Conversions and Dimensional Analysis

SI Base Units

Length (L)	meter (m)
Mass	kilogram (kg)
Time	second (s)
Electric current (I)	ampere (A)
Temperature	Kelvin (K)

Constants

name	symbol	value	units	base units*
Speed of light	с	3.000E8	m/s	m/s
Planck's constant	h	6.626E-34	J * s	$(kg * m^2)/s$
Avogadro's #	N _A or L	6.022E23	mol ⁻¹	mol ⁻¹
Gas constant	R	8.314	J/(k * mol)	$(kg * m^2)/(s^2 * K * mol)$

quantity	name	symbol	equivalents	SI base unit equivalents
Electric charge (quantity of electricity)	coulomb	С	$s \bullet A F \bullet V$	s • A
Electrical capacitance	farad	F	C/V s/Ω	$(s^4 * A^2)/(kg * m^2)$
Electrical conductance	siemens	S	$1/\Omega$ A/V	$(s^3 * A^2)/(kg * m^2)$
Electrical resistance	ohm	Ω	1/S V/A	$(kg * m^2)/(s^3 * A^2)$
Energy, work, heat	joule	J	$N \bullet m$ $C \bullet V$ $W \bullet s$	$(kg * m^2)/s^2$
Force, weight	newton	Ν	$kg \cdot m/s^2$	$(kg * m)/s^2$
Frequency	hertz	Hz	1/s	s ⁻²
Magnetic field strength	tesla	Т	$V \cdot s/m^{2}$ Wb/m^{2} $N/(A \cdot m)$	kg/(s ² * A)
Power	watt	W	$J/s V \bullet A$	(kg * m ²)
Pressure	pascal	Ра	N/m^2	$kg/(m * s^2)$
Temperature relative to 273.15 K	degree	°C	К	К
Voltage, Δ electric potential, EMF	volt	V	W/A J/C	$(kg * m^2)/(s^3 * A)$

Chemical Structure Characteristics

Carbohydrates

Citric Acid Cycle (molecules)

Glycolysis (molecules)

Amino Acids Non-polar, Hydrophobic, Neutral

Charge, Basic, Hydrophilic

Periodic Table Trends (BEAR)

B: Basicity, ability of molecules to accept protons

➤ Increases up and left

E: Electronegativity, electron affinity, ionization energy

➤ Increases up and right

Electronegativity, ability of an atom to attract electrons to itself at a covalent bond *Electron affinity*, energy associated with the addition of an electron to an atom *Ionization energy*, amount of energy required to remove an electron from an atom *A: Acidity*, ability of a molecule to donate protons

Increases down and right

R: Radius, size of an atom's electron cloud

Increases down and left

Group (vertical)		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
Period (horizontal))			tals														ens		
1		H 2.20		rth me										Nor	ı met	tals		Halog	He	S
2		Li 0.98	Be 1.57	line ea									als	B 2.04	C 2.55	N 3.04	0 3.44	F 3.98	Ne	gase
3	tals	Na 0.93	Mg 1.31	Alka		1	Tran	sition	n met	als			Met	Al 1.61	Si 1.90	P 2.19	S 2.58	CI 3.16	Ar	loble
4	li met	K 0.82	Ca 1.00	Sc 1.36	Ti 1.54	V 1.63	Cr 1.66	Mn 1.55	Fe 1.83	Co 1.88	Ni 1.91	Cu 1.90	Zn 1.65	Ga 1.81	Ge 2.01	As 2.18	Se 2.55	Br 2.96	Kr 3.00	
5	Alka	Rb 0.82	Sr 0.95	Y 1.22	Zr 1.33	Nb 1.6	Mo 2.16	Tc 1.9	Ru 2.2	Rh 2.28	Pd 2.20	Ag 1.93	Cd 1.69	In 1.78	Sn 1.96	Sb 2.05	Te 2.1	 2.66	Xe 2.60	
6		Cs 0.79	Ba 0.89	*	Hf 1.3	Ta 1.5	W 2.36	Re 1.9	Os 2.2	lr 2.20	Pt 2.28	Au 2.54	Hg 2.00	TI 1.62	Pb 2.33	Bi 2.02	Po 2.0	At 2.2	Rn 2.2	
7		Fr 0.7	Ra 0.9	**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo	
Lanthanides		*	La 1.1	Ce 1.12	Pr 1.13	Nd 1.14	Pm 1.13	Sm 1.17	Eu 1.2	Gd 1.2	Tb 1.1	Dy 1.22	Ho 1.23	Er 1.24	Tm 1.25	Yb 1.1	Lu 1.27			
Actinides		**	Ac 1.1	Th 1.3	Pa 1.5	U 1.38	Np 1.36	Pu 1.28	Am 1.13	Cm 1.28	Bk 1.3	Cf 1.3	Es 1.3	Fm 1.3	Md 1.3	No 1.3	Lr 1.291			

