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Preface 

With the advent of powerful computing tools and numerous advances in math
ematics, computer science and cryptography, algorithmic number theory has 
become an important subject in its own right. Both external and internal 
pressures gave a powerful impetus to the development of more powerful al
gorithms. These in turn led to a large number of spectacular breakthroughs. 
To mention but a few, the LLL algorithm which has a wide range of appli
cations, including real world applications to integer programming, primality 
testing and factoring algorithms, sub-exponential class group and regulator 
algorithms, etc ... 

Several books exist which treat parts of this subject. (It is essentially 
impossible for an author to keep up with the rapid pace of progress in all 
areas of this subject.) Each book emphasizes a different area, corresponding 
to the author's tastes and interests. The most famous, but unfortunately the 
oldest, is Knuth's Art of Computer Programming, especially Chapter 4. 

The present book has two goals. First, to give a reasonably comprehensive 
introductory course in computational number theory. In particular, although 
we study some subjects in great detail, others are only mentioned, but with 
suitable pointers to the literature. Hence, we hope that this book can serve 
as a first course on the subject. A natural sequel would be to study more 
specialized subjects in the existing literature. 

The prerequisites for reading this book are contained in introductory texts 
in number theory such as Hardy and Wright [H-W) and Borevitch and Shafare
vitch [Bo-Sh]. The reader also needs some feeling or taste for algorithms and 
their implementation. To make the book as self-contained as possible, the main 
definitions are given when necessary. However, it would be more reasonable for 
the reader to first acquire some basic knowledge of the subject before studying 
the algorithmic part. On the other hand, algorithms often give natural proofs 
of important results, and this nicely complements the more theoretical proofs 
which may be given in other books. 

The second goal of this course is practicality. The author's primary in
tentions were not only to give fundamental and interesting algorithms, but 
also to concentrate on practical aspects of the implementation of these algo
rithms. Indeed, the theory of algorithms being not only fascinating but rich, 
can be (somewhat arbitrarily) split up into four closely related parts. The first 
is the discovery of new algorithms to solve particular problems. The second is 
the detailed mathematical analysis of these algorithms. This is usually quite 
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mathematical in nature, and quite often intractable, although the algorithms 
seem to perform rather well in practice. The third task is to study the com
plexity of the problem. This is where notions of fundamental importance in 
complexity theory such as NP-completeness come in. The last task, which 
some may consider the least noble of the four, is to actually implement the 
algorithms. But this task is of course as essential as the others for the actual 
resolution of the problem. 

In this book we give the algorithms, the mathematical analysis and in 
some cases the complexity, without proofs in some cases, especially when it 
suffices to look at the existing literature such as Knuth's book. On the other 
hand, we have usually tried as carefully as we could, to give the algorithms 
in a ready to program form-in as optimized a form as possible. This has the 
drawback that some algorithms are unnecessarily clumsy (this is unavoidable 
if one optimizes), but has the great advantage that a casual user of these 
algorithms can simply take them as written and program them in his/her 
favorite programming language. In fact, the author himself has implemented 
almost all the algorithms of this book in the number theory package PARI 
(see Appendix A). 

The approach used here as well as the style of presentation of the algo
rithms is similar to that of Knuth (analysis of algorithms excepted), and is 
also similar in spirit to the book of Press et al [PFTV] Numerical Recipes (in 
Fortran, Pascal or C), although the subject matter is completely different. 

For the practicality criterion to be compatible with a book of reasonable 
size, some compromises had to be made. In particular, on the mathematical 
side, many proofs are not given, especially when they can easily be found 
in the literature. From the computer science side, essentially no complexity 
results are proved, although the important ones are stated. 

The book is organized as follows. The first chapter gives the fundamental 
algorithms that are constantly used in number theory, in particular algorithms 
connected with powering modulo Nand with the Euclidean algorithm. 

Many number-theoretic problems require algorithms from linear algebra 
over a field or over Z. This is the subject matter of Chapter 2. The highlights 
of this chapter are the Hermite and Smith normal forms, and the fundamental 
LLL algorithm. 

In Chapter 3 we explain in great detail the Berlekamp-Cantor-Zassenhaus 
methods used to factor polynomials over finite fields and over Q, and we also 
give an algorithm for finding all the complex roots of a polynomial. 

Chapter 4 gives an introduction to the algorithmic techniques used in 
number fields, and the basic definitions and results about algebraic numbers 
and number fields. The highlights of these chapters are the use of the Hermite 
Normal Form representation of modules and ideals, an algorithm due to Diaz 
y Diaz and the author for finding "simple" polynomials defining a number 
field, and the subfield and field isomorphism problems. 
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Quadratic fields provide an excellent testing and training ground for the 
techniques of algorithmic number theory (and for algebraic number theory 
in general). This is because although they can easily be generated, many 
non-trivial problems exist, most of which are unsolved (are there infinitely 
many real quadratic fields with class number 1 ?) . They are studied in great 
detail in Chapter 5. In particular, this chapter includes recent advances on the 
efficient computation in class groups of quadratic fields (Shanks's NUCOMP 
as modified by Atkin), and sub-exponential algorithms for computing class 
groups and regulators of quadratic fields (McCurley-Hafner, Buchmann). 

Chapter 6 studies more advanced topics in computational algebraic num
ber theory. We first give an efficient algorithm for computing integral bases 
in number fields (Zassenhaus's round 2 algorithm), and a related algorithm 
which allows us to compute explicitly prime decompositions in field exten
sions as well as valuations of elements and ideals at prime ideals. Then, for 
number fields of degree less than or equal to 7 we give detailed algorithms 
for computing the Galois group of the Galois closure. We also study in some 
detail certain classes of cubic fields. This chapter concludes with a general 
algorithm for computing class groups and units in general number fields. This 
is a generalization of the sub-exponential algorithms of Chapter 5, and works 
quite well. For other approaches, I refer to [Poh-Zas} and to a forthcoming 
paper of J. Buchmann. This subject is quite involved so, unlike most other 
situations in this book, I have not attempted to give an efficient algorithm, 
just one which works reasonably well in practice. 

Chapters 1 to 6 may be thought of as one unit and describe many of the 
most interesting aspects of the theory. These chapters are suitable for a two 
semester graduate (or even a senior undergraduate) level course in number 
theory. Chapter 6, and in particular the class group and unit algorithm, can 
certainly be considered as a climax of the first part of this book. 

A number theorist, especially in the algorithmic field, must have a mini
mum knowledge of elliptic curves. This is the subject of chapter 7. Excellent 
books exist about elliptic curves (for example [Sil] and [Sil3]), but our aim is 
a little different since we are primarily concerned with applications of elliptic 
curves. But a minimum amount of culture is also necessary, and so the flavor 
of this chapter is quite different from the others chapters. In the first three sec
tions, we give the essential definitions, and we give the basic and most striking 
results of the theory, with no pretense to completeness and no algorithms. 

The theory of elliptic curves is one of the most marvelous mathematical 
theories of the twentieth century, and abounds with important conjectures. 
They are also mentioned in these sections. The last sections of Chapter 7, 
give a number of useful algorithms for working on elliptic curves, with little 
or no proofs. 

The reader is warned that, apart from the material necessary for later 
chapters, Chapter 7 needs a much higher mathematical background than the 
other chapters. It can be skipped if necessary without impairing the under
standing of the subsequent chapters. 
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Chapter 8 (whose title is borrowed from a talk of Hendrik Lenstra) consid
ers the techniques used for primality testing and factoring prior to the 1970's, 
with the exception of the continued fraction method of Brillhart-Morrison 
which belongs in Chapter 10. 

Chapter 9 explains the theory and practice of the two modern primal
ity testing algorithms, the Adleman-Pomerance-Rumely test as modified by 
H. W. Lenstra and the author, which uses Fermat's (little) theorem in cyclo
tomic fields, and Atkin's test which uses elliptic curves with complex multi
plication. 

Chapter 10 is devoted to modern factoring methods, i.e. those which run 
in sub-exponential time, and in particular to the Elliptic Curve Method of 
Lenstra, the Multiple Polynomial Quadratic Sieve of Pomerance and the Num
ber Field Sieve of Pollard. Since many of the methods described in Chapters 
9 and 10 are quite complex, it is not reasonable to give ready-to-program al
gorithms as in the preceding chapters, and the implementation of any one of 
these complex methods can form the subject of a three month student project. 

In Appendix A, we describe what a serious user should know about com
puter packages for number theory. The reader should keep in mind that the 
author of this book is biased since he has written such a package himself (this 
package being available without cost by anonymous ftp). 

Appendix B has a number of tables which we think may useful to the 
reader. For example, they can be used to check the correctness of the imple
mentation of certain algorithms. 

What I have tried to cover in this book is so large a subject that, neces
sarily, it cannot be treated in as much detail as I would have liked. For further 
reading, I suggest the following books. 

For Chapters 1 and 3, (Knul] and (Knu2]. This is the bible for algorithm 
analysis. Note that the sections on primality testing and factoring are out
dated. Also, algorithms like the LLL algorithm which did not exist at the 
time he wrote are, obviously, not mentioned. The recent book (GCL] contains 
essentially all of our Chapter 3, as well as many more polynomial algorithms 
which we have not covered in this book such as Grabner bases computation. 

For Chapters 4 and 5, (Bo-Sh], [Mar] and [Ire-Ros]. In particular, [Mar] 
and (Ire-Ros] contain a large number of practical exercises, which are not far 
from the spirit of the present book, (Ire-Ros] being more advanced. 

For Chapter 6, (Poh-Zas] contains a large number of algorithms, and treats 
in great detail the question of computing units and class groups in general 
number fields. Unfortunately the presentation is sometimes obscured by quite 
complicated notations, and a lot of work is often needed to implement the 
algorithms given there. 

For Chapter 7, [Sil] and {Sil3] are excellent books, and contain numerous 
exercises. Another good reference is [Hus], as well as [Ire-Ros] for material on 
zeta-functions of varieties. The algorithmic aspect of elliptic curves is beauti
fully treated in [Cre], which I also heartily recommend. 
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For Chapters 8 to 10, the best reference to date, in addition to [Knu2), is 
[Rie). In addition, Riesel has several chapters on prime number theory. 

Note on the exercises. The exercises have a wide range of difficulty, 
from extremely easy to unsolved research problems. Many are actually imple
mentation problems, and hence not mathematical in nature. No attempt has 
been made to grade the level of difficulty of the exercises as in Knuth, except 
of course that unsolved problems are mentioned as such. The ordering follows 
roughly the corresponding material in the text. 

WARNING. Almost all of the algorithms given in this book have been 
programmed by the author and colleagues, in particular as a part of the Pari 
package. The programming has not however, always been synchronized with 
the writing of this book, so it may be that some algorithms are incorrect, and 
others may contain slight typographical errors which of course also invalidate 
them. Hence, the author and Springer-Verlag do not assume any responsibility 
for consequences which may directly or indirectly occur from the use of the 
algorithms given in this book. Apart from the preceding legalese, the author 
would appreciate corrections, improvements and so forth to the algorithms 
given, so that this book may improve if further editions are printed. The 
simplest is to send an e-mail message to 

cohen@math.u-bordeaux.fr 

or else to write to the author's address. In addition, a regularly updated 
errata file is available by anonymous ftp from megrez .math. u-bordeaux. fr 
( 147.210.16 .17), directory pub/ cohenbook. 
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Chapter 1 

Fundamental Number-Theoretic Algorithms 

1.1 Introduction 

This book describes in detail a number of algorithms used in algebraic number 
theory and the theory of elliptic curves. It also gives applications to problems 
such as factoring and primality testing. Although the algorithms and the the
ory behind them are sufficiently interesting in themselves, I strongly advise 
the reader to take the time to implement them on her/his favorite machine. 
Indeed, one gets a feel for an algorithm mainly after executing it several times. 
(This book does help by providing many tricks that will be useful for doing 
this.) 

We give the necessary background on number fields and classical algebraic 
number theory in Chapter 4, and the necessary prerequisites on elliptic curves 
in Chapter 7. This chapter shows you some basic algorithms used almost 
constantly in number theory. The best reference here is [Knu2]. 

1.1.1 Algorithms 

Before we can describe even the simplest algorithms, it is necessary to pre
cisely define a few notions. However, we will do this without entering into the 
sometimes excessively detailed descriptions used in Computer Science. For us, 
an algorithm will be a method which, given certain types of inputs, gives an 
answer after a finite amount of time. 

Several things must be considered when one describes an algorithm. The 
first is to prove that it is correct, i.e. that it gives the desired result when 
it stops. Then, since we are interested in practical implementations, we must 
give an estimate of the algorithm's running time, if possible both in the worst 
case, and on average. Here, one must be careful: the running time will always 
be measured in bit operations, i.e. logical or arithmetic operations on zeros and 
ones. This is the most realistic model, if one assumes that one is using real 
computers, and not idealized ones. Third, the space requirement (measured in 
bits) must also be considered. In many algorithms, this is negligible, and then 
we will not bother mentioning it. In certain algorithms however, it becomes 
an important issue which has to be addressed. 

First, some useful terminology: The size of the inputs for an algorithm will 
usually be measured by the number of bits that they require. For example, 
the size of a positive integer N is LlgNJ + 1 (see below for notations). We 
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will say that an algorithm is linear, quadmtic or polynomial time if it requires 
time O(lnN), O(ln2N), O(P(lnN)) respectively, where Pis a polynomial. If 
the time required is O(N01 ), we say that the algorithm is exponential time. 
Finally, many algorithms have some intermediate running time, for example 

eGv'In N In InN 
' 

which is the approximate expected running time of many factoring algorithms 
and of recent algorithms for computing class groups. In this case we say that 
the algorithm is sub-exponential. 

The definition of algorithm which we have given above, although a little 
vague, is often still too strict for practical use. We need also probabilistic 
algorithms, which depend on a source of random numbers. These "algorithms" 
should in principle not be called algorithms since there is a possibility (of 
probability zero) that they do not terminate. Experience shows, however, that 
probabilistic algorithms are usually more efficient than non-probabilistic ones; 
in many cases they are even the only ones available. 

Probabilistic algorithms should not be mistaken with methods (which I 
refuse to call algorithms), which produce a result which has a high probability 
of being correct. It is essential that an algorithm produces correct results 
(discounting human or computer errors), even if this happens after a very 
long time. A typical example of a non-algorithmic method is the following: 
suppose N is large and you suspect that it is prime (because it is not divisible 
by small numbers). Then you can compute 

2N-I modN 

using the powering Algorithm 1.2.1 below. If it is not 1 mod N, then this 
proves that N is not prime by Fermat's theorem. On the other hand, if it is 
equal to 1 mod N, there is a very good chance that N is indeed a prime. But 
this is not a proof, hence not an algorithm for primality testing (the smallest 
counterexample is N = 341). 

Another point to keep in mind for probabilistic algorithms is that the idea 
of absolute running time no longer makes much sense. This is replaced by the 
notion of expected running time, which is self-explanatory. 

1.1.2 Multi-precision 

Since the numbers involved in our algorithms will almost always become quite 
large, a prerequisite to any implementation is some sort of multi-precision 
package. This package should be able to handle numbers having up to 1000 
decimal digits. Such a package is easy to write, and one is described in detail in 
Riesel's book ((Rie]). One can also use existing packages or languages, such as 
Axiom, Bignum, Derive, Gmp, Lisp, Macsyma, Magma, Maple, Mathematica, 
Pari, Reduce, or Ubasic (see Appendix A). Even without a multi-precision 
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package, some algorithms can be nicely tested, but their scope becomes more 
limited. 

The pencil and paper method for doing the usual operations can be imple
mented without difficulty. One should not use a base-10 representation, but 
rather a base suited to the computer's hardware. 

Such a bare-bones multi-precision package must include at the very least: 

• Addition and subtraction of two n-bit numbers (time linear inn). 

• Multiplication and Euclidean division of two n-bit numbers (time linear 
in n2 ). 

• Multiplication and division of ann-bit number by a short integer (time 
linear inn). Here the meaning of short integer depends on the machine. Usually 
this means a number of absolute value less than 215 , 231 , 235 or 263 . 

• Left and right shifts of an n bit number by small integers (time linear 
inn). 

• Input and output of ann-bit number (time linear inn or in n2 depending 
whether the base is a power of 10 or not). 

Remark. Contrary to the choice made by some systems such as Maple, I 
strongly advise using a power of 2 as a base, since usually the time needed for 
input/output is only a very small part of the total time, and it is also often 
dominated by the time needed for physical printing or displaying the results. 

There exist algorithms for multiplication and division which as n gets 
large are much faster than O(n2 ), the best, due to Schonhage and Strassen, 
running in 0( n ln n In ln n) bit operations. Since we will be working mostly 
with numbers of up to roughly 100 decimal digits, it is not worthwhile to 
implement these more sophisticated algorithms. (These algorithms become 
practical only for numbers having more than several hundred decimal digits.) 
On the other hand, simpler schemes such as the method of Karatsuba (see 
[Knu2} and Exercise 2) can be useful for much smaller numbers. 

The times given above for the basic operations should constantly be kept 
in mind. 

Implementation advice. For people who want to write their own bare
bones multi-precision package as described .above, by far the best reference 
is [Knu2J (see also [Rie]). A few words of advice are however necessary. A 
priori, one can write the package in one's favorite high level language. As 
will be immediately seen, this limits the multi-precision base to roughly the 
square root of the word size. For example, on a typical 32 bit machine, a 
high level language will be able to multiply two 16-bit numbers, but not two 
32-bit ones since the result would not fit. Since the multiplication algorithm 
used is quadratic, this immediately implies a loss of a factor 4, which in fact 
usually becomes a factor of 8 or 10 compared to what could be done with the 
machine's central processor. This is intolerable. Another alternative is to write 
everything in assembly language. This is extremely long and painful, usually 
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bug-ridden, and in addition not portable, but at least it is fast. This is the 
solution used in systems such as Pari and Ubasic, which are much faster than 
their competitors when it comes to pure number crunching. 

There is a third possibility which is a reasonable compromise. Declare 
global variables (known to all the files, including the assembly language files 
if any) which we will call remainder and overflow say. 

Then write in any way you like (in assembly language or as high level 
language macros) nine functions that do the following. Assume a, b, c are 
unsigned word-sized variables, and let M be the chosen multi-precision base, 
so all variables will be less than M (for example M= 232). Then we need the 
following functions, where 0 :::; c < M and overflow is equal to 0 or 1: 

c=add(a,b) corresponding to the formula a+b=overflow·M+c. 
c=addx(a,b) corresponding to the formula a+b+overflow=overflow·M+c. 
c=sub(a,b) corresponding to the formula a-b=c-overflow·M. 
c=subx(a, b) corresponding to the formula a-b-overflow=c-overflow·M. 
c=mul(a,b) corresponding to the formula a·b=remainder·M+c, 
in other words c contains the low order part of the product, and remainder 

the high order part. 
c=di v (a, b) corresponding to the formula remainder·M+a=b·c+remainder, 
where we may assume that remainder<b. 
For the last three functions we assume that M is equal to a power of 2, say 

M=2m. 
c=shiftl(a,k) corresponding to the formula 2ka=remainder·M+c. 
c=shiftr(a,k) corresponding to the formula a·M/2k=c·M+remainder, 
where we assume for these last two functions that 0 :::; k < m. 
k=bfffo(a) corresponding to the formula M/2 :::; 2ka < M, i.e. k 

flg(M/(2a))l when a -:f. 0, k = m when a= 0. 
The advantage of this scheme is that the rest of the multi-precision package 

can be written in a high level language without much sacrifice of speed, and 
that the black boxes described above are short and easy to write in assembly 
language. The portability problem also disappears since these functions can 
easily be rewritten for another machine. 

Knowledgeable readers may have noticed that the functions above cor
respond to a simulation of a few machine language instructions of the 
68020/68030/68040 processors. It may be worthwhile to work at a higher 
level, for example by implementing in assembly language a few of the multi
precision functions mentioned at the beginning of this section. By doing this 
to a limited extent one can avoid many debugging problems. This also avoids 
much function call overhead, and allows easier optimizing. As usual, the price 
paid is portability and robustness. 

Remark. One of the most common operations used in number theory is 
modular multiplication, i.e. the computation of a· b modulo some number N, 
where a and b are non-negative integers less than N. This can, of course, 
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be trivially done using the formula di v (mul (a, b) , N), the result being the 
value of remainder. When many such operations are needed using the same 
modulus N (this happens for example in most factoring methods, see Chapters 
8, 9 an 10), there is a more clever way of doing this, due to P. Montgomery 
which can save 10 to 20 percent of the running time, and this is not a negligible 
saving since it is an absolutely basic operation. We refer to his paper [Mon1) 
for the description of this method. 

1.1.3 Base Fields and Rings 

Many of the algorithms that we give (for example the linear algebra algo
rithms of Chapter 2 or some of the algorithms for working with polynomials 
in Chapter 3) are valid over any base ring or field R where we know how to 
compute. We must emphasize however that the behavior of these algorithms 
will be quite different depending on the base ring. Let us look at the most 
important examples. 

The simplest rings are the rings R = Z/NZ, especially when N is small. 
Operations in R are simply operations "modulo N" and the elements of R can 
always be represented by an integer less than N, hence of bounded size. Using 
the standard algorithms mentioned in the preceding section, and a suitable 
version of Euclid's extended algorithm to perform division (see Section 1.3.2), 
all operations need only O(ln2 N) bit operations (in fact 0(1) since N is con
sidered as fixed!). An important special case of these rings R is when N = p 
is a prime, and then R = 1Fp the finite field with p elements. More generally, 
it is easy to see that operations on any finite field lF q with q = pk can be done 
quickly. 

The next example is that of R = Z. In many algorithms, it is possible to 
give an upper bound N on the size of the numbers to be handled. In this case 
we are back in the preceding situation, except that the bound N is no longer 
fixed, hence the running time of the basic operations is really O(ln2 N) bit 
operations and not 0(1). Unfortunately, in most algorithms some divisions 
are needed, hence we are no longer working in Z but rather in Q. It is possible 
to rewrite some of these algorithms so that non-integral rational numbers 
never occur (see for example the Gauss-Bareiss Algorithm 2.2.6, the integral 
LLL Algorithm 2.6.7, the sub-resultant Algorithms 3.3.1 and 3.3.7). These 
versions are then preferable. 

The third example is when R = Q. The main phenomenon which occurs 
in practically all algorithms here is "coefficient explosion". This means that in 
the course of the algorithm the numerator and denominators of the rational 
numbers which occur become very large; their size is almost impossible to 
control. The main reason for this is that the numerator and denominator of 
the sum or difference of two rational numbers is usually of the same order 
of magnitude as those of their product. Consequently it is not easy to give 
running times in bit operations for algorithms using rational numbers. 
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The fourth example is that of R = JR. (or R = C). A new phenomenon 
occurs here. How can we represent a real number? The truthful answer is that 
it is in practice impossible, not only because the set JR. is uncountable, but also 
because it will always be impossible for an algorithm to tell whether two real 
numbers are equal, since this requires in general an infinite amount of time 
(on the other hand if two real numbers are different, it is possible to prove 
it by computing them to sufficient accuracy). So we must be content with 
approximations {or with interval arithmetic, i.e. we give for each real number 
involved in an algorithm a rational lower and upper bound), increasing the 
closeness of the approximation to suit our needs. A nasty specter is waiting for 
us in the dark, which has haunted generations of numerical analysts: numerical 
instability. We will see an example of this in the case of the LLL algorithm 
(see Remark (4) after Algorithm 2.6.3). Since this is not a book on numerical 
analysis, we do not dwell on this problem, but it should be kept in mind. 

As far as the bit complexity of the basic operations are concerned, since 
we must work with limited accuracy the situation is analogous to that of Z 
when an upper bound N is known. If the accuracy used for the real number 
is of the order of 1/N, the number of bit operations for performing the basic 
operations is O(ln2 N). 

Although not much used in this book, a last example I would like to 
mention is that of R = Qp, the field of p-adic numbers. This is similar to the 
case of real numbers in that we must work with a limited precision, hence the 
running times are of the same order of magnitude. Since the p-adic valuation is 
non-Archimedean, i.e. the accuracy of the sum or product of p-adic numbers 
with a given accuracy is at least of the same accuracy, the phenomenon of 
numerical instability essentially disappears. 

1.1.4 Notations 

We will use Knuth's notations, which have become a de facto standard in the 
theory of algorithms. Also, some algorithms are directly adapted from Knuth 
(why change a well written algorithm?). However the algorithmic style of writ
ing used by Knuth is not well suited to structured programming. The reader 
may therefore find it completely straightforward to write the corresponding 
programs in assembly language, Basic or Fortran, say, but may find it slightly 
less so to write them in Pascal or in C. 

A warning: presenting an algorithms as a series of steps as is done in 
this book is only one of the ways in which an algorithm can be described. 
The presentation may look old-fashioned to some readers, but in the author's 
opinion it is the best way to explain all the details of an algorithm. In particular 
it is perhaps better than using some pseudo-Pascal language (pseudo-code). 
Of course, this is debatable, but this is the choice that has been made in this 
book. Note however that, as a consequence, the reader should read as carefully 
as possible the exact phrasing of the algorithm, as well as the accompanying 
explanations, to avoid any possible ambiguity. This is particularly true in if 
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(conditional) expressions. Some additional explanation is sometimes added to 
diminish the possibility of ambiguity. For example, if the if condition is not 
satisfied, the usual word used is otherwise. If if expressions are nested, one 
of them will use otherwise, and the other will usually use else. I admit that 
this is not a very elegant solution. 

A typical example is step 7 in Algorithm 6.2.9. The initial statement If 
c = 0 do the following: implies that the whole step will be executed only 
if c = 0, and must be skipped if c 'I 0. Then there is the expression if 
j = i followed by an otherwise, and nested inside the otherwise clause is 
another if dim( ... ) < n, and the else go to step 7 which follows refers to 
this last if, i.e. we go to step 7 if dim( ... )~ n. 

I apologize to the reader if this causes any confusion, but I believe that 
this style of presentation is a good compromise. 

LxJ denotes the floor of x, i.e. the largest integer less than or equal to x. 
Thus l3.4J = 3, l-3.4J = -4. 

f X 1 denotes the ceiling of X, i.e. the smallest integer greater than or equal 
to x. We have fxl = -L-xJ. 

lxl denotes an integer nearest to x, i.e. lxl = lx + 1/2J. 
[a, b[ denotes the real interval from a to b including a but excluding b. Sim

ilarly ]a, b] includes b and excludes a, and ]a, b[ is the open interval excluding a 
and b. (This differs from the American notations [a, b), (a,b] and (a, b) which 
in my opinion are terrible. In particular, in this book (a, b) will usually mean 
the GCD of a and b, and sometimes the ordered pair (a, b).) 

lg x denotes the base 2 logarithm of x. 

If E is a finite set, lEI denotes the cardinality of E. 

If A is a matrix, At denotes the transpose of the matrix A. A 1 x n (resp. 
n x 1) matrix is called a row (resp. column) vector. The reader is warned that 
many authors use a different notation where the transpose sign is put on the 
left of the matrix. 

If a and bare integers with b 'I 0, then except when explicitly mentioned 
otherwise, a mod b denotes the non-negative remainder in the Euclidean di
vision of a by b, i.e. the unique number r such that a= r (mod b) and 
0 $ T <Ill[. 

The notation dIn means that d divides n, while dlln will mean that dIn 
and (d, nfd) = 1. Furthermore, the notations p [nand pa[ln are always taken 
to imply that p is prime, so for example pa lin means that pa is the highest 
power of p dividing n. 

Finally, if a and b are elements in a Euclidean ring (typically Z or the 
ring of polynomials over a field), we will denote the greatest common divisor 
(abbreviated GCD in the text) of a and b by gcd(a, b), or simply by (a, b) 
when there is no risk of confusion. 
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1.2 The Powering Algorithms 

In almost every non-trivial algorithm in number theory, it is necessary at 
some point to compute the n-th power of an element in a group, where n may 
be some very large integer (i.e. for instance greater than 10100). That this 
is actually possible and very easy is fundamental and one of the first things 
that one must understand in algorithmic number theory. These algorithms 
are general and can be used in any group. In fact, when the exponent is non
negative, they can be used in any monoid with unit. We give an abstract 
version, which can be trivially adapted for any specific situation. 

Let (G, x) be a group. We want to compute gn forgE G and n E Z in an 
efficient manner. Assume for example that n > 0. The naive method requires 
n -1 group multiplications. We can however do much better (A note: although 
Gauss was very proficient in hand calculations, he seems to have missed this 
method.) The idea is as follows. If n = Li Ei2i is the base 2 expansion of n 
with Ei = 0 or 1, then 

gn = rr (g2;), 
f;=1 

hence if we keep track in an auxiliary variable of the quantities g2; which we 
compute by successive squarings, we obtain the following algorithm. 

Algorithm 1.2.1 (Right-Left Binary). Given g E G and n E Z, this algorithm 
computes gn in G. We write 1 for the unit element of G. 

1. [Initialize] Set y - 1. If n = 0, output y and terminate. If n < 0 let N - -n 
and z - g-1. Otherwise, set N - n and z -g. 

2. [Multiply?] If N is odd set y- z · y. 

3. [Halve N] Set N- lN/2J. If N = 0, output y as the answer and terminate 
the algorithm. Otherwise, set z- z · z and go to step 2. 

Examining this algorithm shows that the number of multiplication steps 
is equal to the number of binary digits of lnl plus the number of ones in the 
binary representation of lnl minus 1. So, it is at most equal to 2llg lniJ + 1, and 
on average approximately equal to 1.5 lg In I. Hence, if one can compute rapidly 
in G, it is not unreasonable to have exponents with several million decimal 
digits. For example, if G = (Z/mZ)*, the time of the powering algorithm is 
O(ln2mln lnl), since one multiplication in G takes time O(ln2m). 

The validity of Algorithm 1.2.1 can be checked immediately by noticing 
that at the start of step 2 one has gn = y . zN. This corresponds to a right
to-left scan of the binary digits of lnl. 

We can make several changes to this basic algorithm. First, we can write 
a similar algorithm based on a left to right scan of the binary digits of lnl. 
In other words, we use the formula gn = (gn/2)2 if n is even and gn = g . 
(gCn-l)/2 ) 2 if n is odd. 
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This assumes however that we know the position of the leftmost bit of In I 
(or that we have taken the time to look for it beforehand), i.e. that we know 
the integer e such that 2e :::; lnl < 2e+ 1 . Such an integer can be found using a 
standard binary search on the binary digits of n, hence the time taken to find 
it is O(lg lg jnl), and this is completely negligible with respect to the other 
operations. This leads to the following algorithm. 

Algorithm 1.2.2 (Left-Right Binary). Given g E G and n E .Z, this algorithm 
computes gn in G. If n # 0, we assume also given the unique integer e such that 
2e ~ lnl < 2e+1 . We write 1 for the unit element of G. 

1. (Initialize] If n = 0, output 1 and terminate. If n < 0 set N ~ -n and 
z ~ g-1. Otherwise, set N ~ nand z ~g. Finally, set y ~ z, E ~ 2e, 
N~ N-E. 

2. (Finished?] If E = 1, output y and terminate the algorithm. Otherwise, set 
E ~ E/2. 

3. (Multiply?] Set y ~ y · y and if N ~ E, set N ~ N- E and y ~ y · z. Go 
to step 2. 

Note that E takes as values the decreasing powers of 2 from 2e down to 
1, hence when implementing this algorithm, all operations using E must be 
thought of as bit operations. For example, instead of keeping explicitly the 
(large) number E, one can just keep its exponent (which will go from e down 
to 0). Similarly, one does not really subtract E from Nor compare N with 
E, but simply look whether a particular bit of N is 0 or not. To be specific, 
assume that we have written a little program bit(N, f) which outputs bit 
number f of N, bit 0 being, by definition, the least significant bit. Then we 
can rewrite Algorithm 1.2.2 as follows. 

Algorithm 1.2.3 (Left-Right Binary, Using Bits). Given g E G and n E .Z, 
this algorithm computes gn in G. If n # 0, we assume also that we are given the 
unique integer e such that 2e :::; jnj < 2e+1. We write 1 for the unit element of 
G. 

1. (Initialize] If n = 0, output 1 and terminate. If n < 0 set N ~ -n and 
z ~ g-1. Otherwise, set N ~ n and z ~g. Finally, set y ~ z, f ~ e. 

2. (Finished?] If f = 0, output y and terminate the algorithm. Otherwise, set 
f~ f-1. 

3. [Multiply?] Set y ~ y · y and if bit(N, f) = 1, set y ~ y · z. Go to step 2. 

The main advantage of this algorithm over Algorithm 1.2.1 is that in step 
3 above, z is always the initial g (or its inverse if n < 0). Hence, if g is 
represented by a small integer, this may mean a linear time multiplication 
instead of a quadratic time one. For example, if G = (Z/mZ)* and if g (or 
9-1 if n < 0) is represented by the class of a single precision integer, the 
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running time of Algorithms 1.2.2 and 1.2.3 will be in average up to 1.5 times 
faster than Algorithm 1.2.1. 

Algorithm 1.2.3 can be improved by making use of the representation of 
In! in a base equal to a power of 2, instead of base 2 itself. In this case, only 
the left-right version exists. 

This is done as follows (we may assume n > 0). Choose a suitable positive 
integer k (we will see in the analysis how to choose it optimally). Precompute 
g2 and by induction the odd powers g3 , g5 , ... , g21c- 1, and initialize y tog 
as in Algorithm 1.2.3. Now if we scan the 2k-representation of lnl from left 
to right (i.e. k bits at a time of the binary representation), we will encounter 
digits a in base 2k, hence such that 0 ~ a < 2k. If a = 0, we square k times 
our current y. If a =f:. 0, we can write a = 2tb with b odd and less than 2k, 
and 0 ~ t < k. We must set y - y2" • g2'b, and this is done by computing 
first y 2k-• · gb (which involves k- t squarings plus one multiplication since gb 

has been precomputed), then squaring t times the result. This leads to the 
following algorithm. Here we assume that we have an algorithm digit(k, N, f) 
which gives digit number f of N expressed in base 2k. 

Algorithm 1.2.4 (Left-Right Base 2k). Given g E G and n E Z, this algorithm 
computes gn in G. If n =f:. 0, we assume also given the unique integer e such that 
2ke ~ In I< 2k(e+l). We write 1 for the unit element of G. 

1. [Initialize] If n = 0, output 1 and terminate. If n < 0 set N- -n and 
z - g-1. Otherwise, set N - n and z -g. Finally set f - e. 

2. [Precomputations] Compute and store z3 , z5 , ... , z21c- 1 . 

3. [Multiply] Set a- digit(k, N, f). If a= 0, repeat k times y- y·y. Otherwise, 
write a= 2tb with b odd, and iff =f:. e repeat k- t times y- y · y and set 
y - y · zb, while iff = e set y- zb (using the precomputed value of zb), 
and finally (still if a =f:. 0) repeat t times y- y · y. 

4. [Finished?] If f = 0, output y and terminate the algorithm. Otherwise, set 
f - f - 1 and go to step 3. 

Implementation Remark. Although the splitting of a in the form 2tb takes 
very little time compared to the rest of the algorithm, it is a nuisance to have 
to repeat it all the time. Hence, we suggest precomputing all pairs (t, b) for 
a given k (including (k, 0) for a= 0) so that t and b can be found simply by 
table lookup. Note that this precomputation depends only on the value of k 
chosen for Algorithm 1.2.4, and not on the actual value of the exponent n. 

Let us now analyze the average behavior of Algorithm 1.2.4 so that we can 
choose k optimally. As we have already explained, we will regard as negligible 
the time spent in computing e or in extracting bits or digits in base 2k. 

The precomputations require 2k-l multiplications. The total number of 
squarings is exactly the same as in the binary algorithm, i.e. llg In IJ, and the 
number of multiplications is equal to the number of non-zero digits of In I in 
base 2k, i.e. on average 
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so the total number of multiplications which are not squarings is on average 
approximately equal to 

m(k) = 2k-l + ( 2:; 1) lglnl. 

Now, if we compute m(k +1) -m(k), we see that it is non-negative as long as 

I I I < k(k + 1)22k 
g n - 2k+l- k- 2. 

Hence, for the highest efficiency, one should choose k equal to the smallest 
integer satisfying the above inequality, and this gives k = 1 for lnl ~ 256, 
k = 2 for lnl ~ 224 , etc .... For example, if lnl has between 60 and 162 decimal 
digits, the optimal value of k is k = 5. For a more specific example, assume 
that n has 100 decimal digits (i.e. lg n approximately equal to 332) and that 
the time for squaring is about 3/4 of the time for multiplication (this is quite 
a reasonable assumption). Then, counting multiplication steps, the ordinary 
binary algorithm takes on average (3/4)332+ 332/2 = 415 steps. On the other 
hand, the base 25 algorithm takes on average (3/4)332+ 16+(31/160)332 ~ 329 
multiplication steps, an improvement of more than 20%. 

There is however another point to take into account. When, for instance 
G = (Z/mZ)* and g (or g-1 when n < 0) is represented by the (residue) class 
of a single precision integer, replacing multiplication by g by multiplication 
by its small odd powers may have the disadvantage compared to Algorithm 
1.2.3 that these powers may not be single precision. Hence, in this case, it may 
be preferable, either to use Algorithm 1.2.3, or to use the highest power of k 
less than or equal to the optimal one which keeps all the zb with b odd and 
1 ~ b ~ 2k - 1 represented by single precision integers. 

(A long text should be inserted here, but no place to do this (see page 45).) 

Quite a different way to improve on Algorithm 1.2.1 is to try to find a 
near optimal "addition chain" for lnl, and this also can lead to improvements, 
especially when the same exponent is used repeatedly (see [BCS]. For a de
tailed discussion of addition chains, see [Knu2].) In practice, we suggest using 
the flexible 2k-algorithm for a suitable value of k. 

The powering algorithm is used very often with the ring Z/mZ. In this case 
multiplication does not give a group law, but the algorithm is valid nonethe
less if either n is non-negative or if g is an invertible element. Furthermore, 
the group multiplication is "multiplication followed by reduction modulo m". 
Depending on the size of m, it may be worthwhile to not do the reductions 
each time, but to do them only when necessary to avoid overflow or loss of 
time. 

We will use the powering algorithm in many other contexts in this book, in 
particular when computing in class groups of number fields, or when working 
with elliptic curves over finite fields. 
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Note that for many groups it is possible (and desirable) to write a squaring 
routine which is faster than the general-purpose multiplication routine. In 
situations where the powering algorithm is used intensively, it is essential 
to use this squaring routine when multiplications of the type y +-- y · y are 
encountered. 

1.3 Euclid's Algorithms 

We now consider the problem of computing the GCD of two integers a and 
b. The naive answer to this problem would be to factor a and b, and then 
multiply together the common prime factors raised to suitable powers. Indeed, 
this method works well when a and bare very small, say less than 100, or when 
a or b is known to be prime (then a single division is sufficient). In general this 
is not feasible, because one of the important facts of life in number theory is 
that factorization is difficult and slow. We will have many occasions to come 
back to this. Hence, we must use better methods to compute GCD's. This 
is done using Euclid's algorithm, probably the oldest and most important 
algorithm in number theory. 

Although very simple, this algorithm has several variants, and, because of 
its usefulness, we are going to study it in detail. We shall write (a, b) for the 
GCD of a and b when there is no risk of confusion with the pair (a, b). By 
definition, (a, b) is the unique non-negative generator of the additive subgroup 
of Z generated by a and b. In particular, (a, 0) = (0, a) = jaj and (a, b) = 
(jaj, jbl). Hence we can always assume that a and bare non-negative. 

1.3.1 Euclid's and Lehmer's Algorithms 

Euclid's algorithm is as follows: 

Algorithm 1.3.1 (Euclid). Given two non-negative integers a and b, this 
algorithm finds their GCD. 

1. [Finished?) If b = 0 then output a as the answer and terminate the algorithm. 

2. [Euclidean step] Set r +-- a mod b, a +-- b, b +-- r and go to step 1. 

If either a or b is less than a given number N, the number of Euclidean 
steps in this algorithm is bounded by a constant times ln N, in both the 
worst case and on average. More precisely we have the following theorem (see 
[Knu2]): 

Theorem 1.3.2. Assume that a and b are randomly distributed between 1 
and N. Then 

(1) The number of Euclidean steps is at most equal to 
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r ln(v'~~/ 1-2 ~ 2.078lnN + 1.672. 
ln((1 + 5 2) 

(2) The avemge number of Euclidean steps is approximately equal to 

12ln2 
- 2-lnN + 0.14 ~ 0.843lnN + 0.14. 

7r 

13 

However, Algorithm 1.3.1 is far from being the whole story. First, it is not 
well suited to handling large numbers (in our sense, say numbers with 50 or 100 
decimal digits). This is because each Euclidean step requires a long division, 
which takes time O(ln2 N). When carelessly programmed, the algorithm takes 
time O(ln3 N). If, however, at each step the precision is decreased as a function 
of a and b, and if one also notices that the time to compute a Euclidean 
step a = bq + r is O((lna)(lnq + 1)), then the total time is bounded by 
O((lnN)((L:lnq) + O(lnN))). But L:lnq = lnflq ~Ina~ lnN, hence if 
programmed carefully, the running time is only O(ln2 N). There is a useful 
variant due to Lehmer which also brings down the running time to O(ln2 N). 
The idea is that the Euclidean quotient depends generally only on the first 
few digits of the numbers. Therefore it can usually be obtained using a single 
precision calculation. The following algorithm is taken directly from Knuth. 
Let M = mP be the base used for multi-precision numbers. Typical choices 
are m = 2, p = 15, 16, 31, or 32, or m = 10, p = 4 or 9. 

Algorithm 1.3.3 (Lehmer). Let a and b be non-negative multi-precision inte
gers, and assume that a;::: b. This algorithm computes (a, b), using the following 
auxiliary variables. a, b, A, B, C, D, T and q are single precision (i.e. less than 
M), and t and r are multi-precision variables. 

1. [Initialize) If b < M, i.e. is single precision, compute (a, b) using Algorithm 
1.3.1 and terminate. Otherwise, let a (resp. b) be the single precision number 
formed by the highest non-zero base M digit of a (resp. b). Set A +-- 1, B +-- 0, 
C +-- 0, D +-- 1. 

2. [Test quotient) If b + C = 0 or b + D = 0 go to step 4. Otherwise, set 
q +-- l(a + A)/(b + C)J. If q =I l(a + B)/(b + D)J, go to step 4. Note that 
one always has the conditions 

O~a+A~M, O~b+C<M, 

O~a+B<M, O~b+D$M. 

Notice that one can have a single precision overflow in this step, which must 
be taken into account. (This can occur only if a = M - 1 and A = 1 or if 
b = M -1 and D = 1.) 
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3. [Euclidean step] Set T ...._.A- qC, A<-- C, C ...._. T, T ...._. B- qD, B <-- D, 
D...._. T, T <--a- qb, a...._. b, b...._. T and go to step 2 (all these operations are 
single precision operations}. 

4. [Multi-precision step] If B = 0, set t <-- a mod b, a <-- b, b <-- t, using multi
precision division (this happens with a very small probability, on the order of 
1.4/ M} and go to step 1. Otherwise, set t <-- Aa, t <-- t + Bb, r <-- Ca, 
r <-- r +Db, a <-- t, b <-- r, using linear-time multi-precision operations, and 
go to step 1. 

Note that the number of steps in this algorithm will be the same as in 
Algorithm 1.3.1, i.e. O(lnN) if a and bare less than N, but each loop now 
consists only of linear time operations (except for the case B = 0 in step 
4 which is so rare as not to matter in practice). Therefore, even without 
using variable precision, the running time is now only of order O(ln2 N) and 
not O(ln3 N). Of course, there is much more bookkeeping involved, so it is 
not clear how large N must be before a particular implementation of this 
algorith.m becomes faster than a crude implementation of Algorithm 1.3.1. Or, 
even whether a careful implementation of Algorithm 1.3.1 will not compete 
favorably in practice. Testing needs to be done before choosing which of these 
algorithms to use. 

Another variant of Euclid's algorithm which is also useful in practice is 
the so-called binary algorithm. Here, no long division steps are used, except 
at the beginning, instead only subtraction steps and divisions by 2, which are 
simply integer shifts. The number of steps needed is greater, but the operations 
used are much faster, and so there is a net gain, which can be quite large for 
multi-precision numbers. Furthermore, using subtractions instead of divisions 
is quite reasonable in any case, since most Euclidean quotients are small. More 
precisely, we can state: 

Theorem 1.3.4. In a suitable sense, the probability P(q) that a Euclidean 
quotient be equal to q is 

P(q) = lg((q + 1)2 /((q + 1)2 - 1)). 

For example, P(l) 0.41504 ... , P(2) = 0.16992 ... , P(3) = 0.09311 ... , 
P(4) = 0.05890 .... 

For example, from this theorem, one can see that the probability of oc
currence of B = 0 in step 4 of Algorithm 1.3.3 is lg(l + 1/M), and this is 
negligible in practice. 

One version of the binary algorithm is as follows. 

Algorithm 1.3.5 (Binary GCD). Given two non-negative integers a and b, 
this algorithm finds their GCD. 

1. (Reduce size once) If a < b exchange a and b. Now if b = 0, output a and 
terminate the algorithm. Otherwise, set r <--a mod b, a<-- band b <-- r. 
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2. [Compute power of 2) If b = 0 output a and terminate the algorithm. Otherwise, 
set k +- 0, and then while a and b are both even, set k +- k + 1, a +- a/2, 
b +- b/2. 

3. [Remove initial powers of 2) If a is even, repeat a +- a/2 until a is odd. 
Otherwise, if b is even, repeat b +- b/2 until b is odd. 

4. [Subtract) (Here a and bare both odd.) Set t +-(a- b)/2. If t = 0, output 
2ka and terminate the algorithm. 

5. [Loop) While t is even, set t +- t/2. Then if t > 0 set a+- t, else set b +- -t 
and go to step 4. 

Remarks. 

(1) The binary algorithm is especially well suited for computing the GCD 
of multi-precision numbers. This is because no divisions are performed, 
except on the first step. Hence we suggest using it systematically in this 
case. 

(2) All the divisions by 2 performed in this algorithm must be done using 
shifts or Boolean operations, otherwise the algorithm loses much of its 
attractiveness. In particular, it may be worthwhile to program it in a 
low-level language, and even in assembly language, if it is going to be 
used extensively. Note that some applications, such as computing in class 
groups, use GCD as a basic operation, hence it is essential to optimize the 
speed of the algorithm for these applications. 

(3) One could directly start the binary algorithm in step 2, avoiding division 
altogether. We feel however that this is not such a good idea, since a and 
b may have widely differing magnitudes, and step 1 ensures that we will 
work on numbers at most the size of the smallest of the two numbers a 
and b, and not of the largest, as would be the case if we avoided step 1. In 
addition, it is quite common for b to divide a when starting the algorithm. 
In this case, of course, the algorithm immediately terminates after step 1. 

(4) Note that the sign oft in step 4 of the algorithm enables the algorithm 
to keep track of the larger of a and b, so that we can replace the larger of 
the two by iti in step 5. We can also keep track of this data in a separate 
variable and thereby work only with non-negative numbers. 

(5) Finally, note that the binary algorithm can use the ideas of Algorithm 
1.3.3 for multi-precision numbers. The resulting algorithm is complex and 
its efficiency is implementation dependent. For more details, see [Knu2 
p.599]. 

The proof of the validity of the binary algorithm is easy and left to the reader. 
On the other hand, a detailed analysis of the average running time of the bi
nary algorithm is a challenging mathematical problem (see [Knu2] once again). 
Evidently, as was the case for Euclid's algorithm, the running time will be 
O(ln2 N) bit operations when suitably implemented, where N is an upper 
bound on the size of the inputs a and b. The mathematical problem is to find 
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an asymptotic estimate for the number of steps and the number of shifts per
formed in Algorithm 1.3.5, but this has an influence only on the 0 constant, 
not on the qualitative behavior. D 

1.3.2 Euclid's Extended Algorithms 

The information given by Euclid's algorithm is not always sufficient for many 
problems. In particular, by definition of the GCD, if d = (a, b) there exists 
integers u and v such that au+ bv = d. It is often necessary to extend Euclid's 
algorithm so as to be able to compute u and v. While u and v are not unique, 
u is defined modulo bjd, and vis defined modulo ajd. 

There are two ways of doing this. One is by storing the Euclidean quotients 
as they come along, and then, once d is found, backtracking to the initial 
values. This method is the most efficient, but can require a lot of storage. In 
some situations where this information is used extensively (such as Shanks's 
and Atkin's NUCOMP in Section 5.4.2), any little gain should be taken, and 
so one should do it this way. 

The other method requires very little storage and is only slightly slower. 
This requires using a few auxiliary variables so as to do the computations as 
we go along. We first give a version which does not take into account multi
precision numbers. 

Algorithm 1.3.6 (Euclid Extended). Given non-negative integers a and b, 
this algorithm determines (u,v,d) such that au+bv = d and d =(a, b). We use 
auxiliary variables VI, V3, t1. t3. 

1. [Initialize] Set u +-- 1, d +--a. If b = 0, set v +-- 0 and terminate the algorithm, 
otherwise set VI+-- 0 and V3 +-- b. 

2. [Finished?] If v3 = 0 then set v +-- (d- au)/b and terminate the algorithm. 

3. [Euclidean step] Let q +-- Ld/v3J and simultaneously t3 +-- d mod v3 . Then set 
ti +-- u- QVI, u +--VI. d +-- V3, v1 +-- ti, V3 +-- t3 and go to step 2. 

"Simultaneously" in step 3 means that if this algorithm is implemented in 
assembly language, then, since the division instruction usually gives both the 
quotient and remainder, this should of course be used. Even if this algorithm 
is not programmed in assembly language, but a and b are multi-precision 
numbers, the division routine in the multi-precision library should also return 
both quotient and remainder. Note also that in step 2, the division of d- au 
by b is exact. 

Proof of the Algorithm. Introduce three more variables v2, t2 and v. We want 
the following relations to hold each time one begins step 2: 

at I + bt2 = t3, au + bv = d, av1 + bv2 = V3. 
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For this to be true after the initialization step, it suffices to set v +-- 0, v2 +-- 1. 
(It is not necessary to initialize the t variables.) Then, it is easy to check that 
step 3 preserves these relations if we update suitably the three auxiliary vari
ables (by (v2, t2, v) +-- (t2, v -qv2 , v2)). Therefore, at the end of the algorithm, 
d contains the GCD (since we have simply added some extra work to the ini
tial Euclidean algorithm), and we also have au+ bv =d. D 

As an exercise, the reader can show that at the end of the algorithm, 
we have v1 = ±b/d (and v2 = +afd in the proof), and that throughout the 
algorithm, lv1l, lui, lt1l stay less than or equal to bjd (and lv21, lvl, lt2l stay 
less than or equal to ajd). 

This algorithm can be improved for multi-precision numbers exactly as in 
Lehmer's Algorithm 1.3.3. Since it is a simple blend of Algorithms 1.3.3 and 
1.3.5, we do not give a detailed proof. (Notice however that the variables d 
and v3 have become a and b.) 

Algorithm 1.3.7 (Lehmer Extended). Let a and b be non-negative multi
precision integers, and assume that a 2:: b. This algorithm computes (u, v, d) such 
that au+bv = d =(a, b), using the following auxiliary variables. a, b, A, B, C, D, 
T and q are single precision (i.e. less than M), and t, r, v1. v3 are multi-precision 
variables. 

1. [Initialize] Set u +--1, v1 +--0. 

2. [Finished?] If b < M, i.e. is single precision, compute (u, v, d) using Algorithm 
1.3.6 and terminate. Otherwise, let a (resp. b) be the single precision number 
formed by the p most significant digits of a (resp. b). Set A+-- 1, B +-- 0, 
C +-- 0, D +-- 1. 

3. [Test quotient] If b + C = 0 or b + D = 0 go to step 5. Otherwise, set 
q +-- L(a + A)/(b + C)J. If q "I L(a + B)/(b + D)J, go to step 5. 

4. [Euclidean step] Set T+-A-qC, A+-C, C+-T, T+-B-qD, B+-D, 
D +-- T, T +-- a- qb, a +-- b, b +-- T and go to step 3 (all these operations are 
single precision operations). 

5. [Multi-precision step]lf B = 0, set q +-- L ajb J and simultaneously t +--a mod b 
using multi-precision division, then a+-- b, b +-- t, t +-- u-qv1, u +-- v1. v1 +-- t 
and go to step 2. 

Otherwise, set t +-- Aa, t +-- t + Bb, r +-- Ca, r +-- r +Db, a +-- t, b +-- r, 
t +-- Au, t +-- t + Bv1, r +-- Cu, r +-- r + Dv1. u +-- t, v1 +-- r using linear-time 
multi-precision operations, and go to step 2. 

In a similar way, the binary algorithm can be extended to find u and v. 
The algorithm is as follows. 

Algorithm 1.3.8 (Binary Extended). Given non-negative integers a and b, 
this algorithm determines (u, v, d) such that au+ bv = d and d =(a, b). We use 
auxiliary variables v1, v3, t 1 , t3, and two Boolean flags f 1 and f2. 
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1. [Reduce size once) If a < b exchange a and b and set /I - 1, otherwise set 
/I - 0. Now if b = 0, output (1,0,a) if /I = 0, (0, 1,a) if /I = 1 and 
terminate the algorithm. Otherwise, let a = bq + r be the Euclidean division 
of a by b, where 0 ::;: r < b, and set a-band b- r. 

2. [Compute power of 2] If b = 0, output (0, 1, a) if /I = 0, (1, 0, a) if /I = 1 
and terminate the algorithm. Otherwise, set k - 0, and while a and b are both 
even, set k- k + 1, a- a/2, b- b/2. 

3. [Initialize) If b is even, exchange a and band set fz - 1, otherwise set fz - 0. 
Then set u - 1, d - a, v1 - b, va - b. If a is odd, set t1 - 0, ta - -b 
and go to step 5, else set t1- (1 + b)/2, ta- a/2. 

4. [Remove powers of 2) If ta is even do as follows. Set t 3 - ta/2, tt - h/2 if 
t1 is even and t1 - (t1 + b)/2 if t1 is odd, and repeat step 4. 

5. [Loop) lfta > 0, set u- t1 and d- ta, otherwise, set v1- b-tt, va- -ta. 

6. [Subtract) Set t1 - u- v1, ta - d- va. If t1 < 0, set t1 - t1 +b. Finally, if 
ta =/= 0, go to step 4. 

7. [Terminate] Set v - (d- au)/b and d - 2kd. If fz = 1 exchange u and v. 
Then set u- u- vq. Finally, output (u,v,d) if /I= 1, (v,u,d) if /I= 0, 
and terminate the algorithm. 

Proof. The proof is similar to that of Algorithm 1.3.6. We introduce three 
more variables v2, t2 and v and we require that at the start of step 4 we 
always have 

where A and Bare the values of a and b after step 3. For this to be true, we 
must initialize them by setting (in step 3) v - 0, v2 - 1 - a and h - -1 if a 
is odd, t2 - -a/2 if a is even. After this, the three relations will continue to 
be true provided we suitably update v2, t2 and v. Since, when the algorithm 
terminates d will be the GCD of A and B, it suffices to backtrack from both 
the division step and the exchanges done in the first few steps in order to 
obtain the correct values of u and v (as is done in step 7). We leave the details 
to the reader. 0 

Euclid's "extended" algorithm, i.e. the algorithm used to compute ( u, v, d) 
and not d alone, is useful in many different contexts. For example, one frequent 
use is to compute an inverse (or more generally a division) modulo m. Assume 
one wants to compute the inverse of a number b modulo m. Then, using 
Algorithm 1.3.6, 1.3. 7 or 1.3.8, compute ( u, v, d) such that bu + mv = d = 
( b, m). If d > 1 send an error message stating that b is not invertible, otherwise 
the inverse of b is u. Notice that in this case, we can avoid computing v in 
step 2 of Algorithm 1.3.6 and in the analogous steps in the other algorithms. 

There are other methods to compute b-1 mod m when the factorization 
of m is known, for example when m is a prime. By Euler-Fermat's Theorem 
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1.4.2, we know that, if (b, m) = 1 (which can be tested very quickly since the 
factorization of m is known), then 

bt/>(m) = 1 (mod m), 

where ¢(m) is Euler's ¢function (see [H-W]). Hence, the inverse of b modulo 
m can be obtained by computing 

b-1 = bt/>(m)-1 (mod m), 

using the powering Algorithm 1.2.1. 

Note however that the powering algorithms are O(ln3m) algorithms, which 
is worse than the time for Euclid's extended algorithm. Nonetheless they can 
be useful in certain cases. A practical comparison of these methods is done in 
[Bre1]. 

1.3.3 The Chinese Remainder Theorem 

We recall the following theorem: 

Theorem 1.3.9 (Chinese Remainder Theorem). Let m1, ... , mk and XI. 
... , Xk be integers. Assume that for every pair (i, j) we have 

There exists an integer x such that 

x = Xi (mod mi) for 1 $ i $ k. 

Furthermore, xis unique modulo the least common multiple ofm1, .. . , mk. 

Corollary 1.3.10. Let m1. ... , mk be pairwise coprime integers, i.e. such 
that 

when i =f j. 

Then, for any integers Xi, there exists an integer x, unique modulo I1 mi, such 
that 

We need an algorithm to compute x. We will consider only the case where 
the mi are pairwise coprime, since this is by far the most useful situation. 
Set M = l11<i<k mi and Mi = M/mi. Since the mi are coprime in pairs, 
gcd(Mi, mi) ,;::; I hence by Euclid's extended algorithm we can find ai such 
that aiMi = 1 (mod mi)· If we set 
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x = L aiMixi, 
l:=;i:s;k 

it is clear that x satisfies the required conditions. Therefore, we can output 
x mod M as the result. 

This method could be written explicitly as a formal algorithm. However 
we want to make one improvement before doing so. Notice that the necessary 
constants ai are small (less than mi), but the Mi or the aiMi which are also 
needed can be very large. There is an ingenious way to avoid using such large 
numbers, and this leads to the following algorithm. Its verification is left to 
the reader. 

Algorithm 1.3.11 (Chinese). Given pairwise coprime integers mi (1 ~ i ~ k) 
and integers xi, this algorithm finds an integer x such that x = xi (mod mi) for 
all i. Note that steps 1 and 2 are a precomputation which needs to be done only 
once when the mi are fixed and the xi vary. 

1. [Initialize] Set j +- 2, C1 +- 1. In addition, if it is not too costly, reorder the 
mi (and hence the xi) so that they are in increasing order. 

2. [Precomputations] Setp +- m1m2···mj-l (modmj)· Compute (u,v,d) 
such that up+ vmi = d = gcd(p, mi) using a suitable version of Euclid's 
extended algorithm. If d > 1 output an error message (the mi are not pairwise 
coprime). Otherwise, set Ci +- u, j +- j + 1, and go to step 2 if j ~ k. 

3. [Compute auxiliary constants] Set Y1 +- x1 mod m1, and for j = 2, ... , k 
compute (as written) 

4. [Terminate] Output 

x +- Yl + m1(Y2 + m2(Y3 + · · · + mk-lYk) · · · )), 

and terminate the algorithm. 

Note that we will have 0 ~ x < M = I1 mi. 
As an exercise, the reader can give an algorithm which finds x in the more 

general case of Theorem 1.3.9 where the mi are not assumed to be pairwise 
coprime. It is enough to write an algorithm such as the one described before 
Algorithm 1.3.11, since it will not be used very often (Exercise 9). 

Since this algorithm is more complex than the algorithm mentioned pre
viously, it should only be used when the mi are fixed moduli, and not just for 
a one shot problem. In this last case is it preferable to use the formula for two 
numbers inductively as follows. We want x = Xi (mod mi) for i = 1, 2. Since 
the mi are relatively prime, using Euclid's extended algorithm we can find u 
and v such that 
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It is clear that 
x = um1x2 + vm2x1 mod m1m2 

is a solution to our problem. This leads to the following. 

21 

Algorithm 1.3.12 (Inductive Chinese). Given pairwise coprime integers mi 
(1 :::; i:::; k) and integers Xi, this algorithm finds an integer x such that x =Xi 

(mod mi) for all i. 

1. [Initialize] Set i ~ 1, m ~ m1, x ~ x 1. 

2. [Finished?] If i = k output x and terminate the algorithm. Otherwise, set 
i ~ i + 1, and by a suitable version of Euclid's extended algorithm compute u 
and v such that um + vmi = 1. 

3. [Compute next x] Set x ~ umxi + vmix, m ~ mmi. x ~ x mod m and go 
to step 2. 

Note that the results and algorithms of this section remain true if we 
replace Z by any Euclidean domain, for example the polynomial ring K[X] 
where K is a field. 

1.3.4 Continued Fraction Expansions of Real Numbers 

We now come to a subject which though closely linked to Euclid's algorithm, 
has a different flavor. Consider first the following apparently simple problem. 
Let x E JR. be given by an approximation (for example a decimal or binary 
one). Decide if x is a rational number or not. Of course, this question as 
posed does not really make sense, since an approximation is usually itself a 
rational number. In practice however the question does make a lot of sense 
in many different contexts, and we can make it algorithmically more precise. 
For example, assume that one has an algorithm which allows us to compute x 
to as many decimal places as one likes (this is usually the case). Then, if one 
claims that xis (approximately) equal to a rational number pfq, this means 
that pfq should still be extremely close to x whatever the number of decimals 
asked for, p and q being fixed. This is still not completely rigorous, but it 
comes quite close to actual practice, so we shall be content with this notion. 

Now how does one find p and q if x is indeed a rational number? The 
standard (and algorithmically excellent) answer is to compute the continued 
fraction expansion of x, i.e. find integers ai such that ai ~ 1 for i ~ 1 and 

1 
x = ao + ------:1:----

a1 + ------,1,-
a2+---

a3 + · .. 

which we shall write as x = [a0 , at, a2, a3 , ... ]. If a/b is the given (rational) ap
proximation to x, then the ai are obtained by simply using Euclid's algorithm 
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on the pair (a, b), the ai being the successive partial quotients. The number 
x is rational if and only if its continued fraction expansion is finite, i.e. if and 
only if one of the ai is infinite. Since x is only given with the finite precision 
ajb, x will be considered rational if x has a very large partial quotient ai in 
its continued fraction expansion. Of course this is subjective, but should be 
put to the stringent test mentioned above. For example, if one uses the ap
proximation 1r ~ 3.1415926 one finds that the continued fraction for 1r should 
start with [3, 7, 15, 1, 243, ... ] and 243 does seem a suspiciously large partial 
quotient, so we suspect that 1r = 355/113, which is the rational number whose 
continued fraction is exactly [3, 7, 15, 1]. If we compute a few more decimals of 
1r however, we see that this equality is not true. Nonetheless, 355/113 is still 
an excellent approximation to 1r (the continued fraction expansion of 1r starts 
in fact [3, 7, 15, 1, 292, 1, ... ]). 

To implement a method for computing continued fractions of real numbers, 
I suggest using the following algorithm, which says exactly when to stop. 

Algorithm 1.3.13 (Lehmer). Given a real number x by two rational numbers 
ajb and a' jb' such that ajb ::; x::; a' /b', this algorithm computes the continued 
fraction expansion of x and stops exactly when it is not possible to determine 
the next partial quotient from the given approximants ajb and a' jb', and it gives 
lower and upper bounds for this next partial quotient. 

1. [Initialize] Set i +-- 0. 

2. [Euclidean step] Let a = bq + r the Euclidean division of a by b, and set 
r' +--a'- b'q. If r' < 0 orr'~ b' set q' +-- la' jb'J and go to step 4. 

3. [Output quotient] Set ai +-- q and output ai, then set i +-- i + 1, a +-- b, b +-- r, 
a' +-- b' and b' +-- r'. If b and b' are non-zero, go to step 2. If b = b' = 0, 
terminate the algorithm. Finally, if b = 0 set q +-- oo and q' +-- la' jb' J while if 
b' = 0 set q +-- la/bJ and q' +-- oo. 

4. [Terminate] If q > q' output the inequality q' ::; ai ::; q, otherwise output 
q ::; ai ::; q'. Terminate the algorithm. 

Note that the oo mentioned in step 3 is only a mathematical abstraction 
needed to make step 4 make sense, but it does not need to be represented in 
a machine by anything more than some special code. 

This algorithm runs in at most twice the time needed for the Euclidean 
algorithm on a and b alone, since, in addition to doing one Euclidean division 
at each step, we also multiply q by b'. 

We can now solve the following problem: given two complex numbers z1 

and z2, are they Q-linearly dependent? This is equivalent to zl/z2 being ra
tional, so the solution is this: compute z +- zd z2• If the imaginary part of 
z is non-zero (to the degree of approximation that one has), then z1 and z 2 

are not even IR-linearly dependent. If it is zero, then compute the continued 
fraction expansion of the real part of z using algorithm 1.3.13, and look for 
large partial quotients as explained above. 
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We will see in Section 2.7.2 that the LLL algorithms allow us to determine 
in a satisfactory way the problem of IQ-linear dependence of more than two 
complex or real numbers. 

Another closely related problem is the following: given two vectors a and 
b in a Euclidean vector space, determine the shortest non-zero vector which 
is a Z-linear combination of a and b (we will see in Chapter 2 that the set 
of such Z-linear combinations is called a lattice, here of dimension 2). One 
solution, called Gaussian reduction, is again a form of Euclid's algorithm, and 
is as follows. 

Algorithm 1.3.14 (Gauss). Given two linearly independent vectors a and b in 
a Euclidean vector space, this algorithm determines one of the shortest non-zero 
vectors which is a Z-linear combination of a and b. We denote by · the Euclidean 
inner product and write lal2 = a· a. We use a temporary scalar variable T, and 
a temporary vector variable t. 

1. [Initialize] Set A+- lal 2 , B +- lbl 2 . If A < B then exchange a and b and 
exchange A and B. 

2. [Euclidean step] Set n +-a· b, r +- ln/Bl, where lxl = lx + 1/2J is the 
nearest integer to x, and T +-A- 2rn+r2 B. 

3. [Finished?] If T ;::: B then output b and terminate the algorithm. Otherwise, 
set t +-a-rb, a+- b, b +- t, A +- B, B +- T and go to step 2. 

Proof. Note that A and Bare always equal to lal 2 and lbl2 respectively. I first 
claim that an integer r such that Ia- rbl has minimal length is given by the 
formula of step 2. Indeed, we have 

Ia- xbl 2 = Bx2 - 2a · bx +A, 

and this is minimum for real x for x = a · b /B. Hence, since a parabola is 
symmetrical at its minimum, the minimum for integral x is the nearest integer 
(or one of the two nearest integers) to the minimum, and this is the formula 
given in step 2. 

Thus, at the end of the algorithm we know that Ia- mbl ;::: lbl for all 
integers m. It is clear that the transformation which sends the pair (a, b) to 
the pair (b,a- rb) has determinant -1, hence the Z-module L generated 
by a and b stays the same during the algorithm. Therefore, let x = ua + vb 
be a non-zero element of L. If u = 0, we must have v :f. 0 hence trivially 
lxl ;::: lbl. Otherwise, let v = uq + r be the Euclidean division of v by u, where 
0 :S r <lui. Then we have 

lxl = lu(a + qb) + rbl;::: lui Ia + qbl-lrllbl;::: (lul-lrl)lbl;::: lbl 

since by our above claim Ia + qbl ;::: lbl for any integer q, hence b is indeed 
one of the shortest vectors of L, proving the validity of the algorithm. 
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Note that the algorithm must terminate since there are only a finite num
ber of vectors of L with norm less than or equal to a given constant (com
pact+discrete=finite!). In fact the number of steps can easily be seen to be 
comparable to that of the Euclidean algorithm, hence this algorithm is very 
efficient. D 

We will see in Section 2.6 that the LLL algorithm allows us to determine 
efficiently small Z-linear combinations for more than two linearly independent 
vectors in a Euclidean space. It does not always give an optimal solution, but, 
in most situations, the results are sufficiently good to be very useful. 

1.4 The Legendre Symbol 

1.4.1 The Groups (ZjnZ)* 

By definition, when A is a commutative ring with unit, we will denote by A* 
the group of units of A, i.e. of invertible elements of A. It is clear that A* is 
a group, and also that A* =A\ {0} if and only if A is a field. Now we have 
the following fundamental theorem which gives the structure of (ZjnZ)* (see 
[Ser] and Exercise 13). 

Theorem 1.4.1. We have 

I(Z/nZ)*I = ¢(n) = n II ( 1- ~} 
pin 

and more precisely 

(ZjnZ)* :::= II (Zjp0 Z)*, 
P"'lln 

where 

(i.e. is cyclic) when p ~ 3 or p = 2 and a:~ 2, and 

when p = 2 and a:~ 3. 

Now when (ZjnZ)* is cyclic, i.e. by the above theorem when n is equal 
either to p0 , 2p0 with p an odd prime, or n = 2 or 4, an integer g such that the 
class of g generates (ZjnZ)* will be called a primitive root modulo n. Recall 
that the order of an element g in a group is the least positive integer n such 
that gn is equal to the identity element of the group. When the group is finite, 
the order of any element divides the order of the group. Furthermore, g is a 
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primitive root of (ZjnZ)* if and only if its order is exactly equal to ¢(n). As 
a corollary of the above results, we obtain the following: 

Proposition 1.4.2. 

(1) (Fermat). lfp is a prime and a is not divisible by p, then we have 

aP- 1 = 1 (mod p). 

(2) (Euler). More generally, if n is a positive integer, then for any integer a 
coprime to n we have 

a<f>(n) = 1 (mod n), 

and even 
a<f>(n)/2 = 1 (mod n) 

if n is not equal to 2, 4, per. or 2pcr. with p an odd prime. 

To compute the order of an element in a finite group G, we use the fol
lowing straightforward algorithm. 

Algorithm 1.4.3 (Order of an Element). Given a finite group G of cardinality 
h = IGI. and an element g E G, this algorithm computes the order of 9 in G. We 
denote by 1 the unit element of G. 

1. [Initialize] Compute the prime factorization of h, say h = p~1p~2 • • • P%k, and 
set e ~ h, i ~ 0. 

2. [Next Pi] Set i ~ i + 1. If i > k, output e and terminate the algorithm. 
Otherwise, set e ~ ejp~', 91 ~ ge. 

3. [Compute local order] While 91 f. 1, set g1 ~ 9l' and e ~ e ·Pi· Go to step 
2. 

Note that we need the complete factorization of h for this algorithm to 
work. This may be difficult when the group is very large. 

Let p be a prime. To find a primitive root modulo p there seems to be no 
better way than to proceed as follows. Try 9 = 2, g = 3, etc . . . until g is a 
primitive root. One should avoid perfect powers since if g = g~, then if g is a 
primitive root, so is g0 which has already been tested. 

To see whether g is a primitive root, we could compute the order of 9 
using the above algorithm. But it is more efficient to proceed as follows. 

Algorithm 1.4.4 (Primitive Root). Given an odd prime p, this algorithm finds 
a primitive root modulo p. 

1. [Initialize a] Set a~ 1 and let p -1 = p~1 p~2 • • • P%k be the complete factor
ization of p - 1. 
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2. [Initialize check] Set a+- a+ 1 and i +- 1. 

3. [Check Pi] Compute e +- a<P-1)/P•. If e = 1 go to step 2. Otherwise, set 
i+-i+l. 

4. [finished?] If i > k output a and terminate the algorithm, otherwise go to step 
3. 

Note that we do not avoid testing prime powers, hence this simple algo
rithm can still be improved if desired. In addition, the test for Pi = 2 can be 
replaced by the more efficient check that the Legendre symbol (~) is equal to 
-1 (see Algorithm 1.4.10 below). 

If n is not a prime, but is such that there exists a primitive root modulo n, 
we could, of course, use the above two algorithms by modifying them suitably. 
It is more efficient to proceed as follows. 

First, if n = 2 or n = 4, 9 = n - 1 is a primitive root. When n = 2a is 
a power of 2 with a :::=: 3, (Z/nZ)* is not cyclic any more, but is isomorphic 
to the product of Z/2Z with a cyclic group of order 2a-2 . Then g = 5 is 
always a generator of this cyclic subgroup (see Exercise 14), and can serve as 
a substitute in this case if needed. 

When n = pa is a power of an odd prime, with a :::=: 2, then we use the 
following lemma. 

Lemma 1.4.5. Let p be an odd prime, and let 9 be a primitive root modulo 
p. Then either 9 or 9 + p is a primitive root modulo every power of p. 

Proof For any m we have mP = m (mod p), hence it follows that for every 
prime l dividing p- 1, 9Pa-l(P- 1)/! = 9(P- 1)/l ;f:. 1 (mod p). So for 9 to be a 

primitive root, we need only that gPa- 2 (P- 1) ;f:. 1 (mod pa). But one checks 
immediately by induction that xP = 1 (mod pa) implies that x = 1 (mod pb) 
for every b ~ a- 1. Applying this to x = 9Pa-2 (P- 1) we see that our condition 
on 9 is equivalent to the same condition with a replaced by a- 1, hence by 
induction to the condition 9P-1 ;f:. 1 (mod p2 ). But if 9P- 1 = 1 (mod p2), 

then by the binomial theorem (9 + p)P- 1 = 1 - P9P- 2 ;f:. 1 (mod p2 ), thus 
proving the lemma. 0 

Therefore to find a primitive root modulo pa for p an odd prime and a :::=: 2, 
proceed as follows: first compute 9 a primitive root modulo p using Algorithm 
1.4.4, then compute 91 = 9P- 1 mod p2 . If 9 1 -f- 1, g is a primitive root modulo 
pa for every a, otherwise g + p is. 

Finally, note that when p is an odd prime, if 9 is a primitive root modulo 
pa then 9 or 9 + pa (whichever is odd) is a primitive root modulo 2pa. 
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1.4.2 The Legendre-Jacobi-Kronecker Symbol 

Let p be an odd prime. Then it is easy to see that for a given integer a, the 
congruence 

x 2 =a (mod p) 

can have either no solution (we say in this case that a is a quadratic non
residue mod p), one solution if a= 0 (mod p), or two solutions (we then say 
that a is a quadratic residue mod p). Define the Legendre symbol(~) as being 
-1 if a is a quadratic non-residue, 0 if a= 0, and 1 if a is a quadratic residue. 
Then the number of solutions modulo p of the above congruence is 1 + (~). 
Furthermore, one can easily show that this symbol has the following properties 
(see e.g. [H-W]): 

Proposition 1.4.6. 

(1) The Legendre symbol is multiplicative, i.e. 

(~) (%) = (~). 
In particular, the product of two quadratic non-residues is a quadratic 
residue. 

(2) We have the congruence 

a(p-1)/2 = (~) (mod p). 

(3) There are as many quadratic residues as non-residues modp, i.e. (p-1)/2. 

We will see that the Legendre symbol is fundamental in many prob
lems. Thus, we need a way to compute it. One idea is to use the congruence 
a(P-1)/2 = (%) (mod p). Using the powering Algorithm 1.2.1, this enables 

us to compute the Legendre symbol in time O(ln3p). We can improve on this 
by using the Legendre-Gauss quadratic reciprocity law, which is itself a result 
of fundamental importance: 

Theorem 1.4.7. Let p be an odd prime. Then: 

(1) 

(~1) = (-1)(p-1)/2' (~) = (-l)(p2 -1)/8. 

(2) If q is an odd prime different from p, then we have the reciprocity law: 

(%)(~) = (-l)(p-1)(q-1)/4. 
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For a proof, see Exercises 16 and 18 and standard textbooks (e.g. [H-W], 
[Ire-Ros]). 

This theorem can certainly help us to compute Legendre symbols since 
(~) is multiplicative in a and depends only on a modulo p. A direct use of 
Theorem 1.4.7 would require factoring all the numbers into primes, and this 
is very slow. Luckily, there is an extension of this theorem which takes care of 
this problem. We first need to extend the definition of the Legendre symbol. 

Definition 1.4.8. We define the Kronecker (or Kronecker-Jacobi} symbol m 
for any a and b in Z in the following way. 

(1) If b = 0, then {ij) = 1 if a= ±1, and is equal to 0 otherwise. 
(2) Forb# 0, write b = IJp, where the p are not necessarily distinct primes 

(including p = 2}, or p = -1 to take care of the sign. Then we set 

(~)=IT(~). 
where (~) is the Legendre symbol defined above for p > 2, and where we 
define 

( a) { 0 if a is even 
2 = ( ~l)(a2 -l)/S, if a is odd. 

and also 

(~) = { 1, 
-1 -1, 

if a~ 0 

if a< 0. 

Then, from the properties of the Legendre symbol, and in particular from 
the reciprocity law 1.4.7, one can prove that the Kronecker symbol has the 
following properties: 

Theorem 1.4.9. 

(1) (~) = 0 if and only if (a, b)# 1 
(2) For all a, b and c we have 

(~) = (~) (D , (:c)=(~)(~) ifbc # 0 

(3) b > 0 being fixed, the symbol m is periodic in a of period b if b =/= 2 
(mod 4), otherwise it is periodic of period 4b. 

(4) a# 0 being fixed (positive or negative}, the symbol m is periodic in b of 
period iai if a = 0 or 1 (mod 4), otherwise it is periodic of period 4iai. 

(5) The formulas of Theorem 1.4. 7 are still true if p and q are only supposed 
to be positive odd integers, not necessarily prime. 
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Note that in this theorem (as in the rest of this book), when we say that a 
function f ( x) is periodic of period b, this means that for all x, f ( x +b) = f ( x), 
but b need not be the smallest possible period. 

Theorem 1.4.9 is a necessary prerequisite for any study of quadratic fields, 
and the reader is urged to prove it by himself (Exercise 1 7). 

As has been mentioned, a consequence of this theorem is that it is easy 
to design a fast algorithm to compute Legendre symbols, and more generally 
Kronecker symbols if desired. 

Algorithm 1.4.10 (Kronecker). Given a, bE Z, this algorithm computes the 
Kronecker symbol (~) (hence the Legendre symbol when b is an odd prime). 

1. [Test b equal to Ojlf b = 0 then output 0 if lal =J- 1, 1 if lal = 1 and terminate 
the algorithm. 

2. [Remove 2's from b] If a and b are both even, output 0 and terminate the 
algorithm. Otherwise, set v ~ 0 and while b is even set v ~ v + 1 and 
b ~ b/2. Then if vis even set k ~ 1, otherwise set k ~ (-1)(a2 -l)/B (by 
table lookup, not by computing (a2 -1)/8). Finally if b < 0 set b ~ -b, and 
if in addition a< 0 set k ~ -k. 

3. [Finished?] (Here b is odd and b > 0.) If a = 0 then output 0 if b > 1, k if 
b = 1, and terminate the algorithm. Otherwise, set v ~ 0 and while a is even 
do v ~ v + 1 and a~ a/2. If vis odd set k ~ (-1)(b2 -l)/8 k. 

4. [Apply reciprocity] Set 

k ~ (-1)(a-l)(b-l)/4k, 

(using if statements and no multiplications), and then r ~ lal. a~ b mod r, 
b ~ r and go to step 3. 

Remarks. 

(1) As mentioned, the expressions (-1)(a2 -l)/B and (-1)(a-l)(b-l)/4 should 
not be computed as powers, even though they are written this way. For 
example, to compute the first expression, set up and save a table tab2 
containing 

{0, 1, 0, -1, 0, -1,0, 1}, 

and then the formula (-1)Ca2 -l)/B = tab2[a&7], the&; symbol denot
ing bitwise and, which is a very fast operation compared to multipli
cation (note that a&7 is equivalent to a mod 8). The instruction k ~ 
(-1)Ca-l)(b-l)/4k is very efficiently translated inC by 

if(a&b&2) k= -k; 
(2) We need to prove that the algorithm is valid! It terminates since, because 

except possibly the first time, at the beginning of step 3 we have 0 < b < a 
and the value of b is strictly decreasing. It gives the correct result because 
of the following lemma which is an immediate corollary of Theorem 1.4.9: 
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Lemma 1.4.11. If a and b are odd integers with b > 0 (but not necessarily 
a> 0), then we have 

(~) = ( -1)(a-l)(b-1)/4 C!l). 

(3) We may want to avoid cleaning out the powers of 2 in step 3 at each pass 
through the loop. We can do this by slightly changing step 4 so as to 
always end up with an odd value of a. This however may have disastrous 
effects on the running time, which may become exponential instead of 
polynomial time (see [Bac-Sha] and Exercise 24). 

Note that Algorithm 1.4.10 can be slightly improved (by a small constant 
factor) by adding the following statement at the end of the assignments of 
step 4, before going back to step 3: If a > r /2, then a = a- r. This simply 
means that we ask, not for the residue of a mod r which is between 0 and 
r- 1, but for the one which is least in absolute value, i.e. between -r /2 and 
r /2. This modification could also be used in Euclid's algorithms if desired, if 
tests suggest that it is faster in practice. 

One can also use the binary version of Euclid's algorithm to compute 
Kronecker symbols. Since, in any case, the prime 2 plays a special role, this 
does not really increase the complexity, and gives the following algorithm. 

Algorithm 1.4.12 (Kronecker-Binary). Given a, bE Z, this algorithm com
putes the Kronecker symbol (%) (hence the Legendre symbol when b is an odd 
prime). 

1. [Test b = OJ If b = 0 then output 0 if lal f. 1, 1 if lal = 1 and terminate the 
algorithm. 

2. [Remove 2's from b] If a and b are both even, output 0 and terminate the 
algorithm. Otherwise, set v ~ 0 and while b is even set v ~ v + 1 and 
b ~ b/2. Then if v is even set k ~ 1, otherwise set k ~ ( -1)(a2 -l)/8 (by 
table lookup, not by computing (a2 -1)/8). Finally, if b < 0 set b ~ -b, and 
if in addition a < 0 set k ~ -k. 

3. [Reduce size once] (Here b is odd and b > 0.) Set a~ a mod b. 

4. [Finished?] If a= 0, output 0 if b > 1, kif b = 1, and terminate the algorithm. 

5. [Remove powers of 2] Set v ~ 0 and, while a is even, set v ~ v + 1 and 
a~ a/2. If vis odd, set k ~ (-1)(b2 -l)fsk. 

6. [Subtract and apply reciprocity] (Here a and bare odd.) Set r ~ b-a. If r > 0, 
then set k ~ ( -1)<a-l)(b-l)/4k (using if statements), b ~a and a~ r, else 
set a~ -r. Go to step 4. 

Note that we cannot immediately reduce a modulo bat the beginning of 
the algorithm. This is because when b is even the Kronecker symbol (%) is not 
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periodic of period b in general, but only of period 4b. Apart from this remark, 
the proof of the validity of this algorithm follows immediately from Theorem 
1.4.10 and the validity of the binary algorithm. 0 

The running time of all of these Legendre symbol algorithms has the same 
order of magnitude as Euclid's algorithm, i.e. O(ln2 N) when carefully pro
grammed, where N is an upper bound on the size of the inputs a and b. Note 
however that the constants will be different because of the special treatment 
of even numbers. 

1.5 Computing Square Roots Modulo p 

We now come to a slightly more specialized question. Let p be an odd prime 
number, and suppose that we have just checked that (~) = 1 using one of the 
algorithms given above. Then by definition, there exists an x such that x 2 = a 
(mod p). How do we find x? Of course, a brute force search would take time 
O(p) and, even for p moderately large, is out of the question. We need a faster 
algorithm to do this. At this point the reader might want to try and find one 
himself before reading further. This would give a feel for the difficulty of the 
problem. (Note that we will be considering much more difficult and general 
problems later on, so it is better to start with a simple one.) 

There is an easy solution which comes to mind that works for half of the 
primes p, i.e. primes p = 3 (mod 4). I claim that in this case a solution is 
given by 

x = a(p+l)/4 (mod p), 

the computation being done using the powering Algorithm 1.2.1. Indeed, since 
a is a quadratic residue, we have a(P- 1)/2 = 1 (mod p) hence 

x2 = a(p+l)/2 =a· a(p- 1)/2 =a (mod p) 

as claimed. 
A less trivial solution works for half of the remaining primes, i.e. primes 

p = 5 (mod 8). Since we have a(P- 1)/2 = 1 (mod p) and since Wp = ZjpZ is a 
field, we must have 

a(p- 1)/4 = ±1 (mod p). 

Now, if the sign is +, then the reader can easily check as above that 

x = a(P+3)/S (mod p) 

is a solution. Otherwise, using p = 5 (mod 8) and Theorem 1.4.7, we know 
that 2(P- 1)/2 = -1 (mod p). Then one can check that 

x = 2a · (4a)<P-S)/S (mod p) 

is a solution. 
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Thus the only remaining case is p = 1 (mod 8). Unfortunately, this is the 
hardest case. Although, by methods similar to the one given above, one could 
give an infinite number of families of solutions, this would not be practical in 
any sense. 

1.5.1 The Algorithm of Tonelli and Shanks 

There are essentially three algorithms for solving the above problem. One is 
a special case of a general method for factoring polynomials modulo p, which 
we will study in Chapter 3. Another is due to Schoof and it is the only non
probabilistic polynomial time algorithm known for this problem. It is quite 
complex since it involves the use of elliptic curves (see Chapter 7), and its 
practicality is not clear, although quite a lot of progress has been achieved 
by Atkin. Therefore, we will not discuss it here. The third and last algorithm 
is due to Tonelli and Shanks, and although probabilistic, it is quite efficient. 
It is the most natural generalization of the special cases studied above. We 
describe this algorithm here. 

We can always write 

p -1 = 2e · q, with q odd. 

The multiplicative group (Z/pZ)* is isomorphic to the (additive) group Z/(p-
1 )Z, hence its 2-Sylow subgroup G is a cyclic group of order 2e. Assume that 
one can find a generator z of G. The squares in G are the elements of order 
dividing 2e-l, and are also the even powers of z. Hence, if a is a quadratic 
residue mod p, then, since 

b = aq mod p is a square in G, so there exists an even integer k with 0 :.:::; k < 2e 
such that 

If one sets 
x = a(q+l)/2zkl2, 

it is clear that x2 =a (mod p), hence xis the answer. To obtain an algorithm, 
we need to solve two problems: finding a generator z of G, and computing the 
exponent k. Although very simple to solve in practice, the first problem is the 
probabilistic part of the algorithm. The best way to find z is as follows: choose 
at random an integer n, and compute z = nq mod p. Then it is clear that z is a 
generator of G (i.e. z2e-l = -1 in G) if and only if n is a quadratic non-residue 
mod p, and this occurs with probability close to 1/2 (exactly (p -1)/(2p)). 
Therefore, in practice, we will find a non-residue very quickly. For example, 
the probability that one does not find one after 20 trials is lower than 10-6 . 
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Finding the exponent k is slightly more difficult, and in fact is not needed 
explicitly (only a(q+l)l2zkl2 is needed). The method is explained in the fol
lowing complete algorithm, which in this form is due to Shanks. 

Algorithm 1.5.1 (Square Root Mod p). Let p be an odd prime, and a E Z. 
Write p- 1 = 2e · q with q odd. This algorithm, either outputs an x such that 
x 2 =a (mod p), or says that such an x does not exist (i.e. that a is a quadratic 
non-residue mod p). 

1. [Find generator] Choose numbers n at random until (~) = -1. Then set 
z ~ nq (mod p). 

2. [Initialize] Set y ~ z, r ~ e, x ~ a<q-l)/2 (mod p), b ~ ax2 (mod p), 
x ~ax (mod p). 

3. [Find exponent] If b = 1 (mod p), output x and terminate the algorithm. 
Otherwise, find the smallest m ;:::: 1 such that b2"' = 1 (mod p). If m = r, 
output a message saying that a is not a quadratic residue mod p. 

4. [Reduce exponent] Set t ~ y2r-"'- 1 , y ~ t 2 , r ~ m, x ~ xt, b ~by (all 
operations done modulo p), and go to step 3. 

Note that at the beginning of step 3 we always have the congruences 
modulo p: 

2r-l 
y = -1, 

If Gr is the subgroup of G whose elements have an order dividing 2r, then this 
says that y is a generator of Gr and that b is in Gr-l, in other words that b is 
a square in Gr. Since r is strictly decreasing at each loop of the algorithm, the 
number of loops is at most e. When r ::; 1 we have b = 1 hence the algorithm 
terminates, and the above congruence shows that x is one of the square roots 
of a mod p. 

It is easy to show that, on average, steps 3 and 4 will require e2 /4 mul
tiplications mod p, and at most e2 • Hence the expected running time of this 
algorithm is O(ln4p). 0 

Remarks. 

(1) In the algorithm above, we have not explicitly computed the value of the 
exponent k such that aq zk = 1 but it is easy to do so if needed (see 
Exercise 25). 

(2) As already mentioned, Shanks's algorithm is probabilistic, although the 
only non-deterministic part is finding a quadratic non-residue mod p, 
which seems quite a harmless task. One could try making it completely de
terministic by successively trying n = 2, 3 ... in step 1 until a non-residue 
is found. This is a reasonable method, but unfortunately the most pow
erful analytical tools only allow us to prove that the smallest quadratic 
non-residue is O(p"') for a non-zero a. Thus, this deterministic algorithm, 
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although correct, may have, as far as we know, an exponential running 
time. 

If one assumes the Generalized Riemann Hypothesis (GRH), then 
one can prove much more, i.e. that the smallest quadratic non-residue 
is O(ln2p), hence this gives a polynomial running time (in O(ln4p) since 
computing a Legendre symbol is in O(ln2p)). In fact, Bach [Bach] has 
proved that for p > 1000 the smallest non-residue is less than 2ln2p. In 
any case, in practice the probabilistic method and the sequential method 
(i.e. choosing n = 2, 3, ... ) give essentially equivalent running times. 

(3) If m is an integer whose factorization into a product of prime powers 
is completely known, it is easy to write an algorithm to solve the more 
general problem x 2 = a (mod m) (see Exercise 30). 

1.5.2 The Algorithm of Cornacchia 

A well known theorem of Fermat (see [H-W]) says that an odd prime p is a sum 
of two squares if and only if p = 1 mod 4, i.e. if and only if -1 is a quadratic 
residue mod p. Furthermore, up to sign and exchange, the representation of p 
as a sum of two squares is unique. Thus, it is natural to ask for an algorithm 
to compute x and y such that x2 + y2 = p when p = 1 mod 4. More generally, 
given a positive integer d and an odd prime p, one can ask whether the equation 

x2 + dy2 = p 

has a solution, and for an algorithm to find x and y when they exist. There is 
a pretty algorithm due to Cornacchia which solves both problems simultane
ously. For the beautiful and deep theory concerning the first problem, which 
is closely related to complex multiplication (see Section 7.2) see [Cox]. 

First, note that a necessary condition for the existence of a solution is that 
-d be a quadratic residue modulo p. Indeed, we clearly must have y "¢'. 0 mod p 
hence 

(xy- 1) 2 = -d mod p, 

where y- 1 denotes the inverse of y modulo p. We therefore assume that this 
condition is satisfied. By using Algorithm 1.5.1 we can find an integer xo such 
that 

x~ = -d modp 

and we may assume that p/2 < x 0 < p. Cornacchia's algorithm tells us that 
we should simply apply Euclid's Algorithm 1.3.1 to the pair (a, b) = (p, xo) 
until we obtain a number b such that b <.jP. Then we set c +--- (p-b2 )jd, and 
if cis the square of an integers, the equation x2 + dy2 = p has (x, y) = (b, s) 
as (essentially unique) solution, otherwise it has no solution. This leads to the 
following algorithm. 

Algorithm 1.5.2 (Cornacchia). Let p be a prime number and d be an integer 
such that 0 < d < p. This algorithm either outputs an integer solution (x, y) to 
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the Diophantine equation x2 + dy2 = p, or says that such a solution does not 
exist. 

1. [Test if residue] Using Algorithm 1.4.12 compute k +--(-;,d). If k = -1, say 
that the equation has no solution and terminate the algorithm. 

2. [Compute square root] Using Shanks's Algorithm 1.5.1, compute an integer Xo 

such that x~ = -d mod p, and change x0 into ±x0 + kp so that p/2 < xo < p. 
Then set a+-- p, b +-- xo and l +-- lv'PJ· 

3. [Euclidean algorithm] If b > l, set r +--a mod b, a+-- b, b +-- r and go to step 
3. 

4. [Test solution] If d does not dividep-b2 or if c = (p-b2 )fd is not the square 
of an integer (see Algorithm 1.7.3), say that the equation has no solution and 
terminate the algorithm. Otherwise, output (x, y) = (b, .jC) and terminate the 
algorithm. 

Let us give a numerical example. Assume that we want to solve x2 + 2y2 = 
97. In step 1, we first compute (9;) by Algorithm 1.4.12 (or directly since here 
it is easy), and find that -2 is a quadratic residue mod 97. Thus the equation 
may have a solution (and in fact it must have one since the class number 
of the ring of integers of Q( v'2) is equal to 1, see Chapter 5). In step 2, we 
compute xo such that x~ = -2 mod 97 using Algorithm 1.5.1. Using n = 5 
hence z = 28, we readily find x0 = 17. Then the Euclidean algorithm in step 
3 gives 97 = 5 · 17 + 12, 17 = 1 · 12 + 5 and hence b = 5 is the first number 
obtained in the Euclidean stage, which is less than or equal to the square root 
of 97. Now c = (97- 52)/2 = 36 is a square, hence a solution (unique) to our 
equation is (x,y) = (5,6). Of course, this could have been found much more 
quickly by inspection, but for larger numbers we need to use the algorithm as 
written. 

The proof of this algorithm is not really difficult, but is a little painful 
so we refer to [Mor-Nic]. A nice proof due to H. W. Lenstra can be found 
in [Scho2]. Note also that Algorithm 1.3.14 above can also be used to solve 
the problem, and the proof that we gave of the validity of that algorithm is 
similar, but simpler. 

When working in complex quadratic orders of discriminant D < 0 con
gruent to 0 or 1 modulo 4 (see Chapter 5), it is more natural to solve the 
equation 

x2 + 1Diy2 = 4p 

where pis an odd prime (we will for example need this in Chapter 9). 

If 4 I D, we must have 2 I x, hence the equation is equivalent to x'2 + dy2 = 
P with x' = x/2 and d = IDI/4, which we can solve by using Algorithm 1.5.2. 

If D = 1 (mod 8), we must have x2- y2 = 4 (mod 8) and this is possible 
only when x and y are even, hence our equation is equivalent to x'2 + dy'2 = p 
with x' = x/2, y' = y/2 and d = IDI, which is again solved by Algorithm 1.5.2 
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Finally, if D = 5 (mod 8), the parity of x andy is not a priori determined. 
Therefore Algorithm 1.5.2 cannot be applied as written. There is however a 
modification of Algorithm 1.5.2 which enables us to treat this problem. 

For this compute x 0 such that x5 = D (mod p) using Algorithm 1.5.1, 
and if necessary change x0 into p- x 0 so that in fact x5 = D (mod 4p). Then 
apply the algorithm as written, starting with (a, b) = (2p, x0 ), and stopping 
as soon as b < l, where l = l2..JP J. Then, as in [Mor-Nic] one can show that 
this gives the (essentially unique) solution to x2 + jDjy2 = 4p. This gives the 
following algorithm. 

Algorithm 1.5.3 (Modified Cornacchia). Let p be a prime number and D 
be a negative integer such that D = 0 or 1 modulo 4 and IDI < 4p. This 
algorithm either outputs an integer solution (x, y) to the Diophantine equation 
x2 + 1Diy2 = 4p, or says that such a solution does not exist. 

1. [Case p = 2]1f p = 2 do as follows. If D + 8 is the square of an integer, output 
(.JD + 8, 1), otherwise say that the equation has no solution. Then terminate 
the algorithm. 

2. [Test if residue] Using Algorithm 1.4.12 compute k +- (%). If k = -1, say 
that the equation has no solution and terminate the algorithm. 

3. [Compute square root] Using Shanks's Algorithm 1.5.1, compute an integer 
xo such that x5 = D mod p and 0 :::; x 0 < p, and if x 0 ¢- D (mod 2), set 
x 0 +- p- xo. Finally, set a+- 2p, b +- xo and l +- l2..JP J. 

4. [Euclidean algorithm] If b > l, set r +-a mod b, a+- b, b +- r and go to step 
4. 

5. [Test solution] If IDI does not divide 4p- b2 or if c = (4p- b2)/IDI is not 
the square of an integer (see Algorithm 1.7.3), say that the equation has no 
solution and terminate the algorithm. Otherwise, output (x, y) = (b, JC) and 
terminate the algorithm. 

1.6 Solving Polynomial Equations Modulo p 

We will consider more generally in Chapter 3 the problem of factoring poly
nomials mod p. If one wants only to find the linear factors, i.e. the roots mod 
p, then for small degrees one can use the standard formulas. To avoid writing 
congruences all the time, we implicitly assume that we work in F P = 7Ljp7L. 

In degree one, the solution of the equation ax+ b = 0 is x = -b · a- 1, 

where a- 1 is computed using Euclid's extended algorithm. 

In degree two, the solutions of the equation ax2 + bx + c = 0 where a =/= 0 
and p =/= 2, are given as follows. Set D = b2 - 4ac. If (~) = -1, then there 

are no solutions in Fp· If(~) = 0, i.e. if pI D, then there is a unique (double) 

solution given by x = -b · (2a)- 1 . Finally, if(~)= 1, there are two solutions, 
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obtained in the following way: compute an s such that s2 = D using one of 
the algorithms of the preceding section. Then the solutions are as usual 

( -b ± s) · (2a)- 1. 

In degree three, Cardano's formulas can be used (see Exercise 28 of Chap
ter 3). There are however two difficulties which must be taken care of. The 
first is that we must find an algorithm to compute cube roots. This can be 
done in a manner similar to the case of square roots. The second difficulty lies 
in the handling of square roots when these square roots are not in lF P (they are 
then in lF P2). This is completely analogous to handling complex numbers when 
a real cubic equation has three real roots. The reader will find it an amusing 
exercise to try and iron out all these problems (see Exercise 28). Otherwise, 
see [Wil-Zar] and [Marl], who also gives the analogous recipes for degree four 
equations (note that for computing fourth roots one can simply compute two 
square roots). 

In degree 5 and higher, the general equations have a non-solvable Galois 
group, hence as in the complex case, no special-purpose algorithms are known, 
and one must rely on general methods, which are slower. These methods will 
be seen in Section 3.4, to which we refer for notations and definitions, but in 
the special case of root finding, the algorithm is much simpler. We assume 
p > 2 since for p = 2 there are just two values to try. 

Algorithm 1.6.1 (Roots Mod p). Given a prime number p ~ 3 and a polyno
mial P E lFp[X], this algorithm outputs the roots of P in lFP. This algorithm will 
be called recursively, and it is understood that all the operations are done in lFp. 

1. [Isolate roots in lF p] Compute A(X) +-- (XP - X, P(X)) as explained below. 
If A(O) = 0, output 0 and set A(X) +-- A(X)jX. 

2. [Small degree?] If deg(A) = 0, terminate the algorithm. If deg(A) = 1, and 
A(X) = a1X +ao, output -aofa1 and terminate the algorithm. If deg(A) = 2 
and A(X) = a2X2 + a1X + a0 , set d +-- ai- 4a0a 2 , compute e +-- Jd using 
Algorithm 1.5.1, output ( -a1 + e)/(2a2 ) and ( -a1 - e)/(2a2 ), and terminate 
the algorithm. (Note that e will exist.) 

3. [Random splitting] Choose a random a E JFP, and compute B(X) +-- ((X+ 
a)<P-l)/2 -1, A( X)) as explained below. If deg(B) = 0 or deg(B) = deg(A), 
go to step 3. 

4. [Recurse] Output the roots of B and Aj B using the present algorithm recur
sively (skipping step 1), and terminate the algorithm. 

Proof. The elements of lFp are the elements x of an algebraic closure which 
satisfy xP = x. Hence, the polynomial A computed in step 1 is, up to a 
constant factor, equal to the product of the X- x where the x are the roots 
of P in lFp. Step 3 then splits the roots x in two parts: the roots such that 
x +a is a quadratic residue mod p, and the others. Since a is random, this 
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has approximately one chance in 2deg(A)- 1 of not splitting the polynomial A 
into smaller pieces, and this shows that the algorithm is valid. D 

Implementation Remarks. 

(1) step 2 can be simplified by not taking into account the case of degree 
2, but this gives a slightly less efficient algorithm. Also, if step 2 is kept 
as it is, it may be worthwhile to compute once and for all the quadratic 
non-residue mod p which is needed in Algorithm 1.5.1. 

(2) When we are asked to compute a GCD of the form gcd(un - b, c), we 
must not compute un - b, but instead we compute d ~ un mod c using 
the powering algorithm. Then we have gcd(un- b,c) = gcd(d- b,c). 
In addition, since u = X + a is a very simple polynomial, the left-right 
versions of the powering algorithm (Algorithms 1.2.3 and 1.2.4) are more 
advantageous here. 

(3) When p is small, and in particular when p is smaller than the degree 
of A(X), it may be faster to simply test all values X = 0, ... ,p- 1. 
Thus, the above algorithm is really useful when p is not too small. In 
that case, it may be faster to compute gcd(X<P- 1)/2 - 1, A( X- a)) than 
gcd((X +a)<P- 1ll 2 -1,A(X)). 

1. 7 Power Detection 

In many algorithms, it is necessary to detect whether a number is a square or 
more generally a perfect power, and if it is, to compute the root. We consider 
here the three most frequent problems of this sort and give simple arithmetic 
algorithms to solve them. Of course, to test whether n = mk, you can always 
compute the nearest integer to e1n nf k by transcendental means, and see if the 
kth power of that integer is equal to n. This needs to be tried only for k ~ lg n. 
This is clearly quite inefficient, and also requires the use of transcendental 
functions, so we turn to better methods. 

1.7.1 Integer Square Roots 

We start by giving an algorithm which computes the integer part of the square 
root of any positive integer n. It uses a variant of Newton's method, but works 
entirely with integers. The algorithm is as follows. 

Algorithm 1.7.1 (Integer Square Root). Given a positive integer n, this 
algorithm computes the integer part of the square root of n, i.e. the number m 
such that m2 ~ n < (m + 1)2 . 

1. [Initialize] Set x ~ n (see discussion). 

2. [Newtonian step] Set y ~ L(x + Ln/xJ)/2J using integer divides and shifts. 
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3. [Finished?] If y < x set x +- y and go to step 2. Otherwise, output x and 
terminate the algorithm. 

Proof By step 3, the value of x is strictly decreasing, hence the algorithm 
terminates. We must show that the output is correct. Let us set q = l Vn J . 

Since (t + njt)/2 ~ .fii for any positive real value oft, it is clear that 
the inequality x ~ q is satisfied throughout the algorithm (note that it is also 
satisfied also after the initialization step). Now assume that the termination 
condition in step 3 is satisfied, i.e. that y = l(x+n/x)/2J ~ x. We must show 
that x = q. Assume the contrary, i.e. that x ~ q + 1. Then, 

Since x ~ q + 1 > .jn, we have n - x2 < 0, hence y - x < 0 contradiction. 
This shows the validity of the algorithm. 0 

Remarks. 

(1) We have written the formula in step 2 using the integer part function 
twice to emphasize that every operation must be done using integer arith
metic, but of course mathematically speaking, the outermost one would 
be enough. 

(2) When actually implementing this algorithm, the initialization step must 
be modified. As can be seen from the proof, the only condition which must 
be satisfied in the initialization step is that x be greater or equal to the 
integer part of .fii. One should try to initialize x as close as possible to 
this number. For example, after a O(ln ln n) search, as in the left-right 
binary powering Algorithm 1.2.2, one can find e such that 2e :::; n < 2e+1. 
Then, one can take x +- 2L(e+2)/2J. Another option is to compute a single 
precision floating point approximation to the square root of n and to take 
the ceiling of that. The choice between these options is machine dependent. 

(3) Let us estimate the running time of the algorithm. As written, we will 
spend a lot of time essentially dividing x by 2 until we are in the right 
ball-park, and this requires O(ln n) steps, hence O(ln3n) running time. 
However, if care is taken in the initialization step as mentioned above, we 
can reduce this to the usual number of steps for a quadratically convergent 
algorithm, i.e. O(ln ln n). In addition, if the precision is decreased at each 
iteration, it is not difficult to see that one can obtain an algorithm which 
runs in O(ln2n) bit operations, hence only a constant times slower than 
multi plication/ division. 

1. 7.2 Square Detection 

Given a positive integer n, we want to determine whether n is a square or 
not. One method of course would be to compute the integer square root of 
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n using Algorithm 1.7.1, and to check whether n is equal to the square of 
the result. This is far from being the most efficient method. We could also 
use Exercise 22 which says that a number is a square if and only if it is a 
quadratic residue modulo every prime not dividing it, and compute a few 
Legendre symbols using the algorithms of Section 1.4.2. We will use a variant 
of this method which replaces Legendre symbol computation by table lookup. 
One possibility is to use the following algorithm. 

Precomputations 1.7.2. This is to be done and stored once and for all. 

1. [Fill 11] For k = 0 to 10 set q11[k] +- 0. Then fork = 0 to 5 set q11[k2 mod 
11] +- 1. 

2. [Fill 63] For k = 0 to 62 set q63[k] +- 0. Then for k = 0 to 31 set q63[k2 mod 
63] +- 1. 

3. [Fill 64] Fork = 0 to 63 set q64[k] +- 0. Then fork= 0 to 31 set q64[k2 mod 
64] +-1. 

4. [Fill 65] For k = 0 to 64 set q65[k] +- 0. Then for k = 0 to 32 set q65[k2 mod 
65] +- 1. 

Once the precomputations are made, the algorithm is simply as follows. 

Algorithm 1.7.3 (Square Test). Given a positive integer n, this algorithm 
determines whether n is a square or not, and if it is, outputs the square root of 
n. We assume that the precomputations 1.7.2 have been made. 

1. [Test 64] Set t +- n mod 64 (using if possible only an and statement). If 
q64[t] = 0, n is not a square and terminate the algorithm. Otherwise, set 
r +- n mod 45045. 

2. [Test 63] If q63[r mod 63] = 0, n is not a square and terminate the algorithm. 

3. [Test 65] If q65[r mod 65] = 0, n is not a square and terminate the algorithm. 

4. [Test 11] If q11[r mod 11] = 0, n is not a square and terminate the algorithm. 

5. [Compute square root] Compute q +-lfoJ using Algorithm 1.7.1. If n =f:. q2 , 

n is not a square and terminate the algorithm. Otherwise n is a square, output 
q and terminate the algorithm. 

The validity of this algorithm is clear since if n is a square, it must be a 
square modulo k for any k. Let us explain the choice of the moduli. Note first 
that the number of squares modulo 64,63,65,11 is 12,16,21,6 respectively (see 
Exercise 23). Thus, if n is not a square, the probability that this will not have 
been detected in the four table lookups is equal to 

1216 21 6 6 
64 63 65 11 715 

and this is less than one percent. Therefore, the actual computation of the 
integer square root in step 5 will rarely be done when n is not a square. This 
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is the reason for the choice of the moduli. The order in which the tests are 
done comes from the inequalities 

If one is not afraid to spend memory, one can also store the squares modulo 
45045 = 63 · 65 · 11, and then only one test is necessary instead of three, in 
addition to the modulo 64 test. 

Of course, other choices of moduli are possible (see [Nic]), but in practice 
the above choice works well. 

1.7.3 Prime Power Detection 

The last problem we will consider in this section is that of determining whether 
n is a prime power or not. This is a test which is sometimes needed, for 
example in some of the modern factoring algorithms (see Chapter 10). We 
will not consider the problem of testing whether n is a power of a general 
number, since it is rarely needed. 

The idea is to use the following proposition. 

Proposition 1. 7 .4. Let n = pk be a prime power. Then 

(1) For any a we have pI (an- a,n). 
(2) If k ;::: 2 and p > 2, let a be a witness to the compositeness of n given by 

the Rabin-Miller test 8.2.2, i.e. such that (a,n) = 1, and ifn -1 = 2tq 
with q odd, then aq ¢ 1 (mod n) and for all e such that 0 :::; e :::; t- 1 then 
a2eq ¢ -1 (mod n). Then (an- a, n) is a non-trivial divisor of n (i.e. is 
different from 1 and n). 

Proof. By Fermat's theorem, we have an= a (mod p), hence (1) is clear. Let 
us prove (2). Let a be a witness to the compositeness of n as defined above. 
By (1), we already know that (an -a, n) > 1. Assume that (an -a, n) = n, i.e. 
that an= a (mod n). Since (a,n) = 1 this is equivalent to an-l = 1 (mod n), 
i.e. a2'q = 1 (mod n). Let f be the smallest non-negative integer such that 

a21 q = 1 (mod n). Thus f exists and f :::; t. If we had f = 0, this would 
contradict the definition of a witness (aq ¢ 1 (mod n)). So f > 0. But then 
we can write 

pk I (azt-lq -1)(azt-lq + 1) 

and since p is an odd prime, this implies that pk divides one of the two factors. 
But pk I (a21 - 1q- 1) contradicts the minimality off, and pk I (a21 - 1 q + 1) 
contradicts the fact that a is a witness (we cannot have a2eq = -1 (mod n) 
for e < t), hence we have a contradiction in every case thus proving the 
proposition. D 
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This leads to the following algorithm. 

Algorithm 1.7.5 (Prime Power Test). Given a positive integer n > 1, this 
algorithm tests whether or not n is of the form pk with p prime, and if it is, 
outputs the prime p. 

1. [Case n even] If n is even, set p +-- 2 and go to step 4. Otherwise, set q +-- n. 

2. [Apply Rabin-Miller] By using Algorithm 8.2.2 show that either q is a probable 
prime or exhibit a witness a to the compositeness of q. If q is a probable prime, 
set p +-- q and go to step 4. 

3. [Compute GCD] Set d +-- (aq- a, q). If d = 1 or d = q, then n is not a prime 
power and terminate the algorithm. Otherwise set q +-- d and go to step 2. 

4. [Final test] (Here pis a divisor of n which is almost certainly prime.) Using 
a primality test (see Chapters 8 and 9) prove that pis prime. If it is not (an 
exceedingly rare occurence), set q +-- p and go to step 2. Otherwise, by dividing 
n by p repeatedly, check whether n is a power of p or not. If it is not, n is not 
a prime power, otherwise output p. Terminate the algorithm. 

We have been a little sloppy in this algorithm. For example in step 4, 
instead of repeatedly dividing by p we could use a binary search analogous 
to the binary powering algorithm. We leave this as an exercise for the reader 
(Exercise 4). 

1. 8 Exercises for Chapter 1 

1. Write a bare-bones multi-precision package as explained in Section 1.1.2. 

2. Improve your package by adding a squaring operation which operates faster than 
multiplication, and based on the identity (aX+ b) 2 = a 2 X 2 + b2 +((a+ b) 2 -

a2 - b2 )X, where X is a power of the base. Test when a similar method applied 
to multiplication (see Section 3.1.2) becomes faster than the straightforward 
method. 

3. Given a 32-bit non-negative integer x, assume that we want to compute quickly 
the highest p~wer of 2 dividing x (32 if x = 0). Denoting by e(x) the exponent 
of this power of 2, show that this can be done using the formula 

e(x) = t[(x"(x- 1)) mod 37] 

where t is a suitable table of 37 values indexed from 0 to 36, and a"b denotes 
bitwise exclusive or (addition modulo 2 on bits). Show also that 37 is the least 
integer having this property, and find an analogous formula for 64-bit numbers. 

4. Given two integers n and p, give an algorithm which uses ideas similar to the 
binary powering algorithm, to check whether n is a power of p. Also, if p is 
known to be prime, show that one can use only repeated squarings followed by 
a final divisibility test. 
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5. Write a version of the binary GCD algorithm which uses ideas of Lehmer's 
algorithm, in particular keeping information about the low order words and the 
high order words. Try also to write an extended version. 

6. Write an algorithm which computes (u, v, d) as in Algorithm 1.3.6, by storing 
the partial quotients and climbing back. Compare the speed with the algorithms 
of the text. 

7. Prove that at the end of Algorithm 1.3.6, one has VI = ±b/d and V2 = T-a(d, 
and determine the sign as a function of the number of Euclidean steps. 

8. Write an algorithm for finding a solution to the system of congruences x = XI 
(mod mt) and x = x2 (mod m2) assuming that XI= x2 (mod gcd(mi,m2)). 

9. Generalizing Exercise 8 and Algorithm 1.3.12, write a general algorithm for 
finding an x satisfying Theorem 1.3.9. 

10. Show that the use of Gauss's Algorithm 1.3.14leads to a slightly different algo
rithm than Cornacchia's Algorithm 1.5.2 for solving the equation x2 + dy2 = p 
(consider a= (p, 0) and b = (xo, vld)). 

11. Show how to modify Lehmer's Algorithm 1.3.13 for finding the continued fraction 
expansion of a real number, using the ideas of Algorithm 1.3.3, so as to avoid 
almost all multi-precision operations. 

12. Using Algorithm 1.3.13, compute at least 30 partial quotients of the continued 
fraction expansions of the numbers e, e2, e3 , e213 (you will need some kind of 
multi-precision to do this). What do you observe? Experiment with number of 
the form eo.fb, and try to see for which a(b one sees a pattern. Then try and 
prove it (this is difficult. It is advised to start by doing a good bibliographic 
search). 

13. Prove that if n = nm2 with ni and n2 coprime, then (Z/nZ)* ~ (Z/niZ)* x 
(Z(n2Z)*. Then prove Theorem 1.4.1. 

14. Show that when a > 2, g = 5 is always a generator of the cyclic subgroup of 
order 2""-2 of (Z/2""Z)*. 

15. Prove Proposition 1.4.6. 

16. Give a proof of Theorem 1.4. 7 (2) along the following lines (read Chapter 4 first 
if you are not familiar with number fields). Let p and q be distinct odd primes. 
Set ( = e2iTr/P, R = Z[(] and 

a) Show that r(p)2 = ( -1)(p-I)/2p and that r(p) is invertible in R(qR. 
b) Show that r(p)q = (!)r(p) (mod qR). 
c) Prove Theorem 1.4.7 (2), and modify the above arguments so as to prove 

Theorem 1.4.7 (1). 

17. Prove Theorem 1.4. 9 and Lemma 1.4.11. 

18. Let p be an odd prime and n and integer prime to p. Then multiplication by n 
induces a permutation 'Yn of the finite set (Z/pZ)*. Show that the signature of 
this permutation is equal to the Legendre symbol (n). Deduce from this another 
proof of the quadratic reciprocity law (Theorem 1.~.7). 
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19. Generalizing Lemma 1.4.11, show the following general reciprocity law: if a and 
bare non-zero and a= 2"'a1 (resp. b = 2~b1) with a1 and b1 odd, then 

( ~) = ( -1)(at-l}{bt-1)/4+(sign(al)-l){sign(bt)-1)/4 ( ~). 

20. Implement the modification suggested after Algorithm 1.4.10 (i.e. taking the 
smallest residue in absolute value instead of the smallest non-negative one) and 
compare its speed with that of the unmodified algorithm. 

21. Using the quadratic reciprocity law, find the number of solutions of the congru
ence x 3 = 1 (mod p). Deduce from this the number of cubic residues mod p, i.e. 
numbers a not divisible by p such that the congruence x3 = a (mod p) has a 
solution. 

22. Show that an integer n is a square if and only if(;) = 1 for every prime p not 
dividing n. 

23. Given a modulus m, give an exact formula for s(m), the number of squares 
modulo m, in other words the cardinality of the image of the squaring map from 
'l..fm'l.. into itself. Apply your formula to the special case m = 64, 63, 65, 11. 

24. Show that the running time of Algorithm 1.4.10 modified by keeping b odd, may 
be exponential time for some inputs. 

25. Modify Algorithm 1.5.1 so that in addition to computing x, it also computes 
the (even) exponent k such that aqzk = 1 in G, using the notations of the text. 

26. Give an algorithm analogous to Shanks's Algorithm 1.5.1, to find the cube roots 
of a mod p when a is a cubic residue. It may be useful to consider separately 
the cases p = 2 (mod 3) and p = 1 (mod 3). 

27. Given a prime number p and a quadratic non-residue a mod p, we can consider 
K = IFP2 = lFp(vfa). Explain how to do the usual arithmetic operations inK. 
Give an algorithm for computing square roots inK, assuming that the result is 
inK. 

28. Generalizing Exercise 27, give an algorithm for computing cube roots in IF p2, and 
give also an algorithm for computing roots of equations of degree 3 by Cardano's 
formulas (see Exercise 28 of Chapter 3). 

29. Show that, as claimed in the proof of Algorithm 1.5.1, steps 3 and 4 will require 
in average e2 /4 and at most e2 multiplications modulo p. 

30. Let m = np p"P be any positive integer for which we know the complete factor
ization into primes, and let a E '!... 

a) Give a necessary and sufficient condition for a to be congruent to a square 
modulo m, using several Legendre symbols. 

b) Give a closed formula for the number of solutions of the congruence 
x 2 :=a (mod m). 

c) Using Shanks's Algorithm 1.5.1 as a sub-algorithm, write an algorithm 
for computing a solution to x 2 := a (mod m) if a solution exists (you should 
take care to handle separately the power of 2 dividing m). 

31. Implement Algorithm 1.6.1 with and without the variant explained in Remark 
(3) following the algorithm, as well as the systematic trial of X = 0, ... , p- 1, 
and compare the speed of these three algorithms for different values of p and 
deg(P) or deg(A). 
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32. By imitating Newton's method once again, design an algorithm for computing 
integer cube roots which works only with integers. 

33. Show that, as claimed in the text, the average number of multiplications 
which are not squarings in the flexible left-right base 2k algorithm is ap
proximately 2k-l+lglnl/(k+1), and that the optimal value of k is the 
smallest integer such that lglnl~(k+1)(k+2)2k-l. 

34. Consider the following modification to Algorithm 1.2.4.2. We choose some 
odd number L such that 2k-l < L < 2k and precompute only z, z3, .•• , zL. 
Show that one can write any integer N in a unique way as N = 2t"(a0 + 
2t'(a1 + ... +2t•ae)) with ai odd, ai ~ L, and ti ~ k -1 for i ~ 1, but ti = 
k -1 only if ai > L - 2k-l. Analyze the resulting algorithm and show 
that, in certain cases, it is slightly faster than Algorithm 1.2.4.2. 

(~p-ag-e~l~l)-------------------------------------------------
Perhaps surprisingly, we can easily improve on Algorithm 1.2.4 by using a flex-

ible window of size at least k bits, instead of using a window of fixed size k. Indeed, 
it is easy to see that any positive integer N can be written in a unique way as 

N = 2to (ao + 2h (a1 + · · · + 2t"ae)) 

where t, ::=:: k for i ::=:: 1 and the a, are odd integers such that 1 :::; a, :::; 2k - 1 (in 
Algorithm 1.2.4 we took t0 = 0, t, = k fori ::=:: 1, and 0 :::; a, :::; 2k -1 odd or even). 

As before, we can precompute g3, g5, ... , g2•-l and then compute gN by suc
cessive squarings and multiplications by ga,. To find the a, and t., we use the 
following immediate sub-algorithm. 

Sub-Algorithm 1.2.4.1 (Flexible Base 2k Digits). Given a positive integer Nand 
k ::=:: 1, this sub-algorithm computes the unique integers t, and a; defined above. We 
use [N]b,a to denote the integer obtained by extracting bits a through b (inclusive) of 
N, where bit 0 is the least significant bit. 

1. [Compute t 0] Let t 0 +-v2 (N), e+-0 and s+-t0 . 

2. [Compute ae] Let ae +- [N]s+k-l,s· 
3. [Compute te] Set m +- [N]oo,s+k· If m = 0, terminate the sub-algorithm. Other

wise, set e +- e + 1, te +- v2 (m) + k, s +- s + te and go to step 2. 

The flexible window algorithm is then as follows. 

Algorithm 1.2.4.2 (Flexible Left-Right Base 2k). Given g E G and n E Z, this 
algorithm computes gn in G. We write 1 for the unit element of G. 
1. [Initialize] If n = 0, output 1 and terminate. If n < 0 set N +- -n and z +- g-1. 

Otherwise, set N +- n and z +- g. 

2. [Compute the a, and t,] Using the above sub-algorithm, compute a,, t, and e such 
that N = 2t"(a0 + 2t'(a1 + · · · + 2t•ae)) and set f +-e. 

3. [Precomputations] Compute and store z 3 , z 5 , .•. , z2•-1 . 

4. [Loop] If f = e set y +- zat otherwise set y +- zat · y. Then repeat t1 times 
y +- y. y. 

5. [Finished?] If f = 0, output y and terminate the algorithm. Otherwise, set 
f +- f- 1 and go to step 4. 

We have used above the word "surprisingly" to describe the behavior of this 
algorithm. Indeed, it is not a priori clear why it should be any better than Algorithm 
1.2.4. An easy analysis shows, however, that the average number of multiplications 
which are not squarings is now of the order of 2k-l + lg lnl/(k + 1) (instead of 
2k-l + lg lnl/k in Algorithm 1.2.4), see Exercise 33. The optimal value of k is the 
smallest integer satisfying the inequality lg In I :::; (k + 1) (k + 2)2k-l. 

In the above example where n has 100 decimal digits, the flexible base 25 algo
rithm takes on average (3/4)332 + 16 + 332/6 "" 320 multiplications, another 3% 
improvement. In fact, using a simple modification, in certain cases we can still 
easily improve (very slightly) on Algorithm 1.2.4.2, see Exercise 34. 



Chapter 2 

Algorithms for Linear Algebra and Lattices 

2.1 Introduction 

In many algorithms, and in particular in number-theoretic ones, it is necessary 
to use algorithms to solve common problems of linear algebra. For example, 
solving a linear system of equations is such a problem. Apart from stability 
considerations, such problems and algorithms can be solved by a single algo
rithm independently of the base field (or more generally of the base ring if we 
work with modules). Those algorithms will naturally be called linear algebra 
algorithms. 

On the other hand, many algorithms of the same general kind specifically 
deal with problems based on specific properties of the base ring. For example, 
if the base ring is Z (or more generally any Euclidean domain), and if L is 
a submodule of rank n of zn' then zn I L is a finite Abelian group, and we 
may want to know its structure once a generating system of elements of L 
is known. This kind of problem can loosely be called an arithmetic linear 
algebra problem. Such problems are trivial if Z is replaced by a field K. (In 
our example we would have L = Kn hence the quotient group would always 
be trivial.) In fact we will see that a submodule of zn is called a lattice, and 
that essentially all arithmetic linear algebra problems deal with lattices, so we 
will use the term lattice algorithms to describe the kind of algorithms that are 
used for solving arithmetic linear algebra problems. 

This chapter is therefore divided into two parts. In the first part, we give 
algorithms for solving the most common linear algebra problems. It must be 
emphasized that the goal will be to give general algorithms valid over any 
field, but that in the case of imprecise fields such as the field of real numbers, 
care must be taken to insure stability. This becomes an important problem 
of numerical analysis, and we refer the reader to the many excellent books 
on the subject ([Gol-Van], [PFTV]). Apart from mentioning the difficulties, 
given the spirit of this book we will not dwell on this aspect of linear algebra. 

In the second part, we recall the definitions and properties of lattices. 
We will assume that the base ring is Z, but essentially everything carries 
over to the case where the base ring is a principal ideal domain (PID), for 
example K[X], where K is a field. Then we describe algorithms for lattices. In 
particular we discuss in great detail the LLL algorithm which is of fundamental 
importance, and give a number of applications. 
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2.2 Linear Algebra Algorithms on Square Matrices 

2.2.1 Generalities on Linear Algebra Algorithms 

Let K be a field. Linear algebra over K is the study of K-vector spaces and K
linear maps between them. We will always assume that the vector spaces that 
we use are finite-dimensional. Of course, infinite-dimensional vector spaces 
arise naturally, for example the space K[X] of polynomials in one variable 
over K. Usually, however when one needs to perform linear algebra on these 
spaces it is almost always on finite-dimensional subspaces. 

A K-vector space Vis an abstract object, but in practice, we will assume 
that V is given by a basis of n linearly independent vectors v1, . . . Vn in some 
Km (where m is greater or equal, but not necessarily equal to n). This is of 
course highly non-canonical, but we can always reduce to that situation. 

Since Km has by definition a canonical basis, we can consider V as being 
given by an m x n matrix M(V) (i.e. a matrix with m rows and n columns) 
such that the columns of M(V) represent the coordinates in the canonical 
basis of Km of the vectors vi. If n = m, the linear independence of the Vi 
means, of course, that M(V) is an invertible matrix. (The notation M(V) is 
slightly improper since M(V) is attached, not to the vector space V, but to 
the chosen basis vi-) 

Note that changing bases in Vis equivalent to multiplying M(V) on the 
right by an invertible n x n matrix. In particular, we may want the matrix 
M(V) to satisfy certain properties, for example being in upper triangular 
form. We will see below (Algorithm 2.3.11) how to do this. 

A linear map f between two vector spaces V and W of respective dimen
sions n and m will in practice be represented by an m x n matrix M (f), M (f) 
being the matrix of the map f with respect to the bases M(V) and M(W) of 
V and W respectively. In other words, the j-th column of M(f) represents the 
coordinates of f(vj) in the basis Wi, where the vi correspond to the columns 
of M(V), and the Wi to the columns of M(W). 

Note that in the above we use column-representation of vectors and not 
row-representation; this is quite arbitrary, but corresponds to traditional us
age. Once a choice is made however, one must consistently stick with it. 

Thus, the objects with which we will have to work with in performing linear 
algebra operations are matrices and (row or column) vectors. This is only for 
practical purposes, but keep in mind that it rarely corresponds to anything 
canonical. The internal representation of vectors is completely straightforward 
(i.e. as a linear array). 

For matrices, essentially three equivalent kinds of representation are pos
sible. The particular one which should be chosen depends on the language in 
which the algorithms will be implemented. For example, it will not be the 
same in Fortran and in C. 

One representation is to consider matrices as (row) vectors of (column) 
vectors. (We could also consider them as column vectors of row vectors but 
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the former is preferable since we have chosen to represent vectors mainly 
in column-representation.) A second method is to represent matrices as two
dimensional arrays. Finally, we can also represent matrices as one-dimensional 
arrays, by adding suitable macro-definitions so as to be able to access individ
ual elements by row and column indices. 

Whatever representation is chosen, we must also choose the index num
bering for rows and columns. Although many languages such as C take 0 as 
the starting index, for consistency with usual mathematical notation we will 
assume that the first index for vectors or for rows and columns of matri
ces is always taken to be equal to 1. This is not meant to suggest that one 
should use this in a particular implementation, it is simply for elegance of 
exposition. In any given implementation, it may be preferable to make the 
necessary trivial changes so as to use 0 as the starting index. Again, this is a 
language-dependent issue. 

2.2.2 Gaussian Elimination and Solving Linear Systems 

The basic operation which is used in linear algebra algorithms is that of Gaus
sian elimination, sometimes also known as Gaussian pivoting. This consists 
in replacing a column (resp. a row) C by some linear combination of all the 
columns (resp. rows) where the coefficient of C must be non-zero, so that (for 
example) some coefficient becomes equal to zero. Another operation is that of 
exchanging two columns (resp. rows). Together, these two basic types of oper
ations (which we will call elementary operations on columns or rows) will allow 
us to perform all the tasks that we will need in linear algebra. Note that they 
do not change the vector space spanned by the columns (resp. rows). Also, in 
matrix terms, performing a series of elementary operations on columns (resp. 
rows) is equivalent to right (resp. left) multiplication by an invertible square 
matrix of the appropriate size. Conversely, one can show (see Exercise 1) that 
an invertible square matrix is equal to a product of matrices corresponding to 
elementary operations. 

The linear algebra algorithms that we give are simply adaptations of these 
basic principles to the specific problems that we must solve, but the underlying 
strategy is always the same, i.e. reduce a matrix to some simpler form (i.e. with 
many zeros at suitable places) so that the problem can be solved very simply. 
The proofs of the algorithms are usually completely straightforward, hence will 
be given only when really necessary. We will systematically use the following 
notation: if M is a matrix, M; denotes its j-th column, M{ its i-th row, and 
mi,j the entry at row i and column j. If B is a (column or row) vector, bi will 
denote its i-th coordinate. 

Perhaps the best way to see Gaussian elimination in action is in solving 
square linear systems of equations. 

Algorithm 2.2.1 (Square Linear System). Let M be an n x n matrix and B 
a column vector. This algorithm either outputs a message saying that M is not 
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invertible, or outputs a column vector X such that M X = B. We use an auxiliary 
column vector C. 

1. [Initialize] Set j +--- 0. 

2. [Finished?] Let j +--- j + 1. If j > n go to step 6. 

3. [Find non-zero entry] If m;,j = 0 for all i :;:: j, output a message saying that 
M is not invertible and terminate the algorithm. Otherwise, let i :::: j be some 
index such that m;,j =/= 0. 

4. [Swap?]lf i > j, for l = j, ... , n exchange m;,1 and mj,l· and exchange b; and 
bj. 

5. [Eliminate] (Here mj,j =/= 0.) Set d +--- mj,j and for all k > j set Ck +--- dmk,j· 
Then, for all k > j and l > j set mk,l +--- mk,l- ckmj,l· (Note that we do not 
need to compute this for l = j since it is equal to zero.) Finally, for k > j set 
bk +--- bk - ckbj and go to step 2. 

6. [Solve triangular system] (Here M is an upper triangular matrix.) For i = 
n, n - 1, ... , 1 (in that order) set x; +--- (b; - l:i<j$n m;,j x j) / m;,;, output 
X = (x;)I::;;::;n and terminate the algorithm. 

Note that steps 4 and 5 (the swap and elimination operations) are really 
row operations, but we have written them as working on entries since it is not 
necessary to take into account the first j - 1 columns. 

Note also in step 5 that we start by computing the inverse of mj,j since 
in fields like IF P division is usually much more time-consuming than multipli
cation. 

The number of necessary multiplications/ divisions in this algorithm is 
clearly asymptotic to n3/3 in the general case. Note however that this does 
not represent the true complexity of the algorithm, which should be counted 
in bit operations. This of course depends on the base field (see Section 1.1.3). 
This remark also applies to all the other linear algebra algorithms given in 
this chapter. 

Inverting a square matrix M means solving the linear systems M X = E;, 
where the E; are the canonical basis vectors of Kn, hence one can achieve 
this by successive applications of Algorithm 2.2.1. Clearly, it is a waste of 
time to use Gaussian elimination on the matrix for each linear system. (More 
generally, this is true when we must solve several linear systems with the same 
matrix M but different right hand sides B.) We should compute the inverse 
of M, and then the solution of a linear system requires only a simple matrix 
times vector multiplication requiring n2 field multiplications. 

To obtain the inverse of M, only a slight modification of Algorithm 2.2.1 
is necessary. 

Algorithm 2.2.2 (Inverse of a Matrix). Let M be an n x n matrix. This 
algorithm either outputs a message saying that M is not invertible, or outputs 
the inverse of M. We use an auxiliary column vector C and we recall that B~ 
(resp. XI) denotes the i-th row of B (resp. X). 
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1. [Initialize] Set j +--- 0, B +--- In. where In is the n x n identity matrix. 

2. [Finished?] Let j +--- j + 1. If j > n, go to step 6. 

3. [Find non-zero entry] If mi,j = 0 for all i 2: j, output a message saying that 
M is not invertible and terminate the algorithm. Otherwise, let i 2: j be some 
index such that mi,j =/= 0. 

4. [Swap?] If i > j, for l = j, ... ,n exchange mi,l and mj,!. and exchange the 
rows Bf and Bj. 

5. [Eliminate] (Here mi,i =/= 0.) Set d +--- mj,} and for all k > j set Ck +--- dmk,i· 
Then for all k > j and l > j set mk,l +--- mk,l- ckmj,l· (Note that we do not 
need to compute this for l = j since it is equal to zero.) Finally, for all k > j 
set BJ. +--- B/.- ckBj and go to step 2. 

6. [Solve triangular system] (Here M is an upper triangular matrix.) For i = 
n, n- 1, ... , 1 (in that order) set X[+--- (Bf- Li<j:;n mi,jXj)/mi,i· output 
the matrix X and terminate the algorithm. 

It is easy to check that the number of multiplications/divisions needed is 
asymptotic to 4n3/3 in the general case. This is only four times longer than the 
number required for solving a single linear system. Thus as soon as more than 
four linear systems with the same matrix need to be solved, it is worthwhile 
to compute the inverse matrix. 

Remarks. 

(1) In step 1 of the algorithm, the matrix B is initialized to In. If instead, we 
initialize B to be any n x m matrix N for any m, the result is the matrix 
M-1 N, and this is of course faster than computing M-1 and then the 
matrix product. The case m = 1 is exactly Algorithm 2.2.1. 

(2) Instead of explicitly computing the inverse of M, it is worthwhile for many 
applications to put M in LU P form , i.e. to find a lower triangular matrix 
L and an upper triangular matrix U such that M = LU P for some per
mutation matrix P. (Recall that a permutation matrix is a square matrix 
whose elements are only 0 or 1 such that each row and column has exactly 
one 1.) Exercise 3 shows how this can be done. Once M is in this form, 
solving linear systems, inverting M, computing det(M), etc ... is much 
simpler (see [AHU] and [PFTV]). 

2.2.3 Computing Determinants 

To compute determinants, we can simply use Gaussian elimination as in Al
gorithm 2.2.1. Since the final matrix is triangular, the determinant is trivial 
to compute. This gives the following algorithm. 

Algorithm 2.2.3 (Determinant, Using Ordinary Elimination). Let M be an 
n x n matrix. This algorithm outputs the determinant of M. We use an auxiliary 
column vector C. 
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1. [Initialize) Set j +--- 0, x +--- 1. 

2. [Finished?) Let j +--- j + 1. If j > n output x and terminate the algorithm. 

3. [Find non-zero entry) If mi,j = 0 for all i ~ j, output 0 and terminate the 
algorithm. Otherwise, let i ~ j be some index such that mi,j I 0. 

4. [Swap?) If i > j, for l = j, ... ,n exchange mi,l and mj,l• and set x +--- -x. 

5. [Eliminate) (Here mj,j =/= 0.) Set d +--- mJ:} and for all k > j set Ck +--- dmk,j· 
Then for all k > j and l > j set mk,l +--- mk,l- ckmj,l· (Note that we do not 
need to compute this for l = j since it is equal to zero.) Finally, set x +--- x·mj,j 
and go to step 2. 

The number of multiplications/ divisions needed in this algorithm is clearly 
of the same order as Algorithm 2.2.1, i.e. asymptotic to n3 /3 in general. 

Very often, this algorithm will be used in the case where the matrix M 
has entries in Z or some polynomial ring. In this case, the elimination step 
will introduce denominators, and these have a tendency to get very large. 
Furthermore, the coefficients of the intermediate matrices will be in Q (or some 
rational function field), and hence large GCD computations will be necessary 
which will slow down the algorithm even more. All this is of course valid for 
the other straightforward elimination algorithms that we have seen. 

On the other hand, if the base field is a finite field lF q, we do not have 
such problems. If the base field is inexact, like the real or complex numbers or 
the p-adic numbers, care must be taken for numerical stability. For example, 
numerical analysis books advise taking the largest non-zero entry (in absolute 
value) and not the first non-zero one found. We refer to [Gol-Van], [PFTV] 
for more details on these stability problems. 

To overcome the problems that we encounter when the matrix M has 
integer coefficients, several methods can be used (and similarly when M has 
coefficients in a polynomial ring). The first method is to compute det(M) mod
ulo sufficiently many primes (using Algorithm 2.2.3 which is efficient here), 
and then use the Chinese remainder Theorem 1.3.9 to obtain the exact value 
of det(M). This can be done as soon as we know an a priori upper bound 
for I det(M)I. (We then simply choose sufficiently many primes Pi so that the 
product of the Pi is greater than twice the upper bound.) Such an upper bound 
is given by Hadamard's inequality which we will prove below (Corollary 2.5.5; 
note that this corollary is proved in the context of real matrices, i.e. Euclidean 
vector spaces, but its proof is identical for Hermitian vector spaces). 

Proposition 2.2.4 (Hadamard's Inequality). If M = (miih$i,j$n is a 
square matrix with complex coefficients, then 
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This method for computing determinants can be much faster than a di
rect computation using Algorithm 2.2.3, but will be slower when the number 
of primes needed for the Chinese remainder theorem is large. This happens 
because the size of the Hadamard bound is often far from ideal. 

Another method is based on the following easily proved proposition due 
to Dodgson (alias Lewis Caroll), which is a special case of a general theorem 
due to Bareiss [Bar]. 

Proposition 2.2.5. Let M0 = (a?,;h::=;i,j::=;n be ann x n matrix where the 
coefficients are considered as independent variables. Set eo = 1 and for 1 :::::; 
k < n, define recursively 

(k) 1 akk I 
(k-1) 

ai,j = Ck 1 (k-1) 
- ai,k 

and 
{k-1) 

ck= ak,k 

Finally, let Cn = a~~; 1>. Then all the divisions by Ck-1 are exact; we have 
det(Mk) = ck-k-1 det(Mo), and in particular det(Mo) = Cn· 

Proof {Sketch}. Going from Mk-1 to Mk is essentially Gaussian elimination, 
except that the denominators are removed. This shows that 

n-k-1 
det(Mk) = ck n-k det(Mk-d 

ck-1 

thus proving the formula for det(Mk) by induction. 
That all the divisions by Ck-1 are exact comes from the easily checked fact 

that we can explicitly write the coefficients a~~ as ( k + 1) x ( k + 1) minors of 
the matrix Mo (see Exercise 5). D 

We have stated this proposition with matrices having coefficients consid
ered as independent variables. For more special rings, some Ck may vanish, 
in which case one must exchange rows or columns, as in Algorithm 2.2.3, 
and keep track of the sign changes. This leads to the following method for 
computing determinants. 

Algorithm 2.2.6 (Determinant Using Gauss-Bareiss). Given an n x n ma
trix M with coefficients in an integral domain 'R, this algorithm computes the 
determinant of M. All the intermediate results are in 'R. 

1. [Initialize] Set k +- 0, c +- 1, s +- 1. 

2. [Increase k] Set k +- k + 1. If k = n output smn,n and terminate the algorithm. 
Otherwise, set p +- mk,k· 

3. [Is p = 0?] If p -:f. 0 go to step 4. Otherwise, look for the first non-zero 
coefficient mi,k in the k-th column, with k + 1 :::::; i :::::; n. If no such coefficient 
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exists, output 0 and terminate the algorithm. If it does, for j = k, ... , n ex
change mi,j and mk,j. then sets+-- -s and p +-- mk,k· 

4. [Main step] (pis now non-zero.) Fori= k +1, ... ,nand j= k +1, ... , n set 
t +-- Pffii,j- mi,kmk,j. then mi,j +-- tjc where the division is exact. Then set 
c +-- p and go to step 2. 

Although this algorithm is particularly well suited to the computation of 
determinants when the matrix M has integer (or similar type) entries, it can 
of course, be used in general. There is however a subtlety which must be taken 
into account when dealing with inexact entries. 

Assume for example that the coefficients of Mare polynomials with real 
coefficients. These in general will be imprecise. Then in step 4, the division 
tjc will, in general, not give a polynomial, but rather a rational function. This 
is because when we perform the Euclidean division of t by c, there may be 
a very small but non-zero remainder. In this case, when implementing the 
algorithm, it is essential to compute tjc using Euclidean division, and discard 
the remainder, if any. 

The number of necessary multiplications/divisions in this modified algo
rithm is asymptotic to n3 instead of n3 /3 in Algorithm 2.2.3, but using Gauss
Bareiss considerably improves on the time needed for the basic multiplications 
and divisions and this usually more than compensates for the factor of 3. 

Finally, note that although we have explained the Gauss-Bareiss method 
for computing determinants, it can usually be applied to any other algorithmic 
problem using Gaussian elimination, where the coefficients are integers (see 
Exercise 6). 

2.2.4 Computing the Characteristic Polynomial 

Recall that if M is an n x n square matrix, the characteristic polynomial of 
M is the monic polynomial of degree n defined by 

P(X) = det(Xln- M), 

where as usual In is the n x n identity matrix. We want to compute the coeffi
cients of P(X). Note that the constant term of P(X) is equal to ( -1)n det(M), 
and more generally the coefficients of P(X) can be expressed as the sum of 
the so-called principal minors of M which are sub-determinants of M. To 
compute the coefficients of P(X) in this manner is usually not the best way 
to proceed. (In fact the number of such minors grows exponentially with n.) 
In addition to the method which I have just mentioned, there are essentially 
four methods for computing P(X). 

The first method is to apply the definition directly, and to use the Gauss
Bareiss algorithm for computing det(Xln- M), this matrix considered as 
having coefficients in the ring K(X]. Although computing in K(X] is more 
expensive than computing in K, this method can be quite fast in some cases. 
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The second method is to apply Lagrange interpolation. In our special case, 
this gives the following formula. 

n (X- j) 
det(Xln- M) = L det(kln- M) IT (k _ .) · 

k=O O$;j$;n,j# J 

This formula is easily checked since both sides are polynomials of degree 
less than or equal to n which agree on the n + 1 points X = i for 0 ::; i ::; n. 

Hence, to compute the characteristic polynomial of M, it is enough to 
compute n + 1 determinants, and this is usually faster than the first method. 
Since multiplication and division by small constants can be neglected in timing 
estimates, this method requires asymptotically n 4/3 multiplications/divisions 
when we use ordinary Gaussian elimination. 

The third method is based on the computation of the adjoint matrix or 
comatrix of M, i.e. the matrix Madj whose coefficient of row i and column j is 
equal to ( -1 )i+i times the sub-determinant of M obtained by removing row 
j and column i (note that i and j are reversed). From the expansion rule of 
determinants along rows or columns, it is clear that this matrix satisfies the 
identity 

MMadj = MadjM = det(M)In· 

We give the method as an algorithm. 

Algorithm 2.2.7 (Characteristic Polynomial and Adjoint Matrix). Given an 
n x n matrix M, this algorithm computes the characteristic polynomial P(X) = 
det(Xln - M) of M and the adjoint matrix Madj of M. We use an auxiliary 
matrix C and auxiliary elements ai. 

1. [Initialize] Set i +-- 0, C +-- In, ao +-- 1. 

2. [Finished?) Set i +-- i + 1. If i = n set an+-- -Tr(MC)/n, output P(X) +

I:o:=;;i$;n aixn-i, Madj +-- ( -1)n-lc and terminate the algorithm. 

3. [Compute next ai and C) Set C +-- MC, ai +--- Tr(C)/i, C +-- C +ailn and 
go to step 2. 

Before proving the validity of this algorithm, we prove a lemma. 

Lemma 2.2.8. Let M be an n x n matrix, A(X) be the adjoint matrix of 
X In -M, and P(X) the characteristic polynomial of M. We have the identity 

Tr(A(X)) = P'(X). 

Proof. Recall that the determinant is multilinear, hence the derivative of an 
n x n determinant is equal to the sum of the n determinants obtained by 
replacing the j-th column by its derivative, for 1 ::; j ::; n. In our case, calling 
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E1 the columns of the identity matrix (i.e. the canonical basis of Kn), we 
have, after expanding the determinants along the j-th column 

P'(X) = (det(XJ- M))' = L A1,1(X) 
1::;j::;n 

where A1,1(X) is the (n-1)x(n-1) sub-determinant of XI -M obtaining by 
removing row and column j, i.e. A1,1 is the coefficient of row and column j of 
the adjoint matrix A(X), and this proves the lemma. 0 

Proof of the Algorithm. Call A( X) the adjoint matrix of X In -M. We can write 
A(X) = Lo<i<n-1 cixn-i- 1 with constant matrices ci. From the lemma, it 
follows that ifP(X) = Lo::;i::;n aixn-i we have 

On the other hand, since P(X)In = (X In- M)A(X), we obtain by comparing 
coefficients Co = In and for i ;::: 1 

Taking traces, this gives (n-i)ai = Tr(MCi-d +nai, i.e. ai =- Tr(MCi_l)fi. 
Finally, it is clear that A(O) = Cn_ 1 is the adjoint matrix of -M, hence 
( -1)n- 1Cn_ 1 is the adjoint matrix of M, thus showing the validity of the 
~~. 0 

The total number of operations is easily seen to be asymptotic to n4 

multiplications, and this may seem slower (by a factor of 3) than the method 
based on Lagrange interpolation. However, since no divisions are required the 
basic multiplication/division time is reduced considerably--especially when 
the matrix M has integral entries, and hence this algorithm is in fact faster. 
In addition, it gives for free the adjoint matrix of M (and even of XIn- M 
if we want it). 

The fourth and last method is based on the notion of Hessenberg form of 
a matrix. We first compute a matrix H which is similar to M (i.e. is of the 
form PM p-1), and in particular has the same characteristic polynomial as 
M, and which has the following form (Hessenberg form) 

C'' 
h1,2 h1,3 

h,,. l k2 h2,2 h2,3 h2,n 
H= 0 k3 h3,3 h3,n . 

0 0 kn hn,n 

In this form, since we have a big triangle of zeros on the bottom left, it is not 
difficult to obtain a recursive relation for the characteristic polynomial of H, 
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hence of M. More precisely, if Pm(X) is the characteristic polynomial of the 
sub-matrix of H formed by the first m rows and columns, we have Po( X)= 1 
and the recursion: 

Pm(X) =(X- hm,m)Pm-1(X)- Y=1 
(hi,m(_fr ki)Pi-1(X)). 

t=1 J=t+1 

This leads to the following algorithm. 

Algorithm 2.2.9 (Hessenberg). Given an n x n matrix M = (m;,j) with 
coefficients in a field, this algorithm computes the characteristic polynomial of M 
by first transforming M into a Hessenberg matrix as above. 

1. [Initialize] Set H +-- M, m +-- 2. 

2. [Search for non-zero] If all the h;,m- 1 with i > m are equal to 0, go to step 
4. Otherwise, let i ~ m be the smallest index such that h;,m-1 =/= 0. Set 
t +-- hi,m- 1 . Then if i > m, for all j ~ m- 1 exchange h;,j and hm,j and 
exchange column H; with column Hm. 

3. [Eliminate] Fori= m+1, ... , n do the following if h;,m-1 =/= 0: u +-- h;,m-1/t, 
for all j ~ m set h;,j +-- h;,j- uhm,j. set hi,m- 1 +-- 0, and finally set column 
Hm +-- Hm + uH;. 

4. [Hessenberg finished?] If m < n- 1, set m +-- m + 1 and go to step 2. 

5. [Initialize characteristic polynomial] Set p0 (X) +-- 1 and m +-- 1. 

6. [Initialize computation] Set Pm(X) +--(X- hm,m)Pm- 1 (X) and t +-- 1. 

7. [Compute Pm] For i = 1, ... , m- 1 do the following: set t +-- thm-i+l,m-i• 
Pm(X) +-- Pm(X)- thm-i,mPm-i-1(X). 

8. [Finished?] If m < n set m +-- m + 1 and go to step 6. Otherwise, output 
Pn(X) and terminate the algorithm. 

This algorithm requires asymptotically only n3 multiplications/divisions 
in the general case, and this is much better than the preceding algorithms 
when n is large. If M has integer coefficients however, the Hessenberg form as 
well as the intermediate results will usually be non-integral rational numbers, 
hence we lose all the advantage of the reduced operation count, since the time 
needed for the basic multiplications/divisions will be large. In that case, one 
should not use the Hessenberg algorithm directly. Instead, one should apply 
it to compute the characteristic polynomial modulo sufficiently many primes 
and use the Chinese remainder theorem, exactly as we did for the determinant. 
For this, we need bounds for the coefficients of the characteristic polynomial, 
analogous to the Hadamard bound. The following result, although not optimal, 
is easy to prove and gives a reasonably good estimate. 

Proposition 2.2.10. Let M = (m;,j) be an nxn matrix, and write det(XIn
M) = Lo<k<n akxn-k with ao = 1. Let B be an upper bound for the moduli 
of all the m;"J. Then the coefficients ak satisfy the inequality 
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Proof As already mentioned, the coefficient ak is up to sign equal to the sum of 
the (~) principal k x k minors. By Hadamard's inequality (Proposition 2.2.4), 
each of these minors is bounded by IHE lmiil 2 ) 112 where the product and 
the sums have k terms. Hence the minors are bounded by (kB 2 )kf2 = kkf2 Bk, 
and this gives the proposition. D 

Remarks. 

(1) The optimal form for computing the characteristic polynomial of a matrix 
would be triangular. This is however not possible if the eigenvalues of 
the matrix are not in the base field, hence the Hessenberg form can be 
considered as the second best choice. 

(2) A problem related to computing the characteristic polynomial, is to com
pute the eigenvalues (and eigenvectors) of a matrix, say with real or com
plex coefficients. These are by definition the roots of the characteristic 
polynomial P(X). Therefore, we could compute P(X) using one of the 
above methods, then find the roots of P(X) using algorithm 3.6.6 which 
we will see later, and finally apply algorithm 2.2.1 to get the eigenvectors. 
This is however not the way to proceed in general since much better meth
ods based on iterative processes are available from numerical analysis (see 
[Gol-Van], [PFTV]), and we will not study this subject here. 

2.3 Linear Algebra on General Matrices 

2.3.1 Kernel and Image 

We now come to linear algebra problems which deal with arbitrary m x n 
matrices M with coefficients in a field K. Recall from above that M can be 
viewed as giving a generating set for the subspace of Km generated by the 
columns of M, or as the matrix of a linear map from an n-dimensional space 
to an m-dimensional space with respect to some bases. (Beware of the order 
of m and n.) It is usually conceptually easier to think of M in this way. 

The first basic algorithm that we will need is for computing the kernel of 
M, i.e. a basis for the space of column vectors X such that M X = 0. The 
following algorithm is adapted from [Knu2]. 

Algorithm 2.3.1 (Kernel of a Matrix). Given an m x n matrix M = (mi,j) 
with 1 :::; i :::; m and 1 :::; j :::; n having coefficients in a field K, this algorithm 



58 2 Algorithms for Linear Algebra and Lattices 

outputs a basis of the kernel of M, i.e. of column vectors X such that M X = 0. 
We use auxiliary constants Ci (1:::; i:::; m) and di (1:::; i:::; n). 

1. [Initialize] Set r <----- 0, k <----- 1 and for i = 1, ... , m, set Ci <----- 0 (there is no 
need to initialize di)· 

2. [Scan column] If there does not exist a j such that 1 :::; j :::; m with mj,k /= 0 
and Cj = 0 then set r <----- r + 1, dk <----- 0 and go to step 4. 

3. [Eliminate] Set d <----- -mj,~. mj,k <----- -1 and for s = k + 1, ... , n set mj,s <---

dmj,s· Then for all i such that 1 :::; i :::; m and i /= j set d <----- mi,k. mi,k <----- 0 
and for s = k + 1, ... , n set mi,s <----- mi,s + dmj,s· Finally, set Cj <----- k and 
dk <----- j. 

4. [Finished?] If k < n set k <----- k + 1 and go to step 2. 

5. [Output kernel] (Here r is the dimension of the kernel.) For every k such that 
1 :::; k :::; n and dk = 0 (there will be exactly r such k), output the column 
vector X = (xih~i~n defined by 

{ 
md,,k, if di > 0 

Xi= 1, if i = k 

0, otherwise. 

These r vectors form a basis for the kernel of M. Terminate the algorithm. 

The proof of the validity of this algorithm is not difficult and is left as an 
exercise for the reader (see Exercise 8). In fact, the main point is that Cj > 0 
if and only if mj,c; = -1 and all other entries in column Cj are equal to zero. 

Note also that step 3 looks complicated because I wanted to give as effi
cient an algorithm as possible, but in fact it corresponds to elementary row 
operations. 

Only a slight modification of this algorithm gives the image of M, i.e. a 
basis for the vector space spanned by the columns of M. In fact, apart from 
the need to make a copy of the initial matrix M, only step 5 needs to be 
changed. 

Algorithm 2.3.2 (Image of a Matrix). Given an m x n matrix M = (mi,j) 
with 1 :::; i :::; m and 1 :::; j :::; n having coefficients in a field K, this algorithm 
outputs a basis of the image of M, i.e. the vector space spanned by the columns 
of M. We use auxiliary constants ci (1 :::; i :::; m). 

1. [Initialize] Set r <----- 0, k <----- 1 and fori = 1, ... , m, set Ci <----- 0, and let N <----- M 
(we need to keep a copy of the initial matrix M). 

2. (Scan column]lf there does not exists a j such that 1 :::; j :::; m with mj,k /= 0 
and ci = 0 then set r <----- r + 1, dk <----- 0 and go to step 4. 

3. (Eliminate] Set d <----- -m~L mj,k <----- -1 and for s = k + 1, ... , n set mj,s <---

dmj,s· Then for all i such that 1 :::; i :::; m and i /= j set d <----- mi,k· mi,k <----- 0 
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and for s = k + 1, ... , n set mi,s +- mi,s + dmj,s· Finally, set Cj +- k and 
dk +- j. 

4. [Finished?] If k < n set k +- k + 1 and go to step 2. 

5. [Output image] (Here n- r is the dimension of the image, i.e. the rank of the 
matrix M.) For every j such that 1 :s; j :s; m and Cj #- 0 (there will be exactly 
n- r such j), output the column vector Nc3 (where Nk is the k-th column of 
the initial matrix M). These n- r vectors form a basis for the image of M. 
Terminate the algorithm. 

One checks easily that both the kernel and image algorithms require 
asymptotically n2m/2 multiplications/divisions in general. 

There are many possible variations on this algorithm for determining the 
image. For example if only the rank of the matrix M is needed and not an 
actual basis of the image, simply output the number n - r in step 5. If one 
needs to also know the precise rows and columns that must be extracted from 
the matrix M to obtain a non-zero (n-r) x (n-r) determinant, we output the 
pairs (j, ci) for each j :S: m such that Cj #- 0, where j gives the row number, 
and Cj the column number. 

Finally, if the columns of M represent a generating set for a subspace of 
Km, the image algorithm enables us to extract a basis for this subspace. 

Remark. We recall the following definition. 

Definition 2.3.3. We will say that an m x n matrix M is in column echelon 
form if there exists r :s; n and a strictly increasing map f from [r + 1, n] to 
[1, m] satisfying the following properties. 

(1) For r + 1 :S: j :S: n, mf(j),j = 1, mi,j = 0 if i > f(j) and mf(k),j = 0 if 
k <j. 

(2) The first r columns of M are equal to 0. 

It is clear that the definition implies that the last n - r columns (i.e. the 
non-zero columns) of Mare linearly independent. 

It can be seen that Algorithm 2.3.1 gives the basis of the kernel in column 
echelon form. This property can be useful in other contexts, and hence, if 
necessary, we may assume that the basis which is output has this property. 
In fact we will see later that any subspace can be represented by a matrix in 
column echelon form (Algorithm 2.3.11). 

For the image, the basis is simply extracted from the columns of M, no 
linear combination being taken. 
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2.3.2 Inverse Image and Supplement 

A common problem is to solve linear systems whose matrix is either not square 
or not invertible. In other words, we want to generalize algorithm 2.2.1 for 
solving M X = B where M is an m x n matrix. If Xo is a particular solution 
of this system, the general solution is given by X = Xo + Y where Y E ker( M), 
and ker(M) can be computed using Algorithm 2.3.1, so the only problem is 
to find one particular solution to our system (or to show that none exist). We 
will naturally call this the inverse image problem. 

If we want the complete inverse image and not just a single solution, the 
best way is probably to use the kernel Algorithm 2.3.1. Indeed, consider the 
augmented m x (n + 1) matrix M1 obtained by adding B as an n +1-st 
column to the matrix M. If X is a solution to MX = B, and if X1 is the 
n+ 1-vector obtained from X by adding -1 as n+ 1-st component, we clearly 
have M1X1 = 0. Conversely, if X1 is any solution of M1X1 = 0, then either 
the n + 1-st component of X 1 is equal to 0 (corresponding to elements of 
the kernel of M), or it is non-zero, and by a suitable normalization we may 
assume that it is equal to -1, and then the first n components give a solution 
to M X = B. This leads to the following algorithm. 

Algorithm 2.3.4 (Inverse Image). Given an m x n matrix M and an m
dimensional column vector B, this algorithm outputs a solution to MX = B or 
outputs a message saying that none exist. (The algorithm can be trivially modified 
to output the complete inverse image if desired.) 

