical messages accordingly.

Chapter 3

[55]

Press Ctrl + P to return to the editing mode. We will now modify this script to
destroy the med pack by adding the following line to the script:

if (c.gameObject.tag == "medpack") Destroy(c.gameObject);

In the previous line, we detect the tag of the object we are colliding with and then
destroy this object accordingly. Test the scene by colliding with the med pack and
check that it disappears.

Adding audio
Finally, it would be great to add additional feedback when the object has been
collected, using an audio cue. This will be done as follows:

1.	 Open the script collisionDetection.
2.	 Add the following two lines at the start of the script:

@script RequireComponent(AudioSource)
public var collection_beep : AudioClip;

°° In line 1 of the previous code, we specify that the script requires an
audio source component for this object

°° In line 2 of the previous code, we declare a variable that will be used
for the sound to be played

3.	 Locate the sound collection_beep from the folder Assets | chapter3 |
chapter3_pack.

4.	 In the Hierarchy window, click on the First Person Controller object
(top-most level). In the Inspector window, drag-and-drop the file
collection_beep to the variable collection_beep in the component
Collision Detection of the object First Person Controller.

5.	 Check that the First Person Controller object is still selected.
6.	 Select Component | Audio | Audio Source.
7.	 This should add an Audio Source component to the First Person Controller

in the Inspector window.
8.	 Check that the option Play on Awake is not selected for this component.

Modify the script collisionDetection so that it plays the sound on collision:

1.	 Open the script collisionDetection.
2.	 Add the following line to the script (that is, within the conditional statement):

gameObject.audio.Play();

Using Scripts to Interact with Objects

[56]

3.	 The function OnControllerColliderHit should now look as follows:
function OnControllerColliderHit(c : ControllerColliderHit)
{
 print("collided with"+c.gameObject.tag);
 if (c.gameObject.tag == "medpack")
 {
 Destroy(c.gameObject);
 audio.clip = collection_beep;
 audio.Play();
 }
}

°° In statement 7 of the previous code, we specify the audio clip that
should be played.

°° In statement 8 of the previous code, we play the current audio clip.
Note that we could also use the following code to play the sound:
audio.PlayOneShot(collection_beep);

The sound that we have created is automatically a 3D sound, which
means that if it was located on a different object, the way the player
perceives it could differ based on the position and orientation of the
player in relation to the object. In this case, we would need to add an
audio listener to the First Player Controller, so that this 3D sound
can be heard and played accordingly. In our case, the sound will be
played through the speakers, regardless of the relative position of
the player and the object.

We could create other objects and use a similar technique to destroy them
after collision:

1.	 Create a new box, rename it keys, change its position to (x=2, y=1, z=6),
and its scale property to (x=0.2, y=0.5, z=0.5); then apply the texture called
texture_key from the folder Assets | chapter3 | chapter3_pack to this box.

2.	 Create a new box, rename it gun, change its position to (x=1, y=1, z=6), and
its scale property to (x=0.2, y=0.5, z=0.5); then apply the texture called
texture_gun from the folder Assets | chapter3 | chapter3_pack to this box.

3.	 Attach the script labeled rotate to both objects (key and gun) and test
the scene.

Chapter 3

[57]

Creating and displaying an inventory
system
In our game, in addition to med packs, we will be able to collect other types
of objects. We will then need to keep track of these objects using variables and
graphical representations. This can be done using a basic inventory system. Some
objects will have an effect on the player (for example, increase health), while other
objects will be used at a later stage. To keep track of these objects we will need to
create corresponding variables, update these variables when the corresponding
objects have been collected, display a graphical representation of the object(s)
collected, and modify the players' attributes (for example, its health). We will
be working with the script collisionDetection. First, let's create variables for the
objects to be collected and add the following lines at the start of the script:

private var hasKey : boolean;
private var hasGun : boolean;
private var health : int;

•	 In lines 1 and 2 of the previous code, the varibles hasKey and hasGun are
declared as Boolean variables to check whether the player has collected the
keys or the gun.

•	 In line 3 of the previous code, the variable health is declared as an integer. It
will be used to track the health levels of the player. It will decrease when hit
by enemies. The health levels will increase to 100 percent after collecting the
med pack.

Then, we need to specify what actions should be performed when these items have
been collected. This will be done within the code dedicated to the collision detection.
Let's add the following code to the script:

function OnControllerColliderHit(c : ControllerColliderHit)
{
 if (c.gameObject.tag == "medpack" || c.gameObject.tag == "key"
 || c.gameObject.tag == "gun")
 {
 print("collided with "+c.gameObject.tag);
 Destroy(c.gameObject);
 gameObject.audio.Play();
 if (c.gameObject.tag == "medpack") health = 100;
 if (c.gameObject.tag == "key") hasKey = true;
 if (c.gameObject.tag == "gun") hasGun = true;
 }
}

Using Scripts to Interact with Objects

[58]

•	 In statement 3 of the previous code, we test for any type of collectable objects,
since all of them will be destroyed and a sound will be played upon collision

•	 In statements 6 and 7 of the previous code, as per the previous examples, the
objects are destroyed and a sound is played

•	 In statement 8 of the previous code, in the case of a med pack, the health of
the player is set to 100

•	 In statement 9 of the previous code, in the case of a key, the variable hasKey
is set to true

•	 In statement 10 of the previous code, in the case of a gun, the variable hasGun
is set to true

Before we can test the scene, we need to create tags for the keys and gun.

1.	 Select the object labeled gun in the Hierarchy window.
2.	 In the Inspector window, click on the drop-down menu to the right of the

label tag.
3.	 From the drop-down menu, select the option Add tag.
4.	 In the Tag Manager window, click on the arrow to the left of the label Tag.
5.	 Click to the right of the last elements listed (Element1) and type gun.
6.	 Click on the object labeled gun in the Hierarchy window and click on the

drop-down menu to the right of the label tag in the Inspector window. Select
the tag gun.

7.	 Repeats steps 1-6 for the object labeled key, that is, create and apply a new
label named key for the key.

Play the scene and check that when we collide with the key or gun, the Console
window displays a message accordingly (for example, collided with gun).

At present, although we keep track of the different items collected, we need to
look in the Console window to receive feedback. It would be great to display this
information on the screen as well as a notification message that disappears after 3
seconds. First, let's create a script named displayMessageToUser that will display a
notification message on the screen and hide it after few seconds. Add the following
code to the script:

private var timer:float;
private var displayTime:float;
private var timerIsActive:boolean;
private var message: String;

Chapter 3

[59]

•	 In statement 1 of the previous code, the variable timer is declared; it will be
used to measure time elapsed since the message was first created.

•	 In statement 2 of the previous code, the variable displayTime is declared; it
will be used to specify for how long the message will be displayed.

•	 In statement 3 of the previous code, the variable timerIsActive is declared; it
will be used to specify whether the timer that controls the message is active.

•	 In statement 4 of the previous code, the variable message is declared. This
message will be displayed on the screen.

Next, we will need to create a function that starts the timer and displays the message
until the time is up. Include the following code to the script:

function startTimer()
{
 timer = 0.0f;
 guiText.text = message;
 timerIsActive = true;
 displayTime = 3.0f;
}

•	 In statement 1 of the previous code, the function startTimer is declared
•	 In statement 3 of the previous code, the timer is set to 0
•	 In statement 4 of the previous code, the message is displayed on the screen

(provided that the variable message was initially set; this will be explained in
the next section)

•	 In statements 5-6 of the previous code, the timer is now active for 3 seconds

After the timer has been activated, we need to update its value overtime by adding
the code highlighted in the next code snippet to the function Update as follows:

function Update()
{
 if (timerIsActive)
 {
 timer+=Time.deltaTime;
 if (timer > displayTime){ timerIsAcive=false;
 guiText.text="";}
 }
}

Using Scripts to Interact with Objects

[60]

•	 In statement 3 of the previous code, we test whether the timer is active
•	 In statement 5 of the previous code, the value of the time is incremented by

the number of seconds since the last frame was displayed
•	 In statement 6 of the previous code, if the timer has reached the time limit

for the text to be displayed, the timer is made inactive and the text is deleted
from the screen

Then, we need to create a function that displays the time:

function displayText(mes:String)
{
 message = mes;
 startTimer();
}

•	 In statement 1 of the previous code, the function has one parameter, which
corresponds to the text to be displayed onscreen

•	 In statements 3 and 4 of the previous code, the message to be displayed is
initialized with the variable passed to this function and the timer is started

After adding the code described in the previous section, the script
displayMessageTouser should look as follows:

private var timer:float;
private var displayTime:float;
private var timerIsActive:boolean;
private var message: String;
function Start ()
{
}
function startTimer()
{
 timer=0.0f;
 guiText.text = message;
 timerIsActive = true;
 displayTime = 3.0f;
}
function Update ()
{
 if (timerIsActive)
 {
 timer+=Time.deltaTime;
 if (timer > displayTime)
 {

Chapter 3

[61]

 timerIsActive= false; guiText.text="";
 }
 }
}
function displayText(mes:String)
{
 message = mes;
 startTimer();
}

We just need to create the GUIText component to display the information on the
screen. Create a GUIText object, rename it GUIText_displayMessageToUser,
and change its position to (x=0.5, y=0.7, z=0). In the GUIText component, change
the Anchor attribute to middle center and Font Size to 40. Attach the script
displayMessageToUser to this object.

To complete this functionality, we now need to call the function displayText
whenever the player collects an item. To do so, let's modify the script
collisionDetection and add the following code after the line that starts with
Destroy(c.gameObject):

GameObject.Find("GUIText_displayMessageToUser").GetComponent(displ
 ayMessageToUser).displayText(c.gameObject.tag+" collected!");

In the previous code, we accessed the function displayText from the script timer.
The text to display is a string that consists of the tag of the object collected (that is,
c.gameObject.tag) followed by the text collected!

Play the scene (Ctrl + P) and check that the message is displayed accordingly when
we collect an item. We may notice that the text GUI Text is displayed automatically
when the scene starts; we can delete this text by adding the following line of code in
the Start function of the script displayMessageToUser.

guiText.text = "";

Having displayed a notification text, we will display some of the items collected
onscreen as part of our inventory system. Every time an item is collected, we will
set the corresponding Boolean value to true and also display a texture onscreen.
This will involve the following steps:

1.	 Create GuiTexture objects for each collectable item based on these textures.
2.	 Assign default textures.
3.	 Initially deactivate the assigned textures.

Using Scripts to Interact with Objects

[62]

4.	 Activate these textures through JavaScript when the corresponding objects
have been collected. Let's start by creating GUITextures for the keys:

1.	 Create a new GUITexture object (GameObject | Create Other |
GUI Texture).

2.	 Rename this GUITexture object GUITexture_key and select this
object; check that the Inspector window is visible.

3.	 Locate the texture icons_collectable_keys in the folder Assets |
chapter3 | chapter3_pack.

4.	 Drag-and-drop this texture in the Inspector window, to the left
of the label Texture in the GUITexture component of the object
GUITexture_key.

5.	 Using the Inspector, change the position of this object to (x=0.05,
y=0.1, z=0), this should display the texture in the bottom-left corner
of the screen.

6.	 Repeat the previous steps for the gun; the new object will be named
GUITexture_gun, its position should be (x=0.15, y=0.1, z=0), and the
texture used will be icons_collectable_gun.

Now that we have created the two GUITextures, we need to make them visible only
when the corresponding object has been collected. To do so, we will update the script
collisionDetection, which is linked to the First Person Controller, by adding the
following code:

function changeGUITexture(toBeDisplayed:boolean, label:String)
{
 GameObject.Find("GUITexture_"+label).guiTexture.enabled =
 toBeDisplayed;
}

•	 In statement 1 of the previous code, the function is declared. It has
two parameters: a string variable (label) and a Boolean variable
(toBeDisplayed). The first parameter determines whether a specific
texture needs to be displayed, whereas the second parameter will be used
to identify which texture will be displayed. Depending on the value of the
variable toBeDisplayed, the corresponding texture will be either displayed
(true) or hidden (false).

•	 In statement 3 of the previous code, we use the built-in function
GameObject.Find to identify the GUItextutre object with the corresponding
label that we need to either hide or display (for example, GUITexture_key or
GUITexture_gun).

Chapter 3

[63]

Next, we will need to specify when these textures will need to be hidden or
displayed. Add the code that is highlighted in the following code snippet:

function OnControllerColliderHit(c : ControllerColliderHit)
{
if (c.gameObject.tag == "medpack" || c.gameObject.tag == "key" ||
 c.gameObject.tag == "gun")
 {
 if (c.gameObject.tag == "key") {hasKey = true;
 changeGUITexture(true, "key");
 }
 if (c.gameObject.tag == "gun") {hasGun = true;
 changeGUITexture(true, "gun");}

•	 In statement 5 of the previous code, if the key has been collected, the variable
hasKey is set to true and the function changeGUITexture is called with the
parameters true and key, which means that we will display the GUITexture
for which the name includes the text key (that is, GUITexture_key)

•	 In statement 7 of the previous code, we will display the GUITexture for
which the name includes the text gun in the same way as for the key

Finally, we need to hide the GUITextures at the start of the scene. This can be
done using the Start function within the collisionDetection script; add the
following code:

function Start ()
{
 hasGun = false;
 hasKey = false;
 health = 0;
 changeGUITexture(false, "key");
 changeGUITexture(false, "gun");
}

The highlighted statements in the previous code suggest that the GUITextures for
the key and the gun are hidden.

Using Scripts to Interact with Objects

[64]

Finishing the game
We should now have created four scripts as well as new objects: GUIText_
displayMessageToUser, GUIText_timer, GUITexture_gun, GUITexture_key, gun,
key, medpack, and timer. The player can navigate through the maze and collect
items. At this stage, we just need to detect when the player has reached the exit doors
(that is, using tags) and open the doors only if the player has the key. To do so, we
will create a tag for the door, attach an animation to it, and trigger this animation
only when the player has collected the key as follows:

1.	 Select the object labeled exit_door (within the empty object or folder maze).
2.	 Add an animation component to this object by selecting Component |

Miscellaneous | Animation.
3.	 Locate the animation open_door from the folder Assets | chapter3 |

chapter3_pack.
4.	 Drag-and-drop this animation on the Animation attribute for the Animation

component of the object exit_door as highlighted in the following screenshot:

Uncheck the box for the option Play Automatically, create a new tag titled
exit_door, add this tag to the object named exit_door, and modify the
script collisionDetection by adding the following lines within the function
OnControllerColliderHit:

if (c.gameObject.tag == "exit_door")
{
 if (hasKey) c.gameObject.animation.Play ("open_door");
 else
 GameObject.Find("GUIText_displayMessageToUser").GetComponent(displ
 ayMessageToUser).displayText("Sorry, you need the key to open
 this door");
}

Chapter 3

[65]

•	 In statement 1 of the previous code, we test whether we are colliding with
the exit door

•	 In statement 3 of the previous code, if the player has the key, the door
(which is the object we are colliding with) is open by playing the animation
linked to its object (that is, door_open)

•	 In statement 5 of the previous code, if the player does not have the key, a
message is displayed accordingly

Test the scene. Try to open the door with and without the key.

Summary
In this chapter, we have learned to create scripts using JavaScript. From the first
section, we created our first script and gradually introduced more interaction into
our game, including rotating objects, a timer, and collision detection. Throughout
this section, we have also learned how to interact with other GameObjects in the
game, including GUIText and GUITexture objects. We have then combined these
skills to display a notification text every time an object has been collected, as well
as a corresponding texture on the screen. Finally, we have learned how to play an
animation through JavaScript to open the exit door. In the next chapter, we will add
more elements to our GUI, and we will also create a script to fire bullets.

Creating and Tracking
Objects

In this chapter, we will add more interaction to our game: with special effects
as well as additional GUI elements, including a mini-map. We will also look at
advanced techniques to handle cameras and camera views.

After completing this chapter, we will be able to:

•	 Instantiate objects in real-time
•	 Switch between and display multiple camera views
•	 Define and apply layers to filter content displayed by a camera
•	 Apply special effects (for example, sparks)
•	 Display a real-time map of the current level

Throughout this chapter, we will improve the existing game, and add a script for the
hero to fire bullets, as well as a real time mini-map (for example, with an updated
position of the hero and the items to collect). All material required to complete
this chapter is available for free download on the companion website http://
patrickfelicia.wordpress.com/publications/books/unity-outbreak/.

Creating and Tracking Objects

[68]

In the previous chapters, we have managed to create an environment where the
player could collect items and open the exit door if he/she had the corresponding
keys. In this chapter, we will build upon the skills that we have acquired to improve
the game play: a health bar will be displayed on the screen at all times, the player
will be able to see a top view of the maze that reveals its position as well as the
position of items that can be collected, and the player will also be able to fire a gun.
Before we start creating our level, we will need to download the necessary assets
from the companion website as follows:

1.	 Open the link for the companion website: http://patrickfelicia.
wordpress.com/publications/books/unity-outbreak/.

2.	 Download the material for this chapter by clicking (or right-clicking and
selecting Download to from the contextual menu) on the link package for
chapter4. This will download a file labeled chapter4.unitypackage.

3.	 In Unity3D, create a new folder titled chapter4 inside the Assets folder, and
select this folder (chapter4).

4.	 Import the package we have just downloaded into Unity3D. From Unity3D,
select Assets | Import Package | Custom Package. Browse to the directory
where we saved the package downloaded from the companion website, and
select it.