Organic Chemistry Major Functional Groups

Nomenclature

group	prefix	suffix
Carboxylic acids	carboxy-	-oic acid
Anhydrides	alkanoyloxycarbonyl-	anhydride
Esters	alkoxycarbonyl-	-oate
Amides	carbamoyl-	-amide
Aldehydes	oxo-	-al
Ketones	oxo- or keto-	-one
Alcohols	hydroxy-	-ol

Bonding

bond order	single	double	triple
bond type	σ	σ, π	σ, π, 2π
hybridization	sp ³	sp^2	sp
angles	109.5°	120°	180°
example	C – C alkane	C = C alkene	$C \equiv C$ alkyne

Polarity

Electronegativity	Difference determines the polarity of the bond formed Partial positive charge $(\delta+)$: Electron density shifted away from atom with lower EN Partial negative charge $(\delta-)$: Electron density shifted towards atom with higher EN
Covalent bonds	Polar : e^{-} not shared equally $0.5 < \Delta EN < 1.7$ Nonpolar : e^{-} shared equally $\Delta EN < 0.5$
Solubility	"Like dissolves like"

Isomers

The more favored product will be more stable due to less strain and conjugation

Configurational Isomers

- a. **Enantiomer**: Non-superimposable mirror images, with opposite stereochemistry at every chiral center
 - → Exhibit same chemical and physical properties, except rotation of plane-polarized light and reactions in chiral environments
- b. **Diastereomer**: Non-mirror images, with differences at select chiral centers
 - → Different chemical and physical properties

Newman Projections

Absolute configurations Alkenes

 (Z): If highest priority substituents are on the same side of the double bond

Stereocenters

Lowest priority at front

low

- \succ Clockwise (S)
- ➤ Counter-clockwise (R)

Lowest priority at back

- \succ Clockwise (R)
- \succ Counter-clockwise (S)

Cis-trans: Groups differ in position about an immovable bond

Basic Concepts

Nucleophile: "Nucleus-loving", wants ⊕ Electrophile: "Electron-loving", wants ⊖ Leaving group: Portion of the reactant that leaves the molecule as a result of reacting with another reagent

- Best LGs are those able to stabilize the extra electrons given to it
- Most common: Weak bases, large groups with resonance or electron-withdrawing atoms

pK_a and S_N reactions

- \succ *pK_a* < *environment*, *pH* = *deprotonation*
- \triangleright *pK_a* > *environment*, *pH* = *protonation*

 $S_N 1$ Reactions: Substitution reaction with a unimolecular rate-determining step (first-order substrate, zero-order nucleophile)

1. Leaving group leaves, carbocation is left

2. Nucleophile attacks carbocation

Notes: Produces a racemic mixture, strong nucleophile is not needed, favored under increased steric hindrance (e.g., 3° carbon) and polar, protic solutions

$S_N 2$ Reactions

1. Nucleophile attacks as the leaving group leaves

Notes: Flip the stereochemistry, optically active inverted products, favored with strong nucleophile and polar, aprotic solvents, not favored under steric hindrance

Carbonyl groups in S_N reactions

 Electron-withdrawing oxygen leaves the carbon with a partial + charge, making it vulnerable to nucleophilic attack

5, 10, 15, 20: 4 organic acid functional groups Carboxylic acid

$$pK_a \approx 10$$

$$pK_a \approx 15$$

 α -hydrogen

$$pK_{a} \approx 20$$

> The lower the pK_{a} , the more acidic

Alcohol

Phenol

Alcohols

Properties: Higher boiling point due to hydrogen bonding, weakly acidic hydroxyl hydrogen, polar (soluble in H_2O)

Synthesis: Aldehyde/ketone with $NaBH_4$ or $LiAlH_4$ (reduction), ester/carboxylic acid with $LiAlH_4$, S_NI and S_N2 reactions

Redox Reactions

Oxidation

a. PCC turns 1° alcohol into an aldehyde, or 2° *into ketone*

b. Jone's reagent (CrO₃), KMnO₄, or an alkali dichromate turns 2° alcohol into ketone, or 1° alcohol into carboxylic acid

Reduction

a. LiAlH₄ or NaBH₄ (both reducing agents) converts a ketone into an alcohol

Mesylates and Tosylates

- a. Conversion of alcohol into mesylates (-SO₃CH₃) or tosylates (-SO₃C₆H₄CH₃), making them better LG for S_N reactions
- b. Carbonyl + dialcohol results in an unreactive acetal, which can protect carbonyls and is removed by an aqueous acid

Quinones + Hydroxyquinones

a. Treating a phenol with an oxidizing agent results in a quinone

b. Quinones can get further oxidized into a hydroquinone (e.g., ubiquinone, or CoQ)

Aldehydes and Ketones

Properties: Relatively high boiling point due to dipole moment (not as high as alcohol)

Note: Aldehydes are slightly more acidic than ketones due to less steric hindrance

Synthesis: Oxidation with PCC to aldehyde (1°) or ketone (2°), ozonolysis of alkenes

