
Henri Cohen

A Course in
Computational
Algebraic
Number Theory

Springer

Henri Cohen
U.F.R. de Mathematiques et Informatique
Universite Bordeaux I
351 Cours de Ia Liberation
F-33405 Talence Cedex, France

Editorial Board

J. H. Ewing
Department of Mathematics
Indiana University
Bloomington, IN 47405, USA

P.R. Halmos
Department of Mathematics
Santa Clara University
Santa Clara, CA 95053, USA

Third, Corrected Printing 1996

With 1 Figure

F. W. Gehring
Department of Mathematics
University of Michigan
Ann Arbor, MI 48109, USA

Mathematics Subject Classification (1991): 11Y05, llYll, 11Yl6,
11Y40, 11A51, 11C08, 11C20, 11R09, llRll, 11R29

ISSN 0072-5285
ISBN 3-540-55640-0 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-55640-0 Springer-Verlag New York Berlin Heidelberg

Cataloging-In-Publication Data applied for

Die Deutsche Bibliothek- CIP-Einheitsaufnahme

Cohen, Henri:
A course in computational algebraic number theory I Henri
Cohen. - 3., corr. print. - Berlin ; Heidelberg ; New York :
Springer, 1996

(Graduate texts in mathematics; 138)
ISBN 3-540-55640-0

NE:GT

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data
banks. Duplication of this publication or parts thereof is permitted only under the provisions of
the German Copyright Law of September 9, 1965, in its current version, and permission for use
must always be obtained from Springer-Verlag. Violations are liable for prosecution under the
German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.

Typesetting: Camera-ready copy produced from the author's output file
using AMS-TEX and LAMS-TEX
SPIN: 10558047 4113143-5 4 3 2 I 0- Printed on acid-free paper

Acknowledgments

This book grew from notes prepared for graduate courses in computational
number theory given at the University of Bordeaux I. When preparing this
book, it seemed natural to include both more details and more advanced
subjects than could be given in such a course. By doing this, I hope that
the book can serve two audiences: the mathematician who might only need
the details of certain algorithms as well as the mathematician wanting to go
further with algorithmic number theory.

In 1991, we started a graduate program in computational number theory
in Bordeaux, and this book was also meant to provide a framework for future
courses in this area.

In roughly chronological order I need to thank, Horst Zimmer, whose
Springer Lecture Notes on the subject [Zim] was both a source of inspiration
and of excellent references for many people at the time when it was published.

Then, certainly, thanks must go to Donald Knuth, whose (unfortunately
unfinished) series on the Art of Computer Programming ([Knul], [Knu2] and
[Knu3]) contains many marvels for a mathematician. In particular, the second
edition of his second volume. Parts of the contents of Chapters 1 and 3 of this
book are taken with little or no modifications from Knuth's book. In the (very
rare) cases where Knuth goes wrong, this is explicitly mentioned.

My thesis advisor and now colleague Jacques Martinet, has been very in
fluential, both in developing the subject in Bordeaux and more generally in
the rest of France-several of his former students are now professors. He also
helped to make me aware of the beauty of the subject, since my personal
inclination was more towards analytic aspects of number theory, like modu
lar forms or £-functions. Even during the strenuous period (for him!) when
he was Chairman of our department, he always took the time to listen or
enthusiastically explain.

I also want to thank Hendrik Lenstra, with whom I have had the pleasure
of writing a few joint papers in this area. Also Arjen Lenstra, who took the
trouble of debugging and improving a big Pascal program which I wrote, which
is still, in practice, one of the fastest primality proving programs. Together
and separately they have contributed many extremely important algorithms,
in particular LLL and its applications (see Section 2.6). My only regret is that
they both are now in the U.S.A., so collaboration is more difficult.

VI Acknowledgments

Although he is not strictly speaking in the algorithmic field, I must also
thank Don Zagier, first for his personal and mathematical friendship and also
for his continuing invitations first to Maryland, then at the Max Planck In
stitute in Bonn, but also because he is a mathematician who takes both real
pleasure and real interest in creating or using algorithmic tools in number
theory. In fact, we are currently finishing a large algorithmic project, jointly
with Nils Skoruppa.

Daniel Shanks\ both as an author and as editor of Mathematics of Com
putation, has also had a great influence on the development of algorithmic
algebraic number theory. I have had the pleasure of collaborating with him
during my 1982 stay at the University of Maryland, and then in a few subse
quent meetings.

My colleagues Christian Batut, Dominique Bernardi and Michel Olivier
need to be especially thanked for the enormous amount of unrewarding work
that they put in the writing of the PARI system under my supervision. This
system is now completely operational (even though a few unavoidable bugs
crop up from time to time), and is extremely useful for us in Bordeaux, and for
the (many) people who have a copy of it elsewhere. It has been and continues
to be a great pleasure to work with them.

I also thank my colleague Franc:;ois Dress for having collaborated with
me to write our first multi-precision interpreter ISABELLE, which, although
considerably less ambitious than PARI, was a useful first step.

I met Johannes Buchmann several years ago at an international meeting.
Thanks to the administrative work of Jacques Martinet on the French side,
we now have a bilateral agreement between Bordeaux and Saarbriicken. This
has allowed several visits, and a medium term joint research plan has been
informally decided upon. Special thanks are also due to Johannes Buchmann
and Horst Zimmer for this. I need to thank Johannes Buchmann for the many
algorithms and techniques which I have learned from him both in published
work and in his preprints. A large part ofthis book could not have been what it
is without his direct or indirect help. Of course, I take complete responsibility
for the errors that may have appeared!

Although I have met Michael Pohst and Hans Zassenhaus2 only in meet
ings and did not have the opportunity to work with them directly, they have
greatly influenced the development of modern methods in algorithmic number
theory. They have written a book [Poh-Zas) which is a landmark in the sub
ject. I recommend it heartily for further reading, since it goes into subjects
which could not be covered in this book.

I have benefited from discussions with many other people on computa
tional number theory, which in alphabetical order are, Oliver Atkin, Anne
Marie Berge, Bryan Birch, Francisco Diaz y Diaz, Philippe Flajolet, Guy Hen
niart, Kevin McCurley, Jean-Franc:;ois Mestre, Franc:;ois Morain, Jean-Louis

1 Daniel Shanks died on September 6, 1996.
2 Hans Zassenhaus died on November 21, 1991.

Acknowledgments VII

Nicolas, Andrew Odlyzko, Joseph Oesterle, Johannes Graf von Schmettow,
Claus-Peter Schnorr, Rene Schoof, Jean-Pierre Serre, Bob Silverman, Harold
Stark, Nelson Stephens, Larry Washington. There are many others that could
not be listed here. I have taken the liberty of borrowing some of their al
gorithms, and I hope that I will be forgiven if their names are not always
mentioned.

The theoretical as well as practical developments in Computational Num
ber Theory which have taken place in the last few years in Bordeaux would
probably not have been possible without a large amount of paperwork and
financial support. Hence, special thanks go to the people who made this pos
sible, and in particular to Jean-Marc Deshouillers, Fram;ois Dress and Jacques
Martinet as well as the relevant local and national funding committees and
agencies.

I must thank a number of persons without whose help we would have
been essentially incapable of using our workstations, in particular "Achille"
Braquelaire, Laurent Fallot, Patrick Henry, Viviane Sauquet-Deletage, Robert
Strandh and Bernard Vauquelin.

Although I do not know anybody there, I would also like to thank the
GNU project and its creator Richard Stallman, for the excellent software they
produce, which is not only free (as in "freedom", but also as in "freeware"),
but is generally superior to commercial products. Most of the software that
we use comes from GNU.

Finally, I thank all the people, too numerous to mention, who have helped
me in some way or another to improve the quality of this book, and in partic
ular to Dominique Bernardi and Don Zagier who very carefully read drafts of
this book. But special thanks go to Gary Cornell who suggested improvements
to my English style and grammar in almost every line.

In addition, several people contributed directly or helped me write specific
sections of the book. In alphabetical order they are D. Bernardi (algorithms
on elliptic curves), J. Buchmann (Hermite normal forms and sub-exponential
algorithms), J.-M. Couveignes (number field sieve), H. W. Lenstra (in sev
eral sections and exercises), C. Pomerance (factoring and primality testing),
B. Vallee (LLL algorithms), P. Zimmermann (Appendix A).

Preface

With the advent of powerful computing tools and numerous advances in math
ematics, computer science and cryptography, algorithmic number theory has
become an important subject in its own right. Both external and internal
pressures gave a powerful impetus to the development of more powerful al
gorithms. These in turn led to a large number of spectacular breakthroughs.
To mention but a few, the LLL algorithm which has a wide range of appli
cations, including real world applications to integer programming, primality
testing and factoring algorithms, sub-exponential class group and regulator
algorithms, etc ...

Several books exist which treat parts of this subject. (It is essentially
impossible for an author to keep up with the rapid pace of progress in all
areas of this subject.) Each book emphasizes a different area, corresponding
to the author's tastes and interests. The most famous, but unfortunately the
oldest, is Knuth's Art of Computer Programming, especially Chapter 4.

The present book has two goals. First, to give a reasonably comprehensive
introductory course in computational number theory. In particular, although
we study some subjects in great detail, others are only mentioned, but with
suitable pointers to the literature. Hence, we hope that this book can serve
as a first course on the subject. A natural sequel would be to study more
specialized subjects in the existing literature.

The prerequisites for reading this book are contained in introductory texts
in number theory such as Hardy and Wright [H-W) and Borevitch and Shafare
vitch [Bo-Sh]. The reader also needs some feeling or taste for algorithms and
their implementation. To make the book as self-contained as possible, the main
definitions are given when necessary. However, it would be more reasonable for
the reader to first acquire some basic knowledge of the subject before studying
the algorithmic part. On the other hand, algorithms often give natural proofs
of important results, and this nicely complements the more theoretical proofs
which may be given in other books.

The second goal of this course is practicality. The author's primary in
tentions were not only to give fundamental and interesting algorithms, but
also to concentrate on practical aspects of the implementation of these algo
rithms. Indeed, the theory of algorithms being not only fascinating but rich,
can be (somewhat arbitrarily) split up into four closely related parts. The first
is the discovery of new algorithms to solve particular problems. The second is
the detailed mathematical analysis of these algorithms. This is usually quite

Preface IX

mathematical in nature, and quite often intractable, although the algorithms
seem to perform rather well in practice. The third task is to study the com
plexity of the problem. This is where notions of fundamental importance in
complexity theory such as NP-completeness come in. The last task, which
some may consider the least noble of the four, is to actually implement the
algorithms. But this task is of course as essential as the others for the actual
resolution of the problem.

In this book we give the algorithms, the mathematical analysis and in
some cases the complexity, without proofs in some cases, especially when it
suffices to look at the existing literature such as Knuth's book. On the other
hand, we have usually tried as carefully as we could, to give the algorithms
in a ready to program form-in as optimized a form as possible. This has the
drawback that some algorithms are unnecessarily clumsy (this is unavoidable
if one optimizes), but has the great advantage that a casual user of these
algorithms can simply take them as written and program them in his/her
favorite programming language. In fact, the author himself has implemented
almost all the algorithms of this book in the number theory package PARI
(see Appendix A).

The approach used here as well as the style of presentation of the algo
rithms is similar to that of Knuth (analysis of algorithms excepted), and is
also similar in spirit to the book of Press et al [PFTV] Numerical Recipes (in
Fortran, Pascal or C), although the subject matter is completely different.

For the practicality criterion to be compatible with a book of reasonable
size, some compromises had to be made. In particular, on the mathematical
side, many proofs are not given, especially when they can easily be found
in the literature. From the computer science side, essentially no complexity
results are proved, although the important ones are stated.

The book is organized as follows. The first chapter gives the fundamental
algorithms that are constantly used in number theory, in particular algorithms
connected with powering modulo Nand with the Euclidean algorithm.

Many number-theoretic problems require algorithms from linear algebra
over a field or over Z. This is the subject matter of Chapter 2. The highlights
of this chapter are the Hermite and Smith normal forms, and the fundamental
LLL algorithm.

In Chapter 3 we explain in great detail the Berlekamp-Cantor-Zassenhaus
methods used to factor polynomials over finite fields and over Q, and we also
give an algorithm for finding all the complex roots of a polynomial.

Chapter 4 gives an introduction to the algorithmic techniques used in
number fields, and the basic definitions and results about algebraic numbers
and number fields. The highlights of these chapters are the use of the Hermite
Normal Form representation of modules and ideals, an algorithm due to Diaz
y Diaz and the author for finding "simple" polynomials defining a number
field, and the subfield and field isomorphism problems.

X Preface

Quadratic fields provide an excellent testing and training ground for the
techniques of algorithmic number theory (and for algebraic number theory
in general). This is because although they can easily be generated, many
non-trivial problems exist, most of which are unsolved (are there infinitely
many real quadratic fields with class number 1 ?) . They are studied in great
detail in Chapter 5. In particular, this chapter includes recent advances on the
efficient computation in class groups of quadratic fields (Shanks's NUCOMP
as modified by Atkin), and sub-exponential algorithms for computing class
groups and regulators of quadratic fields (McCurley-Hafner, Buchmann).

Chapter 6 studies more advanced topics in computational algebraic num
ber theory. We first give an efficient algorithm for computing integral bases
in number fields (Zassenhaus's round 2 algorithm), and a related algorithm
which allows us to compute explicitly prime decompositions in field exten
sions as well as valuations of elements and ideals at prime ideals. Then, for
number fields of degree less than or equal to 7 we give detailed algorithms
for computing the Galois group of the Galois closure. We also study in some
detail certain classes of cubic fields. This chapter concludes with a general
algorithm for computing class groups and units in general number fields. This
is a generalization of the sub-exponential algorithms of Chapter 5, and works
quite well. For other approaches, I refer to [Poh-Zas} and to a forthcoming
paper of J. Buchmann. This subject is quite involved so, unlike most other
situations in this book, I have not attempted to give an efficient algorithm,
just one which works reasonably well in practice.

Chapters 1 to 6 may be thought of as one unit and describe many of the
most interesting aspects of the theory. These chapters are suitable for a two
semester graduate (or even a senior undergraduate) level course in number
theory. Chapter 6, and in particular the class group and unit algorithm, can
certainly be considered as a climax of the first part of this book.

A number theorist, especially in the algorithmic field, must have a mini
mum knowledge of elliptic curves. This is the subject of chapter 7. Excellent
books exist about elliptic curves (for example [Sil] and [Sil3]), but our aim is
a little different since we are primarily concerned with applications of elliptic
curves. But a minimum amount of culture is also necessary, and so the flavor
of this chapter is quite different from the others chapters. In the first three sec
tions, we give the essential definitions, and we give the basic and most striking
results of the theory, with no pretense to completeness and no algorithms.

The theory of elliptic curves is one of the most marvelous mathematical
theories of the twentieth century, and abounds with important conjectures.
They are also mentioned in these sections. The last sections of Chapter 7,
give a number of useful algorithms for working on elliptic curves, with little
or no proofs.

The reader is warned that, apart from the material necessary for later
chapters, Chapter 7 needs a much higher mathematical background than the
other chapters. It can be skipped if necessary without impairing the under
standing of the subsequent chapters.

Preface XI

Chapter 8 (whose title is borrowed from a talk of Hendrik Lenstra) consid
ers the techniques used for primality testing and factoring prior to the 1970's,
with the exception of the continued fraction method of Brillhart-Morrison
which belongs in Chapter 10.

Chapter 9 explains the theory and practice of the two modern primal
ity testing algorithms, the Adleman-Pomerance-Rumely test as modified by
H. W. Lenstra and the author, which uses Fermat's (little) theorem in cyclo
tomic fields, and Atkin's test which uses elliptic curves with complex multi
plication.

Chapter 10 is devoted to modern factoring methods, i.e. those which run
in sub-exponential time, and in particular to the Elliptic Curve Method of
Lenstra, the Multiple Polynomial Quadratic Sieve of Pomerance and the Num
ber Field Sieve of Pollard. Since many of the methods described in Chapters
9 and 10 are quite complex, it is not reasonable to give ready-to-program al
gorithms as in the preceding chapters, and the implementation of any one of
these complex methods can form the subject of a three month student project.

In Appendix A, we describe what a serious user should know about com
puter packages for number theory. The reader should keep in mind that the
author of this book is biased since he has written such a package himself (this
package being available without cost by anonymous ftp).

Appendix B has a number of tables which we think may useful to the
reader. For example, they can be used to check the correctness of the imple
mentation of certain algorithms.

What I have tried to cover in this book is so large a subject that, neces
sarily, it cannot be treated in as much detail as I would have liked. For further
reading, I suggest the following books.

For Chapters 1 and 3, (Knul] and (Knu2]. This is the bible for algorithm
analysis. Note that the sections on primality testing and factoring are out
dated. Also, algorithms like the LLL algorithm which did not exist at the
time he wrote are, obviously, not mentioned. The recent book (GCL] contains
essentially all of our Chapter 3, as well as many more polynomial algorithms
which we have not covered in this book such as Grabner bases computation.

For Chapters 4 and 5, (Bo-Sh], [Mar] and [Ire-Ros]. In particular, [Mar]
and (Ire-Ros] contain a large number of practical exercises, which are not far
from the spirit of the present book, (Ire-Ros] being more advanced.

For Chapter 6, (Poh-Zas] contains a large number of algorithms, and treats
in great detail the question of computing units and class groups in general
number fields. Unfortunately the presentation is sometimes obscured by quite
complicated notations, and a lot of work is often needed to implement the
algorithms given there.

For Chapter 7, [Sil] and {Sil3] are excellent books, and contain numerous
exercises. Another good reference is [Hus], as well as [Ire-Ros] for material on
zeta-functions of varieties. The algorithmic aspect of elliptic curves is beauti
fully treated in [Cre], which I also heartily recommend.

XII Preface

For Chapters 8 to 10, the best reference to date, in addition to [Knu2), is
[Rie). In addition, Riesel has several chapters on prime number theory.

Note on the exercises. The exercises have a wide range of difficulty,
from extremely easy to unsolved research problems. Many are actually imple
mentation problems, and hence not mathematical in nature. No attempt has
been made to grade the level of difficulty of the exercises as in Knuth, except
of course that unsolved problems are mentioned as such. The ordering follows
roughly the corresponding material in the text.

WARNING. Almost all of the algorithms given in this book have been
programmed by the author and colleagues, in particular as a part of the Pari
package. The programming has not however, always been synchronized with
the writing of this book, so it may be that some algorithms are incorrect, and
others may contain slight typographical errors which of course also invalidate
them. Hence, the author and Springer-Verlag do not assume any responsibility
for consequences which may directly or indirectly occur from the use of the
algorithms given in this book. Apart from the preceding legalese, the author
would appreciate corrections, improvements and so forth to the algorithms
given, so that this book may improve if further editions are printed. The
simplest is to send an e-mail message to

cohen@math.u-bordeaux.fr

or else to write to the author's address. In addition, a regularly updated
errata file is available by anonymous ftp from megrez .math. u-bordeaux. fr
(147.210.16 .17), directory pub/ cohenbook.

Contents

Chapter 1 Fundamental Number-Theoretic Algorithms 1

1.1 Introduction 1

1.1.1 Algorithms 1
1.1.2 Multi-precision . 2
1.1.3 Base Fields and Rings 5
1.1.4 Notations 6

1.2 The Powering Algorithms 8

1.3 Euclid's Algorithms . . . 12

1.3.1 Euclid's and Lehmer's Algorithms 12
1.3.2 Euclid's Extended Algorithms . . 16
1.3.3 The Chinese Remainder Theorem 19
1.3.4 Continued Fraction Expansions of Real Numbers 21

1.4 The Legendre Symbol 24

1.4.1 The Groups (Z/nZ)* 24
1.4.2 The Legendre-Jacobi-Kronecker Symbol 27

1.5 Computing Square Roots Modulo p 31

1.5.1 The Algorithm of Tonelli and Shanks . 32
1.5.2 The Algorithm of Cornacchia 34

1.6 Solving Polynomial Equations Modulo p 36

1. 7 Power Detection 38

1.7.1 Integer Square Roots 38
1.7.2 Square Detection . . 39
1. 7.3 Prime Power Detection 41

1.8 Exercises for Chapter 1 42

XIV Contents

Chapter 2 Algorithms for Linear Algebra and Lattices 46

46

47
47
48
50
53

2.1 Introduction

2.2 Linear Algebra Algorithms on Square Matrices

2.2.1 Generalities on Linear Algebra Algorithms
2.2.2 Gaussian Elimination and Solving Linear Systems
2.2.3 Computing Determinants
2.2.4 Computing the Characteristic Polynomial

2.3 Linear Algebra on General Matrices

2.3.1 Kernel and Image
2.3.2 Inverse Image and Supplement
2.3.3 Operations on Subspaces . .
2.3.4 Remarks on Modules

2.4 Z-Modules and the Hermite and Smith Normal Forms

2.4.1 Introduction to Z-Modules
2.4.2 The Hermite Normal Form
2.4.3 Applications of the Hermite Normal Form
2.4.4 The Smith Normal Form and Applications

2.5 Generalities on Lattices

2.5.1 Lattices and Quadratic Forms
2.5.2 The Gram-Schmidt Orthogonalization Procedure

2.6 Lattice Reduction Algorithms

2.6.1 The LLL Algorithm
2.6.2 The LLL Algorithm with Deep Insertions
2.6.3 The Integral LLL Algorithm
2.6.4 LLL Algorithms for Linearly Dependent Vectors

2. 7 Applications of the LLL Algorithm

2.7.1 Computing the Integer Kernel and Image of a Matrix
2.7.2 Linear and Algebraic Dependence Using LLL
2. 7.3 Finding Small Vectors in Lattices

2.8 Exercises for Chapter 2

Chapter 3 Algorithms on Polynomials

3.1 Basic Algorithms

3.1.1 Representation of Polynomials
3.1.2 Multiplication of Polynomials
3.1.3 Division of Polynomials . . .

3.2 Euclid's Algorithms for Polynomials
3.2.1 Polynomials over a Field
3.2.2 Unique Factorization Domains (UFD's) .
3.2.3 Polynomials over Unique Factorization Domains

57
57
60
62
64

66
66
67
73
75

79

79
82

84
84
90
92
95

97

97
100
103

106

109

109

109
110
111

113

113
114
116

Contents

3.2.4 Euclid's Algorithm for Polynomials over a UFD

3.3 The Sub-Resultant Algorithm .

3.3.1 Description of the Algorithm
3.3.2 Resultants and Discriminants
3.3.3 Resultants over a Non-Exact Domain

3.4 Factorization of Polynomials Modulo p

3.4.1 General Strategy
3.4.2 Squarefree Factorization
3.4.3 Distinct Degree Factorization
3.4.4 Final Splitting

3.5 Factorization of Polynomials over Z or Q

3.5.1 Bounds on Polynomial Factors
3.5.2 A First Approach to Factoring over Z . .
3.5.3 Factorization Modulo pe: Hensel's Lemma
3.5.4 Factorization of Polynomials over Z
3.5.5 Discussion

3.6 Additional Polynomial Algorithms

3.6.1 Modular Methods for Computing GCD's in Z[X]
3.6.2 Factorization of Polynomials over a Number Field
3.6.3 A Root Finding Algorithm over C

3. 7 Exercises for Chapter 3

XV

117

118

118
119
123

124

124
125
126
127

133

134
135
137
139
141

142

142
143
146

148

Chapter 4 Algorithms for Algebraic Number Theory I 153

4.1 Algebraic Numbers and Number Fields 153

4.1.1 Basic Definitions and Properties of Algebraic Numbers 153
4.1.2 Number Fields 154

4.2 Representation and Operations on Algebraic Numbers 158

4.2.1 Algebraic Numbers as Roots of their Minimal Polynomial . . 158
4.2.2 The Standard Representation of an Algebraic Number 159
4.2.3 The Matrix (or Regular) Representation of an Algebraic Number . 160
4.2.4 The Conjugate Vector Representation of an Algebraic Number . 161

4.3 Trace, Norm and Characteristic Polynomial 162

4.4 Discriminants, Integral Bases and Polynomial Reduction 165

4.4.1 Discriminants and Integral Bases 165
4.4.2 The Polynomial Reduction Algorithm 168

4.5 The Subfield Problem and Applications . . 174

4.5.1 The Subfield Problem Using the LLL Algorithm 174
4.5.2 The Subfield Problem Using Linear Algebra over C 175
4.5.3 The Subfield Problem Using Algebraic Algorithms 177
4.5.4 Applications of the Solutions to the Subfield Problem 179

XVI

4.6 Orders and Ideals

4.6.1 Basic Definitions
4.6.2 Ideals of 7L.K . . .

4. 7 Representation of Modules and Ideals .

4.7.1 Modules and the Hermite Normal Form
4.7.2 Representation ofldeals 0 . 0

4.8 Decomposition of Prime Numbers I

4.8.1 Definitions and Main Results
408.2 A Simple Algorithm for the Decomposition of Primes
4.8.3 Computing Valuations 0 . 0 .

4.8.4 Ideal Inversion and the Different

4. 9 Units and Ideal Classes

4.9.1 The Class Group . . . 0

4.9.2 Units and the Regulator
4.9.3 Conclusion: the Main Computational Tasks

of Algebraic Number Theory

4.10 Exercises for Chapter 4

Contents

181

181

186

188

188

190

196

196

199

201

204

207

207

209

217

217

Chapter 5 Algorithms for Quadratic Fields 0 223

5.1 Discriminant, Integral Basis and Decomposition of Primes 223

5.2 Ideals and Quadratic Forms . o • 0 . 0 . 0 . 0

5.3 Class Numbers of Imaginary Quadratic Fields

5.3.1 Computing Class Numbers Using Reduced Forms
5.3.2 Computing Class Numbers Using Modular Forms
5.3.3 Computing Class Numbers Using Analytic Formulas

5.4 Class Groups of Imaginary Quadratic Fields

5.4.1 Shanks's Baby Step Giant Step Method . 0 • 0

5.4.2 Reduction and Composition of Quadratic Forms
5.4.3 Class Groups Using Shanks's Method . . 0

5.5 McCurley's Sub-exponential Algorithm

5.5.1 Outline of the Algorithm . 0 • 0 • •

5.5.2 Detailed Description of the Algorithm
5.5.3 Atkin's Variant . 0 . . . 0

5.6 Class Groups of Real Quadratic Fields
5.6.1 Computing Class Numbers Using Reduced Forms
5.602 Computing Class Numbers Using Analytic Formulas
5.6.3 A Heuristic Method of Shanks . 0 . 0 . 0 . 0 . 0

225

231

231
. 234

. 237

. 240

. 240

0 243

. 250

. 252

. 252

. 255

. 260

. 262

. 262

. 266

. 268

Contents XVII

5.7 Computation of the Fundamental Unit
and of the Regulator 269

5.7.1 Description of the Algorithms 269
5.7.2 Analysis of the Continued Fraction Algorithm 271
5.7.3 Computation of the Regulator 278

5.8 The Infrastructure Method of Shanks 279

5.8.1 The Distance Function 279
5.8.2 Description of the Algorithm 283
5.8.3 Compact Representation of the Fundamental Unit 285
5.8.4 Other Application and Generalization of the Distance Function 287

5.9 Buchmann's Sub-exponential Algorithm 288

5.9.1 Outline of the Algorithm 289
5.9.2 Detailed Description of Buchmann's Sub-exponential Algorithm 291

5.10 The Cohen-Lenstra Heuristics 295

5.10.1 Results and Heuristics for Imaginary Quadratic Fields 295
5.10.2 Results and Heuristics for Real Quadratic Fields 297

5.11 Exercises for Chapter 5 298

Chapter 6 Algorithms for Algebraic Number Theory II 303

6.1 Computing the Maximal Order 303

6.1.1 The Pohst-Zassenhaus Theorem . 303
6.1.2 The Dedekind Criterion 305
6.1.3 Outline of the Round 2 Algorithm 308
6.1.4 Detailed Description of the Round 2 Algorithm 311

6.2 Decomposition of Prime Numbers II . . . 312

6.2.1 Newton Polygons 313
6.2.2 Theoretical Description of the Buchmann-Lenstra Method . 315
6.2.3 Multiplying and Dividing Ideals Modulo p 317
6.2.4 Splitting of Separable Algebras over 1Fp 318
6.2.5 Detailed Description of the Algorithm for Prime Decomposition 320

6.3 Computing Galois Groups 322

6.3.1 The Resolvent Method 322
6.3.2 Degree 3 325
6.3.3 Degree 4 325
6.3.4 Degree 5 328
6.3.5 Degree 6 329
6.3.6 Degree 7 331
6.3. 7 A List of Test Polynomials 333

6.4 Examples of Families of Number Fields 334
6.4.1 Making Tables of Number Fields 334
6.4.2 Cyclic Cubic Fields 336

XVIII Contents

6.4.3 Pure Cubic Fields 343
6.4.4 Decomposition of Primes in Pure Cubic Fields 347
6.4.5 General Cubic Fields 351

6.5 Computing the Class Group, Regulator
and Fundamental Units . . . 352

6.5.1 Ideal Reduction 352
6.5.2 Computing the Relation Matrix 354
6.5.3 Computing the Regulator and a System of Fundamental Units 357
6.5.4 The General Class Group and Unit Algorithm 358
6.5.5 The Principal Ideal Problem . 360

6.6 Exercises for Chapter 6 362

Chapter 7 Introduction to Elliptic Curves 367

7.1 Basic Definitions 367

7.1.1 Introduction 367
7.1.2 Elliptic Integrals and Elliptic Functions 367
7.1.3 Elliptic Curves over a Field 369
7.1.4 Points on Elliptic Curves 372

7.2 Complex Multiplication and Class Numbers 376

7.2.1 Maps Between Complex Elliptic Curves 377
7.2.2 Isogenies 379
7.2.3 Complex Multiplication 381
7.2.4 Complex Multiplication and Hilbert Class Fields 384
7.2.5 Modular Equations 385

7.3 Rank and L-functions 386

7.3.1 The Zeta Function of a Variety 387
7.3.2 L-functions of Elliptic Curves . 388
7.3.3 The Taniyama-Weil Conjecture 390
7.3.4 The Birch and Swinnerton-Dyer Conjecture 392

7.4 Algorithms for Elliptic Curves 394

7.4.1 Algorithms for Elliptic Curves over C . . 394
7.4.2 Algorithm for Reducing a General Cubic 399
7.4.3 Algorithms for Elliptic Curves over IFp 403

7.5 Algorithms for Elliptic Curves over Q 406

7.5.1 Tate's algorithm 406
7.5.2 Computing rational points 410
7.5.3 Algorithms for computing the L-function 413

7.6 Algorithms for Elliptic Curves
with Complex Multiplication 414

7.6.1 Computing the Complex Values of j(r) . 414
7.6.2 Computing the Hilbert Class Polynomials 415

Contents

7.6.3 Computing Weber Class Polynomials

7. 7 Exercises for Chapter 7

Chapter 8 Factoring in the Dark Ages

8.1 Factoring and Primality Testing .

8.2 Compositeness Tests

8.3 Primality Tests

8.3.1 The Pocklington-Lehmer N- 1 Test
8.3.2 Briefly, Other Tests .

8.4 Lehman's Method.

8.5 Pollard's p Method

8.5.1 Outline of the Method
8.5.2 Methods for Detecting Periodicity
8.5.3 Brent's Modified Algorithm ...
8.5.4 Analysis of the Algorithm

8.6 Shanks's Class Group Method

8. 7 Shanks's SQUFOF

8.8 The p - 1-method

8.8.1 The First Stage .
8.8.2 The Second Stage
8.8.3 Other Algorithms of the Same Type

8.9 Exercises for Chapter 8

Chapter 9 Modern Primality Tests

9.1 The Jacobi Sum Test

9.1.1 Group Rings of Cyclotomic Extensions .
9.1.2 Characters, Gauss Sums and Jacobi Sums
9.1.3 The Basic Test
9.1.4 Checking Condition Cv
9.1.5 The Use of Jacobi Sums
9.1.6 Detailed Description of the Algorithm
9.1.7 Discussion

9.2 The Elliptic Curve Test .

9.2.1 The Goldwasser-Kilian Test
9.2.2 Atkin's Test

9.3 Exercises for Chapter 9 .

XIX

416

417

419

419

421

423

423
424

425

426

426
427
429
430

433

434

438

439
440
441

442

445

446

446
448
450
455
457
463
465

467

467
471

. 475

XX Contents

Chapter 10 Modern Factoring Methods

10.1 The Continued Fraction Method .

10.2 The Class Group Method

10.2.1 Sketch of the Method
10.2.2 The Schnorr-Lenstra Factoring Method

10.3 The Elliptic Curve Method

10.3.1 Sketch of the Method
10.3.2 Elliptic Curves Modulo N . .
10.3.3 The ECM Factoring Method of Lenstra
10.3.4 Practical Considerations

10.4 The Multiple Polynomial Quadratic Sieve

10.4.1 The Basic Quadratic Sieve Algorithm . .
10.4.2 The Multiple Polynomial Quadratic Sieve
10.4.3 Improvements to the MPQS Algorithm

10.5 The Number Field Sieve

10.5.1 Introduction
10.5.2 Description of the Special NFS when h(K) = 1
10.5.3 Description of the Special NFS when h(K) > 1
10.5.4 Description of the General NFS
10.5.5 Miscellaneous Improvements to the Number Field Sieve

10.6 Exercises for Chapter 10

Appendix A Packages for Number Theory

Appendix B Some Useful Tables

B.1 Table of Class Numbers of Complex Quadratic Fields

B.2 Table of Class Numbers and Units of Real Quadratic

477

477

481

481
482

. 484

484
485
487
489

490

491
. 492
. 494

495

495
496
500
501
503

504

507

513

513

Fields . 515

B.3 Table of Class Numbers and Units of Complex Cubic
Fields . 519

B .4 Table of Class Numbers and Units of Totally Real Cubic
Fields 521

B.5 Table of Elliptic Curves . 524

Bibliography 527

Index 540

Chapter 1

Fundamental Number-Theoretic Algorithms

1.1 Introduction

This book describes in detail a number of algorithms used in algebraic number
theory and the theory of elliptic curves. It also gives applications to problems
such as factoring and primality testing. Although the algorithms and the the
ory behind them are sufficiently interesting in themselves, I strongly advise
the reader to take the time to implement them on her/his favorite machine.
Indeed, one gets a feel for an algorithm mainly after executing it several times.
(This book does help by providing many tricks that will be useful for doing
this.)

We give the necessary background on number fields and classical algebraic
number theory in Chapter 4, and the necessary prerequisites on elliptic curves
in Chapter 7. This chapter shows you some basic algorithms used almost
constantly in number theory. The best reference here is [Knu2].

1.1.1 Algorithms

Before we can describe even the simplest algorithms, it is necessary to pre
cisely define a few notions. However, we will do this without entering into the
sometimes excessively detailed descriptions used in Computer Science. For us,
an algorithm will be a method which, given certain types of inputs, gives an
answer after a finite amount of time.

Several things must be considered when one describes an algorithm. The
first is to prove that it is correct, i.e. that it gives the desired result when
it stops. Then, since we are interested in practical implementations, we must
give an estimate of the algorithm's running time, if possible both in the worst
case, and on average. Here, one must be careful: the running time will always
be measured in bit operations, i.e. logical or arithmetic operations on zeros and
ones. This is the most realistic model, if one assumes that one is using real
computers, and not idealized ones. Third, the space requirement (measured in
bits) must also be considered. In many algorithms, this is negligible, and then
we will not bother mentioning it. In certain algorithms however, it becomes
an important issue which has to be addressed.

First, some useful terminology: The size of the inputs for an algorithm will
usually be measured by the number of bits that they require. For example,
the size of a positive integer N is LlgNJ + 1 (see below for notations). We

2 1 Fundamental Number-Theoretic Algorithms

will say that an algorithm is linear, quadmtic or polynomial time if it requires
time O(lnN), O(ln2N), O(P(lnN)) respectively, where Pis a polynomial. If
the time required is O(N01), we say that the algorithm is exponential time.
Finally, many algorithms have some intermediate running time, for example

eGv'In N In InN
'

which is the approximate expected running time of many factoring algorithms
and of recent algorithms for computing class groups. In this case we say that
the algorithm is sub-exponential.

The definition of algorithm which we have given above, although a little
vague, is often still too strict for practical use. We need also probabilistic
algorithms, which depend on a source of random numbers. These "algorithms"
should in principle not be called algorithms since there is a possibility (of
probability zero) that they do not terminate. Experience shows, however, that
probabilistic algorithms are usually more efficient than non-probabilistic ones;
in many cases they are even the only ones available.

Probabilistic algorithms should not be mistaken with methods (which I
refuse to call algorithms), which produce a result which has a high probability
of being correct. It is essential that an algorithm produces correct results
(discounting human or computer errors), even if this happens after a very
long time. A typical example of a non-algorithmic method is the following:
suppose N is large and you suspect that it is prime (because it is not divisible
by small numbers). Then you can compute

2N-I modN

using the powering Algorithm 1.2.1 below. If it is not 1 mod N, then this
proves that N is not prime by Fermat's theorem. On the other hand, if it is
equal to 1 mod N, there is a very good chance that N is indeed a prime. But
this is not a proof, hence not an algorithm for primality testing (the smallest
counterexample is N = 341).

Another point to keep in mind for probabilistic algorithms is that the idea
of absolute running time no longer makes much sense. This is replaced by the
notion of expected running time, which is self-explanatory.

1.1.2 Multi-precision

Since the numbers involved in our algorithms will almost always become quite
large, a prerequisite to any implementation is some sort of multi-precision
package. This package should be able to handle numbers having up to 1000
decimal digits. Such a package is easy to write, and one is described in detail in
Riesel's book ((Rie]). One can also use existing packages or languages, such as
Axiom, Bignum, Derive, Gmp, Lisp, Macsyma, Magma, Maple, Mathematica,
Pari, Reduce, or Ubasic (see Appendix A). Even without a multi-precision

1.1 Introduction 3

package, some algorithms can be nicely tested, but their scope becomes more
limited.

The pencil and paper method for doing the usual operations can be imple
mented without difficulty. One should not use a base-10 representation, but
rather a base suited to the computer's hardware.

Such a bare-bones multi-precision package must include at the very least:

• Addition and subtraction of two n-bit numbers (time linear inn).

• Multiplication and Euclidean division of two n-bit numbers (time linear
in n2).

• Multiplication and division of ann-bit number by a short integer (time
linear inn). Here the meaning of short integer depends on the machine. Usually
this means a number of absolute value less than 215 , 231 , 235 or 263 .

• Left and right shifts of an n bit number by small integers (time linear
inn).

• Input and output of ann-bit number (time linear inn or in n2 depending
whether the base is a power of 10 or not).

Remark. Contrary to the choice made by some systems such as Maple, I
strongly advise using a power of 2 as a base, since usually the time needed for
input/output is only a very small part of the total time, and it is also often
dominated by the time needed for physical printing or displaying the results.

There exist algorithms for multiplication and division which as n gets
large are much faster than O(n2), the best, due to Schonhage and Strassen,
running in 0(n ln n In ln n) bit operations. Since we will be working mostly
with numbers of up to roughly 100 decimal digits, it is not worthwhile to
implement these more sophisticated algorithms. (These algorithms become
practical only for numbers having more than several hundred decimal digits.)
On the other hand, simpler schemes such as the method of Karatsuba (see
[Knu2} and Exercise 2) can be useful for much smaller numbers.

The times given above for the basic operations should constantly be kept
in mind.

Implementation advice. For people who want to write their own bare
bones multi-precision package as described .above, by far the best reference
is [Knu2J (see also [Rie]). A few words of advice are however necessary. A
priori, one can write the package in one's favorite high level language. As
will be immediately seen, this limits the multi-precision base to roughly the
square root of the word size. For example, on a typical 32 bit machine, a
high level language will be able to multiply two 16-bit numbers, but not two
32-bit ones since the result would not fit. Since the multiplication algorithm
used is quadratic, this immediately implies a loss of a factor 4, which in fact
usually becomes a factor of 8 or 10 compared to what could be done with the
machine's central processor. This is intolerable. Another alternative is to write
everything in assembly language. This is extremely long and painful, usually

4 1 Fundamental Number-Theoretic Algorithms

bug-ridden, and in addition not portable, but at least it is fast. This is the
solution used in systems such as Pari and Ubasic, which are much faster than
their competitors when it comes to pure number crunching.

There is a third possibility which is a reasonable compromise. Declare
global variables (known to all the files, including the assembly language files
if any) which we will call remainder and overflow say.

Then write in any way you like (in assembly language or as high level
language macros) nine functions that do the following. Assume a, b, c are
unsigned word-sized variables, and let M be the chosen multi-precision base,
so all variables will be less than M (for example M= 232). Then we need the
following functions, where 0 :::; c < M and overflow is equal to 0 or 1:

c=add(a,b) corresponding to the formula a+b=overflow·M+c.
c=addx(a,b) corresponding to the formula a+b+overflow=overflow·M+c.
c=sub(a,b) corresponding to the formula a-b=c-overflow·M.
c=subx(a, b) corresponding to the formula a-b-overflow=c-overflow·M.
c=mul(a,b) corresponding to the formula a·b=remainder·M+c,
in other words c contains the low order part of the product, and remainder

the high order part.
c=di v (a, b) corresponding to the formula remainder·M+a=b·c+remainder,
where we may assume that remainder<b.
For the last three functions we assume that M is equal to a power of 2, say

M=2m.
c=shiftl(a,k) corresponding to the formula 2ka=remainder·M+c.
c=shiftr(a,k) corresponding to the formula a·M/2k=c·M+remainder,
where we assume for these last two functions that 0 :::; k < m.
k=bfffo(a) corresponding to the formula M/2 :::; 2ka < M, i.e. k

flg(M/(2a))l when a -:f. 0, k = m when a= 0.
The advantage of this scheme is that the rest of the multi-precision package

can be written in a high level language without much sacrifice of speed, and
that the black boxes described above are short and easy to write in assembly
language. The portability problem also disappears since these functions can
easily be rewritten for another machine.

Knowledgeable readers may have noticed that the functions above cor
respond to a simulation of a few machine language instructions of the
68020/68030/68040 processors. It may be worthwhile to work at a higher
level, for example by implementing in assembly language a few of the multi
precision functions mentioned at the beginning of this section. By doing this
to a limited extent one can avoid many debugging problems. This also avoids
much function call overhead, and allows easier optimizing. As usual, the price
paid is portability and robustness.

Remark. One of the most common operations used in number theory is
modular multiplication, i.e. the computation of a· b modulo some number N,
where a and b are non-negative integers less than N. This can, of course,

1.1 Introduction 5

be trivially done using the formula di v (mul (a, b) , N), the result being the
value of remainder. When many such operations are needed using the same
modulus N (this happens for example in most factoring methods, see Chapters
8, 9 an 10), there is a more clever way of doing this, due to P. Montgomery
which can save 10 to 20 percent of the running time, and this is not a negligible
saving since it is an absolutely basic operation. We refer to his paper [Mon1)
for the description of this method.

1.1.3 Base Fields and Rings

Many of the algorithms that we give (for example the linear algebra algo
rithms of Chapter 2 or some of the algorithms for working with polynomials
in Chapter 3) are valid over any base ring or field R where we know how to
compute. We must emphasize however that the behavior of these algorithms
will be quite different depending on the base ring. Let us look at the most
important examples.

The simplest rings are the rings R = Z/NZ, especially when N is small.
Operations in R are simply operations "modulo N" and the elements of R can
always be represented by an integer less than N, hence of bounded size. Using
the standard algorithms mentioned in the preceding section, and a suitable
version of Euclid's extended algorithm to perform division (see Section 1.3.2),
all operations need only O(ln2 N) bit operations (in fact 0(1) since N is con
sidered as fixed!). An important special case of these rings R is when N = p
is a prime, and then R = 1Fp the finite field with p elements. More generally,
it is easy to see that operations on any finite field lF q with q = pk can be done
quickly.

The next example is that of R = Z. In many algorithms, it is possible to
give an upper bound N on the size of the numbers to be handled. In this case
we are back in the preceding situation, except that the bound N is no longer
fixed, hence the running time of the basic operations is really O(ln2 N) bit
operations and not 0(1). Unfortunately, in most algorithms some divisions
are needed, hence we are no longer working in Z but rather in Q. It is possible
to rewrite some of these algorithms so that non-integral rational numbers
never occur (see for example the Gauss-Bareiss Algorithm 2.2.6, the integral
LLL Algorithm 2.6.7, the sub-resultant Algorithms 3.3.1 and 3.3.7). These
versions are then preferable.

The third example is when R = Q. The main phenomenon which occurs
in practically all algorithms here is "coefficient explosion". This means that in
the course of the algorithm the numerator and denominators of the rational
numbers which occur become very large; their size is almost impossible to
control. The main reason for this is that the numerator and denominator of
the sum or difference of two rational numbers is usually of the same order
of magnitude as those of their product. Consequently it is not easy to give
running times in bit operations for algorithms using rational numbers.

6 1 Fundamental Number-Theoretic Algorithms

The fourth example is that of R = JR. (or R = C). A new phenomenon
occurs here. How can we represent a real number? The truthful answer is that
it is in practice impossible, not only because the set JR. is uncountable, but also
because it will always be impossible for an algorithm to tell whether two real
numbers are equal, since this requires in general an infinite amount of time
(on the other hand if two real numbers are different, it is possible to prove
it by computing them to sufficient accuracy). So we must be content with
approximations {or with interval arithmetic, i.e. we give for each real number
involved in an algorithm a rational lower and upper bound), increasing the
closeness of the approximation to suit our needs. A nasty specter is waiting for
us in the dark, which has haunted generations of numerical analysts: numerical
instability. We will see an example of this in the case of the LLL algorithm
(see Remark (4) after Algorithm 2.6.3). Since this is not a book on numerical
analysis, we do not dwell on this problem, but it should be kept in mind.

As far as the bit complexity of the basic operations are concerned, since
we must work with limited accuracy the situation is analogous to that of Z
when an upper bound N is known. If the accuracy used for the real number
is of the order of 1/N, the number of bit operations for performing the basic
operations is O(ln2 N).

Although not much used in this book, a last example I would like to
mention is that of R = Qp, the field of p-adic numbers. This is similar to the
case of real numbers in that we must work with a limited precision, hence the
running times are of the same order of magnitude. Since the p-adic valuation is
non-Archimedean, i.e. the accuracy of the sum or product of p-adic numbers
with a given accuracy is at least of the same accuracy, the phenomenon of
numerical instability essentially disappears.

1.1.4 Notations

We will use Knuth's notations, which have become a de facto standard in the
theory of algorithms. Also, some algorithms are directly adapted from Knuth
(why change a well written algorithm?). However the algorithmic style of writ
ing used by Knuth is not well suited to structured programming. The reader
may therefore find it completely straightforward to write the corresponding
programs in assembly language, Basic or Fortran, say, but may find it slightly
less so to write them in Pascal or in C.

A warning: presenting an algorithms as a series of steps as is done in
this book is only one of the ways in which an algorithm can be described.
The presentation may look old-fashioned to some readers, but in the author's
opinion it is the best way to explain all the details of an algorithm. In particular
it is perhaps better than using some pseudo-Pascal language (pseudo-code).
Of course, this is debatable, but this is the choice that has been made in this
book. Note however that, as a consequence, the reader should read as carefully
as possible the exact phrasing of the algorithm, as well as the accompanying
explanations, to avoid any possible ambiguity. This is particularly true in if

1.1 Introduction 7

(conditional) expressions. Some additional explanation is sometimes added to
diminish the possibility of ambiguity. For example, if the if condition is not
satisfied, the usual word used is otherwise. If if expressions are nested, one
of them will use otherwise, and the other will usually use else. I admit that
this is not a very elegant solution.

A typical example is step 7 in Algorithm 6.2.9. The initial statement If
c = 0 do the following: implies that the whole step will be executed only
if c = 0, and must be skipped if c 'I 0. Then there is the expression if
j = i followed by an otherwise, and nested inside the otherwise clause is
another if dim(...) < n, and the else go to step 7 which follows refers to
this last if, i.e. we go to step 7 if dim(...)~ n.

I apologize to the reader if this causes any confusion, but I believe that
this style of presentation is a good compromise.

LxJ denotes the floor of x, i.e. the largest integer less than or equal to x.
Thus l3.4J = 3, l-3.4J = -4.

f X 1 denotes the ceiling of X, i.e. the smallest integer greater than or equal
to x. We have fxl = -L-xJ.

lxl denotes an integer nearest to x, i.e. lxl = lx + 1/2J.
[a, b[denotes the real interval from a to b including a but excluding b. Sim

ilarly]a, b] includes b and excludes a, and]a, b[is the open interval excluding a
and b. (This differs from the American notations [a, b), (a,b] and (a, b) which
in my opinion are terrible. In particular, in this book (a, b) will usually mean
the GCD of a and b, and sometimes the ordered pair (a, b).)

lg x denotes the base 2 logarithm of x.

If E is a finite set, lEI denotes the cardinality of E.

If A is a matrix, At denotes the transpose of the matrix A. A 1 x n (resp.
n x 1) matrix is called a row (resp. column) vector. The reader is warned that
many authors use a different notation where the transpose sign is put on the
left of the matrix.

If a and bare integers with b 'I 0, then except when explicitly mentioned
otherwise, a mod b denotes the non-negative remainder in the Euclidean di
vision of a by b, i.e. the unique number r such that a= r (mod b) and
0 $ T <Ill[.

The notation dIn means that d divides n, while dlln will mean that dIn
and (d, nfd) = 1. Furthermore, the notations p [nand pa[ln are always taken
to imply that p is prime, so for example pa lin means that pa is the highest
power of p dividing n.

Finally, if a and b are elements in a Euclidean ring (typically Z or the
ring of polynomials over a field), we will denote the greatest common divisor
(abbreviated GCD in the text) of a and b by gcd(a, b), or simply by (a, b)
when there is no risk of confusion.

8 1 Fundamental Number-Theoretic Algorithms

1.2 The Powering Algorithms

In almost every non-trivial algorithm in number theory, it is necessary at
some point to compute the n-th power of an element in a group, where n may
be some very large integer (i.e. for instance greater than 10100). That this
is actually possible and very easy is fundamental and one of the first things
that one must understand in algorithmic number theory. These algorithms
are general and can be used in any group. In fact, when the exponent is non
negative, they can be used in any monoid with unit. We give an abstract
version, which can be trivially adapted for any specific situation.

Let (G, x) be a group. We want to compute gn forgE G and n E Z in an
efficient manner. Assume for example that n > 0. The naive method requires
n -1 group multiplications. We can however do much better (A note: although
Gauss was very proficient in hand calculations, he seems to have missed this
method.) The idea is as follows. If n = Li Ei2i is the base 2 expansion of n
with Ei = 0 or 1, then

gn = rr (g2;),
f;=1

hence if we keep track in an auxiliary variable of the quantities g2; which we
compute by successive squarings, we obtain the following algorithm.

Algorithm 1.2.1 (Right-Left Binary). Given g E G and n E Z, this algorithm
computes gn in G. We write 1 for the unit element of G.

1. [Initialize] Set y - 1. If n = 0, output y and terminate. If n < 0 let N - -n
and z - g-1. Otherwise, set N - n and z -g.

2. [Multiply?] If N is odd set y- z · y.

3. [Halve N] Set N- lN/2J. If N = 0, output y as the answer and terminate
the algorithm. Otherwise, set z- z · z and go to step 2.

Examining this algorithm shows that the number of multiplication steps
is equal to the number of binary digits of lnl plus the number of ones in the
binary representation of lnl minus 1. So, it is at most equal to 2llg lniJ + 1, and
on average approximately equal to 1.5 lg In I. Hence, if one can compute rapidly
in G, it is not unreasonable to have exponents with several million decimal
digits. For example, if G = (Z/mZ)*, the time of the powering algorithm is
O(ln2mln lnl), since one multiplication in G takes time O(ln2m).

The validity of Algorithm 1.2.1 can be checked immediately by noticing
that at the start of step 2 one has gn = y . zN. This corresponds to a right
to-left scan of the binary digits of lnl.

We can make several changes to this basic algorithm. First, we can write
a similar algorithm based on a left to right scan of the binary digits of lnl.
In other words, we use the formula gn = (gn/2)2 if n is even and gn = g .
(gCn-l)/2) 2 if n is odd.

1.2 The Powering Algorithms 9

This assumes however that we know the position of the leftmost bit of In I
(or that we have taken the time to look for it beforehand), i.e. that we know
the integer e such that 2e :::; lnl < 2e+ 1 . Such an integer can be found using a
standard binary search on the binary digits of n, hence the time taken to find
it is O(lg lg jnl), and this is completely negligible with respect to the other
operations. This leads to the following algorithm.

Algorithm 1.2.2 (Left-Right Binary). Given g E G and n E .Z, this algorithm
computes gn in G. If n # 0, we assume also given the unique integer e such that
2e ~ lnl < 2e+1 . We write 1 for the unit element of G.

1. (Initialize] If n = 0, output 1 and terminate. If n < 0 set N ~ -n and
z ~ g-1. Otherwise, set N ~ nand z ~g. Finally, set y ~ z, E ~ 2e,
N~ N-E.

2. (Finished?] If E = 1, output y and terminate the algorithm. Otherwise, set
E ~ E/2.

3. (Multiply?] Set y ~ y · y and if N ~ E, set N ~ N- E and y ~ y · z. Go
to step 2.

Note that E takes as values the decreasing powers of 2 from 2e down to
1, hence when implementing this algorithm, all operations using E must be
thought of as bit operations. For example, instead of keeping explicitly the
(large) number E, one can just keep its exponent (which will go from e down
to 0). Similarly, one does not really subtract E from Nor compare N with
E, but simply look whether a particular bit of N is 0 or not. To be specific,
assume that we have written a little program bit(N, f) which outputs bit
number f of N, bit 0 being, by definition, the least significant bit. Then we
can rewrite Algorithm 1.2.2 as follows.

Algorithm 1.2.3 (Left-Right Binary, Using Bits). Given g E G and n E .Z,
this algorithm computes gn in G. If n # 0, we assume also that we are given the
unique integer e such that 2e :::; jnj < 2e+1. We write 1 for the unit element of
G.

1. (Initialize] If n = 0, output 1 and terminate. If n < 0 set N ~ -n and
z ~ g-1. Otherwise, set N ~ n and z ~g. Finally, set y ~ z, f ~ e.

2. (Finished?] If f = 0, output y and terminate the algorithm. Otherwise, set
f~ f-1.

3. [Multiply?] Set y ~ y · y and if bit(N, f) = 1, set y ~ y · z. Go to step 2.

The main advantage of this algorithm over Algorithm 1.2.1 is that in step
3 above, z is always the initial g (or its inverse if n < 0). Hence, if g is
represented by a small integer, this may mean a linear time multiplication
instead of a quadratic time one. For example, if G = (Z/mZ)* and if g (or
9-1 if n < 0) is represented by the class of a single precision integer, the

10 1 Fundamental Number-Theoretic Algorithms

running time of Algorithms 1.2.2 and 1.2.3 will be in average up to 1.5 times
faster than Algorithm 1.2.1.

Algorithm 1.2.3 can be improved by making use of the representation of
In! in a base equal to a power of 2, instead of base 2 itself. In this case, only
the left-right version exists.

This is done as follows (we may assume n > 0). Choose a suitable positive
integer k (we will see in the analysis how to choose it optimally). Precompute
g2 and by induction the odd powers g3 , g5 , ... , g21c- 1, and initialize y tog
as in Algorithm 1.2.3. Now if we scan the 2k-representation of lnl from left
to right (i.e. k bits at a time of the binary representation), we will encounter
digits a in base 2k, hence such that 0 ~ a < 2k. If a = 0, we square k times
our current y. If a =f:. 0, we can write a = 2tb with b odd and less than 2k,
and 0 ~ t < k. We must set y - y2" • g2'b, and this is done by computing
first y 2k-• · gb (which involves k- t squarings plus one multiplication since gb

has been precomputed), then squaring t times the result. This leads to the
following algorithm. Here we assume that we have an algorithm digit(k, N, f)
which gives digit number f of N expressed in base 2k.

Algorithm 1.2.4 (Left-Right Base 2k). Given g E G and n E Z, this algorithm
computes gn in G. If n =f:. 0, we assume also given the unique integer e such that
2ke ~ In I< 2k(e+l). We write 1 for the unit element of G.

1. [Initialize] If n = 0, output 1 and terminate. If n < 0 set N- -n and
z - g-1. Otherwise, set N - n and z -g. Finally set f - e.

2. [Precomputations] Compute and store z3 , z5 , ... , z21c- 1 .

3. [Multiply] Set a- digit(k, N, f). If a= 0, repeat k times y- y·y. Otherwise,
write a= 2tb with b odd, and iff =f:. e repeat k- t times y- y · y and set
y - y · zb, while iff = e set y- zb (using the precomputed value of zb),
and finally (still if a =f:. 0) repeat t times y- y · y.

4. [Finished?] If f = 0, output y and terminate the algorithm. Otherwise, set
f - f - 1 and go to step 3.

Implementation Remark. Although the splitting of a in the form 2tb takes
very little time compared to the rest of the algorithm, it is a nuisance to have
to repeat it all the time. Hence, we suggest precomputing all pairs (t, b) for
a given k (including (k, 0) for a= 0) so that t and b can be found simply by
table lookup. Note that this precomputation depends only on the value of k
chosen for Algorithm 1.2.4, and not on the actual value of the exponent n.

Let us now analyze the average behavior of Algorithm 1.2.4 so that we can
choose k optimally. As we have already explained, we will regard as negligible
the time spent in computing e or in extracting bits or digits in base 2k.

The precomputations require 2k-l multiplications. The total number of
squarings is exactly the same as in the binary algorithm, i.e. llg In IJ, and the
number of multiplications is equal to the number of non-zero digits of In I in
base 2k, i.e. on average

1.2 The Powering Algorithms 11

so the total number of multiplications which are not squarings is on average
approximately equal to

m(k) = 2k-l + (2:; 1) lglnl.

Now, if we compute m(k +1) -m(k), we see that it is non-negative as long as

I I I < k(k + 1)22k
g n - 2k+l- k- 2.

Hence, for the highest efficiency, one should choose k equal to the smallest
integer satisfying the above inequality, and this gives k = 1 for lnl ~ 256,
k = 2 for lnl ~ 224 , etc For example, if lnl has between 60 and 162 decimal
digits, the optimal value of k is k = 5. For a more specific example, assume
that n has 100 decimal digits (i.e. lg n approximately equal to 332) and that
the time for squaring is about 3/4 of the time for multiplication (this is quite
a reasonable assumption). Then, counting multiplication steps, the ordinary
binary algorithm takes on average (3/4)332+ 332/2 = 415 steps. On the other
hand, the base 25 algorithm takes on average (3/4)332+ 16+(31/160)332 ~ 329
multiplication steps, an improvement of more than 20%.

There is however another point to take into account. When, for instance
G = (Z/mZ)* and g (or g-1 when n < 0) is represented by the (residue) class
of a single precision integer, replacing multiplication by g by multiplication
by its small odd powers may have the disadvantage compared to Algorithm
1.2.3 that these powers may not be single precision. Hence, in this case, it may
be preferable, either to use Algorithm 1.2.3, or to use the highest power of k
less than or equal to the optimal one which keeps all the zb with b odd and
1 ~ b ~ 2k - 1 represented by single precision integers.

(A long text should be inserted here, but no place to do this (see page 45).)

Quite a different way to improve on Algorithm 1.2.1 is to try to find a
near optimal "addition chain" for lnl, and this also can lead to improvements,
especially when the same exponent is used repeatedly (see [BCS]. For a de
tailed discussion of addition chains, see [Knu2].) In practice, we suggest using
the flexible 2k-algorithm for a suitable value of k.

The powering algorithm is used very often with the ring Z/mZ. In this case
multiplication does not give a group law, but the algorithm is valid nonethe
less if either n is non-negative or if g is an invertible element. Furthermore,
the group multiplication is "multiplication followed by reduction modulo m".
Depending on the size of m, it may be worthwhile to not do the reductions
each time, but to do them only when necessary to avoid overflow or loss of
time.

We will use the powering algorithm in many other contexts in this book, in
particular when computing in class groups of number fields, or when working
with elliptic curves over finite fields.

12 1 Fundamental Number-Theoretic Algorithms

Note that for many groups it is possible (and desirable) to write a squaring
routine which is faster than the general-purpose multiplication routine. In
situations where the powering algorithm is used intensively, it is essential
to use this squaring routine when multiplications of the type y +-- y · y are
encountered.

1.3 Euclid's Algorithms

We now consider the problem of computing the GCD of two integers a and
b. The naive answer to this problem would be to factor a and b, and then
multiply together the common prime factors raised to suitable powers. Indeed,
this method works well when a and bare very small, say less than 100, or when
a or b is known to be prime (then a single division is sufficient). In general this
is not feasible, because one of the important facts of life in number theory is
that factorization is difficult and slow. We will have many occasions to come
back to this. Hence, we must use better methods to compute GCD's. This
is done using Euclid's algorithm, probably the oldest and most important
algorithm in number theory.

Although very simple, this algorithm has several variants, and, because of
its usefulness, we are going to study it in detail. We shall write (a, b) for the
GCD of a and b when there is no risk of confusion with the pair (a, b). By
definition, (a, b) is the unique non-negative generator of the additive subgroup
of Z generated by a and b. In particular, (a, 0) = (0, a) = jaj and (a, b) =
(jaj, jbl). Hence we can always assume that a and bare non-negative.

1.3.1 Euclid's and Lehmer's Algorithms

Euclid's algorithm is as follows:

Algorithm 1.3.1 (Euclid). Given two non-negative integers a and b, this
algorithm finds their GCD.

1. [Finished?) If b = 0 then output a as the answer and terminate the algorithm.

2. [Euclidean step] Set r +-- a mod b, a +-- b, b +-- r and go to step 1.

If either a or b is less than a given number N, the number of Euclidean
steps in this algorithm is bounded by a constant times ln N, in both the
worst case and on average. More precisely we have the following theorem (see
[Knu2]):

Theorem 1.3.2. Assume that a and b are randomly distributed between 1
and N. Then

(1) The number of Euclidean steps is at most equal to

1.3 Euclid's Algorithms

r ln(v'~~/ 1-2 ~ 2.078lnN + 1.672.
ln((1 + 5 2)

(2) The avemge number of Euclidean steps is approximately equal to

12ln2
- 2-lnN + 0.14 ~ 0.843lnN + 0.14.

7r

13

However, Algorithm 1.3.1 is far from being the whole story. First, it is not
well suited to handling large numbers (in our sense, say numbers with 50 or 100
decimal digits). This is because each Euclidean step requires a long division,
which takes time O(ln2 N). When carelessly programmed, the algorithm takes
time O(ln3 N). If, however, at each step the precision is decreased as a function
of a and b, and if one also notices that the time to compute a Euclidean
step a = bq + r is O((lna)(lnq + 1)), then the total time is bounded by
O((lnN)((L:lnq) + O(lnN))). But L:lnq = lnflq ~Ina~ lnN, hence if
programmed carefully, the running time is only O(ln2 N). There is a useful
variant due to Lehmer which also brings down the running time to O(ln2 N).
The idea is that the Euclidean quotient depends generally only on the first
few digits of the numbers. Therefore it can usually be obtained using a single
precision calculation. The following algorithm is taken directly from Knuth.
Let M = mP be the base used for multi-precision numbers. Typical choices
are m = 2, p = 15, 16, 31, or 32, or m = 10, p = 4 or 9.

Algorithm 1.3.3 (Lehmer). Let a and b be non-negative multi-precision inte
gers, and assume that a;::: b. This algorithm computes (a, b), using the following
auxiliary variables. a, b, A, B, C, D, T and q are single precision (i.e. less than
M), and t and r are multi-precision variables.

1. [Initialize) If b < M, i.e. is single precision, compute (a, b) using Algorithm
1.3.1 and terminate. Otherwise, let a (resp. b) be the single precision number
formed by the highest non-zero base M digit of a (resp. b). Set A +-- 1, B +-- 0,
C +-- 0, D +-- 1.

2. [Test quotient) If b + C = 0 or b + D = 0 go to step 4. Otherwise, set
q +-- l(a + A)/(b + C)J. If q =I l(a + B)/(b + D)J, go to step 4. Note that
one always has the conditions

O~a+A~M, O~b+C<M,

O~a+B<M, O~b+D$M.

Notice that one can have a single precision overflow in this step, which must
be taken into account. (This can occur only if a = M - 1 and A = 1 or if
b = M -1 and D = 1.)

14 1 Fundamental Number-Theoretic Algorithms

3. [Euclidean step] Set T_.A- qC, A<-- C, C_. T, T_. B- qD, B <-- D,
D...._. T, T <--a- qb, a...._. b, b...._. T and go to step 2 (all these operations are
single precision operations}.

4. [Multi-precision step] If B = 0, set t <-- a mod b, a <-- b, b <-- t, using multi
precision division (this happens with a very small probability, on the order of
1.4/ M} and go to step 1. Otherwise, set t <-- Aa, t <-- t + Bb, r <-- Ca,
r <-- r +Db, a <-- t, b <-- r, using linear-time multi-precision operations, and
go to step 1.

Note that the number of steps in this algorithm will be the same as in
Algorithm 1.3.1, i.e. O(lnN) if a and bare less than N, but each loop now
consists only of linear time operations (except for the case B = 0 in step
4 which is so rare as not to matter in practice). Therefore, even without
using variable precision, the running time is now only of order O(ln2 N) and
not O(ln3 N). Of course, there is much more bookkeeping involved, so it is
not clear how large N must be before a particular implementation of this
algorith.m becomes faster than a crude implementation of Algorithm 1.3.1. Or,
even whether a careful implementation of Algorithm 1.3.1 will not compete
favorably in practice. Testing needs to be done before choosing which of these
algorithms to use.

Another variant of Euclid's algorithm which is also useful in practice is
the so-called binary algorithm. Here, no long division steps are used, except
at the beginning, instead only subtraction steps and divisions by 2, which are
simply integer shifts. The number of steps needed is greater, but the operations
used are much faster, and so there is a net gain, which can be quite large for
multi-precision numbers. Furthermore, using subtractions instead of divisions
is quite reasonable in any case, since most Euclidean quotients are small. More
precisely, we can state:

Theorem 1.3.4. In a suitable sense, the probability P(q) that a Euclidean
quotient be equal to q is

P(q) = lg((q + 1)2 /((q + 1)2 - 1)).

For example, P(l) 0.41504 ... , P(2) = 0.16992 ... , P(3) = 0.09311 ... ,
P(4) = 0.05890

For example, from this theorem, one can see that the probability of oc
currence of B = 0 in step 4 of Algorithm 1.3.3 is lg(l + 1/M), and this is
negligible in practice.

One version of the binary algorithm is as follows.

Algorithm 1.3.5 (Binary GCD). Given two non-negative integers a and b,
this algorithm finds their GCD.

1. (Reduce size once) If a < b exchange a and b. Now if b = 0, output a and
terminate the algorithm. Otherwise, set r <--a mod b, a<-- band b <-- r.

1.3 Euclid's Algorithms 15

2. [Compute power of 2) If b = 0 output a and terminate the algorithm. Otherwise,
set k +- 0, and then while a and b are both even, set k +- k + 1, a +- a/2,
b +- b/2.

3. [Remove initial powers of 2) If a is even, repeat a +- a/2 until a is odd.
Otherwise, if b is even, repeat b +- b/2 until b is odd.

4. [Subtract) (Here a and bare both odd.) Set t +-(a- b)/2. If t = 0, output
2ka and terminate the algorithm.

5. [Loop) While t is even, set t +- t/2. Then if t > 0 set a+- t, else set b +- -t
and go to step 4.

Remarks.

(1) The binary algorithm is especially well suited for computing the GCD
of multi-precision numbers. This is because no divisions are performed,
except on the first step. Hence we suggest using it systematically in this
case.

(2) All the divisions by 2 performed in this algorithm must be done using
shifts or Boolean operations, otherwise the algorithm loses much of its
attractiveness. In particular, it may be worthwhile to program it in a
low-level language, and even in assembly language, if it is going to be
used extensively. Note that some applications, such as computing in class
groups, use GCD as a basic operation, hence it is essential to optimize the
speed of the algorithm for these applications.

(3) One could directly start the binary algorithm in step 2, avoiding division
altogether. We feel however that this is not such a good idea, since a and
b may have widely differing magnitudes, and step 1 ensures that we will
work on numbers at most the size of the smallest of the two numbers a
and b, and not of the largest, as would be the case if we avoided step 1. In
addition, it is quite common for b to divide a when starting the algorithm.
In this case, of course, the algorithm immediately terminates after step 1.

(4) Note that the sign oft in step 4 of the algorithm enables the algorithm
to keep track of the larger of a and b, so that we can replace the larger of
the two by iti in step 5. We can also keep track of this data in a separate
variable and thereby work only with non-negative numbers.

(5) Finally, note that the binary algorithm can use the ideas of Algorithm
1.3.3 for multi-precision numbers. The resulting algorithm is complex and
its efficiency is implementation dependent. For more details, see [Knu2
p.599].

The proof of the validity of the binary algorithm is easy and left to the reader.
On the other hand, a detailed analysis of the average running time of the bi
nary algorithm is a challenging mathematical problem (see [Knu2] once again).
Evidently, as was the case for Euclid's algorithm, the running time will be
O(ln2 N) bit operations when suitably implemented, where N is an upper
bound on the size of the inputs a and b. The mathematical problem is to find

16 1 Fundamental Number-Theoretic Algorithms

an asymptotic estimate for the number of steps and the number of shifts per
formed in Algorithm 1.3.5, but this has an influence only on the 0 constant,
not on the qualitative behavior. D

1.3.2 Euclid's Extended Algorithms

The information given by Euclid's algorithm is not always sufficient for many
problems. In particular, by definition of the GCD, if d = (a, b) there exists
integers u and v such that au+ bv = d. It is often necessary to extend Euclid's
algorithm so as to be able to compute u and v. While u and v are not unique,
u is defined modulo bjd, and vis defined modulo ajd.

There are two ways of doing this. One is by storing the Euclidean quotients
as they come along, and then, once d is found, backtracking to the initial
values. This method is the most efficient, but can require a lot of storage. In
some situations where this information is used extensively (such as Shanks's
and Atkin's NUCOMP in Section 5.4.2), any little gain should be taken, and
so one should do it this way.

The other method requires very little storage and is only slightly slower.
This requires using a few auxiliary variables so as to do the computations as
we go along. We first give a version which does not take into account multi
precision numbers.

Algorithm 1.3.6 (Euclid Extended). Given non-negative integers a and b,
this algorithm determines (u,v,d) such that au+bv = d and d =(a, b). We use
auxiliary variables VI, V3, t1. t3.

1. [Initialize] Set u +-- 1, d +--a. If b = 0, set v +-- 0 and terminate the algorithm,
otherwise set VI+-- 0 and V3 +-- b.

2. [Finished?] If v3 = 0 then set v +-- (d- au)/b and terminate the algorithm.

3. [Euclidean step] Let q +-- Ld/v3J and simultaneously t3 +-- d mod v3 . Then set
ti +-- u- QVI, u +--VI. d +-- V3, v1 +-- ti, V3 +-- t3 and go to step 2.

"Simultaneously" in step 3 means that if this algorithm is implemented in
assembly language, then, since the division instruction usually gives both the
quotient and remainder, this should of course be used. Even if this algorithm
is not programmed in assembly language, but a and b are multi-precision
numbers, the division routine in the multi-precision library should also return
both quotient and remainder. Note also that in step 2, the division of d- au
by b is exact.

Proof of the Algorithm. Introduce three more variables v2, t2 and v. We want
the following relations to hold each time one begins step 2:

at I + bt2 = t3, au + bv = d, av1 + bv2 = V3.

1.3 Euclid's Algorithms 17

For this to be true after the initialization step, it suffices to set v +-- 0, v2 +-- 1.
(It is not necessary to initialize the t variables.) Then, it is easy to check that
step 3 preserves these relations if we update suitably the three auxiliary vari
ables (by (v2, t2, v) +-- (t2, v -qv2 , v2)). Therefore, at the end of the algorithm,
d contains the GCD (since we have simply added some extra work to the ini
tial Euclidean algorithm), and we also have au+ bv =d. D

As an exercise, the reader can show that at the end of the algorithm,
we have v1 = ±b/d (and v2 = +afd in the proof), and that throughout the
algorithm, lv1l, lui, lt1l stay less than or equal to bjd (and lv21, lvl, lt2l stay
less than or equal to ajd).

This algorithm can be improved for multi-precision numbers exactly as in
Lehmer's Algorithm 1.3.3. Since it is a simple blend of Algorithms 1.3.3 and
1.3.5, we do not give a detailed proof. (Notice however that the variables d
and v3 have become a and b.)

Algorithm 1.3.7 (Lehmer Extended). Let a and b be non-negative multi
precision integers, and assume that a 2:: b. This algorithm computes (u, v, d) such
that au+bv = d =(a, b), using the following auxiliary variables. a, b, A, B, C, D,
T and q are single precision (i.e. less than M), and t, r, v1. v3 are multi-precision
variables.

1. [Initialize] Set u +--1, v1 +--0.

2. [Finished?] If b < M, i.e. is single precision, compute (u, v, d) using Algorithm
1.3.6 and terminate. Otherwise, let a (resp. b) be the single precision number
formed by the p most significant digits of a (resp. b). Set A+-- 1, B +-- 0,
C +-- 0, D +-- 1.

3. [Test quotient] If b + C = 0 or b + D = 0 go to step 5. Otherwise, set
q +-- L(a + A)/(b + C)J. If q "I L(a + B)/(b + D)J, go to step 5.

4. [Euclidean step] Set T+-A-qC, A+-C, C+-T, T+-B-qD, B+-D,
D +-- T, T +-- a- qb, a +-- b, b +-- T and go to step 3 (all these operations are
single precision operations).

5. [Multi-precision step]lf B = 0, set q +-- L ajb J and simultaneously t +--a mod b
using multi-precision division, then a+-- b, b +-- t, t +-- u-qv1, u +-- v1. v1 +-- t
and go to step 2.

Otherwise, set t +-- Aa, t +-- t + Bb, r +-- Ca, r +-- r +Db, a +-- t, b +-- r,
t +-- Au, t +-- t + Bv1, r +-- Cu, r +-- r + Dv1. u +-- t, v1 +-- r using linear-time
multi-precision operations, and go to step 2.

In a similar way, the binary algorithm can be extended to find u and v.
The algorithm is as follows.

Algorithm 1.3.8 (Binary Extended). Given non-negative integers a and b,
this algorithm determines (u, v, d) such that au+ bv = d and d =(a, b). We use
auxiliary variables v1, v3, t 1 , t3, and two Boolean flags f 1 and f2.

18 1 Fundamental Number-Theoretic Algorithms

1. [Reduce size once) If a < b exchange a and b and set /I - 1, otherwise set
/I - 0. Now if b = 0, output (1,0,a) if /I = 0, (0, 1,a) if /I = 1 and
terminate the algorithm. Otherwise, let a = bq + r be the Euclidean division
of a by b, where 0 ::;: r < b, and set a-band b- r.

2. [Compute power of 2] If b = 0, output (0, 1, a) if /I = 0, (1, 0, a) if /I = 1
and terminate the algorithm. Otherwise, set k - 0, and while a and b are both
even, set k- k + 1, a- a/2, b- b/2.

3. [Initialize) If b is even, exchange a and band set fz - 1, otherwise set fz - 0.
Then set u - 1, d - a, v1 - b, va - b. If a is odd, set t1 - 0, ta - -b
and go to step 5, else set t1- (1 + b)/2, ta- a/2.

4. [Remove powers of 2) If ta is even do as follows. Set t 3 - ta/2, tt - h/2 if
t1 is even and t1 - (t1 + b)/2 if t1 is odd, and repeat step 4.

5. [Loop) lfta > 0, set u- t1 and d- ta, otherwise, set v1- b-tt, va- -ta.

6. [Subtract) Set t1 - u- v1, ta - d- va. If t1 < 0, set t1 - t1 +b. Finally, if
ta =/= 0, go to step 4.

7. [Terminate] Set v - (d- au)/b and d - 2kd. If fz = 1 exchange u and v.
Then set u- u- vq. Finally, output (u,v,d) if /I= 1, (v,u,d) if /I= 0,
and terminate the algorithm.

Proof. The proof is similar to that of Algorithm 1.3.6. We introduce three
more variables v2, t2 and v and we require that at the start of step 4 we
always have

where A and Bare the values of a and b after step 3. For this to be true, we
must initialize them by setting (in step 3) v - 0, v2 - 1 - a and h - -1 if a
is odd, t2 - -a/2 if a is even. After this, the three relations will continue to
be true provided we suitably update v2, t2 and v. Since, when the algorithm
terminates d will be the GCD of A and B, it suffices to backtrack from both
the division step and the exchanges done in the first few steps in order to
obtain the correct values of u and v (as is done in step 7). We leave the details
to the reader. 0

Euclid's "extended" algorithm, i.e. the algorithm used to compute (u, v, d)
and not d alone, is useful in many different contexts. For example, one frequent
use is to compute an inverse (or more generally a division) modulo m. Assume
one wants to compute the inverse of a number b modulo m. Then, using
Algorithm 1.3.6, 1.3. 7 or 1.3.8, compute (u, v, d) such that bu + mv = d =
(b, m). If d > 1 send an error message stating that b is not invertible, otherwise
the inverse of b is u. Notice that in this case, we can avoid computing v in
step 2 of Algorithm 1.3.6 and in the analogous steps in the other algorithms.

There are other methods to compute b-1 mod m when the factorization
of m is known, for example when m is a prime. By Euler-Fermat's Theorem

1.3 Euclid's Algorithms 19

1.4.2, we know that, if (b, m) = 1 (which can be tested very quickly since the
factorization of m is known), then

bt/>(m) = 1 (mod m),

where ¢(m) is Euler's ¢function (see [H-W]). Hence, the inverse of b modulo
m can be obtained by computing

b-1 = bt/>(m)-1 (mod m),

using the powering Algorithm 1.2.1.

Note however that the powering algorithms are O(ln3m) algorithms, which
is worse than the time for Euclid's extended algorithm. Nonetheless they can
be useful in certain cases. A practical comparison of these methods is done in
[Bre1].

1.3.3 The Chinese Remainder Theorem

We recall the following theorem:

Theorem 1.3.9 (Chinese Remainder Theorem). Let m1, ... , mk and XI.
... , Xk be integers. Assume that for every pair (i, j) we have

There exists an integer x such that

x = Xi (mod mi) for 1 $ i $ k.

Furthermore, xis unique modulo the least common multiple ofm1, .. . , mk.

Corollary 1.3.10. Let m1. ... , mk be pairwise coprime integers, i.e. such
that

when i =f j.

Then, for any integers Xi, there exists an integer x, unique modulo I1 mi, such
that

We need an algorithm to compute x. We will consider only the case where
the mi are pairwise coprime, since this is by far the most useful situation.
Set M = l11<i<k mi and Mi = M/mi. Since the mi are coprime in pairs,
gcd(Mi, mi) ,;::; I hence by Euclid's extended algorithm we can find ai such
that aiMi = 1 (mod mi)· If we set

20 1 FUndamental Number-Theoretic Algorithms

x = L aiMixi,
l:=;i:s;k

it is clear that x satisfies the required conditions. Therefore, we can output
x mod M as the result.

This method could be written explicitly as a formal algorithm. However
we want to make one improvement before doing so. Notice that the necessary
constants ai are small (less than mi), but the Mi or the aiMi which are also
needed can be very large. There is an ingenious way to avoid using such large
numbers, and this leads to the following algorithm. Its verification is left to
the reader.

Algorithm 1.3.11 (Chinese). Given pairwise coprime integers mi (1 ~ i ~ k)
and integers xi, this algorithm finds an integer x such that x = xi (mod mi) for
all i. Note that steps 1 and 2 are a precomputation which needs to be done only
once when the mi are fixed and the xi vary.

1. [Initialize] Set j +- 2, C1 +- 1. In addition, if it is not too costly, reorder the
mi (and hence the xi) so that they are in increasing order.

2. [Precomputations] Setp +- m1m2···mj-l (modmj)· Compute (u,v,d)
such that up+ vmi = d = gcd(p, mi) using a suitable version of Euclid's
extended algorithm. If d > 1 output an error message (the mi are not pairwise
coprime). Otherwise, set Ci +- u, j +- j + 1, and go to step 2 if j ~ k.

3. [Compute auxiliary constants] Set Y1 +- x1 mod m1, and for j = 2, ... , k
compute (as written)

4. [Terminate] Output

x +- Yl + m1(Y2 + m2(Y3 + · · · + mk-lYk) · · ·)),

and terminate the algorithm.

Note that we will have 0 ~ x < M = I1 mi.
As an exercise, the reader can give an algorithm which finds x in the more

general case of Theorem 1.3.9 where the mi are not assumed to be pairwise
coprime. It is enough to write an algorithm such as the one described before
Algorithm 1.3.11, since it will not be used very often (Exercise 9).

Since this algorithm is more complex than the algorithm mentioned pre
viously, it should only be used when the mi are fixed moduli, and not just for
a one shot problem. In this last case is it preferable to use the formula for two
numbers inductively as follows. We want x = Xi (mod mi) for i = 1, 2. Since
the mi are relatively prime, using Euclid's extended algorithm we can find u
and v such that

1.3 Euclid's Algorithms

It is clear that
x = um1x2 + vm2x1 mod m1m2

is a solution to our problem. This leads to the following.

21

Algorithm 1.3.12 (Inductive Chinese). Given pairwise coprime integers mi
(1 :::; i:::; k) and integers Xi, this algorithm finds an integer x such that x =Xi

(mod mi) for all i.

1. [Initialize] Set i ~ 1, m ~ m1, x ~ x 1.

2. [Finished?] If i = k output x and terminate the algorithm. Otherwise, set
i ~ i + 1, and by a suitable version of Euclid's extended algorithm compute u
and v such that um + vmi = 1.

3. [Compute next x] Set x ~ umxi + vmix, m ~ mmi. x ~ x mod m and go
to step 2.

Note that the results and algorithms of this section remain true if we
replace Z by any Euclidean domain, for example the polynomial ring K[X]
where K is a field.

1.3.4 Continued Fraction Expansions of Real Numbers

We now come to a subject which though closely linked to Euclid's algorithm,
has a different flavor. Consider first the following apparently simple problem.
Let x E JR. be given by an approximation (for example a decimal or binary
one). Decide if x is a rational number or not. Of course, this question as
posed does not really make sense, since an approximation is usually itself a
rational number. In practice however the question does make a lot of sense
in many different contexts, and we can make it algorithmically more precise.
For example, assume that one has an algorithm which allows us to compute x
to as many decimal places as one likes (this is usually the case). Then, if one
claims that xis (approximately) equal to a rational number pfq, this means
that pfq should still be extremely close to x whatever the number of decimals
asked for, p and q being fixed. This is still not completely rigorous, but it
comes quite close to actual practice, so we shall be content with this notion.

Now how does one find p and q if x is indeed a rational number? The
standard (and algorithmically excellent) answer is to compute the continued
fraction expansion of x, i.e. find integers ai such that ai ~ 1 for i ~ 1 and

1
x = ao + ------:1:----

a1 + ------,1,-
a2+---

a3 + · ..

which we shall write as x = [a0 , at, a2, a3 , ...]. If a/b is the given (rational) ap
proximation to x, then the ai are obtained by simply using Euclid's algorithm

22 1 Fundamental Number-Theoretic Algorithms

on the pair (a, b), the ai being the successive partial quotients. The number
x is rational if and only if its continued fraction expansion is finite, i.e. if and
only if one of the ai is infinite. Since x is only given with the finite precision
ajb, x will be considered rational if x has a very large partial quotient ai in
its continued fraction expansion. Of course this is subjective, but should be
put to the stringent test mentioned above. For example, if one uses the ap
proximation 1r ~ 3.1415926 one finds that the continued fraction for 1r should
start with [3, 7, 15, 1, 243, ...] and 243 does seem a suspiciously large partial
quotient, so we suspect that 1r = 355/113, which is the rational number whose
continued fraction is exactly [3, 7, 15, 1]. If we compute a few more decimals of
1r however, we see that this equality is not true. Nonetheless, 355/113 is still
an excellent approximation to 1r (the continued fraction expansion of 1r starts
in fact [3, 7, 15, 1, 292, 1, ...]).

To implement a method for computing continued fractions of real numbers,
I suggest using the following algorithm, which says exactly when to stop.

Algorithm 1.3.13 (Lehmer). Given a real number x by two rational numbers
ajb and a' jb' such that ajb ::; x::; a' /b', this algorithm computes the continued
fraction expansion of x and stops exactly when it is not possible to determine
the next partial quotient from the given approximants ajb and a' jb', and it gives
lower and upper bounds for this next partial quotient.

1. [Initialize] Set i +-- 0.

2. [Euclidean step] Let a = bq + r the Euclidean division of a by b, and set
r' +--a'- b'q. If r' < 0 orr'~ b' set q' +-- la' jb'J and go to step 4.

3. [Output quotient] Set ai +-- q and output ai, then set i +-- i + 1, a +-- b, b +-- r,
a' +-- b' and b' +-- r'. If b and b' are non-zero, go to step 2. If b = b' = 0,
terminate the algorithm. Finally, if b = 0 set q +-- oo and q' +-- la' jb' J while if
b' = 0 set q +-- la/bJ and q' +-- oo.

4. [Terminate] If q > q' output the inequality q' ::; ai ::; q, otherwise output
q ::; ai ::; q'. Terminate the algorithm.

Note that the oo mentioned in step 3 is only a mathematical abstraction
needed to make step 4 make sense, but it does not need to be represented in
a machine by anything more than some special code.

This algorithm runs in at most twice the time needed for the Euclidean
algorithm on a and b alone, since, in addition to doing one Euclidean division
at each step, we also multiply q by b'.

We can now solve the following problem: given two complex numbers z1

and z2, are they Q-linearly dependent? This is equivalent to zl/z2 being ra
tional, so the solution is this: compute z +- zd z2• If the imaginary part of
z is non-zero (to the degree of approximation that one has), then z1 and z 2

are not even IR-linearly dependent. If it is zero, then compute the continued
fraction expansion of the real part of z using algorithm 1.3.13, and look for
large partial quotients as explained above.

1.3 Euclid's Algorithms 23

We will see in Section 2.7.2 that the LLL algorithms allow us to determine
in a satisfactory way the problem of IQ-linear dependence of more than two
complex or real numbers.

Another closely related problem is the following: given two vectors a and
b in a Euclidean vector space, determine the shortest non-zero vector which
is a Z-linear combination of a and b (we will see in Chapter 2 that the set
of such Z-linear combinations is called a lattice, here of dimension 2). One
solution, called Gaussian reduction, is again a form of Euclid's algorithm, and
is as follows.

Algorithm 1.3.14 (Gauss). Given two linearly independent vectors a and b in
a Euclidean vector space, this algorithm determines one of the shortest non-zero
vectors which is a Z-linear combination of a and b. We denote by · the Euclidean
inner product and write lal2 = a· a. We use a temporary scalar variable T, and
a temporary vector variable t.

1. [Initialize] Set A+- lal 2 , B +- lbl 2 . If A < B then exchange a and b and
exchange A and B.

2. [Euclidean step] Set n +-a· b, r +- ln/Bl, where lxl = lx + 1/2J is the
nearest integer to x, and T +-A- 2rn+r2 B.

3. [Finished?] If T ;::: B then output b and terminate the algorithm. Otherwise,
set t +-a-rb, a+- b, b +- t, A +- B, B +- T and go to step 2.

Proof. Note that A and Bare always equal to lal 2 and lbl2 respectively. I first
claim that an integer r such that Ia- rbl has minimal length is given by the
formula of step 2. Indeed, we have

Ia- xbl 2 = Bx2 - 2a · bx +A,

and this is minimum for real x for x = a · b /B. Hence, since a parabola is
symmetrical at its minimum, the minimum for integral x is the nearest integer
(or one of the two nearest integers) to the minimum, and this is the formula
given in step 2.

Thus, at the end of the algorithm we know that Ia- mbl ;::: lbl for all
integers m. It is clear that the transformation which sends the pair (a, b) to
the pair (b,a- rb) has determinant -1, hence the Z-module L generated
by a and b stays the same during the algorithm. Therefore, let x = ua + vb
be a non-zero element of L. If u = 0, we must have v :f. 0 hence trivially
lxl ;::: lbl. Otherwise, let v = uq + r be the Euclidean division of v by u, where
0 :S r <lui. Then we have

lxl = lu(a + qb) + rbl;::: lui Ia + qbl-lrllbl;::: (lul-lrl)lbl;::: lbl

since by our above claim Ia + qbl ;::: lbl for any integer q, hence b is indeed
one of the shortest vectors of L, proving the validity of the algorithm.

24 1 Fundamental Number-Theoretic Algorithms

Note that the algorithm must terminate since there are only a finite num
ber of vectors of L with norm less than or equal to a given constant (com
pact+discrete=finite!). In fact the number of steps can easily be seen to be
comparable to that of the Euclidean algorithm, hence this algorithm is very
efficient. D

We will see in Section 2.6 that the LLL algorithm allows us to determine
efficiently small Z-linear combinations for more than two linearly independent
vectors in a Euclidean space. It does not always give an optimal solution, but,
in most situations, the results are sufficiently good to be very useful.

1.4 The Legendre Symbol

1.4.1 The Groups (ZjnZ)*

By definition, when A is a commutative ring with unit, we will denote by A*
the group of units of A, i.e. of invertible elements of A. It is clear that A* is
a group, and also that A* =A\ {0} if and only if A is a field. Now we have
the following fundamental theorem which gives the structure of (ZjnZ)* (see
[Ser] and Exercise 13).

Theorem 1.4.1. We have

I(Z/nZ)*I = ¢(n) = n II (1- ~}
pin

and more precisely

(ZjnZ)* :::= II (Zjp0 Z)*,
P"'lln

where

(i.e. is cyclic) when p ~ 3 or p = 2 and a:~ 2, and

when p = 2 and a:~ 3.

Now when (ZjnZ)* is cyclic, i.e. by the above theorem when n is equal
either to p0 , 2p0 with p an odd prime, or n = 2 or 4, an integer g such that the
class of g generates (ZjnZ)* will be called a primitive root modulo n. Recall
that the order of an element g in a group is the least positive integer n such
that gn is equal to the identity element of the group. When the group is finite,
the order of any element divides the order of the group. Furthermore, g is a

1.4 The Legendre Symbol 25

primitive root of (ZjnZ)* if and only if its order is exactly equal to ¢(n). As
a corollary of the above results, we obtain the following:

Proposition 1.4.2.

(1) (Fermat). lfp is a prime and a is not divisible by p, then we have

aP- 1 = 1 (mod p).

(2) (Euler). More generally, if n is a positive integer, then for any integer a
coprime to n we have

a<f>(n) = 1 (mod n),

and even
a<f>(n)/2 = 1 (mod n)

if n is not equal to 2, 4, per. or 2pcr. with p an odd prime.

To compute the order of an element in a finite group G, we use the fol
lowing straightforward algorithm.

Algorithm 1.4.3 (Order of an Element). Given a finite group G of cardinality
h = IGI. and an element g E G, this algorithm computes the order of 9 in G. We
denote by 1 the unit element of G.

1. [Initialize] Compute the prime factorization of h, say h = p~1p~2 • • • P%k, and
set e ~ h, i ~ 0.

2. [Next Pi] Set i ~ i + 1. If i > k, output e and terminate the algorithm.
Otherwise, set e ~ ejp~', 91 ~ ge.

3. [Compute local order] While 91 f. 1, set g1 ~ 9l' and e ~ e ·Pi· Go to step
2.

Note that we need the complete factorization of h for this algorithm to
work. This may be difficult when the group is very large.

Let p be a prime. To find a primitive root modulo p there seems to be no
better way than to proceed as follows. Try 9 = 2, g = 3, etc . . . until g is a
primitive root. One should avoid perfect powers since if g = g~, then if g is a
primitive root, so is g0 which has already been tested.

To see whether g is a primitive root, we could compute the order of 9
using the above algorithm. But it is more efficient to proceed as follows.

Algorithm 1.4.4 (Primitive Root). Given an odd prime p, this algorithm finds
a primitive root modulo p.

1. [Initialize a] Set a~ 1 and let p -1 = p~1 p~2 • • • P%k be the complete factor
ization of p - 1.

26 1 Fundamental Number-Theoretic Algorithms

2. [Initialize check] Set a+- a+ 1 and i +- 1.

3. [Check Pi] Compute e +- a<P-1)/P•. If e = 1 go to step 2. Otherwise, set
i+-i+l.

4. [finished?] If i > k output a and terminate the algorithm, otherwise go to step
3.

Note that we do not avoid testing prime powers, hence this simple algo
rithm can still be improved if desired. In addition, the test for Pi = 2 can be
replaced by the more efficient check that the Legendre symbol (~) is equal to
-1 (see Algorithm 1.4.10 below).

If n is not a prime, but is such that there exists a primitive root modulo n,
we could, of course, use the above two algorithms by modifying them suitably.
It is more efficient to proceed as follows.

First, if n = 2 or n = 4, 9 = n - 1 is a primitive root. When n = 2a is
a power of 2 with a :::=: 3, (Z/nZ)* is not cyclic any more, but is isomorphic
to the product of Z/2Z with a cyclic group of order 2a-2 . Then g = 5 is
always a generator of this cyclic subgroup (see Exercise 14), and can serve as
a substitute in this case if needed.

When n = pa is a power of an odd prime, with a :::=: 2, then we use the
following lemma.

Lemma 1.4.5. Let p be an odd prime, and let 9 be a primitive root modulo
p. Then either 9 or 9 + p is a primitive root modulo every power of p.

Proof For any m we have mP = m (mod p), hence it follows that for every
prime l dividing p- 1, 9Pa-l(P- 1)/! = 9(P- 1)/l ;f:. 1 (mod p). So for 9 to be a

primitive root, we need only that gPa- 2 (P- 1) ;f:. 1 (mod pa). But one checks
immediately by induction that xP = 1 (mod pa) implies that x = 1 (mod pb)
for every b ~ a- 1. Applying this to x = 9Pa-2 (P- 1) we see that our condition
on 9 is equivalent to the same condition with a replaced by a- 1, hence by
induction to the condition 9P-1 ;f:. 1 (mod p2). But if 9P- 1 = 1 (mod p2),

then by the binomial theorem (9 + p)P- 1 = 1 - P9P- 2 ;f:. 1 (mod p2), thus
proving the lemma. 0

Therefore to find a primitive root modulo pa for p an odd prime and a :::=: 2,
proceed as follows: first compute 9 a primitive root modulo p using Algorithm
1.4.4, then compute 91 = 9P- 1 mod p2 . If 9 1 -f- 1, g is a primitive root modulo
pa for every a, otherwise g + p is.

Finally, note that when p is an odd prime, if 9 is a primitive root modulo
pa then 9 or 9 + pa (whichever is odd) is a primitive root modulo 2pa.