5.	 This should create a folder titled chapter4_pack within the folder
labeled chapter4.

Finally, we will duplicate the scene we have created in the previous chapter
by saving the current scene (File Save | Scene), and then saving this scene as
chapter4 (File | Save Scene As…). This way, we have preserved the scene
created in Chapter 1, Getting to Know Unity3D, as chapter3, and we can start
a new scene that includes the same content and that is named chapter4.

It is also possible to duplicate the previous scene from the Project view
by selecting the scene labeled chapter3 in the Project view, duplicating
it (Edit | Duplicate), and renaming the new scene chapter4.

Chapter 4

[69]

Displaying the health bar
At present, the player's health is saved in the script collisionDetection; however,
it is not represented on the screen. We will create a new script that displays a health
bar symbolized by a rectangle in the top-left corner of the screen. Its length will be
proportional to the player's health (that is, ranging from 0 to 100 percent), and the
color will also vary accordingly. For example, it will be green when the health is
between 67 percent and 100 percent, orange when the health is between 33 percent
and 67 percent, and red when the health is between 0 percent and 33 percent. These
visual cues will help the player to judge when it is time to look for and collect med
packs. Follow these steps to display the health bar:

1.	 Create a new folder labeled Scripts by selecting Assets | chapter4.
2.	 Create a new script (JavaScript) inside this folder, rename it HealthBar, and

add the following code to it:
private var currHealth : int = 45;
private var currentColor:Texture2D;
public var style:GUIStyle;
public var redTexture:Texture2D;
public var greenTexture:Texture2D;
public var orangeTexture:Texture2D;
public var blackTexture:Texture2D;

°° Line 1 of the previous code shows how the current health value is
stored. It will be used to display health levels onscreen.

°° Line 2 of the previous code shows how the texture will be used when
the health bar is declared.

°° Line 3 of the previous code shows how a style variable is defined
and will be used later on.

°° Lines 4-7 of the previous code show how four Texture2D variables
are created for the health bar.

We can now use each of these textures to draw the health bar. Add the following
code to the script HealthBar:

function OnGUI()
{
 if (currHealth > =67)
currentColor = greenTexture;
 else if (currHealth >= 34)
currentColor = orangeTexture;
 else currentColor = redTexture;
 style.normal.background = blackTexture;

Creating and Tracking Objects

[70]

 GUI.Box(Rect(0,0, 100,20),"", style);
 style.normal.background = currentColor;
 GUI.Box(Rect(0,0, currHealth,20),"",style);
}

•	 Line 1 of the previous code shows how the built-in function OnGUI is defined.
It will be used for the GUITextures.

•	 Lines 3 to 7 of the previous code show how the color of the health bar is
set according to the value of the variable currHealth (that is, red, orange,
or green).

•	 Lines 8 and 9 of the previous code show how we can draw a black rectangle
behind the health bar, so that it can be seen easily against the background.

•	 Line 9 of the previous code shows how the black rectangle is drawn. Its
top-left corner is located at the position (x=0, y=0), and it is 100 pixels
wide and 20 pixels high. No default text is displayed. The color used is
black (that is, the texture blackTexture).

•	 Lines 10 to 11 of the previous code show how we choose the current
color for the health bar (for example, green, orange, or red) and the
health bar is drawn.

We now need to create an empty object and link it to this script to be able to display
the health bar:

1.	 Create an empty object and rename it healthBar.
2.	 Attach this object to the script healthBar that we created previously.
3.	 Locate the Red texture by selecting to Assets | chapter4 | chapter4_pack.
4.	 Select the object healthBar in the Hierarchy view, and drag-and-drop the

Red texture to the right of the variable called redTexture in the component
called Health Bar.

5.	 Repeat the previous two steps for the textures Green, Orange, and Black as
illustrated in the following screenshot:

Chapter 4

[71]

6.	 Play the scene; we should see a health bar in the top-left corner as illustrated
in the following screenshot:

So far, it sounds great. However, we need to modify the script collisionDetection,
so that when a med pack is collected, the health bar is updated accordingly and turns
to green. For this, we need to create a function in the script healthBar that can be
called from the script collisionDetection when we collide with a med pack.

Open the script healthBar and add the following function to it:

public function setHealth(updatedValue:int)
{
 currHealth = updatedValue;
}

•	 In line 1 of the previous code, we create a function that will be accessible
from outside the script. It takes one parameter that is the new value to be
displayed for the player's health.

•	 In line 3 of the previous code, the variable health is updated accordingly.

Open the script collisionDetection and modify the conditional statement linked
to the med pack as follows (that is, add the code that is highlighted):

if (c.gameObject.tag == "medpack")
{
 health = 100;
 GameObject.Find("healthBar").GetComponent(healthBar).
 setHealth(health);
}

•	 Statement 1 of the previous code already existed in this script, but we have
added curly brackets, as two different sets of instructions will be performed
if the med pack is collected

•	 In Statement 4 of the previous code, as in the previous sections, we access
the function setHealth within the script called healthBar, and we pass the
value of the variable health as a parameter

Creating and Tracking Objects

[72]

Play the scene, collect a med pack, and check that the health bar turns to green
(100 percent) as illustrated in the following screenshot:

Displaying a mini-map of the level
In this section, we will create a mini-map of the level to help the player navigate
and anticipate the position of collectable objects or enemies. First, let's create a
top-down view of the maze. To add a different view of the maze, we will create
a new camera and display its content in the top-right corner of the screen as shown
in the following steps:

1.	 Create a new camera (Game Object | Create Other | Camera).
2.	 Rename this camera camera1.
3.	 Rotate this camera about 90 degrees around the x axis, so that its rotation

properties are (x=90, y=0, z=0), and change its position to (x=0, y=50, z=0).
4.	 If we click on this camera in the Hierarchy view, and look at the camera

preview (that is, the rectangle in the bottom-right corner of the Scene view),
we should see our level from above.

We will now add this camera to the main view, so that the user can see this top view
as part of the user interface. This will be done using view ports:

1.	 Click once on the camera labeled camera1.
2.	 Look at the Inspector window and click on the arrow to the left of the camera

component to reveal its properties.
3.	 Change the attribute Normalized View Port Rect, as follows: x=0.75,

y=0.75, w=0.25, and h=0.25.
4.	 Change the attribute Depth to 1.

Chapter 4

[73]

These changes affect the view port, or the area of the screen where
the camera view will be displayed. The view port is defined by a
rectangle and a depth parameter. The x, y, w, and h parameters
correspond to the coordinates of the top-left corner (x and y), the
width of the rectangle (w), and its height (h). However, all four
parameters are expressed as a proportion of the screen (that is, from
0.0 to 1.0). In our example, the rectangle or view port will occupy an
eighth of the surface of the screen. The last parameter (Depth) is set
to 1, because we need it to be drawn on top of the camera used for
the First Person Controller, for which the Depth is 0 (the camera
with the highest depth value will be drawn on top).

5.	 Delete the components Audio Listener, GUILayer, and Flare Layer
(right-click on the component and select Remove Component from
the contextual menu), as we will not need these.

If we play the game, we can see a top-down view displayed in the top-right corner
of the screen. However, some of the information displayed on this screen is not
relevant (for example, GUI text or GUItexture). We need to filter the content
displayed through this camera, and this can be achieved through layers. Unity3D
makes it possible to define and apply layers. For example, some objects can be added
to a layer, and we can then define what layers each camera will display. First, let's
define layers for all active cameras:

1.	 Click on the object camera1 from the Hierarchy window.
2.	 In the Inspector window, click on the drop-down menu to the right of the

Layer label:

3.	 Select the option Add Layer from the drop-down menu.

Creating and Tracking Objects

[74]

4.	 This should open a new window labeled Tag Manager, which is the same
window we used for the objects' tags. This window lists a series of built-in
layers (for example, Builtin Layer 0 or Builtin Layer 7) as well as user layers
(for example, User Layer 8 or User Layer 31).

5.	 Modify the first user layer by clicking on to the right of the label User Layer 8.
6.	 Type topView and press Enter. This should display the label topView to the

right of User Layer 8.

7.	 Select the object camera1 in Hierarchy.
8.	 In the Inspector window, within the component camera, modify the

attribute Culling Mask, so that only the layer labeled topView is selected as
illustrated in the following screenshot: select the option Nothing and then
the option topView. This means that the camera camera1 will only display
objects that belong to this layer.

Next, we will make sure that this top-view camera is always above the player:

1.	 Drag-and-drop the camera camera1 on the First Person Controller
(top-most level; the First Person Controller is located in the folder
or empty object maze) as illustrated in the following screenshot:

2.	 Change its position to (x=0, y=50, z=0).

Chapter 4

[75]

Now that we have set the top-view camera, we can set layers for the objects that we
need to display on the map. We could decide to display the first-person controller
and other objects of interest; however, it would be great to have a simplified
representation of these on the mini-map, and only display dots with corresponding
colors. For example, we could have a red dot for each enemy, orange dots for med
packs and other collectables, and a green dot for the player. An easy way to do this is
to create spheres that will be displayed above these objects and only visible from the
top-view camera. Let's start with the main character:

1.	 Create a new sphere.
2.	 Change its scale to (x=2, y=2, z=2).
3.	 Rename this object dot_fpc.
4.	 Locate the texture labeled Green by selecting Assets | chapter4 | chapter4_

pack and apply this texture to the sphere.
5.	 Drag this object (dot_fpc) on the First Person Controller as illustrated in the

following screenshot:

6.	 Change its position to (x=0, y=0, z=0).
7.	 This will include the sphere as a child of the first-person controller. In other

words, any transformation applied to the first-person controller will be applied
to the sphere. As a result, the sphere will move along with the character.

Next, we need to set the layer for this object, so that it is only displayed on the
top-view camera:

1.	 Click on the object dot_fpc in the Hierarchy window to select it.
2.	 In the Inspector window, click on the drop-down menu to the right of the

Layer label.
3.	 Select the option topView from the list.
4.	 Because we don't want the player to collide with these objects (although

they will be invisible on the top view), we need to remove the colliders from
this sphere. In the Inspector window, right-click on the component Sphere
Collider for this object, and select the option Remove Component from the
contextual menu. This will remove the collider from the sphere.

Creating and Tracking Objects

[76]

Finally, we will need to see this sphere regardless of the light around it and we will
make it self-illuminated. This means that it will glow even in the absence of light.
The following steps highlight what to do:

1.	 Select the object dot_fpc.
2.	 In the Inspector window, open the component Mesh Renderer, and

change its Shader property to Self-Illumin | Diffuse (alternatively,
using the unlit shaders may be more effective for game performance
as they are less CPU/GPU resource-intense).

3.	 Leave the other options as default.

Play the scene; we should see a green dot in the middle of the mini-map.

We will now create the dots for the other objects:

1.	 Create a new sphere, change its scale to (x=2, y=2, z=2), and rename it
dot_medpack.

2.	 Locate the texture labeled Orange by selecting Assets | chapter4 | chapter4_
pack, and apply this texture to the sphere.

3.	 Change the shader property to Self-Illumin/Diffuse.
4.	 Remove the SphereCollider component from this object.
5.	 Drag-and-drop the object (dot_medpack) on the object labeled medpack.
6.	 Change the position of this object to (x=0, y=0, z=0).
7.	 Change its Layer property to topView.
8.	 Repeat the previous steps to create two other spheres named dot_key and

dot_gun for both the objects labeled key and gun.

If we look at the scale properties of the dot for the objects key,
medpack, or gun, we will see that the initial values that we have
entered (x=2, y=2, z=2) have changed. This is because the parent
objects of these dots (that is, the objects key, medpack, and gun) are
scaled down, which means that to preserve the aspect of the dots, and
compensate for the scaling of their parents, Unity3D has adjusted their
scale properties. However, if we combine the scale of the dots and
the scale of the parents, we should find that the overall size of these
dots is (x=2, y=2, z=2). For example, the object dot_gun has the scale
properties (x=10, y=4, z=4), and the scale property of its parent
is (x=0.2, y=0.5, z=0.5). If we combine these two scaling properties
(x=10*0.2, y=4*0.5, z=4 *0.5) you obtain an overall sale of (x=2, y=2, z=2).

Chapter 4

[77]

At this stage, the top-view camera displays the dots that indicate the position of
the player and other items; however, it would also be great to display part of the
environment, including the walls, on the mini-map. We also need to display these
walls in the main view and we can only allocate one layer for this object. The solution
is to create a layer labeled topAndMain that will be displayed by both the main
camera and the top-view camera. Let's create this layer and allocate it to the views:

1.	 Select one of the walls in the scene.
2.	 In the Inspector window, click on the drop-down menu to the right of the

label Layer.
3.	 From the drop-down menu, select the option Add Layer.
4.	 Create a layer, to the right of the label User Layer 9, that we will label

topAndMain.

Once this step is done, as we have seen in the previous sections, we will allocate this
layer to the corresponding objects:

1.	 Select all the walls in the level (or select them one-by-one if needed) as well
as all objects labeled block.

2.	 In the Inspector window, click on the drop-down menu to the right of the
label Layer.

3.	 From the drop-down menu, select topAndMain.
4.	 We may also apply this layer to other objects such as the rocks and platforms

in the water area (that is, the objects labeled bridge).
5.	 Note that by selecting all walls at once, the new layer will be applied to all of

them. Modifying the attributes of several objects at once can help us to save
precious time when designing our game.

We now need to ensure that each camera will display this layer:

1.	 Click on camera1.
2.	 In the Inspector window, change the Culling Mask attribute of its Camera

component so that it includes both the layers topView and topAndMain.

Creating and Tracking Objects

[78]

3.	 Select the camera that is within the First Person Controller and labeled Main
Camera as illustrated in the following screenshot:

4.	 Change the Culling Mask attribute of its Camera component so that it displays
everything but not the topView layer as illustrated in the following screenshot:

Play the scene and check the content displayed in the mini-map as highlighted in the
following screenshot:

Chapter 4

[79]

Creating a gun
Before creating the necessary script for the bullet and collision detection, we will add
a crosshair in the middle of the screen to improve the player's accuracy.

1.	 Create a new GUI texture, and rename it GUITexture_crossHair.
2.	 Change its position to (x=0.5, y=0.5, z=0), so that it is displayed in the middle

of the screen.
3.	 Drag-and-drop the texture labeled Crosshair by selecting Assets | chapter4

| chapter4_pack to the GUITexture component of this object, as illustrated
in the following screenshot:

4.	 This should display the crosshair in the middle of the screen in the game view.
5.	 In the GUITexture component of the object GUITexture_croshair, change

the width and height properties to 128.

Because bullets travel at a considerable speed, it may be difficult to detect when they
collide with other objects. As a result, we will use a technique called ray casting to
aim and fire a bullet. Put simply, using ray casting, we cast a ray from the middle of
the screen forward (or any other position), the same way an infrared light could be
used to aim at a target. When this ray intersects with an object, we can tell whether
the virtual bullet has hit an object.

1.	 Create a new script by selecting Assets | chapter4 | Scripts and rename it
shootBullet.

2.	 Modify the script as described in the following code:
function Update ()
{
 if (Input.GetButtonUp("Fire1"))
 {
 var hit : RaycastHit;
 var ray = Camera.main.ScreenPointToRay (Vector3(Screen.
width/2,Screen.height/2));
 if(Physics.Raycast (ray, hit, 100))
 {
 print("You fired at the "+hit.collider.gameObject.tag);
 }
 }
}

Creating and Tracking Objects

[80]

•	 In line 3 of the previous code, we check whether the Fire1 button is pressed
(that is, the mouse left button).

•	 In line 5 of the previous code, we create a variable of type RaycastHit. It will
be used to identify the object that intersects with the ray. This way, we will
be able to identify the object hit by the bullet and perform actions accordingly
(for example, apply damage).

•	 In line 6 of the previous code, a new ray is created. It starts from the center of
the screen and points forward.

•	 In line 9 of the previous code, the function Physics.Raycast casts a ray
using the three parameters ray, hit, and 100. In our case, the ray previously
created (that is, from the center of the screen) is used; it points forward and
its length is 100 meters. When an object collides with this ray, its properties
can be accessed through the variable hit.

•	 Line 11 of the previous code shows how we can access the tag of the
object that collided with our ray. We access the collider, then the associated
gameObject, and then the tag. Note that we could also access the exact point
where the ray collided with the object using hit.point.

•	 Drag-and-drop this script on the First Person Controller.
•	 Play the scene and target one of the objects present in the scene (for example,

med pack). If we fire at this object, the console should display a message, for
example, You fired at the medpack.

•	 Stop the game and open the editor.

We will fine-tune the gun as follows in order to:

•	 Hide the mouse cursor on screen
•	 Play a sound when a bullet is fired
•	 Display and update the number of ammunitions left
•	 Allow the player to shoot only when there are enough ammunitions

To hide the mouse cursor, we can use the variable Screen.showCursor. This
variable, when set to false, will hide the cursor.