Reactions

- a. Nucleophilic addition
 - 1. Nucleophile attacks carbonyl carbon
 - 2. Resulting alkoxide is protonated by addition of an acid to form alcohol

b. *Hydration*: Aldehyde or ketone form a geminal diol in the presence of water

 $\begin{array}{c} \mathsf{O} \\ \mathsf{H} \\ \mathsf{C} \end{array} + \mathsf{H}_2 \mathsf{O} \end{array} \begin{array}{c} \mathsf{H}_3 \mathsf{O}^* \text{ or -} \mathsf{O} \mathsf{H} \\ \hline \mathsf{C} \end{array}$

Aldehyde or Ketone Gem-diol

OH

HO

c. *Hemiacetal/hemiketal*: Addition of nucleophilic alcohol (ROH) by S_N1 mechanism to aldehyde/ketone to form hemiacetal/hemiketal

aldehyde or ketone

hemi-acetal

acetal

d. *Acetal/ketal*: Another ROH equivalent is added to hemiacetal/hemiketal

e. Condensation: Addition of N-groups to form imines with the loss of water

Enamine: Tautomer of imine

f. **Cyanohydrin formation**: Addition of HCN yielding a stable cyanohydrin

g. Alcohol formation: *Reduction with LiAlH*⁴ *or NaBH*⁴

h. **Tautomerization**: Interconversion of ketone/aldehyde with enol

keto form of acetone

enol form of acetone

Michael addition: Addition of an enolate of a ketone/aldehyde to an α, β-unsaturated carbonyl compound at the β carbon

ii. **Enamines**: Tautomerism between imine and enamine

i. Aldol condensation: Formation of an aldol in a basic environment, with dehydration

Retro-aldol reaction: Reverse aldol condensation with the addition of a base and heat

Carboxylic Acids

Properties: Acidic due to resonance stabilization, polar, highly oxidized, high boiling point due to two H-bonds

➤ More stable conjugate base results in a more acidic of an acid

Synthesis: Oxidation of 1° alcohol or aldehyde by a strong oxidizer (KMnO₄, KCr₄O₇, CrO₃), hydrolysis of nitriles

Reactions

a. Nucleophilic acyl substitution: Nucleophilic attack, LG leaves, carbonyl reformed

i. Amine or ammonia nucleophile, amide formed

ii. Alcohol nucleophile, ester formed (acidic conditions required)

iii. Carboxylic acid nucleophile, anhydride formed

b. **Reduction**: To 1° alcohol with LiAlH₄

Decarboxylation: Complete loss of a С. carboxyl group as CO₂, and replacement with a hydrogen, resulting in an enol

- d. Saponification: Long-chain carboxylic acid with a Na or KOH forming a salt (i.e., soap)
 - \succ Have long, nonpolar tail and a polar head
 - ➤ Longer tails are more hydrophobic, amounting to a better soap

Reactivity of derivatives

acyl chloride > acid anhydride >

Cyclic Amides (lactam)

y-lactam

δ-lactam

carboxylate

>

Nitrogen-phosphorous Compounds

N-containing Compounds: Amino Acids (zitterionic)

- a. *Strecker synthesis*: Combines aldehyde (*R*-group), ammonium chloride, and potassium cyanide
- b. Gabriel synthesis: Combines potassium phthalimide and diethyl bromomalonate

P-containing compounds: ATP, DNA

- a. **Phosphoric acid**: Phosphate group or inorganic phosphate (Pi)
 - At physiological pH, Pi is made up of hydrogen phosphate (HPO₄²⁻) and dihydrogen phosphate (H₂PO₄⁻)
- *b. Pyrophosphate* (*PPi*), or (*P*₂*O*₇⁴⁻): released when forming phosphodiester bonds in DNA
 - Unstable in aqueous solution, and is hydrolyzed to form two molecules of Pi

c. **Organic phosphates**: Nucleotides with phosphate groups (e.g., ATP, GTP, in DNA)

Purification Methods

a. *Extraction*: Separation of compounds based on solubility ("like dissolves like")

b. *Filtration*: Separation of solid from liquid with a filter (sped up with vacuum filtration)

- c. **Chromatography**: Uses a stationary phase and a mobile phase to separate compounds by polarity and size
 - Mobile phase elutes more quickly when it has the same polarity as the eluent
 - > Larger compounds elute slower

Distillation: Separation of liquids based on boiling point, which is heavily dependent on intermolecular forces *i. Simple*: boiling point < 150°C, 25°C apart *ii. Vacuum*: Bp >150°C *iii. Fractional*: Bp < 25°C apart

e. *Recrystallization*: Separation of solids based on their differences in solubility at varying temperatures

f. Electrophoresis: Separation of macromolecules based on size and/or charge

Experimental methods

a. **Polymerase chain reaction** (PCR): Used to amplify a specific DNA sequence **Technique**: Cycles of DNA denaturation, primer annealing, and DNA extension using a DNA polymerase **Applications**: Gene cloning, sequencing, genetic testing

b. Gel electrophoresis: Separates DNA, RNA, or proteins based on size and charge Technique: Molecules are loaded onto a gel matrix and subject to an electric field, causing them to migrate [smaller moves faster] Applications: DNA fragment analysis, sequencing, protein analysis

c. Western blotting: Detects and analyzes specific proteins in a sample **Techniques**: Separation by gel electrophoresis, transfer onto a membrane, then probed with antibodies that bind to specific target proteins

