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Introduction

The typical compulsory introduction to logic is odd: it’s an odd course in

a humanities curriculum, and it’s particularly odd in a philosophy curricu-

lum. What makes it somewhat odd in the humanities curriculum is the

fact that it introduces a mathematical theory and methodology without

much discussion of its scope and limits. There aren’t many topics in the

humanities that have been subject to rigorous mathematical analysis, and

in the few cases in which scientists attempted to develop a mathematical

model of their subject matter, the models are highly contested. However,

logic courses seem unashamedly formal with little or no discussion of the

approach’s limits.

Within a philosophy curriculum, this situation is even stranger. Logic

is supposed to be a universal methodology for doing philosophy, and logic

is also a philosophical subdiscipline which has its origins in the work of

Aristotle. Philosophy is a discipline that takes nothing for granted, and

in which students are trained to develop a critical attitude towards any

kind of claim. Nevertheless, in introductions to logic there is little room

for argument, criticism or debate. Unlike pretty much any other course in

the philosophy curriculum, logic is taught like a mathematics course.

It’s not as if there weren’t good reasons for doing it that way. Logic is one

of the few subdisciplines of philosophy in which there has been consider-

able progress and convergence over the past 150 years. Much of this is due

to the fact that – largely thanks to Gottlob Frege – modern logic is a rich

mathematical theory. Introducing that theory and training students in it to

a degree that enables them to apply the formal apparatus when analysing

arguments for their validity, etc. is quite time consuming. Also, some of

the most interesting questions about the scope and limits of logic can only

be properly assessed when one knows at least a little bit about what logic

1



2 An Introduction to the Philosophy of Logic

actually is. Thus, it is well justified to postpone the critical discussion of

logic for later and to limit introductions to logic to somewhat uncritical

training courses in a formal methodology.

Nevertheless, this is unsatisfactory for the student of logic. She, for sure,

would like to learn more about this discipline’s philosophical foundations.

But courses in philosophy of logic are unfortunately rare, witnessed or

perhaps partly caused by the fact that there are almost no contemporary

textbooks for such courses. This book is our attempt to fill that lacuna

and provide a contemporary introduction to the central questions in the

philosophy of logic.

What is the Philosophy of Logic?

This book is not an introduction to logic and it’s not an introduction

to philosophical logic either. As we will explain in the next chapter,

philosophical logics are mathematical theories with a specific intended

interpretation and application. This book presupposes acquaintance with

an introduction to (philosophical) logic, as it is standardly taught in under-

graduate programmes in philosophy all over the world. In particular, we

assume a certain amount of familiarity with propositional logic and first-

order (polyadic)1 predicate logic. A good introduction to standard logic is

Halbach (2010).

This book is also not intended as an introduction to the metatheory

of standard logic or to non-classical deviations from standard logic. We

will not presuppose acquaintance with metalogical results, or with deviant

logics (and will try to introduce their gist when relevant), but this is not the

place to discuss such matters in any (formal) detail. Good introductions to

metalogic or deviant logic can be found instead in Sider (2010) and Priest

(2008).

What the philosophy of logic is concerned with are the philosophical

questions that relate to logic. For example, in the introductory course

1 A predicate logic is “polyadic”, if it contains in addition to one-place predicates also

n-place relations. Thus, if you encountered formulas like ‘∀x∀y∃z(Rxy→ Rxz)’ in

addition to formulas like ‘∀x(Fx→ Gx)’, you probably studied polyadic predicate logic.

Predicate logic with only one-place predicates is called “monadic”.
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you learned to work with one specific logic, so-called “standard” or “clas-

sical” logic. There are alternatives to this logic: so-called “deviant” or

“non-classical” logics. Why are there such alternatives? Is there reason

to be discontent with classical logic? Is only one logic correct, or could

several of these turn out to be correct? What does the correctness of

a logic consist in? Getting the logical facts right? What are these facts?

Are these mind-independent facts, are these facts about languages or

conventions? How can we have knowledge of these facts? Do we know

what’s true in logic a priori? Could we be mistaken in our beliefs about

logic? Could we detect such mistakes? Could we revise our beliefs about

logic?

These and other questions will be discussed in this book (a detailed

overview is in the next subsection). These questions concern the meta-

physics, the epistemology and the methodology of logic. Some of these

questions are similar to questions in related philosophical disciplines, such

as the philosophy of language or the philosophy of mathematics. And if

you are already familiar with these fields, you will recognize some of the

arguments and moves from there. However, the philosophy of logic is a

subdiscipline of philosophy by itself and not to be subsumed under either

philosophy of language or philosophy of mathematics. That the questions

that arise for logic are often unique is something that we hope you will

learn from this book.

Overview of the Contents of this Book

Then let’s dive into an overview of the topics we cover in this book. Of

course, we couldn’t cover every topic in the philosophy of logic, not even

at the very introductory level this book is at. In our selection of material,

we have tried to identify topics that we think are either the central ques-

tions of the philosophy of logic, or else closely related to them and in the

centre of the contemporary discussion. For example, we haven’t included

a discussion of theories of truth or the reference of proper names in this

book, because we didn’t consider these topics to belong to the philosophy

of logic (or at least not to its central questions). We also haven’t included a

detailed discussion of the philosophical controversy over the status of quan-

tified modal logic, or the case for quantum logic, even though these topics

belong to philosophy of logic. We felt that the relevant issues in these, the
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supposed metaphysical neutrality of logic, and the empirical revisability

of logic, can be discussed in their own right, abstracting away from the

specific logics.

We have divided the topics that we selected for inclusion into 10

somewhat equal-sized chapters.

1 The Nature and Tools of Logic

This chapter introduces the core terminology we will use in the book. What

are we talking about when we talk about “logic”? Are we talking about cer-

tain mathematical theories or structures, or about a discipline? Can we

make a distinction between pure and applied logic, in the way in which we

can make that distinction for geometry? We also introduce a little bit of

technical apparatus, borrowed from set theory, which we use for some of

the more technical examples throughout the book. Most of these techni-

calities will be familiar to the reader, but we go over them to make sure

that we are on the same page in terminology and notation. Finally, we

present a general framework to talk about logic from a model-theoretic

and a proof-theoretic point of view. Both perspectives will be relevant in

later chapters.

2 The Standard Story and its Rivals

The second chapter introduces the main features of standard logic, reviews

some arguments for and against them and presents some of the alter-

natives to standard logic. Some of the features of standard logic are so

common that they might seem essential to logic. As we shall see in this

chapter, but also in many of the later chapters, most of these features have

been challenged.

3 Is Second-Order Logic Proper Logic?

In this chapter we continue to investigate deviations from standard logic.

Here we will focus on the case of second-order logic. We sketch the

standard and the Henkin semantics of second-order logic, and extend

our proof system with rules for the second-order quantifiers. This chap-

ter explains the differences between first-order logic with identity and
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second-order logic and the notion of categoricity. In many respects second-

order logic seems just like a straightforward extension of standard logic,

but it does come with some strange properties. Does that matter for

whether second-order logic is logic? What makes a formal system a

logic?

4 Logical Constants

What is the meaning of a logical connective? How is that meaning deter-

mined, and does it remain fixed across different logics? We present

different ways of spelling out what the meaning of a logical constant is,

Quine’s classical argument for meaning-variance across logics and some

attempts to block it.

What is usually regarded as the problem of logical constants is that of giving

a principled demarcation between expressions that determine the logical

form of an argument and those that do not. In the second half of Chap-

ter 4, we discuss this problem, its motivation, potential solutions and some

possible stances on its importance.

5 The Metaphysics of Logic

Logical realism is the view that logic is based on facts that are indepen-

dent of us, our psychological make-up, inferential practices or conventions.

Logical realism is perhaps a default view about logic; however, there are

important alternatives. Psychologism about logic is the view that facts

about our mind/brains ground logic. A further alternative to full-blooded

realism and plain psychologism is to ground the logical facts in our ratio-

nality. This is a form of Kantianism about logic, recently defended by

authors like Robert Hanna (2006a).

Another way of avoiding the idea that logic is made true by some funda-

mental features of reality, rationality or our minds is to hold that logical

truths are “true by convention”. This view was famously held by the log-

ical positivists about both the laws of logic and those of mathematics.

In Chapter 5 we will discuss the different options and introduce some

of the main arguments of this debate about the metaphysical status of

logic.
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6 The Epistemology of Logic

If we follow the distinction between logica docens, logica utens and logica ens

(as introduced in the first chapter), then we can distinguish three different

questions about the revisability of logic. The first is the question of whether

our beliefs about logic and our theories of logic can be revised, and what

evidence there might be that could motivate us to such revision. The ques-

tion of whether the logic we use is also revisable is already harder to

answer. At least it seems as if training in (a particular) logic can influ-

ence our ways of reasoning. But can we rationally revise logic? Wouldn’t

that require to have a view from nowhere, which is a point of view that is

impossible to take, since we always reason in a logic? Perhaps encounter-

ing problems within your own logic, for example by facing paradoxes that

seem unacceptable by our own lights, might convince us that our logic

needs revision. But how can we rationally evaluate the alternatives?

Closely related to the question of how we can rationally revise the logic

we use is the question of how we can justify the logic we endorse. In this

chapter we will explore what the problem of rule-circularity is and discuss

possible answers to it: for example Nelson Goodman’s suggestion that the

laws of logic are justified because they are in reflective equilibrium with

our judgements about instances of rule-application and the idea that we

are default justified in applying the rules of logic and can hence escape the

circle (or, rather, its viciousness).

7 Logical Pluralism

Plurality and logic may meet in different ways, from the now relatively

uncontroversial ‘There are many pure logics’ to the highly controversial

‘Some domains require different canonically applied logics’ and ‘There

can be more than one correct logic canonically applied even to the same

domain’. We probe these combinations and rank them according to their

prima facie plausibility.

Perhaps the most interesting version of logical pluralism would be one

in which logics are canonically applied to the same domain. In this chapter

we explore the possible criteria that this kind of logical pluralism should

meet to be (not trivially) true, or at least, to not be at a disadvantage vis-à-vis

logical monism.



Introduction 7

8 Logic, Reasoning and Rationality

If logic is a descriptive theory of (perhaps) the laws of truth or (per-

haps) some very general features of metaphysical reality then we probably

should reason along the laws of logic in the same sense as we should

reason along the laws of physics when reasoning about physical subject

matter.

However, there is a second way in which logic is often taken to be

normative for thought. In this second way, logic is taken to be nor-

mative in a direct way, by understanding the laws of logic as telling

us normatively how we ought to reason. As Gilbert Harman (1986) and

other authors have pointed out, this doesn’t seem right. If we under-

stand logic in this way, then it would command us to conclude every

arbitrary thing if we believed a single contradiction; and it would in

any case clutter our belief box with all logical consequences of our

beliefs, even though most of these consequences have no relevance to us

whatsoever.

In the second half of Chapter 8 we will look at some of the puzzles

that logic and our logical knowledge give rise to in epistemic logic and the

semantics of propositional attitude reports. Perhaps logic is a priori, but cer-

tainly that doesn’t mean that everyone knows all logical truths, right? Are

there ways to distinguish different levels of logical knowledge? How can

we characterize the increase in understanding as we proceed in proving a

logical deduction?

9 Beyond Truth-Preservation

Some authors have argued that the most immediate justification of the

idea that logical consequence preserves truth (from premises to conclu-

sions) requires all the resources that yield a version of Curry’s Paradox, so

it could not be coherently required that valid arguments preserve truth. We

survey here different arguments for and against the abandonment of truth-

preservation based on such a paradox of validity. We also explore ways of

logically relating premises and conclusions other than truth-preservation,

that are mainly derived from the use of cognitive states like acceptance

and rejection (or their linguistic expressions, assertion and denial) in the

definition of validity.
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10 The Place of Logic in Science

Perhaps the most evident role of logic in the empirical sciences is that of

an inferential device used to extract information from certain bodies of

beliefs or knowledge. However, there are other significant roles of logic

in the sciences. Logic plays an important role in theoretical linguistics (for

example, in the form of formal semantics), and as a theory of reasoning in

cognitive science.

Mathematics is the paradigmatic case of logic working as an inferen-

tial device. But besides the problem of identifying a logic for mathematics

given that seemingly one can do mathematics based on the logic one

wishes, there is the problem of whether logic should be more properly

thought of as a branch of mathematics, or as based on it, rather than the

other way around.

In philosophy, formal logic is used as a tool. We use logic (and its symbol-

ism) for disambiguation, the formal reconstruction of arguments, and for

modelling. Especially in the last two functions, it seems that logic needs to

satisfy special adequacy requirements: it must be philosophically neutral,

and it must allow philosophers to express the kind of claims they intend

to make.

Finally, we look at logic as a science itself. Is logic an exception in the

family of sciences? If so, what makes it special? If not, how does it fit in?

How to Read the Book

As we said before, we presuppose familiarity with the contents of a stan-

dard introductory course in logic. It’s possible to read the book to some

extent without this familiarity, but we doubt that you will gain much

insight from that. If you are not familiar with standard logic, we recom-

mend reading Halbach (2010). This is a contemporary introduction to logic

which uses similar terminology to ours.

The book is conceived as a course that can be read from beginning to

end. However, the chapters are actually for the most part self-contained

(and otherwise contain explicit references to earlier chapters). Chapter 1

introduces some of the core terminology we use, and Chapter 2 gives a

quick recap about some of the main properties of standard logic. If you

have read these two chapters, you should be able to jump to whatever

topic interests you.
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When using this book for self-study, we recommend to think about the

questions at the end of the chapters and formulate answers to them. Even

without external feedback this will probably give you an indication of how

well you have understood the chapter.

How to Teach the Book

The course is conceived as a 10-week course with a lecture based on the

textbook, and a seminar based on further readings, covering one chapter

per week. If you have less time, you can concentrate on the textbook only

and take the questions at the end of each chapter as starting points for

discussion in the classroom. As we said above, Chapters 1 and 2 introduce

and explain some of the terminology that is used and presupposed in other

chapters. Other than that, you can freely pick and choose from the other

chapters what you want to cover in your course.



1 The Nature and Tools of Logic

Before we can begin the discussion of the philosophical issues that logic

gives rise to, we will first need to introduce a conceptual framework that

will help us to disambiguate different senses of the term ‘logic’, and a bit of

technical machinery that will allow us to talk about specific features and

aspects of logic that play a role in the philosophical discussion of logic.

What is “Logic”?

The word ‘logic’ is used in many ways, it is a multiply ambiguous word.

Note, for example, that one studies “logic” at college, but whereas one

person may study Frege–Russell first-order logic, another person may study

Aristotelian syllogistic or perhaps “informal logic and critical thinking”.

And that is not yet all, as it is not only that one may study different things

under the label ‘logic’, but one also finds “logic gates” in circuit design or

“fuzzy logic washing machines”. Were homophony a sure sign of identity,

we could conclude that logic is very powerful indeed, as it tortures students,

sanctions philosophers’ arguments and contributes to washing the dirty

laundry of all of them.

However, the term ‘logic’ has usually been employed more or less indis-

tinctly to designate a theory as well as what the theory is about and,

moreover, also for naming several of its applications. For many disciplines,

these aspects are linguistically distinguished, although the distinctions

range from a few letters to different words. Consider the case of history

where there is also often no clear distinction made. There is a widespread

sense in which ‘history’ is used to designate a series of events in the past,

and there is another equally widespread sense in which ‘history’ designates

the science which studies those events, the former being thus the object of

study of the latter. History is the study of history.

10
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In the case of history, people use the same word, making only, but not

always, a typographical differentiation. In the case of logic, people have

usually made not even such differentiation, typographical or other. On the

other hand, in the case of biology or physics there is a clear difference.

Biology is the science of living beings (and not the study of biology), and

physics is the science of matter and its transformations (and not the study

of physics).

Onemight conjecture that the fact that this difference between the disci-

plines (biology and physics on the one side, logic and perhaps mathematics

on the other) is due to the different degree of reflexivity of disciplines: the

more reflexive a discipline is, the more blurred the distinction between the

theory and its object. Consider the distinction between the body of knowledge

of a discipline D and the images of D. The body of knowledge includes state-

ments that are answers to questions concerning the object of study of D, as

well as theories, facts, methods and open problems. Images, on the other

hand, are cognitive and normative statements about the discipline that

serve as guiding principles for both posing and answering questions that

have arisen within the body of knowledge and which are typically not part

of the body of knowledge. Such statements may determine which prob-

lems should be considered more pertinent and urgent, what counts as a

pertinent experiment (or proof or argument), etc. The image also contains

normative views on which procedures, individuals or institutions have the

authority to settle disagreements inside the discipline and what the appro-

priate curriculum to educate the next generation of the members of the

discipline should be.

On the basis of this distinction, Corry (2004) argues that mathematics

is reflexive, in the sense that it can formulate and prove statements about

itself from within the mathematical body of knowledge; i.e. certain parts

of the body of knowledge of mathematics can be images of mathematics,

and vice versa. So, could it be the high degree of reflexivity in mathematics

and possibly logic that accounts for the difficulty in keeping theory and the

object of study clearly separated?

Reflexivity in this sense is certainly an interesting notion, and studying

its possible application in the case of logic would be worthwhile. However,

it seems of little help for explaining the confusion between theory and

object in disciplines like logic. One can well agree with Hilbert, Shapiro and

many others that metamathematics is just more mathematics, and with
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Corry on the reflexive character of mathematics, but there is no confusion

between mathematics, its objects of study and metamathematics: Even if

the objects of some mathematical theories could be other mathematical

theories, this does not amount to an identification of theory and object;

the levels still remain well distinguished.

Logic: Theory and Object – Pure and Applied

At any rate, once one is aware of the possibility of such confusion, one can

better spend one’s energy on developing mechanisms for avoiding those

mistakes and confusions rather than on seeking the possible sources of the

problems. Again, a comparison with certain parts of mathematics could be

useful. Even for theorists who favour one or just a small selection of log-

ics as the right ones, it is an undeniable fact that there are many logics.

As we shall have occasion to see in the chapters that follow, there is stan-

dard logic, there are intuitionistic and constructive logics, relevance logics,

paraconsistent logics, free logics and many more.

Now consider the analogy of geometry. In geometry, a domain of geo-

metrical objects, such as points and curves, can be characterized by means

of various principles, and we can study these objects for their mathemat-

ical interest. In this way, one can find Euclidean geometries that satisfy

certain traditional assumptions about geometrical objects – for example,

that the internal angles of a triangle total 180◦. However, one can also

find non-Euclidean geometries that do not satisfy these traditional assump-

tions – for example, the internal angles of a triangle might total more

or less than 180◦. Until the nineteenth century, ‘geometry’ just meant

Euclidean geometry, but by the middle of that century the geometrical-

ity of non-Euclidean geometries was controversially discussed. Although at

the time these alternative geometries weren’t considered descriptions of

the structure of physical space, they nevertheless appeared to deal with at

least some sort of lines, points and other objects that seemed analogous to

those of traditional Euclidean geometry.

Riemann realized that one might ask whether any of those geometri-

cal theories, if interpreted accordingly, could apply to the physical world,

whether there is anything like the actual geometry of the universe. Mere

deduction of consequences from the principles does not suffice for estab-

lishing this, as suitable empirical interpretations of such principles are
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needed in order to apply the geometries to a not so pristine world. The

correctness of a geometry seems to a great extent to be an empirical

question. Almost fifty years after Riemann’s work, the General Theory

of Relativity postulated a connection between mass and the curvature of

space(–time) which implied that space may have a non-zero curvature, and

thus be non-Euclidean. Predictions of General Relativity were borne out by

experimentation and the theory is now generally accepted as correct.

These developments in geometry led to a crucial distinction, namely

that between pure and applied geometry in particular, and between pure

and applied mathematics in general. Euclidean and non-Euclidean geome-

tries, although mutually incompatible, can be studied on equal footing as

pure mathematical theories. Can the situation in logic be tackled in a sim-

ilar fashion, making sense of both the plurality of logics and logic’s dual

nature as theory and object?

Even though a distinction between pure and non-pure or applied logic

has been advocated by several authors (see da Costa, 1979; da Costa, 1997;

Bueno, 2001; Priest, 2003), the way the distinction is drawn varies. For sim-

plicity, and because it has more unifying power, we will use a distinction

akin to Graham Priest’s version. Priest also stresses the distinction between

logic as a theory and logic as an object of study (Priest, 2003, 207) or, per-

haps better, he distinguishes the logical phenomena studied by logic as

theory from the theory itself. Moreover, Priest has also introduced the

fruitful notion of a canonical application of a theory. This conceptual stock

will provide us with the necessary distinctions that we will make use of

throughout the book.

The distinction pure/non-pure applies to each of the members of the dis-

tinction theory/object. Thus, we not only have pure and non-pure (applied)

theories, but also pure and non-pure objects or phenomena. Let us start

with the latter distinction. A pure logic would be a kind of mathematical

structure, a logical structure. (What specific kind of mathematical struc-

tures the logical structures are will be discussed later.) A non-pure logic

is a phenomenon with a logical structure. This includes daily-life argu-

ments, the flow of electricity in a circuit, closures on topological spaces,

the functioning of a computer program, etc.

A canonical non-pure logic is a phenomenon traditionally regarded as

belonging to the proper domain of logic, such as formal or informal

arguments made by people. Although the flow of electricity has a logical
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Table 1.1 Logic as a non-pure theory

Pure Non-pure

Object mathematical structures arguments, flow of electricity

Theory theories about mathematical

structures

philosophical logics (like Frege’s

Begriffsschrift)

structure, it is not a canonical object of study of logic and that is why it

counts as a non-canonical logical phenomenon.

We started the chapter by mentioning that the term ‘logic’ has often

been used without distinction to designate a theory as well as for des-

ignating what the theory is about. For example, ‘logic’ has been used to

name a certain science, roughly the science of right reasoning, as well as

for the presumed subject matter of such science, roughly the structure

of norms that govern right reasoning.1 Some terminology should mirror

this distinction. ‘Logic’, capitalized, could be used for theories that study

pure logics, ‘applied logic’ for the study of empirical phenomena with a

logical structure, and ‘canonically applied logic’ for the study of canonical

empirical phenomena with a logical structure. It has been common prac-

tice to reserve the term without adjectives (‘geometry’, ‘arithmetic’) for the

pure part. Noting a distinction between object and theory prevents most

of the discussed problems in the use of the term ‘logic’. If there is some

reticence in using the word ‘logic’ for any of the parts, the study of pure log-

ics might be called ‘Universal Logic’, as Béziau (1995) has suggested. Most

of the times in this book, ‘logic’ will designate canonically applied logic,

unless otherwise specified, since most of the more interesting philosophi-

cal discussions surrounding logic belong to its canonical side, whether this

concerns logic as a theory or as an object. Nonetheless, sometimes con-

text will determine what sense of ‘logic’ is being used, without requiring

recurrent specification.

These distinctions will allow us to clarify certain questions and to pose

them in better terms. A recent example of the utility of the distinctions

is Priest’s discussion of the revisability of logic (as we shall see in Chap-

ter 6). Assuming that we are discussing the canonical part of logic, what is

1 Whether logic is indeed best characterized as concerning norms of right reasoning

will be discussed later at several places in this book. Here this just serves as an

example.
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considered to be in need of revision? Is it a theory, or is it an application

of the theory or rather the object studied by the theory? Another example

of the clarifications allowed by these distinctions concerns the discussion

of logical pluralism (to which we come back in Chapter 7). What kind of

plurality is championed or rejected? A plurality of pure logical theories

with their corresponding plurality of pure logical structures? It seems that

most philosophers of logic have a situation in mind in which one has a sin-

gle canonical logical phenomenon, say, validity in everyday argumentation,

and many canonically applied logical theories to explain the phenomenon.

Is it possible that all these theories are right with respect to that single phe-

nomenon? The distinctions above can be very helpful when approaching

such questions.

Yet, for the purposes of this chapter, our initial question concerning the

nature and subject matter of logic can also be disambiguated with the help

of the distinctions just introduced. There need not be any tension between

the idea that logic is a mathematical theory studying certain mathemat-

ical structures, and saying that logic is a theory about the evaluation of

arguments in ordinary language and the sciences. Logic, as a pure math-

ematical theory, does the former, but also logic, as a canonically applied

theory, does the latter. Now, logic has traditionally been expected to serve

as a theory useful for the analysis of the inferential relationships between

premises and conclusions expressed in arguments we actually employ (be

it in the sciences or in daily life). Then, in many if not most debates, logic

is considered a canonically applied theory.

Traditionally, logic is an account of logical validity that has to exhibit

and explain certain features:

Truth-preservation If an argument is logically valid then the truth of the

premises guarantees the truth of the conclusion.

Necessity That the premises imply the conclusion holds of necessity.

Formality Logically valid arguments are so in virtue of their logical form.

Aprioricity Logic is knowable a priori.

Universality A logically valid argument is valid across all domains of

enquiry.

Normativity Rejecting a logically valid argument is somehow irrational.

Although all of them seem prima facie sound, how to spell these features

and their connections out is an open philosophical problem. A more or

less well-known case is that of formality. MacFarlane (2000) has argued that
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the formality of logic can mean at least three different things: (i) logic pro-

vides constitutive norms for thought as such; (ii) logic is indifferent as to

the particular identities of objects; (iii) logic abstracts entirely from the

semantic content of thought; to which Beall and Restall (2006) add (iv) logic

is schematic. Aprioricity is another good example of the unsettledness of

these features. That logic is a priori can mean, for example, that (i) valid

arguments are so for non-empirical reasons; (ii) we can come to know the

logical validity of an argument via non-empirical reasons; (iii) logic serves

to organize the rest of our conceptual inquiries; (iv) logic or a logically valid

argument cannot be disproved by empirical reasons. Similar remarks can

be made for all the other features. Nonetheless, most logicians and philoso-

phers of logic have endorsed that at least a significant part of these features

should accompany logic, although nowadays it is difficult to find a single

author that endorses all of them.

Different versions of each of these features will be discussed at length

in the forthcoming chapters: formality in Chapters 3 and 4; aprioricity in

Chapters 5 and 6; universality in Chapter 7; normativity in Chapter 8, and

truth-preservation and necessity in Chapter 9.

In the course of the history of logic, in all its forms, several formal tools

to study and do logic have been developed. But before turning to review

some of the formal tools to study and do logic, we would like to examine

an issue that has been hardly ever discussed, namely how far the analogy

between geometry and logic should be taken.

Rescher’s Rejection of the Geometric Analogy

One of the most detailed assessments of the analogy is Nicholas Rescher’s

(Rescher, 1969), which is at the same time one of the most severe critiques

of it. According to Rescher, epistemological and developmental similarities

between logic and geometry are not sufficient for claiming an analogy in

more important matters, namely their respective treatment of rivalry, the

question about the very nature of the theories involved or the character-

ization of their subject matter. We are not going to discuss the whole of

connections between logic and geometry, but will just focus on the issue

whether and how a distinction between the pure and the applied can be

drawn in logic. We will argue that Rescher’s denial of the analogy and his

rejection of the idea of a pure logic are grounded in certain historical errors



The Nature and Tools of Logic 17

regarding the development of geometry and on a dogmatic assumption

about the nature of logic as an essentially canonically applied theory.

Rescher accepts a general analogy between geometry and logic, namely

that in the same way as there are many geometries there are also many

logics. But this would be all there is to the analogy. Rescher’s arguments

proceeds from the following premises:

(R1) In geometry it is taken for granted that there is a distinction between

“pure” and “applied” (or “physical”) geometry.

(R2) Formally, all geometries are “right”, or none can be formally “wrong”

(because they are consistent etc.), but there could be only one right

physical geometry.

It should be clear that Rescher is taking ‘logic’ to mean ‘logic as a theory’,

as he is discussing correctness and other properties of theories. Rescher’s

first argument against the geometric analogy aims at establishing that

there is nothing like “pure logic” in the way in which (R1) says that there is

pure geometry (Rescher, 1969, 217). According to Rescher this is so because

every system deserving the name ‘logic’ must satisfy, among other things,

the requirement of having an interpretation which is not only a mathemat-

ical model for an abstract calculus nor just anything satisfying some formal

axioms, but an interpretation involving concepts such as that of sentences

(or another linguistic entity), inferences, arguments, as well as the concepts

of meaning or truth of sentences. Mere mathematical theories, such as pure

logics would be, do not involve any concepts of that kind. Rescher thus

discards the distinction between pure and applied logic on the basis of a

traditional view of logic. Because according to such a view logic is essentially

applied, logic is identified with its canonical application.

Rescher uses (R2) in his second argument against the geometric analogy.

He argues that even if we suppose that there are pure logics that are all

formally correct, it would still be false that there is just one right applied

logic. Rescher thinks that there are many correct logics. Even the mere

possibility of the correctness of more than one logic is enough for him to

regard logic as being essentially different from geometry.

Rescher’s ultimate argument for rejecting the geometric analogy is that

in order to develop a logic, one necessarily employs a “presystematic logic

machinery”. Rescher draws a distinction between “systematized logic”,
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which would be a special branch of knowledge, a theory in the usual

sense, and “presystematic logic”, which would be a general instrument

for the realization of knowledge throughout all its branches. The presys-

tematic logic machinery would be the “preexisting idea of what logic

is” (Rescher, 1969, 231) which would determine the following “regulative

principles” or, better, criteria of logicality: precision, exactness, economy,

simplicity, coherence and consistency, but “[a]bove all, one must [. . .] stress

the regulative ideal of by-and-large conformity to the key features of the

presystematic practice, of ‘saving the phenomena’ that are involved in

the presystematic practice” (Rescher, 1969, 228). Such regulative princi-

ples would serve as criteria of logicality because they “will play a key role

throughout the range of diverse ‘logics’ and their employment will effec-

tively condition our view of such systematizations” (Rescher, 1969, 224).

Thus, systems of logic would be systematizations of the presystematic prac-

tices of reasoning, normatively regarded. In other words, Rescher claims

that in order to develop a system of logic one needs the preexisting idea

of what logic is, while for developing a geometry no “presystematic geom-

etry” is needed (and according to him such presystematic geometry does

not even exist). Then he says that this difference implies “that the nature

of the choice between alternative systems in the two cases will in fact have

to be quite different” (Rescher, 1969, 219).

Let us discuss the last two arguments first. Rescher’s second argument is

inconclusive since its main premise, that there can be many (canonically)

applied logics but just one applied geometry, can be seriously doubted.

(Canonically) applied logical monism – roughly, the thesis that there is

only one correct logical theory about right reasoning – and applied geo-

metric pluralism are far more defensible than Rescher believes. We will

discuss monism more thoroughly in Chapter 7, but an argument for log-

ical monism put forward by Priest is that “[e]ven if modes of legitimate

inference do vary from domain to domain, there must be a common core

determined by the intersection of all these” (Priest, 2003, 464). That inter-

section would be the correct logic because its laws would be valid in all

domains, and independently of every domain. It is possible that this inter-

section is empty, “but I never heard a plausible argument to this effect”

(Priest, 2003, 464f). Concerning geometric pluralism, it is often held that

different geometries are appropriate for different contexts. For example,

when we build a tower it is appropriate to use Euclidean geometry. But

when we do surveying, it is appropriate to use spherical geometry. And
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when we do cosmology, it is appropriate to use Riemannian geometry. It is

possible that the usage of different geometries in different regions of the

universe is not only a matter of simplicity, but also a requirement of the

structure of the universe; maybe there is no global geometry. Rescher’s sec-

ond argument does not make its point; there is more needed if one wanted

to draw an essential distinction between logic and geometry based on the

status of monism and pluralism in each case.

Priest tries to reject Rescher’s third argument as follows:

Rescher’s observation [that the articulation of a logical system requires a

presystematic logic whereas the articulation of a geometric system does

not require a presystematic geometry] seems correct. But [. . .] it is difficult

to see it as having significant import for the question. The formulation of a

grammar for a language requires the employment of a metalanguage, and

so a metagrammar. But this hardly entails that there cannot be rival

grammars for a language, or that the question of which is correct is not a

posteriori. The same could be true of logic. (Priest, 2003, 443)

However, it seems that Priest misses Rescher’s point. Rescher is contending

neither logical pluralism nor the existence of rivalry in his third argument.

Remember the second argument: he thinks that in the case of geometry

only one will be the correct one among rival geometries; in the case of

logic there are rivals, genuine alternatives, but many of them may be right.

Rescher tries to show that there is a fundamental disanalogy between logic

and geometry, that they are radically different disciplines, not that there

are no rival logics nor that the question of which logic is correct should be

answered a priori.

Alberto Coffa provides an nice summary of the state of affairs with

respect to geometry at the end of nineteenth century and the beginning

of twentieth century:

During the second half of the nineteenth century, through a process still

awaiting explanation, the community of geometers reached the conclusion

that all geometries were here to stay [. . .]. [A] community of scientists had

agreed to accept in a not-merely-provisory way all the members of a set of

mutually inconsistent theories about a certain domain [. . .]. It was now up

to philosophers [. . .] to make epistemological sense of the mathematicians’

attitude toward geometry [. . .]. The challenge was a difficult test for

philosophers, a test which (sad to say) they all failed [. . .]. (Coffa, 1986, 8)
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A few pages later he continues:

For decades professional philosophers had remained largely unmoved by

the new developments, watching them from afar or not at all [. . .]. As the

trend toward formalism became stronger and more definite, however, some

philosophers concluded that the noble science of geometry was taking too

harsh a beating from its practitioners. Perhaps it was time to take a stand

on their behalf. In 1899, philosophy and geometry finally stood in

eyeball-to-eyeball confrontation. The issue was to determine what, exactly,

was going on in the new geometry. What was going on, one might reckon,

was that geometry was becoming less the science of space or space-time,

and more the formal study of certain structures. Issues concerning the

proper application of geometry to physics were being separated from the

status of pure geometry, the branch of mathematics. (Coffa, 1986, 17)

These passages support two observations. First, the idea of a presystematic

geometry is not as odd as Rescher makes it look. The distinction between

pure geometry and physical geometry is very recent, and it also had

detractors coming from the “pure side”. Until the mid-nineteenth century,

mathematics was mostly governed by empirical or more or less intuitive

considerations. It was viewed as a collection of exact observations about the

physical universe. Most mathematical problems arose from physics; in fact,

there was no clear separation between mathematics and physics. Proof was

a helpful method for organizing facts and reducing the chance of errors,

but each physical fact remained true by itself regardless of any proof. This

pre-nineteenth-century viewpoint persists in many textbooks until now,

because textbooks change slowly, and because a more sophisticated view-

point may be beyond the content of a textbook. Prior to the nineteenth

century Euclidean geometry was seen as the best known description of

physical space. Some non-Euclidean axioms for geometry were also stud-

ied, but not taken seriously; they were considered works of fiction. Indeed,

most early investigations of non-Euclidean axioms were carried out with

the intention of proving those axioms wrong: mathematicians hoped to

prove that Euclid’s fifth postulate was a consequence of other axioms, by

showing that a denial of the parallel postulate would lead to a contra-

diction. All such attempts were unsuccessful – the denial of the parallel

postulate merely led to odd conclusions, not to outright contradictions –

though sometimes errors temporarily led mathematicians to believe that

they had succeeded in producing a contradiction. The motivation behind
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Beltrami’s and Klein’s attempts to find models for non-Euclidian geome-

tries was to understand them on the basis of the intuitive, Euclidean

geometry, though their research eventually supported the mathematical

autonomy of geometry. Around the turn of the century, Poincaré and

Hilbert each provided an explanation of geometry that took the discipline

to be an implicit definition of its concepts: its terms could be applied to

any system of objects that satisfied the required axioms. Each of these

two mathematicians found vigorous opposition from a different logicist –

Russell against Poincaré and Frege against Hilbert – who maintained the

vanishing view that geometry is essentially concerned with physical space

or spatial intuitions. (Even contemporary philosophers still speak as if

there were such presystematic geometry: “A finite projective plane is not

going to be used to model physical space, but it may be used to model some-

thing analogous to physical space” (Beall and Restall, 2000, 489).) What

happened was that mathematicians and philosophers revised their presys-

tematic idea of “geometry” (and of “algebra” etc.) removing any empirical

content from it and replacing most constant elements by variables.

The second point to take from Coffa’s remarks is that it seems that

logic has been suffering a transformation similar to that of geometry

as described in the preceding paragraph. Nevertheless, most logicians,

philosophers and even some mathematicians are still resistant to the idea

of regarding logic as the formal study of certain structures rather than

the science of the evaluation of arguments. This leads us to the analy-

sis of Rescher’s first argument and the consideration of the pure/applied

distinction in the case of logic.

Once one distinguishes between logic as theory and object (both in

their canonical forms), the pure/non-pure distinction (again in the canon-

ical form) comes almost naturally. Once it is in place one can do justice

to both intuitions, namely that there are pure logics, like there are pure

geometries, as well as Rescher’s traditional ideas about the subject matter

of logic. The questions about rivalry and correctness only makes sense if

one holds that logics have some special job to do, in the same way pure

geometries are not rivals and none can claim to be “the right one” until

they are applied to, say, the study of physical space. But those special jobs,

on which there can be rivalry and correctness, are what we have called the

canonical application of a logical theory. Rescher’s claim would then be

that canonically applied logics are not pure, and one cannot but agree. The
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further step is, as in the case of geometry, to recognize that the structure

one retains after removing the special job from canonically applied logic is

still a logic in a sense.

Background on Tools

In this book we try to keep technicalities to a minimum. We only refer to

technical results when they are (or seem to be) of significance for the philo-

sophical discussion. However, in order to present these technical results

and to motivate them, we will need to have a certain technical toolkit in

place.

In this section we introduce some set-theoretic concepts and some

notation that will be useful for the rest of the book, but especially for

discussions of those conceptions of logic in which the notion of model is

central, and introduce thus the notion of model or interpretation. We also

motivate the idea of proof theory in general and of sequent calculi in par-

ticular. Finally, we introduce the main ideas underlying the proof-theoretic

conceptions of logic.

The following is not an introduction to mathematical logic. We presup-

pose familiarity with mathematical logic. The following is to some extent a

generalization of what one typically learns in an introduction to logic, and

an introduction to our preferred style of notation (to make sure that the

reader is “on the same page” as us).2

Logic Model-theoretically

First, we will need some set-theoretical concepts and notation. A set is a

collection of things, called its elements, such that no other relations beyond

their belonging to it, and the identity and difference between them, mat-

ters for determining the set. In particular, neither the ordering nor the

number of times each member appears in it matter. If the number of times

matters, we have a multiset; if the ordering also matters, we have a list. (We

will assume that each multiset has only finitely many members, each of

which occurs only finitely many times.) Thus, even though x �= y, 〈x, y, x〉

is a different list from 〈x, x, y〉, but [x, y, x] is the same multiset as [x, x, y];

2 Again, for an introduction to modern logic, we recommend Halbach (2010) and Sider

(2010).
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[x, x, y] is a different multiset from [x, y], but {x, x, y} is the same set as {x, y}.

(Note the different types of brackets to collect members of lists, multisets

and sets.) We will use ‘object’ to refer indistinctly to either a set, a multiset

or a list. We use ‘x ∈ X’ to say that x is an element of, or that it belongs to,

the object X. We use ‘X ∪ Y’ for the union of X and Y – that is, for the set

containing all and only those objects that are either in X or in Y . We use

‘X ∩ Y’ for the intersection of X and Y – that is, for the set containing all

and only those objects that are both in X and in Y . Finally, we use ∅ for the

empty set – that is, for the (unique!) set with no members.

A map is a relation between two objects X and Y – in that order, called

the domain and codomain of the map – and denoted by ‘f : X −→ Y’, such

that to any element x in the domain corresponds one and only one in the

codomain, often denoted ‘f (x)’.

Lists have to preserve the ordering between the elements, that is, if ≤

is the ordering between the elements of a list X, and a and b belong to it

and are such that a ≤ b, then f (a) ≤ f (b). Although domain and codomain

can be different kinds of objects, say, the domain can be a multiset and the

codomain a list, we will restrict ourselves to the cases where either both

are of the same type or, if they are different, the codomain is a set. When

we are just considering sets, a map will be called a ‘function’.

YX is the object of all maps from X to Y, also called ‘exponential’. The

cardinality of YX, |YX|, can be computed by |Y||X|. In a typical first logic

course, an interpretation of a formal language L is a map from L to V, the

set of (two) truth-values. Then, the size of a truth-table from your first logic

course is an exponential of the form VL̂, where L̂ is a restriction of L, and

it has as elements all the different propositional variables of the formula

one is going to evaluate. So the cardinality of VL̂ is |V||L̂| = 2n, where n is

the number of different propositional variables of the formula one is going

to evaluate. 2n thus gives the number of rows of a truth-table, that is, the

number of interpretations of L̂, that is, of elements of the exponential VL̂.

X × Y is the object of all pairs 〈x, y〉 such that x ∈ X and y ∈ Y . Again,

in a typical first logic course, an n-ary connective k is interpreted as a map

fk : Vn −→ V, where ‘Vn’ is a shortand for V× . . . × V n times. Thus, unary

connectives, like negation, are interpreted as maps f : V1 −→ V, that is,

f : V −→ V, whereas binary connectives are interpreted as functions of the

form f : V2 −→ V, that is, f : V × V −→ V. The two columns on the left in

a typical truth-table give the pair members of V × V (see Table 1.2. for an

example).
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Table 1.2 Example of a typical

truth-table for classical conjunction

φ ψ (φ ∧ ψ )

⊤ ⊤ ⊤

⊤ ⊥ ⊥

⊥ ⊤ ⊥

⊥ ⊥ ⊥

Now we can give the basics of a model-theoretic presentation of a logic.

The tabular presentation of logics hides, so to speak, many of the com-

ponents of the models used to characterize such logics but that are also

present in logics without truth tabular presentations, like standard first-

order logic, intuitionistic logic or the post-Kripke modal logics. Think, for

example, of a truth-table from (zeroth order) standard logic. It involves a

number of more or less obvious components, such as (functional) evalu-

ations that assign to each formula one and only one of the exactly two

truth-values available. It is not very obvious whether these evaluations take

evaluation indices into account and why, or that, actually, the truth-values

are ordered in a certain way, and it is far less obvious how these compo-

nents contribute to the determination of what counts as logically valid. We

will try to make these aspects more precise. The following is thus a very

general framework that can be used to characterize logics. It is a bit more

complex than the standard model-theoretic characterization you find in

logic textbooks, but it makes explicit many of the features that you can

“tweak” in order to arrive at an alternative (pure) logic.3

Model-theoretically, a logic can be characterized by a structure of the

form SL = 〈L, W, R, D, V, K, C, δ, v〉, where the tuple consisting in SL

minus L is called a model for L. The rough explanation of each component

is as follows.

L stands for our formal language. The formal languages we are going to

consider here are non-empty sets of formulas recursively defined as usual

on (non-empty, possibly infinite) fixed formal vocabularies whose building

blocks are

• (non-empty, possibly infinite) sets of terms (i.e. constants a1, a2, . . . ,

variables x1, x2, . . . and functional terms f1, f2, . . .);

3 In the rest of the book, we will typically use only parts of this framework. However,

we believe it is useful to get a somewhat comprehensive picture here.



The Nature and Tools of Logic 25

• (non-empty) sets of sets of n-ary predicates for each natural number n R11,

R12, . . . , R
n
1, R

n
2, . . . ;

• (non-empty, possibly infinite) sets of sets n-ary connectives, which in-

clude quantifiers for any order m (we have thus negations ¬1, ¬2, . . . ,

conjunctions ∧1, ∧2, . . . , disjunctions ∨1, ∨2, . . . , conditionals →1, →2, . . . ,

biconditionals ≡1, ≡2, . . . , necessities ✷1, ✷2, . . . , possibilities ♦1, ♦2, . . . , unive-

rsal quantifiers ∀11, ∀
1
2, . . . ∀

m
1 , ∀

m
2 , particular (or existential) quantifiers ∃11,

∃12, . . . , ∃
m
1 , ∃

m
2 , . . . , etc.).

‘p’, ‘q’, ‘r’, . . . will be used as metavariables for atomic formulas (formulas

with no connectives); ‘τ1’, ‘τ2’, . . . will be used as metavariables for generic

terms; ‘x’, ‘y’, ‘z’, . . . will be used as metavariables for generic variables;

‘a’, ‘b’, ‘c’, . . . will be used as metavariables for generic constants; ‘f ’, ‘g’,

‘h’, . . . will be used as metavariables for generic functional terms; ‘F’, ‘G’,

‘H’, . . . , ‘P’, ‘Q ’, ‘R’, . . . will be used as metavariables for generic predicates

(arity will be clear from the construction of the formula); ‘φ’, ‘ψ ’, . . . will

be used as metavariables for generic formulas. Also, most of the languages

will contain only one of each kind of connective, but some of them may

have more than one negation, or more than one conjunction, conditional,

and so on.

W contains the indices of evaluation. These are where formulas are evalu-

ated or assigned a semantic value. When doing modal logic, it is standard

to call indices of evaluation possible worlds. More generally, indices can be

thought of as (possibly empty) lists of conditions on which formulas are

evaluated.

R contains a (possibly empty) collection of relations among the indices.

Their role can be explained as follows: sometimes the semantic value of

a formula at an index is computed using the values its compounds get at

other indices. In order to keep track of these connections, one needs n-ary

relations among indices; these are the elements of R. If we continue with

the example of modal logic, it is standard to evaluate modal formulas using

a binary accessibility relation. Thus, if we were defining a modal logic, we

would expect R to contain one binary relation for each modality being

considered.

D, the next element, is the domain of quantification function. For each

type of quantifier Q in L, D assigns an appropriate class of objects D
Q
w to

each w ∈ W . We will, throughout, adopt the convention of writing D or

Dw to pick out the first-order domain of quantification. Continuing with the
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example of first-order modal logic, D is the function that assigns to each

possible world the class of objects that exist in that world.

V contains the set of truth-values. It is standard to assume these are some-

how ordered, and it is commonly assumed that V contains at least a value

called false, denoted ‘⊥’, and a value called true, denoted ‘⊤’, and that ⊥ is

not above ⊤.

K is a family of subsets of ℘(V).4 We take each element of K to be a

kind of semantic value. As we shall see, K plays a role in defining different

notions of logical consequence or validity. We will generally assume that

V contains at least a set of designated values, written D+ and a set of antides-

ignated values, written D−. We will also assume the set of designated values

satisfies the following conditions:

(a+) ⊤ ∈ D+;

(b+) for every x, y ∈ V, if x ∈ D+ and y /∈ D+ then x <| y.

And we will also assume that the set of antidesignated values satisfies the

following conditions:

(a−) There is an x ∈ V such that for every y ∈ V, x ≤ y. Let us call false

such x and denote it ‘⊥’. ⊥ ∈ D−;

(b−) for every x, y ∈ V, if x ∈ D− and y /∈ D− then y <| x.

C contains the required truth relations. Each of these is a relation between

constructions on the set of truth-values and the set of truth-values, and

each plays a role in the evaluation of complex formulas. To say more, it

helps to consider the example of the usual connectives, about which more

will be said in the next chapter.

To begin, recall that negations, necessities and possibilities are unary

connectives; and that conjunctions, disjunctions, conditionals and bicon-

ditionals are binary connectives. All of these are said to be of zeroth order

because they don’t require quantification over individuals or sets of (sets

of) them. Thus, generally speaking, for each unary connective u in L, there

will be an element ρu in C of the form V×W −→ V, while for each

binary connective b in L, there will be an element ρb in C of the form

ρb : (V×V)×W −→ V.

4 ℘(V) is the powerset of V, the set of all subsets of V (which includes the empty set and

V itself ).
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Quantifiers will also be thought of as unary connectives, this time of

order greater than zero. So quantifiers come in a variety of forms: first-,

second-, third-order and so on. First-order quantifiers quantify over individ-

uals, second-order quantifiers quantify over sets of individuals, third-order

quantifiers quantify over sets of sets of individuals, and so on. Thus, corre-

sponding to each first-order quantifier f in L there will be a function ρf of C

of the form VD×W −→ V; corresponding to each second-order quantifier

s a function ρs of the form VV
D

×W −→ V, and so on.

The next element, δ, is the denotation function. It recursively specifies the

denotation of each term at each w ∈ W . It does this by first assigning an

appropriate function δw( f ) to each function symbol f , and assigning an

appropriate element δ(t) to each term t. By ‘appropriate’ in each case we

mean ‘appropriate to the type of the term/function’. We also take δ to have

assigned a denotation δw(t) to each term t at each w ∈ W by the following

recursive procedure:

• If t is a constant or variable, then δw(t) is whatever δ assigns to t.

• If f is an n-ary function symbol and t1, . . . , tn are terms, then

δw( f (t1, . . . , tn)) = δw( f )(δw(t1), . . . , δw(tn)).

Finally, v is a valuation function. It assigns a value in V at each w ∈ W

to any propositional parameters in L. It also assigns to each n-ary predicate

P and index w, a function vw(P) : Dn → V. This suffices, together with the

previously specified information, to recursively extend v to a function from

L×W to V.

The following will serve as both an example and an assumption: we will

assume in the remainder of the book that any language containing one of

the following connectives will interpret it in the given way:

vi(¬φ) = ρ¬(vi(φ)) =

{

⊤ if vi(φ) = ⊥

⊥ if vi(φ) = ⊤
vi(φ ∧ ψ ) = ρ∧(vi(φ), vi(ψ )) =min(vi(φ), vi(ψ ))

vi(φ ∨ ψ ) = ρ∨(vi(φ), vi(ψ )) =max(vi(φ), vi(ψ ))

vi(φ → ψ ) = ρ→(vi(φ), vi(ψ )) =max(vi(¬φ), vi(ψ ))

vi(✷φ) = ρ✷(φ) = inf{vj(φ) : Rij}

vi(♦φ) = ρ♦(φ) = sup{vj(φ) : Rij}

There are probably a few things here – namely, the min, max, inf and

sup operators – that are unfamiliar to many readers. We’ll briefly explain
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what these mean; first, though, recall that we’ve assumed that the mem-

bers of V are somehow ordered. Let’s write ⊑ for this ordering, whatever

it is. The basic idea is that, using this ordering, we can talk about least ele-

ments (mins), greatest elements (maxes), greatest lower bounds (infs), and

least upper bounds (sups). More explicitly,

• min(a, b) =

{

a if a ⊑ b

b otherwise

• max(a, b) =

{

b if a ⊑ b

a otherwise
• If X is a subset of V, then we say that inf(X) = a iff (if and only if )

(i) a ⊑ x for all x ∈ X, and

(ii) If b ⊑ x for all x ∈ X, then b ⊑ a.

• If X is a subset of V, then we say that sup(X) = a iff

(i) x ⊑ a for all x ∈ X, and

(ii) If x ⊑ b for all x ∈ X, then a ⊑ b.

Types of Validity

So, model-theoretically, we take logics to be a type of 9-tuple. But how does

this help us give an account of validity? We’ll explain by way of example.

First recall that one of the elements of our model-theoretically understood

logics was a set K of subsets of our set of semantic values V. We said these

corresponded to kinds of semantic values. We also assumed that K would

be taken to contain a set of designated values D+ and a set of antidesignated

values, D−. Roughly speaking, the set of designated values is the set of ways

to be true, while the set of antidesignated values is the set of ways to be false.

With that in mind, we might say that an argument is D+-logically valid,

or less precisely that it is truth-preserving, and in any case denoted Ŵ �D+

L
ψ ,

if and only if whenever v(φ) ∈ D+, for all φ ∈ Ŵ, v(ψ ) ∈ D+ too. This gives us

one plausible account of validity – an argument is valid when it transmits

truth from premises to conclusion.

Several related logical notions are nearby. For example, we might say a

formula φ is satisfiable if and only if there is a model in which v(φ) ∈ D+ –

that is, if and only if it can be true in some way. Or we might say a set of

formulas Ŵ is satisfiable if and only if there is a model in which v(φ) ∈ D+

for every φ ∈ Ŵ – that is, if and only if they can all simultaneously be true

in some way. We hope it’s clear that we could go on.
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On the other hand we might say that an inference is D−-valid in L,

denoted Ŵ �D−

L
ψ , if and only if whenever v(ψ ) ∈ D−, v(φ) ∈ D− for some

φ ∈ Ŵ as well. Roughly, the idea is that ψ is a D−-logical consequence of Ŵ

if and only if every model that fails to satisfy ψ is also a model that fails

to satisfy Ŵ. In many cases, D+- and D−-logical consequence coincide for

a given language L, i.e. they determine the same collection of valid argu-

ments. However, in Chapter 9 we will discuss some cases in which that is

not so. Just as in the case of D+-validity, there are a variety of related logical

notions available in the case of D−-validity – but the details are much the

same as above, so we will leave thinking them through to the reader.

Model Theory: Summing Up

All of this was rather abstract, and the reader could be forgiven for having

skimmed or even skipped much of it. In the next chapter, we will be exam-

ining several concrete examples. It is our opinion that neither the concepts

presented here nor the concepts presented there can truly be understood

independently of each other. Rather, what one ought to do is read one, then

the other, then the first again, etc. until one has a wholistic grasp of both

chapters.

In any event, before we turn to examples, there is one topic left to cover

in this chapter: proof theory.

Logic Proof-theoretically

In this book, when a logic, or certain features of it, need to be presented

proof-theoretically, we will work with sequent calculi to do it, since this

kind of presentation allows for an easy focus on the structural properties

of a logic, which will be important for many of the topics discussed in the

book.

The proof-theoretic framework provides the resources to analyse logi-

cal consequence as a procedural concept. In the proof-theoretic tradition,

logical consequence is understood as something more epistemologically

robust than mere preservation of values over a class of models, and the

main object of study of logic is the stepwise right reasoning from premises

to conclusions. Such an approach involves taking seriously the idea of look-

ing at structural properties of proofs as an integral part of the concept of

logical consequence. This is not necessarily confusing the question of what
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logical consequence is with how we come to know that a conclusion is

a logical consequence of a set of premises. Proof-theorists think that any

rewarding conceptual analysis of logical consequence must adhere to the

idea that at the heart of logic is the act of inferring, not the property of

preservation of certain values.

It is important to emphasize that the proof-theoretic approach to con-

sequence is taken to be an independent enterprise; in particular, their

adherents resist the idea that it has to be sound with respect to a model-

theoretic consequence relation.5 Just like model-theoretic consequence

relations are somehow “sound” by internal standards, not with respect to

some other formal relation, the proof-theoretic approach ought to give an

account of consequence whose success is not measured by comparison to

some other formalism, but by general desiderata of the conceptual analysis

of logical consequence.

Now to the details of sequent calculi. A sequent is something of the form

Ŵ ⇒ 	, where Ŵ and 	 are lists of formulas in a formal language like that

mentioned in the previous subsection. Sequents stand in for arguments;

Ŵ comprises the premises of the sequent, and 	 its conclusions (also called

‘antecedent’ and ‘succedent’ of the sequent, respectively).

A sequent calculus gives us rules for deriving sequents, and each calculus

determines a set of derivable sequents, which we will call the consequence

relation determined by the calculus. Intuitively speaking, the rules encode

ways of transforming inferences in an acceptable way. These rules come in

two varieties: operational and structural. An operational rule is one involving

certain specific vocabulary; we will introduce a number of these rules later.

Structural rules, on the other hand, do not involve any specific vocabu-

lary. They apply to any formulas, independent of their shape. There are

five main structural rules we will consider here. Identity allows us to derive

A⇒ A from nowhere, for any A; it guarantees a reflexive consequence rela-

tion. (It is often considered an axiom scheme rather than a rule; we will

count it as a zero-premise rule for uniformity.) Weakening allows us to add

whatever premises or conclusions we like to any sequent we have derived,

and ensures that our consequence relations will be monotonic. Exchange

allows us to disregard the order in which formulas appear in a sequent.

5 In this book we will denote a model-theoretic consequence relation with a double

turnstyle, �, but denote a proof-theoretic consequence relation with a single turnstyle,

⊢.
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Contraction allows us to move from a sequent that uses a formula twice as

a premise or a conclusion to the corresponding sequent that uses it only

once. In the presence of Exchange, together with certain special cases of

Weakening, we can replace lists with multisets in our sequents. In the pres-

ence of Contraction (together with certain special cases of Weakening), we

can replace multisets with ordinary sets in our sequents. Cut allows us to

combine derivations in a certain way: if we can derive A as a premise in

a certain context, and A as a conclusion in a certain context, then we can

put those contexts together without A, and derive the result. This is a gen-

eralization of Transitivity: when Cut holds, the resulting logic is transitive.

(Starting from the premise-sequents B ⇒ A and A ⇒ C, an application of

Cut yields the conclusion-sequent B⇒ C.)