1.	 Open the script shootBullet.
2.	 Add the following line within the function Start:

Screen.showCursor = false;

3.	 Play the scene and check that the mouse cursor is hidden after the first shot.

Chapter 4

[81]

Let's display and update the number of ammunitions left:

1.	 Open the script shootBullets.
2.	 Add the following line at the start of the script:

public var nbBullets:int;

3.	 Add the following code inside the Start function:
nbBullets = 0;

4.	 Modify the function Update as highlighted in the following code:
function Update ()
{
if (Input.GetButtonUp("Fire1"))
 {
 if (nbBullets >= 1)
 {
 var hit : RaycastHit;
 var ray = Camera.main.ScreenPointToRay (Vector3(Screen.
width/2,Screen.height/2));
 if(Physics.Raycast (ray, hit, 100))
 {
 print(hit.collider.gameObject.tag);
 }
 nbBullets--;
 print("nbBullets:"+nbBullets);
 }
 }
}

•	 In line 5 of the previous code, we check that we have at least one bullet to be
able to fire the gun

•	 In line 13 of the previous code, since we have shot a bullet, we decrease the
number of bullets that we currently have

Next, let's display the number of ammunitions (bullets) left on the screen: create a
new GUIText object, rename it GUIText_ammo, change its position to (x=0.01, y=0.25),
and its font size to 20. Finally, we will update the text displayed for the number of
ammunitions left:

1.	 Open the script collisionDetection.
2.	 Add the following line to the start of the script:

private var guiAmmo:GameObject;

Creating and Tracking Objects

[82]

3.	 Add the following line to the function Start:
guiAmmo = GameObject.Find("GUItext_ammo");

4.	 Add the following line of code to the function Update:
if (hasGun) guiAmmo.guiText.text= "Ammo:"+
 GetComponent(shootBullet).nbBullets;

In the previous line, we indirectly accessed the object GUIText_ammo and its text
attribute, and set the initial text displayed.

We now need to make some adjustments: the player should only be able to fire the
gun when he/she has collected the gun. As a result, we need to check whether the
gun has been collected before the crosshair can be displayed or any of the bullets
shot. In the previous chapters, we created a script called collisionDetection.
Amongst other things, this script included a Boolean variable hasGun that was set
to true when the player had collected the gun. We will need to test whether this
variable is set to true before the player can use the gun. First, we will hide some of
the contextual messages and textures when the game is created:

1.	 Create a new script called initGame by selecting Assets |
chapter4 | Scripts.

2.	 Modify the Start function as follows:
function Start ()
{
GameObject.Find("GUIText_ammo").guiText.text="";
GameObject.Find("GUITexture_crosshair").guiTexture.enabled=false;
GameObject.Find("GUIText_displayMessageToUser").guiText.text="";
}

3.	 Add this script to the First Person Controller.
°° Line 3 of the previous code shows that the text that displays the

number of ammunitions left is hidden
°° Line 4 of the previous code shows that the crosshair is hidden
°° Line 5 of the previous code shows that the text used to display

messages to users is hidden

We now need to display the crosshair when the gun has been collected and also
increase the number of bullets available to the player to 40:

1.	 Open the script collisionDetection.

Chapter 4

[83]

2.	 Add the code that is highlighted to the script in the section that detects
whether the gun has been collected:
if (c.gameObject.tag == "gun")
{
hasGun = true; changeGUITexture(true, "gun");
GameObject.Find("GUITexture_crosshair").guiTexture.enabled=
 true;
GetComponent(shootBullet).nbBullets = 40;
}

•	 Lines 1 to 3 of the previous code were already in the script
•	 In line 4 of the previous code, the texture used for the crosshair is activated
•	 In line 5 of the previous code, we access the script shootBullet and set the

variable nbBullets to 40

Finally, we will add sound whenever the player fires a shot as shown in the
following steps:

1.	 Open the URL http://freesound.org/browse/tags/gun/.
2.	 Select a sound of your choice for the gunshot.
3.	 Once you click on the name of the sound, you will be redirected to a

new page with more details on the sound, and a button labeled Login
to download. Click on this button, and register as highlighted in the
following screenshot:

4.	 Read the terms and conditions.
5.	 After registering, you will receive an e-mail to activate your account.
6.	 Check your e-mail and activate your account accordingly.
7.	 Log in using your newly created account.
8.	 Open the page http://freesound.org/browse/tags/gun/.

Creating and Tracking Objects

[84]

9.	 Re-enter your login details.
10.	 Click on the button labeled Download.
11.	 Once the sound has been downloaded, import it in Unity3D

(Assets | Import New Asset).
12.	 Rename this file gunshot.

Once we have imported this sound, we need to modify the script shootBullet so
that a sound is played whenever a bullet is shot:

1.	 Open the script shootBullet.
2.	 Add the following line at the start of the script to declare a variable for the

sound to be played:
public var fireSound:AudioClip;

3.	 Add the following code highlighted within the conditional statement that
tests if we have enough bullets to fire the gun; if so, the gunshot sound can be
played accordingly:
If (nbBullets >= 1)
{
audio.clip = fireSound;
audio.Play();

4.	 Select the object First Person Controller in the Hierarchy window.
5.	 Locate the component Shoot Bullet for this object in the Inspector window.
6.	 Drag-and-drop the sound gunShot to the variable FireSound within the

component Shoot Bullet as described in the following screenshot:

7.	 Test the scene and check that the sound is played when we fire the gun.

At this stage, we can recognize what object we shoot at; however, it would be great
to add a visual effect that simulates the impact of our bullet. This will be done using
a particle system. Using the object hit, we will detect the location of the impact and
generate a particle emitter at this particular position.

Chapter 4

[85]

First, let's modify the script shootBullet to include variables for the particles:

1.	 Include the following line at the start of the script shootBullet:
public var sparks:GameObject;

2.	 The variable defined in the previous line will be used as a container.
It will make it possible to drag-and-drop the particle emitter to be used
on impact. This particle emitter will be a prefab.

3.	 In the script shootBullet, add the following lines within the code that
tests whether the ray casted from the middle of the screen has intersected
with another object (that is, just after the line print ("You fired at the
"+hit.collider.gameObject.tag):
var spark:GameObject = Instantiate(sparks, hit.point,
 Quaternion.identity);

4.	 In the previous code, we created a new spark based on the prefab mentioned
earlier. The spark will be instantiated at the exact position where the ray has
intersected with the object.

Next, we need to identify the prefab that will be used in this script (that is,
instantiated). Thankfully, Unity3D includes built-in prefabs for particles, including a
prefab to simulate sparks. However, this prefab needs to be imported as follows:

1.	 Select: Assets | Import Package | Particles. This should show a window
labeled Importing package. As per previous sections, it includes all built-in
particles (including legacy particles) that can be used in Unity3D.

Creating and Tracking Objects

[86]

2.	 Click on Import.
3.	 This will create a new folder labeled Particles in Assets | Standard Assets,

as illustrated in the following screenshot:

4.	 If we select: Assets | Standard Assets | Particles | Misc, we can find a
prefab called Sparks. We will use this prefab to create the sparks.

5.	 Select the prefab Sparks.
6.	 In the Inspector window, open the Particle Animator component for this

object, and check the box for the option Autodestruct.

7.	 Drag-and-drop the Spark prefab that we have identified previously to the
variable called Sparks for the script shootBullet, which is a component of
the First Person Controller object as illustrated on the following screenshot:

Test the scene; fire shots at objects, and check whether sparks appear at the point
of impact.

Chapter 4

[87]

Allowing for repeated shots
Now that we have managed to create a gun that shoots a bullet every time the player
presses the left mouse button, it would be great to add an automatic feature to this
gun, so that the player can fire the gun repeatedly by just holding the left mouse
button down. This feature would be useful when many enemies surround the
player, although it will also mean that the ammunitions will diminish faster. Let's
implement this feature:

Add the following two lines to the start of the script shootBullet:

public var timeToReload:float = 0.2f;
public var timeForNextShot:float = 0.0;

In the previous code, we defined and initialized two variables. The first variable
timeToReload is the time it takes to load the next bullet. Effectively, it will be the
time between two consecutive shots. The second variable timeForNextShot is the
time when the player will be able to fire the gun again (effectively, it will be the
current time added to the time it takes to reload the gun).

Next, we will change the way the input is handled by replacing the line that starts
with if (Input.GetButtonDown("Fire1") with the following code:

if (Input.GetButton("Fire1") && Time.time >= timeForNextShot)

In the previous code, we checked if the Fire1 button is held down, and if the next
bullet has been loaded. Note that while the previous code Input.GetButtonDown is
checking whether the Fire1 button has been pressed, the code Input.GetButton
checks whether the Fire1 button is held down. Finally, we need to update the
variable timeForNextShot accordingly, as highlighted in the following code:

function Update ()
{
 if (Input.GetButton("Fire1") && Time.time >= timeForNextShot)
 {
 if (nbBullets >= 1)
 {
 audio.clip = fireSound;
 audio.Play();
 var hit : RaycastHit;
 var ray = Camera.main.ScreenPointToRay(Vector3 (Screen.width/2,
Screen.height/2));
 if (Physics.Raycast(ray, hit, 100))
 {
 print ("You fired at the "+hit.collider.gameObject.tag);

Creating and Tracking Objects

[88]

 var spark : GameObject = Instantiate (sparks, hit.point,
Quaternion.identity);

 }
 nbBullets --;
 print("nbBullets"+nbBullets);
 }
 timeForNextShot = Time.time + timeToReload;

 }
}

Summary
In this chapter, you have learned to add more interaction into our game. First, we
learned how to create a health bar and update its value and color based on the health
of the player. Then, we looked into the creation of a top-down mini-map of the level.
For this we used cameras, camera viewports, and layers, so that only specific objects
are displayed on the map. We also added self-illuminated properties to all dots
representing the objects on the map. After finalizing our interface, we created a gun,
thanks to ray-casting, a technique used to detect objects within a specific range. To
make this gun more precise and realistic, we added a crosshair that would only be
displayed when the player has collected the gun, and sparks at the point of impact
of the bullet. In the next chapter, we will add more interactivity to our game by
including enemies with some levels of intelligence, and by applying damage to both
the player and the enemies.

Bringing Your Game to Life
with AI and Animations

In this chapter, we will bring the game to life by animating objects and characters,
and by giving opponents some levels of artificial intelligence to challenge the player.
We will also learn how to create animations in Unity3D using built-in functionalities
(for example, Mecanim).

After completing this chapter, we will be able to:

•	 Understand how to animate objects and create custom animation based on
Unity3D's built-in animations

•	 Include these animations in the game and control them through scripting
•	 Use Unity3D's built-in Mecanim system to animate existing characters

After going through these principles, we will be completing the tasks to enhance the
maze game and the gameplay. We will apply animations to characters and trigger
these in particular situations. Throughout this section, we will improve the gameplay
by allowing NPCs to follow the player where he/she is nearby (behavior based on
distance), and attack the user when he/she is within reach. All material required
to complete this chapter is available for free download on the companion website:
http://patrickfelicia.wordpress.com/publications/books/unity-outbreak/.

The pack for this chapter includes some great models and animations
that were provided by the company Mixamo to enhance the quality
of our final game. The characters were animated using Mixamo's easy
online sequences and animation building tools. For more information
on Mixamo and its easy-to-use 3D character rigging and animation
tools, you can visit http://www.mixamo.com.

Bringing Your Game to Life with AI and Animations

[90]

Before we start creating our level, we will need to rename our scene and download
the necessary assets from the companion website as follows:

1.	 Duplicate the scene we have created in the previous chapter by saving the
current scene (File Save | Scene), and then saving this scene as chapter5
(File | Save Scene As…).

2.	 Open the link for the companion website: http://patrickfelicia.
wordpress.com/publications/books/unity-outbreak/.

3.	 Click on the link for the chapter5 pack to download this file.
4.	 In Unity3D, create a new folder, chapter5, inside the Assets folder and

select this folder (that is, chapter5).
5.	 From Unity, select Assets | Import Package | Custom Package, and import

the package you have just downloaded.
6.	 This should create a folder, chapter5_pack, within the folder

labeled chapter5.

Importing and configuring the 3D
character
We will start by inserting and configuring the zombie character in the scene as
shown in the following steps:

1.	 Open the Unity Assets Store window (Window | Asset Store).
2.	 In the Search field located in the top-right corner, type the text zombie.
3.	 Click on the search result labeled Zombie Character Pack, and then click on

the button labeled Import.
4.	 In the new window entitled Importing package, uncheck the last box for the

low-resolution zombie character and then click on Import.
5.	 This will import the high-resolution zombie character inside our project

and create a corresponding folder labeled ZombieCharacterPack inside the
Assets folder.

6.	 Locate the prefab zombie_hires by navigating to Assets |
ZombieCharacterPack.

7.	 Select this prefab and open the Inspector window, if it is not open yet.
8.	 Click on the Rig tag, set the animation type to humanoid, and leave the other

options as default.

Chapter 5

[91]

9.	 Click on the Apply button and then click on the Configure button; a pop-up
window will appear: click on Save.

10.	 In the new window, select: Mapping | Automap, as shown in the
following screenshot:

11.	 After this step, if we check the Hierarchy window, we should see a hierarchy
of bones for this character. Select Pose | Enforce T-Pose as shown in the
following screenshot:

12.	 Click on the Muscles tab and then click on Apply in the new pop-up window.
13.	 The Muscles tab makes it possible to apply constraints on our character.
14.	 Check whether the mapping is correct by moving some of the sliders

and ensuring that the character is represented properly. After this check,
click on Done to go back to the previous window.

Animating the character for the game
Once we have applied these settings to the character, we will now use it for
our scene.

1.	 Drag-and-drop the prefab labeled zombie_hires by navigating to Assets |
ZombieCharacterPack to the scene, change its position to (x=0, y =0, z=0),
and add a collider to the character.

2.	 Select: Component | Physics | Capsule Collider.

Bringing Your Game to Life with AI and Animations

[92]

3.	 Set the center position of this collider to (x=0, y=0.7, z=0), the radius to 0.5,
the height to 2, and leave the other options as default, as illustrated in the
following screenshot:

4.	 Select: Assets | chapter5 | chapter5_pack; you will see that it includes
several animations, including Zombie@idle, Zombie@walkForward,
Zombie@attack, Zombie@hit, and Zombie@dead.

We will now create the necessary animation for our character.

Click once on the object zombie_hires in the Hierarchy window. We should see
that it includes a component called Animator. This component is related to the
animation of the character through Mecanim. You will also notice an empty slot for
an Animator Controller. This controller will be created in the next section so that we
can animate the character and control its different states, using a state machine.

Let's create an Animator Controller that will be used for this character:

1.	 From the project folder, select the chapter5 folder, then select Create
| Animator Controller in the Project window. This should create a new
Animator Controller labeled New Animator Controller in the folder
chapter5.

2.	 Rename this controller zombieController.
3.	 Select the object labeled zombie_hires in the Hierarchy window.
4.	 Locate the Animator Controller that we have just created by navigating to

Assets | chapter5 (zombieController), drag-and-drop it to the empty slot to
the right of the attribute controller in the Animator component of the zombie
character, and check that the options Apply Root Motion and Animate
Physics are selected. Our character is now ready to receive the animations.

5.	 Open the Animator window (Window | Animator). This window is
employed to display and manage the different states of our character. Since
no animation is linked to the character, the default state is Any State.

6.	 Select the object labeled zombie_hires in the Hierarchy window.

Chapter 5

[93]

7.	 Rearrange the windows in our project so that we can see both the state
machine window and the character in the Scene view: we can drag the tab
labeled Scene for the Scene view at the bottom of the Animator window, so
that both windows can be seen simultaneously.

We will now apply our first animation to the character:

1.	 Locate the prefab Zombie@idle by navigating to Assets | chapter5|
chapter5_pack.

2.	 Click once on this prefab, and in the Inspector window, click the Rig tab.
3.	 In the new window, select the option Humanoid for the attribute Animation

Type and click on Apply.
4.	 Click on the Animations tab, and then click on the label idle, this will

provide information on the idle clip.
5.	 Scroll down the window, check the box for the attribute Loop Pose, and

click on Apply to apply this change (you will need to scroll down to locate
this button).

6.	 In the Project view, click on the arrow located to the left (or right, depending
on how much we have zoomed-in within this window) of the prefab Zombie@
idle; it will reveal items included in this prefab, including an animation
called idle, symbolized by a gray box with a white triangle.

7.	 Make sure that the Animator window is active and drag this animation (idle)
to the Animator window.

8.	 This will create an idle state, and this state will be colored in orange, which
means that it is the default state for our character. Rename this state Idle
(upper case I) using the Inspector.

9.	 Play the scene and check that the character is in an idle state.
10.	 Repeat steps 1-9 for the prefab Zombie@walkForward and create a state called

WalkForward. To test the second animation, we can temporarily set the state
walkForward to be the default state by right-clicking on the walkForward
state in the Animator window, and selecting Set As Default. Once we have
tested this animation, set the state Idle as the default state.

While the zombie is animated properly, you may notice that the camera on the
First Person Controller might be too high. You will address this by changing the
height of the camera so that it is at eye-level. In the Hierarchy view, select the object
Main Camera that is located with the object First Person Controller and change its
position to (x=0, y=0.5, z=0).

Bringing Your Game to Life with AI and Animations

[94]

We now have two animations. At present, the character is in the Idle state, and we
need to define triggers or conditions for the character to start or stop walking toward
the player. In this game, we will have enemies with different degrees of intelligence.
This first type will follow the user when it sees the user, is close to the user, or is
being attacked by the user.

The Animator window will help to create animations and
to apply transition conditions and blending between them
so that transitions between each animation are smoother. To
move around this window, we can hold the Alt key while
simultaneously dragging-and-dropping the mouse. We can also
select states by clicking on them or defining a selection area
(drag-and-drop the mouse to define the area). If needed, it is also
possible to maximize this window using the icon located at its
top-right corner.

Creating parameters and transitions
First, let's create transitions. Open the Animator window, right-click on the state
labeled Idle, and select the option Make Transition from the contextual menu.
This will create an arrow that symbolizes the transition from this state to another
state. While this arrow is visible, click on the state labeled WalkForward. This will
create a transition between the states WalkForward and Idle as illustrated in the
following screenshot:

WalkForward

Idle

Chapter 5

[95]

Repeat the last step to create a transition between the state WalkForward and Idle:
right-click on the state labeled WalkForward, select the option Make Transition
from the contextual menu, and click on the state labeled Idle.

