

Sump tank
Supply pump
Flow controlvalve
Drain valve
Jollecting tank
Gauge glass
Venturimeter
Oriticemeter
Rotan.ter
Mancmeter

VENTURIMETER, ORIFICEMETER AND ROTAMETER TEST RIG

DETERMINATION OF THE CO-EFFICIENT OF DISCHARGE OF GIVEN ORIFICE METER

AIM:

To determine the co-efficient discharge through orifice meter

APPARATUS REQUIRED:

- 1. Orifice meter
- 2. Differential U tube
- 3. Collecting tank
- 4. Stop watch
- 5. Scale

FORMULAE:

1. ACTUAL DISCHARGE:

$$Q_{act} = A x h / t (m^3 / s)$$

2. THEORTICAL DISCHARGE:

 $Q_{th} = a_1 x a_2 x \sqrt{2} g h / \sqrt{a_1^2 - a_2^2}$ (m³/s)

Where:

- A = Area of collecting tank in m^2
- h = Height of collected water in tank = 10 cm
- a_1 = Area of inlet pipe in, m^2
- a_2 = Area of the throat in m^2
- g = Specify gravity in m / s^2
- t = Time taken for h cm rise of water
- H = Orifice head in terms of flowing liquid

$$= (H_1 \sim H_2) (s_m/s_{1-}1)$$

Where:

- H1 = Manometric head in first limb
- H2 = Manometric head in second limb
- s $_{m}$ = Specific gravity of Manometric liquid

(i.e.) Liquid mercury Hg = 13.6

 s_1 = Specific gravity of flowing liquid water = 1

		[1		
Co-efficient of discharge Cd (no unit)					
Theoretical discharge Qth x 10 ⁻³ m³ / s					Mean Cd =
Actual discharge Q act x 10 ⁻³ m ³ / s					
Time taken for 'h' cm rise of water 'ť' Sec					
Manometric head H=(H1∼H2) x 12.6 x 10 ⁻²					
Manometric reading	H2 cm of Hg				
	H1 cm of Hg				
Diameter in mm					
S.No					

3. CO EFFICENT OF DISCHARGE:

Co- efficient of discharge = Q act / Q th (no units)

DESCRIPTION:

Orifice meter has two sections. First one is of area a_1 , and second one of area a_2 , it does not have throat like venturimeter but a small holes on a plate fixed along the diameter of pipe. The mercury level should not fluctuate because it would come out of manometer.

PROCEDURE:

- 1. The pipe is selected for doing experiments
- 2. The motor is switched on, as a result water will flow
- 3. According to the flow, the mercury level fluctuates in the U-tube manometer
- 4. The reading of H_1 and H_2 are noted
- 5. The time taken for 10 cm rise of water in the collecting tank is noted
- 6. The experiment is repeated for various flow in the same pipe
- 7. The co-efficient of discharge is calculated

MODEL CALCULATION:

RESULT:

The co efficient of discharge through orifice meter is (No unit)