ChE 243: Formula and Data Sheets

Property Relations

 $V = m v (m^{3}); \quad U = m u (kJ); \quad H = m h (kJ); \quad S = m s (kJ/K) \quad [Note: V = volume]$ $H \equiv U + PV (kJ) \implies h = u + Pv (kJ/kg)$ $PE = mgz (kJ); \qquad pe = gz (kJ/kg)$ $KE = \frac{1}{2}m \cdot vel^{2} (kJ); \qquad ke = \frac{1}{2} vel^{2} (kJ/kg) \quad [Note: vel = velocity]$ $c_{v} = \left(\frac{\partial u}{\partial T}\right)_{v} (kJ/kg \cdot K); \quad c_{P} = \left(\frac{\partial h}{\partial T}\right)_{P} (kJ/kg \cdot K)$

Saturated mixtures: $v_{\text{mix}} = v_f + x(v_g - v_f);$ $u_{\text{mix}} = u_f + x(u_g - u_f)$ $h_{\text{mix}} = h_f + x(h_g - h_f);$ $s_{\text{mix}} = s_f + x(s_g - s_f)$

Incompressible substances (i.e. solids and liquids): $c_v \approx c_P \equiv c$; $\Delta u \approx \Delta h \approx c \Delta T$

Ideal gases: Pv = RT; $c_{P0} = c_{v0} + R$ [Note: subscript "0" implies ideal gas]

$$\Delta u = \int_{1}^{2} c_{\nu 0} \, \mathrm{d}T \approx c_{\nu 0} \left(T_{2} - T_{1}\right); \quad \Delta h = \int_{1}^{2} c_{P 0} \, \mathrm{d}T \approx c_{P 0} \left(T_{2} - T_{1}\right)$$

First Law Relations

Closed system (control mass):

$$Q - W = m\left[\left(u_2 + \frac{1}{2}\operatorname{vel}_2^2 + gz_2\right) - \left(u_1 + \frac{1}{2}\operatorname{vel}_1^2 + gz_1\right)\right]; \quad W = \int_1^2 P \, \mathrm{d}V \quad \text{for boundary work}$$

Open system (control volume or CV):

Steady flow

$$\dot{Q}_{\rm CV} - \dot{W}_{\rm CV} = \sum_{\rm exits} \dot{m}_e \left(h_e + \frac{1}{2} \operatorname{vel}_e^2 + gz_e \right) - \sum_{\rm inlets} \dot{m}_i \left(h_i + \frac{1}{2} \operatorname{vel}_i^2 + gz_i \right) \,, \text{ where } \dot{m} = \frac{\operatorname{vel} \cdot A}{v}$$

For single stream steady flow, with $\dot{m}_e = \dot{m}_i \equiv \dot{m}$, define $q \equiv \dot{Q}/\dot{m}$; $w \equiv \dot{W}/\dot{m}$

$$\Rightarrow q - w = \left(h_e + \frac{1}{2} \operatorname{vel}_e^2 + gz_e\right) - \left(h_i + \frac{1}{2} \operatorname{vel}_i^2 + gz_i\right)$$

Transient process (conditions uniform within CV & constant at inlets/exits; neglect changes in PE & KE)

$$Q_{\rm CV} - W_{\rm CV} = \sum_{\rm exits} m_e h_e - \sum_{\rm inlets} m_i h_i + (m_2 u_2 - m_1 u_1)_{\rm CV}$$

Second Law Relations (T in kelvin)

$$dS \equiv \frac{\delta Q_{rev}}{T} \implies Q_{rev} = \int_{1}^{2} T \, dS$$
$$\Delta S_{tot} = \Delta S_{system} + \Delta S_{surr} = S_{gen} \ge 0$$

Incompressible substances (i.e. solids and liquids) with constant specific heats: $\Delta s = c \ln(T_2/T_1)$

Ideal gases (with constant specific heats):

$$\Delta s = \begin{cases} c_{\nu 0} \ln(T_2/T_1) + R \ln(\nu_2/\nu_1) \\ c_{P0} \ln(T_2/T_1) - R \ln(P_2/P_1) \end{cases}$$

$$\Delta s = 0 \quad \Rightarrow \quad P_1 \nu_1^{\ k} = P_2 \nu_2^{\ k} \ ; \quad \frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{(k-1)/k} \ ; \quad \frac{T_2}{T_1} = \left(\frac{\nu_1}{\nu_2}\right)^{k-1} \ ; \quad \text{where} \ k = c_{P0}/c_{\nu 0}$$

Closed system (control mass):

$$\Delta S = \sum \frac{Q}{T} + S_{\text{gen}}; \quad S_{\text{gen}} \ge 0$$

Open system (control volume or CV):

