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PREFACE TO
THE SECOND EDITION

THE first edition of this book did not contain an exposition
of Aristotle’s modal syllogistic. I was not able to examine
Aristotle’s ideas of necessity and possibility from the standpoint
of the known systems of modal logic, as none of them was in my
opinion correct. In order to master this difficult subject I had
to construct for myself a system of modal logic. The first outlines
of this I developed in connexion with Aristotle’s ideas in my
lectures delivered in the Royal Irish Academy during 1951 and
in the Queen’s University of Belfast in 1952. The complete
system I published in The Journal of Computing Systems, 1953.
My system of modal logic is different from any other such
system, and from its standpoint I was able to explain the diffi-
culties and correct the errors of the Aristotelian modal syllo-
gistic.

My book on Aristotle’s Syllogistic has met with a favourable
reception to my knowledge in more than thirty articles and
reviews published over the world in English, French, German,
Hebrew, Italian, and Spanish. I have ever since been anxious
for an opportunity to discuss some of the critical remarks of my
reviewers, but in the present issue it has been possible only to
add the chapters on modal logic (as the text of the first edition
was already printed). I am most grateful to the Clarendon Press
for the chance to do so.

J. L.

DUBLIN
30 fune 1955

PUBLISHER’S NOTE

ProFEssor Jan Lukasiewicz died in Dublin on the 13th of Feb-
ruary, 1956, and thus could not see his book through the Press.
This was done by his former pupil, Dr. Czestaw Lejewski, who
read the proofs of the added chapters and extended the index.






PREFACE TO
THE FIRST EDITION

IN June 1939 I read a paper at the Polish Academy of Sciences
in Cracow on Aristotle’s syllogistic. A summary of this paper
was printed in the same year, but could not be published
because of the war. It appeared after the war, but was dated
‘1939’. During the summer of 1939 I prepared, in Polish, a more
detailed monograph on the same subject, and I had already
received the proofs of its first part when in September the
printer’s office was completely destroyed by bombing and every-
thing was lost. At the same time my whole library together
with my manuscripts was bombed and burnt. It was impossible
to continue the work during the war.

Not till ten years later did I get a fresh opportunity to take
up my investigations into Aristotle’s syllogistic, this time in
Dublin, where since 1946 I have been lecturing on mathe-
matical logic at the Royal Irish Academy. At the invitation of
University College, Dublin, I gave ten lectures on Aristotle’s
syllogistic in 1949, and the present work is the result of those
lectures.

This work is confined to the non-modal or ‘assertoric’ syl-
logisms, since the theory of these is the most important part of
the Aristotelian logic. A systematic exposition of this theory is
contained in chapters 1, 2, and 4-7 of Book I of the Prior
Analytics. These chapters in Th. Waitz’s edition—now more
than a century old—are the main source of my exposition.
I regret that I could not use the new text of the Prior Analytics
edited with an introduction and a commentary by Sir David
Ross and published in 1949, since the historical part of my work
was already finished when this edition appeared. I could only
correct my quotations from Aristotle by the text of Sir David
Ross. In the English version of the Greek texts of the Analytics
I adhered as far as possible to the Oxford translation of
Aristotle’s works. Besides the text of the Prior Analytics 1 took
into consideration the ancient commentators, especially Alex-
ander. I may mention here that I owe to an anonymous ancient
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commentator the solution of historical problems connected
with the alleged invention of the fourth syllogistical figure
by Galen.

The present work consists of an historical part, Chapters I-111,
and a systematic part, Chapters IV and V. In the historical
part I have tried to expound the Aristotelian doctrines follow-
ing the texts as closely as possible, but everywhere I have been
anxious to explain them from the standpoint of modern formal
logic. In my opinion there does not exist today a trust-
worthy exposition of the Aristotelian syllogistic. Until now
all expositions have been written not by logicians but by
philosophers or philologists who either, like Prantl, could
not know or, like Maier, did not know modern formal logic.
All these expositions are in my opinion wrong. I could not
find, for instance, a single author who realized that there is a
fundamental difference between the Aristotelian and the tradi-
tional syllogism. It seems to me therefore that my own exposi-
tion is entirely new. In the systematic part I have tried to
explain some theories of modern formal logic necessary to an
understanding of Aristotle’s syllogistic, and have tried to com-
plete this syllogistic on the lines laid down by Aristotle him-
self. I was again anxious to be as clear as possible, so that my
exposition could be understood by scholars not trained in sym-
bolic or mathematical thinking. I hope therefore that this part
of my work may be used as an introduction to modern formal
logic. The most important new results in this part I consider
to be the proof of decision, given by my pupil J. Stupecki, and
the idea of rejection introduced by Aristotle and applied by my-
self to the theory of deduction.

I am sincerely grateful to the Royal Irish Academy, which,
by giving me a position in Dublin, has enabled me to write this
book, and to University College, Dublin, for its kind invitation
to deliver lectures on Aristotle’s logic. I am grateful to the
Professors of University College, Dublin, Father A. Gwynn, S.J.,
and Monsignor J. Shine, who were kind enough to lend me the
necessary books. I owe a debt to Sir David Ross, who read my
typescript and made some suggestions I was glad to accept.
My special thanks are due to the late Father A. Little, S.]J.,
who, -although already dangerously ill, willingly corrected the
English of the first chapter, to Victor Meally in Dublin, and in
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particular to David Rees of Bangor, who read and corrected
the English of the whole work. I am also deeply indebted to the
officials of the Clarendon Press for their zeal and courtesy in
preparing my typescript for printing. The section on Galen is
dedicated to my friend Professor Heinrich Scholz of Miinster,
Westphalia, who was of great assistance to myself and to my
wife during the war, and especially during our stay in Miinster
in 1944. The whole work I dedicate to my beloved wife, Regina
Y.ukasiewicz née Barwinska, who has sacrificed herself that I
might live and work. Without her incessant care during the war,
and without her continual encouragement and help in the lone-
liness of our exile after it, I could never have brought the book
to an end.

J. L.

DUBLIN

7 May 1950
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CHAPTER 1

ELEMENTS OF THE SYSTEM

§ 1. The true form of the Aristotelian syllogism

IN three recently published philosophical works the following is
given as an example of the Aristotelian syllogism :!

(1) All men are mortal,
Socrates is a man,
therefore
Socrates is mortal.

This example seems to be very old. With a slight modification—
‘animal’ instead of ‘mortal’—it is quoted already by Sextus
Empiricus as a ‘Peripatetic’ syllogism.> But a Peripatetic syllo-
gism need not be an Aristotelian one. As a matter of fact the
example given above differs in two logically important points
from the Aristotelian syllogism.

First, the premiss ‘Socrates is a man’ is a singular proposition,
as its subject ‘Socrates’ is a singular term. Now Aristotle does not
introduce singular terms or premisses into his system. The follow-
ing syllogism would therefore be more Aristotelian :

(2) All men are mortal,
All Greeks are men,
therefore
All Greeks are mortal.3

This syllogism, however, is still not Aristotelian. It is an inference,
where from two premisses accepted as true, ‘All men are mortal’
and ‘All Greeks are men’, is drawn the conclusion ‘All Greeks
are mortal’. The characteristic sign of an inference is the word

! See Ernst Kapp, Greek Foundations of Traditional Logic, New York (1942), p. 11;
Frederick Copleston, S.J., A History of Philosophy, vol. i: Greece and Rome (1946),
p. 277; Bertrand Russell, History of Western Philosophy, London (1946), p. 218.

z Sextus Empiricus, Hyp. Pyrrh. ii. 164 Zwxpdrys dvBpwmos, was dvBpwmos {@ov,
Zwxpdrys dpa {dov. A few lines earlier Sextus says that he will speak about the
so-called categorical syllogisms, wepi Tdv xarnyopikdv xalovuévwy ovAdoyioudv,
used chiefly by the Peripatetics, ols xpdvrar pdAwora ol dmé Tod Ilepimdrov. See also
ibid. ii. 196, where the same syllogism is cited with the premisses transposed.

3 B. Russell, op. cit., p. 219, gives form (2) immediately after form (1), adding
in brackets the remark: ‘Aristotle does not distinguish between these two forms;
this, as we shall see later, is a mistake.” Russell is right when he says that these two
forms must be distinguished, but his criticism should not be applied to Aristotle.
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‘therefore’ (dpa). Now, and this is the second difference, no syllo-
gism is formulated by Aristotle primarily as an inference, but they
are all implications having the conjunction of the premisses as the
antecedent and the conclusion as the consequent. A true example
of an Aristotelian syllogism would be, therefore, the following
implication :
(3) Ifall men are mortal
and all Greeks are men,
then all Greeks are mortal.

This implication is but a modern example of an Aristotelian
syllogism and does not exist in the works of Aristotle. It would be
better, of course, to have as an example a syllogism given by
Aristotle himself. Unfortunately no syllogism with concrete terms
is to be found in the Prior Analytics. But there are some passages
in the Posterior Analytics from which a few examples of such
syllogisms may be drawn. The simplest of them is this:

(4)  Ifall broad-leaved plants are deciduous
and all vines are broad-leaved plants,
then all vines are deciduous.”

All these syllogisms, whether Aristotelian or not, are only
examples of some logical forms, but do not belong to logic, be-
cause they contain terms not belonging to logic, such as ‘man’ or
‘vine’. Logic is not a science about men or plants, it is simply
applicable to these objects just as to any others. In order to get a
syllogism within the sphere of pure logic, we must remove from
the syllogism what may be called its matter, preserving only its
form. This was done by Aristotle, who introduced letters instead
of concrete subjects and predicates. Putting in (4) the letter A4
for ‘deciduous’, the letter B for ‘broad-leaved plant’, the letter C
for ‘vine’, and using, as Aristotle does, all these terms in the
singular, we get the following syllogistic form:

(5) IfallBis A4
and all Cis B,
then all C is 4.

' An. post. ii. 16, 98P5—10 éorw yip 75 PuAloppoeiv é¢’ oF A, 16 8¢ mAariguAiov é¢’
o0 B, dumelos 8¢ é¢’ o I'. €l 87 75 B Smdpyer 76 A (mdv yap mraTiduldov dvAdoppoet),
74 3¢ I' umdpyer 76 B (mdoa yap dumelos mharvdvdos), 76 I" dmdpyer 16 A, xai mdoa
aumedos vAdoppoei. From this somewhat carelessly written passage—after 7@ B, 7@
8¢ I', and 7 I', mavri ought to be inserted—we get the following syllogism in con-

crete terms: el wdv wAatiduAdor $vAdoppoei xai mdoa dumelos mAaridullos, mdoa
aumelos pvAloppoei.
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This syllogism is one of the logical theorems invented by Aristotle,
but even it differs in style from the genuine Aristotelian syllogism.
In formulating syllogisms with the help of letters, Aristotle
always puts the predicate in the first place and the subject in the
second. He never says ‘All B is A’, but uses instead the expres-
sion ‘4 is predicated of all B’ or more often ‘A4 belongs to all B’."
Let us apply the first of these expressions to form (5); we get an
exact translation of the most important Aristotelian syllogism,
later called ‘Barbara’:

(6) If A is predicated of all B
and B is predicated of all C,
then 4 is predicated of all C.?

Starting with the unauthentic example (1) we have reached
thus by a step-by-step transition the genuine Aristotelian syllo-
gism (6). Let us now explain these steps and establish them on a
textual basis.

§ 2. Premusses and terms

Every Aristotelian syllogism consists of three propositions called
premisses. A premiss (mpdraois) is a sentence affirming or deny-
ing something of something.3 In this sense the conclusion is also
a mporaois, because it states something about something.¢ The
two elements involved in a premiss are its subject and predicate.
Aristotle calls them ‘terms’; defining a term (Jpos) as that into
which the premiss is resolved.s The original meaning of the Greek
opos, as well as of the Latin terminus, is ‘limit’ or ‘boundary’.
The terms of a premiss, its subject and predicate, are the limits
of the premiss, its beginning and end. Thisis the very meaning of
the word Spos, and we should be careful not to identify this logical
word with such psychological or metaphysical words as ‘idea’,
‘notion’, ‘concept’, or Begriff in German.®

1

70 A xaryyopeirar xara mavros ol B or 16 A vmdpyer mavri & B. See also
p. 14, n.

2 An. pr. i. 4, 25P37 € yap 76 A xard mavrds Tob B kai 76 B xard mavros roi T,
dvdyxn 176 A xara mavros Tob I' karnyopeiofai. The word dvdyxn omitted in the
translation will be explained later.

3 Ibid. 1, 24316 mpdraois pév odv éori Adyos karadarikds 7§ dmodarikds Twos
kard Twos.

+ 1Ibid. ii. 1, 5338 70 8¢ ovpnépaoua Ti xard Twds éoTw.

s Ibid. i. 1, 24P16 Spov 8¢ xaA& eis Sv Suadverar 9 mpdraos, olov 76 1€ xaryyo-
poduevov kai 70 kal’ ob xarnyopeitac.

¢ Aristotle also uses the word Jpos in the sense of dpiouds, i.e. ‘definition’.
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Every premiss is either universal, particular, or indefinite.
‘All’ and ‘no’ added to the subject are the signs of universality,
‘some’ and ‘some not’ or ‘not all’ are the signs of particularity.
A premiss without a sign of quantity, i.e. of universality or parti-
cularity, is called indefinite, e.g. ‘Pleasure is not good’.!

Nothing is said in the Prior Analytics about the terms. A defini-
tion of the universal and the singular terms is given only in the
De Interpretatione, where a term is called universal if it is of such a
nature as to be predicated of many subjects, e.g. ‘man’; a term
which does not have this property is called singular, e.g. ‘Callias’.?
Aristotle forgets that a non-universal term need not be singular,
for it may be empty, like the term ‘goat-stag’ cited by himself a
few chapters before.3

In building up his logic Aristotle did not take notice either of
singular or of empty terms. In the first chapters of the Prior
Analytics, containing the systematic exposition of his syllogistic,
only universal terms are mentioned. Alexander justly remarks
that the very definition of the premiss given by Aristotle has
application to universal terms alone and is not suitable to indi-
vidual or singular. It is evident that the terms of universal and
particular premisses must be universal. Aristotle certainly would
not accept as meaningful expressions like ‘All Calliases are men’
or ‘Some Calliases are men’, if there were only one Callias. The
same must be said about the terms of indefinite premisses: they,
too, are universal. This follows both from the name Aristotle has
chosen for them and from the examples he gives. A man who is
I willingly agree with E. Kapp, who says (op. cit., p. 2g) that these two different
meanings of the word Jpos ‘are entirely independent of one another and were never
mixed up by Aristotle himself. But unfortunately no less a scholar than Carl
Prantl . . . based his picture of Aristotle’s logic on this homonymy . . . he identified
the empty. syllogistic horos (‘‘term’’) with the metaphysical correlate of foros in the
sense of definition (‘‘Begriff”’ in Prantl’s German). The result was a disastrous
confusion.’

! An. pr i, 24317 (continuation of the text quoted in p. 3, n. 3) oltos 8¢ ) K
xafdrov 3 7, év p.eper. 1; aScopwros /\eyw 8¢ xalbdrov uév 76 mavri 5 yqﬁevt v-n'apxew, év
péper 8¢ 76 Twi § i Twi G u) Tavti Smdpyew, adidpiotor 8¢ T6 bmdpyew f pi) dmdpxew
dvev Tob kabddov 7} katd uépos, olov 76 @Y Evavtiwy elvar T abTHy émoTiuny 7 TO TV
#8ovy ui) elvar dyabdv.

2 De int. 7, 17339 AMyw 8¢ xalddov pév 6 émi mAetdvwy mépuke karnyyopeiobar, xal’
éxaarov 8¢ & ui, olov dvBpwmos pév Tav kabdédov, Kadlias 3¢ 7@v xab’ éxaorov.

3 Ibid. 1, 16216 Tpayélados.

4 Alexander 100. 11 katd yap alofnrod xai évos xar’ dpifuov ovxéd’ dpudler 7o
xard mavros ovdé 6 dropiopds SAws' S yap dopiouds TGV mpoTdoewy émi Tdv kabddov
xWpav éxer Ta 8¢ dropa od xafdrov. Cf. ibid. 65. 26.
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undecided whether it is true to say ‘No pleasure is good’ or only
‘Some pleasure is not good’, may say without defining the
quantity of the subject: ‘Pleasure is not good.” But in this last
sentence ‘pleasure’ is still a universal term as it was in the two
previous sentences. Throughout the whole systematic exposition
of his syllogistic Aristotle in practice treats indefinite premisses
like particulars without explicitly stating their equivalence.! This
was done only by Alexander.?

Indefinite premisses are of no importance in the Aristotelian
system of logic. No logical thesis, whether a law of conversion or
a syllogism, is formulated by Aristotle with this kind of premiss.
It was but right that they should be dropped by later logicians,
who retained only four kinds of premiss, well known to every
student of traditional logic, viz. the universal affirmative, the
universal negative, the particular affirmative, and the particular
negative. In this fourfold division there is no place left for singular
premisses.3

§ 3. Why singular terms were omitted by Aristotle

There is an interesting chapter in the Prior Analytics where
Aristotle divides all things into three classes. Some, he says, are
such that they cannot be predicated truly of anything at all,
like Cleon and Callias and the individual and sensible, but other
things may be predicated of them, e.g. man or animal. Some
other things, and these are the second class, are themselves
predicated of others but nothing prior is predicated of them. For
this class of things no example is given, but it is clear that Aris-
totle means what is most universal, like being, 6 év. To the third
class belong those things that may be predicated of others and
others of them, e.g. man of Callias and animal of man, and
as a-rule, concludes Aristotle, arguments and inquiries are con-
cerned with this class of things.*

! See, for example, An. pr. i. 4, 26329 6 yap ad7és EéaTar auMoyiopds ddopiarov Te
xai év péper Andfévros, or 7, 29227 dijdov 8¢ kai 67 76 ddidpiaTov dvTi Tob KaTNyopiKoD
Tob év péper T0épevov Tov abTov moujoer culdoyiopdy év dmaat Tois axijpaow.

2 Alexander 30. 29 mept 8¢ TGy ddwoploTwy (scil. Tijs 7@V ddioploTwy dvrioTpodis)
0 Aéyet, 67i undé xpjotpor mpds avAdoyiopots elow adrar, kai 61t ioov Tais éml pépovs
Svvavrar.

3 Arguments on behalf of the thesis that singular propositions may be regarded
as forming a sub-class of universals—see, for example, J. N. Keynes, Formal Logic,
London (1906), p. 102—are in my opinion entirely wrong.

4 An. pr. i. 27, 43725—43 amdvrwv 8 Tdv SvTwy T4 uév éoTt TowabTa WOTE KaTd
undevés dMov xarnyopeicbar dAnbas kalsdov (olov KXéwv xai Kadllas xai 76 xa’
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There are some inexactitudes in this passage that must first be
corrected. It is not correct to say that a thing may be predicated
of another thing. Things cannot be predicated, because a predi-
cate is a part of a proposition and a proposition is a series of
spoken or written words having a certain meaning. The term
‘Callias’ may be predicated of another term, but never the thing
Callias. The given classification is not a division of things but a
division of terms.

It is further not correct to say that individual or singular terms,
like ‘Callias’, cannot be truly predicated of anything else. Aris-
totle himself gives examples of true propositions with a singular
predicate, as ‘That white object is Socrates’ or ‘That which
approaches is Callias’,' saying that such propositions are ‘inci-
dentally’ true. There are other examples of this kind which are not
merely incidentally true, as ‘Socrates is Socrates’ or ‘Sophroniscus
was the father of Socrates’.

A third inexactitude concerns the conclusion drawn by Aris-
totle from this classification of terms. It is not true that our
arguments and inquiries deal as a rule with such universal terms
as may be predicated of others and others of them. It is plain
that individual terms are as important as universal, not only in
everyday life but also in scientific researches. This is the greatest
defect of the Aristotelian logic, that singular terms and proposi-
tions have no place in it. What was the cause?

There 1s an opinion among philosophers that Aristotle con-
structed his system of logic under the influence of Plato’s philo-
sophy; for it was Plato who believed that the object of true
knowledge must be stable and capable of a precise definition,
which is of the universal and not of the singular. I cannot agree
with this opinion. It has no confirmation in the text of the Prior
Analytics. This purely logical work is entirely exempt from any
philosophic contamination; so is the passage cited above. The
argument that our inquiries are concerned with universal terms
as a rule is a practical one, and though it is very weak and

L4 \ ’ ’ \ b ’ » \ A} ¥ N - . 7’
éxaarov xai aloBnrdv), xara 8¢ Tovrwy dAda (xai ydp dvlpwmos xai {Gov éxdrepos
AJ -
ToUTwy €ot(): Ta 8’ abra pév kar’ dAwv xaTyyopeitat, xara 8¢ TovTwy dAAa mpdTepov
\ -~ A h . Y A » . 9 - » * 14 ’ v
oV xaTyyopeiTar’ Ta 8¢ kai avra dAwv kai abTv €repa, olov dv@pwmos KaAXiov kai
, -
dvBpdmou {dov. . . . xai oxedov of Adyor xai al axéfeis elol pdAora mepi TovTwWY.
An. proi. 27, 43333 Tav yap 2i00nTov oxedov €xaoTov €07t TowobTOV haTE U7} KATY)-
yopeiocfar kata undevds, mAnv s xara ovuPefyxds: dauév ydp more 76 Aeuxov éxeivo
’ A
Zwxparnu elvar kai 10 mpoowov KaXdiav.



§3 WHY SINGULAR TERMS WERE OMITTED 7

Aristotle must have felt its weakness, yet it is not corroborated
by any philosophical argument borrowed from Plato.

There is, however, another remarkable point that may throw
some light on our problem. Aristotle emphasizes that a singular
term is not suited to be a predicate of a true proposition, as a
most universal term is not suited to be a subject of such a propo-
sition. The first assertion, as we have already seen, is not gener-
ally true, and the second also seems to be false. But it does not
matter whether these assertions are true or false. It suffices to
know that Aristotle regarded them as true and that he eliminated
from his system just those kinds of terms which in his opinion
were not suited to be both subjects and predicates of true pro-
positions. And here, as I see it, lies the chief point of our problem.
It is essential for the Aristotelian syllogistic that the same term
may be used as a subject and as a predicate without any restric-
tion. In all three syllogistic figures known to Aristotle there
exists one term which occurs once as a subject and then again
as a predicate: in the first figure it is the middle term, in the
second figure the major term, and in the third figure the minor
term. In the fourth figure all three terms occur at the same
time as subjects and as predicates. Syllogistic as conceived by
Aristotle requires terms to be homogeneous with respect to
their possible positions as subjects and predicates. This seems

to be the true reason why singular terms were omitted by
Aristotle.

§ 4. Vanables

In Aristotle’s systematic exposition of his syllogistic no examples
are given of syllogisms with concrete terms. Only non-valid com-
binations of premisses are exemplified through such terms, which
are of course universal, like ‘animal’, ‘man’, ‘horse’. In valid
syllogisms all terms are represented by letters, i.e. by variables,
e.g. ‘If R belongs to all S and P belongs to some S, then P belongs
to some R’.!

The introduction of variables into logic is one of Aristotle’s
greatest inventions. It is almost incredible that till now, as far as I
know, no one philosopher or philologist has drawn attention to

' Ibid. i. 6, 28b7 €l yap 16 pév P mavri 7@ X 76 8¢ IT vwi, dvdyxn 6 IT vwi 7o

P Ymapxew. This is a mood of the third figure, called later Disamis, with transposed
premisses.
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this most important fact.® I venture to say that they must all
have been bad mathematicians, for every mathematician knows
that the introduction of variables into arithmetic began a new
epoch in that science. It seems that Aristotle regarded his in-
vention as entirely plain and requiring no explanation, for there
is nowhere in his logical works any mention of variables. It was
Alexander who first said explicitly that Aristotle presents his
doctrine in letters, orotyeia, in order to show that we get the
conclusion not in consequence of the matter of the premisses, but
in consequence of their form and combination; the letters are
marks of universality and show that such a conclusion will follow
always and for any term we may choose.? There is another com-
mentator, John Philoponus, who is also fully aware of the signi-
ficance and importance of variables. He says that Aristotle, after
showing by examples how every premiss may be converted, states
some universal rules of conversion taking letters instead of terms.
For a universal sentence is disproved by one example in which it
is false, but is proved either by going through all particulars
(which is an endless and impossible operation) or by stating an
evident universal rule. Such a rule is given here by Aristotle in
letters, and the reader is allowed to substitute (¥moBdArew) for
the letters any concrete terms he wants.3

We know already that only universal terms may be substituted
for the variables. In an example quoted above,* Aristotle per-
forms such a substitution, saying: ‘Let A be deciduous, B—
broad-leaved plant, C—vine.” This is the only kind of substitu-
tion we meet in the Prior Analytics. Aristotle never substitutes for a
variable 4 another variable B, although he is perfectly aware that
the same syllogistic mood may be formulated with different

' I am glad to learn that Sir David Ross in his edition of the Analytics, p. 29,
emphasizes that by using variables Aristotle became the founder of formal logic.

2 Alexander 53. 28 émi ogroixelwv v didaoxadlav moteitar vmép 1ol évdelfaobar
Nuiv, 67t ol mapa THv VA yiverar T oupmepdopara dAXd mapd TO oxiua kai TRV
TolaUTNY TGV MpoTdocwy guumAokiy Kai TOv Tpdmov: ob ydp 6TL d€ 1} VAN, ouvdyeTar
ovMoytoTikds T6de, dAX’ S1u 1) ovlvyla TotavTy. Td odv aroixeia Tod xafodov xal dei
xal émi mavros Tob AnpOévros TowodTov €geolar 76 oupmépaoua detkTind éoTwv.

3 Philoponus 46. 25 8eifas 6nws éxdorn Tw mpordoewy dvriarpéder 8id mapader-
ypdrwy . . . kabfoAikods kavivas mrapadldwar Ta oroLyeia mapadapfdvwy dvri Tdv Spwv . . .
TOv uév yap xalédov Adyov éXéyxe pév xai €v mapdderypa, ws 107 elpnrat, karaoxevd e
8¢ 7) % 8 mdvrwy TAv ket pépos Stéfodos, Gmep éoriv dmetpov kal addvarov, ) 1) dia
xafodixot kavdvos mioTis® Smep mowel viv 8id Tdv oToixelwy didods €xdaTw, Wamep
elpnrai, én’ éfovalas xpijofar xai vmofdMew dvri T@v oToixelwv oias dv BovAnTar
vAns épovs, 4 See p. 2, n.
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variables. The mood Disamis, for instance, cited at the beginning
of this section, is formulated with the letters R, S, P; elsewhere it
is formulated with C, B, A.* It is evident that the validity of a
syllogism does not depend on the shape of the variables used in
its formulation : Aristotle knows that without saying it. It is again
Alexander who states this fact explicitly.?

There is no passage in the Prior Analytics where two different
variables are identified. Even where the same term is substituted
for two variables, these two variables are not identified. In Book
IT of the Prior Analytics Aristotle discusses the problem whether
a syllogism can be made out of opposite premisses. This can be
done, he states, in the second and third figure. Let B and C, he
continues, both stand for ‘science’ and 4 for ‘medicine’. If one
assumes that ‘All medicine is science’ and that ‘No medicine is
science’, he has assumed that ‘B belongs to all 4’ and ‘C belongs
to no 4’, so that ‘Some science is not science’.? The syllogistic
mood to which this refers runs thus: ‘If B belongs to all 4 and C
belongs to no 4, then Cdoes not belong to some B.’4 In order to get
from this mood a syllogism with opposite premisses, it suffices to
identify the variables B and C, i.e. to substitute B for C. We get
by this substitution : ‘If B belongs to all 4 and B belongs to no 4,
then B does not belong to some B.” The heavy roundabout way
by means of concrete terms, such as ‘science’ and ‘medicine’, is
quite unnecessary. It seems that the straight way in this problem,
i.e. the way by identifying variables, was not seen by Aristotle.

Aristotle knows that sentences like ‘Some science is not science’
cannot be true.5 The generalization of such sentences ‘Some 4 is
not A’ (i.e. ‘4 does not belong to some 4’) also must be false. It
is not very probable that Aristotle knew this formula; it is

Y An. pr. ii. 7, 50317 €l yap 70 I’ mavri 7 B, 16 8¢ A Twi 7@ B, dvdyxn 10 A Twi 7
I éndpyew.

2 Alexander 380. 2 o0 ydp mapa 70 76 pév A avrdv elvas 76 8¢ B 4 I' 1) ovwvaywyi 76
yap avré ylverar, kdv dAois dvri TovTwy Xpnoduela.

3 An. pr. ii. 15, 64223 éo7rw yap émoTiiun éb’ o6 76 B xai I, latpicy) 8’ €4’ od 4.
el o0y AdBow magav laTpuiy émariuny xai pndeplav larpixiy émariuny, 70 B mavri o
A eidnde xai 76 I' o0devi, dot’ €orar Tis émariun ovk émariur.

4 This syllogism is a mood of the third figure, called later Felapton, with trans-
posed premisses. In the systematic exposition of the syllogistic it is formulated with
the letters R, S, P. See ibid. i. 6, 28326 dv 76 pév P wavri 7¢ X, 70 8¢ IT pydevi
vmdpxy, €0Tai ovAdoyiauos o1t 70 IT Twi 7@ P ody vmdpte é¢ avdyxrs.

s Ibid. ii. 15, 647 daveporv 8¢ xai 51¢ éx Yevdav pév éorw dAnbes ovAroyloachar,

., €x 8¢ TdV dvmikepévaw odk €aTw: del yap évavrios 6 ouldoyouds yilverar TG
mpdypart.
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Alexander again who saw the falsity and applied this fact to
prove the law of conversion of the universal negative premiss.
The proof he gives proceeds by reductio ad absurdum : If the premiss
‘A belongs to no B’ is not convertible, let us suppose that B
belongs to some A. From these two premisses we get by a syllo-
gism of the first figure the absurd conclusion: ‘4 does not belong
to some A.’* It is obvious that Alexander has in mind the mood
of the first figure called later Ferio: ‘If 4 belongs to no B and B
belongs to some C, then 4 does not belong to some C’,? and that
in this mood he identifies the variables 4 and C, substituting 4
for C. This is perhaps the neatest example of an argument by
substitution derived from an ancient source.

§ 5. Syllogistic necessity

The first Aristotelian syllogism, called later Barbara, may be
represented, as we have already seen,? in the form of the following
implication :

If 4 is predicated of all B

and B is predicated of all C,
then 4 is predicated of all C.

But there is still a difference between this formulation and the
genuine Greek text. The premisses are the same in the English
version as in the Greek, but the exact translation of the conclusion
would be ‘4 must be predicated of all ¢°. This word ‘must’
(avdyxn) is the sign of the so-called ‘syllogistic necessity’. It is
used by Aristotle in almost all implications which contain variables
and represent logical laws, 1.e. laws of conversion or syllogisms.4

There are, however, some syllogisms where this word 1s omitted ;
take, for instance, this Aristotelian form of the mood Barbara: ‘If
A belongs to all B and C belongs to all 4, then C belongs to all B.’s
Since it was possible to omit the word insome syllogisms, it must
be possible to eliminate it entirely from all syllogisms. Let us see,
therefore, what the word means and why it is used by Aristotle.

I Alexander 34. 15 éveart 8¢ xai 8ia ovAdoytopod deifar Sia Tob mpdirov oxjuaros
ywopévov, ws Kai avros mpooxpiitar TH €ls ddvvaror dmaywyi € ydp Tis pn Adyor
> ’ Al 0 IA > ’ ’ 0 A} A 8 . - B_ ’ 8 b \ » ’
dvTioTpédew v xabodov amodarikiy, xeloBw 16 A undevi o B- €l 3¢ pyy dvrioTpéder,
p ¢ A -
€otw 70 B 1rwi 7& A: ylverar év mpddTw oxrpaTt 76 A Twi 7 A uy vmdpyov, omep
v
dromov.

2 An. pr.1. 4, 26225 € 76 pev A pndevi 7 B dmdpyer, 76 8¢ B rwi v I, dvdyxy 1o A
T TG F;uj]-l}'rrofpxew. 3 See p. 3, n. 2. * Seep. 7, n.;p. g, nn. 1, 4; above, n. 2.

s An. pr.ii. 11,6134 € yap 76 A mavri ¢ B xai 76 ' mavri 73 A, 76 I' mavri 76 B,
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The problem appears simple, and is settled implicitly by Aris-
totle himself incidentally in his treatment of the laws of conver-
sion, when he says: ‘If 4 belongs to some B, it is necessary that B
should belong to some 4 ; but if 4 does not belong to some B, it is
not necessary that B should not belong to some 4.’ For if 4 stands
for ‘man’ and B for ‘animal’, it is true that some animal is not
man, but it is not true that some man is not animal, because all
men are animals.! We see from this example that Aristotle uses
the sign of necessity in the consequent of a true implication in
order to emphasize that the implication is true for all values of
variables occurring in the implication. We may therefore say ‘If
4 belongs to some B, it is necessary that B should belong to some
A’, because it is true that ‘For all 4 and for all B, if 4 belongs to
some B, then B belongs to some A4’. But we cannotsay ‘If 4 does
not belong to some B, it is necessary that B should not belong to
some A’, because it is not true that ‘For all 4 and for all B, if 4
does not belong to some B, then B does not belong to some A4’.
There exist, as we have seen, values for 4 and B that verify the
antecedent of the last implication, but do not verify its conse-
quent. In modern formal logic expressions like ‘for all 4’ or ‘for
all B’, where 4 and B are variables, are called universal quanti-
fiers. The Aristotelian sign of syllogistic necessity represents a uni-
versal quantifier and may be omitted, since a universal quantifier
may be omitted when it stands at the head of a true formula.

This, of course, is all known to students of modern formal logic,
but some fifty years ago it was certainly not known to philo-
sophers. It is not strange, therefore, that one of them, Heinrich
Maier, has chosen our problem as the basis of what is, in my
opinion, a bad philosophical speculation. He states:* “The con-
clusion follows from the premisses with necessary consequence.
This consequence arises from the syllogistic principle and its
necessity reveals very properly the synthetic power of the func-
tion of reasoning.’ I do not understand this last sentence, because

! Ibid. i. 2, 252206 €l yap 76 A Twi 74 B, xat 76 Brwi 7o A dvdyxn vmdpyew. ..
€l 8¢ ye 76 A Twi 7® B py vmdpyet, ovk dvdyxn xai 76 B 1w v A ph vndpyew, olov el
76 pév B éori Ldov, 16 8¢ A dvBpwnos. dvlpwos pév yap od mavri L, {dHov ¢ mavri
avlpdme vmdpyer.

2 H. Maier, Die Syllogistik des Aristoteles, vol. ii b, Tubingen (1900), p. 236: ‘Aus
den Pramissen folgt mit notwendiger Konsequenz der SchluBsatz. Diese Konse-
quenz entspringt dem syllogistischen Prinzip, und die Notwendigkeit, die ihr
anhaftet, bekundet recht eigentlich die synthetische Kraft der Schlu8funktion.’
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I cannot grasp the meaning of the words ‘the synthetic power of
the function of reasoning’. Moreover, I am not sure what is
meant by ‘the syllogistic principle’; as I do not know whether any
such principle exists at all. ‘On the ground of both premisses
[Maier continues his speculations'] which I think and express, I
must also think and express the conclusion by virtue of a com-
pulsion lying in my thinking.” This sentence I can certainly
understand, but it is manifestly false. You may easily see its false-
hood if you think and pronounce the premisses of a syllogism,
e.g. ‘All 4is C’ and ‘Some B is not C”, without pronouncing the
conclusion which follows from them.

§ 6. What is formal logic?

‘It is usual to say that logic is formal, in so far as it is concerned
merely with the form of thought, that is with our manner of
thinking irrespective of the particular objects about which we
are thinking.” This is a quotation from the well-known text-book
of formal logic by Keynes.? And here is another quotation, from
the History of Philosophy by Father Copleston: ‘The Aristotelian
Logic is often termed formal logic. Inasmuch as the Logic of
Aristotle is an analysis of the forms of thought—this is an apt
characterization.’’

In both quotations I read the expression ‘form of thought’,
which I do not understand. Thought is a psychical phenomenon
and psychical phenomena have no extension. What is meant by
the form of an object which has no extension? The expression
‘form of thought’ is inexact and it seems to me that this inexacti-
tude arose from a wrong conception of logic. If you believe indeed
that logic is the science of the laws of thought, you will be dis-
posed to think that formal logic is an investigation of the forms of
thought.

It is not true, however, that logic is the science of the laws of
thought. It is not the object of logic to investigate how we are
thinking actually or how we ought to think. The first task belongs
to psychology, the second to a practical art of a similar kind to
mnemonics. Logic has no more to do with thinking than mathe-
matics has. You must think, of course, when you have to carry

I Qp. cit.,, p. 237: ‘Auf Grund der beiden Pramissen, die ich denke und aus-
spreche, muB ich kraft eines in meinem Denken liegenden Zwangs auch den

SchluBsatz denken und aussprechen.’
2 Op. cit., p. 2. 3 Op. cit., p. 277.
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out an inference or a proof, as you must think, too, when you
have to solve a mathematical problem. But the laws of logic do
not concern your thoughts in a greater degree than do those of
mathematics. What is called ‘psychologism’ in logic is a mark of
the decay of logic in modern philosophy. For this decay Aristotle
is by no means responsible. Throughout the whole Prior Analytics,
where the theory of the syllogism is systematically exposed, there
exists not one psychological term. Aristotle knows with an intui-
tive sureness what belongs to logic, and among the logical prob-
lems treated by him there is no problem connected with a
psychical phenomenon such as thinking.

What is therefore, according to Aristotle, the object of logic,
and why is his logic called formal? The answer to this question
is not given by Aristotle himself but by his followers, the Peri-
patetics.

There was a dispute among the philosophical schools of Ancient
Greece about the relation of logic to philosophy. The Stoics con-
tended that logic was a part of philosophy, the Peripatetics said
that it was only an instrument of philosophy, and the Platonists
were of the opinion that logic was equally a part and an instru-
ment of philosophy. The dispute itself is of no great interest or
importance, because the solution of the disputed problem seems
to be for the most part a matter of convention. But an argument
of the Peripatetics, preserved by Ammonius in his commentary
on the Prior Analytics, deserves our attention.

Ammonius agrees with the Platonists and says: If you take
syllogisms with concrete terms, as Plato does in proving syllo-
gistically that the soul is immortal, then you treat logic as a part
of philosophy; but if you take syllogisms as pure rules stated in
letters, e.g. ‘A4 is predicated of all B, B of all C, therefore 4 is
predicated of all C°, as do the Peripatetics following Aristotle,

.then you treat logic as an instrument of philosophy.!
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proof of the thesis that the soul is immortal is given a few lines farther on (11. 10):
1 Yuxs) adroxiryrov, Toiito 8¢ dewkivyrov, ToiTo 8¢ dBdvarov, % Yuxy dpa abdvarov.
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It is important to learn from this passage that according to the
Peripatetics, who followed Aristotle, only syllogistic laws stated
in variables belong to logic, and not their applications to concrete
terms. The concrete terms, i.e. the values of the variables, are
called the matter, JAy, of the syllogism. If you remove all con-
crete terms from a syllogism, replacing them by letters, you have
removed the matter of the syllogism and what remains is called
its form. Let us see of what elements this form consists.

To the form of the syllogism belong, besides the number and
the disposition of the variables, the so-called logical constants.
Two of them, the conjunctions ‘and’ and ‘if’, are auxiliary expres-
sions and form part, as we shall see later, of a logical system which
is more fundamental than that of Aristotle. The remaining four
constants, viz. ‘to belong to all’, ‘to belong to none’, ‘to belong
to some’ and ‘to not-belong to some’,! are characteristic of
Aristotelian logic. These constants represent relations between
universal terms. The medieval logicians denoted them by 4, E,
I, and O respectively. The whole Aristotelian theory of the
syllogism is built up on these four expressions with the help of
the conjunctions ‘and’ and ‘if’. We may say therefore: The
logic of Aristotle is a theory of the relations 4, E, I, and O in the
field of universal terms.

It is obvious that such a theory has nothing more in common
with our thinking than, for instance, the theory of the relations of
greater and less in the field of numbers. There are, indeed, some
similarities between these two theories. Compare, for example, the
syllogism Barbara:

If a belongs to all &
and b belongs to all ¢,
then a belongs to all ¢,

with the following arithmetical law :

If a is greater than b
and b is greater than ¢,
then a is greater than c.

There are, of course, differences between these two laws: the
range of variables is not the same, and the relations are different.

1 ¢ ’ ’ L4 ’ y ’ * ’ 14 b L !’ ’ . ’ »
Umdpyewv mavri, Umdpxew ovdevi, vmdpyew Twl, oby Umdpyxew Twi = Umdpyew oV

wavri. Instead of vmdpyew Aristotle sometimes uses the verb xarpyopeiofac. Syllo-
gisms in concrete terms are formulated with elvai. See p. 2, n.; p. 3, n. 1, and the
next section (7).
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But both relations, although different and occurring between
different terms, have one property in common: they are both
transitive, i.e. they are particular cases of the formula
If a has the relation R to b
and b has the relation R to ¢,
then a has the relation R to c.

It is a curious thing that this very fact was observed by
the logicians of the later school of the Stoics. Arguments like ‘the
first is greater than the second, the second is greater than the
third, therefore the first is greater than the third’ were called by
the Stoics, as Alexander declares, ‘non-methodically conclusive’
and were not treated as syllogisms in the sense of their logic.
Nevertheless, the Stoics regarded such arguments as similar
(6potor) to categorical syllogisms.! This observation of the Stoics,
which Alexander tries to confute without producing convincing
counter-arguments, corroborates the supposition that the logic
of Aristotle was conceived as a theory of special relations, like a
mathematical theory.

§ 7. What is_formalism?

Formal logic and formalistic logic are two different things.
The Aristotelian logic is formal without being formalistic,
whereas the logic of the Stoics is both formal and formalistic.
Let us explain what in modern formal logic is meant by
‘formalism’.

Modern formal logic strives to attain the greatest possible
exactness. This aim can be reached only by means of a precise
language built up of stable, visually perceptible signs. Such a
language is indispensable for any science. Our own thoughts not
formed in words are for ourselves almost inapprehensible and the
thoughts of other people, when not bearing an external shape,
could be accessible only to a clairvoyant. Every scientific truth,
in order to be perceived and verified, must be put into an external
form intelligible to everybody. All these statements seem in-
contestably true. Modern formal logic gives therefore the utmost

! Alexander 21. 30 of duefddws mepalvovres Adyor mapa rois Zrwirois, olov ¢ 76
mp@Tov Tob Sevrépov peilov, 16 8¢ Sevrepov Tob TpiTov, 76 dpa WpdTov TOD TpiToU
peilov.” 1bid. 345. 13 7owoirol elow xai ols Aéyovaw ol vedrepor (i.e. Zrwirol)
duelddws mepailvovras. obs 61t pév i) Aéyovor auloytoTikds guvdyew, tyids Aéyovar . ..
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attention to precision of language. What is called formalism is
the consequence of this tendency. In order to understand what it
is, let us analyse the following example.

There exists in logic a rule of inference, called formerly modus
ponens and now the rule of detachment. According to this rule, if
an implication of the form ‘If «, then B’ is asserted and the ante-
cedent of this implication is asserted too, we are allowed to assert
its consequent B. In order to be able to apply this rule we must
know that the proposition «, asserted separately, expresses ‘the
same’ thought as the antecedent « of the implication, since only
in this case are we allowed to perform the inference. We can
state this only in the case where these two o’s have exactly the
same external form. For we cannot directly grasp the thoughts
expressed by these o’s, and a necessary, although not sufficient,
condition for identifying two thoughts is the external equality of
their expressions. When, for instance, asserting the implication
‘If all philosophers are men, then all philosophers are mortal’
you would also assert as second premiss the sentence ‘Every
philosopher is a man’, you could not get from these premisses the
conclusion ‘All philosophers are mortal’, because you would
have no guarantee that the sentence ‘Every philosopher is a
man’ represents the same thought as the sentence ‘All philoso-
phers are men’. It would be necessary to confirm by means of a
definition that ‘Every 4 is B’ means the same as ‘All A’s are B’s’;
on the ground of this definition replace the sentence ‘Every
philosopher is a man’ by the sentence ‘All philosophers are men’,
and only then will it be possible to get the conclusion. By this
example you can easily comprehend the meaning of formalism.
Formalism requires that the same thought should always be
expressed by means of exactly the same series of words ordered
in exactly the same manner. When a proof is formed according
to this principle, we are able to control its validity on the basis of
its external form only, without referring to the meaning of the
terms used in the proof. In order to get the conclusion § from the
premisses ‘If o, then B’ and «, we need not know either what «
or what B really means; it suffices to notice that the two «’s con-
tained in the premisses have the same external form.

Aristotle and his followers, the Peripatetics, were not formal-
ists. As we have already seen, Aristotle is not scrupulously exact
in formulating his theses. The most striking case of this inexacti-
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tude is the structural discrepancy between the abstract and con-
crete forms of the syllogisms. Take as an example the syllogism
with opposite premisses quoted above, in our section 4.F Let B
and C be ‘science’ and 4 ‘medicine’. Aristotle states:

In variables: In concrete terms:
If B belongs to all 4 If all medicine is science
and C belongs to no 4, and no medicine is science,

then C does not belong to some B.2  then some science is not science.

The difference of corresponding premisses, of which the two
syllogisms consist, is evident. Take, for instance, the first premiss.
To the formula ‘B belongs to all 4’ would correspond the
sentence ‘Science belongs to all medicine’, and to the sentence
‘All medicine is science’ would correspond the formula ‘All 4 is
B’. The sentence in concrete terms, given by Aristotle, cannot be
regarded as a substitution of the abstract formula accepted by
him. What is the cause of this difference?

Alexander gives three explanations of this problem:? the first
may be omitted as unimportant, the last is a philosophical one
and is, in my opinion, wrong; only the second deserves our
attention. According to this explanation, in formulae with the
verb ‘to be predicated of something’ and, we may add, with the
verb ‘to belong to something’, the subject and the predicate are
better distinguishable (yvwpiudirepor) than, we may add again, in
formulae with the verb ‘to be’. In fact, in formulae with ‘to be’
the subject as well as the predicate is used in the nominative; in
formulae preferred by Aristotle only the predicate is in the
nominative, and the subject is either in the genitive or in the
dative and therefore can be more easily distinguished from
the predicate. Very instructive, too, is the final remark of Alexan-
der, from which it follows that to say ‘Virtue is predicated of all
Justice’ instead of the customary ‘All justice is virtue’ was felt in
Ancient Greek to be as artificial as in modern languages.

! See p. 9, n. 3.

? The conclusion in variables is dropped in the Greek text.

3 Alexander 54. 21 xpijrac 8¢ 7d xatd mavros xal 7@ xard undevos év 14 didaonally,
o1 8ia Tovrwy yrdpipos 1) ovvaywyy) T@Y Adywy, kel 6Tt 0UTWS Aeyouévwy yvwpiud-
TEPOS G TE KATIYOPOUNEVOS Kai O UTrokelpevos, kai 6L mpdTov Tjj PioeL T6 katd wavTos
700 € SAw avTd, ws mpoelpyTac. ) pévror xpiois 1) ovAloyioTiny év T ouvnlelq dvd-
madw éxer od ydp 1 dpery) Aéyerar xard mdons duwcaioovvns, dAN’ dvdmalw wdoa

Sukatoovi) dperi. 36 kai et xar’ dudorépas Tds éxdopas yvuvdlew éavrovs, iva T
7€ xprjoe. mapaxodovleiv dvvdpeba Kai 7§ didaanalig.

6867 C
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There are still more cases of inexactitude in Aristotelian logic.
Aristotle constantly uses different phrases for the same thoughts.
I shall give only a few examples of this kind. He begins his
syllogistic with the words ‘4 is predicated of all B’, but shortly he
changes these words into the phrase ‘4 belongs to all B’, which
seems to be regular. The words ‘is predicated’ and ‘belongs’ are
frequently omitted, sometimes even the important sign of the
quantity ‘all’ is dropped. Besides the form ‘4 belongs to some B’
there are forms which may be translated ‘4 belongs to some of
the B’s’. The premisses of the syllogism are combined by means of
different conjunctions. Syllogistic necessity is expressed in differ-
ent ways and is sometimes entirely omitted.! Although these
inexactitudes have no bad consequences for the system, they
contribute in no way to its clearness or simplicity.

This procedure of Aristotle is probably not accidental, but
seems to derive from some preconceptions. Aristotle says occasion-
ally that we ought to exchange equivalent terms, words for words
and phrases for phrases.2 Commenting on this passage, Alex-
ander declares that the essence of the syllogism depends not on
words but on their meanings.? This statement, which is manifestly
directed against the Stoics, can be understood thus: the syllogism
does not change its essence, i.e. it remains a syllogism, if some of
its expressions are replaced by other equivalent expressions, e.g.
if the expression ‘to be predicated of all’ is replaced by the
equivalent expression ‘to belong to all’. The Stoics were of a
directly opposite opinion. They would say that the essence of the
syllogism depends on words, but not on their meanings. If there-
fore the words are changed, the syllogism ceases to exist. This is

! The phrase 16 A kard mavros Tod B (karyyopeirar is twice omitted) is used in
the mood Barbara (see p. 3, n. 2), 76 A mavri 7® B (dmdpye. is altogether omitted)
is used in another formulation of the same mood (see p. 10, n. 5). The phrase 7o
A Twi 1év B appears in the laws of conversion ; elsewhere, e.g. in the mood Disamis,
we have 76 A Twi 1@ B (see p. 9, n. 1). The logically important word mavr{ is
altogether omitted in a formulation of the mood Barbara (see p. 2, n.). The
conjunction ‘and’ is for the most part denoted by uév . .. 8¢ (see, for example, p. 7,
n. or p. 10, n. 2), sometimes by «al (see p. 3, n. 2; p. 10, n. 5). Syllogistic necessity
is as a rule expressed by dvdykn Smdpxew (see p. 7, n. or p. g, n. 1), in the mood
Felapton it is denoted by dwdpée é€ dvdyxns (see p. 9, n. 4). In one case it is dropped
(see p. 10, n. 5). A

Z An. pr. i. 39, 49P3 Sei 8¢ «ai peralapfdvery & 76 avto Svvarar, dvduara dvr'
dvoudTwy kai Adyous dvri Adywr.

3 Alexander 372. 29 ovk év Tais Aéfeaw 6 avAdoyiouos 70 elvar €xer, dAX’ év Tois
anpawouévols.
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illustrated by Alexander with an example.from the logic of the
Stoics. The rule of inference called modus ponens

If «, then B;

but «;

therefore S,

is the first ‘indemonstrable’ syllogism of the Stoics. Both the
Stoics and the Peripatetics seem mistakenly to regard the phrases
‘If o, then B’ and ‘ « entails 8’ as having the same meaning.
But if, in the syllogism given above, you replace the premiss ‘If
a, then B’ by ‘ « entails 8°, saying:

« entails 8;

but «;

therefore B,

you get according to the Stoics a valid rule of inference, but not
a syllogism. The logic of the Stoics is formalistic.!

! Alexander 373. 28 Apiororédns pév odv odTws mepi Taw katd Tas Aéfews perakij-
Yewv déperar (see p. 18, n. 2). of 8¢ vedrepor (i.e. of Lrwirol), Tais Aéfeow émaxo-
AovBoivres oduére 8¢ Tois onpawopévois, od TavTdv dact yiveslar év Tais els Tas
igoduvapovoas Aées peradijpeat 7@y Spwv' TadTéy yap onuaivovros Tod ¢ €l 16 A
70 B’ 78 ‘ drodovlei 7& A 16 B’, quddoyioTicdy pév Adyov daoiv elvar Totavrys
Andleions 17s Aéfews ‘el 16 A 76 B, 76 8¢ A, 76 dpa B’, odkére 8¢ audoyioTindv aAra
mepavTikoy 76 ‘ axodovlel 7@ A 70 B, 76 6¢é A, 76 dpa B,



CHAPTER 11

THESES OF THE SYSTEM

§ 8. Theses and rules of inference

THE Aristotelian theory of the syllogism is a system of true pro-
positions concerning the constants 4, E, I, and O. True proposi-
tions of a deductive system I call theses. Almost all theses of the
Aristotelian logic are implications, i.e. propositions of the form
‘If «, then B°. There are known only two theses of this logic not
beginning with ‘if’, viz. the so-called laws of identity: ‘4 belongs
to all 4’ or ‘All 4 is 4’, and ‘4 belongs to some A4’ or ‘Some 4 is
A’. Neither of these laws was explicitly stated by Aristotle, but
they were known to the Peripatetics.!

The implications belonging to the system are either laws of
conversion (and laws of the square of opposition not mentioned
in the Prior Analytics) or syllogisms. The laws of conversion are
simple implications, for instance: ‘If 4 belongs to all B, then B
belongs to some A.’2 The antecedent of this implication is the
premiss ‘A belongs to all B’, the consequent is ‘B belongs to some
A’. This implication is regarded as true for all values of the
variables 4 and B.

All Aristotelian syllogisms are implications of the type ‘If «
and B, then y’, where a and B are the two premisses and y is the
conclusion. The conjunction of the premisses ‘« and B’ is the
antecedent, the conclusion vy is the consequent. As an example
take the following formulation of the mood Barbara:

If 4 belongs to all B
and B belongs to all C,
then 4 belongs to all C.

In this example « means the premiss ‘4 belongs to all B’, 8 the
premiss ‘B belongs to all C’, and y the conclusion ‘4 belongs to

all €’. This implication is also regarded as true for all values of
the variables A, B, and C.

' Cf. p. 9, n. 5, p. 10, n. 1. In the passage quoted in the latter note Alexander
says that the proposition ‘4 does not belong to some A’ is absurd. That means that
the contradictory proposition ‘A4 belongs to all 4’ is true.

2 An, pr.i. 2, 252317 € 8¢ mavri 76 A ¢ B, xai 76 B rwi 7o A dmdpter.
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It must be said emphatically that no syllogism is formulated
by Aristotle as an inference with the word ‘therefore’ (dpa), as is
done in the traditional logic. Syllogisms of the form:

All Bis 4;
all Cis B;

therefore
allCis 4

are not Aristotelian. We do not meet them until Alexander.!
This transference of the Aristotelian syllogisms from the implica-
tional form into the inferential is probably due to the influence of
the Stoics.

The difference between the Aristotelian and the traditional
syllogism is fundamental. The Aristotelian syllogism as an im-
plication is a proposition, and as a proposition must be either true
or false. The traditional syllogism is not a proposition, but a set
of propositions which are not unified so as to form one single
proposition. The two premisses written usually in two different
lines are stated without a conjunction, and the connexion of these
loose premisses with the conclusion by means of ‘therefore’ does
not give a new compound proposition. The famqus Cartesian
principle, ‘Cogito, ergo sum’, is not a true principle, because it is
not a proposition. It is an inference, or, according to a scholastic
terminology, a consequence. Inferences and consequences, not
being propositions, are neither true nor false, as truth and falsity
belong only to propositions. They may be valid or not. The same
has to be said of the traditional syllogism. Not being a proposition
the traditional syllogism is neither true nor false; it can be valid
or invalid. The traditional syllogism is either an inference, when
stated in concrete terms, or a rule of inference, when stated in
variables. The sense of such a rule’ may be explained by the
example given above: When you put such values for 4, B, and
C that the premisses ‘4 belongs to all B’ and ‘B belongs to all
C’ are true, then you must accept as true the conclusion ‘4
belongs to all C”.

If you find a book or an article where no difference is made
between the Aristotelian and the traditional syllogism, you may

! In Alexander 47. 9 we find a syllogism in concrete terms with dpa: wav {Gov
obaia éori, mav {pov Eupuxdv o, Tis dpa odoia Eupuyds éorw. At 382. 18 we have a

complex syllogism in four variable terms with dpa: 76 4 mavri 7@ B, 70 B warri 76
T, 76 A oddevi 76 4, 76 dpa 4 oddevi 73 I'.
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be sure that the author is either ignorant of logic or has never
seen the Greek text of the Organon. Scholars like Waitz, the modern
editor and commentator of the Organon, Trendelenburg, the com-
piler of the Elementa logices Aristoteleae, Prantl, the historian of
logic, all knew the Greek text of the Organon well, but neverthe-
less they did not see the difference between the Aristotelian and
the traditional syllogism. Only Maier seems to have felt for a
moment that something is wrong here, when he asks for permis-
sion to replace the Aristotelian syllogism by the more familiar
and more convenient form of the later logic ; immediately after-
wards he quotes the mood Barbara in its usual traditional form,
neglecting differences he has seen between this form and that of
Aristotle, and does not even say what differences he has seen.!
When we realize that the difference between a thesis and a rule
of inference is from the standpoint of logic a fundamental one, we
must agree that an exposition of Aristotelian logic which dis-
regards it cannot be sound. We have to this day no genuine
exposition of Aristotelian logic.

It is always easy to deduce from an implicational thesis the
corresponding rule of inference. Let us suppose that an implica-
tional proposition ‘If o, then B is true: if « is true, we can always
get B by detachment, so that the rule ‘a therefore 8’ is valid.
When the antecedent of an implicational thesis is a conjunction,
as in the Aristotelian syllogisms, we must first change the con-
junctional form ‘If « and B, then y ’ into the purely implicational
form ‘If «, then if B, then ¥ ’. A moment of reflection is sufficient
to convince ourselves that this transformation is correct. Sup-
posing now that « and B8 are true premisses of a syllogism, we
get the conclusion vy, applying the rule of detachment twice to
the purely implicational form of the syllogism. If, therefore, an
Aristotelian syllogism of the form ‘If « and 8, then y ’ is true, the
corresponding traditional mood of the form ‘«, B, therefore y’ is
valid. But conversely, it seems impossible to deduce the corre-

I Maier, op. cit., vol. ii g, p. 74, n. 2: ‘Es ist vielleicht gestattet, hier und im
Folgenden die gelaufigere Darstellungsform der spiteren Logik, die zugleich

leichter zu handhaben ist, an die Stelle der aristotelischen zu setzen.” The mood
Barbara is quoted ibid., p. 75, thus:

alles B ist A
alles C ist B

alles C ist A
where the stroke replaces the word ‘therefore’.
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sponding Aristotelian syllogism from a valid traditional mood by
known logical rules.

§ 9. The syllogistic figures

There are some controversial problems connected with the
Aristotelian logic that are of historical interest without having
any great logical importance. Among these is the problem of the
syllogistic figures. The division of the syllogisms into figures has,
in my opinion, only a practical aim: we want to be sure that no
true syllogistic mood is omitted.

Aristotle divided the syllogistic moods into three figures. The
shortest and clearest description of these figures is to be found
not in the systematic part of the Prior Analytics but in the later
chapters of that work. If we want, Aristotle says, to prove 4 of B
syllogistically, we must take something common in relation to
both, and this is possible in three ways: by predicating either 4
of C and C of B, or C of both, or both of C. These are the figures of
which we have spoken, and it is clear that every syllogism must
be made in one or other of these figures.!

It follows from this that 4 is the predicate and B the subject of
the conclusion we have to prove syllogistically. A is called, as we
shall see later, the major term and B the minor; C is the middle
term. The position of the middle term as subject or predicate of
the premisses is the principle by which Aristotle divides the
syllogistic moods into figures. Aristotle says explicitly that we
shall recognize the figure by the position of the middle term.? In
the first figure the middle term is the subject of the major term
and the predicate of the minor term, in the second figure it is the
predicate, and in the last figure the subject, of both the other
terms. Aristotle, however, is mistaken when he says that every
syllogism must be in one of these three figures. There is a fourth
possibility, viz. that the middle term is the predicate of the major
term and the subject of the minor term. Moods of this kind are
now spoken of as belonging to the fourth figure.

In the above passage Aristotle has overlooked this fourth

I An. pr. i. 23, 40P30 € 8% 8éot 76 A xard Tob B ovAdoyloadfar 3 Smdpxov § i
Smdpyov, dvdyxn Aafeiv Tv katd Twos. 41213 €l odv dvdyxn pév Tt Aafeiv mpos dudw
xowov, Tobro 8’ évdéyerar Tpuxds (9 yap 16 A 106 I' kai 76 I' 706 B xaryyopijoavras, 4
10 I' kar’ dudoiv, 4 dudw xara Tod I'), Tadra 8’ éori Ta elpnuéva oxrijpara, davepov
o7 mdvra ovMoyioudy dvdyxy yiveolar dia TovTwy Twis TéV oxnudTw@Y.

