

RECIPROCATING PUMP TEST RIG

CONDUCTING EXPERIMENTS AND DRAWING THE CHARACTERISTICS CURVES OF RECIPROCATING PUMP

AIM:

To study the performance characteristics of a reciprocating pump and to determine the characteristic with maximum efficiency.

APPARATUS REQUIRED:

- 1. Reciprocating pump
- 2. Meter scale
- 3. Stop watch

FORMULAE:

1. ACTUAL DISCHARGE:

 $Q_{act} = A x y / t \quad (m^3 / s)$

Where:

A = Area of the collecting tank (m²)

y = 10 cm rise of water level in the collecting tank

t = Time taken for 10 cm rise of water level in collecting tank

2. TOTAL HEAD:

$$H = Hd + Hs + Z$$

Where:

Hd = Discharge head; Hd = Pd x 10, m

Hs = Suction head; Pd = Ps x 0.0136, m

Z = Datum head, m

Pd = Pressure gauge reading, kg / cm²

Ps = Suction pressure gauge reading, mm of Hg

3. INPUT POWER:

$$P_i = (3600 \times N) / (E \times T)$$
 (Kw)

Where.

N = Number of revolutions of energy meter disc

E = Energy meter constant (rev / Kw hr)

T = time taken for 'N' revolutions (seconds)

Input Output η power power Po kw %	Mean =
	Mean =
Input power Pi kw	
Time taken for N rev of energy meter disc t sec	
Actual discharge Q _{act} m³/s	
Time taken for 10 cm of rise of water in tank t sec	
Total H H	
Datum head Z m	
Suction head Hs = Ps x 0.0136	
Delivery head Hd = Pdx10.0	
Suction pressure reading Ps mm of Hg	
Delivery pressure reading Pd kg / cm²	

4. OUTPUT POWER:

Po =
$$\rho x g x Q x H / 1000$$
 (Kw)

Where,

 $\rho = \text{Density of water} \qquad (kg / m^3)$ $g = \text{Acceleration due to gravity} \qquad (m / s^2)$

H = Total head of water (m)

Q = Discharge (m^3 / sec)

5. EFFICIENCY:

 η_o = (Output power po / input power pi) \times 100 %

Where,

Po = Output power KW
Pi = Input power KW

PROCEDURE:

- 1. Close the delivery valve and switch on the unit
- 2. Open the delivery valve and maintain the required delivery head
- 3. Note down the reading and note the corresponding suction head reading
- 4. Close the drain valve and note down the time taken for 10 cm rise of water level in collecting tank
- 5. Measure the area of collecting tank
- 6. For different delivery tubes, repeat the experiment
- 7. For every set reading note down the time taken for 5 revolutions of energy meter disc.

GRAPHS:

- 1. Actual discharge Vs Total head
- 2. Actual discharge Vs Efficiency
- 3. Actual discharge Vs Input power
- 4. Actual discharge Vs Output power

MODEL CALCULATION:
RESULT: The performance characteristic of the reciprocating pump is studied and the
efficiency is calculated %