1.4 The Legendre Symbol 27

1.4.2 The Legendre-Jacobi-Kronecker Symbol

Let p be an odd prime. Then it is easy to see that for a given integer a, the
congruence

x 2 =a (mod p)

can have either no solution (we say in this case that a is a quadratic non
residue mod p), one solution if a= 0 (mod p), or two solutions (we then say
that a is a quadratic residue mod p). Define the Legendre symbol(~) as being
-1 if a is a quadratic non-residue, 0 if a= 0, and 1 if a is a quadratic residue.
Then the number of solutions modulo p of the above congruence is 1 + (~).
Furthermore, one can easily show that this symbol has the following properties
(see e.g. [H-W]):

Proposition 1.4.6.

(1) The Legendre symbol is multiplicative, i.e.

(~) (%) = (~).
In particular, the product of two quadratic non-residues is a quadratic
residue.

(2) We have the congruence

a(p-1)/2 = (~) (mod p).

(3) There are as many quadratic residues as non-residues modp, i.e. (p-1)/2.

We will see that the Legendre symbol is fundamental in many prob
lems. Thus, we need a way to compute it. One idea is to use the congruence
a(P-1)/2 = (%) (mod p). Using the powering Algorithm 1.2.1, this enables

us to compute the Legendre symbol in time O(ln3p). We can improve on this
by using the Legendre-Gauss quadratic reciprocity law, which is itself a result
of fundamental importance:

Theorem 1.4.7. Let p be an odd prime. Then:

(1)

(~1) = (-1)(p-1)/2' (~) = (-l)(p2 -1)/8.

(2) If q is an odd prime different from p, then we have the reciprocity law:

(%)(~) = (-l)(p-1)(q-1)/4.

28 1 Fundamental Number-Theoretic Algorithms

For a proof, see Exercises 16 and 18 and standard textbooks (e.g. [H-W],
[Ire-Ros]).

This theorem can certainly help us to compute Legendre symbols since
(~) is multiplicative in a and depends only on a modulo p. A direct use of
Theorem 1.4.7 would require factoring all the numbers into primes, and this
is very slow. Luckily, there is an extension of this theorem which takes care of
this problem. We first need to extend the definition of the Legendre symbol.

Definition 1.4.8. We define the Kronecker (or Kronecker-Jacobi} symbol m
for any a and b in Z in the following way.

(1) If b = 0, then {ij) = 1 if a= ±1, and is equal to 0 otherwise.
(2) Forb# 0, write b = IJp, where the p are not necessarily distinct primes

(including p = 2}, or p = -1 to take care of the sign. Then we set

(~)=IT(~).
where (~) is the Legendre symbol defined above for p > 2, and where we
define

(a) { 0 if a is even
2 = (~l)(a2 -l)/S, if a is odd.

and also

(~) = { 1,
-1 -1,

if a~ 0

if a< 0.

Then, from the properties of the Legendre symbol, and in particular from
the reciprocity law 1.4.7, one can prove that the Kronecker symbol has the
following properties:

Theorem 1.4.9.

(1) (~) = 0 if and only if (a, b)# 1
(2) For all a, b and c we have

(~) = (~) (D , (:c)=(~)(~) ifbc # 0

(3) b > 0 being fixed, the symbol m is periodic in a of period b if b =/= 2
(mod 4), otherwise it is periodic of period 4b.

(4) a# 0 being fixed (positive or negative}, the symbol m is periodic in b of
period iai if a = 0 or 1 (mod 4), otherwise it is periodic of period 4iai.

(5) The formulas of Theorem 1.4. 7 are still true if p and q are only supposed
to be positive odd integers, not necessarily prime.

1.4 The Legendre Symbol 29

Note that in this theorem (as in the rest of this book), when we say that a
function f (x) is periodic of period b, this means that for all x, f (x +b) = f (x),
but b need not be the smallest possible period.

Theorem 1.4.9 is a necessary prerequisite for any study of quadratic fields,
and the reader is urged to prove it by himself (Exercise 1 7).

As has been mentioned, a consequence of this theorem is that it is easy
to design a fast algorithm to compute Legendre symbols, and more generally
Kronecker symbols if desired.

Algorithm 1.4.10 (Kronecker). Given a, bE Z, this algorithm computes the
Kronecker symbol (~) (hence the Legendre symbol when b is an odd prime).

1. [Test b equal to Ojlf b = 0 then output 0 if lal =J- 1, 1 if lal = 1 and terminate
the algorithm.

2. [Remove 2's from b] If a and b are both even, output 0 and terminate the
algorithm. Otherwise, set v ~ 0 and while b is even set v ~ v + 1 and
b ~ b/2. Then if vis even set k ~ 1, otherwise set k ~ (-1)(a2 -l)/B (by
table lookup, not by computing (a2 -1)/8). Finally if b < 0 set b ~ -b, and
if in addition a< 0 set k ~ -k.

3. [Finished?] (Here b is odd and b > 0.) If a = 0 then output 0 if b > 1, k if
b = 1, and terminate the algorithm. Otherwise, set v ~ 0 and while a is even
do v ~ v + 1 and a~ a/2. If vis odd set k ~ (-1)(b2 -l)/8 k.

4. [Apply reciprocity] Set

k ~ (-1)(a-l)(b-l)/4k,

(using if statements and no multiplications), and then r ~ lal. a~ b mod r,
b ~ r and go to step 3.

Remarks.

(1) As mentioned, the expressions (-1)(a2 -l)/B and (-1)(a-l)(b-l)/4 should
not be computed as powers, even though they are written this way. For
example, to compute the first expression, set up and save a table tab2
containing

{0, 1, 0, -1, 0, -1,0, 1},

and then the formula (-1)Ca2 -l)/B = tab2[a&7], the&; symbol denot
ing bitwise and, which is a very fast operation compared to multipli
cation (note that a&7 is equivalent to a mod 8). The instruction k ~
(-1)Ca-l)(b-l)/4k is very efficiently translated inC by

if(a&b&2) k= -k;
(2) We need to prove that the algorithm is valid! It terminates since, because

except possibly the first time, at the beginning of step 3 we have 0 < b < a
and the value of b is strictly decreasing. It gives the correct result because
of the following lemma which is an immediate corollary of Theorem 1.4.9:

30 1 Fundamental Number-Theoretic Algorithms

Lemma 1.4.11. If a and b are odd integers with b > 0 (but not necessarily
a> 0), then we have

(~) = (-1)(a-l)(b-1)/4 C!l).

(3) We may want to avoid cleaning out the powers of 2 in step 3 at each pass
through the loop. We can do this by slightly changing step 4 so as to
always end up with an odd value of a. This however may have disastrous
effects on the running time, which may become exponential instead of
polynomial time (see [Bac-Sha] and Exercise 24).

Note that Algorithm 1.4.10 can be slightly improved (by a small constant
factor) by adding the following statement at the end of the assignments of
step 4, before going back to step 3: If a > r /2, then a = a- r. This simply
means that we ask, not for the residue of a mod r which is between 0 and
r- 1, but for the one which is least in absolute value, i.e. between -r /2 and
r /2. This modification could also be used in Euclid's algorithms if desired, if
tests suggest that it is faster in practice.

One can also use the binary version of Euclid's algorithm to compute
Kronecker symbols. Since, in any case, the prime 2 plays a special role, this
does not really increase the complexity, and gives the following algorithm.

Algorithm 1.4.12 (Kronecker-Binary). Given a, bE Z, this algorithm com
putes the Kronecker symbol (%) (hence the Legendre symbol when b is an odd
prime).

1. [Test b = OJ If b = 0 then output 0 if lal f. 1, 1 if lal = 1 and terminate the
algorithm.

2. [Remove 2's from b] If a and b are both even, output 0 and terminate the
algorithm. Otherwise, set v ~ 0 and while b is even set v ~ v + 1 and
b ~ b/2. Then if v is even set k ~ 1, otherwise set k ~ (-1)(a2 -l)/8 (by
table lookup, not by computing (a2 -1)/8). Finally, if b < 0 set b ~ -b, and
if in addition a < 0 set k ~ -k.

3. [Reduce size once] (Here b is odd and b > 0.) Set a~ a mod b.

4. [Finished?] If a= 0, output 0 if b > 1, kif b = 1, and terminate the algorithm.

5. [Remove powers of 2] Set v ~ 0 and, while a is even, set v ~ v + 1 and
a~ a/2. If vis odd, set k ~ (-1)(b2 -l)fsk.

6. [Subtract and apply reciprocity] (Here a and bare odd.) Set r ~ b-a. If r > 0,
then set k ~ (-1)<a-l)(b-l)/4k (using if statements), b ~a and a~ r, else
set a~ -r. Go to step 4.

Note that we cannot immediately reduce a modulo bat the beginning of
the algorithm. This is because when b is even the Kronecker symbol (%) is not

1.5 Computing Square Roots Modulo p 31

periodic of period b in general, but only of period 4b. Apart from this remark,
the proof of the validity of this algorithm follows immediately from Theorem
1.4.10 and the validity of the binary algorithm. 0

The running time of all of these Legendre symbol algorithms has the same
order of magnitude as Euclid's algorithm, i.e. O(ln2 N) when carefully pro
grammed, where N is an upper bound on the size of the inputs a and b. Note
however that the constants will be different because of the special treatment
of even numbers.

1.5 Computing Square Roots Modulo p

We now come to a slightly more specialized question. Let p be an odd prime
number, and suppose that we have just checked that (~) = 1 using one of the
algorithms given above. Then by definition, there exists an x such that x 2 = a
(mod p). How do we find x? Of course, a brute force search would take time
O(p) and, even for p moderately large, is out of the question. We need a faster
algorithm to do this. At this point the reader might want to try and find one
himself before reading further. This would give a feel for the difficulty of the
problem. (Note that we will be considering much more difficult and general
problems later on, so it is better to start with a simple one.)

There is an easy solution which comes to mind that works for half of the
primes p, i.e. primes p = 3 (mod 4). I claim that in this case a solution is
given by

x = a(p+l)/4 (mod p),

the computation being done using the powering Algorithm 1.2.1. Indeed, since
a is a quadratic residue, we have a(P- 1)/2 = 1 (mod p) hence

x2 = a(p+l)/2 =a· a(p- 1)/2 =a (mod p)

as claimed.
A less trivial solution works for half of the remaining primes, i.e. primes

p = 5 (mod 8). Since we have a(P- 1)/2 = 1 (mod p) and since Wp = ZjpZ is a
field, we must have

a(p- 1)/4 = ±1 (mod p).

Now, if the sign is +, then the reader can easily check as above that

x = a(P+3)/S (mod p)

is a solution. Otherwise, using p = 5 (mod 8) and Theorem 1.4.7, we know
that 2(P- 1)/2 = -1 (mod p). Then one can check that

x = 2a · (4a)<P-S)/S (mod p)

is a solution.

32 1 Fundamental Number-Theoretic Algorithms

Thus the only remaining case is p = 1 (mod 8). Unfortunately, this is the
hardest case. Although, by methods similar to the one given above, one could
give an infinite number of families of solutions, this would not be practical in
any sense.

1.5.1 The Algorithm of Tonelli and Shanks

There are essentially three algorithms for solving the above problem. One is
a special case of a general method for factoring polynomials modulo p, which
we will study in Chapter 3. Another is due to Schoof and it is the only non
probabilistic polynomial time algorithm known for this problem. It is quite
complex since it involves the use of elliptic curves (see Chapter 7), and its
practicality is not clear, although quite a lot of progress has been achieved
by Atkin. Therefore, we will not discuss it here. The third and last algorithm
is due to Tonelli and Shanks, and although probabilistic, it is quite efficient.
It is the most natural generalization of the special cases studied above. We
describe this algorithm here.

We can always write

p -1 = 2e · q, with q odd.

The multiplicative group (Z/pZ)* is isomorphic to the (additive) group Z/(p-
1)Z, hence its 2-Sylow subgroup G is a cyclic group of order 2e. Assume that
one can find a generator z of G. The squares in G are the elements of order
dividing 2e-l, and are also the even powers of z. Hence, if a is a quadratic
residue mod p, then, since

b = aq mod p is a square in G, so there exists an even integer k with 0 :.:::; k < 2e
such that

If one sets
x = a(q+l)/2zkl2,

it is clear that x2 =a (mod p), hence xis the answer. To obtain an algorithm,
we need to solve two problems: finding a generator z of G, and computing the
exponent k. Although very simple to solve in practice, the first problem is the
probabilistic part of the algorithm. The best way to find z is as follows: choose
at random an integer n, and compute z = nq mod p. Then it is clear that z is a
generator of G (i.e. z2e-l = -1 in G) if and only if n is a quadratic non-residue
mod p, and this occurs with probability close to 1/2 (exactly (p -1)/(2p)).
Therefore, in practice, we will find a non-residue very quickly. For example,
the probability that one does not find one after 20 trials is lower than 10-6 .

1.5 Computing Square Roots Modulo p 33

Finding the exponent k is slightly more difficult, and in fact is not needed
explicitly (only a(q+l)l2zkl2 is needed). The method is explained in the fol
lowing complete algorithm, which in this form is due to Shanks.

Algorithm 1.5.1 (Square Root Mod p). Let p be an odd prime, and a E Z.
Write p- 1 = 2e · q with q odd. This algorithm, either outputs an x such that
x 2 =a (mod p), or says that such an x does not exist (i.e. that a is a quadratic
non-residue mod p).

1. [Find generator] Choose numbers n at random until (~) = -1. Then set
z ~ nq (mod p).

2. [Initialize] Set y ~ z, r ~ e, x ~ a<q-l)/2 (mod p), b ~ ax2 (mod p),
x ~ax (mod p).

3. [Find exponent] If b = 1 (mod p), output x and terminate the algorithm.
Otherwise, find the smallest m ;:::: 1 such that b2"' = 1 (mod p). If m = r,
output a message saying that a is not a quadratic residue mod p.

4. [Reduce exponent] Set t ~ y2r-"'- 1 , y ~ t 2 , r ~ m, x ~ xt, b ~by (all
operations done modulo p), and go to step 3.

Note that at the beginning of step 3 we always have the congruences
modulo p:

2r-l
y = -1,

If Gr is the subgroup of G whose elements have an order dividing 2r, then this
says that y is a generator of Gr and that b is in Gr-l, in other words that b is
a square in Gr. Since r is strictly decreasing at each loop of the algorithm, the
number of loops is at most e. When r ::; 1 we have b = 1 hence the algorithm
terminates, and the above congruence shows that x is one of the square roots
of a mod p.

It is easy to show that, on average, steps 3 and 4 will require e2 /4 mul
tiplications mod p, and at most e2 • Hence the expected running time of this
algorithm is O(ln4p). 0

Remarks.

(1) In the algorithm above, we have not explicitly computed the value of the
exponent k such that aq zk = 1 but it is easy to do so if needed (see
Exercise 25).

(2) As already mentioned, Shanks's algorithm is probabilistic, although the
only non-deterministic part is finding a quadratic non-residue mod p,
which seems quite a harmless task. One could try making it completely de
terministic by successively trying n = 2, 3 ... in step 1 until a non-residue
is found. This is a reasonable method, but unfortunately the most pow
erful analytical tools only allow us to prove that the smallest quadratic
non-residue is O(p"') for a non-zero a. Thus, this deterministic algorithm,

34 1 Fundamental Number-Theoretic Algorithms

although correct, may have, as far as we know, an exponential running
time.

If one assumes the Generalized Riemann Hypothesis (GRH), then
one can prove much more, i.e. that the smallest quadratic non-residue
is O(ln2p), hence this gives a polynomial running time (in O(ln4p) since
computing a Legendre symbol is in O(ln2p)). In fact, Bach [Bach] has
proved that for p > 1000 the smallest non-residue is less than 2ln2p. In
any case, in practice the probabilistic method and the sequential method
(i.e. choosing n = 2, 3, ...) give essentially equivalent running times.

(3) If m is an integer whose factorization into a product of prime powers
is completely known, it is easy to write an algorithm to solve the more
general problem x 2 = a (mod m) (see Exercise 30).

1.5.2 The Algorithm of Cornacchia

A well known theorem of Fermat (see [H-W]) says that an odd prime p is a sum
of two squares if and only if p = 1 mod 4, i.e. if and only if -1 is a quadratic
residue mod p. Furthermore, up to sign and exchange, the representation of p
as a sum of two squares is unique. Thus, it is natural to ask for an algorithm
to compute x and y such that x2 + y2 = p when p = 1 mod 4. More generally,
given a positive integer d and an odd prime p, one can ask whether the equation

x2 + dy2 = p

has a solution, and for an algorithm to find x and y when they exist. There is
a pretty algorithm due to Cornacchia which solves both problems simultane
ously. For the beautiful and deep theory concerning the first problem, which
is closely related to complex multiplication (see Section 7.2) see [Cox].

First, note that a necessary condition for the existence of a solution is that
-d be a quadratic residue modulo p. Indeed, we clearly must have y "¢'. 0 mod p
hence

(xy- 1) 2 = -d mod p,

where y- 1 denotes the inverse of y modulo p. We therefore assume that this
condition is satisfied. By using Algorithm 1.5.1 we can find an integer xo such
that

x~ = -d modp

and we may assume that p/2 < x 0 < p. Cornacchia's algorithm tells us that
we should simply apply Euclid's Algorithm 1.3.1 to the pair (a, b) = (p, xo)
until we obtain a number b such that b <.jP. Then we set c +--- (p-b2)jd, and
if cis the square of an integers, the equation x2 + dy2 = p has (x, y) = (b, s)
as (essentially unique) solution, otherwise it has no solution. This leads to the
following algorithm.

Algorithm 1.5.2 (Cornacchia). Let p be a prime number and d be an integer
such that 0 < d < p. This algorithm either outputs an integer solution (x, y) to

1.5 Computing Square Roots Modulo p 35

the Diophantine equation x2 + dy2 = p, or says that such a solution does not
exist.

1. [Test if residue] Using Algorithm 1.4.12 compute k +--(-;,d). If k = -1, say
that the equation has no solution and terminate the algorithm.

2. [Compute square root] Using Shanks's Algorithm 1.5.1, compute an integer Xo

such that x~ = -d mod p, and change x0 into ±x0 + kp so that p/2 < xo < p.
Then set a+-- p, b +-- xo and l +-- lv'PJ·

3. [Euclidean algorithm] If b > l, set r +--a mod b, a+-- b, b +-- r and go to step
3.

4. [Test solution] If d does not dividep-b2 or if c = (p-b2)fd is not the square
of an integer (see Algorithm 1.7.3), say that the equation has no solution and
terminate the algorithm. Otherwise, output (x, y) = (b, .jC) and terminate the
algorithm.

Let us give a numerical example. Assume that we want to solve x2 + 2y2 =
97. In step 1, we first compute (9;) by Algorithm 1.4.12 (or directly since here
it is easy), and find that -2 is a quadratic residue mod 97. Thus the equation
may have a solution (and in fact it must have one since the class number
of the ring of integers of Q(v'2) is equal to 1, see Chapter 5). In step 2, we
compute xo such that x~ = -2 mod 97 using Algorithm 1.5.1. Using n = 5
hence z = 28, we readily find x0 = 17. Then the Euclidean algorithm in step
3 gives 97 = 5 · 17 + 12, 17 = 1 · 12 + 5 and hence b = 5 is the first number
obtained in the Euclidean stage, which is less than or equal to the square root
of 97. Now c = (97- 52)/2 = 36 is a square, hence a solution (unique) to our
equation is (x,y) = (5,6). Of course, this could have been found much more
quickly by inspection, but for larger numbers we need to use the algorithm as
written.

The proof of this algorithm is not really difficult, but is a little painful
so we refer to [Mor-Nic]. A nice proof due to H. W. Lenstra can be found
in [Scho2]. Note also that Algorithm 1.3.14 above can also be used to solve
the problem, and the proof that we gave of the validity of that algorithm is
similar, but simpler.

When working in complex quadratic orders of discriminant D < 0 con
gruent to 0 or 1 modulo 4 (see Chapter 5), it is more natural to solve the
equation

x2 + 1Diy2 = 4p

where pis an odd prime (we will for example need this in Chapter 9).

If 4 I D, we must have 2 I x, hence the equation is equivalent to x'2 + dy2 =
P with x' = x/2 and d = IDI/4, which we can solve by using Algorithm 1.5.2.

If D = 1 (mod 8), we must have x2- y2 = 4 (mod 8) and this is possible
only when x and y are even, hence our equation is equivalent to x'2 + dy'2 = p
with x' = x/2, y' = y/2 and d = IDI, which is again solved by Algorithm 1.5.2

36 1 Fundamental Number-Theoretic Algorithms

Finally, if D = 5 (mod 8), the parity of x andy is not a priori determined.
Therefore Algorithm 1.5.2 cannot be applied as written. There is however a
modification of Algorithm 1.5.2 which enables us to treat this problem.

For this compute x 0 such that x5 = D (mod p) using Algorithm 1.5.1,
and if necessary change x0 into p- x 0 so that in fact x5 = D (mod 4p). Then
apply the algorithm as written, starting with (a, b) = (2p, x0), and stopping
as soon as b < l, where l = l2..JP J. Then, as in [Mor-Nic] one can show that
this gives the (essentially unique) solution to x2 + jDjy2 = 4p. This gives the
following algorithm.

Algorithm 1.5.3 (Modified Cornacchia). Let p be a prime number and D
be a negative integer such that D = 0 or 1 modulo 4 and IDI < 4p. This
algorithm either outputs an integer solution (x, y) to the Diophantine equation
x2 + 1Diy2 = 4p, or says that such a solution does not exist.

1. [Case p = 2]1f p = 2 do as follows. If D + 8 is the square of an integer, output
(.JD + 8, 1), otherwise say that the equation has no solution. Then terminate
the algorithm.

2. [Test if residue] Using Algorithm 1.4.12 compute k +- (%). If k = -1, say
that the equation has no solution and terminate the algorithm.

3. [Compute square root] Using Shanks's Algorithm 1.5.1, compute an integer
xo such that x5 = D mod p and 0 :::; x 0 < p, and if x 0 ¢- D (mod 2), set
x 0 +- p- xo. Finally, set a+- 2p, b +- xo and l +- l2..JP J.

4. [Euclidean algorithm] If b > l, set r +-a mod b, a+- b, b +- r and go to step
4.

5. [Test solution] If IDI does not divide 4p- b2 or if c = (4p- b2)/IDI is not
the square of an integer (see Algorithm 1.7.3), say that the equation has no
solution and terminate the algorithm. Otherwise, output (x, y) = (b, JC) and
terminate the algorithm.

1.6 Solving Polynomial Equations Modulo p

We will consider more generally in Chapter 3 the problem of factoring poly
nomials mod p. If one wants only to find the linear factors, i.e. the roots mod
p, then for small degrees one can use the standard formulas. To avoid writing
congruences all the time, we implicitly assume that we work in F P = 7Ljp7L.

In degree one, the solution of the equation ax+ b = 0 is x = -b · a- 1,

where a- 1 is computed using Euclid's extended algorithm.

In degree two, the solutions of the equation ax2 + bx + c = 0 where a =/= 0
and p =/= 2, are given as follows. Set D = b2 - 4ac. If (~) = -1, then there

are no solutions in Fp· If(~) = 0, i.e. if pI D, then there is a unique (double)

solution given by x = -b · (2a)- 1 . Finally, if(~)= 1, there are two solutions,

1.6 Solving Polynomial Equations Modulo p 37

obtained in the following way: compute an s such that s2 = D using one of
the algorithms of the preceding section. Then the solutions are as usual

(-b ± s) · (2a)- 1.

In degree three, Cardano's formulas can be used (see Exercise 28 of Chap
ter 3). There are however two difficulties which must be taken care of. The
first is that we must find an algorithm to compute cube roots. This can be
done in a manner similar to the case of square roots. The second difficulty lies
in the handling of square roots when these square roots are not in lF P (they are
then in lF P2). This is completely analogous to handling complex numbers when
a real cubic equation has three real roots. The reader will find it an amusing
exercise to try and iron out all these problems (see Exercise 28). Otherwise,
see [Wil-Zar] and [Marl], who also gives the analogous recipes for degree four
equations (note that for computing fourth roots one can simply compute two
square roots).

In degree 5 and higher, the general equations have a non-solvable Galois
group, hence as in the complex case, no special-purpose algorithms are known,
and one must rely on general methods, which are slower. These methods will
be seen in Section 3.4, to which we refer for notations and definitions, but in
the special case of root finding, the algorithm is much simpler. We assume
p > 2 since for p = 2 there are just two values to try.

Algorithm 1.6.1 (Roots Mod p). Given a prime number p ~ 3 and a polyno
mial P E lFp[X], this algorithm outputs the roots of P in lFP. This algorithm will
be called recursively, and it is understood that all the operations are done in lFp.

1. [Isolate roots in lF p] Compute A(X) +-- (XP - X, P(X)) as explained below.
If A(O) = 0, output 0 and set A(X) +-- A(X)jX.

2. [Small degree?] If deg(A) = 0, terminate the algorithm. If deg(A) = 1, and
A(X) = a1X +ao, output -aofa1 and terminate the algorithm. If deg(A) = 2
and A(X) = a2X2 + a1X + a0 , set d +-- ai- 4a0a 2 , compute e +-- Jd using
Algorithm 1.5.1, output (-a1 + e)/(2a2) and (-a1 - e)/(2a2), and terminate
the algorithm. (Note that e will exist.)

3. [Random splitting] Choose a random a E JFP, and compute B(X) +-- ((X+
a)<P-l)/2 -1, A(X)) as explained below. If deg(B) = 0 or deg(B) = deg(A),
go to step 3.

4. [Recurse] Output the roots of B and Aj B using the present algorithm recur
sively (skipping step 1), and terminate the algorithm.

Proof. The elements of lFp are the elements x of an algebraic closure which
satisfy xP = x. Hence, the polynomial A computed in step 1 is, up to a
constant factor, equal to the product of the X- x where the x are the roots
of P in lFp. Step 3 then splits the roots x in two parts: the roots such that
x +a is a quadratic residue mod p, and the others. Since a is random, this

38 1 Fundamental Number-Theoretic Algorithms

has approximately one chance in 2deg(A)- 1 of not splitting the polynomial A
into smaller pieces, and this shows that the algorithm is valid. D

Implementation Remarks.

(1) step 2 can be simplified by not taking into account the case of degree
2, but this gives a slightly less efficient algorithm. Also, if step 2 is kept
as it is, it may be worthwhile to compute once and for all the quadratic
non-residue mod p which is needed in Algorithm 1.5.1.

(2) When we are asked to compute a GCD of the form gcd(un - b, c), we
must not compute un - b, but instead we compute d ~ un mod c using
the powering algorithm. Then we have gcd(un- b,c) = gcd(d- b,c).
In addition, since u = X + a is a very simple polynomial, the left-right
versions of the powering algorithm (Algorithms 1.2.3 and 1.2.4) are more
advantageous here.

(3) When p is small, and in particular when p is smaller than the degree
of A(X), it may be faster to simply test all values X = 0, ... ,p- 1.
Thus, the above algorithm is really useful when p is not too small. In
that case, it may be faster to compute gcd(X<P- 1)/2 - 1, A(X- a)) than
gcd((X +a)<P- 1ll 2 -1,A(X)).

1. 7 Power Detection

In many algorithms, it is necessary to detect whether a number is a square or
more generally a perfect power, and if it is, to compute the root. We consider
here the three most frequent problems of this sort and give simple arithmetic
algorithms to solve them. Of course, to test whether n = mk, you can always
compute the nearest integer to e1n nf k by transcendental means, and see if the
kth power of that integer is equal to n. This needs to be tried only for k ~ lg n.
This is clearly quite inefficient, and also requires the use of transcendental
functions, so we turn to better methods.

1.7.1 Integer Square Roots

We start by giving an algorithm which computes the integer part of the square
root of any positive integer n. It uses a variant of Newton's method, but works
entirely with integers. The algorithm is as follows.

Algorithm 1.7.1 (Integer Square Root). Given a positive integer n, this
algorithm computes the integer part of the square root of n, i.e. the number m
such that m2 ~ n < (m + 1)2 .

1. [Initialize] Set x ~ n (see discussion).

2. [Newtonian step] Set y ~ L(x + Ln/xJ)/2J using integer divides and shifts.

1. 7 Power Detection 39

3. [Finished?] If y < x set x +- y and go to step 2. Otherwise, output x and
terminate the algorithm.

Proof By step 3, the value of x is strictly decreasing, hence the algorithm
terminates. We must show that the output is correct. Let us set q = l Vn J .

Since (t + njt)/2 ~ .fii for any positive real value oft, it is clear that
the inequality x ~ q is satisfied throughout the algorithm (note that it is also
satisfied also after the initialization step). Now assume that the termination
condition in step 3 is satisfied, i.e. that y = l(x+n/x)/2J ~ x. We must show
that x = q. Assume the contrary, i.e. that x ~ q + 1. Then,

Since x ~ q + 1 > .jn, we have n - x2 < 0, hence y - x < 0 contradiction.
This shows the validity of the algorithm. 0

Remarks.

(1) We have written the formula in step 2 using the integer part function
twice to emphasize that every operation must be done using integer arith
metic, but of course mathematically speaking, the outermost one would
be enough.

(2) When actually implementing this algorithm, the initialization step must
be modified. As can be seen from the proof, the only condition which must
be satisfied in the initialization step is that x be greater or equal to the
integer part of .fii. One should try to initialize x as close as possible to
this number. For example, after a O(ln ln n) search, as in the left-right
binary powering Algorithm 1.2.2, one can find e such that 2e :::; n < 2e+1.
Then, one can take x +- 2L(e+2)/2J. Another option is to compute a single
precision floating point approximation to the square root of n and to take
the ceiling of that. The choice between these options is machine dependent.

(3) Let us estimate the running time of the algorithm. As written, we will
spend a lot of time essentially dividing x by 2 until we are in the right
ball-park, and this requires O(ln n) steps, hence O(ln3n) running time.
However, if care is taken in the initialization step as mentioned above, we
can reduce this to the usual number of steps for a quadratically convergent
algorithm, i.e. O(ln ln n). In addition, if the precision is decreased at each
iteration, it is not difficult to see that one can obtain an algorithm which
runs in O(ln2n) bit operations, hence only a constant times slower than
multi plication/ division.

1. 7.2 Square Detection

Given a positive integer n, we want to determine whether n is a square or
not. One method of course would be to compute the integer square root of

40 1 Fundamental Number-Theoretic Algorithms

n using Algorithm 1.7.1, and to check whether n is equal to the square of
the result. This is far from being the most efficient method. We could also
use Exercise 22 which says that a number is a square if and only if it is a
quadratic residue modulo every prime not dividing it, and compute a few
Legendre symbols using the algorithms of Section 1.4.2. We will use a variant
of this method which replaces Legendre symbol computation by table lookup.
One possibility is to use the following algorithm.

Precomputations 1.7.2. This is to be done and stored once and for all.

1. [Fill 11] For k = 0 to 10 set q11[k] +- 0. Then fork = 0 to 5 set q11[k2 mod
11] +- 1.

2. [Fill 63] For k = 0 to 62 set q63[k] +- 0. Then for k = 0 to 31 set q63[k2 mod
63] +- 1.

3. [Fill 64] Fork = 0 to 63 set q64[k] +- 0. Then fork= 0 to 31 set q64[k2 mod
64] +-1.

4. [Fill 65] For k = 0 to 64 set q65[k] +- 0. Then for k = 0 to 32 set q65[k2 mod
65] +- 1.

Once the precomputations are made, the algorithm is simply as follows.

Algorithm 1.7.3 (Square Test). Given a positive integer n, this algorithm
determines whether n is a square or not, and if it is, outputs the square root of
n. We assume that the precomputations 1.7.2 have been made.

1. [Test 64] Set t +- n mod 64 (using if possible only an and statement). If
q64[t] = 0, n is not a square and terminate the algorithm. Otherwise, set
r +- n mod 45045.

2. [Test 63] If q63[r mod 63] = 0, n is not a square and terminate the algorithm.

3. [Test 65] If q65[r mod 65] = 0, n is not a square and terminate the algorithm.

4. [Test 11] If q11[r mod 11] = 0, n is not a square and terminate the algorithm.

5. [Compute square root] Compute q +-lfoJ using Algorithm 1.7.1. If n =f:. q2 ,

n is not a square and terminate the algorithm. Otherwise n is a square, output
q and terminate the algorithm.

The validity of this algorithm is clear since if n is a square, it must be a
square modulo k for any k. Let us explain the choice of the moduli. Note first
that the number of squares modulo 64,63,65,11 is 12,16,21,6 respectively (see
Exercise 23). Thus, if n is not a square, the probability that this will not have
been detected in the four table lookups is equal to

1216 21 6 6
64 63 65 11 715

and this is less than one percent. Therefore, the actual computation of the
integer square root in step 5 will rarely be done when n is not a square. This

1. 7 Power Detection 41

is the reason for the choice of the moduli. The order in which the tests are
done comes from the inequalities

If one is not afraid to spend memory, one can also store the squares modulo
45045 = 63 · 65 · 11, and then only one test is necessary instead of three, in
addition to the modulo 64 test.

Of course, other choices of moduli are possible (see [Nic]), but in practice
the above choice works well.

1.7.3 Prime Power Detection

The last problem we will consider in this section is that of determining whether
n is a prime power or not. This is a test which is sometimes needed, for
example in some of the modern factoring algorithms (see Chapter 10). We
will not consider the problem of testing whether n is a power of a general
number, since it is rarely needed.

The idea is to use the following proposition.

Proposition 1. 7 .4. Let n = pk be a prime power. Then

(1) For any a we have pI (an- a,n).
(2) If k ;::: 2 and p > 2, let a be a witness to the compositeness of n given by

the Rabin-Miller test 8.2.2, i.e. such that (a,n) = 1, and ifn -1 = 2tq
with q odd, then aq ¢ 1 (mod n) and for all e such that 0 :::; e :::; t- 1 then
a2eq ¢ -1 (mod n). Then (an- a, n) is a non-trivial divisor of n (i.e. is
different from 1 and n).

Proof. By Fermat's theorem, we have an= a (mod p), hence (1) is clear. Let
us prove (2). Let a be a witness to the compositeness of n as defined above.
By (1), we already know that (an -a, n) > 1. Assume that (an -a, n) = n, i.e.
that an= a (mod n). Since (a,n) = 1 this is equivalent to an-l = 1 (mod n),
i.e. a2'q = 1 (mod n). Let f be the smallest non-negative integer such that

a21 q = 1 (mod n). Thus f exists and f :::; t. If we had f = 0, this would
contradict the definition of a witness (aq ¢ 1 (mod n)). So f > 0. But then
we can write

pk I (azt-lq -1)(azt-lq + 1)

and since p is an odd prime, this implies that pk divides one of the two factors.
But pk I (a21 - 1q- 1) contradicts the minimality off, and pk I (a21 - 1 q + 1)
contradicts the fact that a is a witness (we cannot have a2eq = -1 (mod n)
for e < t), hence we have a contradiction in every case thus proving the
proposition. D

42 1 Fundamental Number-Theoretic Algorithms

This leads to the following algorithm.

Algorithm 1.7.5 (Prime Power Test). Given a positive integer n > 1, this
algorithm tests whether or not n is of the form pk with p prime, and if it is,
outputs the prime p.

1. [Case n even] If n is even, set p +-- 2 and go to step 4. Otherwise, set q +-- n.

2. [Apply Rabin-Miller] By using Algorithm 8.2.2 show that either q is a probable
prime or exhibit a witness a to the compositeness of q. If q is a probable prime,
set p +-- q and go to step 4.

3. [Compute GCD] Set d +-- (aq- a, q). If d = 1 or d = q, then n is not a prime
power and terminate the algorithm. Otherwise set q +-- d and go to step 2.

4. [Final test] (Here pis a divisor of n which is almost certainly prime.) Using
a primality test (see Chapters 8 and 9) prove that pis prime. If it is not (an
exceedingly rare occurence), set q +-- p and go to step 2. Otherwise, by dividing
n by p repeatedly, check whether n is a power of p or not. If it is not, n is not
a prime power, otherwise output p. Terminate the algorithm.

We have been a little sloppy in this algorithm. For example in step 4,
instead of repeatedly dividing by p we could use a binary search analogous
to the binary powering algorithm. We leave this as an exercise for the reader
(Exercise 4).

1. 8 Exercises for Chapter 1

1. Write a bare-bones multi-precision package as explained in Section 1.1.2.

2. Improve your package by adding a squaring operation which operates faster than
multiplication, and based on the identity (aX+ b) 2 = a 2 X 2 + b2 +((a+ b) 2 -

a2 - b2)X, where X is a power of the base. Test when a similar method applied
to multiplication (see Section 3.1.2) becomes faster than the straightforward
method.

3. Given a 32-bit non-negative integer x, assume that we want to compute quickly
the highest p~wer of 2 dividing x (32 if x = 0). Denoting by e(x) the exponent
of this power of 2, show that this can be done using the formula

e(x) = t[(x"(x- 1)) mod 37]

where t is a suitable table of 37 values indexed from 0 to 36, and a"b denotes
bitwise exclusive or (addition modulo 2 on bits). Show also that 37 is the least
integer having this property, and find an analogous formula for 64-bit numbers.

4. Given two integers n and p, give an algorithm which uses ideas similar to the
binary powering algorithm, to check whether n is a power of p. Also, if p is
known to be prime, show that one can use only repeated squarings followed by
a final divisibility test.

1.8 Exercises for Chapter 1 43

5. Write a version of the binary GCD algorithm which uses ideas of Lehmer's
algorithm, in particular keeping information about the low order words and the
high order words. Try also to write an extended version.

6. Write an algorithm which computes (u, v, d) as in Algorithm 1.3.6, by storing
the partial quotients and climbing back. Compare the speed with the algorithms
of the text.

7. Prove that at the end of Algorithm 1.3.6, one has VI = ±b/d and V2 = T-a(d,
and determine the sign as a function of the number of Euclidean steps.

8. Write an algorithm for finding a solution to the system of congruences x = XI
(mod mt) and x = x2 (mod m2) assuming that XI= x2 (mod gcd(mi,m2)).

9. Generalizing Exercise 8 and Algorithm 1.3.12, write a general algorithm for
finding an x satisfying Theorem 1.3.9.

10. Show that the use of Gauss's Algorithm 1.3.14leads to a slightly different algo
rithm than Cornacchia's Algorithm 1.5.2 for solving the equation x2 + dy2 = p
(consider a= (p, 0) and b = (xo, vld)).

11. Show how to modify Lehmer's Algorithm 1.3.13 for finding the continued fraction
expansion of a real number, using the ideas of Algorithm 1.3.3, so as to avoid
almost all multi-precision operations.

12. Using Algorithm 1.3.13, compute at least 30 partial quotients of the continued
fraction expansions of the numbers e, e2, e3 , e213 (you will need some kind of
multi-precision to do this). What do you observe? Experiment with number of
the form eo.fb, and try to see for which a(b one sees a pattern. Then try and
prove it (this is difficult. It is advised to start by doing a good bibliographic
search).

13. Prove that if n = nm2 with ni and n2 coprime, then (Z/nZ)* ~ (Z/niZ)* x
(Z(n2Z)*. Then prove Theorem 1.4.1.

14. Show that when a > 2, g = 5 is always a generator of the cyclic subgroup of
order 2""-2 of (Z/2""Z)*.

15. Prove Proposition 1.4.6.

16. Give a proof of Theorem 1.4. 7 (2) along the following lines (read Chapter 4 first
if you are not familiar with number fields). Let p and q be distinct odd primes.
Set (= e2iTr/P, R = Z[(] and

a) Show that r(p)2 = (-1)(p-I)/2p and that r(p) is invertible in R(qR.
b) Show that r(p)q = (!)r(p) (mod qR).
c) Prove Theorem 1.4.7 (2), and modify the above arguments so as to prove

Theorem 1.4.7 (1).

17. Prove Theorem 1.4. 9 and Lemma 1.4.11.

18. Let p be an odd prime and n and integer prime to p. Then multiplication by n
induces a permutation 'Yn of the finite set (Z/pZ)*. Show that the signature of
this permutation is equal to the Legendre symbol (n). Deduce from this another
proof of the quadratic reciprocity law (Theorem 1.~.7).

44 1 Fundamental Number-Theoretic Algorithms

19. Generalizing Lemma 1.4.11, show the following general reciprocity law: if a and
bare non-zero and a= 2"'a1 (resp. b = 2~b1) with a1 and b1 odd, then

(~) = (-1)(at-l}{bt-1)/4+(sign(al)-l){sign(bt)-1)/4 (~).

20. Implement the modification suggested after Algorithm 1.4.10 (i.e. taking the
smallest residue in absolute value instead of the smallest non-negative one) and
compare its speed with that of the unmodified algorithm.

21. Using the quadratic reciprocity law, find the number of solutions of the congru
ence x 3 = 1 (mod p). Deduce from this the number of cubic residues mod p, i.e.
numbers a not divisible by p such that the congruence x3 = a (mod p) has a
solution.

22. Show that an integer n is a square if and only if(;) = 1 for every prime p not
dividing n.

23. Given a modulus m, give an exact formula for s(m), the number of squares
modulo m, in other words the cardinality of the image of the squaring map from
'l..fm'l.. into itself. Apply your formula to the special case m = 64, 63, 65, 11.

24. Show that the running time of Algorithm 1.4.10 modified by keeping b odd, may
be exponential time for some inputs.

25. Modify Algorithm 1.5.1 so that in addition to computing x, it also computes
the (even) exponent k such that aqzk = 1 in G, using the notations of the text.

26. Give an algorithm analogous to Shanks's Algorithm 1.5.1, to find the cube roots
of a mod p when a is a cubic residue. It may be useful to consider separately
the cases p = 2 (mod 3) and p = 1 (mod 3).

27. Given a prime number p and a quadratic non-residue a mod p, we can consider
K = IFP2 = lFp(vfa). Explain how to do the usual arithmetic operations inK.
Give an algorithm for computing square roots inK, assuming that the result is
inK.

28. Generalizing Exercise 27, give an algorithm for computing cube roots in IF p2, and
give also an algorithm for computing roots of equations of degree 3 by Cardano's
formulas (see Exercise 28 of Chapter 3).

29. Show that, as claimed in the proof of Algorithm 1.5.1, steps 3 and 4 will require
in average e2 /4 and at most e2 multiplications modulo p.

30. Let m = np p"P be any positive integer for which we know the complete factor
ization into primes, and let a E '!...

a) Give a necessary and sufficient condition for a to be congruent to a square
modulo m, using several Legendre symbols.

b) Give a closed formula for the number of solutions of the congruence
x 2 :=a (mod m).

c) Using Shanks's Algorithm 1.5.1 as a sub-algorithm, write an algorithm
for computing a solution to x 2 := a (mod m) if a solution exists (you should
take care to handle separately the power of 2 dividing m).

31. Implement Algorithm 1.6.1 with and without the variant explained in Remark
(3) following the algorithm, as well as the systematic trial of X = 0, ... , p- 1,
and compare the speed of these three algorithms for different values of p and
deg(P) or deg(A).

1.8 Exercises for Chapter 1 45

32. By imitating Newton's method once again, design an algorithm for computing
integer cube roots which works only with integers.

33. Show that, as claimed in the text, the average number of multiplications
which are not squarings in the flexible left-right base 2k algorithm is ap
proximately 2k-l+lglnl/(k+1), and that the optimal value of k is the
smallest integer such that lglnl~(k+1)(k+2)2k-l.

34. Consider the following modification to Algorithm 1.2.4.2. We choose some
odd number L such that 2k-l < L < 2k and precompute only z, z3, .•• , zL.
Show that one can write any integer N in a unique way as N = 2t"(a0 +
2t'(a1 + ... +2t•ae)) with ai odd, ai ~ L, and ti ~ k -1 for i ~ 1, but ti =
k -1 only if ai > L - 2k-l. Analyze the resulting algorithm and show
that, in certain cases, it is slightly faster than Algorithm 1.2.4.2.

(~p-ag-e~l~l)---
Perhaps surprisingly, we can easily improve on Algorithm 1.2.4 by using a flex-

ible window of size at least k bits, instead of using a window of fixed size k. Indeed,
it is easy to see that any positive integer N can be written in a unique way as

N = 2to (ao + 2h (a1 + · · · + 2t"ae))

where t, ::=:: k for i ::=:: 1 and the a, are odd integers such that 1 :::; a, :::; 2k - 1 (in
Algorithm 1.2.4 we took t0 = 0, t, = k fori ::=:: 1, and 0 :::; a, :::; 2k -1 odd or even).

As before, we can precompute g3, g5, ... , g2•-l and then compute gN by suc
cessive squarings and multiplications by ga,. To find the a, and t., we use the
following immediate sub-algorithm.

Sub-Algorithm 1.2.4.1 (Flexible Base 2k Digits). Given a positive integer Nand
k ::=:: 1, this sub-algorithm computes the unique integers t, and a; defined above. We
use [N]b,a to denote the integer obtained by extracting bits a through b (inclusive) of
N, where bit 0 is the least significant bit.

1. [Compute t 0] Let t 0 +-v2 (N), e+-0 and s+-t0 .

2. [Compute ae] Let ae +- [N]s+k-l,s·
3. [Compute te] Set m +- [N]oo,s+k· If m = 0, terminate the sub-algorithm. Other

wise, set e +- e + 1, te +- v2 (m) + k, s +- s + te and go to step 2.

The flexible window algorithm is then as follows.

Algorithm 1.2.4.2 (Flexible Left-Right Base 2k). Given g E G and n E Z, this
algorithm computes gn in G. We write 1 for the unit element of G.
1. [Initialize] If n = 0, output 1 and terminate. If n < 0 set N +- -n and z +- g-1.

Otherwise, set N +- n and z +- g.

2. [Compute the a, and t,] Using the above sub-algorithm, compute a,, t, and e such
that N = 2t"(a0 + 2t'(a1 + · · · + 2t•ae)) and set f +-e.

3. [Precomputations] Compute and store z 3 , z 5 , .•. , z2•-1 .

4. [Loop] If f = e set y +- zat otherwise set y +- zat · y. Then repeat t1 times
y +- y. y.

5. [Finished?] If f = 0, output y and terminate the algorithm. Otherwise, set
f +- f- 1 and go to step 4.

We have used above the word "surprisingly" to describe the behavior of this
algorithm. Indeed, it is not a priori clear why it should be any better than Algorithm
1.2.4. An easy analysis shows, however, that the average number of multiplications
which are not squarings is now of the order of 2k-l + lg lnl/(k + 1) (instead of
2k-l + lg lnl/k in Algorithm 1.2.4), see Exercise 33. The optimal value of k is the
smallest integer satisfying the inequality lg In I :::; (k + 1) (k + 2)2k-l.

In the above example where n has 100 decimal digits, the flexible base 25 algo
rithm takes on average (3/4)332 + 16 + 332/6 "" 320 multiplications, another 3%
improvement. In fact, using a simple modification, in certain cases we can still
easily improve (very slightly) on Algorithm 1.2.4.2, see Exercise 34.

Chapter 2

Algorithms for Linear Algebra and Lattices

2.1 Introduction

In many algorithms, and in particular in number-theoretic ones, it is necessary
to use algorithms to solve common problems of linear algebra. For example,
solving a linear system of equations is such a problem. Apart from stability
considerations, such problems and algorithms can be solved by a single algo
rithm independently of the base field (or more generally of the base ring if we
work with modules). Those algorithms will naturally be called linear algebra
algorithms.

On the other hand, many algorithms of the same general kind specifically
deal with problems based on specific properties of the base ring. For example,
if the base ring is Z (or more generally any Euclidean domain), and if L is
a submodule of rank n of zn' then zn I L is a finite Abelian group, and we
may want to know its structure once a generating system of elements of L
is known. This kind of problem can loosely be called an arithmetic linear
algebra problem. Such problems are trivial if Z is replaced by a field K. (In
our example we would have L = Kn hence the quotient group would always
be trivial.) In fact we will see that a submodule of zn is called a lattice, and
that essentially all arithmetic linear algebra problems deal with lattices, so we
will use the term lattice algorithms to describe the kind of algorithms that are
used for solving arithmetic linear algebra problems.

This chapter is therefore divided into two parts. In the first part, we give
algorithms for solving the most common linear algebra problems. It must be
emphasized that the goal will be to give general algorithms valid over any
field, but that in the case of imprecise fields such as the field of real numbers,
care must be taken to insure stability. This becomes an important problem
of numerical analysis, and we refer the reader to the many excellent books
on the subject ([Gol-Van], [PFTV]). Apart from mentioning the difficulties,
given the spirit of this book we will not dwell on this aspect of linear algebra.

In the second part, we recall the definitions and properties of lattices.
We will assume that the base ring is Z, but essentially everything carries
over to the case where the base ring is a principal ideal domain (PID), for
example K[X], where K is a field. Then we describe algorithms for lattices. In
particular we discuss in great detail the LLL algorithm which is of fundamental
importance, and give a number of applications.

2.2 Linear Algebra Algorithms on Square Matrices 47

2.2 Linear Algebra Algorithms on Square Matrices

2.2.1 Generalities on Linear Algebra Algorithms

Let K be a field. Linear algebra over K is the study of K-vector spaces and K
linear maps between them. We will always assume that the vector spaces that
we use are finite-dimensional. Of course, infinite-dimensional vector spaces
arise naturally, for example the space K[X] of polynomials in one variable
over K. Usually, however when one needs to perform linear algebra on these
spaces it is almost always on finite-dimensional subspaces.

A K-vector space Vis an abstract object, but in practice, we will assume
that V is given by a basis of n linearly independent vectors v1, . . . Vn in some
Km (where m is greater or equal, but not necessarily equal to n). This is of
course highly non-canonical, but we can always reduce to that situation.

Since Km has by definition a canonical basis, we can consider V as being
given by an m x n matrix M(V) (i.e. a matrix with m rows and n columns)
such that the columns of M(V) represent the coordinates in the canonical
basis of Km of the vectors vi. If n = m, the linear independence of the Vi
means, of course, that M(V) is an invertible matrix. (The notation M(V) is
slightly improper since M(V) is attached, not to the vector space V, but to
the chosen basis vi-)

Note that changing bases in Vis equivalent to multiplying M(V) on the
right by an invertible n x n matrix. In particular, we may want the matrix
M(V) to satisfy certain properties, for example being in upper triangular
form. We will see below (Algorithm 2.3.11) how to do this.

A linear map f between two vector spaces V and W of respective dimen
sions n and m will in practice be represented by an m x n matrix M (f), M (f)
being the matrix of the map f with respect to the bases M(V) and M(W) of
V and W respectively. In other words, the j-th column of M(f) represents the
coordinates of f(vj) in the basis Wi, where the vi correspond to the columns
of M(V), and the Wi to the columns of M(W).

Note that in the above we use column-representation of vectors and not
row-representation; this is quite arbitrary, but corresponds to traditional us
age. Once a choice is made however, one must consistently stick with it.

Thus, the objects with which we will have to work with in performing linear
algebra operations are matrices and (row or column) vectors. This is only for
practical purposes, but keep in mind that it rarely corresponds to anything
canonical. The internal representation of vectors is completely straightforward
(i.e. as a linear array).

For matrices, essentially three equivalent kinds of representation are pos
sible. The particular one which should be chosen depends on the language in
which the algorithms will be implemented. For example, it will not be the
same in Fortran and in C.

One representation is to consider matrices as (row) vectors of (column)
vectors. (We could also consider them as column vectors of row vectors but

48 2 Algorithms for Linear Algebra and Lattices

the former is preferable since we have chosen to represent vectors mainly
in column-representation.) A second method is to represent matrices as two
dimensional arrays. Finally, we can also represent matrices as one-dimensional
arrays, by adding suitable macro-definitions so as to be able to access individ
ual elements by row and column indices.

Whatever representation is chosen, we must also choose the index num
bering for rows and columns. Although many languages such as C take 0 as
the starting index, for consistency with usual mathematical notation we will
assume that the first index for vectors or for rows and columns of matri
ces is always taken to be equal to 1. This is not meant to suggest that one
should use this in a particular implementation, it is simply for elegance of
exposition. In any given implementation, it may be preferable to make the
necessary trivial changes so as to use 0 as the starting index. Again, this is a
language-dependent issue.

2.2.2 Gaussian Elimination and Solving Linear Systems

The basic operation which is used in linear algebra algorithms is that of Gaus
sian elimination, sometimes also known as Gaussian pivoting. This consists
in replacing a column (resp. a row) C by some linear combination of all the
columns (resp. rows) where the coefficient of C must be non-zero, so that (for
example) some coefficient becomes equal to zero. Another operation is that of
exchanging two columns (resp. rows). Together, these two basic types of oper
ations (which we will call elementary operations on columns or rows) will allow
us to perform all the tasks that we will need in linear algebra. Note that they
do not change the vector space spanned by the columns (resp. rows). Also, in
matrix terms, performing a series of elementary operations on columns (resp.
rows) is equivalent to right (resp. left) multiplication by an invertible square
matrix of the appropriate size. Conversely, one can show (see Exercise 1) that
an invertible square matrix is equal to a product of matrices corresponding to
elementary operations.

The linear algebra algorithms that we give are simply adaptations of these
basic principles to the specific problems that we must solve, but the underlying
strategy is always the same, i.e. reduce a matrix to some simpler form (i.e. with
many zeros at suitable places) so that the problem can be solved very simply.
The proofs of the algorithms are usually completely straightforward, hence will
be given only when really necessary. We will systematically use the following
notation: if M is a matrix, M; denotes its j-th column, M{ its i-th row, and
mi,j the entry at row i and column j. If B is a (column or row) vector, bi will
denote its i-th coordinate.

Perhaps the best way to see Gaussian elimination in action is in solving
square linear systems of equations.

Algorithm 2.2.1 (Square Linear System). Let M be an n x n matrix and B
a column vector. This algorithm either outputs a message saying that M is not

2.2 Linear Algebra Algorithms on Square Matrices 49

invertible, or outputs a column vector X such that M X = B. We use an auxiliary
column vector C.

1. [Initialize] Set j +--- 0.

2. [Finished?] Let j +--- j + 1. If j > n go to step 6.

3. [Find non-zero entry] If m;,j = 0 for all i :;:: j, output a message saying that
M is not invertible and terminate the algorithm. Otherwise, let i :::: j be some
index such that m;,j =/= 0.

4. [Swap?]lf i > j, for l = j, ... , n exchange m;,1 and mj,l· and exchange b; and
bj.

5. [Eliminate] (Here mj,j =/= 0.) Set d +--- mj,j and for all k > j set Ck +--- dmk,j·
Then, for all k > j and l > j set mk,l +--- mk,l- ckmj,l· (Note that we do not
need to compute this for l = j since it is equal to zero.) Finally, for k > j set
bk +--- bk - ckbj and go to step 2.

6. [Solve triangular system] (Here M is an upper triangular matrix.) For i =
n, n - 1, ... , 1 (in that order) set x; +--- (b; - l:i<j$n m;,j x j) / m;,;, output
X = (x;)I::;;::;n and terminate the algorithm.

Note that steps 4 and 5 (the swap and elimination operations) are really
row operations, but we have written them as working on entries since it is not
necessary to take into account the first j - 1 columns.

Note also in step 5 that we start by computing the inverse of mj,j since
in fields like IF P division is usually much more time-consuming than multipli
cation.

The number of necessary multiplications/ divisions in this algorithm is
clearly asymptotic to n3/3 in the general case. Note however that this does
not represent the true complexity of the algorithm, which should be counted
in bit operations. This of course depends on the base field (see Section 1.1.3).
This remark also applies to all the other linear algebra algorithms given in
this chapter.

Inverting a square matrix M means solving the linear systems M X = E;,
where the E; are the canonical basis vectors of Kn, hence one can achieve
this by successive applications of Algorithm 2.2.1. Clearly, it is a waste of
time to use Gaussian elimination on the matrix for each linear system. (More
generally, this is true when we must solve several linear systems with the same
matrix M but different right hand sides B.) We should compute the inverse
of M, and then the solution of a linear system requires only a simple matrix
times vector multiplication requiring n2 field multiplications.

To obtain the inverse of M, only a slight modification of Algorithm 2.2.1
is necessary.

Algorithm 2.2.2 (Inverse of a Matrix). Let M be an n x n matrix. This
algorithm either outputs a message saying that M is not invertible, or outputs
the inverse of M. We use an auxiliary column vector C and we recall that B~
(resp. XI) denotes the i-th row of B (resp. X).

50 2 Algorithms for Linear Algebra and Lattices

1. [Initialize] Set j +--- 0, B +--- In. where In is the n x n identity matrix.

2. [Finished?] Let j +--- j + 1. If j > n, go to step 6.

3. [Find non-zero entry] If mi,j = 0 for all i 2: j, output a message saying that
M is not invertible and terminate the algorithm. Otherwise, let i 2: j be some
index such that mi,j =/= 0.

4. [Swap?] If i > j, for l = j, ... ,n exchange mi,l and mj,!. and exchange the
rows Bf and Bj.

5. [Eliminate] (Here mi,i =/= 0.) Set d +--- mj,} and for all k > j set Ck +--- dmk,i·
Then for all k > j and l > j set mk,l +--- mk,l- ckmj,l· (Note that we do not
need to compute this for l = j since it is equal to zero.) Finally, for all k > j
set BJ. +--- B/.- ckBj and go to step 2.

6. [Solve triangular system] (Here M is an upper triangular matrix.) For i =
n, n- 1, ... , 1 (in that order) set X[+--- (Bf- Li<j:;n mi,jXj)/mi,i· output
the matrix X and terminate the algorithm.

It is easy to check that the number of multiplications/divisions needed is
asymptotic to 4n3/3 in the general case. This is only four times longer than the
number required for solving a single linear system. Thus as soon as more than
four linear systems with the same matrix need to be solved, it is worthwhile
to compute the inverse matrix.

Remarks.

(1) In step 1 of the algorithm, the matrix B is initialized to In. If instead, we
initialize B to be any n x m matrix N for any m, the result is the matrix
M-1 N, and this is of course faster than computing M-1 and then the
matrix product. The case m = 1 is exactly Algorithm 2.2.1.

(2) Instead of explicitly computing the inverse of M, it is worthwhile for many
applications to put M in LU P form , i.e. to find a lower triangular matrix
L and an upper triangular matrix U such that M = LU P for some per
mutation matrix P. (Recall that a permutation matrix is a square matrix
whose elements are only 0 or 1 such that each row and column has exactly
one 1.) Exercise 3 shows how this can be done. Once M is in this form,
solving linear systems, inverting M, computing det(M), etc ... is much
simpler (see [AHU] and [PFTV]).

2.2.3 Computing Determinants

To compute determinants, we can simply use Gaussian elimination as in Al
gorithm 2.2.1. Since the final matrix is triangular, the determinant is trivial
to compute. This gives the following algorithm.

Algorithm 2.2.3 (Determinant, Using Ordinary Elimination). Let M be an
n x n matrix. This algorithm outputs the determinant of M. We use an auxiliary
column vector C.

2.2 Linear Algebra Algorithms on Square Matrices 51

1. [Initialize) Set j +--- 0, x +--- 1.

2. [Finished?) Let j +--- j + 1. If j > n output x and terminate the algorithm.

3. [Find non-zero entry) If mi,j = 0 for all i ~ j, output 0 and terminate the
algorithm. Otherwise, let i ~ j be some index such that mi,j I 0.

4. [Swap?) If i > j, for l = j, ... ,n exchange mi,l and mj,l• and set x +--- -x.

5. [Eliminate) (Here mj,j =/= 0.) Set d +--- mJ:} and for all k > j set Ck +--- dmk,j·
Then for all k > j and l > j set mk,l +--- mk,l- ckmj,l· (Note that we do not
need to compute this for l = j since it is equal to zero.) Finally, set x +--- x·mj,j
and go to step 2.

The number of multiplications/ divisions needed in this algorithm is clearly
of the same order as Algorithm 2.2.1, i.e. asymptotic to n3 /3 in general.

Very often, this algorithm will be used in the case where the matrix M
has entries in Z or some polynomial ring. In this case, the elimination step
will introduce denominators, and these have a tendency to get very large.
Furthermore, the coefficients of the intermediate matrices will be in Q (or some
rational function field), and hence large GCD computations will be necessary
which will slow down the algorithm even more. All this is of course valid for
the other straightforward elimination algorithms that we have seen.

On the other hand, if the base field is a finite field lF q, we do not have
such problems. If the base field is inexact, like the real or complex numbers or
the p-adic numbers, care must be taken for numerical stability. For example,
numerical analysis books advise taking the largest non-zero entry (in absolute
value) and not the first non-zero one found. We refer to [Gol-Van], [PFTV]
for more details on these stability problems.

To overcome the problems that we encounter when the matrix M has
integer coefficients, several methods can be used (and similarly when M has
coefficients in a polynomial ring). The first method is to compute det(M) mod
ulo sufficiently many primes (using Algorithm 2.2.3 which is efficient here),
and then use the Chinese remainder Theorem 1.3.9 to obtain the exact value
of det(M). This can be done as soon as we know an a priori upper bound
for I det(M)I. (We then simply choose sufficiently many primes Pi so that the
product of the Pi is greater than twice the upper bound.) Such an upper bound
is given by Hadamard's inequality which we will prove below (Corollary 2.5.5;
note that this corollary is proved in the context of real matrices, i.e. Euclidean
vector spaces, but its proof is identical for Hermitian vector spaces).

Proposition 2.2.4 (Hadamard's Inequality). If M = (miihi,jn is a
square matrix with complex coefficients, then

52 2 Algorithms for Linear Algebra and Lattices

This method for computing determinants can be much faster than a di
rect computation using Algorithm 2.2.3, but will be slower when the number
of primes needed for the Chinese remainder theorem is large. This happens
because the size of the Hadamard bound is often far from ideal.

Another method is based on the following easily proved proposition due
to Dodgson (alias Lewis Caroll), which is a special case of a general theorem
due to Bareiss [Bar].

Proposition 2.2.5. Let M0 = (a?,;h::=;i,j::=;n be ann x n matrix where the
coefficients are considered as independent variables. Set eo = 1 and for 1 :::::;
k < n, define recursively

(k) 1 akk I
(k-1)

ai,j = Ck 1 (k-1)
- ai,k

and
{k-1)

ck= ak,k

Finally, let Cn = a~~; 1>. Then all the divisions by Ck-1 are exact; we have
det(Mk) = ck-k-1 det(Mo), and in particular det(Mo) = Cn·

Proof {Sketch}. Going from Mk-1 to Mk is essentially Gaussian elimination,
except that the denominators are removed. This shows that

n-k-1
det(Mk) = ck n-k det(Mk-d

ck-1

thus proving the formula for det(Mk) by induction.
That all the divisions by Ck-1 are exact comes from the easily checked fact

that we can explicitly write the coefficients a~~ as (k + 1) x (k + 1) minors of
the matrix Mo (see Exercise 5). D

We have stated this proposition with matrices having coefficients consid
ered as independent variables. For more special rings, some Ck may vanish,
in which case one must exchange rows or columns, as in Algorithm 2.2.3,
and keep track of the sign changes. This leads to the following method for
computing determinants.

Algorithm 2.2.6 (Determinant Using Gauss-Bareiss). Given an n x n ma
trix M with coefficients in an integral domain 'R, this algorithm computes the
determinant of M. All the intermediate results are in 'R.

1. [Initialize] Set k +- 0, c +- 1, s +- 1.

2. [Increase k] Set k +- k + 1. If k = n output smn,n and terminate the algorithm.
Otherwise, set p +- mk,k·

3. [Is p = 0?] If p -:f. 0 go to step 4. Otherwise, look for the first non-zero
coefficient mi,k in the k-th column, with k + 1 :::::; i :::::; n. If no such coefficient

2.2 Linear Algebra Algorithms on Square Matrices 53

exists, output 0 and terminate the algorithm. If it does, for j = k, ... , n ex
change mi,j and mk,j. then sets+-- -s and p +-- mk,k·

4. [Main step] (pis now non-zero.) Fori= k +1, ... ,nand j= k +1, ... , n set
t +-- Pffii,j- mi,kmk,j. then mi,j +-- tjc where the division is exact. Then set
c +-- p and go to step 2.

Although this algorithm is particularly well suited to the computation of
determinants when the matrix M has integer (or similar type) entries, it can
of course, be used in general. There is however a subtlety which must be taken
into account when dealing with inexact entries.

Assume for example that the coefficients of Mare polynomials with real
coefficients. These in general will be imprecise. Then in step 4, the division
tjc will, in general, not give a polynomial, but rather a rational function. This
is because when we perform the Euclidean division of t by c, there may be
a very small but non-zero remainder. In this case, when implementing the
algorithm, it is essential to compute tjc using Euclidean division, and discard
the remainder, if any.

The number of necessary multiplications/divisions in this modified algo
rithm is asymptotic to n3 instead of n3 /3 in Algorithm 2.2.3, but using Gauss
Bareiss considerably improves on the time needed for the basic multiplications
and divisions and this usually more than compensates for the factor of 3.

Finally, note that although we have explained the Gauss-Bareiss method
for computing determinants, it can usually be applied to any other algorithmic
problem using Gaussian elimination, where the coefficients are integers (see
Exercise 6).

2.2.4 Computing the Characteristic Polynomial

Recall that if M is an n x n square matrix, the characteristic polynomial of
M is the monic polynomial of degree n defined by

P(X) = det(Xln- M),

where as usual In is the n x n identity matrix. We want to compute the coeffi
cients of P(X). Note that the constant term of P(X) is equal to (-1)n det(M),
and more generally the coefficients of P(X) can be expressed as the sum of
the so-called principal minors of M which are sub-determinants of M. To
compute the coefficients of P(X) in this manner is usually not the best way
to proceed. (In fact the number of such minors grows exponentially with n.)
In addition to the method which I have just mentioned, there are essentially
four methods for computing P(X).

The first method is to apply the definition directly, and to use the Gauss
Bareiss algorithm for computing det(Xln- M), this matrix considered as
having coefficients in the ring K(X]. Although computing in K(X] is more
expensive than computing in K, this method can be quite fast in some cases.

54 2 Algorithms for Linear Algebra and Lattices

The second method is to apply Lagrange interpolation. In our special case,
this gives the following formula.

n (X- j)
det(Xln- M) = L det(kln- M) IT (k _ .) ·

k=O O$;j$;n,j# J

This formula is easily checked since both sides are polynomials of degree
less than or equal to n which agree on the n + 1 points X = i for 0 ::; i ::; n.

Hence, to compute the characteristic polynomial of M, it is enough to
compute n + 1 determinants, and this is usually faster than the first method.
Since multiplication and division by small constants can be neglected in timing
estimates, this method requires asymptotically n 4/3 multiplications/divisions
when we use ordinary Gaussian elimination.

The third method is based on the computation of the adjoint matrix or
comatrix of M, i.e. the matrix Madj whose coefficient of row i and column j is
equal to (-1)i+i times the sub-determinant of M obtained by removing row
j and column i (note that i and j are reversed). From the expansion rule of
determinants along rows or columns, it is clear that this matrix satisfies the
identity

MMadj = MadjM = det(M)In·

We give the method as an algorithm.

Algorithm 2.2.7 (Characteristic Polynomial and Adjoint Matrix). Given an
n x n matrix M, this algorithm computes the characteristic polynomial P(X) =
det(Xln - M) of M and the adjoint matrix Madj of M. We use an auxiliary
matrix C and auxiliary elements ai.

1. [Initialize] Set i +-- 0, C +-- In, ao +-- 1.

2. [Finished?) Set i +-- i + 1. If i = n set an+-- -Tr(MC)/n, output P(X) +

I:o:=;;i$;n aixn-i, Madj +-- (-1)n-lc and terminate the algorithm.

3. [Compute next ai and C) Set C +-- MC, ai +--- Tr(C)/i, C +-- C +ailn and
go to step 2.

Before proving the validity of this algorithm, we prove a lemma.

Lemma 2.2.8. Let M be an n x n matrix, A(X) be the adjoint matrix of
X In -M, and P(X) the characteristic polynomial of M. We have the identity

Tr(A(X)) = P'(X).

Proof. Recall that the determinant is multilinear, hence the derivative of an
n x n determinant is equal to the sum of the n determinants obtained by
replacing the j-th column by its derivative, for 1 ::; j ::; n. In our case, calling

2.2 Linear Algebra Algorithms on Square Matrices 55

E1 the columns of the identity matrix (i.e. the canonical basis of Kn), we
have, after expanding the determinants along the j-th column

P'(X) = (det(XJ- M))' = L A1,1(X)
1::;j::;n

where A1,1(X) is the (n-1)x(n-1) sub-determinant of XI -M obtaining by
removing row and column j, i.e. A1,1 is the coefficient of row and column j of
the adjoint matrix A(X), and this proves the lemma. 0

Proof of the Algorithm. Call A(X) the adjoint matrix of X In -M. We can write
A(X) = Lo<i<n-1 cixn-i- 1 with constant matrices ci. From the lemma, it
follows that ifP(X) = Lo::;i::;n aixn-i we have

On the other hand, since P(X)In = (X In- M)A(X), we obtain by comparing
coefficients Co = In and for i ;::: 1

Taking traces, this gives (n-i)ai = Tr(MCi-d +nai, i.e. ai =- Tr(MCi_l)fi.
Finally, it is clear that A(O) = Cn_ 1 is the adjoint matrix of -M, hence
(-1)n- 1Cn_ 1 is the adjoint matrix of M, thus showing the validity of the
~~. 0

The total number of operations is easily seen to be asymptotic to n4

multiplications, and this may seem slower (by a factor of 3) than the method
based on Lagrange interpolation. However, since no divisions are required the
basic multiplication/division time is reduced considerably--especially when
the matrix M has integral entries, and hence this algorithm is in fact faster.
In addition, it gives for free the adjoint matrix of M (and even of XIn- M
if we want it).

The fourth and last method is based on the notion of Hessenberg form of
a matrix. We first compute a matrix H which is similar to M (i.e. is of the
form PM p-1), and in particular has the same characteristic polynomial as
M, and which has the following form (Hessenberg form)

C''
h1,2 h1,3

h,,. l k2 h2,2 h2,3 h2,n
H= 0 k3 h3,3 h3,n .

0 0 kn hn,n

In this form, since we have a big triangle of zeros on the bottom left, it is not
difficult to obtain a recursive relation for the characteristic polynomial of H,

56 2 Algorithms for Linear Algebra and Lattices

hence of M. More precisely, if Pm(X) is the characteristic polynomial of the
sub-matrix of H formed by the first m rows and columns, we have Po(X)= 1
and the recursion:

Pm(X) =(X- hm,m)Pm-1(X)- Y=1
(hi,m(_fr ki)Pi-1(X)).

t=1 J=t+1

This leads to the following algorithm.

Algorithm 2.2.9 (Hessenberg). Given an n x n matrix M = (m;,j) with
coefficients in a field, this algorithm computes the characteristic polynomial of M
by first transforming M into a Hessenberg matrix as above.

1. [Initialize] Set H +-- M, m +-- 2.

2. [Search for non-zero] If all the h;,m- 1 with i > m are equal to 0, go to step
4. Otherwise, let i ~ m be the smallest index such that h;,m-1 =/= 0. Set
t +-- hi,m- 1 . Then if i > m, for all j ~ m- 1 exchange h;,j and hm,j and
exchange column H; with column Hm.

3. [Eliminate] Fori= m+1, ... , n do the following if h;,m-1 =/= 0: u +-- h;,m-1/t,
for all j ~ m set h;,j +-- h;,j- uhm,j. set hi,m- 1 +-- 0, and finally set column
Hm +-- Hm + uH;.

4. [Hessenberg finished?] If m < n- 1, set m +-- m + 1 and go to step 2.

5. [Initialize characteristic polynomial] Set p0 (X) +-- 1 and m +-- 1.

6. [Initialize computation] Set Pm(X) +--(X- hm,m)Pm- 1 (X) and t +-- 1.

7. [Compute Pm] For i = 1, ... , m- 1 do the following: set t +-- thm-i+l,m-i•
Pm(X) +-- Pm(X)- thm-i,mPm-i-1(X).

8. [Finished?] If m < n set m +-- m + 1 and go to step 6. Otherwise, output
Pn(X) and terminate the algorithm.

This algorithm requires asymptotically only n3 multiplications/divisions
in the general case, and this is much better than the preceding algorithms
when n is large. If M has integer coefficients however, the Hessenberg form as
well as the intermediate results will usually be non-integral rational numbers,
hence we lose all the advantage of the reduced operation count, since the time
needed for the basic multiplications/divisions will be large. In that case, one
should not use the Hessenberg algorithm directly. Instead, one should apply
it to compute the characteristic polynomial modulo sufficiently many primes
and use the Chinese remainder theorem, exactly as we did for the determinant.
For this, we need bounds for the coefficients of the characteristic polynomial,
analogous to the Hadamard bound. The following result, although not optimal,
is easy to prove and gives a reasonably good estimate.

Proposition 2.2.10. Let M = (m;,j) be an nxn matrix, and write det(XIn
M) = Lo<k<n akxn-k with ao = 1. Let B be an upper bound for the moduli
of all the m;"J. Then the coefficients ak satisfy the inequality

2.3 Linear Algebra on General Matrices 57

Proof As already mentioned, the coefficient ak is up to sign equal to the sum of
the (~) principal k x k minors. By Hadamard's inequality (Proposition 2.2.4),
each of these minors is bounded by IHE lmiil 2) 112 where the product and
the sums have k terms. Hence the minors are bounded by (kB 2)kf2 = kkf2 Bk,
and this gives the proposition. D

Remarks.

(1) The optimal form for computing the characteristic polynomial of a matrix
would be triangular. This is however not possible if the eigenvalues of
the matrix are not in the base field, hence the Hessenberg form can be
considered as the second best choice.

(2) A problem related to computing the characteristic polynomial, is to com
pute the eigenvalues (and eigenvectors) of a matrix, say with real or com
plex coefficients. These are by definition the roots of the characteristic
polynomial P(X). Therefore, we could compute P(X) using one of the
above methods, then find the roots of P(X) using algorithm 3.6.6 which
we will see later, and finally apply algorithm 2.2.1 to get the eigenvectors.
This is however not the way to proceed in general since much better meth
ods based on iterative processes are available from numerical analysis (see
[Gol-Van], [PFTV]), and we will not study this subject here.

2.3 Linear Algebra on General Matrices

2.3.1 Kernel and Image

We now come to linear algebra problems which deal with arbitrary m x n
matrices M with coefficients in a field K. Recall from above that M can be
viewed as giving a generating set for the subspace of Km generated by the
columns of M, or as the matrix of a linear map from an n-dimensional space
to an m-dimensional space with respect to some bases. (Beware of the order
of m and n.) It is usually conceptually easier to think of M in this way.

The first basic algorithm that we will need is for computing the kernel of
M, i.e. a basis for the space of column vectors X such that M X = 0. The
following algorithm is adapted from [Knu2].

Algorithm 2.3.1 (Kernel of a Matrix). Given an m x n matrix M = (mi,j)
with 1 :::; i :::; m and 1 :::; j :::; n having coefficients in a field K, this algorithm

58 2 Algorithms for Linear Algebra and Lattices

outputs a basis of the kernel of M, i.e. of column vectors X such that M X = 0.
We use auxiliary constants Ci (1:::; i:::; m) and di (1:::; i:::; n).

1. [Initialize] Set r <----- 0, k <----- 1 and for i = 1, ... , m, set Ci <----- 0 (there is no
need to initialize di)·

2. [Scan column] If there does not exist a j such that 1 :::; j :::; m with mj,k /= 0
and Cj = 0 then set r <----- r + 1, dk <----- 0 and go to step 4.

3. [Eliminate] Set d <----- -mj,~. mj,k <----- -1 and for s = k + 1, ... , n set mj,s <---

dmj,s· Then for all i such that 1 :::; i :::; m and i /= j set d <----- mi,k. mi,k <----- 0
and for s = k + 1, ... , n set mi,s <----- mi,s + dmj,s· Finally, set Cj <----- k and
dk <----- j.

4. [Finished?] If k < n set k <----- k + 1 and go to step 2.

5. [Output kernel] (Here r is the dimension of the kernel.) For every k such that
1 :::; k :::; n and dk = 0 (there will be exactly r such k), output the column
vector X = (xih~i~n defined by

{
md,,k, if di > 0

Xi= 1, if i = k

0, otherwise.

These r vectors form a basis for the kernel of M. Terminate the algorithm.

The proof of the validity of this algorithm is not difficult and is left as an
exercise for the reader (see Exercise 8). In fact, the main point is that Cj > 0
if and only if mj,c; = -1 and all other entries in column Cj are equal to zero.

Note also that step 3 looks complicated because I wanted to give as effi
cient an algorithm as possible, but in fact it corresponds to elementary row
operations.

Only a slight modification of this algorithm gives the image of M, i.e. a
basis for the vector space spanned by the columns of M. In fact, apart from
the need to make a copy of the initial matrix M, only step 5 needs to be
changed.

Algorithm 2.3.2 (Image of a Matrix). Given an m x n matrix M = (mi,j)
with 1 :::; i :::; m and 1 :::; j :::; n having coefficients in a field K, this algorithm
outputs a basis of the image of M, i.e. the vector space spanned by the columns
of M. We use auxiliary constants ci (1 :::; i :::; m).

1. [Initialize] Set r <----- 0, k <----- 1 and fori = 1, ... , m, set Ci <----- 0, and let N <----- M
(we need to keep a copy of the initial matrix M).

2. (Scan column]lf there does not exists a j such that 1 :::; j :::; m with mj,k /= 0
and ci = 0 then set r <----- r + 1, dk <----- 0 and go to step 4.

3. (Eliminate] Set d <----- -m~L mj,k <----- -1 and for s = k + 1, ... , n set mj,s <---

dmj,s· Then for all i such that 1 :::; i :::; m and i /= j set d <----- mi,k· mi,k <----- 0

2.3 Linear Algebra on General Matrices 59

and for s = k + 1, ... , n set mi,s +- mi,s + dmj,s· Finally, set Cj +- k and
dk +- j.

4. [Finished?] If k < n set k +- k + 1 and go to step 2.

5. [Output image] (Here n- r is the dimension of the image, i.e. the rank of the
matrix M.) For every j such that 1 :s; j :s; m and Cj #- 0 (there will be exactly
n- r such j), output the column vector Nc3 (where Nk is the k-th column of
the initial matrix M). These n- r vectors form a basis for the image of M.
Terminate the algorithm.

One checks easily that both the kernel and image algorithms require
asymptotically n2m/2 multiplications/divisions in general.

There are many possible variations on this algorithm for determining the
image. For example if only the rank of the matrix M is needed and not an
actual basis of the image, simply output the number n - r in step 5. If one
needs to also know the precise rows and columns that must be extracted from
the matrix M to obtain a non-zero (n-r) x (n-r) determinant, we output the
pairs (j, ci) for each j :S: m such that Cj #- 0, where j gives the row number,
and Cj the column number.

Finally, if the columns of M represent a generating set for a subspace of
Km, the image algorithm enables us to extract a basis for this subspace.

Remark. We recall the following definition.

Definition 2.3.3. We will say that an m x n matrix M is in column echelon
form if there exists r :s; n and a strictly increasing map f from [r + 1, n] to
[1, m] satisfying the following properties.

(1) For r + 1 :S: j :S: n, mf(j),j = 1, mi,j = 0 if i > f(j) and mf(k),j = 0 if
k <j.

(2) The first r columns of M are equal to 0.

It is clear that the definition implies that the last n - r columns (i.e. the
non-zero columns) of Mare linearly independent.

It can be seen that Algorithm 2.3.1 gives the basis of the kernel in column
echelon form. This property can be useful in other contexts, and hence, if
necessary, we may assume that the basis which is output has this property.
In fact we will see later that any subspace can be represented by a matrix in
column echelon form (Algorithm 2.3.11).

For the image, the basis is simply extracted from the columns of M, no
linear combination being taken.

60 2 Algorithms for Linear Algebra and Lattices

2.3.2 Inverse Image and Supplement

A common problem is to solve linear systems whose matrix is either not square
or not invertible. In other words, we want to generalize algorithm 2.2.1 for
solving M X = B where M is an m x n matrix. If Xo is a particular solution
of this system, the general solution is given by X = Xo + Y where Y E ker(M),
and ker(M) can be computed using Algorithm 2.3.1, so the only problem is
to find one particular solution to our system (or to show that none exist). We
will naturally call this the inverse image problem.

If we want the complete inverse image and not just a single solution, the
best way is probably to use the kernel Algorithm 2.3.1. Indeed, consider the
augmented m x (n + 1) matrix M1 obtained by adding B as an n +1-st
column to the matrix M. If X is a solution to MX = B, and if X1 is the
n+ 1-vector obtained from X by adding -1 as n+ 1-st component, we clearly
have M1X1 = 0. Conversely, if X1 is any solution of M1X1 = 0, then either
the n + 1-st component of X 1 is equal to 0 (corresponding to elements of
the kernel of M), or it is non-zero, and by a suitable normalization we may
assume that it is equal to -1, and then the first n components give a solution
to M X = B. This leads to the following algorithm.

Algorithm 2.3.4 (Inverse Image). Given an m x n matrix M and an m
dimensional column vector B, this algorithm outputs a solution to MX = B or
outputs a message saying that none exist. (The algorithm can be trivially modified
to output the complete inverse image if desired.)

1. [Compute kernel] Let M1 be them x (n + 1) matrix whose first n columns are
those of M and whose n +1-st column is equal to B. Using Algorithm 2.3.1,
compute a matrix V whose columns form a basis for the kernel of Mt. Let r
be the number of columns of V.

2. [Solution exists?]lf Vn+l,j = 0 for all j such that 1 :::; j :::; r, output a message
saying that the equation M X = B has no solution. Otherwise, let j :::; r be
such that Vn+l,j # 0 and set d ~ -1/vn+l,j·

3. [Output solution] Let X = (xih<i<n be the column vector obtained by setting
Xi ~ dvi,j· Output X and termin;te the algorithm.

Note that as for the kernel algorithm, this requires asymptotically n2m/2
multiplications/divisions, hence is roughly three times slower than algorithm
2.2.1 when n = m.

If we want only one solution, or if we want several inverse images cor
responding to the same matrix but different vectors, it is more efficient to
directly use Gaussian elimination once again. A simple modification of Algo
rithm 2.2.2 does this as follows.

Algorithm 2.3.5 (Inverse Image Matrix). Let M be an m x n matrix and
V be an m x r matrix, where n :::; m. This algorithm either outputs a message
saying that some column vector of V is not in the image of M, or outputs an

2.3 Linear Algebra on General Matrices 61

n x r matrix X such that V = MX. We assume that the columns of Mare
linearly independent. We use an auxiliary column vector C and we recall that B~
(resp. Mf, xn denotes the i-th row of B (resp. M, X).

1. [Initialize] Set j +--- 0 and B +--- V.

2. [Finished?] Let j +--- j + 1. If j > n go to step 6.

3. [Find non-zero entry] If mi,j = 0 for all i such that m ;:::: i ;:::: j, output
a message saying that the columns of M are not linearly independent and
terminate the algorithm. Otherwise, let i be some index such that m ;:::: i ;:::: j
and mi,j =1- 0.

4. [Swap?] If i > j, for l = j, ... , n exchange mi,l and mj,l. and exchange the
rows B: and Bj.

5. [Eliminate] (Here mj,j =1- 0.) Set d +--- mj,J and for all k such that m;:::: k > j
set Ck +--- dmk,j· Then for all k and l such that m ;:::: k > j and n ;:::: l > j
set mk,l +--- mk,l- Ckmj,l· Finally, for all k such that m;:::: k > j set B!. +--
B!. - ckBj and go to step 2.

6. [Solve triangular system] (Here the first n rows of M form an upper tri
angular matrix.) For i = n, n - 1, ... , 1 (in that order) set Xf +--- (Bf -
Li<j:S:n mi,jXj)/mi,i·

7. [Check rest of matrix] Check whether for each k such that m ;:::: k > n we
have B!. = MkX. If this is not the case, output a message that some column
vector of V is not in the image of M. Otherwise, output the matrix X and
terminate the algorithm.

Note that in practice the columns of M represent a basis of some vector
space hence are linearly independent. However, it is not difficult to modify
this algorithm to work without the assumption that the columns of M are
linearly independent.

Another problem which often arises is to find a supplement to a subspace
in a vector space. The subspace can be considered as given by the coordinates
of a basis on some basis of the full space, hence as an n x k matrix M with
k :S: n of rank equal to k. The problem is to supplement this basis, i.e. to
find an invertible n x n matrix B such that the first k columns of B form the
matrix M. A basis for a supplement of our subspace is then given by the last
n- k columns of B.

This can be done using the following algorithm.

Algorithm 2.3.6 (Supplement a Basis). Given ann x k matrix M with k :S: n
having coefficients in a field K, this algorithm either outputs a message saying
that M is of rank less than k, or outputs an invertible n x n matrix B such that
the first k columns of B form the matrix M. Recall that we denote by Bj the
columns of B.

1. [Initialize] Sets+--- 0 and B +---In.

62 2 Algorithms for Linear Algebra and Lattices

2. [Finished?] If 8 = k, then output B and terminate the algorithm.

3. [Search for non-zero] Set 8 +- 8 + 1. Let t be the smallest j ~ 8 such that
mt,s f= 0, and set d +- mt"). If such a t ::::; n does not exist, output a message
saying that the matrix M is of rank less than k and terminate the algorithm.

4. [Modify basis and eliminate] Set Bt +- B 8 (if t f= 8), then set Bs +- Ms.
Then for j = 8 + 1, ... , k, do as follows. Exchange ms,i and mt,i {if t f= 8).
Set ms,i +- dms,i· Then, for all if= 8 and if= t, set mi,j +- mi,i- mi,sffis,i·
Finally, go to step 2.

Proof This is an easy exercise in linear algebra and is left to the reader
(Exercise 9). Note that the elimination part of step 4 ensures that the matrix
BM stays constant throughout the algorithm, and at the end of the algorithm
the first k rows of the matrix M form the identity matrix Ik, and the last n- k
rows are equal to 0. D

Often one needs to find the supplement of a subspace in another subspace
and net in the whole space. In this case, the simplest solution is to use a
combination of Algorithms 2.3.5 and 2.3.6 as follows.

Algorithm 2.3.7 (Supplement a Subspace in Another). Let V (resp. M) be
an m x r {resp. m x n) matrix whose columns form a basis of some subspace
F (resp. E) of Km with r ::::; n ::::; m. This algorithm either finds a basis for a
supplement of F in E or outputs a message saying that F is not a subspace of
E.

1. [Find new coordinates] Using Algorithm 2.3.5, find an n x r inverse image
matrix X such that V = M X. If such a matrix does not exist, output a
message saying that F is not a subspace of E and terminate the algorithm.

2. [Supplement X] Apply Algorithm 2.3.6 to the matrix X, thus giving ann x n
matrix B whose first r columns form the matrix X.

3. [Supplement F in E) Let C be the n x n - r matrix formed by the last n - r
columns of B. Output MC and terminate the algorithm (the columns of MC
will form a basis for a supplement ofF in E).

Note that in addition to the error message of step 1, Algorithms 2.3.5 and
2.3.6 will also output error messages if the columns of V or M are not linearly
independent.

2.3.3 Operations on Subspaces

The final algorithms that we will study concern the sum and intersection of
two subspaces. If M and M' are m x n and m x n' matrices respectively, the
columns of M (resp. M') span subspaces V (resp. V') of Km. To obtain a
basis for the sum V + V' is very easy.

2.3 Linear Algebra on General Matrices 63

Algorithm 2.3.8 (Sum of Subspaces). Given an m x n (resp. m x n') matrix
M (resp. M') whose columns span a subspace V (resp. V') of Km, this algorithm
finds a matrix N whose columns form a basis for V + V'.

1. [Concatenate] Let M 1 be the m x (n + n') matrix obtained by concatenating
side by side the matrices M and M'. (Hence the first n columns of M1 are
those of M, the last n' those of M'.)

2. Using Algorithm 2.3.2 output a basis of the image of M1 and terminate the
algorithm.

Obtaining a basis for the intersection V n V' is not much more difficult.

Algorithm 2.3.9 (Intersection of Subspaces). Given an m x n (resp. m x n')
matrix M (resp. M') whose columns span a subspace V (resp. V') of Km, this
algorithm finds a matrix N whose columns form a basis for V n V'.

1. [Compute kernel] Let M 1 be them x (n+n') matrix obtained by concatenating
side by side the matrices M and M'. (Hence the first n columns of M1 are
those of M, the last n' those of M'.) Using Algorithm 2.3.1 compute a basis
of the kernel of M1o given by an (n + n') x p matrix N for some p.

2. [Compute intersection] Let N1 be then x p matrix obtained by extracting from
N the first n rows. Set M 2 <--- MN1 , output the matrix obtained by applying
Algorithm 2.3.2 to M2 and terminate the algorithm. (Note that if we know
beforehand that the columns of M (resp. M') are also linearly independent,
i.e. form a basis of V (resp. V'), we can simply output the matrix M2 without
applying Algorithm 2.3.2.)

Proof We will constantly use the trivial fact that a column vector B is in the
span of the columns of a matrix M if and only if there exists a column vector
X such that B = MX.

Let N{ be the n' x p matrix obtained by extracting from N the last n'
rows. By block matrix multiplication, we have M N1 + M' N{ = 0. If Bi is the
i-th column of M2 = MN1 then Bi E V, but Bi is also equal to the opposite
of the i-th column of M' N{, hence Bi E V'. Conversely, let B E V n V'. Then
we can write B = M X = M' X' for some column vectors X and X'. If Y is
the n + n'-dimensional column vector whose first n (resp. last n') components
are X (resp. -X'), we clearly have M 1Y = 0, hence Y = NC for some column
vector C. In particular, X= N1C hence B = MN1C = M2C, soB belongs
to the space spanned by the columns of M 2 . It follows that this space is equal
to V n V', and the image algorithm gives us a basis.

If the columns of M (resp. M') are linearly independent, then it is left
as an easy exercise for the reader to check that the columns of M2 are also
linearly independent (Exercise 12), thus proving the validity of the algorithm.

D

As mentioned earlier, a subspace V of Km can be represented as an m x n
matrix M = M(V) whose columns are the coordinates of a basis of Von the

64 2 Algorithms for Linear Algebra and Lattices

canonical basis of Km. This representation depends entirely on the basis, so
we may hope to find a more canonical representation. For example, how do
we decide whether two subspaces V and W of Km are equal? One method is
of course to check whether every basis element of W is in the image of the
matrix V and conversely, using Algorithm 2.3.4.

A better method is to represent V by a matrix having a special form, in
the present case in column echelon form (see Definition 2.3.3).

Proposition 2.3.10. If V is a subspace of Km, there exists a unique basis
of V such that the corresponding matrix M(V) is in column echelon form.

Proof This will follow immediately from the following algorithm. 0

Algorithm 2.3.11 (Column Echelon Form). Given an m x n matrix M this
algorithm outputs a matrix N in column echelon form whose image is equal to
the image of M (i.e. N = MP for some invertible n x n matrix P).

1. [Initialize] Set i <--- m and k <--- n.

2. [Search for non-zero] Search for the largest integer j :=:; k such that mi,j =/=- 0.
If such a j does not exist, go to step 4. Otherwise, set d <--- 1/mi,j, then for
l = 1, ... ,i set t <--- dmt,j. mt,j <--- mt,k (if j =/=- k) and mt,k <--- t.

3. [Eliminate] For all j such that 1 :=:; j :=:; n and j =f=. k and for all l such that
1 :=:; l :=:; i set mt,j <--- mt,j - mt,kmi,j. Finally, set k <--- k - 1.

4. [Next row] If i = 1 output M and terminate the algorithm. Otherwise, set
i <--- i - 1 and go to step 2.

The proof of the validity of this algorithm is easy and left to the reader
(see Exercise 11). The number of required multiplications/divisions is asymp
totically n2 (2m- n)/2 if n :=:; m and nm2 /2 if n > m.

Since the non-zero columns of a matrix which is in column echelon form
are linearly independent, this algorithm gives us an alternate way to compute
the image of a matrix. Instead of obtaining a basis of the image as a subset of
the columns, we obtain a matrix in column echelon form. This is preferable in
many situations. Comparing the number of multiplications/divisions needed,
this algorithm is slower than Algorithm 2.3.2 for n :=:; m, but faster when
n>m.

2.3.4 Remarks on Modules

We can study most of the above linear algebra problems in the context of
modules over a commutative ring with unit R instead of vector spaces over a
field. If the ring R is an integral domain, we can work over its field of fractions
K. (This is what we did in the algorithms given above when we assumed that
the matrices had integral entries.) However, this is not completely satisfactory,
since the answer that we want may be different. For example, to compute the

2.3 Linear Algebra on General Matrices 65

kernel of a map defined between two free modules of finite rank (given as
usual by a matrix), finding the kernel as a K-vect"or space is not sufficient,
since we want it as an R-module. In fact, this kernel will usually not be a free
module, hence cannot be represented by a matrix whose columns form a basis.
One important special case where it will be free is when R is a principal ideal
domain (PID, see Chapter 4). In this case all submodules of a free module of
finite rank are free of finite rank. This happens when R =IE. or R = k[X] for
a field k. In this case, asking for a basis of the kernel makes perfectly good
sense, and the algorithm that we have given is not sufficient. We will see later
(Algorithm 2.4.10) how to solve this problem.

A second difficulty arises when R is not an integral domain, because of
the presence of zero-divisors. Since almost all linear algebra algorithms involve
elimination, i.e. division by an element of R, we are bound at some point to get
a non-zero non-invertible entry as divisor. In this case, we are in more trouble.
Sometimes however, we can work around this difficulty. Let us consider for
example the problem of solving a square linear system over 'lljr/Z, where r is
not necessarily a prime. If we know the factorization of r into prime powers,
we can use the Chinese remainder Theorem 1.3.9 to reduce to the case where
r is a prime power. If r is prime, Algorithm 2.2.1 solves the problem, and if r
is a higher power of a prime, we can still use Algorithm 2.2.1 applied to the
field K = Qp of p-adic numbers (see Exercise 2).

But what are we to do if we do not know the complete factorization of r?
This is quite common, since as we will see in Chapters 8, 9 and 10 large num
bers (say more than 80 decimal digits) are quite hard to factor. Fortunately,
we do not really care. After extracting the known factors of r, we are left with
a linear system modulo a new r for which we know (or expect) that it does
not have any small factors (say none less than 106). We then simply apply
Algorithm 2.2.1. Two things may happen. Either the algorithm goes through
with no problem, and this will happen as long as all the elements which are
used to perform the elimination (which we will call the pivots) are coprime to
r. This will almost always be the case since r has no small factors. We then
get the solution to the system. Note that this solution must be unique since
the determinant of M, which is essentially equal to the product of the pivots,
is coprime to r.

The other possibility is that we obtain a pivot p which is not coprime to r.
Since the pivot is non-zero (modulo r), this means that the GCD (p, r) gives
a non-trivial factor of r, hence we split r as a product of smaller (coprime)
numbers and apply Algorithm 2.2.1 once again. The idea of working "as if" r
was a prime can be applied to many number-theoretic algorithms where the
basic assumption is that 'lljr/Z is a field, and usually the same procedure can
be made to work. H. W. Lenstra calls the case where working this way we
find a non-trivial factor of r a side exit. In fact, this is sometimes the main
purpose of an algorithm. For example, the elliptic curve factoring algorithm
(Algorithm 10.3.3) uses exactly this kind of side exit to factor r.