- d. Enzyme-linked immunosorbent assay (ELISA): Detects and quantifies the presence of specific proteins or antibodies in a sample **Technique**: Immobilizes target proteins or antibody onto a surface, then adds specific antibody or antigen
 - Bound antibodies are detected using an enzymatic reaction that produces a measurable signal

e. *Microscopy*: Visualizes biological structures at different scales

i. Light: Using visible light

ii. Electron: Using an electron beam

iii. **Confocal**: Using laser scanning and fluorescence to generate 3D images

Spectroscopy: Interpreting electromagnetic spectra

a. IR: Gives information about functional groups and progress of reaction

Pet	IKS
O - H	Broad, ~3300cm ⁻¹
N - H	Sharp, ~3300cm ⁻¹
C = O	Sharp, $\sim 1750 cm^{-1}$

- b. UV: Gives information about conjugated systems, such as shifts in absorbance spectrum created by compounds containing double bonds or heteroatoms with lone pairs
 - > Increase in conjugation indicated by increase in wavelength
 - > Absorbance of red results in appearance of green
 - > Useful for determining complexes of transition metals
- *c. NMR*: Gives information about the chemical composition of a molecule *i.* Benchmark numbers indicate shifts for specific chemical bonds
 - ➤ Hydrogens on sp³ carbons: 0-3 ppm
 - \succ Hydrogens on sp² carbons: 4.6-6.0 ppm
 - ➤ Hydrogens on sp carbons: 2-3 ppm
 - ➤ Aldehyde hydrogens: 9-10 ppm
 - ➤ Carboxylic acid hydrogens: 10.5-12 ppm
 - ➤ Aromatic hydrogens: 6-8.5 ppm
 - *ii. When analyzing NMR spectroscopy, look for*
 - 1. Number of protons: Indicated by number of peaks
 - 2. **Position of peaks**: More downfield (left), more deshielded and electron-withdrawing groups
 - > Downfield (to the left), deshielding
 - > Upfield (to the right), shielding
 - 3. Integration of peaks: Larger integration (height) means more protons (corresponds to area under curve)
 - Splitting: Hydrogens on adjacent carbons will split into n+1 subpeaks, with n are the number of hydrogens on the adjacent carbon

E.g., if n=1, then 1+1=2 (doublet) if n=2, then 2+1=3 (triplet)

Enzyme Kinetics: In which the rate of forward and/or reverse reactions is changed by altering the mechanisms of

reverse reactions is changed by altering the mechanisms of the reaction

Kinds of Enzymes

Oxidoreductase	Perform redox reactions that involve the transfer of electrons
Transferase	Move a functional group from one molecule to another
Kinase	Add a phosphate group
Phosphatase	Remove a phosphate group
Hydrolase	Catalyze cleavage with the addition of H_2O
Lyase	Catalyze cleavage without the addition of H_2O or electrons
Isomerase	Catalyze the interconversion of isomers, including constitutional and stereoisomers
Ligase	Join two large biomolecules, often of the same type
Lipase	Catalyze the hydrolysis of fats
Phosphorylase	Introduces a phosphate group into an organic molecules

Michaelis-Menten Kinetics

 V_{max} : Maximum rate of the reaction K_m : Substrate concentration at which the enzyme runs at half of its V_{max}

Saturation kinetics: The rate of reaction increases with an increase in substrate concentration, until a maximum value is reached (saturation)

Cooperativity: When an enzyme has multiple active sites

- a. **Positive cooperative**: Increases affinity for subsequent substrate molecules
- b. Negative cooperative: Decreases affinity
- c. Non-cooperative: Substrate does not affect affinity for subsequent substrates

Regulation of Enzymes

Feedback inhibition: *Enzyme inhibition by high levels* of product from later in the same pathway *Reversible inhibition*: *Ability to replace inhibitor with* a compound of greater affinity, or complete removal

- a. Competitive: Inhibitor similar to substrate, and binds at the active site, blocking it
 ➤ K_m increases; add more substrate
- b. Non-competitive: Inhibitor binds with equal affinity to the enzyme and enzyme-substrate complex (V_{max} decreases)
- c. Uncompetitive: Inhibitor binds only with the enzyme-substrate complex (V_{max} and K_m decrease)
- *d. Mixed inhibition*: *Inhibitor binds with unequal affinity to the enzyme and enzyme-complex*
 - V_{max} decreases; K_m depends on affinity for either enzyme or enzyme-complex