1. [Compute kernel] Let M1 be them x (n + 1) matrix whose first n columns are 
those of M and whose n +1-st column is equal to B. Using Algorithm 2.3.1, 
compute a matrix V whose columns form a basis for the kernel of Mt. Let r 
be the number of columns of V. 

2. [Solution exists?]lf Vn+l,j = 0 for all j such that 1 :::; j :::; r, output a message 
saying that the equation M X = B has no solution. Otherwise, let j :::; r be 
such that Vn+l,j # 0 and set d ~ -1/vn+l,j· 

3. [Output solution] Let X = (xih<i<n be the column vector obtained by setting 
Xi ~ dvi,j· Output X and termin;te the algorithm. 

Note that as for the kernel algorithm, this requires asymptotically n2m/2 
multiplications/divisions, hence is roughly three times slower than algorithm 
2.2.1 when n = m. 

If we want only one solution, or if we want several inverse images cor
responding to the same matrix but different vectors, it is more efficient to 
directly use Gaussian elimination once again. A simple modification of Algo
rithm 2.2.2 does this as follows. 

Algorithm 2.3.5 (Inverse Image Matrix). Let M be an m x n matrix and 
V be an m x r matrix, where n :::; m. This algorithm either outputs a message 
saying that some column vector of V is not in the image of M, or outputs an 
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n x r matrix X such that V = MX. We assume that the columns of Mare 
linearly independent. We use an auxiliary column vector C and we recall that B~ 
(resp. Mf, xn denotes the i-th row of B (resp. M, X). 

1. [Initialize] Set j +--- 0 and B +--- V. 

2. [Finished?] Let j +--- j + 1. If j > n go to step 6. 

3. [Find non-zero entry] If mi,j = 0 for all i such that m ;:::: i ;:::: j, output 
a message saying that the columns of M are not linearly independent and 
terminate the algorithm. Otherwise, let i be some index such that m ;:::: i ;:::: j 
and mi,j =1- 0. 

4. [Swap?] If i > j, for l = j, ... , n exchange mi,l and mj,l. and exchange the 
rows B: and Bj. 

5. [Eliminate] (Here mj,j =1- 0.) Set d +--- mj,J and for all k such that m;:::: k > j 
set Ck +--- dmk,j· Then for all k and l such that m ;:::: k > j and n ;:::: l > j 
set mk,l +--- mk,l- Ckmj,l· Finally, for all k such that m;:::: k > j set B!. +--
B!. - ckBj and go to step 2. 

6. [Solve triangular system] (Here the first n rows of M form an upper tri
angular matrix.) For i = n, n - 1, ... , 1 (in that order) set Xf +--- (Bf -
Li<j:S:n mi,jXj)/mi,i· 

7. [Check rest of matrix] Check whether for each k such that m ;:::: k > n we 
have B!. = MkX. If this is not the case, output a message that some column 
vector of V is not in the image of M. Otherwise, output the matrix X and 
terminate the algorithm. 

Note that in practice the columns of M represent a basis of some vector 
space hence are linearly independent. However, it is not difficult to modify 
this algorithm to work without the assumption that the columns of M are 
linearly independent. 

Another problem which often arises is to find a supplement to a subspace 
in a vector space. The subspace can be considered as given by the coordinates 
of a basis on some basis of the full space, hence as an n x k matrix M with 
k :S: n of rank equal to k. The problem is to supplement this basis, i.e. to 
find an invertible n x n matrix B such that the first k columns of B form the 
matrix M. A basis for a supplement of our subspace is then given by the last 
n- k columns of B. 

This can be done using the following algorithm. 

Algorithm 2.3.6 (Supplement a Basis). Given ann x k matrix M with k :S: n 
having coefficients in a field K, this algorithm either outputs a message saying 
that M is of rank less than k, or outputs an invertible n x n matrix B such that 
the first k columns of B form the matrix M. Recall that we denote by Bj the 
columns of B. 

1. [Initialize] Sets+--- 0 and B +---In. 
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2. [Finished?] If 8 = k, then output B and terminate the algorithm. 

3. [Search for non-zero] Set 8 +- 8 + 1. Let t be the smallest j ~ 8 such that 
mt,s f= 0, and set d +- mt"). If such a t ::::; n does not exist, output a message 
saying that the matrix M is of rank less than k and terminate the algorithm. 

4. [Modify basis and eliminate] Set Bt +- B 8 (if t f= 8), then set Bs +- Ms. 
Then for j = 8 + 1, ... , k, do as follows. Exchange ms,i and mt,i {if t f= 8). 
Set ms,i +- dms,i· Then, for all if= 8 and if= t, set mi,j +- mi,i- mi,sffis,i· 
Finally, go to step 2. 

Proof This is an easy exercise in linear algebra and is left to the reader 
(Exercise 9). Note that the elimination part of step 4 ensures that the matrix 
BM stays constant throughout the algorithm, and at the end of the algorithm 
the first k rows of the matrix M form the identity matrix Ik, and the last n- k 
rows are equal to 0. D 

Often one needs to find the supplement of a subspace in another subspace 
and net in the whole space. In this case, the simplest solution is to use a 
combination of Algorithms 2.3.5 and 2.3.6 as follows. 

Algorithm 2.3.7 (Supplement a Subspace in Another). Let V (resp. M) be 
an m x r {resp. m x n) matrix whose columns form a basis of some subspace 
F (resp. E) of Km with r ::::; n ::::; m. This algorithm either finds a basis for a 
supplement of F in E or outputs a message saying that F is not a subspace of 
E. 

1. [Find new coordinates] Using Algorithm 2.3.5, find an n x r inverse image 
matrix X such that V = M X. If such a matrix does not exist, output a 
message saying that F is not a subspace of E and terminate the algorithm. 

2. [Supplement X] Apply Algorithm 2.3.6 to the matrix X, thus giving ann x n 
matrix B whose first r columns form the matrix X. 

3. [Supplement F in E) Let C be the n x n - r matrix formed by the last n - r 
columns of B. Output MC and terminate the algorithm (the columns of MC 
will form a basis for a supplement ofF in E). 

Note that in addition to the error message of step 1, Algorithms 2.3.5 and 
2.3.6 will also output error messages if the columns of V or M are not linearly 
independent. 

2.3.3 Operations on Subspaces 

The final algorithms that we will study concern the sum and intersection of 
two subspaces. If M and M' are m x n and m x n' matrices respectively, the 
columns of M (resp. M') span subspaces V (resp. V') of Km. To obtain a 
basis for the sum V + V' is very easy. 
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Algorithm 2.3.8 (Sum of Subspaces). Given an m x n (resp. m x n') matrix 
M (resp. M') whose columns span a subspace V (resp. V') of Km, this algorithm 
finds a matrix N whose columns form a basis for V + V'. 

1. [Concatenate] Let M 1 be the m x (n + n') matrix obtained by concatenating 
side by side the matrices M and M'. (Hence the first n columns of M1 are 
those of M, the last n' those of M'.) 

2. Using Algorithm 2.3.2 output a basis of the image of M1 and terminate the 
algorithm. 

Obtaining a basis for the intersection V n V' is not much more difficult. 

Algorithm 2.3.9 (Intersection of Subspaces). Given an m x n (resp. m x n') 
matrix M (resp. M') whose columns span a subspace V (resp. V') of Km, this 
algorithm finds a matrix N whose columns form a basis for V n V'. 

1. [Compute kernel] Let M 1 be them x (n+n') matrix obtained by concatenating 
side by side the matrices M and M'. (Hence the first n columns of M1 are 
those of M, the last n' those of M'.) Using Algorithm 2.3.1 compute a basis 
of the kernel of M1o given by an (n + n') x p matrix N for some p. 

2. [Compute intersection] Let N1 be then x p matrix obtained by extracting from 
N the first n rows. Set M 2 <--- MN1 , output the matrix obtained by applying 
Algorithm 2.3.2 to M2 and terminate the algorithm. (Note that if we know 
beforehand that the columns of M (resp. M') are also linearly independent, 
i.e. form a basis of V (resp. V'), we can simply output the matrix M2 without 
applying Algorithm 2.3.2.) 

Proof We will constantly use the trivial fact that a column vector B is in the 
span of the columns of a matrix M if and only if there exists a column vector 
X such that B = MX. 

Let N{ be the n' x p matrix obtained by extracting from N the last n' 
rows. By block matrix multiplication, we have M N1 + M' N{ = 0. If Bi is the 
i-th column of M2 = MN1 then Bi E V, but Bi is also equal to the opposite 
of the i-th column of M' N{, hence Bi E V'. Conversely, let B E V n V'. Then 
we can write B = M X = M' X' for some column vectors X and X'. If Y is 
the n + n'-dimensional column vector whose first n (resp. last n') components 
are X (resp. -X'), we clearly have M 1Y = 0, hence Y = NC for some column 
vector C. In particular, X= N1C hence B = MN1C = M2C, soB belongs 
to the space spanned by the columns of M 2 . It follows that this space is equal 
to V n V', and the image algorithm gives us a basis. 

If the columns of M (resp. M') are linearly independent, then it is left 
as an easy exercise for the reader to check that the columns of M2 are also 
linearly independent (Exercise 12), thus proving the validity of the algorithm. 

D 

As mentioned earlier, a subspace V of Km can be represented as an m x n 
matrix M = M(V) whose columns are the coordinates of a basis of Von the 
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canonical basis of Km. This representation depends entirely on the basis, so 
we may hope to find a more canonical representation. For example, how do 
we decide whether two subspaces V and W of Km are equal? One method is 
of course to check whether every basis element of W is in the image of the 
matrix V and conversely, using Algorithm 2.3.4. 

A better method is to represent V by a matrix having a special form, in 
the present case in column echelon form (see Definition 2.3.3). 

Proposition 2.3.10. If V is a subspace of Km, there exists a unique basis 
of V such that the corresponding matrix M(V) is in column echelon form. 

Proof This will follow immediately from the following algorithm. 0 

Algorithm 2.3.11 (Column Echelon Form). Given an m x n matrix M this 
algorithm outputs a matrix N in column echelon form whose image is equal to 
the image of M (i.e. N = MP for some invertible n x n matrix P). 

1. [Initialize] Set i <--- m and k <--- n. 

2. [Search for non-zero] Search for the largest integer j :=:; k such that mi,j =/=- 0. 
If such a j does not exist, go to step 4. Otherwise, set d <--- 1/mi,j, then for 
l = 1, ... ,i set t <--- dmt,j. mt,j <--- mt,k (if j =/=- k) and mt,k <--- t. 

3. [Eliminate] For all j such that 1 :=:; j :=:; n and j =f=. k and for all l such that 
1 :=:; l :=:; i set mt,j <--- mt,j - mt,kmi,j. Finally, set k <--- k - 1. 

4. [Next row] If i = 1 output M and terminate the algorithm. Otherwise, set 
i <--- i - 1 and go to step 2. 

The proof of the validity of this algorithm is easy and left to the reader 
(see Exercise 11). The number of required multiplications/divisions is asymp
totically n2 (2m- n)/2 if n :=:; m and nm2 /2 if n > m. 

Since the non-zero columns of a matrix which is in column echelon form 
are linearly independent, this algorithm gives us an alternate way to compute 
the image of a matrix. Instead of obtaining a basis of the image as a subset of 
the columns, we obtain a matrix in column echelon form. This is preferable in 
many situations. Comparing the number of multiplications/divisions needed, 
this algorithm is slower than Algorithm 2.3.2 for n :=:; m, but faster when 
n>m. 

2.3.4 Remarks on Modules 

We can study most of the above linear algebra problems in the context of 
modules over a commutative ring with unit R instead of vector spaces over a 
field. If the ring R is an integral domain, we can work over its field of fractions 
K. (This is what we did in the algorithms given above when we assumed that 
the matrices had integral entries.) However, this is not completely satisfactory, 
since the answer that we want may be different. For example, to compute the 
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kernel of a map defined between two free modules of finite rank (given as 
usual by a matrix), finding the kernel as a K-vect"or space is not sufficient, 
since we want it as an R-module. In fact, this kernel will usually not be a free 
module, hence cannot be represented by a matrix whose columns form a basis. 
One important special case where it will be free is when R is a principal ideal 
domain (PID, see Chapter 4). In this case all submodules of a free module of 
finite rank are free of finite rank. This happens when R =IE. or R = k[X] for 
a field k. In this case, asking for a basis of the kernel makes perfectly good 
sense, and the algorithm that we have given is not sufficient. We will see later 
(Algorithm 2.4.10) how to solve this problem. 

A second difficulty arises when R is not an integral domain, because of 
the presence of zero-divisors. Since almost all linear algebra algorithms involve 
elimination, i.e. division by an element of R, we are bound at some point to get 
a non-zero non-invertible entry as divisor. In this case, we are in more trouble. 
Sometimes however, we can work around this difficulty. Let us consider for 
example the problem of solving a square linear system over 'lljr/Z, where r is 
not necessarily a prime. If we know the factorization of r into prime powers, 
we can use the Chinese remainder Theorem 1.3.9 to reduce to the case where 
r is a prime power. If r is prime, Algorithm 2.2.1 solves the problem, and if r 
is a higher power of a prime, we can still use Algorithm 2.2.1 applied to the 
field K = Qp of p-adic numbers (see Exercise 2). 

But what are we to do if we do not know the complete factorization of r? 
This is quite common, since as we will see in Chapters 8, 9 and 10 large num
bers (say more than 80 decimal digits) are quite hard to factor. Fortunately, 
we do not really care. After extracting the known factors of r, we are left with 
a linear system modulo a new r for which we know (or expect) that it does 
not have any small factors (say none less than 106 ). We then simply apply 
Algorithm 2.2.1. Two things may happen. Either the algorithm goes through 
with no problem, and this will happen as long as all the elements which are 
used to perform the elimination (which we will call the pivots) are coprime to 
r. This will almost always be the case since r has no small factors. We then 
get the solution to the system. Note that this solution must be unique since 
the determinant of M, which is essentially equal to the product of the pivots, 
is coprime to r. 

The other possibility is that we obtain a pivot p which is not coprime to r. 
Since the pivot is non-zero (modulo r), this means that the GCD (p, r) gives 
a non-trivial factor of r, hence we split r as a product of smaller (coprime) 
numbers and apply Algorithm 2.2.1 once again. The idea of working "as if" r 
was a prime can be applied to many number-theoretic algorithms where the 
basic assumption is that 'lljr/Z is a field, and usually the same procedure can 
be made to work. H. W. Lenstra calls the case where working this way we 
find a non-trivial factor of r a side exit. In fact, this is sometimes the main 
purpose of an algorithm. For example, the elliptic curve factoring algorithm 
(Algorithm 10.3.3) uses exactly this kind of side exit to factor r. 
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2.4 Z-Modules and the Hermite and Smith Normal 
Forms 

2.4.1 Introduction to Z-Modules 

The most common kinds of modules that one encounters in number theory, 
apart from vector spaces, are evidently Z-modules, i.e. Abelian groups. The 
Z-modules V that we consider will be assumed to be finitely generated, in 
other words there exists a finite set ( vih::;i::;k of elements of V such that any 
element of V can be expressed as a linear combination of the Vi with integral 
coefficients. The basic results about such Z-modules are summarized in the 
following theorem, whose proof can be found in any standard text (see for 
example [Lang]). 

Theorem 2.4.1. Let V be a finitely generated Z-module (i.e. Abelian group). 

(1) If vtors is the torsion subgroup of V, i.e. the set of elements v E V such 
that there exists mE Z \ {0} with mv = 0, then vtors is a finite group, and 
there exists a non-negative integer n and an isomorphism 

V::::: vtors X zn 

(the number n is called the rank of V ). 
(2) If v is a free Z-module (i.e. if v::::: zn I or equivalently by (1} if vtors = 

{0} }, then any submodule of V is free of rank less than or equal to that of 
v. 

(3) If V is a finite Z-module (i.e. by (1} if V is of zero rank}, there exists n 
and a submodule L of zn (which is free by (2}} such that v::::: zn I L. 

Note that (2) and (3) are easy consequences of (1) (see Exercise 13). 
This theorem shows that the study of finitely generated Z-modules splits 

naturally into, on the one hand the study of finite Z-modules (which we will 
usually denote by the letter G for (finite Abelian) group), and on the other 
hand the study of free Z-modules of finite rank (which we will usually denote 
by the letter L for lattice (see Section 2.5)). Furthermore, (3) shows that 
these notions are in some sense dual to each other, so that we can in fact 
study only free Z-modules, finite Z-modules being considered as quotients of 
free modules. 

Studying free modules L puts us in almost the same situation as studying 
vector spaces. In particular, we will usually consider L to be a submodule 
of some zm, and we will represent L as an m x n matrix M whose columns 
give the coordinates of a basis of L on the canonical basis of zm. Such a 
representation is of course not unique, since it depends on the choice of a 
basis for L. In the case of vector spaces, one of the ways to obtain a more 
canonical representation was to transform the matrix M into column echelon 
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form. Since this involves elimination, this is not possible anymore over Z. 
Nonetheless, there exists an analogous notion which is just as useful, called the 
Hermite normal form (abbreviated HNF). Another notion, called the Smith 
normal form (abbreviated SNF) allows us to represent finite &!:.-modules. 

2.4.2 The Hermite Normal Form 

The following definition is the analog of Definition 2.3.3 for &!:.-modules. 

Definition 2.4.2. We will say that an m x n matrix M = (mi,j) with integer 
coefficients is in Hermite normal form (abbreviated HNF) if there exists r ::; n 
and a strictly increasing map f from [r + 1, n] to [1, m] satisfying the following 
properties. 

(1) For r + 1 ::; j ::; n, mf(j),j ~ 1, mi,j = 0 if i > f(j) and 0::; mf(k),j < 
ffiJ(k),k if k < j. 

(2) The first r columns of M are equal to 0. 

Remark. In the important special case where m = n and f(k) = k (or 
equivalently det(M) i= 0), M is in HNF if it satisfies the following conditions. 

(1) M is an upper triangular matrix, i.e. mi,j = 0 if i > j. 
(2) For every i, we have mi,i > 0. 
(3) For every j > i we have 0 ::; mi,j < mi,i· 

More generally, if n ~ m, a matrix M in HNF has the following shape 

(

0 0 
0 0 

0 0 

0 * 
0 0 

0 0 

* 
* 

0 

where the last m columns form a matrix in HNF. 

f) 
Theorem 2.4.3. Let A be an m x n matrix with coefficients in Z. Then there 
exists a unique m x n matrix B = (bi,j) in HNF of the form B = AU with 
U E GLn(Z), where GLn(Z) is the group of matrices with integer coefficients 
which are invertible, i.e. whose determinant is equal to ±l. 

Note that although B is unique, the matrix U will not be unique. 
The matrix W formed by the non-zero columns of B will be called the 

Hermite normal form of the matrix A. Note that if A is the matrix of any 
generating set of a sub-Z-module L of zm, and not only of a basis, the columns 
of W give the unique basis of L whose matrix is in HNF. This basis will be 
called the HNF basis of the Z-module L, and the matrix W the HNF of L. 
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In the special case where the Z-module L is of rank equal tom, the matrix 
W will be upper triangular, and will sometimes be called the upper triangular 
HNF of L. 

We give the proof of Theorem 2.4.3 as an algorithm. 

Algorithm 2.4.4 (Hermite Normal Form). Given an m x n matrix A with 
integer coefficients (a;,j) this algorithm finds the Hermite normal form W of A. 
As usual, we write w;,j for the coefficients of W, A; (resp. Wi) for the columns 
of A (resp. W). 

1. [Initialize] Set i <- m, k <- n, l <- 1 if m ::; n, l <- m- n + 1 if m > n. 

2. [Row finished?] If all the a;,j with j < k are zero, then if a;,k < 0 replace 
column Ak by -Ak and go to step 5. 

3. [Choose non-zero entry] Pick among the non-zero a;,j for j ::; k one with the 
smallest absolute value, say a;,j0 . Then if j 0 < k, exchange column Ak with 
column Ajo· In addition, if a;,k < 0 replace column Ak by -Ak. Set b <- ai,k· 

4. [Reduce] For j = 1, ... , k - 1 do the following: set q <- l a;,j fb l, and Ai <

Ai - qAk. Then go to step 2. 

5. [Final reductions] Set b <- ai,k· If b = 0, set k <- k + 1 and go to step 6. 
Otherwise, for j > k do the following: set q <-la;,j/bJ, and Ai <- Aj -qAk. 

6. [Finished?] If i = l then for j = 1, ... , n - k + 1 set Wi <- Aj+k-1 and 
terminate the algorithm. Otherwise, set i <- i- 1, k <- k- 1 and go to step 
2. 

This algorithm terminates since one can easily prove that ia;,kl is strictly 
decreasing each time we return to step 2 from step 4. Upon termination, it is 
clear that W is in Hermite normal form, and since it has been obtained from 
A by elementary column operations of determinant ±1, W is the HNF of A. 
We leave the uniqueness statement of Theorem 2.4.3 as an exercise for the 
reader (Exercise 14). D 

Remarks. 

(1) It is easy to modify the above algorithm (as well as the subsequent ones) 
so as to give the lower triangular HNF of A in the case where A is of rank 
equal tom. 

(2) If we also want the matrix U E GLn(Z), it is easy to add the corresponding 
statements (see for example Algorithm 2.4.10). 

Consider the very special case m = 1, n = 2 of this algorithm. The result 
will be (usually) a 1 x 1 matrix whose unique element is equal to the GCD 
(a1,1, a1,2). Hence, it is conceptually easier, and usually faster, to replace in the 
above algorithm divisions by (extended) GCD's. We can then choose among 
several available methods for computing these GCD's. This gives the following 
algorithm. 
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Algorithm 2.4.5 (Hermite Normal Form). Given an m x n matrix A with 
integer coefficients (ai,j) this algorithm finds the Hermite normal form W of A. 
We use an auxiliary column vector B. 

1. [Initialize] Set i +-- m, j +-- n, k +-- n, l = 1 if m ~ n, l = m- n + 1 if m > n. 

2. [Check zero] If j = 1 go to step 4. Otherwise, set j +-- j - 1, and if ai,j = 0 
go to step 2. 

3. [Euclidean step] Using Euclid's extended algorithm, compute (u, v, d) such that 
uai,k +vai,j = d = gcd(ai,k, ai,j), with lui and lvl minimal (see below). Then 
set B +-- uAk + vAi, Aj +-- (ai,k/d)Aj- (ai,j/d)Ak, Ak +-- B, and go to step 
2. 

4. [Final reductions] Set b +-- ai,k· If b < 0 set Ak +-- -Ak and b +-- -b. Now if 
b = 0, set k +-- k + 1, and if l > 1 and i = l set l +-- l-1, then go to step 5, 
otherwise for j > k do the following: set q +-lai,j/bJ, and Aj+- Aj- qAk. 

5. [Finished?] If i = l then for j = 1, ... , n - k + 1 set Wj +-- Ai+k-1 and 
terminate the algorithm. Otherwise, set i +-- i -1, k +-- k- 1, j +-- k and go 
to step 2. 

Important Remark. In step 3, we are asked to compute ( u, v, d) with lui 
and I vi minimal. The meaning of this is as follows. We must choose among all 
possible ( u, v), the unique pair such that 

_1~1 < vsign(b) ~ 0 and 1 ~ usign(a) ~ 1~1. 

In fact, the condition on u is equivalent to the condition on v and that such 
a pair exists and is unique is an exercise left to the reader (Exercise 15). The 
sign conditions are not important, they could be reversed if desired, but it is 
essential that when d = Ia I, i.e. when a I b, we take v = 0. If this condition is 
not obeyed, the algorithm may enter into an infinite loop. This remark applies 
also to all the Hermite and Smith normal form algorithms that we shall see 
below. 

Algorithms 2.4.4 and 2.4.5 work entirely with integers, and there are no 
divisions except for Euclidean divisions, hence one could expect that it be
haves reasonably well with respect to the size of the integers involved. Un
fortunately, this is absolutely not the case, and the coefficient explosion phe
nomenon occurs here also, even in very reasonable situations. For example, 
Hafner-McCurley ([Haf-McCur2]) give an example of a 20 x 20 integer matrix 
whose coefficients are less than or equal to 10, but which needs integers of up 
to 1500 decimal digits in the computations of Algorithm 2.4.4 or Algorithm 
2.4.5 leading to its HNF. Hence, it is necessary to improve these algorithms. 

One modification of Algorithm 2.4.5 would be for a fixed row i, instead 
of setting equal to zero the successive ai,j for j = k- 1, k- 2, ... , 1 by doing 
column operations between columns i and j, to set these ai,j equal to zero 
in the same order, but now doing operations between columns k and k - 1, 
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then k- 1 and k- 2, and so on until columns 2 and 1, and then exchanging 
columns 1 and k. This idea is due to Bradley [Bra]. 

Still another modification is the following. In Algorithm 2.4.5, we perform 
the column operations as follows: (k, k - 1), (k, k - 2), ... , (k, 1). In the 
modified version just mentioned, the order is (k, k- 1), (k- 1, k- 2), ... , 
(2, 1), (1, k). One can also for row i do as follows. Work with the pair of 
columns (jt,J2) where ai,j1 and ai,h are the largest and second largest non
zero elements of row i with j :::; k. Then experiments show that the coefficient 
explosion is considerably reduced, and actual computational experience shows 
that it is faster than the preceding versions. However this is still insufficient 
for our needs. 

When m :::; n and A is of rank m (in which case W is an upper triangular 
matrix with non-zero determinant D), an important improvement suggested 
by several authors (see for example [Kan-Bac]) is to work modulo a multiple 
of the determinant of W, or even modulo a multiple of the exponent of zm /W. 
(Note that Dis equal to the order of the finite 'll-module zm /W; the exponent 
is by definition the smallest positive integer e such that ezm c W. It divides 
the determinant.) 

In the case where m = n, we have det(W) = ± det(A) hence the determi
nant can be computed before doing the reduction if needed. In the general case 
however one does not know det(W) in advance, but in practice, the HNF is 
often used for obtaining a HNF-basis for a 'll-module L in a number field (see 
Chapter 4), and in that case one usually knows a multiple of the determinant 
of L. One can modify all of the above mentioned algorithms in this way. 

These modifications are based on the following additional algorithm, es
sentially due to Hafner and McCurley (see [Haf-McCur2]): 

Algorithm 2.4.6 (HNF Modulo D). Let A be an m x n integer matrix of rank 
m. Let L = (li,jh'5.i,j'5.m be them x m upper triangular matrix obtained from 
A by doing all operations modulo D in any of the above mentioned algorithms, 
where D is a positive multiple of the determinant of the module generated by the 
columns of A (or equivalently of the determinant ofthe HNF of A). This algorithm 
outputs the true upper triangular Hermite normal form W = (wi,jh'5.i,j'5.m of A. 
We write Wi and Li for the i-th columns of W and L respectively. 

1. [Initialize] Set b +-- D, i +-- m. 

2. [Euclidean step] Using a form of Euclid's extended algorithm, compute ( u, v, d) 
such that uli,i + vb = d = gcd(li,i, b). Then set Wi <--- (uLi mod b) (recall 
that a mod b is the least non-negative residue of a modulo b). If d = b (i.e. if 
b lli,i) set in addition wi,i +-- d (if d =f:. b, this will already be true, but if d = b 
we would have Wi,i = 0 if we do not include this additional assignment). 

3. [Finished?] If i > 1, set b <--- bjd, i <--- i - 1 and go to step 2. Otherwise, 
fori= m -1,m- 2, ... , 1, and for j = i + 1, ... ,m set q +-- Lwi,j/wi,iJ, 
W1 <--- W1- qWi. Output the matrix W = (wi,jh'5.i,i'5.m and terminate the 
algorithm. 



2.4 Z-Modules and the Hermite and Smith Normal Forms 71 

We must prove that this algorithm is valid. Since step 2 is executed exactly 
m times, the algorithm terminates, so what we need to prove is that the 
matrix W that the algorithm produces is indeed the HNF of A. For any 
m x n matrix M of rank m, denote by /i(M) the GCD of all the i x i sub
determinants obtained from the last i rows of M for 1 ::; i ::; m. It is clear 
that elementary column operations like those of Algorithms 2.4.4 or 2.4.5leave 
these quantities unchanged. Furthermore, reduction modulo D changes these 
i x i sub-determinants by multiples of D, hence does not change the GCD of 
ri(M) with D. It is clear that lm-i+l(W) = wi,i · · · Wm,m divides det(W), 
hence divides D. Therefore we have: 

Wi,i · · · Wm,m = gcd(D,/m-i+l(W)) 

= gcd(D,/m-i+l(A)) 

= gcd(D,/m-i+l(L)) 

= gcd(D, li,i · · ·lm,m)· 

hence the value given by Algorithm 2.4.6 for Wm,m is correct. Call Di the 
value of b for the value i, and set Pi = Wi+l,i+l · · · Wm,m. Then if we assume 
that the diagonal elements Wj,j are correct for j > i, we have by definition 
Di = D/Pi. Hence, if we divide equation (li+1) by Pi we obtain 

for 1 ::; i < m. Now if we divide equation (1i) by Pi we obtain 

by the preceding formula, hence the diagonal elements of the matrix W which 
are output by Algorithm 2.4.6 are correct. Since W is an upper triangular 
matrix, it follows that its determinant is equal to the determinant of the HNF 
of A. 

To finish the proof that Algorithm 2.4.6 is valid, we will show that the 
columns Wi = (uLi mod Di) output by the algorithm are in the Z-module L 
generated by the columns of A. By the remark just made, this will show that, 
in fact, the Wi are a basis of L, hence that W is obtained from A by elementary 
transformations. Since step 3 of the algorithm finishes to transform W into a 
Hermite normal form, W must be equal to the HNF of A. Since 

wi = 2:::: ci,jAj + DiBi 
l<.:;j<.:;m 

where the Ai are the columns of A, Bi is a (column) vector in zm whose 
components of index greater than i are zero, and the Ci,j are integers, the 
claim concerning the wi follows immediately from the following lemma: 

Lemma 2.4. 7. With the above notations, for every i with 1 ::; i ::; m and any 
vector B whose components of index greater than i are zero, we have DiB E L. 
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Proof. Consider the i x i matrix Ni formed by the first i rows and columns 
of the true HNF of A. We already have proved that the diagonal elements are 
Wj,j as output by the algorithm. Now if one considers zi as a submodule of 
zm by considering the last m- i components to be equal to 0, then we see 
that the columns of Ni (extended by m- i zeros) are Z-linear combinations 
of the columns Ai of A, i.e. are in L. Now det(Ni) = w1,1 · · · Wi,i and by 
definition Di is a multiple of Wl,l ... Wi,i· Hence, if Li is the submodule of zi 
generated by the columns of Ni, we have on the one hand Li c zi n L, and 
on the other hand, since det(Ni) = [zi : Li], we have det(Ni)zi c Li which 
implies Dizi C L, and this is equivalent to the statement of the lemma. This 
concludes the proof of the validity of Algorithm 2.4.6. D 

Note that if we work modulo D in Algorithm 2.4.5, the order in which 
the columns are treated, which is what distinguishes Algorithm 2.4.5 from 
its variants, is not really important. Furthermore, the proof of Algorithm 
2.4.6 shows that it is not necessary to work modulo the full multiple of the 
determinant D in Algorithm 2.4.5, but that at row i one can work modulo Di, 
which can be much smaller. Finally, note that in step 2 of Algorithm 2.4.5, if 
we have worked modulo D (or Di), it may happen that ai,k = 0. In that case, 
it is necessary to set ai,k +-- Di (or any non-zero multiple of Di). Combining 
these observations leads to the following algorithm, essentially due to Domich 
et al. [DKT]. 

It should be emphasized that all reductions modulo R should be taken 
in the interval] - R/2, R/2], and not in the interval [0, R[. Otherwise, small 
negative coefficients will become large positive ones, and this may lead to 
infinite loops. 

Algorithm 2.4.8 (HNF Modulo D). Given an m x n matrix A with integer 
coefficients (ai,j) of rank m (hence such that n;::: m), and a positive integer D 
which is known to be a multiple of the determinant of the Z-module generated 
by the columns of A, this algorithm finds the Hermite normal form W of A. We 
use an auxiliary column vector B. 

1. [Initialize] Set i +-- m, j +-- n, k +-- n, R +--D. 

2. [Check zero] If j = 1 go to step 4. Otherwise, set j +-- j -1, and if ai,j = 0 
go to step 2. 

3. [Euclidean step] Using Euclid's extended algorithm, compute (u, v, d) such 
that uai,k + vai,j = d = gcd(ai,k, ai,i), with lui and lvl minimal. Then set 
B +-- uAk + vAi, Ai +-- ((ai,k/d)Ai- (ai,i/d)Ak) mod R, Ak +-- B mod R, 
and go to step 2. 

4. [Next row] Using Euclid's extended algorithm, find ( u, v, d) such that uai,k + 
vR = d = gcd(ai,k, R). Set Wi +-- uAk mod R (here taken in the interval 
[O,R-1]}. If Wi,i = 0 set wi,i +-R. For j = i+ 1, ... ,m set q +-- lwi,j/Wi,iJ 
and Wj +-- W;- qWi mod R. If i=1, output the matrix W = (wi,jh~i,j~m 
and terminate the algorithm. Otherwise, set R+-Rjd, i+--i-1, k+--k-1, 
j +-- k, and if ai,k = 0 set ai,k +-- R. Go to step 2. 
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This will be our algorithm of choice for HNF reduction, at least when 
some D is known and A is of rank m. 

Remark. It has been noted (see Remark (2) after Algorithm 2.4.4) that it is 
easy to add statements so as to obtain the matrix U such that B = AU where 
B is the n x m matrix in Hermite normal form whose non-zero columns form 
the HNF of A. In the case of modulo D algorithms such as the one above, it 
seems more difficult to do so. 

2.4.3 Applications of the Hermite Normal Form 

In this section, we will see a few basic applications of the HNF form of a 
matrix representing a free Z-module. Further applications will be seen in the 
context of number fields (Chapter 4). 

Image of an Integer Matrix. First note that finding the HNF of a matrix 
using Algorithm 2.4.5 is essentially analogous to finding the column eche
lon form in the case of vector spaces (Algorithm 2.3.11). In particular, if the 
columns of the matrix represents a generating set for a free module L, Algo
rithm 2.4.5 allows us to find a basis (in fact of quite a special form), hence 
it also performs the same role as Algorithm 2.3.2. Contrary to the case of 
vector spaces, however, it is not possible in general to extract a basis from a 
generating set (this would mean that (a, b) = lal or (a, b) = lbl in the case 
m = 1, n = 2), hence an analog of Algorithm 2.3.2 cannot exist. 

Kernel of an Integer Matrix. We can also use Algorithm 2.4.5 to find the 
kernel of an m x n integer matrix A, i.e. a Z-basis for the free sub-Z-module 
of zn which is the set of column vectors X such that AX = 0. Note that 
this cannot be done (at least not without considerable extra work) by using 
Algorithm 2.3.1 which gives only a Q-basis. What we must do is simply keep 
track of the matrix U E GLn(Z) such that B = AU is in HNF. Indeed, we 
have the following proposition. 

Proposition 2.4.9. Let A be an m x n matrix, B = AU its HNF with U E 

GLn(Z), and let r be such that the first r columns of B are equal to 0. Then 
a Z-basis for the kernel of A is given by the first r columns of U. 

Proof. If Ui is the i-th column of U, then AUi is the i-th column of B so is 
equal to 0 if i ~ r. Conversely, let X be a column vector such that AX= 0 
or equivalently BY= 0 with Y = u- 1 X. Solving the system BY= 0 from 
bottom up, bf(k},k > 0 for k > r (with the notation of Definition 2.4.2) implies 
that the last n - r coordinates of Y are equal to 0, and the first r are 
arbitrary, hence the first r canonical basis elements of zn form a Z-basis for 
the kernel of B, and upon left multiplication by U we obtain the proposition. 

D 
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This gives the following algorithm. 

Algorithm 2.4.10 (Kernel over Z). Given an m x n matrix A with integer 
coefficients (ai,j ), this algorithm finds a Z-basis for the kernel of A. We use an 
auxiliary column vector B and an auxiliary n x n matrix U. 

1. [Initialize] Set i+-m,j+-n, k+-n, U+-In. l+--1 ifm::;n,l+-m-n+1 
ifm>n. 

2. [Check zero] If j = 1 go to step 4. Otherwise, set j +-- j- 1, and if ai,j = 0 
go to step 2. 

3. [Euclidean step] Using Euclid's extended algorithm, compute (u, v, d) such 
that uai,k + vai,j = d = gcd(ai,k,ai,1), with lui and lvl minimal. Then set 
B +-- uAk + vAj. Aj +-- (ai,k/d)A1 - (ai,j/d)Ak, Ak +-- B; similarly set 
B +-- uUk + vU1, Ui +-- (ai,k/d)U1 - (ai,i/d)Uk, Uk +-- B, then go to step 2. 

4. [Final reductions] Set b +-- ai,k· If b < 0 set Ak +-- -Ak, Uk +-- -Uk and 
b +---b. Now if b = 0, set k +-- k + 1 and go to step 5, otherwise for j > k 
do the following: set q +-- lai,1jbj, Ai +-- Ai- qAk and Ui +-- Ui- qUk. 

5. [Finished?] If i = l then for j = 1, ... , k -1 set Mi +-- Ui, output the matrix 
M and terminate the algorithm. Otherwise, set i +-- i -1, k +-- k -1, j +-- k 
and go to step 2. 

Remark. Although this algorithm correctly gives a Z-basis for the kernel 
of A, the coefficients that are obtained are usually large. To obtain a really 
useful algorithm, it is necessary to reduce the basis that is obtained, for ex
ample using one of the variants of the LLL algorithm that we will see below 
(see Section 2.6). However, it is desirable to obtain directly a basis of good 
quality that avoids introducing large coefficients. This can be done using the 
MLLL algorithm (see Algorithm 2.7.2), and gives an algorithm which is usu
ally preferable. 

In view of the applications to number fields, limiting ourselves to free 
submodules of some zm is a little too restrictive. In what follows we will 
simply say that L is a module if it is a free sub-Z-module of rank m of Qm. 
Considering basis elements of L, it is clear that there exists a minimal positive 
integer d such that dL c zm. We will call d the denominator of L with respect 
to zm. Then the HNF of L will be by definition the pair (W, d), where W is 
the HNF of dL, and d is the denominator of L. 

Test for Equality. Since the HNF representation of a free module L is 
unique, it is clear that one can trivially test equality of modules: their denom
inator and their HNF must be the same. 

Sum of Modules. Given two modules Land L' by their HNF, we can com
pute their sum L + L' = { x + x', x E L, x' E L'} in the following way. Let 
(W, d) and (W', d') be their HNF representation. Let D = dd' j(d, d') be the 
least common multiple of d and d'. Denoting as usual by Ai the i-th column 
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of a matrix A, consider the m x 2m matrix A such that Ai = (DId) Wi and 
Am+i = (Did')Wf for 1 ~ i ~ m, then it is clear that the columns of A gener
ate D(L + L'), hence if we compute the HNF H of A and divideD and H by 
the greatest common divisor of D and of all the coefficients of H, we obtain 
the HNF normal form of L + L'. Apart from the treatment of denominators, 
this is similar to Algorithm 2.3.8. 

Test for Inclusion. To test whether L' c L, where L and L' are given by 
their HNF, the most efficient way is probably to compute N = L + L' as above, 
and then test the equality N = L. Note that if d and d' are the denominators 
of L and L' respectively, a necessary condition for L' c L is that d' I d, hence 
the LCM D must be equal to d. 

Product by a Constant. This is especially easy: if c = plq E Q with 
(p, q) = 1 and q > 0, the HNF of cL is obtained as follows. Let d1 be the 
GCD of all the coefficients of the HNF of L. Then the denominator of cL is 
qdl((p, d)(q, dt)), and the HNF matrix is equal to Pl((p, d)(q, dt)) times the 
HNF matrix of L. 

We will see that the HNF is quite practical for other problems also, but 
the above list is, I hope, sufficiently convincing. 

2.4.4 The Smith Normal Form and Applications 

We have seen that the Hermite normal form permits us to handle free Z
modules of finite rank quite nicely. We would now like a similar notion which 
would allow us to handle finite Z-modules G. Recall from Theorem 2.4.1 (3) 
that such a module is isomorphic (in many ways of course) to a quotient 
zn I L where L is a (necessarily free) sub module of zn of rank equal to n. 
More elegantly perhaps, we can say that G is isomorphic to a quotient L' I L 
of free Z-modules of the same (finite) rank n. Thus we can represent G (still 
non-canonically) by an n x n matrix A giving the coordinates of some Z-basis of 
Lon some Z-basis of L'. In particular, A will have non-zero determinant, and 
in fact the absolute value of the determinant of A is equal to the cardinality 
of G, i.e. to the index [L' : L] (see Exercise 18). 

The freedom we now have is as follows. Changing the Z-basis of L is 
equivalent to right multiplication of A by a matrix U E GLn(Z), as in the 
HNF case. Changing the Z-basis of L' is on the other hand equivalent to left 
multiplication of A by a matrix V E GLn(Z). In other words, we are allowed 
to perform elementary column and row operations on the matrix A without 
changing (the isomorphism class of) G. This leads to the notion of Smith 
normal form of A. 

Definition 2.4.11. We say that ann x n matrix B is in Smith normal form 
(abbreviated SNF) if B is a diagonal matrix with nonnegative integer coeffi
cients such that bi+l,i+l I bi,i for all i < n. 
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Then the basic theorem which explains the use of this definition is as 
follows. 

Theorem 2.4.12. Let A be ann x n matrix with coefficients in Z and non
zero determinant. Then there exists a unique matrix in Smith normal form B 
such that B = V AU with U and V elements of GLn (Z). 

If we set di = bi,i' the di are called the elementary divisors of the matrix 
A, and the theorem can be written 

0 ! )u-1 
dn 0 

with di+l I di for 1 ~ i < n. 
This theorem, stated for matrices, is equivalent to the following theorem 

for ::?:.-modules. 

Theorem 2.4.13 (Elementary Divisor Theorem). Let L be a Z-submodule 
of a free module L' and of the same rank. Then there exist positive integers 
d1, ... , dn {called the elementary divisors of L in L') satisfying the following 
conditions: 

(1) For every i such that 1 ~ i < n we have di+1 I di. 
(2) As ::?:.-modules, we have the isomorphism 

L'/L ':::'_ EB (Z/diZ), 
1:5i:5n 

and in particular [L' : L] = d1 · · · dn and d1 is the exponent of L' / L. 
(3) There exists a ::?:.-basis (v1, ... ,vn) of L' such that (dlvl, ... ,dnvn) is a 

::?:.-basis of L. 

Furthermore, the di are uniquely determined by L and L'. 

Remarks. 

(1) This fundamental theorem is valid more generally. It holds for finitely 
generated (torsion) free modules over a principal ideal domain (PID, see 
Chapter 4). It is false if the base ring R is not a PID: applying the theorem 
to n = 1, L' = R and L any integral ideal of R, it is clear that the truth 
of this theorem is equivalent to the PID condition. 

(2) We have stated Theorem 2.4.12 only for square matrices of non-zero deter
minant. As in the Hermite case, it would be easy to state a generalization 
valid for general matrices (including non-square ones). In practice, this is 
not really needed since we can always first perform a Hermite reduction. 
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The proof of these two theorems can be found in any standard textbook 
but it follows immediately from the algorithm below. 

Since we are going to deal with square matrices, as with the case of the 
HNF, it is worthwhile to work modulo the determinant (or a multiple). In most 
cases this determinant (or a multiple of it) is known in advance. It should also 
be emphasized again that all reductions modulo R should be taken in the 
interval] - R/2, R/2], and not in the interval [0, R[. 

The following algorithm is essentially due to Hafner and McCurley (see 
[Haf-McCur2]). 

Algorithm 2.4.14 (Smith Normal Form). Given an nxn non-singular integral 
matrix A= (ai,j). this algorithm finds the Smith normal form of A, i.e. outputs 
the diagonal elements di such that di+l I di. Recall that we denote by Ai (resp. 
AD the columns (resp. the rows) of the matrix A. We use a temporary (column 
or row) vector variable B. 

1. [Initialize i] Set i +- n, R +- I det(A)I. If n = 1, output d1 +-Rand terminate 
the algorithm. 

2. [Initialize j for row reduction] Set j +- i, c +- 0. 

3. [Check zero] If j = 1 go to step 5. Otherwise, set j +- j - 1. If ai,j = 0 go 
to step 3. 

4. [Euclidean step] Using Euclid's extended algorithm, compute (u, v, d) such 
that uai,i + vai,j = d = gcd(ai,i,ai,j). with u and v minimal (see remark 
after Algorithm 2.4.5). Then set B +- uAi + vA1, A1 +- ((ai,i/d)AJ -
(ai,i/d)Ai) mod R, Ai +- B mod Rand go to step 3. 

5. [Initialize j for column reduction] Set j +- i. 

6. [Check zero] If j = 1 go to step 8. Otherwise, set j +- j- 1, and if aj,i = 0 
go to step 6. 

7. [Euclidean step] Using Euclid's extended algorithm, compute ( u, v, d) such 
that uai,i + vaJ,i = d = gcd(ai,i, a1,i), with u and v minimal (see remark 
after Algorithm 2.4.5). Then set B +- uA~ + vAj, Aj +- ((ai,i/d)Aj -
(ai,i/d)AD mod R, A~+- B mod R, c +- c + 1 and go to step 6. 

8. [Repeat stage i?] If c > 0 go to step 2. 

9. [Check the rest of the matrix] Set b +- ai,i· For 1 ~ k, l < i check whether 
b I ak,l· As soon as some coefficient ak,l is not divisible by b, set A~ +- A~+ Ak 
and go to step 2. 

10. [Next stage] (Here all the ak,l for 1 ~ k, l < i are divisible by b). Output 
di = gcd(ai,i, R) and set R +- R/di. If i = 2, output d1 = gcd(a1,1, R) and 
terminate the algorithm. Otherwise, set i +- i - 1 and go to step 2. 

This algorithm seems complicated at first, but one can see that it is ac
tually quite straightforward, using elementary row and column operations of 
determinant ±1 to reduce the matrix A. 
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This algorithm terminates (and does not take too many steps!) since each 
time one returns to step 2 from step 9, the coefficient ai,i has been reduced at 
least by a factor of 2. 

The proof that this algorithm is valid, i.e. that the result is correct, follows 
exactly the proof of the validity of Algorithm 2.4.6. If we never reduced modulo 
R in Algorithm 2.4.14, it is clear that the result would be correct (however 
the coefficients would explode). Incidentally, this gives a proof of Theorems 
2.4.12 and 2.4.13. 

Hence, we must simply show that the transformations done in step 10 
correctly restore the values of di. Denote by 8i (A) the GCD of the determinants 
of all i x i sub-matrices of A, and not only from the first i rows as in the proof 
of Algorithm 2.4.6. Then, in a similar manner, these 8i are invariant under 
elementary row and column operations of determinant ±1. Hence, denoting 
by b. the diagonal SNF of A, by D the determinant of A, and by S = ( ai,j) 
the final form of the matrix A at the end of Algorithm 2.4.14, we have: 

di · · · dn = gcd(D, 8n-i+l(b.)) 

= gcd(D, 8n-i+l (A)) 
= gcd(D,8n-i+l(S)) 

= gcd(D, ai,i · · · an,n)· 

Hence, if we set Pi = di+l · · · dn, exactly as in the proof of Algorithm 2.4.6 we 
obtain 

1 = (DIPi, (ai+l,i+l" · ·an,n)IPi) 

(divide formula (2i+l) by Pi), then 

di = (D I Pi, (ai,iai+l,i+l · · · an,n)l Pi) 

(divide (2i) by Pi), and hence 

But clearly in stage i of the algorithm, R = D I Pi, thus proving the validity 
of the algorithm. 0 

Note that we have chosen an order for the di which is consistent with our 
choice for Hermite normal forms, but which is the reverse of the one which is 
found in most texts. The modifications to Algorithm 2.4.14 so that the order 
is reversed are trivial (essentially make i and j go up instead of down) and 
are left to the reader. 

The Smith normal form will mainly be used as follows. Let G be a finite 
Z-module (i.e. a finite Abelian group). We want to determine the structure of 
G, and in particular its cardinality. Note that a corollary of Theorem 2.4.13 
is the structure theorem for finite Abelian groups: such a group is isomorphic 
to a unique direct sum of cyclic groups ZldiZ with di+l I di· 
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We can then proceed as follows. By theoretical means, we find some integer 
n and a free module L' of rank n such that G is isomorphic to a quotient L' I L, 
where L is also of rank n but unknown. We then determine as many elements 
of L as possible (how to do this depends, of course, entirely on the specific 
problem) so as to have at least n elements which are Q-linearly independent. 
Using the Hermite normal form Algorithm 2.4.5, we can then find the HNF 
basis for the submodule £1 of L generated by the elements that we have found. 
Computing the determinant of this basis (which is trivial since the basis is in 
triangular form) already gives us the cardinality of L' I L 1. If we know bounds 
for the order of G (for example, if we know the order of G up to a factor of 
v'2 from above and below), we can check whether £ 1 = L. If not, we continue 
finding new elements of L until the cardinality check shows that £1 = L. We 
can then compute the SNF of the HNF basis (note that the determinant is 
now known), and this gives us the complete structure of G. 

We will see a concrete application of the process just described in the 
sub-exponential computations of class groups (see Chapter 5). 

Remark. The diagonal elements which are obtained after a Hermite Normal 
Form computation are usually not equal to the Smith invariants. For example, 

the matrix ( ~ ~) is in HNF, but its Smith normal form has as diagonal 

elements (4, 1). 

2.5 Generalities on Lattices 

2.5.1 Lattices and Quadratic Forms 

We are now going to add some extra structure to free Z-modules of finite rank. 
Recall the following definition. 

Definition 2.5.1. Let K be a field of characteristic different from 2, and let 
V be a K -vector space. We say that a map q from V to K is a quadratic form 
if the following two conditions are satisfied: 

(1) For every>. E K and x E V we have 

q(>. · x) = .A2q(x). 

(2) If we set b(x, y) = ~(q(x+y) -q(x) -q(y)) then b is a (symmetric) bilinear 
form, i.e. b(x + x', y) = b(x, y) + b(x', y) and b(>. · x, y) = >.b(x, y) for all 
>. E K, x, x' and y in V (the similar conditions on the second variable 
follow from the fact that b(y, x) = b(x, y)). 

The identity b(x, x) = q(x) allows us to recover q from b. 
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In the case where K = JR, we say that q is positive definite if for all 
non-zero x E V we have q(x) > 0. 

Definition 2.5.2. A lattice L is a free '£:-module of finite rank together with 
a positive definite quadratic form q on L 0 R 

Let (bih:Si:Sn be a Z-basis of L. If x = El<i<n xibi E L with Xi E Z, the 
definition of a quadratic form implies that - -

q(x) = L Qi,jXiXj with Qi,j = b(bi, bj) 
l:Si,j:Sn 

where as above, b denotes the symmetric bilinear form associated to q. 
The matrix Q = (qi,jh:Si,j:Sn is then a symmetric matrix which is positive 

definite when q is positive definite. We have b(x, y) = ytQX and in particular 
q(x) = XtQX where X andY are the column vectors giving the coordinates 
of x andy respectively in the basis (bi)· 

We will say that two lattices ( L, q) and ( L', q') are equivalent if there exists 
a /£-module isomorphism between L and L' sending q to q'. We will identify 
equivalent lattices. Also, when the quadratic form is understood, we will write 
L instead of (L, q). 

A lattice (L, q) can be represented in several ways all of which are useful. 
First, one can choose a /£-basis (bih<i<n of the lattice. Then an element 
of x E L will be considered as a ( colu~n) vector X giving the (integral) 
coordinates of x on the basis. The quadratic form q is then represented by the 
positive definite symmetric matrix Q as we have seen above. 

Changing the /£-basis amounts to replacing X by P X for some P E 
GLn(Z), hence q(x) = (PX)tQ(PX) = XtQ'X with Q' = ptQP. Hence, 
equivalence classes of lattices correspond to equivalence classes of positive 
definite symmetric matrices under the equivalence relation Q' "' Q if and only 
if there exists P E GLn(Z) such that Q' = ptQP. Note that det(P) = ±1, 
hence the determinant of Q is independent of the choice of the basis. Since Q 
is positive definite, det(Q) > 0 and we will set d(L) = det(Q) 112 and call it 
the determinant of the lattice. 

A second way to represent a lattice (L, q) is to consider L as a discrete 
subgroup of rank n of the Euclidean vector space E = L0R Then if (bih:Si:Sn 
is a /£-basis of L, it is also by definition of the tensor product an JR-basis of E. 
The matrix of scalar products Q =(hi· bih:Si.i:Sn (where bi · b1 = b(bi, bj)) 
is then called the Gram matrix of the bi. If we choose some orthonormal basis 
of E, we can then identify E with the Euclidean space JRn with the usual 
Euclidean structure coming from the quadratic form q(x) =xi+···+ x;. 

If B is then x n matrix whose columns give the coordinates of the bi on 
the chosen orthonormal basis of E, it is clear that Q = Bt B. In particular, 
d(L) =I det(B)j. Furthermore, if another choice of orthonormal basis is made, 
the new matrix B' will be of the form B' = K B where K is an orthogonal 
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matrix, i.e. a matrix such that Kt K = K Kt = In. Thus we have proved the 
following proposition. 

Proposition 2.5.3. 

(1) If Q is the matrix of a positive definite quadratic form, then Q is the Gram 
matrix of some lattice basis, i.e. there exists a matrix B E GLn(IR) such 
that Q = BtB 

(2) The Gram matrix of a lattice basis bi determines this basis uniquely up to 
isometry. In other words, if the bi and the b~ have the same Gram matrix, 
then the b~ can be obtained from the bi by an orthogonal transformation. 
In matrix terms, B' = K B where K is an orthogonal matrix. 

It is not difficult to give a completely matrix-theoretic proof of this propo
sition (see Exercise 20). 

It follows from the above results that when dealing with lattices, it is not 
necessary to give the coordinates of the bi on some orthonormal basis. We 
can simply give a positive definite matrix which we can then think of as being 
the Gram matrix of the bi. 

We see from the above discussion that there are natural bijections between 
the following three sets. 

{Isomorphism classes of lattices of rank n} , 

{Classes of positive definite symmetric matrices Q} /"' , 

where Q' rv Q if and only if Q' = ptQp for some PE GLn(Z), and 

where B' rv B if and only if B' = KBP for some PEGLn(Z) and some 
orthogonal matrix K. 

Remarks. 

(1) We have considered Lin particular as a free discrete sub-Z-module of the 
n-dimensional Euclidean space L ®JR. In many situations, it is desirable 
to consider L as a free discrete sub-Z-module of some Euclidean space E 
of dimension m larger than n. The matrix B of coordinates of a basis of 
L on some orthonormal basis of E will then be an m x n matrix, but the 
Gram matrix Q = Bt B will still be an n x n symmetric matrix. 

(2) By abuse of language, we will frequently say that a free Z-module of finite 
rank is a lattice even if there is no implicit quadratic form. 
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2.5.2 The Gram-Schmidt Orthogonalization Procedure 

The existence of an orthonormal basis in a Euclidean vector space is often 
proved by using Gram-Schmidt orthonormalization (see any standard text
book). Doing this requires taking square roots, since the final vectors must be 
of length equal to 1. 

For our purposes, we will need only an orthogonal basis, i.e. a set of mu
tually orthogonal vectors which are not necessarily of length 1. The same 
procedure works, except we do not normalize the length, and we will also call 
this the Gram-Schmidt orthogonalization procedure. It is summarized in the 
following proposition. 

Proposition 2.5.4 (Gram-Schmidt). Let b; be a basis of a Euclidean vector 
space E. Define by induction: 

where 

i-1 

h; = b;- 2::: lli,jb; 
j=l 

(1 :5, i :5, n), 

lli,j = b; · bj/bj · bj (1 :5, j < i :5, n), 

then the bi form an orthogonal (but not necessarily orthonormal) basis of 
E, bi is the projection of b; on the orthogonal complement of L:;~:,i JR.bj = 
L:;~:,i lR.bj, and the matrix M whose columns gives the coordinates of the bi 
in terms of the b; is an upper triangular matrix with diagonal terms equal to 
1. In particular, if d(L) is the determinant of the lattice L, we have d(L) 2 = 
[ll::Oi::On II hi' 11 2 · 

The proof is trivial using induction. 0 

We will now give a number of corollaries of this construction. 

Corollary 2.5.5 (Hadamard's Inequality). Let (L, q) be a lattice of deter
minant d(L), (b;)l::;;::;n a Z-basis of L, and for x E L write lxl for q(x) 112 . 

Then 
n 

d(L) 5o II lb;l. 
i=l 

Equivalently, if B is an n x n matrix then 

Proof. If we set B; = lbi 12 , the orthogonality of the hi implies that 
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q(bi) = lbil 2 = Bi + L tLLBj 
15,j<i 

83 

D 

Corollary 2.5.6. Let B be an invertible matrix with coefficients in R Then 
there exist unique matrices K, A and N such that: 

(1) B = KAN. 
(2) K is an orthogonal matrix, in other words Kt = K- 1 . 

(3) A is a diagonal matrix with positive diagonal coefficients. 
( 4) N is an upper triangular matrix with diagonal terms equal to 1. 

Note that this Corollary is sometimes called the Iwasawa decomposition 
of B since it is in fact true in a much more general setting than that of the 
group GLn(lR). 

Proof. Let B' be the matrix obtained by applying the Gram-Schmidt process 
to the vectors whose coordinates are the columns of B on the standard basis 
of lRn. Then, by the proposition we have B' = BN where N is an upper 
triangular matrix with diagonal terms equal to 1. Now the Gram-Schmidt 
process gives an orthogonal basis, in other words the Gram matrix of the hi 
is a diagonal matrix D with positive entries. Let A be the diagonal matrix 
obtained from D by taking the positive square root of each coefficient (we will 
call A the square root of D). Then the equality B't B' = D is equivalent to 
B' = KA for an orthogonal matrix K, hence BN = KA which is equivalent 
to the existence statement of the corollary. 

The uniqueness statement also follows since the equality B' = BN = 
K A means that the b~ form an orthogonal basis which can be expressed on 
the hi via an upper triangular matrix with diagonal terms equal to 1, and 
the procedure for obtaining this basis (i.e. the Gram-Schmidt coefficients) is 
clearly unique. D 

Remarks. 

(1) The requirement that the diagonal coefficients of A be positive is not 
essential, and is given only to insure uniqueness. 

(2) By considering the inverse matrix and/or the transpose matrix of B, one 
has the same result with N lower triangular, or with B = N AK instead 
of KAN. 

(3) T = AN is an upper triangular matrix with positive diagonal coefficients, 
and clearly any such upper triangular matrix T can be written uniquely 
in the form AN where A and N are as in the corollary. Hence we can use 
interchangeably both notations. 
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Another result is as follows. 

Proposition 2.5. 7. If Q is the matrix of a positive definite quadratic form, 
then there exists a unique upper triangular matrix T with positive diagonal 
coefficients such that Q = yty (or equivalently Q = Nt D N where N is an 
upper triangular matrix with diagonal terms equal to 1 and D is a diagonal 
matrix with positive diagonal coefficients). 

Proof By Proposition 2.5.3, we know that there exists BE GLn(~) such that 
Q = Bt B. On the other hand, by the Iwasawa decomposition we know that 
there exists matrices K and T such that B = KT with K orthogonal and T 
upper triangular with positive diagonal coefficients (T = AN in the notation 
of Proposition 2.5.6). Hence Q = Bt B = TtT thus showing the existence of 
T. 

For the uniqueness, note that if yty = T'tT' with T and T' upper trian
gular, then 

t -1 
T' yt = T'T- 1 

' 
where taking inverses is justified since Q is a positive definite matrix. But 
the left hand side of this equality is a lower triangular matrix, while the right 
hand side is an upper triangular one, hence both sides must be equal to some 
diagonal matrix D, and plugging back in the initial equality and using again 
the invertibility ofT, we obtain that D 2 is equal to the identity matrix. Now 
since the diagonal coefficients of D = T'T- 1 must be positive, we deduce that 
D itself is equal to the identity matrix, thus proving the proposition. D 

We will give later an algorithm to find the matrix T (Algorithm 2.7.6). 

2.6 Lattice Reduction Algorithms 

2.6.1 The LLL Algorithm 

Among all the Z bases of a lattice L, some are better than others. The ones 
whose elements are the shortest (for the corresponding norm associated to 
the quadratic form q) are called reduced. Since the bases all have the same 
determinant, to be reduced implies also that a basis is not too far from being 
orthogonal. 

The notion of reduced basis is quite old, and in fact in some sense one 
can even define an optimal notion of reduced basis. The problem with this 
is that no really satisfactory algorithm is known to find such a basis in a 
reasonable time, except in dimension 2 (Algorithm 1.3.14), and quite recently 
in dimension 3 from the work of B. Vallee [Val). 

A real breakthrough came in 1982 when A. K. Lenstra, H. W. Lenstra and 
L. Lovasz succeeded in giving a new notion of reduction (what is now called 
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LLL-reduction) and simultaneously a reduction algorithm which is determin
istic and polynomial time (see [LLL]). This has proved invaluable. 

The LLL notion of reduction is as follows. Let h 1 ,h2, ... ,hn be a basis of L. 
Using the Gram-Schmidt orthogonalization process, we can find an orthogonal 
(not orthonormal) basis hi, h2, ... ,h~ as explained in Proposition 2.5.4. 

Definition 2.6.1. With the above notations, the basis h 1, h2, ... , hn is called 
LLL-reduced if 

1 
Ill.· ·I<-,...,,J - 2 for 1 :::; j < i :::; n 

and 

lh: + /Li,i-1 h:-11 2 2: ~ lh:-112 

or equivalently 

for 1 < i :::; n , 

Note that the vectors hi+ /Li,i-1hi_ 1 and hi_1 are the projections of h; 
and h;_ 1 on the orthogonal complement of I:~:,~ ~hi. 

Then we have the following theorem: 

Theorem 2.6.2. Let h1, h2, ... , hn be an LLL-reduced basis of a lattice L. 
Then 

(1) 
n 

d(L):::; IT lh;l:::; 2n(n-1)/4d(£), 
i=l 

(2) 

(3) 
lhll :::; 2(n-1)/4d(L)lfn' 

(4) For every x E L with x =/= 0 we have 

(5) More generally, for any linearly independent vectors x1, ... , Xt E L we 
have 

for 1 :::; j :::; t . 
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We see that the vector b 1 in a reduced basis is, in a very precise sense, not 
too far from being the shortest non-zero vector of L. In fact, it often is the 
shortest, and when it is not, one can, most of the time, work with b1 instead 
of the actual shortest vector. 

Notation. In the rest of this chapter, we will use the notation x · y instead 
of b(x, y) where b is the bilinear form associated to q, and write x 2 instead of 
X· X= q(x). 

Proof. As in Corollary 2.5.5, we set Bi = lbW. The first inequality of (1) 
is Corollary 2.5.5, Since the bi are LLL-reduced, we have Bi ~ (3/4 -
J.Lf i- 1)Bi-1 ~ Bi-1/2 since IJ.Li,i-11 :::::; 1/2. By induction, this shows that 

' 
Bj:::::; 2i-iBi fori~ j, hence 

and this trivially implies Theorem 2.6.2 (1), in fact with a slightly better 
exponent of 2. Combining the two inequalities which we just obtained, we 
get for all j:::::; i, b]:::::; (2i-2 + 2i-i-1)Bi which implies (2). If we set j = 1 
in (2) and take the product of (2) for i = 1 to i = n, we obtain (bi)n :::::; 
2n(n-1)12 fi1<i<nBi = 2n(n-1}12d(L) 2 , proving (3). For (4), there exists ani 
such that x ~ l:1:$i:$i ribi = L:; 1:$j:$i Sjbj and ri i= 0, where rj E Z and 
Sj E R It is clear from the definition of the bj that ri = si, hence 

lxl 2 ~ s~Bi = riBi ~ Bi 

since ri is a non-zero integer, and since by (2) we know that Bi ~ 21-ilb1l 2 ~ 
21-n lh1l 2 , ( 4) is proved. (5) is proved by a generalization of the present argu
ment and is left to the reader. D 

Remark. Although we have lost a little in the exponent of 2 in Theorem 2.6.2 
(1), the proof shows that even using the optimal value given in our proof would 
not improve the estimate in (4). On the other hand, we have not completely 
used the full LLL-reduction inequalities. In particular, the inequalities on the 
J.li,j can be weakened to J.LI,i :::::; 1/2 for all j < i- 1 and IJ.Li,i- 11 :::::; 1/2. This 
can be used to speed up the reduction algorithm which follows. 

As has already been mentioned, what makes all these notions and theorems 
so valuable is that there is a very simple and efficient algorithm to find a 
reduced basis in a lattice. We now describe this algorithm in its simplest form. 
The idea is as follows. Assume that the vectors b 1 , ... ,bk_ 1 are already LLL
reduced (i.e. form an LLL-reduced basis of the lattice they generate). This 
will be initially the case for k = 2. The vector bk first needs to be reduced 
so that IJ.Lk,ji :::::; 1/2 for all j < k (some authors call this size reduction). This 
is done by replacing bk by bk - L:;i<k ai bi for some aj E Z in the following 
way. Assume that !J.Lk,jl :::::; 1/2 for l < j < k (initially with l = k). Then, if 
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q = lJ.tk,!l is the nearest integer to J.tk,l, and, if we replace bk by bk- qb1, 
then J.tk,j is not modified for j > l (since bj is orthogonal to b1 for l < j), and 
J.tk,l is replaced by J.tk,l - q (since b1 · bj = bi · bi) and IJ.tk,l - ql :::; 1/2 hence 
the modified J.tk,j satisfy IJ.tk,jl :::; 1/2 for l- 1 < j < k. 

Now that size reduction is done for the vector bk, we also need to satisfy 
the so-called Lovasz condition, i.e. Bk;:::: (3/4- J.t%,k_ 1)Bk_1. If this condition 
is satisfied, we increase k by 1 and start on the next vector bk (if there is 
one). If it is not satisfied, we exchange the vectors bk and bk-1, but then we 
must decrease k by 1 since we only know that b 1, ... ,bk-2 is LLL-reduced. 
A priori it is not clear that this succession of increments and decrements of k 
will ever terminate, but we will prove that this is indeed the case (and that 
the number of steps is not large) after giving the algorithm. 

We could compute all the Gram-Schmidt coefficients J.tk,j and Bk at the 
beginning of the algorithm, and then update them during the algorithm. After 
each exchange step however, the coefficients J.ti,k and J.ti,k-1 fori > k must be 
updated, and this is usually a waste of time since they will probably change 
before they are used. Hence, it is a better idea to compute the Gram-Schmidt 
coefficients as needed, keeping in a variable kmax the maximal value of k that 
has been attained. 

Another improvement on the basic idea is to reduce only the coefficient 
J.tk,k- 1 and not all the J.tk,l for l < k during size-reduction, since this is the 
only coefficient which must be less than 1/2 in absolute value before testing 
the Lovasz condition. All this leads to the following algorithm. 

Algorithm 2.6.3 (LLL Algorithm). Given a basis b 1, b 2, ... , bn of a lattice 
(L, q) (either by coordinates on the canonical basis of lRm for some m 2: n or 
by its Gram matrix), this algorithm transforms the vectors bi so that when the 
algorithm terminates, the bi form an LLL-reduced basis. In addition, the algorithm 
outputs a matrix H giving the coordinates of the LLL-reduced basis in terms of 
the initial basis. As usual we will denote by Hi the columns of H. 

1. [Initialize] Set k i-- 2, kmax i-- 1, hi i-- b1, B1 i-- b 1 · b1 and Hi-- In. 

2. [Incremental Gram-Schmidt] If k ::=:; kmax go to step 3. Otherwise, set kmax i-
k, bi:, i-- bk, then for j = 1, ... , k -1 set J.tk,j i-- bk · bj/Bj and hi:, i-- hi:,
J.tk,j bj. Finally, set Bk i-- hi:,· hi:, (see Remark (2) below for the corresponding 
step if only the Gram matrix of the bi is given). If Bk = 0 output an error 
message saying that the bi did not form a basis and terminate the algorithm. 

3. [Test LLL condition] Execute Sub-algorithm RED(k, k - 1) below. If Bk < 
(0.75 - J.t~ k- 1)Bk-1· execute Sub-algorithm SWAP(k) below, set k i-
max(2, k -'1) and go to step 3. Otherwise, for l = k- 2, k- 3, ... , 1 ex
ecute Sub-algorithm RED(k, l), then set k i-- k + 1. 

4. [Finished?] If k ::=:; n, then go to step 2. Otherwise, output the LLL reduced 
basis hi, the transformation matrix HE GLn(Z) and terminate the algorithm. 

Sub-algorithm RED(k, l). If iJ.tk,zl ::=:; 0.5 terminate the sub-algorithm. Oth
erwise, let q be the integer nearest to J.tk,l, i.e. 
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Set bk +-- bk- qbz, Hk +-- Hk - qHz, /Lk,l +-- /Lk,l - q, for all i such that 
1 ::::; i ::::; l- 1, set /Lk,i +-- /Lk,i- Q/Ll,i and terminate the sub-algorithm. 

Sub-algorithm SWAP(k). Exchange the vectors bk and bk_1, Hk and Hk-1· 

and if k > 2, for all j such that 1 ::::; j::::; k- 2 exchange /Lk,j with /Lk-1,j· Then 
set (in this order) fL +-- /Lk,k-1· B +-- Bk + fL2 Bk-1· /Lk,k-1 +-- /LBk-1/ B, 
b +-- bk,_ 1 , bt,_1 +-- bk, + fLb, bk, +-- -/Lk,k-1bk, + (Bk/B)b, Bk +-- Bk-1Bk/B 
and Bk-l +--B. Finally, fori = k + 1, k + 2, ... , kmax set (in this order) t +-- /Li,k. 

/Li,k +-- /Li,k-l - fLt, /Li,k-l +-- t + fLk,k-l/Li,k and terminate the sub-algorithm. 

Proof. It is easy to show that at the beginning of step 4, the LLL conditions 
of Definition 2.6.1 are valid for i ::::; k- 1. Hence, if k > n, we have indeed 
obtained an LLL-reduced family, and since it is clear that the operations which 
are performed on the bi are of determinant ±1, this family is a basis of L, 
hence the output of the algorithm is correct. What we must show is that the 
algorithm does in fact terminate. 

If we set for 0 ::::; i ::::; n 

we easily check that 

di = II Bj, 
l:e:;j:e:;i 

where as usual Bi = lbil 2 , and in particular di > 0, and it is clear from this 
that do= 1 and dn = d(L) 2 . Set 

D = II di. 
l:e:;i:e:;n-1 

This can change only if some Bi changes, and this can occur only in Sub
algorithm SWAP. In that sub-algorithm the di are unchanged for i < k - 1 
and fori ~ k, and by the condition of step 3, dk_ 1 is multiplied by a factor at 
most equal to 3/4. Hence Dis also reduced by a factor at most equal to 3/4. 
Let Li be the lattice of dimension i generated by the bj for j ::::; i, and let si be 
the smallest non-zero value of the quadratic form q in Li. Using Proposition 
6.4.1 which we will give in Chapter 6, we obtain 

and since Sn is the smallest non-zero value of q(x) on L, this last expression 
depends only on i but not on the bj. It follows that di is bounded from 
below by a positive constant depending only on i and L. Hence D is bounded 
from below by a positive constant depending only on L, and this shows that 
the number of times that Sub-algorithm SWAP is executed must be finite. 
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Since this is the only place where k can decrease (after execution of the sub
algorithm) the algorithm must terminate, and this finishes the proof of its 
validity. 0 

A more careful analysis shows that the running time of the LLL algorithm 
is at most O(n6 ln3 B), if lhil 2 :::; B for all i. In practice however, this upper 
bound is quite pessimistic. 

Remarks. 

(1) If the matrix transformation His not desired, one can suppress from the 
algorithm all the statements concerning it, since it does not play any real 
role. 

(2) On the other hand if the hi are given only by their Gram matrix, the hi 
and b; exist only abstractly. Hence, the only output of the algorithm is 
the matrix H, and the updating of the vectors hi done in Sub-algorithms 
RED and SWAP must be done directly on the Gram matrix. 

In particular, step 2 must then be replaced as follows (see Exercise 
21). 

2. [Incremental Gram-Schmidt] If k :::; kmax go to step 3. Otherwise, set 
kmax +- k then for j = 1, ... , k -1 set ak,j +- hk · hj- ~{,:;:{ J.lj,iak,i and 
J.Lk,j +- ak,j/ Bj. then set Bk +- hk · hk- ~7=-:;} J.lk,iak,i· If Bk = 0 output 
an error message saying that the hi did not form a basis and terminate 
the algorithm. 

The auxiliary array ak,j is used to minimize the number of operations, 
otherwise we could of course write the formulas directly with J.Lk,j. 

Asymptotically, this requires n3 /6 multiplications/divisions, and this 
is much faster than the n2m/2 required by Gram-Schmidt when only the 
coordinates of the hi are known. Since the computation of the Gram ma
trix from the coordinates of the hi also requires asymptotically n 2m/2 
multiplications, one should use directly the formulas of Algorithm 2.6.3 
when the Gram matrix is not given. 

(3) The constant 0. 75 in step 3 of the algorithm can be replaced by any con
stant c such that 1/4 < c < 1. Of course, this changes the estimates given 
by Theorem 2.6.2. (In the results and proof of the theorem, replace 2 by 
a= 1/(c- 1/4), and use the weaker inequality J.L%,z :::; (a- 1)/a).) The 
speed of the algorithm and the "quality" of the final basis which one ob
tains, are relatively insensitive to the value of the constant. In practice, 
one should perhaps use c = 0.99. The ideal value would be c = 1, but in 
this case one does not know whether the LLL algorithm runs in polynomial 
time, although in practice this seems to be the case. 

(4) Another possibility, suggested by LaMacchia in [LaM] is to vary the con
stant c in the course of the algorithm, starting the reduction with a con
stant c slightly larger than 1/4 (so that the reduction is as fast as possible), 
and increasing it so as to reach c = 0.99 at the end of the reduction, so 
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that the quality of the reduced basis is a good as possible. We refer to 
[LaM] for details. 

(5) We can also replace the LLL condition Bk ~ (3/4- 11~ k- 1)Bk-1 by the 
so-called Siegel condition Bk ~ Bk-I/2. Indeed, since l~k,k-1!::::; 1/2, the 
LLL condition with the constant c = 3/4 implies the Siegel conditiqn, and 
conversely the Siegel condition implies the LLL condition for the constant 
c = 1/2. In that case the preliminary reduction RED(k, k- 1) should be 
performed after the test, together with the other RED(k, l). 

( 6) If the Gram matrix does not necessarily have rational coefficients, the J-li,j 

and Bi must be represented approximately using floating point arithmetic. 
Even if the Gram matrix is rational or even integral, it is often worthwhile 
to work using floating point arithmetic. The main problem with this ap
proach is that roundoff errors may prevent the final basis from being LLL 
reduced. In many cases, this is not really important since the basis is not 
far from being LLL reduced. It may happen however that the roundoff 
errors cause catastrophic divergence from the LLL algorithm, and conse
quently give a basis which is very far from being reduced in any sense. 
Hence we must be careful. Let r be the number of relative precision bits. 

First, during step 2 it is possible to replace the computation of the 
products bi ·hi by floating point approximations (of course only in the 
case where the hi are given by coordinates, otherwise there is nothing to 
compute). This should not be done if hi and bj are nearly orthogonal, 
i.e. if hi· hi/lhillhil is smaller than 2-r/2 say. In that case, hi· hi should 
be computed as exactly as possible using the given data. 

Second, at the beginning of Sub-algorithm RED, the nearest integer 
q to J-lk,l is computed. If q is too large, say q > 2r/2 , then J-lk,l - q will 
have a small relative precision and the values of the Jl,k,l will soon become 
incorrect. In that case, we should recompute the J-lk,h J-lk- 1,1, Bk-1 and 
Bk directly from the Gram-Schmidt formulas, set k +-- max(k- 1, 2) and 
start again at step 3. 

These modifications (and many more) are explained in a rigorous the
oretical setting in [Schn], and for practical uses in [Schn-Euch] to which 
we refer. 

(7) The algorithm assumes that the hi are linearly independent. If they are 
not, we will get an error message in the Gram-Schmidt stage of the al
gorithm. It is possible to modify the algorithm so that it will not only 
work in this case, but in fact output a true basis and a set of linearly 
independent relations for the initial set of vectors (see Algorithm 2.6.8). 

2.6.2 The LLL Algorithm with Deep Insertions 

A modification of the LLL algorithm due to Schnorr and Buchner ( [Schn
Euc]) is the following. It may be argued that the Lovasz condition Bk ~ 
(0.75- J-l~,k-dBk-1 (in addition to the requirement Jl,k,j ::::; 1/2) should be 
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strengthened, taking into account the earlier Bj. If this is done rashly how
ever, it leads to a non-polynomial time algorithm, both in theory and in prac
tice. This is, of course, one of the reasons for the choice of a weaker con
dition. Schnorr and Buchner (loc. cit.) have observed however that one can 
strengthen the above condition without losing much on the practical speed of 
the algorithm, although in the worst case the resulting algorithm is no longer 
polynomial time. They report that in many cases, this leads to considerably 
shorter lattice vectors than the basic LLL algorithm. 

The idea is as follows. If bk is inserted between bi- 1 and bi for some 
i < k, then (Exercise 22) the new Bi will become 

bk . bk - I: 1-LLBj = Bk + L 1-LLBj. 
1~j<i i~j<k 

If this is significantly smaller than the old Bi (say at most ~ Bi as in our initial 
version of LLL), then it is reasonable to do this insertion. Note that the case 
i = k - 1 of this test is exactly the original LLL condition. For these tests 
to make sense, Algorithm RED(k, l) must be executed before the test for all 
l < k and not only for l = k- 1 as in Algorithm 2.6.3. 

Inserting bk just after bi-1 for some i < k will be called a deep insertion. 
After such an insertion, k must be set back to max(i- 1, 2), and the /-Lj,l 
and Bi must be updated. When i < k- 1 however, the formulas become 
complicated and it is probably best to recompute the new Gram-Schmidt 
coefficients instead of updating them. One consequence of this is that we do 
not need to keep track of the largest value kmax that k has attained. 

This leads to the following algorithm, due in essence to Schnorr and Bu
chner ([Schn-Euc]). 

Algorithm 2.6.4 (LLL Algorithm with Deep Insertions). Given a basis b1o 
b2, ... , bn of a lattice (L, q) (either by coordinates in the canonical basis of JRm 
for some m ;::: n or by its Gram matrix), this algorithm transforms the vectors 
bi so that when the algorithm terminates, the bi form an LLL-reduced basis. In 
addition, the algorithm outputs a matrix H giving the coordinates of the LLL
reduced basis in terms of the initial basis. As usual we will denote by Hi the 
columns H. 

1. [Initialize] Set k +- 1 and H +-In. 

2. [Incremental Gram-Schmidt] Set bj;, +- bk, then for j = 1, ... , k - 1 set 
/-Lk,j +- bk · bj / Bi and bj;, +- bj;, - /-Lk,j bj. Then set Bk +- bj;, · bj;,. If Bk = 0 
output an error message saying that the bi did not form a basis and terminate 
the algorithm. Finally, if k = 1, set k +- 2 and go to step 5. 

3. [Initialize test] For l = k - 1, k - 2, ... , 1 execute Sub-algorithm RED(k, l) 
above. Set B +- bk · bk and i +- 1. 

4. [Deep LLL test] If i = k, set k +- k + 1 and go to step 5. Otherwise, do 
as follows. If ~Bi :::; B set B +- B - 1-LLBi, i +- i + 1 and go to step 4. 
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Otherwise, execute Algorithm INSERT(k, i) below. If i 2: 2 set k ._ i - 1, 
B ._ bk · bk. i ._ 1 and go to step 4. If i = 1, set k ._ 1 and go to st~p 2. 

5. [Finished?) If k ~ n, then go to step 2. Otherwise, output the LLL reduced 
basis hi, the transformation matrix HE GLn(Z) and terminate the algorithm. 

Sub-algorithm INSERT(k, i). Set b._ bk, V ._ Hk. for j = k, k-1, ... , i+ 
1 set h1 ._ h1_ 1 and H1 ._ Hj-t. and finally set hi._ band Hi ._ V. Terminate 
the sub-algorithm. 

2.6.3 The Integral LLL Algorithm 

If the Gram matrix of the hi has integral coefficients, the /1-i,j and the Bk will 
be rational and it may be tempting to do all the computation with rational 
numbers. Unfortunately, the repeated GCD computations necessary for per
forming rational arithmetic during the algorithm slows it down considerably. 
There are essentially two ways to overcome this problem. The first is to- do 
only approximate computations of the /1-i,j and the Bi as mentioned above. 

The second is as follows. In the proof of Algorithm 2.6.3 we have introduced 
quantities di which are clearly integral in our case, since they are equal to sub
determinants of our Gram matrix. We have the following integrality results. 

Proposition 2.6.5. Assume that the Gram matrix (hi · b1) is integral, and 
set 

di = det((br · hsh~r,s~i) = IT Bj. 

l~j~i 

Then for all i and for all j < i 

(1) 
di-lBi E Z 

(2) for all m such that j < m ~ i 

and 

dj L /1-i,k/1-m,kBk E Z. 
l~k~j 

Proof. We have seen above that di = il1<k<i Bk hence di-lBi = di E Z. For 
the second statement of ( 1) , let j < i and-consider the vector 

v =hi- I: /1-i,kb;:; = h; + I: /1-i.kb;:;. 
l~k~j j<k<i 

From the second expression it is clear that bA; . v = 0 for all k such that 
1 ~ k ~ j, or equivalently since the JR-span of the bA; (1 ~ k ::::; j) is equal to 
the JR-span of the bk, 



2.6 Lattice Reduction Algorithms 

bk · v = 0 for 1 ~ k ~ j. 

For the same reason, we can write 

v =hi- L Xkbk 
l~k~j 

for some Xk E JR. Then the above equations can be written in matrix form 
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In particular, since the determinant of the matrix is equal by definition to 
dj, by inverting the matrix we see that the Xk are of the form mk/di for 
some mk E Z (since the Gram matrix is integral). Furthermore, the equality 
L:: 1 ~k~j Xkbk = L:: 1 ~k~j /-ti,kbk shows by projection on bj that Xj = /-ti,j, 
thus proving (1). 

For (2) we note that by what we have proved, div is an integral linear 
combination of the bk (in other words it belongs to the lattice), hence in 
particular div · bm E Z for all m such that 1 ~ m ~ n. Since v = hi -
L:: 1 ~k~j 1-ti,kbk, we obtain (2). D 

Corollary 2.6.6. With the same hypotheses and notations as the proposition, 
set Ai,j = dj/-ti,j for j < i (so Ai,j E Z) and Ai,i = di. Then for j ~ i fixed, if 
we define the sequence Uk by uo = bi · bj and for 1 .:::; k < j 

dkUk-l - Ai,kAj,k Uk = ------::-----'-----"-:...._ 
dk-l 

then Uk E Z and Uj-l = Ai,j· 

Proof It is easy to check by induction on k that 

and the proposition shows that this last expression is integral. We also have 
Uj-l = Bjdj-l/-ti,j = dil-£i,j = Ai,j thus proving the corollary. D 

Using these results, it is easy to modify Algorithm 2.6.3 so as to work 
entirely with integers. This leads to the following algorithm, where it is as
sumed that the basis is given by its Gram-Schmidt matrix. (Hence, if the basis 
is given in terms of coordinates, compute first the Gram-Schmidt matrix be
fore applying the algorithm, or modify appropriately the formulas of step 1.) 
Essentially the same algorithm is given in [de Weg]. 
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Algorithm 2.6.7 (Integral LLL Algorithm). Given a basis b1, b2, ... , bn of 
a lattice (L, q) by its Gram matrix which is assumed to have integral coefficients, 
this algorithm transforms the vectors hi so that when the algorithm terminates, 
the hi form an LLL-reduced basis. The algorithm outputs a matrix H giving the 
coordinates of the LLL-reduced basis in terms of the initial basis. We will denote 
by Hi the column vectors of H. All computations are done using integers only. 

1. [Initialize] Set k +- 2, kmax +- 1, do +- 1, d1 +- b1 · b1 and H +-ln. 

2. [Incremental Gram-Schmidt] If k ::;; kmax go to step 3. Otherwise, set kmax +- k 
and for j = 1, ... , k (in that order) do as follows: set u +- bk · bj and for 
i = 1, ... ,j -1 set 

d·u- Ak ·>-.· · u +- l ,l J,l 

di-1 

(the result is in Z), then if j < k set Ak,j +- u and if j = k set dk +- u. 
If dk = 0, the hi did not form a basis, hence output an error message and 
terminate the algorithm (but see also Algorithm 2.6.8). 

3. [Test LLL condition] Execute Sub-algorithm REDI(k, k-1) below. If dkdk-2 < 
£d~_ 1 - >-.~,k- 1 , execute algorithm SWAPI(k) below, set k +- max(2, k- 1) 
and go to step 3. Otherwise, for l = k- 2, k- 3, ... , 1 execute Sub-algorithm 
REDI(k, l), then set k +- k + 1. 

4. [Finished?] If k :::; n go to step 2. Otherwise, output the transformation matrix 
H E GLn(Z) and terminate the algorithm. 

Sub-algorithm REDI(k, l). If 12>-.k,d ::;; dt terminate the sub-algorithm. Oth
erwise, let q be the integer nearest to Ak,t/dt, i.e. the quotient of the Euclidean 
division of2>-.k,!+dt by 2dt. Set Hk +- Hk-qH1, bk +- bk-qb1, >-.k,l +- >-.k,t-qd1, 
for all i such that 1 :::; i :::; l - 1 set Ak,i +- Ak,i- q>-.!,i and terminate the sub
algorithm. 

Sub-algorithm SWAPI(k). Exchange the vectors Hk and Hk-t. exchange 
bk and bk-1· and if k > 2, for all j such that 1 :::; j :::; k- 2 exchange Ak,j 
with Ak-1,j· Then set ).. +- Ak,k-1· B +- (dk_2dk + >-.2)/dk-t. then fori = 
k + 1, k + 2, ... kmax set (in this order) t +- Ai,k, Ai,k +- (dkAi,k-1 - >-.t)/dk-1 
and Ai,k-1 +- (Bt + )..)..i,k)/dk. Finally, set dk_ 1 +- B and terminate the sub
algorithm. 

It is an easy exercise (Exercise 24) to check that these formulas correspond 
exactly to the formulas of Algorithm 2.6.3. 

Remark. In step 3, the fundamental LLL comparison dkdk-2 < £dL1 -
>-.~,k- 1 involves the non-integral number £ (it could also be 0.99). This is not 
really a problem since this comparison can be done any way one likes (by 
multiplying by 4, or using floating point arithmetic), since a roundoff error at 
that point is totally unimportant. 
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2.6.4 LLL Algorithms for Linearly Dependent Vectors 

As has been said above, the LLL algorithm cannot be applied directly to a 
system of linearly dependent vectors hi. It can however be modified so as to 
work in this case, and to output a basis and a system of relations. The problem 
is that in the Gram-Schmidt orthogonalization procedure we will have at some 
point Bi = bi · bi = 0. This means of course that hi is equal to a linear 
combination of the hi for j < i. Since Gram-Schmidt performs projections 
of the successive vectors on the subspace generated by the preceding ones, 
this means that we can forget the index i in the rest of the orthogonalization 
(although not the vector hi itself). This leads to the following algorithm which 
is very close to Algorithm 2.6.3 and whose proof is left to the reader. 

Algorithm 2.6.8 (LLL Algorithm on Not Necessarily Independent Vectors). 
Given n non-zero vectors b 1 , b 2 , ... , bn generating a lattice (L,q) (either by 
coordinates or by their Gram matrix), this algorithm transforms the vectors hi 
and computes the rank p of the lattice L so that when the algorithm terminates 
hi = 0 for 1 ~ i ~ n - p and the hi for n - p < i ~ n form an LLL-reduced 
basis of L. In addition, the algorithm outputs a matrix H giving the coordinates 
of the new hi in terms of the initial ones. In particular, the first n- p columns 
Hi of H will be a basis of relation vectors for the hi, i.e. of vectors r such that 
I:; 1 ~i~n ribi = 0. 

1. [Initialize] Set k .__ 2, kmax .__ 1, hi .__ ht, Bt .__ ht · ht and H.__ In. 

2. [Incremental Gram-Schmidt] If k ~ kmax go to step 3. Otherwise, set kmax .__ k 
and for j = 1, ... , k- 1 set /Lk,j .__ bk · bj/ Bi if Bj =f. 0 and /Lk,j .__ 0 if 

Bi = 0, then set bk .__ bk- 2::;:~ fLk,j bj and Bk .__ bk · bk (use the formulas 
given in Remark {2) above if the hi are given by their Gram matrix). 

3. [Test LLL condition] Execute Sub-algorithm RED(k, k - 1) above. If Bk < 
(0.75 - fL~,k-l)Bk-lo execute Sub-algorithm SWAPG(k) below, set k .__ 
max(2, k - 1) and go to step 3. Otherwise, for l = k - 2, k - 3, ... , 1 ex
ecute Sub-algorithm RED(k, l), then set k .__ k + 1. 

4. [Finished?] If k ~ n go to step 2. Otherwise, let r be the number of initial 
vectors hi which are equal to zero, output p .__ n - r, the vectors hi for 
r + 1 ~ i ~ n (which form an LLL-reduced basis of L), the transformation 
matrix HE GLn(Z) and terminate the algorithm. 

Sub-algorithm SWAPG(k). Exchange the vectors bk and bk-t. Hk and 
Hk-lo and if k > 2, for all j such that 1 ~ j ~ k - 2 exchange /Lk,j with 
/Lk-l,j· Then set fL .__ fLk,k-l and B .__ Bk + /L2 Bk-l· Now, in the case B = 0 
(i.e. Bk = fL = 0), exchange Bk and Bk-t, exchange bk and bk-t and for 
i = k + 1, k + 2, ... kmax exchange /Li,k and /Li,k-l· 

In the case Bk = 0 and fL =1- 0, set Bk-l .__ B, bk-l .__ fLbk_ 1, /Lk,k-1 .__ 1/ fL 
and fori= k + 1, k + 2, ... , kmax set J.Li,k-1 .__ /Li,k-t/ fL. 

Finally, in the case Bk =f. 0, set (in this order) t .__ Bk-t/B, fLk,k-1 .__ fLt, 
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h +- hk_ 1, hk_ 1 +- hk + p.h, hk +- -J.Lk,k-1hk + (Bk/ B)h, Bk +- Bkt, 
Bk-1 +- B, then for i = k + 1, k + 2, ... , kmax set (in this order) t +- J.Li,k· 
J.Li,k +- /-Li,k-1 - p.t, /-Li,k-1 +- t + J.Lk,k-1/-Li,k· Terminate the sub-algorithm. 

Note that in this sub-algorithm, in the case B = 0, we have Bk = 0 and 
hence J.Li,k = 0 fori > k, so the exchanges are equivalent to setting Bk +- Bk-1, 
Bk-1 +- 0 and fori ~ k + 1, J.Li,k +- J.Li,k-1 and J.Li,k-1 +- 0. 

An important point must be made concerning this algorithm. Since several 
steps of the algorithm test whether some quantity is equal to zero or not, it can 
be applied only to vectors with exact (i.e. rational) entries. Indeed, for vectors 
with non-exact entries, the notion of relation vector is itself not completely 
precise since some degree of approximation must be given in advance. Thus 
the reader is advised to use caution when using LLL algorithms for linearly 
dependent vectors when they are non-exact. (For instance, we could replace a 
test Bk = 0 by Bk ~ e for a suitable e.) 

We must prove that this algorithm is valid. To show that it terminates, we 
use a similar quantity to the one used in the proof of the validity of Algorithm 
2.6.3. We set 

i9,B;~O 

This quantity is modified only in Sub-algorithm SWAPG(k). If B = Bk + 
p.2Bk-1 f. 0, then dk-1 is multiplied by a factor which is smaller than 3/4 
and the others are unchanged, hence D decreases by a factor at least 3/4 as 
in the usual LLL algorithm. If B = 0, then Bk_1 becomes 0 and Bk becomes 
equal to Bk-b hence dk-1 becomes equal to dk_2, dk stays the ~arne (since 
Bk-1dk-2 = dk-1 = dk when Bk = 0) as well as the others, soD is multiplied 
by 2k-1 /2k = 1/2 hence decreases multiplicatively again, thus showing that 
the algorithm terminates since Dis bounded from below. 

When the algorithm terminates, we have for all i, j and k the conditions 
Bk ~ (3/4- P.tk-1)Bk-1 and IP.i,jl ~ 1/2. If pis the rank of the lattice L, 
it follows that n - p of the Bi must be equal to zero, and these inequalities 
show that it must be the first n- p Bi, since Bi = 0 implies Bj = 0 for j < i. 
Since the vector space generated by the hi for i ~ n - p is the same as the 
space generated by the hi for i ~ n - p, it follows that hi = 0 for i ~ n - p. 
Since the hi form a generating set for L over Z throughout the algorithm, 
the hi for i > n - p also generate L, hence they form a basis since there 
are exactly p of them, and this basis is LLL reduced by construction. It also 
follows from the vanishing of the hi for i ~ n - p that the first n - p columns 
Hi of H are relation vectors for our initial hi· Since H is an integer matrix 
with determinant ±1, it is an easy exercise to see that these columns form a 
basis of the space of relation vectors for the initial hi (Exercise 25). D 

This algorithm is essentially due to M. Pohst and called by him the MLLL 
algorithm {for Modified LLL, see [Poh2]). 
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We leave as an excellent exercise for the reader to write an all-integer 
version of Algorithm 2.6.8 when the Gram matrix is integral (see Exercise 
26). 

Summary. We have seen a number of modifications and variations on the 
basic LLL Algorithm 2.6.3. Most of these can be combined. We summarize 
them here. 

(1) The Gram-Schmidt formulas of step 2 can be modified to use only the 
Gram matrix of the hi (see Remark (2) after Algorithm 2.6.3). 

(2) If the Gram-Schmidt matrix is integral, the computation can be done 
entirely with integers (see Algorithm 2.6.7). 

(3) If floating point computations are used, care must be taken during the 
computation of the hi · hi and when the nearest integer to a /Lk,l is com
puted (see Remark ( 4) after Algorithm 2.6.3). 

( 4) If we want better quality vectors than those output by the LLL algorithm, 
we can use deep insertion to improve the output (see Algorithm 2.6.4). 

(5) If the vectors hi are not linearly independent, we must use Algorithm 
2.6.8, combined if desired with any of the preceding variations. 

2. 7 Applications of the LLL Algorithm 

2.7.1 Computing the Integer Kernel and Image of a Matrix 

In Section 2.4.3 we have seen how to apply the Hermite normal form algorithms 
to the computation of the image and kernel of an integer matrix A. It is clear 
that this can also be done using the MLLL algorithm (in fact its integer 
version, see Exercise 26). Indeed if we set hi to be the columns of A, the 
vectors hi output by Algorithm 2.6.8 form an LLL-reduced basis of the image 
of A and the relation vectors Hi for i ~ r = n - p form a basis of the integer 
kernel of A. If desired, the result given by Algorithm 2.6.8 can be improved 
in two ways. First, the relation vectors Hi for i ~ r are not LLL-reduced, so 
it is useful to LLL-reduce them to obtain small relations. This means that we 
will multiply the first r column of H on the right by an r x r invertible matrix 
over Z, and this of course leaves H unimodular. 

Second, although the basis hi for r < i ~ n is already an LLL-reduced 
basis for the image of A hence cannot be improved much, the last p columns of 
H (which express the LLL-reduced hi in terms of the initial hi) can be large 
and in many situations it is desirable to reduce their size. Here we must not 
LLL-reduce these columns since the corresponding image vectors hi would not 
be anymore LLL-reduced in general. (This is of course a special case of the 
important but difficult problem of simultaneously reducing a lattice basis and 
its dual, see [Sey2].) We still have some freedom however since we can replace 
any column Hi for i > r by 
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H;- LmiHi 
j~r 

for any mj E Z since this will not change the b; and will preserve the relation 
det(H) = ±1. To choose the mj close to optimally we proceed as follows. Let 
C be the Gram matrix of the vectors Hj for j ::; r. Using Algorithm 2.2.1 
compute X= (x 1 , ... ,xr)t solution to the linear system CX = V;, where V; 
is the column vector whose j-th element is equal to H; · Hj (here the scalar 
product is the usual one). Then by elementary geometric arguments it is clear 
that the vector Lj~r XjHj is the projection of H; on the real vector space 
generated by the Hj for j ::; r, hence a close to optimal choice of the mj is 
to choose mj = L x j l· Since we have several linear systems to solve using the 
same matrix, it is preferable to invert the matrix using Algorithm 2.2.2 and 
this gives the following algorithm. 

Algorithm 2.7.1 (Kernel and Image of a Matrix Using LLL). Given an mxn 
matrix A with integral entries, this algorithm computes an n x n matrix Hand 
a number p with the following properties. The matrix H has integral entries and 
is of determinant equal to ±1 (i.e. H E GLn(Z)). The first n- p columns of 
H form an LLL-reduced basis of the integer kernel of A. The product of A with 
the last p columns of H give an LLL-reduced basis of the image of A, and the 
coefficients of these last p columns are small. 

1. (Apply MLLL] Perform Algorithm 2.6.8 on the vectors b; equal to the columns 
of A, the Euclidean scalar product being the usual scalar product on vectors. 
We thus obtain p and a matrix HE GLn(Z). Set r +- n- p. 

2. [LLL-reduce the kernel] Using the integral LLL-Aigorithm 2.6.7, replace the 
first r vectors of H by an LLL-reduced basis of the lattice that they generate. 

3. [Compute inverse of Gram matrix] Let C be the Gram matrix of the Hj for 
j ::; r (i.e. Cj,k = Hi · Hk for 1 ::; j, k ::; r), set D +- c-1 computed using 
Algorithm 2.2.2, and set i +- r. 

4. [Finished?] Set i +- i + 1. If i > n, output the matrix H and the number p 
and terminate the algorithm. 

5. [Modify Hi] Let V be the r-dimensional column vector whose j-th coordinate 
is H; · Hj. Set X +- DV, and for j ::; r set mj +- L Xj l, where Xj is the j-th 
component of X. Finally, setH; +- H;- 2:::: 1< .<r mjHj and go to step 4. _J_ 

A practical implementation of this algorithm should use only an all-integer 
version of Algorithm 2.6.8 (see Exercise 26), and the other steps can be simi
larly modified so that all the computations are done with integers only. 

If only the integer kernel of A is wanted, we may replace the test Bk < 
(0.75- J.L%,k- 1 )Bk-l by Bk = 0, which avoids most of the swaps and gives a 
much faster algorithm. Since this algorithm is very useful, we give explicitly 
the complete integer version. 
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Algorithm 2.7.2 (Kernel over Z Using LLL). Given an m x n matrix A with 
integral entries, this algorithm finds an LLL-reduced Z-basis for the kernel of A. 
We use an auxiliary n x n integral matrix H. We denote by Hi the j-th column 
of H and (to keep notations similar to the other LLL algorithms) by bi the j-th 
column of A. All computations are done using integers only. We use an auxiliary 
set of flags fi, ... , In (which will be such that fk = 0 if and only if Bk = 0). 

1. [Initialize) Set k +-- 2, kmax +-- 1, do +-- 1, t +-- b 1 · b1 and H +-- In· If t -:f. 0 
set d1 +-- t and 11 +-- 1, otherwise set d1 +-- 1 and 11 +-- 0. 

2. [Incremental Gram-Schmidt) If k :::; kmax go to step 3. Otherwise, set kmax +-- k 
and for j = 1, ... , k (in that order) do as follows. If /j = 0 and j < k, set 
>..k,j +-- 0. Otherwise, set u +-- bk · bi and for each i = 1, ... , j -1 (in that 
order) such that /i -:f. 0 set 

(the result is in Z), then, if j < k set >..k,j +-- u and if j = k set dk +-- u and 
!k +-- 1 if u -:f. 0, dk +-- dk-1 and !k +-- 0 if u = 0. 

3. [Test fk = 0 and !k-1 -:f. 0) If /k-1 -:f. 0, execute Sub-algorithm REDI(k, k-1) 
above. If fk-1 -:f. 0 and !k = 0, execute Sub-algorithm SWAPK(k) below, set 
k +-- max(2, k-1) and go to step 3. Otherwise, for each l = k-2, k-3, ... , 1 
(in this order) such that /z -:f. 0, execute Sub-algorithm REDI(k, l) above, then 
set k +-- k + 1. 

4. [Finished?) If k :::; n go to step 2. Otherwise, let r + 1 be the least index such 
that /i -:f. 0 (r = n if allfi are equal to 0). Using Algorithm 2.6.7, output an 
LLL-reduced basis of the lattice generated by the linearly independent vectors 
H 1, ... , Hr and terminate the algorithm. 

Sub-algorithm SWAPK(k). Exchange the vectors Hk and Hk-1· and if k > 
2, for all j such that 1:::; j:::; k-2 exchange >..k,i with Ak-1.i· Set>..+-- >..k,k-1· If 
>.. = 0, set dk-1 +-- dk-2· exchange fk-1 and !k (i.e. set !k-1 +-- 0 and !k +-- 1), 
set >..k,k-1 +-- 0 and fori = k + 1, ... , kmax set >..i,k +-- >..i,k-1 and >..i,k-1 +-- 0. 

If >.. -:f. 0, for i = k + 1, ... , kmax set >..i,k-1 +-- >..>..i,k-l/dk-1. then set 
t +-- dk, dk-1 +-- >..2/dk-1· dk +-- dk-1 then for j = k + 1, ... , kmax- 1 and for 
i = j + 1, ... , kmax set >..i,j +-- >..i,jdk-1/t and finally for j = k + 1, ... , kmax set 
di +-- djdk-1/t. Terminate the sub-algorithm. 

Remarks. 

(1) Since /i = 0 implies >..k,i = 0, time can be saved in a few places by first 
testing whether /i vanishes. The proof of the validity of this algorithm is 
left as an exercise (Exercise 24). 

(2) It is an easy exercise to show that in this algorithm 

dk = det ((bi · bj}i::=;i,j::;k,B;B;#O) 

and that djf..Li,j E Z (see Exercise 29). 
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(3) An annoying aspect of Algorithm SWAPK is that when>. f= 0, in addition 
to the usual updating, we must also update the quantities dj and >.;,j for 
all i and j such that k + 1 :::; j < i :::; kmax. This comes from the single fact 
that the new value of d~o is different from the old one, and suggests that 
a suitable modification of the definition of d~o can suppress this additional 
updating. This is indeed the case (see Exercise 30). Unfortunately, with 
this modification, it is the reduction algorithm REDI which needs much 
additional updating. I do not see how to suppress the extra updating in 
SWAPK and in REDI simultaneously. 

2. 7.2 Linear and Algebraic Dependence Using LLL 

Now let us see how to apply the LLL algorithm to the problem of ::f.-linear 
independence. Let z1, z2, ... , Zn ben complex numbers, and the problem is 
to find a ::f.-dependence relation between them, if one exists. Assume first that 
the z; are real. For a large number N, consider the positive definite quadratic 
form in the a;: 

This form is represented as a sum of n squares of linearly independent linear 
forms in the a;, hence defines a Euclidean scalar product on !Rn, as long as 
z1 f= 0, which we can of course assume. If N is large, a "short" vector of zn 
for this form will necessarily be such that lz1a 1 + · · · + Znanl is small, and also 
the a; fori > 1 not too large. Hence, if the z; are really ::f.-linearly dependent, 
by choosing a suitable constant N the dependence relation (which will make 
z1a1 + · · · + Znan equal to 0 up to roundoff errors) will be discovered. The 
choice of the constant N is subtle, and depends in part on what one knows 
about the problem. If the lz; I are not too far from 1 (meaning between 10-6 

and 106 , say), and are known with an absolute (or relative) precision E, then 
one should take N between 1 IE and 1 I c:2 , but E should also be taken quite 
small: if one expects the coefficients a; to be of the order of a, then one might 
take E = a-l.sn, but in any case E <a-n. 

Hence, we will start with the b; being the standard basis of zn, and use 
LLL with the quadratic form above. One nice thing is that step 2 of the LLL 
algorithm can be avoided completely. Indeed, one has the following lemma. 

Lemma 2.7.3. With the above notations, if we execute the complete Gram
Schmidt orthogonalization procedure on the standard basis of zn and the 
quadratic form 

we have /-Li,l = z;/ z1 for 2 :::; i :::; n, /-Li,j = 0 if 2 :::; j < i :::; n, bt = 
h;- (z;/zi)b1, B1 = Nzr, and Bk = 1 for 2:::; k:::; n. 
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The proof is trivial by induction. 
It is easy to modify these ideas to obtain an algorithm which also works 

for complex numbers Zi. In this case, the quadratic form that we can take is 

since the expression which multiplies N is now a sum of two squares of linear 
forms, and these forms will be independent if and only if zd z2 is not real. 
We can however always satisfy this condition by a suitable reordering: if there 
exists i and j such that zd Zj fl. IR, then by applying a suitable permutation of 
the Zi, we may assume that zd z2 fl. JR. On the other hand, if zd Zj E lR for all i 
andj, then we can apply the algorithm to the real numbers 1, z2/z1. ... , Zn/zl· 

All this leads to the following algorithm. 

Algorithm 2. 7.4 (Linear Dependence). Given n complex numbers z1, ... , Zn, 

(as approximations), a large number N chosen as explained above, this algorithm 
finds Z-linear combinations of small modulus between the zi. We assume that 
all the zi are non-zero, and that if one of the ratios zi/ Zj is not real, the Zi are 
reordered so that the ratio z2/ z1 is not real. 

1. [Initialize] Set hi +- [0, ... , 1, ... , o]t, i.e. as a column vector the ith element of 
the standard basis of zn. Then, set /Li,j +- 0 for all i and j with 3 ~ j < i ~ n, 
B1 +-lz1l2, B2 +- Im(z1z2), Bk +-1 for 3 ~ k ~ n, /Li,l +- Re(z1ii)/B1 for 
2 ~ i ~ n. 

Now if B2 f. 0 (i.e. if we are in the complex case), do the following: set 
/Li,2 +- Im(z1ii)/B2 for 3 ~ i ~ n, B2 +- N · BVB1. Otherwise {in the real 
case), set /Li,2 +- 0 for 3 ~ i ~ n, B2 +- 1. 

2. [Execute LLL] Set B1 +- N B1o k +- 2, kmax +- n, H +- In and go to step 3 
of the LLL Algorithm 2.6.3. 

3. [Terminate] Output the coefficients hi as coefficients of linear combinations of 
the zi with small modulus, the best one being probably h1. 

Implementation advice. Algorithm 2. 7.4 performs slightly better if z1 is 
the number with the largest modulus. Hence one should try to reorder the Zi 

so that this is the case. (Note that it may not be possible to do so, since if the 
Zi are not all real, one must have z2/z1 non-real.) 

Remarks. 

(1) The reason why the first component plays a special role comes from the 
choice of the quadratic form. To be more symmetrical, one could choose 
instead 

both in the real and complex case. The result would be more symmetrical 
in the variables ai, but then we cannot avoid executing step 2 of the LLL 
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algorithm, i.e. the Gram-Schmidt reduction procedure, which in practice 
can take a non-negligible proportion of the running time. Hence the above 
non-symmetric version (due toW. Neumann) is probably better. 

(2) We can express the linear dependence algorithm in terms of matrices in
stead of quadratic forms as follows (for simplicity we use the symmetrical 
version and we assume the Zi real). SetS= ..;Iii. We must then find the 
LLL reduction of the following (n + 1) x n matrix: 

1 

0 

0 0 

(3) We have not used at all the multiplicative structure of the field C. This 
means that essentially the same algorithm can be used to find linear de
pendencies between elements of a k-dimensional vector space over R for 
any k. This essentially reduces to the MLLL algorithm, except that thanks 
to the number N we can better handle imprecise vectors. 

( 4) A different method for finding linear dependence relations based on an 
algorithm which is a little different from the LLL algorithm, is explained 
and analyzed in detail in [HJLS]. It is not clear which should be preferred. 

A special case of Algorithm 2.7.4 is when zi =ai-l, where a is a given 
complex number. Then finding a Z-linear relation between the Zi is equivalent 
to finding a polynomial A E Z[X] such that A( a)= 0, i.e. an algebraic relation 
for a. This is very useful in practice. (From the implementation advice given 
above we should choose Zi = an-i instead if a > 1.) 

In this case however, some modifications may be useful. First note that 
Lemma 2.7.3 stays essentially the same if we replace the quadratic form Q(a) 
by 

where the >.i are arbitrary positive real numbers (see Exercise 32). Now when 
testing for algebraic relations, we may or may not know in advance the degree 
of the relation. Assume that we do. (For example, if a = ../2 + v'3 + v'5 we 
know that the relation will be of degree 8.) Then (choosing zi = an-i) we 
would like to have small coefficients for an-i with i small, and allow larger 
ones for i large. This amounts to choosing >.i large for small i, and small for 
large i. One choice could be >.i = An-i for some reasonable constant A > 1 
(at least such that An is much smaller than N). In other words, we look for 
an algebraic relation for zd A. 

In other situations, we do not know in advance the degree of the relation, 
or even if the number is algebraic or not. In this case, it is probably not 
necessary to modify Algorithm 2.7.4, i.e. we simply choose >.i = 1 for all i. 
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2.7.3 Finding Small Vectors in Lattices 

For many applications, even though the LLL algorithm does not always give us 
the smallest vector in a lattice, the vectors which are obtained are sufficiently 
reasonable to give good results. We have seen one such example in the preced
ing section, where LLL was used to find linear dependence relations between 
real or complex numbers. In some cases, however, it is absolutely necessary 
to find one of the smallest vectors in a lattice, or more generally all vectors 
having norm less than or equal to some constant. This problem is hard, and 
in a slightly modified form is known to be NP-complete, i.e. equivalent to the 
most difficult reasonable problems in computer science for which no polyno
mial time algorithm is known. (For a thorough discussion of NP-completeness 
and related matters, see for example (AHU).) Nonetheless, we must give an 
algorithm to solve it, keeping in mind that any algorithm will probably be 
exponential time with respect to the dimension. 

Using well known linear algebra algorithms (over Rand not over Z), we can 
assume that the matrix defining the Euclidean inner product on Rn is diagonal 
with respect to the canonical basis, say Q(x) = q1 , 1 x~ + q2,2x~ + · · · + qn,nX~. 
If we want Q(x) ~ C, say, then we must choose lx11 ~ ..jCjq1,1· Once x1 
is chosen, we choose lx2l ~ ..j(C- ql,lxnfq2,2, and so on. This leads to n 
nested loops, and in addition it is desirable to have n variable and not fixed. 
Hence it is not as straightforward to implement as it may seem. The idea is to 
use implicitly a lexicographic ordering of the vectors x. If we generalize this 
to non-diagonal quadratic forms, this leads to the following algorithm. 

Algorithm 2.7.5 (Short Vectors). If Q is a positive definite quadratic form 
given by 

n ( n )2 
Q(x) = L qi,i Xi + L qi,jXj 

i=l i=i+l 

and a positive constant C, this algorithm outputs all the non-zero vectors x E zn 
such that Q(x) .::::; C, as well as the value of Q(x). Only one of the two vectors 
in the pair (x,-x) is actually given. 

1. [Initialize] Set i ~ n, Ti ~ C, Ui ~ 0. 

2. [Compute bounds] Set Z ~ ..jTifqi,i, Li ~ lZ- Ud. xi~ r-z- Uil-1. 

3. [Main loop] Set Xi ~Xi + 1. If Xi > Li. set i ~ i + 1 and go to step 
3. Otherwise, if i > 1, set Ti-l ~ Ti - qi,i(Xi + Ui) 2 , i ~ i - 1, Ui ~ 
I:;j=i+l qi,jXj, and go to step 2. 

4. [Solution found] If x = 0, terminate the algorithm, otherwise output x, Q(x) = 
C- T1 + q1,1 (x1 + U1)2 and go to step 3. 

Now, although this algorithm (due in this form to Fincke and Pohst) is 
quite efficient in small dimensions, it is far from being the whole ·story. Since 
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we have at our disposal the LLL algorithm which is efficient for finding short 
vectors in a lattice, we can use it to modify our quadratic form so as to shorten 
the length of the search. More precisely, let R = (r;,j) be the upper triangular 
matrix defined by r;,; = ,;q:;:;., r;,j = r;,;q;,j for 1 s i < j s n, r;,1 = 0 for 
1 S j < i S n. Then 

Q(x) = xt Rt Rx. 

Now call r; the columns of Rand r~ the rows of R- 1 . Then from the identity 
R- 1 Rx = x we obtain x; = r~Rx, hence by the Cauchy-Schwarz inequality, 

This bound is quite sharp since for example when the quadratic form is di
agonal, we have llr~IJ 2 = 1/q;,; and the bound that we obtain for XI, say, is 
as usual JC/q1 ,1. Using the LLL algorithm on the rows of R- 1 , however, 
will in general drastically reduce the norms of these rows, and hence improve 
correspondingly the search for short vectors. 

As a final improvement, we note that the implicit lexicographic ordering 
on the vectors x used in Algorithm 2.7.5 is not unique, and in particular we 
can permute the coordinates as we like. This adds some more freedom on our 
reduction of the matrix R. Before giving the final algorithm, due to Fincke 
and Pohst, we give the standard method to obtain the so-called Cholesky 
decomposition of a positive definite quadratic form, i.e. to obtain Q in the 
form used in Algorithm 2.7.5. 

Algorithm 2.7.6 (Cholesky Decomposition). Let A be a real symmetric ma
trix of order n defining a positive definite quadratic form Q. This algorithm com
putes constants q;,j and a matrix R such that 

n ( n )2 
Q(x) = L q;,; X; + L q;,jXj 

i=l j=i+l 

or equivalently in matrix form A= Rt R. 

1. [Initialize] For all i and j such that 1 s i s j s n set q;,j ~ a;,j, then set 
i ~o. 

2. [Loop on i] Set i ~ i + 1. If i = n, go to step 4. Otherwise, for j = i + 1, ... , n 
set qj,i ~ q;,j and q;,j ~ q;,Jfq;,;. 

3. [Main loop] For all k and l such that i + 1 s k s l s n set 

and go to step 2. 

4. [Find matrix R] Fori = 1, ... , n set r;,; ~ ,;q:;:;., then set r;,1 = 0 if 1 s j < 
i S n and r;,j = r;,;q;,j if 1 s i < j s n and terminate the algorithm. 
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Note that this algorithm is essentially a reformulation of the Gram
Schmidt orthogonalization procedure in the case where only the Gram matrix 
is known. (See Proposition 2.5.7 and Remark (2) after Algorithm 2.6.3.) 

We can now give the algorithm of Fincke-Pobst for finding vectors of small 
norm ([Fin-Poh]). 

Algorithm 2.7.7 (Fincke-Pobst). Let A be a real symmetric matrix of order 
n defining a positive definite quadratic form Q, and c be a positive constant. 
This algorithm outputs all non-zero vectors x E zn such that Q(x) :::; C and the 
corresponding values of Q(x). As in Algorithm 2.7.5, only one of the two vectors 
(x, -x) is actually given. 

1. [Cholesky] Apply the Cholesky decomposition Algorithm 2.7.6 to the matrix 
A, thus obtaining an upper triangular matrix R. Compute also R-1 (note that 
this is easy since R is triangular). 

2. [LLL reduction] Apply the LLL algorithm to the n vectors formed by the rows 
of R- 1 , thus obtaining a unimodular matrix U and a matrix s-1 such that 
s-1 = u-1 R-1. Compute also S = RU. (Note that U will simply be the 
inverse transpose of the matrix H obtained in Algorithm 2.6.3, and this can 
be directly obtained instead of H in that algorithm, in other words it is not 
necessary to compute a matrix inverse). 

3. [Reorder the columns of S] Call si the columns of S and s~ the rows of s- 1. 

Find a permutation a on [1, ... , n] such that 

Then permute the columns of S using the same permutation a, i.e. replace S 
by the matrix whose ith column is Sa(i) for 1 :::; i :::; n. 

4. Compute A1 +-- sts, and find the coefficients qi,; of the Cholesky decompo
sition of A1 using the first three steps of Algorithm 2.7.6 (it is not necessary 
to compute the new matrix R). 

5. Using Algorithm 2.7.5 on the quadratic form Q1 defined by the symmetric 
matrix A1, compute all the non-zero vectors y such that Q1(y) :::; C, and for 
each such vector output x = U(Ya-1(1), ... , Ya-l(n))t and Q(x) = Q1 (y). 

Although this algorithm is still exponential time, and is more complex 
than Algorithm 2.7.5, in theory and in practice it is much better and should 
be used systematically except if n is very small (less than 5, say). 

Remark. If we want not only small vectors but minimal non-zero vectors, 
the Fincke-Pobst algorithm should be used as follows. First, use the LLL 
algorithm on the lattice (zn, Q). This will give small vectors in this lattice, 
and then choose as constant C the smallest norm among the vectors found by 
LLL, then apply Algorithm 2.7.7. 
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2.8 Exercises for Chapter 2 

1. Prove that if K is a field, any invertible matrix over K is equal to a product of 
matrices corresponding to elementary column operations. Is this still true if K 
is not a field, for example for Z? 

2. Let M X = B be a square linear system with coefficients in the ring Z/prz for 
some prime number p and some integer r > 1. Show how to use Algorithm 2.2.1 
over the field Qp to obtain at least one solution to the system, if such a solution 
exists. Compute in particular the necessary p-adic precision. 

3. Write an algorithm which decomposes a square matrix M in the form M = LU P 
as mentioned in the text, where P is a permutation matrix, and L and U are 
lower and upper triangular matrices respectively (see [AHU] or [PFTV] if you 
need help). 

4. Give a detailed proof of Proposition 2.2.5. 

5. Using the notation of Proposition 2.2.5, show that for k + 1 ~ i,j ~ n, the 
coefficient a~~ is equal to the (k + 1) x (k + 1) minor of Mo obtained by taking 
the first k rows and the i-th row, and the first k columns and the j-th column 
of Mo. 

6. Generalize the Gauss-Bareiss method for computing determinants, to the com
putation of the inverse of a matrix with integer coefficients, and more generally 
to the other algorithms of this chapter which use elimination. 

7. Is it possible to modify the Hessenberg Algorithm 2.2.9 so that when the matrix 
M has coefficients in Z all (or most) operations are done on integers and not on 
rational numbers? (I do not know the answer to this question.) 

8. Prove the validity of Algorithm 2.3.1. 

9. Prove the validity of Algorithm 2.3.6. 

10. Write an algorithm for computing one element of the inverse image, analogous 
to Algorithm 2.3.4 but using elimination directly instead of using Algorithm 
2.3.1, and compare the asymptotic speed with that of Algorithm 2.3.4. 

11. Prove the validity of Algorithm 2.3.11 and the uniqueness statement of Propo
sition 2.3.10. 

12. In Algorithm 2.3.9, show that if the columns of M and M' are linearly indepen-
dent then so are the columns of M2 • 

13. Assuming Theorem 2.4.1 (1), prove parts (2) and (3). Also, try and prove (1). 

14. Prove the uniqueness part of Theorem 2.4.3. 

15. Show that among all possible pairs (u, v) such that au+ bv = d = gcd(a, b), 
there exists exactly one such that -lal/d < vsign(b) ~ 0, and that in addition 
we will also have 1 ~ usign(a) ~ Jbl/d. 

16. Generalize Algorithm 2.4.14 to the case where then x n square matrix A is not 
assumed to be non-singular. 

17. Let A = ( ~ :) be a 2 x 2 matrix with integral coefficients such that ad- be =1-

0. If we set d2 = gcd(a, b, c, d) and d1 = (ad- bc)jd2 show directly that there 



2.8 Exercises for Chapter 2 107 

exists two matrices U and V in GL2 (Z) such that A= V ( ~ ~2 ) U (this is 

the special case n = 2 of Theorem 2.4.12). 

18. Let G be a finite Z-module, hence isomorphic to a quotient L' / L, and let A be a 
matrix giving the coordinates of some Z-basis of Lon some Z-basis of L'. Show 
that the absolute value of det(A) is equal to the cardinality of G. 

19. Let B be an invertible matrix with real coefficients. Show that there exist ma
trices K1, K2 and A such that B = K 1 AK2 , where A is a diagonal matrix with 
positive diagonal coefficients, and K1 and K 2 are orthogonal matrices (this is 
called the Cartan decomposition of B). What extra condition can be added so 
that the decomposition is unique? 

20. Prove Proposition 2.5.3 using only matrix-theoretical tools (hint: the matrix Q 
is diagonalizable since it is real symmetric). 

21. Give recursive formulas for the computation of the Gram-Schmidt coefficients 
/-Li,j and Bi when only the Gram matrix (hi · h;) is known. 

22. Assume that the vector hi is replaced by some other vector hk in the Gram
Schmidt process. Compute the new value of Bi = hi · hi in terms of the /-Lk,j 
and B; for j < i. 

23. Prove Theorem 2.6.2 (5) and the validity of the LLL Algorithm 2.6.3. 

24. Prove that the formulas of Algorithm 2.6.3 become those of Algorithm 2.6. 7 
when we set Ai,j <-- d; /-Li,j and di <-- di-1 Bi. 

25. Show that at the end of Algorithm 2.6.8 the first n- p columns Hi of the matrix 
H form a basis of the space of relation vectors for the initial hi. 

26. Write an all integer version of Algorithm 2.6.8, generalizing Algorithm 2.6. 7 
to not necessarily independent vectors. The case corresponding to Bk = 0 but 
/-Lk,k- 1 =1- 0 must be treated with special care. 

27. (This is not really an exercise, just food for thought). Generalize to modules over 
principal ideal domains R the results and algorithms given about lattices. For 
example, generalize the LLL algorithm to the case where R is either the ring of 
integers of a number field (see Chapter 4) assumed to be principal, or is the ring 
K[X] where K = <Q, K =JR. or K =C. What can be said when K = lFp? Give 
applications to the problem of linear or algebraic dependence of power series. 

28. Compare the performance of Algorithms 2.7.2 and 2.4.10 (in the author's im
plementations, Algorithm 2.7.2 is by far superior). 

29. Prove that the quantities that occur in Algorithm 2.7.2 are indeed all integral. 
In particular, show that dk = det(hi · h;)I::;i,j::;k,B;B;;to and that d;f-Li,j E Z. 

30. Set by convention /-Lk,o = 1, /-Lk,k = Bk, j(k) = max{j, 0 ~ j ~ k, /-Lk,j =1- 0}, 
dk = [L<i<k f-Li,j(i} and Ak,j = d;/-Lk,j for k > j. 

a) Modify Sub-algorithm SWAPK so that it uses this new definition of dk 
and >..k,j· In other words, find the formulas giving the new values of the d;, !; 
and Ak,j in terms of the old ones after exchanging hk and hk-1· In particular 
show that, contrary to Sub-algorithm SWAPK, dk is always unchanged. 

b) Modify also Sub-algorithm REDI accordingly. (Warning: dk may be mod
ified, hence all d; and >..i,j fori> j > k.) 

c) Show that we still have d; E Z and Ak,j E Z (this is much more difficult 
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and is analogous to the integrality property of the Gauss-Bareiss Algorithm 2.2.6 
and the sub-resultant Algorithm 3.3.1 that we will study in Chapter 3}. 

31. It can be proved that Sk = En> 1(n(n+1} · · · (n+k-1})-3 is of the form a11"2 +b 
where a and b are rational numbers when k is even, and also when k is odd if 
the middle coefficient (n + (k- 1}/2} is only raised to the power -2 instead of 
-3. Compute Sk fork~ 4 using Algorithm 2.7.4. 

32. Prove Lemma 2. 7.3 and its generalization mentioned after Algorithm 2. 7.4. Write 
the corresponding algebraic dependence algorithm. 

33. Let U be a non-singular real square matrix of order n, and let Q be the positive 
definite quadratic form defined by the real symmetric matrix utu. Using explic
itly the inverse matrix V of U, generalize Algorithm 2. 7.5 to find small values 
of Q on zn (Algorithm 2.7.5 corresponds to the case where U is a triangular 
matrix). Hint: if you have trouble, see [Knu2] Section 3.3.4.C. 



Chapter 3 

Algorithms on Polynomials 

Excellent book references on this subject are [Knu2] and [GCL]. 

3.1 Basic Algorithms 

3.1.1 Representation of Polynomials 

Before studying algorithms on polynomials, we need to decide how they will 
be represented in an actual program. The straightforward way is to represent 
a polynomial 

P(X) = anXn + an-lxn-l + · · · +a1X + ao 

by an array a[O], a[l], ... , a[n]. The only difference between different imple
mentations is that the array of coefficients can also be written in reverse order, 
with a[OJ being the coefficient of xn. We will always use the first representa
tion. Note that the leading coefficient an may be equal to 0, although usually 
this will not be the case. 

The true degree of the polynomial P will be denoted by deg(P), and the 
coefficient of xcteg(P), called the leading coefficient of P, will be denoted by 
£(P). In the example above, if, as is usually the case, an f:. 0, then deg(P) = n 
and £(P) = an· 

The coefficients ai may belong to any commutative ring with unit, but 
for many algorithms it will be necessary to specify the base ring. If this base 
ring is itself a ring of polynomials, we are then dealing with polynomials in 
several variables, and the representation given above (called the dense repre
sentation) is very inefficient, since multivariate polynomials usually have very 
few non-zero coefficients. In this situation, it is better to use the so-called 
sparse representation, where only the exponents and coefficients of the non
zero monomials are stored. The study of algorithms based on this kind of 
representation would however carry us too far afield, and will not be consid
ered here. In any case, practically all the algorithms that we will need use only 
polynomials in one variable. 

The operations of addition, subtraction and multiplication by a scalar, i.e. 
the vector space operations, are completely straightforward and need not be 
discussed. On the other hand, it is necessary to be more specific concerning 
multiplication and division. 



110 3 Algorithms on Polynomials 

3.1.2 Multiplication of Polynomials 

As far as multiplication is concerned, one can of course use the straightforward 
method based on the formula: 

where 
k 

ck = L aibk-i, 
i=O 

where it is understood that ai = 0 if i > m and bj = 0 if j > n. This method 
requires (m + 1)(n + 1) multiplications and mn additions. Since in general 
multiplications are much slower than additions, especially if the coefficients 
are multi-precision numbers, it is reasonable to count only the multiplication 
time. If T(M) is the time for multiplication of elements in the base ring, the 
running time is thus O(mnT(M)). It is possible to multiply polynomials faster 
than this, however. We will not study this in detail, but will give an example. 
Assume we want to multiply two polynomials of degree 1. The straightforward 
method above gives: 

with 
co = aobo, c1 = aob1 + a1bo, c2 = a1b1. 

As mentioned, this requires 4 multiplications and 1 addition. Consider instead 
the following alternate method for computing the Ck: 

d =(at- ao)(bl- bo), c1 =eo+ (c2- d). 

This requires only 3 multiplications, but 4 additions (subtraction and addition 
times are considered identical). Hence it is faster if one multiplication in the 
base ring is slower than 3 additions. This is almost always the case, especially 
if the base ring is not too simple or involves large integers. Furthermore, this 
method can be used for any degree, by recursively splitting the polynomials 
in two pieces of approximately equal degrees. 

There is a generalization of the above method which is based on Lagrange's 
interpolation formula. To compute A(X)B(X), which is a polynomial of degree 
m+n, compute its value at m+n+ 1 suitably chosen points. This involves only 
m + n + 1 multiplications. One can then recover the coefficients of A(X)B(X) 
(at least if the ring has characteristic zero) by using a suitable algorithmic 
form of Lagrange's interpolation formula. The overhead which this implies 
is unfortunately quite large, and for practical implementations, the reader is 
advised either to stick to the straightforward method, or to use the recursive 
splitting procedure mentioned above. 
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3.1.3 Division of Polynomials 

We assume here that the polynomials involved have coefficients in a field 
K, (or at least that all the divisions which occur make sense. Note that if 
the coefficients belong to an integral domain, one can extend the scalars and 
assume that they in fact belong to the quotient field). The ring K[X] is then a 
Euclidean domain, and this means that given two polynomials A and B with 
B -:/:- 0, there exist unique polynomials Q and R such that 

A= BQ + R, with deg(R) < deg(B) 

(where as usual we set deg(O) = -oo). As we will see in the next section, this 
means that most of the algorithms described in Chapter 1 for the Euclidean 
domain Z can be applied here as well. 

First however we must describe algorithms for computing Q and R. The 
straightforward method can easily be implemented as follows. For a non-zero 
polynomial Z, recall that i(Z) is the leading coefficient of Z. Then: 

Algorithm 3.1.1 (Euclidean Division). Given two polynomials A and B in 
K[X] with B -:/:- 0, this algorithm finds Q and R such that A = BQ + R and 
deg(R) < deg(B). 

1. [Initialize] Set R ~A, Q ~ 0. 

2. [Finished?] If deg(R) < deg(B) then terminate the algorithm. 

3. [Find coefficient] Set 

8 ~ i(R) xcteg(R)-deg(B) 
i(B) ' 

then Q ~ Q + S, R +- R- S ·Band go to step 2. 

Note that the multiplication S · B in step 3 is not really a polynomial 
multiplication, but simply a scalar multiplication followed by a shift of coeffi
cients. Also, if division is much slower than multiplication, it is worthwhile to 
compute only once the inverse of i(B), so as to have only multiplications in 
step 3. The running time of this algorithm is hence 

O(deg(B)(deg(Q) + l)T(M)), 

(of course, deg(Q) = deg(A)- deg(B) if deg(A) 2: deg(B)). 

Remark. The subtraction R ~ R- S · B in step 3 of the algorithm must 
be carefully written: by definition of S, the coefficient of xcteg R must become 
exactly zero, so that the degree of R decreases. If however the base field is 
for example lR or C, the elements of K will only be represented with finite 
precision, and in general the operation i(R) - i(B)(i(R)/i(B)) will not give 
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exactly zero but a very small number. Hence it is absolutely necessary to set 
it exactly equal to zero when implementing the algorithm. 

Note that the assumption that K is a field is not strictly necessary. Since 
the only divisions which take place in the algorithm are divisions by the leading 
coefficient of B, it is sufficient to assume that this coefficient is invertible in 
K, as for example is the case if B is monic. We will see an example of this in 
Algorithm 3.5.5 below (see also Exercise 3). 

The abstract value T(M) does not reflect correctly the computational 
complexity of the situation. In the case of multiplication, the abstract T( M) 
used made reasonable sense. For example, if the base ring K was Z, then T(M) 
would be the time needed to multiply two integers whose size was bounded 
by the coefficients of the polynomials A and B. On the contrary, in Algorithm 
3.1.1 the coefficients explode, as can easily be seen, hence this abstract measure 
of complexity T(M) does not make sense, at least in Z or Q. On the other 
hand, in a field like IFp, T(M) does make sense. 

Now these theoretical considerations are in fact very important in prac
tice: Among the most used base fields (or rings), there can be no coefficient 
explosion in IFp (or more generally any finite field), or in JR. or C (since in that 
case the coefficients are represented as limited precision quantities). On the 
other hand, in the most important case of Q or Z, such an explosion does take 
place, and one must be ready to deal with it. 

There is however one other important special case where no explosion 
takes place, that is when B is a monic polynomial (f(B) = 1), and A and B 
are in Z[X]. In this case, there is no division in step 3 of the algorithm. 

In the general case, one can avoid divisions by multiplying the polynomial 
A by f(B)deg(A)-deg(B)+l. This gives an algorithm which is not really more 
efficient than Algorithm 3.1.1, but which is neater and will be used in the next 
section. Knuth calls it "pseudo-division" of polynomials. It is as follows: 

Algorithm 3.1.2 (Pseudo-Division). Let K be a ring, A and B be two poly
nomials in K[X] with B =/= 0, and set m +-- deg(A), n +-- deg(B), d +-- f(B). 
Assume that m 2: n. This algorithm finds Q and R such that dm-n+l A= BQ+R 
and deg(R) < deg(B). 

1. [Initialize] Set R +--A, Q +-- 0, e +-- m- n + 1. 

2. [Finished?] If deg(R) < deg(B) then set q +-- de, Q +-- qQ, R +-- qR and 
terminate the algorithm. 

3. [Find coefficient] Set 

S +-- f(R)Xdeg(R)-deg(B), 

then Q +-- d · Q + S, R +-- d · R- S · B, e +-- e -1 and go to step 2. 

Since the algorithm does not use any division, we assume only that K is a 
ring, for example one can have K = Z. Note also that the final multiplication 
by q = de is needed only to get the exact power of d, and this is necessary for 
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some applications such as the sub-resultant algorithm (see 3.3). If it is only 
necessary to get some constant multiple of Q and R, one can dispense with e 
and q entirely. 

3.2 Euclid's Algorithms for Polynomials 

3.2.1 Polynomials over a Field 

Euclid's algorithms given in Section 1.3 can be applied with essentially no 
modification to polynomials with coefficients in a field K where no coefficient 
explosion takes place (such as 1Fp)· In fact, these algorithms are even simpler, 
since it is not necessary to have special versions ala Lehmer for multi-precision 
numbers. They are thus as follows: 

Algorithm 3.2.1 (Polynomial GCD). Given two polynomials A and B over 
a field K, this algorithm determines their GCD in K[X]. 

1. [Finished?] If B = 0, then output A as the answer and terminate the algorithm. 

2. [Euclidean step] Let A = B · Q + R with deg(R) < deg(B) be the Euclidean 
division of A by B. Set A+- B, B +-Rand go to step 1. 

The extended version is the following: 

Algorithm 3.2.2 (Extended Polynomial GCD). Given two polynomials A 
and B over a field K, this algorithm determines (U, V, D) such that AU+ BV = 
D =(A, B). 

1. [Initialize] Set U +- 1, D +-A, V1 +- 0, V3 +-B. 

2. [Finished?] If V3 = 0 then let V +- (D- AU)/ B (the division being exact), 
output (U, V, D) and terminate the algorithm. 

3. [Euclidean step] Let D = QV3 + R be the Euclidean division of D by V3. Set 
T +- U- V1Q, U +- V1, D +- V3, V1 +- T, V3 +-Rand go to step 2. 

Note that the polynomials U and V given by this algorithm are polyno
mials of the smallest degree, i.e. they satisfy deg(U) < deg( B /D), deg(V) < 
deg(A/D). 

If the base field is lR or C, then the condition B = 0 of Algorithm 3.2.1 
(or V3 = 0 in Algorithm 3.2.2) becomes meaningless since numbers are rep
resented only approximately. In fact, polynomial GCD's over these fields, al
though mathematically well defined, cannot be used in practice since the coef
ficients are only approximate. Even if we assume the coefficients to be given by 
some formula which allows us to compute them as precisely as we desire, the 
computation cannot usually be done. Consider for example the computation 
of 
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gcd(X -1r,X2 - 6((2)), 

where ((s) = I:n>l n-s is the Riemann zeta function. Although we can com
pute the coefficients to as many decimal places as we desire, algebra alone 
will not tell us that this GCD is equal to X- 1r since ((2) = 1r2 /6. The point 
of this discussion is that one should keep in mind that it is meaningless in 
practice to compute polynomial GCD's over lR or C. 

On the other hand, if the base field is IQ, the above algorithms make 
perfect sense. Here, as already mentioned for Euclidean division, the practical 
problem of the coefficient explosion will occur, and since several divisions are 
performed, it will be much worse. 

To be specific, if p is small, the GCD of two polynomials of IF p[X] of degree 
1000 can be computed in a reasonable amount of time, say a few seconds, while 
the GCD of polynomials in IQ[X] (even with very small integer coefficients) 
could take incredibly long, years maybe, because of coefficient explosion. Hence 
in this case it is absolutely necessary to use better algorithms. We will see this 
in Sections 3.3 and 3.6.1. Before that, we need some important results about 
polynomials over a Unique Factorization Domain (UFD). 

3.2.2 Unique Factorization Domains (UFD's) 

Definition 3.2.3. Let R be an integral domain (i.e. a commutative ring with 
unit 1 and no zero divisors). We say that u E R is a unit if u has a multi
plicative inverse in R. If a and b are elements of R with b -1- 0, we say that 
b divides a (and write b I a) if there exists q E R such that a = bq. Since R 
is an integral domain, such a q is unique and denoted by afb. Finally p E R 
is called an irreducible element or a prime element if q divides p implies that 
either q or pfq is a unit. 

Definition 3.2.4. A ring R is called a unique factorization domain (UFD) 
if R is an integral domain, and if every non-unit x E R can be written in 
the form x = f1pi, where the Pi are (not necessarily distinct) prime elements, 
and if this form is unique up to permutation and multiplication of the primes 
by units. 

Important examples of UFD's are given by the following theorem (see [Kap], 
[Sam]): 

Theorem 3.2.5. 

(1) If R is a principal ideal domain (i.e. R is an integral domain and every 
ideal is principal), then R is a UFD. In particular, Euclidean domains 
(i.e. those having a Euclidean division) are UFD's. 
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(2) If R is the ring of algebraic integers of a number field (see Chapter 4), 
then R is a UFD if and only if R is a principal ideal domain. 

(3) If R is a UFD, then the polynomial rings R[X1 , ... , Xn] are also UFD's. 

Note that the converse of (1) is not true in general: for example the ring 
C[X, Y] is a UFD (by (3)), but is not a principal ideal domain (the ideal 
generated by X and Y is not principal). 

We will not prove Theorem 3.2.5 (see Exercise 6 for a proof of (3)), but 
we will prove some basic lemmas on UFD's before continuing further. 

Theorem 3.2.6. Let R be a UFD. Then 

(1) If p is prime, then for all a and b in R, pI ab if and only if p I a or pI b. 
(2) If a I be and a has no common divisor with b other than units, then a I c. 
(3) If a and b have no common divisor other than units, then if a and b divide 

c E R, then ab I c. 
( 4) Given a set S C R of elements of R, there exists d E R called a greatest 

common divisor {GCD) of the elements of S, and having the following 
properties: d divides all the elements of S, and if e is any element of R 
dividing all the elements of S, then e I d. Furthermore, if d and d' are two 
GCD's of S, then d/d' is a unit. 

Proof. (1) Assume p I ab. Since R is a UFD, one can write a = fL <i<m Pi 
and b = Tim+l<i<m+n Pi, the Pi being not necessarily distinct prime elements 
of R. On the other hand, since abfp E R we can also write ab = p f1i qi with 
prime elements qj. By the uniqueness of prime decomposition, since ab = 
Til<i<m+nPi we deduce that pis equal to a unit times one of the Pi· Hence, 
if i~-m, then pI a, while if i > m, then pI b, proving (1). 

(2) We prove (2) by induction on the number n of prime factors of b, 
counted with multiplicity. If n = 0 then b is a unit and a I c. Assume the 
result true for n -1, and let be= qa with n;:::: 1. Let p be a prime divisor of b. 
p divides qa, and by assumption p does not divide a. Hence by (1) p divides 
q, and we can write b'c = q'a with b' = bfp, q' = qfp. Since b' has only n -1 
prime divisors, (2) follows by induction. 

(3) Write c = qa with q E R. Since b I c, by (2) we deduce that b I q, hence 
ab I c. 

(4) For every elements E S, write 

where u is a unit, the product is over all distinct prime elements of R up to 
units, and vp(s) is the number of times that the prime p occurs in s, hence is 
0 for all but finitely many p. Set 
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where ap = minvp(s). 
sES 

This min is of course equal to 0 for all but a finite number of p, and it is clear 
that d satisfies the conditions of the theorem. 0 

We will say that the elements of S are coprime if their GCD is a unit. 
By definition of a UFD, this is equivalent to saying that no prime element 
is a common divisor. Note that if 'R is not only a UFD but also a principal 
ideal domain (for example when the UFD 'R is the ring of algebraic integers 
in a number field), then the coprimality condition is equivalent to saying that 
the ideal generated by the elements is the whole ring 'R. This is however not 
true in general. For example, in the UFD C[X, Y], the elements X andY are 
coprime, but the ideal which they generate is the set of polynomials P such 
that P(O, 0) = 0, and this is not the whole ring. 

3.2.3 Polynomials over Unique Factorization Domains 

Definition 3.2.7. Let 'R be a UFD, and A E R[X]. We define the content 
of A and write cont(A) as a GCD of the coefficients of A. We say that A 
is primitive if cont(A) is a unit, i.e. if its coefficients are coprime. Finally, 
if A -:/:- 0 the polynomial A/ cont(A) is primitive, and is called the primitive 
part of A, and denoted pp(A) {in the case A = 0 we define cont(A) = 0, 
pp(A) = 0}. 

The fundamental result on these notions, due to Gauss, is as follows: 

Theorem 3.2.8. Let A and B be two polynomials over a UFD 'R. Then there 
exists a unit u E 'R such that 

cont(A ·B)= ucont(A) cont(B), pp(A ·B)= u- 1 pp(A) pp(B). 

In particular, the product of two primitive polynomials is primitive. 

Proof Since A = cont(A) pp(A), it is clear that this theorem is equivalent 
to the statement that the product of two primitive polynomials A and B is 
primitive. Assume the contrary. Then there exists a prime p E 'R which divides 
all the coefficients of AB. Write A(X) = L:aiXi and B(X) = L:biXi. By 
assumption there exists a j such that ai is not divisible by p, and similarly a 
k such that bk is not divisible by p. Choose j and k as small as possible. The 
coefficient of Xi+k in AB is aibk + ai+1bk_1 + · · · + ai+kbo + ai-1bk+1 + · · · + 
aobk+i• and all the terms in this sum are divisible by p except the term aibk 
(since j and k have been chosen as small as possible), and aibk itself is not 
divisible by p since p is prime. Hence p does not divide the coefficient of Xi+k 
in AB, contrary to our assumption, and this proves the theorem. 0 
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Corollary 3.2.9. Let A and B be two polynomials over a UFD R. Then there 
exists units u and v in R such that 

cont(gcd(A, B)) = u gcd(cont(A), cont(B)), 

pp(gcd(A, B)) = v gcd(pp(A), pp(B)). 

3.2.4 Euclid's Algorithm for Polynomials over a UFD 

We can now give Euclid's algorithm for polynomials defined over a UFD. The 
important point to notice is that the sequence of operations will be essentially 
identical to the corresponding algorithm over the quotient field of the UFD, 
but the algorithm will run much faster. This is because implementing arith
metic in the quotient field (say in Q if R = Z) will involve taking GCD's in the 
UFD all the time, many more than are needed to execute Euclid's algorithm. 
Hence the following algorithm is always to be preferred to Algorithm 3.2.1 
when the coefficients of the polynomials are in a UFD. We will however study 
in the next section a more subtle and efficient method. 

Algorithm 3.2.10 (Primitive Polynomial GCD). Given two polynomials A 
and B with coefficients in a UFD R, this algorithm computes a GCD of A and 
B, using only operations in R. We assume that we already have at our disposal 
algorithms for (exact) division and for GCD in R. 

1. [Reduce to primitive] If B = 0, output A and terminate. Otherwise, set a <--

cont(A), b <--- cont(B), d <--- gcd( a, b), A <--- A/ a, B <--- B fb. 

2. [Pseudo division] Compute R such that £(B)deg(A)-deg(B)+l A = BQ + R 
using Algorithm 3.1.2. If R = 0 go to step 4. If deg(R) = 0, set B <--- 1 and 
go to step 4. 

3. [Replace] Set A<--- B, B <--- pp(R) = R/ cont(R) and go to step 2. 

4. [Terminate] Output d · B and terminate the algorithm. 

In the next section, we will see an algorithm which is in general faster than 
the above algorithm. There are also other methods which are often even faster, 
but are based on quite different ideas. Consider the case where R = Z. Instead 
of trying to control the explosion of coefficients, we simply put ourselves in a 
field where this does not occur, i.e. in the finite field lF P for suitable primes 
p. If one finds that the GCD modulo p has degree 0 (and this will happen 
often), then if p is suitably chosen it will follow that the initial polynomials 
are coprime over Z. Even if the GCD is not of degree 0, it is in general quite 
easy to deduce from it the GCD over Z. We will come back to this question 
in Section 3.6.1. 
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3.3 The Sub-Resultant Algorithm 

3.3.1 Description of the Algorithm 

The main inconvenience of Algorithm 3.2.10 is that we compute the content 
of R in step 3 each time, and this is a time consuming operation. If we did 
not reduce R at all, then the coefficient explosion would make the algorithm 
much slower, and this is also not acceptable. There is a nice algorithm due 
to Collins, which is a good compromise and which is in general faster than 
Algorithm 3.2.10, although the coefficients are larger. The idea is that one 
can give an a priori divisor of the content of R, which is sufficiently large 
to replace the content itself in the reduction. This algorithm is derived from 
the algorithm used to compute the resultant of two polynomials (see Section 
3.3.2), and is called the sub-resultant algorithm. We could still divide A and 
B by their content from time to time (say every 10 iterations), but this would 
be a very bad idea (see Exercise 4). 

Algorithm 3.3.1 (Sub-Resultant GCD). Given two polynomials A and B 
with coefficients in a UFD 'R, this algorithm computes a GCD of A and B, using 
only operations in 'R. We assume that we already have at our disposal algorithms 
for (exact) division and for GCD in 'R. 

1. [lnitializations and reductions] If deg(B) > deg(A) exchange A and B. Now 
if B = 0, output A and terminate the algorithm, otherwise, set a +-- cont(A), 
b +-- cont(B), d +-- gcd(a,b), A+-- A/a, B +-- B/b, g +-- 1 and h +--1. 

2. [Pseudo division] Set 8 +-- deg(A) - deg(B). Using Algorithm 3.1.2, compute 
R such that i(B)6+1 A = BQ + R. If R = 0 go to step 4. If deg(R) = 0, set 
B +-- 1 and go to step 4. 

3. [Reduce remainder] Set A+-- B, B +-- Rf(gh6 ), g +-- i(A), h +-- h1- 6g6 and 
go to step 2. (Note that all the divisions which may occur in this step give a 
result in the ring n.) 

4. [Terminate] Output d · B/ cont(B) and terminate the algorithm. 

It is not necessary for us to give the proof of the validity of this algorithm, 
since it is long and is nicely done in [Knu2]. The main points to notice are as 
follows: first, it is clear that this algorithm gives exactly the same sequence 
of polynomials as the straightforward algorithm, but multiplied or divided by 
some constants. Consequently, the only thing to prove is that all the quantities 
occurring in the algorithm stay in the ring n. This is done by showing that 
all the coefficients of the intermediate polynomials as well as the quantities 
h are determinants of matrices whose coefficients are coefficients of A and B, 
hence are in the ring n. 

Another result which one obtains in proving the validity of the algorithm is 
that in the case R = Z, if m =deg(A), n =deg(B), and N is an upper bound 
for the absolute value of the coefficients of A and B, then the coefficients of 
the intermediate polynomials are all bounded by the quantity 



3.3 The Sub-Resultant Algorithm 119 

and this is reasonably small. One can then show that the execution time 
for computing the GCD of two polynomials of degree n over Z when their 
coefficients are bounded by N in absolute value is O(n4 (lnNn)2 ). 

I leave as an exercise to the reader the task of writing an extended version 
of Algorithm 3.3.1 which gives polynomials U and V such that AU+ BV = 
r(A, B), where r E n. All the operations must of course be done in n (see 
Exercise 5). Note that it is not always possible to haver= 1. For example, if 
A( X) =X and B(X) = 2, then (A, B) = 1 but for any U and V the constant 
term of AU + BV is even. 

3.3.2 Resultants and Discriminants 

Let A and B be two polynomials over an integral domain n with quotient 
field K, and let K be an algebraic closure of K. 

Definition 3.3.2. Let A(X) = a(X -at) ···(X - am) and B(X) = b(X -
[31 ) ···(X- f3n) be the decomposition of A and B inK. Then the resultant 
R(A, B) of A and B is given by one of the equivalent formulas: 

R(A, B) =an B(a1) · · · B(am) 

= ( -1)mnbm A(lh) · · · A(f3n) 

= anbm IJ (ai- {Jj)· 
1=::;i=::;m,1=::;j=::;n 

Definition 3.3.3. If A E n[X], with m = deg(A), the discriminant disc(A) 
of A is equal to the expression: 

( -1)m(m- 1l/2 R(A, A')/f(A), 

where A' is the derivative of A. 

The main point about these definitions is that resultants and discriminants 
have coefficients in n. Indeed, by the symmetry in the roots ai, it is clear that 
the resultant is a function of the symmetric functions of the roots, hence is in 
K. It is not difficult to see that the coefficient an insures that R(A, B) E n. 
Another way to see this is to prove the following lemma. 

Lemma 3.3.4. If A(X) = Eo<i<m aiXi and B(X) = Eo<i<n biXi, then the 
resultant R(A, B) is equal to the determinant of the following 1n+m) x (n+m) 
matrix: 
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am am-1 am-2 a1 ao 0 0 0 
0 am am-1 am-2 a1 ao 0 0 
0 0 am am-1 am-2 a1 ao 0 

0 0 0 am am-1 am-2 a1 ao 
bn bn-1 b2 b1 bo 0 0 0 
0 bn bn-1 b2 b1 bo 0 0 
0 0 bn bn-1 b2 b1 bo 0 

0 0 0 bn bn-1 b2 b1 bo 

where the coefficients of A are repeated on n = deg(B) rows, and the coeffi-
cients of B are repeated on m = deg(A) rows. 

The above matrix is called Sylvester's matrix. Since the only non-zero 
coefficients of the first column of this matrix are am and bn, it is clear that 
R(A,B) is not only in R but in fact divisible (in R) by gcd(£(A),£(B)). In 
particular, if B =A', R(A, A') is divisible by R(A), hence disc(A) is also in R. 

Proof Call M the above matrix. Assume first that the a; and (Jj are all 
distinct. Consider the (n + m) x (n + m) Vandermonde matrix V = (v;,j) 
defined by V;,j = (Jj+n-i if j :::; n, v;,j = a";,_~n-i if n + 1:::; j :::; n + m. Then 
the Vandermonde determinant det(V) is non-zero since we assumed the a; 

and (Jj distinct, and we have 

On the other hand, it is clear that 

MV= 

0 

A(fJn) 
0 

0 

0 0 

B(al) 

hence det(MV) is equal to the product of the two diagonal block determinants, 
which are again Vandermonde determinants. Hence we obtain: 

det(MV) = A((Jl) · .. A(f3n)B(a1) .. · B(am) II (fJi- (Jj) II (ai- aj). 
i<j i<j 

Comparing with the formula for det(V) and using det(V) I- 0 we obtain 
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det(M) II (!3i- aj) = A({31) · · · A(!3n)B(al) · · · B(am)· 
i,j 

121 

Since clearly A({31) · · · A(!3n) =anTI· .(f3i -a3·), the lemma follows in the case •,J 
where all the aj and f3i are distinct, and it follows in general by a continuity 
argument or by taking the roots as formal variables. 0 

Note that by definition, the resultant of A and B is equal to 0 if and 
only if A and B have a common root, hence if and only if deg(A, B) > 0. In 
particular, the discriminant of a polynomial A is zero if and only if A has a 
non-trivial square factor, hence if and only if deg(A, A') > 0. 

The definition of the discriminant that we have given may seem a little 
artificial. It is motivated by the following proposition. 

Proposition 3.3.5. Let A E R[X] with m = deg(A), and let ai be the roots 
of A in K. Then we have 

disc( A)= £(A)m-Hdeg(A') II (ai- aj)2. 

1$i<j$m 

Proof. If A has multiple roots, both sides are 0. So we assume that A has only 
simple roots. Now if a= £(A), we have 

hence 

A'(X) =a LII(X- aj) 
i #i 

A'(ai) =a II (ai- aj)· 
#i 

Thus we obtain 

R(A, A')= am+deg(A')( -1)m(m-1)/2 II (ai- aj)2 

i<j 

thus proving the proposition. Note that we have deg(A') = m-1, except when 
the characteristic of R is non-zero and divides m. 0 

The following corollary follows immediately from the definitions. 

Corollary 3.3.6. We have R(A1A2, A3) = R(Ab A3)R(A2, A3) and 

disc(A1A2) = disc(A1)disc(A2)(R(At,A2))2. 

Resultants and discriminants will be fundamental in our handling of alge
braic numbers. Now the nice fact is that we have already done essentially all 
the work necessary to compute them: a slight modification of Algorithm 3.3.1 
will give us the resultant of A and B. 
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Algorithm 3.3.7 (Sub-Resultant). Given two polynomials A and B with co
efficients in a UFD 'R,, this algorithm computes the resultant of A and B. 

1. [lnitializations and reductions] If A = 0 or B = 0, output 0 and terminate the 
algorithm. Otherwise, set a+-- cont(A), b +-- cont(B), A+-- Aja, B +-- Bjb, 
g +-- 1, h +-- 1, s +-- 1 and t +-- adeg(B)bdeg(A). Finally, if deg(A) < deg(B) 
exchange A and B and if in addition deg(A) and deg(B) are odd sets +-- -1. 

2. [Pseudo division] Set o +-- deg(A) -deg(B). If deg(A) and deg(B) are odd, set 
s +-- -s. Finally, compute R such that e(B)H1 A= BQ + R using Algorithm 
3.1.2. 

3. [Reduce remainder] Set A+-- B and B +-- Rj(gh6). 

4. [Finished?] Set g +-- e(A), h +-- h1- 6g6 . If deg(B) > 0 go to step 2, otherwise 
seth+-- hl-deg(A)e(B)deg(A) outputs· t ·hand terminate the algorithm. 

Proof. Set Ao = A, A1 = B, let Ai be the sequence of polynomials generated 
by this algorithm, and let Ri be the remainders obtained in step 2. Let t be 
the index such that deg(At+l) = 0. Set dk = deg(Ak), ek = e(Ak), and let 9k 
and hk be the quantities g and h in stage k, so that g0 = h0 = 1. Finally set 
ok = dk - dk+l· Denoting by f3i the roots of Ak, we clearly have for k 2: 1: 

R(Ak-l!Ak) = (-1)dk_ 1 dke~k- 1 II Ak-l(f3i) 
l~i~dk 

= (-1)dk-1dk~k-1 II Rk+l(/3i) 
k lk-1+1 

l~i~dk k 

= (-1)dk-1dk~k-1-dk(6k-1+1) II Rk+l(/3i) 

l~i~dk 

_ (-1)dk-1dkedk-1-dk(6k-1+1)-dk+1R(A h6k-1A ) - k k>9k-1 k-1 k+l . 

Now using R(A, cB) = cdeg(A) R(A, B) and the identities 9k = ek and hk = 
hk=~k- 1 g~k- 1 fork 2: 1, we see that the expression simplifies to 

Using dt+l = 0, hence Ot = dt, we finally obtain 

thus proving the validity of the algorithm. D 
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Note that it is the same kind of argument and simplifications which show 
that the Ak have coefficients in the same ring R as the coefficients of A and 
B, and that the hk also belong toR. In fact, we have just proved for instance 
that ht+l E R. 

Finally, to compute discriminants of polynomials, one simply uses Algo
rithm 3.3.7 and the formula 

disc( A) = ( -l)m(m-l)/2 R(A, A')/l(A), 

where m = deg(A). 

3.3.3 Resultants over a Non-Exact Domain 

Although resultants and GCD's are similar, from the computational point 
of view, there is one respect in which they completely differ. It does make 
practical sense to compute (approximate) resultants over R, C or <Qp, while 
it does not make sense for GCD's as we have already explained. When deal
ing with resultants of polynomials with such non-exact coefficients we must 
however be careful not to use the sub-resultant algorithm. For one thing, it 
is tailored to avoid denominator explosion when the coefficients are, for ex
ample, rational numbers or rational functions in other variables. But most 
importantly, it would simply give wrong results, since the remainders R ob
tained in the algorithm are only approximate; hence a zero leading coefficient 
could appear as a very small non-zero number, leading to havoc in the next 
iteration. 

Hence, in this case, the natural solution is to evaluate directly Sylvester's 
determinant. Now the usual Gaussian elimination method for computing de
terminants also involves dividing by elements of the ring to which the co
efficients belong. In the case of the ring Z, say, this is not a problem since 
the quotient of two integers will be represented exactly as a rational number. 
Even for non-exact rings like R, the quotient is another real number given 
to a slightly worse and computable approximation. On the other hand, in the 
case where the coefficients are themselves polynomials in another variable over 
some non-exact ring like R, although one could argue in the same way using 
rational functions, the final result will not in general simplify to a polynomial 
as it should, for the same reason as before. 