66 2 Algorithms for Linear Algebra and Lattices

2.4 Z-Modules and the Hermite and Smith Normal
Forms

2.4.1 Introduction to Z-Modules

The most common kinds of modules that one encounters in number theory,
apart from vector spaces, are evidently Z-modules, i.e. Abelian groups. The
Z-modules V that we consider will be assumed to be finitely generated, in
other words there exists a finite set (vih::;i::;k of elements of V such that any
element of V can be expressed as a linear combination of the Vi with integral
coefficients. The basic results about such Z-modules are summarized in the
following theorem, whose proof can be found in any standard text (see for
example [Lang]).

Theorem 2.4.1. Let V be a finitely generated Z-module (i.e. Abelian group).

(1) If vtors is the torsion subgroup of V, i.e. the set of elements v E V such
that there exists mE Z \ {0} with mv = 0, then vtors is a finite group, and
there exists a non-negative integer n and an isomorphism

V::::: vtors X zn

(the number n is called the rank of V).
(2) If v is a free Z-module (i.e. if v::::: zn I or equivalently by (1} if vtors =

{0} }, then any submodule of V is free of rank less than or equal to that of
v.

(3) If V is a finite Z-module (i.e. by (1} if V is of zero rank}, there exists n
and a submodule L of zn (which is free by (2}} such that v::::: zn I L.

Note that (2) and (3) are easy consequences of (1) (see Exercise 13).
This theorem shows that the study of finitely generated Z-modules splits

naturally into, on the one hand the study of finite Z-modules (which we will
usually denote by the letter G for (finite Abelian) group), and on the other
hand the study of free Z-modules of finite rank (which we will usually denote
by the letter L for lattice (see Section 2.5)). Furthermore, (3) shows that
these notions are in some sense dual to each other, so that we can in fact
study only free Z-modules, finite Z-modules being considered as quotients of
free modules.

Studying free modules L puts us in almost the same situation as studying
vector spaces. In particular, we will usually consider L to be a submodule
of some zm, and we will represent L as an m x n matrix M whose columns
give the coordinates of a basis of L on the canonical basis of zm. Such a
representation is of course not unique, since it depends on the choice of a
basis for L. In the case of vector spaces, one of the ways to obtain a more
canonical representation was to transform the matrix M into column echelon

2.4 Z-Modules and the Hermite and Smith Normal Forms 67

form. Since this involves elimination, this is not possible anymore over Z.
Nonetheless, there exists an analogous notion which is just as useful, called the
Hermite normal form (abbreviated HNF). Another notion, called the Smith
normal form (abbreviated SNF) allows us to represent finite &!:.-modules.

2.4.2 The Hermite Normal Form

The following definition is the analog of Definition 2.3.3 for &!:.-modules.

Definition 2.4.2. We will say that an m x n matrix M = (mi,j) with integer
coefficients is in Hermite normal form (abbreviated HNF) if there exists r ::; n
and a strictly increasing map f from [r + 1, n] to [1, m] satisfying the following
properties.

(1) For r + 1 ::; j ::; n, mf(j),j ~ 1, mi,j = 0 if i > f(j) and 0::; mf(k),j <
ffiJ(k),k if k < j.

(2) The first r columns of M are equal to 0.

Remark. In the important special case where m = n and f(k) = k (or
equivalently det(M) i= 0), M is in HNF if it satisfies the following conditions.

(1) M is an upper triangular matrix, i.e. mi,j = 0 if i > j.
(2) For every i, we have mi,i > 0.
(3) For every j > i we have 0 ::; mi,j < mi,i·

More generally, if n ~ m, a matrix M in HNF has the following shape

(

0 0
0 0

0 0

0 *
0 0

0 0

*
*

0

where the last m columns form a matrix in HNF.

f)
Theorem 2.4.3. Let A be an m x n matrix with coefficients in Z. Then there
exists a unique m x n matrix B = (bi,j) in HNF of the form B = AU with
U E GLn(Z), where GLn(Z) is the group of matrices with integer coefficients
which are invertible, i.e. whose determinant is equal to ±l.

Note that although B is unique, the matrix U will not be unique.
The matrix W formed by the non-zero columns of B will be called the

Hermite normal form of the matrix A. Note that if A is the matrix of any
generating set of a sub-Z-module L of zm, and not only of a basis, the columns
of W give the unique basis of L whose matrix is in HNF. This basis will be
called the HNF basis of the Z-module L, and the matrix W the HNF of L.

68 2 Algorithms for Linear Algebra and Lattices

In the special case where the Z-module L is of rank equal tom, the matrix
W will be upper triangular, and will sometimes be called the upper triangular
HNF of L.

We give the proof of Theorem 2.4.3 as an algorithm.

Algorithm 2.4.4 (Hermite Normal Form). Given an m x n matrix A with
integer coefficients (a;,j) this algorithm finds the Hermite normal form W of A.
As usual, we write w;,j for the coefficients of W, A; (resp. Wi) for the columns
of A (resp. W).

1. [Initialize] Set i <- m, k <- n, l <- 1 if m ::; n, l <- m- n + 1 if m > n.

2. [Row finished?] If all the a;,j with j < k are zero, then if a;,k < 0 replace
column Ak by -Ak and go to step 5.

3. [Choose non-zero entry] Pick among the non-zero a;,j for j ::; k one with the
smallest absolute value, say a;,j0 . Then if j 0 < k, exchange column Ak with
column Ajo· In addition, if a;,k < 0 replace column Ak by -Ak. Set b <- ai,k·

4. [Reduce] For j = 1, ... , k - 1 do the following: set q <- l a;,j fb l, and Ai <

Ai - qAk. Then go to step 2.

5. [Final reductions] Set b <- ai,k· If b = 0, set k <- k + 1 and go to step 6.
Otherwise, for j > k do the following: set q <-la;,j/bJ, and Ai <- Aj -qAk.

6. [Finished?] If i = l then for j = 1, ... , n - k + 1 set Wi <- Aj+k-1 and
terminate the algorithm. Otherwise, set i <- i- 1, k <- k- 1 and go to step
2.

This algorithm terminates since one can easily prove that ia;,kl is strictly
decreasing each time we return to step 2 from step 4. Upon termination, it is
clear that W is in Hermite normal form, and since it has been obtained from
A by elementary column operations of determinant ±1, W is the HNF of A.
We leave the uniqueness statement of Theorem 2.4.3 as an exercise for the
reader (Exercise 14). D

Remarks.

(1) It is easy to modify the above algorithm (as well as the subsequent ones)
so as to give the lower triangular HNF of A in the case where A is of rank
equal tom.

(2) If we also want the matrix U E GLn(Z), it is easy to add the corresponding
statements (see for example Algorithm 2.4.10).

Consider the very special case m = 1, n = 2 of this algorithm. The result
will be (usually) a 1 x 1 matrix whose unique element is equal to the GCD
(a1,1, a1,2). Hence, it is conceptually easier, and usually faster, to replace in the
above algorithm divisions by (extended) GCD's. We can then choose among
several available methods for computing these GCD's. This gives the following
algorithm.

2.4 Z-Modules and the Hermite and Smith Normal Forms 69

Algorithm 2.4.5 (Hermite Normal Form). Given an m x n matrix A with
integer coefficients (ai,j) this algorithm finds the Hermite normal form W of A.
We use an auxiliary column vector B.

1. [Initialize] Set i +-- m, j +-- n, k +-- n, l = 1 if m ~ n, l = m- n + 1 if m > n.

2. [Check zero] If j = 1 go to step 4. Otherwise, set j +-- j - 1, and if ai,j = 0
go to step 2.

3. [Euclidean step] Using Euclid's extended algorithm, compute (u, v, d) such that
uai,k +vai,j = d = gcd(ai,k, ai,j), with lui and lvl minimal (see below). Then
set B +-- uAk + vAi, Aj +-- (ai,k/d)Aj- (ai,j/d)Ak, Ak +-- B, and go to step
2.

4. [Final reductions] Set b +-- ai,k· If b < 0 set Ak +-- -Ak and b +-- -b. Now if
b = 0, set k +-- k + 1, and if l > 1 and i = l set l +-- l-1, then go to step 5,
otherwise for j > k do the following: set q +-lai,j/bJ, and Aj+- Aj- qAk.

5. [Finished?] If i = l then for j = 1, ... , n - k + 1 set Wj +-- Ai+k-1 and
terminate the algorithm. Otherwise, set i +-- i -1, k +-- k- 1, j +-- k and go
to step 2.

Important Remark. In step 3, we are asked to compute (u, v, d) with lui
and I vi minimal. The meaning of this is as follows. We must choose among all
possible (u, v), the unique pair such that

_1~1 < vsign(b) ~ 0 and 1 ~ usign(a) ~ 1~1.

In fact, the condition on u is equivalent to the condition on v and that such
a pair exists and is unique is an exercise left to the reader (Exercise 15). The
sign conditions are not important, they could be reversed if desired, but it is
essential that when d = Ia I, i.e. when a I b, we take v = 0. If this condition is
not obeyed, the algorithm may enter into an infinite loop. This remark applies
also to all the Hermite and Smith normal form algorithms that we shall see
below.

Algorithms 2.4.4 and 2.4.5 work entirely with integers, and there are no
divisions except for Euclidean divisions, hence one could expect that it be
haves reasonably well with respect to the size of the integers involved. Un
fortunately, this is absolutely not the case, and the coefficient explosion phe
nomenon occurs here also, even in very reasonable situations. For example,
Hafner-McCurley ([Haf-McCur2]) give an example of a 20 x 20 integer matrix
whose coefficients are less than or equal to 10, but which needs integers of up
to 1500 decimal digits in the computations of Algorithm 2.4.4 or Algorithm
2.4.5 leading to its HNF. Hence, it is necessary to improve these algorithms.

One modification of Algorithm 2.4.5 would be for a fixed row i, instead
of setting equal to zero the successive ai,j for j = k- 1, k- 2, ... , 1 by doing
column operations between columns i and j, to set these ai,j equal to zero
in the same order, but now doing operations between columns k and k - 1,

70 2 Algorithms for Linear Algebra and Lattices

then k- 1 and k- 2, and so on until columns 2 and 1, and then exchanging
columns 1 and k. This idea is due to Bradley [Bra].

Still another modification is the following. In Algorithm 2.4.5, we perform
the column operations as follows: (k, k - 1), (k, k - 2), ... , (k, 1). In the
modified version just mentioned, the order is (k, k- 1), (k- 1, k- 2), ... ,
(2, 1), (1, k). One can also for row i do as follows. Work with the pair of
columns (jt,J2) where ai,j1 and ai,h are the largest and second largest non
zero elements of row i with j :::; k. Then experiments show that the coefficient
explosion is considerably reduced, and actual computational experience shows
that it is faster than the preceding versions. However this is still insufficient
for our needs.

When m :::; n and A is of rank m (in which case W is an upper triangular
matrix with non-zero determinant D), an important improvement suggested
by several authors (see for example [Kan-Bac]) is to work modulo a multiple
of the determinant of W, or even modulo a multiple of the exponent of zm /W.
(Note that Dis equal to the order of the finite 'll-module zm /W; the exponent
is by definition the smallest positive integer e such that ezm c W. It divides
the determinant.)

In the case where m = n, we have det(W) = ± det(A) hence the determi
nant can be computed before doing the reduction if needed. In the general case
however one does not know det(W) in advance, but in practice, the HNF is
often used for obtaining a HNF-basis for a 'll-module L in a number field (see
Chapter 4), and in that case one usually knows a multiple of the determinant
of L. One can modify all of the above mentioned algorithms in this way.

These modifications are based on the following additional algorithm, es
sentially due to Hafner and McCurley (see [Haf-McCur2]):

Algorithm 2.4.6 (HNF Modulo D). Let A be an m x n integer matrix of rank
m. Let L = (li,jh'5.i,j'5.m be them x m upper triangular matrix obtained from
A by doing all operations modulo D in any of the above mentioned algorithms,
where D is a positive multiple of the determinant of the module generated by the
columns of A (or equivalently of the determinant ofthe HNF of A). This algorithm
outputs the true upper triangular Hermite normal form W = (wi,jh'5.i,j'5.m of A.
We write Wi and Li for the i-th columns of W and L respectively.

1. [Initialize] Set b +-- D, i +-- m.

2. [Euclidean step] Using a form of Euclid's extended algorithm, compute (u, v, d)
such that uli,i + vb = d = gcd(li,i, b). Then set Wi <--- (uLi mod b) (recall
that a mod b is the least non-negative residue of a modulo b). If d = b (i.e. if
b lli,i) set in addition wi,i +-- d (if d =f:. b, this will already be true, but if d = b
we would have Wi,i = 0 if we do not include this additional assignment).

3. [Finished?] If i > 1, set b <--- bjd, i <--- i - 1 and go to step 2. Otherwise,
fori= m -1,m- 2, ... , 1, and for j = i + 1, ... ,m set q +-- Lwi,j/wi,iJ,
W1 <--- W1- qWi. Output the matrix W = (wi,jh'5.i,i'5.m and terminate the
algorithm.

2.4 Z-Modules and the Hermite and Smith Normal Forms 71

We must prove that this algorithm is valid. Since step 2 is executed exactly
m times, the algorithm terminates, so what we need to prove is that the
matrix W that the algorithm produces is indeed the HNF of A. For any
m x n matrix M of rank m, denote by /i(M) the GCD of all the i x i sub
determinants obtained from the last i rows of M for 1 ::; i ::; m. It is clear
that elementary column operations like those of Algorithms 2.4.4 or 2.4.5leave
these quantities unchanged. Furthermore, reduction modulo D changes these
i x i sub-determinants by multiples of D, hence does not change the GCD of
ri(M) with D. It is clear that lm-i+l(W) = wi,i · · · Wm,m divides det(W),
hence divides D. Therefore we have:

Wi,i · · · Wm,m = gcd(D,/m-i+l(W))

= gcd(D,/m-i+l(A))

= gcd(D,/m-i+l(L))

= gcd(D, li,i · · ·lm,m)·

hence the value given by Algorithm 2.4.6 for Wm,m is correct. Call Di the
value of b for the value i, and set Pi = Wi+l,i+l · · · Wm,m. Then if we assume
that the diagonal elements Wj,j are correct for j > i, we have by definition
Di = D/Pi. Hence, if we divide equation (li+1) by Pi we obtain

for 1 ::; i < m. Now if we divide equation (1i) by Pi we obtain

by the preceding formula, hence the diagonal elements of the matrix W which
are output by Algorithm 2.4.6 are correct. Since W is an upper triangular
matrix, it follows that its determinant is equal to the determinant of the HNF
of A.

To finish the proof that Algorithm 2.4.6 is valid, we will show that the
columns Wi = (uLi mod Di) output by the algorithm are in the Z-module L
generated by the columns of A. By the remark just made, this will show that,
in fact, the Wi are a basis of L, hence that W is obtained from A by elementary
transformations. Since step 3 of the algorithm finishes to transform W into a
Hermite normal form, W must be equal to the HNF of A. Since

wi = 2:::: ci,jAj + DiBi
l<.:;j<.:;m

where the Ai are the columns of A, Bi is a (column) vector in zm whose
components of index greater than i are zero, and the Ci,j are integers, the
claim concerning the wi follows immediately from the following lemma:

Lemma 2.4. 7. With the above notations, for every i with 1 ::; i ::; m and any
vector B whose components of index greater than i are zero, we have DiB E L.

72 2 Algorithms for Linear Algebra and Lattices

Proof. Consider the i x i matrix Ni formed by the first i rows and columns
of the true HNF of A. We already have proved that the diagonal elements are
Wj,j as output by the algorithm. Now if one considers zi as a submodule of
zm by considering the last m- i components to be equal to 0, then we see
that the columns of Ni (extended by m- i zeros) are Z-linear combinations
of the columns Ai of A, i.e. are in L. Now det(Ni) = w1,1 · · · Wi,i and by
definition Di is a multiple of Wl,l ... Wi,i· Hence, if Li is the submodule of zi
generated by the columns of Ni, we have on the one hand Li c zi n L, and
on the other hand, since det(Ni) = [zi : Li], we have det(Ni)zi c Li which
implies Dizi C L, and this is equivalent to the statement of the lemma. This
concludes the proof of the validity of Algorithm 2.4.6. D

Note that if we work modulo D in Algorithm 2.4.5, the order in which
the columns are treated, which is what distinguishes Algorithm 2.4.5 from
its variants, is not really important. Furthermore, the proof of Algorithm
2.4.6 shows that it is not necessary to work modulo the full multiple of the
determinant D in Algorithm 2.4.5, but that at row i one can work modulo Di,
which can be much smaller. Finally, note that in step 2 of Algorithm 2.4.5, if
we have worked modulo D (or Di), it may happen that ai,k = 0. In that case,
it is necessary to set ai,k +-- Di (or any non-zero multiple of Di). Combining
these observations leads to the following algorithm, essentially due to Domich
et al. [DKT].

It should be emphasized that all reductions modulo R should be taken
in the interval] - R/2, R/2], and not in the interval [0, R[. Otherwise, small
negative coefficients will become large positive ones, and this may lead to
infinite loops.

Algorithm 2.4.8 (HNF Modulo D). Given an m x n matrix A with integer
coefficients (ai,j) of rank m (hence such that n;::: m), and a positive integer D
which is known to be a multiple of the determinant of the Z-module generated
by the columns of A, this algorithm finds the Hermite normal form W of A. We
use an auxiliary column vector B.

1. [Initialize] Set i +-- m, j +-- n, k +-- n, R +--D.

2. [Check zero] If j = 1 go to step 4. Otherwise, set j +-- j -1, and if ai,j = 0
go to step 2.

3. [Euclidean step] Using Euclid's extended algorithm, compute (u, v, d) such
that uai,k + vai,j = d = gcd(ai,k, ai,i), with lui and lvl minimal. Then set
B +-- uAk + vAi, Ai +-- ((ai,k/d)Ai- (ai,i/d)Ak) mod R, Ak +-- B mod R,
and go to step 2.

4. [Next row] Using Euclid's extended algorithm, find (u, v, d) such that uai,k +
vR = d = gcd(ai,k, R). Set Wi +-- uAk mod R (here taken in the interval
[O,R-1]}. If Wi,i = 0 set wi,i +-R. For j = i+ 1, ... ,m set q +-- lwi,j/Wi,iJ
and Wj +-- W;- qWi mod R. If i=1, output the matrix W = (wi,jh~i,j~m
and terminate the algorithm. Otherwise, set R+-Rjd, i+--i-1, k+--k-1,
j +-- k, and if ai,k = 0 set ai,k +-- R. Go to step 2.

2.4 Z-Modules and the Hermite and Smith Normal Forms 73

This will be our algorithm of choice for HNF reduction, at least when
some D is known and A is of rank m.

Remark. It has been noted (see Remark (2) after Algorithm 2.4.4) that it is
easy to add statements so as to obtain the matrix U such that B = AU where
B is the n x m matrix in Hermite normal form whose non-zero columns form
the HNF of A. In the case of modulo D algorithms such as the one above, it
seems more difficult to do so.

2.4.3 Applications of the Hermite Normal Form

In this section, we will see a few basic applications of the HNF form of a
matrix representing a free Z-module. Further applications will be seen in the
context of number fields (Chapter 4).

Image of an Integer Matrix. First note that finding the HNF of a matrix
using Algorithm 2.4.5 is essentially analogous to finding the column eche
lon form in the case of vector spaces (Algorithm 2.3.11). In particular, if the
columns of the matrix represents a generating set for a free module L, Algo
rithm 2.4.5 allows us to find a basis (in fact of quite a special form), hence
it also performs the same role as Algorithm 2.3.2. Contrary to the case of
vector spaces, however, it is not possible in general to extract a basis from a
generating set (this would mean that (a, b) = lal or (a, b) = lbl in the case
m = 1, n = 2), hence an analog of Algorithm 2.3.2 cannot exist.

Kernel of an Integer Matrix. We can also use Algorithm 2.4.5 to find the
kernel of an m x n integer matrix A, i.e. a Z-basis for the free sub-Z-module
of zn which is the set of column vectors X such that AX = 0. Note that
this cannot be done (at least not without considerable extra work) by using
Algorithm 2.3.1 which gives only a Q-basis. What we must do is simply keep
track of the matrix U E GLn(Z) such that B = AU is in HNF. Indeed, we
have the following proposition.

Proposition 2.4.9. Let A be an m x n matrix, B = AU its HNF with U E

GLn(Z), and let r be such that the first r columns of B are equal to 0. Then
a Z-basis for the kernel of A is given by the first r columns of U.

Proof. If Ui is the i-th column of U, then AUi is the i-th column of B so is
equal to 0 if i ~ r. Conversely, let X be a column vector such that AX= 0
or equivalently BY= 0 with Y = u- 1 X. Solving the system BY= 0 from
bottom up, bf(k},k > 0 for k > r (with the notation of Definition 2.4.2) implies
that the last n - r coordinates of Y are equal to 0, and the first r are
arbitrary, hence the first r canonical basis elements of zn form a Z-basis for
the kernel of B, and upon left multiplication by U we obtain the proposition.

D

74 2 Algorithms for Linear Algebra and Lattices

This gives the following algorithm.

Algorithm 2.4.10 (Kernel over Z). Given an m x n matrix A with integer
coefficients (ai,j), this algorithm finds a Z-basis for the kernel of A. We use an
auxiliary column vector B and an auxiliary n x n matrix U.

1. [Initialize] Set i+-m,j+-n, k+-n, U+-In. l+--1 ifm::;n,l+-m-n+1
ifm>n.

2. [Check zero] If j = 1 go to step 4. Otherwise, set j +-- j- 1, and if ai,j = 0
go to step 2.

3. [Euclidean step] Using Euclid's extended algorithm, compute (u, v, d) such
that uai,k + vai,j = d = gcd(ai,k,ai,1), with lui and lvl minimal. Then set
B +-- uAk + vAj. Aj +-- (ai,k/d)A1 - (ai,j/d)Ak, Ak +-- B; similarly set
B +-- uUk + vU1, Ui +-- (ai,k/d)U1 - (ai,i/d)Uk, Uk +-- B, then go to step 2.

4. [Final reductions] Set b +-- ai,k· If b < 0 set Ak +-- -Ak, Uk +-- -Uk and
b +---b. Now if b = 0, set k +-- k + 1 and go to step 5, otherwise for j > k
do the following: set q +-- lai,1jbj, Ai +-- Ai- qAk and Ui +-- Ui- qUk.

5. [Finished?] If i = l then for j = 1, ... , k -1 set Mi +-- Ui, output the matrix
M and terminate the algorithm. Otherwise, set i +-- i -1, k +-- k -1, j +-- k
and go to step 2.

Remark. Although this algorithm correctly gives a Z-basis for the kernel
of A, the coefficients that are obtained are usually large. To obtain a really
useful algorithm, it is necessary to reduce the basis that is obtained, for ex
ample using one of the variants of the LLL algorithm that we will see below
(see Section 2.6). However, it is desirable to obtain directly a basis of good
quality that avoids introducing large coefficients. This can be done using the
MLLL algorithm (see Algorithm 2.7.2), and gives an algorithm which is usu
ally preferable.

In view of the applications to number fields, limiting ourselves to free
submodules of some zm is a little too restrictive. In what follows we will
simply say that L is a module if it is a free sub-Z-module of rank m of Qm.
Considering basis elements of L, it is clear that there exists a minimal positive
integer d such that dL c zm. We will call d the denominator of L with respect
to zm. Then the HNF of L will be by definition the pair (W, d), where W is
the HNF of dL, and d is the denominator of L.

Test for Equality. Since the HNF representation of a free module L is
unique, it is clear that one can trivially test equality of modules: their denom
inator and their HNF must be the same.

Sum of Modules. Given two modules Land L' by their HNF, we can com
pute their sum L + L' = { x + x', x E L, x' E L'} in the following way. Let
(W, d) and (W', d') be their HNF representation. Let D = dd' j(d, d') be the
least common multiple of d and d'. Denoting as usual by Ai the i-th column

2.4 Z-Modules and the Hermite and Smith Normal Forms 75

of a matrix A, consider the m x 2m matrix A such that Ai = (DId) Wi and
Am+i = (Did')Wf for 1 ~ i ~ m, then it is clear that the columns of A gener
ate D(L + L'), hence if we compute the HNF H of A and divideD and H by
the greatest common divisor of D and of all the coefficients of H, we obtain
the HNF normal form of L + L'. Apart from the treatment of denominators,
this is similar to Algorithm 2.3.8.

Test for Inclusion. To test whether L' c L, where L and L' are given by
their HNF, the most efficient way is probably to compute N = L + L' as above,
and then test the equality N = L. Note that if d and d' are the denominators
of L and L' respectively, a necessary condition for L' c L is that d' I d, hence
the LCM D must be equal to d.

Product by a Constant. This is especially easy: if c = plq E Q with
(p, q) = 1 and q > 0, the HNF of cL is obtained as follows. Let d1 be the
GCD of all the coefficients of the HNF of L. Then the denominator of cL is
qdl((p, d)(q, dt)), and the HNF matrix is equal to Pl((p, d)(q, dt)) times the
HNF matrix of L.

We will see that the HNF is quite practical for other problems also, but
the above list is, I hope, sufficiently convincing.

2.4.4 The Smith Normal Form and Applications

We have seen that the Hermite normal form permits us to handle free Z
modules of finite rank quite nicely. We would now like a similar notion which
would allow us to handle finite Z-modules G. Recall from Theorem 2.4.1 (3)
that such a module is isomorphic (in many ways of course) to a quotient
zn I L where L is a (necessarily free) sub module of zn of rank equal to n.
More elegantly perhaps, we can say that G is isomorphic to a quotient L' I L
of free Z-modules of the same (finite) rank n. Thus we can represent G (still
non-canonically) by an n x n matrix A giving the coordinates of some Z-basis of
Lon some Z-basis of L'. In particular, A will have non-zero determinant, and
in fact the absolute value of the determinant of A is equal to the cardinality
of G, i.e. to the index [L' : L] (see Exercise 18).

The freedom we now have is as follows. Changing the Z-basis of L is
equivalent to right multiplication of A by a matrix U E GLn(Z), as in the
HNF case. Changing the Z-basis of L' is on the other hand equivalent to left
multiplication of A by a matrix V E GLn(Z). In other words, we are allowed
to perform elementary column and row operations on the matrix A without
changing (the isomorphism class of) G. This leads to the notion of Smith
normal form of A.

Definition 2.4.11. We say that ann x n matrix B is in Smith normal form
(abbreviated SNF) if B is a diagonal matrix with nonnegative integer coeffi
cients such that bi+l,i+l I bi,i for all i < n.

76 2 Algorithms for Linear Algebra and Lattices

Then the basic theorem which explains the use of this definition is as
follows.

Theorem 2.4.12. Let A be ann x n matrix with coefficients in Z and non
zero determinant. Then there exists a unique matrix in Smith normal form B
such that B = V AU with U and V elements of GLn (Z).

If we set di = bi,i' the di are called the elementary divisors of the matrix
A, and the theorem can be written

0 !)u-1
dn 0

with di+l I di for 1 ~ i < n.
This theorem, stated for matrices, is equivalent to the following theorem

for ::?:.-modules.

Theorem 2.4.13 (Elementary Divisor Theorem). Let L be a Z-submodule
of a free module L' and of the same rank. Then there exist positive integers
d1, ... , dn {called the elementary divisors of L in L') satisfying the following
conditions:

(1) For every i such that 1 ~ i < n we have di+1 I di.
(2) As ::?:.-modules, we have the isomorphism

L'/L ':::'_ EB (Z/diZ),
1:5i:5n

and in particular [L' : L] = d1 · · · dn and d1 is the exponent of L' / L.
(3) There exists a ::?:.-basis (v1, ... ,vn) of L' such that (dlvl, ... ,dnvn) is a

::?:.-basis of L.

Furthermore, the di are uniquely determined by L and L'.

Remarks.

(1) This fundamental theorem is valid more generally. It holds for finitely
generated (torsion) free modules over a principal ideal domain (PID, see
Chapter 4). It is false if the base ring R is not a PID: applying the theorem
to n = 1, L' = R and L any integral ideal of R, it is clear that the truth
of this theorem is equivalent to the PID condition.

(2) We have stated Theorem 2.4.12 only for square matrices of non-zero deter
minant. As in the Hermite case, it would be easy to state a generalization
valid for general matrices (including non-square ones). In practice, this is
not really needed since we can always first perform a Hermite reduction.

2.4 Z-Modules and the Hermite and Smith Normal Forms 77

The proof of these two theorems can be found in any standard textbook
but it follows immediately from the algorithm below.

Since we are going to deal with square matrices, as with the case of the
HNF, it is worthwhile to work modulo the determinant (or a multiple). In most
cases this determinant (or a multiple of it) is known in advance. It should also
be emphasized again that all reductions modulo R should be taken in the
interval] - R/2, R/2], and not in the interval [0, R[.

The following algorithm is essentially due to Hafner and McCurley (see
[Haf-McCur2]).

Algorithm 2.4.14 (Smith Normal Form). Given an nxn non-singular integral
matrix A= (ai,j). this algorithm finds the Smith normal form of A, i.e. outputs
the diagonal elements di such that di+l I di. Recall that we denote by Ai (resp.
AD the columns (resp. the rows) of the matrix A. We use a temporary (column
or row) vector variable B.

1. [Initialize i] Set i +- n, R +- I det(A)I. If n = 1, output d1 +-Rand terminate
the algorithm.

2. [Initialize j for row reduction] Set j +- i, c +- 0.

3. [Check zero] If j = 1 go to step 5. Otherwise, set j +- j - 1. If ai,j = 0 go
to step 3.

4. [Euclidean step] Using Euclid's extended algorithm, compute (u, v, d) such
that uai,i + vai,j = d = gcd(ai,i,ai,j). with u and v minimal (see remark
after Algorithm 2.4.5). Then set B +- uAi + vA1, A1 +- ((ai,i/d)AJ -
(ai,i/d)Ai) mod R, Ai +- B mod Rand go to step 3.

5. [Initialize j for column reduction] Set j +- i.

6. [Check zero] If j = 1 go to step 8. Otherwise, set j +- j- 1, and if aj,i = 0
go to step 6.

7. [Euclidean step] Using Euclid's extended algorithm, compute (u, v, d) such
that uai,i + vaJ,i = d = gcd(ai,i, a1,i), with u and v minimal (see remark
after Algorithm 2.4.5). Then set B +- uA~ + vAj, Aj +- ((ai,i/d)Aj -
(ai,i/d)AD mod R, A~+- B mod R, c +- c + 1 and go to step 6.

8. [Repeat stage i?] If c > 0 go to step 2.

9. [Check the rest of the matrix] Set b +- ai,i· For 1 ~ k, l < i check whether
b I ak,l· As soon as some coefficient ak,l is not divisible by b, set A~ +- A~+ Ak
and go to step 2.

10. [Next stage] (Here all the ak,l for 1 ~ k, l < i are divisible by b). Output
di = gcd(ai,i, R) and set R +- R/di. If i = 2, output d1 = gcd(a1,1, R) and
terminate the algorithm. Otherwise, set i +- i - 1 and go to step 2.

This algorithm seems complicated at first, but one can see that it is ac
tually quite straightforward, using elementary row and column operations of
determinant ±1 to reduce the matrix A.

78 2 Algorithms for Linear Algebra and Lattices

This algorithm terminates (and does not take too many steps!) since each
time one returns to step 2 from step 9, the coefficient ai,i has been reduced at
least by a factor of 2.

The proof that this algorithm is valid, i.e. that the result is correct, follows
exactly the proof of the validity of Algorithm 2.4.6. If we never reduced modulo
R in Algorithm 2.4.14, it is clear that the result would be correct (however
the coefficients would explode). Incidentally, this gives a proof of Theorems
2.4.12 and 2.4.13.

Hence, we must simply show that the transformations done in step 10
correctly restore the values of di. Denote by 8i (A) the GCD of the determinants
of all i x i sub-matrices of A, and not only from the first i rows as in the proof
of Algorithm 2.4.6. Then, in a similar manner, these 8i are invariant under
elementary row and column operations of determinant ±1. Hence, denoting
by b. the diagonal SNF of A, by D the determinant of A, and by S = (ai,j)
the final form of the matrix A at the end of Algorithm 2.4.14, we have:

di · · · dn = gcd(D, 8n-i+l(b.))

= gcd(D, 8n-i+l (A))
= gcd(D,8n-i+l(S))

= gcd(D, ai,i · · · an,n)·

Hence, if we set Pi = di+l · · · dn, exactly as in the proof of Algorithm 2.4.6 we
obtain

1 = (DIPi, (ai+l,i+l" · ·an,n)IPi)

(divide formula (2i+l) by Pi), then

di = (D I Pi, (ai,iai+l,i+l · · · an,n)l Pi)

(divide (2i) by Pi), and hence

But clearly in stage i of the algorithm, R = D I Pi, thus proving the validity
of the algorithm. 0

Note that we have chosen an order for the di which is consistent with our
choice for Hermite normal forms, but which is the reverse of the one which is
found in most texts. The modifications to Algorithm 2.4.14 so that the order
is reversed are trivial (essentially make i and j go up instead of down) and
are left to the reader.

The Smith normal form will mainly be used as follows. Let G be a finite
Z-module (i.e. a finite Abelian group). We want to determine the structure of
G, and in particular its cardinality. Note that a corollary of Theorem 2.4.13
is the structure theorem for finite Abelian groups: such a group is isomorphic
to a unique direct sum of cyclic groups ZldiZ with di+l I di·

2.5 Generalities on Lattices 79

We can then proceed as follows. By theoretical means, we find some integer
n and a free module L' of rank n such that G is isomorphic to a quotient L' I L,
where L is also of rank n but unknown. We then determine as many elements
of L as possible (how to do this depends, of course, entirely on the specific
problem) so as to have at least n elements which are Q-linearly independent.
Using the Hermite normal form Algorithm 2.4.5, we can then find the HNF
basis for the submodule £1 of L generated by the elements that we have found.
Computing the determinant of this basis (which is trivial since the basis is in
triangular form) already gives us the cardinality of L' I L 1. If we know bounds
for the order of G (for example, if we know the order of G up to a factor of
v'2 from above and below), we can check whether £ 1 = L. If not, we continue
finding new elements of L until the cardinality check shows that £1 = L. We
can then compute the SNF of the HNF basis (note that the determinant is
now known), and this gives us the complete structure of G.

We will see a concrete application of the process just described in the
sub-exponential computations of class groups (see Chapter 5).

Remark. The diagonal elements which are obtained after a Hermite Normal
Form computation are usually not equal to the Smith invariants. For example,

the matrix (~ ~) is in HNF, but its Smith normal form has as diagonal

elements (4, 1).

2.5 Generalities on Lattices

2.5.1 Lattices and Quadratic Forms

We are now going to add some extra structure to free Z-modules of finite rank.
Recall the following definition.

Definition 2.5.1. Let K be a field of characteristic different from 2, and let
V be a K -vector space. We say that a map q from V to K is a quadratic form
if the following two conditions are satisfied:

(1) For every>. E K and x E V we have

q(>. · x) = .A2q(x).

(2) If we set b(x, y) = ~(q(x+y) -q(x) -q(y)) then b is a (symmetric) bilinear
form, i.e. b(x + x', y) = b(x, y) + b(x', y) and b(>. · x, y) = >.b(x, y) for all
>. E K, x, x' and y in V (the similar conditions on the second variable
follow from the fact that b(y, x) = b(x, y)).

The identity b(x, x) = q(x) allows us to recover q from b.

80 2 Algorithms for Linear Algebra and Lattices

In the case where K = JR, we say that q is positive definite if for all
non-zero x E V we have q(x) > 0.

Definition 2.5.2. A lattice L is a free '£:-module of finite rank together with
a positive definite quadratic form q on L 0 R

Let (bih:Si:Sn be a Z-basis of L. If x = El<i<n xibi E L with Xi E Z, the
definition of a quadratic form implies that - -

q(x) = L Qi,jXiXj with Qi,j = b(bi, bj)
l:Si,j:Sn

where as above, b denotes the symmetric bilinear form associated to q.
The matrix Q = (qi,jh:Si,j:Sn is then a symmetric matrix which is positive

definite when q is positive definite. We have b(x, y) = ytQX and in particular
q(x) = XtQX where X andY are the column vectors giving the coordinates
of x andy respectively in the basis (bi)·

We will say that two lattices (L, q) and (L', q') are equivalent if there exists
a /£-module isomorphism between L and L' sending q to q'. We will identify
equivalent lattices. Also, when the quadratic form is understood, we will write
L instead of (L, q).

A lattice (L, q) can be represented in several ways all of which are useful.
First, one can choose a /£-basis (bih<i<n of the lattice. Then an element
of x E L will be considered as a (colu~n) vector X giving the (integral)
coordinates of x on the basis. The quadratic form q is then represented by the
positive definite symmetric matrix Q as we have seen above.

Changing the /£-basis amounts to replacing X by P X for some P E
GLn(Z), hence q(x) = (PX)tQ(PX) = XtQ'X with Q' = ptQP. Hence,
equivalence classes of lattices correspond to equivalence classes of positive
definite symmetric matrices under the equivalence relation Q' "' Q if and only
if there exists P E GLn(Z) such that Q' = ptQP. Note that det(P) = ±1,
hence the determinant of Q is independent of the choice of the basis. Since Q
is positive definite, det(Q) > 0 and we will set d(L) = det(Q) 112 and call it
the determinant of the lattice.

A second way to represent a lattice (L, q) is to consider L as a discrete
subgroup of rank n of the Euclidean vector space E = L0R Then if (bih:Si:Sn
is a /£-basis of L, it is also by definition of the tensor product an JR-basis of E.
The matrix of scalar products Q =(hi· bih:Si.i:Sn (where bi · b1 = b(bi, bj))
is then called the Gram matrix of the bi. If we choose some orthonormal basis
of E, we can then identify E with the Euclidean space JRn with the usual
Euclidean structure coming from the quadratic form q(x) =xi+···+ x;.

If B is then x n matrix whose columns give the coordinates of the bi on
the chosen orthonormal basis of E, it is clear that Q = Bt B. In particular,
d(L) =I det(B)j. Furthermore, if another choice of orthonormal basis is made,
the new matrix B' will be of the form B' = K B where K is an orthogonal

2.5 Generalities on Lattices 81

matrix, i.e. a matrix such that Kt K = K Kt = In. Thus we have proved the
following proposition.

Proposition 2.5.3.

(1) If Q is the matrix of a positive definite quadratic form, then Q is the Gram
matrix of some lattice basis, i.e. there exists a matrix B E GLn(IR) such
that Q = BtB

(2) The Gram matrix of a lattice basis bi determines this basis uniquely up to
isometry. In other words, if the bi and the b~ have the same Gram matrix,
then the b~ can be obtained from the bi by an orthogonal transformation.
In matrix terms, B' = K B where K is an orthogonal matrix.

It is not difficult to give a completely matrix-theoretic proof of this propo
sition (see Exercise 20).

It follows from the above results that when dealing with lattices, it is not
necessary to give the coordinates of the bi on some orthonormal basis. We
can simply give a positive definite matrix which we can then think of as being
the Gram matrix of the bi.

We see from the above discussion that there are natural bijections between
the following three sets.

{Isomorphism classes of lattices of rank n} ,

{Classes of positive definite symmetric matrices Q} /"' ,

where Q' rv Q if and only if Q' = ptQp for some PE GLn(Z), and

where B' rv B if and only if B' = KBP for some PEGLn(Z) and some
orthogonal matrix K.

Remarks.

(1) We have considered Lin particular as a free discrete sub-Z-module of the
n-dimensional Euclidean space L ®JR. In many situations, it is desirable
to consider L as a free discrete sub-Z-module of some Euclidean space E
of dimension m larger than n. The matrix B of coordinates of a basis of
L on some orthonormal basis of E will then be an m x n matrix, but the
Gram matrix Q = Bt B will still be an n x n symmetric matrix.

(2) By abuse of language, we will frequently say that a free Z-module of finite
rank is a lattice even if there is no implicit quadratic form.

82 2 Algorithms for Linear Algebra and Lattices

2.5.2 The Gram-Schmidt Orthogonalization Procedure

The existence of an orthonormal basis in a Euclidean vector space is often
proved by using Gram-Schmidt orthonormalization (see any standard text
book). Doing this requires taking square roots, since the final vectors must be
of length equal to 1.

For our purposes, we will need only an orthogonal basis, i.e. a set of mu
tually orthogonal vectors which are not necessarily of length 1. The same
procedure works, except we do not normalize the length, and we will also call
this the Gram-Schmidt orthogonalization procedure. It is summarized in the
following proposition.

Proposition 2.5.4 (Gram-Schmidt). Let b; be a basis of a Euclidean vector
space E. Define by induction:

where

i-1

h; = b;- 2::: lli,jb;
j=l

(1 :5, i :5, n),

lli,j = b; · bj/bj · bj (1 :5, j < i :5, n),

then the bi form an orthogonal (but not necessarily orthonormal) basis of
E, bi is the projection of b; on the orthogonal complement of L:;~:,i JR.bj =
L:;~:,i lR.bj, and the matrix M whose columns gives the coordinates of the bi
in terms of the b; is an upper triangular matrix with diagonal terms equal to
1. In particular, if d(L) is the determinant of the lattice L, we have d(L) 2 =
[ll::Oi::On II hi' 11 2 ·

The proof is trivial using induction. 0

We will now give a number of corollaries of this construction.

Corollary 2.5.5 (Hadamard's Inequality). Let (L, q) be a lattice of deter
minant d(L), (b;)l::;;::;n a Z-basis of L, and for x E L write lxl for q(x) 112 .

Then
n

d(L) 5o II lb;l.
i=l

Equivalently, if B is an n x n matrix then

Proof. If we set B; = lbi 12 , the orthogonality of the hi implies that

2.5 Generalities on Lattices

q(bi) = lbil 2 = Bi + L tLLBj
15,j<i

83

D

Corollary 2.5.6. Let B be an invertible matrix with coefficients in R Then
there exist unique matrices K, A and N such that:

(1) B = KAN.
(2) K is an orthogonal matrix, in other words Kt = K- 1 .

(3) A is a diagonal matrix with positive diagonal coefficients.
(4) N is an upper triangular matrix with diagonal terms equal to 1.

Note that this Corollary is sometimes called the Iwasawa decomposition
of B since it is in fact true in a much more general setting than that of the
group GLn(lR).

Proof. Let B' be the matrix obtained by applying the Gram-Schmidt process
to the vectors whose coordinates are the columns of B on the standard basis
of lRn. Then, by the proposition we have B' = BN where N is an upper
triangular matrix with diagonal terms equal to 1. Now the Gram-Schmidt
process gives an orthogonal basis, in other words the Gram matrix of the hi
is a diagonal matrix D with positive entries. Let A be the diagonal matrix
obtained from D by taking the positive square root of each coefficient (we will
call A the square root of D). Then the equality B't B' = D is equivalent to
B' = KA for an orthogonal matrix K, hence BN = KA which is equivalent
to the existence statement of the corollary.

The uniqueness statement also follows since the equality B' = BN =
K A means that the b~ form an orthogonal basis which can be expressed on
the hi via an upper triangular matrix with diagonal terms equal to 1, and
the procedure for obtaining this basis (i.e. the Gram-Schmidt coefficients) is
clearly unique. D

Remarks.

(1) The requirement that the diagonal coefficients of A be positive is not
essential, and is given only to insure uniqueness.

(2) By considering the inverse matrix and/or the transpose matrix of B, one
has the same result with N lower triangular, or with B = N AK instead
of KAN.

(3) T = AN is an upper triangular matrix with positive diagonal coefficients,
and clearly any such upper triangular matrix T can be written uniquely
in the form AN where A and N are as in the corollary. Hence we can use
interchangeably both notations.

84 2 Algorithms for Linear Algebra and Lattices

Another result is as follows.

Proposition 2.5. 7. If Q is the matrix of a positive definite quadratic form,
then there exists a unique upper triangular matrix T with positive diagonal
coefficients such that Q = yty (or equivalently Q = Nt D N where N is an
upper triangular matrix with diagonal terms equal to 1 and D is a diagonal
matrix with positive diagonal coefficients).

Proof By Proposition 2.5.3, we know that there exists BE GLn(~) such that
Q = Bt B. On the other hand, by the Iwasawa decomposition we know that
there exists matrices K and T such that B = KT with K orthogonal and T
upper triangular with positive diagonal coefficients (T = AN in the notation
of Proposition 2.5.6). Hence Q = Bt B = TtT thus showing the existence of
T.

For the uniqueness, note that if yty = T'tT' with T and T' upper trian
gular, then

t -1
T' yt = T'T- 1

'
where taking inverses is justified since Q is a positive definite matrix. But
the left hand side of this equality is a lower triangular matrix, while the right
hand side is an upper triangular one, hence both sides must be equal to some
diagonal matrix D, and plugging back in the initial equality and using again
the invertibility ofT, we obtain that D 2 is equal to the identity matrix. Now
since the diagonal coefficients of D = T'T- 1 must be positive, we deduce that
D itself is equal to the identity matrix, thus proving the proposition. D

We will give later an algorithm to find the matrix T (Algorithm 2.7.6).

2.6 Lattice Reduction Algorithms

2.6.1 The LLL Algorithm

Among all the Z bases of a lattice L, some are better than others. The ones
whose elements are the shortest (for the corresponding norm associated to
the quadratic form q) are called reduced. Since the bases all have the same
determinant, to be reduced implies also that a basis is not too far from being
orthogonal.

The notion of reduced basis is quite old, and in fact in some sense one
can even define an optimal notion of reduced basis. The problem with this
is that no really satisfactory algorithm is known to find such a basis in a
reasonable time, except in dimension 2 (Algorithm 1.3.14), and quite recently
in dimension 3 from the work of B. Vallee [Val).

A real breakthrough came in 1982 when A. K. Lenstra, H. W. Lenstra and
L. Lovasz succeeded in giving a new notion of reduction (what is now called

2.6 Lattice Reduction Algorithms 85

LLL-reduction) and simultaneously a reduction algorithm which is determin
istic and polynomial time (see [LLL]). This has proved invaluable.

The LLL notion of reduction is as follows. Let h 1 ,h2, ... ,hn be a basis of L.
Using the Gram-Schmidt orthogonalization process, we can find an orthogonal
(not orthonormal) basis hi, h2, ... ,h~ as explained in Proposition 2.5.4.

Definition 2.6.1. With the above notations, the basis h 1, h2, ... , hn is called
LLL-reduced if

1
Ill.· ·I<-,...,,J - 2 for 1 :::; j < i :::; n

and

lh: + /Li,i-1 h:-11 2 2: ~ lh:-112

or equivalently

for 1 < i :::; n ,

Note that the vectors hi+ /Li,i-1hi_ 1 and hi_1 are the projections of h;
and h;_ 1 on the orthogonal complement of I:~:,~ ~hi.

Then we have the following theorem:

Theorem 2.6.2. Let h1, h2, ... , hn be an LLL-reduced basis of a lattice L.
Then

(1)
n

d(L):::; IT lh;l:::; 2n(n-1)/4d(£),
i=l

(2)

(3)
lhll :::; 2(n-1)/4d(L)lfn'

(4) For every x E L with x =/= 0 we have

(5) More generally, for any linearly independent vectors x1, ... , Xt E L we
have

for 1 :::; j :::; t .

86 2 Algorithms for Linear Algebra and Lattices

We see that the vector b 1 in a reduced basis is, in a very precise sense, not
too far from being the shortest non-zero vector of L. In fact, it often is the
shortest, and when it is not, one can, most of the time, work with b1 instead
of the actual shortest vector.

Notation. In the rest of this chapter, we will use the notation x · y instead
of b(x, y) where b is the bilinear form associated to q, and write x 2 instead of
X· X= q(x).

Proof. As in Corollary 2.5.5, we set Bi = lbW. The first inequality of (1)
is Corollary 2.5.5, Since the bi are LLL-reduced, we have Bi ~ (3/4 -
J.Lf i- 1)Bi-1 ~ Bi-1/2 since IJ.Li,i-11 :::::; 1/2. By induction, this shows that

'
Bj:::::; 2i-iBi fori~ j, hence

and this trivially implies Theorem 2.6.2 (1), in fact with a slightly better
exponent of 2. Combining the two inequalities which we just obtained, we
get for all j:::::; i, b]:::::; (2i-2 + 2i-i-1)Bi which implies (2). If we set j = 1
in (2) and take the product of (2) for i = 1 to i = n, we obtain (bi)n :::::;
2n(n-1)12 fi1<i<nBi = 2n(n-1}12d(L) 2 , proving (3). For (4), there exists ani
such that x ~ l:1:$i:$i ribi = L:; 1:$j:$i Sjbj and ri i= 0, where rj E Z and
Sj E R It is clear from the definition of the bj that ri = si, hence

lxl 2 ~ s~Bi = riBi ~ Bi

since ri is a non-zero integer, and since by (2) we know that Bi ~ 21-ilb1l 2 ~
21-n lh1l 2 , (4) is proved. (5) is proved by a generalization of the present argu
ment and is left to the reader. D

Remark. Although we have lost a little in the exponent of 2 in Theorem 2.6.2
(1), the proof shows that even using the optimal value given in our proof would
not improve the estimate in (4). On the other hand, we have not completely
used the full LLL-reduction inequalities. In particular, the inequalities on the
J.li,j can be weakened to J.LI,i :::::; 1/2 for all j < i- 1 and IJ.Li,i- 11 :::::; 1/2. This
can be used to speed up the reduction algorithm which follows.

As has already been mentioned, what makes all these notions and theorems
so valuable is that there is a very simple and efficient algorithm to find a
reduced basis in a lattice. We now describe this algorithm in its simplest form.
The idea is as follows. Assume that the vectors b 1 , ... ,bk_ 1 are already LLL
reduced (i.e. form an LLL-reduced basis of the lattice they generate). This
will be initially the case for k = 2. The vector bk first needs to be reduced
so that IJ.Lk,ji :::::; 1/2 for all j < k (some authors call this size reduction). This
is done by replacing bk by bk - L:;i<k ai bi for some aj E Z in the following
way. Assume that !J.Lk,jl :::::; 1/2 for l < j < k (initially with l = k). Then, if

2.6 Lattice Reduction Algorithms 87

q = lJ.tk,!l is the nearest integer to J.tk,l, and, if we replace bk by bk- qb1,
then J.tk,j is not modified for j > l (since bj is orthogonal to b1 for l < j), and
J.tk,l is replaced by J.tk,l - q (since b1 · bj = bi · bi) and IJ.tk,l - ql :::; 1/2 hence
the modified J.tk,j satisfy IJ.tk,jl :::; 1/2 for l- 1 < j < k.

Now that size reduction is done for the vector bk, we also need to satisfy
the so-called Lovasz condition, i.e. Bk;:::: (3/4- J.t%,k_ 1)Bk_1. If this condition
is satisfied, we increase k by 1 and start on the next vector bk (if there is
one). If it is not satisfied, we exchange the vectors bk and bk-1, but then we
must decrease k by 1 since we only know that b 1, ... ,bk-2 is LLL-reduced.
A priori it is not clear that this succession of increments and decrements of k
will ever terminate, but we will prove that this is indeed the case (and that
the number of steps is not large) after giving the algorithm.

We could compute all the Gram-Schmidt coefficients J.tk,j and Bk at the
beginning of the algorithm, and then update them during the algorithm. After
each exchange step however, the coefficients J.ti,k and J.ti,k-1 fori > k must be
updated, and this is usually a waste of time since they will probably change
before they are used. Hence, it is a better idea to compute the Gram-Schmidt
coefficients as needed, keeping in a variable kmax the maximal value of k that
has been attained.

Another improvement on the basic idea is to reduce only the coefficient
J.tk,k- 1 and not all the J.tk,l for l < k during size-reduction, since this is the
only coefficient which must be less than 1/2 in absolute value before testing
the Lovasz condition. All this leads to the following algorithm.

Algorithm 2.6.3 (LLL Algorithm). Given a basis b 1, b 2, ... , bn of a lattice
(L, q) (either by coordinates on the canonical basis of lRm for some m 2: n or
by its Gram matrix), this algorithm transforms the vectors bi so that when the
algorithm terminates, the bi form an LLL-reduced basis. In addition, the algorithm
outputs a matrix H giving the coordinates of the LLL-reduced basis in terms of
the initial basis. As usual we will denote by Hi the columns of H.

1. [Initialize] Set k i-- 2, kmax i-- 1, hi i-- b1, B1 i-- b 1 · b1 and Hi-- In.

2. [Incremental Gram-Schmidt] If k ::=:; kmax go to step 3. Otherwise, set kmax i-
k, bi:, i-- bk, then for j = 1, ... , k -1 set J.tk,j i-- bk · bj/Bj and hi:, i-- hi:,
J.tk,j bj. Finally, set Bk i-- hi:,· hi:, (see Remark (2) below for the corresponding
step if only the Gram matrix of the bi is given). If Bk = 0 output an error
message saying that the bi did not form a basis and terminate the algorithm.

3. [Test LLL condition] Execute Sub-algorithm RED(k, k - 1) below. If Bk <
(0.75 - J.t~ k- 1)Bk-1· execute Sub-algorithm SWAP(k) below, set k i-
max(2, k -'1) and go to step 3. Otherwise, for l = k- 2, k- 3, ... , 1 ex
ecute Sub-algorithm RED(k, l), then set k i-- k + 1.

4. [Finished?] If k ::=:; n, then go to step 2. Otherwise, output the LLL reduced
basis hi, the transformation matrix HE GLn(Z) and terminate the algorithm.

Sub-algorithm RED(k, l). If iJ.tk,zl ::=:; 0.5 terminate the sub-algorithm. Oth
erwise, let q be the integer nearest to J.tk,l, i.e.

88 2 Algorithms for Linear Algebra and Lattices

Set bk +-- bk- qbz, Hk +-- Hk - qHz, /Lk,l +-- /Lk,l - q, for all i such that
1 ::::; i ::::; l- 1, set /Lk,i +-- /Lk,i- Q/Ll,i and terminate the sub-algorithm.

Sub-algorithm SWAP(k). Exchange the vectors bk and bk_1, Hk and Hk-1·

and if k > 2, for all j such that 1 ::::; j::::; k- 2 exchange /Lk,j with /Lk-1,j· Then
set (in this order) fL +-- /Lk,k-1· B +-- Bk + fL2 Bk-1· /Lk,k-1 +-- /LBk-1/ B,
b +-- bk,_ 1 , bt,_1 +-- bk, + fLb, bk, +-- -/Lk,k-1bk, + (Bk/B)b, Bk +-- Bk-1Bk/B
and Bk-l +--B. Finally, fori = k + 1, k + 2, ... , kmax set (in this order) t +-- /Li,k.

/Li,k +-- /Li,k-l - fLt, /Li,k-l +-- t + fLk,k-l/Li,k and terminate the sub-algorithm.

Proof. It is easy to show that at the beginning of step 4, the LLL conditions
of Definition 2.6.1 are valid for i ::::; k- 1. Hence, if k > n, we have indeed
obtained an LLL-reduced family, and since it is clear that the operations which
are performed on the bi are of determinant ±1, this family is a basis of L,
hence the output of the algorithm is correct. What we must show is that the
algorithm does in fact terminate.

If we set for 0 ::::; i ::::; n

we easily check that

di = II Bj,
l:e:;j:e:;i

where as usual Bi = lbil 2 , and in particular di > 0, and it is clear from this
that do= 1 and dn = d(L) 2 . Set

D = II di.
l:e:;i:e:;n-1

This can change only if some Bi changes, and this can occur only in Sub
algorithm SWAP. In that sub-algorithm the di are unchanged for i < k - 1
and fori ~ k, and by the condition of step 3, dk_ 1 is multiplied by a factor at
most equal to 3/4. Hence Dis also reduced by a factor at most equal to 3/4.
Let Li be the lattice of dimension i generated by the bj for j ::::; i, and let si be
the smallest non-zero value of the quadratic form q in Li. Using Proposition
6.4.1 which we will give in Chapter 6, we obtain

and since Sn is the smallest non-zero value of q(x) on L, this last expression
depends only on i but not on the bj. It follows that di is bounded from
below by a positive constant depending only on i and L. Hence D is bounded
from below by a positive constant depending only on L, and this shows that
the number of times that Sub-algorithm SWAP is executed must be finite.

2.6 Lattice Reduction Algorithms 89

Since this is the only place where k can decrease (after execution of the sub
algorithm) the algorithm must terminate, and this finishes the proof of its
validity. 0

A more careful analysis shows that the running time of the LLL algorithm
is at most O(n6 ln3 B), if lhil 2 :::; B for all i. In practice however, this upper
bound is quite pessimistic.

Remarks.

(1) If the matrix transformation His not desired, one can suppress from the
algorithm all the statements concerning it, since it does not play any real
role.

(2) On the other hand if the hi are given only by their Gram matrix, the hi
and b; exist only abstractly. Hence, the only output of the algorithm is
the matrix H, and the updating of the vectors hi done in Sub-algorithms
RED and SWAP must be done directly on the Gram matrix.

In particular, step 2 must then be replaced as follows (see Exercise
21).

2. [Incremental Gram-Schmidt] If k :::; kmax go to step 3. Otherwise, set
kmax +- k then for j = 1, ... , k -1 set ak,j +- hk · hj- ~{,:;:{ J.lj,iak,i and
J.Lk,j +- ak,j/ Bj. then set Bk +- hk · hk- ~7=-:;} J.lk,iak,i· If Bk = 0 output
an error message saying that the hi did not form a basis and terminate
the algorithm.

The auxiliary array ak,j is used to minimize the number of operations,
otherwise we could of course write the formulas directly with J.Lk,j.

Asymptotically, this requires n3 /6 multiplications/divisions, and this
is much faster than the n2m/2 required by Gram-Schmidt when only the
coordinates of the hi are known. Since the computation of the Gram ma
trix from the coordinates of the hi also requires asymptotically n 2m/2
multiplications, one should use directly the formulas of Algorithm 2.6.3
when the Gram matrix is not given.

(3) The constant 0. 75 in step 3 of the algorithm can be replaced by any con
stant c such that 1/4 < c < 1. Of course, this changes the estimates given
by Theorem 2.6.2. (In the results and proof of the theorem, replace 2 by
a= 1/(c- 1/4), and use the weaker inequality J.L%,z :::; (a- 1)/a).) The
speed of the algorithm and the "quality" of the final basis which one ob
tains, are relatively insensitive to the value of the constant. In practice,
one should perhaps use c = 0.99. The ideal value would be c = 1, but in
this case one does not know whether the LLL algorithm runs in polynomial
time, although in practice this seems to be the case.

(4) Another possibility, suggested by LaMacchia in [LaM] is to vary the con
stant c in the course of the algorithm, starting the reduction with a con
stant c slightly larger than 1/4 (so that the reduction is as fast as possible),
and increasing it so as to reach c = 0.99 at the end of the reduction, so

90 2 Algorithms for Linear Algebra and Lattices

that the quality of the reduced basis is a good as possible. We refer to
[LaM] for details.

(5) We can also replace the LLL condition Bk ~ (3/4- 11~ k- 1)Bk-1 by the
so-called Siegel condition Bk ~ Bk-I/2. Indeed, since l~k,k-1!::::; 1/2, the
LLL condition with the constant c = 3/4 implies the Siegel conditiqn, and
conversely the Siegel condition implies the LLL condition for the constant
c = 1/2. In that case the preliminary reduction RED(k, k- 1) should be
performed after the test, together with the other RED(k, l).

(6) If the Gram matrix does not necessarily have rational coefficients, the J-li,j

and Bi must be represented approximately using floating point arithmetic.
Even if the Gram matrix is rational or even integral, it is often worthwhile
to work using floating point arithmetic. The main problem with this ap
proach is that roundoff errors may prevent the final basis from being LLL
reduced. In many cases, this is not really important since the basis is not
far from being LLL reduced. It may happen however that the roundoff
errors cause catastrophic divergence from the LLL algorithm, and conse
quently give a basis which is very far from being reduced in any sense.
Hence we must be careful. Let r be the number of relative precision bits.

First, during step 2 it is possible to replace the computation of the
products bi ·hi by floating point approximations (of course only in the
case where the hi are given by coordinates, otherwise there is nothing to
compute). This should not be done if hi and bj are nearly orthogonal,
i.e. if hi· hi/lhillhil is smaller than 2-r/2 say. In that case, hi· hi should
be computed as exactly as possible using the given data.

Second, at the beginning of Sub-algorithm RED, the nearest integer
q to J-lk,l is computed. If q is too large, say q > 2r/2 , then J-lk,l - q will
have a small relative precision and the values of the Jl,k,l will soon become
incorrect. In that case, we should recompute the J-lk,h J-lk- 1,1, Bk-1 and
Bk directly from the Gram-Schmidt formulas, set k +-- max(k- 1, 2) and
start again at step 3.

These modifications (and many more) are explained in a rigorous the
oretical setting in [Schn], and for practical uses in [Schn-Euch] to which
we refer.

(7) The algorithm assumes that the hi are linearly independent. If they are
not, we will get an error message in the Gram-Schmidt stage of the al
gorithm. It is possible to modify the algorithm so that it will not only
work in this case, but in fact output a true basis and a set of linearly
independent relations for the initial set of vectors (see Algorithm 2.6.8).

2.6.2 The LLL Algorithm with Deep Insertions

A modification of the LLL algorithm due to Schnorr and Buchner ([Schn
Euc]) is the following. It may be argued that the Lovasz condition Bk ~
(0.75- J-l~,k-dBk-1 (in addition to the requirement Jl,k,j ::::; 1/2) should be

2.6 Lattice Reduction Algorithms 91

strengthened, taking into account the earlier Bj. If this is done rashly how
ever, it leads to a non-polynomial time algorithm, both in theory and in prac
tice. This is, of course, one of the reasons for the choice of a weaker con
dition. Schnorr and Buchner (loc. cit.) have observed however that one can
strengthen the above condition without losing much on the practical speed of
the algorithm, although in the worst case the resulting algorithm is no longer
polynomial time. They report that in many cases, this leads to considerably
shorter lattice vectors than the basic LLL algorithm.

The idea is as follows. If bk is inserted between bi- 1 and bi for some
i < k, then (Exercise 22) the new Bi will become

bk . bk - I: 1-LLBj = Bk + L 1-LLBj.
1~j<i i~j<k

If this is significantly smaller than the old Bi (say at most ~ Bi as in our initial
version of LLL), then it is reasonable to do this insertion. Note that the case
i = k - 1 of this test is exactly the original LLL condition. For these tests
to make sense, Algorithm RED(k, l) must be executed before the test for all
l < k and not only for l = k- 1 as in Algorithm 2.6.3.

Inserting bk just after bi-1 for some i < k will be called a deep insertion.
After such an insertion, k must be set back to max(i- 1, 2), and the /-Lj,l
and Bi must be updated. When i < k- 1 however, the formulas become
complicated and it is probably best to recompute the new Gram-Schmidt
coefficients instead of updating them. One consequence of this is that we do
not need to keep track of the largest value kmax that k has attained.

This leads to the following algorithm, due in essence to Schnorr and Bu
chner ([Schn-Euc]).

Algorithm 2.6.4 (LLL Algorithm with Deep Insertions). Given a basis b1o
b2, ... , bn of a lattice (L, q) (either by coordinates in the canonical basis of JRm
for some m ;::: n or by its Gram matrix), this algorithm transforms the vectors
bi so that when the algorithm terminates, the bi form an LLL-reduced basis. In
addition, the algorithm outputs a matrix H giving the coordinates of the LLL
reduced basis in terms of the initial basis. As usual we will denote by Hi the
columns H.

1. [Initialize] Set k +- 1 and H +-In.

2. [Incremental Gram-Schmidt] Set bj;, +- bk, then for j = 1, ... , k - 1 set
/-Lk,j +- bk · bj / Bi and bj;, +- bj;, - /-Lk,j bj. Then set Bk +- bj;, · bj;,. If Bk = 0
output an error message saying that the bi did not form a basis and terminate
the algorithm. Finally, if k = 1, set k +- 2 and go to step 5.

3. [Initialize test] For l = k - 1, k - 2, ... , 1 execute Sub-algorithm RED(k, l)
above. Set B +- bk · bk and i +- 1.

4. [Deep LLL test] If i = k, set k +- k + 1 and go to step 5. Otherwise, do
as follows. If ~Bi :::; B set B +- B - 1-LLBi, i +- i + 1 and go to step 4.

92 2 Algorithms for Linear Algebra and Lattices

Otherwise, execute Algorithm INSERT(k, i) below. If i 2: 2 set k ._ i - 1,
B ._ bk · bk. i ._ 1 and go to step 4. If i = 1, set k ._ 1 and go to st~p 2.

5. [Finished?) If k ~ n, then go to step 2. Otherwise, output the LLL reduced
basis hi, the transformation matrix HE GLn(Z) and terminate the algorithm.

Sub-algorithm INSERT(k, i). Set b._ bk, V ._ Hk. for j = k, k-1, ... , i+
1 set h1 ._ h1_ 1 and H1 ._ Hj-t. and finally set hi._ band Hi ._ V. Terminate
the sub-algorithm.

2.6.3 The Integral LLL Algorithm

If the Gram matrix of the hi has integral coefficients, the /1-i,j and the Bk will
be rational and it may be tempting to do all the computation with rational
numbers. Unfortunately, the repeated GCD computations necessary for per
forming rational arithmetic during the algorithm slows it down considerably.
There are essentially two ways to overcome this problem. The first is to- do
only approximate computations of the /1-i,j and the Bi as mentioned above.

The second is as follows. In the proof of Algorithm 2.6.3 we have introduced
quantities di which are clearly integral in our case, since they are equal to sub
determinants of our Gram matrix. We have the following integrality results.

Proposition 2.6.5. Assume that the Gram matrix (hi · b1) is integral, and
set

di = det((br · hsh~r,s~i) = IT Bj.

l~j~i

Then for all i and for all j < i

(1)
di-lBi E Z

(2) for all m such that j < m ~ i

and

dj L /1-i,k/1-m,kBk E Z.
l~k~j

Proof. We have seen above that di = il1<k<i Bk hence di-lBi = di E Z. For
the second statement of (1) , let j < i and-consider the vector

v =hi- I: /1-i,kb;:; = h; + I: /1-i.kb;:;.
l~k~j j<k<i

From the second expression it is clear that bA; . v = 0 for all k such that
1 ~ k ~ j, or equivalently since the JR-span of the bA; (1 ~ k ::::; j) is equal to
the JR-span of the bk,

2.6 Lattice Reduction Algorithms

bk · v = 0 for 1 ~ k ~ j.

For the same reason, we can write

v =hi- L Xkbk
l~k~j

for some Xk E JR. Then the above equations can be written in matrix form

93

In particular, since the determinant of the matrix is equal by definition to
dj, by inverting the matrix we see that the Xk are of the form mk/di for
some mk E Z (since the Gram matrix is integral). Furthermore, the equality
L:: 1 ~k~j Xkbk = L:: 1 ~k~j /-ti,kbk shows by projection on bj that Xj = /-ti,j,
thus proving (1).

For (2) we note that by what we have proved, div is an integral linear
combination of the bk (in other words it belongs to the lattice), hence in
particular div · bm E Z for all m such that 1 ~ m ~ n. Since v = hi -
L:: 1 ~k~j 1-ti,kbk, we obtain (2). D

Corollary 2.6.6. With the same hypotheses and notations as the proposition,
set Ai,j = dj/-ti,j for j < i (so Ai,j E Z) and Ai,i = di. Then for j ~ i fixed, if
we define the sequence Uk by uo = bi · bj and for 1 .:::; k < j

dkUk-l - Ai,kAj,k Uk = ------::-----'-----"-:...._
dk-l

then Uk E Z and Uj-l = Ai,j·

Proof It is easy to check by induction on k that

and the proposition shows that this last expression is integral. We also have
Uj-l = Bjdj-l/-ti,j = dil-£i,j = Ai,j thus proving the corollary. D

Using these results, it is easy to modify Algorithm 2.6.3 so as to work
entirely with integers. This leads to the following algorithm, where it is as
sumed that the basis is given by its Gram-Schmidt matrix. (Hence, if the basis
is given in terms of coordinates, compute first the Gram-Schmidt matrix be
fore applying the algorithm, or modify appropriately the formulas of step 1.)
Essentially the same algorithm is given in [de Weg].

94 2 Algorithms for Linear Algebra and Lattices

Algorithm 2.6.7 (Integral LLL Algorithm). Given a basis b1, b2, ... , bn of
a lattice (L, q) by its Gram matrix which is assumed to have integral coefficients,
this algorithm transforms the vectors hi so that when the algorithm terminates,
the hi form an LLL-reduced basis. The algorithm outputs a matrix H giving the
coordinates of the LLL-reduced basis in terms of the initial basis. We will denote
by Hi the column vectors of H. All computations are done using integers only.

1. [Initialize] Set k +- 2, kmax +- 1, do +- 1, d1 +- b1 · b1 and H +-ln.

2. [Incremental Gram-Schmidt] If k ::;; kmax go to step 3. Otherwise, set kmax +- k
and for j = 1, ... , k (in that order) do as follows: set u +- bk · bj and for
i = 1, ... ,j -1 set

d·u- Ak ·>-.· · u +- l ,l J,l

di-1

(the result is in Z), then if j < k set Ak,j +- u and if j = k set dk +- u.
If dk = 0, the hi did not form a basis, hence output an error message and
terminate the algorithm (but see also Algorithm 2.6.8).

3. [Test LLL condition] Execute Sub-algorithm REDI(k, k-1) below. If dkdk-2 <
£d~_ 1 - >-.~,k- 1 , execute algorithm SWAPI(k) below, set k +- max(2, k- 1)
and go to step 3. Otherwise, for l = k- 2, k- 3, ... , 1 execute Sub-algorithm
REDI(k, l), then set k +- k + 1.

4. [Finished?] If k :::; n go to step 2. Otherwise, output the transformation matrix
H E GLn(Z) and terminate the algorithm.

Sub-algorithm REDI(k, l). If 12>-.k,d ::;; dt terminate the sub-algorithm. Oth
erwise, let q be the integer nearest to Ak,t/dt, i.e. the quotient of the Euclidean
division of2>-.k,!+dt by 2dt. Set Hk +- Hk-qH1, bk +- bk-qb1, >-.k,l +- >-.k,t-qd1,
for all i such that 1 :::; i :::; l - 1 set Ak,i +- Ak,i- q>-.!,i and terminate the sub
algorithm.

Sub-algorithm SWAPI(k). Exchange the vectors Hk and Hk-t. exchange
bk and bk-1· and if k > 2, for all j such that 1 :::; j :::; k- 2 exchange Ak,j
with Ak-1,j· Then set).. +- Ak,k-1· B +- (dk_2dk + >-.2)/dk-t. then fori =
k + 1, k + 2, ... kmax set (in this order) t +- Ai,k, Ai,k +- (dkAi,k-1 - >-.t)/dk-1
and Ai,k-1 +- (Bt +)..)..i,k)/dk. Finally, set dk_ 1 +- B and terminate the sub
algorithm.

It is an easy exercise (Exercise 24) to check that these formulas correspond
exactly to the formulas of Algorithm 2.6.3.

Remark. In step 3, the fundamental LLL comparison dkdk-2 < £dL1 -
>-.~,k- 1 involves the non-integral number £ (it could also be 0.99). This is not
really a problem since this comparison can be done any way one likes (by
multiplying by 4, or using floating point arithmetic), since a roundoff error at
that point is totally unimportant.

2.6 Lattice Reduction Algorithms 95

2.6.4 LLL Algorithms for Linearly Dependent Vectors

As has been said above, the LLL algorithm cannot be applied directly to a
system of linearly dependent vectors hi. It can however be modified so as to
work in this case, and to output a basis and a system of relations. The problem
is that in the Gram-Schmidt orthogonalization procedure we will have at some
point Bi = bi · bi = 0. This means of course that hi is equal to a linear
combination of the hi for j < i. Since Gram-Schmidt performs projections
of the successive vectors on the subspace generated by the preceding ones,
this means that we can forget the index i in the rest of the orthogonalization
(although not the vector hi itself). This leads to the following algorithm which
is very close to Algorithm 2.6.3 and whose proof is left to the reader.

Algorithm 2.6.8 (LLL Algorithm on Not Necessarily Independent Vectors).
Given n non-zero vectors b 1 , b 2 , ... , bn generating a lattice (L,q) (either by
coordinates or by their Gram matrix), this algorithm transforms the vectors hi
and computes the rank p of the lattice L so that when the algorithm terminates
hi = 0 for 1 ~ i ~ n - p and the hi for n - p < i ~ n form an LLL-reduced
basis of L. In addition, the algorithm outputs a matrix H giving the coordinates
of the new hi in terms of the initial ones. In particular, the first n- p columns
Hi of H will be a basis of relation vectors for the hi, i.e. of vectors r such that
I:; 1 ~i~n ribi = 0.

1. [Initialize] Set k .__ 2, kmax .__ 1, hi .__ ht, Bt .__ ht · ht and H.__ In.

2. [Incremental Gram-Schmidt] If k ~ kmax go to step 3. Otherwise, set kmax .__ k
and for j = 1, ... , k- 1 set /Lk,j .__ bk · bj/ Bi if Bj =f. 0 and /Lk,j .__ 0 if

Bi = 0, then set bk .__ bk- 2::;:~ fLk,j bj and Bk .__ bk · bk (use the formulas
given in Remark {2) above if the hi are given by their Gram matrix).

3. [Test LLL condition] Execute Sub-algorithm RED(k, k - 1) above. If Bk <
(0.75 - fL~,k-l)Bk-lo execute Sub-algorithm SWAPG(k) below, set k .__
max(2, k - 1) and go to step 3. Otherwise, for l = k - 2, k - 3, ... , 1 ex
ecute Sub-algorithm RED(k, l), then set k .__ k + 1.

4. [Finished?] If k ~ n go to step 2. Otherwise, let r be the number of initial
vectors hi which are equal to zero, output p .__ n - r, the vectors hi for
r + 1 ~ i ~ n (which form an LLL-reduced basis of L), the transformation
matrix HE GLn(Z) and terminate the algorithm.

Sub-algorithm SWAPG(k). Exchange the vectors bk and bk-t. Hk and
Hk-lo and if k > 2, for all j such that 1 ~ j ~ k - 2 exchange /Lk,j with
/Lk-l,j· Then set fL .__ fLk,k-l and B .__ Bk + /L2 Bk-l· Now, in the case B = 0
(i.e. Bk = fL = 0), exchange Bk and Bk-t, exchange bk and bk-t and for
i = k + 1, k + 2, ... kmax exchange /Li,k and /Li,k-l·

In the case Bk = 0 and fL =1- 0, set Bk-l .__ B, bk-l .__ fLbk_ 1, /Lk,k-1 .__ 1/ fL
and fori= k + 1, k + 2, ... , kmax set J.Li,k-1 .__ /Li,k-t/ fL.

Finally, in the case Bk =f. 0, set (in this order) t .__ Bk-t/B, fLk,k-1 .__ fLt,

96 2 Algorithms for Linear Algebra and Lattices

h +- hk_ 1, hk_ 1 +- hk + p.h, hk +- -J.Lk,k-1hk + (Bk/ B)h, Bk +- Bkt,
Bk-1 +- B, then for i = k + 1, k + 2, ... , kmax set (in this order) t +- J.Li,k·
J.Li,k +- /-Li,k-1 - p.t, /-Li,k-1 +- t + J.Lk,k-1/-Li,k· Terminate the sub-algorithm.

Note that in this sub-algorithm, in the case B = 0, we have Bk = 0 and
hence J.Li,k = 0 fori > k, so the exchanges are equivalent to setting Bk +- Bk-1,
Bk-1 +- 0 and fori ~ k + 1, J.Li,k +- J.Li,k-1 and J.Li,k-1 +- 0.

An important point must be made concerning this algorithm. Since several
steps of the algorithm test whether some quantity is equal to zero or not, it can
be applied only to vectors with exact (i.e. rational) entries. Indeed, for vectors
with non-exact entries, the notion of relation vector is itself not completely
precise since some degree of approximation must be given in advance. Thus
the reader is advised to use caution when using LLL algorithms for linearly
dependent vectors when they are non-exact. (For instance, we could replace a
test Bk = 0 by Bk ~ e for a suitable e.)

We must prove that this algorithm is valid. To show that it terminates, we
use a similar quantity to the one used in the proof of the validity of Algorithm
2.6.3. We set

i9,B;~O

This quantity is modified only in Sub-algorithm SWAPG(k). If B = Bk +
p.2Bk-1 f. 0, then dk-1 is multiplied by a factor which is smaller than 3/4
and the others are unchanged, hence D decreases by a factor at least 3/4 as
in the usual LLL algorithm. If B = 0, then Bk_1 becomes 0 and Bk becomes
equal to Bk-b hence dk-1 becomes equal to dk_2, dk stays the ~arne (since
Bk-1dk-2 = dk-1 = dk when Bk = 0) as well as the others, soD is multiplied
by 2k-1 /2k = 1/2 hence decreases multiplicatively again, thus showing that
the algorithm terminates since Dis bounded from below.

When the algorithm terminates, we have for all i, j and k the conditions
Bk ~ (3/4- P.tk-1)Bk-1 and IP.i,jl ~ 1/2. If pis the rank of the lattice L,
it follows that n - p of the Bi must be equal to zero, and these inequalities
show that it must be the first n- p Bi, since Bi = 0 implies Bj = 0 for j < i.
Since the vector space generated by the hi for i ~ n - p is the same as the
space generated by the hi for i ~ n - p, it follows that hi = 0 for i ~ n - p.
Since the hi form a generating set for L over Z throughout the algorithm,
the hi for i > n - p also generate L, hence they form a basis since there
are exactly p of them, and this basis is LLL reduced by construction. It also
follows from the vanishing of the hi for i ~ n - p that the first n - p columns
Hi of H are relation vectors for our initial hi· Since H is an integer matrix
with determinant ±1, it is an easy exercise to see that these columns form a
basis of the space of relation vectors for the initial hi (Exercise 25). D

This algorithm is essentially due to M. Pohst and called by him the MLLL
algorithm {for Modified LLL, see [Poh2]).

2. 7 Applications of the LLL Algorithm 97

We leave as an excellent exercise for the reader to write an all-integer
version of Algorithm 2.6.8 when the Gram matrix is integral (see Exercise
26).

Summary. We have seen a number of modifications and variations on the
basic LLL Algorithm 2.6.3. Most of these can be combined. We summarize
them here.

(1) The Gram-Schmidt formulas of step 2 can be modified to use only the
Gram matrix of the hi (see Remark (2) after Algorithm 2.6.3).

(2) If the Gram-Schmidt matrix is integral, the computation can be done
entirely with integers (see Algorithm 2.6.7).

(3) If floating point computations are used, care must be taken during the
computation of the hi · hi and when the nearest integer to a /Lk,l is com
puted (see Remark (4) after Algorithm 2.6.3).

(4) If we want better quality vectors than those output by the LLL algorithm,
we can use deep insertion to improve the output (see Algorithm 2.6.4).

(5) If the vectors hi are not linearly independent, we must use Algorithm
2.6.8, combined if desired with any of the preceding variations.

2. 7 Applications of the LLL Algorithm

2.7.1 Computing the Integer Kernel and Image of a Matrix

In Section 2.4.3 we have seen how to apply the Hermite normal form algorithms
to the computation of the image and kernel of an integer matrix A. It is clear
that this can also be done using the MLLL algorithm (in fact its integer
version, see Exercise 26). Indeed if we set hi to be the columns of A, the
vectors hi output by Algorithm 2.6.8 form an LLL-reduced basis of the image
of A and the relation vectors Hi for i ~ r = n - p form a basis of the integer
kernel of A. If desired, the result given by Algorithm 2.6.8 can be improved
in two ways. First, the relation vectors Hi for i ~ r are not LLL-reduced, so
it is useful to LLL-reduce them to obtain small relations. This means that we
will multiply the first r column of H on the right by an r x r invertible matrix
over Z, and this of course leaves H unimodular.

Second, although the basis hi for r < i ~ n is already an LLL-reduced
basis for the image of A hence cannot be improved much, the last p columns of
H (which express the LLL-reduced hi in terms of the initial hi) can be large
and in many situations it is desirable to reduce their size. Here we must not
LLL-reduce these columns since the corresponding image vectors hi would not
be anymore LLL-reduced in general. (This is of course a special case of the
important but difficult problem of simultaneously reducing a lattice basis and
its dual, see [Sey2].) We still have some freedom however since we can replace
any column Hi for i > r by

98 2 Algorithms for Linear Algebra and Lattices

H;- LmiHi
j~r

for any mj E Z since this will not change the b; and will preserve the relation
det(H) = ±1. To choose the mj close to optimally we proceed as follows. Let
C be the Gram matrix of the vectors Hj for j ::; r. Using Algorithm 2.2.1
compute X= (x 1 , ... ,xr)t solution to the linear system CX = V;, where V;
is the column vector whose j-th element is equal to H; · Hj (here the scalar
product is the usual one). Then by elementary geometric arguments it is clear
that the vector Lj~r XjHj is the projection of H; on the real vector space
generated by the Hj for j ::; r, hence a close to optimal choice of the mj is
to choose mj = L x j l· Since we have several linear systems to solve using the
same matrix, it is preferable to invert the matrix using Algorithm 2.2.2 and
this gives the following algorithm.

Algorithm 2.7.1 (Kernel and Image of a Matrix Using LLL). Given an mxn
matrix A with integral entries, this algorithm computes an n x n matrix Hand
a number p with the following properties. The matrix H has integral entries and
is of determinant equal to ±1 (i.e. H E GLn(Z)). The first n- p columns of
H form an LLL-reduced basis of the integer kernel of A. The product of A with
the last p columns of H give an LLL-reduced basis of the image of A, and the
coefficients of these last p columns are small.

1. (Apply MLLL] Perform Algorithm 2.6.8 on the vectors b; equal to the columns
of A, the Euclidean scalar product being the usual scalar product on vectors.
We thus obtain p and a matrix HE GLn(Z). Set r +- n- p.

2. [LLL-reduce the kernel] Using the integral LLL-Aigorithm 2.6.7, replace the
first r vectors of H by an LLL-reduced basis of the lattice that they generate.

3. [Compute inverse of Gram matrix] Let C be the Gram matrix of the Hj for
j ::; r (i.e. Cj,k = Hi · Hk for 1 ::; j, k ::; r), set D +- c-1 computed using
Algorithm 2.2.2, and set i +- r.

4. [Finished?] Set i +- i + 1. If i > n, output the matrix H and the number p
and terminate the algorithm.

5. [Modify Hi] Let V be the r-dimensional column vector whose j-th coordinate
is H; · Hj. Set X +- DV, and for j ::; r set mj +- L Xj l, where Xj is the j-th
component of X. Finally, setH; +- H;- 2:::: 1< .<r mjHj and go to step 4. _J_

A practical implementation of this algorithm should use only an all-integer
version of Algorithm 2.6.8 (see Exercise 26), and the other steps can be simi
larly modified so that all the computations are done with integers only.

If only the integer kernel of A is wanted, we may replace the test Bk <
(0.75- J.L%,k- 1)Bk-l by Bk = 0, which avoids most of the swaps and gives a
much faster algorithm. Since this algorithm is very useful, we give explicitly
the complete integer version.

2.7 Applications of the LLL Algorithm 99

Algorithm 2.7.2 (Kernel over Z Using LLL). Given an m x n matrix A with
integral entries, this algorithm finds an LLL-reduced Z-basis for the kernel of A.
We use an auxiliary n x n integral matrix H. We denote by Hi the j-th column
of H and (to keep notations similar to the other LLL algorithms) by bi the j-th
column of A. All computations are done using integers only. We use an auxiliary
set of flags fi, ... , In (which will be such that fk = 0 if and only if Bk = 0).

1. [Initialize) Set k +-- 2, kmax +-- 1, do +-- 1, t +-- b 1 · b1 and H +-- In· If t -:f. 0
set d1 +-- t and 11 +-- 1, otherwise set d1 +-- 1 and 11 +-- 0.

2. [Incremental Gram-Schmidt) If k :::; kmax go to step 3. Otherwise, set kmax +-- k
and for j = 1, ... , k (in that order) do as follows. If /j = 0 and j < k, set
>..k,j +-- 0. Otherwise, set u +-- bk · bi and for each i = 1, ... , j -1 (in that
order) such that /i -:f. 0 set

(the result is in Z), then, if j < k set >..k,j +-- u and if j = k set dk +-- u and
!k +-- 1 if u -:f. 0, dk +-- dk-1 and !k +-- 0 if u = 0.

3. [Test fk = 0 and !k-1 -:f. 0) If /k-1 -:f. 0, execute Sub-algorithm REDI(k, k-1)
above. If fk-1 -:f. 0 and !k = 0, execute Sub-algorithm SWAPK(k) below, set
k +-- max(2, k-1) and go to step 3. Otherwise, for each l = k-2, k-3, ... , 1
(in this order) such that /z -:f. 0, execute Sub-algorithm REDI(k, l) above, then
set k +-- k + 1.

4. [Finished?) If k :::; n go to step 2. Otherwise, let r + 1 be the least index such
that /i -:f. 0 (r = n if allfi are equal to 0). Using Algorithm 2.6.7, output an
LLL-reduced basis of the lattice generated by the linearly independent vectors
H 1, ... , Hr and terminate the algorithm.

Sub-algorithm SWAPK(k). Exchange the vectors Hk and Hk-1· and if k >
2, for all j such that 1:::; j:::; k-2 exchange >..k,i with Ak-1.i· Set>..+-- >..k,k-1· If
>.. = 0, set dk-1 +-- dk-2· exchange fk-1 and !k (i.e. set !k-1 +-- 0 and !k +-- 1),
set >..k,k-1 +-- 0 and fori = k + 1, ... , kmax set >..i,k +-- >..i,k-1 and >..i,k-1 +-- 0.

If >.. -:f. 0, for i = k + 1, ... , kmax set >..i,k-1 +-- >..>..i,k-l/dk-1. then set
t +-- dk, dk-1 +-- >..2/dk-1· dk +-- dk-1 then for j = k + 1, ... , kmax- 1 and for
i = j + 1, ... , kmax set >..i,j +-- >..i,jdk-1/t and finally for j = k + 1, ... , kmax set
di +-- djdk-1/t. Terminate the sub-algorithm.

Remarks.

(1) Since /i = 0 implies >..k,i = 0, time can be saved in a few places by first
testing whether /i vanishes. The proof of the validity of this algorithm is
left as an exercise (Exercise 24).

(2) It is an easy exercise to show that in this algorithm

dk = det ((bi · bj}i::=;i,j::;k,B;B;#O)

and that djf..Li,j E Z (see Exercise 29).

100 2 Algorithms for Linear Algebra and Lattices

(3) An annoying aspect of Algorithm SWAPK is that when>. f= 0, in addition
to the usual updating, we must also update the quantities dj and >.;,j for
all i and j such that k + 1 :::; j < i :::; kmax. This comes from the single fact
that the new value of d~o is different from the old one, and suggests that
a suitable modification of the definition of d~o can suppress this additional
updating. This is indeed the case (see Exercise 30). Unfortunately, with
this modification, it is the reduction algorithm REDI which needs much
additional updating. I do not see how to suppress the extra updating in
SWAPK and in REDI simultaneously.

2. 7.2 Linear and Algebraic Dependence Using LLL

Now let us see how to apply the LLL algorithm to the problem of ::f.-linear
independence. Let z1, z2, ... , Zn ben complex numbers, and the problem is
to find a ::f.-dependence relation between them, if one exists. Assume first that
the z; are real. For a large number N, consider the positive definite quadratic
form in the a;:

This form is represented as a sum of n squares of linearly independent linear
forms in the a;, hence defines a Euclidean scalar product on !Rn, as long as
z1 f= 0, which we can of course assume. If N is large, a "short" vector of zn
for this form will necessarily be such that lz1a 1 + · · · + Znanl is small, and also
the a; fori > 1 not too large. Hence, if the z; are really ::f.-linearly dependent,
by choosing a suitable constant N the dependence relation (which will make
z1a1 + · · · + Znan equal to 0 up to roundoff errors) will be discovered. The
choice of the constant N is subtle, and depends in part on what one knows
about the problem. If the lz; I are not too far from 1 (meaning between 10-6

and 106 , say), and are known with an absolute (or relative) precision E, then
one should take N between 1 IE and 1 I c:2 , but E should also be taken quite
small: if one expects the coefficients a; to be of the order of a, then one might
take E = a-l.sn, but in any case E <a-n.

Hence, we will start with the b; being the standard basis of zn, and use
LLL with the quadratic form above. One nice thing is that step 2 of the LLL
algorithm can be avoided completely. Indeed, one has the following lemma.

Lemma 2.7.3. With the above notations, if we execute the complete Gram
Schmidt orthogonalization procedure on the standard basis of zn and the
quadratic form

we have /-Li,l = z;/ z1 for 2 :::; i :::; n, /-Li,j = 0 if 2 :::; j < i :::; n, bt =
h;- (z;/zi)b1, B1 = Nzr, and Bk = 1 for 2:::; k:::; n.

2. 7 Applications of the LLL Algorithm 101

The proof is trivial by induction.
It is easy to modify these ideas to obtain an algorithm which also works

for complex numbers Zi. In this case, the quadratic form that we can take is

since the expression which multiplies N is now a sum of two squares of linear
forms, and these forms will be independent if and only if zd z2 is not real.
We can however always satisfy this condition by a suitable reordering: if there
exists i and j such that zd Zj fl. IR, then by applying a suitable permutation of
the Zi, we may assume that zd z2 fl. JR. On the other hand, if zd Zj E lR for all i
andj, then we can apply the algorithm to the real numbers 1, z2/z1. ... , Zn/zl·

All this leads to the following algorithm.

Algorithm 2. 7.4 (Linear Dependence). Given n complex numbers z1, ... , Zn,

(as approximations), a large number N chosen as explained above, this algorithm
finds Z-linear combinations of small modulus between the zi. We assume that
all the zi are non-zero, and that if one of the ratios zi/ Zj is not real, the Zi are
reordered so that the ratio z2/ z1 is not real.

1. [Initialize] Set hi +- [0, ... , 1, ... , o]t, i.e. as a column vector the ith element of
the standard basis of zn. Then, set /Li,j +- 0 for all i and j with 3 ~ j < i ~ n,
B1 +-lz1l2, B2 +- Im(z1z2), Bk +-1 for 3 ~ k ~ n, /Li,l +- Re(z1ii)/B1 for
2 ~ i ~ n.

Now if B2 f. 0 (i.e. if we are in the complex case), do the following: set
/Li,2 +- Im(z1ii)/B2 for 3 ~ i ~ n, B2 +- N · BVB1. Otherwise {in the real
case), set /Li,2 +- 0 for 3 ~ i ~ n, B2 +- 1.

2. [Execute LLL] Set B1 +- N B1o k +- 2, kmax +- n, H +- In and go to step 3
of the LLL Algorithm 2.6.3.

3. [Terminate] Output the coefficients hi as coefficients of linear combinations of
the zi with small modulus, the best one being probably h1.

Implementation advice. Algorithm 2. 7.4 performs slightly better if z1 is
the number with the largest modulus. Hence one should try to reorder the Zi

so that this is the case. (Note that it may not be possible to do so, since if the
Zi are not all real, one must have z2/z1 non-real.)

Remarks.

(1) The reason why the first component plays a special role comes from the
choice of the quadratic form. To be more symmetrical, one could choose
instead

both in the real and complex case. The result would be more symmetrical
in the variables ai, but then we cannot avoid executing step 2 of the LLL

102 2 Algorithms for Linear Algebra and Lattices

algorithm, i.e. the Gram-Schmidt reduction procedure, which in practice
can take a non-negligible proportion of the running time. Hence the above
non-symmetric version (due toW. Neumann) is probably better.

(2) We can express the linear dependence algorithm in terms of matrices in
stead of quadratic forms as follows (for simplicity we use the symmetrical
version and we assume the Zi real). SetS= ..;Iii. We must then find the
LLL reduction of the following (n + 1) x n matrix:

1

0

0 0

(3) We have not used at all the multiplicative structure of the field C. This
means that essentially the same algorithm can be used to find linear de
pendencies between elements of a k-dimensional vector space over R for
any k. This essentially reduces to the MLLL algorithm, except that thanks
to the number N we can better handle imprecise vectors.

(4) A different method for finding linear dependence relations based on an
algorithm which is a little different from the LLL algorithm, is explained
and analyzed in detail in [HJLS]. It is not clear which should be preferred.

A special case of Algorithm 2.7.4 is when zi =ai-l, where a is a given
complex number. Then finding a Z-linear relation between the Zi is equivalent
to finding a polynomial A E Z[X] such that A(a)= 0, i.e. an algebraic relation
for a. This is very useful in practice. (From the implementation advice given
above we should choose Zi = an-i instead if a > 1.)

In this case however, some modifications may be useful. First note that
Lemma 2.7.3 stays essentially the same if we replace the quadratic form Q(a)
by

where the >.i are arbitrary positive real numbers (see Exercise 32). Now when
testing for algebraic relations, we may or may not know in advance the degree
of the relation. Assume that we do. (For example, if a = ../2 + v'3 + v'5 we
know that the relation will be of degree 8.) Then (choosing zi = an-i) we
would like to have small coefficients for an-i with i small, and allow larger
ones for i large. This amounts to choosing >.i large for small i, and small for
large i. One choice could be >.i = An-i for some reasonable constant A > 1
(at least such that An is much smaller than N). In other words, we look for
an algebraic relation for zd A.

In other situations, we do not know in advance the degree of the relation,
or even if the number is algebraic or not. In this case, it is probably not
necessary to modify Algorithm 2.7.4, i.e. we simply choose >.i = 1 for all i.

2. 7 Applications of the LLL Algorithm 103

2.7.3 Finding Small Vectors in Lattices

For many applications, even though the LLL algorithm does not always give us
the smallest vector in a lattice, the vectors which are obtained are sufficiently
reasonable to give good results. We have seen one such example in the preced
ing section, where LLL was used to find linear dependence relations between
real or complex numbers. In some cases, however, it is absolutely necessary
to find one of the smallest vectors in a lattice, or more generally all vectors
having norm less than or equal to some constant. This problem is hard, and
in a slightly modified form is known to be NP-complete, i.e. equivalent to the
most difficult reasonable problems in computer science for which no polyno
mial time algorithm is known. (For a thorough discussion of NP-completeness
and related matters, see for example (AHU).) Nonetheless, we must give an
algorithm to solve it, keeping in mind that any algorithm will probably be
exponential time with respect to the dimension.

