
Building Pitaya, Wildlife's Own Scalable Game Server
Framework
 
 
For several reasons, many of our backends were written in node.js. It is scalable and has
excellent performance, especially when compared to languages like Python and Java. It was
the language that our software engineers were most proficient in and, most importantly, the
most popular programming language at the moment. 
 
 
We were able to use several open-source projects to build our systems. One of these
projects was Pomelo, "a fast, scalable game server framework for node.js" as written in their
readme on Github. 
 
 
But, why do we need a game server framework? In a very simplified manner, for a complex
game, we need different types of servers. 
 
 
These services could be called "not-so-micro" services. Each of these services (or server
types) has different responsibilities and needs to scale in an independent way. We have
connectors that are the servers to where players (or their phone) are connected. These
connectors handle basic operations, such as authorization and authentication. We have the
game servers where the matches (and the magic) actually happen. We have metagame
servers where the other operations in the game happen, such as card upgrades, fetching the
leaderboards, etc. 
 
 
The demands for a game server are quite different from a metagame server and we need all
of them to scale up and down horizontally, given that we operate with a very large demand
which oscillates with special dates, feature releases and at different times of the day. 
 
 
The framework has one major responsibility: to ensure that all the servers can be managed
in a transparent and efficient manner. Servers need information about other servers
regardless of their type. They also need the ability to communicate with one another, often
performing operations in another server. These features are called RPCs (remote procedures
calls) and service discovery. 
 
 
Another important responsibility of the framework is the need for clients to connect to the
servers. These connections are often long-lasting and require low latency. It's also very
important to be able to broadcast messages to several players that are playing the same
match. 
 
 
Pomelo really simplifies both responsibilities and was a great tool for us to launch our first
synchronous multiplayer games. Unfortunately, the framework's maintainers did not keep it
up-to-date and used an older version of node.js. We discovered bugs and sent PRs.



Unfortunately, because the code was not maintained it took a very long while for these
changes to be merged. 
 
 
Most importantly, eventually, some of its bugs or design choices didn't allow it to meet our
demands at the scale we needed. Gaming Due to too many servers, broadcasting ping
messages that indicated whether a server was online or not was enough for overload. RPCs
were also difficult if the servers were located in different areas. 
 
 
Pomelo was reaching its limits, so we began to think about what next. We are a firm believer
in innovation through research. This means that we spend a lot of time researching what
works and what doesn’t before we commit to creating something new. Because we used
Pomelo as the framework for our game servers for several years we knew it extensively: its
strengths and its flaws. This enabled us to keep the good, change the bad, and improve what
could be better. 
 
 
Go takes place 
 
 
In early 2018 we had already been using Go as the main language for the backend systems
for quite a while. 
 
 
The switch from building services with node.js into Go in mid-2016 was largely based upon
Go's incredible concurrency mechanisms. These are essential for building scalable platforms
for our millions of users. We also have many servers so low resource usage is an important
feature. This reduces infrastructure costs and complexity. 
 
 
It was then a perfect choice for us to build Pitaya, Wildlife's own scalable game server
framework. 
 
 
Pomelo kept the distributed design and protocol to allow client-server communication. The
most significant changes were made to the service discovery and RPCs approach. These
were the main production issues that we faced in Pomelo-based games. 
 
 
Pitaya should have observability features built in. We made Pitaya compatible with
OpenTracing frameworks like Jaeger. It also supports Statsd as well as Prometheus. This is
one of the greatest things about Go. We were so involved with the community and its
amazing open-source programs that it not only helped to create a more effective framework
but also encouraged us to use other open -source Go projects like etcd and NATS. 
 
 
About Pitaya's success and adoption inside Wildlife, the framework is being used in
production in our main games for a few years now and has helped us successfully launch

https://gametolia.com/


some of the most amazing games we've done so far like Tennis Clash and Zooba. 
 
 
Our Game Engineers are happier, as we also wanted related projects that would make
Pitaya's development process easier. pitayabot, a framework that allows for integration and
stress test bots, is an example. Go's low-memory and CPU footprint and the amazing tooling
pprof provides for profiling make our SRE and Infrastructure Engineers happier. 
 
 
Pitaya is an open-source platform that allows anyone to build amazing projects. It was the
logical choice after we have benefited so much from another amazing open-source project in
the past. As an added bonus, we can have others to help us improve it by contributing to the
projects. 
 
 
This post should have explained why Pitaya was built and why Go was the best choice. In
the next post, we'll explain in-depth some of Pitaya's features and technical decisions. 
 
 
If you love building challenging new projects and Go as much as we do, you could be a part
of our team! We hope to see you soon and invite you to take a look at the available positions! 