To work around this problem, we must use the Gauss-Bareiss Algorithm 
2.2.6 which has exactly the property of keeping all the computations in the 
initial base ring. Keep in mind, as already mentioned after Algorithm 2.2.6, 
that if some division of elements of R[X) (say) is required, then Euclidean 
division must be used, i.e. we must get a polynomial as a result. 

Hence to compute resultants we can apply this algorithm to Sylvester's 
matrix, even when the coefficients are not exact. (In the case of exact coef
ficients, this algorithm will evidently also work, but will be slower than the 
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sub-resultant algorithm.) Since Sylvester's matrix is an (n + m) x (n + m) 
matrix, it is important to note that simple row operations can reduce it to an 
n x n matrix to which we can then apply the Gauss-Bareiss algorithm (see 
Exercise 8). 

Remark. The Gauss-Bareiss method and the sub-resultant algorithm are in 
fact closely linked. It is possible to adapt the sub-resultant algorithm so as 
to give correct answers in the non-exact cases that we have mentioned (see 
Exercise 10), but the approach using determinants is probably safer. 

3.4 Factorization of Polynomials Modulo p 

3.4.1 General Strategy 

We now consider the problem of factoring polynomials. In practice, for poly
nomials in one variable the most important base rings are Z (or IQ), IF p or 
iQp. Factoring over R or <C is equivalent to root finding, hence belongs to the 
domain of numerical analysis. We will give a simple but efficient method for 
this in Section 3.6.3. 

Most factorization methods rely on factorization methods over IF P, hence 
we will consider this first. In Section 1.6, we have given algorithms for finding 
roots of polynomials modulo p, and explained that no polynomial-time deter
ministic algorithm is known to do this (if one does not assume the GRH). The 
more general case of factoring is similar. The algorithms that we will describe 
are probabilistic, but are quite efficient. 

Contrary to the case of polynomials over Z, polynomials over IF P have a 
tendency to have several factors. Hence the problem is not only to break up the 
polynomial into two pieces (at least), but to factor completely the polynomial 
as a product of powers of irreducible (i.e. prime in R.[X]) polynomials. This 
is done in four steps, in the following way. 

Algorithm 3.4.1 (Factor in 1Fp[X]). Let A E 1Fp[X] be monic (since we are 
over a field, this does not restrict the generality). This algorithm factors A as a 
product of powers of irreducible polynomials in 1Fp[X]. 

1. [Squarefree factorization] Find polynomials A~o A 2 , ... , Ak in 1Fp[X] such 
that 

(1) A= A} A~··· A~. 
(2) The Ai are squarefree and coprime. 

(This decomposition of A will be called the squarefree factorization of A). 

2. [Distinct degree factorization] Fori= 1, ... , k find polynomials Ai,d E 1Fp[X] 
such that Ai,d is the product of all irreducible factors of Ai of degree d {hence 
Ai = Ild Ai,d)· 
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3. [Final splittings] For each i and d, factor Ai,d into deg(Ai,d)/d irreducible 
factors of degree d. 

4. [Cleanup] Group together all the identical factors found, order them by degree, 
output the complete factorization and terminate the algorithm. 

Of course, this is only the skeleton of an algorithm since steps 1, 2 and 3 
are algorithms by themselves. We will consider them in turn. 

3.4.2 Squarefree Factorization 

Let IFp be an algebraic closure of IFp. If A E IFEJX] is monic, define Ai(X) = 
fl;(X -a;) where the a; are the roots of A in IF'p of multiplicity exactly equal 

to i. Since the Galois group of IF p/IF P preserves the multiplicity of the roots of 
A, it permutes the a;, so all the Ai have in fact coefficients in IF'p (this will also 
follow from the next algorithm). It is clear that they satisfy the conditions of 
step 1. It remains to give an algorithm to compute them. 

If A = IliA~ with Ai squarefree and coprime, then A' = Ei TI;;li A~ · 
iA~A!- 1 . Hence, ifT = gcd(A,A'), then for all irreducible P dividing T, the 
exponent vp(T) of P in the prime decomposition ofT can be obtained as 
follows: P dividing A must divide an Am for some m. Hence, for all i #- m in 
the sum for A', the v p of the ith summand is greater than or equal to m and 
for i = m is equal tom- 1 if p f m, and otherwise the summand is 0 (note 
that since Am is squarefree, A:n cannot be divisible by P). Hence, we obtain 
that vp(T) = m- 1 if p f m, and vp(T) ~ m, so vp(T) = m (since T divides 
A) if pI m. Finally, we obtain the formula 

T = (A, A') = II A~- 1 II A~. 
Pli pli 

Note that we could have given a much simpler proof over Z, and in that case 
the exponent of Ai would be equal to i- 1 for all i. 

Now we define two sequences of polynomials by induction as follows. Set 
T1 = T and V1 = AfT = f]Pii Ai. For k ~ 1, set Vk+1 = (Tk, Vk) if p f k, 
vk+l = vk if pI k, and Tk+l = Tk/Vk+1· It is easy to check by induction that 

Vk = II Ai and Tk = II A~-k II A~. 
i~k, pfi i>k, pti Pli 

From this it follows that Ak = Vk/Vk+1 for p f k. We thus obtain all the Ak for 
p f k, and we continue as long as Vk is a non-constant polynomial. When Vk is 
constant, we have Tk-1 = TIPii A~ hence there exists a polynomial U such that 
Tk-1(X) = UP(X) = U(XP), and this polynomial can be trivially obtained 
from Tk-1· We then start again recursively the whole algorithm of squarefree 
decomposition on the polynomial U. Transforming the recursive step into a 
loop we obtain the following algorithm. 
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Algorithm 3.4.2 (Squarefree Factorization). Let A E IFp[X] be a monic 
polynomial and let A= f1i>l A~ be its squarefree factorization, where the Ai are 
squarefree and pairwise coprime. This algorithm computes the polynomials Ai, 
and outputs the pairs ( i, Ai) for the values of i for which Ai is not constant. 

1. [Initialize] Set e +-- 1 and To +-- A. 

2. [Initialize e-loop] If T0 is constant, terminate the algorithm. Otherwise, set 
T +-- (To, T~). V +--TofT and k +-- 0. 

3. [Finished e-loop?]lf Vis constant, T must be of the form T(X) = ~Pii tjXj, 

so set To+-- ~plj tjXiiP, e +-- pe and go to step 2. 

4. [Special case] Set k +-- k + 1. If p I k set T +-- T /V and k +-- k + 1. 

5. [Compute Aek] Set W +-- (T, V), Aek +-- VfW, V +-- W and T +-- TfV. If 
Aek is not constant output (ek, Aek)· Go to step 3. 

3.4.3 Distinct Degree Factorization 

We can now assume that we have a squarefree polynomial A and we want to 
group factors of A of the same degree d. This procedure is known as distinct 
degree factorization and is quite simple. We first need to recall some results 
about finite fields. Let P E IFp[X] be an irreducible polynomial of degree 
d. Then the field K = IFp[X]/ P(X)IFp[X] is a finite field with pd elements. 
Hence, every element x of the multiplicative group K* satisfies the equation 
xPd-l = 1, therefore every element of K satisfies xPd = x. This shows that P 
is a divisor of the polynomial XPd -X in IF P [X]. Conversely, every irreducible 
factor of XPd -X which is not a factor of XPe -X for e < d has degree exactly 
d. This leads to the following algorithm. 

Algorithm 3.4.3 (Distinct Degree Factorization). Given a squarefree poly
nomial A E IFp[X]. this algorithm finds for each d the polynomial Ad which is the 
product of the irreducible factors of A of degree d. 

1. [Initialize] Set V +--A, W +--X, d +-- 0. 

2. [Finished?] Set e +-- deg(V). If d + 1 > ~e. then if e > 0 setAe = V, Ai = 1 
for all other i > d, and terminate the algorithm. If d + 1 :::; ~e. set d +-- d + 1, 
W +-- WP mod V. 

3. [Output Ad] Output Ad = (W- X, V). If Ad i= 1, set V +-- V/Ad. W +

W mod V. Go to step 2. 

Once the Ad have been found, it remains to factor them. We already 
know the number of irreducible factors of Ad, which is equal to deg(Ad)/d. In 
particular, if deg(Ad) = d, then Ad is irreducible. 

Note that the distinct degree factorization algorithm above succeeds in 
factoring A completely quite frequently. With reasonable assumptions, it can 
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be shown that the irreducible factors of A modulo p will have distinct degrees 
with probability close to e-"Y ~ 0.56146, where 1 is Euler's constant, where 
we assume the degree of A to be large (see [Knu2]). 

As a corollary to the above discussion and algorithm, we see that it is easy 
to determine whether a polynomial is irreducible in lFp[X]. More precisely, we 
have: 

Proposition 3.4.4. A polynomial A E lFv[X] of degree n is irreducible if and 
only if the following two conditions are satisfied: 

XPn =X (mod A(X)), 

and for each prime q dividing n 

Note that to test in practice the second condition of the proposition, one 
must first compute B(X) = XPnfq mod A(X) using the powering algorithm, 
and then compute gcd(B(X) - X, A(X) ). Hence, the time necessary for this 
irreducibility test, assuming one uses the O(n2 ) algorithms for multiplication 
and division of polynomials of degree n, is essentially O(n3 lnp), if the factor
ization of n is known (since nobody considers polynomials of degree larger, 
say than 109 , this is a reasonable assumption). 

It is interesting to compare this with the analogous primality test for 
integers. By Proposition 8.3.1, n is prime if and only if for each prime q dividing 
n- 1 one can find an aq E Z such that a~- 1 = 1 (mod n) and a~n- 1 )/q ¢ 1 

(mod n). This takes time O(ln3 n), assuming the factorization of n- 1 to be 
known. But this is an unreasonable assumption, since one commonly wants 
to prove the primality of numbers of 100 decimal digits, and at present it is 
quite unreasonable to factor a 100 digit number. Hence the above criterion is 
not useful as a general purpose primality test over the integers. 

3.4.4 Final Splitting 

Finally we must consider the most important and central part of Algorithm 
3.4.1, its step 3, which in fact does most of the work. After the preceding steps 
we are left with the following problem. Given a polynomial A which is known 
to be squarefree and equal to a product of irreducible polynomials of degree 
exactly equal to d, find these factors. Of course, deg(A) is a multiple of d, and 
if deg(A) = d we know that A is itself irreducible and there is nothing to do. 
A simple and efficient way to do this was found by Cantor and Zassenhaus. 
Assume first that p > 2. Then we have the following lemma: 

Proposition 3.4.5. If A is as above, then for any polynomial T E lFp[X] we 
have the identity: 
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A= (A, T) ·(A, T(pd- 1)12 + 1) ·(A, T(pd- 1)12 - 1). 

Proof. The roots of the polynomial XPd - X, being the elements of IF Pd, are 

all distinct. It follows that for any T E 1Fp[X], the polynomial T(X)Pd- T(X) 
d 

also has all the elements of IF pd as roots, hence is divisible by XP -X. In 
particular, as we have seen in the preceding section, it is a multiple of every 
irreducible polynomial of degree d, hence of A, since A is squarefree. The 
claimed identity follows immediately by noting that 

with the three factors pairwise coprime. D 

Now it is not difficult to show that if one takes for T a random monic 
polynomial of degree less than or equal to 2d -1, then (A, T(Pd_ 1 )12 -1) will 
be a non-trivial factor of A with probability close to 1/2. Hence, we can use 
the following algorithm to factor A: 

Algorithm 3.4.6 (Cantor-Zassenhaus Split). Given A as above, this algo
rithm outputs its irreducible factors (which are all of degree d). This algorithm 
will be called recursively. 

1. [Initialize] Set k +--- deg(A)/d. If k = 1, output A and terminate the algorithm. 

2. [Try a T] Choose T E 1Fp[X] randomly such that T is monic of degree less 

than or equal to 2d - 1. Set B +--- (A, T(Pd- 1)/2 - 1). If deg(B) = 0 or 
deg(B) = deg(A) go to step 2. 

3. [Recurse] Factor B and A/ B using the present algorithm recursively, and ter
minate the algorithm. 

Note that, as has already been mentioned after Proposition 3.4.4, to com
pute B in step 2 one first computes C +--- T(Pd- 1)/2 mod A using the powering 
algorithm, and then B +--- (A, C -1). 

Finally, we must consider the case where p = 2. In that case, the following 
result is the analog of Proposition 3.4.5: 

Proposition 3.4. 7. Set 

U(X)=X +X2 +X4 + ··· +X2d-'. 

If p = 2 and A is as above, then for any polynomial T E IF2 [X] we have the 
identity 

A= (A,UoT) · (A,UoT+1). 
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Proof. Note that (U o T)2 = T 2 + T 4 + ... + T2d, hence (U o T) · (U o T + 1) = 

T 2d- T (remember that we are in characteristic 2). By the proof of Proposition 
3.4.5 we know that this is a multiple of A, and the identity follows. D 

Exactly as in the case of p > 2, one can show that the probability that 
(A, U o T) is a non-trivial factor of A is close to 1/2, hence essentially the 
same algorithm as Algorithm 3.4.6 can be used. Simply replace in step 2 
B - (A, T(Pd-l)/2 - 1) by B - (A, U o T). Here, however, we can do better 
than choosing random polynomials T in step 2 as follows. 

Algorithm 3.4.8 (Split for p = 2). Given A E JF2 [X] as above, this algorithm 
outputs its irreducible factors (which are all of degree d). This algorithm will be 
called recursively. 

1. [Initialize] Set k- deg(A)jd. If k = 1, output A and terminate the algorithm, 
otherwise set T - X. 

2. [Test T] Set C- T and then repeat d -1 times C- T + C2 mod A. Then 
set B- (A, C). If deg(B) = 0 or deg(B) = deg(A) then set T - T · X 2 

and go to step 2. 

3. [Recurse] Factor B and Aj B using the present algorithm recursively, and ter
minate the algorithm. 

Proof. If this algorithm terminates, it is clear that the output is a factorization 
of A, hence the algorithm is correct. We must show that it terminates. Notice 
first that the computation of C done in step 2 is nothing but the computation 
of U oT mod A (note that on page 630 of [Knu2], Knuth gives C - (C 
+C2 mod A), but this should be instead, as above, C- T + C2 mod A). 

Now, since for any T E !F2[X], we have by Proposition 3.4.7 U(T) · (U(T)+ 
1) = 0 (mod A), it is clear that (U(T),A) = 1 is equivalent to U(T) = 1 
(mod A). Furthermore, one immediately checks that U(T2 ) = U(T) (mod A), 
and that U(T1 + T2) = U(T1) + U(T2). 

Now I claim that the algorithm terminates when T = xe in step 2 for 
some odd value of e such that e ~ 2d- 1. Indeed, assume the contrary. Then 
we have for every odd e ~ 2d -1, (U(Xe), A) = 1 or A, hence U(Xe) = 0 or 
1 modulo A. Since U(T2) = U(T) (mod A), this is true also for even values 
of e ~ 2d, and the linearity of U implies that this is true for every polynomial 
of degree less than or equal to 2d. Now U is a polynomial of degree 2d-l, and 
has at most (in fact exactly, see Exercise 15) 2d-l roots in !F2d. Let (3 E !F2d 

not a root of U. The number of irreducible factors of A is at least equal to 
2 (otherwise we would have stopped at step 1), and let A1 and A2 be two 
such factors, both of degree d. Let a be a root of A2 in !F2d (notice that all 
the roots of A2 are in !F2d). Since A2 is irreducible, a generates !F2d over lF2. 
Hence, there exists a polynomial P E JF2[X] such that (3 = P(a). 

By the Chinese remainder theorem, since A1 and A2 are coprime we can 
choose a polynomial T such that T = 0 (mod A1) and T = P (mod A2), and 
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Tis defined modulo the product A1A2. Hence, we can choose T of degree less 
than 2d. But 

U(T) = U(O) = 0 (mod At) 

and 
U(T) = U(P) ¢ 0 (mod A2) 

since 
U(P(a)) = U((3) ::J 0. 

This contradicts U(T) = 0 or 1 modulo A, thus proving the validity of the 
algorithm. The same proof applied to TPd- T instead of U(T) explains why 
one can limit ourselves to deg(T) ~ 2d- 1 in Algorithm 3.4.6. D 

Proposition 3.4. 7 and Algorithm 3.4.8 can be extended to general primes 
p, but are useful in practice only if pis small (see Exercise 14). 

There is another method for doing the final splitting due to Berlekamp 
which predates that of Cantor-Zassenhaus, and which is better in many cases. 
This method could be used as soon as the polynomial is squarefree. (In other 
words, if desirable, we can skip the distinct degree factorization.) It is based 
on the following proposition. 

Proposition 3.4.9. Let A E !Fp[X] be a squarefree polynomial, and let 

A(X) = II Ai(X) 
1$i$r 

be its decomposition into irreducible factors. The polynomials T E lF P [X] with 
deg(T) < deg(A) for which for each i with 1 ~ i ~ r there exist Si E IF P 
such that T(X) = si (mod Ai(X)), are exactly the pr polynomials T such 
that deg(T) < deg(A) and T(X)P := T(X) (mod A(X)). 

Proof. By the Chinese remainder Theorem 1.3.9 generalized to the Euclidean 
ring !Fp[X], for each of the pr possible choices of Si E Fp (1 ~ i ~ r), there 
exists a unique polynomial T E !Fp[X] such that deg(T) < deg(A) and for 
each i 

T(X) = Si (mod Ai(X)). 

Now if T is a solution of such a system, we have 

T(X)P =sf= Si = T(X) (mod Ai(X)) 

for each i, hence 
T(X)P := T(X) (mod A(X)). 

Conversely, note that we have in !Fp[X] the polynomial identity XP- X = 
llo$s$p-l(X- s), hence 
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T(X)P- T(X) = IJ (T(X)- 8). 
O$;s$;p-1 

Hence, if T(X)P = T(X) (mod A(X)), we have for all i 

Ai(X) I IT (T(X) - 8), 
O$;s$;p-1 

and since the Ai are irreducible this means that Ai(X) I T(X) - 8i for some 
8i E IF P thus proving the proposition. D 

The relevance of this proposition to our splitting problem is the following. 
If T is a solution of such a system of congruences with, say, 81 =/:- 82, then 
gcd(A(X),T(X)- 81) will be divisible by A1 and not by A2 , hence it will be 
a non-trivial divisor of A. The above proposition tells us that to look for such 
nice polynomials Tit is not necessary to know the Ai, but simply to solve the 
congruence T(X)P = T(X) (mod A(X)). 

To solve this, write T(X) = L:o$;j<n tiXi, where n = deg(A), with tj E 

IFp. Then T(X)P = L:itiXPi, hence if we set 

we have 

XPk = L qi,kxi (mod A(X)) 
O$;i<n 

T(X)P = L tiL qi,ixi (mod A( X)) 
j 

so the congruence T(X)P = T(X) (mod A(X)) is equivalent to 

Ltiqi,j = ti for 1 ~ i < n. 
j 

If, in matrix terms, we set Q = (qi,j), V = (ti) (column vector), and I the 
identity matrix, this means that QV = V. In other words (Q -I)V = 0, so V 
belongs to the kernel of the matrix Q- I. 

Algorithm 2.3.1 will allow us to compute this kernel, and it is especially 
efficient since we work in a finite field where no coefficient explosion or insta
bility occurs. 

Thus we will obtain a basis of the kernel ofQ-I, which will be of dimension 
r by Proposition 3.4.9. Note that trivially qi,O = 0 if i > 0 and qo,o = 1, 
hence the column vector (1, 0, ... , o)t will always be an element of the kernel, 
corresponding to the trivial choice T(X) = 1. Any other basis element of the 
kernel will be useful. If T(X) is the polynomial corresponding to a V in the 
kernel of Q- I, we compute (A(X), T(X)- s) for 0 ~ 8 ~ p- 1. Since by 
Proposition 3.4.9 there exists an s such that T(X) = s (mod A1 (X)), there 
will exist an s which will give a non-trivial GCD, hence a splitting of A. We 
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apply this to all values of s and all basis vectors of the kernel until the r 
irreducible factors of A have been isolated (note that it is better to proceed 
in this way than to use the algorithm recursively once a split is found as in 
Algorithm 3.4.6 since it avoids the recomputation of Q and of the kernel of 
Q- I). 

This leads to the following algorithm. 

Algorithm 3.4.10 (Berlekamp for Small p). Given a squarefree polynomial 
A E 1Fp[X] of degree n, this algorithm computes the factorization of A into 
irreducible factors. 

1. [Compute Q] Compute inductively for 0 ::::; k < n the elements q;,k E 1Fp such 
that 

XPk = L qi,kxi (mod A(X)). 
O~i<n 

2. [Compute kernel] Using Algorithm 2.3.1, find a basis V1 , ... , Vr of the kernel 
of Q - I. Then r will be the number of irreducible factors of A, and V1 = 
(1,0, ... ,o)t. Set E +-{A}, k +-1, j +-1 (E will be a set of polynomials 
whose product is equal to A, k its cardinality and j is the index of the vector 
of the kernel which we will use). 

3. [Finished?] If k = r, output E as the set of irreducible factors of A and 
terminate the algorithm. Otherwise, set j +- j + 1, and let T(X) be the 
polynomial corresponding to the vector Vj (i.e. T(X) +- Lo~i<n(Vj)iXi). 

4. [Split] For each element B E E such that deg(B) > 1 do the following. For 
each s E 1Fp compute (B(X), T(X)-s). Let F be the set of such GCD's whose 
degree is greater or equal to 1. Set E +- (E \ { B}) U F and k +- k- 1 +IF I· 
If in the course of this computation we reach k = r, output E and terminate 
the algorithm. Otherwise, go to step 3. 

The main drawback of this algorithm is that the running time of step 4 
is proportional to p, and this is slower than Algorithm 3.4.6 as soon as p gets 
above 100 say. On the other hand, if p is small, a careful implementation of 
this algorithm will be faster than Algorithm 3.4.6. This is important, since in 
many applications such as factoring polynomials over Z, we will first factor 
the polynomial over a few fields IF P for small primes p where Berlekamp's 
algorithm is superior. 

If we use the idea of the Cantor-Zassenhaus split, we can however improve 
considerably Berlekamp's algorithm when pis large. In steps 3 and 4, instead of 
considering the polynomials corresponding to the vectors Vj- s V1 for 2 ::::; j ::::; r 
and s E IFP, we instead choose a random linear combination V = L~=l a; Vi 
with ai E 1Fp and compute (B(X), T(X)(p-l)/2 -1), where Tis the polynomial 
corresponding to V. It is easy to show that this GCD will give a non-trivial 
factor of B(X) with probability greater than or equal to 4/9 when p 2: 3 and 
B is reducible (see Exercise 17 and [Knu2] p. 429). This gives the following 
algorithm. 
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Algorithm 3.4.11 (Berlekamp). Given a squarefree polynomial A E IFp[X] 
of degree n (with p 2: 3), this algorithm computes the factorization of A into 
irreducible factors. 

1. [Compute Q] Compute inductively for 0:::; k < n the elements q;,k E IFP such 
that 

X pk _ "'\:"' xi = L..t q;,k . 
O~i<n 

2. [Compute kernel] Using Algorithm 2.3.1, find a basis V1, ... , Vr of the kernel 
of Q- I, and let T1, ... , Tr be the corresponding polynomials. Then r will be 
the number of irreducible factors of A, and V1 = (1, 0, ... , O)t hence T1 = 1. 
Set E +-{A}, k +- 1, (E will be a set of polynomials whose product is equal 
to A and k its cardinality). 

3. [Finished?] If k = r, output E as the set of irreducible factors of A and 
terminate the algorithm. Otherwise, chooser random elements a; E IFp, and 
set T(X) +- L: 1 ~i~r a;T;(X). 

4. [Split] For each element B E E such that deg(B) > 1 do the following. Let 
D(X) +- (B(X), T(X)(p-l)/2 -1). If deg(D) > 0 and deg(D) < deg(B), set 
E +- (E\{B})U{D,B/D} and k +- k+l.lfin thecourseofthiscomputation 
we reach k = r, output E and terminate the algorithm. Otherwise, go to step 3. 

Note that if we precede any of these two Berlekamp algorithms by the 
distinct degree factorization procedure (Algorithm 3.4.3), we should replace 
the condition deg(B) > 1 of step 4 by deg(B) > d, since we know that all the 
irreducible factors of A have degree d. 

Using the algorithms of this section, we now have at our disposal several 
efficient methods for completely factoring polynomials modulo a prime p. We 
will now consider the more difficult problem of factoring over Z. 

3.5 Factorization of Polynomials over Z or <Q 

The first thing to note is that factoring over Q is essentially equivalent to 
factoring over Z. Indeed if A = f}; A; where the A; are irreducible over Q, 
then by multiplying by suitable rational numbers, we have dA = f};(d;A;) 
where the d; can be chosen so that the d;A; have integer coefficients and 
are primitive. Hence it follows from Gauss's lemma (Theorem 3.2.8) that if 
A E Z[X], then d = ±1. Conversely, if A= f}; A with A and the A in Z[X] 
and the A; are irreducible over Z, then the A; are also irreducible over Q, by 
a similar use of Gauss's lemma. 

Therefore in this section, we will consider only the problem of factoring a 
polynomial A over Z. If A= BC is a splitting of A in Z[X], then A= BC in 
IFp[X], where- denotes reduction mod p. Hence we can start by reducing mod 
p for some p, factor mod p, and then see if the factorization over IF P lifts to 
one over Z. For this, it is essential to know an upper bound on the absolute 
value of the coefficients which can occur as a factor of A. 
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3.5.1 Bounds on Polynomial Factors 

The results presented here are mostly due to Mignotte [Mig]. The aim of this 
section is to prove the following theorem: 

Theorem 3.5.1. For any polynomial P = L:o<i<nPiXi E C[X] set IPI = 
(L:i IPil 2 ) 112 . Let A = Eo<i<m aiXi and B = E~<i<n biXi be polynomials 
with integer coefficients, and assume that B divides A.-Then we have for all j 

(n -1) (n -1) lbil ~ j IAI+ j- 1 laml· 

Proof. Let a be any complex number, and let A = Eo<i<m aiXi be any 
polynomial. Set G(X) = (X- a)A(X) and H(X) = (aX.::. i)A(X). Then 

IGI 2 = L I ai-l- aail 2 = L(lai-112 + laail 2 - 2 Re(aaiai-1)) 

= L(laai-1l2 + lail 2 - 2Re(aaiai-1)) 

= L laai-1- ail 2 = IHI2 • 

Let now A(X) =am IJi(X- aj) be the decomposition of A over C. If we set 

C(X) =am II (X- ai) II (ajX -1), 
lll<;l?:l lll<;l<l 

it follows that IGI = IAI. Hence, taking into account only the coefficient of 
xm and the constant term, it follows that 

where 
M(A) = II lail, m(A) = II lail· 

lll!;l>l lll<;l<l 

In particular, M(A) ~ IAI/Iaml· Now 

lail = lami!Lail ··.aim-;!~ laml L,8i1 · · .,8im-;> 

where ,8i = max(1, laiD· Assume for the moment the following lemma: 

Lemma 3.5.2. If x1 2: 1, ... , Xm 2: 1 are real numbers constrained by 
the further condition that their product is equal to M, then the elementary 
symmetric function O"mk = L: Xi1 .•. Xik satisfies 

(m-1) (m-1) O"mk ~ k - 1 M + k . 



3.5 Factorization of Polynomials over Z. or Q 135 

Since the product of the (Ji is by definition M(A), it follows from the 
lemma that for all j, 

Coming back to our notations and applying the preceding result to the poly
nomial B, we see that [bj[ :::; [bn[((nj1)M(B) + (j=i)). It follows that [bj[ :::; 
[am[((nj1)M(A) + G=i)) since if B divides A, we must have M(B):::; M(A) 
(since the roots of B are roots of A), and [bn[ :::; [am[ (since in fact bn divides 
am)· The theorem follows from this and the inequality M(A) :::; [A[/[am[ 
proved above. 

It remains to prove the lemma. Assume without loss of generality that x1 :::; 

X2 · · · :::; Xm· If one changes the pair (xm-1, Xm) into the pair (1, Xm-1Xm), all 
the constraints are still satisfied and it is easy to check that the value of 0' mk 

is increased by 
O'(m-2)(k-l)(Xm-1 -1)(xm -1). 

It follows that if Xm- 1 > 1, the point (x1, ... , Xm) cannot be a maximum. 
Hence a necessary condition for a maximum is that Xm-1 = 1. But this imme
diately implies that Xi = 1 for all i < m, and hence that Xm = M. It is now 
a simple matter to check the inequality of the lemma, the term c;:={)M cor

responding to k-tuples containing Xm, and the term (mk' 1) to the ones which 
do not contain Xm· This finishes the proof of Theorem 3.5.1. D 

A number of improvements can be made in the estimates given by this 
theorem. They do not seriously influence the running time of the algorithms 
using them however, hence we will be content with this. 

3.5.2 A First Approach to Factoring over Z 

First note that for polynomials A of degree 2 or 3 with coefficients which are 
not too large, the factoring problem is easy: if A is not irreducible, it must 
have a linear factor qX- p, and q must divide the leading term of A, and p 
must divide the constant term. Hence, if the leading term and the constant 
term can be easily factored, one can check each possible divisor of A. An ad 
hoc method of this sort could be worked out also in higher degrees, but soon 
becomes impractical. 

A second way of factoring over Z is to combine information obtained 
by the mod p factorization methods. For example, if modulo some prime p, 
A( X) mod p is irreducible, then A( X) itself is of course irreducible. A less 
trivial example is the following: if for some p a polynomial A(X) of degree 4 
breaks modulo p into a product of two irreducible polynomials of degree 2, 
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and for another pinto a product of a polynomial of degree 1 and an irreducible 
polynomial of degree 3, then A(X) must be irreducible since these splittings 
are incompatible. Unfortunately, although this method is useful when com
bined with other methods, except for polynomials of small degree, when used 
alone it rarely works. For example, using the quadratic reciprocity law and 
the identities 

x4 + 1 = (X2 + H)(X2 - H) 

= (X2 - XJ2 + 1)(X2 +XJ2 + 1) 

= (X2 + XH -1)(X2 - XH -1) 

it is easy to check that the polynomial X 4 + 1 splits into 4 linear factors if 
p = 2 or p = 1 (mod 8), and into two irreducible quadratic factors otherwise. 
This is compatible with the possibility that X 4 + 1 could split into 2 quadratic 
factors in Z[X], and this is clearly not the case. 

A third way to derive a factorization algorithm over Z is to use the bounds 
given by Theorem 3.5.1 and the mod p factorization methods. Consider for 
example the polynomial 

A(X) = X 6 - 6X4 - 2X3 -7X2 + 6X + 1. 

If it is not irreducible, it must have a factor of degree at most 3. The bound of 
Theorem 3.5.1 shows that for any factor of degree less or equal to 3 and any 
j, one must have lbJ I :S 23. Take now a prime p greater than twice that bound 
and for which the polynomial A mod pis squarefree, for example p = 47. The 
mod p factoring algorithms of the preceding section show that modulo 4 7 we 
have 

A(X) =(X- 22)(X- 13)(X- 12)(X + 12)(X2 - 12X- 4), 

taking as representatives of Z/472: the numbers from -23 to 23. Now the 
constant term of A being equal to 1, up to sign any factor of A must have 
that property. This immediately shows that A has no factor of degree 1 over 
Z (this could of course have been checked more easily simply by noticing that 
A(1) and A( -1) are both non-zero), but it also shows that A has no factor of 
degree 2 since modulo 47 we have 12 · 22 = -18, 12 · 13 = 15, 12 · 12 = 3 and 
13 · 22 = 4. Hence, if A is reducible, the only possibility is that A is a product 
of two factors of degree 3. One of them must be divisible by X 2 - 12X - 4, 
and hence can be (modulo 47) equal to either (X2 -12X- 4)(X -12) (whose 
constant term is 1), or to (X2 - 12X- 4)(X + 12) (whose constant term is 
-1). Now modulo 47, we have (X2 -12X- 4)(X -12) = X 3 + 23X2 - X+ 1 
and (X2 - 12X- 4)(X + 12) = X 3 - 7X- 1. 

The first case can be excluded a priori because the bound of Theorem 3.5.1 
gives b2 :S 12, hence 23 is too large. In the other case, by the choice made for 
p, this is the only polynomial in its congruence class modulo 47 satisfying the 
bounds of Theorem 3.5.1. Hence, if it divides A in Z[X], we have found the 
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factorization of A, otherwise we can conclude that A is irreducible. Since one 
checks that A(X) = (X3 - 7X- 1)(X3 +X -1), we have thus obtained the 
complete factorization of A over Z. Note that the irreducibility of the factors 
of degree 3 has been proved along the way. 

When the degree or the coefficients of A are large however, the bounds of 
Theorem 3.5.1 imply that we must use a p which is really large, and hence for 
which the factorization modulo pis too slow. We can overcome this problem 
by keeping a small p, but factoring modulo pe for sufficiently large e. 

3.5.3 Factorization Modulo pe: Hensel's Lemma 

The trick is that if certain conditions are satisfied, we can "lift" a factorization 
modulo p to a factorization mod pe for any desired e, without too much effort. 
This is based on the following theorem, due to Hensel, and which was one of 
his motivations for introducing p-adic numbers. 

Theorem 3.5.3. Let p be a prime, and let C, Ae, Be, U, V be polynomials 
with integer coefficients and satisfying 

C(X) = Ae(X)Be(X) (mod pe), U(X)Ae(X)+V(X)Be(X) = 1 (mod p). 

Assume that e ~ 1, Ae is monic, deg(U) < deg(Be), deg(V) < deg(Ae)· Then 
there exist polynomials Ae+l and Be+l satisfying the same conditions with e 
replaced by e + 1, and such that 

Furthermore, these polynomials are unique modulo pe+l. 

Proof. Set D = (C- AeBe)fpe which has integral coefficients by assumption. 
We must have Ae+l = Ae +peS, Be+l =Be+ peT with SandT in Z[X]. 
The main condition needed is C(X) = Ae+l(X)Be+l(X) (mod pe+1). Since 
2e ~ e + 1, this is equivalent to AeT + BeS = (C- AeBe)fpe = D (mod p). 
Since U Ae + V Be = 1 in IF P [X] and IF P is a field, the general solution is 
S = V D + W Ae (mod p) and T = U D- W Be) (mod p) for some polynomial 
W. The conditions on the degrees imply that S and T are unique modulo 
p, hence Ae+l and Be+l are unique modulo pe+l. Note that this proof is 
constructive, and gives a simple algorithm to obtain Ae+l and Be+l· D 

For reasons of efficiency, it will be useful to have a more general version 
of Theorem 3.5.3. The proof is essentially identical to the proof of Theorem 
3.5.3, and will follow from the corresponding algorithm. 

Theorem 3.5.4. Let p, q be (not necessarily prime) integers, and let r = 
(p, q). Let C, A, B, U and V be polynomials with integer coefficients satisfying 



138 3 Algorithms on Polynomials 

C = AB (mod q), U A + VB = 1 (mod p), 

and assume that (f(A),r) = 1, deg(U) < deg(B), deg(V) < deg(A) and 
deg(C) = deg(A) +deg(B). (Note that this last condition is not automatically 
satisfied since Z/ qZ may have zero divisors.) Then there exist polynomials 
A1 and B 1 such that A1 = A (mod q), B 1 = B (mod q), f(A1) = f(A), 
deg(A1) = deg(A), deg(B1) = deg(B) and 

C = A1B1 (mod qr). 

In addition, A1 and B1 are unique modulo qr if r is prime. 

We give the proof as an algorithm. 

Algorithm 3.5.5 (Hensel Lift). Given the assumptions and notations of The
orem 3.5.4, this algorithm outputs the polynomials A1 and B 1. As a matter of 
notation, we denote by K the ring Z/rZ. 

1. [Euclidean division] Set f +-- (C- AB)jq (mod r) E K[X]. Using Algorithm 
3.1.1 over the ring K, find t E K[X] such that deg(V f-At) < deg(A) (this 
is possible even when K is not a field, since f(A) is invertible in K). 

2. [Terminate] Let A0 be a lift of V f - At to Z[X] having the same degree, 
and let Bo be a lift of U f + Bt to Z[X] having the same degree. Output 
A1 +--A+ qAo, B 1 +-- B + qBo and terminate the algorithm. 

Proof It is clear that BAo +ABo= f (mod r). From this, it follows immedi
ately that C = A1B1 (mod qr) and that deg(Bo) :S: deg(B), thus proving the 
validity of the algorithm and of Theorem 3.5.4. 0 

If p I q, we can also if desired replace p by pr = p2 in the following way. 

Algorithm 3.5.6 (Quadratic Hensel Lift). Assume p I q, hence r = p. After 
execution of Algorithm 3.5.5, this algorithm finds U1 and V1 such that U1 = U 
(mod p), V1 = V (mod p), deg(U1) < deg(B1), deg(V1) < deg(A1) and 

U1A1 + V1B1 = 1 (mod pr). 

1. [Euclidean division] Set g +-- (1- U A1 - VB1 )/p (mod r). Using Algorithm 
3.1.1 over the same ring K = Z/rZ, find t E K[X] such that deg(Vg-A1t) < 
deg(A1), which is possible since f(A 1) = f(A) is invertible in K. 

2. [Terminate] Let U0 be a lift of U g + B 1t to Z[X] having the same degree, 
and let Vo be a lift of V g - A 1t to Z[X] having the same degree. Output 
U1 +-- U + pUo, V1 +-- V + pVo and terminate the algorithm. 

It is not difficult to see that at the end of this algorithm, (A1, B1, U1, V1) 
satisfy the same hypotheses as (A, B, U, V) in the theorem, with (p, q) replaced 
by (pr,qr). 
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The condition p I q is necessary for Algorithm 3.5.6 (not for Algorithm 
3.5.5), and was forgotten by Knuth (page 628). Indeed, if p f q, G does not 
have integral coefficients in general, since after constructing At and Bt, one 
has only the congruence U At+ VBt = 1 (mod r) and not (mod p). Of course, 
this only shows that Algorithm 3.5.6 cannot be used in that case, but it does 
not show that it is impossible to find Ut and Vi by some other method. It is 
however easy to construct counterexamples. Take p = 33, q = 9, hence r = 3, 
and A(X) = X - 3, B(X) = X - 4, C(X) = X 2 + 2X + 3, U(X) = 1 and 
V(X) = -1. The conditions of the theorem are satisfied, and Algorithm 3.5.5 
gives us At(X) =X- 21 and Bt(X) =X+ 23. Consider now the congruence 
that we want, i.e. 

Ut(X)(X- 21) + Vt(X)(X + 23) := 1 (mod 99), 

or equivalently 

Ut(X)(X- 21) + Vt(X)(X + 23) = 1 + 99W(X), 

where all the polynomials involved have integral coefficients. If we set X = 21, 
we obtain 44Vt(21) = 1 + 99W(21), hence 0 = 1 (mod 11) which is absurd. 
This shows that even without any restriction on the degrees, it is not always 
possible to lift p to pr if p f q. 

The advantage of using both algorithms instead of one is that we can 
increase the value of the exponent e much faster. Assume that we start with 
p = q. Then, by using Algorithm 3.5.5 alone, we keep p fixed, and q takes 
the successive values p2 , p3 , etc .... If instead we use both Algorithms 3.5.5 
and 3.5.6, the pair (p,q) takes the successive values (p2,p2), (p4,p4), etc ... 
with the exponent doubling each time. In principle this is much more efficient. 
When the exponent gets large however, the method slows down because of the 
appearance of multi-precision numbers. Hence, Knuth suggests the following 
recipe: let E be the smallest power of 2 such that pE cannot be represented 
as a single precision number, and e be the largest integer such that pe is a 
single precision number. He suggests working successively with the following 
pairs (p, q): 

(p,p), (p2,p2), (p4,p4), ... , (pE/2,pE/2) using both algorithms, then 
(pe, pE) using both algorithms again but a reduced value of the exponent 
of p (since e <E) and finally (pe,pE+e), (pe,pE+2e), (pe,r+3e), ... using 
only Algorithm 3.5.5. 

Finally, note that by induction, one can extend Algorithms 3.5.5 and 3.5.6 
to the case where C is congruent to a product of more than 2 pairwise coprime 
polynomials mod p. 

3.5.4 Factorization of Polynomials over Z 

We now have enough ingredients to give a reasonably efficient method for 
factoring polynomials over the integers as follows. 
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Algorithm 3.5.7 (Factor in Z[X]). Let A E Z[X] be a non-zero polynomial. 
This algorithm finds the complete factorization of A in Z[X]. 

1. (Reduce to squarefree and primitive] Set c +--- cont(A), A +--- Afc, U +

A/(A, A') where (A, A') is computed using the sub-resultant Algorithm 3.3.1, 
or the method of Section 3.6.1 below. (Now U will be a squarefree primi
tive polynomial. In this step, we could also use the squarefree decomposition 
Algorithm 3.4.2 to reduce still further the degree of U). 

2. (Find a squarefree factorization mod p] For each prime p, compute (U, U') 
over the field IFp. and stop when this GCD is equal to 1. For this p, using the 
algorithms of Section 3.4, find the complete factorization of U mod p {which 
will be squarefree). Note that in this squarefree factorization it is not necessary 
to find each Ai from the Ui: we will have Ai = Ui since T = (U, U') = 1. 

3. (Find bound] Using Theorem 3.5.1, find a bound B for the coefficients of 
factors of U of degree less than or equal to deg(U)/2. Choose e to be the 
smallest exponent such that pe > 2i(U)B. 

4. (Lift factorization] Using generalizations of Algorithms 3.5.5 and 3.5.6, and the 
procedure explained in the preceding section, lift the factorization obtained in 
step 2 to a factorization mod pe. (One will also have to use Euclid's extended 
Algorithm 3.2.2.) Let 

be the factorization of U mod pe, where we can assume the U; to be monic. 
Set d +--- 1. 

5. (Try combination] For every combination of factors V = Ui1 ••• U;d, where in 
addition we take id = 1 if d = ~r, compute the unique polynomial V E Z[~] 
such that all the coefficients of V are in [- ~e, ~pe[, and satisfying V = i(U)V 
(mod pe) if deg(V)::; ~ deg(U), V = U/V (mod pe) if deg(V) > ~ deg(U). 

If V divides i(U)U in Z[XJ, output the factor F = pp(V), the exponent 
of F in A, set U +--- U / F, and remove the corresponding U; from the list of 
factors mod pe (i.e. remove U;1 .•. U;d and set r +--- r - d if d ::; ~r, or leave 
only these factors and set r +--- d otherwise). If d > ~r terminate the algorithm 
by outputting pp(U) if deg(U) > 0. 

6. Set d +--- d + 1. If d ::; ~r go to step 5, otherwise terminate the algorithm by 
outputting pp(U) if deg(U) > 0. 

Implementation Remarks. To decrease the necessary bound B, it is a good 
idea to reverse the coefficients of the polynomial U if iuoi < iuni (where of 
course we have cast out all powers of X so that u0 =f. 0). Then the factors will 
be the reverse of the factors found. 

In step 5, before trying to see whether V divides i(U)U, one should first 
test the divisibility of the constant terms, i.e. whether V(O) I (i(U)U(O)), since 
this will be rarely satisfied in general. 
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An important improvement can be obtained by using the information 
gained by factoring modulo a few small primes as mentioned in the second 
paragraph of Section 3.5.2. More precisely, apply the distinct degree factor
ization Algorithm 3.4.3 to U modulo a number of primes Pk (Musser and 
Knuth suggest about 5). If di are the degrees of the factors (it is not neces
sary to obtain the factors themselves) repeated with suitable multiplicity (so 
that Ei di = n = deg(U)), build a binary string Dk of length n + 1 which 
represents the degrees of all the possible factors mod Pk in the following way: 
Set Dk +- (0 ... 01), representing the set with the unique element {0}. Then, 
for every di set 

where V is inclusive "or", and Dk 1 di is Dk shifted left dj bits. (If desired, one 
can work with only the rightmost r ( n + 1) /21 bits of this string by symmetry 
of the degrees of the factors.) 

Finally compute D +- 1\ Dk, i.e. the logical "and" of the bit strings. If 
the binary string D has only one bit at each end, corresponding to factors of 
degree 0 and n, this already shows that U is irreducible. Otherwise, choose 
for p the Pk giving the least number of factors. Then, during the execution of 
step 5 of Algorithm 3.5.7, keep only those d-uplets (i1. ... , id) such that the 
bit number deg(UiJ + · · · + deg(Uid) of Dis equal to 1. 

Note that the prime chosen to make the Hensel lift will usually be small 
(say less than 20), hence in the modulo p factorization part, it will probably 
be faster to use Algorithm 3.4.10 than Algorithm 3.4.6 for the final splitting. 

3.5.5 Discussion 

As one can see, the problem of factoring over Z (or over Q, which is essentially 
equivalent) is quite a difficult problem, and leads to an extremely complex al
gorithm, where there is a lot of room for improvement. Since this algorithm 
uses factorization mod p as a sub-algorithm, it is probabilistic in nature. Even 
worse, the time spent in step 5 above can be exponential in the degree. There
fore, a priori, the running time of the above algorithm is exponential in the 
degree. Luckily, in practice, its average behavior is random polynomial time. 
One should keep in mind however that in the worst case it is exponential time. 

An important fact, discovered only relatively recently (1982) by Lenstra, 
Lenstra and Lovasz is that it is possible to factor a polynomial over Z[X] in 
polynomial time using a deterministic algorithm. This is surprising in view 
of the corresponding problem over Z/pZ[X] which should be simpler, and 
for which no such deterministic polynomial time algorithm is known, at least 
without assuming the Generalized Riemann Hypothesis. Their method uses 
in a fundamental way the LLL algorithm seen in Section 2.6. 

The problem with the LLL factoring method is that, although in theory 
it is very nice, in practice it seems that it is quite a lot slower than the 
algorithm presented above. Therefore we will not give it here, but refer the 
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interested reader to [LLL]. Note also that A. K. Lenstra has shown that similar 
algorithms exist over number fields, and also for multivariate polynomials. 

There is however a nai:ve way to apply LLL which gives reasonably good 
results. Let A be the polynomial to be factored, and assume as one may, that it 
is squarefree (but not necessarily primitive). Then compute the roots ai of A 
inC with high accuracy (say 19 decimal digits) (for example using Algorithm 
3.6.6 below), then apply Algorithm 2.7.4 to 1, a, ... , el-l for some k < n, 
where a is one of the ai. Then if A is not irreducible, and if the constant 
N of Algorithm 2.7.4 is suitably chosen, a will be a root of a polynomial in 
Z[X] of some degree k < n, and this polynomial will probably be discovered 
by Algorithm 2.7.4. Of course, the results of Algorithm 2.7.4 may not corre
spond to exact relations, so to be sure that one has found a factor, one must 
algebraically divide A by its tentative divisor. 

Although this method does not seem very clean and rigorous, it is certainly 
the easiest to implement. Hence, it should perhaps be tried before any of 
the more sophisticated methods above. In fact, in [LLL], it is shown how to 
make this method into a completely rigorous method. (They use p-adic factors 
instead of complex roots, but the result is the same.) 

3.6 Additional Polynomial Algorithms 

3.6.1 Modular Methods for Computing GCD's in Z[X] 

Using methods inspired from the factoring methods over Z, one can return 
to the problem of computing GCD's over the specific UFD Z, and obtain 
an algorithm which can be faster than the algorithms that we have already 
seen. The idea is as follows. Let D = (A, B) in Z[X], and let Q = (A, B) in 
lFp[X] where Q is monic. Then D mod pis a common divisor of A and B in 
lFp[X], hence D divides Q in the ring lFp[X]. (We should put- to distinguish 
polynomials in Z[X] from polynomials in 1Fp[X], but the language makes it 
clear.) 

If p does not divide both £(A) and £(B), then p does not divide £(D) and 
so deg(D) ~ deg(Q). If, for example, we find that Q = 1 in 1Fp[X], it follows 
that D is constant, hence that D = (cont(A),cont(B)). This is in general 
much easier to check than to use any version of the Euclidean algorithm over 
a UFD (Algorithm 3.3.1 for example). Note also that, contrary to the case 
of integers, two random polynomials over Z are in general coprime. (In fact 
a single random polynomial is in general irreducible.) In general however, we 
are in a non-random situation so we must work harder. Assume without loss 
of generality that A and B are primitive. 

So as not to be bothered with leading coefficients, instead of D, we will 
compute an integer multiple D 1 = c ·(A, B) such that 

f(Dl) = (£(A),£(B)), 
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(i.e. with c = f(D)/(i(A),f(B))). We can then recover D = pp(D1) since we 
have assumed A and B primitive. 

Let M be the smallest of the bounds given by Theorem 3.5.1 for the 
two polynomials fA and fB, where f = (i(A),f(B)), and where we limit the 
degree of the factor by deg(Q). Assume for the moment that we skip the 
Hensel step, i.e. that we take p > 2M (which in any case is the best choice if 
this leaves pin single precision). Compute the unique polynomial Q1 E Z[X] 
such that Q1 = fQ (mod p) and having all its coefficients in [-!p, !P[· If 
pp(Q1) is a common divisor of A and B (in Z[X]!), then since D divides Q 
mod p, it follows that (A, B) = pp( QI). If it is not a common divisor, it is not 
difficult to see that this will happen only if p divides the leading term of one 
of the intermediate polynomials computed in the primitive form of Euclid's 
algorithm over a UFD (Algorithm 3.2.10), hence this will not occur often. If 
this phenomenon occurs, try again with another prime, and it should quickly 
work. 

If M is really large, then one can use Hensel-type methods to determine 
D1 mod pe for sufficiently large e. The techniques are completely analogous 
to the ones given in the preceding sections and are left to the reader. 

Perhaps the best conclusion for this section is to quote Knuth essentially 
verbatim: 

"The GCD algorithms sketched here are significantly faster than those 
of Sections 3.2 and 3.3 except when the polynomial remainder sequence is 
very short. Perhaps the best general procedure would be to start with the 
computation of (A, B) modulo a fairly small prime p, not a divisor of both 
f(A) and f(B). If the result Q is 1, we are done; if it has high degree, we use 
Algorithm 3.3.1; otherwise we use one of the above methods, first computing 
a bound for the coefficients of D1 based on the coefficients of A and B and 
on the (small) degree of Q. As in the factorization problem, we should apply 
this procedure to the reverses of A and B and reverse the result, if the trailing 
coefficients are simpler than the leading ones." 

3.6.2 Factorization of Polynomials over a Number Field 

This short section belongs naturally in this chapter but uses notions which 
are introduced only in Chapter 4, so please read Chapter 4 first before reading 
this section if you are not familiar with number fields. 

In several instances, we will need to factor polynomials not only over Q but 
also over number fields K = Q( 0). Following [Poh-Zas], we give an algorithm 
for performing this task (see also [Tra]). 

Let A( X) = Lo<i<m aiXi E K[X] be a non-zero polynomial. As usual, 
we can start by computing A/(A, A') so we can transform it into a squarefree 
polynomial, since K[X] is a Euclidean domain. On the other hand, note that 
it is not always possible to compute the content of A since the ring of integers 
ZK of K is not always a PID. 
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Call u; the m = [K : Q] embeddings of K into C. We can extend u; 
naturally to K[X] by acting on the coefficients, and in particular we can 
define the norm of A as follows 

N(A) = IJ u;(A), 
1:5j:5m 

and it is clear by Galois theory that N(A) E Q[X]. 
We have the following lemmas. Note that when we talk of factorizations 

of polynomials, it is always up to multiplication by units of K[X], i.e. by 
elements of K. 

Lemma 3.6.1. If A(X) E K[X] is irreducible then N(A)(X) is equal to the 
power of an irreducible polynomial of Q[X]. 

Proof Let N(A) = It Nt; be a factorization of N(A) into irreducible factors 
in Q[X]. Since A I N(A) in K[X] and A is irreducible in K[X], we have A I Ni 
in K[X] for some i. But since Ni E Q[X], it follows that u;(A) I Ni for all j, 
and consequently N(A) I Nf' in K[X], hence in Q[X], so N(A) = Nf'' for 
some m' :5 m. D 

Lemma 3.6.2. Let A E K[X] be a squarefree polynomial, where K = Q(O). 
Then there exists only a finite number of k E Q such that N(A(X- kO)) is 
not squarefree. 

Proof Denote by (/3i,ih:5i:5m the roots of u;(A). If k E Q, it is clear that 
N(A(X- kO)) is not squarefree if and only if there exists i1, i2, j1, j2 such 
that 

/3i1 ,j1 + kuh (0) = /3i2 ,h + kuh ( 0), 

or equivalently k = (/3i1,j1 - /3i2 ,h )J(uh (0)- u;1 (0)) and there are only a finite 
number of such k. D 

The following lemma now gives us the desired factorization of A in K[X]. 

Lemma 3.6.3. Assume that A(X) E K[X] and N(A)(X) E Q[X] are both 
squarefree. Let N(A) = ll1:5i:5g Ni be the factorization of N(A) into irre
ducible factors in Q[XJ. Then A= ll1<i< gcd(A, Ni) is a factorization of A 

- _g 
into irreducible factors in K[X]. 

Proof Let A= ll1<i<h Ai be the factorization of A into irreducible factors in 
K[X]. Since N(A) is -squarefree, N(Ai) also hence by Lemma 3.6.1 N(Ai) = 
N;(i) for some j(i). Furthermore since for j =/:. i, N(AiA;) I N(A) hence is 
squarefree, N(Ai) is coprime to N(A;). So by suitable reordering, we obtain 
N(Ai) = Ni and also g = h. Finally, since for j =/:. i, A; is coprime to Ni it 
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follows that Ai = gcd(A, Ni) in K[X] (as usual up to multiplicative constants), 
and the lemma follows. 0 

With these lemmas, it is now easy to give an algorithm for the factorization 
of A E K[X]. 

Algorithm 3.6.4 (Polynomial Factorization over Number Fields). Let K = 
Q(O) be a number field, T E Q[X] the minimal monic polynomial of 0. Let A(X) 
be a non-zero polynomial in K[X]. This algorithm finds a complete factorization 
of A in K[X]. 

1. (Reduce to squarefree] Set U +-- Aj(A, A') where (A, A') is computed in K[X] 
using the sub-resultant Algorithm 3.3.1. (Now U will be a squarefree primi
tive polynomial. In this step, we could also use the squarefree decomposition 
Algorithm 3.4.2 to reduce still further the degree of U). 

2. (Initialize search] Let U(X) = L:o:5i:5m uiXi E K[X] and write Ui = 9i(O) for 
some polynomial 9i E Q[X]. Set G(X, Y) +-- L:o<i<m gi(Y)Xi E Q[X, Y] 
and k +-- 0. --

3. (Search for squarefree norm] Using the sub-resultant Algorithm 3.3.7 over the 
UFD Q[Y]. compute N(X) +-- Ry(T(Y), G(X- kY, Y)) where Ry denotes 
the resultant with respect to the variable Y. If N(X) is not squarefree (tested 
using Algorithm 3.3.1), set k +-- k + 1 and go to step 3. 

4. (Factor norm] (Here N(X) is squarefree) Using Algorithm 3.5. 7, let N +

I1t:5i:5g Ni be a factorization of N in Q[X]. 
5. (Outputfactorization] For i=1, ... ,g setAi(X)+-gcd(U(X),Ni(X+kO)) 

computed in K[X] using Algorithm 3.3.1, output Ai and the exponent of Ai 
in A (obtained simply by replacing A by A/Ai as long as Ai I A). Terminate 
the algorithm. 

Proof The lemmas that we have given above essentially prove the validity 
of this algorithm, apart from the easily checked fact that the sub-resultant 
computed in step 3 indeed gives the norm of the polynomial U. 0 

Remarks. 

(1) The norm of U could also be computed using floating point approximations 
to the roots ofT, since (if our polynomials have algebraic integer coeffi
cients) it will have coefficients in Z. This is often faster than sub-resultant 
computations, but requires careful error bounds. 

(2) Looking at the proof of Lemma 3.6.2, it is also clear that floating point 
computations allow us to give the list of values of k to avoid in step 3, so 
no trial and error is necessary. However this is not really important since 
step 3 is in practice executed only once or twice. 

(3) The factors that we have found are not necessarily in ZK[X], and, as 
already mentioned, factoring in ZK[X] requires a little extra work since 
ZK is not necessarily a PID. 
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3.6.3 A Root Finding Algorithm over C 

In many situations, it is useful to compute explicitly, to some desired approx
imation, all the complex roots of a polynomial. There exist many methods 
for doing this. It is a difficult problem of numerical analysis and it is not my 
intention to give a complete description here, or even to give a description of 
the "best" method if there is one such. I want to give one reasonably sim
ple algorithm which works most of the time quite well, although it may fail 
in some situations. In practice, it is quite sufficient, especially if one uses a 
multi-precision package which allows you to increase the precision in case of 
failure. 

This method is based on the following proposition. 

Proposition 3.6.5. If P(X) E C[X] and x E C, then if P(x) =/= 0 and 
P'(x) =/= 0 there exists a positive real number>. such that 

Proof Trivial by Taylor's theorem. In fact, this proposition is valid for any 
analytic function in the neighborhood of x, and not only for polynomials. D 

Note also that as soon as x is sufficiently close to a simple root of P, we 
can take>. = 1, and then the formula is nothing but Newton's formula, and 
as usual the speed of convergence is quadratic. 

This leads to the following algorithm, which I call Newton's modified al
gorithm. Since we will be using this algorithm for irreducible polynomials over 
Q, we can assume that the polynomial we are dealing with is at least square
free. The modifications necessary to handle the general case are easy and left 
to the reader. 

Algorithm 3.6.6 (Complex Roots). Given a squarefree polynomial P, this 
algorithm outputs its complex roots (in a random order). In quite rare cases the 
algorithm may fail. On the other hand it is absolutely necessary that the polynomial 
be squarefree (this can be achieved by replacing P by P/(P,P')). 

1. [lnitializations] Set Q +-- P, compute P', set Q' +-- P', and set n +-- deg(P). 
Finally, set f +-- 1 if P has real coefficients, otherwise set f +-- 0. 

2. [Initialize root finding] Set x +-- 1.3 + 0.314159i, v +-- Q(x) and m +-- lvl2 • 

3. [Initialize recursion] Set c +-- 0 and dx +-- v/Q'(x). If ldxl is smaller than the 
desired absolute accuracy, go to step 5. 

4. (Try a>.] Set y +-- x- dx, v1 +-- Q(y) and m1 +-- lv1 12 . If m1 < m, set x +-- y, 
v +-- v1, m +-- m1 and go to step 3. Otherwise, set c +-- c + 1, dx +-- dx/4. 
If c < 20 go to step 4, otherwise output an error message saying that the 
algorithm has failed. 
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5. [Polish root] Set x +- x- P(x)/P'(x) twice. 

6. [Divide] If f = 0 or if f = 1 and the absolute value of the imaginary part of 
x is less than the required accuracy, set it equal to 0, output x, set Q(X) +

Q(X)/(X - x) and n +- n - 1. Otherwise, output x and x, set Q(X) +

Q(X)/(X2- 2 Re(x)X + lxl2) and n +- n- 2. Finally, if n > 0 then go to 
step 2, otherwise terminate the algorithm. 

Remarks. 

(1) The starting value 1.3 + 0.314159i given in step 2 is quite arbitrary. It has 
been chosen so as not to be too close to a trivial algebraic number, and 
not too far from the real axis, although not exactly on it. 

(2) The value 20 taken in step 4, as well as the division by 4, are also arbitrary 
but correspond to realistic situations. If we find m 1 ~ m, this means that 
we are quite far away from the "attraction zone" of a root. Hence, thanks 
to Proposition 3.6.5, it is preferable to divide the increment by 4 and not 
by 2 for example, so as to have a much higher chance of winning next 
time. Similarly, the limitation of 20 correspond to an increment which 
is 420 ~ 1012 times smaller than the Newton increment, and this is in 
general too small to make any difference. In that case, it will be necessary 
to increase the working precision. 

(3) After each division done in step 6, the quality of the coefficients of Q will 
deteriorate. Hence, after finding an approximate root, it is essential to 
polish it, using for example the standard Newton iteration, but with the 
polynomial P and not Q. It is not necessary to use a factor >. since we are 
in principle well inside the attraction zone of a root. Two polishing passes 
will, in principle, be enough. 

(4) The divisions in step 6 are simple to perform. If Q(X) = Eo<i<n QiXi 

and A(X) = Eo<i<n-1 aiXi = Q(X)/(X- x), then set an-1 ~ -qn and 
for i = n - 1, .-: -~ i = 1 set ai-l +- Qi + xai. Similarly, if B(X) = 
Eo<i<n-2 biXi = Q(X)/(X2 - aX+ {3), then set bn-2 +-- Qn, bn-3 +

Qn-l + abn-2 and for i = n- 2, ... , i = 2 set bi-2 +- Qi + abi-1 - f3bi. 
(5) Instead of starting with >. = 1 as coefficient of Q(x)/Q'(x) in step 3, it 

may be better to start with 

. ( 2IQ'(x)l2 ) 

>. = mm 1' IQ(x)IIQ"(x)l · 

This value is obtained by looking at the error term in the Taylor expansion 
proof of Proposition 3.6.5. If this value is too small, then we are probably 
going to fail, and in fact x is converging to a root of Q'(X) instead of 
Q(X). If this is detected, the best solution is probably to start again in 
step 2 with a different starting value. This of course can also be done when 
c = 20 in step 4. We must however beware of doing this too systematically, 
for failure may indicate that the coefficients of the polynomial P are ill 
conditioned, and in that case the best remedy is to modify the coefficients 
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of P by a suitable change of variable (typically of the form X~ aX). It 
must be kept in mind that for ill conditioned polynomials, a very small 
variation of a coefficient can have a drastic effect on the roots. 

(6) In step 6, instead going back to step 2 if n > 0, we can go back only 
if n > 2, and treat the cases n = 1 and n = 2 by using the standard 
formulas. Care must then be taken to polish the roots thus obtained, as 
is done in step 5. 

3.7 Exercises for Chapter 3 

1. Write an algorithm for multiplying two polynomials, implicitly based on a re
cursive use of the splitting formulas explained in Section 3.1.2. 

2. Let P be a polynomial. Write an algorithm which computes the coefficients of 
the polynomial P(X + 1) without using an auxiliary array or polynomial. 

3. Let K be a commutative ring which is not necessarily a field. It has been men
tioned after Algorithm 3.1.1 that the Euclidean division of A by B is still possible 
in K[X] if the leading coefficient f(B) is invertible inK. Write an algorithm per
forming this Euclidean division after multiplying A and B by the inverse of l(B), 
and compare the performance of this algorithm with the direct use of Algorithm 
3.1.1 in the case K = Z/rZ. 

4. Modify Algorithm 3.3.1 so that A and B are divided by their respective contents 
every 10 iterations. Experiment and convince yourself that this modification 
leads to polynomials A and B having much larger coefficients later on in the 
Algorithm, hence that this is a bad idea. 

5. Write an extended version of Algorithm 3.3.1 which computes not only (A, B) 
but also U and V such that AU+ BV = r ·(A, B) where r is a non-zero constant 
(Hint: add a fourth variable in Algorithm 1.3.6 to take care of r). Show that 
when (A, B)= 1 this can always be done with r equal to the resultant of A and 
B. 

6. Show that if A, Band G are irreducible polynomials over a UFD Rand if G 
divides AB but is not a unit multiple of A, then G divides B (Hint: use the 
preceding exercise). Deduce from this that R[X] is a UFD. 

7. Using for example the sub-resultant algorithm, compute explicitly the discrim
inant of the trinomials X 3 + aX + b and X 4 + aX + b. Try to find the general 
formula for the discriminant of xn + aX + b. 

8. Call Ri the i-th row of Sylvester's determinant, for 1 ~ i ~ n + m. Show that if 
we replace for all 1 ~ i ~ n simultaneously ~ by 

i-1 

L(bk~-k- ak~+m-k} 
k=O 

and then suppress the last m rows and columns of the resulting matrix, the n x n 
determinant thus obtained is equal to the determinant of Sylvester's matrix. 
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9. If Q(X) = (X- a)P(X), compute the discriminant of Q in terms of a and of 
the discriminant of P. 

10. Show how to modify the sub-resultant Algorithm 3.3.7 so that it can compute 
correctly when the coefficients of the polynomials are for example polynomials 
(in another variable) with real coefficients. 

11. Show the following result, due to Eisenstein: if p is prime and A(X) = 

Eo<i<n UiXi is a polynomial in Z[X) such that p f an, p I ai for all i < n 
and -p2 f ao, then A is irreducible in Z[X). 

12. Using the ideas of Section 3.4, write an algorithm to compute the square root 
of a mod p, or to determine whether none exist. Implement your algorithm and 
compare it with Shanks's Algorithm 1.5.1. 

13. Using the Mobius inversion formula (see [H-W) Section 16.4) show that the 
number of monic irreducible polynomials of degree n over 1Fp is equal to 

where p.(n) is the Mobius function (i.e. 0 if n is not squarefree, and equal to 
( -1) k if n is a product of k distinct prime factors). 

14. Extend Proposition 3.4. 7 and Algorithm 3.4.8 to general prime numbers p, using 
d-1 

Up(X) =X+ XP + · · · + XP . Compare in practice the expected speed of the 
resulting algorithm to that of Algorithm 3.4.6. 

15. Show that, as claimed in the proof of Algorithm 3.4.8, the polynomial U has 
exactly 2d-l roots in lF 2d • 

16. Generalizing the methods of Section 3.4, write an algorithm to factor polyno
mials in lF q [X), where q = pd and lF q is given by an irreducible polynomial of 
degree din 1Fp[X). 

17. Let B(X) E 1Fp[X) be a squarefree polynomial with r distinct irreducible factors. 
Show that if T(X) is a polynomial corresponding to a randomly chosen element 
of the kernel obtained in step 2 of Algorithm 3.4.10 and if p ~ 3, the probability 
that (B(X), T(X)(p-l)/2 - 1) gives a non-trivial factor of B is greater than or 
equal to 4/9. 

18. Let K be any field, a E K and p a prime number. Show that the polynomial 
XP- a is reducible in K[X) if and only if it has a root inK. Generalize to the 
polynomials XPr - a. 

19. Let p be an odd prime and q a prime divisor of p-1. Let a E Z be a primitive root 
modulo p. Using the preceding exercise, show that for any k ;?: 1 the polynomial 

is irreducible in Q[X). 

20. Let p and q be two odd prime numbers. We assume that q = 2 (mod 3) and 
that pis a primitive root modulo q (i.e. that p mod q generates (ZjqZt). Show 
that the polynomial 
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is irreducible in Q(X]. (Hint: reduce mod p and mod 2.) 

21. Separating even and odd powers, any polynomial A can be written in the form 
A(X) = Ao(X2 ) + XA1(X2 ). Set T(A)(X) = Ao(X) 2 - XA1(X)2 • With the 
notations of Theorem 3.5.1, show that for any k 

What is the behavior of the sequence 1Tk(A)I1/ 2k ask increases? 

22. In Algorithms 3.5.5 and 3.5.6, assume that p = q, that A and B are monic, and 
set D =AU, D1 = A1Ut, E = BV, E 1 = B1 V1. Denote by (C,p2 ) the ideal of 
Z(X] generated by C(X) and p2 • Show that 

D1:=3D2 -2D3 (mod(C,p2 )) and E1 :=3E2 -2E3 (mod(C,p2)). 

Then show that A1 (resp. B1) is the monic polynomial of the lowest degree such 
that E1A1 = 0 (mod (C,p2 )) (resp. D1B1 = 0 (mod (C,p2 ))). 

23. Write a general algorithm for finding all the roots of a polynomial in Qp to a 
given p-adic precision, using Hensel's lemma. Note that multiple roots at the 
mod p level create special problems which have to be treated in detail. 

24. Denote by ( , )p the GCD taken over 1Fp[X]. Following Weinberger, Knuth 
asserts that if A E Z(X] is a product of exactly k irreducible factors in Z[X] 
(not counting multiplicity) then 

Explore this formula as a heuristic method for determining the irreducibility of 
a polynomial over Z. 

25. Find the complete decomposition into irreducible factors of the polynomial X 4 + 
1 modulo every prime p using the quadratic reciprocity law and the identities 
given in Section 3.5.2. 

26. Discuss the possibility of computing polynomial GCD's over Z by computing 
GCD's of values of the polynomials at suitable points. (see [Schon]). 

27. Using the ideas of Section 3.4.2, modify the root finding Algorithm 3.6.6 so that 
it finds the roots of a any polynomial, squarefree or not, with their order of 
multiplicity. For this question to make practical sense, you can assume that the 
polynomial has integer coefficients. 

28. Let P(X) = X 3 + aX2 + bX + c E IR[X] be a monic squarefree polynomial. Let 
(Ji (1 :::; i :::; 3) be the roots of P inC and let 

Let A(X) ={X- o1){X- 02). 
a) Compute explicitly the coefficients of A(X). 
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b) Show that -27 disc( P) = disc( A), and give an expression for this 
discriminant. 

c) Show how to compute the roots of P knowing the roots of A. 

29. Let P(X) = X 4 +aX3 +bX2 +eX +dE JR[XJ be a monic squarefree polynomial. 
Let (Ji (1 :5 i :5 4) be the roots of P in C, and let 

and 
{31 = (Jl(J2 + (}3(}4 {32 = (Jl(J3 + (}2(}4 {33 = (Jl(J4 + (}2(}3. 

Finally, let A(X) = (X - a1)(X - a 2)(X - a 3) and B(X) = (X - f31)(X -
f32)(X - {33). 

a) Compute explicitly the coefficients of A( X) and B(X) in terms of those 
of P(X). 

b) Show that disc(P) = disc(A) = disc(B), and give an expression for this 
discriminant. 

c) Show how to compute the roots of P knowing the roots of A. 

30. Recall that the first case of Fermat's last "theorem" (FLT) states that if l is an 
odd prime, then x1 +y1 + z1 = 0 implies that ll xyz. Using elementary arguments 
(i.e. no algebraic number theory), it is not too difficult to prove the following 
theorem, essentially due to Sophie Germain. 

Theorem 3. 7.1. Let l be an odd prime, and assume that there exists an integer 
k such that k = ±2 (mod 6), p = lk + 1 is prime and p f (kk- 1)Wk where Wk 
is the resultant of the polynomials Xk- 1 and (X+ 1)k- 1. Then the first case 
of FLT is true for the exponent l. 

It is therefore important to compute Wk and in particular its prime factors. Give 
several algorithms for doing this, and compare their efficiency. Some familiarity 
with number fields and in particular with cyclotomic fields is needed here. 

31. Let A(X) = a,Xn + · · · + a1X + ao be a polynomial, with an # 0. Show that 
for any positive integer k, 





Chapter 4 

Algorithms for Algebraic Number Theory I 

In this chapter, we give the necessary background on algebraic numbers, num
ber fields, modules, ideals and units, and corresponding algorithms for them. 
Excellent basic textbooks on these subjects are, for example [Bo-Sh], [Cas-Fro], 
[Cohn], [Ire-Ros], [Marc], [Sam]. However, they usually have little algorithmic 
flavor. We will give proofs only when they help to understand an algorithm, 
and we urge the reader to refer to the above textbooks for the proofs which 
are not given. 

4.1 Algebraic Numbers and Number Fields 

4.1.1 Basic Definitions and Properties of Algebraic Numbers 

Definition 4.1.1. Let a E C. Then a is called an algebraic number if there 
exists A E Z[X] such that A(a) = 0, and A not identically zero. The number 
a is called an algebraic integer if, in addition, one can choose A to be monic 
{i.e. with leading coefficient equal to 1). 

Then we have: 

Proposition 4.1.2. Let a be an algebraic number, and let A be a polynomial 
with integer coefficients such that A(a) = 0, and assume that A is chosen to 
have the smallest degree and be primitive with £(A) > 0. Then such an A is 
unique, is irreducible in Q[X], and any B E Z[X] such that B(a) = 0 is a 
multiple of A. 

Proof The ring Q[X] is a principal ideal domain (PID), and the set of B E 

Q[X] such that B(a) = 0 is an ideal, hence is the ideal generated by A. If, in 
addition, B has integral coefficients, Gauss's lemma (Theorem 3.2.8) implies 
that B is a multiple of A in Z[X]. It is clear that A is irreducible; otherwise A 
would not be of smallest degree. We will call this A the minimal polynomial 
of a. D 

We will use the notation Q for the set of algebraic numbers, (hence Q C C), 
~ for the set of algebraic integers, and if L is any subset of C we will set 
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zL =~nL, 

and call it the set of integers of L. Note that Q is an algebraic closure of Q. 
For example, we have 'ZQ = Z. Indeed, if o: = pfq E Q is a root of A E Z[X] 

with A monic, we must have q ll(A), hence q =±I so o: is in Z. 
The first important result about algebraic numbers is as follows: 

Theorem 4.1.3. Let o: E C. The following four statements are equivalent. 

(I) o: is an algebraic integer. 
(2) Z[o:] is a finitely generated additive Abelian group. 
(3) o: belongs to a subring ofC which is finitely generated as an Abelian group. 
(4) There exists a non-zero finitely generated additive subgroup L of C such 

that o:L c L. 

As corollaries we have: 

Corollary 4.1.4. The set of algebraic integers is a ring. In particular, if R 
is a ring, the set ZR of integers of R is a ring. 

Corollary 4.1.5. If o: E C is a root of a monic polynomial whose coefficients 
are algebraic integers (and not simply integers), then o: is an algebraic integer. 

Definition 4.1.6. Let o: E C be an algelJraic number, and A its minimal 
polynomial. The conjugates of o: are all the deg(A) roots of A in C. 

This notion of conjugacy is of course of fundamental importance, but 
what I would like to stress here is that from an algebraic point of view the 
conjugates are indistinguishable. For example, any algebraic identity between 
algebraic numbers is a simultaneous collection of conjugate identities. To give 
a trivial example, the identity (I + J2)2 = 3 + 2J2 implies the identity 
(I-J2)2 = 3-2J2. This remark is a generalization of the fact that an equality 
between two complex numbers implies the equality between their conjugates, 
or equivalently between their real and imaginary parts. The present example is 
even more striking if one looks at it from a numerical point of view: it says that 
the identity (2.41421 ... )2 = 5.828427 ... implies the identity (0.4I42I ... )2 = 
O.I71573 .... Of course this is not the correct way to look at it, but the lesson 
to be remembered is that an algebraic number always comes with all of its 
conjugates. 

4.1.2 Number Fields 

Definition 4.1. 7. A number field is a field containing Q which, considered 
as a Q-vector space, is finite dimensional. The number d = dilllQ K is denoted 
by [K : Q] and called the degree of the number field K. 
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We recall the following fundamental results about number fields: 

Theorem 4.1.8. Let K be a number field of degree n. Then 

(1) (Primitive element theorem) There exists a 0 E K such that 

K = Q(O). 
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Such a 0 is called a primitive element. Its minimal polynomial is an irre
ducible polynomial of degree n. 

(2) There exist exactly n field embeddings of K inC, given by 0 t-+ Oi, where 
the Oi are the roots inC of the minimal polynomial of 0. These embeddings 
are Q-linear, their images Ki in C are called the conjugate fields of K, 
and the Ki are isomorphic to K. 

(3) For any i, Ki C ij, in other words all the elements of Ki are algebraic 
numbers and their degree divides n. 

The assertion made above concerning the indistinguishability of the con
jugates can be clearly seen here. The choice of the conjugate field Ki is a 
priori completely arbitrary. In many cases, this choice is already given. For 
example, when we speak of ''the number field Q(2113)", this is slightly incor
rect, since what we mean by this is that we are considering the number field 
K = Q[X]/(X3 - 2)Q[X] together with the embedding X t-+ 2113 of K into 
JR. 

Definition 4.1.9. The signature of a number field is the pair (rt. r2) where 
r1 is the number of embeddings of K whose image lie in JR, and 2r2 is the 
number of non-real complex embeddings, so that r1 + 2r2 = n (note that the 
non-real embeddings always come in pairs since if a is such an embedding, so 
is a, where - denotes complex conjugation). If T is an irreducible polynomial 
defining the number field K by one of its roots, the signature of K will also be 
called the signature ofT. Here r1 (resp. 2r2) will be the number of real (resp. 
non-real) roots ofT in C. When r2 = 0 (resp. r1 = 0) we will say that K and 
T are totally real (resp. totally complex). 

It is not difficult to determine the signature of a number field K, but some 
ways are better than others. If K = Q( 0), and if T is the minimal polynomial 
of 0, we can of course compute the roots ofT inC using, for instance, the root 
finding Algorithm 3.6.6, and count the number of real roots. This is however 
quite expensive. A much better way is to use a theorem of Sturm which tells us 
in essence that the sequence of leading coefficients in the polynomial remainder 
sequence obtained by applying Euclid's algorithm or its variants toT and T' 
governs the signature. More precisely, we have the following theorem. 

Theorem 4.1.10 (Sturm). LetT be a squarefree polynomial with real coeffi
cients. Assume that Ao = T, At = T', and that Ai is a polynomial remainder 
sequence such that for all i with 1 ~ i ~ k: 
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where the ei and h are real and positive, and Ak+1 is a constant polynomial 
(non-zero since Tis squarefree). Set li=l(Ai), and di = deg(Ai)· Then, if s 
is the number of sign changes in the sequence lo, £1, ... , .ek+b and ift is the 
number of sign changes in the sequence (-1)d0 £0 , (-1)d1 £1, ... , (-1)dk+l£k+b 
the number of real roots ofT is equal tot-s. 

Proof. For any real a, let s(a) be the number of sign changes, not count
ing zeros, in the sequence Ao(a), A1(a), ... , Ak+l(a). We clearly have 
lima-++oo s(a) = s and lima-+-oo s(a) = t. We are going to prove the fol
lowing more general assertion: the number of roots of T in the interval ]a, b] 
is equal to s(a) - s(b), which clearly implies the assertion of the theorem. 

First, it is clear that a sign sequence at any number a cannot have two 
consecutive zeros, otherwise these zeros would propagate and we would have 
Ak+1 = 0. For similar reasons, we cannot have sequences of the form +, 0, 
+, or of the form-, 0,- since the ei and h are positive. Now the desired 
formula s(a)- s(b) is certainly valid if b = a. We will see that it stays true 
when b increases. The quantity s(b) can change only when b goes through one 
of the roots of the Ai, which are finite in number. Let x be a root of such an 
Ai (maybe of several). Iff is sufficiently small, when b goes from x-E to x, the 
sign sequence corresponding to indices i -1, i and i + 1 goes from+,±,- to 
+, 0,- (or from-,±,+ to-, 0, +)when i 2: 1 by what has been said above 
(no consecutive zeros, and no sequences+, 0, +or-, 0, - ). Hence, there is 
no difference in the number of sign changes not counting zeros if i 2: 1. On 
the other hand, for i = 0, the sign sequence corresponding to indices 0 and 1 
1 goes from+,- to 0,-, or from-,+ to 0,+ since A1 (b) < 0 if and only if A0 

is decreasing (recall that A1 is the derivative of A0). Hence, the net change 
in s(b) is equal to -1. This proves our claim and the theorem. D 

From this, it is easy to derive an algorithm for computing the signature 
of a polynomial (hence of a number field). Such an algorithm can of course 
be written for any polynomial T E IR[X], but for number-theoretic uses T 
will have integer coefficients, hence we should use the polynomial remainder 
sequence given by the sub-resultant Algorithm 3.3.1 to avoid coefficient ex
plosion. This leads to the following algorithm. 

Algorithm 4.1.11 (Sturm). Given a polynomial T E Z[X], this algorithm 
determines the signature (r11 r 2 ) ofT using Sturm's theorem and the sub-resultant 
Algorithm 3.3.1. If T is not squarefree, it outputs an error message. 

1. (lnitializations and reductions] If deg(T) = 0, output (0, 0) and terminate. 
Otherwise, set A +-- pp(T), B +-- pp(T'), g +-- 1, h +-- 1, s +-- sign(l(A)), 
n +-- deg(A), t +-- (-l)n-1s, r 1 +-- 1. 

2. (Pseudo division] Set 6 +-- deg(A)- deg(B). Using Algorithm 3.1.2, compute 
R such that £(B)6+ 1 A = BQ + R. If R = 0 then Twas not squarefree, output 
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an error message and terminate the algorithm. Otherwise, if l(B) > 0 or 6 is 
odd, set R +-- -R. 

3. [Use Sturm]lf sign(i(R)) =f. s, sets+-- -s, r 1 +-- r 1-l. Then, if sign(l(R)) =f. 
(-l)deg(Rlt, set t +--t, r1 +-- r1 + 1. 

4. [Finished?) If deg(R) = 0, output (r17 (n-r1)/2) and terminate the algorithm. 
Otherwise, set A+-- B, B +-- Rf(gh6 ), g +-- le(A)I, h +-- h 1-l!g6 , and go to 
step 2. 

Another important notion concerning number fields is that of the Galois 
group of a number field. From now on, we assume that all our number fields 
are subfields of Q. 

Definition 4.1.12. Let K be a number field of degree n. We say that K is 
Galois (or normal) over Q, or simply Galois, if K is (globally} invariant by 
the n embeddings of K in C. The set of such embeddings is a group, called the 
Galois group of K, {Lnd denoted Gal(K/Q). 

Given any number field K, the intersection of all subfields of Q which are 
Galois and contain K is a finite extension K 8 of K called the Galois closure 
(or normal closure) of Kin Q. If K = Q(O) where 0 is a root of an irreducible 
polynomial T E Z[X], the Galois closure of K can also be obtained as the 
splitting field ofT, i.e. the field obtained by adjoining to Q all the roots ofT. 
By abuse of language, even when K is not Galois, we will call Gal(K8 /Q) the 
Galois group of the number field K (or of the polynomial T). 

A special case of the so-called "fundamental theorem of Galois theory" is 
as follows. 

Proposition 4.1.13. Let K be Galois over Q and x E K. Assume that for 
any a E Gal(K/Q) we have a(x) = x. Then x E Q. In particular, if in addition 
x is an algebraic integer then x E Z. 

The following easy proposition shows that there are only two possibilities 
for the signature of a Galois extensions. Similarly, we will see (Theorem 
4.8.6) that there are only a few possibilities for how primes split in a Galois 
extension. 

Proposition 4.1.14. Let K be a Galois extension of Q of degree n. Then, 
either K is totally real {(r1, r2) = (n, 0)}, or K is totally complex ((r1, r2) = 
(0, n/2) which can occur only if n is even). 

The computation of the Galois group of a number field (or of its Galois 
closure) is in general not an easy task. We will study this for polynomials of 
low degree in Section 6.3. 
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4.2 Representation and Operations on Algebraic 
Numbers 

It is very important to study the way in which algebraic numbers are repre
sented. There are two completely different problems: that of representing alge
braic numbers, and that of representing sets of algebraic numbers, e.g. modules 
or ideals. This will be considered in Section 4.7. Here we consider the problem 
of representing an individual algebraic number. 

Essentially there are four ways to do this, depending on how the number 
arises. The first way is to represent a: E Q by its minimal polynomial A which 
exists by Proposition 4.1.2. The three others assume that a: is a polynomial 
with rational coefficients in some fixed algebraic number(}. These other meth
ods are usually preferable, since field operations in Q( B) can be performed 
quite simply. We will see these methods in more detail in the following sec
tions. However, to start with, we do not always have such a (} available, so we 
consider the problems which arise from the first method. 

4.2.1 Algebraic Numbers as Roots of their Minimal Polynomial 

Since A has n = deg(A) zeros in C, the first question is to determine which 
of these zeros a: is supposed to represent. We have seen that an algebraic 
number always comes equipped with all of its conjugates, so this is a prob
lem which we must deal with. Since Q(o:) ~ Q[X]/(A(X)Q[X]), a: may be 
represented as the class of X in Q[X]/(A(X)Q[X]), which is a perfectly well 
defined mathematical quantity. The distinction between a: and its conjugates, 
if really necessary, will then depend not on A but on the specific embedding 
of Q[X]/(A(X)Q[X]) in C. In other words, it depends on the numerical value 
of a: as a complex number. This numerical value can be obtained by finding 
complex roots of polynomials, and we assume throughout that we always take 
sufficient accuracy to be able to distinguish a: from its conjugates. (Recall 
that since the minimal polynomial of a: is irreducible and hence squarefree, 
the conjugates of a: are distinct.) 

Hence, we can consider that an algebraic number a: is represented by a pair 
(A, x) where A is the minimal polynomial of a:, and x is an approximation 
to the complex number a: (x should be at least closer to a: than to any of 
its conjugates). It is also useful to have numeric approximations to all the 
conjugates of a:. In fact, one can recover the minimal polynomial A of a: 
from this if one knows only its leading term i(A), since if one sets A(X) = 
i(A) IJi(X- ai), where the ai are the approximations to the conjugates of 
a:, then, if they are close enough (and they must be chosen so), A will be the 
polynomial whose coefficients are the nearest integers to the coefficients of A. 

With this representation, it is clear that one can now easily work in the 
subfield Q(o:) generated by a:, simply by working modulo A. 

More serious problems arise when one wants to do operations between 
algebraic numbers which are a priori not in this subfield. Assume for instance 
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that a= (X mod A(X)), and f3 =(X mod B(X)), where A and Bare primi
tive irreducible polynomials of respective degrees m and n (we omit the Q[X] 
for simplicity of notation). How does one compute the sum, difference, product 
and quotient of a and (3? The simplest way to do this is to compute resultants 
of two variable polynomials. Indeed, the resultant of the polynomials A( X- Y) 
and B(Y) considered as polynomials in Y alone (the coefficient ring being then 
Q[X]) is up to a scalar factor equal to P(X) = TI· .(X- ai- /3j) where the 

t,J 
ai are the conjugates of a, and the /3j are the conjugates of (3. Since Pis are-
sultant, it has coefficients in Q[X], and a+ f3 is one ofits roots, so Q = pp(P) 
is a multiple of the minimal polynomial of a+ (3. 

If Q is irreducible, then it is the minimal polynomial of a + (3. If it is not 
irreducible, then the minimal polynomial of a + f3 is one of the irreducible 
factors of Q which one computes by using the algorithms of Section 3.5. Once 
again however, it does not make sense to ask which of the irreducible factors 
a + f3 is a root of, if we do not specify embeddings in <C, in other words, 
numerical approximations to a and (3. Given such approximations however, 
one can readily check in practice which of the irreducible factors of Q is the 
minimal polynomial that we are looking for. 

What holds for addition also holds for subtraction (take the resultant of 
A(X + Y) and B(Y)), multiplication (take the resultant of ym A(X/Y) and 
B(Y)), and division (take the resultant of A(XY) with B(Y)). 

4.2.2 The Standard Representation of an Algebraic Number 

Let K be a number field, and let ei (1 ~ j ~ n) be a Q-basis of K. Let a E K 
be any element. It is clear that one can write a in a unique way as 

"'n-1 e 
L..j=D ai j+1 . _ 

a= d , w1th d >0, aj E Z and gcd(ao, ... , an-1> d)- 1. 

In the case where ei = (}i-1 for some root B of a monic irreducible polynomial 
T E Z[X], the (n+1)-uplet (a0 , ... ,an_1,d)Ezn+l will be called the standard 
representation of a (with respect to B). Hence, we can now assume that we 
know such a primitive element B. (We will see in Section 4.5 how it can be 
obtained.) 

We must see how to do the usual arithmetic operations on these standard 
representations. The vector space operations on K are of course trivial. For 
multiplication, we precompute the standard representation of (}J for j ~ 2n-2 
in the following way: if T(X) = L:Z:o tiXi with tiE Z for all i and tn = 1, 
we have en= 2:~;01 ( -ti)Bi. If we set en+k = 2:~;01 rk,i Bi, then the standard 
representation of (}n+k is (rk,O, rk,1, .. . , rk,n-1, 1) and the rk,i are computed 
by induction thanks to the formulas ro,i = -ti and 

ifi2::1, 

if i = 0. 
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Now if (a0 , ... , an-b d) and (b0 , ... , bn-b e) are the standard representations 
of a: and {3 respectively, then it is clear that 

hence 

"'2n-2 Ok 
0:{3 = L-k=O Ck ' 

de 

"'n-1 Ok 
f.l _ L..k=O Zk 

a:,_,- de ' 

where Ck = L aibj, 
i+j=k 

n-2 

where Zk = Ck + L Tk,iCn+i . 

i=O 

The standard representation of o:{3 is then obtained by dividing all the Zk and 
de by gcd(zo, ... , Zn-b de). 

Note that if we set A( X)= L::-01 aiXi and B(X) = L::-01 biXi, the 
procedure described above is equivalent to computing the remainder in the 
Euclidean division of AB by T. Because of the precomputations of the rk,i, 

however, it is slightly more efficient. 
The problem of division is more difficult. Here, we need essentially to 

compute A/ B modulo the polynomial T. Hence, we need to invert B modulo 
T. The simplest efficient way to do this is to use the sub-resultant Algorithm 
3.3.1 to obtain U and V (which does not need to be computed explicitly) such 
that U B + VT = d where d is a constant polynomial. (Note that since T is 
irreducible and B i= 0, B and Tare coprime.) Then the inverse of B modulo 
T is ~ U, and the standard representation of a:/ {3 can easily be obtained from 
this. 

4.2.3 The Matrix (or Regular) Representation of an Algebraic 
Number 

A third way to represent algebraic numbers is by the use of integral matrices. 
If 0; (1 ~ j ~ n) is a Q-basis of K and if a: E K, then multiplication by a: is an 
endomorphism of the Q-vector space K, and we can represent a: by the matrix 
Ma ofthis endomorphism in the basis 0;. This will be a matrix with rational 
entries, hence one can write Ma = M' / d where M' has integral entries, d is 
a positive integer, and the greatest common divisor of all the entries of M' 
is coprime to d. This representation is of course unique, and it is clear that 
the map a: r-+ Ma is an algebra homomorphism from K to the algebra of 
n x n matrices over Q. Thus one can compute on algebraic numbers simply 
by computing with the corresponding matrices. The running time is usually 
longer however, since more elements are involved. For example, the simple 
operation of addition takes O(n2 ) operations, while it clearly needs only O(n) 
operations in the standard representation. The matrix representation is clearly 
more suited for multiplication and division. (Division is performed using the 
remark following Algorithm 2.2.2.) 
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4.2.4 The Conjugate Vector Representation of an Algebraic 

Number 
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The last method of representing an algebraic number a in a number field K = 
Q(B) that I want to mention, is to represent a by numerical approximations 
to its conjugates, repeated with multiplicity. More precisely, let O"j be the 
n = deg(K) distinct embeddings of Kin <C, ordered in the following standard 
way: 0"1, ... , O"r1 are the real embeddings, O"r1+r2 +i = iTr1+i for 1 ~ i ~ r2. If 

"'n-1 ()i h a= L..i=O ai , t en 
n-1 

O"j(a) = L aiO"J(B)i, 
i=O 

and the O"j(a) are the conjugates of a, but in a specific order (corresponding to 
the choice of the ordering on the O" j), and repeated with a constant multiplicity 
n/ deg(a). We can then represent a as the (r1 + r 2 )-uplet of complex numbers 

where the complex numbers 0"1(a) are given by a sufficiently good approx
imation. Operations on this representation are quite trivial since they are 
done componentwise. In particular, division, which was difficult in the other 
representations, becomes very simple here. Unfortunately, there is a price to 
pay: one must be able to go back to one of the exact representations (for 
example to the standard representation), and hence have good control on the 
roundoff errors. 

For this, we precompute the inverse matrix of the matrix 9 = (j i ( ()i - 1). 

Then, if one knows the conjugate representation of a number a, and an integer 
d such that da E Z[B], one can write a= (l:j= 1 aj_1(}i- 1 )/d where the aj are 
integers, and the column vector (a0 , ... , an_1 )t can be obtained as the product 
d9-1 (0"1 (a), ... ,O"n(a))t, and since the ai are integers, if the roundoff errors 
have been controlled and are not too large, this gives the ai exactly (note that 
in practice one can work with matrices over lR and not over <C. The details are 
left to the reader). 

In practice, one can ignore roundoff errors and start with quite precise nu
merical approximations. Then every operation except division is done using 
the standard representation, while for division one computes the conjugate 
representation of the result, converts back, and then check by exact multipli
cation that the roundoff errors did not accumulate to give us a wrong result. 
(If they did, this means that one must work with a higher precision.) 
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4.3 Trace, Norm and Characteristic Polynomial 

If a is an algebraic number, the trace (resp. the norm) of a is by definition 
the sum (resp. the product) of the conjugates of a. If A(X) = I:::o aiXi is 
its minimal polynomial, then we clearly have 

ao 
and N(a) = (-l)m- , 

am 

where Tr and N denote the trace and norm of a respectively. Usually however, 
a is considered as an element of a number field K. If K = Q(a), then the 
definitions above are OK, but if Q(a) s;;; K, then it is necessary to modify the 
definitions so that Tr becomes additive and N multiplicative. More generally, 
we put: 

Definition 4.3.1. Let K be a number field of degree n over Q, and let O"i be 
the n distinct embeddings of K in C. 

(1) The characteristic polynomial 0 01 of a inK is 

(2) If we set 

C01 (X) = II (X- O"i(a)). 
l"'i"'n 

COt(X) = L ( -1)n-iSn-i(a)Xi, 
O"'i"'n 

then sk(a) is a rational number and will be called the kth symmetric func
tion of a inK. 

(3) In particular, s1(a) is called the trace of a inK and denoted TrK;Q(a), 
and similarly Sn (a) is called the norm of a in K and denoted N K/Q (a). 

As has already been mentioned, one must be careful to distinguish the 
absolute trace of a which we have denoted Tr(a) from the trace of a in the 
field K, denoted TrK;Q(a), and similarly with the norms. More precisely, we 
have the following proposition: 

Proposition 4.3.2. Let K be a number field of degree n, O"i the n distinct 
embeddings of K in C. 

(1) If a E K has degree m {hence with m dividing n}, we have 

and 
N KjQ(a) = II O"i(a) = (N(a))nfm. 

l"'i"'n 
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(2) For any a and (3 in K we have 

and 
N KfQ(a(3) = N KfQ(a)N KfQ(f3). 

(3) a is an algebraic integer if and only if sk(a) E Z for all k such that 
1 :S: k :S: n (note that s0 (a) = 1}. 

As usual, we must find algorithms to compute traces, norms and more 
generally characteristic polynomials of algebraic numbers. Since we have seen 
four different representations of algebraic numbers (viz. by a minimal poly
nomial, by the standard representation, by the matrix representation and by 
the conjugate vector representation), there are at least that many methods 
to do the job. We will only sketch these methods, except when they involve 
fundamentally new ideas. We always assume that our number field is given as 
K = Q( B) where B is an algebraic integer whose monic minimal polynomial of 
degree n is denoted T(X). We denote by ai then embeddings of Kin C. 

In the case where a is represented by its minimal polynomial A(X), then 
each of them = deg(A) embeddings of Q(a) inC lifts to exactly n/m embed
dings among the ai, hence it easily follows that 

Ca(X) = A(X)nfm, 

and this immediately implies Proposition 4.3.2 (1), i.e. if we write A(X) = 
Lo::=;i::=;m aiXi, then 

( ) nam-1 
TrK/Q a = ----, 

mam 
(

a )nfm 
N KjQ(a) = (-1t a: 

In the case where a is given by its standard representation 

the only symmetric function which is relatively easy to compute is the trace, 
since we can precompute the trace of Bi using Newton's formulas as follows. 

Proposition 4.3.3. Let Bi be the roots (repeated with multiplicity) of a monic 
polynomial T(X) = Lo<i<n tiXi E C[X] of degree n and set Sk = Li(en. 
Then - -

k-1 

Sk = -ktn-k - :2: tn-iSk-i 
i=1 

{where we set ti = 0 fori< 0). 
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This result is well known and its proof is left to the reader (Exercise 3). 
We can however compute all the symmetric functions, i.e. the character

istic polynomial, by using resultants, as follows. 

Proposition 4.3.4. Let K = Q(B) be a number field where B is a' root of a 
monic irreducible polynomial T(X) E Z[X) of degree n, and let 

be the standard representation of some a E K. Set A(X) = Eo:s:;i:s:;n-1 aiXi. 
Then the chamcteristic polynomial Ca(X) of a is given by the formula 

Ca(X) = d-nRy(T(Y),dX-A(Y)), 

where Ry denotes the resultant taken with respect to the variable Y. In par
ticular, we have 

N KfQ(a) = d-n R(T(X), A( X)). 

Proof. We have by definition 

Ca(X) = Il(X- ai(a)) = Il(X- A(ai(B))/d) 
i i 

=d-n II(dX- A(Bi)) = d-nRy(T(Y),dX -A(Y)), 
i 

where the Bi are the conjugates of B, i.e. the roots ofT. The formula for the 
norm follows immediately on setting X= 0. 0 

Since the resultant can be computed efficiently by the sub-resultant Algo
rithm 3.3.7, used here in the UFD's Z[X) and Z, we see that this proposition 
gives an efficient way to compute the characteristic polynomial and the norm 
of an algebraic number given in its standard representation. 

In the case where a is given by numerical approximations to its conjugates, 
as usual we also assume that we know an integer d such that da E Z[B). Then 
we can compute numerically ili(X- dai(a)), and this must have integer 
coefficients. Hence, if we have sufficient control on the roundoff errors and 
sufficient accuracy on the conjugates of a, this enables us to compute Cda (X) 
exactly, hence Ca(X) = d-ncda(dX). 

Finally, we consider the case where a is given by its matrix representation 
Ma in the basis 1, B, ... , en-1, where dMa has integral coefficients for some 
integer d. Then the characteristic polynomial of a is simply equal to the char
acteristic polynomial of Ma (meaning always det(Xln- Ma)). In particular, 
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the trace can be read off trivially on the diagonal coefficients, and the norm 
is, up to sign, equal to the determinant of Mo:. 

The characteristic polynomial can be computed using one of the algorithms 
described Section 2.2.4, and the determinant using Algorithm 2.2.6. 

In practice, it is not completely clear which representation is preferable. 
A reasonable choice is probably to use the standard representation and the 
sub-resultant algorithm. This depends on the context however, and one should 
always be aware of each of the four possibilities to handle algebraic numbers. 
Keep in mind that it is usually costly to go from one representation to another, 
so for a given problem the representation should be fixed. 

4.4 Discriminants, Integral Bases and Polynomial 
Reduction 

4.4.1 Discriminants and Integral Bases 

We have the following basic result. 

Proposition 4.4.1. Let K be a number field of degree n, O'i be then embed
dings of K in C, and a1 be a set of n elements of K. Then we have 

This quantity is a rational number and is called the discriminant of the ai, 
and denoted d(a1 , ... , an). Furthermore, d( a 1 , ... , an) = 0 if and only if the 
a 1 are Q-linearly dependent. 

Proof. Consider then x n matrix M = (ui(a1)). Then by definition of matrix 
multiplication, we have Mt M = ( ai,j) with 

ai,j = L O'k(ai)uk(aj) = TrKjQ(aiaj)· 
k 

Since det(Mt) = det(M) the equality of the proposition follows. Since 
TrKJQ(a) E Q the discriminant is a rational number. If the a1 are Q-linearly 
dependent, it is clear that the columns of the matrix M are also (since Q 
is invariant by the ui)· Therefore the discriminant is equal to 0. Conversely 
assume that the discriminant is equal to 0. This means that the kernel of 
the matrix Mt M is non-trivial, and since this matrix has coefficients in Q, 
there exists Ai E Q such that for every j, Tr(xa1) = 0 where we have set 
x = LI<i<n >.iai. If the a1 were linearly independent over Q, they would 
generate -K as a Q-vector space, and so we would have Tr(xy) = 0 for all 
y E K with x f- 0. Taking y = 1/x gives Tr(l) = n = 0, a contradiction, thus 
showing the proposition. D 
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Remark. We have just proved that the quadratic form Tr(x2) is non
degenerate on K using that K is of characteristic zero (otherwise n = 0 
may not be a contradiction). This is the definition of a sepamble extension. 
It is not difficult to show (see for example Proposition 4.8.11 or Exercise 5) 
that the signature of this quadratic form (i.e. the number of positive and neg
ative squares after Gaussian reduction) is equal to (r1 +r2,r2) where as usual 
(r17 r2) is the signature of the number field K. 

Recall that we denote by 'IlK the ring of (algebraic) integers of K. Then 
we also have: 

Theorem 4.4.2. The ring 7/.,K is a free 7/.,-module of mnk n = deg(K). This 
is true more genemlly for any non-zero ideal of 7/.,K. 

Proof (Sketch). Let ai be a basis of K as a Q-vector space. Without loss of 
generality, we can assume that the ai are algebraic integers. If A is the (free) 
7/.,-module generated by the ai, we clearly have A C 'IlK, and the formula 
M- 1 = Madj / det(M) for the inverse of a matrix (see section 2.2.4) shows 
that d'llK c A, where d is the discriminant of the aj, whence the result. 
(Recall that a sub-'ll-module of a free module of rank n is a free module of 
rank less than or equal to n, since 7l is a principal ideal domain, see Theorem 
2.4.1.) D 

It is important to note that 7l being a PID is crucial in the above proof. 
Hence, if we consider relative extensions, Theorem 4.4.2 will a priori be true 
only if the base ring is also a PID, and this is not always the case. 

Definition 4.4.3. A '£-basis of the free module 'IlK will be called an integral 
basis of K. The discriminant of an integml basis is independent of the choice 
of that basis, and is called the discriminant of the field K and is denoted by 
d(K). 

Note that, although the two notions are closely related, the discriminant 
of K is not in general equal to the discriminant of an irreducible polynomial 
defining K. More precisely: 

Proposition 4.4.4. Let T be a monic irreducible polynomial of degree n in 
Z[X], () a root ofT, and K = Q(()). Denote by d(T) (resp. d(K)) the discrim
inant of the polynomial T {resp. of the number field K). 

(1) We have d(l, (), ... , en-l) = d(T). 
(2) Iff = ['IlK : Z(eJJ, we have 

d(T) = d(K)f2 

and, in particular, d(T) is a square multiple of d(K). 
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The proof of this is easy and left to the reader. The number f will be 
called the index of e in ZK. 

Proposition 4.4.5. The algebraic numbers o:1, ... , O:n form an integral basis 
if and only if they are algebraic integers and if d(o:1 , ... , an) = d(K), where 
d(K) is the discriminant of K. 

Proof. If M is the matrix expressing the o:i on some integral basis of K, it is 
clear that d(o:1, ... , an) = d(K) det(M) 2 and the proposition follows. D 

We also have the following result due to Stickelberger: 

Proposition 4.4.6. Let O:t, ... , O:n be algebraic integers. Then 

d(o:1, ... , O:n) = 0 or 1 (mod 4). 

Proof. If we expand the determinant det(ai(o:j)) using then! terms, we will 
get terms with a plus sign corresponding to permutations of even signature, 
and terms with a minus sign. Hence, collecting these terms separately, we can 
write the determinant as P - N hence 

d(a~> ... , an)= (P- N) 2 = (P + N) 2 - 4PN. 

Now clearly P+N and PN are symmetric functions of the o:i, hence by Galois 
theory they are in IQl and in fact in Z since the o:i are algebraic integers. This 
proves the proposition, since a square is always congruent to 0 or 1 mod 4. D 

The determination of an explicit integral basis and of the discriminant of 
a number field is not an easy problem, and is one of the main tasks of this 
course. There is, however one case in which the result is trivial: 

Corollary 4.4. 7. LetT be a monic irreducible polynomial in Z[X], B a root 
ofT, and K = !Ql(B). Assume that the discriminant ofT is squarefree or is 
equal to 4d where d is squarefree and not congruent to 1 modulo 4. Then the 
discriminant of K is equal to the discriminant ofT, and an integral basis of 
K is given by 1, B, ... , en- 1 . 

Since a discriminant must be congruent to 0 or 1 mod 4, this immediately 
follows from the above propositions. D 

Unfortunately, this corollary is not of much use, since it is quite rare that 
the condition on the discriminant ofT is satisfied. We will see in Chapter 6 a 
complete method for finding an integral basis and hence the discriminant of 
a number field. 
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Finally, we note without proof the following consequence of the so-called 
"conductor-discriminant formula". 

Proposition 4.4.8. Let K and L be number fields with K C L. Then 

d(K)[L:K] I d(L). 

Corollary 4.4.9. Let K = !Ql(a::) and L = !Ql(/3) be two number fields, let 
m = deg(K), n = deg(L), A(X) (resp. B(X)) the minimal monic polynomial 
of a:: (resp. {3). Write d(A) and d(B) for the discriminants of the polynomials 
A and B. Assume that K is conjugate to a sub field of L. Then if p is a prime 
such that vp(d(A)) is odd, we must have pnfm I d(B). 

Proof By Proposition 4.4.4 if vp(d(A)) is odd then pI d(K), where d(K) is 
the discriminant of the field K. By the proposition we therefore have pnfm I 
d(L) I d(B), thus proving the corollary. D 

4.4.2 The Polynomial Reduction Algorithm 

We will see in Section 4.5 that it is usually not always easy to decide whether 
two number fields are isomorphic or not. Here we will give a heuristic approach 
based on the LLL algorithm and ideas of Diaz y Diaz and the author which 
often gives a useful answer to the following problem: given a number field K, 
can one find a monic irreducible polynomial defining K which in a certain 
sense is as simple as possible. 

Of course, if this could be done, the isomorphism problem would be com
pletely solved. We will see in Chapters 5 and 6 that it is possible to do this 
for quadratic fields (in fact it is trivial in that case), and for certain classes 
of cubic fields, like cyclic cubic fields or pure cubic fields (see Section 6.4). In 
general, all one can hope for in practice is to find, maybe not the simplest, 
but a simple polynomial defining K. 

A natural criterion of simplicity would be to take polynomials whose 
largest coefficients are as small as possible in absolute value (i.e. the Ux; norm 
on the coefficients), or such that the sum of the squares of the coefficients is 
as small as possible (the L2 norm). Unfortunately, I know of no really efficient 
way of finding simple polynomials in this sense. 

What we will in fact consider is the following "norm" on polynomials. 

Definition 4.4.10. Let P E C(X], and let a; be the complex roots of P 
repeated with multiplicity. We define the size of P by the formula 

size(P) = L la::;l 2 . 

i 
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This is not a norm in the usual mathematical sense, but it seems reasonable 
to say that if the size (in this sense) of a polynomial is not large, then the 
polynomial is simple, and its coefficients should not be too large. 

More precisely, we can show (see Exercise 6) that if P = Z:~=O akXk is a 
monic polynomial and if S = size(P), then 

(n)(s)k/2 
lan-kl ::=:; k ;; 

Hence, the size of P is related to the size of 

I 12/k max an-k . 

The reason we take this definition instead of an £P definition on the coef
ficients is that we can apply the LLL algorithm to find a polynomial of small 
size which defines the same number field K as the one defined by a given 
polynomial P, while I do not know how to achieve this for the norms on the 
coefficients. 

The method is as follows. Let K be defined by a monic irreducible poly
nomial P E Z[X]. Using the round 2 Algorithm 6.1.8 which will be explained 
in Chapter 6, we compute an integral basis w~, ... , Wn of ZK. Furthermore, 
let u j denote the n isomorphisms of K into C. If we set 

n 

X= LXiWi 

i=l 

where the Xi are in Z, then x is an arbitrary algebraic integer in K, hence 
its characteristic polynomial Mx will be of the form p;/d where Pd is the 
minimal polynomial of x and d the degree of x, and Pd defines a subfield of 
K. In particular, when d = n, this defines an equation for K, and clearly all 
monic equations for K with integer coefficients (as well as for subfields of K) 
are obtained in this way. 

Now we have by definition 

hence, 

eize(M,) ~ t, I~ x;o,(w;f 
This is clearly a quadratic form in the xi's, and more precisely 
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Note that in the case where K is totally real, that is when all the O"k are real 
embeddings, this simplifies to 

size(M.,) = LTr(wiwj)XiXj 
i,j 

which is now a quadratic form with integer coefficients which can easily be 
computed from the knowledge of the wi. 

In any case, whether K is totally real or not, we can apply the LLL 
algorithm to the lattice zn and the quadratic form size( M.,). The result will be 
a set of n vectors x corresponding to reasonably small values of the quadratic 
form (see Section 2.6 for quantitative statements), hence to polynomials M., 
of small size, which is what we want. Note however that the algebraic integers 
x that we obtain in this way will often have a minimal polynomial of degree 
less than n, in other words x will define a subfield of K. In particular, x = 1 
is always obtained as a short vector, and this defines the subfield Q of K. 
Practical experiments with this method show however that there will always 
be at least one element x of degree exactly n, hence defining K, and its minimal 
polynomial will hopefully be simpler than the polynomial P from which we 
started. 

However the polynomials that we obtain in this way, have sometimes 
greater coefficients than those of P. This is not too surprising since our defi
nition of "size" of P(X) = Lo<k<n akXk involves the size of the roots of P, 
hence of the quantities - -

lan-kll/k 

more than the size of the coefficients themselves. 

Note that as a by-product of this method, we sometimes also obtain sub
fields of K. It is absolutely not true however that we obtain all subfields of K 
in this way. Indeed, the LLL algorithm gives us at most n subfields, while the 
number of subfields of K may be much larger. 

The algorithm, which we name POLRED for polynomial reduction, is as 
follows (see [Coh-Diaz]). 

Algorithm 4.4.11 (POLRED). Let K = Q(B) be a number field defined by a 
monic irreducible polynomial P E Z[X). This algorithm gives a list of polynomials 
defining certain subfields of K (including Q), which are often simpler than the 
polynomial P so these can be used to define the field K if they are of degree 
equal to the degree of K. 

1. [Compute the maximal order] Using the round 2 Algorithm 6.1.8 of Chapter 
6, compute an integral basis WI, ... I Wn as polynomials in e. 

2. [Compute matrix] If the field K is totally real (which can be easily checked 
using Algorithm 4.1.11), set mi,j +- Tr(wiwj) for 1 s i,j s n, which will be 
an element of z. 
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Otherwise, using Algorithm 3.6.6, compute a reasonably accurate value of () 
and its conjugates aj(O) as the roots of P, then the numerical values of ai(wk), 
and finally compute a reasonably accurate approximation to 

mi,j +- L ak(wi)ak(wj) 
1:s;k:5n 

(note that this will be a real number). 

3. (Apply LLL] Using the LLL Algorithm 2.6.3 applied to the inner product defined 
by the matrix M = (mi,i) and to the standard basis ofthe lattice zn, compute 
a-n LLL-reduced basis b1. ... , bn. 

4. (Compute characteristic polynomials] For 1 ~ i ~ n, using the formulas of 
Section 4.3, compute the characteristic polynomial ei of the element of ZK 
corresponding to bi on the basis w~. w2, ... , Wn· 

5. (Compute minimal polynomials] For 1 :::; i ~ n, set Pi +- ed(ei, en where 
the GCD is always normalized so as to be monic, and is computed by Euclid's 
algorithm. Output the polynomials Pi and terminate the algorithm. 

From what we have seen in Section 4.3, the characteristic polynomial ei of 
an element X E ZK is given by ei = pik' where pi is the minimal polynomial 
and k is a positive integer, hence ed(ei, en = Pi, thus explaining step 5. 
In fact, to avoid ambiguities of sign which arise, it is also useful to make 
the following choice at the end of the algorithm. For each polynomial Pi, set 
di +- deg(Pi) and search for the non-zero monomial of largest degree d such 
that d ¢. di (mod 2). If such a monomial exists, make, if necessary, the change 
Pi (X) +- ( -1 )d; Pi (-X) so that the sign of this monomial is negative. 

Let us give an example of the use of the POL RED algorithm. This example 
is taken from work of M. Olivier. Consider the polynomial 

T(X) = X 6 + 2X5 - 7X4 -12X3 + 10X2 + 17X + 4. 

Using the methods of Section 3.5, one easily shows that this polynomial is irre
ducible over Q, hence defines a number field K of degree 6. Furthermore, using 
Algorithm 3.6.6, one computes that the complex roots ofT are approximately 
equal to 

- 2.7494482169,-1.7152399972,-0.8531562311,-0.3074682781, 

1.5839340557,2.0413786677. 

Using the methods of the preceding section, it is then easy to check that this 
field has no proper subfield apart from Q. 

From this and the classification of transitive permutation groups of degree 
6 which we will see in Section 6.3, we deduce that the Galois group G of the 
Galois closure of K is isomorphic either to the alternating groups A5 or A6 , 
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or to the symmetric groups 8 5 or 86. Now using the sub-resultant Algorithm 
3.3. 7 or Proposition 3.3.5 one computes that 

disc(T) = 116992 

so by Proposition 6.3.1, we have G c A6 hence G is isomorphic either to A5 
or to A6. 

Distinguishing between the two is done by using one of the resolvent func
tions given in Section 6.3, and the resolvent polynomial obtained is 

R(X) = X 6 + 3694X5 + 1246830X4 -7355817976X3 - 5140929655107X2 

+ 3486026298845999X + 2593668315970494361. 

A computation of the roots of this polynomial shows that it has an integer root 
x =- 673, and the results of Section 6.3 imply that G is isomorphic to A5. In 
addition, Q(X) = R(X)/(X + 673) is an irreducible fifth degree polynomial 
which defines a number field with the same discriminant as K. We have 

Q(X) = X 5 + 3021X4 - 786303X3 - 6826636057 X 2 

-546603588746X +3853890514072057, 

and the discriminant of Q (which must be a square by Proposition 6.3.1) has 
63 decimal digits. Now if we apply the POLRED algorithm, we obtain five 
polynomials, four of which define the same field as Q, and the polynomial 
with the smallest discriminant is 

8(X) = X 5 - 2X4 -13X3 + 37X2 - 21X -1, 

a polynomial which is much more appealing than Q ! 
We compute that disc(8) = 116992 , hence this is the discriminant of the 

number field K as well as the number field defined by the polynomial 8. 
There was a small amount of cheating in the above example: since disc( Q) 

is a 63 digit number, the POLRED algorithm, which in particular computes 
an integral basis of K hence needs to factor disc(Q), may need quite a lot 
of time to factor this discriminant. We can however in this case "help" the 
POLRED algorithm by telling it that disc(Q) is a square, which we know a 
priori, but which is not usually tested for in a factoring algorithm since it is 
quite rare an occurrence. This is how the above example was computed in 
practice, and the whole computation, including typing the commands, took 
only a few minutes on a workstation. 

We can slightly modify the POLRED algorithm so as to obtain a defining 
polynomial for a number field which is as canonical as possible. One possibility 
is as follows. 

We first need a notation. If Q(X) = Eo<i<n aiXi is a polynomial of degree 
n, we set --
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Algorithm 4.4.12 (Pseudo-Canonical Defining Polynomial). Given a num
ber field K defined by a monic irreducible polynomial P E Z[X] of degree n, 
this algorithm outputs another polynomial defining K which is as canonical as 
possible. 

1. [Apply POLRED] Apply the POLRED algorithm to P, and let Pi· (for i = 
1, ... , n) be then polynomials which are output by the POLRED algorithm. 
If none of the Pi are of degree n, output a message saying that the algorithm 
failed, and terminate the algorithm. Otherwise, let .C be the set of i such that 
Pi is of degree n. 

2. [Minimize v(Pi)]lf .C has a single element, let Q be this element. If not, for each 
i E .C compute vi <--- v(Pi) and let v be the smallest vi for the lexicographic 
ordering of the components. Let Q be any Pi such that v(Pi) = v. 

3. [Possible sign change] Search for the non-zero monomial of largest degree d 
such that d ¢ n (mod 2). If such a monomial exists, make, if necessary, the 
change Q(X) <--- ( -1 )nQ(-X) so that the sign of this monomial is negative. 

4. [Terminate] Output Q and terminate the algorithm. 

Remarks. 

(1) The algorithm may fail, i.e. the POLRED algorithm may give only poly
nomials of degree less than n. That this is possible in principle has been 
shown by H. W. Lenstra (private communication), but in practice, on 
more than 100000 polynomials of various degree, I have never encoun
tered a failure. It seems that failure is very rare. 

(2) At the end of step 2 there may be several i such that Vi = v. In that case, 
it may be useful to output all the possibilities (after executing step 3 on 
each of them) instead of only one. In practice, this is also uncommon. 

(3) Although Algorithm 4.4.12 makes an effort towards finding a polynomial 
defining K with small index f = [ZK : /£[8]], it should not be expected that 
it always finds a polynomial with the smallest possible index. An example 
is the polynomial X 3 - X 2 - 20X +9 which naturally defines the cyclic cubic 
field with discriminant 612 (see Theorem 6.4.6). Algorithm 4.4.12 finds 
that this is the pseudo-canonical polynomial defining the cubic field, but it 
has index equal to 3, while for example the polynomial X 3 + 12X2 -13X +3 
has index equal to 1. The reason for this behavior is that the notion of 
"size" of a polynomial is rather indirectly related to the size of the index. 
See also Exercise 8. 
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4.5 The Subfield Problem and Applications 

Let K = Q(a:) and L = Q(/3) be number fields of degree m and n respectively, 
and let A( X), B(X) E Z[X] be the minimal polynomials of a: and f3 respec
tively. The basic subfield problem is as follows. Determine whether or not K 
is isomorphic to a subfield of L, or in more down-to-earth terms whether or 
not some conjugate of a: belongs to L. We could of course ask more precisely if 
a: itself belongs to L, and we will see that the answer to this question follows 
essentially from the answer to the apparently weaker one. 

We start by two fast tests. First, if K is conjugate to a subfield of L, then 
the degree of K clearly must divide the degree of L. 

The second test follows from Corollary 4.4.9. We compute d(A) and d(B) 
and for each odd prime p such that vp(d(A)) is odd, test whether or not 
pnfm I d(B). Note that according to Exercise 15, it is not necessary to assume 
that A and B are monic, i.e. that a: and f3 are algebraic integers. 

We could use the more stringent test d(K)nfm I d(L) using Proposition 
4.4.8 directly, but this requires the computation of field discriminants, hence 
essentially of integral bases, and this is often lengthy. So, we do not advise 
using this more stringent test unless the field discriminants can be obtained 
cheaply. 

We therefore assume that the above tests have been passed successfully. 
We will give three different methods for solving our problem. The first two 
require good approximations to the complex roots of the polynomials A and 
B (computed using for example Algorithm 3.6.6), while the third is purely 
algebraic, but slower. 

4.5.1 The Subfield Problem Using the LLL Algorithm 

Let f3 be an arbitrary, but fixed root of the polynomial B in C. If K is conjugate 
to a subfield of L, then some root a:i of A is of the form P(/3) for some P E Q[X] 
of degree less than n. In other words, the complex numbers 1, /3, ... , 13n~l, a:i 

are Z-linearly dependent. To check this, use the LLL algorithm or one of its 
variations, as described in Section 2.7.2 on each root of A (or on the root 
we are specifically interested in as the case may be). Then two things may 
happen. Either the algorithm gives a linear combination which is not very 
small in appearance, or it seems to find something reasonable. The reader will 
notice that in none of these cases have we proved anything. If, however, we 
are in the situation where LLL apparently found a nice relation, this can now 
be proved: assume the relation gives a:i = P(/3) for some polynomial P with 
rational coefficients. (Note that the coefficient of O:i in the linear combination 
which has been found must be non-zero, otherwise this would mean that the 
minimal polynomial of f3 is not irreducible.) To test whether this relation is 
true, it is now necessary simply to check that 

AoP:=O (modE), 
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where A and B are the minimal polynomials of a and {3 respectively. Indeed, 
if this is true, this means that P(/3) is a root of A, i.e. a conjugate of ai, hence 
is ai itself since LLL told us that it was numerically very close to ai. 

To compute C = A o P (mod B), we use a form of Horner's rule for 
evaluating polynomials: if A( X) = L::o aiXi, then we set C ~ am, and for 
i = m -l,m- 2, ... ,0 we compute C ~ (ai +P(X)C mod B). 

In the implausible case where one finds that A o P ¢. 0 (mod B), then we 
must again test for linear dependence with higher precision used for ai and {3. 

Remark. There is a better way to test whether each conjugate ai is or is not 
a Q-linear combination of 1, /3, ... , 13n-l than to apply LLL to each ai, each 
time LLL reducing an (n + 2) x (n + 1) matrix (or equivalently a quadratic 
form inn+ 1 variables). Indeed, keeping with the notations of Remark (2) at 
the end of Section 2. 7.2, the first n columns of that matrix, which correspond 
to the powers of {3, will always be the same. Only the last column depends 
on ai. But in LLL reduction, almost all the work is spent LLL reducing the 
first n columns, the n +1-st is done last. Hence, we should first LLL reduce 
the (n + 2) x n matrix corresponding to the powers of {3. Then, for each ai to 
be tested, we can now start from the already reduced basis and just add an 
extra column vector, and since the first n vectors are already LLL reduced, 
the amount of work which remains to be done to account for the last column 
will be very small compared to a full LLL reduction. We leave the details to 
the reader. 

If LLL tells us that apparently there is no linear relation, then we suspect 
that a~ Q(/3). To prove it, the best way is probably to apply one of the two 
other methods which we are going to explain. 

4.5.2 The Subfield Problem Using Linear Algebra over C 

A second method is as follows (I thank A.-M. Berge and M. Olivier for pointing 
it out to me.) After clearing denominators, we may as well assume that a and 
{3-are algebraic integers. We then have the following. 

Proposition 4.5.1. With the above notations, assume that a and {3 are al
gebraic integers. Then K is isomorphic to a subfield of L if and only if there 
exists an nfm to one map¢ from [1, n] to [1, m] such that for 1 ::; h < n, 

Sh = L aq,(i)f3f E Z, 
1$i$n 

where the a; (resp. /3;} denote the roots of A(X) (resp. of B(X)) in C. 

Proof. Assume first that K is isomorphic to a subfield of L, i.e. that ai = P(/31) 
with P E Q[X] say. Then, for every i, P(/3i) is a root a; of A(X) = 0, and 
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by Galois theory each ai is obtained exactly njm times. Therefore the map 
i ~---+ j = ¢(i) is njm to one. Furthermore, 

hence sh E Z since the ai and /3i are algebraic integers. 
Conversely, assume that for some ¢ we have ShE Z for all h such that 

1 ~ h < n. Note that s0 = (n/m) TrK;Q(a) E Z follows automatically. 
Consider the following n x n linear system: 

O~h<n. 

By Proposition 4.4.4 (1) the determinant of this system is equal to d(B), hence 
is non-zero. Furthermore, the system has rational coefficients, so the unique 
solution has coefficients Xj E Q. If we set P(X) = Lo:o:::j<n xi Xi, we then have 
P E Q[X] and Ll<i<n P(f3i)f3f = sh. It follows that the vector of the (P(f3i)) 
and of the a.p(i) a;e both solutions of the linear system Ll<i<n vi/3f = sh, 
and since the f3i are distinct this system has a unique solution~ so the vect
ors are equal, thus proving the proposition. D 

Remarks. 

(1) The number of maps from [1, n] to [1, m] which are n/m-to-one is equal 
to n!/((n/m)!)m hence can be quite large, especially when m = n (which 
corresponds to the very important isomorphism problem). This is to be 
compared to the number of trials to be done with the LLL method, which 
is only equal tom. Hence, although LLL is slow, except when n is very 
small (say n ~ 4), we suggest starting with the LLL method. If the answer 
is positive, which will in practice happen quite often, we can stop. If not, 
use the present method (or the purely algebraic method which is explained 
below). 

(2) To check that shE Z we must of course compute the roots of A( X) and 
B(X) sufficiently accurately. Now however the error estimates are trivial 
(compared to the ones we would need using LLL), and if sh is sufficiently 
far away from an integer, it is very easy to prove rigorously that it is so. 

(3) We start of course by checking whether s1 E Z, since this will eliminate 
most candidates for ¢. 

The above leads to the following algorithm. 

Algorithm 4.5.2 (Subfield Problem Using Linear Algebra). Let A(X) and 
B(X) be primitive irreducible polynomials in Z[X) of degree m and n respectively 
defining number fields K and L. This algorithm determines whether or not K is 
isomorphic to a subfield of L, and if it is, gives an explicit isomorphism. 
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1. [Trivial check] If m f n, output NO and terminate the algorithm. 

2. [Reduce to algebraic integers] Set a +--£(A), b +--£(B) (the leading terms of 
A and B), and set A( X) +-- am- 1 A(X/a) and B(X) +-- bn-1 B(X/b). 

3. [Check discriminants] For every odd prime p such that vp(d(A)) is odd, check 
that pnfm I d(B) (where d(A) and d(B) are computed using Algorithm 3.3.7). 
If this is not the case, output NO and terminate the algorithm. If for some 
reason d(K) and d(L) are known or cheaply computed, replace these checks 
by the single check d(K)nfm I d(L). 

4. [Compute roots] Using Algorithm 3.6.6, compute the complex roots ai and 
f3i of A(X) and B(X) to a reasonable accuracy (it may be necessary to have 
more accuracy in the later steps). 

5. [Loop on ¢] For each n/m to one map ¢from [1, n] to [1, m] execute steps 6 
and 7. If all the maps have been examined without termination of the algorithm, 
output NO and terminate the algorithm. 

6. [Check s1 E Z] Let s1 +-- L:1<i<n aq,(i)!3i· If s1 is not close to an integer (this 
is a rigorous statement, since It depends only on the chosen approximations to 
the roots), take the next map ¢ in step 5. 

Otherwise, check whether sh +-- Ll<i<n aq,(i)/3f are also close to an 
integer for h = 2, ... , n -1. As soon as this is not the case, take the next map 
¢in step 5. 

7. [Compute polynomial] (Here the Sh are all close to integers.) Set sh +-- lsh l 
(the nearest integer to sh)· Compute by induction tk +-- TrLjQ(/3~) for 0 ::; 
k ::; 2n - 2, and using Algorithm 2.2.1 or a Gauss-Bareiss variant, find the 
unique solution to the linear system Lo~;<n x;t;+h = Sh for 0 ::; h < n (note 
that we know that d(B)x; E Z so we can avoid rational arithmetic), and set 
P(X) +-- L05,j<nx;Xi. 

8. [Finished?] Using the variant of Horner's rule explained in Section 4.5.1, check 
whether A(P(X)) = 0 (mod B(X)). If this is the case, then output YES, 
output also the polynomial P(bX)/a which gives the isomorphism explicitly, 
and terminate the algorithm. Otherwise, using Algorithm 3.6.6 (or, even more 
simply, a few Newton iterations to obtain a higher precision) recompute the 
roots ai and f3i to a greater accuracy and go to step 6. 

4.5.3 The Subfield Problem Using Algebraic Algorithms 

The third solution that we give to the subfield problem is usually less efficient 
but has the advantage that it is guaranteed to work without worrying about 
complex approximations. The idea is to use Algorithm 3.6.4 which factors 
polynomials over number fields and the following easy proposition whose proof 
is left to the reader (Exercise 9). 

Proposition 4.5.3. Let a and {3 be algebmic numbers with minimal poly
nomials A(X) and B(X) respectively. Set K = Q(a), L = Q(/3), and let 
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A= f1 1::;i:=;g Ai be a factorization of A into irreducible factors in L[X]. There 
is a one-to-one correspondence between the Ai of degree equal to one and the 
conjugates of a belonging to L. In particular, L contains a sub field isomorphic 
to K if and only if at least one of the Ai is of degree equal to one. 

This immediately leads to the following algorithm. Note that we keep the 
same first three steps of the preceding algorithm. 

Algorithm 4.5.4 (Subfield Problem Using Factorization of Polynomials). 
Let A(X) and B(X) be primitive irreducible polynomials in Z[X] of degree m 
and n respectively defining number fields K and L. This algorithm determines 
whether or not K is isomorphic to a subfield of L, and if it is, gives an explicit 
isomorphism. 

1. [Trivial check] If m f n, output NO and terminate the algorithm. 

2. [Reduce to algebraic integers] Set a ~ i(A), b ~ l(B) (the leading terms of 
A and B), and set A( X) ~ am-1 A(X/a) and B(X) ~ bn- 1 B(X/b). 

3. [Check discriminants] For every odd prime p such that vp(d(A)) is odd, check 
that pn/m I d(B) (where d(A) and d(B) are computed using Algorithm 3.3.7). 
If this is not the case, output NO and terminate the algorithm. If for some 
reason d(K) and d(L) are known or cheaply computed, replace these checks 
by the single check d(K)n/m I d(L). 

4. [Factor in L[X]] Using Algorithm 3.6.4, let A= IJ1::;i:=;g Ai be a factorization 
of A into irreducible factors in L[X], where without loss of generality we may 
assume the Ai monic. 

5. [Conclude] If no Ai is of degree equal to 1, then output NO otherwise output 
YES, and if we write Ai = X - gi(f3) where (3 is a root of B such that 
L = Q(f3), output also the polynomial gi(bX)/a which gives explicitly the 
isomorphism. Terminate the algorithm. 

Conclusion. With three different algorithms to solve the subfield problem, it 
is now necessary to give some practical advice. These remarks are, of course, 
also valid for the applications of the subfield problem that we will see in the 
next section, such as the field isomorphism problem. 

1) Start by executing steps 1 to 3 of Algorithm 4.5.2. These tests are fast 
and will eliminate most cases when K is not isomorphic to a subfield of L. If 
these tests go through, there is now a distinct possibility that the answer to 
the subfield problem is yes. 

2) Apply the LLL method (using the remark made at the end). This is also 
quite fast, and will give good results if K is indeed isomorphic to a subfield 
of L. Note that sufficient accuracy should be used in computing the roots of 
A( X) and B(X) otherwise LLL may miss a dependency. If LLL fails to detect 
a relation, then especially if the computation has been done to high accuracy 
it is almost certain that K is not isomorphic to a subfield of L. 
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An alternate method which is numerically more stable is to use Algorithm 
4.5.2. However this algorithm is much slower than LLL as soon as n is at all 
large, hence should be used only for these very small values of n. 

3) In the remaining cases, apply Algorithm 4.5.4 which is slow but sure. 

4.5.4 Applications of the Solutions to the Subfield Problem 

Now that we have seen three methods for solving the subfield problem, we will 
see that this problem is basic for the solution of a number of other problems. 
For each of these other problems, we can then choose any method that we like 
to solve the underlying subfield problem. 

The Field Membership Problem. 
The first problem that we can now solve is the field membership problem. 

Given two algebraic numbers a and {3 by their minimal polynomials A and 
B and suitable complex approximations, determine whether or not a E Q(f3) 
and if so a polynomial P E Q[X] such that a= P({3). For this, apply one of 
the three methods that we have studied for the subfield problem. Note that 
some steps may be simplified since we have chosen a specific complex root of 
A(X). For example, if we use LLL, we simply check the linear dependence 
of a and the powers of {3. If we use linear algebra, choosing a numbering of 
the roots such that a = a1 and {3 = f3l, we can restrict to maps ¢ such that 
¢(1) = 1. In the algebraic method on the other hand we must lengthen step 
5. For every Ai =X- 9i(f3) of degree one, we compute 9i(f3) numerically (it 
will be a root of A(X)) and check whether it is closer to a than to any other 
root. If this occurs for no i, then the answer is NO, otherwise the answer is 
YES and we output the correct 9i. 

The Field Isomorphism Problem. 
The second problem is the isomorphism problem. Given two number fields 

K and L as before, determine whether or not they are isomorphic. This is of 
course equivalent to K and L having the same degree and K being a subfield 
ol! L, so the solution to this problem follows immediately from that of the 
subfield problem. Since this problem is very important, we give explicitly the 
two algorithms corresponding to the last two methods (the LLL method can 
of course also be used). For still another method, see [Poh3]. 

Algorithm 4.5.5 (Field Isomorphism Using Linear Algebra). Let A(X) and 
B(X) be primitive irreducible polynomials in Z[X] of the same degree n defining 
number fields K and L. This algorithm determines whether or not K is isomorphic 
to L, and if it is, gives an explicit isomorphism. 

1. [Reduce to algebraic integers] Set a +- i(A), b +- i(B) (the leading terms of 
A and B), and set A( X)+- an-l A(X/a) and B(X) +- bn-l B(X/b). 

2. [Check discriminants] Compute d(A) and d(B) using Algorithm 3.3.7), and 
check whether d(A)/d(B) is a square in Q using essentially Algorithm 1.7.3. 
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If this is not the case, output NO and terminate the algorithm. If for some 
reason d(K) and d(L) are known or cheaply computed, replace this check by 
d(K) = d(L). 

3. [Compute roots] Using Algorithm 3.6.6, compute the complex roots ai and 
f3i of A(X) and B(X) to a reasonable accuracy (it may be necessary to have 
more accuracy in the later steps). 

4. [Loop on ¢] For each permutation ¢ of [1, n] execute steps 5 and 6. If all 
the permutations have been examined without termination of the algorithm, 
output NO and terminate the algorithm. 

5. [Check s1 E Z] Let s1 +-- LI<i<n aq,(i)fli· If s1 is not close to an integer (this 
is a rigorous statement, since It depends only on the chosen approximations to 
the roots), take the next permutation ¢ in step 4. 

Otherwise, check whether sh +-- Ll<i<n O:¢(i)f3f are also close to an 
integer for h = 2, ... , n -1. As soon as this is not the case, take the next map 
¢in step 4. 

6. [Compute polynomial] (Here the sh are all close to integers.) Set Sh +-- lsh l 
(the nearest integer to sh)· Compute by induction tk +-- TrL;Q(f3t} for 0 :5 
k ::; 2n- 2, and using Algorithm 2.2.1 or a Gauss-Bareiss variant, find the 
unique solution to the linear system Lo$;j<n Xjti+h = sh for 0 :5 h < n. 
(We know that d(B)xj E Z, so we can avoid rational arithmetic.) Now set 
P(X) +-- Lo$;j<n XjXi. 

7. [Finished?] Using the variant of Horner's rule explained in Section 4.5.1, check 
whether A(P(X)) = 0 (mod B(X)). If this is the case, then output YES, and 
also output the polynomial P(bX)/a which gives the isomorphism explicitly, 
and terminate the algorithm. Otherwise, using Algorithm 3.6.6 recompute the 
roots ai and fli to a greater accuracy and go to step 5. 

Algorithm 4.5.6 (Field Isomorphism Using Polynomial Factorization). Let 
A( X) and B(X) be primitive irreducible polynomials in Z[X] of the same degree 
n defining number fields K and L. This algorithm determines whether or not K 
is isomorphic to L, and if it is, gives an explicit isomorphism. 

1. [Reduce to algebraic integers] Set a +-- f(A), b +-- f(B) (the leading terms of 
A and B), and set A(X) +-- an-1A(X/a) and B(X) +-- bn-l B(X/b). 

2. [Check discriminants] Compute d(A) and d(B) using Algorithm 3.3.7), and 
check whether d(A)/d(B) is a square in Q using a slightly modified version of 
Algorithm 1.7.3. lfthis is not the case, output NO and terminate the algorithm. 
If for some reason d(K) and d(L) are known or cheaply computed, check 
instead that d(K) = d(L). 

3. [Factor in L[X]] Using Algorithm 3.6.4, let A= nlSiSg A be a factorization 
of A into irreducible factors in L[X]. where without loss of generality we may 
assume the Ai monic. 

4. [Conclude] If no Ai has degree equal to 1, then output NO otherwise output 
YES, and if we write Ai = X - 9i(f3) where (3 is a root of B such that 
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L = Q(,B), also output the polynomial gi(bX)/a which explicitly gives the 
isomorphism. Terminate the algorithm. 

For the field isomorphism problem, there is a different method which works 
sufficiently often that it deserves to be mentioned. We have seen that Algo
rithm 4.4.12 gives a defining polynomial for a number field which is almost 
canonical. Hence, if we apply this algorithm to two polynomials A and B, then, 
if the corresponding number fields are isomorphic, there is a good chance that 
the polynomials output by Algorithm 4.4.12 will be the same. If they are the 
same, this proves that the fields are isomorphic (and we can easily recover 
explicitly the isomorphism if desired). If not, it does not prove anything, but 
we can expect that they are not isomorphic. We must then apply one of the 
rigorous methods explained above to prove this. 

The Primitive Element Problem. 
The last application of the subfield problem that we will see is to the prim

itive element problem. This is as follows. Given algebraic numbers a 1, ... , am, 
set K = Q( a 1, ... , am). Then K is a number field, hence it is reasonable 
(although not always absolutely necessary, see [Duv]) to represent K by a 
primitive element 8, i.e. 

K = Q(a1, ... am)= Q(8) ~ Q[X]/(T(X)Q[X]), 

where Tis the minimal polynomial of 8. Hence, we need an algorithm which 
finds such a T (which is not unique) given a 1, ... , am. We can do this by 
induction on m, and the problem boils down to the following: Given a and f3 
by their minimal polynomials A and B (and suitable complex approximations), 
find a monic irreducible polynomial T E Z[X] such that 

Q(a,/3) = Q(8), where T(8) = 0. 

We can use the solution to the subfield problem to solve this. According 
to the proof of the primitive element theorem (see [Lang1]), we can take 
8 = ka + f3 for a small integer k, and Q(a, {3) = Q(ka + {3) is equivalent 
to a E Q( ka + {3) which can be checked using one of the algorithms explained 
above for the field membership problem. 

4.6 Orders and Ideals 

4.6.1 Basic Definitions 

Definition 4.6.1. An order R inK is a subring of K which as a /£-module 
is finitely generated and of maximal rank n = deg(K) (note that we use the 
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"modem" definition of a ring, which includes the existence of the multiplicative 
identity 1}. 

Proposition 4.1.3 shows that every element of an order R is an algebraic 
integer, i.e. that R C ZK. We will see that the ring theory of ZK is nicer than 
that of an arbitrary order R, but for the moment we let R be an arbitrary order 
in a number field K. We emphasize that some of the properties mentioned here 
are specific to orders in number fields, and are not usually valid for general 
base rings. 

Definition 4.6.2. An ideal I of R is a sub-R-module of R, i.e. a sub-Z
module of R such that for every r E R and i E I we have ri E I. 

Note that the quotient module R/ I has a canonical quotient ring structure. 
In fact we have: 

Proposition 4.6.3. Let I be a non-zero ideal of R. Then I is a module of 
maximal rank. In other words, R/ I is a finite ring. Its cardinality is called the 
norm of I and denoted N(I). 

Indeed, if i E I with i # 0, then iR c I c R, proving the proposition. D 

If I is given by its HNF on a basis of R (or simply by any matrix A), then 
Proposition 4. 7.4 shows that the norm of I is simply the absolute value of the 
determinant of A. 

Ideals can be added (as modules), and the sum of two ideals is clearly 
again an ideal. Similarly, the intersection of two ideals is an ideal. Ideals can 
also be multiplied in the following way: if I and J are ideals, then 

IJ = { ~XiYi, where XiEI and YiE J }· 

Again, it is clear that this is an ideal. Note that we clearly have the inclusions 

IJcinJcici+J, 

(and similarly with J), and IR =I for all ideals I. It is clearly not always 
true that I J = I n J (take I = J = pZ in Z). We have however the following 
easy result. 

Proposition 4.6.4. Let I and J be two ideals in R and assume that I+ J = 
R. {It is then reasonable to say that I and J are coprime.) Then we have the 
equality I J =In J. 

Proof. Since I J c In J we need to prove only the reverse inclusion. But since 
I + J = R, there exists a E I and b E J such that a + b = 1. If x E I n J it 
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follows that x = ax + bx and clearly ax E I J and bx E J I = I J thus proving 
the proposition. D 

Definition 4.6.5. A fractional ideal I in R is a non-zero submodule of K 
such that there exists a non-zero integer d with di ideal of R. An ideal (frac
tional or not) is said to be a principal ideal if there exists x E K such that 
I = xR. Finally, R is a principal ideal domain (P ID) if R is an integral do
main (this is already satisfied for orders) and if every ideal of R is a principal 
ideal. 

It is clear that if I is a fractional ideal, then I c R if and only if I is an 
ideal of R, and we will then say that I is an integral ideal. 

Note that the set-theoretic inclusions seen above remain valid for fractional 
ideals, except for the one concerning the product. Indeed, if I and J are two 
fractional ideals, one does not even have I J C I in general: take I = R, and 
J a non-integral ideal. 

Definition 4.6.6. Let I be a fractional ideal of R. We will say that I is 
invertible if there exists a fractional ideal J of R such that R = I J. Such an 
ideal J will be called an inverse of I. 

The following lemma is easy but crucial. 

Lemma 4.6. 7. Let I be a fractional ideal, and set 

I' = { x E K, xi C R}. 

Then I is invertible if and only if I I' = R. Furthermore if this equality is true, 
then I' is the unique inverse of I and is denoted I- 1. 

The proof is immediate and left to the reader. D 

Remark. It is not true in general that N(IJ) = N(I)N(J). For example, 
let w = (1 + A)/2, takeR = Z + 3wZ and I = J = 3Z + 3wZ. Then 
one immediately checks that N(I) = 3, but N(I2 ) = 27. As the following 
proposition shows, the equality N(IJ) = N(I)N(J) is however true when 
either I or J is an invertible ideal in R, and in particular, it is always true 
when R = 'llK is the maximal order of K (see Section 4.6.2 for the relevant 
definitions). 

Proposition 4.6.8. Let R be an order in a number field, and let I and J 
be two integral ideals of R. If either I or J is invertible, we have N(I J) = 
N(I)N(J). 
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Proof {This proof is due to H. W. Lenstra.) Assume for example that I is 
invertible. We will prove more generally that if J c H where J and H are 
ideals of R, then [I H : I J] = [H: J]. With H = R, this gives [I: I J] = [R: J] 
hence N(IJ) = [R : IJ] = [R : I][I : IJ] = N(I)N(J) thus proving the 
proposition. 

Let us temporarily say that a pair of ideals ( J, H) is a simple pair if 
[H: J] > 1 and if there are no ideals containing J and contained in H apart 
from H and J themselves. 

We prove the equality [IH: IJ] = [H: J] by induction on [H: J]. For 
H = J it is trivial, hence assume by induction that [H : J] > 1 and that the 
proposition is true for any pair of ideals such that [H': J'] < [H: J]. Assume 
that ( J, H) is not a simple pair, and let H 1 be an ideal between J and H and 
distinct from both. By our induction hypothesis we have [I H : I H1] = [H : H1] 
and [IH1 : IJ] = [H1 : J] hence [IH : IJ] = [H : J] thus proving the 
proposition in that case. 

Assume now that (J, H) is a simple pair. Then (I J, IH) is also a simple 
pair since I is an invertible ideal (in fact multiplication by I gives a one-to-one 
map from the set of ideals between J and H onto the set of ideals between 
IJ and IH). Now we have the following lemma. 

Lemma 4.6.9. If ( J, H) is a simple pair, then there exists an isomorphism 
of R-modules from HI J to Rl M for some maximal ideal M of R. {Recall that 
M is a maximal ideal if and only if ( M, R) is a simple pair.) 

Indeed, let x E H \ J. The ideal xR + J is between J and H but is not 
equal to J, hence H = xR + J. This immediately implies that the map from 
R to HI J which sends a to the class of ax modulo J is a surjective R-linear 
map. Call M its kernel, which is an ideal of R. Then by definition RIM is 
isomorphic to HI J and since (J, H) is a simple pair it follows that (M, R) is 
a simple pair, in other words that M is a maximal ideal of R, thus proving 
the lemma. D 

Resuming the proof of the proposition, we see that HI J is isomorphic to 
Rl M and I HI I J is isomorphic to Rl M' for some maximal ideals M and M'. 
By construction, MH C J hence MIH C IJ, so M annihilates IHIIJ hence 
M c M'. Since M and M' are maximal ideals (or since I is invertible), it 
follows that M=M', hence that [IH:IJ] =N(M') = N(M) = [H: J] thus 
showing the proposition. D 

Definition 4.6.10. An ideal p of R is called a prime ideal if p =1- R and if 
the quotient ring Rip is an integral domain {in other words if xy E p implies 
x E p or y E p). The ideal p is maximal if the quotient ring Rl p is a field. 

It is easy to see that an ideal p is maximal if and only if p =/:- R and if 
the only ideals I such that p C I c Rare p and R, in other words if (p, R) 
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form a simple pair in the language used above. Furthermore, it is clear that a 
maximal ideal is prime. In number fields, the converse is essentially true: 

Proposition 4.6.11. Let p be a non-zero prime ideal in R. Then p is maxi
mal. (Here it is essential that R be an order in a number field.} 

Indeed, to say that p is a prime ideal is equivalent to saying that for every 
x ~ p the maps y 1---7 xy modulo p are injections from A/p into itself. Since 
Afp is finite, these maps are also bijections, hence A/p is a field. 0 

Note that {0} is indeed a prime ideal, but is not maximal. It will always 
be excluded, even when this is not explicitly mentioned. 

The reason why prime ideals are called "prime" is that the prime ideals of 
Z are {0}, and the ideals pZ for p a prime number. Prime ideals also satisfy 
some of the properties of prime numbers. Specifically: 

Proposition 4.6.12. If p is a prime ideal and p :J It··· h, where the Ii are 
ideals, then there exists an i such that p :J h 

Proof. By induction on k it suffices to prove the result for k = 2. Assume that 
p :J I J and p 1; I and p 1; J. Then there exists x E I such that x ~ p, and 
y E J such that y ~ p. Since p is a prime ideal, xy ~ p, but clearly xy E I J, 
contradiction. 0 

If we interpret I :J J as meaning I I J, this says that if p divides a product 
of ideals, it divides one of the factors. Although it is quite tempting to use the 
notation I I J, one should be careful with it since it is not true in general that 
I I J implies that there exists an ideal I' such that J = II'. As we will see, 
this will indeed be true if R = ZK, and in this case it makes perfectly good 
sense to use that notation. 

A variant of the above mentioned phenomenon is that it is not true for 
general orders R that every ideal is a product of prime ideals. What is always 
true is that every (non-zero) ideal contains a product of (non-zero) prime 
ideals. When R = ZK however, we will see that everything we want is true at 
the level of ideals. 

Proposition 4.6.13. If R is an order in a number field {or more generally 
a Noetherian integral domain), any non-zero integral ideal I in R contains a 
product of (non-zero) prime ideals. 

This is easily proved by Noetherian induction (see Exercise 11). 

An important notion which is weaker than that of PID but almost as 
useful is that of a Dedekind domain. This is by definition a Noetherian integral 
domain R such that every non-zero prime ideal is maximal, and which is 
integrally closed. This last condition means that if x is a root of a monic 
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polynomial equation with coefficients in R and if x is in the field of fractions 
of R, then in fact x E R. This is for example the case of R = Z. 

When R is an order in a number field, all the conditions are satisfied 
except that R must also be integrally closed. Since R :::::> Z, it is clear that if R 
is integrally closed then R = ZK, and the converse is also true by Proposition 
4.1.5. Hence the only order in K which is a Dedekind domain is the ring of 
integers ZK. Since we know that every order R is a sub ring of ZK, we will 
also call Z K the maximal order of K. 

We now specialize to the case where R = ZK. 

4.6.2 Ideals of ZK 

In this section, fix R = ZK. Let I(K) be the set of fractional ideals of ZK. 
We summarize the main properties of ZK-ideals in the following theorem: 

Theorem 4.6.14. 

(1) Every fractional ideal ofZK is invertible. In other words, if I is a fractional 
ideal and if we set I- 1 = {x E K,xi c ZK}, then u- 1 = ZK. 

(2) The set of fractional ideals of ZK is an Abelian group. 
(3) Every fractional ideal I can be written in a unique way as 

the product being over a finite set of prime ideals, and the exponents vp(I) 
being in Z. In particular, I is an integral ideal (i.e. I C ZK) if and only 
if all the Vp (I) are non-negative. 

(4) The maximal order ZK is a PID if and only if it is a UFD. 

Hence the ideals of ZK behave exactly as the numbers in Z, and can be 
handled in the same way. Note that (3) is much stronger than Proposition 
4.6.13, but is valid only because ZK is also integrally closed. 

The quantity vp(I) is called the p-adic valuation of I and satisfies the usual 
properties: 

( 1) I C Z K {:::==} Vp (I) 2: 0 for all prime ideals p. 
(2) J C I{:::==} vp(I):::; vp(J) for all prime ideals p. 
(3) vp(I + J) = min(vp(I),vp(J)). 
(4) vp(Jn J) = max(vp(I),vp(J)). 
(5) vp(JJ) = vp(I) + Vp(J). 

Hence the dictionary between fractional ideals and rational numbers is as 
follows: 

Fractional ideals +-----+ (non-zero) rational numbers. 
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Integral ideals ~ integers. 
Inclusion~ divisibility (with the reverse order). 
Sum ~ greatest common divisor. 
Intersection ~ least common multiple. 
Product ~ product. 
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Of course, a few of these notions could be unfamiliar for rational num
bers, for example the GCD, but a moment's thought shows that one can give 
perfectly sensible definitions. 

We end this section with the notion of norm of a fractional ideal. We 
have seen in Proposition 4.6.3 that for an integral ideal I the norm of I 
is the cardinality of the finite ring R/ I. As already mentioned, a corollary 
of Theorem 4.6.14 is that N(IJ) = N(I)N(J) for ideals I and J of the 
maximal order R = ZK (recall that this is false in general if R is not maximal). 
This allows us to extend the definition of N(I) to fractional ideals if desired: 
any fractional ideal I can be written as a quotient of two integral ideals, say 
I= P/Q (in fact by definition we can take Q = dR where dis an integer), and 
we define N(I) = N(P)/ N(Q). It is easy to check that this is independent of 
the choice of P and Q and that it is still multiplicative (N(IJ) = N(I)N(J)). 
Of course, usually it will no longer be an integer. 

The notion of norm of an ideal is linked to the notion of norm of an element 
that we have seen above in the following way: 

Proposition 4.6.15. Let x be a non-zero element of K. Then 

in other words the norm of a principal ideal of ZK is equal to the absolute 
value of the norm (in K) of a genemting element. 

One should never forget this absolute value. We could in fact have a nicer 
looking proposition (without absolute values) by using a slight extension of 
the notion of fractional ideal: because of Theorem 4.6.14 (3), the group of 
fractional ideals can be identified with the free Abelian group generated by 
the prime ideals j:l. Furthermore, a number field K has plac~s, corresponding to 
equivalence classes of valuations. The finite places, which correspond to non
Archimedean valuations, can be identified with the (non-zero) prime ideals of 
ZK. The other (so called infinite places) correspond to Archimedean valuations 
and can be identified with the embeddings (Ti of Kin C, with (T identified with 
a (thus giving r1 + r2 Archimedean valuations). Hence, we can consider the 
extended group which is the free Abelian group generated by all valuations, 
finite or not. One can show that to obtain a sensible definition, the coefficients 
of the non-real complex embeddings must be considered modulo 1, i.e. can be 
taken equal to 0, and the coefficients of the real embeddings must be considered 
modulo 2 (I do not give the justification for these claims). Hence, the group 
of generalized fractional ideals is 
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Z[P(K)) X {±1Y1 , 

where P(K) is the set of non-zero prime ideals. The norm of such a generalized 
ideal is then the norm of its finite part multiplied by the infinite components 
(i.e. by a sign). Now if x E K, the generalized fractional ideal associated to 
x is, on the finite part equal to xZK, and on the infinite place ai (where 
1 :::; i:::; r1) equal to the sign of ai(x). It is then easy to check that these two 
notions of norm now correspond exactly, including sign. 

The discussion above was meant as an aside, but is the beginning of the 
theory of adeles and ideles (see [Lang2)). In a down to earth way, we can say 
that most natural questions concerning number fields should treat together 
the Archimedean and non-Archimedean places (or primes). In addition to the 
present example, we have already mentioned the parallel between Proposi
tions 4.1.14 and 4.8.6. Similarly, we will see Propositions 4.8.11 and 4.8.10. 
Maybe the most important consequence is that we will have to compute si
multaneously class groups (i.e. the non-Archimedean part) and regulators (the 
Archimedean part), see Sections 4.9, 5.9 and 6.5. 

4.7 Representation of Modules and Ideals 

4.7.1 Modules and the Hermite Normal Form 

As before, we work in a fixed number field K of degree n, given by K = Q(B), 
where B is an algebraic integer whose minimal monic polynomial is denoted 
T(X). 

Definition 4.7.1. A module inK is a finitely generated sub-Z-module of K 
of rank exactly equal to n. 

Since Z is a PID, such a module being torsion free and finitely generated, 
must be free. Let w1. ... , Wn be a Z-basis of M. The numbers Wi are elements 
of K, hence we can find an integer d such that dwi E Z[B) for all i. The least 
such positive d will be called the denominator of M with respect to Z[B). 
More generally, if R is another module (for example R = ZK ), we define the 
denominator of M with respect to R as the smallest positive d such that 
dMcR. 

Note that in the context of number fields, the word "module" will always 
have the above meaning, in other words it will always refer to a submodule of 
maximal rank n. If as a Q-vector space we identify K = Q(B) with Qn, and 
Z[B] with zn, the above definition is the same as the one that we have given 
in Section 2.4.3. In particular, we can use the notions of determinant, HNF 
and SNF of modules. 

We give the following proposition without proof. 
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Proposition 4.7.2. Let M be a module in a number field K in the above 
sense. Then there exists an order R in K and a positive integer d such that 
dM is an ideal of R. More precisely, there is a maximal such R equal to 
R = {i E K,xM C M}, and one can take ford the denominator of M with 
respect to R. 

Specializing to our case the results of Section 2.4.2, we obtain: 

Theorem 4.7.3. Let a1, ... , an be n Z-linearly independent elements of 
K, and R be the module which they generate. Then for any module M, there 
exists a unique basis Wt, ... , Wn such that if we write 

where d is the denominator of M with respect to R, then the n x n matrix 
W = ( Wi,j) satisfies the following conditions: 

(1) For all i and j the Wi,j are integers. 
(2) W is an upper triangular matrix, i.e. Wi,j = 0 if i > j. 
(3) For every i, we have Wi,i > 0. 
(4) For every j > i we have 0:::; Wi,j < Wi,i· 

The corresponding basis (wih<i<n will be called the HNF-basis of M with 
respect to R, and the pair (W, d) -will be called the HNF of M (with respect 
toR). If ai =oi-l, we will call W (or (W,d)) the HNF with respect to 0. 

We have already seen in section 2.4.3 how to test equality and inclusion 
of modules, how to compute the sum of two modules and the product of a 
module by a constant. In the context of number fields, we can also compute 
the product of two modules. This will be used mainly for ideals. 

Recall that 

MM' = {2:mjmj,mj E M,mj EM'}. 
j 

It is clear that MM' is again a module. To obtain its HNF, we proceed as 
follows: Let Wt, ... , Wn be the basis of M obtained by considering the columns 
of the HNF of M as the coefficients of Wi in the standard representation, and 
similarly forM'. Then the n2 elements wiwj form a generating set of MM'. 
Hence, if we find the HNF of the n x n 2 matrix formed by their coefficients in 
the standard representation, we will have obtained the HNF of M M'. 

Note however that this is quite costly, since n 2 can be pretty large. Another 
method might be as follows. In the case where M and M' are ideals (of ZK 
say), then M and M' have a ZK-generating set formed by two elements. In 
fact, one of these two elements can even be chosen in Z if desired. Hence it is 
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clear that if WI. ... , Wn is a Z-basis of Manda, /3 a ZK-generating set of M', 
then awl! ... , awn, f3w1, ... , f3wn will be a Z-generating set of MM' (note 
that M must also be an ideal for this to be true). Hence we can obtain the 
HNF of M M' more simply by finding the HNF of the n x 2n matrix formed 
by the coefficients of the above generating set in the standard representation. 

We end this section by the following proposition, whose proof is easy and 
left to the reader (see Exercise 18 of Chapter 2). 

Proposition 4. 7 .4. Let M be a module with denominator 1 with respect to 
a given R (i.e. M C R), and W = (wi,i) its HNF with respect to a basis at, 

... , an of R. Then the product of the Wi,i (i.e. the determinant of W) is equal 
to the index [R: M]. 

This will be used, for example, when R = Z(O] or R = ZK. 