2 Ibid. 32, 47P13 74 70b péoov Béoe yvwprotper 76 oxHua.
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possibility, although a few chapters farther on he himself gives a
proof by a syllogism in the fourth figure. It is the same problem
again: we have to prove A4 of E syllogistically, where 4 is the
major term and E the minor. Aristotle gives practical indications
how to solve this problem. We must construct a list of universal
propositions having the terms 4 and E as subjects or predicates.
In this list we shall have four types of universal affirmative
proposition (I omit the negative propositions), ‘B belongs to all
A’, ‘A belongs to all C’, ‘< belongs to all £’ and °E belongs to all
H’. Each of the letters B, C, £, and H represents any term ful-
filling the above conditions. When we find among the C’s a term
identical with a term among the Z’s, we get two premisses with a
common term, say < : ‘A belongs to all £’ and ‘< belongs to all E”,
and the proposition ‘4 belongs to all E’ is proved in the mood
Barbara. Let us now suppose that we cannot prove the universal
proposition ‘4 belongs to all E’, as the C’s and {’s have no com-
mon term, but we want at least to prove the particular proposi-
tion ‘4 belongs to some E’. We can prove it in two different ways:
if there is a term among the C’s identical with a term among the
H’s, say H, we get the mood Darapti of the third figure : ‘4 belongs
to all H’, ‘E belongs to all H’, therefore ‘4 must belong to some
E’. But there is still another way when we find among the H’s a
term identical with a term among the B’s, say B; we then get a
syllogism with the premisses ‘E belongs to all B’ and ‘B belongs to
all A’, from which we deduce the proposition ‘4 belongs to some
E’ by converting the conclusion ‘E belongs to all A’ obtained
from these premisses by the mood Barbara.?

This last syllogism: ‘If E belongs to all B and B belongs to all
4, then A belongs to some E’, is a mood neither of the first figure
nor of the second or third. It is a syllogism where the middle term

! An. pr. i. 28, 44212-35 €otw yap T4 pév émdpeva 74 A é¢’ dv B, ols &’ adrd
émerar, €’ v I' . . . mdAw 8¢ 70 E 1a pév vndpyovra, éd’ ols Z, ols 8’ avro émerar,
éd'ols H.... el pév odv Tadrd v €orar rawv I' 7wl 7dv Z, dvdyxn 76 A navri 74 E
dmdpyew: 70 pév yap Z mavri 7 E, 1% 8¢ I’ mavri 70 A, dote mavri 74 E 16 A. €l 8¢ 76
T «ai 70 H Tadtdv, dvdysy Twi 7éwv E 70 A Sndpyew 74 pévyap I'té A, 76 8¢ H 16 E
wavri dcodovlei. . . . € 8¢ @ H 16 B Tadrdv, dvreorpauuévos €orar ovAroyiouds: 76
pev yap E 16 A dmdpée mavri, 76 yap B 16 A, 76 8¢ E 76 B (1ad7é yap v 76 H)- 76
8¢ A 73 E mavri pév odk dvdyxn dmdpxew, Twi 8’ dvdyxy diud 76 dvrioTpédery Ty
xaBédov xatyyoplav 1§ xard pépos. I read riv xaldlov xaryyopiav 75 with codex B
(see Waitz, i. 196; the footnote in Bekker to 44234 seems to be a misprint) and
Alexander 306. 16 against 7§ xa@dAov xarnyoplg Tiv in Bekker and Waitz. I am
glad to see that this reading is also accepted by Sir David Ross.
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B is the predicate of the major term 4 and the subject of the minor
term E. It is the mood Bramantip of the fourth figure. Neverthe-
less it is as valid as any other Aristotelian mood. Aristotle calls it
a ‘converted syllogism’ (avreorpappévos avAdoyiouds) because he
proves this mood by converting the conclusion of the mood
Barbara. There are two other moods, Camestres of the second
figure and Disamis of the third, which Aristotle proves in the
same manner, by converting the conclusion of moods of the first
figure. Let us consider the proof of Disamis : ‘If R belongs to all .S
and P belongs to some S, then P belongs to some R’. As the second
premiss can be converted into ‘S belongs to some P’, we get by
the mood Darii the conclusion ‘R belongs to some P’. By convert-
ing this conclusion into ‘P belongs to some R’ we get the proof of
Disamis. Aristotle here applies the conversion to the conclusion
of the mood Darii, which gives another syllogism of the fourth
figure called Dimaris: ‘If R belongs to all § and S belongs to
some P, then P belongs to some R.!

All these deductions are logically correct, and so are the moods
obtained by their means. Aristotle knows, indeed, that besides the
fourteen moods of the first, second, and third figures established
by him systematically in the early chapters of the Prior Analytics
there are still other true syllogisms. Two of them are quoted by
him at the end of this systematic exposition. It is evident, he says,
that in all the figures, whenever a syllogism does not result, if both
the terms are affirmative or negative nothing necessary follows at
all, but if one is affirmative, the other negative, and if the nega-
tive 1s stated universally, a syllogism always results linking the
minor to the major term, e.g. if 4 belongs to all or some B, and B
belongs to no C; for if the premisses are converted it is necessary
that C does not belong to some 4.2 From the second premiss

! An. pr. i. 6, 287 €l yap 76 pév P mavri v Z 76 8¢ IT 1wi, dvdyxny 76 IT Twi 7o
P $mdpxew. émel yap dvriorpéder 70 xaradarindy, dndpfel 76 X rui 7o IT, dor’ émel
70 pév P mavri 7 X, 76 8¢ T twi 1@ 11, kat 76 P rwi 7@ IT dmdpler dore 70 IT Twi
7¢ P. This passage refutes the assertion of Friedrich Solmsen that Aristotle was
not willing to apply the procedure of conversion to the conclusion. Die Entstehung
der aristotelischen Logik und Rhetorik, Berlin (1929), p. 55: ‘Die Umkehrung dringt in
die conclusio ein, in der Aristoteles sie nicht kennen wolite.’

? An. pr.i. 7, 29219 87Aov 8¢ xai 67¢ év dmaot Tois oxfpaoiy, Srav uy yivprar guddo-
YLOROS, KATIYOPLKGY 1év T) OTEPNTIKGY dudoTépwy GvTwy TGV Spwy ovdév SAws yiverar
dvaykaiov, xarnyopikod 8¢ xai arepnrikod, xaldrov Andbévros Toi oTepyriod, del
yiverar ovAdoyiouds Tod éAdrrovos drpov mpos 16 peilov, olov € 76 uév A mavri 7@
B 5 1wi, 16 8¢ B undevi 7@ I' dvriorpedopévwr yap Tév mpordoewy dvdyxn 16 I' Twi
& A py) Sndpxew.
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given here by Aristotle we get by conversion the proposition ‘C
belongs to no B’, from the first premiss we get ‘B belongs to some
A4’, and from these two propositions results, according to the mood
Ferio of the first figure, the conclusion ‘C does not belong to some
A’. Two new syllogistic moods are thus proved, called later
Fesapo and Fresison:

If A belongs to all B If A belongs to some B
and B belongs to no C, and B belongs to no C,
then C does not belong to some 4. then C does not belong to some 4.

Aristotle calls the minor term C and the major term A4 because he
treats the premisses from the point of view of the first figure. He
says, therefore, that from the given premisses a conclusion results
in which the minor term is predicated of the major.

Three other syllogisms belonging to the fourth figure are men-
tioned by Aristotle at the beginning of Book II of the Prior
Analytics. Aristotle states here that all universal syllogisms (i.e.
syllogisms with a universal conclusion) give more than one result,
and of particular syllogisms the affirmative yield more than one,
the negative yield only one conclusion. For all premisses are con-
vertible except the particular negative ; and the conclusion states
something about something. Consequently all syllogisms except
the particular negative yield more than one conclusion, e.g. if 4
has been proved to belong to all or to some B, then B must belong
to some A; and if 4 has been proved to belong to no B, then B
belongs to no A. This is a different conclusion from the former.
But if 4 does not belong to some B, it is not necessary that B
should not belong to some 4, for it may possibly belong to all 4.

We see from this passage that Aristotle knows the moods of the
fourth figure, called later Bramantip, Camenes, and Dimaris,
and that he gets them by conversion of the conclusion of the
moods Barbara, Celarent, and Darii. The conclusion of a syllo-
gism is a proposition stating something about something, i.e. a
premiss, and therefore the laws of conversion can be applied to it.

U An. pr. ii. 1, 5324 oi pév xaBddov (scil. ovAdoyiapol) mdvres dei mAelw auAroyilov-
- ] \
Tat, Tav 8’ év pépel ol pév karnyopixol mAelw, oi 8’ dmodarinol 76 guumépaopa pdvov.
¢ \ AJ » ’ € 4

ai pév yap dAdac mpordoeis dvriaTpédovaw, 1) 8é arepnTiny) odk dvriaTpéder 1O 8é
aqupmépacpa Ti katd Twds éaTw. Hal’ ol pév dAot auloyiapol mAeiw auddoyilovral,
olov €l 70 A 8édeixtar mavti ¢ B 7 Twvi, xai 76 B rwi 1@ A dvayxaiov vmdpyew- xai el
undevi 73 B 16 A, 098¢ 16 B otdevi 7 A. ToiiTo 8 Erepov Tod éumpoalev. el 8¢ Twi ud
vmdpxet, ovx dvdyxn xai 76 B rwi 7@ A py) dndpyew évdéxerar yap mavri dmdpyew.



§9 THE SYLLOGISTIC FIGURES 27

It is important that propositions of the type ‘4 belongs to no B’
and ‘B belongs to no A4’ are regarded by Aristotle as different.
It follows from these facts that Aristotle knows and accepts all
the moods of the fourth figure. This must be emphasized against
the opinion of some philosophers that he rejected these moods.
Such a rejection would be a logical error which cannot be im-
puted to Aristotle. His only mistake is the omission of these moods
in the systematic division of the syllogisms. We do not know why
he did so. Philosophical reasons, as we shall see later, must be
excluded. The most probable explanation is given, in my opinion,
by Bochenski,! who supposes that Book I, chapter 7 and
Book II, chapter 1 of the Prior Analytics, where these new moods
are mentioned, were composed by Aristotle later than the syste-
matic exposition of chapters 4-6 of Book I. This hypothesis seems
to me the more probable, as there are many other points in the
Prior Analytics suggesting that the contents of this work grew
during its composition. Aristotle did not have time to draw up
systematically all the new discoveries he had made, and left the
continuation of his logical work to his pupil Theophrastus.
Theophrastus, indeed, found for the moods of the fourth figure
which are ‘homeless’ in Aristotle’s system a place among the
moods of the first figure.? For this purpose he had to introduce
a slight modification into the Aristotelian definition of the first
figure. Instead of saying that in the first figure the middle term
is the subject of the major and the predicate of the minor,
as Aristotle does,® he said generally that in the first figure the
middle term is the subject of one premiss and the predicate of
another. Alexander repeats this definition, which probably comes
from Theophrastus, and seems not to see that it differs from the
Aristotelian description of the first figure.* The correction of

! 1. M. Bocheniski, O.P., La Logique de Théophraste, Collectanea Friburgensia,
Nouvelle Série, fasc. xxxii, Fribourg en Suisse (1947), p. 59.

2 Alexander 6g. 27 Oeddpacros 8¢ mpoarifinaww dAovs mévre Tois Téooapar TovToLs
ovKéri Terelovs ovd’ dvamodelxrous dvras, dv uvnuoveder xai 6 Apiarorédns, Tdv uév év
Tovrew T® BifAiw mpoedlwv, TG 3¢ év TG pera Toiiro 1dH devrépw xar’ apxds. Cf. ibid.
110. 12.

3 Cf. p. 23, n. 1.

* Alexander 258. 17 (ad i. 23) 1 8¢ 705 uéoov oxéois mpos rd, dv Aaufdverac péoov,
TpLxds yveras (7} yap év péow Tlleral adrdv T pév dmokeipevos avTdv Tod 8¢ xaTyyo-
povpevos, 1) dudorépwy karnyopeirar, 1) dudorépois vmdxerrar). Ibid. 349. 5 (ad i. 32)
@v pév ydp 6 péoos év dudorépais Gv Tals mpordoeaw olrws 7} ws Tod pév KarTnyo-
petabar abrav 1@ 8¢ Jmoxeiabal, mpdTov €oTal oxTua.
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Theophrastus is as good a solution of the problem of the syllo-
gistic figures as the addition of a new figure.

§ 10. The major, middle, and minor terms

There is still another error committed by Aristotle in the Prior
Analytics, with more serious consequences. It concerns the defini-
tion of the major, minor, and middle terms as given in his
characterization of the first figure. This begins with the words:
‘Whenever three terms are so related to one another that the last
is contained in the middle and the middle is contained or not in
the first, the extremes must form a perfect syllogism.” This is how
he begins; in the next sentence he explains what he means
by the middle term: ‘I call that term the middle which is itself
contained in another and contains another in itself, which by
position also becomes the middle.’* Aristotle then investigates the
syllogistic forms of the first figure with universal premisses with-
out using the expressions ‘major term’ and ‘minor term’. These
expressions occur for the first time when he comes to the moods-
of the first figure with particular premisses. Here we find the
following explanations: ‘I call that term the major in which the
middle term is contained and that term the minor which comes
under the middle.’? These explanations of the major and the
minor- term, like that of the middle term, are expressed quite
generally. It would seem that Aristotle intends to apply them to
all moods of the first figure.3 If he thought, however, that they are
capable of covering all cases, he was mistaken.

In fact these explanations can be applied only to syllogisms of
the mood Barbara with concrete terms and true premisses, e.g.:

(1)  If all birds are animals
and all crows are birds,
then all crows are animals.

In this syllogism there is a term, ‘bird’, which is itself contained
in another term, ‘animal’, and contains in itself a third term,

Y An. pr. i. 4, 25P32 Srav odv Spor Tpeis odrws Exwor mpos dAMflovs dore TV
éaxarov év SAw elvar 7@ péow xai Tov péoov év GAw TH mpdTw 1§ elvar § un elva,
dvdyxn T@v dxpwy elvar audloyiopov Tédewov. xadd 8¢ péoov pév & kal adrs év dMw Kai
dA)o év TovTw éotiy, 6 xai i) Oéael yiverar péoov.

2 Ibid., 26321 Aéyw 8¢ peilov puév dxpov év & 76 péaov éorlv, éXarrov B¢ 76 imd 7o
péoov Sv.

3 Maier, op. cit., vol. ii a, pp. 49, 55, really treats them as definitions valid for all
the moods of the first figure.
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‘crow’. According to the given explanation ‘bird’ would be the
middle term. Consequently ‘animal’ would be the major term
and ‘crow’ the minor term. It is evident that the major term is
so called because it is the largest in extent, as the minor term is
the smallest.

We know, however, that syllogisms with concrete terms are
only applications of logical laws, but do not belong to logic
themselves. The mood Barbara as a logical law must be stated
with variables:

(2) Ifall Bis 4
and all Cis B,
then all Cis 4.

To this logical law the given explanations are not applicable,
because it is not possible to determine extensional relations
between variables. It may be said that B is the subject in the first
premiss and the predicate in the second, but it cannot be stated
that B is contained in 4 or that it contains C; for the syllogism (2)
is true for all values of the variables 4, B, and C, even for those
which do not verify its premisses. Take ‘bird’ for 4, ‘crow’ for B,
and ‘animal’ for C: you get a true syllogism:
(3)  If all crows are birds
and all animals are crows,
then all animals are birds.

The extensional relations of the terms ‘crow’, ‘bird’, and ‘animal’
are of course independent of syllogistic moods and remain the
same in syllogism (3) as they were in (1). But the term ‘bird’ is
no longer the middle term in (3) as it was in (1) ; ‘crow’ is the
middle term in (3) because it occurs in both premisses, and
the middle term must be common to both premisses. This is the
definition of the middle term accepted by Aristotle for all figures.*
This general definition is incompatible with the special explana-
tion given by Aristotle for the first figure. The special explanation
of the middle term is obviously wrong. It is evident also that the
explanations of the major and minor terms which Aristotle gives
for the first figure are wrong, too.

Aristotle does not give a definition of the major and minor
terms valid for all figures; but practically he treats the predicate

1 An. pr.,i. 32, 47?38 péaov Se: Oeréov Tdv Spwv Tov e:u (ip.(ﬁo're'puts 'ra,i's mpordoeot
Aeydpevoy avdykm yap 76 puéaov év dudorépais vndpyew év dmaoe Tois oxfjpacy.
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of the conclusion as the major term and the subject of the con-
clusion as the minor term. It is easy to see how misleading this
terminology is: in syllogism (3) the major term ‘bird’ is smaller
in extension than the minor term ‘animal’. If the reader feels
a difficulty in accepting syllogism (3) because of its false minor,
he may read ‘some animals’ instead of ‘all animals’. The syllo-
gism:
(4)  If all crows are birds
and some animals are crows,
then some animals are birds

is a valid syllogism of the mood Darii with true premisses. And
here again, as in syllogism (3), the largest term ‘animal’ is the
minor term; ‘bird’, middle in extension, is the major term; and
the smallest term, ‘crow’, is the middle term.

The difficulties we have already met are still greater when we
take as examples syllogisms with negative premisses, e.g. the mood
Celarent :

IfnoBis A
and all Cis B,
then no C is A.

B is the middle term ; but does it fulfil the conditions laid down
by Aristotle for the middle term of the first figure ? Certainly not.
And which of the terms, C or 4, is the major and which is the
minor ? How can we compare these terms with respect to their
extension ? There is no positive answer to these last questions, as
they spring from a mistaken origin.!

§ 11. The history of an error

The faulty definition of the major and the minor terms, given
by Aristotle for the first figure, and the misleading terminology
he adopts, were already in antiquity a source of difficulty. The
problem arose in the case of the second figure. All the moods of

! We have no guarantee, as Keynes (op. cit., p. 286) justly remarks, that the
major term will be the largest in extension and the minor the smallest, when one of
the premisses is negative or particular. Thus, Keynes continues, ‘the syllogism—
No M is P, All S is M, therefore, No .S is P—yields as one case [here there follows
a diagram representing three circles M, P, and S, a large S included in a larger M,
outside of them a small P] where the major term may be the smallest in extent,
and the middle the largest.” Keynes forgets that it is not the same to draw a small
circle P outside of a large circle § and to maintain that the term P is smaller in
extent than the term S. Terms can be compared with respect to their extent only
in the case when one of them is contained in the other.
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this figure have a negative conclusion and the first two moods,
called later Cesare and Camestres, yield a universal negative
conclusion. From the premisses ‘M belongs to all N’ and ‘M
belongs to no X’ follows the conclusion ‘X belongs to no N’, and
by conversion of this result we get a second conclusion, ‘N belongs
to no X”. In both syllogisms A is the middle term ; but how are we
to decide which of the two remaining terms, N and X, is the
major term and which is the minor? Do major and minor terms
exist ‘by nature’ (¢voe) or only ‘by convention’ (féoet) ?*

Such problems, according to Alexander, were raised by the
later Peripatetics. They saw that in universal affirmative pre-
misses there can be a major term by nature, because in such
premisses the predicate is larger in extension (éni mAéov) than the
subject, but the same is not true in universal negative premisses.?
We cannot know, for instance, which of the terms ‘bird’ or ‘man’
is major, because it is equally true that ‘no bird is a man’ and that
‘no man is a bird’. Herminus, the teacher of Alexander, tried to
answer this question by modifying the meaning of the expression
‘major term’. He says that of two such terms, ‘bird’ and ‘man’,
that is the major which in a systematic classification of the animals
is nearer to the common genus ‘animal’. In our example it is the
term ‘bird’.3 Alexander is right when he rejects this theory and
its further elaboration given by Herminus, but he also rejects the
opinion that the major term is the predicate of the conclusion.
The major term, he says, would not be fixed in this case, as the
universal negative premiss is convertible, and what till now has
been a major term instantly becomes a minor, and it would
depend upon us to make the same term major and minor.* His
own solution is based on the assumption that when we are form-
ing a syllogism we are choosing premisses for a given problem

- M
! Alexander 72. 17 {n7eitai, el dvoe év Sevrépw axijpart pellwv 7is ot kai
éxdrrwy dxpos, kai Tive odros xpibijoerac.
2 Ibid. 72. 24 éni pév ydp T7@v xaradaTikdv pellwyv ¢ karyyopovuevos xabldrov, 611
r L ’ A} ’ A} k] h > ’ - ’ v - A} ’ b
kai €mi mAéov: Bia ToUTOU Yap 0UOE dvTioTpéder date Ploer adrd 1o pellova elvar
vmdpxet. €mi 8¢ TV kaldlov dmodaTikdy obxéTe ToiTo dAnfés.
3 - ¢ - v » ’ /7 A} 2 » b3 \
Ibid. 27 ‘Eppivos oierar, év devrépw oxipar 7ov peilova drpov elvac...Tov
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4 Ibid. 75. 10 dAX’ 08¢ amAds mdAw pyréov pellova Tov év 7O guumepdopati TOU
AA -~ ’ . -~ * 1 A} T, -~ . Y A} 'M
ovAoyiopod karnyopoduevov, ws Soxel Tiaw ovd€e ydp odros 8ijAos dAdore yap dAos
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conceived as the conclusion. The predicate of this conclusion is
the major term, and it does not matter whether we afterwards
convert this conclusion or not: in the problem as first given the
major term was and remains the predicate.! Alexander forgets
that when we are forming a syllogism we are not always choosing
premisses for a given conclusion, but sometimes we are deducing
new conclusions from given premisses.

The problem was settled only after Alexander. What John
Philoponus writes on the subject deserves to be regarded as
classic. According to him we may define the major and the minor
term either for the first figure alone or for all the three figures
together. In the first figure the major term is the predicate of the
middle and the minor is the subject of the middle. Such a defini-
tion cannot be given for the other two figures because the rela-
tions of the extremes to the middle term are in the other figures
the same. We must therefore accept as a common rule for all
figures that the major term is the predicate of the conclusion and
the minor term is the subject of the conclusion.? That this rule is
only a convention follows from another passage of Philoponus,
where we read that the universal moods of the second figure have
a major and a minor term only by convention, but not by
nature.3

§ 12. The order of the premisses

Around the Aristotelian logic arose some queer philosophical
prejudices which cannot be explained rationally. One of them is
directed against the fourth figure, disclosing sometimes a strange
aversion to it, another is the odd opinion that in all syllogisms
the major premiss should be stated first.

1 Alexander 75. 26 7ov 8 év 7% mpoxepuévew mpofhipare els v deifw xaryyo-
povpevov TovTo Beréov pellova: xal ydp el dvriorpéder xal did ToiTo yiverar 6 adros xal
vmokelpevos, dAX’ & ye 13 fuiv els 76 deifat mpokeruévw xaTnyopovuevos v Te kai puéved.

2 Philoponus 67. 19 {8wuev mpdrepov xal 7is éore pellwv Spos kai 7is éXdrrwy.
Tod70 8¢ duvaTdv uév Kai xowds éml Tav TPy oxnudrwy doploachar kai idig émi Tob
nmpdiTov. Kai idlg pév émi Tod mpdirov axfuaros pellwv Spos éoriv 6 Tob péoov kaTnyo-
povpevos, éAdTTwy 8¢ 6 T® uéow vmoxelpevos. xai TovTo uév WBialovrws éni Tod mpwTou
Aéyouev, émeds) & uéoos é&v TG mpdTw TOD pév Karnyopeirar 7H 8¢ dméxeirar. dAX’
énmedn xar’ ovdérepov Tdv dAwy oxnudrwy Siddopor Exovar axéow ol dxpor mpos TOV
péaov, dijdov Sri odrére dpudaet fuiv odros & mpoadioptauds ém’ éxelvww. xpnoréov oy
Kow® Kxavow €ml TV TPV oxnudTwy ToUTw, o1t pellwy éoriv Spos O év TH ovume-
pdopaTte xaryyopovuevos, éXdrrwy 8¢ 6 év TH ovumepdouare dmoxeipevos.

3 Ibid. 87. 10 76 8¢ peilov drpov év Tovrw @ axfjuart TGy o mpordoewy kabdrov
0Uodv ovk €oTi Pvoer dAAd Béoer.



§12 THE ORDER OF THE PREMISSES 33

From the standpoint of logic the order of the premisses in the
Aristotelian syllogisms is arbitrary, because the premisses of the
syllogism form a conjunction and the members of a conjunction
are commutable. It is only a convention that the major premiss is
stated first. Nevertheless, some philosophers, like Waitz or Maier,
maintain that the order of the premisses is fixed. Waitz censures
Apuleius for having changed this order,’ and Maier rejects
Trendelenburg’s opinion that Aristotle does not tie it down.? No
arguments are given in either case.

I do not know who is the author of the opinion that the order
of the premisses is fixed. Certainly it is not Aristotle. Although
Aristotle has not given a definition of the major and minor terms
valid for all the three figures, it is always easy to determine which
term and which premiss are regarded by him as the major and
which as the minor. Aristotle, in his systematic exposition of the
syllogistic, uses different letters to denote different terms; for each
figure he puts them in alphabetical order (féocs) and says explicitly
which term is denoted by a given letter. We have thus for the
first figure the letters 4, B, C; 4 is the major term, B the middle,
and C the minor.3 For the second figure we have the letters M,
N, X, where M is the middle term, N the major, and X the minor.+
For the third figure we have the letters P, R, S, where P is the
major term, R the minor, and § the middle.’

I Waitz, op. cit., vol. i, p. 380: ‘Appuleius in hunc errorem se induci passus est,
ut propositionum ordinem immutaverit.’

2 Maier, op. cit.,, vol. iia, p. 63: ‘Darnach is Trendelenburg’s Auffassung,
dass Aristoteles die Folge der Primissen frei lasse, falsch. Die Folge der Pra-
missen ist vielmehr festgelegt.” It is not clear to me what reasons he refers to by
darnach.

3 This follows from the definition given by Aristotle for the first figure; see
p. 28, n. 1. Cf. Alexander 54. 12 éorw yap pellwv pév dxpos 76 A, uéaos 8¢ dpos 76 B,
éxdrrwy 8¢ dxpos 1o I'.

4 An. pr. i. 5, 26P34 Srav 8¢ 70 aird 7 pév mavrl 7H 8¢ pndeni Smdpyy, % éxarépw
mavri §) pndevi, 16 pév oxiua 76 Totobrov Kald devrepov, uéaov 8¢ &v atrd Ayw 16
xarnyopodpevor audoiv, dxpa 8¢ kald’ dv Aéyetar Tobro, peilov 8¢ drpov 1o mpos TH
péow kelpevov, Exarrov 8¢ 16 moppwrépw Tob péoov. riferar 8¢ 76 péoov éfw pév Tow
dxpwv, mparov 8¢ 1§ Béoer. Cf. Alexander 78. 1 ypfitac ydp ororyelois ob Tois A, B, I',
ols év 1d mpdTe axripare, dAXG Tois M, N, 8, uéoov uév AauBdvwy 76 M 76 dudorépwv
KaTiyopovpevoy Kai TV, mpatyy €xov Tdfw év Tf) kataypadf, pellova 8¢ dxpov v6 N
édefiis xelpevov pera Tov péoov, éaxarov 8¢ xal éAdrrova 70 8.

5 An. pr. i. 6, 28310 éav 8¢ 7@ abrd 7O pév wavri 76 8¢ undevi Smdpxy, % dudw
mavri 9 pndevi, 76 pév oxipa 16 TotoiTov KaAd Tpirov, péoov 8’ év adrH Aéyw xal’ oS
dudw Td xarTyyopodpeva, dxpa 8¢ Td xaryyoposueva, peilov 8° dxpov T moppiirepov
70D péoov, EXarrov 8¢ 76 éyyvrepov. TlleTar 8¢ 76 péoov Ew pév Tdv dxpwv, éoxatov
3¢ 7} Béoee. Cf. Alexander g8. 20 éni Todrov T0d oxtjparos mdAw xpirac aroyelows
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Aristotle states the major premiss first in all the moods of
the first and the second figure, and in two moods of the third
figure, Darapti and Ferison.! In the remaining moods of the third
figure, Felapton, Disamis, Datisi, and Bocardo, the minor pre-
miss is stated first.2 The most conspicuous example is the mood
Datisi. This mood is formulated in the same chapter twice; in
both formulations the letters are the same, but the premisses are
inverted. The first formulation runs: ‘If R belongs to some §, and
P to all §, P must belong to some R.’3 The first premiss of this
syllogism is the minor premiss, for it contains the minor term R.
The second formulation reads: ‘If P belongs to all S, and R to
some S, then P will belong to some R.’* The first premiss of this
second syllogism is the major premiss, as it contains the major
term P. Attention must be called to the fact that this second
formulation is given only occasionally, while the standard for-
mula of this mood, belonging to the systematic exposition, is
enunciated with transposed premisses.

In Book II of the Prior Analytics we meet other moods*with
transposed premisses, as Darii,5 Camestres,® Baroco.” Even Bar-
bara, the main syllogism, is occasionally quoted by Aristotle with
the minor premiss first.® I can hardly understand, in view of these
examples, how some philosophers knowing the Greek text of the
Organon could have formed and maintained the opinion that the
order of the premisses is fixed and the major premiss must be
stated first. It seems that philosophical prejudices may some-
times destroy not only common sense but also the faculty of seeing
facts as they are.

§ 13. Errors of some modern commentators
The story of the fourth figure may serve as another example to

rois I1, P, X, kai éorw adrd Tod uév peilovos dxpov anuavrinov 76 I, 1o 8¢ édrrovos
xai dpeldovros smokeiobar év T4 ywouévw auumepdapatt 76 P, Tod 8¢ péaov 76 Z.

I See, for instance, p. 3, n. 2 (Barbara) and p. 10, n. 2 (Ferio).

% See p. g, n. 4 (Felapton), and p. 7, n. (Disamis).

3 An. pr. i. 6, 28b12 €l 76 pév P rovi v X 76 8¢ IT mavri Smdpyer, dvdyxy 76 IT v
T® P dmdpyew.

+ Ibid. 28b26 €l yép mavri 76 IT 7 X émdpyer, 76 8¢ P 1ok 70 Z, wal 76 IT Tud
76 P dmdpéer.

s Ibid. ii. 11, 61P41 € ydp 76 4 rui 7@ B, 76 8¢ I’ mavri 76 A, ri 7@ Bro I
vmdpée.

6 Ibid. ii. 8, 6023 el 76 A undevi 7& I', 7o 3¢ B wavri, oddevi 7d I' 76 B.

7 Ibid. 6025 € yap 76 A Twi 1¢ F py dmdpxer, 7 8¢ B mavri, 76 B rwi 76 I' ody
vmdpfer. 8 See p. 10, n. 5.
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show how strange philosophical prejudices sometimes are. Carl
Prantl, the well-known historian of logic, begins his consideration
of this figure with the following words: ‘The question why silly
playthings, as, for instance, the so-called Galenian fourth figure,
are not to be found in Aristotle, is one we do not put at all; it
plainly cannot be our task to declare at every step of the Aristote-
lian logic that this or that nonsense does not occur in it.’! Prantl
does not see that Aristotle knows and accepts the moods of the
so-called Galenian fourth figure and that it would be a logical
error not to regard these moods as valid. But let us go farther.
Commenting upon the passage where Aristotle speaks of the two
moods later called Fesapo and Fresison,? Prantl first states these
moods as rules of inference:

All Bis A Some B 1s A
NoCis B No Cis B
Some A4 is not C Some A4 is not C

—he does not, of course, see the difference between the Aristotelian
and the traditional syllogism—and then he says: ‘By transposi-
tion of the major premiss and the minor it becomes possible
for the act of reasoning to begin’; and further: ‘Such kinds of
reasoning are, of course, not properly valid, because the premisses
ordered as they were before the transposition are simply nothing
for the syllogism.’® This passage reveals, in my opinion, Prantl’s
entire ignorance of logic. He seems not to understand that
Aristotle proves the validity of these moods not by transposing
the premisses, i.e. by inverting their order, but by converting
them, i.e. by changing the places of their subjects and predicates.

! Carl Prantl, Geschichte der Logik im Abendlande, vol. i, p. 272: ‘Die Frage aber,
warum einfiltige Spielereien, wie z. B. die sog. Galenische vierte Figur, sich bei
Aristoteles nicht finden, werfen wir natiirlich gar nicht auf; . . . wir kénnen
selbstverstandlicher Weise nicht die Aufgabe haben, bei jedem Schritte der
aristotelischen Logik eigens anzugeben, dass dieser oder jener Unsinn sich bei
Aristoteles nicht finde.’

Z See p. 25, n. 2.

3 Prantl, op. cit., vol. i, p. 276

‘Alles B ist A Einiges B ist A
Kein Cist B Kein C ist B
Einiges A ist nicht C Einiges A ist nicht C
woselbst durch Vertauschung des Untersatzes mit dem Obersatze es méglich wird,
dass die Thitigkeit des Schliessens beginne; . . . natiirlich aber sind solches keine

eigenen berechtigten Schlussweisen, denn in solcher Anordnung vor der Vornahme
der Vertauschung sind die Pramissen eben einfach nichts fiir den Syllogismus.’
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Moreover, it is out of place to say that, two premisses being given,
the act of reasoning begins when one premiss is stated first, but
no syllogism results when the other precedes. From the stand-
point of logic Prantl’s work is useless.

The same may be said of Heinrich Maier’s work. His treatise
on the syllogistic figures generally and the fourth figure in parti-
cular is in my opinion one of the most obscure chapters of his
laborious but unfortunate book.! Maier writes that two opinions
of the criterion for the syllogistic figures stand opposed to each
other: one (especially Ueberweg) sees this criterion in the posi-
tion of the middle term as subject or predicate, the other (es-
pecially Trendelenburg) sees it in the extensional relations of the
middle term to the extremes. It is not yet settled, Maier says,
which of these opinions is right.2 He adopts the second as his own,
relying on Aristotle’s characterization of the first figure. We know
already that this characterization is logically untenable. Maier
not only accepts it, but modifies the Aristotelian characterizations
of the two other figures according to the first. Aristotle describes
the second figure somewhat carelessly as follows: ‘Whenever the
same term belongs to all of one subject and to none of the other,
or to all of each subject, or to none of either, I call such a figure
the second ; by ‘“‘middle term” in it I mean that which is predi-
cated of both subjects, by ‘‘extremes’ the terms of which this is
said.’> Maier remarks: ‘When we reflect that the expressions
“‘Bis included in 4, “‘4 belongs to B, and ‘4 is predicated of
B” are interchangeable, then we may put this characterization
according to the description of the first figure in the following
words.’* Maier commits here his first error: it is not true that the
three expressions he quotes can be exchanged for each other.
Aristotle states explicitly: “To say that one term is included in
another is the same as to say that the other is predicated of all of
the first.’s The expression ‘B is included in 4’ means, therefore,

! See Maier, op. cit., vol. iia, ‘Die drei Figuren’, pp. 47-71, and vol. ii b,
‘Erganzung durch eine 4. Figur mit zwei Formen’, pp. 261-9.

z Op. cit., vol. iia, p. 48, n. 1.

3 See the Greek text on p. 33, n. 4.

4 Op. cit., vol. ii g, p. 49: ‘Erwigt man namlich, dass die Ausdriicke *‘B liegt im
Umfang von A”, ‘A kommt dem Begriff B zu” und ‘‘A wird von B ausgesagt’ mit
einander vertauscht werden kénnen, so lisst sich die Charakteristik der zweiten
Figur, welche der Beschreibung der ersten parallel gedacht ist, auch so fassen.’

S An. pr.i. 1, 24P26 76 8¢ év SAw elvar Erepov érépw kai T0 kard mavrds Karyyopei-
afa. Barépov Bdrepov TavTdv éoTw.
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the same as ‘4 is predicated of all B’ or ‘4 belongs to all B’, but
does not mean ‘4 is predicated of B’ or ‘4 belongs to B’. With
this first error is connected a second : Maier maintains that the
negative premiss also has the external form of subordination of
one term to another, like the affirmative universal premiss.’
What is here meant by ‘external form’? When 4 belongs to all B,
then B is subordinated to 4, and the external form of this relation
is just the proposition ‘4 belongs to all B’. But in a negative
premiss, e.g. ‘4 belongs to no B’, the subordination of terms does
not exist, nor does its form. Maier’s assertion is logically nonsense.

Let us now quote Maier’s description of the second figure. It
runs thus: “‘Whenever of two terms one is included, and the other
is not included, in the same third term, or both are included in it,
or neither of them, we have the second figure before us. The
middle term is that which includes both remaining terms, and
the extremes are the terms which are included in the middle.’>
This would-be characterization of the second figure is again
logically nonsense. Take the following example: Two premisses
are given: ‘4 belongs to all B’ and ‘C belongs to no 4’. If 4
belongs to all B, then B is included in 4, and if C belongs to no
A, it is not included in A. We have therefore two terms, B and C,
one of which, B, is included, and the other, C, is not included in
the same third term 4. According to Maier’s description we should
have the second figure before us. What we have, however, is not
the second figure, but only two premisses ‘4 belongs to all B’ and
‘C belongs to no 4’, from which we can get by the mood Celarent
of the first figure the conclusion ‘C belongs to no B’, and by the
mood Camenes of the fourth figure the conclusion ‘B belongs
to no (.

The peak, however, of logical absurdity Maier attains by his
assertion that there exists a fourth syllogistic figure consisting of
only two moods, Fesapo and Fresison. He supports this assertion
by the following argument: ‘The Aristotelian doctrine overlooks
one possible position of the middle term. This term may be less

' Op. cit., vol. ii @, p. 60, n. 1: ‘auch der negative syllogistische Satz hat
wenigstens die dussere Form der Subordination.” Cf. also ibid., p. 50.

2 Ibid., p. 49: ‘Wenn im Umfang eines und desselben Begriffes der eine der
beiden iibrigen Begriffe liegt, der andere nicht liegt, oder aber beide liegen oder
endlich beide nicht liegen, so haben wir die zweite Figur vor uns. Mittelbegriff ist
derjenige Begriff, in dessen Umfang die beiden iibrigen, duBere Begriffe aber die-
jenigen, die im Umfang des mittleren liegen.’
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general than the major and more general than the minor, it may
secondly be more general, and thirdly less general, than the
extremes, but it may be also more general than the major term
and at the same time less general than the minor.’* When we
remind ourselves that according to Maier the major term is
always more general than the minor,? and that the relation ‘more
general than’ is transitive, we cannot avoid the strange conse-
quence of his argument that the middle term of his fourth figure
should be at the same time more and less general than the minor
term. From the standpoint of logic Maier’s work is useless.

§ 14. The four Galenian figures

In almost every text-book of logic you may find the remark that
the inventor of the fourth figure was Galen, a Greek physician and
philosopher living in Rome in thesecond century A.p. Thesource of
this remark is suspect. We do not find it either in the extant works
of Galen or in the works of the Greek commentators (including
Philoponus). According to Prantl the medieval logicians received
the information from Averroes, who says that the fourth figure
was mentioned by Galen.? To this vague information we may add
two late Greek fragments found in the nineteenth century, and
also very vague. One of them was published in 1844 by Mynas in
the preface to his edition of Galen’s Introduction to Dialectic, and
republished by Kalbfleisch in 18g97. This fragment of unknown
authorship tells us that some later scholars transformed the moods
added by Theophrastus and Eudemus to the first figure into a
new fourth figure, referring to Galen as the father of this doctrine.*
The other Greek fragment was found by Prantl in a logical work

! Op. cit., vol. ii b, p. 264 : ‘Die aristotelische Lehre 148t eine mogliche Stellung
des Mittelbegriffs unbeachtet. Dieser kann specieller als der Ober- und allgemeiner
als der Unterbegriff, er kann ferner allgemeiner, er kann drittens spccieller als die
beiden duBeren Begriffe : aber er kann auch allgemeiner als der Ober- und zugleich
specieller als der Unterbegriff sein.’

2 Ibid., vol. ii a, p. 56: ‘Oberbegriff ist stets, wie in der 1. Figur ausdriicklich
festgestellt ist, der allgemeinere, Unterbegriff der weniger allgemeine.’

3 Prantl, i. 571, n. 99, quotes Averroes in a Latin translation edited in
Venice (1553) : ‘Et ex hoc planum, quod figura quarta, de qua meminit Galenus,
non est syllogismus super quem cadat naturaliter cogitatio.” Cf. also Prantl, ii.
390, n. 322.

* K. Kalbfleisch, Uber Galens Einleitung in die Logik, 23. Supplementband der
Jahrbiicher fiir klassische Philologie, Leipzig (1897), p. 707: Beddpaoros 3¢ xai
Ebdquos xal Twas érépas avlvylas mapa ras éxrebeioas v Apraroréder mpoorebijxaat
T mpdTW oxHpaTe . . ., ds xal Téraprov dmoTelelv oxipa TAY vewTépwy ifnady Tves
ws mpés marépa Ty dofav Tév Nadnwov avadépovres.
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of Ioannes Italus (eleventh century A.p.). This author says sar-
castically that Galen maintained the existence of a fourth figure
in opposition to Aristotle, and, thinking that he would appear
cleverer than the old logical commentators, fell very far short.!
That is all. In view of such a weak basis of sources, Ueberweg
suspected a misunderstanding in the matter, and Heinrich Scholz
writes in his History of Logic that Galen is probably not responsible
for the fourth figure.?

For fifty years there has existed a Greek scholium in print
which clears up the whole matter in an entirely unexpected way.
Although printed, it seems to be unknown. Maximilian Wallies,
one of the Berlin editors of the Greek commentaries on Aristotle,
published in 1899 the extant fragments of Ammonius’ commen-
tary on the Prior Analytics, and has inserted in the preface a
scholium of an unknown author found in the same codex as that
in which the fragments of Ammonius are preserved. The scholium
is entitled ‘On all the kinds of syllogism’, and begins thus:

“There are three kinds of syllogism : the categorical, the hypothetical,
and the syllogism xara wmpdoAnyguwv. Of the categorical there are two
kinds: the simple and the compound. Of the simple syllogism there
are three kinds : the first, the second, and the third figure. Of the com-
pound syllogism there are four kinds: the first, the second, the third,
and the fourth figure. For Aristotle says that there are only three
figures, because he looks at the simple syllogisms, consisting of three
terms. Galen, however, says in his Apodeictic that there are four fig-
ures, because he looks at the compound syllogisms consisting of four
terms, as he has found many such syllogisms in Plato’s dialogues.’3

The unknown scholiast further gives us some explanations, from

! Prantl, ii. 302, n. 112: 7a 3¢ oxfjpara 7@v cvAdoyioudv Tadra: 6 Iadqvés 8¢ xal
Téraprov €mi TovTols éaoker €lvar, evavriws mwpos Tov Zrayeplrny depdpevos, Ss Aap-
mpoTepov dvadavijvar oldpevos TV THY Aoywv mpayparelay éfnyovpuévwy malady ds
moppwTdTw €V8éws éxménTwe.

2 Fr. Ueberweg, System der Logik, Bonn (1882), 341. Cf. also Kalbfleisch, op. cit.,
p- 699; H. Scholz, Geschichte der Logik, Berlin (1931), p. 36.

3 M. Wallies, Ammonii in Aristotelis Analyticorum Priorum librum I Commentarium,
Berlin (189gg), p. ix: Ilepi 17dv €lddv mdvrwv Tob ovAloyiouod. Tpla €idy éori Tod
[dmAob] ovAdoyiopod: 76 xartnyopikdv, 76 Umolerikdv, 16 xard mpdaAnYw. 1ol Bé
xatyyopikod 8vo €oriv €idn dmlobv, glvBerov. xkal Tob pév dmdob Tpla éoriv €lbn:
mpdTov oxijua, devrepov oxipa, TpiTov oxipa. Tod 8¢ ovwdérov Téooapd éoTw €idn:
mpdTOY OXTipa, devTepov axfiua, TpiTov, TérapTov oxipa. Apwororédns uév yip tpia
76 oxipard ¢now mpos Tobs dmdoids ovAloyionods dmofAénmwy Tods éx TpLdv Spwv
ovyketuévovs. adnvos 8’ év 17 oixelg Amodewxtikij & Ta oxipara Aéyer mpos Tods
ouvBérous guldoyrauods dmoPAémaw Tods éx § Spwv auykeyuévous moldods ToloUTOUS
evpav év Tois ITAdrwvos Staddyors.
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which we can gather how Galen may have found these four
figures. Compound syllogisms consisting of four terms may be
formed by combinations of the three figures I, II, and III of
simple syllogisms in nine different ways: I to I, I to II, I to III,
IT to I1, IT to I, II to III, III to III, III to I, III to II. Two of
these combinations, viz. II to II and III to III; do not give
syllogisms at all, and of the remaining combinations II to I gives
the same figure as I to II, III to I the same as I to III, and III
to II the same as II to ITI. We get thus only four figures, I to I,
I to II, I to I1I, and II to IIL.' Examples are given, of which
three are taken from Plato’s dialogues, two from the Alcibiades,
and one from the Republic.

This precise and minute account must be explained and
examined. Compound syllogisms of four terms have three pre-
misses and two middle terms, say B and C, which form the premiss
B—C or C-B. Let us call this the middle premiss. B forms together
with 4, the subject of the conclusion, the minor premiss, and C
forms.together with D, the predicate of the conclusion, the major
premiss. We thus obtain the following eight combinations (in all
the premisses the first term is the subject, the second the predi-
cate) :

Minor | Middle |  Major
Figure Premiss Conclusion

F1 A-B B-C Cc-D A-D Itol
Fa2 A-B B-C D-C 4-D Itoll
F3 4-B C-B c-D A-D II to I
F4 A-B C-B D-C 4-D ITtol
F5 B-4 B-C C-D 4-D IIl to 1
F6 B-4 B-C D-C A-D III to II
Fy B-4 C-B c-D A4-D ItoIlI
F8 B-4 C-B D-C 4-D Itol

If we adopt the principle of Theophrastus that in the first

I Wallies, op. cit., pp. iX—X: 6 xarTqyopixos ovAdoyiopos amdods, ws Apiororédns:
oxiipa A B I. otvBeros, ws I'adqvés: A mpos A, A mpés B, A npés I', B npos B, B
npos A, B npos I, I' mpos I', I mpos A, I npos B.

suMoyioTudy: A n,zg A, A ﬂ;g)g B, A4 m;ég r, B -rrpAdg T.
davAéytoror B mpés B, I' mpos I, (o0 ydp yiverar avAhoyiopds obre éx 8vo dmodarindy
oUte é€x dvo pepikv):

B wpos A, I mpés A, I =mpds B,
B r 4

[ » ’ 1 - ~ . L4 ’
ot avrol elow Tois gvAdoyiopois ws vmoyéypanTat.
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Aristotelian figure the middle term is the subject of one premiss—
it does not matter of which, the major or the minor—and the
predicate of another, and define by this principle which figure is
formed by the minor and middle premisses on the one hand, and
by the middle and major premisses on the other, we get the com-
binations of figures shown in the last column. Thus, for instance,
in the compound figure F2 the minor premiss together with the
middle forms the figure I, as the middle term B is the predicate
of the first premiss and the subject of the second, and the middle
premiss together with the major forms the figure I, as the middle
term C is the predicate of both premisses. This was probably how
Galen has got his four figures. Looking at the last column we see
at once that, as Galen held, the combinations II to II and III to
III do not exist, not for the reason, as the scholiast mistakenly
says, that no conclusion results either from two negative or two
particular premisses, but because no term can occur in the
premisses three times. It is obvious also that if we extend the
principle of Theophrastus to compound syllogisms and include
in the same figure all the moods that from the same combination
of premisses yield either the conclusion A-D or the conclusion
D-A4, we get as Galen does the same figure from the combination
I to IT as from the combination II to I. For, interchanging in
figure F4 the letters B and C as well as the letters 4 and D, we
get the scheme:

F4 D-C B-C A-B D-A,

and as the order of the premisses is irrelevant we see that the
conclusion D-4 results in F4 from the same premisses as 4-D
in F2. For the same reason figure F1 does not differ from figure
F8, I3 from F6, or F5 from F7. It is possible, therefore, to divide
the compound syllogisms of four terms into four figures.

The scholium edited by Wallies explains all historical problems
connected with the alleged invention of the fourth figure by
Galen. Galen divided syllogisms into four figures, but these were
the compound syllogisms of four terms, not the simple syllogisms
of Aristotle. The fourth figure of the Aristotelian syllogisms was
invented by someone else, probably very late, perhaps not before
the sixth century aA.p. This unknown scholar must have heard
something about the four figures of Galen, but he either did not
understand them or did not have Galen’s text at hand. Being in
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opposition to Aristotle and to the whole school of the Peri-
patetics, he eagerly seized the occasion to back up his opinion by
the authority of an illustrious name.

ReMARrk. The problem of compound syllogisms raised by Galen has
considerable interest from the systematic point of view. Investigating
the number of valid moods of the syllogisms consisting of three pre-
misses, I have found that there are forty-four valid moods, the figures
F1, F2, F4, F5, F6, and F7 having six moods each, and figure F8
eight. Figure F3 is empty. It has no valid moods, for it is not possible
to find premisses of the form A-B, C-B, C-D such that a conclusion
of the form A-D would follow from them. This result, if known, would
certainly be startling for students of the traditional logic. Mr. C. A.
Meredith, who attended my lectures delivered on this subject in 1949
at University College, Dublin, has found some general formulae
concerning the number of figures and valid moods for syllogisms of n
terms, including expressions of 1 and 2 terms. I publish these formulae
here with his kind permission :

Number of terms . . . . on

Number of figures . . . . eont
Number of figures with valid moods . }(n?—n+2)
Number of valid moods . . . n(gn—1)

For all n every non-empty figure has 6 valid moods, except one that
has 2n valid moods.

Examples:
Number of terms . . . . I, 2, 3, 44, IO
Number of figures . . I, 2, 4, 8,.., 512
Number of figures with vahd moods . I, 2, 4, Ty 46
Number of valid moods . . . 2, 10, 24, 44;-++, 290

It is obvious that for large n’s the number of figures with valid moods
is comparatively small against the number of all figures. For n = 10
we have 46 against 512 respectively, i.e. 466 figures are empty. For
n = 1 there is only 1 figure, A-A, with 2 valid moods, i.e. the laws of
identity. For n = 2 there are 2 figures:
Premiss  Conclusion

F1 A-B A-B

F2 B-4 A-B
with 10 valid moods, 6 in F1 (viz. four substitutions of the proposi-
tional law of identity, e.g. ‘if all 4 is B, then all 4 is B’, and two laws
of subordination), and 4 moods in F2 (viz. four laws of conversion).



CHAPTER II1

THE SYSTEM

§ 15. Perfect and imperfect syllogisms

IN the introductory chapter to the syllogistic Aristotle divides all
syllogisms into perfect and imperfect. ‘I call that a perfect syllo-
gism’, he says, ‘which needs nothing other than what has been
stated to make the necessity evident; a syllogism is imperfect, if
it needs either one or more components which are necessary by
the terms set down, but have not been stated by the premisses.’
This passage needs translation into logical terminology. Every
Aristotelian syllogism is a true implication, the antecedent of
which is the joint premisses and the consequent the conclusion.
What Aristotle says means, therefore, that in a perfect syllogism
the connexion between the antecedent and the consequent is
evident of itself without an additional proposition. Perfect syllo-
gisms are self-evident statements which do not possess and do not
need a demonstration; they are indemonstrable, dvamddeixror.?
Indemonstrable true statements of a deductive system are now
called axioms. The perfect syllogisms, therefore, are the axioms of
the syllogistic. On the other hand, the imperfect syllogisms are not
self-evident ; they must be proved by means of one or more pro-
positions which result from the premisses, but are different from
them. :

Aristotle knows that not all true propositions are demon-
strable.? He says that a proposition of the form ‘4 belongs to B’
is demonstrable if there exists a middle term, i.e. a term which
forms with 4 and B true premisses of a valid syllogism having the
above proposition as the conclusion. If such a middle term does

U An. pr. i. 1, 24P22 Tédetov pév odv xadd avAdoyiopdy Tov undevds dAhov mpooded-
pevov mapa Ta elAqpuuéva mpos 16 davivar 76 dvayxaiov, arerij 8¢ Tov wpoadeduevov
€vos 1) mAeLévww, 4 €oTe pév dvayxaia did T@v Umokepévaw Spwy, ob pRv € Anmral did
mpoTacEWwY.

? Commenting upon the above passage Alexander uses the expression dvawddei-
KTOS, 24. 2: €vos pév odr mpoadéovrar ol dredeis oulloyiouoi ol mids avriarpodiis
deduevor mpos 16 avaxdivar els Twa TV év TG TpdTW OXpaTL TOY TEAelwY Kal dvamo-

m 3 D mpdTw axTip

I ’ \ w \ ’ 9 -~ 1 1] ’ \ 3 ’

SeikTwy, mAewovwy 8¢ Soor dia dvo dvTioTpodaw eis éxelvwy Twa dvdyovrar. Cf. also
p. 27, n. 2.

3 Af : b 8 « - , w -~ ) ’ > ) .

. . 1.3, R
L n‘ post l’ 3, 72 l‘ NIELS 8¢ ¢ap.¢v OUTE TAOAV ETMLOTNUNY awoSemnK'l)v €wai
dMa Ty 7oV duéowv davamddexTov.
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not exist, the proposition is called ‘immediate’, dueoos, i.e. with-
out a middle term. Immediate propositions are indemonstrable;
they are basic truths, dpyai.! To these statements of the Posterior
Analytics may be added a passage of the Prior Analytics which
states that every demonstration and every syllogism must be
formed by means of the three syllogistical figures.?

This Aristotelian theory of proof has a fundamental flaw: it
supposes that all problems can be expressed by the four kinds
of syllogistic premiss and that therefore the categorical syllo-
gism is the only instrument of proof. Aristotle did not realize
that his own theory of the syllogism is an instance against this
conception. The syllogistic moods, being implications, are pro-
positions of another kind than the syllogistic premisses, but
nevertheless they are true propositions, and if any of them is not
self-evident and indemonstrable it requires a proof to establish its
truth. The proof, however, cannot be done by means of a cate-
gorical syllogism, because an implication does not have either a
subject or a predicate, and it would be useless to look for a middle
term between non-existent extremes. This is perhaps a subcon-
scious cause of the special terminology Aristotle uses in the doc-
trine of the syllogistic figures. He does not speak of ‘axioms’ or
‘basic truths’ but of ‘perfect syllogisms’, and does not ‘demon-
strate’ or ‘prove’ the imperfect syllogisms but ‘reduces’ them
(avdyer or dvadde) to the perfect. The effects of this improper
terminology persist till today. Keynes devotes to this matter a
whole section of his Formal Logic, entitled ‘Is Reduction an essen-
tial part of the Doctrine of the Syllogism?’; and comes to the
conclusion ‘that reduction is not a necessary part of the doctrine
of the syllogism, so far as the establishment of the validity of the
different moods is concerned’.? This conclusion cannot be applied
to the Aristotelian theory of the syllogism, as this theory is an
axiomatized deductive system, and the reduction of the other
syllogistic moods to those of the first figure, i.e. their proof as
theorems by means of the axioms, is an indispensable part of the
system.

Aristotle accepts as perfect syllogisms the moods of the first

1 An. post. i. 23, 84blg Pavepov 8¢ xai 67, drav 76 A & B dmdpyy, €l pév €ori T
péoov, ot Seifai 61 76 A 7 B Sndpyer . . ., €l 8¢ i darw, obiért éaTv dmddetis,
@A)’ 4 émi Tas apyas odos alry foTiv.

2 An. pr. i. 23, 41P1 ndoay dnédeifw xal mdvra cvAdeywopdv dvdyxn yiveolar 8id
TPLOY TGV Tmpoepypuévwy axnudTw. 3 Op. cit., pp. 325-7.
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figure, called Barbara, Celarent, Darii, and Ferio.! Yet in the
last chapter of his systematic exposition he reduces the third and
fourth moods to the first two, and takes therefore as axioms of his
theory the most clearly evident syllogisms, Barbara and Cela-
rent.? This detail is of no little interest. Modern formal logic tends
to reduce the number of axioms in a deductive theory to a
minimum, and this is a tendency which has its first exponent in
Aristotle.

Aristotle is right when he says that only two syllogisms are
needed as axioms to build up the whole theory of the syllogism.
He forgets, however, that the laws of conversion, which he uses
to reduce the imperfect moods to the perfect ones, also belong to
his theory and cannot be proved by means of the syllogisms.
There are three laws of conversion mentioned in the Prior
Analytics : the conversion of the E-premiss, of the A-premiss, and
of the I-premiss. Aristotle proves the first of these laws by what
he calls ecthesis, which requires, as we shall see later, a logical
process lying outside the limits of the syllogistic. As it cannot be
proved otherwise, it must be stated as a new axiom of the system.
The conversion of the A-premiss is proved by a thesis belonging
to the square of opposition of which there is no mention in the
Prior Analytics. We must therefore accept as a fourth axiom either
this law of conversion or the thesis of the square of opposition,
from which this law follows. Only the law of conversion of the
I-premisses can be proved without a new axiom.

There are still two theses that have to be taken into account,
although neither of them is explicitly stated by Aristotle, viz. the
laws of identity : ‘4 belongs to all 4’ and ‘4 belongs to some A4’.
The first of these laws is independent of all other theses of the
syllogistic. If we want to have this law in the system, we must
accept it axiomatically. The second law of identity can be
derived from the first.

Modern formal logic distinguishes in a deductive system not
only between primitive and derivative propositions, but also
between primitive and defined terms. The constants of the
Aristotelian syllogistic are the four relations: ‘to belong to all’

1 At the end of chapter 4, containing the moods of the first figure, Aristotle says,
An, Pr.i. 4, 2629 87)ov 8¢ kail Su mdvres of év avrd ovMoyiopol Tédetol elow.

2 Ibid. 7, 291 éore 8¢ xal dvayayeiv mdvras Tods ovMoyiouods els Tovs év TH
mpirrew oxfuare xaldddov avAroyiopods.
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or A, ‘to belong to none’ or E, ‘to belong to some’ or /, and ‘to
not-belong to some’ or 0. Two of them may be defined by the
other two by means of propositional negation in the following
way: ‘4 does not belong to some B’ means the same as ‘It is not
true that 4 belongs to all B’, and ‘4 belongs to no B’ means the
same as ‘It is not true that 4 belongs to some B’. In the same
manner 4 could be defined by O, and I by E. Aristotle does not
introduce these definitions into his system, but he uses them
intuitively as arguments of his proofs. Let us quote as only one
example the proof of conversion of the I-premiss. It runs as fol-
lows: ‘If 4 belongs to some B, then B must belong to some 4.
For if B should belong to no 4, 4 would belong to no B.’* It is
obvious that in this indirect proof Aristotle treats the negation of
‘B belongs to some 4’ as equivalent to ‘B belongs to no 4’. As to
‘the other pair, 4 and O, Alexander says explicitly that the phrases
‘to not-belong to some’ and ‘to not-belong to all’ are different
only in words, but have equivalent meanings.?

If we accept as primitive terms of the system the relations 4
and I, defining E and O by means of them, we may, as I stated
many years ago,? build up the whole theory of the Aristotelian
syllogism on the following four axioms:

1. A4 belongs to all 4.
2. A belongs to some 4.
3. If A belongs to all B and B belongs to all C, then 4

belongs to all C. Barbara
4. If A belongs to all B and C belongs to some B, then
4 belongs to some C. Datisi

It is impossible to reduce the number of these axioms. In
particular they cannot be derived from the so-called dictum de
omni et nullo. This principle is differently formulated in different
text-books of logic, and always very vaguely. The classic formula-
tion, ‘quidquid de omnibus valet, valet etiam de quibusdam et de
singulis’ and ‘quidquid de nullo valet, nec de quibusdam nec de

' An. pr. i. 2, 25320 € yap 76 A 7wi 7@ B, xat 76 B 1wl 76 A dvdyxy dmdpyew. el
yap pundevi, ovdé 16 A ovdevi 7o B. [Corr. by W. D. Ross.]