Using well known linear algebra algorithms (over Rand not over Z), we can
assume that the matrix defining the Euclidean inner product on Rn is diagonal
with respect to the canonical basis, say Q(x) = q1 , 1 x~ + q2,2x~ + · · · + qn,nX~.
If we want Q(x) ~ C, say, then we must choose lx11 ~ ..jCjq1,1· Once x1
is chosen, we choose lx2l ~ ..j(C- ql,lxnfq2,2, and so on. This leads to n
nested loops, and in addition it is desirable to have n variable and not fixed.
Hence it is not as straightforward to implement as it may seem. The idea is to
use implicitly a lexicographic ordering of the vectors x. If we generalize this
to non-diagonal quadratic forms, this leads to the following algorithm.

Algorithm 2.7.5 (Short Vectors). If Q is a positive definite quadratic form
given by

n (n)2
Q(x) = L qi,i Xi + L qi,jXj

i=l i=i+l

and a positive constant C, this algorithm outputs all the non-zero vectors x E zn
such that Q(x) .::::; C, as well as the value of Q(x). Only one of the two vectors
in the pair (x,-x) is actually given.

1. [Initialize] Set i ~ n, Ti ~ C, Ui ~ 0.

2. [Compute bounds] Set Z ~ ..jTifqi,i, Li ~ lZ- Ud. xi~ r-z- Uil-1.

3. [Main loop] Set Xi ~Xi + 1. If Xi > Li. set i ~ i + 1 and go to step
3. Otherwise, if i > 1, set Ti-l ~ Ti - qi,i(Xi + Ui) 2 , i ~ i - 1, Ui ~
I:;j=i+l qi,jXj, and go to step 2.

4. [Solution found] If x = 0, terminate the algorithm, otherwise output x, Q(x) =
C- T1 + q1,1 (x1 + U1)2 and go to step 3.

Now, although this algorithm (due in this form to Fincke and Pohst) is
quite efficient in small dimensions, it is far from being the whole ·story. Since

104 2 Algorithms for Linear Algebra and Lattices

we have at our disposal the LLL algorithm which is efficient for finding short
vectors in a lattice, we can use it to modify our quadratic form so as to shorten
the length of the search. More precisely, let R = (r;,j) be the upper triangular
matrix defined by r;,; = ,;q:;:;., r;,j = r;,;q;,j for 1 s i < j s n, r;,1 = 0 for
1 S j < i S n. Then

Q(x) = xt Rt Rx.

Now call r; the columns of Rand r~ the rows of R- 1 . Then from the identity
R- 1 Rx = x we obtain x; = r~Rx, hence by the Cauchy-Schwarz inequality,

This bound is quite sharp since for example when the quadratic form is di
agonal, we have llr~IJ 2 = 1/q;,; and the bound that we obtain for XI, say, is
as usual JC/q1 ,1. Using the LLL algorithm on the rows of R- 1 , however,
will in general drastically reduce the norms of these rows, and hence improve
correspondingly the search for short vectors.

As a final improvement, we note that the implicit lexicographic ordering
on the vectors x used in Algorithm 2.7.5 is not unique, and in particular we
can permute the coordinates as we like. This adds some more freedom on our
reduction of the matrix R. Before giving the final algorithm, due to Fincke
and Pohst, we give the standard method to obtain the so-called Cholesky
decomposition of a positive definite quadratic form, i.e. to obtain Q in the
form used in Algorithm 2.7.5.

Algorithm 2.7.6 (Cholesky Decomposition). Let A be a real symmetric ma
trix of order n defining a positive definite quadratic form Q. This algorithm com
putes constants q;,j and a matrix R such that

n (n)2
Q(x) = L q;,; X; + L q;,jXj

i=l j=i+l

or equivalently in matrix form A= Rt R.

1. [Initialize] For all i and j such that 1 s i s j s n set q;,j ~ a;,j, then set
i ~o.

2. [Loop on i] Set i ~ i + 1. If i = n, go to step 4. Otherwise, for j = i + 1, ... , n
set qj,i ~ q;,j and q;,j ~ q;,Jfq;,;.

3. [Main loop] For all k and l such that i + 1 s k s l s n set

and go to step 2.

4. [Find matrix R] Fori = 1, ... , n set r;,; ~ ,;q:;:;., then set r;,1 = 0 if 1 s j <
i S n and r;,j = r;,;q;,j if 1 s i < j s n and terminate the algorithm.

2.7 Applications of the LLL Algorithm 105

Note that this algorithm is essentially a reformulation of the Gram
Schmidt orthogonalization procedure in the case where only the Gram matrix
is known. (See Proposition 2.5.7 and Remark (2) after Algorithm 2.6.3.)

We can now give the algorithm of Fincke-Pobst for finding vectors of small
norm ([Fin-Poh]).

Algorithm 2.7.7 (Fincke-Pobst). Let A be a real symmetric matrix of order
n defining a positive definite quadratic form Q, and c be a positive constant.
This algorithm outputs all non-zero vectors x E zn such that Q(x) :::; C and the
corresponding values of Q(x). As in Algorithm 2.7.5, only one of the two vectors
(x, -x) is actually given.

1. [Cholesky] Apply the Cholesky decomposition Algorithm 2.7.6 to the matrix
A, thus obtaining an upper triangular matrix R. Compute also R-1 (note that
this is easy since R is triangular).

2. [LLL reduction] Apply the LLL algorithm to the n vectors formed by the rows
of R- 1 , thus obtaining a unimodular matrix U and a matrix s-1 such that
s-1 = u-1 R-1. Compute also S = RU. (Note that U will simply be the
inverse transpose of the matrix H obtained in Algorithm 2.6.3, and this can
be directly obtained instead of H in that algorithm, in other words it is not
necessary to compute a matrix inverse).

3. [Reorder the columns of S] Call si the columns of S and s~ the rows of s- 1.

Find a permutation a on [1, ... , n] such that

Then permute the columns of S using the same permutation a, i.e. replace S
by the matrix whose ith column is Sa(i) for 1 :::; i :::; n.

4. Compute A1 +-- sts, and find the coefficients qi,; of the Cholesky decompo
sition of A1 using the first three steps of Algorithm 2.7.6 (it is not necessary
to compute the new matrix R).

5. Using Algorithm 2.7.5 on the quadratic form Q1 defined by the symmetric
matrix A1, compute all the non-zero vectors y such that Q1(y) :::; C, and for
each such vector output x = U(Ya-1(1), ... , Ya-l(n))t and Q(x) = Q1 (y).

Although this algorithm is still exponential time, and is more complex
than Algorithm 2.7.5, in theory and in practice it is much better and should
be used systematically except if n is very small (less than 5, say).

Remark. If we want not only small vectors but minimal non-zero vectors,
the Fincke-Pobst algorithm should be used as follows. First, use the LLL
algorithm on the lattice (zn, Q). This will give small vectors in this lattice,
and then choose as constant C the smallest norm among the vectors found by
LLL, then apply Algorithm 2.7.7.

106 2 Algorithms for Linear Algebra and Lattices

2.8 Exercises for Chapter 2

1. Prove that if K is a field, any invertible matrix over K is equal to a product of
matrices corresponding to elementary column operations. Is this still true if K
is not a field, for example for Z?

2. Let M X = B be a square linear system with coefficients in the ring Z/prz for
some prime number p and some integer r > 1. Show how to use Algorithm 2.2.1
over the field Qp to obtain at least one solution to the system, if such a solution
exists. Compute in particular the necessary p-adic precision.

3. Write an algorithm which decomposes a square matrix M in the form M = LU P
as mentioned in the text, where P is a permutation matrix, and L and U are
lower and upper triangular matrices respectively (see [AHU] or [PFTV] if you
need help).

4. Give a detailed proof of Proposition 2.2.5.

5. Using the notation of Proposition 2.2.5, show that for k + 1 ~ i,j ~ n, the
coefficient a~~ is equal to the (k + 1) x (k + 1) minor of Mo obtained by taking
the first k rows and the i-th row, and the first k columns and the j-th column
of Mo.

6. Generalize the Gauss-Bareiss method for computing determinants, to the com
putation of the inverse of a matrix with integer coefficients, and more generally
to the other algorithms of this chapter which use elimination.

7. Is it possible to modify the Hessenberg Algorithm 2.2.9 so that when the matrix
M has coefficients in Z all (or most) operations are done on integers and not on
rational numbers? (I do not know the answer to this question.)

8. Prove the validity of Algorithm 2.3.1.

9. Prove the validity of Algorithm 2.3.6.

10. Write an algorithm for computing one element of the inverse image, analogous
to Algorithm 2.3.4 but using elimination directly instead of using Algorithm
2.3.1, and compare the asymptotic speed with that of Algorithm 2.3.4.

11. Prove the validity of Algorithm 2.3.11 and the uniqueness statement of Propo
sition 2.3.10.

12. In Algorithm 2.3.9, show that if the columns of M and M' are linearly indepen-
dent then so are the columns of M2 •

13. Assuming Theorem 2.4.1 (1), prove parts (2) and (3). Also, try and prove (1).

14. Prove the uniqueness part of Theorem 2.4.3.

15. Show that among all possible pairs (u, v) such that au+ bv = d = gcd(a, b),
there exists exactly one such that -lal/d < vsign(b) ~ 0, and that in addition
we will also have 1 ~ usign(a) ~ Jbl/d.

16. Generalize Algorithm 2.4.14 to the case where then x n square matrix A is not
assumed to be non-singular.

17. Let A = (~ :) be a 2 x 2 matrix with integral coefficients such that ad- be =1-

0. If we set d2 = gcd(a, b, c, d) and d1 = (ad- bc)jd2 show directly that there

2.8 Exercises for Chapter 2 107

exists two matrices U and V in GL2 (Z) such that A= V (~ ~2) U (this is

the special case n = 2 of Theorem 2.4.12).

18. Let G be a finite Z-module, hence isomorphic to a quotient L' / L, and let A be a
matrix giving the coordinates of some Z-basis of Lon some Z-basis of L'. Show
that the absolute value of det(A) is equal to the cardinality of G.

19. Let B be an invertible matrix with real coefficients. Show that there exist ma
trices K1, K2 and A such that B = K 1 AK2 , where A is a diagonal matrix with
positive diagonal coefficients, and K1 and K 2 are orthogonal matrices (this is
called the Cartan decomposition of B). What extra condition can be added so
that the decomposition is unique?

20. Prove Proposition 2.5.3 using only matrix-theoretical tools (hint: the matrix Q
is diagonalizable since it is real symmetric).

21. Give recursive formulas for the computation of the Gram-Schmidt coefficients
/-Li,j and Bi when only the Gram matrix (hi · h;) is known.

22. Assume that the vector hi is replaced by some other vector hk in the Gram
Schmidt process. Compute the new value of Bi = hi · hi in terms of the /-Lk,j
and B; for j < i.

23. Prove Theorem 2.6.2 (5) and the validity of the LLL Algorithm 2.6.3.

24. Prove that the formulas of Algorithm 2.6.3 become those of Algorithm 2.6. 7
when we set Ai,j <-- d; /-Li,j and di <-- di-1 Bi.

25. Show that at the end of Algorithm 2.6.8 the first n- p columns Hi of the matrix
H form a basis of the space of relation vectors for the initial hi.

26. Write an all integer version of Algorithm 2.6.8, generalizing Algorithm 2.6. 7
to not necessarily independent vectors. The case corresponding to Bk = 0 but
/-Lk,k- 1 =1- 0 must be treated with special care.

27. (This is not really an exercise, just food for thought). Generalize to modules over
principal ideal domains R the results and algorithms given about lattices. For
example, generalize the LLL algorithm to the case where R is either the ring of
integers of a number field (see Chapter 4) assumed to be principal, or is the ring
K[X] where K = <Q, K =JR. or K =C. What can be said when K = lFp? Give
applications to the problem of linear or algebraic dependence of power series.

28. Compare the performance of Algorithms 2.7.2 and 2.4.10 (in the author's im
plementations, Algorithm 2.7.2 is by far superior).

29. Prove that the quantities that occur in Algorithm 2.7.2 are indeed all integral.
In particular, show that dk = det(hi · h;)I::;i,j::;k,B;B;;to and that d;f-Li,j E Z.

30. Set by convention /-Lk,o = 1, /-Lk,k = Bk, j(k) = max{j, 0 ~ j ~ k, /-Lk,j =1- 0},
dk = [L<i<k f-Li,j(i} and Ak,j = d;/-Lk,j for k > j.

a) Modify Sub-algorithm SWAPK so that it uses this new definition of dk
and >..k,j· In other words, find the formulas giving the new values of the d;, !;
and Ak,j in terms of the old ones after exchanging hk and hk-1· In particular
show that, contrary to Sub-algorithm SWAPK, dk is always unchanged.

b) Modify also Sub-algorithm REDI accordingly. (Warning: dk may be mod
ified, hence all d; and >..i,j fori> j > k.)

c) Show that we still have d; E Z and Ak,j E Z (this is much more difficult

108 2 Algorithms for Linear Algebra and Lattices

and is analogous to the integrality property of the Gauss-Bareiss Algorithm 2.2.6
and the sub-resultant Algorithm 3.3.1 that we will study in Chapter 3}.

31. It can be proved that Sk = En> 1(n(n+1} · · · (n+k-1})-3 is of the form a11"2 +b
where a and b are rational numbers when k is even, and also when k is odd if
the middle coefficient (n + (k- 1}/2} is only raised to the power -2 instead of
-3. Compute Sk fork~ 4 using Algorithm 2.7.4.

32. Prove Lemma 2. 7.3 and its generalization mentioned after Algorithm 2. 7.4. Write
the corresponding algebraic dependence algorithm.

33. Let U be a non-singular real square matrix of order n, and let Q be the positive
definite quadratic form defined by the real symmetric matrix utu. Using explic
itly the inverse matrix V of U, generalize Algorithm 2. 7.5 to find small values
of Q on zn (Algorithm 2.7.5 corresponds to the case where U is a triangular
matrix). Hint: if you have trouble, see [Knu2] Section 3.3.4.C.

Chapter 3

Algorithms on Polynomials

Excellent book references on this subject are [Knu2] and [GCL].

3.1 Basic Algorithms

3.1.1 Representation of Polynomials

Before studying algorithms on polynomials, we need to decide how they will
be represented in an actual program. The straightforward way is to represent
a polynomial

P(X) = anXn + an-lxn-l + · · · +a1X + ao

by an array a[O], a[l], ... , a[n]. The only difference between different imple
mentations is that the array of coefficients can also be written in reverse order,
with a[OJ being the coefficient of xn. We will always use the first representa
tion. Note that the leading coefficient an may be equal to 0, although usually
this will not be the case.

The true degree of the polynomial P will be denoted by deg(P), and the
coefficient of xcteg(P), called the leading coefficient of P, will be denoted by
£(P). In the example above, if, as is usually the case, an f:. 0, then deg(P) = n
and £(P) = an·

The coefficients ai may belong to any commutative ring with unit, but
for many algorithms it will be necessary to specify the base ring. If this base
ring is itself a ring of polynomials, we are then dealing with polynomials in
several variables, and the representation given above (called the dense repre
sentation) is very inefficient, since multivariate polynomials usually have very
few non-zero coefficients. In this situation, it is better to use the so-called
sparse representation, where only the exponents and coefficients of the non
zero monomials are stored. The study of algorithms based on this kind of
representation would however carry us too far afield, and will not be consid
ered here. In any case, practically all the algorithms that we will need use only
polynomials in one variable.

The operations of addition, subtraction and multiplication by a scalar, i.e.
the vector space operations, are completely straightforward and need not be
discussed. On the other hand, it is necessary to be more specific concerning
multiplication and division.

110 3 Algorithms on Polynomials

3.1.2 Multiplication of Polynomials

As far as multiplication is concerned, one can of course use the straightforward
method based on the formula:

where
k

ck = L aibk-i,
i=O

where it is understood that ai = 0 if i > m and bj = 0 if j > n. This method
requires (m + 1)(n + 1) multiplications and mn additions. Since in general
multiplications are much slower than additions, especially if the coefficients
are multi-precision numbers, it is reasonable to count only the multiplication
time. If T(M) is the time for multiplication of elements in the base ring, the
running time is thus O(mnT(M)). It is possible to multiply polynomials faster
than this, however. We will not study this in detail, but will give an example.
Assume we want to multiply two polynomials of degree 1. The straightforward
method above gives:

with
co = aobo, c1 = aob1 + a1bo, c2 = a1b1.

As mentioned, this requires 4 multiplications and 1 addition. Consider instead
the following alternate method for computing the Ck:

d =(at- ao)(bl- bo), c1 =eo+ (c2- d).

This requires only 3 multiplications, but 4 additions (subtraction and addition
times are considered identical). Hence it is faster if one multiplication in the
base ring is slower than 3 additions. This is almost always the case, especially
if the base ring is not too simple or involves large integers. Furthermore, this
method can be used for any degree, by recursively splitting the polynomials
in two pieces of approximately equal degrees.

There is a generalization of the above method which is based on Lagrange's
interpolation formula. To compute A(X)B(X), which is a polynomial of degree
m+n, compute its value at m+n+ 1 suitably chosen points. This involves only
m + n + 1 multiplications. One can then recover the coefficients of A(X)B(X)
(at least if the ring has characteristic zero) by using a suitable algorithmic
form of Lagrange's interpolation formula. The overhead which this implies
is unfortunately quite large, and for practical implementations, the reader is
advised either to stick to the straightforward method, or to use the recursive
splitting procedure mentioned above.

3.1 Basic Algorithms 111

3.1.3 Division of Polynomials

We assume here that the polynomials involved have coefficients in a field
K, (or at least that all the divisions which occur make sense. Note that if
the coefficients belong to an integral domain, one can extend the scalars and
assume that they in fact belong to the quotient field). The ring K[X] is then a
Euclidean domain, and this means that given two polynomials A and B with
B -:/:- 0, there exist unique polynomials Q and R such that

A= BQ + R, with deg(R) < deg(B)

(where as usual we set deg(O) = -oo). As we will see in the next section, this
means that most of the algorithms described in Chapter 1 for the Euclidean
domain Z can be applied here as well.

First however we must describe algorithms for computing Q and R. The
straightforward method can easily be implemented as follows. For a non-zero
polynomial Z, recall that i(Z) is the leading coefficient of Z. Then:

Algorithm 3.1.1 (Euclidean Division). Given two polynomials A and B in
K[X] with B -:/:- 0, this algorithm finds Q and R such that A = BQ + R and
deg(R) < deg(B).

1. [Initialize] Set R ~A, Q ~ 0.

2. [Finished?] If deg(R) < deg(B) then terminate the algorithm.

3. [Find coefficient] Set

8 ~ i(R) xcteg(R)-deg(B)
i(B) '

then Q ~ Q + S, R +- R- S ·Band go to step 2.

Note that the multiplication S · B in step 3 is not really a polynomial
multiplication, but simply a scalar multiplication followed by a shift of coeffi
cients. Also, if division is much slower than multiplication, it is worthwhile to
compute only once the inverse of i(B), so as to have only multiplications in
step 3. The running time of this algorithm is hence

O(deg(B)(deg(Q) + l)T(M)),

(of course, deg(Q) = deg(A)- deg(B) if deg(A) 2: deg(B)).

Remark. The subtraction R ~ R- S · B in step 3 of the algorithm must
be carefully written: by definition of S, the coefficient of xcteg R must become
exactly zero, so that the degree of R decreases. If however the base field is
for example lR or C, the elements of K will only be represented with finite
precision, and in general the operation i(R) - i(B)(i(R)/i(B)) will not give

112 3 Algorithms on Polynomials

exactly zero but a very small number. Hence it is absolutely necessary to set
it exactly equal to zero when implementing the algorithm.

Note that the assumption that K is a field is not strictly necessary. Since
the only divisions which take place in the algorithm are divisions by the leading
coefficient of B, it is sufficient to assume that this coefficient is invertible in
K, as for example is the case if B is monic. We will see an example of this in
Algorithm 3.5.5 below (see also Exercise 3).

The abstract value T(M) does not reflect correctly the computational
complexity of the situation. In the case of multiplication, the abstract T(M)
used made reasonable sense. For example, if the base ring K was Z, then T(M)
would be the time needed to multiply two integers whose size was bounded
by the coefficients of the polynomials A and B. On the contrary, in Algorithm
3.1.1 the coefficients explode, as can easily be seen, hence this abstract measure
of complexity T(M) does not make sense, at least in Z or Q. On the other
hand, in a field like IFp, T(M) does make sense.

Now these theoretical considerations are in fact very important in prac
tice: Among the most used base fields (or rings), there can be no coefficient
explosion in IFp (or more generally any finite field), or in JR. or C (since in that
case the coefficients are represented as limited precision quantities). On the
other hand, in the most important case of Q or Z, such an explosion does take
place, and one must be ready to deal with it.

There is however one other important special case where no explosion
takes place, that is when B is a monic polynomial (f(B) = 1), and A and B
are in Z[X]. In this case, there is no division in step 3 of the algorithm.

In the general case, one can avoid divisions by multiplying the polynomial
A by f(B)deg(A)-deg(B)+l. This gives an algorithm which is not really more
efficient than Algorithm 3.1.1, but which is neater and will be used in the next
section. Knuth calls it "pseudo-division" of polynomials. It is as follows:

Algorithm 3.1.2 (Pseudo-Division). Let K be a ring, A and B be two poly
nomials in K[X] with B =/= 0, and set m +-- deg(A), n +-- deg(B), d +-- f(B).
Assume that m 2: n. This algorithm finds Q and R such that dm-n+l A= BQ+R
and deg(R) < deg(B).

1. [Initialize] Set R +--A, Q +-- 0, e +-- m- n + 1.

2. [Finished?] If deg(R) < deg(B) then set q +-- de, Q +-- qQ, R +-- qR and
terminate the algorithm.

3. [Find coefficient] Set

S +-- f(R)Xdeg(R)-deg(B),

then Q +-- d · Q + S, R +-- d · R- S · B, e +-- e -1 and go to step 2.

Since the algorithm does not use any division, we assume only that K is a
ring, for example one can have K = Z. Note also that the final multiplication
by q = de is needed only to get the exact power of d, and this is necessary for

3.2 Euclid's Algorithms for Polynomials 113

some applications such as the sub-resultant algorithm (see 3.3). If it is only
necessary to get some constant multiple of Q and R, one can dispense with e
and q entirely.

3.2 Euclid's Algorithms for Polynomials

3.2.1 Polynomials over a Field

Euclid's algorithms given in Section 1.3 can be applied with essentially no
modification to polynomials with coefficients in a field K where no coefficient
explosion takes place (such as 1Fp)· In fact, these algorithms are even simpler,
since it is not necessary to have special versions ala Lehmer for multi-precision
numbers. They are thus as follows:

Algorithm 3.2.1 (Polynomial GCD). Given two polynomials A and B over
a field K, this algorithm determines their GCD in K[X].

1. [Finished?] If B = 0, then output A as the answer and terminate the algorithm.

2. [Euclidean step] Let A = B · Q + R with deg(R) < deg(B) be the Euclidean
division of A by B. Set A+- B, B +-Rand go to step 1.

The extended version is the following:

Algorithm 3.2.2 (Extended Polynomial GCD). Given two polynomials A
and B over a field K, this algorithm determines (U, V, D) such that AU+ BV =
D =(A, B).

1. [Initialize] Set U +- 1, D +-A, V1 +- 0, V3 +-B.

2. [Finished?] If V3 = 0 then let V +- (D- AU)/ B (the division being exact),
output (U, V, D) and terminate the algorithm.

3. [Euclidean step] Let D = QV3 + R be the Euclidean division of D by V3. Set
T +- U- V1Q, U +- V1, D +- V3, V1 +- T, V3 +-Rand go to step 2.

Note that the polynomials U and V given by this algorithm are polyno
mials of the smallest degree, i.e. they satisfy deg(U) < deg(B /D), deg(V) <
deg(A/D).

If the base field is lR or C, then the condition B = 0 of Algorithm 3.2.1
(or V3 = 0 in Algorithm 3.2.2) becomes meaningless since numbers are rep
resented only approximately. In fact, polynomial GCD's over these fields, al
though mathematically well defined, cannot be used in practice since the coef
ficients are only approximate. Even if we assume the coefficients to be given by
some formula which allows us to compute them as precisely as we desire, the
computation cannot usually be done. Consider for example the computation
of

114 3 Algorithms on Polynomials

gcd(X -1r,X2 - 6((2)),

where ((s) = I:n>l n-s is the Riemann zeta function. Although we can com
pute the coefficients to as many decimal places as we desire, algebra alone
will not tell us that this GCD is equal to X- 1r since ((2) = 1r2 /6. The point
of this discussion is that one should keep in mind that it is meaningless in
practice to compute polynomial GCD's over lR or C.

On the other hand, if the base field is IQ, the above algorithms make
perfect sense. Here, as already mentioned for Euclidean division, the practical
problem of the coefficient explosion will occur, and since several divisions are
performed, it will be much worse.

To be specific, if p is small, the GCD of two polynomials of IF p[X] of degree
1000 can be computed in a reasonable amount of time, say a few seconds, while
the GCD of polynomials in IQ[X] (even with very small integer coefficients)
could take incredibly long, years maybe, because of coefficient explosion. Hence
in this case it is absolutely necessary to use better algorithms. We will see this
in Sections 3.3 and 3.6.1. Before that, we need some important results about
polynomials over a Unique Factorization Domain (UFD).

3.2.2 Unique Factorization Domains (UFD's)

Definition 3.2.3. Let R be an integral domain (i.e. a commutative ring with
unit 1 and no zero divisors). We say that u E R is a unit if u has a multi
plicative inverse in R. If a and b are elements of R with b -1- 0, we say that
b divides a (and write b I a) if there exists q E R such that a = bq. Since R
is an integral domain, such a q is unique and denoted by afb. Finally p E R
is called an irreducible element or a prime element if q divides p implies that
either q or pfq is a unit.

Definition 3.2.4. A ring R is called a unique factorization domain (UFD)
if R is an integral domain, and if every non-unit x E R can be written in
the form x = f1pi, where the Pi are (not necessarily distinct) prime elements,
and if this form is unique up to permutation and multiplication of the primes
by units.

Important examples of UFD's are given by the following theorem (see [Kap],
[Sam]):

Theorem 3.2.5.

(1) If R is a principal ideal domain (i.e. R is an integral domain and every
ideal is principal), then R is a UFD. In particular, Euclidean domains
(i.e. those having a Euclidean division) are UFD's.

3.2 Euclid's Algorithms for Polynomials 115

(2) If R is the ring of algebraic integers of a number field (see Chapter 4),
then R is a UFD if and only if R is a principal ideal domain.

(3) If R is a UFD, then the polynomial rings R[X1 , ... , Xn] are also UFD's.

Note that the converse of (1) is not true in general: for example the ring
C[X, Y] is a UFD (by (3)), but is not a principal ideal domain (the ideal
generated by X and Y is not principal).

We will not prove Theorem 3.2.5 (see Exercise 6 for a proof of (3)), but
we will prove some basic lemmas on UFD's before continuing further.

Theorem 3.2.6. Let R be a UFD. Then

(1) If p is prime, then for all a and b in R, pI ab if and only if p I a or pI b.
(2) If a I be and a has no common divisor with b other than units, then a I c.
(3) If a and b have no common divisor other than units, then if a and b divide

c E R, then ab I c.
(4) Given a set S C R of elements of R, there exists d E R called a greatest

common divisor {GCD) of the elements of S, and having the following
properties: d divides all the elements of S, and if e is any element of R
dividing all the elements of S, then e I d. Furthermore, if d and d' are two
GCD's of S, then d/d' is a unit.

Proof. (1) Assume p I ab. Since R is a UFD, one can write a = fL <i<m Pi
and b = Tim+l<i<m+n Pi, the Pi being not necessarily distinct prime elements
of R. On the other hand, since abfp E R we can also write ab = p f1i qi with
prime elements qj. By the uniqueness of prime decomposition, since ab =
Til<i<m+nPi we deduce that pis equal to a unit times one of the Pi· Hence,
if i~-m, then pI a, while if i > m, then pI b, proving (1).

(2) We prove (2) by induction on the number n of prime factors of b,
counted with multiplicity. If n = 0 then b is a unit and a I c. Assume the
result true for n -1, and let be= qa with n;:::: 1. Let p be a prime divisor of b.
p divides qa, and by assumption p does not divide a. Hence by (1) p divides
q, and we can write b'c = q'a with b' = bfp, q' = qfp. Since b' has only n -1
prime divisors, (2) follows by induction.

(3) Write c = qa with q E R. Since b I c, by (2) we deduce that b I q, hence
ab I c.

(4) For every elements E S, write

where u is a unit, the product is over all distinct prime elements of R up to
units, and vp(s) is the number of times that the prime p occurs in s, hence is
0 for all but finitely many p. Set

116 3 Algoritluns on Polynomials

where ap = minvp(s).
sES

This min is of course equal to 0 for all but a finite number of p, and it is clear
that d satisfies the conditions of the theorem. 0

We will say that the elements of S are coprime if their GCD is a unit.
By definition of a UFD, this is equivalent to saying that no prime element
is a common divisor. Note that if 'R is not only a UFD but also a principal
ideal domain (for example when the UFD 'R is the ring of algebraic integers
in a number field), then the coprimality condition is equivalent to saying that
the ideal generated by the elements is the whole ring 'R. This is however not
true in general. For example, in the UFD C[X, Y], the elements X andY are
coprime, but the ideal which they generate is the set of polynomials P such
that P(O, 0) = 0, and this is not the whole ring.

3.2.3 Polynomials over Unique Factorization Domains

Definition 3.2.7. Let 'R be a UFD, and A E R[X]. We define the content
of A and write cont(A) as a GCD of the coefficients of A. We say that A
is primitive if cont(A) is a unit, i.e. if its coefficients are coprime. Finally,
if A -:/:- 0 the polynomial A/ cont(A) is primitive, and is called the primitive
part of A, and denoted pp(A) {in the case A = 0 we define cont(A) = 0,
pp(A) = 0}.

The fundamental result on these notions, due to Gauss, is as follows:

Theorem 3.2.8. Let A and B be two polynomials over a UFD 'R. Then there
exists a unit u E 'R such that

cont(A ·B)= ucont(A) cont(B), pp(A ·B)= u- 1 pp(A) pp(B).

In particular, the product of two primitive polynomials is primitive.

Proof Since A = cont(A) pp(A), it is clear that this theorem is equivalent
to the statement that the product of two primitive polynomials A and B is
primitive. Assume the contrary. Then there exists a prime p E 'R which divides
all the coefficients of AB. Write A(X) = L:aiXi and B(X) = L:biXi. By
assumption there exists a j such that ai is not divisible by p, and similarly a
k such that bk is not divisible by p. Choose j and k as small as possible. The
coefficient of Xi+k in AB is aibk + ai+1bk_1 + · · · + ai+kbo + ai-1bk+1 + · · · +
aobk+i• and all the terms in this sum are divisible by p except the term aibk
(since j and k have been chosen as small as possible), and aibk itself is not
divisible by p since p is prime. Hence p does not divide the coefficient of Xi+k
in AB, contrary to our assumption, and this proves the theorem. 0

3.2 Euclid's Algorithms for Polynomials 117

Corollary 3.2.9. Let A and B be two polynomials over a UFD R. Then there
exists units u and v in R such that

cont(gcd(A, B)) = u gcd(cont(A), cont(B)),

pp(gcd(A, B)) = v gcd(pp(A), pp(B)).

3.2.4 Euclid's Algorithm for Polynomials over a UFD

We can now give Euclid's algorithm for polynomials defined over a UFD. The
important point to notice is that the sequence of operations will be essentially
identical to the corresponding algorithm over the quotient field of the UFD,
but the algorithm will run much faster. This is because implementing arith
metic in the quotient field (say in Q if R = Z) will involve taking GCD's in the
UFD all the time, many more than are needed to execute Euclid's algorithm.
Hence the following algorithm is always to be preferred to Algorithm 3.2.1
when the coefficients of the polynomials are in a UFD. We will however study
in the next section a more subtle and efficient method.

Algorithm 3.2.10 (Primitive Polynomial GCD). Given two polynomials A
and B with coefficients in a UFD R, this algorithm computes a GCD of A and
B, using only operations in R. We assume that we already have at our disposal
algorithms for (exact) division and for GCD in R.

1. [Reduce to primitive] If B = 0, output A and terminate. Otherwise, set a <--

cont(A), b <--- cont(B), d <--- gcd(a, b), A <--- A/ a, B <--- B fb.

2. [Pseudo division] Compute R such that £(B)deg(A)-deg(B)+l A = BQ + R
using Algorithm 3.1.2. If R = 0 go to step 4. If deg(R) = 0, set B <--- 1 and
go to step 4.

3. [Replace] Set A<--- B, B <--- pp(R) = R/ cont(R) and go to step 2.

4. [Terminate] Output d · B and terminate the algorithm.

In the next section, we will see an algorithm which is in general faster than
the above algorithm. There are also other methods which are often even faster,
but are based on quite different ideas. Consider the case where R = Z. Instead
of trying to control the explosion of coefficients, we simply put ourselves in a
field where this does not occur, i.e. in the finite field lF P for suitable primes
p. If one finds that the GCD modulo p has degree 0 (and this will happen
often), then if p is suitably chosen it will follow that the initial polynomials
are coprime over Z. Even if the GCD is not of degree 0, it is in general quite
easy to deduce from it the GCD over Z. We will come back to this question
in Section 3.6.1.

118 3 Algorithms on Polynomials

3.3 The Sub-Resultant Algorithm

3.3.1 Description of the Algorithm

The main inconvenience of Algorithm 3.2.10 is that we compute the content
of R in step 3 each time, and this is a time consuming operation. If we did
not reduce R at all, then the coefficient explosion would make the algorithm
much slower, and this is also not acceptable. There is a nice algorithm due
to Collins, which is a good compromise and which is in general faster than
Algorithm 3.2.10, although the coefficients are larger. The idea is that one
can give an a priori divisor of the content of R, which is sufficiently large
to replace the content itself in the reduction. This algorithm is derived from
the algorithm used to compute the resultant of two polynomials (see Section
3.3.2), and is called the sub-resultant algorithm. We could still divide A and
B by their content from time to time (say every 10 iterations), but this would
be a very bad idea (see Exercise 4).

Algorithm 3.3.1 (Sub-Resultant GCD). Given two polynomials A and B
with coefficients in a UFD 'R, this algorithm computes a GCD of A and B, using
only operations in 'R. We assume that we already have at our disposal algorithms
for (exact) division and for GCD in 'R.

1. [lnitializations and reductions] If deg(B) > deg(A) exchange A and B. Now
if B = 0, output A and terminate the algorithm, otherwise, set a +-- cont(A),
b +-- cont(B), d +-- gcd(a,b), A+-- A/a, B +-- B/b, g +-- 1 and h +--1.

2. [Pseudo division] Set 8 +-- deg(A) - deg(B). Using Algorithm 3.1.2, compute
R such that i(B)6+1 A = BQ + R. If R = 0 go to step 4. If deg(R) = 0, set
B +-- 1 and go to step 4.

3. [Reduce remainder] Set A+-- B, B +-- Rf(gh6), g +-- i(A), h +-- h1- 6g6 and
go to step 2. (Note that all the divisions which may occur in this step give a
result in the ring n.)

4. [Terminate] Output d · B/ cont(B) and terminate the algorithm.

It is not necessary for us to give the proof of the validity of this algorithm,
since it is long and is nicely done in [Knu2]. The main points to notice are as
follows: first, it is clear that this algorithm gives exactly the same sequence
of polynomials as the straightforward algorithm, but multiplied or divided by
some constants. Consequently, the only thing to prove is that all the quantities
occurring in the algorithm stay in the ring n. This is done by showing that
all the coefficients of the intermediate polynomials as well as the quantities
h are determinants of matrices whose coefficients are coefficients of A and B,
hence are in the ring n.

Another result which one obtains in proving the validity of the algorithm is
that in the case R = Z, if m =deg(A), n =deg(B), and N is an upper bound
for the absolute value of the coefficients of A and B, then the coefficients of
the intermediate polynomials are all bounded by the quantity

3.3 The Sub-Resultant Algorithm 119

and this is reasonably small. One can then show that the execution time
for computing the GCD of two polynomials of degree n over Z when their
coefficients are bounded by N in absolute value is O(n4 (lnNn)2).

I leave as an exercise to the reader the task of writing an extended version
of Algorithm 3.3.1 which gives polynomials U and V such that AU+ BV =
r(A, B), where r E n. All the operations must of course be done in n (see
Exercise 5). Note that it is not always possible to haver= 1. For example, if
A(X) =X and B(X) = 2, then (A, B) = 1 but for any U and V the constant
term of AU + BV is even.

3.3.2 Resultants and Discriminants

Let A and B be two polynomials over an integral domain n with quotient
field K, and let K be an algebraic closure of K.

Definition 3.3.2. Let A(X) = a(X -at) ···(X - am) and B(X) = b(X -
[31) ···(X- f3n) be the decomposition of A and B inK. Then the resultant
R(A, B) of A and B is given by one of the equivalent formulas:

R(A, B) =an B(a1) · · · B(am)

= (-1)mnbm A(lh) · · · A(f3n)

= anbm IJ (ai- {Jj)·
1=::;i=::;m,1=::;j=::;n

Definition 3.3.3. If A E n[X], with m = deg(A), the discriminant disc(A)
of A is equal to the expression:

(-1)m(m- 1l/2 R(A, A')/f(A),

where A' is the derivative of A.

The main point about these definitions is that resultants and discriminants
have coefficients in n. Indeed, by the symmetry in the roots ai, it is clear that
the resultant is a function of the symmetric functions of the roots, hence is in
K. It is not difficult to see that the coefficient an insures that R(A, B) E n.
Another way to see this is to prove the following lemma.

Lemma 3.3.4. If A(X) = Eo<i<m aiXi and B(X) = Eo<i<n biXi, then the
resultant R(A, B) is equal to the determinant of the following 1n+m) x (n+m)
matrix:

120 3 Algorithms on Polynomials

am am-1 am-2 a1 ao 0 0 0
0 am am-1 am-2 a1 ao 0 0
0 0 am am-1 am-2 a1 ao 0

0 0 0 am am-1 am-2 a1 ao
bn bn-1 b2 b1 bo 0 0 0
0 bn bn-1 b2 b1 bo 0 0
0 0 bn bn-1 b2 b1 bo 0

0 0 0 bn bn-1 b2 b1 bo

where the coefficients of A are repeated on n = deg(B) rows, and the coeffi-
cients of B are repeated on m = deg(A) rows.

The above matrix is called Sylvester's matrix. Since the only non-zero
coefficients of the first column of this matrix are am and bn, it is clear that
R(A,B) is not only in R but in fact divisible (in R) by gcd(£(A),£(B)). In
particular, if B =A', R(A, A') is divisible by R(A), hence disc(A) is also in R.

Proof Call M the above matrix. Assume first that the a; and (Jj are all
distinct. Consider the (n + m) x (n + m) Vandermonde matrix V = (v;,j)
defined by V;,j = (Jj+n-i if j :::; n, v;,j = a";,_~n-i if n + 1:::; j :::; n + m. Then
the Vandermonde determinant det(V) is non-zero since we assumed the a;

and (Jj distinct, and we have

On the other hand, it is clear that

MV=

0

A(fJn)
0

0

0 0

B(al)

hence det(MV) is equal to the product of the two diagonal block determinants,
which are again Vandermonde determinants. Hence we obtain:

det(MV) = A((Jl) · .. A(f3n)B(a1) .. · B(am) II (fJi- (Jj) II (ai- aj).
i<j i<j

Comparing with the formula for det(V) and using det(V) I- 0 we obtain

3.3 The Sub-Resultant Algorithm

det(M) II (!3i- aj) = A({31) · · · A(!3n)B(al) · · · B(am)·
i,j

121

Since clearly A({31) · · · A(!3n) =anTI· .(f3i -a3·), the lemma follows in the case •,J
where all the aj and f3i are distinct, and it follows in general by a continuity
argument or by taking the roots as formal variables. 0

Note that by definition, the resultant of A and B is equal to 0 if and
only if A and B have a common root, hence if and only if deg(A, B) > 0. In
particular, the discriminant of a polynomial A is zero if and only if A has a
non-trivial square factor, hence if and only if deg(A, A') > 0.

The definition of the discriminant that we have given may seem a little
artificial. It is motivated by the following proposition.

Proposition 3.3.5. Let A E R[X] with m = deg(A), and let ai be the roots
of A in K. Then we have

disc(A)= £(A)m-Hdeg(A') II (ai- aj)2.

1$i<j$m

Proof. If A has multiple roots, both sides are 0. So we assume that A has only
simple roots. Now if a= £(A), we have

hence

A'(X) =a LII(X- aj)
i #i

A'(ai) =a II (ai- aj)·
#i

Thus we obtain

R(A, A')= am+deg(A')(-1)m(m-1)/2 II (ai- aj)2

i<j

thus proving the proposition. Note that we have deg(A') = m-1, except when
the characteristic of R is non-zero and divides m. 0

The following corollary follows immediately from the definitions.

Corollary 3.3.6. We have R(A1A2, A3) = R(Ab A3)R(A2, A3) and

disc(A1A2) = disc(A1)disc(A2)(R(At,A2))2.

Resultants and discriminants will be fundamental in our handling of alge
braic numbers. Now the nice fact is that we have already done essentially all
the work necessary to compute them: a slight modification of Algorithm 3.3.1
will give us the resultant of A and B.

122 3 Algorithms on Polynomials

Algorithm 3.3.7 (Sub-Resultant). Given two polynomials A and B with co
efficients in a UFD 'R,, this algorithm computes the resultant of A and B.

1. [lnitializations and reductions] If A = 0 or B = 0, output 0 and terminate the
algorithm. Otherwise, set a+-- cont(A), b +-- cont(B), A+-- Aja, B +-- Bjb,
g +-- 1, h +-- 1, s +-- 1 and t +-- adeg(B)bdeg(A). Finally, if deg(A) < deg(B)
exchange A and B and if in addition deg(A) and deg(B) are odd sets +-- -1.

2. [Pseudo division] Set o +-- deg(A) -deg(B). If deg(A) and deg(B) are odd, set
s +-- -s. Finally, compute R such that e(B)H1 A= BQ + R using Algorithm
3.1.2.

3. [Reduce remainder] Set A+-- B and B +-- Rj(gh6).

4. [Finished?] Set g +-- e(A), h +-- h1- 6g6 . If deg(B) > 0 go to step 2, otherwise
seth+-- hl-deg(A)e(B)deg(A) outputs· t ·hand terminate the algorithm.

Proof. Set Ao = A, A1 = B, let Ai be the sequence of polynomials generated
by this algorithm, and let Ri be the remainders obtained in step 2. Let t be
the index such that deg(At+l) = 0. Set dk = deg(Ak), ek = e(Ak), and let 9k
and hk be the quantities g and h in stage k, so that g0 = h0 = 1. Finally set
ok = dk - dk+l· Denoting by f3i the roots of Ak, we clearly have for k 2: 1:

R(Ak-l!Ak) = (-1)dk_ 1 dke~k- 1 II Ak-l(f3i)
l~i~dk

= (-1)dk-1dk~k-1 II Rk+l(/3i)
k lk-1+1

l~i~dk k

= (-1)dk-1dk~k-1-dk(6k-1+1) II Rk+l(/3i)

l~i~dk

_ (-1)dk-1dkedk-1-dk(6k-1+1)-dk+1R(A h6k-1A) - k k>9k-1 k-1 k+l .

Now using R(A, cB) = cdeg(A) R(A, B) and the identities 9k = ek and hk =
hk=~k- 1 g~k- 1 fork 2: 1, we see that the expression simplifies to

Using dt+l = 0, hence Ot = dt, we finally obtain

thus proving the validity of the algorithm. D

3.3 The Sub-Resultant Algorithm 123

Note that it is the same kind of argument and simplifications which show
that the Ak have coefficients in the same ring R as the coefficients of A and
B, and that the hk also belong toR. In fact, we have just proved for instance
that ht+l E R.

Finally, to compute discriminants of polynomials, one simply uses Algo
rithm 3.3.7 and the formula

disc(A) = (-l)m(m-l)/2 R(A, A')/l(A),

where m = deg(A).

3.3.3 Resultants over a Non-Exact Domain

Although resultants and GCD's are similar, from the computational point
of view, there is one respect in which they completely differ. It does make
practical sense to compute (approximate) resultants over R, C or <Qp, while
it does not make sense for GCD's as we have already explained. When deal
ing with resultants of polynomials with such non-exact coefficients we must
however be careful not to use the sub-resultant algorithm. For one thing, it
is tailored to avoid denominator explosion when the coefficients are, for ex
ample, rational numbers or rational functions in other variables. But most
importantly, it would simply give wrong results, since the remainders R ob
tained in the algorithm are only approximate; hence a zero leading coefficient
could appear as a very small non-zero number, leading to havoc in the next
iteration.

Hence, in this case, the natural solution is to evaluate directly Sylvester's
determinant. Now the usual Gaussian elimination method for computing de
terminants also involves dividing by elements of the ring to which the co
efficients belong. In the case of the ring Z, say, this is not a problem since
the quotient of two integers will be represented exactly as a rational number.
Even for non-exact rings like R, the quotient is another real number given
to a slightly worse and computable approximation. On the other hand, in the
case where the coefficients are themselves polynomials in another variable over
some non-exact ring like R, although one could argue in the same way using
rational functions, the final result will not in general simplify to a polynomial
as it should, for the same reason as before.

To work around this problem, we must use the Gauss-Bareiss Algorithm
2.2.6 which has exactly the property of keeping all the computations in the
initial base ring. Keep in mind, as already mentioned after Algorithm 2.2.6,
that if some division of elements of R[X) (say) is required, then Euclidean
division must be used, i.e. we must get a polynomial as a result.

Hence to compute resultants we can apply this algorithm to Sylvester's
matrix, even when the coefficients are not exact. (In the case of exact coef
ficients, this algorithm will evidently also work, but will be slower than the

124 3 Algorithms on Polynomials

sub-resultant algorithm.) Since Sylvester's matrix is an (n + m) x (n + m)
matrix, it is important to note that simple row operations can reduce it to an
n x n matrix to which we can then apply the Gauss-Bareiss algorithm (see
Exercise 8).

Remark. The Gauss-Bareiss method and the sub-resultant algorithm are in
fact closely linked. It is possible to adapt the sub-resultant algorithm so as
to give correct answers in the non-exact cases that we have mentioned (see
Exercise 10), but the approach using determinants is probably safer.

3.4 Factorization of Polynomials Modulo p

3.4.1 General Strategy

We now consider the problem of factoring polynomials. In practice, for poly
nomials in one variable the most important base rings are Z (or IQ), IF p or
iQp. Factoring over R or <C is equivalent to root finding, hence belongs to the
domain of numerical analysis. We will give a simple but efficient method for
this in Section 3.6.3.

Most factorization methods rely on factorization methods over IF P, hence
we will consider this first. In Section 1.6, we have given algorithms for finding
roots of polynomials modulo p, and explained that no polynomial-time deter
ministic algorithm is known to do this (if one does not assume the GRH). The
more general case of factoring is similar. The algorithms that we will describe
are probabilistic, but are quite efficient.

Contrary to the case of polynomials over Z, polynomials over IF P have a
tendency to have several factors. Hence the problem is not only to break up the
polynomial into two pieces (at least), but to factor completely the polynomial
as a product of powers of irreducible (i.e. prime in R.[X]) polynomials. This
is done in four steps, in the following way.

Algorithm 3.4.1 (Factor in 1Fp[X]). Let A E 1Fp[X] be monic (since we are
over a field, this does not restrict the generality). This algorithm factors A as a
product of powers of irreducible polynomials in 1Fp[X].

1. [Squarefree factorization] Find polynomials A~o A 2 , ... , Ak in 1Fp[X] such
that

(1) A= A} A~··· A~.
(2) The Ai are squarefree and coprime.

(This decomposition of A will be called the squarefree factorization of A).

2. [Distinct degree factorization] Fori= 1, ... , k find polynomials Ai,d E 1Fp[X]
such that Ai,d is the product of all irreducible factors of Ai of degree d {hence
Ai = Ild Ai,d)·

3.4 Factorization of Polynomials Modulo p 125

3. [Final splittings] For each i and d, factor Ai,d into deg(Ai,d)/d irreducible
factors of degree d.

4. [Cleanup] Group together all the identical factors found, order them by degree,
output the complete factorization and terminate the algorithm.

Of course, this is only the skeleton of an algorithm since steps 1, 2 and 3
are algorithms by themselves. We will consider them in turn.

3.4.2 Squarefree Factorization

Let IFp be an algebraic closure of IFp. If A E IFEJX] is monic, define Ai(X) =
fl;(X -a;) where the a; are the roots of A in IF'p of multiplicity exactly equal

to i. Since the Galois group of IF p/IF P preserves the multiplicity of the roots of
A, it permutes the a;, so all the Ai have in fact coefficients in IF'p (this will also
follow from the next algorithm). It is clear that they satisfy the conditions of
step 1. It remains to give an algorithm to compute them.

If A = IliA~ with Ai squarefree and coprime, then A' = Ei TI;;li A~ ·
iA~A!- 1 . Hence, ifT = gcd(A,A'), then for all irreducible P dividing T, the
exponent vp(T) of P in the prime decomposition ofT can be obtained as
follows: P dividing A must divide an Am for some m. Hence, for all i #- m in
the sum for A', the v p of the ith summand is greater than or equal to m and
for i = m is equal tom- 1 if p f m, and otherwise the summand is 0 (note
that since Am is squarefree, A:n cannot be divisible by P). Hence, we obtain
that vp(T) = m- 1 if p f m, and vp(T) ~ m, so vp(T) = m (since T divides
A) if pI m. Finally, we obtain the formula

T = (A, A') = II A~- 1 II A~.
Pli pli

Note that we could have given a much simpler proof over Z, and in that case
the exponent of Ai would be equal to i- 1 for all i.

Now we define two sequences of polynomials by induction as follows. Set
T1 = T and V1 = AfT = f]Pii Ai. For k ~ 1, set Vk+1 = (Tk, Vk) if p f k,
vk+l = vk if pI k, and Tk+l = Tk/Vk+1· It is easy to check by induction that

Vk = II Ai and Tk = II A~-k II A~.
i~k, pfi i>k, pti Pli

From this it follows that Ak = Vk/Vk+1 for p f k. We thus obtain all the Ak for
p f k, and we continue as long as Vk is a non-constant polynomial. When Vk is
constant, we have Tk-1 = TIPii A~ hence there exists a polynomial U such that
Tk-1(X) = UP(X) = U(XP), and this polynomial can be trivially obtained
from Tk-1· We then start again recursively the whole algorithm of squarefree
decomposition on the polynomial U. Transforming the recursive step into a
loop we obtain the following algorithm.

126 3 Algorithms on Polynomials

Algorithm 3.4.2 (Squarefree Factorization). Let A E IFp[X] be a monic
polynomial and let A= f1i>l A~ be its squarefree factorization, where the Ai are
squarefree and pairwise coprime. This algorithm computes the polynomials Ai,
and outputs the pairs (i, Ai) for the values of i for which Ai is not constant.

1. [Initialize] Set e +-- 1 and To +-- A.

2. [Initialize e-loop] If T0 is constant, terminate the algorithm. Otherwise, set
T +-- (To, T~). V +--TofT and k +-- 0.

3. [Finished e-loop?]lf Vis constant, T must be of the form T(X) = ~Pii tjXj,

so set To+-- ~plj tjXiiP, e +-- pe and go to step 2.

4. [Special case] Set k +-- k + 1. If p I k set T +-- T /V and k +-- k + 1.

5. [Compute Aek] Set W +-- (T, V), Aek +-- VfW, V +-- W and T +-- TfV. If
Aek is not constant output (ek, Aek)· Go to step 3.

3.4.3 Distinct Degree Factorization

We can now assume that we have a squarefree polynomial A and we want to
group factors of A of the same degree d. This procedure is known as distinct
degree factorization and is quite simple. We first need to recall some results
about finite fields. Let P E IFp[X] be an irreducible polynomial of degree
d. Then the field K = IFp[X]/ P(X)IFp[X] is a finite field with pd elements.
Hence, every element x of the multiplicative group K* satisfies the equation
xPd-l = 1, therefore every element of K satisfies xPd = x. This shows that P
is a divisor of the polynomial XPd -X in IF P [X]. Conversely, every irreducible
factor of XPd -X which is not a factor of XPe -X for e < d has degree exactly
d. This leads to the following algorithm.

Algorithm 3.4.3 (Distinct Degree Factorization). Given a squarefree poly
nomial A E IFp[X]. this algorithm finds for each d the polynomial Ad which is the
product of the irreducible factors of A of degree d.

1. [Initialize] Set V +--A, W +--X, d +-- 0.

2. [Finished?] Set e +-- deg(V). If d + 1 > ~e. then if e > 0 setAe = V, Ai = 1
for all other i > d, and terminate the algorithm. If d + 1 :::; ~e. set d +-- d + 1,
W +-- WP mod V.

3. [Output Ad] Output Ad = (W- X, V). If Ad i= 1, set V +-- V/Ad. W +

W mod V. Go to step 2.

Once the Ad have been found, it remains to factor them. We already
know the number of irreducible factors of Ad, which is equal to deg(Ad)/d. In
particular, if deg(Ad) = d, then Ad is irreducible.

Note that the distinct degree factorization algorithm above succeeds in
factoring A completely quite frequently. With reasonable assumptions, it can

3.4 Factorization of Polynomials Modulo p 127

be shown that the irreducible factors of A modulo p will have distinct degrees
with probability close to e-"Y ~ 0.56146, where 1 is Euler's constant, where
we assume the degree of A to be large (see [Knu2]).

As a corollary to the above discussion and algorithm, we see that it is easy
to determine whether a polynomial is irreducible in lFp[X]. More precisely, we
have:

Proposition 3.4.4. A polynomial A E lFv[X] of degree n is irreducible if and
only if the following two conditions are satisfied:

XPn =X (mod A(X)),

and for each prime q dividing n

Note that to test in practice the second condition of the proposition, one
must first compute B(X) = XPnfq mod A(X) using the powering algorithm,
and then compute gcd(B(X) - X, A(X)). Hence, the time necessary for this
irreducibility test, assuming one uses the O(n2) algorithms for multiplication
and division of polynomials of degree n, is essentially O(n3 lnp), if the factor
ization of n is known (since nobody considers polynomials of degree larger,
say than 109 , this is a reasonable assumption).

It is interesting to compare this with the analogous primality test for
integers. By Proposition 8.3.1, n is prime if and only if for each prime q dividing
n- 1 one can find an aq E Z such that a~- 1 = 1 (mod n) and a~n- 1)/q ¢ 1

(mod n). This takes time O(ln3 n), assuming the factorization of n- 1 to be
known. But this is an unreasonable assumption, since one commonly wants
to prove the primality of numbers of 100 decimal digits, and at present it is
quite unreasonable to factor a 100 digit number. Hence the above criterion is
not useful as a general purpose primality test over the integers.

3.4.4 Final Splitting

Finally we must consider the most important and central part of Algorithm
3.4.1, its step 3, which in fact does most of the work. After the preceding steps
we are left with the following problem. Given a polynomial A which is known
to be squarefree and equal to a product of irreducible polynomials of degree
exactly equal to d, find these factors. Of course, deg(A) is a multiple of d, and
if deg(A) = d we know that A is itself irreducible and there is nothing to do.
A simple and efficient way to do this was found by Cantor and Zassenhaus.
Assume first that p > 2. Then we have the following lemma:

Proposition 3.4.5. If A is as above, then for any polynomial T E lFp[X] we
have the identity:

128 3 Algorithms on Polynomials

A= (A, T) ·(A, T(pd- 1)12 + 1) ·(A, T(pd- 1)12 - 1).

Proof. The roots of the polynomial XPd - X, being the elements of IF Pd, are

all distinct. It follows that for any T E 1Fp[X], the polynomial T(X)Pd- T(X)
d

also has all the elements of IF pd as roots, hence is divisible by XP -X. In
particular, as we have seen in the preceding section, it is a multiple of every
irreducible polynomial of degree d, hence of A, since A is squarefree. The
claimed identity follows immediately by noting that

with the three factors pairwise coprime. D

Now it is not difficult to show that if one takes for T a random monic
polynomial of degree less than or equal to 2d -1, then (A, T(Pd_ 1)12 -1) will
be a non-trivial factor of A with probability close to 1/2. Hence, we can use
the following algorithm to factor A:

Algorithm 3.4.6 (Cantor-Zassenhaus Split). Given A as above, this algo
rithm outputs its irreducible factors (which are all of degree d). This algorithm
will be called recursively.

1. [Initialize] Set k +--- deg(A)/d. If k = 1, output A and terminate the algorithm.

2. [Try a T] Choose T E 1Fp[X] randomly such that T is monic of degree less

than or equal to 2d - 1. Set B +--- (A, T(Pd- 1)/2 - 1). If deg(B) = 0 or
deg(B) = deg(A) go to step 2.

3. [Recurse] Factor B and A/ B using the present algorithm recursively, and ter
minate the algorithm.

Note that, as has already been mentioned after Proposition 3.4.4, to com
pute B in step 2 one first computes C +--- T(Pd- 1)/2 mod A using the powering
algorithm, and then B +--- (A, C -1).

Finally, we must consider the case where p = 2. In that case, the following
result is the analog of Proposition 3.4.5:

Proposition 3.4. 7. Set

U(X)=X +X2 +X4 + ··· +X2d-'.

If p = 2 and A is as above, then for any polynomial T E IF2 [X] we have the
identity

A= (A,UoT) · (A,UoT+1).

3.4 Factorization of Polynomials Modulo p 129

Proof. Note that (U o T)2 = T 2 + T 4 + ... + T2d, hence (U o T) · (U o T + 1) =

T 2d- T (remember that we are in characteristic 2). By the proof of Proposition
3.4.5 we know that this is a multiple of A, and the identity follows. D

Exactly as in the case of p > 2, one can show that the probability that
(A, U o T) is a non-trivial factor of A is close to 1/2, hence essentially the
same algorithm as Algorithm 3.4.6 can be used. Simply replace in step 2
B - (A, T(Pd-l)/2 - 1) by B - (A, U o T). Here, however, we can do better
than choosing random polynomials T in step 2 as follows.

Algorithm 3.4.8 (Split for p = 2). Given A E JF2 [X] as above, this algorithm
outputs its irreducible factors (which are all of degree d). This algorithm will be
called recursively.

1. [Initialize] Set k- deg(A)jd. If k = 1, output A and terminate the algorithm,
otherwise set T - X.

2. [Test T] Set C- T and then repeat d -1 times C- T + C2 mod A. Then
set B- (A, C). If deg(B) = 0 or deg(B) = deg(A) then set T - T · X 2

and go to step 2.

3. [Recurse] Factor B and Aj B using the present algorithm recursively, and ter
minate the algorithm.

Proof. If this algorithm terminates, it is clear that the output is a factorization
of A, hence the algorithm is correct. We must show that it terminates. Notice
first that the computation of C done in step 2 is nothing but the computation
of U oT mod A (note that on page 630 of [Knu2], Knuth gives C - (C
+C2 mod A), but this should be instead, as above, C- T + C2 mod A).

Now, since for any T E !F2[X], we have by Proposition 3.4.7 U(T) · (U(T)+
1) = 0 (mod A), it is clear that (U(T),A) = 1 is equivalent to U(T) = 1
(mod A). Furthermore, one immediately checks that U(T2) = U(T) (mod A),
and that U(T1 + T2) = U(T1) + U(T2).

Now I claim that the algorithm terminates when T = xe in step 2 for
some odd value of e such that e ~ 2d- 1. Indeed, assume the contrary. Then
we have for every odd e ~ 2d -1, (U(Xe), A) = 1 or A, hence U(Xe) = 0 or
1 modulo A. Since U(T2) = U(T) (mod A), this is true also for even values
of e ~ 2d, and the linearity of U implies that this is true for every polynomial
of degree less than or equal to 2d. Now U is a polynomial of degree 2d-l, and
has at most (in fact exactly, see Exercise 15) 2d-l roots in !F2d. Let (3 E !F2d

not a root of U. The number of irreducible factors of A is at least equal to
2 (otherwise we would have stopped at step 1), and let A1 and A2 be two
such factors, both of degree d. Let a be a root of A2 in !F2d (notice that all
the roots of A2 are in !F2d). Since A2 is irreducible, a generates !F2d over lF2.
Hence, there exists a polynomial P E JF2[X] such that (3 = P(a).

By the Chinese remainder theorem, since A1 and A2 are coprime we can
choose a polynomial T such that T = 0 (mod A1) and T = P (mod A2), and

130 3 Algorithms on Polynomials

Tis defined modulo the product A1A2. Hence, we can choose T of degree less
than 2d. But

U(T) = U(O) = 0 (mod At)

and
U(T) = U(P) ¢ 0 (mod A2)

since
U(P(a)) = U((3) ::J 0.

This contradicts U(T) = 0 or 1 modulo A, thus proving the validity of the
algorithm. The same proof applied to TPd- T instead of U(T) explains why
one can limit ourselves to deg(T) ~ 2d- 1 in Algorithm 3.4.6. D

Proposition 3.4. 7 and Algorithm 3.4.8 can be extended to general primes
p, but are useful in practice only if pis small (see Exercise 14).

There is another method for doing the final splitting due to Berlekamp
which predates that of Cantor-Zassenhaus, and which is better in many cases.
This method could be used as soon as the polynomial is squarefree. (In other
words, if desirable, we can skip the distinct degree factorization.) It is based
on the following proposition.

Proposition 3.4.9. Let A E !Fp[X] be a squarefree polynomial, and let

A(X) = II Ai(X)
1ir

be its decomposition into irreducible factors. The polynomials T E lF P [X] with
deg(T) < deg(A) for which for each i with 1 ~ i ~ r there exist Si E IF P
such that T(X) = si (mod Ai(X)), are exactly the pr polynomials T such
that deg(T) < deg(A) and T(X)P := T(X) (mod A(X)).

Proof. By the Chinese remainder Theorem 1.3.9 generalized to the Euclidean
ring !Fp[X], for each of the pr possible choices of Si E Fp (1 ~ i ~ r), there
exists a unique polynomial T E !Fp[X] such that deg(T) < deg(A) and for
each i

T(X) = Si (mod Ai(X)).

Now if T is a solution of such a system, we have

T(X)P =sf= Si = T(X) (mod Ai(X))

for each i, hence
T(X)P := T(X) (mod A(X)).

Conversely, note that we have in !Fp[X] the polynomial identity XP- X =
llosp-l(X- s), hence

3.4 Factorization of Polynomials Modulo p 131

T(X)P- T(X) = IJ (T(X)- 8).
O$;s$;p-1

Hence, if T(X)P = T(X) (mod A(X)), we have for all i

Ai(X) I IT (T(X) - 8),
O$;s$;p-1

and since the Ai are irreducible this means that Ai(X) I T(X) - 8i for some
8i E IF P thus proving the proposition. D

The relevance of this proposition to our splitting problem is the following.
If T is a solution of such a system of congruences with, say, 81 =/:- 82, then
gcd(A(X),T(X)- 81) will be divisible by A1 and not by A2 , hence it will be
a non-trivial divisor of A. The above proposition tells us that to look for such
nice polynomials Tit is not necessary to know the Ai, but simply to solve the
congruence T(X)P = T(X) (mod A(X)).

To solve this, write T(X) = L:o$;j<n tiXi, where n = deg(A), with tj E

IFp. Then T(X)P = L:itiXPi, hence if we set

we have

XPk = L qi,kxi (mod A(X))
O$;i<n

T(X)P = L tiL qi,ixi (mod A(X))
j

so the congruence T(X)P = T(X) (mod A(X)) is equivalent to

Ltiqi,j = ti for 1 ~ i < n.
j

If, in matrix terms, we set Q = (qi,j), V = (ti) (column vector), and I the
identity matrix, this means that QV = V. In other words (Q -I)V = 0, so V
belongs to the kernel of the matrix Q- I.

Algorithm 2.3.1 will allow us to compute this kernel, and it is especially
efficient since we work in a finite field where no coefficient explosion or insta
bility occurs.

Thus we will obtain a basis of the kernel ofQ-I, which will be of dimension
r by Proposition 3.4.9. Note that trivially qi,O = 0 if i > 0 and qo,o = 1,
hence the column vector (1, 0, ... , o)t will always be an element of the kernel,
corresponding to the trivial choice T(X) = 1. Any other basis element of the
kernel will be useful. If T(X) is the polynomial corresponding to a V in the
kernel of Q- I, we compute (A(X), T(X)- s) for 0 ~ 8 ~ p- 1. Since by
Proposition 3.4.9 there exists an s such that T(X) = s (mod A1 (X)), there
will exist an s which will give a non-trivial GCD, hence a splitting of A. We

132 3 Algorithms on Polynomials

apply this to all values of s and all basis vectors of the kernel until the r
irreducible factors of A have been isolated (note that it is better to proceed
in this way than to use the algorithm recursively once a split is found as in
Algorithm 3.4.6 since it avoids the recomputation of Q and of the kernel of
Q- I).

This leads to the following algorithm.

Algorithm 3.4.10 (Berlekamp for Small p). Given a squarefree polynomial
A E 1Fp[X] of degree n, this algorithm computes the factorization of A into
irreducible factors.

1. [Compute Q] Compute inductively for 0 ::::; k < n the elements q;,k E 1Fp such
that

XPk = L qi,kxi (mod A(X)).
O~i<n

2. [Compute kernel] Using Algorithm 2.3.1, find a basis V1 , ... , Vr of the kernel
of Q - I. Then r will be the number of irreducible factors of A, and V1 =
(1,0, ... ,o)t. Set E +-{A}, k +-1, j +-1 (E will be a set of polynomials
whose product is equal to A, k its cardinality and j is the index of the vector
of the kernel which we will use).

3. [Finished?] If k = r, output E as the set of irreducible factors of A and
terminate the algorithm. Otherwise, set j +- j + 1, and let T(X) be the
polynomial corresponding to the vector Vj (i.e. T(X) +- Lo~i<n(Vj)iXi).

4. [Split] For each element B E E such that deg(B) > 1 do the following. For
each s E 1Fp compute (B(X), T(X)-s). Let F be the set of such GCD's whose
degree is greater or equal to 1. Set E +- (E \ { B}) U F and k +- k- 1 +IF I·
If in the course of this computation we reach k = r, output E and terminate
the algorithm. Otherwise, go to step 3.

The main drawback of this algorithm is that the running time of step 4
is proportional to p, and this is slower than Algorithm 3.4.6 as soon as p gets
above 100 say. On the other hand, if p is small, a careful implementation of
this algorithm will be faster than Algorithm 3.4.6. This is important, since in
many applications such as factoring polynomials over Z, we will first factor
the polynomial over a few fields IF P for small primes p where Berlekamp's
algorithm is superior.

If we use the idea of the Cantor-Zassenhaus split, we can however improve
considerably Berlekamp's algorithm when pis large. In steps 3 and 4, instead of
considering the polynomials corresponding to the vectors Vj- s V1 for 2 ::::; j ::::; r
and s E IFP, we instead choose a random linear combination V = L~=l a; Vi
with ai E 1Fp and compute (B(X), T(X)(p-l)/2 -1), where Tis the polynomial
corresponding to V. It is easy to show that this GCD will give a non-trivial
factor of B(X) with probability greater than or equal to 4/9 when p 2: 3 and
B is reducible (see Exercise 17 and [Knu2] p. 429). This gives the following
algorithm.

3.5 Factorization of Polynomials over Z. or Q 133

Algorithm 3.4.11 (Berlekamp). Given a squarefree polynomial A E IFp[X]
of degree n (with p 2: 3), this algorithm computes the factorization of A into
irreducible factors.

1. [Compute Q] Compute inductively for 0:::; k < n the elements q;,k E IFP such
that

X pk _ "'\:"' xi = L..t q;,k .
O~i<n

2. [Compute kernel] Using Algorithm 2.3.1, find a basis V1, ... , Vr of the kernel
of Q- I, and let T1, ... , Tr be the corresponding polynomials. Then r will be
the number of irreducible factors of A, and V1 = (1, 0, ... , O)t hence T1 = 1.
Set E +-{A}, k +- 1, (E will be a set of polynomials whose product is equal
to A and k its cardinality).

3. [Finished?] If k = r, output E as the set of irreducible factors of A and
terminate the algorithm. Otherwise, chooser random elements a; E IFp, and
set T(X) +- L: 1 ~i~r a;T;(X).

4. [Split] For each element B E E such that deg(B) > 1 do the following. Let
D(X) +- (B(X), T(X)(p-l)/2 -1). If deg(D) > 0 and deg(D) < deg(B), set
E +- (E\{B})U{D,B/D} and k +- k+l.lfin thecourseofthiscomputation
we reach k = r, output E and terminate the algorithm. Otherwise, go to step 3.

Note that if we precede any of these two Berlekamp algorithms by the
distinct degree factorization procedure (Algorithm 3.4.3), we should replace
the condition deg(B) > 1 of step 4 by deg(B) > d, since we know that all the
irreducible factors of A have degree d.

Using the algorithms of this section, we now have at our disposal several
efficient methods for completely factoring polynomials modulo a prime p. We
will now consider the more difficult problem of factoring over Z.

3.5 Factorization of Polynomials over Z or <Q

The first thing to note is that factoring over Q is essentially equivalent to
factoring over Z. Indeed if A = f}; A; where the A; are irreducible over Q,
then by multiplying by suitable rational numbers, we have dA = f};(d;A;)
where the d; can be chosen so that the d;A; have integer coefficients and
are primitive. Hence it follows from Gauss's lemma (Theorem 3.2.8) that if
A E Z[X], then d = ±1. Conversely, if A= f}; A with A and the A in Z[X]
and the A; are irreducible over Z, then the A; are also irreducible over Q, by
a similar use of Gauss's lemma.

Therefore in this section, we will consider only the problem of factoring a
polynomial A over Z. If A= BC is a splitting of A in Z[X], then A= BC in
IFp[X], where- denotes reduction mod p. Hence we can start by reducing mod
p for some p, factor mod p, and then see if the factorization over IF P lifts to
one over Z. For this, it is essential to know an upper bound on the absolute
value of the coefficients which can occur as a factor of A.

134 3 Algorithms on Polynomials

3.5.1 Bounds on Polynomial Factors

The results presented here are mostly due to Mignotte [Mig]. The aim of this
section is to prove the following theorem:

Theorem 3.5.1. For any polynomial P = L:o<i<nPiXi E C[X] set IPI =
(L:i IPil 2) 112 . Let A = Eo<i<m aiXi and B = E~<i<n biXi be polynomials
with integer coefficients, and assume that B divides A.-Then we have for all j

(n -1) (n -1) lbil ~ j IAI+ j- 1 laml·

Proof. Let a be any complex number, and let A = Eo<i<m aiXi be any
polynomial. Set G(X) = (X- a)A(X) and H(X) = (aX.::. i)A(X). Then

IGI 2 = L I ai-l- aail 2 = L(lai-112 + laail 2 - 2 Re(aaiai-1))

= L(laai-1l2 + lail 2 - 2Re(aaiai-1))

= L laai-1- ail 2 = IHI2 •

Let now A(X) =am IJi(X- aj) be the decomposition of A over C. If we set

C(X) =am II (X- ai) II (ajX -1),
lll<;l?:l lll<;l<l

it follows that IGI = IAI. Hence, taking into account only the coefficient of
xm and the constant term, it follows that

where
M(A) = II lail, m(A) = II lail·

lll!;l>l lll<;l<l

In particular, M(A) ~ IAI/Iaml· Now

lail = lami!Lail ··.aim-;!~ laml L,8i1 · · .,8im-;>

where ,8i = max(1, laiD· Assume for the moment the following lemma:

Lemma 3.5.2. If x1 2: 1, ... , Xm 2: 1 are real numbers constrained by
the further condition that their product is equal to M, then the elementary
symmetric function O"mk = L: Xi1 .•. Xik satisfies

(m-1) (m-1) O"mk ~ k - 1 M + k .

3.5 Factorization of Polynomials over Z. or Q 135

Since the product of the (Ji is by definition M(A), it follows from the
lemma that for all j,

Coming back to our notations and applying the preceding result to the poly
nomial B, we see that [bj[:::; [bn[((nj1)M(B) + (j=i)). It follows that [bj[:::;
[am[((nj1)M(A) + G=i)) since if B divides A, we must have M(B):::; M(A)
(since the roots of B are roots of A), and [bn[:::; [am[(since in fact bn divides
am)· The theorem follows from this and the inequality M(A) :::; [A[/[am[
proved above.

It remains to prove the lemma. Assume without loss of generality that x1 :::;

X2 · · · :::; Xm· If one changes the pair (xm-1, Xm) into the pair (1, Xm-1Xm), all
the constraints are still satisfied and it is easy to check that the value of 0' mk

is increased by
O'(m-2)(k-l)(Xm-1 -1)(xm -1).

It follows that if Xm- 1 > 1, the point (x1, ... , Xm) cannot be a maximum.
Hence a necessary condition for a maximum is that Xm-1 = 1. But this imme
diately implies that Xi = 1 for all i < m, and hence that Xm = M. It is now
a simple matter to check the inequality of the lemma, the term c;:={)M cor

responding to k-tuples containing Xm, and the term (mk' 1) to the ones which
do not contain Xm· This finishes the proof of Theorem 3.5.1. D

A number of improvements can be made in the estimates given by this
theorem. They do not seriously influence the running time of the algorithms
using them however, hence we will be content with this.

3.5.2 A First Approach to Factoring over Z

First note that for polynomials A of degree 2 or 3 with coefficients which are
not too large, the factoring problem is easy: if A is not irreducible, it must
have a linear factor qX- p, and q must divide the leading term of A, and p
must divide the constant term. Hence, if the leading term and the constant
term can be easily factored, one can check each possible divisor of A. An ad
hoc method of this sort could be worked out also in higher degrees, but soon
becomes impractical.

A second way of factoring over Z is to combine information obtained
by the mod p factorization methods. For example, if modulo some prime p,
A(X) mod p is irreducible, then A(X) itself is of course irreducible. A less
trivial example is the following: if for some p a polynomial A(X) of degree 4
breaks modulo p into a product of two irreducible polynomials of degree 2,

136 3 Algorithms on Polynomials

and for another pinto a product of a polynomial of degree 1 and an irreducible
polynomial of degree 3, then A(X) must be irreducible since these splittings
are incompatible. Unfortunately, although this method is useful when com
bined with other methods, except for polynomials of small degree, when used
alone it rarely works. For example, using the quadratic reciprocity law and
the identities

x4 + 1 = (X2 + H)(X2 - H)

= (X2 - XJ2 + 1)(X2 +XJ2 + 1)

= (X2 + XH -1)(X2 - XH -1)

it is easy to check that the polynomial X 4 + 1 splits into 4 linear factors if
p = 2 or p = 1 (mod 8), and into two irreducible quadratic factors otherwise.
This is compatible with the possibility that X 4 + 1 could split into 2 quadratic
factors in Z[X], and this is clearly not the case.

A third way to derive a factorization algorithm over Z is to use the bounds
given by Theorem 3.5.1 and the mod p factorization methods. Consider for
example the polynomial

A(X) = X 6 - 6X4 - 2X3 -7X2 + 6X + 1.

If it is not irreducible, it must have a factor of degree at most 3. The bound of
Theorem 3.5.1 shows that for any factor of degree less or equal to 3 and any
j, one must have lbJ I :S 23. Take now a prime p greater than twice that bound
and for which the polynomial A mod pis squarefree, for example p = 47. The
mod p factoring algorithms of the preceding section show that modulo 4 7 we
have

A(X) =(X- 22)(X- 13)(X- 12)(X + 12)(X2 - 12X- 4),

taking as representatives of Z/472: the numbers from -23 to 23. Now the
constant term of A being equal to 1, up to sign any factor of A must have
that property. This immediately shows that A has no factor of degree 1 over
Z (this could of course have been checked more easily simply by noticing that
A(1) and A(-1) are both non-zero), but it also shows that A has no factor of
degree 2 since modulo 47 we have 12 · 22 = -18, 12 · 13 = 15, 12 · 12 = 3 and
13 · 22 = 4. Hence, if A is reducible, the only possibility is that A is a product
of two factors of degree 3. One of them must be divisible by X 2 - 12X - 4,
and hence can be (modulo 47) equal to either (X2 -12X- 4)(X -12) (whose
constant term is 1), or to (X2 - 12X- 4)(X + 12) (whose constant term is
-1). Now modulo 47, we have (X2 -12X- 4)(X -12) = X 3 + 23X2 - X+ 1
and (X2 - 12X- 4)(X + 12) = X 3 - 7X- 1.

The first case can be excluded a priori because the bound of Theorem 3.5.1
gives b2 :S 12, hence 23 is too large. In the other case, by the choice made for
p, this is the only polynomial in its congruence class modulo 47 satisfying the
bounds of Theorem 3.5.1. Hence, if it divides A in Z[X], we have found the

3.5 Factorization of Polynomials over Z or Q 137

factorization of A, otherwise we can conclude that A is irreducible. Since one
checks that A(X) = (X3 - 7X- 1)(X3 +X -1), we have thus obtained the
complete factorization of A over Z. Note that the irreducibility of the factors
of degree 3 has been proved along the way.

When the degree or the coefficients of A are large however, the bounds of
Theorem 3.5.1 imply that we must use a p which is really large, and hence for
which the factorization modulo pis too slow. We can overcome this problem
by keeping a small p, but factoring modulo pe for sufficiently large e.

3.5.3 Factorization Modulo pe: Hensel's Lemma

The trick is that if certain conditions are satisfied, we can "lift" a factorization
modulo p to a factorization mod pe for any desired e, without too much effort.
This is based on the following theorem, due to Hensel, and which was one of
his motivations for introducing p-adic numbers.

Theorem 3.5.3. Let p be a prime, and let C, Ae, Be, U, V be polynomials
with integer coefficients and satisfying

C(X) = Ae(X)Be(X) (mod pe), U(X)Ae(X)+V(X)Be(X) = 1 (mod p).

Assume that e ~ 1, Ae is monic, deg(U) < deg(Be), deg(V) < deg(Ae)· Then
there exist polynomials Ae+l and Be+l satisfying the same conditions with e
replaced by e + 1, and such that

Furthermore, these polynomials are unique modulo pe+l.

Proof. Set D = (C- AeBe)fpe which has integral coefficients by assumption.
We must have Ae+l = Ae +peS, Be+l =Be+ peT with SandT in Z[X].
The main condition needed is C(X) = Ae+l(X)Be+l(X) (mod pe+1). Since
2e ~ e + 1, this is equivalent to AeT + BeS = (C- AeBe)fpe = D (mod p).
Since U Ae + V Be = 1 in IF P [X] and IF P is a field, the general solution is
S = V D + W Ae (mod p) and T = U D- W Be) (mod p) for some polynomial
W. The conditions on the degrees imply that S and T are unique modulo
p, hence Ae+l and Be+l are unique modulo pe+l. Note that this proof is
constructive, and gives a simple algorithm to obtain Ae+l and Be+l· D

For reasons of efficiency, it will be useful to have a more general version
of Theorem 3.5.3. The proof is essentially identical to the proof of Theorem
3.5.3, and will follow from the corresponding algorithm.

Theorem 3.5.4. Let p, q be (not necessarily prime) integers, and let r =
(p, q). Let C, A, B, U and V be polynomials with integer coefficients satisfying

138 3 Algorithms on Polynomials

C = AB (mod q), U A + VB = 1 (mod p),

and assume that (f(A),r) = 1, deg(U) < deg(B), deg(V) < deg(A) and
deg(C) = deg(A) +deg(B). (Note that this last condition is not automatically
satisfied since Z/ qZ may have zero divisors.) Then there exist polynomials
A1 and B 1 such that A1 = A (mod q), B 1 = B (mod q), f(A1) = f(A),
deg(A1) = deg(A), deg(B1) = deg(B) and

C = A1B1 (mod qr).

In addition, A1 and B1 are unique modulo qr if r is prime.

We give the proof as an algorithm.

Algorithm 3.5.5 (Hensel Lift). Given the assumptions and notations of The
orem 3.5.4, this algorithm outputs the polynomials A1 and B 1. As a matter of
notation, we denote by K the ring Z/rZ.

1. [Euclidean division] Set f +-- (C- AB)jq (mod r) E K[X]. Using Algorithm
3.1.1 over the ring K, find t E K[X] such that deg(V f-At) < deg(A) (this
is possible even when K is not a field, since f(A) is invertible in K).

2. [Terminate] Let A0 be a lift of V f - At to Z[X] having the same degree,
and let Bo be a lift of U f + Bt to Z[X] having the same degree. Output
A1 +--A+ qAo, B 1 +-- B + qBo and terminate the algorithm.

Proof It is clear that BAo +ABo= f (mod r). From this, it follows immedi
ately that C = A1B1 (mod qr) and that deg(Bo) :S: deg(B), thus proving the
validity of the algorithm and of Theorem 3.5.4. 0

If p I q, we can also if desired replace p by pr = p2 in the following way.

Algorithm 3.5.6 (Quadratic Hensel Lift). Assume p I q, hence r = p. After
execution of Algorithm 3.5.5, this algorithm finds U1 and V1 such that U1 = U
(mod p), V1 = V (mod p), deg(U1) < deg(B1), deg(V1) < deg(A1) and

U1A1 + V1B1 = 1 (mod pr).

1. [Euclidean division] Set g +-- (1- U A1 - VB1)/p (mod r). Using Algorithm
3.1.1 over the same ring K = Z/rZ, find t E K[X] such that deg(Vg-A1t) <
deg(A1), which is possible since f(A 1) = f(A) is invertible in K.

2. [Terminate] Let U0 be a lift of U g + B 1t to Z[X] having the same degree,
and let Vo be a lift of V g - A 1t to Z[X] having the same degree. Output
U1 +-- U + pUo, V1 +-- V + pVo and terminate the algorithm.

It is not difficult to see that at the end of this algorithm, (A1, B1, U1, V1)
satisfy the same hypotheses as (A, B, U, V) in the theorem, with (p, q) replaced
by (pr,qr).

3.5 Factorization of Polynomials over Z or Q 139

The condition p I q is necessary for Algorithm 3.5.6 (not for Algorithm
3.5.5), and was forgotten by Knuth (page 628). Indeed, if p f q, G does not
have integral coefficients in general, since after constructing At and Bt, one
has only the congruence U At+ VBt = 1 (mod r) and not (mod p). Of course,
this only shows that Algorithm 3.5.6 cannot be used in that case, but it does
not show that it is impossible to find Ut and Vi by some other method. It is
however easy to construct counterexamples. Take p = 33, q = 9, hence r = 3,
and A(X) = X - 3, B(X) = X - 4, C(X) = X 2 + 2X + 3, U(X) = 1 and
V(X) = -1. The conditions of the theorem are satisfied, and Algorithm 3.5.5
gives us At(X) =X- 21 and Bt(X) =X+ 23. Consider now the congruence
that we want, i.e.

Ut(X)(X- 21) + Vt(X)(X + 23) := 1 (mod 99),

or equivalently

Ut(X)(X- 21) + Vt(X)(X + 23) = 1 + 99W(X),

where all the polynomials involved have integral coefficients. If we set X = 21,
we obtain 44Vt(21) = 1 + 99W(21), hence 0 = 1 (mod 11) which is absurd.
This shows that even without any restriction on the degrees, it is not always
possible to lift p to pr if p f q.

The advantage of using both algorithms instead of one is that we can
increase the value of the exponent e much faster. Assume that we start with
p = q. Then, by using Algorithm 3.5.5 alone, we keep p fixed, and q takes
the successive values p2 , p3 , etc If instead we use both Algorithms 3.5.5
and 3.5.6, the pair (p,q) takes the successive values (p2,p2), (p4,p4), etc ...
with the exponent doubling each time. In principle this is much more efficient.
When the exponent gets large however, the method slows down because of the
appearance of multi-precision numbers. Hence, Knuth suggests the following
recipe: let E be the smallest power of 2 such that pE cannot be represented
as a single precision number, and e be the largest integer such that pe is a
single precision number. He suggests working successively with the following
pairs (p, q):

(p,p), (p2,p2), (p4,p4), ... , (pE/2,pE/2) using both algorithms, then
(pe, pE) using both algorithms again but a reduced value of the exponent
of p (since e <E) and finally (pe,pE+e), (pe,pE+2e), (pe,r+3e), ... using
only Algorithm 3.5.5.

Finally, note that by induction, one can extend Algorithms 3.5.5 and 3.5.6
to the case where C is congruent to a product of more than 2 pairwise coprime
polynomials mod p.

3.5.4 Factorization of Polynomials over Z

We now have enough ingredients to give a reasonably efficient method for
factoring polynomials over the integers as follows.

140 3 Algorithms on Polynomials

Algorithm 3.5.7 (Factor in Z[X]). Let A E Z[X] be a non-zero polynomial.
This algorithm finds the complete factorization of A in Z[X].

1. (Reduce to squarefree and primitive] Set c +--- cont(A), A +--- Afc, U +

A/(A, A') where (A, A') is computed using the sub-resultant Algorithm 3.3.1,
or the method of Section 3.6.1 below. (Now U will be a squarefree primi
tive polynomial. In this step, we could also use the squarefree decomposition
Algorithm 3.4.2 to reduce still further the degree of U).

2. (Find a squarefree factorization mod p] For each prime p, compute (U, U')
over the field IFp. and stop when this GCD is equal to 1. For this p, using the
algorithms of Section 3.4, find the complete factorization of U mod p {which
will be squarefree). Note that in this squarefree factorization it is not necessary
to find each Ai from the Ui: we will have Ai = Ui since T = (U, U') = 1.

3. (Find bound] Using Theorem 3.5.1, find a bound B for the coefficients of
factors of U of degree less than or equal to deg(U)/2. Choose e to be the
smallest exponent such that pe > 2i(U)B.

4. (Lift factorization] Using generalizations of Algorithms 3.5.5 and 3.5.6, and the
procedure explained in the preceding section, lift the factorization obtained in
step 2 to a factorization mod pe. (One will also have to use Euclid's extended
Algorithm 3.2.2.) Let

be the factorization of U mod pe, where we can assume the U; to be monic.
Set d +--- 1.

5. (Try combination] For every combination of factors V = Ui1 ••• U;d, where in
addition we take id = 1 if d = ~r, compute the unique polynomial V E Z[~]
such that all the coefficients of V are in [- ~e, ~pe[, and satisfying V = i(U)V
(mod pe) if deg(V)::; ~ deg(U), V = U/V (mod pe) if deg(V) > ~ deg(U).

If V divides i(U)U in Z[XJ, output the factor F = pp(V), the exponent
of F in A, set U +--- U / F, and remove the corresponding U; from the list of
factors mod pe (i.e. remove U;1 .•. U;d and set r +--- r - d if d ::; ~r, or leave
only these factors and set r +--- d otherwise). If d > ~r terminate the algorithm
by outputting pp(U) if deg(U) > 0.

6. Set d +--- d + 1. If d ::; ~r go to step 5, otherwise terminate the algorithm by
outputting pp(U) if deg(U) > 0.

Implementation Remarks. To decrease the necessary bound B, it is a good
idea to reverse the coefficients of the polynomial U if iuoi < iuni (where of
course we have cast out all powers of X so that u0 =f. 0). Then the factors will
be the reverse of the factors found.

In step 5, before trying to see whether V divides i(U)U, one should first
test the divisibility of the constant terms, i.e. whether V(O) I (i(U)U(O)), since
this will be rarely satisfied in general.

3.5 Factorization of Polynomials over Z or Q 141

An important improvement can be obtained by using the information
gained by factoring modulo a few small primes as mentioned in the second
paragraph of Section 3.5.2. More precisely, apply the distinct degree factor
ization Algorithm 3.4.3 to U modulo a number of primes Pk (Musser and
Knuth suggest about 5). If di are the degrees of the factors (it is not neces
sary to obtain the factors themselves) repeated with suitable multiplicity (so
that Ei di = n = deg(U)), build a binary string Dk of length n + 1 which
represents the degrees of all the possible factors mod Pk in the following way:
Set Dk +- (0 ... 01), representing the set with the unique element {0}. Then,
for every di set

where V is inclusive "or", and Dk 1 di is Dk shifted left dj bits. (If desired, one
can work with only the rightmost r (n + 1) /21 bits of this string by symmetry
of the degrees of the factors.)

Finally compute D +- 1\ Dk, i.e. the logical "and" of the bit strings. If
the binary string D has only one bit at each end, corresponding to factors of
degree 0 and n, this already shows that U is irreducible. Otherwise, choose
for p the Pk giving the least number of factors. Then, during the execution of
step 5 of Algorithm 3.5.7, keep only those d-uplets (i1. ... , id) such that the
bit number deg(UiJ + · · · + deg(Uid) of Dis equal to 1.

Note that the prime chosen to make the Hensel lift will usually be small
(say less than 20), hence in the modulo p factorization part, it will probably
be faster to use Algorithm 3.4.10 than Algorithm 3.4.6 for the final splitting.

3.5.5 Discussion

As one can see, the problem of factoring over Z (or over Q, which is essentially
equivalent) is quite a difficult problem, and leads to an extremely complex al
gorithm, where there is a lot of room for improvement. Since this algorithm
uses factorization mod p as a sub-algorithm, it is probabilistic in nature. Even
worse, the time spent in step 5 above can be exponential in the degree. There
fore, a priori, the running time of the above algorithm is exponential in the
degree. Luckily, in practice, its average behavior is random polynomial time.
One should keep in mind however that in the worst case it is exponential time.

An important fact, discovered only relatively recently (1982) by Lenstra,
Lenstra and Lovasz is that it is possible to factor a polynomial over Z[X] in
polynomial time using a deterministic algorithm. This is surprising in view
of the corresponding problem over Z/pZ[X] which should be simpler, and
for which no such deterministic polynomial time algorithm is known, at least
without assuming the Generalized Riemann Hypothesis. Their method uses
in a fundamental way the LLL algorithm seen in Section 2.6.

The problem with the LLL factoring method is that, although in theory
it is very nice, in practice it seems that it is quite a lot slower than the
algorithm presented above. Therefore we will not give it here, but refer the

142 3 Algorithms on Polynomials

interested reader to [LLL]. Note also that A. K. Lenstra has shown that similar
algorithms exist over number fields, and also for multivariate polynomials.

There is however a nai:ve way to apply LLL which gives reasonably good
results. Let A be the polynomial to be factored, and assume as one may, that it
is squarefree (but not necessarily primitive). Then compute the roots ai of A
inC with high accuracy (say 19 decimal digits) (for example using Algorithm
3.6.6 below), then apply Algorithm 2.7.4 to 1, a, ... , el-l for some k < n,
where a is one of the ai. Then if A is not irreducible, and if the constant
N of Algorithm 2.7.4 is suitably chosen, a will be a root of a polynomial in
Z[X] of some degree k < n, and this polynomial will probably be discovered
by Algorithm 2.7.4. Of course, the results of Algorithm 2.7.4 may not corre
spond to exact relations, so to be sure that one has found a factor, one must
algebraically divide A by its tentative divisor.

Although this method does not seem very clean and rigorous, it is certainly
the easiest to implement. Hence, it should perhaps be tried before any of
the more sophisticated methods above. In fact, in [LLL], it is shown how to
make this method into a completely rigorous method. (They use p-adic factors
instead of complex roots, but the result is the same.)

3.6 Additional Polynomial Algorithms

3.6.1 Modular Methods for Computing GCD's in Z[X]

Using methods inspired from the factoring methods over Z, one can return
to the problem of computing GCD's over the specific UFD Z, and obtain
an algorithm which can be faster than the algorithms that we have already
seen. The idea is as follows. Let D = (A, B) in Z[X], and let Q = (A, B) in
lFp[X] where Q is monic. Then D mod pis a common divisor of A and B in
lFp[X], hence D divides Q in the ring lFp[X]. (We should put- to distinguish
polynomials in Z[X] from polynomials in 1Fp[X], but the language makes it
clear.)

If p does not divide both £(A) and £(B), then p does not divide £(D) and
so deg(D) ~ deg(Q). If, for example, we find that Q = 1 in 1Fp[X], it follows
that D is constant, hence that D = (cont(A),cont(B)). This is in general
much easier to check than to use any version of the Euclidean algorithm over
a UFD (Algorithm 3.3.1 for example). Note also that, contrary to the case
of integers, two random polynomials over Z are in general coprime. (In fact
a single random polynomial is in general irreducible.) In general however, we
are in a non-random situation so we must work harder. Assume without loss
of generality that A and B are primitive.

So as not to be bothered with leading coefficients, instead of D, we will
compute an integer multiple D 1 = c ·(A, B) such that

f(Dl) = (£(A),£(B)),

3.6 Additional Polynomial Algorithms 143

(i.e. with c = f(D)/(i(A),f(B))). We can then recover D = pp(D1) since we
have assumed A and B primitive.

Let M be the smallest of the bounds given by Theorem 3.5.1 for the
two polynomials fA and fB, where f = (i(A),f(B)), and where we limit the
degree of the factor by deg(Q). Assume for the moment that we skip the
Hensel step, i.e. that we take p > 2M (which in any case is the best choice if
this leaves pin single precision). Compute the unique polynomial Q1 E Z[X]
such that Q1 = fQ (mod p) and having all its coefficients in [-!p, !P[· If
pp(Q1) is a common divisor of A and B (in Z[X]!), then since D divides Q
mod p, it follows that (A, B) = pp(QI). If it is not a common divisor, it is not
difficult to see that this will happen only if p divides the leading term of one
of the intermediate polynomials computed in the primitive form of Euclid's
algorithm over a UFD (Algorithm 3.2.10), hence this will not occur often. If
this phenomenon occurs, try again with another prime, and it should quickly
work.

If M is really large, then one can use Hensel-type methods to determine
D1 mod pe for sufficiently large e. The techniques are completely analogous
to the ones given in the preceding sections and are left to the reader.

Perhaps the best conclusion for this section is to quote Knuth essentially
verbatim:

"The GCD algorithms sketched here are significantly faster than those
of Sections 3.2 and 3.3 except when the polynomial remainder sequence is
very short. Perhaps the best general procedure would be to start with the
computation of (A, B) modulo a fairly small prime p, not a divisor of both
f(A) and f(B). If the result Q is 1, we are done; if it has high degree, we use
Algorithm 3.3.1; otherwise we use one of the above methods, first computing
a bound for the coefficients of D1 based on the coefficients of A and B and
on the (small) degree of Q. As in the factorization problem, we should apply
this procedure to the reverses of A and B and reverse the result, if the trailing
coefficients are simpler than the leading ones."

3.6.2 Factorization of Polynomials over a Number Field

This short section belongs naturally in this chapter but uses notions which
are introduced only in Chapter 4, so please read Chapter 4 first before reading
this section if you are not familiar with number fields.

In several instances, we will need to factor polynomials not only over Q but
also over number fields K = Q(0). Following [Poh-Zas], we give an algorithm
for performing this task (see also [Tra]).

Let A(X) = Lo<i<m aiXi E K[X] be a non-zero polynomial. As usual,
we can start by computing A/(A, A') so we can transform it into a squarefree
polynomial, since K[X] is a Euclidean domain. On the other hand, note that
it is not always possible to compute the content of A since the ring of integers
ZK of K is not always a PID.