WalkForward

Idle

Now that these transitions have been defined, we will need to specify how
the animations will change from one state to the other. This will be achieved
using parameters. In the Animator window, click on the + button located at the
bottom-right corner of the window, as indicated in the following screenshot:

Parameters +

Doing so will display a contextual menu, from which we can choose the type of the
parameter. Select the option Bool to create a Boolean parameter. A new window
should now appear with a default name for our new parameter as illustrated in
the following screenshot: change the name of the parameter to walking.

Bringing Your Game to Life with AI and Animations

[96]

Now that the parameter has been defined, we can start defining transitions based
on this parameter. Let's start with the first transition from the Idle state to the
Walkforward state:

1.	 Select the transition from the Idle state to the Walkforward state (that is,
click on the corresponding transition in the Animator window).

2.	 If we look at the Inspector window, we can see that this object has several
components, including Transitions and Conditions. Let's focus on the
Conditions component for the time being. We can see that the condition for
the transition is based on a parameter called ExitTime and that the value is
0.98. This means that the transition will occur when the current animation
has reached 98 percent completion. However, we would like to use the
parameter labeled walking instead.

3.	 Click on the parameter ExitTime, this should display other parameters that
we can use for this transition.

4.	 Select walking from the contextual menu and make sure that the condition is
set to true as shown in the following screenshot:

The process will be similar for the other transition (that is, from WalkForward to
Idle), except that the condition for the transition for the parameter walking will
be false: select the second transition (WalkForward to Idle) and set the transition
condition of walking to false.

To check that the transitions are working, we can do the following:

1.	 Play the scene and look at the Scene view (not the Game view).
2.	 In the Animator window, change the parameter walking to true by checking

the corresponding box, as highlighted in the following screenshot:

Chapter 5

[97]

3.	 Check that the zombie character starts walking; click on this box again to set
the variable walking to false, check that the zombie stops walking, and stop
the Play mode (Ctrl + P).

Adding basic AI to enemies
In the previous section, we have managed to set transitions for the animations and
the state of the zombie from Idle to walking. To add some challenge to the game, we
will equip this enemy with some AI and create a script that changes the state of the
enemy from Idle to WalkForward whenever it sees the player. First, let's allocate the
predefined-tag player to First Person Controller: select First Person Controller from
the Hierarchy window, and in the Inspector window, click on the drop-down menu
to the right of the label Tag and select the tag Player.

Then, we can start creating a script that will set the direction of the zombie toward
the player. Create a folder labeled Scripts inside the folder Assets | chapter5,
create a new script, rename it controlZombie, and add the following code to the
start of the script:

public var walking:boolean = false;
public var anim:Animator;
public var currentBaseState:AnimatorStateInfo;	
public var walkForwardState:int = Animator.StringToHash("Base
 Layer.WalkForward");
public var idleState:int = Animator.StringToHash("Base
 Layer.Idle");
private var playerTransform:Transform;
private var hit:RaycastHit;

•	 In statement 1 of the previous code, a Boolean value is created. It is linked to
the parameter used for the animation in the Animator window.

•	 In statement 2 of the previous code, we define an Animator object that will
be used to manage the animator component of the zombie character.

•	 In statement 3 of the previous code, we create an AnimatorStateInfo
variable that will be used to determine the current state of the animation
(for example, Idle or WalkForward).

•	 In statement 4 of the previous code, we create a variable, walkForwardState,
that will represent the state WalkForward previously defined in the Animator
window. We use the method Animator.StringToHash to convert this state
initially from a string to an integer that can then be used to monitor the
active state.

Bringing Your Game to Life with AI and Animations

[98]

•	 In statement 5 of the previous code, similar to the previous comments, a
variable is created for the state Idle.

•	 In statement 6 of the previous code, we create a variable that will be used to
detect the position of the player.

•	 In statement 7 of the previous code, we create a ray that will be employed
later on to detect the player.

Next, let's add the following function to the script:

function Start ()
{
 anim = GetComponent(Animator);
 playerTransform = GameObject.FindWithTag("Player").transform;
}

In line 3 of the previous code, we initialize the variable anim with the Animator
component linked to this GameObject.

We can then add the following lines of code:

function Update ()
{
 currentBaseState = anim.GetCurrentAnimatorStateInfo(0);
 gameObject.transform.LookAt(playerTransform);
}

•	 In line 3 of the previous code, we determine the current state for
our animation.

•	 In line 4 of the previous code, the transform component of the current
game object is oriented so that it is looking at the First Person Controller.
Therefore, when the zombie is walking, it will follow the player.

Save this script, and drag-and-drop it to the character labeled zombie_hires in the
Hierarchy window.

As we have seen previously, we will need to manage several states through our
script, including the states Idle and WalkForward. Let's add the following code in
the Update function:

switch (currentBaseState.nameHash)
{
case idleState:
break;

case walkForwardState:

Chapter 5

[99]

break;

default:
break;
}

•	 In line 1 of the previous code, depending on the current state, we will switch
to a different set of instructions

•	 All code related to the state Idle will be included within lines 3-4 of the
previous code

•	 All code related to the state WalkForward will be included within lines 6-7

If we play the scene, we may notice that the zombie rotates around the x and z axes
when near the player; its y position also changes over time. To correct this issue, let's
add the following code at the end of the function Update:

transform.position.y = -0.5;
transform.rotation.x = 0.0;
transform.rotation.z = 0.0;

We now need to detect whether the zombie can see the player, or detect its presence
within a radius of two meters (that is, the zombie would hear the player if he/she
is within two meters). This can be achieved using two techniques: by calculating
the distance between the zombie and the player, and by casting a ray from the
zombie and detecting whether the player is in front of the zombie. If this is the case,
the zombie will start walking toward the player. We need to calculate the distance
between the player and the zombie by adding the following code to the script,
controlZombie, at the start of the function Update, before the switch statement:

var distance:float = Vector3.Distance(transform.position,
 playerTransform.position);

In the previous code, we create a variable labeled distance and initialize it with
the distance between the player and the zombie. This is achieved using the built-in
function Vector3.Distance.

Now that the distance is calculated (and updated in every frame), we can implement
the code that will serve to detect whether the player is near or in front of the zombie.

Bringing Your Game to Life with AI and Animations

[100]

Open the script entitled controlZombie, and add the following lines to the function
Update within the block of instructions for the Idle state, so that it looks as follows:

case idleState:
 if ((Physics.Raycast
 (Vector3(transform.position.x,transform.position.y+.5,transform.po
 sition.z), transform.forward, hit,40) &&
 hit.collider.gameObject.tag == "Player") || distance <2.0f)
 {
 anim.SetBool("walking",true);
 }
break;

In the previous lines of code, a ray or ray cast is created. It is casted forward from
the zombie, 0.5 meters above the ground and over 40 meters. Thanks to the variable
hit, we read the tag of the object that is colliding with our ray and check whether
this object is the player. If this is the case, the parameter walking is set to true.
Effectively, this should trigger a transition to the state walking, as we have defined
previously, so that the zombie starts walking toward the player.

Initially, our code was written so that the zombie rotated around to face the player,
even in the Idle state (using the built-in function LookAt). However, we need to
modify this feature so that the zombie only turns around to face the player while it
is following the player, otherwise, the player will always be in sight and the zombie
will always see him/her, even in the Idle state. We can achieve this by deleting
the code highlighted in the following code snippet (from the start of the function
Update), and adding it to the code for the state WalkForward:

case walkForwardState:
 transform.LookAt(playerTransform);
 break;

In the previous lines, we checked whether the zombie is walking forward, and if this
is the case, the zombie will rotate in order to look at and follow the player. Test our
code by playing the scene and either moving within two meters of the zombie or in
front of the zombie.

Chapter 5

[101]

Sending messages to alert other close
enemies
Now that we have created a relatively simple behavior for each enemy, we can
add an additional AI feature. We will modify our code so that if there are several
enemies in a similar location, those that have not detected the player will be alerted
of its presence by other enemies, and also start walking toward the player. First,
we will create a tag for each enemy. This will make it easier to identify any enemy
within range:

1.	 Select the object zombie_hires from the Hierarchy window; in the Inspector
window, click the on the drop-down menu to the right of the label Tag and
click on the option Add Tag.

2.	 Select the line from the last tag element (for example, Element 7), and type
the word zombie. This will create a new tag; once this is done, select our
object (zombie_hires).

3.	 In the Inspector window, click on the drop-down menu to the right of the
label Tag.

4.	 Select the label zombie that we have just created.

Next, we will create a function that will be accessible from other objects and that will
change the value of the parameter walking for the zombie animation. By changing
this parameter to true, we will be able to change the state of any zombie, and in our
case, make them walk toward the player. Let's add the following code to the script
controlZombie:

function setWalking(newWalkingValue: boolean)
{
anim.SetBool("walking",newWalkingValue);
}

In the previous code, we declare a function labeled setWalking. This function takes
one parameter (newWalkingValue) that will be used to trigger a transition between
the states Idle and WalkForward. We set the value of the parameter walking in the
animation for the zombie using the built-in function anim.SetBool.

Bringing Your Game to Life with AI and Animations

[102]

Then, we need to detect whether there are any zombies around the one that has
detected the player. We will achieve this by adding the following code within the
function Update in the script controlZombie, within the code dedicated to the state
walkForward, as highlighted in the following code snippet:

case:walkForwardState
 var zombies:GameObject [] = GameObject.FindGameObjectsWithTag("zomb
ie");
 for (var zombie:GameObject in zombies)
 {
 if (Vector3.Distance(transform.position, zombie.transform.
position) < 8.0f)
zombie.GetComponent(controlZombie).setWalking(true);
 }
 break;

In the previous code, we create an array of objects. This array will be populated with
all zombies' objects in our game. We loop through this array, and assess the distance
between each of these objects and the current zombie. Any zombie within a distance
of 8 meters from the zombie that has detected the player will also start to walk
toward the player. To test this behavior, we could do the following:

1.	 Duplicate the zombie character twice to obtain a total of 3. Change the
position of the two new zombies to (x=-2, y=-0.5, z=0) and (x=-4, y=-0.5, z=0),
and rename them zombie_hires2 and zombie_hires3, respectively.

2.	 Rotate the first two instances so that they look away from the player.
3.	 Rotate the third instance so that it is facing the player.
4.	 Play the scene and move the player so that it is in front of the third instance

(that is, so that it can be seen). We should see that this zombie starts to follow
the player as well as the other zombies, although these are not directly facing
the player.

The script could be improved by also checking that the message is sent to an enemy
only if it is not already walking toward the player.

Note that the method FindGameOBjectsWithTag can become
computer intensive if our game includes many zombie characters.
We may instead detect other objects using the built-in method
Physics.OverlapSphere that makes it possible to detect
colliders within a specific radius.

Once we have checked that this behavior works, we can delete or deactivate the two
copies of the zombie.

Chapter 5

[103]

Creating additional states
At this stage, we have created an interesting, yet simple, artificial behavior, whereby
the enemies present in the maze will, if they see the character, or are within a specific
radius, walk toward the player and alert all other enemies in this area. We will now
include an additional state that we will call Attack, which will be triggered when
these enemies are within reach of the player:

1.	 Locate the prefab Zombie@attack by navigating to Assets | chapter5|
chapter5_pack.

2.	 Click once on this prefab, and in the Inspector window, click on the Rig tab.
3.	 In the new window, select the option Humanoid for the attribute Animation

Type and click on Apply.
4.	 Click on the Animations tab, and then click on the label attack, this will

provide information on the attack clip.
5.	 Scroll down the window, check the box for the attribute Loop Pose and click

on Apply to apply this change.
6.	 In the Project view, click on the arrow located to the left of the prefab

Zombie@attack it will reveal items included in this prefab, including an
animation called attack symbolized by gray box with a white triangle.

7.	 Check that the Animator window is open and drag the animation attack to
the Animator window.

8.	 This will create an attack state; rename this state Attack (upper case A) using
the Inspector.

9.	 Check that the idle state is the default state

Once this is done, we will create transitions between these states:

1.	 Create a transition from the state WalkForward to the state Attack.
2.	 Create a transition from the state Idle to the state Attack.
3.	 Create a new Boolean parameter called withinReach.
4.	 Select the transition between the states WalkForward and Attack.
5.	 In the Inspector window, set the condition for the transition to

withinReach = true, and leave other attributes as default.
6.	 Select the transition between the states Idle and Attack.
7.	 In the Inspector window, set the condition for the transition to

withinReach = true, and leave other attributes as default.

Bringing Your Game to Life with AI and Animations

[104]

8.	 Create a transition between the state Attack and the state WalkForward.
9.	 Set the conditions for the transition to withinReach = false and ExitTime

= 0.70 (to include an additional condition we can click on the + button in the
same window).

The Animator window should now include three states and two transitions to the
state Attack as highlighted in the following screenshot:

WalkForward

Attack

Idle

We have set up the animations in the Animator window by defining states
and transitions conditions; we now need to trigger these states within the script.
Ideally, we would like the attack to be triggered when the enemies are within
approximately 1.5 meter from the player. Let's modify the controlZombie script
to implement this behavior:

Open the script controlZombie and add the following lines of code to the function
Update just after the code that calculates the distance:

if (distance < 1.5f) anim.SetBool("withinReach",true);
 else anim.SetBool("withinReach",false);

The variable distance has already been defined in this script to detect the distance
between the player and the enemies. In the previous code, we use this variable to
determine whether the player is within reach, so that the attack can be perpetrated.
If the distance is less than 1.5 meters, the parameter withinReach is set to true
(and the state should change accordingly to Attack). If the distance is more than
1.5 meters, then the animator parameter withinReach is set to false, and the state
should change accordingly to WalkForward.

Chapter 5

[105]

Finally, we will create two additional states: a state when a bullet hits an enemy
and a state when the enemy dies following significant injuries. Following the steps
and instructions described previously, create a state called Hit, based on the prefab
Zombie@hit. We don't need to loop this animation.

We then need to create transitions to the state Hit from the states WalkForward, Idle,
or Attack:

1.	 Create three transitions: from the state WalkForward to the state Hit, from
the state Idle to the state Hit, and from the state Attack to the state Hit.

2.	 Create a new Boolean parameter called hit, select the transition from the
state Idle to the state Hit, and set the condition for the transition to hit =
true, and leave the other attributes as default.

3.	 Repeat the last step for the transition from the state WalkForward to Hit, and
from the state Attack to Hit.

4.	 Finally, create a transition between the state Hit and the state WalkForward,
and set the transition condition to Exit Time = 0.9. In this case, when the
enemy is hit, it will start walking toward the user, regardless of its previous
state (that is, idle, walking, or attack).

The following figure highlights the new state and transitions that we have just created:

WalkForward Hit

AttackIdle

Bringing Your Game to Life with AI and Animations

[106]

Finally, to be able to trigger these states, we will need to modify the script that fires
bullets. If the bullet hits the enemy, then its state will change accordingly. Open the
script shootBullet and add the following code within the function Update, inside
the conditional statement that starts with if(Physics.Raycast (ray, hit, 100)).

if (hit.collider.gameObject.tag == "zombie")
{
 hit.collider.gameObject.GetComponent(Animator).SetBool("hit",true)
 ;
}

•	 In statement 1 of the previous code, we check whether the bullet has collided
with an enemy

•	 In statement 2 of the previous code, if this is the case, the Boolean parameter
labeled hit is set to true for the corresponding animator

We have created all necessary transitions; if we test our scene, we can see that
the enemy, when hit by a bullet, transitions indefinitely between the states Hit
and WalkForward. This is because the Boolean variable hit is set to true all the
time, causing the transition from the state WalkForward to the state Hit to occur
indefinitely. To fix this, we need to set the variable hit to false once the transition
has occurred from the state Idle, Attack, or WalkForward to the state Hit. This can
be achieved by setting the variable hit to false when the enemy is in the state Hit.
We can do this through script by adding the following line at the start of the script
controlZombie:

var HitState:int = Animator.StringToHash("Base Layer.Hit");

The previous line of code declares a state for the animator, so that we can
monitor the state Hit. Let's add the following lines in the function Update,
within the switch structure:

case hitState:
 anim.SetBool("hit",false);
 break;

•	 In line 1 of the previous code, we test whether the enemy is in the state
called Hit

•	 In line 3 of the previous code, if this is the case, we set the Boolean variable
hit to false

Test the game, shoot at the zombie in the scene, and check that it behaves as expected
(that is, following the player after being hit).

Chapter 5

[107]

We now need to add a final state to our enemy, the state called Dead. The enemy will
enter this state when it has sustained significant injuries. The zombie should not be
able to transition to any other states from this state.

1.	 Following the steps described in the previous pages, create a state called Dead,
based on the prefab Zombie@dead. This animation does not need to loop.

2.	 Create a new Boolean parameter called die.
3.	 Create a transition from the state Hit to the state Dead.
4.	 Set the condition for this transition to die = true.

The state machine should now look as illustrated in the following screenshot
(the new transition and state have been highlighted with a circle).