Reflexivity

φ ⇒ φ

Weakening

Ŵ ⇒ 	
WL

φ,Ŵ ⇒ 	

Ŵ ⇒ 	
WR

Ŵ ⇒ 	,φ

Exchange

Ŵ,φ,ψ ,	 ⇒ 

EL

Ŵ,ψ ,φ,	 ⇒ 


Ŵ ⇒ 	,φ,ψ ,

ER

Ŵ ⇒ 	,ψ ,φ,


Contraction

φ,φ,Ŵ ⇒ 	
CL

φ,Ŵ ⇒ 	

Ŵ ⇒ 	,φ,φ
CR

Ŵ ⇒ 	,φ

Cut

Ŵ ⇒ 	,φ φ,
⇒ �

Ŵ,
 ⇒ 	,�

How to read the rules in a sequent system? In principle, the rule says that

a sequent of the form below the line may be inferred from (a) sequent(s) of

the form above the line. Our target logics have more than just structural

rules, of course. There are also operational rules, rules that govern particular

bits of vocabulary. We will keep it relatively simple here and focus on the

usual connectives: negation, conjunction, disjunction, implication and uni-

versal and particular quantifiers. Even with this restricted scope, though,

there is a lot to work with.
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Negation

Ŵ ⇒ 	,φ
¬ L

¬φ,Ŵ ⇒ 	

φ,Ŵ ⇒ 	
¬ R

Ŵ ⇒ 	,¬φ

Ŵ ⇒ φ,	
¬ L∗

Ŵ,¬φ,⇒ 	

Ŵ,φ ⇒ 	
¬ R∗

Ŵ ⇒ ¬φ,	

Conjunction

φ,Ŵ ⇒ 	

φ ∧ ψ ,Ŵ ⇒ 	

ψ ,Ŵ ⇒ 	
∧ L

φ ∧ ψ ,Ŵ ⇒ 	

Ŵ ⇒ 	,φ Ŵ ⇒ 	,ψ
∧ R

Ŵ ⇒ 	,φ ∧ ψ

φ,ψ ,Ŵ ⇒ 	
∧ L∗

φ ∧ ψ ,Ŵ ⇒ 	

Ŵ ⇒ 	,φ 
⇒ �,ψ
∧ R∗

Ŵ,
⇒ 	,�,φ ∧ ψ

Disjunction

φ,Ŵ ⇒ 	 ψ ,Ŵ ⇒ 	
∨ L

φ ∨ ψ ,Ŵ ⇒ 	

Ŵ ⇒ 	,φ
Ŵ ⇒ 	,φ ∨ ψ

Ŵ ⇒ 	,ψ
∨ R

Ŵ ⇒ 	,φ ∨ ψ

φ,Ŵ ⇒ 	 ψ ,
⇒ �
∨ L∗

φ ∨ ψ ,Ŵ,
⇒ 	,�
Ŵ ⇒ 	,φ,ψ

∨ R∗
Ŵ ⇒ 	,φ ∨ ψ

Conditional

Ŵ ⇒ 	,φ ψ ,
⇒ �
→ L

φ → ψ ,Ŵ,
⇒ 	,�
φ,Ŵ ⇒ 	,ψ

→ R
Ŵ ⇒ 	,φ → ψ

Ŵ ⇒ 	,φ ψ ,Ŵ ⇒ 	
→ L∗

φ → ψ ,Ŵ ⇒ 	

φ,Ŵ ⇒ 	

Ŵ ⇒ 	,φ → ψ

φ,Ŵ ⇒ 	,ψ
→ R∗

Ŵ ⇒ 	,φ → ψ

Universal quantifier

φ(τ ),Ŵ ⇒ 	
∀ L

∀xφ(x),Ŵ ⇒ 	

Ŵ ⇒ 	,φ(a)
∀ R†

Ŵ ⇒ 	,∀xφ(x)

Existential quantifier

φ(a),Ŵ ⇒ 	
∃ L†

∃xφ(x),Ŵ ⇒ 	

Ŵ ⇒ 	,φ(τ )
∃ R

Ŵ ⇒ 	, ∃xφ(x)

Notice we’ve marked both ∀R and ∃L with a ‘†’. This is because there

is a restriction on these rules: in both cases a must be what is called an

eigenvariable. In both cases this means the same thing: a must not occur

freely anywhere in the bottom sequent in either of these inferences.

The starred pairs define what are usually called ‘intensional’, ‘multiplica-

tive’ or ‘group-theoretical’ connectives, in contrast to the non-starred pairs,

which are called ‘extensional’, ‘additive’ or ‘lattice-theoretical’ connectives.

Finally, all four negation rules are “double line” rules. This is a

convenient shorthand; what it means is just that the rule one gets
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by turning any of these four rules upside-down is also a rule in our

system.

A proof in a sequent calculus SC is a finite labelled tree whose nodes

are labelled by sequents, in such a way that leaves are labelled by axioms

and each sequent at a node is obtained from sequents at immediate pre-

decessor nodes according to one of the rules of SC. We will denote proofs

by means of the metavariables D, D′, . . . . If D is a proof, a subtree D′ of D

which is itself a proof is called a subproof of D. A sequent S is provable in

SC (or SC-provable, or a theorem of SC) if and only if it labels the root of

some proof in SC (i.e., as it is sometimes said, if and only if it is the end-

sequent of such a proof). In the next chapter, we will look at a slightly

modified form of this system. For now it’s worthwhile to see the system ‘in

action’.

To begin, let’s think about how to prove p ⇒ q → p. Since our goal is

to show this sequent can occur as the endsequent of a proof, we begin by

writing it down, then applying rules to it to grow the proof upwards from

this root, eventually reaching leaves of the form r⇒ r. In stages, one might

do this as follows:

Stage 1: p⇒ q→ p Stage 2:
p, q⇒ p

→ Rp⇒ q→ p

Stage 3:

q, p⇒ p
ELp, q⇒ p

→ Rp⇒ q→ p
Stage 4:

p⇒ p
WLq, p⇒ p
ELp, q⇒ p

→ Rp⇒ q→ p

Similarly, if we want to prove that p→ q⇒ ¬p∨ q, then we might do so as

follows:

Stage 1: p→ q⇒ ¬p ∨ q Stage 2:
p→ q⇒ ¬p, q

∨ R∗
p→ q⇒ ¬p ∨ q

Stage 3:

p→ q, p⇒ q
¬ R∗

p→ q⇒ ¬p, q
∨ R∗

p→ q⇒ ¬p ∨ q

Stage 4:

p⇒ p q⇒ q
→ Lp→ q, p⇒ q
¬ R∗

p→ q⇒ ¬p, q
∨ R∗

p→ q⇒ ¬p ∨ q

Questions

1. Sort the following into the categories of Table 1.1: Aristotelian syllo-

gistics, electrical circuits, entailment relations between propositions,

abstract objects instantiating a boolean algebra.
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2. Are all the features of logic that we listed on page 15 in your view essen-

tial to logic? Are there features that in your view do not hold or are

more controversial than others? If so, why?

3. Consider whether it makes sense to expect that non-canonically applied

logics exhibit some of the features listed on page 15. In what sense

could logic gates in circuit design be normative? What is the normativ-

ity of a pure logic (or of group theory for that matter)?

4. Formality is often identified with topic-neutrality, but isn’t a pure logi-

cal theory concerned with a particular subject matter, namely logical

structures, and thus not topic-neutral? What is topic-neutrality anyway?

Canonically applied logic has a specific subject matter and that does not

seem to affect its topic-neutrality. How can an object, a logical structure,

be topic-neutral?

5. To make sure you understand the difference between min and inf and

between max and sup, answer the following questions:

• As given, min and max work on only two elements at a time. How

would you generalize min and max to make sense of expressions like

min(x1, x2, . . . , xn) when n > 2?

• Explain why min(x1, x2, . . . , xn) = inf(x1, x2, . . . , xn).

• Suppose V is identical to the set of rational numbers. Let X be the

set of rational numbers strictly greater than 0 and strictly less than

1. Explain why min(X) and max(X) are undefined, but inf(X) = 0 and

sup(X) = 1.

• Be careful! One should not conclude from the previous part of the

problem that we can’t make sense of min(X) and max(X) whenever

X is infinite. Show by example that there is a perfectly good way to

make sense of these concepts.



2 The Standard Story and Its Rivals

Written by Shay Logan

Introduction

If there is a “standard story” about the nature of logic, then it has the

following three pieces:

Definition of Logical Consequence (DLC) 	 is a logical consequence of Ŵ if and

only if it is impossible for every sentence in Ŵ to be true while every

sentence in 	 is not true.

Consistency Assumption (CN) It is impossible for a sentence to simultaneously

be both true and false.

Completeness Assumption (CM) It is impossible for a sentence to be neither

true nor false.

DLC is, you might see, essentially the definition of D+-logical conse-

quence from the previous chapter. It may not seem like adding CN and

CM to DLC does very much. But, as it turns out, together these three theses

are sufficient to single out a unique correct logic in many formal languages.

The logics that arise from these assumptions have come to be called classical

logics. This is not because of any connection to anything else that goes by

the name ‘classical’ but because they are, as the logics that one gets from

the Standard Story, something akin to standard logics.

In this chapter we’ll see how to get from the Standard Story to classical

logic in one particularly simple language. We’ll then turn to examining

alternatives that arise by challenging various of the assumptions in the

Standard Story. Along the way we will examine philosophical arguments

for and against these assumptions.

35
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From the Standard Story to classical logic

To give a flavour for how the Standard Story gives rise to a unique logic, we

will restrict our attention to a simple, non-modal propositional language.

Attention to detail will turn out to pay dividends here, so we’ll take the

time to set things up very explicitly.

Linguistic Matters

We will call the language we are discussing ‘L’. The complete vocabulary

of L will consist of the following:

• the propositional variables p, q, r, p1, q1, . . . ,

• the unary connective ¬,

• the binary connectives ∧ and ∨,

• parentheses and brackets of various sizes.

The set of sentences of L is given by the following rules:

• Every propositional variable is a sentence. We call these the atomic

sentences of L.

• If φ is a sentence, then so is ¬φ.

• If φ and ψ are sentences, then so are (φ ∧ ψ ) and (φ ∨ ψ ).

As usual, we will take ‘¬’ to mean ‘not’, take ‘∧’ to mean ‘and’, and take

‘∨’ to mean ‘or’. That is, we take the truth-and-falsity conditions for these

connectives to be given as follows:

• The sentence ¬φ is true if and only if φ is false.

• The sentence ¬φ is false if and only if φ is true.

• The sentence (φ ∧ ψ ) is true if and only if φ is true and ψ is true.

• The sentence (φ ∧ψ ) is false if and only if at least one of φ and ψ is false.

• The sentence (φ ∨ ψ ) is true if and only if at least one of φ and ψ is true.

• The sentence (φ ∨ ψ ) is false if and only if φ is false and ψ is false.

With these things out of the way, let’s now turn to seeing what the

Standard Story tells us about the logic of L.

Logical Consequence

The first – and as it turns out, most powerful – of the assumptions in the

Standard Story is about the definition of logical consequence. As we stated
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it, logical consequence is defined in terms of impossibility: 	 is a logical

consequence of Ŵ if and only if it is impossible for every sentence in 	 to

be true while every sentence in Ŵ is not true.

There are two things worth remarking about this definition. The first

is that it tells us what the subject matter of logic is: logic is about logical

consequence, which is defined in the first of the standard assumptions.

This view of logic is, somewhat surprisingly, both fairly new and fairly old.

John Etchemendy has remarked on this in the following passage:

Throughout much of this century, the predominant conception of logic was

one inherited from Frege and Russell, a conception according to which the

primary subject of logic, like the primary subject of arithmetic or geometry,

was a particular body of truths: logical truths in the former case,

arithmetical or geometric in the latter [. . .] This conception of logic now

strikes us as rather odd, indeed as something of an anomaly in the history

of logic. We no longer view logic as having a body of truths, the logical

truths, as its principal concern; we do not, in this respect, think of it as

parallel to other mathematical disciplines. If anything, we think of the

consequence relation itself as the primary subject of logic, and view logical

truth as simply the degenerate instance of this relation: logical truths are

those that follow from any set of assumptions whatsoever, or alternatively,

from no assumptions at all. (Etchemendy, 1988, 74)

The second is that, while this definition is not the only option on the

table once we’ve settled on logical consequence as the subject matter of

logic, it is nonetheless fairly clear that truth transmission is one of the

core components of what logic is about. But the definition leaves open the

issue of saying exactly what “possibilities” are. It seems like this could be

a subtle matter. It’s reasonable, for example, to wonder whether possibili-

ties – whatever they are – need to be complete, that is, whether they need to

“describe”, in some sense, a complete world, where all the facts are settled.

Another question to answer is whether possibilities need to be consistent.

If we stick to the Standard Story, then these questions are already

answered for us. The completeness assumption tells us that logical pos-

sibilities are complete. The consistency assumption tells us that logical

possibilities are consistent. And, since the Standard Story doesn’t force us

to make any other assumptions, a natural first stab at a definition of logical

possibility is this:
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Attempted Definition: A logical possibility is any way of labelling some sen-

tences in our language as true and labelling all (and only!) the others as

false.

This is almost correct, but misses a crucial detail that is exemplified by

the following observation: given what ‘∧’ means, φ ∧ ψ can be true if and

only if both φ and ψ are true. But the attempted definition doesn’t require

this, and so allows a “logical possibility” in which we label φ ∧ ψ as true

even though we’ve also labelled φ as false. To rule out this sort of deranged

“possibility” we adopt the following definition instead:

Definition : A logical possibility is a way of labelling some sentences in our

language as true while labelling all (and only!) the others as false such that

(a) The sentence ¬φ is labelled true if and only if φ is labelled false.

(b) The sentence ¬φ is labelled false if and only if φ is labelled true.

(c) The sentence (φ ∧ψ ) is labelled true if and only if φ is labelled true and

ψ is labelled true.

(d) The sentence (φ ∧ψ ) is labelled false if and only if at least one of φ and

ψ is labelled false.

(e) The sentence (φ ∨ ψ ) is labelled true if and only if at least one of φ and

ψ is labelled true.

(f ) The sentence (φ∨ψ ) is labelled false if and only if φ is labelled false and

ψ is labelled false.

Formal Semantics

This definition of ‘logical possibility’ suggests a natural way to build a math-

ematically precise formal semantics for L.1 To begin, say that a model of L

is simply a function from L to the set {⊤,⊥} (‘⊤’ for true and ‘⊥’ for false)

that obeys a few assumptions. Models will play the role of possibilities in

our formal semantics. Taking models to be functions forces them to behave

in accordance with the first part of our definition of ‘logical possibility’: a

model (logical possibility) is an assignment of exactly one of the semantic

statuses ⊤ (true) and ⊥ (false) to every sentence.

1 Eagle-eyed readers may also note that this definition is quite redundant. That’s

intentional, and will be useful later on.
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To capture conditions (a)–(f ), on the other hand, we require that models

meet their obvious counterparts. Altogether, then, we define what a model

is as follows.

Definition: A function v : L → {⊤,⊥} is a model if and only if it meets the

following assumptions:

• v(¬φ) = ⊤ if and only if v(φ) = ⊥.

• v(¬φ) = ⊥ if and only if v(φ) = ⊤.

• v(φ ∧ ψ ) = ⊤ if and only if v(φ) = ⊤ and v(ψ ) = ⊤.

• v(φ ∧ ψ ) = ⊥ if and only if v(φ) = ⊥ or v(ψ ) = ⊥.

• v(φ ∨ ψ ) = ⊤ if and only if v(φ) = ⊤ or v(ψ ) = ⊤.

• v(φ ∨ ψ ) = ⊥ if and only if v(φ) = ⊥ and v(ψ ) = ⊥.

We can now give a mathematically precise account of formal conse-

quence for L as follows: 	 follows semantically from Ŵ if and only if there

is no model v such that v(φ) = ⊤ for every φ ∈ Ŵ but for every ψ ∈ 	,

v(ψ ) �= ⊤. When this happens, we write Ŵ � 	. Since this is the account of

consequence we get when we flesh out the standard assumptions, we call

this classical logic (for L).

A Comparison

In Chapter 1, we said that a model of a logic would be an 8-tuple

〈W,R,D,V,K,C, δ, v〉. We can understand the “models” we just presented

as models in this sense by understanding the various elements as follows:

• W is a singleton set {•}.

• R is arbitrary.

• D is arbitrary.

• V = {⊤,⊥}.

• K = {{⊤}, {⊥}}.

• C is the collection of functions given by the following ‘truth-tables’:

v ρ¬(v)

⊤ ⊥

⊥ ⊤

v1 v2 ρ∧(v1, v2)

⊤ ⊤ ⊤

⊥ ⊤ ⊥

⊤ ⊥ ⊥

⊥ ⊥ ⊥

v1 v2 ρ∨(v1, v2)

⊤ ⊤ ⊤

⊥ ⊤ ⊤

⊤ ⊥ ⊤

⊥ ⊥ ⊥
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• Since we have no terms, δ can be the empty function.

• Finally, v is an assignment of either ⊤ or ⊥ to each propositional

variable.

Examining classical logic

So we now have on our hands a relation of logical consequence. Like any

other relation of logical consequence (see the discussion in Chapter 1), we

can examine both its structural features and its operational features. Recall that

in Chapter 1, we singled out the following structural rules as common to

many of the logics we would study:

Reflexivity

φ ⇒ φ

Weakening

Ŵ ⇒ 	
WL

φ,Ŵ ⇒ 	

Ŵ ⇒ 	
WR

Ŵ ⇒ 	,φ

Exchange

Ŵ,φ,ψ ,	 ⇒ 

EL

Ŵ,ψ ,φ,	 ⇒ 


Ŵ ⇒ 	,φ,ψ ,

ER

Ŵ ⇒ 	,ψ ,φ,


Contraction

φ,φ,Ŵ ⇒ 	
CL

φ,Ŵ ⇒ 	

Ŵ ⇒ 	,φ,φ
CR

Ŵ ⇒ 	,φ

Cut

Ŵ ⇒ 	,φ φ,
⇒ �

Ŵ,
 ⇒ 	,�

Let’s think now about which of these we’ll accept if we read ‘⇒’ as ‘�’.

As it turns out, there’s not a lot of logic to think about when we do so.

There’s just a little bit of set theory. And the reason for this is simple: our

definition of � ignores all but the set-like structure of Ŵ and 	. That is,

even if Ŵ and 	 were (somehow and for some reason) given to us with rich

internal structure, it wouldn’t matter. As we’ve defined ‘�’, all that matters

is whether there is a model v that meets the following two conditions:

• For each φ ∈ Ŵ, φ is true in v.

• For each ψ ∈ 	, ψ is false in v.
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If there is such a model, 	 does not follow from Ŵ. If there is not such a

model, 	 does follow from Ŵ. So, in particular, all that matters is what’s

going on with the elements of 	 and Ŵ. So we may as well just directly take

Ŵ and 	 to be sets of sentences.

Interpretively, this requires two tweaks:

• When we write ‘Ŵ,	’ what we mean is ‘Ŵ ∪	’.

• When we write ‘Ŵ,φ’, what we mean is ‘Ŵ ∪ {φ}’.

Given this interpretation, essentially all of the structural rules just listed

are immediately validated. An example: the set Ŵ∪{φ}∪{φ} is, for all sets Ŵ

and sentences φ, exactly the same set as the set Ŵ∪{φ}. This validates the CL

rule. Almost all the other rules are validated by similarly trivial arguments.

The only one that needs a bit more is Cut. Here’s how to see that it too is

valid:

Proof: Suppose Ŵ � 	,φ and φ,
 � �. Let v be a model that makes true

everything in Ŵ and everything in 
. Then, since v is a model, v either

makes φ true or makes φ false.

Suppose v makes φ true. Then since v also makes everything in 
 true

and � follows from {φ} ∪
, we can conclude that v must make something

in � true. Thus, v makes something in � or something in 	 true.

Now suppose v makes φ false. Then since v makes everything in Ŵ true

and 	∪{φ} follows from Ŵ, we can conclude that v either makes something

in 	 true or makes φ true. But v doesn’t make φ true, because v makes φ

false. So v makes something in 	 true, and thus either makes something

in � or something in 	 true.

So, either way, the assumption that v makes true everything in Ŵ and

everything in 
 led us to the conclusion that v makes true something in 	

or something in �. So no model makes true everything in Ŵ and everything

in 
 while failing to make true anything in either 	 or �. So Ŵ,
 � 	,�.

Now we turn to the operational rules. One can (though we leave it to

the reader to do so) verify that all the operational rules for ∧, ∨ and ¬ that

were proposed in Chapter 1 remain valid when we interpret ‘⇒’ as ‘�’. But

it turns out that, for this chapter, our lives will be much easier if we split

our treatment of negated formulas into pieces. Thus, we will (only in this
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chapter!) deal with the following, much larger collection of operational

rules:

Axioms

id
φ ⇒ φ

con
φ,¬φ ⇒

com
⇒ φ,¬φ

Conjunction Rules

Ŵ,φ ⇒ 	
L(∧)

Ŵ,φ ∧ ψ ⇒ 	

Ŵ,ψ ⇒ 	
L(∧)

Ŵ,φ ∧ ψ ⇒ 	

Ŵ ⇒ φ,	 Ŵ ⇒ ψ ,	
R(∧)

Ŵ ⇒ φ ∧ ψ ,	

Ŵ,¬φ ⇒ 	 Ŵ,¬ψ ⇒ 	
L(¬∧)

Ŵ,¬(φ ∧ ψ )⇒ 	

Ŵ ⇒ ¬φ,	
R(¬∧)

Ŵ ⇒ ¬(φ ∧ ψ ),	
Ŵ ⇒ ¬ψ ,	

R(¬∧)
Ŵ ⇒ ¬(φ ∧ ψ ),	

Disjunction Rules

Ŵ ⇒ φ,	
R(∨)

Ŵ ⇒ φ ∨ ψ ,	
Ŵ ⇒ ψ ,	

R(∨)
Ŵ ⇒ φ ∨ ψ ,	

Ŵ,φ ⇒ 	 Ŵ,ψ ⇒ 	
L(∨)

Ŵ,φ ∨ ψ ⇒ 	

Ŵ ⇒ ¬φ,	 Ŵ ⇒ ¬ψ ,	
R(¬∨)

Ŵ ⇒ ¬(φ ∨ ψ ),	

Ŵ,¬φ ⇒ 	
L(¬∨)

Ŵ,¬(φ ∨ ψ )⇒ 	

Ŵ,¬ψ ⇒ 	
L(¬∨)

Ŵ,¬(φ ∨ ψ )⇒ 	

Negation Rules

Ŵ ⇒ φ,	
¬IL

Ŵ,¬φ ⇒ 	

Ŵ,φ ⇒ 	
¬IR

Ŵ ⇒ ¬φ,	

Again, one can check rule-by-rule that if we take ‘⇒’ to mean ‘�’, then all

of these are in fact consequences of the given semantic theory. For example,

take the R(¬∨) rule. Here is an argument establishing its acceptability on

the semantic theory just given:
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Proof Suppose Ŵ � ¬φ,	 and Ŵ � ¬ψ ,	. Let v be a model and suppose

that v makes true every φ ∈ Ŵ. Then since Ŵ � ¬φ,	 we conclude that

v must make true either ¬φ or something in 	. And since Ŵ � ¬ψ ,	 we

conclude that v must make true either ¬ψ or something in 	.

If v makes true something in 	, then v makes true something in {¬(φ ∨

ψ )} ∪	. On the other hand, if v does not make true something in 	, then v

must make true ¬φ and make true ¬ψ . So vmakes false both φ and ψ . So it

makes false φ∨ψ . Thus it makes true ¬(φ∨ψ ). So it makes true something

in {¬(φ ∨ ψ )} ∪	. So Ŵ � ¬(φ ∨ ψ ),	.

Alternatives

Between the semantics and the proof theory, we now have a fairly good

grasp on classical logic – at least as far as L is concerned. The question to

ask at this point, then, is whether classical logic is the logic we want. To

examine this, we’ll focus on something that has been conspicuously absent

from our discussion so far: the conditional.

In English, of course, the conditional is indicated by the phrase

‘if . . . then . . .’. L contains no obvious analogue of this connective. We can,

however, say a little bit about how such a connective would have to behave,

and then turn to examining what the Standard Story says such a connective

will be like.

How a Conditional Has to Behave

We’ll now focus on a new language L+ that extends L by including an

additional connective – which we will write ‘→’ – that will be our for-

mal counterpart to the ‘if . . . then . . .’ conditional in English. Technically,

this means that L+ differs from L both in its vocabulary and in its set of

grammatical rules, but it’s safe to leave the technicalities aside here, so we

will.

At any rate, for → to play the ‘if . . . then . . .’ role well, it will have to

satisfy the following two conditions:

1. Given sentences φ and ψ , whenever φ is true and ψ is false, φ → ψ

must also be false.

2. Given sentences φ and ψ and a set of sentences Ŵ, whenever ψ follows

from Ŵ taken together with φ, φ → ψ must follow from Ŵ alone.
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It’s intuitively clear that anything playing the ‘if . . . then . . .’ role will

have to satisfy these conditions. What’s surprising is that according to the

Standard Story if→ obeys these rules then for any two sentences φ and ψ ,

the sentence φ → ψ will be equivalent to the sentence ¬φ ∨ ψ . Since this

is a rather surprising conclusion, we’ll pause to prove it:

Proof First note that φ is true iff ¬φ is false. Since models are functions,

it follows that there is no model in which both φ and ¬φ are true. So there

is no model in which φ and ¬φ are true but ψ is false. So by the definition

of logical consequence, ψ follows from ¬φ taken together with φ. Thus by

condition 2, φ → ψ follows from ¬φ. So, again by the definition of logical

consequence, whenever ¬φ is true, φ → ψ is true.

On the other hand, it’s obvious that whenever ψ and φ are both true,

ψ is true. So by the definition of logical consequence, ψ follows from ψ

taken together with φ. Thus, again by condition 2, φ → ψ follows from ψ .

So whenever ψ is true, φ → ψ is true.

Altogether, whenever ¬φ is true or ψ is true, φ → ψ is true, and thus

whenever ¬φ ∨ ψ is true, φ → ψ is true.

On the other hand, the only way for ¬φ ∨ ψ to be false is for ¬φ to be

false and ψ to be false. But then, by the truth-conditions for the negation,

φ is true and ψ is false. But by condition 1, φ → ψ is also false when this

happens.

Altogether, whenever ¬φ ∨ ψ is true, so is φ → ψ and whenever ¬φ ∨ ψ

is false, so is φ → ψ , so the two are equivalent.

It’s common to call a connective ∗ a material conditional when φ ∗ψ is, for

all sentences φ and ψ , equivalent to ¬φ∨ψ . So what we’ve just established

is that it follows from the Standard Story that only material conditionals

can play the role of the conditional.

Many logicians and philosophers have thought that this is an absurd

conclusion. Here’s one such complaint:

Let us suppose that Roy Dyckhoff has claimed that John Slaney was in

Edinburgh on a certain day, and that Crispin Wright has denied it. Consider

the following three propositions as they describe this situation:

(1) If John was in Edinburgh, Roy was right.

This is clearly true: that’s what Roy claimed.
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(2) If Crispin was right, so was Roy.

That is equally obviously false, given the logic of denial.

(3) If John was in Edinburgh, Crispin was right.

That too is false, for Crispin denied it. Let us use these propositions to

construct an argument, taking as premises (1) together with the denial of

(2), and as conclusion (3):

If John was in Edinburgh, then Roy was right.

It’s not the case that if Crispin was right, so was Roy.

Hence, if John was in Edinburgh, Crispin was right.

Since (1) is true and (2) and (3) false, this argument, which takes the denial

of (2) as its second premise, has true premises and a false conclusion. Hence

it is invalid.

Classically, however, the argument is valid. For the sequent

P→ Q

¬ (R→ Q )

∴ P→ R

which formalises the argument classically . . . is (classically) valid. Hence, if

the truth-conditions of ‘if’ were correctly captured by material implication,

and the Classical Account of Validity were right, the argument would be

valid. But it is not. So either treating ‘if’ as truth-functional, or the Classical

Account of validity, is wrong. (Read, 2012, 23–24)

One has to hand it to the dissident: by all lights, the offset argument

in the above passage looks to be invalid. On the other hand, it doesn’t feel

like the argument that established the materiality of the conditional went

wrong anywhere. Thus, if we want to reject the equivalence of φ → ψ

and ¬φ ∨ ψ , we have to reject (at least) one of its hypotheses. But all

we seemed to rely on were (a) the Standard Story and (b) the character-

ization we gave above of what it takes to play the role of a conditional.

So, if we don’t want to accept the materiality of the conditional, then

we must either challenge the Standard Story or challenge this character-

ization of the conditional. We will focus our discussion on the former

approach.
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Gluts

Go back and have a look at the argument we gave on page 44 for the

materiality of the conditional again. One thing that might strike you is

the prominent role played by Consistency. If you’re predisposed to reject-

ing the conclusion of this argument, then this casts Consistency in a pretty

bad light. Moreover, we can, it seems, build explicit counterexamples to

Consistency. Consider, for example, the following sentence:

⋆ The sentence preceded by a star on page 46 is false.

If this sentence is true, then it’s also false, because that’s what it says about

itself. On the other hand, if this sentence is false, then it’s true, because

(again) that’s just what it says! So either way, it ends up being both true

and false. So it’s a counterexample to consistency.

If you felt like that argument was too quick, you’re in good company.

This sentence – it’s known as the Liar Sentence – has been subject to

much scrutiny since ancient times. But the Liar is just one part of a

much larger fight about consistency that has been brewing for quite some

time.

Central to the debate about consistency is the question of the validity

of the law of noncontradiction. Aristotle, it turns out, had a good bit to say

on the subject. For example, Paula Gottlieb has usefully singled out three

different versions of the law of noncontradiction discussed by Aristotle in

Metaphysics IV (Gottlieb, 2015):

• It is impossible for the same thing to belong and not to belong at the

same time to the same thing and in the same respect.

• It is impossible to hold (suppose) the same thing to be and not to be.

• Opposite assertions cannot be true at the same time.

Whether these three are really the same in the relevant sense is a

thorny issue that we won’t get into. Instead, it’s worth thinking through

how we might formalize these in L. There are, it seems to us, three

good options about what noncontradiction might amount to. It might

amount to

(a) φ ∧ ¬φ never being true,

(b) ¬(φ ∧ ¬φ) being logically true, or

(c) the claim that every argument of the following form is valid:



The Standard Story and Its Rivals 47

φ

¬φ

∴ Ŵ

The first captures the intuition that φ ∧ ¬φ is “impossible”. The second

captures the intuition that φ ∧ ¬φ is always false. The third cashes out an

intuition in the vicinity of these in terms of our definition of logical conse-

quence: if it’s impossible for φ and ¬φ to be true, then, for any ψ , it must

be impossible for φ and ¬φ to be true while everything in Ŵ is false. So, by

our definition of logical consequence, the argument from φ and ¬φ to Ŵ is

valid.

We’ll return to these in a bit. For now, the thing to focus on is this: both

the Liar Sentence and the role Consistency plays in our proof that the con-

ditional must be material give us good reasons to at least explore what are

called paraconsistent logics – logics that reject the consistency assumption.

To get a feel for how the paraconsistent approach to logic goes, we will

explore one such logic in some detail. The logic we present is, in many

ways, the most straightforward paraconsistent logic possible. It’s known

as the logic of paradox, or just LP, and it was introduced by Graham Priest

(1979).

Paraconsistency: Semantics

Let’s begin by restricting our attention to L again. Semantically, what dis-

tinguishes LP from classical logic is this: instead of models being functions

from L to the set {⊤,⊥}, models will be functions from L to {⊤,⊥, b}, where

the ‘b’ semantic status is taken to be both true and false. Thus b is the

semantic value taken by all glutty sentences. Thus, in an LP-model, no

sentence is neither true nor false, but some sentences are both true and

false.

In terms of the model-theoretic characterization of logics from Chap-

ter 1, we have the following:

• W, R, D, and δ are as before.

• V = {⊤,⊥, b}.

• K = {{⊤, b}, {⊥, b}}.

• C is the collection of functions given by the following truth-tables:
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v ρLP
¬ (v)

⊤ ⊥

⊥ ⊤

b b

v1 v2 ρLP
∧ (v1, v2)

⊤ ⊤ ⊤

⊥ ⊤ ⊥

b ⊤ b

⊤ ⊥ ⊥

⊥ ⊥ ⊥

b ⊥ ⊥

⊤ b b

⊥ b ⊥

b b b

v1 v2 ρLP
∨ (v1, v2)

⊤ ⊤ ⊤

⊥ ⊤ ⊤

b ⊤ ⊤

⊤ ⊥ ⊤

⊥ ⊥ ⊥

b ⊥ b

⊤ b b

⊥ b b

b b b

• v is again determined recursively, this time beginning with an assign-

ment of ⊤, ⊥ or b to each propositional variable.

The truth-tables above might appear somewhat mysterious. They’re best

explained by first examining K. Notice that b occurs in both the set of

designated values and the set of antidesignated values. So it counts both

as a way to be true and as a way to be false. With this in mind, we can

understand the functions as a way of spelling out the definition of logical

possibilities given on p. 38.

Paraconsistency: Proof Theory

We can characterize LP proof-theoretically using a simple modification of

our proof theory for classical logic. All we have to do is omit the con rule

from our list of axioms and the result is a sound and complete proof theory

for LP.2 We won’t bother to prove this here, though a proof of a similar

result can be found in Beall (2011) or in Priest (2008), among other places.

Examining LP

So now we have a different logic – a rival to classical logic – on our hands.

One question worth looking into is just how different LP actually is. And

2 A proof theory is sound with respect to a model theory iff, when Ŵ ⊢ φ then Ŵ � φ. A

proof theory is complete with respect to a model theory iff, when Ŵ � φ then Ŵ ⊢ φ. See

Chapter 3 for a discussion of these properties.
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there’s one sense in which the answer is that it’s not different at all. Given

a logic L, we say that a sentence φ is an L-logical truth when φ receives a

designated value in every model. LP and classical logic, it turns out, have

exactly the same logical truths:

Proof Suppose φ is not an LP-logical truth, and let v be an LP-model

witnessing this; that is, so that v(φ) = ⊥. Define a function v′ from

propositional variables to {⊤,⊥} as follows:

v′(p) =

{

⊤ if v(p) = ⊤

⊥ otherwise

So v′ makes false each propositional variable that is at least false in v. We

can then recursively extend v′ to a classical model in the usual way. When

we do so, it turns out (we leave it to the reader to check this) that, for each

φ ∈ L, v′(φ) = ⊤ iff v(φ) = ⊤ and v(φ) = ⊥ otherwise.

Thus, since v(φ) = ⊥, v′(φ) = ⊥. But v′ is a classical model. So if φ is not

an LP-logical truth, then φ is also not a classical logical truth.

On the other hand, note that if φ is not a classical logical truth, then for

some model v, v(φ) = ⊥. But every classical model already is an LP-model.

Thus φ is not an LP-logical truth.

This fact definitively nixes option (b) for how to translate the law of non-

contradiction: it certainly isn’t correct to formalize it as just saying that

¬(φ ∧ ¬φ) is a logical truth. The reason is that LP is explicitly formulated

to allow contradictions, yet nonetheless, since ¬(φ ∧ ¬φ) is a classical log-

ical truth, it’s also an LP-logical truth. On the other hand, options (a) and

(c) are still live matters: LP, unlike classical logic, doesn’t rule out φ ∧ ¬φ

being true. It does agree with classical logic that this sentence is always

false; it just rejects that falsity and untruth are tightly paired, and it thus

allows that this sentence might, despite being false, also be true. And LP

flat-out rejects that the argument from φ and ¬φ to Ŵ is (generally) valid.3

Thus, despite the fact that LP and classical logic share all the same theo-

rems it turns out that LP differs from classical logic in rather substantive

ways.

There’s a cautionary tale to be told here, though: when you throw out

a few things in a logic, often other things you’d like to have kept end up

going out with them. An example: in classical logic, one can validly infer

3 Notice that for some Ŵs, LP is fine with this argument – e.g. if Ŵ is just φ or just ¬φ.
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ψ from φ ∨ ψ and ¬φ. This is because classical models are functions. Thus,

any model that makes ¬φ true must make φ false. So if this same model

makes φ ∨ ψ true, then it must be because it makes ψ true.

But LP-models aren’t functions; they’re relations. So the fact that an LP-

model v makes ¬φ true (that is, such that v �1 ¬φ) does not rule out v

making φ true as well – all that’s required is that φ be related to both ⊤

and ⊥. But this can happen while ψ is related only to ⊥. Any such model is

then a counterexample to disjunctive syllogism.

What this shows is something interesting: the paraconsistent route

to avoiding the conclusion that all conditionals are material runs the

risk of invalidating rather commonsensical inferences (like disjunctive

syllogism, for example). This may seem a heavy cost to pay. There is,

however, a bit of a silver lining, which comes, as is frequently the

case in philosophical logic, in the form of a theorem, this one due to

Jc Beall:

Theorem: If Ŵ ⊢ 	 is a classically valid inference, then Ŵ ⊢ 	∪ ι(Ŵ) is LP-valid,

where we define ι(Ŵ) recursively as follows:

• If φ is an atomic sentence, then ι({φ}) = {φ ∧ ¬φ}.

• For non-atomic sentences φ, we define ι as follows:

– ι({¬φ}) = ι({φ})

– ι({φ ∧ ψ}) = ι({φ ∨ ψ}) = ι(φ) ∪ ι(ψ )

• Finally, for sets of sentences, we define ι as follows:

– ι(Ŵ) =
⋃

φ∈Ŵ

ι(φ).

ι(Ŵ) is known as the inconsistency set of Ŵ. Each element of ι(Ŵ) is of the form

�φ ∧¬φ�4 for some atomic sentence φ that occurs as part of some member

of Ŵ. And ι(Ŵ) contains all such “atomic contradictions”.

We won’t prove this theorem here, though we will remark that a fairly

gentle proof of the result can be found in Beall (2011). What the theorem

tells us is that, essentially, LP is no more than a cautious version of classical

logic. Where classical logic endorses Ŵ ⊢ 	 directly, LP proceeds a bit more

4 Throughout the book we use single quotation marks for mentioning quoted

expressions and double quotation marks when we use a quoted expression. We use

corner quotes, as in this case, when part of a quoted expression that is mentioned is

still used. Here it is the metavariable ‘φ’, which occurs in a mentioned phrase, but is

bound from “outside” the quoted expression.
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cautiously, endorsing instead the claim that either (a) Ŵ ⊢ 	 holds or (b)

something in Ŵ is a contradiction.

All of that is to say that there are pros and cons to adopting LP as our

preferred logic. But what of the conditional, which motivated this detour

in the first place? Here, it turns out, there is a problem: it can be shown

(see, e.g. Beall et al., 2013) that LP cannot be equipped with a meaningful

connective that can play the ‘if . . . then . . .’ role in the sense we character-

ized above. In short, the LP-semantics rule out our adding to L a connective

that can play the ‘if . . . then . . .’ role. Of course, we can perfectly well add

a material conditional to LP, and if we do so, we can “recover” all the classi-

cal theorems about this connective in the sense that we can “recover” any

other classical theorem as given in the above theorem. But unless we’re also

willing to challenge the characterization of the conditional we gave above,

LP is definitively not a way to avoid the conditional being material.

Gaps

Before we carry on, again go back and look at our argument for the materi-

ality of the conditional. As we noted before, consistency plays a prominent

role here. Less obvious is that completeness also plays a role. Here’s how:

what the argument shows, explicitly, is that if a connective ∗ can play the

‘if . . . then . . .’ role, then for any sentences φ and ψ , the sentence φ ∗ ψ will

be true (or false) when ¬φ ∨ ψ is true (or false). But notice that unless we

assume that there are no other options than truth and/or falsity for a sen-

tence, this alone doesn’t guarantee that φ ∗ ψ and ¬φ ∨ ψ are equivalent,

since it doesn’t settle the matter of what to do when one of them is neither

true nor false.

So an alternative proposal for how to avoid the equivalence of φ → ψ

with ¬φ ∨ ψ is to adopt a logic that rejects completeness (and so is a

paracomplete, rather than a paraconsistent logic). As with paraconsistent

approaches, there is a lot of philosophical history here.

The key to the philosophical content of the completeness assumption

is to notice its connection to the law of the excluded middle: roughly the

claim that every sentence is either true or false. And, as before, we will

highlight three different ways to understand what this means. It could

mean that

(a) φ ∨ ¬φ is always true,
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(b) ¬(φ ∨ ¬φ) is logically false, or

(c) every argument of the following form is valid:
Ŵ

∴ φ ∨ ¬φ

As before, these cash out different intuitions in the vicinity of excluded

middle. The first captures the idea that either φ or ¬φ must always be

true. The second captures the intuition that the simultaneous falsity of

both φ and ¬φ is impossible. The third cashes things out in terms of logical

consequence: if one of φ and¬φ is always true, then for any set of sentences

Ŵ, it is impossible for everything in Ŵ to be true without at least one thing

in {φ,¬φ} being true.

We will examine which of these does the job of capturing the intuition

behind excludedmiddle best as we go. However, before we turn to doing so,

it’s worthwhile reflecting on something we learned in our previous excur-

sion into nonclassical logics: untruth and falsity can, in such settings, fall

apart. So where previously we might have struggled to see a difference

between these three formulations of excluded middle, we’re now in posi-

tion to mark these differences fairly well. This is a worthwhile exercise, so

we won’t complete it for you.

Paracompleteness: Semantics

As before, what we will be constructing is essentially the very simplest

paracomplete logic possible. And, also as before, we begin by restricting

our attention to L. Semantically, what distinguished LP from classical logic

is this: instead of models being functions from L to the set {⊤,⊥}, models

were functions from L to {⊤,⊥, b}, where the ‘b’ semantic status was taken

to be both true and false.

The logic we are constructing now is similar in that it also takes

there to be three truth-values. But this time we write this three element

set as {⊤,⊥, n}, and take the ‘n’ semantic status to be neither true nor

false.

In terms of the model-theoretic characterization of logics from Chap-

ter 1, we have the following:

• W, R, D, and δ are as before.

• V = {⊤,⊥, n}.

• K = {{⊤}, {⊥}}.
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• C is the collection of functions given by the following truth-tables:

v ρK3
¬ (v)

⊤ ⊥

⊥ ⊤

n n

v1 v2 ρK3
∧ (v1, v2)

⊤ ⊤ ⊤

⊥ ⊤ ⊥

n ⊤ n

⊤ ⊥ ⊥

⊥ ⊥ ⊥

n ⊥ ⊥

⊤ n n

⊥ n ⊥

n n n

v1 v2 ρK3
∨ (v1, v2)

⊤ ⊤ ⊤

⊥ ⊤ ⊤

n ⊤ ⊤

⊤ ⊥ ⊤

⊥ ⊥ ⊥

n ⊥ n

⊤ n ⊤

⊥ n n

n n n

• v is again determined recursively, this time beginning with an assign-

ment of ⊤, ⊥ or n to each propositional variable.

The truth-tables above are again ways of spelling out the definition of

logical possibilities given on p. 38, this time with the understanding that n

is neither a way of being true nor a way of being false.

The resulting logic is known as K3. The ‘K’ comes from Stephen Kleene,

who is credited with introducing this logic (Kleene, 1952).

Paracompleteness: Proof Theory

We characterized LP proof-theoretically by dropping one axiom from our

proof-theoretic characterization of classical logic. We can, it turns out, also

characterize K3 proof-theoretically by dropping one axiom. For our para-

consistent theory, we dropped the consistency assumption and, with it, the

con axiom. For the paracomplete theory we drop the completeness assump-

tion and, with it, the com axiom. That this gives a sound and complete proof

theory for K3 can be proved by mildly modifying the proofs in Priest (2008)

or (more directly) in the supplement to Beall and Logan (2017).

Examining K3

The pro/con calculus for K3 is essentially dual to that for LP. LP, we saw,

had exactly the same theorems as classical logic. K3, it turns out, has no



54 An Introduction to the Philosophy of Logic

logical truths. None at all. This might seem somewhat surprising, but it

can be seen to be true with minimal effort. First, notice that the function

assigning each propositional variable to n extends to a K3-model in the

usual way. Call this model ‘E’. Next, notice that the truth-tables given above

guarantee that in this model every sentence (atomic or otherwise) will be

assigned the semantic status n. But this just means that no sentence is

true in this model (and no sentence is false in this model either). Thus, for

every sentence, there is at least this one model in which it isn’t true. So no

sentence is a logical truth.

We said above that one way to judge whether excluded middle held was

by looking at whether φ ∨ ¬φ was a logical truth, and that another way

was by looking at whether ¬(φ ∨¬φ) was a logical falsehood. This theorem

tells us that both of these tests are effective: excluded middle clearly fails

in K3, and, indeed, there are models in which φ ∨ ¬φ is not true (in par-

ticular, in E), and there are models in which ¬(φ ∨ ¬φ) is not false (again,

E works).

On the other hand, where LP rejectsmany common-sense inference rules,

these tend to be perfectly fine in K3. Thus, for example, disjunctive syllo-

gism – the argument from φ ∨ ψ and ¬φ to ψ – which is invalid in LP, is

valid in K3.

To see this, suppose v is a K3 model in which φ ∨ ψ and ¬φ are true.

Then since φ ∨ ψ is true, either v(φ) = ⊤ or v(ψ ) = ⊤. But v(φ) = ⊥, because

v(¬φ) = ⊤. Thus, since v is a function, v(φ) �= ⊤. So v(ψ ) = ⊤.

A final bit of duality: above we covered Jc Beall’s explanation of how

to see LP as a cautious version of classical logic in the sense that whenever

Ŵ ⊢ 	 is classically valid, Ŵ ⊢ 	 ∪ ι(Ŵ) is LP-valid. Beall has also shown a

similar result holds for K3: whenever Ŵ ⊢ 	 is classically valid, ǫ(	)∪X ⊢ 	

is K3-valid. The duality here is quite deep: the definition of ǫ is again a sort

of dual to the definition of ι.

Definition: We define ǫ(Ŵ) recursively as follows:

• If φ is an atomic sentence, then ǫ({φ}) = {φ ∨ ¬φ}.

• ǫ({¬φ}) = ǫ({φ})

• ǫ({φ ∧ ψ}) = ǫ({φ ∨ ψ}) = ǫ(φ) ∪ ǫ(ψ )

• ǫ(Ŵ) =
⋃

φ∈Ŵ ǫ(φ)

So where classical logic endorses Ŵ ⊢ 	 directly, K3 endorses the weaker

conclusion that 	 follows from Ŵ assuming that everything in Ŵ is either

true or false.
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Table 2.1 What should a three-valued

truth-table for the conditional look like?

φ ψ φ → ψ

⊤ ⊤ ⊤

⊤ n ?

⊤ ⊥ ⊥

n ⊤ ⊤

n n ?

n ⊥ ?

⊥ ⊤ ⊤

⊥ n ⊤

⊥ ⊥ ⊤

Altogether, the pros and cons of K3 are dual to those of LP, as we said. But

what of the conditional? The argument we gave for the materiality of the

conditional still holds in K3, though it’s somewhat weakened. What it tells

us is only what happens to φ → ψ when either (a) φ is false, (b) ψ is true or

(c) φ is true and ψ is false. This leaves us with quite a bit of freedom. To see

this, consider Table 2.1, in which we have filled in everything so far settled,

and left question marks in the open options (n marks when a sentence is

neither true nor false). There are three open options here. For each, there

are three options: ⊤, ⊥ or n. So, from a technical perspective, there are 27

different potential conditionals to look through. We won’t take a tour of

all the options, as that would be rather tedious. But it’s worth remarking

that many of these potential conditionals have been explored, and the gen-

eral theme has been this: if you are ready to accept the other baggage that

comes with K3, then one or another of them might suit you. If not – and,

in particular, if losing all your theorems is a problem – then it’s likely that

none of them will.

Gaps and Gluts

Of course, one doesn’t have to be bothered by any of the oddities of LP or K3.

And, if one isn’t, then why not go whole-hog and accept that there might

not only be truth-value gaps but also truth-value gluts?
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One can do this. Semantically, the resulting logic is characterized as

follows:

• W, R, D, and δ are as before.

• V = {⊤,⊥, b, n}.

• K = {{⊤, b}, {⊥, b}}.

• C is the collection of truth-functions one expects given the inter-

pretations of the semantic values. We won’t reproduce them here

since they are somewhat large (16 rows for each of the binary

connectives).

• v is again determined recursively, this time beginning with an assign-

ment of ⊤, ⊥, b or n to each propositional variable.

Proof-theoretically, first-degree entailment (FDE) is characterized by

dropping both the com axiom and the con axiom. The logic this charac-

terizes is known as the logic of first-degree entailments, or simply FDE. A

version of Beall’s “classical collapse” holds for FDE as well: if Ŵ ⊢ 	 is clas-

sically valid, then ε(	) ∪ X ⊢ 	 ∪ ι(Ŵ) is valid in FDE. This was proved by

Beall (2013).

FDE was introduced by Belnap (1977) and is, as it turns out, quite an

interesting system, about which there is much more to say. But from the

perspective being given here, there’s nothing terribly important about it,

so we’ll leave it at that for now.

What About the Definition of Logical Consequence?

So far we’ve looked at rivals to classical logic that are generated by drop-

ping the consistency assumption or dropping the completeness assump-

tion. Given what we’ve seen so far, there’s reason to worry that neither

approach is terribly promising. One should be cautious in drawing this

conclusion – we’ve examined what is, in essence, the most simplistic and

naïve version of each of these approaches. It should hopefully be clear that

much more sophisticated options are available. This is especially true once

the full machinery of the characterization of logic given in Chapter 1 is

brought to bear.

But of course, the Standard Story has a further assumption as well – the

definition of logical consequence. And it is, as we previously noted, a very

powerful assumption. In Chapter 1, we saw one alternative notion worth
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considering: D−-logical consequence. It’s a worthwhile exercise for the

reader to think through what this amounts to in each of the above options.

We won’t have more to say about this matter here, though, since we’ll be

covering several options later in the book – in particular in Chapters 7

and 9.

Instead, we’ll now turn to looking at first-order rivals to classical logic.

As it turns out, there are also uniquely higher-order ways to motivate log-

ical rivalry as well (see, for example, the discussion of Henkin models in

Chapter 4), but we will leave those aside for now as well.

First-Order Rivals

As before, being very explicit and cautious pays dividends, so our first

step will be to specify our first-order formal syntax. We will call the new

language we are discussing F, for first order. Its vocabulary consists of a

countably infinite set of individual constants (we will use a, b, . . . , v, a1, b1, etc.

for these); a countably infinite set of individual variables (we will use w, x, y,

z, w1, etc. for these); the identity symbol =; for each n a countably infinite set

of n-ary predicates (we will use Pn, Q n, etc. for these); the connectives ∧, ∨

and ¬; and, finally, the quantifiers ∀ and ∃.

We define the class of sentences in several stages. First, we define the

class of well-formed formulas (wffs) recursively as follows:

• If τ1 and τ2 are either individual constants or individual variables, then

τ1 = τ2 is an atomic wff.

• If 
n is an n-ary predicate and τ1, τ2, . . . , τn are all either individual

constants or individual variables, then 
nτ1τ2 . . . τn is an atomic wff.

• An atomic wff is a wff.

• If φ is a wff, then so is ¬φ.

• If φ and ψ are wffs, then so are (φ ∧ ψ ) and (φ ∨ ψ ).

• If φ is a wff and ν is a variable, then ∀νφ and ∃νφ are wffs.

We next define when an occurrence of a variable in a wff is a free

occurrence of that variable.

• If φ is an atomic wff and ν is a variable, then each occurrence of ν in φ

is a free occurrence.

• An occurrence of ν in ¬φ is a free occurrence just if it is a free occurrence

of ν in φ.
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• An occurrence of ν in (φ ∧ψ ) or in (φ ∨ψ ) is a free occurrence just if it is

a free occurrence of ν in φ or a free occurrence of ν in ψ .

• No occurrence of ν is free in ∀νφ or in ∃νφ.

Finally, we define a sentence to be a wff in which no variable occurs

freely.

Semantics

We interpret the language of first-order logic in first-order models. As

before, we will first explain these in a free-standing way, then we will

relate this explanation to the description of model-theoretic semantics

from Chapter 1.

As we will understand it, a model has four pieces:

• a non-empty set D called the domain of the model;

• a function δ mapping the set of individual constants into D;

• a function v mapping each n-ary predicate 
n other than identity to a

function from Dn to {⊤,⊥}.

We confess that this definition of an interpretation is (at least mildly)

idiosyncratic: usually the functions δ and v are bundled together into a

single “interpretation function”. It is also the case that the function v is

usually defined somewhat differently. But for a variety of reasons, we find

it more intuitive and explanatory to define interpretations in the way we

have.

If α is a name, then δ(α) is called the denotation of α. If 
n is an n-ary

predicate, then the extension of 
n, written E+(
n), and the antiextension of


n, written E−(
n), are defined as follows:

E
+(
n) = {〈d1, . . . , dn〉 ∈ Dn : v(
n)(〈d1, . . . , dn〉) = ⊤}

E
−(
n) = {〈d1, . . . , dn〉 ∈ Dn : v(
n)(〈d1, . . . , dn〉) = ⊥}

Finally, if M is a model, a variable assignment for M is a function va mapping

the set of variables to the domain, D. If va is a variable assignment, ν is a

variable, and d ∈ D, then by vaν
d we mean the variable assignment defined

as follows:
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vaν
d(x) =

{

va(x) if x �= ν

d if x = ν

Intuitively, vaν
d is the variable assignment that is just like va except that it

sends ν to d rather than to wherever va sent it.

If M is a model and va is a variable assignment, then we define a func-

tion ε from the set of individual constants and individual variables to D as

follows:

ε(x) =

{

va(x) if x is an individual variable

δ(x) if x is an individual constant

Intuitively, ε is just what we get when we “glue together” the variable

assignment va and the denotation function δ.

Together, a model M and a variable assignment va give us enough

information to recursively assign a semantic value v
M
va(φ) to each wff φ.

• v
M
va(τ1 = τ2) =

{

⊤ if ε(τ1) = ε(τ2)

⊥ otherwise

• v
M
va(


nτ1 . . . τn) = v(
n)(〈ε(τ1), . . . , ε(τn)〉)

• v
M
va(¬φ) = ρ¬(vMva(φ))

• v
M
va(φ ∧ ψ ) = ρ∧(vMva(φ), v

M
va(ψ ))

• v
M
va(φ ∨ ψ ) = ρ∨(vMva(φ), v

M
va(ψ ))

• v
M
va(∀xφ) =

{

⊤ if v
M
vax

d
(φ) = ⊤ for all d ∈ D

⊥ otherwise

• v
M
va(∃xφ) =

{

⊤ if v
M
vax

d
(φ) = ⊤ for some d ∈ D

⊥ otherwise

From here we can define, e.g. D+-validity in the usual way: If Ŵ and 	 are

sets of sentences, then Ŵ � 	 iff for every modelM and variable assignment

va, if v
M
va(φ) = 1 for all φ ∈ Ŵ, then v

M
va(ψ ) = 1 for some ψ ∈ 	.

Before moving on to discussing rivalry, it’s worth pausing to, again, see

how to understand these things in terms of the model-theoretic account of

logics given in Chapter 1. Many of the details are already visible, but since a

few items require a bit of repackaging in order to fit that mould, it’s worth

taking our time to go through it explicitly.
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• W is a singleton set, e.g. {•}. This corresponds to the intuition that each

model of first-order logic is a “picture” of a way the world (and not, say,

the worlds) could be.

• R is not mentioned in any of the semantic clauses, so can be anything

at all without impacting matters.

• D is the function mapping • to the domain of the model.

• δ is exactly what above we called ε.

• V = {⊤,⊥}.

• K = {{⊤}, {⊥}}.

• C is the collection consisting of the truth-functions ρ¬, ρ∧, ρ∨ and the

functions ρ∀ and ρ∃, both of which are of the form VD×W −→ V and

are given by the piecewise definitions above.

• v(
n) is then defined exactly as it is above.

Gaps and Gluts, Again

The above formulation gets us first-order classical logic. If we want to allow

gluts (for first-order LP) or gaps (for first-order K3) or both (for first-order

FDE, the changes required are quite straightforward:

• The function v, rather than having range {⊤,⊥} has whichever of

{⊤,⊥, b}, {⊤,⊥, n} or {⊤,⊥, b, n} is appropriate.

• For each 0-order connective c, the truth-function ρc is replaced with

whichever of ρLPc , ρK3c or ρFDEc is appropriate.5

• For the quantifiers (first-order connectives), things are somewhat more

complicated. It’s best to explain it as follows: using language we intro-

duced previously, we say that φ is at least true if v(φ) is either ⊤ or b, and

say that φ is at least false if v(φ) is either ⊥ or b.

Then ∀xφ is at least true if φ is at least true on each valuation vaxd, and

∀xφ is at least false if φ is at least false on some valuation vaxd. Dually, we

say ∃xφ is at least true if φ is at least true on some valuation vaxd, and ∃xφ

is at least false if φ is at least false on each valuation vaxd. We then define

v(∀xφ) (resp. v(∃xφ)) to be ⊤ iff ∀xφ (resp. ∃xφ) is at least true but not at

least false; ⊥ iff ∀xφ (resp. ∃xφ) is at least false but not at least true; b iff

5 Recall that we did not define the truth-functions ρFDEc explicitly, instead leaving this

as an exercise for the reader.
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∀xφ (resp. ∃xφ) is both at least true and at least false; and n iff ∀xφ (resp.

∃xφ) is neither at least true nor at least false.

It is instructive to see what the above logics look like in terms of

the extensions and antiextensions we introduced above. In the logics that

lack gaps (e.g. classical logic and LP) E+ and E− obey the following

constraint:

Exhaustion Constraint: For every n-ary predicate 
n, E+(
n) ∪ E−(
n) = Dn.

In the logics that lack gluts (e.g. classical logic and K3) E+ and E− obey

the following constraint:

Exclusion Constraint: For every n-ary predicate 
n, E+(
n) ∩ E−(
n) = ∅.

So we have four first-order logics already at our fingertips and thus

a bit of rivalry already. But this rivalry is, in some sense, parasitic on

the rivalries we already discussed. That is, other than the fact that it’s

now dressed up in talk of extensions and antiextensions, nothing about

the rivalry discussed here depends in any interesting way on our having

moved to the setting of first-order logic. So we’ll leave aside any fur-

ther discussion of this particular sort of rivalry, and move on to other

options.

Genuinely First-Order Rivalry

We’ll now have a brief look at some strictly first-order options. To motivate

the first one, we’ll first prove that the following inference is D+-valid on

any of the four theories currently on the table:

W1p � ∃xW1x

Proof Suppose that for some M and va, v
M
va(W

1p) = ⊤. So W1p is at least

true on M and va. So ∃xW1x is at least true. It follows that the inference is

D+-valid.