144 3 Algorithms on Polynomials

Call u; the m = [K : Q] embeddings of K into C. We can extend u;
naturally to K[X] by acting on the coefficients, and in particular we can
define the norm of A as follows

N(A) = IJ u;(A),
1:5j:5m

and it is clear by Galois theory that N(A) E Q[X].
We have the following lemmas. Note that when we talk of factorizations

of polynomials, it is always up to multiplication by units of K[X], i.e. by
elements of K.

Lemma 3.6.1. If A(X) E K[X] is irreducible then N(A)(X) is equal to the
power of an irreducible polynomial of Q[X].

Proof Let N(A) = It Nt; be a factorization of N(A) into irreducible factors
in Q[X]. Since A I N(A) in K[X] and A is irreducible in K[X], we have A I Ni
in K[X] for some i. But since Ni E Q[X], it follows that u;(A) I Ni for all j,
and consequently N(A) I Nf' in K[X], hence in Q[X], so N(A) = Nf'' for
some m' :5 m. D

Lemma 3.6.2. Let A E K[X] be a squarefree polynomial, where K = Q(O).
Then there exists only a finite number of k E Q such that N(A(X- kO)) is
not squarefree.

Proof Denote by (/3i,ih:5i:5m the roots of u;(A). If k E Q, it is clear that
N(A(X- kO)) is not squarefree if and only if there exists i1, i2, j1, j2 such
that

/3i1 ,j1 + kuh (0) = /3i2 ,h + kuh (0),

or equivalently k = (/3i1,j1 - /3i2 ,h)J(uh (0)- u;1 (0)) and there are only a finite
number of such k. D

The following lemma now gives us the desired factorization of A in K[X].

Lemma 3.6.3. Assume that A(X) E K[X] and N(A)(X) E Q[X] are both
squarefree. Let N(A) = ll1:5i:5g Ni be the factorization of N(A) into irre
ducible factors in Q[XJ. Then A= ll1<i< gcd(A, Ni) is a factorization of A

- _g
into irreducible factors in K[X].

Proof Let A= ll1<i<h Ai be the factorization of A into irreducible factors in
K[X]. Since N(A) is -squarefree, N(Ai) also hence by Lemma 3.6.1 N(Ai) =
N;(i) for some j(i). Furthermore since for j =/:. i, N(AiA;) I N(A) hence is
squarefree, N(Ai) is coprime to N(A;). So by suitable reordering, we obtain
N(Ai) = Ni and also g = h. Finally, since for j =/:. i, A; is coprime to Ni it

3.6 Additional Polynomial Algorithms 145

follows that Ai = gcd(A, Ni) in K[X] (as usual up to multiplicative constants),
and the lemma follows. 0

With these lemmas, it is now easy to give an algorithm for the factorization
of A E K[X].

Algorithm 3.6.4 (Polynomial Factorization over Number Fields). Let K =
Q(O) be a number field, T E Q[X] the minimal monic polynomial of 0. Let A(X)
be a non-zero polynomial in K[X]. This algorithm finds a complete factorization
of A in K[X].

1. (Reduce to squarefree] Set U +-- Aj(A, A') where (A, A') is computed in K[X]
using the sub-resultant Algorithm 3.3.1. (Now U will be a squarefree primi
tive polynomial. In this step, we could also use the squarefree decomposition
Algorithm 3.4.2 to reduce still further the degree of U).

2. (Initialize search] Let U(X) = L:o:5i:5m uiXi E K[X] and write Ui = 9i(O) for
some polynomial 9i E Q[X]. Set G(X, Y) +-- L:o<i<m gi(Y)Xi E Q[X, Y]
and k +-- 0. --

3. (Search for squarefree norm] Using the sub-resultant Algorithm 3.3.7 over the
UFD Q[Y]. compute N(X) +-- Ry(T(Y), G(X- kY, Y)) where Ry denotes
the resultant with respect to the variable Y. If N(X) is not squarefree (tested
using Algorithm 3.3.1), set k +-- k + 1 and go to step 3.

4. (Factor norm] (Here N(X) is squarefree) Using Algorithm 3.5. 7, let N +

I1t:5i:5g Ni be a factorization of N in Q[X].
5. (Outputfactorization] For i=1, ... ,g setAi(X)+-gcd(U(X),Ni(X+kO))

computed in K[X] using Algorithm 3.3.1, output Ai and the exponent of Ai
in A (obtained simply by replacing A by A/Ai as long as Ai I A). Terminate
the algorithm.

Proof The lemmas that we have given above essentially prove the validity
of this algorithm, apart from the easily checked fact that the sub-resultant
computed in step 3 indeed gives the norm of the polynomial U. 0

Remarks.

(1) The norm of U could also be computed using floating point approximations
to the roots ofT, since (if our polynomials have algebraic integer coeffi
cients) it will have coefficients in Z. This is often faster than sub-resultant
computations, but requires careful error bounds.

(2) Looking at the proof of Lemma 3.6.2, it is also clear that floating point
computations allow us to give the list of values of k to avoid in step 3, so
no trial and error is necessary. However this is not really important since
step 3 is in practice executed only once or twice.

(3) The factors that we have found are not necessarily in ZK[X], and, as
already mentioned, factoring in ZK[X] requires a little extra work since
ZK is not necessarily a PID.

146 3 Algorithms on Polynomials

3.6.3 A Root Finding Algorithm over C

In many situations, it is useful to compute explicitly, to some desired approx
imation, all the complex roots of a polynomial. There exist many methods
for doing this. It is a difficult problem of numerical analysis and it is not my
intention to give a complete description here, or even to give a description of
the "best" method if there is one such. I want to give one reasonably sim
ple algorithm which works most of the time quite well, although it may fail
in some situations. In practice, it is quite sufficient, especially if one uses a
multi-precision package which allows you to increase the precision in case of
failure.

This method is based on the following proposition.

Proposition 3.6.5. If P(X) E C[X] and x E C, then if P(x) =/= 0 and
P'(x) =/= 0 there exists a positive real number>. such that

Proof Trivial by Taylor's theorem. In fact, this proposition is valid for any
analytic function in the neighborhood of x, and not only for polynomials. D

Note also that as soon as x is sufficiently close to a simple root of P, we
can take>. = 1, and then the formula is nothing but Newton's formula, and
as usual the speed of convergence is quadratic.

This leads to the following algorithm, which I call Newton's modified al
gorithm. Since we will be using this algorithm for irreducible polynomials over
Q, we can assume that the polynomial we are dealing with is at least square
free. The modifications necessary to handle the general case are easy and left
to the reader.

Algorithm 3.6.6 (Complex Roots). Given a squarefree polynomial P, this
algorithm outputs its complex roots (in a random order). In quite rare cases the
algorithm may fail. On the other hand it is absolutely necessary that the polynomial
be squarefree (this can be achieved by replacing P by P/(P,P')).

1. [lnitializations] Set Q +-- P, compute P', set Q' +-- P', and set n +-- deg(P).
Finally, set f +-- 1 if P has real coefficients, otherwise set f +-- 0.

2. [Initialize root finding] Set x +-- 1.3 + 0.314159i, v +-- Q(x) and m +-- lvl2 •

3. [Initialize recursion] Set c +-- 0 and dx +-- v/Q'(x). If ldxl is smaller than the
desired absolute accuracy, go to step 5.

4. (Try a>.] Set y +-- x- dx, v1 +-- Q(y) and m1 +-- lv1 12 . If m1 < m, set x +-- y,
v +-- v1, m +-- m1 and go to step 3. Otherwise, set c +-- c + 1, dx +-- dx/4.
If c < 20 go to step 4, otherwise output an error message saying that the
algorithm has failed.

3.6 Additional Polynomial Algorithms 147

5. [Polish root] Set x +- x- P(x)/P'(x) twice.

6. [Divide] If f = 0 or if f = 1 and the absolute value of the imaginary part of
x is less than the required accuracy, set it equal to 0, output x, set Q(X) +

Q(X)/(X - x) and n +- n - 1. Otherwise, output x and x, set Q(X) +

Q(X)/(X2- 2 Re(x)X + lxl2) and n +- n- 2. Finally, if n > 0 then go to
step 2, otherwise terminate the algorithm.

Remarks.

(1) The starting value 1.3 + 0.314159i given in step 2 is quite arbitrary. It has
been chosen so as not to be too close to a trivial algebraic number, and
not too far from the real axis, although not exactly on it.

(2) The value 20 taken in step 4, as well as the division by 4, are also arbitrary
but correspond to realistic situations. If we find m 1 ~ m, this means that
we are quite far away from the "attraction zone" of a root. Hence, thanks
to Proposition 3.6.5, it is preferable to divide the increment by 4 and not
by 2 for example, so as to have a much higher chance of winning next
time. Similarly, the limitation of 20 correspond to an increment which
is 420 ~ 1012 times smaller than the Newton increment, and this is in
general too small to make any difference. In that case, it will be necessary
to increase the working precision.

(3) After each division done in step 6, the quality of the coefficients of Q will
deteriorate. Hence, after finding an approximate root, it is essential to
polish it, using for example the standard Newton iteration, but with the
polynomial P and not Q. It is not necessary to use a factor >. since we are
in principle well inside the attraction zone of a root. Two polishing passes
will, in principle, be enough.

(4) The divisions in step 6 are simple to perform. If Q(X) = Eo<i<n QiXi

and A(X) = Eo<i<n-1 aiXi = Q(X)/(X- x), then set an-1 ~ -qn and
for i = n - 1, .-: -~ i = 1 set ai-l +- Qi + xai. Similarly, if B(X) =
Eo<i<n-2 biXi = Q(X)/(X2 - aX+ {3), then set bn-2 +-- Qn, bn-3 +

Qn-l + abn-2 and for i = n- 2, ... , i = 2 set bi-2 +- Qi + abi-1 - f3bi.
(5) Instead of starting with >. = 1 as coefficient of Q(x)/Q'(x) in step 3, it

may be better to start with

. (2IQ'(x)l2)

>. = mm 1' IQ(x)IIQ"(x)l ·

This value is obtained by looking at the error term in the Taylor expansion
proof of Proposition 3.6.5. If this value is too small, then we are probably
going to fail, and in fact x is converging to a root of Q'(X) instead of
Q(X). If this is detected, the best solution is probably to start again in
step 2 with a different starting value. This of course can also be done when
c = 20 in step 4. We must however beware of doing this too systematically,
for failure may indicate that the coefficients of the polynomial P are ill
conditioned, and in that case the best remedy is to modify the coefficients

148 3 Algorithms on Polynomials

of P by a suitable change of variable (typically of the form X~ aX). It
must be kept in mind that for ill conditioned polynomials, a very small
variation of a coefficient can have a drastic effect on the roots.

(6) In step 6, instead going back to step 2 if n > 0, we can go back only
if n > 2, and treat the cases n = 1 and n = 2 by using the standard
formulas. Care must then be taken to polish the roots thus obtained, as
is done in step 5.

3.7 Exercises for Chapter 3

1. Write an algorithm for multiplying two polynomials, implicitly based on a re
cursive use of the splitting formulas explained in Section 3.1.2.

2. Let P be a polynomial. Write an algorithm which computes the coefficients of
the polynomial P(X + 1) without using an auxiliary array or polynomial.

3. Let K be a commutative ring which is not necessarily a field. It has been men
tioned after Algorithm 3.1.1 that the Euclidean division of A by B is still possible
in K[X] if the leading coefficient f(B) is invertible inK. Write an algorithm per
forming this Euclidean division after multiplying A and B by the inverse of l(B),
and compare the performance of this algorithm with the direct use of Algorithm
3.1.1 in the case K = Z/rZ.

4. Modify Algorithm 3.3.1 so that A and B are divided by their respective contents
every 10 iterations. Experiment and convince yourself that this modification
leads to polynomials A and B having much larger coefficients later on in the
Algorithm, hence that this is a bad idea.

5. Write an extended version of Algorithm 3.3.1 which computes not only (A, B)
but also U and V such that AU+ BV = r ·(A, B) where r is a non-zero constant
(Hint: add a fourth variable in Algorithm 1.3.6 to take care of r). Show that
when (A, B)= 1 this can always be done with r equal to the resultant of A and
B.

6. Show that if A, Band G are irreducible polynomials over a UFD Rand if G
divides AB but is not a unit multiple of A, then G divides B (Hint: use the
preceding exercise). Deduce from this that R[X] is a UFD.

7. Using for example the sub-resultant algorithm, compute explicitly the discrim
inant of the trinomials X 3 + aX + b and X 4 + aX + b. Try to find the general
formula for the discriminant of xn + aX + b.

8. Call Ri the i-th row of Sylvester's determinant, for 1 ~ i ~ n + m. Show that if
we replace for all 1 ~ i ~ n simultaneously ~ by

i-1

L(bk~-k- ak~+m-k}
k=O

and then suppress the last m rows and columns of the resulting matrix, the n x n
determinant thus obtained is equal to the determinant of Sylvester's matrix.

3.7 Exercises for Chapter 3 149

9. If Q(X) = (X- a)P(X), compute the discriminant of Q in terms of a and of
the discriminant of P.

10. Show how to modify the sub-resultant Algorithm 3.3.7 so that it can compute
correctly when the coefficients of the polynomials are for example polynomials
(in another variable) with real coefficients.

11. Show the following result, due to Eisenstein: if p is prime and A(X) =

Eo<i<n UiXi is a polynomial in Z[X) such that p f an, p I ai for all i < n
and -p2 f ao, then A is irreducible in Z[X).

12. Using the ideas of Section 3.4, write an algorithm to compute the square root
of a mod p, or to determine whether none exist. Implement your algorithm and
compare it with Shanks's Algorithm 1.5.1.

13. Using the Mobius inversion formula (see [H-W) Section 16.4) show that the
number of monic irreducible polynomials of degree n over 1Fp is equal to

where p.(n) is the Mobius function (i.e. 0 if n is not squarefree, and equal to
(-1) k if n is a product of k distinct prime factors).

14. Extend Proposition 3.4. 7 and Algorithm 3.4.8 to general prime numbers p, using
d-1

Up(X) =X+ XP + · · · + XP . Compare in practice the expected speed of the
resulting algorithm to that of Algorithm 3.4.6.

15. Show that, as claimed in the proof of Algorithm 3.4.8, the polynomial U has
exactly 2d-l roots in lF 2d •

16. Generalizing the methods of Section 3.4, write an algorithm to factor polyno
mials in lF q [X), where q = pd and lF q is given by an irreducible polynomial of
degree din 1Fp[X).

17. Let B(X) E 1Fp[X) be a squarefree polynomial with r distinct irreducible factors.
Show that if T(X) is a polynomial corresponding to a randomly chosen element
of the kernel obtained in step 2 of Algorithm 3.4.10 and if p ~ 3, the probability
that (B(X), T(X)(p-l)/2 - 1) gives a non-trivial factor of B is greater than or
equal to 4/9.

18. Let K be any field, a E K and p a prime number. Show that the polynomial
XP- a is reducible in K[X) if and only if it has a root inK. Generalize to the
polynomials XPr - a.

19. Let p be an odd prime and q a prime divisor of p-1. Let a E Z be a primitive root
modulo p. Using the preceding exercise, show that for any k ;?: 1 the polynomial

is irreducible in Q[X).

20. Let p and q be two odd prime numbers. We assume that q = 2 (mod 3) and
that pis a primitive root modulo q (i.e. that p mod q generates (ZjqZt). Show
that the polynomial

150 3 Algorithms on Polynomials

is irreducible in Q(X]. (Hint: reduce mod p and mod 2.)

21. Separating even and odd powers, any polynomial A can be written in the form
A(X) = Ao(X2) + XA1(X2). Set T(A)(X) = Ao(X) 2 - XA1(X)2 • With the
notations of Theorem 3.5.1, show that for any k

What is the behavior of the sequence 1Tk(A)I1/ 2k ask increases?

22. In Algorithms 3.5.5 and 3.5.6, assume that p = q, that A and B are monic, and
set D =AU, D1 = A1Ut, E = BV, E 1 = B1 V1. Denote by (C,p2) the ideal of
Z(X] generated by C(X) and p2 • Show that

D1:=3D2 -2D3 (mod(C,p2)) and E1 :=3E2 -2E3 (mod(C,p2)).

Then show that A1 (resp. B1) is the monic polynomial of the lowest degree such
that E1A1 = 0 (mod (C,p2)) (resp. D1B1 = 0 (mod (C,p2))).

23. Write a general algorithm for finding all the roots of a polynomial in Qp to a
given p-adic precision, using Hensel's lemma. Note that multiple roots at the
mod p level create special problems which have to be treated in detail.

24. Denote by (,)p the GCD taken over 1Fp[X]. Following Weinberger, Knuth
asserts that if A E Z(X] is a product of exactly k irreducible factors in Z[X]
(not counting multiplicity) then

Explore this formula as a heuristic method for determining the irreducibility of
a polynomial over Z.

25. Find the complete decomposition into irreducible factors of the polynomial X 4 +
1 modulo every prime p using the quadratic reciprocity law and the identities
given in Section 3.5.2.

26. Discuss the possibility of computing polynomial GCD's over Z by computing
GCD's of values of the polynomials at suitable points. (see [Schon]).

27. Using the ideas of Section 3.4.2, modify the root finding Algorithm 3.6.6 so that
it finds the roots of a any polynomial, squarefree or not, with their order of
multiplicity. For this question to make practical sense, you can assume that the
polynomial has integer coefficients.

28. Let P(X) = X 3 + aX2 + bX + c E IR[X] be a monic squarefree polynomial. Let
(Ji (1 :::; i :::; 3) be the roots of P inC and let

Let A(X) ={X- o1){X- 02).
a) Compute explicitly the coefficients of A(X).

3. 7 Exercises for Chapter 3 151

b) Show that -27 disc(P) = disc(A), and give an expression for this
discriminant.

c) Show how to compute the roots of P knowing the roots of A.

29. Let P(X) = X 4 +aX3 +bX2 +eX +dE JR[XJ be a monic squarefree polynomial.
Let (Ji (1 :5 i :5 4) be the roots of P in C, and let

and
{31 = (Jl(J2 + (}3(}4 {32 = (Jl(J3 + (}2(}4 {33 = (Jl(J4 + (}2(}3.

Finally, let A(X) = (X - a1)(X - a 2)(X - a 3) and B(X) = (X - f31)(X -
f32)(X - {33).

a) Compute explicitly the coefficients of A(X) and B(X) in terms of those
of P(X).

b) Show that disc(P) = disc(A) = disc(B), and give an expression for this
discriminant.

c) Show how to compute the roots of P knowing the roots of A.

30. Recall that the first case of Fermat's last "theorem" (FLT) states that if l is an
odd prime, then x1 +y1 + z1 = 0 implies that ll xyz. Using elementary arguments
(i.e. no algebraic number theory), it is not too difficult to prove the following
theorem, essentially due to Sophie Germain.

Theorem 3. 7.1. Let l be an odd prime, and assume that there exists an integer
k such that k = ±2 (mod 6), p = lk + 1 is prime and p f (kk- 1)Wk where Wk
is the resultant of the polynomials Xk- 1 and (X+ 1)k- 1. Then the first case
of FLT is true for the exponent l.

It is therefore important to compute Wk and in particular its prime factors. Give
several algorithms for doing this, and compare their efficiency. Some familiarity
with number fields and in particular with cyclotomic fields is needed here.

31. Let A(X) = a,Xn + · · · + a1X + ao be a polynomial, with an # 0. Show that
for any positive integer k,

Chapter 4

Algorithms for Algebraic Number Theory I

In this chapter, we give the necessary background on algebraic numbers, num
ber fields, modules, ideals and units, and corresponding algorithms for them.
Excellent basic textbooks on these subjects are, for example [Bo-Sh], [Cas-Fro],
[Cohn], [Ire-Ros], [Marc], [Sam]. However, they usually have little algorithmic
flavor. We will give proofs only when they help to understand an algorithm,
and we urge the reader to refer to the above textbooks for the proofs which
are not given.

4.1 Algebraic Numbers and Number Fields

4.1.1 Basic Definitions and Properties of Algebraic Numbers

Definition 4.1.1. Let a E C. Then a is called an algebraic number if there
exists A E Z[X] such that A(a) = 0, and A not identically zero. The number
a is called an algebraic integer if, in addition, one can choose A to be monic
{i.e. with leading coefficient equal to 1).

Then we have:

Proposition 4.1.2. Let a be an algebraic number, and let A be a polynomial
with integer coefficients such that A(a) = 0, and assume that A is chosen to
have the smallest degree and be primitive with £(A) > 0. Then such an A is
unique, is irreducible in Q[X], and any B E Z[X] such that B(a) = 0 is a
multiple of A.

Proof The ring Q[X] is a principal ideal domain (PID), and the set of B E

Q[X] such that B(a) = 0 is an ideal, hence is the ideal generated by A. If, in
addition, B has integral coefficients, Gauss's lemma (Theorem 3.2.8) implies
that B is a multiple of A in Z[X]. It is clear that A is irreducible; otherwise A
would not be of smallest degree. We will call this A the minimal polynomial
of a. D

We will use the notation Q for the set of algebraic numbers, (hence Q C C),
~ for the set of algebraic integers, and if L is any subset of C we will set

154 4 Algorithms for Algebraic Number Theory I

zL =~nL,

and call it the set of integers of L. Note that Q is an algebraic closure of Q.
For example, we have 'ZQ = Z. Indeed, if o: = pfq E Q is a root of A E Z[X]

with A monic, we must have q ll(A), hence q =±I so o: is in Z.
The first important result about algebraic numbers is as follows:

Theorem 4.1.3. Let o: E C. The following four statements are equivalent.

(I) o: is an algebraic integer.
(2) Z[o:] is a finitely generated additive Abelian group.
(3) o: belongs to a subring ofC which is finitely generated as an Abelian group.
(4) There exists a non-zero finitely generated additive subgroup L of C such

that o:L c L.

As corollaries we have:

Corollary 4.1.4. The set of algebraic integers is a ring. In particular, if R
is a ring, the set ZR of integers of R is a ring.

Corollary 4.1.5. If o: E C is a root of a monic polynomial whose coefficients
are algebraic integers (and not simply integers), then o: is an algebraic integer.

Definition 4.1.6. Let o: E C be an algelJraic number, and A its minimal
polynomial. The conjugates of o: are all the deg(A) roots of A in C.

This notion of conjugacy is of course of fundamental importance, but
what I would like to stress here is that from an algebraic point of view the
conjugates are indistinguishable. For example, any algebraic identity between
algebraic numbers is a simultaneous collection of conjugate identities. To give
a trivial example, the identity (I + J2)2 = 3 + 2J2 implies the identity
(I-J2)2 = 3-2J2. This remark is a generalization of the fact that an equality
between two complex numbers implies the equality between their conjugates,
or equivalently between their real and imaginary parts. The present example is
even more striking if one looks at it from a numerical point of view: it says that
the identity (2.41421 ...)2 = 5.828427 ... implies the identity (0.4I42I ...)2 =
O.I71573 Of course this is not the correct way to look at it, but the lesson
to be remembered is that an algebraic number always comes with all of its
conjugates.

4.1.2 Number Fields

Definition 4.1. 7. A number field is a field containing Q which, considered
as a Q-vector space, is finite dimensional. The number d = dilllQ K is denoted
by [K : Q] and called the degree of the number field K.

4.1 Algebraic Numbers and Number Fields

We recall the following fundamental results about number fields:

Theorem 4.1.8. Let K be a number field of degree n. Then

(1) (Primitive element theorem) There exists a 0 E K such that

K = Q(O).

155

Such a 0 is called a primitive element. Its minimal polynomial is an irre
ducible polynomial of degree n.

(2) There exist exactly n field embeddings of K inC, given by 0 t-+ Oi, where
the Oi are the roots inC of the minimal polynomial of 0. These embeddings
are Q-linear, their images Ki in C are called the conjugate fields of K,
and the Ki are isomorphic to K.

(3) For any i, Ki C ij, in other words all the elements of Ki are algebraic
numbers and their degree divides n.

The assertion made above concerning the indistinguishability of the con
jugates can be clearly seen here. The choice of the conjugate field Ki is a
priori completely arbitrary. In many cases, this choice is already given. For
example, when we speak of ''the number field Q(2113)", this is slightly incor
rect, since what we mean by this is that we are considering the number field
K = Q[X]/(X3 - 2)Q[X] together with the embedding X t-+ 2113 of K into
JR.

Definition 4.1.9. The signature of a number field is the pair (rt. r2) where
r1 is the number of embeddings of K whose image lie in JR, and 2r2 is the
number of non-real complex embeddings, so that r1 + 2r2 = n (note that the
non-real embeddings always come in pairs since if a is such an embedding, so
is a, where - denotes complex conjugation). If T is an irreducible polynomial
defining the number field K by one of its roots, the signature of K will also be
called the signature ofT. Here r1 (resp. 2r2) will be the number of real (resp.
non-real) roots ofT in C. When r2 = 0 (resp. r1 = 0) we will say that K and
T are totally real (resp. totally complex).

It is not difficult to determine the signature of a number field K, but some
ways are better than others. If K = Q(0), and if T is the minimal polynomial
of 0, we can of course compute the roots ofT inC using, for instance, the root
finding Algorithm 3.6.6, and count the number of real roots. This is however
quite expensive. A much better way is to use a theorem of Sturm which tells us
in essence that the sequence of leading coefficients in the polynomial remainder
sequence obtained by applying Euclid's algorithm or its variants toT and T'
governs the signature. More precisely, we have the following theorem.

Theorem 4.1.10 (Sturm). LetT be a squarefree polynomial with real coeffi
cients. Assume that Ao = T, At = T', and that Ai is a polynomial remainder
sequence such that for all i with 1 ~ i ~ k:

156 4 Algorithms for Algebraic Number Theory I

where the ei and h are real and positive, and Ak+1 is a constant polynomial
(non-zero since Tis squarefree). Set li=l(Ai), and di = deg(Ai)· Then, if s
is the number of sign changes in the sequence lo, £1, ... , .ek+b and ift is the
number of sign changes in the sequence (-1)d0 £0 , (-1)d1 £1, ... , (-1)dk+l£k+b
the number of real roots ofT is equal tot-s.

Proof. For any real a, let s(a) be the number of sign changes, not count
ing zeros, in the sequence Ao(a), A1(a), ... , Ak+l(a). We clearly have
lima-++oo s(a) = s and lima-+-oo s(a) = t. We are going to prove the fol
lowing more general assertion: the number of roots of T in the interval]a, b]
is equal to s(a) - s(b), which clearly implies the assertion of the theorem.

First, it is clear that a sign sequence at any number a cannot have two
consecutive zeros, otherwise these zeros would propagate and we would have
Ak+1 = 0. For similar reasons, we cannot have sequences of the form +, 0,
+, or of the form-, 0,- since the ei and h are positive. Now the desired
formula s(a)- s(b) is certainly valid if b = a. We will see that it stays true
when b increases. The quantity s(b) can change only when b goes through one
of the roots of the Ai, which are finite in number. Let x be a root of such an
Ai (maybe of several). Iff is sufficiently small, when b goes from x-E to x, the
sign sequence corresponding to indices i -1, i and i + 1 goes from+,±,- to
+, 0,- (or from-,±,+ to-, 0, +)when i 2: 1 by what has been said above
(no consecutive zeros, and no sequences+, 0, +or-, 0, -). Hence, there is
no difference in the number of sign changes not counting zeros if i 2: 1. On
the other hand, for i = 0, the sign sequence corresponding to indices 0 and 1
1 goes from+,- to 0,-, or from-,+ to 0,+ since A1 (b) < 0 if and only if A0

is decreasing (recall that A1 is the derivative of A0). Hence, the net change
in s(b) is equal to -1. This proves our claim and the theorem. D

From this, it is easy to derive an algorithm for computing the signature
of a polynomial (hence of a number field). Such an algorithm can of course
be written for any polynomial T E IR[X], but for number-theoretic uses T
will have integer coefficients, hence we should use the polynomial remainder
sequence given by the sub-resultant Algorithm 3.3.1 to avoid coefficient ex
plosion. This leads to the following algorithm.

Algorithm 4.1.11 (Sturm). Given a polynomial T E Z[X], this algorithm
determines the signature (r11 r 2) ofT using Sturm's theorem and the sub-resultant
Algorithm 3.3.1. If T is not squarefree, it outputs an error message.

1. (lnitializations and reductions] If deg(T) = 0, output (0, 0) and terminate.
Otherwise, set A +-- pp(T), B +-- pp(T'), g +-- 1, h +-- 1, s +-- sign(l(A)),
n +-- deg(A), t +-- (-l)n-1s, r 1 +-- 1.

2. (Pseudo division] Set 6 +-- deg(A)- deg(B). Using Algorithm 3.1.2, compute
R such that £(B)6+ 1 A = BQ + R. If R = 0 then Twas not squarefree, output

4.1 Algebraic Numbers and Number Fields 157

an error message and terminate the algorithm. Otherwise, if l(B) > 0 or 6 is
odd, set R +-- -R.

3. [Use Sturm]lf sign(i(R)) =f. s, sets+-- -s, r 1 +-- r 1-l. Then, if sign(l(R)) =f.
(-l)deg(Rlt, set t +--t, r1 +-- r1 + 1.

4. [Finished?) If deg(R) = 0, output (r17 (n-r1)/2) and terminate the algorithm.
Otherwise, set A+-- B, B +-- Rf(gh6), g +-- le(A)I, h +-- h 1-l!g6 , and go to
step 2.

Another important notion concerning number fields is that of the Galois
group of a number field. From now on, we assume that all our number fields
are subfields of Q.

Definition 4.1.12. Let K be a number field of degree n. We say that K is
Galois (or normal) over Q, or simply Galois, if K is (globally} invariant by
the n embeddings of K in C. The set of such embeddings is a group, called the
Galois group of K, {Lnd denoted Gal(K/Q).

Given any number field K, the intersection of all subfields of Q which are
Galois and contain K is a finite extension K 8 of K called the Galois closure
(or normal closure) of Kin Q. If K = Q(O) where 0 is a root of an irreducible
polynomial T E Z[X], the Galois closure of K can also be obtained as the
splitting field ofT, i.e. the field obtained by adjoining to Q all the roots ofT.
By abuse of language, even when K is not Galois, we will call Gal(K8 /Q) the
Galois group of the number field K (or of the polynomial T).

A special case of the so-called "fundamental theorem of Galois theory" is
as follows.

Proposition 4.1.13. Let K be Galois over Q and x E K. Assume that for
any a E Gal(K/Q) we have a(x) = x. Then x E Q. In particular, if in addition
x is an algebraic integer then x E Z.

The following easy proposition shows that there are only two possibilities
for the signature of a Galois extensions. Similarly, we will see (Theorem
4.8.6) that there are only a few possibilities for how primes split in a Galois
extension.

Proposition 4.1.14. Let K be a Galois extension of Q of degree n. Then,
either K is totally real {(r1, r2) = (n, 0)}, or K is totally complex ((r1, r2) =
(0, n/2) which can occur only if n is even).

The computation of the Galois group of a number field (or of its Galois
closure) is in general not an easy task. We will study this for polynomials of
low degree in Section 6.3.

158 4 Algorithms for Algebraic Number Theory I

4.2 Representation and Operations on Algebraic
Numbers

It is very important to study the way in which algebraic numbers are repre
sented. There are two completely different problems: that of representing alge
braic numbers, and that of representing sets of algebraic numbers, e.g. modules
or ideals. This will be considered in Section 4.7. Here we consider the problem
of representing an individual algebraic number.

Essentially there are four ways to do this, depending on how the number
arises. The first way is to represent a: E Q by its minimal polynomial A which
exists by Proposition 4.1.2. The three others assume that a: is a polynomial
with rational coefficients in some fixed algebraic number(}. These other meth
ods are usually preferable, since field operations in Q(B) can be performed
quite simply. We will see these methods in more detail in the following sec
tions. However, to start with, we do not always have such a (} available, so we
consider the problems which arise from the first method.

4.2.1 Algebraic Numbers as Roots of their Minimal Polynomial

Since A has n = deg(A) zeros in C, the first question is to determine which
of these zeros a: is supposed to represent. We have seen that an algebraic
number always comes equipped with all of its conjugates, so this is a prob
lem which we must deal with. Since Q(o:) ~ Q[X]/(A(X)Q[X]), a: may be
represented as the class of X in Q[X]/(A(X)Q[X]), which is a perfectly well
defined mathematical quantity. The distinction between a: and its conjugates,
if really necessary, will then depend not on A but on the specific embedding
of Q[X]/(A(X)Q[X]) in C. In other words, it depends on the numerical value
of a: as a complex number. This numerical value can be obtained by finding
complex roots of polynomials, and we assume throughout that we always take
sufficient accuracy to be able to distinguish a: from its conjugates. (Recall
that since the minimal polynomial of a: is irreducible and hence squarefree,
the conjugates of a: are distinct.)

Hence, we can consider that an algebraic number a: is represented by a pair
(A, x) where A is the minimal polynomial of a:, and x is an approximation
to the complex number a: (x should be at least closer to a: than to any of
its conjugates). It is also useful to have numeric approximations to all the
conjugates of a:. In fact, one can recover the minimal polynomial A of a:
from this if one knows only its leading term i(A), since if one sets A(X) =
i(A) IJi(X- ai), where the ai are the approximations to the conjugates of
a:, then, if they are close enough (and they must be chosen so), A will be the
polynomial whose coefficients are the nearest integers to the coefficients of A.

With this representation, it is clear that one can now easily work in the
subfield Q(o:) generated by a:, simply by working modulo A.

More serious problems arise when one wants to do operations between
algebraic numbers which are a priori not in this subfield. Assume for instance

4.2 Representation and Operations on Algebraic Numbers 159

that a= (X mod A(X)), and f3 =(X mod B(X)), where A and Bare primi
tive irreducible polynomials of respective degrees m and n (we omit the Q[X]
for simplicity of notation). How does one compute the sum, difference, product
and quotient of a and (3? The simplest way to do this is to compute resultants
of two variable polynomials. Indeed, the resultant of the polynomials A(X- Y)
and B(Y) considered as polynomials in Y alone (the coefficient ring being then
Q[X]) is up to a scalar factor equal to P(X) = TI· .(X- ai- /3j) where the

t,J
ai are the conjugates of a, and the /3j are the conjugates of (3. Since Pis are-
sultant, it has coefficients in Q[X], and a+ f3 is one ofits roots, so Q = pp(P)
is a multiple of the minimal polynomial of a+ (3.

If Q is irreducible, then it is the minimal polynomial of a + (3. If it is not
irreducible, then the minimal polynomial of a + f3 is one of the irreducible
factors of Q which one computes by using the algorithms of Section 3.5. Once
again however, it does not make sense to ask which of the irreducible factors
a + f3 is a root of, if we do not specify embeddings in <C, in other words,
numerical approximations to a and (3. Given such approximations however,
one can readily check in practice which of the irreducible factors of Q is the
minimal polynomial that we are looking for.

What holds for addition also holds for subtraction (take the resultant of
A(X + Y) and B(Y)), multiplication (take the resultant of ym A(X/Y) and
B(Y)), and division (take the resultant of A(XY) with B(Y)).

4.2.2 The Standard Representation of an Algebraic Number

Let K be a number field, and let ei (1 ~ j ~ n) be a Q-basis of K. Let a E K
be any element. It is clear that one can write a in a unique way as

"'n-1 e
L..j=D ai j+1 . _

a= d , w1th d >0, aj E Z and gcd(ao, ... , an-1> d)- 1.

In the case where ei = (}i-1 for some root B of a monic irreducible polynomial
T E Z[X], the (n+1)-uplet (a0 , ... ,an_1,d)Ezn+l will be called the standard
representation of a (with respect to B). Hence, we can now assume that we
know such a primitive element B. (We will see in Section 4.5 how it can be
obtained.)

We must see how to do the usual arithmetic operations on these standard
representations. The vector space operations on K are of course trivial. For
multiplication, we precompute the standard representation of (}J for j ~ 2n-2
in the following way: if T(X) = L:Z:o tiXi with tiE Z for all i and tn = 1,
we have en= 2:~;01 (-ti)Bi. If we set en+k = 2:~;01 rk,i Bi, then the standard
representation of (}n+k is (rk,O, rk,1, .. . , rk,n-1, 1) and the rk,i are computed
by induction thanks to the formulas ro,i = -ti and

ifi2::1,

if i = 0.

160 4 Algorithms for Algebraic Number Theory I

Now if (a0 , ... , an-b d) and (b0 , ... , bn-b e) are the standard representations
of a: and {3 respectively, then it is clear that

hence

"'2n-2 Ok
0:{3 = L-k=O Ck '

de

"'n-1 Ok
f.l _ L..k=O Zk

a:,_,- de '

where Ck = L aibj,
i+j=k

n-2

where Zk = Ck + L Tk,iCn+i .

i=O

The standard representation of o:{3 is then obtained by dividing all the Zk and
de by gcd(zo, ... , Zn-b de).

Note that if we set A(X)= L::-01 aiXi and B(X) = L::-01 biXi, the
procedure described above is equivalent to computing the remainder in the
Euclidean division of AB by T. Because of the precomputations of the rk,i,

however, it is slightly more efficient.
The problem of division is more difficult. Here, we need essentially to

compute A/ B modulo the polynomial T. Hence, we need to invert B modulo
T. The simplest efficient way to do this is to use the sub-resultant Algorithm
3.3.1 to obtain U and V (which does not need to be computed explicitly) such
that U B + VT = d where d is a constant polynomial. (Note that since T is
irreducible and B i= 0, B and Tare coprime.) Then the inverse of B modulo
T is ~ U, and the standard representation of a:/ {3 can easily be obtained from
this.

4.2.3 The Matrix (or Regular) Representation of an Algebraic
Number

A third way to represent algebraic numbers is by the use of integral matrices.
If 0; (1 ~ j ~ n) is a Q-basis of K and if a: E K, then multiplication by a: is an
endomorphism of the Q-vector space K, and we can represent a: by the matrix
Ma ofthis endomorphism in the basis 0;. This will be a matrix with rational
entries, hence one can write Ma = M' / d where M' has integral entries, d is
a positive integer, and the greatest common divisor of all the entries of M'
is coprime to d. This representation is of course unique, and it is clear that
the map a: r-+ Ma is an algebra homomorphism from K to the algebra of
n x n matrices over Q. Thus one can compute on algebraic numbers simply
by computing with the corresponding matrices. The running time is usually
longer however, since more elements are involved. For example, the simple
operation of addition takes O(n2) operations, while it clearly needs only O(n)
operations in the standard representation. The matrix representation is clearly
more suited for multiplication and division. (Division is performed using the
remark following Algorithm 2.2.2.)

4.3 Trace, Norm and Characteristic Polynomial

4.2.4 The Conjugate Vector Representation of an Algebraic

Number

161

The last method of representing an algebraic number a in a number field K =
Q(B) that I want to mention, is to represent a by numerical approximations
to its conjugates, repeated with multiplicity. More precisely, let O"j be the
n = deg(K) distinct embeddings of Kin <C, ordered in the following standard
way: 0"1, ... , O"r1 are the real embeddings, O"r1+r2 +i = iTr1+i for 1 ~ i ~ r2. If

"'n-1 ()i h a= L..i=O ai , t en
n-1

O"j(a) = L aiO"J(B)i,
i=O

and the O"j(a) are the conjugates of a, but in a specific order (corresponding to
the choice of the ordering on the O" j), and repeated with a constant multiplicity
n/ deg(a). We can then represent a as the (r1 + r 2)-uplet of complex numbers

where the complex numbers 0"1(a) are given by a sufficiently good approx
imation. Operations on this representation are quite trivial since they are
done componentwise. In particular, division, which was difficult in the other
representations, becomes very simple here. Unfortunately, there is a price to
pay: one must be able to go back to one of the exact representations (for
example to the standard representation), and hence have good control on the
roundoff errors.

For this, we precompute the inverse matrix of the matrix 9 = (j i (()i - 1).

Then, if one knows the conjugate representation of a number a, and an integer
d such that da E Z[B], one can write a= (l:j= 1 aj_1(}i- 1)/d where the aj are
integers, and the column vector (a0 , ... , an_1)t can be obtained as the product
d9-1 (0"1 (a), ... ,O"n(a))t, and since the ai are integers, if the roundoff errors
have been controlled and are not too large, this gives the ai exactly (note that
in practice one can work with matrices over lR and not over <C. The details are
left to the reader).

In practice, one can ignore roundoff errors and start with quite precise nu
merical approximations. Then every operation except division is done using
the standard representation, while for division one computes the conjugate
representation of the result, converts back, and then check by exact multipli
cation that the roundoff errors did not accumulate to give us a wrong result.
(If they did, this means that one must work with a higher precision.)

162 4 Algorithms for Algebraic Number Theory I

4.3 Trace, Norm and Characteristic Polynomial

If a is an algebraic number, the trace (resp. the norm) of a is by definition
the sum (resp. the product) of the conjugates of a. If A(X) = I:::o aiXi is
its minimal polynomial, then we clearly have

ao
and N(a) = (-l)m- ,

am

where Tr and N denote the trace and norm of a respectively. Usually however,
a is considered as an element of a number field K. If K = Q(a), then the
definitions above are OK, but if Q(a) s;;; K, then it is necessary to modify the
definitions so that Tr becomes additive and N multiplicative. More generally,
we put:

Definition 4.3.1. Let K be a number field of degree n over Q, and let O"i be
the n distinct embeddings of K in C.

(1) The characteristic polynomial 0 01 of a inK is

(2) If we set

C01 (X) = II (X- O"i(a)).
l"'i"'n

COt(X) = L (-1)n-iSn-i(a)Xi,
O"'i"'n

then sk(a) is a rational number and will be called the kth symmetric func
tion of a inK.

(3) In particular, s1(a) is called the trace of a inK and denoted TrK;Q(a),
and similarly Sn (a) is called the norm of a in K and denoted N K/Q (a).

As has already been mentioned, one must be careful to distinguish the
absolute trace of a which we have denoted Tr(a) from the trace of a in the
field K, denoted TrK;Q(a), and similarly with the norms. More precisely, we
have the following proposition:

Proposition 4.3.2. Let K be a number field of degree n, O"i the n distinct
embeddings of K in C.

(1) If a E K has degree m {hence with m dividing n}, we have

and
N KjQ(a) = II O"i(a) = (N(a))nfm.

l"'i"'n

4.3 Trace, Norm and Characteristic Polynomial 163

(2) For any a and (3 in K we have

and
N KfQ(a(3) = N KfQ(a)N KfQ(f3).

(3) a is an algebraic integer if and only if sk(a) E Z for all k such that
1 :S: k :S: n (note that s0 (a) = 1}.

As usual, we must find algorithms to compute traces, norms and more
generally characteristic polynomials of algebraic numbers. Since we have seen
four different representations of algebraic numbers (viz. by a minimal poly
nomial, by the standard representation, by the matrix representation and by
the conjugate vector representation), there are at least that many methods
to do the job. We will only sketch these methods, except when they involve
fundamentally new ideas. We always assume that our number field is given as
K = Q(B) where B is an algebraic integer whose monic minimal polynomial of
degree n is denoted T(X). We denote by ai then embeddings of Kin C.

In the case where a is represented by its minimal polynomial A(X), then
each of them = deg(A) embeddings of Q(a) inC lifts to exactly n/m embed
dings among the ai, hence it easily follows that

Ca(X) = A(X)nfm,

and this immediately implies Proposition 4.3.2 (1), i.e. if we write A(X) =
Lo::=;i::=;m aiXi, then

() nam-1
TrK/Q a = ----,

mam
(

a)nfm
N KjQ(a) = (-1t a:

In the case where a is given by its standard representation

the only symmetric function which is relatively easy to compute is the trace,
since we can precompute the trace of Bi using Newton's formulas as follows.

Proposition 4.3.3. Let Bi be the roots (repeated with multiplicity) of a monic
polynomial T(X) = Lo<i<n tiXi E C[X] of degree n and set Sk = Li(en.
Then - -

k-1

Sk = -ktn-k - :2: tn-iSk-i
i=1

{where we set ti = 0 fori< 0).

164 4 Algorithms for Algebraic Number Theory I

This result is well known and its proof is left to the reader (Exercise 3).
We can however compute all the symmetric functions, i.e. the character

istic polynomial, by using resultants, as follows.

Proposition 4.3.4. Let K = Q(B) be a number field where B is a' root of a
monic irreducible polynomial T(X) E Z[X) of degree n, and let

be the standard representation of some a E K. Set A(X) = Eo:s:;i:s:;n-1 aiXi.
Then the chamcteristic polynomial Ca(X) of a is given by the formula

Ca(X) = d-nRy(T(Y),dX-A(Y)),

where Ry denotes the resultant taken with respect to the variable Y. In par
ticular, we have

N KfQ(a) = d-n R(T(X), A(X)).

Proof. We have by definition

Ca(X) = Il(X- ai(a)) = Il(X- A(ai(B))/d)
i i

=d-n II(dX- A(Bi)) = d-nRy(T(Y),dX -A(Y)),
i

where the Bi are the conjugates of B, i.e. the roots ofT. The formula for the
norm follows immediately on setting X= 0. 0

Since the resultant can be computed efficiently by the sub-resultant Algo
rithm 3.3.7, used here in the UFD's Z[X) and Z, we see that this proposition
gives an efficient way to compute the characteristic polynomial and the norm
of an algebraic number given in its standard representation.

In the case where a is given by numerical approximations to its conjugates,
as usual we also assume that we know an integer d such that da E Z[B). Then
we can compute numerically ili(X- dai(a)), and this must have integer
coefficients. Hence, if we have sufficient control on the roundoff errors and
sufficient accuracy on the conjugates of a, this enables us to compute Cda (X)
exactly, hence Ca(X) = d-ncda(dX).

Finally, we consider the case where a is given by its matrix representation
Ma in the basis 1, B, ... , en-1, where dMa has integral coefficients for some
integer d. Then the characteristic polynomial of a is simply equal to the char
acteristic polynomial of Ma (meaning always det(Xln- Ma)). In particular,

4.4 Discriminants, Integral Bases and Polynomial Reduction 165

the trace can be read off trivially on the diagonal coefficients, and the norm
is, up to sign, equal to the determinant of Mo:.

The characteristic polynomial can be computed using one of the algorithms
described Section 2.2.4, and the determinant using Algorithm 2.2.6.

In practice, it is not completely clear which representation is preferable.
A reasonable choice is probably to use the standard representation and the
sub-resultant algorithm. This depends on the context however, and one should
always be aware of each of the four possibilities to handle algebraic numbers.
Keep in mind that it is usually costly to go from one representation to another,
so for a given problem the representation should be fixed.

4.4 Discriminants, Integral Bases and Polynomial
Reduction

4.4.1 Discriminants and Integral Bases

We have the following basic result.

Proposition 4.4.1. Let K be a number field of degree n, O'i be then embed
dings of K in C, and a1 be a set of n elements of K. Then we have

This quantity is a rational number and is called the discriminant of the ai,
and denoted d(a1 , ... , an). Furthermore, d(a 1 , ... , an) = 0 if and only if the
a 1 are Q-linearly dependent.

Proof. Consider then x n matrix M = (ui(a1)). Then by definition of matrix
multiplication, we have Mt M = (ai,j) with

ai,j = L O'k(ai)uk(aj) = TrKjQ(aiaj)·
k

Since det(Mt) = det(M) the equality of the proposition follows. Since
TrKJQ(a) E Q the discriminant is a rational number. If the a1 are Q-linearly
dependent, it is clear that the columns of the matrix M are also (since Q
is invariant by the ui)· Therefore the discriminant is equal to 0. Conversely
assume that the discriminant is equal to 0. This means that the kernel of
the matrix Mt M is non-trivial, and since this matrix has coefficients in Q,
there exists Ai E Q such that for every j, Tr(xa1) = 0 where we have set
x = LI<i<n >.iai. If the a1 were linearly independent over Q, they would
generate -K as a Q-vector space, and so we would have Tr(xy) = 0 for all
y E K with x f- 0. Taking y = 1/x gives Tr(l) = n = 0, a contradiction, thus
showing the proposition. D

166 4 Algorithms for Algebraic Number Theory I

Remark. We have just proved that the quadratic form Tr(x2) is non
degenerate on K using that K is of characteristic zero (otherwise n = 0
may not be a contradiction). This is the definition of a sepamble extension.
It is not difficult to show (see for example Proposition 4.8.11 or Exercise 5)
that the signature of this quadratic form (i.e. the number of positive and neg
ative squares after Gaussian reduction) is equal to (r1 +r2,r2) where as usual
(r17 r2) is the signature of the number field K.

Recall that we denote by 'IlK the ring of (algebraic) integers of K. Then
we also have:

Theorem 4.4.2. The ring 7/.,K is a free 7/.,-module of mnk n = deg(K). This
is true more genemlly for any non-zero ideal of 7/.,K.

Proof (Sketch). Let ai be a basis of K as a Q-vector space. Without loss of
generality, we can assume that the ai are algebraic integers. If A is the (free)
7/.,-module generated by the ai, we clearly have A C 'IlK, and the formula
M- 1 = Madj / det(M) for the inverse of a matrix (see section 2.2.4) shows
that d'llK c A, where d is the discriminant of the aj, whence the result.
(Recall that a sub-'ll-module of a free module of rank n is a free module of
rank less than or equal to n, since 7l is a principal ideal domain, see Theorem
2.4.1.) D

It is important to note that 7l being a PID is crucial in the above proof.
Hence, if we consider relative extensions, Theorem 4.4.2 will a priori be true
only if the base ring is also a PID, and this is not always the case.

Definition 4.4.3. A '£-basis of the free module 'IlK will be called an integral
basis of K. The discriminant of an integml basis is independent of the choice
of that basis, and is called the discriminant of the field K and is denoted by
d(K).

Note that, although the two notions are closely related, the discriminant
of K is not in general equal to the discriminant of an irreducible polynomial
defining K. More precisely:

Proposition 4.4.4. Let T be a monic irreducible polynomial of degree n in
Z[X], () a root ofT, and K = Q(()). Denote by d(T) (resp. d(K)) the discrim
inant of the polynomial T {resp. of the number field K).

(1) We have d(l, (), ... , en-l) = d(T).
(2) Iff = ['IlK : Z(eJJ, we have

d(T) = d(K)f2

and, in particular, d(T) is a square multiple of d(K).

4.4 Discriminants, Integral Bases and Polynomial Reduction 167

The proof of this is easy and left to the reader. The number f will be
called the index of e in ZK.

Proposition 4.4.5. The algebraic numbers o:1, ... , O:n form an integral basis
if and only if they are algebraic integers and if d(o:1 , ... , an) = d(K), where
d(K) is the discriminant of K.

Proof. If M is the matrix expressing the o:i on some integral basis of K, it is
clear that d(o:1, ... , an) = d(K) det(M) 2 and the proposition follows. D

We also have the following result due to Stickelberger:

Proposition 4.4.6. Let O:t, ... , O:n be algebraic integers. Then

d(o:1, ... , O:n) = 0 or 1 (mod 4).

Proof. If we expand the determinant det(ai(o:j)) using then! terms, we will
get terms with a plus sign corresponding to permutations of even signature,
and terms with a minus sign. Hence, collecting these terms separately, we can
write the determinant as P - N hence

d(a~> ... , an)= (P- N) 2 = (P + N) 2 - 4PN.

Now clearly P+N and PN are symmetric functions of the o:i, hence by Galois
theory they are in IQl and in fact in Z since the o:i are algebraic integers. This
proves the proposition, since a square is always congruent to 0 or 1 mod 4. D

The determination of an explicit integral basis and of the discriminant of
a number field is not an easy problem, and is one of the main tasks of this
course. There is, however one case in which the result is trivial:

Corollary 4.4. 7. LetT be a monic irreducible polynomial in Z[X], B a root
ofT, and K = !Ql(B). Assume that the discriminant ofT is squarefree or is
equal to 4d where d is squarefree and not congruent to 1 modulo 4. Then the
discriminant of K is equal to the discriminant ofT, and an integral basis of
K is given by 1, B, ... , en- 1 .

Since a discriminant must be congruent to 0 or 1 mod 4, this immediately
follows from the above propositions. D

Unfortunately, this corollary is not of much use, since it is quite rare that
the condition on the discriminant ofT is satisfied. We will see in Chapter 6 a
complete method for finding an integral basis and hence the discriminant of
a number field.

168 4 Algorithms for Algebraic Number Theory I

Finally, we note without proof the following consequence of the so-called
"conductor-discriminant formula".

Proposition 4.4.8. Let K and L be number fields with K C L. Then

d(K)[L:K] I d(L).

Corollary 4.4.9. Let K = !Ql(a::) and L = !Ql(/3) be two number fields, let
m = deg(K), n = deg(L), A(X) (resp. B(X)) the minimal monic polynomial
of a:: (resp. {3). Write d(A) and d(B) for the discriminants of the polynomials
A and B. Assume that K is conjugate to a sub field of L. Then if p is a prime
such that vp(d(A)) is odd, we must have pnfm I d(B).

Proof By Proposition 4.4.4 if vp(d(A)) is odd then pI d(K), where d(K) is
the discriminant of the field K. By the proposition we therefore have pnfm I
d(L) I d(B), thus proving the corollary. D

4.4.2 The Polynomial Reduction Algorithm

We will see in Section 4.5 that it is usually not always easy to decide whether
two number fields are isomorphic or not. Here we will give a heuristic approach
based on the LLL algorithm and ideas of Diaz y Diaz and the author which
often gives a useful answer to the following problem: given a number field K,
can one find a monic irreducible polynomial defining K which in a certain
sense is as simple as possible.

Of course, if this could be done, the isomorphism problem would be com
pletely solved. We will see in Chapters 5 and 6 that it is possible to do this
for quadratic fields (in fact it is trivial in that case), and for certain classes
of cubic fields, like cyclic cubic fields or pure cubic fields (see Section 6.4). In
general, all one can hope for in practice is to find, maybe not the simplest,
but a simple polynomial defining K.

A natural criterion of simplicity would be to take polynomials whose
largest coefficients are as small as possible in absolute value (i.e. the Ux; norm
on the coefficients), or such that the sum of the squares of the coefficients is
as small as possible (the L2 norm). Unfortunately, I know of no really efficient
way of finding simple polynomials in this sense.

What we will in fact consider is the following "norm" on polynomials.

Definition 4.4.10. Let P E C(X], and let a; be the complex roots of P
repeated with multiplicity. We define the size of P by the formula

size(P) = L la::;l 2 .

i

4.4 Discriminants, Integral Bases and Polynomial Reduction 169

This is not a norm in the usual mathematical sense, but it seems reasonable
to say that if the size (in this sense) of a polynomial is not large, then the
polynomial is simple, and its coefficients should not be too large.

More precisely, we can show (see Exercise 6) that if P = Z:~=O akXk is a
monic polynomial and if S = size(P), then

(n)(s)k/2
lan-kl ::=:; k ;;

Hence, the size of P is related to the size of

I 12/k max an-k .

The reason we take this definition instead of an £P definition on the coef
ficients is that we can apply the LLL algorithm to find a polynomial of small
size which defines the same number field K as the one defined by a given
polynomial P, while I do not know how to achieve this for the norms on the
coefficients.

The method is as follows. Let K be defined by a monic irreducible poly
nomial P E Z[X]. Using the round 2 Algorithm 6.1.8 which will be explained
in Chapter 6, we compute an integral basis w~, ... , Wn of ZK. Furthermore,
let u j denote the n isomorphisms of K into C. If we set

n

X= LXiWi

i=l

where the Xi are in Z, then x is an arbitrary algebraic integer in K, hence
its characteristic polynomial Mx will be of the form p;/d where Pd is the
minimal polynomial of x and d the degree of x, and Pd defines a subfield of
K. In particular, when d = n, this defines an equation for K, and clearly all
monic equations for K with integer coefficients (as well as for subfields of K)
are obtained in this way.

Now we have by definition

hence,

eize(M,) ~ t, I~ x;o,(w;f
This is clearly a quadratic form in the xi's, and more precisely

170 4 Algorithms for Algebraic Number Theory I

Note that in the case where K is totally real, that is when all the O"k are real
embeddings, this simplifies to

size(M.,) = LTr(wiwj)XiXj
i,j

which is now a quadratic form with integer coefficients which can easily be
computed from the knowledge of the wi.

In any case, whether K is totally real or not, we can apply the LLL
algorithm to the lattice zn and the quadratic form size(M.,). The result will be
a set of n vectors x corresponding to reasonably small values of the quadratic
form (see Section 2.6 for quantitative statements), hence to polynomials M.,
of small size, which is what we want. Note however that the algebraic integers
x that we obtain in this way will often have a minimal polynomial of degree
less than n, in other words x will define a subfield of K. In particular, x = 1
is always obtained as a short vector, and this defines the subfield Q of K.
Practical experiments with this method show however that there will always
be at least one element x of degree exactly n, hence defining K, and its minimal
polynomial will hopefully be simpler than the polynomial P from which we
started.

However the polynomials that we obtain in this way, have sometimes
greater coefficients than those of P. This is not too surprising since our defi
nition of "size" of P(X) = Lo<k<n akXk involves the size of the roots of P,
hence of the quantities - -

lan-kll/k

more than the size of the coefficients themselves.

Note that as a by-product of this method, we sometimes also obtain sub
fields of K. It is absolutely not true however that we obtain all subfields of K
in this way. Indeed, the LLL algorithm gives us at most n subfields, while the
number of subfields of K may be much larger.

The algorithm, which we name POLRED for polynomial reduction, is as
follows (see [Coh-Diaz]).

Algorithm 4.4.11 (POLRED). Let K = Q(B) be a number field defined by a
monic irreducible polynomial P E Z[X). This algorithm gives a list of polynomials
defining certain subfields of K (including Q), which are often simpler than the
polynomial P so these can be used to define the field K if they are of degree
equal to the degree of K.

1. [Compute the maximal order] Using the round 2 Algorithm 6.1.8 of Chapter
6, compute an integral basis WI, ... I Wn as polynomials in e.

2. [Compute matrix] If the field K is totally real (which can be easily checked
using Algorithm 4.1.11), set mi,j +- Tr(wiwj) for 1 s i,j s n, which will be
an element of z.

4.4 Discriminants, Integral Bases and Polynomial Reduction 171

Otherwise, using Algorithm 3.6.6, compute a reasonably accurate value of ()
and its conjugates aj(O) as the roots of P, then the numerical values of ai(wk),
and finally compute a reasonably accurate approximation to

mi,j +- L ak(wi)ak(wj)
1:s;k:5n

(note that this will be a real number).

3. (Apply LLL] Using the LLL Algorithm 2.6.3 applied to the inner product defined
by the matrix M = (mi,i) and to the standard basis ofthe lattice zn, compute
a-n LLL-reduced basis b1. ... , bn.

4. (Compute characteristic polynomials] For 1 ~ i ~ n, using the formulas of
Section 4.3, compute the characteristic polynomial ei of the element of ZK
corresponding to bi on the basis w~. w2, ... , Wn·

5. (Compute minimal polynomials] For 1 :::; i ~ n, set Pi +- ed(ei, en where
the GCD is always normalized so as to be monic, and is computed by Euclid's
algorithm. Output the polynomials Pi and terminate the algorithm.

From what we have seen in Section 4.3, the characteristic polynomial ei of
an element X E ZK is given by ei = pik' where pi is the minimal polynomial
and k is a positive integer, hence ed(ei, en = Pi, thus explaining step 5.
In fact, to avoid ambiguities of sign which arise, it is also useful to make
the following choice at the end of the algorithm. For each polynomial Pi, set
di +- deg(Pi) and search for the non-zero monomial of largest degree d such
that d ¢. di (mod 2). If such a monomial exists, make, if necessary, the change
Pi (X) +- (-1)d; Pi (-X) so that the sign of this monomial is negative.

Let us give an example of the use of the POL RED algorithm. This example
is taken from work of M. Olivier. Consider the polynomial

T(X) = X 6 + 2X5 - 7X4 -12X3 + 10X2 + 17X + 4.

Using the methods of Section 3.5, one easily shows that this polynomial is irre
ducible over Q, hence defines a number field K of degree 6. Furthermore, using
Algorithm 3.6.6, one computes that the complex roots ofT are approximately
equal to

- 2.7494482169,-1.7152399972,-0.8531562311,-0.3074682781,

1.5839340557,2.0413786677.

Using the methods of the preceding section, it is then easy to check that this
field has no proper subfield apart from Q.

From this and the classification of transitive permutation groups of degree
6 which we will see in Section 6.3, we deduce that the Galois group G of the
Galois closure of K is isomorphic either to the alternating groups A5 or A6 ,

172 4 Algorithms for Algebraic Number Theory I

or to the symmetric groups 8 5 or 86. Now using the sub-resultant Algorithm
3.3. 7 or Proposition 3.3.5 one computes that

disc(T) = 116992

so by Proposition 6.3.1, we have G c A6 hence G is isomorphic either to A5
or to A6.

Distinguishing between the two is done by using one of the resolvent func
tions given in Section 6.3, and the resolvent polynomial obtained is

R(X) = X 6 + 3694X5 + 1246830X4 -7355817976X3 - 5140929655107X2

+ 3486026298845999X + 2593668315970494361.

A computation of the roots of this polynomial shows that it has an integer root
x =- 673, and the results of Section 6.3 imply that G is isomorphic to A5. In
addition, Q(X) = R(X)/(X + 673) is an irreducible fifth degree polynomial
which defines a number field with the same discriminant as K. We have

Q(X) = X 5 + 3021X4 - 786303X3 - 6826636057 X 2

-546603588746X +3853890514072057,

and the discriminant of Q (which must be a square by Proposition 6.3.1) has
63 decimal digits. Now if we apply the POLRED algorithm, we obtain five
polynomials, four of which define the same field as Q, and the polynomial
with the smallest discriminant is

8(X) = X 5 - 2X4 -13X3 + 37X2 - 21X -1,

a polynomial which is much more appealing than Q !
We compute that disc(8) = 116992 , hence this is the discriminant of the

number field K as well as the number field defined by the polynomial 8.
There was a small amount of cheating in the above example: since disc(Q)

is a 63 digit number, the POLRED algorithm, which in particular computes
an integral basis of K hence needs to factor disc(Q), may need quite a lot
of time to factor this discriminant. We can however in this case "help" the
POLRED algorithm by telling it that disc(Q) is a square, which we know a
priori, but which is not usually tested for in a factoring algorithm since it is
quite rare an occurrence. This is how the above example was computed in
practice, and the whole computation, including typing the commands, took
only a few minutes on a workstation.

We can slightly modify the POLRED algorithm so as to obtain a defining
polynomial for a number field which is as canonical as possible. One possibility
is as follows.

We first need a notation. If Q(X) = Eo<i<n aiXi is a polynomial of degree
n, we set --

4.5 The Subfield Problem and Applications 173

Algorithm 4.4.12 (Pseudo-Canonical Defining Polynomial). Given a num
ber field K defined by a monic irreducible polynomial P E Z[X] of degree n,
this algorithm outputs another polynomial defining K which is as canonical as
possible.

1. [Apply POLRED] Apply the POLRED algorithm to P, and let Pi· (for i =
1, ... , n) be then polynomials which are output by the POLRED algorithm.
If none of the Pi are of degree n, output a message saying that the algorithm
failed, and terminate the algorithm. Otherwise, let .C be the set of i such that
Pi is of degree n.

2. [Minimize v(Pi)]lf .C has a single element, let Q be this element. If not, for each
i E .C compute vi <--- v(Pi) and let v be the smallest vi for the lexicographic
ordering of the components. Let Q be any Pi such that v(Pi) = v.

3. [Possible sign change] Search for the non-zero monomial of largest degree d
such that d ¢ n (mod 2). If such a monomial exists, make, if necessary, the
change Q(X) <--- (-1)nQ(-X) so that the sign of this monomial is negative.

4. [Terminate] Output Q and terminate the algorithm.

Remarks.

(1) The algorithm may fail, i.e. the POLRED algorithm may give only poly
nomials of degree less than n. That this is possible in principle has been
shown by H. W. Lenstra (private communication), but in practice, on
more than 100000 polynomials of various degree, I have never encoun
tered a failure. It seems that failure is very rare.

(2) At the end of step 2 there may be several i such that Vi = v. In that case,
it may be useful to output all the possibilities (after executing step 3 on
each of them) instead of only one. In practice, this is also uncommon.

(3) Although Algorithm 4.4.12 makes an effort towards finding a polynomial
defining K with small index f = [ZK : /£[8]], it should not be expected that
it always finds a polynomial with the smallest possible index. An example
is the polynomial X 3 - X 2 - 20X +9 which naturally defines the cyclic cubic
field with discriminant 612 (see Theorem 6.4.6). Algorithm 4.4.12 finds
that this is the pseudo-canonical polynomial defining the cubic field, but it
has index equal to 3, while for example the polynomial X 3 + 12X2 -13X +3
has index equal to 1. The reason for this behavior is that the notion of
"size" of a polynomial is rather indirectly related to the size of the index.
See also Exercise 8.

174 4 Algorithms for Algebraic Number Theory I

4.5 The Subfield Problem and Applications

Let K = Q(a:) and L = Q(/3) be number fields of degree m and n respectively,
and let A(X), B(X) E Z[X] be the minimal polynomials of a: and f3 respec
tively. The basic subfield problem is as follows. Determine whether or not K
is isomorphic to a subfield of L, or in more down-to-earth terms whether or
not some conjugate of a: belongs to L. We could of course ask more precisely if
a: itself belongs to L, and we will see that the answer to this question follows
essentially from the answer to the apparently weaker one.

We start by two fast tests. First, if K is conjugate to a subfield of L, then
the degree of K clearly must divide the degree of L.

The second test follows from Corollary 4.4.9. We compute d(A) and d(B)
and for each odd prime p such that vp(d(A)) is odd, test whether or not
pnfm I d(B). Note that according to Exercise 15, it is not necessary to assume
that A and B are monic, i.e. that a: and f3 are algebraic integers.

We could use the more stringent test d(K)nfm I d(L) using Proposition
4.4.8 directly, but this requires the computation of field discriminants, hence
essentially of integral bases, and this is often lengthy. So, we do not advise
using this more stringent test unless the field discriminants can be obtained
cheaply.

We therefore assume that the above tests have been passed successfully.
We will give three different methods for solving our problem. The first two
require good approximations to the complex roots of the polynomials A and
B (computed using for example Algorithm 3.6.6), while the third is purely
algebraic, but slower.

4.5.1 The Subfield Problem Using the LLL Algorithm

Let f3 be an arbitrary, but fixed root of the polynomial B in C. If K is conjugate
to a subfield of L, then some root a:i of A is of the form P(/3) for some P E Q[X]
of degree less than n. In other words, the complex numbers 1, /3, ... , 13n~l, a:i

are Z-linearly dependent. To check this, use the LLL algorithm or one of its
variations, as described in Section 2.7.2 on each root of A (or on the root
we are specifically interested in as the case may be). Then two things may
happen. Either the algorithm gives a linear combination which is not very
small in appearance, or it seems to find something reasonable. The reader will
notice that in none of these cases have we proved anything. If, however, we
are in the situation where LLL apparently found a nice relation, this can now
be proved: assume the relation gives a:i = P(/3) for some polynomial P with
rational coefficients. (Note that the coefficient of O:i in the linear combination
which has been found must be non-zero, otherwise this would mean that the
minimal polynomial of f3 is not irreducible.) To test whether this relation is
true, it is now necessary simply to check that

AoP:=O (modE),

4.5 The Subfield Problem and Applications 175

where A and B are the minimal polynomials of a and {3 respectively. Indeed,
if this is true, this means that P(/3) is a root of A, i.e. a conjugate of ai, hence
is ai itself since LLL told us that it was numerically very close to ai.

To compute C = A o P (mod B), we use a form of Horner's rule for
evaluating polynomials: if A(X) = L::o aiXi, then we set C ~ am, and for
i = m -l,m- 2, ... ,0 we compute C ~ (ai +P(X)C mod B).

In the implausible case where one finds that A o P ¢. 0 (mod B), then we
must again test for linear dependence with higher precision used for ai and {3.

Remark. There is a better way to test whether each conjugate ai is or is not
a Q-linear combination of 1, /3, ... , 13n-l than to apply LLL to each ai, each
time LLL reducing an (n + 2) x (n + 1) matrix (or equivalently a quadratic
form inn+ 1 variables). Indeed, keeping with the notations of Remark (2) at
the end of Section 2. 7.2, the first n columns of that matrix, which correspond
to the powers of {3, will always be the same. Only the last column depends
on ai. But in LLL reduction, almost all the work is spent LLL reducing the
first n columns, the n +1-st is done last. Hence, we should first LLL reduce
the (n + 2) x n matrix corresponding to the powers of {3. Then, for each ai to
be tested, we can now start from the already reduced basis and just add an
extra column vector, and since the first n vectors are already LLL reduced,
the amount of work which remains to be done to account for the last column
will be very small compared to a full LLL reduction. We leave the details to
the reader.

If LLL tells us that apparently there is no linear relation, then we suspect
that a~ Q(/3). To prove it, the best way is probably to apply one of the two
other methods which we are going to explain.

4.5.2 The Subfield Problem Using Linear Algebra over C

A second method is as follows (I thank A.-M. Berge and M. Olivier for pointing
it out to me.) After clearing denominators, we may as well assume that a and
{3-are algebraic integers. We then have the following.

Proposition 4.5.1. With the above notations, assume that a and {3 are al
gebraic integers. Then K is isomorphic to a subfield of L if and only if there
exists an nfm to one map¢ from [1, n] to [1, m] such that for 1 ::; h < n,

Sh = L aq,(i)f3f E Z,
1in

where the a; (resp. /3;} denote the roots of A(X) (resp. of B(X)) in C.

Proof. Assume first that K is isomorphic to a subfield of L, i.e. that ai = P(/31)
with P E Q[X] say. Then, for every i, P(/3i) is a root a; of A(X) = 0, and

176 4 Algorithms for Algebraic Number Theory I

by Galois theory each ai is obtained exactly njm times. Therefore the map
i ~---+ j = ¢(i) is njm to one. Furthermore,

hence sh E Z since the ai and /3i are algebraic integers.
Conversely, assume that for some ¢ we have ShE Z for all h such that

1 ~ h < n. Note that s0 = (n/m) TrK;Q(a) E Z follows automatically.
Consider the following n x n linear system:

O~h<n.

By Proposition 4.4.4 (1) the determinant of this system is equal to d(B), hence
is non-zero. Furthermore, the system has rational coefficients, so the unique
solution has coefficients Xj E Q. If we set P(X) = Lo:o:::j<n xi Xi, we then have
P E Q[X] and Ll<i<n P(f3i)f3f = sh. It follows that the vector of the (P(f3i))
and of the a.p(i) a;e both solutions of the linear system Ll<i<n vi/3f = sh,
and since the f3i are distinct this system has a unique solution~ so the vect
ors are equal, thus proving the proposition. D

Remarks.

(1) The number of maps from [1, n] to [1, m] which are n/m-to-one is equal
to n!/((n/m)!)m hence can be quite large, especially when m = n (which
corresponds to the very important isomorphism problem). This is to be
compared to the number of trials to be done with the LLL method, which
is only equal tom. Hence, although LLL is slow, except when n is very
small (say n ~ 4), we suggest starting with the LLL method. If the answer
is positive, which will in practice happen quite often, we can stop. If not,
use the present method (or the purely algebraic method which is explained
below).

(2) To check that shE Z we must of course compute the roots of A(X) and
B(X) sufficiently accurately. Now however the error estimates are trivial
(compared to the ones we would need using LLL), and if sh is sufficiently
far away from an integer, it is very easy to prove rigorously that it is so.

(3) We start of course by checking whether s1 E Z, since this will eliminate
most candidates for ¢.

The above leads to the following algorithm.

Algorithm 4.5.2 (Subfield Problem Using Linear Algebra). Let A(X) and
B(X) be primitive irreducible polynomials in Z[X) of degree m and n respectively
defining number fields K and L. This algorithm determines whether or not K is
isomorphic to a subfield of L, and if it is, gives an explicit isomorphism.

4.5 The Subfield Problem and Applications 177

1. [Trivial check] If m f n, output NO and terminate the algorithm.

2. [Reduce to algebraic integers] Set a +--£(A), b +--£(B) (the leading terms of
A and B), and set A(X) +-- am- 1 A(X/a) and B(X) +-- bn-1 B(X/b).

3. [Check discriminants] For every odd prime p such that vp(d(A)) is odd, check
that pnfm I d(B) (where d(A) and d(B) are computed using Algorithm 3.3.7).
If this is not the case, output NO and terminate the algorithm. If for some
reason d(K) and d(L) are known or cheaply computed, replace these checks
by the single check d(K)nfm I d(L).

4. [Compute roots] Using Algorithm 3.6.6, compute the complex roots ai and
f3i of A(X) and B(X) to a reasonable accuracy (it may be necessary to have
more accuracy in the later steps).

5. [Loop on ¢] For each n/m to one map ¢from [1, n] to [1, m] execute steps 6
and 7. If all the maps have been examined without termination of the algorithm,
output NO and terminate the algorithm.

6. [Check s1 E Z] Let s1 +-- L:1<i<n aq,(i)!3i· If s1 is not close to an integer (this
is a rigorous statement, since It depends only on the chosen approximations to
the roots), take the next map ¢ in step 5.

Otherwise, check whether sh +-- Ll<i<n aq,(i)/3f are also close to an
integer for h = 2, ... , n -1. As soon as this is not the case, take the next map
¢in step 5.

7. [Compute polynomial] (Here the Sh are all close to integers.) Set sh +-- lsh l
(the nearest integer to sh)· Compute by induction tk +-- TrLjQ(/3~) for 0 ::;
k ::; 2n - 2, and using Algorithm 2.2.1 or a Gauss-Bareiss variant, find the
unique solution to the linear system Lo~;<n x;t;+h = Sh for 0 ::; h < n (note
that we know that d(B)x; E Z so we can avoid rational arithmetic), and set
P(X) +-- L05,j<nx;Xi.

8. [Finished?] Using the variant of Horner's rule explained in Section 4.5.1, check
whether A(P(X)) = 0 (mod B(X)). If this is the case, then output YES,
output also the polynomial P(bX)/a which gives the isomorphism explicitly,
and terminate the algorithm. Otherwise, using Algorithm 3.6.6 (or, even more
simply, a few Newton iterations to obtain a higher precision) recompute the
roots ai and f3i to a greater accuracy and go to step 6.

4.5.3 The Subfield Problem Using Algebraic Algorithms

The third solution that we give to the subfield problem is usually less efficient
but has the advantage that it is guaranteed to work without worrying about
complex approximations. The idea is to use Algorithm 3.6.4 which factors
polynomials over number fields and the following easy proposition whose proof
is left to the reader (Exercise 9).

Proposition 4.5.3. Let a and {3 be algebmic numbers with minimal poly
nomials A(X) and B(X) respectively. Set K = Q(a), L = Q(/3), and let

178 4 Algorithms for Algebraic Number Theory I

A= f1 1::;i:=;g Ai be a factorization of A into irreducible factors in L[X]. There
is a one-to-one correspondence between the Ai of degree equal to one and the
conjugates of a belonging to L. In particular, L contains a sub field isomorphic
to K if and only if at least one of the Ai is of degree equal to one.

This immediately leads to the following algorithm. Note that we keep the
same first three steps of the preceding algorithm.

Algorithm 4.5.4 (Subfield Problem Using Factorization of Polynomials).
Let A(X) and B(X) be primitive irreducible polynomials in Z[X] of degree m
and n respectively defining number fields K and L. This algorithm determines
whether or not K is isomorphic to a subfield of L, and if it is, gives an explicit
isomorphism.

1. [Trivial check] If m f n, output NO and terminate the algorithm.

2. [Reduce to algebraic integers] Set a ~ i(A), b ~ l(B) (the leading terms of
A and B), and set A(X) ~ am-1 A(X/a) and B(X) ~ bn- 1 B(X/b).

3. [Check discriminants] For every odd prime p such that vp(d(A)) is odd, check
that pn/m I d(B) (where d(A) and d(B) are computed using Algorithm 3.3.7).
If this is not the case, output NO and terminate the algorithm. If for some
reason d(K) and d(L) are known or cheaply computed, replace these checks
by the single check d(K)n/m I d(L).

4. [Factor in L[X]] Using Algorithm 3.6.4, let A= IJ1::;i:=;g Ai be a factorization
of A into irreducible factors in L[X], where without loss of generality we may
assume the Ai monic.

5. [Conclude] If no Ai is of degree equal to 1, then output NO otherwise output
YES, and if we write Ai = X - gi(f3) where (3 is a root of B such that
L = Q(f3), output also the polynomial gi(bX)/a which gives explicitly the
isomorphism. Terminate the algorithm.

Conclusion. With three different algorithms to solve the subfield problem, it
is now necessary to give some practical advice. These remarks are, of course,
also valid for the applications of the subfield problem that we will see in the
next section, such as the field isomorphism problem.

1) Start by executing steps 1 to 3 of Algorithm 4.5.2. These tests are fast
and will eliminate most cases when K is not isomorphic to a subfield of L. If
these tests go through, there is now a distinct possibility that the answer to
the subfield problem is yes.

2) Apply the LLL method (using the remark made at the end). This is also
quite fast, and will give good results if K is indeed isomorphic to a subfield
of L. Note that sufficient accuracy should be used in computing the roots of
A(X) and B(X) otherwise LLL may miss a dependency. If LLL fails to detect
a relation, then especially if the computation has been done to high accuracy
it is almost certain that K is not isomorphic to a subfield of L.

4.5 The Subfield Problem and Applications 179

An alternate method which is numerically more stable is to use Algorithm
4.5.2. However this algorithm is much slower than LLL as soon as n is at all
large, hence should be used only for these very small values of n.

3) In the remaining cases, apply Algorithm 4.5.4 which is slow but sure.

4.5.4 Applications of the Solutions to the Subfield Problem

Now that we have seen three methods for solving the subfield problem, we will
see that this problem is basic for the solution of a number of other problems.
For each of these other problems, we can then choose any method that we like
to solve the underlying subfield problem.

The Field Membership Problem.
The first problem that we can now solve is the field membership problem.

Given two algebraic numbers a and {3 by their minimal polynomials A and
B and suitable complex approximations, determine whether or not a E Q(f3)
and if so a polynomial P E Q[X] such that a= P({3). For this, apply one of
the three methods that we have studied for the subfield problem. Note that
some steps may be simplified since we have chosen a specific complex root of
A(X). For example, if we use LLL, we simply check the linear dependence
of a and the powers of {3. If we use linear algebra, choosing a numbering of
the roots such that a = a1 and {3 = f3l, we can restrict to maps ¢ such that
¢(1) = 1. In the algebraic method on the other hand we must lengthen step
5. For every Ai =X- 9i(f3) of degree one, we compute 9i(f3) numerically (it
will be a root of A(X)) and check whether it is closer to a than to any other
root. If this occurs for no i, then the answer is NO, otherwise the answer is
YES and we output the correct 9i.

The Field Isomorphism Problem.
The second problem is the isomorphism problem. Given two number fields

K and L as before, determine whether or not they are isomorphic. This is of
course equivalent to K and L having the same degree and K being a subfield
ol! L, so the solution to this problem follows immediately from that of the
subfield problem. Since this problem is very important, we give explicitly the
two algorithms corresponding to the last two methods (the LLL method can
of course also be used). For still another method, see [Poh3].

Algorithm 4.5.5 (Field Isomorphism Using Linear Algebra). Let A(X) and
B(X) be primitive irreducible polynomials in Z[X] of the same degree n defining
number fields K and L. This algorithm determines whether or not K is isomorphic
to L, and if it is, gives an explicit isomorphism.

1. [Reduce to algebraic integers] Set a +- i(A), b +- i(B) (the leading terms of
A and B), and set A(X)+- an-l A(X/a) and B(X) +- bn-l B(X/b).

2. [Check discriminants] Compute d(A) and d(B) using Algorithm 3.3.7), and
check whether d(A)/d(B) is a square in Q using essentially Algorithm 1.7.3.

180 4 Algorithms for Algebraic Number Theory I

If this is not the case, output NO and terminate the algorithm. If for some
reason d(K) and d(L) are known or cheaply computed, replace this check by
d(K) = d(L).

3. [Compute roots] Using Algorithm 3.6.6, compute the complex roots ai and
f3i of A(X) and B(X) to a reasonable accuracy (it may be necessary to have
more accuracy in the later steps).

4. [Loop on ¢] For each permutation ¢ of [1, n] execute steps 5 and 6. If all
the permutations have been examined without termination of the algorithm,
output NO and terminate the algorithm.

5. [Check s1 E Z] Let s1 +-- LI<i<n aq,(i)fli· If s1 is not close to an integer (this
is a rigorous statement, since It depends only on the chosen approximations to
the roots), take the next permutation ¢ in step 4.

Otherwise, check whether sh +-- Ll<i<n O:¢(i)f3f are also close to an
integer for h = 2, ... , n -1. As soon as this is not the case, take the next map
¢in step 4.

6. [Compute polynomial] (Here the sh are all close to integers.) Set Sh +-- lsh l
(the nearest integer to sh)· Compute by induction tk +-- TrL;Q(f3t} for 0 :5
k ::; 2n- 2, and using Algorithm 2.2.1 or a Gauss-Bareiss variant, find the
unique solution to the linear system Lo$;j<n Xjti+h = sh for 0 :5 h < n.
(We know that d(B)xj E Z, so we can avoid rational arithmetic.) Now set
P(X) +-- Lo$;j<n XjXi.

7. [Finished?] Using the variant of Horner's rule explained in Section 4.5.1, check
whether A(P(X)) = 0 (mod B(X)). If this is the case, then output YES, and
also output the polynomial P(bX)/a which gives the isomorphism explicitly,
and terminate the algorithm. Otherwise, using Algorithm 3.6.6 recompute the
roots ai and fli to a greater accuracy and go to step 5.

Algorithm 4.5.6 (Field Isomorphism Using Polynomial Factorization). Let
A(X) and B(X) be primitive irreducible polynomials in Z[X] of the same degree
n defining number fields K and L. This algorithm determines whether or not K
is isomorphic to L, and if it is, gives an explicit isomorphism.

1. [Reduce to algebraic integers] Set a +-- f(A), b +-- f(B) (the leading terms of
A and B), and set A(X) +-- an-1A(X/a) and B(X) +-- bn-l B(X/b).

2. [Check discriminants] Compute d(A) and d(B) using Algorithm 3.3.7), and
check whether d(A)/d(B) is a square in Q using a slightly modified version of
Algorithm 1.7.3. lfthis is not the case, output NO and terminate the algorithm.
If for some reason d(K) and d(L) are known or cheaply computed, check
instead that d(K) = d(L).

3. [Factor in L[X]] Using Algorithm 3.6.4, let A= nlSiSg A be a factorization
of A into irreducible factors in L[X]. where without loss of generality we may
assume the Ai monic.

4. [Conclude] If no Ai has degree equal to 1, then output NO otherwise output
YES, and if we write Ai = X - 9i(f3) where (3 is a root of B such that

4.6 Orders and Ideals 181

L = Q(,B), also output the polynomial gi(bX)/a which explicitly gives the
isomorphism. Terminate the algorithm.

For the field isomorphism problem, there is a different method which works
sufficiently often that it deserves to be mentioned. We have seen that Algo
rithm 4.4.12 gives a defining polynomial for a number field which is almost
canonical. Hence, if we apply this algorithm to two polynomials A and B, then,
if the corresponding number fields are isomorphic, there is a good chance that
the polynomials output by Algorithm 4.4.12 will be the same. If they are the
same, this proves that the fields are isomorphic (and we can easily recover
explicitly the isomorphism if desired). If not, it does not prove anything, but
we can expect that they are not isomorphic. We must then apply one of the
rigorous methods explained above to prove this.

The Primitive Element Problem.
The last application of the subfield problem that we will see is to the prim

itive element problem. This is as follows. Given algebraic numbers a 1, ... , am,
set K = Q(a 1, ... , am). Then K is a number field, hence it is reasonable
(although not always absolutely necessary, see [Duv]) to represent K by a
primitive element 8, i.e.

K = Q(a1, ... am)= Q(8) ~ Q[X]/(T(X)Q[X]),

where Tis the minimal polynomial of 8. Hence, we need an algorithm which
finds such a T (which is not unique) given a 1, ... , am. We can do this by
induction on m, and the problem boils down to the following: Given a and f3
by their minimal polynomials A and B (and suitable complex approximations),
find a monic irreducible polynomial T E Z[X] such that

Q(a,/3) = Q(8), where T(8) = 0.

We can use the solution to the subfield problem to solve this. According
to the proof of the primitive element theorem (see [Lang1]), we can take
8 = ka + f3 for a small integer k, and Q(a, {3) = Q(ka + {3) is equivalent
to a E Q(ka + {3) which can be checked using one of the algorithms explained
above for the field membership problem.

4.6 Orders and Ideals

4.6.1 Basic Definitions

Definition 4.6.1. An order R inK is a subring of K which as a /£-module
is finitely generated and of maximal rank n = deg(K) (note that we use the

182 4 Algorithms for Algebraic Number Theory I

"modem" definition of a ring, which includes the existence of the multiplicative
identity 1}.

Proposition 4.1.3 shows that every element of an order R is an algebraic
integer, i.e. that R C ZK. We will see that the ring theory of ZK is nicer than
that of an arbitrary order R, but for the moment we let R be an arbitrary order
in a number field K. We emphasize that some of the properties mentioned here
are specific to orders in number fields, and are not usually valid for general
base rings.

Definition 4.6.2. An ideal I of R is a sub-R-module of R, i.e. a sub-Z
module of R such that for every r E R and i E I we have ri E I.

Note that the quotient module R/ I has a canonical quotient ring structure.
In fact we have:

Proposition 4.6.3. Let I be a non-zero ideal of R. Then I is a module of
maximal rank. In other words, R/ I is a finite ring. Its cardinality is called the
norm of I and denoted N(I).

Indeed, if i E I with i # 0, then iR c I c R, proving the proposition. D

If I is given by its HNF on a basis of R (or simply by any matrix A), then
Proposition 4. 7.4 shows that the norm of I is simply the absolute value of the
determinant of A.

Ideals can be added (as modules), and the sum of two ideals is clearly
again an ideal. Similarly, the intersection of two ideals is an ideal. Ideals can
also be multiplied in the following way: if I and J are ideals, then

IJ = { ~XiYi, where XiEI and YiE J }·

Again, it is clear that this is an ideal. Note that we clearly have the inclusions

IJcinJcici+J,

(and similarly with J), and IR =I for all ideals I. It is clearly not always
true that I J = I n J (take I = J = pZ in Z). We have however the following
easy result.

Proposition 4.6.4. Let I and J be two ideals in R and assume that I+ J =
R. {It is then reasonable to say that I and J are coprime.) Then we have the
equality I J =In J.

Proof. Since I J c In J we need to prove only the reverse inclusion. But since
I + J = R, there exists a E I and b E J such that a + b = 1. If x E I n J it

4.6 Orders and Ideals 183

follows that x = ax + bx and clearly ax E I J and bx E J I = I J thus proving
the proposition. D

Definition 4.6.5. A fractional ideal I in R is a non-zero submodule of K
such that there exists a non-zero integer d with di ideal of R. An ideal (frac
tional or not) is said to be a principal ideal if there exists x E K such that
I = xR. Finally, R is a principal ideal domain (P ID) if R is an integral do
main (this is already satisfied for orders) and if every ideal of R is a principal
ideal.

It is clear that if I is a fractional ideal, then I c R if and only if I is an
ideal of R, and we will then say that I is an integral ideal.

Note that the set-theoretic inclusions seen above remain valid for fractional
ideals, except for the one concerning the product. Indeed, if I and J are two
fractional ideals, one does not even have I J C I in general: take I = R, and
J a non-integral ideal.

Definition 4.6.6. Let I be a fractional ideal of R. We will say that I is
invertible if there exists a fractional ideal J of R such that R = I J. Such an
ideal J will be called an inverse of I.

The following lemma is easy but crucial.

Lemma 4.6. 7. Let I be a fractional ideal, and set

I' = { x E K, xi C R}.

Then I is invertible if and only if I I' = R. Furthermore if this equality is true,
then I' is the unique inverse of I and is denoted I- 1.

The proof is immediate and left to the reader. D

Remark. It is not true in general that N(IJ) = N(I)N(J). For example,
let w = (1 + A)/2, takeR = Z + 3wZ and I = J = 3Z + 3wZ. Then
one immediately checks that N(I) = 3, but N(I2) = 27. As the following
proposition shows, the equality N(IJ) = N(I)N(J) is however true when
either I or J is an invertible ideal in R, and in particular, it is always true
when R = 'llK is the maximal order of K (see Section 4.6.2 for the relevant
definitions).

Proposition 4.6.8. Let R be an order in a number field, and let I and J
be two integral ideals of R. If either I or J is invertible, we have N(I J) =
N(I)N(J).

184 4 Algorithms for Algebraic Number Theory I

Proof {This proof is due to H. W. Lenstra.) Assume for example that I is
invertible. We will prove more generally that if J c H where J and H are
ideals of R, then [I H : I J] = [H: J]. With H = R, this gives [I: I J] = [R: J]
hence N(IJ) = [R : IJ] = [R : I][I : IJ] = N(I)N(J) thus proving the
proposition.

Let us temporarily say that a pair of ideals (J, H) is a simple pair if
[H: J] > 1 and if there are no ideals containing J and contained in H apart
from H and J themselves.

We prove the equality [IH: IJ] = [H: J] by induction on [H: J]. For
H = J it is trivial, hence assume by induction that [H : J] > 1 and that the
proposition is true for any pair of ideals such that [H': J'] < [H: J]. Assume
that (J, H) is not a simple pair, and let H 1 be an ideal between J and H and
distinct from both. By our induction hypothesis we have [I H : I H1] = [H : H1]
and [IH1 : IJ] = [H1 : J] hence [IH : IJ] = [H : J] thus proving the
proposition in that case.

Assume now that (J, H) is a simple pair. Then (I J, IH) is also a simple
pair since I is an invertible ideal (in fact multiplication by I gives a one-to-one
map from the set of ideals between J and H onto the set of ideals between
IJ and IH). Now we have the following lemma.

Lemma 4.6.9. If (J, H) is a simple pair, then there exists an isomorphism
of R-modules from HI J to Rl M for some maximal ideal M of R. {Recall that
M is a maximal ideal if and only if (M, R) is a simple pair.)

Indeed, let x E H \ J. The ideal xR + J is between J and H but is not
equal to J, hence H = xR + J. This immediately implies that the map from
R to HI J which sends a to the class of ax modulo J is a surjective R-linear
map. Call M its kernel, which is an ideal of R. Then by definition RIM is
isomorphic to HI J and since (J, H) is a simple pair it follows that (M, R) is
a simple pair, in other words that M is a maximal ideal of R, thus proving
the lemma. D

Resuming the proof of the proposition, we see that HI J is isomorphic to
Rl M and I HI I J is isomorphic to Rl M' for some maximal ideals M and M'.
By construction, MH C J hence MIH C IJ, so M annihilates IHIIJ hence
M c M'. Since M and M' are maximal ideals (or since I is invertible), it
follows that M=M', hence that [IH:IJ] =N(M') = N(M) = [H: J] thus
showing the proposition. D

Definition 4.6.10. An ideal p of R is called a prime ideal if p =1- R and if
the quotient ring Rip is an integral domain {in other words if xy E p implies
x E p or y E p). The ideal p is maximal if the quotient ring Rl p is a field.

It is easy to see that an ideal p is maximal if and only if p =/:- R and if
the only ideals I such that p C I c Rare p and R, in other words if (p, R)

4.6 Orders and Ideals 185

form a simple pair in the language used above. Furthermore, it is clear that a
maximal ideal is prime. In number fields, the converse is essentially true:

Proposition 4.6.11. Let p be a non-zero prime ideal in R. Then p is maxi
mal. (Here it is essential that R be an order in a number field.}

Indeed, to say that p is a prime ideal is equivalent to saying that for every
x ~ p the maps y 1---7 xy modulo p are injections from A/p into itself. Since
Afp is finite, these maps are also bijections, hence A/p is a field. 0

Note that {0} is indeed a prime ideal, but is not maximal. It will always
be excluded, even when this is not explicitly mentioned.

The reason why prime ideals are called "prime" is that the prime ideals of
Z are {0}, and the ideals pZ for p a prime number. Prime ideals also satisfy
some of the properties of prime numbers. Specifically:

Proposition 4.6.12. If p is a prime ideal and p :J It··· h, where the Ii are
ideals, then there exists an i such that p :J h

Proof. By induction on k it suffices to prove the result for k = 2. Assume that
p :J I J and p 1; I and p 1; J. Then there exists x E I such that x ~ p, and
y E J such that y ~ p. Since p is a prime ideal, xy ~ p, but clearly xy E I J,
contradiction. 0

If we interpret I :J J as meaning I I J, this says that if p divides a product
of ideals, it divides one of the factors. Although it is quite tempting to use the
notation I I J, one should be careful with it since it is not true in general that
I I J implies that there exists an ideal I' such that J = II'. As we will see,
this will indeed be true if R = ZK, and in this case it makes perfectly good
sense to use that notation.

A variant of the above mentioned phenomenon is that it is not true for
general orders R that every ideal is a product of prime ideals. What is always
true is that every (non-zero) ideal contains a product of (non-zero) prime
ideals. When R = ZK however, we will see that everything we want is true at
the level of ideals.

Proposition 4.6.13. If R is an order in a number field {or more generally
a Noetherian integral domain), any non-zero integral ideal I in R contains a
product of (non-zero) prime ideals.

This is easily proved by Noetherian induction (see Exercise 11).

An important notion which is weaker than that of PID but almost as
useful is that of a Dedekind domain. This is by definition a Noetherian integral
domain R such that every non-zero prime ideal is maximal, and which is
integrally closed. This last condition means that if x is a root of a monic

186 4 Algorithms for Algebraic Number Theory I

polynomial equation with coefficients in R and if x is in the field of fractions
of R, then in fact x E R. This is for example the case of R = Z.

When R is an order in a number field, all the conditions are satisfied
except that R must also be integrally closed. Since R :::::> Z, it is clear that if R
is integrally closed then R = ZK, and the converse is also true by Proposition
4.1.5. Hence the only order in K which is a Dedekind domain is the ring of
integers ZK. Since we know that every order R is a sub ring of ZK, we will
also call Z K the maximal order of K.

We now specialize to the case where R = ZK.

4.6.2 Ideals of ZK

In this section, fix R = ZK. Let I(K) be the set of fractional ideals of ZK.
We summarize the main properties of ZK-ideals in the following theorem:

Theorem 4.6.14.

(1) Every fractional ideal ofZK is invertible. In other words, if I is a fractional
ideal and if we set I- 1 = {x E K,xi c ZK}, then u- 1 = ZK.

(2) The set of fractional ideals of ZK is an Abelian group.
(3) Every fractional ideal I can be written in a unique way as

the product being over a finite set of prime ideals, and the exponents vp(I)
being in Z. In particular, I is an integral ideal (i.e. I C ZK) if and only
if all the Vp (I) are non-negative.