AttackIdle

WalkForward Hit

Dead

We will manage this state through JavaScript and create the necessary code
to increase damage to the enemy when it has been hit. Add the following two
lines to the start of the script controlZombie:

public var damage:int;
public var DeadState:int = Animator.StringToHash("Base
 Layer.Dead");

•	 In statement 1 of the previous code, we declare a new integer variable called
damage, that will be used to keep track of the damage inflicted to the enemy

•	 In statement 2 of the previous code, we declare a new state for the animator
so that we can detect when the enemy is in the Dead state

Also, add the following line within the Start function to initialize the
variable damage:

damage = 0;

Bringing Your Game to Life with AI and Animations

[108]

Next, we need to apply damage to the zombie, every time it is being hit by a bullet.
This can be done by adding the following code in the function Update within the
switch structure:

case hitState:
 if (anim.GetBool("hit")) damage++;
 if (damage >=5) anim.SetBool("die",true);
 anim.SetBool("hit",false);
 break;

•	 In line 3 of the previous code, if the enemy has just been hit, then the damage
is increased

•	 In line 4 of the previous code, if this damage is 5 or more, then the Boolean
parameter die for the animation is set to true

•	 In line 5 of the previous code, the parameter hit is set to false so that the
damage is not increased continuously while the animation is played

Last but not least, we need to assess the damage caused by the enemy on the player
every time it is attacking the player. Add the following code to the start of the script
controlZombie:

var attackState:int = Animator.StringToHash("Base Layer.Attack");

In the previous line of code, we declared a new state for the animator, so that we can
detect when the enemy is in the state Attack.

Now that we have managed to create the corresponding state, we need to decrease
the player's health when it is attacked.

First, let's create a new function in the script healthBar to decrease the player's health:

function decreaseHealth (increment : int)
{
 currHealth -= increment;
{

Then, let's create a new function in the script controlZombie:

function applyDamage()
{
GameObject.Find("healthBar").GetComponent(healthBar).SendMessage("
 decreaseHealth",5);
yield WaitForSeconds(3);
}

Chapter 5

[109]

Finally, we can add the following line of code in the script controlZombie in the
function Update, within the switch structure:

case attackState:
 applyDamage();
 anim.SetBool("withinReach",false);
 break;

•	 In line 1 of the previous code, we check whether the enemy is in the state
called Attack.

•	 In line 2 of the previous code, if this is the case, we decrease the health of the
player by 5. This is done by calling the function decreaseHealth that is within
the script healthBar. This function, as we have seen previously, takes one
parameter that is the amount by which the health should be decreased.

Test the scene and check that the health of the character decreases as enemies are
attacking the player. As we test the scene, we will notice that the health of the player
drops to 0 after the first attack, whereas it should decrease progressively by 5 after
each attack. This is because the health is decreased constantly as the attack animation
is being played. As a result, we need to create a Boolean variable that will help us to
ensure that the energy is decreased only once per attack.

Add the following line at the start of the script controlZombie:

public var hasAttacked:boolean = false;

Add the following code at the start of the code dedicated to the state
walkForwardState as highlighted in the following code snippet:

case walkForwardState:
 hasAttacked = false;

Modify the code related to the state Attack as highlighted in the following
code snippet:

case attackState:
 if (!hasAttacked)
 {
 applyDamage();
 hasAttacked = true;
 }
 anim.SetBool("withinReach",false);
 break;

Bringing Your Game to Life with AI and Animations

[110]

Finally, we need to destroy the zombie a few seconds after it has entered the state
Dead. This can be done by adding the following code in the function Update within
the switch structure:

case deadState:
 Destroy(gameObject, 3.0);
 break;

•	 In line 1 of the previous code, we check whether the enemy has entered the
Dead state

•	 In line 2 of the previous code, the zombie is destroyed after 3 seconds

Test the scene and check that the health of the player decreases progressively
after each attack. Also, shoot at the zombie more than five times, and check that it
disappears within three seconds.

Once this is working, we will create a prefab from this enemy so that it can be
duplicated later:

1.	 Select the folder Assets | chapter5 in the Project window.
2.	 From the Project window, select Create | Prefab. This will create a

new prefab.
3.	 Drag-and-drop the object labeled zombie_hires from the Hierarchy window

on this prefab.
4.	 Rename this prefab staticEnemy.

Using waypoints to define a path
We will now create a new type of enemy that will patrol the maze. This character
will navigate on a predefined path delimited by waypoints:

1.	 Duplicate the animator labeled zombieController from the Assets |
chapter5 by selecting this object and then navigating to Edit | Duplicate,
and rename it zombiePatrolController.

2.	 Double-click on this animator so that it opens in the Animator window.
3.	 Rename the state Idle to Patrol.
4.	 Locate the animation WalkForward by selecting Assets | chapter5 |

chapter5_pack, within the prefab Zombie@walkForward (its icon is a white
triangle within a gray box), or search it using the Search field in the Project
window. Drag-and-drop it to the variable Motion for the state Patrol as
highlighted in the following screenshot:

Chapter 5

[111]

At this stage, we have created a new default state for our new type of enemy.
This enemy will be moving based on waypoints. We will create four waypoints
and determine, using scripting, which waypoint the zombie patroller should walk
toward. Open the script controlZombie and add the next lines to the start of the script:

public var patrolState:int = Animator.StringToHash("Base
 Layer.Patrol");
private var wayPointIndex:int = 1;

•	 In statement 1 of the previous code, we create a new variable to monitor the
state Patrol

•	 In statement 2 of the previous code, we create an index that will be used to
determine the next way point to walk forward

Next, let's add the following lines inside the function Update within the
switch structure:

case patrolState:
 transform.LookAt(GameObject.Find("wayPoint"+wayPointIndex).transfo
 rm);
 var distanceToWayPoint:float =
 Vector3.Distance(transform.position,
 GameObject.Find("wayPoint"+wayPointIndex).transform.position);
 if (distanceToWayPoint< 1.0f) wayPointIndex++;
 if (wayPointIndex > 4) wayPointIndex = 1;
break;

In the previous code, we check whether the state Patrol is active. The character
looks in the direction of the next waypoint. We then calculate the distance between
the zombie and the next waypoint; locate the corresponding waypoint, and if the
next waypoint is close enough, a new waypoint is defined.

Bringing Your Game to Life with AI and Animations

[112]

Last but not least, we need to create these waypoints, place them on the scene, and
link them to the script as shown in the following steps:

1.	 Create an empty object and rename it wayPoint1.
2.	 Duplicate this object three times, and rename the copies wayPoint2,

wayPoint3, and wayPoint4.
3.	 Change the positions of these waypoints to (x=-22, y=0, z=7),

(x=-21, y=0, z=22), (x=-7, y=0, z=22), and (x=-7, y=0, z=7).
4.	 Duplicate the object zombie_hires and rename the duplicate patroller.
5.	 Change the position of this object patroller to (x=-14, y=-0.5, z=7).
6.	 Drag-and-drop the animator zombiePatrolController from Assets |

chapter5 to the Animator component of the object patroller as highlighted
in the following screenshot:

Test the scene and check that the object patroller walks on the path determined by
our waypoints. Note that we could create more waypoints if necessary, and the
process would be similar to the one already described in this section.

Finally, we will create a prefab from this patroller object: select the folder
Assets | chapter5; then navigate to Create | Prefab from the Project window,
drag-and-drop the object labeled patroller on this prefab, and rename it
zombie_patroller.

Chapter 5

[113]

Summary
While this chapter has introduced basic AI principles, we can of course enhance
our level by applying more complex behaviors and levels of intelligence. This
can be done by using AI algorithms such as A* or other path-finding techniques,
or by using dedicated libraries available from the assets store. Note that Unity3D
includes a built-in path-finding feature referred as Mesh Navigation; however, this
feature is only available and applicable in the Pro-version of Unity3D. Finally, while
waypoints were employed to move the character along a path, you may find it useful
to employ the library called iTween. This library, available for free in the assets store,
is relatively easy to use and includes several interesting features that could definitely
improve our game.

In this chapter, we have learned to apply animations to our character as well as some
levels of artificial intelligence. We created different states and associated transitions
using the Animator window, and we have also managed to monitor and trigger
these states through scripting. Finally, we have used waypoints to define a path for
one of the enemies. In the next chapter, we will build on these skills to finish the
game: add a last level, a splash screen, and a menu system, as well as features that
make it possible to save the score and other properties of the game across scenes.

Finalizing and Optimizing
Your Game

In this chapter, we will finalize and optimize our game. After completing this
chapter, we will be able to:

•	 Detect the current scene and load scenes
•	 Create a menu system and a splash screen for the game
•	 Improve the AI by adding breadcrumbing techniques
•	 Preserve and use data across levels
•	 Instantiate objects (for example, ammunitions or med packs)

In this chapter, we will add the ability for the zombies to follow the player using a
technique called breadcrumbing. We will also create menus for the different stages of
the game (that is, splash screen, instructions, or game over), and learn how to navigate
through them. This chapter will also include information on how to keep data across
levels so that information on the player is kept, even when the level is reloaded.

All material required to complete this chapter is available for free to download on
the companion website: http://patrickfelicia.wordpress.com/publications/
books/unity-outbreak/.

Before we start creating our level, you will need to download the necessary assets
from the companion website as follows:

1.	 Open the link for the companion website: http://patrickfelicia.
wordpress.com/publications/books/unity-outbreak/.

2.	 Click on the link for the chapter6 package, this will download a Unity
package called chapter6_pack.

Finalizing and Optimizing Your Game

[116]

3.	 In Unity3D, create a new folder called chapter6, inside the Assets folder,
and select this folder (chapter6).

4.	 Import the package that you have just downloaded into Unty3D. From Unity,
select: Assets | Import Package | Custom Package.

5.	 This should create a folder labeled chapter6_pack within the folder
labeled chapter6.

As for the previous chapters, we will save our current scene (File | Save Scene) and
then rename it chapter6 (File | Save Scene as).

Improving the AI using breadcrumbing
In this section, we will improve the AI for the enemies by implementing an effective,
yet simple, technique called breadcrumbing. At present, while the enemies follow
the player when he/she is in sight, they may stop progressing toward the player
when they lose sight of the player. To add more realism, we will design an improved
AI behavior whereby enemies are able to go back to their initial location after losing
sight of the player, or follow the player, despite not seeing him/her. To do so, we
ensure that the zombie is dropping crumbs while progressing toward the player, and
that it then follows the breadcrumbs to find its way back to its initial position when it
has lost sight of the player.

Allowing enemies to throw and follow their
own breadcrumbs
First, let's modify the script controlZombie, and add the following lines at the start
of the script:

public var breadCrumb:GameObject;
private var timeForNextCrumb:float;
private var currentTime:float;
private var breadCrumbs = new Array();
private var breadCrumbIndex:int;

•	 In line 1 of the previous code, we create a placeholder for the breadcrumb
that will be dropped by the zombie

•	 In lines 2-3 of the previous code, these variables will be employed to
determine the next time a breadcrumb will be dropped

Chapter 6

[117]

•	 In line 4 of the previous code, this variable represents an array of all the
breadcrumbs dropped for this zombie

•	 In line 5 of the previous code, this variable represents the current index for
the breadcrumbs dropped

Add the following line of code to the function Start to initialize the variable
breadCrumbIndex:

breadCrumbIndex = 0;

In the function Update, identify the switch case section related to the state
WalkForward and add the following lines of code within:

anim.SetBool("canSeePlayerWhileWalking",true);
if (Time.time > timeForNextCrumb)
{
 breadCrumbIndex++;
 timeForNextCrumb = Time.time+.5;
 breadCrumbs[breadCrumbIndex] = transform.position;
 var b:GameObject =
 GameObject.Instantiate(breadCrumb,transform.position,
 transform.rotation);
 b.name = "breadcrumb_"+ name+"_"+breadCrumbIndex;
}
if (Physics.Raycast (Vector3(transform.position.x,
 transform.position.y+.5, transform.position.z),
 transform.forward, hit, 40) && hit.collider.gameObject.tag !=
 "Player") anim.SetBool("canSeePlayerWhileWalking",false);

•	 In statement 1 of the previous code, we set the variable
canSeePlayerWhileWalking to true.

•	 In statement 2 of the previous code, we check whether we have reached the
time to throw another breadcrumb.

•	 In statement 4 of the previous code, breadCrumbIndex is incremented by 1.
•	 Statement 5 of the previous code indicates the next time to throw a crumb

(that is, timeForNextCrumb) is set to the current time, plus 500 milliseconds.
Effectively, we will drop a breadcrumb every 500 milliseconds.

•	 In statement 6 of the previous code, the position of the new breadcrumb is
saved (it is the same as the position of the zombie).

•	 In statement 7 of the previous code, we instantiate a new object (that is, a
breadcrumb prefab that we will create in the next section) at this position.

Finalizing and Optimizing Your Game

[118]

•	 In Statement 8 of the previous code, the breadcrumb is given a name that
will make it easier to identify it later on. The name includes the name of the
zombie as well as an index (the name of the zombie GameObject is part of
its properties and is therefore accessible through any script attached to this
GameObject). This will be useful since all zombies will use this breadcrumbing
feature, and we need to make sure that each of them follows their own
breadcrumb (that is, in other words, their breadcrumb if uniquely identifiable).

•	 Line 10 of the previous code shows how if the zombie loses sight of the
player, the parameter canSeePlayerWhileWalking is set to false.

For this script to be effective, we will need to create a breadcrumb prefab and assign it
to the variable breadCrumb within the script. First, let's create a breadCrumb prefab:

1.	 Create a new empty object by selecting Game Object | Create Empty.
2.	 Rename this object breadCrumb and set its position to (x=0, y=0, z=0).
3.	 Select the folder Assets | chapter 6 and click once on this folder.
4.	 Create a new prefab; from the Project window, select: Create | Prefab.
5.	 Rename this prefab breadCrumb.
6.	 Drag-and-drop the object labeled breadCrumb from the Hierarchy window to

this prefab.
7.	 Select the object zombie_hires in Hierarchy and drag-and-drop the new

prefab breadCrumb to the breadCrumb variable for the script controlZombie,
as described on the following screenshot:

8.	 Now that our breadCrumb prefab has been created, we can delete the
breadCrumb object from the Hierarchy window.

9.	 Test the game, walk past the idle zombie and check that, after it starts
walking, new breadcrumbs are created with a label that starts with
breadcrumb_zombe_hires.

Next, we need to create a state and the associated transition for the zombie to start
following its own breadcrumbs.

1.	 Open the Animator window, create a new state (right-click within
the window and select Create | Empty), and rename this state
FollowBreadCrumbs.

Chapter 6

[119]

2.	 Drag-and-drop the animation WalkForward by selecting Assets | chapter5 |
chapter5_pack (the animation is within the prefab Zombie@walkForward and
symbolized by a gray box with a white triangle) to the Motion property of
the state FollowBreadCrumbs.

3.	 Within this window, we will create two Boolean parameters labeled
canSeePlayerWhileWalking and backToSquare1 as illustrated in the
following screenshot:

4.	 Create a transition from the state WalkForward to the state
FollowBreadCrumbs.

5.	 Select the transition between these two states and set the transition condition
to canSeePlayerWhileWalking = false. This way, if the zombie is walking
toward the player but loses sight of the player, it will start its way back to its
initial position.

6.	 Create a transition from the state FollowBreadCrumbs to the state Idle.
7.	 Select the transition between these two states and set the transition condition

to backToSquare1 = true. This way, when the zombie has reached its first
breadcrumb (initial position), it will transition back to the Idle state.

Next, we are going to code the breadcrumbing behavior. Add the following lines at
the start of the script controlZombie:

Public var FollowBreadCrumbsState:int =
 Animator.StringToHash("Base Layer.FollowBreadCrumbs");
Public var detectedPlayersClosestCrumb:boolean = false;

•	 In statement 1 of the previous code, the variable FollowBreadCrumbsState
will be used to monitor the state FollowBreadCrumbs that we have created in
the previous section

•	 In statement 2 of the previous code, the variable is used to initialize the first
breadcrumb to be followed by the zombie

Add the following code to the function Update:

case FollowBreadCrumbsState:
 if (breadCrumbIndex >0)
 {
 anim.SetBool("backtoSquare1", false);

Finalizing and Optimizing Your Game

[120]

 var breadCrumbToFind: GameObject = GameObject.
Find("breadcrumb_"+gameObject.name+"_"+breadCrumbIndex)
 ;
 transform.LookAt(breadCrumbToFind.transform);
 var distanceToBreadCrumb:float =
 Vector3.Distance(gameObject.transform.position,
 GameObject.Find("breadcrumb_"+gameObject.name+"_"+breadCrumbIndex)
 .transform.position);
 if (distanceToBreadCrumb < 1.0f)
 {
 Destroy(GameObject.Find("breadcrumb_"+
 name+"_"+breadCrumbIndex));
 breadCrumbIndex--;
 }
 }
 else {
 anim.SetBool("walking",false);anim.SetBool("backToSquare1",true);
 }
 break;

•	 In statement 2 of the previous code, we check whether any breadcrumbs
have been thrown yet.

•	 In statement 6 of the previous code, we describe how the zombie looks at the
last breadcrumb.

•	 In statement 7 of the previous code, we determine the distance between the
zombie and the next breadcrumb.

•	 In statements 8-11 of the previous code, we determine if the zombie is within
one meter from the next breadcrumb; then it is destroyed and the zombie will
walk toward the subsequent breadcrumb.

•	 Statement 10 of the previous code shows how the nearby breadcrumb is
destroyed and the variable breadCrumbIndex is decreased.

•	 Statement 14 of the previous code determines if the zombie has reached the
first breadcrumb; it has reached its initial position and can transition back to
the state Idle. We also set the variable walking to false so that the zombie
stays in the Idle state.