But there is strong reason to think that this inference ought not be

endorsed. Here is why: suppose that W1 is the unary predicate ‘x is a

winged horse’ and p is the individual constant ‘Pegasus’. Since Pegasus in

fact is a winged horse, it seems like W1p is true. But then, since the above
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inference is D+-valid, it follows that it is true that there exists a winged

horse. But that’s wrong. Winged horses just don’t exist.

To deal with this, some logicians have advocated “unloading” predica-

tion of its existential import. A variety of ways of doing this have been

proposed. One natural approach involves extending our models to contain

two sorts of objects – the objects we can talk about (Pegasus, intuitively,

among them) and, within that domain, a subset containing the objects

that actually exist (Pegasus, presumably, not among them). Formally, we

can carry this out rather easily. All that is required are two changes:

• Models now require both a domain, D, and a specified (not necessarily

non-empty) subset E of D.

• We then change the clauses for v
M
va for the universal and existential in a

minor, but very important, way:

– v
M
va(∀xφ) =

{

⊤ if v
M
vax

d
(φ) = ⊤ for all e ∈ E

⊥ otherwise

– v
M
va(∃xφ) =

{

⊤ if v
M
vax

d
(φ) = ⊤ for some e ∈ E

⊥ otherwise

The change is minor: ‘for all d ∈ D’ and ‘for some d ∈ D’ have been

changed to ‘for all e ∈ E’ and ‘for some e ∈ E’. Despite being minor, these

changes do in fact block the above inference. For example, take any model

v with D = {1}, E = ∅, δ(p) = 1 and E+(W1) = {1}. Clearly we have that

v(W1p) = ⊤; equally clearly, v(∃xW1x) = ⊥. So since there is at least this

one counterexample, the inference W1p � ∃xW1x is not valid.

Building on the rivalry we already have, we can build several logics in

this general region by relaxing the exclusion constraint, the exhaustion

constraint or both. The resulting logics – logics generated by any of these

classes of models – are called free logics.

Free logics do rather neatly solve the problem posed by inferences like

W1p � ∃xW1x. But the solution they offer might reasonably be criticized

as being philosophically ham-fisted. Yes, the objection goes, free logics pre-

vent W1p from implying ∃xW1x. But they do so at the cost of modifying

our models in a very odd way. In the models that counterexample this

inference there still is something denoted by p – in the model above, it’s 1

– it’s just not something in E. So then the question is: does this thing – the
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thing denoted by p – exist or not? If it doesn’t, then it seems it should not

be in our model anywhere. But it has to be there for the model to work as

a counterexample. If it does exist, then ∃xW1x ought to be true. But if we

accept that, then, again, our model isn’t a counterexample.

Resolving this issue requires that we untangle rather thorny issues about

the relation between something existing and the meaning of the existential

quantifier. For now, it suffices to note that the rivalry between classical and

free logics is a genuinely first-order rivalry.

A different problem facing our basic first-order theory comes from the

fact that the sentence ∃x x = x is a D+-logical truth. This is because the

domain of a model is always, by assumption, non-empty. So, given a model

M with domain D, we can be sure there is some d ∈ D. Now let va be any

variable assignment, and think about vaxd. Since v(d = d) = ⊤, v
M
vax

d
(x =

x) = ⊤. So v
M
va(∃x(x = x)) = ⊤.

But if this sentence is a truth of logic, then it is a truth of logic that at

least one thing exists! And, while it may well be common sense, or a truth

of metaphysics that there is at least one thing, it seems implausible to say

that it is a truth of logic that there is at least one thing.

The natural way to deal with this problem, of course, is to remove our

restriction to non-empty domains. But, as you have by now likely come

to expect, this comes with consequences. The resulting logics are called

inclusive logics. Here are two somewhat surprising features of inclusive

logics: all universally quantified sentences are true in the empty model;

all existentially quantified sentences are false in the empty model. Thus,

no negated universal sentence is a theorem of an inclusive logic and no

existential sentence is a theorem of an inclusive logic.

We’ll leave it to the reader to work through the semantic clauses given

above for the universal and existential quantifier to see that these conse-

quences in fact hold. But the damage they do should be clear: even the

sentence ¬∀x(x �= x) fails to be a theorem. So logic prevents our ruling out

that everything is non-self-identical.

Other Roads

We now have two ways to build a logic from the standard assumptions.

We’ve also seen a variety of alternatives to this “standard” approach.
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A recurring theme was that each alternative, while solving some of the

problems we had identified with classical logic, also seemed to bring novel

problems of its own to the table. As it turns out, this tends always to be the

case – choosing among rival logical theories is, in general, a very complex

task.

It should go without saying that there are other ways to challenge the

logical theories given here, as well as other logical theories that one might

challenge. But hopefully you now have at least a taste for how these things

go. For a plethora of further options, most of which are given strong

motivation, see Priest (2008).

Questions

1. For each of the following, say whether it is valid in LP, in K3 and in clas-

sical logic. If it is invalid in one of these logics, prove this by providing

a countermodel.

• φ,¬φ ∨ ψ ⇒ ψ

• φ ⇒ φ ∨ ψ

• φ,ψ ⇒ φ ∧ ψ

• ⇒ ¬φ ∨ (φ ∨ ψ )

• ⇒ φ ∨ ¬φ

2. On p. 42, we said that if we take ‘⇒’ to mean ‘�’, then all the rules given

are verified. Choose a few rules from each box and actually verify them

in this way.

3. Explain the exhaustion constraint and the exclusion constraint in intu-

itive terms (see p. 61). Explain why the exhaustion constraint prevents

gaps and the exclusion constraint prevents gluts.



3 Is Second-Order Logic Proper Logic?

In the previous chapter, we looked at various challenges to standard first-

order logic, FOL for short. Many of the challenges to FOL have to do with

theorems or inference rules of FOL that seem objectionable for some rea-

son or other. An alternative to FOL would then try to avoid the inference

or the theorem. Of course (as we also have seen in examples in Chapter 2),

one might be discontent with FOL because of its expressive limitations and

believe that there is more to logic than what is represented or modelled by

FOL.

Let us begin with a simple example: let us assume that you started

with FOL without adding ‘=’ to its primitive vocabulary,1 and you have

convinced yourself that FOL as such does codify inferences and theorems

that do count as logical. Now you consider adding ‘=’ to that system (with

the familiar semantic clauses and inference rules). What kind of consider-

ations should matter for your decision? Of course the new language, FOL=,

will lead to new theorems and will count more arguments as logically valid

than mere FOL did. For example, the inference

1. The morning star is the evening star.

2. The morning star is a planet.

3. Hence the evening star is a planet.

can be shown to be valid, if (1) is formalized as ‘a = b’, (2) as ‘Pa’, and the

conclusion as ‘Pb’ (example is from Halbach, 2010). In FOL without identity,

this inference could not have been shown to be valid, because (1) would

have been formalized with a non-logical relation-letter ‘R’, supposedly

formalizing the identity relation. But ‘R’ would, in different interpretations,

1 F of the previous chapter had the identity sign already added as a logical constant.

However, many versions of FOL that are taught in introductory courses do not initially

contain identity.

65
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have been mapped on other sets of ordered pairs than the identity relation.

Hence there would be interpretations in which the inference would have a

countermodel.2

So far, so good. The point of adding new constants would primarily be to

increase expressive power in that sense. But then why not also add a new

constant for ‘is larger than’? This way, the obviously valid inference

1. The evening star is smaller than Uranus.

2. Uranus is smaller than Saturn.

3. Therefore the evening star is smaller than Saturn.

could also be shown to be valid in, say, FOL=,≤ (example again from Hal-

bach, 2010), or how about adding operators �✷φ� for �it is necessary that

φ� and �✸φ� for �it is possible that φ�?

Some of the questions here concern the problem of how we should

make a principled demarcation between logical constants and non-logical

expressions. We will discuss this problem in detail in the next chapter.

But instead of looking at the individual constants, one could also look at

the logic that contains these constants as a whole and ask of that system

whether this is still a logic.

Let’s say we are convinced that FOL is a logic. Is FOL= a logic? FOL=
allows us to express natural language sentences like ‘The number of apples

on this table is 3’ in formulas that do not contain any “non-logical” terms

other than those for ‘apple’, ‘table’ and ‘is on’, and, in particular, no terms

for numbers.3 Does that show that the natural language sentence really

didn’t refer to numbers, or does it show that FOL= has hidden mathemati-

cal content? In other words, does FOL= commit us to new entities over and

above those we already recognized for FOL? What about FOL=’s metalogic?

Does the system have the same neat properties as FOL had, or does it have

new ones that might disqualify it as a logic?

Such questions might matter for several reasons. You might just want

to know what the limits of logic are. Where to draw the line between

2 For example, a domain with two objects {1, 2}, I(a) = 1, I(b) = 2, I(P) = {1} and

I(R) = {〈1, 2〉}.
3 If we take ‘P’ for ‘is an apple’ and ‘Q’ for ‘is a table’ and ‘R’ for ‘is on’, then the

sentence can be formalized as ∃x∃y∃z((Px ∧ Py ∧ Pz) ∧ (¬x = y ∧ ¬x = z ∧ ¬y = z)

∧ ∃x1((Qx1 ∧ Rxx1 ∧ Ryx1 ∧ Rzx1) ∧ ∀x2((Px2 ∧ Rx2x1)→ (x2 = x ∨ x2 = y ∨ x2 = z)))).
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the logical and the non-logical. But you might also be interested in draw-

ing that line for other purposes. As we shall see in Chapter 10, logicism

is a view in philosophy of mathematics that holds that mathematics

is nothing but logic (which is then supposed to explain some of the

puzzling features of mathematics). But in order to show that mathemat-

ics is nothing but logic, one would first need to know how far logic

extends.

Now, in the case of FOL= we can put our minds at rest (at least

that is the consensus). Going from FOL to FOL= does not lead to dras-

tic changes in the metalogical properties. The same is not true for other

extensions of FOL. Modal logic has been heavily criticized (in particular

by Quine (1953b, 1960)) for leading to new and problematic ontological

commitments.4

Another such discussion has in recent years been concerned with the

status of second-order logic, SOL for short. In this chapter we will look at

the arguments for and against considering second-order logic to be proper

logic. Before we can do so, we will give you a brief introduction to second-

order logic(s).

Second-Order Logic(s)

Obtaining second-order logic from first-order logic is quite straightforward.

In FOL we have basically two kinds of non-logical expressions: predicates

and names.5 FOL also has quantifiers and variables, and these variables

syntactically take the same place as names. In other words, in FOL we are

“quantifying into” name position. Thus, one of the two types of non-logical

expression in the language, names, can be replaced by variables; the other,

predicates, can’t in FOL.

This changes in SOL. SOL also has variables for predicates. These pred-

icate variables behave syntactically just like predicates, i.e. they come

with different arities (places) and combine with terms (names or vari-

ables) in the same way that first-order predicates do. The language also

4 For a discussion of Quine’s arguments against modal logic, see Haack (1978),

chapter 10.
5 We are considering FOL without function symbols here.



68 An Introduction to the Philosophy of Logic

has two new quantifiers, for universal and for existential quantifica-

tion. The difference is that they now combine with predicate variables

and quantify “into” predicate position. This results in formulas like the

following:

(3.1) ∀XXa

(3.2) ∃Y∀x(Ya→ Fx)

(3.3) ∀X∃yXy

Predicate variables combine with terms to produce well-formed formu-

las. An n-place predicate variable must be followed by n-many terms in

order to be well formed. Syntactically this is all as expected. We introduce

a variable for the other type of non-logical expression, and that variable

functions syntactically just as the type of expression it serves as a variable

for.

If we like function letters in our first-order language (which allow us to

construct complex singular terms, such as ‘the father of . . .’), we can also

now add function variables to the language (again, if we like, with differ-

ent arities), and quantifiers for these. The syntax of SOL doesn’t require a

primitive identity relation. Instead, with our new devices we can simply

add identity by definition:

x = y =df ∀X(Xx↔ Xy)

The development of so-called “standard semantics” also looks like a

straightforward and innocent extension of FOL. In FOL the interpretation

function assigns objects from the domain to names and functions from the

n-fold product of the domain to {⊤,⊥} to each n-ary predicate. In the last

chapter, this was done via the functions δ and v. A variable assignment func-

tion, on the other hand, takes care of the individual variables, by basically

doing what the interpretation function does for names: while the interpre-

tation function assigns an object from the domain to every name, a variable

assignment assigns to every name variable an object from the domain.

Let us simplify the semantics for FOL of the last chapter a bit, to see

in what way we need to adjust the semantics in order to obtain SOL. Let

us consider a single interpretation function I that combines the jobs of

δ and v, assigning objects to names and functions of the appropriate sort

to predicates. A model M is a tuple of the domain and the interpretation

function, 〈d, I〉.
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Now in SOL, where we have predicate variables in addition to name

variables, we need to take care of these. Since the variable assignment

function is doing – in a manner of speaking – half the job of the interpreta-

tion function already, we can just have it do it all: in addition to assigning

objects from the domain to name variables, in SOL we have the variable

assignment function also assign functions dn → {⊤,⊥} to n-place predicate

variables. In this case, the models of SOL are the same as those in FOL; they

are ordered pairs of a domain and an interpretation function, 〈d, I〉. What

needs to be redefined is the definition of the variable assignment function

(as just sketched), and the definition of the valuation function. Here are the

two clauses we need to add to the latter (if we do not add function letters

to the language):

• If 
 is an n-place predicate variable and τ1, . . . , τn are terms, and ε

the result of glueing together I and va, then M, va �1 
τ1 . . . τn iff

〈ε(τ1), ε(τ2), . . . , ε(τn)〉 ∈ I(
).

• If 
 is a predicate variable and φ is a wff, then M, va �1 ∀
φ iff for every

set U of n-tuples from d, M, va

U �1 φ

(where va

U is the variable assignment just like va except in assigning U to


).

The definitions for satisfiability6 and the definition for semantic conse-

quence7 remain just as they were for FOL. If we define the semantics for

SOL like this, we obtain what is called the “standard semantics” for SOL.

Since the interpretation function takes the semantic values for predicates

from the set of all sets of n-tuples that can be generated from the domain

(as it does in FOL), the predicate variables also range over that whole

set.

In terms of the model-theoretic view of logics given in Chapter 1, almost

everything is as it was in FOL with three exceptions:

• C now contains a truth-function (defined basically as above) for second-

order quantification,

• δ is expanded as above, and (most interestingly)

6 A formula φ is satisfiable iff there is a model M and a variable assignment va, such that

M, va �1 φ.
7 A formula φ is a semantic consequence of a set of formulas Ŵ iff every model that satisfies

all formulas in Ŵ also satisfies φ.
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• the function D now maps • to a pair consisting of the first-order domain

d and the following set of functions:
∞
⋃

i=1

{f : di → {⊤,⊥}}

The thing to note, though, is the following: there’s no obvious reason

we have to include all of these functions into the second-order domain of

quantification! After all, we are free to choose the first-order domain of

quantification as we like; what’s to keep us from similarly choosing the

second-order domain as we like as well?

If we do this – if we allow ourselves to specify separately what the

domain of the second-order variables is, rather than simply taking it to

contain all of the available functions – the result is what are known as

Henkin models.

More explicitly, a Henkin model is a triple MH = 〈d, d∗, I〉 where d is

the first-order domain and I is an interpretation function as above, but d∗

is a subset of the set
⋃∞

i=1{f : di → {⊤,⊥}}. The variable assignment func-

tion now assigns members of d to each individual variable, but appopriate

members of d∗ to each predicate variable. The definition of the valuation

function can basically remain as it was, replacing MH for M.

Henkin models can be equivalent to standard models. That’s the case if

d∗ contains all the semantic values that a standard model would have pro-

vided as semantic values for the predicate variables (rather than a proper

subset of them). A Henkin semantics that would be restricted to such mod-

els would be equivalent to a standard semantics. This gives us the following

results about the relationship between these two semantic theories (see

Shapiro, 1991):

• If φ is valid according to Henkin semantics, then φ is valid according to

the standard semantics.

• If φ is a semantic consequence of Ŵ according to Henkin semantics, then

φ is a semantic consequence of Ŵ according to the standard semantics.

• If φ is satisfiable according to standard semantics, then φ is satisfiable

according to Henkin semantics.

None of the converses hold.

Now, we can also construct a deductive system for SOL. As usual, this

can be provided in different styles, be it axiomatic (Shapiro, 1991), natural

deduction (Prawitz, 1965), or tableaux (Jeffrey, 1967).



Is Second-Order Logic Proper Logic? 71

The system that we introduced in Chapter 2 would just need to be

adjusted by adding rules for the second-order quantifiers. In the rules

below, ‘�’ and ‘�’ are open sentences, ‘Fn’ is an n-place predicate, and ‘Xn’

is an n-place predicate variable:

Universal Quantifier

Ŵ,�(�n/Xn)⇒ 	
∀2L

Ŵ,∀Xn�⇒ 	

Ŵ ⇒ �(Fn/Xn),	
∀2R

Ŵ ⇒ ∀Xn�,	

Existential Quantifier

Ŵ,�(Fn/Xn)⇒ 	
∃2L

Ŵ, ∃Xn� ⇒ 	

Ŵ ⇒ �(�n/Xn),	
∃2R

Ŵ ⇒ ∃Xn�,	

We need to observe the eigenvariable restrictions as they were introduced in

Chapter 1 (p. 32). SOL with the standard semantics discussed above and the

deductive system just introduced has some fascinating metalogical proper-

ties. Since they have been of relevance in the discussion of SOL’s status, we

will explain a short selection of these.

Let us begin with the perhaps less exciting side. If we consider SOL with

the Henkin semantics, SOLH, the following metalogical results for FOL all

carry over to SOLH (here presented in their FOL formulation (Shapiro, 1991,

79–80)):

Soundness Let Ŵ be a set of formulas and φ a formula of FOL. If Ŵ ⊢ φ then

Ŵ � φ (every formula derivable from Ŵ is a semantic consequence of Ŵ). A

forteriori, if ⊢ φ then � φ.

Completeness Let Ŵ be a set of formulas and φ a formula of FOL. If Ŵ � φ then

Ŵ ⊢ φ (every semantic consequence of Ŵ is derivable from Ŵ). A forteriori, if

� φ then ⊢ φ.

Compactness Let Ŵ be a set of formulas of FOL. If every finite subset of Ŵ is

satisfiable, then Ŵ is satisfiable.

Downward Löwenheim–Skolem theorem If M is a model of a set Ŵ of FOL formu-

las, then M has a submodel M′ whose domain is at most countably infinite,

such that for each assignment s on M′ and each formula φ in Ŵ: M, s � φ if,

and only if, M′, s � φ.

Upward Löwenheim–Skolem theorem Let Ŵ be a set of FOL formulas. If, for

each natural number n, there is a model of Ŵ whose domain has at least
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n members, then for any infinite cardinal κ, there is a model of Ŵ whose

domain has cardinality at least κ .

These results might all be familiar to you from studying FOL. Sound-

ness is the minimal requirement we expect from a logic: if we can prove

a formula from a set of premises, that formula should also be a semantic

consequence of those premises. Completeness is the more ambitious require-

ment that every consequence can indeed be reached by proof. Both concern

the relation between a specific model theory (in case of FOL, the standard

semantics; in case of SOLH, the Henkin semantics) and a specified proof

system. Compactness, Downward and Upward Löwenheim–Skolem are perhaps

less familiar. However, one might consider these results to represent the

expressive limitations of FOL (and thus of SOLH).

Compactness means that “you can’t say anything in [FOL] whose logical

significance would emerge only in connection with infinitely many other

sentences” (Sider, 2010, 105). Remember that we mentioned above that

FOL= allows us to express numerical claims, such as ‘there are three apples

on the table’. Even though FOL can express these numerical statements, it

can’t express claims like ‘there are finitely many apples’.

The other two results show similar weaknesses of FOL. Upward

Löwenheim–Skolem entails that every first-order theory with a countably

infinite model, e.g. Peano Arithmetic, has an uncountable model, too. By the

Downward Löwenheim–Skolem theorem, real analysis which has as the

intended uncountable domain the real numbers has a countable model

(for details, see Shapiro, 1991). In general, first-order theories with count-

able models also have uncountable models, and first-order theories with

uncountable models also have countable models.

Interestingly, these expressive limitations vanish if wemove to SOL with

standard semantics. Compactness, Downward and Upward Löwenheim–

Skolem all fail to hold for SOL. This allows SOL to formalize second-order

theories that have categorical axiomatic systems for infinite structures. An

axiomatic system is categorical iff all of its models are isomorphic.8

8 There is a structure-preserving one-to-one mapping between the objects of these

models.
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On a less positive note, completeness also fails for SOL with standard

semantics. Thus, not all semantic validities of SOL are provable.9 This can

actually be shown on the basis of the categoricity result (see Shapiro, 1991):

Let G be the Gödel sentence10 of the (finite) second-order axiom system of

arithmetic. Dedekind has shown that if we replace the induction scheme

by its second-order sentence, we get a categorical theory. Gödel has shown

that G is true in the standard model, albeit not provable in the deductive

system. Let us now consider the conjunction of the axioms of that system,

AR. The sentence ‘AR → G’ can’t be proven in the deductive system of

SOL (for the reasons just mentioned). However, this conditional is valid in

the standard semantics of SOL, as follows from the categoricity result for

arithmetic.

Note that the problem of incompleteness is not just that there are some

axioms missing, or some weird theorems not provable. The problem is

rather that the consequence relation of the standard semantics is non-

recursive and thus – no matter what you do – you can’t have a (recursive)

proof system.

The incompleteness of SOL has a further, somewhat ironic, dimension.

We can formalize sentences in SOL, let’s call them ‘CH’ and ‘NCH’, such

that CH is true iff the continuum hypothesis11 is true, and NCH is true iff

the continuum hypothesis is false. Now, either NCH or CH is a validity of

the standard semantics of SOL, and hence a logical truth of SOL (Shapiro,

1991, 105). The ironic part is that, although SOL entails the solution to an

9 We said above that completeness is a claim about a semantics and proof system.

Saying that SOL is incomplete means that there is no proof system that would allow

us to prove all validities of SOL.
10 Gödel’s First Incompleteness Theorem says that for a formalized system F which contains

Robinson arithmetic a sentence G of the language of F can be mechanically

constructed from F such that if F is consistent (in a specific sense) then neither G nor

its negation is derivable in F. Such an “undecidable” (that is, neither provable nor

refutable in F) statement is then called “the Gödel sentence” of F. For details see

Raatikainen (2018).
11 The continuum hypothesis says that there is no set whose cardinality is strictly between

that of the integers and the real numbers. The hypothesis was first formulated by

Georg Cantor in 1878. The hypothesis is independent of ZFC set theory

(Zermelo–Fraenkel set theory with the axiom of choice, the considered “standard”

version of set theory), i.e. the hypothesis or its negation can be added to ZFC and the

resulting theory is consistent if ZFC is consistent.
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open problem of mathematics (and there are more of this kind), SOL keeps

these solutions to itself: because of SOL’s incompleteness we can’t prove

CH or NCH.

Ontological Commitments

SOL seems to be a straightforward extension of FOL. FOL distinguishes two

kinds (or, if we include function letters, three kinds) of non-logical expres-

sion and introduces quantifiers and variables for one of these. However,

there are also natural language arguments and inferences that concern the

other non-logical expressions, hence SOL introduces variables and quan-

tifiers for these. The semantic values of the expressions over which the

quantifiers now range are just those that were already assumed to be the

semantic values of predicate letters (or function letters) in FOL (at least in

standard SOL). Why not then consider SOL to be logic, if FOL clearly qualifies

as such?

The most famous argument against considering SOL to be logic stems

from Quine (1970). In this book, Quine argues that SOL is not logic, but

in fact “set theory in sheep’s clothing”. Quine’s argument is a bit hard

to reconstruct. It’s placed in the section The Scope of Logic, in which he also

considers other candidates for extensions of logic. In fact, as in our chapter,

the first candidate he considers is “identity theory”, i.e. extending FOL to

FOL=. Quine opts in favour of this extension, because it (a) retains complete-

ness for FOL, (b) is universal (identity theory doesn’t discriminate between

different objects in the way a theory of numbers would), and (c) once the

machinery for FOL is in place anyway, identity theory can be added without

requiring any extra machinery.

Set theory, however, gets thumbs down. In the section that is supposed

to have Quine’s argument against set theory, he considers the question

why some philosophers came to believe that it was logic. He speculates

that a reason or at least a sign of that confusion has to do with SOL. In the

section Set Theory in Sheep’s Clothing he argues against three “confusions”.

The first is that second-order quantification is quantification over predi-

cates, the second is to confuse the intension of predicates, i.e. attributes,

with their extensions, i.e. sets. The third, finally, is supposed to be the

confusion that second-order quantification would have to treat predicates

to be names of their extensions, but predicates just aren’t names. Here is
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Quine’s argument why variables eligible for quantification do not belong

in predicate position:

Consider first some ordinary quantifications: ‘(∃x)(x walks)’, ‘(x)(x walks)’,

‘(∃x)(x is prime)’. The open sentence after the quantifier shows ‘x’ in a

position where a name could stand; a name of a walker, for instance, or of

a prime number. The quantifications do not mean that names walk or are

prime; what are said to walk or to be prime are things that could be named

by names in those positions. To put the predicate letter ‘F’ in a quantifier,

then, is to treat predicate positions suddenly as name positions, and hence

to treat predicates as names of entities of some sort. The quantifier ‘(∃F)’ or

‘(F)’ says not that some or all predicates are thus and so, but that some or

all entities of the sort named by predicates are thus and so. (Quine, 1970, 7)

Quine seems to assume that since ordinary variables occur in name posi-

tion, all variables must always occur in positions in which a name could

occur. But that just seems to beg the question against SOL. As Boolos (1975)

argues, we wouldn’t have believed the following argument:

Consider some extraordinary quantifications: ‘(∃F)(Aristotle F)’, ‘(F)(Aristotle

F)’, ‘(∃F)(17 F)’. The open sentence after the quantifier shows ‘F’ in a position

where a predicate could stand; a predicate with an extension in which

Aristotle, for instance, or 17 might be. The quantifications do not mean

that Aristotle or 17 are in predicates; what Aristotle or 17 are said to be in

are things that could be had by predicates in those positions. To put the

variable ‘x’ in a quantifier, then is to treat name positions suddenly as

predicate positions, and hence to treat names as predicates with extensions

of some sort. The quantifier ‘(∃x)’ or ‘(x)’ says not that some or all names are

thus and so, but that some or all entities of the sort had by names are thus

and so. (Boolos, 1975, 510)

According to Boolos we should reject the last two claims of that argument

as false and not following from the preceding ones, and for the same rea-

sons reject the final claims of Quine’s original argument (Boolos, 1975,

510).

Jason Turner (2015) reconstructs what he calls “Textbook Quineanism”,

the argument that most philosophers seem to have in mind when they

believe that Quine has shown that SOL is committed to sets. The argument

runs like this:
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1. You are ontologically committed to something of a particular kind if

and only if the bound variables in your system have to range over

things of that kind to be true.

2. The bound variables of second-order logic have to range over something

predicate-like.

3. Therefore, theorems of second-order logic ontologically commit you to

something predicate-like.

4. So second-order logic is not logic. (Turner, 2015, 469)

As Turner points out, this argument doesn’t seem to be very Quinean.

Quine does not think that you can just read off the ontological commit-

ments of a theory (as premise 1 states). Instead, the ontological commit-

ments of a theory only appear after the theory is properly reconstructed.

Inter alia this requires that the theory is translated into a first-order the-

ory. Only after this is done can the ontological commitments be read

off.

Perhaps that is indeed what Quine has in mind, when he argues that the

higher-order claim �∃X∀x(Xx ↔ Fx)� follows from �∀x(Fx ↔ Fx)�, but only

disguises the statement �∃y∀x(x ∈ y↔ Fx)� which clearly is committed to a

set (Quine, 1970, 68).

But there are at least two objections to the suggestion to translate

second-order claims this way into first-order logic. (i) as Boolos argued,

this translation does not preserve validity or implication. �∃X∀xXx� is

valid, while �∃x∀y(y ∈ x)� isn’t. �∀X(Xa → Xb)� implies �a = b�, but

�∀x(a ∈ x → b ∈ x)� doesn’t (Boolos, 1975, 512). This should speak against

the adequacy of the suggested translation.

Also, onemight question why Quine believes that only a first-order trans-

lation of a theory can properly capture the logical commitments of a theory.

If Quine’s answer to that question is that first-order logic is the only proper

logic, then he is simply begging the question against SOL again. After all,

SOL’s putative commitment to sets is supposed to be the reason for not con-

sidering SOL to be proper logic (and thus the right framework to represent

its ontological commitments).

But let’s leave Quine’s original argument and let’s turn instead to

Turner’s reconstruction of “Textbook Quineanism”. What to say about this

argument? Premise 2 could be motivated by arguing that the use of a

quantifier always ontologically commits. That’s just what quantifiers mean.

Now, since in SOL the variables that are quantified over are the kinds of
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things that can be used predicatively, they have to be predicate-like entities,

like sets, or perhaps Fregean concepts (Turner, 2015, 470).

But this argument can be resisted. Here is a counterargument by A. N.

Prior:

Quine would argue, I think, that the quantified forms �∀xFx� and �∃xFx� do

not commit us to the existence of any other sorts of entities than do the

corresponding singular forms �Fa�, �Fb�, etc., which follow from the former

and entail the latter. Why, then, should he suppose that the quantified

forms �∃XXa�, �∃X∃xXx�, etc., commit us to the existence of sorts of entities

to which we are not committed by the forms �Fa�, �Ga�, �∃xFx� from which

they follow? [. . .] The alleged emergence of these new ontological

commitments has an almost magical air about it. (Prior, 1971, 43)

Prior argues here that quantification into name position carries ontolog-

ical commitment, because names carry such ontological commitment. In

order for ‘Socrates is wise’ to be true, there must be a referent for ‘Socrates’.

Thus, this statement commits you to Socrates. If we believe that it doesn’t

also commit us to wisdom, but only to Socrates being a certain way, why

should all of a sudden quantification into predicate position create such

ontological commitment? As Prior says, this seems to be magical. Or, as

Turner puts it, when we assert sentences like ‘∃X(X(Socrates))’ we are not

saying that there is some predicate-like entity that Socrates participates in,

any more than when we assert ‘Socrates is wise’. In the latter we say how

Socrates is particularly, in the former how he is in more generality (Turner,

2015, 471).

But perhaps the problematic commitment to sets isn’t part of the object

language, but rather comes with its model-theoretic semantics. After all,

we seem to make use of sets when setting up the standard semantics of

second-order logic. Indeed, the model theory is committed to sets, but is it

committed to sets in a problematic way? Boolos (1975, 48) already observed

that the commitment of second-order logic is not comparable to full set

theory. Marcus Rossberg summarizes this observation as follows:

Generally, as the second-order variables are interpreted as ranging over the

subset of the domain, we will end up with a “second-order ontology” of the

size of the powerset of the first-order domain. If there are n objects in the

domain, the second-order variables range over 2n sets. Only one application

of the powerset axiom is needed, though, which is not very much
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compared to the vastness of the set-theoretical hierarchy. So, speaking in

set-theoretical terms, the commitments of second-order logic are still fairly

modest [. . .]. (Rossberg, 2006, 49)

But there are more possible moves. One could be to separate model the-

ory and semantic theory and consider the model theory to provide a model of

the consequence relation, but not to provide the proper truth-conditions of

the language (Turner, 2015). Another would be to note that also first-order

model theory talks of sets when explaining the truth of sentences like ‘Fa’,

but we don’t think that the model-theoretic semantics is ontologically com-

mitting, if we don’t think that the original sentence was; the same should

then hold for second-order model theory.

Finally, one could attempt to provide the semantics in other terms.

Perhaps the semantics for second-order logic should not be provided in

a first-order metalanguage. Agustin Rayo and Tim Williamson provide

instead a second-order metalanguage (Rayo and Williamson, 2003).

Plural Quantification and Intelligibility

An alternative argument against SOL, which is also perhaps the best con-

tester for a real Quinean argument against SOL, is what Jason Turner called

the Intelligibility Argument.

1. A formal system is meaningless unless it is provided an interpretation –

a specification of what its expressions mean.

2. We provide an interpretation by specifying the meaning of each

expression using terms already understood.

3. The only plausible meaning for ‘∃X . . . ’ is ‘There is a predicate-like thing

X such that . . . ’.

4. So, if second-order logic is meaningful, the second-order quantifiers say

that there are predicate-like things.

5. If the second-order quantifiers say that there are predicate-like things,

then second-order logic is not logic.

6. Therefore, either second-order logic is meaningless, or it is not logic.

(Turner, 2015, 473–474)

Perhaps this could serve as the missing part in Quine’s argument that

we discussed above. Maybe Quine isn’t just presupposing the idea that

variables qua variables have to occur in name position and that therefore
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SOL is quantification over predicate-like things, but rather (perhaps implic-

itly) arguing that that’s the only way to make sense of quantification.

This argument might be resisted in one of two ways: either one attacks

the idea that we always have to provide an interpretation in terms

already understood, or one attacks the idea that there is only one way to

understand second-order quantifiers.

The first strategy would challenge premise 2. As Turner (2015) argues,

the demand that we always have to interpret formal systems in familiar

terms is pretty restrictive and not in line with usual scientific practice.

Often we introduce theoretical terms by implicit definition, i.e. we put down

axioms in which the new expressions feature together with expressions

already understood. If there is something in the world that satisfies these

axioms, then that will be the extension of the theoretical terms so intro-

duced (if there’s nothing that makes the theory true, then the new terms

just fail to have an extension). But this strategy might fail in this case. First

of all, because of the incompleteness of SOL, we won’t be able to fix an

interpretation for SOL by writing down a set of axioms. Moreover, the

agnosticism built into this strategy invites a skeptical response: what if

the unique satisfier of the theory is sets after all?

This might make it more promising to look for a strategy that could

challenge premise 3. An early attempt of that kind is Susan Haack’s

substitutional interpretation of SOL (Haack, 1978). According to such a

substitutional interpretation, a quantified statement is true iff there are

expressions of the suitable syntactic category in the language such that

the quantified expression with the variables substituted with these expres-

sions come out true. For the case of second-order quantification, a formula

�∃Xφ(X)� is true iff for some predicate 
, �φ(
)� is true. The latter can

be the case without committing us to predicate-like entities. ‘Socrates is

wise’ does not commit us to a predicate-like entity. The problem with such

an account is that it doesn’t actually say what the meaning of �∃Xφ(X)� is,

but merely states a truth-condition, and these, arguably, aren’t the same

(Turner, 2015). If, on the other hand, we want to identify meaning and

truth-condition, we end up saying that �∃Xφ(X)� means ‘there is a predicate

such that . . .’, which, of course, commits to predicate-like things (namely,

predicates).

Another strategy of this kind is Boolos’ observation that monadic

SOL can be translated into first-order plural logic (Boolos, 1984). Also
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independently of this observation plural quantification has received a lot

of recent attention. Let’s quickly introduce the main idea behind it (using

the system from Linnebo (2014)).

The syntax of the language LPFO is an extension of FOL. In addition to

our singular variables (x, y, etc.), we will also have “plural variables” (xx,

yy, etc.) and in addition to singular name constants (a, b, etc.) we will now

also have plural constants (aa, bb, etc.). We have two predicate constants,

the familiar ‘=’ for identity and the new ‘≺’ for ‘is one of’ that can stand

between a singular and a plural term to form a well-formed formula. Since

we have plural variables, we will have two plural quantifiers ∀vv (‘for any

things’) and ∃vv (‘for some things’), where vv is a plural variable. In this

language, we can express the famous Geach–Kaplan sentence,

(GK) Some critics admire only one another.

as

(GK′) ∃xx[∀u(u ≺ xx→ Cu) ∧ ∀u∀v(u ≺ xx ∧ Auv→ v ≺ xx ∧ u �= v)]

The idea is that LPFO captures a form of quantification that we find in

ordinary language, such as the Geach–Kaplan sentence above, that can’t be

properly paraphrased in FOL. Linnebo (2014) describes the details of how to

build a theory PFO of first-order quantification based on the language LPFO.

Boolos argued that plural quantification is a familiar feature of ordi-

nary language. Moreover monadic second-order logic, MSOL and PFO

are equi-interpretatble; their theorems can be mapped onto each other.

Does that show that there is an alternative, ontologically unproblematic

interpretation of SOL?

This will depend on a variety of factors. First, it will of course depend on

the status of PFO itself: is PFO itself proper logic? Are its principles (e.g. the

introduction and elimination rules for the new quantifiers) logically valid?

Is PFO ontologically innocent?

On the last questions, Boolos was quite confident that plural quantifica-

tions in ordinary language do not carry problematic ontological commit-

ments. (GK) just talks about critics that admire other critics, but not about

sets or other “plural entities”. If so, then a plural predicate such as ‘Fxx’ can

be jointly satisfied (or unsatisfied) by several individuals at once. This view

is called “pluralism” (and contrasts with “singularism”, the view that such

predicate is satisfied or unsatisfied by a single individual) (Rayo, 2007).
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Some philosophers do not share Boolos’ intuitive reading of (GK) (cf.

Resnik, 1988) and argue that already the natural language sentence quanti-

fies over subsets of the critics.

Perhaps most importantly, it is not clear that establishing that there is a

mutual interpretability of MSOL and PFO establishes that MSOL (let alone

SOL) is unproblematic even if we assume that PFO is unproblematic.

[Equi-interpretability] does not show [by itself ] anything about these two

pairs of theories’ being equivalent in any of the more demanding senses

that philosophers often care about (such as having the same epistemic

status, ontological commitments, or degree of analyticity). (For instance

PFO is equi-interpretable with atomic extensional mereology, which

philosophers tend to find much more problematic than PFO.) In order to

show that the two pairs of theories are equivalent in some philosophically

important respect F, we would need to show that the above translations

preserve F-ness. (Linnebo, 2014)

Plural quantifiers can’t be simply interpretations of second-order quan-

tifiers either. There is no analogue of dyadic second-order quantification

(which is why Boolos’ project is confined to MSOL), and the plural vari-

ables don’t take predicate position (which was the obstacle to interpreting

SOL) (cf. Rayo, 2007).

But there is a further project, carried out by Rayo and Yablo (2001),

which is similar in spirit to Boolos’ project, but makes use of another

feature of ordinary language. They depart from the observation that pro-

adverbs such as ‘likewise’ or ‘somehow’ allow for non-committal readings of

second-order sentences with polyadic predicates. For example (see Turner,

2015, 475),

∃X(X(Scooby, Shaggy))

should not be understood as saying ‘There is a way Scooby and Shaggy

are related’, because that would be to quantify over ways, but instead

understood as saying

Scooby and Shaggy are somehow related.

This would deal with the issues we raised for Boolos’ project: the

approach can deal with polyadic SOL and the plural variables don’t

take name positions. However, this approach has to fight with technical
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difficulties of its own, and with whether the ordinary language transla-

tions really deliver the results that full SOL requires (cf. Rossberg, 2015;

Turner, 2015). To consider an example from Turner (2015, 476), the SOL

formula

∃X∀x∀y∀z(X(x, y, z)↔ x = Scooby ∧ y = Shaggy ∧ z = Velma)

will be true on all full second-order models, because there is a set contain-

ing just one triple with these three objects of the domain that are assigned

as referents. However, on the reading suggested by Rayo and Yablo (2001)

this becomes

Things somehow relate such that any three things that are so related if

and only if the first is Scooby, the second Shaggy, and the third Velma.

But it’s not clear that this last sentence really says that there is a relation

that is had only by Scooby, Shaggy and Velma, in that order (and not also

had by three other things).

Standard Semantics and Mathematical Content

The arguments we have looked at so far applied to SOL in general and

didn’t just find fault with full SOL, i.e. SOL with standard semantics. In this

and the next section we will focus on the latter.

When introducing standard semantics for SOL we noticed two features

which might be considered an obstacle to SOL being proper logic. SOL is

incomplete, and SOL contains validities the truth-value of which varies

together with the truth-value of certain mathematical hypotheses. In par-

ticular, there are sentences of SOL, CH and NCH, that are truths of SOL iff

the continuum hypothesis is true, false, respectively.

Now that is mathematical content right there. Who cares about whether

sets are somehow disguised behind quantification into predicate position?

SOL entails mathematical, set-theoretical claims among its theorems!

As Turner (2015) explains, there are at least two considerations against

a consequence relation that treats CH or NCH as validities. First of all, such

a consequence relation would violate the topic neutrality of logic. Whether a

sentence follows from a set of premises and whether a sentence is a logical

validity should not depend on the truths of any specific subject matter. It

should hold in complete generality. But the validity of CH or NCH depends



Is Second-Order Logic Proper Logic? 83

on the truths of set theory in the way specified above: we can prove that

CH is a validity of SOL iff the continuum hypothesis is true.

Note, however, that there are validities of first-order logic that “depend”

in a similar way on set-theoretical truths. First of all, there is the first-order

inference

∀x(Fx→ Gx)

∀x(Gx→ Hx)

∀x(Fx→ Hx)

which is valid iff the subset relation is transitive (cf. Turner, 2015). Secondly,

there is the first-order statement

∀x[x �= S(x) ∧ 0 �= S(x) ∧ ∀y �= x(S(y) �= S(x))]

which is unsatisfiable if there are no infinite sets (because then there are

no infinite domain models). Thus, the negation of the above statement is a

first-order validity unless there are sets with infinitely many members (cf.

Rayo and Yablo, 2001).

So, unless one is prepared to also count first-order logic to be “set theory

in sheep’s clothing”, SOL doesn’t seem to be particularly objectionable.

But there is a second way to build an argument against SOL’s logicality

on CH and NCH. One might consider it part of logic’s normativity that we

have certain rational obligations towards logical validities. In particular,

one might hold that it is an error of reasoning to reject genuine validities.

However, it doesn’t seem to be an error of reasoning to reject either CH

or NCH; they seem to be “radically epistemically unsettled” (Turner, 2015,

480).

But this “deep epistemic openness” of CH and NCH doesn’t primarily

have to do with their (indirect relation to) set-theoretic content, but rather

with the incompleteness of full SOL. This is a metalogical result that makes

SOL radically different from FOL. Doesn’t that suffice to establish that SOL

isn’t logic?

Standard Semantics and Incompleteness

Is the mere fact that SOL with standard semantics is incomplete a rea-

son against considering SOL to be proper logic? Let’s remind ourselves

again what a completeness proof establishes. We have two mathematical
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theories, if you like: one we can call the deductive system, and the other

we call the semantics. As Dummett (1978) explains, there is a technical

interest in knowing that the semantics is sound and complete with respect

to the deductive system. Knowing of soundness and completeness allows

us to derive conclusions about the deductive system from results in the

semantics and vice versa. If we can show that there is a model that satis-

fies a set of sentences Ŵ and, at the same time, falsifies the sentence φ, we

know that φ can not be derived from Ŵ. Likewise, we can sometimes estab-

lish logical consequence “faster” by reasoning through the semantics than

by reasoning through the deductive system (cf. Rossberg, 2004, 311). As

Dummett notes, for this technical purpose it isn’t actually necessary that

the second of these two systems, which we called the semantics, really

is a semantics for the language. Any “algebraic devise involving functions

defined over a two-element set” can do the job, if its classification of formu-

las corresponds to the deductive system in the appropriate way (Dummett,

1978, 294).

The situation changes a little if we have reason to put special trust in

one of the two systems. Soundness and completeness proofs can then lead

us to trust the other system as well (cf. Rossberg, 2004). Also, if we have

already convinced ourselves of the justifiedness of a system, the sound-

ness and completeness proofs can deliver an internal explanation of why

the system works (cf. Dummett, 1978). Is there a guarantee that such an

explanation is always available and a principled argument that logic has to

deliver it? It’s not clear that this is the case. The soundness result for SOL

might provide us with an explanation for why our second-order inferences

are trustworthy, but perhaps there is no other assurance of our semantic

reasoning than knowing that it is a (relatively) straightforward extension

of our first-order semantic reasoning.

Let’s focus on completeness in particular. Why should the completeness of

a systemmatter for its value as a logic? There are considerations, which we

will discuss in more detail in Chapter 8, that could perhaps offer an answer

to this question. Logic is supposed to have a certain normative authority on

our reasoning. In other words, the fact that φ follows from a set of premises

Ŵ will have some normative consequence on howwemay rationally reason,

if we believe all sentences in Ŵ, say. But even if this normative consequence

only holds in an idealized way (for example, under conditions of “ideal

reflection” etc.) we might nevertheless require that knowledge of logical
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consequence or of logical truth must be humanly possible in order to have

such normative force. If it is not knowable that φ follows from Ŵ, it is

unclear why this fact should have any normative consequence, however

indirect, on what we ought to believe. This consideration now connects to

the idea we discussed at the end of the last subsection: if CH and NCH are

“radically epistemically unsettled”, they can’t play the normative role we

expect of logical truths.

And SOL with standard semantics just is “anything but accessible to the

human mind” (cf. Raatikainen (Forthcoming) who shows that SOL also out-

strips less demanding requirements than completeness, or the recursive

enumerability of its logical truths). If we think that it is a central function

of logic to play such a normative role (cf. Field, 2009a), then full SOL is

not a logic. We will postpone the discussion of whether logic has any such

normative role to Chapter 8.

There is a further consideration for why completeness proofs in partic-

ular might matter. Our initial puzzle arises because we see completeness

proofs as merely establishing a result between two formal notions: model-

theoretic validity and proof-theoretic derivability. As we said above already,

this overlooks that we have reason to put some trust in these systems. As

Georg Kreisel (1972) argues, leaving this out is an oversight that might be

due to a positivistic prejudice to discard any informal notions.

Kreisel suggests considering three notions: that of the intuitive validity

of a formula, that of validity in all formal set-theoretic structures, and that

of formal derivability by means of some fixed set of formal rules. We can

introduce three corresponding predicates. Valα for ‘α is intuitively valid’,

Vα for ‘α is valid in all set-theoretic structures’, and Dα for ‘α is formally

derivable by means of an accepted set of rules’.

Kreisel argues that there are two accepted properties of Val. On the one

hand, we accept – in mathematical practice – the validity of inference rules.

For example, Frege’s system was accepted long before there even was such

a thing as model-theoretic semantics. Thus, we accept (where αi denotes

formulas of order i):

∀i∀α(Dαi → Valαi)

Moreover, we also accept in mathematical practice that

∀i∀α(Valαi → Vαi)
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because we take logic to apply to mathematical structures, and hence to

set-theoretic structures. So we have reassurance that the rules don’t lead

us astray and we have trust in the applicability of logic to mathematics. But

then, Gödel’s completeness result for first-order predicate logic, i.e.

∀α1(Vα → Dα)

allows us to infer two further facts, namely

∀α1(Vα ↔ Dα1)

and

∀α1(Vα ↔ Valα)

Thus, the completeness result allows us to prove the equivalence of our

intuitive notion with our semantic and proof-theoretic notions of validity.

Of course, Kreisel’s proof rests on facts about Val that are not themselves

formal results, but rather presuppositions of mathematical practice. His

argument does show why completeness proofs are important when we

have them (because they allow us to tie our formal and informal notions

together). However, as Rossberg (2006) argues, this does not show that if we

lack a completeness result (as in the case of second-order logic) the systems

in question aren’t logics.

Before we close the chapter we should add a comment on SOL’s deduc-

tive strength. As we have seen, most of the features that make SOL

attractive in the first place (for example, the categoricity results) depend

on its strong model theory. However, the interest that neologicism has in

SOL (as discussed in Chapter 10) connects to the strength of its axiomatic

deductive system “only”. As we explain in Chapter 10, SOL is a central

part of the neologicist’s project to derive certain mathematical theories

from Hume’s Principle. Hume’s Principle taken by itself is relatively weak (in

terms of interpretability of mathematical theories) however; in combina-

tion with the standard inferential apparatus of SOL it suddenly becomes

very strong. Raatikainen takes this as an indication that the axiomatic

deductive system, taken by itself, is not mathematically innocent either,

and thus shouldn’t qualify as logic proper.

The status of SOL seems still open, if you consider the question of logical

status to have an objective answer. We looked mainly at Quinean reasons
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against considering SOL to be logic proper. However, one can also take to

heart another lesson from Quine’s writings and hold with Stewart Shapiro

that the demarcation between logic and the rest of science (and mathemat-

ics in particular) is not strict. What we want to regard as logic is a matter of

pragmatic choice, and thus a matter of first settling what we want a logic to

do for us.

One of the tasks of logic is to codify the norms of deductive reasoning,

a form of reasoning that is especially prevalent in mathematics. Thus,

a logic should be able to adequately represent mathematical reasoning.

As we have seen above, the adequate representation of mathematical

reasoning and the content of mathematical theories requires categoricity.

Therefore, an adequate “logic” should be of the strength of SOL with

standard semantics.

Likewise, symmetry considerations might speak in favour of SOL. We

can express in FOL= that there are n objects, but not that there are

finitely many objects. Why shouldn’t logic be able to express all cardinality

quantifiers?

Moreover, above we have seen that Quine’s arguments against gener-

alization into anything other than name position are unconvincing. But

then it just seems to be a violation of logic’s universality that we restrict the

syntactic places into which we can generalize in this manner.

Exercises

1. Why does Compactness entail that FOL= can’t express ‘There are finitely

many F’? Can you prove this?

2. What is the closest translation to FOL= of the Geach–Kaplan sentence

(GK) that you can come up with? How would the sentence look in SOL?

3. We argued that the fact that either CH or NCH is a semantic conse-

quence of SOL could speak against SOL’s logicality in virtue of logic’s

supposed normativity. Rejecting CH or NCH does not seem to be an error

of reasoning, while rejecting a logical validity does. But is that so? What

about non-classical logicians that reject validities of classical logic? Are

they committing an error of reasoning? Is that rejection different from

rejecting CH or NCH?



4 Logical Constants

In the last two chapters we looked at deviations from and extensions of

standard logic. In Chapter 3 we discussed two extensions: the extension of

FOL to FOL=, i.e. that of first-order predicate logic to first-order predicate

logic with identity, and that of FOL to SOL, i.e. the extension to second-

order logic. As we have seen, such extensions might significantly increase

the expressive power of a logic and change its metalogical properties in

dramatic ways.

The extension to FOL= is motivated because it recognizes identity as a

logical connective and doesn’t treat it as a non-logical expression. But on

the basis of which consideration can we decide which expressions should

belong to the arsenal of logic? Why should identity belong to it but not

the ‘is larger than’-relation? What speaks against ‘has a beard’ as a logical

constant? As we shall see in the second part of this chapter, the problem of

how to demarcate the logical constants has no easy answer.

However, we will first need to attend to another, prior problem. Before

we get to discuss whether we should add, say, identity to logical constants

such as negation, conjunction, etc. we first need to understand better in

virtue of what anything counts as that constant.

The Meaning of Logical Connectives

This problem arises when we consider our discussion of alternative,

deviant logics in Chapter 2. As we have seen, some deviant logics are moti-

vated by the conviction that certain inferences that are licensed by classical

logic are not in fact valid. For example, dialetheists hold that a contradic-

tion should not lead to “explosion” (a.k.a. ex falso quodlibet) because there

may be true contradictions. But is a logic that considers expressions of

88
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the form �φ ∧ ¬φ� to be possibly true still a logic in which ‘¬’ expresses

negation?

Here is an argument (which Paoli (2003, 531) reconstructs from Slater

(1995)) that paraconsistent “negations” are not negations:

1. Contradictories cannot be true together.

2. A sentence and its negation are contradictories.

3. If L is a paraconsistent logic, then, in the semantics for L, there are

“inconsistent” valuations which assign both A and ¬A a designated

value, for some formula A.

4. If A and B both receive a designated value, under some valuation v, in

the semantics for L, then A and B can be true together according to L.

5. In paraconsistent logics, A and ¬A may not be contradictories (from (1),

(3), (4)).

6. Thus, paraconsistent “negations” are not negations (from (2), (5)).

Is this right? If so, what does that imply for the nature of the conflict/dis-

agreement between classical and deviant logics?

Quine’s Thesis and his Critics

Quine (1970) has already argued that the dialetheist’s system is not in

fact representing negation, and that every change of logic is ultimately

a change of subject:

My view of this dialogue [between those who think that there can be true

sentences of the form A ∧ ¬A and those who do not] is that neither party

knows what he is talking about. They think they are talking about

negation, ‘[¬]’, ‘not’; but surely the notion ceased to be recognizable as

negation when they took to regarding some conjunction of the form

[A ∧ ¬A] as true, and stopped regarding such sentences as implying all

others. Here, evidently, is the deviant logician’s predicament: when he tries

to deny the doctrine he only changes the subject. (Quine 1970, 81)

If we abstract from the particular elements of the example (the involved

logics and the discussed connective), Quine’s thesis is that in a differ-

ence between two logics, L1 and L2, a change of subject is involved.

Grosso modo, two logics are different if and only if their collections of

logically valid and invalid arguments are different. According to Quine,
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the change of subject consists in changing the way we understand the

connectives, in changing their meaning. This, in turn, consists in chang-

ing the values that a given formula takes under certain conditions and

also in modifying the entailments between certain sentences. So ‘change

of subject’ means ‘change in the meaning of the logical connectives’

(although perhaps Quine would not put it that way given his skepti-

cism about meaning), which in turn means ‘change in the truth-values

of certain formulas, presumably attributable to a change in the way of

evaluating the connectives, and a change in the valid inferences between

certain formulas’.1 Thus, put in simpler terms, the meaning of a logi-

cal connective is determined by the truth-conditions of the sentences in

which it appears. The fact that those truth-conditions validate certain the-

orems, namely, those of classical logic, is because those truth-conditions

replicate the use of their everyday language counterparts as faithfully as

possible.

This Quinean thesis is typically accepted. Consequently, deviant logi-

cians argue for a change of logic and, thus, a change in the meaning of

the connectives, on the basis of a purpose that requires this. An intuition

common to several proponents of deviant logics is that if one has to mod-

ify the collection of classical theorems, this is because some theories we

consider worthy for inclusion in our body of knowledge require differ-

ent logics (see e.g. Priest, 2006; da Costa, 1974). As an example, if when

studying quantum phenomena one has to use a logic that is not classi-

cal, this is because subatomic particles have properties the treatment of

which in classical terms is inadequate or, at least, greatly hampers their

study.

By accepting that there can be legitimate changes in the meaning of a

connective, Quine’s critics have accepted the thesis that a change of logic is

a change of subject and thus that changing the subject changes the mean-

ing of the connectives. Certainly there seem to be good reasons to accept

this. For instance, possible-worlds semantics can be seen as making the

difference between classical and intutionistic2 negation explicit as follows

1 Although, strictly speaking, one should speak about the truth-conditions of the

propositions in which the connectives appear, for simplicity we will talk on occasion

about “a connective’s truth-conditions”.
2 See Chapter 10 for a brief explanation of intuitionistic logic.
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(where v is a valuation, w and w′ are possible worlds and ≥ is an ordering

or accessibility relation):

Classical negation: v(¬φ,w) = ⊤ if and only if v(φ,w) = ⊥.

Intuitionistic negation: v(¬φ,w) = ⊤ if and only if, for every w′ ≥ w,

v(φ,w′) = ⊥.

Another option – albeit a less explored one – is again to accept that there

is a change of subject, but to argue that what changes is not the meaning of

the connectives but instead our notion of deducibility (cf. Estrada-González,

2011). Again, this option is also compatible with Quine’s thesis, since it

merely shows that a modification in the collection of theorems and the

meaning of the connectives, or in the deducibility relation, is called for by

the requirements of some of our theories.

In a Quinean philosophy of logic and science, changes of inferential

tools are considered to be global rather than merely local. It would not be

possible, for instance, to maintain classical logic as a tool for every domain

except that of, say, subatomic phenomena. Thus, Quine’s thesis is that a

change of logic is a change of subject, but also that this change has to be

global.

We are not interested in the discussion of this stronger thesis, as it

involves discussion of the nature of logic, the criteria for choosing between

logics, etc. We are only interested in discussing here a weaker version of

the Quinean thesis, namely that if L1 and L2 are different logics, then

their connectives must have different meanings. In what follows, when we

mention either ‘the Quinean thesis’ or ‘Quine’s thesis’ we will be refer-

ring to the weaker version.3 Also, when talking about the problem of logical

connectives or the debate about connectives we will not refer to the perhaps

more frequently discussed problem of finding out which are the logical

constants, be it in a formal theory or for our everyday language, which will

be dealt with later in this chapter. The problem for now isn’t which or how

many logical constants there are, but rather what determines the mean-

ing of connectives, regardless of which and how many of the connectives

actually count as logical constants.

3 This thesis has been quite pervasive among many logicians’ practices, more so than

the stronger version. In the literature, this thesis has been explicitly defended by

Priest (2006, Ch. 10) for the specific case of classical and intuitionistic logic.
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Quine’s thesis has been widely accepted even by those with different

views on the meaning of the logical connectives. Among the few objectors

to Quine’s thesis one can find Hilary Putnam (1957, 1962, 1968), Adam

Morton (1977) and, more recently, Greg Restall (2002), Jc Beall and Greg

Restall (2001, 2006), Francesco Paoli (2003, 2007) and Stephen Read (2008).4

In his objection to Quine, Hilary Putnam (1962, 377) defends three

theses:

(Put1) The connectives have a “nuclear” or “central” meaning (core mean-

ing) which is independent of many of the theorems or valid arguments (or

proofs, if one prefers proof-theoretic terms) in which they appear; that

is, for Putnam, Quine does not adequately characterize the meaning of a

connective.