2 Alexander 84. 6 76 Twi uy) vndpxew {oov Svvduevov 7@ pi) mavri xara Ty Aéfw
Siadéper.

3 J. Lukasiewicz, Elementy logiki matematycznej (Elements of Mathematical Logic),
edited by M. Presburger (mimeographed), Warsaw (1929), p. 172; ‘Znaczenie
analizy logicznej dla poznania’ (Importance of Logical Analysis for Knowledge),
Przegl. Filoz. (Philosophical Review), vol. xxxvii, Warsaw (1934), p. 373-
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singulis valet’, cannot be strictly applied to the Aristotelian logic,
as singular terms and propositions do not belong to it. Besides,
I do not see how it would be possible to deduce from this prin-
ciple the laws of identity and the mood Datisi, if anything at all
can be deduced from it. Moreover, it is evident that it is not one
single principle but two. It must be emphasized that Aristotle is
by no means responsible for this obscure principle. It is not true
that the dictum de omni et nullo was given by Aristotle as the axiom
on which all syllogistic inference is based, as Keynes asserts.” It
is nowhere formulated in the Prior Analytics as a principle of
syllogistic. What is sometimes quoted as a formulation of this
principle is only an explanation of the words ‘to be predicated of
all’ and ‘of none’.?

It is a vain attempt to look for the principle of the Aristotelian
logic, if ‘principle’ means the same as ‘axiom’. If it has another
meaning, I do not understand the problem at all. Maier, who
has devoted to this subject another obscure chapter of his book,?
spins out philosophic speculations that neither have a basis in
themselves nor are supported by texts of the Prior Analytics. From
the standpoint of logic they are useless.

\

§ 16. The logic of terms and the logic of propositions

To this day there exists no exact logical analysis of the proofs
Aristotle gives to reduce the imperfect syllogisms to the perfect.
The old historians of logic, like Prantl and Maier, were philo-
sophers and knew only the ‘philosophical logic’ which in the nine-
teenth century, with very few exceptions, was below a scientific
level. Prantl and Maier are now dead, but perhaps it would not
be impossible to persuade living philosophers that they should
cease to write about logic or its history before having acquired a
solid knowledge of what is called ‘mathematical logic’. It would
otherwise be a waste of time for them as well as for their readers.
It seems to me that this point is of no small practical importance.

No one can fully understand Aristotle’s proofs who does not
know that there exists besides the Aristotelian system another
system of logic more fundamental than the theory of the syllogism.

' Op. cit., p. 301.

2 An. pr. i. 1, 24P28 Myopev 8¢ 76 xard mavrds xaryyopeiabar, Srav undév § AaBeiv
[Tod Vmoxeuévou (secl. W. D. Ross)], xa8’ od 8drepov o Aexbrjoerar: kai 76 xard
undevos deoavrws. 3 Op. cit., vol. ii b, p. 149.
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It is the logic of propositions. Let us explain by an example the
difference between the logic of terms, of which the Aristotelian
logic is only a part, and the logic of propositions. Besides the
Aristotelian law of identity ‘4 belongs to all 4’ or ‘All 4 is A’, we
have still another law of identity of the form ‘If p, then p’. Let us
compare these two, which are the simplest logical formulae :

All4is A4 and If p, then p.

They differ in their constants, which I call functors: in the first
formula the functor reads ‘all—is’, in the second ‘if—then’. Both
are functors of two arguments which are here identical. But the
main difference lies in the arguments. In both formulae the
arguments are variables, but of a different kind : the values which
may be substituted for the variable 4 are terms, like ‘man’ or
‘plant’. From the first formula we get thus the propositions ‘All
men are men’ or ‘All plants are plants’. The values of the variable
p are not terms but propositions, like ‘Dublin lies on the Liffey’
or ‘Today is Friday’; we get, therefore, from the second formula
the propositions: ‘If Dublin lies on the Liffey, then Dublin lies
on the Liffey’ or ‘If today is Friday, then today is Friday’. This
difference between term-variables and proposition-variables is
the primary difference between the two formulae and conse-
quently between the two systems of logic, and, as propositions
and terms belong to different semantical categories, the difference
is a fundamental one.

The first system of propositional logic was invented about half
a century after Aristotle: it was the logic of the Stoics. This logic
is not a system of theses but of rules of inference. The so-called
modus ponens, now called the rule of detachment: ‘If «, then B;
but «; therefore 8’ is one of the most important primitive rules
of the Stoic logic. The variables « and B are propositional
variables, as only propositions can be significantly substituted for
them.! The modern system of the logic of propositions was created
onlyin 1879 by the great German logician Gottlob Frege. Another
outstanding logician of the nineteenth century, the American
Charles Sanders Peirce, made important contributions to this
logic by his discovery of logical matrices (1885). The authors
of Principia Mathematica, Whitehead and Russell, later put this

! Cf. Lukasiewicz, ‘Zur Geschichte des Aussagenkalkiils’, Erkenntnis, vol. v, Leipzig
(1935), pp. 111-31.
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system of logic at the head of all mathematics under the title
‘Theory of Deduction’. All this was entirely unknown to philo-
sophers of the nineteenth century. To this day they seem to have
no idea of the logic of propositions. Maier says that the Stoic
logic, which in fact is a masterpiece equal to the logic of Aristotle,
yields a poor and barren picture of formalistic-grammatical un-
steadiness and lack of principle, and adds in a footnote that the
unfavourable judgement of Prantl and Zeller on this logic must
be maintained.! The Encyclopaedia Britannica of 1911 says briefly of
the logic of the Stoics that ‘their corrections and fancied improve-
ments of the Aristotelian logic are mostly useless and pedantic’.?

It seems that Aristotle did not suspect the existence of another
system of logic besides his theory of the syllogism. Yet he uses
intuitively the laws of propositional logic in his proofs of im-
perfect syllogisms, and even sets forth explicitly three statements
belonging to this logic in Book II of the Prior Analytics. The first
of these is a law of transposition : “‘When two things’, he says, ‘are
so related to one another, that if the one is, the other necessarily
is, then if the latter is not, the former will not be either.’s That
means, in terms of modern logic, that whenever an implication
of the form ‘If «, then B’ is true, then there must also be true
another implication of the form ‘If not-g, then not-«’. The second
is the law of the hypothetical syllogism. Aristotle explains it by an
example : “Whenever if 4 is white, then B should be necessarily
great, and if B is great, then C should not be white, then it is
necessary if 4 is white that C should not be white.’+ That means:
whenever two implications of the form ‘If o, then 8’ and ‘If B,
then y ’ are true, then there must also be true a third implication
‘If «, then y’. The third statement is an application of the two
foregoing laws to a new example and, curiously enough, it is
false. This very interesting passage runs thus:

‘It is impossible that the same thing should be necessitated by the
being and by the not-being of the same thing. I mean, for example,

! Maier, op. cit., vol. ii b, p. 384: ‘In der Hauptsache jedoch bietet die Logik
der Stoiker . . . ein diirftiges, 6des Bild formalistisch-grammatischer Prinzip- und
Haltlosigkeit.’ Ibid., n. 1: ‘In der Hauptsache wird es bei dem ungiinstigen Urteil,
das Prantl und Zeller iiber die stoische Logik fillen, bleiben missen.’

2 11th ed., Cambridge (1911), vol. xxv, p. 946 (s.v. ‘Stoics’).

3 An. pr. ii. 4, 57°1 Srav 80 éxn oSrw mpds dAApAa dare Barépou Svros é¢ dvdyxns
elva: Odrepov, ToUrov ui) 6vros uév ovdé Bdrepov éorar.

4 Ibid. 6 Srav yap Toudl dvros Aeuxod Tod A T0di dvdyxn péya elvar 76 B, peyddov
8¢ 706 B dvros 16 I u3j Aeuxdv, dvdysn, €i 76 A Aevidv, 76 I' ur elvac Aevwév.
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that it is impossible that B should necessarily be great if 4 is white,
and that B should necessarily be great if 4 is not white. For if B is not
great A cannot be white. But if, when 4 is not white, it is necessary
that B should be great, it necessarily results that if B is not great, B
itself is great. But this is impossible.’

Although the example chosen by Aristotle is unfortunate, the
sense of his argument is clear. In terms of modern logic it can be
stated thus: Two implications of the form ‘If o, then 8’ and ‘If
not-a, then B’ cannot be together true. For by the law of trans-
position we get from the first implication the premiss ‘If not-8,
then not-o’, and this premiss yields together with the second
implication the conclusion ‘If not-8, then B’ by the law of the
hypothetical syllogism. According to Aristotle this conclusion is
impossible.

Aristotle’s final remark is erroneous. The implication ‘If not-8,
then B°, the antecedent of which is the negation of the conse-
quent, is not impossible ; it may be true, and yields as conclusion
the consequent B, according to the law of the logic of propositions :
‘If (if not-p, then p), then p.’> Commenting upon this passage,
Maier says that there would here result a connexion contrary to
the law of contradiction and therefore absurd.* This comment
again reveals Maier’s ignorance of logic. It is not the implication
‘If not-B, then B’ that is contrary to the law of contradiction, but
only the conjunction ‘8 and not-8°.

A few years after Aristotle, the mathematician Euclid gave a
proof of a mathematical theorem which implies the thesis ‘If (if
not-p, then p), then p’.+ He states first that ‘If the product of two

Y An. pr. ii. 4, 5793 100 8 adrod Svros xal pi Svros, dSvvaroy € dvdyxns elvar 76
av7d. Ayw 8’ olov 70i A Svros Aevxod 76 B elvar uéya é£ avdyxns, xai u7j Gvros Aevikod
708 A 76 B elvar péya é¢ dvdyxns. Here follows the example of the hypothetical
syllogism quoted in p. 49, n. 4, and a second formulation of the law of trans-
position. The conclusion reads, 11 706 8% B u1) 6vros peyddov 16 A ody oldv T€ Aevnoy
elvai. 00 8¢ A py) Svros Aevwod, €l avdyxn 76 B péya elvar, ovpBaive: éf dvdynns rod B
peyddov pi) dvros abro 76 B elvar péya. Toiro 8' ddvvarov.

2 See A. N. Whitehead and B. Russell, Principia Mathematica, vol. i, Cambridge
(1910), p. 138, thesis *2-18.

3 Op. cit., vol. ii a, p. 331 : ‘Es ergidbe sich also ein Zusammenhang, der dem
Gesetze des Widerspruchs entgegenstiinde und darum absurd wire.’

* See Scritti di G. Vailati, Leipzig-Firenze, cxv. ‘A proposito d’un passo del
Teeteto e di una dimostrazione di Euclide’, pp. 516-27; cf. Lukasiewicz,
‘Philosophische Bemerkungen zu mehrwertigen Systemen des Aussagenkalkiils’,
Comptes Rendus des séances de la Société des Sciences et des Lettres de Varsovie, xxiii (1930),
ClL 111, p. 67.
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integers, a and b, is divisible by a prime number 7, then if a is not
divisible by #, b should be divisible by 7’. Let us now suppose that
a = b and the product a X a (a?) is divisible by n. It results from
this supposition that ‘If a is not divisible by 7, then a is divisible
by n’. Here we have an example of a true implication the ante-
cedent of which is the negation of the consequent. From this
implication Euclid derives the theorem: ‘If 42 is divisible by a
prime number #, then a is divisible by 2.’

§ 17. The proofs by conversion

The proofs of imperfect syllogisms by conversion of a premiss
are both the simplest and those most frequently employed by
Aristotle. Let us analyse two examples. The proof of the mood
Festino of the second figure runs thus: ‘If M belongs to no ¥,
but to some X, then it is necessary that /¥ should not belong to
some X. For since the negative premiss is convertible, N will
belong to no M ; but M was admitted to belong to some X; there-
fore ¥ will not belong to some X. The conclusion is reached by
means of the first figure.’!

The proof is based on two premisses: one of them is the law of
conversion of the E-propositions :

(1) If M belongs to no N, then N belongs to no M,
and the other is the mood Ferio of the first figure:

(2) If NV belongs to no M and M belongs to some X, then ¥
does not belong to some X.

From these premisses we have to derive the mood Festino:

(3) If M belongs to no ;N and M belongs to some X, then N
does not belong to some X.

Aristotle performs the proof intuitively. Analysing his intuitions
we find two theses of the propositional calculus: one of them is
the above-mentioned law of the hypothetical syllogism, which
may be stated in the following form:

(4) If (if p, then g¢), then [if (if ¢, then r), then (if p, then
n)];?

Y An. pr. 1. 5,27%32 el yap 76 M 73 pév N pundevi v 8¢ E rwi Sndpyet, dvdyxy 16 N
\ - E \ L] 4 L) A A » ’ Ay ’ 1 M -~ L ’ A3
Twi 7O & p1) vmdpyew. €mel yap avriotpéder 70 0T€pnTINGY, 0UBevi T M Ymdpler 16 N-
AY 8 ’ M L ’ ‘ - g € 7’ . L4 \ N ‘ -~ g 4 4 ’ ’ AJ
70 8¢ ye M vméxero i 79 & Smdpxew dore 16 N rwi 74 & oby dmdpler. yiverar yap
ovAdoyiouds 8ia Tod mpdiTov axrjuaros.
2 See Principia Mathematica, p. 104, thesis *2-06.
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The other thesis reads:

(5) If (if p, then ¢), then (if p and 7, then ¢ and 7).

This thesis is called in Principia Mathematica, following Peano, the
principle of the factor. It shows that we may ‘multiply’ both sides
of an implication by a common factor, i.e. we may add, by means
of the word ‘and’, to p and to ¢ a new proposition 7.

We start with thesis (5). As p, ¢, and r are propositional
variables, we may substitute for them premisses of the Aristotelian
logic. Putting ‘M belongs to no N’ for p, ‘N belongs to no M’ for
¢, and ‘M belongs to some X’ for r, we get from the antecedent of
(5) the law of conversion (1), and we may detach the consequent
of (5) as a new thesis. This new thesis has the form:

(6) If M belongs to no N and M belongs to some X, then N

belongs to no M and M belongs to some X.

The consequent of this thesis is identical with the antecedent of
thesis (2). Therefore we may apply to (6) and (2) the law of the
hypothetical syllogism, substituting for p the conjunction ‘M
belongs to no N and M belongs to some X”, for ¢ the conjunction
‘N belongs to no M and M belongs to some X’, and for r the
proposition ‘N does not belong to some X’. By applying the rule
of detachment twice we get from this new thesis the mood
Festino.

The second example I want to analyse is somewhat different.
It is the above-mentioned proof of the mood Disamis.? We have
to prove the following imperfect syllogism:

(7) If R belongs to all § and P belongs to some S, then P

belongs to some R.

The proof is based on the mood Darii of the first figure:

(8) If R belongs to all § and § belongs to some P, then R
belongs to some P,

and on the law of conversion of the I-propositions applied twice,
once in the form:

(9) If P belongs to some S, then § belongs to some P,
and for the second time in the form:
(10) If R belongs to some P, then P belongs to some R.

As auxiliary theses of the propositional logic we have the law of

! See Principia Mathematica, p. 119, thesis *3-45. The conjunction ‘p and r’ is
called in the Principia ‘logical product’. z See the Greek text in p. 25, n. 1.
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the hypothetical syllogism, and the following thesis, which is
slightly different from thesis (4), but also may be called the
principle of the factor:

(11) If (if p, then ¢), then (if r and p, then r and ¢).

The difference between (5) and (11) consists in this, that the
common factor r is not in the second place, as in (5), but in the
first. As conjunction is commutable and ‘p and 7’ is equivalent to
‘r and p’, this difference does not affect the validity of the thesis.

The proof given by Aristotle begins with the conversion of the
premiss ‘P belongs to some $’. Following this procedure, let us
substitute for p in (11) the premiss ‘P belongs to some §°, for ¢
the premiss “S belongs to some P’, and for r the premiss ‘R belongs
to all §°. By this substitution we get from the antecedent of (11)
the law of conversion (g), and therefore we may detach the
consequent of (11) which reads:

(12) If R belongs to all § and P belongs to some S, then R
belongs to all § and § belongs to some P.

The consequent of (12) is identical with the antecedent of (8).
By applying the law of the hypothetical syllogism we can get
from (12) and (8) the syllogism:
(13) If R belongs to all § and P belongs to some S, then R
belongs to some P.

This syllogism, however, is not the required mood Disamis, but
Datisi. Of course, the mood Disamis could be derived from Datisi
by converting its consequent according to thesis (10), i.e. by
applying the hypothetical syllogism to (13) and (10). It seems,
however, that Aristotle took another course: instead of deriving
Datisi and converting its conclusion, he converts the conclusion
« f Darii, getting the syllogism :

(14) If R belongs to all § and § belongs to some P, then P

belongs to some R,

and then he applies intuitively the law of the hypothetical syllo-
gism to (12) and (14). The syllogism (14) is a mood of the fourth
figure called Dimaris. As we already know, Aristotle mentions
this mood at the beginning of Book II of the Prior Analytics.

In a similar way we could analyse all the other proofs by con-
version. It follows from this analysis that if we add to the perfect
syllogisms of the first figure and to the laws of conversion three
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laws of the logic of propositions, viz. the law of the hypothetical
syllogism and two laws of the factor, we get strictly formalized
proofs of all imperfect syllogisms except Baroco and Bocardo.
These two moods require other theses of the propositional logic.

§ 18. The proofs by reductio ad impossibile

The moods Baroco and Bocardo cannot be reduced to the first
figure by conversion. The conversion of the A-premiss would
yield an I-proposition, from which together with the O-premiss
nothing results, and the O-premiss cannot be converted. Aristotle
tries to prove these two moods by a reductio ad tmpossibile, amaywyn)
els 76 advvaTov. The proof of Baroco runs thus: ‘If M belongs to
all V, but not to some X it is necessary that NV should not belong
to some X; for if V belongs to all X, and M is predicated also of
all ¥, M must belong to all X; but it was assumed that A does
not belong to some X.’* This proof is very concise and needs an
explanation. Usually it is explained in the following way :2

We have to prove the syllogism:

(1) If M belongs to all ¥ and M does not belong to some X,
then N does not belong to some X.

It is admitted that the premisses ‘M belongs to all ¥’ and ‘M
does not belong to some X are true; then the conclusion ‘N does
not belong to some X’ must also be true. For if it were false, its
contradictory, ‘N belongs to all X”, would be true. This last pro-
position is the starting-point of our reduction. As it is admitted
that the premiss ‘M belongs to all N’ is true, we get from this
premiss and the propostion ‘N belongs to all X’ the conclusion
‘M belongs to all X’ by the mood Barbara. But this conclusion is
false, for it is admitted that its contradictory ‘M does not belong
to some X’ is true. Therefore the starting-point of our reduction,
‘N belongs to all X°, which leads to a false conclusion, must be
false, and its contradictory, ‘N does not belong to some X’, must
be true.

This argument is only apparently convincing; in fact it does
not prove the above syllogism. It can be applied only to the
traditional mood Baroco (I quote this mood in its usual form

Y An. pr. i. 5, 27237 €l 76 pév N mavri 76 M, 76 8¢ E rwi pi) dndpyer, dvdysn 76 N
Tt 7 & piy dndpxew- el yap mavri dmdpye, karyyopeitar 8¢ xai 76 M mavrés 7ob N,
dvdyxn 76 M navri 7 E dmdpyew dméxeto 8¢ Twi pa) dndpxew.

2 Cf., for instance, Maier, op. cit., vol. it a, p. 84.
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with the verb ‘to be’, and not in the Aristotelian form with ‘to
belong’) :
(2) All Vis M,
Some X is not M,
therefore
Some X is not N.

This is a rule of inference and allows us to assert the conclusion
provided the premisses are true. It does not say what happens
when the premisses are not true. This is irrelevant for a rule of
inference, as it is evident that an inference based on false pre-
misses cannot be valid. But Aristotelian syllogisms are not rules
of inference, they are propositions. The syllogism (1) is an im-
plication which is true for all values of the variables M, ¥, and X,
and not only for those values that verify the premisses. If we apply
this mood Baroco to the terms M = ‘bird’, N =‘animal’, and X =
‘owl’, we get a true syllogism (I use forms with ‘to be’, as does
Aristotle in examples) :
(3) If all animals are birds
and some owls are not birds,
then some owls are not animals.

This is an example of the mood Baroco, because it results from it
by substitution. The above argument, however, cannot be applied
to this syllogism. We cannot admit that the premisses are true,
because the propositions ‘All animals are birds’ and ‘Some owls
are not birds’ are certainly false. We need not suppose that the
conclusion is false ; it is false whether we suppose its falsity or not.
But the main point is that the contradictory of the conclusion, i.e.
the proposition ‘All owls are animals’; yields together with the
first premiss ‘All animals are birds’ not a false conclusion, but a
true one: ‘All owls are birds’. The reductio ad imposstbile is in this
case impossible.

The proof given by Aristotle is neither sufficient nor a proof
by reductio ad impossibile. Aristotle describes indirect proof or the
demonstration per impossibile, by contrast with direct or ostensive
proof, as a proof that posits what it wishes to refute, i.e. to refute
by reduction to a statement admitted to be false, whereas ostensive
proof starts from propositions admitted to be true.’ Accordingly,

Y An. pr. ii. 14, 62P2g Siadéper 8’ 7 els 76 ddUvarov amddeifis Tis Sewktinfs T
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if we have to prove a proposition by reductio ad impossibile, we
must start from its negation and derive thence a statement
obviously false. The indirect proof of the mood Baroco should
start from the negation of this mood, and not from the negation
of its conclusion, and this negation should lead to an uncondition-
ally false statemen:, and not to a proposition that is admitted to
be false only under certain conditions. I shall here give a sketch
of such a proof. Let « denote the proposition ‘M belongs to all
N, B ‘N belongs to all X°; and y ‘M belongs to all X*. As the
negation of an 4-premiss is an O-premiss, ‘not-8 ’! will have the
meaning ‘N does not belong to some X”, and ‘not-y > ‘M does not
belong to some X”’. According to the mood Baroco the implication
‘If « and not-y, then not-B8’ is true, or in other words, a and not-y
are not true together with B. The negation, therefore, of this
proposition would mean that ‘ « and B and not-y ’ are together
true. But from ‘« and B°, ¢y’ results by the mood Barbara; we
get therefore ¢y and not-y’, i.e. a proposition obviously false,
being a contradiction in forma. It can easily be seen that this
genuine proof of the mood Baroco by reductio ad impossibile is
quite different from that given by Aristotle.

The mood Baroco can be proved from the mood Barbara by a
very simple ostensive proof which requires one and only one
thesis of the propositional logic. It is the following compound law
of .transposition :

(4) If (if p and ¢, then r), then if p and it is not true that r,
then it is not true that ¢.2
Put for p ‘M belongs to all N, for ¢ ‘N belongs to all X’, and for r
‘M belongs to all X”. By this substitution we get in the antecedent
of (4) the mood Barbara, and therefore we can detach the conse-
quent, which reads:

(5) If M belongs to all ¥ and it is not true that M belongs
to all X, then it is not true that /¥ belongs to all X.

As the O-premiss is the negation of the A-premiss, we may replace
in (5) the forms ‘it is not true that belongs to all’ by ‘does not
belong to some’, getting thus the mood Baroco.

There can be no doubt that Aristotle knew the law of trans-
position referred to in the above proof. This law is closely con-

! T am using ‘not-’ as an abbreviation for the propositional negation ‘it is not
true that’. % See Principia Mathematica, p. 118, thesis *3-37.
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nected with the so-called ‘conversion’ of the syllogism, which he
investigated thoroughly.! To convert a syllogism means to take
the contrary or the contradictory (in proofs per impossibile only the
contradictory) of the conclusion together with one premiss, there-
by destroying the other premiss. ‘It is necessary,’ Aristotle says,
‘if the conclusion has been converted and one of the premisses
stands, that the other premiss should be destroyed. For if it should
stand, the conclusion must also stand.’? This is a description of
the compound law of transposition. Aristotle therefore knows this
law ; moreover, he applies it to obtain from the mood Barbara
the moods Baroco and Bocardo. Investigating in the same chapter
the conversion of the moods of the first figure, he says: ‘Let the
syllogism be affirmative (i.e. Barbara), and let it be converted as
stated (i.e. by the contradictory denial). Then if 4 does not belong
to all C, but to all B, B will not belong to all C. And if 4 does not
belong to all C, but B belongs to all C, 4 will not belong to all
B.’3 The proofs of Baroco and Bocardo are here given in their
simplest form.

In the systematic exposition of the syllogistic these valid proofs
are replaced by insufficient demonstrations per impossibile. The
reason is, I suppose, that Aristotle does not recognize arguments
é¢ Ymobféoews as instruments of genuine proof. All demonstration
is for him proof by categorical syllogisms; he is anxious to show
that the proof per impossibile is a genuine proof in so far as it con-
tains at least a part that is a categorical syllogism. Analysing the
proof of the theorem that the side of a square is incommensurable
with its diagonal, he states explicitly: We know by a syllogism
that the contradictory of this theorem would lead to an absurd
consequence, viz. that odd numbers should be equal to evens,
but the theorem itself is proved by an hypothesis, since a false-
hood results when it is denied.* Of the same kind, Aristotle

I An. pr. ii. 8-10.
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concludes, are all other hypothetical arguments; for in every case
the syllogism leads to a proposition that is different from the
original thesis, and the original thesis is reached by an admission
or some other hypothesis.! All this is, of course, not true ; Aristotle
does not understand the nature of hypothetical arguments. The
proof of Baroco and Bocardo by the law of transposition is not
reached by an admission or some other hypothesis, but performed
by an evident logical law; besides, it is certainly a proof of one
categorical syllogism on the ground of another, but it is not per-
formed by a categorical syllogism.

At the end of Book I of the Prior Analytics Aristotle remarks that
there are many hypothetical arguments that ought to be con-
sidered and described, and promises to do so in the sequel.? This
promise he nowhere fulfils.? It was reserved for the Stoics to in-
clude the theory of hypothetical arguments in their system of
propositional logic, in which the compound law of transposition
found its proper place. On the occasion of an argument of Aenesi-
demus (which is irrelevant for our purpose) the Stoics analysed
the following rule of inference which corresponds to the com-
pound law of transposition : ‘If the first and the second, then the
third ; but not the third, yet the first; therefore not the second.’
This rule is reduced to the second and third indemonstrable
syllogisms of the Stoic logic. We already know the first indemon-
strable syllogism, it is the modus ponens; the second is the modus
tollens : ‘If the first, then the second ; but not the second ; therefore
not the first.” The third indemonstrable syllogism starts from a
denied conjunction and reads: ‘Not (the first and the second) ;
but the first; therefore not the second.” According to Sextus
Empiricus the analysis runs thus: By the second indemonstrable
syllogism we get from the implication ‘if the first and the second,
rois dpriois ovpuérpov tefelons. 16 pév odv {oa ylveolar Ta mepirTa Tois dpriois
ovAdoyilerar, 10 8’ dovuperpov elvar Tiv Sidperpov € Vmoféoews Selxvvow, émei
PYeddos ovuBalver Sid Ty dvridaow.
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2 Ibid. 44, 50239 woAdoi 8¢ xai érepor mepaivovrar € vmofécews, ols émané-
Yaolar dei xai diaonuivar xabapds. Tlves pév odv ai Biadopal Todrwy, xai mooaxds
ylveras 76 €€ Umoféaews, GoTepov épodpev.

3 Alexander 389. 32, commenting on this passage says: Aéyet xai dGAovs moAdods
é¢ Umobéaews mepaiveaar, mepl Gv Vmentiferar pév ws épdv émyperéaTepov, ob piv
déperar avTod avyypappa mepi avTdv.

+ The Stoics denote proposition-variables by ordinal numbers.
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then the third’, and the negation of its consequent ‘not the third’,
the negation of its antecedent ‘not (the first and the second)’.
From this proposition, which is virtually contained in the pre-
misses, but not explicitly expressed in words, together with the
premiss ‘the first’, there follows the conclusion ‘not the second’
by the third indemonstrable syllogism.! This is one of the
neatest arguments we owe to the Stoics. We see that competent
logicians reasoned 2,000 years ago in the same way as we are
doing today.

§ 19. The proofs by ecthests

The proofs by conversion and per impossibile are sufficient to
reduce all imperfect syllogisms to perfect ones. But there is still
a third kind of proof given by Aristotle, viz. the so-called proofs
by exposition or éxfleats. Although of little importance for the
system, they have an interest in themselves, and it is worth while
to study them carefully.

There are only three passages in the Prior Analytics where
Aristotle gives a short characterization of this kind of proof. The
first is connected with the proof of conversion of the E-premiss,
the second is a proof of the mood Darapti, the third of the mood
Bocardo. The word éxfésfar occurs only in the second passage,
but there can be no doubt that the other two passages also are
meant as proofs by ecthesis.?

Let us begin with the first passage, which runs thus: ‘If 4

I Sextus Empiricus (ed. Mutschmann), Adv. math. viii. 235-6 ovvéornxe yap ¢
TowdTos Adyos (scil. 6 mapa 7& Aivnadiuw épwrnleis) éx Sevrépov dvamodeixtov xai
Tpitov, kabws mapeatt palbeiv éx Tijs avadlvoews, jTis cadearépa pdArov yevjaerar émt
100 TpdTOV MOCauévwy Nudv Tiv Sidaaxaliav, éxovros olTws® ¢ €l T TpdTOV Kai TO
devrepov, 10 TpiTov: olxi 8€ ye 16 TpiTov, dAXG Kai TO TpdTOV' OUK dpa TS devrepov.’
émel yap éxopev ovvnuuévov €v & Nyeitar ovpmendeyuévov {16y ‘ 10 mp&HTOV Kai T
Sevrepov ’, Ajyer 8¢ (16) ° 16 Tpitov ’, éxopev 8¢ xai 16 dvrixeluevov Tob Afyovros 16
‘ ov 76 Tpitov ’, owvaxbijoerar juiv xal 16 dvrikeipnevov Tob fyoupévov T6 ¢ odk dpa
76 mpdTov Kai 76 Sevrepov ’ Bevrépw avamodelkTw. dAAa 8 TobTo a¥TO KATAE eV TV
Svvapw éyxarar T@® Aoyw, émel éxopev Ta guvaxkTikd avrTod Ajppara, xard 8¢ T
npodopdv mapeitar. 6mep Tdfavres peta Tod Aemouévov Mjuparos roi ¢ 76 mpdTov ¥
éfopev ovvayduevov 16 aquumépaopa 16 ‘ oUk dpa TO Sevrepov’ Tpitw dvamodeixTe.
[* Tob mpdrov codd., Tod Tpdmov Kochalsky, rof ‘ 16 mpdTov ’ scripsi. (rpdmos =
mood expressed in variables, cuvguuévor = implication, 7yoduevov = antecedent,
Afjyov = consequent, cvumemAeyuévov = conjunction.)]

2 There are two other passages dealing with ecthesis, 4n. pr. 3036—14 and 3031~
40 (I owe this remark to Sir David Ross), but both are related to the scheme of
modal syllogisms.
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belongs to no B, neither will B belong to any A. For if it should
belong to some, say C, it would not be true that 4 belongs to
no B; for C is some of the B’s.’* The conversion of the E-premiss
is here proved per impossibile, but this proof per impossibile is based
on the conversion of the I-premiss which is proved by exposition.
The proof by exposition requires the introduction of a new term,
called the ‘exposed term’; here it is C. Owing to the obscurity of
the passage the very meaning of this C and of the logical structure
of the proof can be reached only by conjecture. I shall try to
explain the matter on the ground of modern formal logic.

We have to prove the law of conversion of the I-premiss: ‘If
B belongs to some 4, then 4 belongs to some B.’ Aristotle intro-
duces for this purpose a new term, C; it follows from his words
that C'is included in B aswell asin 4, so that we get two premisses :
‘B belongs to all €’ and ‘4 belongs to all C’. From these premisses
we can deduce syllogistically (by the mood Darapti) the conclu-
sion ‘4 belongs to some B’. This is the first interpretation given
by Alexander.? But it may be objected that this interpretation
presupposes the mood Darapti which is not yet proved. Alex-
ander prefers, therefore, another interpretation which is not
based on a syllogism : he maintains that the term C is a singular
term given by perception, and the proof by exposition consists in
a sort of perceptual evidence.? This explanation, however,
which is accepted by Maier,*has no support in the text of the Prior
Analytics: Aristotle does not say that C is an individual term.
Moreover, a proof by -perception is not a logical proof. If we

I An. pr. i. 2, 25315 € oy undevi 7® B 16 A Smdpxer, 008é 7@ A ovdevi Imdpe 16
’ 4 ~ 3 » . v A . -~ Ad « 4 Ay Ay
B. €l ydp T, olov 7& I', ovx dAnbés éorar 70 undevi 7& B 16 A dmdpyew* 16 yap I'
v B 7{ éorw. [Corr. W. D. Ross.]
2 Alexander 32. 12 € ydap 76 B 7wi 7@ A dmdpyes ... dmapxérw 7o I' éorw yap
- ‘ ~ * ’ \ ¥ A Al 3 v -~ 1) . A -~ 1) A} A}
Tobro 1i Tob A, & vrdpyet 76 B. éarat 8) 70 I' év 6Aw 7@ B kai i adrod, xai 76 B kara
- o ~ A A} A NS - ‘ A r » ’ AJ \ -~ » -
mavros Tob I'* Tadrov yap 10 év SAw xai xara mavrds. dAX’ v 76 I' 7i 7o A év SAw
» \ ~ A \ bJ ’ ’ J I ) 4 A b ) -~ 4 A \ h ] I‘
dpa xai 7 A 16 I éoriv* €l 8¢ év 6Aw, xata mavrés avrod pnthjoerar 76 A. v 6é 76
7t 706 B* xal 76 A dpa xara Twis Tob B xaryyopnbiicerar.
3 Ibid. 32 % duewdv éore xai oikedraTov Tois Aeyouévois 16 8’ éxbévews kai
’ -~ ’ A - 4 » \ A L3 ’ ’ ’ \
alobnrinds Aéyew Ty Seiéw yeyovévar, dAAa pn Tov elpyuévov Tpomov unde avAdoyi-
aTikds. 6 yap dua s éxbéoews Tpomos 8’ alobrjoews ylverar xai od guAloyioTinds:
- ’ 4 A) ] 4 - » Ay n r’ ’ » -~ 1 AJ
TotobTov ydp Tt AapBdverar 70 I' 16 éxTiBépevor, 6 alalnrov 6v udpidv €ore o A el yap
xard poplov 706 A Svros 108 I' alobyrod Twos xai xab’ éxaora Aéyoiro 76 B, ein dv
. -~ ’ \ 3 b » b4 3 ~ - \ ” b > ’ rd A )
xal 700 B pdpiov 76 avro I" 6v ye év adr®* wate 10 I €in Gv dudorépwy pudpiov xai év
audorépois avrois.
4 Op. cit., vol. ii a, p. 20: ‘Die Argumentation bedient sich also nicht eines
Syllogismus, sondern des Hinweises auf den Augenschein.’
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want to prove logically that the premiss ‘B belongs to some 4’
may be converted, and the proof is to be performed by means of
a third term C, we must find a thesis that connects the above
premiss with a proposition containing C.

It would not, of course, be true to say simply that if B belongs
to some 4, then B belongs to all C and 4 belongs to all C; but a
little modification of the consequent of this implication easily
solves our problem. We must put before the consequent an
existential quantifier, the words ‘there exists’, binding the vari-
able C. For if B belongs to some 4, there always exists a term C
such that B belongs to all C and A4 belongs to all C. C may be the
common part of 4 and B or a term included in this common part.
If, for example, some Greeks are philosophers, there exists a
common part of the terms ‘Greek’ and ‘philosopher’, viz. ‘Greek
philosopher’, and it is evident that all Greek philosophers are
Greeks, and all Greek philosophers are philosophers. We may
state, therefore, the following thesis:

(1) If B belongs to some 4, then there exists a C such that B
belongs to all C and 4 belongs to all C.

This thesis is evident. But also the converse of (1) is evident. If
there exists a common part of 4 and B, B must belong to some
A. We get, therefore:
(2) Ifthere exists a C such that B belongs to all C and 4 belongs
to all C, then B belongs to some 4.

It is probable that Aristotle intuitively felt the truth of these
theses without being able to formulate them explicitly, and that
he grasped their connexion with the conversion of the I-premiss
without seeing all the deductive steps leading to this result. I shall
give here the full formal proof of the conversion of the I-premiss,
starting from theses (1) and (2), and applying to them some laws
of the propositional logic and the rules of existential quantifiers.

The following thesis of the propositional logic was certainly
known to Aristotle:

(3) If p and ¢, then ¢ and p.

It is the commutative law of conjunction.! Applying this law to

the premisses ‘B belongs to all C’ and ‘4 belongs to all C°, we get :

(4) If B belongs to all C and 4 belongs to all C, then 4 belongs
to all C and B belongs to all C.

! See Principia Mathematica, p. 116, thesis *3-22.
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To this thesis I shall apply the rules of existential quantifiers.
There are two such rules; both are stated with respect to a true
implication. The first rule reads: It is permissible to put before a
consequent of a true implication an existential quantifier, binding
a free variable occurring in the consequent. It results from this
rule that:

(5) If B belongs to all C and 4 belongs to all C, then there
exists a C such that 4 belongs to all C and B belongs to
all C.

The second rule reads: It is permissible to put before the ante-
cedent of a true implication an existential quantifier, binding
a free variable occurring in the antecedent, provided that this
variable does not occur as a free variable in the consequent. In
(5) Cis already bound in the consequent ; therefore according to
this rule we may bind C in the antecedent, thus getting the
formula:
(6) Ifthere exists a C such that B belongs to all C and 4 belongs
to all C, then there exists a C such that 4 belongs to all C
and B belongs to all C.

The antecedent of this formula is identical with the consequent of
thesis (1); it results, therefore, by the law of the hypothetical
syllogism that:

(7) If B belongs to some 4, then there exists a C such that 4
belongs to all C and B belongs to all C.

From (2) by interchanging B and 4 we get the thesis:

(8) If there exists a Csuch that 4 belongs to all C and B belongs
to all C, then 4 belongs to some B,

and from (7) and (8) we may deduce by the hypothetical syllo-
gism the law of conversion of the /-premiss:

(9) If B belongs to some A, then 4 belongs to some B.

We see from the above that the true reason of the converti~
bility of the I-premiss is the commutability of the conjunction.
The perception of an individual term belonging to both 4 and B
may intuitively convince us of the convertibility of this premiss,
but is not sufficient for a logical proof. There is no need to assume
C as a singular term given by perception.
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The proof of the mood Darapti by exposition can now be
easily understood. Aristotle reduces this mood to the first figure
by conversion, and then he says: ‘It is possible to demonstrate
this also per impossibile and by exposition. For if both P and R
belong to all S, should some of the S’s, e.g. N, be taken, both P
and R will belong to this, and then P will belong to some R.’!
Alexander’s commentary on this passage deserves our attention.
It begins with a critical remark. If ;V were a universal term in-
cluded in S, we should get as premisses ‘P belongs to all ¥’ and
‘R belongs to all N’°. But this is just the same combination of
premisses, ovlvyia, as ‘P belongs to all $* and ‘R belongs to all
$’, and the problem remains the same as before. Therefore,
Alexander continues, N cannot be a universal term; it is a
singular term given by perception, a term evidently existing in P
as well as in R, and the whole proof by ecthesis is a proof by
perception.? We have already met this opinion above. In support
of it Alexander adduces three arguments : First, if his explanation
were rejected, we should have no proof at all; secondly, Aristotle
does not say that Pand R belong to all ¥V, but simply to NV ; thirdly,
he does not convert the propositions with /.3 None of these
arguments is convincing: in our example there is no need of
conversion ; Aristotle often omits the mark of universality where
it should be used,* and as to the first argument, we know already
that there exists another and a better explanation.

The mood Darapti:

(10) If P belongs to all § and R belongs to all S, then P belongs
to some R,

I An. pr. 1. 5, 28322 éori 8¢ kai 8id 107 dduvdTou xal & éxBéabar mowelv Ty dmd-
Seibw: el yap dudw (scil. IT xai P) mavri 7@ Z vmdpyxer, v Andbi 7 rdv X, oIoK 7o N,
ToUrw Kai 16 II xai 76 P dmdpéer, dore Twi 7@ P 16 I dmdpéer.

Z Alexander gg. 28 7{ yap Siadéper 4 T Imdpxew AaBeiv mavri 76 e IT xai 76 P
xai péper i o6 X 7@ N; 70 ydap adrd xai émi o0 N Andlévros uéver 7 ydap avry
ovlvyla €oriv, dv Te xard To6 N mavros éxelvwv éxdrepov, dv Te xard Tod £ xarnyopij-
TaL. r‘, o'x} TotavTy ;ﬁ Seilis, §} xpiirar 6 ydp 8 éxbéoews Tpdmos 8’ alobjoews yiverar.
ob yap va TowoidTdv T Tof X AdBwpuev, xab’ of pypbricerar mavrds xai o IT xal 78 P,
Adyer ... a0’ va 1 1dv vn’ alefnow mmrdvrwv, 8 davepdv éoTw ov xai év 7 IT xai
év 1o P.

3 Ibid. 100. 7 67¢ yap alefyry) % 8 Tijs éxBéoews Seifis, onueiov mpdTov pév 6
€l un olrws AapBdvorro, undeulav yiveobar Seifw: émeira 8¢ xal 76 adrov umxér
xpiioaclas €mi o5 N, 6 fv 7v 700 X, 7 mavri adrd dmdpyew 6 e IT xai 76 P, dAX’
amAds Beivar 76 Smdpxew dAXG xai 70 underépav dvriaTpéifar.

* See, for instance, p. 2, n.
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results from a substitution of thesis (2)—take P for B, and R
for A:

(1) If there exists a C such that P belongs to all C and R
belongs to all C, then P belongs to some R,

and from the thesis:

(12) If P belongs to all § and R belongs to all §, then there
exists a C such that P belongs to all C and R belongs to
all C.

Thesis (12) we may prove by applying to the identity :

(13) If P belongs to all C and R belongs to all C, then P belongs
to all C and R belongs to all C,

the second rule of existential quantifiers, getting thus:

(14) If P belongs to all C and R belongs to all C, then there

exists a C such that P belongs to all C and R belongs to
all C,

and substituting in (14) the letter S for the free variable C, i.e.
performing the substitution in the antecedent only, as it is not
permissible to substitute anything for a bound variable.

From (12) and (11) the mood Darapti results by the hypo-
thetical syllogism. We see again that the exposed term C is a
universal term like 4 or B. It is of no consequence, of course, to
denote this term by N rather than by C.

Of greater importance seems to be the third passage, contain-
ing the proof by exposition of the mood Bocardo. This passage
reads: ‘If R belongs to all S, but P does not belong to some S, it is
necessary that P should not belong to some R. For if P belongs to
all R, and R belongs to all S, then P will belong to all §; but we
assumed that it did not. Proof is possible also without reduction
ad impossibile, if some of the S’s be taken to which P does not
belong.’® I shall analyse this proof in the same way as the other
proofs by exposition.

Let us denote the part of S to which P does not belong by C;
we get two propositions: ‘S belongs to all ¢’ and ‘P belongs to
no C’. From the first of these propositions and the premiss ‘R

1 An. pr.i. 6, 28P17 € yép 76 P mavri v@ Z, 76 8¢ IT rwi py) omdpxer, dvdywn 76 IT
1wt 1@ P pi) Sndpxew. el ydp mavri, xai 76 P mavrl 76 X, xai 70 IT wavri 1o X dndpfe

dAX’ ody Umijpyev. Selkvurar 8¢ xai dvev Tijs dmaywyijs, éav Anddf T rdv Z & 76 IT u3j
vmdpyet.
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belongs to all $* we get by the mood Barbara the consequence
‘R belongs to all C°, which yields together with the second
proposition ‘P belongs to no C’ the required conclusion ‘P does
not belong to some R’ by the mood Felapton. The problem is how
we can get the propositions with C from the original premisses ‘R
belongs to all $” and ‘P does not belong to some $’. The first of
these premisses is useless for our purpose as it does not contain P;
from the second premiss we cannot get our propositions in the
ordinary way, since it is particular, and our propositions are
universal. But if we introduce the existential quantifier we can
get them, for the following thesis is true:

(15) If P does not belong to some S, then there exists a C such
that § belongs to all C and P belongs to no C.

The truth of this thesis will be obvious if we realize that the
required condition for C is always fulfilled by that part of S to
which P does not belong.

Starting from thesis (15) we can prove the mood Bocardo on
the basis of the moods Barbara and Felapton by means of some
laws of propositional logic and the second rule of existential quan-
tifiers. As the proof’is rather long, I shall give here only a sketch.

We take as premisses, besides (15), the mood Barbara with
transposed premisses :

(16) If S belongs to all C and R belongs to all S, then R belongs
to all C,

and the mood Felapton, also with transposed premisses:

(17) If R belongs to all € and P belongs to no C, then P does
not belong to some R.

To these premisses we may apply a complicated thesis of proposi-
tional logic which, curiously enough, was known to the Peri-
patetics and is ascribed by Alexander to Aristotle himself. It is
called the ‘synthetic theorem’, ovvferikov Oedlpnyupa, and runs
thus: ‘If « and 8 imply y, and y together with § implies ¢, then «
and B together with § imply e.* Take for «, 8, and y the first

I Alexander 274. 19 8" dv 8¢ Aéyes viv, vmoypade. Nuiv avepdrepov 76 Aeyduevoy
¢ auvBericov Beddpnua ’, o adrds éoTwv edpertis. éor 8¢ %) mepoyn adrod TowavTy: ¢ Srav
éx Twwy ouvdynTal Ti, TO 8¢ ouvayduevov pera Twos T TWdY ogurdyp Ti, Kai TG Guv-
axTika avrod ped’ oS 7 ped’ dv ouvdyerar éxeivo, kai avra 16 avro ovvdfer.” The fol-
lowing example is given ibid. 26 énei yap v6 ¢ wdv dixaiov dyaldv’ guvayduevoy vmo
1@y * wdv Sixatov kaddv, ndv xaddv dyalov’ ovvdyer pera 1o ¢ mdv dyalov avudépov’
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premiss, the second premiss, and the conclusion respectively of
Barbara, for 8 and e the second premiss and the conclusion
respectively of Felapton; we get the formula:

(18) If S belongs to all C and R belongs to all § and P belongs
to no C, then P does not belong to some R.

This formula may be transformed by another law of propositional
logic into the following:

(19) If S belongs to all C and P belongs to no C, then if R
belongs to all S, P does not belong to some R.

To this formula may be applied the second rule of existential
quantifiers. For C is a free variable occurring in the antecedent
of (19), but not in the consequent. According to this rule we get
the thesis:

(20) If there exists a C such that § belongs to all C and P
belongs to no C, then if R belongs to all S, P does not
belong to some R.

From premiss (15) and thesis (20) there results by the hypotheti-
cal syllogism the consequence:

(21) If P does not belong to some S, then if R belongs to all §,
P does not belong to some R,

and this is the implicational form of the mood Bocardo.

It is, of course, highly improbable that Aristotle saw all the
steps of this deduction; but it is important to know that his
intuitions with regard to the proof by ecthesis were right. Alex-
ander’s commentary on this proof of the mood Bocardo is worthy
of quotation. ‘It is possible’, he says, ‘to prove this mood without
assuming some S given by perception and singular, but taking
such an §, to none of which P would belong. For P will belong to
none of this S, and R to all, and this combination of premisses
yields as conclusion that P does not belong to some R.’* Here at
last Alexander concedes that the exposed term may be universal.

The proofs by exposition have no importance for Aristotle’s
76 ‘ 7mdv Sixaiov ouudépor’, xal ra ‘ mdv dixawov xaddv, mdv xalov dyabov’ Svra
ovvaxTikg Tod ¢ mdv Sixatov dyabov’ pera roi * wmdv dyalov ovudépov’ owvdfer To
¢ wdv Sixaiov ouudépov ’.

! Alexander 104. 3 dvvarac 8’ émi Tijs ovlvylas ravrys Sewxvivar, xal el ui) alofyrov
71 700 2 Aapfdvoiro xai kald’ éxaora, dAAa Totobrov, 0b xatd unmdevds xaryyopnbticerar
76 I1. éorac yap 76 pév I kar’ ovdevos avrob, 76 8¢ P xard mavrds® 1) 8° orws éxovoa
ovlvyla ovddoyioTinds dédeinrar ovvdyovoa 16 Twi 7@ P 1o IT pvy imdpyew.
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syllogistic as a system. All theorems proved by ecthesis can be
proved by conversion or per impossibile. But they are highly
important in themselves, as they contain a new logical element
the meaning of which was not entirely clear for Aristotle. This
was perhaps the reason why he dropped this kind of proof in his
final chapter (7) of Book I of the Prior Analytics, where he sums
up his systematic investigation of syllogistic.! Nobody after him
understood these proofs. It was reserved for modern formal logic
to explain them by the-idea of the existential quantifier.

§ 20. The rejected forms

Aristotle in his systematic investigation of syllogistic forms not
only proves the true ones but also shows that all the others are
false, and must be rejected. Let us see by means of an example
how Aristotle proceeds to reject false syllogistic forms. The
following two premisses are given: A belongs to all B and B
belongs to no C. It is the first figure: 4 is the first or the major
term, B is the middle, and C is the last or the minor term. Aristotle
writes :

‘If the first term belongs to all the middle, but the middle to none of
the last, there will be no syllogism of the extremes ; for nothing neces-
sary follows from the terms being so related ; for it is possible that the
first should belong to all as well as to none of the last, so that neither
a particular nor a universal conclusion is necessary. But if there is no
necessary consequence by means of these premisses, there cannot be
a syllogism. Terms of belonging to all : animal, man, horse; to none:
animal, man, stone.’2

In contrast to the shortness and obscurity of the proofs by
ecthesis, the above passage is rather full and clear. Nevertheless
I am afraid it has not been properly understood by the com-
mentators. According to Alexander, Aristotle shows in this pas-
sage that from the same combination of premisses there can be

I Cf. the comment of Alexander, who maintains to the end his idea of the
perceptual character of proofs by ecthesis, 112. 33: ¢ 8¢ 4 8¢" éxbéoews deifis v
aw@qnx‘q xai o cvAdoyioTini], Sn/\ov xai éx Tob viv adTdy pnrér. pynuovevew avris
ws dud avMoywpov Tvos ywopev-qs

z An. pr. 1. 4 2632 ¢l 8¢ 10 pév mpdTov Tavri TG péow aKoz\ovaeL, 70 8¢ péoov undevi
¢ doxdre vmszﬂ, ovx éoras auMoywuos 16v dxpwy- obdév ydp ava‘yxawv avy.ﬁawec
& radra elvar xal yap mavri xai undevi évdéyerar T6 MpdTov TYH éoxdrw Umdpxerw,
SaTe obre 76 xard pépos odre 76 kaldov yiverar dvayxaiov: undevis 8¢ dvros dvayxalov
8ié Tovrwy otk EoTar auAAOyLOuds. Gpot Tob TavTi Urdpxew {dov, dvBpwros, inmos® Tod
pndevi {@ov, dvBpwrros, Aifos.
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derived (Suvdpevov guvdyeofai) for some concrete terms a uni-
versal affirmative conclusion, and for some other concrete terms
a universal negative conclusion. This is, Alexander asserts, the
most obvious sign that such a combination of premisses has no
syllogistic force, since opposite and contradictory propositions
which destroy each other are proved by it (Selkvvrar).! What
Alexander says is certainly misleading, for nothing can be for-
mally derived from an asyllogistic combination of premisses, and
nothing can be proved by it. Besides, propositions with different
concrete subjects and predicates are neither opposite to each
other nor contradictory. Maier again puts the terms pointed out
by Aristotle into a syllogistical form:

all men are animals all men are animals
no horse is a man no stone is a man
all horses are animals no stone is an animal

(the premisses are underlined by him, as in a syllogism), and says
that there results (ergibt sich) from logically equivalent premisses
a universal affirmative proposition as well as a universal nega-
tive.2 We shall see below that the terms given by Aristotle are
not intended to be put into the form of a syllogism, and that
nothing results formally from the premisses of the would-be
syllogisms quoted by Maier. In view of these misunderstandings
a logical analysis of the matter seems to be necessary.
If we want to ptove that the following syllogistic form:

(1) If A belongs to all B and B belongs to no C, then A does
not belong to some C,

is not a syllogism, and consequently not a true logical theorem,
we must show that there exist such values of the variables 4, B,
and C as verify the premisses without verifying the conclusion.
For an implication containing variables is true only when all the

! Alexander 55. 22 xai yap xafddov xatadarikov éni Twos UAys Seife Svvdpevor
ovvdyeofar xai mdAw én’ dAMns xaBédov dmodarikdv, 6 évapyéoTarov anueiov 10D
pndepiay éxew Ty avlvylay Tadryw ioxdv ovdloyiaruaiy, €l ye Td 1€ évavria xai ta
dvrikeipeva év adThi Selkvutal, Svra AMHAwY dvatperixd.

% Op. cit., vol. ii. @, p. 76: ‘Es handelt sich also um folgende Kombinationen:

aller Mensch ist Lebewesen aller Mensch ist Lebewesen
kein Pferd ist Mensch kein Stein ist Mensch
alles Pferd ist Lebewesen kein Stein ist Lebewesen

So wird an Beispielen gezeigt, dass bei der in Frage stehenden Primissenzusam-
menstellung von logisch véllig gleichen Vordersitzen aus sowohl ein allgemein
bejahender, als ein allgemein verneinender Satz sich ergeben kénne.’
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values of variables that verify the antecedent verify the conse-
quent also. The easiest way of showing this is to find concrete
terms verifying the premisses ‘A belongs to all B’ and ‘B belongs
to no (’, but not verifying the conclusion ‘4 does not belong to
some (’. Aristotle found such terms: take ‘animal’ for 4, ‘man’
for B, ‘horse’ for C. The premisses ‘Animal belongs to all man’
or ‘All men are animals’, and ‘Man belongs to no horse’ or ‘No
horses are men’, are verified; but the conclusion ‘Animal does
not belong to some horse’ or ‘Some horses are not animals’ is
false. Formula (1), therefore, is not a syllogism. For the same
reason neither will the following form:

(2) If 4 belongs to all B and B belongs to no C, then 4 belongs
to no C,

be a syllogism, because the premisses are verified for the same
concrete terms as before, but the conclusion ‘Animal belongs to
no horse’ or ‘No horses are animals’ is false. It follows from the
falsity of (1) and (2) that no negative conclusion can be drawn
from the given premisses.

Nor can an affirmative conclusion be drawn from them. Take
the next syllogistical form:

(3) If A belongs to all B and B belongs to no C, then 4 belongs

to some C.

There exist values for 4, B, and C, i.e. concrete terms, that verify
the premisses without verifying the conclusion. Aristotle again
gives such terms: take ‘animal’ for 4, ‘man’ for B, ‘stone’ for C.
The premisses are verified, for it is true that ‘All men are animals’
and ‘No stone is a man’, but the conclusion ‘Some stone is an
animal’ is obviously false. Formula (3), therefore, is not a syllo-
gism. Neither can the last form:

(4) If A belongs to all B and B belongs to no C, then 4 belongs
to all C,

be a syllogism, since for the given terms the premisses are verified
as before, but the conclusion ‘All stones are animals’ is not veri-
fied. It results from the above that no conclusion whatever can be
derived from the combination of premisses ‘4 belongs to all B’
and ‘B belongs to no C’; where 4 is the predicate and B is the
subject of the conclusion. This combination of premisses is useless
for syllogistic.
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The main point of this process of rejection is to find a true
universal affirmative proposition (like ‘All horses are animals’)
and a true universal negative proposition (like ‘No stone is an
animal’), both compatible with the premisses. It is not sufficient
to find, for instance, for some terms a true universal affirmative
statement, and for some other terms a true particular negative
statement. This opinion was put forward by Alexander’s teacher
Herminus and some older Peripatetics, and was rightly refuted
by Alexander.! This is again a proof that Aristotle’s ideas of
rejection have not been properly understood.

The syllogistic forms (1)—(4) are rejected by Aristotle on the
basis of some concrete terms that verify the premisses without
verifying the conclusion. Aristotle, however, knows yet another
kind of proof for rejection. Investigating the syllogistic forms of
the second figure, Aristotle states generally that in this figure
neither two affirmative nor two negative premisses yield a neces-
sary conclusion, and then continues thus:

‘Let M belong to no N, and not to some X. It is possible then for ¥
to belong either to all X or to no X. Terms of belonging to none:
black, snow, animal. Terms of belonging to all cannot be found, if M
belongs to some X, and does not belong to some X. For if N belonged
to all X, and M to no N, then M would belong to no X; but it is
assumed that it belongs to some X. In this way, then, it is not possible
to take terms, and the proof must start from the indefinite nature of the
particular premiss. For since it is true that M does not belong to some
X, even if it belongs to no X, and since if it belongs to no X a syllogism
is not possible, clearly it will not be possible either.’2

Aristotle here begins the proof of rejection by giving concrete
terms, as in the first example. But then he breaks off his proof, as
he cannot find concrete terms that would verify the premisses

I Cf. Alexander 89. 34—g0. 27. The words of Herminus are quoted 8g. 34:
‘Eppivos 8¢ Aéyer ‘ €’ s yap ovlvylas ey dvridaow éveart ovvayouévny Seifar,
edoyov TavTyy undév édarrov dovdAdyiorov Aéyew tiis év 1 Td évavria ovvdyerar
davvumapxTa ydp Kai Tadra duolws €xelvois.’

2 An. pr.i. 5, 27P12-23 éorwaoav ydp . . . arepyTiral, olov 76 M 16 pév N pndevi 65
8¢ 5 rwi ui vmapxérw évdéxerar 8% xal mavri xal undevi 7o & 16 N Smdpyew. Spot
Tod pév u7) dmdpxew puédav, xidv, {Gov- roi 8¢ mavri dmdpyew odx éori Aafeiv, el o M
1'(?) E‘TIW‘. uév vmdpyer, Twi 8¢ ut). el yap mavri v¢ E 76 N, 76 8¢ M pundevi 7o N, 16 M
ovdevi T E bmdpler dAX’ Uméxetto Twi Undpyew. obTw pév odv odk €yywpei AaPeiv
Gpovs, éx 8¢ Tob ddioplaTov Sexréor: émel yap dAnfeverar T6 Twi Y dmdpyew 6 M 1H
& xai el undevi vmdpyet, undevi 8¢ dmdpyovros ovx v auvAoyiouds, Pavepdy Sri 0vde

P
viv éorac.
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‘M belongs to no N’ and ‘M does not belong to some X°, without
verifying the proposition ‘N does not belong to some X, provided
M, which does not belong to some X, belongs at the same time fo
some (other) X. The reason is that from the premisses ‘M belongs
to no N’ and ‘M belongs to some X’ the proposition ‘N does
not belong to some X’ follows by the mood Festino. But it is not
necessary that M should belong to some X, when it does not
belong to some (other) X; M might belong to no X. Concrete
terms verifying the premisses ‘M belongs to no N’ and ‘M belongs
to no X’, and not verifying the proposition ‘¥ does not belong to
some X’, can easily be chosen, and in fact Aristotle found them,
rejecting the syllogistic form of the second figure with universal
negative premisses; the required terms are: M—‘line’, N—
‘animal’, X—‘man’.! The same terms may be used to disprove
the syllogistic form:

(5) If M belongs to no N and M does not belong to some X,
then & does not belong to some X.

For the premiss ‘No animal is a line’ is true, and the second
premiss ‘Some man is not a line’ is also true, as it is true that ‘No
man is a line’, but the conclusion ‘Some man is not an animal’ is
false. Aristotle, however, does not finish his proof in this way,?
because he sees another possibility: if the form with universal
negative premisses:

(6) If M belongs to no N and M belongs to no X, then JV does
not belong to some X,

is rejected, (5) must be rejected too. For if (5) stands, (6), having
a stronger premiss than (5), must also stand.

Modern formal logic, as far as I know, does not use ‘rejection’
as an operation opposed to Frege’s ‘assertion’. The rules of rejec-
tion are not yet known. On the ground of the above proof of
Aristotle we may state the following rule:

(¢) If the implication ‘If «, then B’ is asserted, but its conse-
quent Bisrejected, then its antecedent « must be rejected too.