Save the script and test it by moving the player around the maze, and either firing at
or walking in front of the zombie. Once the zombie starts following the player, move
to a location where it cannot see the player, and using the Scene view, check that the
zombie walks back to its initial position.

Chapter 6

[121]

Allowing enemies to follow the player's
breadcrumbs
It would also be great to improve this behavior by adding the ability for the zombie
to follow the player. In the next section, we will create a new state (and associated
transitions) called FollowPlayersBreadCrumbs. In this state, we need to detect the
closest breadcrumb dropped by the player, detect the index of this breadcrumb,
and start moving the zombie along the path defined by the breadcrumbs from the
closest onward. For example, if the player has dropped 20 breadcrumbs, and the
closest breadcrumb from the zombie is the tenth breadcrumb, then the zombie will
walk toward the tenth breadcrumb, then the eleventh breadcrumb, and so on, until it
reaches the last breadcrumb dropped by the player.

First, let's add the ability for the player to drop breadcrumbs. Create a new folder
labeled Scripts by selecting Assets | chapter6 and select it; create a new script
and rename it playerBreadCrumb (this script should now be in Assets | chapter6 |
Scripts), add this script to the First Person Controller, and add the following lines of
code to the script:

var breadCrumb:GameObject;
var timeForNextCrumb:float;
public var currentTime:float;
public var breadCrumbs = new Array();
public var index:int;
function Start ()
{
 timeForNextCrumb = Time.time;
 index = 0;
}
function Update ()
{
 if (Time.time > timeForNextCrumb)
 {
 timeForNextCrumb = Time.time+.5;
 breadCrumbs[index] = gameObject.transform.position;
 var b:GameObject =
 GameObject.Instantiate(breadCrumb,transform.position,
 transform.rotation);
 b.name = "breadcrumb_player_"+index;
 index++;
 }
}

Finalizing and Optimizing Your Game

[122]

The previous code is similar to the one created for the zombie, with the exception that
the name of the breadcrumb dropped by the player will be different. Breadcrumbs will
be dropped every 500 milliseconds and each of them will have a unique name. Every
time a breadcrumb is dropped, the corresponding index is incremented by 1.

Next, let's create the corresponding new state for the zombie:

1.	 Select and open (double-click) the animation zombieController by selecting
the folder Assets | chapter5.

2.	 Open the Animator window, create a new state, and rename this state
FollowPlayersBreadCrumbs.

3.	 Add the animation WalkForward to the Motion attribute of this state as we
have done for the state FollowBreadCrumbs.

4.	 Add an additional Boolean parameter labeled canFollowPlayersCrumbs
as illustrated in the following screenshot. This variable will be used to
determine the behavior of the zombie that could either follow its own
breadcrumbs after losing sight of the player, or follow the player's
breadcrumbs. This occurrence would add some challenge and uncertainty
to our game as the player would not know what type of zombie he/she will
encounter as well as its level of intelligence.

5.	 Create a transition from the state WalkForward to the state
FollowPlayersBreadCrumbs.

6.	 Set the transition conditions to canSeePlayerWhileWalking = false and
canFollowPlayersCrumbs = true (you can click on the + button to include
the second condition).

7.	 Create a transition from the state FollowPlayersBreadCrumbs to the
state Idle.

8.	 Set the transition condition to backToSquare1 = true.
9.	 Create a transition from the state FollowPlayersBreadCrumbs to the state

Attack and set the transition condition to withinReach = true.

Chapter 6

[123]

Since we want to differentiate between two types of zombies that can or cannot
follow the player's breadcrumbs, we will also need to amend the transitions created
previously between the states WalkForward and FollowBreadCrumbs: click on the
transition between the states WalkForward and FollowBreadCrumbs, and add the
condition canFollowPlayersCrumb = false, as illustrated in the following screenshot:

After adding these two new states and associated transitions, the animation
zombieController in the Animator window should look like the following
screenshot (new states and transitions are highlighted with circles):

WalkForward Hit

AttackIdle

FollowBreadCrumbs

FollowPlayersBreadCrumbs

Dead

Next, let's modify our script controlZombie to manage and trigger the state
FollowPlayersBreadCrumbs by adding the following code at the start of the script:

public var FollowPlayersBreadCrumbsState:int =
 Animator.StringToHash("Base Layer.FollowPlayersBreadCrumbs");
public var playerBreadCrumbsIndex:int = 0;
public var canFollowPlayersCrumbs:boolean;

In the previous code, we create a variable to monitor the state
FollowPlayersBreadCrumbs, an index for the breadcrumbs dropped by the player,
and a variable that will be used to determine if the zombie to which this script is
attached can actually follow the player's breadcrumbs. Add the following function to
the script:

function setCharacterType(canFollow:boolean)
{
 anim = GetComponent("Animator");
 canFollowPlayersCrumbs = canFollow;
 anim.SetBool("canFollowPlayersCrumbs",canFollowPlayersCrumbs);
}

Finalizing and Optimizing Your Game

[124]

This function will define whether this enemy will be able to follow the
player's breadcrumbs.

Add the following line in the Start function:

setCharacterType (canFollowPlayerCrumbs);

Next, we can create the code that handles the state FollowPlayersbreadCrumbs.

Add the following code line at the start of the script:

private var player:GameObject;

Add the following code line in the Start function:

player = GameObject.FindWithTag("Player");

Add the following code to the Update function, within the switch structure:

case FollowPlayersBreadCrumbsState:
anim.SetBool("backtoSquare1", false);
 if (!detectedPlayersClosestCrumb)
 {
 var closest:float = 200.0f;
 var indexOfClosest:int;
 var maxIndex:int =
 player.GetComponent(playerBreadCrumb).index;
 for (var i:int = 0; i < maxIndex; i++)
 {
 var objectToFind:GameObject =
 GameObject.Find("breadcrumb"+"_player_"+i);
 distance = Vector3.Distance(transform.position,
 objectToFind.transform.position);
 if (distance < closest)
 {
 indexOfClosest = i; closest = distance;
 }
 }
 playerBreadCrumbsIndex = indexOfClosest;
 detectedPlayersClosestCrumb = true;
 }

•	 Statement 1 of the previous code shows that the next lines will apply when
the zombie is in the state FollowPlayersBreadCrumbs.

•	 Statement 3 shows that if the closest breadcrumb has not been defined or
detected yet, then we will do so.

Chapter 6

[125]

•	 In statement 4 of the previous code, we create an array that will include all of
the breadcrumbs generated by this zombie.

•	 Statement 5 of the previous code explains that the variable closest is used
to determine the distance of the closest breadcrumb. It is set to 200 initially,
so that any breadcrumb originally included in the array would be the closest.

•	 In statement 6 of the previous code, the index of the closest breadcrumb
is defined.

•	 In statement 7 of the previous code, we access the number of breadcrumbs
dropped by the player.

•	 In statements 8-15 of the previous code, we loop through all breadcrumbs
dropped by the player and identify the closest.

•	 Statement 17 of the previous code explains that once we have defined
the closest breadcrumb, its index is used and saved in the variable
indexOfClosest.

•	 Statement 18 of the previous code explains that since we have
identified the closest breadcrumb, the corresponding variable,
detectedPlayersClosestBreadCrumb is set to true.

Add the following lines of codes following the last line we have just typed:

else
{
transform.LookAt(GameObject.Find("breadcrumb_player_"+playerBreadC
 rumbsIndex).transform);
 distanceToBreadCrumb =
 Vector3.Distance(gameObject.transform.position,
 GameObject.Find("breadcrumb_player_"+playerBreadCrumbsIndex).trans
 form.position);
 if (distanceToBreadCrumb< 1.5f)
 {
 playerBreadCrumbsIndex++;
 }
 }
break;

Finalizing and Optimizing Your Game

[126]

The previous code is similar to the one created for the zombie in the state
FollowBreadCrumb. The zombie looks at and walks toward the next breadcrumb.
Finally, remember that we also have a different type of enemy, the patrollers with a
dedicated animation controlPatroller. Because the prefab that we have created
based on this animation is also linked to the script controlZombie, it will start
throwing breadcrumbs as soon as it sees the player and will start walking toward
him/her. However, we still haven't implemented a solution that ensures that it
goes back to its initial path if the player is not in sight anymore. We could do this
by modifying the corresponding animation and adding a few additional lines to
the script controlZombie:

1.	 Locate and select the animation zombiePatrolController by selecting
folder Assets | chapter5.

2.	 Open the Animator window (Window | Animator); we should see the
states created previously for this animation. Create a new state and label it
FollowBreadCrumbs.

3.	 Locate the animation WalkForward and drop it to the Motion attribute of the
state FollowBreadCrumbs.

4.	 Create two new Boolean parameters, canSeePlayerWhileWalking
and backToSquare1.

5.	 Create a transition from the state WalkForward to the state
FollowBreadCrumbs and set the transition condition to
canSeePlayerWhileWalking = false.

6.	 Create a transition from the state FollowBreadCrumb to the state Patrol and
set the transition condition to backToSquare1 = true.

After these modifications, the animator should look like the following screenshot
(the new state and corresponding transitions have been highlighted by circles):

WalkForward Hit

Attack

FollowBreadCrumbs Dead

Patrol

Next, we will need to modify the script controlZombie to manage and trigger
these states.

Chapter 6

[127]

Open the script controlZombie, and add the following line at the start of the code
that handles the state Patrol as highlighted in the following code example:

case PatrolState:
anim.SetBool("backToSquare1",false);

Finally, we need to add a breadCrumb prefab to the object patroller so that it can
instantiate breadcrumbs overtime. Select the object patroller and drag-and-drop the
prefab breadCrumb from Assets | chapter6 to the variable (placeholder) breadCrumb
located in the Inspector for the function controlZombie, within the object patroller.
Play the scene, and check that after firing at the patroller, it follows you; move to a
location where it can't see you, and check in the Scene view that it follows its own
breadcrumbs and resumes the patrol where it had been stopped.

Creating and updating prefabs
Let's add a red dot to the prefab zombie_idle, so that any zombie can be detected on
the mini-map. Perform the following steps:

1.	 Create a new sphere, rename it dot_enemy, set its size or scale to (x=2, y=2,
z=2), remove its collider component, apply the Red texture to this object
(this texture is located in chapter4 | chapter4_pack), and set its Layer
property to topView.

2.	 Set the shader of this object to Self-Illumin/Diffuse and duplicate
this object.

3.	 Drop the first duplicate, dot_enemy, on the object labeled zombie_hires
in the Hierarchy view and change the position of the object dot_enemy
to (x=0, y=0, z=0).

4.	 Drop the second duplicate, dot_enemy, on the object labeled patroller
in the Hierarchy view and change the position of the object dot_enemy
to (x=0, y=0, z=0).

5.	 Drag-and-drop the object zombie_hires on the prefab static_Enemy located
in Assets | chapter5; this will update the prefab with our latest changes.

6.	 Repeat the previous step with the object patroller and the prefab
zombie_patroller.

7.	 Now that we have updated/created prefabs, we can deactivate the objects
patroller and zombie_hires in the Hierarchy view (using the Inspector
and unchecking the box to the right of the name of this object).

Finalizing and Optimizing Your Game

[128]

We will need to create ammunitions that the player will be able to collect:

1.	 Create a new cube, rename it ammunitions, change its scale properties to
(x=0.2, y=0.5, z=0.5), its position to (x=0, y=1, z=1), and apply the texture
texture_ammo located in Assets | chapter6 | chapter6_pack to this object.

2.	 Create a new tag, ammunitions, and apply it to this object.
3.	 Duplicate the object dot_gun from the gun object, rename it dot_ammo,

drag-and-drop it to the object ammunitions, and set its position to
(x=0, y=0, z=0).

4.	 Locate the script rotate.js (Assets | chapter3) and attach it to the object
labeled ammunitions.

Now that the ammunitions have been created, we will modify our scripts so that
the variable used to track ammunitions is increased when ammunitions have
been collected. Open the script collisionDetection and modify the conditional
statement at the start of the function OnControllerColliderHit, as highlighted in
the following code:

if (c.gameObject.tag == "medpack" || c.gameObject.tag == "key" ||
 c.gameObject.tag == "gun" || c.gameObject.tag == "ammunitions")
 {

Add the code highlighted in the following code snippet:

if (c.gameObject.tag == "gun")
 {
 hasGun = true; displayGUITexture(true, "gun");
 changeGUITexture("true",gun);
 GameObject.Find("GUITexture_crosshair").guiTexture.enabled
 =true;
 GetComponent(shootBullet).nbBullets = 40;
 }
 if (c.gameObject.tag == "ammunitions")
 GameObject.FindWithTag("Player").GetComponent(shootBullet).nbBulle
 ts += 30;
}

Chapter 6

[129]

Based on the previous code (statement 8), if we collide with ammunitions, the
number of bullets is increased to 40. Note that the ammunitions will be destroyed as
for the objects medpacks, keys, and gun based on the code we have already included
in this script. The player can now collect a wide range of objects, including a key, a
med pack, a gun, and ammunitions. While these objects have been created manually,
it would be great to be able to create them at run-time from a script, when the game
starts, or even during the game. To do so, we need to create the corresponding
prefabs, and instantiate them at run-time. Using scripting, we can then modify
the properties of the new instances (that is, copies of the prefabs), including their
position or rotation. Interestingly, we could also, based on the health of the user,
create a script that instantiates med packs relatively close to him/her. Let's create
prefabs for these objects.

Create a prefab for the med pack:

1.	 Select the object labeled medpack from the Hierarchy view.
2.	 In the Project window, locate the folder, chapter6, by navigating to Assets |

chapter6 and select it.
3.	 Create a new prefab in this folder: select Create | Prefab from the Project

window.
4.	 Rename this prefab medpack.
5.	 Drag-and-drop the object called medpack from the Hierarchy window to this

new prefab.
6.	 Deactivate the object medpack in the Hierarchy view (that is, uncheck the box

to the left of the label medpack in the Inspector window).
7.	 Repeat steps 1-5 to create a prefab labeled ammunitions from the object

labeled ammunitions.

We can then use these prefabs and instantiate instances at different locations in the
maze: check that the objects medpack and ammunitions are not active. Locate and
open the script initGame that is currently attached to the First Person Controller,
and add the following lines at the start of the script:

public var ammunitions:GameObject;
private var objectsInstantiated = new Array();
private var indexOfObjectInstantiated:int;

Finalizing and Optimizing Your Game

[130]

In the previous script, we create a placeholder for our ammunitions. Because this
variable is public, we will be able to drag-and-drop an object (for example, the
ammunitions prefab) to this variable from the Inspector window. We create an array
for the new objects that will be created based on the prefabs (that is, instances) as well
as an index for the previous array to be able to refer to all the new objects created.

Add the following code inside the function Start:

objectsInstantiated [indexOfObjectInstantiated++] =
 Instantiate(ammunitions, Vector3(0,1,1),
 Quaternion.Euler(0,0,0));
objectsInstantiated [indexOfObjectInstantiated++] =
 Instantiate(ammunitions, Vector3(3,1,-7),
 Quaternion.Euler(0,0,0));

In the previous code, we create two new objects as part of the array defined earlier.
Once the objects have been created, the index of the array is incremented by 1. The
new objects are instances of the object ammunitions defined earlier. They will be
located at the position (x=0, y=0, z=1) and (x=3, y=0, z=-7), with no rotation.

Finally, select the object First Person Controller in the Hierarchy window and locate
the script component initGame for this object in the Inspector window. We should
see that it includes a placeholder (variable) called Ammunitions. Drag-and-drop the
prefab ammunitions to this placeholder as illustrated in the following screenshot:

Play the scene and check that the two ammunition packs are included in the scene.

Let's do the same for the med packs. Add the following line to the start of the
script initGame:

public var medpack:GameObject;

Add the following line within the Start function:

objectsInstantiated [indexOfObjectInstantiated++] =
 Instantiate(medpack, Vector3(3,1,6), Quaternion.identity);

Chapter 6

[131]

Drag-and-drop the prefab medpack to the placeholder Medpack as described in the
following screenshot:

Finally, we need to generate several enemies at runtime. Add the following lines at
the start of the script initGame:

private var i:int;
private var j:int;
public var zombie_idle:GameObject;
public var breadCrumb:GameObject;
var newObject : GameObject;

Add the following lines within the Start function:

GameObject.Find("GUIText_ammo").guiText.text="";
GameObject.Find("GUITexture_crossHair").guiTexture.enabled =
 false;
GameObject.Find("GUIText_displayMessageToUser").guiText.text="";
newObject = Instantiate(ammunitions, Vector3(0,1,1),
 Quaternion.identity);
newObject = Instantiate(ammunitions, Vector3(3,1,-7),
 Quaternion.identity);
newObject = Instantiate(medpack, Vector3(3,1,6),
 Quaternion.identity);
for (i = 0; i<1; i++)
{
 for (j = 0; j<2; j++)
 {
 print(i+":"+j);
 var orientation:float = Random.Range(0,180);
 newObject = Instantiate(zombie_idle, Vector3(-4+i,0.5,-
 4+j), Quaternion.Euler(0,orientation,0)) as GameObject;
 newObject.GetComponent(controlZombie).breadCrumb =
 breadCrumb;
 newObject.GetComponent(controlZombie).
 setCharacterType(false);
 newObject.name = "zombie_a"+i+j;
 newObject = Instantiate(zombie_idle, Vector3(-
 4+i+7,0.5,-4+j), Quaternion.Euler(0,orientation,0)) as
 GameObject;

Finalizing and Optimizing Your Game

[132]

 newObject.GetComponent(controlZombie).breadCrumb =
 breadCrumb;
 newObject.GetComponent(controlZombie).
 setCharacterType(Random.Rang e(0,10) >5);
 newObject.name = "zombie_b"+i+j;
 }
}

In the previous code, we create four zombie objects with a position that is
partly defined by the two looping variables i and j. Each new object has a
random orientation, and a breadcrumb prefab is attached so that the zombie can
drop breadcrumbs. Move the First Person Controller to the position (x=21, y=0.6,
z=8), move the key to the position (x=-20, y=1, z=0) and test the scene. Next, select
the object First Person Controller, and drag-and-drop the prefabs breadcrumb
(Assets | chapter6) and staticEnemy (Assets | chapter5) to their respective
variables/placeholders breadCrumb and zombie_idle in the Inspector window,
located in the component initGame.