(Put2) If one interprets ‘change of meaning’ as a modification on the

global use of a connective, i.e. if by ‘change of meaning’ one means that

the theorems (or valid arguments) associated with a connective do not

match for two given logics, then (trivially) changing the logic is changing

the meaning.

(Put3) If the thesis ‘change of logic is a change of meaning’ is taken to

mean that a change of logic only involves a change of meaning of the

connectives, then the thesis is false, as a change of logic affects the

deducibility relation too.

Obviously, theses (Put2) and (Put3) matter just in case themeaning of the

connectives is different from their core meaning. Thus, we will focus only

on thesis (Put1) (which denies thesis (Put2)’s antecedent) and on Putnam’s

defence of it, which can be found in Putnam (1957).

Putnam traces a distinction, although rather implicitly, between the

theorems (or the valid arguments) of a logic L in which a connective c

appears and the properties such a connective must meet in order to be

c (even if such properties could validate certain theorems or arguments).

In the context of a discussion of the logic of quantum mechanics, Putnam

4 Each of these authors is a “minimalist” in the sense introduced later in this chapter,

although all are minimalists of very different sorts: while Putnam comes from an

axiomatic tradition, Beall and Restall discuss the issue in model-theoretic terms and

Paoli and Read do so in more contemporary proof-theoretic terms.
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introduces the idea of an “operational meaning” for the logical connectives.

Thus, the theorems in which disjunction appears would be one thing, and

the features a connective needs to have in order to be considered a dis-

junction would be another. Leaving the discussion of quantum mechanics

aside, and modifying Putnam’s presentation slightly, the operational mean-

ing of the connectives can be specified as follows. Suppose that there is a

semantics in which there are at least two truth-values (say, true and false)

and that these form a partial ordering. The operational meanings for the

connectives would then be the following:

• the operational meaning of φ ∧ ψ consists in its truth-value being the

infimum of both conjuncts’ value;

• the operational meaning of φ ∨ ψ consists in its truth-value being the

supremum of both disjuncts’ value;

• the operational meaning of ¬φ consists in the truth-value of the con-

junction of ¬p and p being equal to false and the disjunction of ¬p and p

being equal to true.5

The connectives of quantum and classical logic share this operational

meaning; additionally, it is not difficult to show that the classical theorems

can be characterized from this operational meaning once one restricts the

collection of truth-values to two. Thus, according to Putnam, in the discus-

sion of the relation between classical and quantum logics, the number of

truth-values and the (in)validity of some formulas such as (p ∧ (q ∨ r)) ↔

((p ∧ q) ∨ (p ∧ r)) are irrelevant for the specification of the meaning of the

logical connectives. Taking only the above-mentioned operational mean-

ing, the connectives of classical and quantum logic do not differ in their

meanings.

Morton (1973) takes Putnam’s position further by stating that there need

not be a single collection of arguments (or theorems) that has to be shared

by the connectives c, c′ and c′′ in order for them to be similar, for the

three of them to be, for instance, disjunctions. Morton suggests that two

5 This proposal by Putnam is not as general as one would like it to be: the operational

definition for negation is of no use either for intuitionistic logic or for many

inconistency tolerant logics. Of course, in the text under examination, Putnam only

tries to show that there is an operational meaning common to classical and quantum

logic, but in texts such as Putnam (1957), it is explicitly stated that the validity of

φ ∨ ¬φ plays no role in the meaning of either disjunction or negation.
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connectives c and c′ are similar to each other if c and c′ share a common col-

lection I∗ of valid arguments (theorems). However, similarity does not entail

sameness of meaning, which is what it would take to argue against Quine’s

thesis. As the similarity relation is not transitive, a connective c′′ could be

similar to the connective c′ if they share some collection I∗∗ of valid argu-

ments (theorems) even if I∗ and I∗∗ are not the same collection of valid

arguments (theorems) and even if they are disjoint (and, therefore, even

without c and c′′ being similar). Putnam’s proposal does not face this issue

because in order for two connectives c and c′ to be, say, a conjunction, they

both have to validate a certain collection of theorems or arguments.

In the proof-theoretic framework, an operational rule for a connective c in

a logic L tells us how c is used in the proofs of L; this concerns introduction

rules “to the left” or “to the right”, as we encountered in Chapter 1.6 Also,

remember that no connectives appear in the structural rules of L. There are

logics that do not differ in their operational rules, but only in the structural

ones, so it is at least dubious that the meaning of the logical connectives dif-

fers between these logics. However, those who endorse a proof-theoretical

approach have not reached a consensus on whether the meaning of the

connectives is only determined by the operational rules or if there is a

contribution made by the structural rules too. Wansing (2000) assures us

that, in practice, logicians often recognize that the connectives have two

kinds of meaning: an “operational” meaning, determined exclusively by

the operational rules for the connective, and a “global” one, in which the

contribution of the structural rules is taken into consideration.7 Regard-

less, the recognition of these two kinds of meaning is not of much use in

refuting the Quinean thesis, as there is still at least one sense in which a

change of logic is a change of subject, namely when – despite having the

same operational meaning – the connectives of two logics differ in their

global meaning.

Paoli (2003) is well aware of this difficulty, yet still holds that there can

be a change of logic, and specifically a rivalry between logics, without there

6 Gentzen (1969, 80) suggests that the meaning of a connective is specified by its

corresponding (operational) introduction rule. This idea is further developed by

Dummett (1978), Prawitz (1982) and Dǒsen (1989), among others.
7 Notice that the operational meaning that is being talked about in the contemporary

proof-theoretic context is not the same operational meaning that Putnam talks about.
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being a change of meaning, as the connectives of different logics can have

the same operational meaning, that is, the same operational rules (see

Paoli, 2003, 539). However, this proposal suffers from a problem similar

to that of Morton’s: that the operational rules are the same for a connec-

tive in two different logics says at most that both connectives belong to

the same kind (negation, for example). In fact, one can even say that the

sharing of the operational rules by two connectives entails that both con-

nectives share some common meaning. However, this does not warrant

that those rules are sufficient to specify the full meaning of the connec-

tives, which leaves room for there being a change in the full meaning of

the connectives among different logics if the latter differ in their struc-

tural rules. An argument to discard the contribution of structural rules is

needed.

Maximalisms and Minimalisms

In the more recent debate concerning the meaning of connectives, one

can identify two camps. One is that of model-theorists; their main thesis is

that the meaning of a logical connective is determined by its contribution

to the satisfiability conditions of formulas that contain them. The other

camp is that of proof-theorists, according to which the meaning of a logical

connective is specified by the connective’s contribution to the inferential

role of formulas that contain it.

Thus, for example, according to proof-theorists, the meaning of con-

junction consists in that from φ ∧ ψ one can infer φ as well as ψ (as

in a conjunction elimination rule), and that from φ and ψ one may con-

clude φ ∧ ψ (as in a conjunction introduction rule). That would be the

contribution of conjunction to the inferential role of the formulas in

which it appears and, hence, that would be its meaning. Both the model-

theoretical and the proof-theoretical versions of the Quinean thesis are

usually accepted, that is, for model-theorists changing the logic changes

the satisfiability conditions for the connectives, and for proof-theorists

changing the logic changes the collection of valid arguments via a change

in the rules of use for the connectives.

Typically, both model-theorists and proof-theorists are, to borrow a use-

ful expression from Restall (2002), “maximalists”. According to semantic

maximalism, every semantic feature related to a connective c contributes
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to its meaning. It is typically held that the meaning of a connective is

determined by its satisfiability conditions, which in the case of many

zeroth-order logics are usually expressed in truth-tables. But truth-tables

for typographically identical connectives may differ radically, which gives

Quine’s thesis more plausibility. Model theory seems to be tied then to

semantic maximalism. Model-theoretic maximalism is the thesis that every

element involved in determining the satisfiability conditions for formu-

las in which c is the main connective contributes to its meaning – those

elements involve the details on the structure of values, indices, domains,

accessibility relations, etc.

Maximalism also comes in proof-theoretic terms. For the sake of defi-

niteness, we will stick to sequent calculi, as we have done in the rest of

the book. Proof-theoretic maximalism is then the thesis that the meaning of

any connective c is determined both by the L- and R-rules for c as well as

the structural rules. The meaning of a connective is its “global meaning”,

to employ the useful terminology of Paoli (2003).

According to semantic minimalism, only some semantic features related to

a connective determine its meaning. The obvious problem is picking the

ones that do. As we have seen in the case of Putnam, only some theorems

in which c appears contribute to determine its meaning. In Putnam’s case

study, the answer as to what are the meaning-determining elements is that

they are the theorems of a certain quantum logic, as they constitute the

common core of both this quantum logic and classical logic. The problem

is that this strategy is not so easily extended to cases in which one wishes

to consider more logics, let alone all logics.

Proof-theoretic minimalism is the thesis that only some rules contribute to

determine the meaning of a connective c. Typically, just the operational

rules are taken to play such a role.8 This choice both motivates and is

motivated by

Došen’s Principle If two logics presented proof-theoretically are different,

their difference lies in elements of the proof theory other than the

operational rules for connectives (see Došen, 1989).

8 Nonetheless, some authors think that tonk refutes the idea that operational rules

alone can determine the meaning of connectives. We will say something more about

tonk below.



Logical Constants 97

Now, even if one agrees that it is just the operational rules that contribute

to determining the meaning of connectives, this is still a generalization. Do

both L- and R-rules play such a semantic role, or rather just the R-rules (as

Gentzen thought) or only the L-rules? Perhaps the kind of rule that makes

the semantic contribution varies depending on the connective, as each rule

extracts information in different ways, which might suit some connectives

but not others?

Besides these choices, a proof-theoretic minimalism can be asked to sat-

isfy certain desiderata like separation (characterize c without using other

connectives); weak symmetry (every rule is either an L- or an R-rule); weak

explicitness (c is present only in the bottom sequent), etc. Again, leaving

aside the details of specific proposals, one nice feature of proof-theoretic

minimalism is that it can provide useful distinctions between kinds of

meanings: a local one, when only operational rules make a semantic contri-

bution, and a global one, when structural rules also make a contribution.

This in turn provides the means to refute Quine’s thesis: if the only, or

at least the main, meaning of a connective is the logical one, there are

plenty of cases of different logics that share the operational rules and only

differ in structural ones, so there is a difference between logics without

meaning-variance, after all.

After the initial proposal of Restall (2002), there has been little work

on model-theoretic minimalism. What is a satisfiability condition? It

is usually considered to be a specific function from constructions on

truth-values to truth-values. By “specific” we mean that the details of the

domain and codomain of the function are fully specified: the exact num-

ber of truth-values (not only assuming that there is at least one), the exact

ordering between them, the exact number and nature of indices and acces-

sibility relations, and so on. But that sounds more like maximalism, not

minimalism.

Consider a Došen’s Principle for model-theoretic semantics: If two log-

ics are different, their difference lies in elements of the model theory

other than the satisfiability conditions. In order to give content to model-

theoretic minimalism, it should be possible to distinguish between a kind

of rule of association, an “operational (or “local”) satisfiability condition”,

and a particular map in which all the parameters of the rule of associa-

tion are properly filled in, a “global satisfiability condition”. So one would

have at least the same nice features as in proof-theoretic minimalism but



98 An Introduction to the Philosophy of Logic

probably also the same problems, mutatis mutandis. Work in that direction

can be found in Estrada-González (2011).

Even though attractive, the minimalist thesis, whether in its model-

theoretic or proof-theoretic version, still has to overcome many difficulties

both in its enunciation as well as in its formulation of a more or less com-

plete proposal. So far there is no conclusive argument to decide which

elements are relevant for specifying the meaning of the connectives and

which are not.

Are Disputes about Logic Merely Verbal?

So far we went along with the idea that if the connectives in two logics

are governed by distinct rules, this would involve a change of meaning.

The way that Quine thought about it, as we have seen, implies that when-

ever two logicians disagree about the rules that should properly govern a

connective, they in fact talk past one another, since they talk about dif-

ferent connectives. The proposals that we have looked at so far, which

could avoid this last implication, were such that they tried to find a set

of rules of some kind that would remain stable between the disagree-

ing logicians, such that due to these stable rules the logicians could

still be said to talk about the same connective. Perhaps this isn’t the

only way in which stability of meaning could be guaranteed between

interlocutors.

Let us take an example: let’s consider Catharina and Stephen, two logi-

cians. Stephen endorses some relevant logic, while Catharina endorses

classical logic. Let us consider their dispute under three different con-

ditions. In the first condition, Stephen and Catharina are both native

speakers of English. Moreover, they are both disposed to reason according

to, say, classical logic. In other words, their logica utens is the same, but their

logica docens differs. Thus, when it comes to metalogical arguments, which

are carried out in English, they both reason classically. However, Stephen

arrived at the view that Catharina’s classical logic is wrong. Do Catharina

and Stephen now talk past one another, when they disagree about the rules

that govern conjunction, negation or the conditional?

In this first case, it seems that they don’t. At least one of them, probably

Stephen, is simply mistaken about what the correct logica docens is. Perhaps

within the proposed theoretical frameworks, the formal counterparts of
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the logical connectives have different “meaning”, but at least one of them

is just an inadequate representation of the actual logical constants.

Let us change the case a bit and consider a situation in which Stephen’s

logica utens conforms to his logica docens. After years of studying relevant

logic, he developed a disposition to reason in that logic too. Now his meta-

logical proofs are also governed by the rules of relevant logic in the sense

that the inferences he in fact draws are in accordance with these rules.

In this second case we might think that there is now a better case to be

made for Catharina and Stephen to talk past one another when discussing

matters of logic.

However, Timothy Williamson (2007) has argued for a view on which

this second case is not actually unlike the first. Catharina and Stephen

should both still count as speakers of the same language. They both learned

English as their first language, and both clearly count as competent speak-

ers. When they talk about the rules that govern the logical connectives,

they talk about the rules that govern ‘and’, ‘or’ and ‘it’s not the case that’

etc. The meaning of these words in English is determined by the use of

these connectives in the linguistic community as a whole. Catharina hap-

pens to be attuned to that meaning, Stephen’s reasoning is out of step with

it, but that just means that he sometimes makes mistakes. When Catharina

and Stephen use these words in their metalanguage, they nevertheless use

these words with the same meaning, the meaning these words have in

English. Their individual quirks cannot change the meaning of these words.

This follows from a relatively uncontroversial social externalism about

meaning on which themeaning of expressions in a public language is deter-

mined by the linguistic community, and on which individual members of

the community count as members on the basis of sufficiently successful

linguistic interaction with that community.

Let us consider a third case, on which Catharina and Stephen do not actu-

ally speak the same language. Let’s assume that Catharina speaks British

English, while Stephen speaks Australian English. Let us also assume fur-

ther that the linguistic community in Australia, after decades of exposure

to deviant logics, has developed a disposition to use the English words for

‘and’, ‘or’, ‘it’s not the case that’, etc. as if their meaning was governed

by the rules of relevance logic. On the externalist picture above, Catharina

and Stephenmight now count as speaking two different languages with the

logical connectives in each having different meanings (and thus, perhaps,
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should count as different connectives, depending on what stance one takes

on the topics discussed in the previous sections).

However, the fact that some homophonic words in British English and

Australian English happen to have different meanings does not imply that

therefore Catharina and Stephen must be talking past one another. First of

all, they might be aware of the fact that these words in their respective lan-

guages have different meaning and thus might be perfectly able to avoid

merely verbal disputes, even if both keep speaking their language. In this

case, it would then be a question of what they take themselves to be dis-

cussing – perhaps they discuss the rules as they apply to the connective in

one of the languages, or perhaps they discuss the question of which rules

should apply, or they discuss the structure of logica ens, assuming that this

is independent of what language people happen to speak.

Let us consider that last option a bit further. As we shall see in the

next chapter, logical realists hold the view that logic studies a mind-

independent subject matter. Such a subject matter could then well be

independent of the inferential dispositions of any linguistic community.

Catharina and Stephen might intend to study that. In fact, regardless of

whether the words ‘and’, ‘or’, ‘it’s not the case that’, etc. have different

meanings in their native languages, they might be using these words as

technical terms with the stipulation that their meaning should “carve

nature at the joints”. If Ted Sider (2011) is right, then the structure of

the world is such that it provides meaning candidates for the logical

connectives.

First question: do any logical concepts carve at the joints? There is a

powerful argument that at least some of them do. The best guide to

joint-carving is a Quinean criterion of ideological commitment: it is

(defeasibly) reasonable to regard indispensable ideology as carving at the

joints. But we cannot get by without logical notions in our fundamental

theories. In particular, since Frege it has become clear that the notions of

first-order predicate logic are indispensable in serious foundational

theorizing. (Sider, 2011, 216)

Thus, because logic is indispensable we have reason to believe that the

concepts of logic carve at the joints. But then there is an objective struc-

ture that Catharina and Stephen can intend to be the meaning of their

expressions, just as we might intend natural kind terms like ‘water’ to be
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expressing as a concept whatever it is that in fact is water. The meaning of

logical connectives then isn’t in the head, and not in anyone’s inferential

dispositions either, be it at the level of individuals or at that of linguistic

communities.

This is a “voluntaristic” model of how Catharina and Stephen might

come to use the logical connectives with the same meaning, even if they

are both members of different linguistic communities, each with a differ-

ent logica utens. It is “voluntaristic” because it depends on Catharina and

Stephen both intending to use logical connectives in this way. This is per-

haps an unrealistic assumption. While there might be empirical evidence

that we use natural kind terms with a deferential disposition (deferring to

the actual nature of, for example, water for the determination of the mean-

ing of ‘water’), it is not plausible to hold that we have the same disposition

when it comes to logical constants.

According to Sider (2011), the same result may, however, be obtained

from a non-voluntaristic picture. According to “reference magnetism”,

expressions for which there are joint-carving meaning candidates will also

have these as meanings, regardless of whether speakers also intend to use

these expressions with these meanings. For example, let’s assume that the

classical meaning of the logical connectives corresponds to the world’s

structure (as understood by Sider), then the logical connectives of British

English and of Australian English (in our hypothetical example) will both

have that same meaning, even though the use of the logical connections

in Australian English seems to be somewhat different from that in the

British English linguistic community. However, the fact that the world

has the structure that corresponds to British English will then trump the

dispositions of the speakers of Australian English.

Reference magnetism of this trumping kind is perhaps not a terribly

plausible position (cf. Schwarz (2014) for a critique of reference magne-

tism). Sider (and before him, David Lewis (1984)) defend the view as a solu-

tion to Putnam’s challenge of reference skepticism.9 We cannot discuss

9 Hilary Putnam (1980) argues that we can find for any global theory infinitely many

interpretations that satisfy that theory. This is Putnam’s model theoretic argument

against “global descriptivism”. The theoretical role of an expression, even in a global

theory, doesn’t fix the extension for that expression. If there is one domain that will

satisfy the theory, then every domain of objects of the same cardinality will do the

same. Moreover, Putnam added, any constraint other than truth (i.e. satisfaction of
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the matter in any detail here. However, on this view the deviant logician

could not talk past the classical logician; they would in fact use the logical

connectives with the same meaning, and that would be guaranteed by the

objective structure of the world.

This shows that Quine’s thesis, namely that the meaning of logical con-

nectives varies between different logics, does not also entail the conclusion

that Quine is drawing from it, namely that the proposal of an alterna-

tive logica docens means a change in subject, and that logicians of different

camps must be talking at cross-purposes.

The Problem of Demarcation

Logic is usually thought to concern itself only with features that sentences

and arguments possess in virtue of their logical structures or forms. The

logical form of a sentence or argument is determined by its syntactic or

semantic structure and by the placement of certain expressions called ‘log-

ical constants’. Thus, in order to determine which sentences are logically

valid and which sentences logically true, we must tell apart the “logical

constants” of a language from its non-logical expressions in a principled

way. How to make such a demarcation is the problem of logical constants.

As we have observed in the previous chapter, there can be consider-

able disagreement over which expressions should be considered logical

constants. We have seen that sometimes – for example in the case of the

identity sign – the decision might be relatively easy: adding identity to the

stock of logical constants enriches the expressive power of the language,

but the metalogical properties of the logic stay otherwise largely the same,

and we don’t need to make any larger changes to model or proof theory in

order to accommodate identity as a new logical constant.

As we also observed in Chapter 4, this is often not the case though.

Adding higher-order quantifiers, constants from set theory or mereol-

ogy, modal or tense operators, etc. will considerably change the logic so

the theory by a model) would be just another piece of theory, hence not a way out of

the embarrassment of riches. Lewis (1984) suggests solving the problem from the

other direction; instead of having the theory fix the extension of the expressions in

the world, the world fixes the meaning of the expressions by being structured into

eligible candidate meanings. It is controversial to what extent Lewis does in fact

present this idea as part of his own view on meaning (cf. Schwarz, 2014).
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enriched. Moreover, unlike in the cases of conjunction, negation, disjunc-

tion, etc. we don’t have strong or very widely shared intuitions about

whether these expressions should count as logical constants. For these

cases it would be good to have a principled demarcation criterion that

told us where to draw the line between the logical and the non-logical

expressions.

Before turning to specific proposals on how to draw the line between log-

ical constants and other expressions, we should say a bit more about the

status of the problem and its motivation. Following MacFarlane (2015), we

can distinguish four general stances towards the problem of logical con-

stants: those of the Demarcaters, the Debunkers, the Relativists and the

Deflaters.

According to the Demarcaters, logic is the study of the properties that

arguments or reasonings have in virtue of the logical form of premises and

conclusions. However, logical form is in turn determined by the logical

constants that occur in these premises and conclusions. Thus, the subject

matter of logic is, in fact, determined by where we draw the line between

logical and non-logical expressions.

For a Demarcater the question of where we draw that line is therefore

a central issue in the philosophy of logic, and a theory that would enable

us to draw a principled distinction between logical and non-logical expres-

sions would also be expected to provide us with substantial insight into

the nature of logic. Typically Demarcaters are optimists, for they think the

problem is not only genuine and important, but solvable by means of some

theory, whether mathematical, semantic, epistemic or any other kind.

In contrast, Debunkers do not think that the subject matter of logic is

determined by the choice of logical constants. Logic instead studies logical

validity simpliciter. Logicians study that relation by classifying arguments by

their form, but that is a tool that logicians use and not the proper subject

matter of logic. Consequently, the demarcation problem is really just a

pseudoproblem.10

10 These characterizations leave room for what might be called “Optimist Debunkers”.

Their view would be that, even if logical forms and logical constants do not form

part of the subject matter of logic – such that the problem of logical constants does

not have the centrality Demarcaters give to it – a precise characterization of logical

constancy is nevertheless possible.
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As MacFarlane (2015) explains, one can illustrate the difference between

Demarcaters and Debunkers by looking at how they think about the value

of formal counterexamples. For a Demarcater it is possible to show that a

natural language argument is invalid by providing a formal counterexam-

ple: another argument that has the same logical form, but true premises

and a false conclusion.

However, as we already noted in the previous chapter, one and the same

natural language argument can be moulded into different logical forms.

Thus, for Debunkers, counterexamples never show anything about a par-

ticular argument. All they show is that a certain argument form is invalid,

that is, that it has invalid instances. But every argument can be seen as an

instance of

φ

ψ

and this hardly entails that no argument is logically valid. A formal coun-

terexample just shows something about that form of the argument, but

not about the actual premises and conclusions of arguments. Thus, an

argument like

1. Jim’s car is orange.

2. Jim’s car is coloured.

could count as logically valid for a Debunker if it is impossible to find a

case in which that premise is true but that conclusion false.

The Demarcater, on the other hand, will reply that a genuine coun-

terexample to the formal validity of an argument would have to exhibit

its full logical structure. Thus the Demarcaters’ use of counterexamples to

demonstrate the formal invalidity of arguments presupposes a principled

way of discerning the full logical structure of an argument, and hence of

distinguishing logical constants from non-logical constants.

Furthermore, the Demarcaters can present the Debunkers with a

dilemma: either endorse a (metaphysical or epistemic) conception of ana-

lyticity that would show the argument above about Jim’s car to be logically

valid, but the following argument to be merely non-logically valid

1. The particle a has mass.

2. Therefore, the particle a does not travel as fast as light.
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(first horn of the dilemma); or logic must be a universal science that can

explain all cases in which an argument’s premises somehow guarantee the

truth of that argument’s conclusion (second horn of the dilemma).

The first horn of that dilemma seems unacceptable to many contempo-

rary philosophers who think that Quine has shown that the analytic/syn-

thetic distinction is untenable. We will discuss Quine’s view in Chapter

6. The second horn doesn’t seem to be any better, as long as the relevant

notion of necessity isn’t further specified. The inference from a particle’s

mass to that particle’s possible speed seems clearly outside the realm of

logic, but perhaps there is a way to distinguish a relevant notion of meta-

physical necessity (which grounds logical consequence) from other notions

of necessity (such as, for example, physical necessity). We will come back

to this idea in Chapters 5 and 10.

Relativists have a middle position between Demarcaters and Debunkers.

They agree with Demarcaters that logical consequence is formal conse-

quence and hence requires a distinction between logical and non-logical

expressions. At the same time, however, they agree with the Debunkers

that such a distinction can’t be absolute. Instead, logical consequence needs

to be relativized to certain choices of logical expressions. For each such

set, there is a corresponding notion of logical consequence, and each of

these may have its application. In the extreme case, when we consider all

expressions of a language to be logical, logical consequence collapses into

material implication. Relativism about logical consequence is thus already

one form of logical pluralism: the idea that there can be more than one

correct logic. We will discuss this topic in more detail in Chapter 7.

The last stance towards the demarcation problem that MacFarlane

(2015) distinguishes is that of the Deflater. We said above that Demar-

caters believe that there is a principled distinction between logical and

non-logical expressions, and that this distinction can be made on the basis

of a substantial theory which should be illuminating about the nature of

logic. Deflaters doubt the latter. They agree that a distinction can be made

and that the distinction itself is important, but they doubt that there is

a substantial and illuminating story to be told in virtue of what the dis-

tinction holds. Just like there (arguably) is no illuminating story to be told

about which activities are “games” and which aren’t, there is also no such

illuminating story about which expressions are logical and which aren’t.
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Thus, Deflaters agree with Demarcaters that there is a real distinc-

tion between logical and non-logical constants, and between formally

and materially valid arguments, both of which are important for under-

standing the nature of logic. But Deflaters reject the Demarcaters’ project

of finding precise and illuminating necessary and sufficient conditions

for logical constancy for all languages, or for an all-purpose single

language.

As MacFarlane (2015) observes, the proof should be “in the pudding”:

can Demarcaters actually provide illuminating necessary and sufficient

conditions for logical constancy? Let’s look at some proposed demarca-

tions.

Model-theoretic Demarcaters

The most promising approach to demarcate the logical constants from

other expressions is the “permutation invariance” approach (cf. Sher, 1991;

Tarski, 1986). Logic is supposed to be “topic neutral”, logical connectives

aren’t supposed to be about anything. In model-theoretic terms this could

be cashed out by requiring that the extension of a logical constant should

be independent of what the domain is like. To check whether an exten-

sion is independent of what the domain is like, we can just see whether

the extension stays the same if objects in the domain “swap places” so to

speak, if we consider permutations of the domain. In a permutation, objects

from a domain are mapped onto other objects in that domain. We can then

define transformations relative to permutations. A transformation tells us

how types of the hierarchy depend on the permutation. Take as an example

the domain of all coloured things and two proper subsets of that domain:

the set of all the red things and all the green things. If we permutate that

domain, then it might be that the permutation maps an object that hap-

pens to be in the set of the red things onto another object that happens to

be in the set of green things, say. The transformation of our original set of

red things has now a different extension. There is now an object in that set

that wasn’t in the original set prior to the permutation, so to speak. On the

other hand, if we take the identity relation as a set of ordered pairs, then

that set will remain the same, regardless of how we permutate the objects

in the domain. The identity sign, which has that set as its extension, is thus

“permutation invariant”.
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One needs to play around with the details of the approach a bit, in

order to get the intended result, but the permutation-invariance criterion

delivers:

The monadic predicates “is a thing” (which applies to everything) and “is

not anything” (which applies to nothing), the identity predicate, the

truth-functional connectives, and the standard existential and universal

quantifiers all pass the test. So do the standard first-order binary

quantifiers like “most” and “the”. Indeed, because cardinality is

permutation-invariant, every cardinality quantifier is included, including

“there are infinitely many”, “there are uncountably many”, and others that

are not first-order definable. Moreover, the second-order quantifiers count

as logical (at least on the standard semantics, in which they range over

arbitrary subsets of the domain), as do all higher-order quantifiers. On the

other hand, all proper names are excluded, as are the predicates “red”,

“horse”, “is a successor of”, and “is a member of”, as well as the quantifiers

“some dogs” and “exactly two natural numbers”. So the invariance criterion

seems to accord at least partially with common intuitions about logicality

or topic neutrality, and with our logical practice. (MacFarlane, 2015)

This proposal is thus philosophically motivated, mathematically precise,

many of its results accord with common practice of logicians, and it decides

some borderline cases. As Denis Bonnay (2014) argues, it also satisfies fur-

ther desiderata that distinguish it from alternative approaches: it is pure,

local and intrinsic.

The invariance criterion is pure insofar as it only considers semantic

properties (rather than grammatical or proof-theoretic ones) for the char-

acterization of the available interpretations for the logical constants. It’s

local since the criteria apply to the semantic properties of the expression

in question rather than to the expression as a part of a larger system

(as approaches do which involve meta-logical properties for the demarca-

tion of the logical constants). Finally, the invariance criterion is intrinsic,

because the logical notions are not contrasted or compared to other

notions (Bonnay, 2014, 55).

Problems for the Invariance Conception

The invariance criterion considers permutations of a given domain. That

way, the existential and the universal quantifier of classical logic come out
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as being permutation invariant. In fact, the invariance criterion requires

invariance under bijections, which preserve the cardinalities of domains.

But then all quantifiers with finite (‘there are exactly seven’) and even infi-

nite cardinalities (‘there are uncountably many’) pass the invariance test.

Intuitively, we might not want to consider these quantifiers to be logical

(they are not even definably in FOL). But perhaps this is insisting too much

on a general and principled boundary between logic and mathematics. Gila

Sher, one of the most prominent advocates of the invariance approach, wel-

comes this result as an indication that logic and mathematics are one and

the same:

The formalist account of logic, with its Invariance-under-Isomorphism

criterion of logicality, offers an explanation of the relation between logic

and mathematics [. . .]. Mathematics, in this account, builds a theory of

formal structure, and logic provides a method of inference based on this

theory. I will call the new approach “mathematicism”. (Sher, 2008, 318)

Thus, whether you see the logicality of these quantifiers as a problem

depends very much on which view you hold concerning the relationship

between logic and mathematics.

It also might be seen as a problem for the invariance account that con-

stants are only considered as their extensions, rather than their meanings.

Assume that it is both metaphysically and epistemically necessary, as well

as analytically true, that there are no male widows. Then, a connective ‘⊲⊳’,

defined by

v(⊲⊳ A) = ⊤ if and only if v(A) = ⊥ and there are no male widows

would count as a logical constant (Gomez-Torrente, 2002, 21), since its

extension is the same as that of ‘¬’. Moreover, given that the nonex-

istence of male widows is an analytical truth, as well as an epistemic

and metaphysical necessity, ‘⊲⊳’ threatens any attempt of supplement-

ing the invariantist approach with a modal or a semantic requirement,

like “permutation-invariance across all metaphysically possible worlds”,

“permutation-invariance across all epistemically possible worlds” (as in

McCarthy, 1987) or “permutation-invariance implied by the meaning of

the connective” (as in McGee, 1996), even without considering that they

would be introducing notions that are not clearer than that of a logical
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constant. Appealing to a logical modality – requiring, for example, that log-

ical constants have permutation-invariant extensions as a matter of logical

necessity – faces the same problem of explicating the notion of a logical

constant in terms of a primitive notion of logical necessity that is not

clearer than that of a logical constant. On the other hand, if we don’t

treat logical necessity as a primitive notion, we run the risk of circularity:

to define logic, one needs to define logical constants; to define logical con-

stants, one needs logical necessity, and to define this one needs to know

what makes something logical, and to know that, one needs to know what

logic is.

In light of these difficulties, MacFarlane (2005) concludes that the

permutation-invariance criterion should probably best be understood as

merely providing a necessary condition for logical constancy, due to the

fact that it operates only on the level of reference (not on the level of sense).

Proof-theoretic Demarcaters

One response to the last problem discussed could be to try to look at

how one grasps the meaning of logical connectives and then to define as

the logical constants those expressions the meaning of which is grasped

in this special way. A more concrete suggestion could be to consider

the logical constants to be exactly those expressions the meaning of

which is fully determined by some rules in an appropriate proof-theoretic

framework.

There are at least three problems with this approach. One problem

is that not any set of rules will do for determining a logical constant.

Famously, Arthur Prior (1960) devised the example of tonk in order to show

that not every set of (introduction and elimination) rules fixes a meaning.

Prior’s rules

φ
(tonk-introduction)

φ tonk ψ

φ tonk ψ
(tonk-elimination)

φ

permit inferring anything from anything. The rules combine the introduc-

tion rule of disjunction with the elimination rule of conjunction. The result

of adding this constant to our standard arsenal (and associated rules) leads

to disaster.
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However, the fact that some combinations of rules do not determine

the meaning of a constant does not establish that the whole approach is

mistaken. If it could be shown that the right constants get determined if

the rules observe certain extra conditions, then this approach could well

work.11 We discussed the idea that the meaning of a logical constant is

provided by introduction and/or elimination rules already in the first half

of this chapter.12

A second problem is that, even if one buys the general idea that the

meaning of an expression is provided by rules of usage, it’s not clear that

the rules we have so far considered are sufficient for grasping the meaning

of any expression.

Authors such as Dummett (1991), Sainsbury (1991), Gomez-Torrente

(2002) have argued that the typical proof-theoretic rules for at least some

logical constants do not exhaust all aspects of the use of these constants

that must be mastered if one is to understand them. For example, they

suggest that inductive reasoning from instances of a generalization to the

generalization itself are partially constitutive of the meaning of ‘all’ and

that it is not clear whether this part is, or should or could be, captured

by rules for ‘all’. Perhaps the situation can be ameliorated if one considers

more complex sets of rules instead of pairs in determinate proof-theoretic

presentations of logic, but we will not explore this suggestion here.

Alternatively, one could limit the project from a determination of

sense to a determination of reference (or semantic value). This is the

11 Moreover, it is not clear that from the fact that a logical connective permits inferring

everything, as in the case of tonk, it follows that such a connective does not have

meaning. It might trivialize the logic, in the sense that every connective has the

same meaning as any other, but an additional argument is needed to the effect that

when everything holds, or means the same, in a language, then the language is

meaningless, and that what caused the trivialization is meaningless. See Priest (2006,

chapters 1 and 3) for further discussion. Additionally, we mentioned that the context

of deducibility also plays a role in the trivialization of the logic. If the underlying

notion of logical consequence happens to be non-reflexive or non-transitive, tonk-like

connectives need not trivialize the logic. We will discuss the general motivations for

non-reflexive and non-transitive logic in Chapter 9; for applications of these to

tonk-related issues, see Cook (2005), Ripley (2015), Fjellstad (2015). For a tonk-like

connective which trivializes even under non-transitive logical consequence, see

Wansing (2006).
12 For other attempts to articulate conditions under which introduction and

elimination rules do fix a meaning, see Belnap (1962), Hacking (1979), Hodes (2004).
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approach that is followed by Hacking (1979). As Gomez-Torrente (2002)

shows, this project then faces difficulties very similar to the “male-

widow”-problem we discussed above for the permutation invariance

approach:

Consider the first-order quantifier ‘not for all not . . . , if all are not male

widows, and for all not . . . , if not all are not male widows’. It has the same

extension as the usual first-order existential quantifier. If it looks too long,

[. . .] abbreviate it with ‘∃’ and think of it as a non-complex predicate with

the already explained meaning. [. . .] [‘∃’] is a logical constant according to

Hacking’s criterion. This is so because the same typical Gentzenian

operational rules for the usual first-order existential quantifier hold for ‘∃’.

[. . .] Thus, if Hacking’s procedure for “reading off” the semantics from the

rules is right, then ‘∃’ and ‘∃’ have the same extension. Their denotation is

in both cases "fixed" by the rules, in the sense of Hacking. (Gomez-Torrente,

2002, 29)

However, ‘∃’ is not a logical constant, although Hacking’s criterion rules

it in. Thus, this approach also is extensionally inadequate.

Pragmatist Deflaters

The principles guiding logicians (both implicitly and explicitly) in cat-

aloguing certain expressions as logical have been essentially pragmatic

principles with a considerably vague content; just consider the topic-

neutrality criterion. As we have seen, logicians and philosophers of logic

have often tried to offer philosophically richer characterizations of the

notion of a logical expression than the ones suggested by the vague

pragmatic principles. These attempts usually characterize the notion of a

logical expression (or of the logical expressions to be found in a restricted

set of expressions) in terms of alleged semantic, epistemic or mathe-

matical peculiarities of the logical expressions. According to pragmatists,

those attempts will fail, as they have failed, since it is impossible to

model closely, let alone exactly, in semantic, metaphysical, epistemic

or mathematical terms the vague and pragmatic notion of a logical

expression.

Traditionally, logic has been seen as a discipline that deals with the

most general traits of reasoning, features of reasoning that apply in all

argumentative fields. It is therefore reasonable to think that one principle
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underlying choices of expressions as logical is that logic must deal with

arguments which are correct in virtue of the properties of expressions

employed in reasoning in general, expressions not specific to any argu-

mentative field but common to all. This is a leading idea behind most

of the Demarcaters’ proposals. However, it seems that their principle sug-

gests only a necessary condition for the logicality of an expressions, and

the continued failure of the Demarcaters’ attempts seems to confirm that.

According to Gomez-Torrente (2002), logicians probably require at least

implicitly that logical expressions play a relevant role in reasoning in

general, or that their study be useful in the resolution of particularly sig-

nificant problems in reasoning. If the pragmatist is right about this, there

is a great deal of vagueness and complexity in the intuitive concept of

a logical expression, and there is little chance to avoid that when for-

malizing such expressions as logical constants in a formal language. The

pragmatic principles underlying the use of this concept leave a lot of space

for divergent conceptions, and for incompatible ideas on which expres-

sions will eventually count as logical. Nevertheless, as we have seen when

discussing the Deflaters’ stance, this does not mean that the question of

which expressions are logical is arbitrary, since the mentioned principles

are not compatible with just any idea about which expressions are logical.

Vagueness does not imply arbitrariness.

Questions

1. Can you think of reasons why only the R-rules (or, perhaps, only the

L-rules) of the operational rules for connectives should determine the

meaning of a connective?

2. In the thought experiment involving Catharina and Stephen, we

assume in the second version of the thought experiment that Stephen’s

logica utens is in line with his logica docens. The way he in fact reasons

(also on reflection) follows the rules of the logical theory he endorses.

Let’s assume, however, that most speakers of English are like Catha-

rina and use and endorse a different logic. Is there room to argue – pace

Williamson – that Stephen speaks a different language?

3. How damaging is it that the permutation invariance criterion does not

discriminate between coextensional constants?
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When we talk about logical truths it seems to make sense to ask what it

is that makes these truths true. This question can be understood in differ-

ent ways, and we will need to disambiguate these in this chapter. Without

entering into the territory of theories of truth,1 one account of the truth of,

for example, ‘Snow is white’ is that this sentence is true because snow is

actually white. Should we say the same about ‘Snow is white or snow is not

white’? Is the latter true because snow is actually either white or not white?

In other words, is that sentence true because of snow and its colour? This

seems to be missing the point. Why ‘Snow is white or snow is not white’

is true is something you learn in a logic class. Moreover, there you learn

to determine that this sentence is true without investigating snow or its

colour.

This leads us to another way to understand the topic of this chapter:

what is the subject matter that we investigate when we study logic? Is the

subject matter of logic a set of very general facts in the world (for example,

the general fact that snow’s being white or not white is an instance of), or

is logic the study of general facts about our minds? (After all, logic is said

to lay down the “laws of thought”.) Or is logic just the study of linguistic

conventions (for example, how to use ‘or’ and ‘not’) – perhaps conventions

we introduce and shape in part by the very study of logic?

Realism

The default position with respect to pretty much every area of human dis-

course that allows for the application of a truth predicate to the statements

1 Theories of truth are not discussed in this introduction. For a good introduction to

different conceptions of truth, see Künne (2003). As we shall see in a minute, the topic

of this chapter can also be specified without mentioning truth.
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made in that discourse is realism. In this chapter we will follow Michael

Resnik (2000) and characterize realism with the following two necessary

conditions:

Logical realism is committed to at least two theses: First, there is a fact of

the matter of whether something is a logical truth, a logical inconsistency

or logically implies something else. [. . .] Second, that such facts (or the

truth-values of such claims) are independent of us, our psychological

make-up, our linguistic conventions and inferential practices. (Resnik,

2000, 181)

The first of these two necessary conditions, let us call it the “cognitivism

condition”, has two aspects. One is the idea that claims about logical truth,

logical inconsistency, logical implication, etc. are true or false. The second

aspect is that these claims have representational content; the claims are true

or false because they correctly or incorrectly reflect certain facts.

The second of the two necessary conditions, let’s call it the “objectivity

condition”, then states that whatever these facts are, they are independent

of us (“our psychological make-up, our linguistic conventions and inferen-

tial practices”). But if these aren’t the relevant facts, which other facts can

plausibly matter for claims about logical truth, implication, etc.? There are

at least two somewhat popular candidates.

Two Examples of Realism

Platonist realists hold that the facts that are correctly described by a true logi-

cal theory are facts involving certain abstract objects. If we are realists about,

for example, propositions as certain abstract objects that are the contents

of thoughts and sentences, then it might be relatively natural to hold that

the implication relations between them and whether or not they are logi-

cally true are themselves facts that are just as objective and independent of

us as the existence of these abstract objects themselves is. After all, these

logical properties and relations will plausibly hold because of the intrinsic

properties of those abstract objects. On this view, the logical facts obtain

in a certain realm of abstract objects, a “third realm” independent of the

mind but also independent of the physical world.

Structuralist realists, on the other hand, hold that the facts that the true

logical theory correctly describes are very general metaphysical structures
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of this world.2 For present purposes, the main difference between these

two realist views seems to be how differently they construe logical facts

from other facts. Whereas the platonist realist assumes a dichotomy in the

realm of facts, the structuralist realist can consider the logical facts to be

in the same realm of facts as all other facts (and isn’t committed to the

existence of abstracta).

Realists of the platonic kind will include philosophers like Edmund

Husserl (1859–1938). In the first edition of the Logical Investigations (1900–

1901), Husserl holds the view that it is features of independently existing

abstract entities (Bedeutungen) that account for the truth of logical laws

(cf. Lapointe 2014, 190).3 More recent platonist realists include Jerrold

Katz, who argues for logical realism (amongst other realisms) as realism

about abstracta (Katz, 1998), and Penelope Rush (2014), who defends a

Husserl-inspired variant of logical realism.

The structuralist realist, on the other hand, holds that logical theory

describes very general (metaphysical) structures of the world. Logical the-

ory is thus a very general metaphysical theory. There are several ways how

one might arrive at such view. One way is to observe that logic is not – as it

is often held to be – metaphysically neutral, but actually makes metaphysi-

cal claims. As we have seen in Chapter 2, many objections against standard

logic are metaphysically motivated:

A natural metametaphysical hope is that logic should be able to act as a

neutral arbiter of metaphysical disputes, at least as a framework on which

all parties can agree for eliciting the consequences of the rival metaphysical

theories. An obvious problem for this hope is the proliferation of

alternative logics, many of them motivated by metaphysical considerations.

For example, rejection of the law of excluded middle has been based on

2 Pelletier et al. (2008) call anti-Platonist realists ‘physicalists’. We opted for ‘structuralist’,

because it is not clear that the contemporary defenders of that position believe that

these most general structures are physical. In any case, the main contrast is that

Platonists believe that logic describes objective facts in a “third realm”, while

structuralists/physicalists believe these facts to be in the same world as the physical

facts. We will come back to this issue in Chapter 10 when discussing

anti-exceptionalism about logic.
3 Gottlob Frege should be listed here too. Frege was certainly a realist and he is

well-known for his platonism and his view that logic and mathematics do not belong

to the physical realm, but to a “third realm”.
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metaphysical conceptions of the future or of infinity. Quantum mechanics

has been interpreted as showing the invalidity of one of the distributive

laws. Dialetheists believe that paradoxes about sets or change manifest

black holes of contradiction in reality itself. There is no core of universally

accepted logical principles. (Williamson, 2013, 212)

But perhaps that is not a bug but a feature of logic. Instead of trying

to avoid metaphysical commitments, one might just as well endorse them

and defend the specific metaphysical content of logical theory. The law of

excluded middle, for example, is then true because it correctly represents

the metaphysical facts.

A second possible way to arrive at such a structuralist view could depart

from Ted Sider’s assumptions about the joint-carvingness of logical con-

nectives, which we encountered in Chapter 4. On Sider’s view, logical

constants are themselves representational. Their meaning may or may not

“carve at the joints” (Sider, 2011).

As we also learned in Chapter 4 (and discuss again in Chapter 10), Sider

does not believe that metalogical concepts, such as the concept of a logical

constant or that of logical truth or consequence, carve at the joints. But

Sider’s reason for denying that metalogical concepts carve at the joints is

their alleged impotence to “improve our fundamental understanding of

the world” (Sider, 2011, 223). It’s not clear that this view sits comfortably

with the idea that some logical constants carve at the joints. After all, if

some logical constants carve at the joints, then some sentences in joint-

carving terms will exemplify the logical form of necessary truths (and thus

constitute the class of what we typically consider to be logical truths, such

that all their substitution instances will also be necessary truths). If the

structure of the world is indeed such that it gives rise to this phenomenon,

then having a theory about it would surely improve our fundamental

understanding of the world.

However, if we assume the metalogical vocabulary to be also joint-

carving, then logical theory would again be a very general metaphysical

theory, another instance of structuralist realism about logic.

Arguments for Realism

In characterizing examples for realist positions, we already encountered

reasons for holding the view. If you believe that the subject matter of
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logic comprises abstract objects (e.g. propositions and relations between

them) and believe that they exist and have their logical properties inde-

pendently of us, then you are committed to logical realism. Also, if you

believe that logical theory (inevitably) makes certain very general (meta-

physical) claims, and that these are true or false independently of us, you

are a realist. In both cases, realism is a consequence of a prior commitment

to certain kinds of objective facts that one takes to be the truth-makers for

the claims of logic.

But are there also arguments in the other direction? Arguments that

establish that there are objective, mind-independent logical facts in the

first place? As we alluded to above already, the fact that we are inclined to

say that claims about validity are true or false doesn’t yet establish realism

(at best it establishes only one of two merely necessary conditions). Neither

does the fact that realism seems to be the “default position”. As Michael

Resnik (2000) points out, it’s not even clear in what sense and where logi-

cal realism actually is the default position. In comparison, many working

mathematicians and scientists are mathematical realists. This seems to give

some weight to mathematical realism, and at least somewhat shifts the

burden of proof to the mathematical anti-realist. But the same can’t be

said about logical realism. It’s not clear that many scientists are logical

realists in that sense – at best, logical realism is the default in philosophy of

logic (Resnik, 2000, 184).

More promising arguments for logical realism have been provided by

Stewart Shapiro (2000). Shapiro invokes criteria developed by Crispin

Wright (1992) in order to determine whether the discourse about logic

should receive a realist interpretation. One such criterion is whether the

discourse in question is “epistemically constrained”. A discourse is epistem-

ically constrained if the possibility of unknowable truths in the discourse

can be ruled out a priori. Wright argues that if a discourse is not epis-

temically constrained, then there is also no anti-realist interpretation of

that discourse available. The idea is that if it doesn’t depend on us what

is true or false in a discourse, it must be tracking something real and

objective.

Thus, if it could be shown that our discourse about logic is not epis-

temically constrained, realism would have a strong case. But now we need

to be careful what we take to be the relevant discourse. First of all we

should distinguish between the object-language logical truths themselves
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and metalanguage statements about them. In other words, we should

determine, whether the anti-realist is denying the objective truth of

(5.1) Snow is white or snow is not white.

or denying the objective truth of

(5.2) ‘Snow is white or snow is not white’ is logically true.

Let us call an anti-realist who only denies the objective truth of statements

like (5.2) a status anti-realist. Michael Resnik (2000) defends such a posi-

tion. He considers truths like (5.1) to be objective, but argues against the

objective truth of claims like (5.2).

We should further distinguish denials of the objectivity of (5.1) and (5.2)

from denials of the objectivity of certain statements of formal (meta-)logic

as (5.3) and (5.4).

(5.3) p ∨ ¬p

(5.4) �φ ∨ ¬φ� is a tautology in propositional logic.

Shapiro argues that anti-realism about statements like (5.3) or (5.4) is not

plausible. If you take second-order logic to be logic, then there are truths

of second-order logic (thus, statements like (5.3)) that are not provable

and hence not knowable (because of incompleteness). Shapiro also argues

that anti-realism about statements like (5.4) should already be implausi-

ble for first-order logic, since first-order consistency is not decidable, and

hence there are metalanguage truths about the consistency of first-order

sentences that are not knowable (as a result of a mechanical procedure).

Now, you might consider second-order logic not to be logic (for the rea-

sons discussed in Chapter 3) and not be worried by undecidability – after

all, the fact that it isn’t provable that a certain sentence is consistent doesn’t

mean that it’s not knowable that it is. You might have good reasons to

believe it’s consistent that fall short of a formal proof.

But, more importantly, you might restrict your logical anti-realism to

informal logic. Claims like (5.4) belong to mathematics – or so you might

argue – and thus may be fully objective.4

4 In fact, that is the view endorsed by Resnik (1999).
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Crispin Wright offers three more specific criteria that Shapiro applies

to the case of logic: “width of cosmological role”, the “Eutyphro contrast”,

and “Cognitive Command”. Unfortunately, the application of these criteria

is somewhat indecisive.

Width of cosmological role refers to the idea that a discourse is apt for a

realist construal if statements of that discourse also feature in explanations

outside that discourse. Now, logical implication and logical inference play a

role in explanations almost everyhwere. Famously, the deductive-nomological

model of explanation declares it a central feature of explanations that the

explanandum logically follows from the explanans.5 But that is not quite what

is required for width of cosmological role. It seems that what we need is

that statements about logical inferences or logical truth (statements like

(5.2)) play a role in explanations outside logic. But do they?

Perhaps when explaining why we find certain arguments particularly

compelling (a fact about human psychology, say), it might be explanatory

to learn that these arguments are logically valid. Although this would be

explanatory, the fact that the discourse of the explanandum is now that of

human psychology of course doesn’t speak in favour of logic’s indepen-

dence of human psychology (neither does the fact that statements about

logical implications play a role in explanations in, say, semantics).

Wright’s second and third criteria can be discussed together. The Euty-

phro contrast is the contrast between reading biconditionals like (5.5) in a

detecting or constituting way:

(5.5) An argument is valid iff an ideal agent acting under optimal condi-

tions judges it to be valid.

Does the judgement of the ideal agent make the argument valid? Or does

the agent merely detect that it is valid? This contrast is Wright’s second

criterion. If it’s the ideal agent’s judgement that makes the argument valid,

this would speak for anti-realism.

5 The deductive-nomological model of explanation (DN-model, also known as the

Hempel–Oppenheim model, after Carl Gustav Hempel and Paul Oppenheim, who

developed the model) specifies that scientific explanations of single (non-chance)

events proceed by subsuming the event under a “covering” law. This is achieved by

deducing a statement describing the event to be explained (the explanandum) from a

statement of the relevant law of nature and a statement of background conditions.

The law and the background conditions together form the explanans.
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The criterion of Cognitive Command is satisfied by a discourse iff it is a

priori that disagreements in that discourse must be attributed to a cognitive

shortcoming of at least one of the disagreeing parties. In other words, if

you disagree with your friend on a subject matter that satisfies Cognitive

Command, at least one of you must have made a cognitive mistake.

But, as Shapiro concedes, both the Eutyphro contrast and Cognitive

Command are not directly applicable, since both explicitly involve logical

notions. For example, the “cognitive shortcomings” of Cognitive Command

explicitly list inferential error. However, Shapiro suggests that the fact that

valid arguments preserve truth might allow us to conclude nevertheless

that (5.5) must be read in a detecting way (and, presumably, someone who

misjudges an argument to be truth-preserving when it isn’t must have

made an objective error).

The fact that logical consequence preserves objective truth allows for some

objectivity. Suppose that we are dealing with an area of discourse [. . .] that

is agreed to be objective. If an ideal subject under optimal conditions

determines that an inference is valid, then she has detected that the

inference preserves objective truth. No fiat and no non-cognitive stance can

make an inference truth-preserving. (Shapiro, 2000, 362–363)

But that doesn’t seem right. As Jody Azzouni (2014) explains, truth-

preservation is cheap, once it is recognized that (i) the truth idiom is

governed by the Tarskian biconditional

(5.6) �S� is true↔ S

and (ii) one can’t supplement either side of the Tarski biconditional with

conditions that aren’t equivalent to that side of the conditional. How-

ever, if that’s observed, then for every set R of logical principles, one can

supplement R with the following inference schema:

(T) S ⊢ T�S�, and T�S� ⊢ S

The introduction of this inference schema preserves consistency and

“makes” R truth-preserving (regardless of R’s consistency). If U ⊢ V

according to R, then

(5.7) U ⊢ V ↔ T�U� ⊢ T�V�
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holds in [R, T] (Azzouni, 2014, 44).6 Thus the arguments for logical realism

seem inconclusive. Let us then look at the alternatives.

Psychologism

The term ‘psychologism’ entered into the philosophical vocabulary as a

pejorative label for philosophical positions which confuse or conflate non-

psychological with psychological entities. The term was coined during

the Psychologismusstreit (the “psychologism dispute”) in German-speaking

philosophy between 1890 and 1914 (Kusch, 2015). The most prominent

opponents of psychologism were the (Platonist) realists Gottlob Frege and

Edmund Husserl. On the side of the proponents, things are less clear. One

of the main targets of the discussion was, in any case, John Stuart Mill and

his System of Logic (Mill, 1843). However, it seems controversial among Mill

scholars to what extent he actually held psychologistic positions (Kusch,

2015).

In the historical debate (the Psychologismusstreit) several questions were

conflated. Is logic a sub-branch of psychology? Is logic used in psychol-

ogy? Are the laws of psychology necessarily vague and imprecise? (See

Kusch, 2015.) Some of these questions (especially those about the disci-

plinary boundaries of the science psychology) don’t matter much for the

purposes of this chapter. Thus, we suggest considering Psychologism to be

the metaphysical view that logic is in an important way constituted by

facts of (human) psychology or cognition.7 The nature of this constitution

can differ. Pelletier et al. (2008, 7–8) suggest distinguishing between four

different types of psychologism about logic:

• Psychological Individualism: Identify logic with how individual people cog-

nize about logic. Doing this on an individual-by-individual basis would

6 Also note that, for any area of discourse that we regard as objective, there will be

several distinct logics that preserve truth in that discourse.
7 John Stuart Mill (1806–1873) Although it is controversial to what extent Mill was

committed to psychologism, he made some claims that seem to identify the

constituting facts of logic with facts about human psychology:

“I consider [Non-Contradiction] to be, like other axioms, one of our first and most

familiar generalisations from experience. The original foundation of it I take to be,

that Belief and Disbelief are two different mental states, excluding one another. This

we know by the simplest observation of our own minds.” (Mill, 1843, II.vii.5)
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possibly yield differing accounts of logic depending on the individual

being examined.

• Psychological Descriptivism: Identify logic with some description of the

observable performance of people’s behaviour in the realm. For exam-

ple we might consider how all the individuals cognize about logic, or

perhaps how some important subgroup cognizes about it, or perhaps

what the publicly observable output of these people is. We include here

various ways to bring in the social realm in which people write about or

discuss logic and mathematics.

• Cognitive Architectures: Argue that whatever might be discovered about

logic is a function of the human cognitive machinery that is doing

the discovering, and that this machinery itself has been shaped by

the world in which it must operate. Postulate an architecture that

in some way reflects some important aspect of the logical and math-

ematical realm. Identify logic with whatever is given by some “fac-

ulty” or “module” within this architecture that is common across

people.

• The Ideal Cognizer: Identify logic with what an ideal cognizer would

cognize about logic. This is on a par with “ideal observers” in other

philosophical theories such as ethics.8

Psychologism in all these forms can be motivated from anti-platonist

and naturalist considerations. If there are no abstracta, then logical truths

must describe something concrete, perhaps concrete inferences that take

place in the minds of reasoners. According to typical naturalist assump-

tions, we can have knowledge of anything only if that subject matter is part

of the natural world. Again, the inferences of humans, and their cognitive

architecture is part of this world. As we have seen above, structural real-

ism would also offer a conception of logic that would satisfy anti-platonists

and naturalists in this regard. However, one might consider it more plausi-

ble that logic describes after all the laws of thought rather than some very

general metaphysical laws (especially if one is motivated by anti-platonist

or naturalist concerns). But, as we said already, psychologism came under

heavy fire.

8 The characterization of these types is quoted from Pelletier et al. (2008, 7–8) but here

formulated as claims about logic specifically.
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Objections to Psychological Individualism

Psychological Individualism is what most opponents of psychologism, and

Frege and Husserl in particular, seem to have in mind. Most of the

arguments that Frege, Husserl and their contemporaries levelled against

psychologism are directed at this variant and don’t apply to other versions

of psychologism. Psychological Individualism holds that the meanings of

logical terms are subjective ideas in the minds of individuals. Likewise, log-

ical laws or principles of logic describe very general psychological laws that

govern the reasoning operations of individual human minds. Pelletier, Elio

and Hanson (2008) identify an impressive number of 18 objections in the

literature against this form of psychologism. We will rehearse some of the

most important here.