I Tbid. 27220 008" (scil. éoTar ovAdoyiouds) Srav wire Tof N pijre To6 § undevds
xaryyopfitar 76 M. Gpou Toi Umdpxew ypauud, {dov, dvlpwmos, Tof iy vmdpyew
ypappij, Ldov, Alfos.

‘2 Alexander completed this proof, 88. 12: 706 wavri 76 N vd & dwdpyew Spov
ypaups) 76 M, {@ov 16 N, dvlpwmos 16 5- 1j pév yap ypapun otdevi {ww xai Twi ody
vmdpxe dvfpwmw émel kai undevi, {Gov 8¢ wavti dvbpuTw.
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This rule can be applied not only to reject (5) if (6) is rejected,
but also to reject (2) if (1) is rejected. For from an E-premiss
an O-premiss follows, and if (2) is true, then (1) must be true.
But if (1) is rejected, so must (2) be rejected.

The rule (¢) for rejection corresponds to the rule of detachment
for assertion. We may accept another rule for rejection corre-
sponding to the rule of substitution for assertion. It can be for-
mulated thus:

(d) If « is a substitution for B, and « is rejected, then B must be
rejected too.

Example: suppose that ‘4 does not belong to some A’ is rejected ;
then ‘A4 does not belong to some B’ must be rejected too, since, if
the second expression were asserted, we should obtain from it by
substitution the first expression, which is rejected.

The first of these rules was anticipated by Aristotle, the second
was unknown to him. Both enable us to reject some forms, pro-
vided that some other forms have already been rejected. Aristotle
rejects some forms by means of concrete terms, as ‘man’, ‘animal’,
‘stone’. This procedure is correct, but it introduces into logic
terms and propositions not germane to it. ‘Man’ and ‘animal’
are not logical terms, and the proposition ‘All men are animals’
is not a logical thesis. Logic cannot depend on concrete terms and
statements. If we want to avoid this difficulty, we must reject
some forms axiomatically. I have found that if we reject the two
following forms of the second figure axiomatically:

(7) If A belongs to all B and 4 belongs to all C, then B belongs
to some C, and

(8) If A belongs to no B and 4 belongs to no C, then B belongs
to some C,

all the other forms may be rejected by the rules (¢) and (d).

§ 21. Some unsolved problems

The Aristotelian system of non-modal syllogisms is a theory of
four constants which may be denoted by ‘All — is’, ‘No — 1is’,
‘Some — 1s’, and ‘Some — is not’. These constants are functors
of two arguments which are represented by variables having as
values only concrete universal terms. Singular, empty, and also
negative terms are excluded as values. The constants together
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with their arguments form four kinds of proposition called pre-
misses, viz. ‘All 4is B’, ‘No 4 is B’, ‘Some A4 is B’, and ‘Some
4 is not B’. The system may be called ‘formal logic’, as concrete
terms, like ‘man’ or ‘animal’; belong not to it but only to its
applications. The system is not a theory of the forms of thought,
nor is it dependent on psychology; it is similar to a mathematical
theory of the relation ‘greater than’, as was rightly observed
by the Stoics.

The four kinds of premiss form theses of the system by means of
two functors ‘if — then’ and ‘and’. These functors belong to pro-
positional logic, which is an auxiliary theory of the system. In
some proofs we meet a third propositional functor, viz. the
propositional negation ‘It is not true that’, denoted shortly by
‘not’. The four Aristotelian constants ‘All — is’, ‘No — is’, ‘Some
— 15’ and ‘Some — is not’, together with the three propositional
constants ‘if —then’, ‘and’, and ‘not’, are the sole elements of the
syllogistic.

All theses of the system are propositions regarded as true for all
values of the variables that occur in them. No Aristotelian syllo-
gism is formulated as a rule of inference with the word ‘therefore’,
as is done in the traditional logic. The traditional logic is a
system different from the Aristotelian syllogistic, and should not
be mixed up with the genuine logic of Aristotle. Aristotle divided
syllogisms into three figures, but he knew and accepted all the
syllogistic moods of the fourth figure. The division of syllogisms
into figures is of no logical importance and has only a practical
aim: we want to be sure that no valid syllogistical mood is
omitted.

The system is axiomatized. As axioms Aristotle takes the two
first moods of the first figure, Barbara and Celarent. To these
two axioms we have to add two laws of conversion, as these can-
not be proved syllogistically. If we wish to have the law of
identity, ‘All 4 is 4,’ in the system we have to assumeit axiomatic-
ally. Thesimplest basis we can get is to take the constants ‘All —is’
and ‘Some —is’ as primitive terms, to define the two other con-
stants by means of those terms with the help of propositional
negation, and to assume as axioms four theses, viz. the two laws
of identity and the moods Barbara and Datisi, or Barbara and
Dimaris. It is not possible to build up the system on one axiom
only. To look for the principle of the Aristotelian syllogistic is a



74 THE SYSTEM § 21

vain attempt, if ‘principle’ means the same as ‘axiom’. The so-
called dictum de omni et nullo cannot be the principle of syllo-
gistic in this sense, and was never stated to be such by Aristotle
himself.

Aristotle reduces the so-called imperfect syllogisms to the per-
fect, i.e. to the axioms. Reduction here means proof or deduction
of a theorem from the axioms. He uses three kinds of proof: by
conversion, by reductio ad impossibile, and by ecthesis. Logical
analysis shows that in all the proofs of the first two kinds there are
involved theses of the most elementary part of propositional logic,
the theory of deduction. Aristotle uses them intuitively, but soon
after him the Stoics, who were the inventors of the first system of
propositional logic, stated some of them explicitly—the com-
pound law of transposition and the so-called ‘synthetic theorem’,
which is ascribed to Aristotle but does not exist in his extant
logical works.- A new logical element seems to be implied by the
proofs by ecthesis: they can be explained with the help of
existential quantifiers. The systematic introduction of quanti-
fiers into the syllogistic would completely change this system : the
primitive term ‘Some — is’ could be defined by the term ‘All —
is’, and many new theses would arise not known to Aristotle. As
Aristotle himself has dropped the proofs by ecthesis in his final
summary of the syllogistic, there is no need to introduce them into
his system.

Another new logical element is contained in Aristotle’s in-
vestigation of the inconclusive syllogistic forms: it is rejection.
Aristotle rejects invalid forms by exemplification through con-
crete terms. This procedure is logically correct, but it introduces
into the system terms and propositions not germane to it. There
are, however, cases where he applies a more logical procedure,
reducing one invalid form to another already rejected. On the
basis of this remark a rule of rejection could be stated correspond-
ing to the rule of detachment by assertion; this can be regarded
as the commencement of a new field of logical inquiries and of
new problems that have to be solved.

Aristotle does not systematically investigate the so-called
polysyllogisms, i.e. syllogisms with more than three terms and
two premisses. As we have seen, Galen studied compound syllo-
gisms consisting of four terms and three premisses. It is an old
error to ascribe to Galen the authorship of the fourth figure:



§ 21 SOME UNSOLVED PROBLEMS 75

Galen divided the compound syllogisms of four terms into four
figures, but not the simple ones known to us by their medieval
names. His investigations were entirely forgotten. But compound
syllogisms also belong to the syllogistic and have to be taken into
account, and here is another problem that has to be studied
systematically. An essential contribution to this problem is the
set of formulae given by C. A. Meredith, and mentioned above
at the end of section 14.

There still remains one problem not seen by Aristotle, but of
the utmost importance for his whole system : it is the problem of
decision. The number of significant expressions of the syllogistic
is infinite ; most of them are certainly false, but some of them may
be true, like valid polysyllogisms of n terms where 7 is any integer
whatever. Can we be sure that our axioms together with our rules
of inference are sufficient to prove all the true expressions of the
syllogistic? And similarly, can we be sure that our rules of rejec-
tion, formulated at the end of section 20, are sufficient to reject
all the false expressions, provided that a finite number of them is
rejected axiomatically? I raised these problems in 1938 in my
Seminar on Mathematical Logic at the University of Warsaw.
One of my former pupils, now Professor of Logic and Methodo-
logy at the University of Wroctaw, J. Stupecki, found the solution
to both problems. His answer to the first question was positive,
to the second negative. According to Stupecki it is not possible to
reject all the false expressions of the syllogistic by means of the
rules (¢) and (d) quoted in section 20, provided a finite num-
ber of them is rejected axiomatically. However many false ex-
pressions we may reject axiomatically, there always exist other
false expressions that cannot be rejected otherwise than axio-
matically. But it is impossible to establish an infinite set of axioms.
A new rule of rejection must be added to the system to complete
the insufficient characterization of the Aristotelian logic given by
the four axioms. This rule was found by Stupecki.

Stupecki’s rule of rejection peculiar to Aristotle’s syllogistic
can be formulated in the following way: Let « and 8 denote
negative premisses of the Aristotelian logic, i.e. premisses of the
type ‘No 4 is B’ or ‘Some 4 is not B’, and let y denote either a
simple premiss (of any kind) or an implication the consequent of
which is a simple premiss and the antecedent a conjunction of
such premisses: if the expressions ‘If «, then y’ and ‘If 8, then y’
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are rejected, then the expression ‘If « and B, then y’ must be
rejected too.! This rule, together with the rules of rejection (c)
and (d) and the axiomatically rejected expression ‘If all C is B
and all 4 is B, then some 4 is C’, enables us to reject any false
expression of the system. Besides, we suppose as given the four
asserted axioms of the syllogistic, the definitions of the E- and
the O-premiss, the rules of inference for asserted expressions, and
the theory of deduction as an auxiliary system. In this way the
problem of decision finds its solution: for any given significant
expression of the system we can decide whether it is true and may
be asserted or whether it is false and must be rejected.

By the solution of this problem the main investigations on
Aristotle’s syllogistic are brought to an end. There remains only
one problem, or rather one mysterious point waiting for an
explanation: in order to reject all the false expressions of the
system it is necessary and sufficient to reject axiomatically only
one false expression, viz. the syllogistic form of the second figure
with universal affirmative premisses and a particular affirmative
conclusion. There exists no other expression suitable for this
purpose. The explanation of this curious logical fact may perhaps
lead to new discoveries in the field of logic.

! J. Stupecki, ‘Z badan nad sylogistyka Arystotelesa’ (Investigation on Aristotle’s

Syllogistic), Travaux de la Société des Sciences et des Lettres de Wroclaw, Sér. B, No. g,
Wroclaw (1948). See chapter v, devoted to the problem of decision.



CHAPTER IV

ARISTOTLE’S SYSTEM IN SYMBOLIC
FORM

§ 22. Explanation of the symbolism

THis chapter does not belong to the history of logic. Its purpose is
to set out the system of non-modal syllogisms according to the
requirements of modern formal logic, but in close connexion with
the ideas set forth by Aristotle himself.

Modern formal logic is strictly formalistic. In order to get an
exactly formalized theory it is more convenient to employ a
symbolism invented for this purpose than to make use of ordinary
language which has its own grammatical laws. I have therefore
to start from the explanation of such a symbolism. As the
Aristotelian syllogistic involves the most elementary part of the
propositional logic called theory of deduction, I shall explain
the symbolic notation of both these theories.

In both theories there occur variables and constants. Variables
are denoted by small Latin letters, constants by Latin capitals.
By the initial letters of the alphabet g, b, ¢, 4, ..., I denote term-
variables of the Aristotelian logic. These term-variables have as
values universal terms, as ‘man’ or ‘animal’. For the constants of
this logic I employ the capital letters 4, E, I, and O, used already
in this sense by the medieval logicians. By means of these two
kinds of letters I form the four functions of the Aristotelian logic,
writing the constants before the variables:.

Aab means All a is b or b belongs to all g,
Eab ,, Noaish »» b belongs to no a,
lab ,, Someaisb »» b belongs to some a,

Oab ,, Someaisnot b ,, b does not belong to some a.

The constants 4, F, I, and O are called functors, a and & their
arguments. All Aristotelian syllogisms are composed of these
four types of function connected with each other by means of
the words ‘if” and ‘and’. These words also denote functors, but
of a different kind from the Aristotelian constants: their argu-
ments are not term-expressions, i.e. concrete terms or term-
variables, but propositional expressions, i.e. propositions like
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‘All men are animals’, propositional functions like ‘4abd’; or
propositional variables. I denote propositional variables by p,
g, 1, S, ..., the functor ‘if’ by C, the functor ‘and’ by K. The
expression Cpg means ‘if p, then ¢’ (‘then’ may be omitted) and
is called ‘implication’ with p as the antecedent and ¢ as the
consequent. C does not belong to the antecedent, it only com-
bines the antecedent with the consequent. The expression Kpg
means ‘p and ¢’ and is called ‘conjunction’. We shall meet in
some proofs a third functor of propositional logic, propositional
negation. This is a functor of one argument and is denoted by
N. It is difficult to render the function Np either in English or
in any other modern language, as there exists no single word
for the propositional negation.! We have to say by circumlocu-
tion ‘it-is-not-true-that p’ or ‘it-is-not-the-case-that p’. For the
sake of brevity I shall use the expression ‘not-p’.

The principle of my notation is to write the functors before
the arguments. In this way I can avoid brackets. This symbol-
ism without brackets, which I invented and have employed in
my logical papers since 1929,% can be applied to mathematics as
well as to logic. The associative law of addition runs in the
ordinary notation thus:

(a+b)+c = a+(b+o),
and cannot be stated without brackets. If you write, however,
the functor + before its arguments, you get:
(a4+b)+c = ++abc and a+(b+c) = +a—+be.
The law of association can be now written without brackets:
++abc = +a-+tbe.

Now I shall explain some expressions written down in this
symbolic notation. The symbolic expression of a syllogism is
easy to understand. Take, for instance, the mood Barbara:

Ifallbiscand allais b, then all a is c.

It reads in symbols:
CKAbcAabAac.

! The Stoics used for propositional negation the single word odx(.

2 See, for instance, Lukasiewicz and Tarski, ‘Untersuchungen iiber den Aus-
sagenkalkil’, Comptes Rendus des séances de la Société des Sciences et des Lettres de Varsovie,
xxiii (1930), CL III, pp. g1-2.
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The conjunction of the premisses Abc and Aab, viz. KAbcAab, is
the antecedent of the formula, the conclusion Aac is its conse-
quent.

Some expressions of the theory of deduction are more com-
plicated. Take the symbolic expression of the hypothetical
syllogism:

If (if p, then ¢), then [if (if ¢, then r), then (if p, then r)].

It reads:
CCpgCCqrCr.
In order to understand the construction of this formula you
must remember that C is a functor of two propositional argu-
ments which follow immediately after C, forming together with
C a new compound propositional expression. Of this kind are
the expressions Cpg, Cqgr, and Cpr contained in the formula.
Draw brackets around each of them; you will get the expression:

C(Cpg) C(Cyr)(Cpr).

Now you can easily see that (Cpq) is the antecedent of the whole
formula, and the rest, i.e. C(Cgr)(Cpr), is the consequent, having
(Cgr) as its antecedent and (Cpr) as its consequent.

In the same way we may analyse all the other expressions,
for instance the following, which contains N and K besides C:

CCKpgrCKNrgNp.

Remember that K| like C, is a functor of two arguments, and
that N is a functor of one argument. By using different kinds of
brackets we get the expression:

CIC(Kpg)r {CTK (NT)q](Np)}-

[C(Kpq)r] is here the antecedent of the whole formula while
{C[K(Nr)q](Np)} is its consequent, having the conjunction
[K(N7)q] as its antecedent and the negation (Np) as its con-
sequent.

§ 23. Theory of deduction

The most fundamental logical system on which all the other
logical systems are built up is the theory of deduction. As every
logician is bound to know this system, I shall here describe it in
brief.
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The theory of deduction can be axiomatized in several different
ways, according to which functors are chosen as primitive terms.
The simplest way is to follow Frege, who takes as primitive
terms the functors of implication and negation, in our symbol-
ism C and N. There exist many sets of axioms of the C-N-
system; the simplest of them and the one almost universally
accepted was discovered by myself before 1929.! It consists of
three axioms:

T1. CCpgCCqrCpr
Ta. CCNppp
Tg. CpCNpq.

The first axiom is the law of the hypothetical syllogism already
explained in the foregoing section. The second axiom, which
reads in words ‘If (if not-p, then p), then p’; was applied by
Euclid to the proof of a mathematical theorem.? I call it the
law of Clavius, as Clavius (a learned Jesuit living in the second
half of the sixteenth century, one of the constructors of the
Gregorian calendar) first drew attention to this law in his com-
mentary on Euclid. The third axiom, in words ‘If p, then if
not-p, then ¢’, occurs for the first time, as far as I know, in a
commentary on Aristotle ascribed to Duns Scotus; I call it the
law of Duns Scotus.* This law contains the venom usually
imputed to contradiction: if two contradictory sentences, like
o and Nea, were true together, we could derive from them by
means of this law the arbitrary proposition ¢, i.e. any proposi-
tion whatever.

There belong to the system two rules of inference: the rule of
substitution and the rule of detachment.

The rule of substitution allows us to deduce new theses from
a thesis asserted in the system by writing instead of a variable a
significant expression, everywhere the same for the same vari-
able. Significant expressions are defined inductively in the fol-
lowing way: (@) any propositional variable is a significant
expression; (b) N« is a significant expression provided « is a

! First published in Polish: ‘O znaczeniu i potrzebach logiki matematyczne;j’
(On the Importance and Requirements of Mathematical Logic), Nauka Polska,
vol. x, Warsaw (1929), pp. 610—-12. Cf. also the German contribution quoted in
p- 78, n. 2: Satz 6, p. 35.

% See above, section 16.
3 Cf. my paper quoted in p. 48, n.
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significant expression; (¢) Cof is a significant expression pro-
vided « and B are significant expressions.

The rule of detachment is the modus ponens of the Stoics
referred to above: if a proposition of the type Cap is asserted
and its antecedent « is asserted too, it is permissible to assert
its consequent S, and detach it from the implication as a new
thesis.

By means of these two rules we can deduce from our set of
axioms all the true theses of the C-N-system. If we want to
have in the system other functors besides C and WV, e.g. K, we
must introduce them by definitions. This can be done in two
different ways, as I shall show on the example of K. The con-
junction ‘¢ and ¢’ means the same as ‘it-is-not-true-that (if p,
then not-¢)’. This connexion between Kpg and NCpNg may be
expressed by the formula:

Kpg = NCpNy,

where the sign = corresponds to the words ‘means the same
as’. This kind of definition requires a special rule of inference
allowing us to replace the definiens by the definiendum and vice
versa. Or we may express the connexion between Kpg and
NCpNg by an equivalence, and as equivalence is not a primitive
term of our system, by two implications converse to each other:

CKpgNCpNg and CNCpNgKpq.

In this case a special definition-rule is not needed. I shall use
definitions of the first kind.

Let us now see by an example how new theses can be derived
from the axioms by the help of rules of inference. I shall deduce
from T1-Tg the law of identity Cpp. The deduction requires
two applications of the rule of substitution and two applications
of the rule of detachment; it runs thus:

Ti. g/CNpg x CT3-T4
T4. CCCNpgrCpr
T4. g/p, r/p < CT2-Ts
Ts. Cpp.
The first line is called the derivational line. It consists of two
parts separated from each other by the sign X. The first part,
T1. ¢g/CNpg, means that in T1 CNpg has to be substituted for

5367 G
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¢. The thesis produced by this substitution is omitted in order to
save space. It would be of the following form:

(I) CCpCNpgCCCNpgrCpr.

The second part, CT3-T4, shows how this omitted thesis is
constructed, making it obvious that the rule of detachment may be
applied toit. Thesis (I) begins with C, and then there follow axiom
T3 as antecedent and thesis T4 as consequent. We can therefore
detach T4 as a new thesis. The derivational line before T5 has
a similar explanation. The stroke (/) is the sign of substitution
and the short rule (-) the sign of detachment. Almost all sub-
sequent deductions are performed in the same manner.

One must be very expert in performing such proofs if one
wants to deduce from the axioms T1-Tg the law of commuta-
tion CCpCqrCqCpr or even the law of simplification CpCgp. 1
shall therefore explain an easy method of verifying expressions
of our system without deducing them from the axioms. This
method, invented by the American logician Charles S. Peirce
about 1885, is based on the so-called principle of bivalence,
which states that every proposition is either true or false, i.e.
that it has one and only one of two possible truth-values: truth
and falsity. This principle must not be mixed up with the law of
the excluded middle, according to which of two contradictory
propositions one must be true. It was stated as the basis of logic
by the Stoics, in particular by Chrysippus.!

All functions of the theory of deduction are truth-functions,
i.e. their truth and falsity depend only upon the truth and
falsity of their arguments. Let us denote a constant false pro-
position by o, and a constant true proposition by r. We may
define negation irn the following way:

No=1 and NI = o.

This means: the negation of a false proposition means the same
as a true proposition (or, shortly, is true) and the negation of
a true proposition is false. For implication we have the follow-
ing four definitions:

Coo =1, Cor=1, Cro=o0, CI1=1.

' Cicero, Acad. pr. ii. 95 ‘Fundamentum dialecticae est, quidquid enuntietur
(id autem appellant dfiwpa) aut verum esse aut falsum’; De fato 21 ‘Itaque
contendit omnes nervos Chrysippus ut persuadeat omne déiwpa aut verum esse aut
falsum.” In the Stoic terminology df{wpa means ‘proposition’, not ‘axiom’.
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This means: an implication is false only when its antecedent is
true and its consequent false; in all the other cases it is true.
This is the oldest definition of implication, stated by Philon of
Megara and adopted by the Stoics.! For conjunction we have
the four evident equalities:
Koo =0, Kor=o0, Kro=o, Kir=1.

A conjunction is true only when both its arguments are true;
in all the other cases it is false.

Now if we want to verify a significant expression of the theory
of deduction containing all or some of the functors C, ¥, and K
we have to substitute for the variables occurring in the expression
the symbols o0 and 1 in all possible permutations, and reduce the
formulae thus obtained on the basis of the equalities given above.
If after the reduction all the formulae give 7 as the final result,
the expression is true or a thesis; if any one of them gives o as
the final result, the expression is false. Let us take as an example
of the first kind the law of transposition CCpqgCNgNp; we get:

For p/o, ¢q/0: CCooCNoNo = CiCrr = Cr1 =
s Plo, q/1: CCorCNi1No = CrCor = Cir
»s PlI, glo: CC1oCNoN1 = CoCro = Coo
» P, q/1: CC11CNINI = C1Coo = Cr1

As for all substitutions the final result is 7, the law of trans-
position is a thesis of our system. Let us now take as an example
of the second kind the expression CKpNgq. It suffices to try only
one substitution:

pl1, glo: CK1Noo = CKr1o = Cro = o.

This substitution gives o as the final result, and therefore the
expression CKp/Nggq is false. In the same way we may check all
the theses of the theory of deduction employed as auxiliary
premisses in Aristotle’s syllogistic.

§ 24. Quantifiers

Aristotle had no clear idea of quantifiers and did not use them
in his works; consequently we cannot introduce them into his
syllogistic. But, as we have already seen, there are two points in
his system which we can understand better if we explain them

! Sextus Empiricus, Adv. math. viil. 113 ¢ pév PlAwv éleyev dAnbis ylvealar 7o
auvpuuévoy, Grav uyy dpxmrac am’ dAnbois xai Mjyp émi Yiebdos, Wate Toixds pév
yiveaBac kat’ avrov dAnbés cuvpupévov, kal’ éva 8¢ Tpomov Yeidos.
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by employing quantifiers. Universal quantifiers are connected
with the so-called ‘syllogistic necessity’, existential or particular
quantifiers with the proofs by ecthesis. I shall now translate into
symbols the proofs with existential quantifiers set down in
section 19, and then the argument dependent on universal
quantifiers mentioned in section 5.

I denote quantifiers by Greek capitals, the universal quanti-
fier by II, and the particular or existential quantifier by 2. I1
may be read ‘for all’; and 2 ‘for some’ or ‘there exists’; e.g.
2cKAcbAca means in words: ‘There exists a ¢ such that all ¢ is
b and all ¢ is a’, or more briefly: ‘For some ¢, all ¢ is b and all ¢
is a.” Every quantified expression, for instance ZcKAcbAca, con-
sists of three parts: part one, in our example Z, is always a
quantifier; part two, here ¢, is always a variable bound by the
preceding quantifier; part three, here KAcbAca, is always a
propositional expression containing the variable just bound by
the quantifier as a free variable. It is by putting Z¢ before
KAcbAca that the free variable ¢ in this last formula becomes
bound. We may put it briefly: X' (part one) binds ¢ (part two)
in KAcbAca (part three).

The rules of existential quantifiers have already been set out
in section 19. In derivational lines I denote by Zr the rule al-
lowing us to put X before the antecedent, and by X2 the rule
allowing us to put it before the consequent of a true implica-
tion. The following deductions will be easily understood, as they
are translations of the deductions given in words in section 19,
the corresponding theses bearing the same running number and
having corresponding small letters as variables instead of capitals.

Proof of conversion of the I-premuss
Theses assumed as true without proof:

(1) ClabZcKAcbAca
(2) CZcKAcbAcalab

Theses (1) and (2) can be used as a definition of the I-premiss.
(3) CKpgKqgp (commutative law of conjunction)

(3) plAch, g/Acax (4)
(4) CKAcbAcaKAcaAch

(4) Z2c x (5)
(5) CKAcbAcaZcKAcaAch
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(5) Zre X (6)
(6) CZcKAcbAcaZcK AcaAch
T1. CCpgCCqrCpr (law of the hypothetical syllogism)
T1.p/lab, q/ZcKAcbAca,r/ZcKAcaAch x C(1)-C(6)—(7)
(7) ClabZcKAcaAch
(2) b/a, a/bx (8)
(8) CZcKAcaAcblba
T1. p/lab, q/ZcKAcaAch, r[lba x C(7)-C(8)-(9)
(9) Clablba

The derivational lines show that (4) and (8) result from other
theses by substitution only, and (7) and (g) by substitution and
two detachments. Upon this pattern the reader himself may try
to construct the proof of the mood Darapti, which is easy.

Proof of the mood Bocardo

(The variables P, R, and § used in section 19 must be re-
lettered, as the corresponding small letters p, 7, and s are reserved
to denote propositional variables: write d for P, afor R,and 4 for S.)

Thesis assumed without proof:
(15) CObdXcK AcbEcd

Two syllogisms taken as premisses:

(16) CKAcbAbaAca (Barbara)
(17) CKAcaEcdOad (Felapton)

T6. CCKpqrCCKrstCKKpgst
This is the ‘synthetic theorem’ ascribed to Aristotle.
T6. p/Acb, q/Aba, r/Aca, s|Ecd, t/Oad x C(16)-C(17)-
(18)
(18) CKKAcbAbaEcdOad
T4. CCKKpgrsCKprCqs (auxiliary thesis)
T7. p/Acb, q/Aba, r/Ecd, s/Oad x C(18)—(19)
(19) CKAcbEcdCAbaOad
(19) Z1c X (20)
(20) CZcKAcbEcdCAbaOad
Ti1. CCpqCCqrCpr
T1. p/0bd, g/ ZcKAcbEcd, r|CAbaOad x C(15)-C(20)-
(21)
(21) CObdCAbaOad
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This is the implicational form of the mood Bocardo. If we wish
to have the usual conjunctional form of this mood, we must
apply to (21) the so-called law of importation:

T8. CCpCqrCKpqr.

We get:
T8. p/0bd, q/Aba, r/Oad x C(21)-(22)

(22) CKObdAbaOad (Bocardo).

By the so-called law of exportation,

Tg. CCKpqgrCpCyr,
which is the converse of the law of importation, we can get
the implicational form of the mood Bocardo back from its
conjunctional form.

The rules of universal quantifiers are similar to the rules of
particular quantifiers set out in section 19. The universal
quantifier can be put before the antecedent of a true implica-
tion unconditionally, binding a free variable occurring in the
antecedent, and before the consequent of a true implication
only under the condition that the variable which is to be bound
in the consequent does not occur in the antecedent as a free
variable. I denote the first of these rules by Iz, the second
by Il2.

Two derived rules result from the above primitive rules of
universal quantifiers: first, it is permissible (by rule I72 and the
law of simplification) to put universal quantifiers in front of a
true expression binding free variables occurring in it; secondly,
it is permissible (by rule IIr and the propositional law of
identity) to drop universal quantifiers standing in front of a true
expression. How these rules may be derived I shall explain by
the example of the law of conversion of the /-premiss.

From the law of conversion
(9) Clablba
there follows the quantified expression

(26) MaITbClablba,

and from the quantified expression (26) there follows again the
unquantified law of conversion (g).
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First: from (g) follows (26).
Tro. CpCqp (law of simplification)

Tro. p/Clablba x C(9)-(23)
(23) CqClablba

To this thesis we apply rule /72 binding 4, and then a, as neither
b nor a occurs in the antecedent:
(23) IT2b X (24)
(24) CqITbClablba
(24) IT2ax(25)
(25) CqlIallbClablba
(25) ¢/CpCqp X CT10—-(26)
(26) I1alTbClablba

Secondly: from (26) follows (g).
Ts. Cpp (law of identity)

Ts. p/Clablba x (27)
(27) CClablbaClablba

To this thesis we apply rule 11 binding b, and then a:
(27) ITrb x (28)
(28) CIT6ClablbaClablba
(28) ITra x (29)
(29) CI1allbClablbaClablba

(29) X C(26)-(9)
(9) Clablba

Aristotle asserts: ‘If some a is b, it is necessary that some &
should be a.” The expression ‘it is necessary that’ can have, in
my opinion, only this meaning: it is impossible to find such
values of the variables ¢ and & as would verify the antecedent
without verifying the consequent. That means, in other words:
‘For all 4, and for all b, if some a is b, then some b is a.” This 1s
our quantified thesis (26). It has been proved that this thesis is
equivalent to the unquantified law of conversion ‘If some a is 4,
then some b is @’, which does not contain the sign of necessity.
Since the syllogistic necessity is equivalent to a universal
quantifier it may be omitted, as a universal quantifier may be
omitted at the head of a true formula.
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§ 25. Fundamentals of the syllogistic

Every axiomatized deductive system is based on three funda-
mental elements: primitive terms, axioms, and rules of inference.
I start from the fundamentals for asserted expressions, the funda-
mental elements for the rejected ones being given later.

As primitive terms I take the constants 4 and I, defining by
them the two other constants, £ and O:

Df 1. Eab = Nlab
Df 2. Oab = NAab.

In order to abbreviate the proofs I shall employ instead of the
above definitions the two following rules of inference:

Rule RE: NI may be everywhere replaced by E and con-
versely.

Rule RO: ¥4 may be everywhere replaced by O and con-
versely.

The four theses of the system axiomatically asserted are the
two laws of identity and the moods Barbara and Datisi:

1. Aaa

2. laa

3. CKAbcAabAac (Barbara)
4. CKAbclbalac (Datist).

Besides the rules RE and RO I accept the two following rules
of inference for the asserted expressions:

(a) Rule of substitution: If « is an asserted expression of the
system, then any expression produced from « by a valid
substitution is also an asserted expression. The only valid
substitution is to put for term-variables g4, b, ¢ other term-
variables, e.g. b for a.

(6) Rule of detachment: If Caf and « are asserted expressions
of the system, then 8 is an asserted expression.

As an auxiliary theory I assume the C—N-system of the theory
of deduction with K as a defined functor. For propositional
variables propositional expressions of the syllogistic may be
substituted, like Aab, lac, KEbcAab, etc. In all subsequent proofs
(and also for rejected expressions) I shall employ only the
following fourteen theses denoted by roman numerals:
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I. CpCqp (law of simplification)
I1. CCqrCCpqCpr (law ofhypothetical syllogism, 2nd form)
II1. CCpCqrCqCpr (law of commutation)
IV. CpCNpq (law of Duns Scotus)
V. CCNppp (law of Clavius)
V1. CCpgCNgNp (law of transposition)
VII. CCKpgrCpCqr  (law of exportation)
VIII. CpCCKpgrCqr

IX. CCspCCKpgrCKsqr

X. CCKpgrCCsqCKpsr

XI. CCrsCCKpqrCKqps

XI1. CCKpgrCKpNrNg
XIHI. CCKpgrCKNrgNp
XIV. CCKpNgNrCKprq

Thesis VIII is a form of the law of exportation, theses IX-XI
are compound laws of hypothetical syllogism, and XII-XIV
are compound laws of transposition. All of these can be easily
verified by the o-1 method explained in section 23. Theses IV
and V give together with II and 111 the whole C-N-system, but
IV and V are needed only in proofs for rejected expressions.

The system of axioms 1-4 is consistent, i.e. non-contradictory.
The easiest proof of non-contradiction is effected by regarding
term-variables as proposition-variables, and by defining the
functions 4 and I as always true, i.e. by putting dab = lab =
KCaaCbb. The axioms 1—4 are then true as theses of the theory
of deduction, and as it is known that the theory of deduction is
non-contradictory, the syllogistic is non-contradictory too.

All the axioms of our system are independent of each other.
The proofs of this may be given by interpretation in the field of
the theory of deduction. In the subsequent interpretations the
term-variables are treated as propositional variables.

Independence of axiom 1: Take K for 4, and C for I. Axiom 1
is not verified, for 4aa = Kaa, and Kaa gives o for afo. The other
axioms are verified, as can be seen by the o-r method.

Independence of axiom 2: Take C for 4, and K for 1. Axiom 2
is not verified, for laa = Kaa. The other axioms are verified.

Independence of axiom 4: Take C for 4 and I. Axiom 4 is
not verified, for CKAbclbalac = CKCbcCbhaCac gives o for b/o,
a1, clo. The rest are verified.
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Independence of axiom 3: it is impossible to prove the inde-
pendence of this axiom on the ground of a theory of deduction
with only two truth-values, 0 and 7. We must introduce a third
truth-value, let us say 2, which may be regarded as another
symbol for truth, i.e. for 7. To the equivalences given for C, N,
and K in section 23, we have to add the following formulae:

Coz = C12 = C21 = C22 = 1, C20 = o, N2 = o,
Koz = K20 = o, Kr2 = K21 = K22 = 1.

It can easily be shown that under these conditions all the theses
of the C—N-system are verified. Let us now define Jab as a func-
tion always true, i.e. Jab = 1 for all values of a and b, and Aab
as a function with the values

Aaa = 1, Aor = A12 = 1, and Aoz = o (the rest is ir-
relevant).

Axioms 1, 2, and 4 are verified, but from 3 we get by the sub-
stitutions b/1, ¢/2, ajo: CKA12401402 = CK110 = Cr10 = 0.

It is also possible to give proofs of independence by inter-
pretation in the field of natural numbers. If we want, for in-
stance, to prove that axiom 3 is independent of the remaining
axioms, we can define Aab as a+1 % b, and lab as a-+b = b--a.
Iab is always true, and therefore axioms 2 and 4 are verified.
Axiom 1 is also verified, for a+r is always different from a. But
axiom g, i.e. ‘If b+1 5 ¢ and a+1 # b, then a+1 5 ¢, is not
verified. Take 3 for a, 2 for b, and 4 for ¢: the premisses will be
true and the conclusion false.

It results from the above proofs of independence that there
exists no single axiom or ‘principle’ of the syllogistic. The four
axioms 1—4 may be mechanically conjoined by the word ‘and’
into one proposition, but they remain distinct in this inorganic
conjunction without representing one single idea.

§ 26. Deduction of syllogistic theses

From axioms 1-4 we can derive all the theses of the Aristotel-
ian logic by means of our rules of inference and by the help of
the theory of deduction. I hope that the subsequent proofs will
be quite intelligible after the explanations given in the fore-
going sections. In all syllogistical moods the major term is
denoted by q, the middle term by 4, and the minor term by c.
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The major premiss is stated first, so that it is easy to compare
the formulae with the traditional names of the moods.*

A. THe LAws oF CONVERSION
VIL. p/Abec, q/Iba, r/lacx C4-5
5. CAbcClbalac
5. bja, c/a, alb x C1-6
6. Clablba (law of conversion of the I-premiss)
I11. p/Abc, q/Iba, r/lac x C5—7
7. CIbaCAbclac
7. bla, c/b x C2-8
8. CAablab (law of subordination for affirmative pre-
misses)

I1. g/1ab, r/Iba x Cb—9
9. CCplabCplba

9. p/Aab x C8-10
10. CAablba (law of conversion of the A-premiss)
6. a/b, blax 11
11. Clbalab
VI. p/lba, q/lab <X C11-12
12. CNIabNlba
12. RE X 13
13. CEabEba (law of conversion of the E-premiss)

VL. p/Aab, q/lab x C8-14
14. CNlabNAab

14. RE, RO x 15
15. CEabOab (law of subordination for negative premisses)

B. THE AFFiIRMATIVE MoobDs

X. p/Abc, q/lba, r/lac X C4—16
16. CCsIbaCK Abeslac

16. s/lab X C6-17
17. CKAbclablac (Darii)

' In my Polish text-book, Elements of Mathematical Logic, published in 1929 (see
p. 46, n. 3), I showed for the first time how the known theses of the syllogistic may
be formally deduced from axioms 1—4 (pp. 180-go). The method expounded in
the above text-book is accepted with some modifications by I. M. Bochenski, O.P.,
in his contribution: On the Categorical Syllogism, Dominican Studies, vol. i, Oxford

(1948).
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18.

Ig.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

3I.

32.

33-

34-
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16. s/Aab x C10-18
CKAbcAablac (Barbari)
8. a/b, blax 19
CAbalba
16. s/Aba x C19—20
CKAbcAbalac (Darapti)

X1. r/Iba, s/lab x C11-21
CCKpqlbaCKqplab

4. cla, ajc X 22
CKAbalbclca
21. p/Aba, q/Ibc, bjc X C22—23
CKlbcAbalac (Disamis)
17. c/a, ajc X 24
CKAbalcblca
21. p/Aba, q/lch, bjc X C24—25
CKIcbAbalac (Dimaris)
18. ¢/a, ajc x 26
CKAbaAcblca

21. p/Aba, q/Ach, bjc x C26—27
CKAcbAbalac (Bramantip)

C. THe NEcATIVE Moobs

XIII. p/Ibc, g/ Aba, r/lac X C23-28
CKNlacAbaNIbc

28. RE X 29
CKEacAbaEbc

29. afb, bj/ax 30
CKEbcAabEac (Celarent)

IX. s/Eab, p/|Eba x C13-31
CCKEbagqrCKEabgr

31. a/c, q/Aab, r/Eac X C30-32
CKEcbAabEac (Cesare)

XI. r/Eab, s/|Eba X C13-33
CCKpqEabCKqpEba

32. ¢/a, afc X 34
CKEabAcbEca

§ 26
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39-

40.

41.

42.

43-

44-

45-

49.

50.

5I.

52.
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33. p/Eab, q/Ach, ajc, bja X C34—-35
CKAcbEabEac (Camestres)

30. ¢/a, ajc X 36

. CKEbaAcbEca

33. p/Eba, q/Acb, afc, bjax C36-37

. CKAcbEbaEac (Camenes)

I1. q/Eab, r/Oab x C15-38

. CCpEabCpOab

38. p/KEbcAab, bjc x C30-39

CKEbcAabOac (Celaront)
38. p/KEcbAab, bjc x C32—40

CKEcbAabOac (Cesaro)
38. p/KAcbEab, b/c x C35—41

CKAcbEabOac (Camestrop)
38. p/KAcbEba, bjc X C37-42

CKAcbEbaOac (Camenop)
XIII. p/Abe, q/Iba, r/lac x C4-43

CKNlaclbaNAbc
43. RE, RO x 44

CKEaclbaObc
44. a/b, blax 45

CKEbclabOac (Ferio)
31. afc, q/1ab, r/Oac X C45-46

. CKEcblabOac (Festino)

X. p/Ebc, q/1ab, r|Oac X C45-47

. CCslabCKEbcsOac

47. s/Ibax C11-48

. CKEbclbaOac (Ferison)

31. ajc, q/1ba, r/Oac X C48-49

CKEcblbaOac (Fresison)
10. a/b, bja X 50

CAbalab
47. s|Aba X Cr0-51

CKEbcAbaOac (Felapton)
31. a/c, q/Aba, r/Oac X C51-52

CKEcbAbaOac (Fesapo)

93
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As a result of all these deductions one remarkable fact de-
serves our attention: it was possible to deduce twenty syllo-
gistic moods without employing axiom 3, the mood Barbara.
Even Barbari could be proved without Barbara. Axiom 3 is the
most important thesis of the syllogistic, for it is the only syllo-
gism that yields a universal affirmative conclusion, but in the
system of simple syllogisms it has an inferior rank, being neces-
sary to prove only two syllogistic moods, Baroco and Bocardo.
Here are these two proofs:

XII. p/Abc, q/Aab, r|Aac X C3-53
53. CKAbcNAacNAab

53. RO x 54

54. CKAbcOacOab
54- bjc, c/b X 55

55. CKAcbOabOac (Baroco)
XIII1. p/Abc, g/ Aab, r/Aac X C3—56

56. CKNAacAabNAbc

56. RO x 57
57. CKOacAabObc
57. a/b, bja x 58
58. CKObcAbaOac (Bocardo)

§ 27. Axioms and rules for rejected expressions

Of two intellectual acts, to assert a proposition and to reject
it,’ only the first has been taken into account in modern formal
logic. Gottlob Frege introduced into logic the idea of assertion,
and the sign of assertion (}), accepted afterwards by the authors
of Principia Mathematica. The idea of rejection, however, so far
as I know, has been neglected up to the present day.

We assert true propositions and reject false ones. Only true
propositions can be asserted, for it would be an error to assert
a proposition that was not true. An analogous property cannot
be asserted of rejection: it is not only false propositions that
have to be rejected. It is true, of course, that every proposition
is either true or false, but there exist propositional expressions
that are neither true nor false. Of this kind are the so-called
propositional functions, i.e. expressions containing free variables

! T owe this distinction to Franz Brentano, who describes the acts of believing as
anerkennen and verwerfen.
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and becoming true for some of their values, and false for others.
Take, for instance, p, the propositional variable: itis neither true
nor false, because for p/r it becomes true, and for p/o it becomes
false. Now, of two contradictory propositions, « and Na, one
must be true and the other false, one therefore must be asserted
and the other rejected. But neither of the two contradictory
propositional functions, p and Np, can be asserted, because
neither of them is true: they both have to be rejected.

The syllogistic forms rejected by Aristotle are not propositions
but propositional functions. Let us take an example: Aristotle
says that no syllogism arises in the first figure, when the first
term belongs to all the middle, but to none of the last. The
syllogistic form therefore:

(i) CKAbcEablac

i1s not asserted by him as a valid syllogism, but rejected.
Aristotle himself gives concrete terms disproving the above
form: take for b ‘man’, for ¢ ‘animal’, and for a ‘stone’. But there
are other values for which the formula (i) can be verified: by
identifying the variables a and ¢ we get a true implication
CKAbaEablaa, for its antecedent is false and its consequent true.
The negation of the formula (z):

(j) NCKAbcEablac

must therefore be rejected too, because for ¢/a it is false.

By introducing quantifiers into the system we could dispense
with rejection. Instead of rejecting the form (i) we could assert
the thesis:

(k) 2aXb2cNCKAbcEablac.

This means: there exist terms a, b, and ¢ that verify the negation
of (z). The form (z), therefore, is not true for all @, b, and ¢, and
cannot be a valid syllogism. In the same way instead of rejecting
the expression (j) we might assert the thesis:

() ZaZbXcCK AbcEablac.

But Aristotle knows nothing of quantifiers; instead of adding to
his system new theses with quantifiers he uses rejection. As
rejection seems to be a simpler idea than quantification, let us
follow in Aristotle’s steps.
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Aristotle rejects most invalid syllogistic forms by exemplifica-
tion through concrete terms. This is the only point where we
cannot follow him, because we cannot introduce into logic such
concrete terms as ‘man’ or ‘animal’. Some forms must be
rejected axiomatically. I have found' that if we reject axioma-
tically the two following forms of the second figure:

CKAcbAablac
CKEcbEablac,

all the other invalid syllogistic forms may be rejected by means
of two rules of rejection:

(¢) Rule of rejection by detachment: if the implication ‘If a,
then B’ is asserted, but the consequent 8 is rejected, then
the antecedent « must be rejected too.

(d) Rule of rejection by substitution: if 8 is a substitution of
a, and B is rejected, then o must be rejected too.

Both rules are perfectly evident.

The number of syllogistic forms is 4 X 43 = 256; 24 forms are
valid syllogisms, 2 forms are rejected axiomatically. It would be
tedious to prove that the remaining 230 invalid forms may be
rejected by means of our axioms and rules. I shall only show,
by the example of the forms of the first figure with premisses
Abc and Eab, how our rules of rejection work on the basis of
the first axiom of rejection.

Rejected expressions I denote by an asterisk put before their
serial number. Thus we have:

*50. CKAcbAablac (Axiom)

*59a. CKEcbEablac
1. p/lac, g/ KAcbAab x 60
60. ClacCK AcbAablac
60 x C*61-*59
*61. lac.

Here for the first time is applied the rule of rejection by
detachment. The asserted implication 60 has a rejected con-
sequent, *59; thereforeits antecedent, *61, must be rejected too.
In this same way I get the rejected expressions *64, *67, *71,
*74, and *77.

! See section 20.
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62
63
*64
65
66
*67

*68

REJECTED EXPRESSIONS

V. p/lac X 62
. CCNlaclaclac

62. RE x 63
. CCEaclaclac

63 X C*64—*61

. CEaclac

I. afcX b5
. Ace

VIII. p/Acc, q/Eac, r/lac X C65-66

. CCKAccEaclacCEaclac
66 X C*67-*64
. CKAccEaclac
*67 X *68. b/c
. CKAbcEablac

97

Here the rule of rejection by substitution is applied. Expression
*68 must berejected,because by the substitution of 4 for cin *68 we
get the rejected expression *67. The same ruleis used to get* 75.

*77.

I1. ¢/Aab, r/lab x C8-69
. CCpAabCplab
69. p/KAbcEab, bjc < 70
. CCKAbcEabAacCKAbcEablac
70 X C*71-*68
. CKAbcEabAac
XIV. p/Acb, q/lac, r|Aab x 72
. CCKAcbNIacNAabCKAcbAablac

72. RE, RO x 73
. CCKAcbEacOabCK AcbAablac

73 X C*74-*59
. CKAcbEacOab
*74 X *75. bfc, c/b
. CKAbcEabOac
38. p/KAbcEab, bjc X 76
. CCKAbcEabEacCKAbcEabOac
76 X C*77-*75
CKAbcEabEac

The rejected expressions *68, *71, *75, and *77 are the four

5867

H
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possible forms of the first figure having as premisses Ab¢ and
Eab. From these premisses no valid conclusion can be drawn in
the first figure. We can prove in the same way on the basis of
the two axiomatically rejected forms that all the other invalid
syllogistic forms in all the four figures must be rejected too.

§ 28. Insufficiency of our axioms and rules

Although it is possible to prove all the known theses of the
Aristotelian logic by means of our axioms and rules of assertion,
and to disprove all the invalid syllogistic forms by means of our
axioms and rules of rejection, the result is far from being satis-
factory. The reason is that besides the syllogistic forms there
exist many other significant expressions in the Aristotelian logic,
indeed an infinity of them, so that we cannot be sure whether
from our system of axioms and rules all the true expressions of
the syllogistic can be deduced or not, and whether all the false
expressions can be rejected or not. In fact, it is easy to find false
expressions that cannot be rejected by means of our axioms and
rules of rejection. Such, for instance, is the expression:

(F1) ClabCNAabAba.

It means: ‘If some a 1s b, then if it is not true that all a 1s 4, all
b is a.’ This expression is not true in the Aristotelian logic, and
cannot be proved by the axioms of assertion, but it is consistent
with them and added to the axioms does neot entail any invalid
syllogistic form. It is worth while to consider the system of the
syllogistic as thus extended.

From the laws of the Aristotelian logic:

8. CAablab and
50. CAbalab

and the law of the theory of deduction:
(m) CCprCCqrCCNpgr
we can derive the following new thesis 78:
(m) p/Aab, q/Aba, r[Iab xX C8-Cr0-78
78. CCNAabAbalab.

This thesis is a converse implication with regard to (Fr), and
together with (F1) gives an equivalence. On the ground of this
equivalence we may define the functor / by the functor 4:

(F2) Iab = CNAabAba.
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This definition reads: ¢ “Some a is §”’ means the same as “If it
is not true that all a is &, then all 4 is a”.” As the expression ‘If
not-p, then ¢’ is equivalent to the alternation ‘Either p or ¢’, we
can also say: ‘ ““Some a is b’ means the same as “Either all a is
borall bis a”. It is now easy to find an interpretation of this
extended system in the so-called Eulerian circles. The terms q,
b, ¢ are represented by circles, as in the usual interpretation,
but on the condition that no two circles shall intersect each
other. Axioms 1—4 are verified, and the forms *5q9 CKAcbAablac
and *59a CKEcbEablac are rejected, becauseit is possible todraw
two circles lying outside each other and included in a third
circle, which refutes the form CKAcbAablac, and to draw three
circles each excluding the two others, which refutes the form
CKEcbEablac. Consequently all the laws of the Aristotelian
logic are verified, and all the invalid syllogistic forms are re-
jected. The system, however, is different from the Aristotelian
syllogistic, because the formula (F1) is false, as we can see from
the following example: it is true that ‘Some even numbers are
divisible by 3’, but it is true neither that ‘All even numbers are
divisible by g’ nor that ‘All numbers divisible by 3 are even’.

It results from this consideration that our system of axioms
and rules is not categorical, i.e. not all interpretations of our
system verify and falsify the same formulae or are isomorphic.
The interpretation just expounded verifies the formula (Fr)
which is not verified by the Aristotelian logic. The system of our
axioms and rules, therefore, is not sufficient to give a full and
exact description of the Aristotelian syllogistic.

In order to remove this difficulty we could reject the expres-
sion (F1) axiomatically. But it is doubtful whether this remedy
would be effective; there may be other formulae of the same
kind as (F1), perhaps even an infinite number of such formulae.
The problem is to find a system of axioms and rules for the
Aristotelian syllogistic on which we could decide whether any
given significant expression of this system has to be asserted or
rejected. To this most important problem of decision the next
chapter is devoted.



CHAPTER V
THE PROBLEM OF DECISION

§ 29. The number of undecidable expressions

I TAkE. as the basis of my present investigation the following
fundamental elements of the syllogistic:

(1) The four asserted axioms 1—4.

(2) The rule (a) of substitution and the rule (4) of detachment
for the asserted expressions.

(3) The two rejected axioms *59 and *59a.

(4) The rule (¢) of detachment and the rule (d) of substitution
for the rejected expressions.

To this system of axioms and rules the theory of deduction must
be added as the auxiliary theory. From the axioms and rules of
assertion there can be derived all the known theses of the
Aristotelian logic, i.e. the laws of the square of opposition,
the laws of conversion, and all the valid syllogistic moods;
on the basis of the axioms and rules of rejection all the invalid
syllogistical forms can be rejected. But, as we have already seen,
this system of axioms and rules does not suffice to describe the
Aristotelian syllogistic adequately, because there exist signifi-
cant expressions, for instance ClabCNAabAba, which can neither
be proved by our axioms and rules of assertion nor disproved
by our axioms and rules of rejection. I call such expressions
undecidable with respect to our basis. Undecidable expressions
may be either true in the Aristotelian logic or false. The expres-
sion ClabCNAabAba is, of course, false.

There are two questions we have to settle on this basis in
order to solve the problem of decision. The first question is, Is
the number of undecidable expressions finite or not? If it is
finite, the problem of decision is easily solved: we may accept
true expressions as new asserted axioms, and reject false expres-
sions axiomatically. This method, however, is not practicable
if the number of undecidable expressions is not finite. We cannot
assert or reject an infinity of axioms. A second question arises
in this case: Is it possible to complete our system of axioms and
rules so that we could decide whether a given expression had to
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be asserted or rejected? Both these questions were solved by
Stupecki: the first negatively by showing that the number of
undecidable expressions on our basis is not finite, the second
affirmatively by the addition of a new rule of rejection.!

I begin with the first question. Every student of the tradi-
tional logic is familiar with the interpretation of syllogisms
by means of Eulerian circles: according to this interpretation
the term-variables a, b, ¢ are represented by circles, the
premiss Aab being true when and only when the circle a is
either identical with the circle b or is included in 4, and the
premiss Jab being true when and only when the circles a and &
have a common area. Consequently the premiss Eab, as the
negation of lab, is true when and only when the circles a
and b have no common area, i.e. when they exclude each
other. If, therefore, a and b are identical, Jab is true and Eab is
false.

I shall now investigate various suppositions concerning the
number of circles assumed as our ‘universe of discourse’, i.e.
as the field of our interpretation. It is obvious that the rules of
our basis remain valid throughout all the interpretations. If our
universe of discourse consists of three circles or more, the four
axioms of assertion are of course verified, and the axiomatically
rejected expression

*59. CKAcbAablac

is rejected, as it is possible to draw two circles ¢ and a excluding
each other and both included in the third circle 4. The premisses
Acb and Aab are then true, and the conclusion Jac is false. The
expression

*59a. CKEcbEablac

also is rejected, as we can draw three circles each excluding the
two others, so that the premisses Ecb and Eab are true and the
conclusion Jac is false. This interpretation therefore satisfies
the conditions of our basis, and so do all our other interpreta-
tions.

Let us now suppose that our universe of discourse consists of

! See the paper of Stupecki quoted in p. 76, n. I have tried to simplify the author’s
arguments in order to make them comprehensible to readers not trained in mathe-
matical thinking. I am, of course, alone responsible for the following exposition
of Stupecki’s ideas.
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only three circles, but no more, and let us consider the following
expression:

(F3) CEabCEacCEadCEbcCEbdIcd.

This expression contains four different variables, but each of
them can assume only three different values, as we can only
draw three different circles. Whatever be the way to substitute
these three values for the variables, two variables must always
receive the same value, i.e. must be identified. But if some one of
the pairs of variables, ¢ and 4, or ¢ and ¢, or a and 4, or b and ¢,
or b and d, consists of identical elements, the corresponding
E-premiss becomes false, and the whole implication, i.e. the
expression (F3), is verified; and if the last pair of variables, ¢
and 4, has identical elements, the conclusion Icd becomes true,
and the whole implication is again verified. Under the condition
that only three circles can be drawn, the expression (F3) is true
and cannot be disproved by our axioms and rules of rejection.
If we suppose, however, that our universe of discourse consists
of more than three circles, we can draw four circles, each of them
excluding the three others, and (F3) becomes false. (F3) there-
fore cannot be proved by our axioms and rules of assertion. As
(F3) can neither be proved nor disproved by the system of our
axioms and rules, it is an undecidable expression.
Let us now consider an expression of the form

(F4) Ca,CoyCas...Cor,B,
containing n different variables:

a4y, Q9y Qgy +..y Ay,

and let us suppose that: (1) every antecedent of (F4) is of the
type Ea;a;, a; differing from a;; (2) the consequent 8 is of the
type la.a,, a, differing from a;; (3) all the possible pairs of
different variables occur in (F4). If our universe of discourse
consists of only (n—1) circles, (F4) is verified, because some two
variables must be identified, and either one of the antecedents
becomes false or the consequent is true. But if our universe of
discourse consists of more than (n—1) circles, (F4) is not verified,
for n circles may be drawn each excluding the remainder, so
that all the antecedents become true and the consequent is
false. (F4), therefore, is an undecidable expression.
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Such undecidable expressions are infinite in number, as n
may be any integer whatever. It is obvious that they are all
false in the Aristotelian logic, and must be rejected, for we can-
not restrict the Aristotelian logic to a finite number of terms,
and expressions of the form (F4) are disproved when the number
of terms is infinite. This infinite number of undecidable expres-
sions cannot be rejected otherwise than axiomatically, as results
from the following consideration: (F3) cannot be disproved by
the system of our axioms and rules, and therefore must be
rejected axiomatically. The next undecidable expression of the
form (F4) containing five different terms cannot be disproved
by our system of axioms and rules together with the already
rejected expression (Fg), and must again be rejected axiomatic-
ally. The same argument may be repeated with respect to every
other undecidable expression of the form (F4). Since it is im-
possible to reject axiomatically an infinity of expressions, we
must look for another device if we want to solve the problem of
decision affirmatively.

§ 30. Slupecks’s rule of rejection

I start from two terminological remarks: Expressions of the
type Aab, Iab, Eab, and Oab I call simple expressions; the first
two are simple affirmative expressions, and the third and fourth
simple negative expressions. Simple expressions as well as ex-
pressions of the type:

Ca10a20a3. .o chn_lotn,

where all the o’s are simple expressions, I call elementary
expressions. With the help of this terminology Stupecki’s rule
of rejection may be formulated as follows:

If « and B are simple negative expressions and y is an elemen-
tary expression, then if Cay and CBy are rejected, CaCBy
must be rejected too.

Stupecki’s rule of rejection has a close connexion with the
following metalogical principle of traditional logic: ‘utraque si
praemissa neget, nil inde sequetur.” This principle, however,
is not general enough, as it refers only to simple syllogisms of
three terms. Another formulation of the same principle, ‘ex
mere negativis nihil sequitur’, is apparently more generat, but
it is false when applied not only to syllogisms but also to other
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expressions of the syllogistic. Such theses as CEabEba or
CEabOab show clearly that something does follow from merely
negative premisses. Stupecki’s rule is a general rule and avoids
the awkwardness of traditional formulations.

Let us explain this point more fully in order to make Stu-
pecki’s rule clear. The proposition 4ac does not follow either
from the premiss Aab or from the premiss Abc; but when we
conjoin these premisses, saying ‘dab and Abc’, we get the con-
clusion Aac by the mood Barbara. Eac does not follow from Ebc,
or from Aab either: but from the conjunction of these premisses
‘Ebc and Aab’ we get the conclusion Eac by the mood Celarent.
In both cases we obtain from the conjunction of premisses some
new proposition which does not result from either of them
separately. If we have, however, two negative premisses, like
Ech and Eab, we can of course obtain from the first the con-
clusion Ocb and from the second Oab, but from the conjunction
of these premisses no new proposition can be drawn except
those that follow from each of them separately. This is the
meaning of Stupeck?’s rule of rejection: if y does not follow
either from « or from B, it cannot follow from their conjunction,
as nothing can be drawn from two negative premisses that does
not follow from them separately. Stupecki’s rule is as plain as
the corresponding principle of traditional logic.

I shall now show how this rule can be applied in the rejection
of undecidable expressions. For this purpose I use the rule in a
symbolic form, denoted by RS (Rule of Stupecki):

RS. *Cay, *CBy — *CaCBy.

Here as everywhere I employ Greek letters to denote variable
expressions satisfying certain conditions: thus, « and 8 must be
simple negative expressions of the syllogistic, y must be an
elementary expression as explained above, and all three ex-
pressions must be such that Cay and CBy may be rejected. The
arrow (—) means ‘therefore’. I want to lay stress on the fact
that RS is a peculiar rule, valid only for negative expressions
« and B of the Aristotelian logic, and, as we have already seen,
cannot be applied to affirmative expressions of the syllogistic.
Nor can it be applied to the theory of deduction. This results
from the following example: the expressions CNCpgr and
CNCqpr are both not true and would be rejected, if rejection
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were introduced into this theory, but CNCpgCNCqpr is a thesis.
Also in algebra the proposition ‘a equals ” does not follow
either from the premiss ‘a is not less than 4’ or from the premiss
‘b is not less than a’, but it follows from the conjunction of these
premisses.

As the first application of the new rule I shall show that the
expression

*59a. CKEcbEablac,

which was rejected axiomatically, can now be disproved. This
results from the following deduction:
9. p/Eac, afc, bla X 79
79. CCEaclcaCEaclac
79 X C*80—*64
*80. CEaclca
*8o % *81. c/a, b/c, a/c
*81. CEcblac
*64 X *82. b/c
*82. CEablac

RS. ofEch, B/Eab, y/lac X *81, *82 — *83
*83. CEcbCEablac.