4. 7.2 Representation of Ideals 

The Hermite normal form of an ideal with respect to 0 has a special form, as 
is shown by the following theorem: 

Theorem 4. 7.5. Let M be a Z[OJ-module, let (W, d) be its HNF with respect 
to the algebraic integer 0, where d is the denominator and W = ( Wi,j) is an 
integral matrix in upper triangular HNF. Then for every j, Wj,j divides all the 
elements of the j x j matrix formed by the first j rows and columns. In other 
words, the HNF basis w11 ... , Wn of a Z[OJ-module has the form 

W· = Zj(ej-1 + "' h· .(Ji-1) 
J d ~ t,J ' 

l~i<j 

where the Zj are positive integers such that Zj I zi fori < j, and the hi,j satisfy 
0 :$ hi,i < Zi/ Zj for i < j. Furthermore, z1 is the smallest positive element of 
dMnZ. 

Proof. Without loss of generality, we may assume d = 1. We prove the theorem 
by induction on j. It is trivially true for j = 1. Assume j > 1 and that it is 
true for j -1. Consider the (j -1)th basis element Wj-l of M. We have 

"' ni-l Wj-1 = ~ Wi,j-lU 
l~i<j 

hence Owi-1 = Wj-l,j-lei-l + L: 1 ~i<i-l Wi,j-lei. Since M is a Z(O]-module, 
this must be again an element of M, hence it has the form Owi-l = 
L:l<i<n aiWi with integers ai. Now since we have a triangular basis, iden
tifica£ion of coefficients (from en-l downwards) shows that ai = 0 for i > j 
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and that aiwi.i = Wj-1,j-1· This already shows that Wj,j I Wj-l,j-1· But by 
induction, we know that Wj-1,j-1 divides wi',i' when i' and j' are less than 
or equal to j - 1. It follows that, modulo Wj- 1,j_1Z[B] we have 

0 _ n _ _ Wj-l,j-1 L ni-l 
= !7Wj-1 = ajWj = Wi,jll , 

w·. 
J,J 1~i~j 

and this means that for every i :S j we have 

Wj-l,j-1 W· . = 0 
'·3 -w·. J,J 

{mod Wj-1,j-1), 

which is equivalent to Wj,j I Wi,j for i :S j, thus proving the theorem by 
induction. D 

Note that the converse of this theorem is false (see Exercise 16). 

Theorem 4. 7.5 will be mainly used in two cases. First when M is an ideal 
of ZK· The second is when M is an order containing B. In that case one can 
say slightly more: 

Corollary 4. 7.6. Let R be an order in K containing 0 {hence containing 
Z[B]). Then the HNF basis w1, ... , Wn of R with respect to 0 has the form 

1(·1 2: ·1) w· =- 03- + h· ·B'-
J d. '·3 ' 

3 1~i<j 

where the dj are positive integers such that di I di for i < j, d1 = 1, and the 
hi,j satisfy 0 :S hi,j < di / di for i < j. In other words, with the notations of 
Theorem 4. 7. 5, we have Zj I d for all j. 

The proof is clear once one notices that the smallest positive integer be-
longing to an order is 1, hence by Theorem 4.7.5 that z1 =d. D 

If we assume that R = ZK is given by an integral basis Ot. ... , On, then 
the HNF matrix of an ideal I with respect to this basis does not usually satisfy 
the conditions of Theorem 4.7.5. We can always assume that we have chosen 
a1 = 1, and in that case it is easy to show in a similar manner as above that 
w1,1 is divisible by Wi,i for all i, and that if wi,i = w1,1, then Wj,i = 0 for 
j =f. i. This is left as an exercise for the reader (see Exercise 17). 

Hence, depending on the context, we will represent an ideal of ZK by its 
Hermite normal form with respect to a fixed integral basis of ZK, or by its 
HNF with respect to () (i.e. corresponding to the standard representations of 
the basis elements). Please note once again that the special form of the HNF 
described in Theorem 4. 7.5 is valid only in this last case. 
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Whichever representation is chosen, we have seen in Sections 2.4.3 and 
4.7.1 how to compute sums and products of ideals, to test equality and inclu
sion (i.e. divisibility). Finally, as has already been mentioned several times, 
the norm is the absolute value of the determinant of the matrix, and in the 
HNF case this is simply the product of the diagonal elements. 

Note that to test whether an element of K is in a given ideal is a spe
cial case of the inclusion test, since x E I <==:> xR C I. Here however it 
is simpler (although not so much more efficient) to solve a (triangular) sys
tem of linear equations: if (W, d) is the HNF of I with respect to B, then if 
x = Cl:l<i<n x;Bi-l )/e is the standard representation of x, we must solve the 

equation -W A = ~X where X is the column vector of the x;, and A is the 
unknown column vector. Since W is triangular, this is especially simple, and 
x E I if and only if A has integral coefficients. 

To this point, we have considered ideals mainly as Z-modules. There is a 
completely different way to represent them based on the following proposition. 

Proposition 4. 7. 7. Let I be an integral ideal of ZK. 

(1) For any non-zero element a E I there exists an element (3 E I such that 
I= aZK + f3ZK. 

(2) There exists a non-zero element in In Z. If we denote by £(I) the smallest 
positive element of I n Z, then £(!) is a divisor of N(I) = [ZK : I]. In 
particular, there exists (3 E I such that I = £(I)ZK + f3ZK. 

(3) If a and (3 are inK, then I= aZK + f3ZK if and only if for every prime 
ideal p we have min(vp(a), vp((3)) = vp(I) where vp denotes the p-adic 
valuation at the prime ideal p. 

To prove this proposition, we first prove a special case of the so-called 
approximation theorem valid in any Dedekind domain. 

Proposition 4. 7.8. LetS be a finite set of prime ideals of ZK and (e;) a set 
of non-negative integers indexed by S. There exists a (3 E ZK such that for 
each jl; E S we have 

Vp; ((3) = e; . 

(Note that there may exist prime ideals q not belonging to S such that Vq ((3) > 
0.) 

Remark. More generally, S can be taken to be a set of places of K, and in 
particular can contain Archimedean valuations. 

Proof Let r =lSI, 
T 

I=IJP~i+l, 
i=l 

and for each i, set 
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which is still an integral ideal. It is clear that a1 + a2+ · · ·+ar = ZK (otherwise 
this sum would be divisible by one of the Pi, which is clearly impossible). 
Hence, let Ui E ~ such that u1 + u2 + · · · + Ur = 1. Furthermore, for each i 
choose f3i E p~' \ p~•+l which is possible since Pi is invertible. Then I claim 
that 

r 

fJ = LfJiui 
i=l 

has the desired property. Indeed, since Pi I ai for i =fo j, it is easy to check 
from the definition of the ai that 

since vp, (ui) = 0 and Vp; (fJi) = ei. Note that this is simply the proof of the 
Chinese remainder theorem for ideals. D 

Proof of Proposition 4.1.1. (1) Let a.ZK = TI~=l p~• be the prime ideal de
composition of the principal ideal generated by a.. Since a. E I, we also have 
I= TI~=l p~' for exponents ei (which may be equal to zero) such that ei:::; ai. 
According to Proposition 4. 7.8 that we have just proved, there exists a (J such 
that vp, ((J) = ei fori :::; r. This implies in particular that I I (J, i.e. that (J E I, 
and furthermore if we set I'= a.ZK + fJZK we have fori:::; r 

and if q is a prime ideal which does not divide a., vq(I') = 0, from which it 
follows that I'= TI~=l p~' =I, thus proving (1). 

For (2), we note that since N(I) = [ZK : I], any element of the 
Abelian quotient group ZK /I is annihilated by N(I), in other words we have 
N(I)ZK C I. This implies N(I) E In Z, and since any subgroup of Z is of 
the form kZ, (2) follows. 

Finally, for (3) recall that the sum of ideals correspond to taking a GCD, 
and that the GCD- is computed by taking the minimum of the p-adic valua
tions. D 

Hence every ideal has a two element representation (a., (J) where I 
a.ZK + fJZK, and we can take for example a.= l(I). This two element repre
sentation is however difficult to handle: for the sum or product of two ideals, 
we get four generators over ZK, and we must get back to two. More gener
ally, it is not very easy to go from the HNF (or more generally any Z-basis 
n-element representation) to a two element representation. 

There are however two cases in which that representation is useful. The 
first is in the case of quadratic fields (n = 2), and we will see this in Chapter 
5. The other, which has already been mentioned in Section 4.7.1, is as follows: 
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we will see in Section 4.9 that prime ideals do not come out of the blue, and 
that in algorithmic practice most prime ideals pare obtained as a two element 
representation (p,x) where pis a prime number and xis an element of p. To 
go from that two element representation to the HNF form is easy, but is not 
desirable in general. Indeed, what one usually does with a prime ideal is to 
multiply it with some other ideal I. If WI. ... , Wn is a Z-basis of I (for example 
the basis obtained from the HNF form of I on the given integral basis of ZK ), 
then we can build the HNF of the product pi by computing the n x 2n matrix 
of the generating set pwl> . . . pwn, xw1. ... , xwn expressed on the integral 
basis, and then do HNF reduction. As has already been mentioned in Section 
4.7.1, this is more efficient than doing a n x n2 HNF reduction if we used 
both HNF representations. Note that if one really wants the HNF of p itself, 
it suffices to apply the preceding algorithm to I= ZK. 

Note that if (W, d) (with W = ( wi,i)) is the HNF of I with respect to(), and 
iff = [ZK : Z[B]], then f(I) = W1,1 and dn N(I) = [ZK : dl] = f fll:$i:$n Wi,i 

so 

N(I) = d-nf IT Wi,i· 

1$;i$;n 

Now it often happens that prime ideals are not given by a two element 
representation but by a larger number of generating elements. If this ideal 
is going to be used repeatedly, it is worthwhile to find a two element repre
sentation for it. As we have already mentioned this is not an easy problem 
in general, but in the special case of prime ideals we can give a reasonably 
efficient algorithm. This is based on the following lemma. 

Lemma 4.7.9. Let p be a prime ideal above p of norm pf (f is called the 
residual degree of p as we will see in the next section), and let a E p. Then we 
have p = (p, a)= pZK+aZK if and only ifvv(N(a)) = f orvp(N(a+p)) = f, 
where Vp denotes the ordinary p-adic valuation. 

Proof This proof assumes some results and definitions introduced in the next 
section. Assume first that vp(N(a)) =f. Then, since a E p and N(p) = pf, 
for every prime q above p and different from p we must have Vq (a) = 0 
otherwise q would contribute more powers of p to N(a). In addition and for 
the same reason we must have vp (a) = 1. It follows that for any prime ideal 
q, min(vq(p),vq(a)) = vq(P) and sop= (p,a) by Proposition 4.7.7 (3). 

If vp(N(a + p)) = f we deduce from this that p = pZK +(a+ p)ZK, but 
this is clearly also equal to pZK + aZK. 

Conversely, let p = pZK + aZK. Then for every prime ideal q above p 
and different from p we have vq(a) = 0, while for p we can only say that 
min(vp(p), vp(a)) = 1. 

Assume first that vp(a) = 1. Then clearly vp(N(a)) = vp(N(p)) = f as 
desired. Otherwise we have vp(a) > 1, and hence vp(P) = 1. But then we 
will have vp(a + p) = 1 (otherwise vp(P) = vp((P +a) - a) > 1), and still 
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vq(a + p) = 0 for all other primes q above p, and so vp(.N(a + p)) =f as 
before, thus proving the lemma. D 

Note that the condition vp(.N(a)) = J, while sufficient, is not a necessary 
condition (see Exercise 20). 

Note also that if we write a= El<i<k Ai'Yi where the 'Yi is some generating 
set of p, we may always assume that T>.~l ~ pj2 since p E p. In addition, if we 
choose 'Yl = p, we may assume that >.1 = 0. 

This suggests the following algorithm, which is simple minded but works 
quite well. 

Algorithm 4.7.10 (Two-Element Representation of a Prime Ideal). Given 
a prime ideal p above p by a system of Z-generators 'Yi for (1 ~ i ~ k), this 
algorithm computes a two-element representation (p, a) for p. 

We assume that one knows the norm pf of p (this is always the case in 
practice, and in any case it can be obtained by computing the HNF of p from the 
given generators), and that 'Yl = p (if this is not the case just add it to the list 
of generators). 

1. [Initialize) Set R +-- 1. 

2. [Set coefficients) For 2 ~ i ~ k set >.i +-- R. 

3. [Compute a and check) Let a+-- L:2<i<k>.i'Yi· n +-- .N(a)jpf, where the 
norm is computed, for example, using the sub-resultant algorithm (see Section 
4.3). If p f n, then output (p, a) and terminate the algorithm. Otherwise, set 
n +-- .N(a + p)jpf. If p f n then output (p, a) and terminate the algorithm. 

4. [Decrease coefficients) Let j be the largest i ::; k such that >.i =f:. - R (we will 
always keep >.2 ;? 0 so j will exist). Set >.; +-- >.; -1 and for j + 1 ::; i ::; k 
set >.i +-- R. 

5. [Search for first non-zero) Let j be the smallest i ~ k such that >.i =f:. 0. If no 
such j exists (i.e. if all the >.i are equal to 0) set R +-- R + 1 and go to step 
2. Otherwise go to step 3. 

Remarks. 

(1) Steps 4 and 5 of this algorithm represent a standard backtracking proce
dure. What we do essentially is to search for a= L:2<i<k A(yi, where the 
>.i are integers between - R and R. To avoid searching-both for a and -a, 
we add the condition that the first non-zero >. should be positive. If the 
search fails, we start it again with a larger value of R. Of course, some 
time will be wasted since many old values of a will be recomputed, but in 
practice this has no real importance, and in fact R = 1 or R = 2 is usually 
sufficient. The remark made after Lemma 4.7.9 shows that the algorithm 
will stop with R ~ pj2. 
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(2) It is often the case that one of the 'Yi for 2 :::; i :::; k will satisfy one of 
the conditions of step 3. Thus it is useful to test this before starting the 
backtracking procedure. 

We refer to [Poh-Zas] for extensive information on the use of two-element 
representations. 

4.8 Decomposition of Prime Numbers I 

For simplicity, we continue to work with a number field K considered as an 
extension of IQ, and not considered as a relative extension. Many of the the
orems or algorithms which are explained in that context are still true in the 
more general case, but some are not. (For example, we have already seen this 
for the existence of integral bases.) Almost always, these generalizations fail 
because the ring of integers of the base field is not a PID (or equivalently a 
UFD). 

4.8.1 Definitions and Main Results 

The main results concerning the decomposition of primes are as follows. We 
always implicitly assume that the prime ideals are non-zero. 

Proposition 4.8.1. 

(1) If p is a prime ideal of K, then p n Z = pZ for some prime number p. 
(2) If p is a prime number and p is a prime ideal of K, the following conditions 

are equivalent: 
(i) p :J pZ. 

(ii) p n z = pZ. 
(iii) p n IQ = pZ. 

(3) For any prime number p we have pZK n Z = pZ. 

More generally, we have aZK n Z = aZ for any integer a, prime or not. 

Definition 4.8.2. If p and p satisfy one of the equivalent conditions of Propo
sition 4.8.1 (2}, we say that p is a prime ideal above p, and that pis below p. 

Theorem 4.8.3. Let p be a prime number. There exist positive integers ei 
such that 

i=l 

where the Pi are all the prime ideals above p. 
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Definition 4.8.4. The integer ei is called the ramification index of p at Pi 
and is denoted e(ptfp). The degree /i of the field extension defined by 

is called the residual degree (or simply the degree) ofp and is denoted f(ptfp). 

Note that both 7/.,K /Pi and Z/pZ are finite fields, and fi is the dimension 
of the first considered as a vector space over the second. 

Theorem 4.8.5. We have the following formulas: 

and 
g 

L:edi = n = deg(K). 
i=l 

In the case when K/Q is a Galois extension, the result is more specific: 

Theorem 4.8.6. Assume that K/Q is a Galois extension (i.e. that for all 
the embeddings O"i of K in C we have O"i(K) = K). Then, for any p, the 
ramification indices ei are equal (say to e), the residual degrees fi are equal 
as well (say to f), hence efg = n. In addition, the Galois group operates 
transitively on the prime ideals above p: if Pi and Pi are two ideals above p, 
there exists O" in the Galois group such that O"(Pi) = Pi. 

Definition 4.8.7. Let pZK = 0f=1 p~; be the decomposition of a prime p. 
We will say that p is inert if g = 1 and e1 = 1, in other words if pZK = p 
{hence !I = n). We will say that p splits completely if g = n {hence for all 
i, ei = /i = 1). Finally, we say that p is ramified if there is an ei which is 
greater than or equal to 2 {in other words if p'l!.,K is not squarefree), otherwise 
we say that p is unramified. Those prime ideals Pi such that ei > 1 are called 
the ramified prime ideals of 7/.,K. 

Note that there are intermediate cases which do not deserve a special 
name. The fundamental theorem about ramification is as follows: 

Theorem 4.8.8. Let p be a prime number. Then p is ramified inK if and only 
if P divides the discriminant d(K) of K {recall that this is the discriminant 
of any integral basis of 7/.,K ). In particular, there are only a finite number of 
ramified primes (exactly w(d(K)), where w(x) is the number of distinct prime 
divisors of an integer x ). 
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We can also define the decomposition of the "infinite prime" of Q in a 
similar manner, since we are extending valuations. The ordinary primes corre
spond to the non-Archimedean valuations and the real or complex embeddings 
correspond to the Archimedean ones. Since we are over Q, there is only the 
real embedding of Q to lift, and (as a special case of a general definition), 
when the signature of K is ( r1, r2), we will say that the infinite prime of Q 
lifts to a product of r 1 real places of K times r 2 non-real places to the power 
2. Hence, g= r1 +r2, ei = 1 fori~ r1, ei = 2 fori> r1, and f; = 1 for all i. 

We also have the following results: 

Proposition 4.8.9. 

(1) (Hermite). The set of isomorphism classes of number fields of given dis
criminant is finite. 

(2) (Minkowski). If K is a number field different from Q, then ld(K) I > 1. In 
particular, there is at least one ramified prime in K. 

Proposition 4.8.10 (Stickelberger). If p is an unramified prime inK with 
p'l!.,K = nf=l Pit we have 

(d(:)) = (-1)n-g 

including the case p = 2 where (d(;<)) is to be interpreted as the Jacobi
Kronecker symbol {see Definition 1.4.8 ). 

This shows that the parity of the number of primes above p (i.e. the 
"Mobius" function of p) can easily be computed. 

Note that this proposition is also true for the infinite prime as given above, 
if we interpret the Legendre symbol as the sign of d( K): 

Proposition 4.8.11. If K is a number field with signature (r1, r2), then the 
sign of the discriminant d(K) is equal to ( -1 t 2 • 

Proof Since, up to a square, the discriminant d(K) is equal to Oi<j ( 0;- Oj )2 

(with evident notations), then a case by case examination shows that when 
conjugate terms are paired, all the factors become positive except for 

II (0;- Bi+r2 ) 2 , 

r1 <i:5:rl +r2 

whose sign is (-lt2 since 0;- O;+r2 is pure imaginary. D 

Corollary 4.8.12. The decomposition type of a prime numberp in a quadratic 
field K of discriminant D is the following: if ( ~) = -1 then p is inert. If 
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(~) = 0 then pis mmified (i.e. pZK = p2 ). Finally, if(~) = +1, then p splits 
(completely), i.e. pZK = P1P2· 

4.8.2 A Simple Algorithm for the Decomposition of Primes 

We now consider a more difficult algorithmic problem, that of determining 
the decomposition of prime numbers in a number field. The basic theorem on 
the subject, which unfortunately is not completely sufficient, is as follows. 

Theorem 4.8.13. Let K = Q(O) be a number field, where 0 is an algebmic 
integer, whose {monic) minimal polynomial is denoted T(X). Let f be the 
index of 0, i.e. f = [ZK : Z[O]]. Then for any prime p not dividing f one can 
obtain the prime decomposition of pZK as follows. Let 

g 

T(X) = IJ Ti(X)e; (mod p) 
i=l 

be the decomposition ofT into irreducible factors in IF p[X], where the Ti are 
taken to be monic. Then 

g 

pZK = IJp~;, 
i=l 

where 

Furthermore, the residual index /i is equal to the degree of Ti. 

Since we have discussed at length in Chapter 3 algorithmic methods for 
finding the decomposition of polynomials in 1Fp[X], we see that this theorem 
gives us an excellent algorithmic method to find the decomposition of pZK 
when p does not divide the index f. The hard problems start when p I f. Of 
course, one then could try and change 0 to get a different index, if possible 
prime to p, but even this is doomed. There can exist primes, called inessential 
discriminantal divisors which divide any index, no matter which 0 is chosen. 
It can be shown that such exceptional primes are smaller than or equal to 
n- 1, so very few primes if any are exceptional. But the problem still exists: 
for example it is not difficult to give examples of fields of degree 3 where 2 is 
exceptional, see Exercise 10 of Chapter 6. 

The case when p divides the index is much harder, and will be studied 
along with an algorithm to find integral bases in Chapter 6. 

Proof of Theorem 4.8.13. Set h = deg(Ti) and Pi = pZK + Ti(O)ZK. Let us 
assume that we have proved the following lemma: 
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Lemma 4.8.14. 

(1) For all i, either Pi = ZK, or ZK /Pi is a field of cardinality ph. 
(2) If i =/= j then Pi+ Pi= ZK. 
(3) p'l!.,K I P~ 1 ... p~·. 

Then, after reordering the Pi, we can assume that Pi =/= ZK for i ~ s and 
Pi= 'l!.,K for s < i ~ g (we will in fact see that s =g). Then by Lemma 4.8.14 
(1), the ideals Pi are prime fori ~ s, and since by definition they contain pZK, 
they are above p (Proposition 4.8.1). (1) also implies that the fi (for i ~ s) 
are the residual indices of Pi· By (2) we know that the Pi fori ~ s are distinct, 
and (3) implies that the decomposition of the ideal pZK is 

8 

p'l!.,K = IT P1; where di ~ ei for all i ~ s. 
i=l 

Hence, by Theorem 4.8.5, we haven= d1JI + · · · + d8 f 8 • Since we also have 
deg(T) = n = edt+···+ e9 f 9 and di ~ ei for all i, this implies that we must 
haves= g and di = ei for all i, thus proving Theorem 4.8.13. D 

Proof of Lemma 4.8.14 {1}. Set Ki = IFp[X]/(Ti)· Since Ti is irreducible, Ki is 
a field. Furthermore, the degree of Ki over IFp is Ji, and so the cardinality of Ki 
is pf;. Thus we need to show that either Pi = 'l!.,K or that 'l!.,K /Pi ~ Ki. Now it is 
clear that Z[X]/(p, Ti) ~ Ki, hence (p, 1i) is a maximal ideal of Z[X]. But the 
kernel of the natural homomorphism ¢ from Z[X] to 'l!.,K /Pi which sends X to 
0 mod Pi clearly contains this ideal, hence is either Z[X] or (p, Ti)· If we show 
that¢ is onto, this will imply that Pi=ZK or ZK/Pi~ Z[X]/(p,Ti) ~ Ki, 
proving (1). 

Now to say that¢ is surjective means that ZK= Z[O] +Pi· By definition, 
p'l!.,K c Pi· Hence 

Since we have assumed that p does not divide the index, and since [ZK 
pZK] = pn, this shows that [ZK : Z[O] +Pi] = 1, hence the surjectivity of¢. 
Note that this is the only part of the whole proof of Theorem 4.8.13 which 
uses that p does not divide the index of 0. 

Proof of Lemma 4.8.14 {2}. Since Ti and Ti are coprime in IFp[X], there exist 
polynomials U and V such that UTi + VTj - 1 E pZ[X]. It follows that 
U(O)Ti(O) + V(O)Tj(O) = 1 + pW(O) for some polynomial WE Z[X], and this 
immediately implies that 1 E Pi+ pj, i.e. that Pi+ Pi = ZK. 

Proof of Lemma 4.8.14 {3). Set "Yi = Ti(O), so Pi= (P,"'fi)· By distributivity, 
it is clear that 
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p~l ... p~g c (p, 'Y~l ... 'Y;g). 

Now I claim that (p, 'Y~ 1 · · · 'Y;9 ) = p'llK, from which (3) follows. Indeed, :J is 
trivial. Conversely we have by definition rr · · · T; 9 - T E pZ[X) hence taking 
X = () we obtain 

'Y~ 1 · · · 'Y;9 E p7l[B) C p'llK, 

proving our claim and the lemma. D 

Note that in the general case where p I f which will be studied in Chapter 
6, the prime ideals Pi above p are still of the form p'llK + Ti(B)'llK, but now 
TiE IQ[X) and does not always correspond to a factor ofT modulo p. 

4.8.3 Computing Valuations 

Once prime ideals are known in a number field K, we will often need to 
compute the p-adic valuation v of an ideal I given in its Hermite normal form, 
where p is a prime ideal above p. We may, of course, assume that I is an 
integral ideal. Then an obvious necessary condition for v =I 0 is that p I N(I). 
Clearly this condition is not sufficient, since all primes above p must "share" 
in some way the exponent of p in N (I). 

We assume that our prime ideal is given asp = p7lK+a7lK for a certain a E 
7lK. We will now describe an algorithm to compute vp(I), which was explained 
to me by H. W. Lenstra, but which was certainly known to Dedekind. It ls 
based on the following proposition. 

Proposition 4.8.15. Let R be an order inK and p a prime ideal of R. Then 
there exists a E K \ R such that ap c R. Furthermore, p is invertible in R if 
and only if ap ¢. p, and in that case we have p-1 = R + aR. 

Proof Let x E p be a non-zero element of p, and consider the non-zero ideal 
xR. By Proposition 4.6.13, there exist non-zero prime ideals qi such that 
xR :J fLEE qi for some finite set E. Assume E is chosen to be minimal 
in the sense that no proper subset of E can have the same property. Since 
0 qi c xR c p, by Proposition 4.6.12 we must have qi c p for some j E E, 
hence qj = p since both are maximal ideals. Set 

q = II qi. 
iEE,i¥-j 

Then pq C xR and q ¢. xR by the minimality of E. So choose y E q such that 
Y ¢. xR. Since yp C xR, the element a= yjx satisfies the conditions of the 
proposition. 

Finally, consider the ideal p + ap. Since it sits between the maximal ideal 
P and R, it must be equal to one of the two. If it is equal to R, we cannot 
have ap C p, and since (R + aR)p = R, p is invertible and p-1 = R + aR. If 
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it is equal to p, then ap C p, and (R + aR)p = Rp. This implies that p is not 
invertible since otherwise, by simplifying, we would have R + aR = R, hence 
a E R. This proves the proposition. D 

Knowing this proposition, it is easy to obtain an algorithm for computing 
a suitable value of a. Note that ap C R hence ap E R, so we write a = (3/p 
with f3 E R. The conditions to be satisfied for f3 are then f3 E R \ pR and 
(3p c pR. 

Let w1, ... , Wn be a Z-basis of R, and let 11, ... , 'Ym be generators of P 
(for example if p = pR + aR we take 'Yl = p and 12 =a). Then, if we write 

f3 = L XiWi, 

1:5i:5n 

we want to find integers Xi which are not all divisible by p such that for all j 
with 1 ::; j ::; m the coordinates of (E Xiwihi on the wi are all divisible by p. 
If we set 

we obtain for all j and k 

Wi'Yj = L ai,j,kWk, 

1Sk:5n 

L ai,j,kXi = 0 (mod p) 
1:5i:5n 

which is a system of mn equations inn unknowns in ZjpZ for which we want 
a non-trivial solution. Since there are many more equations than unknowns 
(if m > 1), there is, a priori, no reason for this system to have a non-trivial 
solution. The proposition that we have just proved shows that it does, and 
we can find one by standard Gaussian elimination in ZjpZ (for example using 
Algorithm 2.3.1). 

In the frequent special case where m = 2, 'Yl = p and 12 =a for some 
a E ZK, the system simplifies considerably. For j = 1 the equations are trivial, 
hence we must simply solve the square linear system 

L ai,kXi = 0 (mod p) 
1:5i:5n 

where wia = El:5k:5n ai,kWk· 

From now on, we assume that R = ZK so that all ideals are invertible. 
Let I be an ideal of ZK given by its HNF (M, d) with respect to 0, where M 
is ann x n matrix. We want to compute vp(I), where pis a prime ideal of ZK 
(hence invertible). By the method explained above, we first compute a such 
that a E K \ ZK and ap C ZK, and as above we set f3 =apE ZK. We may 
assume that I is an integral ideal of ZK. (If I = I' j d' with I' an integral ideal 
and d' E Z, then clearly vp(I) = vp(I') - evp(d'), where e is the ramification 
index of p.) Now we have the following lemma which is the raison d'etre of a. 
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Lemma 4.8.16. With the above notations, if I is an integml ideal of ZK, 
then I C p if and only if al c ZK. In particular, vp(l) is the largest integer v 
such that av I C ZK. 

Proof. If I C p, then al cap C ZK. Conversely, assume that al c ZK, hence 
apl c p. Since the prime ideal p contains the product of the integral ideals 
ap and I, Proposition 4.6.12 shows that p contains one of the two. Now since 
p is invertible, p cannot contain ap by the above proposition, hence p ::) I. 
The final claim about the value of vp(I) is an immediate consequence of the 
definitions. 0 

If, as above we set a= /3/p with /3 E ZK \pZK, the condition av I C ZK is 
equivalent to 13v I c pvzK. Let (N, d) be the HNF of the maximal order ZK. 
By Corollary 4.7.6, we may assume that Nn,n = 1, by choosing d = dn. Now 
since I is an integral ideal, we have dl c dZK, and dZK is represented by an 
integral matrix, hence dl also, so the HNF with respect to (} of any integral 
ideal can be chosen of the form (M, d) with the same d. Conversely, given 
(M, d) where M is an integral matrix in Hermite normal form representing a 
fractional ideal I, we can test whether I is integral by checking I +ZK = ZK, 
hence by computing the HNF of an x 2n matrix as explained in Section 2.4.3. 
In our situation, a better way is to compute the HNF M' of I with respect 
to the HNF basis of ZK given by the matrix N instead of with respect to(}, 
where we allow M' to have fractional entries. We clearly have 

M' =N-1M, 

except that the non-diagonal entries may have to be reduced, and I is an 
integral ideal if and only if M' has integral entries. 

Hence, let (Mv, d) be the HNF of 13v I with respect to (}, M~ = N-1 Mv 
and set Cv = (M~)n,n· Then a necessary condition for 13v I to be contained in 
pvzK is that pv I Cv· This condition is in general not sufficient, but very often 
it is. For example, it is easy to show (see Exercise 21) that the condition is 
sufficient when p does not divide the index [ZK : Z[e]], and in particular if 
ZK = Z[e]. In the general case, we have to check the divisibility of all the 
coefficients of Mv by pv. This leads to the following algorithm. 

Algorithm 4.8.17 (Valuation at a Prime Ideal). Let (N, d) be the HNF of 
the maximal order ZK, let p be a prime ideal of ZK above p given by a generating 
system 'Yt. ... , 'Ym over ZK {for example 'Yl = p, -y2 =a for some a E ZK ), 
and let I be an integral ideal of ZK given by its HNF {M, d'). This algorithm 
computes the p-adic valuation vp{l) of the ideal I. 

1. [Compute structure constants] Let wi be the HNF basis of ZK corresponding 
to (N, d). Compute the integers ai,j,k such that 

W·'V· = ~ a· · kWk z 13 ~ .,,,, 

l::;k::;n 
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for 1 ~ i ~ n and 1 ~ j ~ m. Note that Wi"fj is computed as a polynomial in 
(), and since N is an upper triangular matrix it is easy to compute inductively 
the ai,j,k from k = n down to k = 1. 

2. [Compute .B] Using ordinary Gaussian elimination over IFP or Algorithm 2.3.1, 
find a non-trivial solution to the system of congruences 

2:: ai,j,kXi = 0 (mod p). 
1=:;i=:;n 

Then set .B- Li XiWi. 

3. [Compute N(I)] Set A - d/d' N-1 M which must be a matrix with integral 
entries (otherwise I is not an integral ideal). Let P be the product of the diag
onal elements of A. If p f P, output 0 and terminate the algorithm. Otherwise, 
set v -o. 

4. [Multiply] Set A- .BA in the following sense. Each column of A corresponds 
to an element of K in the basis wi, and these elements are multiplied by .B 
and expressed again in the basis wi, using the multiplication table for the wi. 

5. [Simple test] Using Algorithm 2.4.8, replace A by its HNF. Then, if p f An,n. 
output v and terminate the algorithm. Otherwise, if p does not divide the ind
dex [ZK: Z[O]] = ~ / det(N), set v- v + 1, A -Afp (which will be integr
al) and go to step 4. 

6. [Complete test] Set A - Afp. If A is not integral, output v and terminate the 
algorithm. Otherwise, set v - v + 1 and go to step 4. 

Note that steps 1 and 2 depend only on the ideal p, hence need be done 
only once if many p-adic valuations have to be computed for the same prime 
ideal p. Hence, a reasonable way to represent a prime ideal pis as a quintuplet 
(p,a,e,J,.B). Here pis the prime number over which plies, a E ZK is such 
that p = pZK + aZK, e is the ramification index and f the residual index of p, 
and .B is the element of IlK computed by steps 1 and 2 of the above algorithm, 
given by its coordinates Xi in the basis wi. Note also that Proposition 4.8.15 
tells us that pp-1 = pllK+ ,BilK. 

4.8.4 Ideal Inversion and the Different 

The preceding algorithms will allow us to give a satisfactory answer to a 
problem which we have not yet studied, that of ideal inversion in IlK. 

Let I be an ideal of IlK (which we can assume to be integral without 
loss of generality) given by a IlK-generating system "Yll ... , "Ym· We can for 
example take the HNF basis of I in which case m = n, but often I will be 
given in a simpler way, for example by only 2 elements. We can try to mimic 
the first two steps of Algorithm 4.8.17 which, as remarked above, amount to 
computing the inverse of the prime ideal p. 

Hence, let w1, ... , Wn be an integral basis of IlK. Then by definition of the 
inverse, X E I- 1 if and only if X"'fj E IlK for all j ~ k. Fix a positive integer 
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d belonging to I. Then dx E ZK so we can write dx = 2:::1 <k<n XkWk with 
Xk E Z and the condition X E I-1 can be written - -

L Xk"fjWk E dZK for all j. 
1~i~n 

If we define coefficients ui,j,k E Z by 

n 

"{jWk = L Ui,j,kWi 
i=1 

we are thus led to the nm x n system of congruences L:1<k<n XkUi,j,k = 0 
(mod d) for all i and j. - -

In the special case where I is a prime ideal as in Algorithm 4.8.17, we 
can choose d = p a prime number, and hence our system of congruences 
can be considered as a system of equations in the finite field 1Fp, and we can 
apply Algorithm 2.3.1 to find a basis for the set of solutions. Here, I is not a 
prime ideal in general, and we could try to solve the system of congruences 
by factoring d and working modulo powers of primes. A better method is 
probably as follows. Introduce extra integer variables Yi,j. Then our system is 
equivalent to the nm x (n+nm) linear system L:1<k<n XkUi,j,k -dyi,j = 0 for 
all i and j. We must find a Z-basis of the solutions -oHhis system, and for this 
we use the integral kernel Algorithm 2.7.2. The kernel will be of dimension n, 
and a Z-basis of di- 1 is then obtained by keeping only the first n rows of the 
kernel (corresponding to the variables Xk)· 

In the common case where m = n, this algorithm involves n 2 x (n2 + n) 
matrices, and this becomes large rather rapidly. Thus the algorithm is very 
slow as soon as n is at all large, and hence we must find a better method. 
For this, we introduce an important notion in algebraic number theory, the 
different, referring to the introductory books mentioned at the beginning of 
this chapter for more details. 

Definition 4.8.18. Let K be a number field. The different D(K) of K is 
defined as the inverse of the ideal (called the codifferent) 

It is clear that the different D(K) is an integral ideal. What makes the 
different interesting in our context is the following proposition. 

Proposition 4.8.19. Let (wih<i<n be an integral basis and let I be an ideal 
of ZK given by ann x n matrii M whose columns give the coordinates of a 
Z-basis ('Yih~i~n of I on the chosen integral basis. LetT= (ti,j) be then x n 
matrix such that ti,i = TrK/Q(wiwi)· Then the columns of the matrix (MtT)- 1 



206 4 Algorithms for Algebraic Number Theory I 

(again considered as coordinates on our integral basis} form a Z-basis of the 
ideal r 1il(K)-1 . 

Proof. First, note that by definition of M, the coefficient of row i and col
umn j in MtT is equal to TrK;Qbiwi)· Furthermore, if V =(vi) is a column 
vector, then V belongs to the lattice spanned by the columns of (MtT)- 1 

if and only if MtTV has integer coefficients. This implies that for all i 
TrK;Qbi(Li VjWj)) E Z, in other words that TrK;Q(xi) C Z, where we have 
set x = Li viwi· Since xi= xiZK, the proposition follows. D 

In particular, when I= ZK and 'Yi = Wi is an integral basis, this proposi
tion shows that a Z-basis of il(K)-1 is obtained by computing the inverse of 
the matrix TrK;Q(wiwi)· Since the determinant of this matrix is by definition 
equal to d(K), this also shows that N(il(K)) = id(K)i. 

The following theorem is a refinement of Theorem 4.8.8 (see [Mar]). 

Theorem 4.8.20. The prime ideals dividing the different are exactly the ram
ified prime ideals, i.e. the prime ideals whose ramification index is greater than 
1. 

To compute the inverse of an ideal I given by a Z-basis 'Yi represented by 
an n x n matrix M on the integral basis as above, we thus proceed as follows. 
Computing r-1 we first obtain a basis of the codifferent il(K) - 1. We then 
compute the ideal product Iil(K)-1 by Hermite reduction of ann x n2 matrix 
as explained in Section 4.7. If N is the HNF matrix of this ideal product, then 
by Proposition 4.8.19, the columns (NtT)-1 will form a Z-basis of the ideal 
(Iil(K)-1 )-1il(K)-1 = r 1, thus giving the inverse of I after another HNF. 
In paractice, it is better to work only with integral ideals, and since we know 
that det(T) = d(K), this means that we will replace il(K)-1 by d(K)il(K)-1 

which is an integral ideal. 

This leads to the following algorithm. 

Algorithm 4.8.21 (Ideal Inversion). Given an integral basis (wih~i:S;n of the 
ring of integers of a number field K and an integral ideal I given by an n x n 
matrix M whose columns give the coordinates of a Z-basis 'Yi of I on the Wi, this 
algorithm computes the HNF of the inverse ideal I-1. 

1. [Compute d(K)il(K)-1] Compute the n x n matrix T = (ti,j) such that 
ti,i = TrK;Q(wiwi)· Set d- det(T) {this is the discriminant d(K) of K 
hence is usually available with the wi already). Finally, call oi the elements of 
ZK whose coordinates on the wi are the columns of dT- 1 (thus the oi will be 
a Z-basis of the integral ideal d(K)il(K)-1 ). 

2. [Compute d(K)Iil(K)-1] Let N be the HNF of the n x n 2 matrix whose 
columns are the coordinates on the integral basis of the n2 products 'Yioi (the 
columns of N will form a .Z-basis of d(K)Iil(K)-1). 
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3. [Compute I- 1] Set P +--- d(K)(NtT)- 1, and let e be a common denominator 
for the entries of the matrix P. Let W be the HNF of eP. Output (W, e) as 
the HNF of I- 1 and terminate the algorithm. 

The proof of the validity of the algorithm is easy and left to the reader. 0 

Remarks. 

(1) If many ideal inversions are to be done in the same number field, step 1 
should of course be done only once. In addition, it may be useful to find 
a two-element representation for the integral ideal d(K)7J(K)- 1 since this 
will considerably speed up the ideal multiplication of step 2. Algorithm 
4.7.10 cannot directly be used for that purpose since it is valid only for 
prime ideals, but similar algorithms exist for general ideals (see Exercise 
30). In addition, if 'ZK = Z[B] and if P[X] is the minimal monic polynomial 
of e, then one can prove (see Exercise 33) that 7J(K) is the principal ideal 
generated by P'(O), so the ideal multiplication of step 2 is even simpler. 

(2) If we want to compute the HNF of the different 7J(K) itself, we apply the 
above algorithm to the integral ideal d(K)7J(K)- 1 (with M = d(K)T- 1 ) 

and multiply the resulting inverse by d(K) to get 7J(K). 

Now that we know how to compute the inverse of an ideal, we can give an 
algorithm to compute intersections. This is based on the following formula, 
which is valid if I and J are integral ideals of ZK: 

I n J = I · J · (I + J) - 1. 

This corresponds to the usual formula lcm( a, b) = a · b · (gcd( a, b)) - 1. We have 
seen above how to compute the HNF of sums and products of modules, and 
in particular of ideals, knowing the HNF of each operand. Since we have just 
seen an algorithm to compute the inverse of an ideal, this gives an algorithm 
for the intersection of two ideals. 

However, a more direct (and usually better) way to compute the intersec
tion of two ideals is described in Exercise 18. 

4.9 Units and Ideal Classes 

4.9.1 The Class Group 

Definition 4.9.1. Let K be a number field and ZK be the ring of integers of 
K. We say that two (fractional) ideals I and J of K are equivalent if there 
exists a E K* such that J = a I. The set of equivalence classes is called the 
class group of'ZK (or of K) and is denoted Cl(K). 
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Since fractional ideals of 'llK form a group it follows that Cl(K) is also a 
group. The main theorem concerning Cl(K) is that it is finite: 

Theorem 4.9.2. For any number field K, the class group Cl(K) is a finite 
Abelian group, whose cardinality, called the class number, is denoted h(K). 

Denote by I(K) the set of fractional ideals of K, and P(K) the set of 
principal ideals. We clearly have the exact sequence 

1 ~ P(K) ~ I(K) ~ Cl(K) ~ 1. 

The determination of the structure of Cl ( K) and in particular of the class 
number h(K) is one of the main problems in algorithmic algebraic number 
theory. We will study this problem in the case of quadratic fields in Chapter 
5 and for general number fields in Chapter 6. 

Note that h(K) = 1 if and only if 'llK is a PID which in turn is if and only 
if 'llK is a UFD. Hence the class group is the obstruction to 'llK being a UFD. 

We can also define the class group for an order in K which is not the 
maximal order. In this case however, since not every ideal is invertible, we 
must slightly modify the definition. 

Definition 4.9.3. Let R be an order inK which is not necessarily maximal. 
We define the class group of R and denote by Cl(R) the set of equivalence 
classes of invertible ideals of R {the equivalence relation being the same as 
before). 

Since all fractional ideals of 'llK are invertible, this does generalize the 
preceding definition. The class group is still a finite Abelian group whose 
cardinality is called the class number of R and denoted h(R). Furthermore, 
it follows immediately from the definitions that the map I ~--+ I'llK from R
ideals to '1lK-ideals induces a homomorphism from Cl(R) to Cl(K) and that 
this homomorphism is surjective. In particular, h(R) is a multiple of h(K). 

Since the discovery of the class group in 1798 by Gauss, many results have 
been obtained on class groups. Our ignorance however is still enormous. For 
example, although widely believed to be true, it is not even known if there exist 
an infinite number of isomorphism classes of number fields having class number 
1 (i.e. with trivial class group, or again such that 'llK is a PID). Numerical 
and heuristic evidence suggests that already for real quadratic fields Q( y'P) 
with p prime and p::::::: 1 (mod 4), not only should there be an infinite number 
of PID's, but their proportion should be around 75.446% (see [Coh-Len1], 
[Coh-Mar] and Section 5.10). 

Class numbers and class groups arise very often in number theory. We give 
two examples. In the work on Fermat's last "theorem" (FLT), it was soon dis
covered that the obstruction to a proof was the failure of unique factorization 
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in the cyclotomic fields Q( (p) where (p is a primitive pth root of unity (a num
ber field of degree p -1, generated by the polynomial xp-l +···+X+ 1), 
where pis an odd prime. It was Kummer who essentially introduced the no
tion of ideals, and who showed how to replace unique factorization of elements 
by unique factorization of ideals, which as we have seen, is always satisfied 
in a Dedekind domain. It is however necessary to come back to the elements 
themselves in order to finish the argument-that is to obtain a principal ideal. 
What is obtained is that aP is principal for some ideal a. Now, by definition of 
the class group, we also know that ah is principal, where h is the class number 
of our cyclotomic field. Hence, we can deduce that a itself is principal if p 
does not divide h. This fortunately seems to happen quite often (for example, 
for 22 out of the 25 primes less than 100); this proves FLT in many cases 
(the so-called regular primes). One can also prove FLT in other cases by more 
sophisticated methods. 

The second use of class groups, which we will see in more detail in Chapters 
8 and 10, is for factoring large numbers. In that case one uses class groups of 
quadratic fields. For example, the knowledge of the class group (in fact only 
of the 2-Sylow subgroup) of Q( vCN) is essentially equivalent to knowing the 
factors of N, hence if we can find an efficient method to compute this class 
group or its 2-Sylow subgroup, we obtain a method for factoring N. This is 
the basis of work initiated by Shanks ([Shall) and followed by many other 
people (see for example [Seyl], [Schn-Len] and [Buell). 

4.9.2 Units and the Regulator 

Recall that a unit x in K is an algebraic integer such that 1/x is also an 
algebraic integer, or equivalently is an algebraic integer of norm ±1. 

Definition 4.9.4. The set of units in K form a multiplicative group which 
we will denote by U(K). The torsion subgroup ofU(K), i.e. the group of roots 
of unity inK, will be denoted by J.L(K). 

(Note that some people write E(K) because of the German word "Ein
heiten" for units, but we will keep the letter E for elliptic curves.) 

It is clear that we have the exact sequence 

1 ---+ U(K) ---+ K* ---+ P(K) ---+ 1, 

where as before P(K) denotes the set of principal ideals inK. If we combine 
this exact sequence with the preceding one, we can complete a commutative 
diagram in the context of ideles, by introducing a generalization of the class 
group, called the idele class group C(K). We will not consider these subjects 
in this course, but without explaining the notations (see [Lang2]) I give the 
diagram: 
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1 1 1 

1 1 1 
1 U(K) Jsoo(K) Csoo (K) ------+ 1 

1 1 1 
1 K* J(K) C(K) -----+1 

1 1 1 
1 P(K) I(K) Cl(K) -------+ 1 

1 1 1 
1 1 1 

The main result concerning units is the following theorem 

Theorem 4.9.5 (Dirichlet). Let (r1 , r 2 ) be the signature of K. Then the group 
U(K) is a finitely generated Abelian group of rank r 1 + r 2 -1. In other words, 
we have a group isomorphism 

and J.£( K) is a finite cyclic group. 

If we set r = r 1 + r2 - 1, we see that there exist units u1, ... , Ur such 
that every element x of U(K) can be written in a unique way as 

where ni E Z and ( is a root of unity inK. Such a family (ui) will be called 
a system of fundamental units of K. It is not unique, but since changing a 
Z-basis of zr into another involves multiplication by a matrix of determinant 
±1, the absolute value of the determinant of the ui in some appropriate sense, 
is independent of the choice of the ui, and this is what we will call the regulator 
of K. The difficulty in defining the determinant comes because the units form 
a multiplicative group. To use determinants, one must linearize the problem, 
i.e. take logarithms. 

Let a1, ... , ar1 , ar1 +1 1 ••• , ar1+r2 be the first r1 +r2 embeddings of Kin 
C, where the ai for i ~ r1 are the real embeddings, and the other embeddings 
are the ai and 7fi = ar2 +i fori> r1. 

Definition 4.9.6. The logarithmic embedding of K* in !Rr1 +r2 is the map 
L which sends x to 
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It is clear that L is an Abelian group homomorphism. Furthermore, we 
clearly have ln IN K/Q(x)i = L: 1~i~r1+r2 Li(x) where Li(x) denotes the ith 

component of L(x). It follows that the image of the subgroup of K* of elements 
of norm equal to ±1 is contained in the hyperplane L:l<i<r +r Xi = 0 of 

-- 1 2 
]Rr1+r2. 

The first part of the following theorem is essentially a restatement of 
Theorem 4.9.5, and the second part is due to Kronecker (see Exercise 25). 

Theorem 4.9.7. 

(1) The image of the group of units U(K) under the logarithmic embedding 
is a lattice (of mnk r1 + r2 - 1} in the hyperplane L: 1~i~r1+r2 Xi = 0 of 
]Rr1 +r2. 

(2) The kernel of the logarithmic embedding is exactly equal to the group ~t(K) 
of the roots of unity in K. 

Definition 4.9.8. The volume of this lattice, i.e. the absolute value of the 
determinant of any Z-basis of the above defined lattice is called the regulator 
of K and denoted R(K). If u1, ... , Ur is a system of fundamental units of K 
(where r = r1 + r2 -1}, R(K) can also be defined as the absolute value of the 
determinant of any of the r x r matrices extmcted from the r x ( r + 1) matrix 

where llu(x)ll = iu(x)l if u is a real embedding and llu(x)ll = iu(x)l 2 if u is a 
complex embedding (note that L(x) = (ln llui(x)llh~i~r+l)· 

The problem of computing regulators (or fundamental units) is closely 
linked to the problem of computing class numbers, and is one of the other 
main tasks of computational algebraic number theory. 

On the other hand, the problem of computing the subgroup of roots of 
unity ~t(K) is not difficult. Note, for example, that if r 1 > 0 then ~t(K) = { ±1} 
since all other roots of unity are non-real. Hence, we can assume r1 = 0, 
and by the above theorem we must find integers xi such that for every j, 
iuj(L:1<i<nxiwi)l2 = 1 where Wi is an integral basis of ZK· If we set x = 
(x1, ... ~ x~), this implies that 

Q(x) = L iuj( L Xiwi)i 2 = n. 
j l~i~n 

Conversely, the inequality between arithmetic and geometric mean shows that 
if p E ZK \ {0}, then 
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j j 

with equality if and only if alllai(P)I 2 are equal. It follows that n is the min
imum non-zero value of the quadratic form Q on zn' and that this minimum 
is attained when lai(P)I = 1 for all j, where p = Eixiwi. Finally, Theorem 
4.9.7 (2) tells us that such a pis a root of unity (see Exercise 25). Hence, the 
computation of the minimal vectors of the lattice (zn, Q) using, for example, 
the Fincke-Pobst Algorithm 2.7.7, will give us quite rapidly the set of roots of 
unity inK. Thus we have the following algorithm. 

Algorithm 4.9.9 (Roots of Unity Using Fincke-Pobst). Let K = Q(O) be a 
number field of degree nand T the minimal monic polynomial of 0 over Q. This 
algorithm computes the order w(K) of the group of roots of unity J.£(K) of K 
(hence J.£(K) will be equal to the set of powers of a primitive w(K)-th root of 
unity). 

1. [Initialize] Using Algorithm 4.1.11 compute the signature (r1, r2) of K. If r1 > 
0, output w(K) = 2 and terminate the algorithm. Otherwise, using Algorithm 
6.1.8 of Chapter 6, compute an integral basis w1 , ... , Wn of K as polynomials 
in 0. 

2. [Compute matrix] Using Algorithm 3.6.6, compute a reasonably accurate value 
of (} and its conjugates O"j ( 0) as the roots ofT, then the numerical values of 
ai(wk)· Finally, compute a reasonably accurate approximation to 

ai,i +- L ak(wi)ak(wi) 
1:5k:5n 

(note that this will be a real number), and let A be the symmetric matrix 
A= (ai,ih:5i,j:5n· 

3. [Apply Fincke-Pohst] Apply Algorithm 2.7.7 to the matrix A and the constant 
C = n+O.l. 

4. [Final check] Set s +- 0. For each pair (x, -x) with (x1 , ... , xn) which is 
output by Algorithm 2.7.7, set p +- El<i<nXiWi, and sets+- s + 1 if pis 
a root of unity (this can be checked exactly in several easy ways, see Exercise 
26). 

5. Output w(K) +- 2s and terminate the algorithm. 

Remark. The quadratic form Q considered here is, not surprisingly, the same 
as the one that we used for the polynomial reduction Algorithm 4.4.11. Note 
however that in POLRED we only wanted small vectors in the lattice, cor
responding to algebraic numbers of degree exactly equal to n, while here we 
want the smallest vectors, and they correspond in general to algebraic num
bers of degree less than n. Note also that in practice all the vectors output in 
step 4 correspond to roots of unity. 
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We can also give an algorithm based on those of Section 4.5.3 as follows. 

Algorithm 4.9.10 (Roots of Unity Using the Subfield Problem). Let K = 
IQ(O) be a number field of degree nand T the minimal monic polynomial of e over 
IQ. This algorithm computes the order w(K) of the group of roots of unity f.L(K) 
of K (hence f.L(K) will be equal to the set of powers of a primitive w(K)-th root 
of unity). 

1. [Initialize) Using Algorithm 4.1.11 compute the signature (r1, r2) of K. If r1 > 
0, output w(K) = 2 and terminate the algorithm. Otherwise, using Algorithm 
6.1.8 of Chapter 6, compute the discriminant d(K) of K, and set w +-- 1. 

2. [Compute primes) Let£ be the list of primes p such that (p -1) I n (since n 
is very small, £ can be simply obtained by trial division). Let c be the number 
of elements of £, and set i +-- 0. 

3. [Get next prime and exponent) Set i +-- i + 1. If i > c output w and terminate 
the algorithm. Otherwise, let p be the i-th element in the list £, set 

k +-lvp(d(K)) + _1_J, 
n p-1 

and set j +-- 0. 

4. [Test cyclotomic polynomials) Set j +-- j + 1. If j > k, go to step 3. Oth
erwise, applying Algorithm 4.5.4 to A(X) = ci>pi (X) and B(X) = T(X) 
(where ci>pi (X) = 'L:f~g Xipi-l is the pi-th cyclotomic polynomial) deter
mine whether K has a subfield isomorphic to IQ((p:i) (where (p:i is some root 
of ci>p:i (X), i.e. a primitive pi-th root of unity). If it does, go to step 4, and if 
not, set w +-- wpi-1 and go to step 3. 

Remarks. 

(1) The validity of the check in step 3 follows from Exercise 24 and Proposition 
4.4.8. We can avoid the computation of the discriminant of K, and skip 
this step, at the expense of spending more time in step 4. 

(2) We refer to [Was] or [Ire-Ros] for cyclotomic fields (which we will meet 
again in Chapter 9) and cyclotomic polynomials. The (general) cyclotomic 
polynomials can be computed either by induction or by the explicit for
mula 

ci>m(X) =II (Xd -1)JL(m/d) 

dim 

where p,(n) is the Mobius function, but in our case this simplifies to the 
formula 

p-1 

<I> pi (X) = 2:::: xipj-l 
i=O 

used in the algorithm. 
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(3) Although Algorithm 4.9.10 is more pleasing to the mind, Algorithm 4.9.9 
is considerably faster and should therefore be preferred in practice. Care 
should be taken however to be sufficiently precise in the computation of the 
numerical values of the coefficients of Q. We have given in detail Algorithm 
4.9.10 to show that an exact algorithm also exists. 

All the quantities that we have defined above are tied together if we view 
them analytically. 

Definition 4.9.11. Let K be a number field. We define for Re(s) > 1 the 
Dedekind zeta function (K(s) of K by the formulas 

"' 1 1 (K(s) = Lt N(a) 8 = IJ 1 
a P 1-N(p)s 

where the sum is over all non-zero integral ideals of ZK and the product is 
over all non-zero prime ideals of ZK. 

The equality between the two definitions follows from unique factorization 
into prime ideals (Theorem 4.6.14), and the convergence for Re(s) > 1 is 
proved in Exercise 22. 

The basic theorem concerning this function is the following. 

Theorem 4.9.12 (Dedekind). Let K be a number field of degree n having r1 

real places and r2 complex ones (so r 1 + 2r2 = n). Denote by d(K), h(K), 
R(K) and w(K) the discriminant, class number, regulator and number of roots 
of unity of K respectively. 

(1) The function (K(s) can be analytically continued to the whole complex 
plane into a meromorphic function having a single pole at s = 1 which is 
simple. 

(2) If we set 

we have the functional equation 

A(1- s) = A(s). 

(3) If we set r = r1 + r2 -1 {which is the rank of the unit group), (K(s) has 
a zero of order r at s = 0 and we have 
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(4) Equivalently by the functional equation, the residue of (K(s) at s = 1 is 
given by 

. h(K)R(K) 
hm ( s - 1 )(K ( s) = 2r1 (2·nf2 -..:.........:--===== 
•-1 w(K)Jid(K)i 

This theorem shows one among numerous instances where h(K) and R(K) 
are inextricably linked. 

Remarks. 

(1) From this theorem it is easily shown (see Exercise 23) that if NK(x) de
notes the number of integral ideals of norm less than or equal to x, then 

lim NK(x) = 2rt(27tf2 h(K)R(K) . 
x-oo X w(K)Jid(K)I 

(2) It is also possible to prove the following generalization of the prime number 
theorem (see [Lang2]). 

Theorem 4.9.13. LetJrK(x) (resp. 1r~)(x)) be the number of prime ideals 
(resp. prime ideals of degree 1} whose norm is less than equal to x. Then 

) (1) ) 
lim 1rK(x = lim JrK (x = 1. 

x-oo x/ln(x) x-oo x/ln(x) 

Dedekind's Theorem 4.9.12 shows that the behavior of (K(s) at s = 0 and 
s = 1 is linked to fundamental arithmetic invariants of the number field K. 
Siegel proved that the values at negative integers are rational numbers, hence 
they also have some arithmetic significance. From the functional equation it 
is immediately clear that (K ( s) vanishes for all negative integers s if K is 
not totally real, and for even negative integers if K is totally real. Hence, the 
only interesting values are the (K(l- 2m) for totally real fields K (r2 = 0) 
and positive integral m. There are special methods, essentially due to Siegel, 
for computing these values using the theory of Hilbert modular forms. As 
an example, we give the following result, which also shows the arithmetic 
significance of these values (see [Coh], [Zagl]). 

Theorem 4.9.14. Let K = Q( ,;75) be a real quadratic field of discriminant 
D. Define a(n) to be equal to the sum of the positive divisors of n if n is 
positive, and equal to 0 otherwise. Then 
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(1) 

1 (D s 2
) (K(-1) = 60 L a ---T-

s=D(mod2) 

(this is a finite sum). 
(2) The number r 5 (D) of representations of D as a sum of 5 squares of ele

ments of 7l (counting representations with a different ordering as distinct) 
is given by 

r 5(D) = 48(s-2(~))(K(-1) 
(this formula must be slightly modified if D is not the discriminant of a 
real quadratic field, see (Coh2}). 

I have already mentioned how little we know about class numbers. The 
same can be said about regulators. For example, we can define the regulator of 
a number field in a p-adic context, essentially by replacing the real logarithms 
by p-adic ones. In that case, even an analogue of Dirichlet's theorem that the 
regulator does not vanish is not known. This is a famous unsolved problem 
known as Leopoldt's conjecture. It is known to be true for some classes of 
fields, for example Abelian extensions of IQ (see [Was] Section 5.5). 

We do have a theorem which gives a quantitative estimate for the product 
of the class number and the regulator (see [Sie], [Brau] and [Lang2]): 

Theorem 4.9.15 (Brauer-Siegel). Let K vary in a family of number fields 
such that ld(K)I 1/deg(K) tends to infinity, where d(K) is the discriminant of 
K. Assume, in addition, that these fields are Galois over Q. Then, we have 
the following asymptotic relation: 

ln(h(K)R(K)) rv ln(ld(K)I 112 ). 

This shows that the product h(K)R(K) behaves roughly as the square root 
of the discriminant. The main problem with this theorem is that it is non
effective, meaning that nobody knows how to give explicit constants to make 
the rv sign disappear. For example, for imaginary quadratic fields, r = 0 hence 
R(K) = 1, and although the Brauer-Siegel theorem tells us that h(K) tends 
to infinity with ld(K)I, and even much more, the problem of finding an explicit 
function f(d) tending to infinity with d and such that h(K) :2: f(ld(K)I) is 
extremely difficult and was only solved recently using sophisticated methods 
involving elliptic curves and modular forms, by Goldfeld, Gross and Zagier 
([Gol], [Gro-Zag2]). 

Note that one conjectures that the theorem is still true without the 
hypothesis that the fields are Galois extensions. This would follow from 
Artin's conjecture on non-Abelian £-functions and on certain Generalized 
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Riemann Hypotheses. On the other hand, one can prove that the hypothe
sis on ld(K)I 1/deg(K) is necessary. The following is a simple corollary of the 
Brauer-Siegel Theorem 4.9.15: 

Corollary 4.9.16. Let K vary over a family of number fields of fixed degree 
over IQ. Then, as ld(K)I --+ oo, we have 

ln(h(K)R(K)) "'ln(ld(K)I 1/ 2). 

4.9.3 Conclusion: the Main Computational Tasks of Algebraic 
Number Theory 

From the preceding definitions and results, it can be seen that the main com
putational problems for a number field K = IQ(O) are the following: 

(1) Compute an integral basis of 'llK, determine the decomposition of prime 
numbers in 'llK and p-adic valuations for given ideals or elements. 

(2) Compute the Galois group of the Galois closure of K. 
(3) Compute a system of fundamental units of K and/or the regulator R(K). 

Note that these two problems are not completely equivalent, since for 
many applications, only the approximate value of the real number R(K) 
is desired. In most cases, by the Brauer-Siegel theorem, the fundamental 
units are too large even to write down, at least in a na'ive manner (see 
Section 5.8.3 for a representation which avoids this problem). 

(4) Compute the class number and the structure of the class group Cl(K). It 
is essentially impossible to do this without also computing the regulator. 

(5) Given an ideal of 'llK, determine whether or not it is principal, and if it 
is, compute a E K such that I = a'llK. 

In the rest of this book, we will give algorithms for these tasks, placing 
special emphasis on the case of quadratic fields. 

Although they are all rather complex, some sophisticated versions are quite 
efficient. With fast computers and careful implementations, it is possible to 
tackle the above tasks for quadratic number fields whose discriminant has 50 
or 60 decimal digits (less for general number fields). Work on this subject is 
currently in progress in several places. 

4.10 Exercises for Chapter 4 

1. (J. Martinet) Let P(X) = X 4 + aX3 + bX 2 +eX+ d E IR[X) be a squarefree 
polynomial. Set D +---disc( F), A +-3a2 - 8b, B +--- b2 - a2 b +(3/16)a4 + ac-4d. 
Show that the signature of P is given by the following formulas. (r1, r2) = (2, 1) 
iff D < 0, (ri,r2) = (4,0) iff D > 0, A> 0 and B > 0, and (r1,r2) = (0,2) iff 
D > 0 and either A~ 0 or B ~ 0. (Hint: use Exercise 29 of Chapter 3.) 
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2. If o: and (J are two algebraic numbers of degree n generating the same number 
field K over Q, write an algorithm to find the standard representation of 8 in 
terms of o: knowing the standard representation of o: in terms of 8. 

3. Prove Newton's formulas (i.e. Proposition 4.3.3). 

4. Compute the minimal polynomial of o: = 21/ 4 + 21/ 2 using several methods, and 
compare their efficiency. 

5. Let K be a number field of signature (r1 , r 2 ). Using the canonical isomorphism 

show that the quadratic form TrK;Q(x2) has signature (r1 +r2,r2). 

6. Prove that if P = I:~=o akXk is a monic polynomial and if S = size(P) in the 
sense of Section 4.4.2, then 

ian-ki :5 (nk)(~n)k/2' 

and that the constant is best possible if P is assumed to be with complex (as 
opposed to integral) coefficients (hint: use a variational principle). 

7. (D. Shanks.) Using for example Algorithm 4.4.11, show the following "incredible 
identity" A= B, where 

and 

B = V11 + 2v'29 + v 16-259 + 2V55 -1059. 

See [Sha4] for an explanation of this phenomenon and other examples. See also 
[BFHT] and [Zip] for the general problem of radical simplification. 

8. Consider modifying the POLRED algorithm as follows. Instead of the quadratic 
form size(P), we take instead 

f(P) = L lo:i- o:;l 2 , 

i<j 

which is still a quadratic form in then variables Xi when we write o: = 2::~= 1 XiWi· 

Experiment on this to compare it with POLRED, and in particular see whether 
it gives a larger number of proper subfields of K or a smaller index. 

9. Prove Proposition 4.5.3. 

10. Write an algorithm which outputs all quadratic subfields of a given number field. 

11. Let R be a Noetherian integral domain. Show that any non-zero ideal of R 
contains a product of non-zero prime ideals. 

12. Let d1 and d2 be coprime integers such that d = d1d2 E I, where I is an integral 
ideal in a number field K. Show that I= I1I2 where Ii =I+ diZ.K, and show 
that this is false in general if d1 and d2 are not assumed to be coprime. 

13. Let R be an order in a number field, and let I and J be two ideals in R. Assume 
that I is a maximal (i.e. non-zero prime) ideal. Show that N(I) N(J) I N(I J) 
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and that N(I2 ) = N(I)2 if and only if I is invertible. (Note that these two 
results are not true anymore if I is not assumed maximal.) 

14. Let R be an order in a number field. For any non-zero integral ideal of R, set 
f(I) = [R: II'] where as in Lemma 4.6.7 we set I' = {x E K, xi C R}. This 
function can be considered as a measure of the non-invertibility of the ideal I. 

a) If I is a maximal ideal, show that either I is invertible (in which case 
f(I) = 1) or else j(I) = N(I). 

b) Generalizing Proposition 4.6.8, show that if I and J are two ideals such 
that f(I) and f( J) are coprime, we still have N(I J) = N(I) N( J). 

15. (H. W. Lenstra) Let a be an algebraic number which is not necessarily an 
algebraic integer' and let anxn + an-1 xn-1 + ... + ao be its minimal polynomial. 
Set 

a) Show that Z[a] is an order of K, and that its definition coincides with 
the usual one when a is an algebraic integer. 

b) Show that Proposition 4.4.4 (2) remains valid if T E Z[X] is not assumed 
to be monic, if we use this generalized definition for Z[8]. How should Proposition 
4.4.4 (1) be modified? 

16. Show that the converse of Theorem 4. 7.5 is not always true, in other words if 
(W, d) is a HNF representation of a Z-module M satisfying the properties given 
in the theorem, show that M is not always a Z[e]-module. 

17. Assume that W is a HNF of an ideal I of R with respect to a basis a1 = 1, 
a2, ... , an of R. Show that it is still true that Wi,i I w1,1 for all i, and that if 
Wi,i = W1,1 then Wj,i = 0 for j =/= i. 

18. Show that by using Algorithms 2.4.10 or 2.7.2 instead of Algorithm 2.3.1, Al
gorithm 2.3.9 can be used to compute the intersection of two Z-modules, and in 
particular of two ideals. Compare the efficiency of this method with that given 
in the text. 

19. Let p be a (non-zero) prime ideal in ZK for some number field K, and assume 
that p is not above 2. If x E ZK, show that there exists a unique c E { -1, 0, + 1} 
such that 

x<N(p)-1)/2 = c (mod p), 

where we write x := y (mod p) if x- y E p. This c is called a "generalized 
Legendre symbol" and denoted (;). Study the generalization to this symbol of 
the properties of the ordinary Legendre symbol seen in Chapter 1. 

20. Show that the condition vp(N(a)) = f of Lemma 4.7.9 is not a necessary con
dition for p to be equal to (p, a) (hint: decompose a and pZK as a product of 
prime ideals). 

21. Using the notation of Algorithm 4.8.17, show that if the prime p does not divide 
the index [R : Z[8]], then pv I An,n is equivalent to pv divides all the coefficients 
of the matrix A. 

22. Let s be a real number such that s > 1. Show that if K is a number field 
of degree n we have (K(s) s C(s) where ((s) = (Q(s) is the usual Riemann 
zeta function, and hence that the product and series defining (K ( s) converge 
absolutely for Re(s) > 1. 
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23. If K is a number field, let NK(x) be the number of integral ideals of ZK of 
norm less than or equal to x. Using Theorem 4.9.12, and a suitable Tauberian 
theorem, find the limit as x tends to infinity of NK(x)jx. 

24. Let K = Q( (pk) where p is a prime and (m denotes a primitive m-th root of 
unity. One can show that ZK = Z[(pk]. Using this, compute the discriminant of 
the field K, and hence show the validity of the formula in Step 3 of Algorithm 
4.9.10. 

25. Let a be an algebraic integer of degree d all of whose conjugates have absolute 
value 1. 

a) Show that for every positive integer k, the monic minimal polynomial of 
ak in Z[X] has all its coefficients bounded in absolute value by 2d. 

b) Deduce from this that there exists only a finite number of distinct powers 
of a, hence that a is a root of unity. (This result is due to Kronecker.) 

26. Let p E ZK be an algebraic integer given as a polynomial in(}, where K = Q(O) 
and Tis the minimal monic polynomial of(} in Z[X]. Give algorithms to check 
exactly whether or not p is a root of unity, and compare their efficiency. 

27. Let K = Q[O] where 8 is a root of the polynomial X 4 +1. Show that the subgroup 
of roots of unity of K is the group of 8-th roots of unity. Show that 1 + J2 is 
a generator of the torsion-free part of the group of units of K. What is the 
regulator of K? (Warning: it is not equal to ln(1 + J2)). 

28. Let p be a (non-zero) prime ideal in ZK for some number field K, let e = e(pjp) 
be its ramification index, let p = p'll..K + aZK be a two-element representation 
of p, and finally let v = Vp (a). Let a~ 1 and b ~ 1 be integers. By computing 
q-adic valuations for each prime ideal q, show that 

Deduce from this formulas for computing explicitly pk for any k ~ 1. 

29. Let I be an integral ideal in a number field K and let R(I) be the positive 
generator of I n Z. 

a) Show that 
R(I) = II pmaxPIPrvp(I)/e(pfp)l. 

PIN (I) 

b) Let a E I be such that (N(I),N(a)/ N(I)) = 1. Show that 

(this is a partial generalization of Lemma 4. 7.9). 
c) Deduce from this an algorithm for finding a two-element representation 

of I analogous to Algorithm 4.7.10. 

30. Let K = Q[O] be a number field, where (} is an algebraic integer whose minimal 
monic polynomial is P(X) E Z[X]. Assume that ZK = Z[O]. Show that the 
different il(K) is the principal ideal generated by P'(O). 

31. Let I and J be two integral ideals in a number field K given by their HNF 
matrices M1 and MJ. Assume that I and J are coprime, i.e. that I+ J = ZK· 
Give an algorithm which finds i E I and j E J such that i + j = 1. 
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32. a) Using the preceding exercise, give an algorithm wich finds explicitly the 
element (3 E IlK whose existence is proven in Proposition 4.7.7. 

b) Deduce from this an algorithm which finds a two-element representation 
I = aZK + f3ZK of an integral ideal I given a non-zero element a E I. 

c) In the case where a= .e(I), compare the theoretical and practical perfor
mance of this algorithm with the one given in Exercise 29. 

33. Let a and (3 be non-zero elements of K*. Show that there exist u and v in IlK 
such that a(J = ua2 + v(32 , and give an algorithm for computing u and v. 

34. Modify Proposition 4.3.4 so that it is still valid when T(X) E Q[X] and not 
necessarily monic. 





Chapter 5 

Algorithms for Quadratic Fields 

5.1 Discriminant, Integral Basis and Decomposition of 
Primes 

In this chapter, we consider the simplest of all number fields that are dif
ferent from Q, i.e. quadratic fields. Since n = 2 = r 1 + 2r2, the signature 
(r1,r2) of a quadratic field K is either (2,0), in which case we will speak 
of real quadratic fields, or (0, 1), in which case we will speak of imaginary 
(or complex) quadratic fields. By Proposition 4.8.11 we know that imaginary 
quadratic fields are those of negative discriminant, and that real quadratic 
fields are those with positive discriminant. 

Furthermore, by Dirichlet's unit theorem, the rank of the group of units 
is r1 + r2 - 1, hence it can be equal to zero only in two cases: either r1 = 1, 
r2 = 0, hence n = 1 so K = Q, a rather uninteresting case (see below however). 
Or, r1 = 0 and r2 = 1, hence n = 2, and this corresponds to imaginary 
quadratic fields. One reason imaginary quadratic fields are simple is that they 
are the only number fields (apart from Q) with a finite number of units {almost 
always only 2). We consider them first in what follows. However, a number of 
definitions and simple results can be given uniformly. 

Since a quadratic field K is of degree 2 over Q, it can be given by K = Q(B) 
where B is a root of a monic irreducible polynomial of Z[X], say T(X) = 
X 2 +aX +b. If we set O' = 2B+a, then B' is a root of X 2 = a 2 -b =d. Hence, 
K = Q( Vd) where d is an integer, and the irreducibility ofT means that d is 
not a\square. Furthermore, it is clear that Q( y'dj2) = Q( v'd), hence we may 
assumed squarefree. The discriminant and integral basis problem is easy. 

Proposition 5.1.1. Let K = Q( v'd) be a quadratic field with d squarefree 
and not a square (i.e. different from 1). Let 1, w be an integral basis and d( K) 
the discriminant of K. Then, if d = 1 (mod 4), we can take w = (1 + Vd)/2, 
and we have d(K) = d, while if d = 2 or 3 (mod 4), we can take w = v'd and 
we have d(K) = 4d. 

This is well known and left as an exercise. Note that we can, for example, 
appeal to Corollary 4.4.7, which is much more general. 

For several reasons, in particular to avoid making unnecessary case dis
tinctions, it is better to consider quadratic fields as follows. 
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Definition 5.1.2. An integer D is called a fundamental discriminant if D 
is the discriminant of a quadratic field K. In other words, D * 1 and either 
D = 1 (mod 4) and is squarefree, or D = 0 (mod 4), D/4 is squarefree and 
D/4 = 2 or 3 (mod 4). 

If K is a quadratic field of discriminant D, we will use the following as 
standard notations: K = Q( vD), where D is a fundamental discriminant. 
Hence D = d(K), and an integral basis of K is given by (1, w), where 

D + .,fi5 
W=---

2 

and therefore ZK=Z[w]. 

Proposition 5.1.3. If K is a quadratic field of discriminant D, then every 
order R of K has discriminant D f 2 where f is a positive integer called the 
conductor of the order. Conversely, if A is any non-square integer such that 
A= 0 or 1 (mod 4), then A is uniquely of the form A = Df2 where D is a 
fundamental discriminant, and there exists a unique order R of discriminant 
A (and R is an order of the quadratic field Q(vD)). 

Again this is very easy and left to the reader. 
A consequence of this is that it is quite natural to consider quadratic 

fields together with their orders, since their discriminants form a sequence 
which is almost a union of two arithmetic progressions. It is however neces
sary to separate the positive from the negative discriminants, and for positive 
discriminants we should add the squares to make everything uniform. This 
corresponds to considering the sub-orders of the etale algebra Q x Q (which is 
not a field) as well. We will see applications of these ideas later in this chapter. 

To end this section, note that Theorem 4.8.13 immediately shows how 
prime numbers decompose in a quadratic field: 

Proposition 5.1.4. Let K = Q(vD) where as usual D = d(K), ZK= Z[w] 
where w = (D + vD)/2 its ring of integers, and let p be a prime number. 
Then 

(1) Ifp I D, i.e. if(~)= 0, then pis ramified, and we have pZK = p2, where 

P = pZK +wZK 

except when p = 2 and D = 12 (mod 16). In this case, p = pZK + (1 + 
w)ZK. 

(2) If(~)= -1, then pis inert, hence p = pZK is a prime ideal. 

(3) If(~)= 1, then pis split, and we have pZK = p1p2, where 

Pl= pZK + (w- n; b)zK and P2 = pZK+(w- D; b)zK, 

and b is any solution to the congruence b2 = D (mod 4p). 
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Recall that in Section 1.5 we gave an efficient algorithm to compute square 
roots modulo p. To obtain the number b occurring in (3) above, it is only 
necessary, when p is an odd prime and the square root obtained is not of the 
same parity as D, to add p to it. When p = 2, one can always take b = 1 since 
D = 1 (mod 8). 

5.2 Ideals and Quadratic Forms 

Let D be a non-square integer congruent to 0 or 1 modulo 4, R the unique 
quadratic order of discriminant D, (1,w) the standard basis of R (i.e. with 
w = (D + VJ5)/2) and K be the unique quadratic field containing R (i.e. the 
quotient field of R). We denote by a real or complex conjugation inK, i.e. the 
Q-linear map sending VJ5 to -VJ5. From the general theory, we have: 

Proposition 5.2.1. Any integral ideal a of R has a unique Hermite normal 
form with denominator equal to 1, and with matrix 

with respect to w, where c divides a and b and 0 ::::; b < a. In other words, 
a= aZ + (b + cw)Z. Furthermore, a= £(a) is the smallest positive integer in 
a and N(a) = ac. 

Definition 5.2.2. We will say that an integral ideal a of R is primitive if 
c = 1, in other words if a/n is not an integral ideal of R for any integer n > 1. 

We also need some definitions about binary quadratic forms. 

Definition 5.2.3. A binary quadratic form f is a function f(x, y) = ax2 + 
bxy + cy2 where a, b and c are integers, which is denoted more briefly by 
(a, b, c). We say that f is primitive if gcd(a, b, c) = 1. Iff and g are two 
quadratic forms, we say that f and g are equivalent if there exists a matrix 

( ~ ~) E SL2(Z) (i.e. an integral matrix of determinant equal to 1), such 

that g(x, y) = f(ax + (3y, "fX + 8y). 

It is clear that equivalence preserves the discriminant D = b2 - 4ac of the 
quadratic form (in fact it would also be preserved by matrices of determinant 
equal to -1 but as will be seen, the use of these matrices would lead to 
the wrong notion of equivalence). One can also easily check that equivalence 
preserves primitivity. It is also clear that if D is a fundamental discriminant, 
then any quadratic form of discriminant D = b2 - 4ac is primitive. 
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Note that the action of A E SL2(Z) is the same as the action of -A, 
hence the natural group which acts on quadratic forms (as well as on complex 
numbers by linear fractional transformations) is the group PSL2(Z) where 
we identify 'Y and-"(. By abuse of notation, we will consider an element of 
PSL2(Z) as a matrix instead of an equivalence class of matrices. 

We will now explain why computing on ideals and on binary quadratic 
forms is essentially the same. Since certain algorithms are more efficient in 
the context of quadratic forms, it is important to study this in detail. 

As above let D be a non-square integer congruent to 0 or 1 modulo 4 and 
R be the unique order of discriminant D. We consider the following quotient 
sets. 

F ={(a, b,c), b2 -4ac = D}/f 00 

where f 00 = { ( ~ 7) , m E Z} is a multiplicative group (isomorphic to 

the additive group of Z) which acts on binary quadratic forms by the formula 

( 1 m) 2 
0 1 ·(a,b,c) =(a,b+2am,c+bm+am) 

which is induced by the action of SL2(Z). 
The second set is 

I = {a fractional ideal of R} /Q* 

where Q* is understood to act multiplicatively on fractional ideals. 
The third set is 

{ -b +Vi5 } Q = r = 2a , a> 0 and 4a I (D- b2) /Z, 

where Z is understood to act additively on quadratic numbers r. We also 
define maps as follows. If (a, b, c) is a quadratic form, we set 

( -b + v'l5 . ~ 
¢FI(a,b,c)= aZ+ 2 Z,s1gn(a)r 

If a is a fractional ideal and s = ±1, choose a Z-basis (w1, w2) of a with w1 E 1Q 
and (w2a(wl)-w1a(w2))/v'l5 > 0 (this is possible by Proposition 5.2.1), and 
set 

,~. ( ) _ N(xw1 - syw2) 
'I' IF a, s - s N(a) 

If a is a fractional ideal, choose a Z basis (w1, w2 ) as above, and set 
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Finally, if r = (-b + Vi5)/(2a) is a quadratic number, set 

</JQI(T) =a(/£+ r/£). 

The following theorem, while completely elementary, is fundamental to 
understanding the relationships between quadratic forms, ideals and quadratic 
numbers. We always identify the group Z/2Z with ±1. 

Theorem 5.2.4. With the above notations, the maps that we have given can 
be defined at the level of the equivalence classes defining F, I and Q, and are 
then set isomorphisms {which we denote in the same way). In other words, 
we have the following isomorphisms: 

F~IxZf2Z, I~Q, F~ Q x Z/2Z. 

Proof The proof is a simple but tedious verification that everything works. 
We comment only on the parts which are not entirely trivial. 

(1) ¢FI sends a quadratic form to an ideal. Indeed, if a and b are integers 
with b = D (mod 2), the /£-.module a/£+ ((-b + Vi5)/2)Z is an ideal if 
and only if 4a I (b2 - D). 

(2) </JFI depends only on the equivalence class modulo r 00 hence induces a 
map from F to I. 

(3) ¢IF sends a pair (a, s) to an integral quadratic form. Indeed, by homo
geneity, if we multiply a by a suitable element of Q, we may assume that 
a is a primitive integral ideal. If w1 < 0, we can also change ( Wt. w2) 
into (-w1,-w2). In that case, by Proposition 5.2.1 (or directly), we have 
N(a) = w1 and w2 -a(w2) = VJ5. Finally, since a is an integral ideal, 
w1 I w2a(w2), and a simple calculation shows that we obtain an integral 
binary quadratic form of discriminant D. 

(4) ¢IF does not depend on the equivalence class of a, nor on the choice of 
w1 and w2. Indeed, if w1 is given, then w2 is defined modulo Wt, and this 
corresponds precisely to the action of r 00 on quadratic forms. 

(5) ¢IF and ¢FI are inverse maps. This is left to the reader, and is the only 
place where we must really use the sign(a) component. 

(6) I also leave to the reader the easy proof that¢ IQ and </JQI are well defined 
and are inverse maps. 

D 

We now need to identify precisely the invertible ideals in R so as to be 
able to work in the class group. 

Proposition 5.2.5. Let a= a/£+ ((-b + VJ5)/2)7l. be an ideal of R, and let 
(a, b, c) be the corresponding quadratic form. Then a is invertible in R if and 
only if (a, b, c) is primitive. In that case, we have a-1 = 7l+ ((b+..Ji5)/(2a))7l.. 
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Proof. From Lemma 4.6. 7 we know that a is invertible if and only if ab = R 
where b = {z E K, za C R}. Writing a= aZ+((-b+v'15)/2)Z, from a E a we 
see that such a z must be the form z = (x+yv'1J)/(2a) with x andy in Z such 
that x = yD (mod 2). From (-b + v'15)/2 E a, we obtain the congruences 
bx = Dy (mod 2a), x =by (mod 2a) and (Dy- bx)/(2a) = D(x- by)/(2a) 
(mod 2). An immediate calculation gives us b = Z + ((b + v'15)/(2a))Z as 
claimed. 

Now the Z-module ab is generated by the four products of the generators, 
i.e. by a, (b + v'15)/2, (-b + v'15)/2 and -c. We obtain immediately 

-b + v'15 
ab = gcd(a, b, c)Z + 2 Z 

hence this is equal to R = Z + ( ( -b + v'15) /2)Z if and only if gcd( a, b, c) = 1, 
thus proving the proposition. D 

Corollary 5.2.6. Denote by Fo the subset of classes of primitive forms in F, 
Io the subset of classes of invertible ideals in I and Q0 the subset of classes 
of primitive quadratic numbers in Q {where r E Q is said to be primitive if 
(a, b, c) = 1 where a, b and c are as in the definition of Q). Then the maps 
¢FI and ¢IQ also give isomorphisms: 

Fo ~ Io x Z/2Z, Io ~ Qo, Fo ~ Q0 x Z/2Z. 

Theorem 5.2.4 gives set isomorphisms between ideals and quadratic forms 
at the level of equivalence classes of quadratic forms modulo roo· As we shall 
see, this will be useful in the real quadratic case. When considering the class 
group however, we need the corresponding theorem at the level of equivalence 
classes of quadratic forms modulo the action of the whole group PSL2(Z). 
Since we must restrict to invertible ideals in order to define the class group, the 
above proposition shows that we will have to consider only primitive quadratic 
forms. 

Here, it is slightly simpler to separate the case D < 0 from the case D > 0. 
We begin by defining the sets with which we will work. 

Definition 5.2. 7. Let D be a non-square integer congruent to 0 or 1 modulo 
4, and R the unique quadratic order of discriminant D. 

(1) We will denote by F(D) the set of equivalence classes of primitive 
quadratic forms of discriminant D modulo the action of PSL2(Z), and 
in the caseD< 0, F+(D) will denote those elements of F(D) represented 
by a positive definite quadratic form (i.e. a form (a, b, c) with a> 0}. 

(2) We will denote by Cl(D) the class group of R, and in the case D > 0, 
Cl+(D) will denote the narrow class group of R, i.e. the group of equiva
lence classes of R-ideals modulo the group p+ of principal ideals generated 
by an element of positive norm. 

(3) Finally, we will set h(D) = ICl(D)l and h+(D) = JCl+(D)J. 
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We then have the following theorems. 

Theorem 5.2.8. Let D be a negative integer congruent to 0 or 1 modulo 4-
The maps 

-b + ,fi5 
1/JFI(a, b, c) = aZ + 2 Z, 

and 
"'' ( ) _ N(xw1 - yw2) 
'1-'IF a - N(a) 

where a= w1Z + w2Z with 

w2u(w1)- ww(w2) 
,fi5 >0 

induce inverse bijections from :F+(D) to Cl(D). 

Theorem 5.2.9. Let D be a non-square positive integer congruent to 0 or 1 
modulo 4- The maps 

( -b + ,fi5 ) 1/JFI(a,b,c) = aZ+ 2 Z a, 

where a is any element of K* such that sign(N(a)) = sign(a), and 

"'' ( ) N(xw1- yw2) 
'1-'IF a = N(a) 

where a= w1Z + w2Z with 

w2u(wi)- ww(w2) 0 
,fi5 > 

induce inverse bijections from :F(D) to Cl+ (D). 

Proof. As for Theorem 5.2.4, the proofs consist of a series of simple verifica
tions. 

(1) The map 1/JFJ is well defined on classes modulo PSL2(Z). If ( ~ ~) E 

PSL2(Z) acts on (a, b, c), then the quantity r = (-b + /D)/(2a) becomes 
r' = (Vr- B)/(-Ur +A), and a becomes aN(-Ur +A), hence since 
Z + r'Z = (Z + rZ)j(-Ur +A), it follows immediately that 1/JFJ is well 
defined. 

(2) Similarly, 1/JIF is well defined, and we can check that it gives an integral 
quadratic form of discriminant D as for the map ¢IF of Theorem 5.2.4. 
This form is primitive since we restrict to invertible ideals. 

(3) Finally, the same verification as in the preceding theorem shows that 1/JIF 
and 1/JFI are inverse maps. 

0 
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Remarks. 

(1) Although we have given the bijections between classes of forms and ideals, 
we could, as in Theorem 5.2.4, give bijections with classes of quadratic 
numbers modulo the action of PSL2 (Z). This is left to the reader (Exercise 
3). 

(2) In the case D < 0, a quadratic form is either positive definite or negative 
definite, hence the set F breaks up naturally into two disjoint pieces. The 
map 1/JFI is induced by the restriction of ¢FI to the positive piece, and 
1/JIF is induced by cPIF and forgetting the factor Z/2Z. 

(3) In the caseD > 0, there is no such natural breaking up of F. In this case, 
the maps ¢FI and cPIF induce inverse isomorphisms between :F(D) and 

I( D)= (I X Z/2Z)/P' 

where P is the quotient of K* by the subgroup of units of positive norm, 
and j3 E P acts by sending (a, s) to (j3a, s · sign(N(/3))). (Note also the 
exact sequence 

1 -----+ p + -----+ p -----+ z I 2Z -----+ 1 ' 

where the map to Z/2Z is induced by the sign of the norm map.) The maps 
1/JFJ and 1/JJF are obtained by composition of the above isomorphisms with 
the isomorphisms between I(D) and ct+(D) given as follows. The class of 
(a, s) representing an element ofi(D) is sent to the class of j3a in ct+(D), 
where j3 E K* is any element such that sign(N(/3)) = s. Conversely, the 
class of a E ct+(D) is sent to the class of (a, 1) in I(D). 

Although F, I and Q are defined as quotient sets, it is often useful to 
use precise representatives of classes in these sets. We have already implicitly 
done so when we defined all the maps ¢IF etc ... above, but we make our 
choice explicit. 

An element of F will be represented by the unique element (a, b, c) in 
its class chosen as follows. If D < 0, then -lal < b :::; Ia!- If D > 0, then 
-Ia! < b:::; lal if a> Vf5, VJ5- 2lal < b < VJ5 if a< VJ5. 

An element of I will be represented by the unique primitive integral ideal 
in its class. 

An element of Q will be represented by the unique element r in its class 
such that -1 < r + cr( r) :::; 1, where cr denotes (complex or real) conjugation 
inK. 

The tasks that remain before us are that of computing the class group or 
class number, and in the real case, that of computing the fundamental unit. 
It is now time to separate the two cases, and in the next sections we shall 
examine in detail the case of imaginary quadratic fields. 



5.3 Class Numbers of Imaginary Quadratic Fields 231 

5.3 Class Numbers of Imaginary Quadratic Fields 

Until further notice, all fields which we consider will be imaginary quadratic 
fields. First, let us solve the problem of units. From the general theory, we 
know that the units of an imaginary quadratic field are the (finitely many) 
roots of unity inside the field. An easy exercise is to show the following: 

Proposition 5.3.1. Let D < 0 congruent to 0 or 1 modulo 4. Then the group 
J..L(R) of units of the unique quadratic order of discriminant D is equal to the 
group of w(D)th roots of unity, where 

{ 
2, 

w(D) = 4, 

6, 

if D < -4 

if D = -4 

if D = -3. 

Let us now consider the problem of computing the class group. For this, the 
correspondences that we have established above between classes of quadratic 
forms and ideal class groups will be very useful. Usually, the ideals will be used 
for conceptual (as opposed to computational) proofs, and quadratic forms will 
be used for practical computation. 

Thanks to Theorem 5.2.8, we will use interchangeably the language of 
ideal classes or of classes of quadratic forms. One of the advantages is that 
the algorithms are simpler. For example, we now consider a simple but still 
reasonable method for computing the class number of an imaginary quadratic 
field. 

5.3.1 Computing Class Numbers Using Reduced Forms 

Definition 5.3.2. A positive definite quadratic form (a, b, c) of discriminant 
D is said to be reduced if \b\ :::; a :::; c and if, in addition, when one of the two 
inequalities is an equality (i.e. either \b\ =a or a =c), then b 2 0. 

This definition is equivalent to saying that the number T = (-b + VD)/(2a) 
corresponding to (a, b, c) as above is in the standard fundamental domain V 
of 1i/ PSL2(Z) (where 1i = { T E C, Im(r) > 0} ), defined by 

V = {r E H,Re(r) E [-~, ~[, \r\ > 1 or \r\ = 1 and Re(r):::; 0 }· 

The nice thing about this notion is the following: 

Proposition 5.3.3. In every class of positive definite quadratic forms of dis
criminant D < 0 there exists exactly one reduced form. In particular h(D) is 
equal to the number of primitive reduced forms of discriminant D. 
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An equivalent form of this proposition is that the set V defined above is 
a fundamental domain for 'H./ PSL2 (Z). 

Proof Among all forms (a, b, c) in a given class, consider one for which a is 
minimal. Note that for any such form we have c ~a since (a, b, c) is equivalent 
to (c, -b,a) (change (x,y) into (-y,x)). Changing (x,y) into (x+ky,y) for a 
suitable integer k (precisely for k = l (a - b)/ (2a) J) will not change a and put 
bin the interval]- a, a]. Since a is minimal, we will still have a :::; c, hence the 
form that we have obtained is essentially reduced. If c = a, changing (a, b, c) 
again in (c, -b, a) sets b ~ 0 as required. This shows that in every class there 
exists a reduced form. 

Let us show the converse. If (a, b, c) is reduced, I claim that a is minimal 
among all the forms equivalent to (a, b, c). Indeed, every other a' has the form 
a'= am2 + bmn + cn2 with m and n coprime integers, and the identities 

immediately imply our claim, since lbl :::; a :::; c. Now in fact these same 
identities show that the only forms equivalent to (a, b, c) with a' = a are 
obtained by changing (x,y) into (x + ky,y) (corresponding tom = 1 and 
n = 0), and this finishes the proof of the proposition. D 

We also have the following lemma. 

Lemma 5.3.4. Let f = (a, b, c) be a positive definite binary quadratic form 
of discriminant D = b2 - 4ac < 0. 

(1) Iff is reduced, we have the inequality 

a:::; JiDI/3. 

(2) Conversely, if 

a< JiDI/4 and -a< b:::; a 

then f is reduced. 

Proof For 1) we note that iff is reduced then IDI = 4ac-b2 ~ 4a2 -a2 hence 
a :::; IDI/3. For (2), we have c = (b2 + IDI)/(4a) ~ IDI/(4a) > a2 fa = a, 
therefore f is reduced. D 

As a consequence, we deduce that when D < 0 the class number h(D) 
of Q( .Ji5) can be obtained simply by counting reduced forms of discriminant 
D (since in that case all forms of discriminant D are primitive), using the 
inequalities lbl ~ a ~ JIDI/3. This leads to the following algorithm. 
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Algorithm 5.3.5 (h(D) Counting Reduced Forms). Given a negative dis
criminant D, this algorithm outputs the class number of quadratic forms of dis
criminant D, i.e. h(D) when D is a fundamental discriminant. 

1. [Initialize b] Seth+-- 1, b +-- D mod 2 (i.e. 0 if D = 0 (mod 4), 1 if D = 1 

(mod 4)), B ._l JIDI/3 j. 
2. [Initialize a] Set q +-- W- D)/4, a +-- b, and if a :; 1 set a +-- 1 and go to 

step 4. 

3. [Test] If a I q then if a= b or a 2 = q orb= 0 seth+-- h + 1, otherwise (still 
in the case a I q) set h +-- h + 2. 

4. [Loop on a] Set a +-- a+ 1. If a 2 :; q go to step 3. 

5. [Loop on b] Set b +-- b + 2. If b :; B go to step 2, otherwise output h and 
terminate the algorithm. 

It can easily be shown that this algorithm indeed counts reduced forms. 
One must be careful in the formulation of this algorithm since the extra bound
ary conditions which occur if lbl = a or a= c complicate things. It is also easy 
to give some cosmetic improvements to the above algorithm, but these have 
little effect on its efficiency. 

The running time of this algorithm is clearly O(IDI), but the 0 constant 
is very small since very few computations are involved. Hence it is quite a 
reasonable algorithm to use for discriminants up to a few million in absolute 
value. The typical running time for a discriminant of the order of 106 is at 
most a few seconds on modern microcomputers. 

Remark. If we want to compute h(D) for a non-fundamental discriminant 
D, we must only count primitive forms. Therefore the above algorithm must 
be modified by replacing the condition "if a I q" of Step 3 by "if a I q and 
gcd(a, b, qja) = 1". 

A better method is as follows. Write D = D0 j2 where Do is a fundamental 
discriminant. The general theory seen in Chapter 4 tells us that h(D) is a 
multiple of h(Do), but in fact Proposition 5.3.12 implies the following precise 
formula: 

h(D) = h(Do) f IJ (1 _ (r:,o)) 
w(D) w(Do) p · 

PI! 

Hence, we compute h(Do) using the above algorithm, and deduce h(D) from 
this formula. 

Reduced forms are also very useful for making tables of class numbers of 
quadratic fields or forms up to a certain discriminant bound. Although each 
individual computation takes time O(IDI), hence for IDI :; M the time would 
be O(M2 ), it is easy to see that a simultaneous computation (needing of course 
O(M) memory locations to hold the class numbers) takes only O(M312 ), hence 
an average of O(IDI 112 ) per class number. 
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Since class numbers of imaginary quadratic fields occur so frequently, it is 
useful to have a small table available. Such a table can be found in Appendix 
B. Some selected values are: 

• Class number 1 occurs only forD = -3, -4, -7, -8, -11, -19, -43, 
-67 and -163. 

• Class number 2 occurs only for D = -15, -20, -24, -35, -40, -51, 
-52, -88, -91, -115, -123, -148, -187, -232, -235, -267, -403, -427. 

• Class number 3 occurs only forD = -23, -31, -59, -83, -107, -139, 
-211, -283, -307, -331, -379, -499, -547, -643, -883, -907. 

• Class number 4 occurs for D = -39, -55, -56, -68, ... , -1555. 
• Class number 5 occurs for D = -47, -79, -103, -127, ... , -2683. 
• Class number 6 occurs forD= -87, -104, -116, -152, ... , -3763. 
• Class number 7 occurs forD= -71, -151, -223, -251, ... , -5923. 
etc ... 
Note that the first two statements concerning class numbers 1 and 2 are 

very difficult theorems proved in 1952 by Heegner and in 1968-1970 by Stark 
and Baker (see [Cox]). The general problem of determining all imaginary 
quadratic fields with a given class number has been solved in principle by 
Goldfeld-Gross-Zagier ([Gol], [Gro-Zag2]), but the explicit computations have 
been carried to the end only for class numbers up to 7 and all odd numbers 
up to 23 (see [ARW], [Wag]). 

The method using reduced forms is a very simple method to implement 
and is eminently suitable for computing tables of class numbers or for com
puting class numbers of reasonable discriminant, say less than a few million in 
absolute value. Since it is only a simple counting process, it does not give the 
structure of the class group. Also, it becomes too slow for larger discriminants, 
therefore we must find better methods. 

5.3.2 Computing Class Numbers Using Modular Forms 

I do not intend to explain why the theory of modular forms (specifically of 
weight 3/2 and weight 2) is closely related to class numbers of imaginary 
quadratic fields, but I would like to mention formulas which enable us to com
pute tables of class numbers essentially as fast as the method using reduced 
forms. First we need a definition. 

Definition 5.3.6. Let N be a non-negative integer. The Hurwitz class number 
H(N) is defined as follows. 

(1) If N = 1 or 2 (mod 4) then H(N) = 0. 
(2) If N = 0 then H(N) = -1/12. 
(3) Otherwise (i.e. if N = 0 or 3 (mod 4) and N > 0} we define H(N) as 

the class number of not necessarily primitive (positive definite) quadratic 
forms of discriminant - N, except that forms equivalent to a(x2 + y2 ) 

should be counted with coefficient 1/2, and those equivalent to a(x2 + xy + 
y2 ) with coefficient 1/3. 
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Let us denote by h(D) the class number of primitive positive definite 
quadratic forms of discriminant D. (This agrees with the preceding definition 
when D is a fundamental discriminant since in that case every form is primi
tive.) Next, we define h(D) = 0 when D is not congruent to 0 or 1 modulo 4. 
Then we have the following lemma. 

Lemma 5.3.7. Let w(D) be the number of roots of unity in the quadratic 
order of discriminant D, hence w( -3) = 6, w( -4) = 4 and w(D) = 2 for 
D < -4, and set h'(D) = h(D)/(w(D)/2) {hence h'(D) = h(D) forD< -4). 
Then for N > 0 we have 

(1) 

H(N) = L h'(-Nfd2 ) 

d21N 

and in particular if -N is a fundamental discriminant, we have H(N) = 
h( -N) except in the special cases N = 3 (H(3) = 1/3 and h( -3) = 1} 
and N = 4 (H(4) = 1/2 and h( -4) = 1}. 

(2) Conversely, we have 

h'(-N) = L t-L(d)H(Nfd2 ) 

d2 IN 

where tJ-(d) is the Mobius function defined by t-L(d) = ( -1)k if dis equal to 
a product of k distinct primes {including k = 0}, and tJ-(d) = 0 otherwise. 

Proof. The first formula follows immediately from the definition of H(N). The 
second formula is a direct consequence of the Mobius inversion formula (see 
[H-W]). D 

From this lemma, it follows that the computation of a table of the function 
H(N) is essentially equivalent to the computation of a table of the function 
h(D). 

For D = -N, Algorithm 5.3.5 computes a quantity similar to H(N) but 
without the denominator w( -Nfd2 )/2 in the formula given above. Hence, it 
can be readily adapted to compute H(N) itself by replacing step 3 with the 
following: 

3'. [Test] If a f q go to step 4. Now if a= b then if ab = q seth +-- h + 1/3 
otherwise set h +-- h + 1 and go to step 4. If a 2 = q, then if b = 0 set 
h +-- h + 1/2, otherwise set h +-- h + 1. In all other cases (i.e. if a =/= b and 
a 2 =/= q) set h +-- h + 2. 

The theory of modular forms of weight 3/2 tells us that the Fourier series 

00 L H(N)e2i1rN.,. 
N=O 
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has a special behavior when one changes T by a linear fractional transformation 
T ~---> ~;$~ in PSL2(Z). Combined with other results, this gives many nice 
recursion formulas for H(N) which are very useful for practical computation. 

Let O"(n) = L;dln d be the sum of divisors function, and define 

1""' . I 
.A(n) = "2 Lmm(d,n/d) = L d, 

din dln,d:S ..fii 

where I;' means that if the term d = ,fii is present it should have coefficient 
1/2. In addition we define O"(n) = >.(n) = 0 if n is not integral. Then (see 
[Eic2], [Zagl]): 

Theorem 5.3.8 (Hurwitz, Eichler). We have the following relations, where 
it is understood that the summation variable s takes positive, zero or negative 
values: 

L H(4N- s 2) = 20"(N)- 2.A(N), 
s2:'54N 

and if N is odd, 

L H(N- s2 ) = O"(;) - .A(N). 
s2:'5N,s=(N+l)/2 (mod 2) 

From a computational point of view, the second formula is better. It is 
used in the following way: 

Corollary 5.3.9. If N = 3(mod 4), then 

H(N) = O"(;) - >.(N)- 2 L H(N- 4s2 ), 

1:'5s<,fiiJ4 

and if N = 0 (mod 4), then 

H(N) __ O"(N + 1) _ .A(N + 1) _ """' 
6 2 L H(N-4s(s+l)). 

l:'5s:'5( ../N +1-1)/2 

This corollary allows us to compute a table of class numbers up to any 
given bound Min time O(M312), hence is comparable to the method using re
duced forms. It is slightly simpler to implement, but has the disadvantage that 
individual class numbers cannot be computed without knowing the preceding 
ones. It has an advantage, however, in that the computation of a block of 
class numbers can be done simply using the table of the lower ones, while this 
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cannot be done with the reduced forms technique, at least without wasting a 
lot of time. 

Remark. The above theorem is similar to Theorem 4.9.14 and can be proved 
similarly. While (K ( -1) is closely linked to r5 (D) when D > 0, (K ( 0) (or 
essentially h(D)) is closely linked to r 3 (-D) when D < 0. More precisely we 
have (see [Coh2]): 

Proposition 5.3.10. Let D < -4 be the discriminant of an imaginary 
quadratic field K. Then the number r3(IDI) of representations of IDI as a 
sum of 3 squares of elements of Z (counting representations with a different 
ordering as distinct) is given by 

r3(IDI) = -24 ( 1- (~))(K(O) = 12 ( 1- (~))h(D). 
(This formula must be slightly modified if D is not the discriminant of an 
imaginary quadratic field, see {Coh2].} 

5.3.3 Computing Class Numbers Using Analytic Formulas 

It would carry us too far afield to enter into the details of the analytic theory 
of £-functions, hence we just recall a few definitions and results. 

Proposition 5.3.11 (Dirichlet). Let D be a negative discriminant (not nec
essarily fundamental), and define 

LD(s)= L (~)n-s. 
n~l 

This series converges for Re(s) > 1, and defines an analytic function which 
can be analytically continued to the whole complex plane to an entire function. 
If in addition D is a fundamental discriminant, this function satisfies the 
functional equation 

AD(1- s) = AD(s), 

where we have set 

I D l(s+l)/2 ( 1) 
AD(s)= -;:- r s ~ LD(s). 

The link with class numbers is the following result also due to Dirichlet: 

Proposition 5.3.12. If D is a negative discriminant (not necessarily funda
mental), then 

L (1) = 21rh(D) 
D w(D)JjDi 

and in particular LD(1) = 1rh(D)jViDj if D < -4. 
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Note that these results are special cases of Theorem 4.9.12 since it imme
diately follows from Proposition 5.1.4 that if K = Q(VD), then 

(K(s) = ((s)Lv(s). 

The series Lv(1) is only conditionally convergent, hence it is not very 
reasonable to compute Lv(1) directly using Dirichlet's theorem. A suitable 
transformation of the series however gives the following: 

Corollary 5.3.13. If D < -4 is a fundamental discriminant, then 

h(D) = _.!_ L r(D) = 1 D L (D)· 
D l~r<IDI r 2 - b·) l~r<IDI/2 r 

This formula is aesthetically very pleasing, and it can be transformed into 
even simpler expressions. It is unfortunately totally useless from a compu
tational point of view since one must compute D terms each involving the 
computation (admittedly rather short) of a Kronecker symbol. Hence, the 
execution time would be O(JDJl+e), worse than the preceding methods. 

A considerable improvement can be obtained if we also use the functional 
equation. This leads to a formula which is less pleasing, but which is much 
more efficient: 

Proposition 5.3.14. Let D < -4 be a fundamental discriminant. Then 

where 

erfc(x) = Jrr 100 e-t2 dt 

is the complementary error function. 

Note that the function erfc(x) can be computed efficiently using the fol
lowing formulas. 

Proposition 5.3.15. 

(1) We have for all x 

2 x2k+l 
erfc(x) = 1- '- L(-l)k , 

y7r k~O k!(2k + 1) 

and this should be used when x is small, say x $ 2. 
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(2) We have for all x > 0 

e-x2 

erfc(x) = -
x.,fo 

1- 1/2 

2 +X_ 1· 3/2 

4 +X_ 2 · 5/2 

6+X- · .. 

where X= x2 - 1/2, and this should be used for x large, say x ~ 2. 
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Implementation Remark. When implementing these formulas it is easy to 
make a mistake in the computation of erfc(x), and tables of this function are 
not always at hand. One good check is of course that the value found for h(D) 
must be close to an integer, and for small D equal to the values found by 
the slower methods. Another check is that, although we have given the most 
rapidly convergent series for h(D) which can be obtained from the functional 
equation, we can get a one parameter family of formulas: 

The sum of the series must be independent of A > 0. 

The above results show that the series given in Proposition 5.3.14 for 
h(D) converges exponentially, and since h(D) is an integer it is clear that 
the computation time of h(D) by this method is O(IDI 112+<) for any E > 0, 
however with a large 0 constant. In fact it is not difficult to show the following 
precise result: 

Corollary 5.3.16. With the same notations as in Proposition 5.3.14, h(D) 
is the closest integer to the n-th partial sum of the series of Proposition 5. 3.14 

for h(D), where n = l JIDiln IDI/(27r) J. 
Hence, we see that this method is considerably faster than the two pre

ceding methods, at least for sufficiently large discriminants. In addition, it 
is possible to avoid completely the computation of the higher transcendental 
function erfc, and this makes the method even more attractive (See Exercise 
28). 

It is reasonable to compute class numbers of discriminants having 12 to 15 
digits by this method, but not much more. We must therefore find still better 
methods. In addition, we still have not given any method for computing the 
class group. 
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5.4 Class Groups of Imaginary Quadratic Fields 

It was noticed by Shanks in 1968 that if one tries to obtain the class group 
structure and not only the class number, this leads to an algorithm which is 
much faster than the preceding algorithms, in average time O(IDI 1/ 4+<) or 
even O(IDI 1/ 5+<) if the Generalized Riemann Hypothesis is true, for any t: > 0. 
Hence not only does one get much more information, i.e. the whole group 
structure, but even if one is interested only in the class number, this is a much 
better method. 

Before entering into the details of the algorithm, we will describe a method 
introduced (for this purpose) by Shanks and which is very useful in many 
group-theoretic and similar contexts. 

5.4.1 Shanks's Baby Step Giant Step Method 

We first explain the general idea. Let G be a finite Abelian group and 9 an 
element of G. We want to compute the order of 9 in G, i.e. the smallest positive 
integer n such that 9n = 1, where we denote by 1 the identity element of G. 
One way of doing this is simply to compute 9, 92 , 93 , •.. , until one gets 1. 
This clearly takes O(n) group operations. In certain cases, it is impossible to 
do much better. In most cases however, one knows an upper bound, say Bon 
the number n, and in that case one can do much better, using Shanks's baby-

step giant-step strategy. One proceeds as follows. Let q = I JB l· Compute 

1, 9, ... , 9q-1 , and set 91 = 9-q. Then if the order n of 9 is written in the 
form n = aq + r with 0 ::::; r < q, by the choice of q we must also have a::::; q. 
Hence, for a= 1, ... , q we compute 9't and check whether or not it is in our 
list of 9r for r < q. If it is, we have 9aq+r = 1, hence n is a divisor of aq + r, 
and the exact order can easily be obtained by factoring aq + r, at least if 
aq + r is offactorable size (see Chapter 10). This method clearly requires only 
0 (B112) group operations, and this number is much smaller than O(n) if B 
is a reasonable upper bound. 

There is however one pitfall to avoid in this algorithm: we need to search 
(at most q times) if an element belongs to a list having q elements. If this 
is done naively, this will take O(q2 ) = O(B) comparisons, and even if group 
operations are much slower than comparisons, this will ultimately dominate 
the running time and render useless the method. To avoid this, we can first 
sort the list of q elements, using a 0( q In q) sorting method such as heapsort 
(see [Knu3]). A search in a sorted list will then take only O(ln q) comparisons, 
bringing the total time down to O(q In q). We can also use hashing techniques 
(see [Knu3] again). 

This simple instance of Shanks's method involves at most q "giant steps" 
(i.e. multiplication by 91 ), each of size q. Extra information on n can be used to 
improve the efficiency of the algorithm. We give two basic examples. Assume 
that in addition to an upper bound B, we also know a lower bound C, say, 
so that C ::::; n ::::; B. Then, by starting our list with gc instead of g0 = 1, we 
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can reduce both the maximum number of giant steps and the size of the giant 
steps (and of the list) to 1-J B - C1. 

As a second example, assume that we know that n satisfies some congru
ence condition n = n0 (mod b). Then it is easily seen that one can reduce the 

size and number of giant steps to r JB7b l. 
Shanks's method is usually used not only to find the order of an element 

of the group G, but the order of the group itself. If g is a generator of G, 
the preceding algorithm does the trick. In general however this will not be the 
case, and in addition G may be non-cyclic (although cyclic groups occur much 
more often than one expects, see Section 5.10). In this case we must use the 
whole group structure, and not only one cyclic part. To do this, we can use 
the following algorithm. 

Algorithm 5.4.1 (Shanks's Baby-Step Giant-Step Method). Given that one 
can compute in G, and the inequalities B/2 < C $ h $Bon the order h of G, 
this algorithm finds h. We denote by 1 the identity element of G and by · the 
product operation in G. The variables Sand L will represent subsets of G. 

1. [Initialize] Seth+-- 1, C1 +-- C, B 1 +-- B, S +-- {1}, L +-- {1}. 

2. [Take a new g] (Here we know that the order of G is a multiple of h). Choose 
a new random g E G, q +-- 1-J B1 - Cl1· 

3. [Compute small steps] Set x0 +-- 1, x 1 +-- gh and if x1 = 1 set n +-- 1 and 
go to step 6. Otherwise, for r = 2 to r = q -1 set Xr +-- x1 · Xr-1· For 
each r with 0 $ r < q set Sl,r +-- Xr. S, sl +-- Uo<r<q Sl,r· and sort sl so 
that a search in 81 is easy. If during this computation one finds 1 E S1,r for 
r > 0, set n +-- r (where r is the smallest) and go to step 6. Otherwise, set 

c1 c y +-- x1 · Xq-1· z +-- x1 , n +-- 1· 

4. [Compute giant steps] For each w E L, set z1 +-- z · w and search for z1 in the 
sorted list 81. If z1 is found and z1 E S1,r. set n +-- n- rand go to step 6. 

5. [Continue] Set z +-- y · z, n +-- n+ q. If n $ B1 go to step 4. Otherwise output 
an error message stating that the order of G is larger than B and terminate 
the algorithm. 

6. [Initialize order] Set n +-- hn. 

7. [Compute the order of g mod L · S] (Here we know that gn E L · S). For each 
prime p dividing n, do the following: set 81 +-- gnfp. Sand sort 81. If there 
exists a z E L such that z E 81, set n +-- n/p and go to step 7. 

8. [Finished?]. Seth+-- hn. If h 2:: C then output hand terminate the algorithm. 
Otherwise, set Bl +-- LBI/nJ, cl +-- ICI/nl. q +--lvlnl. s +-- Uo<r<qgr. S, 
Y +-- gq, L +-- Uo::;a::;q ya · L and go to step 2. -

This is of course a probabilistic algorithm. The correctness of the result 
depends in an essential way on the correctness of the bounds C and B. Since 
during the algorithm the order of G is always a multiple of h, and since 
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C > B /2, the stopping criterion h ~ C in step 8 is correct (any multiple of 
h larger than h would be larger than B). In practice however we may not be 
so lucky as to have a lower bound C such that C > B /2. In that case, one 
cannot easily give any stopping criteria, and my advice is to stop as soon as h 
has not changed after 10 passes through step 8. Note however that this is no 
longer an algorithm, since nothing guarantees the correctness of the result. 

Note that if gi are elements of G of respective orders ei, then the exponent 
of G is a multiple of the least common multiple (LCM) of the ei· Hence, if one 
expects the exponent of the group to be not too much lower than the order h, 
one can use a much simpler method in which one simply computes the LCM 
of sufficiently many random elements of G, and then taking the multiple of 
this LCM which is between the given bounds C and B. For this to succeed, 
the bounds have to be close enough. In practice, it is advised to first use this 
method to get a tentative order, then to use the rigorous algorithm given 
above to prove it, since a knowledge of the exponent of G can clearly be used 
to improve the efficiency of Algorithm 5.4.1. 

Let us explain why Algorithm 5.4.1 works. Let H be the true order of G. 
Consider the first g. We have gH = 1, and if we write H- C = aq- r with 
0 ~ r < q and q = fJB- Cl, then also a -1 < (H- C)jq ~ (B- C)jq :S q 
hence a~ q. This implies that we have an equality of the form 

9c . (gq)a = gr 

with 0 :S r < q and 1 ~ a ~ q. This is detected in step 4 of the algorithm, 
where we have Xr = gr, y = gq and z1 = gc · (gq)a. When we arrive in step 6 
we know that gn = 1 with n = C + aq- r, hence the order of g is a divisor of 
n, and step 7 is the standard method for computing the order of an element 
in a group. 

After that, his set to the order of g, and by a similar baby step giant step 
construction, S and L are constructed so that S · L = < g >, the subgroup 
generated by g. We also know that the order H of G is a multiple of h. Hence, 
for a new g1, instead of writing gfl = 1 and H - C = aq - r we will write 
(g~)H1 E < g > and H1- C1 = aq1- r1, where H1 = Hjh is known to be 
between cl = IC/hl and Bl = lB/hJ, whence the modifications given in the 
algorithm when we start with a new g. D 

Note that as we have already mentioned, it is essential to do some kind 
of ordering on the Xr in step 3, otherwise the search time in step 4 would 
dominate the total time. In practical implementations, the best method is 
probably not to sort completely, but to use hashing techniques (see [Knu3]). 

The expected running time of this algorithm is O((B- C) 112 ) group op
erations, and this is usually O(B112+<) for all E > 0. For obvious reasons, the 
method above is called Shanks's baby-step giant-step method, and it can be 
profitably used in many contexts. For example, it can be used to compute 
class numbers and class groups (see Algorithm 5.4.10), regulators (see Algo
rithm 5.8.5), or the number of points of an elliptic curve over a finite field (see 
Algorithm 7.4.12). 
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We must now explain how to obtain the whole group structure. Call 91, 
... , 9k the elements of G which are chosen in step 2. Then when a match is 
found in step 3 or 4, we must record not only the exponent of 9 which occurs, 
but the specific exponents of the preceding 9i· In other words, one must keep 
track of the multi-index exponents in the lists Land S. If at step i we have a 

kl . k· 1 . k· . aft 
relation of the form 91 ·' · · · 9i~l ·' 9i '·' = 1, with 9 = 9i and ki,i = n er step 
7 in the notation of the algorithm, we then consider the matrix K = ( ki,j) 
where we set ki,j = 0 if i > j. Then we compute the Smith normal form of 
this matrix using Algorithm 2.4.14, and if di are the diagonal elements of the 
Smith normal form, we have 

G ~ EB (Z/d/Z), 
1~i~k 

i.e. the group structure of G. 

5.4.2 Reduction and Composition of Quadratic Forms 

Before being able to apply the above algorithm (or any other algorithm using 
the group structure) to the class group, it is absolutely essential to be able to 
compute in the class group. As already mentioned, we could do this by using 
HNF computations on ideals. Although theoretically equivalent, it is more 
practical however to work on classes of quadratic forms. In Theorem 5.2.8 we 
have seen that the set of classes of quadratic forms is in a natural bijection 
with the class group. Hence, we can easily transport this group structure so 
as to give a group structure to classes of quadratic forms. This operation, 
introduced by Gauss in 1798 is called composition of quadratic forms. Also, 
since we will want to work with a class of forms, we will have a reduction 
procedure which, given any quadratic form, will give us the unique reduced 
form in its class. I refer the reader to [Len1] and [Bue] for more details on this 
subject. 

The reduction algorithm is a variant of Euclid's algorithm: 

Algorithm 5.4.2 (Reduction of Positive Definite Forms). Given a positive 
definite quadratic form f = (a, b, c) of discriminant D = b2 - 4ac < 0, this 
algorithm outputs the unique reduced form equivalent to f. 
1. [Initialize] If -a< b ~a go to step 3. 

2. [Euclidean step] let b = 2aq + r with 0 ~ r < 2a be the Euclidean division of 
b by 2a. If r > a, set r - r - 2a and q - q + 1. (In other words, we want 
b = 2aq + r with -a< r ~a.) Then set c- c- !(b + r)q, b- r. 

3. [Finished?] If a > c set b - -b, exchange a and c and go to step 2. Otherwise, 
if a = c and b < 0, set b - -b. Output (a, b, c) and terminate the algorithm. 

The proof of the validity of this algorithm follows from the proof of Propo
sition 5.3.3. Note that in step 2 we could have written c - c - bq + aq2 , but 
writing it the way we have done avoids one multiplication per loop. 
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This algorithm has exactly the same behavior as Euclid's algorithm which 
we have analyzed in Chapter 1, hence is quite fast. In fact, we have the fol
lowing. 

Proposition 5.4.3. The number of Euclidean steps in Algorithm 5.4.2 is at 
most equal to 

Proof. Consider the form (a, b, c) at the beginning of step 3. Note first that if 
a > v1i51, then 

b2 + IDI a2 + a2 a 
c= < =-

4a - 4a 2' 
hence, since in step 3 a and c are exchanged, a decreases by a factor at least 
equal to 2. Hence, after at most rlg(a/ M)l steps, we obtain at the beginning 
of step 3 a form with a< M· Now we have the following lemma. 

Lemma 5.4.4. Let (a, b, c) is a positive definite quadratic form of discrim
inant D = b2 - 4ac < 0 such that -a < b ~ a and a < M· Then ei
ther (a, b, c) is already reduced, or the form (c, r, s) where -b = 2cq + r with 
-c < r ~ c obtained by one reduction step of Algorithm 5.4.2 will be reduced. 

Proof. If (a, b, c) is already reduced, there is nothing to prove. Assume it is 
not. Since -a< b ~ a, this means that a> cor a = c and b < 0. This last 
case is trivial since at the next step we obtain the reduced form (a, -b, a). 
Hence, assume a> c. If -c < -b ~ c, then q = 0 and so (c, r, s) = (c, -b, a) is 
reduced. If a~ 2c, then c < JIDI/4, and hence (c, r, s) is reduced by Lemma 
5.3.4. So we may assume c <a< 2c and -b ~-cor -b >c. Since lbl ~a, it 
follows that in the Euclidean division of -b by 2c we must have q = ±1, the 
sign being the sign of -b. Now we haves= a- bq + cq2, hence when q = ±1, 
s = a+ b + c ~ c since lbl ~ a. This proves that ( c, r, s) is reduced, except 
perhaps when s = c. In that case however we must have a = ±b, hence a = b 
so b > 0, q = -1 and r = 2c - b ~ 0. Therefore ( c, r, s) is also reduced in this 
case. This proves the lemma, and hence Proposition 5.4.3. D 

We will now consider composition of forms. Although the group structure 
on ideal classes carries over only to classes of quadratic forms via the maps 
¢FI and ¢IF defined in Section 5.2, we can define an operation between forms, 
which we call composition, which becomes a group law only at the level of 
classes modulo PSL2(Z). Hence we will usually work on the level of forms. 

Let (a1, b1, c1) and (a2, b2, c2) be two quadratic forms with the same dis
criminant D, and consider the corresponding ideals 

(k=1,2) 
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given by the map ¢FI of Theorem 5.2.4. We have the following lemma 

Lemma 5.4.5. Let 11 and I2 be two ideals as above, set s = (b1 + b2)/2, 
d = gcd( a1, a2, s), and let u, v, w be integers such that ua1 + va2 + ws = d. 
Then we have 

where 

I ·I =d(AZ+ -B+~z) 1 2 2 , 

A= d a1a2 
0 d2 , 

and do = 1 if at least one of the forms ( a1, b1, c1) or ( a2, b2, c2) is primitive 
and in general do= gcd(a1,a2,S,cl,c2,n) where n = (b1- b2)/2. 

Proof The ideal J3 = h · h is generated as a Z-module by the four products 
of the generators of hand I2, i.e. by g1 = a1a2, 92 = (-a1b2 + al~)/2, 
93 = (-a2b1+a2~)/2 and 94 = ((b1b2+ D)/2-s~)/2. Now by Proposition 
5.2.1 we know that we can write 

for some integers A, B and C. It is clear that C is the smallest positive 
coefficient of ~/2 in 13, hence is equal to the GCD of a1, a2 and s, 
so C = d as stated. If one of the forms is primitive, or equivalently by 
Proposition 5.2.5 if one of the ideals is invertible, then by Proposition 4.6.8, 
we have N(J3) = N(I1) N(J2) = a1a2 and since N(h) = AC2 we have 
A = a 1a2/d2. (By Exercise 14 of Chapter 4, this will in fact still be true 
if gcd( a 1, b1, c1, a2, b2, c2) = 1, which is a slightly stronger condition than 
do = 1.) This will also follow from the more general result where we make no 
assumptions of primitivity. 

Let us directly determine the value of AC, i.e. the least positive integer 
belonging to !3. Any element of h being of the form u1g1 + u292 + U393 + U494 

for integers ui, the set J3nZ is the set of such elements with u2a1 +u3a2-u4s = 
0. Using Exercise 11, the general solution to this is given by u2 = a2/(a1, a2)v
sj(a1, s)/-l, U3 = sj(a2, s)>.- ad(a1, a2)v, u4 = a2/(a2, s)>.- ad(a1, s)l-l for 
integers >-., /-l, v. After a short calculation, we see that h n Z = eZ where 

Another computation (see Exercise 8) shows that 
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thus glVlng the claimed value for A = efC = efd. Since b1 = s + n 
and b2 = s - n, it is clear that if one of the forms is primitive then 
do= gcd(a1, a2, s, c1. c2, n) = 1 thus proving the statement made above. 

Finally, if d = ua1 + va2 + ws, one possible value of B is clearly 

B = ua1b2 + va2b1 + w(b1b2 + D)/2 = db2 + va2(b1- b2)- 2a2c2w, 
d d 

thus proving the lemma. D 

Note that if one writes I,= a,(z +riZ), then we can reformulate the above 
lemma by saying that (with the same definitions of d, u, v and w) we have 
a3=a1a2do/d and T3=(d/do)(ur2+vr1 +wr1r2). 

This leads to the following basic definition of the composite of two forms. 

Definition 5.4.6. Let !I= (a1,bl,c1) and h = (a2,b2,c2) be two quadmtic 
forms of the same discriminant D. Set s = (b1 + b2)/2, n = (b1- b2)/2 and 
let u, v, w and d be such that 

(obtained by two applications of Euclid's extended algorithm}, and let do= 
gcd(d,c1,c2,n). We define the composite of the two forms !I and h as the 
form 

modulo the action of r 00 , i.e. viewed as a form in the set F introduced in 
Section 5.2. 

Since composition comes from the product of ideals, using the isomorphism 
given in Section 5.2, it is clear that the class in F of (a3 , b3 , c3 ) does not depend 
on the particular choices of u, v and w. This can of course also be checked 
directly (see Exercise 12). Note that if we do not take the class modulo r 00 , 

the result is not at all canonical. Therefore when we speak of composition of 
quadratic forms we will always implicitly assume that we are working modulo 
the action of roo, i.e. in the set F, and not on quadratic forms themselves. 

To obtain the reduced composite of two forms, it is usually necessary to 
reduce the form obtained by composition. By abuse of language, in the case of 
negative discriminants we will also call this reduced form the composite of the 
two forms. (In the case of positive discriminants, there is in general more than 
one reduced form equivalent to a given form, hence this abuse of language is 
not permitted.) 

Although the raw formulas given in the definition can be used directly, 
they can be improved by careful rearrangements. This leads to the following 
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algorithm, due to Shanks [Sha1]. Since imprimitive forms are almost never 
used, for the sake of efficiency we will restrict to the case of primitive forms. 
Note also that the composite of two primitive forms is still primitive (Exercise 
9). 

Algorithm 5.4. 7 (Composition of Positive Definite Forms). Given two prim
itive positive definite quadratic forms ft = (a1,b1,cl) and f2 = (az,bz,cz) with 
the same discriminant, this algorithm computes the composite h = (a3, b3, c3) 
of ft and fz. 
1. [Initialize] If a1 > a2 exchange ft and fz. Then sets+- ~(b1 +b2), n +- bz-s. 

2. [First Euclidean step] If a1 I a2, set y1 +- 0 and d +- a1. Otherwise, using 
Euclid's extended algorithm compute (u,v,d) such that ua2 + va1 = d = 
gcd(a2,a1). and set Yl +- u. 

3. [Second Euclidean step] If d I s, set y2 +- -1, x2 +- 0 and d1 +-d. Otherwise, 
using Euclid's extended algorithm compute (u, v, dl) such that us +vd = d1 = 
gcd(s, d), and set x2 +- u, Y2 +- -v. 

4. [Compose] Set v1 +- add1, v2 +- a2/d~o r +- (y1y2n- x2c2 mod vi), b3 +
b2 + 2v2r, a3 +- v1 v2, c3 +- (c2d1 +r(b2 +v2r))/v1 (or c3 +- (b~- D)/( 4a3) ), 
then reduce the form f = (a3, b3, c3) using Algorithm 5.4.2, output the result 
and terminate the algorithm. 

Note that this algorithm should be implemented as written: in step 2 we 
first consider the special case a 1 I a2 because it occurs very often (at least 
each time one squares a form, and this is the most frequent operation when 
one raises a form to a power.) Therefore, it should be considered separately 
for efficiency's sake, although the general Euclidean step would give the same 
result. Similarly, in step 3 it often happens that d I s because d = 1 also occurs 
quite often. Finally, note that the computation of c3 in step 4 can be done 
using any of the two formulas given. 

The generalization of this algorithm to imprimitive forms is immediate 
(see Exercise 10). 

Since we have lb3l :::; a3 :::; JfD173 and since c3 can be computed from 
a3 and b3, it seems plausible that one can make most of the computations 
in Algorithm 5.4.7 using numbers only of size O(JrDT) and not O(D) or 
worse. That this is the case was noticed comparatively recently by Shanks 
and published only in 1989 [Sha2]. The improvement is considerable since in 
multi-precision situations it may gain up to a factor of 4, while in the case 
where JfDi is single precision while D is not, the gain is even larger. 

This modified algorithm (called NUCOMP by Shanks) was modified again 
by Atkin [Atk1]. As mentioned above, squaring of a form is important and 
simpler, so Atkin gives two algorithms, one for duplication and one for com
position. 
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Algorithm 5.4.8 (NUDUPL). Given a primitive positive definite quadratic 
form f = (a, b, c) of discriminant D, this algorithm computes the square f 2 = 
h = (a2,b2,c2) of f. We assume that the constant L = liD/41 114J has been 
precomputed. 

1. [Euclidean step) Using Euclid's extended algorithm, compute (u, v, dl) such 
that ub + va = d1 = gcd(b, a). Then set A +-- afdt. B +-- b/dt. C +

(-cu mod A), C 1 +--A- C and if C 1 < C, set C +---Ct. 

2. [Partial reduction) Execute Sub-algorithm PARTEUCL(A, C) below (this is an 
extended partial Euclidean algorithm). 

3. [Special case) If z = 0, set g +-- (Bv3 + c)jd, a 2 +-- d2, c2 +-- v~. b2 +

b + (d + v3) 2 - a2- c2, c2 +-- c2 + gd1, reduce the form h = (a2, b2, c2), 
output the result and terminate the algorithm. 

4. [Final computations) Set e +-- (cv + Bd)jA, g +-- (ev2 - B)jv (these divisions 
are both exact and v = 0 has been dealt with in step 3), then b2 +-- ev2 + vg. 
Then, if dt > 1, set b2 +-- d1b2, v +-- d1v, v2 +-- d1v2. Finally, in order, set 
a2 +-- d2, c2 +-- v~, b2 +-- b2 + (d + v3) 2 - a2- c2, a2 +-- a2 + ev, c2 +

c2 + gv2 , reduce the form h = (a2,b2,c2), output the result and terminate 
the algorithm. 

Sub-algorithm PARTEUCL(a, b). This algorithm does an extended partial 
Euclidean algorithm on a and b, but uses the variables v and v2 instead of u and 
v1 in Algorithm 1.3.6. 

1. [Initialize) Set v +-- 0, d +--a, v2 +-- 1, v3 +-- b, z +-- 0. 

2. [Finished?) If lv31 > L go to step 3. Otherwise, if z is odd, set v2 +-- -v2 and 
v3 +-- -v3. Terminate the sub-algorithm. 

3. [Euclidean step) Let d = qv3 + t3 be the Euclidean division of d by v3 with 
0:::; t3 < lv31· Set t2 +-- v -qv2, v +-- v2, d +-- v3, v2 +-- t2. v3 +-- iJ, z +-- z+ 1 
and go to step 2. 

I have given the gory details in steps 3 and 4 of Algorithm 5.4.8 just to 
show how a careful implementation can save time: the formula for b2 in step 
4 could have simply been written b2 +-- b2 + 2dv3. This would involve one 
multiplication and 2 additions. Since we need the quantities d2 and v~ for 
a 2 and c2 anyway, the way we have written the formula involves 3 additions 
and one squaring. By a suitable implementation of a method analogous to the 
splitting method for polynomials explained in Chapter 3, this will be faster 
than 2 additions and one multiplication. Of course the gain is slight and the 
lazy reader may implement this in the more straightforward way, but it should 
be remembered that we are programming a basic operation in a group which 
will be used a large number of times, so any gain, even small, is worth taking. 

Note also that the final reduction of h will be very short, usually one or 
two Euclidean steps at most. 
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The proof of the validity of the algorithm is not difficult (see (Sha2]) and 
is left to the reader. It can also be checked that all the iterations (Euclid and 
reductions) are done on numbers less than 0( JiDf), and that only a small 
and fixed number of operations are done on larger numbers. 

Let us now look at the general algorithm for composition. 

Algorithm 5.4.9 (NUCOMP). Given two primitive positive definite quadratic 
forms with the same discriminant ft = (a1,b1,cl) and h = (a2,b2,c2). this 
algorithm computes the composite fa= (a3, b3, c3) of ft and /2. As in NUDUPL 
(Algorithm 5.4.8) we assume already precomputed the constant L = liD/4J 114J. 
Note that the values of a1 and a2 may get changed, so they should be preserved 
if needed. 

1. [Initialize) If a1 < a2 exchange ft and h Then sets+-- !(b1+ b2). n +-- b2-s. 

2. [First Euclidean step) Using Euclid's extended algorithm, compute (u, v, d) 
such that ua2 + va1 = d = gcd(a1, a2). If d = 1, set A +-- -un, d1 +-- d 
and go to step 5. If d I s but d =f 1, set A +-- -un, d1 +-- d, a1 +-- add1, 
a2 +-- a2/d1. s +-- s/d1 and go to step 5. 

3. [Second Euclidean step) (here d f s) Using Euclid's extended algorithm again, 
compute (ut, v1, dl) such that u1s + v1d = d1 = gcd(s, d). Then, if d1 > 1, 
set a1 +-- add1, a2 +-- a2/d1. s +-- s/d1 and d +-- d/d1. 

4. [Initialization of reduction) Compute l +-- -u1(uc1 +vc2) mod d by first reduc
ing c1 and c2 (which are large) modulo d (which is small), doing the operation, 
and reducing again. then set A+-- -u(n/d) + l(atfd). 

5. [Partial reduction) Set A +-- (A mod at), A1 +-- a1 -A and if A1 < A set 
A+-- -A1, then execute Sub-algorithm PARTEUCL(a1,A) above. 

6. [Special case) If z = 0, set Ql +-- a2v3, Q2 +-- Q1 + n, f +-- Q2/d, g +

(v3s + c2)jd, a3 +-- da2, c3 +-- v3f + gd1, b3 +-- 2Q1 + b2, reduce the form 
fa = (a3, b3, c3), output the result and terminate the algorithm. 

7. [Final computations) Set b +-- (a2d + nv)ja1, Q1 +-- bv3, Q2 +-- Q1 + n, 
f +-- Q2jd, e +-- (sd+c2v)ja1, Q3 +-- ev2, Q4 +-- Q3-s, g +-- Q4jv (the case 
v = 0 has been dealt with in step 6), and if d1 > 1 set v2 +-- d1v2, v +-- d1v. 
Finally, set a3 +-- db+ev, c3 +-- v3f+gv2, b3 +-- Q1+Q2+d1(Q3+Q4), reduce 
the form fa = (a3, b3, c3), output the result and terminate the algorithm. 

Note that all the divisions which are performed in this algorithm are exact, 
and that the final reduction step, as in NUDUPL, will be very short, usually 
one or two Euclidean steps at most. As for NUDUPL, we leave to the reader 
the proof of the validity of this algorithm. 

Implementation Remark. We have used the basic Algorithm 1.3.6 as a 
template for Sub-algorithm PARTEUCL. In practice, when dealing with multi
precision numbers, it is preferable to use one of its variants such as Algorithm 
1.3.7 or 1.3.8. 
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5.4.3 Class Groups Using Shanks's Method 

From the Brauer-Siegel theorem, we know that the class number h(D) of 
an imaginary quadratic field grows roughly like IDI 112 . This means that the 
baby-step giant-step algorithm given above allows us to compute h(D) in 
time O(IDI 1/4+f), which is much better than the preceding methods. In fact, 
suitably implemented, one can reasonably expect to compute class numbers 
and class groups of discriminants having up to 20 or 25 decimal digits. For 
taking powers of the quadratic forms one should use the powering algorithm 
of Section 1.2, using if possible NUDUPL for the squarings and NUCOMP for 
general composition, or else using Shanks less optimized but simpler Algorithm 
5.4.7. To be able to use the baby-step giant-step Algorithm 5.4.1 however, we 
need bounds for the class number h(D). Now rigorous and explicit bounds are 
difficult to obtain, even assuming the GRH. Hence, we will push our luck and 
give only tentative bounds. Of course, this completely invalidates the rigor 
of the algorithm. To be sure that the result is correct, one should start with 
proven bounds like C = 0 and B = *y'[Dfln IDI (see Exercise 27), however 
the performance is much worse. 

Now the series giving Lv(1) is only conditionally convergent, as is the 
corresponding Euler product 

( (D))-1 
Lv(s)= I] 1- ; 

However this Euler product is faster to compute to a given accuracy, since 
only the primes are needed. Hence, to start Shanks's algorithm, we take a 
large prime number bound P (say P = 218), and guess that, for D < -4, h(D) 
will be close to 

Assuming GRH, one can show that 

h(D)- h = O(hP-112 1n(PIDI)), 

and one can give explicit values for the 0 constant. In practice, Shanks noticed 
experimentally that the relative error is around 1/1000 when P = 217 . Hence, 
if we use these numerical bounds combined with the baby-step giant-step 
method, we will correctly compute h(D) unless the exponent of the group is 
very small compared to the order. 

A very important speedup in computing h(D) by Shanks's method is ob
tained by noticing that the inverse for composition of the form (a, b, c) is the 
form (a, -b, c), hence requires no calculation. Hence, one can double the size 
of the giant steps (by setting y +-- x~q instead of y +-- x~ in step 3 of Algo
rithm 5.4.1 . Therefore the optimal value for q is no longer J B - C but rather 

(B- G)/2. 
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Finally, note that during the computation of the Euler product leading to 
h, we will also have found the primes p for which (Q) = 1. For the first few 
such p, we compute the square root bp of D mod 4p by a simple modification 
of Algorithm 1.5.1, and we store the forms (p, bp, cp) where cp = (b~-D)/(4p). 
These will be used as our "random" x in step 2 of the algorithm. 

Putting all these ideas together leads to the following method: 

Heuristic Algorithm 5.4.10 (h(D) Using Baby-Step Giant-Step). If D < 
-4 is a discriminant, this algorithm tries to compute h(D) using a simpleminded 
version of Shanks's baby-step giant-step method. We denote by · the operation 
of composition of quadratic forms, and by 1 the unit element in the class group. 
We choose a small bound b (for example b = 10). 

1. [Compute Euler product] For P = max(218 , JDJ 114 ), compute the product 

Then set B +- LQ{1 + 1/{2VP))J, C +- fQ{1 -1/(2VP))l For the first 
b values of p such that (~) = 1, compute bp such that b~ = D (mod 4p) 
using Algorithm 1.5.1 (and modifying the result to get the correct parity). Set 
/p +- (p, bp, (b~- D)/(4p)). 

2. [Initialize] Set e +- 1, c +- 0, B1 +- B, C1 +- C, Ql +- Q. 

3. [Take a new g] (Here we know that the exponent of Cl(D) is a multiple of e). 
Set g +- /p for the first new /p. and set c +- c + 1, q +- f J(Bl- Cl)/2l 

4. [Compute small steps] Set x 0 +- 1, x1 +- ge then for r = 2 to r = q- 1 set 
Xr +- x1 · Xr-l· If, during this computation one finds Xr = 1, then set n +- r 
and go to step 7. Otherwise, sort the Xr so that searching among them is easy, 
and set y +- Xl · Xq-lo y +- y2 , z +- x~ 1 , n +- Ql . 

5. [Compute giant steps] Search for z or z-1 in the sorted list of Xr for 0 ~ r < q 
(recall that if z = (a,b,c), z-1 = (a,-b,c)). If a match z = Xr is found, set 
n +- n- rand go to step 7. If a match z-1 = Xr is found, set n +- n + r and 
go to step 7. 

6. [Continue] Set z +- y·z, n +- n+2q. If n ~ B 1 go to step 5. Otherwise output 
an error message stating that the order of G is larger than B and terminate 
the algorithm. 

7. [Compute the order of g] (Here we know that gen = xf = 1). For each prime 

p dividing n, do the following: if x~IP = 1, then set n +- nfp and go to step 
7. 

8. [Finished?] (Here n is the exact order of xl). Set e +- en. If e > B- C, then 
set h +- eLB/eJ, output h and terminate the algorithm. If c ;::: b output a 
message saying that the algorithm fails to find an answer and terminate the 
algorithm. Otherwise set Bl +- LBdnJ, cl +- rctfnl and go to step 3. 
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This is not an algorithm, in the sense that the output may be false. One 
should compute the whole group structure using Algorithm 5.4.1 to be sure 
that the result is valid. It almost always gives the right answer however, and 
thus should be considered as a first step. 

5.5 McCurley's Sub-exponential Algorithm 

We now come to an algorithm discovered in 1988 by McCurley [McCur, 
Haf-McCurl] and which is much faster than the preceding algorithms for large 
discriminants. Several implementations of this algorithm have been done, for 
example by Diillmann, ([Buc-Diil]) and it is now reasonable to compute the 
class group for a discriminant of 50 decimal digits. Such examples have been 
computed by Diillmann and Atkin. 

Incidentally, unlike almost all other algorithms in this book, little has been 
done to optimize the algorithm that we give, and there is plenty of room for 
(serious) improvements. This is, in fact, a subject of active research. 

5.5.1 Outline of the Algorithm 

Before giving the details of the algorithm, let us give an outline of the main 
ideas. First, instead of trying to obtain the class number and class group "from 
below" , by finding relations xe = 1, and hence divisors of the class number, 
we will find it "from above", i.e. by finding multiples of the class number. 

Let P be a finite set of primes p such that (~) = 1 for all pEP. Then, as 
in Shanks's method, we can find reduced forms /p = (p, bp, cp), which we will 
call prime forms, for each p E P. Now, assuming GRH, one can prove that 
there exists a constant c which can be computed effectively such that if P 
contains all the primes p such that (~) = 1 and p ~ cln2 IDI, then the classes 
of the forms /p for p E P generate tlie class group. This means that if we set 
n = IPI, the map 

¢: zn -+Cl(D) 

(xp)pEP ~---+ IT J;P 
pEP 

is a surjective group homomorphism. Hence, the kernel A of ¢ is a sublattice 
of zn' and we have 

znjA ~ Cl(D) and I det(A) I = h(D), 

denoting by det(A) the determinant of any Z-basis of A. The lattice A is the 
lattice of relations among the fp· If one finds any system of n independent 
elements in this lattice, it is clear that the determinant of this system will 
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be a multiple of the determinant of A, hence of h(D). This is how we obtain 
multiples of the class number. 

Now there remains the question of obtaining (many) relations between the 
fp· To do this, one uses the following lemma: 

Lemma 5.5.1. Let (a, b, c) be a primitive positive definite quadratic form of 
discriminant D < 0, and a= IlpPvp be the prime decomposition of a. Then 
we have up to equivalence: 

(a, b, c) =II f;pvp, 
p 

where fp = (p, bp, cp) is the prime form corresponding top, and Ep = ±1 is 
defined by the congruence 

b = Epbp (mod 2p). 

In fact, all the possible choices for the Ep correspond exactly to the possible 
square roots b of D mod 4a, with b defined modulo 2a. 

Proof. This lemma follows immediately from the raw formulas for composition 
that we have given in Section 5.4.2. In terms of ideals, using the correspon
dence given by Theorem 5.2.8, if I= '1/JFI(f), the factorization of a = N'(I) 
corresponds to a factorization I = I1 pvp where p is an ideal above p'ZK, and 
Ep must be chosen as stated so that p :::> I. 0 

This leads immediately to the following idea for generating relations in A: 
choose random integer exponents ep, and compute the reduced form (a, b, c) 
equivalent to IlpE'P J;P. If all the factors of a are in P, we keep the form 
(a, b, c), otherwise we take other random exponents. If the form is kept, we 
will have the relation 

giving the element 

II t;p-fpVp = 1, 
pEP 

(ep- EpVp)pE'P E A c zn. 
Continuing in this way, one may reasonably hope to generate A if P has 
been chosen large enough, and this is indeed what one proves, under suitable 
hypotheses. 

The crucial point is the choice of P. We will take 

for a suitable P, but one must see how large this P must be to optimize the 
algorithm. If P is chosen too small, numbers a produced as above will almost 
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never factor into primes less than P. If Pis too large, then the factoring time 
of a becomes prohibitive, as does the memory required to keep all the relations 
and the fp· To find the right compromise, one must give the algorithm in much 
greater detail and analyze its behavior. This is done in [Haf-McCur1], where 
it is shown that P should be taken of the order of L(JDI)"', where L(x) is a 
very important function defined by 

L(x) = ev'lnxlnlnx, 

and a depends on the particular implementation, one possible value being 
1/VS. We will meet this very important function L(x) again in Chapter 10 in 
connection with modern factoring methods. 

In addition we must have P ~ cln2 JDI so that (assuming GRH) the classes 
of prime forms fp with p E P generate the class group. Unfortunately, at 
present, the best known bound for the constant c, due to Bach, is 6, although 
practical experience shows that this is much too pessimistic. (In fact it is 
believed that O(lnl+< JDI) generators should suffice for any E > 0). Hence, we 
will choose 

Note that, although the ln2 function grows asymptotically much more slowly 
than the L(JDI) function, in practice the constants 6 and 1/VS will make the 
ln2 term dominate. More precisely, the L(JDI) term will start to dominate only 
for discriminants having at least 103 digits, well outside the range of practical 
applicability of this method. Even if one could reduce the constant 6 to 1, the 
ln2 term would still dominate for numbers having up to 70 digits. 

Let n be the number of p E P. To give a specific numerical example, for 
D of the order of -1040 , with the above formula P will be around 50900, 
and n around 2600, while if D is of the order of -1050 , P will be around 
79500 and n around 3900. Since we will be handling determinants of n x n 
matrices, many problems become serious, in particular the storage problems, 
though they are perhaps still manageable. In any case, the computational 
load becomes very great. In particular, for matrices of this size it is essential 
to use special techniques adapted to the type of matrices which we have, 
i.e. sparse matrices. Since we are over IE and not over a field, the use of methods 
such as Wiedemann's coordinate recurrence method (see [Wie]) is possible only 
through the use of the Chinese remainder theorem, and is quite painful. An 
easier approach is to use "intelligent Hermite reduction", analogous to the 
intelligent Gaussian elimination technique used by LaMacchia and Odlyzko 
(see [LaM-Odl]). This method has been implemented by Diillmann ([Buc
Diil]) and by Cohen, Diaz y Diaz and Olivier ([CohDiOl]), and is described 
below. 
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5.5.2 Detailed Description of the Algorithm 

We first make a few remarks. 

The first important remark is that although one should generate random 
relations using Lemma 5.5.1, one may hope to obtain a non-trivial relation as 
soon as ITP pep > JIDI /3 since the resulting form obtained by multiplication 
without reduction will not be reduced. Hence, instead of taking the whole of 
P to compute the products, we take a much smaller subset Po not containing 
any prime dividing D and such that 

II p > JIDI/3 . 
pE'Po 

Then Po will be very small, typically of cardinality 10 or 20, even for dis
criminants in the 40 to 50 digit range. In fact, by the prime number theorem, 
the cardinality of Po should be of the order of ln I D I/ ln ln I D I· For similar 
reasons, although the exponents ep should be chosen randomly up to IDI as 
McCurley's analysis shows, in practice it suffices to take very small random 
exponents, say 1 :5 ep :5 20. 

A second remark is that, even if we use intelligent Hermite reduction as 
will be described, the size of the matrix involved will be very large. Hence, 
we must try to make it smaller even before we start the reduction. One way 
to do this is to decide to take a lower value of P, say one corresponding to 
the constant c = 1 (i.e. the split primes of norm less than ln2 IDI instead of 
6ln2 IDI). This would probably work, but even under the GRH the result may 
be false since we may not have enough generators. There is however one way 
out of this. For every prime q such that ln2 1DI < q < 6ln2 1DI, let gq be a 
reduced form equivalent to jq ITpE'Po J:P with small random exponents ep as 
before. If gq = (a, b, c), then, if a factors over our factor base P, since q is quite 
large, with a little luck after a few trials we will find an a which not only factors, 
but whose prime factors are all less than q. This means that Jq belongs to the 
subgroup generated by the other fp's, hence can be discarded as a generator of 
the class group. Doing this for all the q > ln2 1DI is fast and does not involve 
any matrix handling, and in effect reduces the problem to taking the constant 
1 instead of 6 in the definition of P, giving much smaller matrices. Note that 
the constant 1 which we have chosen is completely arbitrary, but it must not 
be chosen too small, otherwise it will become very difficult to eliminate the 
big primes q. In practice, values between 0.5 and 2 seem reasonable. 

These kind of ideas can be pushed further. Instead of taking products 
using only powers of forms fp with p E Po, we can systematically multiply 
such a relation by a prime q larger than the ones in Po, with the hope that 
this extra prime will still occur non-trivially in the resulting relation. 

A third remark is that ambiguous forms (i.e. whose square is principal) 
have to be treated specially in the factor base, since only the parity of the 
exponents will count. (This is why we have excluded primes dividing D in 
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P0 .) In fact, it would be better to add the free relations 1; = 1 for all p E P 
dividing D. On the other hand, when D is not a fundamental discriminant, 
one must exclude from P the primes p dividing D to a power higher than the 
first (except for p = 2 which one keeps if D j 4 is congruent to 2 or 3 modulo 
4). For our present exposition, such primes will be called bad, the others good. 

Algorithm 5.5.2 (Sub-Exponential Imaginary Class Group). If D < 0 is 
a discriminant, this algorithm computes the class number h(D) and the class 
group Cl(D). As before, in practice we work with binary quadratic forms. We 
also choose a positive real constant b. 

1. (Compute primes and Euler product] Set m r- bln2 IDI, M +- L(IDI)11VB, 
P r- lmax(m, M)J 

P +- {p ~ P, (~) # -1 and p good} 

and compute the product 

2. (Compute prime forms] Let Po be the set made up of the smallest primes 
of P not dividing D such that TipEPo p > .JIDI/3. For the primes p E P 
do the following. Compute bp such that b; = D (mod 4p) using Algorithm 
1.5.1 (and modifying the result to get the correct parity). If bp > p, set 
bp r- 2p- bp. Set /p +- (p, bp, (b;- D)/(4p)). Finally, let n be the number 
of primes pEP. 

3. (Compute powers] For each p E Po and each integer e such that 1 ~ e ~ 20 
compute and store the unique reduced form equivalent to f;. Set k +- 0. 

4. (Generate random relations] Let Jq be the primeform number k + 1 mod n 
in the factor base. Choose random ep between 1 and 20, and compute the 
unique reduced form (a, b, c) equivalent to 

until vq(a) # 1 (note that the J;p have already been computed in step 3). 
Set ep +- 0 if p ~ Po then eq +- eq + 1. 

5. [Factor a] Factor a using trial division. If a prime factor of a is larger than P, do 
not continue the factorization and go to step 4. Otherwise, if a = np~P PVp' 

set k +- k + 1, and fori ~ n 
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where Ep, = +1 if (b mod 2pi)::; Pi. Ep, = -1 otherwise. 

6. [Enough relations?] If k < n + 10 go to step 4. 

7. [Be honest] For each prime q such that P < q ::; 6ln2 IDI do the follow
ing. Choose random ep between 1 and 20 (say) and compute the primeform 
Jq corresponding to q and the unique reduced form (a, b, c) equivalent to 
Jq ITpEPo J;v. If a does not factor into primes less than q, choose other ex
ponents ep and continue until a factors into such primes. Then go on to the 
next prime q until the list is exhausted. 

8. [Simple HNF] Perform a preliminary simple Hermite reduction on then x k 
matrix A= (ai,j) as described below, thus obtaining a much smaller matrix 
A1. 

9. [Compute determinant] Using standard Gaussian elimination techniques, com
pute the determinant of the lattice generated by the columns of the matrix A1 
modulo small primes p. Then compute the determinant d exactly using the 
Chinese remainder theorem and Hadamard's inequality (see also Exercise 13). 
If the matrix is not of rank equal to its number of rows, get 5 more relations 
(in steps 4 and 5) and go to step 8. 

10. [HNF reduction] Using Algorithm 2.4.8 compute the Hermite normal form 
H = (hi,j) of the matrix A1 using modulo d techniques. Then, for every i 
such that hi,i = 1, suppress row and column i. Let W be the resulting matrix. 

11. [Finished?] Let h +-- det(W) (i.e. the product of the diagonal elements). If 
h ~ B../2, get 5 more relations (in steps 4 and 5) and go to step 8. (It will 
not be necessary to recompute the whole HNF, but only to take into account 
the last 5 columns.) Otherwise, output has the class number. 

12. [Class group] Compute the Smith normal form of W using Algorithm 2.4.14. 
Output those diagonal elements di which are greater than 1 as the invariants 
of the class group (i.e. Cl(D) = ffiZ/diZ) and terminate the algorithm. 

Implementation Remarks. 

(1) The constant b used in step 1 is important mainly to control the size of 
the final matrix A on which we are going to work. As mentioned above 
however, b must not be chosen too small, otherwise we will have a lot of 
trouble in the factoring stages. Practice shows that values between 0.5 and 
2.0 are quite reasonable. 

With such a choice of b, we could of course avoid step 7 entirely since it 
seems highly implausible that the class group is not generated by the first 
0.5ln2 IDI primeforms. Including step 7, however, makes the correctness 
of the result depend only on the GRH and nothing else. Note also that 
strictly speaking the above algorithm could run indefinitely, either because 
it does not find enough relations, or because the condition of step 7 is never 
satisfied for some prime q. In practice this never occurs. 

(2) The simple Hermite reduction which is needed in step 8 is the following. 
We first scan all the rows of the n x k matrix A to detect ifsome have a 
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single ±1, the other coefficients being equal to zero. If this is the case and 
we find that ai,j = ±1 is the only non-zero element of its row, we exchange 
rows i and n and columns j and k, and scan the matrix formed by the 
first n - 1 rows and k - 1 columns. We continue in this way until no such 
rows are found. We are now reduced to the study of a (n- s) x (k- s) 
matrix A', where s is the number of rows found. 

In the second stage, we scan A' for rows having only 0 and ±1. In 
this case, simple arithmetic is needed to eliminate the ±1 as one does in 
ordinary HNF reduction, and, in particular, one may hope to work entirely 
with ordinary (as opposed to multi-precision) integers. The second stage 
ends when either all rows have been scanned, or if a coefficient exceeds 
half the maximal possible value for ordinary integers. 

In a third and last stage before starting the modulo d HNF reduc
tion of step 10, we can proceed as follows (see [Buc-Dlil]). We apply the 
ordinary HNF reduction Algorithm 2.4.5 keeping track of the size of the 
coefficients which are encountered. In this manner, we Hermite-reduce a 
few rows (corresponding to the index j in Algorithm 2.4.5) until some co
efficient becomes in absolute value larger than a given bound (for example 
as soon as a coefficient does not fit inside a single-precision number). If the 
first non-Hermite-reduced row has index j, we use the MLLL Algorithm 
2.6.8 or an all-integer version on the matrix formed by the first j rows. 
The effect of this will be to decrease the size of the coefficients, and since 
as in Hermite reduction only column operations are involved, the LLL re
duction is allowed. We now start again Hermite-reducing a few rows using 
Algorithm 2.4.5, and we continue until either the matrix is completely 
reduced, or until the LLL reduction no longer improves matters (i.e. the 
partial Hermite reduction reduced no row at all). 

After these reductions are performed, practical experience shows that 
the size of the matrix will have been considerably reduced, and this is 
essential since otherwise the HNF reduction would have to be performed 
on matrices having up to several thousand rows and columns, and this is 
almost impossible in practice. 

(3) If Hermite reduction is performed carefully as described above, by far the 
most costly part of the algorithm is the search for relations. This part can 
be considerably improved by using the large prime variation idea common 
to many modern factoring methods (see Remark (2) in Section 10.1) as 
follows. In step 5, all a with a prime factor greater than P will be rejected. 
But assume that all prime factors of a are less than or equal to P, except 
one prime factor Pa which is larger. The corresponding quadratic form can
not be used directly without increasing the value of P. But assume that for 
two values of a, i.e. for two quadratic forms f =(a, b, c) and g =(a', b', c'), 
the large prime Pa is the same. Then either the form f g- 1 or the form 
fg (depending on whether b' = b (mod Pa) or not) will give us a relation 
in which no primes larger than P will occur, hence a useful relation. The 
coincidence of two values of Pa will not be a rare phenomenon, and for 
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large discriminants the improvement will be considerable. See Exercise 14 
for some hints on how to implement the large prime variation. 

(4) Note that the '10' and '5' which occur in the algorithm are quite arbitrary, 
but are usually sufficient in practice. Note also that the correctness of the 
result is guaranteed only if one assumes GRH. Hence, this is a conditional 
algorithm, but in a much more precise sense than Algorithm 5.4.10. 

(5) In step 5, we need to factor a using trial division. Now a can be as large 
as JIDI/3, hence a may have more than 20 digits in the region we are 
aiming for, and factoring by trial division may seem too costly. We have 
seen however that M is a few thousand at most in this region, so using 
trial divisors up to M is reasonable. We can improve on this by using the 
early abort strategy which will be explained in Chapter 10. 