Irreversible inhibition: Active site becomes unavailable for a prolonged duration, or permanently

a. **Suicide inhibitor**: Substrate analogue that binds to the active site via a covalent bond

Allosteric effector: Binds at allosteric site, inducing a change in enzyme conformation, so that substrate can no longer bind to it

- a. **Positive**: Increases activity
- b. Negative: Decreases activity

Homotropic effector: Allosteric regulator that is also the substrate

Heterotropic effector: Allosteric regulator that is different from the substrate

Metabolic Pathways

<u>*Glycolysis*</u>: An aerobic [or anaerobic] metabolic pathway that breaks down glucose into two three-carbon compounds, generating energy in the form of ATP **Two steps**:

- 1. Energy investment: Cleavage of glucose into two three-carbon sugars (i.e., DHAP, G3P) of pyruvate
- 2. *Energy payoff*: Complete conversion to pyruvate, and production of ATP and NADH

Overview

Location	Cytoplasm
Intermediates	In order: Glucose, G6P, F6P, F-1,6-BP, DHAP, G3P, 1,3-BPG, 3-PG, 2-PG, PEP, pyruvate ➤ DHAP, G3P are isomers and thus can be interconverted
Key enzymes, steps, roles, functions	Irreversible (requiring ATP, 1-5)Hexo/glucokinase [1]: Phosphorylationof glucose \rightarrow glucose 6-phosphate> Prevents gluc. from diffusing outPhosphofructokinase(PFK)-1 [3]:Phosphorylation of fructose 6-phosphate \rightarrow fructose 6-bisphosphate> Rate-limiting, regulatedReversible (energy-releasing, 6-10)G3P dehydrogenase [6] (two-step):1. Oxidation of G3P2. Reduction of NAD+ to NADH [= 1 NADH]Phosphorylation of glyceraldehyde3-phosphate \rightarrow 1,3-bisphosphoglycerate> Generates 2 NADH per glucosePhosphoglycerate kinase [7]: Removal of a phosphate group from3-bisphosphoglycerate to ADP [= 1 ATP]> Generates 2 ATP per glucosePyruvate kinase [10, last]: Conversion of PEP to pyruvate (removal of phosphate)[= 1 ATP]> Generates 2 pyruvate per glucoseYield: 1 glucose = 2 ATP, 2 NADH; 2 pyruvate [may enter CAC after oxidation, or undergo fermentation]
Regeneration of NAD ⁺	 Aerobic respiration: NADH transfers electrons to the ETC Lactic acid fermentation: In the absence of oxygen, pyruvate may be directly reduced by NADH to form lactate, regenerating NAD⁺

Main regulatory sites	 HK: Inhibited by G6P (neg. feedback) PFK-1: Allosterically regulated by F-2,6-BP (activator), ATP and citrate (neg. regulators) Pyruvate kinase: Allosterically regulated by F-1,6-BP (activator), ATP and alanine (neg. regulator)
Allosteric inhibitors	ATP, citrate, acetyl-CoA (inhibits PK)
Allosteric activators	F-2,6-BP (PFK-1), AMP (PFK-1), F-1,6-BP (PK)

<u>Fermentation</u>: An anaerobic process that converts organic compounds (e.g., carbohydrates) into simpler compounds (e.g., alcohol, lactic acid), releasing energy in the absence of oxygen

 ETC does not function without oxygen, therefore fermentation relies on substrate-level phosphorylation to generate ATP

Overview

Lactic acid fermentation	<i>Location</i> : Bacteria, muscle cells
Key enzyme,	Lactate dehydrogenase (LDH):
role,	Central enzyme that reduces
function,	pyruvate to lactate (e^{-} from NADH)
yield	Isomers of LDH:
-	a. LDH-1: In the heart
	b. LDH-5: In skeletal muscle
	<u>Yield</u> : 1 glucose = 2 lactic acid, 2
	NADH, 2 ATP

<u>Krebs (Citric Acid) Cycle</u> (CAC): Involves the oxidation of acetyl-CoA to generate ATP, NADH, FADH₂ Acetyl-CoA: Produced from pyruvate molecules generated by glycolysis and transported to the mitochondrial membrane

Each pyruvate undergoes oxidative decarboxylation by pyruvate dehydrogenase complex (PDC), releasing CO₂, making acetyl-CoA

