
Online Learning Reference: - InfyTQ Courses

#InfyTQ Data Structures

Using Python PART- 1

Notes: -

Let’s Start with the Example that why we use Data

Structures

Data Structures: - Data structures represent the

way of arranging data in computer so that it can be

accessed and used efficiently. It is all about

grouping and storing collections of data in memory,

operations that can be performed on these

collections and algorithms that can be used for these

operations.

There are different types of data structures like list,

stack, queue etc. Each of them is suitable for

specific type of tasks.

Online Learning Reference: - InfyTQ Courses

Basic Terminology of Data Structures:-

1. Data

2. Group Items

3. Record

4. File

Online Learning Reference: - InfyTQ Courses

#Need of Data Structures: -

1. Processor Speed

2. Data Search

3. Multiple Request

#Advantages: -

1. Efficiency

2. Reusability

#Operations:-

1. Insert

2. Delete

3. Searching

4. Traversing

5. Sorting

6. Merge

List PART-1: -

Online Learning Reference: - InfyTQ Courses

:- List is a group of different types of elements.

Following are the features of List:-

1. Linear Data Structures.

2. Used to store sequence of values.

3. Grow and Shrink according to need.

Ex: - Preparing daily routine

Array is a data type which is fixed capacity and can

store a collection of elements. However, we can use it

to implement list data structure.

For Implementation we will be using list data type in

python which is internally dynamic array which can

grow and shrink based on the elements added or

removed from it.

Online Learning Reference: - InfyTQ Courses

Common operations on list are:

Online Learning Reference: - InfyTQ Courses

1. List using Array (Add Operation): -

When an element is added to an empty list in Python, a block

of memory is allocated and element is added at index position

0. The remaining memory is considered to be reserved space

which will be used later for addition or insertion of elements.

2. List using Array (Insert Operation): -

Online Learning Reference: - InfyTQ Courses

3. List using Array (Delete Operation): -

#Summary: -

Online Learning Reference: - InfyTQ Courses

Not Good Choice to Implement with Array.

#List Using Linked List: -

There is one more implementation for list which is

using Linked List

A linked list consists of a group of nodes which together represent a

sequence or a list. Each node will have a data part which holds the

actual data and an address part which holds the link to the next node.

The first node in the list is known as head node and the last node is

known as tail node. Unlike array, in linked list, the nodes need not be

stored in contiguous memory locations.

Online Learning Reference: - InfyTQ Courses

Check Diagram from Handwritten Notes

Pdf

The node in the linked list can be represented as

follows:

Online Learning Reference: - InfyTQ Courses

1. List Using Linked List (Creation): -

To link the nodes and create a linked list, let’s create a new

class, LinkedList with two attributes, head and tail both initialized to

None as shown below.

class LinkedList:

 def __init__(self):

 self.__head=None

 self.__tail=None

 def get_head(self):

 return self.__head

 def get_tail(self):

 return self.__tail

2. List Using Linked List (Display): -

Assume that Maria's list is maintained as a linked list and she
wants to traverse through the list and display the items in the list
starting from the first item.

display()

1. Call the head node as temp

2. While temp is not None,

 a. Display temp’s data

 b. Make the next node as temp

Online Learning Reference: - InfyTQ Courses

3. List Using Linked List (Add): -

Let's start creating Maria's list from the beginning. She wants to add
"Sugar" as the first item and after that add "Teabags" to the end of the
linked list.

add(data)

1. Create a new node with the data

2. If the linked list is empty (head node is not referring to any other node),

 make the head node and the tail node refer to the new node

3. Otherwise,

 a. Make the tail node’s link refer to new node

 b. Call the new node as tail node

Online Learning Reference: - InfyTQ Courses

#List- PART-2

1. List Using Linked List (Search):

Maria wants to find out whether her list has the following items:

Milk, Salt, Biscuits, Apple Juice, Pomegranate, Watermelon

2. List Using Linked List (Insert):

Maria wants to insert an item after an existing item in the list.

insert(data,data_before)

1. Create a new node with the given data

2. If the data_before is None,

 a. Make the new node's link refer to head node

 b. Call the new node as head node

 c. If the new node's link is None, make it the tail node

3. Else

Online Learning Reference: - InfyTQ Courses

 a. Find the node with data_before, once found consider it as node_before

 b. Make the new node’s link refer to node_before’s link.

 c. Make the node_before’s link refer to new node

 d. If new node’s link is None, make it the tail node

4. If node with data_before is not found, display appropriate error message

3. List Using Linked List (Delete):

delete(data):

1. Find the node with the given data. If found,

 a. If the node to be deleted is head node, make the next

node as head node

 1. If it is also the tail node, make the tail node as

None

 b. Otherwise,

 1. Traverse till the node before the node to be

deleted, call it temp

 2. Make temp’s link refer to node’s link.

 3. If the node to be deleted is the tail node, call the

temp as tail node

 4. Make the node's link as None

2. If the node to be deleted is not found, display

appropriate error message

Online Learning Reference: - InfyTQ Courses

Stack: -

Ex:-

Maria is arranging the shirts of Peter one on top of the other in the

cupboard. She is very particular that Peter should always wear the

shirt at the top.