(4) The maximal order ZK is a PID if and only if it is a UFD.

Hence the ideals of ZK behave exactly as the numbers in Z, and can be
handled in the same way. Note that (3) is much stronger than Proposition
4.6.13, but is valid only because ZK is also integrally closed.

The quantity vp(I) is called the p-adic valuation of I and satisfies the usual
properties:

(1) I C Z K {:::==} Vp (I) 2: 0 for all prime ideals p.
(2) J C I{:::==} vp(I):::; vp(J) for all prime ideals p.
(3) vp(I + J) = min(vp(I),vp(J)).
(4) vp(Jn J) = max(vp(I),vp(J)).
(5) vp(JJ) = vp(I) + Vp(J).

Hence the dictionary between fractional ideals and rational numbers is as
follows:

Fractional ideals +-----+ (non-zero) rational numbers.

4.6 Orders and Ideals

Integral ideals ~ integers.
Inclusion~ divisibility (with the reverse order).
Sum ~ greatest common divisor.
Intersection ~ least common multiple.
Product ~ product.

187

Of course, a few of these notions could be unfamiliar for rational num
bers, for example the GCD, but a moment's thought shows that one can give
perfectly sensible definitions.

We end this section with the notion of norm of a fractional ideal. We
have seen in Proposition 4.6.3 that for an integral ideal I the norm of I
is the cardinality of the finite ring R/ I. As already mentioned, a corollary
of Theorem 4.6.14 is that N(IJ) = N(I)N(J) for ideals I and J of the
maximal order R = ZK (recall that this is false in general if R is not maximal).
This allows us to extend the definition of N(I) to fractional ideals if desired:
any fractional ideal I can be written as a quotient of two integral ideals, say
I= P/Q (in fact by definition we can take Q = dR where dis an integer), and
we define N(I) = N(P)/ N(Q). It is easy to check that this is independent of
the choice of P and Q and that it is still multiplicative (N(IJ) = N(I)N(J)).
Of course, usually it will no longer be an integer.

The notion of norm of an ideal is linked to the notion of norm of an element
that we have seen above in the following way:

Proposition 4.6.15. Let x be a non-zero element of K. Then

in other words the norm of a principal ideal of ZK is equal to the absolute
value of the norm (in K) of a genemting element.

One should never forget this absolute value. We could in fact have a nicer
looking proposition (without absolute values) by using a slight extension of
the notion of fractional ideal: because of Theorem 4.6.14 (3), the group of
fractional ideals can be identified with the free Abelian group generated by
the prime ideals j:l. Furthermore, a number field K has plac~s, corresponding to
equivalence classes of valuations. The finite places, which correspond to non
Archimedean valuations, can be identified with the (non-zero) prime ideals of
ZK. The other (so called infinite places) correspond to Archimedean valuations
and can be identified with the embeddings (Ti of Kin C, with (T identified with
a (thus giving r1 + r2 Archimedean valuations). Hence, we can consider the
extended group which is the free Abelian group generated by all valuations,
finite or not. One can show that to obtain a sensible definition, the coefficients
of the non-real complex embeddings must be considered modulo 1, i.e. can be
taken equal to 0, and the coefficients of the real embeddings must be considered
modulo 2 (I do not give the justification for these claims). Hence, the group
of generalized fractional ideals is

188 4 Algorithms for Algebraic Number Theory I

Z[P(K)) X {±1Y1 ,

where P(K) is the set of non-zero prime ideals. The norm of such a generalized
ideal is then the norm of its finite part multiplied by the infinite components
(i.e. by a sign). Now if x E K, the generalized fractional ideal associated to
x is, on the finite part equal to xZK, and on the infinite place ai (where
1 :::; i:::; r1) equal to the sign of ai(x). It is then easy to check that these two
notions of norm now correspond exactly, including sign.

The discussion above was meant as an aside, but is the beginning of the
theory of adeles and ideles (see [Lang2)). In a down to earth way, we can say
that most natural questions concerning number fields should treat together
the Archimedean and non-Archimedean places (or primes). In addition to the
present example, we have already mentioned the parallel between Proposi
tions 4.1.14 and 4.8.6. Similarly, we will see Propositions 4.8.11 and 4.8.10.
Maybe the most important consequence is that we will have to compute si
multaneously class groups (i.e. the non-Archimedean part) and regulators (the
Archimedean part), see Sections 4.9, 5.9 and 6.5.

4.7 Representation of Modules and Ideals

4.7.1 Modules and the Hermite Normal Form

As before, we work in a fixed number field K of degree n, given by K = Q(B),
where B is an algebraic integer whose minimal monic polynomial is denoted
T(X).

Definition 4.7.1. A module inK is a finitely generated sub-Z-module of K
of rank exactly equal to n.

Since Z is a PID, such a module being torsion free and finitely generated,
must be free. Let w1. ... , Wn be a Z-basis of M. The numbers Wi are elements
of K, hence we can find an integer d such that dwi E Z[B) for all i. The least
such positive d will be called the denominator of M with respect to Z[B).
More generally, if R is another module (for example R = ZK), we define the
denominator of M with respect to R as the smallest positive d such that
dMcR.

Note that in the context of number fields, the word "module" will always
have the above meaning, in other words it will always refer to a submodule of
maximal rank n. If as a Q-vector space we identify K = Q(B) with Qn, and
Z[B] with zn, the above definition is the same as the one that we have given
in Section 2.4.3. In particular, we can use the notions of determinant, HNF
and SNF of modules.

We give the following proposition without proof.

4. 7 Representation of Modules and Ideals 189

Proposition 4.7.2. Let M be a module in a number field K in the above
sense. Then there exists an order R in K and a positive integer d such that
dM is an ideal of R. More precisely, there is a maximal such R equal to
R = {i E K,xM C M}, and one can take ford the denominator of M with
respect to R.

Specializing to our case the results of Section 2.4.2, we obtain:

Theorem 4.7.3. Let a1, ... , an be n Z-linearly independent elements of
K, and R be the module which they generate. Then for any module M, there
exists a unique basis Wt, ... , Wn such that if we write

where d is the denominator of M with respect to R, then the n x n matrix
W = (Wi,j) satisfies the following conditions:

(1) For all i and j the Wi,j are integers.
(2) W is an upper triangular matrix, i.e. Wi,j = 0 if i > j.
(3) For every i, we have Wi,i > 0.
(4) For every j > i we have 0:::; Wi,j < Wi,i·

The corresponding basis (wih<i<n will be called the HNF-basis of M with
respect to R, and the pair (W, d) -will be called the HNF of M (with respect
toR). If ai =oi-l, we will call W (or (W,d)) the HNF with respect to 0.

We have already seen in section 2.4.3 how to test equality and inclusion
of modules, how to compute the sum of two modules and the product of a
module by a constant. In the context of number fields, we can also compute
the product of two modules. This will be used mainly for ideals.

Recall that

MM' = {2:mjmj,mj E M,mj EM'}.
j

It is clear that MM' is again a module. To obtain its HNF, we proceed as
follows: Let Wt, ... , Wn be the basis of M obtained by considering the columns
of the HNF of M as the coefficients of Wi in the standard representation, and
similarly forM'. Then the n2 elements wiwj form a generating set of MM'.
Hence, if we find the HNF of the n x n 2 matrix formed by their coefficients in
the standard representation, we will have obtained the HNF of M M'.

Note however that this is quite costly, since n 2 can be pretty large. Another
method might be as follows. In the case where M and M' are ideals (of ZK
say), then M and M' have a ZK-generating set formed by two elements. In
fact, one of these two elements can even be chosen in Z if desired. Hence it is

190 4 Algorithms for Algebraic Number Theory I

clear that if WI. ... , Wn is a Z-basis of Manda, /3 a ZK-generating set of M',
then awl! ... , awn, f3w1, ... , f3wn will be a Z-generating set of MM' (note
that M must also be an ideal for this to be true). Hence we can obtain the
HNF of M M' more simply by finding the HNF of the n x 2n matrix formed
by the coefficients of the above generating set in the standard representation.

We end this section by the following proposition, whose proof is easy and
left to the reader (see Exercise 18 of Chapter 2).

Proposition 4. 7 .4. Let M be a module with denominator 1 with respect to
a given R (i.e. M C R), and W = (wi,i) its HNF with respect to a basis at,

... , an of R. Then the product of the Wi,i (i.e. the determinant of W) is equal
to the index [R: M].

This will be used, for example, when R = Z(O] or R = ZK.

4. 7.2 Representation of Ideals

The Hermite normal form of an ideal with respect to 0 has a special form, as
is shown by the following theorem:

Theorem 4. 7.5. Let M be a Z[OJ-module, let (W, d) be its HNF with respect
to the algebraic integer 0, where d is the denominator and W = (Wi,j) is an
integral matrix in upper triangular HNF. Then for every j, Wj,j divides all the
elements of the j x j matrix formed by the first j rows and columns. In other
words, the HNF basis w11 ... , Wn of a Z[OJ-module has the form

W· = Zj(ej-1 + "' h· .(Ji-1)
J d ~ t,J '

l~i<j

where the Zj are positive integers such that Zj I zi fori < j, and the hi,j satisfy
0 :$ hi,i < Zi/ Zj for i < j. Furthermore, z1 is the smallest positive element of
dMnZ.

Proof. Without loss of generality, we may assume d = 1. We prove the theorem
by induction on j. It is trivially true for j = 1. Assume j > 1 and that it is
true for j -1. Consider the (j -1)th basis element Wj-l of M. We have

"' ni-l Wj-1 = ~ Wi,j-lU
l~i<j

hence Owi-1 = Wj-l,j-lei-l + L: 1 ~i<i-l Wi,j-lei. Since M is a Z(O]-module,
this must be again an element of M, hence it has the form Owi-l =
L:l<i<n aiWi with integers ai. Now since we have a triangular basis, iden
tifica£ion of coefficients (from en-l downwards) shows that ai = 0 for i > j

4. 7 Representation of Modules and Ideals 191

and that aiwi.i = Wj-1,j-1· This already shows that Wj,j I Wj-l,j-1· But by
induction, we know that Wj-1,j-1 divides wi',i' when i' and j' are less than
or equal to j - 1. It follows that, modulo Wj- 1,j_1Z[B] we have

0 _ n _ _ Wj-l,j-1 L ni-l
= !7Wj-1 = ajWj = Wi,jll ,

w·.
J,J 1~i~j

and this means that for every i :S j we have

Wj-l,j-1 W· . = 0
'·3 -w·. J,J

{mod Wj-1,j-1),

which is equivalent to Wj,j I Wi,j for i :S j, thus proving the theorem by
induction. D

Note that the converse of this theorem is false (see Exercise 16).

Theorem 4. 7.5 will be mainly used in two cases. First when M is an ideal
of ZK· The second is when M is an order containing B. In that case one can
say slightly more:

Corollary 4. 7.6. Let R be an order in K containing 0 {hence containing
Z[B]). Then the HNF basis w1, ... , Wn of R with respect to 0 has the form

1(·1 2: ·1) w· =- 03- + h· ·B'-
J d. '·3 '

3 1~i<j

where the dj are positive integers such that di I di for i < j, d1 = 1, and the
hi,j satisfy 0 :S hi,j < di / di for i < j. In other words, with the notations of
Theorem 4. 7. 5, we have Zj I d for all j.

The proof is clear once one notices that the smallest positive integer be-
longing to an order is 1, hence by Theorem 4.7.5 that z1 =d. D

If we assume that R = ZK is given by an integral basis Ot. ... , On, then
the HNF matrix of an ideal I with respect to this basis does not usually satisfy
the conditions of Theorem 4.7.5. We can always assume that we have chosen
a1 = 1, and in that case it is easy to show in a similar manner as above that
w1,1 is divisible by Wi,i for all i, and that if wi,i = w1,1, then Wj,i = 0 for
j =f. i. This is left as an exercise for the reader (see Exercise 17).

Hence, depending on the context, we will represent an ideal of ZK by its
Hermite normal form with respect to a fixed integral basis of ZK, or by its
HNF with respect to () (i.e. corresponding to the standard representations of
the basis elements). Please note once again that the special form of the HNF
described in Theorem 4. 7.5 is valid only in this last case.

192 4 Algorithms for Algebraic Number Theory I

Whichever representation is chosen, we have seen in Sections 2.4.3 and
4.7.1 how to compute sums and products of ideals, to test equality and inclu
sion (i.e. divisibility). Finally, as has already been mentioned several times,
the norm is the absolute value of the determinant of the matrix, and in the
HNF case this is simply the product of the diagonal elements.

Note that to test whether an element of K is in a given ideal is a spe
cial case of the inclusion test, since x E I <==:> xR C I. Here however it
is simpler (although not so much more efficient) to solve a (triangular) sys
tem of linear equations: if (W, d) is the HNF of I with respect to B, then if
x = Cl:l<i<n x;Bi-l)/e is the standard representation of x, we must solve the

equation -W A = ~X where X is the column vector of the x;, and A is the
unknown column vector. Since W is triangular, this is especially simple, and
x E I if and only if A has integral coefficients.

To this point, we have considered ideals mainly as Z-modules. There is a
completely different way to represent them based on the following proposition.

Proposition 4. 7. 7. Let I be an integral ideal of ZK.

(1) For any non-zero element a E I there exists an element (3 E I such that
I= aZK + f3ZK.

(2) There exists a non-zero element in In Z. If we denote by £(I) the smallest
positive element of I n Z, then £(!) is a divisor of N(I) = [ZK : I]. In
particular, there exists (3 E I such that I = £(I)ZK + f3ZK.

(3) If a and (3 are inK, then I= aZK + f3ZK if and only if for every prime
ideal p we have min(vp(a), vp((3)) = vp(I) where vp denotes the p-adic
valuation at the prime ideal p.

To prove this proposition, we first prove a special case of the so-called
approximation theorem valid in any Dedekind domain.

Proposition 4. 7.8. LetS be a finite set of prime ideals of ZK and (e;) a set
of non-negative integers indexed by S. There exists a (3 E ZK such that for
each jl; E S we have

Vp; ((3) = e; .

(Note that there may exist prime ideals q not belonging to S such that Vq ((3) >
0.)

Remark. More generally, S can be taken to be a set of places of K, and in
particular can contain Archimedean valuations.

Proof Let r =lSI,
T

I=IJP~i+l,
i=l

and for each i, set

4. 7 Representation of Modules and Ideals 193

which is still an integral ideal. It is clear that a1 + a2+ · · ·+ar = ZK (otherwise
this sum would be divisible by one of the Pi, which is clearly impossible).
Hence, let Ui E ~ such that u1 + u2 + · · · + Ur = 1. Furthermore, for each i
choose f3i E p~' \ p~•+l which is possible since Pi is invertible. Then I claim
that

r

fJ = LfJiui
i=l

has the desired property. Indeed, since Pi I ai for i =fo j, it is easy to check
from the definition of the ai that

since vp, (ui) = 0 and Vp; (fJi) = ei. Note that this is simply the proof of the
Chinese remainder theorem for ideals. D

Proof of Proposition 4.1.1. (1) Let a.ZK = TI~=l p~• be the prime ideal de
composition of the principal ideal generated by a.. Since a. E I, we also have
I= TI~=l p~' for exponents ei (which may be equal to zero) such that ei:::; ai.
According to Proposition 4. 7.8 that we have just proved, there exists a (J such
that vp, ((J) = ei fori :::; r. This implies in particular that I I (J, i.e. that (J E I,
and furthermore if we set I'= a.ZK + fJZK we have fori:::; r

and if q is a prime ideal which does not divide a., vq(I') = 0, from which it
follows that I'= TI~=l p~' =I, thus proving (1).

For (2), we note that since N(I) = [ZK : I], any element of the
Abelian quotient group ZK /I is annihilated by N(I), in other words we have
N(I)ZK C I. This implies N(I) E In Z, and since any subgroup of Z is of
the form kZ, (2) follows.

Finally, for (3) recall that the sum of ideals correspond to taking a GCD,
and that the GCD- is computed by taking the minimum of the p-adic valua
tions. D

Hence every ideal has a two element representation (a., (J) where I
a.ZK + fJZK, and we can take for example a.= l(I). This two element repre
sentation is however difficult to handle: for the sum or product of two ideals,
we get four generators over ZK, and we must get back to two. More gener
ally, it is not very easy to go from the HNF (or more generally any Z-basis
n-element representation) to a two element representation.

There are however two cases in which that representation is useful. The
first is in the case of quadratic fields (n = 2), and we will see this in Chapter
5. The other, which has already been mentioned in Section 4.7.1, is as follows:

194 4 Algorithms for Algebraic Number Theory I

we will see in Section 4.9 that prime ideals do not come out of the blue, and
that in algorithmic practice most prime ideals pare obtained as a two element
representation (p,x) where pis a prime number and xis an element of p. To
go from that two element representation to the HNF form is easy, but is not
desirable in general. Indeed, what one usually does with a prime ideal is to
multiply it with some other ideal I. If WI. ... , Wn is a Z-basis of I (for example
the basis obtained from the HNF form of I on the given integral basis of ZK),
then we can build the HNF of the product pi by computing the n x 2n matrix
of the generating set pwl> . . . pwn, xw1. ... , xwn expressed on the integral
basis, and then do HNF reduction. As has already been mentioned in Section
4.7.1, this is more efficient than doing a n x n2 HNF reduction if we used
both HNF representations. Note that if one really wants the HNF of p itself,
it suffices to apply the preceding algorithm to I= ZK.

Note that if (W, d) (with W = (wi,i)) is the HNF of I with respect to(), and
iff = [ZK : Z[B]], then f(I) = W1,1 and dn N(I) = [ZK : dl] = f fll:$i:$n Wi,i

so

N(I) = d-nf IT Wi,i·

1$;i$;n

Now it often happens that prime ideals are not given by a two element
representation but by a larger number of generating elements. If this ideal
is going to be used repeatedly, it is worthwhile to find a two element repre
sentation for it. As we have already mentioned this is not an easy problem
in general, but in the special case of prime ideals we can give a reasonably
efficient algorithm. This is based on the following lemma.

Lemma 4.7.9. Let p be a prime ideal above p of norm pf (f is called the
residual degree of p as we will see in the next section), and let a E p. Then we
have p = (p, a)= pZK+aZK if and only ifvv(N(a)) = f orvp(N(a+p)) = f,
where Vp denotes the ordinary p-adic valuation.

Proof This proof assumes some results and definitions introduced in the next
section. Assume first that vp(N(a)) =f. Then, since a E p and N(p) = pf,
for every prime q above p and different from p we must have Vq (a) = 0
otherwise q would contribute more powers of p to N(a). In addition and for
the same reason we must have vp (a) = 1. It follows that for any prime ideal
q, min(vq(p),vq(a)) = vq(P) and sop= (p,a) by Proposition 4.7.7 (3).

If vp(N(a + p)) = f we deduce from this that p = pZK +(a+ p)ZK, but
this is clearly also equal to pZK + aZK.

Conversely, let p = pZK + aZK. Then for every prime ideal q above p
and different from p we have vq(a) = 0, while for p we can only say that
min(vp(p), vp(a)) = 1.

Assume first that vp(a) = 1. Then clearly vp(N(a)) = vp(N(p)) = f as
desired. Otherwise we have vp(a) > 1, and hence vp(P) = 1. But then we
will have vp(a + p) = 1 (otherwise vp(P) = vp((P +a) - a) > 1), and still

4. 7 Representation of Modules and Ideals 195

vq(a + p) = 0 for all other primes q above p, and so vp(.N(a + p)) =f as
before, thus proving the lemma. D

Note that the condition vp(.N(a)) = J, while sufficient, is not a necessary
condition (see Exercise 20).

Note also that if we write a= El<i<k Ai'Yi where the 'Yi is some generating
set of p, we may always assume that T>.~l ~ pj2 since p E p. In addition, if we
choose 'Yl = p, we may assume that >.1 = 0.

This suggests the following algorithm, which is simple minded but works
quite well.

Algorithm 4.7.10 (Two-Element Representation of a Prime Ideal). Given
a prime ideal p above p by a system of Z-generators 'Yi for (1 ~ i ~ k), this
algorithm computes a two-element representation (p, a) for p.

We assume that one knows the norm pf of p (this is always the case in
practice, and in any case it can be obtained by computing the HNF of p from the
given generators), and that 'Yl = p (if this is not the case just add it to the list
of generators).

1. [Initialize) Set R +-- 1.

2. [Set coefficients) For 2 ~ i ~ k set >.i +-- R.

3. [Compute a and check) Let a+-- L:2<i<k>.i'Yi· n +-- .N(a)jpf, where the
norm is computed, for example, using the sub-resultant algorithm (see Section
4.3). If p f n, then output (p, a) and terminate the algorithm. Otherwise, set
n +-- .N(a + p)jpf. If p f n then output (p, a) and terminate the algorithm.

4. [Decrease coefficients) Let j be the largest i ::; k such that >.i =f:. - R (we will
always keep >.2 ;? 0 so j will exist). Set >.; +-- >.; -1 and for j + 1 ::; i ::; k
set >.i +-- R.

5. [Search for first non-zero) Let j be the smallest i ~ k such that >.i =f:. 0. If no
such j exists (i.e. if all the >.i are equal to 0) set R +-- R + 1 and go to step
2. Otherwise go to step 3.

Remarks.

(1) Steps 4 and 5 of this algorithm represent a standard backtracking proce
dure. What we do essentially is to search for a= L:2<i<k A(yi, where the
>.i are integers between - R and R. To avoid searching-both for a and -a,
we add the condition that the first non-zero >. should be positive. If the
search fails, we start it again with a larger value of R. Of course, some
time will be wasted since many old values of a will be recomputed, but in
practice this has no real importance, and in fact R = 1 or R = 2 is usually
sufficient. The remark made after Lemma 4.7.9 shows that the algorithm
will stop with R ~ pj2.

196 4 Algorithms for Algebraic Number Theory I

(2) It is often the case that one of the 'Yi for 2 :::; i :::; k will satisfy one of
the conditions of step 3. Thus it is useful to test this before starting the
backtracking procedure.

We refer to [Poh-Zas] for extensive information on the use of two-element
representations.

4.8 Decomposition of Prime Numbers I

For simplicity, we continue to work with a number field K considered as an
extension of IQ, and not considered as a relative extension. Many of the the
orems or algorithms which are explained in that context are still true in the
more general case, but some are not. (For example, we have already seen this
for the existence of integral bases.) Almost always, these generalizations fail
because the ring of integers of the base field is not a PID (or equivalently a
UFD).

4.8.1 Definitions and Main Results

The main results concerning the decomposition of primes are as follows. We
always implicitly assume that the prime ideals are non-zero.

Proposition 4.8.1.

(1) If p is a prime ideal of K, then p n Z = pZ for some prime number p.
(2) If p is a prime number and p is a prime ideal of K, the following conditions

are equivalent:
(i) p :J pZ.

(ii) p n z = pZ.
(iii) p n IQ = pZ.

(3) For any prime number p we have pZK n Z = pZ.

More generally, we have aZK n Z = aZ for any integer a, prime or not.

Definition 4.8.2. If p and p satisfy one of the equivalent conditions of Propo
sition 4.8.1 (2}, we say that p is a prime ideal above p, and that pis below p.

Theorem 4.8.3. Let p be a prime number. There exist positive integers ei
such that

i=l

where the Pi are all the prime ideals above p.

4.8 Decomposition of Prime Numbers I 197

Definition 4.8.4. The integer ei is called the ramification index of p at Pi
and is denoted e(ptfp). The degree /i of the field extension defined by

is called the residual degree (or simply the degree) ofp and is denoted f(ptfp).

Note that both 7/.,K /Pi and Z/pZ are finite fields, and fi is the dimension
of the first considered as a vector space over the second.

Theorem 4.8.5. We have the following formulas:

and
g

L:edi = n = deg(K).
i=l

In the case when K/Q is a Galois extension, the result is more specific:

Theorem 4.8.6. Assume that K/Q is a Galois extension (i.e. that for all
the embeddings O"i of K in C we have O"i(K) = K). Then, for any p, the
ramification indices ei are equal (say to e), the residual degrees fi are equal
as well (say to f), hence efg = n. In addition, the Galois group operates
transitively on the prime ideals above p: if Pi and Pi are two ideals above p,
there exists O" in the Galois group such that O"(Pi) = Pi.

Definition 4.8.7. Let pZK = 0f=1 p~; be the decomposition of a prime p.
We will say that p is inert if g = 1 and e1 = 1, in other words if pZK = p
{hence !I = n). We will say that p splits completely if g = n {hence for all
i, ei = /i = 1). Finally, we say that p is ramified if there is an ei which is
greater than or equal to 2 {in other words if p'l!.,K is not squarefree), otherwise
we say that p is unramified. Those prime ideals Pi such that ei > 1 are called
the ramified prime ideals of 7/.,K.

Note that there are intermediate cases which do not deserve a special
name. The fundamental theorem about ramification is as follows:

Theorem 4.8.8. Let p be a prime number. Then p is ramified inK if and only
if P divides the discriminant d(K) of K {recall that this is the discriminant
of any integral basis of 7/.,K). In particular, there are only a finite number of
ramified primes (exactly w(d(K)), where w(x) is the number of distinct prime
divisors of an integer x).

198 4 Algorithms for Algebraic Number Theory I

We can also define the decomposition of the "infinite prime" of Q in a
similar manner, since we are extending valuations. The ordinary primes corre
spond to the non-Archimedean valuations and the real or complex embeddings
correspond to the Archimedean ones. Since we are over Q, there is only the
real embedding of Q to lift, and (as a special case of a general definition),
when the signature of K is (r1, r2), we will say that the infinite prime of Q
lifts to a product of r 1 real places of K times r 2 non-real places to the power
2. Hence, g= r1 +r2, ei = 1 fori~ r1, ei = 2 fori> r1, and f; = 1 for all i.

We also have the following results:

Proposition 4.8.9.

(1) (Hermite). The set of isomorphism classes of number fields of given dis
criminant is finite.

(2) (Minkowski). If K is a number field different from Q, then ld(K) I > 1. In
particular, there is at least one ramified prime in K.

Proposition 4.8.10 (Stickelberger). If p is an unramified prime inK with
p'l!.,K = nf=l Pit we have

(d(:)) = (-1)n-g

including the case p = 2 where (d(;<)) is to be interpreted as the Jacobi
Kronecker symbol {see Definition 1.4.8).

This shows that the parity of the number of primes above p (i.e. the
"Mobius" function of p) can easily be computed.

Note that this proposition is also true for the infinite prime as given above,
if we interpret the Legendre symbol as the sign of d(K):

Proposition 4.8.11. If K is a number field with signature (r1, r2), then the
sign of the discriminant d(K) is equal to (-1 t 2 •

Proof Since, up to a square, the discriminant d(K) is equal to Oi<j (0;- Oj)2

(with evident notations), then a case by case examination shows that when
conjugate terms are paired, all the factors become positive except for

II (0;- Bi+r2) 2 ,

r1 <i:5:rl +r2

whose sign is (-lt2 since 0;- O;+r2 is pure imaginary. D

Corollary 4.8.12. The decomposition type of a prime numberp in a quadratic
field K of discriminant D is the following: if (~) = -1 then p is inert. If

4.8 Decomposition of Prime Numbers I 199

(~) = 0 then pis mmified (i.e. pZK = p2). Finally, if(~) = +1, then p splits
(completely), i.e. pZK = P1P2·

4.8.2 A Simple Algorithm for the Decomposition of Primes

We now consider a more difficult algorithmic problem, that of determining
the decomposition of prime numbers in a number field. The basic theorem on
the subject, which unfortunately is not completely sufficient, is as follows.

Theorem 4.8.13. Let K = Q(O) be a number field, where 0 is an algebmic
integer, whose {monic) minimal polynomial is denoted T(X). Let f be the
index of 0, i.e. f = [ZK : Z[O]]. Then for any prime p not dividing f one can
obtain the prime decomposition of pZK as follows. Let

g

T(X) = IJ Ti(X)e; (mod p)
i=l

be the decomposition ofT into irreducible factors in IF p[X], where the Ti are
taken to be monic. Then

g

pZK = IJp~;,
i=l

where

Furthermore, the residual index /i is equal to the degree of Ti.

Since we have discussed at length in Chapter 3 algorithmic methods for
finding the decomposition of polynomials in 1Fp[X], we see that this theorem
gives us an excellent algorithmic method to find the decomposition of pZK
when p does not divide the index f. The hard problems start when p I f. Of
course, one then could try and change 0 to get a different index, if possible
prime to p, but even this is doomed. There can exist primes, called inessential
discriminantal divisors which divide any index, no matter which 0 is chosen.
It can be shown that such exceptional primes are smaller than or equal to
n- 1, so very few primes if any are exceptional. But the problem still exists:
for example it is not difficult to give examples of fields of degree 3 where 2 is
exceptional, see Exercise 10 of Chapter 6.

The case when p divides the index is much harder, and will be studied
along with an algorithm to find integral bases in Chapter 6.

Proof of Theorem 4.8.13. Set h = deg(Ti) and Pi = pZK + Ti(O)ZK. Let us
assume that we have proved the following lemma:

200 4 Algorithms for Algebraic Number Theory I

Lemma 4.8.14.

(1) For all i, either Pi = ZK, or ZK /Pi is a field of cardinality ph.
(2) If i =/= j then Pi+ Pi= ZK.
(3) p'l!.,K I P~ 1 ... p~·.

Then, after reordering the Pi, we can assume that Pi =/= ZK for i ~ s and
Pi= 'l!.,K for s < i ~ g (we will in fact see that s =g). Then by Lemma 4.8.14
(1), the ideals Pi are prime fori ~ s, and since by definition they contain pZK,
they are above p (Proposition 4.8.1). (1) also implies that the fi (for i ~ s)
are the residual indices of Pi· By (2) we know that the Pi fori ~ s are distinct,
and (3) implies that the decomposition of the ideal pZK is

8

p'l!.,K = IT P1; where di ~ ei for all i ~ s.
i=l

Hence, by Theorem 4.8.5, we haven= d1JI + · · · + d8 f 8 • Since we also have
deg(T) = n = edt+···+ e9 f 9 and di ~ ei for all i, this implies that we must
haves= g and di = ei for all i, thus proving Theorem 4.8.13. D

Proof of Lemma 4.8.14 {1}. Set Ki = IFp[X]/(Ti)· Since Ti is irreducible, Ki is
a field. Furthermore, the degree of Ki over IFp is Ji, and so the cardinality of Ki
is pf;. Thus we need to show that either Pi = 'l!.,K or that 'l!.,K /Pi ~ Ki. Now it is
clear that Z[X]/(p, Ti) ~ Ki, hence (p, 1i) is a maximal ideal of Z[X]. But the
kernel of the natural homomorphism ¢ from Z[X] to 'l!.,K /Pi which sends X to
0 mod Pi clearly contains this ideal, hence is either Z[X] or (p, Ti)· If we show
that¢ is onto, this will imply that Pi=ZK or ZK/Pi~ Z[X]/(p,Ti) ~ Ki,
proving (1).

Now to say that¢ is surjective means that ZK= Z[O] +Pi· By definition,
p'l!.,K c Pi· Hence

Since we have assumed that p does not divide the index, and since [ZK
pZK] = pn, this shows that [ZK : Z[O] +Pi] = 1, hence the surjectivity of¢.
Note that this is the only part of the whole proof of Theorem 4.8.13 which
uses that p does not divide the index of 0.

Proof of Lemma 4.8.14 {2}. Since Ti and Ti are coprime in IFp[X], there exist
polynomials U and V such that UTi + VTj - 1 E pZ[X]. It follows that
U(O)Ti(O) + V(O)Tj(O) = 1 + pW(O) for some polynomial WE Z[X], and this
immediately implies that 1 E Pi+ pj, i.e. that Pi+ Pi = ZK.

Proof of Lemma 4.8.14 {3). Set "Yi = Ti(O), so Pi= (P,"'fi)· By distributivity,
it is clear that

4.8 Decomposition of Prime Numbers I 201

p~l ... p~g c (p, 'Y~l ... 'Y;g).

Now I claim that (p, 'Y~ 1 · · · 'Y;9) = p'llK, from which (3) follows. Indeed, :J is
trivial. Conversely we have by definition rr · · · T; 9 - T E pZ[X) hence taking
X = () we obtain

'Y~ 1 · · · 'Y;9 E p7l[B) C p'llK,

proving our claim and the lemma. D

Note that in the general case where p I f which will be studied in Chapter
6, the prime ideals Pi above p are still of the form p'llK + Ti(B)'llK, but now
TiE IQ[X) and does not always correspond to a factor ofT modulo p.

4.8.3 Computing Valuations

Once prime ideals are known in a number field K, we will often need to
compute the p-adic valuation v of an ideal I given in its Hermite normal form,
where p is a prime ideal above p. We may, of course, assume that I is an
integral ideal. Then an obvious necessary condition for v =I 0 is that p I N(I).
Clearly this condition is not sufficient, since all primes above p must "share"
in some way the exponent of p in N (I).

We assume that our prime ideal is given asp = p7lK+a7lK for a certain a E
7lK. We will now describe an algorithm to compute vp(I), which was explained
to me by H. W. Lenstra, but which was certainly known to Dedekind. It ls
based on the following proposition.

Proposition 4.8.15. Let R be an order inK and p a prime ideal of R. Then
there exists a E K \ R such that ap c R. Furthermore, p is invertible in R if
and only if ap ¢. p, and in that case we have p-1 = R + aR.

Proof Let x E p be a non-zero element of p, and consider the non-zero ideal
xR. By Proposition 4.6.13, there exist non-zero prime ideals qi such that
xR :J fLEE qi for some finite set E. Assume E is chosen to be minimal
in the sense that no proper subset of E can have the same property. Since
0 qi c xR c p, by Proposition 4.6.12 we must have qi c p for some j E E,
hence qj = p since both are maximal ideals. Set

q = II qi.
iEE,i¥-j

Then pq C xR and q ¢. xR by the minimality of E. So choose y E q such that
Y ¢. xR. Since yp C xR, the element a= yjx satisfies the conditions of the
proposition.

Finally, consider the ideal p + ap. Since it sits between the maximal ideal
P and R, it must be equal to one of the two. If it is equal to R, we cannot
have ap C p, and since (R + aR)p = R, p is invertible and p-1 = R + aR. If

202 4 Algorithms for Algebraic Number Theory I

it is equal to p, then ap C p, and (R + aR)p = Rp. This implies that p is not
invertible since otherwise, by simplifying, we would have R + aR = R, hence
a E R. This proves the proposition. D

Knowing this proposition, it is easy to obtain an algorithm for computing
a suitable value of a. Note that ap C R hence ap E R, so we write a = (3/p
with f3 E R. The conditions to be satisfied for f3 are then f3 E R \ pR and
(3p c pR.

Let w1, ... , Wn be a Z-basis of R, and let 11, ... , 'Ym be generators of P
(for example if p = pR + aR we take 'Yl = p and 12 =a). Then, if we write

f3 = L XiWi,

1:5i:5n

we want to find integers Xi which are not all divisible by p such that for all j
with 1 ::; j ::; m the coordinates of (E Xiwihi on the wi are all divisible by p.
If we set

we obtain for all j and k

Wi'Yj = L ai,j,kWk,

1Sk:5n

L ai,j,kXi = 0 (mod p)
1:5i:5n

which is a system of mn equations inn unknowns in ZjpZ for which we want
a non-trivial solution. Since there are many more equations than unknowns
(if m > 1), there is, a priori, no reason for this system to have a non-trivial
solution. The proposition that we have just proved shows that it does, and
we can find one by standard Gaussian elimination in ZjpZ (for example using
Algorithm 2.3.1).

In the frequent special case where m = 2, 'Yl = p and 12 =a for some
a E ZK, the system simplifies considerably. For j = 1 the equations are trivial,
hence we must simply solve the square linear system

L ai,kXi = 0 (mod p)
1:5i:5n

where wia = El:5k:5n ai,kWk·

From now on, we assume that R = ZK so that all ideals are invertible.
Let I be an ideal of ZK given by its HNF (M, d) with respect to 0, where M
is ann x n matrix. We want to compute vp(I), where pis a prime ideal of ZK
(hence invertible). By the method explained above, we first compute a such
that a E K \ ZK and ap C ZK, and as above we set f3 =apE ZK. We may
assume that I is an integral ideal of ZK. (If I = I' j d' with I' an integral ideal
and d' E Z, then clearly vp(I) = vp(I') - evp(d'), where e is the ramification
index of p.) Now we have the following lemma which is the raison d'etre of a.

4.8 Decomposition of Prime Numbers I 203

Lemma 4.8.16. With the above notations, if I is an integml ideal of ZK,
then I C p if and only if al c ZK. In particular, vp(l) is the largest integer v
such that av I C ZK.

Proof. If I C p, then al cap C ZK. Conversely, assume that al c ZK, hence
apl c p. Since the prime ideal p contains the product of the integral ideals
ap and I, Proposition 4.6.12 shows that p contains one of the two. Now since
p is invertible, p cannot contain ap by the above proposition, hence p ::) I.
The final claim about the value of vp(I) is an immediate consequence of the
definitions. 0

If, as above we set a= /3/p with /3 E ZK \pZK, the condition av I C ZK is
equivalent to 13v I c pvzK. Let (N, d) be the HNF of the maximal order ZK.
By Corollary 4.7.6, we may assume that Nn,n = 1, by choosing d = dn. Now
since I is an integral ideal, we have dl c dZK, and dZK is represented by an
integral matrix, hence dl also, so the HNF with respect to (} of any integral
ideal can be chosen of the form (M, d) with the same d. Conversely, given
(M, d) where M is an integral matrix in Hermite normal form representing a
fractional ideal I, we can test whether I is integral by checking I +ZK = ZK,
hence by computing the HNF of an x 2n matrix as explained in Section 2.4.3.
In our situation, a better way is to compute the HNF M' of I with respect
to the HNF basis of ZK given by the matrix N instead of with respect to(},
where we allow M' to have fractional entries. We clearly have

M' =N-1M,

except that the non-diagonal entries may have to be reduced, and I is an
integral ideal if and only if M' has integral entries.

Hence, let (Mv, d) be the HNF of 13v I with respect to (}, M~ = N-1 Mv
and set Cv = (M~)n,n· Then a necessary condition for 13v I to be contained in
pvzK is that pv I Cv· This condition is in general not sufficient, but very often
it is. For example, it is easy to show (see Exercise 21) that the condition is
sufficient when p does not divide the index [ZK : Z[e]], and in particular if
ZK = Z[e]. In the general case, we have to check the divisibility of all the
coefficients of Mv by pv. This leads to the following algorithm.

Algorithm 4.8.17 (Valuation at a Prime Ideal). Let (N, d) be the HNF of
the maximal order ZK, let p be a prime ideal of ZK above p given by a generating
system 'Yt. ... , 'Ym over ZK {for example 'Yl = p, -y2 =a for some a E ZK),
and let I be an integral ideal of ZK given by its HNF {M, d'). This algorithm
computes the p-adic valuation vp{l) of the ideal I.

1. [Compute structure constants] Let wi be the HNF basis of ZK corresponding
to (N, d). Compute the integers ai,j,k such that

W·'V· = ~ a· · kWk z 13 ~ .,,,,

l::;k::;n

204 4 Algorithms for Algebraic Number Theory I

for 1 ~ i ~ n and 1 ~ j ~ m. Note that Wi"fj is computed as a polynomial in
(), and since N is an upper triangular matrix it is easy to compute inductively
the ai,j,k from k = n down to k = 1.

2. [Compute .B] Using ordinary Gaussian elimination over IFP or Algorithm 2.3.1,
find a non-trivial solution to the system of congruences

2:: ai,j,kXi = 0 (mod p).
1=:;i=:;n

Then set .B- Li XiWi.

3. [Compute N(I)] Set A - d/d' N-1 M which must be a matrix with integral
entries (otherwise I is not an integral ideal). Let P be the product of the diag
onal elements of A. If p f P, output 0 and terminate the algorithm. Otherwise,
set v -o.

4. [Multiply] Set A- .BA in the following sense. Each column of A corresponds
to an element of K in the basis wi, and these elements are multiplied by .B
and expressed again in the basis wi, using the multiplication table for the wi.

5. [Simple test] Using Algorithm 2.4.8, replace A by its HNF. Then, if p f An,n.
output v and terminate the algorithm. Otherwise, if p does not divide the ind
dex [ZK: Z[O]] = ~ / det(N), set v- v + 1, A -Afp (which will be integr
al) and go to step 4.

6. [Complete test] Set A - Afp. If A is not integral, output v and terminate the
algorithm. Otherwise, set v - v + 1 and go to step 4.

Note that steps 1 and 2 depend only on the ideal p, hence need be done
only once if many p-adic valuations have to be computed for the same prime
ideal p. Hence, a reasonable way to represent a prime ideal pis as a quintuplet
(p,a,e,J,.B). Here pis the prime number over which plies, a E ZK is such
that p = pZK + aZK, e is the ramification index and f the residual index of p,
and .B is the element of IlK computed by steps 1 and 2 of the above algorithm,
given by its coordinates Xi in the basis wi. Note also that Proposition 4.8.15
tells us that pp-1 = pllK+ ,BilK.

4.8.4 Ideal Inversion and the Different

The preceding algorithms will allow us to give a satisfactory answer to a
problem which we have not yet studied, that of ideal inversion in IlK.

Let I be an ideal of IlK (which we can assume to be integral without
loss of generality) given by a IlK-generating system "Yll ... , "Ym· We can for
example take the HNF basis of I in which case m = n, but often I will be
given in a simpler way, for example by only 2 elements. We can try to mimic
the first two steps of Algorithm 4.8.17 which, as remarked above, amount to
computing the inverse of the prime ideal p.

Hence, let w1, ... , Wn be an integral basis of IlK. Then by definition of the
inverse, X E I- 1 if and only if X"'fj E IlK for all j ~ k. Fix a positive integer

4.8 Decomposition of Prime Numbers I 205

d belonging to I. Then dx E ZK so we can write dx = 2:::1 <k<n XkWk with
Xk E Z and the condition X E I-1 can be written - -

L Xk"fjWk E dZK for all j.
1~i~n

If we define coefficients ui,j,k E Z by

n

"{jWk = L Ui,j,kWi
i=1

we are thus led to the nm x n system of congruences L:1<k<n XkUi,j,k = 0
(mod d) for all i and j. - -

In the special case where I is a prime ideal as in Algorithm 4.8.17, we
can choose d = p a prime number, and hence our system of congruences
can be considered as a system of equations in the finite field 1Fp, and we can
apply Algorithm 2.3.1 to find a basis for the set of solutions. Here, I is not a
prime ideal in general, and we could try to solve the system of congruences
by factoring d and working modulo powers of primes. A better method is
probably as follows. Introduce extra integer variables Yi,j. Then our system is
equivalent to the nm x (n+nm) linear system L:1<k<n XkUi,j,k -dyi,j = 0 for
all i and j. We must find a Z-basis of the solutions -oHhis system, and for this
we use the integral kernel Algorithm 2.7.2. The kernel will be of dimension n,
and a Z-basis of di- 1 is then obtained by keeping only the first n rows of the
kernel (corresponding to the variables Xk)·

In the common case where m = n, this algorithm involves n 2 x (n2 + n)
matrices, and this becomes large rather rapidly. Thus the algorithm is very
slow as soon as n is at all large, and hence we must find a better method.
For this, we introduce an important notion in algebraic number theory, the
different, referring to the introductory books mentioned at the beginning of
this chapter for more details.

Definition 4.8.18. Let K be a number field. The different D(K) of K is
defined as the inverse of the ideal (called the codifferent)

It is clear that the different D(K) is an integral ideal. What makes the
different interesting in our context is the following proposition.

Proposition 4.8.19. Let (wih<i<n be an integral basis and let I be an ideal
of ZK given by ann x n matrii M whose columns give the coordinates of a
Z-basis ('Yih~i~n of I on the chosen integral basis. LetT= (ti,j) be then x n
matrix such that ti,i = TrK/Q(wiwi)· Then the columns of the matrix (MtT)- 1

206 4 Algorithms for Algebraic Number Theory I

(again considered as coordinates on our integral basis} form a Z-basis of the
ideal r 1il(K)-1 .

Proof. First, note that by definition of M, the coefficient of row i and col
umn j in MtT is equal to TrK;Qbiwi)· Furthermore, if V =(vi) is a column
vector, then V belongs to the lattice spanned by the columns of (MtT)- 1

if and only if MtTV has integer coefficients. This implies that for all i
TrK;Qbi(Li VjWj)) E Z, in other words that TrK;Q(xi) C Z, where we have
set x = Li viwi· Since xi= xiZK, the proposition follows. D

In particular, when I= ZK and 'Yi = Wi is an integral basis, this proposi
tion shows that a Z-basis of il(K)-1 is obtained by computing the inverse of
the matrix TrK;Q(wiwi)· Since the determinant of this matrix is by definition
equal to d(K), this also shows that N(il(K)) = id(K)i.

The following theorem is a refinement of Theorem 4.8.8 (see [Mar]).

Theorem 4.8.20. The prime ideals dividing the different are exactly the ram
ified prime ideals, i.e. the prime ideals whose ramification index is greater than
1.

To compute the inverse of an ideal I given by a Z-basis 'Yi represented by
an n x n matrix M on the integral basis as above, we thus proceed as follows.
Computing r-1 we first obtain a basis of the codifferent il(K) - 1. We then
compute the ideal product Iil(K)-1 by Hermite reduction of ann x n2 matrix
as explained in Section 4.7. If N is the HNF matrix of this ideal product, then
by Proposition 4.8.19, the columns (NtT)-1 will form a Z-basis of the ideal
(Iil(K)-1)-1il(K)-1 = r 1, thus giving the inverse of I after another HNF.
In paractice, it is better to work only with integral ideals, and since we know
that det(T) = d(K), this means that we will replace il(K)-1 by d(K)il(K)-1

which is an integral ideal.

This leads to the following algorithm.

Algorithm 4.8.21 (Ideal Inversion). Given an integral basis (wih~i:S;n of the
ring of integers of a number field K and an integral ideal I given by an n x n
matrix M whose columns give the coordinates of a Z-basis 'Yi of I on the Wi, this
algorithm computes the HNF of the inverse ideal I-1.

1. [Compute d(K)il(K)-1] Compute the n x n matrix T = (ti,j) such that
ti,i = TrK;Q(wiwi)· Set d- det(T) {this is the discriminant d(K) of K
hence is usually available with the wi already). Finally, call oi the elements of
ZK whose coordinates on the wi are the columns of dT- 1 (thus the oi will be
a Z-basis of the integral ideal d(K)il(K)-1).

2. [Compute d(K)Iil(K)-1] Let N be the HNF of the n x n 2 matrix whose
columns are the coordinates on the integral basis of the n2 products 'Yioi (the
columns of N will form a .Z-basis of d(K)Iil(K)-1).

4.9 Units and Ideal Classes 207

3. [Compute I- 1] Set P +--- d(K)(NtT)- 1, and let e be a common denominator
for the entries of the matrix P. Let W be the HNF of eP. Output (W, e) as
the HNF of I- 1 and terminate the algorithm.

The proof of the validity of the algorithm is easy and left to the reader. 0

Remarks.

(1) If many ideal inversions are to be done in the same number field, step 1
should of course be done only once. In addition, it may be useful to find
a two-element representation for the integral ideal d(K)7J(K)- 1 since this
will considerably speed up the ideal multiplication of step 2. Algorithm
4.7.10 cannot directly be used for that purpose since it is valid only for
prime ideals, but similar algorithms exist for general ideals (see Exercise
30). In addition, if 'ZK = Z[B] and if P[X] is the minimal monic polynomial
of e, then one can prove (see Exercise 33) that 7J(K) is the principal ideal
generated by P'(O), so the ideal multiplication of step 2 is even simpler.

(2) If we want to compute the HNF of the different 7J(K) itself, we apply the
above algorithm to the integral ideal d(K)7J(K)- 1 (with M = d(K)T- 1)

and multiply the resulting inverse by d(K) to get 7J(K).

Now that we know how to compute the inverse of an ideal, we can give an
algorithm to compute intersections. This is based on the following formula,
which is valid if I and J are integral ideals of ZK:

I n J = I · J · (I + J) - 1.

This corresponds to the usual formula lcm(a, b) = a · b · (gcd(a, b)) - 1. We have
seen above how to compute the HNF of sums and products of modules, and
in particular of ideals, knowing the HNF of each operand. Since we have just
seen an algorithm to compute the inverse of an ideal, this gives an algorithm
for the intersection of two ideals.

However, a more direct (and usually better) way to compute the intersec
tion of two ideals is described in Exercise 18.

4.9 Units and Ideal Classes

4.9.1 The Class Group

Definition 4.9.1. Let K be a number field and ZK be the ring of integers of
K. We say that two (fractional) ideals I and J of K are equivalent if there
exists a E K* such that J = a I. The set of equivalence classes is called the
class group of'ZK (or of K) and is denoted Cl(K).

208 4 Algorithms for Algebraic Number Theory I

Since fractional ideals of 'llK form a group it follows that Cl(K) is also a
group. The main theorem concerning Cl(K) is that it is finite:

Theorem 4.9.2. For any number field K, the class group Cl(K) is a finite
Abelian group, whose cardinality, called the class number, is denoted h(K).

Denote by I(K) the set of fractional ideals of K, and P(K) the set of
principal ideals. We clearly have the exact sequence

1 ~ P(K) ~ I(K) ~ Cl(K) ~ 1.

The determination of the structure of Cl (K) and in particular of the class
number h(K) is one of the main problems in algorithmic algebraic number
theory. We will study this problem in the case of quadratic fields in Chapter
5 and for general number fields in Chapter 6.

Note that h(K) = 1 if and only if 'llK is a PID which in turn is if and only
if 'llK is a UFD. Hence the class group is the obstruction to 'llK being a UFD.

We can also define the class group for an order in K which is not the
maximal order. In this case however, since not every ideal is invertible, we
must slightly modify the definition.

Definition 4.9.3. Let R be an order inK which is not necessarily maximal.
We define the class group of R and denote by Cl(R) the set of equivalence
classes of invertible ideals of R {the equivalence relation being the same as
before).

Since all fractional ideals of 'llK are invertible, this does generalize the
preceding definition. The class group is still a finite Abelian group whose
cardinality is called the class number of R and denoted h(R). Furthermore,
it follows immediately from the definitions that the map I ~--+ I'llK from R
ideals to '1lK-ideals induces a homomorphism from Cl(R) to Cl(K) and that
this homomorphism is surjective. In particular, h(R) is a multiple of h(K).

Since the discovery of the class group in 1798 by Gauss, many results have
been obtained on class groups. Our ignorance however is still enormous. For
example, although widely believed to be true, it is not even known if there exist
an infinite number of isomorphism classes of number fields having class number
1 (i.e. with trivial class group, or again such that 'llK is a PID). Numerical
and heuristic evidence suggests that already for real quadratic fields Q(y'P)
with p prime and p::::::: 1 (mod 4), not only should there be an infinite number
of PID's, but their proportion should be around 75.446% (see [Coh-Len1],
[Coh-Mar] and Section 5.10).

Class numbers and class groups arise very often in number theory. We give
two examples. In the work on Fermat's last "theorem" (FLT), it was soon dis
covered that the obstruction to a proof was the failure of unique factorization

4.9 Units and Ideal Classes 209

in the cyclotomic fields Q((p) where (p is a primitive pth root of unity (a num
ber field of degree p -1, generated by the polynomial xp-l +···+X+ 1),
where pis an odd prime. It was Kummer who essentially introduced the no
tion of ideals, and who showed how to replace unique factorization of elements
by unique factorization of ideals, which as we have seen, is always satisfied
in a Dedekind domain. It is however necessary to come back to the elements
themselves in order to finish the argument-that is to obtain a principal ideal.
What is obtained is that aP is principal for some ideal a. Now, by definition of
the class group, we also know that ah is principal, where h is the class number
of our cyclotomic field. Hence, we can deduce that a itself is principal if p
does not divide h. This fortunately seems to happen quite often (for example,
for 22 out of the 25 primes less than 100); this proves FLT in many cases
(the so-called regular primes). One can also prove FLT in other cases by more
sophisticated methods.

The second use of class groups, which we will see in more detail in Chapters
8 and 10, is for factoring large numbers. In that case one uses class groups of
quadratic fields. For example, the knowledge of the class group (in fact only
of the 2-Sylow subgroup) of Q(vCN) is essentially equivalent to knowing the
factors of N, hence if we can find an efficient method to compute this class
group or its 2-Sylow subgroup, we obtain a method for factoring N. This is
the basis of work initiated by Shanks ([Shall) and followed by many other
people (see for example [Seyl], [Schn-Len] and [Buell).

4.9.2 Units and the Regulator

Recall that a unit x in K is an algebraic integer such that 1/x is also an
algebraic integer, or equivalently is an algebraic integer of norm ±1.

Definition 4.9.4. The set of units in K form a multiplicative group which
we will denote by U(K). The torsion subgroup ofU(K), i.e. the group of roots
of unity inK, will be denoted by J.L(K).

(Note that some people write E(K) because of the German word "Ein
heiten" for units, but we will keep the letter E for elliptic curves.)

It is clear that we have the exact sequence

1 ---+ U(K) ---+ K* ---+ P(K) ---+ 1,

where as before P(K) denotes the set of principal ideals inK. If we combine
this exact sequence with the preceding one, we can complete a commutative
diagram in the context of ideles, by introducing a generalization of the class
group, called the idele class group C(K). We will not consider these subjects
in this course, but without explaining the notations (see [Lang2]) I give the
diagram:

210 4 Algorithms for Algebraic Number Theory I

1 1 1

1 1 1
1 U(K) Jsoo(K) Csoo (K) ------+ 1

1 1 1
1 K* J(K) C(K) -----+1

1 1 1
1 P(K) I(K) Cl(K) -------+ 1

1 1 1
1 1 1

The main result concerning units is the following theorem

Theorem 4.9.5 (Dirichlet). Let (r1 , r 2) be the signature of K. Then the group
U(K) is a finitely generated Abelian group of rank r 1 + r 2 -1. In other words,
we have a group isomorphism

and J.£(K) is a finite cyclic group.

If we set r = r 1 + r2 - 1, we see that there exist units u1, ... , Ur such
that every element x of U(K) can be written in a unique way as

where ni E Z and (is a root of unity inK. Such a family (ui) will be called
a system of fundamental units of K. It is not unique, but since changing a
Z-basis of zr into another involves multiplication by a matrix of determinant
±1, the absolute value of the determinant of the ui in some appropriate sense,
is independent of the choice of the ui, and this is what we will call the regulator
of K. The difficulty in defining the determinant comes because the units form
a multiplicative group. To use determinants, one must linearize the problem,
i.e. take logarithms.

Let a1, ... , ar1 , ar1 +1 1 ••• , ar1+r2 be the first r1 +r2 embeddings of Kin
C, where the ai for i ~ r1 are the real embeddings, and the other embeddings
are the ai and 7fi = ar2 +i fori> r1.

Definition 4.9.6. The logarithmic embedding of K* in !Rr1 +r2 is the map
L which sends x to

4.9 Units and Ideal Classes 211

It is clear that L is an Abelian group homomorphism. Furthermore, we
clearly have ln IN K/Q(x)i = L: 1~i~r1+r2 Li(x) where Li(x) denotes the ith

component of L(x). It follows that the image of the subgroup of K* of elements
of norm equal to ±1 is contained in the hyperplane L:l<i<r +r Xi = 0 of

-- 1 2
]Rr1+r2.

The first part of the following theorem is essentially a restatement of
Theorem 4.9.5, and the second part is due to Kronecker (see Exercise 25).

Theorem 4.9.7.

(1) The image of the group of units U(K) under the logarithmic embedding
is a lattice (of mnk r1 + r2 - 1} in the hyperplane L: 1~i~r1+r2 Xi = 0 of
]Rr1 +r2.

(2) The kernel of the logarithmic embedding is exactly equal to the group ~t(K)
of the roots of unity in K.

Definition 4.9.8. The volume of this lattice, i.e. the absolute value of the
determinant of any Z-basis of the above defined lattice is called the regulator
of K and denoted R(K). If u1, ... , Ur is a system of fundamental units of K
(where r = r1 + r2 -1}, R(K) can also be defined as the absolute value of the
determinant of any of the r x r matrices extmcted from the r x (r + 1) matrix

where llu(x)ll = iu(x)l if u is a real embedding and llu(x)ll = iu(x)l 2 if u is a
complex embedding (note that L(x) = (ln llui(x)llh~i~r+l)·

The problem of computing regulators (or fundamental units) is closely
linked to the problem of computing class numbers, and is one of the other
main tasks of computational algebraic number theory.

On the other hand, the problem of computing the subgroup of roots of
unity ~t(K) is not difficult. Note, for example, that if r 1 > 0 then ~t(K) = { ±1}
since all other roots of unity are non-real. Hence, we can assume r1 = 0,
and by the above theorem we must find integers xi such that for every j,
iuj(L:1<i<nxiwi)l2 = 1 where Wi is an integral basis of ZK· If we set x =
(x1, ... ~ x~), this implies that

Q(x) = L iuj(L Xiwi)i 2 = n.
j l~i~n

Conversely, the inequality between arithmetic and geometric mean shows that
if p E ZK \ {0}, then

212 4 Algorithms for Algebraic Number Theory I

j j

with equality if and only if alllai(P)I 2 are equal. It follows that n is the min
imum non-zero value of the quadratic form Q on zn' and that this minimum
is attained when lai(P)I = 1 for all j, where p = Eixiwi. Finally, Theorem
4.9.7 (2) tells us that such a pis a root of unity (see Exercise 25). Hence, the
computation of the minimal vectors of the lattice (zn, Q) using, for example,
the Fincke-Pobst Algorithm 2.7.7, will give us quite rapidly the set of roots of
unity inK. Thus we have the following algorithm.

Algorithm 4.9.9 (Roots of Unity Using Fincke-Pobst). Let K = Q(O) be a
number field of degree nand T the minimal monic polynomial of 0 over Q. This
algorithm computes the order w(K) of the group of roots of unity J.£(K) of K
(hence J.£(K) will be equal to the set of powers of a primitive w(K)-th root of
unity).

1. [Initialize] Using Algorithm 4.1.11 compute the signature (r1, r2) of K. If r1 >
0, output w(K) = 2 and terminate the algorithm. Otherwise, using Algorithm
6.1.8 of Chapter 6, compute an integral basis w1 , ... , Wn of K as polynomials
in 0.

2. [Compute matrix] Using Algorithm 3.6.6, compute a reasonably accurate value
of (} and its conjugates O"j (0) as the roots ofT, then the numerical values of
ai(wk)· Finally, compute a reasonably accurate approximation to

ai,i +- L ak(wi)ak(wi)
1:5k:5n

(note that this will be a real number), and let A be the symmetric matrix
A= (ai,ih:5i,j:5n·

3. [Apply Fincke-Pohst] Apply Algorithm 2.7.7 to the matrix A and the constant
C = n+O.l.

4. [Final check] Set s +- 0. For each pair (x, -x) with (x1 , ... , xn) which is
output by Algorithm 2.7.7, set p +- El<i<nXiWi, and sets+- s + 1 if pis
a root of unity (this can be checked exactly in several easy ways, see Exercise
26).

5. Output w(K) +- 2s and terminate the algorithm.

Remark. The quadratic form Q considered here is, not surprisingly, the same
as the one that we used for the polynomial reduction Algorithm 4.4.11. Note
however that in POLRED we only wanted small vectors in the lattice, cor
responding to algebraic numbers of degree exactly equal to n, while here we
want the smallest vectors, and they correspond in general to algebraic num
bers of degree less than n. Note also that in practice all the vectors output in
step 4 correspond to roots of unity.

4.9 Units and Ideal Classes 213

We can also give an algorithm based on those of Section 4.5.3 as follows.

Algorithm 4.9.10 (Roots of Unity Using the Subfield Problem). Let K =
IQ(O) be a number field of degree nand T the minimal monic polynomial of e over
IQ. This algorithm computes the order w(K) of the group of roots of unity f.L(K)
of K (hence f.L(K) will be equal to the set of powers of a primitive w(K)-th root
of unity).

1. [Initialize) Using Algorithm 4.1.11 compute the signature (r1, r2) of K. If r1 >
0, output w(K) = 2 and terminate the algorithm. Otherwise, using Algorithm
6.1.8 of Chapter 6, compute the discriminant d(K) of K, and set w +-- 1.

2. [Compute primes) Let£ be the list of primes p such that (p -1) I n (since n
is very small, £ can be simply obtained by trial division). Let c be the number
of elements of £, and set i +-- 0.

3. [Get next prime and exponent) Set i +-- i + 1. If i > c output w and terminate
the algorithm. Otherwise, let p be the i-th element in the list £, set

k +-lvp(d(K)) + _1_J,
n p-1

and set j +-- 0.

4. [Test cyclotomic polynomials) Set j +-- j + 1. If j > k, go to step 3. Oth
erwise, applying Algorithm 4.5.4 to A(X) = ci>pi (X) and B(X) = T(X)
(where ci>pi (X) = 'L:f~g Xipi-l is the pi-th cyclotomic polynomial) deter
mine whether K has a subfield isomorphic to IQ((p:i) (where (p:i is some root
of ci>p:i (X), i.e. a primitive pi-th root of unity). If it does, go to step 4, and if
not, set w +-- wpi-1 and go to step 3.

Remarks.

(1) The validity of the check in step 3 follows from Exercise 24 and Proposition
4.4.8. We can avoid the computation of the discriminant of K, and skip
this step, at the expense of spending more time in step 4.

(2) We refer to [Was] or [Ire-Ros] for cyclotomic fields (which we will meet
again in Chapter 9) and cyclotomic polynomials. The (general) cyclotomic
polynomials can be computed either by induction or by the explicit for
mula

ci>m(X) =II (Xd -1)JL(m/d)

dim

where p,(n) is the Mobius function, but in our case this simplifies to the
formula

p-1

<I> pi (X) = 2:::: xipj-l
i=O

used in the algorithm.

214 4 Algorithms for Algebraic Number Theory I

(3) Although Algorithm 4.9.10 is more pleasing to the mind, Algorithm 4.9.9
is considerably faster and should therefore be preferred in practice. Care
should be taken however to be sufficiently precise in the computation of the
numerical values of the coefficients of Q. We have given in detail Algorithm
4.9.10 to show that an exact algorithm also exists.

All the quantities that we have defined above are tied together if we view
them analytically.

Definition 4.9.11. Let K be a number field. We define for Re(s) > 1 the
Dedekind zeta function (K(s) of K by the formulas

"' 1 1 (K(s) = Lt N(a) 8 = IJ 1
a P 1-N(p)s

where the sum is over all non-zero integral ideals of ZK and the product is
over all non-zero prime ideals of ZK.

The equality between the two definitions follows from unique factorization
into prime ideals (Theorem 4.6.14), and the convergence for Re(s) > 1 is
proved in Exercise 22.

The basic theorem concerning this function is the following.

Theorem 4.9.12 (Dedekind). Let K be a number field of degree n having r1

real places and r2 complex ones (so r 1 + 2r2 = n). Denote by d(K), h(K),
R(K) and w(K) the discriminant, class number, regulator and number of roots
of unity of K respectively.

(1) The function (K(s) can be analytically continued to the whole complex
plane into a meromorphic function having a single pole at s = 1 which is
simple.

(2) If we set

we have the functional equation

A(1- s) = A(s).

(3) If we set r = r1 + r2 -1 {which is the rank of the unit group), (K(s) has
a zero of order r at s = 0 and we have

4.9 Units and Ideal Classes 215

(4) Equivalently by the functional equation, the residue of (K(s) at s = 1 is
given by

. h(K)R(K)
hm (s - 1)(K (s) = 2r1 (2·nf2 -..:.........:--=====
•-1 w(K)Jid(K)i

This theorem shows one among numerous instances where h(K) and R(K)
are inextricably linked.

Remarks.

(1) From this theorem it is easily shown (see Exercise 23) that if NK(x) de
notes the number of integral ideals of norm less than or equal to x, then

lim NK(x) = 2rt(27tf2 h(K)R(K) .
x-oo X w(K)Jid(K)I

(2) It is also possible to prove the following generalization of the prime number
theorem (see [Lang2]).

Theorem 4.9.13. LetJrK(x) (resp. 1r~)(x)) be the number of prime ideals
(resp. prime ideals of degree 1} whose norm is less than equal to x. Then

) (1))
lim 1rK(x = lim JrK (x = 1.

x-oo x/ln(x) x-oo x/ln(x)

Dedekind's Theorem 4.9.12 shows that the behavior of (K(s) at s = 0 and
s = 1 is linked to fundamental arithmetic invariants of the number field K.
Siegel proved that the values at negative integers are rational numbers, hence
they also have some arithmetic significance. From the functional equation it
is immediately clear that (K (s) vanishes for all negative integers s if K is
not totally real, and for even negative integers if K is totally real. Hence, the
only interesting values are the (K(l- 2m) for totally real fields K (r2 = 0)
and positive integral m. There are special methods, essentially due to Siegel,
for computing these values using the theory of Hilbert modular forms. As
an example, we give the following result, which also shows the arithmetic
significance of these values (see [Coh], [Zagl]).

Theorem 4.9.14. Let K = Q(,;75) be a real quadratic field of discriminant
D. Define a(n) to be equal to the sum of the positive divisors of n if n is
positive, and equal to 0 otherwise. Then

216 4 Algorithms for Algebraic Number Theory I

(1)

1 (D s 2
) (K(-1) = 60 L a ---T-

s=D(mod2)

(this is a finite sum).
(2) The number r 5 (D) of representations of D as a sum of 5 squares of ele

ments of 7l (counting representations with a different ordering as distinct)
is given by

r 5(D) = 48(s-2(~))(K(-1)
(this formula must be slightly modified if D is not the discriminant of a
real quadratic field, see (Coh2}).

I have already mentioned how little we know about class numbers. The
same can be said about regulators. For example, we can define the regulator of
a number field in a p-adic context, essentially by replacing the real logarithms
by p-adic ones. In that case, even an analogue of Dirichlet's theorem that the
regulator does not vanish is not known. This is a famous unsolved problem
known as Leopoldt's conjecture. It is known to be true for some classes of
fields, for example Abelian extensions of IQ (see [Was] Section 5.5).

We do have a theorem which gives a quantitative estimate for the product
of the class number and the regulator (see [Sie], [Brau] and [Lang2]):

Theorem 4.9.15 (Brauer-Siegel). Let K vary in a family of number fields
such that ld(K)I 1/deg(K) tends to infinity, where d(K) is the discriminant of
K. Assume, in addition, that these fields are Galois over Q. Then, we have
the following asymptotic relation:

ln(h(K)R(K)) rv ln(ld(K)I 112).

This shows that the product h(K)R(K) behaves roughly as the square root
of the discriminant. The main problem with this theorem is that it is non
effective, meaning that nobody knows how to give explicit constants to make
the rv sign disappear. For example, for imaginary quadratic fields, r = 0 hence
R(K) = 1, and although the Brauer-Siegel theorem tells us that h(K) tends
to infinity with ld(K)I, and even much more, the problem of finding an explicit
function f(d) tending to infinity with d and such that h(K) :2: f(ld(K)I) is
extremely difficult and was only solved recently using sophisticated methods
involving elliptic curves and modular forms, by Goldfeld, Gross and Zagier
([Gol], [Gro-Zag2]).

Note that one conjectures that the theorem is still true without the
hypothesis that the fields are Galois extensions. This would follow from
Artin's conjecture on non-Abelian £-functions and on certain Generalized

4.10 Exercises for Chapter 4 217

Riemann Hypotheses. On the other hand, one can prove that the hypothe
sis on ld(K)I 1/deg(K) is necessary. The following is a simple corollary of the
Brauer-Siegel Theorem 4.9.15:

Corollary 4.9.16. Let K vary over a family of number fields of fixed degree
over IQ. Then, as ld(K)I --+ oo, we have

ln(h(K)R(K)) "'ln(ld(K)I 1/ 2).

4.9.3 Conclusion: the Main Computational Tasks of Algebraic
Number Theory

From the preceding definitions and results, it can be seen that the main com
putational problems for a number field K = IQ(O) are the following:

(1) Compute an integral basis of 'llK, determine the decomposition of prime
numbers in 'llK and p-adic valuations for given ideals or elements.

(2) Compute the Galois group of the Galois closure of K.
(3) Compute a system of fundamental units of K and/or the regulator R(K).

Note that these two problems are not completely equivalent, since for
many applications, only the approximate value of the real number R(K)
is desired. In most cases, by the Brauer-Siegel theorem, the fundamental
units are too large even to write down, at least in a na'ive manner (see
Section 5.8.3 for a representation which avoids this problem).

(4) Compute the class number and the structure of the class group Cl(K). It
is essentially impossible to do this without also computing the regulator.

(5) Given an ideal of 'llK, determine whether or not it is principal, and if it
is, compute a E K such that I = a'llK.

In the rest of this book, we will give algorithms for these tasks, placing
special emphasis on the case of quadratic fields.

Although they are all rather complex, some sophisticated versions are quite
efficient. With fast computers and careful implementations, it is possible to
tackle the above tasks for quadratic number fields whose discriminant has 50
or 60 decimal digits (less for general number fields). Work on this subject is
currently in progress in several places.

4.10 Exercises for Chapter 4

1. (J. Martinet) Let P(X) = X 4 + aX3 + bX 2 +eX+ d E IR[X) be a squarefree
polynomial. Set D +---disc(F), A +-3a2 - 8b, B +--- b2 - a2 b +(3/16)a4 + ac-4d.
Show that the signature of P is given by the following formulas. (r1, r2) = (2, 1)
iff D < 0, (ri,r2) = (4,0) iff D > 0, A> 0 and B > 0, and (r1,r2) = (0,2) iff
D > 0 and either A~ 0 or B ~ 0. (Hint: use Exercise 29 of Chapter 3.)

218 4 Algorithms for Algebraic Number Theory I

2. If o: and (J are two algebraic numbers of degree n generating the same number
field K over Q, write an algorithm to find the standard representation of 8 in
terms of o: knowing the standard representation of o: in terms of 8.

3. Prove Newton's formulas (i.e. Proposition 4.3.3).

4. Compute the minimal polynomial of o: = 21/ 4 + 21/ 2 using several methods, and
compare their efficiency.

5. Let K be a number field of signature (r1 , r 2). Using the canonical isomorphism

show that the quadratic form TrK;Q(x2) has signature (r1 +r2,r2).

6. Prove that if P = I:~=o akXk is a monic polynomial and if S = size(P) in the
sense of Section 4.4.2, then

ian-ki :5 (nk)(~n)k/2'

and that the constant is best possible if P is assumed to be with complex (as
opposed to integral) coefficients (hint: use a variational principle).

7. (D. Shanks.) Using for example Algorithm 4.4.11, show the following "incredible
identity" A= B, where

and

B = V11 + 2v'29 + v 16-259 + 2V55 -1059.

See [Sha4] for an explanation of this phenomenon and other examples. See also
[BFHT] and [Zip] for the general problem of radical simplification.

8. Consider modifying the POLRED algorithm as follows. Instead of the quadratic
form size(P), we take instead

f(P) = L lo:i- o:;l 2 ,

i<j

which is still a quadratic form in then variables Xi when we write o: = 2::~= 1 XiWi·

Experiment on this to compare it with POLRED, and in particular see whether
it gives a larger number of proper subfields of K or a smaller index.

9. Prove Proposition 4.5.3.

10. Write an algorithm which outputs all quadratic subfields of a given number field.

11. Let R be a Noetherian integral domain. Show that any non-zero ideal of R
contains a product of non-zero prime ideals.

12. Let d1 and d2 be coprime integers such that d = d1d2 E I, where I is an integral
ideal in a number field K. Show that I= I1I2 where Ii =I+ diZ.K, and show
that this is false in general if d1 and d2 are not assumed to be coprime.

13. Let R be an order in a number field, and let I and J be two ideals in R. Assume
that I is a maximal (i.e. non-zero prime) ideal. Show that N(I) N(J) I N(I J)

4.10 Exercises for Chapter 4 219

and that N(I2) = N(I)2 if and only if I is invertible. (Note that these two
results are not true anymore if I is not assumed maximal.)

14. Let R be an order in a number field. For any non-zero integral ideal of R, set
f(I) = [R: II'] where as in Lemma 4.6.7 we set I' = {x E K, xi C R}. This
function can be considered as a measure of the non-invertibility of the ideal I.

a) If I is a maximal ideal, show that either I is invertible (in which case
f(I) = 1) or else j(I) = N(I).

b) Generalizing Proposition 4.6.8, show that if I and J are two ideals such
that f(I) and f(J) are coprime, we still have N(I J) = N(I) N(J).

15. (H. W. Lenstra) Let a be an algebraic number which is not necessarily an
algebraic integer' and let anxn + an-1 xn-1 + ... + ao be its minimal polynomial.
Set

a) Show that Z[a] is an order of K, and that its definition coincides with
the usual one when a is an algebraic integer.

b) Show that Proposition 4.4.4 (2) remains valid if T E Z[X] is not assumed
to be monic, if we use this generalized definition for Z[8]. How should Proposition
4.4.4 (1) be modified?

16. Show that the converse of Theorem 4. 7.5 is not always true, in other words if
(W, d) is a HNF representation of a Z-module M satisfying the properties given
in the theorem, show that M is not always a Z[e]-module.

17. Assume that W is a HNF of an ideal I of R with respect to a basis a1 = 1,
a2, ... , an of R. Show that it is still true that Wi,i I w1,1 for all i, and that if
Wi,i = W1,1 then Wj,i = 0 for j =/= i.

18. Show that by using Algorithms 2.4.10 or 2.7.2 instead of Algorithm 2.3.1, Al
gorithm 2.3.9 can be used to compute the intersection of two Z-modules, and in
particular of two ideals. Compare the efficiency of this method with that given
in the text.

19. Let p be a (non-zero) prime ideal in ZK for some number field K, and assume
that p is not above 2. If x E ZK, show that there exists a unique c E { -1, 0, + 1}
such that

x<N(p)-1)/2 = c (mod p),

where we write x := y (mod p) if x- y E p. This c is called a "generalized
Legendre symbol" and denoted (;). Study the generalization to this symbol of
the properties of the ordinary Legendre symbol seen in Chapter 1.

20. Show that the condition vp(N(a)) = f of Lemma 4.7.9 is not a necessary con
dition for p to be equal to (p, a) (hint: decompose a and pZK as a product of
prime ideals).

21. Using the notation of Algorithm 4.8.17, show that if the prime p does not divide
the index [R : Z[8]], then pv I An,n is equivalent to pv divides all the coefficients
of the matrix A.

22. Let s be a real number such that s > 1. Show that if K is a number field
of degree n we have (K(s) s C(s) where ((s) = (Q(s) is the usual Riemann
zeta function, and hence that the product and series defining (K (s) converge
absolutely for Re(s) > 1.

220 4 Algorithms for Algebraic Number Theory I

23. If K is a number field, let NK(x) be the number of integral ideals of ZK of
norm less than or equal to x. Using Theorem 4.9.12, and a suitable Tauberian
theorem, find the limit as x tends to infinity of NK(x)jx.

24. Let K = Q((pk) where p is a prime and (m denotes a primitive m-th root of
unity. One can show that ZK = Z[(pk]. Using this, compute the discriminant of
the field K, and hence show the validity of the formula in Step 3 of Algorithm
4.9.10.

25. Let a be an algebraic integer of degree d all of whose conjugates have absolute
value 1.

a) Show that for every positive integer k, the monic minimal polynomial of
ak in Z[X] has all its coefficients bounded in absolute value by 2d.

b) Deduce from this that there exists only a finite number of distinct powers
of a, hence that a is a root of unity. (This result is due to Kronecker.)

26. Let p E ZK be an algebraic integer given as a polynomial in(}, where K = Q(O)
and Tis the minimal monic polynomial of(} in Z[X]. Give algorithms to check
exactly whether or not p is a root of unity, and compare their efficiency.

27. Let K = Q[O] where 8 is a root of the polynomial X 4 +1. Show that the subgroup
of roots of unity of K is the group of 8-th roots of unity. Show that 1 + J2 is
a generator of the torsion-free part of the group of units of K. What is the
regulator of K? (Warning: it is not equal to ln(1 + J2)).

28. Let p be a (non-zero) prime ideal in ZK for some number field K, let e = e(pjp)
be its ramification index, let p = p'll..K + aZK be a two-element representation
of p, and finally let v = Vp (a). Let a~ 1 and b ~ 1 be integers. By computing
q-adic valuations for each prime ideal q, show that

Deduce from this formulas for computing explicitly pk for any k ~ 1.

29. Let I be an integral ideal in a number field K and let R(I) be the positive
generator of I n Z.

a) Show that
R(I) = II pmaxPIPrvp(I)/e(pfp)l.

PIN (I)

b) Let a E I be such that (N(I),N(a)/ N(I)) = 1. Show that

(this is a partial generalization of Lemma 4. 7.9).
c) Deduce from this an algorithm for finding a two-element representation

of I analogous to Algorithm 4.7.10.

30. Let K = Q[O] be a number field, where (} is an algebraic integer whose minimal
monic polynomial is P(X) E Z[X]. Assume that ZK = Z[O]. Show that the
different il(K) is the principal ideal generated by P'(O).

31. Let I and J be two integral ideals in a number field K given by their HNF
matrices M1 and MJ. Assume that I and J are coprime, i.e. that I+ J = ZK·
Give an algorithm which finds i E I and j E J such that i + j = 1.

4.10 Exercises for Chapter 4 221

32. a) Using the preceding exercise, give an algorithm wich finds explicitly the
element (3 E IlK whose existence is proven in Proposition 4.7.7.

b) Deduce from this an algorithm which finds a two-element representation
I = aZK + f3ZK of an integral ideal I given a non-zero element a E I.

c) In the case where a= .e(I), compare the theoretical and practical perfor
mance of this algorithm with the one given in Exercise 29.

33. Let a and (3 be non-zero elements of K*. Show that there exist u and v in IlK
such that a(J = ua2 + v(32 , and give an algorithm for computing u and v.

34. Modify Proposition 4.3.4 so that it is still valid when T(X) E Q[X] and not
necessarily monic.

Chapter 5

Algorithms for Quadratic Fields

5.1 Discriminant, Integral Basis and Decomposition of
Primes

In this chapter, we consider the simplest of all number fields that are dif
ferent from Q, i.e. quadratic fields. Since n = 2 = r 1 + 2r2, the signature
(r1,r2) of a quadratic field K is either (2,0), in which case we will speak
of real quadratic fields, or (0, 1), in which case we will speak of imaginary
(or complex) quadratic fields. By Proposition 4.8.11 we know that imaginary
quadratic fields are those of negative discriminant, and that real quadratic
fields are those with positive discriminant.

Furthermore, by Dirichlet's unit theorem, the rank of the group of units
is r1 + r2 - 1, hence it can be equal to zero only in two cases: either r1 = 1,
r2 = 0, hence n = 1 so K = Q, a rather uninteresting case (see below however).
Or, r1 = 0 and r2 = 1, hence n = 2, and this corresponds to imaginary
quadratic fields. One reason imaginary quadratic fields are simple is that they
are the only number fields (apart from Q) with a finite number of units {almost
always only 2). We consider them first in what follows. However, a number of
definitions and simple results can be given uniformly.

Since a quadratic field K is of degree 2 over Q, it can be given by K = Q(B)
where B is a root of a monic irreducible polynomial of Z[X], say T(X) =
X 2 +aX +b. If we set O' = 2B+a, then B' is a root of X 2 = a 2 -b =d. Hence,
K = Q(Vd) where d is an integer, and the irreducibility ofT means that d is
not a\square. Furthermore, it is clear that Q(y'dj2) = Q(v'd), hence we may
assumed squarefree. The discriminant and integral basis problem is easy.

Proposition 5.1.1. Let K = Q(v'd) be a quadratic field with d squarefree
and not a square (i.e. different from 1). Let 1, w be an integral basis and d(K)
the discriminant of K. Then, if d = 1 (mod 4), we can take w = (1 + Vd)/2,
and we have d(K) = d, while if d = 2 or 3 (mod 4), we can take w = v'd and
we have d(K) = 4d.

This is well known and left as an exercise. Note that we can, for example,
appeal to Corollary 4.4.7, which is much more general.

For several reasons, in particular to avoid making unnecessary case dis
tinctions, it is better to consider quadratic fields as follows.

224 5 Algorithms for Quadratic Fields

Definition 5.1.2. An integer D is called a fundamental discriminant if D
is the discriminant of a quadratic field K. In other words, D * 1 and either
D = 1 (mod 4) and is squarefree, or D = 0 (mod 4), D/4 is squarefree and
D/4 = 2 or 3 (mod 4).

If K is a quadratic field of discriminant D, we will use the following as
standard notations: K = Q(vD), where D is a fundamental discriminant.
Hence D = d(K), and an integral basis of K is given by (1, w), where

D + .,fi5
W=---

2

and therefore ZK=Z[w].

Proposition 5.1.3. If K is a quadratic field of discriminant D, then every
order R of K has discriminant D f 2 where f is a positive integer called the
conductor of the order. Conversely, if A is any non-square integer such that
A= 0 or 1 (mod 4), then A is uniquely of the form A = Df2 where D is a
fundamental discriminant, and there exists a unique order R of discriminant
A (and R is an order of the quadratic field Q(vD)).

Again this is very easy and left to the reader.
A consequence of this is that it is quite natural to consider quadratic

fields together with their orders, since their discriminants form a sequence
which is almost a union of two arithmetic progressions. It is however neces
sary to separate the positive from the negative discriminants, and for positive
discriminants we should add the squares to make everything uniform. This
corresponds to considering the sub-orders of the etale algebra Q x Q (which is
not a field) as well. We will see applications of these ideas later in this chapter.

To end this section, note that Theorem 4.8.13 immediately shows how
prime numbers decompose in a quadratic field:

Proposition 5.1.4. Let K = Q(vD) where as usual D = d(K), ZK= Z[w]
where w = (D + vD)/2 its ring of integers, and let p be a prime number.
Then

(1) Ifp I D, i.e. if(~)= 0, then pis ramified, and we have pZK = p2, where

P = pZK +wZK

except when p = 2 and D = 12 (mod 16). In this case, p = pZK + (1 +
w)ZK.

(2) If(~)= -1, then pis inert, hence p = pZK is a prime ideal.

(3) If(~)= 1, then pis split, and we have pZK = p1p2, where

Pl= pZK + (w- n; b)zK and P2 = pZK+(w- D; b)zK,

and b is any solution to the congruence b2 = D (mod 4p).

5.2 Ideals and Quadratic Forms 225

Recall that in Section 1.5 we gave an efficient algorithm to compute square
roots modulo p. To obtain the number b occurring in (3) above, it is only
necessary, when p is an odd prime and the square root obtained is not of the
same parity as D, to add p to it. When p = 2, one can always take b = 1 since
D = 1 (mod 8).

5.2 Ideals and Quadratic Forms

Let D be a non-square integer congruent to 0 or 1 modulo 4, R the unique
quadratic order of discriminant D, (1,w) the standard basis of R (i.e. with
w = (D + VJ5)/2) and K be the unique quadratic field containing R (i.e. the
quotient field of R). We denote by a real or complex conjugation inK, i.e. the
Q-linear map sending VJ5 to -VJ5. From the general theory, we have:

Proposition 5.2.1. Any integral ideal a of R has a unique Hermite normal
form with denominator equal to 1, and with matrix

with respect to w, where c divides a and b and 0 ::::; b < a. In other words,
a= aZ + (b + cw)Z. Furthermore, a= £(a) is the smallest positive integer in
a and N(a) = ac.

Definition 5.2.2. We will say that an integral ideal a of R is primitive if
c = 1, in other words if a/n is not an integral ideal of R for any integer n > 1.

We also need some definitions about binary quadratic forms.

Definition 5.2.3. A binary quadratic form f is a function f(x, y) = ax2 +
bxy + cy2 where a, b and c are integers, which is denoted more briefly by
(a, b, c). We say that f is primitive if gcd(a, b, c) = 1. Iff and g are two
quadratic forms, we say that f and g are equivalent if there exists a matrix

(~ ~) E SL2(Z) (i.e. an integral matrix of determinant equal to 1), such

that g(x, y) = f(ax + (3y, "fX + 8y).

It is clear that equivalence preserves the discriminant D = b2 - 4ac of the
quadratic form (in fact it would also be preserved by matrices of determinant
equal to -1 but as will be seen, the use of these matrices would lead to
the wrong notion of equivalence). One can also easily check that equivalence
preserves primitivity. It is also clear that if D is a fundamental discriminant,
then any quadratic form of discriminant D = b2 - 4ac is primitive.

226 5 Algorithms for Quadratic Fields

Note that the action of A E SL2(Z) is the same as the action of -A,
hence the natural group which acts on quadratic forms (as well as on complex
numbers by linear fractional transformations) is the group PSL2(Z) where
we identify 'Y and-"(. By abuse of notation, we will consider an element of
PSL2(Z) as a matrix instead of an equivalence class of matrices.

We will now explain why computing on ideals and on binary quadratic
forms is essentially the same. Since certain algorithms are more efficient in
the context of quadratic forms, it is important to study this in detail.

As above let D be a non-square integer congruent to 0 or 1 modulo 4 and
R be the unique order of discriminant D. We consider the following quotient
sets.

F ={(a, b,c), b2 -4ac = D}/f 00

where f 00 = { (~ 7) , m E Z} is a multiplicative group (isomorphic to

the additive group of Z) which acts on binary quadratic forms by the formula

(1 m) 2
0 1 ·(a,b,c) =(a,b+2am,c+bm+am)

which is induced by the action of SL2(Z).
The second set is

I = {a fractional ideal of R} /Q*

where Q* is understood to act multiplicatively on fractional ideals.
The third set is

{ -b +Vi5 } Q = r = 2a , a> 0 and 4a I (D- b2) /Z,

where Z is understood to act additively on quadratic numbers r. We also
define maps as follows. If (a, b, c) is a quadratic form, we set

(-b + v'l5 . ~
¢FI(a,b,c)= aZ+ 2 Z,s1gn(a)r

If a is a fractional ideal and s = ±1, choose a Z-basis (w1, w2) of a with w1 E 1Q
and (w2a(wl)-w1a(w2))/v'l5 > 0 (this is possible by Proposition 5.2.1), and
set

,~. () _ N(xw1 - syw2)
'I' IF a, s - s N(a)

If a is a fractional ideal, choose a Z basis (w1, w2) as above, and set

5.2 Ideals and Quadratic Forms 227

Finally, if r = (-b + Vi5)/(2a) is a quadratic number, set

</JQI(T) =a(/£+ r/£).

The following theorem, while completely elementary, is fundamental to
understanding the relationships between quadratic forms, ideals and quadratic
numbers. We always identify the group Z/2Z with ±1.

Theorem 5.2.4. With the above notations, the maps that we have given can
be defined at the level of the equivalence classes defining F, I and Q, and are
then set isomorphisms {which we denote in the same way). In other words,
we have the following isomorphisms:

F~IxZf2Z, I~Q, F~ Q x Z/2Z.

Proof The proof is a simple but tedious verification that everything works.
We comment only on the parts which are not entirely trivial.

(1) ¢FI sends a quadratic form to an ideal. Indeed, if a and b are integers
with b = D (mod 2), the /£-.module a/£+ ((-b + Vi5)/2)Z is an ideal if
and only if 4a I (b2 - D).

(2) </JFI depends only on the equivalence class modulo r 00 hence induces a
map from F to I.

(3) ¢IF sends a pair (a, s) to an integral quadratic form. Indeed, by homo
geneity, if we multiply a by a suitable element of Q, we may assume that
a is a primitive integral ideal. If w1 < 0, we can also change (Wt. w2)
into (-w1,-w2). In that case, by Proposition 5.2.1 (or directly), we have
N(a) = w1 and w2 -a(w2) = VJ5. Finally, since a is an integral ideal,
w1 I w2a(w2), and a simple calculation shows that we obtain an integral
binary quadratic form of discriminant D.

(4) ¢IF does not depend on the equivalence class of a, nor on the choice of
w1 and w2. Indeed, if w1 is given, then w2 is defined modulo Wt, and this
corresponds precisely to the action of r 00 on quadratic forms.

(5) ¢IF and ¢FI are inverse maps. This is left to the reader, and is the only
place where we must really use the sign(a) component.

(6) I also leave to the reader the easy proof that¢ IQ and </JQI are well defined
and are inverse maps.

D

We now need to identify precisely the invertible ideals in R so as to be
able to work in the class group.

Proposition 5.2.5. Let a= a/£+ ((-b + VJ5)/2)7l. be an ideal of R, and let
(a, b, c) be the corresponding quadratic form. Then a is invertible in R if and
only if (a, b, c) is primitive. In that case, we have a-1 = 7l+ ((b+..Ji5)/(2a))7l..

228 5 Algorithms for Quadratic Fields

Proof. From Lemma 4.6. 7 we know that a is invertible if and only if ab = R
where b = {z E K, za C R}. Writing a= aZ+((-b+v'15)/2)Z, from a E a we
see that such a z must be the form z = (x+yv'1J)/(2a) with x andy in Z such
that x = yD (mod 2). From (-b + v'15)/2 E a, we obtain the congruences
bx = Dy (mod 2a), x =by (mod 2a) and (Dy- bx)/(2a) = D(x- by)/(2a)
(mod 2). An immediate calculation gives us b = Z + ((b + v'15)/(2a))Z as
claimed.

Now the Z-module ab is generated by the four products of the generators,
i.e. by a, (b + v'15)/2, (-b + v'15)/2 and -c. We obtain immediately

-b + v'15
ab = gcd(a, b, c)Z + 2 Z

hence this is equal to R = Z + ((-b + v'15) /2)Z if and only if gcd(a, b, c) = 1,
thus proving the proposition. D

Corollary 5.2.6. Denote by Fo the subset of classes of primitive forms in F,
Io the subset of classes of invertible ideals in I and Q0 the subset of classes
of primitive quadratic numbers in Q {where r E Q is said to be primitive if
(a, b, c) = 1 where a, b and c are as in the definition of Q). Then the maps
¢FI and ¢IQ also give isomorphisms:

Fo ~ Io x Z/2Z, Io ~ Qo, Fo ~ Q0 x Z/2Z.

Theorem 5.2.4 gives set isomorphisms between ideals and quadratic forms
at the level of equivalence classes of quadratic forms modulo roo· As we shall
see, this will be useful in the real quadratic case. When considering the class
group however, we need the corresponding theorem at the level of equivalence
classes of quadratic forms modulo the action of the whole group PSL2(Z).
Since we must restrict to invertible ideals in order to define the class group, the
above proposition shows that we will have to consider only primitive quadratic
forms.

Here, it is slightly simpler to separate the case D < 0 from the case D > 0.
We begin by defining the sets with which we will work.

Definition 5.2. 7. Let D be a non-square integer congruent to 0 or 1 modulo
4, and R the unique quadratic order of discriminant D.

(1) We will denote by F(D) the set of equivalence classes of primitive
quadratic forms of discriminant D modulo the action of PSL2(Z), and
in the caseD< 0, F+(D) will denote those elements of F(D) represented
by a positive definite quadratic form (i.e. a form (a, b, c) with a> 0}.

(2) We will denote by Cl(D) the class group of R, and in the case D > 0,
Cl+(D) will denote the narrow class group of R, i.e. the group of equiva
lence classes of R-ideals modulo the group p+ of principal ideals generated
by an element of positive norm.

(3) Finally, we will set h(D) = ICl(D)l and h+(D) = JCl+(D)J.

5.2 Ideals and Quadratic Forms 229

We then have the following theorems.

Theorem 5.2.8. Let D be a negative integer congruent to 0 or 1 modulo 4-
The maps

-b + ,fi5
1/JFI(a, b, c) = aZ + 2 Z,

and
"'' () _ N(xw1 - yw2)
'1-'IF a - N(a)

where a= w1Z + w2Z with

w2u(w1)- ww(w2)
,fi5 >0

induce inverse bijections from :F+(D) to Cl(D).

Theorem 5.2.9. Let D be a non-square positive integer congruent to 0 or 1
modulo 4- The maps

(-b + ,fi5) 1/JFI(a,b,c) = aZ+ 2 Z a,

where a is any element of K* such that sign(N(a)) = sign(a), and

"'' () N(xw1- yw2)
'1-'IF a = N(a)

where a= w1Z + w2Z with

w2u(wi)- ww(w2) 0
,fi5 >

induce inverse bijections from :F(D) to Cl+ (D).

Proof. As for Theorem 5.2.4, the proofs consist of a series of simple verifica
tions.

(1) The map 1/JFJ is well defined on classes modulo PSL2(Z). If (~ ~) E

PSL2(Z) acts on (a, b, c), then the quantity r = (-b + /D)/(2a) becomes
r' = (Vr- B)/(-Ur +A), and a becomes aN(-Ur +A), hence since
Z + r'Z = (Z + rZ)j(-Ur +A), it follows immediately that 1/JFJ is well
defined.

(2) Similarly, 1/JIF is well defined, and we can check that it gives an integral
quadratic form of discriminant D as for the map ¢IF of Theorem 5.2.4.
This form is primitive since we restrict to invertible ideals.

(3) Finally, the same verification as in the preceding theorem shows that 1/JIF
and 1/JFI are inverse maps.

0

230 5 Algorithms for Quadratic Fields

Remarks.

(1) Although we have given the bijections between classes of forms and ideals,
we could, as in Theorem 5.2.4, give bijections with classes of quadratic
numbers modulo the action of PSL2 (Z). This is left to the reader (Exercise
3).

(2) In the case D < 0, a quadratic form is either positive definite or negative
definite, hence the set F breaks up naturally into two disjoint pieces. The
map 1/JFI is induced by the restriction of ¢FI to the positive piece, and
1/JIF is induced by cPIF and forgetting the factor Z/2Z.

(3) In the caseD > 0, there is no such natural breaking up of F. In this case,
the maps ¢FI and cPIF induce inverse isomorphisms between :F(D) and

I(D)= (I X Z/2Z)/P'

where P is the quotient of K* by the subgroup of units of positive norm,
and j3 E P acts by sending (a, s) to (j3a, s · sign(N(/3))). (Note also the
exact sequence

1 -----+ p + -----+ p -----+ z I 2Z -----+ 1 '

where the map to Z/2Z is induced by the sign of the norm map.) The maps
1/JFJ and 1/JJF are obtained by composition of the above isomorphisms with
the isomorphisms between I(D) and ct+(D) given as follows. The class of
(a, s) representing an element ofi(D) is sent to the class of j3a in ct+(D),
where j3 E K* is any element such that sign(N(/3)) = s. Conversely, the
class of a E ct+(D) is sent to the class of (a, 1) in I(D).

Although F, I and Q are defined as quotient sets, it is often useful to
use precise representatives of classes in these sets. We have already implicitly
done so when we defined all the maps ¢IF etc ... above, but we make our
choice explicit.

An element of F will be represented by the unique element (a, b, c) in
its class chosen as follows. If D < 0, then -lal < b :::; Ia!- If D > 0, then
-Ia! < b:::; lal if a> Vf5, VJ5- 2lal < b < VJ5 if a< VJ5.