Overview

Location	Mitochondrial matrix
Intermediates	<u>In order</u> : Acetyl-CoA, citrate,
	isocitrate, α -ketoglutarate,
	succinyl-CoA, succinate, fumarate,
	malate, oxaloacetate (regenerated)
Key enzymes,	Pyruvate dehydrogenase complex:
steps, roles, functions	Converts pyruvate to acetyl-CoA
J	Citrate synthase: Forms citrate from
	acetyl-CoA and oxaloacetate
	Aconitase: Isomerizes citrate \rightarrow
	isocitrate
	Isocitrate dehydrogenase: Oxidative
	decarboxylation of isocitrate $\rightarrow \alpha$
trix granule Ribosome	-ketogiutarate
20	T NADH and CO ₂ generated
	a-ketogiutarate aenyarogenase
	complex . Oxidative decarboxylation of a $katoglutarata \rightarrow suscimul CoA CO and$
ATP synthase	-kelogiularate \rightarrow succinyi-CoA, CO ₂ , and NADH
ral space	\succ 1 NADH and CO ₂ generated
	Succinvl-CoA synthetase: Converts
	succinvl-CoA \rightarrow succinate
	\succ 1 GTP generated [can be
	converted to ATP]
	Succinate dehydrogenase (Complex
	<i>II): In the ETC, participates in the</i>
	oxidation of succinate \rightarrow fumarate
	\succ 1 FADH ₂ generated
	Fumarase : Hydrates fumarate \rightarrow malate
	Malate dehydrogenase: Oxidation of
	$malate \rightarrow oxaloacetate$
	➤ 1 NADH generated
	<u>Yield</u> : 1 acetyl-CoA = 1 ATP [\leftarrow
	GTP], 3 NADH, 1 FADH ₂ , 4 CO ₂ , 1
	oxaloacetate (put back into cycle)
	 Krebs cycle operates twice per
	glucose due production of 2
	pyruvate from glycolysis

Electron Transport Chain (ETC): Uses oxidative phosphorylation to facilitate the transfer of electrons to molecular oxygen, generating an H^+ gradient to drive ATP *synthesis* [*in aerobic respiration*] **Overview** F1

Location	Inner mitochondrial membrane		channel for H^+ movement
Complexes (four major complexes), roles, yield	Complex I (NADH dehydrogenase): Largest, accepts ⊧₀ e⁻ from NADH, transferring to coenzyme Q > Pumps H⁺ across inner membrane from matrix to intermembrane spa. Complex II (succinate dehydrogenase): Also in CAC, accept e⁻ from FADH₂ transferring	Outside ab ₂ Stator H ⁺ Y E C _{ma7} Rotor H ⁺	ATP synthesis: ATP synthase acts as a molecular rotary motor, utilizing the flow of protons to drive the synthesis of ATP > H ⁺ flow through F _o induces rotation of the F ₁ central stalk, which then causes the conformational changes necessary to produce ATP in the F ₁ subunit
	to coenzyme Q Complex III (cytochrome bc1): Accepts e^{-} from coenzyme Q transferring to cytochrome c \gg Pumps H ⁺ Complex IV (cytochrome c oxidase): Final complex, receiving e^{-} from cytochrome c and transferring to O ₂ , facilitating its reduction to H ₂ O \gg Pumps H ⁺ <u>Yield</u> : 1 NADH = 2.5-3 ATP 2 FADH ₂ = 1.5-2 ATP	Significance of O ₂ as the final acceptor	High electronegativity: Because of oxygen's strong affinity for e ⁻ , it has high redox potential, thus allowing for complete oxidation of glucose Prevents excess reduction : NADH and FADH ₂ would become highly reduced if oxygen was not present Oxygen is reduced by accepting electrons, ultimately forming water as the end product
Electron carriers, capacity	NADH: Coenzyme generated during glycolysis and CAC ➤ Capacity: 2 e ⁻ + H ⁺ FADH ₂ : Coenzyme generated during CAC ➤ Capacity: 2 e ⁻ + 2 H ⁺ Coenzyme Q (ubiquinone): Lipid-soluble molecule embedded in the inner mitochondrial	Chemiosmosis in the ETC	Chemiosmosis: The movement of ions across a semipermeable membrane-bound structure, down their electron gradient In the ETC, this involves coupling of electron transport and proton movement across the inner mitochondrial membrane
	membrane, accepting e ⁻ from NADH and FADH ₂ > Capacity: 1 or 2 e ⁻ Cytochrome c: Protein in the intermembrane space; binds to cytochrome c oxidase and carries e ⁻ between III and IV	space	H+ H+ H+ H+ high [H+]

ATP Synthase

 \succ Capacity: 1 e *Iron-sulfur* (*Fe-S*) proteins: Involved in e⁻ transfer between I and II

> Capacity: Fe and S, $1 e^{-1}$

Two main components:

- *1.* F_1 subunit: α and β subunits form the catalytic sites for ATP synthesis
- 2. F_o subunit: Forms a