The first objection starts with observing that Psychological Individual-

ism leads to a form of relativism. All claims about logic will be claims about

one individual’s internal psychology. But then there can be no objective

logical truths, only subjective ones.

Also, if the laws of logic are describing contingent facts about one

individual, then these laws are neither necessary, nor do they have any nor-

mative force. Note that both hold for the individual as well as in general.

(Why should everyone reason in this way, if Barbara reasons this way? Why

should even Barbara reason this way, if it is just a contingent descriptive

fact about her that she does?) Of course, even if all reasoned in the same

way, neither necessity nor normativity would follow from that either.

Finally, everyone would have their own logical objects. If we suppose the

meaning of the logical constants to be individual ideas, then there would

be Jim’s negation and John’s and Barbara’s, etc. (Frege (1980) famously

ridicules the view that numbers are just individual ideas by pointing out

that then there would be as many number 2s as there are individuals with

such an idea.) Perhaps more problematically, this seems to lead to a puzzle

about communication: how can we share thoughts in communication, if

the contents of our terms are individually different – how would it even be

possible to agree or disagree about something? Let’s suppose that the law of

excluded middle has a subjective content for Jim and a subjective content

for Barbara. If Jim and Barbara both, apparently, assent to “it”, then Jim is

in fact assenting to his law and Barbara to hers. They are simply talking

past one another.
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Not all of these objections are equally problematic. Perhaps relativism

isn’t so absurd that the mere fact that a view entails it should already

count against that view. Likewise, it seems that the laws of logic are nec-

essary, but perhaps we are simply mistaken and they are not. Also, some of

the objections can be avoided by changing from Psychological Individual-

ism to Psychological Descriptivism. Psychological Descriptivism still holds

that the output of our logic-related behaviour (the inferences we make,

the ones we judge valid/invalid, the way we use logical terminology, etc.)

is based on an individual psychological competence. But the common con-

tent of the relevant mental states or episodes is provided by the publicly

observable performance or its outputs (Pelletier et al., 2008). Communica-

tion then succeeds if the individual mental states or events are “similar

enough”, but don’t need to be identical. That they become similar enough

is perhaps negotiated in a community via the publicly observable outputs

(the arguments we produce, the claims about validity/invalidity we make,

etc.). Thus, identity of content is not necessary for successful communi-

cation, and the actually necessary overlap of content could emerge as a

tacit convention. We will discuss this view below in the subsection on

conventionalism.

Instead of binding the individual contents together via social processes

(like those that lead to the emergence of tacit conventions), one might

also speculate about the psychological implementation of our knowledge

of logic. Perhaps our mind/brain is sufficiently constrained (as a matter of

biology) such that the individual “logics” we can develop are limited in a

way that guarantees sufficient common content. Such a view, which would

fall into the Cognitive Architecture category, has recently been defended

as a neo-Kantian account of the metaphysics of logic. We will discuss this

view also in a subsection of its own below.

Finally, one could introduce a notion of an “ideal cognizer” and take

logic to be determined or constituted by what such an ideal cognizer would

cognize about logic. Perhaps this could deal with the normativity problem

(it is because the ideal cognizer is cognizing under ideal circumstances that

everybody else should cognize that way too).

Pelletier et al. (2008) see two difficulties with that notion. One is that

there is a danger that the notion is circular. We want to ground logic in

whatever it is that this ideal cognizer cognizes, so we can’t define what

we mean by ‘ideal’ with the requirement that the ideal cognizer gets logic

right nor should we define the circumstances in a “whatever it takes”-way.
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So ‘ideal’ will have to refer to specific circumstances under which the ideal

cognizer is cognizing. A second worry is that the ideal cognizer is itself an

abstract concept, but the (or at least one important) motivation for psychol-

ogism is to avoid placing the facts that constitute logic in a “third realm” –

but now our ideal cognizer seems to be dwelling in that very realm.

Perhaps that last worry can be met. We could understand the ideal

cognizer to be an idealization of actual reasoners. The ideal cognizer rep-

resents how we would cognize about logic under ideal circumstances (and

this might be grounded in concrete facts about our logical competence

and our dispositions to employ it under specific ideal conditions). Again,

this could help with the intrapersonal normativity problem (I should rea-

son in this way, because that’s what my ideal self would do), but not with

the interpersonal one, or the problem of relativism. But presumably a com-

bination of the last two approaches could do that job: an ideal cognizer

who is constrained by the architecture of his human mind/brain. Such a

cognizer would be a role-model for all of us (humans, in any case).

Neo-Kantianism

Kantian constructivism in logical theory, or KCLT for short, is the view that

“logic is the result of the constructive operations of an innate cognitive

capacity that is necessarily shared by all rational human animals, and gov-

erned by categorically normative principles” (Hanna, 2006b, 68). This view

has recently been defended by Robert Hanna, as an alternative to both psy-

chologism and realism. On Hanna’s view there is a mutual constitutive rela-

tion between human rationality on the one hand and logic on the other.

Human beings are a special bunch. Sure, they are animals, i.e. sentient

living organisms, but what sets them apart from all other animals is their

rationality. Animals that are rational in Hanna’s sense are:

• rule-following

• intentional (possess capacities for object-directed cognition and purpor-

sive action)

• volitional (possess a capacity for willing)

• self-evaluating

• self-justifying

• self-legislating

• reasons-giving
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• reasons-sensitive

• reflectively self-conscious

• in possession of concepts expressing strict (logical, epistemic, and

deontic) modality.

According to KCLT, all and only animals that are rational in this sense

cognitively construct logic. However, the range of logics that can be con-

structed by those rational animals is constrained. There is only a certain

class of logics that humans can make sense of. What these logics have in

common is – what Hanna calls – a protologic. This protologic seems, at the

same time, to be the common core of all deviant logics that satisfy certain

conditions for logicality9 and serves as the metalogic in our study and evalu-

ation of those deviant logics as well as in our translation and interpretation

practices. The protologic is a constraint on our reasoning, which is, how-

ever, consciously accessible to us. That’s why the protologic is unrevisable

(it is always presupposed in our thinking about logic) and also a priori.

Hanna suggests thinking of the protologic as a logical component of

Chomsky’s generative universal grammar (UG). The idea is that humans

possess an innate “language faculty” which they share with all other

humans. This language faculty is able to generate grammars, those of the

languages that can be acquired in a normal way during the time-span of

a child’s language acquisition. Hanna interprets Chomsky as holding that

the protologic is part of UG. (See Collins (2009) for discussion.)

Hanna also wants to defend the view that logic is intrinsically normative

and that it should be seen as a system of categorical imperatives. This

system provides the formats or structures for the maxims by which we

ought to reason. It seems that one of Hanna’s motivations for considering

9 Hanna’s conditions for logicality:

(I) The formal logic condition. The non-classical logic (NCL) is a science of the necessary

relation of consequence.

(II) The representational adequacy condition. The NCL’s proposed extension of, or deviation

from, classical logic is based on its being able accurately to represent in the format

of symbolic logic some apparent linguistic facts that are not represented within

classical logic: for example, strict implication or modality, constructibility of

proofs, relevance, vagueness, future contingency, nonexistent objects, paradoxes,

and so on.

(III) The localization of application condition.The NCL’s scope of application is restricted to

all and only those language domains containing the apparent nonclassical

linguistic facts that it represents. (Hanna, 2006b, 77)
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logic to be such a system of canonical imperatives (rather than a system

of hypothetical imperatives) is to avoid Quine’s criticism of conventional-

ism. As we shall see below, Quine argued that a set of conventions can’t

generate logic, since you need a logic in order to generate anything from

the conventions. However, if the imperatives of logic are categorical, then

they are in a certain sense “inescapable”. This would be a reason to favour

neo-Kantianism over conventionalism, if Quine’s criticism of the latter was

convincing – we will discuss this in the next section. (The nature of logic’s

normativity will be discussed in detail in Chapter 8.)

A potential problem for this view is the assumed status of protologic.

As Hanna explains, protologic is supposed to be structurally different from

all object logics that satisfy the criteria of logicality but can also serve as

a metalogic (since it is the logic from which we compare and evaluate all

other logics). But it is not clear that the system we consider metalogic has

the properties that protologic is supposed to have. Since protologic is con-

sidered to be presupposed by all logics that satisfy the requirements for

logicality, it should be a neutral arbiter between logics. However, as Tim-

othy Williamson (2013) has argued, metalogic is not neutral in that sense.

From a structural point of view, metalogic is on a par with the object logics,

but then either there isn’t only one protologic, or, if there is only one that

is perfectly intelligible to the human mind/brain (because it is hard-wired

into the language faculty), there is also only one true logic (or protologic

isn’t the metalogic).

Conventionalism

For the logical positivists, Kant’s conception of the synthetic a priori was

in need of revision. There are no synthetic a priori truths, but instead con-

ventions that are accepted in the adoption of a framework on the basis of

pragmatic considerations. The recent history of science had made it clear

to the positivists that “possible experience” is less constrained than Kant

had anticipated. What seemed to be a priori for previous generations was

rejected by contemporary scientists. Famously, Rudolf Carnap endorsed

such a view also for the truths of logic. We freely choose a logic as part

of a linguistic framework. In so choosing we can’t get it wrong (or right,

for that matter), since the choice is purely pragmatic. Questions about

the true logic do not arise, since these would be framework-external and

meaningless. The necessity of logic, on the other hand, is explained by the
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analytic status of statements about logic within the framework. Logic – all

of it – is true by convention.10

There are several observations that support conventionalism and make

it attractive. However, one bad argument is that logical facts (about

what implies what, and which sentences express logical truths) seem

to a large extent to be a matter of the meaning of certain expressions

(the logical connectives). What meaning our words have is a matter

of convention – or so one might argue – hence logic is a matter of

convention.

This argument seems confused. True, it is a matter of convention that

the English word ‘and’ expresses conjunction. If conventions were different

such that ‘and’ expressed disjunction, ‘Snow is white and snow is not white’

would express a logical truth instead of a logical falsehood. But that doesn’t

show that logic is true by convention. It only shows that we could have

chosen different words to express conjunction or disjunction.

But there are better arguments for conventionalism. We already

observed in Chapter 4 that one might consider it a matter of convention

which expressions of the language we treat as logical constants (those we

“hold fixed”). Thus, at least the extension of ‘logical truth’ and ‘logical con-

sequence’ is conventional depending on what choice we make there. Also,

we have learned in Chapter 2 that there are several alternatives to classi-

cal logic. Many are well studied, even with fully developed applications to

mathematics or science. It is easy to imagine that we could have ended up

using such an alternative system as a logic (assuming for the moment that

we are in fact using standard logic). It is also easy to imagine that at some

point in the future we might choose to change our logic to one of those

alternatives. It is very plausible to think that that would just constitute a

change in conventions (Azzouni, 2014, 32).11

10 Carnap’s Principle of Tolerance:

“It is not our business to set up prohibitions, but to arrive at conventions . . .

In logic, there are no morals. Everyone is at liberty to build up his own logic, i.e., his

own form of language, as he wishes. All that is required of him is that, if he wishes

to discuss it, he must state his methods clearly, and give syntactical rules instead of

philosophical arguments” (Carnap, 1937, 51–52).
11 You might wonder why this argument is better than the one we just rejected as

“confused”. Why are these other logics not in the same boat as a different version of

English in which ‘and’ expresses disjunction? We will discuss this question in

Chapter 7.
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It is widely believed that Quine showed conventionalism to be flawed.

Quine’s most famous argument appears in his paper “Truth by convention”

(Quine, 1976). In this paper Quine discusses whether logic and mathemat-

ics could be founded on conventions alone. Couldn’t we just stipulate logic

into existence by laying down a set of conventions? Remember how simple

it is to lay down the proof theory of propositional logic. Just take the exam-

ple of an axiomatic approach: we simply stipulate three axiom schemata

and a rule of inference – enough to generate all truths of propositional

logic. Doesn’t that show that logic can be legislated true by convention?

In order to see what the problem is we will use a slightly simpler

example from Lewis Carroll’s beautiful paper “What the tortoise said to

Achilles” (Carroll, 1895).12 Let us assume we are interested in the following

inference:

(A) If the two sides of this triangle are things that are equal to the same

then they are equal to each other.

(B) The two sides of this triangle are things that are equal to the same.

(Z) The two sides of this triangle are equal to each other.

How can we formulate conventions such that they would take us from

premises (A) and (B) to (Z)? It seems we need something like

(C) For all x, y and z, if x and z are true statements and z is the result of

putting x for ‘p’ and y for for ‘q’ in ‘If p then q’ then y is to be true.

In other words, if φ is true and �if φ then ψ� is true, then ψ must be true.

How will that help us in deriving

(D) (Z) is to be true.

from (A) and (B)?

Let us first simplify (A) and (B) into

(E) (A) and (B) are true and (A) is the result of putting (B) for ‘p’ and (Z) for

‘q’ in ‘If p then q’.

With a further convention that would allow us to drop universal quantifiers

and replace variables with constants, we could get from (C) to

12 In fact, we will use a mix of Carroll’s and Quine’s examples.
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(F) If (A) and (B) are true and (A) is the result of putting (B) for ‘p’ and (Z)

for ‘q’ in ‘If p then q’ then (Z) is to be true.

Now we need to infer (D) from (E) and (F). But this is an inference for which

(C) is needed again. From

(G) (E) and (F) are true and (F) is the result of putting (E) for ‘p’ and (D) for

‘q’ in ‘If p then q’.

we are supposed to derive that (D) is true. But now inferring that (D) must

be true from (G) and (C) is exactly analogous to our initial task of deriving

(D) from (E) and (F) – we entered into an infinite regress.

The problem is that we need logic in order to apply the conventions.

Without logic, the logical constants are supposed to mean nothing to us.

Only after the conventions are in place is ‘if p then q’ supposed to acquire a

meaning that would allow us to use modus ponens. But without modus ponens

we can’t apply the convention to our inference from (A) and (B) to (Z).

This is often taken to prove that logic can’t be just true by convention

(cf. Miller, 2007; Sider, 2011). But, as Jody Azzouni (2014) points out, Quine

actually argues for a dilemma. We think of the conventions that constitute

the foundation of logic either as explicit conventions or as tacit conventions.

If we consider them as explicit conventions then we run into the difficulty

just explained: we would need to already have a logic in order to know how

to apply those explicit conventions.

But we can think of the conventions that ground logic as being tacit:

conventions that are adopted through behaviour and that are formulated

explicitly only later. Quine seems to have two objections against this sec-

ond horn of the dilemma. The first objection is that it is not clear how

we are supposed to determine what the conventions actually are, if we

have to read them off the behaviour. When conventions are explicit, we

can compare the behaviour with the explicit convention and determine

when a behaviour is following the convention and when it is violating it.

But how are we supposed to make that difference if all we have is the

behaviour? Quine’s second objection is why we should call tacit conven-

tions “conventions” rather than firmly held beliefs (since it seems that – as

far as behaviour goes – they will be identical in their observable outputs).

As Azzouni (2014) argues, both of Quine’s challenges can be met. On

the one hand, we have learned much more about how to conceptualize
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tacit conventions since Quine. Thanks to the work of David Lewis (1969),

Ruth Millikan (1998) and Tyler Burge (2007), we know much better how to

think of tacit conventions and how to distinguish them from other forms

of systematic behaviour.

David Lewis (1969) shows that conventions can emerge without explicit

agreement. Lewis defines a regularity R in action or belief as a convention

in a population P iff, within P, the following six conditions13 hold:

(C1) Almost everyone conforms to R.

(C2) Almost everyone believes that the others conform to R.

(C3) This belief that the others conform to R gives almost everyone a good

and decisive reason to conform to R himself.

(C4) There is a general preference for general conformity to R rather

than slightly-less-than-general conformity – in particular, rather than

conformity by all but any one.

(C5) There is at least one alternative R’ to R such that the belief that the

others conformed to R’ would give almost everyone a good and decisive

practical or epistemic reason to conform to R’ likewise; such that there

is a general preference for general conformity to R’ rather than slightly-

less-than-general conformity to R’; and such that there is normally no

way of conforming to R and R’ both.

(C6) (C1)–(C5) are matters of common knowledge.

Burge (2007) argues that the requirements on common knowledge in

this definition are even too strong. Participants in a convention don’t need

to know that they are participating in a convention, or that there are alter-

natives to their practice. What remains as one of the crucial factors that

distinguishes behaviour based on tacit convention from other forms of

robust behaviour is that it is an imitation of behavioural patterns that

proliferate “due partly to weight of precedent, rather than due [. . .] to

their intrinsically superior capacity to perform certain functions” (Millikan,

1998, 3). Thus, for a behavioural regularity to be conventional, there must

be good enough alternatives. Also, the organism adopting the pattern must

13 (C1)–(C6) are quoted from Burge (2007, 32–33).
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be able to adopt it via imitation, and be in a position to adopt the possible

alternatives in the same way.

Against Quine’s second challenge that we couldn’t empirically distin-

guish tacit conventions from firmly held beliefs, we can respond that there

is indeed empirical evidence that logic can satisfy the empirical criteria

for conventionality. For example, we have evidence that how humans

actually reason is not like logic – because we reason with topic-specific

tools, rather than with an “all-purpose topic-neutral piece of algorithmic

machinery” (Azzouni, 2014, 43). But that makes it plausible that logic

emerged as a reasoning tool that we normatively impose on our reasoning

practices.

As this discussion shows, conventionalism is still a plausible contender

for a metaphysics of logic. At least, the typical argument against it,

which is only based on Quine’s regress, is insufficient to establish that

conventionalism must be mistaken.

Non-Cognitivism

The anti-realist positions we have encountered thus far all rejected the

second of Resnik’s necessary conditions for logical realism, the objectivity

condition. In the last section of this chapter we want to look at a position

that rejects the first condition, the cognitivism condition.

Crispin Wright (1986) and Michael Resnik (1996) both argue for non-

cognitivism about logic. Wright’s motivation for non-cognitivism develops

from considerations very similar to the Cognitive Command criterion we dis-

cussed above in the section on realism. Wright argues that it is always

possible to have a genuine disagreement about the logical necessity of a

given statement, without the disagreement being due to ignorance or error

on either side.

Wright considers two subjects, X and Y, who are both presented with

the following proof:

(1) A→ B⇒ A→ B

(2) A⇒ A

(3) A→ B,A⇒ B 1,2 MPP

(4) A→ B,A⇒ B ∨ C 3, vel-I
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Imagine that X follows the proof and accepts it as such, thereby accept-

ing the logical necessity of the following conditional describing the proof:

If any proof commences with a pair of assumption-sequents, A⇒ A, and

A→ B⇒ A→ B, followed by the modus ponens step which those two lines

furnish, followed in turn by a step of vel-Introduction on the result with C

as the right-hand constituent in the then resulting disjunction, then that

disjunction will be B ∨ C, and will depend on A and A→ B as assumptions.

(Wright, 1986, 204)

Y, on the other hand, only regards the structure as a corroboration of

the conditional, which he considers to be enormously probable but not

logically necessary.

If matters of logical necessity (and related notions) were cognitive, then

we should be able to point to some specific error or ignorance on the side of

Y – what could that be? To suggest that Y doesn’t understand the notion of

necessity (and thus is making a conceptual mistake) might be unjustified if

Y can prove to us that he does understand the concept. On the other hand,

to suppose that Y simply lacks the ability to recognize a proof, would be

a desperate move (since it could be made on the same grounds also in

contexts that we do believe are non-cognitive, such as disputes over what’s

funny). However, if a reaction like Y’s always seems possible, then logical

necessity is not a cognitive notion.

Resnik’s motivation for non-cognitivism is the fact that he finds all other

anti-realist alternatives less plausible. According to Resnik (1996), judge-

ments about logicality (logical necessity or validity) aren’t true or false,

and their function is not to state any facts. Instead they serve two other

functions.

The first function is to signal how we want certain statements (in the

scope of ‘it is logically necessary that. . .’, for example) to be treated in our

everyday inferential practice. In this particular case, we might want to sig-

nal that our claim is not in need of further justification, or that everyone

(rational and intelligent) should agree to it.

The second function is to describe commitment:

In saying that A is logically true I commit myself to its truth; in saying that

A implies B, I commit myself to its being true that if A then B; in saying

some statements imply A, to at least one of them being false if A is; in

saying that A is consistent with some statements, to denying that they are
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all jointly true only if they are also false. In each case, I commit myself at

least in the sense that I can be criticized for uttering the logicality

judgement engendering the commitment, in case the statement to which I

am committed turns out to be false. (Resnik, 1996, 511)

To assign such functions to judgements about logicality might work (to

some degree) for free-standing judgements. However, projectivist theories,

like Resnik’s non-cognitivism, have notorious difficulties in dealing with

mixed contexts, i.e. contexts in which (alleged) non-cognitive statements

occur embedded in cognitive statements – a difficulty also known as the

Frege–Geach Problem.14 Resnik is aware of the problem and discusses some

examples, like the following:

(5.8) The conjunction of logical truths is logically true itself.

(5.9) Upon receiving Russell’s letter Frege realized that his system was

inconsistent.

Resnik agrees that these statements have truth-values, and thus suggests

that the embedded use of logicality statements does become fact-stating.

For example, he renders (5.8) as

14 The Frege–Geach Problem is a problem that arises for all non-cognitivist accounts

that want to deny that free-standing statements of the alleged non-cognitive

discourse have normal truth-values.

To see the problem, consider a view that would deny that moral statements, such

as ‘Tormenting the cat is bad’ are true or false. Such statements will, nevertheless,

occur in arguments like the following (taken from Geach, 1965):

1. If tormenting the cat is bad, getting your little brother to do it is bad.

2. Tormenting the cat is bad.

3. Ergo, getting your little brother to torment the cat is bad.

Here the problematic statement occurs in the second premise, and is also the

antecedent of the first premise. We would normally consider the argument to be

valid, but if non-cognitivism about moral judgements is right, then the second

premise doesn’t have a truth-value and doesn’t state a fact. But the first premise does

state a fact and, presumably, has a truth-value. Does that mean that ‘Tormenting the

cat is bad’ has a different meaning in (1) and (2)? If so, is the argument, after all, not

valid, but merely an equivocation? Non-cognitivists are challenged to provide an

account that solves this problem. See Schroeder (2008) for strategies to deal with this

and related problems for a semantic theory along non-cognitivist lines.
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(5.10) If we treat the conjuncts as logically true then we (should) also treat

their conjunction as logically true.

On this reading, (5.8) is stating a fact about the norms that, supposedly, gov-

ern our inferential practices. But the challenge of the Frege–Geach Problem

is not just to come up with some paraphrase or other for embedded use of

the problematic vocabulary, but to come up with a systematic account that

shows how this embedded usage fits into a compositional theory of mean-

ing. This still seems to be an open problem for a non-cognitivist account of

logic.

Questions

1. Provide examples for discourses that are epistemically constrained,

i.e. discourses for which the possibility of unknowable truths in the

discourse can be ruled out a priori.

2. What is wrong with the following argument?

(P1) Almost no discourse is such that we (already) know every truth

in it.

(P2) We can’t rule out a priori that we will all die (simultaneously) in

the next moment (say, because of a global catastrophe).

(P3) If we are dead, then truths that we did not know when alive will

remain unknown by us.

(C) Therefore, there is almost no discourse for which the possibility of

unknowable truths in the discourse can be ruled out a priori.

3. Consider again Quine’s argument against conventionalism (the one

that showed by example that you need logic in order to apply conven-

tions). Does the example that was used in the argument show that we

need to have a specific logic? Does it show that we need a full-blown

logic (e.g. all of standard first-predicate logic)?



6 The Epistemology of Logic

In the previous chapter we discussed several different answers to the ques-

tion of what it is that makes the laws of logic true (if they have truth-values

at all). In this chapter we will look at the question of whether we know log-

ical truths at all and – if we do – how we get to have knowledge of them. Of

course, the epistemology of logic is not completely independent of its meta-

physics. Thus, some of the positions that we discussed in the last chapter

will also feature in this chapter.

In metaphilosophy, the philosophy of philosophy, one often finds argu-

ments that try to derive conclusions about the metaphysics (the subject

matter) of a certain area of philosophical enquiry from observations about

the methodology of that enquiry. The idea behind such an inference seems

to be this: a certain methodology would not make sense if the subject

matter wasn’t such and such, therefore it is the best explanation of the

observed methodology in this discipline that it is aimed at such and such

a subject matter (see Goldman (2007) for an instance of this inference). So

it seems that if one just carefully studied the methodology (and thus the

epistemology) of logic, one could find answers to the questions discussed

in the previous chapter, the metaphysics of logic.

But there are two things to note that should diminish the hope one

might have in such an inference from epistemology to metaphysics. The

first observation is that there is no guarantee that philosophers are using

the best or even an appropriate methodology for studying the subject mat-

ter of their discipline. Since the subject matter is contested (after all, we

are looking for an argument that is supposed to enlighten us on what

the subject matter actually is), philosophers might have picked the wrong

methodology because they had false beliefs about the nature of the sub-

ject matter. But philosophers might, of course, also have picked the wrong

methodology despite not having false beliefs about the subject matter.

136



The Epistemology of Logic 137

Perhaps they made a collective mistake or adopted a methodology out

of a tradition without sufficient critical reflection (which is what many

critics of philosophy’s armchair methodology believe to be the case). To

hold that the methodology is appropriate (even though beliefs about sub-

ject matter might not be) would be justified if one could point to progress

in philosophy that would seem to be miraculous if the methodology was

inappropriate. Unfortunately, for most areas of philosophical enquiry, the

progress is so modest that this argument seems weak (see Chalmers, 2015).

One might counter with the observation that logic, at least, is doing

much better than most other philosophical disciplines here. Logic is mak-

ing progress, hence, whatever it is that logic is studying, the methodology

seems appropriate to that subject matter. This is where our second obser-

vation comes in. Actually, the prima facie methodology of logic does not

discriminate clearly between different accounts of the subject matter – it

is compatible with several of them. Let us quickly see why.

The Prima Facie Epistemology of Logic

By prima facie epistemologywemean a descriptive account of how we come to

believe and how we justify claims about logical truth, logical implication,

etc. According to Nelson Goodman (1955), we learn about the validity of

particular arguments from subsuming them under general principles. On

the other hand, we recognize the validity of these general principles, by

recognizing that they give the right verdict about the validity of particular

arguments. What holds for logical validity (or logical consequence) holds

also for logical truth.

In case an argument that we thought was invalid is judged valid by the

general principles we hold to be true, we have to make a choice about

where to make an adjustment. We can either change our view about the

validity of the particular argument, or amend our general principle. These

adjustments are necessary until our beliefs about general principles and

our beliefs about which arguments are valid are in “reflective equilibrium”.

In the process of making these adjustments we are guided by certain gen-

eral principles of theory choice (e.g. simplicity, symmetry, entrenchment)

as well as other beliefs we might have. If this epistemology about logic is

only a part of a wider process of mutual adjustments between beliefs, we
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will talk of a “wide” equilibrium (how “wide” this process can be will be

discussed below).1

Let us grant to Goodman that this is a (sketchy but) largely adequate

picture of how we come to believe and how we justify claims about logi-

cal truth, logical implication, etc. It’s worth emphasizing that this story is

compatible with all the options we have discussed in the previous chapter.

Let us first consider non-cognitivism. Nelson Goodman himself was a non-

cognitivist about logic (see Goodman, 1955; Cohnitz and Rossberg, 2006).

Michael Resnik (1999) is another non-cognitivist who holds that (a wide

version of) reflective equilibrium best describes our epistemology in the

case of logic. That non-cognitivism is compatible with this prima facie epis-

temology is hardly surprising. Non-cognitivism is compatible with almost

any such epistemology; since there are no facts one is out to detect, no

“epistemology” is going to be inadequate (at best, a very elaborate apparent

epistemology could be a little bit too much ado about nothing).

With respect to psychologism, Kantianism, conventionalism or realism,

the prima facie epistemology is just too general to discriminate between

them. The way we described it, the “method” of reflective equilibrium has

two main components. One is the mutual adjustment between believed

general principles and judgements about particular instances. The second

component is that the initial inputs into the process of mutual adjustments

are antecedently held beliefs (about instances or principles).

One might perhaps think that the first of the components is better

suited to a non-cognitivist account because of the involved circularity: gen-

eral principles are supported by individual instances, individual instances

are supported by general principles; if support is lacking there is a prag-

matic choice about where to make the adjustment. But the same is also

1 Although Nelson Goodman first described the process in Fact, Fiction, Forecast as the

process by which we justify principles of deduction and validity judgements about

inferences, the term ‘reflective equilibrium’ was coined by John Rawls in his A Theory

of Justice (Rawls, 1971). Rawls suggests a reflective equilibrium between considered

judgements and principles of justice.

It should be noted that Goodman offers the reflective equilibrium story as a

descriptive account of how we in fact justify judgements about validity. Most authors

who critically engage with Goodman’s proposal mistakenly believe that he was

offering a normative proposal for how we should justify beliefs about

judgement-independent validity-facts. We will see below that Goodman had nothing

of that kind in mind.
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true for areas of enquiry where one might hold a robust factualist view.

Whenever our (believed to be true) theory is in conflict with recalcitrant

data, we have to make a choice whether to adjust the theory or to dis-

card the data. It is not in general the best strategy to adjust the theory to

the data. This will make the theory very complicated and ignore the fact

that there are observation errors. But then one has to choose between sim-

plicity and empirical adequacy, a process of mutual adjustments between

particular data points and the general theory (cf. Quine, 1953a).

So, the first component is just a consequence of a general epistemic

predicament. If the choices we make when confronted with recalcitrant

data are pragmatic, then different choices might lead to different equilibria

and hence to different theories (not all of which can be true). In other

words, theories are underdetermined by data. This might sound frustrating,

but it is a frustration that the factualist is familiar with from all areas of

enquiry.

The second component is a bit more interesting, but unfortunately

too unspecific to clearly favour a particular metaphysical account. The

antecedently held beliefs that serve as inputs to the reflective equilibrium

process can be accommodated by all accounts, with only slightly differ-

ent stories. Conventionalists, psychologists and neo-Kantians, for example,

might locate facts about logic in linguistic conventions that we adopt or

acquire together with our linguistic competence (cf. Philipse, 1989; Hanna,

2006a), or which are part of our reasoning competence. In this case, the

antecedently held beliefs about particular instances and general princi-

ples are perhaps simply outputs of this linguistic or reasoning competence,

comparable to the intuitive judgements about grammaticality that (Chom-

skyan) linguists consider to be the relevant data for inquiries into grammar.

In this case, the data (the input into the reflective equilibrium process)

is the output of the very competence/disposition/set of internalized con-

ventions, etc. that such an account would consider to be the relevant

subject matter of logic (see Cohnitz and Haukioja (2015) for a detailed

story along these lines). Realists, on the other hand, might consider the

antecedently held beliefs to be the outputs of a special faculty of “rational

intuition” which provides (defeasible) evidence about metaphysical facts

or the platonic “third realm” (Bealer, 2000), or – if more naturalistically

inclined – will consider the antecedently held beliefs to be very general,

deeply entrenched empirical beliefs (Williamson, 2007).
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In other words, all metaphysical accounts will have to tell some story

about why the antecedently held beliefs that we take as starting points for

the reflective equilibrium process are legitimately playing that role, but all

have a story to tell. Sure, some of these stories are better than others, but

even for the bad stories there are philosophers who explicitly subscribe to

these, so the inference from epistemic practice to the implicitly assumed

metaphysics (let alone actual metaphysics) of logic is blocked.

It should also be noted that these stories will come apart (to some extent)

when it comes to the question of how to improve the existing methodology

(and how to “widen” the reflective equilibrium). Neo-Kantians and other

friends of psychologism might turn to additional evidence from psycholog-

ical studies of human reasoning processes and cognitive science (Hanna,

2006a), linguistic conventionalists will turn to psycholinguistic evidence

or corpus studies, structural realists will turn to fundamental physics, etc.

However, most accounts seem to have learned to live with the standard

methodology and just provide different interpretations of it.

Three Dogmas

In this chapter we want to focus on three primary questions:

1. Is logic revisable?

2. Is logic a priori or a posteriori?

3. Can we justify logic?

As usual, we will have to disambiguate these questions in the course of

the chapter. Let us observe first that the three questions really are distinct.

The first question asks whether logic can be revised. This is independent of

the second question of how we can know about logic. Perhaps, if logic is a

posteriori, it can be revised a posteriori. And if it’s a priori, it can be revised a

priori. But, also, logic might be a priori but unrevisable.

The third question asks about whether logic is justified. If you think that

a priori and a posteriori are ways of knowing and believe that justification is

necessary for knowledge, then if there is any positive answer to the second

question (e.g. that logic is a priori), we will have to answer the third question

also in a positive way (because if we know it’s knowable a priori, then we

know that it is knowable, and then we know that it is justifiable). But this

is not how you have to think about these categories. Some philosophers
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of science (e.g. followers of Karl Popper’s school of thought2) would hold

that scientific theories are a posteriori revisable, but never receive positive

justification. If we take that observation together with the previous one,

then logic could turn out to be either a priori or a posteriori revisable, but

not justifiable either way.

Although these questions seem to be distinct, we will see that they are

interrelated in various ways. The three questions have standard answers,

or – at least – answers that were mainstream until the middle of the

last century. This standard account goes as follows: logic enjoys a special

epistemic status, the strongest form of certainty: logic is self-evident. Our

certainty is based in the a priori (because that is how you recognize self-

evidence), and because it is a priori knowledge, it also enjoys ultimate

justification. This standard account was shaken up considerably by Willard

Van Orman Quine in his famous paper “Two dogmas of empiricism” (Quine,

1953a) and by Nelson Goodman in Fact, Fiction, Forecast (Goodman, 1955).

Let us begin with Goodman’s contribution. He attacked the last component

of the standard account, the idea that logic is justifiable. In Fact, Fiction,

Forecast Goodman was concerned (among other things) with the problem

of induction.

The classical problem of induction is the problem of how inductive infer-

ences are justified, while justification, as Goodman says, is supposed to be

very different from just describing how we actually make inductive infer-

ences. But why do we require such a justification in the first place? One

possible line of thought could be, that the end-results of inductive infer-

ences are beliefs that we consider candidates for knowledge. In the sciences

this seemsmost obvious: scientific knowledge, as the intended end-product

of scientific enquiry, for a good deal seems to rest on inductive methods.

It seems to rest on inferring generalized, universal statements (such as

‘All emeralds are green.’) from observed particular instances (all observed

2 Sir Karl Raimund Popper (1902–1994) argued that scientific theories can never be

verified, because their empirical content transcends whatever finite empirical

evidence we can pile up in favour of the theory. However, theories can be falsified. We

can find empirical evidence that is in conflict with the theory and decide to consider

the theory refuted. For some philosophers in that school of thought, this implies that

we can never have positive reasons to believe a theory, but only reasons to discard

one. Science makes progress through conjectures and refutations, but we are never

justified in claiming that our current theories are true.
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emeralds in the past have been green), and on predictions about future

events from the observation of events in the past. Now, in order to make

sure that our beliefs in generalized universal statements have any chance

to qualify as knowledge, they at least need to qualify as justified on the

basis of our evidence, which in turn means that the inference we made

from our evidence to the generalized universal statement must have been

justified. But how could such an inference be justified?3

In order to answer this last question, we first need to know what we

require of a justification. What seems traditionally to be required from a

justification is a good argument that establishes that using inductive infer-

ences does not lead us astray. We do not just want to know what we do

when we make inductive inferences, but to know why it is right to make

such inferences.

Although somehow it seems to be a meaningful question whether there

is such a justification for our inductive practices, David Hume showed that

there can be no such argument, if we reflect on what it means to be a “good

argument”, and what it means “not to lead us astray”. A “good argument” is

at least a valid and non-circular argument. For Hume, there are inductively

valid and deductively valid arguments. Since inductive validity is under

3 Goodman discusses the “old” problem of induction and the problem of deduction in

Fact, Fiction, and Forecast primarily as stage setting for his new problem of induction, which

is perhaps the most famous part of the book. The new problem of induction is the

problem of how to chose the predicates that we want to use for inductive inferences,

since it depends on our choice of predicates which generalizations we will consider

supported by the evidence we have collected. Let us assume that it is before some

time t and we so far have observed only green emeralds. Should we take these

observed emeralds to support the generalization ‘All emeralds are green’, or the

generalization ‘All emeralds are grue’, where ‘grue’ is defined as follows:

x is grue iff x is observed before t and green or is not so observed and blue

Since all observed emeralds are also grue, the past observations would also support

the second generalization.

One might think that ‘green’ should be preferred over ‘grue’ because ‘green’ is

simpler and doesn’t contain a reference to time in its definition. But this, as Goodman

argues, is a purely language-relative fact. If we had started with a language with ‘grue’

and ‘bleen’ in it (where ‘bleen’ refers to objects that are blue and observed before t or

are not so observed and are green), then ‘grue’ and ‘bleen’ would be “simpler” and

‘green’ and ‘blue’ defined with reference to time, as in

x is green iff x is observed before t and grue or is not so observed and bleen
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scrutiny here, all inductive arguments for the justifiedness of induction

must be disqualified for being rule-circular: the argument uses an inference

in order to establish the justifiedness of that very same inference. This

leaves us with deductive arguments for the justifiedness of induction.

If ‘using inductive inferences does not lead us astray’ means that induc-

tive inferences are necessarily truth-preserving, then a deductive argument

cannot establish that. The reason is that the content of the conclusion of

an inductive inference transcends the content of the premises, and that

means in turn that there can be no deductive route from the premises to

the conclusion of an inductive inference. Although adding a premise in

order to make an inductive inference deductive (e.g. a premise that claims

the uniformity of nature) could be found, it would, if true at all, again be

only either logically true or synthetically true. If it were logically true, then

the conclusion of an inductive inference would also have followed deduc-

tively from the premises without it. Since, as we have seen, it doesn’t,

the extra premise can’t be a logical validity. If, however, it is a synthetic

truth, then it must itself rest on inductive reasoning, and again violates

the requirement of non-circularity.

It is important to understand that Hume’s argument is general. It is

not just an argument against a particular attempt to justify induction in

the sense above, but a general argument that there can be no such justi-

fication at all. In order to see the generality of this argument, Goodman

showed that the same problem also arises for deduction. Various authors

have disputed that the problem is the same, and Goodman does not spend

much time in the text on why he thinks it is, so we will deliver the missing

argument here.

Such an argument can indeed be found in Susan Haack’s writings

(Haack, 1996, 183), where she analyses the parallel between the dilemma

for the justification of induction and deduction as follows. Hume’s

dilemma has two horns: the first is that deductive justification of induction

would be too strong; the second horn is that a mere inductive justifica-

tion of induction would be circular. Haack’s dilemma for deduction has

it the other way around: the first horn is that a deductive justification of

deduction would be circular, while – and this is the second horn of Haack’s

dilemma – an inductive justification of deduction would be too weak.

Let us first look at the second horn of Hume’s dilemma and the first

horn of Haack’s dilemma. That a deductive justification of deduction, or
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an inductive justification of induction, respectively, is problematically cir-

cular seems almost too obvious to require argument. (However, we will see

below that there is some room for manoeuvre.) Typically when we accuse

an argument or a line of reasoning of being “circular” we have a reasoning

in mind that assumes as its starting point what is yet supposed to be estab-

lished by the reasoning. In the most obvious case, such a reasoning would

be in the form of an argument that has its conclusion also already as a

premise. How exactly this form of vicious circularity or “question begging”

is defined is a notoriously difficult problem. But this sort of circularity is

not what we find in the arguments under consideration here. Instead of

having the intended conclusion as a premise, the problematic arguments

rather seem to rely on a rule of inference, the justifiedness of which is what

the argument aims to establish. These horns thus object that an inductive

justification of induction or a deductive justification of deduction would be

rule-circular.

Let us now look at the other horns. That any purely deductive justifi-

cation of induction is “too strong” is, of course, not to say that it actually

proves more than it was supposed to prove (this could hardly constitute

an objection). It is rather indicating a structural incompatibility between

the means for establishing something and the claim that is supposed to

be established. A purely deductive argument to justify induction is from

the start bound to fail, since it is inadequate to establish anything short

of logically necessary truth-preservation (and that inductive inferences are

not truth-preserving with logical necessity is an analytic corollary of them

being inductive). The reason is that a purely deductive justification can only

get started from truths that are themselves logical necessities (e.g. axioms

or theorems of deductive logic, or instantiations of these), and will by appli-

cation of deductive inference rules always result only in logical necessities

(deductive inference rules do not only preserve truth, they also preserve

necessary truth). But no induction principle (and no claim about its justi-

fiedness) is a truth of logic. Hence, no purely deductive justification could

ever result in the right sort of conclusion.

One might wonder whether a “purely deductive” argument is indeed

required, or whether there could be a deductive argument for a prin-

ciple of induction that starts from non-necessary premises. However, in

this case a problem similar to what we already encountered would arise:

the premises of that argument would either transcend experience or not

transcend experience. If they transcend experience, then they must already
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be based on a principle of induction (which leads us back to the circular-

ity problem). However, if they don’t transcend experience, then – since

deductive inferences are always non-ampliative (i.e. their conclusion can’t

transcend the content of its premises) – the conclusion also won’t tran-

scend experience. But then no such argument could establish a general

principle of induction.

In a very similar way any inductive justification of deduction is “too

weak”: showing that a certain inference usually holds is not the same as

showing that it holds with logical necessity. Thus an inductive justifica-

tion will not lead to a justification of deductive inference qua deductive

inference. No inductive method will allow us to infer that a deductive infer-

ence rule is necessarily truth-preserving, i.e. that if the premises of such

an inference are true, then necessarily the conclusion of that inference is

true, too.

There is also a second problem with this horn. Let us assume for the

sake of argument that in principle an inductive justification of deduction

was potentially adequate. Then, as Paul Boghossian (2000) pointed out, any

such inductive argument for logic would at some point also use deductive

rules (at least in the metatheory). But if no inductive argument is purely

inductive, then it will be just as circular as a purely deductive one. Hence,

not only is induction unjustifiable; deduction is also unjustifiable. But if

deduction is unjustifiable, then logic is unjustifiable too.

Quine attacks the first two components of the standard account. In “Two

dogmas of empiricism” Quine is first concerned with the notion of analytic-

ity. He reviews a number of traditional attempts to define what it means for

a truth to be analytic and finds them all unsatisfactory – either the terms

in which the definiens is provided are even less clear than the definiendum,

or the definition is circular (crucial but problematic terms in the definiens

are themselves defined in terms of the definiendum).4

At the end of the paper Quine turns to a definition of analyticity which

is grounded in a verification theory of meaning. In this theory the meaning

of a sentence is identified with its method of verification (or as a set of its

verification/falsification conditions). An analytic truth can then be defined

4 In the first part of his argumentation, Quine considers a definition of analyticity

according to which a statement is analytic iff it is derivable from logic and definitions

alone. Of course, not all purported definitions can feature in such a derivation, only
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as a statement that is confirmed come what may. This definition seems

to satisfy at least the formal conditions for an adequate definition: the

notions in the definiens are reasonably clear and the definition isn’t cir-

cular. It would also allow us to define related semantic notions such as

synonymy: two statements are synonymous iff the two statements have the

same verification conditions.

However, the verification theory (as described) presupposes that there

is a determinate set of verification conditions for individual statements.

Quine argues that this presupposition is mistaken. Let us consider the ver-

ification conditions to be a set of observation sentences, i.e. statements about

possible observations. It seems that which such observation sentences a

given statement is associated with is not just a matter of that statement.

To see this, take the simple example of an empirical test of a theory in a

given experiment. Theories themselves do not directly imply any observa-

tion statements. They only imply them under further assumptions about

what state the world is in (e.g. the experimental set-up) and what you

are looking at or measuring. Let us take T to be our theory, B1−n a set

of background conditions that the theory requires in order to predict any

specific event E and C1−n a set of hypotheses, definitions and further con-

ditions that specify what would be observable if such an event were to

occur. Let us call a statement describing that observation O. Let us also

assume that we observe ¬O. In this case, our “verification condition” does

not simply and directly relate to T. It relates to T only via all these other

statements. What we are dealing with is the following inconsistent set:

{T, (T → (B1−n → E)),B1−n, (C1−n → (E→ O)),C1−n,¬O}. In order to deal with

correct ones, in which definiens and definiendum are really synonymous. Now,

‘synonymous’ is as problematic as ‘analytic’, but we might consider a definition of

synonymy according to which two expressions are synonymous iff they can be

replaced salva veritate for each other in all sentences of the language.

Whether that will give the right result, however, depends on the expressive

resources of the language, in particular on whether the language contains intensional

notions, such as ‘it is necessarily the case that’ (otherwise all coextensional

expressions such as ‘is an animal with a heart’ and ‘is an animal with kidneys’ come

out synonymous if all and only animals with kidneys also happen to have hearts). But

what is the meaning of these intensional notions? Quine holds that the only

somewhat intelligible analysis of ‘it is necessarily the case that’ is in terms of

analyticity (a statement is necessarily true iff it is analytic). But now we came around

in a full circle.
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the recalcitrant observation, we have to do something with that set. But

what we do is not forced by logic or observation. We have a choice now: we

can either give up T or, in fact, give up any other statement from the set.

But since there is always such a choice, we can hold on to any statement

come what may. On the other hand, wemay chose to revise some of the def-

initions in the set C1−n when accommodating ¬O. But such definitions were

supposed to be analytic. Quine suggests that the possibility for empirical

revision doesn’t stop there. We may not only revise analytic truths when

accommodating recalcitrant experience, we can even chose to revise a law

of logic (in the example above, we could try to restrict logic such that O is

no longer derivable). Thus the distinction between analytic and synthetic

truths breaks down. Any statement can be held come what may, any state-

ment is a posteriori revisable. But then there is no difference in principle

between statements of logic and other statements when it comes to their

empirical revisability.

This rejects the other two components of the standard account: logic

can be revised, and there is no difference between empirical statements

and the principles of logic, they are equally “a posteriori”.5

All three dogmas of the standard view seem wrong. Logic is revisable, it is

as a posteriori as everything else and it is unjustifiable. However, this pack-

age of views doesn’t seems to be as stable (or convincing) as the standard

view which held that logic is a priori certain and perfectly justified. The

reason that the revised view seems less attractive is that, while Quine’s

result seems to show that statements of logic aren’t special, Goodman’s

result seems to make them very different from our other beliefs. After all,

it doesn’t seem to be a feature of our ordinary empirical beliefs that they

are unjustified, at least not for the reasons for which Goodman holds the

principles of deduction to be unjustifiable. It seems we should look into

the whole matter in more detail. We’ll do this in reverse order. First we

will reconsider logic’s (rational) revisability, then have another look at the

matter of logic’s apriority and end the chapter with a brief discussion of

the justifiability of logical principles.

5 It’s perhaps a matter of taste whether one wants to conclude from Quine’s

observations that the principles of logic are a posteriori or whether it is better to

express Quine’s point as establishing that the a priori/a posteriori distinction can’t be

made.
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The Revisability of Logic

In order to systematize the discussion a bit, we will follow Graham Priest

(2014) and distinguish between logica docens, logica utens and logica ens.

Logica docens is the “logic we teach”, a theory that describes or models

logical consequence and logical truth.

Logica utens is the “logic we use”, the way we actually reason under

idealized conditions. It refers to our competence, not our performance.

Logica ens is the “logic as it is” – what this refers to will depend on the

metaphysics of logic we assume. If we are platonic realists, it will refer

to certain relational facts that obtain between abstract objects; if we are

structural realists, it will refer to certain very general facts; if we subscribe

to some version of psychologism, it will refer to the logica utens; if we are

non-cognitivists, it will refer to the logica docens.

For each of these three notions we can now ask whether logic is revisable,

and, if it is, how it is revisable.

The Revisability of Logica Ens

We will begin with the logica ens, since that seems to be the easiest case. If

we assume platonic or structural realism about logic, then the logical facts

are independent of us – of how we actually reason as well as of what we

believe about logic. If that’s so, then we can’t revise these facts either. This

doesn’t automatically follow from their mind-independence. For example,

global warming is (as far as we know) a mind-independent phenomenon, a

fact about the world, but one that we (hopefully) can influence and change.

However, the way that realism thinks about the logical facts, they will be

very fundamental facts or facts in a realm that is causally isolated from us.

If that’s so, we can’t revise logica ens.6

6 Graham Priest (2014) argues that logica ens can be revised, if the logical facts are

relations between meanings (conceived as abstract objects). Although they are not

changeable, we can change which meanings our words express (and thus logica ens can

change after all). But then the change in logic is a change in the logica utens, and the

idea that logic is “really” about the relations between the abstract objects is as

confused as the view that physics is “really” about mathematical objects because we

use mathematical objects to model physical phenomena.
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On the other metaphysical conceptions, logica ens will reduce to logica

docens or logica utens. So we should look at whether they can be revised,

and, if they can, how they can be revised.

The Revisability of Logica Docens

The revisability of the logica docens, on the other hand, seems to be rather

uncontroversial. As Graham Priest (2014) points out, logic changed con-

siderably over the centuries. Moreover, the way it changed wasn’t simply

cumulative (in the sense that while we learned more about logic we never

actually had to give up any of our beliefs). Some arguments that had been

considered valid since Aristotle are now seen to be invalid. Priest gives as

an example the syllogism Darapti:

All As are Bs

All As are Cs

Some Bs are Cs

We now believe this structure to be invalid, because it requires additional

existence-assumptions (that there are any As). But if logica docens has been

revised, it obviously can be revised.

The process by which logica docens is revised has already been described

above, when we described the prima facie epistemology of logic. We use

judgements about the validity of particular inferences as well as general

principles as input into a reflective equilibrium process which is further

guided by general considerations of theory choice, such as simplicity, non-

ad hocness, unifying power, fruitfulness, etc. If logica docens is revised in this

way, it is certainly rationally revised. Depending on how we construe the

subject matter of logic, we might be using sub-optimal data (when merely

feeding intuitions and antecedently held beliefs into the process), but this

doesn’t make the process irrational.

The Revisability of Logica Utens

The revisability of logica utens is a less straightforward affair. Some

philosophers considered the idea that we could revise the logic by which

we reason to be so puzzling that they suspected it would lead to a paradox.

Are the fundamental principles of logic not the premises of every argu-

ment by which we revise our beliefs? But, if so, wouldn’t an argument that
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attacked one or several of these principles “saw off the limb on which the

argument rests” (Katz, 1998, 73)?

Maybe that worry can be countered if the logical principles that occur

in the revision are only principles that are themselves not subject to revi-

sion (cf. Colyvan, 2006; Field, 2004). Perhaps an account can be developed

that can explain how a logical principle can feature in a form of reasoning

that undermines itself. As Mark Colyvan (2006) points out, an argument

that rests on premises that are undermined by that very argument is not

paradoxical at all – all reductio ad absurdum proofs work like that.

Hartry Field identifies a second puzzle for revision of logica utens: a

methodology that would advise us to follow another methodology would

seem inconsistent. If we rationally change methodologies, then the ratio-

nal motivitation would have to come from a more fundamental methodol-

ogy, which is not up for revision. Thus, if a method is rationally revisable,

then it isn’t fundamental. Hence, either logic isn’t revisable, or logic is not,

after all, our most fundamental methodology (Field, 2004, 2).

However, situations in which we might be led to a rational revision of

logic don’t seem to lead to such difficulties. Take, for example, the Liar

Paradox (which we will discuss in more detail in Chapter 9):

(6.1) Sentence (6.1) is false.

With a standard theory of truth in a standard logic, sentence (6.1) creates

a paradox. There are several ways to deal with that problem, but it seems

unacceptable – by the lights of standard logic itself – just to accept the para-

dox. In this case, if we can convince ourselves that all other solutions to

the paradox fail (or seem less attractive), we can consider revising standard

logic (as in Field, 2008). Such a revision would be, in a way, recommended

by our logic – standard logic fails by its own standards.

The Adoption Problem

But how should we just switch to another logic, another form of reasoning?

Isn’t that the absurd idea, that we could just rationally decide to change the

very way we think? This problem has in recent years been discussed as the

“adoption problem”. Saul Kripke discussed it in seminars and lectures in

the 1970s, but never published his view on the matter. Nevertheless, an

academic discussion has evolved on the basis of these unpublished ideas.
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Kripke argues that we can’t just adopt a basic logical principle, and

consequently can’t adopt an alternative logic either. Kripke illustrates his

point with the example of someone who doesn’t yet see that each instance

follows from a universal statement:

Let’s try to think of someone – and let’s forget any questions about whether

he can really understand the concept of “all” and so on – who somehow

just doesn’t see that from a universal statement each instance follows. But

he is quite willing to accept my authority on these issues – at least, to try

out or adopt or use provisionally any hypotheses that I give him. So I say to

him, ‘Consider the hypothesis that from each universal statement, each

instance follows.’ Now, previously to being told this, he believed it when I

said that all ravens are black because I told him that too. But he was unable

to infer that this raven, which is locked in a dark room, and he can’t see it,

is therefore black. And in fact, he doesn’t see that that follows, or he

doesn’t see that that is actually true. So I say to him, ‘Oh, you don’t see

that? Well, let me tell you, from every universal statement each instance

follows.’ He will say, ‘Okay, yes. I believe you.’ Now I say to him, “‘All ravens

are black” is a universal statement, and “This raven is black” is an instance.

Yes?’ ‘Yes,’ he agrees. So I say, ‘Since all universal statements imply their

instances, this particular universal statement, that all ravens are black,

implies this particular instance.’ He responds: ‘Well, Hmm, I’m not entirely

sure. I don’t really think that I’ve got to accept that.’ (Padro, 2015, n49)

In order to make his point, Kripke reminds us of Lewis Carroll’s famous

dialogue between Achilles and the tortoise, which we already encountered

in the last chapter. There we discussed it as presenting an obstacle to

conventionalism, the idea that the principles of logic are linguistic con-

ventions. Kripke seems to think that the problem simply applies in the

same way to the idea that logic could be rationally revised. As in the exam-

ple above, it seems that you already have to be able to reason according

to the rule of universal instantiation in order to know how to apply the

rule. Likewise in the convention case: in order to know how to observe any

conventions, you already need to know what the convention implies for a

certain case, but that, in turn, already requires a logic.

But is the problem really the same? Let us grant for the moment that

there is indeed a problem for conventionalism (in the last chapter we

argued that there is reason to think there isn’t). Then the argument shows

that you can’t get a logic out of thin air just by agreeing on a convention.
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That was Quine’s point: you already need a logic in order to know what the

convention you agreed on implies.

The case of logic’s rational revisability is not quite the same. Here we

can assume that a logic is already in place. So, the argument only shows

that for some rules, like perhaps universal instantiation, you already need

some rule of that kind to adopt this rule, but why should this hold for all

rules? For example, take disjunction introduction (as presented as a rule of

the natural deduction system):

φ
∨-Intro

φ ∨ ψ

Where does adopting this rule require this very rule? Also, it seems that

the cases of revisions Quine has in mind are situations in which rules

are weakened. Recalcitrant experience suggests that I revise my system of

beliefs. Should I revise a theory, an observation statement, or the logic that

tells me that the observation statement is in conflict with the theory? If I

opt for the latter, I opt for weakening the logic that I already have. Is that

difficult to do? Isn’t that the same as when, after learning in a logic course

that Denying the Antecedent is a frequent fallacy, you are less prone to make

that fallacy?

So, the problem seems at best to be that certain basic logical princi-

ples can’t be simply “adopted”, but that doesn’t speak against the idea of

logic’s rational revisability (because the latter might not at all concern the

adoption of those particular principles).

Moreover, there seems to be a pragmatic solution to the adoption prob-

lem. Graham Priest (2014) argues that it is a matter of training, how we

reason about certain subject matters. We might be trained in standard

logic, and thus find reasoning this way very natural. But we might get

training in another logic, and then follow that training if we have reason

to believe that doing so is beneficial.

Is Logic A Posteriori?

So let’s assume that logic – in any case logica docens and logica utens –

can be revised. In the previous section we looked at one reason for the

revision of logic: the Liar Paradox. This is a case in which our evidence

against the logic is a priori. Could there be evidence against a logic that is a

posteriori?
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Let us first look at the matter from a metaphysical point of view. If we

are non-cognitivists about logic, then it is a question of what we believe the

logic-discourse is good for in order to decide which reasons we might have

for changing that practice. But, whatever these reasons are, they won’t be

evidential. If we are platonist realists, it is also unlikely that there could

be empirical reasons for revising our beliefs about abstract objects (but see

Maddy (2014) for a naturalist epistemology for platonists). If, on the other

hand, we subscribe to some form of psychologism, or structuralist real-

ism, it doesn’t seem absurd at all to suppose that there could be empirical

reasons for changing our logica docens and/or utens.

Let us consider a psychologistic view first. Since psychologism holds that

logica docens describes the actual ways in which we reason, empirical evi-

dence about the ways we reason is clearly relevant for revising logica docens.

But empirical evidence could also be relevant for revising logica utens. For

example, we might find out that reasoning in some other way than the one

we actually employ is psychologically beneficial – perhaps reasoning in a

three-valued logic makes us more optimistic and enhances our well-being.

If we are structural realists, we in any case believe that logica docens

describes the empirical world and not the way we reason about it. Thus, if

we learn that our logica docens does not correspond to the empirical world,

we should revise it. If that means that we are not reasoning according to the

way the world is, we should revise logica utens too. And, indeed, Hilary Put-

nam (1975) argues that we should revise our logic in light of the puzzling

results of quantum mechanics.

Non-factualist Epistemology and the Status of Logic

However, Hartry Field has argued that perhaps the question whether logic

is a priori isn’t after all a factual question, and there might be good reasons

to treat logic as empirically indefeasible (Field, 1996, 1998). Field considers

the following two necessary conditions to define the relevant notion of a

prioricity for principles of logic:7

(A1) It is reasonable to believe the principles of logic without any empiri-

cal evidence for them.