(6) Step 9 requires computing a determinant using the Chinese remainder 
theorem (although as seen in Exercise 13 we can also compute it directly). 
This means that we first compute it modulo sufficiently many small primes. 
Then, by using the Chinese remainder Algorithm 1.3.12, we can obtain 
it modulo the product of these primes. Finally, Hadamard's inequality 
(Proposition 2.2.4) gives us an upper bound on the result. Hence, if the 
product of our primes is greater than twice this upper bound, we find the 
value of the determinant exactly. We have already mentioned this method 
in Section 4.3 for computing norms of algebraic integers. 

The Hadamard bound may, however, be extremely large, and in that 
case it is preferable to proceed as follows. We take many more extra rela
tions than needed (say 100 instead of 10) and we must assume that we will 
obtain the class number itself and not a multiple of it. Then the quantity 
Bv'2. is an upper bound for the determinant and can be used instead of 
the Hadamard bound. Once the class group is obtained, we must then 
check that it is correct, and this can be done without too much difficulty 
(or we can stop and assume that the result is correct). 

(7) Finally, the main point of this method is, of course, its speed since under 
reasonable hypotheses one can prove that the expected asymptotic average 
running time is 

with o: = v'2, and perhaps even o: = .j9{8. This is much faster than 
any of the preceding methods. Furthermore, it can be hoped that one can 
bring down the constant o: to 1. This seems to be the limit of what one 
can expect to achieve on the subject for the following reason. Many fast 
factoring methods are known, using very different methods. To mention 
just a few, there is one using the 2-Sylow subgroup of the class group, 
one using elliptic curves (ECM), and a sieve type method (MPQS). All 
these methods have a common expected running time of the order of 
O(L(N)). In 1989, the discovery of the number field sieve lowered this 
running time to O(e1n(N) 113+') (see Chapter 10), but this becomes better 
than the preceding methods for special numbers having more than 100 
digits, and for general numbers having more than (perhaps) 130 digits, 
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hence does not concern us here. Since computing the class group is at 
least as difficult as factoring, one cannot expect to find a significantly faster 
method than McCurley's algorithm without fundamentally new ideas. It is 
plausible, however, that using ideas from the number field sieve would give 
an O(e1n{N) 11a+•) algorithm, but nobody knows how to do this at the time 
of this writing. In practice, using Section 6.5, we may speedup Algorithm 
5.5.2 by finding some of the relations using the basic number field sieve 
idea (see remark (3) after Algorithm 6.5.9). 

5.5.3 Atkin's Variant 

A variant of the above algorithm has been proposed by Atkin. It has the 
advantage of being faster, but the disadvantage of not always giving the class 
group. Atkin's idea is as follows. 

Instead of taking P0 , which is already a small subset of the factor base of 
prime forms, to generate the relations, we choose a single form f. Of course, 
there is now no reason for f to generate the class group, but at least when 
the discriminant is prime this often happens, as tables and the heuristics of 
[Coh-Len1] show (see Section 5.10). 

We then determine the order of f in the class group, using a method 
which is more efficient than the baby-step giant-step Algorithm 5.4.1 for large 
discriminants, since it is also a sub-exponential algorithm. The improvement 
comes, as in McCurley's algorithm, from the use of a factor base. (The phi
losophy being that any number-theoretic algorithm which can be made to 
efficiently use factor bases automatically becomes sub-exponential thanks to 
the theorem of Canfield-Erdos-Pomerance 10.2.1 that we will see in Chapter 
10.) 

To compute the order of f, we start with the same two steps as Algorithm 
5.5.2. In particular, we set n equal to the number of primeforms in our factor 
base. 

We now compute the reduced forms equivalent to J, p, j3, ... For each 
such form (a, b, c) we execute step 5 of Algorithm 5.5.2, i.e. we check whether 
the form factors on our factor base, and if it does, we keep the corresponding 
relation. 

We continue in this way until exactly n + 1 relations have been obtained, 
i.e. one more than the cardinality of the factor base. Let et, e2, ... , en+l be 
the exponents of f for which we have obtained a relation. Since we have now 
an n x (n + 1) matrix with integral entries, there exists a non-trivial linear 
relation between the columns with integral coefficients, and this relation can 
be obtained by simple linear algebra, not by using number-theoretic methods 
such as Hermite normal form computations which are much slower. We can 
for example use a special case of Algorithm 2.3.1. 

Now, if Ci is column number i of our matrix, for 1 :::; i:::; n + 1, and if Xi 

are the coefficients of our relation, so that Ll:5i:5n+l xiCi = 0, then clearly 
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JN = 1 , where N = L Xiei. 
l$i$n+l 
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This is exactly the kind of relation that one obtains by using the baby-step 
giant-step method, but the running time can be shown to be sub-exponential 
as in McCurley's algorithm. 

The relation may of course be trivial, i.e. we may have N = 0. This 
happens rarely however. Furthermore, if it does happen, we may have at our 
disposal more independent relations between the columns of our n x ( n + 1) 
matrix, which are also given by Algorithm 2.3.1. If not, we take higher powers 
of f until we obtain a non-trivial relation. 

As soon as we have a non-zero N such that JN = 1, we can compute the 
exact order of f in the class group as in Algorithm 5.4.1, after having factored 
N. Of course, this factorization may not be easy, but N is probably of similar 
size as the class number, hence about JiDT, so even if D has 60 digits, we 
probably will have to factor a number having around 30 digits, which is not 
too difficult. 

If e is the exact order of f, we know that e divides the class number. If e 
already satisfies the lower bound inequalities given by the Euler product, that 
is if 

e > _2_ JiDT IJ (1- (-%) )-1' 
..j2 1r p$P p 

then assuming GRH, we must have e = h(D), and the class group is cyclic 
and generated by f. When it applies, this gives a faster method to compute 
the class number and class group than McCurley's algorithm. If the inequality 
is not satisfied, we can proceed with another form, as in Algorithm 5.4.1. The 
details are left to the reader. 

Note that according to tables and the heuristic conjectures of (Coh-Len1] 
(see Section 5.10), the odd part of the class group should very often be cyclic 
(probability greater than 97%). Hence, if the discriminant Dis prime, so that 
the class number is odd, there is a very good chance that Cl(D) is cyclic. 
Furthermore, the number of generators of a cyclic group with h elements is 
¢(h), and this is also quite large, so there is a good chance that our randomly 
chosen f will generate the class group. 

The implementation details of Atkin's algorithm are left to the reader (see 
Exercise 15). 
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5.6 Class Groups of Real Quadratic Fields 

We now consider the problem of computing the class group and the regulator 
of a real quadratic field K = IQ( .Ji5), and more generally of the unique real 
quadratic order of discriminant D. We will consider the problem of computing 
the regulator in Section 5.7, so we assume that we already have computed the 
regulator which we will denote by R(D). 

5.6.1 Computing Class Numbers Using Reduced Forms 

Thanks to Theorem 5.2.9, we still have a correspondence between the narrow 
ideal class group and equivalence classes of quadratic forms of the same dis
criminant D. It is not difficult to have a correspondence with the ideal class 
group itself. 

Proposition 5.6.1. If D is a non-square positive integer congruent to 0 or 
1 modulo 4, the maps 1/JFI and 1/JIF of Theorem 5.2.9 induce inverse isomor
phisms between Cl(D) and the quotient set of :F(D) obtained by identifying 
the class of(a,b,c) with the class of(-a,b,-c). 

The proof is easy and left to the reader (Exercise 18). 

The big difference between forms of negative and positive discriminant 
however is that, although one can define the notion of a reduced form (differ
ently from the negative case), there will in general not exist only one reduced 
form per equivalence class, but several, which are naturally organized in a 
cycle structure. 

Definition 5.6.2. Let f = (a, b, c) be a quadrotic form with positive discrim
inant D. We say that f is reduced if we have 

lv'D- 21all < b < v'D. 

The justification for this definition, as well as for the definition in the case 
of negative discriminants, is given in Exercise 16. 

Note immediately the following proposition. 

Proposition 5.6.3. Let (a, b, c) be a quadrotic form with positive discrim
inant D. Then 

(1) If (a, b, c) is reduced, then lal, b and lei are less than v'D and a and c 
are of opposite signs. 

(2) More precisely, if (a, b, c) is reduced, we have lal +lei< v'D. 
(3) Finally, (a, b, c) is reduced if and only if lv'D- 21cll < b < v'D. 
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Proof The result forb is trivial, and since ac = (b2 - D)/4 < 0 it is clear that 
a and care of opposite signs. Now we have 

II 11 -Vn= D-4lalvD+4a2 -b2 = (vD-2Ial)2 -b2 

a + c 4lal 4lal , 

hence by definition of reduced we have lal +lei - yD < 0, which implies (2) 
and hence (1). 

To prove (3), we note that we have the identity 

hence if € = ±1, we have 

b _ t:(2lcl- Vn) = ( vD + t:b)(b + t:(2lal- vD)) 
2lal 

which is positive by definition. Since a and c play symmetrical roles, this 
proves (3) and hence the proposition. D 

If r = (-b + vD)/(2Ial) is the quadratic number associated to the form 
(a, b, c) as in Section 5.2, it is not difficult to show that (a, b, c) is reduced if 
and only if 0 < r < 1 and -a(r) > 1. 

We now need a reduction algorithm on quadratic forms of positive dis
criminant. It is useful to give a preliminary definition: 

Definition 5.6.4. Let D > 0 be a discriminant. If a =f. 0 and b are integers, 
we define r(b, a) to be the unique integer r such that r = b (mod 2a) and 
-lal < r ~ lal if lal > v'D, vD- 2lal < r < vD if lal < v'D. In addition, 
we define the reduction operator p on quadratic forms (a, b, c) of discriminant 
D > 0 by 

( r(-b,c) 2 -D) 
p(a, b, c) = c, r( -b, c), 4c . 

The reduction algorithm is then simply as follows. 

Algorithm 5.6.5 (Reduction of Indefinite Quadratic Forms). Given a qua
dratic form f = (a, b, c) with positive discriminant D, this algorithm finds a 
reduced form equivalent to f. 
1. [Iterate] If (a, b, c) is reduced, output (a, b, c) and terminate the algorithm. 

Otherwise, set (a, b, c) +-- p(a, b, c) and go to step 1. 

We must show that this algorithm indeed produces a reduced form after 
a finite number of iterations. In fact, we have the following stronger result: 
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Proposition 5.6.6. 

(1) The number of iterations of p which are necessary to reduce a form (a, b, c) 
is at most 2 + flg(lcl/v'D)l. 

(2) Iff= (a, b, c) is a reduced form, then p(a, b, c) is again a reduced form. 
(3) The reduced forms equivalent to f are exactly the forms pn(f), for n suf

ficiently large (i.e. n greater than or equal to the least n0 such that pno (f) 
is reduced) and are finite in number. 

Proof The proof of (1) is similar in nature to that of Proposition 5.4.3. Set 
p(f) = (a',b',c'). I first claim that if lei> v'D then lc'l:::; lcl/2. Indeed, in 
that case lr( -b, c)l :::; lei, hence 

lc'l = lr(-b, c)2 - Dl < 2c2 < J.S 
4lcl - 41cl - 2 

since D < c2 . So, after at most flg(lcl/v'D)l iterations, we will end up with 
a form where lei < v'D. As in the imaginary case one can then check that 
the form is almost reduced, in the sense that after another iteration of p we 
will have Ia I, lbl and lei less than v'D, and then either the form is reduced, or 
it will be after one extra iteration. The details are left as an exercise for the 
reader. 

For (2), note that if (a,b,c) is reduced, then 

lb + v'Dj r(-b,c)=-b+2lcl 2lcl , 

since this is clearly in the interval [ v'D- 2lcl, v'DJ. If lei < v'D /2, this implies 
that p(a, b, c) is reduced by definition. If lei > v'D /2, it is clear that 

r( -b, c) = -b + 2lcl > 2lcl- .Ji5 = IVD- 2lcll, 

proving again that p(a, b, c) is reduced. 
Finally, to prove (3), set a(a,b,c) = (c,b,a). Using again Proposition 

5.6.3 (3), it is clear that a is an involution on reduced forms. Furthermore, 
one checks immediately that pa and ap are both involutions on the set of 
reduced forms, thus proving that p is a permutation of this set, the inverse of 
p being p- 1 = apa. 

Another way to see this is to check directly that the inverse of p on reduced 
forms is given explicitly by 

-1 (r(-b,a) 2 -D ) p (a, b, c) = 4a , r(-b, a), a , 

and p-1 can be used instead of p to reduce a form, although one must take 
care that for non-reduced forms, it will not be the inverse of p since p is not 
one-to-one. 0 
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We can summarize Proposition 5.6.6 by saying that if we start with any 
form J, the sequence pn(f) is ultimately periodic, and we arrive inside the 
period exactly when the form is reduced. 

Finally, note that it follows from Proposition 5.6.3 that the set of reduced 
forms of discriminant D has cardinality at most D (the possible number of 
pairs (a, b)), but a closer analysis shows that its cardinality is O(D112 ln D). 

It follows from the above discussion and results that in every equivalence 
class of quadratic forms of discriminant D > 0, there is not only one reduced 
form, but a cycle of reduced forms (cycling under the operation p), and so the 
class number is the number of such cycles. 

It is not necessary to formally write an algorithm analogous to Algorithm 
5.3.5 for computing the class number using reduced forms. We make a list 
of all the reduced forms of discriminant D by testing among all pairs (a, b) 
such that lal < ..fJ5, l..fJ5- 2lall < b < ...(J5 and b = D (mod 2), those for 
which b2 - D is divisible by 4a. Then we count the number of orbits under 
the permutation p, and the result is the narrow class number h+(D). If, in 
addition, we identify the forms (a, b, c) and (-a, b, -c), then, according to 
Proposition 5.6.1 we obtain the class number h(D) itself. 

As for Algorithm 5.3.5, this is an algorithm with O(D) execution time, so 
is feasible only for discriminants up to 106 , say. Hence, as in the imaginary 
case, it is necessary to find better methods. 

For future reference, let us determine the exact correspondence between 
the action of p and the continued fraction expansion of a quadratic irrational
ity. 

In Section 5.2 we have defined maps ¢FI and r/JrQ, and by composition, 
Theorem 5.2.4 tells us that the map ¢FQ from I to Q x Z/2Z defined by 

( -b + ...(J5 0 ) 

¢FQ(a, b, c) = 2lal , sign( a) 

is an isomorphism. (Note the absolute value of a, coming from the necessity 
of choosing an oriented basis for our ideals.) 

From this, one checks immediately that iff = (a, b, c) is reduced, and if 
¢FQ(/) = (r, s), then 

where by abuse of notation we still use the notation ¢ FQ for the map at the 
level of forms and not at the level of classes of forms modulo r 00 • 

For p- 1 we define 

( b + .Ji5 0 ) 1/JFQ(a, b, c) = 2lal , s1gn(a) . 
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Then, iff= (a,b,c) is reduced and 1/JFQ(/) = (r',s), we have 

Thus the action of p and p-1 on reduced forms correspond exactly to 
the continued fraction expansion ofT and r' = -a(r) respectively, with in 
addition a ±1 variable which gives the parity of the number of reduction steps. 

In addition, since p and p-1 are inverse maps on reduced forms, we obtain 
as a corollary of Proposition 5.6.6 the following. 

Corollary 5.6. 7. Let T = ( -b + VD) / (2lal) corresponding to a reduced 
quadmtic form (a, b, c). Then the continued fraction expansion ofT is purely 
periodic, and the period of the continued fraction expansion of -a( T) = 
(b + VD)/(2Ial) is the reverse of that ofT. 

5.6.2 Computing Class Numbers Using Analytic Formulas 

We will follow closely Section 5.3.3. The definition of Lv(s) is the same, but 
the functional equation is slightly different: 

Proposition 5.6.8. Let D be a positive fundamental discriminant, and define 

This series converyes for Re(s) > 1, and defines an analytic function which 
can be analytically continued to the whole complex plane to an entire function 
satisfying 

Av(1- s) = Av(s), 

where we have set 

Av(s) = (~J12 
r(;)Lv(s). 

Note that the special case D = 1 of this proposition (which is excluded 
since it is not the discriminant of a quadratic field) is still true if one adds 
the fact that the function has a simple pole at s = 1. In that case, we simply 
recover the usual functional equation of the Riemann zeta function. The link 
with the class number and the regulator is as follows. (Recall that the regulator 
R(D) is in our case the logarithm of the unique generator greater than 1 of 
the torsion free part of the unit group.) 

Proposition 5.6.9. If D is a positive fundamental discriminant, then 
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L (1) = 2h(D)R(D) 
D VJ5 . 

Note that as in the imaginary case, these results are special cases of The
orem 4.9.12 using the identity (K(s) = ((s)Lv(s) forK= Q(vD). 

Also, as in the imaginary case, it is not very reasonable to compute Lv(1) 
directly from this formula since its defining series converges so slowly. However, 
a suitable reordering of the series gives the following: 

Corollary 5.6.10. If D is a positive fundamental discriminant, then 

l(D-1)/2J D 
h(D)R(D) =- L (-) lnsin (rn). 

r=l r D 

As usual, this kind of formula, although a finite sum, is useless from a 
computational point of view, and is worse than the method of reduced forms, 
although maybe slightly simpler to program. If we also use the functional 
equation we obtain a considerable improvement, leading to a complicated but 
much more efficient formula: 

Proposition 5.6.11. If D is a positive fundamental discriminant, then 

where erfc(x) is the complementary error function (see Propositions 5. 3.14 
and 5.3.15 }, and E 1(x) is the exponential integral function defined by 

E1(x)= !:.._dt. 100 -t 

X t 

Note that the function E 1 ( x) can be computed efficiently using the fol
lowing formulas. 

Proposition 5.6.12. 

(1) We have for all x 

xk 
E1(x) = -'Y -ln(x) + 2)-1)k-1 - 1-, 

k;?:l k.k 

where ')' = 0.57721566490153286 ... is Euler's constant, and this should 
be used when x is small, say x ~ 4. 



268 

(2) We have for all x > 0 
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1 - -------'1=-------
2 + X - __ ____c1_·....::2-:---::--

4+x---2_·3 __ 

6+x-

and this should be used for x large, say x 2::: 4. 

Implementation Remark. The remark made after Proposition 5.3.15 is also 
valid here, the general formula being here 

These results show that the series given in Proposition 5.6.11 converges 
exponentially, and since h(D) is an integer and R(D) has been computed 
beforehand, it is clear that the computation time of h(D) by this method is 
O(D1/2+f) for any € > 0. As in the case D < 0 it would be easy to give an 
upper bound for the number of terms that one must take in the series. This 
is left as an exercise for the reader. See also Exercise 28 for a way to avoid 
computing the transcendental functions erfc and E1. 

5.6.3 A Heuristic Method of Shanks 

An examination of the heuristic conjectures of [Coh-Len1] (see Section 5.10) 
shows that one must expect that, on average, the class number h(D) will 
be quite small for positive discriminants, in contrast to the case of negative 
discriminants. Hence, one can use the following method, which is of course not 
an algorithm, but has a very good chance of giving the correct result quite 
quickly. 

Heuristic Algorithm 5.6.13 (Class Number for D > 0). Given a positive 
fundamental discriminant D, this algorithm computes a value which has a pretty 
good chance of being equal to the class number h(D). As always, we assume that 
the regulator R(D) has already been computed. We denote by Pi the ith prime 
number. 

1. [Regulator small?] If R(D) < D 114 , then output a message saying that the 
algorithm will probably not work, and terminate the algorithm. 

2. [Initialize] Set h1 +-- ...!D/(2R(D)), h +-- 0, c +-- 0, k +-- 0. 

3. [Compute block] Set 
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( (*) )-1 
h1 <-- h1 II 1 - -·- , 

500k<i$500(k+1) Pi 

m <-- l h1l, k <-- k + 1. 

4. [Seems integral?] If lm- h1l > 0.1 set c <-- 0 and go to step 3. 

5. [Seems constant ?]If m =/= h, seth <-- m and c <-- 1 and go to step 3. Otherwise, 
set c <-- c + 1. If c ::; 5 go to step 3, otherwise output h as the tentative class 
number and terminate the algorithm. 

The reason for the frequent success of this algorithm is clear. Although 
we use the slowly convergent Euler product for Lv(l), if the regulator is not 
too small, the integer m computed in step 3 has a reasonable chance of being 
equal to the class number. The heuristic criterion that we use, due to Shanks, 
is that if the Euler product is less than 0.1 away from the same integer h 
for 6 consecutive blocks of 500 prime numbers, we assume that h is the class 
number. In fact, assuming GRH, this heuristic method can be made completely 
rigorous. I refer to [Mol-Wil] for details. In practice it works quite well, except 
of course for the quite rare cases in which the regulator is too small. 

We still have not given any method for computing the structure of the 
class group. Before considering this point, we now consider the question of 
computing the regulator of a real quadratic field. 

5.7 Computation of the Fundamental Unit and of the 
Regulator 

As we have seen, reduced forms are grouped into h(D) cycles under the per
mutation p. We will see that one can define a distance between forms which, 
in particular, has the property that the length of each cycle is the same, and 
equal to the regulator. Note that this is absolutely not true for the nai:ve 
length defined as the number of forms. 

5.7.1 Description of the Algorithms 

The action of p and p- 1 corresponding to the continued fraction expansion of 
the quadratic irrationals T and -a( T) respectively, it is clear that we must be 
able to compute the fundamental unit and the regulator from these expansions. 
From Corollary 5.6.7, we know that one of these expansions will be reverse of 
the other, so we can choose as we like between the two. 

It is slightly simpler to use the expansion of -a(r), and this leads to the 
following algorithm whose validity will be proved in the next section. Note 
that in this algorithm we assume a > 0, but it is easy to modify it so that it 
stays valid in general (Exercise 20). 
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Algorithm 5.7.1 (Fundamental Unit Using Continued Fractions). Given 
a quadratic irrational T = ( -b + VD)/(2a) where 4a I (D- b2 ) and a > 0, 
corresponding to a reduced form (a,b, (b2 - D)/(4a)), this algorithm computes 
the fundamental unit c of IQ( VD) using the ordinary continued fraction expansion 
of -a(r). 

1. [Initialize] Set u1 +-- -b, u2 +-- 2a, v1 +-- 1, v2 +-- 0, p +-- b and q +-- 2a. 
Precompute d +-- l VDJ. 

2. [Euclidean step] Set A+-- l(P + d)jqj, then in that order, set p +-- Aq- p and 
q +-- (D- p2)jq. Finally, set t +-- Au2 + u1, u1 +-- u2. u2 +-- t, t +-- Av2 + v1. 
v1 +-- v2. and v2 +-- t. 

3. [End of period?] If q = 2a and p = b (mod 2a), set u +-- lu2/al, v +-- lv2/al 
(both divisions being exact), output c +-- (u + vVD)/2, and terminate the 
algorithm. Otherwise, go to step 2. 

As will be proved in the next section, the result of this algorithm is the 
fundamental unit, independently of the initial reduced form. Hence, the sim
plest solution is to start with the unit reduced form, i.e. with T = ( -b+VD)/2 
and b = d if d = D (mod 2), b = d- 1 otherwise, where as in the algorithm 
d = lVDJ. 

Also, note that the form corresponding to (p + VD)/q at step i is 

If we had wanted the exact action of p-1 , we would have to put q +-- (p2-D)fq 
instead of q +-- ( D- p2 ) / q in step 2 of the algorithm, and then q would alternate 
in sign instead of always being positive. 

Now the continued fraction expansion of the quadratic irrational corre
sponding to the unit reduced form is not only periodic, but in fact symmetric. 
This is true more generally for forms belonging to ambiguous cycles, i.e. forms 
whose square lie in the principal cycle (see Exercise 22). Hence, it is possible 
to divide by two the number of iterations in Algorithm 5. 7.1. This leads to 
the following algorithm, whose proof is left to the reader. 

Algorithm 5.7.2 (Fundamental Unit). Given a fundamental discriminant 
D > 0, this algorithm computes the fundamental unit of Q( VD). 

1. [Initialize] Set d +-- l VDJ. If d = D (mod 2), set b +-- d otherwise set b +-

d -1. Then set u1 +-- -b, u2 +-- 2, v1 +-- 1, v2 +-- 0, p +-- b and q +-- 2. 

2. [Euclidean step] Set A+-- l(P + d)jqj, t +-- p and p +-- Aq- p. If t = p and 
v2 =/= 0, then go to step 4, otherwise set t +-- AU2 + u1 , u1 +-- u2, u2 +-- t, 
t +-- Av2 + Vt. v1 +-- v2. and v2 +-- t, t +-- q, q +-- (D- p2)fq. 

3. [Odd period?] If q = t and v2 =!= 0, set u +-- l(u1u2 + Dv1v2)/ql. v +-

I(UtV2 +u2v1)/ql (both divisions being exact), output c +-- (u+vVD)/2 and 
terminate the algorithm. Otherwise, go to step 2. 
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4. [Even period] Set u +-- l(u~ + v~D)fql. v +-- 12u2v2/ql (both divisions being 
exact), output e +-- (u + v.Ji5)/2 and terminate the algorithm. 

The performance of both these algorithms is quite reasonable for discrim
inants up to 106 . It can be proved that the number of steps is O(D112+€) 
for all f > 0. Furthermore, all the computations on p and q are done with 
numbers less than 2VJ5, hence of reasonable size. The main problem is that 
the fundamental unit itself has coefficients u and v which are of unreasonable 
size. One can show that In u and In v can be as large as VJ5. Hence, although 
the number of steps is O(D1/2+£), this does not correctly reflect the practical 
execution time, since multi-precision operations become predominant. In fact, 
it is easy to see that the only bound one can give for the execution time itself 
is O(Dl+€). 

The problem is therefore not so much in computing the numbers u and v, 
which do not make much sense when they are so large, but in computing the 
regulator itself to some reasonable accuracy, since after all, this is all we need 
in the class number formula. It would seem that it is not possible to compute 
R(D) without computing e exactly, but luckily this is not the case, and there 
is a variant of Algorithm 5.7.2 (or 5.7.1) which gives the regulator instead of 
the fundamental unit. This variant uses floating point numbers, which must be 
computed to sufficient accuracy (but not unreasonably so: double precision, 
i.e. 15 decimals, is plenty). The advantage is that no numbers will become 
large. 

5.7.2 Analysis of the Continued Fraction Algorithm 

To do this, we must analyze the behavior of the continued fraction algorithm, 
and along the way we will prove the validity of Algorithm 5.7.1. We assume 
for the sake of simplicity that a > 0 (hence c < 0), although the same analysis 
holds in general. 

Call Pi, qi, Ai, Ul,i, u2,i, v1,i, v2,i the quantities occurring in step i of the 
algorithm, where the initializations correspond to step 0, and set for i ~ -1, 
ai = ul,i+l• bi = Vl,i+l· Then we can summarize the recursion implicit in the 
algorithm by the following formulas: 

For all i ~ 0, Ul,i = ai-17 u2,i = ai, vl,i =bi-b v2 ,i = bi. Furthermore: 
Po= b, qo = 2a, a-1 =- b, ao = 2a, b_l = 1, bo = 0 (recall that a= 1 in 

Algorithm 5.7.2), and fori~ 0: 

Ai = l(Pi + d)fqd, Pi+l = Aiqi- Pi, qi+l = (D- P~+l)/qi, ai+l = 
Aiai +ai-l, bi+l = Aibi + bi-1· 

By the choice of b, we know that q0 I D-p~, and if by induction we assume 
that all the above quantities are integers and that qi 1 D - p~, one sees that 
D - p~+l = D - p~ = 0 (mod qi), hence qi+1 is an integer. In addition, we 
clearly have qi+l I D- p~+l since the quotient is simply qi, thus proving our 
claim by induction. We also have qi+l- qi-1 = (D- p~+l)fqi- (D- pnfqi = 
(pi- Pi+l)(Pi + Pi+l)/qi, hence we obtain the formula 
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which is in general computationally simpler than the formula used in the 
algorithms. 

That the algorithms above correspond to the continued fraction expansion 
of (b+..{i5)j(2a) (where in Algorithm 5.7.2 it is understood that we take a= 1) 
is quite clear. Set (i = (pi + ..{i5)jqi. Then we have (o = (b + ..{i5)j(2a), 
Ai = l (d , and hence 

thus giving the above formulas. 
This is of course nothing other than the translation of the formula giving 

t/JFQ(p-1(!)) in terms of '1/JFQ(/). 

Note that in practice the computations on the pair (p, q) should be done 
in the following way: use three extra variables r and Pl, q1. Replace steps 1 
and 2 of Algorithm 5.7.2 by 

1'. [Initialize) Set d +--- l..{i5J. If d = D (mod 2), set b +--- d otherwise set b +

d - 1. Then set u1 +--- -b, u2 +--- 2, v1 +--- 1, v2 +--- 0, p +--- b and q +--- 2, 
q1 +--- (D- p2 )jq. 

2'. [Euclidean step) Let p + d = qA + r with 0 ::; r < q be the Euclidean division 
of p + d by q, and set Pl +--- p, p +--- d- r. If Pl = p and v2 =/- 0, then go to 
step 4, otherwise set t +--- Au2 +ut. u1 +--- u2. u2 +--- t, t +--- Av2 +vt. v1 +--- v2. 
and v2 +--- t, t +--- q, q +--- q1- A(p- pi), q1 +--- t. 

This has the same effect as steps 1 and 2 of Algorithm 5. 7.2, but avoids 
one division in each loop. Note that this method can also be used in general. 

Now that we have seen that we are computing the continued fraction 
expansion of (b + ..{i5)j(2a), we must study the behavior of the sequences ai 
and bi. This is summarized in the following proposition. 

Proposition 5. 7 .3. With the above notations, we have 

(1) 
ai+l + bi+l ..(i5 Pi+l + ..(i5 

ai + bi ..(i5 qi 

(2) 

(3) 

(4) 
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(5) 
v'D _ ai(i + ai-l 

- bi(i + bi-1 , 

where as before (i = (pi + v'D) / Qi. 
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Proof. Denote real conjugation .Ji5 f-+ -v'D in the field Q( v'D) by a, and 
set Pi= (Pi+ v'D)/Qi-1· Then Pi+l = Ai -a((i) and since (Hl = 1/((i -Ai) 
we have by applying a, 

Therefore Pi+l = Ai- a((i) = Ai + 1/ Pi· On the other hand, to be compatible 
with the recursions, we must define q_ 1 = (D- b2)/(2a). Thus we see that 
Po= 2a/(.Ji5- b) (which comes also from the formula Pi= -1/a((i)). If we 
set ai = ai + biv'D, the recursions show that ai+l = Aiai +ai-l· Therefore if 
we set f3i = adai-b we have f3Hl = Ai + 1/ f3i, and this is the same recursion 
satisfied by Pi· Since we have f3o = 2a/( .Ji5- b) = p0 , this shows that f3i = Pi 
for all i, thus showing (1). 

Formula (2) is a standard formula in continued fraction expansions: we 
have the matrix recursion 

hence formula (2) follows trivially on taking determinants and noticing that 
aoL1- a-1bo = 2a. 

To prove (3), we take the norm (with respect to Q( v'D)/Q) of formula 
(1). We obtain: 

hence by multiplying out we obtain 

showing ( 3). 
Finally, to prove (4) we take the trace (with respect to Q(v'D)/Q) of 

formula (1). We obtain: 

ai+l + bi+l v'D ai+l - bi+1v'D 2Pi+l 
ai + bi .Ji5 + ai - bi .Ji5 = ---q;- ' 

hence grouping and using (3) we get 
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and this proves (4). 
Formula (5) follows easily from (1) and its proof is left to the reader. D 

Corollary 5.7.4. Set c = (b2 - D)/(4a), soD = b2 - 4ac. Define two se
quences Ci and di by c_l = 0, Co = 1, ci+l = Aici + ci-1, and d_t = -2c, 
do = b and di+l = Adi + di-1· Then the five formulas of Proposition 5. 7.3 
hold with (a,ai,bi) replaced by (c,di,Ci)· 

The proof is easy and left to the reader. 

Now for simplicity let us consider the case of Algorithm 5.7.1. Let i = k 
be the stage at which we stop, i.e. for which qk = 2a and Pk = b (mod 2a). 
Then we output c = (lakl + lbkiVD)/I2al. We are going to show that this is 
indeed the correct result. First, I claim that c is a unit. Indeed, notice that 
using (3), the norm of cis equal to (-1)11:. Hence, to show that cis a unit, it 
is only necessary to show that it is an algebraic integer. Moreover, since its 
norm is equal to ±1, hence integral, we must only show that the trace of c is 
integral, i.e. that ak = 0 (mod a). 

For this, we use the sequence ci defined in Corollary 5.7.4. It is clear that 
we have ai = 2aci- bbi. From Proposition 5. 7.3 (3) an easy computation gives 

bk(cbk-bck)=a((-1)kqk -c~)=O (moda), 
2a 

since qk = 2a. Similarly, since Pk = b (mod 2a), from (4) a similar computa
tion gives 

If we set oi = cbi - bci, it is clear by induction that 

From the two congruences proved above and the existence of u and v such 
that uok + VOk-1 = gcd(b, c), it follows that 

bk gcd(b, c) = 0 (mod a). 

But since D is a fundamental discriminant, the quadratic form (a, b, c) is 
primitive, hence gcd(a, b, c) = 1 = gcd(gcd(b, c), a), so we obtain bk = 0 
(mod a), hence also ak = 2ack- bbk = 0 (mod a) as was to be shown. 

Now that we know that c is a unit, we will show it is the fundamental unit. 
Since clearly c > 1, this will follow from the following more general result. We 
say that an algebraic integer a is primitive if for any integer n, ajn is an 
algebraic integer only for n = ±1. Then we have: 

Proposition 5. 7 .5. Let us keep all the above notations. Let N ~ 1 be a 
squarejree integer such that gcd(a, N) = 1. Assume that 2laiN < JD. 
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Then the solutions (A, B) of the Diophantine equation 

2 2 "hA dA+Bv'D . ·t· A - B D = ±4N, v.nt > 0, B > 0 an 2 pnmt we 

are given by (A, B) = (lanfal, Ibn/a!), for every n such that Qn = 2laiN and 
Pn = b (mod 2a). 

Proof We have proven above that e was an algebraic integer using only Qk = 0 
(mod 2a) and not precisely the value Qk = 2a. This shows that if the conditions 
of Proposition 5.7.5 are satisfied, we will have a I an and a I bn, and since 
by Proposition 5.7.3 (3) we have a~- b~D = ±2aqn = ±4a2N, the pair 
(A, B) = (lan/al, Ibn/a!) is indeed a solution to our Diophantine equation 
with A > 0, B > 0, and since .N((an + bnv'D)/(2a)) = ±N and that N is 
squarefree, (A+ Bv'D)/2 is primitive. 

We must now show the converse. Assume that A 2 - B 2 D = 4sN with 
s = ±1. Let r 1 = -a(r) = (b+ v'15)/(2a) as in Algorithm 5.7.1. Then an easy 
calculation gives 

I I A+ bB I I 4N I 
r - 2aB = 2aB21v'D +A/BI . 

Now, A/B = JD ± 4NjB2 ~ JD -4NjB2, hence 

lr' _ (A+ bB)/21 < 4N 
aB - 2laiB2(v'IJ+JD-4NjB2). 

We also have the following lemma whose proof is left to the reader. (See [H-W] 
for a slightly weaker version, but the proof is the same, see Exercise 21.) 

Lemma 5.7.6. If p and q are integers such that 

l r~-!!..~< 1 
q - q(max(2q- 1, 2)) 

then p / q is a convergent in the continued fraction expansion of r 1 • 

Consider first the case Ia I > 1. One easily checks that 4a2 N 2 - 4N / B 2 > 
(2la1N- 2N/B)2 is equivalent to 2laiBN > N + 1 which is clearly true. 
Hence, since v'D > 2laiN, we have v'D+ JD- 4NjB2 > 4laiN- 2N/B and 
therefore 

I I (A+bB)/21 1 
'T - < .,......,-=-:-..,......,..,-----:-

aB laiB(2IaiB- 1). 

Since b = D (mod 2) and A = BD (mod 2), (A+ bB)/2 is an integer, and 
so we can apply the lemma. This shows that (A+;:>I2 is a convergent to 
r 1• A similar proof applies to the case lal = 1, except when B = 1. But in 
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the case lal = B = 1, we have D - 2ffi < A2 < D + 2ffi hence either 
ffi-1 <A< ffi + 1, and hence IT'- (A +b)/21 < 1/2 and we can conclude 
as before that (A+ b) /2 is a convergent, or else D- 2ffi < A 2 < D- 2ffi + 1 
which implies that T 1 - 1 < (b + A) /2 < T 1 hence (b + A)/2 = l T 1 J is also a 
convergent to T 1• 

By definition, the convergents to T 1 are en/bn, and the equation (A + 
bB)/(2aB) = en/bn is equivalent to A/B = anfbn. 

Now we have the following lemma: 

Lemma 5.7.7. We have for all i, 

and 

is a primitive algebraic integer. 

Proof We know that 

ai + bi...[i5 
2(bi, a) 

d b(b b ) ( )i-1Pi-b an iCi-1- Ci-1 = -1 - 2--aCiCi-1 

hence as above bi(b, c) = 0 (mod ((Pi- b)/2, qi/2, a)), and since (a, b, c) = 1, 
we obtain ((Pi- b)/2,qi/2,a) I (bi,a). Conversely, the same relations show 
immediately that (bi,a) I ((Pi- b)j2,qi/2,a), thus giving the first formula of 
the lemma. For the second, we note that ai = 2aci- bbi, hence (bi, a) I ai, and 
since by Proposition 5.7.3 (3) at- btD = (-1)i2aqi, we see that 4(bi,a) 2 I 
at - bt D since we have proved that (bi, a) I qi/2, and these two divisibility 
conditions show that a= (ai + biffi)/(2(bi, a)) is an algebraic integer. 

Let us show that it is primitive. Note first that since ai = 2aci - bbi 
and (ci, bi) = 1, we have (ai, bi) = (bi, 2a). This shows that if we write a = 
(A'+ B' ffi)/2, we have (A', B') = (bi, 2a)/(bi, a) and therefore (A', B') I 2. If 
D = 1 (mod 4), it can easily be seen that this is the only required condition 
for primitivity. If D = 0 (mod 4), we must show that A' is even and that 
(A' /2, B') = 1. In this case however, b = D = 0 (mod 2), hence ai/2 = 
aci- (b/2)bi showing that A' = ai/(bi, a) is even, and (ai/2, bi) = (a, bi) so 
(A' /2, B') = 1 as was to be shown. 0 

Now that we have this lemma, we can finish the proof of Proposition 5. 7 .5. 
We have shown that A/B = anfbn, and since (A+ Bffi)/2 was assumed 
primitive, we obtain from the lemma the equalities A = lanl/(bn, a), B = 
lbnl/(bn, a). Plugging this in the Diophantine equation gives, using Proposition 
5.7.3 (3), ±4N = 2aqnf(bn,a) 2 or in other words since it is clear by induction 
that aqi > 0 for all i: 
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N=-a- Qn/2 

(bn, a) (bn, a) · 

Since we have assumed (N, a) = 1, it follows that aj(bn, a) = ±1, so that 
a I bn, hence also a I an, and hence Qn = 2aN, thus finishing the proof of 
Proposition 5.7.5. D 

Although we have proved a lot, we are still not finished. We need to show 
that we do indeed obtain the fundamental unit and not a power of it for 
every reduced (a, b, c), and not simply for 2lal < ..j[j. To do this, it would 
be necessary to relax the condition 2la!N < ..j[5 to laiN < ..j[5 for instance, 
but this is false as can easily be seen (take for example D = 136, (a, b, c) = 
(5, 6, -5) and N = 2. This is only a random example). In the special case 
N = 1 however, which is the case we are most interested in, we can prove our 
claim by using the symmetry between a and c, i.e. by also using Corollary 
5. 7.4. First, we note the proposition which is symmetric to Proposition 5. 7.5. 

Proposition 5. 7.8. Let us keep all the above notations, and, in particu
lar, those of Corollary 5. 1.4. Let N :::: 1 be a squarefree integer such that 
gcd(c, N) = 1 and 2lc!N < ..j[j. 

Then the solutions (A, B) of the Diophantine equation 

2 2 . h A B d A+ B..j[j . ·t· A - B D = ±4N, wzt > 0, > 0 an 2 przmz zve 

are given by (A, B) = (ldnfcl, ienfci), for every n such that Qn = 2lc!N and 
Pn = -b (mod 2c). 

The proof is identical to that of Proposition 5.7.5, but uses the formulas 
of Corollary 5. 7.4 instead of those of Proposition 5. 7.3. D 

Now we can prove: 

Proposition 5. 7.9. The conclusion of Proposition 5. 7.5 is valid for N = 1, 
with the only needed condition being that (a, b, c) is a reduced quadratic form. 

Proof. If Ia! < ..j[5 /2, then the result follows from Proposition 5. 7.5. Assume 
now Ia! > Vi5/2. By Proposition 5.6.3 (2), we have lei< .ff5J2, hence we can 
apply Proposition 5.7.8. We obtain (A, B)= (ldnfci, lcnfci) for ann such that 
Pn = -b (mod 2c) and Qn = 2lc!. This implies that Pn+l = AnQn- Pn = b 
(mod 2c) and furthermore, by definition of An, that ..j[5 -2!cl < Pn+l < .ff5. 
Hence, since lei < ..j[5 /2 and (a, b, c) is reduced, we have Pn+l = b, so Qn+l = 
2la!. Now from Proposition 5.7.3 and Corollary 5.7.4, we obtain immediately 
that 

dn+l + Cn+l VD dn + Cn ...fl5 
an+l + bn+l ...fl5 - an + bn ...fl5 ' 
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hence by induction 

= 

5. 7.3 Computation of the Regulator 

We have already mentioned that the fundamental unit c itself can involve 
huge coefficients, and that what one usually needs is only the regulator to a 
reasonable degree of accuracy. Note first that for all i ~ 1, we have ai/bi > 0. 
This is an amusing exercise left to the reader (hint: consider separately the 
four cases a> 0 and a< 0, and 2lal < .,fl5, 2lal > VJ5). Hence we have 

so by Proposition 5.7.3, 

R(D) = ~ ln (Pi+l + .,fl5) = t ln (Pi + .,fl5), 
i=O lqil i=l lqil 

since qk = qo = 2a, and since the Pi and lqil are always small (less than 
2VJ5}, this enables us to compute the regulator to any given accuracy without 
handling huge numbers. The computation of a logarithm is a time consuming 
operation however, and hence it is preferable to write 

R(D) = ln (rr Pi + VI5). 
i=l lqil 

the product being computed to a given numerical accuracy. In most cases, 
this method will again not work, because the exponents of the floating point 
numbers become too large. The trick is to keep the exponent in a separate 
variable which is updated either at each multiplication, or as soon as there 
is the risk of having an exponent overflow in the multiplication. Note that 
we have the trivial inequality (Pi+ VJ5)/Iqil < .,fl5, hence exponent overflow 
can easily be checked. This leads to the following algorithm, analogous to 
Algorithm 5.7.1. 

-b+VI5 
Algorithm 5.7.10 (Regulator). Given a quadratic irrational r= 2a 

where 4a I (D- b2 ) and a > 0, corresponding to a reduced form (a, b, (b2 -



5.8 The Infrastructure Method of Shanks 279 

D)/(4a)), this algorithm computes the regulator R(D) of Q(VD) using the or
dinary continued fraction expansion of -cr(r). 

1. [Initialize] Precompute f t-- VD to the desired accuracy, and set d t-- lfJ, 
e t-- 0, R t-- 1, p t-- b, q t-- 2a, and q1 t-- (D- p2 )fq. Finally, let 2L be the 
highest power of 2 such that 2L f does not give an exponent overflow. 

2. [Euclidean step] Let p + d = qA + r with 0 ~ r < lql be the Euclidean division 
of p + d by q, and set Pl t-- p, p t-- d- r, t t-- q, q t-- Ql - A(p- Pl), Ql t-- t 
and R t-- R(p+ f)fq. If R ~ 2L, set R t-- R/2L, e t-- e + 1. . 

3. [End of period?] If q = 2a and p = b (mod 2a), output R(D) t--lnR+eLln2 
and terminate the algorithm. Otherwise, go to step 2. 

In the case where we start with the unit form, we can use the symmetry 
of the period to obtain an algorithm similar to Algorithm 5.7.2. We leave this 
as an exercise for the reader (Exercise 23). We can also modify the algorithm 
so that it works for reduced forms with a < 0. 

The running time of this algorithm is O(D1/2+E) for all e > 0, but here this 
corresponds to the actual behavior since no multi-precision variables are being 
used. Although this is reasonable, we will now see that we can adapt Shanks's 
baby-step giant-step method to obtain a O(D1/4+E) algorithm, bringing down 
the computation time to one similar to the case of imaginary quadratic fields. 

Remark. If the regulator is computed to sufficient accuracy and is not too 
large, we can recover the fundamental unit by exponentiating. It is clear that 
it is impossible to find a sub-exponential algorithm for the fundamental unit 
in general, since, except when the regulator is very small, it already takes 
exponential time just to print it in the form e = a + bVD. It is possible how
ever to write down explicitly the fundamental unit itself if we use a different 
representation, which H. Williams calls a compact representation. We will see 
in Section 5.8.3 how this is achieved. 

5.8 The Infrastructure Method of Shanks 

5.8.1 The Distance Function 

The fundamental new idea introduced by Shanks in the theory of real 
quadratic fields is that one can introduce a distance function between quadratic 
forms or between ideals, and that this function will enable us to consider the 
principal cycle pretty much like a cyclic group. The initial theory is explained 
in [Sha3], and the refined theory which we will now explain can be found in 
[Lenl]. 

Definition 5 .8.1. Let 0 be the quadmtic order of discriminant D, and denote 
as usual by cr real conjugation in 0. If 11 and b are fmctional ideals of 0, we 
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define the distance of a to b as follows. If a and b are not equivalent {modulo 
principal ideals}, the distance is not defined. Otherwise, write 

b = -ya 

for some 'Y E K. We define the distance 8(a, b) by the formula 

8(a, b) = ~ ln I CJ~'Y) I 
where 8 is considered to be defined only modulo the regulator R (i.e. 8 E 

R.JRZ). 

Note that this distance is well defined (modulo R) since if we take another 
-y' such that b = -y'a, then -y' = e-y where e is a unit, hence the distance does 
not change modulo R. Note also that if a is multiplied by a rational number, 
its distance to any other ideal does not change, hence in fact this distance 
carries over to the set I of ideal classes defined in Section 5.2. This remark 
will be important later on. 

In a similar manner, we can define the distance between two quadratic 
forms of positive discriminant D as follows. 

Definition 5.8.2. Let f and g be two quadratic forms of discriminant D, 
and set (a,s) = ¢FI(f), (b,t) = ¢FI(g) as in Section 5.2, where s,t = ±1. If 
I and g are not equivalent modulo PSL2(Z), the distance is not defined. If I 
and g are equivalent, then by Theorem 5.2.9 there exists 'Y E K such that 

b = -ya and t = s · sign(N(-y)). 

We then define as above 

8(/,g) = !lnl_]_l 
2 CJ('Y) 

where 8 is now considered to be defined modulo the regulator in the narrow 
sense R+, i.e. the logarithm of the smallest unit greater than 1 which is of 
positive norm. 

Note once again that this distance is well defined, but this time modulo 
R+, since if we take another -y' we must have -y' = q with e a unit of positive 
norm. By abuse of notation, we will again denote by8(!, g) the unique repres
entative belonging to the interval [0, R+[, and similarly for the distance bet
ween ideals. 

Ideals are usually given by a Z-basis, hence it is not easy to show that 
they are equivalent or not. Even if one knows for some reason that they are, it 
is still not easy to find a 'Y E K sending one into the other. In other words, it 
is not easy to compute the distance of two ideals (or of two quadratic forms) 
directly from the definition. 
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Luckily, we can bypass this problem in practice for the following reason. 
The quadratic forms which we will consider will almost always be obtained 
either by reduction of other quadratic forms (using the reduction step p a 
number of times), or by composition of quadratic forms. Hence, it suffices to 
give transformation formulas for the distance 8 under these two operations. 

Composition is especially simple if one remembers that it corresponds to 
ideal multiplication. If, fork= 1, 2, we have bk = /'kak, then b1b2 = /'1/'2a1a2. 
This means that (before any reduction step), the distance function 8 is exactly 
additive 

8(b1b2, n1a2) = 8(b1, at)+ 8(b2, a2) 

when all distances are defined. This is true for the distance function on ideals 
as well as for the distance function between quadratic forms since 6 does not 
change when one multiplies an ideal with a rational number. 

In the case of reduction, it is easier to work with quadratic forms. Let 
f = (a, b, c) be a quadratic form of discriminant D. Then 

( -b+VD ~ 
¢FI(f) = aZ + 2 Z, sign(a)r 

Furthermore, p(f) = (c,b',a') where b' =.-b (mod 2c), hence 

( b+VD ~ 
¢FI(p(f)) = cZ + 2 Z,sign(c))' 

since changing b' modulo 2c does not change the ideal. Now clearly 

where 

Hence we obtain 

'7J b+VD'7J ( '7J -b+VD'7J) 
cu... + 2 u... = I' au... + 2 u... 

b+VD 
I'=-,---

2a 

Proposition 5.8.3. If f = (a, b, c) is a quadratic form of discriminant D, 
then 

Of course, the map ¢IF of Section 5.2 enables us also to compute distances 
between ideals. 

If we have two quadratic forms f and g such that g = pn(f) for n not too 
large, then by using the formula 
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n 

o(f,g) = Lo(pi-l(f),pi(f)) 
i=l 

and this proposition, we can compute the distance off and g. When n is large 
however, this formula, which takes time at least O(n), becomes impractical. 
This is where we need to use composition. 

For simplicity, we now assume that our forms are in the principal cycle, 
i.e. are equivalent to the unit form which we denote by 1. We then have the 
following proposition 

Proposition 5.8.4. Let !1 and h be two reduced forms in the principal cycle, 
and let 1 be the unit form. Then if we define g = h · h by the composition 
algorithm given in Section 5.4.2, g may not be reduced, but let h be a {non
unique) form obtained from g by the reduction algorithm, i.e. by successive 
applications of p. Then we have 

o(1, h)= o(1, 11) + o(1, h)+ o(g, h), 

and furthermore 

lo(g,h)l < 2ln(D). 

This proposition follows at once from the property that o is exactly addi-
tive under composition (before any reductions are made). D 

If we assume that we know 6(1, 11) and 6(1, /2), then it is easy to compute 
6(1, h) since the number of reduction steps needed to go from g to fa is very 
small. More precisely, it can be proved (see [Lenl]) that 6(/, p2(/)) > ln2, 
hence the number of reduction steps is at most 4ln(D)/ln2. 

Important Remark. In the preceding section we have computed the regula
tor by adding ln((Pi+vD)/Iqil) over a cycle (or a half cycle). This corresponds 
to choosing a modified distance such that 6'(/, p(f)) = ln((b + vD)/(2Iai)), 
and this clearly corresponds to defining 

o'(a, b)= ln 11'1 

instead of o(a, b) = ~ ln 11' /a('"Y)I if b =')'a. This distance, which was the initial 
one suggested by Shanks, can also be used for regulator computations since 
it is also additive. Note however that it is no longer defined on the set I of 
ideals modulo the multiplicative action of Q*, but on the ideals themselves. In 
particular, with reference to Lemma 5.4.5, we must subtract ln(d) to the sum 
of the distances of h and 12 before starting the reduction of our composed 
quadratic form (A,B,C). It also introduces extra factors when one computes 
the inverse of a form. For example, this would introduce many unnecessary 
complications in Buchmann's sub-exponential algorithm that we will study 
below (Section 5.9). 
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On the other hand, although Shanks's distance is less natural, it is com
putationally slightly better since it is simpler to multiply by (b + Jl5)/(2lal) 
than by l(b + JD)/(b- Jl5)1. Note also that Proposition 5.8.4 is valid with 
8 replaced by 8', if we take care to subtract the ln( d) value after composition 
as we have just explained. 

Hence, for simplicity, we will use the distance 8 instead of Shanks's 8', 
except in the baby-step giant-step Algorithm 5.8.5 where the use of 8' gives a 
slightly more efficient algorithm. 

5.8.2 Description of the Algorithm 

We consider the set S of pairs (!, z ), where f is a reduced form of discriminant 
Din the principal cycle, and z = 8(1, f). We can transfer the action of p to S 
by setting p(f, z)=(p(f), z + ln l(b + JD)/(b- JD)I/2) iff= (a, b, c), using 
the above notations. Furthermore, we can transfer the composition operation 
by setting 

(fr, zl) · (/2, Z2) = (/J, Z1 + Z2 + 8(g, /J)), 

using the notations of Proposition 5.8.4. Similar formulas are valid with 8 
replaced by 8'. Recall that h is not uniquely defined, but this does not matter 
for our purposes as long as we choose h not too far away from the first reduced 
form that one meets after applying p to h · f2. 

Using these notations, we can apply Shanks's baby-step giant-step method 
to compute R(D). Indeed, although the principal cycle is not a group, because 
of the set S we can follow the value of 8 through composition and reduction. 
This means that Shanks's method allows us to find the regulator in O(D114+<) 
steps instead of the usual O(D112+<). If, as for negative discriminants, we also 
use that the inverse of a form (a, b, c) is a form equivalent to (a, -b, c), i.e. 
(a, r( -b, a), (r( -b, a) 2 - D)f4a), we obtain the following algorithm, due in 
essence to Shanks, and modified by Williams. Note that we give the algorithm 
using Shanks's distance 8' instead of 8 since it is slightly more efficient, and 
also we use the language of continued fractions as in Algorithm 5.7.10, in other 
words, instead of (a, b, c) we use (p, q) = (b, 2lal). 

Algorithm 5.8.5 (Regulator Using Infrastructure). Given a positive funda
mental discriminant D, this algorithm computes R(D). We assume that all the 
real numbers involved are computed with a finite and reasonably small accuracy. 
We make use of an auxiliary tableT of quadruplets (q,p, e, R) where p, q, e are 
integers and R is a real number. 

1. [Initialize] Precompute f <- JD, and set d <- l JDJ, e <- 0, R <- 1, 
s <- fl.5Vdl, T <- s + fln(4d)/(2ln((1 + VS)/2))1 and q <- 2. If d = D 
(mod 2), set p <- d, otherwise set p <- d- 1. Set q1 = (D- p2 )jq, i <- 0, 
and store the (q,p, e, R) in T. Finally, let 2L be the highest power of 2 such 
that 2L f does not give an exponent overflow. 

2. [Small steps] Set i <- i + 1, and let p + d = Aq + r with 0 :::; r < q 
be the Euclidean division of p + d by q. Set p1 <- p, p <- d - r, t <- q, 
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q +- Ql- A(p- Pt), Ql +- t, R +- R(p +f)/qt. If R 2::: 2L, set R +- R/2L, 
e +- e + 1. If q:::; d, store (q,p, e, R) in T. 

3. [Finished already?] If P1 = p and i > 1, then output 

R(D) = 2(ln(R) + e£ln(2)) -ln(ql/2) 

and terminate the algorithm. If Ql = q and i > 1, then output 

R(D) = 2(1n(R) + eLln(2)) -ln((p+ /)/2) 

and terminate the algorithm. If i = s, then if q :::; d set (Q, P, E, Rt) +
(q,p, e, R) otherwise (still if i = s) sets+- s + 1 and T +- T + 1. Finally, if 
i < T go to step 2. 

4. [Initialize for giant steps] Sort tableT lexicographically (or in any other way). 
Then using the composition Algorithm 5.8.6 given below, compute 

(Q,P,E,R1 ) +- (Q,P,E,Rl) · (Q,P,E,Rl), 

and set R +- 1, e +- 0, j +- 1, and q +- Q, p +- P. 

5. [Match found?] If (q,p) = (qt,Pt) for some (qt,Pt,et,rt) E T, output 

R(D) = j(ln(R1) + EL ln(2)) + ln(R) + eLln(2) - ln(rt) - e1L ln(2) 

and terminate the algorithm. 
If (q,r(-p,q)) = (qt,Pt) for some (qt,Pt.el,rt) E T, output 

R(D) = j(ln(Rt)+ELln(2))+ln(R)+eLln(2)+ln(rt)+etLln(2)-ln(ql/2) 

and terminate the algorithm. 

6. [Giant steps] Using the composition Algorithm 5.8.6 below, compute 

(q,p,e,R) +- (q,p,e,R) · (Q,P,E,Rt), 

set j +- j + 1 and go to step 5. 

We need to compose two quadratic forms of positive discriminant D, ex
pressed as quadruplets (q,p, e, R), where the pair (e, R) keeps track of the 
distance from 1 (more precisely 6'(1,/) = eLln2 + lnR), and the form itself 
is (q,p, (p2 - D)/q) or (-q,p, (D- p2 )/q). The algorithm is identical to the 
positive definite case (Algorithm 5.4.7), except that the reduction in step 4 
must be done using Algorithm 5.6.5 (i.e. powers of p) instead of Algorithm 
5.4.2. We must also keep track of the distance function, and, since we use 8' 
instead of 6, we must subtract a ln(d1) (i.e. divide by d1) where d1 is the 
computed GCD. 

This leads to the following algorithm. 
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Algorithm 5.8.6 (Composition oflndefinite Forms with Distance Function). 
Given two quadruplets (ql,Pl,el,Rl) and (q2,p2,e2,R2) as above (in particular 
with qi even and positive), this algorithm computes the composition 

(qa,p3, e3, R3) = (ql,Pl, e1, R1) · (q2,p2, e2, R2). 

We assume f +- ..fD already computed to sufficient accuracy. 

1. {Initialize] If q1 > q2. exchange the quadruplets. Then set s +- ~(Pl + P2). 
n +- P2- s. 

2. {First Euclidean step] If ql I q2, set y1 +- 0 and d +- qif2. Otherwise, using 
Euclid's extended algorithm, compute (u,v,d) such that uq2/2+vqif2 = d = 
gcd(q2/2,qi/2) and set Y1 +- u. 

3. {Second Euclidean step] If dIs, set y2 +- -1, x2 +- 0 and d1 +-d. Otherwise, 
using Euclid's extended algorithm, compute ( u, v, d1) such that us + vd = 
d1 = gcd(s, d), and set x2 +- u, Y2 +- -v. 

4. [Compose] Set v1 +- qif(2dl). v2 +- q2/(2dl), r +- ((Y1Y2n- x2(P~ -
D)/(2q2) mod vi), Pa +- P2 + 2v2r, qa +- 2v1v2. 

5. [initialize reduction] Set e3 +- e1 + e2 and R3 +- R1R2/d1. If R3 2::: 2L, set 
R3 +- R3/2L and e3 +- ea + 1. 

6. [Reduced?] If If- q3l < p3, then output (qa,p3,ea,R3) and terminate the 
algorithm. Otherwise, set Pa +- r(-pa,qa/2), Ra +- Ra(P3 + f)jq3, q3 +

(D- p~)/qa, and if R3 2::: 2£ set Ra +- R3/2L and ea +- e3 + 1. Finally, go 
to step 6. 

Note that r( -p3, q3/2) is easily computed by a suitable Euclidean division. 

This algorithm performs very well, and one can compute regulators of 
real quadratic fields with discriminants with up to 20 digits in reasonable 
time. To go beyond this requires new ideas which are essentially the same as 
the ones used in McCurley's sub-exponential algorithm and will in fact give 
us simultaneously the regulator and the class group. We will study this in 
Section 5.9. 

5.8.3 Compact Representation of the Fundamental Unit 

The algorithms that we have seen above allow us to compute the regulator of 
a real quadratic field to any desired accuracy. If this accuracy is high, however, 
and in particular if we want infinite accuracy (i.e. the fundamental unit itself 
and not its logarithm), we must not apply the algorithms exactly as they are 
written. The reason for this is that by using the infrastructure ideas of Shanks 
(essentially the distance function), the knowledge of a crude approximation 
to the regulator R(D) (say only its integer part) allows us to compute it very 
fast to any desired accuracy. Let us see how this is done. 

Let f be the form p(l).It is the first form encountered in the principal cycle 
when we start at the unit form, and in particular has the smallest distance to 
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1. Assume that after applying one of the regulator algorithms we know that 
R1 < R(D) < R2 (this can be a very crude estimate, for example we could ask 
that R2 - R1 < 1). By using the same idea as in Exercise 4 of Chapter 1, it is 
easy to find in time O(ln(D)) composition operations, an integer n such that 
6(1,r):::;: R1 and 6(1,r+l) > R1. This implies that r is before the unit 
form in the principal cycle (counting in terms of increasing distances), but not 
much before since R2- R1 is small. Hence, there exists a small k ;::: 0 which 
one finds by simply trying k = 0, 1, ... such that 1 = pk(r). Note that this 
is checked on the exact components of the forms, not on the distance. Hence, 
we now assume that k and n have been found. 

If we want the regulator very precisely, we recompute f = p(1) to the 
desired accuracy, and then the distance component of pk(Jn) will give us the 
regulator to the accuracy that we want. 

If we want the fundamental unit itself, note that by Proposition 5.8.4 the 
composition of two forms implies the addition of three distances, or equiva
lently the multiplication of three quadratic numbers. For the p operator, only 
one such multiplication is required. Finally, note that k will be O(ln(D)) and 
n will be 0( v'D) hence only O(ln(D)) composition or reduction steps are re
quired to compute pk(r). This implies that we can express the fundamental 
unit as a product of at most O(ln(D)) terms of the form (b + v'D)/(2Ial) 
(or l(b + v'D)/(b- v'D)I if we use the distance 6 instead of 6') and this is a 
compact way of keeping the fundamental unit even when D is very large. 

Let us give a numerical example. Take D = 10209. A rough computation 
using one of the regulator algorithms shows that R(D) ~ 67.7. Furthermore, 
one computes that f = p(1) = ( -2, 99, 51). The binary algorithm gives jl4 = 
(1, 101, -2) = 1 with 6'(1, jl4 ) ~ 67.7. Note that this exponent 14 is not 
at all canonical and depends on the number of reduction steps performed at 
each composition, and on the order in which the compositions steps are made. 
Here, we assume that we stop applying p as soon as the form is reduced, and 
that r is computed using the right-left binary powering Algorithm 1.2.1. 

We now start again recomputing f and j 14 , keeping the quantities 
(b + v'D)/(2Ial)l that are multiplied, along with their exponents. If € is the 
fundamental unit, we obtain 

€ = (101 + v'D) 
14 

(111 + v'D) 
3 !_ 219 + v'l5 

2 32 3 242 

351 + v'l5 77 + v'l5 93 + v'l5 
264 428 780 

The lonely 1/3 in the middle is due to the use of the imperfect distance 
function 6' which as we have already mentioned introduces extra quantities 
- ln d in the compositions. 

If we instead use the distance 6, we obtain €2 = r fr with 
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Hence, to represent ~:, we could simply keep the pairs (101, 14), (111, 3), 
(219, 1), (197, 1) and (103, 1). It is a matter of taste which of the two rep
resentations above is preferable. Note that in fact 

€= 130969496245430263159443178775+1296219513663218157975941956v'15 

which does not really take more space, but for larger discriminants this kind 
of explicit representation becomes impossible, while the compact one survives 
without any problem since there are only O(ln(D)) terms of size O(lri(D)) to 
be kept. 

In (Buc-Thi-Wil], the authors have given a slightly more elegant compact 
representation of the fundamental unit, but the basic principle is the same. 
This idea can be generalized to the representation of algebraic numbers (and 
not only units), and to any number field. 

5.8.4 Other Application and Generalization of the Distance 
Function 

An important aspect of the distance function should be stressed at this point. 
Not only does it give us a fundamental hold on the fine structure of units, but 
it also allows us to solve the principal ideal problem which is the following. 
Assume that a is an integral ideal of ZK which is known to be a principal ideal 
(for example because a = bh for some ideal b, where h is the class number 
of K). Assume that we know the distance function 6(1, a). Then it is easy to 
find an element 'Y such that a= "{'ZK using the formulas 

This leaves only 2 possibilities for ±"{, and usually only one will belong to K. 
Note that since 8 is defined only in HI/ RZ, 'Y will be defined up to multiplication 
by a unit. 

Similarly, if the distance function 6'(1, a) is known, we use the formulas 

'Y = ±ec5'(1,a)' u("f) = ±N(a)e-6'(1,a). 

The distance function 8 can be naturally generalized to arbitrary number 
fields K as follows. Let 

be the logarithmic embedding of K* into Hlr1 +r2 seen in Definition 4.9.6, where 
(r1, r2) is the signature of K. If n = r 1 + 2r2 is the degree of K, we will set 

where it is understood that the O"i act trivially on the n-th roots of the norms. 
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Then A belongs to the hyperplane L:1::;i::;rt+r2 Xi = 0 of 1Rr1+r2 and is 
defined modulo the lattice which is the image of the group of units U(K) 
under the embedding L(x). 

In the case where K is a real quadratic field, then clearly A= (8,-8), so 
this is a reasonable generalization of 6. If K is an imaginary quadratic field, 
we have A =0. 

The principal ideal problem can, of course, be asked in general number 
fields and it is clear that A cannot help us to solve it in general since it 
cannot do so even for imaginary quadratic fields. For this specific application, 
the logarithmic embedding L should be replaced by the ordinary embedding 

of K into R.r1 X cr2 • 

The components of this embedding are in general too large to be rep
resented exactly, hence we will preferably choose the complex logarithmic 
embedding 

where the logarithms are defined up to addition of an integer multiple of 2irr. 
Note that this requires only twice as much storage space as the embedding 
L, and also that the first r 1 components have an imaginary part which is a 
multiple of rr. Let V = (ni)I::;i~r1 +r2 be the vector such that ni = 1 fori :5 r1 

and ni = 2 otherwise. We can then define 

Ac(a, -ya) = Lc('Y)- ln(N('Y)) V, 
n 

and it is clear that the sum of the r1 + r2 components of Ac is an integral 
multiple of 2irr. We will see the use of this function in Section 6.5. 

5.9 Buchmann's Sub-exponential Algorithm 

We will now describe a fast algorithm for computing the class group and the 
regulator of a real quadratic field, which uses essentially the same ideas as 
Algorithm 5.5.2. 

Although the main ideas are in McCurley and Shanks, I have seen this 
algorithm explained only in manuscripts of J. Buchmann whom I heartily 
thank for the many conversations which we have had together. The first im
plementation of this algorithm is due to Cohen, Diaz y Diaz and Olivier (see 
[CohDiOl)}. 
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5.9.1 Outline of the Algorithm 

We will follow very closely Algorithm 5.5.2, and use the distance function 8 
and not Shanks's distance 8' which we used in Algorithm 5.8.5. 

As we have already explained, in the quadratic case it is simpler to work 
with forms instead of directly with ideals. Note however that because of Theo
rem 5.2.9, we will be computing the narrow ideal class group and the regulator 
in the narrow sense, since this is the natural correspondence with quadratic 
forms. If, on the other hand, we want the ideal class group and the regula
tor in the ordinary sense, then, according to Proposition 5.6.1, we will have to 
identify the form (a, b, c) with the form (-a, b, -c). (This is implicitly what we 
did in Algorithm 5.8.5.) Although it is very easy to combine both procedures 
into a single algorithm, note that the computations are independent. More 
precisely, to the best of my knowledge it does not seem to be easy, given the 
ideal class group and regulator in one sense (narrow or ordinary) to deduce 
the ideal class group and regulator in the other sense, although of course only 
a factor of 2 is involved. We will describe the algorithm for the class group and 
regulator in the ordinary sense, leaving to the reader the simple modifications 
that must be made to obtain the class group and regulator in the narrow sense 
(see Exercise 26). 

We now describe the outline of the algorithm. As in Algorithm 5.8.5, we 
keep track of the distance function as a pair (e, R), but this time we will 
keep all three coefficients of the quadratic form. Also, we are going to use the 
distance 8 instead of 8', and since there is a factor 1/2 in the definition of 8, 
we will use the correspondence 8 (!0 , f) = ( eL ln 2 + In R) /2 for some fixed 
form fo equivalent to f. 

In other words, in this section a quadratic form of positive discriminant 
will be a quintuplet f = (a, b, c, e, R) where a, b, c and e are integers and R is 
a real number such that 1 ::::; R < 2£. 

We can compose two such forms by using the following algorithm, which 
is a trivial modification of Algorithm 5.8.6. 

Algorithm 5.9.1 (Composition oflndefinite Forms with Distance Function). 
Given two primitive quadratic forms (a1,b1,c1,e1,R1) and (a2 ,b2,c2,e2,R2) as 
above, this algorithm computes the composition 

(a3,b3,c3,e3,R3) = (al,bl,cl,el,Rl) · (a2,b2,c2,e2,R2). 

We assume f +-- Vf5 already computed to sufficient accuracy. 

1. [Initialize] If la1l > la2l exchange the quintuplets. Then sets+-- ~(b1 + b2). 
n +-- b2- s. 

2. [First Euclidean step] If a1 I a2, set y1 +-- 0 and d +-- la11. Otherwise, using 
Euclid's extended algorithm, compute u, v and d such that ua2 + va1 = d = 
gcd(a2, al) and set Y1 +-- u. 

3. [Second Euclidean step] If d I s, set y2 +-- -1, x2 +-- 0 and d1 +-- d. Otherwise, 
again using Euclid's extended algorithm, compute (u, v, d1) such that us+vd = 
d1 = gcd(s, d), and set x2 +-- u and y2 +-- -v. 
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4. [Compose] Set v1 +- add1, v2 +- a2/d1, r +- (y1y2n- x2c2 mod vl), b3 +

b2 + 2v2r and a3 +- v1v2. 

5. [Initialize reduction] Set e3 +- e1 + e2, R3 +- R1R2. If R3 2: 2L, set R3 +

R3/2L and e3 +- e3 + 1. 

6. [Reduced?] If If- 2la311 < b3 < f, then output (a3, b3, c3, e3, R3) and termi
nate the algorithm. 

7. [Apply p] Set R3 +- R3l(b3 + f)/(b3 - !)I and if R 3 2: 2L, set R3 +- R3/2L 
and e3 +- e3 + 1. Then set a3 +- c3, b3 +- r( -b3, c3), C3 +- (b~- D)ja3 and 
go to step 6. 

Note that, apart from some absolute value signs, steps 1 to 4 are identical 
to the corresponding steps in Algorithm 5.4.7, but the reduction operation 
is quite different since it involves iterating the function p in step 7 of the 
algorithm and the bookkeeping necessary for the distance function. 

Returning to Buchmann's algorithm, what we will do is essentially, instead 
of keeping track only of /p = (p, bp, (b~- D)/(4p)), we also keep track of the 
distance function. Hence, in step 3 of Algorithm 5.5.2, we compute the product 
ITp::;P J;P, doing the reduction at each product (of course the reduction being 
non-unique), and keeping track of the distance function thanks to Theorem 
5.8.4. In this way we obtain a reduced form f =(a, b, c) equivalent to the 
above product, and also the value of 8(ITp::;P J;p ,J). Since we identify 
(a, b, c) with (-a, b,-c), we will replace (a,b, c) by (lal, b, -lei). 

If a does not factor easily, in step 5 we have the option of doing more 
reduction steps instead of going back to step 4 in the hope of getting an easily 
factorable a. Since this is much faster than recomputing a new product, we 
will use this method as much as possible. Note that, although we have extra 
computations to make because of the distance function, the basic computa
tional st~ps will be faster than in the imaginary quadratic case, hence this 
algorithm will be faster than the corresponding one for imaginary quadratic 
fields. 

This behavior is to be expected since on heuristic and experimental 
grounds class numbers of real quadratic fields are much smaller than those 
of imaginary quadratic fields. 

Finally, if a factors easily, in step 5 we compute not only ai,k for 1 ::::; i ::::; n, 
but also an+l,k +-8(1, fg- 1) where g = ITp::;Pf;pvp and 8(1, fg- 1) is computed 
as usual at the same time as the product is done, using Theorem 5.8.4. 

We thus obtain a matrix A= (ai,j) with n+ 1 rows and k columns, whose 
entries in the first n rows are integers and the entries in the last row are real 
numbers. Note that by definition, for every j ::::; k we have 

8(1, IJ f;,a'·') = an+l,j (mod R(D)). 
l::;i::;n 
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Since the distance function that we have chosen is exactly additive, it fol
lows that when performing column operations on the complete matrix A, this 
relation between then+ 1-st component and the others is preserved. 

Hence we apply Hermite reduction to the matrix formed by the first n 
rows, but performing the corresponding column operations also the entries of 
the last row. The first k- n columns of the resulting matrix will thus have 
only zero entries, except perhaps for the entry in the n + 1-st row. By the 
remark made above, for 1 ~ j ~ k - n we will thus have 

an+l,j = 6(1, 1) = 0 (mod R(D)), 

in other words an+l,j is equal to a multiple of the regulator R(D) for 1 ~ j ~ 
k -n. 

If k is large enough, it follows that in a certain sense the GCD of the 
an+l,j for 1 ~ j ~ k - n should be exactly equal to R(D). We must be 
careful in the computation of this "GCD" since we are dealing with inexact 
real numbers. For this purpose, we can either use the LLL algorithm which 
will give us a small linear combination of the an+l,j for 1 ~ j ~ k - n with 
integral coefficients, which should be the regulator R(D), or use the "real 
GCD" Algorithm 5.9.3 as described below. 

The rest of the algorithm will compute the class group structure in essen
tially the same way, except of course that in step 1 one must use the analytic 
class number formula for positive discriminants (Proposition 5.6.9). 

5.9.2 Detailed Description of Buchmann's Sub-exponential 
Algorithm 

A practical implementation of this algorithm should take into account at least 
two remarks. First, note that most of the time is spent in looking for relations. 
Hence, it is a waste of time to compute with the distance function during the 
search for relations: we do the search only with the components (a, b, c) of the 
quadratic forms, and only in the rare cases where a relation is obtained do 
we recompute the relation with the distance function. The slight loss of time 
due to the recomputation of each relation is more than compensated by the 
gain obtained by not computing the distance function during the search for 
relations. 

The second remark is that, as in McCurley's sub-exponential algorithm, 
the Hermite reduction of the first n rows must be performed modulo a multiple 
of the determinant, which can be computed before starting the reduction. In 
other words, we will use Algorithm 2.4.8. The reduction of the last row is 
however another problem, and in the implementation due to the author, Diaz 
Y Diaz and Olivier, the best method found was to compute the integer kernel 
of the integer matrix formed by the first n rows using Algorithm 2.7.2, and 
multiply then+ 1-st row of distances by this kernel, thus obtaining a vector 
whose components are (approximately) small multiples of the regulator, and 
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we find the regulator itself using one of the methods explained above, for 
example the LLL algorithm. 

These remarks lead to the following algorithm. 

Algorithm 5.9.2 (Sub-Exponential Real Class Group and Regulator). If 
D > 0 is a non-square discriminant, this algorithm computes the class number 
h(D), the class group Cl(D) and the regulator R(D). As before, in practice we 
work with binary quadratic forms. We also choose at will a positive real constant 
b. 

1. [Compute primes and Euler product] Set m +-- bln2D, M +-- L(D) 1f,J8, 
P +-- lmax(m,M)J 

P +-- {p $ P, (~) # -1 and p good} 

and compute the product 

2. [Compute prime forms] Let Po be the set made up of the smallest primes 
of P not dividing D such that TipE'Po p > .fi5. For the primes p E P do 
the following. Compute bp such that b~ = D (mod 4p) using Algorithm 1.5.1 
(and modifying the result to get the correct parity). If bp > p, set bp +-- 2p-bp. 
Set /p +-- (p,bp, (b~-D)/(4p)) and gP +-- (p,bp, (b~-D)/(4p),O, 1.0) Finally, 
let n be the number of primes pEP. 

3. [Compute powers] For each p E Po and each integer e such that 1 $ e $ 20 
compute and store a reduced form equivalent to f;. Set k +-- 0. 

4. [Generate random relations] Let /q be the primeform number k + 1 mod n in 
the factor base. Choose random ep between 1 and 20, and compute a reduced 
form (a, b, c) equivalent to 

by using the composition algorithm for positive binary quadratic forms, re
placing the final reduction step by a sufficient number of applications of the 
p operator (note that J;p has already been computed in step 3). Set ep +-- 0 
if p fj. Po then eq +-- eq + 1. Set (ao, b0 , eo) +-- (a, b, c), r +-- 0 and go to step 
6. 

5. [Apply p] Set (a, b, c) +-- p(a, b, c) and r +-- r + 1. If Jal = Jaol and r is odd, 
or if b = b0 and r is even, go to step 4. 

6. [Factor Jal] Factor Jal using trial division. If a prime factor of Jal is larger 
than P, do not continue the factorization and go to step 5. Otherwise, if 
lal = Tip:::;PPvP, set k +-- k + 1, and fori$ n set 
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where f.p; = +1 if (b mod 2pi) :::=;Pi· f.p, = -1 otherwise. 

7. [Recompute relation with distance] Compute 

(ao, bo, eo, eo, Ro) +-- 9q IJ g;P 
pE'Po 
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by mimicking the order of squarings, compositions and reductions done to 
compute (ao, bo, eo), but this time using Algorithm 5.9.1 for composition. 
Then compute (a, b, c, e, R) +-- pr(ao, b0 , eo, e0 , Ro) by applying the formulas 
of step 7 of Algorithm 5.9.1 to our forms. Finally, set an+l,k +-- (eLln2 + 
lnR)/2. 

8. [Enough relations?} If k < n + 10 go to step 4. 

9. [Be honest] For each prime q such that P < q :::=; 6ln2 D do the following. 
Choose random ep between 1 and 20 (say), compute the primeform Jq cor
responding to q and some reduced form (a, b, c) equivalent to Jq [lpE'Po J;P. 
If a does not factor into primes less than q, choose other exponents ep and 
continue until a factors into such primes (or apply the p operator as in step 
5). Then go on to the next prime q until the list is exhausted. 

10. [Simple HNF] Perform a preliminary simple Hermite reduction on the (n + 
1) x k matrix A = (ai,j) as described in the remarks following Algorithm 
5.5.2. In this reduction, only the first n rows should be examined, but column 
operations should of course be done also with then+ 1-st row. Let A1 be the 
matrix thus obtained without its last row, and let V be the last row (whose 
components are linear combinations of distances). 

11. [Compute regulator} Using Algorithm 2.7.2, compute the LLL-reduced integral 
kernel M of A1 as a rectangular matrix, and set V +-- V M. Let s be the 
number of elements of V. Set R +-- IV1 1, and for i = 2, ... , s set R +

RGCD(R, !Vii) where RGCD is the real GCD algorithm described below. 
(Now R is probably the regulator.) 

12. [Compute determinant} Using standard Gaussian elimination techniques, com
pute the determinant of the lattice generated by the columns of the matrix 
A1 modulo small primes p. Then compute the determinant d exactly using 
the Chinese remainder theorem and Hadamard's inequality (see also Exercise 
13}. 

13. [HNF reduction] Using Algorithm 2.4.8 compute the Hermite normal form 
H = (hi,j) of the matrix A1 using modulo d techniques. Then for every i 
such that hi,i = 1, suppress row and column i. Let W be the resulting matrix. 

14. [Finished?} Let h +-- det(W) {i.e. the product of the diagonal elements). If 
hR ~ B.../2, get 5 more relations (in steps 4, 5 and 6} and go to step 10. 
{It will not be necessary to recompute the whole HNF, only that which takes 
into account the last 5 columns.) Otherwise, output h as the class number 
and R as the regulator. 
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15. [Class group] Compute the Smith normal form of W using Algorithm 2.4.14. 
Output those among the diagonal elements di which are greater than 1 as 
the invariants of the class group (i.e. Cl(D) = ffiZ/diZ) and terminate the 
algorithm. 

The real GCD algorithm is copied on the ordinary Euclidean algorithm, as 
follows. We use in an essential way that the regulator is bounded from below 
(by 1 for real quadratic fields of discriminant greater than 8) so as to have 
a reasonable stopping criterion. Since we will also use it for general number 
fields, we use 0.2 as a lower bound of the regulators of all number fields (see 
[Zim1], [Fri]). 

Algorithm 5.9.3 (Real GCD). Given two non-negative real numbers a and b 
which are known to be approximate integer multiples of some positive real number 
R > 0.2, this algorithm outputs the real GCD (RGCD) of a and b, i.e. a non
negative real number d which is an approximate integer multiple of R and divisor 
of a and b, and is the largest with this property. The algorithm also outputs an 
estimate on the absolute error for d. 

1. [Finished?] If b < 0.2, then output a as the RGCD, and bas the absolute error 
and terminate the algorithm. 

2. [Euclidean step] Let r +--a- blafbJ, a+-- b, b +--rand go to step 1. 

Remarks. 

(1) It should be noted that not only does Algorithm 5.9.2 compute the class 
number and class group in sub-exponential time, but it is the only algo
rithm which is able to compute the regulator in sub-exponential time, even 
if we are not interested in the class number. In fact, in all the preceding 
algorithms, we first had to compute the regulator (for example using the 
infrastructure Algorithm 5.8.5), and combining this with the analytic class 
number formula giving the product h(D)R(D), we could then embark on 
the computation of h(D) and Cl(D). The present algorithm goes the other 
way: we can in fact compute a small multiple of the class number alone, 
without using distances at all, and then compute the distances and the 
regulator, and at that point use the analytic class number formula to check 
that we have the correct regulator and class number, and not multiples. 

(2) In an actual implementation of this algorithm, one should keep track of the 
absolute error of each real number. First, in the distance computation in 
step 7, the precision with which the computations are done gives a bound 
on the absolute error. Then, during steps 10 and 11, Z-linear combinations 
of distances will be computed, and the errors updated accordingly (with 
suitable absolute value signs everywhere). Finally, in the last part of step 
11 where real GCD's are computed, one should use the errors output by 
Algorithm 5.9.3. 

(3) Essentially all the implementation details given for Algorithm 5.5.2 apply 
also here. 
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5.10 The Cohen-Lenstra Heuristics 

The purpose of this section is to explain a number of observations which 
have been made on tables of class groups and regulators of quadratic fields. 
As already mentioned very few theorems exist (in fact essentially only the 
theorem of Brauer-Siegel and the theorem of Goldfeld-Gross-Zagier) so most 
of the explanations will be conjectural. These conjectures are however based 
on solid heuristic grounds so they may well turn out to be correct. As usual, 
we first start with imaginary quadratic fields. 

5.10.1 Results and Heuristics for Imaginary Quadratic Fields 

In this subsection K will denote the unique imaginary quadratic field of dis
criminant D < 0. As we have seen, the only problem here is the behavior of 
the class group Cl(D) and hence of the class number h(D), all other basic 
problems being trivial to solve. 

Here the Brauer-Siegel theorem says that ln(h(D)) rv In( JjDf) as D --> 

-oo, which shows that h(D) tends to infinity at least as fast as IDI 112-e: and 
at most as fast as IDI 1/2+e: for every e: > 0. The main problem is that this is 
not effective in a very strong sense, and this is why one has had to wait for 
the Gross-Zagier result to get any kind of effective result, and a very weak one 
at that since using their methods one can show only that 

h(D) > ~ ln(IDI) IT (1- 2~), 
PID p+ 

where K =55 if (D, 5077) = 1 and K = 7000 otherwise, and the star indicates 
that the product is taken over all prime divisors p of D with the exception of 
the largest prime divisor (see [Oes]). This is of course much weaker than the 
Brauer-Siegel theorem. 

Results in the other direction are much easier. For example, one can show 
that for all D < - 4, we have 

h(D) < .!_ /iDf ln(IDI) 
7r 

(see Exercise 27). Similarly, it is very easy to obtain average results, which 
were known since Gauss. The result is as follows (see [Ayo]). 

x3/2 L h(D)rv-C 
IDI~x 311" 

where the sum runs over fundamental discriminants and 
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Since by Exercise 1 the number of fundamental discriminants up to x is asymp
totic to (3/7r2 )x, this shows that on average, h(D) behaves as C1r /6JiDT ~ 
0.461559JiDT, and shows that the upper bound given for h(D) is at most off 
by a factor O(ln(D)). 

All the above results deal with the size of h(D). If we consider problems 
concerning its arithmetic properties (for example divisibility by small primes) 
or properties of the class group Cl(D) itself, very little is known. If we make 
however the heuristic assumption that class groups behave as random groups 
except that they must be weighted by the inverse of the number of their 
automorphisms (this is a very common weighting factor in mathematics), then 
it is possible to make precise quantitative predictions about class numbers and 
class groups. This was done by H. W. Lenstra and the author in [Coh-Len1]. 
We summarize here some of the conjectures which are obtained in this way 
and which are well supported by numerical evidence. 

It is quite clear that the prime 2 behaves in a special way, so we exclude it 
from the class group. More precisely, we will denote by Cl0 (D) the odd part 
of the class group, i.e. the subgroup of elements of odd order. We then have 
the following conjectures. 

Conjecture 5.10.1 (Cohen-Lenstra). For any odd prime p and any integer 
r including r = oo set (P)r = f1 1<k<r(1- p-k), and let A = I1k>2 ((k) ~ 
2.29486, where ((s) is the ordinary-Riemann zeta function. -

(1) The probability that Cl0 (D) is cyclic is equal to 

((2)((3)/ (3(2) 00A((6)) ~ 0.977575. 

(2) If p is an odd prime, the probability that p I h(D) is equal to 

1 1 1 
f(p) = 1- (P)oo =-+---- · · · 

p p2 p5 

For example, f(3) ~ 0.43987, f(5) ~ 0.23967, f(7) ~ 0.16320. 
(3) If p is an odd prime, the probability that the p-Sylow subgroup of Cl(D) is 

isomorphic to a given finite Abelian p-group G is equal to (P)oo/1 Aut( G)!, 
where Aut( G) denotes the group of automorphisms of G. 

(4) If p is an odd prime, the probability that the p-Sylow subgroup of Cl(D) 
has rank r (i.e. is isomorphic to a product of r cyclic groups) is equal to 
P-r2 (P)oo/((P)r )2 · 

These conjectures explain the following qualitative observations which 
were made by studying the tables. 

(1) The odd part of the class group is quite rarely non-cyclic. In fact, it was 
only in the sixties that the first examples of class groups with 3-rank 
greater or equal to 3 were discovered. 
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(2) Higher ranks are even more difficult to find, and the present record for 
p = 3, due to Quer (see [Llo-Quer] and [Quer]) is 3-rank equal to 6. Note 
that there is a very interesting connection with elliptic curves of high rank 
over Q (see Chapter 7), and Quer's construction indeed gives curves of 
rank 12. 

(3) If p is a small odd prime, the probability that pI h(D) is substantially 
higher than the expected naive value 1/p. Indeed, it should be very close 
to 1/p + 1jp2 . 

5.10.2 Results and Heuristics for Real Quadratic Fields 

Because of the presence of non-trivial units, the situation in this case is com
pletely different and even less understood than the imaginary quadratic case. 
Here the Brauer-Siegel theorem tells us that ln(R(D)h(D)) ,...., ln(VD) as 
D --+ oo, where R(D) is the regulator. Unfortunately, we have little control 
on R(D), and this is the main source of our ignorance about real quadratic 
fields. It is conjectured that R(D) is "usually" of the order of .Jf5, hence that 
h(D) is usually very small, and this is what the tables show. For example, 
there should exist an infinite number of D such that h(D) = 1, but this is not 
known to be true and is a famous conjecture. In fact, it is not even known 
whether there exists an infinite number of non-isomorphic number fields K 
(all degrees taken together) with class number equal to one. 

As in the imaginary case however, we can give an upper bound h(D) < .Jf5 
when D > 0, and the following average for R(D)h(D): 

3/2 L R(D)h(D) ,...., ~c 
D$x 6 

where the sum runs over fundamental discriminants and the constant Cis as 
before. 

It is possible to generalize the heuristic method used in the imaginary case. 
In fact, we could reinterpret Shanks's infrastructure idea as saying that the 
class group of a real quadratic field is equal to the quotient of the "group" of 
reduced forms by the "cyclic subgroup" formed by the principal cycle. This of 
course does not make any direct sense since the reduced forms form a group 
only in an approximate sense, and similarly for the principal cycle. It suggests 
however that we could consider the (odd part) of the class group of a real 
quadratic field as the quotient of a random finite Abelian group of odd order 
(weighted as before) by a random cyclic subgroup. This indeed works out very 
well and leads to the following conjectures. 

Conjecture 5.10.2 (Cohen-Lenstra). Let D be a positive fundamental dis
criminant. 

(1) If p is an odd prime, the probability that pI h(D) is equal to 
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(P)oo 1 1 1 
1- =-+-+--··· 1 -1/p p2 p3 p4 

(2) The probability that Cl0 (D) is isomorphic to a given finite Abelian group 
G of odd order g is equal to m(G) = 1/(2g(2)00AI Aut( G)!). For example 
m({O}) ::::i 0.75446, m(7l/37l) ::::i 0.12574, m(7l/57l) ::::i 0.03772. 

(3) If p is an odd prime, the probability that the p-Sylow subgroup of Cl(D) 
has rank r is equal to p-r(r+l)(P)oo/((P)r(P)r+l)· 

(4) We have 

where the sum runs over primes congruent to 1 modulo 4. 

These conjectures explain in particular the experimental observation that 
most quadratic fields of prime discriminant p (in fact more than three fourths) 
have class number one. 

These heuristic conjectures have been generalized to arbitrary number 
fields by J. Martinet and the author (see [Coh-Mar1], [Coh-Mar2]). Note that 
contrary to what was claimed in these papers, apparently all the primes di
viding the degree of the Galois closure should be considered as non-random 
(see [Coh-Mar3]), hence the numerical values given in [Coh-Mar1] should be 
corrected accordingly (e.g. by removing the 2-part for non-cyclic cubic fields 
or the 3-part for quartic fields of type A4 or 84). 

5.11 Exercises for Chapter 5 

1. Show that the number of imaginary quadratic fields with discriminant D such 
that IDI :0:::: x is asymptotic to 3x/7r2 , and similarly for real quadratic fields. 

2. Compute the probability that the discriminant of a quadratic field is divisible 
by a given prime number p (beware: the result is not what you may expect). 

3. Complete Theorem 5.2.9 by giving explicitly the correspondences between ideal 
classes, classes of quadratic forms and classes of quadratic numbers, at the level 
of PSL2(Z). 

4. Let K be a quadratic field and p a prime. Generalizing Theorem 1.4.1, find the 
structure of the multiplicative group (ZK /PZK )*, and in particular compute its 
cardinality. 

5. (H.W. Lenstra and D. Knuth) Let D denote the discriminant of an imaginary 
quadratic field. If x 2 0, let f(x, D) be the probability that a quadratic form 
(a, b, c) with -a< b :0:::: a and a< x.JiDT is reduced. From Lemma 5.3.4, we know 
that f(x, D) = 1 if x :0:::: 1/2 and f(x, D) = 0 if x 2 1/ J3. Show that f(x, D) 
has a limit f(x) as IDI -+ oo, and give a closed formula for f(x), assuming that 
a quadratic number behaves like a random irrational number. Note that this 
exercise is difficult, and the complete result without the randomness assumption 
has only recently been proved by Duke (see [Duk]). 
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6. If Do is a fundamental negative discriminant and D = Do/2 , show directly from 
the formula given in the text that h(Do) I h(D). 

7. Let p be a prime number such that p = 3 (mod 4). Using Dirichlet's class number 
formula (Corollary 5.3.13) express h(-p) as a function of 

L ln2J· 
I:5n:5(p-I)/2 p 

Is this algorithmically better than Dirichlet's formula? 

8. Carry out in detail the GCD computations of the proof of Lemma 5.4.5. 

9. Show that the composite of two primitive forms is primitive, and also that 
primitivity is preserved under reduction (both for complex quadratic fields and 
real ones). Prove these results first using the interpretation in terms of ideals, 
then directly on the formulas. 

10. Show that, in order to generalize Algorithm 5.4.7 to imprimitive forms, we can 
replace the assignment VI+-- ai/di of Step 4 by VI+-- gcd(di,ci,c2,n)ai/di. 

11. Let A, B and C be integers, and assume that at most one of them is equal to 
zero. Show that the general integral solution to the equation 

uA+vB+wC=O 

is given by 

where >., p, and v are arbitrary integers. 

12. Using the preceding exercise, show that as claimed after Definition 5.4.6 the 
class of ( a3, b3, C3) modulo roo is well defined. 

13. In step 9 of Algorithm 5.5.2, it is suggested to compute the determinant of 
the lattice generated by the columns of a rectangular matrix AI of full rank by 
computing this determinant modulo p and using the Chinese remainder theorem 
together with Hadamard's inequality. Show that it is possible to modify the 
Gauss-Bareiss Algorithm 2.2.6 so as to compute this determinant directly, and 
compare the efficiency of the two methods, in theory as well as in practice (in 
the author's experience, the direct method is usually superior). Hint: use flags 
Ck and/or dk as in Algorithm 2.3.1. 

14. Implement the large prime variation explained after Algorithm 5.5.2 in the fol
lowing manner. Choose some integer k (say k = 500) and use k lists of quadratic 
forms as follows. Each time that some Pa is encountered, we store Pa and the 
corresponding quadratic form in the n-th list, where n = Pa mod k. If Pa is al
ready in the list, we have a relation, otherwise we do nothing else. Study the 
efficiency of this method and the choice of k. (Note: this method is a special case 
of a well known method used in computer science called hashing, see (Knu3).) 

15. Implement Atkin's variant of McCurley's algorithm assuming that the discrim
inant D is a prime number and that the order of f is larger than the bound 
given by the Euler product. 
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16. Let n be an integral ideal in a number field K, f(n) the smallest positive rational 
integer belonging to n, and IJi the embeddings of K into C. We will say that n is 
reduced if n is primitive and if the conditions o: En and for all i, I!Ji(o:)l < f(n) 
imply that o: = 0. 

a) If (n, s) = ¢FI(a, b, c), show that n is reduced if and only if there exists 
a (unique) quadratic form in the r 00 -class of (a, b, c) which is reduced. (Since 
the cases K real and imaginary must be treated separately, this is in fact two 
exercises in one.) 

b) In the case where K = Q( JD) is a real quadratic field, show that n is 
reduced if and only if there exists integers a1 and a2 such that a1 = a2 = b 
(mod 2a), 0 < a1 < JD and -JD < a2 < 0. 

c) Let n be an ideal in the number field K. Show that there exists an o: E n 
such that I!Ji(,B)I < I!Ji(o:)l for all i implies that /3 = 0. By considering the ideal 
(d/o:)n for a suitable integer d, deduce from this that, as in the quadratic case, 
every ideal is equivalent to a (not necessarily unique) reduced ideal. 

17. Show that in any cycle of reduced quadratic forms of discriminant D > 0, there 
exists a form (a, b, c) with Ia I :S: VJ575. In other words, show that in any ideal 

class there exists an ideal n such that N(n):::; VJ575. (Hint: use Theorem 454 
in [H-W].) 

18. Prove Proposition 5.6.1. 

19. Using Definition 4.9.11 and Proposition 5.1.4, show that if K is a (real or imag
inary) quadratic field of discriminant D we have (K(s) = ((s)Ln(s), and hence 
that Propositions 5.3.12 and 5.6.9 are special cases of Dedekind's Theorem 
4.9.12. 

20. Modify Algorithm 5.7.1 so that it is still valid for a< 0. 

21. Prove the following precise form of Lemma 5. 7.6. If p and q are coprime integers, 
denote by p' the inverse of p modulo q such that 1 :::; p' :::; q. Let o: be a real 
number. Then pjq is a convergent in the continued fraction expansion of o: if 
and only if 

1 p 1 --,---...,.- < Q: - - < 0 

q(q + p') q q(2q- p') 

22. Show that the period of the continued fraction expansion of the quadratic ir
rational corresponding to the inverse of a reduced quadratic form f of positive 
discriminant is the reverse of the period of the quadratic number corresponding 
to f. Conclude that for ambiguous forms, the period is symmetric. 

23. Write an algorithm corresponding to Algorithm 5.7.2 as Algorithm 5.7.10 corre
sponds to Algorithm 5. 7.1 for computing the regulator of a real quadratic field 
using the symmetry of the period when we start with the unit form instead of 
any reduced form. 

24. Assume that one has computed the regulator of a real quadratic field using the 
method explained in Section 5.9 to a given precision which need not be very 
high. Show that one can then compute the regulator to any desired accuracy in 
a small extra amount of time (hint: using the distance function, we now know 
where to look in the cycle). 

25. Similarly to the preceding exercise, show that one can also compute the p-adic 
regulator to any desired accuracy in a small extra amount of time. 
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26. Let D be a fundamental discriminant. 
a) Show that h+(D)R+(D) = 2h(D)R(D) and that R+(D) = 2R(D) if and 

only if the fundamental unit is of norm equal to -1. 
b) What modifications can be made to Algorithm 5.9.2 so that it computes 

the regulator and the class number in the narrow sense? 

27. Let D < -4 be a fundamental discriminant, and set f = IDI. 
a) Set s(x) = 'L:l<n<x (~).Show that is(x)l :Sf /2 and by Abel summation 

that I 'L:n> f ( ~) /nl < 1/2. 

b) Show that h(D) < ]:_v'llnf. 
7r 

c) Using the Polya-Vinogradov inequality (see Exercise 8 of Chapter 9), give 
a better explicit upper bound for h( D), asymptotic to 2~ v'Jln f. 

28. (S. Louboutin) Using again the function s(x) defined in Exercise 27 and Abel 
summation, show that we can avoid the computation of the function erfc(x) 
in Proposition 5.3.14 using the fact that h(D) is an integer whose parity can 
be computed in advance (h(D) is odd if and only if D = -4, D = -8 or 
D = -p where pis a prime congruent to 3 modulo 4). Apply a similar method 
in Proposition 5.6.11. 





Chapter 6 

Algorithms for Algebraic Number Theory II 

We now leave the realm of quadratic fields where the main computational 
tasks of algebraic number theory mentioned at the end of Chapter 4 were 
relatively simple (although as we have seen many conjectures remain), and 
move on to general number fields. 

We first discuss practical algorithms for computing an integral basis and 
for the decomposition of primes in a number field K, essentially following a pa
per of Buchmann and Lenstra [Buc-Len], except that we avoid the explicit use 
of Artinian rings. We then discuss algorithms for computing Galois groups (up 
to degree 7, but see also Exercise 15). As examples of number fields of higher 
degree we then treat cyclic and pure cubic fields. Finally, in the last section 
of this chapter, we give a complete algorithm for class group and regulator 
computation which is sufficient for dealing with fields having discriminants 
of reasonable size. This algorithm also gives a system of fundamental units if 
desired. 

6.1 Computing the Maximal Order 

Let K = IQ[e] be a number field, where e is a root of a monic polynomial 
T(X) E Z[X]. Recall that ZK has been defined as the set of algebraic integers 
belonging to K, and that it is called the maximal order since it is an order in 
K containing every order of K. We will build it up by starting from a known 
order (in fact from Z[e]) and by successively enlarging it. 

6.1.1 The Pohst-Zassenhaus Theorem 

The main tool that we will use for enlarging an order is the Pohst-Zassenhaus 
Theorem 6.1.3 below. We first need a few basic results and definitions. 

Definition 6.1.1. Let 0 be an order in a number field K and let p be a prime 
number. 

(1) We will say that 0 is p-maximal if [ZK : OJ is not divisible by p. 
(2) We define the p-radical Ip as follows. 

Ip = { x E 0 I 3m ~ 1 such that xm E pO} 
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Proposition 6.1.2. Let 0 be an order in a number field K and let p be a 
prime number. 

(1) The p-radical Ip is an ideal of 0. 
(2) We have 

Ip = II Pi 
l~i~g 

the product being over all distinct prime ideals Pi of 0 which lie above p. 
(3) There exists an integer m such that 1; C pO. 

Proof. For (1), the only thing which is not completely trivial is that lp is stable 
under addition. If xm E pO and yn E pO, then clearly ( x + y) n+m E pO as we 
see by using the binomial theorem. 

For (2) note that since Pi lies above p then pO C Pi· So, if x E lp there 
exists an m such that xm E pO C p;, and hence x E p; by definition of a prime 
ideal. By Proposition 4.6.4 this shows that X E nl~i~g Pi = nl~i~g Pi since 
the distinct maximal ideals Pi are pairwise coprime. 

Conversely, assume that x E f1 1<i< p;. By definition, the set of ideals of 
- _g 

0 containing pO is in canonical one-to-one correspondence with the ideals of 
the finite quotient ring R = 0 j pO. We will use this at length later. For now, 
note that it implies that this set is finite, and in particular the ideals an R are 
finite in number, where a is the class of x in R. In particular, there exists ann 
such that an R = o:n+l R, i.e. o:n(l- a(3) = 0 for some (3 E R. By assumption, 
a belongs to all the maximal ideals Pi of R hence (1 - a(3) cannot belong to 
any of them, otherwise 1 would also, which is impossible. It follows that the 
ideal (1 - o:(3)R, not being contained in any maximal ideal, must be equal to 
R, i.e. 1 - a(3 is invertible R. The equality an(1- a(3) = 0 thus implies that 
an = 0 in R, i.e. that xn E pOor again that x E lp as was to be proved. 

Finally, for (3) note that since lp is an ideal of an order in a number field 
it has a finite Z-basis X; for 1 ~ i ~ n. For each x; there exists an m; such 
that x7'• E pO, and if we set m = L::l<i<n mi it is clear that 1; C pO, using 
this time the multinomial theorem instead of the binomial theorem. D 

The procedure that we will use to obtain the maximal order is to start with 
0 = Z[e] and enlarge it for successive primes so as to get an order which is 
p-maximal for every p, hence which will be the maximal order. The enlarging 
procedure which we will use, due to Pohst and Zassenhaus, is based on the 
following theorem. 

Theorem 6.1.3. Let 0 be an order in a number field K and let p be a prime 
number. Set 

O' = {x E Klxip c Ip}· 

Then either 0' = 0, in which case 0 is p-maximal, or 0' ;:2 0 and pI [0' : 
O]Jpn. 
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Proof. Since Ip is an ideal, it is clear that 0' is a ring containing 0. Further
more, since p E Ip, x E 0' implies that xp E Ip c 0 and hence 0 CO' C -i;O. 

This shows that 0' has maximal rank, i.e. is an order in K, and it also shows 
that [0': O]lpn. 

We now assume that O' = 0. Define 

OP = {x E ZKI3j ~ 1, z}x E 0}. 

It is clear that 0 C Op and that OP is an order. Furthermore, Op is p-maximal. 
Indeed, if p divides the index [ZK : Op], then there exists x E ZK such that 
x ¢:. OP but px E OP. The definition of Op shows that this is impossible. 

We are now going to show that OP = 0. Since Op is an order, it is finitely 
generated over Z. Hence there exists an r ~ 1 such that prOP C 0 (taker to 
be the maximum of the j such that pix; E 0 for a finite generating set (x;) 
of Op)· Since I; C pO it follows that Opi;r c 0. Assume by contradiction 
that Op =/=- 0, hence Op (j_ 0. Let n be the largest index such that Opi; (j_ 0 
(hence n exists and 0 ~ n < mr). We thus also have OPI;+I C 0. Choose 
any x E Opi; \0. Then xip C 0. Since Opi;+m+I c I; C pO it follows that 
if y E Ip, then (xy)n+m+I E pO hence that xy E Ip, so xip C Ip thus showing 
that x E 0'. This is a contradiction since x ¢:. 0 and we have assumed that 
O' = 0. This finishes the proof of Theorem 6.1.3. 0 

(I thank D. Bernardi for the final part of the proof.) 

6.1.2 The Dedekind Criterion 

From the Pohst-Zassenhaus theorem, starting from a number field K = Q(O) 
defined by a monic polynomial T E Z[XJ, we will enlarge the order Z[OJ for ev
ery prime p such that p2 divides the discriminant ofT until we obtain an order 
which is p-maximal for every p, i.e. the maximal order. In practice however, 
even when the discriminant has square factors, Z[OJ is quite often p-maximal 
for a number of primes p, and it is time consuming to have to compute 0' as 
in Theorem 6.1.3 just to notice that 0' = Z[OJ, i.e. that Z[OJ is p-maximal. 
Fortunately, there is a simple and important criterion due to Dedekind which 
allows us to decide, without the more complicated computations explained 
in the next section, whether Z[OJ is p-maximal or not for prime numbers p, 
and if it is not, it will give us a larger order, which of course may still not be 
p-maximal. 

It must be emphasized that this will work only for Z[O], or for any order 
0 containing Z[OJ with [0 : Z[OJJ prime top, but not for an order which has 
already been enlarged for the prime p itself. 

This being said the basic theorem that we will prove, of which Dedekind's 
criterion is a special case, is as follows. 

Theorem 6.1.4 (Dedekind). Let K = Q(O) be a number field, T E Z[X] 
the monic minimal polynomial of 8 and let p be a prime number. Denote by -
reduction modulo p {in Z, Z[X] or Z[B]). Let 
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k 

T(X) = IJti(X)e; 
i=l 

be the factorization ofT(X) modulo pin 1Fp[X], and set 

k 

g(X) = II ti(X) 
i=l 

where the ti E Z[X] are arbitrary monic lifts ofti. Then 

(1) The p-radical Ip of Z[B] at p is given by 

Iv = pZ[B] + g(B)Z[B]. 

In other words, x =A( B) E Iv if and only if g I A. 
(2) Let h(X) E Z[X] be a monic lift ofT(X)/g(X) and set 

f(X) = (g(X)h(X)- T(X))/p E Z[X]. 

Then Z[B] is p-maximal if and only if 

(f,g,h) = 1 in 1Fp[X]. 

(3) More generally, let 0' be the order given by Theorem 6.1.3 when we start 
with 0 = Z[B]. Then, ifU is a monic lift ofTf(/,g,h) to Z[X] we have 

O' = Z[B] + ~U(B)Z[B] 
p 

and if m = deg{f,g,h), then [0' : Z[B]] = pm, hence disc(O') = 
disc(T)/p2m. 

Proof of {1). p E Ip trivially, and since the exponents ei are at most equal 
ton = [K : Q] = deg(T), we have T I gn hence gn(B) = 0 (mod pZ[B]) so 
g(B) E Iv, thus proving that Iv ::J pZ[B] + g(B)Z[B]. 

Now the minimal polynomial over IFP of B in Z[B]/pZ[B] (which is not a 
field in general) is clearly the polynomial T. Indeed, it clearly divides T, but 
it is of degree at least n since 1, B, .. . , on-l are IFv-linearly independent. 

Conversely let x E Iv- Then x = A(B) for A E Z[X], and so there exists 
an integer m such that xm = 0 (mod pZ[B]), in other words Am(B) = 0 in 
Z[B]/pZ[B]. Hence T I Am. Since ei ~ 1 for all i, this implies that ti I r 
hence ti I A since ti is irreducible in 1Fp[X], and since the ti are pairwise 
coprime, we get g I A which means that x E pZ[B] + g(B)Z[B] thus proving (1). 

Since T is the minimal polynomial of (J in Z[B]/pZ[B], it is clear that (2) 
follows from (3). 
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Let us now prove (3). Recall that 0' = {x E Klxlp c lp}· From (1) we 
have that x E 0' if and only if xp E IP and xg(B) E Ip. Since Ip C Z[B], 
xp E Ip implies that 

X= Al(B)/p 

where A1 E Z[X]. Part (3) of the theorem will immediately follow from the 
following lemma. 

Lemma 6.1.5. Let x = A1(B)jp with A1 E Z[X]. Then 

(1) xp E Ip if and only if 
g I A1. 

(2) Let k = gj(J,g), where (here as elsewhere in this section) k is implicitly 
considered to be a monic lift o{k to Z[X]. Then xg(B) E IP if and only if 

Proof of the Lemma. Part (1) of the lemma is an immediate consequence of 
part (1) of the theorem. Let us prove part (2). 

From part (1) of the theorem, xg(B) E lp if and only if there exist poly
nomials A2 and A3 in Z[X] such that 

and since T is the minimal polynomial of (), this is true if and only if there 
exists A4 E Z[X] such that 

For the rest of this proof, we will work only with polynomials (in Z[X] or 
IFp[X]), and not any more inK. 

Reducing modulo p, the above equation implies that A1 = A4h. Hence 
write 

A1 = hA4+ pAs 

with As E Z[X]. We have that xg(B) E Ip if and only if there exist polynomials 
Ai E Z[X] such that 

hence if and only if there exist Ai such that 

f A4 = pA2 + gA6. 

This last condition is equivalent to g I f A 4 so to k I A4 where k = gj(J, g), 
and this is equivalent to the existence of A 1 and As in Z[X] such that A4 = 
kA1 +pAs. 
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To sum up, we see that if x = At ( ()) jp, then xg( ()) E Ip if and only if there 
exist polynomials A5, A7 and As in Z[X] such that 

At = hkA1 + p(hAs + A5), 

and this is true if and only if there exist A9 E Z[X] such that At= hkA1+pAg 
or equivalently hk I At, thus proving the lemma. 0 

We can now prove part (3) of the theorem. From the lemma, we have that 
x = At(())jp E 0' if and only if both g and hk divide At in the PID IF'p[X], 
hence if and only if the least common multiple of g and hk divides At· Since 
in any PID, lcm(x,y) = xyj(x,y) and lcm(zx,zy) = zlcm(x,y), we have 

lcm(g,hk) = klcm(gcd(f,g),h) = _g_ h(J,g) 
(f,g) (f,g,h) 

-=-=T-=- = fJ 
(f,g,h) 

thus proving that 0' = Z[e] + (U(())jp)Z[e]. Now it is clear that a system of 
representatives of 0' modulo Z[()] is given by A(())U(())jp where A runs over 
uniquely chosen representatives in Z[X] of polynomials in IF'p[X] such that 
deg(A) < deg(T) - deg(U) = m, thus finishing the proof of the theorem. 0 

An important remark is that the proof of this theorem is local at p, in 
other words we can copy it essentially verbatim if we everywhere replace Z[()] 
by any overorder 0 of Z[()] such that [0 : Z[e]] is coprime top. The final result 
is then that the new order enlarged at p is 

and [0': OJ= pm. 

6.1.3 Outline of the Round 2 Algorithm 

From the Pohst-Zassenhaus theorem it is easy to obtain an algorithm for 
computing the maximal order. We will of course use the Dedekind criterion 
to simplify the first steps for every prime p. 

Let K = Q( ()) be a number field, where () is an algebraic integer. Let 
T be the minimal polynomial of e. We can write disc(T) = df 2 , where d is 
either 1 or a fundamental discriminant. If ZK is the maximal order which 
we are looking for, then the index [ZK : Z[e]] has only primes dividing f as 
prime divisors because of Proposition 4.4.4. We are going to compute ZK by 
successive enlargements from 0 = Z[e], one prime dividing f at a time. For 
every p dividing f we proceed as follows. By using Dedekind's criterion, we 
check whether 0 is p-maximal and if it is not we enlarge it once using Theorem 
6.1.4 (3) applied to 0. If the new discriminant is not divisible by p2 , then we 
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are done, otherwise we compute O' as described in Theorem 6.1.3. If O' = 0, 
then 0 is p-maximal and we are finished with the prime p, so we move on to 
the next prime, if any. (Here again we can start using Dedekind's criterion.) 
Otherwise, replace 0 by 0', and use the method of Theorem 6.1.3 again. It 
is clear that this algorithm is valid and will lead quite rapidly to the maximal 
order. This algorithm was the second one invented by Zassenhaus for maximal 
order computations, and so it has become known as the round 2 algorithm 
(the latest and most efficient is round 4). 

What remains is to explain how to carry out explicitly the different steps 
of the algorithm, when we apply Theorem 6.1.3. 

First, () is fixed, and all ideals and orders will be represented by their 
upper triangular HNF as explained in Section 4.7.2. We must explain how to 
compute the HNF of Ip and of 0' in terms of the HNF of 0. It is simpler to 
compute in R = 0 jpO. To compute the radical of R, we note the following 
lemma: 

Lemma 6.1.6. If n = [K: Q] and if j;::: 1 is such that pi;::: n, then the 
radical of R is equal to the kernel of the map x f-+ xP;, which is the jth power 
of the Frobenius homomorphism. 

Proof. It is clear that the map in question is the /h power of the Frobenius 
homomorphism, hence talking about its kernel makes sense. By definition of 
the radical, it is clear that this kernel is contained in the radical. Conversely, let 
x be in the radical. Then x induces a nilpotent map defined by multiplication 
by x from R to R, and considering R as an 1Fp-vector space, this means that 
the eigenvalues of this map in IFp are all equal to 0. Hence, its characteristic 
polynomial must be xn (since n = dimJFp R), and by the Cayley-Hamilton 

theorem this shows that xn = 0, and hence that xpi = 0, proving the lemma. 
0 

Let WI, ... , Wn be the HNF basis of 0. Then it is clear that WI, ... , Wn 

is an IF P-basis of R. For k = 1, ... , n, we compute ai,k such that 

the left hand side being computed as a polynomial in () by the standard rep
resentation algorithms, and the coefficients ai,k being easily found inductively 
since an HNF matrix is triangular. Hence, if A is the matrix of the ai,k, the 
radical is simply the kernel of this matrix. 

Hence, if we apply Algorithm 2.3.1, we will obtain a basis oflp, the radical 
of R, in terms of the standard representation. Since Ip is generated by pull
backs of a basis of Ip and pwi, ... , pwn, to obtain the HNF of Ip we apply 
the HNF reduction algorithm to the matrix whose columns are the standard 
representations of these elements. 
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Now that we have Ip, we must compute 0'. For this, we use the following 
lemma: 

Lemma 6.1.7. With the notations of Theorem 6.1.3, if U is the kernel of 

the map 

a ~----> (~ f--+ a f3) 

from 0 to End(Ip(Plp), then O' = ~U. 

Proof. Trivial and left to the reader. Note that End(Ip(Plp) is considered as 
a 1£-.module. D 

Hence, we first need to find a basis of Ip(Plp. There are two methods to 
do this. From the HNF reduction above, we know a basis of Ip, and it is clear 
that the image of this basis in Ip(plp is a basis of Ip(Plp· The other method 
is as follows. We use only the 1FP-basis ~1 , ... , ~~ of lp found above. Using 
Algorithm 2.3.6, we can supplement this basis into a basis ~1 , ... , ~~, ~l+l, 
... , ~n of 0/pO, and then ~1, ... , ~l, P~l+l, ... , P~n will be an IFp-basis of 
Ip(piP, where - denotes reduction modulo pip, and /3; denotes any pull-back 
of ~i in 0. (Note that the basis which one obtains depends on the pull-backs 
used.) 

This method for finding a basis of Ip(Pfp has the advantage of staying at 
the mod p level, hence avoids the time consuming Hermite reduction, so it is 
preferable. 

Now that we have a basis of Ip(Plp, the elementary matrices give us a 
basis of End(Ip(plp)· Hence, we obtain explicitly the matrix of the map whose 
kernel is U, and it is a n 2 x n matrix. Algorithm 2.3.1 makes sense only over 
a field, so we must first compute the kernel U of the map from O(pO into 
End(Ip(Plp) which can be done using Algorithm 2.3.1. If VI, ... , Vk is the 
basis of this kernel, to obtain U, we apply Hermite reduction to the matrix 
whose column vectors are VI, ... , Vk, pwi, ... , 'PWn· In fact, we can apply 
Hermite reduction modulo the prime p, i.e. take D = p in Algorithm 2.4.8. 

Finally, note that to obtain the n2 x n matrix above, if the '"Yi form a basis 
of Ip(Plp one computes 

Wk"?; = L ak,i,i"Yj, 

I::;j::;n 

and k is the column number, while (i,j) is the row index. Unfortunately, in 
the round 2 algorithm, it seems unavoidable to use such large matrices. Note 
that to obtain the ak,i,j, the work is much simpler if the matrix of the "{j 

is triangular, and this is not the case in general if we complete the basis as 
explained above. On the other hand, this would be the case if we used the first 
method consisting of applying Hermite reduction to get the HNF of Ip itself. 
Tests must be made to see which method is preferable in practice. 
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6.1.4 Detailed Description of the Round 2 Algorithm 

Using what we have explained, we can now give in complete detail the round 
2 algorithm. 

Algorithm 6.1.8 (Zassenhaus's Round 2). Let K = Q(e) be a number field 
given by an algebraic integer e as root of its minimal monic polynomial T of 
degree n. This algorithm computes an integral basis w1 = 1, w2, ... , Wn of 
the maximal order ZK (as polynomials in e) and the discriminant of the field. 
All the computations in K are implicitly assumed to be done using the standard 
representation of numbers as polynomials in e. 
1. [Factor discriminant of polynomial) Using Algorithm 3.3.7, compute D <-

disc(T). Then using a factoring algorithm (see Chapters 8 to 10) factor D 
in the form D = D0 F 2 where Do is either equal to 1 or to a fundamental 
discriminant. 

2. [Initialize) Fori = 1, ... 'n set Wi <-- ei-l_ 

3. [Loop on factors of F) IfF= 1, output the integral basis Wi (which will be 
in HNF with respect to e), compute the product G of the diagonal elements 
of the matrix of the wi (which will be the inverse of an integer by Corollary 
4.7.6), set d <-- D · G2 , output the field discriminant d and terminate the 
algorithm. Otherwise, let p be the smallest prime factor of F. 

4. [Factor modulo p) Using the mod p factoring algorithms of Section 3.4, factor 
T modulo pasT= n~ei where the~ are distinct irreducible polynomials 
in !Fp[X] and ei > 0 for all i. Set g <-- TI~. h <-- Tjg, f <-- (gh- T)jp, 
Z <-- (1, g, h), U <-- T /Z and m <-- deg(Z). 

5. [Apply Dedekind) If m = 0, then 0 is p-maximal so while p I F set F <-- F jp, 
then go to step 3. Otherwise, for 1 ~ i ~ m, let vi be the column vector 
of the components of wiU(e) on the standard basis 1, e, ... ,en-l and set 
Vm+j = pwj for 1 ~ j ~ n. 

Apply the Hermite reduction Algorithm 2.4.8 to then x (n + m) matrix 
whose column vectors are the vi. (Note that the determinant of the final 
matrix is known to divide D.) If H is then x n HNF reduced matrix which 
we obtain, set for 1 ~ i ~ n, wi <-- Hi/P where Hi is the i-th column of H. 

6. [Is the new order p-maximal?) If pm+l f F, then the new order is p-maximal 
so while pI F set F <-- Fjp, then go to step 3. 

7. [Compute radical] Set q <-- p, and while q < n set q <-- qp. Then compute the 
n x n matrix A= (ai,j) over JFP such that wJ = I:1::;i::;n ai,jWi· Note that 
the matrix of the wi will stay triangular, so the ai,j are easy to compute. 

Finally, using Algorithm 2.3.1, compute a basis {31 , ... , f3z of the kernel 
of the matrix A over !Fp (this will be a basis of IpjpO). 

8. [Compute new basis mod p] Using the known basis w1o ... , Wn of 0 jpO, 
supplement the linearly independent vectors (31, ... , (Jz to a basis fJ1. 
f3n of 0 jpO using Algorithm 2.3.6. 
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9. [Compute big matrix] Set ai t- f3i for 1 :::; i :::; l, ai t- Pf3i for l < i ::=; n, 

where f3i is a lift to 0 of /3i· Compute coefficients ci,j,k E 1Fp such that 
wkaj = Ll<i<n Ci,j,kll!i (mod p). Let C be the n 2 x n matrix over 1Fp such 
that C(i,j),k -=-Ci,j,k· 

10. [Compute new order] Using Algorithm 2.3.1, compute a basis '/'lo ... 'I'm for 
the kernel of C (these are vectors in JF;, and m can be as large as n2 ). For 
1 ::=; i ::=; m let vi be a lift of 'i'i to zn, and set Vm+i = pwi for 1 ::=; j ::=; n. 
Apply the Hermite reduction Algorithm 2.4.8 to then x (n+m) matrix whose 
column vectors are the vi. (Note again that the determinant of the final matrix 
is known to divide D.) If His the nx n HNF reduced matrix which we obtain, 
set for 1 ::=; i ::=; n, w~ t- Hi/p where Hi is the i-th column of H. 

11. [Finished with p?]lf there exists an i such that w~ :f. wi, then for every i such 
that 1 :::; i :::; n set Wi t- w~ and go to step 7. Otherwise, 0 is p-maximal, so 
while pI F set F t- Ffp, and go to step 3. 

This finishes our description of the round 2 algorithm. This algorithm 
seems complicated at first. Although it has been superseded by the round 4 
algorithm, it is much simpler to implement and it performs very well. The 
major bottleneck is perhaps not where the reader expects it to be, i.e. in the 
handling of large matrices. It is, in fact, in the very first step which consists 
in factoring disc(T) in the form DoF2 . Indeed, as we will see in Chapter 
10, factoring an 80 digit number takes a considerable amount of time, and 
factoring a 50 digit one is already not that easy. One can refine the methods 
given above to the case where one does not suppose p to be necessarily prime 
(see [Buc-Len] and [Buc-Len2]), but unfortunately this does not avoid finding 
the largest square dividing disc(T), which is apparently almost as difficult as 
factoring it completely. 

6.2 Decomposition of Prime Numbers II 

As we shall see, the general problem of decomposing prime numbers in an 
algebraic number field is closely related to the problem of computing the 
maximal order. Consequently, we have already given most of the theory and 
auxiliary algorithms that we will need. As we have already seen, the problem 
is as follows. Given a prime p and a p-maximal order 0, for example the 
maximal order 7l.K itself, determine the maximal ideals Pi and the exponents 
ei such that 

g 

pO =IT P~'· 
i=l 

As usual 0 will be given by its HNF on a power basis 1, (), ... , ()n-l, and we 
want the HNF basis of the Pi· The determinant of the corresponding matrix 
is equal to N(Pi) =ph in the traditional notation. For practical applications, 
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it will also be useful to have a two-element representation of the ideals Pi (see 
Proposition 4.7.7). 

In Theorem 4.8.13 we saw how to obtain this decomposition when p does 
not divide the index [0 : Z[B]]. Hence we will concentrate on the case where 
p divides the index. 

6.2.1 Newton Polygons 

Historically the first method to deal with this problem is the so-called Newton 
polygon method. When it applies, it is very easy to use, but it must be stressed 
that it is not a general method. We will give a completely general method in 
the next section. 

I am grateful to F. Diaz y Diaz and M. Olivier for the presentation of 
Newton polygons given here, which follows [Ore] and [Mon-Nar]. Essentially 
no proofs are given. 

We may assume without loss of generality that the minimal polynomial 
T(X) of B is in Z[X] and is monic. 

The first result tells us what survives of Theorem 4.8.13 in the case where 
p divides the index. 

Proposition 6.2.1. Let 

9 

T(X) =II Ti(xt (mod p) 
i=l 

be the decomposition ofT into irreducible factors in IF P [X], where the Ti are 

taken to be arbitrary monic lifts ofTi(X) in Z[X]. Then 

where 

9 

pZK =II ai, 
i=l 

ai = (p, Tr(B)) = pZK + Tie'(B)ZK 

and the ai are pairwise coprime (i.e. ai + aj = Z K for i i= j). Furthermore, if 
ni is the degree of Ti we have N( ai) = pe,n;, and all prime ideals dividing ai 
are of residual degree divisible by ni. 

Proof. The proof follows essentially the same lines as that of Theorem 4.8.13. 
It is useful to also prove that the inverse of ai is given explicitly as 

(see Exercise 5). 

ai 1 = (1, fir;; (B)/p) 
j#i 

0 
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The problem is that the ideals ai are not necessarily of the form p~' as 
in Theorem 4.8.13 (the reader can also check via examples that it would not 
do any good to set Pi = (p, Ti(O))). We must therefore try to split the ideals 
ai some more. For this we can proceed as follows. By successive Euclidean 
divisions ofT by Ti, we can write T in a unique way in the form 

Ln/n;J 

T(X) = L Qi,jTf 
j=O 

with deg(Qi,j) < ni. We will call this the Ti-expansion ofT. We will write 
di = ln/niJ· 

If Q = I:09~m akXk E Z[X], we will set 

vp(Q) = min(vp(ak)), 
k 

where we set vp(O) = +oo (or in other words we ignore coefficients equal to 
zero). The basic definition is as follows. 

Definition 6.2.2. With the above notations, for a fixed i, the convex hull of 
the set of points (j, vp(Qi,d,-j)) for each j such that Qi,d,-j 1- 0, is called the 
Newton polygon ofT relative to Ti and the prime number p {since pis always 
fixed, we will in fact simply say "relative to Ti "). 

Note that Qi,j = 0 for j < 0 or j > di, hence the Newton polygon is 
bounded laterally by two infinite vertical half lines. Furthermore, since T and 
the Ti are monic, so is Qi,d, hence vp(Qi,d.) = 0. It follows that the first vertex 
of the Newton polygon is the origin (0, 0). Let a be the largest real number 
(which is of course an integer) such that (a, 0) is still on the Newton polygon 
(we may have a= 0 or a = di)· The part of the Newton polygon from the 
origin to (a, 0) is either empty (if a = 0) or is a horizontal segment. The rest 
of the Newton polygon, i.e. the points whose abscissa is greater than or equal 
to a, is called the principal part of the Newton polygon, and (a, 0) is its first 
vertex. 

We assume now that i is fixed. 
Let Vj for 0 ~ j ~ r be the vertices of the principal part of the Newton 

polygon of T relative to Ti (in the strict sense: if a point on the convex hull 
lies on the segment joining two other points, it is not a vertex), and set Vj = 
(xi,Yi)· The sides of the polygon are the segments joining two consecutive 
vertices (not counting the infinite vertical lines), and the slopes are the slopes 
of these sides, i.e. the positive rational numbers (Yi - Yi- 1)/(xi - Xj-1) for 
1 ~ j ~ r (note that they cannot be equal to zero since we are in the principal 
part). 

The second result gives us a more precise decomposition of pZK than the 
one given by Proposition 6.2.1 above, whose notations we keep. We refer to 
[Ore) for a proof. 
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Proposition 6.2.3. Let i be fixed. 

(1) To each side [Vj-1, Vj] of the principal part of the Newton polygon ofT 
relative to Ti we can associate an ideal qi,j such that the qi,j are pairwise 
coprime and 

r 

ai = IT qi,j . 

j=1 

(2) Set hi = Yi- Yi-1 and ki = Xj- Xj_ 1. If hi and ki are coprime for some 
j, then the corresponding ideal qi,j is of the form qi,j = pk; where p is a 
prime ideal of degree ni. 

(3) In the special case when the principal part of the Newton polygon has a 
single side and h1 = Y1 - Yo = y1 is equal to 1, then ai = pe• where 
p = (p, Ti(B)) is a prime ideal of degree ni. 

Corollary 6.2.4. LetT E Z[X] be an Eisenstein polynomial with respect to 
a prime number p, i.e. a monic polynomial T(X) = E~=O aiXi with p I ai 
for all i < n and p2 f ao (see Exercise 11 of Chapter 3}. In the number field 
K = Q[B] defined by T the prime p is totally ramified, and more precisely 
pZK = pn with p = (p,B). 

Proof In this case we have T = xn (mod p), hence T1(X) =X, Qi,i = ai, 
and since p I ai for all i < n, the principal part of the Newton polygon is 
the whole polygon, and since p2 f a0 we are in the special case (3) of the 
proposition, so the corollary follows. D 

Although Proposition 6.2.3 gives results in a number of cases, and can be 
generalized further (see [Ore] and [Mon-Nar]), it is far from being satisfactory 
from an algorithmic point of view. 

6.2.2 Theoretical Description of the Buchmann-Lenstra Method 

The second method for decomposing primes in number fields, which is com
pletely general, is due to Buchmann and Lenstra ([Buc-Len]). We proceed as 
follows. (The reader should compare this to the method used for factoring 
polynomials modulo p given in Chapter 3.) Write Ip for the p-radical of 0. 
We know that Ip = f}f=1 Pi. Set for any j ;::: 0: 

Ki=It+pO. 

It is clear that the valuation at Pi of Ki is equal to min( ei, j), hence 

g 

Kj = 11P~in(e;,j). 

i=1 

It is also clear that Ki c Ki_ 1. Hence, if we set 
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then Ji is an integral ideal, and in fact Ji = lle;2:i Pi so in particular Ji c 
Ji+l· Finally, if we define 

we have 

Hi= 11 l'i· 
ei=j 

This exactly corresponds to the squarefree decomposition procedure of Sec
tion 3.4.2, the Hi playing the role of the Ai, and without the inseparability 
problems. In other words, if we set e = maxi(ei), we have 

e 

pO= 11 Hj, 
j=l 

and the Hj are pairwise coprime and are products of distinct maximal ideals. 
To find the splitting of pO, it is of course sufficient to find the splitting of each 
Hi. 

Now, since Hi is a product of distinct maximal ideals, i.e. is squarefree, the 
IF p-algebra 0 I Hi is separable. Therefore, by the primitive element theorem 
there exists i'ij E 0 I Hj such that 0 I Hi = lF P [i'ij ]. Let hi be the characteristic 
polynomial of lij over IFp, and hi be any pullback in Z[X]. Then exactly the 
same proof as in Section 4.8.2 shows that, if 

9; 

hj(X) = 11 qi,j(X) (mod p) 
i=l 

is the decomposition modulo p of the polynomial hi, then the ideals 

are maximal and that 
9; 

Hi= 11 qi,i 
i=l 

is the desired decomposition of Hi into a product of prime ideals. 

We must now give algorithms for all the steps described above. Essentially, 
the two new things that we need are operations on ideals in our special case, 
and splitting of a separable algebra over IF p· 
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6.2.3 Multiplying and Dividing Ideals Modulo p 

Although the most delicate step in the decomposition of p'ZK is the final 
splitting of the ideals H;, experiment (and complexity analysis) shows that this 
is paradoxically the fastest part. The conceptually easier steps of multiplying 
and dividing ideals take, in fact, most of the time and so must be speeded up 
as much as possible. 

Looking at what is needed, it is clear that we use only the reductions 
modulo pO of the ideals involved. Hence, although for ease of presentation we 
have implicitly assumed that the ideals are represented by their HNF, we will 
in fact consider only ideals IjpO of 0/pO which will be represented by an IFp
basis. All the difficulties of HNF (Euclidean algorithm, coefficient explosion) 
disappear and are replaced by simple linear algebra algorithms. Moreover, we 
are working with coefficients in a field which is usually of small cardinality. 
(Recall that p divides the index, otherwise the much simpler algorithm of 
Section 4.8.2 can be used.) 

If I is given by its HNF with respect to () (this will not happen in our 
case since we start working directly modulo p), then, since I :J pO :J pZ[()], 
the diagonal elements of the HNF will be equal to 1 or p. Therefore, to find 
a basis of I, we simply take the basis elements corresponding to the columns 
whose diagonal element is equal to 1. 

The algorithm for multiplication is straightforward. 

Algorithm 6.2.5 (Ideal Multiplication Modulo pO). Given two ideals I jpO 
and JjpO by 1Fp-bases (aih:S:i:S:r and (f3;h:s:;::;:m respectively, where the ai and 
{3i are expressed as IFp-linear combinations of a fixed integral basis Wt. ..• , Wn of 
0, this algorithm computes an IFp-basis of the ideal IJjpO. 

1. [Compute matrix] Using the multiplication table of the wi, let M be then x rm 
matrix M with coefficients in IFP whose columns express the products ad3i on 
the integral basis. 

2. [Compute image] Using Algorithm 2.3.2 compute a matrix M1 whose columns 
form an 1FP-basis of the image of M. Output the columns of M1 and terminate 
the algorithm. 

Ideal division modulo pO is slightly more difficult. We first need a lemma. 

Lemma 6.2.6. Denote by - reduction mod p. Let I and J two integral ideals 
of 0 containing pO and assume that I c J. Then, as a Z/pZ-vector space, 
IJ- 1 is equal to the kernel of the map¢ from 0/pO to End(J/I) given by 

¢(/3) = (a t---t a{3) . 

Indeed, ¢(/3) is equal to 0 if and only if a{3 E I for every a E J, i.e. if 
{3J C I, or in other words if {3 E IJ- 1 , proving the lemma. D 
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This leads to the following algorithm. 

Algorithm 6.2.7 (Ideal Division Modulo pO). Given two ideals IlpO and 
J IPO by lF P bases (a;)l:::;;:::;r and ({3j h:::;j:::;m respectively, where the a; and {3j 
are expressed as lFp-linear combinations of a fixed integral basis w1, ... ,Wn of 0, 
this algorithm computes an lFv-basis of the ideal I J- 1 IPO assuming that I C J. 

1. [Find basis of J I I] Apply Algorithm 2.3.7 to the subspaces I lpO and J lpO 
of JF~, thus obtaining a basis ('yj h:::;j:::;m-r of a supplement of I lpO in J lpO. 

2. [Setup ideal division] By using the multiplication table of thew; and Algorithm 
2.3.5, compute elements a;,j,k and b;,j,k in lFP such that 

j j 

and let M be the (m- r) 2 x n matrix formed by the a;,j,k for 1 ::; i, j ::; m- r 

and 1 ::; k ::; n (we can forget the b;,j,k)· 

3. [Compute IJ- 1Ip0] Using Algorithm 2.3.1, compute a matrix M1 whose 
columns form an lFv-basis of the kernel of M, output M1 and terminate the 
Algorithm. 

Indeed, M is clearly equal to the matrix of ¢ in the standard basis of 
End(JIJ). D 

6.2.4 Splitting of Separable Algebras over lFp 

To avoid unnecessary indices, we set simply H = Hj. Using the above algo
rithms, it is straightforward to compute an lFp-basis 731, ... ,73m of H = HlpO. 
Using Algorithm 2.3.6, we can supplement this basis to a basis 731, ... ,73n of 
0 IPO It is then clear that the images of f3m+l, ... ,f3n in 0 I H form an lFP
basis of 0 I H. 

In order to finish the decomposition, there remains the problem of splitting 
the separable algebra A = 0 I H given by this lFp-basis. As explained above, 
one method is to start by finding a primitive element a. Finding a primitive 
element is not, however, a completely trivial task. Perhaps the best way is to 
choose at random an element x E A \lFv (note that lFp can be considered natu
rally embedded in A), compute its minimal polynomial P(X) over lFp (which 
need not be irreducible), and check whether deg(P) =dim( A). Although prac
tical, this method has the disadvantage of being completely non-deterministic, 
although it is easy to give estimates for the number of trials that one has to 
perform before succeeding in finding a suitable x, see Exercise 6. 

We give another method which does not have this disadvantage. It is based 
on the following proposition. 
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Proposition 6.2.8. Let A be a finite separable algebra over IFp. There exists 
an efficient probabilistic algorithm which either shows that A is a field, or finds 
a non-trivial idempotent in A, i.e. an element c E A such that c2 = c with 
c # 0 and c-# 1. 

Proof Since A is a finite separable algebra, A is isomorphic to a finite product 
of fields, say A ~ A1 x · · · x Ak. Write any element a of A as (o:1, ... , ak) 
where o:i E Ai. Consider the map ¢ from A to A defined by ¢(x) = xP- x. 
It is clear that IFp, considered as embedded in A, is in the kernel V of¢. By 
Algorithm 2.3.1, we can easily compute a basis for V, and, in particular, its 
dimension. Note that a = (o:1, ... , ak) E V if and only if for all i such that 
1 :S i :S k, ai E IFp where IFp is considered embedded in Ai· It follows that 
dim(V) = k, and hence dim(V) = 1 if and only if A is a field. 

Therefore assume that dim(V) > 1, and let a E V \ IFp· By computing 
successive powers of a, we can find the minimal polynomial ma(X) of a in A. 
If a = ( 0:1, ... , O:k), it is clear that ma (X) is the least common multiple of the 
ma; (X), and since a E V, the polynomials ma; (X) are polynomials of degree 
1. It follows that ma(X) is a squarefree polynomial equal to a product of at 
least two linear factors (since a¢ IFp)· Write ma(X) = m1(X)m2(X) where 
m 1 and m 2 are non-constant polynomials in lF P [X]. Since ma is squarefree, 
m1 and m2 are coprime, so we can find polynomials U(X) and V(X) in IFp[X] 
such that U(X)m1(X) + V(X)m2(X) = 1. We now choose c = Um1(o:). 
Since m1m2(o:) = 0, cis an idempotent. In addition, it is clear that (U, m2) = 
(V, m1) = 1 and m1, m2 non-constant imply that c -# 0 and c -# 1. 0 

Remark. Note that it is not necessary to compute the complete basis of the 
kernel of ¢ in order to obtain the result. We need only, either show that the 
kernel Vis of dimension 1 (proving that A is a field), or give an element of V 
which is not in the one-dimensional subspace IFp. Hence, we can stop algorithm 
2.3.1 as soon as such an element is found. 

Using this proposition, it is easy to finish the splitting of our ideals H = 
Hi. Set A = 0/ H as before. Using the above proposition, either we have shown 
that A is a field (hence H is a prime ideal, so we have shown that the splitting 
is trivial), or we have found a non-trivial idempotent c. Set H 1 = H +eO, 
H2 = H + (1 - e)O where e is any lift to 0 of c. I claim that H = H1 · H2. 
Indeed, since e(1 -e) E H, it is clear that H 1 · H2 C H. Conversely, if x E H 
we can write x =ex+ (1 - e)x, and ex E eO· H, (1 - e)x E (1 - e)O · H so 
x E H1 · H2 as claimed. 

Hence, we have split H non-trivially (since e is a non-trivial idempotent) 
and we can continue working on H 1 and H 2 separately. This process terminates 
in at most k steps, where k is the number of prime factors of H. 

A more efficient method would be to use the complete splitting of ma(X) 
(in the notation of the proof of Proposition 6.2.8) which gives a corresponding 
splitting of H as a product of more than two ideals. This will be done in the 
algorithm given below. 
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Remark. For some applications, such as computing the values of zeta and 
£-functions, it is not necessary to obtain the explicit decomposition of pO, 
but only the ramification indices and residual degrees ei and k Once the Hj 
above have been computed, this can be done without much further work, as 
explained in Exercise 8 (this remark is due to H. W. Lenstra). 

Once H has been shown to be a maximal ideal by successive splittings, 
what remains is the problem of representing H. Since we will have computed 
an 1Fp-basis (o:ih::;i::;m of H/pO, to obtain the HNF of H we arbitrarily lift 
the O:i to ai E 0, and then do an HNF reduction of the matrix whose first m 
columns are the components of the ai on the Wj, and whose last n columns 
form p times the n x n identity matrix. It is obviously possible to do this 
HNF reduction modulo p (Algorithm 2.4.8), so no coefficient explosion can 
take place. 

Even after finding the HNF of H we should still not be satisfied, because 
in practice, it is much more efficient to represent prime ideals by a two-element 
representation. To obtain this, we apply Algorithm 4.7.10. Note that we know 
the degree of H (the number fin the notation of Algorithm 4.7.10), which is 
simply equal ton- m (since pn = [0: pO] = [0: HJ[H: pO] = pfpm). Also 
we do not need to compute the HNF of H at all to apply Algorithm 4.7.10 
since (together with p) the ai clearly form a ZK-generating set. 

6.2.5 Detailed Description of the Algorithm for Prime 
Decomposition 

We can summarize the preceding discussions in the following algorithm 

Algorithm 6.2.9 (Prime Decomposition). Let K = Q(O) be a number field 
given by an algebraic integer(} as root of its minimal monic polynomial T of degree 
n. We assume that we have already computed an integral basis w1 = 1, ... ,wn 
and the discriminant d(K) of K, for example, by using the round 2 Algorithm 
6.1.8. 

Given a prime number p, this algorithm outputs the decomposition pZK = 
f1 1::;i::;g p~; by giving for each i the values of ei, fi = deg(pi) and a two-element 
representation Pi= (p, o:i)· All the ideals I which we will use (except for the final 
Pi) will be represented by 1Fp bases of 1/pO. 

1. [Check if easy] If p f disc(T)/d(K), then by applying the algorithms of Section 
3.4 factor the polynomial T(X) modulo p, output the decomposition of pZk 
given by Theorem 4.8.13 and terminate the algorithm. 

2. [Compute radical] Set q +- p, and while q < n set q +- qp. Now compute the 
n x n matrix A= (ai,j) over 1Fp such that wJ = L:l<i<n ai,jWi. Note that 
the matrix of the Wi will Stay triangular, SO the ai,j are easy tO COmpute. 

Finally, using Algorithm 2.3.1, compute a basis {31 , •.. , f3z of the kernel 
of the matrix A over 1Fp (this will be a basis of IpjpO). (Note that this step 
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has already been performed as step 7 of the round 2 algorithm, so if the result 
has been kept it is not necessary to recompute this again.) 

3. [Compute Ki] Set K 1 +-- lpjpO (computed in step 2), i +-- 1 and while 
Ki -:/:- {0} set i +-- i + 1 and Ki +-- K 1Ki_ 1 computed using Algorithm 6.2.5. 

- - - - 1 . 
4. [Compute Jj] Set J 1 +-- K1 and for j = 2, ... , i set Jj +-- KjKj_ 1 usmg 

Algorithm 6.2.7. 

5. [Compute Hj] For j = 1, ... , i- 1 set Hi +-- JiJi11 using Algorithm 6.2.7, 

and set Hi +-- Ji. 

6. [Initialize loop] Set j +-- 0, c +-- 0. 

7. [Finished?] If c = 0 do the following: if j = i terminate the algorithm, other
wise set j +-- j + 1 and if dimJFP(Hj) < n set£+-- {Hj} and c +--1, else go 
to step 7 (£ will be a list of c ideals of 0 jpO). 

8. [Compute separable algebra A] Let H be an element of£. Compute an lFp
basis of A= 0/H = (OjpO)j(HjpO) in the following way. If (31, ... , f3r 
is the given lFp-basis of H, set f3r+ 1 +-- (1, 0, ... , O)t (which will be linearly 
independent of the f3i for i ~ r since 1 f. H), supplement this family of 
vectors using Algorithm 2.3.6 to a basis (31, ... , f3n of OjpO. Then, as an 
lFp-basis of A, take f3r+ 1, ... , f3n· (This insures that the first vector of our 
basis of A is always (1, 0, ... , o)t, which would not be the case if we applied 
Algorithm 2.3.6 directly.) 

9. [Compute multiplication table] Denote by ')'1, ... , /J the lFp-basis of A just 
obtained (hence li = f3r+i and f= n- r). By using the multiplication table 
of the wi and Algorithm 2.3.5, compute elements ai,j,k and bi,j,k in lFp such 
that 

/i/j = 2.: ai,j,k/j + 2.: bi,j,kf3j. 
1SiS! 1SiSr 

The multiplication table of the /i (which will be used implicitly from now on) 
is given by the ai,j,k (we can forget the bi,j,k). 

10. [Compute V = ker( ¢> )] Let M be the matrix of the map a f-+ aP- a from A 
to A on the lFp basis that we have found. Compute a basis M1 of the kernel 
of Musing Algorithm 2.3.1. Note that if some other algorithm is used to find 
the kernel, we should nonetheless insure that the first column of M1 is equal 
to (1,0, ... ,o)t. 

11. [Do we have a field?] If M 1 has at least two columns (i.e. if the kernel of 
M is not one-dimensional), go to step 12. Otherwise, set f +-- dimJFp (A), let 
(p, a) be the two-element representation of H obtained by applying Algorithm 
4.7.10 to H. Output j as ramification index, f as residual degree of H, and 
the prime ideal (p, a). Then remove H from the list£, set c +-- c -1 and go 
to step 7. 

12. [Find m(X)] Let a E A correspond to a column of M 1 which is not propor
tional to (1, 0, ... , o)t. By computing the successive powers of a in A, let 
m(X) E lFp[X] be the minimal monic polynomial of a in A. 
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13. [Factor m(X)] (We know that m(X) is a squarefree product of linear polyno
mials.) By using one of the final splitting methods described in Section 3.4, 
or simply by trial and error if p is small, factor m(X) into linear factors as 
m(X) = m1(X) · · ·mk(X). 

14. [Split H] Let r = dimrp (H). For s = 1, ... , k do as follows. Set (3. +-- m, (a), 
let M, be then x (r+ n) matrix over lFp whose first r columns give the basis 
of H and the last n express wif3s on the integral basis. Finally, let H. be the 
image of M, computed using Algorithm 2.3.2. 

15. [Update list] Remove H and add H 1 , ... , Hk to the list .C, set c +-- c + k- 1 
and go to step 8. 

The dimension condition in step 7 was added so as to avoid considering 
values of j such that there are no prime ideals over p whose ramification index 
is equal to j. 

The validity of steps 14 and 15 of the algorithm is left as an exercise for 
the reader (Exercise 27). 

Remark. If we want to avoid writing routines for ideal multiplication and 
division, we can also proceed as follows. After step 2 of the above algorithm 
set .C +-- {Jp} and go directly to step 8 to compute the decomposition of the 
separable algebra A= 0/Ip. In step 11, we must compute the ramification 
index j of each prime ideal found, and this is easily done by using Algorithm 
4.8.17. We leave the details of these modifications to the reader (Exercise 
11). This method is in practice much faster than the method using ideal 
multiplication and division. 

6.3 Computing Galois Groups 

6.3.1 The Resolvent Method 

I am indebted to Y. Eichenlaub for help in writing this section. 

Let K = Q( B) be a number field of degree n, where B is an algebraic integer 
whose minimal monic polynomial is denoted T(X). An important algebraic 
question is to compute the Galois group Gal(T) of the polynomial T, in other 
words the Galois group of the splitting field ofT, or equivalently of the Galois 
closure of K in Q. Since by definition elements of Gal(T) act as permutations 
on the roots of T, once an ordering of the roots is given, Gal(T) can naturally 
be considered as a subgroup of Bn, the symmetric group on n letters. Changing 
the ordering of the roots clearly transforms Gal(T) into a conjugate group, 
and since the ordering is not canonical, the natural objects to consider are 
subgroups of Sn up to conjugacy. It will be important in what follows to 
remember that we have chosen a specific, but arbitrary ordering, since it will 
sometimes be necessary to change it. 
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Furthermore, since the polynomial T is irreducible, the group Gal(T) is a 
transitive subgroup of Sn, i.e. there is a single orbit for the action of Gal(T) 
on the roots (}i ofT (each orbit corresponding to an irreducible factor ofT). 
Hence, the first task is to classify transitive subgroups of Sn up to conjugacy. 
This is a non-trivial (but purely) group-theoretical question. It has been solved 
up ton = 32 (see [But-McKay] and [Hiil]), but the number of groups becomes 
unwieldy for higher degrees. We will give the classification for n :5 7. 

Note that since the cardinality of an orbit divides the order of Gal(T), the 
cardinality of a transitive subgroup of Sn is divisible by n. 

Once the transitive groups are classified, we must still determine which 
corresponds to our Galois group Gal(T). We first note the following simple, 
but important proposition. 

Proposition 6.3.1. Let An be the alternating group on n letters correspond
ing to the even permutations. Then Gal(T) C An if and only if disc(T) is a 
square. 

Proof Let (}i be the roots ofT. By Proposition 3.3.5, we know that 

disc(T) = f 2 , where f = IT (Oj - Oi)· 
l~i<j~n 

Clearly f is an algebraic integer, and for any a E Gal(T) we have 

a(!)= E(a)f, 

where f( a) denotes the signature of a. Hence, if Gal(T) c An, all permutations 
of Gal(T) are even, so f is invariant under Gal(T). Thus by Galois theory, 
f E z. Conversely, if f E Z, we have f -:f. 0 since the roots of T are distinct. 
Therefore f(a) = 1 for all a E Gal(T), so Gal(T) C An· Note that since An 
is a normal subgroup, that a group is a subgroup of An depends only on its 
conjugacy class, and not on the precise conjugate. D 

We now need to introduce a definition which will be basic to our work. 

Definition 6.3.2. Let G be a subgroup of Sn containing Gal(T) (not up to 
conjugacy, but for the given numbering of the roots), and let F(X1, X2, ... , Xn) 
be a polynomial in n variables with coefficients in Z. If H is the stabilizer of 
Fin G, i.e. 

H ={a E G, F (Xu(l)• Xu(2)• ... ,Xu(n)) = F(X1. X2, ... , Xn)}, 

we define the resolvent polynomial Rc(F, T) with respect to G, F and the 
polynomial T by 

Rc(F, T)(X) = IJ (X- F (Bu{l)> Bu{2)> ... , Bu(n))), 
uEG/H 
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where G I H denotes any set of left coset representatives of G modulo H. 

When G = Sn, we will omit the subscript in the notation. 
It is clear from elementary Galois theory that Rc(F, T) E Z[X]. The main 

theorem which we will use concerning resolvent polynomials is as follows. 

Theorem 6.3.3. With the notation of the preceding definition, set m = [G: 
H] = deg(Rc(F, T)). Then, if Rc(F, T) is squarefree, its Galois group (as a 
subgroup of Sm) is equal to ¢(Gal(T)), where ¢ is the natural group homo
morphism from G to Sm given by the natural left action of G on G I H. In 
particular, the list of degrees of the irreducible factors of Rc(F, T) in Z[X] 
is the same as the list of the length of the orbits of the action of ¢(Gal(T)) 
on [1, ... , m]. For example, Rc ( F, T) has a root in Z if and only if Gal(T) is 
conjugate under G to a subgroup of H. 

For the proof, see [Soi]. 
Note that it is important to specify that Gal(T) is conjugate under G, 

since this is a stronger condition than being conjugate under Sn. 
Now it will often happen that Rc(F, T) is not squarefree. In that case, to 

be able to apply the theorem, we use the following algorithm. 

Algorithm 6.3.4 (Tschirnhausen Transformation). Given a monic irreducible 
polynomial T defining a number field K = Q(B), we find another such polynomial 
U defining the same number field. 

1. [Choose random polynomial] Let n- deg(T). Choose at random a polynomial 
A E Z[X] of degree less than or equal to n- 1. 

2. [Compute characteristic polynomial] Using the method explained in Section 
4.3, compute the characteristic polynomial U of a = A(B). In other words, 
using the sub-resultant Algorithm 3.3.7, set U- Ry(T(Y), X- A(Y)). 

3. [Check degree] Using Euclid's algorithm, compute V - gcd(U, U'). If V is 
constant, then output U and terminate the algorithm, otherwise go to step 1. 

The validity of this algorithm is clear. 

Modifying T if necessary by using such a Tschirnhausen transformation, 
it is always easy to reduce to the case where Rc(F, T) is squarefree. 

Finally, we need some notation. The elements of the set G I H will be 
given as products of disjoint cycles, with I denoting the identity permutation. 
Usually, apart from I, G I H will contain only transpositions. 

We denote by Cn the cyclic group ZlnZ, and by Dn the dihedral group of 
order 2n, isomorphic to the isometries of a regular n-gon. As before, An and Sn 
denote the alternating group and symmetric group on n letters respectively. 
Finally, A ~ B denotes the semi-direct product of the groups A and B, where 
the action of B on A is understood. 
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When we compute a group, we will output not only the isomorphism class 
of the group, but also a sign expressing whether the group is contained in An 
( + sign) or not (- sign). This will help resolve a number of ambiguities since 
isomorphic groups are not always conjugate in 8n· 

Let us now examine in turn each degree up to degree 7. The particular 
choices of resolvents that we give are in no way canonical, although we have 
tried to give the ones which are the most efficient. The reader can find many 
other choices in the literature ([Stau], [Gir], [Soi] and [Soi-McKay], [Eicl]). 
The validity of the algorithms given can be checked using Theorem 6.3.3. 

In degrees 1 and 2 there is of course nothing to say since the only possible 
group is 8n in these cases, so we always output (8n,- ). 

6.3.2 Degree 3 

In degree 3, it is obvious that the only transitive subgroups of 83 are C3 ~ A3 
and 83 ~ D3 which may be separated by the discriminant. In other words: 

Proposition 6.3.5. If n = 3, we have either Gal(T) ~ C3 or Gal(T) ~ 83 
depending on whether disc(T) is a square or not. 

Thus we output (C3, +) or (83,-) depending on disc(T). 

6.3.3 Degree 4 

In degree 4, there are (up to conjugacy) five transitive subgroups of 84. These 
are C4 (the cyclic group), V4 = C~ (the Klein 4-group), D4 (the dihedral 
group of order 8, group of isometries of the square), A4 and 84. 

Some inclusions are V4 c D4 n A4, and C4 c D4. 

Important remark: note that although we consider the groups only up to 
conjugacy, the notion of inclusion for two groups G1 and G2 can reasonably be 
defined by saying that G 1 C G 2 only when G 1 is a subgroup of some conjugate 
of G2. On the other hand, when we consider abstract groups such as V4, D4, 
etc ... , the notion of inclusion is much more delicate since some subgroups of 
8n can be isomorphic as abstract groups but not conjugate in 8n. In this case, 
we write G1 C G2 only if this is valid for all conjugacy classes isomorphic to 
G1 and G2 respectively. 

A simple algorithm is as follows. 

Algorithm 6.3.6 (Galois Group for Degree 4). Given an irreducible monic 
polynomial T E Z[X] of degree 4, this algorithm computes its Galois group. 

1. [Compute resolvent] Using Algorithm 3.6.6, compute the roots fh of T in C. 
Let 
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and let R +- R(F, T), where a system of representatives of G I H is given by 

GIH ={I, (12), (13), (14), (23), (34)}. 

Then round the coefficients of R to the nearest integer (note that the roots 
Bi must be computed to a sufficient accuracy for this rounding to be correct, 
and the needed accuracy is easily determined, see Exercise 13). 

2. [Squarefree?] Compute V +- (R, R') using the Euclidean algorithm. If Vis non
constant, replace T by the polynomial obtained by applying a Tschirnhausen 
transformation using Algorithm 6.3.4 and go to step 1. 

3. [Factor resolvent] Using Algorithm 3.5.7, factor Rover Z. Let L be the list of 
the degrees of the irreducible factors sorted in increasing order. 

4. [Conclude] If R is irreducible, i.e. if L = (6), then output (A4, +) or (84,-) 
depending on whether disc(T) is a perfect square or not. Otherwise, output 
(C4, -), (V4,+) or (D4, -)depending on whether L = (1, 1,4), L = (2,2,2) 
or L = (2, 4) respectively. Terminate the algorithm. 

Note that with this choice of resolvent, we have H = C4 =< (1234) >,the 
group of cyclic permutations, but this fact is needed in checking the correctness 
of the algorithm, not in the algorithm itself, where only G I H is used. 

Another algorithm which is computationally slightly simpler is as follows. 
We give it also to illustrate the importance of the root ordering. 

Algorithm 6.3.7 (Galois Group for Degree 4). Given an irreducible monic 
polynomial T E Z[X] of degree 4, this algorithm computes its Galois group. 

1. [Compute resolvent] Using Algorithm 3.6.6, compute the roots Bi of T in C. 
Let 

F +- X1X3 + X2X4 

and let R +- R(F, T), where a system of representatives of G I H is given by 

GIH= {1,(12),(14)}. 

Round the coefficients of R to the nearest integer. 

2. [Squarefree?] Compute V +- (R, R') using the Euclidean algorithm. If Vis non
constant, replace T by the polynomial obtained by applying a Tschirnhausen 
transformation using Algorithm 6.3.4 and go to step 1. 

3. [Integral root?] Check whether R has an integral root by explicitly computing 
them in terms of the Bi. (This is usually much faster than using the general 
factoring procedure 3.5.7.) 

4. [Can one conclude?] If R does not have an integral root (so R is irreducible), 
then output (A4, +) or (84,-) depending on whether disc(T) is a perfect 
square or not and terminate the algorithm. Otherwise, if disc(T) is a square, 
output (V4, +) and terminate the algorithm. 
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5. [Renumber] (Here R has an integral root and disc(T) is not a square. The 
Galois group must be isomorphic either to C4 or to D4.) Let u be the element 
of S4 corresponding to the integral root of R, and set (ti) +-- (ta(i)) {i.e. we 
renumber the roots ofT according to u). 

6. [Use new resolvent] Set 

rounded to the nearest integer (with the same remarks as before about the 
accuracy needed for the Oi)· If d -:f. 0, output (C4,-) or (D4 ,-) depending on 
whether d is a perfect square or not and terminate the algorithm. 

7. [Replace] (Here d = 0.} Replace T by the polynomial obtained by applying a 
Tschirnhausen transformation A using Algorithm 6.3.4. Set Oi +-- A(Oi) (which 
will be the roots of the newT). Reorder the Oi so that 0103 + 0204 E Z, {only 
the 3 elements of G I H given in step 1 need to be tried), then go to step 6. 

