Trebuchet Calculation:

A trebuchet with a counterweight of 5000 kg starts at a height of 8 meters and swings down to a lowest point of 1 meter releasing a 90 kg projectile (that started at ground level) at some point in the swing. The counterweight then swings back up to a height of 2 m above the ground on the swingthrough. What is the velocity of the projectile if it hits the castle 300 m away at 15 m above ground level? Assume a perfect trebuchet and no air resistance.(Hint: Use Conservation of Energy).

$$
\begin{gathered}
K E=\frac{1}{2} m v^{2} \\
P E=m g h \\
K E+P E=\text { Constant }
\end{gathered}
$$

Solution:

If the trebuchet's counterweight starts at a height of $8 m$ and ends it's swing at a height of $2 m$ this means that the counterweight has transferred $6 m$ worth of potential energy into kinetic energy for the projectile.

$$
P E_{\text {transferred }}=(5000 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(6 \mathrm{~m})=294 \mathrm{~kJ}
$$

Since we are assuming perfect energy transfer this means that the projectile now has 294 kJ of KE at the start of it's swing. But the projectile hits the castle with a certain amount of PE in it's arc since it is 15 m above ground level. This PE has to come from the original KE the projectile started with.

$$
P E_{\text {gained }}=K E_{\text {lost }}=(90 \mathrm{~kg})\left(9.80 \mathrm{~kg} / \mathrm{s}^{2}\right)(15 \mathrm{~m})=13.230 \mathrm{~kJ}
$$

This energy then has to be subtracted from the original KE of the projectile to find the KE of the projectile upon impact.

$$
K E_{\text {impact }}=K E_{\text {initial }}-K E_{\text {lost }}=294 k J-13.230 k J=280.770 k J
$$

Now since the equation for KE depends on mass and velocity alone and we know the mass we can figure out the velocity that the projectile has.

$$
\begin{gathered}
K E=\frac{1}{2} m v^{2} \\
v^{2}=\frac{2 K E}{m}=\frac{2(280770 J)}{90 k g}=6239.333333 \\
v=\sqrt{6239.333333}=78.99 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

The projectile will hit the castle with a final velocity of just under $79 \mathrm{~m} / \mathrm{s}$ or $284 \mathrm{~km} / \mathrm{h}$ or 178 mph !