<u>Gluconeogenesis</u> : Th from non-carbohydra glycerol)	ne synthesis of new glucose molecules nte sources (i.e., lactate, amino acids,	<u>Glycogenesis</u> : 1 glycogen Overview	The conversion and storage of glucose as
Overview		Location	Liver and skeletal muscle
Differences from glycolysis	Purpose: Synthesizes new glucose, does not break it down (glycolysis) Substrates: Uses various substrates other than glucose Location: Liver (main), kidneys, small intestine Regulation: Regulated by glucagon, cortisol, and insulin Energy balance: Entirely energy consuming process	lucose, rolysis) e neys, key enzyme, steps, roles, functions, steps lin nergy	Glycogen synthase: Catalyzes the transfer of glucose from UDP-glucose to an existing glycogen chain $\gg \alpha$ -1,4-glycosidic bond Activation: Before glycogenesis, glucose must be converted into G6P (by hexo/glucokinase), then G6P \rightarrow G1P (by phosphoglucomutase) Glycogen primer: Short chain of glucose
Key enzymes, steps, roles, functions	Pyruvate carboxylase(mitochondria): Converts pyruvate \rightarrow oxaloacetate; requires biotin asa cofactorPhosphoenolpyruvatecarboxykinase (PEPCK)(cytoplasm, mitochondria):Converts oxaloacetate to PEPFBPase: Converts F-1,6-BP toF-6-PG6Pase: G6P to glucose (final)		Glycogen primer: Short chain of glucose residues attached to glycogenin (protein) formed by glycogenin auto-glycosylation, used in the beginning of glycogen synth. Elongation: After primer formation, glycogen synthase adds glucose residues Branching: Glycogen branching enzyme (amylo- α -1,4 \rightarrow 1,6-transglycosylase) introduces branches into chain by cleaving portions of the glycogen chain and transferring to form a new branch with α -1,6-glycosidic bond
Intermediates that cannot be used	Acetyl-CoA: Instead goes into CAC or used for synthesis of fatty acids or ketone bodies Acetoacetate: Ketone body produced during the breakdown of fatty acids; can be converted back to acetyl-CoA Palmitate: Saturated fatty acid, which can be broken down into	Relevant bonds	α -1,4-glycosidic: Formed in elongation, when glycogen synthase transfers glucose from UDP-glucose to the non-reducing end of the chain α -1,6-glycosidic: Formed in branching, when glycogen branching enzyme cleaves a portion of the glycogen chain, and transfers it to a new location
	acetvl-CoA		

Roles of glucagon and insulin

Glucagon	Opposite to insulin, increasing blood sugar ➤ Promotes glycogenolysis, stimulates gluconeogenesis, facilitates lipolysis Location: α-cells in pancreatic islets
Insulin	 Hormone that helps regulate blood sugar levels by facilitating uptake, use, and storage of glucose ➤ Translocation of GLUT4 to the cell membrane > Enhances glycogenesis, inhibits glycogenolysis, promoting lipogenesis Location: β-cells in pancreatic islets

<u>*Glycogenolysis*</u>: The enzymatic breakdown of glycogen into individual glucose molecules

Overview

Location	Liver (maintains blood glucose levels) and skeletal muscle (local source of energy)
Key enzymes, steps, roles, functions	Glycogen phosphorylase: Catalyzes removal of glucose residues from glycogen by breaking α -1,4-glycosidic bonds at the non-reducing ends \gg Releases as G1P Phosphoglucomutase: Converts G1P \rightarrow G6P [which can enter glycolysis]
Regulation	Glucagon: Stimulates glycogenolysis in the liver to increase blood glucose levels PKA: Hormone signal that regulates glycogen phosphorylase

Fatty Acid Synthesis: The synthesis of fatty acid in the form of triglycerides, which can be used for cell functions *Overview*

Location	Cytoplasm (liver, adipose tissue)
Substrates	Acetyl-CoA: Derived from various sources, including glucose metabolism, amino acid breakdown, fatty acid oxidation Malonyl-CoA
Key enzymes, steps, roles, functions	Acetyl-CoA carboxylase: Converts acetyl-CoA \rightarrow malonyl-CoA Fatty acid synthase (FAS): Catalyzes a series of reactions (i.e., condensation, reduction, dehydration) to extend the fatty acid chain by two carbons per cycle
	<i>Activation</i> : <i>After release from FAS, the fatty acid is activated by attached CoA to form fatty acyl-CoA</i>
Regulation	Insulin: Activates acetyl-CoA carboxylase Glucagon: Inhibit fatty acid synthesis

β-*oxidation of Fatty Acids*: Breakdown of fatty acids *Overview*

Location	Mitochondrial matrix
Substrates	Long-chain fatty acids (12 or more carbon)
Key enzymes, steps, roles, functions, steps	Acyl-CoA synthase (or fatty acyl-CoA ligase): Activation of fatty acid by addition of a CoA \rightarrow fatty acyl-CoA Acyl-CoA dehydrogenase: Oxidation of fatty acyl-CoA forming a trans-double bond between α and β carbons Enoyl-CoA hydratase: Add H ₂ O across the trans-double bond $\rightarrow \beta$ -hydroxyacyl-CoA β -ketothiolase: Cleaves β -hydroxyacyl-CoA \rightarrow acetyl-CoA and acyl-CoA [step is repeated until entire fatty acid is converted to acetyl-CoA] \succ Acetyl-CoA can enter Krebs cycle to generate ATP
Regulation	<i>Glucagon, adrenaline</i> : Stimulates <i>Insulin</i> : Inhibits