In principle, this algorithm involves factoring polynomials of degree 3, 
hence is computationally simpler than the preceding algorithm, although 
its structure is more complicated due to the implicit use of two different 
resolvents. The first resolvent corresponds to G = S4 and H = D4 =< 
(1234), (13) >. The second resolvent corresponds to F = X1X? + X2Xl + 
X3Xl + X4Xt, G = D4, H = C4 and G I H = {I, (13)}, hence the polynomial 
of degree 2 need not be explicitly computed in order to find its arithmetic 
structure. 

Remark. (This remark is valid in any degree.) As can be seen from the preced
ing algorithm, it is not really necessary to compute the resolvent polynomial 
R explicitly, but only a sufficiently close approximation to its roots (which 
are known explicitly by definition). To check whether R is squarefree or not 
can also be done by simply checking that R does not have any multiple root 
(to sufficient accuracy). In fact, we have the following slight strengthening of 
Theorem 6.3.3 which can be proved in the same way. 

Proposition 6.3.8. We keep the notations of Theorem 6.3.3, but we do not 
necessarily assume that Ra(F, T) is squarefree. If Ra(F, T) has a simple root 
in Z, then Gal(T) is conjugate under G to a subgroup of H. 

This proposition shows that it is not necessary to assume Ra(F, T) square
free in order to apply the above algorithms, as well as any other which depend 
only on the existence of an integral root and not more generally on the de
grees of the irreducible factors of Ra(F, T). (This is the case for the algorithms 
that we give in degree 4 and 5.) This remark should of course be used when 
implementing these algorithms. 
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6.3.4 Degree 5 

In degree 5 there are also (up to conjugacy) five transitive subgroups of Ss. 
These are Cs (the cyclic group), Ds (the dihedral group of order 10), M2o (the 
metacyclic group of degree 5), As and Ss. 

Some inclusions are 

Cs c Ds c As n M2o. 

The algorithm that we suggest is as follows. 

Algorithm 6.3.9 (Galois Group for Degree 5). Given an irreducible monic 
polynomial T E Z[X] of degree 5, this algorithm computes its Galois group. 

1. [Compute resolvent] Using Algorithm 3.6.6, compute the roots ()i of T in C. 
Let 

F +- X~(X2Xs + X3X4) + X~(X1X3 + X4Xs) + X5(X!Xs + X2X4) 

+ Xt(X1X2 + X3Xs) + X~(X1X4 + X2X3) 

and let R +- R(F, T), where a system of representatives of G / H is given by 

G/H ={I, (12), (13), (14), (15), (25)}. 

Round the coefficients of R to the nearest integer. 

2. [Squarefree?] Compute V +- (R, R') using the Euclidean algorithm. If Vis non
constant, replace T by the polynomial obtained by applying a Tschirnhausen 
transformation using Algorithm 6.3.4 and go to step 1. 

3. [Factor resolvent] Factor R using Algorithm 3.5.7. (Note that one can show 
that either R is irreducible or R has an integral root. So, as in the algorithm 
for degree 4, it may be better to compute the roots of R which are known 
explicitly.) 

4. [Can one conclude?]lf R is irreducible, then output (As,+) or (Ss,-) depend
ing on whether disc(T) is a perfect square or not, and terminate the algorithm. 
Otherwise, if disc(T) is not a perfect square, output (M2o,-) and terminate 
the algorithm. 

5. [Renumber] (Here R has an integral root and disc(T) is a square. The Galois 
group must be isomorphic either to Cs or to Ds.) Let a be the element of 
Ss corresponding to the integral root of R, and set (ti) +- (tu(i)) (i.e. we 
renumber the roots ofT according to a). 

6. [Compute discriminant of new resolvent] Set 

d +- (fhfh(()2- ()1) + ()2()3(()3- ()2) + ()3()4(()4 - ()3) 

+ (}48s(8s- 84) + 8s8l((Jl- es))2 
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rounded to the nearest integer (with the same remarks as before about the 
accuracy needed for the Oi)· If d :f. 0, output (C5 ,+) or (D5 , +)depending on 
whether d is a perfect square or not, and terminate the algorithm. 

7. [Replace] (Here d = 0.} Replace T by the polynomial obtained by applying a 
Tschirnhausen transformation A using Algorithm 6.3.4. Set fh +- A(Oi) (which 
will be the roots of the newT). Reorder the (Ji so that F(Bt, Ot, 83, 84, Bs) E Z 
where F is as in step 1, (only the 6 elements of G / H given in step 1 need to 
be tried}, then go to step 6. 

The first resolvent corresponds to G = 85 and 

H = M2o =<(12345), (2354)>. 

Step 6 corresponds implicitly to the use of the second degree resolvent obtained 
with F = X1X~ + X2X~ + X3Xl + X4Xl + X5Xl, G = Ds, H = Cs and 
G/H ={I, (12)(35)}. 

6.3.5 Degree 6 

In degree 6 there are up to conjugation, 16 transitive subgroups of 86. The 
inclusion diagram is complicated, and the number of resolvent polynomials is 
high. The best way to study this degree is to work using relative extensions, 
that is study the number field K as a quadratic or cubic extension of a cubic 
or quadratic subfield respectively, if they exist. This is done in [Oli2] and 
[BeMaOl]. 

In this book we have not considered relative extensions. Furthermore, 
when a sextic field is given by a sixth degree polynomial over Q, it is not 
immediately obvious, even if it is theoretically possible, how to express it 
as a relative extension, although the POLRED Algorithm 4.4.11 often gives 
such information. Hence, we again turn to the heavier machinery of resolvent 
polynomials. 

It is traditional to use the notation G k to denote a group of cardinality 
k. Also, special care must be taken when considering abstract groups. For 
example, the group 84 occurs as two different conjugacy classes of 86, one 
which is in A6, the other which is not (the traditional notation would then be 
St and 84 respectively). 

We will describe the groups as we go along the algorithm. There are many 
possible resolvents which can be used. The algorithm that we suggest has the 
advantage of needing a single resolvent, except in one case, similarly to degrees 
4 and 5. 

Algorithm 6.3.10 (Galois Group for Degree 6). Given an irreducible monic 
polynomial T E Z[X] of degree 6, this algorithm computes its Galois group. 

1. [Compute resolvent] Using Algorithm 3.6.6, compute the roots fh ofT in C. 
Let 
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F +- X~Xi(X2X4+X3X6)+X~Xl(X1X5+X3X6)+X;X~(X1X5+X2X4) 
+X~X~(X2X5+ X3X4) + X~Xi(XIX6+ X3X4) +X;Xl(XIX6 + X2X5) 

+X~Xj(X2X6+ X4X5) +X~X~(X1X3+X4X5) +XlXi(X1X3+X2X6) 

+X~ Xl(X2X3 + X5X6) + X~Xj(X1X4 + X5X6) + XiX~(X1X4 + X2X3) 

+X~ X~(X3X5 + X4X6)+ XjXi(X1X2 + X4X6) + Xl X~(X 1X2 + X3X5) 

and let R +- R( F, T), where a system of representatives of G I H is given by 

GIH ={I, (12), (13), (14), (15), (16)}. 

Round the coefficients of R to the nearest integer. 

2. [Squarefree?] Compute V +- (R, R') using the Euclidean algorithm. If Vis non
constant, replace T by the polynomial obtained by applying a Tschirnhausen 
transformation using Algorithm 6.3.4 and go to step 1. 

3. [Factor resolvent] Factor R using Algorithm 3.5.7. If R is irreducible, then go 
to step 5, otherwise let L be the list of the degrees of the irreducible factors 
sorted in increasing order. 

4. [Conclude] 
a) If L = (1, 2, 3), let fi be the irreducible factor of R of degree equal to 

3. Output (C6,-) or (D6,-) depending on whether disc(/!) is a square or 
not. 

b) If L = (3, 3), let h and f2 be the irreducible factors of R. If both 
disc(h) and disc(/2) are not squares output ( G36 ,-), otherwise output 
(G1s, -).Note that G36 = Cb<lC~ ~ D3xD3, and G1s = C~><lC2 ~ C3xD3. 

c) If L = (2, 4) and disc(T) is a square, output (84 , + ). Otherwise, if 
L = (2, 4) and disc(T) is not a square, let h be the irreducible factor of de
gree 4 of R. Then output (A4 X c2,-) or (84 X c2,-) depending on whether 
disc(!l) is a square or not. 

d) If L = (1,1,4) then output (A4 ,+) or (84,-) depending on whether 
disc(T) is a square or not. 

e) If L = (1, 5), then output (PSL2(JF5),+) or (PGL2(JF5),-) depending 
on whether disc(T) is a square or not. Note that PSL2(JF5) ~ A5 and that 
PGL2(lF5) ~ 85. 

f) Finally, if L = (1,1,1,3), output (83 ,-). 

Then terminate the algorithm. 

5. [Compute new resolvent] (Here our preceding resolvent was irreducible. Note 
that we do not have to reorder the roots.) Let 

and let R +- R( F, T), where a system of representatives of G I H is now given 
by 

GIH ={I, (14), (15), (16), (24), (25), (26), (34), (35), (36)}. 

Round the coefficients of R to the nearest integer. 
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6. [Squarefree?] Compute V +-- (R, R') using the Euclidean algorithm. If Vis non
constant, replace T by the polynomial obtained by applying a Tschirnhausen 
transformation using Algorithm 6.3.4 and go to step 5. 

7. [Factor resolvent] Factor R using Algorithm 3.5.7 (Note that in this case either 
R is irreducible, or it has an integral root, so again it is probably better to 
compute these 10 roots directly from the roots ofT and check whether they 
are integral.) 

8. [Conclude] If R is irreducible (or has no integral root), then output (A6, +) or 
(86,-) depending on whether disc(T) is a square or not. Otherwise, output 
(G36, +) or (Gn,-) depending on whether disc(T) is a square or not. Then 
terminate the algorithm. Note that Gt6 = c§ ><1 C4 and Gn = C§ ><1 D4. 

The first resolvent corresponds to G = 86 and 

H = PGL2(1Fs) =<(12345), (16)(23)(45)>. 

The second resolvent, used in step 5, corresponds toG= 86 and 

H = G72 =<(123), (14)(25)(36), (1524)(36)>. 

Remark. It can be shown that a sextic field has a quadratic subfield if 
and only if its Galois group is isomorphic to a (transitive) subgroup of Gn. 
This corresponds to the groups (C6,-), (83,-), (D6,- ), (G1s,-), (G36,- ), 
(G36,+) and (Gn,-). 

Similarly, it has a cubic sub field if and only if its Galois group is isomorphic 
to a (transitive) subgroup of 84 x C2. This corresponds to the groups (C6, -), 
(83,-), (D6,-), (A4,+), (84,+), (84,-), (A4 X c2,-) and (84 X c2,-). 

Hence, it has both a quadratic and a cubic subfield if and only if its Galois 
group is isomorphic to (C6,-), (83,-) or (D6,-). 

If the field is primitive, i.e. does not have quadratic or cubic subfields, this 
implies that its Galois group can only be PSL2(1F5 ) ~ A5 , PGL2(1Fs) ~ 8s, A6 
or 86 • 

6.3.6 Degree 7 

In degree 7, there are seven transitive subgroups of 87 which are C1, D1, M21. 
M42, PSL2(1F1) ~ PSL3(1F2), A1 and 87. 

Some inclusions are 

In this case there exists a remarkably simple algorithm. 

Algorithm 6.3.11 (Galois Group for Degree 7). Given an irreducible monic 
polynomial T E Z[X] of degree 7, this algorithm computes its Galois group. 
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1. [Compute resolvent] Using Algorithm 3.6.6, compute the roots (}i ofT in C. 
Let 

R+- II 
l~i<j<k~7 

which is a polynomial of degree 35, and round the coefficients of R to the 
nearest integer. 

2. [Squarefree?] Compute V +- (R, R') using the Euclidean algorithm. If Vis non
constant, replace T by the polynomial obtained by applying a Tschirnhausen 
transformation using Algorithm 6.3.4 and go to step 1. 

3. [Factor resolvent and conclude] Factor R using Algorithm 3.5.7. If R is ir
reducible, then output (A7 , +) or (87 ,-) depending on whether disc(T) is 
a square or not. Otherwise, let L be the list of the degrees of the irre
ducible factors sorted in increasing order. Output (PSL2(IF7),+), (M42,-), 
(M21, + ), (D7,-) or (C7, +)depending on whether L = (7, 28), L = (14, 21), 
L = (7, 7, 21), L = (7, 7, 7, 14) or L = (7, 7, 7, 7, 7) respectively. Then termi
nate the algorithm. 

Note that this algorithm does not exactly correspond to the framework 
based on Theorem 6.3.3 but it has the advantage of being very simple, and 
computationally not too inefficient. It does involves factoring a polynomial of 
degree 35 over Z however, and this can be quite slow. (To give some idea of the 
speed: on a modern workstation the algorithms take a few seconds for degrees 
less than or equal to 6, while for degree 7, a few minutes may be required 
using this algorithm.) 

Several methods can be used to improve this basic algorithm in practice. 
First of all, one expects that the overwhelming majority of polynomials will 
have 87 as their Galois group, and hence that our resolvent will be irreducible. 
We can test for irreducibility, without actually factoring the polynomial, by 
testing this modulo p for small primes p. If it is already irreducible modulo 
p for some p, then there is no need to go any further. Of course, this is 
done automatically if we use Algorithm 3.5.7, but that algorithm will start 
by doing the distinct degree factorization 3.4.3, when it is simpler here to use 
Proposition 3.4.4. 

Even if one expects that the resolvent will factor, we can use the divisibility 
by 7 of the degrees of its irreducible factors in almost every stage of the 
factoring Algorithm 3.5.7. 

Another idea is to use the resolvent method as explained at the begin
ning of this chapter. Instead of factoring polynomials having large degrees, we 
simply find the list of all cosets a of G modulo H such that 

F { (}u(l), (}u(2), ... , (}u(n)) E Z. 

If there is more than one coset, this means that the resolvent is not squarefree, 
hence we must apply a Tschirnhausen transformation. If there is exactly one, 
then the Galois group is isomorphic to a subgroup of H, and the coset gives 
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the permutation of the roots which must be applied to go further down the 
tree of subgroups. If there are none, the Galois group is not isomorphic to a 
subgroup of H. Of course, all this applies to any degree, not only to degree 7. 

As the reader can see, I do not give explicitly the resolvents and cosets 
for degree 7. The resolvents themselves are as simple as the ones that we 
have given in lower degrees. On the other hand, the list of cosets is long. For 
example for the pair (S7, M42) we need 120 elements. This is cumbersome 
to write down. It should be noted however that the resulting algorithm is 
much more efficient than the preceding one (again at most a few seconds on 
a modern workstation). These cosets and resolvents in degree 7, 8, 9, 10 and 
11 may be obtained in electronic form upon request from M. Olivier (same 
address as the author). 

6.3. 7 A List of Test Polynomials 

As a first check of the correctness of an implementation of the above algo
rithms, we give a polynomial for each of the possible Galois groups occurring 
in degree less than or equal to 7. This list is taken from [Soi-McKay]. Note that 
for many of the given polynomials, it will be necessary to apply a Tschirn
hausen transformation. We list first the group as it is output by the algorithm, 
then a polynomial having this as Galois group. 

(S1,-): X 
(S2,-): X2 +X +1 
(Ca,+): xa + X 2 - 2X -1 
(Sa,-): Xa+2 
(C4,-): X 4 +Xa+ X 2 +X+ 1 
(V4,+ ): X 4 + 1 
(D4, -): X 4 - 2 

(A4,+ ): X 4 + 8X + 12 
(S4,-): X 4 + x + 1 
(Cs,+ ): X 5 + X 4 - 4Xa- 3X2 + 3X + 1 
(Ds,+ ): X 5 - 5X + 12 
(M2o, -): X 5 + 2 
(As,+): X 5 +20X+16 
(Ss,-): X 5 -X+ 1 
(C6,-): X 6 + X 5 +X4 +Xa +X2 +X+ 1 
(Sa,-): X 6 + 108 
(D6,-): X 6 + 2 
(A4,+ ): X 6 - 3X2 -1 
(G1s,-): X6 +3Xa+3 
(A4 x c2,-): x 6 - 3X2 +1 
(S4,+): X 6 -4X2 -1 
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(S4,-): X 6 - 3X5 + 6X4 -7X3 +2X2 +X- 4 
(G36, -): X 6 + 2X3 - 2 
(G36,+ ): X 6 + 6X4 + 2X3 + 9X2 + 6X- 4 
(S4 x c2,-): x 6 + 2X2 + 2 
(PSL2(1Fs), +)~(As,+): X 6 - 2X5 - 5X2 - 2X- 1 
(G12,-): X 6 + 2X4 + 2X3 + X 2 + 2X + 2 
(PGL2(1F5),-) '::f. (S5 ,-): X 6 - X 5 -10X4 + 30X3- 31X2 + 7 X+ 9 
(A6,+): X 6 +24X -20 
(S6,-): X 6 +X+1 
(C1, +): X 7 + X 6 -12X5 -7X4 + 28X3 + 14X2 - 9X + 1 
(D7 ,-): X 7 + 7X3 + 7X2 + 7X -1 
(M21,+ ): X 7 -14X5 + 56X3- 56X + 22 
(M42,-): X 7 + 2 
(PSL2(IF7),+) '::f. (PSL3(IF2),+ ): X 7- 7X3 + 14X2 -7X + 1 
(A7 ,+ ): X 7 + 7X4 + 14X + 3 
(S7,-):X7 +X+1 

6.4 Examples of Families of Number Fields 

6.4.1 Making Tables of Number Fields 

It is important to try to describe the family of all number fields (say of a given 
degree, Galois group of the Galois closure and signature) up to isomorphism. 
Unfortunately, this is a hopeless task except for some special classes of fields 
such as quadratic fields, cyclic cubic fields, cyclotomic fields, etc. We could, 
however, ask for a list of such fields whose discriminant is in absolute value 
bounded by a given constant, i.e. ask for tables of number fields. We first ex
plain briefly how this can be done, referring to [Mart] and [Poh1] for complete 
details. 

We need two theorems. The first is an easy result of the geometry of 
numbers (which we already used in Section 2.6 to show that the LLL algorithm 
terminates) which we formulate as follows. 

Proposition 6.4.1. There exists a positive constant "'n having the following 
property. In any lattice ( L, q) of IRn, there exists a non-zero vector x such 
that q(x) ::; "fnD21n where D = det(L) = det(Q) 112 is the determinant of the 
lattice {here Q is the matrix of q in some Z-basis of L, see Section 2.5 ). 

See for example [Knu2] (Section 3.3.4, Exercise 9) for a proof. 
The best possible constant "'n is called Hermite's constant, and is known 

only for n :S 8: 

2 4 3 4 5 6 64 7 8 
"/1 = 1, "(2 = 3, "(3 = 2, "(4 = 4, "'s = 8, "(6 = 3 , "(7 = 64, "'s = 256. 
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For larger values of n, the recursive upper bound 

n < (n-1)n/(n-2) 
'Yn - 'Yn-1 
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gives useful results. The best known bounds are given for n ::; 24 in [Con-Slo], 
Table 1.2 and Formula ( 47). 

The basic theorem, due to Hunter (see [Hun] and Exercise 26), is as follows. 

Theorem 6.4.2 (Hunter). Let K be a number field of degree n over Q. There 
exists (} E ZK \ Z having the following property. Call (}i the conjugates of(} in 
K. Then 

n 1 (ld(K)I )1/(n-1) 
{;IOil2 :S ;:;Tr(0)2 +'Yn-1 -n- ' 

where d(K) is the discriminant of K and Tr(O) = 2:::~= 1 (}i is the trace of(} 
over Q. In addition, we may assume that 0 ::; Tr(O) ::; n/2. 

This theorem is used as follows. Assume that we want to make a table 
of number fields of degree n and having a given signature, with discriminant 
d(K) satisfying ld(K)I ::; M for a given bound M. Then replacing d(K) by 
M in Hunter's theorem gives an upper bound for the IOil and hence for the 
coefficients of the characteristic polynomial of (} in K. 

If K is primitive, i.e. if the only subfields of K are Q and K itself, then 
since (} ¢. Z we know that K = Q(O), and thus we obtain a finite (although 
usually large) collection of polynomials to consider. Most of these polynomials 
can be discarded because their roots will not satisfy Hunter's inequality. Oth
ers can be discarded because they are reducible, or because they do not have 
the correct signature. Note that a given signature will give several inequali
ties between the coefficients of acceptable polynomials, and these should be 
checked before using Sturm's Algorithm 4.1.11 which is somewhat longer. (We 
are talking of millions if not billions of candidate polynomials here, depending 
on the degree and, of course, the size of M.) 

Finally, using Algorithm 6.1.8 compute the discriminant of the number 
fields corresponding to each of the remaining polynomials. This is the most 
time-consuming part. After discarding the polynomials which give a field dis
criminant which is larger than M in absolute value, we have a list of poly
nomials which define all the number fields that we are interested in. Many 
polynomials may give the same number field, so this is the next thing to 
check. Since we have computed an integral basis for each polynomial dur
ing the computation of the discriminant of the corresponding number field, 
we can use the POLRED algorithm (or more precisely Algorithm 4.4.12) to 
give a pseudo-canonical polynomial for each number field. This will eliminate 
practically all the coincidences. 

When two distinct polynomials give the same field discriminant, we must 
now check whether or not the corresponding number fields are isomorphic, 
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and this is done by using one of the algorithms given in Section 4.5.4. Note 
that this will now occur very rarely (since most cases have been dealt with 
using Algorithm 4.4.12). 

If the field K is not primitive, we must use a relative version of Hunter's 
theorem due to Martinet (see [Mart]), and make a separate table ofimprimitive 
fields. 

In the rest of this chapter we will give some examples of families of number 
fields. 

The simplest of all number fields (apart from Q itself) are quadratic fields. 
This case has been studied in detail in Chapter 5, and we have also seen that 
there exist methods for computing regulators and class groups which do not 
immediately generalize to higher degree fields. Note also that higher degree 
fields are not necessarily Galois. 

The next simplest case is probably that of cyclic cubic fields, which we 
now consider. 

6.4.2 Cyclic Cubic Fields 

Let K be a number field of degree 3 over Q, i.e. a cubic field. If K is Galois 
over Q, its Galois group must be isomorphic to the cyclic group 7l/37l, hence 
we say that K is a cyclic cubic field. The Galois group has, apart from its 
identity element, two other elements which are inverses. We denote them by 
cr and u- 1 = u 2 . The first proposition to note is as follows. 

Proposition 6.4.3. Let K = Q( B) be a cubic field, where B is an algebraic 
integer whose minimal monic polynomial will be denoted P(X). Then K is a 
cyclic cubic field if and only if the discriminant of P is a square. 

Proof This is a restatement of Proposition 6.3.5. 0 

This proposition clearly gives a trivial algorithm to check whether a cubic 
field is Galois or not. 

In the rest of this (sub)section, we assume that K is a cyclic cubic field. 
Our first task is to determine a general equation for such fields. Let B be an 
algebraic integer such that K = Q(B), and let P(X) = X 3 - SX2 + TX- N 
be the minimal monic polynomial of B, with integer coefficients S, T and N. 

Note first that since any cubic field has at least one real embedding (as 
does any odd degree field) and since K is Galois, all the roots of P must be 
in K hence they must all be real, so a cyclic cubic field must be totally real 
(i.e. r1 = 3 real embeddings, and r 2 = 0 complex ones). Of course, this also 
follows because the discriminant of P is a square. 

In what follows, we set ( = e2i7r/3 , i.e. a primitive cube root of unity. Since 
K is totally real, ( rf. K, hence the extension field K ( () is a sixth degree field 
over Q. It is easily checked that it is still Galois, with Galois group generated 
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by commuting elements a and T, where a acts on K as above and trivially on 
(, and T denotes complex conjugation. 

The first result that we need is as follows. 

Lemma 6.4.4. Set 'Y = 0 + (2a(O) + (a2(0) E K((), and (3 = 'Y2 /r('Y). Then 
(3 E IQ( () and we have 

P(X) = X3 _ sx2 + 82- eX_ 83- 3Se + eu 
3 27 , 

where we have set e = (3r(f3) and u = (3 +r(f3) {i.e. e and u are the norm and 
trace of (3 considered as an element of!Q(()). 

Proof. We have r('Y) = 0 + (a(O) + (2a 2 (0). One sees immediately that 
a('Y) = ('Y and a(r('Y)) = ( 2r('Y) hence (3 is invariant under the action of 
a, so by Galois theory (3 must belong to the quadratic subfield IQ(() of K((). 
In particular, e and u as defined above are in IQ. Now we have the matrix 
equation 

so it follows by inverting the matrix that 

From the formulas T = Oa(O) + Oa2 (0) + a(O)a2 (0) and N = Oa(O)a2 (0), a 
little computation gives the result of the lemma. D 

We will now modify 0 (hence its minimal polynomial P( X)) so as to obtain 
a unique equation for each cyclic cubic field. First note that replacing 'Y by 
(b + c()'Y is equivalent to changing 0 into bO + ca(O), and (3 is changed into 

(3 (b + c()2 

b+ c(2 

Let Pk be the primes which split in IQ(() (as Pk = 1rk11'k), i.e. such that Pk = 1 
(mod 3), let qk be the inert primes, i.e. such that qk = 2 (mod 3), and let 
P = 1 + 2( = A be a ramified element (i.e. a prime element above the 
prime 3). We can write 

Hence, since b + c(2 = b + c(, we have 
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If the decomposition of (3 (which is in IQ( () but perhaps not in Z[(]) is 

then we can choose gk = -nk and f = -m. Furthermore, for each k consider 
the quantity mk + 2lk. If it is congruent to 0 or 1 modulo 3, we will choose 
ek = l(-mk- 2lk + 1)/3J and fk = lk + 2ek. If it is congruent to 2 modulo 
3, then lk + 2mk = 1 (mod 3) and we choose fk = l(-lk- 2mk + 1)/3J and 
ek = mk+ 2fk. 

It is easy to check that, with this choice of exponents, the new value of (3 
is an element of Z[(] (and not only of IQ(()), is not divisible by any inert or 
ramified prime, and is divisible by split primes only to the first power. Also, at 
most one of 7rk or 7rk divides (3. In other words, if e = (3T((3) is the new value 
of the norm of (3, then e is equal to a product of distinct primes congruent to 
1 modulo 3. 

Finally, since 1 + ( + (2 = 0, if we change() into a+() with a E IQ, then 1 
does not change and so neither do (3 or e. Taking a = S /3, we obtain a new 
value of() whose trace is equal to 0. Putting all this together we have almost 
proved the following lemma. 

Lemma 6.4.5. For any cyclic cubic field K, there exists a unique pair of 
integers e and u such that e is equal to a product of distinct primes congruent 
to 1 modulo 3, u = 2 (mod 3) and such that K = Q(B') where()' is a root of 
the polynomial 

Q(X) = X3 _!!:_X- eu 
3 27, 

or equivalently K = Q(B) where () is a root of 

P(X) = 27Q(X/3) = X 3 - 3eX- eu. 

Proof. Since (3 = (u + vH)/2, u cannot be divisible by 3 since (3 is not 
divisible by the ramified prime. Hence, by suitably choosing the exponent g 
above (which amounts to changing (3 into -(3 if necessary), we may assume 
u = 2 (mod 3). 

For the uniqueness statement, note that all the possible choices of genera
tors of K are of the form a+ bB+ca(B), and since we want a trace equal to 0, 
this gives us the value of a as a function of band c, where these last values are 
determined because we want e to be equal to a product of primes congruent 
to 1 modulo 3, hence (3 is unique. The last statement is trivial. 0 

We can now state the main theorem of this section. 
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Theorem 6.4.6. All cyclic cubic fields K are given exactly once (up to iso
morphism) in the following way. 

(1) If the prime 3 is ramified inK, then K = Q(O) where 0 is a root of the 
equation with coefficients in Z 

( ) 3 e eu 
PX =X --X--

3 27' 
where 

u2 + 27v2 _ 
e = 4 , u = 6 (mod 9), 3 f v, u = v (mod 2), v > 0 

and e/9 is equal to the product of distinct primes congruent to 1 modulo 3. 
(2) If the prime 3 is unramified inK, then K = Q(O) where 0 is a root of the 

equation with coefficients in Z 

P(X) = X3 - X2 + 1 - eX - 1 - 3e + eu where 
3 27 , 

u2 + 27v2 
e = 4 , u = 2 (mod 3), u = v (mod 2), v > 0 

and e is equal to the product of distinct primes congruent to 1 modulo 3. 
In both cases, the discriminant of P is equal to e2v2 and the discrim

inant of the number field K is equal to e2 . 

(3) Conversely, if e is equal to 9 times the product oft - 1 distinct primes 
congruent to 1 modulo 3, {resp. is equal to the product oft distinct primes 
congruent to 1 modulo 3}, then there exists up to isomorphism exactly 2t-l 

cyclic cubic fields of discriminant e2 defined by the polynomials P(X) given 
in {1} (resp. {2)}. 

To prove this theorem, we will need in particular to compute explicitly 
integral bases and discriminants of cyclic cubic fields. Although there are 
other (essentially equivalent) methods, we will apply the round 2 algorithm 
to do this. 

So, let K be a cyclic cubic field. By Lemma 6.4.5, we have K = Q( 0) 
where 0 is a root of the equation 

P(X) = X 3 - 3eX- eu, where u = 2 (mod 3) 

and e is equal to a product of distinct primes congruent to 1 modulo 3. 
We first prove a few lemmas. 

Lemma 6.4.7. Let pI e. Then the order Z[O] is p-maximal. 

Proof. We apply Dedekind's criterion. Since p I e, P(X) = X 3 ' therefore 
with the notations of Theorem 6.1.4, t 1 (X) =X, g(X) =X, h(X) = X 2 
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and /(X) = (3ejp)X + eujp. Since p I e we cannot have p I u, otherwise 
p I v, hence p2 I e which was assumed not to be true. Therefore, p f eujp so 
(7, g, h) = 1, showing that Z[B] is p-maximal. D 

Corollary 6.4.8. The discriminant of P(X) is equal to 81e2v2 • The discrim
inant of the number field K is divisible by e2 . 

Proof. The discriminant of X 3 +aX+ b is equal to -( 4a3 + 27b2 ) (see Exercise 
7 of Chapter 3), hence the discriminant of Pis equal to 

thus proving the first formula. For the second, we know that the discriminant 
of the field K is a square divisor of 81e2v2. By the preceding lemma, Z[B] 
is p-maximal for all primes dividing e, and since e is coprime to 81 v2 , the 
primes for which Z[B] may not be p-maximal are divisors of 81v2 , hence the 
discriminant of K is divisible by e2 • D 

Since, as we will see, the prime divisors of v other than 3 are irrelevant, 
what remains is to look at the behavior of the prime 3. 

Lemma 6.4.9. Assume that 3 f v. Then Z[B] is 3-maximal. 

Proof. Again we use Dedekind's criterion. Since eu = 2 (mod 3), we have 
P =(X+ 1)3 in IF3 [X] hence t 1 (X) =X+ 1, g(X) =X+ 1, h(X) = (X+ 1)2 

and f(X) = X 2 + (e + 1)X + (1 + eu)/3 =(X+ 1)(X +e)+ (eu + 1- 3e)/3 
hence 

(J,g, h)= (X+ 1, ]) = (X+ 1, (eu + 1- 3e)/3). 

Now we check that 

eu+ 1- 3e 
r= 

3 
(u2 + 3v2)(u- 3) + 4 (u- 2) 2 (u + 1) + 3v2(u- 3) 

12 = ..:....__..:...._:....._----,-1~2 __ ..:....__..:... 

hence, since u = 2 (mod 3), 4r = v2(u- 3) (mod 9) and, in particular, since 
3 f v, r = 1 (mod 3) so (], g, h) = 1, which proves the lemma. D 

Lemma 6.4.10. With the above notation, let B be a root of P(X) = X 3 -

3eX- eu, where e = (u2 + 3v2)/4 and u = 2 (mod 3). The conjugates of B 
are given by the formulas 
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Proof From the proof of Proposition 6.4.3, we have f = (B- B2)(B2- Ba)(Ba
B) = ±9ev (since the discriminant is equal to 81e2v2). If necessary, by ex
changing B2 and Ba, we may assume that B2 - B3 = 9evj(B- B2)(B- Ba) = 
9ev/P'(B) = 9evf(3B2 - 3e). Using the extended Euclidean algorithm with 
A( X)= X 3 - 3eX- eu and B(X) = X 2 - e, one finds immediately that the 
inverse of B modulo A is equal to (2X2 - uX- 4e)/(3v2e) hence 

On the other hand, since the trace of B is equal to 0, we have B2 + Ba = -B, 
and the formulas for B2 = O"(B) and B3 = 0"2(B) follow immediately. 

It would of course have been simple, but less natural, to check directly 
with the given formulas that (X- B)(X -O"(B))(X- 0"2(B)) = X 3- 3eX- eu. 

D 

We can now prove a theorem which immediately implies the first two 
statements of Theorem 6.4.6. 

Theorem 6.4.11. Let K = Q(B) be a cyclic cubic field where B is a root of 
X 3- 3eX- eu = 0 and where, as above, e = ( u2 + 3v2) j 4 is equal to a product 
of distinct primes congruent to 1 modulo 3. 

(1) Assume that 3 f v. Then (1, B, O"(B)) {where O"(B) is given by the above 
formula) is an integral basis of K and the discriminant of K is equal to 
(9e)2 • 

(2) Assume now that 3 I v. Then, if B' = (B + 1)/3, (1, B', O"(B')) is an integral 
basis of K and the discriminant of K is equal to e2 • 

Proof 1) Since B2 = VO'( B) + ( ( u + v) /2)B + 2e, the Z-module 0 generated by 
(1, B, O"(B)) contains Z[B]. One computes immediately (in fact simply from the 
formula that we have just given for B2) that Z[B] is of index v in 0. Hence, 
the discriminant of 0 is equal to 81e2. Since we know that Z[B], and a fortiori 
that 0 is 3-maximal and p-maximal for every prime dividing e, it follows that 
0 is the maximal order, thus proving the first part of the theorem. 

2) We now consider the case where 3 I v. The field K can then be defined 
by the polynomial 

Q(X) =P(3X-1)/27 =X3-X2+ 1-ex_1-3e+eu. 
3 27 

Since e = 1 (mod 3), u = 2 (mod 3) and 31 v, a simple calculation shows that 
Q E Z[X]. Furthermore, from Proposition 3.3.5 the discriminant of Q is equal 
to the discriminant of P divided by 36 , i.e. to e2(v/3)2. Set B' = (8 + 1)/3, 
which is a root of Q, and let 0 be the Z-module generated by (1,B',0"(8')). 
We compute that 
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a( B') = 2 + u + 3v - 4e 
6v 

4 + u + v (}' + ~(}'2 
2v v 

and so, as in the proof of the first part, one checks that 0 ::) Z[B'] and [0 : 
Z[B']] = v/3. Therefore the discriminant of 0 is equal to e2 . By Corollary 
6.4.8 the discriminant of K must also be divisible by e2 , and so the theorem 
follows. 0 

Proof of Theorem 6.4.6. First, we note that the polynomials given in Theorem 
6.4.6 are irreducible in Q[X] (see Exercise 17). 

From Theorem 6.4.11, one sees immediately that 3 is ramified inK (i.e. 3 
divides the discriminant of K) if and only if 3 f v. Hence, Lemma 6.4.5 tells us 
that K is given by an equation P(X) = X 3 - 3eX-eu (with several conditions 
one and u). If we set u1 = 3u, v1 = v and e1 = 9e, we have e1 = (u~ + 27vD/4, 
Ul = 6 (mod 9), 3 f V!, and P(X) = X 3 - (el/3)X- (elul)/27 as claimed in 
Theorem 6.4.6 (1). 

Assume now that 3 is not ramified, i.e. that 3 I v. From the proof of 
the second part of Theorem 6.4.11, we know that K can be defined by the 
polynomial X 3 -X2 + ((1- e)/3)X- (1- 3e+ eu)/27 E Z[X] and this time 
setting e1 = e, v1 = v /3 and u1 = u, it is clear that the second statement of 
Theorem 6.4.6 follows. 

We still need to prove that any two fields defined by different polynomials 
P(X) given in (1) or (2) are not isomorphic, i.e. that the pair ( e, u) deter
mines the isomorphism class. This follows immediately from the uniqueness 
statement of Lemma 6.4.5. (Note that thee and u in Lemma 6.4.5 are either 
equal to the e and u of the theorem (in case (2)), or to e/9 and u/3 (in case 
(1)).) 

Let us prove (3). Assume that e is equal to a product oft distinct primes 
congruent to 1 modulo 3 (the case where e is equal to 9 times the product 
oft - 1 distinct primes congruent to 1 modulo 3 is dealt with similarly, see 
Exercise 18). Let A = Z[(1 + H)/2] be the ring of algebraic integers of 
Q( y'=-3). It is trivial to check (and in fact we have already implicitly used 
this in the proof of (2)) that if a E A with 3 f N(a), there exists a unique a' 
associate to a (i.e. generating the same principal ideal) such that 

a'= (u + 3vH)/2, u = 2 (mod 3). 

Furthermore, since A is a Euclidean domain and in particular a PID, Proposi
tion 5.1.4 shows that if Pi is a prime congruent to 1 modulo 3, then Pi= aiai 
for a unique ai = (ui + 3viH)/2 with ui = 2 (mod 3) and vi> 0. 

Hence, if e = il 1<i<tPi, then e = (u2 + 27v2)/4 = N(u + 3vH)/2 if 
and only if - -

(u + 3vM)/2 = IJ f3i 
1:$i:$t 

where f3i = ai or f3i = ai, and this gives 2t solutions to the equation e = 
(u2+ 27v2 )/4. (Note that using associates of f3i do not give any new solutions.) 
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But, we have seen above that the isomorphism class of a cyclic cubic field is 
determined uniquely by the pair (e, u) satisfying appropriate conditions. Since 
e = (u2 + 27(-v)2)/4 gives the same field as e = (u2 + 27v2)/4, this shows, 
as claimed, that there exist exactly 2t-l distinct values of u, hence 2t-l non
isomorphic fields of discriminant e2 . This finishes the proof of Theorem 6.4.6. 

D 

Corollary 6.4.12. With the notation of Theorem 6.4.6 (i.e. not those of 
Theorem 6.4.11 }, the conjugates of 9 are given by the formula 

±l(n) _ 2e -3v =Fun 1n2 (}' u -=F-+ u±-u 
9v 6v v 

when 3 is ramified inK (i.e. in case {1}}, and by the formula 

(}'±1( 9)= 9v±(u+2-4e) + -3v=t=(u+4) 9 ±!92 
18v 6v v 

when 3 is not ramified inK (i.e. in case {2)). 
In addition, in all cases the discriminant of the polynomial P is equal 

to e2v2, the discriminant of the field K is equal to e2 and (1,9,0'(9)) is an 
integral basis of K. 

The proof of this corollary follows immediately from Lemma 6.4.10 and 
the proof of Theorems 6.4.11 and 6.4.6. D 

For another way to describe cyclic cubic fields parametrically see Exercise 
21. 

6.4.3 Pure Cubic Fields 

Another class of fields which is easy to describe is the class of pure cubic fields, 
i.e. fields K = Q( .qm) where m is an integer which we may assume not to be 
divisible by a cube other than ±1. 

The defining polynomial is P(X) = X 3 - m whose discriminant is equal 
to -27m2 • Let 9 be the root of this polynomial which is inK. 

As in the case of cyclic cubic fields, we must compute the maximal order of 
K. This is very easy to do using Dedekind's criterion (see Exercise 2). I would 
like to show however how the Pohst-Zassenhaus Theorem 6.1.3 is really used in 
the round 2 algorithm, so I will deliberately skip the steps of Algorithm 6.1.8 
which use the Dedekind criterion. This will of course make the computations 
longer, but will illustrate the full use of the round 2 algorithm. 

Let p be a prime dividing m and not equal to 3. Then p2 divides the 
discriminant of P. Let r be 1 if p = 1 (mod 3), r = 2 if not. Then, clearly 
9P = m<p-r)f39r. Hence, in the basis 1, 9, 92 the matrix of the Frobenius at p 
(or of its square if p = 2) is clearly equal to 
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(
1 0 0) 
0 0 0 . 
0 0 0 

This implies that a basis of the p-radical is given by (B, 02). Hence, in step 9 
we take a1 = B, a2 = 02 and a3 = p. 

The 9 by 3 matrix Cis obtained by stacking the following three matrices: 

(
1 0 
0 1 
0 0 

0 ) (0 0 , 1 
mfp 0 

It follows from the first three equations that, if r f m, the kernel of c is 
trivial, hence that Z[B] is p-maximal. Therefore, we will write 

m = ab2 , a and b squarefree, (a, b) = 1. 

Indeed, a is chosen squarefree, but since m is cubefree the other conditions 
follow. 

With these notations, we have just shown that if p I a then Z[B] is p
maximal. Take now pI b (still with p =f. 3). The kernel of the matrix Cis now 
clearly generated over 1Fp by the column vector (0, 0, 1) corresponding to 02 , 

hence in step 10 we will compute the Hermite normal form of the matrix 

(
0 p 
0 0 
1 0 

This is clearly equal to the matrix 

0 0) 
p 0 . 
0 p 

0 0) 
p 0 , 
0 1 

thus enlarging the order Z[B] to the order whose Z-basis is (1, B, 02 fp). If we 
apply the round 2 algorithm again to this new order, one checks immediately 
that the new matrix C will be the same as the one above with mfp replaced 
by mfp2 • Since m is cubefree, this is not divisible by p which shows that the 
kernel is trivial and so the new order is p-maximal. 

Putting together all the local pieces, we can enlarge our order to (1, B, 02 /b') 
where b' = b if 3 f b, b' = b/3 if 3 I b. This order will then be p-maximal for 
every prime p except perhaps the prime 3, which we now consider. 

We start from the order (1, B, 02 fb') and consider separately the cases 
where 3 I m and 3 f m. 

Assume first that 3 I m. The matrix of the Frobenius with respect to the 
basis (1, 9,(J2 /b') is equal to 
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and modulo 3 both m and a2b4 /b'3 are equal to 0. Hence, as in the case p # 3, 
the kernel of the Frobenius is generated by (B, ()2 fb'). Therefore, in step 9 
we take a1 = B, a2 = 02 fb' and a3 = 3. The matrix C is then obtained by 
stacking the following three matrices: 

(
1 0 
0 b' 
0 0 

0 ) (0 0 ' 1 
m/(3b') 0 

0 
0 

m/(3b') 

m/b'2 ) (0 0 0) 0 ' 0 0 0 . 
0 1 0 0 

Since 3 f b' but 3 I m, we have m/b'2 = 0 (mod 3). On the other hand, m/(3b') 
is equal to 0 modulo 3 if and only if 32 I m, i.e. 3 I b. Hence, we consider two 
sub-cases. 

If 3 f b, the first three relations show that the kernel of C is equal to 0 
and so our order is 3-maximal. Thus, in that case b' = b so an integral basis 
is (1, (), ()2 fb) and the discriminant of the field K is equal to -27a2b2 • 

If 3 I b, the kernel of C is generated by (0, 0, 1) corresponding to 02 /b'. 
The Hermite normal form obtained in step 10 is, as for p # 3, equal to the 
matrix 

( ~ ~ ~). 
0 0 1 

giving the larger order (1, (), ()2 fb' /3) = (1, (), ()2 fb). 
Since the discriminant of this order is still divisible by 9, we must start 

again. A similar computation shows that the matrix C is obtained by stacking 
the following 3 matrices: 

(
1 0 
0 0 
0 0 

0 ) 0 ' 
ab/3 

0 
0 

ab/3 

a) (0 0 0) 0 ' 0 0 0 0 1 0 0 
and since 3 f ab/3, the first, third and sixth relation show that the kernel of C 
is trivial, hence that our order is now 3-maximal. So if 3 I b, an integral basis 
is (1,B,B2 /b) and the discriminant of K is equal to -27a2b2 , giving exactly 
the same result as when 3 f b. 

We now assume that 3 f m, and so in particular we have b' = b. The matrix 
of the Frobenius is equal to 
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Since a2 = b2 = 1 (mod 3), this shows that the kernel of the Frobenius is 
equal to the set of elements x + y(} + z(}2 f b such that x + ay + bz = 0 (mod 3). 
Hence modulo 3 it is, for example, generated by (B- a, (} 2 jb- b). This means 
that in step 9 we can take a 1 = (} -a, a 2 = 02 jb- b and ag = 3. The matrix 
C is obtained by stacking the following three matrices: 

(
1 -a 0 ) (0 -b 
0 b -a , 1 0 
0 (b2 - a2)/3 0 0 0 

a ) (0 -b 0 
(a2 - b2)/3 ' 1 

0 0) 
0 0 . 
a b 

We consider two subcases. First assume that a2 ¢. b2 (mod 9). Then from the 
first, third and sixth relation we see that the kernel of C is trivial, hence that 
our order is 3-maximal. This means, as in the case 3 I m, that (1, B, 02 /b) is 
an integral basis and the discriminant of K is equal to -27a2b2 • 

Assume now that a2 = b2 (mod 9). In this case, one sees easily that the 
kernel of Cis generated by (b, ab, 1) corresponding to 02 jb +abO+ b, and the 
computation of the Hermite normal form of the matrix 

0 0) 3 0 
0 3 

leads to the matrix 

( ~ ~ :b), 
0 0 1 

thus giving a larger order generated by (1, B, (02 + ab2B + b2)/(3b)), and the 
discriminant of this order being equal to -3a2b2 , hence not divisible by 32 , 

this enlarged order is 3-maximal. 
We summarize what we have proved in the following theorem. 

Theorem 6.4.13. Let K = IQ( {lffi) be a pure cubic field, where m is cubefree 
and not equal to ±1. Write m = ab2 with a and b squarefree and coprime. Let 
(} be the cube root of m belonging to K. Then 

(1) If a2 ¢. b2 (mod 9) then 

( 1, (}, ()b2) 

is an integral basis of K and the discriminant of K is equal to -27a2 b2 • 

(2) If a2 = b2 (mod 9) then 

is an integral basis of K and the discriminant of K is equal to -3a2b2 • 
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Proof Simply note that since a and b are coprime, when 3 I m we cannot have 
a2 = b2 (mod 9). 0 

Remark. The condition a2 = b2 (mod 9) is clearly equivalent to the condition 
m = ±1 (mod 9). 

6.4.4 Decomposition of Primes in Pure Cubic Fields 

As examples of applications of Algorithm 6.2.9, we will give explicitly the 
decomposition of primes in pure cubic fields. We could also treat the case of 
cyclic cubic fields, but the results would be a little more complicated. 

Let () be the real root of the polynomial X 3 - m, and let K = Q(()). 
First consider the case of "good" prime numbers p, i.e. such that p does not 
divide the index [ZK : Z[e]] (which, by Theorem 6.4.13 is equal to 3b or b 
depending on whether a2 = b2 (mod 9) or not). In this case we can directly 
apply Theorem 4.8.13. In other words the decomposition of pZK mimics that 
of the polynomial T(X) = X 3 - m modulo p. 

Now this decomposition is obtained as follows (compare with Section 1.4.2 
where the Legendre symbol is defined). 

Proposition 6.4.14. Let p be a prime number not dividing m. The decom
position of X 3 - m modulo p is of the following type. 

(1) Ifp = 2 (mod 3), then X 3 - m =(X- u)(X2 - vX + w) (mod p) (where 
it is of course implicitly understood that the polynomial X 2 - vX + w is 
irreducible in JFp[X]). 

(2) If p = 1 (mod 3) and m<v-1)/3 = 1 (mod p) then X3- m = (X- u1)(X
u2)(X- u3) (mod p), where u1, u2 and u3 are distinct elements oflFv· 

(3) If p = 1 (mod 3) and m<P-1)/3 ¢. 1 (mod p), then X 3 - m is irreducible 
in lFp[X]. 

(4) Ifp=3, thenX3 -m=(X-a)3 (modp). 

Proof Consider the group homomorphism 4> such that <J>(x) = x3 from JF; into 
itself. It is clear that if </>(x) = 1, then (x- 1)(x2 + x + 1) = 0 (in JFp) hence 

(x- 1)((2x + 1)2 + 3) = 0. 

If p = 2 (mod 3) the quadratic reciprocity law 1.4.7 shows that (-;,3) = -1, 
hence -3 is not equal to a square in lFp. This shows that (2x + 1)2 + 3 = 0 is 
impossible, hence that the function 4> is injective, hence bijective. In particular, 
there exists a unique u E JF; such that 4>( u) = m, hence a unique root of X 3 - m 
in lFp, proving (1). 

For (2) and (3), by quadratic reciprocity we have (-;,3) = 1, hence there 
exists z E JF; such that z2 = -3. This immediately implies that the kernel of 4> 
has exactly 3 elements, and hence that the image of 4> has (p -1)/3 elements. 
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Furthermore, if g is a primitive root modulo p, then clearly the image of <P is 
the set of elements x of the form g3k for 0 ~ k < (p- 1)/3, and these are 
exactly those elements such that xCP-1)/3 = 1 in lF'p, proving (2) and (3). 

Finally, ( 4) is trivial. D 

When p 1 m we trivially have x3 - m = x3 (mod P), so we immediately 
obtain the following corollary in the "easy" cases where p does not divide the 
index. 

Corollary 6.4.15. As above let K = Q( .vm) and recall that we have set 
m = ab2 • Assume that p t b and that if a2 = b2 (mod 9), then alsop "I 3. 
Then the decomposition of pZK is given as follows. 

(1) If p I a, then pZK = p3 where p = pZK + OZK. 

(2) If pta and p = 2 (mod 3), then pZK = P1P2 where P1 = pZK + (0- u)ZK 
is an ideal of degree 1 and P2 = pZK + (02 - vO + w)ZK is an ideal of 
degree 2. 

(3) If p t a, p = 1 (mod 3) and mCP-1)/3 = 1 (mod p), then pZK = P1P2P3 
where Pi= pZK + (0- ui)ZK are three distinct ideals of degree 1. 

(4) If p fa, p = 1 (mod 3) and mCP- 1)/3 ¢. 1 (mod p), then the ideal pZK is 
inert. 

(5) If p = 3 and pta, then pZK = p3 , where p = pZK + (0- a)ZK is an ideal 
of degree 1. 

We must now consider the more difficult cases where p divides the index. 
Here we will follow the Algorithm 6.2.9 more closely, and we will skip the 
detailed computations of products and quotients of ideals, which are easy but 
tedious. 

Assume first that a2 ¢. b2 (mod 9). Then Theorem 6.4.13 tells us that 
1, 0, 02 jb is an integral basis, and according to the algorithm described in 
Section 6.2 we start by computing the p-radical of ZK, assuming that p I b. It 
is easily seen that the matrix of the Frobenius at p (or its square for p = 2) is 
always equal to the matrix 

(
1 0 0) 
0 0 0 
0 0 0 

in lFP. Therefore (0, 02 /b) is an lF'p-basis of Ip. From this, using Algorithm 6.2.5 
we obtain the following lF P bases. 

K1 = (0, 02 /b), K2 = (0) and Ki = {0} for j ?: 3. 
As a consequence, using Algorithm 6.2.7 we obtain 
J1 = J2 = J3 = (0, 02 /b), and Ji = {1, 0, 02 /b) for j ?: 4. 
From this, it is clear that we have H1 = H2 = ZK, H3 = K1 and Hi= ZK 

for j ?: 4, from which it follows that 
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Since K is a field of degree equal to 3, this implies that K1 is a prime ideal 
(which of course can be checked directly since it is of norm p). This shows 
that p is totally ramified, and the unique prime ideal j:l above p is generated 
over z by (p, 0, 02 /b). 

Note that most of these computations can be avoided. Indeed, once we 
know a Z-basis of lp, a trivial determinant computation shows that lp is of 
norm p, hence is a prime ideal of degree 1. Using the notations of Section 6.2, 
it follows that g = 1 and that pZK = 1;1 and since we are in a field of degree 
3, the relation I: edi = 3 tells us that e1 = 3, thus showing that p is totally 
ramified. 

We have kept the computations however, so that the reader can check his 
implementation of ideal multiplication and division. 

Assume now that a2 = b2 (mod 9). Recall that in this case we have 3 f b. 
Then Theorem 6.4.13 tells us that 1, 0, (02 + ab20 + b2)/(3b) is an integral 
basis, and we must first compute the p-radical of ZK, assuming that p I 3b. 

Consider first the case where p =I 3, i.e. p I b. It is easily seen that the 
matrix of the Frobenius at p (or its square for p = 2) is still equal to the 
matrix 

(1 0 0) 
0 0 0 
0 0 0 

in IFP hence we obtain that a 1Fp-basis of lp is (0, (02 + ab20 + b2 )/(3b)). As 
in the preceding case, one checks trivially that lp has norm equal to p so is a 
prime ideal of degree 1, so as before pis totally ramified and pZK = 1;. For 
the sake of completeness (or again as exercises), we give the computations as 
they would have been carried out without noticing this. 

By Algorithm 6.2.5 we obtain the following IFp-bases. 

K 1 = (0, (02 + ab2 0 + b2 )/(3b)), K 2 = (0) and Kj = {0} for j ;:=: 3. 
As a consequence, using Algorithm 6.2.7, we obtain 

Jl = h = J3 = (0, (02 + ab20 + b2)/(3b)), and Jj = (1, 0, (02 + ab20 + 
b2 )/(3b)) for j 2': 4. 

From this, as before, we have H1 = H2 = ZK, H3 = K1 and Hj = ZK for 
j 2': 4, from which it follows that 

Therefore p is totally ramified, and the unique prime ideal j:l above p is gen
erated over Z by (p, 0, (02 + ab2 0 + b2 )/(3b)). 

Finally, still assuming a 2 = b2 (mod 9), consider the case p = 3. The 
matrix of the Frobenius at 3 is now equal to the matrix 
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(
1 ab2 

0 0 
0 0 
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b(a2 -2b2 +aa2 b2 -aa2 b4 +a4 b4 ) ) 
27 

bl-a2 b4 
a-9-

b2 l+a2 +a2 b2 

a 
with coefficients in !Fa. Since a2 = b2 (mod 9) and 3 f ab, we have 

1 + a2 + a2b2 = 1 + a2 + a4 = (1- a2)(1 + 2a2) + 3a4 = 3a4 (mod 9), 

hence 3 f (1 + a2 + a2b2)/3. This shows that (3, (}-a, (B2 + ab2B + b2 )/b) is a 
Z-basis of Ip, and hence (B -a) is an 1Fp-basis of 4,. Here the norm of Ip is 
equal to 9, so we cannot obtain the decomposition of 3Zx directly, and it is 
really necessary to do the computations of Algorithm 6.2.9 

By Algorithm 6.2.5, we obtain the following !Fa-bases. 
K1 = (B- a) and Ki = {0} for j ~ 2. 
As a consequence, using Algorithm 6.2.7, we obtain 
J1 = (B- a), J2 = (B- a, (B2 + ab2 B + a2b4)/(3b)) and Jj = (1, (}, (B2 + 

ab2 (} + b2)/(3b)) for j ~ 3. 
From this we obtain (after lifting to 0) that H1 = (3, (}-a, (B2 + ab2(}

b2(1 + a2))/(3b)), H2 = J2 = (3, (}-a, (B2 + ab2B + a2b4)/(3b)) and Hi= Zx 
for j ~ 3. It is immediately checked (for example using the determinant of the 
matrix of Hj) that H1 and H2 are of norm equal to 3, hence are prime ideals. 
Thus, we obtain that the prime ideal decomposition of 3Zx is given by 

3Zx = H1Hi, 

where H 1 and H2 are distinct prime ideals with Z-basis given above. Hence, 
3 is ramified (as it must be since the discriminant of the field is divisible by 
3), but not totally ramified as in the case a2 ¢. b2 (mod 9). 

We summarize the above in the following theorem. 

Theorem 6.4.16. Let (1,B,w) be the integral basis ofZx given by Theorem 
6.4.13 {hence w = B2 /b if a2 ¢. b2 (mod 9), w = (B2 + ab2B + b2)/(3b) if 
a2 = b2 (mod 9)}. Then 

(1) If p I b, then p is totally ramified, and we have pZx = pa, where p is a 
prime ideal of degree 1 given by 

p = pZ + BZ + wZ = pZx + wZx. 

(2) If p = 3 and a2 = b2 (mod 9), then 3 is partially ramified and we have 
3Zx = P1P~ where P1 and P2 are prime ideals of degree 1 given by 

P1 = 3Z + (B- a)Z + (w- b(2 + a2)/3)Z = 3Zx + (w- b(a2 + 2)/3)Zx 

and 

where 

P2 = 3Z + (B- a)Z + (w- b(a2 -1)/3)Z = 3Zx + aZx 

a= w- b(a2 - 1)/3 if a2b4 ¢. 1 (mod 27), 

a= w+ (}-a- b(a2 -1)/3 if a2b4 = 1 (mod 27). 



6.4 Examples of Families of Number Fields 351 

Proof. We have shown everything except the generating systems over ZK. If 
pI b, a simple HNF computation shows that one has pZK + wZK = (p, O,w). 

If p = 3 and a2 = b2 (mod 9), we could also check the result via a HNF 
computation. Another method is to notice that 3ZK = P1P~ and that if we 
set a1 = w- b(a2 + 2)/3, then a1 E p1, but a 1 ¢ p2 otherwise P1 C P2 which 
is absurd, so that a1 = p!q with q prime to 3, so 3ZK + a1ZK = Pl· 

For P2, if we set a2 = w- b(a2 - 1)/3, then again a2 E P2 and a2 ¢ Pl· 
Hence a2 = p~q with q prime to 3. This implies that 3ZK + a 2ZK = p~in(e,2) 
hence this can be equal to P2 or to its square. To distinguish the two cases, we 
must compute the norm of a2, whose 3-adic valuation will be equal to e. As it 
happens, it is simpler to work with the norm of a~= a 2 + b(a2b2 + a2 - 2)/3 
(note that a2b2 + a2 - 2 = (a2 - 1)(a2 + 2) (mod 9) hence 3ZK + a2ZK = 
3ZK + a~ZK)· 

One computes that n = N(a~) = a 2b(1 - a 2b4) 2 /27. Hence, if a2b4 f= 1 
(mod 27), the 3-adic valuation of n is equal to 1, therefore 3ZK + a2ZK = P2· 

If a2b4 = 1 (mod 2)7, a similar computation shows that the 3-adic valua-
tion of N(a~ +(}-a) is equal to 1, thus proving the theorem. D 

6.4.5 General Cubic Fields 

In this section, we give without proof a few results concerning the decompo
sition of primes in general cubic extensions of Q. 

Let K be a cubic field. The discriminant d(K) of the number field K can 
(as any discriminant) be written in a unique way in the form d( K) = df2 where 
d is either a fundamental discriminant or is equal to 1. The field k = Q( v'd) 
is either Q if d = 1, or is a quadratic field, and is the unique subfield of index 
3 of the Galois closure of K. 

In particular, cyclic cubic fields correspond to d = 1, i.e. k = Q, and pure 
cubic fields correspond to d = -3, i.e. k = Q( v'-3) the cyclotomic field of 
third roots of unity. 

Let p be a prime number. If p f d(K), then pis unramified. Therefore by 
Proposition 4.8.10 we have the following cases. 

(1) If (d(:;)) = -1, then g = 2. Hence, we have a decomposition of pin the 
form pZK = P1P2 where P1 is a prime ideal of degree 1 and P2 is a prime 
ideal of degree 2. 

(2) If (d(:;)) = 1, then g is odd. Hence, either pis inert or pZK is equal to the 
product of three prime ideals of degree 1. 

If p does not divide the index [ZK : Z[O]] where K = Q(O), then 
the two cases are distinguished by the splitting modulo p of the minimal 
polynomial T(X) of 0. 

If p divides the index, then T has at least a double root modulo p. If 
T has a double root, but not a triple root, then T also has a simple root 
which corresponds to a prime ideal of degree 1. In this case pZK is the 
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product of three ideals of degree 1. Finally, if T has a triple root modulo 
p, we must apply other techniques such as the ones in Section 6.2. 

Assume now that p I d(K) = dj2, hence that pis ramified. Then the result 
is as follows. 

(1) If pI f, then pis totally ramified. In other words, p'!L.K = p3 where pis a 
prime ideal of degree 1. 

(2) If p I d and p f f, then pis partially ramified. In other words, p'!L.K = P1P~, 
where P1 and P2 are distinct prime ideals of degree 1. 

(3) Furthermore, if there exists a p such that p I (d, f), then we must have 
p = 3 (and we are in case (1), since pI f). 

See for example [Has] for proofs of these results. 

6.5 Computing the Class Group, Regulator and 
Fundamental Units 

In this section, we shall give a practical generalization of Buchmann's sub
exponential Algorithm 5.9.2 to an arbitrary number field. This algorithm com
putes the class group, the regulator and also if desired a system of fundamental 
units, for a number field whose discriminant is not too large. Although based 
on essentially the same principles as Algorithm 5.9.2, we do not claim that its 
running time is sub-exponential, even assuming some reasonable conjectures. 
On the other hand it performs very well in practice. The algorithm originates 
in an unpublished paper of J. Buchmann, but the present formulation is due 
to F. Diaz y Diaz, M. Olivier and myself. As almost all other algorithms in 
this book, this algorithm has been fully implemented in the author's PARl 
package (see Appendix A). It is still in an experimental state, hence many 
refinements need to be made to achieve optimum performance. 

We assume that our number field K is given as usual asK= Q[O] where 0 
is an algebraic integer. Let T(X) be the minimal monic polynomial of 0. Let 
n = [K: Q] = r1 + 2r2, denote by O'i the complex embeddings of K ordered 
as usual, and finally let w1, ... , Wn be an integral basis of '!L.K, found using for 
example the round 2 Algorithm 6.1.8. 

6.5.1 Ideal Reduction 

The only notion that we have not yet introduced and that we will need in an 
essential way in our algorithm is that of ideal reduction. 

Definition 6.5.1. Let I be a fractional ideal and a a non-zero element of I. 
We will say that a is a minimum in I if, for all f3 E I, we have 
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We will say that the ideal I is reduced if f(I) is a minimum in I, where 
In Q = f(I)Z. 

The reader can check that this definition of reduction coincides with the 
definitions given for the imaginary and real quadratic case (see Exercise 16 of 
Chapter 5). 

Definition 6.5.2. Let v = ( vih <i<n be a vector of real numbers such that 
Vrdi =Vi for r1 < i ::; r1 +r2. We-d~fine the v-norm lladlv of a by the formula 

n 

llall~ = :~:::>v'lai(a)l 2 . 
i=l 

Ifa1 , ... ,an is aZ-basis for the ideal I, then II L:j xiaill~ defines a positive 
definite quadratic form on I. 

Definition 6.5.3. We say that a Z-basis a 11 ••• ,an of an ideal I is LLL
reduced along the vector v if it is LLL-reduced for the quadratic form defined 
by llall~· 

Thanks to the LLL algorithms seen in Section 2.6 we can efficiently LLL
reduce along v any given basis. 

The main point of these definitions is the following. 

Proposition 6.5.4. If a E I is a (non-zero) minimum for the quadratic form 
llall~, then a is a minimum of I in the sense of Definition 6.5.1 above, and 
I/ a is a reduced ideal. 

Proof If f3 E I is such that for all i, lai(/3)1 < lai(a)l, then clearly 11/311~ < llaii~
Hence, since a is a minimum non-zero value of the quadratic form, we must 
have f3 = 0 so a is a minimum in I. Let us show that I fa is a reduced ideal. 
First, I claim that I fan Q = z. Indeed, if r E Q*, r E I fa is equivalent 
to ra E I and since a is a minimum and r is invariant under the ai, this 
implies that lrl ;:::: 1. Since 1 E I fa, this proves my claim, hence f(Ifa) = 1. 
The proposition now follows since a minimum in I is clearly equivalent to 1 
minimum in I fa. D 

The LLL-algorithm allows us to find a small vector for our quadratic 
form, corresponding to an a E I. This a may not be a true minimum, but 
the inequalities proved in Chapter 2 show that it will in any case be a small 
vector. If we choose this a instead of a minimum, the ideal I/ a will not be 
necessarily reduced, but it will be sufficient for our needs. For lack of a better 
term, we will say that I/ a is LLL-reduced in the direction v. 
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To summarize, this gives the following algorithm for reduction. 

Algorithm 6.5.5 (LLL-Reduction of an Ideal Along a Direction v). Given a 
vector vas above and an ideal I by a Z-basis o:1, ... ,o:n, this algorithm computes 
o: E I and a new ideal J = I lo: such that the v-norm of a is small. 

1. [Set up quadratic form] Let 

n 

qi,j = L evkak(o:i)ak(o:i) 
k=l 

{note that these are all real numbers), and let Q be the quadratic form on Rn 
whose matrix is ( qi,i). 

2. [Apply LLL] Using the LLL Algorithm 2.6.3, compute an LLL-reduced basis {31, 
... ,f3n of I corresponding to this quadratic form, and let o: +-- {31. 

3. [Compute J] Output o: and the Z-basis f3do: of the ideal J = I I o: and termi
nate the algorithm. 

Remarks. 

(1) The ideal J is a fractional ideal. If desired, we can multiply it by a suitable 
rational number to make it integral and primitive. 

(2) In practice the basis elements o:i are given in terms of a fixed basis l3 
of K (for example either a power basis or an integral basis of 'IlK). If 
we compute once and for all the quadratic form Qr3 attached to !3, it is 
then easier to compute the quadratic form attached to the ideal J. Note 
however that this argument is only valid for a fixed choice of the vector v. 

6.5.2 Computing the Relation Matrix 

As in the quadratic case we choose a suitable integer L such that non-inert 
prime ideals of norm less than or equal to L generate the class group. The 
GRH implies that we can take L = 12ln2 1DI where Dis the discriminant of 
K (see [Bach]). This is only twice the special value used for quadratic fields. 
However, if we allow ourselves to be not completely rigorous, we could choose 
a lower value. 

To obtain relations, we will compute random products I of powers of 
prime ideals. Let J = I I o: be an LLL-reduced ideal along a certain direction 
v, obtained using Algorithm 6.5.5. If J factors on a given factor base, as in 
the quadratic case we will obtain a relation of the type ft pf' = o:'llK. This 
relation will be stored in two parts. The non-Archimedean information (xi) 
will be stored as a column of an integral relation matrix M. The Archimedean 
information o: will be stored as an r 1 + r 2-component column vector, by using 
the complex logarithmic embedding Lo(o:) In(~{ a}) V defined in Section 5.8.4. 
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Note that, by definition, the sum of the r 1 + r 2 components of this vector is 
an integral multiple of 2i7r. 

We now give the algorithm which computes the factor bases and the rela
tion matrix. 

Algorithm 6.5.6 (Computation of the Relation Matrix). Given a number 
field K as above, this algorithm computes integers k and k2 with k2 > k, a 
k x k2 integral relation matrix M, an (r1 + r 2) x k2 complex logarithm matrix 
Me and an Euler product z. These objects will be needed in the class group and 
unit Algorithm 6.5.9 below. We set ru +--- r 1 + r 2 (this is equal to the unit rank 
plus one). We choose at will a positive real number B 1 and we set B2 +--- 12. 

1. [Compute integral basis and limits] Using Algorithm 6.1.8 compute the field 
discriminant D = D(K) and an integral basis w1 = 1, ... , Wn· Set L1 +

Blln2IDI, L2 +--- B2ln2 IDI and L. +--- (4/7rt2 n!/nn.Ji15T. 
2. [Compute small factor base] Set u +--- 1, S +--- 0 and for each prime p such that 

p f D (i.e. p unramified) do the following until u > L •. Let p'l!.,K = TI1:-:;i:<:;g Pi 
be the prime ideal decomposition of p'll,K obtained using Algorithm 6.2.9. For 
each i:::; g- 1 such that N(pi) :::; L2, setS+--- S U {Pi} and u +--- uN(pi)· 
Then Swill be a set of prime ideals which we call the small factor base. Let 
s be its cardinality. 

3. [Compute and store powers] For each p E S and each integer e such that 
0:::; e:::; 20, compute and store an LLL-reduced ideal equivalent tope, where 
the reduction is done using Algorithm 6.5.5 with v equal to the zero vector. 
Note that the Archimedean information must also be stored, using the function 
Le as explained above. 

4. [Compute factor bases and Euler product] For all primes p:::; L2 compute the 
prime ideal decomposition of p'l!.,K using Algorithm 6.2.9, and let the large 
factor base LFB be the list of all non-inert prime ideals of norm less than or 
equal to L2 (where if necessary we also add the elements of S), and let the 
factor base FB be the subset of LFB containing only those primes of norm 
less than or equal to L 1 as well as the elements of S. Set k equal to the 
cardinality of FB, and set k2 +--- k + ru + 10. Finally, using the prime ideal 
decompositions, compute the Euler product 

IT 1-1/p 
Z+- <L f1(1-1/N(p))" 

p_ 2 PIP 

5. (Store trivial relations] Set m +--- 0. For each p :::; L 1 such that all the prime 
ideals above p are in FB, set m +--- m + 1 and store the relation p'll,K = 
TI1:-:;i:<:;g p~' found in step 4 as the m-th column of the matrices M and Me 
as explained above. 

6. (Generate random power products] Call Si the elements of the small factor 
base S. Let q be the ideal number m + 1 mod k in FB. Choose random 
nonnegative integers Vi :::; 20 fori~ s+ru, set vi+r2 +---vi for s < i ~ s+ru, 
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compute the ideal I+-- q Til<i<s Sf' and let J = I fa be the ideal obtained 
by LLL-reducing I along the direction determined by the vi for s < i :::; s + n 
using Algorithm 6.5.5. Note that the Sf' have been precomputed in step 4. 

7. [Relation found?] Using Algorithm 4.8.17, try to factor a (or equivalently the 
ideal J) on the factor base FB. If it factors, set m +-- m + 1 and store the 
relation IJ- 1 = aZK as the m-th column of the matrices M and Me as 
explained above. 

8. [Enough relations?] If m :::; k2 go to step 6. 

9. [Be honest] For all prime ideals q in the large factor base LFB and not belong
ing to FB, do as follows. Choose randomly integers Vi as in step 6, compute 
I+-- q I1l<i<s Sf' and let J= I fa be the ideal obtained by LLL-reducing I 
along the direction determined by the vi for s :::; s + n. If all the prime ideals 
dividing J belong to FB or have been already checked in this test, then q is 
OK, otherwise choose other random integers vi until q passes this test. 

10. [Eliminate spurious factors] For each ramified prime ideal q which belongs 
to the factor base FB, check whether the GCD of the coefficients occurring 
in the matrix M in the row corresponding to q is equal to 1 (this is always 
true if q is unramified). If not, as in step 9, choose random Vi, compute 
I+-- q I1l<i<s Sf', LLL-reduce along the vi fori> sand see if the resulting 
ideal factors-on FB. If it does, add the relation to the matrices M and Me, 
set k2 +-- k2 + 1, and continue doing this until the GCD of the coefficients 
occurring in the row corresponding to q is equal to 1. 

Remarks. 

(1) The constant B1 is usually chosen between 0.1 and 0.8, and controls the 
execution speed of the general algorithm, as in the quadratic case. On the 
other hand, the constant B2 must be taken equal to 12 according to Bach's 
result. It can be taken equal to B 1 for maximum speed, but in this case, 
the result may not be correct even under the G RH. This is useful for long 
searches. 

(2) As in the quadratic case, the constants 10 and 20 used in this algorithm 
are quite arbitrary but usually work. 

(3) Step 10 of this algorithm was added only after the implementation was 
finished since it was noticed that for number fields of small discriminant, 
the class number was usually a multiple of the correct value due to the 
presence of ramified primes. 

(4) The Euler product that is computed is closely linked to h(K)R(K) since 

h(K)R(K) = 2-r1(27rtr2VId(K)IIJ 1-1fp 
w(K) I1 (1-1fN(p))' 

P PIP 

where the outer product runs over all primes p and the innermost product 
runs over the prime ideals above p (see Exercise 23). 



6.5 Computing the Class Group, Regulator and Fundamental Units 

6.5.3 Computing the Regulator and a System of Fundamental 
Units 

357 

Before giving the complete algorithm, we need to explain how to extract from 
the Archimedean information that we have computed, both the regulator and 
a system of fundamental units of K. 

1\.fter suitable column operations on the matrices M and Me as explained 
below in Algorithm 6.5.9, we will obtain a complex matrix C whose columns 
correspond to the Archimedean information associated to zero exponents, 
i.e. to a relation of the form ZK = o:ZK. In other words, the columns are com
plex logarithmic embeddings of units. As in the real quadratic case, we can 
obtain the regulator of the subgroup spanned by these units (which hopefully 
is equal to the field regulator) by computing a real GCD of (ru- 1) x (ru -1) 
sub-determinants as follows. 

Algorithm 6.5. 7 (Computation of the Regulator and Fundamental Unit 
Matrix). Given a ru x r complex matrix C whose columns are the complex 
logarithmic embeddings of units, this algorithm computes the regulator R of the 
subgroup spanned by these units as well as an ru x (ru- 1) complex matrix F 
whose columns give a basis of the lattice spanned by the columns of C. As usual 
we denote by Cj the columns of the matrix C and we assume that the real part 
of C is of rank equal to ru - 1. 

1. [Initialize] Let R +--- 0 and j +--- ru - 2. 

2. [Loop] Set j +--- j + 1. If j > r, let F be the matrix formed by the last ru - 1 
columns of C, output R and F and terminate the algorithm. 

3. [Compute determinant] Let A be the (ru - 1) x (ru- 1) matrix obtained by 
extracting from C any ru -1 rows, columns j- ru + 2 to j, and taking the 
real part. Let R 1 +--- det(A). Using the real GCD Algorithm 5.9.3, compute the 
RGCD d of R and R1 as well as integers u and v such that uR + vR1 = d 
(note that Algorithm 5.9.3 does not give u and v, but it can be easily extended 
to do so, as in Algorithm 1.3.6). 

4. [Replace] Set R +--- d, Cj +--- vCj + (-1tuuCj-ru+l (where Co is to be 
understood as the zero column) and go to step 2. 

The proof of the validity of this algorithm is immediate once we notice 
that the GCD and replacement operations in steps 3 and 4 correspond to 
computing the sum of two sub-lattices of the unit lattice given by two Z-bases 
differing by a single element. The sign ( -1 tu is the signature of the cyclic 
permutation that is performed. Note also that the real GCD Algorithm 5.9.3 
may be applied since by [Zim1] and [Fri] we know that regulators of number 
fields are uniformly bounded from below by 0.2. D 

To compute the regulator, we have only used the real part of the matrix 
C. We now explain how the use of the imaginary part, and more precisely of 
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the matrix F output by this algorithm, allows us in principle to compute a 
system of fundamental units. Note that, by construction, the columns of F 
are the complex logarithmic embeddings of a system of fundamental units of 
ZK. However this may be a very badly skewed basis of units, hence the first 
thing is to compute a nice basis using the LLL algorithm. This leads to the 
following algorithm. 

Algorithm 6.5.8 (Computation of a System of Fundamental Units). Given 
the regulator Rand the ru x (ru- 1) matrix F output by Algorithm 6.5.7, this 
algorithm computes a system of fundamental units, expressing them on an integral 
basis Wi. We let /i,j be the coefficients of F. 

1. [Build matrix] Set r <---- ru- 1. For j = 1, ... , j = r set bi,j <----hi if i ~ r1. 
bi,j <----/i.i/2 if r1 < i ~ ru and bi,j <-/i-r2 ,j/2 if ru < i ~ n. Let B be the 
n x r matrix with coefficients bi,j. 

2. [LLL reduce] Using the LLL Algorithm 2.6.3 on the real part of the matrix B, 
compute a r x r unimodular matrix U such that the real part of BU is LLL
reduced. Let E = (ei,j) be then x r matrix such that ei,j = exp(b~.j), where 
BU = (b~)· (Note that the exponential taken here may overflow the possibil
ities of the implementation, in which case the algorithm must be aborted.) 

3. [Solve linear system] LeU1 = (wi,j) be the nxn matrix such that wi,j = O"j(wi) 
(where, as before, (wi) is an integral basis of ZK ). Set Fu <---- n-l E. 

4. [Round] The coefficients of Fu should be close to rational integers. If this is 
not the case, then either the precision used to make the computations was 
insufficient or the units are too large, and the algorithm fails. Otherwise, round 
all the coefficients of Fu to the nearest integer. 

5. [Check] Check that the columns of Fu correspond to units and that the usual 
regulator determinant constructed using the columns of Fu is equal toR. If this 
is the case, output the matrix Fu and terminate the algorithm (the columns of 
this matrix gives the coefficients of a system of fundamental units expressed 
on the integral basis wi)· Otherwise, output an error message saying that the 
accuracy is insufficient to compute the fundamental units. 

6.5.4 The General Class Group and Unit Algorithm 

We are now ready to give a general algorithm for class group, regulator and 
fundamental unit computation. 

Algorithm 6.5.9 (Class Group, Regulator and Units for General Number 
Fields). Let K = Q[e] be a number field of degree n given by a primitive 
algebraic number e, letT be the minimal monic polynomial of e. We assume that 
we have already computed the signature (r1,r2) of K using Algorithm 4.1.11. 
This algorithm computes the class number h(K), the class group Cl(K), the 
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order of the subgroup of roots of unity w(K), the regulator R(K) and a system 
of fundamental units of ZK. 

1. [Compute relation matrices and Euler product] Using Algorithm 6.5.6, com
pute the discriminant D(K), a k x k2 integral relation matrix M, a ru x k2 
complex logarithm matrix Me and an Euler product z. 

2. [Compute roots of unity] Using Algorithm 4.9.9 compute the order w(K) of 
the group of roots of unity in K. Output w(K) and set 

(now z should be close to h(K)R(K)). 

3. [Simple HNF] Perform a preliminary simple Hermite reduction on the matrix 
M as described in the remarks after Algorithm 5.5.2. All column operations 
done on the matrix M should also be done on the corresponding columns of 
the matrix Me. Denote by M' and M(: the matrices obtained in this way. 

4. [Compute probable regulator and units] Using Algorithm 2.7.2, compute 
the LLL-reduced integral kernel A of M' as a rectangular matrix, and set 
C +-- M(:A. By applying Algorithm 6.5.7 and if desired also Algorithm 6.5.8, 
compute a probable value for the regulator R and the corresponding system 
of units which will be fundamental if R is correct. 

5. [HNF reduction] Using Algorithm 2.4.8, compute the Hermite normal form 
H = (hi,j) of the matrix M' using modulo d techniques, where d can be com
puted using standard Gaussian elimination (or simply use Algorithm 2.4.5). If 
one of the matrices H or C is not of maximal rank, get 10 more relations 
as in steps 6 and 7 of Algorithm 6.5.6 and go to step 3. (It will not be nee· 
essary to recompute the whole HNF.) 

6. [Simplify H] For every i such that hi,i = 1, suppress row and column i, and 
let W be the resulting matrix. 

7. [Finished?] Let h +-- det(W) (i.e. the product of the diagonal elements). If 
hR ~ zv'2, get 10 more relations in steps 6 and 7 of Algorithm 6.5.6 and go 
to step 3 (same remark as above). Otherwise, output has the class number, R 
as the regulator, and the system of fundamental units if it has been computed. 

8. [Class group] Compute the Smith normal form of W using Algorithm 2.4.14. 
Output those among the diagonal elements di which are greater than 1 as 
the invariants of the class group (i.e. Cl(K) = ffiZ/diZ) and terminate the 
algorithm. 

Remarks. 

(1) Most implementation remarks given after Algorithm 5.5.2 also apply here. 
In particular the correctness of the results given by this algorithm depends 
on the validity of GRH and the constant B 2 = 12 chosen in Algorithm 
6.5.6. To speed up this algorithm, one can take B 2 to be a much lower 
value, and practice shows that this works well, but the results are not 
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anymore guaranteed to be correct even under GRH until someone improves 
Bach's bounds. r 

(2) The randomization of the direction of ideal reduction performed in step 6 
of Algorithm 6.5.6 is absolutely essential for the correct performance of the 
algorithm. Intuitively the first s values of vi correspond to randomization 
of the non-Archimedean components, while the last ru values randomize 
the Archimedean components. If the reduction was always done using the 
zero vector for instance, we would almost never obtain a relation matrix 
giving us the correct class number and regulator. 

(3) An important speedup can be obtained by generating some relations in 
a completely different way. Assume that we can generate many elements 
a E ZK of reasonably small norm. Then it is reasonable to expect that 
aZK will factor on the factor base FB, thus giving us a relation. To obtain 
elements of small norm we can use the Fincke-Pohst Algorithm 2. 7. 7 on 
the quadratic form llo:ll~ defined on the lattice ZK, where 0 denotes the 
zero vector. If llo:ll~ ::::; nB2fn then the inequality between arithmetic and 
geometric mean easily shows that I N (a) I ::::; B, hence this indeed allows 
us to find elements of small norm. The reader is warned however that the 
relations that may be obtained in this way will in general not be random 
and may generate sub-lattices of the correct lattice. 

( 4) It is often useful, not only to compute the class group as an abstract 
group Cl(K) = EBZ/diZ, but to compute explicitly a generating set of 
ideal classes 9i such that 9i is of order di. This can easily be done by 
keeping track of the Smith reduction matrices in the above algorithm. 

6.5.5 The Principal Ideal Problem 

As in the real quadratic case, we can now solve the principal ideal problem 
for general number fields. In other words, given an ideal I of ZK, determine 
whether I is a principal ideal, and if this is the case, find an a E K such that 
I= o:ZK. 

To do this, we need to keep some information that was discarde<;l in Algo
rithm 6.5.9. More precisely, we must keep better track of the Hermite reduction 
which is performed, including the simple Hermite reduction stage. If we do so, 
we will have kept a matrix M" of relations which will be of the form 

M" = (0 W B) 
0 0 I ' 

where 0 denotes the zero matrix, I is some identity matrix and W is the 
square matrix in Hermite normal form computed in Step 6 of Algorithm 6.5.9. 
Together with this matrix, we must also compute the corresponding complex 
matrix M;!:, so that each column of M" and M:!: still corresponds to a relation. 
Finally, in Step 8 of Algorithm 6.5.9, we also keep the unimodular matrix U 
such that D = UWV is in Smith normal form (it is not necessary to keep the 
unimodular matrix V). 
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Now given an ideal I we can first compute the norm of I. If it is small, then 
I will factor on the factor base FB chosen in Algorithm 6.5.6. Otherwise, as in 
Algorithm 6.5.6, we choose random exponents Vi and compute If1 1<i<s S~' 
and reduce this ideal (along the direction 0 for instance, here it does not 
matter). Since this reduced ideal has a reasonably small norm, we may hope 
to factor it on our factor base, thus expressing I in the form I= o: TI1<i<k !J~', 
where we denote by Pi the elements of FB. - -

Once such an equality is obtained, we proceed as follows. Since the columns 
of M" generate the lattice of relations among the Pi in the class group, it is 
clear that I is a principal ideal if and only if the column vector of the Xi is 
in the image of M". Let r (resp. c) be the number of rows (resp. columns) of 
the matrix B occuring in M" as described above, and let c1 be the number 
of initial columns of zeros in M". Then if X (resp. Y) is the column vector 
of the xi for 1 :$ i :$ r (resp. r < i :$ k), then I is a principal ideal if and 
only if there exists an integral column vector Z such that W Z + BY = X. 
This is equivalent to u-1 DV- 1 Z =X- BY, and since Vis unimodular this 
is equivalent to the existence of an integral column vector Z1 such that 

DZ1 = U(X- BY). 

Since D is a diagonal matrix, this means that the j-th element of U(X- BY) 
must be divisible by the j-th diagonal element of D. 

If I is found in this way to be a principal ideal, the use of the complex 
matrix M:!J allows us to find o: such that I = o:7L.K. 

This gives the following algorithm. 

Algorithm 6.5.10 (Principal Ideal Testing). Given an ideal I of 7L.K, this 
algorithm tests whether I is a principal ideal, and if it is, computes an o: E K 
such that I= o:7L.K. We assume computed the matrices M" and M;!; (and hence 
the matrices W and B), as well as the unimodular matrices U and V and the 
diagonal matrix D such that UWV = D is in Smith normal form, as explained 
above. We keep the notations of Algorithm 6.5.6. 

1. [Reduce to primitive] If I is not a primitive integral ideal, compute a rational 
number a such that I fa is primitive integral, and set I+-- I fa. 

2. [Small norm?]lf N(I) is divisible only by prime numbers below the prime ideals 
in the factor base FB (i.e. less than or equal to LI) set vi +-- 0 fori :$ s, /3 +--a 
and go to step 4. 

3. [Generate random relations] Choose random nonnegative integers Vi :$ 20 for 
i :$ s, compute the ideal h +-- I f1 1<i<s S~', and let J = hh be the ideal 
obtained by LLL-reducing h along the airection of the zero vector. If N(J) is 
divisible only by the prime numbers less than equal to £ 1 , set I+-- J, /3 +-- a7 
and go to step 4. Otherwise, go to step 3. 

4. (Factor I] Using Algorithm 4.8.17, factor I on the factor base FB. Let I = 
f11:::;i::;k p~•. Let X {resp. Y) be the column vector of the Xi -vi for i :$ r 
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(resp. i > r), where r is the number of rows of the matrix B, as above, and 
where we set vi = 0 fori > s. 

5. [Check if principal] Let Z t- D- 1U(X- BY) (since D is a diagonal matrix, 
no matrix inverse must be computed here). If some entry of Z is not integral, 
output a message saying that the ideal I is not a principal ideal and terminate 
the algorithm. 

6. [Use Archimedean information] Let A be the (c1 +k)-column vector whose first 
c1 elements are zero, whose next r elements are the elements of Z, and whose 
last k- r elements are the elements of Y. Let Ac = (aih:5i:5ru +- M;)A. 

7. [Restore correct information] Sets t- (lnN(I))jn, and let A'= (a~h::;i::=;n be 
defined by a~ t- exp(s+ai) ifi $ r1, a~ +-exp(s+(ai/2)) ifr1 < i $ ru and 
a~+- exp(s+(ai-r2 /2)) if ru < i $ n. (As in Algorithm 6.5.8, the exponential 
which is computed here may overflow the possibilities of the implementation, 
in which case the algorithm must be aborted.) 

8. [Round] Set A" f- n-l A' I where n = O"j(Wi) as in Algorithm 6.5.8. The 
coefficients of A" must be close to rational integers. If this is not the case, 
then either the precision used to make the computation was insufficient or the 
desired o: is too large. Otherwise, round the coefficients of A" to the nearest 
integer. 

9. [Terminate] Let o:' be the element of 'IlK whose coordinates in the integral 
basis are given by the vector A". Set o: +- {3o:' (product computed in K). If 
I -=/:- o:ZK, output an error message stating that the accuracy is not sufficient 
to compute o:. Otherwise, output o: and terminate the algorithm. 

Note that, since we chose the complex logarithmic embedding Lc(o:) -
In(~( a)) V as defined in Section 5.8.4, we must adjust the components by 
s = (lnN(I))/n before computing the exponential in Step 7. 

Remark. It is often useful in step 5 to give more information than just the 
negative information that I is not a principal ideal. Indeed, if as suggested in 
Remark ( 4) after Algorithm 6.5.9, the explicit generators 9i of order di of the 
class group Cl(K) have been computed, we can easily compute o: and ki such 
that I = o: It gf; and 0 $ ki < di. The necessary modifications to the above 
algorithm are easy and left to the reader. 

6.6 Exercises for Chapter 6 

1. By Theorem 6.1.4, Z[O]+ (U(8)/p)Z[8] is an order, hence a ring. Clearly the only 
non-trivial fact to check about this is that (U(8)/p) 2 is still in this order. Using 
the notations of Theorem 6.1.4, show how to compute polynomials A and B in 
Z[X] such that 

U(8)2 = A(8) + U(8) B(8). 
p2 p 
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2. Compute the maximal order of pure cubic fields using only Dedekind's criterion 
(Theorem 6.1.4) instead of the Pohst-Zassenhaus theorem. 

3. (F. Diaz y Diaz.) With the notations of Theorem 6.1.4, show that a restatement 
of the Dedekind criterion is the following. Let ri(X) be the remainder of the 
Euclidean division of T(X) by ti(X). We have evidently ri E pZ[X]. Set di = 1 
if ei ~ 2 and ri E p2Z[X], ~ = 0 otherwise. Then in (3) we can take U(X) = 
Ill<i<k t~;-d;. In particular, Z[O] is Jrmaximal if and only if ri ¢ p2Z[X] for 
every t such that ei ~ 2. 

4. Let 0 be an order in a number field K and let p be a prime number. Show that 
0 is Jrmaximal if and only if every ideal Pi of () which lies above p is invertible 
in 0. 

5. Prove Proposition 6.2.1 by first proving the formula for ai 1 given in the text. 

6. Given a finite separable algebra A over Fp isomorphic to a product of k fields 
Ai, compute the probability that a random element x of A is a generator of A 
in terms of the dimensions~ of the Ai (hint: use Exercise 13 of Chapter 3). 

7. Let m and n be distinct squarefree (positive or negative) integers different from 
1. Compute an integral basis for the quartic field K = Q(y'n, Jffl). Find also 
the explicit decomposition of prime numbers inK. 

8. (H. W. Lenstra) 
a) Let A be a separable algebra of degree n over lF P (for example A = 0/ H; 

in the notation of Section 6.2). Then A is isomorphic to a product of fields 
K, and let Xm be the number of such fields which are of degree mover lFp (if 
A = 0/ H;, then Xm is the number of prime ideals of 0 of degree m dividing 
H;). Show that for all d such that 1 ~ d ~ n one has 

L gcd(d,m)xm = dimFP(ker(ad -1)), 
l~m~n 

where a denotes the Frobenius homomorphism x ...... xP from A to A. 
b) Compute explicitly the inverse of the matrix Mn = (gcd( i, j) h~i,j~n and 

give an algorithm which computes the local Euler factor 

Lp = II(l-N(p)-6)-1 
PIP 

without splitting explicitly the H; of Section 6.2. 

9. Using the ideas used in decomposing prime numbers into a product of prime 
ideals, write a general algorithm for factoring polynomials over Qp. You may 
assume that the coefficients are known to any necessary accuracy (for example 
that they are in Q), and that the required Jradic precision for the result is 
sufficiently high. (Hint: If K = Q[B] with T(B) = 0 and if pZK = IJi p~', 
consider the characteristic polynomial of the map multiplication by 6 in the 
Z/pkZ-module IlK jp~e, .) 

10. (Dedekind) Let K = Q(B) be the cubic field defined by the polynomial 
P(X) = X 3 + X 2 - 2X + 8. 

a) Compute the discriminant of P(X). 
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b) Show that (1, 8, (8 + 82)/2) is an integral basis of ZK and that the dis
criminant of K is equal to -503. 

c) Using Algorithm 6.2.9 show that the prime 2 is totally split in K. 
d) Conclude from Theorem 4.8.13 that 2 is an inessential discriminantal 

divisor, i.e. that it divides the index [ZK: Z[a)) for any a E ZK. 

11. So as to avoid ideal multiplication and division, implement the idea given in 
the remark after Algorithm 6.2.9, and compare the efficiency of this modified 
algorithm with Algorithm 6.2.9. 

12. Compute the Galois group of the fields generated by the polynomials X 3 - 2, 
X 3 - X 2 - 2X + 1 and X 4 - 10X2 + 1. 

13. Compute the accuracy needed for the roots ofT so that the rounding procedures 
used in computing the resolvents in all the Galois group finding algorithms given 
in the text be correct. 

14. Implement the Galois group algorithms and check your implementation with the 
list of 37 polynomials given at the end of Section 6.3. 

15. a) Using Proposition 4.5.3, give an algorithm which determines whether or 
not a number field K is Galois over <Q! (without explicitly computing its Galois 
group). 

b) Using the methods of Section 4.5 write an algorithm which finds explicitly 
the conjugates of an element of a number field K belonging to K. The correctness 
of the results given by your algorithm should not depend on approximations, 
that is once a tentative formula has been found it must be checked exactly. Note 
that this algorithm may allow to compute the Galois group of K if K is Galois 
over <Q!, even when the degree of K is larger than 7. 

16. Determine the decomposition of prime numbers dividing the index in cyclic cubic 
fields by using the method of Algorithm 6.2.9. (Note: if the reader wants to find 
also the explicit decomposition of prime numbers not dividing the index, which 
is given by Theorem 4.8.13, he will first need to solve Exercise 28 of Chapter 1.) 

17. Show that the polynomials P(X) given in Theorem 6.4.6 (1) and (2) are irre
ducible in <Q![X). 

18. Complete the proof of Theorem 6.4.6 (3) in the case where e is equal to 9 times 
a product of t - 1 primes congruent to 1 modulo 3. 

19. Check that the fields defined in Theorem 6.4.6 (2) are not isomorphic for distinct 
pairs (e, u) (the proof was given explicitly in the text only for case (1)). 

20. Generalize the formulas and results of Section 6.4.2 to cyclic quartic fields, re
placing <Q!(() by <Q!(i). (Hint: start by showing that such a field has a unique 
quadratic subfield, which is real.) 

21. Using the notations of Theorem 6.4.6, find the minimal equation of a= (u(8)-
8) /3, and deduce from this another complete parametrization of cyclic cubic 
fields. 

22. Let K be a cubic field. 
a) Show that there exists a 8 E ZK and a, band c in Z such (1, 8, (82 + a8 + 

b)/c) is an integral basis, and give an algorithm for finding 8, a, band c. 
b) Such a 8 being found, show that there exists a k E Z such that if we set 

w = 8+ k, then (1,w, (w2 + a2w)ja3 ) is an integral basis of ZK for some integers 
a2 and aa. 
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c) Deduce from this that for any cubic field K there exists a: E K which is 
not necessarily an algebraic integer such that ZK = Z[a:) in the sense of Exercise 
15 of Chapter 4. 

d) Generalize this result to the case of an arbitrary order in a cubic field K 
by allowing the polynomial used in Exercise 15 of Chapter 4 to have a content 
larger than 1. 

23. Prove that, as claimed in the text, Theorem 4.9.12 (4) implies the formula 

h(K)R(K) = Tr1(27r)-r2VId(K)I IT 1-1/p . 
w(K) Il(1-1/N(p)) 

P PIP 

24. Using Algorithm 6.5.9 compute the class group, the regulator and a system of 
fundamental units for the number fields defined by the polynomials T(X) = 
X 4 + 6, T(X) = X 4 - 3X + 5 and T(X) = X 4 - 3X- 5. 

25. Compute the different of pure cubic fields and of cyclic cubic fields using Propo
sition 4.8.19 and Algorithm 4.8.21. 

26. Let (wih9~n be an integral basis for a number field K of degree n such that 
Wn = 1, and set ti = TrK;Q(wi)/n. Consider the lattice zn- 1 together with the 
quadratic form 

q(x) = t ~~k( L x,(wi- t)l2 
k=1 1~i~n-1 J 

a) Show that the determinant of this lattice is equal to Jld(K)Ifn. 
b) Setting B = 2:::~=-11 XiWi -lL:~:11 Xitil prove Hunter's Theorem 6.4.2. 

27. Let m(X) = m 1 (X) · · ·mk(X) be the decomposition of m(X) obtained in step 
13 of Algorithm 6.2.9. For 1 ~ r ~ k, let er be a lift to 0 of mr(a:), and set 
Hr = H + erO. Show that H = H1 · · · Hr, and hence that steps 14 and 15 of 
Algorithm 6.2.9 are valid. (Note: the er are not orthogonal idempotents.) 





Chapter 7 

Introduction to Elliptic Curves 

7.1 Basic Definitions 

7.1.1 Introduction 

The aim of this chapter is to give a brief survey of results, essentially without 
proofs, about elliptic curves, complex multiplication and their relations to 
class groups of imaginary quadratic fields. A few algorithms will be given (in 
Section 7.4, so as not to interrupt the flow of the presentation), but, unlike 
other chapters, the main emphasis will be on the theory (some of which will 
be needed in the next chapters). We also describe the superb landscape that is 
emerging in this theory, although much remains conjectural. It is worth noting 
that many of the recent advances on the subject (in particular the Birch and 
Swinnerton-Dyer conjecture) were direct consequences of number-theoretical 
experiments. This lends further support to the claim that number theory, even 
in its sophisticated areas, is an experimental as well as a theoretical science. 

As elsewhere this book, we have tried to keep the exposition as self
contained as possible. However, for mastering this information, it would be 
useful if the reader had some knowledge of complex variables and basic alge
braic geometry. Nonetheless, the material needed for the applications in the 
later chapters is fully described here. 

As suggestions for further reading, I heartily recommend Silverman's 
books [Sil] and [Sil3], as well as [Cas], [Hus], [Ire-Ros], [Lang3] and [Shi]. 
Finally, the algorithms and tables contained in [LN476] (commonly called 
Antwerp IV) and [Cre] are invaluable. 

7.1.2 Elliptic Integrals and Elliptic Functions 

Historically, the word elliptic (in the modern sense) came from the theory of 
elliptic integrals, which occur in many problems, for example in the compu
tation of the length of an arc of an ellipse (whence the name), or in physical 
problems such as the movement of a pendulum. Such integrals are of the form 

j R(x,y)dx, 

where R( x, y) is a rational function in x and y, and y2 is a polynomial in x of 
degree 3 or 4 having no multiple root. It is not our purpose here to explain the 
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theory of these integrals (for this see e.g. [W-W], Ch. XXII). They have served 
as a motivation for the theory of elliptic functions, developed in particular by 
Abel, Jacobi and Weierstraf3. 

Elliptic functions can be defined as inverse functions of elliptic integrals, 
but the main property that interests us here is that these functions f(x) are 
doubly periodic. More precisely we have: 

Definition 7.1.1. An elliptic function is a meromorphic function f(x) on 
the whole complex plane, which is doubly periodic, i.e. such that there exist 
complex numbers WI and w2 such that wdw2 ~JR. and for all x which is not a 
pole, f(x + wl) = f(x + w2) = f(x). 

If 
L = {mwi + nw2lm, n E Z} 

is the lattice generated by WI and w2, it is clear that f is elliptic if and only 
if f(x + w) = f(x) for all x E C and all w E L. The lattice L is called the 
period lattice of f. It is clear that every element of C is equivalent modulo 
a translation by an element of L to a unique element of the set F = { XWI + 
yw2, 0:::; x,y < 1}. Such a set will be called a fundamental domain;for CfL. 

Standard residue calculations immediately show the following properties: 

Theorem 7.1.2. Let f(x) be an elliptic function with period lattice L, let 
{ zi} be the set of zeros and poles off in a fundamental domain for Cf L, and 
ni be the order off at Zi (ni > 0 when Zi is a zero, ni < 0 if Zi is a pole). 
Then 

(1) The sum of the residues off in a fundamental domain is equal to 0. 
(2) Li ni = 0, in other words f has as many zeros as poles (counted with 

multiplicity). 
(3) If f is non-constant, counting multiplicity, f must have at least 2 poles 

(and hence 2 zeros) in a fundamental domain. 
(4) Li niZi E L. Note that this makes sense since Zi is defined modulo L. 

Note that the existence of non-constant elliptic functions is not a priori 
obvious from Definition 7.1.1. In fact, we have the following general theorem, 
due to Abel and Jacobi: 

Theorem 7.1.3. Assume that zi and ni satisfy the above properties. Then 
there exists an elliptic function f with zeros and poles at Zi of order ni. 

The simplest construction of non-constant elliptic functions is due to 
Weierstraf3. One defines 

1 ( 1 1) 
p(z) = z2 + L (z+w)2- w2 ' 

wEL\{0} 
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and one easily checks that this is an absolutely convergent series which de
fines an elliptic function with a double pole at 0. Since non-constant elliptic 
functions must have poles, it is then a simple matter to check that if we define 

1 
.2:'.: w4 

wEL\{0} 

1 
and 93 = 140 .2:'.: 6, 

w 
wEL\{0} 

then p( z) satisfies the following differential equation: 

P12 = 4p3 - 92P- 93 · 

In more geometric terms, one can say that the map 

Zf-> { 
(p(z): p'(z): 1) 
(0 : 1 : 0) 

for z ¢:. L 

for z E L 

from <C to the projective complex plane gives an isomorphism between the 
torus <C/ L and the projective algebraic curve y2t = 4x3 - 92xt2 - 93t3. This 
is in fact a special case of a general theorem of Riemann which states that all 
compact Riemann surfaces are algebraic. Note that it is easy to prove that 
the field of elliptic functions is generated by p and p' subject to the above 
algebraic relation. 

Since <C/ Lis non-singular, the corresponding algebraic curve must also be 
non-singular, and this is equivalent to saying that the discriminant 

.6. = 16(9~- 279~) 

of the cubic polynomial is non-zero. This leads directly to the definition of 
elliptic curves. 

7.1.3 Elliptic Curves over a Field 

From the preceding section, we see that there are at least two ways to gen
eralize the above concepts to an arbitrary field: we could define an elliptic 
curve as a curve of genus 1 or as a non-singular plane cubic curve. Luckily, 
the Riemann-Roch theorem shows that these two definitions are equivalent, 
hence we set: 

Definition 7 .1.4. Let K be a field. An elliptic curve over K is a non-singular 
projective plane cubic curve E together with a point with coordinates in K. 
The (non-empty) set of projective points which are on the curve and with 
coordinates in K will be called the set of K -rational points of E and denoted 
E(K). 

Up to a suitable birational transformation, it is a simple matter to check 
that such a curve can always be given by an equation of the following (affine) 
type: 
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y2 + a1xy + a3y = x3 + a2x2 + a4x + a5, 

the point defined over K being the (unique) point at infinity, and hence this 
can be taken as an alternative definition of an elliptic curve (see Algorithm 
7.4.10 for the explicit formulas for the transformation). This will be called a 
(generalized) Weierstraf3 equation for the curve. 

Note that this equation is not unique. Over certain number fields K such 
as Q, it can be shown however that there exists an equation which is minimal, 
in a well defined sense. We will call it the minimal WeierstraB equation of the 
curve. Note that such a minimal equation does not necessarily exist for any 
number field K. For example, it can be shown (see [Sil], page 226) that the 
elliptic curve y 2 = x 3 + 125 has no minimal WeierstraB equation over the field 
Q(FfQ). 

Theorem 7.1.5. An elliptic curve over C has the form Cj L where L is 
a lattice. In other words, if g2 and g3 are any complex numbers such that 
g~ - 27g~ =1- 0, then there exist WI and w2 with lm(wdw2) > 0 and g2 

60 I:(m,n)'i"'(O,o)(mwl + nw2)-4, g3 = 140 I:(m,n)'i"'(O,o)(mwl + nw2)-6 . 

A fundamental property of elliptic curves is that they are commutative 
algebraic groups. This is true over any base field. Over C this follows imme
diately from Theorem 7.1.5. The group law is then simply the quotient group 
law of C by L. On the other hand, it is not difficult to prove the addition 
theorem for the WeierstraB p function, given by: 

if Zl = Z2. 

From this and the isomorphism given by the map z 1--+ (p(z), p'(z)), one 
obtains immediately: 

Proposition 7.1.6. Let y2 = 4x3 - g2x - g3 be the equation of an elliptic 
curve. The neutral element for the group law is the point at infinity (0 : 1 : 0). 
The inverse of a point (XI.YI) is the point (x1.-y1) i.e. the symmetric point 
with respect to the x-axis. Finally, if H = (x~, YI) and P2 = (x2, Y2) are 
two non-opposite points on the curve, their sum P3 = (x3, y3) is given by the 
following formulas. Set 

Then 
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It is easy to see that this theorem enables us to define an addition law on 
an elliptic curve over any base field of characteristic zero, and in fact in any 
characteristic different from 2 and 3. Furthermore, it can be checked that this 
indeed defines a group law. 

More generally one can define such a law over any field, in the following 
way. 

Proposition 7.1.7. Let 

be the equation of an elliptic curve defined over an arbitmry base field. Define 
the neutml element as the point at infinity (0 : 1 : 0), the opposite of a 
point (x1, Yl) as the point (xb -yl - a1x1 - a3). Finally, if P1 = (x1, Yl) 
and P2 = (x2, Y2) are two non-opposite points on the curve, define their sum 
P3 = (x3, Y3) by the following. Set 

and put 

Yl- Y2 
X1 X2' 

3xt + 2a2x1 + a4- a1Y1 
2yl + a1x1 + a3 

Then these formulas define an (algebmic) Abelian group law on the curve. 

The only non-trivial thing to check in this theorem is the associativity of 
the law. This can most easily be seen by interpreting the group law in terms 
of divisors, but we will not do this here. 

The geometric interpretation of the formulas above is the following. Let 
P1 and P2 be points on the (projective) curve. The lineD from P1 to P2 (the 
tangent to the curve if P1 = P2 ) intersects the curve at a third point R, say. 
Then, if 0 is the point at infinity on the curve, the sum of P 1 and P2 is the 
third point of intersection with the curve of the line from 0 to R. One checks 
easily that this leads to the above formulas. 

For future reference, given a general equation as above, we define the 
following quantities: 

b2 = ai + 4a2, b4 = a1a3 + 2a4 

b6 =a~+ 4a6, bs = aia6 + 4a2a6- a1a3a4 + a2a~- a~ 
C4 = b~- 24b4, C6 = -b~ + 36b2b4- 216b6 (7.1) 

~ = -b~b8 - Bb~- 27b~ + 9b2b4b6, j = d! ~ 
w = dx/(2y + a1x + a3) = dy/(3x2 + 2a2x + a4- a1y). 
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Then it is easy to see that if we set Y = 2y+a1x+a3, on a field of characteristic 
different from 2, the equation becomes 

Setting X = x + b2/12, if the characteristic of the field is different from 2 and 
3 the equation becomes 

7.1.4 Points on Elliptic Curves 

Consider an abstract equation y2 + a1xy + a3y = x 3 + a2x2 + a4x + a6, 
where the coefficients ai are in Z. Since for any field K there exists a natural 
homomorphism from Z to K, this equation can be considered as defining a 
curve over any field K. Note that even if the initial curve was non-singular, 
in positive characteristic the curve can become singular. 

We shall consider successively the case where K = ffi;, K = lF'q, where q is 
a power of a prime p, and K = Q. 

Elliptic Curves over ffi;, In the case where the characteristic is different 
from 2 and 3, the general equation can be reduced to the following WeierstraB 
form: 

y 2 = x 3 + a4x + a6 . 

(We could put a 4 in front of the x3 as in the equation for the tJ function, but 
this introduces unnecessary constant factors in the formulas). The discrimi
nant of the cubic polynomial is -(4a~ + 27a~), however the y2 term must be 
taken into account, and general considerations show that one must take 

-16(4a~ + 27a~) 

as the definition of the discriminant of the elliptic curve. 
Several cases can occur. Let Q(x) = x 3+a4x+a6 and D.= -16(4a~+27a~). 

(1) D. < 0. Then the equation Q(x) = 0 has only one real root, and the graph 
of the curve has only one connected component. 

(2) D. > 0. Then the equation Q(x) = 0 has three distinct real roots, and the 
graph of the curve has two connected components: a non-compact one, 
which is the component of the zero element of the curve (i.e. the point at 
infinity), and a compact one, oval shaped. 

From the geometric construction of the group law, one sees that the 
roots of Q(x) = 0 are exactly the points of order 2 on the curve (the points 
of order 3 correspond to the inflection points). 

(3) D.= 0. The curve is no longer an elliptic curve, since it now has a singular 
point. This case splits into three sub-cases. Since the polynomial Q(x) has 
at least a double root, write 
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Q(x) = (x- a)2(x- b) 

Note that 2a + b = 0. 

(3a) a > b. Then the curve has a unique connected component, which 
has a double point at x = a. The tangents at the double point have 
distinct real slopes. 

(3b) a < b. Then the curve has two connected components: a non
compact one, and the single point of coordinates (a, 0). In fact this 
point is again a double point, but with distinct purely imaginary 
tangents. 

(3c) a = b. (In this case a = b = 0 since 2a + b = 0). Then the curve 
has a cusp at x = 0, i.e. the tangents at the singular point are the 
same. 

See Fig. 7.1 for the different possible cases. Note that case (1) is subdivided 
into the case where the curve does not have any horizontal tangent (a4 > 0), 
and the case where it does (a4 :::; 0). 

In case 3, one says that the curve is a degenerate elliptic curve. One easily 
checks that the group law still exists, but on the curve minus the singular point. 
This leads to the following terminology: in cases 3a, the group is naturally 
isomorphic to IR*, and this is called the case of split multiplicative degeneracy. 
In case 3b, the group is isomorphic to the group 8 1 of complex numbers of 
modulus equal to 1, and this is called non-split multiplicative degeneracy. 
Finally, in case 3c, the group is isomorphic to the additive group IR, and this 
case is called additive degeneracy. 

These notions can be used, not only for IR, but for any base field K. In 
that case, the condition a > b is replaced by a - b is a (non-zero) square in K. 

Elliptic Curves over a Finite Field. To study curves (or more general 
algebraic objects) over Q, it is very useful to study first the reduction of the 
curve modulo primes. This leads naturally to elliptic curves over IFp, and more 
generally over an arbitrary finite field IFq, where q is a power of p. Note that 
when one reduces an elliptic curve mod p, the resulting curve over IF P may be 
singular, hence no longer an elliptic curve. Such p are called primes of bad 
reduction, and are finite in number since they must divide the discriminant of 
the curve. According to the terminology introduced in the case of IR, we will 
say that the reduction mod pis (split or non-split) multiplicative or additive, 
according to the type of degeneracy of the curve over IFp. The main theorem 
concerning elliptic curves over finite fields, due to Hasse, is as follows: 

Theorem 7.1.8 (Hasse). Let p be a prime, and E an elliptic curve over IFv
Then there exists an imaginary quadratic integer ap such that 

(1) If q = pn then 
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(3b) 

Figure 7.1. Non-Degenerate and Degenerate Elliptic Curves over JR. 
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(2) 
apap = p, or equivalently laPI =Vf. 

(3) In particular, we have 

and O:p is a root of the equation 

ap 2 - apap + p = 0. 

375 

The numbers ap are very important and are (conjecturally) coefficients of 
a modular form of weight 2. We will come back to this subject in Section 7.3. 

The second important result gives some information on the group structure 
of E(IFq), and is as follows. 

Proposition 7.1.9. If E is an elliptic curve over a finite field!Fq, then E(IFq) 
is either cyclic or isomorphic to a product of two cyclic groups. Furthermore, 
in the case where it is not cyclic, if we write E(!Fq) !::::: Z/d1Z x Zjd2Z with 
d1 I d2, then d1 I q- 1. 

Elliptic Curves over Q. From a number theorist's point of view, this is 
of course the most interesting base field. The situation in this case and in 
the case of more general number fields is much more difficult. The first basic 
theorem, due to Mordell and later generalized by Weil to the case of number 
fields and of Abelian varieties, is as follows: 

Theorem 7.1.10 (Mordell). Let E be an elliptic curve over Q. The group 
of points of E with coordinates in Q (denoted naturally E(Q)) is a finitely 
generated Abelian group. In other words, 

E(Q) !::::: E(Q)tors E9 zr, 

where r is a non-negative integer called the rank of the curve, and E(Q)tors is 
the torsion subgroup of E(Q), which is a finite Abelian group. 

The torsion subgroup of a given elliptic curve is easy to compute. On the 
other hand the study of possible torsion subgroups for elliptic curves over Q 
is a difficult problem, solved only in 1977 by Mazur ([Maz]). His theorem is 
as follows: 

Theorem 7.1.11 (Mazur). Let E be an elliptic curve over Q. The torsion 
subgroup E(Q)tors of E can be isomorphic only to one of the 15 following 
groups: 

'll/m'll for 1 ~ m ~ 10 or m = 12, 
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Z/2Z x Z/2mZ for 1 :::; m :::; 4 . 

In particular, its cardinality is at most 16. 

Note that all of the 15 groups above do occur for an infinite number of non
isomorphic elliptic curves. The corresponding theorem for all quadratic fields 
(even allowing the discriminant to vary) was proved in 1990 by Kamienny 
([Kam]) (with more groups of course), and finally for all number fields in 1994 
by Merel ([Mer]). 

The other quantity which occurs in Mordell's theorem is the rank r, and 
is a much more difficult number to compute, even for an individual curve. 
There is no known mathematically proven algorithm to compute r in general. 
Even the apparently simpler question of deciding whether r is zero or not (or 
equivalently whether the curve has a finite or an infinite number of rational 
points) is· still not solved. This is the subject of active research, and we will 
come back in more detail to this question in Section 7.4. 

Let us give an example of a down to earth application of Mordell's theorem. 
Consider the curve 

y2 = x 3 - 36x. 

It is easy to show (see Exercise 3) that the only torsion points are the points of 
order 1 or 2, i.e. the point at infinity and the three points (0, 0), (6, 0), ( -6, 0). 
But the point ( -2, 8) is also on the curve. Therefore we must have r > 0, 
hence an infinite number of points, a fact which is not a priori evident. What 
Mordell's theorem tells us is that r is finite, and in fact one can show in this 
case that r = 1, and that the only rational points on the curve are integral 
multiples of the point ( -2, 8) added to one of the four torsion points. 

This curve is in fact closely related to the so-called congruent number prob
lem, and the statement that we have just made means, in this context, that 
there exists an infinite number of non-equivalent right angled triangles with 
all three sides rational and area equal to 6, the simplest one (corresponding 
to the point ( -2, 8)) being the well known (3, 4, 5) Pythagorean triangle. 

As an exercise, the reader can check that twice the point ( -2, 8) is the 
point ( 21 , 3: ) , and that this corresponds to the right-angled triangle of area 
6 with sides (1~0 , lo, 1~g 1 ). See [Kob] for the (almost) complete story on the 
congruent number problem. 

7.2 Complex Multiplication and Class Numbers 

In this section, we will study maps between elliptic curves. We begin by the 
case of curves over C. 
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7.2.1 Maps Between Complex Elliptic Curves 

Recall that a complex elliptic curve E has the form C/ L where L is a lattice. 
Let E = C/ L and E 1 = C/ L 1 be two elliptic curves. A map ¢ from E to 
E 1 is by definition a holomorphic Z-linear map from E to E 1• Since C is the 
universal covering of E 1, ¢ lifts to a holomorphic Z-linear map f from C to C, 
and such a map has the form f(z) = az for some complex number a:, which 
induces a map from E to E 1 iff o:L c L1• Thus we have: 

Proposition 7.2.1. Let E = C/L and E 1 = CjL1 be two elliptic curves over 
C. Then 

(1) E is isomorphic to E 1 if and only if L1 = o:L for a certain non-zero 
complex number a. 

(2) The set of maps from E to E 1 can be identified with the set of complex 
numbers a such that o:L C L 1 • In particular, the set End(E) of endomor
phisms of E is a commutative ring isomorphic to the set of a such that 
o:L c L. 

In terms of the WeierstraB equation of the curves, this theorem gives the 
following. Recall that the equation of E (resp E 1) is y2 = 4x3 - g2x- g3 (resp. 
y2 = 4x3 - g2x - g~) where 

92 = 60 
wEL\{0} 

-4 
w ' 93 = 140 

wEL\{0} 

-6 
w ' 

and similarly for g2 and g~. Hence, the first part of the theorem says that if 
E -::::: E 1 , there exists a such that 

I -4 I -6 
92 = Q: 92 ' 93 = Q: 93 . 

The converse is also clear from the WeierstraB equation. Now, since E is a 
non-singular curve, the discriminant g~ - 27 g~ is non-zero, so we can define 

j(E) = 1728gV(g~- 27g~), 

and we obtain: 

Proposition 7 .2.2. The function j(E) characterizes the isomorphism class 
of E over C. More precisely, E-::::: E 1 if and only if j(E) = j(E1). 

The quantity j(E) is called the modular invariant of the elliptic curve 
E. The number 1728 = 123 will be explained later. Although we have been 
working over C, Proposition 7.2.2 is still valid over any algebraically closed 
field of characteristic different from 2 and 3 (it is also valid in characteristic 
2 or 3, for a slightly generalized definition of j(E)). On the other hand, it is 
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false if the field is not algebraically closed (consider for example y2 = 4x3 - 4x 
and y2 = 4x3 + 4x over R.). 

Remark. It is easy to construct an elliptic curve with a given modular in
variant j. We give the formulas when the characteristic is different from 2 and 
3 since we have not given the definition otherwise. 

(1) If j = 0, one can take y2 = x 3 -1. 
(2) If j = 1728, one can take y2 = x3 - x. 
(3) Otherwise, one sets c = jf(j -1728), and then one can take y2 = x3 -

3cx + 2c. (If one wants equations with a coefficient of 4 in front of x 3 , 

multiply by 4 and replace y by y/2.) 

Now let E = C/ L be an elliptic curve over C. Then, as a Z-module, L can 
be generated by two R.-linearly independent complex numbers w1 and w2, and 
by suitably ordering them, we may assume that Im r > 0, where r = wdw2• 

Since multiplying a lattice by a non-zero complex number does not change 
the isomorphism class of E, we have j(E) = j(Er), where Er = C/Lr and 
Lr is the lattice generated by 1 and r. By abuse of notation, we will write 
j(r) = j(Er)· This defines a complex function j on the upper half-plane 
1t = { r E C, Im r > 0}. If a, b, c and d are integers such that ad- be = 1 

(i.e. if ( ~ :) E SL2 (Z)), then the lattice generated by ar + b and cr + d is 

equal to Lr. This implies the modular invariance of j(r): 

Theorem 7.2.3. For any ( ~ :) E SL2 (Z), we have 

·(ar+ b) . 
J cr+d =J(r). 

In particular, j ( r) is periodic of period 1. Hence it has a Fourier expansion, 
and one can prove the following theorem: 

Theorem 7.2.4. There exist positive integers Cn such that, if we set q = 
e2iwr, we have for all complex r with Im r > 0: 

The factor 1728 used in the definition of j is there to avoid denominators 
in the Fourier expansion of j(r), and more precisely to have a residue equal to 
1 at infinity (the local variable at infinity being taken to be q). These theorems 
show that j is a meromorphic function on the compactification (obtained by 
adding a point at infinity) of the quotient 1-t/ SL2 (Z). 
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Proposition 7.2.5. The function j is a one-to-one mapping from the com
pactification of 1-t/ SL2(Z) onto the projective complex plane JIP1 (C) {which is 
naturally isomorphic to the Riemann sphere 8 2 ). In other words, j(r) takes 
once and only once every possible value {including infinity) on 1-t/ SL2(Z). 

Note that this proposition is obtained essentially by combining the remark 
made after Proposition 7.2.2 (surjectivity) with Proposition 7.2.1 (injectivity). 

Since the field of meromorphic functions on the sphere is the field of ratio
nal functions, we deduce that the field of modular functions, i.e. meromorphic 
functions which are meromorphic at infinity and invariant under SL2 (Z), is 
the field of rational functions in j. In particular, modular functions which are 
holomorphic outside the point at infinity of the Riemann sphere are simply 
polynomials in j. Finally, if we want to have such a function which is one to 
one as in Theorem 7.2.5, the only possibilities are linear polynomials aj +b. 
As mentioned above, the constant 1728 has been chosen so that the residue 
at infinity is equal to one. If we want to keep this property, we must have 
a = 1. This leaves only the possibility j + b for a function having essentially 
the same properties as j. In other words, the only freedom that we really have 
in the choice of the modular function j is the constant term 744 in its Fourier 
expansion. 

Although it is a minor point, I would like to say that the normalization 
of j with constant term 7 44 is not the correct one for several reasons. The 
"correct" constant should be 24, so the "correct" j function should in fact be 
j - 720. Maybe the most natural reason is as follows: there exists a rapidly 
convergent series due to Rademacher for the Fourier coefficients Cn of j. For 
n = 0, this series gives 24, not 744. Other good reasons are due to Atkin and 
Zagier (unpublished). 

7.2.2 Isogenies 

We now come back to the case of elliptic curves over an arbitrary field. 

Definition 7 .2.6. Let E and E' be two elliptic curves defined over a field K. 
An isogeny from E toE' is a map of algebraic curves from E toE' sending 
the zero element of E to the zero element of E'. The curves are said to be 
isogenous if there exists a non-constant isogeny from E to E'. 

The following theorem summarizes the main properties of non-constant 
isogenies: 

Theorem 7.2.7. Let <P be a non-constant isogeny from E toE'. Then: 

(1) If K is an algebraically closed field, <P is a surjective map. 
(2) <P is a finite map, in other words the fiber over any point of E' is constant 

and finite. 
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(3) ¢ preserves the group laws of the elliptic curves {note that this was not 
required in the definition), i.e. it is a map of algebraic groups. 

From these properties, one can see that ¢ induces an injective map from 
the corresponding function field of E' to that of E (over some algebraic closure 
of the base field). The degree of the corresponding field extensions is finite and 
called the degree of ¢. 

Note that if the above extension of fields is separable, for example if the 
base field has characteristic zero, then the degree of ¢ is also equal to the 
cardinality of a fiber, i.e. to the cardinality of its kernel ¢ -l ( 0), but this is 
not true in general. 

Theorem 7.2.8. Let E be an elliptic curve over a field K, and let m be a 
positive integer. Then the map [m] {multiplication by m) is an endomorphism 
of E with the following properties: 

(1) deg[m] = m 2 . 

(2) Let E[m] denote the kernel of [m] in some algebraic closure of K, i.e. the 
group of points of order dividing m. If the characteristic of K is prime to 
m (or if it is equal to 0}, we have 

E[m] ~ (7l/m7l) x (7l/m7l). 

Another important point concerning isogenies is the following: 

Theorem 7.2.9. Let ¢ be an isogeny from E to E'. There exists a unique 
isogeny ¢ from E' to E called the dual isogeny, such that 

¢ o ¢ = [m], 

where m is the degree of¢. In addition, we also have 

¢ o ¢ = [m]', 

where [m]' denotes multiplication by m on E'. 

Note also the following: 

Theorem 7.2.10. Let E be an elliptic curve and~ a finite subgroup of E. 
Then there exists an elliptic curve E' and an isogeny ¢ from E to E' whose 
kernel is equal to ~. The elliptic curve E' is well defined up to isomorphism 
and is denoted E / ~. 

We end this section by giving a slightly less trivial example of an isogeny: 
Let E and E' be two elliptic curves over a field of characteristic different from 
2, given by the equations 
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where we assume that b and a 2 - 4b are both non-zero. Then the map ¢ from 
E to E' given by 

¢(x,y)= (~:, y(x~;b)) 

is an isogeny of degree 2 with kernel { 0, ( 0, 0)}. 

7.2.3 Complex Multiplication 

Let E be an elliptic curve. To make life simpler, we will assume that the base 
field has characteristic zero. We have seen that the maps [m] are elements of 
End( E). Usually, they are the only ones, and since they are distinct, End( E)-::::: 
1£. It may however happen that End(E) is larger than/£. 

Definition 7.2.11. We say that E has complex multiplication if End(E) 
contains elements other than [m], i.e. if as a ring it is strictly larger than 1£. 

The theory of complex multiplication is vast, and we can just give a glimpse 
of its contents. The first result is as follows: 

Proposition 7.2.12. Let E be an elliptic curve defined over a field of char
acteristic zero, and assume that E has complex multiplication. Then the ring 
End( E) is an order in an imaginary quadratic field, i.e. has the form 1£ + Zr 
where r is a complex number with positive imaginary part and which is an 
algebraic integer of degree 2 (that is, satisfies an equation of the form 

r 2 - sr+n = 0, 

with s and n in 1£ and s2 - 4n < 0}. 

Proof We shall give the proof in the case where the base field is C. Then 
E -::::: C/ L for a certain lattice L, and we know that End( E) is canonically 
isomorphic to the set of a such that aL c L. After division by one of the 
generators of L, we can assume that L is generated by 1 and r for a certain 
r E 'H, where we recall that 1i is the upper half-plane. Then if a stabilizes L, 
there must exist integers a, b, c and d such that a = a+ br, ar = c + dr. In 

other words, a is an eigenvalue of the matrix ( ~ ~), hence is an algebraic 

integer of degree 2 (with s = a+ d, n = ad- be). Since a = a+ br, this shows 
that IQ(r) = IQ(a) is a fixed imaginary quadratic extension k of IQ, and hence 
End(E) is (canonically isomorphic to) a subring of Ilk, the ring of integers of 
k, and hence is an order in k if it is larger than/£. D 
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Example. The curves y2 = x3 - ax all have complex multiplication by Z[i) 
(map (x, y) to (-x, iy)). Similarly, the curves y2 = x3 + b all have complex 
multiplication by Z[p), where pis a primitive cube root of unity (map (x, y) 
to (px, y)). For a less trivial example, one can check that the curve 

has complex multiplication by Z[w), where w = 1+f7", multiplication by w 
sending (x,y) to (u,v), where 

-2x2- w 
u=w --

x-a 

_ 3 x2 - 2ax+w 
v = w y ( )2 ' x-a 

where we have set a= (w- 3)/4 (I thank D. Bernardi for these calculations). 
For a simple algorithm which makes these computations easy to perform see 
[Star). 

Remark. Note that if the base field is a finite field, End(E) is either isomor
phic to an order in an imaginary quadratic field or to the maximal order in 
a definite quaternion algebra of dimension 4 over Z. In this last case, which 
is the only case where End(E) is non-commutative, we say that the elliptic 
curve E is supersingular. 

The next theorem concerning complex multiplication is as follows: 

Theorem 7.2.13. Let r be a quadratic algebraic number with positive imagi
nary part. Then the elliptic curve Er = Cj(Z+Zr) has complex multiplication 
by an order in the quadratic field IQ(r), and the j-invariant j(Er) = j(r) is 
an algebraic integer. 

Note that although the context (and the proof) of this theorem involves 
elliptic curves, its statement is simply that a certain explicit function j ( r) on 
1t takes algebraic integer values at quadratic imaginary points. 
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Examples. Here are a few selected values of j. 

j((1 + iv'3)/2) = 0 = 1728- 3(24)2 

j(i) = 1728 = 123 = 1728 -4(0) 2 

j((1 + iV7)/2) = -3375 = (-15) 3 = 1728- 7(27)2 

j(iv'2) = 8000 = 203 = 1728 + 8(28)2 

j((1 + iv'U)/2) = -32768 = (-32)3 = 1728 -11(56) 2 

j((1 + iv'i9)/2) = -884736 = (-96)3 = 1728 -19(216)2 

j((1 + iv'43)/2) = -884736000 = (-960)3 = 1728- 43(4536) 2 

j((1+ iv'67)/2) =-147197952000 = (-5280)3 = 1728- 67(46872)2 

j((1 + iJi63)/2) = -262537412640768000 = (-640320)3 

= 1728 -163( 40133016) 2 

j(iv'3) = 54000 = 2(30)3 = 1728 + 12(66)2 

j(2i) = 287496 = (66) 3 = 1728 + 8(189) 2 

j((1 + 3iv'3)/2) = -12288000 = -3(160)3 = 1728- 3(2024) 2 

j(i..J7) = 16581375 = (255)3 = 1728 + 7(1539)2 

'(( 'vls)/ ) -191025- 85995v's J 1+z 1 2 = 2 

383 

1- y'5 (75 + 27v'5)
3

- 7 (273 + 105v'5)
2 

= -1 28-3 
2 2 2 

j((1 + iV'23)/2) = -(82075002 + 10841250 + 616750) 

= -(2502 + 550 + 35)3 

= 1728- (302 - 4) ( 40602 + 5110 + 273)2 , 

where 0 is the real root of the cubic equation X 3 - X - 1 = 0. 
The reason for the special values chosen will become clear later. 

An amusing consequence of the above results is the following. We know 
that if q = e2i11'r then j(r) = 1/q + 744 + O(lql). Hence when lql is very small 
(i.e. when the imaginary part of r is large), it can be expected that j(r) is well 
approximated by 1/q + 744. Taking the most striking example, this implies 
that e11'v'I63 should be close to an integer, and that (e11'v'I63- 744) 113 should 
be even closer. This is indeed what one finds: 

e11'v'I63 = 262537412640768743.99999999999925007259 ... 

(e11'v'I63- 744) 113 = 640319.99999999999999999999999939031735 ... 

Note that by well known transcendence results, although these quantities are 
very close to integers, they cannot be integers and they are in fact transcen
dental numbers. 
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7.2.4 Complex Multiplication and Hilbert Class Fields 

The following theorem gives more precise information on the nature of the 
algebraic integer j(r) and will be one of our basic tools in our study of 
Atkin's primality test (see Section 9.2). We define the discriminant of a 
quadratic number r as the discriminant of the unique primitive positive defi
nite quadratic form (a, b, c) such that r is a root of the equation ax2+bx+c = 0. 

Theorem 7.2.14. Let r E 1t be a quadratic imaginary number, and let D 
be its discriminant as just defined. Then j ( r) is an algebraic integer of de
gree exactly equal to h(D), where h(D) is the class number of the imaginary 
quadratic order of discriminant D. More precisely, the minimal polynomial of 
j(r) over Z is the equation il(X- j(a)) = 0, where a runs over the quadratic 
numbers associated to the reduced forms of discriminant D. 

Note that j(r) is indeed a root of this polynomial, since any quadratic form 
of discriminant D is equivalent to a reduced form, and since the j function 
is SL2 (Z)-invariant. The difficult part of this theorem is that the polynomial 
has integral coefficients. 

I can now explain the reason for the selection of j-values given in the 
preceding section. From Theorem 7.2.14, we see that j(r) is rational (in fact 
integral) if and only if h(D) = 1 (we assume of course that r is a quadratic 
number). Hence, by the Heegner-Stark-Baker theorem (see Section 5.3.1), this 
corresponds to only 9 quadratic fields. There are 4 more corresponding to 
non-maximal orders: -12 and -27 (in the field Q(H)), -16 (in the field 
Q(y'-4)), and -28 (in the field Q(N)). 

The first 13 values of our little table above correspond to these 13 quadratic 
orders, and the last two are for D = -15 and D = -23, which are the first 
values for which the class number is 2 and 3 respectively. 

Now if r corresponds to a maximal order in an imaginary quadratic field 
K, Theorem 7.2.14 tells us that the field H = K(j(r)) obtained by adjoining 
j(r) to K is an algebraic extension of degree h(D) (this is not strictly true: 
it tells us this for K = Q, but the statement holds nonetheless). Now in 
fact much more is true: it is a Galois extension, with Abelian Galois group 
isomorphic to the class group of the imaginary quadratic field K. Furthermore, 
it is unramified, and it is the maximal Abelian unramified extension of K. By 
definition, such a field His called the Hilbert class field of K. One sees that in 
the case of imaginary quadratic fields, the Hilbert class field can be obtained 
by adjoining a value of the j-function. This kind of construction is lacking 
for other types of fields (except of course for Q). See (Shi] for the relevant 
definitions and theorems about class fields. 

A cursory glance at the table of j-values which we have given reveals 
many other interesting aspects. For example, in most cases, it seems that j(r) 
is a cube. Furthermore, it can be checked that no large prime factors occur 
in the values of j(r) (or of its norm when it is not in Q). These properties 
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are indeed quite general, with some restrictions. For example, if D is not 
divisible by 3, then up to multiplication by a unit, j(r) is a cube in H. One 
can also check that (still up to units) j ( r) - 1728 is a square in K if D = 1 
(mod 4). Finally, not only the values of j ( r), but more generally the differences 
j(r1)- j(r2) have only small prime factors (the case of j(rt) is recovered by 
taking r 2 = p = ( -1 + H) /2). All these properties have been proved by 
Gross-Zagier [Gro-Zag1). 

The other property of an elliptic curve with complex multiplication, which 
will also be basic to Atkin's primality test, is that it is easy to compute the 
number of its points in a finite field, i.e. its L-function (see Section 7.3 for the 
definition). We state only the special cases which we will need (see [Deu)). 

Theorem 7.2.15. Let E be an elliptic curve with complex multiplication by 
an imaginary quadratic order of discriminant D, and let p be a prime number. 
Then we have 

where ap is given as follows. 

(1) lfp is inert (i.e. if(~)= -1}, then ap = 0. 
(2) If p splits into a product of prime elements, say p = 1r1f", then ap = 1r + 1f" 

for a suitable choice of 1r. 

Remarks. 

(1) If D < -4, there exist only two (opposite) choices for 1r since the order 
has only 2 units. These choices give two opposite values of ap, one of these 
values giving the correct ap for E, the other one giving the ap for the curve 
E ''twisted" by a quadratic non-residue (see Section 7.4.3). On the other 
hand if D = -4 or D = -3, there exist 4 (resp. 6) choices for 11", also 
corresponding to twisted curves. 

(2) If p is ramified or splits into a product of prime ideals which are not 
principal, then one can still give the value of ap, but the recipe is more 
involved. In terms of L-functions, the general result says that there exists 
a Heeke character 1/J on the field Q( .Jl5) such that 

L(E, s) = L('I/J, s)L(if;, s). 

7.2.5 Modular Equations 

Another remarkable property of the j-function, which is not directly linked 
to complex multiplication, but rather to the role that j plays as a modu
lar invariant, is that the functions j(Nr) for N integral (or more generally 
rational) are algebraic functions of j(r). The minimal equation of the form 
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~N(j(r),j(Nr)) = 0 satisfied by j(Nr) is called the modular equation of level 
N. This result is not difficult to prove. We will prove it explicitly in the special 
case N = 2. Set 

P(X) =(X- j(2r))(X-j(~))(X- j(; 1 )) = X 3 -s(r)X2 +t(r)X -n(r). 

I claim that the functions s, t and n are polynomials in j. Since they are clearly 
meromorphic, and in fact holomorphic outside infinity, from Section 7.2.1 it is 
enough to prove that they are modular functions (i.e. invariant under SL2(Z)). 
Since the action of SL2(Z) on 1{ is generated by r ~---+ r + 1, and r ~---+ -1/r, 
it suffices to show the invariance of s, t and n under these transformations, 
and this is easily done using the modular invariance of j itself. This shows the 
existence of a cubic equation satisfied by j(2r) over the field C(j(r)). If one 
wants the equation explicitly, one must compute the first few coefficients of 
the Fourier expansion of s(r), t(r), and n(r), using the Fourier expansion of 
j(r): 

1 
j(r) =- + 744 + 196884q + 21493760q2 + 864299970q3 + · · · 

q 

The result is as follows: 

s = j 2 - 243 . 31j - 243453' 

t = 243. 31j2 + 34534027j + 283756' 

n = -l + 243453j2- 283756j + 2123959. 

This gives as modular polynomial of level 2 the polynomial 

~2(X, Y) = X 3 + Y3 - X 2Y2 + 243 · 31(X2Y + XY2) - 243453(X2 + Y2) 

+ 34534027XY + 283756(X + Y)- 2123959. 

As we can see from this example, the modular polynomials are symmetric in X 
andY. They have many other remarkable properties that tie them closely to 
complex multiplication and class numbers, but we will not pursue this subject 
any further here. See for example (Her], (Mah] and (Coh3] for results and more 
references on the polynomials ~ N. 

7.3 Rank and L-functions 

We have seen in Theorem 7.1.10 that if E is an elliptic curve defined over Q, 
then 

E(Q) ~ E(Qhors EEl zr, 
where E(Q)tors is a finite group which is easy to compute for a given curve, 
and r is an integer called the rank. As has already been mentioned, r is 
very difficult to compute, even for a specific curve. Most questions here have 
conjectural answers, but very few are proved. In this section, we try to give 
some indications on the status of the subject at the time of this writing. 
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7.3.1 The Zeta Function of a Variety 

I heartily recommend reading [Ire-Ros] for detailed and concrete examples on 
this subject. 

After clearing the denominators of the coefficients, we may assume that 
our curve has coefficients in z. Now it is a classical technique to look at the 
equation modulo primes p, and to gather this information to obtain results 
on the equation over Q or over Z. This can be done more generally for any 
smooth projective algebraic variety (and more general objects if needed), and 
not only for elliptic curves. Although it carries us a little away, I believe it 
worthwhile to do it in this more general context first. 

Let V be a (smooth projective) variety of dimension d, defined by equa
tions with coefficients in Z. For any prime p, we can consider the variety 
Vp obtained by reducing the coefficients modulo p (it may, of course, not be 
smooth any more). For any n ~ 1, let Nn(p) be the number of points of Vp 
defined over the finite field lF pn and consider the following formal power series 
in the variable T: 

Then we have the following very deep theorem, first conjectured by Weil (and 
proved by him for curves and Abelian varieties, see [Weill), and proved com
pletely by Deligne in 1974 [Del]: 

Theorem 7.3.1. Let Vp be a smooth projective variety of dimension d over 
1Fp. Then: 

(1) The series Zp(T) is a rational function ofT, i.e. Zp(T) E Q(T). 
(2) There exists an integer e {called the Euler characteristic ofVp}, such that 

(3) The rational function Zp(T) factors as follows: 

where for all i, Pi(T) E Z[T], Po(T) = 1- T, P2d(T) = 1- pdT, and for 
all other i, 

Pi(T) = IJ (1- aiiT) with iaiil = pi/2. 
j 
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The first assertion was actually proved by Dwork a few years before 
Deligne using relatively elementary methods, but by far the hardest part of 
this theorem is the last assertion, that laij I = pi/2 • This is called the Riemann 
hypothesis for varieties over finite fields. 

Now given all the local Zp(T), we can form a global zeta function by 
setting for s complex with Res sufficiently large: 

((V,s) =IT Zv(P-"). 
p 

This should be taken with a grain of salt, since there are some p (finite in 
number) such that Vp is not smooth. In fact, given the underlying cohomo
logical interpretation of the Pi, it is more reasonable to consider the global 
£-functions defined by 

Li(V, s) =IT Pi(p-•)- 1 for 0::::; i::::; 2d, 
p 

and recover the zeta function as 

((V,s)= IT Li(V,s)(- 1l'. 
O">i">2d 

Very little is known about these general zeta function and £-functions. 
It is believed (can one say conjectured when so few cases have been closely 
examined?) that these functions can be analytically continued to meromorphic 
functions on the whole complex plane. When the local factors at the bad 
primes p are correctly chosen, they should have a functional equation and the 
£-functions should satisfy the Riemann hypothesis, i.e. apart from "trivial" 
zeros, all the other complex zeros of Li (V, s) should lie on the vertical line 
Res= (i + 1)/2. 

One recovers the ordinary Riemann zeta function by taking for V the 
single point 0. More generally, one can recover the Dedekind zeta function 
of a number field by taking for V the 0-dimensional variety defined in the 
projective line by P(X) = 0, where P is a monic polynomial with integer 
coefficients defining the field over Q. 

7.3.2 £-functions of Elliptic Curves 

Let us now consider the special case where V is an elliptic curve E. In that 
case, Hasse's Theorem 7.1.8 gives us all the information we need about the 
number of points of E over a finite field. This leads to the following corollary: 

Corollary 7.3.2. Let E be an elliptic curve over Q, and let p be a prime of 
good reduction {i.e. such that Ep is still smooth}. Then 
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_ 1- apT+pT2 

Zp(E) - (1- T)(1- pT) ' 

where ap is as in Theorem 7.1. 8. 
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In fact, Hasse's theorem is simply the special case of the Weil conjectures 
for elliptic curves (and can be proved quite simply, see e.g. [Sil) pp 134-136). 

Ignoring for the moment the question of bad primes, the general definition 
of zeta and £-functions gives us 

where 

~"(E ) = ((s)((s -1) 
., ,s L(E,s) ' 

L(E, s) = L1(E, s) = II (1- app-s + pl-2s)-1. 

p 

The function L(E, s) will be called the Hasse-Weil £-function of the elliptic 
curve E. To give a precise definition, we also need to define the local factors 
at the bad primes p. This can be done, and finally leads to the following 
definition. 

Definition 7.3.3. Let E be an elliptic curve overQ, and let y2+a1xy+a3y = 
x3+a2x 2+a4x+a6 be a minimal Weierstrafl equation forE (see 7.1.3 ). When 
E has good reduction at p, define ap = p + 1- Np where Np is the number of 
(projective) points of E over IF'p. If E has bad reduction, define 

if E has split multiplicative reduction at Pi 

if E has non-split multiplicative reduction at Pi 

if E has additive reduction at p. 

Then we define the £-function of E as follows, for Res> 3/2: 

L(E s)- II 1 II 1 
' - 1 - €(p)p-s 1 -a p-s + pl-2s . 

bad p good p P 

Note that in this definition it is crucial to take a minimal Weierstraf3 
equation for E: taking another equation could increase the number of primes 
of bad reduction, and hence change a finite number of local factors. On the 
other hand, one can prove that L(E, s) depends only on the isogeny class of 
E. 

By expanding the product, it is clear that L(E, s) is a Dirichlet series, i.e. 
of the form :L:n>l ann-s (this of course is the case for all zeta functions of 
varieties). We will set 
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!E(r) = L anqn, where as usual q = e2i1r-r. 

n~l 

We can now state the first conjecture on £-functions of elliptic curves: 

Conjecture 7.3.4. The function L(E, s) can be analytically continued to the 
whole complex plane to an entire function. Furthermore, there exists a positive 
integer N, such that if we set 

then we have the following functional equation: 

A(E, 2- s) = ±A(E, s). 

In this case, the Riemann hypothesis states that apart from the trivial 
zeros at non-positive integers, the zeros of L(E, s) all lie on the critical line 
Res= 1. 

The number N occurring in Conjecture 7.3.4 is a very important invariant 
of the curve. It is called the (analytic) conductor of E. From work of Carayol 
[Car], it follows that it must be equal to the (geometric) conductor of E which 
can be defined without reference to any conjectures. It suffices to say that it 
has the form IJP pep, where the product is over primes of bad reduction, and 
for p > 3, ep = 1 if E has multiplicative reduction at p, ep = 2 if E has 
additive reduction. For p ~ 3, the recipe is more complicated and is given in 
Section 7.5. 

One can also give a recipe for the ± sign occurring in the functional 
equation. 

7.3.3 The Taniyama-Weil Conjecture 

Now if the reader has a little acquaintance with modular forms, he will notice 
that the conjectured form of the functional equation of L( E, s) is the same as 
the functional equation for the Mellin transform of a modular form of weight 
2 over the group 

r0(N)={(~ !)ESL2(Z), c:=O(modN)} 

(see [Lang4], [Ogg] or [Zag] for all relevant definitions about modular forms). 
Indeed, one can prove the following 

Theorem 7.3.5. Let f be a modular cusp form of weight 2 on the group 
r 0 (N) (equivalently f~ is a differential of the first kind on Xo(N) = 

1ljr0 (N)). Assume that f is a normalized newform {hence, in particular, 
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an eigenform for the Heeke operators} and that f has rational Fourier coeffi
cients. Then there exists an elliptic curue E defined over Q such that f = fE, 
i.e. such that the Mellin transform of f(it/v'N) is equal to A(E, s). 

Such a curve E is called a modular elliptic curve, and is a natural quotient 
of the Jacobian of the curve Xo(N). Since analytic continuation and functional 
equations are trivial consequences of the modular invariance of modular forms 
we obtain: 

Corollary 7.3.6. Let E be a modular elliptic curue, and let f = En>l anqn 
be the corresponding cusp form. Then Conjecture 7.3.4 is true for the curue 
E. In addition, it is known from Atkin-Lehner theory that one must have 
f(-1/(Nr)) = -cNr2 f(r) with c = ±1. Then the functional equation is 

A(E, 2- s) = cA(E, s). 

(Please note the minus sign in the formula for f(-1/(Nr)) which causes 
confusion and many mistakes in tables.) The number c is called the sign of 
the functional equation. 

With Theorem 7.3.5 in mind, it is natural to ask if the converse is true, 
i.e. whether every elliptic curve over Q is modular. This conjecture was first set 
forth by Taniyama. Its full importance and plausibility was understood only 
after Weil proved the following theorem, which we state only in an imprecise 
form (the precise statement can be found e.g. in [Ogg)): 

Theorem 7.3.7 (Weil). Let f(r) = En>l anqn, and for all primitive Dirich-
let characters x of conductor m set -

L(f, x, s) = L anx~n), 
n n;:::l 

A(!, x, s) = 1Nm21812 (27r)- 8 r(s)L(f, X, s). 

Assume that these functions satisfy functional equations of the following form: 

A(!, x, 2- s) = w(x)A(f, x, s), 

where w(x) has modulus one, and assume that as X varies, w(x) satisfies 
certain compatibility conditions {being precise here would carry us a little too 
far). Then f is a modular form of weight 2 over ro(N). 

Because of this theorem, the above conjecture becomes much more plau
sible. The Taniyama-Weil conjecture is then as follows: 

Conjecture 7.3.8 (Taniyama-Weil). Let E be an elliptic curue over Q, let 
L(E,s) = En;:::l ann-8 be its £-series, and let fE(T) = En;:::l anqn, so that 
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the Mellin transform of fE(itj../N) is equal to A(E, s). Then f is a cusp 
form of weight 2 on r 0 (N) which is an eigenfunction of the Heeke operators. 
Furthermore, there exists a morphism¢ of curves from Xo(N) toE, defined 
over Q, such that the inverse image by¢ of the differential dx/(2y+ a1x +a3) 
is the differential c(2i7r)f(r)dr = cf(r)dqfq, where cis some constant. 

Note that the constant c, called Manin's constant, is conjectured to be 
always equal to ±1 when¢ is a "strong Weil parametrization" of E (see [Sill). 

A curve satisfying the Taniyama-Weil conjecture was called above a mod
ular elliptic curve. Since this may lead to some confusion with modular curves 
(the curves Xo(N)) which are in general not elliptic, they are called Weil 
curves (which incidentally seems a little unfair to Taniyama). 

The main theorem concerning this conjecture is Wiles's celebrated the
orem, which states than when N is squarefree, the conjecture is true (see 
[Wiles], [Tay-Wil]). This result has been generalized by Diamond to the case 
where N is only assumed not to be divisible by 9 and 25. In addition, us
ing Weil's Theorem 7.3.7, it was proved long ago by Shimura (see [Shil) and 
[Shi2]) that it is true for elliptic curves with complex multiplication. 

There is also a recent conjecture of Serre (see [Serl]), which roughly states 
that any odd 2-dimensional representation of the Galois group Gal(Q/Q) over 
a finite field must come from a modular form. It can be shown that Serre's 
conjecture implies the Taniyama-Weil conjecture. 

The Taniyama-Weil conjecture, and hence the Taylor-Wiles proof, is 
mainly important for its own sake. However, it has attracted a lot of attention 
because of a deep result due to Ribet [Rib], saying that the Taniyama-Weil 
conjecture for squarefree N implies the full strength of Fermat's last "theo
rem" (FLT): if xn+ yn = zn with x, y, z non-zero integers, then one must have 
n s 2. Thanks to Wiles, this is now really a theorem. Although it is not so 
interesting in itself, FLT has had amazing consequences on the development of 
number theory, since it is in large part responsible for the remarkable achieve
ments of algebraic number theorists in the nineteenth century, and also as a 
further motivation for the study of elliptic curves, thanks to Ribet's result. 

7.3.4 The Birch and Swinnerton-Dyer Conjecture 

The other conjecture on elliptic curves which is of fundamental importance 
was stated by Birch and Swinnerton-Dyer after doing quite a lot of computer 
calculations on elliptic curves (see [Bir-SwD1), [Bir-SwD2]). For the remaining 
of this paragraph, we assume that we are dealing with a curve E defined 
over Q and satisfying Conjecture 7.3.4, for example a curve with complex 
multiplication, or more generally a Weil curve. (The initial computations of 
Birch and Swinnerton-Dyer were done on curves with complex multiplication). 

Recall that we defined in a purely algebraic way the rank of an elliptic 
curve. A weak version of the Birch and Swinnerton-Dyer Conjecture (BSD) is 
that the rank is positive (i.e. E(Q) is infinite) if and only if L(E, 1) = 0. This 
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is quite remarkable, and illustrates the fact that the function L(E, s) which is 
obtained by putting together local data for every prime p, conjecturally gives 
information on global data, i.e. on the rational points. 

The precise statement of the Birch and Swinnerton-Dyer conjecture is as 
follows: 

Conjecture 7.3.9 (Birch and Swinnerton-Dyer). Let E be an elliptic curve 
over Q, and assume that Conjecture 7.3.4 (analytic continuation essentially) 
is true for E. Then if r is the rank of E, the function L(E, s) has a zero of 
order exactly r at s = 1, and in addition 

lim(s- 1)-r L(E, s) = OIIII(E/Q)IR(E/Q)IE(Q)torsl-2 ITev, 
s-+1 

p 

where n is a real period of E, R(E/Q) is the so-called regulator of E, which 
is an r x r determinant formed by pairing in a suitable way a basis of the non
torsion points, the product is over the primes of bad reduction, Cp are small 
integers, and Ill(E/Q) is the so-called Tate-Shafarevitch group of E. 

It would carry us too far to explain in detail these quantities. Note only 
that the only quantity which is difficult to compute (in addition to the rank 
r) is the Tate-Shafarevitch group. In Sections 7.4 and 7.5 we will give algo
rithms to compute all the quantities which enter into this conjecture, except for 
IIII(E/Q)I which is then obtained by division (the result must be an integer, 
and in fact even a square, and this gives a check on the computations). More 
precisely, Section 7.5.3 gives algorithms for computing lims ..... l(s-1)-r L(E, s), 
the quantities nand IE(Q)torsl are computed using Algorithms 7.4.7 and 7.5.5, 
the regulator R(E/Q) is obtained by computing a determinant of height pair
ings of a basis of the torsion-free part of E(Q), these heights being computed 
using Algorithms 7.5.6 and 7.5. 7. Finally, the Cp are obtained by using Algo
rithm 7.5.1 if p 2: 5 and Algorithm 7.5.2 if p = 2 or 3. 

Note that the above computational descriptions assume that we know a 
basis of the torsion-free part of E(Q) and hence, in particular, the rank r, and 
that this is in general quite difficult. 

The reader should compare Conjecture 7.3.9 with the corresponding result 
for the 0-dimensional case, i.e. Theorem 4.9.12. Dedekind's formula at s = 0 is 
very similar to the BSD formula, with the regulator and torsion points playing 
the same role, and with the class group replaced by the Tate-Shafarevitch 
group, the units of K being of course analogous to the rational points. 

Apart from numerous numerical verifications of BSD, few results have 
been obtained on BSD, and all are very deep. For example, only in 1987 was 
it proved by Rubin and Kolyvagin (see (Koll), [Kol2], [Rub]) that III is finite 
for certain elliptic curves. The first result on BSD was obtained in 1977 by 
Coates and Wiles (Coa-Wil] who showed that if E has complex multiplication 
and if E(Q) is infinite, then L(E, 1) = 0. Further results have been obtained, 
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in particular by Gross-Zagier, Rubin and Kolyvagin (see [Gro-Zag2], [GKZ], 
[Koll], [Kol2]). For example, the following is now known: 

Theorem 7.3.10. Let E be a Weil curve. Then 

(1) If L(E, 1) f. 0 then r = 0. 
(2) If L(E, 1) = 0 and L'(E, 1) f. 0 then r = 1. 

Furthermore, in both these cases lilli is finite, and up to some simple factors 
divides the conjectural lilli involved in BSD. 

The present status of BSD is essentially that very little is known when the 
rank is greater than or equal to 2. 

Another conjecture about the rank is that it is unbounded. This seems 
quite plausible. Using a construction of J.-F. Mestre (see [Mes3] and Exercise 
9), Nagao has obtained an infinite family of curves of rank greater or equal 
to 13 (see [Nag]), and Mestre himself has just obtained an infinite family of 
curves of rank greater or equal to 14 (see [Mes5]). Furthermore, using Mestre's 
construction, several authors have obtained individual curves of much higher 
rank, the current record being rank 22 by Fermigier (see [Mes4], [Ferl], [Nag
Kou] and [Fer2]). 

7.4 Algorithms for Elliptic Curves 

The previous sections finish up our survey of results and conjectures about 
elliptic curves. Although the only results which we will need in what follows 
are the results giving the group law, and Theorems 7.2.14 and 7.2.15 giving 
basic properties of curves with complex multiplication, elliptic curves are a 
fascinating field of study per se, so we want to describe a number of algorithms 
to work on them. Most of the algorithms will be given without proof since 
this would carry us too far. Note that these algorithms are for the most part 
scattered in the literature, but others are part of the folklore or are new. 
I am particularly indebted to J.-F. Mestre and D. Bernardi for many of the 
algorithms of this section. The most detailed collection of algorithms on elliptic 
curves can be found in the recent book of Cremona [Cre]. 

7 .4.1 Algorithms for Elliptic Curves over C 

The problems that we want to solve here are the following. 

(1) Given WI and w2, compute the coefficients 92 and 93 of the Weierstraf3 
equation of the corresponding curve. 

(2) Given WI and w2 and a complex number z, compute p(z) and p'(z). 
(3) Conversely given 92 and 93 such that g~- 279~ f. 0, compute WI and w2 

(which are unique only up to an element of SL2 (Z)). 
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(4) Similarly, given 92, 93 and a point (x, y) on the corresponding Weierstrafi 
curve, compute the complex number z (unique up to addition of an element 
of the period lattice generated by w1 and w2 ) such that x = p(z) and 
y = p'(z). 

If necessary, after exchanging w1 and w2 , we may assume that Im(wdw2) > 0, 
i.e. if we set T = wdw2 then T E 'H.. As usual, we always set q = e2i'll"T, and 
we have lql < 1 when T E 'H.. Then we have the following proposition: 

Proposition 7.4.1. We have 

1 (211")4
( n3qn ) 

92 = 12 W2 1 + 240 L 1 - qn 
n;:::l 

and also 

This could already be used to compute 92 and 93 reasonably efficiently, but 
it would be slow when r is close to the real line. In this case, one should first 
find the complex number r' belonging to the fundamental domain :F which 
is equivalent tor, compute 92 and 93 for r', and then come back toT using 
the (trivial) transformation laws of 92 and 93, i.e. 9k(OiAJ1 + bw2,CC..h + dw2) = 

9k(wb w2) when ( ~ :) E SL2(Z). This leads to the following algorithms. 

Algorithm 7.4.2 (Reduction). Given T E 'H., this algorithm outputs the unique 
r' equivalent to r under the action of SL2(Z) and which belongs to the standard 
fundamental domain :F, as well as the matrix A E SL2(Z) such that r' = Ar. 

1. [Initialize] Set A +- ( ~ ~). 

2. [Reduce real part] Let n +- LRe(r)l, r +- r- n, A+- ( ~ -n) 1 ·A. 

3. [Finished] Set m +- rf. If m ~ 1, output T and A and terminate the algorithm. 

Otherwisesetr+--7/m, A-(~ ~1 )-Aandgotostep2. 
This is of course closely related to the reduction algorithm for positive def

inite quadratic forms (Algorithm 5.4.2), as well as to Gauss's lattice reduction 
algorithm in dimension 2 (Algorithm 1.3.14). 

Warning. The condition m ~ 1 in step 3 should in practice be implem
ented as m > 1 - e for some e > 0 depending on the current accuracy. If this 
precaution is not taken the algorithm may loop indefinitely, and the cost is 
simply that the final r may land very close to but not exactly in the stand
ard fundamental domain, and this has absolutely no consequence for pract
ical computations. 

We can now give the algorithm for computing 92 and 93 • 
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Algorithm 7.4.3 (g2 and ga). Given WI and w2 generating a lattice L, this 
algorithm computes the coefficients g2 and g3 of the WeierstraB equation of the 
elliptic curve C/ L. 

1. [Initialize] If Im(wl/w2) < 0, exchange WI and w2. Then set T- wdw2. 

2. [Reduce] Using Algorithm 7.4.2, find a matrix A = ( ~ ~) E SL2(Z) such 

that r' = Ar is in the fundamental domain :F. Set q' = e2i1rT'. 

3. [Compute] Compute 92 and ga using the formulas given in Proposition 7.4.1, 
replacing q by q' and w2 by CWI + dw2, and terminate the algorithm. 

Since r' E :F, we have Im r' 2: ../3/2 hence lql ::::; e-1rva ~ 4.33 · 10-3 , so 
the convergence of the series, although linear, will be very fast. 

We can also use the power series expansions to compute p(z) and p'(z): 

Proposition 7.4.4. Set T = wl/w2 E 'H., q = e2in and u = e2i1rz!w2 • Then 

and 

Note that the formula for p'(z) in the first printing of [Sil] is incorrect. 
As usual, we must do reductions of r and z before applying the crude 

formulas, and this gives the following algorithm. 