The rule RS is here applied for the first time; « and B are
simple negative expressions, and y is also a simple expression.
From *83 we get by thelaw of exportation VII the formula *5ga:

VII. p/Ecb, q/Eab, r|lac X 84
84. CCKEcbEablacCEcbCEablac
84 X C*59a—*83
*s9a. CKEcbEablac.
It follows from the above that Stupecki’s rule is stronger than
our axiomatically rejected expression *59a. Since *59a has to
be cancelled, formula *59, i.e. CKAcbAablac, remains the sole
expression axiomatically rejected.
In the second place I shall apply the rule RS repeatedly to
disprove the formula (F3):
*64 X *85. d/c, c/a
*85. CEadlcd
*85 % *86. b/a
*86. CEbdlcd
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RS. o/Ead, B/Ebd, y/Icd X *85, *86 — *87
*87. CEadCEbdlcd
*8o X *88. b/a, dja
*88. CEbcled

RS. o/Ebe, B/Ebd, y|Icd x *88, *86 — *8g
*89. CEbcCEbdIcd

RS. «/Ead, B/Ebc, y/CEbdlcd X *87, *89 — *go
*90. CEadCEbcCEbdIcd
*88 X *9g1. afb
*91. CEaclcd
RS. a/Eac, B/Ebd, y[Icd X *g1, *86 — *g2
*92. CEacCEbdIcd

RS. «/Eac, B/Ebc, y|CEbdIcd X *92, *8g — *93
*93. CEacCEbcCEbdIcd

RS. «/Eac, B/Ead, v/CEbcCEbdIcd X *93; ¥90 — *9g4
*94. CEacCEadCEbcCEbdlcd
*85 X *95. b/d
*95. CEablcd
RS. of/Eab, B/Ebd, y[Icd X *g5, *86 — *g6
*96. CEabCEbdIcd

RS. o/Eab, B/Ebc, y/CEbdIcd X *96, *8g — *g7
*q7. CEabCEbcCEbdlcd

RS. o/Eab, B/Ead, y/CEbcCEbdIcd X *97, *g0 — *g8
*98. CEabCEadCEbcCEbdIcd

RS. of/Eab, B/Eac, y/CEadCEbcCEbdicd X *98, *94 —
*
99
*99. CEabCEacCEadCEbcCEbdIcd
The rule RS is used in this deduction ten times; « and B are
always simple negative expressions, and y is everywhere an
elementary expression. In the same manner we could disprove
other formulae of the form (F4), and also the formula (F1) of
section 28. It is needless, however, to perform these deductions,
since we can now set forth the general problem of decision.

§ 31. Deductive equivalence

We need for our proof of decision the concept of deductive or
inferential equivalence. Since there are, in my opinion, some
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misunderstandings in the treatment of this concept, its meaning
must be carefully defined. I shall do this on the basis of the
theory of deduction.

It 1s usually said that two expressions, « and 8, are deductively
equivalent to each other when it 1s possible to deduce 8 from «
if « 1s asserted, and conversely « from B if B is asserted. The rules
of inference are always supposed as given. But they are seldom
sufficient. They suffice, for instance, in the following example.
From the asserted law of commutation CCpCqrCqCpr we can
deduce the thesis CqCCpCqrCpr:

(1) CCpCqrCqCpr

(1) p/CpCar, r|Cpr X C(1)~(2)

(2) CqCCpCqrCpr,
and again from this thesis we can deduce the law of com-
mutation:

(2) 9/CqCCpCarCpr, pls, 7/t x C(2)-(3)

(3) CCsCCqCCHCqrCprtCst

(2) 9/CpCqr, plg, 7/Cpr X (4)
(4) CCpCqrCCqCCHCerCprCeCHr
(3) s/CpCar, 1/CqCpr x C(4)~(1)

(1) CCpCqrCqCpr.*

But we cannot in this simple way deduce from the asserted
expression CNpCpq the law of Duns Scotus CpCNpg, because
from the first expression we can derive new propositions only
by substitution, and all the substitutions of CNpCpg begin with
CN, none with Cp. To deduce one of those expressions from
another we must have further assistance. Speaking generally,
the relation of deductive equivalence is seldom absolute, but in
most cases it 1s relative to a certain basis of theses. In our case
this basis is the law of commutation. Starting from

(5) CNpCpg
we get by commutation the law of Duns Scotus:
(1) pIND, qlp, 719 % C(5)~(6)
(6) CpCNpg,
and starting from (6) we get again by commutation (5):
(1) g/Np, 7/9x C(6)=(5)
(5) CNpCpg.

! This neat deduction was given by A. Tarski in Warsaw.
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I'say therefore that CNpCpg and CpCNpg are deductively equiva-

lent with respect to the law of commutation, and 1 write:
CNpCpg ~ CpCNpq with respect to (1).

The sign ~ denotes the relation of deductive equivalence.
This relation is different from the ordinary relation of equiva-
lence, denoted here by Q, which is defined by the conjunction
of two implications each converse to the other,

Qpg = KCpgCqp,
and requires no basis. If an ordinary equivalence Q o is asserted,
and «, or a substitution of «, 1s asserted too, then we can assert
B, or the corresponding substitution of 8, and conversely. An
asserted ordinary equivalence Q of is therefore a sufficient basis
for the deductive equivalence o ~ B; but it is not a necessary
one. This is just the point where explanation is needed.

Not only asserted or true expressions may be deductively
equivalent, but also false ones. In order to solve the problem of
decision for the C-N-system we have to transform an arbitrary
significant expression « into the expression CNam, where 7 is a
propositional variable not occurring in «. This can be done by
means of two theses:

S1. CpCNpq
S2. CCNppp.

I say that « is deductively equivalent to CNam with respect to
St and S2, and I write:

I. « ~ CNam with respect to S1 and Sz2.

All goes easily when « is asserted. Take as example NNCpp.
This is a thesis easily verified by the o—r method. I state accord-
ing to formula I that

NNCpp ~ CNNNCppq with respect to St and Sa.
Starting from
(7) NNCpp
we get by Sr:
S1. p|NNCpp x C(7)~(8)
(8) CNNNCppy,

and starting again from (8) we get by substitution and S2:

(8) ¢/ NNCpp x(9)
(9) CNNNCppNNChp
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S2. pINNCpp > C(9)-(7)
(7) NNCpp.

But « is an arbitrary expression; it may be false, e.g. Cpg. In
this case formula I reads:

Cpg ~ CNCpgr with respect to S1 and Sa.

Here the difficulty begins: we can get the thesis CCpgCNCpgr
from S1 by the substitution p/Cpgq, ¢/r, but we cannot derive
from this thesis the consequent CNCpgr, for Cpq is not a thesis
and cannot be asserted. Therefore CNCpgr cannot be detached.
A still greater difficulty arises in the other direction: we can
get from S2 by the substitution p/Cpq the thesis CCNCpgCpqCpy,
but CNCpgCpq is not asserted, nor can we get CNCpqCpg from
CNCpgr by substitution, because CNCpgr is not a thesis. We
cannot say: Suppose that Cpq be asserted; then CNCpgr would
follow. The assertion of a false expression is an error, and we
cannot expect to prove anything by an error. It seems therefore
that formula I is valid not for all expressions but only for those
that are asserted.

There exists, in my opinion, only one way to avoid these
difficulties: it is the introduction of rejection into the theory of
deduction. We reject axiomatically the variable p, and accept
the clear rules of rejection, (¢) and (d). It can easily be shown
on this basis that Cpg must be rejected. For we get from the
axiom

(*10) p
and the thesis
(11) CCCpppp

by the rules of rejection:
(11) X C(*12)-(*10)
(*r2) CCppp
(*12) X (*13) p/Cpp, q/p
(*13) Cpy.
Now we are able to prove that if Cpg is rejected, CNCpgr must

be rejected too; and conversely, if CNCpgr is rejected, Cpg must
be rejected too. Starting from

(*13) Cpg
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we get by S2 and the rules of rejection:

S2. p/Cpgx (14)
(14) CCNCpgCpqCpq
(14) X C(*15)—(*13)
(*15) CNCpeCpq

(*15) X (*16) 7/Cpq
(*16) CNCpyr.

In the other direction we easily get Cpg from (*16) by St1:

St. p/Cpg, q/r X (17)
(17) CCpgCNCpqgr
(17) X C(*13)~(*16)

(*13) Cpg.

Formula I is now fully justified. We have, however, to correct
our previous definition of deductive equivalence, saying:

Two expressions are deductively equivalent to each other
with respect to certain theses when and only when we can
prove by means of these theses and of the rules of inference
that if one of those expressions is asserted, the other must
be asserted too, or if one of them is rejected, the other must
be rejected too.

It follows from this definition that ordinary equivalence is not
a necessary basis of deductive equivalence. If Q of is a thesis, it
is true that « is deductively equivalent to 8 with respect to Q of;
but if « is deductively equivalent to B8 with respect to certain
theses, it is not always true that Q of is a thesis. Take as example
the deductive equivalence just considered:

Cpg ~ CNCpgr with respect to St and Sa.

The corresponding ordinary equivalence QCpgCNCpgr is not
a thesis, for it is false for p/1, q/o, r/1.

It is obvious that the relation of deductive equivalence is
reflexive, symmetrical, and transitive. There are cases where
« is deductively equivalent to two expressions 8 and y with
respect to certain theses. That means: if « is asserted, then B is
asserted and v is asserted, and consequently their conjunction
‘B and 4’ is asserted ; and conversely, if both 8 and y, or their
conjunction ‘B and y’, is asserted, then « is asserted too. Again,
if « is rejected, then the conjunction ‘8 and y’ must be rejected,
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and in this case it is sufficient that only one of them, B or y,
should be rejected; and conversely, if only one of them is
rejected, « must be rejected too.

§ 32. Reduction to elementary expressions
Our proof of decision is based on the following theorem:

(TA) Every significant expression of the Aristotelian syllo-
gistic can be reduced in a deductively equivalent way,
with respect to theses of the theory of deduction, to
a set of elementary expressions, i.e. expressions of the
form

Co,CayCay...Cop

where all the o’s are simple expressions of the syllogis-
tic, i.e. expressions of the type Aab, lab, Eab, or Oab.

All known theses of the syllogistic either are elementary ex-
pressions or can easily be transformed into elementary expres-
sions. The laws of conversion, e.g. Clablba or CAablba, are
elementary expressions. All the syllogisms are of the form
CKopBy, and expressions of this kind are deductively equivalent
to elementary expressions of the form CaCBy with respect to the
laws of exportation and importation. But there are other signi-
ficant expressions of the syllogistic, some of them true, some
false, that are not elementary. We have already met such an
expression: it was thesis 78, CCNAabAbalab, the antecedent of
which is not a simple expression but an implication. There
exists, of course, an infinity of such expressions, and they must all
be taken into account in the proof of decision.

Theorem (TA) can easily be proved on the basis of an
analogous theorem for the theory of deduction:

(TB) Every significant expression of the theory of deduction
with C and N as primitive terms can be reduced in
a deductively equivalent way with respect to a finite
number of theses to a set of elementary expressions of
the form '

Co;CayCasg...Carpy_yary,

where all the o«’s are simple expressions, i.e. either
variables or their negations.

The proof of this theorem is not easy, but since it is essential
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for the problem of decision it cannot be omitted. The proof of
(TB) given below is intended for readers interested in formal
logic; those not trained in mathematical logic may take both
theorems, (TA) and (TB), for granted.

Let o be an arbitrary significant expression of the theory of
deduction other than a variable (which may, but need not, be
transformed) : every such expression can be transformed, as we
already know, in a deductively equivalent way with respect to
the theses S1 and S2:

S1. CpCNpg
S2. CCNppp

into the expression CNam, where 7 is a variable not occurring
in . We have therefore as transformation I:

I. « ~ CNomw with respect to S1 and S2.

Transformation I allows us to reduce all significant expres-
sions to implications that have a variable as their last term.
Now we must try to transform Na, the antecedent of CNam,
into a variable or its negation. For this purpose we employ the
following three transformations:

II. CNNaf ~ Cop with respect to S3 and Sg,
III. CNCafy ~ CaCNBy 5 s S5 and S6,
IV. CCafy ~ CNay, CBy » S7, S8, and Sq.

The respective theses are: for transformation II:

S3. CCNNpgChq
S4. CCpgCNNpg;

for transformation I1I:

S5. CCNCpgrCpCNgr
S6. CCpCNgrCNCpgr;

for transformation IV:

Sy. CCCparCNpr
S8. CCCpqgrCqr
Sg. CCNprCCqrCCpqr.

Let us now explain how we can get by these transformations
a variable or its negation in the antecedent of CNaw. The
expression a occurring in CNom may, like every significant
expression of the C-N-system, be either a variable, or a nega-
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tion, or an implication. If « is a variable, no transformation is
needed; if it is a negation, we get CNNapB, and two negations
annul each other according to transformation II; if it is an
implication, we get from CNCaBy the equivalent expression
CaCNBy, the antecedent of which, «, is simpler than the initial
antecedent NCof. This new a may again be a variable—no
transformation is then needed—or a negation—this case has
already been settled—or an implication. In this last case we get
from CCafy two expressions, CNay and CBy, with simpler ante-
cedents than the initial antecedent CofS. By repeated applica-
tions of I1, III, and IV we must finally reach in the antecedent
a variable or its negation.

Let us now see by examples how these transformations work.

First example: NNCpp.
NNCpp ~ CNNNCppg by 1;

CNNNCppg ~ CNCppq s I1;
CNCppq  ~ CpCNpq ,, 1IL,

NNCpp is thus reduced to the expression CpCNpg with the
variable p in the antecedent. CpCNpg is an elementary
expression.

Second example: CCCpgpp.
CCCpgpp ~ CNCCCpgppr by 1;
CNCCCpgppr ~ CCCpgpCNpr ,, 111;
CCCpgpCNpr ~ CNCpgCNpr, CpCNpr by 1V
CNCpgCNpr ~ CpCNgCNpr by III.

CCCpgpp 1s thus reduced to two expressions: CpCNgCNpr and
CpCNpr, both with the variable p in the antecedent; both are
elementary expressions.

Third example: CCCpqqCCqpp.

CCCpqqCCqpp ~ CNCCCpgqCCqppr by 1;
CNCCCpqqCCqppr ~ CCCpgqCNCCqppr ,, 111;
CCCpgqCNCCqppr ~ CNCpgCNCCqppr, CgCNCCqpprby 1V,
CNCpgCNCCqppr ~ CpCNgCNCCqppr by III.

CCCpqqCCqpp is reduced to two expressions CHpCNgCNCCqppr

and CgCNCCqppr, both with a variable in the first antecedent.

Neither of them, however, i1s elementary, since the first has the

compound expression NCCgpp as its third antecedent and the
6367 I
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second has the same compound expression as its second ante-
cedent.

As we can see from this last example, our task is not yet
finished. By transformations I-IV we obtain implications with
a variable in the first antecedent, and also expressions of the
form:

CoyCayCoty...Cax,

but not all antecedents of this form, apart from «,, need be
simple expressions. In order to get rid of such compound ante-
cedents we need three further transformations:

V. CaCBy ~ CBCay with respect to Sio,
V1. CaCBCyS ~ CaCyCBS v s Sti,
VIIL. CaCBy ~ CNCoNBy » 3 S12 and S13.

The respective theses are: for transformation V:
S10. CCpCqrCqCpr;

for transformation VI:
S11. CCpCqCrsCpCrCys;

for transformation VII:
S12. CCpCarCNCpNgr
S13. CCNCpNgrCpCqr.

By S10 we can move a compound antecedent from the second
place to the first, and by Si11 from the third place to the
second. Applying these transformations to the expressions
CpCNqCNCCqppr and CgCNCCqppr of our third example we get:
(a) CpCNGCNCCqappr ~ CHpCNCCqppCNgr by V1;
CpCNCCappCNgr ~ CNCCqppCHCNgr ,, V;
CNCCqppCpCNgr ~ CCqpCNpCpCNgr ,, I11;
CCqpCNpCHCNgr ~ CNgCNpCpCNgr, CpCNpCpCNgr by
IV.

(B) CqCNCCqppr ~ CNCCqppCqr by V;

CNCCqppCqr ~ CCqpCNpCqr ,, 111;

CCqpCNpCqr ~ CNgCNpCqr, CHCNpCqr by 1V.
CCCpqqCCqpp is thus reduced to four elementary expressions:
CNgCNpCpCNgr, CpCNpCpCNgr, CNgCNpCqr, and CpCNpCqr.

Transformation VII is used in all those cases where the com-
pound antecedent occurs in the fourth place or farther. This
transformation allows us to reduce the number of antecedents;
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in fact, NCpNgq means the same as Kpg, and S12 and S13 are
other forms of the laws of importation and exportation respec-
tively. Now CNCaNBy, like CKaBy, has only one antecedent,
whereas the equivalent expression CaCfBy has two antecedents.
If, therefore, a compound expression occurs in the fourth place,
as 8 in CaCBCyCde, we can move it to the third place, applying
VII and then VI:

CaCBCyCSe  ~ CNCaNBCyC3e by VII;
CNCaNBCyCSe ~ CNCaNBCCye ,, VL.

From this last expression we get by the converse application of
VII the formula:

CNCaNBCSCye ~ CaCBCECye by VII.

It is now easy to bring § to the first place by VI and V:

CaCBCSCye ~ CaCSCBCye by VI,
CaCSCBCye ~ C8CaCBCye ,, V.

Applying transformation VII repeatedly in both directions we
can move any antecedent from the nth place to the first, and
transform it, if it is compound, by II, I1I, and IV into a simple
expression.

The proof of theorem (TB) is thus completed. It is now easy
to show that this theorem entails the proof of decision for the
C-N-system of the theory of deduction. If all the elementary
expressions to which a given expression o has been reduced are
true, i.e. if they have among their antecedents two expressions
of the type p and Np, then « is a thesis and must be asserted. On
the other hand, if among the elementary expressions to which «
has been reduced there exists at least one expression such that
no two antecedents in it are of the type p and Np, then o must
be rejected. In the first case we can prove a by means of the
theses S1-S13, in the second we can disprove it, adding to the
above theses two new ones:

S14. CpCCpqq
S15. NNCpp,

and the axiom of rejection:

*S16. p.

Two exa.mples will clarify this.
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First example: Proof of the thesis CpCCpqq.

This thesis must first be reduced to elementary expressions.
This is done by the following analysis (L):
CpCCpqq ~ CNCpCCpqqr by 1;
CNCpCCpggr ~ CpCNCCpqqr ,, 111;
CpCNCCpggr ~ CNCCpgqCpr ,, V;
CNCCpgqCpr ~ CCpgCN¢Cpr ,, 111,
CCpgCNqCpr ~ CNpCN¢Cpr, CqCNgCpr by 1V.

The elementary expressions to which CpCCpqq is reduced are
CNpCNgCpr and CqgCNgCpr. Both, like all expressions to which
transformation I has been applied, have as their last term a
variable not occurring in the antecedents. Such expressions can
be true only on condition that they have two antecedents of the
type p and Np, and any expression of this kind can be reduced
by transformations V, VI, or VII to a substitution of S1 from
which the proof of a thesis must always begin. Here are the
required deductions:

S1. ¢/CNgrx (1)
(1) CpCNpCNgr

S10. g/Np, r/[CNgr x C(1)—(2)
(2) CNpCpCNgr

St1. p/Np, qlp, 7/ Nq, s/rx C(2)—(3)
(3) CNpCNgCpr

St. plq, q9/Cpr X (4)
(4) CqgCNgCpr.

Having got in (3) and (4) the same elementary expressions as
we reached at the end of our analysis (L), we now proceed from
them to their equivalents on the left, by applying theses on
which the successive transformations were based. Thus, step by
step, we get our original thesis by means of Sg, S6, S10, and S2:

Sg. r/CNgCprx C(3)-C(4)~(5)
(5) CCpgCNgCpr

S6. p/Cpq, r/Cpr X C(5)~(6)
(6) CNCCpqqCpr

S1o. p/NCCpqq, q/p < C(6)~(7)
(7) CPCNCCpggr
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S6. ¢/CCpqaq < C(7)~(8)
(8) CNCpCCpqqr
(8) r/CpCCPeq % (9)
(9) CNCpCCpeqCpCCpeq
S2. p/CpCCpgq < C(9)—(10)
(10) CpCCpqq.
Upon this model we can prove any thesis we want.

Second example: Disproof of the expression CCNpgq.

We first reduce this expression to elementary expressions on
the basis of the following analysis:

CCNpqq ~ CNCCNpgqr by 1;
CNCCNpgqr ~ CCNpgCNgr ,, I11;
CCNpgCNgr ~ CNNpCNgr, CqCNgr by 1V
CNNpCNgr ~ CpCNgr by II.

The expression CCNpgq is thus reduced to two elementary ex-
pressions, CgqCNgr and CpCNgr. The first of these is a thesis, but
the second is not true, for it has no two antecedents of the type
p and Np. The expression CCNpgq therefore, which leads to this
not-true consequence, must be rejected. We begin the disproof
from the top, successively applying according to the given trans-
formations the theses S1, S5, S7, and S3:

S1. p/CCNpgq, g/r < (11)
(11) CCCNpggCNCCNpqqr

S5. p/CNpg % (12)

(12) CCNCCNpgqrCCNpgCNgr
S7. p|Np, 1/CNgr x (13)

(13) CCCNpgCNgrCNNpCNgr
S3. ¢/CNgrx (14)

(14) CCNNpCNgrCpCNyr.

Now we must disprove the expression CpCNgr; we need for this
purpose the new theses S14 and S15 and the axiom of rejection.

S14. pINNCpp, q/p < CS15-(15)
(15) CCNNCpppp

(15) X C(*16)-*S16
(*16) CNNCppp
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S14. p/CpCNpq, ¢/ CNNCppp x CSi1-(17)
(17) CCCPpCNpgCNNCpppCNNCppp
(17) X C(*18)~(*16)
(*18) CCpCNpgCNNCppp
(*18) X (*19) p/CpCNpg, q/NCpp, 7]p

(*19) CpCNgr
Having rejected CpCNgr, we can now successively reject its ante-
cedents till we reach the original expression CCNpgq.

(14) X C(*20)—(*19)

(*20) CNNpCNgr

(13) X C(*21)-(*20)
(*21) CCNpgCNgr

(12) X C(*22)-(*21)
(*22) CNCCNpgqr

(11) X C(*23)—(*22)

(*23) CCNpgq
In this way you can disprove any not-true expression of the
C-N-system. All these deductions could have been made shorter,
but I was anxious to show the method implied in the proof of
decision. This method enables us to decide effectively, on the
basis of only fifteen fundamental theses, S1-S15, and the axiom
of rejection, whether a given significant expression of the C-N-
system should be asserted or rejected. As all the other functors
of the theory of deduction may be defined by C and N, all
significant expressions of the theory of deduction are decidable
on an axiomatic basis. A system of axioms from which the
fifteen fundamental theses can be drawn is complete in this
sense, that all true expressions of the system can be deduced in
it. Of this kind is the system of three axioms set out in section
23, and also the system of those three axioms on which trans-
formation IV is based, viz. CCCpgrCNpr, CCCpgrCqr, and
CCNprCCqrCCpqr.

The proof of theorem (TA), according to which every signi-
ficant expression of the Aristotelian logic can be reduced to
elementary expressions, is implicitly contained in the proof of
the analogous theorem for the theory of deduction. If we take
instead, of the Greek letters used in our transformations I-VII
(except the final variable in transformation I) propositional
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expressions of the Aristotelian logic, we can apply those trans-
formations to them in the same way as to expressions of the

theory of deduction. This can easily be seen in the example of
CCNAabAbalab. We get:

CCNAabAbalab ~ CNCCNAabAbalabp by 1;
CNCCNAabAbalabp ~ CCNAabAbaCNlabp ,, I1I;
CCNAabAbaCNlabp ~ CNNAabCNlabp, CAbaCNIabp by 1V;
CNNAabCNlabp  ~ CAabCNlabp by II.

Instead of NAab we can always write Oab, and Eab instead of
Nlab. In what follows, however, it will be more convenient to
employ forms with V.

Both elementary expressions, CAabCNlabp and CAbaCNlabp,
to which CCNAabAbalab has been reduced, have a proposi-
tional variable as their last term. This variable is introduced by
transformation I. We can get rid of it by the following de-
ductively equivalent transformations where = is a propositional
variable not occurring in either « or :

VIIL. ,CaCBrr  ~ CaNB with respect to S17 and S18,
IX. CaCNBr ~ Cof ’ »s 5 SIg and S2o.

Theses for transformation VIII:
S1y7. CCpCqNqCpNq
S18. CCpNgCpCqr.

Theses for transformation I1X:

S1g. CCpCNgqCpq
S20. CCpqeCpCNgr.

When CaCBr is asserted, we get from it by substituting NS for =
the expression CaCBNB, and then CxNB by S17; and conversely
from CaNB the expression CaCBm by S18. When CuaCB7 is re-
jected, we get by S18 CCaNBCaCBw, therefore CaNB must be
rejected ; and conversely, when CaVB is rejected, we get by S17
CCaCBNBCaNB, therefore CaCBNB must be rejected and conse-
quently CaCBn. Transformation IX can be explained in the
same way. This we can apply directly to our example. Take
Aab for «, Iab for B, and p for =; you get CAablab. In the same
way from CAbaCNlIabp results CAbalab. If we have an expression
with more antecedents than two, e.g. with n antecedents, we
must first reduce by repeated application of transformation
VII the n-1 antecedents to one antecedent, and then apply
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transformation VIII or IX. Take, for instance, the following
example:

CNIabCAchbCAdcCladp ~ CNCNIabNAcbCAdcCladp
by VII;
CNCNIabNAcbCAdcCladp ~ ~ CNCNCNIabNAcbNAdcCladp
by VII;
CNCNCNIabNAcbNAdcCladp ~ CNCNCNIabNAcbNAdeNlad
by VIII;
CNCNCNIabNAcbNAdcNlad ~ CNCNIabNAcbCAdcNlad
by VII;

CNCNIabNAcbCAdcNlad ~ CNIabCAcbCAdcNlad ,, VII.

Theorem (TA) is now fully proved; we can proceed therefore
to our main subject, the proof of decision of the Aristotelian
syllogistic.

§ 33. Elementary expressions of the syllogistic

According to theorem (TA), every significant expression of
the Aristotelian syllogistic can be reduced in a deductively equi-
valent way to a set of elementary expressions, i.e. expressions
of the form

Ca;CoyCay...Ca,py gy,

where all the «’s are simple expressions of the syllogistic, i.e.
expressions of the type Aab, lab, Eab or Nlab, and Oab or
NAab. Now I shall show that every elementary expression of the
syllogistic is decidable, i.e. either asserted or rejected. I shall
first prove that all the simple expressions, except expressions of
the type Aaa and Jaa, are rejected. We have already seen
(section 27, formula *61) that Jac is rejected. Here are the
proofs of rejection of the other expressions:

*100 X *61. ¢/b

*100. lab

8 xC*1o1-*100 (8. CAablab)
*101. Aab

IV. p/Aaa, q/Iab x C1-102 (IV. CpCNpgq)

102. CNAaalab

102 X C*103-*100
*103. Ndaa (= Oaa)
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*103 X *104. b/a
*104. NAab (= Oab)

IV. p/laa, q/lab x C2-105
105. CNlaalab

105 X C*106-* 100

*106. Nlaa (= Eaa)
*106 X *107. b/a
*107. Nlab (= Eab).

Turning now tocompound elementary expressions I shall suc-
cessively investigate all the possible cases, omitting the formal
proofs where it is possible, and giving only hints how they could
be done. Six cases have to be investigated.

First case: The consequent «, is negative, and all the ante-
cedents are affirmative. Such expressions are rejected.

Proof: By identifying all the variables occurring in the ex-
pression with a, all the antecedents become true, being laws of
identity Aaa or laa, and the consequent becomes false. We see
that for the solution of this case the laws of identity are essential.

Second case: 'The consequent is negative, and only one of the
antecedents is negative. This case may be reduced to the case
with only affirmative elements, and such cases, as we shall see
later, are always decidable.

Proof: Expressions of the form CaCNBNy are deductively
equivalent to expressions of the form CaCyB with respect to the
theses COpCNrNgCpCqr and CCpCqrCpCNrNg. This is true not
only for one affirmative antecedent «, but for any number of
them.

Third case: The consequent is negative, and more than one
antecedent is negative. Expressions of this kind can be reduced
to simpler expressions, and eventually to the second case. The
solution of this case requires Stupecki’s rule of rejection.

Proof: Let us suppose that the original expression is of the
form CNaCNBCy...Np. This supposition can always be made,
as any antecedent may be moved to any place whatever. We
reduce this expression to two simpler expressions CNaCy...Np
and CNBCy...Np, omitting the second or the first antecedent
respectively. If these expressions have more negative ante-
cedents than one we repeat the same procedure till we get
formulae with only one negative antecedent. As such formulae
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according to the second case are deductively equivalent to
decidable affirmative expressions, they are always either asserted
or rejected. If only one of them is asserted, the original expres-
sion must be asserted too, for by the law of simplification we can
add to this asserted formula all the other negative antecedents
which were previously omitted. If, however, all the formulae
with one negative antecedent are rejected, we gather from them
by repeated application of Stupecki’s rule of rejection that the
original expression must be rejected. Two examples will ex-
plain the matter thoroughly.

First example: CNAabCNAbcCNIbdCIbcNAcd, a thesis.

We reduce this expression to (1) and (2):
(1) CNAabCNIbdCIbcNAcd,  (2) CNAbcCNIbdCIbeN Acd.
In the same way we reduce (1) to (3) and (4):

(3) CNAabCIbcNAcd, (4) CNIBdCIbcNAcd,
and (2) to (5) and (6):
(5) CNAbcCIbcNAcd, (6) CNIbdCIbeNAcd.

Now the last expression is a thesis; it is the mood Ferison of the
third figure. Putting in CpCqp (6) for p, and NAbc for ¢, we get
(2), and applying CpCgp once more by putting (2) for p, and
NAab for g, we reach the original thesis.

Second example: CNAabCNAbcCNIcdCIbdNAad, not a thesis.
We reduce this expression as in the foregoing example:

(1) CNAabCNIcdCIbdNAad,  (2) CNAbcCNIcdCIbdNAad,
then we reduce (1) to (3) and (4), and (2) to (5) and (6):

(3) CNAabCIbdNAad, (4) CNIcdCIbdNAad,
(5) CNAbcCIbdNAad, (6) CNIcdCIbdNAad.

None of the above formulae with one negative antecedent is
a thesis, as can be proved by reducing them to the case with
only affirmative elements. Expressions (3), (4), (5), and (6)
are rejected. Applying the rule of Stupecki, we gather from the
rejected expressions (5) and (6) that (2) must be rejected, and
from the rejected expressions (3) and (4) that (1) must be
rejected. But if (1) and (2) are rejected, then the original
expression must be rejected too.

Fourth case: The consequent is affirmative, and some (or all)
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antecedents are negative. This case can be reduced to the
third.

Proof: Expressions of the form CoaCNBy are deductive-
ly equivalent to expressions of the form CaCNBCNyNAaa
on the ground of the theses CCpCNgrCpCNgCNrNAaa and
CCPpCNgCNrNAaaCpCNgr, as NAaa is always false.

All the cases with negative elements are thus exhausted.

Fifth case: All the antecedents are affirmative, and the conse-
quent is a universal affirmative proposition. Several sub-cases
have to be distinguished.

(a) The consequent is 4aa; this expression is asserted, for its
consequent is true.

(6) The consequent is Aab, and Aab is also one of the ante-
cedents. The expression is of course asserted.

In what follows it is supposed that 4ab does not occur as
antecedent.

(¢) The consequent is Aab, but no antecedent is of the type
Aaf with f different from a (and from b, of course). Such
expressions are rejected.

Proof: By identifying all variables different from a and & with
b, we can only get the following antecedents:

Aaa, Aba, Abb, Iaa, Iab, Iba, 1bb.

(We cannot get Aab, for no antecedent is of the type Aaf, f
being different from a.) Premisses Aaa, Abb, Iaa, Ibb can be
omitted as true. (If there are no other premisses, the expression
is rejected, as in the first case.) If there is fba besides lab, one of
them may be omitted, as they are equivalent to each other. If
there is Aba, both Iab and Iba may be omitted, as Aba implies
them both. After these reductions only Aba or Iab can remain as
antecedents. Now it can be shown that both implications,

CAbaAab and ClabAab,

are rejected on the ground of our axiom of rejection:
X. p/Acb, q/Aba, r/lac, s|Aabx C27-108
108. CCAabAbaCKAcbAablac (X. CCKpgrCCsqCKpsr;
108 X C*109-*59 27. CKAcbAbalac)
*109. CAabAba
*109 X *110. b/a, a/b
*110. CAbadab.
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If CAbaAab is rejected, then ClabAab must be rejected too, for
lab is a weaker premiss than Aba.

(d) The consequent is 4ab, and there are antecedents of the
type Aaf with f different from a. If there is a chain leading from
a to b, the expression is asserted on the ground of axiom 3, the
mood Barbara; if there is no such chain, the expression is
rejected.

Proof: By a chain leading from a to 4 I understand an ordered
series of universal affirmative premisses:

Aac,, Acyey, ..., Ac,_sc,, Ac,b,

where the first term of the series has a as its first argument, the
last term b as its second argument, and the second argument of
every other term is identical with the first argument of its suc-
cessor. It is evident that from a series of such expressions Aab
results by repeated application of the mood Barbara. If, there-
fore, there is a chain leading from a to b, the expression is
asserted ; if there is no such chain, we can get rid of antecedents
of the type Aaf, identifying their second argument with a.. The
expression is reduced in this way to the sub-case (¢), which was
rejected.

Sixth case: All the antecedents are affirmative, and the conse-
quent is a particular affirmative proposition. Here also we have
to distinguish several sub-cases.

(a) The consequent is Jaa; the expression is asserted, for its
consequent is true.

(b) The consequent is Iab, and as antecedent occurs either
Aab, or Aba, or Iab, or Iba; it is obvious that in all these cases
the expression must be asserted.

In what follows it is supposed that none of the above four pre-
misses occurs as antecedent.

(c) The consequent is fab, and no antecedent is of the type
Afa, f different from a, or of the type Agb, g different from 4. The
expression is rejected.

Proof: We identify all variables different from a and b with
¢; then we get, besides true premisses of the type Acc or Jee, only
the following antecedents:

Aac, Abc, lac, Ibe.

Aac implies Jac, and Abc implies Ibc. The strongest combination
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of premisses is therefore Aac and Abc. From this combination,
however, Iab does not result, as the formula

CAacCAbclab

is equivalent to our axiom of rejection.

(d) The consequent is Jab, and among the antecedents there
are expressions of the type Afa (f different from a), but not of
the type Agb (g different from b4). If there is Abe or Ibe (leb), and
a chain leading from e to a:

(o) Abe; Aeey, Aese,, ..., Ae,a,

(B) 1be; Aee,, Aese,, ..., Ae,a,

we get from (a) Abe and Aea, and therefore Iab by the mood
Bramantip, and from (B) Ibe and Aea, and therefore Iab by the
mood Dimaris. In both cases the expression is asserted. If, how-
ever, the conditions («) and (B) are not fulfilled, we can get rid
of antecedents of the type Afa by identifying their first argu-
ments with ¢, and the expression must be rejected according to
sub-case (c).

(¢) The consequent is Jab, and among the antecedents there are
expressions of the type Agb (g different from 4), but not of the type
Afa (fdifferent from a). This case can be reduced to sub-case (),
as a and b are symmetrical with respect to the consequent Zab.

(f) The consequent is Jab, and among the antecedents there
are expressions of the type Afa (fdifferent from a), and expres-
sions of the type Agb (g different from b). We may suppose that
the conditions («) and (B) are not fulfilled for 4fa, or the analo-
gous conditions for Agb either; otherwise, as we already know,
the original expression would be asserted. Now, if there is Aca
and a chain leading from ¢ to b:

(y) Aca; Accy, Acyty, ..., Ac,b,
or Adb and a chain leading from 4 to a:

(8) Adb; Add,, Ad.d,, ..., Ad,a,
we get from (y) Aca and Acb, from (8) Adb and Ada, and there-
fore in both cases Jab by the mood Darapti. Further, if there is
an antecedent Icd (or Idec) and two chains, one leading from ¢
to a, and another from 4 to b:

Ied; Accy, Acic,, ..., Ac,a,

(E) 1 12 n

Iced; Add,, Ad\d,, ..., Ad,b,
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we get by the first chain the premiss 4ca, by the second chain
the premiss Adb, and both premisses yield together with Icd the
conclusion Zab on the basis of the polysyllogism:

ClcdCAcaCAdblab.

We prove the polysyllogism by deducing Jad from Icd and Aca by
the mood Disamis, and then Zab from /ad and Adb by the mood
Darii. In all these cases the original expression must be asserted.
If, however, none of the conditions (y), (3), or (e) is satisfied, we
can get rid of expressions of the type Afa and Agb by identifying
their first arguments with a or with b respectively, and the
original expression must be rejected according to sub-case (c).
.All possible cases are now exhausted, and it is proved that every
significant expression of the Aristotelian syllogistic is either
asserted or rejected on the basis of our axioms and rules of
inference.

§ 34. An arithmetical interpretation of the syllogistic

In 1679 Leibniz discovered an arithmetical interpretation of
the Aristotelian syllogistic which deserves our attention from the
historical as well as from the systematic point of view.! It is an
isomorphic interpretation. Leibniz did not know that the Aris-
totelian syllogistic could be axiomatized, and he knew nothing
about rejection and its rules. He only tested some laws of con-
version and some syllogistic moods in order to be sure that his
interpretation was not wrong. It seems, therefore, to be a mere
coincidence that his interpretation satisfies our asserted axioms
1-4, the axiom of rejection *5g, and the rule of Stupecki. In any
case it is strange that his philosophic intuitions, which guided
him in his research, yielded such a sound result.

" Leibniz’s arithmetical interpretation is based on a correlation
of variables of the syllogistic with ordered pairs of natural
numbers prime to each other. To the variable 4, for instance,
correspond two numbers, say a, and a,, prime to each other; to
the variable b correspond two other numbers, say 6, and b,,
also prime to each other. The premiss 4ab is true when and only
when g, is divisible by b;, and a, is divisible by b,. If one of these
conditions is not satisfied, Aab is false, and therefore NAab is

! See L. Couturat, Opuscules et fragments inédits de Leibniz, Paris (1go3), pp. 77 seq.
Cf. also J. Lukasiewicz, ‘O sylogistyce Arystotelesa’ (On Aristotle’s Syllogistic),
Comptes Rendus de I’ Acad. des Sciences de Cracovie, xliv, No. 6 (1939), p. 220.
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true. The premiss Jab is true when and only when g, is prime
to b,, and a, is prime to b,. If one of these conditions is not
satisfied, Jab is false, and therefore Nlab is true.

It can easily be seen that our asserted axioms 1—4 are verified.
Axiom 1, Aaa, is verified, for every number is divisible by itself.
Axiom 2, laa, is verified, for it is supposed that the two numbers
corresponding to a, a, and a,, are prime to each other. Axiom 3,
the mood Barbara CKAbcAabAac, is also verified, since the rela-
tion of divisibility is transitive. Axiom 4, the mood Datisi
CKAbclbalac, is verified too; for if b, is divisible by ¢, b, is
divisible by ¢,, b, is prime to a,, and b, is prime to a,, then a,
must be prime to ¢,, and a, must be prime to ¢,. For if ¢, and ¢,
had a common factor greater than 1, a; and b, would also have
the same common factor, since b, contains ¢,. But this is against
the supposition that g, is prime to b,. In the same way we prove
that a, must be prime to ¢,.

It is also easy to show that the axiom *59 CKAcbAablac must
be rejected. Take as examples the following numbers:

a, = 15, by = 3, ¢; = 12,

ay = 14, by = 7, ¢; = 35.
Acb is true, for ¢, is divisible by 4, and ¢, is divisible by b,; Aab
is also true, for g, is divisible by &, and a, is divisible by b,; but
the conclusion Jac is not true, for @, and ¢, are not prime to
each other.

The verification of Stupecki’s rule of rejection is more com-

plicated. I shall explain the matter with the help of an example.
Let us take as the rejected expressions,

(*1) CNAabCNIcdCIbdNAad and (*2) CNIbcCNIcdCIbdNAad.
From them we get, by the rule of Slupecki,
*CNoy, *CNBy — *CNaCNBy,
a third rejected expression,

(*3) CNAabCNIbcCNIcdCIbdNAad.

Expression (1) is disproved, for instance by the following set of
numbers:

(4) {41:4,b1=7scl=3:d1:4,
a; =9, by =5,¢, =8,d, = 3.
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It can easily be proved that according to this interpretation 4ab
is false (since 4 is not divisible by 7), and therefore Ndab is
true; Icd is false (since ¢, is not prime to 4;), and therefore Nlcd
is true; /bd is true (for both pairs of numbers, 4, and d,, b, and
d,, are prime to each other); but NAad is false, because Aad is
true (a, being divisible by d,, and a, by d,). All the antecedents
are true, the consequent is false; therefore expression (1) is
disproved. ’

The same set of numbers does not disprove expression (2),
because /b¢ is true (as both pairs of numbers, 4, and ¢,, and b,
and ¢,, are prime to each other), and therefore Nlb¢ is false.
But if the antecedent of an implication is false, the implication
is true. In order to disprove expression (2) we must take another
set of numbers, for instance the following:

(5) ‘al=9’b1=3’cl=8adl=3>
ay =12,b,=2,¢,=5,d, = 2.

According to this interpretation all the antecedents of expres-
sion (2) are true, and the consequent is false; the expression
is therefore disproved. But this second set of numbers does not
disprove expression (1), because Aab is true, and therefore
NAab is false, and a false antecedent yields a true implication.
Neither, therefore, of the sets (4) and (5) disproves expression
(3), which contains NAab as well as Nlbc.

There is a general method that enables us to disprove
expression (3) when expressions (1) and (2) are disproved.!
First, we write down all the prime numbers which make up
the sets of numbers disproving (1) and (2). We get for (1) the
series 2, 3, 5, and 7, and for (2) the series 2, 3, and 5. Secondly,
we replace the numbers of the second series by new primes,
all different from the primes of the first series, for instance:
2 by 11, 3 by 13, and 5 by 17. We get thus a new set of
numbers:

(6) {alz 13.13,%, = 13, ¢, = I1.11.11,d, = 13,
a, = 11, by = 11, ¢, = 17, dy = 11.

This set also disproves (2), since the relations of divisibility and
primeness remain the same as they were before the replacement.

! This method was discovered by Stupecki, op. cit., pp. 28-30.
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Thirdly, we multiply the numbers of corresponding variables
occurring in the sets (4) and (6). We thus get a new set:

(7) {a1:4.13.13,b1=7.13,cl=3.11.11.11,(11:4.13,
a,=9.11, by=175.11,¢c,=8.17, dy=9g.111"

This set disproves (3). For it is evident, first, that if to the pre-
miss Aef or Ief there corresponds the set of numbers

€1, ez»fpfz» & primc to e2:.f1 primc t0f2’

and there is another set of numbers
¢is e fisfi €l prime to ¢, f; prime to f;,

all of them composed of different primes from the numbers of
the first set, then the product of ¢, and ¢, i.e. ¢,.¢;, must be
prime to the product of ¢, and ¢, i.e. ¢,.¢5, and f;.f] prime to
fa-f5- Secondly, if Aef is verified by the first set, i.e. if ¢, is
divisible by f, and ¢, by f;, and the same is true of the second
set, so that ¢; is divisible by f], and ¢, by f;, then e,.¢; must be
divisible by f;.f], and ¢,.¢; by f,.f5. Again, if Ief is verified by
the first set, i.e. ¢, is prime to f,, and ¢, is prime to f;, and the
same is true of the second set, so that e, is prime to f;, and ¢,
is prime to f7, then ¢;.e; must be prime to f,.f, and ¢,.¢, prime
to f1.f1, since all the numbers of the second set are prime to
the numbers of the first set. On the contrary, if only one of the
conditions for divisibility or primeness is not satisfied, the re-
spective premisses must be false. It can be seen in our example
that Aad and Icd are verified by (7), for they are verified by (4)
and (6), and Zb¢ is disproved both by (4) and (6), and therefore
also by (7). Aab is disproved only by (4) (but this suffices to
disprove it by (7)), and k¢ is disproved only by (6) (but this
also suffices to disprove it by (7)). This procedure may be
applied to any case of the kind, and therefore Stupecki’s rule is
verified by the Leibnizian interpretation.

Leibniz once said that scientific and philosophic contro-
versies could always be settled by a calculus. It seems to me that
his famous ‘calculemus’ is connected with the above arith-
metical interpretation of the syllogistic rather than with his
ideas on mathematical logic.

I If there is a variable occurring in one of the disproved expressions but not in
the other, we simply take its corresponding numbers after eventual replacement.

6367 K
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§ 35. Conclusion

The results we have reached on the basis of an historical and
systematic investigation of the Aristotelian syllogistic are at
more than one point different from the usual presentation.
Aristotle’s logic was not only misrepresented by logicians who
came from philosophy, since they wrongly identified it with the
traditional syllogistic, but also by logicians who came from
mathematics. In text-books of mathematical logic one can read
again and again that the law of conversion of the A-premiss and
some syllogistical moods derived by this law, like Darapti or
Felapton, are wrong. This criticism is based on the mistaken
notion that the Aristotelian universal affirmative premiss ‘All a
is &> means the same as the quantified implication ‘For all ¢, if ¢
is a, then ¢ is &, where ¢ is a singular term, and that the particular
affirmative premiss ‘Some a is ' means the same as the quanti-
fied conjunction ‘For some ¢, ¢ is @ and ¢ is §’, where ¢ is again a
singular term. If one accepts such an interpretation, one can
say of course that the law CAablba is wrong, because a may be
an empty term, so that no ¢ is a, and the above quantified
implication becomes true (for its antecedent is false), and the
above quantified conjunction becomes false (for one of'its factors
is false). But all this is an imprecise misunderstanding of the
Aristotelian logic. There is no passage in the Analytics that would
Jjustify such an interpretation. Aristotle does not introduce into
his logic singular or empty terms or quantifiers. He applies his
logic only to universal terms, like ‘man’ or ‘animal’. And even
these terms belong only to the application of the system, not to
the system itself. In the system we have only expressions with
variable arguments, like Aab or Iab, and their negations, and
two of these expressions are primitive terms and cannot be
defined; they have only those properties that are stated by the
axioms. For the same reason such a controversy as whether
the Aristotelian syllogistic is a theory of classes or not is in my
opinion futile. The syllogistic of Aristotle is a theory neither of
classes nor of predicates; it exists apart from other deductive
systems, having its own axiomatic and its own problems.

I have tried to set forth this system free from foreign elements.
I do not introduce into it singular, empty, or negative terms, as
Aristotle has not introduced them. I do not introduce quanti-
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fiers either; I have only tried to explain some ideas of Aristotle
by the help of quantifiers. In formal proofs I employ theses of
the theory of deduction, since Aristotle uses them intuitively in
his proofs, and I employ rejection, because Aristotle himself
rejects some formulae and even states a rule of rejection.
Wherever in Aristotle’s exposition there was something not
completely correct, I have been anxious to correct the flaws of
his exposition, e.g. some unsatisfactory proofs by reductio per
impossibile, or the rejection through concrete terms. It has been
my intention to build up the original system of the Aristotelian
syllogistic on the lines laid down by the author himself, and in
accordance with the requirements of modern formal logic. The
crown of the system is the solution of the problem of decision,
and that was made possible by Stupecki’s rule of rejection, not
known to Aristotle or to any other logician.

The syllogistic of Aristotle is a system the exactness of which
surpasses even the exactness of a mathematical theory, and this
is its everlasting merit. But it is a narrow system and cannot be
applied to all kinds of reasoning, for instance to mathematical
arguments. Perhaps Aristotle himself felt that his system was
not fitted for every purpose, for he added later to the theory of
assertoric syllogisms a theory of modal syllogisms.! This was
of course an extension of logic, but probably not in the right
direction. The logic of the Stoics, the inventors of the ancient
form of the propositional calculus, was much more important
than all the syllogisms of Aristotle. We realize today that the
theory of deduction and the theory of quantifiers are the most
fundamental branches of logic.

Aristotle is not responsible for the fact that for many cen-
turies his syllogistic, or rather a corrupt form of his syllogistic,
was the sole logic known to philosophers. He is not responsible
either for the fact that the influence of his logic on philosophy
was, as it seems to me, disastrous. At the bottom of this disas-
trous influence there lies, in my opinion, the prejudice that
every proposition has a subject and a predicate, like the pre-
misses of Aristotelian logic. This prejudice, together with the
criterion of truth known as adaequatio rei et intellectus, is the basis

I T take it that the theory of modal syllogisms expounded by Aristotle in Chapters
8-22 of Book I of the Prior Analytics was inserted later, since Chapter 23 is obviously
an immediate continuation of Chapter 7.
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of some famous but fantastic philosophical speculations. Kant
divided all propositions (he calls them ‘judgements’) into analy-
tic and synthetic according to the relation of the predicate of a
proposition to its subject. His Critique of Pure Reason is chiefly an
attempt to explain the problem how true synthetic a prior:
propositions are possible. Now some Peripatetics, for instance
Alexander, were apparently already aware that there exists
a large class of propositions having no subject and no predi-
cate, such as implications, disjunctions, conjunctions, and so
on.' All these may be called functorial propositions, since in all
of them there occurs a propositional functor, like ‘if—then’, ‘or’,
‘and’. These functorial propositions are the main stock of every
scientific theory, and to them neither Kant’s distinction of ana-
lytic and synthetic judgements nor the usual criterion of truth
is applicable, for propositions without a subject or predicate
cannot be immediately compared with facts. Kant’s problem
loses its importance and must be replaced by a much more
important problem: How are true functorial propositions pos-
sible? It seems to me that here lies the starting-point for a new
philosophy as well as for a new logic.

I In connexion with Aristotle’s definition of the mpdracis Alexander writes,
11. 17: eloi 8¢ oProL ol 6poL mpordoews oY mdans dAAG Tijs amAijs 7€ xai kalovpuévys
KaTYyopIKis* 70 ydp Tt katd Twos €xew kai 76 xalfddov 7} év uéper 7 ddidpiaror iBia
TavTys: B yop vmoberiy) ovx €v 7B Tt kard Twos Aéyealar dAX’ év dxodovlig § pdxy To
GAnlés 7 76 Yeddos éxet.



CHAPTER VI

ARISTOTLE’S MODAL LOGIC OF
PROPOSITIONS

§ 36. Introduction

THERE are two reasons why Aristotle’s modal logic is so little
known. The first is due to the author himself: in contrast to the
assertoric syllogistic which is perfectly clear and nearly free of
errors, Aristotle’s modal syllogistic is almost incomprehensible
because of its many faults and inconsistencies. He devoted to this
subject some interesting chapters of De Interpretatione, but the
system of his modal syllogistic is expounded in Book I, chapters
3 and 822 of the Prior Analytics. Gohlke! suggested that these
chapters were probably later insertions, because chapter 23
was obviously an immediate continuation of chapter 7. If he is
right, the modal syllogistic was Aristotle’s last logical work and
should be regarded as a first version not finally elaborated by the
author. This would explain the faults of the system as well as the
corrections of Theophrastus and Eudemus, made perhaps in
the light of hints given by the master himself.

The second reason is that modern logicians have not as yet been
able to construct a universally acceptable system of modal logic
which would yield a solid basis for the interpretation and appre-
ciation of Aristotle’s work. I have tried to construct such a
system, different from those hitherto known, and built up upon
Aristotle’s ideas.? The present monograph on Aristotle’s modal
logic is written from the standpoint of this system.

A modal logic of terms presupposes a modal logic of proposi-
tions. This was not clearly seen by Aristotle whose modal syllo-
gistic is a logic of terms; nevertheless it is possible to speak of an
Aristotelian modal logic of propositions, as some of his theorems
are general enough to comprise all kinds of proposition, and some
others are expressly formulated by him with propositional vari-
ables. I shall begin with Aristotle’s modal logic of propositions,

! Paul Gohlke, Die Entstehung der Aristotelischen Logik, Berlin (1936), pp. 88-94.
?# Jan Lukasiewicz, ‘A System of Modal Logic’, The Journal of Computing Systems,
vol. i, St. Paul (1953), pp. 111-49. A summary of this paper appeared under the
same title in the Proceedings of the XIth International Congress of Philosophy, vol. xiv,
Brussels (1953), pp. 82-87. A short description of the system is given below in § 49.
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which is logically and philosophically far more important than
his modal syllogistic of terms.

§ 37. Modal functions and their interrelations

There are four modal terms used by Aristotle: avayxaiov—
‘necessary’, advvaror— ‘impossible’, Svvardv— possible’, and évde-
xopevor—° contingent’. This last term is ambiguous: in the De
Interpretatione it means the same as Svvarov, in the Prior Analytics it
has besides a more complicated meaning which I shall discuss
later.

According to Aristotle, only propositions are necessary, im-
possible, possible, or contingent. Instead of saying: “The pro-
position ‘‘p’’ is necessary’, where ““p”’ is the name of the proposition
p, I shall use the expression : ‘It is necessary that p’, where p is a
proposition. So, for instance, instead of saying: ‘“The proposition
““man is an animal’ is necessary’, I shall say : ‘It is necessary that
man should be an animal.’ I shall express the other modalities in
a similar way. Expressions like: ‘It is necessary that p’, denoted
here by Lp, or ‘It is possible that p’, denoted by Mp, I call ‘modal
functions’; L and M, which respectively correspond to the words
‘it is necessary that’ and ‘it is possible that’, are ‘modal functors’,
p is their ‘argument’. As modal functions are propositions, I say
that L and M are proposition-forming functors of one propositional
argument. Propositions beginning with L or their equivalents are
called ‘apodeictic’, those beginning with M or their equivalents
‘problematic’. Non-modal propositions are called ‘assertoric’.
This modern terminology and symbolism will help us to give.a
clear exposition of Aristotle’s propositional modal logic.

Two of the modal terms, ‘necessary’ and ‘possible’, and their
interrelations, are of fundamental importance. In the De Inter-
pretatione Aristotle mistakenly asserts that possibility implies non-
necessity, i.e. in our terminology :

(a) If 1t is possible that p, it is not necessary that p.* He later sees
that this cannot be right, because he accepts that necessity implies
possibility, i.e.:

(b) If it 15 necessary that p, it is possible that p, and from (b) and
(a) there would follow by the hypothetical syllogism that

. - . - .
I Deint. 13, 22215 7® pév yap dwward elvar 170 évBéxeabar elvar (dxolovlel), xal
A ) y -

TobTO éxelvw avriaTpéder, kat TO w1 advvarov elvar kai 76 un dvayxaiov €lvar.
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(¢) If it 1s necessary that p, it is not necessary that p, which is ab-
surd.! After a further examination of the problem Aristotle rightly
states that

(d) If it is possible that p, it is not necessary that not p,2 but does not
correct-his former mistake in the text of De Interpretatione. This
correction is given in the Prior Analytics where the relation of
possibility to necessity has the form of an equivalence:

(e) 1t is possible that p—if and only if—it is not necessary that
not p.3
I gather from this that the other relation, that of necessity to
possibility, which is stated in the De Interpretatione as an implica-
tion,* is also meant as an equivalence and should be given the
form:

(f) 1t 1s necessary that p—if and only if—it is not possible that not p.

If we denote the functor ‘if and only if’ by Q5 putting it
before its arguments, and ‘not’ by ¥, we can symbolically express
the relations (¢) and (f) thus:

1. QMpPNLNp, i.e. Mp—if and only if—NLNp,
2. QLPNMNp, i.e. Lp—if and only if—NMNp.

The above formulae are fundamental to any system of modal
logic.

§ 38. Basic modal logic

Two famous scholastic principles of modal logic: Ab oportere ad
esse valet consequentia, and Ab esse ad posse valet consequentia, were
known to Aristotle without being formulated by him explicitly.
The first principle runs in our symbolic notation (C is the sign of
the functor ‘if-then’):

3. CLpp, 1.e. If 1t 15 necessary that p, then p.
The second reads:

! Ibid. 2211 70 pév ydp dvayxaiov elvar duvatov elvar . . . 14 dAha uny 74 ye
Suvarov elvar 76 ok ddvvarov elvar dxolovlel, TovTw 8¢ T6 w1 dvaykaiov elvar doTe
avpBaiver 70 dvayxaiov elvar ui) dvayxaiov elvai, Smep dromov.

2 Ibid. 22%22 AeimeTar Tolvur 76 ovK dvaykaiov i elvar dxodovleiv T® SuvaTov elvar.

3 An. pr. 1. 13, 32325 76 ‘évdéxerar dmdpyew’ kal ‘obk advvaTov dmdpyew’ xal ‘odx
dvdykn i) Smdpyew’, frow TavTa éarar ) dxorovfodvra dAjAots.

* Deint. 13,22%20 76 8¢ un Suvatd ui) elvar xal p7) évdexouéve ui) elvar 76 dvayxaiov
elvar xal 76 d8vvarov un elvar (dxodovdet).

$ T usually denote equivalence by E, but as this letter has already another
meaning in the syllogistic, I have introduced (p. 108) the letter Q for equivalence.
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4. CopMp, i.e. If p, it is possible that p.

According to a passage of the Prior Analytics' Aristotle knows
that from the assertoric negative conclusion ‘Not p’, i.e. Np, there
results the problematic consequence ‘It is possible that not p’,
i.e. MNp. We have therefore CNpMNp. Alexander, commenting
on this passage, states as a general rule that existence implies
possibility, i.e. CpMp, but not conversely, i.e. CMpp should be

rejected.? If we denote rejected expressions by an asterisk, we get
the formula :3

*5. CMpp, i.e. If it is possible that p, then p—rejected.

The corresponding formulae for necessity are also stated by
Alexander who says that necessity implies existence, i.e. CLpp, but
not conversely, i.e. CpLp should be rejected.*+ We get thus another
rejected expression :

*6. CpLp, i.e. If p, it is necessary that p—rejected.

Formulae 1-6 are accepted by the traditional logic, and so far
as I know, by all the modern logicians. They are, however, in-
sufficient to characterize Mp and Lp as modal functions, because
all the above formulae are satisfied if we interpret Mp as always
true, 1.e. as ‘verum of p’, and Lp as always false, i.e. as ‘falsum
of p’. With this interpretation a system built up on the formulae
1—6 would cease to be a modal logic. We cannot therefore assert
Mp, i.e. accept that all problematic propositions are true, or
assert NLp, i.e. accept that all apodeictic propositions are false;
both expressions should be rejected, for any expression which
cannot be asserted should be rejected. We get thus two additional
rejected formulae:

*a. Mp, i.e. It is possible that p—rejected, and
*8. NLp, i.e. It is not necessary that p—rejected.

Both formulae may be called Aristotelian, as they are conse-
quences of the presumption admitted by Aristotle that there exist

I An. pr. i. 16, 36215 davepov 8’ o1t xai Toi évdéyealar u3) vmdpyew yiyverar avAdo-
yiouds, elmep kai rod un dmdpyew. — évdéyeabar means here the ‘possible’, not the
‘contingent’.

* Alexander 209. 2 76 puév yap vndpyov xai évdexdpevov dAnbés elmeiv, 16 8’ évdexd-
pevov ol mdvTws Kkal vmdpyov.

3 Asserted expressions are marked throughout the Chapters VI-VIII by arabic
numerals without asterisks.

4 Alexander 152. 32 76 yap dvaykaiov kal Smdpyov, odxéri 8¢ 76 dmdpyav dvayxaiov.
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asserted apodeictic propositions. For, if La is asserted, then
LNNa must be asserted too, and from the principle of Duns
Scotus CpCNpg we get by substitution and detachment the
asserted formulae CNLap and CNLNNap. As p is rejected, NLo
and NLNNa are rejected too, and consequently NLp and NLNp,
i.e. Mp, must be rejected.