Keeping track of the number of lives
So far, we have tracked the user's health levels and decreased these accordingly,
whenever it had been hit by enemies or when it has collected a health pack.
However, in addition, we could give several lives to players. Whenever they lose
a life, they can restart the current level. To do so, we will need to keep track of
the number of lives across levels, and also reload the current level when a life has
been lost. In our game, the game will end whenever the player has sustained too
many injuries (that is, health = 0), or the player has run out of time. In this case,
we would like the player to restart the game. To do so, we will need to monitor
the player's health or the time, and reload the level accordingly. Open the script
healthBar and add the following code in the function Update:

if (currHealth <=0)
 Application.loadLevel(Application.loadedlevel);

This code checks whether the health levels are equal to or below 0, and if so, the
current level is reloaded.

Open the script timer and add the following code in the function Update:

if (minutes>=10)
 GameObject.Find("healthBar").GetComponent(healthBar).setHealth(0);

Chapter 6

[133]

In the previous code, we check whether the timer has reached 10 minutes, if this
is the case, the health of the player is set to 0, which means that the level will be
reloaded accordingly.

Lastly, we need to check whether the player has fallen into the water:

1.	 Select the object labeled water in the Hierarchy window (within the
folder maze).

2.	 Add a collider to this object by selecting: Components | Physics|
Box Collider.

3.	 In the Inspector window, change the center properties of this collider to
(x=0, y=-4, z=0) and its size properties to (x=2, y=0, z=2).

4.	 Create a new tag called water, and apply it to the object labeled water.

Next, add the following code to the script, collisionDetection, at the end of the
function OnControllerColliderHit:

if (c.gameObject.tag=="water")
{
 GameObject.Find("healthBar").GetComponent(healthBar).setHealth(0);
}

In the previous code, the health of the player is set to 0 when he/she collides with
the water.

Animating the door that leads to the
water section
Finally, we need to ensure that the door that leads to the section with the water is
closed, and opens when the player collides with it. The door will close after 3 seconds.
Perform the following steps:

1.	 Locate the object door1 in the Hierarchy window; select it and change its
position to (x=0, y = 1, z= 24).

2.	 Create a tag, room2_door, and apply it to this door.
3.	 Locate the animations open_door1 and close_door1 in the folder Assets |

chapter6 | chapter6_pack and drag-and-drop these animations on the object
labeled door1.

4.	 Select the object door1 and check that the two animations appear as
components in the Inspector window.

Finalizing and Optimizing Your Game

[134]

5.	 In the component called Animation, uncheck the box to the right of the
parameter Play Automatically, so that the animation does not play at
startup, as illustrated in the following screenshot:

Open the script collisionDetection and add the following lines at the start of
the script:

private var startDoor1Timer:boolean = false;
private var timer:float;

Add the following code at the end of the function OnControllerColliderHit:

if (c.gameObject.tag == "room2_door")
{
 c.gameObject.animation.Play("open_door1");
 startDoor1Timer = true;
}

In the previous code, the door is open when the player collides with it. The variable
startDoor2Timer is set to true; this will, as we will see in the following code, start
the timer, triggering the closure of the door after 3 seconds.

Add the following code to the function Update:

if (startDoor1Timer)
{
 timer+=Time.deltaTime;
 if (timer>3)
 {
 startDoor1Timer = false;
 GameObject.Find("door1").animation.Play("close_door1");
 }
}

In the previous code, we check whether the timer is active; the timer is updated every
second and when it reaches 3 seconds, it is deactivated and the door is closed. Play the
scene and check that the door opens and closes automatically after 3 seconds.

Chapter 6

[135]

Creating a menu system for your game
We have almost finished our game and level. For our game to be complete, we will
need to create a splash screen and instructions, as well as screens to be displayed
when the player has lost or succeeded. These screens will be created using scenes,
and navigation between them will be implemented using buttons. To open a
particular menu (for example, splash screen, instructions, or game over), we will
load the corresponding scene. The background of the splash screen will include the
maze created earlier and some animated zombies (idle). First let's create a prefab for
the maze so that it can be reused.

Open the last scene, select the folder Assets | chapter6, create a new prefab (that is,
select: Create | Prefab from the Project window), and rename it maze. Locate the
object labeled maze in the Hierarchy window and drag-and-drop it on the prefab we
have just created. This prefab will be accessible from any scene within our project,
including the splash screen scene.

Next, let's create the splash screen scene:

1.	 Create a new scene (File | New Scene) and save it as splashScreen
(File | Save Scene As).

2.	 Rename the default camera present in the scene (Main Camera) camera1 and
change its position to (x=0, y=1, z=0).

3.	 Drag-and-drop the maze prefab we created earlier on the scene and change
its position to (x=0, y=0, z=0).

4.	 Within the maze object in the Hierarchy window, deactivate the objects First
Person Controller and Main Camera located in the folder maze.

5.	 Drag-and-drop the prefab labeled staticEnemy (Assets | chapter5) on the
scene; change its position to (x=0, y=-0.5, z=3) and its rotational component
to (x=0, y=180, z=0), and deactivate the script controlZombie that is attached
to it (we will not need to manage different states for this character in the
splash screen); we will also deactivate the object labeled dot_enemy that is
within the zombie (staticEnemy) object, as the top view will not be used in
the splash screen.

6.	 Duplicate this object (that is, staticEnemy) 14 times, and change the
properties of the duplicates as follows (x=0, y=-0.5, z=3), (x=0.5, y=-0.5, z=4),
(x=-0.5, y=-0.5, z=4), (x=-2, y=-0.5, z=5), (x=-1, y=-0.5, z=5), (x=0, y=-0.5, z=5),
(x=1, y=-0.5, z=5), (x=2, y=-0.5, z=5), (x=-3, y=-0.5, z=6), (x=-1.5, y=-0.5, z=6),
(x=0, y=-0.4, z=6), (x=1.5, y=-0.5, z=6), (x=3, y=-0.5, z=6), (x=-7, y=-0.4, z=10),
and (x=7, y=-0.4, z=10).

Finalizing and Optimizing Your Game

[136]

7.	 Create three GUItext objects (GameObject | Create Other | GUI Text),
rename them GUIText_outbreak, GUIText_subtitle, and GUIText_
clickToContinue, and change their position to (x=0.5, y=0.97, z=0),
(x=0.5, y=0.8, z=0), and (x=0.5, y=0.3, z=0), respectively.

8.	 For the object GUIText_outbreak: set the text attribute to Zombie
Outbreak!, Text Anchor to middle-center, Font to OhTheHorror,
and the Font Size to 60.

9.	 For the object GUIText_subtitle: use the same values, and set the
Text attribute to They are ready for you but are you...?,
and Font Size to 20.

10.	 For the object GUIText_clickToContinue: use the same values, and set the
Text attribute to Click to Continue and the Font Size to 20.

11.	 Create a new script (JavaScript) within the folder Assets | chapter6 |
Scripts, rename it continueButton, attach it to the object labeled GUIText_
clickToContinue, and open it so that we can edit it. Once open, add the
following script within the function Update:
if (Input.GetMouseButtonDown(0))
{
 if (Application.loadedLevelName == "splashScreen")
 Application.LoadLevel("instructions");
 else if (Application.loadedLevelName == "instructions")
 Application.LoadLevel("chapter6");
 else Application.LoadLevel("splashScreen");
}

In the previous code, if the player clicks on the GUIText attached to the script, we
check the name of the current scene. If we are in the splashScreen scene, then the
instruction scene will be loaded; if the current scene is the instruction scene,
then the game scene will be loaded. Test the splashScreen scene.

To add some atmosphere to our game, we will include a sound track in all scenes.
The background sounds will be issued from the site incompetech, which features
sounds created by Kevin MacLeod. Create a new folder labeled Sounds within
the folder Assets | chapter6. This folder will be used to store the sounds we have
imported. Open the URL http://incompetech.com/music/royalty-free/, read
the terms and conditions that apply to the sounds provided by this site, select the
option Action, and click on the button labeled Search by Feel. This should return a
list of short loops that we can use outside the game for the different screens.

Chapter 6

[137]

Download four sounds of your choice, rename them sound_splashScreen, sound_
gameOver, sound_success, and sound_inGame, and import them inside your project
in the folder Assets | chapter6 | Sounds. While you may use the sound of our
choice, I have chosen GustavSing (for the splashScreen scene), Take a Chance
(for the gameSuccess scene), Feral Chase (during the game), and Exciting
Trailer (for the gameOver scene). Create an empty object, rename it bgSound, and
drag-and-drop the sound sound_splashScreen on this object. This will be used as a
new background sound for our scene. Select the object bgSound, and in the Inspector
window, look at the Audio Source component, and check that the options Play on
Awake and Loop are selected for this sound, so that it loops indefinitely.

Let's create a script that will make it possible to mute the background sound. Select
the folder Assets | chapter6, create a new script, rename it muteAudio, and attach it
to the object labeled bgSound. Once this is done, open the script muteAudio and add
the following code within the function Update:

if (Input.GetKeyUp(KeyCode.M))
{
 audio.mute = !audio.mute;
}

In the previous code, we toggle the mute attribute of the background sound when
the player presses the key M. Finally, we will drag-and-drop the object bgSound on
the object camera1, and change the position of the object labeled bgSound to (x=0,
y=0, z=0). This will make the object a child of camera1 so that the sound is played
exactly where the camera is. Now that you have created the splashscreen scene,
we will create the screen for the game instructions as shown in the following steps:

1.	 Save the current scene (File | Save Scene). The scene should be present
in the folder Assets and we will duplicate it to create the instructions
scene. For this, we can select this scene (splashScreen), and press the keys
Ctrl + D. This will create a new scene that we can rename instructions.

2.	 Double-click on the scene labeled instructions from the Assets folder to
edit it. In the new scene (instructions), change the position of the object
camera1 to (x=0, y=1.24, z=9), add a new GUIText object to the scene,
and rename it GUIText_instructions. Change the position of this object
to (x=0.5, y=0.6, z=0) and locate its GUIText component in the Inspector
window. Within this component (GUIText), change the text property to
"Collect the gun and the ammunitions, find the key to the exit
door, and escape in one piece. Use the arrow keys and the mouse
to navigate through the maze. Click on the mouse left button to
shoot." So that this text is displayed over several lines, place your cursor just
before the word Use and simultaneously press the keys Alt + Return. Repeat
this step to add a line break just before the sentence that starts with the text
Click on the mouse.

Finalizing and Optimizing Your Game

[138]

3.	 For this GUItext object, change the Anchor property to middle center, the
Alignment property to center, the Font property to Arial, and the Font
size to 25.

4.	 Save the scene (File | Save Scene as) and duplicate this scene twice. Rename
the duplicates gameOver and gameSuccess.

5.	 Open the gameOver scene, and change the text for the GUIText object
GUIText_instructions to "Well, looks like you were not ready
yet...try again." Also, change the text of the object labeled GUIText_
clickToContinue to "Click for a New Game."

6.	 Save this scene (Files | Save Scene).
7.	 Open the gameSuccess scene, and change the text for the object labeled

GUIText_instructions to "Well done, you've made it." Also, change
the text of the object labeled GUIText_clickToContinue to "Click for a
New Game."

8.	 Open the project settings (File | Build Settings) and drag-and-drop all
the scenes we have created so far (for example, chapter6, gameOver,
instructions, splashScreen, and gameSuccess) from the Assets folder to
the window labeled Build Settings. This will ensure that we can load scenes
after clicking on the corresponding buttons. We can now close the window
Build Settings.

Open the script collisionDetection and modify it as highlighted in the
following code:

if (hasKey)
{
 c.gameObject.animation.Play ("open_door");
 yield WaitForSeconds (1);
 Application.LoadLevel("gameSuccess");
}

In the previous code, we wait for one second, so that the animation for the door is
completed. We then open the scene gameSuccess.

Chapter 6

[139]

We can add a background sound to the scenes gameOver, gameSuccess, and
instructions: open each scene, select the object bgSound from the Hierarchy
window, and drag-and-drop the sound of your choice from the folder Assets |
chapter6 | Sounds to the AudioSource attribute of the component Audio Source
for the object bgSound. Note that the sound used for the splash screen can also be
used for the instruction screen. We can also add a background sound for the scene
chapter6 by adding both the sound sound_inGame and the script muteAudio to the
camera within the First Person Controller (camera1) and ensuring that the options
Play On Awake and Loop are selected for this sound (that is, Audio Component for
the object First Person Shooter).

Keeping track of the number of lives
To track the number of lives, we will need to create an object that includes
information on the game (for example, number of lives) and that is kept
across scenes (by default, objects are not kept across scenes).

Within the scene splashScreen, create a new empty object, and label it playerData.
This object will be used to keep information on the player, including the number
of lives. Create a new script in the folder Assets | chapter6 | Scripts, rename it
playerData, and attach it to the object playerData. Open the script playerData
and add the following code:

public var nbLives:int = 3;
function Start () {}
function getNbLives()
{
 return nbLives;
}
function Update () {}
function Awake ()
{
 DontDestroyOnLoad (transform.gameObject);
 if (Application.loadedLevelName == "splashScreen") nbLives = 3;
}

Finalizing and Optimizing Your Game

[140]

In the previous code, we create a new variable, nbLives, that will be used to store
the number of lives for the player. We also create a function, getNbLives, that will
return the number of lives. This will be useful in deciding whether the player can
restart the current level after losing a life or if the game is over. Finally, we create
a function Awake, and specify, within this function, that this object will not be
destroyed when loading another scene. In other words, the information contained in
this script will be kept across scenes or when the scene is reloaded. We also set the
number of lives to 3 when the player starts a new game.

Open the script healthBar and add the following script to the function Update:

if (currHealth <=0)
{
 if
 (GameObject.Find("playerData").GetComponent(playerData).getNbLives
 ()>0)
 {
 GameObject.Find("playerData").GetComponent(playerData).nbLives -
 = 1;
 Application.LoadLevel(Application.loadedLevelName);
 }
 else Application.LoadLevel("gameOver");
}

In the previous code, the game is over if the player's health is 0 or less and he/she
has no more lives. To be able to display the number of lives, we can create a new
GUIText object, rename it GUIText_nbLives, set its position to (x=0.16, y=0.98, z=0),
and add the following code inside the script healthBar, within the function Start:

GameObject.Find("GUIText_nbLives").guiText.text="NB Lives: "+
 GameObject.Find("playerData").GetComponent(playerData).getNbLives(
);

Play the scene splashScreen and check that the game behaves as planned.

Chapter 6

[141]

Optimizing the game
At present, we will notice that the breadcrumbs are generated all the time for the
player, although he/she is not moving. This has the disadvantage of flooding the
scene with a significant number of breadcrumbs from the player. We can solve this
in at least two ways: we could check that the player has walked at least 1 meter
before the next breadcrumb is generated, or each breadcrumb could expire after
a given number of seconds. The second option usually is the most believable. To
implement the distance-based solution, modify the function Update in the script
playerBreadCrumb, as highlighted in the following code:

function Update ()
{
 if (Time.time > timeForNextCrumb)
 {
 timeForNextCrumb = Time.time+.5;
 var lastBreadCrumb: Vector3;
 var distanceToLastBreadCrumb : float;
 if (index > 0) lastBreadCrumb = breadCrumbs[index-1];
 breadCrumbs[index] = gameObject.transform.position;
 distanceToLastBreadCrumb = Vector3.Distance(transform.position,
 lastBreadCrumb);
 if (index == 0 || (distanceToLastBreadCrumb > 1.0f && index >0))
 {
 var b:GameObject =
 GameObject.Instantiate(breadCrumb,transform.position,
 transform.rotation);
 b.name = "breadcrumb_player_"+index;
 index++;
 }
 }
}

In the previous code, we simply calculate the distance between the current position
and the position of the previous breadcrumb. A new breadcrumb is created only if
the player has moved 1 meter further.

Test this game and check that new breadcrumbs are created only if the player
moves forward.

Finalizing and Optimizing Your Game

[142]

To implement the second solution, use the following code:

function Update ()
{
 if (Time.time > timeForNextCrumb)
 {
 timeForNextCrumb = Time.time+.5;
 breadCrumbs[index] = gameObject.transform.position;
 var b:GameObject =
 GameObject.Instantiate(breadCrumb,transform.position,
 transform.rotation);
 b.name = "breadcrumb_player_"+index;
 Destroy(b, 10);
 index++;
 }
}

In the previous code, we added an instruction to destroy the breadcrumb after
10 seconds using the built-in function Destroy. Test the game with this solution.