1. Arranging shirts in the Cupboard?

2. Peter take which shirt

Maria needs your help to arrange the
shirts one on top of the other in the
cupboard and she wants Peter to
always take the shirt on top of the pile.

This pile of shirts arranged one on
top of the other which follows Last-
In-First-Out (LIFO) principle is
known as Stack.

 Operations possible on the stack
are:

1. Push or insert an element to
the top of the stack

2. Pop or remove an element
from top of the stack

Online Learning Reference: - InfyTQ Courses

1. Push Algorithm: -

push(data):

1. Check whether the stack is full. If full,

display appropriate message

2. If not,

 a. increment top by one

 b. Add the element at top position in the

elements array

Online Learning Reference: - InfyTQ Courses

2. Pop Algorithm: -

pop:

1. Check whether the stack is empty. If empty,

display appropriate message

2. If not,

 a. Retrieve data at the top of the stack

 b. Decrement top by 1

 c. Return the retrieved data

#Queue: -

Peter and Maria went for a movie one day. In the multiplex, the tickets
were issued on first-come-first-serve basis and people were standing
behind each other waiting for their turn. So, they went to the back and
stood behind the last person waiting for the ticket.

Online Learning Reference: - InfyTQ Courses

Peter and Maria went
for a movie one day. In
the multiplex, the tickets
were issued on first-
come-first-serve basis
and people were
standing behind each
other waiting for their
turn. So they went to the
back and stood behind
the last person waiting
for the ticket.

Maria is waiting for her turn
to buy the movie tickets in
the multiplex. She is trying to
understand how this First-in-
First-Out system is working.
Let’s see whether we can
help her understand it.

Here, the people are
standing one behind the
other and they are serviced
based on First-In-First-Out
(FIFO) mechanism. Such an
arrangement is known
as Queue.

Operations possible on the
queue are:

1. En-queue or add an
element to the end of
the queue

2. De-queue or remove
an element from the
front of the queue

Online Learning Reference: - InfyTQ Courses

1. Queue(enqueue Operation):-

enqueue (data):

1. Check whether queue is full. If full, display

appropriate message

2. If not,

 a. increment rear by one

 b. Add the element at rear position in the elements

array

Online Learning Reference: - InfyTQ Courses

2. Queue(dequeue Operation):-

dequeue()

1. Check whether the queue is empty. If it is empty,

display appropriate message

2. If not,

 a. Retrieve data at the front of the queue

 b. Increment front by 1

 c. Return the retrieved data

#Non- Linear Data Structures: -

Scenario-1:

The network engineers of a company are trying to connect all the
computers (numbered 1 to 9) in the company network. They also need to
provide a path to traverse from one computer to the other.

Scenario-2:

Maria is planning a vacation trip to Europe and is trying to choose the best
air route from the available options based on the travel time in hrs.
Option-1: Bangalore(4hrs) -> Dubai(7hrs)-> Paris(1hr)-> London
Option-2: Bangalore(3hrs)->Delhi(8hrs)->Frankfurt(2hrs)->London
Option-3: Bangalore(4hrs)->Dubai(7hrs)->London

Online Learning Reference: - InfyTQ Courses

#GRAPH

In these scenarios, we understand that we cannot use any of the
linear data structures like array, linked list, stack or queue to
represent it. Here, we need an arrangement which allows to have
a set of vertices and edges between them. Such a data structure
is known as graph.

Graph is a non-linear data structure having a set
of vertices(or nodes) and edges between vertices. It can have
any number of edges and nodes and any node can be connected
to any other node by an edge. It can be implemented using
arrays or linked lists.

Online Learning Reference: - InfyTQ Courses

Common operations possible on graph are listed below:

Online Learning Reference: - InfyTQ Courses

#TREE: -

Scenario-1:

Maria is preparing her family tree. She has her grandfather as the head of
the family. Her grandfather has three sons and one daughter. Her aunt
and uncles have one son and one daughter each. Maria is the only child
of her father.

Scenario-2:

Peter who has become the head of his team is preparing the organization
structure. He has two senior managers reporting into him. To each of the
senior managers, there are two managers reporting and to each of the
managers, there are again two software engineers reporting.

This type of non-linear arrangement where a node is attached to

one or more nodes directly beneath it, is a special type of graph known

as tree. In this data structure, the top most node is called the root and

the connections between nodes are called edges. Nodes that have no

children are called leaf nodes and non-root and non-leaf nodes are

called internal nodes.

Online Learning Reference: - InfyTQ Courses