7 (A1) and (A2) are quoted from Field (1998, 1).
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(A2) Logical principles are empirically indefeasible, in the sense that no

possible combination of observations should count as evidence against

them.

Field (1996) calls a principle that satisfies only (A1) “weakly a priori”, and

calls it “strongly a priori” if it also satisfies (A2). Whether principles of

logic satisfy (A1) and (A2) is, according to Field, not a fully factual question.

Surely, one can ask descriptively whether a principle satisfies (A1) and (A2)

in a given evidential system, i.e. the rules that a cognitive agent is following

that govern what he should believe in certain circumstances. But cognitive

agents may have all kinds of weird evidential systems. So, the question of

whether logical principles satisfy (A1) and (A2) isn’t a question of whether

there is some evidential system or other in which they do, but the evalu-

ative question of whether or not it is a good thing to have an evaluative

system that treats logical principles so that they satisfy (A1) and (A2).

It seems rather straightforward to argue that a decent evidential system

should have logical principles satisfying (A1). As Field says,

an evidential system that did not allow deductive reasoning until evidence

favouring it was in would have nothing to recommend it, and it is hard to

imagine what sort of evidence could ever be gathered by such a system that

would allow deductive reasoning to begin when it was initially prohibited.

(Field, 1996, 365)

But what about (A2)? Field argues that it is very hard to conceive of an

epistemic system that would treat logical principles as failing to satisfy (A2).

In contrast, it is relatively easy to imagine an evidential system that treats

Euclidean geometry as empirically defeasible. It would just be a system

that says (in some form or other) that we should give up Euclidean geome-

try on the basis of evidence E if someone comes up with a not-too-complex

alternative geometry which in combination with highly plausible auxiliary

hypotheses leads deductively to E, whereas no plausible auxiliaries can be

found that together with Euclidean geometry lead deductively to E (Field,

1996, 369). Note that this evidential system for geometry mentions deduc-

tion. In fact, all evidential systems that we can imagine, including those that

are inductive, will mention deduction. If so, then it is just very hard to see

what a system should look like that treats deduction itself as empirically

defeasible. But if it is hard to imagine such a system then it’s certainly not

plausible to have such a (at least as yet) inconceivable system evaluated
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higher than our actual evidential system which – as Field argues – does

treat logical principles as satisfying (A2). Therefore – for all we know – we

should be a priorists about the principles of logic.

At least this seems to establish that there is no alternative to an eviden-

tial system that treats some logic or other as strongly a priori. Field wants to

establish a stronger claim: that an evidential system treats classical logic as

strongly a priori (Field, 1996, 369, n10). Again, he argues that no non-classical

logic is worked out in a way that would make clear what it would mean to

use it as our everyday, all-purpose logica utens. As we have seen above, some

logicians (e.g. Graham Priest (2014), but also Jodi Azzouni (2014) as well as

Field’s later self (Field, 2008)) would disagree with that claim.

The Justification of Logic

In order to understand the complexities of the issues involved, it is worth

looking at the matter from the perspective of justification again. How are

we justified in our fundamental logical beliefs? Following Paul Boghossian

(2000), we will distinguish two issues here. The first is the question of how

a cognitive agent S can be justified in the belief that, say, modus ponens is

necessarily truth-preserving/valid. The second is the question of how S can

be entitled in her disposition to reason according to modus ponens. Let’s begin

with the first of these. On first pass, there seem to be the options shown in

Figure 6.1.

First candidates for a non-inferential justification would be that we can

just “see” or “rationally intuit” that modus ponens is valid. But these notions

are notoriously contested. A first candidate for an inferential defence of

modus ponenswould consist in some sort of argument that shows that modus

ponens is valid, perhaps something like a soundness proof. But any such

argument would – it seems – have to make use of modus ponens at some

place or other. But then, as we have said above already, such an argument

Can modus ponens be justified?

YesNo

Non-inferentially Inferentially

Figure 6.1 The justification of modus ponens (Boghossian, 2000, 230)
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would be rule-circular. If that’s unacceptable, we seem to be stuck with the

result that Goodman and Hume arrived at: we can’t justify our belief that

modus ponens is valid.

But this seems unacceptable, for there is a plausible bridge principle

between justification and entitlement (Boghossian, 2000, 234):

(6.2) If it is impossible for us to be justified in believing that a cer-

tain logical rule is truth-preserving, we cannot be entitled to reason in

accordance with that rule.

But then, any belief that rests on deductive reasoning is unjustified.

Since this also includes (6.2) itself, this looks like an extremely unattrac-

tive and unstable position. What to do? Can the conclusion be avoided? (In

other words, is there a straight solution?) Can the conclusion be made more

stable? (Is there a sceptical solution?) As Boghossian explains, there seem to

be several options, represented in Figure 6.2.

Scepticism, on the branch at the far left, is the unstable position that we

should avoid. ‘NF about Logic’, to the right of it, refers to non-factualism

about logic. That’s the kind of non-cognitivism about logic that we met

in Chapter 5. On that account, apparent claims about logical truth, valid-

ity, etc. do not express beliefs in the first place, but express something

else (commitments or perhaps inference licences; see Chapter 5 for details).

This option then suffers from the problems of non-cognitivism about logic.

But it would be an otherwise stable position: it’s not a problem that we

lack a justification for modus ponens; since there are no facts about logic in

the first place, there is no such belief that would need to be justified.

Can modus ponens be justified?

No Yes

Is that a problem? How?

Yes No Non-inferentially Inferentially

Rule-Circular JustificationNF about LogicScepticism

NF about Justification Default-Reasonable Beliefs

Figure 6.2 The justification of modus ponens continued (Boghossian, 2000, 236)
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Let us turn to the options to non-inferentially justify modus ponens. Both

candidates here are somewhat familiar from the previous subsection. ‘NF

about Justification’ refers to non-factualism about justification. In a way

this is similar to the view that Field was recommending (a partial non-

factualism about epistemology). However, Boghossian has a stronger view

in mind. This option here claims that – although judgements about logic

(validity, implication, etc.) are factual – claims about what justifies what

(or about which evidential system we should prefer) are not. Boghossian

argues that this can’t make sense of cases in which we are criticizing others

for holding unjustified beliefs. Intuitively, there is something that does or

doesn’t ground our being right in doing so. But on this non-factualist view

there is nothing to back us up.

The idea that, instead,modus ponens is non-inferentially justified, because

it is a default-reasonable belief, should also be a familiar thought from the

previous section. Boghossian argues that, although there are some default-

reasonable beliefs, there must be a reason why a given belief should be

considered default-reasonable, and he can’t see why that should be the

case for modus ponens. However, in the last section we met such a reason in

Hartry Field’s argument for endorsing weak a priority of logic: an evidential

system that wouldn’t treat modus ponens as default-reasonable would have

nothing to recommend it – since you need deduction to get any kind of

inferential justification off the ground, the principles of deduction should

be endorsable prior to any evidence.

Boghossian’s own sympathies lie with the branch at the far right of the

tree, the rule-circular justification of modus ponens. This option is plagued

by two difficulties. One, of course, is the circularity itself. Assume that you

argue with someone who doubts modus ponens. Clearly, an argument that

would use modus ponens is not going to win over someone who is initially

sceptical about it. Relatedly, what does one’s own entitlement in using

modus ponens as a rule consist in, in an argument for its validity, if not in

the belief that modus ponens is truth-preserving.

The second problem is known as the bad-company objection: if we allow

that modus ponens can be justified in a rule-circular manner, then how

can we block rule-circular justifications for all kinds of crazy rules? Just

remember Arthur Prior’s “tonk” from Chapter 4, the connective that

had the introduction rule of disjunction and the elimination rule of
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conjunction. If rule-circular justifications were unconditionally allowed,

we could justify reasoning with tonk as follows (Boghossian, 2000, 247):

1. �P tonk Q � is true iff

�P� is true tonk �Q � is true Meaning postulate

2. P Assumption

3. �P� is true 2, T-scheme

4. �P� is true tonk �Q � is true 3, tonk-introduction

5. �P tonk Q � is true 4, 1, biconditional-elimination

6. P tonk Q 5, T-scheme

7. If P, then P tonk Q 2–6, conditional-introduction

The last line of that argument is a canonical statement of tonk-

introduction, which depends only on the meaning postulate in line 1.

What’s wrong with this “justification”, if we allow rule-circular arguments?

Boghossian suggests addressing both of these problems with the help

of an inferentialist conception of meaning for logical constants. We have

already met such conceptions in Chapter 4. According to such an infer-

entialist conception, there is a set of inferences involving ‘if . . . then . . .’

(a subset of all the inferences that ‘if . . . then . . .’ can feature in) that

are meaning constitutive for ‘if. . . then . . .’ for a thinker – ‘if . . . then . . .’

expresses the unique logical constant, if there is one, the semantic value

of which makes the inferences in that subset truth-preserving (Boghossian,

2000, 249). Assuming that such an inferentialist account works, Boghossian

proposes the following principle:

(L) If M is a genuinely meaning-constituting rule for S, then S is entitled

to infer according to M, independently of having supplied an explicit

justification for M.

As Boghossian argues, (L) is intuitively plausible. If certain inferences are

indeed meaning-constituting for ‘if. . . then. . .’, then we couldn’t even have

the belief that we are entitled to reason according to those rules, without

having the disposition to do so, prior to and independently of an explicit

justification of those rules.

Boghossian also argues that such an inferentialist account can address

the bad-company objection. (L) supports the following restriction on rule-

circular justifications:
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(RC) S’s rule-circular argument for a rule of inference M will confer

warrant on S’s belief that M is truth-preserving, provided that M is a

genuinely meaning-constituting rule for S.

With (RC) we can block the argument for tonk provided above. The

rule-circular argument does not confer warrant on its conclusion, because

the tonk-introduction rule is not meaning constitutive. We can see this

by observing that we can’t construe a truth-table for tonk from its

introduction and elimination rules.

Thus, if inferentialism for logical constants is plausible, then we can

address the bad-company objection and the intrapersonal circularity worry.

The view doesn’t help with the second half of the circularity problem: how

should we convince somebody antecedently sceptical about modus ponens

about its truth-preserving qualities? Boghossian accepts this and distin-

guishes suasive and non-suasive reasons. We have non-suasive reasons for

endorsing modus ponens, which – unfortunately – don’t have the power to

move a sceptic.

Of course, the fact that the view depends on inferentialism about the mean-

ing of logical constants is “a big ‘if’”. Timothy Williamson (2007) provides

powerful arguments against the view that the meaning of logical constants

in the mind or the utterances of a cognitive agent is determined by any set

of inferences that that cognitive agent would accept as valid.8 According

to Williamson, the meaning of these connectives is fixed by the public

language. But if that’s so, then (L) loses its plausibility.

Williamson asks us to consider Peter and Stephen, both native speakers

of English. Peter believes that

(6.3) All vixens are vixens.

not merely presupposes, but entails, that there is at least one vixen. This is

because he, in general, came to believe that universal quantification is exis-

tentially committing. Moreover, Peter also happens to believe that there

are actually no vixens, since he has been convinced that foxes are merely

an invention of MI6, who planted all the evidence for the existence of foxes

in order to involve people in protests about fox-hunting rather than in

8 These arguments will be familiar to you from an adaptation that we considered in

Chapter 4.
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Table 6.1 Kleene table for the conditional

→ 1 0 #

1 1 0 #

0 1 1 1

# 1 # #

protests about the war in Iraq (Williamson, 2007, 86–87). Consequently,

Peter denies (6.3) and doesn’t assent to it.

Stephen, on the other hand, believes that borderline cases for vague

terms lead to truth-value gaps. Stephen treats truth-value gaps as the third

value in Kleene’s “strong tables”. The Kleene table for the conditional is

shown in Table 6.1.

Stephen also believes that some female evolutionary ancestors of foxes

are borderline cases of ‘fox’, and hence borderline cases of ‘vixen’. But then,

for such an animal as the value of ‘x’, ‘x is a vixen’ is neither true nor false,

thus ‘x is a vixen→ x is a vixen’ is neither true nor false by the table given.

For Stephen, a universal generalization, such as ‘∀x(Fx → Gx)’, is true if

‘Fx → Gx’ is true for every value of ‘x’, and false if ‘Fx → Gx’ is false for

some value of ‘x’. Since ‘x is a vixen’ is not true for every value of ‘x’, nor

false for any value of ‘x’, ‘Every vixen is a vixen’ is neither true nor false,

according to Stephen (Williamson, 2007, 87–88).

Peter and Stephen are peculiar in the inferences they accept as valid

and the statements they accept as logically true. But, so goes Williamson’s

argument, there is little room to hold that in Peter’s and Stephen’s use the

logical constants just acquire some deviant meaning:

Peter and Stephen are native speakers who learned English in the normal

way. They acquired their non-standard views as adults. At least before that,

nothing in their use of English suggested semantic deviation. Surely they

understood [6.3] and its constituent words and modes of construction with

their ordinary meanings then. But the process by which they acquired their

eccentricities did not involve forgetting their previous semantic

understanding. [. . .] By ordinary standards, Peter and Stephen understand

[6.3] perfectly well. Although their rejection of [6.3] might on first

acquaintance give an observer a defeasible reason to deny that they

understood it, any such reason is defeated by closer observation of them.

(Williamson, 2007, 90–91)
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If Williamson is right, then inferentialism can’t provide a satisfac-

tory epistemology for logic either (which might make the non-inferential

justifications of basic logical principles look more attractive again).

Questions

1. Above we said that the adoption problem might not arise if our revision

requires weakening the logic that we have. For which cases of strength-

ening the logic does it arise then? (For all cases of strengthening? Only

certain ones?)

2. Continuing the topic of the previous question: what reasons could there

be for suggesting a strengthening of a logic?

3. Williamson’s argument doesn’t seem to establish that there is some-

thing wrong with inferentialism as such but only with an individualistic

version of the view. (Peter’s and Stephen’s individual dispositions to use

logical constants did not impact the meaning of those constants.) Does

that create a loophole for Boghossian’s account? Can a non-individualist

version of inferentialism combine with Boghossian’s argument?



7 Logical Pluralism

Logical pluralism is, roughly, the view that there is more than one correct

logic or, alternatively, that there is more than one genuine consequence

relation, more than one right answer to the question of whether and why

a given argument is valid, more than one collection of valid inferences (or

of logical truths), or more than one right way of reasoning. But these rough

characterizations are already a sample of how many different versions of

the thesis of logical pluralism there can be, corresponding to the different

ways in which one can specify more carefully what a logic is, and what it

would be for a logic to be correct.

Those different versions of the thesis of logical pluralism range from

the nearly innocuous to the highly contentious. Using the terminology of

previous chapters, take ‘logic’ to mean logic as a theory, especially a pure one.

In that sense, a logic is a mathematical theory. Now take ‘to be correct’ to

mean the satisfaction of standards of correction for mathematical theories,

say, self-consistency, among others. Then the claim ‘there is more than

one correct logic’ just means ‘there is more than one pure logic(al theory)’,

which is nearly anodyne now. We say “nearly anodyne” because this idea

is relatively recent. To take just one example, Quine (1970) claimed that

many non-standard logics are not really logics but algebras. Even the mere

idea of “pure logic” can be incoherent for some theorists, since a logic is

for them essentially interpreted in a particular way, namely as dealing with

the evaluation of linguistic-like entities, as we saw in Chapter 1.

Without denying that interesting and substantial debates might arise,

and indeed have arisen, around these other senses of ‘logic’, we will in

this chapter stick to the canonical side of the issue. Thus, we take ‘logic’

to mean logic as a canonically applied theory, i.e. a theory about the canonical

logical phenomena: right reasoning in sciences or ordinary language. Addi-

tionally, we take ‘to be correct’ for a logic in this sense to mean that the

162
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logic is “materially adequate” a la Tarski, that is, it has all the relevant fea-

tures that logical consequence intuitively and informally has in ordinary

language. Then, ‘there is more than one correct logic’ would mean that

there is more than one theory that has all the relevant features that right reasoning

has in ordinary language. More briefly, in this reading, ‘there is more than

one correct logic’ is spelled out as ‘there is more than one correct theory

as to what constitutes right reasoning’. This is certainly not anodyne. How

could it be that a theory implying that a statement of the form A ∨ ¬A can

be deduced from any other statement whatsoever, and a theory implying

that this is not the case, are both correct: that both represent all the rele-

vant features of right reasoning in ordinary language? These theories seem

to plainly contradict each other, and not be supplementary in any sense.

A Plurality of Pluralisms

Suppose that the enterprise of finding one or more correct logics for rea-

soning in ordinary language is a bit ambitious, especially because it may

be quite indeterminate what “correct reasoning in ordinary language” is

supposed to include. So let us abstract a little bit and focus on domains

of discourse. Of course, right reasoning in ordinary language can itself be

a domain of discourse, perhaps an all-encompassing domain of discourse,

but typically domains of discourse will be more restricted, for example

to (parts of) mathematical activity, or (parts of) the quantum domain or

other domains of scientific enquiry. Then we can distinguish the following

pluralist claims:

Pointed logical pluralism: There is exactly one domain of logical enquiry for

which there is more than one correct logic.

Collected local logical pluralism: There is a domain for which there is more

than one correct logic.

Distributed local logical pluralism: There is more than one logic that is correct

for some domain.

Universal local logical pluralism: For all domains there is more than one

correct logic.

Collected local logical pluralism is stronger than distributed local logical plural-

ism. The first says that there are at least two distinct logics L1 and L2 and
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a domain D such that L1 and L2 are both correct for D. The second says

something weaker, namely that there are at least two distinct logics L1 and

L2 and at least two domains Dm and Dn such that L1 is correct for Dm and

L2 is correct for Dn. But even the weaker form of local logical pluralism is

contentious. A theorist might reject the idea that logic is not applied glob-

ally but to a restricted domain. Accordingly, there are several versions of

logical monism:

Pointed logical monism: There is exactly one domain of logical enquiry for

which there is exactly one correct logic.

Collected local logical monism: For some domains there is exactly one correct

logic.

Universal local logical monism: For all domains there is exactly one correct

logic.

Universal logical monism: There is exactly one logic that is correct for all

domains.

These formulations of logical monism and logical pluralism allow more

or less easily the recognition of other options in the debate. For exam-

ple, the idea that there is no logic that is correct for the single domain

of logical enquiry, or the idea that every logic is correct for some domain

of enquiry. Options similar to them have appeared very recently under

the labels of logical nihilism and logical universalism, respectively. Nonetheless,

they are options allowed not only by the combinatorics of the quantifiers,

but also by some internal problems of logical pluralism and logical monism.

In the next sections we will explore some of the usual defences of different

versions of logical pluralism.

Carnap’s Tolerance

Carnap’s logical tolerance is usually regarded as one of the earliest forms

of logical pluralism. In Carnap’s view, logic(s) is (are) concerned with

a single area, namely the evaluation of arguments, but arguments are

always arguments-in-a-language and there are many languages; there is

a single set of standards of evaluation but the features proper of each

language will yield different valid (and invalid) arguments. The single

area of evaluation of arguments can be decomposed into many domains

of enquiry: evaluation of arguments in physics, in biology, etc. One can
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even associate different logics/languages to the same domain of enquiry

(microphysics, mathematics, economics, etc.). Carnap’s pluralism is based

on his well-known Principle of Tolerance:

Principle of Tolerance: It is not our business to set up prohibitions, but to arrive at

conclusions. [. . .]

In logic there are no morals. Everyone is at liberty to build his own logic, i.e.

his own form of language, as he wishes. All that is required of him is that,

if he wishes to discuss it, he must state his methods clearly, and give

syntactical rules instead of philosophical arguments. (Carnap, 1937, §17)

Carnap formulates this principle in his Logische Syntax der Sprache (The

Logical Syntax of Language: Carnap, 1937). In this book he develops a syn-

tactic (and also the first step towards a semantic) approach to studying

languages and their logical properties. For Carnap, we can construe lan-

guages in different ways with logics of different strengths. It is only a

matter of pragmatic choice what we want to consider “logical” and what

we want to treat as “extra-logical”. If we think that’s useful, we may build

all kinds of mathematical or even physical content into the language,

depending on the purpose of application (as said above).

Since Carnap considers this to be a pragmatic choice, it seems clear that

for him the question of whether an argument is valid must be treated as

an internal question (Carnap, 1956). Only within a chosen language (con-

taining a certain logic) does it make sense to ask whether an argument or

an inference is valid. Whether it is valid then does depend on the rules

of that language. An external question about an argument’s validity, on

the other hand, is meaningless. It can only make sense as an elliptic prag-

matic question (should we adopt a language with such and such rules?).

Stewart Shapiro has argued that the idea of tolerance (i.e. not to dismiss

deviant logics out of hand) does not itself imply relativism or pluralism

about logic. One might be tolerant towards other logics and openly con-

sider their advantages while still believing that there is only one true logic

out there (Shapiro, 2014b). However, it seems clear that this was not Car-

nap’s view. If everyone is at liberty to build his own logic, then there is obviously

more than one correct way.

There is a nearby form of logical pluralism, which is championed by

Achille Varzi and presented as a form of logical relativism. As we have seen

in Chapter 4, some – including Alfred Tarski at some point – hold that

the demarcation between the logical and the non-logical expressions in a
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language is matter of pragmatic choice. But since logical consequence to

some extent hinges on the choice of what we keep constant and what we

allow reinterpretations for, logical consequence is relative to our choice of

logical constants (Varzi, 2002).

It is a consequence of Carnap’s view that his pluralism is confined to lan-

guages, thus any difference in logical consequence is due to a difference in language

(Restall, 2002). Moreover, the formal languages, about which Carnap is a

pluralist, are indeed those that we can adopt as regimentations of ordinary

language.

Modelling Pluralism

This is different in Cook–Shapiro modelling pluralism. According to this

version of logical pluralism, logic(s) is (are) concerned with a single

area, namely modelling natural language, but models are always models-

of-only-some-aspects; there is no single set of standards of evaluation

of models – evaluation of models is always evaluation-according-to-some-

purpose.

Consider for example a situation in which you want to explain the loca-

tion of your house relative to some other location that is, say, three blocks

away (imagine you’re explaining to a friend how to get to your house from

the bus stop). Perhaps you do that by drawing a crude map in the sand

on the ground and model your house by putting a small stone on that

map, and another stone that represents the bus stop. The stone is in many

ways distinct from your house (fortunately), but it can serve as a model

for your house in that situation. Now think of another purpose; perhaps

an architect wants to discuss how a carport could be added to your house

and so makes a small-scale model of it from cardboard. Again, your actual

house doesn’t have walls out of cardboard, but for the purpose at hand,

this doesn’t matter. The stone would not have been a good model now. It

doesn’t properly represent the shape of the house, and it wouldn’t have

helped the architect in communicating how a carport could be added to it

in an aesthetically pleasing way, say.

Note that not only can different models serve different purposes, but

there is also no “super-model” that could serve all purposes. Even an exact

replica of your house, or even your house itself wouldn’t do, since it is

often essential for the purpose of a model that it abstracts away from
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aspects that the actual thing has. Take the first case. A “life”-sized house

might do a poor job in representing the location of your house vis-a-vis

some other location, since it might be too large to help your friend get

an overview of the relative location. Thus even the actual thing is – for

certain applications – a poor model of itself. So models are good or bad

depending on purpose, and for different purposes there might be different

models.

This form of logical pluralism is hardly controversial. But it leaves room

for a more interesting kind of pluralism:

Once we realize that logics are merely models of the consequence relation

in natural language, we might wonder whether there could be two logics,

such that (i) the logics belong to the same language and involve the same

interpretation of the logical/nonlogical divide; (ii) the logics are

incompatible – that is, they validate different sets of inferences; (iii) the

logics are, all things considered, equally good models of logical

consequence in natural language; and (iv) there is no third logic such that

this logic is a better model of logical consequence than the two competing

logics. (Cook, 2010, 501)

Shapiro (2014a) goes some way in establishing these four points for

his “eclectic pluralism”. He argues that there are perfectly worthwhile

mathematical structures, such as, for example, Kock–Lawvere’s infinites-

imal analysis, that require to be studied in non-classical logic, since they

are classically inconsistent. Shapiro argues that – even if there is some-

times a classical workaround to studying these structures, they are better

understood in terms of their underlying logic than via some translation

into classical logic. But then validity and consequence become relative

notions – relative to mathematical structures. The underlying logics of

these structures are incompatible, arguably belong to the same language

and preserve the meaning of connectives, and they all serve an equally

important purpose (they allow us to study worthwhile mathematical

structures).

This view is motivated via the mathematical practice of studying all

kinds of structures; it is a logical pluralism “for the working mathemati-

cian” (Hjortland, 2016). A similarly language-internal pluralism can be

motivated on considerations of the vagueness of the logical consequence

relation alone, as we shall see in the next section.
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Beall/Restall Pluralism

Beall and Restall’s (2000, 2001, 2006) case-based logical pluralism is a version

of logical pluralism which has received considerable attention in recent

years. In this version, logic(s) is (are) concerned with a single area, namely

the evaluation of arguments; it is the same (form of) argument in the same

language which is evaluated in different cases; cases provide different stan-

dards for such evaluation and they may yield different valid (and invalid)

arguments. Thus unlike Carnap’s view the pluralism arises within one lan-

guage, and unlike the Shapiro/Cook view it is a pluralism about the logical

consequence relation (and not one about different models thereof).

Beall and Restall motivate their pluralism by observing that there is an

accepted explication of logical consequence in semantic terms, which is

largely due to the work of Tarski and formulated in terms of quantification

over cases.

Generalized Tarski Thesis (GTT) An argument is validx if and only if in every

casex in which the premises are true, so is the conclusion.

An important part of Beall and Restall’s pluralism is that GTT is unsettled,

that is, that no particular logic is obtained unless one provides cases, and

there are at least two kinds of cases. If we consider (complete) possible

worlds as cases, we obtain the consequence relation of classical logic; if

we takes stages in a construction as cases, we obtain intuitionistic logic,

and taking (potentially inconsistent) situations as cases, we end up with

paraconsistent logic.

But there is more to Beall and Restall’s pluralism than GTT and its unset-

tledness. Based on a more or less widespread understanding of logic, they

have put forward an argument to exclude from the realm of “proper” logic

what they take to be merely so-called “logics”. They say:

Logic, whatever it is, must be a tool useful for the analysis of the inferential

relationships between premises and conclusions expressed in arguments we

actually employ. If a discipline does not manage this much, it cannot be logic

in its traditional sense. (Beall and Restall, 2006, p. 8, italics in the original)

[. . .] any settling of the relation of logical consequence must be a necessary,

normative and formal relation on propositions. (Beall and Restall, 2006,

p. 29)

We hold that deductive validity is a matter of the preservation of truth in

all cases [. . .]. This analysis of validity owes a great deal to the tradition [. . .]
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It is also connected intimately with the constraints on consequence that we

have already seen. [. . .] So, the analysis of logical consequence as

preservation of truth in all cases goes some way to explaining how a

relation of logical consequence is necessary, normative and formal. (Beall

and Restall, 2006, p. 23f)

Non-transitive or non-reflexive systems of ‘entailment’ may well model

interesting phenomena, but they are not accounts of logical consequence. One

must draw the line somewhere and, pending further argument, we

(defeasibly) draw it where we have. We require transitivity and reflexivity

in logical consequence. (Beall and Restall, 2006, p. 91, italics in the original)

The argument can be reconstructed as follows:

(BR0) A logic is an account of the relation of logical consequence (or

validity).

(BR1) An account of logical consequence must be a tool useful for the anal-

ysis of the inferential relationships between premises and conclusions

expressed in arguments we actually employ.

(BR2) Logical consequence has at least the features of necessity (the truth

of the premises in a valid argument necessitates the truth of the conclu-

sions), formality (valid arguments are so in virtue of their logical form)

and normativity (rejecting a valid argument is irrational).

(BR3) Logical consequence is forwards truth-preserving (i.e. logical conse-

quence preserves truth from premises to conclusions).

(BR4) Forwards truth-preservation is a (non-empty)1 reflexive and transi-

tive relation.

(BR5) Hence, logical consequence is a reflexive and transitive relation.

(BR6) Then, if a relation between the elements of a structure is either

non-reflexive or non-transitive, such a relation is not one of logical

consequence.

(BR7) Therefore, if no relation on a structure is logical consequence, such

a structure is not a logic.

1 In what follows we will always deal with candidates for logical consequence that are

non-empty relations, so we will omit this qualification. Whether the empty relation

can be rightly regarded as logical consequence would require a separate discussion.
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One should not get distracted by the fact that Beall and Restall defeasibly

draw the line at reflexivity and transitivity, as if it were not an important

part of their philosophical view. As the argument shows, they base it on

some crucial philosophical motivations and reasons. Of course, they may

be willing to drop these requirements, but pending further argument they

keep them. Below we will sketch an argument for actually dropping those

conditions in terms shared by Beall and Restall and, in general, by those

who accept this “core tradition” as a necessary part of logic.

The argument BR1–BR7 is relatively simple yet clarifies the kind of philo-

sophical background that is operating when we decide what to accept as a

logic, in this case what Beall and Restall call the “core tradition” of logic,

namely that logical consequence is a necessary, formal and normative

truth-preserving relation used to evaluate arguments we actually employ.

This is important because their pluralism aims to be an adequate frame-

work in which to understand contemporary logic (see Beall and Restall,

2006).

However, in defending the fact that logical consequence is forwards

truth-preserving, and hence reflexive and transitive, they rule out some

activity in contemporary logic, not only activity coming from mathematics

and computer science which could be suspected of philosophical naivety,

but also some philosophically motivated systems. For example, a suitable

logic for so-called “epistemic gain” (Tennant, 1994), a logic for unrestricted

set comprehension (Weir, 1998), a theory for an unrestricted truth pred-

icate (Ripley, 2012), or a logic for vague expressions (Zardini, 2008), and

even probably Aristotle’s own non-reflexive notion of deduction, are all

non-transitive.

Though nothing is completely uncontentious, we can assume for the

sake of argument that there is hardly any disagreement about what Beall

and Restall call “the core tradition” in logic, namely (BR0), (BR1) and (BR2);

we do not count disagreements about how to spell out some crucial notions

in the above – like formality or normativity, to mention just two – as

disagreements with the spirit of these premises.2 (BR3) has also been widely

accepted.

2 As has been noted by Paseau (2007), there might be disagreement on whether

normativity, formality and necessity are the only settled features of logical

consequence – others might be, say, aprioricity or universality, mentioned in

Chapter 1 – but not that they are features of logical consequence. In any case, as we
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(BR4) has been proved for certain formal languages, among them the

most widely used in logic (for example, in Hardegree, 2005). (BR5) follows

from (BR3) and (BR4) by the transitivity of the predicative ‘is’; (BR6) from

(BR5) by contraposition, and (BR7) by a generalization from (BR0) and (BR6).

Read (2003) has argued that (BR5) and (BR4) can fail, but not exactly by

rejecting any of the premises, but by making (BR3) more precise and taking

into account the role that relevance plays in truth-preservation. Recently

there has been opposition to (BR3) in the following terms:

• Logical consequence is not forwards truth-preservation because there

is nothing like (forwards) truth-preservation in all cases, on pain of

triviality. (See for example Beall, 2009; Field, 2009b; Murzi, 2014.)

Another way of disputing (BR3) and (BR5) is this:

• Logical consequence is not forwards truth-preservation because there

are other ways of logically relating premises and conclusions which

are not reflexive or not transitive but count nonetheless as accounts of

logical consequence as in (BR0), (BR1) and (BR2).

We will consider criticisms of the idea that logical consequence is a reflex-

ive, transitive, truth-preserving relation in Chapter 9 in more detail. If one

takes these considerations on board, one might well end up with a wider

logical pluralism.

Be that as it may, the argument against non-reflexive and non-transitive

logics (BR1–BR7) shows that it is not true that “Beall and Restall’s choice

of what can be dealt with pluralistically is idiosyncratic and not princi-

pled” (Bremer, 2014). Also, it is not the case that Beall and Restall incur in

addition an “exclusion of logics that fail to meet monotonicity”: they only

require reflexivity and transitivity, not monotonicity, and indeed mono-

tonicity is nowhere mentioned in the book. Moreover, arguments like

those of Bueno and Shalkowski (2009) and Bremer (2014) for the idea

that Beall and Restall’s logical pluralism implies either logical universal-

ism or logical nihilism fall short because they ignore these other essential

aspects of Beall and Restall’s proposal. Nonetheless, it will be instructive

to consider such arguments for the exploration of other positions in the

vicinity of logical pluralism.

have reconstructed the argument, it is not necessary to assume that these are the only

ones.
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According to these critics, Beall and Restall’s logical pluralism, or rather

something very similar to it, by the previous considerations, collapses

either in logical universalism or in logical nihilism. Logical universalism is the

thesis that every relation between premises and conclusions is a legitimate

case of logical consequence. Given that the unsettledness of GTT is suffi-

cient for logical pluralism, virtually every relation between premises and

conclusions is a case of logical consequence; one only needs to construct

more or less carefully the kind of cases in which GTT would be satisfied.

Then logical universalismwill follow. On the other hand, if one reads ‘every

case’ strictly, then virtually no relation can count as logical consequence,

as virtually every argument has a counterexample in some case. Then log-

ical nihilism, the thesis that no relation can be a legitimate case of logical

consequence, follows.

Quoting in full Bueno and Shalkowski’s argument for the collapse

of a cases-based logical pluralism into logical nihilism will be useful to

illustrate why such logical pluralism is not Beall and Restall’s:

Only a very weak consequence relation survives this scrutiny, according to

their accounting of the necessity constraint as quantification over all cases.

This relation is just the intersection of the inferences treated as valid by

classical, constructive, and paraconsistent logics. Some fragments of

positive logic and some rules of identity will survive. This survival,

however, is merely an artefact of having considered only the cases

appropriate for the semantic underpinnings of classical, constructive, and

paraconsistent logics. If expanding the domain of our metatheoretic

quantification to accommodate the semantic underpinnings of constructive

and paraconsistent logics is in order, so is the similar expansion to

accommodate the semantic underpinnings of nonadjunctive logics, which

would invalidate instances of conjunction introduction, and of certain

quantum logics, which would invalidate typical laws of identity and

distribution. Once the partisan spirit of logical monism is replaced with the

open-minded embrace of cases suitable to alternative logics, no commonly

promulgated consequence relation seems to satisfy the necessity constraint.

Hence, according to their own accounting of the constraints on relations of

logical consequence, there are no such relations, much less multiple

relations of consequence. Their account of the necessity constraint on

logics ends not in logical pluralism, but in logical nihilism. (Bueno and

Shalkowski, 2009, 300)
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The problem is that Beall and Restall’s “open-mindedness of cases suit-

able to alternative logics” is not as open as to admit that the “expansions

of the domain of our metatheoretic quantification to accommodate the

semantic underpinnings of constructive and paraconsistent logics” is sim-

ilar enough to the expansion required “to accommodate the semantic

underpinnings of nonadjunctive logics, which would invalidate instances

of conjunction introduction, and of certain quantum logics, which would

invalidate typical laws of identity and distribution”. And the reason is that

Beall and Restall’s logical pluralism is more than the open-mindedness

derived from the unsettledness of GTT, but – as we have seen above – also

includes a defence of reflexivity and transitivity of logical consequence via

the idea that logical consequence is a species of truth-preservation. Bueno

and Shalkowski’s logics cannot be accommodated if they fail to be reflex-

ive or transitive, as many quantum logics fail to be, because they would be

non-truth-preserving relations and then would be modelling other interest-

ing phenomena, but not logical consequence. This can be disputed (as we

have shown above), but the collapses into universalism or nihilism are far

from having been established.

Logical Monism

There is a simple argument for universal logical monism, purported to follow

from the pretheoretical notion of logical validity, put forward by Graham

Priest (2006), among others. Priest works with a broad notion of logic in

the sense that he is ready to accept that inferential tools for certain partic-

ular domains augmented with principles specific to those domains count

as logics, but he says that there is nonetheless one true logic, a logic whose

inferences are valid in all domains and that lacks principles depending on

specific domains. Priest presents his argument succinctly as follows:

Is the same logical theory to be applied in all domains, or do different

domains require different logics? [. . .]

Even if modes of legitimate inference do vary from domain to domain,

there must be a common core determined by the syntactic intersection of

all these. In virtue of the tradition of logic as being domain-neutral, this

has good reason to be called the correct logic. But if this claim is rejected,

even the localist must recognise the significance of this core. Despite the

fact that there are relatively independent domains about which we reason,
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given any two domains, it is always possible that we may be required to

reason across domains [. . .] (Priest, 2006, 174f)

We hereby present a version of the argument using valid inferences, but

it can be easily turned into an argument about logical truths. Read ‘X � Y’

as “Y is a logical consequence of X”. We also use the word ‘case’, but it can

be replaced by the word ‘model’ according to the preferences of the reader.

P0 An argument X � Y holds in a case if and only if, in that case, if X is

true then Y is true. (The pretheoretical notion of holding in a case)

P1 An argument X � Y is valid if and only if it holds in all cases. (The

pretheoretical notion of logical validity)

P1′ X � Y is not valid if and only if it does not hold in all cases. (From P1,

contraposition)

P2 There is at least one collection of (enough) arguments holding in all

cases. (Existence of a logic)

P3 There are at least two different collections of all arguments holding in

all cases. (Logical pluralism, hypothesis to be reduced)

P4 If two collections of all arguments holding in all cases are different,

then there is at least one argument X � Y such that it belongs to a

collection but not to the other. (Extensionality of collections)

C1 Since they are different collections of valid arguments, there is an argu-

ment X � Y belonging to one of the collections but not to the other. (From

P3, P4 Modus ponens)

C2 If X � Y is a valid argument, it holds in all cases. (From P1)

C3 If X � Y is not a valid argument, it does not hold in all cases. (From P1’)

C4 X � Y holds in all cases. (From C1, C2 modus ponens)

C5 X � Y does not hold in all cases. (From C1, C3 modus ponens)

C6 X � Y holds in all cases and X � Y does not hold in all cases. (From C4,

C5 adjunction)

C7 There are not even two collections of arguments which are different

and hold in all cases. (From C6, reductio of a semantically untenable

contradiction)



Logical Pluralism 175

C8 There is exactly one collection of arguments holding in all cases.

(Logical monism, from P2 and C7)

Logical pluralists might contend the argument claiming that the quantifi-

cation “all cases (domains)” is not absolute, but should be read as “all cases

(domains) of a certain kind”. For example, standard first-order logic would

stem from taking cases or domains to be consistent and complete pos-

sible worlds, whereas constructive logics would be given when cases are

taken to be possibly incomplete bodies of information or warrants or con-

structions, while relevance logic would be given when cases are taken to

be possibly incomplete or inconsistent (or both) ways the world might or

might not be. Thus, there could be different collections of arguments log-

ically valid in all cases, for they could be valid in all cases but of different

kinds.

This pluralist reply seems not to be a good one, for then ‘all the cases’

does not mean “all the cases” and there is the risk of making logic depen-

dent on the content or particularities of the case under consideration,

which goes against the generality and topic-neutrality expected from logic.

Of course, the pluralist might say that logic is not topic-neutral or formal

etc., but a further argument for this is needed. Moreover, there is the pos-

sibility that the arguments valid in all the (different kinds of) cases would

be regarded as the real logically valid arguments, for they are indeed valid

in all cases, do not vary from case to case, and hence hold independently

of the particularities of each case.

Logical Nihilism Enters the Scene

Another pluralist option, not widely studied yet, is to bite the bullet, to

take the pretheoretical notion of logical validity at face value and then

try to show that it might be inapplicable. As we have seen before, Bueno

thought this is one of the natural consequences of Beall and Restall’s logical

pluralism. The logical monist assumes that the collection of valid argu-

ments, defined as arguments holding in all cases, is not empty. We have

seen in the preceding paragraph that a logical monist might insist on the

existence of one true logic, claiming that the arguments valid across all

the cases of every kind are the real valid arguments. This move rests on

premise P2 of the previous section. But what if it were false, i.e. what if

there were no arguments holding in all cases (of all kinds)? Would there
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be no logic at all? Some arguments by possibilists (see Mortensen, 1989;

Estrada-González, 2011) and trivialists (Mortensen, 2005; Estrada-González,

2012) seem to imply that there are no inferences holding in all cases, and

that is why authors like Gillian Russell (2016) have called such a position

‘logical nihilism’.

However, the idea that there are no inferences holding in all cases hardly

entails the nonexistence of any logic at all, unless one has bought the idea

that a logic has to be valid in all cases to be a real logic. Even though

there were no inferences valid in all of them, cases might need special

inferences as inferential patterns ruling right reasoning in them. Premise

P2 further requires a “large enough” number of valid inferences, for even

if the collection of valid inferences were not empty, if it consisted of, say,

only one or just a few inferences, it would be vacuous in practice to call

such a small number of valid inferences a “logic”. It seems then that logic

would be better characterized as an inferential device and the universal

quantifier in the definition of validity should be explicitly restricted:

(7.1) An argument X � Y is k-valid if and only if it holds in all k-cases.

As it is, this notion of validity is compatible with both the existence of one

true logic (since it allows for the non-emptiness of the case of all cases)

and the idea that logics may be inferential devices for specific domains,

but both options require further argument. Priest rejects the idea that, in

practice, every principle of inference – or at least a large number of them

so as to make speaking of a logic vacuous – fails in some situations. His

argument for this, premise P2, is that, to the extent that the meanings of

connectives are fixed, there are some principles that cannot fail. However,

this is not completely right.

Pluralism about Validity

The pluralist replies considered hitherto tried to provide a special account

of the phrase ‘all cases (or domains)’ or attempted to give reasons to reject

premise P2 in Priest’s argument for universal logical monism. There is an

additional way of challenging logical monism, not necessarily incompat-

ible with the former and just recently being taken into account in the

specialized literature. It consists of challenging premises P0 and P1, i.e.
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challenging at least the uniqueness of the pre-theoretical notions of holding

in a case and validity. For example, the following characterizations of validity

V1 An argument X � Y is valid if and only if in all cases in which X is true

Y is true too.

V2 An argument X � Y is valid if and only if in all cases in which X is not

false Y is true.

V3 An argument X � Y is valid if and only if in all cases in which X is true

Y is not false.

turn out to be equivalent in classical logic, where truth and falsity are

collectively exhaustive and mutually exclusive values. But when this is

not the case, these different notions of validity may give rise to differ-

ent collections of valid arguments, and hence to a plurality of logics

with very different properties. Moreover, they can be used to show, con-

tra Priest, how some principles can fail without changing the meaning of

connectives.

The basic idea is as follows: suppose that the satisfiability conditions of

a conjunction are the usual ones (omitting indices for simplicity): v(A∧B) =

inf(v(A), v(B)), with respect to an ordering between at least two truth-values,

true (denoted ‘⊤’) and false (denoted ‘⊥’). One could say that its satisfiability

condition constitutes the meaning of conjunction (under a model-theoretic

perspective, at least). The only supposition about truth-values in order to

give the satisfiability condition is that there is at least one of them (at least

two if one supposes further that ⊤ �= ⊥), but nothing is said on exactly how

many of them there are.

Let us take a closer look at the notions of logical validity at work, espe-

cially V2. Suppose there are three truth-values, ⊤, μ and ⊥, with the order

⊥ < μ < ⊤. Take ⊤ as the value true, ⊥ as the value false and μ as neither

true nor false. An argument like A ∧ B � A fails using V2 even though the

meaning of conjunction, its satisfiability condition, is the usual one. Take

for example v(A) = μ and v(B) = ⊤. So v(A ∧ B) �= ⊥, i.e. the value of A ∧ B is

not false. The premise is not false here, but the conclusion is not true, for

v(A) = μ. Hence, A ∧ B � A, without changing the meaning of conjunction.

We changed the logic (from logics validating those arguments to something

else, for we changed the number of truth-values, the notion of validity and
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the separation of truth-values), but without clearly changing therefore the

meaning of conjunction (the satisfiability condition was the usual one).

As with many ideas in philosophy, this last pluralist strategy surely

has its shortcomings, but in order to discuss it in detail it is necessary

to introduce further and more technical remarks on truth-values and the

ways the collections of truth-values can be partitioned, as well as discussing

whether we are left with something that is still logic after such changes.

This will be done in Chapter 9.

Universal Logic

There is another argument, based on Jean-Yves Béziau’s ideas on univer-

sal logic, for the idea that there is no logic holding in all cases. Béziau

deploys a historical-practical-inductive-analogical argument to show that

logical consequence doesn’t need to satisfy any principles. Béziau calls this

“the axiomatic emptiness of logic” (see Béziau, 1995, 2001, 2006, 2010). The

argument can be reconstructed as follows:3

(B1) Virtually every theorem, principle for connectives, principle for the

consequence relation, etc., let us call them collectively ‘properties of a

logic’, has been thrown out or, at least, challenged.

3 Although the same ideas recur here and there through the papers, the argument

below has to be extracted by brute force, so to speak, from Béziau’s writings, since it

is never explicit and its parts appear as disconnected remarks, hidden amongst the

discussion of several other topics. Just as an example, here are the views as expressed

at some places by Béziau (2001):

“Traditionally the principle of contradiction is taken as a fundamental pillar of

logic. The idea is that reasoning is not possible without it. Paraconsistency goes

against this idea. And if paraconsistent logic is rightly a logic, therefore what are the

ground principles of logic, if any?” (p. 5)

“The number of new logics has increased these last years due to the need of

computer sciences, artificial intelligence, cognition, and all the stuff of our

cybertime.” (p. 20)

“My motivation and my terminology were taken from Birkhoff’s famous notion of

abstract algebra, that I found in Lattice theory, which is just a set with a family of

operations. My idea was already that the basic foundations of logic were not more

principles for the consequence relation than principles for connectives, like the

principle of contradiction. I reached the idea that we must throw out all principles

altogether, that logic is not grounded on any principles or laws.” (p. 8; italics in the original)
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(B2) The outcomes of such droppings and challenges have been regarded

as logics.

(B3) If the properties P1, . . . , Pn of a logic can be dropped or challenged, an

additional property Pm also can be dropped or challenged and the result

will still count as a logic.

(B4) The situation is analogous to the case of algebra, where an algebraic

structure doesn’t need to satisfy any property in particular.

(B5) Hence, a relation of logical consequence can be defined with no

reference to a particular property of a logic.

Then Béziau proposes that a logic is a certain kind of mathematical

structure and that a logical structure is a structure of the form LS = 〈S,⊢LS〉,

where S is an arbitrary structure and ⊢LS is also an arbitrary relation on

℘(S)× S (provided we have means to obtain “powers” on such structure).

Equivalently, it could be described as a pair LS = 〈S,CLS〉, where CLS is

an arbitrary mapping CLS : ℘(S) −→ ℘(S). “Arbitrary” means here that nei-

ther the structure nor the relation or mapping need to satisfy any axiom.

“Universal logic” would be a discipline whose subject matter is logical

structures independently of the features of particular logics, analogous to

universal algebra.

(B1) is a premise concerning the history of logic and, even if there

were properties of a logic that have not been actually challenged, let us

grant it. (B2) is a premise based on a kind of observation of practice.

But practice might not be enough. It has been challenged, for exam-

ple, by Quine (1970) and Dummett (1998), to name just two prominent

philosophers, on the basis that certain logics are “uninterpreted theo-

ries” or “abstract algebras” rather than logics, receiving that name only

by partial analogy. However, let us assume that such “partial analogy”

suffices.

But even granting (B2), the problems of this argument are those of any

inductive and analogical argument. On the one hand, one has to be very

careful about how close the analogy between logic and algebra, as in (B4)

and (B5), is. On the other hand, (B3) is ambiguous between a distributive

and a collective sense of dropping properties and still obtaining logics.

Thus, (B3) might mean at least the following two claims:

(B3′) If the properties P1, . . . , Pn of a logic LA can be dropped or challenged

giving rise to another logic LB, an additional property Pm can also be
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dropped or challenged from LA and the result, LC, will still count as a

logic.

(B3′′) If the properties P1, . . . , Pn of a logic LA can be dropped or challenged

giving rise to another logic LB, an additional property Pm can also be

dropped or challenged from LB and the result, LC, will still count as a

logic.

According to (B3′), for any property P of a logic, there could be another

logic such that it lacks it. (B3′′) says something stronger: there could

be a logic such that it lacks any property of another logic, and even

any properties of any other logic. And as we have seen from Beall and

Restall’s argument, if logical consequence is a kind of truth-preservation,

(B3′′) cannot be true, as reflexivity and transitivity would be required

by the relation of truth-preservation. In order for (B3′′) to be true, logi-

cal consequence should be a relation without specific requirements, i.e.

axiomatically empty, but this was precisely what the argument was try-

ing to establish. A different kind of argument would be needed then, and

in Chapter 9 we will review some further attempts in the direction of

axiomatic emptiness, closely connected to the remarks we made in the

previous section.

Hartry Field’s Pluralism about Epistemic Normativity

An altogether different approach to the issue of logical pluralism is Hartry

Field’s pluralism about epistemic normativity (Field, 2009a). As we will dis-

cuss in detail in the next chapter, logic is often considered to be normative

for thought and reason. Logic tells us (perhaps via bridge principles: see the

next chapter) which inferences we ought to draw and which consequences

we ought to add to our beliefs. Field is an anti-realist about epistemic norms

and doesn’t believe that there is such a thing as a uniquely correct set of

norms. At the same time, he takes the normative role of logic to be essen-

tial to logic (as opposed to truth-preservation). The goodness of a logic then

depends on the quality of the epistemic system that it belongs to, and there

is no reason to believe that there is a unique best goal-independent system.

Questions

1. Considering the different notions of pluralism (pointed, collected, dis-

tributed, universal) that we distinguished at the beginning of the
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chapter: what does Shapiro’s “eclectic pluralism” fall under? What

about Field’s epistemologically motivated pluralism?

2. Carnapian tolerance and Shapiro’s eclectic pluralism have in common

that all proposals (of languages or mathematical structures) should be

looked at in light of their own logics. Can you think of drawbacks that

such a tolerant pluralism might have?

3. For Field, logical pluralism is a consequence of his anti-realism con-

cerning epistemic normativity. Assume instead realism about epistemic

normativity. Is there a tension between such a position and (certain

forms of) logical pluralism?



8 Logic, Reasoning and Rationality

At several occasions in this book, we referred to logic as a theory of the

laws of thought and suggested that logic has normative implications for

reasoning. For example, in Chapter 5, when discussing psychologism, we

noted that one objection against a psychologistic approach to logic was that

it couldn’t account for the normativity of logic. If it is a psychological fact

about Barbara that she reasons in a specific way, why should that have any

implications about how she or anybody else should reason? This objection

presupposed that logic is indeed in the business of telling us howwe should

reason. In this chapter we will look into what this actually means or could

mean.

Why (Not) Reason Logically?

While there might be different views on how logic is normative for

thought, and whether logic is itself to be considered a (partial) theory of

reasoning, there is at least the following motivation for thinking that logic

has some normative role to play for a theory of reasoning (see Steinberger,

in press).

Let’s assume that it is one of the aims of theoretical reasoning to arrive

at an accurate representation of the world. In other words, we are inter-

ested in true beliefs about how things are. Beliefs have propositional

content, content which will stand in logical relations. Since we have an

interest in the truth of our beliefs, as at least a central part of our overall

cognitive project, we should have an interest in these logical relations too,

because they will clearly be of relevance. If I have some true beliefs, then

their truth will carry over to their logical implications. If some belief of

mine, on the other hand, implies a falsehood, then that belief can’t be true.

Finally, if some subset of my beliefs is inconsistent, then my representation

182
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of the world can’t be accurate – at least one of my beliefs is false. These

considerations motivate the following two principles:1

Logical Implication Principle (IMP) If S’s beliefs logically imply P, then S ought

to believe that P.

Logical Consistency Principle (CON) S ought to avoid having logically inconsis-

tent beliefs.

(IMP) requires that I believe all consequences of my beliefs, whether or

not they are consistent. (CON) requires that I don’t believe inconsisten-

cies, regardless of whether I believe the consequences of my beliefs. Hence,

these are independent principles, both motivated from general, plausi-

ble considerations about the aims of cognition and theoretical reasoning.

What could possibly be wrong with these?

As innocuous and plausible these might seem at a first glance, there are

four central objections to these principles, put forward most forcefully by

Gilbert Harman (1986).

The first objection observes that reasoning doesn’t simply follow the pat-

tern of logical consequence. You read on social media, by what appears to

be a reliable news source, the headline that George W. Bush will receive

the Nobel Peace Prize. You assume that this is a reliable news source, and

you believe that if this is a reliable news source, then George W. Bush will receive

the Nobel Peace Prize. Logic tells you that P → Q together with P entails Q .

Should you now believe that George W. Bush will receive the Nobel Peace

Prize? This conclusion seems so weird that it seems irrational to detach.

You might rather want to revise P (perhaps you are in fact reading a clev-

erly disguised satirical magazine) or check whether it happens to be April

Fool’s Day and you shouldn’t have believed the conditional.

In general, logic tells you what a set of statements entails. But just to go

ahead and believe whatever turns out to be entailed by your other beliefs

is not a good strategy. If you learn that your beliefs entail something that’s

strange or at odds with other things you believe, you should rather revise

your other beliefs that entail the odd thing, than to simply add it to your

“belief box”. Florian Steinberger (in press) notes that the problem seems

1 The formulation of these principles follows Steinberger (in press). Similar principles

are discussed by Harman (1986).
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to be that IMP requires us directly to believe the logical consequences.

Perhaps you should update somehow when recognizing an entailment, but

it seems to be wrong to require that the right way to update is in any case

the addition of the entailment to the other beliefs. The instruction that IMP

provides is too specific. Steinberger thus calls this objection the Too Much

Instruction Objection.

There is another objection, which is very similar, due to John Broome

(2000). As we know, every statement entails itself. Thus, if you happen to

believe that today is a beautiful day, then, since this logically implies that

today is a beautiful day, you also ought to believe that today is a beautiful

day. But that seems wrong again. Not everything you believe is such that

you ought to believe it (and it certainly doesn’t become so just because you

believe it).

The second objection also takes issues with IMP. IMP says that you ought

to believe what your beliefs entail. But there’s lots that your beliefs entail.

Take the belief that you are shorter than 2m. This entails that you are

shorter than 2.01m, and shorter than 2.02m, 2.03m, etc. It also entails

that you are shorter than 2m or Richard Montague was a founding mem-

ber of Black Sabbath. There are endless trivial entailments of your beliefs,

all of which would be entirely pointless for you to believe – why should

you add them to your belief box and even bother to find out which they

are? It seems that these additions would just clutter up your finite storage

space and you would waste your cognitive resources deriving these entail-

ments. Following Harman (1986) and Steinberger (in press), we call this the

Objection From Clutter Avoidance.

A third objection elaborates further on requirements on cognitive

resources that IMP and CON make. Since there are infinitely many con-

sequences of our beliefs, finding out about all of them is just impossible.

For just some of them it is also already impossible to find out whether they

actually are entailments (perhaps the shortest proof of a certain claim from

your other beliefs is so long that you wouldn’t reach the end of it before

the sun explodes). Likewise, there might be hidden inconsistencies in your

belief set that are just impossible for you to ever detect. But, since ‘ought’

implies ‘can’, then CON and IMP must both be false.

Finally, Harman’s fourth objection makes an observation that we have

met already several times in this book. Sometimes there might be no way

to avoid having an inconsistent set of beliefs. As already said above, incon-

sistencies might just be too hard to detect. Or perhaps you have detected
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that you have inconsistent beliefs, but you don’t know what to do and/or

don’t have the resources available to find out how to restore consistency.

In the discussion of dialetheism in Chapter 10 we will encounter the

idea that it might even be rationally required to have certain inconsistent

beliefs. One way to see this (without assuming the existence of true con-

tradictions) is to consider the Preface Paradox. Imagine you wrote a long

book – perhaps your dissertation. All individual claims you make in the

book are based on careful research. Let’s say that the claims in the book

are P1, . . . , Pn, and, for each Pi, you have good reason to believe it. Still,

intellectual humility and plain common sense require that you also believe

that, of all those many claims you made in the book, not all will be true.

Human beings are fallible, and so are you. It is very unlikely that every-

thing in the book is true. Let’s call the claim that not all claims in your

book are true Q . {P1, . . . , Pn} ∪ {Q } can’t be consistent. However, it would

be irrational (and pointless) now to drop some of the Pi. First of all, it’s not

clear how you are supposed to achieve that (given that you do believe each

Pi), and secondly, unless you cut down on your beliefs to a very small set,

the problem will just arise again. This speaks against CON, since it seems

rationally permitted (if not required) to hold inconsistent beliefs in such

a situation. (As Steinberger (in press) observes, it also speaks against IMP,

because Q is transparently equivalent to the negation of the conjunction

of your claims in the book, ¬(P1∧· · ·∧Pn) – so you fail to believe an obvious

logical consequence of your beliefs, their conjunction.)

Harman argues that IMP and CON fail to be plausible guidelines for

updating your beliefs, because these principles rest on a fundamental con-

fusion. IMP and CON confuse a theory of implication and entailment (i.e. a logic)

with a theory of reasoning. The latter is, for Harman, supposed to be a the-

ory of “reasoned change in view”. Harman’s paradigm example for the

explananda of such a theory is the following:

Intending to have Cheerios for breakfast, Mary goes to the cupboard. But

she can’t find any Cheerios. She decided that Elizabeth must have finished

off the Cheerios the day before. So, she settles for Rice Krispies. In the

process, Mary has modified her original intentions and beliefs. (Harman,

1986, 1)

On the basis of the information Mary received when finding the

cupboard empty, Mary came to a reasoned change in view. What led to the

change is a psychological process, and a theory of reasoning is supposed to
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be a normative theory that formulates principles or rules of revision that

the relevant psychological processes need to follow in order to count as

rational. What do such principles look like? Here are some of Harman’s

(1986, 55) examples:

Clutter Avoidance One should not clutter one’s mind with trivialities.