Steady flow

$$\frac{\dot{Q}_{\rm CV}}{T} + \dot{S}_{\rm gen} = \sum_{\rm exits} \dot{m}_e \, s_e \, - \, \sum_{\rm inlets} \dot{m}_i \, s_i \; ; \; \; \dot{S}_{\rm gen} \ge 0$$

Transient process (conditions uniform within CV and constant at inlets/exits)

$$\frac{Q_{\rm CV}}{T} + S_{\rm gen} = \sum_{\rm exits} m_e \, s_e \, - \sum_{\rm inlets} m_i \, s_i \, + \, (m_2 \, s_2 - m_1 \, s_1)_{\rm CV} \, ; \, S_{\rm gen} \ge 0$$

Power and refrigeration devices:

$$\eta_{\rm th} \equiv \frac{W_{\rm net,out}}{Q_{\rm H}} = \frac{Q_{\rm H} - Q_{\rm L}}{Q_{\rm H}}; \quad \text{COP}_{\rm Re} \equiv \frac{Q_{\rm L}}{W_{\rm net,in}} = \frac{Q_{\rm L}}{Q_{\rm H} - Q_{\rm L}}; \quad \text{COP}_{\rm HP} \equiv \frac{Q_{\rm H}}{W_{\rm net,in}} = \frac{Q_{\rm H}}{Q_{\rm H} - Q_{\rm L}}$$

$$\eta_{\rm th,Carnot} = \frac{T_{\rm H} - T_{\rm L}}{T_{\rm H}}; \quad \text{COP}_{\rm Re,Carnot} = \frac{T_{\rm L}}{T_{\rm H} - T_{\rm L}}; \quad \text{COP}_{\rm HP,Carnot} = \frac{T_{\rm H}}{T_{\rm H} - T_{\rm L}}$$

$$\eta_{\rm turbine} \equiv \frac{w_{\rm actual}}{w_{s}} = \frac{h_{1} - h_{2,\text{actual}}}{h_{1} - h_{2s}}; \quad \eta_{\rm compressor} \equiv \frac{w_{s}}{w_{\rm actual}} = \frac{h_{2s} - h_{1}}{h_{2,\text{actual}} - h_{1}}$$

Incompressible steady flow: reversible work (neglecting changes in PE & KE) is $w_{CV} = -v \int_{in}^{out} dP$

Generalized Charts

$$T_{R} \equiv \frac{T}{T_{cr}}; \quad P_{R} \equiv \frac{P}{P_{cr}}$$

$$Z \equiv \frac{Pv}{RT}; \quad Z_{h} \equiv \frac{h^{*} - h}{RT_{cr}}; \quad Z_{s} \equiv \frac{s^{*} - s}{R}$$

$$h_{2} - h_{1} = (h_{2} - h_{2}^{*}) + (h_{2}^{*} - h_{1}^{*}) + (h_{1}^{*} - h_{1}); \quad \Delta h^{*} = \int_{1}^{2} c_{P0} \, dT \approx c_{P0}(T_{2} - T_{1})$$

$$s_{2} - s_{1} = (s_{2} - s_{2}^{*}) + (s_{2}^{*} - s_{1}^{*}) + (s_{1}^{*} - s_{1}); \qquad \Delta s^{*} = c_{P0} \ln(T_{2}/T_{1}) - R \ln(P_{2}/P_{1})$$

Dimensions and Units

Dimension	Unit	Dimension	Unit
length	metre (m)	force	newton (N)
mass	kilogram (kg)	pressure	pascal (Pa)
amount	mole (mol)	heat, work	joule (J)
temperature	kelvin (K)	power	watt (W)
time	second (s)	volume	cubic metre (m ³)

Constants and Conversion Factors

$1 \text{ N} = 1 \text{ kg} \cdot \text{m/s}^2$	$1 \text{ J} = 1 \text{ N} \cdot \text{m}$	1 W = 1 J/s
$1 \text{ Pa} = 1 \text{ N/m}^2$	$1 \text{ m}^3 = 10^3 \text{ L} = 10^6 \text{ mL}$	1 tonne = 1000 kg
$1 \text{ bar} = 10^5 \text{ Pa} = 100 \text{ kPa}$	1 atm = 101.325 kPa	1 psi = 6.894 757 kPa
$R_{\rm u} = 8.314 \ 47 \ {\rm kJ/(kmol \cdot K)}$	$R = R_{\rm u}/M$ ($M = {\rm molar mass}$)	
$g = 9.806\ 65\ \mathrm{m/s^2}$	0°C = 273.15 K	

Linear interpolation

$$y = y_1 + \left(\frac{x - x_1}{x_2 - x_1}\right) \cdot (y_2 - y_1)$$