I call a system ‘basic modal logic’ if and only if it satisfies
the formulae 1-8. I have shown that basic modal logic can be
axiomatized on the basis of the classical calculus of propositions.!
Of the two modal functors, M and L, one may be taken as the
primitive term, and the other can be defined. Taking M as the
primitive term and formula 2 as the definition of L, we get
the following independent set of axioms of the basic modal logic:

4. CpMp  *5. CMpp  *7. Mp 9. QMpMNNp,
where g is deductively equivalent to formula 1 on the ground of
the definition 2 and the calculus of propositions. Taking L as the
primitive term and formula 1 as the definition of M, we get a
corresponding set of axioms:

3. CLpp  *6. CpLp  *8. NLp  10. QLpLNNp,
where 10 is deductively equivalent to formula 2 on the ground
of the definition 1 and the calculus of propositions. The derived
formulae g and 10 are indispensable as axioms.

Basic modal logic is the foundation of any system of modal
logic and must always be included in any such system. Formulae
1-8 agree with Aristotle’s intuitions and are at the roots of our
concepts of necessity and possibility ; but they do not exhaust the
whole stock of accepted modal laws. For instance, we believe that
if a conjunction is possible, each of its factors should be possible,
i.e. in symbols:

11. CMEpgMp and  12. CMKpgMy,

and if a conjunction is necessary, each of its factors should be
necessary, 1.e. in symbols:
13. CLKpgLp and  14. CLKpglLq.
None of these formulae can be deduced from the laws 1-8. Basic
modal logic is an incomplete modal system and requires the
addition of some new axioms. Let us see how it was supplemented
by Aristotle himself.
! See pp. 11417 of my paper on modal logic.
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§ 39. Laws of extensionality

Aristotle’s most important and—as I see it—most successful
attempt to go beyond basic modal logic consisted in his accepting
certain principles which may be called ‘laws of extensionality for
modal functors’. These principles are to be found in Book I,
chapter 15 of the Prior Analytics, and are formulated in three
passages. We read at the beginning of the chapter:

‘First it has to be said that if (if « is, 8 must be), then (if a 1s
possible, 8 must be possible too).’!

A few lines further Aristotle says referring to his syllogisms:

‘If one should denote the premisses by «, and the conclusion
by B, it would not only result that if « is necessary, then B is
necessary, but also that if « is possible, then B is possible.’z

And at the end of the section he repeats:

‘It has been proved that if (if « is, B8 is), then (if « is possible,
then B is possible).’s

Let us first analyse these modal laws beginning with the second
passage, which refers to syllogisms.

All Aristotelian syllogisms are implications of the form Cof
where « is the conjunction of the two premisses and B the con-
clusion. Take as example the mood Barbara:

15. CKAbaAcbAca.

Nt S
« B
According to the second passage we get two modal theorems, in
the form of implications taking Cof as the antecedent and CLaLB
or CMaMB as the consequent, in symbols:

16. CCoBCLaLf and  17. CCoBCMaMB.

The letters a and B stand here for the premisses and the conclu-
sion of an Aristotelian syllogism. As in the final passage there is

P An. pr. 1. 15, 34>5 mpiTov 8¢ Aextéov 67i €l Tob A Svros dvdyxy 6 B elvai, xai
Svvaroi Svros Tod A duvarov €orar kai T6 B €€ dvdyxms.

2 Ibid. 34222 €f 75 Oely 76 pév A ras mpordoes, 76 8¢ B 16 quumépaopa, ocvpBaivor
“ 4 ’ k3 ’ -~ » « Al \ T ke - k4 M \ -~
av ob pdvov dvayxalov rod A Svros dua kai 76 B elvai avaykaiov, dAAa kai duvarod
Suvardr.

3 Ibid. 3429 8é3eicrar 57 €l Tod A Svros 76 B éoTi, xai Suvatod Svros Tod A €oTar
76 B duvardy.
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no reference to syllogisms, we may treat these theorems as special
cases of general principles which we get by replacing the Greek
letters by propositional variables:

18. CCpgCLpLg and  19. CCpgCMpMyq.

Both formulae may be called in a wider sense ‘laws of extension-
ality’, the first for L, the second for M. The words ‘in a wider
sense’ require an explanation.

The general law of extensionality, taken sensu stricto, is a
formula of the classical calculus of propositions enlarged by the
introduction of variable functors, and has the form:

20. CQ pqCopdyq.

This means roughly speaking: If p is equivalent to ¢, then if § of
b, 8 of ¢, where & is any proposition-forming functor of one pro-
positional argument, e.g. N. Accordingly, the strict laws of
extensionality for L and M will have the form:

21. CQpgCIpLy and  22. CQpaCMpMy.

These two formulae have stronger antecedents than formulae 18
and 19, and are easily deducible from them, 21 from 18, and 22
from 19, by means of the thesis CQ pgCpg and the principle of the
hypothetical syllogism. It can be proved, however, on the ground
of the calculus of propositions and the basic modal logic that con-
versely 18 is deducible from 21, and 19 from 22. I give here the
full deduction of the L-formula:

The premisses:

23. CCQ pgrCpCCpgr
24. CCpgCCqrCpr
25. CCpCqCprCqCpr
3. CLpp.

The deduction:
23. r/[CLpLgx C21-26
26. CpCCpgCLpLq
24. pILp, q/p, r|/CCpgCLpLg x C3-C26-27
27. CLpCCpqCLpLq
25. pILp, q/Cpq, r/Lgx C27-18
18. CCpgCLpLyq.
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In a similar way 19 is deducible from 22 by means of the pre-
misses CCQ pgrCNgCCpqr, CCpgCCqrCpr, CCNpCqCrpCqCrp, and
the transposition CNMpNp of the modal thesis CpMp.

We see from the above that, given the calculus of propositions
and basic modal logic, formula 18 is deductively equivalent to
the strict law of extensionality 21, and formula 19 to the strict law
of extensionality 22. We are right, therefore, to call those formulae
‘laws of extensionality in a wider sense’. Logically, of course, it
makes no difference whether we complete the L-system of basic
modal logic by the addition of CCpgCLpLg or by the addition of
CQ pqCLpLg; the same holds for the alternative additions to the
M-system of CCpgCMpMgq or CQ pgCMpMgq. Intuitively, however,
the difference is great. Formulae 18 and 19 are not so evident as
formulae 21 and 22. If p implies ¢ but is not equivalent to it, it is
not always true that if § of p, 8 of ¢; e.g. CNpNg does not follow
from Cpq. But if p is equivalent to ¢, then always if § of p, 8 of g,
i.e. if p is true, ¢ is true, and if p is false, ¢ is false ; similarly if p is
necessary, ¢ is necessary, and if p is possible, ¢ is possible. This
seems to be perfectly evident, unless modal functions are regarded
as intensional functions, i.e. as functions whose truth-values do
not depend solely on the truth-values of their arguments. But
what in this case the necessary and the possible would mean, is
for me a mystery as yet.

§ 40. Anistotle’s proof of the M-law of extensionality

In the last passage quoted above Aristotle says that he has
proved the law of extensionality for possibility. He argues in
substance thus: If « is possible and B impossible, then when o«
came to be, B would not come to be, and therefore « would be
without 8, which is against the premiss that if « is, 8 is.' It is
difficult to recast this argument into a logical formula, as the
term ‘to come to be’ has an ontological rather than a logical
meaning. The comment, however, given on this argument by
Alexander deserves a careful examination.

Aristotle defines the contingent as that which is not necessary
and the supposed existence of which implies nothing impossible.2

I An. pr. i. 15, 3428 €l o0y 76 pév Suvardy, 6Te Suvardv elvar, yévoir® dv, 16 8’ ddvvarov,
v 9 ,8 s » " rd v 8’ b ] A} A 8 A 1 Al B '8 ? 3 8 ? ¥y N A
37’ advvarov, odx dv yévoiro, dua &’ €l 70 vwarov xai 16 B advvatov, évdéxoir’ dv 16
A yevéaBar dvev Tob B, el 8¢ yevéabar, xai elvar. 2 See below, p. 154, n. 3.
Y > Y ’ ’ ’
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Alexander assimilates this Aristotelian definition of contingency to
that of possibility by omitting the words ‘which is not necessary’.
He says ‘that a B which is impossible cannot follow from an «
which is possible may also be proved from the definition of
possibility : that is possible, the supposed existence of which im-
plies nothing impossible’.” The words ‘impossible’ and ‘nothing’
here require a cautious interpretation. We cannot interpret ‘im-
possible’ as ‘not possible’, because the definition would be circu-
lar ; we must either take ‘impossible’ as a primitive term or, taking
‘necessary’ as primitive, define the expression ‘impossible that
P’ by ‘necessary that not p’. I prefer the second way and shall
discuss the new definition on the ground of the L-basic modal
logic. The word ‘nothing’ should be rendered by a universal
quantifier, as otherwise the definition would not be correct. We
get thus the equivalence:

28. QMpIlqCCpgNLNg.

That means in words: ‘It is possible that p—if and only if—for
all g, if (if p, then ¢), it is not necessary that not ¢.” This equiva-
lence has to be added to the L-basic modal logic as the definition
of Mp instead of the equivalence 1 which must now be proved as
a theorem.

The equivalence 28 consists of two implications:

29. CMpIIqCCpgNLNg and  30. CIIqCCpgNLNgMp.

From 29 we get by the theorem CIIgCCpgNLNgCCpgNLNg and
the hypothetical syllogism the consequence:

31. CMpCCpgNLNy,

and from 31 there easily results by the substitution ¢/p, Cpp, com-
mutation and detachment the implication CMpNLNp. The con-
verse implication CNLNpMp which, when combined with the
original implication, would give the equivalence 1, cannot be
proved otherwise than by means of the law of extensionality for
L: CCpgqCLpLq. As this proof is rather complicated, I shall give
it in full.

! Alexander 177. 11 Sewxrvoiro 8’ dv, 671t ui) oldv re dwvard Gvre T A advvarov
> uwn OV A A
- b 3 -~ -~ ~ ~
émeabfai 76 B, xal €x Tob opiopot Tob duvatod . . . duvaTdy éorw, od Vmorelévros elvar
’ PLOLL )
0vdév advvarov oupfaive. dua TodTo.



142 ARISTOTLE’S MODAL LOGIC OF PROPOSITIONS 3§40

The premisses :

18. CCpqCLpLq

24. CCpgCCqrCpr

30. CIIqCCpgNLNgMp
32. CCpqCNgNp

33. CCpCqrCqCpr.

The deduction:

18. p/Ng, 9/ Npx 34
34. CCNgNpCLNgLNp

24. p/Cpg, 9/CNgNp, r/CLNGLNp x C32-C34~35
35. CCpqCLNgLNp

32. p/LNg, q/LNpx 36
36. CCLNgQLNpCNLNpNLNg

24. p|Cpq, ¢/ CLNGLNp, r|[CNLNpNLNg x C35-C36-37
37. CCpgqCNLNpNLNg

33. p/Cpg, 9/ NLNp, r/NLNgx C37-38
38. CNLNpCCpgNLNg

38. Il2¢ < 39
39. CNLNpIIqCCpgNLNg

24. pINLNp, q/11gCCoqNLNg, r| Mp x C39-C30-40
40. CNLNpMp.

We can now prove the law of extensionality for M, which was
the purpose of Alexander’s argument. This law easily results from
the equivalence 1 and thesis 37. We see besides that the proof by
means of the definition with quantifiers is unnecessarily com-
plicated. It suffices to retain definition 1 and to add to the L-
system the L-law of extensionality in order to get the M-law of
extensionality. In the same way we may get the L-law of exten-
sionality, if we add the M-law of extensionality to the M-system
and definition 2. The L-system is deductively equivalent to the
M-system with the laws of extensionality as well as without them.

It is, of course, highly improbable that an ancient logician
could have invented such an exact proof as that given above. But
the fact that the proof is correct throws an interesting light on
Aristotle’s ideas of possibility. I suppose that he intuitively saw
what may be shortly expressed thus: what is possible today, say
a sea-fight, may become existent or actual tomorrow ; but what is
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impossible, can never become actual. This idea seems to lie at the
bottom of Aristotle’s proof and of Alexander’s.

§ 41. Necessary connexions of propositions

The L-law of extensionality was formulated by Aristotle only
once, together with the M-law, in the passage where he refers to
syllogisms.!

According to Aristotle there exists a necessary connexion be-
tween the premisses « of a valid syllogism and its conclusion 8.
It would seem therefore that the laws of extensionality formulated
above in the form:

16. CCoBCLaLB and 17. CCaBCMaMB,

should be expressed with necessary antecedents:
41. CLCaBCLoLB and  42. CLCoBCMaMSB,

and the corresponding general laws of extensionality should run:
43. CLCpgCLpLg  and  44. CLCpqCMpMy.

This is corroborated for the M-law by the first passage quoted
above where we read : ‘If (if a is, 8 must be), then (if « is possible,
B is possible).’

Formulae 43 and 44 are weaker than the corresponding formu-
lae with assertoric antecedents, 18 and 19, and can be got from
them by the axiom CLpp and the hypothetical syllogism 24. It is
not, however, possible to derive the stronger formulae conversely
from the weaker. The problem is whether we should reject the
stronger formulae 18 and 19, and replace them by the weaker
formulae 43 and 44. To solve this problem we have to inquire
into the Aristotelian concept of necessity.

Aristotle accepts that some necessary, i.e. apodeictic, pro-
positions are true and should be asserted. Two kinds of asserted
apodeictic proposition can be found in the Analytics: to the one
kind there belong necessary connexions of propositions, to the
other necessary connexions of terms. As example of the first kind
any valid syllogism may be taken, for instance the mood Barbara:

(g) If every b is an a, and every c is a b, then it is necessary that every
¢ should be an a.

Here the ‘necessary’ does not mean that the conclusion is an
I See p. 138, n. 2.
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apodeictic proposition, but denotes a necessary connexion be-
tween the premisses of the syllogism and its assertoric conclusion.
This is the so called ‘syllogistic necessity’. Aristotle sees very well
that there i1s a difference between syllogistic necessity and an
apodeictic conclusion when he says, discussing a syllogism with an
assertoric conclusion, that this conclusion is not ‘simply’ (anAds)
necessary, i.e. necessary in itself, but is necessary ‘on condition’,
i.e. with respect to its premisses (rovrwv évrwv).! There are
passages where he puts two marks of necessity into the conclusion
saying, for instance, that from the premisses: ‘It is necessary that
every b should be an a, and some ¢ is a #°, there follows the con-
clusion: ‘It is necessary that some ¢ should be necessarily an 4.2
The first ‘necessary’ refers to the syllogistic connexion, the second
denotes that the conclusion is an apodeictic proposition.

By the way, a curious mistake of Aristotle should be noted : he
says that nothing follows necessarily from a single premiss, but only
from at least two, as in the syllogism.3 In the Posterior Analytics he
asserts that this has been proved,* but not even an attempt of
proofis given anywhere. On the contrary, Aristotle himself states
that ‘If some & is an g, it is necessary that some a should be a 4’,
drawing thus a necessary conclusion from only one premiss.s

I have shown that syllogistic necessity can be reduced to uni-
versal quantifiers.® When we say that in a valid syllogism the
conclusion necessarily follows from the premisses, we want to
state that the syllogism is valid for any matter, i.e. for all values of
the variables occurring in it. This explanation, as I have found
afterwards, is corroborated by Alexander who asserts that: ‘syllo-
gistic combinations are those from which something necessarily
follows, and such are those in which for all matter the same comes
to be’.7 Syllogistic necessity reduced to universal quantifiers can

! An. pr. i. 10, 30P32 76 cvumépacpa odk éoTw dvaykaiov dmAds, dAAG TovTwy
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be eliminated from syllogistic laws, as will appear from the fol-
lowing consideration.

The syllogism (g) correctly translated into symbols would have
the form:

(k) LCKAbaAcbAca,

which means in words:

(¢) It is necessary that (if every b is an a, and every ¢ is a b, then every
¢ should be an a).

The sign of necessity in front of the syllogism shows that not
the conclusion, but the connexion between the premisses and
the conclusion is necessary. Aristotle would have asserted (/).
Formula

(j) CKAbaAchLAca,

which literally corresponds to the verbal expression (g), is wrong.
Aristotle would have rejected it, as he rejects a formula with
stronger premisses, Viz.

(k) CKAbaLAchbLAca,

i.e. ‘If every b is an a and it is necessary that every ¢ should be a b, it is
necessary that every ¢ should be an a.’!

By the reduction of necessity to universal quantifiers formula
(h) can be transformed into the expression:

(0) IallbIIcCKAbaAcbAca,

i.e. ‘Forall g, for all 4, for all ¢ (ifevery bis an a and every cisa b,
then every ¢ is an a).” This last expression is equivalent to the
mood Barbara without quantifiers:

(m) CKAbaAcbAca,

since a universal quantifier may be omitted when it stands at the
head of an asserted formula.

Formulae () and (m) are not equivalent. It is obvious that (m)
can be deduced from (%) by the principle CLpp, but the converse
deduction is not possible without the reduction of necessity to
universal quantifiers. This, however, cannot be done at all, if the
above formulae are applied to concrete terms. Put, for instance,

I An. pr. i. 9, 30%23 €l 8¢ 16 pév AB pn éorw dvayxaiov, 76 8¢ BI' avayxaiov, ovx
éorar 70 oupmépaopa dvaykaiov.
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in (k) ‘bird’ for 4, ‘crow’ for a, and ‘animal’ for ¢; we get the
apodeictic proposition :
(n) 1t is necessary that (if every bird is a crow and every amimal is
a bird, then every animal should be a crow).

From (n) results the syllogism (o) :

(o) If every bird is a crow and every animal is a bird, then every
amimal is a crow,

but from (0) we cannot get (n) by the transformation of necessity
into quantifiers, as (n) does not contain variables which could be
quantified.

And here we meet the first difficulty. It is easy to understand
the meaning of necessity when the functor L is attached to the
front of an asserted proposition containing free variables. In this
case we have a general law, and we may say: this law we regard
as necessary, because it is true of all objects of a certain kind, and
does not allow of exception. But how should we interpret neces-
sity, when we have a necessary proposition without free variables,
and in particular, when this proposition is an implication con-
sisting of false antecedents and of a false consequent, as in our
example (n) ? I see only one reasonable answer: we could say that
whoever accepts the premisses of this syllogism is necessarily com-
pelled to accept its conclusion. But this would be a kind of psycho-
logical necessity which is quite alien from logic. Besides it is
extremely doubtful that anybody would accept evidently false
propositions as true.

I know no better remedy for removing this difficulty than to
drop everywhere the L-functor standing in front of an asserted
implication. This procedure was already adopted by Aristotle
who sometimes omits the sign of necessity in valid syllogistical
moods.!

§ 42. ‘Material’ or ‘strict’ implication?

According to Philo of Megara the implication ‘If p, then ¢,
i.e. Cpgq, is true if and only if it does not begin with a true ante-
cedent and end with a false consequent.z This is the so-called
‘material’ implication now universally accepted in the classical
calculus of propositions. ‘Strict’ implication: ‘It is necessary that

I See p. 10, n. 5. z See p. 83, n. 1.
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if p, then ¢’, i.e. LCpq, is a necessary material implication and was
introduced into symbolic logic by C. I. Lewis. By means of this
terminology the problem we are discussing may be stated thus:
Should we interpret the antecedent of the Aristotelian laws of
extensionality as material, or as strict implication ? In other words,
should we accept the stronger formulae 18 and 19 (I call this the
‘strong interpretation’), or should we reject them accepting the
weaker formulae 43 and 44 (weak interpretation)?

Aristotle was certainly not aware of the difference between
these two interpretations and of their importance for modal logic.
He could not know Philo’s definition of the material implication.
But his commentator Alexander was very well acquainted with
the logic of the Stoic—-Megaric school and with the heated con-
troversies about the meaning of the implication amidst the fol-
lowers of this school. Let us then see his comments on our
problem.

Commenting on the Aristotelian passage ‘If (if « is, 8 must
be), then (if « is possible, B must be possible)’ Alexander em-
phasizes the necessary character of the premiss ‘If « is, 8 must
be’. It seems therefore that he would accept the weaker inter-
pretation CLCaBCMoMB and the weaker M-law of extensionality
CLCpgCMpMgq. But what he means by a necessary implication is
different from strict implication in the sense of Lewis. He says
that in a necessary implication the consequent should always,
i.e. at any time, follow from the antecedent, so that the pro-
position ‘If Alexander is, he is so and so many years old’ is not a
true implication, even if Alexander were in fact so many years
old at the time when this proposition is uttered.! We may say that
this proposition is not exactly expressed, and requires the addition
of a temporal qualification in order to be always true. A true
material implication must be, of course, always true, and if it
contains variables, must be true for all values of the variables.
Alexander’s comment is not incompatible with the strong inter-
pretation ; it does not throw light on our problem.

Some more light is thrown on it, if we replace in Alexander’s
proof of the M-law of extensionality expounded in § 40 the
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material implication Cpg by the strict implication LGpg. Trans-
forming thus the formula

31. CMpCCpgNLNy,
we get:

45. CMpCLCpgNLNg.

From 31 we can easily derive CMpNLNp by the substitution ¢/p
getting CMpCCppNLNp, from which our proposition results by
commutation and detachment, for Cpp is an asserted implication.
The same procedure, however, cannot be applied to 45. We get
CMpCLCpp NLNp, but if we want to detach CMpNLNp we must
assert the apodeictic implication LCpp. And here we encounter
the same difficulty, as described in the foregoing section. What is
the meaning of LCpp? This expression may be interpreted as a
general law concerning all propositions, if we transform it into
ITpCpp ; but such a transformation becomes impossible, if we
apply LCpp to concrete terms, e.g. to the proposition ‘Twice two
is five’. The assertoric implication ‘If twice two is five, then twice
two is five’ is comprehensible and true being a consequence of the
law of identity Cpp; but what is the meaning of the apodeictic
implication ‘It is necessary that if twice two is five, then twice
two should be five’? This queer expression is not a general law
concerning all numbers; it may be at most a consequence of
an apodeictic law, but it is not true that a consequence of an
apodeictic proposition must be apodeictic too. Cpp is a conse-
quence of LOpp according to CLCppCpp, a substitution of CLpp,
but is not apodeictic.

It follows from the above that it is certainly simpler to interpret
Alexander’s proof by taking the word ovuBaive: of his text in the
sense of material rather than strict implication. Nevertheless our
problem is not yet definitively solved. Let us therefore turn to the
other kind of asserted apodeictic proposition accepted by Aris-
totle, that is to necessary connexions of terms.

§ 43. Analytic propositions

Aristotle asserts the proposition: ‘It is necessary that man
should be an animal.’! He states here a necessary connexion
between the subject ‘man’ and the predicate ‘animal’, i.e. a

' An. pr. 1. g, 3030 {@ov uév yap o dvlpwmos €¢ dvdyxns éori.
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necessary connexion between terms. He apparently regards it as
obvious that the proposition ‘Man is an animal’, or better ‘Every
man is an animal’, must be an apodeictic one, because he defines
‘man’ as an ‘animal’, so that the predicate ‘animal’ is contained
in the subject ‘man’. Propositions in which the predicate is con-
tained in the subject are called ‘analytic’, and we shall probably
be right in supposing that Aristotle would have regarded all
analytic propositions based on definitions as apodeictic, since he
says in the Posterior Analytics that essential predicates belong to
things necessarily,! and essential predicates result from definitions.

The most conspicuous examples of analytic propositions are
those in which the subject is identical with the predicate. If it is
necessary that every man should be an animal, it is, ‘a fortiors,
necessary that every man should be a man. The law of identity
‘Every a is an &’ is an analytic proposition, and consequently an
apodeictic one. We get thus the formula:

(p) LAaa, i.e. It is necessary that every a should be an a.

Aristotle does not state the law of identity Aaa as a principle of
his assertoric syllogistic; there is only one passage, found by Ivo
Thomas, where in passing he uses this law in a demonstration.2
We cannot expect, therefore, that he has known the modal thesis
LAaa.

The Aristotelian law of identity Aaa, where 4 means ‘every-is’
and q is a variable universal term, is different from the principle
of identity Fxx, where 7 means ‘is identical with’ and x is a
variable individual term. The latter principle belongs to the
theory of identity which can be established on the following
axioms:

(¢) Fxx, 1.e. x is identical with x,

(r) CFxyCoxey, i.e. If x is identical with y, then if x satisfies ¢,
y satisfies $,
where ¢ is a variable proposition-forming functor of one indi-

vidual argument. Now, if all analytic propositions are necessary,
so also is (¢), and we get the apodeictic principle:

(5) Ljxx, i.e. It is necessary that x should be identical with x.
I An. post. i. 6, 7476 rd 8¢ xaB’adra vmdpyovra dvayxaia Tois mpdypaow.

? Ivo Thomas, O.P., ‘Farrago Logica’, Dominican Studies, vol. iv (1951), p. 71.
The passage reads (An. pr. ii. 22, 68219) xatnyopeirai 8¢ 76 B kal adré adrod.
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It has been observed by W. V. Quine that the principle (s), if

asserted, leads to awkward consequences.! For if L Jxx is asserted,
we can derive (¢) from (r) by the substitution ¢/L 7x’—L Jx works
here like a proposition-forming functor of one argument:

() CFoCLIxxLF,
and by commutation

(W) CLFxxCTwLTx,
from which there follows the proposition:

(v) CIvLix.

That means, any two individuals are necessarily identical, if they
are identical at all.

The relation of equality is usually treated by mathematicians
as identity and is based on the same axioms (¢) and (r). We may
therefore interpret 7 as equality, x and » as individual numbers
and say that equality holds necessarily if it holds at all.

Formula (v) is obviously false. Quine gives an example to show
its falsity. Let x denote the number of planets, and y the number
9. It is a factual truth that the number of (major) planets is equal
to g, but it is not necessary that it should be equal to g. Quine
tries to meet this difficulty by raising objections to the substitution
of such singular terms for the variables. In my opinion, however,
his objections are without foundation.

There is another awkward consequence of the formula () not
mentioned by Quine. From (v) we get by the definition of L and
the law of transposition the consequence:

(w) CMN FxyNjxy.

That means: ‘If it is possible that x is not equal to y, then x is
(actually) not equal to ».” The falsity of this consequence may be
seen in the following example: Let us suppose that a number x
has been thrown with a die. It is possible that the number y next
thrown with the die will be different from x. But if it is possible
that x will be different from y, i.e. not equal to y, then according
to (w) x will actually be different from y. This consequence is
obviously wrong, as it is possible to throw the same number twice.

I W. V. Quine, ‘Three Grades of Modal Involvement’, Proceedings of the XIth

International Congress of Philosophy, vol. xiv, Brussels (1953). For the following
argumentation I am alone responsible.
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There is, in my opinion, only one way to solve the above diffi-
culties : we must not allow that formula Z ¥xx should be asserted,
i.e. that the principle of identity 7xx is necessary. As Jxx is a
typical analytic proposition, and as there is no reason to treat this
principle in a different way from other analytic propositions, we
are compelled to assume that no analytic proposition is necessary.

Before dealing with this important topic let us bring to an end
our investigation of Aristotle’s concepts of modalities.

§ 44. An Aristotelian paradox

There is a principle of necessity set forth by Aristotle which is
highly controversial. He says in the De Interpretatione that ‘any-
thing existent is necessary when it exists, and anything non-
existent is impossible when it does not exist’. This does not mean,
he adds, that whatever exists is necessary, and whatever does not
exist is impossible: for it is not the same to say that anything
existent is necessary when it does exist, and to say that it is simply
necessary.' It should be noted that the temporal ‘when’ (érav) is
used in this passage instead of the conditional ‘if’. A similar thesis
is set forth by Theophrastus. He says, when defining the kinds of
things that are necessary, that the third kind (we do not know
what the first two are) is ‘the existent, for when it exists, then it is
impossible that it should not exist’.2 Here again we find the
temporal particles ‘when’ (7€) and ‘then’ (7ére). No doubt an
analogous principle occurs in medieval logic and scholars could
find it there. There is a formulation quoted by Leibniz in his
Theodicee running thus : Unumquodque, quando est, oportet esse.> Note
again in this sentence the temporal quando.

What does this principle mean? It is, in my opinion, ambigu-
ous. Its first meaning seems to be akin to syllogistic necessity,
which is a necessary connexion not of terms, but of propositions.
Alexander commenting on the Aristotelian distinction between
simple and conditional necessity,* says that Aristotle was himself

! De int. . 19723 16 pév odv elvar 76 6v, Stav 3}, kai 76 w7 Ov p1) elvar, Stav uy 1),
dvdyxy® ob punv oUre 76 dv dmav dvdyxy elvat obre 10 u7) Ov i) elvar. OV yép Tadrdv
éore 10 Ov dmav elvar € dvdyxns Ste €oTi, Kol T dATAGS elvar €€ avdykys.

2 Alexander 156. 29 ¢ yoiv Oeddpacros év 7d mpdtw TéV Ilporépwy dvaluvriniw
Aéywv mept Tdv Umé Tob dvaykalov enpawopévwy obtws ypddes ‘rTpitov To Umdpxov:
OTe yap Umdpyxet, ToTE oU) 0ldv Te p1) Umdpyew.’

3 Philosophische Schriften, ed. Gerhardt, vol. vi, p. 131.

4 See p. 144, n. 1.
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aware of this distinction, which was explicitly made by his
friends (that is, by Theophrastus and Eudemus), and quotes as
a further argument the passage of the De Interpretatione above
referred to. He is aware that this passage is formulated by
Aristotle in connexion with singular propositions about future
events, and calls the necessity involved ‘hypothetical necessity’
(dvaykaiov é€ vmobéoews).!

This hypothetical necessity does not differ from conditional
necessity, except that it is applied not to syllogisms, but to singular
propositions about events. Such propositions always contain a
temporal qualification. But if we include this qualification in the
content of the proposition, we can replace the temporal particle
by the conditional. So, for instance, instead of saying indefinitely :
‘It is necessary that a sea-fight should be, when it is’, we may say:
‘It is necessary that a sea-fight should be tomorrow, if it will be
tomorrow.” Keeping in mind that hypothetical necessity is a
necessary connexion of propositions, we may interpret this latter
implication as equivalent to the proposition: ‘It is necessary that
if a sea-fight will be tomorrow, it should be tomorrow’ which is
a substitution of the formula LCpp. .

The principle of necessity we are discussing would lead to no
controversy, if it had only the meaning explained above. But it
may have still another meaning: we may interpret the necessity
involved in it as a necessary connexion not of propositions, but of
terms. This other meaning seems to be what Aristotle himself has
in mind, when he expounds the determinist argument that all
future events are necessary. In this connexion a general statement
given by him deserves our attention. We read in the De Inter-
pretatione: ‘If it is true to say that something is white or not white,
it is necessary that it should be white or not white.’? It seems that
here a necessary connexion is stated between a ‘thing’ as subject
and ‘white’ as predicate. Using a propositional variable instead
of the sentence ‘Something is white’ we get the formula: ‘If it is

t Alexander 141. 1 dua 8¢ xal v T0ob dvaykalov Sialpeow S1i kal adrds oldev, v
[ - A -~ z 8 7 A - 0 4 'l 3 ’ ’ » » a«

ol éraipot adrob memoinvrar, 8edfAwne Sid Tis mpoabixys (scil. ‘rovrwy’ dvrwy’), Wy

4 » M b3 -~ v e ! ’ » * M ~ ’ A] ’ ’
$0doas 737 xal év v lept épunpelas 3édeixev, év ols mepi Tijs els Tov pélovra xpdvov
Aeyouévns dvripdoews mepi TGV xal’® éxaaTov elpnuévwy Aéyer ‘1o pév odv elvai 7o bv,
Srav §, kal 6 uy Sv un elvar, Srav wy §, dvdyky’. 10 yap é dmobésews avayxaiov
TOL0DTOV éaTi.

2 De int. 9, 18339 el yap dAylés elmeiv STt Aevkdv 7§ 6Ti o Aevwdy éaTw, dvdyky
elvar Aevkdv 7 oU Aevr ‘v.
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true that g, it is necessary that p’. I do not know whether Aristotle
would have accepted this formula or not, but in any case it is
interesting to draw some consequences from it.

In two-valued logic any proposition is either true or false.
Hence the expression ‘It is true that p’ is equivalent to ‘p’. Apply-
ing this equivalence to our case we see that the formula ‘If it is
true that p, it is necessary that p’ would be equivalent to this
simpler expression: ‘If p, it is necessary that p’ which reads in
symbols: CpLp. We know, however, that this formula has been
rejected by Alexander, and certainly by Aristotle himself. It must
be rejected, for propositional modal logic would collapse, if it
were asserted. Any assertoric proposition p would be equivalent
to its apodeictic correspondent Lp, as both formulae, CLpp and
CpLp, would be valid, and it could be proved that any assertoric
proposition p was equivalent also to its problematic correspondent
Mp. Under these conditions it would be useless to construct a
propositional modal logic.

But it is possible to express in symbolic form the idea implied
by the formula ‘If it is true that p, it is necessary that p’: we need
only replace the words ‘It is true that p’ by the expression ‘« is
asserted’. These two expressions do not mean the same. We can
put forward for consideration not only true, but also false pro-
positions without being in error. But it would be an error to assert
a proposition which was not true. It is therefore not sufficient to
say ‘p is true’, if we want to impart the idea that p is really true;
p may be false, and ‘p is true’ is false with it. We must say ‘o is
asserted’ changing ‘p’ into ‘o’ as ‘¢’ being a substitution-variable
cannot be asserted, whereas ‘@’ may be interpreted as a true
proposition. We can now state, not indeed a theorem, but a rule:

(x) o— La.

In words: ‘a, therefore it is necessary that «’. The arrow means
‘therefore’, and the formula (x) is a rule of inference valid only
when « is asserted. Such a rule restricted to ‘tautologous’ pro-
positions is accepted by some modern logicians.?

From rule (x) and the asserted principle of identity 7Fxx there
follows the asserted apodeictic formula L 7xx which leads, as we
have seen, to awkward consequences. The rule seems to be doubt-
ful, even if restricted to logical theorems or to analytic proposi-

! See, e.g. G. H. von Wright, An Essay in Modal Logic, Amsterdam (1951),
pp- 14-15.
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tions. Without this restriction rule (x) would yield, as appears
from the example given by Aristotle, apodeictic assertions of
merely factual truths, a result contrary to intuition. For this
reason this Aristotelian principle fully deserves the name of a
paradox.

§ 45. Contingency in Aristotle

I have already mentioned that the Armstotelian term évdeyd-
pevov is ambiguous. In the De Interpretatione, and sometimes in the
Prior Analytics, it means the same as dvvardy, but sometimes it has
another more complicated meaning which following Sir David
Ross I shall translate by ‘contingent’.! The merit of having
pointed out this ambiguity 1s due to A. Becker.2

Aristotle’s definition of contingency runs thus: ‘By ‘‘con-
tingent” I mean that which is not necessary and the supposed
existence of which implies nothing impossible.’”> We can see at
once that Alexander’s definition of possibility results from Aris-
totle’s definition of contingency by omission of the words ‘which
is not necessary’. If we add, therefore, the symbols of these words
to our formula 28 and denote the new functor by ‘7T, we get the
following definition:

46. QTpKNLHIIgCCHNLNG.

This definition can be abbreviated, as IIgCCpg/NLNg is equivalent
to NLNp. The implication:

39. CNLNpITgCCpgNLNg

has been already proved; the converse implication
47. CITgCCpgNLNgNLNp

easily results from the thesis CIIgCCpgNLNgCCpgNLNg by the
substitution ¢/p, commutation, Cpp, and detachment. By putting
in 46 the simpler expression NLNp for IIgCCpgNLNg we get :

48. QTpKNLpNLNp.

This means in words: ‘It is contingent that p—if and only if—it

! W. D. Ross, loc. cit., p. 2g6.

* See A. Becker, Die Aristotelische Theorie der Moglichkeitsschliisse, Berlin (1933).
I agree with Sir David Ross (loc. cit., Preface) that Becker’s book is ‘very acute’,
but I do not agree with Becker’s conclusions.

3 An. pr.i. 13, 32218 Aéyw 8 évdéxealar kai 76 évdexdpevov, o w3 Svros dvayxaiov,
Telévros & Smdpyew, odév éaTar Suad TobT’ ddvvarov.
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is not necessary that p and it is not necessary that not p.” As the
phrase ‘not necessary that not ¢’ means the same as ‘not impos-
sible that p’, we may say roughly speaking: ‘Something is con-
tingent if and only if it is not necessary and not impossible.’
Alexander shortly says: “The contingent is neither necessary nor
impossible.’!

We get another definition of 7p, if we transform NLNp ac-
cording to our definition 1 into Mp, and NLp into MNp:

49. QTpKMNpMp  or 50. QTHpKMpMNp.

Formula 50 reads: ‘It is contingent that p—if and only if—it is
possible that p and it is possible that not p.” This defines con-
tingency as ‘ambivalent possibility’, i.e. as a possibility which can
indeed be the case, but can also not be the case. We shall see that
the consequences of this definition, together with other of
Aristotle’s assertions about contingency, raise a new major
difficulty.

In a famous discussion about future contingent events Aristotle
tries to defend the indeterministic point of view. He assumes that
things which are not always in act have likewise the possibility of
being or not being. For instance, this gown may be cut into
pieces, and likewise it may not be cut.? Similarly a sea-fight may
happen tomorrow, and equally it may not happen. He says that
‘Of two contradictory propositions about such things one must
be true and the other false, but not this one or that one, only
whichever may chance (to be fulfilled), one of them may be
more true than the other, but neither of them is as yet true, or as
yet false.’s

These arguments, though not quite clearly expressed or fully
thought out, contain an important and most fruitful idea. Let us
take the example af the sea-fight, and suppose that nothing 1s
decided today about this fight. I mean that there is nothing that
is real today and that would cause there to be a sea-fight tomorrow,
nor yet anything that would cause there not to be one. Hence, if

I Alexander 158. 20 oUre yap dvayxaiov ovre d8tvarov 76 evdexduevor.

2 De int. g, 19*g éoTw €v Tois 1) dei évepyodor 76 Svvardv elvar xai wi dpolws . . .
12 olov &7 TouTi 16 {udTiov Suvardy €ore Srarundivas, . . . Suolws déwal 76 ux Srarun~
G9vac Svvardy.

3 Ibid. 19236 Todrwy yap (i.e. éni Tois un dei ofow 7§ un dei pu1yj olow) dvdykn pév
Odrepov udpov Tijs dvripdoews dAnbés elvar 1) Yeidos, o pévror T68€ 7 T8¢ AAX’ oméTep’
érvye, rai udAdov uév dAnldi Ty érépav, ov pévror 78n dAnlh 7 Pevdi.
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truth rests on conformity of thought with reality, the proposition
“The sea-fight will happen tomorrow’ is today neither true nor
false. It is in this sense that I understand the words ‘not yet true
or false’ in Aristotle. But this would lead to the conclusion that it
is today neither necessary nor impossible that there will be a sea-
fight tomorrow; in other words, that the propositions ‘It is
possible that there will be a sea-fight tomorrow’ and ‘It is
possible that there will not be a sea-fight tomorrow’ are today
both true, and this future event is contingent.

It follows from the above that according to Aristotle there exist
true contingent propositions, i.e. that the formula 7p and its
equivalent KMpMNp are true for some value of p, say a. For ex-
ample, if « means ‘“There will be a sea-fight tomorrow’, both
Mo and MNo would be accepted by Aristotle as true, so that
he would have asserted the conjunction:

(A) KMaMNa.

There exists, however, in the classical calculus of propositions
enlarged by the variable functor 8, the following thesis due to
Lesniewski’s protothetic:

51. CopCONpdq.

In words: ‘If § of p, then if § of not p, & of ¢’, or roughly speaking :
‘If something is true of the proposition p, and also true of the
negation of p, it is true of an arbitrary proposition ¢.” Thesis 51 is
equivalent to

52. CK8pSNpdq

on the ground of the laws of importation and exportation
CCpCqrCKpgr and CCKpgrCpCqr. From (A) and 52 we get the

consequence ©

52. 8/M, pla, q/p x C(A)—(B)
(B) Mp.

Thus, if there is any contingent proposition that we accept as
true, we are bound to admit of any proposition whatever that
it is possible. But this would cause a collapse of modal logic;
Mp must be rejected, and consequently KM« MNa cannot be
asserted.

We are at the end of our analysis of Aristotle’s propositional
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modal logic. This analysis has led us to two major difficulties:
the first difficulty is connected with Aristotle’s acceptance of true
apodeictic propositions, the second with his acceptance of true
contingent propositions. Both difficulties will reappear in Aris-
totle’s modal syllogistic, the first in his theory of syllogisms with
one assertoric and one apodeictic premiss, the second in his theory
of contingent syllogisms. If we want to meet these difficulties and
to explain as well as to appreciate his modal syllogistic, we must
first establish a secure and consequent system of modal logic.



CHAPTER VII
THE SYSTEM OF MODAL LOGIC

§ 46. The matrix method

For a full understanding of the system of modal logic expounded
in this chapter it is necessary to be acquainted with the matrix
method. This method can be applied to all logical systems in
which truth-functions occur, i.e. functions whose truth-values
depend only on the truth-values of their arguments. The classical
calculus of propositions is a two-valued system, i.e. it assumes two
truth-values, ‘truth’denoted here by 7, and ‘falsity’ denoted by o.
According to Philo of Megara an implication is true, unless. it
begins with truth and ends with falsity. That means in symbols
that Crr = Cor = Coo = 1, and only Cro = o. Obviously the
negation of a true proposition is false, i.e. N1 = o, and the nega-
tion of a false proposition true, i.e. No = 1. It is usual to present
these symbolic equalities by means of ‘truth-tables’ or ‘matrices’,
as they are called. The two-valued matrix M1 of C and N may
be described as follows: the truth-values of C are arranged in
rows and columns forming a square, and are separated by a line
from the left margin and the top. The truth-values of the first
argument are put on the left, those of the second on the top,
and the truth-values of C can be found in the square, where
the lines which we may imagine drawn from the truth-values
on the margins of the square intersect one another. The matrix
of N is easily comprehensible.

q

-
Clro| N
Iy 1T oy} o
ﬁ{o 1r|r

M

By means of this matrix any expression of the classical calculus
of propositions, i.e. of the C~N—p-calculus, can be mechanically
verified, i.e. proved when asserted and disproved when rejected.
It suffices for this purpose to put the values r and o in all possible
combinations for the variables, and if every combination reduced
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according to equalities stated in the matrix gives 7 as final result,
the expression is proved, but if not, it is disproved. For example,
CCpqCNpNg is disproved by M1, since when p = 0 and ¢ = 1,
we have: CCorCNoNr1 = CrCro== Cro = o. By contrast, CpCNpq,
one of our axioms of our C-N-p-system,! is proved by Mi,
because we have:

l

1, g = 1: CICNrr = CrCor = Crr
p =1,q9 =0:CiCNro = CrCoo = Crr
»w p =0,q =1:CoCNor = CoCrr = Cor
p=09=0

-

ll

l
NN NN
. -

-

= 0: CoCNoo = CoCro = Coo

In the same way we can verify the other two axioms of the
C-N—p-system, CCpgCCqrCpr and CCNppp. As M1 isso constructed
that the property of always yielding 7 is hereditary with respect
to the rules of substitution and detachment for asserted expres-
sions, all asserted formulae of the C~N—p-system can be proved by
the matrix Mi1. And as similarly the property of not always
yielding r is hereditary with respect to the rules of inference for
rejected expressions, all rejected formulae of the C-N-p-system
can be disproved by M1, if p is axiomatically rejected. A matrix
which verifies all formulae of a system, i.e. proves the asserted
and disproves the rejected ones, is called ‘adequate’ for the
system. M1 is an adequate matrix of the classical calculus of
propositions.

M1 is not the only adequate matrix of the C—N—p-system. We
get another adequate matrix, M3, by ‘multiplying’ M1 by itself.
The process of getting M3 can be described as follows:

First, we form ordered pairs of the values r and o, viz.: (z, 1),
(r,0), (o, 1), (0,0); these are the elements of the new matrix.
Secondly, we determine the truth-values of C and N by the
equalities:

(7) Cla,0)(c, d) = (Cac, Cod),
(z) Ma, b) = (Ma, Nb).

Then we build up the matrix M2 according to these equalities;
and finally we transform M2 into Mg by the abbreviations:
(1, 1) =1, (1,0) =2, (0, 1) = 3, and (0, 0) = o.

! See p. 8o.



160 THE SYSTEM OF MODAL LOGIC § 46
Cc (r, 1) (r,0) (o,1) (0,0) | N Clr23o0| N
(r,1) | (r, 1) (r,0) (0, 1) (0,0) | (0,0) 1 |1230]|O0
(1,0) | (1, 1) (1,1) (0,1) (0,1) | (0,1) 2|1133|3
(o, 1) | (£, 1) (1,0) (1,1) (1,0) | (1,0) 3| 12122
(0,0) | (£, 1) (1,1) (1,1) (1, 1) | (1,1) o |1 111 ]|I
M2 M3

Symbol r in M3 again denotes truth, and o falsity. The new
symbols 2 and 3 may be interpreted as further signs of truth and
falsity. This may be seen by identifying one of them, it does not

Clrroo|lN Clrorol|N

r1|lrroo0lo r1|10r10}oO0

rlrroolo o|rrrr|r

o|lrrrr|r r|lrorolir

olrrrr|lr ol|lrrrrl|i
My Ms

matter which, with 7, and the other with o. Look at M4, where
2 = 1,and 3 = o. The second row of My is identical with its first
row, and the fourth row with its third; similarly the second
column of My is identical with its first column, and the fourth
column with its third. Cancelling the superfluous middle rows
and columns we get M1. In the same way we get M1 from Mg
where 2 = o and 3 = 1.

M3 is a four-valued matrix. By multiplying M3 by M1 we get
an eight-valued matrix, by further multiplication by M1 asixteen-
valued matrix, and, in general, a 2n-valued matrix. All these
matrices are adequate to the C—N-p-system, and continue to be
adequate, if we extend the system by the introduction of variable
functors.

§ 47. The C—N-6—p-system

We have already met two theses with a variable functor §: the
principle of extensmnahty CquCSqu, and the thesis CSpCSNqu
As the latter thesis is an axiom of our system of modal logic, it is
necessary to explain thoroughly the C-N—p-system extended by &
which I call, following C. A. Meredith, the C-N-5—p-system.

This is the more necessary, as systems with § are almost unknown
even to logicians.
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The introduction of variable functors into propositional logic
is due to the Polish logician Lesniewski. By a modification of his
rule of substitution for variable functors I was able to get simple
and elegant proofs.! First, this rule must be explained.

I denote by & a variable functor of one propositional argument,
and I accept that 8P is a significant expression provided P is a
significant expression. Let us see what is the meaning of the
simplest significant expression with a variable functor, i.e. §p.

A variable is a single letter considered with respect to a range
of values that may be substituted for it. To substitute means in
practice to write instead of the variable one of its values, the same
value for each occurrence of the same variable. In the C-N-p-
system the range of values of propositional variables, such as p
or ¢, consists of all propositional expressions significant in the
system ; besides these two constants may be introduced, 7 and o,
1.e. a constant true and a constant false proposition. What is the
range of values of the functorial variable §?

It is obvious that for § we may substitute any value which gives
together with p a significant expression of our system. Such are
not only constant functors of one propositional argument, as, e.g.
N, but also complex expressions working like functors of one
argument, as Cq or CCNpp. By the substitution §/Cq we get from
8p the expression Cgp, and by §/CCNpp the expression CCNppp.
It 1s evident, however, that this kind of substitution does not
cover all possible cases. We cannot get in this way either Cpg or
CpCNpgq from §p, because by no substitution for § can the p be
removed from its final position. Nevertheless there is no doubt
that the two last expressions are as good substitutions of &p, as
Cgp or CCNppp, since 8p, as I understand it, represents all sig-
nificant expressions which contain p, including p and 8p itself.

I was able to overcome this difficulty by the following device
which I shall first explain by examples. In order to get Cpg from
8p by a substitution for 8 I write 8/C’¢, and I perform the substitu-
tion by dropping 8 and filling up the blank marked by an
apostrophe by the argument of §, i.e. by p. In the same way I get
from 8p the expression CpCNpg by the substitution 6/C’CN’g. If
more than one 8 occurs in an expression, as in C§pCNpdg, and 1
want to perform on this expression the substitution §/C’r, I must

I See Jan Lukasiewicz, ‘On Variable Functors of Propositional Arguments’,
Proceedings of the Royal Irish Academy, Dublin (1951), 54 A 2.

5367 M
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everywhere drop the 8’s and write in their stead C’r filling up the
blanks by the respective arguments of 8. I get thus from §p—Cpr,
from SNp—CNpr, from 8¢—Cqr, and from the whole expression—
CCprCCNprCqr. From the same expression C8pCoNpdq there
follows by the substitution §/C”’ the formula CCppCCNpNpCyq.
The substitution 8/ means that 8 should be omitted; by this
substitution we get for instance from C8pC5Npdq the principle of
Duns Scotus CpCNpg. The substitution 8/8’ is the ‘identical’
substitution and does not produce any change. Speaking gener-
ally, we get from an expression containing &’s a new expression by
a substitution for 8, writing for & a significant expression with at
least one blank, and filling up the blanks by the respective argu-
ments of the &’s. This is not a new rule of substitution, but merely
a description how the substitution for a variable functor should be
performed.

The C—N-8—p-system can be built up on the single asserted
axiom known already to us:

51. C8pC3Npdq,
to which the axiomatically rejected expression p should be added
to yield all rejected expressions. C. A. Meredith has shown (in an
unpublished paper) that all asserted formulae of the C-N-p-
system may be deduced from axiom 51.! The rules of inference
are the usual rule of detachment, and the rules of substitution for
propositional and functorial variables. To give an example how
these rules work I shall deduce from axiom 51 the law of identity
Cpp. Compare this deduction with the proof of Cpp in the
C-N—p-system.?

51. 8/’, g/p <53
53. CpCNpp

51. 8/CpCNp’, q/Np X C53-54
54. CCHCNpNpCHCNpNp

5. 8/, g/Npx 55

! C. A. Meredith has proved in his paper ‘On an Extended System of the Pro-
positional Calculus’, Proceedings of the Royal Irish Academy, Dublin (1951), 54 A 3,
that the C-0-38—p-calculus, i.e. the calculus with € and O as primitive terms and
with functorial and propositional variables, may be completely built up from the
axiom C3808p. His method of proving completeness can be applied to the C-N-3—p-
system with C8pC3Npdq as axiom. In my paper on modal logic quoted p. 133, n. 2,
I deduce from axiom 51 the three asserted axioms of the C-N-p-system, i.e.
CCpgCCqrCpr, CCNppp, CpCNpq, and some important theses in which 8 occurs,
among others the principle of extensionality. 2 See p. 81.
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55. CpCNpNp
55. p|CPCNpNp X C55-56
56. CNCPCNpNPNCHCNpNp
51. 8/C”, p|CpCNpNp, q[p x C54-C56-57
57. Cpp.

I should like to emphasize that the system based on axiom 51 is
much richer than the C-N-p-system. Among asserted conse-
quences containing 8 there are such logical laws as CCpgCCqpCopdg,
C5CpqCspdq, C8CpgCpdg, all very important, but unknown to
almost all logicians. The first law, for instance, is the principle of
extensionality, being equivalent to CQ pgCépdg, the second may
be taken as the sole axiom of the so-called ‘implicational’ system,
the third as an axiom of the so-called ‘positive’ logic. All these
laws can be verified by the matrix method according to a rule
given below.

In two-valued logic there exist four and only four different
functors of one argument, denoted here by V, S, N, and F (see
matrix M6).

p| VS NF

I (I1rIroo0
o\l 1010

M6

For the verification of 8-expressions the following practical rule
due in substance to Le$niewski issufficient : Write for 8 successively
the functors V, §, N, and F, then drop S, transform Va« into Cpp,
and Fa into NCpp. If you get in all cases a true C-N-formula, the
expression should be asserted, otherwise it should be rejected.
Example: C8CpgC8pdq must be asserted, because we have:

CSCpgCSpSq = CCpqeCpy, CNCpgCNpNg,

CVCpgCVpVq = CCppCCppCpp, CFCpqCFpFq = CNCppCNCpp.NCp.
CCpqCépdq must be rejected, for CCpgCNpNg is not a true C-N-
formula. We see thus that all expressions of the C~-/N-8-p-system
are easily proved or disproved by the matrix method.

§ 48. 8-Definitions

The functor 8 may be successfully employed to express defini-
tions. The authors of the Principia Mathematica express definitions
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by a special symbol consisting of the sign of equality ‘=" that
connects the definiens with the definiendum, and of the letters ‘Df’
put after the definition. According to this method the definition
of alternation would run thus:

CNpg = Hpg DA,

where CNpg (‘If not p, then ¢’) is the definiens, and Hpq (‘either p
or ¢’) the definiendum.! The symbol ‘. =. Df’ is associated with a
special rule of inference allowing the replacement of the definiens
by the defintendum and vice versa. This is the merit of this kind of
definition : the result is given immediately. But it has the defect of
increasing the number of primitive symbols as well as of rules
of inference which should be as small as possible.

Lesniewski would write the same definition as an equivalence
thereby introducing into his system no new primitive term to
express definitions, because for this very purpose he chose
equivalence as the primitive term of his logic of propositions
enlarged by functorial variables and quantifiers, and called by
him ‘protothetic’. This is the merit of his standpoint. On the
other hand he cannot immediately replace the definiens by the
definiendum or conversely, because equivalence has its own rules
which do permit such replacements.

In our C—~N-6—p-system equivalence is not a primitive term;
hence it must be defined, but cannot be defined by an equivalence
without a vicious circle. We shall see, however, that it is possible
to express definitions by C and & in a way which preserves the
merits of both standpoints without having their defects.

The purpose of a definition is to introduce a new term which as
a rule is an abbreviation of some complex expression consisting
of terms already known to us. Both parts of the definition, the
definiens as well as the definiendum must fulfil certain conditions in
order to yield a well-formed definition. The following four con-
ditions are necessary and sufficient for definitions of new func-
tions introduced into our system: (a) The definiens as well as the
definiendum should be propositional expressions. (b) The definiens
should consist of primitive terms or of terms already defined by
them. (¢) The definiendum should contain the new term introduced
by the definition. (d) Any free variable occurring in the definiens

' T usually denote alternation by A, but this letter has already got another
meaning in my syllogistic.
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should occur in the definiendum, and vice versa. It is easily seen
that, c.g. CNpq as definiens and Hpq as definiendum comply with the
four above conditions.

Let us now denote by P and R two expressions that fulfil the
conditions (a)—(d), so that one of them, it does not matter which,
may be taken as the definiens, and the other as the definiendum. 1t is
supposed that ncither of them contains 8. I say that the asserted
expression C8PSR represents a definition. For instance:

58. CSCNpgSHpq

represents the definition of alternation. According to 58 any
expression containing CNpg may be immediately transformed
into another expression in which CNpq is replaced by Hpq. As
cxamplc we may take the principle of Duns Scotus:

59. CpCNpq,

from which we can get the law CpHpg, i.e. in words: ‘If p, then
either p or ¢’, by the following deduction:

58. 8/Cp’ x Cr9~60
60. CpHpg.

If we want to apply our definition to the principle of Clavius:
61. CCNppp,
we must first put p for ¢ in 58 getting thus:

58. g/px62
62. CSCNppdHpp

62. 8/C’px C61-63
63. CHppp.

(Formula 63 states: ‘If either p or p, then #’, and is one of the
‘primitive propositions’ or axioms accepted by the authors of the
Principia Mathematica. They rightly call this axiom the ‘principle
of tautology’, as it states that to say the same (rad7o Aéyew) twice,
‘p or p’, is to say simply ‘p’. The principle of Duns Scotus, for
instance, is not a tautology in any reasonable sense.)

The converse implication of 58 C8HpgdCNpq, which enables us
to replace Hpg by CNpq is given together with the first. We can
prove, indeed, using only the rules of substitution and detachment
the following general theorem:
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(C) If P and R are any significant expressions not containing
8, and C3PSR is asserted, then CSRSP must be asserted too.
The proof:

(D) CSPSR
(D) 8/C5’8Px (E)
(E) CCSPSPCSRSP
(D) 8/CC3PS*CSRSP X (F)
(F) CCCSPSPCSRSPCCSPSRCSRSP
(F) x C(E)-C(D)-(G)
(G) CSRSP.

If therefore P and R do not contain §, and one of them may be
interpreted as definiens and the other as definiendum, then it is clear
that any asserted expression of the form CSPSR represents a
definition, as P may everywhere be replaced by R, and R by P,
and this is just the characteristic property of a definition.

§ 49. The four-valued system of modal logic

Every system of modal logic ought to include as a proper part
basic modal logic, i.e. ought to have among its theses both the
M-axioms CpMp, *CMpp, and *Mp, and the L-axioms CLpp,
*CpLp, and *NLp. It is easily seen that both M and L are dif-
ferent from any of the four functors V, §, N, and F of the two-
valued calculus. M cannot be V, for Mp is rejected—whereas
Vp = Cpp is asserted, it cannot be S, for CMpp is rejected—
whereas CSpp = Cpp is asserted, it cannot be either N or F, for
CpMp is asserted—whereas CpNp and CpFp = CpNCpp are re-
jected. The same is true for L. The functors M and L have no
interpretation in two-valued logic. Hence any system of modal
logic must be many-valued.

There is yet another idea that leads to the same consequence.
If we accept with Aristotle that some future events, e.g. a sea-
fight, are contingent, then a proposition about such events
enounced today can be neither true nor false, and therefore must
have a third truth-value different from r and 0. On the basis of
this idea and by help of the matrix method with which I became
acquainted through Peirce and Schréder I constructed in 1920
a three-valued system of modal logic developed later in a paper
of 1930.7 T see today that this system does not satisfy all our

! Jan Lukasiewicz, ‘O logice trojwartosciowej’, Ruch Filozoficzny, vol. v, Lwéw
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intuitions concerning modalities and should be replaced by the
system described below.

I am of the opinion that in any modal logic the classical calculus
of propositions should be preserved. This calculus has hitherto
manifested solidity and usefulness, and should not be set aside
without weighty reasons. Fortunately enough the classical calculus
of propositions has not only a two-valued matrix, but also many-
valued adequate matrices. I tried to apply to modal logic the
simplest many-valued matrix adequate to the C-N-5—p-system,
i.e. the four-valued matrix, and succeeded in obtaining the
desired result.

As we have seen in § 46, the matrix M2 whose elements are
pairs of values r and o follows for N from the equality:

(2) Na, b) = (Na, Nb).

The expression ‘(Na, Nb)’ is a particular case of the general form
(ea, {b) where € and { have as values the functors V, S, N, and F
of the two-valued calculus. As each of the four values of € can be
combined with each of the four values of {, we get 16 combina-
tions, which define 16 functors of one argument of the four-
valued calculus. I found among them two functors, either of
which may represent M. Here I shall define one of them, the
other I shall discuss later.

(o) M(a, b) = (Sa, V) = (a, Cbb).

On the basis of («) I got the matrix M7 for M which I transformed
into the matrix M8 by the same abbreviations as in § 46, viz.:
(r, 1) =1, (1,0) = 2, (0, 1) = 3, and (0, 0) = o.

? M p|M
(ry1) | (1, 1) Il r
(r,0) | (1, 1) 2|1
(0, 1) | (0,1) 313
(0,0) | (0, 1) 013

My M3

Having thus got the matrix of M I chose C, N, and M as

(1920). Jan Lukasiewicz, ‘Philosophische Bemerkungen zu mehrwertigen Systemen
des Aussagenkalkiils’, Comptes Rendus des Séances de la Société des Sciences et des Lettres
de Varsovie, vol. xxiii, cl. 3 (1930).
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primitive terms, and based my system of modal logic on the
following four axioms:

51. C8pCINpSq 4. CpMp *5. CMpp *7. Mp.

The rules of inference are the rules of substitution and detach-
ment for asserted and rejected expressions,
Lp is introduced by a 8-definition:

64. CSNMNpSL.

That means: ‘NMNp’ may be everywhere replaced by ‘Lp’, and
conversely ‘Lp’ by ‘NMNp’.

The same system of modal logic can be established using C,
N, and L as primitive terms with the axioms:

51. CopCONpdq 3. CLpp *6. CpLp *8. NLp,
and the 8-definition of A :
65. CONLNpSMp.

Mg represents the full adequate matrix of the system:

Clrz23o0| N ML

I|r23o0o0|1|2

2|l113313|1|2

31212230

olrrrrjr|g|o
Mo

I hope that after the explanations given above every reader will
be able to verify by this matrix any formula belonging to the
system, i.e. to prove asserted formulae, and to disprove rejected
ones.