<u>Pentose Phosphate Pathway</u> (PPP): [hexose monophosphate shunt] Generates NADPH, R5P, and facilitates the interconversion of sugars *Two distinct phases*:

- 1. Oxidative: Generates NADPH by oxidizing G6P
- 2. Non-oxidative: Involves the interconversion of sugars and generation of R5P; may be independent of the oxidative phase

NADPH: Cofactor involved in anabolic reactions (e.g., fatty acid synthesis, nucleotide synthesis), redox balance, and defending against oxidative stress

Ribose-5-phosphate: 5-carbon sugar that is an essential component for the synthesis of nucleotides (e.g., DNA, RNA)

Overview

Location	Cytoplasm
Key enzymes, steps, roles, functions	OxidativeG6P dehydrogenase (G6PD): OxidizesG6P \rightarrow NADPH \succ Generates R5PNon-oxidative:Transketolase: Transfers a 2-carbonunit between sugar moleculesTransaldolase: Transfers a 3-carbonunit between intermediates \succ These enzymes allow for thesynthesis of R5P or thegeneration of glycolyticintermediates [that can enter intoglycolysis]
Regulation	G6P : Availability, demand, and cellular redox state regulates this process NADP+: Activates G6P dehydrogenase NADPH : Inhibits G6P dehydrogenase

DNA Synthesis (replication): A semiconservative process by which newly synthesized DNA consists of one original strand (template) and one newly synthesized complementary strand

Overview

Location	Nucleus
Key enzymes, steps, roles, functions	DNA helicase: Unwinds and separates the DNA double helix DNA polymerase: Catalyzes the addition of nucleotides to the growing DNA strand using the template as a guide ➤ Primase: Synthesizes a short RNA primer that provides a starting point for DNA polymerase DNA ligase: Joins Okazaki fragments and seals any remaining nicks
Regulation	Includes checkpoints, enzymes, protein complexes

DNA replication fork

T - A: Two hydrogen bonds; G - C: Three hydrogen bonds

<u>Nucleotide Biosynthesis</u>: Nucleotide synthesis Two methods of synthesis:

- 1. De Novo synthesis: From simple precursors
- 2. Salvage pathway: Recycling and conversion of nucleobases obtained from dietary sources or breakdown of nucleic acids

Overview

Purines	Location: Cytoplasm Precursors: Amino acids (glycine, glutamine, aspartate), CO ₂ , THF Key enzyme: PRPP amidotransferase, which progressively builds the purine ring structure Regulation: Feedback inhibition by purines and other available precursors
<i>Pyrimidines</i>	Location: Cytoplasm, mitochondria Precursors: Aspartate, glutamine, CO ₂ , ATP Key enzyme: Carbamoyl phosphate synthetase II Overall mechanism: Building of the pyrimidine structure beginning with carbamoyl phosphate formation and ending with the addition of R5P Regulation: Feedback inhibition by end-products

<u>DNA Transcription</u>: Synthesis of RNA using DNA as a

template **Overview**

Location	Nucleus (eukaryotic), cytoplasm (prokaryotic)
Steps	 Initiation RNA polymerase: Binds to the promoter region [which signals the start point and determines the DNA template being used] ➤ A small section of DNA is unwound to expose the template ³ ⁵
	 Sigma factor DNA helix Sigma factor Elongation: RNA polymerase adds complementary RNA nucleotides (base pairing: A-U, G-C), and DNA reforms behind it RNA polymerase moves 3'→5' Synthesis occurs 5'→3'
	 3. Termination: Occurs when termination sequence is reached, causing RNA polymerase to detach and release
	3' 5' RNA RNA RNA RNA RNA RNA RNA RNA RNA RNA
Post-transcription modifications	Addition of a 5' cap, addition of poly-A tail at 3' end, removal of introns through RNA splicing

Types of RNA:

- a. *Messenger RNA* (mRNA): Carries the genetic information from DNA to ribosomes for protein synthesis
- b. *Ribosomal RNA* (*rRNA*): Combines with proteins to form ribosomes
- c. **Transfer RNA** (tRNA): Transfers amino acids to the ribosomes during protein synthesis

<u>DNA Translation</u>: Process of protein synthesis that involves decoding the information stored in mRNA and assembly of amino acids into a polypeptide chain

Location	Ribosomes
Steps	 Initiation: Binding of mRNA to ribosome and tRNA at start codon Start codon: AUG (methionine) Elongation: Reading of the mRNA codon sequence, with amino acids being brought by a specific tRNA ➢ Ribosome catalyzes the formation of peptide bonds between adjacent AA Termination: Occurs when stop codon is reached on the mRNA sequence Stop codon: UAA, UAG, UGA Release factors: Bind to stop codon, causing release of the completed polypeptide chain
Post-translational modifications	Folding, cleavage of signal peptides, addition of functional groups, binding of cofactors