Algorithm 7.4.5 (p(z) and p'(z)). Given WI and w2 generating a lattice L, 
and z E C, this algorithm computes p(z) and p'(z). 

1. [Initialize and reduce] If Im(wl/w2) < 0, exchange WI and w2. Then set r -

wl/w2. Using Algorithm 7.4.2, find a matrix A = ( ~ ~) E SL2(Z) such 

that Ar is in the the fundamental domain :F. Finally, set r - Ar and w2 -
CWI + dw2. 

2. [Reduce z] Set z - zjw2, n - llm(z)/Im(r)l, z - z- nr and z -
z- lRe(z)l. 

3. [Compute] If z = 0, output a message saying that z E L. Otherwise compute 
p(z) and p'(z) using the formulas given in Proposition 7.4.4 (with u = e2i1rz 

since we have already divided z by w2) and terminate the algorithm. 
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Remark. For the above computations it is more efficient to use the formulas 
that link elliptic functions with the a function, since the latter are theta series 
and so can be computed efficiently. For reasonable accuracy however (say less 
than 100 decimal digits) the above formulas suffice. 

We now consider the inverse problems. Given 9 2 and 93 defining a Weier
straB equation, we want to compute a basis w1 and w2 of the corresponding 
lattice. 

First, recall the definition of the Arithmetic-Geometric Mean (AGM) of 
two numbers. 

Definition 7 .4.6. Let a and b be two positive real numbers. The Arithmetic
Geometric mean of a and b, denoted by AGM(a, b) is defined as the common 
limit of the two sequences an and bn defined by ao =a, bo = b, an+l = 
(an+ bn)l2 and bn+l = v'anbn. 

It is an easy exercise to show that these sequences converge and that they 
have a common limit AGM(a, b) (see Exercise 10). It can also be proved quite 
easily that 

7r r/2 dt 

2AGM(a,b)- Jo Ja2cos2t+b2sin2t 

(see Exercise 11) and this can easily be transformed into an elliptic integral, 
which explains the relevance of the AGM to our problems. For many more 
details on the AGM, I refer to the marvelous book of Borwein and Borwein 
[Bor-Bor]. 

Apart from their relevance to elliptic integrals, the fundamental property 
of the AGM sequences an and bn is that they converge quadratically, i.e. the 
number of significant decimals approximately doubles with each iteration (see 
Exercise 10). For example, there exists AGM-related methods for computing 1r 

to high precision (see again [Bor-Bor]), and since 220 > 106 only 20 iterations 
are needed to compute 1000000 decimals of 1r! 

The AGM can also be considered when a and b are not positive real 
numbers but are arbitrary complex numbers. Here the situation is more com
plicated, but can be summarized as follows. At each stage of the iteration, we 
must choose some square root of anbn. Assume that for n sufficiently large the 
same branch of the square root is taken (for example the principal branch, but 
it can be any other branch). Then the sequences again converge quadratically 
to the same limit, but this limit of course now depends on the choices made 
for the square roots. In addition, the set of values of 1r I AGM( a, b) (where now 
AGM(a, b) has infinitely many values) together with 0 form a lattice Lin C. 
The precise link with elliptic curves is as follows. Let e1, e2, e3 be the three 
complex roots of the polynomial 4x3 - 92X- 93 such that y2 = 4x3 - 9 2x - 9 3 

defines an elliptic curve E. Then, when the AGM runs through all its pos
sible determinations 1r I AGM( v'e1 - e3, y'e1 - e2) gives all the lattice points 
(except 0) of the lattice L such that E ~ Cl L. 
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We however will usually use the AGM over the positive real numbers, 
where it is single-valued, since the elliptic curves that we will mainly consider 
are defined over IR, and even over Q. In this case, the following algorithm 
gives a basis of the period lattice L. Since our curves will usually be given by 
a generalized Weierstrafi equation y2 + atXY + a3y = x3 + a2x2 + a4x + a6 
instead of the simpler equation Y 2 = 4X3 - 92X- 93, we give the algorithm 
in that context. 

Algorithm 7.4.7 (Periods of an Elliptic Curve over JR). Given real numbers 
a1, ... , a6, this algorithm computes the basis (wt, w2) of the period lattice of E 
such that w2 is a positive real number and wt/w2 has positive imaginary part and 
a real part equal to 0 or -1/2. 

1. [Initialize] Using Formulas (7.1), compute b2, b4, b6 and A, and if A< 0 go 
to step 3. 

2. [Disconnected case] Let e1, e2 and e3 be the three real roots of the poly
nomial 4x3 + b2x2 + 2b4x + b6 = 0 with e1 > e2 > e3. Set w2-
1r/ AGM(ye1- e3, ye1- e2), Wt- i1r/ AGM(..je1- e3, ye2 -e3) and ter
minate the algorithm. 

3. [Connected case] Let e1 be the unique real root of 4x3 + b2x 2 + 2b4x + 
b6 = 0. Set a- 3et + b2/4 and b- J3e~ + (b2/2)el + b4/2. Then set 
w2- 27r/ AGM(2v'b, y2b +a), Wt- -w2/2 + i7r/AGM(2v'b, y2b-a) and 
terminate the algorithm. 

Note that the "real period" n occurring in the Birch and Swinnerton-Dyer 
conjecture 7.3.9 is 2w2 when A > 0, and w2 otherwise, and that wtfw2 is not 
necessarily in the standard fundamental domain for 11./ SL2(Z). 

Finally, we need an algorithm to compute the functional inverse of the p 
function. 

The Weierstrafi parametrization (p(z) : p'(z) : 1) can be seen as an expo
nential morphism from the universal covering C of E(C). It can be considered 
as the composition of three maps: 

z f-+ u = e2 i1rz/w2 f-+ u mod qz f-+ (p(z), p'(z)), 

the last one being an isomorphism. Its functional inverse, which we can natu
rally call the elliptic logarithm, is thus a multi-valued function. In fact, Algo
rithm 7.4.7 can be extended so as to find the inverse image of a given point. 
Since square roots occur, this give rise to the same indeterminacy as before, 
i.e. the point z is defined only up to addition of a point of the period lattice 
L. As in the previous algorithm, taking the positive square root in the real 
case gives directly the unique u such that lql < lui ::::; 1. We will therefore only 
give the description for a real point. 
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Algorithm 7.4.8 (Elliptic Logarithm). Given real numbers a1, ... , a6 defining 
a generalized WeierstraB equation for an elliptic curve E and a point P = (x, y) 
on E(JR), this algorithm computes the unique complex number z such that 
p(z) = x + b2/12 and p'(z) = 2y + a1x + a3, where pis the WeierstraB function 
corresponding to the period lattice of E, and which satisfies the following addi
tional conditions. Either z is real and 0 ~ z < w2, or t::. > 0, z- w1/2 is real and 
satisfies 0 ~ z - wl/2 < w2. 

1. [Initialize] Using Formulas (7.1), compute b2, b4, b6 and t::.. If t::. < 0 go to 
step 6. 

2. [Disconnected case] Let e1o e2 and e3 be the three real roots of the polynomial 
4x3 + b2x2 + 2b4x + b6 = 0 with e1 > e2 > e3. Set a+- .je1- e3 and b +

Jel- e2. If x < e1 set f +- 1, >. +- yj(x-e3) and x +- >.2+a11\-a2-x-e3, 
otherwise set f +- 0. Finally, set c +- Jx- e3. 

3. [Loop] Repeat (a, b, c) +- ((a+ b)/2, .,Jab, (c + Jc2 + b2 - a2)/2) until the 
difference a- b is sufficiently small. 

4. [Connected component] If f = 0 and 2y + a1x + a3 < 0 or f = 1 and 2y + 
a1x+ a3;::: 0 set z +- arcsin(a/c)/a. Otherwise set z +- (7r- arcsin(a/c))/a. 
If f = 0 output z and terminate the algorithm. 

5. [Other component] Compute w1 +- i71" / AGM( Je1 - e3, Je2 - e3) as in Al
gorithm 7.4.7 (unless of course this has already been done). Output z + w1/2 
and terminate the algorithm. 

6. [Connected case] Let e1 be the unique real root of 4x3+ b2x2 +2b4x+b6 = 0. 
Set fJ +- vf3e~ + (b2/2)el + b4/2, a+- 3el + b2/4, a+- 2.,f/], b +- Ja + 2/3 
and c +- (x- e1 + fJ)/Jx- e1. 

7. [Loop] Repeat (a, b, c) +- ((a+ b)/2, .,Jab, (c + Jc2 + b2- a2)/2) until the 
difference a- b is sufficiently small. 

8. [Terminate] If (2y + a1x + a3)((x- e1) 2 - {32) < 0, set z +- arcsin(a/c)/a 
otherwise set z +- (7r-arcsin(a/c))/a. If 2y+a1x+a3 > 0, set z +- z+11"/a. 
Output z and terminate the algorithm. 

Note that we could have avoided the extra AGM in step 5, but this would 
have necessitated using the complex AGM and arcsin. Hence, it is simpler to 
proceed as above. In addition, in practice w1 will have already been computed 
previously and so there is not really any extra AGM to compute. 

7.4.2 Algorithm for Reducing a General Cubic 

The problem that we want to solve here is the following. Given a general 
non-singular irreducible projective plane cubic over an arbitrary field K, say 

s1U3 + S2U2V + S3UV2 + 84 V3 

+ (ssU2 + s5UV + s1V2 )W + (ssU + sgV)W2 + s10W3 , 
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where (U : V : W) are the projective coordinates, and a K-rational point 
Po = (u0 : vo : wo) on the curve, find a birational transformation which 
transforms this into a generalized WeierstraB equation. 

We will explain how to do this in the generic situation (i.e. assuming that 
no expression vanishes, that our points are in general position, etc ... ) , and 
then give the algorithm in general. We also assume for simplicity that our field 
is of characteristic different from 2. 

We first make a couple of reductions. Since the curve is non-singular, its 
partial derivatives with respect to U and V cannot vanish simultaneously 
on the curve. Hence, by exchanging if necessary U and V, we may assume 
that it is the derivative with respect to V at Po which is different from zero. 
Consider now the tangent at Po to the curve. This tangent will then have 
a (rational) slope >., and intersects the curve in a unique third point which 
we will call P1 = (ut : Vt : Wt). After making the change of coordinates 
(U', V') = (U- u1. V- Vt) we may assume that Pt has coordinates (0: 0: 1), 
i.e. is at the origin, or in other words that the new value of s1o is equal to 
zero. We now have the following theorem (for simplicity we state everything 
with affine coordinates, but the conversion to projective coordinates is easy 
to make). 

Theorem 7.4.9. We keep the above notations and reductions. Call c1(U, V) 
the coefficient of degree W 3-1 in the equation of the curve {so that c1 is a 
homogeneous polynomial of degree j }, and set 

d(U, V) = c2(U, V)2 - 4ct (U, V)c3(U, V). 

Furthermore, if>. is the slope of the tangent at Po as defined above, set 

d(U, >.U + 1) = AU4 + BU3 + CU2 + DU +E. 

Then 

(1) We have A = 0 and B =f:. 0. 
(2) The transformation 

BU 
X= V- >.U 

B 
Y= (V _ >.U)2 (2c3(U, V) + c2(U, V)) 

is a birational transformation whose inverse is given by 

U=XBY -c2(X,>.X +B) 
2c3(X, >.X+ B) 

V= (>.X+ B) BY -c2(X,>.X +B). 
2c3(X, >.X+ B) 

(3) This birational map transforms the equation of the curve into the Weier
straP equation 
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Proof. The line V = >..U is the new equation of the tangent at Po that we 
started from. This means that it is tangent to the curve. Solving for U, one 
has the trivial solution U = 0 corresponding to the point P1, and the two 
other roots must be equal. In other words we must have d(l, >..) = 0, since this 
is the discriminant of the quadratic equation. Since clearly A= d(l, >..), this 
shows that A = 0. 

Now solving for the double root, we see that the coordinates of Po (in the 
new coordinate system of course) are (a, >..a), where we set 

c2(l, >..) 
a=- . 

2c3(l, >..) 

Now I claim that we have the equalities 

8d 8f 
B = av(l, >..) = -4c3(1, >..) av(a, >..a), 

where f(U, V) = 0 is the (affine) equation of the curve. Assuming this for a 
moment, this last partial derivative is the partial derivative of f with respect 
to V at the point Po, hence is different from zero by the first reduction made 
above. Furthermore, c3(l, >..) -:f. 0 also since otherwise Po would be at infinity 
and we have assumed (for the moment) that Po is in general position. This 
shows that B -:f. 0 and hence the first part of the theorem. To prove my 
claim, note that the first equality is trivial. For the second, let us temporarily 

abbreviate Cj(l, >..) to Cj and :~ (1, >..) to cj. Then by homogeneity, one sees 

immediately that 

We know that A= c~-4c1 c3 = 0 (and this can be checked once again explicitly 
if desired). Therefore we can replace c~ by 4c1c3, thus giving 

and the claim follows by differentiating the formula d = c~ - 4clc3. 

By simple replacement, one sees immediately that, since B -:f. 0, the maps 
(U, V)--+ (X, Y) and (X, Y)--+ (U, V) are inverse to one another, hence the 
second part is clear. 

For the last part, we simply replace U and V by their expressions in terms 
of X andY. We can multiply by c3(X, >..X+ B) (which is not identically zero), 
and we can also simplify the resulting equation by BY- c2 (X, >..X+ B) since 
B is different from zero and the curve is irreducible (why?). After expanding 
and simplifying we obtain the equation 
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B 2Y2 = d(X,>.X +B). 

Now since d(U, V) is a homogeneous polynomial of degree 4, one sees imme
diately that 

thus finishing the proof of the theorem. D 

It is now easy to generalize this theorem to the case where the point Po 
is not in general position, and this leads to the following algorithm, which we 
give in projective coordinates. 

Algorithm 7.4.10 (Reduction of a General Cubic). Let K be a field of 
characteristic different from 2, and let J(U, V, W) = 0 be the equation of a 
general cubic, where 

f(U, V, W) = s1U3 + s2U2V + saUV2 + s4V3 

+ (ssU2 + s6UV + s7V2)W + (ssU + s9V)W2 + s10W3 . 

Finally, let Po = (uo : vo : wo) be a point on the cubic, i.e. such that 
f(uo, vo, wo) = 0. This algorithm, either outputs a message saying that the curve 
is singular or reducible, or else gives a WeierstraB equation for the curve and a 
pair of inverse birational maps which transform one equation into the other. We 
will call (X : Y : T) the new projective coordinates, and continue to call si the 
coefficients of the transformed equation g during the algorithm. 

1. [Initialize] Set (m1,m2,m3) +-- (U,V,W), (n1,n2,na) +-- (X,Y,T) and g +

f. (Here (m1 : m2 : ma)(U, V, W) and (n1 : n2 : na)(X, Y, T) will be the pair 
of inverse birational maps. The assignments given in this algorithm for these 
maps and for g are formal, i.e. we assign polynomials or rational functions, 
not values. In addition, it is understood that the modifications of g imply the 
modifications of the coefficients si-) 

2. [Send Po to (0: 0: l)]lfwo =f. 0, set (m1.m2,m3) +-- (woml-uoma,wom2-
voma,woma). (n1,n2,na) +-- (won1 + UQna,won2 + vona,wona). g +

g(woU +uoW,woV +voW, woW) and go to step 3. Otherwise, if uo =f. 0, set 
(m1. m2, ma) +-- (uoma, uom2- vomlt uom1). (n1, n2, na) +-- (uona, uon2 + 
vona,uonl). g +-- g(uoW,uoV + voW,uoU) and go to step 3. Finally, if 
wo = uo = 0 (hence Vo =f. 0), exchange m2 and ma, n2 and na. and set 
g +-- g(U, W, V). 

3. [Exchange U and V?] (Here s10 = 0). If s8 = s9 = 0, output a message 
saying that the curve is singular at Po and terminate the algorithm. Otherwise, 
if Sg = 0, exchange m1 and m2, n1 and n2, and set g +-- g(V, U, W). 

4. [Send P1 to (0: 0: 1)] (Here Sg =f. 0.) Set)..+-- ( -ssfsg), c2 +-- s1>.2+s6>.+ss. 
ca +-- s4>.3 + sa>.2 + s2>. + s1. Then, if ca =f. 0, set (m1, m2, ma) +-- (cam1 + 
c2ma,cam2+>.c2ma,cama). (n1,n2,n3) +-- (can1-c2na,can2->.c2na,cana). 
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g +- g(c3U- c2W,c3V- >.c2W,c3W) and go to step 5. Otherwise, if c2 = 0 
output a message saying that the curve is reducible and terminate the algo
rithm. Finally, if c3 = 0 and c2 -:f. 0, set (m1. m2, m3) +- (ma, m2- >.m1, m1), 
(nt. n2, na) +- (n3, n2 + >.n3, n1) and g +- g(W, V + >.W, U), then set>.+- 0. 

5. [Apply theorem] (Here we are finally in the situation of the theorem.) Let 
as in the theorem ci(U, V) be the coefficient of W 3-i in g(U, V, W), and 
d(U, V) +- c2(U, V)2 - 4c1(U, V)c3(U, V). Compute B, C, D and E such 
th-at d(U, >.U + 1) = BU3 + CU2 + DU +E. Then set 

(mt.m2,m3) +- (Bm1(m2- >.m1)ma, 

B(2c3(m1. m2) + c2(m1. m2)ma), (m2- >.m1)2m3), 

(nt. n2, n3) +- (n1(Bn2n3- c2(nt. >.n1 + Bn3)), 

(>.n1 + Bna)(Bn2n3- c2(n1, >.n1 + Bn3)), 2ca(nt. >.n1 + Bn3)). 

Output the maps (X, Y, T) +- (m1, m2, m3) and (U, V, W) +- (n1. n 2 , na), 
the projective WeierstraB equation 

and terminate the algorithm. 

7.4.3 Algorithms for Elliptic Curves over 1Fp 

The only algorithms which we will need here are algorithms which count the 
number of points of an elliptic curve over 1Fp, or equivalently the numbers ap 

such that IE(IFv)l = p + 1- ap. We first describe the naive algorithm which 
expresses ap as a sum of Legendre symbols, then give a much faster algorithm 
using Shanks's baby-step giant-step method and a trick of Mestre. 

Counting the number of points over IF 2 or IF 3 is trivial, so we assume that 
p ~ 5. In particular, we may simplify the Weierstraf3 equation, i.e. assume that 
a1 = a2 = a3 = 0, so the equation of the curve is of the form y2 = x3 +ax+ b. 
The curve has one point at infinity (0 : 1 : 0), and then for every x E 1Fp, there 
are 1 + ("' 3+ax+b) values of y. Hence we have N = p + 1 + '""" ("'3+ax+b) 

p p L...-xEIF,. p ' 
thus giving the formula 

This formula gives a O(pl+o(l)) time algorithm for computing ap, and this is 
reasonable when p does not exceed 10000, say. 

However we can use Shanks's baby step-giant step method to obtain a 
much better algorithm. By Hasse's theorem, we know that p + 1 - 2..;p < 
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Np < p + 1 + 2,fP, hence we can apply Algorithm 5.4.1 with C = p + 1-
2,fP and B = p + 1 + 2,fP. This will give an algorithm which runs in time 
(B- C)l/2+o(l) = p1/4+o(l), and so will be much faster for large p. Now the 
reader will recall that one problem with Shanks's method is that if our group 
is not cyclic, or if we do not start with a generator of the group, we need to 
do some extra work which is not so easy to implement. There is a nice trick 
due, I believe to Mestre, which tells us how to do this extra work in a very 
simple manner. 

If one considers all the curves over IF P defined by y2 = x3 + ad2x + bd3 with 
d =F 0, then there are exactly two isomorphism classes of such curves: those 
for which (~) = 1 are all isomorphic to the initial curve correspond to d = 1, 

and those for which (~) = -1 are also all isomorphic, but to another curve. 
Call E' one of these other curves. Then one has the following proposition. 

Proposition 7.4.11. Let 

be the Abelian group structures of E(lFp) and E'(lFp) respectively, with d1 I d2 
and d~ I d~ (see Proposition 7.1.9 ). Then for p > 457 we have 

This proposition shows that on at least one of the two curves E or E' 
there will be points of order greater than 4,fP, hence according to Hasse's 
theorem, sufficiently large so as to obtain the cardinality of E(IFp) (or of 
E'(lFp)) immediately using Shanks's baby-step giant-step method. In addition, 
since each value of x gives either two points on one of the curves and none 
on the other, or one on each, it is clear that if IE(!Fp)l = p + 1- ap, we have 
IE'(!Fp)l = p + 1 + ap, so computing one value gives immediately the other 
one. 

This leads to the following algorithm. 

Algorithm 7.4.12 (Shanks-Mestre). Given an elliptic curve E over 1Fp with 
p > 457 by a WeierstraB equation y2 = x3 +ax+ b, this algorithm computes the 
ap such that IE(IFp)l = p + 1 - ap. 

1. [Initialize] Set x +- -1, A+- 0, B +- 1, k1 = 0. 

2. [Get next point] (Here we have IE(!Fp)l =A (mod B)). Repeat x +- x + 1, 
d +- x3 +ax+ b, k +- (~) until k =F 0 and k =F k1. Set k1 +- k. Finally, if 
k1 = -1 set A1 +- 2p + 2- A mod B else set A1 +-A. 

3. [Find multiple of the order of a point] Let m be the smallest integer such that 
m > p+ 1-2..;p and m = A1 (mod B). Using Shanks's baby-step giant-step 
strategy, find an integer n such that m ~ n < p + 1 + 2-.jP, n = m (mod B) 
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and such that n · (xd, d2) = 0 on the curve Y2 = X 3 + ad2 X+ bd3 (note that 
this will be isomorphic to the curve E or E' according to the sign of ki). 

4. [Find order] Factor n, and deduce from this the exact order h of the point 
(xd, d2 ). 

5. [Finished?] Using for instance the Chinese remainder algorithm, find the small
est integer h' which is a multiple of h and such that h' = A1 (mod B). 
If h' < 4ylp set B ~ LCM(B, h), then A~ h' mod B if k1 = 1, 
A~ 2p + 2- h' mod B if k1 = -1, and go to step 2. 

6. [Compute ap] Let N be the unique multiple of h' such that p + 1 - 2ylp < 
N < p + 1 + 2ylp. Output ap = p + 1- k1N and terminate the algorithm. 

The running time of this algorithm is O(p1/4+<) for any € > 0, but it is 
much easier to implement than the algorithm for class numbers because of 
the simpler group structure. It should be used instead of the algorithm using 
Legendre symbols as soon as p is greater than 457. Note that one can prove 
that 457 is best possible, but it is easy to modify slightly the algorithm so 
that it works for much lower values of p. 

Note also that, as in the case of class groups of quadratic fields, we can 
use the fact that the inverse of a point is trivial to compute, and hence enlarge 
by a factor y2 the size of the giant steps. In other words, in step 3 the size of 
the giant steps should be taken equal to the integer part of J2fo/ B. 

Another algorithm for computing ap has been discovered by R. Schoof 
([Scho]). What is remarkable about it is that it is a polynomial time algorithm, 
more precisely it runs in time O(ln8 p). The initial version did not seem to be 
very useful in practice, but a lot of progress has been done since. 

Schoof's idea, which we will not explain in detail here, is to use the divi
sion polynomials for the WeierstraB tJ function, i.e. polynomials which express 
t~(nz) and t:~'(nz) in terms of t:~(z) and t:~'(z) for integer n (in fact a prime num
ber n). This gives congruences for the ap, and using the Chinese remainder 
theorem we can glue together these congruences to compute the ap. 

An interesting blend of the baby-step giant-step algorithm and Schoof's 
algorithm is to compute Schoof-type congruences for ap modulo a few primes 
e. If for example we find the congruences modulo 2, 3 and 5, we can divide 
the search interval by 30 in the algorithm above, and hence this allows the 
treatment of larger primes. 

The main practical problem with Schoof's idea is that the equations giving 
the division polynomials are of degree (n2 - 1)/2, and this becomes very 
difficult to handle as soon as n is a little large. 

Recently N. Elkies has been able to show that for approximately one half 
of the primes n, this degree can be reduced to n + 1, which is much more 
manageable. J.-M. Couveignes has also shown how to use n which are powers 
of small primes and not only primes. 
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Combining all these ideas, Morain and Lercier (Internet announcement) 
have been able to deal with a 500-digit prime, which is the current record at 
the time of this writing. 

7.5 Algorithms for Elliptic Curves over Q 

7.5.1 Tate's algorithm 

Given an elliptic curve E defined over Q, using Algorithm 7.4.10 we can assume 
that E is given by a generalized WeierstraB equation y2 + a1XY + a3y = 
x3 + a2x2 + a4x + a6 with coefficients in Q. We would first like to find a 
global minimal WeierstraB equation of E (see [Sil], [LN476] and Algorithm 
7.5.3 for the precise definitions). This will be a canonical way of representing 
the curve E since this equation exists and is unique. (As already remarked, 
it is essential at this point that we work over Q and not over an arbitrary 
number field.) Note that this is a major difference with the case of equations 
defining number fields, where no really canonical equation for the field can be 
found, but only partial approaches such as the pseudo-canonical polynomial 
given by Algorithm 4.4.12. In addition, it is necessary to know this minimal 
equation for several other algorithms. 

Two elliptic curves with different parameters may be isomorphic over Q. 
Such an isomorphism must be given by transformations x = u2x' + r, y = 
u3y' + su2x' + t, where u E Q*, r, s, t E Q. We obtain a new model for the 
same elliptic curve. Using the same quantities as those used in Formulas (7.1), 
the parameters of the new model are given by 

ua~ = a1 + 2s, u2a~ = a2- sa1 + 3r- s 2 

u3a~ = a3 + ra1 + 2t 

u4a~ = a4- sa3 + 2ra2- (t + rs)a1 + 3r2 - 2st 

u6a~ = a6 + ra4 + r 2a2 + r 3 - ta3- t2 - rta1 

u2b~ = b2 + 12r, u4b~ = b4 + rb2 + 6r2 

u6b~ = b6 + 2rb4 + r 2b2 + 4r3 

u8 b8 = bs + 3rb6 + 3r2b4 + r 3b2 + 3r4 
·I . 

J =J, 

(7.2) 

Using these formulas, we may now assume that the coefficients of the equa
tions are integers. We will make this assumption from now on. We first want 
to find a model for E which is minimal with respect to a given prime p, and we 
also want to know the type of the fiber at p of the elliptic pencil defined by E 
over Z (see [Sil], [LN476]). The possible types are described by symbols known 
as Kodaira types. They are I0 ,Iv,II,III,IV,I0 ,I~,II*,III*,IV*, where v 
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is a positive integer. We need also to compute the coefficient Cp which appears 
in the formulation of the Birch and Swinnerton-Dyer Conjecture 7.3.9, that 
is, the index in E(Qp) of the group E0 (Qp) of points which do not reduce to 
the singular point. 

The following algorithm is due to Tate (cf [LN476]). We specialize his 
description to the case of rational integers. The situation is a bit simpler 
when the prime p is greater than 3, so let us start with that case. 

Algorithm 7.5.1 (Reduction of an Elliptic Curve Modulo p). Given integers 
a1, ... , a6 and a prime p > 3, this algorithm determines the Kodaira symbol 
associated with the curve modulo p. In addition, it computes the exponent I of 
p in the arithmetic conductor of the curve, the index c = [E(Qp) : E 0 (Qp] and 
integers u, r, s, t such that a~, ... , a6 linked to a1, ... , a6 via Formulas (7.2) give 
a model with the smallest possible power of p in its discriminant. 

1. [Initialize] Compute c4, c6, ~ and j using Formulas (7.1). If vp(j) < 0 set 
k +- vp(~) + vp(j) else set k +- vp(~). 

2. [Minimal?] If k < 12 set u +- 1, r +- 0, s +- 0, and t +- 0. Otherwise, set 
u +- plk/l2J; if a1 is odd then set s +- (u- a1)/2 else set s +- -al/2. Set 
a~+- a2 - sa1- s2 . Set r +--a~/3, (u2 - a~)/3 or (-u2 - a~)/3 depending 
on a~ being congruent to 0, 1 or -1 modulo 3. Set a~ +- a3 + ra1. If a~ is 
odd, then set t +- (u3 - a~)/2 else set t +- -a~/2. Finally, set k +- k mod 12, 
~ +- ~ju12 , C4 +- C4ju4 and C6 +- C6/U6 . 

3. [Non-integral invariant] If vp(j) < 0, then set v +- -vp(j). k must be equal 
to 0 or 6. If k = 0, set I +-1, and set c +-v if(~) = 1 or c +- gcd(2, v) 

if (~) = -1, then output Kodaira type Iv. If k = 6 set I +- 2, and set 

c +- 3 + (Acap_g_,) if v is odd, c +- 3 + (Ap-a-") if v is even, then output 
Kodaira type/;_. In any case, output I, c, u, r, s~t and terminate the algorithm. 

4. [Integral invariant] If k = 0 then set I +- 0 else set I+- 2. The possible values 

fork are 0, 2, 3, 4, 6, 8, 9 and 10. Set c +- 1, 1, 2, 2+ (-Gc;p- 2
), 1 +the number 

of roots of 4X3 - 3c4p-2 X- C6p-3 in Z/pZ, 2 + (-Gcsp- 4
), 2, 1 respectively. 

Output respectively the Kodaira types I0 ,II,IIJ,IV,I0,IV*,III*,II*. In 
any case, output I, c, u, r, s, t and terminate the algorithm. 

When p = 2 or p = 3, the algorithm is much more complicated. 

Algorithm 7.5.2 (Reduction of an Elliptic Curve Modulo 2 or 3). Given 
integers a1, ... , a6 and p = 2 or 3, this algorithm determines the Kodaira symbol 
associated with the curve modulo p. In addition, it computes the exponent I of 
p in the arithmetic conductor of the curve, the index c = [E(Qv) : E 0 (Qp] and 
integers u, r, s, t such that a~, ... , a6 linked to a 17 ••• , a6 via Formulas (7.2) give 
a model with the smallest possible power of pin its discriminant. To simplify the 
presentation, we use a variable T which will hold the Kodaira type, coded in any 
way one likes. 
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1. [Initialize] Set u +--- 1, r +--- 0, s +--- 0, and t +--- 0. Compute Ll and j using 
Formulas (7.1). Set v +--- vp(Ll). 

2. [Type I0]1f v = 0 then set f +--- 0, c +--- 1, T +--- Io and go to step 22. 

3. [Type Iv]lf p f b2 = ai +4a2 then set f +--- 1, and set c +--- v if X 2 +a1X -a2 
has a root in ZjpZ, set c +--- gcd(2, v) otherwise, then set T +--- Iv and go to 
step 22. 

4. [Change Equation] If p = 2, then set r 1 +--- a4 mod 2, s1 +--- (r1 + a2) mod 2 
and t 1 +--- (a6 + r1(a4 + s1)) mod 2, otherwise compute b6 using Formulas 
(7.1) and set r1 +--- -b6 mod 3, s1 +--- a1 mod 3 and t1 +--- (a3 +r1a1) mod 3. 
Use Formulas (7.2) with the parameters 1,r1,s1,t1 to compute ai, ... ,a6, 
then set a1 +--- ai, a2 +--- a2, ... , a6 +--- a6, r +--- r + u2r1, s +--- s + us1 and 
t +--- t + u3t1 + u2sr1. 

5. [Type II] If p2 f a6 , then set f +--- v, c +--- 1, T +--- II and go to step 22. 

6. [Type III] Compute bs using Formulas (7.1). If p3 f b8 , then set f +--- v- 1, 
c +--- 2, T +--- II I and go to step 22. 

7. [Type IV] Compute b6 using Formulas (7.1). If p3 f b6, then set f +--- v- 2 
and set C+- 3 if X 2 +a3jpX -a6/P2 has a root in Z/pZ, set c +---1 otherwise, 
then set T +--- IV and go to step 22. 

8. [Change Equation] If p3 f a6 do the following. If p = 2, then set k +--- 2, 
otherwise set k +--- a3 mod 9. Use Formulas (7.2) with parameters 1, 0, 0, k to 
compute ai, ... ,a6, then set a1 +--- ai, a2 +--- a2, ... , a6 +--- a6 and finally 
set t +--- t + u3 k. 

9. [Type I0] (At this point, we have pI a2, p2 j a4 and p3 j a5.) Set P +

X3 + a2jpX2 + a4jp2 X+ a5jp3. If P has distinct roots modulo p, then set 
f +--- v- 4, set c +--- 1+ the number of roots of Pin Z/pZ, T +--- I0 and go 
to step 22. 

10. [Change Equation] Let a be the multiple root of the polynomial P modulo 
p. If a -=? 0, then use Formulas (7.2) with parameters 1, ap, 0, 0 to compute 
ai, ... , a6, then set a1 +--- ai, a2 +--- a2, ... , a6 +--- a6, r +--- r + u2ap and 
t +--- t + u2sap. If a is a double root, then go to step 16. 

11. [Type IV*] (Here p2 j a3, p4 j a5.) Set P +--- X 2 + a3jp2 X- a5jp4. If P has 
a double root in Z/pZ, then let a be that root. Otherwise set f +--- v- 6, set 
c +--- 3 if P splits over ZjpZ and c +--- 1 otherwise, set T +--- IV* and go to 
step 22. 

12. [Change Equation] If a -=? 0 then use Formulas (7.2) with parameters 
1, 0, 0, ap2 to compute ai, ... , a6, then set a1 +--- ai, a2 +--- a2, ... , a5 +--- a6 
and t +--- t + u3 ap2 • 

13. [Type III*] If p4 f a4 , then set f +--- v- 7, c +--- 2, T +---I II* and go to step 
22. 

14. [Type II*] If p6 f a5, then set f +--- v- 8, c +---1, T+- II* and go to step 22. 



7.5 Algorithms for Elliptic Curves over Q 409 

15. [Non-minimal equation] Use Formulas (7.2) with parameters p, 0, 0, 0 to com
pute aL ... ,a~, then set a1 +-- a~, a2 +-- a~, ... , a6 +-- a~, u +-- pu, 
v +-- v- 12 and go to step 2. 

16. [Initialize Loop] Set f +-- v- 5, v +-- 1, q +-- p2 • 

17. [Type I~. day in] Set P +-- X 2 + a3jqX- a5jq2. If P has distinct roots 
modulo p, then set c +-- 4 if these roots are in ZjpZ, set c +-- 2 otherwise, 
then set T +--I~ and go to step 22. 

18. [Change Equation] Let a be the double root of P modulo p. If a =/= 0, use 
Formulas (7.2) with parameters 1, 0, 0, aq to compute aL ... , a~, then set 
a1 +-- ai, a2 +-- a~, ... , a6 +-- a~ and t +-- t + u3aq. 

19. [Type I~. day out] Set v +-- v+ 1 and P +-- a2jpX2 +a4j(pq)X +a6j(pq2). 
If P has distinct roots modulo p, then set c +-- 4 if these roots are in ZjpZ, 
set c +-- 2 otherwise, then set T +--I~ and go to step 22. 

20. [Change Equation] Let a be the double root of P modulo p. If a =/= 0, use 
Formulas (7.2) with parameters 1, aq, 0, 0 to compute a~, ... , a~, then set 
a1 +--a~, a2 +--a~, ... , a6 +--a~, r +-- r + u2aq and t +-- t + u2saq. 

21. [Loop] Set v +-- v + 1, q +-- p · q and go to step 17. 

22. [Common termination] Output the Kodaira type T, the numbers f, c, u, r, 
s, t and terminate the algorithm. 

Let us turn now to the global counterpart of this process: what is the best 
equation for an elliptic curve defined over IQ?. 

Algorithm 7.5.3 (Global Reduction of an Elliptic Curve). Given a1, ... , a6 E 
Z, this algorithm computes the arithmetic conductor N of the curve and inte
gers u, r, s, t such that aL ... , a~ linked to a 1, ... , a6 via Formulas (7.2) give a 
model with the smallest possible discriminant (in absolute value) and such that 
a~,a~ E {0,1} and a~ E {0,±1}. 

1. [Initialize] Set N +-- 1, u +-- 1, r +-- 0, s +-- 0 and t +-- 0. Compute D +-- 1~1 
using Formulas (7.1). 

2. [Finished ?] If D = 1, then output N, u, r, s, t and terminate the algorithm. 

3. [Local Reduction] Find a prime divisor p of D. Then use Algorithm 7.5.1 or 
7.5.2 to compute the quantities /p, up, rp, sp (the quantity Cp may be discarded 
if it is not wanted for other purposes). Set N +-- NpfP. If up =/= 1, set u +-- uup, 
r +-- r + u2rp. s +-- s + usp and t +-- t + u3tp + u2srp. Finally, set D +-- Djp 
until p f D, then go to step 2. 

Note that if only the minimal Weierstrafi equation of the curve is desired, 
and not all the local data as well, we can use a simpler algorithm due to Laska 
(see [Las] and Section 3.2 of [Cre] for a version due to Kraus and Connell). 
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7.5.2 Computing rational points 

We now turn to the problem of trying to determine the group E(Q) of rational 
points on E. As already mentioned, this is a difficult problem for which no 
algorithm exists unless we assume some of the standard conjectures. 

On the other hand, the determination of the torsion subgroup E(Q)tors is 
easy. (This is the elliptic curve analog of computing the subgroup of roots of 
unity in a number field, see Algorithms 4.9.9 and 4.9.10.) 

By considering the formal group associated with the elliptic curve, one 
can prove (see (Sil]) that torsion points of composite order in any number field 
have integral coordinates in any Weierstra£ model with integral coefficients. 
Moreover, there are bounds on the denominators of the coordinates of torsion 
points of order pn where p is a prime. Over Q, these bounds tell us that 
only the points of order 2 may have non-integral coordinates in a generalized 
Weierstra£ model, and in that case the denominator of the x-coordinate is at 
most 4. Using the fact that if P is a torsion point, then 2P is also one, one 
obtains the following theorem, due to Nagell and Lutz (see (Sil]). 

Theorem 7.5.4 (Nagell-Lutz). If P = (x, y) is a rational point of finite order 
n > 2 on the elliptic curve y2 = x 3 + Ax + B, where A and B are integers, 
then x andy are integers and y2 divides the discriminant -(4A3 + 27B2). 

This result, together with Mazur's Theorem 7.1.11 gives us the following 
algorithm. 

Algorithm 7.5.5 (Rational Torsion Points). Given integers a1. ... , a6 , this 
algorithm lists the rational torsion points on the corresponding elliptic curve E. 

1. [2-Division Points] Using Formulas (7.1), compute b2, b4, b5, bs and 6.. Output 
the origin of the curve ((0: 1 : 0) in projective coordinates). Set P- 4X3 + 
b2X2 +2b4X +bB. For each rational root a of P, output the point (a, -(a1a+ 
a3)/2). 

2. [Initialize Loop] Set n - 4 TiviD. plvp(D.)/2J, the largest integer whose square 
divides 166.. Form the list .C of all positive divisors of n. 

3. [Loop on 2y + a1x + a3]lf .C is empty, terminate the algorithm. Otherwise, let 
d 9e the smallest element of .C, and removed from .C. For each rational root 
a of P - d2 execute step 4, then go to step 3. 

4. [Check if torsion] Set P1 -(a, (d- a1a- a3)/2). Compute the points 2H, 
3Pl. 4Pl. SP1 and 6P1, and let x2, ... , X5 be their x-coordinates. If one of 
these points is the origin of the curve, or if one of the Xi is equal to the x
coordinate of a point found in step 1, or if x2 = X3 or X3 = X4 or X4 = xs, 
then output the two points P1 and P2 - (a, -(d + a1a + a3)/2). 

Indeed, from Mazur's Theorem 7.1.11, it is clear that H will be a torsion 
point if and only if kP1 is a point of order dividing 2 for k ~ 6 or if kP1 = 
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-(k + 1)Pl fork ~ 4, and since opposite points have equal x-coordinates in a 
Weierstraf3 model, we deduce the test for torsion used in step 4. 

Note that to obtain the torsion subgroup from this algorithm is very easy: 
if the polynomial P of step 1 has three rational roots, the torsion subgroup 
is isomorphic to (Z/2Z) x (Z/(N/2)Z) otherwise it is isomorphic to Z/NZ, 
where N is the total number of torsion points output by the algorithm. 

The last algorithm that we will see in this section is an algorithm to 
compute the canonical height of a rational point. 

The Weil height of a point P = ( ~, b3 ) on an elliptic curve E is defined 
e e 

to be h(P) = ln lei- It is known that the limit 

h(P) = lim h(2n P) 
n-+oo 22n 

exists and defines a positive definite quadratic form on lR ® E(Q), known as 
the canonical height function on E(Q). The existence of this limit means that 
when a rational point with large denominator is multiplied by some integer 
m for the group law on the curve, the number of digits of its denominator is 
multiplied by m2 • 

The symmetric bilinear form (P, Q) = h(P + Q) - h(P) - h( Q) is called 
the canonical height pairing and is used to compute the regulator in the Birch 
and Swinnerton-Dyer Conjecture 7.3.9. The canonical height has properties 
analogous to those of the logarithmic embedding for number fields (Theorem 
4.9.7). More precisely, h(P) = 0 if and only if P is a point of finite order. 
More generally if P1, ... , Pr are points onE, then det((Pi,P;)) = 0 if and 
only if there exists a linear combination of the points (for the group law of E) 
which is a point of finite order. Hence this determinant is called the (elliptic) 
regulator of the points Pi. 

If Pt, ... , Pr form a basis of the torsion-free part of E(Q), the regulator 
R(E/Q) which enters in the Birch and Swinnerton-Dyer conjecture is the 
elliptic regulator of the points Pi. 

The height function h(P) has a very interesting structure (see [Sill). We 
will only note here that it can be expressed as a sum of local functions, one for 
each prime number p and one for the "Archimedean prime" oo. To compute 
the contribution of a prime p we use an algorithm due in this form to Silverman 
(see [Sil2]). We will always assume that the elliptic curve is given by a global 
minimal equation, obtained for example by Algorithm 7.5.3. 

Algorithm 7.5.6 (Finite part of the height). Given at, ... , a6 E Z the coef
ficients of the global minimal equation of an elliptic curve E and the coordinates 
(x, y) of a rational point P on E, this algorithm computes the contribution of 
the finite primes to the canonical height h(P). 

1. [Initialize] Using Formulas (7.1), compute b2, b4, b5, bs, C4, and .6.. Set 
z - (1/2) ln(denominator of x), A -numerator of 3x2 + 2a2x + a4 - a1y, 
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B +--numerator of 2y + a1x + a3 , C +-numerator of 3x4 + b2x3 + 3b4x2 + 
3b6x + bs and D +-- gcd(A, B). 

2. (Loop on p)lf D = 1, output z and terminate the algorithm. Otherwise, choose 
a prime divisor p of D and set D +-- D fp until p f D. 

3. (Add local contribution)lf p f C4, then set N +-- v11(6.), n +-- min(v11 (B), N/2) 
and z +-- z- (n(N- n)/(2N)) lnp. Otherwise, if v11(C) ;::: 3v11(B) set z +
z- (v11(B)/3) lnp else set z +-- z- (v11(C)/8) lnp. Go to step 2. 

The Archimedean contribution has a more interesting history from the 
computational point of view. Initially, it was defined using logarithms of a 
functions on the curve, but such objects are not easy to compute by hand or 
with a hand-held calculator. Tate then discovered a very nice way to compute 
it using a simple series. Silverman's paper [Sil2) also contains an improvement 
to that method. However, that series converges only geometrically (the n-th 
term is bounded by a constant times 4 -n). The original definition, while more 
cumbersome, has a faster rate of convergence by using q-expansions, so it 
should be preferred for high-precision calculations. 

Algorithm 7.5.7 (Height Contribution at oo). Given a 1, ... ,a6 E lR and the 
coordinates (x, y) of a point P on E(JR), this algorithm computes the Archimedean 
contribution of the canonical height of P. 

1. (Initialize) Using Formulas (7.1), compute b2, b4 , b6 and 6.. Using Algorithm 
7.4.7, compute w1 and w2. Using Algorithm 7.4.8, compute the elliptic loga
rithm z of the point P. Set A.+-- 2rrfw2, t +-- A.Re(z) and q +-- e2i7rw1 /w2 • 

(Note that q is a real number and iqi < 1.) 

2. (Compute theta function) Set 

00 

() +-- L sin( (2n + l)t)( -l)nqn(n+l)/2 

n=O 

(stopping the sum when qn(n+l)/2 becomes sufficiently small). 

3. (Terminate) Output 

and terminate the algorithm. 

The canonical height h(P) is the sum of the two contributions coming 
from Algorithms 7.5.6 and 7.5.7. 
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7.5.3 Algorithms for computing the £-function 

As we have seen, according to the Birch and Swinnerton-Dyer conjecture, most 
of the interesting arithmetical invariants of an elliptic curve E are grouped 
together in the behavior of L(E, s) around the points= 1, in a manner similar 
to the case of number fields. In this section, we would like to explain how to 
compute this L function at s = 1, assuming of course that E is a modular 
elliptic curve. The result is analogous to Propositions 5.3.14 and 5.6.11 but is 
in fact simpler since it (apparently) does not involve any higher transcendental 
functions. 

Proposition 7.5.8. Let E be a modular elliptic curve, let N be the conductor 
of E, let L(E, s) = Ln>l ann-s be the L-series of E and finally let e: = ±1 
be the sign in the functzonal equation for L(E, s). Then if A is any positive 
real number, we have 

00 

L(E, 1) = L ~ ( e-2 ... nA/v'N + c:e-2,..n/(Av'N)) 

n=l 

and in particular 

00 

L(E, 1) = (1 + c:) L an e-21rn/v'N. 
n=l n 

As in the case of quadratic fields, we have given the general formula in
volving a real parameter A, but here the purpose is different. In the case 
of quadratic fields, it gave the possibility of checking the correctness of the 
computation of certain higher transcendental functions. Here, its use is very 
different: since the expression must be independent of A, it gives an indirect 
but quite efficient way to compute the sign e: (and also the conductor N for 
that matter), which otherwise is not so easy to compute (although there exist 
algorithms for doing so which are rather tedious). Indeed, we compute the 
right hand side of the formula giving L( E, 1) for two different values of A, say 
A= 1 and A= 1.1 (A should be close to 1 for optimal speed), and the results 
must agree. Only one of the two possible choices for e: will give results which 
agree. Hence the above proposition enables us, not only to compute L(E, 1) 
to great accuracy (the series converges exponentially) but also to determine 
the sign of the functional equation. Also note that the ap are computed using 
Algorithm 7.4.12 or simply as a sum of Legendre symbols, and the an are 
computed using the relations a1 = 1, amn = aman if m and n are coprime, 
and apk = apapk-l - papk-2 for k 2: 2. 

This is not the whole story. Assume that we discover in this way that 
e: = -1. Then L(E, 1) = 0 for trivial antisymmetry reasons, but the Birch and 
Swinnerton-Dyer conjecture tells us that the interesting quantity to compute 



414 7 Introduction to Elliptic Curves 

is now the derivative L'(E, 1) of L(E, s) at s = 1. In that case we have the 
following proposition which now involves higher transcendental functions. 

Proposition 7.5.9. Let E be a modular elliptic curve, let N be the conductor 
of E, and let L(E, s) = l::n>l ann-s be the L-series of E. Assume that the 
sign c: of the functional equation for L( E, s) is equal to -1 {hence trivially 
L(E, 1) = 0}. Then 

L'(E,1) = 2~ ~ E1 (~) 

where E1 is the exponential integral function already used in Proposition 
5.6.11. 

In the case where L(E, s) vanishes to order greater than 1 around s = 1, 
there exist similar formulas for L(rl(E, 1) using functions generalizing the 
function E1(x). We refer to [BGZ] for details. If we assume the Birch and 
Swinnerton-Dyer conjecture, these formulas allow us to compute the rank of 
the curve E as the exact order of vanishing of L(E, s) around s = 1. Note 
that although the convergence of the series which are obtained is exponential, 
we need at least 0( .../N) terms before the partial sums start to become sig
nificantly close to the result, hence the limit of this method, as in the case of 
quadratic fields, is for N around 1010 . In particular, if we want to estimate the 
rank of elliptic curves having a much larger conductor, other methods must 
be used (still dependent on all standard conjectures). We refer to [Mes2] for 
details. 

7.6 Algorithms for Elliptic Curves with Complex 
Multiplication 

7.6.1 Computing the Complex Values of j(r) 

We first describe an efficient way to compute the numerical value of the func
tion j(r) forTE 'H.. 

Note first that, as in most algorithms of this sort, it is worthwhile to have 
T with the largest possible imaginary part, hence to use j(r) = j('y(r)) for 
any 'Y E SL2(Z). For this, we use Algorithm 7.4.2. 

After this preliminary step, there are numerous formulas available to us 
for computing j ( T), as is the case for all modular forms or functions. We could 
for example use Algorithm 7.4.3 for computing g2 and g3 . It would also be 
possible to use formulas based on the use of the arithmetic-geometric mean 
which are quadratically convergent. This would be especially useful for high 
precision computations of j(r). 
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We will use an intermediate approach which I believe is best suited for 
practical needs. It is based on the following formulas. 

Set as usual q = e2i11"T, and 

This expression should be computed as written. Note that the convergence is 
considerably better than that of an ordinary power series since the exponents 
grow quadratically. It is a well known theorem on modular forms that 

3 2 (211")12 
92 - 27 93 = W2 ~. 

Now the formula that we will use for computing j(r) is 

"( ) _ (256/(r) + 1)3 

J r - f(r) 
~(2r) 

where f(r) = ~(r) 

(note that changing r into 2r changes q into q2). 

7.6.2 Computing the Hilbert Class Polynomials 

Our second goal is to compute the equation of degree h(D) satisfied by j(r), 
which we will call the Hilbert class polynomial for the discriminant D. For 
this we directly apply Theorem 7.2.14. This leads to the following algorithm, 
which is closely modeled on Algorithm 5.3.5. 

Algorithm 7.6.1 (Hilbert Class Polynomial). Given a negative discriminant 
D, this algorithm computes the monic polynomial of degree h(D) in Z[X] of 
which j((D + v'D)/2) is a root. We make use of a polynomial variable P. 

1. (Initialize) Set P +-- 1, b +-- D mod 2 and B +-l JIDI/3 j. 
2. (Initialize a) Set t +-- (b2 - D)/4 and a+-- max(b, 1). 

3. (Test) If aft go to step 4. Otherwise compute j +-- j((-b + v'D)/(2a)) using 
the above formulas. Now if a= b or a2 =tor b = 0 set P +-- P ·(X- j), else 
set P +-- P · (X2 - 2Re(j)X + lil2). 

4. (Loop on a) Set a +-- a + 1. If a2 :::; t, go to step 3. 

5. (Loop on b) Set b +-- b + 2. If b :::; B go to step 2, otherwise round the 
coefficients of P to the nearest integer, output P and terminate the algorithm. 

An important remark must be made, otherwise this algorithm would not 
make much sense. The final coefficients of P (known to be integers) must be 
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computed within an error of 0.5 at most. For this, we need to make some a 
priori estimate on the size of the coefficients of P. In practice, we look at the 
constant term, which is usually not far from being the largest. This term is 
equal to the product of the values j((-b + ,fl5)j(2a)) over all reduced forms 

(a,b,c), and the modulus of this is approximately equal to e7r/iDI/(2a) hence 
the modulus of the constant term is relatively close to 10k, where 

k = 1f JiDT "' .! 
ln(10) L a' 

the sum running over all reduced forms (a, b, c) of discriminant D. 
Hence in step 3, the computation of the j-values should be done with at 

least k+ 10 significant digits, 10 being an empirical constant which is sufficient 
in practice. Note that the value of I: 1/ a is not known in advance, so it should 
be computed independently (by again applying a variant of Algorithm 5.3.5), 
since this will in any case take a negligible proportion of the time spent. 

7.6.3 Computing Weber Class Polynomials 

One of the main applications of computing the Hilbert class polynomials is 
to explicitly generate the Hilbert class field of K = Q( JD) when D is a 
negative fundamental discriminant. As already mentioned, the coefficients of 
these polynomials will be very large, and it is desirable to make them smaller. 
One method is to use the PO LRED Algorithm 4.4.11. An essentially equivalent 
method is given in [Kal-Yui]. A better method is to start by using some extra 
algebraic information. 

We give an example. Set 

(this is the 24-th root of the function .D.(r) defined above, and is called 
Dedekind's eta-function). Define 

f ( ) = ry(r/2) 
1 T rJ( T) . 

Then if D = ±8 (mod 32) and 3 f D, if we set 

we can use u instead of j for generating the class field. Indeed, one can show 
that K(j) = K(u), that u is an algebraic integer (of degree equal to h(D)), and 
what is more important, that the coefficients of the minimal monic polynomial 
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of u (which we will call the Weber class polynomial for D) have approximately 
12 times fewer digits than those of the Hilbert class polynomials. 

Note that one can easily recover j from u if needed. For example, in our 
special case above we have 

This takes care only of certain congruence classes forD, but most can be 
treated in a similar manner. We refer the interested reader to [Atk-Mor) or to 
[Kal-Yui) for complete details. 

The algorithm for computing the Weber class polynomials is essentially 
identical to the one for Hilbert class polynomials: we replace j by u, and fur
thermore use a much lower precision for the computation of u. For example, in 
the caseD= ±8 (mod 32) and 3 f D, we can take approximately one twelfth 
of the number of digits that were needed for the Hilbert class polynomials. 

7. 7 Exercises for Chapter 7 

1. (J. Cremona) Given C4 and es computed by Formulas (7.1), we would like to 
recover the bi and ai, where we assume that the ai are in Z. Show that the 
following procedure is valid. Let b2 be the unique integer such that -5 ~ b2 ~ 6 
and b2 = -es mod 12. Then set b4 = (b~ -C4)/24, b6= ( -b~ + 36b2b4- es)/216. 
Finally set a1 = b2 mod 2 E {0, 1}, a2 = (b2-a1)/4 E { -1, 0, 1}, a3 = b6 mod 2 
E {0, 1}, a4 = (b4- a1a3)/2 and a6= (b6- a3)/4. 

2. Let E be an elliptic curve with complex multiplication by the complex quadratic 
order of discriminant D. Show that if pis a prime such that (%) = -1, then 
IE(Z/pZ)I = p + 1. 

3. Using the result of Exercise 2, show that the only torsion points on the elliptic 
curve y 2 = x3 - n2x (which has complex multiplication by Z[i)) are the 4 points 
of order 1 or 2. (Hint: use Dirichlet's theorem on the infinitude of primes in 
arithmetic progressions.) 

4. Show that the elliptic curve y2 = 4x3 - 30x - 28 has complex multiplication 
by Z[A] and give explicitly the action of multiplication by ..;=2 on a point 
(x,y). 

5. Given an elliptic curve defined over Q by a generalized Weierstrafi equation, write 
an algorithm which determines whether this curve has complex multiplication, 
and if this is the case, gives the complex quadratic order End( E). (This exercise 
requires some additional knowledge about elliptic curves.) 

6. Using Algorithm 7.4.10, find a Weierstrafi equation for the elliptic curve E given 
by the projective equation 

x3+ y3 = dt3 

with (1 : -1 : 0) as given rational point. 
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7. Given the point (2 : 1 : 1) on the elliptic curve whose projective equation is 
x 3 + y 3 = 9t3 , find another rational point with positive coordinates (apart from 
the point (1 : 2 : 1) of course). It may be useful to use the result of Exercise 6. 

8. Given an elliptic curve E by a general WeierstraB equation y 2 + a1xy+ aay = 
x3 + a2x2 + a4 x + a6 and a complex number z, give the formulas generalizing 
those of Proposition 7.4.4 for the coordinates (x, y) on E(C) corresponding to z 
considered as an element of C/ L where L is the lattice associated to E. 

9. (J.-F. Mestre) Let r1, r2, ra and r 4 be distinct rational numbers and let t be 
a parameter (which we will also take to be a rational number). Consider the 
polynomial of degree 12 

P(X) = II (X- (ri +tr;)). 
1:5i,j:54, if'.j 

a) By considering the Laurent series expansion of pl/a show that for any 
monic polynomial P of degree 12 there exists a unique polynomial g E Q[X] 
such that deg(P(X) -l(X)) :5 7, and show that in our special case we have in 
fact deg(P(X)- g3 (X)) :5 6. 

b) Show that there exists q(X) E Q[X] and r(X) E Q[X] such that P(X) = 
l(X) + q(X)g(X) + r(X) with deg(q) :52 and deg(r) :53. 

c) Deduce from this that the equation Y 3+q(X)Y +r(X) = 0 is the equation 
of a cubic with rational coefficients, and that the 12 points (ri+tr;, g(ri+tr;))if'i 
are 12 (not necessarily distinct) rational points on this cubic. 

d) Give explicit values of the ri and t such that the cubic is non-singular, 
the 12 points above are distinct and in fact linearly independent for the group 
law on the cubic. 

e) Using Algorithm 7.4.10, find a WeierstraB equation corresponding to the 
cubic, and give explicitly an elliptic curve defined over Q whose rank is at least 
equal to 11 as well as 11 independent points on the elliptic curve (note that we 
have to "lose" a point in order to obtain an elliptic curve). To answer the last 
two questions of this exercise, the reader is strongly advised to use a package 
such as those described in Appendix A. In [Nag] it is shown how to refine this 
construction in order to have infinite families of elliptic curves of rank 13 instead 
of 11. 

10. Prove that the AGM of two positive real numbers exists, i.e. that the two se
quences an and bn given in the text both converge and to the same limit. Show 
also that the convergence is quadratic. 

11. The goal of this exercise is to prove the formula giving AGM(a, b) in terms of 
an elliptic integral. 

a) Set 

I( a, b) = 11r /2 --;:==d=t =====:= 
0 Va2 cos2 t+ b2 sin2 t 

By making the change of variable sin t = 2a sin u/((a +b)+ (a- b) sin2 u) show 
that I(a, b)= I((a+ b)/2, Jab). 

b) Deduce from this the formula I(a, b)= 7r/(2AGM(a, b)) given in the text. 
c) By making the change of variable x =a+ (b -a) sin2 t, express I(a, b) as 

an elliptic integral. 



Chapter 8 

Factoring in the Dark Ages 

I owe this title to a talk given by Hendrik Lenstra at MSRl Berkeley in the 
spring of 1990. 

8.1 Factoring and Primality Testing 

Since Fermat, it is known that the problem of decomposing a positive integer 
N into the product of its prime factors splits in fact in three subproblems. 
The first problem is to decide quickly whether N is composite or probably 
prime. Such tests, giving a correct answer when N is composite, but no real 
answer when N is prime, will be called compositeness tests (and certainly not 
primality tests). We will study them in Section 8.2. The second problem is, if 
one is almost sure that N is prime, to prove that it is indeed prime. Methods 
used before 1980 to do this will be studied in Section 8.3. Modern methods are 
the subject matter of Chapter 9. The third problem is that once one knows 
that N is composite, to factor N. Methods used before the 1960's (i.e. in the 
dark ages) will be studied starting at Section 8.4. Modern methods are the 
subject matter of Chapter 10. 

Note that factoring/primality testing is usually a recursive process. Given 
a composite number N, a factoring method will not in general give the 
complete factorization of N, but only a non-trivial factor d, i.e. such that 
1 < d < N. One then starts working on the two pieces d and N /d. Finding 
a non-trivial divisor d of N will be called splitting N, or even. sometimes by 
abuse of language, factoring N. 

Before going to the next section, it should be mentioned that the most 
naive method of trial division (which simultaneously does factoring and pri
mality testing) deserves a paragraph. Indeed, in most factoring methods, it 
usually never hurts to trial divide up to a certain bound to remove small fac
tors. Now we want to divide N by primes up to the square root of N. For this, 
we may or may not have at our disposal a sufficiently large table of primes. 
If this is not the case, it is clear that we can divide N by numbers d in given 
congruence classes, for example 1 and 5 modulo 6, or 1, 7, 11, 13, 17, 19, 23, 29 
modulo 30. We will then make unnecessary divisions (by composite numbers), 
but the result will still be correct. Hence we may for instance use the following 
algorithm. 
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Algorithm 8.1.1 (Trial Division). We assume given a table of prime numbers 
p[1] = 2, p[2] = 3, ... , p[k]. with k > 3, an array t +-- [6, 4, 2, 4, 2, 4, 6, 2], and an 
index j such that if p[k] mod 30 is equal to 1, 7, 11, 13, 17, 19, 23 or 29 then j is 
set equal to equal to 0, 1, 2, 3, 4, 5, 6 or 7 respectively. Finally, we give ourselves 
an upper bound B such that B ;::: p[k], essentially to avoid spending too much 
time. 

Then given a positive integer N, this algorithm tries to factor (or split N), 
and if it fails, N will be free of prime factors less than or equal to B. 

1. [Initialize] If N ~ 5, output the factorization 1 = 1, 2 = 2, 3 = 3, 4 = 22 , 

5 = 5 corresponding to the value of N, and terminate the algorithm. Otherwise, 
set i +-- -1, m +-- 0, l +-- LJNJ. 

2. [Next prime] Set m +-- m + 1. If m > k set i +-- j - 1 and go to step 5, 
otherwise set d +-- p[m]. 

3. [Trial divide] Set r +-- N mod d. If r = 0, then output d as a non-trivial divisor 
of Nand terminate the algorithm (or set N +-- N/d, l +-- L JNJ and repeat 
step 3 if we want to continue finding factors of N). 

4. [Prime?] If d ;::: l, then if N > 1 output a message saying that the remaining 
N is prime and terminate the algorithm. Otherwise, if i < 0 go to step 2. 

5. [Next divisor] Set i +-- i + 1 mod 8, d +-- d + t[i]. If d > B, then output a 
message saying that the remaining prime divisors of N are greater than B, 
otherwise go to step 3. 

Note that we have i = -1 as long as we are using our prime number table, 
i;::: 0 if not. 

This test should not be used for factoring completely, except when N is 
very small (say N < 108 ) since better methods are available for that purpose. 
On the other hand, it is definitely useful for removing small factors. 

Implementation Remark. I suggest using a table of primes up to 500000, 
if you can spare the memory (this represents 41538 prime numbers). Trial 
division up to this limit usually never takes more than a few seconds on 
modern computers. Furthermore, only the difference of the primes (or even 
half of these differences) should be stored and not the primes themselves, since 
p[k]- p[k -1] can be held in one byte instead of four when p[k] ~ 436273009, 
and (p[k] - p[k- 1])/2 can be held in one byte if p[k] ~ 304599508537 (see 
[Bre3]). 

Also, I suggest not doing any more divisions after exhausting the table of 
primes since there are better methods to remove small prime factors. Finally, 
note that it is not really necessary to compute l +-- L JNJ in the initialization 
step, since the test d ;::: l in step 4 can be replaced by the test q ~ l, where 
q is the Euclidean quotient of N by d usually computed simultaneously with 
the remainder in step 3. 
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8.2 Compositeness Tests 

The first thing to do after trial dividing a number N up to a certain bound, is 
to check whether N (or what remains of the unfactored part) is probably prime 
or composite. The possibility of doing this easily is due to Fermat's theorem 
aP-1 = 1 {mod p) when pis a prime not dividing a. Fermat's theorem in itself 
would not be sufficient however, even for getting a probable answer. 

The second reason Fermat's theorem is useful is that aP-1 mod p can be 
computed quickly using the powering algorithms of Section 1.2. This is in 
contrast with for instance Wilson's theorem stating that (p-1)! = -1 (mod p) 
if and only if pis prime. Although superficially more attractive than Fermat's 
theorem since it gives a necessary and sufficient condition for primality, and 
not only a necessary one, it is totally useless because nobody knows how to 
compute (p- 1)! mod pin a reasonable amount of time. 

The third reason for the usefulness of Fermat's theorem is that although 
it gives only a necessary condition for primality, exceptions (i.e. composite 
numbers which satisfy the theorem) are rare. They exist, however. For exam
ple the number N = 561 = 3 · 11 · 17 is such that aN- 1 = 1 (mod N) as 
soon as (a, N) = 1. Such numbers are called Carmichael numbers. It has just 
recently been proved by Alford, Granville and Pomerance ([AGP]) that there 
are infinitely many Carmichael numbers and even that up to x their number 
is at least C · x 217 for some positive constant C. 

It is not difficult to strengthen Fermat's theorem. If pis an odd prime and p 
does not divide a, then a<P- 1)/2 = ±1 (mod p) (more precisely it is congruent 
to the Legendre symbol (~), see Section 1.4.2). This is stronger than Fermat, 
and for example eliminates 561. It does not however eliminate all counter
examples, since for instance N = 1729 satisfies a<N-1)12 = 1 {mod N) for all 
a coprime to N. 

The first test which is really useful is due to Solovay and Strassen ([Sol
Str]). It is based on the fact that if we require not only a<N-1)12 = ±1 
(mod N) but a<N-1)12 = (-N) {mod N), where (N") is the Jacobi-Kronecker 
symbol, then this will be satisfied by at most N /2 values of a when N is not a 
prime. This gives rise to the first compositeness test, which is probabilistic in 
nature: for 50 (say) randomly chosen values of a, test whether the congruence 
is satisfied. If it is not for any value of a, then N is composite. If it is for all 
50 values, then we say that N is probably prime, with probability of error less 
than 2-50 ~ 10-15 , lower in general than the probability of a hardware error. 

This test has been superseded by a test due to Miller and Rabin ([Mil], 
[Rab]), which has two advantages. First, it does not require any Jacobi symbol 
computation, and second the number of a which will satisfy the test will be 
at most N /4 instead of N /2, hence fewer trials have to be made to ensure a 
given probability. In addition, one can prove that if a satisfies the Rabin-Miller 
test, then it will also satisfy the Solovay-Strassen test, so the Miller-Rabin test 
completely supersedes the Solovay-Strassen test. 
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Definition 8.2.1. Let N be an odd positive integer, and a be an integer. 
Write N- 1 = 2tq with q odd. We say that N is a strong pseudo-prime in 
base a if either aq = 1 (mod N), or if there exists an e such that 0 ~ e < t 
and a2•q = -1 (mod N). 

If p is an odd prime, it is easy to see that p is a strong pseudo-prime in 
any base not divisible by p (see Exercise 1). Conversely, one can prove (see for 
example [Knu2]) that if pis not prime, there exist less than p/4 bases a such 
that 1 < a < p for which p is a strong pseudo-prime in base a. This leads to 
the following algorithm. 

Algorithm 8.2.2 (Rabin-Miller). Given an odd integer N ~ 3, this algorithm 
determines with high probability if N is composite. If it fails, it will output a 
message saying that N is probably prime. 

1. [Initialize] Set q +- N -1, t +- 0, and while q is even set q +- q/2 and t +- t+1 
(now N -1 = 2tq with q odd). Then set c +- 20. 

2. [Choose new a] Using a random number generator, choose randomly an a such 
that 1 <a< N. Then set e +- 0, b +- aq mod N. If b = 1, go to step 4. 

3. [Squarings] While b ¢. ±1 (mod N) and e ~ t - 2 set b +- b2 mod N and 
e +- e + 1. If b =/= N- 1 output a message saying that N is composite and 
terminate the algorithm. 

4. [Repeat test] Set c +- c- 1. If c > 0 go to step 2, otherwise output a message 
saying that N is probably prime. 

The running time of this algorithm is essentially the same as that of the 
powering algorithm which is used, i.e. in principle O(ln3 N). Note however that 
we can reasonably restrict ourselves to single precision values of a (which will 
not be random any more, but it probably does not matter), and in that case 
if we use the left-right Algorithms (1.2.2 to 1.2.4), the time drops to O(ln2 N). 
Hence, it is essentially as fast as one could hope for. 

This algorithm is the workhorse of compositeness tests, and belongs in 
almost any number theory program. Note once again that it will prove the 
compositeness of essentially all numbers, but it will never prove their primal
ity. In fact, by purely theoretical means, it is usually possible to construct 
composite numbers which pass the Rabin-Miller test for any given reasonably 
small finite set of bases a ([Arn]). For example, the composite number 

1195068768795265792518361315725116351898245581 

=24444516448431392447461·48889032896862784894921 

is a strong pseudo-prime to bases 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 and 31 and 
several others. 

There is a variation on this test due to Miller which is as follows. If one 
assumes the Generalized Riemann Hypothesis, then one can prove that if N 
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is not prime, there exists an a < C ln2 N such that N will not be a strong 
pseudo-prime in base a, C being an explicit constant. Hence this gives a non
probabilistic primality and compositeness test, but since it is based on an 
unproven hypothesis, it cannot be used for the moment. Note that the situ
ation is completely different in factoring algorithms. There, we can use any 
kinds of unproven hypotheses or crystal balls for that matter, since once the 
algorithm (or pseudo-algorithm) finishes, one can immediately check whether 
we have indeed obtained a factor of our number N, without worrying about the 
manner in which it was obtained. Primality testing however requires rigorous 
mathematical proofs. 

Note also that even if one uses the best known values of the constant C, 
for our typical range of values of N (say up to 10500 ), the modern methods 
explained in Chapter 9 are in practice faster. 

8.3 Primality Tests 

We now consider the practical problem of rigorously proving that a number N 
is prime. Of course, we will try to do this only after N has successfully passed 
the Rabin-Miller test, so that we are morally certain that N is indeed prime. 

8.3.1 The Pocklington-Lehmer N - 1 Test 

We need a sort of converse to Fermat's theorem. One such converse was found 
by Pocklington, and improved by Lehmer. It is based on the following result. 

Proposition 8.3.1. Let N be a positive integer, and let p be a prime divisor 
of N -1. Assume that we can find an integer ap such that a:-1 = 1 (mod N) 

and (a'f- 1>/v - 1, N) = 1. Then if d is any divisor of N, we have d = 1 
(mod pap), where pap is the largest power of p which divides N - 1. 

Proof It is clearly enough to prove the result for all prime divisors of N, since 
any divisor is a product of prime divisors. Now if d is a prime divisor of N, 
we have a;- 1 = 1 (mod d), since ap is coprime to N (why?) hence to d. On 

the other hand, since (af"-1)/P- 1, N) = 1, we have a~N- 1)/P ¢. 1 (mod d). 
If e is the exact order of ap modulo d (i.e. the smallest positive exponent such 
that a; = 1 (mod d)), this means that e I d- 1, e f (N- 1)/P but e I N- 1, 
hence paP I e I d -1 showing that d = 1 (mod paP). D 

Corollary 8.3.2. Assume that we can write N -1 = F · U where (F, U) = 1, 
F is completely factored, and F > ..;N. Then, if for each prime p dividing F 
we can find an ap satisfying the conditions of Proposition 8.3.1, N is prime. 
Conversely, if N is prime, for any prime p dividing N- 1, one can find ap 
satisfying the conditions of Proposition 8.3.1. 
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Proof. If the hypotheses of this corollary are satisfied, it follows immediately 
from Proposition 8.3.1 that all divisors of N are congruent to 1 mod F. Since 
F > .;N, this means that N has no prime divisor less than its square root, 
hence N is prime. 

Conversely, when N is prime, if we take for ap a primitive root modulo 
N, i.e. a generator of the multiplicative group (Z/ N'll)*, it is clear that the 
conditions of the proposition are satisfied since the order of ap is exactly equal 
toN-1. D 

This corollary gives us our first true primality test. Its main drawback is 
that we need to be able to factor N - 1 sufficiently, and this is in general very 
difficult. It is however quite useful for numbers having special forms where 
N -1 factors easily, for example the Fermat numbers 22k + 1 (see Exercise 9). 

The condition F > .JN of the corollary can be weakened if we make an 
extra test: 

Proposition 8.3.3. Assume that we can write N -1 = P.U where (F, U) = 1, 
F is completely factored, all the prime divisors of U are greater than B, and 
B · F ;::: .;N. Then if for each prime p dividing F we can find an ap satisfying 
the conditions of Proposition 8.3.1, and if in addition we can find au such 
that a~-l = 1 (mod N) and (a~- 1, N) = 1, then N is prime. Conversely, 
if N is prime, such ap and au can always be found. 

Proof We follow closely the proof of Proposition 8.3.1. Let d be any prime 
divisor of N. Proposition 8.3.1 tells us that d = 1 (mod F). If e is the exact 
order of au modulo d, then e I d- 1, e I N- 1 and e f F = (N- 1)/U. 
Now one cannot have (e, U) = 1, otherwise from e IN- 1 = FU one would 
get e I F, contrary to the hypothesis. Hence (e, U) > 1, and since U has all 
its prime factors greater than B, (e, U) > B. Finally, since (F, U) = 1, from 
d = 1 (mod e) and d = 1 (mod F) we obtain d = 1 (mod (e, U) ·F) hence 
d > B · F;::: .JN, showing that N has no prime divisor less than or equal to 
its square root, hence that N is prime. D 

Note that the condition that U has all its prime factors greater than B is 
very natural in practice since the factorization N - 1 = F · U is often obtained 
by trial division. 

8.3.2 Briefly, Other Tests 

Several important generalizations of this test exist. First, working in the mul
tiplicative group of the field IF N2 instead of IF N, one obtains a test which uses 
the factorization of N + 1 instead of N - 1. This gives as a special case the 
Lucas-Lehmer test for Mersenne numbers N = 2P- 1. In addition, since IFN 
is a subfield of IF N2, it is reasonable to expect that one can combine the in
formation coming from the two tests, and this is indeed the case. One can 
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also use higher degree finite fields (JF Ns, JF N4 and JF N6) which correspond to 
using in addition the completely factored part of N 2 + N + 1, N 2 + 1 and 
N 2 - N + 1 respectively. These numbers are already much larger, however, 
and do not always give much extra information. Other finite fields give even 
larger numbers. One last improvement is that, as in Proposition 8.3.3 one can 
use the upper bound used in doing the trial divisions to find the factors of 
N- 1, N + 1, etc ... For details, I refer to [BLSJ, [Sel-Wun] or [Wil-Jud]. 

8.4 Lehman's Method 

We now turn our attention to factoring methods. The spirit here will be quite 
different. For example, we do not need to be completely rigorous since if we 
find a number which may be a factor of N, it will always be trivial to check 
if it is or not. It will however be useful to have some understanding of the 
asymptotic behavior of the algorithm. 

Although several methods were introduced to improve trial division (which 
is, we recall, a O(N1/2+£) algorithm), the first method which has a run
ning time which could be proved to be substantially lower was introduced 
by Lehman (see [Leh1]). Its execution time is at worst O(N1/3+£), and it is 
indeed faster than trial division already for reasonably small values of N. The 
algorithm is as follows. 

Algorithm 8.4.1 (Lehman). Given an integer N ~ 3, this algorithm finds a 
non-trivial factor of N if N is not prime, or shows that N is prime. 

1. [Trial division] Set B +- l N 113 J. Trial divide N up to the bound B using 
Algorithm 8.1.1. If any non-trivial factor is found, output it and terminate the 
algorithm. Otherwise set k +- 0. 

2. [Loop on k] Set k +- k + 1. If k > B, output the fact that N is prime 
and terminate the algorithm. Otherwise, set r = 1 and m = 2 if k is even, 
r = k +Nand m = 4 if k is odd. 

3. [Loop on a] For all integers a such that 4kN ~ a2 ~ 4kN + B 2 and a = r 
(mod m) do as follows. Set c +- a2-4kN. Using Algorithm 1.7.3, test whether 
cis a square. If it is, let c = b2 , output gcd(a+b, N) (which will be a non-trivial 
divisor of N) and terminate the algorithm. Otherwise, use the next value of a 
if any. If all possible values of a have been tested, go to step 2. 

Proof (D. Zagier ). We only give a sketch, leaving the details as an exercise to 
the reader. 

If no factors are found during step 1, this means that all the prime factors 
of N are greater than N 113 hence N has at most two prime factors. 

Assume first that N is prime. Then the test in step 3 can never succeed. 
Indeed, if a2 - 4kN = b2 then N I a2 - b2 hence N I (a- b) or N I (a+ b) so 
a+ b ~ N, but this is impossible since the given inequalities on k and a imply 



426 8 Factoring in the Dark Ages 

that a < 2N213 + 1 and b < N 113 so N ~ 13. An easy check shows that for 
3 ~ N ~ 13, N prime, the test in step 3 does not succeed. 

Assume now that N is composite, so that N = pq with p and q not 
necessarily distinct primes, where we may assume that p ~ q. Consider the 
convergents Un/Vn of the continued fraction expansion of qfp. Let n be the 
unique index such that UnVn < N 113 < Un+lvn+l (which exists since pq > 
N 113 ). Using the elementary properties of continued fractions, if we set k = 
UnVn and a= PVn + qun, it is easily checked that the conditions of step 3 are 
met, thus proving the validity of the algorithm. D 

For each value of k there are at most l/2(v4kN + N 213 - v4kN) ~ 
N 116k- 112 /8 values of a, and since L:k<x k- 112 ~ 2x112 , the running time of 

the algorithm is indeed O(N113+•) as claimed. 
We refer to [Leh1] for ways of fine tuning this algorithm, which is now 

only of historical interest. 

8.5 Pollard's p Method 

8.5.1 Outline of the Method 

The idea behind this method is the following. Let f(X) be a polynomial 
with integer coefficients. We define a sequence by taking any initial x0 , and 
setting Xk+l = f(xk) mod N. If p is a (unknown) prime divisor of N, then 
the sequence Yk = Xk mod p satisfies the same recursion. Now if f(X) is 
chosen suitably, it is not unreasonable to assume that this sequence will behave 
like the sequence of iterates of a random map from 'lljp'll into itself. Such a 
sequence must of course be ultimately periodic, and a mathematical analysis 
shows that it is reasonable to expect that the period and preperiod will have 
length 0(/jJ). Now if Yk+t = Yk, this means that Xk+t = Xk (mod p), hence 
that (xk+t- Xk, N) > 1. Now this GCD will rarely be equal toN itself, hence 
we obtain in this way, maybe not p, but a non-trivial factor of N, so N is 
split and we can look at the pieces. The number of necessary steps will be 
0(/i)) = O(N114 ), and the total time in bit operations will be O(N114 ln2 N). 

Of course, we have just given a rough outline of the method. It is clear 
however that it will be efficient since the basic operations are simple, and 
furthermore that its running time depends mostly on the size of the smallest 
prime factor of N, not on the size of N itself, hence it can replace trial division 
or Lehman's method to cast out small factors. In fact, it is still used along 
with more powerful methods for that purpose. Finally, notice that, at least in 
a primitive form, it is very easy to implement. 

We must now solve a few related problems: 

(1) How does one find the periodicity relation Yk+t = Yk? 
(2) How does one choose f and xo? 
(3) What is the expected average running time, assuming f is a random map? 
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I would like to point out immediately that although it is believed that the 
polynomials that we give below behave like random maps, this is not at all 
proved, and in fact the exact mathematical statement to prove needs to be 
made more precise. 

8.5.2 Methods for Detecting Periodicity 

From now on, we consider a sequence Yk+1 = f(Yk) from a finite set E into 
itself. Such a sequence will be ultimately periodic, i.e. there exists M and 
T > 0 such that fork 2: M, Yk+T = Yk but YM-l+T =/= YM-1· The number M 
will be called the preperiod, and T (chosen as small as possible) will be the 
period. If the iterates are drawn on a piece of paper starting at the bottom 
and ending in a circle the figure that one obtains has the shape of the Greek 
letter p, whence the name of the method. 

We would like to find a reasonably efficient method for finding k and t > 0 
such that Yk+t = Yk (we do not need to compute M and T). The initial 
method suggested by Pollard and Floyd is to compute simultaneously with 
the sequence Yk the sequence Zk defined by zo =Yo, Zk+l = f(f(zk)). Clearly 
Zk = Y2k, and if k is any multiple ofT which is larger than M, we must have 
Zk = Y2k = Yk, hence our problem is solved. This leads to a simple-minded 
but nonetheless efficient version of Pollard's p method. Unfortunately we need 
three function evaluations per step, and this may seem too many. 

An improvement due to Brent is the following. Let l(m) be the largest 
power of 2 less than or equal to m, i.e. 

l(m) = 2Ligmj, 

so that in particular l ( m) ~ m < 2l ( m). Then I claim that there exists an m 
such that Ym = Yl(m)- 1. Indeed, if one chooses 

m = 2 rigmax(M+l,T)l +T _ 1 , 

we clearly have l(m) = 2rlgmax(M+1,T)l hence l(m) -1;:::: M and m- (l(m)-
1) = T, thus proving our claim. 

If instead of computing an extra sequence Zk we compute only the sequence 
Yk and keep Y2•-1 each time we hit a power of two minus one, for every m 
such that 2e ~ m < 2e+1 it will be enough to compare Ym with Y2•-1 (note 
that at any time there is only one value of y to be kept). 

Hence Brent's method at first seems definitely superior. It can however 
be shown that the number of comparisons needed before finding an equality 
Ym = Yl(m)-1 will be on average almost double that of the initial Pollard-Floyd 
method. In practice this means that the methods are comparable, the lower 
number of function evaluations being compensated by the increased number 
of comparisons which are needed. 

However a modification of Brent's method gives results which are generally 
better t'han the above two methods. It is based on the following proposition. 
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Proposition 8.5.1. 

(1) There exists an m such that 

Ym = Yl(m)-1 and 
3 
2t(m) ~ m < 2l(m). 

(2) the least such m is mo = 3 if M = 0 and T = 1 {i.e. if Y1 = Yo}, and 
otherwise is given by 

mo = 2flgmax(M+l,T)l + T rl(M~ + 11-1, 
where we set l(O) = 0. 

Proof Set e = flgmax(M + 1,T)l We claim that, as in Brent's original 
method, we still have l(mo) = 2e. Clearly, 2e ~ m0 , so we must prove that 
m0 < 2e+1 or equivalently that 

We consider two cases. First, if T ~ l(M), then 

T rl(M~ + 11 ~ l(M) + T ~ 2l(M) = 2flg(M+l)l ~ 2e, 

since llg MJ + 1 = flg(M + 1)l On the other hand, if T ~ l(M) + 1, then 

r!(Mf+ll = 1, and we clearly have T ~ 2e. 

Now that our claim is proved, since mo ~ M and mo - (l(mo) - 1) is a 
multiple of T we indeed have Ym = Yl(m)- 1 for m = mo. To finish proving 
the first part of the proposition, we must show that ~l(mo) ~ m0 (the other 
inequality being trivial), or equivalently, keeping our notations above, that 

Now clearly the left hand side is greater than or equal to T - 1, and on 
the other hand 2flgTl-1 ~ 2IgT- 1 = T- 1. Furthermore, the left hand 
side is also greater than or equal to l(M) = 2llgMJ, but one sees easily that 
2flg(M+l)l-l = 2llgMJ, thus showing the first part of the proposition. The 
proof of the second part (that is, the claim that m0 is indeed the smallest) is 
similar (i.e. not illuminating) and is left to the reader. D 

Using this proposition, we can decrease the number of comparisons in 
Brent's method since it will not be necessary to do anything (apart from a 
function evaluation) while m is between 2e and ~2e. 
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8.5.3 Brent's Modified Algorithm 

We temporarily return to our problem of factoring N. We must first explain 
how to choose f and xo. The choice of xo seems to be quite irrelevant for 
the efficiency of the method. On the other hand, one must choose f carefully. 
In order to minimize the number of operations, we will want to take for f 
a polynomial of small degree. It is intuitively clear (and easy to prove) that 
linear polynomials f will not be random and hence give bad results. The 
quadratic polynomials on the other hand seem in practice to work pretty well, 
as long as we avoid special cases. The fastest to compute are the polynomials 
of the form f(x) = x2 +c. Possible choices for care c = 1 or c = -1. On the 
other hand c = 0 should, of course, be avoided. We must also avoid c = -2 
since the recursion Xk+l = x~ - 2 becomes trivial if one sets Xk = Uk + 1/uk. 

As already explained in Section 8.5.1, the "comparisons" Yk+t = Yk are 
done by computing (xk+t -xk, N). Now, even though we have studied efficient 
methods for GCD computation, such a computation is slow compared to a 
simple multiplication. Hence, instead of computing the GCD's each time, we 
batch them up by groups of 20 (say) by multiplying modulo N, and then do 
a single GCD instead of 20. If the result is equal to 1 (as will unfortunately 
usually be the case) then all the GCD's were equal to 1. If on the other hand 
it is non-trivial, we can backtrack if necessary. 

The results and discussion above lead to the following algorithm. 

Algorithm 8.5.2 (Pollard p). Given a composite integer N, this algorithm 
tries to find a non-trivial factor of N. 

1. [Initialize) Set y +- 2, x +- 2, x1 +- 2, k +- 1, l +- 1, P +- 1, c +- 0. 

2. [Accumulate product) Set x +- x2 + 1 mod N, P +- P · (x1 - x) mod N and 
c +- c + 1. (We now have m = 2l- k, l = l(m), x = Xm, X1 = Xl(m)-d If 
c = 20, compute g +- (P, N), then if g > 1 go to step 4 else set y +- x and 
c+-0. 

3. [Advance) Set k +- k - 1. If k ":/= 0 go to step 2. Otherwise, compute g +

(P, N). If g > 1 go to step 4 else set x1 +- x, k +- l, l +- 2l, then repeat k 
times x +- x2 + 1 mod N, then set y +- x, c +- 0 and go to step 2. 

4. [Backtrack) (Here we know that a factor of N has been found, maybe equal to 
N). Repeat y +- y2 + 1 mod N, g +- (x1 -y, N) until g > 1 (this must occur). 
If g < N output g, otherwise output a message saying that the algorithm fails. 
Terminate the algorithm. 

Note that the algorithm may fail (indicating that the period modulo the 
different prime factors of N is essentially the same). In that case, do not start 
with another value of xo, but rather with another polynomial, for example 
x2 - 1 or x2 + 3. 

This algorithm has been further improved by P. Montgomery ([Mon2]) 
and R. Brent ([Bre2]). 
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8.5.4 Analysis of the Algorithm 

As has already been said, it is not known how to analyze the above algorithms 
without assuming that f is a random map. Hence the analysis that we give 
is in fact an analysis of the iterates of a random map from a finite set E of 
cardinality p into itself. We also point out that some of the arguments given 
here are not rigorous but can be made so. We have given very few detailed 
analysis of algorithms in this book, but we make an exception here because 
the mathematics involved are quite pretty and the proofs short. 

Call P(M, T) the probability that a sequence of iterates Ym has preperiod 
M and period T. Then Yo, ... , YM+T-1 are all distinct, and YM+T = YM· 

Hence we obtain 

P(M,T) = _!_ II (1- ~)-
p 1$k<M+T p 

Now we will want to compute the asymptotic behavior as p --+ oo of the 
average of certain functions over all maps f, i.e. of sums of the form 

s = L P(M,T)g(M,T). 
M,T 

Now if we set M = J.LVP and T = >...;p, we have 

ln(p. P(M,T)) = L ln (1- ~) = L (-~ + o(~)) 
k<(>.+l')v'P p k<(>.+l')v'P p p2 

=- (A+J.L)2 +O(A+J.L) +O((A+J.L)a)· 
2 ..;p ..;p 

Hence the limiting distribution of P(M, L)dM dL is 

so our sum S is asymptotic to 

As a first application, let us compute the asymptotic behavior of the average 
of the period T. 

Proposition 8.5.3. Asp --+ oo, the average ofT is asymptotic to 

FP v-s· 
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Proof Using ( * ), we see that the average ofT is asymptotic to 

By symmetry, this is equal to one half of the integral with x + y instead of y, 
and this is easily computed and gives the proposition. D 

Now we need to obtain the average of the other quantities entering into 
the expression for mo given in Proposition 8.5.1. Note that 

We then have 

Proposition 8.5.4. As p --+ oo, the average ofT ll(~) J is asymptotic to 

( ln 1r- 'Y) {irP 
2ln2 V 8 

where 'Y = 0.57721 . . . is Euler's constant. 

Proof The proof is rather long, so we only sketch the main steps. Using ( * ), 
the average of the quantity that we want to compute is asymptotic to 

S = y...JP e-(x+y) 12dx dy. 1ooloo l2Llg(:z:yp)J J 2 

0 0 y~ 

By splitting up the integral into pieces where the floor is constant, it is then 
a simple matter to show that 

where F(y) = JY00 e-t212dt. Now we assume that if we replace flg(ny~)l by 
lg(ny~) + u, where u is a uniformly distributed variable between 0 and 1, 
then Swill be replaced by a quantity which is asymptotic to S (this step can 
be rigorously justified), i.e. 

00 {1 roo 
S"' .,JP L Jo du Jo yF(2uny + y) dy. 

n=l 0 0 

Now using standard methods like integration by parts and power series ex
pansions, we find 
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S rv {iP G(1)- G(1/2) 
V8 ln2 ' 

where 

G(x) = f)-1)kk ~ 1 ((k)xk 
k=2 

and ((s) is the Riemann zeta function. Now from the Taylor series expansion 
of the logarithm of the gamma function near x = 1, we immediately see that 

r'(x + 1) 
G(x) = x r(x + 1) -lnr(x + 1), 

and using the special values of the gamma function and its derivative, we 
obtain Proposition 8.5.4. D 

In a similar way (also by using the trick with the variable u), we can prove: 

Proposition 8.5.5. As p -+ oo, the average of 

2 pg max(M +l,T)l 

is asymptotic to 

Combining these three propositions, we obtain the following theorem. 

Theorem 8.5.6. As p -+ oo, the average number of function evaluations in 
Algorithm 8. 5. 2 is asymptotic to 

and the number of multiplications mod N (i.e. implicitly of GCD's) is asymp
totic to 

This terminates our analysis of the Pollard p algorithm. As an exercise, 
the reader can work out the asymptotics for the unmodified Brent method 
and for the Pollard-Floyd method of detecting periodicity. 
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8.6 Shanks's Class Group Method 

Another O(N1/4+E) method (and even O(N1/5+E) if one assumes the GRH) 
is due to Shanks. It is a simple by-product of the computation of the class 
number of an imaginary quadratic field (see Section 5.4). Indeed, let D = -N 
if N = 3 (mod 4), D = -4N otherwise. If his the class number of Q(VD) 
and if N is composite, then it is known since Gauss that h must be even (this 
is the start of the theory of genera into which we will not go). Hence, there 
must be an element of order exactly equal to 2 in the class group. Such an 
element will be called an ambiguous element, or in terms of binary quadratic 
forms, a form whose square is equivalent to the unit form will be called an 
ambiguous form. 

Clearly, (a, b, c) is ambiguous if and only if it is equivalent to its inverse 
(a,- b, c), and if the form is reduced this means that we have three cases. 

(1) Either b = 0, hence D = -4ac, soN= ac. 
(2) Or a = b, hence D = b(b- 4c), hence N = (b/2)(2c- b/2) if b is even, 

N = b(4c- b) if b is odd. 
(3) Or finally a= c, hence D = (b- 2a)(b + 2a) hence N = (b/2 + a)(a- b/2) 

if b is even, N = (2a- b)(b + 2a) if b is odd. 

We see that each ambiguous form gives a factorization of N (and this is a 
one-to-one correspondence). 

Hence, Shanks's factoring method is roughly as follows: after having com
puted the class number h, look for an ambiguous form. Such a form will give 
a factorization of N (which may be trivial). There must exist a form which 
gives a non-trivial factorization however, and in practice it is obtained very 
quickly. 

There remains the problem of finding ambiguous forms. But this is easy 
and standard. Write h = 2tq with q odd. Take a form f at random {for 
example one of the prime forms /p used in Algorithm 5.4.10) and compute 
g = jQ. Then g is in the 2-Sylow subgroup of the class group, and if g is not 
the unit form, there exists an exponent m such that 0 ::;; m < t and such that 
g2"' is an ambiguous form. This is identical in group-theoretic terms to the 
idea behind the Rabin-Miller compositeness test (Section 8.2 above). 

We leave to the reader the details of the algorithm which can be found in 
Shanks's paper (Sha1], as well as remarks on what should be done when the 
trivial factorization is found too often. 
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8. 7 Shanks's SQUFOF 

Still another O(N1/4+e) method, also due to Shanks, is the SQUFOF (SQUare 
FOrm Factorization) method. This method is very simple to implement and 
also has the big advantage of working exclusively with numbers which are 
at most 2VN, hence essentially half of the digits of N. Therefore it is emi
nently practical and fast when one wants to factor numbers less than 1019 , 

even on a pocket calculator. This method is based upon the infrastructure of 
real quadratic fields which we discussed in Section 5.8, although little of that 
appears in the algorithm itself. 

Let D be a positive discriminant chosen to be a small multiple of the 
number N that we want to factor (for example we could take D = N if N = 1 
(mod 4), D = 4N otherwise). Without loss of generality, we may assume that 
if D = 0 (mod 4), then D I 4 = 2 or 3 (mod 4), since otherwise we may replace 
D by D I 4, and furthermore we may assume that DIN is squarefree, up to a 
possible factor of 4. 

As in Shanks's class group method seen in the preceding section, we are 
going to look for ambiguous forms of discriminant D. Since here D is positive, 
we must be careful with the definitions. Recall from Chapter 5 that we have 
defined composition of quadratic forms only modulo the action of r 00 • We will 
say that a form is ambiguous if its square is equal to the identity modulo the 
action of r 00 , and not simply equivalent to it. In other words, the square off = 
(a, b, c) as given by Definition 5.4.6 must be of the form (1, b', c'). Clearly this 
is equivalent to a I b. Hence, a will be a factor of D, so once again ambiguous 
forms give us factorizations of D. The notion of ambiguous form must not be 
confused with the weaker notion of form belonging to an ambiguous cycle (see 
Section 5. 7) which simply means that its square is equivalent to the identity 
modulo the action of PSL2(Z) and not only ofr 00 , i.e. belongs to the principal 
cycle. 

Now let g = (a, b, c) be a reduced quadratic form of discriminant D such 
that a I c. We note that since g is reduced hence primitive, we must have 
gcd(a, b) = 1. Using Definition 5.4.6, one obtains immediately that 

this form being of course not necessarily reduced. This suggests the following 
idea. 

We start from the identity form and use the p reduction operator used 
at length in Chapter 5 to proceed along the principal cycle, and we look for 
a form f = (A, B, C) such that A is a square (such a form will be called a 
square form). We will see in a moment how plausible it is to believe that we 
can find such a form. Assume for the moment that we have found one, and 
set A= a2 and g = (a, B, aC). 

Now g may not be primitive. In that case let p be a prime dividing the 
coefficients of g. Then if p = 2 we have 4 I A and 2 1 B. Hence, D = B 2 = 
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0 or 4 (mod 16), contradicting D/4 = 2 or 3 (mod 4) when 41 D. If p > 2, 
then p2 I D hence since DfN or Df(4N) is squarefree, we have p2 I N. 
Although this case is rare in practice, it could occur, so we must compute 
gcd(a, B), and if this is not equal to 1 it gives a non-trivial factor of N (in 
fact its square divides N), and we can start the factorization after removing 
this factor. 

Therefore we may assume that g is primitive. It is then clear from the 
definition that g2 = f, whence the name "square form" given to f. 

Now we start from g-1 = (a, -B,aC) (which may not be reduced) and 
proceed along its cycle by applying the p operator. Since g2 lies on the principal 
cycle, the reduced forms equivalent to g-1 will be on an ambiguous cycle. 

Now we have the following proposition. 

Proposition 8.7.1. Keeping the above notations, there exists an ambiguous 
form g1 on the cycle of g-1 at exactly half the distance (measured with the 6 
function introduced in Chapter 5) off from the unit form. 

Proof We prove this in the language of ideals, using the correspondence be
tween classes of forms modulo r 00 and classes of ideals modulo multiplication 
by Q* given in Section 5.2. 

Let a be a representative of the ideal class (modulo Q*) corresponding to 
the quadratic form g = (a, B, aC). Then by assumption, a2 =-yZK for some 
'Y E K which is of positive norm since A= a2 > 0, and hence, in particular, 
N('Y) = N(a) 2 . Set 

(Note that if desired, we can choose a > 0 and a to be the unique primitive 
integral ideal corresponding tog, and then N(a) =a.) 

If, as usual, G' denotes real conjugation in K, we have chosen [3 such that 

G'([3) N(a) G'('Y) 
T =-'Y- = N(a)" 

Although it is trivial to give [3 explicitly, the knowledgeable reader will recog
nize that the existence of such a [3 is guaranteed by Hilbert's Theorem 90. 

Now I claim that the quadratic form corresponding to b is the ambiguous 
form that we are looking for. First, using the equations given above, we have 

so the ideal b2 is indeed equivalent up to multiplication by an element of 
Q* to the unit ideal, so if g1 is the quadratic form corresponding to b-\ it 
is ambiguous. 

Second, we clearly have -yjG'('y) = ([3/G'([3)) 2 hence 



436 8 Factoring in the Dark Ages 

thus proving the proposition. D 

Using this proposition, we see that with approximately half the number of 
applications of the p operator that were necessary to go from the identity to f, 
we go back from g-1 to an ambiguous form. In fact, since we know the exact 
distance that we have to go, we could use a form of the powering algorithm 
to make this last step much faster. 

Now there are two problems with this idea. First, some ambiguous forms 
will correspond to trivial factorizations of N. Second, we have no guarantee 
that we will find square forms other than the identity. This will for instance 
be the case when the principal cycle is very short. 

For the first problem, we could simply go on along the principal cycle if 
a trivial factorization is found. This would however not be satisfactory since 
for each square form that we encounter which may correspond to a trivial 
factorization, we would have to go back half the distance starting from g- 1 

before noticing this. 
A good solution proposed by Shanks is as follows. Assume for the moment 

that D =NorD= 4N. We obtain trivial factorizations of N exactly when the 
ambiguous cycle on which g- 1 lies is the principal cycle itself. Hence, f = g2 

will be a square form which is equal to the square of a form on the principal 
cycle. Since all the forms considered are reduced, this can happen only if 
g = (a, b, c) with a2 < ...fl5, hence Ia I < D 114, which is quite a rare occurrence. 
When such an a occurs, we store Ia I in a list of dubious numbers, which Shanks 
calls the queue. Note that the condition lal < D 114 is a necessary, but in 
general not a sufficient condition for the form g to be on the principal cycle, 
hence we may be discarding some useful numbers. In practice, this has little 
importance. 

Now when a square form (A, B, C) with A= a2 is found, we check whether 
a is in the queue. If it is, we ignore it. Otherwise, we are certain that the corre
sponding square root g is not in the principal cycle. (Note that the distance of 
the identity to f = g2 is equal to twice the distance of the identity to g. This 
means that if g was in the principal cycle, we would have encountered it before 
encountering f.) Hence, we get a non-trivial factorization of D. This may of 
course give the spurious factors occurring in D/N, in which case one must go 
on. In fact, one can in this case modify the queue so that these factorizations 
are also avoided. 

The second problem is more basic: what guarantee do we have that we 
can find a square form different from the identity in the principal cycle? For 
example, when the length of the cycle is short, there are none. This is the 
case, for example, for numbers N of the form N = a2 + 4 for a odd, where the 
length of the cycle is equal to 1. 

There are two different and complementary answers to this question. First, 
a heuristic analysis of the algorithm shows that the average number of reduc-
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tion steps necessary to obtain a useful square form is O(N114 ) (no f here). 
This is much shorter than the usual length of the period which is in general 
of the order of O(N112), so we can reasonably hope to obtain a square form 
before hitting the end of the principal cycle. 

Second, to avoid problems with the length of the period, it may be worth
while to work simultaneously with two discriminants D which are multiples 
of N, for example Nand 5N when N = 1 (mod 4), 3N and 4N when N = 3 
(mod 4). It is highly unlikely that both discriminants will have short periods. 
In addition, although the average number of reduction steps needed is on the 
order of N 114 , experiments show that there is a very large dispersion around 
the mean, some numbers being factored much more easily than others. This 
implies that by running simultaneously two discriminants, one may hope to 
gain a substantial factor on average, which would compensate for the fact that 
twice as much work must be done. 

We now give the basic algorithm, i.e. using only D = N if N = 1 (mod 4), 
D = 4N otherwise, and not using the fact than once g is found we can go 
back much faster by keeping track of distances. 

Algorithm 8.7.2 (Shanks's SQUFOF). Given an odd integer N, this algo
rithm tries to find a non-trivial factor of N. 

1. [Is N prime?] Using Algorithm 8.2.2, check whether N is a probable prime. If 
it is, output a message to that effect and terminate the algorithm. 

2. [Is N square?] Using Algorithm 1.7.3, test whether N is a square. If it is, let 
n be its square root (also given by the algorithm), output nand terminate the 
algorithm. 

3. [lnitializations]lf N = 1 (mod 4), let D t- N, d t- Lv'DJ, b t- 2l(d-
1)/2J + 1. Otherwise, let D t- 4N, d t- Lv'DJ, b t- 2ld/2J. Then set 
f t- (1, b, (b2 -D)/4), Q t- 0 (Q is going to be our queue), it- 0, L t- l v'dJ. 

4. [Apply rho] Let f = (A, B, C) t- p(J), where p is given by Definition 5.6.4, 
and set it- i + 1. If i is odd, go to step 7. 

5. [Squareform?] Using Algorithm 1.7.3, test whether A is a square. If it is, let a 
be the (positive) square root of A (which is also output by Algorithm 1.7.3) 
and if a f/. Q go to step 8. 

6. [Short period?] If A = 1, output a message saying that the algorithm ran 
through the i elements of the principal cycle without finding a non-trivial 
squareform, and terminate the algorithm. 

7. [Fill queue and cycle] If IAI ::; L, set Q t- Q U {IAI}. Go to step 4. 

8. [Initialize back-cycle] (Here we have found a non-trivial square form). Let s t
gcd(a, B, D). If s > 1, output s2 as a factor of Nand terminate the algorithm 
(or start again with N replaced by N/s2). Otherwise, set g t- (a,-B,aC). 
Apply p tog until g is reduced, and write g = (a, b, c). 

9. (Back-cycle] Let b1 t- b and g = (a, b, c) t- p(g). If b1 =I= b go to step 
9. Otherwise, output lal if a is odd, la/21 if a is even, and terminate the 
algorithm. 
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Some remarks are in order. First, it is essential that N be a composite 
number, otherwise the queue will fill up indefinitely without the algorithm 
finding a square form. Also, N must not be a square, otherwise we do not 
have a quadratic field to work with. This is the reason why steps 1 and 2 have 
been explicitly included. 

Second, once these cases out of the way, experiment shows that the queue 
stays small. A storage capacity of 50 is certainly more than sufficient. 

Third, during the back-cycle part of the algorithm, we need to test whether 
we hit upon our ambiguous form. To do this, we could use the necessary and 
sufficient condition that a I b. It is however a simple exercise (see Exercise 12) 
to show that this is equivalent to the condition b1 = b used in step 9. 

Several improvements are possible to this basic algorithm, including those 
mentioned earlier. For example, the queue could be used to shorten the back
cycle length, starting at hg-1 instead of g-1, where his the form corresponding 
to the last element put in the queue. We will not dwell on this here. 

One of the main reasons why SQUFOF is attractive is that it works exclu
sively with reduced quadratic forms (a, b, c) of discriminant at most a small 
multiple of N, hence such that a, b and c are of the order of N 112 . This im
plies that the basic operations in SQUFOF are much faster than in the other 
factoring algorithms where operations on numbers of size N or N 2 must be 
performed. Of course, this is only a constant factor, but in practice it is very 
significant. Furthermore, the algorithm is extremely simple, so it can easily 
be implemented even on a 10-digit pocket calculator, and one can then factor 
numbers having up to 19 or 20 digits without any multi-precision arithmetic. 

Unfortunately, SQUFOF is not sensitive to the size of the small prime 
factors of N, hence contrary to Pollard's rho method, cannot be used to cast 
out small primes. So if N has more than 25 digits, say, SQUFOF becomes 
completely useless, while Pollard rho still retains its value (although it is 
superseded by ECM for larger numbers, see Chapter 10). 

8.8 The p - 1-method 

The last factoring method which we will study in this chapter is a little special 
for two reasons. First, it is not a general purpose factoring method, but a way 
to find quickly prime factors of N that may be very large, but which possess 
certain properties. Second, the idea behind the method has successfully been 
used in some of the most successful modern factoring method like the elliptic 
curve method (see Section 10.3). Hence it is important to understand this 
method at least as an introduction to Chapter 10. 
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8.8.1 The First Stage 

We need a definition. 

Definition 8.8.1. Let B be a positive integer. A positive integer n will be 
said to be B-smooth if all the prime divisors of n are less than or equal to B. 
We will say that n is B-powersmooth if all prime powers dividing n are less 
than or equal to B. 

These notions of smoothness are quite natural in factoring methods, and 
we will see that they become essential in the modern methods. The idea behind 
the p - 1 method is the following. Let p be a prime dividing the number N 
that we want to split (p is of course a priori unknown). Let a > 1 be an 
integer (which we can assume coprime toN by computing a GCD, otherwise 
N will have split). Then by Fermat's theorem, aP-l = 1 (mod p). Now assume 
that p- 1 is B-powersmooth for a certain B which is not too large. Then by 
definition p - 1 divides the least common multiple of the numbers from 1 to 
B, which we will denote by lcm[l..B]. Hence, alcm(l..B) = 1 (mod p), which 
implies that 

(alcm(l..B) _ 1, N) > 1. 

As in the Pollard p method, if this is tested for increasing values of B, it is 
highly improbable that this GCD will be equal toN, hence we will have found 
a non-trivial divisor of N. This leads to the following algorithm, which in this 
form is due to Pollard. 

Algorithm 8.8.2 (p- 1 First Stage). Let N be a composite number, and B 
be an a priori chosen bound. This algorithm will try to find a non-trivial factor 
of N, and has a chance of succeeding only when there exists a prime factor p of 
N such that p- 1 is B-powersmooth. We assume that we have precomputed a 
table p[1], ... , p[k] of all the primes up to B. 
1. [Initialize) Set x +--- 2, y +--- x, c +--- 0, i +--- 0, and j +--- i. 

2. [Next prime) Set i +--- i + 1. If i > k, compute g +--- (x -1, N). If g = 1 output 
a message saying that the algorithm has not succeeded in splitting N, and 
terminate, else set i +--- j, x +--- y and go to step 5. Otherwise (i.e. if i ::S: k), 
set q +--- p[i], q1 +--- q, l +--- LBfqj. 

3. [Compute power) While q1 ::S: l, set q1 +--- q · q1. Then, set x +--- xq1 mod N, 
c +--- c + 1 and if c < 20 go to step 2. 

4. [Compute GCD) Set g +--- (x- 1, N). If g = 1, set c +--- 0, j +--- i, y +--- x and 
go to step 2. Otherwise, set i +--- j and x +--- y. 

5. [Backtrack) Set i +--- i + 1, q +--- p[i] and q1 +--- q. 

6. [Finished?) Set x +--- xq mod N, g +--- (x- 1, N). If g = 1, set q1 +--- q · q1 and 
if q1 ::S: B, go to step 6, else go to step 5. Otherwise (i.e. if g > 1), if g < N 
output g and terminate the algorithm. Finally, if g = N (a rare occurrence), 
output that the algorithm has failed and terminate. 



440 8 Factoring in the Dark Ages 

Note that this algorithm may fail for two completely different reasons. The 
first one, by far the most common, occurs in step 2, and comes because N 
does not have any prime divisor p such that p- 1 is B-powersmooth. In fact, 
it proves this. The second reason why it may fail occurs in step 6, but this is 
extremely rare. This would mean that all the prime p divisors of N are found 
simultaneously. If this is the case, then this means that there certainly exists 
a p dividing N which is B-powersmooth. Hence, it may be worthwhile to try 
the algorithm with a different initial value of x, for example x +-- 3 instead of 
X+-- 2. 

Even in this simple form, the behavior of the p - 1 algorithm is quite 
impressive. Of course, it does not pretend to be a complete factoring algorithm 
(in fact when N = (2p + 1)(2q + 1) where p, q, 2p + 1 and 2q + 1 are primes 
with p and q about the same size, the running time of the algorithm will in 
general be O(N1/2+e) if we want to factor N completely, no better than trial 
division). On the other hand, it may succeed in finding very large factors of N, 
since it is not the size of the prime factors of N which influence the running 
time but rather the smoothness of the prime factors minus 1. 

The size of B depends essentially on the time that one is willing to spend. 
It is however also strongly conditioned by the existence of a second stage to 
the algorithm as we shall see presently. Usual values of B which are used 
are, say, between 105 and 106 . 

8.8.2 The Second Stage 

Now an important practical improvement to the p- 1 algorithm (which one 
also uses in the modern methods using similar ideas) is the following. It may 
be too much to ask that there should exist a prime divisor p of N such that 
p - 1 is B-powersmooth. It is more reasonable to ask that p - 1 should be 
completely factored by trial division up to B. But this means that p -1 = fq, 
where f is B-smooth, and q is a prime which may be much larger than B (but 
not than B2). For our purposes, we will slightly strengthen this condition and 
assume that N has a prime factor p such that p- 1 = fq where f is Bl
powersmooth and q is a prime such that B1 < q 5,. B2, where B1 is our old B, 
and B2 is a much larger constant. We must explain how we are going to find 
such a p. Of course, p - 1 is B2-powersmooth so we could use the p -1 alg
orithm with B1 replaced by B2. This is however unrealistic since B2 is much 
larger than B1. 

Now we have as usual 

(aqicm[l.Bi] -1, N) > 1 

and we will proceed as follows. At the end of the first stage (i.e. of Algorithm 
8.8.2 above), we will have computed b +-- alcm[l..Bt] mod N. We store a table 
of the difference of primes from B1 to B2. Now these differences are small, and 
there will not be many of them. So we can quickly compute bd for all possible 



8.8 The p- 1-method 441 

differences d, and obtain all the bq by multiplying successively an initial power 
of b by these precomputed bd. Hence, for each prime, we replace a powering 
operation by a simple multiplication, which is of course much faster, and this 
is why we can go much further. This leads to the following algorithm. 

Algorithm 8.8.3 (p- 1 with Stage 2). Let N be a composite number, and 
B1 and B2 be a priori chosen bounds. This algorithm will try to find a non-trivial 
factor of N, and has a chance of succeeding only when there exists a prime factor 
p of N such that p -1 is equal to a B1-powersmooth number times a prime less 
than or equal to B2. We assume that we have precomputed a table p[1). ... , p[k1] 

of all the primes up to B1 and a table d[1). ... , d[k2] of the differences of the 
primes from B1 to B2, with d[1] = p[k1 + 1] - p[k1]. etc ... 

1. [First stage] Using B = B~o try to split N using Algorithm 8.8.2 {i.e. the 
first stage. If this succeeds, terminate the algorithm. Otherwise, we will have 
obtained a number x at the end of Algorithm 8.8.2, and we set b +- x, c +- 0, 
P +- 1, i +- 0, j +- i and y +- x. 

2. [Precomputations] For all values of the differences d[i] (which are small and 
few in number), precompute and store bd[iJ. Set x +- xP[kd. 

3. [Advance] Set i +- i + 1, x +- x · bd[i] (using the precomputed value of bd[il), 

P +- P · (x- 1), c +- c + 1. If i ;:::: k2, go to step 6. Otherwise, if c < 20, go 
to step 3. 

4. [Compute GCD] Set g +- (P, N). If g = 1, set c +- 0, j +- i, y +- x and go to 
step 3. 

5. [Backtrack] Set i +- j, x +- y. Then repeat x +- x · bd[i], i +- i + 1, g +

(x - 1, N) until g > 1 (this must occur). If g < N output g and terminate 
the algorithm. Otherwise (i.e. if g = N, a rare occurrence), output that the 
algorithm has failed (or try again using x +- 3 instead of x +- 2 in the first 
step of Algorithm 8.8.2), and terminate. 

6. [Failed?] Set g +- (P, N). If g = 1, output that the algorithm has failed and 
terminate. Otherwise go to step 5. 

In this form, the p -1 algorithm is much more efficient than using the first 
stage alone. Typical values which could be used are B1 = 2 · 106 , B2 = 108 • 

See also [Mon2] and [Bre2] for further improvements. 

8.8.3 Other Algorithms of the Same Type 

The main drawback of the p - 1 algorithm is that there is no reason for N 
to have a prime divisor p such that p - 1 is smooth. As with the primality 
tests (see Section 8.3.2), we can also detect the primes p such that p + 1 is 
smooth, or also p2 + p + 1, p2 + 1, p2 - p + 1 (although since these numbers 
are much larger, their probability of being smooth for a given bound B is 
much smaller). We leave as an exercise for the reader (Exercise 13) to write 
an algorithm when p + 1 is B-powersmooth. 
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We see that the number of available groups which give numbers of reason
able size (here IF; and IF;2 /IF;, which give p -1 and p + 1 respectively) is very 
small (2) and this limits the usefulness of the method. The idea of the elliptic 
curve method (ECM) is to use the group of points of an elliptic curve over 
1Fp, which also has approximately p elements by Hasse's Theorem 7.1.8, and 
this will lead to a much better algorithm since we will have at our disposal a 
large number of groups of small size instead of only two. See Section 10.3 for 
details. 

8.9 Exercises for Chapter 8 

1. Show that an odd prime number p is a strong pseudo-prime in any base not 
divisible by p. 

2. If N is the 46 digit composite number due to Arnault given in the text as an 
example of a strong pseudoprime to all prime bases a~ 31, compute explicitly 
a<N-l)/4 mod N for these a and show that -1 has at least 5 different square 
roots modulo N (showing clearly N that is not prime even without knowing its 
explicit factorization). From this remark, deduce a strengthening of the Rabin
Miller test which would not be passed for example by Arnault's number. 

3. Show that if N is any odd integer, the congruence 

aN-I ::::-1 (mod N) 

is impossible. More generally, show that 

ak ::::-1 (mod N) 

implies that 

(N-1) V2(k) s; V2 - 2- . 

The following four exercises are due to H. W. Lenstra. 

4. Show that there are only a finite number of integers N such that for all a E Z 
we have 

aN +I :=a (mod N), 

and give the complete list. 
5. Let N be a positive integer such that 2N = 1 (mod N). Show that N = 1. 

6. Let a be a positive integer such that a4 +4a is a prime number. Show that a= 1. 

7. Show that there exists infinitely many n for which at least one of 22n + 1 or 
62n + 1 is composite. 

• 2k 
8. Denote by Fk the k-th Fermat number, 1.e. Fk = 2 + 1. 

a) Show manually that Fk is prime for 0 ~ k ~ 4 but that 641 I Fs. 
b) Let h > 1 be an integer such that h = 1 (mod FoHF2FaF4). If h2n + 1 

is prime show that 32 I n. 
c) Conclude that there exists an a such that if 
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and h > 1, then for all n, h2n + 1 is composite. 

9. Let N = 22k + 1 be a Fermat number. Prove that in this case Proposition 8.3.1 
can be made more precise as follows: N is prime if and only if 3(N-1)/2 = -1 
(mod N) (use the quadratic reciprocity law). 

10. Using implicitly the finite field lF N2, write a primality testing algorithm in the 
case where N + 1 is completely factored, using a proposition similar to 8.3.1. 

11. Using the algorithm developed in Exercise 10, show that the Mersenne number 
N = 2P- 1 is prime if and only p is prime and (for p "I 2) if the sequence 
defined by uo = 4 and Uk+1 = u~ - 2 mod N satisfies Up-2 = 0 (this is called 
the Lucas-Lehmer test). 

12. Let 9 = (a,b,c) and 91 = (a1,b1,c1) = p(9) be reduced forms with positive 
discriminant. Show that 91 is an ambiguous form if and only if b = b1. 

13. The p -!-algorithm is based on the properties of the finite field lF p· Using instead 
the field lF p2 , develop a p + 1-factoring algorithm for use when a prime factor p 
of N is such that p + 1 is B-powersmooth for some reasonable bound B. 

14. Let N be a number to be factored. Assume that after one of the factoring algo
rithms seen in this chapter we have found a number a such that d = gcd(N, a) 
satisfies 1 < d < N hence gives a non-trivial divisor of N. Write an algorithm 
which extracts as much information as possible from this divisor d, i.e. which 
finds N1 and N2 such that N = N1N2, gcd(N1, N2) = 1 and d I N1. 





Chapter 9 

Modern Primality Tests 

In Section 8.3, we studied various primality tests, essentially the N - 1 test, 
and saw that they require knowing the factorization of N -1 (or N + 1, ... ), 
which are large numbers. Even though only partial factorizations are needed, 
the tests of Section 8.3 become impractical as soon as N has more than 100 
digits, say. A breakthrough was made in 1980 by Adleman, Pomerance and 
Rumely, that enabled testing the primality of much larger numbers. The APR 
test was further simplified and improved by H. W. Lenstra and the author, 
and the resulting APRCL test was implemented in 1981 by A. K. Lenstra and 
the author, with the help of D. Winter. It is now possible to prove the pri
mality of numbers with 1000 decimal digits in a not too unreasonable amount 
of time. The running time of this algorithm is O((lnN)ClnlnlnN) for a suit
able constant C. This is almost a polynomial time algorithm since for all 
practical purposes the function lnlnlnN acts like a constant. (Note that the 
practical version of the algorithm is probabilistic, but that there exists a non
probabilistic but less practical version.) 

We will describe the algorithm in Section 9.1, without giving all the the 
implementation tricks. The reader will find a detailed description of this al
gorithm and its implementation in [Coh-Len2], [Coh-Len3] and [Bos-Hul]. 

In 1986, another primality testing algorithm was invented, first for theo
retical purposes by Goldwasser and Kilian, and then considerably modified so 
as to obtain a practical algorithm by Atkin. This algorithm has been imple
mented by Atkin and Morain, and is also practical for numbers having up to 
1000 digits. The expected running time of this algorithm is O(ln6 N), hence 
is polynomial time, but this is only on average since for some numbers the 
running time could be much larger. A totally non-practical version using a 
higher dimensional analog of this test has been given by Adleman and Huang, 
and they can prove that their test is polynomial time. In other words, they 
prove the following theorem ([Adl-Hua]). 

Theorem 9.1. There exists a probabilistic polynomial time algorithm which 
can prove or disprove that a given number N is prime. 

Their proof is pretty but very complex, and this theorem is one of the 
major achievements of theoretical algorithmic number theory. 

We will describe Atkin's practical primality test in Section 9.2, and we 
refer to [Atk-Mor] and to [Mor2] for implementation details. 
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9.1 The Jacobi Sum Test 

The idea of the APRCL method is to test Fermat-type congruences in higher 
degree number fields, and more precisely in certain well chosen cyclotomic 
fields. We need a few results about group rings in this context. 

9.1.1 Group Rings of Cyclotomic Extensions 

Recall first the following definitions and results about cyclotomic fields (see 
[Was]). 

Definition 9.1.1. If n is a positive integer, the n-th cyclotomic field is the 
number field Q((n), where (n is a primitive n-th root of unity, for example 
(n = e2i-rr/n. 

Proposition 9.1.2. Let K = Q( (n) be the n-th cyclotomic field. 

(1) The extension KjQ is a Galois extension, with Abelian Galois group given 
by 

G = Gal(K/Q) = {aa, (a,n) = 1, where O"a((n) = (~}. 

In particular, the degree of KjQ is ¢(n), where¢ is Euler's phi function. 
(2) The ring of integers of K is ZK = Z[(n]· 

We now come to the definition of a group ring. We could of course bypass 
this definition, but the notations would become very cumbersome. 

Definition 9.1.3. Let G be any finite group. The group ring Z[G] is the set 
of maps {not necessarily homomorphisms) from G to Z with the following two 
operations. If !I and h are in Z[G], we naturally define 

(It + h)(a) =!I (a)+ h(a) 

for all a E G. The multiplication law is more subtle, and is defined by 

!I· h(a) = L !I(T)/2(T-1a). 
rEG 

The name group ring is justified by the easily checked fact that the above 
operations do give a ring structure to Z[G]. If for f E Z[G], we set formally 

f = L f(a)[a], 
uEG 



9.1 The Jacobi Sum Test 447 

where [a] is just a notation, then it is easy to see that addition and multiplica
tion become natural Z-algebra laws, if we set, as is natural, [a1]· [a2] = [a1a2]. 
This is the notation which we will use. Note also that although we have only 
defined group rings Z[G] for finite groups G, it is easy to extend this to infi
nite groups by requiring that all but a finite number of images of the maps be 
equal to 0 (in order to have finite sums). 

We can consider Z as a subring of Z[G] by identifying n with n[1], where 
1 is the unit element of G, and we will use this identification from now on. 

We now specialize to the situation where G = Gal(K/Q) for a number 
field K Galois over Q, and in particular to the case where K is a cyclotomic 
field. By definition, the group G acts on K, and also on all objects naturally 
associated to K: the unit group, the class group, etc ... One can extend this 
action of G in a natural way to an action of Z[G] in the following way. If 
f E Z[G] and x E K, then we set 

f(x) = II a(x)f(a)_ 
aEG 

In the expanded form where we write f = L:aEG na[a], one sees immediately 
that this corresponds to a multiplicative extension of the action of G, and 
suggests using the notation xf instead of f(x) so that 

x1 = II a(xt". 
aEG 

Indeed, it is easy to check the following properties (x, x1 and x 2 are inK and 
J, h and h are in Z[G]): 

(1) xh+h = xh. xh. 

(2) xh·h = (xh)h = (xh)h. 

(3) (x1 + x2)f = x{ + x{ 
( 4) (x1x2)f = x{ x{ 

We now fix a prime number p and an integer k, and consider the n-th 
cyclotomic field K, where n = pk. Let G be its Galois group, which is the set 
of all aa for a E (Z/nZ)* by Proposition 9.1.2. Since it is Abelian, the group 
ring Z[G] is a commutative ring. Set 

p = {! E Z[G]/ (£ = 1}, 

where (p = e2i7r/p is a primitive pth root (not pk) of unity. Then one checks 
immediately that pis an ideal of Z[G]. In fact, iff= L:aE(Z/nZ)• na[aa], then 
f E P if and only if L:aE(Z/nZ)• ana= 0 (mod p). This shows that the number 
of cosets of Z[G] modulo p is equal top (the number of different incongruent 
sums L: ana modulo p), hence that p is in fact a prime ideal of degree one 
(i.e. of norm equal top). Clearly, it is generated over Z by p (i.e. p[l]) and all 
the a- [aa]· 
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9.1.2 Characters, Gauss Sums and Jacobi Sums 

Recall that a character (more precisely a Dirichlet character) X modulo q 
is a group homomorphism from (ZfqZ)* to C* for some integer q. This can 
be naturally extended to a multiplicative map from (ZfqZ) to C by setting 
x(x) = 0 if x fj. (ZfqZ)*. It can then be lifted to a map from Z to C, which 
by abuse of notation we will still denote by X· The set of characters modulo q 
forms a group, and for instance using Section 1.4.1 one can easily show that 
this group is (non-canonically) isomorphic to (ZfqZ)*, and in particular has 
¢(q) elements. The unit element of this group is the character xo such that 
xo(x) = 1 if (x, q) = 1 and 0 otherwise. 

Proposition 9.1.4. Let X be a character different from xo. Then 

L x(x)=O. 
xE(Z/qZ)• 

Dually, if x ¢. 1 (mod q), then 

LX(x) = 0, 
X 

where the sum is over all characters modulo q. 

Proof Since x f. xo, there exists a number a coprime to q such that x(a) f. 1. 
Sets= Ex x(x). Since X is multiplicative we have x(a)S = Ex x(ax). Since a 
is coprime to q and hence invertible modulo q, the map x ~---+ax is a bijection of 
(ZfqZ)* onto itself. It follows that x(a)S = EY x(y) = S, and since x(a) f. 1, 
this shows that S = 0 as claimed. The second part of the proposition is proved 
in the same way using the existence of a character x1 such that x1(x) f. 1 
when x ¢. 1 (mod q). D 

The order of a character xis the smallest positive n such that x(a)n = 1 
for all integers a prime to q, in other words it is the order of x considered as 
an element of the group of characters modulo q. 

Definition 9.1.5. 

(1) Let x be a character modulo q. The Gauss sum r(x) is defined by 

r(x) = L x(x)(:, 
xE(Z/qZ)• 

where as usual (q = e2i"'fq. 

(2) Let X1 and X2 be two characters modulo q. The Jacobi sum j(XI. X2) is 
defined by 

i(XI.X2)= L x1(x)x2(1-x). 
xE(ZfqZ)• 
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Note that since we have extended characters by 0, we can replace (Z/ qZ)* 
by Z(qZ, and also that in the definition of Jacobi sums, one could exclude 
x = 1 which contributes 0 to the sum. 

From the definitions, it is clear that if x is a character modulo q of order 
n (hence n I ¢(q)), then 

while if X1 and X2 are two characters modulo q of order dividing n, then 

This will in general be a much simpler ring than Z[(n, (q], and this observation 
will be important in the test. 

The basic results about Gauss sums and Jacobi sums that we will need 
are summarized in the following proposition. Note that we assume that q is a 
prime, which makes things a little simpler. 

Proposition 9.1.6. 

(1) Let x f:. Xo be a chamcter modulo a prime q. Then 

r(x)r(x) = x(-1)q and lr(x)l =VQ. 

(2) Let X1 and X2 be two chamcters modulo q such that X1X2 f:. Xo· Then 

.( ) _ r(xt)r(x2) 
JX1,X2- ( ). 

T X1X2 

Proof To simplify notations, except if explicitly stated otherwise, the sum
mations will always be over (Z/qZ)*, and we abbreviate (q to(. We have: 

r(x)r(x) = L x(x)C' L x(y)(Y = L x(t) L x(y)x(y)(Y(l+t)' 
:r: y t y 

by setting x = ty. Since x(y)x(y) = 1, the inner sum is simply a sum of powers 
of (, and since q is prime, is a geometric series whose sum is equal to -1 if 
1 + t f:. 0 and to q - 1 otherwise. Hence, our product is equal to 

- L: x(t) + (q -1)x(-1) = qx(-1)- L:x(t) = qx(-1) 
t~-1 t 

by Proposition 9.1.4. Finally, note that 

r(x) = L:x(x)C"' = LX(-x)("' = x(-1)r(x), 
:r: X 

and the first part of the proposition is proved. 
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The second part is proved analogously. We have 

r(xt)r(x2) = L L Xl(x)x2(Y)("'+Y = L L X1 (t)X1X2(Y)(Y(l+t) 
"' y t y 

by setting x = ty. Now by setting x = ay it is clear that for any x f:. xo we 
have 

LX(Y)(ay = { 
y 

Hence, since X1X2 f:. xo, we have 

0 if a = 0 (mod q) 
x(a)r(x) otherwise. 

r(x1)r(x2) = r(x1x2) L Xl(t)X1X2(1 + t) = r(x1x2) L:x1(u)x2(1- u) 
tt-l u 

if we set u = t/(1 + t) which sends bijectively (Z/qZ) \ {0, -1} onto (Z/qZ) \ 
{0, 1}, proving the identity. D 

9.1.3 The Basic Test 

We now come back to our basic purpose, i.e. testing the primality of a number 
N. It is assumed that N has already passed the Rabin-Miller test 8.2.2, so 
that it is highly improbable that N is composite. The aim is to prove that N 
is prime. 

In this section, we fix a prime p and a character x of order pk modulo a 
prime q (hence with pk I (q -1)). We can of course assume that N is prime to 
p and q. We set for simplicity n = pk, and denote by ((n) the group of n-th 
roots of unity, which is generated by (n. We shall use a modified version of 
Fermat's theorem as follows. 

Proposition 9.1.7. Let (3 E Z[G]. Then if N is prime, there exists 1J(X) E 

((n) such that 
r(x){j(N-aN) = rJ(X)-{jN (mod N), 

where in fact rJ(X) = x(N). 

Note that we consider Z[G] as acting not only on Q((n) but also on 
Q( (n, (q), the action being trivial on (q. Note also that the congruences modulo 
N are in fact modulo NZ[(n, (q]· 

Proof. We know that in characteristic N, (I: ak)N = I: af since the binomial 
coefficients (~) are divisible by N if 0 < i < N. Hence, 

"' "' 
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and the proposition follows since r(xN) = r(x)uN by definition of aN. Note 
that r(x) is also coprime to N since by Proposition 9.1.6, r(x)r(x) = q is 
coprime to N. o 

This proposition is a generalization of Fermat's theorem since one checks 
immediately that if we take n = p = 2 and f3 = 1, the proposition is equivalent 
to the statement q(N-1)/2 = ±1 (mod N). What we are now going to prove 
is in essence that if, conversely, condition ( */3) is satisfied for a number of 
characters x (with different pk and q), then we can easily finish the proof that 
N is prime. First, we prove the following 

Lemma 9.1.8. Let N be any integer, and assume that (*!3) is satisfied. Then 

(1) For all i > 0 

(2) 
{3 (N(p- 1Jpk- 1 -1) k-1 

r(x) = 77(x)13P (mod N). 

(3) If r is prime and coprime to p and q then 

r(x) (r(p-1)pk-1-1) =: X(r)Pk-1 
(mod r). 

Proof Assertion (1) follows from (* 13 ) by induction on i using the identity 

Ni+l- aNi+1 = Ni (N-aN)+ aN (Ni- aN;) 

and 1"/(X)uN = 17(X)N since 1"/(X) E ((n)· For (2) we apply the first assertion to 
i = (p- 1)pk-l and use Euler's Theorem 1.4.2 which tells us that 

N(P- 1)Pk- 1 = 1 (mod pk). 

The last assertion follows immediately since Proposition 9.1.7 tells us that 
( */3) is satisfied for a prime number r with f3 = 1 and 77(X) = x(r). 0 

We now introduce a condition which will be crucial to all our future work. 
We will show that this condition is a consequence of ( * 13 ) conditions for suitable 
characters X· This means that it will have a similar nature to the Fermat tests, 
but it is much more convenient to isolate it from the rest of the tests. 

Definition 9.1.9. We say that condition Cp is satisfied (with respect toN of 
course) if for all prime divisors r of N and all integers a > 0 we can find an 
integer lp(r, a) such that 



452 9 Modern Primality Tests 

Note that if N is prime this condition is trivially satisfied with lp(r, a) = 1. 
We will see later that this condition is not as difficult as it looks and that it 
can easily be checked. For the moment, let us see what consequences we can 
deduce from it. Note first that if lp(r, a) exists for all primes r dividing N, it 
exists by additivity for every divisor r of N. 

Note also that condition .Cp is more nicely stated in p-adic terms, but we 
will stay with the present definition. One consequence of this fact which we 
will use (and prove later) is the following result. 

Lemma 9.1.10. Let u = vp (NP- 1 -1) if p;::::: 3, u = v2 (N2 -1) if p = 2. 
Then for a ;::::: b ;::::: u we have 

The main consequence of condition .Cp which we need is the following. 

Proposition 9.1.11. Assume that condition .Cp is satisfied. 

(1) If X satisfies (*.a) for some (3 1. p, then for all sufficiently large a and all 
r IN we have 

x(r) = x(N)1v(r,a) and TJ(X) = x(N). 

(2) If 'If; is a character modulo a power of p and of order a power of p, then 
we also have 

for sufficiently large a. 

Proof. Set for simplicity x = r(x)f3. From the first part of Lemma 9.1.8 we 
have 

xN<v-llvk - 1 = 1 (mod N). 

Set N(P- 1)Pk -1 =peN1 with pf N 1 . Set I!= lp(r,max(e,k+u)), where u is 
as in Lemma 9.1.10. Then again using the first part of Lemma 9.1.8 we have 

N(p-l)l ( )-.B(p-1)lN(p-l)i ( N(p-l)t).B ( d N) 
x = TJ X r x mo 

= TJ(X)-.B(p-1)erv-lr(xrv-lt (mod N) 

since TJ(X) and x are of order dividing pk. If r is a prime divisor of N, we have 
by Proposition 9.1.7 
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xrp-1 =x(r)-,8(p-1)rp-lr(xrp-1),8 (modr) 

hence, since r ( xrp-l) .8 is invertible modulo r by Proposition 9.1.6, we obtain 

finally 

x(N<p-!Jt_rp-l) := (,8(p-1)rP-1 (mod r) with ( = x(r)7J(X)-l. 

Now from our choice of£, we have N(p-l)l = rP- 1 (mod pe), hence 

N1 (N(p-1)£- rP-1) = 0 (mod N(P- 1)Pk -1). 

So if we combine this with our preceding congruences we obtain 

Nl( N(p-l)t_rp-1) = 1 = ;-Nl,B(p-1)rp-1 ( d ) x __ ., mor. 

Now we trivially have Ntf3(p- 1)rP-1 fj. p since p is a prime ideal and none 
of the factors belong to p. Since ( is a pk-th root of unity, the definition of p 
implies that it must be equal to 1, i.e. that 

x(r) = 7J(X)l = 7J(X)Ip(r,a) 

for a sufficiently large, and for all primer dividing N (by Lemma 9.1.10 and 
our choice off). By additivity of lp (i.e. lp(rr', a) = lp(r, a)+ lp(r', a)) it im
mediately follows that this is true for all divisors r of N, not only prime 
ones. In particular, it is true for r= Nand since we can take lp(N, a)= 1 we 
have x(N) = 7J(X) and the first part of the proposition is proved. 

For the second part, if '1/J is of order pk1 modulo pk2 then if we take 
f = lp(r,max(k1 , k2 )) it is clear that '1/J (rP-1) = '1/J (NP-1)£ and since p -1 is 
coprime to the order of '1/J we immediately get the second part of the propo
sition. Note that we have implicitly used Lemma 9.1.10 in the proof of both 
parts. D 

From this result, we obtain the following theorem which is very close to 
our final goal of proving N to be prime. 

Theorem 9.1.12. Lett be an even integer, let 

e(t) = 2 IT qv.(t)+1 

q prime 
(q-1)lt 

and assume that (N, te(t)) = 1. For each pair of prime numbers (p, q) such 
that (q- 1) I t and Pkll(q -1), let Xp,q be a character modulo q of order pk 
(for example Xp,q (g;) = (;k if 9q is a primitive root modulo q). Assume that 

(1) For each pair (p, q) as above the character X= Xp,q satisfies condition (*.a) 
for some (3 ¢ p (but of course depending on p and q). 

(2) For all primes pIt, condition £p is satisfied. 
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Then for every divisor r of N there exists an integer i such that 0 ~ i < t 
satisfying 

r = Ni (mod e(t)). 

Proof From Proposition 9.1.11 and Lemma 9.1.10, there exists a sufficiently 
large a such that x(r) = x(N)1p(r,a) for every a and every x = Xp,q· By the 
Chinese remainder Theorem 1.3.9, we can find l(r) defined modulo t such that 
l(r) = lp(r, a) (mod pvp(t)) for all primes p dividing t, hence since pk I (q -1) I 
t, for all p and q as above we have 

Xp,q(r) = Xp,q (Nl(rl). 

Now I claim that Xq = f1PI(q- 1) Xp,q is a character of order exactly q- 1. 
Indeed, if xo is the trivial character modulo q, then x~ = Xo implies that for 
every Pkll(q -1), 

Xa(q-1)/pk - X p,q - o. 

hence since Xp,q is of order a power of p, hence prime to ( q - 1) / pk, that 
x~,q = Xo· This shows that pk I a since Xp,q is of order exactly equal to pk. 
Since this is true for every p I q - 1, we have ( q - 1) I a, thus proving our 
assertion. 

Hence, Xq is a generator of the group of characters modulo q, and this 
implies that for any character X1 modulo q we have X1(r) = X1 (N!(rl). 

Now let x be a character modulo qvq(t)+l+o where 8 = 0 if q > 2, 8 = 1 
if q = 2. We can write x = X1X2, where X1 is a character modulo q and X2 
modulo qvq(t)+l+o of order dividing qvq(t)+l+c5-(l+c5) = qvq(t) (this follows 
from Theorem 1.4.1). Hence, if q f t, X= x 1 so x(r) = x(N1(rl). On the other 
hand, if q I t, then by assumption, condition Cq is satisfied. Hence, by Prop
osition 9.1.11 (2) we have 

X2(r) = X2(N)l(r) = X2 ( Nl(r)) 

since x2 is of order qvq(t) and l(r) = lq(r,a) (mod qvq(t)) for a sufficiently 
large. Therefore for every x modulo e(t) this equality is true, and this proves 
that 

r = Nl(r) (mod e(t)). 

Finally note that for every prime q such that ( q - 1) I t we have 

N(q-1)q"q<•l = 1 (mod qvq(t)+l+o). 

Hence, Nt = 1 (mod e(t)), so we may reduce the exponent l(r) modulo t, thus 
proving the theorem. 0 

Corollary 9.1.13. We keep all the notations and assumptions of the theorem. 
Set ri = Ni mod e(t), so that 0 < ri < e(t). If e(t) > .JN and if for every i 
such that 0 < i < t we have ri = 1 or ri = N or ri f N, then N is prime. 
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Proof. If N was not prime, there would exist a prime divisor r of N such that 
1 < r ~ v'N < e(t), and by the theorem there would exist i < t such that 
r = Ni (mod e(t)) hence r = ri, contradiction. 0 

9.1.4 Checking Condition Cp 

We must now see how to check condition Cp, and incidentally prove Lemma 
9.1.10. We have the following result: 

Lemma 9.1.14. 

(1) If p;::: 3, condition Cp is equivalent to the inequality 

(2) For p = 2, condition C2 is equivalent to the inequality 

Proof. That condition Cp implies the above inequalities is trivial and left to 
the reader. Conversely, assume they are satisfied, and consider first the case 
p;::: 3. Set u = Vp (NP-l -1). Then it is easy to prove by induction on a;::: 0 
that there exist integers Xi for 0 ~ i < l satisfying 0 ~ Xi < p and such that 
if we set lp(r, a+ u) = L:o::=;i<l Xipi, we will have 

A similar induction works for p = 2 with u = v2 ( N 2 - 1) and a + u replaced 
by a+ u -1. This proves both the above lemma and Lemma 9.1.10 since the 
xi are independent of a. 0 

Corollary 9.1.15. If p ;::: 3 and NP-l ¢. 1 (mod p2), then condition Cp is 
satisfied. 

This is clear, since in this case vp(NP-l -1) = 1. 0 

This result is already useful for testing Cp, but it is not a systematic way 
of doing so. Before giving a more systematic result, we need another lemma. 

Lemma 9.1.16. Let a and b be positive integers, and let x be in Z[(pk,(q]· 
Assume that for an integer r coprime to p we have the congruences 

xa = TJa (mod r) and xb = TJ& (mod r), 
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where rJa and rJb are primitive roots of unity of order p1"" and p1b respectively, 
where la and lb are less than or equal to k. 

Assume, in addition, that la ~ lb and la ~ 1. Then: 

Vp(b)- Vp(a) =la -lb 

vp(b)- Vp(a) ~la 

if lb > 0, 

if lb = 0. 

Proof. Write a= pvp(a)m, b = pvp(b)n sop f mn. If we had vp(a) > vp(b), then, 
computing xan in two different ways (an= pvp(a)-vp(b)bm) we would obtain 

sola< lb, contrary to our assumption. Hence, vp(b) ~ vp(a), and we can now 
similarly compute xmb in two different ways, giving 

m np"p(b)-vp(o.) 

"lb = "1a · 

This immediately implies the lemma. Note that a congruence between roots 
of unity of order a power of p is in fact an equality since p is coprime to r. 0 

The main result which allows us to test condition Cp is the following: 

Proposition 9.1.17. Assume that we can find a character x modulo q, of 
order pk and a (3rt p, for which (*.a) is satisfied with rJ(x) a primitive pk-th 
root of unity. Then, if one of the following supplementary conditions is true, 
condition Cp is satisfied: 

(1) lfp~3; 
(2) lfp=2, k=1 andN=:=1 (mod4); 
(3) lfp = 2, k ~ 2 and q(N-1)12 = -1 (mod N). 

Proof. Assume that p ~ 3. By Lemma 9.1.8, if r is a prime divisor of Nand 
if we set x = r(x).B, then we have 

xN<P-1)pk-1_1 = rJ(x).BPk-1 (mod r) 

and 
Xr(p-1)pk-1 -1 '= x(r).8Pk-1 (mod r). 

Since (3 ¢ p, ry(x).BPk- 1 is a primitive p-th root of unity. From Lemma 9.1.16, 
we deduce that 

But, since p ~ 3 for any integer m we have 
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vp ( m<P- 1)Pk-l - 1) = k- 1 + vp (mP-1 - 1), 

hence 
Vp (rP-1 - 1) ~ Vp (NP-1 - 1) 

and this proves the theorem in this case by Lemma 9.1.14. 
The proof of the two other cases is similar and left to the reader (see 

Exercise 5). 0 

It is easy to show that if N is prime, one can always find a x satisfying 
the hypotheses of Proposition 9.1.17. In practice, such a x, if not already 
found among the X which are used to test (*13), will be found after a few 
trials at most. Strictly speaking, however, this part of the algorithm makes 
it probabilistic, but in a weak sense. A non-probabilistic, but less practical 
version also exists (see (APR]). 

9.1.5 The Use of Jacobi Sums 

It is clear that we now have an asymptotically fast primality testing algorithm. 
In this form, however, it is far from being practical. The main reason is as 
follows: we essentially have to test a number of conditions of the form ( * 13 ) for 
certain f3's and characters. This number is not that large, for example if N 
has less than 100 decimal digits, less than 80 tests will usually be necessary. 
The main problem lies in the computation of r(x)i3(N-uN) mod N. One needs 
to work in the ring Z((pk, (q], and this will be hopelessly slow (to take again 
the case of N < 10100 , we can take t = 5040, hence pk will be very small, more 
precisely pk ~ 16, but q will be much larger, the largest value being q = 2521). 
We must therefore find a better way to test these conditions. The reader may 
have wondered why we have carried along the element f3 E Z(G], which up to 
now was not necessary. Now, however we are going to make a specific choice 
for (3, and it will not be f3 = 1. We have the following proposition. 

Proposition 9.1.18. Let x be a character modulo q of order pk, and let a 
and b be integers such that p f ab( a+ b). Denote by E be the set of integers x 
such that 1 ~ x < pk and p f x. Finally, let 

a= L lN:j a;1 
xEE p 

and 

Then, we have 
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Proof Set 

e = L xa;; 1 E Z[G]. 
xEE 

An easy computation shows that for any integer r not divisible by p we have 

k"' lrxJ -1 e(ar- r) = -p ~ k ax . 
xEE p 

Using this formula for r = N, a, band a+ b (which are all coprime top) we 
obtain 

and 

hence 
[3(N- O"N) = a(aa + O"b- O"a+b)· 

Now it follows from Proposition 9.1.6 that 

and our proposition follows. D 

One sees from this proposition that if we can find suitable values of a and 
b, we can replace taking powers of r(x), which are in a large ring, by powers 
of a Jacobi sum, which are in the much smaller ring Z[(pk]. This is the basic 
observation needed to make this test practical. 

However this is not enough. First, note that the condition p f ab( a + b) 
excludes immediately the case p = 2, which will, as usual, have to be treated 
separately. Hence, we first assume that p ;::: 3. Recall that to get anything 
useful from (*13) we must have {3 ¢. p. This is easily dealt with by the following 
lemma. 

Lemma 9.1.19. With the notations of the above proposition, a necessary and 
sufficient condition for {3 ¢. p is that 

Proof If we set 
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where x-1 is an inverse of x modulo pk, it is clear from the definition of p that 
f3 rt p is equivalent top f K. Now by computing the product of ax for x E E 
in two different ways, it is easy to show that if p fa 

'"' lxaJ -1 = a(p-1)pk-t - 1 
~ k x _a k 
xEE p p 

(A) 

(see Exercise 1). The lemma follows immediately from this identity and the 
congruence 

(mod p) 

(see Exercise 2). D 

From this we obtain the following. 

Proposition 9.1.20. If 3 ~ p < 6 · 109 and p =f:. 1093, 3511, we can take 
a = b = 1. In other words, if we take 

(3= 
pk /2<x<pk ,ptx 

-1 
ax 

then f3 rt p and condition ( * 13) is equivalent to the congruence 

where as before 

and 

-'"' lNxJ -1 a-~ k ax 
xEE p 

2(p-1)pk-1 -1 
c = 2-----,--

pk 

Proof. By the preceding lemma, we can take a = b = 1 if we have 2P =:/= 2 
(mod p2 ). This congruence is exactly the Wieferich congruence which occurs 
for the first case of Fermat's last theorem and has been tested extensively (see 
[Leh2]). One knows that the only solutions for p < 6 · 109 are p = 1093 and 
p = 3511. The proposition now follows from Proposition 9.1.18 and formula 
(A) for a= 2. D 

Note that the restriction on p in the above proposition is completely ir
relevant in practice. Even if we were capable one day of using this test to 
prove the primality of numbers having 109 decimal digits, we would never 
need primes as large as 1093. This means that we have solved the practical 
problem of testing (*13) for p ~ 3. 
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The case p = 2 is a little more complicated, since we cannot use the above 
method. Let us first assume that k ;::: 3. We must now consider the triple 
Jacobi sum defined by 

ia(XI, X2, X3) = L Xl(x)x2(Y)X3(z), 
x+y+z=l 

where the variables x, y and z range over Wq. A similar proof to the proof of 
Proposition 9.1.6 shows that if x1x2x3 is not the trivial character, then 

and in particular, 
J3 (x, x, x) = r(x)3-<73 • 

Now what we want is an analog of Proposition 9.1.18. This can be easily 
obtained for one half of the values of N as follows. 

Proposition 9.1.21. Let x be a character modulo q of order 2k with k ;::: 3. 
Denote by E be the set of integers x such that 1 ~ x < 2k and x congruent to 
1 or 3 modulo 8. Finally, let 

"" lNxJ _1 a= L...t 2"k CJx 
xEE 

and 

Then, if N is congruent to 1 or 3 modulo 8, we have 

Furthermore, f3 (j. p. 

Proof. The proof is essentially the same as that of Proposition 9.1.18, using 
8 = LxEE xCJ; 1 . The condition on N is necessary since 8(CJr- r) does not 
take any special form if r is not congruent to 1 or 3 modulo 8. The restriction 
to these congruences classes is also mandatory since (Z/2kZ)* is not cyclic 
but has cyclic subgroups of index 2. (We could also have taken for E those 
x congruent to 1 or 5 modulo 8, but that would have required the use of 
quintuple Jacobi sums). D 

When N is congruent to 5 or 7 modulo 8, we use the following trick: - N 
will be congruent to 1 or 3 modulo 8, hence 8(CJ-N + N) will have a nice 
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form. But on the other hand, it is immediate to transform condition (*.a) into 
a condition involving a-N + N: 

and by Proposition 9.1.6 we have 

the last equality coming from x(-1) = (-1)(q-1)/2k = -1. This enables us to 
give a proposition analogous to Proposition 9.1.21 for N congruent to 5 or 7 
modulo 8. 

Proposition 9.1.22. Let x be a character modulo q of order 2k with k ~ 3. 
Denote by E be the set of integers x such that 1 ~ x < 2k and x congruent to 
1 or 3 modulo 8. Finally, let 

and 

'"' l3xJ _1 {3 = ~ 2k Clx . 

xEE 

Then, if N is congruent to 5 or 7 modulo 8, we have 

Furthermore, {3 fj. p. 

The proof of this proposition follows immediately from what we have said 
before and is left to the reader. 0 

Corollary 9.1.23. Let x and E be as in the proposition. Set ON= 0 if N is 
congruent to 1 or 3 modulo 8, tiN = 1 if N is congruent to 5 or 7 modulo 8. 
We may replace condition (*.a) by the following condition: 

where 

'"' lxNJ _1 
Q = ~ """2k Clx 

xEE 

and 
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Proof. Note first that using the formulas linking triple Jacobi sums with Gauss 
sums, and the analogous formula for ordinary Jacobi sums (Proposition 9.1.6), 
we have 

and this is the most efficient way to compute j3. 

Now if N is congruent to 1 or 3 modulo 8, the result follows immediately 
from Proposition 9.1.21 and formula (A) for a = 3. 

Assume now that N is congruent to 5 or 7 modulo 8. From Proposition 
9.1.22, formula (A) and the identity 

2: l~~J = 2k-2 -1, 
xEE 

we obtain 
JJ(X, X, xr•t := rJ(X)-cN (-q)d 

with d = 2k-2 - 1. It is clear that the corollary will follow from this formula 
and the following lemma: 

Lemma 9.1.24. Set"(= ExEE 0"; 1 and d = 2k-2 -1. We have the identity: 

Proof. Using the formula expressing triple Jacobi sums in terms of Gauss sums, 
we have 

h(x, x, x)" = IT r 2 (xx). 
xEE 

Now we have the following theorem, due to Hasse and Davenport (see for 
example [Was] and [Ire-Ros]). 

Theorem 9.1.25 (Hasse-Davenport). Let '1/J be any character and x1 a char
acter of order exactly equal to m. We have the identity 

o::;x<m o:-s:x<m 

Applying this identity to '1/J = xa, x1 = x2k-t, one easily shows by induc
tion on l that 

II T2(xa+n2k-l) = q21-172 (x21a) x(2)-al21+1 • 

o::;n<21 
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If we now take l = k- 3 and multiply the identities for a= 1 and a= 3, we 
easily obtain the lemma by using Proposition 9.1.6, thus proving our corollary. 

D 

Note that one can give a direct proof of Lemma 9.1.24 without explicitly 
using the Hasse-Davenport theorem (see Exercise 3). 

We have assumed that k ~ 3. What remains is the easy case of k ~ 2. Here 
we have the following proposition, whose proof is an immediate consequence 
of Proposition 9.1.6. 

Proposition 9.1.26. For p = 2 and k = 1, condition (*1) is equivalent to 
the congruence 

(-q)(N-1)/2 := T/(X) (mod N) . 

For p = 2 and k = 2, condition (*1) is equivalent to the congruence 

j(x, x)(N-1)/2q(N-1)/4 = ?J(x)-1 (mod N) 

if N = 1 (mod 4), and to the congruence 

j(x, x)(N+1)/2q(N-3)/4 = -71(X) (mod N) 

if N = 3 (mod 4). 

This ends our transformation of condition (*13) into conditions involving 
only the ring Z[(pk]. 

9.1.6 Detailed Description of the Algorithm 

We can now give a detailed and complete description of the Jacobi sum pri
mality test. 

Algorithm 9.1.27 (Precomputations). Let B be an upper bound on the num
bers that we want to test for primality using the Jacobi sum test. This algorithm 
makes a number of necessary precomputations which do not depend on N but 
only on B. 

1. (Find t] Using a table of e(t), find at such that e2 (t) >B. 

2. (Compute Jacobi sums] For every prime q dividing e(t) with q ~ 3, do as 
follows. 

(1) Using Algorithm 1.4.4, compute a primitive root gq modulo q, and a table 
of the function f(x) defined for 1 ~ x ~ q - 2 by 1 - g: = g[(x) and 
1 ~ f(x)~ q-2. 

(2) For every primep dividing q-1, let k = vp(q-1) and let Xp,q be the character 
defined by Xp,q (g:) = (:k · 
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(3) If p ~ 3 or p = 2 and k = 2, compute 

J( ) '( ) "" l'pxk+f(x). p,q = J Xv,qoXp,q = L...., ., 
l~x~q-2 

If p = 2 and k ~ 3, compute J(2, q) as above, 

j(x~.q• X2,q) = r2x+ f(x) 
"2k , 

J3(q) = j3(X2,q, X2,q, X2,q) = J(2, q)j(x~,q' X2,q) 

and 

J ( ) = ·2 ( 2k-s 3·2k- 3 ) = ( "" /'3x+ J(x))
2 

2 q J X2,q , X2,q L...., "B 
l~x~q-2 

Note that it is very easy to build once and for all a table of e(t). For 
example, e(5040) ~ 1.532 · 1052 hence t = 5040 can be used for numbers 
having up to 104 decimal digits, e(720720) ~ 2.599 ·10237 , for numbers having 
up to 474 decimal digits (see however the remarks at the end of this section). 

The Jacobi sum primality testing algorithm is then as follows. 

Algorithm 9.1.28 (Jacobi Sum Primality Test). Let N be a positive integer. 
We assume that N is a strong pseudo-prime in 20 randomly chosen bases (so that 
N is almost certainly prime). We also assume that N:::; B and that the precom
putations described in the preceding algorithm have been made. This algorithm 
decides (rigorously!) whether N is prime or not. 

1. [Check GCD] If (te(t), N) > 1, then N is composite and terminate the algo
rithm. 

2. [Initialize] For every prime p It, set lp +-- 1 if p ~ 3 and NP- 1 ¢ 1 (mod p2), 

lp +-- 0 otherwise. 

3. [Loop on characters] For each pair (p, q) of primes such that pk II ( q - 1) I t, 
execute step 4a if p ~ 3, step 4b if p = 2 and k ~ 3, step 4c if p = 2 and 
k = 2, step 4d if p = 2 and k = 1. Then go to step 5. 

4a.[Check (*.a) for p ~ 3] Let E be the set of integers between 0 and pk 
which are not divisible by p. Set e +-- ExEE xu; 1, r +-- N mod pk I Q +--

ExEE l;~ J u; 1, and compute s1 +-- J(p, q) 9 mod N, s2 +-- stN/pkJ mod N, 

and finally S(p, q) = s2J(p, q)0 mod N. 
If there does not exist a pk-th root of unity 'T/ such that S(p, q) = 'T/ 

(mod N), then N is composite and terminate the algorithm. If 'T/ exists and if 
it is a primitive pk-th root of unity, set lv +-- 1. 
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4b.[Check (*13) for p = 2 and k ;::: 3] Let E be the set of integers between 
0 and 2k which are congruent to 1 or 3 modulo 8. Set e t- LxeE xu;1 , 

r t- N mod 2k, at- LxeE l;~J u;1, and compute 81 t- J3(q)9 mod N, 

82 t- 8lNfpk J mod N, and finally 8(2, q) = 82h(q) 01 J2(q)6N, where 8N = 0 
if r E E (i.e. if N if congruent to 1 or 3 modulo 8), 8N = 1 otherwise. 

If there does not exist a 2k-th root of unity 11 such that 8(2, q) = 11 
(mod N), then N is composite and terminate the algorithm. If 11 exists and 
is a primitive 2k-th root of unity, and if in addition q<N-1)/2 = -1 (mod N), 
set l2 t- 1. 

4c.[Check (*13) for p = 2 and k = 2] Set 81 t- J(2,q) 2 · q mod N, s2 t-

8lN/4J mod N, and finally 8(2, q) t- 8 2 if N = 1 (mod 4), 8(2, q) t-

821(2, q)2 if N = 3 (mod 4). 
If there does not exist a fourth root of unity 11 such that 8(2, q) = 11 

(mod N), then N is composite and terminate the algorithm. If 11 exists and is 
a primitive fourth root of unity (i.e. T/ = ±i), and if in addition q(N-1)/2 = -1 
(mod N), set l2 t- 1. 

4d.[Check (*13) for p = 2 and k = 1] Compute 8(2, q) t- ( -q)(N-1)/2 mod N. 
If 8(2, q) "¢ ±1 (mod N), then N is composite and terminate the algorithm. 
If 8(2,q) = -1 (mod N) and N = 1 (mod 4), set l2 t-1. 

5. [Check conditions .Cp] For every p I t such that lp = 0, do as follows. Choose 
random primes q such that q f e(t), q = 1 (mod p), (q, N) = 1, execute step 
4a, 4b, 4c, 4d according to the value of the pair (p, q). To do this, we will 
have to compute a number of new Jacobi sums, since these will not have been 
precomputed, and we do this as explained in the precomputation algorithm. 

If after a reasonable number of attempts, some lp is still equal to 0, then 
output a message saying that the test has failed (this is highly improbable). 

6. For i = 1, ... , t - 1, compute (by induction of course, not by the binary 
powering algorithm) Ti t- Ni mod e(t). lffor some i, Ti is a non-trivial divisor 
of N, then N is composite and terminate the algorithm. Otherwise (i.e. if for 
every i either ri f Nor ri = 1 or Ti = N), output the message that N is prime 
and terminate the algorithm. 

9.1. 7 Discussion 

The above algorithm works already quite well both in theory and in practice. 
Pomerance and Odlyzko have shown that the running time of the Jacobi sum 
algorithm is 

O((lnN)CinlnlnN) 

for some constant G. Hence this is almost (but not quite) a polynomial time 
algorithm. Many improvements are however still possible. 

For example, it is not difficult to combine the Jacobi sum test with the 
information gained from the Pocklington N - 1 and N + 1 tests (Proposition 
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8.3.1). One can go even further and combine the test with the so-called Galois 
theory test. This has been done by Bosma and van der Hulst (see [Bos-Hul]). 