It can be proved that the system is complete in the sense that
every significant expression belonging to it is decidable, being
either asserted or rejected. It is also consistent, i.e. non-contra-
dictory, in the sense that no significant expression is both
asserted and rejected. The set of axioms is independent.

I should like to emphasize that the axioms of the system are
perfectly evident. The axiom with é must be acknowledged by all
logicians who accept the classical calculus of propositions; the
axioms with M must also be accepted as true; the rules of in-
ference are evident too. All correctly derived consequences of the
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system must be admitted by anyone who accepts the axioms and
the rules of inference. No serious objection can be maintained
against this system. We shall see that this system refutes all falsc
inferences drawn in connexion with modal logic, explains the
difficulties of the Aristotelian modal syllogistic, and reveals some
unexpected logical facts which are of the greatest importance for
philosophy.

§ 50. Necessity and the four-valued system of modal logic

Two major difficulties were stated at the end of Chapter VI:
the first was connected with Aristotle’s acceptance of asserted
apodeictic propositions, the second with his acceptance of asserted
contingent propositions. Let us solve the first difficulty.

If all analytic propositions are regarded as necessarily true,
then the most typical analytic proposition, the principle of
identity Fxx, must also be regarded as necessarily true. This leads,
as we have seen, to the false consequence that any two individuals
are necessarily identical, if they are identical at all.

This consequence cannot be derived from our system of modal
logic, because it can be proved that in this system no apodeictic
proposition is true. As this proof is based on the law of exten-
sionality CCpgCLpLg, we must first show that this law results from
our system.

A consequence of axiom 51 runs thus:

66. C6CpqaCspdg.

From 66 there follows by the substitution §/A1’ the formula :
67. CMCpqgCMpMy,

and from 67 we get by CCpgMCpq, a substitution of axiom 4, and
by the hypothetical syllogism the stronger M-law of exten-
sionality :

19. CCpgCMpMy.

The stronger L-law of extensionality CCpqCLpLg is deducible
from 19 by transposition. The problem left undecided in § 42,
which interpretation of the Aristotelian laws of extensionality,
the stronger or the weaker one, should be admitted, is thus solved
in favour of the stronger interpretation. The proof that no
apodeictic proposition is true will now be given with full pre-
cision.
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The premisses:

*6. CpLp

18. CCpqCLpLq
33. CCpCqrCqCpr
68. CCCpqrCyr.

The deduction:
68. r/CLpLg < C18-69

69. CgCLpLg
33. p/g, q/Lp, r[Lgx C6g—70
70. CLpCqLq
70. pla, q[p X C*71-*6
*71. Lo

The Greek variable o requires an explanation. The consequent of
70, CqLg, which means the same as the rejected expression GpLp,
permits according to-our rules the rejection of the antecedent Lp,
and any substitution of Lp. This, however, cannot be expressed by
*Lp, because from a rejected expression nothing can be got by
substitution; so, for instance, Mp is rejected, but MCpp—a
substitution of Mp—is asserted. In order to express that the
antecedent of 7o is rejected for any argument of L, I employ Greek
letters calling them ‘Interpretation-variables’ in opposition to
the ‘substitution-variables’ denoted by Latin letters. As the pro-
position « may be given any interpretation, * Lax represents a
general law and means that any expression beginning with L,
i.e. any apodeictic proposition, should be rejected.

This result, *La, is confirmed by the matrix for L which is
constructed from the matrices for & and M according to the
definition of L. Anyone can recognize from a glance at Mg that
L has only 2 and o as its truth-values, but never 1.

The problem of false consequences resulting from the applica-
tion of modal logic to the theory of identity is now easily solved.
As L fxx cannot be asserted, being an apodeictic proposition, it is
not possible to derive by detachment from the premiss:

(t) CFxyCLFxxLfxy or CL JxxC fxyL Jxy

the consequence: (v) CjfxpLFxy. It can be matrically proved
indeed that () must be asserted, giving always 7, but (v) should be
rejected. Since the principle of identity Fxx is true, i.e.’ fxx = 1,
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we get Lixx = 2, and CjxyCLjfxxLjxy = CjxyC2Ljfxy. Fxy
may have one of the four values, 1, 2, 3, or o:

If Jxy = 1, then CJxyC2Lfxy = C1C2Lr = C1C22 = Cr1r
» Jxy =2, ,, CJxyC2Ljfxy = C2C2L2 = C2C22 = C2r
»w JX =3, 5 CjxC2Ljxy = C3C2L3 = C3C20 = (33 ,
»w Jw =0, ,, CJxpC2LFxy = CoC2Lo = CoC20 = Co3g = 1.

Hence (¢) is proved since the final result of its matrical reduction
is always 7. On the contrary, (v) is disproved, because we have
for Jxy = 1: CfxyLfxy = CiL1 = C12 = 2.

A pleasing and instructive example of the above difficulty has
been given by W. V. Quine who asks what is wrong with the
following inference :!

Il
NN
Y B

(a) The Morning Star is necessarily identical with the
Morning Star;

(6) But the Evening Star is not necessarily identical with the
Morning Star (being merely identical with it in fact) ;

(¢) But one and the same object cannot have contradictory
properties (cannot both be 4 and not be 4);

(d) Therefore the Morning Star and the Evening Star are
different objects.

Given my system the solution of this difficulty is very simple.
The inference is wrong, because the premisses (a) and (4) are not
true and cannot be asserted, so that the conclusion (d) cannot be
inferred from (a) and () in spite of the fact that the implication
C(a)C(b)(d) 1s correct (the third premiss may be omitted being
true). The aforesaid implication can be proved in the follow-
ing way:

Let x denote the Morning Star, and y the Evening Star; then
(a) 1s Ljxx, (b) is NLFyx which is equivalent to NLjFxy, as
identity is a symmetrical relation, and (d) 1s Njxy. We get thus
the formula CL fxxCNLJxyNfxy which is a correct transforma-
tion of the true thesis (¢).

The example given by Quine can now be verified by our four-
valued matrix thus: if ‘¢’ and ‘)’ have the same meaning as
before, then jfxx = Jxy = 1; hence Ljfxx = Ljfxy = L1 = 2,

! T found this example in the mimeographed Logic Notes, § 160, edited by the
Department of Philosophy of the Canterbury University College (Christchurch,
N.Z.), and sent to me by Professor A. N. Prior.
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NLjxy = N2 = 3, and Njxy = N1 = o, so that we have
according to CL JxxCNL JxyNfxy: C2C30 = C22 = 1. The impli-
cation is true, but as not both its antecedents are true, the con-
clusion may be false.

We shall see in the next chapter that a similar difficulty was at
the bottom of a controversy between Aristotle and his friends,
Theophrastus and Eudemus. The philosophical implications of
the important discovery that No apodeictic proposition is true will be
set forth in § 62.

§ 51. Twin possibilities
I mentioned in § 49 that there are two functors either of which

may represent possibility. One of them I denoted by M and
defined by the equality:

(a) M(a, b) = (Sa, V) = (a, Cbb),
the other I define by the equality:
(8) Wi(a,b) = (Va, Sb) = (Caa, b),

denoting it by W which looks like an inverted M. According to
this definition the matrix of W is M1o, and can be abbreviated
to M11. Though W is different from A it verifies axioms of the
same structure as M, because CpWp is proved by Mr1, like
CpMp by M8, and *CWpp and *Wp are disproved by Mr1, as
*CMpp and *Mp are by M8. I could have denoted the matrix of
W by M.

p w p|W
(r, 1) | (1, 1) Irlr
(1,0) | (1,0) 2|2
(0, 1) | (1, 1) 3|1
(0,0) | (1,0) ol 2

Mio Mi1

It can further be shown that the difference between M and W
is not a real one, but merely results from a different notation. It
will be remembered that I got M3 from M2 by denoting the pair
of values (1, 0) by 2, and (o, ) by 3. As this notation was quite
arbitrary, I could with equal justice denote (1,0) by 3, and
(0, 1) by 2, or choose any other figures or signs. Let us then
exchange the values 2 and 3 in Mg, writing everywhere 3 for 2,
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and 2 for 3. We get from Mg the matrix M12, and by rearrange-
ment of the middle rows and columns of M12, ‘the matrix M13.

Clr230|N|M|L
r{rz23olo|r|e
2(rrgz3|3|1]2
3|lr12r1r2|2(13|0
olrrrr|r|sgfo
Mo
Clrgz2o0(N|-|- Clr230|N|-]|-
1\rgz2ololr|3 r1|rzg3ojo|1|3
glr1rz2z2l2\r1|lg =2|1rrgsz|3lz2|o
213133120 glr2r2|2|1|3
olrrrrjr|z2|o olrrrr|rjzjo
Miz2 Mig

If we compare Mg with M13, we see that the matrices for C and
N remain unchanged, but the matrices corresponding to M and
L become different, so that I cannot denote them by M and L.
The matrix in M 13 corresponding to M in Mg is just the matrix
of W. Nevertheless M 13 is the same matrix as Mg, merely written
in another notation. W represents the same functor as M, and
must have the same properties as M. If M denotes possibility, then
W does so too, and there can be no difference between these two
possibilities.

In spite of their identity M and W behave differently when they
both occur in the same formula. They are like identical twins
who cannot be distinguished when met separately, but are
instantly recognized as two when seen together. To perceive this
let us consider the expressions MWp, WMp, MMp, and WWp.
If M is identical with W, then those four expressions should be
identical with each other too. But they are not identical. It can
be proved by means of our matrices that the following formulae
are asserted :

72. MWp and 73. WMp,

for Wp has as its truth-values only 1 or 2, and M1 as well as
M2 = r; similarly Mp has as its truth-values only 7 or 3, and
both Wr = r and W3 = 1. On the other hand it can be proved
that the formulae:
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74. CMMpMp and 75. CWWpWp

are asserted, and as both Mp and Wp are rejected, MMp and
WWp must be rejected too, so that we have:

*26. MMp and *ua. WWh.

We cannot therefore, in 72 or 73, replace M by W or W by M,
because we should get a rejected formula from an asserted one.
The curious logical fact of twin possibilities (and of twin
necessities connected with them), which hitherto has not been
observed by anybody, is another important discovery I owe to my
four-valued modal system. It is too subtle and requires too great
a development of formal logic to have been known to ancient
logicians. The existence of these twins will both account for
Aristotle’s mistakes and difficulties in the theory of problematic
syllogisms, and justify his intuitive notions about contingency.

§ 52. Contingency and the four-valued system of modal logic

We know already that the second major difficulty of Aristotle’s
modal logic is connected with his supposing that some contingent
propositions were true. On the ground of the thesis:

52. CKSpSNpdq,

which is a transformation of our axiom 51, we get the following
consequences :
52. 8| M, pla, g/px 78
78. CKMoMNaMp
78. C*79-*7
*79. KMaMNo.

This means that 79 1s rejected for any proposition «, as « is here
an interpretation-variable. Consequently there exists no « that
would verify both of the propositions: ‘It is possible that o’ and
‘It is possible that not «’, i.e. there exists no true contingent pro-
position Ta, if Tp is defined, with Aristotle, by the conjunction
of Mp and MNp, i.e. by:

8o. CSKMpMNpSTp.
This result is confirmed by the matrix method. Accepting the
usual definition of Kpg:
81. COSNCpNgéKpq
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we get for K the matrix M 14, and we have:
Klrzszo Forp = 1: KMpMNp = KMIMN1 = KiMo = Kig =3

1|rz23o0 » D= 2: » = KM2MN2 = KiM3 = K13 = 3
22200 » P =3 » = KM3MN3 = KgM2 = K31 = 3
3|l3030 » p=o0: » = KMoMNo = K3Mr1 = K31 = 3.
ocloooo

M1y

We see that the conjunction KMpAMNp has the constant value 3,
and is therefore never true. Hence Tp = 3, i.e. there exists no
true contingent proposition in the sense given by definition 8o.

Aristotle, however, thinks that the propositions ‘It is possible
that there will be a sea-fight tomorrow’ and ‘It is possible that
there will not be a sea-fight tomorrow’ may both be true today.
Thus, according to his idea of contingency, there may be true
contingent propositions.

There are two ways of avoiding this contradiction between
Aristotle’s view and our system of modal logic: we must either
deny that any propositions are both contingent and true, or
modify the Aristotelian definition of contingency. I choose the
second way, making use of the twin types of possibility discovered
above.

Tossing a coin we may throw either a head or a tail; in other
words, it is possible to throw a head, and it is possible not to throw
a head. We are inclined to regard both propositions as true. But
they cannot be both true, if the first ‘possible’ i1s denoted by the
same functor as the second. The first possibility is just the same
as the second, but it does not follow that it should be denoted
in the same way. The possibility of throwing a head is different
from the possibility of not throwing a head. We may denote the
one by M, and the other by W. The proposition with the affirma-
tive argument ‘It is possible that ¢’ may be translated by Mp, the
proposition with the negative argument ‘It is possible that not p’
by WAp; or the first by Wp, and the second by MNp. We get thus
two functors of contingency, say X and ¥, defined as follows:

82. CSKMpWNpsXp  and  83. CSKWpMANpsY.

It is impossible to translate these definitions into words, as we
have no names for the two kinds of possibility and contingency.
Let us call them ‘M-possible’ and ‘W-possible’, ‘X-contingent’
and ‘Y-contingent’. We may then roughly say that ‘¢ is X-con-
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tingent’ means ‘p is M-possible and Np is W-possible’, and “p is

Y-contingent’ means ‘p is W-possible and Np 1s M-possible’.
From definitions 82 and 83 We can derive the matrices of X

and Y. We get:
Forp = r:

Xr = KMIWN1 = KitWo = Ki12 = 2; Y1 = KWIMNI = KiMo = Kig = 3.
Forp =2:

X2 = KM2WN2 = KiW3 = K11 = 1; Y2 = KW2MN2 = K2M3 = K23 = o.
Forp = 3:

X3 = KM3WN3 = K3W2 = K32 = 0; Y3 = KW3MN3 = K1M2 = K11 = 1.
For p = o:
Xo = KMoWNo = K3Wi = K31 = 3; Yo = KWoMNo = K2M1 = Kor = 2.

p| XY
1{2)3
2|10
3101
ol3|=2
Mis

Matrix M15 shows that Xp as well as 7p turns out to be true for
some value of p: Xp for p = 2, 1p for p = 3. Now it has been
proved that KMpMNp has the constant value 3; similarly it can
be shown that KWpWNp has the constant value 2. We get thus
two asserted formulae:

84. XKWpWNp  and  85. ¥ KMpMMNp.

This means that there exists in our system a true X-contingent and
a true Y-contingent proposition. We can accommodate con-
tingency in Aristotle’s sense within our four-valued modal logic.

It also follows from Mi15 that the X-contingency and the 7-
contingency are twins. If we replace in Mi5 2 by 3, and 3 by 2,
X becomes ¥, and 7 becomes X. Nevertheless X is different from
¥, and more different than M is from W, because the propositions
Xp and 1p are contradictory. It can be easily seen by M1s that
the following equalities hold :

(y) Xp = YNp = NIp and (8) ¥p = XNp = NXp.
The laws of contradiction and of the excluded middle are true for
Xp and 1p, i.e. we have:

86. NKXpYp and 87. HXpYp.

This means: no proposition can be both X-contingent and ¥-con-
tingent, and any proposition is either X-contingent or ¥-con-
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tingent. The negation of an X-contingent proposition is a
Y-contingent proposition, and conversely the necgation of a
Y-contingent proposition is an X-contingent proposition. This
sounds like a paradox, because we are accustomed to think that,
what is not contingent is either.mpossible or necessary, relating
the impossible and the necessary to the same kind of possibility.
But it is not true to say that, what is not X-contingent is either M-
impossible or M-necessary ; it should rather be said that, what is
not X-contingent is either M-impossible or W-necessary, and
that being either M-impossible or W-necessary is equivalent to
being Y-contingent.

The same misunderstanding lies at the bottom of the contro-
versy about the thesis:

88. CKMpMqMKpq

which is asserted in our system. C. I. Lewis in some of his modal
systems accepts the formula:

89. CMKpgKMpMgq,

but rejects its converse, i.e. 88, by the following argument:! ‘If it
is possible that p and ¢ are both true, then p is possible and ¢ is
possible. This implication is not reversible. For example: it is
possible that the reader will see this at once. It is also possible
that he will not see it at once. But it is not possible that he will
both see it at once and not see it at once.’ The persuasiveness of
this argument is illusory. What is meant by ‘the reader’? If an
individual reader, say R, is meant, then R either will see this at
once, or R will not see this at once. In the first case the first pre-
miss ‘It is possible that R will see this at once’ is true; but the
second premiss is false, and how can a false proposition be
possibly true? In the second case the second premiss is true, but
the first is false, and a false proposition cannot be possibly true.
The two premisses of the formula 88 are not both provable, and
the formula cannot be refuted in this way.

If again by ‘the reader’ some reader is meant, then the pre-
misses ‘It is possible that some reader will see this at once’ and ‘It
is possible that some reader will not see this at once’ may be both
true, but in this case the conclusion ‘It is possible that some

I C. L. Lewis and C. H. Langford, Symbolic Logic, New York and London (1932),
p. 167.
5367 N
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reader will see this at once and some reader will not see this at
once’ is obviously also true. It is, of course, not the same reader
who will see this and not see this at once. The example given by
Lewis does not refute formula 88; on the contrary it supports its
correctness.

It seems, however, that this example has not been properly
chosen. By the addition of the words ‘at once’ the premisses have
lost the character of contingency. Saying that the reader will see
this, or not, ‘at once’, we refer to something which is decided at
the moment of seeing. The true contingent refers to undecided
events. Let us take the example with the coin which is of the same
sort as Aristotle’s example with the sea-fight. Both examples con-
cern events that are undecided at present, but will be decided in
the future. Hence the premisses ‘It is possible to throw a head’
and ‘It is possible not to throw a head’ may at present be both
true, whereas the conclusion ‘It is possible to throw a head and
not to throw a head’ is never true. We know, however, that con-
tingency cannot be defined by the conjunection of Mp and MANp,
but either by Mp and WNp or by Wp and MNp, so that the
example quoted above does not fall under the thesis 88. It cannot
therefore disprove it. This was not known to Lewis and the other
logicians, and on the basis of a wrong conception of contingency
they have rejected the discussed thesis.

§ 53. Some further problems

Although the axioms and the rules of inference of our four-
valued system of modal logic are perfectly evident, some con-
sequences of the system may look paradoxical. We have already
met the paradoxical thesis that the negation of a contingent
proposition is also contingent ; as another thesis of this kind I may
quote the law of ‘double contingency’ according to which the
following formulae are true:

go. QpXXp and g1r. QpY71p.

The problem is to find some interpretation of these formulae
which will be intuitively satisfactory and will explain away their
apparent oddness. When the classical calculus of propositions
was only recently known there was heated opposition to some of
its principles too, chiefly to CpCqgp and CpCNpg, which embody
two logical laws known to medieval logicians and formulated by
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them in the words: Verum sequitur ad quodlibet and Ad falsum
sequitur quodlibet. So far as I see, these principles are now uni-
versally acknowledged.

At any rate our modal system is not in a worse position in this
respect than other systems of modal logic. Some of them contain
such non-intuitive formulae, as:

*92. QMNMpNMp

where a problematic proposition ‘It is possible that p is impossible’
is equivalent to an apodeictic proposition ‘It is impossible that p’.
Instead of this odd formula which has to be rejected we have in
our system the thesis:

93. OMNMpMNp which together with

04. OMMpMy
enables us to reduce all combinations of modal functors consisting
of M and N to four irreducible combinations known to Aristotle,
viz. M = possible, NM = impossible, MN = non-necessary,
and NMN = necessary.

The second problem concerns the extension of the four-valued
modal logic into higher systems. The eight-valued system may
serve as an example. We get the matrix M16 of this system by
multiplying the matrix Mg by the matrix M1. As elements of the
new matrix we form the pairs of values: (1,1) = 1, (1,0) = 2,
(2, 1) =3 (2’ 0) =4 (3’ I) VY (3’ 0) = 0, (0’ I) =7 (0,0) =0,
and then we determine the truth-values of C, N, and M accord-
ing to the equalities (), (z), and ().

=

Clr2345670

12345670
11335577
2125656
11155595
2341234
1331133
21212712
I 1 1I1rririr

Mi6

Figure r denotes, as usually, truth; o falsity ; and the other figures
are intermediate values between truth and falsity. If we

~
R SN 03\1012

SN v o N~
NN N NN
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attentively consider the matrix M16 we shall find that the second
row of C isidentical with the column of M. This row consequently
represents the matrix of possibility. In the same way all the other
rows of C, except the first and the last, represent some kinds of
possibility. If we denote them by M, to M,, we can state that
M, for 2 < 1 < 7 satisfies all the axioms of possibility, viz.

95. CpM; p, *96. CM; pp, *97. M;p.

Among these different kinds of possibility there are some
‘stronger’ and ‘weaker’, because we have, for instance, CM, pM, p
or CM, pMg p, but not conversely. We may say therefore that in
eight-valued modal logic there exist possibilities of different
degrees. I have always thought that only two modal systems are
of possible philosophic and scientific importance: the simplest
modal system, in which possibility is regarded as having no
degrees at all, that is our four-valued modal system, and the X -
valued system in which there exist infinitely many degrees of
possibility. It would be interesting to investigate this problem
further, as we may find here a link between modal logic and the
theory of probability.



CHAPTER VIII
ARISTOTLE’S MODAL SYLLOGISTIC

ArisToTLE’s modal syllogistic has, in my opinion, less importance
in comparison with his assertoric syllogistic or his contributions
to propositional modal logic. This system looks like a logical
exercise which in spite of its seeming subtlety is full of careless
mistakes and does not have any useful application to scientific
problems. Nevertheless two controversial questions of this syllo-
gistic are worth studying, chiefly for historical reasons: the
question of syllogisms with one assertoric and one apodeictic
premiss, and the question of syllogisms with contingent premisses.

§ 54. Moods with two apodeictic premisses

Aristotle deals with modal syllogisms after the pattern of his
assertoric syllogistic. The syllogisms are divided into figures and
moods, some moods are accepted as perfect and these need no
proof as being self-evident, the imperfect moods are proved by
conversion, reductio ad absurdum, or by ‘ecthesis’, as it is called.
The invalid moods are rejected by interpretation through con-
crete terms. It is strange that with one exception Aristotle makes
no use of his theorems of propositional modal logic. We shall see
that this would yield in several cases better and simpler proofs
than those given by him.

The laws of conversion for apodeictic propositions are ana-
logous to those for assertoric ones. The following theses are
accordingly true: ‘If it is necessary that no 4 should be an g, it is
necessary that no a should be a #’, in symbols:

98. CLEbalLEab,

and ‘If it is necessary that every & or some 4 should be an g, it is
necessary that some a should be a #’, in symbols:

99. CLAbaLlab and 100. CLIbaLlab.?

The proofs given by Aristotle are not satisfactory.z He did not see

I An. pr. i. 3, 25329 € pdv yap avdyrn 76 A 76 B undevi dmdpyew, dvdyxn xai 76
B 1$ A pndevi dmdpyew. —32 €l 8¢ €€ dvdyxns 16 A mavri §) Twi 7 B vmdpyxe, xai
16 B rwi 76 A dvdyxy dmdpyew.

2 Cf. A. Becker, loc. cit., p. go.
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that the laws g8-100 may be immediately deduced from the
analogous laws of the assertoric syllogistic by means of the
theorem :

18. CCpqCLpLy.

For instance, from 18, by putting Eba for p and Eab for ¢, we get
the assertoric law of conversion in the antecedent, hence we can
detach the consequent, i.e. law g8.

Syllogisms with two apodeictic premisses are, according to
Aristotle, identical with assertoric syllogisms, except that the sign
of necessity must be added to the premisses as well as to the con-
clusion.! The formula for the mood Barbara will accordingly run:

101. CKLAbaLAcbLAca.

Aristotle tacitly accepts that the moods of the first figure are per-
fect and need not be proved. The moods of the other figures,
which are imperfect, should be proved according to the proofs
of assertoric syllogisms except Baroco and Bocardo, which are
proved in the assertoric syllogistic by reductio ad absurdum, and
should here be proved by ecthesis.2 Once again, for all these
proofs it would be easier to use theorem 18, as will appear from
the following example.

By means of the laws of exportation and importation, CCKpgr-
CpCqr and CCpCqrCKpgr, it can be shown that 15, the assertoric
mood Barbara, is equivalent to the formula:

102. CAbaCAcbAca.

This purely implicational form is more convenient for deriving
consequences than the conjunctional form. According to the
thesis 3 CLpp we have:

103. CLAbaAba,

and from 103 and 102 we get by the hypothetical syllogism:
104. CLAbaCAcbAca.

On the other hand we have as substitution of 18:

U An. pr. 1. 8, 29P35 émi uév odv Taw dvaykailwv axedov duolws €xet xai émi Téw
vmapxdvrwy doavtws yap Tilfepévaw TGv Spwy &v Te TH Vvmdpxew kal T €€ dvdykns
vmdpxew 7 uv vmdpyew €oTar Te kal ovk €orat avAdoyiouds, mAny Sioloer TH mpoo-
xeigfar Tois Gpots 10 €€ dvdykns Vmdpxew 7§ un vmdpyxew.

z Ibid. 30%3-14.
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105. CCAcbAcaCLAchL Aca,

and from 104 and 105 there follows the consequence:
106. CLAbaCLAcbLAca,

which is equivalent to 101. All the other syllogistic moods with
two apodeictic premisses can be proved in the same way without
new axioms, laws of conversion, reductio ad absurdum, or arguments
by ecthesis.

§ 55. Moods with one apodeictic and one assertoric premiss?

Syllogistic moods of the first figure with one apodeictic and one
assertoric premiss are treated by Aristotle differently according
to which premiss, the major or the minor, is apodeictic. He says
that when the major is apodeictic and the minor assertoric we
get an apodeictic conclusion, but when the minoris apodeictic and
the major assertoric we can have only an assertoric conclusion.?
This difference will be made clear by the following examples of
the mood Barbara. Aristotle asserts the syllogism : ‘If it isnecessary
that every & should be an a, then if every ¢ is a b, it is necessary
that every ¢ should be an a.” He rejects, however, the syllogism:
‘If every b 1s an a, then if it is necessary that every ¢ should be a 2,
it is necessary that every ¢ should be an 4.’ In symbols:

(e) CLAbaCAcbLAca 1s asserted,
({) CAbaCLAcbLAca is rejected.

Aristotle considers the syllogism (¢) as self-evident. He says:
‘Since every b is necessarily an a or not an g, and ¢ is one of the
b’s, it is evident (¢avepdr) that ¢ too will be necessarily an a or
not an a.’3 For reasons that will be explained later it is difficult
to show this by examples. But the following picture will perhaps
make the syllogism (¢) more acceptable to intuition. Let us

I Cf. J. Lukasiewicz, ‘On a Controversial Problem of Aristotle’s Modal Syllo-
gistic’, Dominican Studies, vol. vii (1954), pp. 114~28.

Z An. pr. 1. g, 30*15-25 ovuBaiver 8¢ moTe kal Tijs €répas mpordoews dvayxalas
ovoms dvaykaiov ylvealat Tov ovAdoyioudy, mAjy ody dmorépas éruyev, dAXa Tijs mpos 10
peilov dxpov, olov el 76 pév A 7& B €€ dvdyrns elAymrar vmdpyov % un Omdpyov, 70 8¢
B 1o I dmdpyov pdvor: obtws yap eldnuuévwy Tév mpordocwy é€ dvdyxns 76 A ¢ I'
vmdple 7 ody dmdpfer. (Here follows the sentence quoted in the next note.) el 8¢ 76
pev AB pvy éorw dvaykaiov, 16 8¢ BI' dvayxaiov, ovx éorat 70 ovunépaoua dvaykaiov.

3 Ibid. 30%21 énel yap mavri 7 B é£ dvdykns dmdpyed ) ovy vmdpyet 76 A, 76 8¢ I' 1e
Tév B éati, davepov 61 xal 7@ I é dvdyxns éorar Bdrepov TovTwy.
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imagine that the expression LAba means: ‘Every b is connected
by a wire with an a.” Hence it is evident that also every ¢ (since
every ¢ is a b) is connected by a wire with an g, i.e. LAca. For
whatever is true in some way of every b, is also true in the same
way of every ¢, if every cis a b. The evidence of the last proposition
is beyond any doubt.

We know, however, from Alexander that the evidence of the
syllogism (€) which Aristotle asserted, was not convincing enough
for his friends who were pupils of Theophrastus and Eudemus.!
As opposed to Aristotle, they held the doctrine that if either pre-
miss is assertoric the conclusion must be so, just as if either pre-
miss is negative the conclusion must be so and if either premiss is
particular the conclusion must be so, according to a general rule
formulated later by the scholastics: Peiorem sequitur semper con-
clusio partem.

This argument can be easily refuted. The syllogism (e) is
deductively equivalent to the problematic mood Bocardo of the
third figure: ‘If it is possible that some ¢ should not be an a, then
if every ¢ is a b, it is possible that some b should not be an 2.’ In
symbols:

(9) CMOcaCAcbMOba.

Syllogism () is as evident as (e). Its evidence can be illustrated
by examples. Let us suppose that a box contains ballots numbered
from 1 to go, and let ¢ mean ‘number drawn from the box’, b
‘even number drawn from the box’, and a ‘number divisible by
3’. We assume that in a certain case five even numbers have been
drawn from the box, so that the premiss: ‘Every number drawn
from the box is an even number drawn from the box’, i.e. Acb, is
factually true. From this we can safely infer that, if it is possible
in our case that some number drawn from the box should not be
divisible by 3, i.e. MOca, it is also possible in our case that some
even number drawn from the box should not be divisible by 3,
i.e. MOba.

Aristotle accepts the syllogism () and proves it by a reductio

! Commenting on the passage quoted in n. 2, p. 183, Alexander says 124. 8 odtos
pév obTws Aéyer. of 8¢ ye éraipor adrod of mepl Evdnudv Te kai Oeddpactor ody ovrws
Aéyovor, dAAd dagw €v mdoats Tais €é¢ dvaykalas Te xal Smapyovans ovlvylais, éov
Do gvykelpevar ovAdoytoTikds, vmdpyov yiveslar 6 ovumépaopa . . . 17 7® EXaTrov
elvac 76 vmdpyov Toi dvaykaiov.
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ad absurdum from the syllogism (€).* He does not, however, deduce
(¢) from (n), though he certainly knew that this could be done.
Alexander saw this point and explicitly proves (€) from () by a
reductio ad absurdum saying that this argument should be held as
the soundest proof in favour of Aristotle’s doctrine.? As according
to him Aristotle’s friends accept the syllogism (n) which fulfils
peiorem rule, and (e) is deducible from (1), they cannot reject (e)
on the ground of this rule, which becomes false when applied to
modalities.

We shall see in the next Section that there was yet another
argument raiscd by Theophrastus and Eudemus against syllogism
(€) which could not be refuted by Alexander, as it stands or falls
with an Aristotelian argument. In spite of Alexander’s talk about
the ‘soundest proof’ one feels that some doubt is left in his mind,
for he finally remarks after having presented several arguments
in support of Aristotle’s opinion, of which the argument quoted
above is the last, that he has shown with greater rigour in other
works which of those arguments are sound and which are not.3
Alexander is referring here to his work ‘On the Disagreement
concerning Mixed Moods between Aristotle and his Friends’,
and to his ‘Logical Scholia’.# Unfortunately both works are lost.

Our times have seen a revival of this controversy. Sir David
Ross, commenting on syllogism () and its proof from syllogism
(), states decidedly :5 ‘Yet Aristotle’s doctrine is plainly wrong.
For what he is seeking to show is that the premisses prove not only
that all C is A, but also that it is necessarily A, just as all B is

T An. pr. 1. 21, 39°33-39 vmapyxérw yap 16 puév B wavri 7o Iy 16 8¢ A évdexéofw i
& I' p7y dmdpyxew: avdynn 8m 10 A évdéyeolar Twi 7% B pv dmdpyew. € yap mavri v
B 16 A vndpyet €€ dvdykns, 76 8¢ B mavri 7% I' keirar dmdpyew, 10 A mavri 7o I' €
avdykms vmapfer Tobro yap 8€deiktar mpdrepov. AN Uméxeito Twi €vdéyeofar pi)
dmdpxew.

2 Alexander says, commenting on syllogism (e), 127. 3 éor. 8¢ mordioadBas, 67
70 Aeydpevoy 16 ApioroTédovs byiés éoti, pdhara Sid Tis els ddvvarov dmaywyis s
ywouévns v Tpltw axtpate . . . 12 év yap Tf TowavTy ovlvyig T} év Tpltw oxrjuare kal
ApioToTéder Soxel kai Tois éralpois avrod émi uépos évdexduevoy dmodaricor yiveolas
10 oupmépaopua.

3 Alexander 127. 14 7o00YTois Kai TotouTows dv Tis xprioaiTo maptoTduevos T
mepi Tovtwy Aptatorédovs 83fy. T{ 8¢ TovTwy Vyids 1§ ui Vyids Aéyealac doxei, év
dAdois Yuiv, ds €y, pera drpfelas eipnrar.

* The title of the first work reads (Alexander 125. 30) : ITepi #ijs xata Tas plfes
Siaopds ApioToTédovs T€ kai Tdv éraipwy avros. Cf. Alexander 249. 38-250. 2, where
Siadwrias is used instead of Scadopds, and the other work is cited as ZxdAwa doyixd.

5 W. D. Ross, loc. cit., p. 43.
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necessarily A, i.e. by a permanent necessity of its own nature;
while what they do show is only that so long as all Cis B, itis A,
not by a permanent necessity of its own nature, but by a tempo-
rary necessity arising from its temporary sharing in the nature
of B.’

This argument is a metaphysical one, as the terms ‘nature of
a thing’ and ‘permanent necessity of its nature’ belong to meta-
physics. But behind this metaphysical terminology a logical
problem is hidden which can be solved by our four-valued modal
logic. Let us now turn to the syllogism rejected by Aristotle.

§ 56. Rejected moods with one apodeictic and one assertoric premiss

Syllogism ({) is as evident as syllogism (€). It is strange that
Aristotle rejects the syllogism

() CAbaCLAcbLAca,

though it is clear that this syllogism is on the same footing as the
asserted syllogism (e). In order to show its evidence let us employ
the same picture as before. If LAch means that every ¢ is connected
by a wire with a 4, and every & is an a, i.e. Aba, it is evident that
every ¢ is connected by a wire with an g, i.e. LAca. Speaking
generally, if every 4 is an q, then if every ¢ is connected with a b
in any way whatever, it must be connected with an a in just the
same way. This seems to be obvious.

The most convincing argument that syllogism ({) is sound
results from its deductive equivalence with the problematic
mood Baroco of the second figure:

(0) CAbaCMOcaMOch, in words:

‘If every b is an q, then if it is possible that some ¢ should not be
an g, it is possible that some ¢ should not be a 4.’ This can be
illustrated by an example. Let us turn to our box from which five
numbers have been drawn, and let us suppose that every even
number drawn from the box (b) is divisible by g (a), i.e. Aba.
From this factual truth we can safely infer that, if it is possible
that some number drawn from the box (¢) should not be divisible
by 3, i.e. MOca, it is also possible that some number drawn from
the box should not be an ever number, i.e. MOcb. This syllogism
seems to be perfectly evident. In spite of its seeming so Aristotle
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disproves syllogism (), first by a purely logical argument which
will be considered later, and then by the following example:
Let ¢ mean ‘man’, & ‘animal’, and a ‘being in movement’. He
accepts that the proposition ‘Every man is an animal’ is neces-
sarily true, i.e. LAcb; but it is not necessary that every animal
should be in movement, this may be only accepted as a factual
truth, 1.e. Aba, and so it is not necessary that every man should
be in movement, i.c. LAca is not true.!

Aristotle’s example is not convincing enough, as we cannot
admit as a factual truth that every animal is in movement. A
better example is provided by our box. Let ¢ mean ‘number
drawn from the box and divisible by 4’, ¢ ‘even number drawn
from the box’, and a ‘divisible by 3’. Aristotle would agree that
the proposmon ‘Every number drawn from the box and divisible
by 4 is an even number drawn from the box’ is a necessary truth,
1.e. LAcb, while the premiss ‘Every even number drawn from the
box is divisible by 3’ can be only accepted as a factual truth, i.e.
Aba, and the conclusion ‘Every number drawn from the box and
divisible by 4 is divisible by 3’ is also only a factual truth, i.e.
Aca, and not LAca. The ‘nature’ of a number drawn from the box
and divisible by 4 does not involve any ‘permanent necessity’ for
it to be divisible by 3.

It would seem, thercfore, that Aristotle is right in rejecting
syllogism (). The matter, however, becomes complicated, for it
can be shown that just the same argument can be raised against
syllogism

(€) CLAbaCAcbLAca.

This was scen by Theophrastus and Eudemus who refute (e)
using in another order the same terms which were applied by
Aristotle for disproving ({). Let # mean ‘man’, a—‘animal’, and
¢—‘being in movement’. They agree with Aristotle that the pro-
position ‘Every man is an animal’ is necessarily true, i.c. LAba,
and they accept as factually true that ‘Everything in movement
is a man’, i.e. Ach. The premisses of (€) are thus verified, but it is
obvious that the conclusion ‘Everything in movement is an
animal’, 1.e. Aca, is not necessarily true.? This example is as

I An. pr. 1. g, 30728 €t kai éx TGV Gpwv pavepov STi olx €oTar To cuumépacua
dvaykaiov, olov el 76 pév A eln kivyows, 76 8¢ B {dov, éd’ 8¢ 16 I' dvfpwmos {@ov
pév yap o dvlpwmos €€ avayrns éati, kwetrar 8¢ 16 {Gov odk €€ dvdykys, 0Ud’ 6 dvfpwmos.

2 Alexander 124.21 dAAa kal émi Tiis OAns Setxvvovat TotTo Exov oUTwS . . . 24 TO ydp
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unconvincing as the corresponding one in Aristotle, for we can-
not admit that the premiss Acb is factually true.

We can give a better example from our box. Let » mean ‘num-
ber divisible by 6’, e—‘number divisible by 3’, and ¢—‘even
number drawn from the box’. Aristotle would accept that the
proposition ‘Every number divisible by 6 is divisible by 3’ is
necessarily true, i.e. LAba, but it can be only factually true that
‘Every even number drawn from the box is divisible by 6, i.e.
Acbh, and so it is only factually true that ‘Every even number
drawn from the box is divisible by 3’, i.e. Aca. The propositions
Acb and Aca are clearly equivalent to each other, and if one of
them is only factually true, then the other cannot be necessarily
true.

The controversy between Aristotle and Theophrastus about
moods with one apodeictic and one assertoric premiss has led us
to a paradoxical situation: there are apparently equally strong
arguments for and against the syllogisms (¢) and ({). The con-
troversy shown by the example of the mood Barbara can be
extended to all other moods of this kind. This points to an error
that lurks in the very foundations of modal logic, and has its
source in a false conception of necessity.

§ 57. Solution of the controversy

The paradoxical situation expounded above is quite analogous
to the difficulties we have met in the application of modal logic
to the theory of identity. On the one hand, the syllogisms in
question are not only self-evident, but can be demonstrated in
our system of modal logic. I give here a full proof of the syllogisms
(e) and ({) based among others on the stronger L-law of exten-
sionality known to Aristotle.

The premisses:

3. CLpp
18. CCpqCLpLq

24. CCpqCCqrCpr
33. CCpCqrCqCpr
102. CAbaCAcbAca.

- \ 3 ’ 1] b ’ ¢ v \ 2 L4 ’ 3 ’ \
C{yov mavTi avapwﬂ'qu Ef aVﬂ'yK"]g, (] avapw"os TaAVTL KCVOU’LEVQ) Uﬂaprfw' OUKETL TO
{d@ov mavri kwovpévw €€ avdyxns.
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The deduction:

18. p/Aba, q/Acax 107
107. CCAbaAcaCLAbal Aca

33. plAba, g/ Acb, r[Aca X C102-108
108. CAcbCAbadAca

24. plAch, g/CAbaAca, r/[CLAbal Acax C108-C107~-109
109. CAcbCLAbaLAca

33. plAcb, q/LAba, r[LAcaxX C109-110
110. CLAbaCAcbLAca (€)

18. p/Ach, q/Acax 111
111. CCAcbAcaCLAcbLAca

24. p|Aba, q/CAcbAca, r|CLAcbLAcax C1o2-C111-112
112. CAbaCLAcbLAca ().

We see that the syllogisms (e) and ({) denoted here by 110 and
112, are asserted expressions of our modal logic.

On the other hand, we get the thesis 113 from 110 by the sub-
stitution b/a, and the thesis 114 from 112 by the substitution b/c
and commutation of the antecedents:

113. CLAaaCAcal Aca 114. CLAccCAcaL Aca.

Both theses have in the consequent the expression CAcal. Aca, i.e.
the proposition ‘If every ¢ is an q, then it is necessary that every ¢
should be an &’. If this proposition were asserted, all true uni-
versally-affirmative propositions would be necessarily true which
is contrary to intuition. Moreover, as CAcal Aca is equivalent to
CNLAcaNAca, and Aca means the same as NOca, we should have
CNLNOcaNNOca or CMOcaOca. This last proposition which
means ‘Ifit is possible that some ¢ should not be an a, then some
¢ is not an @’ is not true, for it is certainly possible that a number
drawn from the box should not be even ; so that, if the proposition
is true, every set of drawings would contain an odd number—
a result plainly contrary to the facts.

The expression CAcal Aca must be therefore rejected, and
we get:

*115. CAcal Aca,

from which there follows according to our rules for rejected
expressions the consequence::
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113. X C*116-*115
*116. LAaa.

The apodeictic Aristotelian law of identity must be rejected
like the apodeictic principle of identity L 7xx. This is conformable
to our general view according to which no apodeictic proposition
is true. The consequent of 113, i.e. CAcaLAca, cannot be detached,
and the incompatibility between the acceptance of true apodeictic
propositions and the assertion of the stronger L-law of exten-
sionality is solved in favour of the law of extensionality. I do not
believe that any other system of modal logic could satisfactorily
solve this ancient controversy.

I mentioned earlier that Aristotle tries to refute the syllogism
({) not only by examples, but also by a purely logical argument.
Asserting that the premisses Aba and LAch do not give an apo-
deictic conclusion he says: ‘If the conclusion were necessary,
there would follow from it by a syllogism of the first or the third
figure that some & is necessarily an a; but this is false, because
b may be such that possibly no b is an a.’* Aristotle refers here to
the apodeictic moods Darii and Darapti, since from ({) combined

with either of these moods we can derive the consequence
CAbaCLAcbLIba. The proof from Darapti runs:

117. CCpCqrCCrCesCpCys
112. CAbaCLAcbLAca (0
118. CLAcaCLAcbLIba (Darapti)
117. p/Aba, q/LAch, r[LAca, s|LIbax C112-C118-119
119. CAbaCLAcbLIba.

The proof from Darii gives the same consequence, but is more
complicated. Aristotle seems to disregard the premiss LAcb, and
interprets this consequence as a simple implication :

*120. CAbaLlba,

which is obviously false and must be rejected. Or perhaps he
thought that LAch could be made true by a suitable substitution
for ¢ and dropped. If so he was wrong and his proof is a failure.
We see besides by this example how difficult it is to confirm the
validity of such theses, as 119, 112, or 110, through terms yielding

I An. pr. i. 9, 30225 (continuation of n. 2, p. 183) e yap éori, ovuBioerar 76 A
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some would-be true apodeictic premisses. As many logicians
believe that such propositions are really true, it is impossible to
convince them of the validity of those syllogisms by examples.

Concluding this discussion we may say that Aristotle is right
in asserting (e), but wrong in rejecting ({). Theophrastus and
Eudemus are wrong in both ways.

§ 58. Moods with possible premisses

The Aristotelian theory of problematic syllogisms displays a
very strange gap: moods with possible premisses are entirely
neglected in favour of moods with contingent premisses. Accord-
ing to Sir David Ross, ‘Aristotle always takes évdéyeras in a premiss
as meaning ‘‘is neither impossible nor necessary” ; where the only
valid conclusion is one in which év8éyerar means “‘is notimpossible™,
he is as a rule careful to point this out’.' Aristotle, indeed, seems
to be carcful to distinguish the two meanings of évééyeaflar when
he says, expounding for instance the moods with two problematic
premisses of the first figure, that évdéyeafa: in these moods should
be understood according to the definition he has given, i.e. as
‘contingent’, and not in the sense of ‘possible’. He adds, however,
that this 1s sometimes overlooked.? Who may have overlooked
this? Aristotle himself, of course, or some of his pupils just because
of the ambiguity of the term évdéyecbBai. In the De Interpretatione
év8exduevor means the same as Svvarov,® while in the Prior Ana-
Iytics 1t has two meanings. It is always dangerous to use the same
word in two mecanings which may be unconsciously confused; as
also to use two different words with the same meaning. Aristotle
sometimes says éyywpei instead of évdéyerar, and also uses the
latter in two meanings.* We cannot be always sure what he
means by évdéyerar. The ambiguity of this term probably con-
tributed to the controversies between himself and his friends
Theophrastus and Eudemus. It is therefore a pity that he did not
treat moods with possible premisses separately before introducing
contingency. We shall supply this deficiency which has hitherto
escaped the notice of scholars.

! W. D. Ross, loc. cit., p. 44; see also the table of the valid moods, facing
p. 286.

2 An. pr. i. 14, 33P21 Sei 8¢ 16 évdéxeabar AapBdvew un év rois dvaykaiois, dAAa
xaTa Tov elpnuévov Siopiopdv. éviote 8¢ Aavldver 76 Totodrov. ¥ See n. 1, p. 134.

+ Cf. for instance An. pr. 1. 3, 25”10 (n. 1, p. 192) and i. g, 30227 (n. 1, p. 190)
with i. 13, 3230 (n. 1, p. 193).
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Let us first consider the laws of conversion. Aristotle begins the
expostition of these laws in Book I, chapter g of the Prior Ana-
Iytics with the statement that the term évdéyeofa:r has several
meanings. He then says, without explaining the various meanings
of this term, that the laws of conversion of affirmative propositions
are the same for all kinds of évdéyeofa:, but those of negative
propositions differ. He states explicitly that the problematic
propositions ‘Every b may be an @’ and ‘Some 4 may be an @’ (I
use the word ‘may’ to cover both kinds of the problematic pro-
position) are convertible into the proposition ‘Some @ may be a
which gives for possibility the formulae:

121. CMAbaMIab and 122. CMIbaMIab.

The law of conversion for universally-negative propositions is
explained only by examples from which we may infer the formula:

123. CMEbaMEab.

It is tacitly assumed that particularly-negative possible proposi-
tions are not convertible.” We see from this that the laws of con-
version of possible propositions are somewhat negligently treated
by Aristotle. He apparently does not attach any great importance
to the concept of possibility.

Formulae 121-g are correct and are easily deducible from the
analogous laws of conversion for assertoric propositions by means
of the theorem:

19. CCpgCMpMq.

The same theorem, i.e. the stronger M-law of extensionality,
enables us to establish the whole theory of syllogisms with pos-
sible premisses. By means of the classical calculus of propositions
we get from 19 the formulae:

124. CCpCarCMpCMqMr and 125. CCpCarCpCMqgMr.

Formula 124 yields moods with two possible premisses and a
possible conclusion: we merely have to add the mark of possi-
bility to the premisses and to the conclusion of valid assertoric

¥ An. pr. i. 3, 25 ag7-P1g cmsLS'r; moAraxds /\eyc-rm 70 cv5€x600a1, ce. & p,ev Tois
xaradarinois op.o:.ws e&t xara TV a.v-n.arporﬁ'qv év dmaow. €l yap 76 A mavri § Twi
7% B dvdéyerat, kai 76 B rwi 7% A évdéxorro dv. . .. (P3) év ¢ Tois dmodarixois ody
o 1Y € a aes , P ., . a4
woavTws, dAX’ Soa pév €vdéxeabar Aéyerar 7} T4 ef avdyxyns vmapxew 7 7@ ui €€
dvdykns u7 vmdpxew, opolws, olov . . . (Pg)el. . . vdéxerar undevi avlpwmw inmov, Kat
dvipwmov éyxwpei pndevi inme, . . . (P13) cuolws 8¢ xai éni rijs év uéper amodarinis.
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moods. So, for instance, we get according to 124 from the asser-
toric mood Barbara by the substitution p/Aba, q/Ach, r/Aca the
syllogism :

126. CMAbaCMAcbMAca.

Formula 125 yields moods with one assertoric and one possible
premiss, it does not matter which, e.g.

127. CAbaCMAcbMAca 128. CMAbaCAcbMAca.

The system is extremely rich. Any premiss may be strengthened
by replacing the assertoric or problematic proposition by the
corresponding apodeictic proposition. Besides, there are moods
with one problematic and one apodeictic premiss which yield
apodeictic conclusions according to the formula:

129. CCpCqrCMpCLqLr.
Thus we have, for instance, the mood :
130. CMAbaCLAcbLAca

which is contrary to the peiorem rule accepted by Theophrastus
and Eudemus.

I think that Aristotle would have accepted—not, of course,
the last syllogistic mood—but the moods with possible premisses,
in particular 126 and 128. There is, indeed, in the Prior Analytics
an interesting introductory remark to the theory of problematic
syllogisms which, in my opinion, may be applied to possibility as
well as to contingency. Aristotle says that the expression ‘Of any-
thing, of which & is predicated, a may be predicated’ has two
meanings the best translation of which seems to be this: ‘For all ¢,
if every cis a b, then every c may be an @’, and ‘For all ¢, if every ¢
may be a b, then every ¢ may be an @’. Then he adds that the
expression ‘Of anything, of which b is predicated, a may be
predicated’ means the same as ‘Every # may be an a’." We have
thus two equivalences: ‘Every & may be an ¢’ means either ‘For
all ¢, if every ¢ is a b, then every ¢ may be an &’, or ‘For all ¢, if
every ¢ may be a b, then every ¢ may be an a’. If we interpret
‘may’ in the sense of possibility, we get the formulae:

U An. pr. 1. 13, 32P27 76 ydp, ‘kal’ of 76 B, 70 A évdéxeofa’ TovTwy onpaiver
Odrepov, 7 ‘kal’ ol Aéyerai 70 B’ % ‘kab’ ob évdéyerar Aéyeabar’. 7 8¢, ‘xal’ of 76 B, 16
A évdéxeabal’ §) ‘mavri & B 16 A dyywpeiv’ 0vdév Sradéper.
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131. QMAballcCAcbMAca and 132. QMAballcCMAcbMAca

which are true in our system of modal logic, and from which the
moods 128 and 126 are easily deducible. If, however, ‘may’ is
interpreted in the sense of contingency which seems to be the
intention of Aristotle, then the formulae given above become
false.

§ 59. Laws of conversion of contingent propositions

Continuing his exposition of the laws of conversion of modal
propositions Aristotle says at the beginning of the Prior Analytics
that universally-negative contingent propositions are not con-
vertible, whereas particularly-negative ones are.!

This curious statement demands careful examination. I shall
first discuss it critically not from the point of view of my modal
system, but from that of the basic modal logic accepted by
Aristotle and all logicians.

According to Aristotle, contingency is that which is neither
necessary nor impossible. This meaning of the contingent is
clearly implicit in the somewhat clumsy definition of Aristotle,
and is expressly corroborated by Alexander.? Let us repeat in
order to ensure complete clearness: ‘p is contingent—means the
same as—p is not necessary and p is not impossible’, or in symbols :

48. QTPKNLPNLNp.
This formula is obviously equivalent to the expression:
50. QTpKMpMNp,

i.e. the contingent is both capable of being and capable of not
being.

Formulae 48 and 50 are quite general and applicable to any
proposition p. Let us apply them to the universally-negative pro-
position Eba. We get from 50:

133. QTEbaKMEbaMNEba.

As NEba is equivalent to Iba, we also have:

! An. pr. 1. 3, 25P14 (continuation of the text quoted in n. 1, p. 192) doa 8¢ & s
émi 76 modd kal 7 meduxévar Adyerar évdéxeabar, . . . oVx cuolws éfer év Tais oTepn-
Tikais avTioTpodais, aAX’ 1) uév kaldodov orepyTiny mpdraois ovk dvrioTpéder, 7 B¢ év
uéper avriaTpéder.

z See above, § 45, in particular nn. 3, p. 154 and 1, p. 155.
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134. QTEbaKMEbaMIba.

Now we can derive from the laws of conversion :
123. CMEbaMEab and 122. CMIbaMIab

that MFEba is equivalent to MEab, and Mlba to Mlab; hence we
have:

135. QKMEbaMIbaKMEabMlab.

The first part of this formula KMEbaMIba is equivalent to TEba,
the second KMEabMIab to TEab; so we get the result:

136. Q TEbaTEab.

This means that contingent universally-negative propositions are
convertible.

How was it possible for Aristotle not to see this simple proof,
when he had all its premisses at his disposal? Here we touch on
another infected portion of his modal logic, even more difficult to
cure than the wound which his ideas about necessity inflicted on
it. Let us see how he tries to disprove formula 136.

Aristotle states quite generally that contingent propositions
with opposite arguments are convertible with one another in
respect of their arguments. The following examples will explain
this not very clear formulation. ‘It is contingent that 4 should be
an @’ is convertible with ‘Itis contingent that  should notbeana’;
‘It is contingent that every b should be an @’ is convertible with
‘It is contingent that not every b should be an @’; and ‘It is con-
tingent that some b should be an a’ is convertible with ‘It is contin-
gent that some & should not be an a’.* This kind of conversion I
shall call, following Sir David Ross, ‘complementary conversion’.?

Aristotle would assert accordingly that the proposition ‘It is
contingent that every & should be an &’ is convertible with the
proposition ‘It is contingent that no 4 should be an @’, in symbols :

() QTAbaTEba (asserted by Aristotle).
This is the starting-point of his proof, which is performed by

T An. pr. i. 13, 32229 ovufaive. 8¢ mdoas Tas xara 76 évdéxeabar mpordoets dvri-
aTpédew dAAjAais. Adyw 8¢ ot Tas karadarikas Tais dmodarikais, dAA’ Goar kaTadaTikoy
éxovor 70 oxijpa xard Ty dvrifeow, olov 16 évdéyeolar vmdpxew TH évdéxecbar un
vmdpxew, xai 76 mavri vdéxeolar TH évdéxeabfar pundevi xai py wavri, kal T6 Twi TH
un Twi.

* W. D. Ross, loc. cit., p. 44.
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reductio ad absurdum. He argues in substance thus: If TEba were
convertible with TEab, then TAba would be convertible with
TEab, and as TFEab is convertible with TAab, we should get the
false consequence:

(k) QTAbaTAab (rejected by Aristotle).*

What should we say to this argument? It is quite obvious that
the definition of contingency adopted by Aristotle entails the
convertibility of contingent universally-negative propositions.
Consequently the disproof of this convertibility must be wrong.
Since it is formally correct, the error must lie in the premisses,
and as there are two premisses on which the disproof'is based, the
asserted formula (i), and the rejected (x), then either it is wrong
to assert () or it is wrong to reject («). This, however, cannot be
decided within basic modal logic.

Within those limits we can merely say that the truth of the
asserted formula (¢) is not justified by the accepted definition of
contingency. From the definition:

50. QTpKMpMNp
we get by the substitution p/Np the formula Q TNpKMNpMNNp,

and as MNNp is equivalent to Mp according to theuis g of basic
modal logic, we have:

137. QTNpKMpMNp.

From 50 and 137 there results the consequence:
138. QTpTNp,

and applying this consequence to the premiss Kba we get :
139. QTEbaTNEba or 140. QTEbaTlba,

as NEba means the same as Iba. We see that QTFEbaTlba is
justified by the definition of contingency, but that Q TEbaTAba is
not. This last formula has been accepted by Aristotle by a mistake.

We shall understand this error better if we examine Aristotle’s

. - PR
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refutation of an attempt to prove the law of conversion for 7Eba
by reductio ad absurdum. This attempt reads : if we suppose that it is
contingent that no b should be an a, then it is contingent thatnoa
should be a 4. For if the latter proposition were false, then it would
be necessary that some a should be a 4, and hence it would be
necessary that some 4 should be an a which is contrary to our sup-
position.! In symbols: If 7Eba is supposed to be true, then TEab
also must be true. For from NTEab would result Llab, and con-
sequently LJba, which is incompatible with the supposition TEba.

Refuting this argument Aristotle rightly points out that Llab
does not follow from N7 Eab.? We have, indeed, according to 48
the equivalence:

141. QTEabKNLEabNLNEab or
142. QTEabKNLEabNLlab.

Thus for NTEab, applying Q NKNpNgHpy, i.e. one of the so-called
‘De Morgan’s laws’,? we have the formula:

143. QNTEabHLEabLIab.

It can be seen that by means of 143 and the thesis CCHpgrCqr we
can derive NTEab from Llab, but the converse implication does
not hold, since from N7Eab we can derive only the alternation
HLEabLlab from which, of course, Llab does not follow. The
attempted proof is wrong, but it does not follow that the conclu-
ston which was to be proved is false.

One point in this reduction deserves our attention: it is
apparent that instead of 143 Aristotle accepts the formula:

(A QNTEabHLOabLIab

which 1s not justified by definition 48. Similarly for the case of
NTAab he adopts the formula :*

' An. pr.i. 17, 3779 dAXa pijy 008’ éx Tob dduvdTov SeyBiioerar dvriaTpédov, olov €
Tis afidoeiev, €mel Yebdos 16 €vdéxeabar 6 B 1o A pndevi vmdpyew, dAnlés 16 uy
évdéyeolal undevi (ddots yap xai dmédaocts), €l 8¢ ToiT’, dAnlés €f dvdyxns Twitep 4
Smdpxew: wate xal 76 A Twi 75 B* TobT0 3 ddvvarov.

2 Ibid. 37214 (continuation of the foregoing note) od yap el uy évdéyerar undevi 16
B 1o A, avdyxn Twi Smdpyew. 10 yap un €vdéyeabar undevi dixds Aéyerar, 70 pév el €€
avdyxms Twi Umdpyet, 6 O €l €€ dvdyxms Twi py vmdpyet.

3 These should properly be called Ockham’s Laws, for so far as we know,
Ockham was the first to state them. See Ph. Boehner, ‘Bemerkungen zur Geschichte
der De Morganschen Gesetze in der Scholastik’, Archiv fiir Philosophie (September
1951), p- 115, n.
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() QNTAabHLOabLIab

which, again, is not justified by 48, whereas the correct formula
runs:

144. QNTAabHLOabLAab.

From (A) and (u) Aristotle may have deduced the equivalence
QNTAabNTEab, and then (i), which is not justified by his
definition of contingency.

§ 60. Rectification of Aristotle’s mistakes

Aristotle’s theory of contingent syllogisms is full of grave mis-
takes. He does not draw the right consequences from his definition
of contingency, and denies the convertibility of universally-
negative contingent propositions, though itis obviously admissible.
Nevertheless his authority is still so strong that very able logicians
have in the past failed to see these mistakes. It is obvious that if
somebody, Albrecht Becker for example, accepts the definition

48. QTpKNLpNLNp

with p as propositional variable, then he must also accept the
formula:

141. QTEabKNLEabNLNEab

which is derived from 48 by the substitution p/Eab. And
since by valid logical transformations formula 141 yields the
thesis

143. QNTEabHLEabLIab,

he must also accept 143. Yet Becker rejects this thesis in favour of
‘structural formulae’—a product of his imagination.!

The remarks of the foregoing section were written from the
standpoint of basic modal logic which is an incomplete system.
Let us now discuss our problem from the point of view of four-
valued modal logic.

From the Aristotelian definition of contingency we obtained
the consequence 138, QTpTNp, from which we may deduce
the implication:

! See A. Becker, loc. cit., p. 14, where formula T11 = 48 written in another
symbolismn, but with the propositional variable p, is accepted, and p. 27 where
formula 143 is rejected.
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145. CTpTNp.