An element of I will be represented by the unique primitive integral ideal
in its class.

An element of Q will be represented by the unique element r in its class
such that -1 < r + cr(r) :::; 1, where cr denotes (complex or real) conjugation
inK.

The tasks that remain before us are that of computing the class group or
class number, and in the real case, that of computing the fundamental unit.
It is now time to separate the two cases, and in the next sections we shall
examine in detail the case of imaginary quadratic fields.

5.3 Class Numbers of Imaginary Quadratic Fields 231

5.3 Class Numbers of Imaginary Quadratic Fields

Until further notice, all fields which we consider will be imaginary quadratic
fields. First, let us solve the problem of units. From the general theory, we
know that the units of an imaginary quadratic field are the (finitely many)
roots of unity inside the field. An easy exercise is to show the following:

Proposition 5.3.1. Let D < 0 congruent to 0 or 1 modulo 4. Then the group
J..L(R) of units of the unique quadratic order of discriminant D is equal to the
group of w(D)th roots of unity, where

{
2,

w(D) = 4,

6,

if D < -4

if D = -4

if D = -3.

Let us now consider the problem of computing the class group. For this, the
correspondences that we have established above between classes of quadratic
forms and ideal class groups will be very useful. Usually, the ideals will be used
for conceptual (as opposed to computational) proofs, and quadratic forms will
be used for practical computation.

Thanks to Theorem 5.2.8, we will use interchangeably the language of
ideal classes or of classes of quadratic forms. One of the advantages is that
the algorithms are simpler. For example, we now consider a simple but still
reasonable method for computing the class number of an imaginary quadratic
field.

5.3.1 Computing Class Numbers Using Reduced Forms

Definition 5.3.2. A positive definite quadratic form (a, b, c) of discriminant
D is said to be reduced if \b\ :::; a :::; c and if, in addition, when one of the two
inequalities is an equality (i.e. either \b\ =a or a =c), then b 2 0.

This definition is equivalent to saying that the number T = (-b + VD)/(2a)
corresponding to (a, b, c) as above is in the standard fundamental domain V
of 1i/ PSL2(Z) (where 1i = { T E C, Im(r) > 0}), defined by

V = {r E H,Re(r) E [-~, ~[, \r\ > 1 or \r\ = 1 and Re(r):::; 0 }·

The nice thing about this notion is the following:

Proposition 5.3.3. In every class of positive definite quadratic forms of dis
criminant D < 0 there exists exactly one reduced form. In particular h(D) is
equal to the number of primitive reduced forms of discriminant D.

232 5 Algorithms for Quadratic Fields

An equivalent form of this proposition is that the set V defined above is
a fundamental domain for 'H./ PSL2 (Z).

Proof Among all forms (a, b, c) in a given class, consider one for which a is
minimal. Note that for any such form we have c ~a since (a, b, c) is equivalent
to (c, -b,a) (change (x,y) into (-y,x)). Changing (x,y) into (x+ky,y) for a
suitable integer k (precisely for k = l (a - b)/ (2a) J) will not change a and put
bin the interval]- a, a]. Since a is minimal, we will still have a :::; c, hence the
form that we have obtained is essentially reduced. If c = a, changing (a, b, c)
again in (c, -b, a) sets b ~ 0 as required. This shows that in every class there
exists a reduced form.

Let us show the converse. If (a, b, c) is reduced, I claim that a is minimal
among all the forms equivalent to (a, b, c). Indeed, every other a' has the form
a'= am2 + bmn + cn2 with m and n coprime integers, and the identities

immediately imply our claim, since lbl :::; a :::; c. Now in fact these same
identities show that the only forms equivalent to (a, b, c) with a' = a are
obtained by changing (x,y) into (x + ky,y) (corresponding tom = 1 and
n = 0), and this finishes the proof of the proposition. D

We also have the following lemma.

Lemma 5.3.4. Let f = (a, b, c) be a positive definite binary quadratic form
of discriminant D = b2 - 4ac < 0.

(1) Iff is reduced, we have the inequality

a:::; JiDI/3.

(2) Conversely, if

a< JiDI/4 and -a< b:::; a

then f is reduced.

Proof For 1) we note that iff is reduced then IDI = 4ac-b2 ~ 4a2 -a2 hence
a :::; IDI/3. For (2), we have c = (b2 + IDI)/(4a) ~ IDI/(4a) > a2 fa = a,
therefore f is reduced. D

As a consequence, we deduce that when D < 0 the class number h(D)
of Q(.Ji5) can be obtained simply by counting reduced forms of discriminant
D (since in that case all forms of discriminant D are primitive), using the
inequalities lbl ~ a ~ JIDI/3. This leads to the following algorithm.

5.3 Class Numbers of Imaginary Quadratic Fields 233

Algorithm 5.3.5 (h(D) Counting Reduced Forms). Given a negative dis
criminant D, this algorithm outputs the class number of quadratic forms of dis
criminant D, i.e. h(D) when D is a fundamental discriminant.

1. [Initialize b] Seth+-- 1, b +-- D mod 2 (i.e. 0 if D = 0 (mod 4), 1 if D = 1

(mod 4)), B ._l JIDI/3 j.
2. [Initialize a] Set q +-- W- D)/4, a +-- b, and if a :; 1 set a +-- 1 and go to

step 4.

3. [Test] If a I q then if a= b or a 2 = q orb= 0 seth+-- h + 1, otherwise (still
in the case a I q) set h +-- h + 2.

4. [Loop on a] Set a +-- a+ 1. If a 2 :; q go to step 3.

5. [Loop on b] Set b +-- b + 2. If b :; B go to step 2, otherwise output h and
terminate the algorithm.

It can easily be shown that this algorithm indeed counts reduced forms.
One must be careful in the formulation of this algorithm since the extra bound
ary conditions which occur if lbl = a or a= c complicate things. It is also easy
to give some cosmetic improvements to the above algorithm, but these have
little effect on its efficiency.

The running time of this algorithm is clearly O(IDI), but the 0 constant
is very small since very few computations are involved. Hence it is quite a
reasonable algorithm to use for discriminants up to a few million in absolute
value. The typical running time for a discriminant of the order of 106 is at
most a few seconds on modern microcomputers.

Remark. If we want to compute h(D) for a non-fundamental discriminant
D, we must only count primitive forms. Therefore the above algorithm must
be modified by replacing the condition "if a I q" of Step 3 by "if a I q and
gcd(a, b, qja) = 1".

A better method is as follows. Write D = D0 j2 where Do is a fundamental
discriminant. The general theory seen in Chapter 4 tells us that h(D) is a
multiple of h(Do), but in fact Proposition 5.3.12 implies the following precise
formula:

h(D) = h(Do) f IJ (1 _ (r:,o))
w(D) w(Do) p ·

PI!

Hence, we compute h(Do) using the above algorithm, and deduce h(D) from
this formula.

Reduced forms are also very useful for making tables of class numbers of
quadratic fields or forms up to a certain discriminant bound. Although each
individual computation takes time O(IDI), hence for IDI :; M the time would
be O(M2), it is easy to see that a simultaneous computation (needing of course
O(M) memory locations to hold the class numbers) takes only O(M312), hence
an average of O(IDI 112) per class number.

234 5 Algorithms for Quadratic Fields

Since class numbers of imaginary quadratic fields occur so frequently, it is
useful to have a small table available. Such a table can be found in Appendix
B. Some selected values are:

• Class number 1 occurs only forD = -3, -4, -7, -8, -11, -19, -43,
-67 and -163.

• Class number 2 occurs only for D = -15, -20, -24, -35, -40, -51,
-52, -88, -91, -115, -123, -148, -187, -232, -235, -267, -403, -427.

• Class number 3 occurs only forD = -23, -31, -59, -83, -107, -139,
-211, -283, -307, -331, -379, -499, -547, -643, -883, -907.

• Class number 4 occurs for D = -39, -55, -56, -68, ... , -1555.
• Class number 5 occurs for D = -47, -79, -103, -127, ... , -2683.
• Class number 6 occurs forD= -87, -104, -116, -152, ... , -3763.
• Class number 7 occurs forD= -71, -151, -223, -251, ... , -5923.
etc ...
Note that the first two statements concerning class numbers 1 and 2 are

very difficult theorems proved in 1952 by Heegner and in 1968-1970 by Stark
and Baker (see [Cox]). The general problem of determining all imaginary
quadratic fields with a given class number has been solved in principle by
Goldfeld-Gross-Zagier ([Gol], [Gro-Zag2]), but the explicit computations have
been carried to the end only for class numbers up to 7 and all odd numbers
up to 23 (see [ARW], [Wag]).

The method using reduced forms is a very simple method to implement
and is eminently suitable for computing tables of class numbers or for com
puting class numbers of reasonable discriminant, say less than a few million in
absolute value. Since it is only a simple counting process, it does not give the
structure of the class group. Also, it becomes too slow for larger discriminants,
therefore we must find better methods.

5.3.2 Computing Class Numbers Using Modular Forms

I do not intend to explain why the theory of modular forms (specifically of
weight 3/2 and weight 2) is closely related to class numbers of imaginary
quadratic fields, but I would like to mention formulas which enable us to com
pute tables of class numbers essentially as fast as the method using reduced
forms. First we need a definition.

Definition 5.3.6. Let N be a non-negative integer. The Hurwitz class number
H(N) is defined as follows.

(1) If N = 1 or 2 (mod 4) then H(N) = 0.
(2) If N = 0 then H(N) = -1/12.
(3) Otherwise (i.e. if N = 0 or 3 (mod 4) and N > 0} we define H(N) as

the class number of not necessarily primitive (positive definite) quadratic
forms of discriminant - N, except that forms equivalent to a(x2 + y2)

should be counted with coefficient 1/2, and those equivalent to a(x2 + xy +
y2) with coefficient 1/3.

5.3 Class Numbers of Imaginary Quadratic Fields 235

Let us denote by h(D) the class number of primitive positive definite
quadratic forms of discriminant D. (This agrees with the preceding definition
when D is a fundamental discriminant since in that case every form is primi
tive.) Next, we define h(D) = 0 when D is not congruent to 0 or 1 modulo 4.
Then we have the following lemma.

Lemma 5.3.7. Let w(D) be the number of roots of unity in the quadratic
order of discriminant D, hence w(-3) = 6, w(-4) = 4 and w(D) = 2 for
D < -4, and set h'(D) = h(D)/(w(D)/2) {hence h'(D) = h(D) forD< -4).
Then for N > 0 we have

(1)

H(N) = L h'(-Nfd2)

d21N

and in particular if -N is a fundamental discriminant, we have H(N) =
h(-N) except in the special cases N = 3 (H(3) = 1/3 and h(-3) = 1}
and N = 4 (H(4) = 1/2 and h(-4) = 1}.

(2) Conversely, we have

h'(-N) = L t-L(d)H(Nfd2)

d2 IN

where tJ-(d) is the Mobius function defined by t-L(d) = (-1)k if dis equal to
a product of k distinct primes {including k = 0}, and tJ-(d) = 0 otherwise.

Proof. The first formula follows immediately from the definition of H(N). The
second formula is a direct consequence of the Mobius inversion formula (see
[H-W]). D

From this lemma, it follows that the computation of a table of the function
H(N) is essentially equivalent to the computation of a table of the function
h(D).

For D = -N, Algorithm 5.3.5 computes a quantity similar to H(N) but
without the denominator w(-Nfd2)/2 in the formula given above. Hence, it
can be readily adapted to compute H(N) itself by replacing step 3 with the
following:

3'. [Test] If a f q go to step 4. Now if a= b then if ab = q seth +-- h + 1/3
otherwise set h +-- h + 1 and go to step 4. If a 2 = q, then if b = 0 set
h +-- h + 1/2, otherwise set h +-- h + 1. In all other cases (i.e. if a =/= b and
a 2 =/= q) set h +-- h + 2.

The theory of modular forms of weight 3/2 tells us that the Fourier series

00 L H(N)e2i1rN.,.
N=O

236 5 Algorithms for Quadratic Fields

has a special behavior when one changes T by a linear fractional transformation
T ~---> ~;$~ in PSL2(Z). Combined with other results, this gives many nice
recursion formulas for H(N) which are very useful for practical computation.

Let O"(n) = L;dln d be the sum of divisors function, and define

1""' . I
.A(n) = "2 Lmm(d,n/d) = L d,

din dln,d:S ..fii

where I;' means that if the term d = ,fii is present it should have coefficient
1/2. In addition we define O"(n) = >.(n) = 0 if n is not integral. Then (see
[Eic2], [Zagl]):

Theorem 5.3.8 (Hurwitz, Eichler). We have the following relations, where
it is understood that the summation variable s takes positive, zero or negative
values:

L H(4N- s 2) = 20"(N)- 2.A(N),
s2:'54N

and if N is odd,

L H(N- s2) = O"(;) - .A(N).
s2:'5N,s=(N+l)/2 (mod 2)

From a computational point of view, the second formula is better. It is
used in the following way:

Corollary 5.3.9. If N = 3(mod 4), then

H(N) = O"(;) - >.(N)- 2 L H(N- 4s2),

1:'5s<,fiiJ4

and if N = 0 (mod 4), then

H(N) __ O"(N + 1) _ .A(N + 1) _ """'
6 2 L H(N-4s(s+l)).

l:'5s:'5(../N +1-1)/2

This corollary allows us to compute a table of class numbers up to any
given bound Min time O(M312), hence is comparable to the method using re
duced forms. It is slightly simpler to implement, but has the disadvantage that
individual class numbers cannot be computed without knowing the preceding
ones. It has an advantage, however, in that the computation of a block of
class numbers can be done simply using the table of the lower ones, while this

5.3 Class Numbers of Imaginary Quadratic Fields 237

cannot be done with the reduced forms technique, at least without wasting a
lot of time.

Remark. The above theorem is similar to Theorem 4.9.14 and can be proved
similarly. While (K (-1) is closely linked to r5 (D) when D > 0, (K (0) (or
essentially h(D)) is closely linked to r 3 (-D) when D < 0. More precisely we
have (see [Coh2]):

Proposition 5.3.10. Let D < -4 be the discriminant of an imaginary
quadratic field K. Then the number r3(IDI) of representations of IDI as a
sum of 3 squares of elements of Z (counting representations with a different
ordering as distinct) is given by

r3(IDI) = -24 (1- (~))(K(O) = 12 (1- (~))h(D).
(This formula must be slightly modified if D is not the discriminant of an
imaginary quadratic field, see {Coh2].}

5.3.3 Computing Class Numbers Using Analytic Formulas

It would carry us too far afield to enter into the details of the analytic theory
of £-functions, hence we just recall a few definitions and results.

Proposition 5.3.11 (Dirichlet). Let D be a negative discriminant (not nec
essarily fundamental), and define

LD(s)= L (~)n-s.
n~l

This series converges for Re(s) > 1, and defines an analytic function which
can be analytically continued to the whole complex plane to an entire function.
If in addition D is a fundamental discriminant, this function satisfies the
functional equation

AD(1- s) = AD(s),

where we have set

I D l(s+l)/2 (1)
AD(s)= -;:- r s ~ LD(s).

The link with class numbers is the following result also due to Dirichlet:

Proposition 5.3.12. If D is a negative discriminant (not necessarily funda
mental), then

L (1) = 21rh(D)
D w(D)JjDi

and in particular LD(1) = 1rh(D)jViDj if D < -4.

238 5 Algorithms for Quadratic Fields

Note that these results are special cases of Theorem 4.9.12 since it imme
diately follows from Proposition 5.1.4 that if K = Q(VD), then

(K(s) = ((s)Lv(s).

The series Lv(1) is only conditionally convergent, hence it is not very
reasonable to compute Lv(1) directly using Dirichlet's theorem. A suitable
transformation of the series however gives the following:

Corollary 5.3.13. If D < -4 is a fundamental discriminant, then

h(D) = _.!_ L r(D) = 1 D L (D)·
D l~r<IDI r 2 - b·) l~r<IDI/2 r

This formula is aesthetically very pleasing, and it can be transformed into
even simpler expressions. It is unfortunately totally useless from a compu
tational point of view since one must compute D terms each involving the
computation (admittedly rather short) of a Kronecker symbol. Hence, the
execution time would be O(JDJl+e), worse than the preceding methods.

A considerable improvement can be obtained if we also use the functional
equation. This leads to a formula which is less pleasing, but which is much
more efficient:

Proposition 5.3.14. Let D < -4 be a fundamental discriminant. Then

where

erfc(x) = Jrr 100 e-t2 dt

is the complementary error function.

Note that the function erfc(x) can be computed efficiently using the fol
lowing formulas.

Proposition 5.3.15.

(1) We have for all x

2 x2k+l
erfc(x) = 1- '- L(-l)k ,

y7r k~O k!(2k + 1)

and this should be used when x is small, say x $ 2.

5.3 Class Numbers of Imaginary Quadratic Fields

(2) We have for all x > 0

e-x2

erfc(x) = -
x.,fo

1- 1/2

2 +X_ 1· 3/2

4 +X_ 2 · 5/2

6+X- · ..

where X= x2 - 1/2, and this should be used for x large, say x ~ 2.

239

Implementation Remark. When implementing these formulas it is easy to
make a mistake in the computation of erfc(x), and tables of this function are
not always at hand. One good check is of course that the value found for h(D)
must be close to an integer, and for small D equal to the values found by
the slower methods. Another check is that, although we have given the most
rapidly convergent series for h(D) which can be obtained from the functional
equation, we can get a one parameter family of formulas:

The sum of the series must be independent of A > 0.

The above results show that the series given in Proposition 5.3.14 for
h(D) converges exponentially, and since h(D) is an integer it is clear that
the computation time of h(D) by this method is O(IDI 112+<) for any E > 0,
however with a large 0 constant. In fact it is not difficult to show the following
precise result:

Corollary 5.3.16. With the same notations as in Proposition 5.3.14, h(D)
is the closest integer to the n-th partial sum of the series of Proposition 5. 3.14

for h(D), where n = l JIDiln IDI/(27r) J.
Hence, we see that this method is considerably faster than the two pre

ceding methods, at least for sufficiently large discriminants. In addition, it
is possible to avoid completely the computation of the higher transcendental
function erfc, and this makes the method even more attractive (See Exercise
28).

It is reasonable to compute class numbers of discriminants having 12 to 15
digits by this method, but not much more. We must therefore find still better
methods. In addition, we still have not given any method for computing the
class group.

240 5 Algorithms for Quadratic Fields

5.4 Class Groups of Imaginary Quadratic Fields

It was noticed by Shanks in 1968 that if one tries to obtain the class group
structure and not only the class number, this leads to an algorithm which is
much faster than the preceding algorithms, in average time O(IDI 1/ 4+<) or
even O(IDI 1/ 5+<) if the Generalized Riemann Hypothesis is true, for any t: > 0.
Hence not only does one get much more information, i.e. the whole group
structure, but even if one is interested only in the class number, this is a much
better method.

Before entering into the details of the algorithm, we will describe a method
introduced (for this purpose) by Shanks and which is very useful in many
group-theoretic and similar contexts.

5.4.1 Shanks's Baby Step Giant Step Method

We first explain the general idea. Let G be a finite Abelian group and 9 an
element of G. We want to compute the order of 9 in G, i.e. the smallest positive
integer n such that 9n = 1, where we denote by 1 the identity element of G.
One way of doing this is simply to compute 9, 92 , 93 , •.. , until one gets 1.
This clearly takes O(n) group operations. In certain cases, it is impossible to
do much better. In most cases however, one knows an upper bound, say Bon
the number n, and in that case one can do much better, using Shanks's baby-

step giant-step strategy. One proceeds as follows. Let q = I JB l· Compute

1, 9, ... , 9q-1 , and set 91 = 9-q. Then if the order n of 9 is written in the
form n = aq + r with 0 ::::; r < q, by the choice of q we must also have a::::; q.
Hence, for a= 1, ... , q we compute 9't and check whether or not it is in our
list of 9r for r < q. If it is, we have 9aq+r = 1, hence n is a divisor of aq + r,
and the exact order can easily be obtained by factoring aq + r, at least if
aq + r is offactorable size (see Chapter 10). This method clearly requires only
0 (B112) group operations, and this number is much smaller than O(n) if B
is a reasonable upper bound.

There is however one pitfall to avoid in this algorithm: we need to search
(at most q times) if an element belongs to a list having q elements. If this
is done naively, this will take O(q2) = O(B) comparisons, and even if group
operations are much slower than comparisons, this will ultimately dominate
the running time and render useless the method. To avoid this, we can first
sort the list of q elements, using a 0(q In q) sorting method such as heapsort
(see [Knu3]). A search in a sorted list will then take only O(ln q) comparisons,
bringing the total time down to O(q In q). We can also use hashing techniques
(see [Knu3] again).

This simple instance of Shanks's method involves at most q "giant steps"
(i.e. multiplication by 91), each of size q. Extra information on n can be used to
improve the efficiency of the algorithm. We give two basic examples. Assume
that in addition to an upper bound B, we also know a lower bound C, say,
so that C ::::; n ::::; B. Then, by starting our list with gc instead of g0 = 1, we

5.4 Class Groups of Imaginary Quadratic Fields 241

can reduce both the maximum number of giant steps and the size of the giant
steps (and of the list) to 1-J B - C1.

As a second example, assume that we know that n satisfies some congru
ence condition n = n0 (mod b). Then it is easily seen that one can reduce the

size and number of giant steps to r JB7b l.
Shanks's method is usually used not only to find the order of an element

of the group G, but the order of the group itself. If g is a generator of G,
the preceding algorithm does the trick. In general however this will not be the
case, and in addition G may be non-cyclic (although cyclic groups occur much
more often than one expects, see Section 5.10). In this case we must use the
whole group structure, and not only one cyclic part. To do this, we can use
the following algorithm.

Algorithm 5.4.1 (Shanks's Baby-Step Giant-Step Method). Given that one
can compute in G, and the inequalities B/2 < C $ h $Bon the order h of G,
this algorithm finds h. We denote by 1 the identity element of G and by · the
product operation in G. The variables Sand L will represent subsets of G.

1. [Initialize] Seth+-- 1, C1 +-- C, B 1 +-- B, S +-- {1}, L +-- {1}.

2. [Take a new g] (Here we know that the order of G is a multiple of h). Choose
a new random g E G, q +-- 1-J B1 - Cl1·

3. [Compute small steps] Set x0 +-- 1, x 1 +-- gh and if x1 = 1 set n +-- 1 and
go to step 6. Otherwise, for r = 2 to r = q -1 set Xr +-- x1 · Xr-1· For
each r with 0 $ r < q set Sl,r +-- Xr. S, sl +-- Uo<r<q Sl,r· and sort sl so
that a search in 81 is easy. If during this computation one finds 1 E S1,r for
r > 0, set n +-- r (where r is the smallest) and go to step 6. Otherwise, set

c1 c y +-- x1 · Xq-1· z +-- x1 , n +-- 1·

4. [Compute giant steps] For each w E L, set z1 +-- z · w and search for z1 in the
sorted list 81. If z1 is found and z1 E S1,r. set n +-- n- rand go to step 6.

5. [Continue] Set z +-- y · z, n +-- n+ q. If n $ B1 go to step 4. Otherwise output
an error message stating that the order of G is larger than B and terminate
the algorithm.

6. [Initialize order] Set n +-- hn.

7. [Compute the order of g mod L · S] (Here we know that gn E L · S). For each
prime p dividing n, do the following: set 81 +-- gnfp. Sand sort 81. If there
exists a z E L such that z E 81, set n +-- n/p and go to step 7.

8. [Finished?]. Seth+-- hn. If h 2:: C then output hand terminate the algorithm.
Otherwise, set Bl +-- LBI/nJ, cl +-- ICI/nl. q +--lvlnl. s +-- Uo<r<qgr. S,
Y +-- gq, L +-- Uo::;a::;q ya · L and go to step 2. -

This is of course a probabilistic algorithm. The correctness of the result
depends in an essential way on the correctness of the bounds C and B. Since
during the algorithm the order of G is always a multiple of h, and since

242 5 Algorithms for Quadratic Fields

C > B /2, the stopping criterion h ~ C in step 8 is correct (any multiple of
h larger than h would be larger than B). In practice however we may not be
so lucky as to have a lower bound C such that C > B /2. In that case, one
cannot easily give any stopping criteria, and my advice is to stop as soon as h
has not changed after 10 passes through step 8. Note however that this is no
longer an algorithm, since nothing guarantees the correctness of the result.

Note that if gi are elements of G of respective orders ei, then the exponent
of G is a multiple of the least common multiple (LCM) of the ei· Hence, if one
expects the exponent of the group to be not too much lower than the order h,
one can use a much simpler method in which one simply computes the LCM
of sufficiently many random elements of G, and then taking the multiple of
this LCM which is between the given bounds C and B. For this to succeed,
the bounds have to be close enough. In practice, it is advised to first use this
method to get a tentative order, then to use the rigorous algorithm given
above to prove it, since a knowledge of the exponent of G can clearly be used
to improve the efficiency of Algorithm 5.4.1.

Let us explain why Algorithm 5.4.1 works. Let H be the true order of G.
Consider the first g. We have gH = 1, and if we write H- C = aq- r with
0 ~ r < q and q = fJB- Cl, then also a -1 < (H- C)jq ~ (B- C)jq :S q
hence a~ q. This implies that we have an equality of the form

9c . (gq)a = gr

with 0 :S r < q and 1 ~ a ~ q. This is detected in step 4 of the algorithm,
where we have Xr = gr, y = gq and z1 = gc · (gq)a. When we arrive in step 6
we know that gn = 1 with n = C + aq- r, hence the order of g is a divisor of
n, and step 7 is the standard method for computing the order of an element
in a group.

After that, his set to the order of g, and by a similar baby step giant step
construction, S and L are constructed so that S · L = < g >, the subgroup
generated by g. We also know that the order H of G is a multiple of h. Hence,
for a new g1, instead of writing gfl = 1 and H - C = aq - r we will write
(g~)H1 E < g > and H1- C1 = aq1- r1, where H1 = Hjh is known to be
between cl = IC/hl and Bl = lB/hJ, whence the modifications given in the
algorithm when we start with a new g. D

Note that as we have already mentioned, it is essential to do some kind
of ordering on the Xr in step 3, otherwise the search time in step 4 would
dominate the total time. In practical implementations, the best method is
probably not to sort completely, but to use hashing techniques (see [Knu3]).

The expected running time of this algorithm is O((B- C) 112) group op
erations, and this is usually O(B112+<) for all E > 0. For obvious reasons, the
method above is called Shanks's baby-step giant-step method, and it can be
profitably used in many contexts. For example, it can be used to compute
class numbers and class groups (see Algorithm 5.4.10), regulators (see Algo
rithm 5.8.5), or the number of points of an elliptic curve over a finite field (see
Algorithm 7.4.12).

5.4 Class Groups of Imaginary Quadratic Fields 243

We must now explain how to obtain the whole group structure. Call 91,
... , 9k the elements of G which are chosen in step 2. Then when a match is
found in step 3 or 4, we must record not only the exponent of 9 which occurs,
but the specific exponents of the preceding 9i· In other words, one must keep
track of the multi-index exponents in the lists Land S. If at step i we have a

kl . k· 1 . k· . aft
relation of the form 91 ·' · · · 9i~l ·' 9i '·' = 1, with 9 = 9i and ki,i = n er step
7 in the notation of the algorithm, we then consider the matrix K = (ki,j)
where we set ki,j = 0 if i > j. Then we compute the Smith normal form of
this matrix using Algorithm 2.4.14, and if di are the diagonal elements of the
Smith normal form, we have

G ~ EB (Z/d/Z),
1~i~k

i.e. the group structure of G.

5.4.2 Reduction and Composition of Quadratic Forms

Before being able to apply the above algorithm (or any other algorithm using
the group structure) to the class group, it is absolutely essential to be able to
compute in the class group. As already mentioned, we could do this by using
HNF computations on ideals. Although theoretically equivalent, it is more
practical however to work on classes of quadratic forms. In Theorem 5.2.8 we
have seen that the set of classes of quadratic forms is in a natural bijection
with the class group. Hence, we can easily transport this group structure so
as to give a group structure to classes of quadratic forms. This operation,
introduced by Gauss in 1798 is called composition of quadratic forms. Also,
since we will want to work with a class of forms, we will have a reduction
procedure which, given any quadratic form, will give us the unique reduced
form in its class. I refer the reader to [Len1] and [Bue] for more details on this
subject.

The reduction algorithm is a variant of Euclid's algorithm:

Algorithm 5.4.2 (Reduction of Positive Definite Forms). Given a positive
definite quadratic form f = (a, b, c) of discriminant D = b2 - 4ac < 0, this
algorithm outputs the unique reduced form equivalent to f.
1. [Initialize] If -a< b ~a go to step 3.

2. [Euclidean step] let b = 2aq + r with 0 ~ r < 2a be the Euclidean division of
b by 2a. If r > a, set r - r - 2a and q - q + 1. (In other words, we want
b = 2aq + r with -a< r ~a.) Then set c- c- !(b + r)q, b- r.

3. [Finished?] If a > c set b - -b, exchange a and c and go to step 2. Otherwise,
if a = c and b < 0, set b - -b. Output (a, b, c) and terminate the algorithm.

The proof of the validity of this algorithm follows from the proof of Propo
sition 5.3.3. Note that in step 2 we could have written c - c - bq + aq2 , but
writing it the way we have done avoids one multiplication per loop.

244 5 Algorithms for Quadratic Fields

This algorithm has exactly the same behavior as Euclid's algorithm which
we have analyzed in Chapter 1, hence is quite fast. In fact, we have the fol
lowing.

Proposition 5.4.3. The number of Euclidean steps in Algorithm 5.4.2 is at
most equal to

Proof. Consider the form (a, b, c) at the beginning of step 3. Note first that if
a > v1i51, then

b2 + IDI a2 + a2 a
c= < =-

4a - 4a 2'
hence, since in step 3 a and c are exchanged, a decreases by a factor at least
equal to 2. Hence, after at most rlg(a/ M)l steps, we obtain at the beginning
of step 3 a form with a< M· Now we have the following lemma.

Lemma 5.4.4. Let (a, b, c) is a positive definite quadratic form of discrim
inant D = b2 - 4ac < 0 such that -a < b ~ a and a < M· Then ei
ther (a, b, c) is already reduced, or the form (c, r, s) where -b = 2cq + r with
-c < r ~ c obtained by one reduction step of Algorithm 5.4.2 will be reduced.

Proof. If (a, b, c) is already reduced, there is nothing to prove. Assume it is
not. Since -a< b ~ a, this means that a> cor a = c and b < 0. This last
case is trivial since at the next step we obtain the reduced form (a, -b, a).
Hence, assume a> c. If -c < -b ~ c, then q = 0 and so (c, r, s) = (c, -b, a) is
reduced. If a~ 2c, then c < JIDI/4, and hence (c, r, s) is reduced by Lemma
5.3.4. So we may assume c <a< 2c and -b ~-cor -b >c. Since lbl ~a, it
follows that in the Euclidean division of -b by 2c we must have q = ±1, the
sign being the sign of -b. Now we haves= a- bq + cq2, hence when q = ±1,
s = a+ b + c ~ c since lbl ~ a. This proves that (c, r, s) is reduced, except
perhaps when s = c. In that case however we must have a = ±b, hence a = b
so b > 0, q = -1 and r = 2c - b ~ 0. Therefore (c, r, s) is also reduced in this
case. This proves the lemma, and hence Proposition 5.4.3. D

We will now consider composition of forms. Although the group structure
on ideal classes carries over only to classes of quadratic forms via the maps
¢FI and ¢IF defined in Section 5.2, we can define an operation between forms,
which we call composition, which becomes a group law only at the level of
classes modulo PSL2(Z). Hence we will usually work on the level of forms.

Let (a1, b1, c1) and (a2, b2, c2) be two quadratic forms with the same dis
criminant D, and consider the corresponding ideals

(k=1,2)

5.4 Class Groups of Imaginary Quadratic Fields 245

given by the map ¢FI of Theorem 5.2.4. We have the following lemma

Lemma 5.4.5. Let 11 and I2 be two ideals as above, set s = (b1 + b2)/2,
d = gcd(a1, a2, s), and let u, v, w be integers such that ua1 + va2 + ws = d.
Then we have

where

I ·I =d(AZ+ -B+~z) 1 2 2 ,

A= d a1a2
0 d2 ,

and do = 1 if at least one of the forms (a1, b1, c1) or (a2, b2, c2) is primitive
and in general do= gcd(a1,a2,S,cl,c2,n) where n = (b1- b2)/2.

Proof The ideal J3 = h · h is generated as a Z-module by the four products
of the generators of hand I2, i.e. by g1 = a1a2, 92 = (-a1b2 + al~)/2,
93 = (-a2b1+a2~)/2 and 94 = ((b1b2+ D)/2-s~)/2. Now by Proposition
5.2.1 we know that we can write

for some integers A, B and C. It is clear that C is the smallest positive
coefficient of ~/2 in 13, hence is equal to the GCD of a1, a2 and s,
so C = d as stated. If one of the forms is primitive, or equivalently by
Proposition 5.2.5 if one of the ideals is invertible, then by Proposition 4.6.8,
we have N(J3) = N(I1) N(J2) = a1a2 and since N(h) = AC2 we have
A = a 1a2/d2. (By Exercise 14 of Chapter 4, this will in fact still be true
if gcd(a 1, b1, c1, a2, b2, c2) = 1, which is a slightly stronger condition than
do = 1.) This will also follow from the more general result where we make no
assumptions of primitivity.

Let us directly determine the value of AC, i.e. the least positive integer
belonging to !3. Any element of h being of the form u1g1 + u292 + U393 + U494

for integers ui, the set J3nZ is the set of such elements with u2a1 +u3a2-u4s =
0. Using Exercise 11, the general solution to this is given by u2 = a2/(a1, a2)v
sj(a1, s)/-l, U3 = sj(a2, s)>.- ad(a1, a2)v, u4 = a2/(a2, s)>.- ad(a1, s)l-l for
integers >-., /-l, v. After a short calculation, we see that h n Z = eZ where

Another computation (see Exercise 8) shows that

246 5 Algorithms for Quadratic Fields

thus glVlng the claimed value for A = efC = efd. Since b1 = s + n
and b2 = s - n, it is clear that if one of the forms is primitive then
do= gcd(a1, a2, s, c1. c2, n) = 1 thus proving the statement made above.

Finally, if d = ua1 + va2 + ws, one possible value of B is clearly

B = ua1b2 + va2b1 + w(b1b2 + D)/2 = db2 + va2(b1- b2)- 2a2c2w,
d d

thus proving the lemma. D

Note that if one writes I,= a,(z +riZ), then we can reformulate the above
lemma by saying that (with the same definitions of d, u, v and w) we have
a3=a1a2do/d and T3=(d/do)(ur2+vr1 +wr1r2).

This leads to the following basic definition of the composite of two forms.

Definition 5.4.6. Let !I= (a1,bl,c1) and h = (a2,b2,c2) be two quadmtic
forms of the same discriminant D. Set s = (b1 + b2)/2, n = (b1- b2)/2 and
let u, v, w and d be such that

(obtained by two applications of Euclid's extended algorithm}, and let do=
gcd(d,c1,c2,n). We define the composite of the two forms !I and h as the
form

modulo the action of r 00 , i.e. viewed as a form in the set F introduced in
Section 5.2.

Since composition comes from the product of ideals, using the isomorphism
given in Section 5.2, it is clear that the class in F of (a3 , b3 , c3) does not depend
on the particular choices of u, v and w. This can of course also be checked
directly (see Exercise 12). Note that if we do not take the class modulo r 00 ,

the result is not at all canonical. Therefore when we speak of composition of
quadratic forms we will always implicitly assume that we are working modulo
the action of roo, i.e. in the set F, and not on quadratic forms themselves.

To obtain the reduced composite of two forms, it is usually necessary to
reduce the form obtained by composition. By abuse of language, in the case of
negative discriminants we will also call this reduced form the composite of the
two forms. (In the case of positive discriminants, there is in general more than
one reduced form equivalent to a given form, hence this abuse of language is
not permitted.)

Although the raw formulas given in the definition can be used directly,
they can be improved by careful rearrangements. This leads to the following

5.4 Class Groups of Imaginary Quadratic Fields 247

algorithm, due to Shanks [Sha1]. Since imprimitive forms are almost never
used, for the sake of efficiency we will restrict to the case of primitive forms.
Note also that the composite of two primitive forms is still primitive (Exercise
9).

Algorithm 5.4. 7 (Composition of Positive Definite Forms). Given two prim
itive positive definite quadratic forms ft = (a1,b1,cl) and f2 = (az,bz,cz) with
the same discriminant, this algorithm computes the composite h = (a3, b3, c3)
of ft and fz.
1. [Initialize] If a1 > a2 exchange ft and fz. Then sets+- ~(b1 +b2), n +- bz-s.

2. [First Euclidean step] If a1 I a2, set y1 +- 0 and d +- a1. Otherwise, using
Euclid's extended algorithm compute (u,v,d) such that ua2 + va1 = d =
gcd(a2,a1). and set Yl +- u.

3. [Second Euclidean step] If d I s, set y2 +- -1, x2 +- 0 and d1 +-d. Otherwise,
using Euclid's extended algorithm compute (u, v, dl) such that us +vd = d1 =
gcd(s, d), and set x2 +- u, Y2 +- -v.

4. [Compose] Set v1 +- add1, v2 +- a2/d~o r +- (y1y2n- x2c2 mod vi), b3 +
b2 + 2v2r, a3 +- v1 v2, c3 +- (c2d1 +r(b2 +v2r))/v1 (or c3 +- (b~- D)/(4a3)),
then reduce the form f = (a3, b3, c3) using Algorithm 5.4.2, output the result
and terminate the algorithm.

Note that this algorithm should be implemented as written: in step 2 we
first consider the special case a 1 I a2 because it occurs very often (at least
each time one squares a form, and this is the most frequent operation when
one raises a form to a power.) Therefore, it should be considered separately
for efficiency's sake, although the general Euclidean step would give the same
result. Similarly, in step 3 it often happens that d I s because d = 1 also occurs
quite often. Finally, note that the computation of c3 in step 4 can be done
using any of the two formulas given.

The generalization of this algorithm to imprimitive forms is immediate
(see Exercise 10).

Since we have lb3l :::; a3 :::; JfD173 and since c3 can be computed from
a3 and b3, it seems plausible that one can make most of the computations
in Algorithm 5.4.7 using numbers only of size O(JrDT) and not O(D) or
worse. That this is the case was noticed comparatively recently by Shanks
and published only in 1989 [Sha2]. The improvement is considerable since in
multi-precision situations it may gain up to a factor of 4, while in the case
where JfDi is single precision while D is not, the gain is even larger.

This modified algorithm (called NUCOMP by Shanks) was modified again
by Atkin [Atk1]. As mentioned above, squaring of a form is important and
simpler, so Atkin gives two algorithms, one for duplication and one for com
position.

248 5 Algorithms for Quadratic Fields

Algorithm 5.4.8 (NUDUPL). Given a primitive positive definite quadratic
form f = (a, b, c) of discriminant D, this algorithm computes the square f 2 =
h = (a2,b2,c2) of f. We assume that the constant L = liD/41 114J has been
precomputed.

1. [Euclidean step) Using Euclid's extended algorithm, compute (u, v, dl) such
that ub + va = d1 = gcd(b, a). Then set A +-- afdt. B +-- b/dt. C +

(-cu mod A), C 1 +--A- C and if C 1 < C, set C +---Ct.

2. [Partial reduction) Execute Sub-algorithm PARTEUCL(A, C) below (this is an
extended partial Euclidean algorithm).

3. [Special case) If z = 0, set g +-- (Bv3 + c)jd, a 2 +-- d2, c2 +-- v~. b2 +

b + (d + v3) 2 - a2- c2, c2 +-- c2 + gd1, reduce the form h = (a2, b2, c2),
output the result and terminate the algorithm.

4. [Final computations) Set e +-- (cv + Bd)jA, g +-- (ev2 - B)jv (these divisions
are both exact and v = 0 has been dealt with in step 3), then b2 +-- ev2 + vg.
Then, if dt > 1, set b2 +-- d1b2, v +-- d1v, v2 +-- d1v2. Finally, in order, set
a2 +-- d2, c2 +-- v~, b2 +-- b2 + (d + v3) 2 - a2- c2, a2 +-- a2 + ev, c2 +

c2 + gv2 , reduce the form h = (a2,b2,c2), output the result and terminate
the algorithm.

Sub-algorithm PARTEUCL(a, b). This algorithm does an extended partial
Euclidean algorithm on a and b, but uses the variables v and v2 instead of u and
v1 in Algorithm 1.3.6.

1. [Initialize) Set v +-- 0, d +--a, v2 +-- 1, v3 +-- b, z +-- 0.

2. [Finished?) If lv31 > L go to step 3. Otherwise, if z is odd, set v2 +-- -v2 and
v3 +-- -v3. Terminate the sub-algorithm.

3. [Euclidean step) Let d = qv3 + t3 be the Euclidean division of d by v3 with
0:::; t3 < lv31· Set t2 +-- v -qv2, v +-- v2, d +-- v3, v2 +-- t2. v3 +-- iJ, z +-- z+ 1
and go to step 2.

I have given the gory details in steps 3 and 4 of Algorithm 5.4.8 just to
show how a careful implementation can save time: the formula for b2 in step
4 could have simply been written b2 +-- b2 + 2dv3. This would involve one
multiplication and 2 additions. Since we need the quantities d2 and v~ for
a 2 and c2 anyway, the way we have written the formula involves 3 additions
and one squaring. By a suitable implementation of a method analogous to the
splitting method for polynomials explained in Chapter 3, this will be faster
than 2 additions and one multiplication. Of course the gain is slight and the
lazy reader may implement this in the more straightforward way, but it should
be remembered that we are programming a basic operation in a group which
will be used a large number of times, so any gain, even small, is worth taking.

Note also that the final reduction of h will be very short, usually one or
two Euclidean steps at most.

5.4 Class Groups of Imaginary Quadratic Fields 249

The proof of the validity of the algorithm is not difficult (see (Sha2]) and
is left to the reader. It can also be checked that all the iterations (Euclid and
reductions) are done on numbers less than 0(JiDf), and that only a small
and fixed number of operations are done on larger numbers.

Let us now look at the general algorithm for composition.

Algorithm 5.4.9 (NUCOMP). Given two primitive positive definite quadratic
forms with the same discriminant ft = (a1,b1,cl) and h = (a2,b2,c2). this
algorithm computes the composite fa= (a3, b3, c3) of ft and /2. As in NUDUPL
(Algorithm 5.4.8) we assume already precomputed the constant L = liD/4J 114J.
Note that the values of a1 and a2 may get changed, so they should be preserved
if needed.

1. [Initialize) If a1 < a2 exchange ft and h Then sets+-- !(b1+ b2). n +-- b2-s.

2. [First Euclidean step) Using Euclid's extended algorithm, compute (u, v, d)
such that ua2 + va1 = d = gcd(a1, a2). If d = 1, set A +-- -un, d1 +-- d
and go to step 5. If d I s but d =f 1, set A +-- -un, d1 +-- d, a1 +-- add1,
a2 +-- a2/d1. s +-- s/d1 and go to step 5.

3. [Second Euclidean step) (here d f s) Using Euclid's extended algorithm again,
compute (ut, v1, dl) such that u1s + v1d = d1 = gcd(s, d). Then, if d1 > 1,
set a1 +-- add1, a2 +-- a2/d1. s +-- s/d1 and d +-- d/d1.

4. [Initialization of reduction) Compute l +-- -u1(uc1 +vc2) mod d by first reduc
ing c1 and c2 (which are large) modulo d (which is small), doing the operation,
and reducing again. then set A+-- -u(n/d) + l(atfd).

5. [Partial reduction) Set A +-- (A mod at), A1 +-- a1 -A and if A1 < A set
A+-- -A1, then execute Sub-algorithm PARTEUCL(a1,A) above.

6. [Special case) If z = 0, set Ql +-- a2v3, Q2 +-- Q1 + n, f +-- Q2/d, g +

(v3s + c2)jd, a3 +-- da2, c3 +-- v3f + gd1, b3 +-- 2Q1 + b2, reduce the form
fa = (a3, b3, c3), output the result and terminate the algorithm.

7. [Final computations) Set b +-- (a2d + nv)ja1, Q1 +-- bv3, Q2 +-- Q1 + n,
f +-- Q2jd, e +-- (sd+c2v)ja1, Q3 +-- ev2, Q4 +-- Q3-s, g +-- Q4jv (the case
v = 0 has been dealt with in step 6), and if d1 > 1 set v2 +-- d1v2, v +-- d1v.
Finally, set a3 +-- db+ev, c3 +-- v3f+gv2, b3 +-- Q1+Q2+d1(Q3+Q4), reduce
the form fa = (a3, b3, c3), output the result and terminate the algorithm.

Note that all the divisions which are performed in this algorithm are exact,
and that the final reduction step, as in NUDUPL, will be very short, usually
one or two Euclidean steps at most. As for NUDUPL, we leave to the reader
the proof of the validity of this algorithm.

Implementation Remark. We have used the basic Algorithm 1.3.6 as a
template for Sub-algorithm PARTEUCL. In practice, when dealing with multi
precision numbers, it is preferable to use one of its variants such as Algorithm
1.3.7 or 1.3.8.

250 5 Algorithms for Quadratic Fields

5.4.3 Class Groups Using Shanks's Method

From the Brauer-Siegel theorem, we know that the class number h(D) of
an imaginary quadratic field grows roughly like IDI 112 . This means that the
baby-step giant-step algorithm given above allows us to compute h(D) in
time O(IDI 1/4+f), which is much better than the preceding methods. In fact,
suitably implemented, one can reasonably expect to compute class numbers
and class groups of discriminants having up to 20 or 25 decimal digits. For
taking powers of the quadratic forms one should use the powering algorithm
of Section 1.2, using if possible NUDUPL for the squarings and NUCOMP for
general composition, or else using Shanks less optimized but simpler Algorithm
5.4.7. To be able to use the baby-step giant-step Algorithm 5.4.1 however, we
need bounds for the class number h(D). Now rigorous and explicit bounds are
difficult to obtain, even assuming the GRH. Hence, we will push our luck and
give only tentative bounds. Of course, this completely invalidates the rigor
of the algorithm. To be sure that the result is correct, one should start with
proven bounds like C = 0 and B = *y'[Dfln IDI (see Exercise 27), however
the performance is much worse.

Now the series giving Lv(1) is only conditionally convergent, as is the
corresponding Euler product

((D))-1
Lv(s)= I] 1- ;

However this Euler product is faster to compute to a given accuracy, since
only the primes are needed. Hence, to start Shanks's algorithm, we take a
large prime number bound P (say P = 218), and guess that, for D < -4, h(D)
will be close to

Assuming GRH, one can show that

h(D)- h = O(hP-112 1n(PIDI)),

and one can give explicit values for the 0 constant. In practice, Shanks noticed
experimentally that the relative error is around 1/1000 when P = 217 . Hence,
if we use these numerical bounds combined with the baby-step giant-step
method, we will correctly compute h(D) unless the exponent of the group is
very small compared to the order.

A very important speedup in computing h(D) by Shanks's method is ob
tained by noticing that the inverse for composition of the form (a, b, c) is the
form (a, -b, c), hence requires no calculation. Hence, one can double the size
of the giant steps (by setting y +-- x~q instead of y +-- x~ in step 3 of Algo
rithm 5.4.1 . Therefore the optimal value for q is no longer J B - C but rather

(B- G)/2.

5.4 Class Groups of Imaginary Quadratic Fields 251

Finally, note that during the computation of the Euler product leading to
h, we will also have found the primes p for which (Q) = 1. For the first few
such p, we compute the square root bp of D mod 4p by a simple modification
of Algorithm 1.5.1, and we store the forms (p, bp, cp) where cp = (b~-D)/(4p).
These will be used as our "random" x in step 2 of the algorithm.

Putting all these ideas together leads to the following method:

Heuristic Algorithm 5.4.10 (h(D) Using Baby-Step Giant-Step). If D <
-4 is a discriminant, this algorithm tries to compute h(D) using a simpleminded
version of Shanks's baby-step giant-step method. We denote by · the operation
of composition of quadratic forms, and by 1 the unit element in the class group.
We choose a small bound b (for example b = 10).

1. [Compute Euler product] For P = max(218 , JDJ 114), compute the product

Then set B +- LQ{1 + 1/{2VP))J, C +- fQ{1 -1/(2VP))l For the first
b values of p such that (~) = 1, compute bp such that b~ = D (mod 4p)
using Algorithm 1.5.1 (and modifying the result to get the correct parity). Set
/p +- (p, bp, (b~- D)/(4p)).

2. [Initialize] Set e +- 1, c +- 0, B1 +- B, C1 +- C, Ql +- Q.

3. [Take a new g] (Here we know that the exponent of Cl(D) is a multiple of e).
Set g +- /p for the first new /p. and set c +- c + 1, q +- f J(Bl- Cl)/2l

4. [Compute small steps] Set x 0 +- 1, x1 +- ge then for r = 2 to r = q- 1 set
Xr +- x1 · Xr-l· If, during this computation one finds Xr = 1, then set n +- r
and go to step 7. Otherwise, sort the Xr so that searching among them is easy,
and set y +- Xl · Xq-lo y +- y2 , z +- x~ 1 , n +- Ql .

5. [Compute giant steps] Search for z or z-1 in the sorted list of Xr for 0 ~ r < q
(recall that if z = (a,b,c), z-1 = (a,-b,c)). If a match z = Xr is found, set
n +- n- rand go to step 7. If a match z-1 = Xr is found, set n +- n + r and
go to step 7.

6. [Continue] Set z +- y·z, n +- n+2q. If n ~ B 1 go to step 5. Otherwise output
an error message stating that the order of G is larger than B and terminate
the algorithm.

7. [Compute the order of g] (Here we know that gen = xf = 1). For each prime

p dividing n, do the following: if x~IP = 1, then set n +- nfp and go to step
7.

8. [Finished?] (Here n is the exact order of xl). Set e +- en. If e > B- C, then
set h +- eLB/eJ, output h and terminate the algorithm. If c ;::: b output a
message saying that the algorithm fails to find an answer and terminate the
algorithm. Otherwise set Bl +- LBdnJ, cl +- rctfnl and go to step 3.

252 5 Algorithms for Quadratic Fields

This is not an algorithm, in the sense that the output may be false. One
should compute the whole group structure using Algorithm 5.4.1 to be sure
that the result is valid. It almost always gives the right answer however, and
thus should be considered as a first step.

5.5 McCurley's Sub-exponential Algorithm

We now come to an algorithm discovered in 1988 by McCurley [McCur,
Haf-McCurl] and which is much faster than the preceding algorithms for large
discriminants. Several implementations of this algorithm have been done, for
example by Diillmann, ([Buc-Diil]) and it is now reasonable to compute the
class group for a discriminant of 50 decimal digits. Such examples have been
computed by Diillmann and Atkin.

Incidentally, unlike almost all other algorithms in this book, little has been
done to optimize the algorithm that we give, and there is plenty of room for
(serious) improvements. This is, in fact, a subject of active research.

5.5.1 Outline of the Algorithm

Before giving the details of the algorithm, let us give an outline of the main
ideas. First, instead of trying to obtain the class number and class group "from
below" , by finding relations xe = 1, and hence divisors of the class number,
we will find it "from above", i.e. by finding multiples of the class number.

Let P be a finite set of primes p such that (~) = 1 for all pEP. Then, as
in Shanks's method, we can find reduced forms /p = (p, bp, cp), which we will
call prime forms, for each p E P. Now, assuming GRH, one can prove that
there exists a constant c which can be computed effectively such that if P
contains all the primes p such that (~) = 1 and p ~ cln2 IDI, then the classes
of the forms /p for p E P generate tlie class group. This means that if we set
n = IPI, the map

¢: zn -+Cl(D)

(xp)pEP ~---+ IT J;P
pEP

is a surjective group homomorphism. Hence, the kernel A of ¢ is a sublattice
of zn' and we have

znjA ~ Cl(D) and I det(A) I = h(D),

denoting by det(A) the determinant of any Z-basis of A. The lattice A is the
lattice of relations among the fp· If one finds any system of n independent
elements in this lattice, it is clear that the determinant of this system will

5.5 McCurley's Sub-exponential Algorithm 253

be a multiple of the determinant of A, hence of h(D). This is how we obtain
multiples of the class number.

Now there remains the question of obtaining (many) relations between the
fp· To do this, one uses the following lemma:

Lemma 5.5.1. Let (a, b, c) be a primitive positive definite quadratic form of
discriminant D < 0, and a= IlpPvp be the prime decomposition of a. Then
we have up to equivalence:

(a, b, c) =II f;pvp,
p

where fp = (p, bp, cp) is the prime form corresponding top, and Ep = ±1 is
defined by the congruence

b = Epbp (mod 2p).

In fact, all the possible choices for the Ep correspond exactly to the possible
square roots b of D mod 4a, with b defined modulo 2a.

Proof. This lemma follows immediately from the raw formulas for composition
that we have given in Section 5.4.2. In terms of ideals, using the correspon
dence given by Theorem 5.2.8, if I= '1/JFI(f), the factorization of a = N'(I)
corresponds to a factorization I = I1 pvp where p is an ideal above p'ZK, and
Ep must be chosen as stated so that p :::> I. 0

This leads immediately to the following idea for generating relations in A:
choose random integer exponents ep, and compute the reduced form (a, b, c)
equivalent to IlpE'P J;P. If all the factors of a are in P, we keep the form
(a, b, c), otherwise we take other random exponents. If the form is kept, we
will have the relation

giving the element

II t;p-fpVp = 1,
pEP

(ep- EpVp)pE'P E A c zn.
Continuing in this way, one may reasonably hope to generate A if P has
been chosen large enough, and this is indeed what one proves, under suitable
hypotheses.

The crucial point is the choice of P. We will take

for a suitable P, but one must see how large this P must be to optimize the
algorithm. If P is chosen too small, numbers a produced as above will almost

254 5 Algorithms for Quadratic Fields

never factor into primes less than P. If Pis too large, then the factoring time
of a becomes prohibitive, as does the memory required to keep all the relations
and the fp· To find the right compromise, one must give the algorithm in much
greater detail and analyze its behavior. This is done in [Haf-McCur1], where
it is shown that P should be taken of the order of L(JDI)"', where L(x) is a
very important function defined by

L(x) = ev'lnxlnlnx,

and a depends on the particular implementation, one possible value being
1/VS. We will meet this very important function L(x) again in Chapter 10 in
connection with modern factoring methods.

In addition we must have P ~ cln2 JDI so that (assuming GRH) the classes
of prime forms fp with p E P generate the class group. Unfortunately, at
present, the best known bound for the constant c, due to Bach, is 6, although
practical experience shows that this is much too pessimistic. (In fact it is
believed that O(lnl+< JDI) generators should suffice for any E > 0). Hence, we
will choose

Note that, although the ln2 function grows asymptotically much more slowly
than the L(JDI) function, in practice the constants 6 and 1/VS will make the
ln2 term dominate. More precisely, the L(JDI) term will start to dominate only
for discriminants having at least 103 digits, well outside the range of practical
applicability of this method. Even if one could reduce the constant 6 to 1, the
ln2 term would still dominate for numbers having up to 70 digits.

Let n be the number of p E P. To give a specific numerical example, for
D of the order of -1040 , with the above formula P will be around 50900,
and n around 2600, while if D is of the order of -1050 , P will be around
79500 and n around 3900. Since we will be handling determinants of n x n
matrices, many problems become serious, in particular the storage problems,
though they are perhaps still manageable. In any case, the computational
load becomes very great. In particular, for matrices of this size it is essential
to use special techniques adapted to the type of matrices which we have,
i.e. sparse matrices. Since we are over IE and not over a field, the use of methods
such as Wiedemann's coordinate recurrence method (see [Wie]) is possible only
through the use of the Chinese remainder theorem, and is quite painful. An
easier approach is to use "intelligent Hermite reduction", analogous to the
intelligent Gaussian elimination technique used by LaMacchia and Odlyzko
(see [LaM-Odl]). This method has been implemented by Diillmann ([Buc
Diil]) and by Cohen, Diaz y Diaz and Olivier ([CohDiOl]), and is described
below.

5.5 McCurley's Sub-exponential Algorithm 255

5.5.2 Detailed Description of the Algorithm

We first make a few remarks.

The first important remark is that although one should generate random
relations using Lemma 5.5.1, one may hope to obtain a non-trivial relation as
soon as ITP pep > JIDI /3 since the resulting form obtained by multiplication
without reduction will not be reduced. Hence, instead of taking the whole of
P to compute the products, we take a much smaller subset Po not containing
any prime dividing D and such that

II p > JIDI/3 .
pE'Po

Then Po will be very small, typically of cardinality 10 or 20, even for dis
criminants in the 40 to 50 digit range. In fact, by the prime number theorem,
the cardinality of Po should be of the order of ln I D I/ ln ln I D I· For similar
reasons, although the exponents ep should be chosen randomly up to IDI as
McCurley's analysis shows, in practice it suffices to take very small random
exponents, say 1 :5 ep :5 20.

A second remark is that, even if we use intelligent Hermite reduction as
will be described, the size of the matrix involved will be very large. Hence,
we must try to make it smaller even before we start the reduction. One way
to do this is to decide to take a lower value of P, say one corresponding to
the constant c = 1 (i.e. the split primes of norm less than ln2 IDI instead of
6ln2 IDI). This would probably work, but even under the GRH the result may
be false since we may not have enough generators. There is however one way
out of this. For every prime q such that ln2 1DI < q < 6ln2 1DI, let gq be a
reduced form equivalent to jq ITpE'Po J:P with small random exponents ep as
before. If gq = (a, b, c), then, if a factors over our factor base P, since q is quite
large, with a little luck after a few trials we will find an a which not only factors,
but whose prime factors are all less than q. This means that Jq belongs to the
subgroup generated by the other fp's, hence can be discarded as a generator of
the class group. Doing this for all the q > ln2 1DI is fast and does not involve
any matrix handling, and in effect reduces the problem to taking the constant
1 instead of 6 in the definition of P, giving much smaller matrices. Note that
the constant 1 which we have chosen is completely arbitrary, but it must not
be chosen too small, otherwise it will become very difficult to eliminate the
big primes q. In practice, values between 0.5 and 2 seem reasonable.

These kind of ideas can be pushed further. Instead of taking products
using only powers of forms fp with p E Po, we can systematically multiply
such a relation by a prime q larger than the ones in Po, with the hope that
this extra prime will still occur non-trivially in the resulting relation.

A third remark is that ambiguous forms (i.e. whose square is principal)
have to be treated specially in the factor base, since only the parity of the
exponents will count. (This is why we have excluded primes dividing D in

256 5 Algorithms for Quadratic Fields

P0 .) In fact, it would be better to add the free relations 1; = 1 for all p E P
dividing D. On the other hand, when D is not a fundamental discriminant,
one must exclude from P the primes p dividing D to a power higher than the
first (except for p = 2 which one keeps if D j 4 is congruent to 2 or 3 modulo
4). For our present exposition, such primes will be called bad, the others good.

Algorithm 5.5.2 (Sub-Exponential Imaginary Class Group). If D < 0 is
a discriminant, this algorithm computes the class number h(D) and the class
group Cl(D). As before, in practice we work with binary quadratic forms. We
also choose a positive real constant b.

1. (Compute primes and Euler product] Set m r- bln2 IDI, M +- L(IDI)11VB,
P r- lmax(m, M)J

P +- {p ~ P, (~) # -1 and p good}

and compute the product

2. (Compute prime forms] Let Po be the set made up of the smallest primes
of P not dividing D such that TipEPo p > .JIDI/3. For the primes p E P
do the following. Compute bp such that b; = D (mod 4p) using Algorithm
1.5.1 (and modifying the result to get the correct parity). If bp > p, set
bp r- 2p- bp. Set /p +- (p, bp, (b;- D)/(4p)). Finally, let n be the number
of primes pEP.

3. (Compute powers] For each p E Po and each integer e such that 1 ~ e ~ 20
compute and store the unique reduced form equivalent to f;. Set k +- 0.

4. (Generate random relations] Let Jq be the primeform number k + 1 mod n
in the factor base. Choose random ep between 1 and 20, and compute the
unique reduced form (a, b, c) equivalent to

until vq(a) # 1 (note that the J;p have already been computed in step 3).
Set ep +- 0 if p ~ Po then eq +- eq + 1.

5. [Factor a] Factor a using trial division. If a prime factor of a is larger than P, do
not continue the factorization and go to step 4. Otherwise, if a = np~P PVp'

set k +- k + 1, and fori ~ n

5.5 McCurley's Sub-exponential Algorithm 257

where Ep, = +1 if (b mod 2pi)::; Pi. Ep, = -1 otherwise.

6. [Enough relations?] If k < n + 10 go to step 4.

7. [Be honest] For each prime q such that P < q ::; 6ln2 IDI do the follow
ing. Choose random ep between 1 and 20 (say) and compute the primeform
Jq corresponding to q and the unique reduced form (a, b, c) equivalent to
Jq ITpEPo J;v. If a does not factor into primes less than q, choose other ex
ponents ep and continue until a factors into such primes. Then go on to the
next prime q until the list is exhausted.

8. [Simple HNF] Perform a preliminary simple Hermite reduction on then x k
matrix A= (ai,j) as described below, thus obtaining a much smaller matrix
A1.

9. [Compute determinant] Using standard Gaussian elimination techniques, com
pute the determinant of the lattice generated by the columns of the matrix A1
modulo small primes p. Then compute the determinant d exactly using the
Chinese remainder theorem and Hadamard's inequality (see also Exercise 13).
If the matrix is not of rank equal to its number of rows, get 5 more relations
(in steps 4 and 5) and go to step 8.

10. [HNF reduction] Using Algorithm 2.4.8 compute the Hermite normal form
H = (hi,j) of the matrix A1 using modulo d techniques. Then, for every i
such that hi,i = 1, suppress row and column i. Let W be the resulting matrix.

11. [Finished?] Let h +-- det(W) (i.e. the product of the diagonal elements). If
h ~ B../2, get 5 more relations (in steps 4 and 5) and go to step 8. (It will
not be necessary to recompute the whole HNF, but only to take into account
the last 5 columns.) Otherwise, output has the class number.

12. [Class group] Compute the Smith normal form of W using Algorithm 2.4.14.
Output those diagonal elements di which are greater than 1 as the invariants
of the class group (i.e. Cl(D) = ffiZ/diZ) and terminate the algorithm.

Implementation Remarks.

(1) The constant b used in step 1 is important mainly to control the size of
the final matrix A on which we are going to work. As mentioned above
however, b must not be chosen too small, otherwise we will have a lot of
trouble in the factoring stages. Practice shows that values between 0.5 and
2.0 are quite reasonable.

With such a choice of b, we could of course avoid step 7 entirely since it
seems highly implausible that the class group is not generated by the first
0.5ln2 IDI primeforms. Including step 7, however, makes the correctness
of the result depend only on the GRH and nothing else. Note also that
strictly speaking the above algorithm could run indefinitely, either because
it does not find enough relations, or because the condition of step 7 is never
satisfied for some prime q. In practice this never occurs.

(2) The simple Hermite reduction which is needed in step 8 is the following.
We first scan all the rows of the n x k matrix A to detect ifsome have a

258 5 Algorithms for Quadratic Fields

single ±1, the other coefficients being equal to zero. If this is the case and
we find that ai,j = ±1 is the only non-zero element of its row, we exchange
rows i and n and columns j and k, and scan the matrix formed by the
first n - 1 rows and k - 1 columns. We continue in this way until no such
rows are found. We are now reduced to the study of a (n- s) x (k- s)
matrix A', where s is the number of rows found.

In the second stage, we scan A' for rows having only 0 and ±1. In
this case, simple arithmetic is needed to eliminate the ±1 as one does in
ordinary HNF reduction, and, in particular, one may hope to work entirely
with ordinary (as opposed to multi-precision) integers. The second stage
ends when either all rows have been scanned, or if a coefficient exceeds
half the maximal possible value for ordinary integers.

In a third and last stage before starting the modulo d HNF reduc
tion of step 10, we can proceed as follows (see [Buc-Dlil]). We apply the
ordinary HNF reduction Algorithm 2.4.5 keeping track of the size of the
coefficients which are encountered. In this manner, we Hermite-reduce a
few rows (corresponding to the index j in Algorithm 2.4.5) until some co
efficient becomes in absolute value larger than a given bound (for example
as soon as a coefficient does not fit inside a single-precision number). If the
first non-Hermite-reduced row has index j, we use the MLLL Algorithm
2.6.8 or an all-integer version on the matrix formed by the first j rows.
The effect of this will be to decrease the size of the coefficients, and since
as in Hermite reduction only column operations are involved, the LLL re
duction is allowed. We now start again Hermite-reducing a few rows using
Algorithm 2.4.5, and we continue until either the matrix is completely
reduced, or until the LLL reduction no longer improves matters (i.e. the
partial Hermite reduction reduced no row at all).

After these reductions are performed, practical experience shows that
the size of the matrix will have been considerably reduced, and this is
essential since otherwise the HNF reduction would have to be performed
on matrices having up to several thousand rows and columns, and this is
almost impossible in practice.

(3) If Hermite reduction is performed carefully as described above, by far the
most costly part of the algorithm is the search for relations. This part can
be considerably improved by using the large prime variation idea common
to many modern factoring methods (see Remark (2) in Section 10.1) as
follows. In step 5, all a with a prime factor greater than P will be rejected.
But assume that all prime factors of a are less than or equal to P, except
one prime factor Pa which is larger. The corresponding quadratic form can
not be used directly without increasing the value of P. But assume that for
two values of a, i.e. for two quadratic forms f =(a, b, c) and g =(a', b', c'),
the large prime Pa is the same. Then either the form f g- 1 or the form
fg (depending on whether b' = b (mod Pa) or not) will give us a relation
in which no primes larger than P will occur, hence a useful relation. The
coincidence of two values of Pa will not be a rare phenomenon, and for

5.5 McCurley's Sub-exponential Algorithm 259

large discriminants the improvement will be considerable. See Exercise 14
for some hints on how to implement the large prime variation.

(4) Note that the '10' and '5' which occur in the algorithm are quite arbitrary,
but are usually sufficient in practice. Note also that the correctness of the
result is guaranteed only if one assumes GRH. Hence, this is a conditional
algorithm, but in a much more precise sense than Algorithm 5.4.10.

(5) In step 5, we need to factor a using trial division. Now a can be as large
as JIDI/3, hence a may have more than 20 digits in the region we are
aiming for, and factoring by trial division may seem too costly. We have
seen however that M is a few thousand at most in this region, so using
trial divisors up to M is reasonable. We can improve on this by using the
early abort strategy which will be explained in Chapter 10.

(6) Step 9 requires computing a determinant using the Chinese remainder
theorem (although as seen in Exercise 13 we can also compute it directly).
This means that we first compute it modulo sufficiently many small primes.
Then, by using the Chinese remainder Algorithm 1.3.12, we can obtain
it modulo the product of these primes. Finally, Hadamard's inequality
(Proposition 2.2.4) gives us an upper bound on the result. Hence, if the
product of our primes is greater than twice this upper bound, we find the
value of the determinant exactly. We have already mentioned this method
in Section 4.3 for computing norms of algebraic integers.

The Hadamard bound may, however, be extremely large, and in that
case it is preferable to proceed as follows. We take many more extra rela
tions than needed (say 100 instead of 10) and we must assume that we will
obtain the class number itself and not a multiple of it. Then the quantity
Bv'2. is an upper bound for the determinant and can be used instead of
the Hadamard bound. Once the class group is obtained, we must then
check that it is correct, and this can be done without too much difficulty
(or we can stop and assume that the result is correct).

(7) Finally, the main point of this method is, of course, its speed since under
reasonable hypotheses one can prove that the expected asymptotic average
running time is

with o: = v'2, and perhaps even o: = .j9{8. This is much faster than
any of the preceding methods. Furthermore, it can be hoped that one can
bring down the constant o: to 1. This seems to be the limit of what one
can expect to achieve on the subject for the following reason. Many fast
factoring methods are known, using very different methods. To mention
just a few, there is one using the 2-Sylow subgroup of the class group,
one using elliptic curves (ECM), and a sieve type method (MPQS). All
these methods have a common expected running time of the order of
O(L(N)). In 1989, the discovery of the number field sieve lowered this
running time to O(e1n(N) 113+') (see Chapter 10), but this becomes better
than the preceding methods for special numbers having more than 100
digits, and for general numbers having more than (perhaps) 130 digits,

260 5 Algorithms for Quadratic Fields

hence does not concern us here. Since computing the class group is at
least as difficult as factoring, one cannot expect to find a significantly faster
method than McCurley's algorithm without fundamentally new ideas. It is
plausible, however, that using ideas from the number field sieve would give
an O(e1n{N) 11a+•) algorithm, but nobody knows how to do this at the time
of this writing. In practice, using Section 6.5, we may speedup Algorithm
5.5.2 by finding some of the relations using the basic number field sieve
idea (see remark (3) after Algorithm 6.5.9).

5.5.3 Atkin's Variant

A variant of the above algorithm has been proposed by Atkin. It has the
advantage of being faster, but the disadvantage of not always giving the class
group. Atkin's idea is as follows.

Instead of taking P0 , which is already a small subset of the factor base of
prime forms, to generate the relations, we choose a single form f. Of course,
there is now no reason for f to generate the class group, but at least when
the discriminant is prime this often happens, as tables and the heuristics of
[Coh-Len1] show (see Section 5.10).

We then determine the order of f in the class group, using a method
which is more efficient than the baby-step giant-step Algorithm 5.4.1 for large
discriminants, since it is also a sub-exponential algorithm. The improvement
comes, as in McCurley's algorithm, from the use of a factor base. (The phi
losophy being that any number-theoretic algorithm which can be made to
efficiently use factor bases automatically becomes sub-exponential thanks to
the theorem of Canfield-Erdos-Pomerance 10.2.1 that we will see in Chapter
10.)

To compute the order of f, we start with the same two steps as Algorithm
5.5.2. In particular, we set n equal to the number of primeforms in our factor
base.

We now compute the reduced forms equivalent to J, p, j3, ... For each
such form (a, b, c) we execute step 5 of Algorithm 5.5.2, i.e. we check whether
the form factors on our factor base, and if it does, we keep the corresponding
relation.

We continue in this way until exactly n + 1 relations have been obtained,
i.e. one more than the cardinality of the factor base. Let et, e2, ... , en+l be
the exponents of f for which we have obtained a relation. Since we have now
an n x (n + 1) matrix with integral entries, there exists a non-trivial linear
relation between the columns with integral coefficients, and this relation can
be obtained by simple linear algebra, not by using number-theoretic methods
such as Hermite normal form computations which are much slower. We can
for example use a special case of Algorithm 2.3.1.

Now, if Ci is column number i of our matrix, for 1 :::; i:::; n + 1, and if Xi

are the coefficients of our relation, so that Ll:5i:5n+l xiCi = 0, then clearly

5.6 Class Groups of Real Quadratic Fields

JN = 1 , where N = L Xiei.
lin+l

261

This is exactly the kind of relation that one obtains by using the baby-step
giant-step method, but the running time can be shown to be sub-exponential
as in McCurley's algorithm.

The relation may of course be trivial, i.e. we may have N = 0. This
happens rarely however. Furthermore, if it does happen, we may have at our
disposal more independent relations between the columns of our n x (n + 1)
matrix, which are also given by Algorithm 2.3.1. If not, we take higher powers
of f until we obtain a non-trivial relation.

As soon as we have a non-zero N such that JN = 1, we can compute the
exact order of f in the class group as in Algorithm 5.4.1, after having factored
N. Of course, this factorization may not be easy, but N is probably of similar
size as the class number, hence about JiDT, so even if D has 60 digits, we
probably will have to factor a number having around 30 digits, which is not
too difficult.

If e is the exact order of f, we know that e divides the class number. If e
already satisfies the lower bound inequalities given by the Euler product, that
is if

e > _2_ JiDT IJ (1- (-%))-1'
..j2 1r p$P p

then assuming GRH, we must have e = h(D), and the class group is cyclic
and generated by f. When it applies, this gives a faster method to compute
the class number and class group than McCurley's algorithm. If the inequality
is not satisfied, we can proceed with another form, as in Algorithm 5.4.1. The
details are left to the reader.

Note that according to tables and the heuristic conjectures of (Coh-Len1]
(see Section 5.10), the odd part of the class group should very often be cyclic
(probability greater than 97%). Hence, if the discriminant Dis prime, so that
the class number is odd, there is a very good chance that Cl(D) is cyclic.
Furthermore, the number of generators of a cyclic group with h elements is
¢(h), and this is also quite large, so there is a good chance that our randomly
chosen f will generate the class group.

The implementation details of Atkin's algorithm are left to the reader (see
Exercise 15).

262 5 Algorithms for Quadratic Fields

5.6 Class Groups of Real Quadratic Fields

We now consider the problem of computing the class group and the regulator
of a real quadratic field K = IQ(.Ji5), and more generally of the unique real
quadratic order of discriminant D. We will consider the problem of computing
the regulator in Section 5.7, so we assume that we already have computed the
regulator which we will denote by R(D).

5.6.1 Computing Class Numbers Using Reduced Forms

Thanks to Theorem 5.2.9, we still have a correspondence between the narrow
ideal class group and equivalence classes of quadratic forms of the same dis
criminant D. It is not difficult to have a correspondence with the ideal class
group itself.

Proposition 5.6.1. If D is a non-square positive integer congruent to 0 or
1 modulo 4, the maps 1/JFI and 1/JIF of Theorem 5.2.9 induce inverse isomor
phisms between Cl(D) and the quotient set of :F(D) obtained by identifying
the class of(a,b,c) with the class of(-a,b,-c).

The proof is easy and left to the reader (Exercise 18).

The big difference between forms of negative and positive discriminant
however is that, although one can define the notion of a reduced form (differ
ently from the negative case), there will in general not exist only one reduced
form per equivalence class, but several, which are naturally organized in a
cycle structure.

Definition 5.6.2. Let f = (a, b, c) be a quadrotic form with positive discrim
inant D. We say that f is reduced if we have

lv'D- 21all < b < v'D.

The justification for this definition, as well as for the definition in the case
of negative discriminants, is given in Exercise 16.

Note immediately the following proposition.

Proposition 5.6.3. Let (a, b, c) be a quadrotic form with positive discrim
inant D. Then

(1) If (a, b, c) is reduced, then lal, b and lei are less than v'D and a and c
are of opposite signs.

(2) More precisely, if (a, b, c) is reduced, we have lal +lei< v'D.
(3) Finally, (a, b, c) is reduced if and only if lv'D- 21cll < b < v'D.

5.6 Class Groups of Real Quadratic Fields 263

Proof The result forb is trivial, and since ac = (b2 - D)/4 < 0 it is clear that
a and care of opposite signs. Now we have

II 11 -Vn= D-4lalvD+4a2 -b2 = (vD-2Ial)2 -b2

a + c 4lal 4lal ,

hence by definition of reduced we have lal +lei - yD < 0, which implies (2)
and hence (1).

To prove (3), we note that we have the identity

hence if € = ±1, we have

b _ t:(2lcl- Vn) = (vD + t:b)(b + t:(2lal- vD))
2lal

which is positive by definition. Since a and c play symmetrical roles, this
proves (3) and hence the proposition. D

If r = (-b + vD)/(2Ial) is the quadratic number associated to the form
(a, b, c) as in Section 5.2, it is not difficult to show that (a, b, c) is reduced if
and only if 0 < r < 1 and -a(r) > 1.

We now need a reduction algorithm on quadratic forms of positive dis
criminant. It is useful to give a preliminary definition:

Definition 5.6.4. Let D > 0 be a discriminant. If a =f. 0 and b are integers,
we define r(b, a) to be the unique integer r such that r = b (mod 2a) and
-lal < r ~ lal if lal > v'D, vD- 2lal < r < vD if lal < v'D. In addition,
we define the reduction operator p on quadratic forms (a, b, c) of discriminant
D > 0 by

(r(-b,c) 2 -D)
p(a, b, c) = c, r(-b, c), 4c .

The reduction algorithm is then simply as follows.

Algorithm 5.6.5 (Reduction of Indefinite Quadratic Forms). Given a qua
dratic form f = (a, b, c) with positive discriminant D, this algorithm finds a
reduced form equivalent to f.
1. [Iterate] If (a, b, c) is reduced, output (a, b, c) and terminate the algorithm.

Otherwise, set (a, b, c) +-- p(a, b, c) and go to step 1.

We must show that this algorithm indeed produces a reduced form after
a finite number of iterations. In fact, we have the following stronger result:

264 5 Algorithms for Quadratic Fields

Proposition 5.6.6.

(1) The number of iterations of p which are necessary to reduce a form (a, b, c)
is at most 2 + flg(lcl/v'D)l.

(2) Iff= (a, b, c) is a reduced form, then p(a, b, c) is again a reduced form.
(3) The reduced forms equivalent to f are exactly the forms pn(f), for n suf

ficiently large (i.e. n greater than or equal to the least n0 such that pno (f)
is reduced) and are finite in number.

Proof The proof of (1) is similar in nature to that of Proposition 5.4.3. Set
p(f) = (a',b',c'). I first claim that if lei> v'D then lc'l:::; lcl/2. Indeed, in
that case lr(-b, c)l :::; lei, hence

lc'l = lr(-b, c)2 - Dl < 2c2 < J.S
4lcl - 41cl - 2

since D < c2 . So, after at most flg(lcl/v'D)l iterations, we will end up with
a form where lei < v'D. As in the imaginary case one can then check that
the form is almost reduced, in the sense that after another iteration of p we
will have Ia I, lbl and lei less than v'D, and then either the form is reduced, or
it will be after one extra iteration. The details are left as an exercise for the
reader.

For (2), note that if (a,b,c) is reduced, then

lb + v'Dj r(-b,c)=-b+2lcl 2lcl ,

since this is clearly in the interval [v'D- 2lcl, v'DJ. If lei < v'D /2, this implies
that p(a, b, c) is reduced by definition. If lei > v'D /2, it is clear that

r(-b, c) = -b + 2lcl > 2lcl- .Ji5 = IVD- 2lcll,

proving again that p(a, b, c) is reduced.
Finally, to prove (3), set a(a,b,c) = (c,b,a). Using again Proposition

5.6.3 (3), it is clear that a is an involution on reduced forms. Furthermore,
one checks immediately that pa and ap are both involutions on the set of
reduced forms, thus proving that p is a permutation of this set, the inverse of
p being p- 1 = apa.

Another way to see this is to check directly that the inverse of p on reduced
forms is given explicitly by

-1 (r(-b,a) 2 -D) p (a, b, c) = 4a , r(-b, a), a ,

and p-1 can be used instead of p to reduce a form, although one must take
care that for non-reduced forms, it will not be the inverse of p since p is not
one-to-one. 0

5.6 Class Groups of Real Quadratic Fields 265

We can summarize Proposition 5.6.6 by saying that if we start with any
form J, the sequence pn(f) is ultimately periodic, and we arrive inside the
period exactly when the form is reduced.

Finally, note that it follows from Proposition 5.6.3 that the set of reduced
forms of discriminant D has cardinality at most D (the possible number of
pairs (a, b)), but a closer analysis shows that its cardinality is O(D112 ln D).

It follows from the above discussion and results that in every equivalence
class of quadratic forms of discriminant D > 0, there is not only one reduced
form, but a cycle of reduced forms (cycling under the operation p), and so the
class number is the number of such cycles.

It is not necessary to formally write an algorithm analogous to Algorithm
5.3.5 for computing the class number using reduced forms. We make a list
of all the reduced forms of discriminant D by testing among all pairs (a, b)
such that lal < ..fJ5, l..fJ5- 2lall < b < ...(J5 and b = D (mod 2), those for
which b2 - D is divisible by 4a. Then we count the number of orbits under
the permutation p, and the result is the narrow class number h+(D). If, in
addition, we identify the forms (a, b, c) and (-a, b, -c), then, according to
Proposition 5.6.1 we obtain the class number h(D) itself.

As for Algorithm 5.3.5, this is an algorithm with O(D) execution time, so
is feasible only for discriminants up to 106 , say. Hence, as in the imaginary
case, it is necessary to find better methods.

For future reference, let us determine the exact correspondence between
the action of p and the continued fraction expansion of a quadratic irrational
ity.

In Section 5.2 we have defined maps ¢FI and r/JrQ, and by composition,
Theorem 5.2.4 tells us that the map ¢FQ from I to Q x Z/2Z defined by

(-b + ...(J5 0)

¢FQ(a, b, c) = 2lal , sign(a)

is an isomorphism. (Note the absolute value of a, coming from the necessity
of choosing an oriented basis for our ideals.)

From this, one checks immediately that iff = (a, b, c) is reduced, and if
¢FQ(/) = (r, s), then

where by abuse of notation we still use the notation ¢ FQ for the map at the
level of forms and not at the level of classes of forms modulo r 00 •

For p- 1 we define

(b + .Ji5 0) 1/JFQ(a, b, c) = 2lal , s1gn(a) .

266 5 Algorithms for Quadratic Fields

Then, iff= (a,b,c) is reduced and 1/JFQ(/) = (r',s), we have

Thus the action of p and p-1 on reduced forms correspond exactly to
the continued fraction expansion ofT and r' = -a(r) respectively, with in
addition a ±1 variable which gives the parity of the number of reduction steps.

In addition, since p and p-1 are inverse maps on reduced forms, we obtain
as a corollary of Proposition 5.6.6 the following.

Corollary 5.6. 7. Let T = (-b + VD) / (2lal) corresponding to a reduced
quadmtic form (a, b, c). Then the continued fraction expansion ofT is purely
periodic, and the period of the continued fraction expansion of -a(T) =
(b + VD)/(2Ial) is the reverse of that ofT.

5.6.2 Computing Class Numbers Using Analytic Formulas

We will follow closely Section 5.3.3. The definition of Lv(s) is the same, but
the functional equation is slightly different:

Proposition 5.6.8. Let D be a positive fundamental discriminant, and define

This series converyes for Re(s) > 1, and defines an analytic function which
can be analytically continued to the whole complex plane to an entire function
satisfying

Av(1- s) = Av(s),

where we have set

Av(s) = (~J12
r(;)Lv(s).

Note that the special case D = 1 of this proposition (which is excluded
since it is not the discriminant of a quadratic field) is still true if one adds
the fact that the function has a simple pole at s = 1. In that case, we simply
recover the usual functional equation of the Riemann zeta function. The link
with the class number and the regulator is as follows. (Recall that the regulator
R(D) is in our case the logarithm of the unique generator greater than 1 of
the torsion free part of the unit group.)

Proposition 5.6.9. If D is a positive fundamental discriminant, then

5.6 Class Groups of Real Quadratic Fields 267

L (1) = 2h(D)R(D)
D VJ5 .

Note that as in the imaginary case, these results are special cases of The
orem 4.9.12 using the identity (K(s) = ((s)Lv(s) forK= Q(vD).

Also, as in the imaginary case, it is not very reasonable to compute Lv(1)
directly from this formula since its defining series converges so slowly. However,
a suitable reordering of the series gives the following:

Corollary 5.6.10. If D is a positive fundamental discriminant, then

l(D-1)/2J D
h(D)R(D) =- L (-) lnsin (rn).

r=l r D

As usual, this kind of formula, although a finite sum, is useless from a
computational point of view, and is worse than the method of reduced forms,
although maybe slightly simpler to program. If we also use the functional
equation we obtain a considerable improvement, leading to a complicated but
much more efficient formula:

Proposition 5.6.11. If D is a positive fundamental discriminant, then

where erfc(x) is the complementary error function (see Propositions 5. 3.14
and 5.3.15 }, and E 1(x) is the exponential integral function defined by

E1(x)= !:.._dt. 100 -t

X t

Note that the function E 1 (x) can be computed efficiently using the fol
lowing formulas.

Proposition 5.6.12.

(1) We have for all x

xk
E1(x) = -'Y -ln(x) + 2)-1)k-1 - 1-,

k;?:l k.k

where ')' = 0.57721566490153286 ... is Euler's constant, and this should
be used when x is small, say x ~ 4.

268

(2) We have for all x > 0

5 Algorithms for Quadratic Fields

1 - -------'1=-------
2 + X - __ ____c1_·....::2-:---::--

4+x---2_·3 __

6+x-

and this should be used for x large, say x 2::: 4.

Implementation Remark. The remark made after Proposition 5.3.15 is also
valid here, the general formula being here

These results show that the series given in Proposition 5.6.11 converges
exponentially, and since h(D) is an integer and R(D) has been computed
beforehand, it is clear that the computation time of h(D) by this method is
O(D1/2+f) for any € > 0. As in the case D < 0 it would be easy to give an
upper bound for the number of terms that one must take in the series. This
is left as an exercise for the reader. See also Exercise 28 for a way to avoid
computing the transcendental functions erfc and E1.

5.6.3 A Heuristic Method of Shanks

An examination of the heuristic conjectures of [Coh-Len1] (see Section 5.10)
shows that one must expect that, on average, the class number h(D) will
be quite small for positive discriminants, in contrast to the case of negative
discriminants. Hence, one can use the following method, which is of course not
an algorithm, but has a very good chance of giving the correct result quite
quickly.

Heuristic Algorithm 5.6.13 (Class Number for D > 0). Given a positive
fundamental discriminant D, this algorithm computes a value which has a pretty
good chance of being equal to the class number h(D). As always, we assume that
the regulator R(D) has already been computed. We denote by Pi the ith prime
number.

1. [Regulator small?] If R(D) < D 114 , then output a message saying that the
algorithm will probably not work, and terminate the algorithm.

2. [Initialize] Set h1 +-- ...!D/(2R(D)), h +-- 0, c +-- 0, k +-- 0.

3. [Compute block] Set

5.7 Computation of the Fundamental Unit and of the Regulator 269

((*))-1
h1 <-- h1 II 1 - -·- ,

500k<i$500(k+1) Pi

m <-- l h1l, k <-- k + 1.

4. [Seems integral?] If lm- h1l > 0.1 set c <-- 0 and go to step 3.

5. [Seems constant ?]If m =/= h, seth <-- m and c <-- 1 and go to step 3. Otherwise,
set c <-- c + 1. If c ::; 5 go to step 3, otherwise output h as the tentative class
number and terminate the algorithm.

The reason for the frequent success of this algorithm is clear. Although
we use the slowly convergent Euler product for Lv(l), if the regulator is not
too small, the integer m computed in step 3 has a reasonable chance of being
equal to the class number. The heuristic criterion that we use, due to Shanks,
is that if the Euler product is less than 0.1 away from the same integer h
for 6 consecutive blocks of 500 prime numbers, we assume that h is the class
number. In fact, assuming GRH, this heuristic method can be made completely
rigorous. I refer to [Mol-Wil] for details. In practice it works quite well, except
of course for the quite rare cases in which the regulator is too small.

We still have not given any method for computing the structure of the
class group. Before considering this point, we now consider the question of
computing the regulator of a real quadratic field.

5.7 Computation of the Fundamental Unit and of the
Regulator

As we have seen, reduced forms are grouped into h(D) cycles under the per
mutation p. We will see that one can define a distance between forms which,
in particular, has the property that the length of each cycle is the same, and
equal to the regulator. Note that this is absolutely not true for the nai:ve
length defined as the number of forms.

5.7.1 Description of the Algorithms

The action of p and p- 1 corresponding to the continued fraction expansion of
the quadratic irrationals T and -a(T) respectively, it is clear that we must be
able to compute the fundamental unit and the regulator from these expansions.
From Corollary 5.6.7, we know that one of these expansions will be reverse of
the other, so we can choose as we like between the two.

It is slightly simpler to use the expansion of -a(r), and this leads to the
following algorithm whose validity will be proved in the next section. Note
that in this algorithm we assume a > 0, but it is easy to modify it so that it
stays valid in general (Exercise 20).

270 5 Algorithms for Quadratic Fields

Algorithm 5.7.1 (Fundamental Unit Using Continued Fractions). Given
a quadratic irrational T = (-b + VD)/(2a) where 4a I (D- b2) and a > 0,
corresponding to a reduced form (a,b, (b2 - D)/(4a)), this algorithm computes
the fundamental unit c of IQ(VD) using the ordinary continued fraction expansion
of -a(r).

1. [Initialize] Set u1 +-- -b, u2 +-- 2a, v1 +-- 1, v2 +-- 0, p +-- b and q +-- 2a.
Precompute d +-- l VDJ.

2. [Euclidean step] Set A+-- l(P + d)jqj, then in that order, set p +-- Aq- p and
q +-- (D- p2)jq. Finally, set t +-- Au2 + u1, u1 +-- u2. u2 +-- t, t +-- Av2 + v1.
v1 +-- v2. and v2 +-- t.

3. [End of period?] If q = 2a and p = b (mod 2a), set u +-- lu2/al, v +-- lv2/al
(both divisions being exact), output c +-- (u + vVD)/2, and terminate the
algorithm. Otherwise, go to step 2.

As will be proved in the next section, the result of this algorithm is the
fundamental unit, independently of the initial reduced form. Hence, the sim
plest solution is to start with the unit reduced form, i.e. with T = (-b+VD)/2
and b = d if d = D (mod 2), b = d- 1 otherwise, where as in the algorithm
d = lVDJ.

Also, note that the form corresponding to (p + VD)/q at step i is

If we had wanted the exact action of p-1 , we would have to put q +-- (p2-D)fq
instead of q +-- (D- p2) / q in step 2 of the algorithm, and then q would alternate
in sign instead of always being positive.

Now the continued fraction expansion of the quadratic irrational corre
sponding to the unit reduced form is not only periodic, but in fact symmetric.
This is true more generally for forms belonging to ambiguous cycles, i.e. forms
whose square lie in the principal cycle (see Exercise 22). Hence, it is possible
to divide by two the number of iterations in Algorithm 5. 7.1. This leads to
the following algorithm, whose proof is left to the reader.

Algorithm 5.7.2 (Fundamental Unit). Given a fundamental discriminant
D > 0, this algorithm computes the fundamental unit of Q(VD).

1. [Initialize] Set d +-- l VDJ. If d = D (mod 2), set b +-- d otherwise set b +-

d -1. Then set u1 +-- -b, u2 +-- 2, v1 +-- 1, v2 +-- 0, p +-- b and q +-- 2.

2. [Euclidean step] Set A+-- l(P + d)jqj, t +-- p and p +-- Aq- p. If t = p and
v2 =/= 0, then go to step 4, otherwise set t +-- AU2 + u1 , u1 +-- u2, u2 +-- t,
t +-- Av2 + Vt. v1 +-- v2. and v2 +-- t, t +-- q, q +-- (D- p2)fq.

3. [Odd period?] If q = t and v2 =!= 0, set u +-- l(u1u2 + Dv1v2)/ql. v +-

I(UtV2 +u2v1)/ql (both divisions being exact), output c +-- (u+vVD)/2 and
terminate the algorithm. Otherwise, go to step 2.

5.7 Computation of the Fundamental Unit and of the Regulator 271

4. [Even period] Set u +-- l(u~ + v~D)fql. v +-- 12u2v2/ql (both divisions being
exact), output e +-- (u + v.Ji5)/2 and terminate the algorithm.

The performance of both these algorithms is quite reasonable for discrim
inants up to 106 . It can be proved that the number of steps is O(D112+€)
for all f > 0. Furthermore, all the computations on p and q are done with
numbers less than 2VJ5, hence of reasonable size. The main problem is that
the fundamental unit itself has coefficients u and v which are of unreasonable
size. One can show that In u and In v can be as large as VJ5. Hence, although
the number of steps is O(D1/2+£), this does not correctly reflect the practical
execution time, since multi-precision operations become predominant. In fact,
it is easy to see that the only bound one can give for the execution time itself
is O(Dl+€).

The problem is therefore not so much in computing the numbers u and v,
which do not make much sense when they are so large, but in computing the
regulator itself to some reasonable accuracy, since after all, this is all we need
in the class number formula. It would seem that it is not possible to compute
R(D) without computing e exactly, but luckily this is not the case, and there
is a variant of Algorithm 5.7.2 (or 5.7.1) which gives the regulator instead of
the fundamental unit. This variant uses floating point numbers, which must be
computed to sufficient accuracy (but not unreasonably so: double precision,
i.e. 15 decimals, is plenty). The advantage is that no numbers will become
large.

5.7.2 Analysis of the Continued Fraction Algorithm

To do this, we must analyze the behavior of the continued fraction algorithm,
and along the way we will prove the validity of Algorithm 5.7.1. We assume
for the sake of simplicity that a > 0 (hence c < 0), although the same analysis
holds in general.

Call Pi, qi, Ai, Ul,i, u2,i, v1,i, v2,i the quantities occurring in step i of the
algorithm, where the initializations correspond to step 0, and set for i ~ -1,
ai = ul,i+l• bi = Vl,i+l· Then we can summarize the recursion implicit in the
algorithm by the following formulas:

For all i ~ 0, Ul,i = ai-17 u2,i = ai, vl,i =bi-b v2 ,i = bi. Furthermore:
Po= b, qo = 2a, a-1 =- b, ao = 2a, b_l = 1, bo = 0 (recall that a= 1 in

Algorithm 5.7.2), and fori~ 0:

Ai = l(Pi + d)fqd, Pi+l = Aiqi- Pi, qi+l = (D- P~+l)/qi, ai+l =
Aiai +ai-l, bi+l = Aibi + bi-1·

By the choice of b, we know that q0 I D-p~, and if by induction we assume
that all the above quantities are integers and that qi 1 D - p~, one sees that
D - p~+l = D - p~ = 0 (mod qi), hence qi+1 is an integer. In addition, we
clearly have qi+l I D- p~+l since the quotient is simply qi, thus proving our
claim by induction. We also have qi+l- qi-1 = (D- p~+l)fqi- (D- pnfqi =
(pi- Pi+l)(Pi + Pi+l)/qi, hence we obtain the formula

272 5 Algorithms for Quadratic Fields

which is in general computationally simpler than the formula used in the
algorithms.

That the algorithms above correspond to the continued fraction expansion
of (b+..{i5)j(2a) (where in Algorithm 5.7.2 it is understood that we take a= 1)
is quite clear. Set (i = (pi + ..{i5)jqi. Then we have (o = (b + ..{i5)j(2a),
Ai = l (d , and hence

thus giving the above formulas.
This is of course nothing other than the translation of the formula giving

t/JFQ(p-1(!)) in terms of '1/JFQ(/).

Note that in practice the computations on the pair (p, q) should be done
in the following way: use three extra variables r and Pl, q1. Replace steps 1
and 2 of Algorithm 5.7.2 by

1'. [Initialize) Set d +--- l..{i5J. If d = D (mod 2), set b +--- d otherwise set b +

d - 1. Then set u1 +--- -b, u2 +--- 2, v1 +--- 1, v2 +--- 0, p +--- b and q +--- 2,
q1 +--- (D- p2)jq.

2'. [Euclidean step) Let p + d = qA + r with 0 ::; r < q be the Euclidean division
of p + d by q, and set Pl +--- p, p +--- d- r. If Pl = p and v2 =/- 0, then go to
step 4, otherwise set t +--- Au2 +ut. u1 +--- u2. u2 +--- t, t +--- Av2 +vt. v1 +--- v2.
and v2 +--- t, t +--- q, q +--- q1- A(p- pi), q1 +--- t.