Note also that the part of the algorithm which is the most time-critical 

is the computation of s2 +- slN/pk J. To do this, we of course use the fastest 
powering algorithms possible, in practice the 2k-left to right Algorithm 1.2.4. 
But we must also do multiplications in the rings Z[(pk] which is of dimension 
n = ¢(pk) = (p- 1)pk-1 over Z. A priori such a multiplication would require 
n 2 multiplications in Z. Using the same tricks as explained in Section 3.1.2, 
it is possible to substantially decrease the number of necessary multiplica
tions. Furthermore, special squaring routines must also be written. All this is 
explained in complete detail in [Coh-Len2] and [Coh-Len3]. 

Another important improvement uses an algorithm due to H. W. Lenstra 
(see [Len2]) for finding in polynomial time factors of N which are in a given 
residue class modulo s when s > N 113 . This can be applied here, and allows 
us to replace the condition e2(t) > B of the precomputations by e3 (t) > B. 
This gives a substantial saving in time since one can choose a much smaller 
value of t. We give the algorithm here, and refer to [Len2] for its proof. 

Algorithm 9.1.29 (Divisors in Residue Classes). Let r, s, N be integers 
such that 0 ~ r < s < N, (r, s) = 1 and s > ifN. This algorithm determines all 
the divisors d of N such that d = r (mods). 

1. [Initialization] Using Euclid's extended Algorithm 1.3.6 compute u and v such 
that ur + vs = 1. Set r' +- uN mods {hence 0 ~ r' < s), ao +- s, bo +- 0, 
Co +- 0, a1 +- ur' mods, b1 +- 1, c1 +- u(N- rr')/s mods and j +- 1. 
Finally, if a1 = 0 set a1 = s {so 0 < a1 ~ s). 

2. [Compute c]lf j is even let c +- Cj. Otherwise, let c +- Cj + sl(N + s2(aibi
Cj))/s3J and if c < 2ajbj go to step 6. 

3. [Solve quadratic equation]lf (cs +air+ bir')2 - 4aibiN is not the square of 
an integer, go to step 5. Otherwise, let t1 and t2 be the two {integral) solutions 
of the quadratic equation T 2 - (cs +air+ bir')T + aibiN = 0. 

4. [Divisor found?] If ai I t1. bj I t2, tdai = r (mods) and t2/bi = r' (mods), 
then output ttfai as a divisor of N congruent tor modulo s. 

5. [Other value of c] If j is even and c > 0, set c +- c- s and go to step 3. 

6. [Next j] If ai = 0, terminate the algorithm. Otherwise, set j +- j + 1, and 
Qj +- Lai-2/ai-d if j is even, Qj +- L(ai-2 -1)/ai-d if j is odd. Finally, 
set ai +- aj-2 - qiai-1• bi +- bj-2 - qibi-1. Cj +- Cj-2 - QjCj-1 and go to 
step 2. 

Remarks. 

(1) [Len2] also shows that under the conditions of this algorithm, there exist 
at most 11 divisors of N congruent tor modulo s. 

(2) In step 4, h/bi is a divisor of N congruent tor' modulo s. Since in the case 
of the Jacobi sum test r = Ni mod s and so r' = N 1-i mod s, Lenstra's 
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algorithm allows us to test simultaneously two residue classes modulo s, 
reducing the time spent in step 6 of Algorithm 9.1.28. 

9.2 The Elliptic Curve Test 

We now come to the other modern primality test, based on the use of elliptic 
curves over finite fields. Here, instead of looking for suitably strong gener
alizations of Fermat's theorem in cyclotomic fields, or equivalently instead 
of implicitly using the multiplicative group of lF Nd, we will use the group of 
points of elliptic curves over lF N itself. 

Now recall that when we start using a primality test, we are already 
morally certain that our number N is prime, since it has passed the Rabin
Miller pseudo-primality test. Hence, we can work as if N was prime, for ex
ample by assuming that any non-zero element modulo N is invertible. In the 
unlikely event that some non-zero non-invertible element appears, we can im
mediately stop the algorithm since we know not only that N is composite, but 
even an explicit prime factor by taking a GCD with N. 

We will consider an "elliptic curve over Z/N7l}'. What this means is that 
we consider a Weierstra£ equation 

a, bE Z/NZ, (4a3 + 27b2 ) E (Z/NZ)*. 

(It is not necessary to consider a completely general Weierstra£ equation since 
we may of course assume that (N, 6) = 1.) 

We then add points on this curve as if N was prime. Since the group 
law involves only addition/subtraction/multiplication/division in Z/NZ, the 
only phenomenon which may happen if N is not prime is that some division 
is impossible, and in that case as already mentioned, we know that N is 
composite and we stop whatever algorithm we are executing. 

Hence, from now on, we implicitly assume that all operations take place 
without any problems. 

9.2.1 The Goldwasser-Kilian Test 

The basic proposition which will enable us to prove that N is prime is the 
following analog of Pocklington's Theorem 8.3.1. 

Proposition 9.2.1. Let N be an integer coprime to 6 and different from 1. 
and E be an elliptic curve modulo N. 

Assume that we know an integer m and a point P E E(Z/ NZ) satisfying 
the following conditions. 

{1) There exists a prime divisor q of m such that 
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(2) m · P = OE = (0: 1 : 0). 
(3) (mfq) · P = (x: y: t) with t E (Z/NZ)*. 

Then N is prime. (As above, it is assumed that all the computations are 
possible.) 

Proof Let p be a prime divisor of N. By reduction modulo p, we know that 
in the group E(Zfp'Z), the image of P has order a divisor of m, but not a 
divisor of mfq since t E (Z/NZ)*. Since q is a prime, this means that q divides 
the order of the image of Pin E(Zfp'Z), and in particular q ~ IE(Z/pZ)I. By 
Hasse's Theorem 7.1.8, we thus have 

Assume that N was not prime. We can then choose for p the smallest 
prime divisor of N which will be less than or equal to .../N. Hence we obtain 
q < ( m + 1)2 ' contradicting the hypothesis on the size of q and thus proving 
the proposition. D 

For this proposition to be of any use, we must explain three things. First, 
how one chooses the elliptic curve, second how one finds P, and finally how 
one chooses m. Recall that for all these tasks, we may as well assume that N is 
prime, since this only helps us in making a choice. Only the above proposition 
will give us a proof that N is prime. 

The only non-trivial choice is that of the integer m. First, we have: 

Proposition 9.2.2. Let N be a prime coprime to 6, E an elliptic curve 
modulo N and let 

m = IE(Z/NZ)I. 

If m has a prime divisor q satisfying 

then there exists a point P E E(Z/ NZ) such that 

m · P = OE and (mfq) · P = (x : y : t) with t E (Z/NZ)*. 

Proof First note that any point P will satisfy m · P = OE. Second, since 
N is assumed here to be prime, t E (Z/NZ)* means t =f. 0 hence the second 
condition is (mfq) · P =f. OE. 

Set G = E(Z/NZ) and assume by contradiction that for every PEG we 
have (mfq) · P = OE. This means that the order of any Pis a divisor of mfq, 
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hence that the exponent of the Abelian group G divides mfq. (Recall that the 
exponent of an Abelian group is the LCM of the orders of the elements of the 
group.) 

Now, by Theorem 7.1.9, we know that G is the product of at most two 
cyclic groups, i.e. that 

(and d2 = 1 if G is cyclic). Hence the exponent of G is equal to dt, while the 
cardinality of G is equal to d1d2 ~ d~. Thus we obtain 

m = IGI ~ d~ ~ (m/q)2 , 

hence q2 ~ m. Using our hypothesis on the size of q and Hasse's bound 7.1.8 
on m, we obtain 

and this is clearly a contradiction, thus proving the proposition. D 

We now know that Proposition 9.2.1 can in principle be applied to prove 
the primality of N, by choosing m = IE(Z/NZ)I, where this cardinality is 
computed as if N was prime. But that is precisely the main question: how 
is this computed? We could of course use the baby-step giant-step Algorithm 
7.4.12, but this is a O(N114 ) algorithm, hence totally unsuitable. 

The idea of Goldwasser and Kilian ([Gol-Kil]) is to make use of the remark
able algorithm of Schoof already mentioned in Section 7.4.3 ([Scho]), which 
computes m = IE(Z/NZ)I in time O(ln8 N). Of course, this algorithm may 
fail since it is not absolutely certain that N is prime, but if it fails, we will 
know that N is composite. 

Once m has been computed, we trial divide m by small primes, hoping that 
the unfactored part will be a large strong pseudo-prime. In fact, Goldwasser 
and Kilian's aim was purely theoretical, and in that case one looks for m 
equal to twice a strong pseudo-prime. If this is the case, and q is the large 
pseudo-prime that remains (large meaning larger than ( ifN + 1)2 of course), 
we temporarily assume that q is prime, and look at random for a point P so 
as to satisfy the hypothesis of Proposition 9.2.1. This will be possible (and in 
fact quite easy) by Proposition 9.2.2. 

If such a P is found, there remains the task of proving that our strong 
pseudo-prime q is prime. For this, we apply the algorithm recursively. Indeed, 
since q ~ m/2 ~ (N+2Jiii+1)/2, the size of N will decrease by a factor which 
is at least approximately equal to 2 at each iteration, hence the number of 
recursive uses of the algorithm will be O(ln N). We stop using this algorithm as 
soon as N becomes small enough so that other algorithms (even trial division!) 
may be used. 

The algorithm may be formally stated as follows. 
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Algorithm 9.2.3 (Goldwasser-Kilian). Let N be a positive integer different 
from 1 and coprime to 6. This algorithm will try to prove that N is prime. If N 
is not a prime, the algorithm may detect it, or it may run indefinitely (hence we 
must absolutely use the Rabin-Miller test before entering this algorithm). 

1. [Initialize] Set i t- 0 and Ni t- N. 

2. [Is Ni small?]lf Ni < 230 , trial divide Ni by the primes up to 215 . IfNi is not 
prime go to step 9. 

3. [Choose a random curve] Choose a and bat random in Z/N/Z, and check that 
4a3 + 27b2 E (Z/ NiZ)*. Let E be the elliptic curve whose affine WeierstraB 
equation is y2 = x 3 + ax + b. 

4. [Use Schoof] Using Schoof's algorithm, compute m t- IE(Z/NiZ)I. If Schoof's 
algorithm fails go to step 9. 

5. [Ism OK?] Check whether m = 2q where q passes the Rabin-Miller test 8.2.2 
(or more generally, trial divide m up to a small bound, and check that the 
remaining factor q passes the Rabin-Miller test and is larger than ( {!Ni + 1)2). 

If this is not the case, go to step 3. 

6. [Find P] Choose at random x E Z/NiZ until the Legendre-Jacobi symbol 
(x 3+;:+b) is equal to 0 or 1 (this will occur after a few trials at most). Then 
using Algorithm 1.5.1, compute y E Z/NiZ such that y2 = x3 +ax+b (again, 
if this algorithm fails, go to step 9). 

7. [Check P] Compute P1 t- m · P and P2 t- (m/q) · P. If during the com
putations some division was impossible, go to step 9. Otherwise, check that 
P1 = OE, i.e. that P1 = (0 : 1 : 0) in projective coordinates. If P1 f OE, go 
to step 9. Finally, if P2 = OE, go to step 6. 

8. [Recurse] Set it- i + 1, Ni t- q and go to step 2. 

9. [Backtrack] (We are here when Ni is not prime, which is a very unlikely occur
rence.) If i = 0, output a message saying that N is composite and terminate 
the algorithm. Otherwise, set i t- i- 1 and go to step 3. 

Some remarks are in order. As stated in the algorithm, if N is not prime, 
the algorithm may run indefinitely and so should perhaps not be called an 
"algorithm" in our sense. Note however that it will never give a false answer. 
But even if N is prime, the algorithm is probabilistic in nature since we need 
to find an elliptic curve whose number of points has a special property, and 
in addition a certain point P on that curve. It can be shown that under 
reasonable hypotheses on the distribution of primes in short intervals, the 
expected running time of the algorithm is 0 (In 12 N), hence is polynomial in 
InN. Therefore it is asymptotically faster than the Jacobi sum test. Note 
however that the Goldwasser-Kilian test is not meant to be practical. 

The sequence of primes No= N, N11 ••• Ni, ... together with the elliptic 
curves Ei, the points Pi and the cardinality mi obtained in the algorithm 
is called a primality certificate. The reason for this is clear: although it may 
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have been difficult to find Ei, Pi or mi, once they are given, to check that the 
conditions of Proposition 9.2.1 are satisfied (with q = Ni+l) is very easy, so 
anybody can prove to his or her satisfaction the primality of N using much 
less work than executing the algorithm. This is quite different from the Jacobi 
sum test where to check that the result given by the algorithm is correct, 
there is little that one can do but use a different implementation and run the 
algorithm again. 

To finish this (sub)section, note that, as stated in the beginning of this 
chapter, an important theoretical advance has been made by Adleman and 
Huang. 

Their idea is to use, in addition to elliptic curves, Jacobians of curves of 
genus 2, and a similar algorithm to the one above. Although their algorithm 
is also not practical, the important point is that they obtain a probabilistic 
primality testing algorithm which runs in polynomial time, in other words 
they prove Theorem 9.1. Note that the Goldwasser-Kilian test is not of this 
kind since only the expected running time is polynomial, but the worst case 
may not be. 

9.2.2 Atkin's Test 

Using the same basic idea, i.e. Proposition 9.2.1, Atkin has succeeded in finding 
a practical version of the elliptic curve test. It involves a number of new ideas. 
This version has been implemented by Atkin and by Morain, and has been 
able to prove the primality of titanic numbers, i.e. numbers having more than 
1000 decimal digits. The Jacobi sum test could of course do the same, but time 
comparisons have not yet been done, although it seems that at least up to 800 
digits the Jacobi sum test is slightly faster. Of course, since asymptotically 
Atkin's test is polynomial while the Jacobi sum test is not, the former must 
win for N sufficiently large. 

The main (if not the sole) practical stumbling block in the algorithm of 
Goldwasser-Kilian is the computation of m = IE(Z/NZ)I using Schoof's algo
rithm. Although progress has been made in the direction of making Schoof's 
algorithm practical, for example by Atkin and Elkies, Atkin has found a much 
better idea. 

Instead of taking random elliptic curves, we choose instead elliptic curves 
with complex multiplication by an order in a quadratic number field K = 
Q( ..,fi5) where N splits as a product of two elements. This will enable us to 
use Theorem 7.2.15 which (if N is prime) gives us immediately the cardinality 
of E(Z/NZ). 

The test proceeds as follows. As always we can work as if N was prime. 
We must first find a negative discriminant D such that N splits in the order 
of discriminant D as a product of two elements. This is achieved by using 
Cornacchia's Algorithm 1.5.3. Indeed, Cornacchia's algorithm gives us, if it 
exists, a solution to the equation x 2 +dy2 = 4p, where d = -D, hence 7r7i' = p, 
with 
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x+yvD 
7r= 

2 

Once such a D is found, using Theorem 7.2.15 we obtain that, if N is 
prime, 

m = IE(Z/NZ)I = N + 1- 1r -7f = N + 1- x 

with the above notations, if E is an elliptic curve with complex multiplication 
by the order of discriminant D. We now check whether m satisfies the condition 
which will enable us to apply Proposition 9.2.1, i.e. that m is not prime, but 
its largest prime factor is larger than ({IN+ 1)2 . Since we are describing 
a practical algorithm, this is done much more seriously than in Goldwasser
Kilian's test: we trial divide m up to a much higher bound, and then we can 
also use Pollard p and p - 1 to factor m. 

If m is not suitable, we still have at least another chance. Recall from 
Section 5.3 that we denote by w(D) the number of roots of unity in the 
quadratic order of discriminant D, hence w(D)=2 if D<-4, w(-4) = 4 
and w(-3) = 6. 

Then it can be shown that there exist exactly w(D) isomorphism classes of 
elliptic curves modulo N with complex multiplication by the quadratic order 
of discriminant D. These correspond to the factorizations N = ( ( 1r) ( ( 1r) where 
( runs over all w(D)-th roots of unity (in particular ( = ±1 if D < -4). 

Hence we can compute w(D) different values of m in this way and hope 
that at least one of them is suitable. If none are, we go on to another discrim
inant. 

Therefore, let us assume that we have found a suitable value for m corre
sponding to a certain discriminant D. It remains to find explicitly the equa
tions of elliptic curves modulo N with complex multiplication by the order of 
discriminant D. 

Now since N splits in the order of discriminant D, we have w(D) I N -1 
and there exist (N- 1)/2 values of g E Z/NZ ((N -1)/3 if D = -3) such 
that g(N-l)/p f:. 1 for each prime pI w(D). Choose one of these values of g. 

If D =- 4 (resp. D =- 3), then the four (resp. six) isomorphism classes 
of elliptic curves with complex multiplication by the order of discriminant -4 
are given by the affine equations 

(resp. 

If D is not equal to -3 or -4, we set 
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is the j-invariant which corresponds to the order of discriminant D. Then the 
two isomorphism classes of elliptic curves with complex multiplication by the 
order of discriminant D can be given by the affine equations 

Note that j = j((D + ,fl5)/2) has been defined in Section 7.2.1 as a 
complex number, and not as an element of Z/NZ. Hence we must make sense 
of the above definition. 

Recall that according to Theorem 7.2.14, j is an algebraic integer of degree 
exactly equal to h(D). Furthermore, it can easily be shown that our hypothesis 
that N splits into a product of two elements is equivalent (if N is prime) to 
the fact that the minimal monic polynomial T of j in Z[X] splits completely 
modulo N as a product of linear factors. Since the roots of T in <C are the 
conjugates of j((D + ,fl5)/2), any one will define by the above equations the 
isomorphism classes of elliptic curves with complex multiplication by the order 
of discriminant D, hence we define j as being any of the h(D) roots of T(X) 
in Z/NZ. 

Once the elliptic curve has been found, the rest of the algorithm proceeds 
as in the Goldwasser-Kilian algorithm, i.e. we must find a point P on the 
curve satisfying the required properties, etc ... 

There are, however, two remarks to be made. First, we have w(D) elliptic 
curves modulo N at our disposal, but a priori only one corresponds to a 
suitable value of m, and it is not clear which one. ForD = -3 and D = -4, 
it is easy to give a recipe that will tell us which elliptic curve to choose. For 
D < -4, such a recipe is more difficult to find, and we then simply compute 
m · P for our suitable m and a random P on one of the two curves. If this is not 
equal to the identity, we are on the wrong curve. If it is equal to the identity, 
this does not prove that we are on the right curve, but if P has really been 
chosen randomly, we can probably still use the curve to satisfy the hypotheses 
of Proposition 9.2.1. 

The second remark is much more important. To obtain the equation of 
the curve, it is necessary to obtain the value of j modulo N. This clearly is 
more difficult if the class number h(D) is large. Hence, we start by considering 
discriminants whose class number is as small as possible. So we start by looking 
at the 13 quadratic orders with class number 1, then class number 2, etc ... 

But now a new difficulty appears. The coefficients in the minimal poly
nomial T of j become large when the class number grows. Of course, they 
will afterwards be reduced modulo N, but to compute them we will need to 
use high precision computations of the values of j(T) for every quadratic irra
tional T corresponding to a reduced quadratic form of discriminant D. Since 
this computation is independent of N, it could be done only once and the re
sults stored, but the coefficients are so large that even for a moderately sized 
table we would need an enormous amount of storage. 
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Several methods are available to avoid this. First, one can use the notion 
of genus field to reduce the computations to a combination of relative com
putations of smaller degree. Second, we can use Weber functions, which are 
meromorphic functions closely related to the function j(r) and which have 
analogous arithmetic properties. In the best cases, these functions reduce the 
number of digits of the coefficients of the minimal polynomial T by a factor 
24 (see Section 7.6.3). 

All these tricks and many more, and the detailed implementation proce
dures, are described completely in [Atk-Mor] and in Morain's thesis [Mor2]. 
Here, we will simply give a formal presentation of Atkin's algorithm without 
any attempt at efficiency. 

Algorithm 9.2.4 (Atkin). Given an integer N coprime to 6 and different from 
1, this algorithm tries to prove that N is prime. It is assumed that N is already 
known to be a strong pseudo-prime in the sense of the Rabin-Miller test 8.2.2. 
We assume that we have a list of negative discriminants Dn (n ~ 1) ordered 
by increasing computational complexity (for example as a first approximation by 
increasing class number). 

1. [Initialize] Set i t-- 0, n t-- 0 and Ni t-- N. 

2. [Is Ni small?] IfNi < 230 , trial divide Ni by the primes up to 215. IfNi is 
not prime go to step 14. 

3. [Choose next discriminant] Let n t-- n + 1 and D t-- Dn. If (~) =f- 1, go to 
step 3. Otherwise, use Cornacchia's Algorithm 1.5.3 to find a solution, if it 
exists, of the equation x 2 + 1Diy2 = 4N. If no solution exists, go to step 3. 

4. [Factor m] For m = N + 1 + x, m = N + 1 - x (and in addition for 
m=N+1+2y, m=N+1-2y ifD=-4, orm=N+1+(x+3y)/2. 
m=N +1-(x+3y)/2, m=N +1+ (x- 3y)/2, m=N +1-(x- 3y)/2 if 
D = -3), factor m using trial division (up to 1000000, say), then Pollard p 
and p- 1. It is worthwhile to spend some time factoring m here. 

5. [Does a suitable m exist?] If, using the preceding step, for at least one value 
of m we can find a q dividing m which passes the Rabin-Miller test 8.2.2 and 
is larger than ( {INi + 1)2 , then go to step 6, otherwise go to step 3. 

6. [Compute elliptic curve] If D = -4, set a t-- -1 and b t-- 0. If D = -3, 
set a t-- 0, b t-- -1. Otherwise, using Algorithm 7.6.1, compute the minimal 
polynomial T E Z[X] of j((D+ VD)/2). Then reduce T modulo Ni and let 
j be one of the roots ofT = T mod Ni obtained by using Algorithm 1.6.1 
(note that we know that T I xN•- X so the computation of A(X) in step 
1 of that algorithm is not necessary, we can simply set A t-- T). Then set 
c t-- jf(j -1728) mod Ni, at-- -3c mod Ni. b t-- 2c mod Ni. 

7. [Find g] By making several random choices of g, find g such that g is a 
quadratic non-residue modulo Ni and in addition if D = -3, g(N;- 1)/3 ¢:. 1 
(mod Ni)· 
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8. [Find P] Choose at random x E Z/N/L until the Legendre-Jacobi symbol 

(x3+;:+b) is equal to 0 or 1 {this will occur after a few trials at most). Then 

using Algorithm 1.5.1, compute y E Z/NiZ such that y2 = x3 +ax+ b. {If 
this algorithm fails, go to step 14, but see also Exercise 6.) Finally, set k +-- 0. 

9. [Find right curve] Compute P2 +-- (mfq) · P and P1 +-- q · P2 on the curve 
whose affine equation is y2 = x 3 + ax+ b. If during the computations some 
division was impossible, go to step 14. If P1 = (0 : 1 : 0) go to step 12. 

10. Set k +-- k + 1. If k ? w(D) go to step 14, else if D < -4 set a +-- ag2 , 

b +-- bg3 , if D = -4 set a+-- ag, if D = -3 set b +-- bg and go to step 8. 

11. [Find a new P] Choose at random x E Z/NiZ until the Legendre-Jacobi 

symbol (x3+;:+b) is equal to 0 or 1 (this will occur after a few trials at most). 

Then using Algorithm 1.5.1, compute y E Z/NiZ such that y2 = x3 +ax+ b 
{if this algorithm fails, go to step 14). If P1 -:f. (0 : 1 : 0) go to step 10. 

12. [Check P] If P2 = OE, go to step 11. 

13. [Recurse] Set i +-- i + 1, Ni +-- q and go to step 2. 

14. [Backtrack] (We are here when Ni is not prime, which is unlikely.) If i = 0, 
output a message saying that N is composite and terminate the algorithm. 
Otherwise, set i +-- i- 1 and go to step 3. 

Most remarks that we have made about the Goldwasser-Kilian algorithm 
are still valid here. In particular, this algorithm is probabilistic, but its ex
pected running time is polynomial in ln N. More important, it is practical, 
and as already mentioned, it has been used to prove the primality of numbers 
having more than 1000 decimal digits, by using weeks of workstation time. 

Also, as for the Goldwasser-Kilian test, it gives a certificate of primality 
for the number N, hence the primality of N can be re-checked much faster. 

9.3 Exercises for Chapter 9 

1. a) Let p be a prime, E the set of integers x such that 1 ::::; x < pk and p f x, 
and a an integer such that p f a. By computing the product of ax for x E E in 
two different ways, show that we have 

xa -1 a p- P - 1 k l J ( 1) k-1 

L -k x =a k (mod p ). 
:z:EE p p 

b) Generalize this result, replacing pk by an arbitrary integer m and the 
condition p fa by (a, m) = 1. 

2. Show that if p is an odd prime and p f a, we have 

(mod p). 
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3. Prove Lemma 9.1.24 without explicitly using the Hasse-Davenport relations. 

4. (Wolstenholme's theorem) 
a) Let p be a prime, and set 

where Ap and Bp are coprime integers. By first adding together the terms for x 
and for p- x, show that p2 I Ap (note that pI Ap is immediate). 

b) As in Exercise 1, generalize to arbitrary integers m, replacing I:I::;:z:::;p- 1 

by I:1 ::;:z:::;m,(:z:,m)=1" 

5. Let a E Z and assume that a<N- 1)/2 = -1 (mod N). 
a) Show that for every r I N we have v2(r- 1) 2': v2(N- 1). 
b) Show that equality holds if and only if (%) = -1, and in particular that 

(N) = -1. 
c) If N = 1 (mod 4) show that condition £ 2 is satisfied. 
d) If N = 3 (mod 8) and a= 2 show that condition £2 is satisfied. 

6. Show how to avoid the search in step 8 of Algorithm 9.2.4 by setting d <

x3 + ax + b for some x and modifying the equation of the curve as in step 3 of 
Algorithm 7.4.12. 

7. Let X be a character modulo q, where q is not necessarily prime. We will say that 
X is primitive if for all divisors d of q such that d < q, there exists an x such that 
X= 1 (mod d) and x(x) i= 0 and 1. Set (,= e2irr/q, and '!f!(a) = I::z:E(Z/qZ)• x(x)(,a"'. 

a) Let a be such that d =(a, q) = 1. Show that '!f!(a) = x(a)r(x). 
b) Assume that x is a primitive character and that d = (a, q) > 1. Show that 

there exists au E (Z/qZ)* such that au= d. Deduce from this that '!f!(a) = 0, 
and hence that the formula '!f!(a) = x(a)r(x) is still valid. 

c) Show that if xis a primitive character modulo q which is not necessarily 
a prime, we still have lr(x)l =v'Q. 

8. Let x be a primitive character modulo q > 1, as defined in the preceding 
exercise, and set S(x) = I:n::;:z: x(n). 

a) Using the preceding exercise, give an explicit formula for r(x)S(x). 
b) Deduce that 

v'QIS(x)l:::; 
1 

sin rrm · 
1:'0m<q, m#q/2 q 

c) Show finally the Polya-Vinogradov inequality 

IS(x)l =I L x(n)l:::; yqlogq. 
1:-::;n::;:z: 



Chapter 10 

Modern Factoring Methods 

The aim of this chapter is to give an overview of the fastest factoring methods 
known today. This could be the object of a book in itself, hence it is unrea
sonable to be as detailed here as we have been in the preceding chapters. In 
particular, most methods will not be written down as formal algorithms as we 
have done before. We hope however that we will have given sufficient informa
tion so that the reader may understand the methods and be able to implement 
them, at least in unoptimized form. The reader who wants to implement these 
methods in a more optimized form is urged to read the abundant literature 
after reading this chapter, before doing so. 

10.1 The Continued Fraction Method 

We will start this survey of modern factoring methods by the continued frac
tion factoring algorithm (CFRAC). Although superseded by better methods, 
it is important for two reasons. First, because it was historically the first algo
rithm which is asymptotically of sub-exponential running time (although this 
is only a heuristic estimate and was only realized later), and also because in the 
late 60's and 70's it was the main factoring method in use. The second reason 
is that it shares a number of properties with more recent factoring methods: 
it finds a large number of congruences modulo N, and the last step consists 
in Gaussian elimination over the field Z/2Z. Since the ideas underlying it are 
fairly simple, it is also a natural beginning. 

The main idea of CFRAC, as well as the quadratic sieve algorithm (Section 
10.4) or the number field sieve (Section 10.5), is to find integers x andy such 
that 

x ¢ ±y (mod N). 

Since x2 - y2 = (x - y)(x + y), it is clear that the gcd(N, x + y) will be a 
non-trivial factor of N. 

Now finding randomly such integers x andy is a hopeless task. The trick, 
common to the three factoring methods mentioned above, is to find instead 
congruences of the form 
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where the Pi are "small" prime numbers. If we find sufficiently many such con
gruences, by Gaussian elimination over Z/2Z we may hope to find a relation 
of the form 

L fk(eok,··· ,emk) = (0,···,0) (mod 2) 
l~k:$n 

where fk = 0 or 1, and then if 

x= IT x~", y=(-1)vop~!···p~ 
1:$k:$n 

where Ek fk(eok, · · ·, emk) = 2(vo, · · ·, vm), it is clear that we have x2 = y2 

(mod N). This splits N if, in addition x ¢. ±y (mod N), condition which will 
usually be satisfied. 

The set of primes Pi (for 1 :::; i :::; m) which are chosen to find the congru
ences is called the factor base. We will see in each of the factoring methods 
how to choose it in an optimal manner. These methods differ mainly in the 
way they generate the congruences. 

The CFRAC method, stemming from ideas of Legendre, Kraitchik, Lehmer 
and Powers, and developed for computer use by Brillhart and Morrison ([Bri
Mor]), consists in trying to find small values oft such that x2 = t (mod N) 
has a solution. In that case, since t is small, it has a reasonably good chance 
of being a product of the primes of our factor base, thus giving one of the 
sought for congruences. 

Now if tis small and x2 = t (mod N), we can write x2 = t + kd2 N for some 
k and d, hence (x/d)2 - kN = tjd2 will be small. In other words, the rational 
number xfd is a good approximation to the quadratic number ../kFi. Now it 
is well known (and easy, see [H-W]) that continued fraction expansions of real 
numbers give good (and in a certain sense the best) rational approximations. 
This is the basic idea behind CFRAC. We compute the continued fraction 
expansion of v'kFi for a number of values of k. This gives us good rational 
approximations P / Q, say, and we then try to factor the corresponding integer 
t = P2 - Q2kN (which will be not too large) on our factor base. If we succeed, 
we will have a new congruence. 

Now from Section 5.7, we know that it is easy to compute the continued 
fraction expansion of a quadratic number, using no real approximations, but 
only rather simple integer arithmetic. Note that although we know that the 
expansion will be ultimately periodic (in fact periodic after one term in the 
case of ../kFi), this is completely irrelevant for us since, except for very special 
numbers, we will never compute the expansion on a whole period or even a 
half period. The main point which I stress again is that the expansion can be 
computed simply, in contrast with more general numbers. 

The formulas of Sections 5.6 and 5.7, adapted to our situation, are as 
follows. LetT= (-U + v'I5)/2V be a quadratic number in the interval [0, 1[ 
with 4V I U2 - D and V > 0 (hence lUI < v'I5). We have 
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1/ = 2V(U + VD) = U + .fi5 
r D-U2 2V' 

where V' = (D- U2 )j(4V) is a positive integer. Hence, if we set 

= l!.J = lu + v'Dj a r 2V' ' 

then 
-U + VJ5 1 1 ---

2V -U' + v'D a +r' 
a+ 2V' 

with U' = U- 2aV'. Clearly r' E [0, 1[, and since 4VV' = D- U2 = D- U'2 

(mod 4V') the conditions on (U, V) are also satisfied for (U', V') hence the 
process can continue. Thus we obtain the continued fraction expansion of our 
initial r. 

Note we have simply repeated the proof of Proposition 5.6.6 (2) that if a 
quadratic form f = (V, U, (U2-D)/(4V)) is reduced, then p(f) is also reduced. 
In addition, Proposition 5.6.3 tells us that we will always have U and V less 
than VJ5 if we start with a reduced form. This will be the case for the form 
corresponding to the quadratic number r = VJ5 - l VJ5 J. If we denote by an 
(resp Un, Vn, rn), the different quantities a, U, V and r occurring in the above 
process, we have, with the usual notation of continued fractions 

where we have set ao = l ffiJ. Hence, if we set 

we have the usual recursions 

with (P-l. Q-1) = (1, 0), (Po, Qo) = (ao, 1). 

Returning to our factoring process, we apply this continued fraction al
gorithm to D = kN for squarefree values of k such that kN = 0 or 1 
(mod 4). Then Pn/Qn will be a good rational approximation to ..JkN, hence 
t = P~- Q';kN will not be too large (more precisely It I < 2..Jkii, see Propo
sition 5.7.3), and we can try to factor it on our factor base. For every success, 
we obtain a congruence 

as above, and as already explained, once we have obtained at least m + 2 
such congruences then by Gaussian elimination over 7l/27l we can obtain a 
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congruence x2 = y2 (mod N), and hence (usually) a non-trivial splitting of N. 

Remarks. 

(1) For a prime p to be useful in our factor base we must have (k:) = 0 or 1. 

Indeed, if pIP~- Q~kN, we cannot have pI Qn otherwise Pn and Qn 
would not be coprime. Hence kN is congruent to a square modulo p, 
which is equivalent to my claim. 

(2) An important improvement to the method of factoring on a fixed factor 
base is to use the so-called large prime variation which is as follows. A large 
number of residues will not quite factor completely on our factor base, but 
will give congruences of the form x2 = Fp (mod N) where F does factor 
completely and p is a large prime number not in the factor base. A single 
such relation is of course useless. But if we have two with the same large 
prime p, say x~ = F1P (mod N) and x~ = F2p (mod N), we will have 
(x1x2 jp)2 = F1F2 (mod N) which is a useful relation. 

Now since p is large (typically more than 105 ), it could be expected 
that getting the same p twice is very rare. That this is not true is an 
instance of the well known "birthday paradox". What it says in our case 
is that if k numbers are picked at random among integers less than some 
bound B, then if k > B 112 (approximately) there will be a probability 
larger than 1/2 that two of the numbers picked will be equal (see Exercise 
5). Hence this large prime variation will give us quite a lot of extra relations 
essentially for free. 

(3) Another important improvement to CFRAC is the so-called early abort 
strategy. It is based on the following idea. Most of the time is being spent 
in the factorization of the residues (this is why methods using sieves such as 
MPQS or NFS are so much faster). Instead of trying to factor completely 
on our factor base, we can decide that if after a number of primes have 
been tried the unfactored portion is too large, then we should abort the 
factoring procedure and generate the next residue. With a suitable choice 
of parameters, this gives a considerable improvement. 

(4) Finally, note that the final Gaussian elimination over Z/2Z is a non-trivial 
task since the matrices involved can be huge. These matrices are however 
very sparse, hence special techniques apply. See for example the "intel
ligent Gaussian elimination" method used by LaMacchia and Odlyzko 
([LaM-Odl]), as well as [Cop1], [Cop2]. 
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10.2 The Class Group Method 

10.2.1 Sketch of the Method 

The continued fraction method, as well as the more recent quadratic sieve 
(Section 10.4) or number field sieve (Section 10.5) have sub-exponential run
ning time, which make them quite efficient, but require also sub-exponential 
space. 

The class group method due to Schnorr and Lenstra was the first sub
exponential method which required a negligible amount of space, say poly
nomial space. The other prominent method having this characteristic is the 
elliptic curve method (see Section 10.3). 

Note that we name this method after Schnorr and Lenstra since they 
published it ([Schn-Len]), but essentially the same method was independently 
discovered and implemented by Atkin and Rickert, who nicknamed it SPAR 
(Shanks, Pollard, Atkin, Rickert). 

The idea of the method is as follows. We have seen in Section 8.6 that the 
determination of the 2-Sylow subgroup of the class group of the quadratic field 
Q( FN) is equivalent to knowing all the factorizations of N. In a manner 
analogous to the continued fraction method, we consider the class numbers 
h( -kN) of Q( v' -kN) for several values of k. Then, if h( -kN) is smooth, we 
will be able to apply the p - 1 method, replacing the group IF; by the class 
group of Q( v' -kN). As for the p- 1 method, this will enable us to compute 
the (unknown) order of a group, the only difference being that from the order 
of IF; we split N by computing a GCD with N, while in our case we will split 
N by using ambiguous forms. 

Since we will use p- 1-type methods, we need to specify the bounds B1 
(for the first stage), and B 2 (for the second stage). Since we have a large 
number of groups at our disposal, we will be able to create a method which 
will be a systematic factoring method by choosing B 1 and B 2 appropriately, 
since we can hope that h( -kN) will be smooth for a value of k which is not 
too large. 

To choose these values appropriately, we need a fundamental theorem 
about smooth numbers. The upper bound was first proved by de Bruijn ([de
Bru]), and the complete result by Canfield, Erdos and Pomerance ([CEP]). It 
is as follows. 

Theorem 10.2.1 (Canfield, Erdos, Pomerance). Let 

'1/J(x, y) = l{n :<:;: x, n is y-smooth }I. 

Then if we set u = lnx/ ln y, we have 

'ljJ(x,y) = xu-u(l+o(l)) 

uniformly for x-+ oo if (lnx)• < u < (lnx) 1-• for a fixed E E (0, 1). 
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In particular, if we set 

L(x) = ev'Inxlnlnx' 

then 
'1/J(x, L(x)a) = xL(x)-1/(2a)+o(ll. 

Now heuristic methods (see Section 5.10 and [Coh-Len1]) seem to indicate 
that class numbers are not only as smooth, but even slightly smoother than 
average. Furthermore, it is not difficult to see that there is little quantitative 
difference between B-smoothness and B-powersmoothness. Hence, it is not un
reasonable to apply Theorem 10.2.1 to estimate the behavior ofpowersmooth
ness of class numbers. In addition, the class number h(-N) is O(N112+') (for 
example h(-N) < ~vNlnN, see Exercise 27 of Chapter 5). 

Hence, if we take x = .JN and B = L(x )a, we expect that the probability 
that a given class number of size around x is B-powersmooth should be at 
least L(xt11(2a)+o(ll, hence the expected number of values of k which we will 
have to try before hitting a B-powersmooth number should be approximately 
L(x)11(2a)+o(ll. (Note that the class number h(-kN) is still O(N112+') for 
such values of k.) Hence, ignoring step 2 of the p - 1 algorithm (which in 
any case influences only on the 0 constant, not the exponents), the expected 
running time with this choice of B is O(L(x)a+l/(2a)+o(ll), and this is minimal 

for a= 1/../2. Since L(x) 11V2 ~ L(N) 112 , we see that the optimal choice of 
B is approximately L(N)112, and the expected running time is L(N)1+o(l). 
Note also that the storage is negligible. 

10.2.2 The Schnorr-Lenstra Factoring Method 

We now give the algorithm. Note that contrary to the p - 1 method, we do 
not need to do any backtracking since if x is an ambiguous form which is not 
the unit form (i.e. is of order exactly equal to 2), so is xr for any odd number 
r). 

Algorithm 10.2.2 (Schnorr-Lenstra). Let N be a composite number. This 
algorithm will attempt to split N. We assume that we have precomputed a table 
p[1]. ... , p[k] of all the primes up to L(N) 112 . 

1. [Initialize] Set B +-lL(N)112j, K +- 1, e +-llgBJ. 

2. [Initialize forK] Let D = -KN if KN =. 3 (mod 4), D = -4KN otherwise. 

3. [Choose form] Let /p be a random primeform of discriminant D (see Algorithm 
5.4.10). Set x +- /p. c +- 0 and i +- 1. 

4. [Next prime] Set i +- i + 1. If i > k, set K +- K + 1 and go to step 2. 
Otherwise, set q +- p[i]. Ql +- q, l +- l B / qJ. 
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5. [Compute power] While q1 ~ l, set Ql +--- q · Ql· Then, set x +--- Xq 1 {powering 
in the class group), c +--- c + 1 and if c < 20 go to step 4. 

6. [Success?] Set e1 +--- 0, and while x is not an ambiguous form and e1 < e set 
x +--- x 2 and e1 +--- e1 + 1. Now if x is not an ambiguous form, set c +--- 0, and 
go to step 4. 

7. [Finished?] (Here x is an ambiguous form.) Find the factorization of KN 
corresponding to x. If this does not split N (for example if x is the unit form), 
go to step 3. Otherwise, output a non-trivial factor of N and terminate the 
algorithm. 

Note that if in step 7 we obtain an ambiguous form which does not succeed 
in splitting N, this very probably still means that the K used is such that 
h(-KN) is B-powersmooth. Therefore we must keep this value of K and 
try another random form in the group, but we should not change the group 
anymore. Note also that the first prime tried in step 4 is p[2] = 3, and not 
p[1] = 2. 

To give a numerical example of the numbers involved, for N = 1060 , which 
is about the maximum size of numbers which one can factor in a reasonable 
amount of time with this method, we have B ~ 178905, and since we need 
the primes only up to B, this is quite reasonable. In fact, it is better to take 
a lower value of B 1 = B, and use the second stage of the p- 1 method with 
quite a larger value for B 2 . This reduces the expected running time of the 
algorithm, but the optimal values to take are implementation dependent. We 
leave as an exercise for the reader the incorporation of step 2 of the p - 1 
method into this algorithm, using these remarks (see Exercise 2). 

As in all algorithms using class groups of quadratic fields, the basic opera
tion in this algorithm is composition of quadratic forms. Even with the use of 
optimized methods like NUDUPL and NUCOMP (Algorithms 5.4.8 and 5.4.9), 
this is still a slow operation. Hence, although this method is quite attractive 
because of its running time, which is as good as all the other modern factoring 
algorithms with the exception of the number field sieve, and although it uses 
little storage, to the author's knowledge it has never been used intensively in 
factoring projects. Indeed, the elliptic curve method for instance has the same 
characteristics as the present one as far as speed and storage are concerned, 
but the group operations on elliptic curves can be done faster than in class 
groups, especially when (as will be the case), several curves have to be dealt 
with simultaneously (see Section 10.3). 

Also note that it has been proved by Lenstra and Pomerance that for 
composite numbers of a special form the running time of this algorithm is 
very poor (i.e. exponential time). 
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10.3 The Elliptic Curve Method 

10.3.1 Sketch of the Method 

We now come to another method which also uses ideas from the p-I-method, 
but uses the group of points of an elliptic curve over ZfpZ instead of the 
group (ZfpZ)*. This method, due to H. W. Lenstra, is one of the three main 
methods in use today, together with the quadratic sieve (see Section 10.4) and 
the number field sieve (see Section 10.5). In addition it possesses a number of 
properties which make it useful even if it is only used in conjunction with other 
algorithms. Like the class group method, it requires little storage and has a 
similar expected running time. Unique among modern factoring algorithms 
however, it is sensitive to the size of the prime divisors. In other words, its 
running time depends on the size of the smallest prime divisor p of N, and 
not on N itself. Hence, it can be profitably used to remove "small" factors, 
after having used trial division and the Pollard p method 8.5.2. Without too 
much trouble, it can find prime factors having 10 to 20 decimal digits. On the 
other hand, it very rarely finds prime factors having more than 30 decimal 
digits. This means that if N is equal to a product of two roughly equal prime 
numbers having no special properties, the elliptic curve method will not be 
able to factor N if it has more than, say, 70 decimal digits. In this case, one 
should use the quadratic sieve or the number field sieve. 

We now describe the algorithm. As in the class group algorithm, for sim
plicity we give only the version which uses stage 1 of the p - 1-method, the 
extension to stage 2 being straightforward. 

Recall that the group law on an elliptic curve of the form y2 = x 3+ax+b is 
given by formulas which generically involve the expression (Y2- Yl) j(x2- x1). 
This makes perfect sense in a field (when x2 =I xi), but if we decide to work 
in Z/ NZ, this will not always make sense since x2 - x1 will not always be 
invertible when x2 =1- x1. But this is exactly the point: if x2 - x1 is not 
invertible in Z/ NZ with x 2 =I XI. this means that (x2 - x1. N) is a non-trivial 
divisor of N, and this is what we want. Hence we are going to work on an 
elliptic curve modulo N (whatever that is, we will define it in Section 10.3.2), 
and work as if N is prime. Everything will work out as long as every non-zero 
number modulo N that we encounter is invertible. As soon as it does not work 
out, we have found a non-trivial factorization of N. At this point, the reader 
may wonder what elliptic curves have to do with all this. We could just as well 
choose numbers x at random modulo Nand compute (x, N), hoping to find 
a non-trivial divisor of N. It is easy to see that this would be a O(N1/2+<) 
algorithm, totally unsuitable. But if N has a prime divisor p such that our 
elliptic curve E has a smooth number of points modulo p, the p - 1-method 
will discover this fact, i.e. find a power of a point giving the unit element of 
the cu~ve modulo p. This means that we will have some x1 and x2 such that 
x1 = x2 (mod p), hence (x2- x1. N) > 1, and as with all these methods, this 
is in fact equal to a non-trivial divisor of N. This means it is reasonable to 
expect that something will break down, which is what we hope in this case. 
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Before turning to the detailed description of the algorithm, it is instructive 
to compare the different methods using the p -1-idea. For this discussion, we 
assume that we obtain exactly the prime p which is at the basis of the method. 
Let B be the stage 1 bound, M = lcm[l..B], and let G be the underlying group 
and a an element of G. 

(1) In the p- 1 method itself (or its variants like the p + 1 method), G = JF; 
(or G = lF;2 ), and we obtain p directly as gcd(aM- 1, N). 

(2) In the class group method, G = Cl(Q(J-KN)) for a suitable K, and we 
obtain p indirectly through the correspondence between a factorization 
KN = p · KNjp and some ambiguous forms x in G, which is obtained as 
aM/2• for a suitable value oft. 

(3) In the elliptic curve method, G = E(JF p) and we obtain p indirectly because 
of the impossibility of computing aM modulo N (that is, we encountered 
a non-invertible element). 

We see that the reasons why we obtain the factorization of N are quite 
diverse. The running time is essentially governed by the abundance of smooth 
numbers, i.e. by the theorem of Canfield, Erdos and Pomerance, and so it 
is not surprising that the running time of the elliptic curve method will be 
similar to that of the class group method, with the important difference of 
being sensitive to the size of p. 

10.3.2 Elliptic Curves Modulo N 

Before giving the details of the method, it is useful to give some idea of 
projective geometry over Z/ NZ when N is not a prime. When N is a prime, 
the projective line over Z/NZ can simply be considered as the set ZjNZ to 
which is added a single "point at infinity", hence has N + 1 elements. When 
N is not a prime, the situation is more complicated. 

Definition 10.3.1. We define projective n-space over Z/NZ as follows. 
Let E = {(xo,Xl, ... ,xn) E (Z/NZ)n+l, gcd(xo,xl, ... ,xn,N) = 1}. lf 

R is the relation on E defined by multiplication by an invertible element of 
Z/ NZ, then R is an equivalence relation, and we define 

IP'n(ZjNZ) = EjR, 

i.e. the set of equivalence classes of E modulo the relation R. 
We will denote by (xo : x1 : · · · : Xn) the equivalence class in IP'n(Z/NZ) 

of (xo, x1, ... , Xn)· 

Remarks. 

(1) Note that even though the Xi are in Z/NZ, it makes sense to take their 
GCD together with N by taking any representatives in 71., and then com
puting the GCD. 
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(2) We recover the usual definition of projective n-space over a field when N 
is prime. 

(3) The set (Z/NZ)n can be naturally embedded into 1Fn(Z/NZ) by sending 
(xo,Xt, ... ,Xn-1) to (xo: x1: · · ·: Xn-1: 1). This subset ofiFn(Z/NZ) will 
be called for our purposes its affine subspace, and denoted IJP~ff(Z/NZ), 
although it is not canonically defined. 

(4) If p is a prime divisor of N (or in fact any divisor), there exists a nat
ural map from 1Fn(Z/NZ) to IFn(Z/pZ) induced by reducing projective 
coordinates modulo p. Then P belongs to IJP~ff(Z/NZ) if and only if the 
reduction of P modulo every prime divisor p of N belongs to IJP~ff(Z/pZ). 

(5) When N is a prime, we have a natural decomposition 1Fn(Z/NZ) = 
IJP~ff(Z/NZ) U 1Fn-1(Z/NZ), by identifying (xo : x1 : · · · : Xn-1) with 
(x0 : x1 : · · · : Xn- 1 : 0). In the general case, this is no longer true. We can 
still make the above identification of 1Fn-1 with a subspace of 1Fn. (It is 
easy to check that it is compatible with the equivalence relation defining 
the projective spaces.) There is however a third subset which enters, made 
up of points P = (x0 : x1 : · · · : Xn) such that Xn is neither invertible nor 
equal to 0 modulo N, i.e. such that (xn, N) is a non-trivial divisor of N. 
We will call this set the special subset, and denote it by JJP~(Z/NZ). For 
any subset E of 1Fn(Z/NZ) we will denote by EAff, En_ 1 and E 8 the in
tersection of E with JJP~ff, 1Fn_1 and IF~ respectively. Hence, we have the 
disjoint union 

Let us give an example. The projective line over Z/6Z has 12 elements, 
which are (0 : 1), (1 : 1), (2 : 1), (3 : 1), (4 : 1), (5 : 1), (1 : 2), (3 : 2), 
(5 : 2), (1 : 3), (2 : 3) and (1 : 0) (denoting by the numbers 0 to 5 the 
elements of Z/6Z). The first 6 elements make up the affine subspace, and the 
last element (1 : 0) corresponds to the usual point at infinity, i.e. to JJP0 . The 
other 5 elements are the special points. 

It is clear that finding an element in the special subset of 1Fn(Z/NZ) 
will immediately factor N, hence the special points are the ones which are 
interesting for factoring. 

We leave as an exercise for the reader to show that 

I1Fn(Z/NZ)I = Nn IT (1 + ~ + · · · + ~), 
piN p p 

and in particular 

IJJP1(Z/NZ)I =NIT (1 + ~) 
PIN p 

(see Exercise 6). 

Definition 10.3.2. Let N be a positive integer coprime to 6. We define an 
elliptic curve E over 'll/N'll as a projective equation of the form 
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where (x : y : t) are the projective coordinates, and a and b are elements of 
Z/ NZ such that 4a3 + 27b2 is invertible modulo N. 

As usual, by abuse of notation we shall use affine equations and affine 
coordinates even though it is understood that we work in the projective plane. 

Now if N is a prime, the above definition is indeed the definition of an 
elliptic curve over the field IFN. When N is not a prime the reduction maps 
modulo the prime divisors p of N clearly send E(Z/NZ) into E(ZfpZ). (Note 
that the condition that 4a3 + 27b2 is invertible modulo N ensures that the 
reduced curves will all be elliptic curves.) Hence, as with any other set we can 
write 

E(Zf NZ) = EAff U E1 U E 8 , 

and E 8 is the set of points (x : y : t) such that tis neither invertible nor equal 
to 0 modulo N. This means, in particular, that the reduction of (x : y : t) 
modulo p will not always be in the affine part modulo p. 

Warning. Note that if the reduction of (x : y : t) modulo every prime 
divisor p of N is the point at infinity, this does not imply that t is equal to 0 
modulo N. What it means is that tis divisible by all the primes dividing N, 
and this implies t = 0 (mod N) only if N is squarefree. 

Now we can use the addition laws given by Proposition 7.1.7 to try and 
define a group law on E(Z/NZ). They will of course not work as written, 
since even if x1-::/= x2, x1 -x2 may not be invertible modulo N. There are two 
ways around this. The first one, which we will not use, is to define the law on 
the projective coordinates. This can be done, and involves essentially looking 
at 9 different cases (see [Bos]). We then obtain a true group law, and on the 
affine part it is clear that the reduction maps modulo p are compatible with 
the group laws. 

The second way is to stay ignorant of the existence of a complete group law. 
After all, we only want to factor N. Hence we use the formulas ()f Proposition 
7.1.7 as written. If we start with two points in the affine part, their sum P 
will either be in the affine part, or of the form (x : y : 0) (i.e. belong to 
E1), or finally in the special part. If Pis in the special part, we immediately 
split N since (t, N) is a non-trivial factor of N. If P = (x : y : 0), then 
note that since P E E(Z/NZ) we have x 3 = 0 (mod N). Then either x = 0 
(mod N), corresponding to the non-special point at infinity of E, or (x, N) is 
a non-trivial divisor of N, and again we will have succeeded in splitting N. 

10.3.3 The ECM Factoring Method of Lenstra 

Before giving the algorithm in detail, we must still settle a few points. First, 
we must explain how to choose the elliptic curves, and how to choose the stage 
1 bound B. 
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As for the choice of elliptic curves, one can simply choose y2 = x3 +ax+ 1 
which has the point (0 : 1 : 1) on it, and a is small. For the stage 1 bound, 
since the number of points of E modulo p is around p by Hasse's theorem, one 
expects E(ZfpZ) to be L(p)a-powersmooth with probability L(p)-l/(2a)+o(l) 
by the Canfield-Erdos-Pomerance theorem, hence if we take B = L(p)a we 
expect to try L(p)lf(2a)+o(l) curves before getting a smooth order, giving as 
total amount of work L(p)a+l/(2a)+o(l) group operations on the curve. This is 

minimal for a= 1/V'i, giving a running time of L(p)v'2+o(l) group operations. 
Since, when N is composite, there exists a pI N with p::; .JN, this gives 

the announced running time of L(N)l+o(l). But of course what is especially 
interesting is that the running time depends on the size of the smallest prime 
factor of N, hence the ECM can be used in a manner similar to trial division. 
In particular, contrary to the class group method, the choice of B should be 
done not with respect to the size of N, but, as in the original p - 1 method, 
with respect to the amount of time that one is willing to spend, more precisely 
to the approximate size of the prime p one is willing to look for. 

For example, if we want to limit our search to primes less than 1020 , 

one can take B = 12000 since this is close to the value of £(1020 ) 11¥'2, and 
we expect to search through 12000 curves before successfully splitting N. Of 
course, in actual practice the numbers will be slightly different since we will 
also use stage 2. The algorithm is then as follows. 

Algorithm 10.3.3 (Lenstra's ECM). Let N be a composite integer coprime 
to 6, and B be a bound chosen as explained above. This algorithm will attempt 
to split N. We assume that we have precomputed a table, p[1]. ... , p[k] of all the 
primes up to B. 

1. [Initialize curves] Set a +-- 0 and let E be the curve y2t = x3 + axt2 + t3 . 

2. [Initialize] Set x +-- (0 : 1 : 1), i +-- 0. 

3. [Next prime] Set i +-- i + 1. If i > k, set a +-- a+ 1 and go to step 2. Otherwise, 
set q +-- p[i]. Q1 +-- q, l +-- lB/qJ. 

4. [Compute power] While Ql::; l, set Ql +-- q·q1. Then, try to compute x +-- q1 ·X 

(on the curve E) using the law given by Proposition 7.1.7. If the computation 
never lands in the set of special points or the n- 1 part of E (i.e. if one does 
not hit a non-invertible element t modulo N), go to step 3. 

5. [Finished?] (Here the computation has failed, which is what we want.) Lett 
be the non-invertible element. Set g +-- (t, N) (which will not be equal to 1). 
If g < N, output g and terminate the algorithm. Otherwise, set a +-- a+ 1 and 
go to step 2. 

Note that when g = N in step 5, this means that our curve has a smooth 
order modulo p, hence, as with the class group algorithm, we should keep the 
same curve and try another point. Finding another point may however not be 
easy since N is not prime, so there is no easy way to compute a square root 
modulo N (this is in fact essentially equivalent to factoring N, see Exercise 
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1). Therefore we have no other choice but to try again. As usual, this is an 
exceedingly rare occurrence, and so in practice it does not matter. 

10.3.4 Practical Considerations 

The ECM algorithm as given above in particular involves one division modulo 
N per operation on the elliptic curve, and this needs approximately the same 
time as computing a GCD with N. Thus we are in a similar situation to the 
Schnorr-Lenstra Algorithm 10.2.2 where the underlying group is a class group 
and the group operation is composition of quadratic forms, which also involves 
computing one, and sometimes two GCD's. Hence, outside from the property 
that ECM usually gives small factors faster, it seems that the practical running 
time should be slowed down for the same reason, i.e. the relative slowness of 
the group operation. 

In the case of the ECM method however, many improvements are possible 
which do not apply to the class group method. The main point to notice is that 
here all the GCD's (or extended GCD's) are with the same number N. Hence, 
we can try grouping all these extended GCD's by working with several curves 
in parallel. That this can easily be done was first noticed by P. Montgomery. 
We describe his trick as an algorithm. 

Algorithm 10.3.4 (Parallel Inverse Modulo N). Given a positive integer N 
and k integers a 1 , ... , ak which are not divisible by N, this algorithm either 
outputs a non-trivial factor of N or outputs the inverses b1. ... , bk of the ai 
modulo N. 

1. [Initialize] Set c1 <-- a1 and for i = 2, ... , k set ci <-- ci-1 · ai mod N. 

2. [Apply Euclid] Using one of Euclid's extended algorithms of Section 1.3, com
pute (u,v,d) such that uck + vN = d and d = (ck,N). If d = 1 go to step 
3. Otherwise, if d = N, then set d <-- (ai, N) for i = 1, ... , k until d > 1 
(this will happen). Output d as a non-trivial factor of N and terminate the 
algorithm. 

3. [Compute inverses] For i = k, k - 1, ... i = 2 do the following. Output 
bi <-- uci-l mod N, and set u <-- uai mod N. Finally, output b1 <-- u and 
terminate the algorithm. 

Proof We clearly have ci = a1 · · · ai mod N, hence at the beginning of step 3 
we have u = (a1 · · · ai)- 1 mod N, showing that the algorithm is valid. 0 

Let us see the improvements that this algorithm brings. The naive method 
would have required k extended Euclid to do the job. The present algorithm 
needs only 1 extended Euclid, plus 3k - 3 multiplications modulo N. Hence, 
it is superior as soon as 1 extended Euclid is slower than 3 multiplications 
modulo N, and this is almost always the case. 

Now recall from Chapter 7 that the computation of the sum of two points 
on an elliptic curve y2 = x3 + ax + b requires the computation of m = (y2 -
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y1)(x2 - x1)- 1 if the points are distinct, m = (3x~ + a)(2yl)- 1 if the points 
coincide, plus 2 multiplications modulo N and a few additions or subtractions. 
Since the addition/subtraction times are small compared to multiplication 
modulo N, we see that by using Montgomery's trick on a large number C of 
curves, the actual time taken for a group operation on the curve in the context 
of the ECM method is 6 +T /C multiplications modulo N when the points are 
distinct, or 7 + T fC when they are equal, where T is the ratio between the 
time of an extended GCD with N and the time of a multiplication modulo N. 
(Incidentally, note that in every other semi-group that we have encountered, 
including Z, JR., Z[X] or even class groups, squaring is always faster than 
general multiplication. In the case of elliptic curves, it is the opposite.) If we 
take C large enough (say C = 50) this gives numbers which are not much 
larger than 6 (resp. 7), and this is quite reasonable. 

Another way to speed up group computations on elliptic curves modulo 
N is to use projective coordinates instead of affine ones. The big advantage 
is then that no divisions modulo N are required at all. Unfortunately, since 
we must now keep track of three coordinates instead of two, the total number 
of operations increases, and the best that one can do is 12 multiplications 
modulo N when the points are distinct, 13 when they are equal (see Exercise 
3). Thanks to Montgomery's trick, this is worse than the affine method when 
we work on many curves simultaneously. 

By using other parametrizations of elliptic curves than the WeierstraB 
model y2 = x3 +ax+ b, one can reduce the number 12 to 9 (see [Chu] and 
Exercise 4), but this still does not beat the 6 + T fC above when C is large. 
Hence, in practice I suggest using affine coordinates on the WeierstraB equation 
and Montgomery's trick. 

Finally, as for the class group method, it is necessary to include a stage 2 
into the algorithm, as for the p - 1 method. The details are left to the reader 
(see [Mon2], [Bre2]). 

As a final remark in this section, we note that one can try to use other 
algebraic groups than elliptic curves, for example Abelian varieties. D. and 
G. Chudnovsky have explored this (see [Chu]), but since the group law requires 
a lot more operations modulo N, this does not seem to be useful in practice. 

10.4 The Multiple Polynomial Quadratic Sieve 

We now describe the quadratic sieve factoring algorithm which, together with 
the elliptic curve method, is the most powerful general factoring method in 
use at this time (1994). (The number field sieve has been successfully applied 
to numbers of a special form, the most famous being the ninth Fermat number 
229 + 1 = 2512 + 1, a 155 digit number, but for general numbers, the quadratic 
sieve is still more powerful in the feasible range.) This method is due to C. 
Pomerance, although some of the ideas were already in Kraitchik. 
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10.4.1 The Basic Quadratic Sieve Algorithm 

As in the continued fraction method CFRAC explained in Section 10.1, we 
look for many congruences of the type 

(mod N) 

where the Pi are "small" prime numbers, and if we have enough, a Gaussian 
stage will give us a non-trivial congruence x2 = y2 (mod N) and hence a 
factorization of N. The big difference with CFRAC is the way in which the 
congruences are generated. In CFRAC, we tried to keep x2 mod N as small as 
possible so that it would have the greatest possible chance of factoring on our 
factor base of Pi· We of course assume that N is not divisible by any element 
of the factor base. 

Here we still want the x2 mod N to be not too large but we allow residues 
larger than .JN (although still O(N1/2+£). The simplest way to do this is to 
consider the polynomial 

Q(a) = (lmJ +at -N. 

It is clear that Q(a) = x2 (mod N) for x = l.JNJ +a and as long as a= 

O(N£), we will have Q(a) = O(N1/2+£). 
Although this is a simpler and more general way to generate small squares 

modulo N than CFRAC, it is not yet that interesting. The crucial point, from 
which part of the name of the method derives, is that contrary to CFRAC 
we do not need to (painfully) factor all these x2 mod N over the factor base. 
(In fact, most of them do not factor so this would represent a waste of time.) 
Here, since Q(a) is a polynomial with integer coefficients, we can use a sieve. 
Let us see how this works. Assume that for some number m we know that 
m I Q(a). Then, for every integer k, m I Q(a + km) automatically. To find 
an a (if it exists) such that m I Q(a) is of course very easy since we solve 
x2 = N (mod m) using the algorithm of Exercise 30 of Chapter 1, and take 

a = x - l.JN J mod m. 

Since we are going to sieve, without loss of generality we can restrict to 
sieving with prime powers m = pk. If pis an odd prime, then x2 = N (mod pk) 
has a solution (in fact two) if and only if ( ~) = 1, so we include only those 
primes in our factor base (this was also the case in the CFRAC algorithm) 
and we compute explicitly the two possible values of a (mod pk) such that 
pk I Q(a), say apk and bpk. If p = 2 and k ;::: 3, then x2 = N (mod 2k) has 
a solution (in fact four) if and only if N = 1 (mod 8) and we again compute 
them explicitly. Finally, if p = 2 and k = 2, we take x = 1 if N = 1 (mod 4) 
(otherwise a does not exist) and if p = 2 and k = 1 we take x = 1. 

Now for a in a very long interval (the sieving interval), we compute very 
crudely In IQ(a)l. (As we will see, an absolute error of 1 for instance is enough, 
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hence we certainly will not use the internal floating point log but some ad hoc 
program.) We then store this in an array indexed by a. For every prime p in 
our factor base, and more generally for small prime powers when pis small (a 
good rule of thumb is to keep all possible pk less than a certain bound), we 
subtract a crude approximation to lnp to every element of the array which 
is congruent to apk or to bpk modulo pk (this is the sieving part). When all 
the primes of the factor base have been removed in this way, it is clear that 
a Q(a) will factor on our factor base if and only if what remains at index a 
in our array is close to 0 (if the logs were exact, it would be exactly zero). In 
fact, if Q(a) does not factor completely, then the corresponding array element 
will be at least equal to In B (where B is the least prime which we have not 
included in our factor base), and since this is much larger than 1 this explains 
why we can take very crude approximations to logs. 

It can be shown on heuristic grounds, again using the theorem of Canfield, 
Erdos and Pomerance, that using suitable sieving intervals and factor bases, 
the running time is of the form O(L(N)l+o(ll). Although this is comparable 
to the class group or ECM methods, note that the basic operation in the 
quadratic sieve is a single precision subtraction, and it is difficult to have a 
faster basic operation than that! As a consequence, for practical ranges (say up 
to 100 decimal digits) the quadratic sieve runs faster than the other methods 
that we have seen, although as already explained, ECM may be lucky if N 
has a relatively small prime divisor. 

The method that we have just briefly explained is the basic quadratic 
sieve (QS). Many improvements are possible. The two remarks made at the 
end of Section 10.1 also apply here. First, only primes p such that p = 2 
or (~) = 1 need to be taken in the prime base (or more generally (ki:) = 
0 or 1 if a multiplier is used). Second, the large prime variation is just as 
useful here as before. (This is also the case for the number field sieve, and 
more generally for any algorithm which uses in some way factor bases, for 
example McCurley or Buchmann's sub-exponential algorithms for class group 
and regulator computation.) 

10.4.2 The Multiple Polynomial Quadratic Sieve 

There is however a specific improvement to the quadratic sieve which explains 
the first two words of the complete name of the method (MPQS). The poly
nomial Q(a) introduced above is nice, but unfortunately it stands all alone, 
hence the values of Q(a) increase faster than we would like. The idea of the 
Multiple Polynomial Quadratic Sieve is to use several polynomials Q so that 
the size of Q(a) can be kept as small as possible. The following idea is due to 
P. Montgomery. 

We will take quadratic polynomials of the form Q(x) = Ax2 + 2Bx + C 
with A > 0, B 2 - AC > 0 and such that N I B2 - AC. This gives congruences 
just as nicely as before since 

AQ(x) = (Ax+ B)2 - (B2 - AC) := (Ax+ B)2 (mod N). 
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In addition, we want the values of Q(x) to be as small as possible on the 
sieving interval. If we want to sieve on an interval of length 2M, it is therefore 
natural to center the interval at the minimum of the function Q, i.e. to sieve 
in the interval 

I= [-BIA-M,-BIA+M]. 

Then, for x E I, we have Q(-BIA) ::; Q(x) ::; Q(-BIA + M). Therefore to 
minimize the absolute value ofQ(x) we ask that Q(-BIA) ~ -Q(-BIA+M), 
which is equivalent to A2 M 2 ~ 2{B2 - AC) i.e. to 

and we will have 

B 2 -AC 
max IQ(x)i ~ A ~ M .j(B2 -AC)I2. 
xEI 

Since we want this to be as small as possible, but still have N I B 2 - AC, we 
will choose A, B and C such that B 2 - AC = N itself, and the maximum of 
IQ(x)i will then be approximately equal toM .JNfi. 

This is of the same order of magnitude {in fact even slightly smaller) 
than the size of the values of our initial polynomial Q(x), but now we have 
the added freedom to change polynomials as soon as the size of the residues 
become too large for our taste. 

To summarize, we first choose an appropriate sieving length M. Then we 
choose A close to ..fiN I M such that A is prime and (~) = 1. Using Algorithm 
1.5.1 we find B such that B 2 = N (mod A) and finally we set C = (B 2 -N)IA. 

Now as in the ordinary quadratic sieve, we must compute for each prime 
power pk in our factor base the values apk(Q) and bpk(Q) with which we will 
initialize our sieve. These are simply the roots mod pk of Q(a) = 0. Hence, 
since the discriminant of Q has been chosen equal to N, they are equal to 
(-B + apk) I A and (-B + bpk) I A, where apk and bpk denote the square roots 
of N modulo pk which should be computed once and for all. The division 
by A (which is the only time-consuming part of the operation) is understood 
modulo pk. 

As for the basic quadratic sieve, heuristically the expected running time 
of MPQS is O(L(N)l+o(l)), as for the class group method and ECM. How
ever, as already mentioned above, the basic operation being so simple, MPQS 
is much faster than these other methods on numbers which are difficult to 
factor {numbers equal to a product of two primes having the same order of 
magnitude). 
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10.4.3 Improvements to the MPQS Algorithm 

The detailed aspects of the implementation of the MPQS algorithm, such as 
the choice of the sieving intervals, the size of the factor base and criteria to 
switch from one polynomial to the next, are too technical to be given here. We 
refer the interested reader to [Sill] which contains all the necessary information 
for a well tuned implementation of this algorithm. 

A number of improvements can however be mentioned. We have already 
discussed above the large prime variation. Other improvements are as follows. 

(1) One improvement is the double large prime variation. This means that we 
allow the unfactored part of the residues to be equal not only to a single 
prime, but also to a product of two primes of reasonable size. This idea 
is a natural one, but it is then more difficult to keep track of the true 
relations that are obtained, and A. Lenstra and M. Manasse have found a 
clever way of doing this. I refer to [LLMP] for details. 

(2) A second improvement is the ~mall prime variation which is as follows. 
During the sieving process, the small primes or prime powers take a very 
long time to process since about 1/p numbers are divisible by p. In ad
dition, their contribution to the logarithms is the smallest. So we do not 
sieve at all with prime powers less than 100, say. This makes it necessary 
keep numbers whose residual logarithm is further away from zero than 
usuat, but practice shows that it makes little difference. The main thing 
is to avoid missing any numbers which factor, at the expense of having a 
few extra which do not. 

(3) A third improvement is the self-initialization procedure. This is as follows. 
We could try changing polynomials extremely often, since this would be 
the best chance that the residues stay small, hence factor. Unfortunately, 
as we have mentioned above, each time the polynomial is changed we 
must "reinitialize" our sieve, i.e. recompute starting values apk ( Q) and 
bpk ( Q) for each pk in our factor base. Although all the polynomials have 
the same discriminant Nand the square roots have been precomputed (so 
no additional square root computations are involved), the time-consuming 
part is to invert the leading coefficient A modulo each element of the factor 
base. This prevents us from changing polynomial too often since otherwise 
this would dominate the running time. 

The self-initialization procedure deals with this problem by choosing 
A not to be a prime, but a product of a few (say 10) distinct medium
sized primes p such that ( ~) = 1. The number of possible values for B 
(hence the number of polynomials with leading term A) is equal to the 
number of solutions of B 2 = N (mod A), and this is equal to 2t-l if t is 
the number of prime factors of A (see Exercise 30 of Chapter 1). Hence 
this procedure essentially divides by 2t-l most of the work which must be 
done in initializing the sieve. 
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10.5 The Number Field Sieve 

10.5.1 Introduction 

We now come to the most recent and potentially the most powerful known 
factoring method, the number field sieve (NFS). For complete details I refer to 
(Len-Len2]. The basic idea is the same as in the quadratic sieve: by a sieving 
process we look for congruences modulo N by working over a factor base, 
and then we do a Gaussian elimination over Z/2Z to obtain a congruence of 
squares, hence hopefully a factorization of N. 

Before describing in detail the method, we will comment on its perfor
mance. Prior to the advent of the NFS, all modern factoring methods had 
an expected running time of at best 0 ( e v'In N In In N ( 1+ o( 1))). Because of the 
theorem of Canfield, Erdos and Pomerance, some people believed that this 
could not be improved, except maybe for the (1 + o(1)). The invention by Pol
lard of the NFS has now changed this belief, since under reasonable heuristic 
assumptions, one can show that the expected running time of the NFS is 

0 ( e(InN) 113 (InlnN)213 (C+o(1))) 

for a small constant C (an admissible value is C = (64/9) 113 and this has been 
slightly lowered by Coppersmith). This is asymptotically considerably better 
than what existed before. Unfortunately, the practical situation is less simple. 
First, for a number N having no special form, it seems that the practical 
cutoff point with, say, the MPQS method, is for quite large numbers, maybe 
around 130 digits, and these numbers are in any case much too large to be 
factored by present methods. On the other hand, for numbers having a special 
form, for example Mersenne numbers 2P- 1 or Fermat numbers 22k + 1, NFS 
can be considerably simplified (one can in fact decrease the constant C to 
C = (32/9) 113 ), and stays practical for values of N up to 120 digits. In fact, 
using a system of distributed e-mail computing, and the equivalent of years 
of CPU time on small workstations, A. K. Lenstra and Manasse succeeded in 
1990 in factoring the ninth Fermat number F9 = 2512 + 1, which is a number 
of 155 decimal digits. The factors have respectively 7, 49 and 99 digits and 
the 7-digit factor was of course already known. Note that the knowledge of 
this 7-digit factor does not help NFS at all in this case. 

The idea of the number field sieve is as follows. We choose a number field 
K = Q(O) for some algebraic integer 0, let T(X) E Z[X] be the minimal 
monic polynomial of 0, and let d be the degree of K. Assume that we know 
an integer m such that T(m) = kN for a small integer k. Then we can define 
a ring homomorphism¢ from Z(O] to Z/NZ, by setting 

¢(0) = m mod N. 

This homomorphism can be extended to ZK in the following way. Let f = 
[ZK: Z(O]] be the index of Z[O] in ZK. We may assume that (!, N) = 1 



496 10 Modern Factoring Methods 

otherwise we have found a non-trivial factor of N. Hence f is invertible modulo 
N, and if u E Z is an inverse off modulo N, for all a: E ZK we can set 
¢(a:) = u¢(fo:) since fa E Z[OJ. 

We can use ¢ as follows. To take the simplest example, if we can find 
integers a and b such that a+ bm is a square (in Z), and also such that a+ be 
is a square (in ZK), then we may have factored N: write a+ bm = x2 , and 
a+ be = {32 . Since ¢ is a ring homomorphism, ¢(a+ bO) = a+ bm = y2 

(mod N) where we have set y (mod N) = ¢(/3), hence x2 = y 2 (mod N), 
so (x - y, N) may be a non-trivial divisor of N. Of course, in practice it 
will be impossible to obtain such integers a and b directly, but we can use 
techniques similar to those which we used in the continued fraction or in the 
quadratic sieve method, i.e. factor bases. Here however the situation is more 
complicated. We can take a factor base consisting of primes less than a given 
bound for the a+ bm numbers. But for the a+ be, we must take prime ideals 
of ZK. In general, if K is a number field with large discriminant, this will be 
quite painful. This is the basic distinction between the general number field 
sieve and the special one: if we can take for K a simple number field (i.e. one 
for which we know everything: units, class number, generators of small prime 
ideals, etc . . . ) then we are in the special case. 

We will start by describing the simplest case of NFS, which can be applied 
only to quite special numbers, and in the following section we will explain what 
must be done to treat numbers of a general form. 

10.5.2 Description of the Special NFS when h(K) = 1 

In this section we not only assume that K is a simple number field in the sense 
explained above, but in addition that ZK has class number equal to 1 (we will 
see in the next section what must be done if this condition is not satisfied). 

Let a: E ZK and write 

where we assume that for all i, Vi > 0. We will say that a: is B-smooth if 
N KfQ(o:) is B-smooth, or in other words if all the primes below Pi are less 
than or equal to B. Since ZK has class number equal to 1, we can write 

a= II u>-u rrg~-~9, 
uEU gEG 

where U is a generating set of the group of units of K (i.e. a system of 
fundamental units plus a generator of the subgroup of roots of unity in K), 
and G is a set of ZK-generators for the prime ideals p above a prime p ::; B 
(since the ideals p are principal). 

If a lift of ¢(a) to Z is also B-smooth (in practice we always take the lift 
in [-N/2, N/2]) then we have 
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hence the congruence 

uEU gEG p5,B 

If Pis the set of primes less than or equal to B, then as in the quadratic sieve 
and similar algorithms, if we succeed in finding more than JUI + IGI + IPI such 
congruences, we can factor N by doing Gaussian elimination over Z/2Z. 

By definition an HNF basis of ZK is of the form (1, (uB + v)jw, ... ). 
Replacing, if necessary, (} by (uB + v)jw, without loss of generality we may 
assume that there exists an HNF basis of ZK of the form (w1,w2,w3, ... ,wd) 
where w1 = 1, w2 =Band wi is of degree exactly equal to i- 1 in B. We will 
say in this case that (} is primitive. 

This being done, we will in practice choose a to be of the form a + bB with 
a and b in Z and coprime. We have the following lemma. 

Lemma 10.5.1. If a and b are coprime integers, then any prime ideal p which 
divides a+ bB, either divides the index f = [ZK: Z[B]] or is of degree 1. 

Proof. Let p be the prime number below p. Then p f b otherwise a E p n Z 
hence p I a, contradicting a and b being coprime. Now assume that p f f, 
and let b-1 be an inverse of b modulo p and u be an inverse off modulo p. 
We have (} = -ab-1 (mod p). Hence, if x E ZK, fx E Z[B] so there exists a 
polynomial P E Z[X] such that x = uP(-ab-1) (mod p) so any element of 
ZK is congruent to a rational integer modulo p, hence to an element of the 
set {0, 1, ... ,p- 1}, thus proving the lemma. 0 

Let d = deg(T) be the degree of the number field K. By Theorem 4.8.13, 
prime ideals of degree 1 dividing a prime number p not dividing the index 
correspond to linear factors of T(X) modulo p, i.e. to roots of T(X) in IFw 
These can be found very simply by using Algorithm 1.6.1. 

For any root Cp E {0, 1, ... , p - 1} of T(X) modulo p, we thus have the 
corresponding prime ideal of degree 1 above p generated over ZK by (p, B-cp)· 
Now when we factor numbers a of the form a+ b(} with (a, b) = 1, we will need 
to know the p-adic valuation of a for all prime ideals p such that a E p. But 
clearly, if p does not divide f, then a E p if and only if pI a+ bep, and if this 
is the case then a does not belong to any other prime above p since the Cp are 
distinct. Hence, if p I a+ bcp, the p-adic valuation of a (with p = (p, B- ep)) 
is equal to the p-adic valuation of N(a) which is simple to compute. 

For p I f, we can use an HNF basis of p with respect to 0, where 
we may assume that 8 is primitive. This basis will then be of the form 
(p, -cP + yO, 'Y2, ... , 'Yd-d where Cp and y are integers with y I p and the 
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'Yi are polynomials of degree exactly i in() (not necessarily with integral coef
ficients). It is clear that a+b() E p if and only if y I band a= -bcp/Y (mod p). 
But p I b is impossible since as before it would imply p I a hence a and b would 
not be coprime. It follows that we must have y = 1. Hence, a E p if and only if 
pI a+bep. Furthermore, 0-cp E p implies clearly that T(cp) = 0 (mod p), i.e. 
that cp is a root of T modulo p. The condition is therefore exactly the same as 
in the case p f f. Note however that now there may be several prime ideals p 
with the same value of cp, so in that case the p-adic valuation of a should be 
computed using for example Algorithm 4.8.17. (Since this will be done only 
when we know that a and ¢(a) are B-smooth, it does not matter in practice 
that Algorithm 4.8.17 takes longer than the computation of vp(N(a)).) 

Thus, we will compute once and for all the roots cp of the polynomial 
T(X) modulo each prime p:::; B, and the constants /3p (/3 in the notation of 
Algorithm 4.8.17) necessary to apply directly step 3 of Algorithm 4.8.17 for 
each prime ideal p dividing the index. It is then easy to factor a = a + b() into 
prime ideals as explained above. Note that in the present situation, it is not 
necessary to split completely the polynomial T(X) modulo p using one of the 
methods explained in Chapter 3, but only to find its roots modulo p, and in 
that case Algorithm 1.6.1 is much faster. 

We must however do more, that is we need to factor a into prime elements 
and units. This is more delicate. 

First, we will need to find explicit generators of the prime ideals in our 
factor base (recall that we have assumed that ZK = Z[OJ is a PID). This 
can be done by computing norms of a large number of elements of ZK which 
can be expressed as polynomials in () with small coefficients, and combining 
the norms to get the desired prime numbers. This operation is quite time 
consuming, and can be transformed into a probabilistic algorithm, for which 
we refer to [LLMP]. This part is the essential difference with the general NFS 
since in the general case it will be impossible in practice to find generators 
of principal ideals. (The fact that ZK is not a PID in general also introduces 
difficulties, but which are less important.) 

Second, we also need generators for the group of units. This can be done 
during the search for generators of prime ideals. We find in this way a gener
ating system for the units, and the use of the complex logarithmic embedding 
allows us to extract a multiplicative basis for the units as in Algorithm 6.5.9. 

Choosing a factor base limit B, we will take as factor base for the numbers 
a+ bm the primes p such that p :::; B, and as factor base for the numbers a+ b() 
we will take,a system G of non-associate prime elements of ZK whose norm 
is either equal to ±p, where p is a prime such that p :::; B and p f I, or equal 
to ±pk for some k if p :::; B and p I I, plus a generating system of the group 
of units of ZK. 

We have seen that a E p if and only if p I a + bep which is a linear 
congruence for a and b. Hence, we can sieve using essentially the same sieving 
procedure as the one that we have described for the quadratic sieve. 



10.5 The Number Field Sieve 499 

1) By sieving on small primes, eliminate pairs (a, b) divisible by a small 
prime. (We will therefore keep a few pairs with (a, b) > 1, but this will not 
slow down the procedure in any significant way.) 

2) Initialize the entries in the sieving interval to a crude approximation to 
ln(a +mb). 

3) First sieve: for every pk ~ B, subtract lnp from the entries where 
pk I a + mb by sieving modulo p, p2 , ..• 

4) Set a flag on all the entries which are still large (i.e. which are not 
B-smooth), and initialize the other entries with ln(N(a + bO)). 

5) Second sieve: for every pair (p, cp), subtract lnp from the unflagged 
entries for which p I a + bep. Note that we cannot sieve modulo p2 , ••. 

6) For each entry which is smaller than 2lnB (say), check whether the 
corresponding N(a + bO) is indeed smooth and in that case compute the com
plete factorization of a+b(J on GUU. Note that since we have not sieved with 
powers of prime ideals, we must check some entries which are larger than ln B. 

In practice, the factorization of a+bO is obtained as follows. Since N( a+bO) 
is smooth we know that N(a + b(J) = np~BPv". We can obtain the element 
relations as follows. If only one prime ideal p above p corresponds to a given cp 
(this is always true if p f f), then if we let d be the degree of p (1 if p f !), the 
p-adic valuation of a+ b(J is vvfd, and the p'-adic valuation is zero for every 
other prime ideal above p. If several prime ideals correspond to the same cp 
(this is possible only in the case p I !), then we use Algorithm 4.8.17 to 
compute the p-adic valuations. As already mentioned, this will be done quite 
rarely and does not really increase the running time which is mainly spent in 
the sieving process. Using the set G of explicit generators of our prime ideals, 
we thus obtain a decomposition 

a + b(J = u 11 g~-'9 
gEG 

where u is a unit. If ( u1, ... , Ur) is a system of fundamental units of K and ( 
is a generator of the group of roots of unity inK, we now want to write 

r 

u = cno 11 u~· . 
i=l 

To achieve this, we can use the logarithmic embedding L (see Definition 4.9.6) 
and compute L(a+bO)-EgeG ~-t9 L(g). This will lie in the hyperplane E Xi= 0 
of JRrt +r2 , and by Dirichlet's theorem, the L( ui) form a basis of this hyper
plane, hence we can find the ni for i ~ 1 by solving a linear system (over 
R, but we know that the solution is integral). Finally, n0 can be obtained by 
comparing arguments of complex numbers (or even more simply by comparing 
signs if everything is real, which can be assumed if dis odd). 
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10.5.3 Description of the Special NFS when h(K) > 1 

In this section, we briefly explain what modifications should be made to the 
above method in the case h(K) > 1, hence when '!L.K is not a PID. 

In this case we do not try to find generators of the prime ideals, but 
we look as before for algebraic integers (not necessarily of the form a + bO) 
with small coordinates in an integral basis, having a very smooth norm. More 
precisely, let P1, P2, ... be the prime ideals of norm less than or equal to B 
ordered by increasing norm. We first look for an algebraic integer a1 whose 
decomposition gives a1'1L.K = p~1 ' 1 where k1,1 is minimal and hence is equal to 
the order of p1 in Cl(K). Then we look for another algebraic integer a2 such 
that a27L.K = p~1 ' 2 P~2 ' 2 where k2,2 is minimal and hence is equal to the order of 
p2 in Cl(K)/ < P1 >.We may also assume that k1,2 < k1,1· We proceed in this 
way for each Pi of norm less than or equal to B, and thus we have constructed 
an upper triangular matrix M whose rows correspond to the prime ideals and 
whose columns correspond to the numbers ai. With high probability we have 
h(K) = Il ki,i, but it does not matter if this is not the case. 

We can now replace the set G of generators of the Pi which was used in 
the case h(K) = 1 by the set of numbers ai in the following way. 

Assume that a is B-smooth and that a'!L.K = Il p~;. Let V be the column 
vector whose components are the Vi· It is clear that a'!L.K = Ilia~; '!L.K where 
the f.Li are the components of the vector M-1 V which are integers by con
struction of the matrix M. Hence a= u Ilia~; where u is a unit, and we can 
proceed as before. Note that since M is an upper triangular matrix it is easy 
to compute M-1 V by induction. 

An Example of the Special NFS. Assume that N is of the form re - s, 
where r and s are small. Choose a suitable degree d ( d = 5 is optimal for 

numbers having 70 digits or more), and set k = r ~ l· Consider the polynomial 

T(X) = Xd- srkd-e. 

Since 0 < kd - e < d and s and r are small, so is srkd-e. If we choose 
m = rk, it is clear that T(m) = rkd-e N is a small multiple of N. If Tis an 
irreducible polynomial, we will work in the number field K of degree d defined 
by T. (If T is reducible, which almost never happens, we usually obtain a non
trivial factorization of N from a non-trivial factorization ofT.) Since typically 
d = 5, and srkd-e is small, K is a simple field, i.e. it will not be difficult to 
find generators for ideals of small norm, the class number and a generating 
system for the group of units. 

As mentioned above, the first success of the special NFS was obtained by 
[LLMP] with the ninth Fermat number N = 2512 + 1 which is of the above 
form. They chose d = 5, hence k = 103 and T(X) = X 5 +8, thus K = Q(2115 ) 

which happens to be a field with class number equal to 1. 
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10.5.4 Description of the General NFS 

The initial ideas of the general NFS are due to Buhler and Pomerance (see 
[BLP]). We do not assume anymore that K is a simple field. Hence it is out 
of the question to compute explicit generators for prime ideals of small norm, 
a system of fundamental units, etc ... Hence, we must work with ideals (and 
not with algebraic numbers) as long as possible. 

So we proceed as before, but instead of keeping relations between elements 
(which is not possible anymore), we keep relations between the prime ideals 
themselves. As usual in our factor base we take the prime ideals of degree 1 
whose norm is less than or equal to B and the prime ideals of norm less than 
or equal to B which divide the index f; since the index may not be easy to 
compute, we can use instead the prime ideals above primes p ::; B such that 
p2 divides the discriminant of the polynomial T). 

After the usual Gaussian elimination step over 7l./27l., we will obtain alge
braic numbers of the form 

y = II (a+ boy:a,b 

where without loss of generality we may assume that ca.,b = 0 or 1, such that 

¢(y) = II pvp (i.e. ¢(y) is B-smooth), and 
p~B 

y'!L.K = II !J2Vp' 

p 

this last product being over the prime ideals of our factor base. Although the 
principal ideal y'!L.K is equal to the square of an ideal, this does not imply that 
it is equal to the square of a principal ideal. Fortunately, this difficulty can 
easily be overcome by using a trick due to L. Adleman (see [Adl]). 

Let us say that a non-zero algebraic number y E K is singular if y'!L.K is 
the square of a fractional ideal. Let S be the multiplicative group of singular 
numbers. If U(K) is the group of units of K, it is easy to check that we have 
an exact sequence 

1---+ U(K)/U(K) 2 ---+ SjK* 2 ---+ Cl(K)[2]---+ 1, 

where for any Abelian group G, G[2] is the subgroup of elements of G whose 
square is equal to the identity (see Exercise 9). This exact sequence can be 
considered as an exact sequence of vector spaces over JF2 = 7l./27l.. Furthermore, 
using Dirichlet's Theorem 4.9.5 and the parity of the number w(K) of roots 
of unity in K, it is clear that 

For any finite Abelian group G, the exact sequence 
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1 -----+ G [ 2] -----+ G -----+ G -----+ G I G2 -----+ 1 ' 

where the map from G toG is squaring, shows that IG[2]1 = IG/G2 1 hence 

where the 2-rank rk2(G) of G is by definition equal to dimJF2 G/G2 (and also 
to the number of even factors in the decomposition of G into a direct product 
of cyclic factors). Putting all this together, we obtain 

Hence, if we obtain more thane= r 1+r2+rk2 (Cl(K)) singular numbers which 
are algebraic integers, a suitable multiplicative combination with coefficients 
0 or 1 will give an element of 'llx n K* 2 , i.e. a square of 'llx, as in the special 
NFS, hence a true relation of the form we are looking for. Since e is very small, 
this simply means that instead of stopping at the first singular integer that we 
find, we wait till we have at least e + 1 more relations than the cardinality of 
our factor base. Note that it is not necessary (and in practice not possible) to 
compute rk2 (Cl(K)). Any guess is sufficient, since afterwards we will have to 
check that we indeed obtain a square with a suitable combination, and if we 
do not obtain a square, this simply means that our guess is not large enough. 

To find a suitable combination, following Adleman we proceed as follows. 
Choose a number r of prime ideals p which do not belong to our factor base. A 
reasonable choice is r = 3e, where e can (and must) be replaced by a suitable 
upper bound. For example, we can choose for p ideals of degree 1 above primes 
which are larger than B. Then p = (p, e- ep). We could also choose prime 
ideals of degree larger than 1 above primes (not dividing the index) less than 
B. 

Whatever choice is made, the idea is then to compute a generalized Leg
endre symbol (a~b9) (see Exercise 19 of Chapter 4) for every a+ be which is 
kept after the sieving process. Hence each relation will be stored as a vector 
over Z/27!. with lEI+ IPI + r components, where E is the set of prime ideals 
in our factor base. As soon as we have more relations than components, by 
Gaussian elimination over Z/27!. we can find an algebraic number x which is 
a singular integer and which is a quadratic residue modulo our r extra primes 
p. It follows that x is quite likely a square. 

Assuming this to be the case, one of the most difficult problems of the 
general number field sieve, which is not yet satisfactorily solved at the time of 
this writing, is the problem of finding an algorithm to compute a square root 
y of x. Note that in practice x will be a product of thousands of a+ be, hence 
will be an algebraic number with coefficients (as polynomials in e, say) having 
several hundred thousand decimal digits. Although feasible in principle, it 
does not seem that the explicit computation of x as a polynomial in e will be 
of much help because of the size of the coefficients involved. Similarly for any 
other practical representation of x, for example by its minimal polynomial. 



10.5 The Number Field Sieve 503 

Let us forget this practical difficulty for the moment. We would like an 
algorithm which, given an algebraic integer x of degree d, either finds y E Ql[x] 
such that y2 = x, or says that such a y does not exist. A simple-minded 
algorithm to achieve this is as follows. 

Algorithm 10.5.2 (Square Root in a Number Field). Given an algebraic in
teger x by its minimal monic polynomial A( X) E Z[X] of degree d, this algorithm 
finds a y such that y2 = x and y E Ql[x]. or says that such a y does not exist. 
(If x is given in some other way than by its minimal polynomial, compute the 
minimal polynomial first.) We let K = Ql[x]. 

1. [Factor A(X2 )] Factor the polynomial A(X2 ) in Z[X]. If A(X2 ) is irreducible, 
then y does not exist and terminate the algorithm. Otherwise, let A(X2 ) = 
±S(X)S(-X) for some monic polynomial S E Z[X] of degree d be the 
factorization of A(X2 ) (it is necessarily of this form with S irreducible, see 
Exercise 10). 

2. [Reduce to degree 1] Let S(X) = (X2 - x)Q(X) + R(X) be the Euclidean 
division of S(X) by X 2 - x in K[X]. 

3. [Output result] Write R(X) = aX+ b with a and b in K and a =f. 0. Output 
y ~ -bja and terminate the algorithm. 

The proof of the validity of this algorithm is easy and left to the reader 
(Exercise 10). 

Unfortunately, in our case, simply computing the polynomial A(X) is al
ready not easy, and factoring A(X2 ) will be even more difficult (although it 
will be a polynomial of degree 10 for example, but with coefficients having 
several hundred thousand digits). So a new idea is needed at this point. For 
example, H. W. Lenstra has suggested looking for y of the form y = TJ(a+bB), 
the product being over coprime pairs (a, b) such that a+ bB is smooth, but 
not necessarily a+ bm. This has the advantage that many more pairs (a, b) 
are available, and also leads to a linear system over Z/2Z. Future work will 
tell whether this method or similar ones are sufficiently practical. 

10.5.5 Miscellaneous Improvements to the Number Field Sieve 

Several improvements have been suggested to improve the (theoretical as well 
as practical) performance of NFS. Most of the work has been done on the 
general NFS, since the special NFS seems to be in a satisfactory state. We 
mention only two, since lots of work is being done on this subject. 

The most important choice in the general NFS is the choice of the number 
field K, i.e. of the polynomial T E Z[XJ such that T(m) = kN for some small 
integer k. Choosing a fixed degree d (as already mentioned, d = 5 is optimal 
for numbers having more than 60 or 70 digits), we choose m = LN1fdJ. If 
N = md+ad-lmd-l + · · ·+ ao is the base m expansion of N (with 0:5: ai < m), 
we can choose 
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T(X) = Xd + ad-1xd-1 + · · · + ao. 

It is however not necessary to take the base m expansion of N in the strictest 
sense, since any base m expansion of N whose coefficients are at most of 
the order of m is suitable. In addition, we can choose to expand some small 
multiple kN of N instead of N itself. This gives us additional freedom. 

Another idea is to use m = fN1/{d+l)l instead of lN1fdJ. The base m 
expansion of N is then of the form N = admd + ad-1md-1 + · · · + ao with ad 
not necessarily equal to 1, but still less than m. We take as before 

and if () is a root ofT, then () is not an algebraic integer if ad > 1. We can now 
use Exercise 15 of Chapter 4 which tells us that ad(), ad()2 + ad-1(), ... are 
algebraic integers. The map¢ is defined as usual by ¢(0) = m and extended to 
polynomials in() with integer coefficients. In particular, if a and bare integers, 
ad( a+ bO) is an algebraic integer and 

is always divisible by ad. Also, 

with bdT(-ajb) E Z. We then proceed as before, but using numbers of the 
form ad(a + bO) with a and b coprime, instead of simply a+ b(). 

To get rid of ad in the final relations, it is not necessary to include the 
prime factors of ad in the factor base, but simply to take an even number of 
factors in each relation. 

A second type of improvement, studied by D. Coppersmith, is to use sev
eral number fields K. This leads to an improvement of the constant in the 
exponent of the running time of NFS, but its practicality has not yet been 
tested. The idea is a little similar to the use of several polynomials in MPQS. 

10.6 Exercises for Chapter 10 

1. Show that the problem of computing a square root modulo an arbitrary integer 
N is probabilistically polynomial time equivalent to the problem of factoring N 
in the following sense. If we have an algorithm for one of the problems, then we 
can solve the other in probabilistic polynomial time. 

2. Generalize Algorithm 10.2.2 by incorporating a second stage in the manner of 
Algorithm 8.8.3. 

3. Show how to write the addition law on an elliptic curve modulo N given by a 
Weierstra6 equation using projective coordinates, using 12 multiplications mod
ulo N, or 13 for the double of a point. 
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4. By using a Fermat parametrization of an elliptic curve, i.e. a projective equation 
of the form x 3 + ay3 = bt3 , show how to compute the addition law using only 9 
multiplications modulo N, or 10 for the double of a point. 

5. Let B and k be large integers, and let a 1 , . • . ak be a randomly chosen sequence 
of integers less than B. Give an estimate of the average number of pairs (i,j) 
such that ai = ai. You may assume that k > B 1' 2 . 

6. Let n be fixed, and set f(N) = llP'n(Z/NZ)I. 
a) Show that f(N) = g(N)jrp(N) where rjJ(N) is the Euler r/J function, 

and g(N) is the number of n + 1-uples (xo, ... , xn) E (Z/ Nzt+1 such that 
gcd(xo, ... , Xn, N) = 1. 

b) Show that L:diNg(d) = Nn+l. 

c) Using the Mobius inversion formula (see [H-W] Section 16.4), prove the 
formula for f(N) given in the text. 

7. In the multiple polynomial version of the quadratic sieve factoring algorithm, 
we have aQ(x) = y2 (mod N) for some N, and not Q(x) itself. Then why do we 
take into account in the explanation the maximum of IQ(x)l and not of laQ(x)l? 

8. Let p = (p, (J- cp) be a prime ideal of degree 1 in ZK, where K = Q(O). If 
x = a+ b(J E ZK, show that (:) = (a+:cp), where (:) is defined in Exercise 19 
of Chapter 4. 

9. Prove that, as claimed in the text, if S is the group of singular numbers, the 
following sequence is exact: 

1--+ U(K)/U(K) 2 --+ S/K* 2 --+ Cl(K)[2]--+1, 

where Cl(K)[2] is the subgroup of elements of Cl(K) whose square is equal to 
the identity. 

10. Let A(X) be an irreducible monic polynomial in Z[X]. 
a) Show that either A(X2 ) is irreducible in Z[X], or there exists an irre

ducible monic polynomialS E Z[X] such that A(X2 ) =±S(X)S(-X). 
b) Prove the validity of Algorithm 10.5.2. 

11. For any finite Abelian group G and n ~ 1 show that 

G[n] '::::!.G/Gn 

(although this isomorphism is not canonical in general). 





Appendix A 

Packages for Number Theory 

There exist several computer packages which can profitably be used for 
number-theoretic computations. In this appendix, I will briefly describe the 
advantages and disadvantages of some of these systems. 

Most general-purpose symbolic algebra packages have been written pri
marily for applied mathematicians, engineers and physicists, and are not al
ways well suited for number theory. These packages roughly fall into two 
categories. In the first category one finds computer algebra systems developed 
in the 1970's, of which the main representatives are Macsyma and Reduce. 
Because of their maturity, these systems have been extensively tested and 
have probably less bugs than more recent systems. In addition they are very 
often mathematically more robust. In the second category, I include more 
recent packages developed in the 1980's of which the most common are Math
ematica, by Wolfram Research, Inc., Maple, by the University of Waterloo, 
Canada, and more recently Axiom, developed by IBM and commercialized 
by NAG. These second-generation systems being more recent have more bugs 
and have been less tested. They are also often more prone to mathematical 
errors. On the other hand they have been aggressively commercialized and as 
a consequence have become more popular. However, the older systems have 
also been improved, and in particular recently Macsyma was greatly improved 
in terms of speed, user friendliness and efficiency and now compares very fa
vorably to more recent packages. Mathematica has a very nice user interface, 
and its plotting capabilities, for example on the Macintosh, are superb. Maple 
is faster and often simpler to use, and has my preference. Axiom is a monster 
(in the same sense that ADA is a monster as a programming language). It 
certainly has a large potential for developing powerful applications, but I do 
not believe that there is the need for such power (which is usually obtained 
at the expense of speed) for everyday (number-theoretic) problems. 

Some other packages were specially designed for small machines like Per
sonal Computers (PC's). One of these is Derive, which is issued from p.-Math, 
and requires only half a megabyte of main memory. Derive even runs on 
some pocket computers! Another system, the Calculus Calculator (CC), is a 
symbolic manipulator with three-dimensional graphics and matrix operations 
which also runs on PC's. A third system, Numbers, is a shareware calcula
tor for number theory that runs on PC's. It is designed to compute number 
theoretic functions for positive integers up to 150 decimal digits (modular 
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arithmetic, primality testing, continued and Farey fractions, Fibonacci and 
Lucas numbers, encryption and decryption). 

In addition to commercial packages, free software systems (which are not 
complete symbolic packages) also exist. One is Ubasic, written by Y. Kida, 
which is a math-oriented high-precision Basic for PC's (see the review in the 
Notices of the AMS of M~arch 1991). Its extensions to Basic allow it to handle 
integers and reals of several thousand digits, as well as fractions, complex 
numbers and polynomials in one variable. Many number-theoretic functions 
are included in Ubasic, including the factoring algorithm MPQS. Since the 
package is written in assembly language, Ubasic is very fast. 

Another package, closer to a symbolic package, is Pari, written by the au
thor and collaborators (see the review in the Notices of the AMS of October 
1991). This package can be used on Unix workstations, Macintosh, Amiga, 
PC's, etc. Its kernel is also written in assembler, so it is also very fast. Fur
thermore, it has been specially tailored for number-theoretic computations. In 
addition, it provides tools which are rarely or never found in other symbolic 
packages such as the direct handling of concrete mathematical objects, for 
example p-adic numbers, algebraic numbers and finite fields, etc . . . It also 
gives mathematically more correct results than many packages on fundamen
tal operations (e.g. subtraction of two real numbers which are approximately 
equal). 

Source is included in the package so it is easy to correct, improve and 
expand. Essentially all of the algorithms described in the present book have 
been implemented in Pari, so I advise the reader to obtain a copy of it. 

Apart from those general computer algebra systems, some special-purpose 
systems exist: GAP, Kant, Magma, Simath. The Magma system is designed 
to support fast computations in algebra (groups, modules, rings, polynomial 
r~s over various kinds of coefficient domains), number theory and finite 
geometry. It includes general machinery for classical number theory (for ex
ample the ECM program of A.K. Lenstra), finite fields and cyclotomic fields 
and facilities for computing in a general algebraic number field. It will even
tually include a MPQS factoring algorithm, a Jacobi sum-type primality test 
and a general purpose elliptic curve calculator. According to the developers, 
it should eventually include "just about all of the algorithms of this book". 
GAP (Groups, Algorithms and Programming) is specially designed for compu
tations in group theory. It includes some facilities for doing elementary number 
theory, in particular to calculate with arbitrary length integers and rational 
numbers, cyclotomic fields and their subfields, and finite fields. It has func
tions for integer factorization (based on elliptic curves), for primality testing, 
and for some elementary functions from number theory and combinatorics. Its 
programming language is Maple-like. Kant (Komputational Algebraic Number 
Theory) is a subroutine package for algorithms from the geometry of numbers 
and algebraic number theory, which will be included in Magma. Simath, devel
oped at the university of Saarbrucken, is another system for number-theoretic 
computations which is quite fast and has a nice user interface called simcalc. 
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In addition to specific packages, handling of multi-precision numbers or 
more general types can be easily achieved with several languages, Lisp, C 
and C++. For Lisp, the INRJA implementation LeLisp (which is not public 
domain) contains a package written in assembler to handle large numbers, 
and hence is very fast. The GNU Calc system is an advanced desk calculator 
for GNU Emacs, written in Emacs Lisp. An excellent public domain C++ 
compiler can be obtained from the Free Software Foundation, and its library 
allows to use multi-precision numbers or other types. The library is however 
written in C++ hence is slow, so it is strongly advised to write a library in 
assembler for number-theoretic uses. Another multi-precision system written 
inC is the desk calculator (Calc) of Hans-J. Boehm for Unix workstations. Its 
particularity is to handle "constructive" real numbers, that is to remember the 
best known approximation to a number already computed. For PC's, Timothy 
C. Frenz has developed an "infinite" precision calculator, also named Calc. 

Finally, a few free packages exist which have been specifically written for 
handling multi-precision integers as part of a C library in an efficient way. In 
addition to Pari mentioned above, there is the Bignum package of DEC PRL 
(which is essentially the package used in LeLisp as mentioned above) which 
can be obtained by sending an e-mail message to librarian<Ddecprl. dec. com, 
and the GNU multi-precision package Gmp which can be obtained by anony
mous ftp from prep. ai. mit. edu, the standard place where one can ftp all 
the GNU software. 

Conclusions. 
My personal advice (which is certainly not objective) is the following. If 

you are on an IBM-PC 286, you do not have much choice. Obtain Ubasic, 
Derive or the Calculus Calculator. On an IBM-PC 386 or more, Maple, Mac
syma, Mathcad (see Maple below) and Pari are also available. If you are on 
a Macll or on a Unix workstation then, if you really need all the power of a 
symbolic package, buy either Maple or Mathematica, my preference going to 
Maple. If you want a system that is already specialized for number theoretic 
computations, then buy Magma. In any case, as a complement to this package, 
obtain Pari. 

Where to obtain these packages. 
You can order Maple at the following address: Waterloo Maple Software, 

160 Columbia St. W., Waterloo, Ontario, Canada N2L 3L3, phone (519) 747-
2373, fax (519) 747-5284, e-mail wmsi<Ddaisy. waterloo. edu. Maple has been 
ported to many different machines and it is highly probable that it has been 
ported to the machine that you want. There is also a system named Mathcad 
that uses some parts of Maple for its symbolic manipulations; Mathcad runs 
under Microsoft Windows and is published by MathSoft Inc., 201 Broadway, 
Cambridge, Massachussets, USA, 02139 Phone: (617) 577-1017. 

You can order Mathematica from Wolfram Research, Inc. at the following 
address: Wolfram. Research, 100 Trade Center Drive, Champaign, IL 61820, 
phone 800-441-Math, fax 217-398-0747, e-mail info<Dwri.com. Mathematica 
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has also been ported to quite a number of machines, and in addition you can 
use a friendly "front-end" like the Macintosh II linked to a more powerful 
computer (including supercomputers) which will do the actual computations. 

Macsyma exists in two flavors : the commercial versions (Macsyma, AL
JABR, ParaMacs) are licensed from MIT, the non-commercial versions (Vax
ima, Maxima, and DOE-Macsyma) officially come from the American De
partment of Energy (DOE). All these versions are derived from the Mac
syma developed by the Mathlab Group at MIT. The commercial version runs 
on PC 386, Symbolics computers, VMS machines and most Unix worksta
tions; the address to order it is: Macsyma Inc., 20 Academy Street, Suite 
201, Arlington MA 02174-6436, phone (617) 646-4550 or 1-800-MACSYMA 
(free from the U.S.), fax (617) 646-3161, e-mail info-macsyma<Dmacsyma.com. 
Vaxima is available from the Energy Science and Technology Software Cen
ter (ESTSC), P.O. Box 1020, Oak Ridge, Tennessee 37831, phone (615) 576-
2606. Maxima is a Common Lisp version maintained by William Schelter 
(e-mail wf s<Dmath. utexas. edu) at Texas University. Although it is a non
commercial version, one must get a license from the Energy Science and 
Technology Software Center (see above) to use it. For more information, get 
the file README. MAXIMA by anonymous ftp on rascal. ics. utexas. edu. Para
Macs, is available from Leo Harten, Paradigm Associates, Inc., 29 Putnam 
Avenue, Suite 6, Cambridge, MA 02139, phone (617) 492-6079, fax (617) 
876-8186, e-mail lph<Dparadigm. com. ALJABR is available from Fort Pond 
Research, 15 Fort Pond Road, Acton, MA 01720, phone 508-263-9692, e-mail 
aljabr<Dfpr. com. It runs on Macintosh, Sun and SGI computers. 

There are many distributors of Reduce, depending on the machine and 
version of Lisp that is used. The main one is Herbert Melenk, Konrad
Zuse-Zentrum fiir Informationstechnik Berlin (ZIB), Heilbronner Str. 10, 
D 1000 Berlin 31, Germany, phone 30-89604-195, fax 30-89604-125, e-mail 
me~<Dsc. zib-berlin. de. You will get detailed informations if you send an 
electronic message with send info-package as subject to 
reduce-netlib<Drand.org. 

Axiom on IBM RS/6000 is distributed by NAG: contact the Numerical 
Algorithms Group Ltd., Wilkinson House, Jordan Hill Rd., Oxford, UK OX2 
8DR, phone (0)-865-511245, e-mail nagttt<Dvax.oxford.ac.uk. A Spare ver
sion is also available. 

Derive is available from Soft Warehouse, Inc., 3615 Harding Avenue, Suite 
505, Honolulu, Hawaii 96816, USA, phone (808) 734-5801, fax (808) 735-1105. 

You can obtain Ubasic by anonymous ftp at shape .mps. ohio-state. edu 
or wuarchi ve. wustl. edu. Or you can write directly to Kida at the follow
ing address: Prof. Yuji Kida, Department of Mathematics, Rikkyo University, 
Nishi-Ikebukuro 3, Tokyo 171, JAPAN, e-mail kida<Drkmath.rikkyo.ac.jp. 

The Calculus Calculator (CC) is developed by David Meredith, Depart
ment of Mathematics, San Francisco State University, 1600 Holloway Avenue, 
San Francisco, CA 94132, phone (415) 338-2199. Version 3 (CC3) is published 
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with a 200 page manual by Prentice Hall, phone (201) 767-5937. Version 4 
( CC4) is available by anonymous ftp from wuarchi ve . wust 1. edu. 

You can order Magma from The Secretary, Computational Algebra Group, 
Pure Mathematics, University of Sydney, NSW 2006, Australia, phone (2) 692-
3338, fax (2) 692-4534, e-mail magma<Omaths.su.oz.au. It runs on Sun, HP, 
Apollo, VAX/VMS, Convex and various IBM machines. 

GAP is available free of charge through ftp from Aachen: the ordinary mail 
address is Lehrstuhl D fur Mathematik, RWTH Aachen, Templergraben 64, D-
5100 Aachen, Germany. For technical questions, contact Martin Schoenert (e
mail martin<Omath.rwth-aachen.de), and for more general questions, contact 
Prof. Joachim Neubiiser (e-mail neubueser<Dmath.rwth-aachen.de). 

There are two versions of Kant: Kant V1 is written in Ansi-Fortran 77, 
while Kant V2 is built on the Magma Platform and written in Ansi-C. These 
two versions are available from the KANT Group: e-mail to pohst<Dmath. tu
berlin.de or daberkow<Omath.tu-berlin.de. You can get the system by 
anonymous ftp from ftp. math. tu-berlin. de, directory /pub/ algebra/Kant. 
Note that Kant V2 is now also part of the Magma package. 

You can obtain Simath by anonymous ftp from ftp.math.uni-sb.de. 
Numbers is developed by Ivo Diintsch, Moorlandstr. 59, W-4500 Os

nabriick, phone (541) 189-106, fax (541) 969-2470, e-mail 
duentsch<Ddosuni1. bitnet. You can get the system by anonymous ftp from 
dione.rz.uni-osnabrueck.de. 

You can obtain Gmp (as well as all software from the Free Software Foun
dation) by anonymous ftp on prep. ai. mit. edu. 

The three multi-precision systems named Calc can all be obtained by 
anonymous ftp: the GNU calculator (written and maintained by Dave Gille
spie, e-mail daveg<Dcsvax. cs. cal tech. edu, 256-80 Caltech, Pasadena, CA 
91125) from csvax.cs.caltech.edu, the calculator of Hans-J. Boehm from 
arisia.xerox. com and the calculator of Timothy C. Frenz (5361 Amalfi 
Drive, Clay, NY 13041) from the site wuarchive. wustl. edu. 

Finally, you can obtain Pari by anonymous ftp from the sites 
megrez.ceremab.u-bordeaux.fr, ftp.inria.fr andmath.ucla.edu. 

Internet addresses and numbers for ftp 

arisia.xerox.com 
csvax.cs.caltech.edu 

dione.rz.uni-osnabrueck.de 
ftp.math.tu-berlin.de 

ftp.math.uni-sb.de 
math.ucla.edu 

megrez.ceremab.u-bordeaux.fr 
prep. ai. mit . edu 

rascal.ics.utexas.edu 
shape.mps.ohio-state.edu 

wuarchive.wustl.edu 

13.1.64.94 
131.215.131.131 
131.173.128.15 
130.149.12.72 
134.96.32.23 
128.97.4.254 
147.210.16.17 

18.71.0.38 
128.83.138.20 
128.146.110.30 
128.252.135.4 

Boehm-Calc 
GNU Calc 
Numbers 
Kant 
Simath 
Pari 
Pari 
Gmp 
Maxima 
Ubasic 
Most packages 





Appendix B 

Some Useful Tables 

In this appendix, we give five short tables which may be useful as basic data 
on which to work in algebraic number fields and on elliptic curves. The first 
two tables deal with quadratic fields and can be found in many places. 

The third and fourth table give the corresponding tables for complex and 
totally real cubic fields respectively, and have been produced by M. Olivier 
using the method explained in Section 6.4.1 and the KANT package (see 
Appendix A). 

The fifth table is a short table of elliptic curves extracted from [LN476] 
and [Cre]. 

I give here a list of references to the main tables that I am aware of. Not 
included are tables which have been superseded, and also papers containing 
only a few of the smallest number fields. 

For quadratic fields see [Bue1] and [Ten-Wil]. 
For cubic fields see [Enn-Thr1], [Enn-Thr2], [Gras], [Ang], [Sha-Wil] and 

[Ten-Wil]. 
For quartic fields see [Ford3], [Buc-Ford] and [BFP]. 
For quintic fields see [Diaz] and [SPD]. 
For sextic fields see [Oli3], [Oli4], [Oli5] and [Oli6]. 

Finally, for an extensive table of elliptic curves see Cremona's book [Cre]. 

B.l Table of Class Numbers of Complex Quadratic 
Fields 

Recall that the group of units of complex quadratic fields is equal to ± 1 except 
when the discriminant is equal to -3 or -4 in which case it is equal to the 
group of sixth or fourth roots of unity respectively. 

The following table list triples (d,h(d),H(-d)) where dis negative and 
congruent to 0 or 1 modulo 4, h(d) is the class number of the quadratic order of 
discriminant d, and H( -d) is the Hurwitz class number of discriminant d (see 
Definition 5.3.6). Note that h(d) = H( -d) if and only if d is a fundamental 
discriminant, that H( -d) has a denominator equal to 2 (resp. 3) if and only 
if dis of the form -4j2 (resp. -3j2) and otherwise is an integer. 
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( -3,1,1/3) ( -4,1,1/2) ( -7,1,1) ( -8,1,1) 
( -11,1,1) (-12,1,4/3) ( -15,2,2) ( -16,1,3/2) 
(-19,1,1) (-20,2,2) ( -23,3,3) ( -24,2,2) 
(-27,1,4/3) ( -28,1,2) (-31,3,3) (-32,2,3) 
( -35,2,2) ( -36,2,5/2) (-39,4,4) ( -40,2,2) 
( -43,1,1) (-44,3,4) ( -47,5,5) ( -48,2,10/3) 
( -51,2,2) (-52,2,2) (-55,4,4) ( -56,4,4) 
( -59,3,3) (-60,2,4) ( -63,4,5) ( -64,2, 7/2) 
( -67,1,1) (-68,4,4) ( -71,7,7) ( -72,2,3) 
( -75,2, 7/3) (-76,3,4) ( -79,5,5) ( -80,4,6) 
( -83,3,3) (-84,4,4) ( -87,6,6) ( -88,2,2) 
( -91,2,2) (-92,3,6) ( -95,8,8) (-96,4,6) 
( -99,2,3) ( -100,2,5/2) (-103,5,5) ( -104,6,6) 
(-107,3,3) ( -108,3,16/3) ( -111,8,8) ( -112,2,4) 
( -115,2,2) (-116,6,6) ( -119,10,10) ( -120,4,4) 
( -123,2,2) ( -124,3,6) ( -127,5,5) (-128,4,7) 
( -131,5,5) ( -132,4,4) ( -135,6,8) ( -136,4,4) 
( -139,3,3) ( -140,6,8) ( -143,10,10) ( -144,4,15/2) 
( -147,2,7/3) ( -148,2,2) ( -151,7,7) ( -152,6,6) 
( -155,4,4) ( -156,4,8) ( -159,10,10) ( -160,4,6) 
( -163,1,1) ( -164,8,8) ( -167,11,11) (-168,4,4) 
( -171,4,5) (-172,3,4) ( -175,6,7) ( -176,6,10) 
( -179,5,5) ( -180,4,6) (-183,8,8) (-184,4,4) 
( -187,2,2) (-188,5,10) ( -191,13,13) ( -192,4,22/3) 
( -195,4,4) ( -196,4,9/2) ( -199,9,9) ( -200,6,7) 
( -203,4,4) (-204,6,8) ( -207,6,9) (-208,4,6) 
( -211,3,3) ( -212,6,6) ( -215,14,14) ( -216,6,8) 
( -219,4,4) (-220,4,8) (-223,7,7) ( -224,8,12) 
( -227,5,5) (-228,4,4) ( -231,12,12) (-232,2,2) 
( -235,2,2) ( -236,9,12) ( -239,15,15) (-240,4,8) 
( -243,3,13/3) (-244,6,6) ( -247,6,6) (-248,8,8) 
( -251,7,7) ( -252,4,10) ( -255,12,12) ( -256,4,15/2) 
( -259,4,4) (-260,8,8) ( -263,13,13) ( -264,8,8) 
( -267,2,2) (-268,3,4) ( -271,11,11) ( -272,8,12) 
( -275,4,5) (-276,8,8) ( -279,12,15) ( -280,4,4) 
( -283,3,3) ( -284,7,14) ( -287,14,14) ( -288,4,9) 
( -291,4,4) (-292,4,4) ( -295,8,8) ( -296,10,10) 
( -299,8,8) ( -300,6,28/3) ( -303,10,10) ( -304,6,10) 
(-307,3,3) (-308,8,8) ( -311,19,19) ( -312,4,4) 
( -315,4,6) ( -316,5,10) ( -319,10,10) ( -320,8,14) 
(-323,4,4) ( -324,6,17/2) ( -327,12,12) ( -328,4,4) 
( -331,3,3) ( -332,9,12) ( -335,18,18) ( -336,8,12) 
(-339,6,6) ( -340,4,4) (-343,7,8) ( -344,10,10) 
(-347,5,5) ( -348,6,12) ( -351,12,16) ( -352,4,6) 
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( -355,4,4) 
( -363,4,13/3) 
( -371,8,8) 
( -379,3,3) 
( -387,4,5) 
( -395,8,8) 
( -403,2,2) 
( -411,6,6) 
( -419,9,9) 
( -427,2,2) 
( -435,4,4) 
( -443,5,5) 
( -451,6,6) 
( -459,6,8) 
( -467,7,7) 
( -475,4,5) 
( -483,4,4) 
( -491,9,9) 
( -499,3,3) 

( -356,12,12) 
( -364,6,8) 
( -372,4,4) 
( -380,8,16) 
( -388,4,4) 
( -396,6,12) 
( -404,14,14) 
( -412,5,10) 
( -420,8,8) 
( -428,9,12) 
( -436,6,6) 
( -444,8,16) 
( -452,8,8) 
(-460,6,8) 
( -468,8,10) 
( -476,10,20) 
( -484,6,13/2) 
( -492,6,8) 
( -500,10,12) 

( -359,19,19) 
( -367,9,9) 
( -375,10,12) 
( -383,17,17) 
( -391,14,14) 
( -399,16,16) 
( -407,16,16) 
( -415,10,10) 
( -423,10,15) 
( -431,21,21) 
( -439,15,15) 
( -447,14,14) 
( -455,20,20) 
( -463,7,7) 
( -471,16,16) 
( -479,25,25) 
( -487,7,7) 
( -495,16,20) 
( -503,21,21) 

( -360,8,10) 
( -368,6,12) 
( -376,8,8) 
( -384,8,14) 
( -392,8,9) 
( -400,4,15/2) 
( -408,4,4) 
( -416,12,18) 
( -424,6,6) 
( -432,6,40/3) 
( -440,12,12) 
( -448,4,8) 
( -456,8,8) 
( -464,12,18) 
( -472,6,6) 
( -480,8,12) 
( -488,10,10) 
( -496,6,12) 
( -504,8,12) 

B.2 Table of Class Numbers and Units of Real 
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In the following table of real quadratic fields K we list the following data 
from left to right: the discriminant d = d(K), the class number h = h(K), 
the regulator R = R( K), the norm of the fundamental unit and finally the 
fundamental unit itself given as a pair of coordinates (a, b) on the canonical 
integral basis (1,w) where w = (1 + ../d)/2 if d = 1 (mod 4), w = ../d/2 if 
d = 0 (mod 4). 

d h R N(€) f. 

5 1 0.4812 -1 (0,1) 
8 1 0.8814 -1 (1,1) 

12 1 1.317 1 (2,1) 
13 1 1.195 -1 (1,1) 
17 1 2.095 -1 (3,2) 
21 1 1.567 1 (2,1) 
24 1 2.292 1 (5,2) 
28 1 2.769 1 (8,3) 
29 1 1.647 -1 (2,1) 
33 1 3.828 1 (19,8) 
37 1 2.492 -1 (5,2) 
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40 2 1.818 -1 (3,1) 
41 1 4.159 -1 (27,10) 
44 1 2.993 1 (10,3) 
53 1 1.966 -1 (3,1) 
56 1 3.400 1 (15,4) 
57 1 5.710 1 (131,40) 
60 2 2.063 1 (4,1) 
61 1 3.664 -1 (17,5) 
65 2 2.776 -1 (7,2) 
69 1 3.217 1 (11,3) 
73 1 7.667 -1 (943,250) 
76 1 5.829 1 (170,39) 
77 1 2.185 1 (4,1) 
85 2 2.209 -1 (4,1) 
88 1 5.976 1 (197,42) 
89 1 6.908 -1 (447,106) 
92 1 3.871 1 (24,5) 
93 1 3.366 1 (13,3) 
97 1 9.324 -1 (5035,1138) 

101 1 2.998 -1 (9,2) 
104 2 2.312 -1 (5,1) 
105 2 4.407 1 (37,8) 
109 1 5.565 -1 (118,25) 
113 1 7.347 -1 (703,146) 
120 2 3.089 1 (11,2) 
124 1 8.020 1 (1520,273) 
129 1 10.43 1 (15371,2968) 
133 1 5.153 1 (79,15) 
136 2 4.248 1 (35,6) 
137 1 8.157 -1 (1595,298) 
140 2 2.478 1 (6,1) 
141 1 5.247 1 (87,16) 
145 4 3.180 -1 (11,2) 
149 1 4.111 -1 (28,5) 
152 1 4.304 1 (37,6) 
156 2 3.912 1 (25,4) 
157 1 5.361 -1 (98,17) 
161 1 10.07 1 (10847,1856) 
165 2 2.559 1 (6,1) 
168 2 3.257 1 (13,2) 
172 1 8.849 1 (3482,531) 
173 1 2.571 -1 (6,1) 
177 1 11.73 1 (57731,9384) 
181 1 7.174 -1 (604,97) 
184 1 10.79 1 (24335,3588) 
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185 2 4.913 -1 (63,10) 
188 1 4.564 1 (48,7) 
193 1 15.08 -1 (1637147,253970) 
197 1 3.333 -1 (13,2) 
201 1 13.85 1 (478763,72664) 
204 2 4.605 1 (50,7) 
205 2 3.761 1 (20,3) 
209 1 11.44 1 (43331,6440) 
213 1 4.290 1 (34,5) 
217 1 15.86 1 (3583111,521904) 
220 2 5.182 1 (89,12) 
221 2 2.704 1 (7,1) 
229 3 2.712 -1 (7,1) 
232 2 5.288 -1 (99,13) 
233 1 10.74 -1 (21639,3034) 
236 1 6.966 1 (530,69) 
237 1 4.344 1 (36,5) 
241 1 18.77 -1 (66436843,9148450) 
248 1 4.836 1 (63,8) 
249 1 16.66 1 (8011739,1084152) 
253 1 7.529 1 (872,117) 
257 3 3.467 -1 (15,2) 
264 2 4.867 1 (65,8) 
265 2 9.405 -1 (5699,746) 
268 1 11.49 1 ( 48842,5967) 
269 1 5.100 -1 (77,10) 
273 2 7.282 1 (683,88) 
277 1 7.868 -1 (1228,157) 
280 2 6.219 1 (251,30) 
281 1 14.57 -1 (1000087,126890) 
284 1 8.848 1 (3480,413) 
285 2 2.830 1 (8,1) 
293 1 2.837 -1 (8,1) 
296 2 4.454 -1 (43,5) 
301 1 10.03 1 (10717,1311) 
305 2 6.886 1 (461,56) 
309 1 8.526 1 (2379,287) 
312 2 4.663 1 (53,6) 
313 1 19.35 -1 (119691683,14341370) 
316 3 5.075 1 (80,9) 
317 1 4.489 -1 (42,5) 
321 3 6.064 1 (203,24) 
328 4 2.893 -1 (9,1) 
329 1 15.37 1 (2245399,262032) 
332 1 5.100 1 (82,9) 
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337 1 21.43 -1 (960491695,110671282) 
341 1 5.624 1 (131,15) 
344 1 9.943 1 (10405,1122) 
345 2 9.512 1 (6397,728) 
348 2 4.025 1 (28,3) 
349 1 9,821 -1 (8717,986) 
353 1 11.87 -1 (67471,7586) 
357 2 2.942 1 (9,1) 
364 2 8.055 1 (1574,165) 
365 2 2.947 -1 (9,1) 
373 1 9.234 -1 (4853,530) 
376 1 15.27 1 (2143295,221064) 
377 2 6.144 1 (221,24) 
380 2 4.357 1 (39,4) 
381 1 7.616 1 (963,104) 
385 2 12.16 1 (90947,9768) 
389 1 7.849 -1 (1217,130) 
393 1 18.35 1 ( 44094699,4684888) 
397 1 8.145 -1 (1637,173) 
401 5 3.690 -1 (19,2) 
408 2 5.308 1 (101,10) 
409 1 26.13 -1 (106387620283,11068353370) 
412 1 13.03 1 (227528,22419) 
413 1 4.111 1 (29,3) 
417 1 18.96 1 (81144379,8356536) 
421 1 13.01 -1 (211627,21685) 
424 2 8.988 -1 (4005,389) 
428 1 7.562 1 (962,93) 
429 2 4.977 1 (69,7) 
433 1 23.39 -1 (6883177307,694966754) 
437 1 3.042 1 (10,1) 
440 2 3.737 1 (21,2) 
444 2 6.380 1 (295,28) 
445 4 3.047 -1 (10,1) 
449 1 19.75 -1 (180529627,17883410) 
453 1 5.004 1 (71,7) 
456 2 7.626 1 (1025,96) 
457 1 25.50 -1 (56325840235,5528222698) 
460 2 7.720 1 (1126,105) 
461 1 5.900 -1 (174,17) 
465 2 10.37 1 (15135,1472) 
469 3 4.174 1 (31,3) 
472 1 13.33 1 (306917,28254) 
473 3 5.159 1 (83,8) 
476 2 5.481 1 (120,11) 
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481 2 14.47 -1 (920179,87922) 
485 2 3.785 -1 (21,2) 
488 2 3.093 -1 (11,1) 
489 1 23.44 1 (7249279379,686701192) 
492 2 5.497 1 (122,11) 
493 2 4.710 -1 (53,5) 
497 1 14.69 1 (1147975,107824) 
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Any number field can be defined as K = Q[a] where a is a primitive algebraic 
integer (see Section 10.5.2), and we will denote by A(X) the minimal monic 
polynomial of a. We will choose A so that the index f = [ZK : Z[a]] is as 
small as possible and with small coefficients (hence A will not always be the 
pseudo-canonical polynomial given by Algorithm 4.4.12). The choice of the 
particular polynomials A which we will give is therefore not at all canonical. 

Let now K be a cubic field. Since we have chosen a primitive, there exists 
an integral basis of the form (1, a, ,B). Furthermore any cubic field has at least 
one real embedding hence the set of roots of unity is always equal to ±1. On 
the other hand complex cubic fields have unit rank equal to 1, while real cubic 
fields have unit rank equal to 2. Since the norm of -1 is equal to -1, there is 
no such thing as the sign of the norm of fundamental units. 

The following is a table of the first hundred complex cubic fields. For 
each field K we give the following data from left to right: the discriminant 
d = d(K), the index f = [ZK : Z[a]], the polynomial A, the third element 
,8 of an integral basis (1,a,,B), the class number h = h(K), the regulator 
R = R(K) and the fundamental unit € expressed on the integral basis (for 
example (2, 3, 1) means 2 + 3a +,B). Since the signature of K is equal to (1, 1), 
the Galois group of the Galois closure of K is always equal to the symmetric 
group s3. 

d f A f3 h R E 

-23 1 x 3 +X2 -1 a2 1 0.2812 (0,1,1) 
-31 1 x3- x2 -1 a2 1 0.3822 (0, 1,0) 
-44 1 X 3 -X2 - X -1 a2 1 0.6094 (0,1,0) 
-59 1 x 3 +2X -1 a2 1 0.7910 (2,0,1) 
-76 1 x 3 - 2x- 2 a2 1 1.019 (1,1,0) 
-83 1 X 3 -X2 +X -2 a2 1 1.041 (1,0,1) 
-87 1 X 3 +X2 +2X -1 a2 1 0.9348 (2,1,1) 

-104 1 x 3 - x- 2 a2 1 1.576 (1,1,1) 
-107 1 X 3 -X2 +3X -2 a2 1 1.256 (3,0,1) 
-108 1 X 3 -2 a2 1 1.347 (1,1,1) 
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-116 1 x 3 - X 2 - 2 a2 1 1.718 (1,1,1) 
-135 1 x 3 +3X -1 a2 1 1.133 (3,0,1) 
-139 1 X 3 +X2 +X -2 a2 1 1.664 (3,2,1) 
-140 1 x 3 + 2x- 2 a2 1 1.474 (3,1,1) 
-152 1 x 3 - x 2 - 2x- 2 a2 1 2.131 (-1,-1,-1) 
-172 1 X 3 +X2 - X- 3 a2 1.882 ( -2,-2,-1) 
-175 x 3 - x 2 + 2x- 3 a2 1.289 (2,0,1) 
-199 1 x 3 - x 2 +4X -1 a2 1.337 (4,-1,1) 
-200 1 X3 +X2 +2X -2 a2 1 2.604 (9,5,3) 
-204 1 X 3 -X2 +X -3 a2 1 2.355 ( 4, 1,2) 
-211 1 x 3 - 2x- 3 a2 1 2.238 ( -2,-2,-1) 
-212 1 X 3 -X2 +4X- 2 a2 1 2.713 ( -15,2,-4) 
-216 1 x 3 +3X- 2 a2 1 3.024 (-17,-3,-5) 
-231 1 x 3 +X2 - 3 a2 1.745 (2,2,1) 
-239 1 x 3 - x- 3 a2 1 2.097 (2,2,1) 
-243 1 x 3 -3 a2 1 2.525 ( 4,3,2) 
-244 1 X 3 +X2 -4X -6 a2 3.303 (5,6,2) 
-247 1 x 3 +X -3 a2 1.545 (2,1,1) 
-255 1 x 3 -X2 - 3 a2 1 1.993 (-2,-1,-1) 
-268 1 X 3 +X2 - 3X- 5 a2 1 2.521 (3,3,1) 
-283 x 3 +4X -1 a2 2 1.401 (4,0,1) 
-300 X 3 - X 2 - 3X- 3 a2 1 3.149 (2,3,2) 
-307 1 X 3 +X2 + 3X- 2 a2 1 2.958 ( -15,-6,-4) 
-324 1 x 3 - 3X- 4 a2 1 4.048 (-9,-11,-5) 
-327 1 X3 -X2 -2X -3 a2 1 2.199 (1,1,1) 
-331 1 X 3 -X2 +3X- 4 a2 2 1.503 (3,0,1) 
-335 1 X 3 +X2 +4X -1 a2 1 1.456 (4,1,1) 
-339 1 X 3 +X2 - X -4 a2 1 3.546 (11,10,4) 
-351 1 x 3 +3X- 3 a2 1 1.702 (-4,-1,-1) 
-356 2 X 3 -X2 +4X -8 (a+ a 2)/2 3.755 ( -25,2,-10) 
-364 1 x 3 +4X- 2 a2 1 2.936 (17,2,4) 
-367 1 X 3 +X2 + 2X- 3 a2 1 1.856 (4,2,1) 
-379 1 X 3 -X2 +X -4 a2 1 3.273 (9,3,4) 
-411 1 x 3 - x 2 + 5X- 2 a2 1 4.029 (57,-7,12) 
-419 1 x 3 -4X- 5 a2 3.345 ( -4,-5,-2) 
-424 2 x 3 - 2x- 8 a 2/2 4.859 (31,21,18) 
-431 2 x 3 -x -8 (a+ a 2)/2 1 6.155 (133,42,72) 
-436 1 x 3 +X -4 a2 1 4.948 (-61,-29,-21) 
-439 X 3 +X2 - 2X- 5 a2 1 2.430 (3,3,1) 
-440 2 x 3 +2X -8 a 2/2 1 4.534 ( -43,-15,-18) 
-451 1 X 3 +X2 -5X -8 a2 1 3.576 (-7,-7,-2) 
-459 1 x 3 - 6X -7 a2 1 3.669 ( -5,-6,-2) 
-460 1 X 3 -X2 +5X -3 a2 1 3.671 (38,-3,8) 
-472 1 x 3 - 5X- 6 a2 1 5.380 (29,35,13) 
-484 1 X 3 +X2 +4X- 2 a2 1 5.303 (171,53,37) 
-491 1 X 3 +X2 +X -4 a2 2 1.891 (3,2,1) 
-492 1 X 3 +X2 +3X -3 a2 1 4.421 (59,24,14) 
-499 1 x 3 +4X- 3 a2 1 3.874 ( -40,-6,-9) 
-503 2 x 3 - x 2 - 2x- 8 (a+ a 2)/2 1 7.027 ( -211,-56,-146) 
-515 x 3 - x 2 - x -4 a2 1 3.646 (-7,-5,-4) 
-516 2 x 3 - x 2 - 4X- 8 (a+ a 2)/2 1 6.385 ( -81,-35,-63) 
-519 1 X 3 +X2 - 4X -7 a2 1 2.681 (3,3,1) 
-524 1 x 3 - x 2 + 3X- 5 a2 1 3.422 (18,2,5) 
-527 1 X 3 +5X -1 a2 1 1.617 (5,0, 1) 
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-543 1 x 3 - X 2 + 2X- 5 a2 1 3.013 ( -9,-2,-3) 
-547 1 X 3 - X 2 - 3X- 4 a2 1 4.367 (9,10,6) 
-563 1 x 3 - x 2 + 5X- 4 a2 2 1.737 (5,0,1) 
-567 X 3 - 3X- 5 a2 1 2.464 ( -2,-2,-1) 
-588 x 3 + X 2 +5X -1 a2 3 1.654 (5,1,1) 
-620 1 x 3 - X 2 - 5X- 5 a2 3.553 (3,4,2) 
-628 2 X 3 + X 2 - 3X - 11 (1 + a 2)/2 6.494 (-138,-123,-74) 
-643 1 x 3 - 2x- 5 a2 2 2.359 (2,2,1) 
-648 2 x 3 - 3X -10 (a+ a 2)/2 3 2.234 (2,1,1) 
-652 1 x 3 - 8X -1o a2 1 4.320 (-11,0,1) 
-655 1 x 3 + X 2 - 5 a2 1 2.906 ( -7,-5,-2) 
-671 1 X 3 - x- 5 a2 1 2.345 (-3,-2,-1) 
-675 1 X 3 - 5 a2 1 4.812 (-41,-24,-14) 
-676 2 x 3 + X 2 - 4X - 12 (a+ a 2)/2 3 2.186 (2,1,1) 
-679 1 x 3 +X -5 a2 1 3.443 (13,6,4) 
-680 1 x 3 + X 2 - 6X - 10 a2 1 6.071 (-79,-77,-21) 
-687 1 X 3 +X2 +4X -3 a2 1 3.455 ( -25,-8,-5) 
-695 1 xa- X2- 5 a2 1 2.151 (2,1,1) 
-696 1 X 3 +X2 -2X -6 a2 1 7.810 ( -673,-589,-207) 
-707 X 3 + 2X- 5 a2 1 4.187 (34,12,9) 
-716 X 3 - 4X- 6 a2 1 6.405 ( -95,-101,-40) 
-728 1 x 3 - X 2 + 6X- 2 a2 1 6.052 ( -433,49,-75) 
-731 1 x 3 + X 2 + 3X- 4 a2 2 2.013 (-5,-2,-1) 
-743 1 x 3 + 5X- 3 a2 1 4.556 ( -85,-9,-16) 
-744 1 x 3 - X 2 - 6X -6 a2 1 8.294 ( -347,-451,-193) 
-748 1 x 3 +X2 +X -5 a2 1 4.532 (-43,-25,-11) 
-751 1 X 3 - X 2 +6X -1 a2 2 1.768 (6,-1,1) 
-755 1 x 3 + X 2 + 5X- 2 a2 1 4.904 ( 121 ,30,22) 
-756 2 x 3 + 9X- 2 (a+ a 2)/2 1 7.107 (1208,-104,267) 
-759 1 x 3 -X2 +6X -3 a2 1 3.137 (23,-2,4) 
-771 1 x 3 - X 2 +3X -6 a2 1 6.140 ( -251,-36,-65) 
-780 1 x 3 - X 2 - x- 5 a2 1 6.159 (94,59,44) 
-804 1 x 3 -X2 +4X -6 a2 1 8.571 ( -3499,-270,-784) 
-808 1 x 3 - X 2 + 2X- 6 a2 1 7.625 ( -875,-201,-259) 
-812 1 X 3 -X2 -7X-7 a2 1 3.844 (4,5,2) 
-815 1 x 3 -7X- 9 a2 1 5.064 (20,22,7) 

B.4 Table of Class Numbers and Units of Totally Real 
Cubic Fields 

The following is a table of the first hundred totally real cubic fields. We give the 
following data from left to right: the discriminant d(K), the index [ZK : Z[a]], 
the polynomial A (X), the third element {3 of an integral basis ( 1, a, {3), the 
class number h(K), the regulator R(K) and a pair of fundamental units t:1 

and t:2 expressed on the integral basis (1, a, {3). The Galois group of the Galois 
closure of K is equal to S3 except for the fields whose discriminant is marked 
with an asterisk, which are cyclic cubic fields, i.e. with Galois group equal to 
CJ. 
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d I A {3 h R fl f2 

49* 1 X 3 +X2 - 2X -1 a2 1 0.5255 (-1,1,1) (2,0,-1) 
81* 1 x 3 - 3X -1 a2 1 0.8493 (2,1,-1) (0,-1,0) 
148 1 X 3 +X2 -3X -1 a2 1 1.662 (0,1,0) (2,0,-1) 

169* 1 x3- x 2 - 4X -1 a2 1 1.365 (2,2,-1) (0,-1,0) 
229 1 x 3 -4X -1 a2 1 2.355 (0,1,0) (2,1,0) 
257 1 x 3 - 5X- 3 a2 1 1.975 (4,1,-1) (5,1,-1) 
316 1 X 3 +X2 -4X -2 a2 1 3.913 (-3,1,1) ( -5,1,1) 
321 1 X3 +X2 -4X -1 a2 1 2.569 (0,-1,0) (-1,2,1) 

361* 1 X3 +X2 -6X -7 a2 1 1.952 (4,1,-1) (5,0,-1) 
404 1 X3 -X2 - 5X -1 a2 1 3.760 (0,-1,0) (1,-1,-1) 
469 1 X 3 +X2 -5X -4 a2 1 3.853 ( -1,-1,0) ( -1,2,1) 
473 1 x 3 -5X -1 a2 1 2.843 (0,-1,0) ( -2,-1,0) 
564 1 X 3 +X2 -5X -3 a2 1 5.403 (-2,1,0) (-1,-1,1) 
568 1 x 3 - x 2 - 6X- 2 a2 1 6.087 (-5,-1,1) (-7,-4,2) 
621 1 x 3 -6X- 3 a2 1 5.400 (-2,-1,0) (1,2,0) 
697 1 X 3 -X2 -8X -5 a2 1 2.712 (6,2,-1) (7,2,-1) 
733 1 X3 +X2 -7X -8 a2 1 5.309 (1,1,0) (-5,-2,0) 
756 1 x 3 -6X- 2 a2 1 5.692 (5,0,-1) (11, 1,-2) 
761 1 x3 -x2- 6X -1 a2 1 3.526 (0,1,0) (2,1,0) 
785 1 X 3 +X2 - 6X- 5 a2 1 4.098 (1,1,0) (-4,1,1) 
788 1 X 3 - X 2 -7X- 3 a2 1 5.987 (2,1,0) (-1,-2,0) 
837 1 x 3 -6X -1 a2 1 6.801 (0,-1,0) (-3,-6,-2) 
892 1 X 3 + X 2 - 8X - 10 a2 1 8.323 (3,1,-1) (1,3,1) 
940 1 x 3 -7X -4 a2 1 8.908 (-11,-2,2) (-3,1,1) 

961* 2 x 3 + x 2 - 1ox - 8 (a2 + a)/2 1 12.20 (-1,2,2) (3,4,-2) 
985 1 X 3 +X2 - 6X -1 a2 1 3.724 (0,1,0) (-2,1,0) 
993 1 X 3 +X2 - 6X- 3 a2 1 5.555 (5,-1,-1) (5,0,-1) 

1016 1 X 3 +X2 - 6X- 2 a2 1 10.13 (7,-1,-1) (-11,-1,1) 
1076 1 X3 -8X -6 a2 1 6.932 (1,1,0) (-7,-3,0) 
1101 1 x 3 + x 2 - 9X - 12 a2 1 9.184 (5,2,-1) (-7,-4,2) 
1129 1 x 3 -7X- 3 a2 1 6.728 ( -8,0,1) (1,2,-1) 
1229 1 X 3 +X2 -7X -6 a2 1 8.232 (-1,-1,0) (11,15,4) 
1257 1 X 3 +X2 - 8X- 9 a2 1 6.197 (-1,-1,0) (2,-2,-1) 
1300 1 X 3 -lOX -10 a2 1 6.550 (-1,-1,0) (-1,2,1) 
1304 2 X3 - X 2 - 11X - 1 (a2 + 1)/2 1 11.93 (0,-1,0) ( -5,14,10) 
1345 1 x 3 -7X -1 a2 1 4.923 (0,1,0) (2)2,-1) 

1369* 1 X 3 - X 2 - 12X - 11 a2 1 3.126 (6,3,-1) (9,2,-1) 
1373 1 X 3 -8X -5 a2 1 9.423 (-6,0,1) ( -13,-2,2) 
1384 1 X 3 + X 2 - lOX - 14 a2 1 10.38 (-3,-2,0) (-5,1,1) 
1396 1 X 3 +X2 -7X- 5 a2 1 8.146 (-8,0,1) (-9,1,1) 
1425 1 X 3 -X2 - 8X- 3 a2 1 6.676 (-2,-1,0) (1,2,-1) 
1436 1 x 3 -11x -12 a2 1 12.70 (5,2,0) (-11,-6,2) 
1489 1 x3 + x 2 - 12x - 19 a2 1 3.361 (10,1,-1) (11,1,-1) 
1492 1 X 3 -X2 -9X -5 a2 1 7.646 (-2,-1,0) (-1,-1,1) 
1509 1 x 3 + x 2 -7x- 4 a2 1 11.30 (3,1,0) (-3,-6,-1) 
1524 1 X 3 + X 2 -7X -1 a2 1 10.45 (0,1,0) (-6,-11,6) 
1556 1 X 3 + X 2 - 9X - 11 a2 1 8.376 (8,0,-1) (19,0,-2) 
1573 1 X 3 +X2 -7X- 2 a2 1 8.445 (-3,-1,0) (1,4,1) 
1593 1 x 3 -9X -7 a2 1 6.331 (1,1,0) (5,2,0) 
1620 1 x 3 -12x -14 a2 1 10.17 (9,1,-1) (5,5,1) 
1708 1 X 3 -X2 - 8X- 2 a2 1 12.87 (7,1,-1) (-29,-9,5) 
1765 1 X 3 + X 2 - 11X - 16 a2 1 9.445 (-3,-1,0) (-7,-6,-1) 
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1772 2 x 3 -14X -12 a 2 /2 1 15.37 (-1,-1,0) (-23,-36,-18) 
1825 1 X 3 +X2 -8X-7 a2 1 4.488 (1,1,0) (3,1,0) 

1849* 2 X 3 - X 2 - 14X - 8 (a2 + a)/2 1 18.92 (-9,2,0) (-17,-4,2) 
1901 1 X 3 -X2 - 9X -4 a2 1 10.66 (-1,-2,0) (-5,0,1) 
1929 1 X 3 + X 2 - lOX - 13 a2 1 8.218 (3,1,0) (5,5,1) 
1937 1 x 3 - X 2 -8X -1 a2 1 6.542 (0,-1,0) (-3,1,1) 
1940 1 x 3 - 8X- 2 a2 1 11.09 (3,-1,0) (39,1,-5) 
1944 1 X 3 - 9X- 6 a2 1 15.60 (1,3,-1) ( -1,0,2) 
1957 1 X 3 + X 2 - 9X - 10 a2 2 4.551 (1,1,0) (3,1,0) 
2021 1 x 3 - 8X -1 a2 1 11.52 (0,-1,0) ( -1,-28,-10) 
2024 1 x 3 - x 2 - 1ox - 6 a2 1 15.77 (5,6,-2) ( -11,-9,3) 
2057 1 x 3 -11x -11 a2 1 6.782 (1,1,0) (-1,-3,-1) 
2089 2 x 3 -13X -4 (a2 + a)/2 1 20.76 ( -1,-4,2) (-15,4,0) 
2101 1 x 3 - x 2 - 11x - 8 a2 1 8.543 (-1,-1,0) (15,2,-2) 
2177 1 X 3 +X2 - 8X- 5 a2 1 7.518 (-3,-1,0) {17,-1,-2) 
2213 1 x 3 - x 2 - 13X - 12 a2 1 12.68 (-1,-1,0) ( -1,9,4) 
2228 1 x 3 -14X -18 a2 1 11.09 (-7,-3,1) ( -41,-16,6) 
2233 1 X 3 +X2 -8X -1 a2 1 5.523 (0,1,0) (-1,3,1) 
2241 1 X 3 - 9X- 5 a2 1 8.264 (-4,-2,1) (-2,-3,1) 
2292 2 x 3 + x 2 - 13X - 1 (a2 + 1)/2 1 14.36 (0,1,0) (-4,36,17) 
2296 1 xa - x 2 - 14X - 14 a2 1 14.27 (13,3,-1) (-5,-4,0) 
2300 1 X3 +X2 -8X -2 a2 1 18.12 (5,-2,0) (73,-7,-9) 
2349 1 x 3 -12x -13 a2 1 11.92 (-4,-2,1) (15,4,-2) 
2429 1 xa - X 2 - 15X - 16 a2 1 13.28 (-11,-2,1) (85,16,-7) 
2505 1 xa - X 2 - lOX - 5 a2 1 10.68 (-2,-3,1) (7,6,-2) 
2557 1 X 3 -X2 -9X -2 a2 1 10.72 (-1,2,1) (1,4,-1) 
2589 2 X 3 + X 2 - 14X - 12 (a2 + a)/2 1 16.29 (-5,-1,1) (31,38,-20) 
2597 1 xa +X2 -9X-8 a2 3 4.796 (1,1,0) ( -3,-1,0) 
2636 1 x 3 - x 2 - 16X - 18 a2 1 18.38 ( -5,-2,0) (25,13,-3) 
2673 1 x 3 - 9X- 3 a2 1 7.760 (10,0,-1) ( -8,0,1) 
2677 1 xa -lOX -7 a2 1 11.16 (-12,0,1) (2,2,-1) 
2700 1 x 3 -15X- 20 a2 1 20.37 (1,-1,-1) (-59,-22,8) 
2708 1 x3 - x 2 - 11x - 7 a2 1 12.95 {6,7,-2) (9,6,-2) 
2713 1 x 3 -13X -15 a2 1 12.34 (-13,-2,1) (-17,-4,2) 
2777 1 X 3 + X 2 - 14X - 23 a2 2 3.949 (-2,-1,0) (-3,-1,0) 
2804 1 xa- X 2 - 9X -1 a2 1 15.24 (0,-1,0) (10,56,21) 
2808 1 x 3 - 9X- 2 a2 1 20.31 (-1,-9,3) (-1,-4,2) 
2836 1 X 3 +X2 - 9X -7 a2 1 9.692 (10,0,-1) ( -17,0,2) 
2857 1 x 3 + x 2 - 1ox - 11 a2 1 4.870 (-1,-1,0) (-3,-1,0) 
2917 1 X 3 + X 2 - 13X - 20 a2 1 11.93 (3,1,0) (13,6,-1) 
2920 2 X 3 + X 2 - 16X - 20 (a2 + a)/2 1 17.94 (-9,-8,4) (-4,-3,1) 
2941 1 X 3 - X 2 - 17 X - 20 a2 1 13.72 {3,2,0) (-17,-4,1) 
2981 1 x3 + x 2 - 11x - 14 a2 1 14.63 (3,1,0) (15,10,-1) 
2993 1 x 3 + x 2 - 12x - 11 a2 1 7.514 (-3,-1,0) (3,2,0) 
3021 1 X 3 +X2 - 9X -6 a2 1 17.40 (-5,-4,2) (5,9,2) 
3028 1 X 3 -lOX- 6 a2 1 20.35 (-1,-1,1) (5,13,4) 
3124 2 x 3 -16X -12 a 2/2 1 19.56 (-5,-1,1) (115,121,-68) 
3132 2 x 3 -18X- 20 a 2/2 1 22.49 (7,2,0) (7,7,2) 
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B.5 Table of Elliptic Curves 

In the table below we give a table of all modular elliptic curves defined over Q 
with conductor N less than or equal to 44 (up to isomorphism). Recall that 
according to the Taniyama-Weil Conjecture 7.3.8, all elliptic curves defined 
over Q are modular. 

To every elliptic curve is attached quite a large set of invariants. We refer to 
[Cre] for details and a complete table. In the following table, we only give the 
minimal WeierstraB equation of the curve, its rank and its torsion subgroup. 
The rank is always equal to 0 except in the two cases N = 37 (curve A1) and 
N = 43 for which it is equal to 1, and in these two cases a generator of the 
group E(Q) is the point with coordinates (0, 0). The canonical height of this 
point, computed using Algorithms 7.5.6 and 7.5.7 is equal to 0.0255557041 ... 
for N = 37 and to 0.0314082535. . . for N = 43. 

The Kodaira types and the constants cp can be found by using Tate's 
Algorithm 7.5.1. The coefficients ap of the L-series can be computed using 
Algorithm 7.4.12 or simply by adding Legendre symbols if p is small. The 
periods can be computed using Algorithm 7.4.7. In the limit of the present 
table the Tate-Shafarevitch group ill is always trivial. 

We follow the notations of [Cre]. We give from left to right: the conductor 
N of the curve E, an identifying label of the curve among those having the 
same conductor. This label is of the form letter-number. The letter (A or B) 
denotes the isogeny class, and the number is the ordinal number of the curve 
in its isogeny class. Curves numbered 1 are the strong Weil curves (see [Sill). 
The next 5 columns contain the coefficients a1. a2 , a3, a4 and a6. The last two 
columns contain the rank rand the torsion subgroup T of E(Q) expressed as 
t if T ~ ZjtZ and as t1 x t2 if T ~ Z/t1Z x Z/t2Z. 

N a1 a2 a a a4 a6 r T 

11 A1 0 -1 1 -10 -20 0 5 
11 A2 0 -1 1 -7820 -263580 0 1 
11 A3 0 -1 1 0 0 0 5 
14 A1 1 0 1 4 -6 0 6 
14 A2 1 0 1 -36 -70 0 6 
14 A3 1 0 1 -171 -874 0 2 
14 A4 1 0 1 -1 0 0 6 
14 A5 1 0 1 -2731 -55146 0 2 
14 A6 1 0 1 -11 12 0 6 
15 A1 1 1 1 -10 -10 0 2x4 
15 A2 1 1 1 -135 -660 0 2x2 
15 A3 1 1 1 -5 2 0 2x4 
15 A4 1 1 1 35 -28 0 8 
15 A5 1 1 1 -2160 -39540 0 2 
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15 A6 1 1 1 -110 -880 0 2 
15 A7 1 1 1 -80 242 0 4 
15 A8 1 1 1 0 0 0 4 
17 A1 1 -1 1 -1 -14 0 4 
17 A2 1 -1 1 -6 -4 0 2x2 
17 A3 1 -1 1 -91 -310 0 2 
17 A4 1 -1 1 -1 0 0 4 
19 A1 0 1 1 -9 -15 0 3 
19 A2 0 1 1 -769 -8470 0 1 
19 A3 0 1 1 1 0 0 3 
20 A1 0 1 0 4 4 0 6 
20 A2 0 1 0 -1 0 0 6 
20 A3 0 1 0 -36 -140 0 2 
20 A4 0 1 0 -41 -116 0 2 
21 A1 1 0 0 -4 -1 0 2x4 
21 A2 1 0 0 -49 -136 0 2x2 
21 A3 1 0 0 -39 90 0 8 
21 A4 1 0 0 1 0 0 4 
21 A5 1 0 0 -784 -8515 0 2 
21 A6 1 0 0 -34 -217 0 2 
24 A1 0 -1 0 -4 4 0 2x4 
24 A2 0 -1 0 -24 -36 0 2x2 
24 A3 0 -1 0 -64 220 0 4 
24 A4 0 -1 0 1 0 0 4 
24 A5 0 -1 0 -384 -2772 0 2 
24 A6 0 -1 0 16 -180 0 2 
26 A1 1 0 1 -5 -8 0 3 
26 A2 1 0 1 -460 -3830 0 1 
26 A3 1 0 1 0 0 0 3 
26 B1 1 -1 1 -3 3 0 7 
26 B2 1 -1 1 -213 -1257 0 1 
27 A1 0 0 1 0 -7 0 3 
27 A2 0 0 1 -270 -1708 0 1 
27 A3 0 0 1 0 0 0 3 
27 A4 0 0 1 -30 63 0 3 
30 A1 1 0 1 1 2 0 6 
30 A2 1 0 1 -19 26 0 2x6 
30 A3 1 0 1 -14 -64 0 2 
30 A4 1 0 1 -69 -194 0 6 
30 A5 1 0 1 -289 1862 0 6 
30 A6 1 0 1 -334 -2368 0 2x2 
30 A7 1 0 1 -5334 -150368 0 2 
30 A8 1 0 1 -454 -544 0 2 
32 A1 0 0 0 4 0 0 4 
32 A2 0 0 0 -1 0 0 2x2 
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32 A3 0 0 0 -11 -14 0 2 
32 A4 0 0 0 -11 14 0 4 
33 A1 1 1 0 -11 0 0 2x2 
33 A2 1 1 0 -6 -9 0 2 
33 A3 1 1 0 -146 621 0 4 
33 A4 1 1 0 44 55 0 2 
34 A1 1 0 0 -3 1 0 6 
34 A2 1 0 0 -43 105 0 6 
34 A3 1 0 0 -103 -411 0 2 
34 A4 1 0 0 -113 -329 0 2 
35 A1 0 1 1 9 1 0 3 
35 A2 0 1 1 -131 -650 0 1 
35 A3 0 1 1 -1 0 0 3 
36 A1 0 0 0 0 1 0 6 
36 A2 0 0 0 -15 22 0 6 
36 A3 0 0 0 0 -27 0 2 
36 A4 0 0 0 -135 -594 0 2 
37 A1 0 0 1 -1 0 1 1 
37 B1 0 1 1 -23 -50 0 3 
37 B2 0 1 1 -1873 -31833 0 1 
37 B3 0 1 1 -3 1 0 3 
38 A1 1 0 1 9 90 0 3 
38 A2 1 0 1 -86 -2456 0 1 
38 A3 1 0 1 -16 22 0 3 
38 B1 1 1 1 0 1 0 5 
38 B2 1 1 1 -70 -279 0 1 
39 A1 1 1 0 -4 -5 0 2x2 
39 A2 1 1 0 -69 -252 0 2 
39 A3 1 1 0 -19 22 0 4 
39 A4 1 1 0 1 0 0 2 
40 A1 0 0 0 -7 -6 0 2x2 
40 A2 0 0 0 -107 -426 0 2 
40 A3 0 0 0 -:~ 1 0 4 
40 A4 0 0 0 13 -34 0 4 
42 A1 1 1 1 -4 5 0 8 
42 A2 1 1 1 -84 261 0 2x4 
42 A3 1 1 1 -104 101 0 2x2 
42 A4 1 1 1 -1344 18405 0 4 
42 A5 1 1 1 -914 -10915 0 2 
42 A6 1 1 1 386 1277 0 2 
43 A1 0 1 1 0 0 1 1 
44 A1 0 1 0 3 -1 0 3 
44 A2 0 1 0 -77 -289 0 1 
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