Now we get from the premisses:
51. CopCONpSq (axiom of the C—N-8—p-system)
146. CCpCqrCCpqCpr (principle of Frege)
the conseguences:
5. 8/T’X 147
147. CTpCTNpTq
146. p/7p, g/ TNp, 1/Tgx C147-Cr45-148
148. CTpTy,

and as the converse implication CTq7p is also true, as may be
proved by the substitutions p/¢ and ¢/p in 148, we have the
equivalence:

149. QTp7y.

From 149 we get by substitution first the law of conversion 136
QTEbaTEab, then formula () QTAbaTEba which Aristotle
asserts, and formula («) Q TAbaTAab which he rejects. We can
now determine where the flaw in Aristotle’s disproof of the law of
conversion is: Aristotle is wrong in rejecting («).

Formula Q TpTq shows that the truth-value of the function Tp
is independent of the argument p, which means that 7p is a con-
stant. We know, in fact, from § 52 that KMpMNp which is the
definiens of Tp has the constant value 3, and therefore 7p also has
the constant value 3 and is never true. For this reason 7p is not
suitable to denote a contingent proposition in Aristotle’s sense,
since he believes that some contingent propositions are true.
Tp must be replaced by Xp or 1p, i.e. by the function ‘p is X-con-
tingent’ or its twin ‘p is Y-contingent’. I shall take into con-
sideration merely X-contingency, as what is true of X-contingency
will also be true of Y-contingency.

First, I should like to state that the convertibility of universally-
negative contingent propositions is independent of any definition
of contingency. As Eba is equivalent to Eab, we must accept the
formula

150. C8EbadEab
according to the principle of extensionality CQ pgC8p8q, which

results from our axiom 51. From 150 we get a true statement for
any value of §, hence also for §/X”:
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151. CXEbaXFEab.

Alexander reports that Theophrastus and Eudemus, unlike
Aristotle, accepted the convertibility of universally-negative con-
tingent propositions,’ but says in another passage that in proving
this law they used reductio ad absurdum.? This seems doubtful, for
the only correct thing Aristotle had done in this matter was to
refute the proof of convertibility by reductio, a refutation which
cannot have been unknown to his pupils. Reductio can be used to
prove, from CLIbaLlab, the convertibility of universally-nega-
tive propositions when they are possible (that is, to prove
CMEbaMEab), but not when they are contingent. Another proof
is given by Alexander, continuing the former passage, but he
scarcely formulates it clearly enough. We know that Theo-
phrastus and Eudemus interpreted universally-negative premisses,
Eba as well as Eab, as denoting a symmetric relation of discon-
nexion between b and ¢,3 and they may have argued accordingly
that if it is contingent for b to be disconnected from g, it is also
contingent for a to be disconnected from 4.4 This proof would
conform with the principle of extensionality. At any rate, Theo-
phrastus and Eudemus have corrected the gravest mistake in
Aristotle’s theory of contingency.

Secondly, it follows from the definition of X-contingency:

82. COKMpWNpSXp

that the so-called ‘complementary conversion’ cannot be ad-
mitted. Q TpTNp is true, but QXpXNp must be rejected, because
its negation, i.e.:

152. NOQXpXNp

is asserted in our system as can be verified by the matrix method.
It is therefore not right in our system to convert the proposition

! Alexander 220. 9 Oeddpacros uévror xai Ebdyuos . . . avriorpédew daoi xal v

xabdlov dmodarikny (scil. évdexouévny) avrh), womep dvréaTpede xai 7 vmdpyovoa
roe
xafddov dmodariny xai 1 avayxaia.

2 Ibid. 223. 3 86fec ol 8id ye Tiis €ls ddvvarov dmaywyijs Svvaclar delkvvobar 7
xafddov dmodariny évdexouévy dvriorpédovaa. T avti Selfer xai ol €raipoc adrol

.
xéxpmvrac.

3 See ibid. 31. g4-10.

4 Ibid. 220. 12 67 8¢ dvrioTpéder, dexvbow odtws € 16 A TH B évdéxeras
pndevi, xai 10 B 1% A évdéyerar undevi. énel yap évdéxerar 16 A v B undevi, ore
) 4 14 ’ ? 2 s ~ 0 A A ’ - ~ . b A ~Y -
évdéyetar undevi, 1ére évdéyerar dmelebxfar 76 A mdvrwy T@v Tob B €l 8¢ TobT’, EoTar

XeTar pn X X , ;
~ » 7 » \} -~ -~
Tét€ xai 76 B 100 A dmelevypévov: €l 8¢ Toiro, kai 76 B 7® A évdéyerar pundevi.
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‘It is contingent that every b should be an 4’ into the proposition
‘It 1s contingent that some & should not be an 4’, or into the
proposition ‘It is contingent that no 4 should be an a’, conver-
sions which Aristotle accepts without any justification.' I think
that Aristotle was led to a wrong conception of ‘complementary
conversion’ by the ambiguity of the term ‘contingent’ (évdeyd-
pevov). He uses this term in the De Interpretatione as a synonym of
the term ‘possible’ (Svvardv),? and continues to use it thus in the
Prior Amalytics, although the phrase ‘It is contingent that p’ has
there got another meaning, viz. ‘It is possible that p and it is
possible that not p’. If we replace in the last phrase the term
‘possible’ by the term ‘contingent’, as Aristotle apparently does,
we get the nonsense that ‘It is contingent that p* means the same
as ‘It is contingent that p and it is contingent that not p’. So far
as I know, this nonsense has hitherto not been observed by any-
body.

Thirdly, it follows from definition 82 that Xp is stronger than
Mp, because we have the thesis:

153. CXpMp,

but not conversely. This thesis is important, because it enables us
to retain, with a little correction, a large number of syllogisms
with contingent premisses, in spite of the serious mistakes made by
Aristotle.

§ 61. Moods with contingent premisses

There is no nced to enter into a detailed description of the
syllogistic moods with contingent premisses, as Aristotle’s defini-
tion of contingency is wrong and his syllogistic should be rebuilt
according to the correct definition. This, however, does not seem
to be worth while, for it is very doubtful whether a syllogistic with
contingent premisses will ever find a useful application. I think
that the following general remarks will be sufficient.

First, it may be shown that all the Aristotelian moods with a
contingent conclusion are wrong. Let us take as an example the
mood Barbara with contingent premisses and conclusion, i.e.
the mood

*154. CXAbaCXAcbXAca.

I Seen. 1, p. 195. 2 Seen. 1, p. 134.
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This mood though accepted by Aristotle must be rejected. Take
Aba and Ach as false, and Aca as true. These conditions fulfil the
assertoric mood Barbara, but from 154, applying the matrices
Mg and Mij5, we get the following equations: CXoCXoXr1 =
(3032 = (32 = 2. Similarly mood

*155. CXAbaCAcbXAca

also accepted by Aristotlez must be rejected, since, for Aba = o,
and Ach = Aca= 1, we have: CXoC1X1= C3Cr2= C32= 2. It
was just these two moods that I was referring to when I said at
the end of § 58 that formulae 131 and 132, which Aristotle asserts,
became false, if we interpreted év8éyeaba: as ‘contingent’. It may
be said too that formulae 154 and 155 become true, if for X is put
7, but T-contingency is a useless concept.

Secondly, all the moods got by complementary conversion
should be rejected. I shall show by an example how Aristotle
deals with this sort of mood. He applies to 154 the formula

*156. QXAbaXFEba

which should be rejected (take Aba = 1, and Eba = 0), and gets
the following moods:

*157. CXAbaCXEcbXAca
*158. CXEbaCXEcbXAca

which must be rejected too.? To show this, it suffices to choose the
terms a, b, and ¢ of 157 in such a way that Aba = Ecb = o, and
Aca = 1, and those of 158 in such a way that Eba = Ech = o,
and Aca = 1. We then have in both cases: CXoCXoXr =
C3C32 = (32 = 2.

It seems that Aristotle does not put much trust in these moods,

Y An. pr. i. 14, 3238 Srav odv 76 A mavri 7 B évdéymrar xai 76 B wavri 16 I,
Al 4 7 o A \ -~ p) 7, [ 4 7’ M -~ M v
ovMoyiouds €otar Télewos o1t 76 A mavri 7d I' dvdéxerar dmdpyew. Toiiro 8¢ davepor
éx Tod opiopoi 1o yap évdéxeolar mavri vrdpyew odrws éAéyopev.

3 Ibid. 15, 33P25 éav 8’ % uév Smdpyew 7 8’ évdéyeabar AauBdvyrar TGy mpordoewy,
orav pév 9 mpos 70 peilov dxpov évdéxeolar anuaivy, Télewol T’ €govrar mdvres ol
guAdoyiouoi xai Tob €vdéxeolar xata Tov elpnuévov Sopioudv.

3 Ibid. 14, 3325 67av 8¢ 76 A mavti 76 B évdéxmrar, 10 3¢ B évdéxnrar undevi 74
T, 3ia pév Tév eldpuuévwy mpotdoewv oddeis yiverar aulloyiouds, dvriorpadelons 8¢
tis BI" xata 70 évBéyecafar yiverar 6 avros Samep mpdrepov. —33%12 Suoiws d¢ xai €l

Al 2 7 A} 7 € » ’ ’ Al -~ rd 7 ’ *
mpos dudorépas Tas mpordoeis ) dnwddaois Telein pera Toi évdéyeofar. Aéyw & olov

b AJ b 7 . -~ M \ A -~ A} A ) ~ y 7
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because he does not call them syllogisms at all. He merely says
that they can be reduced to syllogisms by means of comple-
mentary conversion. But moods reduced by the ordinary con-
version are called by him syllogisms; why does he make a
difference between ordinary and complementary conversion, if
both kinds of conversion are equally valid?

Light upon this question is thrown by Alexander who, com-
menting on this passage, refers to a very important remark of his
master on two ontological meanings of contingency: ‘In one
sense ‘‘contingent’ means ‘ ‘usual (ént 76 7oAd) but not necessary”
or ‘‘natural”, e.g. it is contingent that men should go grey; in
another sense it is used of the indefinite, which is capable of being
thus and of not being thus, orin general of that which is by chance.
In either sense contingent propositions are convertible with
respect to their contradictory arguments, but not for the same
reason : ‘‘natural” propositions because they do not express some-
thing necessary, ‘‘indefinite” propositions because there is not, in
their case, a greater tendency to be more thus than not thus.
About the indefinite there is no science or syllogistic demonstra-
tion, because the middle term is only accidentally connected with
the extremes ; only about the ‘‘natural’ are there such things, and
most arguments and inquiries are concerned with what is con-
tingent in this sense.””

Alexander discusses this passage: his 1dea seems to be that, if
we take any scientifically useful syllogism the premisses of which
are contingent in the sense of ‘usual’ (ént 76 moAU) or even ‘most
usual’ (émt 70 mAeiorov), then we get premisses and a conclusion
which are indeed contingent but are very seldom (én’ éAarrov)
realized : such a syllogism is useless (dxpnoros). Perhaps this is
why Aristotle refuses to call what is so obtained a syllogism.2

! An. pr.i. 13, 32421 76 évdéyeolar xara Svo Aéyerar Tpdmous, éva pév T6 s €mi 7o
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This point, more than any other, reveals a capital error in
Aristotle’s syllogistic, viz. his disregard of singular propositions.
It is possible that an individual, £, should be going grey while
growing older, indeed this is probable, though not necessary,
since it is the natural tendency to do so. It is also possible, though
rather improbable, that { should not be going grey. What
Alexander says about the different degrees of possibility is true
when applied to singular propositions but becomes false when
applied to universal or particular propositions. If there is no
general law that every old man should go grey, because this is
merely ‘usual’ and some old men do not go grey, then, of course,
the latter proposition is true and therefore possible, but the
former is simply false, and from our point of view a false pro-
position is neither possibly nor contingently true.

Thirdly, from a valid mood with possible premisses we can get
other valid moods by replacing a possible premiss by the corre-
sponding contingent one. This rule is based on formula 153 which
states that Xp is stronger than Mp, and it is obvious that any
implication will remain true, if one or more of its antecedents is
replaced by a stronger antecedent. So we get, for instance, from

126. CMAbaCMAcbMAca the mood 159. CXAbaCXAcbMAca

and from

128. CMAbaCAcbMAca the mood 160. CXAbaCAcbMAca.

Comparing the rejected moods 154 and 155 with the asserted
moods 159 and 160, we see that they differ only by the substitu-
tion of M for X in the conclusion. If we examine the table of
Aristotelian syllogistic moods with problematic premisses, given
by Sir David Ross,! we shall find it a useful rule that by this
small correction, M in the conclusion, instead of X, all those
moods become valid. Only the moods obtained by comple-
mentary conversion cannot be corrected, and must be definitively
rejected.

dxpriorous Te xai dovAdoyioTous elvar. —10 {ows 8¢ xai adros ToiTo bdopdpevos elme
76 “j) od yiverar auMoyiouds’. Cf. W. D. Ross’s paraphrase of this passage, loc. cit.,
p. 326.

I W. D. Ross, loc. cit., facing p. 286 ; in the conclusion the index ¢ should every-
where be replaced by p.
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§ 62. Philosophical implications of modal logic

It may seem that the Aristotelian modal syllogistic, even when
corrected, has no useful application to scientific or philosophic
problems. But in reality, Aristotle’s propositional modal logic is
historically and systematically of the greatest importance for
philosophy. All elements required for a complete system of modal
logic are to be found in his works: basic modal logic and the
theorems of extensionality. But Aristotle was not able to combine
those elements in the right way. He did not know the logic of
propositions which was created after him by the Stoics; he tacitly
accepted the logical principle of bivalence, i.e. the principle that
every proposition is either true or false, whereas modal logic can-
not be a two-valued system. Discussing the contingency of a
future sea-fight he comes very near to the conception of a many-
valued logic, but he lays no stress on this great idea, and for many
centuries his suggestion remained fruitless. Owing to Aristotle I
was able to discover this idea in 1920 and to construct the first
many-valued system of logic in opposition to the logic, hitherto
known, which I called ‘two-valued logic’ thus introducing a
term now commonly accepted by logicians.!

Under the influence of Plato’s theory of ideas Aristotle de-
veloped a logic of universal terms and set forth views on necessity
which were, in my opinion, disastrous for philosophy. Proposi-
tions which ascribe essential properties to objects are according
to him not only factually, but also necessarily true. This erroneous
distinction was the beginning of a long evolution which led to the
division of sciences into two groups: the a priori sciences consisting
of apodeictic theorems, such as logic and mathematics, and the
a posterior: or empirical sciences consisting chiefly of assertoric
statements based on experience. This distinction is, in my opinion,
false. There are no true apodeictic propositions, and from the
standpoint of logic there is no difference between a mathematical
and an empirical truth. Modal logic can be described as an
extension of the customary logic by the introduction ofa ‘stronger’

T See J. Lukasiewicz, ‘Logika dwuwarto$ciowa’ (Two-valued Logic), Przeglqd
Filozoficzny, 23, Warszawa (1921). A passage of this paper concerning the principle
of bivalence was translated into French by W. Sierpirniski, ‘Algébre des ensembles’,
Monografie Matematyczne, 23, p. 2, Warszawa-Wroclaw (1951). An appendix of my
German paper quoted in n. 1, p. 166, is devoted to the history of this principle
in antiquity.
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and a ‘weaker’ affirmation; the apodeictic affirmation Lp is
stronger, and the problematic Mp weaker than the assertoric
affirmation p. If we use the non-committal expressions ‘stronger’
and ‘weaker’ instead of ‘necessary’ and ‘contingent’, we get rid
of some dangerous associations connected with modal terms.
Necessity implies compulsion, contingency implies chance. We
assert the necessary, for we feel compelled to do so. But if L« is
merely a stronger affirmation than «, and « is true, why should
we assert La? Truth is strong enough, there is no need to have
a ‘supertruth’ stronger than truth.

The Aristotelian a priori is analytic, based on definitions, and
definitions may occur in any science. Aristotle’s example ‘Man
is necessarily an animal’, based on the definition of ‘man’ as a
‘two-footed animal’, belongs to an empirical science. Every
science, of course, must have at its disposal an exactly constructed
language and for this purpose well-formed definitions are indis-
pensable, as they explain the meaning of words, but they cannot
replace experience. The analytic statement ‘I am an animal’
made by a man—analytic because ‘animal’ belongs to the essence
of man—conveys no useful information, and can be seen to be
silly by comparison with the empirical statement ‘I was born the
21st December 1878’. If we want to know what the ‘essence’ of
man is—if there is such a thing as ‘essence’ at all—we cannot rely
on the meanings of words but must investigate human individuals
themselves, their anatomy, histology, physiology, psychology,
and so on, and this is an endless task. It is not a paradox to say
even today that man is an unknown being.

The same is true for the deductive sciences. No deductive
system can be based on definitions as its ultimate fundamentals.
Every definition supposes some primitive terms, by which other
terms may be defined, but the meaning of primitive terms must
be explained by examples, axioms or rules, based on experience.
The true a priori is always synthetic. It does not arise, however,
from some mysterious faculty of the mind, but from very simple
experiments which can be repeated at any time. If I know by
inspection that a certain ballot box contains only white balls, I
can say a priori that only a white ball will be drawn from it. And
if the box contains white and black balls, and two drawings are
made, I can foretell a priori that only four combinations can pos-
sibly occur: white-white, white-black, black-white, and black-
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black. On such experiments the axioms of logic and mathematics
are based ; there is no fundamental difference between a prior: and
a posteriort sciences.

While Aristotle’s treatment of necessity is in my opinion a
failure, his concept of ambivalent possibility or contingency is an
important and fruitful idea. I think that it may be successfully
applied to refute determinism.

By determinism I understand a theory which states that if an
event E happens at the moment ¢, then it is true at any moment
earlier than ¢ that E happens at the moment ¢. The strongest
argument in defence of this theory is based on the law of causality
which states that every event has a cause in some earlier event.
If so, it seems to be evident that all future events have causes
which exist today, and existed from eternity, and therefore all are
predetermined.

The law of causality, however, understood in its full generality
should be regarded as merely a hypothesis. It is true, of course,
that astronomers, relying on some laws known to govern the
universe, are able to predict for years in advance the positions
and motions of heavenly bodies with considerable accuracy. Just
at the moment I finished writing the previous sentence a bee flew
humming past my ear. Am I to believe that this event too has
been predetermined from all eternity and by some unknown laws
governing the universe? To accept this would look more like
indulging in whimsical speculation than relying on scientifically
verifiable assertions.

But even if we accept the law of causality as generally true, the
argument given above is not conclusive. We may assume that
every event has a cause, and nothing happens by chance, yet the
chain of causes producing a future event, though infinite, does
not reach the present moment. This can be explained by a mathe-
matical analogy. Let us denote the present moment by o, the
moment of the future event by 1, and the moments of its causes
by fractions greater than 1. As there exists no smallest fraction
greater than }, every event has a cause in an earlier event, but
the whole chain of these causes and effects has a limit at the
moment %, later than o.

We may therefore assume that the Aristotelian sea-fight of
tomorrow, though it will have a cause which itself will have cause
and so on, does not have a cause today. Similarly we may assume
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that nothing exists today which would prevent there being a sea-
fight tomorrow. If truth consists in the conformity of thought to
reality, we may say that those propositions are true today which
conform with today’s reality or with future reality in so far as that
is predetermined by causes existing today. As the sea-fight of
tomorrow is not real today, and its future existence or non-
existence has no real cause today, the proposition ‘There will be
a sea-fight tomorfrow’ is today neither true nor false. We can only
say: ‘There may be a sea-fight tomorrow’ and ‘There may not
be a sea-fight tomorrow’. Tomorrow’s sea-fight is a contingent
event, and if there are such events, determinism is refuted.
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12~-14; not infected by psychology, p. 13; not formalistic, p. 16; his formula-
tions of syllogisms often inexact, p. 18; examples of inexactness, p. 18, n. 1;
his division of syllogistic figures, p. 23, n. 1; accepts as principle of division the
position of the middle term in premisses, p. 23, n. 2; omits in his diyision the
moods of the fourth figure, p. 23; knows and accepts all the moods of the
fourth figure, pp. 25, n. 2, 26 n.; gives practical indications how to find
premisses for a given conclusion, p. 24 n.; defines wrongly the middle, major,
and minor terms in the first figure, p. 28, nn. 1—2; gives a correct definition of
the middle term for all figures, p. 29 n.; does not fix the order of premisses,
PP- 33, 34, nn. 1-8; accepts the perfect moods of the first figure as axioms,
P. 44; does not state the dictum de omni et nullo as the principle of syllogistic,
p- 47; reduces all imperfect moods to the universal moods of the first figure,
P- 45, n. 2; this reduction means proof, p. 44; his theory of proof unsatis-
factory, p. 44; uses laws of propositional logic intuitively in proving the
imperfect moods, p. 49; knows the law of transposition, p. 49, n. 3; and the
law of hypothetical syllogism, p. 49, n. 4; erroneously rejects a thesis of pro-
positional logic, p. 50, n. 1; his proofs by conversion imply laws of proposi-
tional logic, pp. 51-54; his usually given proofs of Baroco and Bocardo
unsatisfactory and not proofs by reductio ad impossibile, pp. 54-55; his charac-
terization of the proofs by reductio ad impossibile, p. 55 n.; gives correct proofs of
Baroco and Bocardo implying laws of propositional logic, p. 57, n. 3; does not
understand arguments é¢ dmoféoews, p. 58; gives proofs by ecthesis for the
conversion of the I-premiss, p. 60, n. 1; for Darapti, p. 63, n. 1; for Bocardo,
p. 64 n.; his proofs by ecthesis may be explained by existential quantifiers,
pp. 61-66; rejects invalid syllogistic forms by exemplification through con-
crete terms, p. 67, n. 2; employs a rule of rejection, p. 70, n. 2; his syllogistic
misrepresented by some mathematical logicians, p. 130; why his modal logic
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little known, p. 133; his modal syllogistic has many faults, p. 133; it pre-
supposes a modal logic of propositions, p. 133; his four modal terms, p. 134;
mistakenly asserts that possibility implies non-necessity, p. 134 n.; accepts that
necessity implies possibility, p. 134 ; gives correctly the relation of possibility
to necessity, p. 145, n. 3, and that of necessity to possibility, p. 135, n. 4 ; knows
two scholastic principles of modal logic but does not formulate them, pp.
135-6 ; presumes existence of asserted apodeictic propositions, pp. 136-7, 143 ;
his laws of cxtensionality for modal functors, p. 138, nn. 1-3; his proof of the
M-law of extensionality, p. 140 n.; his definition of contingency, pp. 140, 154,
n. 3; distinguishes between simple and conditional necessity, p. 144, n. 1;
mistakenly says that nothing follows necessarily from a single premiss, p. 144,
n. 3; omits the sign of necessity in valid moods, p. 146; his doctrine con-
cerning the necessary connexion between terms, pp. 148-9; his principle of
necessity, pp. 151, n. 1, 152, n. 2; his defence of indeterministic view, p. 155,
nn. 2-3; two major difficulties in his propositional modal logic, p. 157; the
difficulties of his modal syllogistic can be explained on the basis of the four-
valued modal system, p. 169; his acceptance of asserted apodeictic proposi-
tions in the hight of the four-valued system of modal logic, pp. 169-70; his
acceptance of asserted contingent propositions in the light of the four-valued
system of modal logic, pp. 174-7; his modal syllogistic less important than his
assertoric syllogistic, p. 181 states laws of conversion for apodeictic proposi-
tions, p. 181, n. 1; his syllogisms with two apodeictic premisses analogous to
those with two assertoric ones, p. 182, n. 1; his doctrine concerning moods
with one apodeictic and one assertoric premiss, pp. 183-8, and its criticism by
Theophrastus and Eudemus, pp. 184-5, 187-8; his controversy with Theo-
phrastus in the light of the accepted modal system, pp. 188-g1 ; neglects moods
with possible premisses, p. 1g1; distinguishes two meanings of év8éyeofar,
p. 191, n. 2; treats laws of conversion for possible propositions with negligence,
p. 192; his introductory remark to thé theory of problematic syllogisms,
p- 193 n. ; denies convertibility of universally-negative contingent propositions,
pP- 194, n. 1; his doctrine of ‘complementary conversion’, p. 195, n. 1; his
definition of contingency entails the convertibility of universally-negative
contingent propositions, p. 196; his doctrine concerning the convertibility of
contingent propositions criticized from the point of view of the basic modal
logic, pp. 194—9; his moods with contingent premisses and conclusion are
wrong, pp. 201-2; his moods by ‘complementary conversion’ should be re-
jected, pp. 202, 204,erroneously disregards singular propositions, p. 204 ; his
propositional modal logic, in contradistinction to his modal syllogistic, im-
portant for philosophy, p. 205; tacitly accepts the principle of bivalence,
p. 205; comes near to the conception of a many-valued logic, p. 205 ; his views
on necessity disastrous for philosophy, p. 205; his definition of contingency
wrong, p. 201, but his concept of contingency fruitful, p. 207.

arithmetical interpretation of syllogistic, pp. 126~9.

arithmetical laws, compared with syllogisms by the Stoics, p. 15.

apx7, basic truth, p. 44.

assertion, introduced by Frege, accepted in Principia Mathematica, p. 94.

assertoric propositions, defined, p. 134.

associative law of addition, without brackets, p. 78.

Averroes, on Galen’s fourth figure, p. 38.

axioms, of the theory of deduction, p. 80; of the syllogistic, p. 88; of basic modal
logic, p. 137 ; of the theory of identity, p. 149 ; of the C-N—p-system, verified by a
matrix, p. 159; of the C-N-8-p-system, p. 162; of the C-O-6—p-system,
p. 162 n.; of the four-valued system of modal logic, pp. 167-8.
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délwpa, Stoic term for proposition, p. 82 n.

Barbara, axiom, p. 88; perfect syllogisth, pp. 44—45 ; formulated by Aristotle, p. 3;
with transposed premisses and without the sign of necessity, p. 10, n. 5; its
weakness in the system, p. g4 ; equivalent to a purely implicational formula,
p. 182.

Barbari, thesis, p. 92.

Baroco, thesis, p. 94 ; formulated by Aristotle with transposed premisses, p. 34, n. 7;
its unsatisfactory proof by reductio ad impossibile, pp. 55-56 ; how Baroco should
be proved by reductio ad impossibile, p. 56; correct proof given by Aristotle,
pP. 57, n. 3; with two apodeictic premisses, should be proved by ecthesis,
p. 182.

basic modal logic, definition of, p. 137; axioms of, p. 137; is an incomplete
modal system, p. 137.

basis, of syllogistic, p. 100; not sufficient without Stupecki’s rule of rejection, p. 101.

Becker, A., pp. 154, n. 2, 181, n. 2, 198 n.

Bekker, I., p. 24 n.

belong, dmdpxew, p. 14 n.; used by Aristotle in abstract syllogisms with variables
instead of elva: in concrete examples, p. 17; explanation of this fact by Alex-
ander, p. 17, n. 3.

bivalence, principle of, p. 82; tacitly accepted by Aristotle, p. 205; Lukasiewicz on
its history in antiquity, p. 205 n.

Bocardo, thesis, p. 94; formulated by Aristotle with transposed premisses, pp. 34,
64 n.; proved by him by ecthesis, p. 64; its proof by existential quantifiers,
pp. 65-66; the latter proof in symbolic form, pp. 85-86 ; with two apodeictic
premisses, should be proved by ecthesis, p. 182.

Bochenski, I. M., his hypothesis on composition of the Prior Analytics, p. 27.

Boehner, Ph,, p. 197, n. 3.

brackets, notation without, pp. 78-79.

Bramantip, thesis, p. 92; called by Aristotle dvreorpappévos ovAdoyiopds, pp. 24 n.,
25; proved by him, p. 26 n.

C, sign of implication ‘if—then’, p. 78; its two-valued matrix, p. 158; its four-
valued matrix, pp. 160, 168; its eight-valued matrix, p. 179.

Camenes, thesis, p. 93; proved by Aristotle, p. 26 n.

Camenop, thesis, p. 93.

Camestres, thesis, p. 93 ; formulated by Aristotle with transposed premisses, p. 34,
n. 6.

Camestrop, thesis, p. 93.

Cartesian principle, ‘cogito, ergo sum’, not a principle but an inference, p. 21.

categorical system, p. 99.

Celarent, thesis, p. 92; perfect syllogism, p. 44.

Celaront, thesis, p. 93.

Cesare, thesis, p. 92.

Cesaro, thesis, p. 93.

chain, p. 124.

Chrysippus, p. 82 n.

Cicero, p. 82 n.

classical calculus of propositions, should be preserved in any modal logic, p. 167;
some of its principles opposed at first then universally accepted, pp. 178-g;
see also theory of deduction.

Clavius, commentator on Euclid, p. 80; law or principle of, pp. 80, 165.

C-N-5—p-system, explained, pp. 160-3 ; some of its important theses, p. 163 ; method
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of verifying its expressions, p. 163 ; its single axiom, p. 162 its rule of substitu-
tion, pp. 161-2; its rule of definitions, pp. 163-6.

C-N-p-system, how to verify its expressions by means of the matrix method,
pp- 158-9; see also classical calculus of propositions.

C-0-8-p-system, its axiom, p. 162 n.

commutation, law of, pp. 82, 89, 107.

commutative law of conjunction, p. 61 ; formulated in symbols, p. 84.

compound law of transposition, known to Aristotle, pp. 55-57; proved by the
Stoics as rule of inference, p. 59, n. 1.

compound syllogisms of four terms, investigated by Galen, p. 39, n. 3; divided by
him into four figures, p. 40 n.

conjunction, definition of| p. 81 ; its definition as truth-function, p. 83.

consistency of the syllogistic, proof of, p. 89.

constant functors, Aristotelian: A, E, I, O, p. 77; propositional: C, K, N, p. 78,
Q, pp- 108, 135, n. 5, H, p. 164; propositional of one argument: ¥V, §, N, F,
p. 163; modal: L, M, p. 134, T, p- 154, W, p. 172, X, ¥, pp. 175-6; of
identity: 7, p. 149.

contingency, defined by Aristotle, pp. 140, 154, n. 3, 194; defined by Alexander,
p. 155, n. 1; Aristotle’s definition leads to difficulties, p. 174 ; X-contingency
and 7-contingency defined within the four-valued modal system, pp. 175-6;
the law of ‘double contingency’, p. 178; two ontological meanings of, dis-
tinguished by Aristotle, p. 203, n. 1; Alexander’s discussion of this distinction,
p. 203, n. 2; Aristotelian idea of, fruitful, p. 207.

conversion, complementary, explained, p. 195; cannot be admitted, pp. 200~1.

conversion of apodeictic propositions, analogous to that of assertoric ones, p.
181, n. 1.

conversion of the A-premiss, thesis, p. g1 ; mistakenly regarded as wrong, p. 130.

conversion of the E-premiss, thesis, p. 91 ; proved syllogistically by Alexander, p. 10.

conversion of the I-premiss, thesis, p. g1 ; proved by Aristotle by ecthesis, p. 6o,
n. 1; proof by existential quantifiers, pp. 61-62; the latter proof in symbols,
pp- 84-8s.

conversion of the O-premiss, invalid, p. 11, n. 1.

conversion of the syllogism, p. 57.

Copleston, Fr., S.J., pp. 1, n. 1, 12.

Couturat, L., p. 126 n.

Cpp, propositional law of identity, different from Adaa, p. 48; deduced within the
C-N-3—p-system, pp. 162~3.

Cpg, implication means ‘if p then ¢’, p. 78.

8, variable functor of one propositional variable, its range of values explained,
pp. 161-2.

Darapti, thesis, p. 92; proved by Aristotle by ecthesis, p. 63, n. 1; may be proved
by existential quantifiers, pp. 63-64.

Darii, thesis, p. g1 ; perfect syllogism, p. 44 ; formulated by Aristotle with trans-
posed premisses, p. 34, n. 5.

Datisi, axiom, p. 88 ; formulated by Aristotle with transposed premisses, p. 34, n. 3.

8-definitions, explained, pp. 163-6; 8-definition of H, p. 164 ; 8-definitions of L and
M, p. 168 ; 8-definitions of X and 7| p. 175.

decision, the problem of, solved for the C-N-p-system of the theory of deduction,
pp. 112-18; for the syllogistic, pp. 120-6.

deduction of syllogistical laws, pp. 91-94.

deductive equivalence, relative to some theses, p. 107; defined, p. 110; different
from ordinary equivalence, p. 110; requires rejection, pp. 109-10.
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definitions, two ways of defining functors, p. 81; in the Principia Mathematica, pp.
163-4; in Lesniewski’s system, p. 164, in the C-N-8-p-system, 164-6; sce also
3-definitions.

De Morgan, A., p. 197, n. 3.

derivational line, p. 81.

detachment, rule of, modus ponens of the Stoics, p. 16.

determinism, refutation of, pp. 207-8.

S-expressions, the method of verifying, p. 163.

dictum de omni et nullo, not a principle of syllogistic, p. 46; not formulated by
Aristotle, p. 47.

Dimaris, thesis, p. 92; proved by Aristotle, p. 26 n.

Disamis, thesis, p. 92; formulated by Aristotle with transposed premisses, p. 7 n.;
proved by him by conversion of the conclusion of Darii, pp. 52-53.

Duns Scotus, law or principle of, pp. 80, 137, 162, 165; his principle is not a
tautology, p. 165.

duvvardy, possible, p. 134.

E, constant functor, means ‘no—is’ or ‘belongs to no’, pp. 14, 77.

Eab, means ‘no a is &’ or ‘b belongs to no a’, p. 77.

ecthesis, explained by existential quantifiers, p. 61; proofs by ecthesis, pp. 59-67;
perceptual character ascribed to them by Alexander, pp. 60, n. 3, 63, nn. 2-3,
67, n. 1.

Encyclopaedia Britannica, 11th edition, on logic of the Stoics, p. 49.

évdéxeoba, its ambiguous use in Aristotle, p. 191, nn. 2—4.

évdexdpevov, contingent, p. 134, see contingency.

equivalence, of Eab and Nlab, p. 88; different from deductive equivalence, p. 110.

Euclid, employs the law of Clavius, p. 50.

Eudemus, pp. 38, n. 4, 133, 152, 172, 184 n., 185, 187, 191, 193, 200, n. 1.

Eulerian diagrams, applied to a non-Aristotelian system of syllogistic, p. 9g; to the
problem of undecidable expressions, p. 101.

existential quantifiers, explained, pp. 61, 84; rules of, p. 62; used in proofs by
ecthesis, pp. 61-66.

ex mere negativis nihil sequitur, not generally true, p. 103 ; connected with Slupecki’s
rule of rejection, p. 103.

exportation, law of, pp. 86, 89, 182.

exposition, see ecthesis.

expression, significant, p. 8o; elementary, p. 103; simple, p. 103.

extensionality, laws of, for modal functors, pp. 138, nn. 1-3, 139, 143, 147 ; general
law of, p. 139; M-law of, proved by Aristotle and by Alexander, pp. 140-3.

factor, principle of the, pp. 52-53.

Felapton, thesis, p. 93 ; formulated by Aristotle with transposed premisses, p. 9, n. 4.

Ferison, thesis, p. 93.

Fesapo, thesis, p. 93; proved by Aristotle, p. 25, n. 2.

Festino, thesis, p. 93; proved by Aristotle, p. 51, n. 1.

figures of the syllogism, division into figures has a practical aim, p. 23; description
of the three Aristotelian figures, p. 23, n. 1; position of the middle term in
premisses principle of division into figures, p. 23, n. 2 ; Maier’s opinion criti-
cized, pp. 36-38.

form, of the Aristotelian syllogism, pp. 1-3; of thought, p. 12; of syllogism as
opposed to its matter, p. 14; consists of number and disposition of variables
and of logical constants, p. 14.

formalism, pp. 15-16.
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fourth figure, omitted by Aristotle, p. 27; its moods accepted by Aristotle, p. 27;
not invented by Galen, p. 41; opinions of Prantl and Maier criticized, pp. 35,

four-valued system of modal logic, its primitive terms, pp. 167-8; its axioms,
p. 168; its rules of inference, p. 168; its adequate matrix, p. 168; some of its
odd consequences, p. 178; a method of extending it into higher systems, pp.
179-80.

Frege, G., founder of modern propositional logic, p. 48; introduced assertion into
logic, p. 94.

Fresison, thesis, p. 93 ; proved by Aristotle, p. 25, n. 2.

functorial propositions, have no subject or predicates, p. 132.

functors, of syllogistic, 77; modal, 134; variable, introduced into propositional
logic by Le$niewski, p. 161; the meaning of the simplest expression with a
variable functor of one propositional argument, pp. 161-2.

Galen, divided compound syllogisms of four terms into four figures, pp. 38—4o0.
Gerhardt, p. 151, n. 3.
Gohlke, P., his hypothesis concerning the composition of the Prior Analytics, p.

133, n. 1.

H, sign of alternation, ‘either—or’, its definition, p. 164 ; its é-definition, p. 165.

Herminus, modifies the Aristotelian definition of the major term, p. 31, n. 3; mis-
understands rejection, p. 70, n. 1.

homogeneous terms, required by the syllogistic, p. 7.

UAn, matter of the syllogism as opposed to its form, p. 14.

vmoBfdMew, term used by Philoponus for substitution, p. 8.

hypothetical syllogism, law of, known to Aristotle, p. 49, n. 4; formulated, p. 51;
in symbols, p. 79.

I, constant functor, means ‘some—is’ or ‘belongs to some’, pp. 14, 77.

Iaa, law of identity, axiom, p. 88.

Iab, means ‘some a is b’ or ‘b belongs to some a’, p. 77.

identity, laws of, syllogistic Aaa and Iaa, p. 88 ; propositional, p. 48; principle of,
p- 149 ; apodeictic principle of, 149 ; axioms of the theory of, p. 149; the law of,
analytic, p. 149; the law of, used by Aristotle in a demonstration, p. 149, n. 2.

immediate premiss, duecos mpéraats, without a middle term between its subject
and predicate, p. 44.

imperfect syllogisms, moods of the second and third figure, p. 43.

implication, ‘if p, then ¢’, p. 78; defined as truth function by Philo of Megara,
pp- 83, 146, 158; its relation to the corresponding rule of inference, p. 22.

importation, law of, pp. 86, 182.

indefinite premiss, pp. 4-5; treated as particular, p. 5, nn. 1-2.

indemonstrable propositions, dvamddeixror, p. 43.

indemonstrable syllogisms of the Stoics, first, p. 19; second and third, p. 58.

independence, proofs of independence of the axioms of syllogistic, pp. 8g-go.

inexactness, of Aristotelian formulations, p. 18, n. 1.

inference, not a proposition, p. 2I.

infinitely many-valued modal system, p. 180.

interpretation variables, p. 170.

Joannes ltalus, p. 39, n. 1.

K, sign of conjunction ‘and’, p. 78; its four-valued matrix, 175.
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Kalbfleisch, K., p. 38.

Kant, 1., p. 132.

Kapp, E., p. 1, n. 1; criticizes Prantl, p. 3, n. 6.

Keynes, J. N., on singular propositions, p. 5, n. 3; on the major and minor term,
p- 30 n.; on reduction of syllogisms to the first figure, p. 44 ; on dictum de omni
et nullo, p. 47.

Kochalsky, p. 59, n. 1.

Kpq, conjunction, means ‘p and ¢’, p. 78; its definition by C and W, p. 81 ; defined
as truth function, p. 83.

L, constant functor, means ‘it is necessary that’, p. 134; its matrix in the four-
valued modal system, p. 168.

Laws, of the theory of deduction: of commutation, p. 82; commutative law of
conjunction, p. 61; compound law of transposition, p. 56 ; of exportation, pp.
86, 89, 182; of importation, 86, 182 ; of hypothetical syllogism, p. 51 ; of iden-
tity, p. 48; of Clavius, pp. 80, 165; of Duns Scotus, pp. 80, 137, 162, 165; of
De Morgan or of Ockham, p. 197, n. 3; of the syllogistic: pp. 91—94; of
extensionality for modal functors: in a wider sense, pp. 139—40; strict,
PP- 139—40; with strong interpretation, pp. 139, I147; with weak inter-
pretation, pp. 143, 147; for L and M, with strong interpretation, deduc-
ible in the four-valued system of modal logic, p. 169; of identity: used by
Aristotle but not stated explicitly, p. 149, n. 2; its analytic character, p. 149;
of ‘double contingency’, p. 178; of contradiction and excluded middle for
X-contingency’ and Y-contingency, p. 176.

Leibniz, G. W., his arithmetical interpretation of the syllogistic, pp. 126-9; quotes
a formulation of the principle of necessity, p. 151.

Lesniewski, S., a thesis of his protothetic, p. 156 ; introduces variable functors into
propositional logic, p. 161; his rule for verifying expressions with variable
functors of propositional arguments, p. 163 ; his method of writing definitions,
p. 164.

Lewis, C. L., introduces ‘strict implication’ into symbolic logic, p. 147; his strict
implication differs from Alexander’s necessary implication, p. 147; a detail
in his modal systems criticized, pp. 177-8.

logic, its relation to psychology, pp. 12-13; to philosophy, p. 13; Aristotelian logic
a theory of the functors 4, E, I, O, p. 14.

logic of propositions, different from the logic of terms, p. 48 ; invented by the Stoics,
p. 48; in its modern form founded by Frege, p. 48.

F.ukasiewicz, J., on axioms of the syllogistic, pp. 46, n. 3, 91 n.; on logic of the
Stoics, p. 48 n.; his system of modal logic, p. 133, n. 2; on variable functors,
p- 161 n.; on a three-valued system of modal logic, p. 166 n. ; on a problem of
Aristotle’s modal syllogistic, p. 183, n. 1; on the principle of bivalence,
p. 205 n.

M, constant functor, means ‘it is possible that’, p. 134; its matrix in the four-
valued modal system, p. 167; its ‘twin’ functor, pp. 172—4.

Maier, H., misunderstands syllogistic necessity, pp. 11, n. 2, 12, n. 1; his philo-
sophic speculations on this subject refuted, pp. 11-12; does not distinguish
the Aristotelian syllogism from the traditional, p. 22 n.; accepts the mistaken
definition of Aristotle of the major, minor, and middle term, p. 28, n. 3; re-
gards the order of premisses as fixed, p. 33, n. 2; accepts extensional relations
of terms as principle of division of syllogisms into figures, pp. 36-38; accepts a
fourth figure with only two moods, p. 37; believes in existence of one prin-
ciple of syllogistic, p. 47; does not understand the logic of the Stoics, p. 49;
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does not understand the implication ‘if not-p, then p’, p. 50; accepts Alex-
ander’s interpretation of proofs by ecthesis, p. 60, n. 4; does not understand
proofs of rejection, p. 68.

major term, predicate of the conclusion, p. 32 ; wrongly defined by Aristotle, p. 28,
n. 2; Aristotle’s definition modified by Herminus, p. 31, n. 3; Alexander’s
opinion on this subject untenable, pp. 31-32; classical definition given by
Philoponus, p. 32, n. 2.

material implication, defined by Philo of Megara, pp. 146-7.

matrix, two-valued, for C-N—p-system, p. 158 ; four-valued, for same, p. 160; two-
valued, for the four functors of one argument, p. 163 ; four-valued, adequate,
for C, N, M, L, p. 168; four-valued, for W, p. 172; four-valued, for K| p. 175;
four-valued, for X and 7, p. 176; eight-valued, for C, N, M, p. 179.

matrix method, explained, pp. 158-60; known to Lukasiewicz through Peirce and
Schroder, p. 166 ; method of ‘multiplying’ matrices explained, pp. 159-60.

Meredith, C. A., on number of figures and moods for n terms, p. 42; on extended
systems of the propositional calculus, pp. 160, 162 n.

middle term, wrongly defined by Aristotle for the first figure, p. 28, n. 1; rightly
defined for all figures, p. 2g n.

minor term, subject of the conclusion, p. 32; wrongly defined by Aristotle, p. 28,
n. 2; classical definition given by Philoponus, p. 32, n. 2.

M:-law of extensionality, stronger, enables us to establish the theory of syllogisms
with possible premisses, p. 1g2.

modal functions, p. 134.

modal functors, p. 134 ; different from any of the four functors of the two-valued
calculus, p. 166; all combinations of, reducible to four irreducible combina-
tions, p. 179.

modal logic, of propositions, presupposed by any modal logic of terms, p. 133; its
fundamental formulae, pp. 134-5; two scholastic principles of, pp. 135-6;
basic, p. 137; four-valued system of, developed, pp. 166—9; three-valued
system of, unsatisfactory, pp. 166 n., 167; eight-valued system of, outlined,
p. 179; infinitely many-valued system of, p. 180.

modal syllogistic, less important than assertoric syllogistic, p. 181 ; contains mis-
takes, p. 133; should be rebuilt, p. 201.

modus ponens, first indemonstrable of the Stoics, p. 1g; rule of detachment, pp. 16, 81.

moods, with two apodeictic *‘premisses, pp. 181—-3; with one apodeictic and one
assertoric premiss, pp. 183~6; with possible premisses, neglected in favour of
moods with contingent premisses, p. 1g1; with one problematic and one
apodeictic premiss, yielding apodeictic conclusions, p. 193; with contingent
premisses, not likely to find a useful application, p. 201; with problematic
premisses, a method of correcting them, p. 204 ; obtained by complementary
conversion, must be rejected.

Mutschmann, p. 59, n. 1.

N, sign of negation ‘it is not true that’ or ‘not’, p. 78.

necessary connexions, of propositions, pp. 143-6; of terms, 148—g.

necessity, its relation to possibility expressed symbolically, p. 135; simple and
conditional, pp. 144, n. 1, 151-2; hypothetical, p. 152 ; Aristotle’s principle of,
pp. 151—4; principle of, interpreted as rule, pp. 152-3; Aristotle’s views on,
disastrous for philosophy, p. 205; see syllogistic necessity.

negation, propositional, denoted by odx{ by the Stoics, p. 78, n. 1.

negative terms, excluded by Aristotle from syllogistic, p. 72.

number of syllogistic forms and valid moods, p. g6.

number of undecidable expressions, infinite without Stupecki’s rule, p. 103.
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number of valid moods and figures for n terms, p. 42.

0, constant functor, means ‘some—is not’ or ‘does not belong to some’, pp. 14, 77.
Oab, means ‘some a is not 4’ or ‘b does not belong to some a’, p. 77.

Ockham, his laws, p. 197, n. 3.

order of premisses, pp. 32—34 ; not fixed by Aristotle, pp. 32-34.

odx(, propositional negation of the Stoics, p. 78, n. 1.

Oxford Translation of Aristotle’s works, p. vii.

particular, premiss, p. 4; quantifier, see quantifiers.

Peano, G., p. 52.

peiorem sequitur semper conclusio partem, pp. 184, 193.

Peirce, C. S., invented a method of verifying theses of the theory of deduction,
pp. 82, 166.

perfect syllogisms, moods of the first figure, pp. 43-45.

Peripatetics, a syllogism used by them, p. 1; on relation of logic to philosophy,
p- 13 n.; not formalists, p. 16.

Philo of Megara, defined implication as truth function, pp. 83 n., 146-7, 158.

Philoponus, John, on importance of variables, p. 8, n. 3; uses v7woBdAew to denote
substitution, p. 8; his definition of the major and the minor term, p. 32, n. 2;
the second figure has a major and minor term by convention, p. 32, n. 3.

Plato, his supposed influence on Aristotle’s logic, pp. 6, 205 ; examples of compound
syllogisms, p. 40.

Platonists, on relation of logic to philosophy, p. 13.

possibility, its relation to necessity expressed symbolically, p. 135; in the four-
valued system of modal logic, represented by ‘twin’ functors, pp. 167, 172;
their four-valued matrices, p. 172; their use for defining contingency, pp.
175-6.

Prantl, C., criticized by Kapp, p. 3, n. 6; does not distinguish the Aristotelian
syllogism from the traditional, pp. 22, 35; his mistaken opinion on the fourth
figure, p. 35, nn. 1, 3; his ignorance of logic, pp. 35-36 ; quotes Averroes, p. 38.

predicate, together with subject matter of the syllogism, p. 14; put by Aristotle in
the first place in abstract syllogisms, p. §; predicate of conclusion = major
term, p. 32; prejudice that every proposition has a subject and a predicate,
p. 131.

premiss, defined by Aristotle, p. 3; divided by him into universal, particular, and
indefinite, p. 4.

primitive terms, of the syllogistic, p. 45.

Principia Mathematica, by A. N. Whitehead and B. Russell, pp. 48, 50, n. 2, 51, n. 2,
52, n. I, 56, n. 2, 61 n., 163, 165.

principle, of division of syllogisms into figures, p. 23 ; of identity, apodeictic, must
be rejected, p. 1go; of tautology, p. 165.

Prior, A. N, p. 171 n.

proof, Aristotle’s theory of proof unsatisfactory, p. 44 ; proofs of syllogistic moods
by conversion, pp. 51-54 ; by reductio ad impossibile, pp. 54-59; by ecthesis, pp.
59-67; how proofs should be performed by reductio ad impossibile, p. 56 ; proof
of decision for the theory of deduction, pp. 112-18; for the syllogistic, pp. 120~
6; of L-law of extensionality, p. 13g; proof of CNLNpMp, pp. 141-2; proof of
Cpp in the C-N-8-p-system, pp. 162—3; proof that no apodeictic proposi-
tion is true, pp. 16g—70; proof of moods with one apodeictic and one assertoric
premiss, pp. 188-g.

proposition, wpdracis of the Peripatetics, p. 3; df{wpa of the Stoics, p. 82 n.;
Alexander on the difference of categorical and hypothetical propositions,
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p. 132 n.; functorial propositions have no subjects or predicates, p. 132;
apodeictic, p. 134 ; problematic, p. 134 ; assertoric, p. 134 ; analytic, definition
and examples of, p. 149.

propositional function, pp. 94-95.

Q,sign of equivalence, p. 108; means ‘if and only if’, is employed instead of the
usual ‘E’, p. 135, n. 5.

quantified expressions, explained, p. 84.

quantifiers, universal denoted by I1, existential or particular denoted by Z, p. 84;
rules of existential quantifiers, p. 62; rules of universal quantifiers, p. 86;
universal quantifiers correspond to the syllogistic necessity, pp. 11, 87;
existential quantifiers may explain proofs by ecthesis, pp. 61-66; universal
quantifiers may be omitted at the head of an asserted formula, p. 145.

Quine, W. V., on consequences of the apodeictic principle of identity, p. 150 n.,
his example of the difficulty resulting from the application of modal logic to
the theory of identity, p. 171 ; solution of the difficulty, pp. 171-2.

RE, rule allowing to replace NI by E and conversely, p. 88.

reductio ad absurdum, see reductio ad impossibile.

reductio ad impossibile, characterized by Aristotle, p. 55 n.; proofs by, pp. 54-59;
unsatisfactory for Baroco and Bocardo, pp. 54-55, 182.

reduction of axioms to a minimum, has a predecessor in Aristotle, p. 45.

reduction of syllogistical moods to the first figure, means proof, p. 44; Keynes’s
opinion criticized, p. 44.

reduction to elementary expressions, in the theory of deduction, pp. 111-15; in the
syllogistic, pp. 118-20.

rejected expressions, denoted by an asterisk, pp. 96, 136.

rejection, used by Aristotle by exemplification through concrete terms, p. 67, n. 2;
a rule of rejection stated by him, p. 70, n. 2; its meaning explained, p. g6; its
rules, pp. 71-72, g6; how these rules work, pp. g6-97; reasons for its intro-
duction into the theory of deduction, p. 109.

RO, rule allowing to replace N4 by O and conversely, p. 88.

Ross, Sir David, pp. vii, viii, 8, n. 1, 24 n., 46, n. 1, 47, n. 2, 154, nn. 1-2, 185,
n. 5, 191, n. 1, 195, n. 2, 203, N. 2, 204 n.

RS, Stupecki’s rule of rejection, p. 104.

rule, ‘a, therefore it is necessary that «’, accepted by some modern logicians, p. 153.

rule for the verification of 8-expressions, p. 163.

rule of detachment—modus ponens of the Stoics, pp. 16, 19, 81.

rule of Slupecki, formulated, pp. 75, 103 ; explained, p. 104 ; employed, pp. 105-6.

rule of substitution for variable functors, explained, pp. 161-2.

rules of inference, different from propositions, p. 21 ; for asserted expressions: by
substitution, pp. 8o, 88; by detachment, pp. 81, 88; for rejected expressions:
by substitution, pp. 72, g6; by detachment, pp. 71, g6.

Russell, B., p. 1, n. 1; wrongly criticizes Aristotle, p. 1, n. 3; see also Principia
Mathematica.

Scholz, H., p. ix; on Galen’s authorship of the fourth figure, p. 39.

Schroder, E., p. 166.

sea-fight, pp. 152, 155, 175, 178, 207-8.

Sextus Empiricus, quotes a Peripatetic syllogism, p. 1, n. 2 ; gives the Stoic proof of
the compound law of transposition, p. 59, n. 1; quotes Philo’s definition of
implication, p. 83 n.

Sierpiniski, W., p. 205.
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significant expression, defined inductively, p. 8o.

simple expressions of the syllogistic, rejected, pp. 120-1.

simplification, law of, p. 8q.

singular terms, defined by Aristotle, p. 4, n. 2; why omitted in his syllogistic,
PP- 5-7-

Slupecki, J., proves that the number of undecidable expressions of the syllogistic is
infinite, p. 101 ; states a new rule of rejection, p. 103 ; shows that the Leibniz-
ian arithmetical interpretation of the syllogistic verifies his rule, p. 128 n. ; his
paper quoted, p. 76 n.

Solmsen, Fr., his view on conversion of the conclusion refuted, p. 25, n. 1.

square of opposition, not mentioned in the Analytics, pp. 20, 45.

Stoics, on exchange of equivalent terms in syllogisms, pp. 18, 19 n.; their logic
formalistic, p. 19; their logic a logic of propositions, pp. 48, 205; a system of
rules of inference, p. 48; misunderstood by modern commentators, p. 49;
denote variables by ordinal numbers, p. 58, n. 4; use ody{ as propositional
negation, p. 78, n. 1; adopt Philo’s definition of implication, p. 83; state the
principle of bivalence, p. 82 n.; modus ponens, the first indemonstrable syllo-
gism of the Stoics, p. 19; the second and third indemonstrable syllogisms,
p- 58; their proof of the compound law of transposition; the logic of the
Stoic—Megaric school well known to Alexander, p. 147.

oroixeia, letters, variables, p. 8.

strict implication, p. 147.

subject, together with predicate matter of the syllogism, p. 14; put by Aristotle in
the second place in abstract syllogisms, p. 3; subject of the conclusion =
minor term, p. 32; propositions without subject or predicate, pp. 44, 131.

substitution, an ancient argument by substitution, p. 10; term used for substitution
by Philoponus, p. 8, n. 3; rule of substitution for asserted expressions, p. 8o;
for rejected expressions, pp. 72, g6; for 3-expressions, pp. 161-2.

substitution-variables, distinct from interpretation-variables, p. 170.

syllogism, a Peripatetic, p. 1; in concrete terms given by Aristotle, p. 2 ; form of the
Aristotelian syllogism, pp. 1-3; different from the traditional logically and in
style, p. 3; differently formulated in variables and in concrete terms, p. 17;
compared by the Stoics with an arithmetical law, p. 15; in purely implica-
tional form, pp. 22, 182; in symbolic form, p. 78 ; modal syllogisms dealt with
by Aristotle after the pattern of his assertoric syllogisms, p. 181.

syllogistic necessity, its sign sometimes omitted by Aristotle, p. 10, n. 5; its meaning
explained on occasion of the invalid conversion of the O-premiss, p. 11;
wrongly explained by Maier, pp. 11-12; corresponds to a universal quanti-
fier, p. 11; proof of this correspondence in symbolic form, pp. 86-87; can be
eliminated from syllogistic laws, pp. 144-5.

symbolic notation, without brackets, pp. 78-79.

synthetic theorem, ascribed by Alexander to Aristotle, p. 65 n.; in symbolic
form, p. 85.

T, constant functor, means ‘it is contingent that’, p. 154 ; not suitable for the pur-
pose of interpreting contingency in Aristotle’s sense, p. 19g.

Tarski, A., pp. 78, n. 2, 107 n.

tautology, principle of, p. 165.

term, part of a premiss, p. 3; universal, singular, empty, p. 4; different from
Begriff, p. 3, n. 6; a division of terms, pp. 5-6 ; syllogistic requires homogeneous
terms, p. 7; major, minor, and middle term, pp. 28-30.

Theodicee, by Leibniz, p. 151.

Theophrastus, adds the moods of the fourth figure to the first, pp. 27, n. 2, 38, n. 4;



INDEX 221

probably defined the first figure differently from Aristotle, p. 27; makes
corrections to Aristotle’s modal syllogistic, p. 133 ; on the meaning of necessity,
p, 151, n. 2; makes explicit the distinction between simple and conditional
necessity, pp. 151-2; his doctrine concerning moods with mixed premisses,
pp- 184 n., 185, 187-8, 191 ; his peiorem rule violated by a modal mood, p. 193;
accepts the convertibility of universally-negative contingent propositions, p. 200,
nn. 1-4.

theorem of reduction, proved for the theory of deduction, pp. 111-15; for syllo-
gistic, pp. 118-20.

theory of deduction, the most elementary part of the logic of propositions, pp. 49,
79-83 ; invented by the Stoics as a system of rules of inference, p. 48 ; founded
in modern times by Frege, p. 48; placed at the head of mathematics in Prin-
cipia Mathematica, p. 48 ; reasons for introducing rejection into this theory, p. 109.

theory of identity, axioms of, p. 149; difficulties resulting from the application of
modal logic to the theory of identity explained, pp. 170-1.

theory of probability, may have a link with modal logics, p. 180.

therefore, sign of inference, pp. 2, 21.

8éa.s, order of terms adopted by Aristotle for the three figures, p. 33, nn. 3-5.

thesis, true proposition of a deductive system, p. 20; different from a rule of in-
ference, p. 21 ; relation of an implicational thesis to the corresponding rule of
inference, p. 22.

Thomas, Ivo, O.P., p. 149, n. 2.

traditional syllogism, a rule of inference, pp. 21-23 ; different from the Aristotelian,
p. 21; neither true nor false, only valid or invalid, p. 21; weaker than the
Aristotelian syllogism, pp. 22—23.

transposition, law of, known to Aristotle, p. 49, n. 3; its symbolic form, p. 89;
compound law of transposition, proved by the Stoics, p. 59, n. 1.

Trendelenburg, F. A., does not distinguish the Aristotelian syllogism from the
traditional, p. 22; on the order of premisses, p. 33, n. 2; on the principle of
division of syllogisms into figures, p. 36.

twin contingencies, p. 176.

twin necessities, p. 174.

twin possibilities, explained, pp. 172—4.

Ueberweg, Fr., pp. 36, 39.

undecidable expressions, p. 100; infinite in number, p. 103.

universal premiss, p. 4.

universal term, p. 4.

unumgquodque, quando est, oportet esse, a principle of necessity, p. 151.

utraque si praemissa neget nil inde sequetur, connected with Stupecki’s rule of rejection,

p- 103.

Vailati, G., p. 50, n. 4.

validity, property of inferences and rules of inference, p. 21.

variables, introduced into logic by Aristotle, pp. 7-8; truth of syllogisms does not
depend on shape of variables, p. g, n. 2; identification of variables not known
to Aristotle, p. g; their extensional relations cannot be determined, p. 29.

verification of §-expressions, explained, p. 163.

verum sequitur ad quodlibet, p. 179.

von Wright, G. H., p. 153 n.

W, constant functor, its four-valued matrix, p. 172; its relation to its twin functor
M, pp. 172-4; its role in defining contingency, pp. 175-6.
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Waitz, Th., p. vii; does not distinguish the Aristotelian syllogism from the tradi-
tional, p. 22; a textual criticism, p. 24 n.; censures Apuleius for changing the
order of premisses, p. 33, n. I.

Wallies, M., p. 39.

Whitehead, A. N., see Principia Mathematica.

X, constant functor, its four-valued matrix, p. 176; its 8-definition, p. 175; its
relation to its twin functor 1 explained, pp. 175-7.

7, constant functor, its four-valued matrix, p. 176; its 3-definition, p. 175, its
relation to its twin functor X explained, pp. 175-7.

Zeller, E., p. 49.
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