Exporting your game to the web
While we have created our game in Unity, it would be great to make it available
online, so that it is accessible to friends and other players. Thankfully, Unity3D
includes an export feature to export our game to a web format. Let's use this
feature to create a web version of your game as shown in the following steps:

1.	 Open the build settings (File | Build Settings), and reorder the scene by
dragging-and-dropping them, so that splashScreen is first, instructions is
second, chapter6 is third, gameSuccess if fourth, and gameOver is fifth.

2.	 In the section Platform, select the option Web Player.
3.	 Click on the button labeled Build. This will open a window where we can

specify the location of the exported files. Provide a name for the exported file
and select a folder where the game should be created.

4.	 Click on Save. The conversion should last for just under one minute. Once
the process is complete, open the folder that we have specified previously,
it should include two files: an HTML file and a file with the extension
.unity3d. Open the HTML file in your browser.

Chapter 6

[143]

Where to go from here
Throughout this book and chapter, we have discovered several aspects of game
development; we have learned how to use Unity3D and make the most of its
numerous features. While the project presented in this book provides you with a
good basis for your game, it can, of course be improved and extended in many
ways, in terms of AI, user interface, or 3D design. To improve your skills and
make better games, you may find the following references particularly helpful:

Game design
Game design is a wide area, but understanding its core principles will help you
to create games that are fun to play, and that will keep the players immersed and
engaged for long periods of time. The following references should definitely help:

•	 Rules of Play by Katie Salen and Eric Zimmerman (http://www.amazon.
com/Rules-Play-Game-Design-Fundamentals/dp/0262240459)

•	 A Theory of Fun for Game Design by Ralph Koster (http://www.amazon.
com/A-Theory-Fun-Game-Design/dp/1932111972/ref=pd_sim_b_3)

•	 Challenges for Game Designers by Brenda Braithwaite and Ian Schreiber
(http://www.amazon.com/Challenges-Game-Designers-Brenda-
Brathwaite/dp/158450580X/ref=pd_sim_b_2)

•	 Game Mechanics: Advanced Game Design (Voices That Matter) by Ernest
Adams (http://www.amazon.com/Game-Mechanics-Advanced-Design-
Voices/dp/0321820274)

•	 The Art of Computer Game Design by Chris Crawford (http://www.
amazon.com/The-Computer-Game-Design-ebook/dp/B0052QA5WU)

•	 The 400 project: a project to capture essential rules for game design
(http://www.finitearts.com/Pages/400page.html)

Artificial intelligence
Smart and believable AI always makes for better and more entertaining games.
The following links and books will provide you with additional information on
up-to-date AI plugins, resources, and techniques:

•	 AI for Game Developers by David Bourg and Glenn Seemann (http://www.
amazon.com/AI-Game-Developers-David-Bourg/dp/0596005555/)

•	 Programming Game AI by Example by Mat Buckland (http://www.amazon.
com/Programming-Game-Example-Mat-Buckland/dp/1556220782/)

Finalizing and Optimizing Your Game

[144]

•	 The Path project by AngryAnt (http://angryant.com/path/),
is a solution that includes a free library, an editor and associated
documentation for path finding

•	 AiGameDev (http://aigamedev.com/), is a comprehensive website on AI
for video games with many articles and tutorials

3D characters
To create your characters, you can use a wide range of software, including:

•	 Maya (http://www.autodesk.com/products/autodesk-maya/overview)
•	 3D Studio Max (http://www.autodesk.com/products/autodesk-3ds-

max/overview)
•	 Blender (http://www.blender.org/)
•	 Sketchup (http://www.sketchup.com/)

Note that, while the first three applications are usually perceived as having a steep
learning curve, Sketchup makes it possible to create 3D models relatively easily.

Creating your audio files
There are many softwares available to create your own sound effects and audio
tracks; the following links may provide you with useful resources and tools for
your games:

•	 Audacity (http://audacity.sourceforge.net/)
•	 BFXR (http://www.bfxr.net/)
•	 GarageBand (http://www.apple.com/ilife/garageband/)

Learning more about Unity3D
To learn more about Unity3D, there are many resources available both in text or
video formats:

•	 Unity3D Learn (http://unity3d.com/learn) is a website dedicated to
learning Unity3D with many tutorials and documentation on Unity3D.

•	 Mecanim (http://video.unity3d.com/video/7362044/unity-40-
mecanim-animation-tutorial) is a video tutorial on how to use Mecanim.

•	 Design3 (http://www.design3.com/) is a great portal to learn about game
designing and development. The site includes a wide range of resources on
all necessary tools for game creation and development.

Chapter 6

[145]

•	 Digital Tutors (http://www.digitaltutors.com/11/index.php) is a great
portal to learn how to create games and digital art.

•	 Mixamo (http://www.mixamo.com/) is a site dedicated to character rigging
and animation.

Summary
I hope that this book has inspired you to delve into the world of game design and
development with Unity3D. Becoming a game developer will require some more
work and perseverance, but by reading this book, you have taken the first steps
that will, hopefully, lead you to the career path of your dreams.

Index
Symbols
3D character

about 144
animating, for game 91-94
configuring 90, 91
importing 90, 91

3D object imports
URL 23

3D Studio Max
URL 144

+ button 95, 104

A
additional states

creating 103-110
Add Layer option 73
Add Tag option 53, 58, 101
AI

about 143
adding, to enemies 97-100
game developers, URL 143
improving, breadcrumbing used 116

AiGameDev
URL 144

Alignment property 138
ammunitions

about 130
creating 128
displaying 81
updating 81

Anchor attribute 61

AngryAnt
path project, URL 144

AngryBot
URL 15

AngryBots scene
navigating through 15, 16

Animation attribute 64
Animations tab 93, 103
Animation Type attribute 103
Animator 92
Animator component 98, 112
Animator Controller 92
Animator object 97
AnimatorStateInfo variable 97
Animator.StringToHash method 97
Animator window 92-97, 103, 104, 118, 122,

126
anim.SetBool function 101
anim variable 98
Apply button 91
Artificial intelligence. See AI
assets

importing 44, 45
Attack state 103, 109, 122
Audacity

URL 144
audio

adding 55, 56
audio files

creating 144
Audio Listener component 73
AudioSource attribute 139
Awake function 140

[148]

B
backToSquare1 parameter 119, 126
BFXR

URL 144
Blender

URL 144
blocks

creating 34
Bool option 95
breadCrumbIndex variable 117, 120
breadcrumbing

about 115
enemies, allowing to follow player's

breadcrumbs 121-127
enemies, allowing to throw and follow their

own breadcrumbs 116-120
used, for improving AI 116

breadCrumb object 118
breadCrumb variable 118
built-in objects

maze, creating on 31-37

C
camera

creating 72
Camera component 78
canSeePlayerWhileWalking parameter 118,

119, 126
Challenges for Game Designers

URL 143
changeGUITexture function 63
closest variable 125
collection_beep file 55
collection_beep variable 55
colliders

about 39-41
effect, testing 40
removing 41

collisionDetection script 55, 57, 61-64, 69, 71,
81, 82, 128, 134, 138

Computer Game Design
URL 143

Configure button 91
console 15
Console window 54

controlZombie script 99, 104-111, 116, 123,
127, 135

cube
creating 18-21

Culling Mask attribute 77

D
Dead state 107, 110
decreaseHealth function 109
Design3

URL 144
Destroy function 142
detectedPlayersClosestBreadCrumb

variable 125
die parameter 107, 108
Digital Tutors

URL 145
displayMessageTouser script 60
displayMessageToUser script 58, 61
displayText function 61
displayTime variable 59
distance variable 104
door

animating 133, 134
creating 36

dot_fpc object 75
dots

creating, for other objects 76
Download button 50, 84

E
enemies

AI, adding to 97-100
allowing, to follow player's breadcrumbs

121-127
allowing, to throw and follow their own

breadcrumbs 116-120
exit_door tag 64
ExitTime parameter 96

F
FindGameOBjectsWithTag method 102
Fire1 button 80, 87
FireSound variable 84

[149]

first-person controller
adding 25-27

First Person Controller object 55
first-person view

implementing 24, 25
Flare Layer component 73
floor

creating, for maze 34
floor object 40
Fly mode 12
FollowBreadCrumbs state 119, 126
FollowBreadCrumbsState variable 119
FollowPlayersBreadCrumbs state 121, 122
Font property 50
Font-size attribute 49
free assets and textures

URL 22

G
game

3D character, animating for 91-94
designing 143
exporting, to web 142
finishing 64, 65
menu system, creating for 135-139
optimizing 141, 142

game engines 8
Game Mechanics

URL 143
GameObject 118
GameObject.Find() command 50
GameObject.Find function 51, 62
gameObject.GetComponent 50
GarageBand

URL 144
GetComponent 50
getNbLives function 140
GUILayer component 73
GUIText component 49, 50, 61
GUIText object 49, 50, 61, 81, 138
GUIText_outbreak object 136
GUIText_subtitle object 136
GUIText_timer object 50
GUITextTimer object 50
GUITexture component 79

GuiTexture object 61
guiText variable 50
gun

creating 79-86
URL 83

gun object 128

H
hasGun variable 57, 82
hasKey variable 57
health bar

displaying 69-71
healthBar script 70, 71, 109, 132, 140
health variable 57
height property 79
Hierarchy view 11, 13, 41, 49, 70, 72, 93, 127
Hierarchy window 44, 55, 58, 73, 91, 92, 97,

101
hit parameter 105
Hit state 105
hit variable 100, 106
horizontal walls

creating 35

I
Idle state 94-103, 110
imported objects

inserting 23
Importing package 90
incompetech

URL 136
indexOfClosest variable 125
initGame script 82, 129-131
Inspector window 11, 14, 15, 40, 46-55, 58,

72-77, 90, 96-103, 130
Integrated Development

Environment (IDE) 8
inventory system

creating 57-63
displaying 57-63

L
label tag 58
label variable 62

[150]

layer
allocating, to objects 77
creating 77

Layer label 75
level

mini-map, displaying 72-78
tuning 38, 39

lights
adding 37

Loop Pose attribute 103

M
Maya

URL 144
maze

creating, on built-in objects 31-37
floor, creating 34

Mecanim
URL 144

medpack object 129
medpack tag 53
menu system

creating, for game 135-139
messages

sending, to alert other close
enemies 101, 102

message variable 59
mini-map

displaying, of level 72-78
minutes variable 49
Mixamo

about 89
URL 89, 145

MonoDevelop 46
Motion attribute 126
Motion property 119
Motion variable 110
mouselook option 12
Muscles tab 91

N
navigation

in scene view 12, 13
in scene view, URL 13
through AngryBots scene 15, 16

nbBullets variable 83

nbLives variable 140
numbers of lives

tracking 132, 139, 140

O
objects

adding, to scene 17
collecting 52-55
creating 67, 68
cube, creating 18-21
dots, creating for 76
imported objects, inserting 23
interacting, script used 43
texture, adding to 22
texture, adding to objects 22
tracking 67, 68

OnControllerColliderHit function 54, 56,
64, 128, 133, 134

P
parameters

creating 94-97
Particle Animator component 86
particle emitter 84
path

defining, waypoints used 110-112
patroller object 127
Patrol state 110, 111
Physics.OverlapSphere method 102
Physics.Raycast function 80
Play button 27
playerBreadCrumb script 141
prefabs

creating 127-132
updating 127-132

Programming Game AI by Example
URL 143

project
creating 16, 17

Project view 11, 14, 68, 93, 103
Project window 32, 46, 92

R
repeated shots

allowing 87

[151]

Rig tab 103
Rig tag 90
rocks

creating 34, 35
rotate.js script 128
Rules of Play

URL 143

S
scale property 56, 76
scene

creating 16, 17
navigating through 13
object, adding to 17

scene view
about 11, 12, 40, 49, 72, 93, 96, 120
navigating through 12

Screen.showCursor variable 80
script

creating 45-50, 51, 137
used, for interacting with objects 43

Search field 22, 33, 90
seconds variable 49
Set button 16
setHealth function 71
setWalking function 101
Shader property 76
Shoot Bullet component 84
shootBullet script 83, 84, 106
Sketchup

URL 144
SphereCollider component 76
splash screen scene

creating 135
startDoor2Timer variable 134
Start function 46, 51, 63, 82, 107, 124, 130,

131
startTimer function 59
style variable 69
switch statement 99
switch structure 108-111
system requisites

URL 9

T
Tag Manager window 58

Text attribute 50, 136
textToDisplay variable 51
texture

adding, to objects 22
URL 22

Theory of Fun
for Game Design, URL 143

third-person controller
adding 27, 28

third-person view
implementing 24, 25

Time.deltaTime variable 48
timeForNextShot variable 87
timerIsActive variable 59
timer script 46, 50, 61, 132
timer variable 48, 59
timeToReload variable 87
time variable 47, 49
toBeDisplayed variable 62
topView label 74
transitions

creating 94-97
creating, between states 103

U
Unity3D

about 7, 8, 144
advantages 8, 9
archive, URL 10
assets store, URL 9
downloading 9, 10
for Mac OS, URL 9
for Windows, URL 9
launching 10
scripting 44
URL 8, 9

Unity3D 4 9
Unity3D interface

about 11
hierarchy view 11
inspector 11
project view 11
scene view 11
URL 17

Unity3D Learn
URL 144

[152]

Update function 46, 50-53, 59, 81, 98-119,
124, 132-136, 140

V
vertical walls

creating 36

W
WalkForward state 93, 96-101, 117-119, 122
walkForwardState variable 97
walking parameter 95, 100, 101

walking variable 120
water

adding, to water area 36
water tag 133
waypoints

used, for defining path 110-112
width property 79
withinReach parameter 104

Z
zombie_hires object 101, 112, 118
Zombie@walkForward 93

Thank you for buying
Getting Started with Unity

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Unity iOS Game Development
Beginners Guide
ISBN: 978-1-84969-040-9 Paperback: 314 pages

Develop iOS games from concept to cash flow using
Unity

1.	 Dive straight into game development with no
previous Unity or iOS experience

2.	 Work through the entire lifecycle of developing
games for iOS

3.	 Add multiplayer, input controls, debugging, in
app and micro payments to your game

4.	 Implement the different business models that
will enable you to make money on iOS games

Unity 3D Game Development by
Example Beginner's Guide
ISBN: 978-1-84969-054-6 Paperback: 384 pages

A seat-of-your-pants manual for building fun, groovy
little games quickly

1.	 Build fun games using the free Unity 3D game
engine even if you've never coded before

2.	 Learn how to "skin" projects to make totally
different games from the same file – more
games, less effort!

3.	 Deploy your games to the Internet so that your
friends and family can play them

4.	 Packed with ideas, inspiration, and advice for
your own game design and development

Please check www.PacktPub.com for information on our titles

Unity 3.x Game Development
Essentials
ISBN: 978-1-84969-144-4 Paperback: 488 pages

Build fully functional, professional 3D games with
realistic environments, sound, dynamic effects, and
more!

1.	 Kick start your game development, and build
ready-to-play 3D games with ease

2.	 Understand key concepts in game design
including scripting, physics, instantiation,
particle effects, and more

3.	 Test & optimize your game to perfection with
essential tips-and-tricks

Unity 3 Game Development
Hotshot
ISBN: 978-1-84969-112-3 Paperback: 380 pages

Eight projects specifically designed to exploit Unity's
full potential

1.	 Cool, fun, advanced aspects of Unity Game
Development, from creating a rocket launcher
to building your own destructible game world

2.	 Master advanced Unity techniques such
as surface shader programming and AI
programming

3.	 Full of coding samples, diagrams, tips and
tricks to keep your code organized, and
completed art assets with clear step-by-step
examples and instructions

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewer
	www.packtpub.com
	Table of Contents
	Preface
	Chapter 1:
Getting to Know Unity3D
	Introduction to game engines
	Why choose Unity
	What's new in Unity3D 4
	Downloading Unity3D
	Launching Unity3D
	Unity3D's interface
	The Scene view
	Navigating in the scene

	The Hierarchy view
	The Project view
	The Inspector
	The Console

	Navigating through the AngryBots scene
	Creating a new project and scene
	Adding objects to a scene
	Creating a cube
	Adding a texture to objects
	Inserting imported objects

	Implementing first- and third-person views
	Adding a first-person controller
	Adding a third-person controller

	Summary

	Chapter 2:
Creating a Maze with
Built-in Objects
	Creating a maze based on built-in objects
	Fine-tuning the level
	Understanding colliders
	Summary

	Chapter 3:
Using Scripts to
Interact with Objects
	Introduction to scripting in Unity3D
	Importing necessary assets
	Creating our first script
	Collecting objects
	Adding audio
	Creating and displaying an inventory system
	Finishing the game
	Summary

	Chapter 4: Creating and Tracking Objects
	Displaying the health bar
	Displaying a mini-map of the level
	Creating a gun
	Allowing for repeated shots
	Summary

	Chapter 5:
Bringing Your Game to Life with AI and Animations
	Importing and configuring the 3D character
	Animating the character for the game
	Creating parameters and transitions
	Adding basic AI to enemies
	Sending messages to alert other close enemies
	Creating additional states
	Using waypoints to define a path
	Summary

	Chapter 6:
Finalizing and Optimizing Your Game
	Improving the AI using breadcrumbing
	Allowing enemies to throw and follow their own breadcrumbs
	Allowing enemies to follow the player's breadcrumbs

	Creating and updating prefabs
	Keeping track of the numbers of lives
	Animating the door that leads to the water section
	Creating a menu system for your game
	Keeping track of the number of lives
	Optimizing the game
	Exporting your game to the web
	Where to go from here
	Game designing
	Artificial intelligence
	3D characters
	Creating your audio files
	Learning more about Unity3D

	Summary

	Index