Interest Condition (on Theoretical Reasoning) One is to add a new proposition

P to one’s beliefs only if one is interested in whether P is true (and it is

otherwise reasonable to believe P).

Interest in the Environment One has reason to be interested in objects and

events in one’s immediate environment.

Interest in Fascilitating Theoretical Reasoning If one is interested in whether P

is true and has reason to believe knowing whether Q is true would fascili-

tate knowing whether P is true, one has reason to be interested in whether

Q is true.

Logic, of course, does not formulate such rules or principles about how one

is supposed to revise one’s beliefs. Logic formulates facts about implica-

tion. According to Harman, this observation holds also for proof-theoretic

characterizations of logical consequence. After all, he observes, the intro-

duction and elimination rules that, for example, the natural deduction2

system defines, do not prescribe what one ought to do in a proof in order to

reach the conclusion. In fact, when attempting a proof, we often begin our

reasoning from the conclusion. Thus, the reasoning that goes into finding

a proof is not itself properly described by the proof rules.

In an earlier paper, Harman (1984) flirts with, what he calls, the

“extreme view” that logic is merely a body of truths, like any other descrip-

tive science, and plays “no special role in telling what one may believe”

(Harman, 1984, 109).3

2 Although the inventors of the system, Stanisłav Jaśkowski (1906–1965) and Gerhard

Gentzen (1909–1945), presumably did think that the rules follow the actual or natural

reasoning of mathematicians.
3 Harman’s “extreme view” is an early version of anti-exceptionalism, the view that logic

is just like any other science but with a more abstract subject matter. We will discuss

this position in more detail in Chapter 10. Although Harman thinks that there are no

serious objections to this view, he eventually does not endorse it in that paper.
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Some of Harman’s observations seem to be a bit beside the point, occa-

sionally. For example, one should probably distinguish between the ways

that mathematicians reason when constructing a proof and the ways in

which we reason when constructing a proof in a natural deduction sys-

tem. That the latter is perhaps not best described by the natural deduction

rules themselves is perhaps not at issue. Also, there are systems that do for-

mulate specific prescriptions what to do in each step of a proof (cf. proof

procedures for tableau proofs in propositional logic). These systems have

limited applications, but they exist for some systems.

However, it seems true that reasoning is a matter of adding new beliefs,

but also of correcting beliefs. The latter is incompatible with the mono-

tonicity of standard logic. Moreover, it is true that logic does not issue

explicit prescriptions about what one ought to believe or how one ought to

revise one’s beliefs. Does that show that logic is irrelevant for reasoning?

Logical Constraints on Rationality

As Florian Steinberger (2017) notes, there are two ways to answer Harman’s

challenge. One way could be to criticize either Harman’s conception of

logic or his conception of reasoning for being too narrow. For example,

one could point out that there are several theories of belief revision that

take logical considerations as their starting point or indeed are logics (non-

monotonic logics, dynamic doxastic logics). Some of these theories do talk

about mental states and say what one ought to believe. Moreover, they typ-

ically give up the monotonicity of standard logic and allow for the actual

revision of beliefs.

Likewise one could find fault with Harman’s conception of reasoning.

Harman considers the issue from an internalist, first-person perspective.

From that perspective, logic doesn’t seem to provide proper guidance for

belief revision. But perhaps the better perspective is externalist. From that

perspective it might well be that belief transitions need to follow logical

principles in order to count as rational.

A second strategy for answering the challenge takes Harman’s concep-

tion of reasoning and logic for granted, but tries to show that the latter is

relevant for the former, by formulating bridge principles. How do bridge prin-

ciples work? Let’s consider an example from ethics (which we have already

applied at the beginning of this chapter). As is usually accepted, it would
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be a mistake (actually, an instance of the naturalistic fallacy) to derive norma-

tive claims straightforwardly from descriptive claims. That doesn’t mean,

however, that the way the world actually is is irrelevant for how it ought

to be. For example, it seems to matter, for whether a moral obligation is

legitimate, that the addressee of the obligation is able to follow it. Moral

obligations shouldn’t require superhuman tasks, for instance. But what

counts as “superhuman” is, of course, a descriptive question. Thus, the

bridge principle ought implies can bridges the gap between descriptive facts

(for example, facts about what humans are normally capable of), which, by

themselves, have no normative force or normative implications, and the

validity of normative requirements.

Such bridge principles for logic have recently been discussed in some

detail, starting with an unpublished paper by John MacFarlane (2004), fol-

lowed by papers by Hartry Field (2009a), Florian Steinberger (in press) and

others. MacFarlane brought new life to the discussion of the normative

role of logic by, first of all, developing a template that allows us to map

the logical space for the formulation of such bridge principles. The general

template for MacFarlane is the Bridge Principle (MacFarlane, 2004):

Bridge Principle If A,B � C, then (normative claim about believing A, B,

and C)4

The consequent of instances of this template can now vary with respect to

three parameters:

1. The type of the deontic operator may vary between obligation, permission and

(defeasible) reason for belief.

2. The polarity of the obligation/permission/reason for belief may vary

between a positive polarity (reason to believe) and a negative polarity

(reason not to disbelieve).

3. The scope of the operator may also vary between applying only to C, or

the conditional A∧B→ C as a whole or distribute over that conditional.5

This leads to the the options shown in Table 8.1.

4 In this template, ‘A’, ‘B’ are shorthand for any number of premises.
5 To be exact, the operator would not apply to that conditional, but some conditional

invoking the agent’s doxastic attitudes towards those propositions, e.g. ‘You ought to

(believe C, if you believe A and B)’.
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Table 8.1 MacFarlane’s bridge principles ( from MacFarlane, 2004)

If A,B � C, then . . .

C Deontic operator embedded in consequent.

o Deontic operator is strict obligation (ought).

Co+ . . . if you believe A and you believe B, you ought to believe C.

Co– . . . if you believe A and you believe B, you ought not to disbelieve C.

p Deontic operator is permission (may).

Cp+ . . . if you believe A and you believe B, you may believe C.

Cp– . . . if you believe A and you believe B, you are permitted not to disbelieve C.

r Cr+ . . . if you believe A and you believe B, you have reason to believe C.

Cr– . . . if you believe A and you believe B, you have reason not to disbelieve C.

B Deontic operator embedded in both antecedent and consequent.

o Deontic operator is strict obligation (ought).

Bo+ . . . if you ought to believe A and you believe B, you ought to believe C.

Bo– . . . if you ought to believe A and you believe B, you ought not to disbelieve C.

p Deontic operator is permission (may).

Bp+ . . . if you may believe A and you believe B, you may believe C.

Bp– . . . if you may believe A and you believe B, you are permitted not to disbe-

lieve C.

r Br+ . . . if you have reason to believe A and you believe B, you have reason to

believe C.

Br– . . . if you have reason to believe A and you believe B, you have reason not to

disbelieve C.

W Deontic operator scopes over whole conditional.

o Deontic operator is strict obligation (ought).

Wo+ . . . you ought to see to it that if you believe A and you believe B, you

believe C.

Wo– . . . you ought to see to it that if you believe A and you believe B, you do

not disbelieve C.

p Deontic operator is permission (may).

Wp+ . . . you may see to it that if you believe A and you believe B, you believe C.

Wp– . . . you may see to it that if you believe A and you believe B, you do not

disbelieve C.

r Wr+ . . . you have reason to see to it that if you believe A and you believe B, you

believe C.

Wr– . . . you have reason to see to it that if you believe A and you believe B, you

do not disbelieve C.
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There are some comments we should make about this table. First of

all, the table gives us a handy way to refer to each of the 18 options by

their short name. In the short name, the first letter indicates the scope of

the operator, the second indicates the type of the operator and the third

symbol the polarity.

The table does not represent the fact that agents may or may not know

that the antecedent of the conditional is the case, i.e. that A,B � C. One

could represent this by adding a further letter, ‘k’, for versions of the bridge

principles in which the agent knows that A,B � C. Thus, Wr–k would be

Wr–k If you know that A,B � C you have reason to see to it that if you

believe A and you believe B, you do not disbelieve C.

Adding this option to the table would generate 36 different bridge prin-

ciples. Steinberger (2017) notes that other, non-factive attitudes might also

be plausible candidates for modifications of the antecedent of the condi-

tional. Consider an agent who strongly believes that A,B � C, while in fact

there is no such implication. It seems that such an agent would be even

more irrational if she failed to revise her beliefs in accordance with the

strongly believed entailment.

Other complications could be added by using different deontic operators

in the cases under the Bs. Now the operator is simply distributed over the

conditional, but one might consider a different operator for antecendent

and consequent. For example, a variant of Bo+ could be ‘. . . if you ought to

believe A and you believe B, you have reason to believe C’ (cf. Steinberger,

2017).6

MacFarlane (2004) suggests some considerations one might apply when

evaluating these options. Some of these follow from the different objec-

tions that Harman and others had already formulated against simplistic

principles, such as IMP or CON, and indeed IMP is represented here as

Co+. Remember, for example, Broome’s objection against IMP: every belief

implies itself, but simply because you happen to believe A it doesn’t fol-

low that you ought to believe A. It also doesn’t follow that you ought not

disbelieve it or may believe or are permitted not to disbelieve it. Thus, these

considerations eliminate Co+, Co–, Cp+, Cp– and also their -k variants.

6 As Steinberger also notes, the plausible versions of the mixed cases will have a

deontic operator in the antecendent that is at least as strong as the operator in the

consequent.
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Other considerations that MacFarlane discusses are Excessive Demands

(belief in some axioms, for example, shouldn’t require that you therefore

believe in all theorems that follow from them), and that bridge principles

should give some plausible prescription for the Preface Paradox (for exam-

ple, they shouldn’t require that you ought to avoid inconsistency at all

costs, but perhaps merely recommend revising your beliefs when encoun-

tering an inconsistency). Further, such principles should pass the Strictness

Test (i.e. the relation between believing something and believing its conse-

quence is strict: one can’t believe the former but not the latter and be as

one ought to be) and avoid Logical Obtuseness: logical implications need to

have some impact on our beliefs, we can’t simply stay neutral with respect

to B, if B follows from A, and we believe A and be as we ought to be. Likewise,

we can’t improve our epistemic situation by just being more ignorant about

the logical facts (MacFarlane calls this the Priority Question); the -k variants

that were supposed to liberate us from excessive demands conditionalize

on our logical knowledge, which has as a consequence that if we know less

about logical implication, we have more freedom to believe inconsistent

crap.

But this looks backwards. We seek logical knowledge so that we will know

how we ought to revise our beliefs: not just how we will be obligated to

revise them when we acquire this logical knowledge, but how we are

obligated to revise them even now, in our state of ignorance. (MacFarlane,

2004)

MacFarlane himself ends up endorsing Wo– and Wr+ (and the principles

they imply, such as Wo–k, Wr+k, Wr– and Wr–k). But he notes that the

considerations that he suggested for evaluation do not always pull in the

same direction.

Problems with Bridge Principles

Perhaps you noticed this already when going through the considerations

above. The Strictness Test on the one hand, and Excessive Demands

and Preface Paradox on the other hand, pull in opposite directions; the

Strictness Test seems to support ought-based principles, while the other

two seem to caution us against such strict principles.

As Florian Steinberger (in press) argues, this somewhat unfortunate situ-

ation can be improved when we distinguish between the several normative

roles that a principle may play. In order to distinguish these roles we need



192 An Introduction to the Philosophy of Logic

to think about why we want to have a principle. What is its function

supposed to be?

One function that we have implicitly assumed in this chapter is guidance;

we want to know from the first-person point of view how we ought to

revise our beliefs. For example, we criticized IMP for being a bad directive

in this sense. It would lead us to clutter our minds if we were to follow its

prescription.

Another function is evaluation: we want to use the principle to learn

whether a certain belief revision was good or bad or correct or incorrect.

Finally, we might use principles for appraisal. Is an agent to blame or to

praise for a specific belief revision or a failure to revise her beliefs?

These three functional roles, directions, evaluations and appraisals, are, of

course, not independent. Directions should not recommend what isn’t

good from an evaluative point of view, and following directions should

make one a candidate for positive appraisal. However, the roles are

also clearly distinct. For appraisal it should matter whether an agent

recognized a logical implication, while this might not matter for an evalu-

ation of the belief revision itself. By distinguishing these different roles,

Steinberger distinguishes different bridge principles (in addition to the

distinctions introduced above, one further parameter for each of the

three functional roles). However, now we need to evaluate the princi-

ples according to their roles. Thus, the consideration we went through

above would be weighed differently, depending on which role the princi-

ple has that the considerations are applied to, and stop pulling in different

directions.

Mono-Agent and Multi-Agent Logic

In a recent paper, Catarina Dutilh Novaes (2015) suggests another nor-

mative function that bridge principles might play and thus a further

normative role for logic. She agrees with Harman that logic is not nor-

mative for individual belief revisions. But she observes that, traditionally,

logic was developed in the context of dialogical arguments, special, rela-

tively regulated forms of debates. These dialogical origins of logic began to

fall into oblivion with Descartes.

While in the original tradition debates where seen as an interplay

between a proponent (establishing premises and defending a claim) and an

opponent (who tries to prevent the proponent from making further steps),
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modern logic became a mono-agent affair that internalized the opponent’s

perspective. However, the normative force of logic, according to Dutilh

Novaes, can only be properly appreciated in the original dialogical per-

spective. For that perspective she formulates two new, multi-agent bridge

principles (as continuations of ‘If A,B � C, then . . . ’):

Wo+do . . . Opponent ought to see to it that, if he has granted A and B and

Proponent puts forward C, then he will grant C.

Cp+dp . . . if Opponent has granted A and B, then Proponent may put

forward C (and require Opponent to grant it).

Here the subscripts ‘o’ and ‘p’ indicate the addressee of the norma-

tive recommendation. Indeed this reinterpretation of logic circumvents

the objections by Harman; however, it does so at the cost of making logic

irrelevant for (individual) rationality and reasoning.

Logic, Knowledge and Information

In the context of discussing logic and rationality, we should also address an

issue that relates to our knowledge of logical truths and our grasp of logical

relations among our beliefs. In the chapter on epistemology (Chapter 6)

we have already discussed whether we should think of logic as being a

priori knowable. In the current chapter we took it for granted that ordinary

people do not just know all the logical truths and do not simply already

knowwhat their beliefs entail. If the latter weren’t the case, there wouldn’t

be much point in discussing the normativity of logic. As you remember,

Gilbert Harman’s objection was that IMP, i.e.

Logical Implication Principle (IMP) If S’s beliefs logically imply P, then S ought

to believe that P.

formulates an unreasonable norm. We would clutter our mind with useless

beliefs, if for every proposition P that we believe, we also had to believe

P∨Q1, (P∨Q1)∨Q2, ((P∨Q1)∨Q2)∨Q3, etc. This objection presupposes that

we don’t automatically know all the implications of P when we believe P;

we have to engage in deductive reasoning in order to learn what these impli-

cations are. This is why IMP could possibly lead to a waste of time and

resources. On the flip side, if we always already knew the logical implica-

tions of all of our beliefs, IMP would not burden us with any intellectual
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extra work or lead to a cluttering of our minds, but would just be an empty

norm: it would be impossible not to comply with it.

So it seems that – for the discussion of the normativity of logic to make

any sense in the first place – we need an account of a priori knowability

and knowability via deductive reasoning in particular that is compatible

with the idea that such reasoning leads to new knowledge; that we learn

something when we engage in deductive reasoning, that we acquire new

beliefs.

As with so many topics in this book, this issue is also connected to sev-

eral other deep questions in philosophy, most of which we can’t discuss

here because of time and space constraints (let alone our incompetence).

For example, the question of how we should deal with the question of how

we could possibly acquire new beliefs via deductive reasoning is closely

related to the question of whether and how we can develop an epistemic

logic (a logic of knowledge and belief), as well as with the question of how

we should best think of the contents of propositional attitudes.

In epistemic logic one could begin by introducing a logical constant ‘K’

that behaves syntactically and (to some extent) semantically like the ‘✷’ of

modal logic. Thus, �it is known that φ� (perhaps by some fixed agent S)

could be formalized as �Kφ�. Treating the knowledge operator like a neces-

sity operator has certain desirable implications. However, if we take the

logic of ‘K’ to be a “normal”7 modal logic, then �Kφ� implies �Kψ� when-

ever φ implies ψ . But this seems wrong for the reasons provided above:

people don’t automatically know whatever is logically entailed by their

knowledge.

Contents of propositional attitudes and propositions in general are like-

wise fruitfully thought of as being sets of possible worlds. On such an

account the content of what Jim believes when he believes that Jill is at

7 A normal modal logic can syntactically be characterized as a set of formulas that

contains all tautologies of propositional logic, all instances of the axiom schema

K: ✷(φ → ψ )→ (✷φ → ✷ψ )

and is closed under modus ponens and the rule of necessitation, according to which ⊢ φ

implies ⊢ ✷φ.

(The name of the axiom schema is unrelated to our operator K but derives from

‘Kripke’, because Saul Kripke developed a very elegant way to study such normal

modal logics semantically. See Sider (2010) or Hughes and Cresswell (1996) for more

details.)
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home is modelled as the set of all possible worlds in which Jill is at home.

But in all those possible worlds in that set, all of the logical implications of

Jim’s belief will also be the case (as, for example, that Jill is at home or Bob

is in Barcelona; that Jill is at home, or Bob is in Barcelona, or Carla is in

Vancouver, etc.). Thus modelling the contents of propositional attitudes as

sets of possible worlds will again lead to logical omniscience: we should know

all logical implications of our beliefs (which includes, of course, all logical

truths themselves).

One could see this as a technical problem for which the respectivemodel

is to blame. Perhaps epistemic logics should be better modelled with non-

normal modal logics, and perhaps the contents of propositions can’t be

identified with something as coarse-grained as a set of possible worlds.

However, in order to know whether and how to adjust the model, we need

to answer a philosophical question first: what exactly do we learn when we

engage in deductive reasoning?

Michael Dummett expressed the philosophical puzzle underlying this

question brilliantly in his essay “The justification of deduction”:

The existence of deductive inference is problematic because of the tension

between what seems necessary to account for its legitimacy and what

seems necessary to account for its usefulness. For it to be legitimate, the

process of recognising the premises as true must already have

accomplished whatever is needed for the recognition of the truth of the

conclusion; for it to be useful, a recognition of its truth need not actually

have been accorded to the conclusion when it was accorded to the

premises. (Dummett, 1978, 297)

The idea of the usefulness of a deductive proof concerns the fact that we

engage in deductive reasoning for a purpose. We want to learn something

new, which we didn’t know before, namely that the conclusion is true. The

legitimacy of a deductive inference can be understood in two ways. It can

be understood as a matter of subjective entitlement. When do we know that

we are allowed to draw an inference? If it was required for legitimately

drawing an inference that we first recognize that the truth of the conclusion

is entailed in the truth of the premises, then this seems to be in direct ten-

sion with the purported usefulness of such an inference. We would already

need to know what we want to find out by the inference as a precondi-

tion for making the inference. But we can just take this observation as an
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argument against this requirement. For a deductive inference to be legiti-

mate it can’t be required that we recognize beforehand that the truth of

the conclusion is entailed in the premises.

But even if the legitimacy of a deductive inference is not understood in

that subjective sense, but in the sense that in order for a deductive infer-

ence to be legitimate, the truth of the conclusion must be entailed in the

truth of the premises (whether we recognize this or not), there is still a

tension with the inference’s usefulness. The best way to see this is to think

about it in terms of the information we gain when we draw a deductive

inference.

On a standard analysis, we can explicate the information gained by a

piece of new knowledge as the doxastic possibilities that the epistemic agent

can eliminate. Doxastic possibilities are the ways the world might be given

what you believe. Let’s assume that you are searching for your office keys.

For all you know, they might be at your parents’ place (who you visited over

the weekend) or they might be somewhere in the house, either on your

desk or in the kitchen. These are three different ways the world might be

for all you know that differ with respect to the location of your keys. You

know something about where your keys are, because you can eliminate

some possibilities concerning their whereabouts. (For all you know, they

can’t be on the moon.) But you don’t know where they are exactly.

Now, your roommate tells you that she saw the keys somewhere in the

house today. That allows you to eliminate a further possibility, namely

that the keys are at your parents’ place. Your friend’s remark is informa-

tive because it allows you to eliminate that possibility. According to the

standard view, there is also an inverse relationship between the increase of

available information and the decrease in doxastic possibilities (cf. Barwise,

1997, 491). For example, assume your roommate informed you instead that

she was just in the kitchen and the keys weren’t there but that she saw

them somewhere in the house today. That excludes the possibility that they

are at your parents’ place, but also that they are in the kitchen. Since this

piece of information allows you to eliminate more doxastic possibilities, it

is more informative than to learn merely that the keys are somewhere in

the house. In fact, now there are no alternative possibilities for your keys

to be other than that they are on your desk. Knowing where your keys are

entails that the doxastic possibilities for their whereabouts are reduced to

one.
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Let us apply that analysis to deductive reasoning. How does information

increase when we reason deductively from premises to conclusion? In par-

ticular, what is the informational content associated with learning that the

conclusion is true?8

As we know, a deductive inference is valid (and thus legitimate) if there

are no possibilities that make all the premises true, but fail to make the

conclusion true. In other words, the set of possibilities there are for all you

know when you know the premises, and the set of all possibilities there

are for all you know when you know the premises and the conclusion is the

same. There is no difference between these two sets of possibilities associ-

ated with the two information states: knowing the premises vs. knowing

the premises and the conclusion. Hence, you don’t learn anything from

a deductive inference if the inference is legitimate. But then deductive

reasoning is plainly useless.

It is easy to see that, under the same assumptions, we should also

all come out logically omniscient. Since the set of possibilities that log-

ical truths exclude is empty (a logical truth is true in all possibilities),

we don’t need to rule out any possibility in order to know a logical

truth. We immediately know all of them. What should we say about

this?

The first option could be to simply deny that we ever really learn any-

thing new from deductive inferences. On that view, in most cases in which

we seem to make a deductive inference we indeed make a deductive infer-

ence, but nothing is in fact learned on these occasions. How could that

be? Perhaps our psychology just plays a trick on us. Perhaps a deductive

inference only brings to our attention what wasn’t yet in focus (albeit

known).

Some views that consider logical omniscience an idealization of a the-

ory of rationality fall into this first category. Perhaps deductive reasoning

is not a matter of finding out something new, but a matter of retrieving

information we already possess. However, since we are finite, slow beings,

8 This question assumes that what we learn from a deductive inference is that the

conclusion is true in addition to already knowing that the premises are. An

alternative account could consider the content of what we learn from such an

inference to be that the premises are incompatible with the negation of the

conclusion. On the standard account this makes no difference. Cf. Jago (2013).
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this information retrieval takes time and sometimes leads to mistakes. We

then mistake this process for the process of learning something new.

Something like this is what Carnap and Bar-Hillel (1952) had in mind

when developing their theory of semantic information. They allow for

a notion of “psychological information” to be assigned, for example, to

propositions of mathematics, but hold on to the view that the informa-

tional content of such propositions for an “ideal receiver” would never-

theless be zero. But what would be the motivation for making such an

idealization? Is it because we believe that actual agents would be logically

omniscient if only they were undisturbed by other factors? What is the evi-

dence for such an assumption? Is the idealization a harmless simplification

in an otherwise approximately true theory of epistemic logic? As Stalnaker

(1991) argues, this idealization seem ill-motivated in light of the fact that

it renders all information processing or computation wholly unintelligible,

although these seem to be activities that are essential to rationality and

cognition.

Maybe the proper interpretation of the idealization is the purported nor-

mativity of the theory of rationality that a logic of knowledge and belief

should contribute to. However, as we have seen above already, to believe all

the logical consequences of what you belief is to clutter your mind with use-

less content. Stalnaker (1991) argues that the best interpretation of such an

idealization would be that we simply don’t know how to develop a theory

of knowledge that wouldn’t have the consequence that epistemic agents

are logically omniscient. This, of course, would be a rather pessimistic moti-

vation. Thus it’s worth looking for alternative solutions to the problem of

deduction.

A second option would resolve the tension between the usefulness and

the legitimacy of deductive inferences by analysing those cases in which

we seem to gain new knowledge as cases in which we are not actually

making a proper deductive inference. For all proper deductive inferences

it is true that we can’t learn anything new, but those inferences where we

learn something new merely appear to be deductive. What could cause the

misleading appearance? Well, perhaps in the process of the inference the

meaning of the premises gets changed, such that the premises eventually

deductively entail the conclusion although they initially didn’t. In retro-

spect we might be unable to detect this, since we are now attaching the

new meaning to the premises.
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Michael Dummett (1978) ascribes such a view to Ludwig Wittgenstein,

who purportedly endorsed it in his Remarks on the Foundations of Mathematics

(Wittgenstein, 1983):

In that book he held that a proof induces us to accept a new criterion for

the truth of the conclusion. [. . .] When the proof is given that a cylinder

intersects a plane in an ellipse, we acquire a new criterion for a plane’s

figure being an ellipse [. . .] We have modified the meaning of the statement

of the theorem, so that, in our example, the adoption of the new criterion

for its application modifies the meaning that we attach to the predicate

‘ellipse’. [. . .] [Wittgenstein’s thesis] must be understood as involving that

there are, or may be, plane figures formed by the intersection of a cylinder

with a plane which could not have been recognised as ellipses before the

proof was given. (Dummett, 1978, 300–301)

By adding a theorem about ellipses to our knowledge, we change the

meaning of ‘ellipse’. But then the conclusion of the proof was obviously not

“contained” in the meaning of the premises. The premises, by themselves,

would have allowed that there are mathematical objects that we can now,

after the proof, recognize as ellipses, that weren’t ellipses before.9 As Dum-

mett points out, this makes room for the idea that we learn something new

through a proof, but at the cost of losing an account of a proof’s legitimacy

and persuasiveness.

Dummett contrasts this view with a “modified” Wittgensteinian view

which agrees that inferential relations between statements constitute the

meaning of the expressions within the statements (such that the inferen-

tial relations of statements with the term ‘ellipse’ with other statements

constitute the meaning of that term), but denies that new inferential con-

nections are added when a new proof is made. The connections were there

all along in the language as a whole. Deduction on this conception is then

“useful” because it allows us to reach conclusions in this interconneced

web of statements we wouldn’t have been able to reach without it. But this

9 Wittgenstein’s view is perhaps better seen as a description of the progress of

mathematics. As Imre Lakatos (1976) shows, mathematicians have indeed some room

to decide how they want to fix the intended interpretation of certain expressions by

deciding on what counts as a proof and what counts as a counterexample to a

theorem. But, Lakatos’ point would then best be put as showing that mathematics,

despite a common conception of it, does not in fact just proceed by deductive proof.



200 An Introduction to the Philosophy of Logic

view still fails as an account of what informationwe gain by a deductive infer-

ence, if the conclusion doesn’t rule out possibilities that weren’t already

ruled out by the premises.

On the third option, one would modify the information measure to help

with exactly that problem. We just assumed when setting up the puzzle

of deduction that the possibilities that we talk about in the definition of

entailment (that there are no possibilities that make the premises true but

fail to make the conclusion true) are the same possibilities as those doxas-

tic possibilities that we talk about in the analysis of information. Accounts

following this strategy could claim that there are more doxastic possi-

bilities than logical possibilities, and that those doxastic possibilities get

eliminated in (certain cases of) deductive reasoning and should be taken

into account when measuring the information increase. (A variant of the

third approach would define a second kind of content that is irrelevant for

entailment, but is a relevant ingredient for the analysis of informational

content.) The third strategy can be fleshed out in various ways, depending

on how one models the doxastic possibilities.10 These accounts are quite

technical, and explaining them in any detail would go beyond the scope

of this book, but we can explain one such account in the abstract to show

what would be at issue for this third strategy to work.

We will take as an example a proposal by Jaakko Hintikka (1970).11 Hin-

tikka observed that we can distinguish formulas of first-order predicate

logic by their “quantificational depth”. One can think of quantificational

depth as a function of the interaction between universal and existential

quantifiers, once a formula is brought into some canonical form that

would allow us to compare formulas in this way. In derivations, compu-

tational complexity can increase. To simplify, let’s assume that when it

does, we consider the proof to be information increasing (and we consider

logical truths of the form �φ → ψ� to be informative if ψ has a greater

quantificational depth than φ).

Such a theory would allow us to make some distinction between non-

informative proofs and logical truths and informative ones. It would also

deliver some measure of informativeness. However, it is not clear how one

10 A good overview of strategies of that kind can be found in Jago (2013).
11 For a critical discussion, see Bremer and Cohnitz (2004) and Sequoiah-Grayson (2008).



Logic, Reasoning and Rationality 201

should go about validating such a theory. How should we check whether

the measure proposed does indeed track (some sort of) informativeness?

(Are we supposed to have intuitions about this? Should we validate it with

the help of empirical psychology?) This relates closely to a second prob-

lem with the account: this measure is only applicable to polyadic predicate

logic (since, for monadic predicate logic, or propositional logic, there are

no differences in quantificational depth). Should we conclude from this

that inferences at those levels are always uninformative? Intuitively that

doesn’t seem right.

In defence of Hintikka’s account one could argue that the apparent

information increase that takes place when reasoning in a way that is

representable in propositional logic (or monadic predicate logic), is only

a psychological phenomenon that doesn’t represent any objective increase

in information. But this move would just get us back to the problem of

justifying this idealization (and the same considerations we went through

above would apply again).

These problems will presumably apply to any formal account that tries

to measure the objective amount of information gained in a valid inference

on the basis of formal properties of premises and conclusion.12

Questions

1. We suggest that Harman’s criticism of the idea that logic can play a

normative role can be (partly) deflected if we take an externalist per-

spective and evaluate the belief-forming of an individual. To what extent

can such a move deal with Harman’s objections?

2. Consider Dutilh Novaes suggestion for understanding the normativity

of logic as applied to multi-agent dialogues. Can you think of objections

to Wo+do or Cp+dp?

3. In the second part of the chapter we looked at ways to make sense of

the idea that we gain new knowledge through deductive reasoning. Per-

haps this is just completely misguided. Which consequences of a belief

12 For a discussion of further alternative approaches to the problem, such as

ontological solutions, or solutions that make use of measures of computational

complexity, see Bremer (2003).
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(or a set of beliefs) an agent draws seems pretty much a straightforward

question of empirical psychology. Why should we be able to find a for-

mal answer to this question? But then the information that an agent

gains through deductive reasoning seems equally a matter of empirical

psychology, right?



9 Beyond Truth-Preservation

As we have seen, logical consequence or logical validity has usually been

characterized as necessary truth-preservation from premises to conclu-

sion(s), or necessary forwards truth-preservation: in any case in which the

premise(s) is (are) true, the conclusion(s) is (are) true as well, which implies

that logical consequence is at least reflexive and transitive. Recently there

have been a number of considerations that seem to go against these

entrenched ideas. These considerations can be grouped into four main

classes:

• First, there are research programmes seeking the best solutions to

self-reference paradoxes, and all the best prospects involve rejecting

some of the usual Tarskian properties of logical consequence, reflexiv-

ity or transitivity, but then forwards truth-preservation cannot be what

characterizes logical consequence.

• Second, and also paradox-related, is the idea that the very notion of

logical validity itself is plagued by paradoxes similar to the more well-

known paradoxes that afflict notions such as truth or set. Hence, logical

validity cannot be characterized as (forwards) truth-preservation.

• Third, there is a project connected to inferentialism that uses concepts

corresponding to cognitive states like acceptance or rejection – or their

linguistic correlates, like assertion or denial – instead of truth or falsity,

in order to define logical validity. But then, what is forwards-preserved

is something other than truth, and usually the resultant preservation

relations are neither reflexive nor transitive.

• Fourth, there are attempts to generalize the usual notions, for a wide

range of reasons, but we will concentrate here on those that attempt to

identify universal features of logical consequence.

203
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Each of the following sections will focus on one of these groups of ideas

that challenge logical consequence as characterized by truth-preservation.

Solutions to the Paradoxes of Self-reference

According to tradition, logical consequence is a kind of truth-preservation,

and truth-preservation is a relation that is at least reflexive and transitive;

thus, a notion of logical consequence that is either non-reflexive or non-

transitive can seriously be doubted to be a relation of truth-preservation.

Nevertheless, many logicians now think that in order to give a uniform

solution to the paradoxes of self-reference one must revise logic by drop-

ping one of the usual Tarskian properties of logical consequence, such as

reflexivity or transitivity. Most of these approaches drop the properties via

their sequent-calculi expressions: structural rules.

We will call ‘non-Tarskianists’ those willing to give up a Tarskian prop-

erty of logical consequence in order to solve paradoxes of self-reference

(cf. Restall, 1994; Petersen, 2000; Weir, 2005; Zardini, 2011; Ripley, 2013;

French, 2016); those who would instead prefer modifying the conception of

truth, set, any connective or, in general, something other than the Tarskian

properties of logical consequence in order to deal with paradoxes will be

dubbed ‘Tarskianists’ (cf. Priest, 2006; Field, 2008; Beall, 2009; Halbach,

2011; Scharp, 2013). We will show here that non-Tarskianists might very

well have a good case for their view, and logical consequence might well

be something other than a species of truth-preservation.

Suppose, as allowed by diagonal mechanisms for self-reference, that we

have a sentence in our language, call it ‘λ’, that is identical to ¬T〈λ〉, where

〈λ〉 is a name for the sentence λ and T is a truth predicate. Let us also

consider the following, very plausible, rules governing T:

Ŵ ⇒ φ,	
TR

Ŵ ⇒ T〈φ〉,	

Ŵ,φ ⇒ 	
TL

Ŵ, T〈φ〉 ⇒ 	

These rules seem to capture our intuitive understanding of the behaviour

of ‘is true’, allowing us to derive the Tarski-biconditionals (that T〈φ〉 if and

only if φ) in the presence of the usual rules for the conditional. This means

that truth is “transparent”, as one can then intersubstitute T〈φ〉 and φ any-

where in a proof, for any φ. But this is more than enough to get us into

trouble, using only a small number of the rules we gave in Chapter 2:
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λ ⇒ λ
substitution

¬T〈λ〉 ⇒ λ
¬ L

⇒ T〈λ〉, λ
TR

⇒ λ, λ
CR

⇒ λ

λ ⇒ λ
substitution

λ ⇒ ¬T〈λ〉
¬ R

λ, T〈λ〉 ⇒
TL

λ, λ ⇒
CL

λ ⇒
Cut⇒

WL
φ ⇒

WR
φ ⇒ ψ

To be clear: the problem here is that φ and ψ are completely arbitrary.

So the conclusion we’ve arrived at is that anything at all follows from

anything else at all. And that’s absurd. Let’s call this the Liar Paradox.

Here is a different problem, which is called the Curry Paradox: Let φ

and ψ be any sentences in our language whatsoever and suppose, again

as allowed by diagonal mechanisms for self-reference, that we have a sen-

tence in our language, call it ‘C’, that is identical to C → (φ → ψ ). If we

suppose, as is entirely plausible, that the conditional obeys the following

two-way rule1

Ŵ ⇒ φ → ψ
→ I/E

Ŵ,φ ⇒ ψ

then, if we have Contraction, it turns out that we are in just as much

trouble as we were with the Liar:

C⇒ C
substitution

C⇒ C→ (φ → ψ )
→ E

C,C⇒ φ → ψ
CL

C⇒ φ → ψ
→ I

⇒ C→ (φ → ψ )
substitution

⇒ C

C⇒ C
substitution

C⇒ C→ (φ → ψ )
→ E

C,C⇒ φ → ψ
CL

C⇒ φ → ψ
Cut

⇒ φ → ψ
→ E

φ ⇒ ψ

The first main advantage of non-Tarskian approaches is their power to

maintain, without restriction, the operational rules governing each piece

of familiar logical vocabulary. As we have already seen, in the presence

of Reflexivity, Contraction, Cut and transparent truth, the negation rules

suffice to cause problems via the Liar Paradox. The conditional rules do as

well – this time with even fewer assumptions required.

1 It’s not strictly necessary that we add this rule to our system – the problem we point

out below arises in the system introduced in Chapter 2. But it arises in a proof that

fits better on the page if we adopt the rule, so we do so.
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Things are not so simple for Tarskian approaches to transparent truth.

Such an approach must handle the Liar Paradox by modifying the negation

rules somehow; that is the only remaining degree of freedom. But such a

modification has usually nothing to say about the Curry Paradox, where

negation is not involved. Similarly, it must handle the Curry Paradox by

modifying the conditional rules; but this says nothing about the Liar.

This leads to two problems. First, it opens the Tarskianists to a familiar

charge, namely that they are not really addressing the paradoxes at all,

but only changing the subject. After all, so the objection has it, the Liar

Paradox we originally cared about is the one formulated with a connective

‘¬’ obeying the usual negation rules. A connective that does not obey the

negation rules simply is not that same connective, no matter what symbol

we use to write it (cf. our discussion of the matter in Chapter 4). The same

argument can be pressed about the conditional in approaches that try to

handle the Curry Paradox. Tarskianists have generally recognized this as a

problem deserving an answer, and there are well-explored ways to answer

it (for an example, see Priest, 2006, chs. 4–5).

However, the real problem with having to modify the operational rules

is a different one entirely, whether one is changing the subject or not. The

Tarskianists deal with the paradoxes piecemeal, missing the general fea-

tures that allow the paradoxes to arise in the first place. But it seems that

the paradoxes run deeper than any particular vocabulary. Tinkering with

negation or conditional rules might prevent paradoxes involving negations

and conditionals from arising, but it does not get to grips with the general

phenomenon.

Two examples can reinforce this impression. One example is Curry-like

paradoxes of validity, which will be discussed in the next section; the only

thing we will say here is that no negation or conditional connective occurs

in the validity Curry argument, so the Tarskianists’ tweaks to negation and

implication are beside the point here.

The other example is the Hinnion–Libert Paradox. The necessary

resources for it are Reflexivity, Contraction, Cut and the following three

groups of additional rules:

Membership

Ŵ,A(a)⇒ 	
(∈ L)

Ŵ, a ∈ {x : A(x)} ⇒ 	

A,Ŵ ⇒ A(a),	
(∈ R)

Ŵ ⇒ a ∈ {x : A(x)},	
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Extensionality

Ŵ, x ∈ a⇒ x ∈ b,	 Ŵ, x ∈ b⇒ x ∈ a,	
Ŵ ⇒ a = b,	

Identity

Ŵ,A(a)⇒ 	
(= L)

Ŵ, a = b,A(b)⇒ 	

Ŵ ⇒ A(a),	
(= L)

Ŵ, a = b⇒ A(b),	

Ŵ,Xa⇒ Xb,	 Ŵ,Xb⇒ Xa,	
(= R)

Ŵ ⇒ a = b,	

The first of these groups of rules captures part of the expected behaviour

of set membership in a naive set theory: the claim that a is a member of

the set of φs can stand in for the claim that a is φ, either as a premise or as

a conclusion. The rule in the second group ensures that the naive theory is

a naive theory of sets, by allowing us to derive the claim that a = b from

a and b having the same members. The final group of rules captures part

of the expected behaviour of ‘=’: when drawn on as a premise, it allows

substitution of one term for another in a premise.

From these resources, consideration of the Hinnion–Libert set {x : {y :

x ∈ x} = {y : ⊥}} allows for a derivation of⊥. (A proof can be found in Restall

(2013).) This paradox is in many ways just like a familiar (biconditional)

Curry Paradox. But since it uses no connectives, in particular no condition-

als and no negations, Tarskianist approaches to paradox must deal with it

separately yet again, blaming at least one of the four additional rules. Of

course they are welcome to do so; but again the impression is that they are

missing the point: when each new paradox resembling the old ones must

be blocked separately, it certainly gives the appearance that one is missing

a general phenomenon.

Although we have presented the point so far as a problem for Tarskian-

ist approaches that preserve transparent truth, it is equally telling against

approaches to the truth-based paradoxes that work by giving up transpar-

ent truth, such as those explored by Maudlin (2004), Halbach (2011) and

Scharp (2013). After all, neither validity Curry nor the Hinnion–Libert para-

dox (nor any of the more familiar set-theoretic paradoxes) has anything at

all to do with truth; playing with our theory of truth may address the Liar

and Curry Paradoxes, but it also misses the broader phenomenon.

Non-Tarskianist approaches take a different tack entirely, and one that

seems to get at the root of the trouble. By blocking either Reflexivity,
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Contraction or Cut in their approach to the Liar, the non-Tarskianist have

already blocked the problematic derivations from validity Curry or the

Hinnion–Libert set, and no additional work is needed.

Rather than rushing from paradox to paradox making ad hoc mod-

ifications, these non-Tarskianist approaches seem to grapple with the

paradoxes where they come from: the very basic features of argumentation.

In this way, they can avoid having to worry about rules governing particu-

lar pieces of vocabulary; in a single fell swoop they address Liars, Curries,

Validity Curries, Hinnion–Liberts, and so on, with the hope, of course, that

no structural rule alone suffices to give rise to paradoxes.

Validity Curry

Asmentioned in the previous section, a number of authors, includingWhit-

tle (2004), Field (2008), Shapiro (2011) and Beall and Murzi (2013), have put

forward some arguments for the claim that logical validity is afflicted by

paradoxes similar to the more well-known paradoxes that plague notions

such as truth or set. But the idea that logical validity gives rise to paradoxes

is in fact as old as Pseudo-Scotus. One version of the problem he discussed

goes as follows. Consider the argument ‘This argument is valid. Therefore,

one plus one equals twenty six.’ This argument is either valid or not. Sup-

pose it is not. Then (there is a case such that) the premise has to be true and

the conclusion untrue. But if the premise is true, the argument is valid, yet

the conclusion is untrue, which goes against the definition of logical valid-

ity, so the premise cannot be true. But if it cannot be true, the argument

is valid, for there would be no case in which the premise is true and the

conclusion is false. Therefore, if it is invalid, it is valid. Suppose then that

the argument is valid. If that is so, the premise is true. However, the con-

clusion is untrue. Then the argument is not valid. Therefore, if it is valid, it

is invalid.

In the above version, the premise states the validity of the argument,

while the conclusion is some suitable necessary falsehood. There is another

version in which the premise is a suitable necessary truth and the conclu-

sion states the invalidity of the argument. Consider the argument ‘One

plus one equals two. Therefore, this argument is invalid.’ Again, the argu-

ment is either valid or invalid. If the argument is valid, then it cannot be

that the premises are true and the conclusion is false. But, ex hypothesi, the
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argument is valid, so the conclusion is false. Then the premise should be

false as well. But it is necessarily true, so the argument is not valid. Then,

if it is valid, it is invalid. Suppose now that it is invalid. Then (there is

a case such that) the premise is true and the conclusion is false. But by

hypothesis the conclusion is not false, so the conclusion must be true as

well, which it is. Then the argument is valid. Therefore, if it is invalid, it

is valid. This paradox of logical validity serves to illustrate that the notion

has been considered problematic long before contemporary logic and its

formal techniques; we will not examine it further here, but the interested

reader can consult Mates (1965), Read (1979) and Priest and Routley (1982).

More recently, worries about logical validity have been expressed

through the investigation of the properties of a predicate ‘Val(x, y)’, added

to Peano arithmetic, PA, that holds for the Gödel code 〈φ〉 of φ and the

Gödel code 〈ψ〉 of ψ (in that order) if and only if the argument whose sole

premise is φ and whose conclusion is ψ is logically valid. Of course, merely

adding such a predicate to the language of arithmetic causes no more prob-

lems than merely adding a new predicate ‘T(x)’ for truth does. Problems

seem to arise once we supplement the axioms and rules of arithmetic with

plausible rules for ‘Val(x, y)’. First, we have an introduction rule for ‘Val(x, y)’:

I Val: For any formulas φ and ψ , if φ ⇒ ψ then⇒ Val(〈φ〉, 〈ψ〉)

In short, I Val codifies the natural thought that if we have a proof of ψ from

φ, then the argument with φ as premise and ψ as conclusion is valid.

With introductions out of the way, we also need something akin to an

elimination rule for ‘Val(x, y)’, and this is provided by:

E Val: For any formulas φ and ψ ,⇒ Val(〈φ〉, 〈ψ〉)→ (φ → ψ )

In short, E Val codifies the thought that validity preserves truth.

These are not the only possible, or only plausible, rules for the validity

predicate. For our purposes here, however, these two rules suffice.2

We are now in a position to formulate the purported paradox of logical

validity. First, we apply the Gödelian diagonalization lemma to the pred-

icate ‘Val(x,⊥)’ to obtain a sentence ‘C’ such that ‘C ↔ Val(〈C〉, 〈⊥〉)’ is a

2 Some apparently plausible rules are in fact unacceptable, on pain of triviality. For

example, an apparent version of the deduction property does not hold:

For any formulas φ and ψ , and set of formulas Ŵ, if Ŵ,φ ⇒ ψ then Ŵ ⇒ Val(〈φ〉, 〈ψ〉)
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theorem. We can then, using arithmetic, I Val and E Val, derive a paradox

along lines similar to the reasoning underlying the Curry Paradox:

1. C [Definability of C]

2. Val(〈C〉, 〈⊥〉) [1, diagonalization]

3. C→⊥ [2, E Val]

4. ⊥ [1, 3, detachment]

5. Val(〈C〉, 〈⊥〉) [1–4, I Val]

6. C→⊥ [5, E Val]

7. C [5, diagonalization]

8. ⊥ [6, 7, detachment]

On this paradox of validity involving a special predicate akin to the truth

predicate there are roughly two sides. On the one hand, there are those

who take it to be a genuine paradox and try to adapt some of the solutions

to other paradoxes of self-reference to this case. On the other hand, there

are those who consider this particular reasoning not to be paradoxical at

all, because there is no reason to suppose that the rules for ‘Val(x, y)’ are

logically valid themselves; cf. Ketland (2012), Cook (2014).

Another way of expressing worries about logical validity is that of Field

(2008) and Beall (2009), who have argued that logical consequence cannot

be defined in terms of truth-preservation on pain of triviality. Suppose one

wants a proof of the following biconditional:

The conclusion of an argument is a logical consequence of the premises

(in symbols, P1, . . . , Pn ⇒ C) if and only if the truth of the premises is

preserved to the conclusion (in symbols, (T〈P1〉 ∧ . . . ∧ T〈Pn〉)→ T〈C〉).

Seemingly, the proof is straightforward. The validity of the inference

from P1, . . . , Pn to C is equivalent to the validity of the inference from

Let us suppose that φ stands for ‘There is exactly one object’ and ψ for ‘There are

exactly ten objects’. Then φ and ψ entail a contradiction:

φ,ψ ⇒ ⊥

It does not follow, however, that the claim that there is exactly one object entails that

the argument whose premise is that there are exactly ten objects and whose conclusion

is a contradiction is valid – that is:

φ � Val(〈ψ〉, 〈⊥〉)
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T〈P1〉, . . . , T〈Pn〉 to T〈C〉, by the usual truth rules. That in turn is equiva-

lent to the validity of the inference from T〈P1〉 ∧ . . . ∧ T〈Pn〉 to T〈C〉, by

the usual rules for conjunction. And that in turn is equivalent to the

validity of the sentence (T〈P1〉 ∧ . . . ∧ T〈Pn〉) → T〈C〉, by the usual rules

for the conditional. But the validity of a sentence is but a strict form

of truth, so this last step is just the claim that the inference preserves

truth.

No matter how persuasive this argument looks, it turns on principles

that cannot be jointly accepted. In particular, subscribing both to the truth

rules employed in the first step of the argument and to the rules for the con-

ditional employed in the last step, leads to triviality, as we learned from the

Curry Paradox. In this case, no rule for a validity predicate can be blamed

to fail to be logically valid, but every one of the different ways to resolve

the Curry Paradox also undermines one or another step in the argument

that validity is to be identified with truth-preservation. See Shapiro and

Murzi (2015) for further discussion.

Acceptance, Rejection and Beyond

In recent years, there has been a growing tendency to define logical validity

by appealing to concepts of cognitive states like acceptance and rejection (or

of their linguistic expressions, assertion and denial), guided mainly by the

idea that it would be irrational to accept the premises of a logically valid

argument while rejecting the conclusion. But this joint acceptance of the

premises and rejection of the conclusion can be avoided in several ways,

each of them giving rise to different notions of logical consequence.

The obvious statement of logical validity in terms of acceptance and

rejection can be obtained by simply substituting ‘truth’ uniformly with

‘acceptance’. Thus, an argument is (generalized) Tarskian-valid if and only

if, for every case the premises are accepted, the conclusions are also accepted.

Equivalently, if the conclusions are not accepted, at least some of the

premises are not accepted too. The relevant dialogical property is acceptance,

so there is only one property forwards-preserved. That property determines

another property, non-acceptance, which makes the collections of properties

mutually exclusive and collectively exhaustive.

But a more “tolerant”, so to speak, notion of logical consequence can be

defined as follows:
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Definition: An argument is P-valid if and only if, for every case the premises

are accepted, the conclusions are not rejected. Equivalently, if the conclusions

are rejected in some case, at least some of the premises are not accepted.

The relevant dialogical properties are those that count as non-rejection,

since any of them can be preserved from acceptance. Again, acceptance and

rejection are treated as mutually exclusive, but probably not collectively

exhaustive, as there is the option of, say, hesitating; non-acceptance and non-

rejection are collectively exhaustive, but probably not mutually exclusive:

hesitation is not acceptance, but it is not rejection either.

However, with the possibility of tolerance usually comes the possibility

of strictness, so a “stricter” notion of logical consequence can be defined as

follows:

Definition: An argument is Q-valid if and only if, for every case the premises

are non-rejected, the conclusions are accepted. Equivalently, if the conclusions

are non-accepted in some case, at least some of the premises are rejected.

The relevant dialogical properties are those that count as non-rejection,

but there is only one of them that has to be forwards-preserved: acceptance.

As we have mentioned, acceptance and rejectionmight be mutually exclusive,

but probably not collectively exhaustive; and non-acceptance and non-rejection

might be collectively exhaustive, but probably not mutually exclusive.

These notions of logical consequence can be cashed out in the usual

model-theoretic terms simply by giving up the requisite that the logical

values used to define logical consequence need to be bi-partitioned.

Let us consider two of those strongly non-Tarskian notions of

consequence, Malinowski’s Q-consequence (‘Q’ for ‘Quasi’; see Mali-

nowski, 1990a,b) and Frankowski’s P-consequence (‘P’ for ‘Plausible’; see

Frankowski, 2004a,b).

• Q-consequence. φ is a logical Q-consequence of premises Ŵ, in symbols

Ŵ |=Q φ, if and only if any case in which each premise in Ŵ is not antides-

ignated is also a case in which φ is designated. Or, equivalently, there is

no case in which each premise in Ŵ is not antidesignated, but φ fails to

be designated.

• P-consequence. φ is a logical P-consequence of premises Ŵ, in symbols

Ŵ |=P φ, if and only if any case in which each premise in Ŵ is designated

is also a case in which φ is not antidesignated. Or, equivalently, there is
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no case in which each premise in Ŵ is designated, but φ fails to be not

antidesignated.

Suppose that there are three truth-values, ⊤, μ and ⊥, with the order

⊥ < μ < ⊤. Take ⊤ as the only designated value, ⊥ as the only antides-

ignated value and μ as neither designated nor antidesignated. Suppose

that v(φ) = μ. Then φ is not a logical Q-consequence of φ, because Q-

consequence requires that if premises are not antidesignated, conclusions

must be designated, which is not the case in this example. Q-consequence

is not reflexive.

Take the same truth-values with the same order and the same partition.

Suppose now that v(φ) = ⊤, v(ψ ) = μ and v(ρ) = ⊥. Thus even if ψ is a

logical P-consequence of φ and ρ is a logical P-consequence of ψ , ρ is not

a P-consequence of φ, because P-consequence requires that if premises are

designated, conclusions must be not antidesignated, which is not the case

in this example. P-consequence is not transitive.

More Abstract Notions of Logical Consequence

The strongly non-Tarskian notions of consequence above demand neces-

sary preservation of non-antidesignatedness. Clearly, designatedness is a case

of non-antidesignatedness, so (generalized) Tarskian consequence is a case

of a more general notion which also encompasses Q-consequence and

P-consequence. For example, Q-consequence deals with preservation of

non-antidesignated values but in such a strong way that it rather forces

passing from non-antidesignated values to designated values. Similarly,

P-consequence is preservation of non-antidesignated values but in such

a weak way that it allows passing from designated values to some non-

designated values (but never from designated to antidesignated values!). Let

us call this notion of consequence TMF-consequence (for Tarski, Malinowski

and Frankowski) and define it as follows:

Definition: φ is a logical TMF-consequence from premises Ŵ, in symbols Ŵ |=TMF

φ, if and only if any case in which each premise in Ŵ is not antidesignated

is also a case in which φ is not antidesignated. Or, equivalently, there is

no case in which each premise in Ŵ is not antidesignated, but φ fails to be

antidesignated. Again equivalently, if there is a case in which φ is antides-

ignated, then at least one premise in Ŵ is also antidesignated. In short,
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in the non-Tarskian notions of consequence the non-antidesignatedness of

premises necessitates the non-antidesignatedness of conclusions.

Note that TMF-consequence has the following features:

(TMF1) It preserves a certain (kind of) value.

(TMF2) This preservation has a direction (“forwards”): it is from premises

to conclusions.

(TMF3) The preservation in the other direction (“backwards”) does not

alter the logical consequences already determined by preservation-

forward, so it can be dismissed.

Let’s say that a relation R backwards-preserves a property ψ if and only if

for any x, y such that Rxy, if y has the property ψ , x has it too. If the property

φ forwards-preserved and the property ψ backwards-preserved are collec-

tively exhaustive and mutually exclusive with respect to the properties

that x and y might have, then forwards-preservation and backwards-

preservation coincide. Consider the forwards-preservation of designated

values (D+-conseqence) and the backwards-preservation of antidesignated

values (D−-consequence) as we defined them in Chapter 1. D+- and D−-

consequence distinguish directions in a way that forward-preservation and

backward-preservation might not coincide. When the arrangement of val-

ues is such that D+ ∪ D− �= V (the designated and antidesignated values

are not collectively exhaustive) or D+ ∩ D− �= ∅ (the designated and the

antidesignated values are not mutually exclusive), D+-consequence and

D−-consequence do not coincide. Suppose, as above, that there are three

truth-values, ⊤, μ and ⊥, with the order ⊥ < μ < ⊤ and with ⊤ as the only

designated value, ⊥ as the only antidesignated value and μ as neither des-

ignated nor antidesignated. Suppose pretty standard truth-conditions for

conjunctions and conditionals, say v(φ∧ψ ) = inf(v(φ), v(ψ )) and v(φ → ψ ) =

⊤ iff v(φ) = inf(v(φ), v(ψ )), otherwise v(φ → ψ ) = v(ψ ). Then ψ is a logical

D+-consequence, but not a logical D−-consequence, of φ ∧ (φ → ψ ).

This suggests a more abstract notion of logical consequence, where the

direction is abstracted, which can be called WS-consequence3 stating the

3 For Heinrich Wansing and Yaroslav Shramko, who have studied most of the abstract

notions of logical consequence presented here, but whose main contribution to this

topic has been the explicit distinction between the directions of D+- and D−-

consequence. See for example Wansing and Shramko (2008).
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following: let premises Ŵ and conclusion φ be called sides of the relation

of logical consequence and V and V∗ certain (kinds of) values. φ is a logical

WS-consequence from premises Ŵ, in symbols Ŵ |=WS φ, if and only if, if

one side has values in V, the other has values in V∗.

Béziau’s notion of logical consequence, which is axiomatically empty,

results from WS-logical consequence when even the nature of the Vi is left

unspecified. “Values” still have many “material” connotations, they have a

very specific nature, so it would be better to say that they are structures

of whatever kind. This does not mean that the last bit of logicality, in the

sense of the core tradition, is lost. This rather means that the last step into

abstraction could be taken if a better cartography of logicality is provided

in a way that makes sense of both what we have called the core tradition

in Chapter 1 and – what Béziau considers to be – the continuous journey

of logic towards more abstraction.

To sum up: Traditionally, logics built upon the (generalized) Tarskian

notion of logical consequence allow for variation in the cases in which

premises and conclusions are evaluated, thus one obtains different par-

ticular logics. That is Beall and Restall’s logical pluralism. It keeps the

ideas that designated and antidesignated values form collectively exhaus-

tive and mutually exclusive collections of values; that truth is the only

designated value and that it is the value that must be preserved; that

this preservation has a direction, namely forwards-preservation (i.e. from

premises to conclusions) and that backwards-preservation yields the same

results as forwards-preservation. An attempt to generalize this allows

other values than truth to be designated and keeps the rest of ele-

ments as before. This is still Tarskian (at least generalized, i.e. reflexive

and transitive) consequence nonetheless. Further generalization comes

from the previous step yet allowing designated and antidesignated val-

ues to be either not collectively exhaustive or not mutually exclusive

collections of values and allowing for different types of values to be pre-

served (only demanding that they are not antidesignated). These notions

of consequence are no longer Tarskian, since they may be not reflexive (Q-

consequence) or not transitive (P-consequence). WS-consequence abstracts

the direction, kind of preservation and also the kind of value preserved:

logical WS-consequence is a relation between values, where the order

of the relata is undetermined. A bare logical structure is obtained when

all the components of WS-consequence are left merely as mathematical

entities.
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Thus, logical consequence can be regarded as an octuple LC = 〈V;V1, . . . ,

Vn;�;VP;VC;CON; δ; I〉 where V is a collection of structures that will serve

as values; V1, . . . ,Vn are kinds of values such that each Vi ⊆ V and V1∪ . . . ∪

Vn = V; VP and VC are the values for the sides of the relation (what are

usually called ‘premises’ and ‘conclusions’, respectively); � is a relation on

V; CON is the condition of connection in such relation, stating that if one

side of the relation has a value of the kind Vi then the other has a value of

the kind Vj; δ is the specification of the direction of this connection; finally,

I is the family of indices at which values for the sides hold or otherwise.

The notions of logical consequence discussed above appear naturally as

specifications on the parameters of this octuple.

As we have seen in Chapter 7, Beall and Restall (2006) have argued that

non-reflexive or non-transitive notions of logical consequence are not real

logics, that they can be formalizing interesting phenomena in argumen-

tation but not logical consequence, so there is a legitimate concern that

the generalizations considered here might not be logics, especially when

logical consequence is expected to satisfy certain features like normativ-

ity or formality, introduced in Chapter 1. Although the issue is highly

contentious, we will indicate that these kinds of logics are not so easily

excludable from the realm of logic proper.

Consider Q-consequence and P-consequence. A good signal that we are

not very far from what is commonly called ‘logic’ is that, under minimal

classical constraints on the structure of truth-values, these notions of con-

sequence are indistinguishable from the Tarskian one. If there are only

two truth-values, true and false with their usual order, the collections of

designated and antidesignated values can exhaust all the possible values,

hence designated = not antidesignated and not designated = antidesignated. But

if this were merely a feature of classical logic, surely Q-consequence and

P-consequence would have emerged earlier than they actually did. How-

ever, these notions of consequence collapse if the collections of designated

and antidesignated values are supposed to be mutually exclusive and col-

lectively exhaustive with respect to the total collection of values given, as

is assumed in almost every known logic.

At least technically, strongly non-Tarskian notions of consequence such

as Q-consequence and P-consequence are as legitimate as non-classical

logics are. More elaborate answers could be given along the lines of non-

monotonic logics. For example, Q-consequence would serve to “jump” to
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conclusions more certain than the premises, and P-consequence would

allow us to jump to conclusions less certain than the premises.

There is no prima facie reason as to why it is possible to do without

monotonicity but not without reflexivity or transitivity: as properties of

a relation of logical consequence they seem to be pari passu. Beall and

Restall’s claim that they are not on equal footing “because preservation of

designated values (from premises to conclusions) is a reflexive and transi-

tive relation” begs the question: non-reflexive and non-transitive logics are

precisely asking for ways of logically connecting premises and conclusions

other than preservation of truth or, more generally, of designated values.

Now, granting that there is a core tradition in logic which demands

that logic is at least necessary, normative and formal, the burden is on

the proponent of strongly non-Tarskian notions of logical consequence to

show that they somehow still belong to that tradition. More exactly, they

have to show either that the core tradition underlying truth-preservation

is wrong or that it makes room for non-reflexivity and non-transitivity.

We think a strong case can be made for the latter option. Let us discuss

necessity first. As we have seen, the strongly non-Tarskian notions of logi-

cal consequence above demand necessary preservation of non-antidesignatedness,

that is, the non-antidesignatedness of the premises necessitates the non-

antidesignatedness of the conclusions. Even in the case of WS-logical

consequence, the values – whatever they are – on one side of the relation –

whatever it is – necessitate a certain value on the other.

Secondly, consider normativity and the applicability to the evaluation of

arguments in daily life and sciences. It is easy to see that, in spite of appear-

ances, we are still in the business of logic. As we have seen, if one uses

cognitive states like acceptance and rejection (or their linguistic expres-

sions, assertion and denial) to define validity, these different notions of

consequence arise almost naturally:

• An argument is TMF-valid if and only if, if the premises are not rejected,

then conclusions are also not rejected. Equivalently, if the conclusions

are rejected, premises are rejected too. The relevant dialogical prop-

erties are those that count as not rejected, so there is more than one

property that could be forwards-preserved. The preservation of these

properties is required, but the direction is not important since not

rejected determines another property, whose name depends on what the
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components of the first property are taken to be that make the col-

lections of properties mutually exclusive (but probably not collectively

exhaustive). Now, in this case, not rejecting the premises but rejecting

the conclusions might be regarded as irrational in those contexts where

TMF-logical consequence applies.

• An argument is (generalized) Tarskian-valid if and only if, if the premises

are accepted, then the conclusions are also accepted. Equivalently, if the

conclusions are not-accepted, the premises are not-accepted either. The

relevant dialogical property is accepted, so there is only one property

forwards-preserved. That property determines a property, not accepted,

which makes the collections of properties mutually exclusive and

collectively exhaustive.

This is still so when one moves towards WS-logical consequence; the

normative aspect can be inherited form the other notions:

• An argument is WS-valid if and only if, if one side of the argument

has a dialogical property, then the other also has it. No dialogical prop-

erty is especially relevant nor are properties required to have further

structure, such as being mutually exclusive; neither preservation of dia-

logical properties nor a specific direction in which they are connected

is required, it’s only required that there is some connection between

them. Not respecting the connection might be regarded as irrational in

the relevant circumstances.

• An argument is accepted-valid if and only if, if the premises are accepted,

then the conclusions are also accepted. The relevant dialogical property

to be preserved is accepted; this preservation has a preferred direction

(forwards).

• An argument is rejected-valid if and only if, if the conclusions are

rejected, then the premises are also rejected. The relevant dialogical

property that has to be preserved is rejected; this preservation has a

preferred direction (backwards).

Accepted-validity and rejected-validity need not coincide, for acceptance

and rejection, even if mutually exclusive, are not collectively exhaustive.

Similar variations can be obtained using not only dialogical, but also

probabilistic, psychological, epistemic or whatnot specifications of conse-

quence, for example:
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• An argument is inconceivable-valid if and only if, in any situation that

is inconceivable for the conclusions to be true, it is also inconceivable

for the premises to be true. The relevant (“psychological”) property that

has to be preserved is inconceivability; this preservation has a preferred

direction (backwards).

• An argument is believed-valid if and only if, for every case in which the

premises are believed, the conclusions are believed too. The relevant

(“epistemic”) property to be preserved is believed; this preservation has a

preferred direction (forwards).

Other variations are left to the reader; and in general normativity oper-

ates since it could be irrational not to respect the required connection

between premises and conclusions in the contexts where each notion of

logical consequence operates.

About formality: There is an enormous lack of precision on this matter,

but it is fairly innocuous given that the non-Tarskian notions of logical

consequence are generalizations of Tarskian logical consequence, as we

have shown. The meanings of no other terms than those accepted by the

(generalized) notion of Tarskian consequence are in play here, so there is no

threat to formality if the original notion is already formal. This applies even

to the notions of WS-logical consequence and of Béziau’s logical structure.4

As to other elements of the core tradition, formality is kept since it is an

abstraction from the previous notions, so WS-consequence is formal if the

previous notions are, and necessity is also kept since a (kind of) value on

one of the relata necessitates some (kind of) value in the other.

Questions

1. Reading Ŵ ⇒ 	 as ‘in every case where Ŵ is accepted, Ŵ must not (all) be

rejected’, revisit the sequent calculus in Chapter 2 and see which rules

begin to look suspicious.

4 Greg Restall has stressed the importance of these cognitive, normative notions for the

definition of logical consequence and theories, but his approach is different. Rather

than studying separate notions of consequence stressing either of these cognitive

notions, Restall studies interactions of them in a single notion of logical consequence

to give a more comprehensive notion of (bi)theory (Restall, 2013).
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2. On p. 207 we claimed that consideration of the set {x : {y : x ∈ x} = {y :

⊥}} allows for a derivation of ⊥. Show how. (You might want to consult

Restall (2013) for inspiration.)

3. In a note on p. 205 we claimed that the Curry derivation didn’t rely

on adding the special two-way conditional rule to our system. Con-

vince yourself this is in fact true by either re-deriving φ ⇒ ψ in the

sequent calculus from Chapter 2 in the presence of a Curry sentence or

by showing that every instance of→ I/E is derivable in that system.



10 The Place of Logic in Science

‘Logic’ is the name of a philosophical subdiscipline, and – as you learned

already at the very beginning of the book – it is also the name of a sub-

discipline of mathematics, a theory of implication, the abstract network

of actual implications, and a capacity or disposition to make certain infer-

ences. In this chapter we want to discuss “the place of logic in science”. This

title inherits the ambiguity of ‘logic’. This time we will not disambiguate

though. We will indeed look at the place of logic in science under different

meanings of ‘logic’. For the most part, however, our focus will be on logical

theory, logica docens, and the role it plays in other disciplines and how it

relates to the theories in those other disciplines.

Logic and the Empirical Sciences

If we think of logic as a theory of logical consequence then there is one

quite obvious relation between that theory and the theories of other sci-

ences. Every science must be interested in whether its theoretical account

is consistent, and whether it accords with the observable facts. The former

is clearly a matter of logical analysis. But the latter is also partly a matter

of logical analysis, in so far as it requires the logical derivation of empirical

statements which can be put to test in, for example, an experiment.

As you probably know from introductions to philosophy of science (or

the brief discussion in Chapter 6), empirical theories by themselves typi-

cally do not logically imply specific predictions. Such predictions are derived

from a theory together with certain background assumptions and auxiliary

hypotheses. To take a toy example, the theory ‘All ravens are black’ does

not imply that the bird you are looking at appears black to you. It only

does so under the background assumption that you are looking at a (pro-

totypical) raven, the auxiliary hypothesis that normal human vision under
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circumstances X is a reliable way to detect the actual colour of objects

looked at, that you possess normal human vision, that the observation is

taking place under circumstances X, etc. However, whatever other theories

or assumptions might be needed to derive empirical consequences from

a theory, without using logic in some sense, you won’t be able to derive

anything.

Whether this establishes a foundational role for logic as a theory in the

sciences is a topic that we will postpone until the end of this chapter. What

we will discuss in the next few sections are cases in which logical theory

plays a somewhat different role, cases in which logical theory is directly

relevant for the projects of other empirical sciences.

We begin with an example at the intersection of logic/philosophy of

language and linguistics, the study of formal semantics.

Formal Semantics

At the basis of formal semantics is Richard Montague’s insight that the rela-

tion between syntax and semantics in a natural language such as English

could be viewed as not essentially different from the relation between syn-

tax and semantics in a formal language such as the language of first-order

predicate logic.

The semantics of formal language is, as you know from Chapter 1,

usually provided by model theory, a mathematical theory, in particular a

branch of mathematical logic. Why believe that logic is of any help for the

study of natural language semantics? There are at least two good reasons

for that. The first is that – at least since Gottlob Frege – logic is conceived

as the science that studies the laws of truth. But then, truth and meaning

have an obvious connection in what Max J. Cresswell called theMost Certain

Principle (Cresswell, 1973):

Cresswell’s Most Certain Principle For two sentences α and β, if in some pos-

sible situation α is true and β is false, α and β must have different

meanings.

A second reason is that the task (or, in any case, one task) of a semantic

theory is to correctly predict meaning relations between expressions. But,

arguably, all meaning relations are (or are reducible to) logical relations.

Thus, e.g. hyponymy is (nothing but) schematic implication: green HYP
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coloured because �x is green� implies �x is coloured�, whatever x is; incom-

patibility is also reducible to implication (and negation): green INCOMP red

because �x is green� implies �x is not red�, i.e. the negation of �x is red�.

Thus understood, a logical relation among linguistic expressions is one that

can be reduced to the notion of logical (or analytic) implication. Formal

semantics, in this sense, can be understood as the attempt to describe all

relevant semantic relations in terms of logical relations (Zimmermann and

Sternefeld, 2013).

At the heart of almost all work in formal semantics lies another Mon-

tagovian idea (usually traced back to Gottlob Frege), namely the idea that

the semantics of a natural language must be compositional. The so-called

“principle of compositionality” is thus often regarded as a fundamental

principle of formal semantics:

The Principle of Compositionality The meaning of an expression is uniquely

determined by the meanings of its parts and their syntactical combination.

It is true that the Principle of Compositionality helps to explain how formal

semantics usually works. A formal semantics considers fragments of natu-

ral language which is such that from a base class of “basic expressions” a

class of grammatical “complex expressions” can be generated by the appli-

cation of syntactical rules (in Figure 10.1: SR1, SR2, . . . ) of the language.

The task of a formal semantics is then to provide an interpretation for the

expressions of the base class and a set of composition rules that mirror

the syntactical rules and determine the semantical values of the complex

expressions from the semantical values of their parts (in Figure 10.1: CR1,

CR2, . . . ).

Aside from providing a neat way to explain the approach of formal

semantical analysis, the Principle of Compositionality has a rather unclear

Basic expressions

SR 1, SR 2, . . . CR1, CR2, . . .

Interpretation of basic expressions

Complex expressions Interpretation of complex expressions

Lexicon

Grammar Semantics

Figure 10.1 Compositional semantics (adapted from Löbner, 2013)
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status within formal semantics. It is sometimes (and also since Montague)

invoked as an explanatory constraint on any natural language semantics

to make explainable the fact that finite human beings can understand lan-

guages with infinitely many expressions with different meanings. In this

sense, the principle seems to be of explanatory value, and hence empirical

in nature. However, some formal semanticists claim that in the framework

of a formal analysis of meaning the principle is actually trivial (and hence

not empirical) and should best be regarded as a methodological principle.

Of course, for the adoption of a methodological principle one would still

like to hear reasons, but so far none have been provided (Cohnitz, 2005).

The principle is, in any case, not unproblematic, since it directly leads

the semantical analysis into (what is called) “Mates’ Trap” or “Mates’ Puz-

zle” (Mates, 1952) if combined with Cresswell’s Most Certain Principle and

the rather uncontroversial assumption that synonymy is logical indiscerni-

bility and thus weaker than identity. The trap is that the three assumptions

taken together seem to contradict the fact that, for any two distinct expres-

sions α and β, the first of the following sentences should be true whereas

the second appears to be false:

1. It is possible for someone to believe that α is the same as α without

believing that α is the same as β.

2. It is possible for someone to believe that α is the same as α without

believing that α is the same as α.

By Cresswell’s Most Certain Principle, sentences 1 and 2 must differ in

meaning, and thus by the Principle of Compositionality, α and β also must

have different meanings.

Some semanticists claim that this refutes the Principle of Composition-

ality (Pelletier, 1994); whereas others argue that it shows the limits of

formal semantics. (It is, however, also arguable that the meaning differ-

ence between sentences 1 and 2 should be analysed in pragmatic rather

than semantic terms (Stalnaker, 1999).)

Formal semantics usually proceeds in its compositional analysis in two

steps. In the first step, expressions of the natural language are translated

into a formal language (often some variant of predicate logic). Then the

formal language is given a semantic interpretation within model theory.

In this procedure the formal language as such does not play any spe-

cial role. It would be possible (and it is sometimes done) to make the
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Sentences Formulas Interpretations

Translation system Model-theoretic semantics

Fragment

Natural language

Formal language

Figure 10.2 Formal semantics (adapted from Löbner, 2013)

model-theoretic meaning assignment directly to the expressions of the

natural language without the “detour” through the formal language (and

combine both steps of analysis into one). However, this would make the

semantic evaluation less transparent and more difficult to parse. The mean-

ing assignment to the formal language is, on the other hand, a formally

determined procedure that could even be skipped; the interesting part

of the analysis in practice thus really is the translation in such a two-step

analysis (see Figure 10.2).

As indicated in Figure 10.2, formal semantics so far only deals with

fragments of natural languages, and it is far from being in a position

to deal with any complete natural language. However, formal seman-

tics is a thriving field of research, making heavy use of formal tools

developed within mathematical logic and model theory. As we have

seen at several places in this book, research at the intersection of logic

and natural language semantics is not only of relevance for linguistics,

but often informs logical theorizing (as one example, remember the

discussion of plural quantification and the Geach–Kaplan sentence in

Chapter 3).

Cognitive Science

The next science we look at is a field of intensive interdisciplinary work.

Cognitive science is the interdisciplinary study of the mind and of cogni-

tion in particular. It comprises approaches from philosophy, artificial intel-

ligence, psychology, neuroscience, linguistics and anthropology. Obviously,
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one place in which cognitive science and logic meet is in the study of human

reasoning.

We discussed the relation between logic and the study of human rea-

soning earlier, in two places in this book. In Chapter 5 we discussed

psychologism, the idea that logic is really the study of human reasoning, and

in Chapter 8 we discussed in what sense logic can play a normative role

for human reasoning in its relation to a theory of theoretical rationality.

In this chapter we will have a slightly different focus. We will discuss the

role that logic (as a theory of logical consequence) can have for developing

a descriptive or explanatory account of human reasoning.

Of course, in the heyday of psychologism, when logic was seen as

a descriptive psychological theory, there was a clear sense in which

logic was of relevance for psychology (because it was psychology). But

after logic “emancipated” itself from psychology (in the development

of modern mathematical logic), logic was also playing an explanatory

function within psychology. As Stenning and van Lambalgen (2008)

explain, cognitive science took off when adopting the information pro-

cessing metaphor, consisting of the following three methodological

assumptions:

1. Cognitive explanations must refer to models, conceived of as

representational mechanisms

2. which function “in the same way” as the phenomena being

represented

3. and which are capable of generating behavior and thoughts of various

kinds. (Stenning and van Lambalgen, 2008, 8)

Logic played a double role in this scheme, as a “formal, symbolic, repre-

sentation language”, and as “an inference mechanism generating behavior

and thoughts”. At least normal adults reason logically, automatically as

well as reflectively. This assumption, that humans use a domain-general

logic in reasoning, has come under attack in psychology. According to

Stenning and van Lambalgen (2008) this can be explained as a reaction

to certain empirical results, such as, most prominently, the Wason Selection

Task (aka the “four-card problem”).

In 1966 the cognitive psychologist Peter Cathcart Wason devised a test

that purportedly showed the irrationality or illogicality of human reason-

ing (Wason, 1968). He presented his test subjects with the task depicted in

Figure 10.3.
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Below is depicted a set of four cards, of which you can see only the

exposed face but not the hidden back. On each card, there is a number

on one of its sides and a letter on the other.

Also below there is a rule which applies only to the four cards. Your task

is to decide which if any of the cards you must turn in order to decide if

the rule is true. Don’t turn unnecessary cards. Tick the cards you want

to turn.

Rule: If there is a vowel on one side, then there is an even number on the other

side.

Cards:

A K 4 7

Figure 10.3 Wason Selection Task (from Stenning and van Lambalgen, 2008)

If we code ‘there is a vowel on one side’ as ‘p’ and ‘there is an even number

on the other side’ as ‘q’, then test subjects typically pick cards in this test

in accordance with the frequency displayed in Table 10.1.

Table 10.1 Typical results for the Wason Selection Task

( from Stenning and van Lambalgen, 2008, 46)

p p, q p, ¬q p, q, ¬q misc.

35% 45% 5% 7% 8%

Wason assumed that the rule that was given in the task (If there is a vowel

on one side, then there is an even number on the other side) is to be understood as

a material conditional, ‘p→ q’ of classical logic. Thus, the “correct” answer

in this task should be to select (only) ‘p’ and ‘¬q’, which 95% of the test

subjects failed to do.

Subsequent experiments showed that test subjects performed much bet-

ter when the test did not involve such an abstract rule (in terms of vowels

and numbers, for example), but was rather cast in terms of rules that test

subjects were purportedly more familiar with. Thus, Johnson-Laird et al.

(1972) showed that if you present test subjects with the rule ‘If a letter is

sealed, then it has a 50 lire stamp on it’ and a series of four pictures show-

ing the backs and fronts of letters (sealed or not, with or without a 50 lire

stamp on it), almost everyone gets it “right”.
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Such results led to the speculation of evolutionary psychologists that

humans don’t reason with a domain-general logic, but instead have devel-

oped a domain-specific competence to check rules that have to do with

social contracts, in order to able to efficiently detect “cheaters” (Cosmides,

1989; Cosmides and Tooby, 1992). But then logic, as a domain-general

theory, seems useless for an explanation of actual human reasoning.

The study of human reasoning has been dominated by the search for

content-independent cognitive processes. Early research started from the

premise that humans reason logically, that is, using the rules of inference

of the propositional calculus. These rules of inference are

content-independent: they generate only true conclusions from true

premises, regardless of what the propositional content of the premise is.

However, more than a decade of research has shown that people rarely

reason according to these canons of formal logic. Moreover – and contrary

to initial expectations – psychologists found that human reasoning is

content-dependent: the subject matter one is asked to reason about seems

to regulate how people reason. Nowhere is this seen more clearly than in

experiments using the Wason selection task. (Cosmides, 1989, 191)

Instead of trying to describe human reasoning with the help of a

domain-general logic, we should rather focus on domain-specific reason-

ing modules or “fast and frugal algorithms” that our evolutionary history

has equipped us with (cf. also Gigerenzer, 2000).

However, this is not the only possible interpretation of the empirical

results. In a very careful study, Stenning and van Lambalgen (2008) argue

that we should distinguish in such tasks the reasoning to an interpretation

and the reasoning from an interpretation of the linguistic item that supposedly

expresses the rule in question.

Most of the psychological literature on the Wason Selection Task seems

to assume that the rule to be evaluated by the test subject has an unambigu-

ous logical form and that, moreover, this logical form is the same in the

abstract and the “realistic” examples. But this can be disputed. As Stenning

and van Lambalgen (2008) show, the “abstract” cases are best interpreted

as “descriptive” conditionals, which then lead to several difficulties of inter-

pretation for the test subject. The “realistic” cases, on the other hand, seem

to be deontic conditionals, which are “easier” since they don’t require the

same interpretational effort from the test subjects.
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In other words, there is a reasoning process that leads to an assignment

of logical form, and a reasoning process that begins after the logical form

is fixed. The empirical results do not show that the two processes can’t

be described by (some) domain-general logic. In fact, Stenning and van

Lambalgen (2008) argue that the first process, that of reasoning to an inter-

pretation, is best analysed by some non-monotonic logic, while the second

process, that of reasoning from an interpretation, may sometimes well be

described by classical logic (see also Stenning and van Lambalgen, 2011).

We should tie these considerations together with some of the topics that

we discussed in Chapter 8. Following Stanovich (1999), Stenning and van

Lambalgen (2008) distinguish between the following three types of rules:

• Normative rules: reasoning as it should be, ideally

• Descriptive rules: reasoning as it is actually practised

• Prescriptive rules: norms that result from taking into account our bounded

rationality, i.e. computational limitations (due to the computational

complexity of classical logic, and the even higher complexity of probabil-

ity theory) and storage limitations (the impossibility of simultaneously

representing all factors relevant to a computation, say, of a plan to

achieve a given goal). (Stenning and van Lambalgen, 2008, 6)

Normative rules may comprise modus tollens or Bayes’ Theorem, descriptive

rules may comprise certain common fallacies (such as the Base-Rate Fallacy1),

1 Bayes’ Theorem is the name of the following equation:

P(A | B) =
P(B | A) · P(A)

P(B)

Here A and B are events, and ‘P(A)’ is the probability of (observing) event A

(independently of B), and ‘P(A | B)’ is the conditional probability of (observing) event A

given that B occurs; it is assumed that P(B) �= 0.

Bayes’ Theorem can then be used to calculate such conditional probability. Assume

that you tested a random person with a highly reliable drug test (the test is so reliable

that it produces merely 1% false positives and 1% false negatives), and the test came

out positive. How likely is it that the person tested indeed consumed the drug? You

might think that this probability must be high, since your test is so reliable. However,

as Bayes’ Theorem reminds us, this ignores the base rate, the probability of someone

using the drug in the first place. Let’s assume that the drug doesn’t have many users,

only 0.5% of the people use it. Plugging these numbers into Bayes’ Theorem shows

that the conditional probability for your test subject to be a drug user, given that the

test came out positive, is only about 33.2%. Ignoring the base rate and treating

P(A | B) = P(B | A) is called the Base-Rate Fallacy.
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and prescriptive rules are best thought of as classically invalid principles that

hold defeasibly under specific (common) circumstances.

Once these rules are conceptually distinguished, we can identify the

different strategies for how to interpret the empirical data concerning

human reasoning from a theory of rationality point of view (as discussed

in Chapter 8).2

Panglossians consider human reasoning competence and performance to

be actually correct. The apparent incorrectness (as it seems to show up in

the Wason Selection Task, for example) can be explained away by clever

choices in the task construal or the interpretation of logical connectives,

etc.

Apologists on the other hand admit that humans follow merely subnor-

mal prescriptive rules (because following the proper norms is computation-

ally too demanding for us).

Meliorists hold that we fall short of even following the subnormal

prescriptive rules.

Eliminativists finally hold that reasoning, in the sense of following any

domain-general rules, doesn’t really ever happen. We only follow domain-

specific algorithms that have evolved under constraints of time and energy.

We have seen that, typically, evolutionary psychologists are Elimina-

tivists. The position that Stenning and van Lambalgen (2008) defend is not

Panglossian because they hold that, for example, once an interpretation

of the task is fixed, subjects can make mistakes in reasoning from that

interpretation. However, it is not completely Apologist or Meliorist either

because they don’t follow the normative/prescriptive distinction for rules.

Instead, they are a certain type of Meliorist who hold that humans try to

follow domain-relative norms of logic.

Logic and Mathematics

The relationship status between mathematics and logic is best described

with Facebook’s famous ‘it’s complicated’. Of course, contemporary logic

is in part studied in mathematics departments and, even when it’s studied

by philosophers, it is studied with the help of mathematical tools. But what

is the relationship between mathematics and logic?

2 The following terminology is again adapted from Stanovich (1999).
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Let us begin with the perhaps more prominent view that mathemat-

ics just reduces to logic. This view in philosophy of mathematics is called

‘logicism’. The first serious attempt to achieve such a reduction was made

by Gottlob Frege, who sketched his project in Grundlagen der Arithmetik

(Frege, 1884) and then tried to carry it out in detail in Grundgesetze der

Arithmetik (Frege, 1893). In order to understand in what sense Frege tried

to reduce mathematics to logic, we need to clarify what he understood by

‘mathematics’, ‘logic’ and ‘to reduce’.

The intended reduction aimed at showing that mathematics was ana-

lytic in an epistemological sense, i.e. that it consists only of general logical

laws or definitions or of theorems that have proofs relying on such general

logical laws or definitions only. ‘Mathematics’ for Frege meant arithmetic

(as far as geometry was concerned, Frege followed Kant in believing that

its truths are synthetic), and the logic that Frege used was a higher-order

logic.

Frege managed to define equinumerosity in merely logical terms. The defi-

nition of ‘equinumerous’ says that two concepts are equinumerous if there

is a 1–1 mapping of the objects falling under them. This allowed him to

formulate “Hume’s Principle” in exclusively logical terms:

Hume’s Principle For any concepts F, G, the number of F is identical to the

number of G if and only if F and G are equinumerous.

or in the notation of second-order logic (where ‘#xFx’ is a singular term,

symbolizing ‘the (cardinal) number of’ the Fs’):

∀F∀G(#xFx = #xGx↔ ∃R(∀x(Fx→ ∃y∀z(z = y↔ (Gz ∧ Rxz)))

∧ ∀x(Gx→ ∃y∀z(z = y↔ (Fz ∧ Rzx)))))

Indeed, Hume’s Principle is sufficient for the derivation of the Peano–

Dedekind postulates for the arithmetic of natural numbers (Tennant, 2015).

Frege, however, tried to achieve more than that and base his theory of

numbers in a general theory of extensions, which was shown by Bertrand

Russell to lead to paradox.

Contemporary neologicists of the “Scottish School” follow Frege’s project

of epistemic foundationalism, explaining our knowledge of arithmetic (and

perhaps all of classical mathematics) on Frege’s Context Principle, abstraction

principles and second-order logic (Ebert and Rossberg, 2007):
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Roughly speaking, the function of the context principle is to guarantee that

mathematical singular terms indeed refer, and so refer to abstract objects.

The theory of abstraction principles aims firstly, to introduce mathematical

singular terms and secondly, to offer a “epistemically tractable” way of how

a subject can come to know basic mathematical principles. Lastly,

second-order logic is adopted in order to generate the theorems of

mathematics. (Ebert and Rossberg, 2007, 35)

Whether such a programme indeed establishes that mathematics is

reducible to logic (in some epistemological sense) is of course a matter

of whether the ingredients of that epistemic reduction can be considered

purely logical.

We already discussed in Chapter 3 the question of whether second-

order logic should be considered logic proper. If second-order logic really is

mathematics in “sheep’s clothing” then neologicism might still be a very

interesting project (showing that a certain part of mathematics is reducible

to another part of mathematics), but not foundationalist in the intended

sense.

A more pressing problemmight seem to be whether abstraction principles,

such as Hume’s Principle above, violate the requirement to use only logical

ingredients in the foundation of mathematics. After all, logic is supposed

to have no ontology, but then how can purely logical principles lead to a

theory of numbers?

Abstraction principles are meant to function as implicit definitions.

They are stipulated as true, and introduce new expressions; in this case

the expression ‘is the (cardinal) number of’. However, how do we know

that the right-hand side (the side to the right of the first occurrence of ‘↔’)

of such an abstraction principle is true? Ebert and Rossberg (2007) explain

the reasoning of the neologicists as follows: Arguably, it is a logical truth

that the instances of the concept being non-self-identical can be put into a one-

to-one correspondence with themselves. This is trivially so, because there

are no things that are not self-identical, which is held to be a logical truth.

This gives us

(#x(x �= x) = #x(x �= x))↔ ((x �= x) ≃ (x �= x))

In this expression, we abbreviate ‘there is a one-to-one correspondence

between’, with the symbol ‘≃’.
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If we assume that Hume’s Principle is true, and since the right-hand side

of the previous equivalence is a logical truth, we can discharge that right

part and get to

(#x(x �= x) = #x(x �= x))

Since, ‘#xFx’ is a singular term, we can existentially quantify into the

expression above, and get the following existential statement:

∃y(y = #x(x �= x))

If the quantifier is understood as existentially committing, knowledge

of logic (in some sense), together with certain stipulative definitions, leads

to the required ontology to build up a theory of numbers. Obviously, this

story contains several ‘if s’, but it is a very promising theory for explaining

our knowledge of mathematics and of numbers in particular.

Is Metalogic Mathematics?

But as we said at the beginning of this section, the relationship between

mathematics and logic is complicated. As we have discussed in Chapter 3,

the metatheory of logic (model-theoretic semantics in particular) makes

use of mathematical notions (such as sets). Doesn’t that show that the

foundations of logic (even those of first-order predicate logic) are actually

mathematical? Note that this question is not only a matter of concern for

a neologicist. For example, many nominalist programmes in the philoso-

phy of mathematics rely on logical notions (such as consistency or logical

entailment) when accounting for the purported ontological innocence of

mathematics. However, if we can provide an account of these logical

notions only by invoking mathematical objects, how can the nominalist

account of mathematics then be said to have shown that mathematics is

indeed dispensable (see Wilholt, 2006)?

One possibility is to take certain logical notions to be simply primitive.

So, logical consequence is perhaps simply a primitive notion that is not in

need of an account. This is the strategy of, for example, Field (1991). Some

nominalists might find this move unacceptable; arguably the notions of

logical consequence – of the technical kind that is required for nominalist

programmes to succeed – is too far away from our intuitive understanding

to be considered primitive:
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When beginning students are first told about logical possibility, logical

consequence, etc., most of them seem to have some idea of what is meant,

but consider how much their initial “intuitions” differ from our “refined”

ones. The anti-realist owes us some account of how we plausibly could

come to understand the notions in question (as applied here) as we in fact

do, independent of our mathematics. Without this it is empty to use a word

like “primitive” [. . .]. (Shapiro, 1993, 475)

An alternative strategy would be to show that metalogical notions, such

as that of logical consequence can be explicated in nominalistically acceptable

terms, quantifying over nominalistically acceptable entities (Rossberg and

Cohnitz, 2009).

There is a further way in which mathematics could be considered foun-

dational to logic, rather than the other way around. The logicist and

neologicist programmes that we discussed above take logic to be funda-

mental and then try to account on that basis for mathematics. However,

there is an influential tradition in philosophy of mathematics to see that

relationship between logic and mathematics to be exactly reversed. Per-

haps mathematics and mathematical reasoning should be considered to be

fundamental and an account of logic should follow from that basis. This is

the tradition known as “intuitionism” in the philosophy of mathematics.

Intuitionism in the Philosophy of Mathematics

The version of intuitionism in mathematics which supports this view on

the relationship between mathematics and logic goes back to the work

of the Dutch mathematician Luitzen Egbertus Jan Brouwer (1881–1966).

Brouwer held a view similar to that of Immanuel Kant on which mathe-

matics is founded on a type of “pure intuition”. In Brouwer’s philosophy,

mathematics is founded on the pure intuition of inner time. This is to be

understood not as a psychological theory, but rather as a psychologistic

account of mathematics that is rooted in an idealization of mathematical

thinking (Iemhoff, 2016). In any case, on this view mathematics is a “lan-

guageless activity” and thus separate from “mathematical language and

hence from the phenomena of language described by theoretical logic”

(Brouwer, 1981, 4).

Therefore logic is neither the foundation of, nor a constraint on,

mathematics and mathematical reasoning. Mathematicians use language
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to communicate and exchange their mathematical ideas, but the ideas

are themselves independent of the language used for their transmis-

sion. But then logic is a description of the patterns found in the

linguistic communication of mathematical ideas. Logic, on this view, is not

normative for thought. It’s neither a normative theory nor normative in

the Fregean sense of being a proper guide for reasoning due to the fact

that it codifies the (descriptive) laws of truth. The source of mathematical

innovation is the free mind of the creative subject. Logic might not yet

codify what intuition may still come up with.

Intuitionistic mathematics is in several ways different from “classical”

mathematics. It is a form of constructivism and a truly revisionary account

of mathematics. Neither is all of classical analysis intuitionistically accept-

able, nor is all of intuitionistic analysis classically acceptable. The logic that

is lifted from intuitionistic mathematics is intuitionistic logic. We don’t have

the space to discuss it in any detail, but still want to provide the main idea

behind it.

As we said, intuitionism is a kind of constructivism. Mathematical enti-

ties are constructed, not discovered, and so claims about them must be the

result of (constructive) proofs. A logic that is to describe this reasoning will

not contain the law of excluded middle, (φ ∨¬φ). Brouwer provided “weak

counterexamples”3 against this law. Consider the Twin Primes Conjecture, i.e.

the conjecture that there are an infinite number of twin primes, primes of

the form (p, p+2). This conjecture that has not (yet) been proven in mathe-

matics (example from Moschovakis (2015)). Thus, we have no proof, either

for it or for its negation. Let x, y range over the natural numbers 0, 1, 2,

. . . and ‘B(x)’ abbreviate the property expressed by the following claim in

which the variable x is free: there is a y greater than x such that both y and

y+ 2 are prime numbers, or, formally:

∃y(y > x ∧ Prime(y) ∧ Prime(y+ 2))

We have no general method for deciding whether ‘B(x)’ is true or false for

arbitrary x since we have no proof of the conjecture, so ‘∀x(B(x)∨¬B(x))’ can-

not be asserted in the present state of our knowledge. But if ‘A’ abbreviates

3 These are considered “weak” counterexamples, because they merely show that the

law of excluded middle has instances for which we don’t have positive grounds, but

don’t strictly refute the law (see van Atten, 2017).
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the statement ‘∀xB(x)’, then ‘(A∨¬A)’ cannot be asserted because neither ‘A’

nor ‘¬A’ has yet been proved.

Arend Heyting developed an informal interpretation of the logical con-

stants that tried to capture the principles of intuitionistic reasoning. This

interpretation is known as the Brouwer–Heyting–Kolmogorov–interpretation.

According to it, the logical constants are to be understood in the following

way (Iemhoff, 2016):

• ⊥ is not provable.

• A proof of φ ∧ ψ consists of a proof of φ and a proof of ψ .

• A proof of φ ∨ ψ consists of a proof of A or a proof of ψ .

• A proof of φ → ψ is a construction which transforms any proof of φ into

a proof of ψ .

• A proof of ∃xφ(x) is given by presenting an element d of the domain and

a proof of φ(d).

• A proof of ∀xφ(x) is a construction which transforms every proof that d

belongs to the domain into a proof of φ(d).

Heyting also provided a formal logic that respects this interpretation,

intuitionistic logic (we will here concentrate on the propositional part only).

It’s actually quite simple to arrive at this system by modifying the sys-

tem developed in Chapter 2 – all that’s required is that we restrict sequents

(and, via this, rules) to those that contain no more than one sentence on

the right-hand side! For a few rules (explicitly, for WR, ER, CR and com) this

means abandoning them altogether. For others it requires simply a restric-

tion. For example, the negation rules must be restricted to the instances in

which the right-hand side is empty in the bottom consecution; the cut rule

to instances in which 	 is empty and � is a singleton, etc.

In the classical system, double negation elimination – i.e. the sequent

¬¬φ ⇒ φ – was easily derivable, e.g. as follows:

φ ⇒ φ
¬IR

⇒ ¬φ,φ
¬IL

¬¬φ ⇒ φ

But the first step here is not intuitionistically acceptable. Of course, show-

ing that some classically acceptable proof of ¬¬φ ⇒ φ fails intuitionistically

(which is what we’ve just done) is a far cry from showing that there is

no intuitionistically acceptable proof of ¬¬φ ⇒ φ. To prove this stronger

result, we would need to develop machinery beyond the scope of this
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text. But, as it turns out, this sequent is in fact not derivable at all in

the single-consequence version of the system. (For proofs of this, see e.g.

Dummett (2000).)

The new system does, however, allow us to derive double negation introduc-

tion – i.e. the sequent φ ⇒ ¬¬φ – for example as follows:

φ ⇒ φ
¬IL

φ,¬φ ⇒
¬IR

φ ⇒ ¬¬φ

Notice also that while intuitionistic logic drops the completeness axiom ⇒

φ,¬φ, it maintains the consistency axiom φ,¬φ ⇒.

The logic that results also blocks the proof of⇒ φ ∨¬φ. Classically, this

was derivable as follows:

φ ⇒ φ
R(∨)

φ ⇒ φ ∨ ¬φ
¬IR

⇒ ¬φ,φ ∨ ¬φ
R(∨)

⇒ φ ∨ ¬φ,φ ∨ ¬φ
CR

⇒ φ ∨ ¬φ

Again, the step involving ¬IR is not intuitionistically acceptable.

Since the proof rules for intuitionistic logic are just restricted forms of

the proof rules for classical logic, it’s clear that all intuitionistically deriv-

able sequents are classically derivable. The converse, we’ve now seen, is

not true.

Intuitionistic logic has some interesting properties. For example, Kurt

Gödel proved the “Disjunction Property” for intuitionistic logic (IL):

⊢IL φ ∨ ψ implies ⊢IL φ or ⊢IL ψ

a principle which is violated in classical logic (since (φ ∨ ¬φ) also holds for

instances of φ which aren’t tautologies).

There are also several semantics developed for intuitionistic logic. The

most prominent is perhaps Kripke’s (1965). Some of these semantics

(including Kripke’s) are, however, only classical means to study intuition-

istic logic, since the completeness proof for these logics is only provable

by classical means (Kreisel, 1962). The situation is even a bit more curi-

ous than that. Not only is the completeness proof only classically available,

completeness – for these semantics – also looks suspicious to the intuition-

ist, since by classical and intuitionistcally acceptable means it can be shown

that if every intuitionistically valid formula is intuitionistically provable
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then a certain, intuitionistically highly implausible consequence follows

(see Williamson, 2013).

As we said, intuitionistic logic was initially based on considerations in

philosophy of mathematics, but it is a rich field in logic itself. Its rele-

vance isn’t confined to mathematical constructivism. As Michael Dummett

argued, it should be a general insight to anti-realists that certain discourses

will require logics that give up on the law of excluded middle (Dummett,

1991). In fact – for Dummett – figuring out which logical constants govern

a discourse, and hence which logic is the right one for that discourse, was

supposed to provide a way to settle the metaphysical dispute between real-

ists and anti-realists bottom-up. This leads us to the question of what role

logic should play in philosophy.

Logic and Philosophy

Being a philosophical subdiscipline, logic is of course of relevance to

philosophy. Logic, as a theory, models notions that are of philosophical

relevance, e.g. logical truth, logical consequence, interpretation, inference, proof,

etc. It thereby sheds light on certain phenomena, such as the observation

that some natural language sentences seem true just in virtue of their

form, that some natural language arguments seem to be such that you

can’t rationally deny the conclusion if you accept the premises, which

is not because of their particular content, but because of the form of

these arguments, etc. – you know the story. Logic does that in a way in

which many scientific theories explain real-life phenomena: it provides

a partial model of the real-life phenomenon which, if adequate, displays

the inner workings of the relevant mechanism that gives rise to the

phenomenon, abstracting away from aspects of the real thing that are

assumed not to be of any relevant influence. This is the “logic-as-modelling”

view:

The present claim is that a formal language is a mathematical model of a

natural language, in roughly the same sense as, say, a Turing machine is a

model of calculation, a collection of point masses is a model of a system of

physical objects, and the Bohr construction is a model of an atom. In other

words, a formal language displays certain features of natural languages, or

idealizations thereof, while simplifying other features. (Shapiro, 2006, 49)

Consider another model. An architect scale model of a house uses

materials such as paper, wood and clay, although the house it models is
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made of concrete, steel and glass, say. The architect’s paper, wood, and clay

are the equivalent of the logician’s mathematical objects: sets, functions,

ordered pairs, etc. The material that the architect is using in the model

lacks many of the properties that the material of the house will have. But

that’s not a problem either since, again, the model does not need to repre-

sent all the aspects of the actual system modelled but only some of them.

Also, a model does not need to represent the aspects that it does model

by exemplifying them. This is why a tool of precision, such as mathematics,

can be used to model a phenomenon of imprecision such as, for example,

vagueness (see Cook, 2002; Shapiro, 2006).

Because models typically only model certain aspects of the actual phe-

nomenon, while leaving out others, there might be several models of one

and the same phenomenon, that are all “correct” or “adequate”, simply

because they are meant to model different aspects. Note that there doesn’t

have to be one supermodel that models all aspects and is thus, in some

sense, more “correct” than all others. It is often the very point of modelling

to leave out certain details in order to represent those aspects of the actual

phenomenon that matter for understanding what one is interested in. In

these cases any more “complete” model wouldn’t be better, it would serve

its function (as a model of that aspect) worse than the more limited model

(see Cook, 2010). We explained in Chapter 7 how this “logic-as-modelling”

view leads to a certain kind of pluralism about logic.

But the role of logic in philosophy is far wider than merely providing a

theory of such concepts as logical consequence. Many philosophical texts con-

tain symbols from formal logic, even though in these texts the formulas

are not part of a model of any natural language (or other phenomenon).

Instead they are part of the technically enriched language in which the philo-

sophical text is written. This might be useful, if one wants to make, for

example, complicated quantified claims and tries to avoid scope ambigui-

ties, or wants to make explicit what one is quantifying over, etc. In these

cases, logical notation functions like abbreviations, or as explicitly defined

theoretical terms.

As we have seen above, logic as a theory also plays a role in other empir-

ical theories which are of interest to philosophers. Formal semantics is

of interest to philosophers of language; theories of reasoning, as they are

developed in cognitive science, are of interest to epistemologists. In fact,

using logic to model epistemic processes is not uncommon at all in philosophy.

Analytic epistemology is traditionally interested in rational reconstructions
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of cognitive processes. The purpose of these rational reconstructions is

to make plain how a certain cognitive process might eventually result in

knowledge or justified beliefs, etc., if we pre-theoretically think that we

have such knowledge or such justified beliefs. Typically a rational recon-

struction assumes some (more or less) unproblematic basis of knowledge

and some justification-preserving inference pattern and then goes on to

show how these two suffice to generate the explicandum.

The role of these justification-preserving inference patterns seems cru-

cial. It is not enough just to know that so far we have been quite successful

in reasoning from basis X with pattern Y; the philosophical analysis

should tell us why that is so. This explanatory function is usually sat-

isfied by delimiting the choice of inference patterns (based on a priori

considerations).

In, for example, modal epistemology we try to apply the project of ana-

lytic epistemology to our knowledge of necessities and possibilities. How

do we know what is (merely) possible? Mere possibilities can’t be directly

observed, and neither can they be derived from our knowledge of what’s

actual.4 Likewise, what is necessary goes beyond what is actually the case.

But then, how can we know of any (nontrivial) necessities?

Consider as an example Timothy Williamson’s account. Williamson

(2007) observes that we seem to have a capacity to evaluate counterfactu-

als. We can even explain why we should have such a capacity and why we

should consider it to be reliable (on the basis of the role that it plays in our

decision making). We often consider what would be the case if and then base

our decisions (largely successfully) on the projected outcomes. Williamson

then goes on to show that modal logic (of the strength of S5) is a subsys-

tem of counterfactual logic. In other words, knowing the truth of certain

counterfactuals is sufficient for knowing corresponding possibilities and

necessities.

In order for such an account to explain our problematic knowledge more

is needed than merely showing that there is some logical route from an

unproblematic kind of knowledge to the kind of knowledge we want to

explain. It also needs to be shown that this logical route is psychologically

real. In our example, this would require showing that our knowledge of

4 Mere possibilities can’t even be straightforwardly derived from knowledge of what is

necessary, if the language in which we reason has at least the expressive powers of

polyadic first-order logic (see Cohnitz, 2012).
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necessities and possibilities is actually arrived at by reasoning through

certain counterfactuals (Jenkins, 2008; Cohnitz, 2012).

The most prominent application of logic in philosophy is, however,

considered to lie in the formal reconstruction of arguments. At least most intro-

ductory textbooks to philosophical logic “sell” logic that way. Logic is then

seen as a central methodological tool of philosophical analysis. We can check

whether arguments (our own as well as those of other philosophers) are

logically valid, find points of criticism if they are not, discover hidden

premises, etc.

However, it quickly becomes apparent to students in such introduc-

tory logic courses that matters aren’t quite so straightforward. First of

all, even though the “gold standard” for good arguments might be that

of deductive validity, philosophy often doesn’t conform to that standard.

Philosophical argumentation is more often abductive rather than deduc-

tive. We don’t possess a set of shared, general principles from which we

can simply deduce the solutions to philosophical problems. Often philoso-

phers have to go with what’s plausible given certain other assumptions,

rather than with what follows from such assumptions with necessity. Still,

such arguments can be good arguments; as we already said, they might

be the best arguments available in a certain domain. Hence, being deduc-

tively valid is not actually a necessary condition for being a good argument

in philosophy, and thus showing by formal means that an argument is

not deductively valid is a bit less exciting than it might initially have

seemed.

But even if deductive validity was a necessary condition for goodness of

arguments, formal logic is only a very limited tool for establishing invalid-

ity. At most one can show that an argument is invalid on that level of logical

analysis, leaving it open that there might be a deeper level of logical analysis

on which the argument is deductively valid after all. For example, showing

that an argument is invalid if reconstructed in propositional logic leaves

open whether the argument might be deductively valid in first-order predi-

cate logic. Showing that an argument is invalid in first-order predicate logic

leaves open whether it might be valid in second-order logic, or modal logic,

etc.5

As should be clear, being formally (and thus deductively) valid is not suf-

ficient for being a good argument either. Arguments that are deductively

5 You remember this discussion from Chapter 4, the Debunker’s view on logical form.
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valid also have to have true premises in order to be sound, and might have

to satisfy further constraints in order to be convincing, etc. Rather, being

deductively valid is something like an INUS-condition for being a good argu-

ment, an insufficient, but necessary part of an unnecessary but sufficient

condition.

So, logic has its limits as a general methodological tool. Still, having

a general methodology in philosophy, even if it is of only limited appli-

cability, might seem highly desirable. Philosophers challenge everything;

no assumption, no basic belief is safe from being scrutinized. Having at

least logic as a framework in which philosophy proceeds (to some degree)

might be seen as the only thing that keeps philosophical enquiry from

ending up in intellectual anarchy and chaos. Can logic really play the role

of such a framework for philosophy? What constraints does that put on

logic?

In Chapter 5 we discussed the view that logic should be metaphysically

neutral. If we want logic to provide something like a general framework

in which philosophy can proceed, then that framework should be a com-

pletely neutral arbiter: it shouldn’t have any metaphysical or other content

which could preclude a fair evaluation of any philosophical view. As we

have seen, logic is not like that. Virtually every logical principle has been

challenged at some point and the basis of these challenges have often been

metaphysical considerations. Thus, logic isn’t completely neutral in that

sense. Every logical framework makes some metaphysical assumptions.

Fortunately that doesn’t mean that logic must be useless for philosophy.

We have also seen that there is a wide variety of available logical frame-

works at the level of logical theory. Thus, if one is worried about the

metaphysical presuppositions of a logic being in the way of its neutrality

given a certain topic, one might chose a different framework which doesn’t

have the problematic presupposition.

There are further properties that might be desirable in a logic, if we

take the application of logic in philosophy as our primary motivation. For

example, philosophical theories – metaphysical theories in particular –

are, arguably, intended as unrestricted claims. The physicalist claim that

everything is physical is not supposed to apply only to a suitably restricted

domain; it is meant to talk about absolutely everything. If that’s so, then the

logic of philosophy should allow for unrestricted quantification (cf. our

discussion in Chapter 2).
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Likewise, when philosophers of language want to talk about truth, they

don’t just want to talk about truth-in-L, but about truth in general, as it

concerns all languages. If this is not possible within standard logic (because

of the Liar Paradox), then the logic of philosophy perhaps needs to be non-

classical:

Especially philosophy cannot restrict itself to non-universal languages.

Philosophy does not want to deal only with the structure or conditions of

talking in some specific language or languages of some kind, but aims at a

theory of the basic structures and conditions of having a language in general.

This requires the corresponding resources to express the universal claims.

Universal theories of meaning, truth, knowledge etc. [are not possible] if we

can talk only from some meta-language “down” to some distinct

object-language. [. . .] Our concept of language, therefore, involves unity and

universality. There has to be a set of properties defining what a language is.

These properties are preserved in change or translation. Without semantic

closure we would not be able to elucidate a concept that we seem to have!

So I take it that we need semantic closure. Nothing, but dialetheism seems

to be able to deliver it. (Bremer, 2008, 212–213)

These are at least possible considerations that one could raise for

the evaluation of a particular logic as a methodological framework for

philosophy.

Logic as a Science

Logic is special; logic is general, and basic, it has normative force and is

certain. There are also other things that have such properties, but logic is

special in possessing these properties in the absolute extreme. As Gila Sher

(1999) argues, this makes it hard to give an explanatory account of logic and

its properties. Let’s begin with logic’s generality. Logic supposedly applies

to every subject matter. But if logic applies to everything conceivable, then

it has no subject matter of its own, and thus doesn’t say anything in par-

ticular about anything. Hence logic is apparently empty. Furthermore, if

logic is indeed universally applicable, then there is no place outside logic,

no “vantage point from which to explain logic” (Sher, 1999, 210).

Logic’s basicness leads to similar puzzles. Logic is the most fundamen-

tal theory. There is no knowledge possible without logic. But if logic and

its concepts are the most basic and fundamental, then there is nothing
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from which logic itself could be explained, no concepts “further down” in

the hierarchy that could ground or explain the concepts or properties of

logic.

Systems of norms other than logic are all constrained by the norms of

logic. In contrast, the norms of logic are not constrained by any other

system of norms. But how could the authority of the norms of logic

be explained if not by showing how it flows from other, more basic

norms?

Likewise, logic is absolutely certain. We can’t point to anything more

certain from which we could begin to explain the certainty of logic. Logic

seems to be a unique thing, quite peculiar among the sciences.

Logic is not special. In the same paper in which Gila Sher lists these

apparent obstacles for any explanation of logic, she also provides an

account of logic as a theory of the formal that would explain all these fea-

tures of logic, including the excessiveness in which logic seems to possess

them. As we have seen in Chapter 4, Sher demarcates the formal via an

invariance principle. “Formal properties do not distinguish between isomor-

phic structures of objects” (Sher, 1999, 233). If that’s so, then there can’t be

a domain of objects for which the laws of logic do not hold (which explains

logic’s generality). Since logic is so general, it holds in all domains, includ-

ing the domains of all other sciences, but since formal properties do not

distinguish the properties of other sciences, logic is independent of these

(which explains its basicness and mutatis mutandis also its superior norma-

tive force). Thanks to the invariance principle, logic seems in particular

to be invariant with respect to empirical differences between structures,

which explains logic’s high degree of epistemic stability.

Perhaps logic is even less special. Perhaps the difference between

logic and other sciences is more a matter of degree. As Penelope Maddy

(2014) shows, we could have arrived at a theory explaining the reliabil-

ity of logical inferences in situations that obey certain formal constraints

without assuming any particularly “philosophical” machinery (such as

notions of possible worlds, or an account of a priori knowledge, etc.), as

a “perfectly ordinary answer to a perfectly ordinary question”. Her unas-

suming enquirer, the so-called “Second Philosopher”, begins with a simple

question:

What’s hidden in my hand is either an ordinary dime or a foreign coin of a

type I’ve never seen. (I drew it blindfolded from a bin filled with just these
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two types of objects.) It’s not a dime. (I can tell by the feel of it.) Then,

obviously, it must be a foreign coin! But what makes this so?

(Maddy, 2014, 93)

The Second Philosopher quickly observes that the reliability of such

inferences is independent of all but the most general structural features

of the situation, notices how conjunctions and disjunctions interrelate and

that properties can hold for some objects or sometimes for all. Via a three-

valued logic, which the Second Philosopher calls “rudimentary logic”, she

eventually arrives at a system formally like classical logic which works as

a widely applicable idealization to all situations that instantiate formal

structure. From developmental psychology she learns why inferences in

accordance with that system would strike us as being obvious: we develop

early on a capacity to detect formal structure in the world, a capacity we

have thanks to the fact that we typically interact with aspects of the world

instantiating formal structure.

[The Second Philosopher’s] answer doesn’t deliver on the usual

philosophical expectations: the reliability of the inference is contingent,

our knowledge of it is only minimally a priori at best. The account itself

results from plain empirical enquiry, which may lead some to insist that it

isn’t philosophy at all. (Maddy, 2014, 108)

Views like this, which hold that logic is continuous with science in

content and method, have come to be called “anti-exceptionalist” (Hjort-

land, 2017). According to such views, not only is philosophy an abductive

discipline (as we have already argued above), but even logic follows the

abductive methodology of the sciences. Logics are revisable and can be com-

pared which each other as to how well they fit the evidence, but also with

respect to other theoretical virtues, such as “strength, simplicity, elegance,

and unifying power” (Williamson, 2017, 14). We have encountered such

anti-exceptionalist views already in Chapters 5 and 6.

According to some anti-exceptionalists, logic doesn’t have a special nor-

mative status either, nor does it have a special content (thus logic is neither

describing the psychology of deductive reasoning, nor in any sense about

language). Williamson, for example, holds a deflationary view according to

which a logical theory consists of sentences that are unrestricted universal

generalizations (in fact, the universal closures of valid arguments). These
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sentences are about neither language, concepts nor reasoning, but about

the world (Williamson, 2017).6

Like Maddy, Williamson holds that – even on such a revisionist view

about the nature of logical theory and methodology – classical logic should

come out as the comparatively best theory. He argues that the best case for

alternatives to classical logic can be made on the basis of the semantic para-

doxes. Classical logic and unrestricted disquotation are inconsistent – we

can’t have them both. In Williamson’s abductive methodology, the ques-

tion now becomes which theoretical virtues on either side can help us in

deciding what we want to give up. Both unrestricted classical logic and

unrestricted disquotation are desirable.

Eventually, Williamson decides to favour the more fundamental the-

ory (as a general methodological principle of the sciences) and argues that

classical logic is more fundamental than disquotation, since the former is

integral to mathematics, which is integral to all our best scientific theories,

such that a revision of classical logic would lead to major changes to theo-

ries in all sciences. Disquotation, on the other hand, is only concerned with

language and thus a lot less fundamental and easier to revise (see Hjortland

(2017) for a reconstruction of Williamson’s argument).

This leads us back to a question we encountered at the very beginning

of this chapter. Is logic really fundamental for the sciences, and, if so, then

in what sense?

Of course, logical reasoning is fundamental to all sciences. Plausibly, clas-

sical logic is in that sense indeed an integral part of mathematics. But that

doesn’t make classical logical theory an integral part of mathematics. As Hjort-

land (2017) argues, mathematics was already done before classical logic

was properly captured in a formal theory and also nowadays largely pro-

ceeds without explicitly citing logical theory. The fact that mathematical

reasoning often instantiates classical principles is compatible with classi-

cal logic being restricted to the mathematical domain (and hence does not

support the kind of unrestricted universal generalizations that Williamson

considers logic to consist of).

6 There are also non-deflationary anti-exceptionalists, such as Priest (2016) who would

still hold that logical theories should be about the familiar logical notions, such as

validity, logical consequence, consistency, etc. (Hjortland, 2017).
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But if logic is not the most fundamental theory for that reason, then this

is just another sense in which logic isn’t special as a theory.

Questions

1. We said that some semanticists invoke the Principle of Composition-

ality in order to explain how finite human beings can understand

languages with infinitely many expressions with different meanings.

How is this explanation achieved? Which feature of compositionality is

required for such an explanation?

2. Assume that a “Panglossian” approach would succeed and it could be

shown that human beings reason by and large correctly. Would that

have implications for psychologism (as a metaphysical view on logic)?

3. In the discussion of intuitionistic proof theory we suggested that it is

difficult to show that the provability of a certain classical theorem is

blocked. What would be needed to show that a certain formula is not

provable in such an intuitionistic system?
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