This has the same effect as steps 1 and 2 of Algorithm 5. 7.2, but avoids
one division in each loop. Note that this method can also be used in general.

Now that we have seen that we are computing the continued fraction
expansion of (b + ..{i5)j(2a), we must study the behavior of the sequences ai
and bi. This is summarized in the following proposition.

Proposition 5. 7 .3. With the above notations, we have

(1)
ai+l + bi+l ..(i5 Pi+l + ..(i5

ai + bi ..(i5 qi

(2)

(3)

(4)

5.7 Computation of the Fundamental Unit and of the Regulator

(5)
v'D _ ai(i + ai-l

- bi(i + bi-1 ,

where as before (i = (pi + v'D) / Qi.

273

Proof. Denote real conjugation .Ji5 f-+ -v'D in the field Q(v'D) by a, and
set Pi= (Pi+ v'D)/Qi-1· Then Pi+l = Ai -a((i) and since (Hl = 1/((i -Ai)
we have by applying a,

Therefore Pi+l = Ai- a((i) = Ai + 1/ Pi· On the other hand, to be compatible
with the recursions, we must define q_ 1 = (D- b2)/(2a). Thus we see that
Po= 2a/(.Ji5- b) (which comes also from the formula Pi= -1/a((i)). If we
set ai = ai + biv'D, the recursions show that ai+l = Aiai +ai-l· Therefore if
we set f3i = adai-b we have f3Hl = Ai + 1/ f3i, and this is the same recursion
satisfied by Pi· Since we have f3o = 2a/(.Ji5- b) = p0 , this shows that f3i = Pi
for all i, thus showing (1).

Formula (2) is a standard formula in continued fraction expansions: we
have the matrix recursion

hence formula (2) follows trivially on taking determinants and noticing that
aoL1- a-1bo = 2a.

To prove (3), we take the norm (with respect to Q(v'D)/Q) of formula
(1). We obtain:

hence by multiplying out we obtain

showing (3).
Finally, to prove (4) we take the trace (with respect to Q(v'D)/Q) of

formula (1). We obtain:

ai+l + bi+l v'D ai+l - bi+1v'D 2Pi+l
ai + bi .Ji5 + ai - bi .Ji5 = ---q;- '

hence grouping and using (3) we get

274 5 Algorithms for Quadratic Fields

and this proves (4).
Formula (5) follows easily from (1) and its proof is left to the reader. D

Corollary 5.7.4. Set c = (b2 - D)/(4a), soD = b2 - 4ac. Define two se
quences Ci and di by c_l = 0, Co = 1, ci+l = Aici + ci-1, and d_t = -2c,
do = b and di+l = Adi + di-1· Then the five formulas of Proposition 5. 7.3
hold with (a,ai,bi) replaced by (c,di,Ci)·

The proof is easy and left to the reader.

Now for simplicity let us consider the case of Algorithm 5.7.1. Let i = k
be the stage at which we stop, i.e. for which qk = 2a and Pk = b (mod 2a).
Then we output c = (lakl + lbkiVD)/I2al. We are going to show that this is
indeed the correct result. First, I claim that c is a unit. Indeed, notice that
using (3), the norm of cis equal to (-1)11:. Hence, to show that cis a unit, it
is only necessary to show that it is an algebraic integer. Moreover, since its
norm is equal to ±1, hence integral, we must only show that the trace of c is
integral, i.e. that ak = 0 (mod a).

For this, we use the sequence ci defined in Corollary 5.7.4. It is clear that
we have ai = 2aci- bbi. From Proposition 5. 7.3 (3) an easy computation gives

bk(cbk-bck)=a((-1)kqk -c~)=O (moda),
2a

since qk = 2a. Similarly, since Pk = b (mod 2a), from (4) a similar computa
tion gives

If we set oi = cbi - bci, it is clear by induction that

From the two congruences proved above and the existence of u and v such
that uok + VOk-1 = gcd(b, c), it follows that

bk gcd(b, c) = 0 (mod a).

But since D is a fundamental discriminant, the quadratic form (a, b, c) is
primitive, hence gcd(a, b, c) = 1 = gcd(gcd(b, c), a), so we obtain bk = 0
(mod a), hence also ak = 2ack- bbk = 0 (mod a) as was to be shown.

Now that we know that c is a unit, we will show it is the fundamental unit.
Since clearly c > 1, this will follow from the following more general result. We
say that an algebraic integer a is primitive if for any integer n, ajn is an
algebraic integer only for n = ±1. Then we have:

Proposition 5. 7 .5. Let us keep all the above notations. Let N ~ 1 be a
squarejree integer such that gcd(a, N) = 1. Assume that 2laiN < JD.

5.7 Computation of the FUndamental Unit and of the Regulator 275

Then the solutions (A, B) of the Diophantine equation

2 2 "hA dA+Bv'D . ·t· A - B D = ±4N, v.nt > 0, B > 0 an 2 pnmt we

are given by (A, B) = (lanfal, Ibn/a!), for every n such that Qn = 2laiN and
Pn = b (mod 2a).

Proof We have proven above that e was an algebraic integer using only Qk = 0
(mod 2a) and not precisely the value Qk = 2a. This shows that if the conditions
of Proposition 5.7.5 are satisfied, we will have a I an and a I bn, and since
by Proposition 5.7.3 (3) we have a~- b~D = ±2aqn = ±4a2N, the pair
(A, B) = (lan/al, Ibn/a!) is indeed a solution to our Diophantine equation
with A > 0, B > 0, and since .N((an + bnv'D)/(2a)) = ±N and that N is
squarefree, (A+ Bv'D)/2 is primitive.

We must now show the converse. Assume that A 2 - B 2 D = 4sN with
s = ±1. Let r 1 = -a(r) = (b+ v'15)/(2a) as in Algorithm 5.7.1. Then an easy
calculation gives

I I A+ bB I I 4N I
r - 2aB = 2aB21v'D +A/BI .

Now, A/B = JD ± 4NjB2 ~ JD -4NjB2, hence

lr' _ (A+ bB)/21 < 4N
aB - 2laiB2(v'IJ+JD-4NjB2).

We also have the following lemma whose proof is left to the reader. (See [H-W]
for a slightly weaker version, but the proof is the same, see Exercise 21.)

Lemma 5.7.6. If p and q are integers such that

l r~-!!..~< 1
q - q(max(2q- 1, 2))

then p / q is a convergent in the continued fraction expansion of r 1 •

Consider first the case Ia I > 1. One easily checks that 4a2 N 2 - 4N / B 2 >
(2la1N- 2N/B)2 is equivalent to 2laiBN > N + 1 which is clearly true.
Hence, since v'D > 2laiN, we have v'D+ JD- 4NjB2 > 4laiN- 2N/B and
therefore

I I (A+bB)/21 1
'T - < .,......,-=-:-..,......,..,-----:-

aB laiB(2IaiB- 1).

Since b = D (mod 2) and A = BD (mod 2), (A+ bB)/2 is an integer, and
so we can apply the lemma. This shows that (A+;:>I2 is a convergent to
r 1• A similar proof applies to the case lal = 1, except when B = 1. But in

276 5 Algorithms for Quadratic Fields

the case lal = B = 1, we have D - 2ffi < A2 < D + 2ffi hence either
ffi-1 <A< ffi + 1, and hence IT'- (A +b)/21 < 1/2 and we can conclude
as before that (A+ b) /2 is a convergent, or else D- 2ffi < A 2 < D- 2ffi + 1
which implies that T 1 - 1 < (b + A) /2 < T 1 hence (b + A)/2 = l T 1 J is also a
convergent to T 1•

By definition, the convergents to T 1 are en/bn, and the equation (A +
bB)/(2aB) = en/bn is equivalent to A/B = anfbn.

Now we have the following lemma:

Lemma 5.7.7. We have for all i,

and

is a primitive algebraic integer.

Proof We know that

ai + bi...[i5
2(bi, a)

d b(b b) ()i-1Pi-b an iCi-1- Ci-1 = -1 - 2--aCiCi-1

hence as above bi(b, c) = 0 (mod ((Pi- b)/2, qi/2, a)), and since (a, b, c) = 1,
we obtain ((Pi- b)/2,qi/2,a) I (bi,a). Conversely, the same relations show
immediately that (bi,a) I ((Pi- b)j2,qi/2,a), thus giving the first formula of
the lemma. For the second, we note that ai = 2aci- bbi, hence (bi, a) I ai, and
since by Proposition 5.7.3 (3) at- btD = (-1)i2aqi, we see that 4(bi,a) 2 I
at - bt D since we have proved that (bi, a) I qi/2, and these two divisibility
conditions show that a= (ai + biffi)/(2(bi, a)) is an algebraic integer.

Let us show that it is primitive. Note first that since ai = 2aci - bbi
and (ci, bi) = 1, we have (ai, bi) = (bi, 2a). This shows that if we write a =
(A'+ B' ffi)/2, we have (A', B') = (bi, 2a)/(bi, a) and therefore (A', B') I 2. If
D = 1 (mod 4), it can easily be seen that this is the only required condition
for primitivity. If D = 0 (mod 4), we must show that A' is even and that
(A' /2, B') = 1. In this case however, b = D = 0 (mod 2), hence ai/2 =
aci- (b/2)bi showing that A' = ai/(bi, a) is even, and (ai/2, bi) = (a, bi) so
(A' /2, B') = 1 as was to be shown. 0

Now that we have this lemma, we can finish the proof of Proposition 5. 7 .5.
We have shown that A/B = anfbn, and since (A+ Bffi)/2 was assumed
primitive, we obtain from the lemma the equalities A = lanl/(bn, a), B =
lbnl/(bn, a). Plugging this in the Diophantine equation gives, using Proposition
5.7.3 (3), ±4N = 2aqnf(bn,a) 2 or in other words since it is clear by induction
that aqi > 0 for all i:

5.7 Computation of the Fundamental Unit and of the Regulator 277

N=-a- Qn/2

(bn, a) (bn, a) ·

Since we have assumed (N, a) = 1, it follows that aj(bn, a) = ±1, so that
a I bn, hence also a I an, and hence Qn = 2aN, thus finishing the proof of
Proposition 5.7.5. D

Although we have proved a lot, we are still not finished. We need to show
that we do indeed obtain the fundamental unit and not a power of it for
every reduced (a, b, c), and not simply for 2lal < ..j[j. To do this, it would
be necessary to relax the condition 2la!N < ..j[5 to laiN < ..j[5 for instance,
but this is false as can easily be seen (take for example D = 136, (a, b, c) =
(5, 6, -5) and N = 2. This is only a random example). In the special case
N = 1 however, which is the case we are most interested in, we can prove our
claim by using the symmetry between a and c, i.e. by also using Corollary
5. 7.4. First, we note the proposition which is symmetric to Proposition 5. 7.5.

Proposition 5. 7.8. Let us keep all the above notations, and, in particu
lar, those of Corollary 5. 1.4. Let N :::: 1 be a squarefree integer such that
gcd(c, N) = 1 and 2lc!N < ..j[j.

Then the solutions (A, B) of the Diophantine equation

2 2 . h A B d A+ B..j[j . ·t· A - B D = ±4N, wzt > 0, > 0 an 2 przmz zve

are given by (A, B) = (ldnfcl, ienfci), for every n such that Qn = 2lc!N and
Pn = -b (mod 2c).

The proof is identical to that of Proposition 5.7.5, but uses the formulas
of Corollary 5. 7.4 instead of those of Proposition 5. 7.3. D

Now we can prove:

Proposition 5. 7.9. The conclusion of Proposition 5. 7.5 is valid for N = 1,
with the only needed condition being that (a, b, c) is a reduced quadratic form.

Proof. If Ia! < ..j[5 /2, then the result follows from Proposition 5. 7.5. Assume
now Ia! > Vi5/2. By Proposition 5.6.3 (2), we have lei< .ff5J2, hence we can
apply Proposition 5.7.8. We obtain (A, B)= (ldnfci, lcnfci) for ann such that
Pn = -b (mod 2c) and Qn = 2lc!. This implies that Pn+l = AnQn- Pn = b
(mod 2c) and furthermore, by definition of An, that ..j[5 -2!cl < Pn+l < .ff5.
Hence, since lei < ..j[5 /2 and (a, b, c) is reduced, we have Pn+l = b, so Qn+l =
2la!. Now from Proposition 5.7.3 and Corollary 5.7.4, we obtain immediately
that

dn+l + Cn+l VD dn + Cn ...fl5
an+l + bn+l ...fl5 - an + bn ...fl5 '

278 5 Algorithms for Quadratic Fields

hence by induction

=

5. 7.3 Computation of the Regulator

We have already mentioned that the fundamental unit c itself can involve
huge coefficients, and that what one usually needs is only the regulator to a
reasonable degree of accuracy. Note first that for all i ~ 1, we have ai/bi > 0.
This is an amusing exercise left to the reader (hint: consider separately the
four cases a> 0 and a< 0, and 2lal < .,fl5, 2lal > VJ5). Hence we have

so by Proposition 5.7.3,

R(D) = ~ ln (Pi+l + .,fl5) = t ln (Pi + .,fl5),
i=O lqil i=l lqil

since qk = qo = 2a, and since the Pi and lqil are always small (less than
2VJ5}, this enables us to compute the regulator to any given accuracy without
handling huge numbers. The computation of a logarithm is a time consuming
operation however, and hence it is preferable to write

R(D) = ln (rr Pi + VI5).
i=l lqil

the product being computed to a given numerical accuracy. In most cases,
this method will again not work, because the exponents of the floating point
numbers become too large. The trick is to keep the exponent in a separate
variable which is updated either at each multiplication, or as soon as there
is the risk of having an exponent overflow in the multiplication. Note that
we have the trivial inequality (Pi+ VJ5)/Iqil < .,fl5, hence exponent overflow
can easily be checked. This leads to the following algorithm, analogous to
Algorithm 5.7.1.

-b+VI5
Algorithm 5.7.10 (Regulator). Given a quadratic irrational r= 2a

where 4a I (D- b2) and a > 0, corresponding to a reduced form (a, b, (b2 -

5.8 The Infrastructure Method of Shanks 279

D)/(4a)), this algorithm computes the regulator R(D) of Q(VD) using the or
dinary continued fraction expansion of -cr(r).

1. [Initialize] Precompute f t-- VD to the desired accuracy, and set d t-- lfJ,
e t-- 0, R t-- 1, p t-- b, q t-- 2a, and q1 t-- (D- p2)fq. Finally, let 2L be the
highest power of 2 such that 2L f does not give an exponent overflow.

2. [Euclidean step] Let p + d = qA + r with 0 ~ r < lql be the Euclidean division
of p + d by q, and set Pl t-- p, p t-- d- r, t t-- q, q t-- Ql - A(p- Pl), Ql t-- t
and R t-- R(p+ f)fq. If R ~ 2L, set R t-- R/2L, e t-- e + 1. .

3. [End of period?] If q = 2a and p = b (mod 2a), output R(D) t--lnR+eLln2
and terminate the algorithm. Otherwise, go to step 2.

In the case where we start with the unit form, we can use the symmetry
of the period to obtain an algorithm similar to Algorithm 5.7.2. We leave this
as an exercise for the reader (Exercise 23). We can also modify the algorithm
so that it works for reduced forms with a < 0.

The running time of this algorithm is O(D1/2+E) for all e > 0, but here this
corresponds to the actual behavior since no multi-precision variables are being
used. Although this is reasonable, we will now see that we can adapt Shanks's
baby-step giant-step method to obtain a O(D1/4+E) algorithm, bringing down
the computation time to one similar to the case of imaginary quadratic fields.

Remark. If the regulator is computed to sufficient accuracy and is not too
large, we can recover the fundamental unit by exponentiating. It is clear that
it is impossible to find a sub-exponential algorithm for the fundamental unit
in general, since, except when the regulator is very small, it already takes
exponential time just to print it in the form e = a + bVD. It is possible how
ever to write down explicitly the fundamental unit itself if we use a different
representation, which H. Williams calls a compact representation. We will see
in Section 5.8.3 how this is achieved.

5.8 The Infrastructure Method of Shanks

5.8.1 The Distance Function

The fundamental new idea introduced by Shanks in the theory of real
quadratic fields is that one can introduce a distance function between quadratic
forms or between ideals, and that this function will enable us to consider the
principal cycle pretty much like a cyclic group. The initial theory is explained
in [Sha3], and the refined theory which we will now explain can be found in
[Lenl].

Definition 5 .8.1. Let 0 be the quadmtic order of discriminant D, and denote
as usual by cr real conjugation in 0. If 11 and b are fmctional ideals of 0, we

280 5 Algorithms for Quadratic Fields

define the distance of a to b as follows. If a and b are not equivalent {modulo
principal ideals}, the distance is not defined. Otherwise, write

b = -ya

for some 'Y E K. We define the distance 8(a, b) by the formula

8(a, b) = ~ ln I CJ~'Y) I
where 8 is considered to be defined only modulo the regulator R (i.e. 8 E

R.JRZ).

Note that this distance is well defined (modulo R) since if we take another
-y' such that b = -y'a, then -y' = e-y where e is a unit, hence the distance does
not change modulo R. Note also that if a is multiplied by a rational number,
its distance to any other ideal does not change, hence in fact this distance
carries over to the set I of ideal classes defined in Section 5.2. This remark
will be important later on.

In a similar manner, we can define the distance between two quadratic
forms of positive discriminant D as follows.

Definition 5.8.2. Let f and g be two quadratic forms of discriminant D,
and set (a,s) = ¢FI(f), (b,t) = ¢FI(g) as in Section 5.2, where s,t = ±1. If
I and g are not equivalent modulo PSL2(Z), the distance is not defined. If I
and g are equivalent, then by Theorem 5.2.9 there exists 'Y E K such that

b = -ya and t = s · sign(N(-y)).

We then define as above

8(/,g) = !lnl_]_l
2 CJ('Y)

where 8 is now considered to be defined modulo the regulator in the narrow
sense R+, i.e. the logarithm of the smallest unit greater than 1 which is of
positive norm.

Note once again that this distance is well defined, but this time modulo
R+, since if we take another -y' we must have -y' = q with e a unit of positive
norm. By abuse of notation, we will again denote by8(!, g) the unique repres
entative belonging to the interval [0, R+[, and similarly for the distance bet
ween ideals.

Ideals are usually given by a Z-basis, hence it is not easy to show that
they are equivalent or not. Even if one knows for some reason that they are, it
is still not easy to find a 'Y E K sending one into the other. In other words, it
is not easy to compute the distance of two ideals (or of two quadratic forms)
directly from the definition.

5.8 The Infrastructure Method of Shanks 281

Luckily, we can bypass this problem in practice for the following reason.
The quadratic forms which we will consider will almost always be obtained
either by reduction of other quadratic forms (using the reduction step p a
number of times), or by composition of quadratic forms. Hence, it suffices to
give transformation formulas for the distance 8 under these two operations.

Composition is especially simple if one remembers that it corresponds to
ideal multiplication. If, fork= 1, 2, we have bk = /'kak, then b1b2 = /'1/'2a1a2.
This means that (before any reduction step), the distance function 8 is exactly
additive

8(b1b2, n1a2) = 8(b1, at)+ 8(b2, a2)

when all distances are defined. This is true for the distance function on ideals
as well as for the distance function between quadratic forms since 6 does not
change when one multiplies an ideal with a rational number.

In the case of reduction, it is easier to work with quadratic forms. Let
f = (a, b, c) be a quadratic form of discriminant D. Then

(-b+VD ~
¢FI(f) = aZ + 2 Z, sign(a)r

Furthermore, p(f) = (c,b',a') where b' =.-b (mod 2c), hence

(b+VD ~
¢FI(p(f)) = cZ + 2 Z,sign(c))'

since changing b' modulo 2c does not change the ideal. Now clearly

where

Hence we obtain

'7J b+VD'7J ('7J -b+VD'7J)
cu... + 2 u... = I' au... + 2 u...

b+VD
I'=-,---

2a

Proposition 5.8.3. If f = (a, b, c) is a quadratic form of discriminant D,
then

Of course, the map ¢IF of Section 5.2 enables us also to compute distances
between ideals.

If we have two quadratic forms f and g such that g = pn(f) for n not too
large, then by using the formula

282 5 Algorithms for Quadratic Fields

n

o(f,g) = Lo(pi-l(f),pi(f))
i=l

and this proposition, we can compute the distance off and g. When n is large
however, this formula, which takes time at least O(n), becomes impractical.
This is where we need to use composition.

For simplicity, we now assume that our forms are in the principal cycle,
i.e. are equivalent to the unit form which we denote by 1. We then have the
following proposition

Proposition 5.8.4. Let !1 and h be two reduced forms in the principal cycle,
and let 1 be the unit form. Then if we define g = h · h by the composition
algorithm given in Section 5.4.2, g may not be reduced, but let h be a {non
unique) form obtained from g by the reduction algorithm, i.e. by successive
applications of p. Then we have

o(1, h)= o(1, 11) + o(1, h)+ o(g, h),

and furthermore

lo(g,h)l < 2ln(D).

This proposition follows at once from the property that o is exactly addi-
tive under composition (before any reductions are made). D

If we assume that we know 6(1, 11) and 6(1, /2), then it is easy to compute
6(1, h) since the number of reduction steps needed to go from g to fa is very
small. More precisely, it can be proved (see [Lenl]) that 6(/, p2(/)) > ln2,
hence the number of reduction steps is at most 4ln(D)/ln2.

Important Remark. In the preceding section we have computed the regula
tor by adding ln((Pi+vD)/Iqil) over a cycle (or a half cycle). This corresponds
to choosing a modified distance such that 6'(/, p(f)) = ln((b + vD)/(2Iai)),
and this clearly corresponds to defining

o'(a, b)= ln 11'1

instead of o(a, b) = ~ ln 11' /a('"Y)I if b =')'a. This distance, which was the initial
one suggested by Shanks, can also be used for regulator computations since
it is also additive. Note however that it is no longer defined on the set I of
ideals modulo the multiplicative action of Q*, but on the ideals themselves. In
particular, with reference to Lemma 5.4.5, we must subtract ln(d) to the sum
of the distances of h and 12 before starting the reduction of our composed
quadratic form (A,B,C). It also introduces extra factors when one computes
the inverse of a form. For example, this would introduce many unnecessary
complications in Buchmann's sub-exponential algorithm that we will study
below (Section 5.9).

5.8 The Infrastructure Method of Shanks 283

On the other hand, although Shanks's distance is less natural, it is com
putationally slightly better since it is simpler to multiply by (b + Jl5)/(2lal)
than by l(b + JD)/(b- Jl5)1. Note also that Proposition 5.8.4 is valid with
8 replaced by 8', if we take care to subtract the ln(d) value after composition
as we have just explained.

Hence, for simplicity, we will use the distance 8 instead of Shanks's 8',
except in the baby-step giant-step Algorithm 5.8.5 where the use of 8' gives a
slightly more efficient algorithm.

5.8.2 Description of the Algorithm

We consider the set S of pairs (!, z), where f is a reduced form of discriminant
Din the principal cycle, and z = 8(1, f). We can transfer the action of p to S
by setting p(f, z)=(p(f), z + ln l(b + JD)/(b- JD)I/2) iff= (a, b, c), using
the above notations. Furthermore, we can transfer the composition operation
by setting

(fr, zl) · (/2, Z2) = (/J, Z1 + Z2 + 8(g, /J)),

using the notations of Proposition 5.8.4. Similar formulas are valid with 8
replaced by 8'. Recall that h is not uniquely defined, but this does not matter
for our purposes as long as we choose h not too far away from the first reduced
form that one meets after applying p to h · f2.

Using these notations, we can apply Shanks's baby-step giant-step method
to compute R(D). Indeed, although the principal cycle is not a group, because
of the set S we can follow the value of 8 through composition and reduction.
This means that Shanks's method allows us to find the regulator in O(D114+<)
steps instead of the usual O(D112+<). If, as for negative discriminants, we also
use that the inverse of a form (a, b, c) is a form equivalent to (a, -b, c), i.e.
(a, r(-b, a), (r(-b, a) 2 - D)f4a), we obtain the following algorithm, due in
essence to Shanks, and modified by Williams. Note that we give the algorithm
using Shanks's distance 8' instead of 8 since it is slightly more efficient, and
also we use the language of continued fractions as in Algorithm 5.7.10, in other
words, instead of (a, b, c) we use (p, q) = (b, 2lal).

Algorithm 5.8.5 (Regulator Using Infrastructure). Given a positive funda
mental discriminant D, this algorithm computes R(D). We assume that all the
real numbers involved are computed with a finite and reasonably small accuracy.
We make use of an auxiliary tableT of quadruplets (q,p, e, R) where p, q, e are
integers and R is a real number.

1. [Initialize] Precompute f <- JD, and set d <- l JDJ, e <- 0, R <- 1,
s <- fl.5Vdl, T <- s + fln(4d)/(2ln((1 + VS)/2))1 and q <- 2. If d = D
(mod 2), set p <- d, otherwise set p <- d- 1. Set q1 = (D- p2)jq, i <- 0,
and store the (q,p, e, R) in T. Finally, let 2L be the highest power of 2 such
that 2L f does not give an exponent overflow.

2. [Small steps] Set i <- i + 1, and let p + d = Aq + r with 0 :::; r < q
be the Euclidean division of p + d by q. Set p1 <- p, p <- d - r, t <- q,

284 5 Algorithms for Quadratic Fields

q +- Ql- A(p- Pt), Ql +- t, R +- R(p +f)/qt. If R 2::: 2L, set R +- R/2L,
e +- e + 1. If q:::; d, store (q,p, e, R) in T.

3. [Finished already?] If P1 = p and i > 1, then output

R(D) = 2(ln(R) + e£ln(2)) -ln(ql/2)

and terminate the algorithm. If Ql = q and i > 1, then output

R(D) = 2(1n(R) + eLln(2)) -ln((p+ /)/2)

and terminate the algorithm. If i = s, then if q :::; d set (Q, P, E, Rt) +
(q,p, e, R) otherwise (still if i = s) sets+- s + 1 and T +- T + 1. Finally, if
i < T go to step 2.

4. [Initialize for giant steps] Sort tableT lexicographically (or in any other way).
Then using the composition Algorithm 5.8.6 given below, compute

(Q,P,E,R1) +- (Q,P,E,Rl) · (Q,P,E,Rl),

and set R +- 1, e +- 0, j +- 1, and q +- Q, p +- P.

5. [Match found?] If (q,p) = (qt,Pt) for some (qt,Pt,et,rt) E T, output

R(D) = j(ln(R1) + EL ln(2)) + ln(R) + eLln(2) - ln(rt) - e1L ln(2)

and terminate the algorithm.
If (q,r(-p,q)) = (qt,Pt) for some (qt,Pt.el,rt) E T, output

R(D) = j(ln(Rt)+ELln(2))+ln(R)+eLln(2)+ln(rt)+etLln(2)-ln(ql/2)

and terminate the algorithm.

6. [Giant steps] Using the composition Algorithm 5.8.6 below, compute

(q,p,e,R) +- (q,p,e,R) · (Q,P,E,Rt),

set j +- j + 1 and go to step 5.

We need to compose two quadratic forms of positive discriminant D, ex
pressed as quadruplets (q,p, e, R), where the pair (e, R) keeps track of the
distance from 1 (more precisely 6'(1,/) = eLln2 + lnR), and the form itself
is (q,p, (p2 - D)/q) or (-q,p, (D- p2)/q). The algorithm is identical to the
positive definite case (Algorithm 5.4.7), except that the reduction in step 4
must be done using Algorithm 5.6.5 (i.e. powers of p) instead of Algorithm
5.4.2. We must also keep track of the distance function, and, since we use 8'
instead of 6, we must subtract a ln(d1) (i.e. divide by d1) where d1 is the
computed GCD.

This leads to the following algorithm.

5.8 The Infrastructure Method of Shanks 285

Algorithm 5.8.6 (Composition oflndefinite Forms with Distance Function).
Given two quadruplets (ql,Pl,el,Rl) and (q2,p2,e2,R2) as above (in particular
with qi even and positive), this algorithm computes the composition

(qa,p3, e3, R3) = (ql,Pl, e1, R1) · (q2,p2, e2, R2).

We assume f +- ..fD already computed to sufficient accuracy.

1. {Initialize] If q1 > q2. exchange the quadruplets. Then set s +- ~(Pl + P2).
n +- P2- s.

2. {First Euclidean step] If ql I q2, set y1 +- 0 and d +- qif2. Otherwise, using
Euclid's extended algorithm, compute (u,v,d) such that uq2/2+vqif2 = d =
gcd(q2/2,qi/2) and set Y1 +- u.

3. {Second Euclidean step] If dIs, set y2 +- -1, x2 +- 0 and d1 +-d. Otherwise,
using Euclid's extended algorithm, compute (u, v, d1) such that us + vd =
d1 = gcd(s, d), and set x2 +- u, Y2 +- -v.

4. [Compose] Set v1 +- qif(2dl). v2 +- q2/(2dl), r +- ((Y1Y2n- x2(P~ -
D)/(2q2) mod vi), Pa +- P2 + 2v2r, qa +- 2v1v2.

5. [initialize reduction] Set e3 +- e1 + e2 and R3 +- R1R2/d1. If R3 2::: 2L, set
R3 +- R3/2L and e3 +- ea + 1.

6. [Reduced?] If If- q3l < p3, then output (qa,p3,ea,R3) and terminate the
algorithm. Otherwise, set Pa +- r(-pa,qa/2), Ra +- Ra(P3 + f)jq3, q3 +

(D- p~)/qa, and if R3 2::: 2£ set Ra +- R3/2L and ea +- e3 + 1. Finally, go
to step 6.

Note that r(-p3, q3/2) is easily computed by a suitable Euclidean division.

This algorithm performs very well, and one can compute regulators of
real quadratic fields with discriminants with up to 20 digits in reasonable
time. To go beyond this requires new ideas which are essentially the same as
the ones used in McCurley's sub-exponential algorithm and will in fact give
us simultaneously the regulator and the class group. We will study this in
Section 5.9.

5.8.3 Compact Representation of the Fundamental Unit

The algorithms that we have seen above allow us to compute the regulator of
a real quadratic field to any desired accuracy. If this accuracy is high, however,
and in particular if we want infinite accuracy (i.e. the fundamental unit itself
and not its logarithm), we must not apply the algorithms exactly as they are
written. The reason for this is that by using the infrastructure ideas of Shanks
(essentially the distance function), the knowledge of a crude approximation
to the regulator R(D) (say only its integer part) allows us to compute it very
fast to any desired accuracy. Let us see how this is done.

Let f be the form p(l).It is the first form encountered in the principal cycle
when we start at the unit form, and in particular has the smallest distance to

286 5 Algorithms for Quadratic Fields

1. Assume that after applying one of the regulator algorithms we know that
R1 < R(D) < R2 (this can be a very crude estimate, for example we could ask
that R2 - R1 < 1). By using the same idea as in Exercise 4 of Chapter 1, it is
easy to find in time O(ln(D)) composition operations, an integer n such that
6(1,r):::;: R1 and 6(1,r+l) > R1. This implies that r is before the unit
form in the principal cycle (counting in terms of increasing distances), but not
much before since R2- R1 is small. Hence, there exists a small k ;::: 0 which
one finds by simply trying k = 0, 1, ... such that 1 = pk(r). Note that this
is checked on the exact components of the forms, not on the distance. Hence,
we now assume that k and n have been found.

If we want the regulator very precisely, we recompute f = p(1) to the
desired accuracy, and then the distance component of pk(Jn) will give us the
regulator to the accuracy that we want.

If we want the fundamental unit itself, note that by Proposition 5.8.4 the
composition of two forms implies the addition of three distances, or equiva
lently the multiplication of three quadratic numbers. For the p operator, only
one such multiplication is required. Finally, note that k will be O(ln(D)) and
n will be 0(v'D) hence only O(ln(D)) composition or reduction steps are re
quired to compute pk(r). This implies that we can express the fundamental
unit as a product of at most O(ln(D)) terms of the form (b + v'D)/(2Ial)
(or l(b + v'D)/(b- v'D)I if we use the distance 6 instead of 6') and this is a
compact way of keeping the fundamental unit even when D is very large.

Let us give a numerical example. Take D = 10209. A rough computation
using one of the regulator algorithms shows that R(D) ~ 67.7. Furthermore,
one computes that f = p(1) = (-2, 99, 51). The binary algorithm gives jl4 =
(1, 101, -2) = 1 with 6'(1, jl4) ~ 67.7. Note that this exponent 14 is not
at all canonical and depends on the number of reduction steps performed at
each composition, and on the order in which the compositions steps are made.
Here, we assume that we stop applying p as soon as the form is reduced, and
that r is computed using the right-left binary powering Algorithm 1.2.1.

We now start again recomputing f and j 14 , keeping the quantities
(b + v'D)/(2Ial)l that are multiplied, along with their exponents. If € is the
fundamental unit, we obtain

€ = (101 + v'D)
14

(111 + v'D)
3 !_ 219 + v'l5

2 32 3 242

351 + v'l5 77 + v'l5 93 + v'l5
264 428 780

The lonely 1/3 in the middle is due to the use of the imperfect distance
function 6' which as we have already mentioned introduces extra quantities
- ln d in the compositions.

If we instead use the distance 6, we obtain €2 = r fr with

5.8 The Infrastructure Method of Shanks 287

Hence, to represent ~:, we could simply keep the pairs (101, 14), (111, 3),
(219, 1), (197, 1) and (103, 1). It is a matter of taste which of the two rep
resentations above is preferable. Note that in fact

€= 130969496245430263159443178775+1296219513663218157975941956v'15

which does not really take more space, but for larger discriminants this kind
of explicit representation becomes impossible, while the compact one survives
without any problem since there are only O(ln(D)) terms of size O(lri(D)) to
be kept.

In (Buc-Thi-Wil], the authors have given a slightly more elegant compact
representation of the fundamental unit, but the basic principle is the same.
This idea can be generalized to the representation of algebraic numbers (and
not only units), and to any number field.

5.8.4 Other Application and Generalization of the Distance
Function

An important aspect of the distance function should be stressed at this point.
Not only does it give us a fundamental hold on the fine structure of units, but
it also allows us to solve the principal ideal problem which is the following.
Assume that a is an integral ideal of ZK which is known to be a principal ideal
(for example because a = bh for some ideal b, where h is the class number
of K). Assume that we know the distance function 6(1, a). Then it is easy to
find an element 'Y such that a= "{'ZK using the formulas

This leaves only 2 possibilities for ±"{, and usually only one will belong to K.
Note that since 8 is defined only in HI/ RZ, 'Y will be defined up to multiplication
by a unit.

Similarly, if the distance function 6'(1, a) is known, we use the formulas

'Y = ±ec5'(1,a)' u("f) = ±N(a)e-6'(1,a).

The distance function 8 can be naturally generalized to arbitrary number
fields K as follows. Let

be the logarithmic embedding of K* into Hlr1 +r2 seen in Definition 4.9.6, where
(r1, r2) is the signature of K. If n = r 1 + 2r2 is the degree of K, we will set

where it is understood that the O"i act trivially on the n-th roots of the norms.

288 5 Algorithms for Quadratic Fields

Then A belongs to the hyperplane L:1::;i::;rt+r2 Xi = 0 of 1Rr1+r2 and is
defined modulo the lattice which is the image of the group of units U(K)
under the embedding L(x).

In the case where K is a real quadratic field, then clearly A= (8,-8), so
this is a reasonable generalization of 6. If K is an imaginary quadratic field,
we have A =0.

The principal ideal problem can, of course, be asked in general number
fields and it is clear that A cannot help us to solve it in general since it
cannot do so even for imaginary quadratic fields. For this specific application,
the logarithmic embedding L should be replaced by the ordinary embedding

of K into R.r1 X cr2 •

The components of this embedding are in general too large to be rep
resented exactly, hence we will preferably choose the complex logarithmic
embedding

where the logarithms are defined up to addition of an integer multiple of 2irr.
Note that this requires only twice as much storage space as the embedding
L, and also that the first r 1 components have an imaginary part which is a
multiple of rr. Let V = (ni)I::;i~r1 +r2 be the vector such that ni = 1 fori :5 r1

and ni = 2 otherwise. We can then define

Ac(a, -ya) = Lc('Y)- ln(N('Y)) V,
n

and it is clear that the sum of the r1 + r2 components of Ac is an integral
multiple of 2irr. We will see the use of this function in Section 6.5.

5.9 Buchmann's Sub-exponential Algorithm

We will now describe a fast algorithm for computing the class group and the
regulator of a real quadratic field, which uses essentially the same ideas as
Algorithm 5.5.2.

Although the main ideas are in McCurley and Shanks, I have seen this
algorithm explained only in manuscripts of J. Buchmann whom I heartily
thank for the many conversations which we have had together. The first im
plementation of this algorithm is due to Cohen, Diaz y Diaz and Olivier (see
[CohDiOl)}.

5.9 Buchmann's Sub-exponential Algorithm 289

5.9.1 Outline of the Algorithm

We will follow very closely Algorithm 5.5.2, and use the distance function 8
and not Shanks's distance 8' which we used in Algorithm 5.8.5.

As we have already explained, in the quadratic case it is simpler to work
with forms instead of directly with ideals. Note however that because of Theo
rem 5.2.9, we will be computing the narrow ideal class group and the regulator
in the narrow sense, since this is the natural correspondence with quadratic
forms. If, on the other hand, we want the ideal class group and the regula
tor in the ordinary sense, then, according to Proposition 5.6.1, we will have to
identify the form (a, b, c) with the form (-a, b, -c). (This is implicitly what we
did in Algorithm 5.8.5.) Although it is very easy to combine both procedures
into a single algorithm, note that the computations are independent. More
precisely, to the best of my knowledge it does not seem to be easy, given the
ideal class group and regulator in one sense (narrow or ordinary) to deduce
the ideal class group and regulator in the other sense, although of course only
a factor of 2 is involved. We will describe the algorithm for the class group and
regulator in the ordinary sense, leaving to the reader the simple modifications
that must be made to obtain the class group and regulator in the narrow sense
(see Exercise 26).

We now describe the outline of the algorithm. As in Algorithm 5.8.5, we
keep track of the distance function as a pair (e, R), but this time we will
keep all three coefficients of the quadratic form. Also, we are going to use the
distance 8 instead of 8', and since there is a factor 1/2 in the definition of 8,
we will use the correspondence 8 (!0 , f) = (eL ln 2 + In R) /2 for some fixed
form fo equivalent to f.

In other words, in this section a quadratic form of positive discriminant
will be a quintuplet f = (a, b, c, e, R) where a, b, c and e are integers and R is
a real number such that 1 ::::; R < 2£.

We can compose two such forms by using the following algorithm, which
is a trivial modification of Algorithm 5.8.6.

Algorithm 5.9.1 (Composition oflndefinite Forms with Distance Function).
Given two primitive quadratic forms (a1,b1,c1,e1,R1) and (a2 ,b2,c2,e2,R2) as
above, this algorithm computes the composition

(a3,b3,c3,e3,R3) = (al,bl,cl,el,Rl) · (a2,b2,c2,e2,R2).

We assume f +-- Vf5 already computed to sufficient accuracy.

1. [Initialize] If la1l > la2l exchange the quintuplets. Then sets+-- ~(b1 + b2).
n +-- b2- s.

2. [First Euclidean step] If a1 I a2, set y1 +-- 0 and d +-- la11. Otherwise, using
Euclid's extended algorithm, compute u, v and d such that ua2 + va1 = d =
gcd(a2, al) and set Y1 +-- u.

3. [Second Euclidean step] If d I s, set y2 +-- -1, x2 +-- 0 and d1 +-- d. Otherwise,
again using Euclid's extended algorithm, compute (u, v, d1) such that us+vd =
d1 = gcd(s, d), and set x2 +-- u and y2 +-- -v.

290 5 Algorithms for Quadratic Fields

4. [Compose] Set v1 +- add1, v2 +- a2/d1, r +- (y1y2n- x2c2 mod vl), b3 +

b2 + 2v2r and a3 +- v1v2.

5. [Initialize reduction] Set e3 +- e1 + e2, R3 +- R1R2. If R3 2: 2L, set R3 +

R3/2L and e3 +- e3 + 1.

6. [Reduced?] If If- 2la311 < b3 < f, then output (a3, b3, c3, e3, R3) and termi
nate the algorithm.

7. [Apply p] Set R3 +- R3l(b3 + f)/(b3 - !)I and if R 3 2: 2L, set R3 +- R3/2L
and e3 +- e3 + 1. Then set a3 +- c3, b3 +- r(-b3, c3), C3 +- (b~- D)ja3 and
go to step 6.

Note that, apart from some absolute value signs, steps 1 to 4 are identical
to the corresponding steps in Algorithm 5.4.7, but the reduction operation
is quite different since it involves iterating the function p in step 7 of the
algorithm and the bookkeeping necessary for the distance function.

Returning to Buchmann's algorithm, what we will do is essentially, instead
of keeping track only of /p = (p, bp, (b~- D)/(4p)), we also keep track of the
distance function. Hence, in step 3 of Algorithm 5.5.2, we compute the product
ITp::;P J;P, doing the reduction at each product (of course the reduction being
non-unique), and keeping track of the distance function thanks to Theorem
5.8.4. In this way we obtain a reduced form f =(a, b, c) equivalent to the
above product, and also the value of 8(ITp::;P J;p ,J). Since we identify
(a, b, c) with (-a, b,-c), we will replace (a,b, c) by (lal, b, -lei).

If a does not factor easily, in step 5 we have the option of doing more
reduction steps instead of going back to step 4 in the hope of getting an easily
factorable a. Since this is much faster than recomputing a new product, we
will use this method as much as possible. Note that, although we have extra
computations to make because of the distance function, the basic computa
tional st~ps will be faster than in the imaginary quadratic case, hence this
algorithm will be faster than the corresponding one for imaginary quadratic
fields.

This behavior is to be expected since on heuristic and experimental
grounds class numbers of real quadratic fields are much smaller than those
of imaginary quadratic fields.

Finally, if a factors easily, in step 5 we compute not only ai,k for 1 ::::; i ::::; n,
but also an+l,k +-8(1, fg- 1) where g = ITp::;Pf;pvp and 8(1, fg- 1) is computed
as usual at the same time as the product is done, using Theorem 5.8.4.

We thus obtain a matrix A= (ai,j) with n+ 1 rows and k columns, whose
entries in the first n rows are integers and the entries in the last row are real
numbers. Note that by definition, for every j ::::; k we have

8(1, IJ f;,a'·') = an+l,j (mod R(D)).
l::;i::;n

5.9 Buchmann's Sub-exponential Algorithm 291

Since the distance function that we have chosen is exactly additive, it fol
lows that when performing column operations on the complete matrix A, this
relation between then+ 1-st component and the others is preserved.

Hence we apply Hermite reduction to the matrix formed by the first n
rows, but performing the corresponding column operations also the entries of
the last row. The first k- n columns of the resulting matrix will thus have
only zero entries, except perhaps for the entry in the n + 1-st row. By the
remark made above, for 1 ~ j ~ k - n we will thus have

an+l,j = 6(1, 1) = 0 (mod R(D)),

in other words an+l,j is equal to a multiple of the regulator R(D) for 1 ~ j ~
k -n.

If k is large enough, it follows that in a certain sense the GCD of the
an+l,j for 1 ~ j ~ k - n should be exactly equal to R(D). We must be
careful in the computation of this "GCD" since we are dealing with inexact
real numbers. For this purpose, we can either use the LLL algorithm which
will give us a small linear combination of the an+l,j for 1 ~ j ~ k - n with
integral coefficients, which should be the regulator R(D), or use the "real
GCD" Algorithm 5.9.3 as described below.

The rest of the algorithm will compute the class group structure in essen
tially the same way, except of course that in step 1 one must use the analytic
class number formula for positive discriminants (Proposition 5.6.9).

5.9.2 Detailed Description of Buchmann's Sub-exponential
Algorithm

A practical implementation of this algorithm should take into account at least
two remarks. First, note that most of the time is spent in looking for relations.
Hence, it is a waste of time to compute with the distance function during the
search for relations: we do the search only with the components (a, b, c) of the
quadratic forms, and only in the rare cases where a relation is obtained do
we recompute the relation with the distance function. The slight loss of time
due to the recomputation of each relation is more than compensated by the
gain obtained by not computing the distance function during the search for
relations.

The second remark is that, as in McCurley's sub-exponential algorithm,
the Hermite reduction of the first n rows must be performed modulo a multiple
of the determinant, which can be computed before starting the reduction. In
other words, we will use Algorithm 2.4.8. The reduction of the last row is
however another problem, and in the implementation due to the author, Diaz
Y Diaz and Olivier, the best method found was to compute the integer kernel
of the integer matrix formed by the first n rows using Algorithm 2.7.2, and
multiply then+ 1-st row of distances by this kernel, thus obtaining a vector
whose components are (approximately) small multiples of the regulator, and

292 5 Algorithms for Quadratic Fields

we find the regulator itself using one of the methods explained above, for
example the LLL algorithm.

These remarks lead to the following algorithm.

Algorithm 5.9.2 (Sub-Exponential Real Class Group and Regulator). If
D > 0 is a non-square discriminant, this algorithm computes the class number
h(D), the class group Cl(D) and the regulator R(D). As before, in practice we
work with binary quadratic forms. We also choose at will a positive real constant
b.

1. [Compute primes and Euler product] Set m +-- bln2D, M +-- L(D) 1f,J8,
P +-- lmax(m,M)J

P +-- {p $ P, (~) # -1 and p good}

and compute the product

2. [Compute prime forms] Let Po be the set made up of the smallest primes
of P not dividing D such that TipE'Po p > .fi5. For the primes p E P do
the following. Compute bp such that b~ = D (mod 4p) using Algorithm 1.5.1
(and modifying the result to get the correct parity). If bp > p, set bp +-- 2p-bp.
Set /p +-- (p,bp, (b~-D)/(4p)) and gP +-- (p,bp, (b~-D)/(4p),O, 1.0) Finally,
let n be the number of primes pEP.

3. [Compute powers] For each p E Po and each integer e such that 1 $ e $ 20
compute and store a reduced form equivalent to f;. Set k +-- 0.

4. [Generate random relations] Let /q be the primeform number k + 1 mod n in
the factor base. Choose random ep between 1 and 20, and compute a reduced
form (a, b, c) equivalent to

by using the composition algorithm for positive binary quadratic forms, re
placing the final reduction step by a sufficient number of applications of the
p operator (note that J;p has already been computed in step 3). Set ep +-- 0
if p fj. Po then eq +-- eq + 1. Set (ao, b0 , eo) +-- (a, b, c), r +-- 0 and go to step
6.

5. [Apply p] Set (a, b, c) +-- p(a, b, c) and r +-- r + 1. If Jal = Jaol and r is odd,
or if b = b0 and r is even, go to step 4.

6. [Factor Jal] Factor Jal using trial division. If a prime factor of Jal is larger
than P, do not continue the factorization and go to step 5. Otherwise, if
lal = Tip:::;PPvP, set k +-- k + 1, and fori$ n set

5.9 Buchmann's Sub-exponential Algorithm

where f.p; = +1 if (b mod 2pi) :::=;Pi· f.p, = -1 otherwise.

7. [Recompute relation with distance] Compute

(ao, bo, eo, eo, Ro) +-- 9q IJ g;P
pE'Po

293

by mimicking the order of squarings, compositions and reductions done to
compute (ao, bo, eo), but this time using Algorithm 5.9.1 for composition.
Then compute (a, b, c, e, R) +-- pr(ao, b0 , eo, e0 , Ro) by applying the formulas
of step 7 of Algorithm 5.9.1 to our forms. Finally, set an+l,k +-- (eLln2 +
lnR)/2.

8. [Enough relations?} If k < n + 10 go to step 4.

9. [Be honest] For each prime q such that P < q :::=; 6ln2 D do the following.
Choose random ep between 1 and 20 (say), compute the primeform Jq cor
responding to q and some reduced form (a, b, c) equivalent to Jq [lpE'Po J;P.
If a does not factor into primes less than q, choose other exponents ep and
continue until a factors into such primes (or apply the p operator as in step
5). Then go on to the next prime q until the list is exhausted.

10. [Simple HNF] Perform a preliminary simple Hermite reduction on the (n +
1) x k matrix A = (ai,j) as described in the remarks following Algorithm
5.5.2. In this reduction, only the first n rows should be examined, but column
operations should of course be done also with then+ 1-st row. Let A1 be the
matrix thus obtained without its last row, and let V be the last row (whose
components are linear combinations of distances).

11. [Compute regulator} Using Algorithm 2.7.2, compute the LLL-reduced integral
kernel M of A1 as a rectangular matrix, and set V +-- V M. Let s be the
number of elements of V. Set R +-- IV1 1, and for i = 2, ... , s set R +

RGCD(R, !Vii) where RGCD is the real GCD algorithm described below.
(Now R is probably the regulator.)

12. [Compute determinant} Using standard Gaussian elimination techniques, com
pute the determinant of the lattice generated by the columns of the matrix
A1 modulo small primes p. Then compute the determinant d exactly using
the Chinese remainder theorem and Hadamard's inequality (see also Exercise
13}.

13. [HNF reduction] Using Algorithm 2.4.8 compute the Hermite normal form
H = (hi,j) of the matrix A1 using modulo d techniques. Then for every i
such that hi,i = 1, suppress row and column i. Let W be the resulting matrix.

14. [Finished?} Let h +-- det(W) {i.e. the product of the diagonal elements). If
hR ~ B.../2, get 5 more relations (in steps 4, 5 and 6} and go to step 10.
{It will not be necessary to recompute the whole HNF, only that which takes
into account the last 5 columns.) Otherwise, output h as the class number
and R as the regulator.

294 5 Algorithms for Quadratic Fields

15. [Class group] Compute the Smith normal form of W using Algorithm 2.4.14.
Output those among the diagonal elements di which are greater than 1 as
the invariants of the class group (i.e. Cl(D) = ffiZ/diZ) and terminate the
algorithm.

The real GCD algorithm is copied on the ordinary Euclidean algorithm, as
follows. We use in an essential way that the regulator is bounded from below
(by 1 for real quadratic fields of discriminant greater than 8) so as to have
a reasonable stopping criterion. Since we will also use it for general number
fields, we use 0.2 as a lower bound of the regulators of all number fields (see
[Zim1], [Fri]).

Algorithm 5.9.3 (Real GCD). Given two non-negative real numbers a and b
which are known to be approximate integer multiples of some positive real number
R > 0.2, this algorithm outputs the real GCD (RGCD) of a and b, i.e. a non
negative real number d which is an approximate integer multiple of R and divisor
of a and b, and is the largest with this property. The algorithm also outputs an
estimate on the absolute error for d.

1. [Finished?] If b < 0.2, then output a as the RGCD, and bas the absolute error
and terminate the algorithm.

2. [Euclidean step] Let r +--a- blafbJ, a+-- b, b +--rand go to step 1.

Remarks.

(1) It should be noted that not only does Algorithm 5.9.2 compute the class
number and class group in sub-exponential time, but it is the only algo
rithm which is able to compute the regulator in sub-exponential time, even
if we are not interested in the class number. In fact, in all the preceding
algorithms, we first had to compute the regulator (for example using the
infrastructure Algorithm 5.8.5), and combining this with the analytic class
number formula giving the product h(D)R(D), we could then embark on
the computation of h(D) and Cl(D). The present algorithm goes the other
way: we can in fact compute a small multiple of the class number alone,
without using distances at all, and then compute the distances and the
regulator, and at that point use the analytic class number formula to check
that we have the correct regulator and class number, and not multiples.

(2) In an actual implementation of this algorithm, one should keep track of the
absolute error of each real number. First, in the distance computation in
step 7, the precision with which the computations are done gives a bound
on the absolute error. Then, during steps 10 and 11, Z-linear combinations
of distances will be computed, and the errors updated accordingly (with
suitable absolute value signs everywhere). Finally, in the last part of step
11 where real GCD's are computed, one should use the errors output by
Algorithm 5.9.3.

(3) Essentially all the implementation details given for Algorithm 5.5.2 apply
also here.

5.10 The Cohen-Lenstra Heuristics 295

5.10 The Cohen-Lenstra Heuristics

The purpose of this section is to explain a number of observations which
have been made on tables of class groups and regulators of quadratic fields.
As already mentioned very few theorems exist (in fact essentially only the
theorem of Brauer-Siegel and the theorem of Goldfeld-Gross-Zagier) so most
of the explanations will be conjectural. These conjectures are however based
on solid heuristic grounds so they may well turn out to be correct. As usual,
we first start with imaginary quadratic fields.

5.10.1 Results and Heuristics for Imaginary Quadratic Fields

In this subsection K will denote the unique imaginary quadratic field of dis
criminant D < 0. As we have seen, the only problem here is the behavior of
the class group Cl(D) and hence of the class number h(D), all other basic
problems being trivial to solve.

Here the Brauer-Siegel theorem says that ln(h(D)) rv In(JjDf) as D -->

-oo, which shows that h(D) tends to infinity at least as fast as IDI 112-e: and
at most as fast as IDI 1/2+e: for every e: > 0. The main problem is that this is
not effective in a very strong sense, and this is why one has had to wait for
the Gross-Zagier result to get any kind of effective result, and a very weak one
at that since using their methods one can show only that

h(D) > ~ ln(IDI) IT (1- 2~),
PID p+

where K =55 if (D, 5077) = 1 and K = 7000 otherwise, and the star indicates
that the product is taken over all prime divisors p of D with the exception of
the largest prime divisor (see [Oes]). This is of course much weaker than the
Brauer-Siegel theorem.

Results in the other direction are much easier. For example, one can show
that for all D < - 4, we have

h(D) < .!_ /iDf ln(IDI)
7r

(see Exercise 27). Similarly, it is very easy to obtain average results, which
were known since Gauss. The result is as follows (see [Ayo]).

x3/2 L h(D)rv-C
IDI~x 311"

where the sum runs over fundamental discriminants and

296 5 Algorithms for Quadratic Fields

Since by Exercise 1 the number of fundamental discriminants up to x is asymp
totic to (3/7r2)x, this shows that on average, h(D) behaves as C1r /6JiDT ~
0.461559JiDT, and shows that the upper bound given for h(D) is at most off
by a factor O(ln(D)).

All the above results deal with the size of h(D). If we consider problems
concerning its arithmetic properties (for example divisibility by small primes)
or properties of the class group Cl(D) itself, very little is known. If we make
however the heuristic assumption that class groups behave as random groups
except that they must be weighted by the inverse of the number of their
automorphisms (this is a very common weighting factor in mathematics), then
it is possible to make precise quantitative predictions about class numbers and
class groups. This was done by H. W. Lenstra and the author in [Coh-Len1].
We summarize here some of the conjectures which are obtained in this way
and which are well supported by numerical evidence.

It is quite clear that the prime 2 behaves in a special way, so we exclude it
from the class group. More precisely, we will denote by Cl0 (D) the odd part
of the class group, i.e. the subgroup of elements of odd order. We then have
the following conjectures.

Conjecture 5.10.1 (Cohen-Lenstra). For any odd prime p and any integer
r including r = oo set (P)r = f1 1<k<r(1- p-k), and let A = I1k>2 ((k) ~
2.29486, where ((s) is the ordinary-Riemann zeta function. -

(1) The probability that Cl0 (D) is cyclic is equal to

((2)((3)/ (3(2) 00A((6)) ~ 0.977575.

(2) If p is an odd prime, the probability that p I h(D) is equal to

1 1 1
f(p) = 1- (P)oo =-+---- · · ·

p p2 p5

For example, f(3) ~ 0.43987, f(5) ~ 0.23967, f(7) ~ 0.16320.
(3) If p is an odd prime, the probability that the p-Sylow subgroup of Cl(D) is

isomorphic to a given finite Abelian p-group G is equal to (P)oo/1 Aut(G)!,
where Aut(G) denotes the group of automorphisms of G.

(4) If p is an odd prime, the probability that the p-Sylow subgroup of Cl(D)
has rank r (i.e. is isomorphic to a product of r cyclic groups) is equal to
P-r2 (P)oo/((P)r)2 ·

These conjectures explain the following qualitative observations which
were made by studying the tables.

(1) The odd part of the class group is quite rarely non-cyclic. In fact, it was
only in the sixties that the first examples of class groups with 3-rank
greater or equal to 3 were discovered.

5.10 The Cohen-Lenstra Heuristics 297

(2) Higher ranks are even more difficult to find, and the present record for
p = 3, due to Quer (see [Llo-Quer] and [Quer]) is 3-rank equal to 6. Note
that there is a very interesting connection with elliptic curves of high rank
over Q (see Chapter 7), and Quer's construction indeed gives curves of
rank 12.

(3) If p is a small odd prime, the probability that pI h(D) is substantially
higher than the expected naive value 1/p. Indeed, it should be very close
to 1/p + 1jp2 .

5.10.2 Results and Heuristics for Real Quadratic Fields

Because of the presence of non-trivial units, the situation in this case is com
pletely different and even less understood than the imaginary quadratic case.
Here the Brauer-Siegel theorem tells us that ln(R(D)h(D)) ,...., ln(VD) as
D --+ oo, where R(D) is the regulator. Unfortunately, we have little control
on R(D), and this is the main source of our ignorance about real quadratic
fields. It is conjectured that R(D) is "usually" of the order of .Jf5, hence that
h(D) is usually very small, and this is what the tables show. For example,
there should exist an infinite number of D such that h(D) = 1, but this is not
known to be true and is a famous conjecture. In fact, it is not even known
whether there exists an infinite number of non-isomorphic number fields K
(all degrees taken together) with class number equal to one.

As in the imaginary case however, we can give an upper bound h(D) < .Jf5
when D > 0, and the following average for R(D)h(D):

3/2 L R(D)h(D) ,...., ~c
D$x 6

where the sum runs over fundamental discriminants and the constant Cis as
before.

It is possible to generalize the heuristic method used in the imaginary case.
In fact, we could reinterpret Shanks's infrastructure idea as saying that the
class group of a real quadratic field is equal to the quotient of the "group" of
reduced forms by the "cyclic subgroup" formed by the principal cycle. This of
course does not make any direct sense since the reduced forms form a group
only in an approximate sense, and similarly for the principal cycle. It suggests
however that we could consider the (odd part) of the class group of a real
quadratic field as the quotient of a random finite Abelian group of odd order
(weighted as before) by a random cyclic subgroup. This indeed works out very
well and leads to the following conjectures.

Conjecture 5.10.2 (Cohen-Lenstra). Let D be a positive fundamental dis
criminant.

(1) If p is an odd prime, the probability that pI h(D) is equal to

298 5 Algorithms for Quadratic Fields

(P)oo 1 1 1
1- =-+-+--··· 1 -1/p p2 p3 p4

(2) The probability that Cl0 (D) is isomorphic to a given finite Abelian group
G of odd order g is equal to m(G) = 1/(2g(2)00AI Aut(G)!). For example
m({O}) ::::i 0.75446, m(7l/37l) ::::i 0.12574, m(7l/57l) ::::i 0.03772.

(3) If p is an odd prime, the probability that the p-Sylow subgroup of Cl(D)
has rank r is equal to p-r(r+l)(P)oo/((P)r(P)r+l)·

(4) We have

where the sum runs over primes congruent to 1 modulo 4.

These conjectures explain in particular the experimental observation that
most quadratic fields of prime discriminant p (in fact more than three fourths)
have class number one.

These heuristic conjectures have been generalized to arbitrary number
fields by J. Martinet and the author (see [Coh-Mar1], [Coh-Mar2]). Note that
contrary to what was claimed in these papers, apparently all the primes di
viding the degree of the Galois closure should be considered as non-random
(see [Coh-Mar3]), hence the numerical values given in [Coh-Mar1] should be
corrected accordingly (e.g. by removing the 2-part for non-cyclic cubic fields
or the 3-part for quartic fields of type A4 or 84).

5.11 Exercises for Chapter 5

1. Show that the number of imaginary quadratic fields with discriminant D such
that IDI :0:::: x is asymptotic to 3x/7r2 , and similarly for real quadratic fields.

2. Compute the probability that the discriminant of a quadratic field is divisible
by a given prime number p (beware: the result is not what you may expect).

3. Complete Theorem 5.2.9 by giving explicitly the correspondences between ideal
classes, classes of quadratic forms and classes of quadratic numbers, at the level
of PSL2(Z).

4. Let K be a quadratic field and p a prime. Generalizing Theorem 1.4.1, find the
structure of the multiplicative group (ZK /PZK)*, and in particular compute its
cardinality.

5. (H.W. Lenstra and D. Knuth) Let D denote the discriminant of an imaginary
quadratic field. If x 2 0, let f(x, D) be the probability that a quadratic form
(a, b, c) with -a< b :0:::: a and a< x.JiDT is reduced. From Lemma 5.3.4, we know
that f(x, D) = 1 if x :0:::: 1/2 and f(x, D) = 0 if x 2 1/ J3. Show that f(x, D)
has a limit f(x) as IDI -+ oo, and give a closed formula for f(x), assuming that
a quadratic number behaves like a random irrational number. Note that this
exercise is difficult, and the complete result without the randomness assumption
has only recently been proved by Duke (see [Duk]).

5.11 Exercises for Chapter 5 299

6. If Do is a fundamental negative discriminant and D = Do/2 , show directly from
the formula given in the text that h(Do) I h(D).

7. Let p be a prime number such that p = 3 (mod 4). Using Dirichlet's class number
formula (Corollary 5.3.13) express h(-p) as a function of

L ln2J·
I:5n:5(p-I)/2 p

Is this algorithmically better than Dirichlet's formula?

8. Carry out in detail the GCD computations of the proof of Lemma 5.4.5.

9. Show that the composite of two primitive forms is primitive, and also that
primitivity is preserved under reduction (both for complex quadratic fields and
real ones). Prove these results first using the interpretation in terms of ideals,
then directly on the formulas.

10. Show that, in order to generalize Algorithm 5.4.7 to imprimitive forms, we can
replace the assignment VI+-- ai/di of Step 4 by VI+-- gcd(di,ci,c2,n)ai/di.

11. Let A, B and C be integers, and assume that at most one of them is equal to
zero. Show that the general integral solution to the equation

uA+vB+wC=O

is given by

where >., p, and v are arbitrary integers.

12. Using the preceding exercise, show that as claimed after Definition 5.4.6 the
class of (a3, b3, C3) modulo roo is well defined.

13. In step 9 of Algorithm 5.5.2, it is suggested to compute the determinant of
the lattice generated by the columns of a rectangular matrix AI of full rank by
computing this determinant modulo p and using the Chinese remainder theorem
together with Hadamard's inequality. Show that it is possible to modify the
Gauss-Bareiss Algorithm 2.2.6 so as to compute this determinant directly, and
compare the efficiency of the two methods, in theory as well as in practice (in
the author's experience, the direct method is usually superior). Hint: use flags
Ck and/or dk as in Algorithm 2.3.1.

14. Implement the large prime variation explained after Algorithm 5.5.2 in the fol
lowing manner. Choose some integer k (say k = 500) and use k lists of quadratic
forms as follows. Each time that some Pa is encountered, we store Pa and the
corresponding quadratic form in the n-th list, where n = Pa mod k. If Pa is al
ready in the list, we have a relation, otherwise we do nothing else. Study the
efficiency of this method and the choice of k. (Note: this method is a special case
of a well known method used in computer science called hashing, see (Knu3).)

15. Implement Atkin's variant of McCurley's algorithm assuming that the discrim
inant D is a prime number and that the order of f is larger than the bound
given by the Euler product.

300 5 Algorithms for Quadratic Fields

16. Let n be an integral ideal in a number field K, f(n) the smallest positive rational
integer belonging to n, and IJi the embeddings of K into C. We will say that n is
reduced if n is primitive and if the conditions o: En and for all i, I!Ji(o:)l < f(n)
imply that o: = 0.

a) If (n, s) = ¢FI(a, b, c), show that n is reduced if and only if there exists
a (unique) quadratic form in the r 00 -class of (a, b, c) which is reduced. (Since
the cases K real and imaginary must be treated separately, this is in fact two
exercises in one.)

b) In the case where K = Q(JD) is a real quadratic field, show that n is
reduced if and only if there exists integers a1 and a2 such that a1 = a2 = b
(mod 2a), 0 < a1 < JD and -JD < a2 < 0.

c) Let n be an ideal in the number field K. Show that there exists an o: E n
such that I!Ji(,B)I < I!Ji(o:)l for all i implies that /3 = 0. By considering the ideal
(d/o:)n for a suitable integer d, deduce from this that, as in the quadratic case,
every ideal is equivalent to a (not necessarily unique) reduced ideal.

17. Show that in any cycle of reduced quadratic forms of discriminant D > 0, there
exists a form (a, b, c) with Ia I :S: VJ575. In other words, show that in any ideal

class there exists an ideal n such that N(n):::; VJ575. (Hint: use Theorem 454
in [H-W].)

18. Prove Proposition 5.6.1.

19. Using Definition 4.9.11 and Proposition 5.1.4, show that if K is a (real or imag
inary) quadratic field of discriminant D we have (K(s) = ((s)Ln(s), and hence
that Propositions 5.3.12 and 5.6.9 are special cases of Dedekind's Theorem
4.9.12.

20. Modify Algorithm 5.7.1 so that it is still valid for a< 0.

21. Prove the following precise form of Lemma 5. 7.6. If p and q are coprime integers,
denote by p' the inverse of p modulo q such that 1 :::; p' :::; q. Let o: be a real
number. Then pjq is a convergent in the continued fraction expansion of o: if
and only if

1 p 1 --,---...,.- < Q: - - < 0

q(q + p') q q(2q- p')

22. Show that the period of the continued fraction expansion of the quadratic ir
rational corresponding to the inverse of a reduced quadratic form f of positive
discriminant is the reverse of the period of the quadratic number corresponding
to f. Conclude that for ambiguous forms, the period is symmetric.

23. Write an algorithm corresponding to Algorithm 5.7.2 as Algorithm 5.7.10 corre
sponds to Algorithm 5. 7.1 for computing the regulator of a real quadratic field
using the symmetry of the period when we start with the unit form instead of
any reduced form.

24. Assume that one has computed the regulator of a real quadratic field using the
method explained in Section 5.9 to a given precision which need not be very
high. Show that one can then compute the regulator to any desired accuracy in
a small extra amount of time (hint: using the distance function, we now know
where to look in the cycle).

25. Similarly to the preceding exercise, show that one can also compute the p-adic
regulator to any desired accuracy in a small extra amount of time.

5.11 Exercises for Chapter 5 301

26. Let D be a fundamental discriminant.
a) Show that h+(D)R+(D) = 2h(D)R(D) and that R+(D) = 2R(D) if and

only if the fundamental unit is of norm equal to -1.
b) What modifications can be made to Algorithm 5.9.2 so that it computes

the regulator and the class number in the narrow sense?

27. Let D < -4 be a fundamental discriminant, and set f = IDI.
a) Set s(x) = 'L:l<n<x (~).Show that is(x)l :Sf /2 and by Abel summation

that I 'L:n> f (~) /nl < 1/2.

b) Show that h(D) <]:_v'llnf.
7r

c) Using the Polya-Vinogradov inequality (see Exercise 8 of Chapter 9), give
a better explicit upper bound for h(D), asymptotic to 2~ v'Jln f.

28. (S. Louboutin) Using again the function s(x) defined in Exercise 27 and Abel
summation, show that we can avoid the computation of the function erfc(x)
in Proposition 5.3.14 using the fact that h(D) is an integer whose parity can
be computed in advance (h(D) is odd if and only if D = -4, D = -8 or
D = -p where pis a prime congruent to 3 modulo 4). Apply a similar method
in Proposition 5.6.11.

Chapter 6

Algorithms for Algebraic Number Theory II

We now leave the realm of quadratic fields where the main computational
tasks of algebraic number theory mentioned at the end of Chapter 4 were
relatively simple (although as we have seen many conjectures remain), and
move on to general number fields.

We first discuss practical algorithms for computing an integral basis and
for the decomposition of primes in a number field K, essentially following a pa
per of Buchmann and Lenstra [Buc-Len], except that we avoid the explicit use
of Artinian rings. We then discuss algorithms for computing Galois groups (up
to degree 7, but see also Exercise 15). As examples of number fields of higher
degree we then treat cyclic and pure cubic fields. Finally, in the last section
of this chapter, we give a complete algorithm for class group and regulator
computation which is sufficient for dealing with fields having discriminants
of reasonable size. This algorithm also gives a system of fundamental units if
desired.

6.1 Computing the Maximal Order

Let K = IQ[e] be a number field, where e is a root of a monic polynomial
T(X) E Z[X]. Recall that ZK has been defined as the set of algebraic integers
belonging to K, and that it is called the maximal order since it is an order in
K containing every order of K. We will build it up by starting from a known
order (in fact from Z[e]) and by successively enlarging it.

6.1.1 The Pohst-Zassenhaus Theorem

The main tool that we will use for enlarging an order is the Pohst-Zassenhaus
Theorem 6.1.3 below. We first need a few basic results and definitions.

Definition 6.1.1. Let 0 be an order in a number field K and let p be a prime
number.

(1) We will say that 0 is p-maximal if [ZK : OJ is not divisible by p.
(2) We define the p-radical Ip as follows.

Ip = { x E 0 I 3m ~ 1 such that xm E pO}

304 6 Algorithms for Algebraic Number Theory II

Proposition 6.1.2. Let 0 be an order in a number field K and let p be a
prime number.

(1) The p-radical Ip is an ideal of 0.
(2) We have

Ip = II Pi
l~i~g

the product being over all distinct prime ideals Pi of 0 which lie above p.
(3) There exists an integer m such that 1; C pO.

Proof. For (1), the only thing which is not completely trivial is that lp is stable
under addition. If xm E pO and yn E pO, then clearly (x + y) n+m E pO as we
see by using the binomial theorem.

For (2) note that since Pi lies above p then pO C Pi· So, if x E lp there
exists an m such that xm E pO C p;, and hence x E p; by definition of a prime
ideal. By Proposition 4.6.4 this shows that X E nl~i~g Pi = nl~i~g Pi since
the distinct maximal ideals Pi are pairwise coprime.

Conversely, assume that x E f1 1<i< p;. By definition, the set of ideals of
- _g

0 containing pO is in canonical one-to-one correspondence with the ideals of
the finite quotient ring R = 0 j pO. We will use this at length later. For now,
note that it implies that this set is finite, and in particular the ideals an R are
finite in number, where a is the class of x in R. In particular, there exists ann
such that an R = o:n+l R, i.e. o:n(l- a(3) = 0 for some (3 E R. By assumption,
a belongs to all the maximal ideals Pi of R hence (1 - a(3) cannot belong to
any of them, otherwise 1 would also, which is impossible. It follows that the
ideal (1 - o:(3)R, not being contained in any maximal ideal, must be equal to
R, i.e. 1 - a(3 is invertible R. The equality an(1- a(3) = 0 thus implies that
an = 0 in R, i.e. that xn E pOor again that x E lp as was to be proved.

Finally, for (3) note that since lp is an ideal of an order in a number field
it has a finite Z-basis X; for 1 ~ i ~ n. For each x; there exists an m; such
that x7'• E pO, and if we set m = L::l<i<n mi it is clear that 1; C pO, using
this time the multinomial theorem instead of the binomial theorem. D

The procedure that we will use to obtain the maximal order is to start with
0 = Z[e] and enlarge it for successive primes so as to get an order which is
p-maximal for every p, hence which will be the maximal order. The enlarging
procedure which we will use, due to Pohst and Zassenhaus, is based on the
following theorem.

Theorem 6.1.3. Let 0 be an order in a number field K and let p be a prime
number. Set

O' = {x E Klxip c Ip}·

Then either 0' = 0, in which case 0 is p-maximal, or 0' ;:2 0 and pI [0' :
O]Jpn.

6.1 Computing the Maximal Order 305

Proof. Since Ip is an ideal, it is clear that 0' is a ring containing 0. Further
more, since p E Ip, x E 0' implies that xp E Ip c 0 and hence 0 CO' C -i;O.

This shows that 0' has maximal rank, i.e. is an order in K, and it also shows
that [0': O]lpn.

We now assume that O' = 0. Define

OP = {x E ZKI3j ~ 1, z}x E 0}.

It is clear that 0 C Op and that OP is an order. Furthermore, Op is p-maximal.
Indeed, if p divides the index [ZK : Op], then there exists x E ZK such that
x ¢:. OP but px E OP. The definition of Op shows that this is impossible.

We are now going to show that OP = 0. Since Op is an order, it is finitely
generated over Z. Hence there exists an r ~ 1 such that prOP C 0 (taker to
be the maximum of the j such that pix; E 0 for a finite generating set (x;)
of Op)· Since I; C pO it follows that Opi;r c 0. Assume by contradiction
that Op =/=- 0, hence Op (j_ 0. Let n be the largest index such that Opi; (j_ 0
(hence n exists and 0 ~ n < mr). We thus also have OPI;+I C 0. Choose
any x E Opi; \0. Then xip C 0. Since Opi;+m+I c I; C pO it follows that
if y E Ip, then (xy)n+m+I E pO hence that xy E Ip, so xip C Ip thus showing
that x E 0'. This is a contradiction since x ¢:. 0 and we have assumed that
O' = 0. This finishes the proof of Theorem 6.1.3. 0

(I thank D. Bernardi for the final part of the proof.)

6.1.2 The Dedekind Criterion

From the Pohst-Zassenhaus theorem, starting from a number field K = Q(O)
defined by a monic polynomial T E Z[XJ, we will enlarge the order Z[OJ for ev
ery prime p such that p2 divides the discriminant ofT until we obtain an order
which is p-maximal for every p, i.e. the maximal order. In practice however,
even when the discriminant has square factors, Z[OJ is quite often p-maximal
for a number of primes p, and it is time consuming to have to compute 0' as
in Theorem 6.1.3 just to notice that 0' = Z[OJ, i.e. that Z[OJ is p-maximal.
Fortunately, there is a simple and important criterion due to Dedekind which
allows us to decide, without the more complicated computations explained
in the next section, whether Z[OJ is p-maximal or not for prime numbers p,
and if it is not, it will give us a larger order, which of course may still not be
p-maximal.

It must be emphasized that this will work only for Z[O], or for any order
0 containing Z[OJ with [0 : Z[OJJ prime top, but not for an order which has
already been enlarged for the prime p itself.

This being said the basic theorem that we will prove, of which Dedekind's
criterion is a special case, is as follows.

Theorem 6.1.4 (Dedekind). Let K = Q(O) be a number field, T E Z[X]
the monic minimal polynomial of 8 and let p be a prime number. Denote by -
reduction modulo p {in Z, Z[X] or Z[B]). Let

306 6 Algorithms for Algebraic Number Theory II

k

T(X) = IJti(X)e;
i=l

be the factorization ofT(X) modulo pin 1Fp[X], and set

k

g(X) = II ti(X)
i=l

where the ti E Z[X] are arbitrary monic lifts ofti. Then

(1) The p-radical Ip of Z[B] at p is given by

Iv = pZ[B] + g(B)Z[B].

In other words, x =A(B) E Iv if and only if g I A.
(2) Let h(X) E Z[X] be a monic lift ofT(X)/g(X) and set

f(X) = (g(X)h(X)- T(X))/p E Z[X].

Then Z[B] is p-maximal if and only if

(f,g,h) = 1 in 1Fp[X].

(3) More generally, let 0' be the order given by Theorem 6.1.3 when we start
with 0 = Z[B]. Then, ifU is a monic lift ofTf(/,g,h) to Z[X] we have

O' = Z[B] + ~U(B)Z[B]
p

and if m = deg{f,g,h), then [0' : Z[B]] = pm, hence disc(O') =
disc(T)/p2m.

Proof of {1). p E Ip trivially, and since the exponents ei are at most equal
ton = [K : Q] = deg(T), we have T I gn hence gn(B) = 0 (mod pZ[B]) so
g(B) E Iv, thus proving that Iv ::J pZ[B] + g(B)Z[B].

Now the minimal polynomial over IFP of B in Z[B]/pZ[B] (which is not a
field in general) is clearly the polynomial T. Indeed, it clearly divides T, but
it is of degree at least n since 1, B, .. . , on-l are IFv-linearly independent.

Conversely let x E Iv- Then x = A(B) for A E Z[X], and so there exists
an integer m such that xm = 0 (mod pZ[B]), in other words Am(B) = 0 in
Z[B]/pZ[B]. Hence T I Am. Since ei ~ 1 for all i, this implies that ti I r
hence ti I A since ti is irreducible in 1Fp[X], and since the ti are pairwise
coprime, we get g I A which means that x E pZ[B] + g(B)Z[B] thus proving (1).

Since T is the minimal polynomial of (J in Z[B]/pZ[B], it is clear that (2)
follows from (3).

6.1 Computing the Maximal Order 307

Let us now prove (3). Recall that 0' = {x E Klxlp c lp}· From (1) we
have that x E 0' if and only if xp E IP and xg(B) E Ip. Since Ip C Z[B],
xp E Ip implies that

X= Al(B)/p

where A1 E Z[X]. Part (3) of the theorem will immediately follow from the
following lemma.

Lemma 6.1.5. Let x = A1(B)jp with A1 E Z[X]. Then

(1) xp E Ip if and only if
g I A1.

(2) Let k = gj(J,g), where (here as elsewhere in this section) k is implicitly
considered to be a monic lift o{k to Z[X]. Then xg(B) E IP if and only if

Proof of the Lemma. Part (1) of the lemma is an immediate consequence of
part (1) of the theorem. Let us prove part (2).

From part (1) of the theorem, xg(B) E lp if and only if there exist poly
nomials A2 and A3 in Z[X] such that

and since T is the minimal polynomial of (), this is true if and only if there
exists A4 E Z[X] such that

For the rest of this proof, we will work only with polynomials (in Z[X] or
IFp[X]), and not any more inK.

Reducing modulo p, the above equation implies that A1 = A4h. Hence
write

A1 = hA4+ pAs

with As E Z[X]. We have that xg(B) E Ip if and only if there exist polynomials
Ai E Z[X] such that

hence if and only if there exist Ai such that

f A4 = pA2 + gA6.

This last condition is equivalent to g I f A 4 so to k I A4 where k = gj(J, g),
and this is equivalent to the existence of A 1 and As in Z[X] such that A4 =
kA1 +pAs.

308 6 Algorithms for Algebraic Number Theory II

To sum up, we see that if x = At (()) jp, then xg(()) E Ip if and only if there
exist polynomials A5, A7 and As in Z[X] such that

At = hkA1 + p(hAs + A5),

and this is true if and only if there exist A9 E Z[X] such that At= hkA1+pAg
or equivalently hk I At, thus proving the lemma. 0

We can now prove part (3) of the theorem. From the lemma, we have that
x = At(())jp E 0' if and only if both g and hk divide At in the PID IF'p[X],
hence if and only if the least common multiple of g and hk divides At· Since
in any PID, lcm(x,y) = xyj(x,y) and lcm(zx,zy) = zlcm(x,y), we have

lcm(g,hk) = klcm(gcd(f,g),h) = _g_ h(J,g)
(f,g) (f,g,h)

-=-=T-=- = fJ
(f,g,h)

thus proving that 0' = Z[e] + (U(())jp)Z[e]. Now it is clear that a system of
representatives of 0' modulo Z[()] is given by A(())U(())jp where A runs over
uniquely chosen representatives in Z[X] of polynomials in IF'p[X] such that
deg(A) < deg(T) - deg(U) = m, thus finishing the proof of the theorem. 0

An important remark is that the proof of this theorem is local at p, in
other words we can copy it essentially verbatim if we everywhere replace Z[()]
by any overorder 0 of Z[()] such that [0 : Z[e]] is coprime top. The final result
is then that the new order enlarged at p is

and [0': OJ= pm.

6.1.3 Outline of the Round 2 Algorithm

From the Pohst-Zassenhaus theorem it is easy to obtain an algorithm for
computing the maximal order. We will of course use the Dedekind criterion
to simplify the first steps for every prime p.

Let K = Q(()) be a number field, where () is an algebraic integer. Let
T be the minimal polynomial of e. We can write disc(T) = df 2 , where d is
either 1 or a fundamental discriminant. If ZK is the maximal order which
we are looking for, then the index [ZK : Z[e]] has only primes dividing f as
prime divisors because of Proposition 4.4.4. We are going to compute ZK by
successive enlargements from 0 = Z[e], one prime dividing f at a time. For
every p dividing f we proceed as follows. By using Dedekind's criterion, we
check whether 0 is p-maximal and if it is not we enlarge it once using Theorem
6.1.4 (3) applied to 0. If the new discriminant is not divisible by p2 , then we

6.1 Computing the Maximal Order 309

are done, otherwise we compute O' as described in Theorem 6.1.3. If O' = 0,
then 0 is p-maximal and we are finished with the prime p, so we move on to
the next prime, if any. (Here again we can start using Dedekind's criterion.)
Otherwise, replace 0 by 0', and use the method of Theorem 6.1.3 again. It
is clear that this algorithm is valid and will lead quite rapidly to the maximal
order. This algorithm was the second one invented by Zassenhaus for maximal
order computations, and so it has become known as the round 2 algorithm
(the latest and most efficient is round 4).

What remains is to explain how to carry out explicitly the different steps
of the algorithm, when we apply Theorem 6.1.3.

First, () is fixed, and all ideals and orders will be represented by their
upper triangular HNF as explained in Section 4.7.2. We must explain how to
compute the HNF of Ip and of 0' in terms of the HNF of 0. It is simpler to
compute in R = 0 jpO. To compute the radical of R, we note the following
lemma:

Lemma 6.1.6. If n = [K: Q] and if j;::: 1 is such that pi;::: n, then the
radical of R is equal to the kernel of the map x f-+ xP;, which is the jth power
of the Frobenius homomorphism.

Proof. It is clear that the map in question is the /h power of the Frobenius
homomorphism, hence talking about its kernel makes sense. By definition of
the radical, it is clear that this kernel is contained in the radical. Conversely, let
x be in the radical. Then x induces a nilpotent map defined by multiplication
by x from R to R, and considering R as an 1Fp-vector space, this means that
the eigenvalues of this map in IFp are all equal to 0. Hence, its characteristic
polynomial must be xn (since n = dimJFp R), and by the Cayley-Hamilton

theorem this shows that xn = 0, and hence that xpi = 0, proving the lemma.
0

Let WI, ... , Wn be the HNF basis of 0. Then it is clear that WI, ... , Wn

is an IF P-basis of R. For k = 1, ... , n, we compute ai,k such that

the left hand side being computed as a polynomial in () by the standard rep
resentation algorithms, and the coefficients ai,k being easily found inductively
since an HNF matrix is triangular. Hence, if A is the matrix of the ai,k, the
radical is simply the kernel of this matrix.

Hence, if we apply Algorithm 2.3.1, we will obtain a basis oflp, the radical
of R, in terms of the standard representation. Since Ip is generated by pull
backs of a basis of Ip and pwi, ... , pwn, to obtain the HNF of Ip we apply
the HNF reduction algorithm to the matrix whose columns are the standard
representations of these elements.

310 6 Algorithms for Algebraic Number Theory II

Now that we have Ip, we must compute 0'. For this, we use the following
lemma:

Lemma 6.1.7. With the notations of Theorem 6.1.3, if U is the kernel of

the map

a ~----> (~ f--+ a f3)

from 0 to End(Ip(Plp), then O' = ~U.

Proof. Trivial and left to the reader. Note that End(Ip(Plp) is considered as
a 1£-.module. D

Hence, we first need to find a basis of Ip(Plp. There are two methods to
do this. From the HNF reduction above, we know a basis of Ip, and it is clear
that the image of this basis in Ip(plp is a basis of Ip(Plp· The other method
is as follows. We use only the 1FP-basis ~1 , ... , ~~ of lp found above. Using
Algorithm 2.3.6, we can supplement this basis into a basis ~1 , ... , ~~, ~l+l,
... , ~n of 0/pO, and then ~1, ... , ~l, P~l+l, ... , P~n will be an IFp-basis of
Ip(piP, where - denotes reduction modulo pip, and /3; denotes any pull-back
of ~i in 0. (Note that the basis which one obtains depends on the pull-backs
used.)

This method for finding a basis of Ip(Pfp has the advantage of staying at
the mod p level, hence avoids the time consuming Hermite reduction, so it is
preferable.

Now that we have a basis of Ip(Plp, the elementary matrices give us a
basis of End(Ip(plp)· Hence, we obtain explicitly the matrix of the map whose
kernel is U, and it is a n 2 x n matrix. Algorithm 2.3.1 makes sense only over
a field, so we must first compute the kernel U of the map from O(pO into
End(Ip(Plp) which can be done using Algorithm 2.3.1. If VI, ... , Vk is the
basis of this kernel, to obtain U, we apply Hermite reduction to the matrix
whose column vectors are VI, ... , Vk, pwi, ... , 'PWn· In fact, we can apply
Hermite reduction modulo the prime p, i.e. take D = p in Algorithm 2.4.8.

Finally, note that to obtain the n2 x n matrix above, if the '"Yi form a basis
of Ip(Plp one computes

Wk"?; = L ak,i,i"Yj,

I::;j::;n

and k is the column number, while (i,j) is the row index. Unfortunately, in
the round 2 algorithm, it seems unavoidable to use such large matrices. Note
that to obtain the ak,i,j, the work is much simpler if the matrix of the "{j

is triangular, and this is not the case in general if we complete the basis as
explained above. On the other hand, this would be the case if we used the first
method consisting of applying Hermite reduction to get the HNF of Ip itself.
Tests must be made to see which method is preferable in practice.

6.1 Computing the Maximal Order 311

6.1.4 Detailed Description of the Round 2 Algorithm

Using what we have explained, we can now give in complete detail the round
2 algorithm.

Algorithm 6.1.8 (Zassenhaus's Round 2). Let K = Q(e) be a number field
given by an algebraic integer e as root of its minimal monic polynomial T of
degree n. This algorithm computes an integral basis w1 = 1, w2, ... , Wn of
the maximal order ZK (as polynomials in e) and the discriminant of the field.
All the computations in K are implicitly assumed to be done using the standard
representation of numbers as polynomials in e.
1. [Factor discriminant of polynomial) Using Algorithm 3.3.7, compute D <-

disc(T). Then using a factoring algorithm (see Chapters 8 to 10) factor D
in the form D = D0 F 2 where Do is either equal to 1 or to a fundamental
discriminant.

2. [Initialize) Fori = 1, ... 'n set Wi <-- ei-l_

3. [Loop on factors of F) IfF= 1, output the integral basis Wi (which will be
in HNF with respect to e), compute the product G of the diagonal elements
of the matrix of the wi (which will be the inverse of an integer by Corollary
4.7.6), set d <-- D · G2 , output the field discriminant d and terminate the
algorithm. Otherwise, let p be the smallest prime factor of F.

4. [Factor modulo p) Using the mod p factoring algorithms of Section 3.4, factor
T modulo pasT= n~ei where the~ are distinct irreducible polynomials
in !Fp[X] and ei > 0 for all i. Set g <-- TI~. h <-- Tjg, f <-- (gh- T)jp,
Z <-- (1, g, h), U <-- T /Z and m <-- deg(Z).

5. [Apply Dedekind) If m = 0, then 0 is p-maximal so while p I F set F <-- F jp,
then go to step 3. Otherwise, for 1 ~ i ~ m, let vi be the column vector
of the components of wiU(e) on the standard basis 1, e, ... ,en-l and set
Vm+j = pwj for 1 ~ j ~ n.

Apply the Hermite reduction Algorithm 2.4.8 to then x (n + m) matrix
whose column vectors are the vi. (Note that the determinant of the final
matrix is known to divide D.) If H is then x n HNF reduced matrix which
we obtain, set for 1 ~ i ~ n, wi <-- Hi/P where Hi is the i-th column of H.

6. [Is the new order p-maximal?) If pm+l f F, then the new order is p-maximal
so while pI F set F <-- Fjp, then go to step 3.

7. [Compute radical] Set q <-- p, and while q < n set q <-- qp. Then compute the
n x n matrix A= (ai,j) over JFP such that wJ = I:1::;i::;n ai,jWi· Note that
the matrix of the wi will stay triangular, so the ai,j are easy to compute.

Finally, using Algorithm 2.3.1, compute a basis {31 , ... , f3z of the kernel
of the matrix A over !Fp (this will be a basis of IpjpO).

8. [Compute new basis mod p] Using the known basis w1o ... , Wn of 0 jpO,
supplement the linearly independent vectors (31, ... , (Jz to a basis fJ1.
f3n of 0 jpO using Algorithm 2.3.6.

312 6 Algorithms for Algebraic Number Theory II

9. [Compute big matrix] Set ai t- f3i for 1 :::; i :::; l, ai t- Pf3i for l < i ::=; n,

where f3i is a lift to 0 of /3i· Compute coefficients ci,j,k E 1Fp such that
wkaj = Ll<i<n Ci,j,kll!i (mod p). Let C be the n 2 x n matrix over 1Fp such
that C(i,j),k -=-Ci,j,k·

10. [Compute new order] Using Algorithm 2.3.1, compute a basis '/'lo ... 'I'm for
the kernel of C (these are vectors in JF;, and m can be as large as n2). For
1 ::=; i ::=; m let vi be a lift of 'i'i to zn, and set Vm+i = pwi for 1 ::=; j ::=; n.
Apply the Hermite reduction Algorithm 2.4.8 to then x (n+m) matrix whose
column vectors are the vi. (Note again that the determinant of the final matrix
is known to divide D.) If His the nx n HNF reduced matrix which we obtain,
set for 1 ::=; i ::=; n, w~ t- Hi/p where Hi is the i-th column of H.

11. [Finished with p?]lf there exists an i such that w~ :f. wi, then for every i such
that 1 :::; i :::; n set Wi t- w~ and go to step 7. Otherwise, 0 is p-maximal, so
while pI F set F t- Ffp, and go to step 3.

This finishes our description of the round 2 algorithm. This algorithm
seems complicated at first. Although it has been superseded by the round 4
algorithm, it is much simpler to implement and it performs very well. The
major bottleneck is perhaps not where the reader expects it to be, i.e. in the
handling of large matrices. It is, in fact, in the very first step which consists
in factoring disc(T) in the form DoF2 . Indeed, as we will see in Chapter
10, factoring an 80 digit number takes a considerable amount of time, and
factoring a 50 digit one is already not that easy. One can refine the methods
given above to the case where one does not suppose p to be necessarily prime
(see [Buc-Len] and [Buc-Len2]), but unfortunately this does not avoid finding
the largest square dividing disc(T), which is apparently almost as difficult as
factoring it completely.

6.2 Decomposition of Prime Numbers II

As we shall see, the general problem of decomposing prime numbers in an
algebraic number field is closely related to the problem of computing the
maximal order. Consequently, we have already given most of the theory and
auxiliary algorithms that we will need. As we have already seen, the problem
is as follows. Given a prime p and a p-maximal order 0, for example the
maximal order 7l.K itself, determine the maximal ideals Pi and the exponents
ei such that

g

pO =IT P~'·
i=l

As usual 0 will be given by its HNF on a power basis 1, (), ... , ()n-l, and we
want the HNF basis of the Pi· The determinant of the corresponding matrix
is equal to N(Pi) =ph in the traditional notation. For practical applications,

6.2 Decomposition of Prime Numbers II 313

it will also be useful to have a two-element representation of the ideals Pi (see
Proposition 4.7.7).

In Theorem 4.8.13 we saw how to obtain this decomposition when p does
not divide the index [0 : Z[B]]. Hence we will concentrate on the case where
p divides the index.

6.2.1 Newton Polygons

Historically the first method to deal with this problem is the so-called Newton
polygon method. When it applies, it is very easy to use, but it must be stressed
that it is not a general method. We will give a completely general method in
the next section.

I am grateful to F. Diaz y Diaz and M. Olivier for the presentation of
Newton polygons given here, which follows [Ore] and [Mon-Nar]. Essentially
no proofs are given.

We may assume without loss of generality that the minimal polynomial
T(X) of B is in Z[X] and is monic.

The first result tells us what survives of Theorem 4.8.13 in the case where
p divides the index.

Proposition 6.2.1. Let

9

T(X) =II Ti(xt (mod p)
i=l

be the decomposition ofT into irreducible factors in IF P [X], where the Ti are

taken to be arbitrary monic lifts ofTi(X) in Z[X]. Then

where

9

pZK =II ai,
i=l

ai = (p, Tr(B)) = pZK + Tie'(B)ZK

and the ai are pairwise coprime (i.e. ai + aj = Z K for i i= j). Furthermore, if
ni is the degree of Ti we have N(ai) = pe,n;, and all prime ideals dividing ai
are of residual degree divisible by ni.

Proof. The proof follows essentially the same lines as that of Theorem 4.8.13.
It is useful to also prove that the inverse of ai is given explicitly as

(see Exercise 5).

ai 1 = (1, fir;; (B)/p)
j#i

0

314 6 Algorithms for Algebraic Number Theory II

The problem is that the ideals ai are not necessarily of the form p~' as
in Theorem 4.8.13 (the reader can also check via examples that it would not
do any good to set Pi = (p, Ti(O))). We must therefore try to split the ideals
ai some more. For this we can proceed as follows. By successive Euclidean
divisions ofT by Ti, we can write T in a unique way in the form

Ln/n;J

T(X) = L Qi,jTf
j=O

with deg(Qi,j) < ni. We will call this the Ti-expansion ofT. We will write
di = ln/niJ·

If Q = I:09~m akXk E Z[X], we will set

vp(Q) = min(vp(ak)),
k

where we set vp(O) = +oo (or in other words we ignore coefficients equal to
zero). The basic definition is as follows.

Definition 6.2.2. With the above notations, for a fixed i, the convex hull of
the set of points (j, vp(Qi,d,-j)) for each j such that Qi,d,-j 1- 0, is called the
Newton polygon ofT relative to Ti and the prime number p {since pis always
fixed, we will in fact simply say "relative to Ti ").

Note that Qi,j = 0 for j < 0 or j > di, hence the Newton polygon is
bounded laterally by two infinite vertical half lines. Furthermore, since T and
the Ti are monic, so is Qi,d, hence vp(Qi,d.) = 0. It follows that the first vertex
of the Newton polygon is the origin (0, 0). Let a be the largest real number
(which is of course an integer) such that (a, 0) is still on the Newton polygon
(we may have a= 0 or a = di)· The part of the Newton polygon from the
origin to (a, 0) is either empty (if a = 0) or is a horizontal segment. The rest
of the Newton polygon, i.e. the points whose abscissa is greater than or equal
to a, is called the principal part of the Newton polygon, and (a, 0) is its first
vertex.

We assume now that i is fixed.
Let Vj for 0 ~ j ~ r be the vertices of the principal part of the Newton

polygon of T relative to Ti (in the strict sense: if a point on the convex hull
lies on the segment joining two other points, it is not a vertex), and set Vj =
(xi,Yi)· The sides of the polygon are the segments joining two consecutive
vertices (not counting the infinite vertical lines), and the slopes are the slopes
of these sides, i.e. the positive rational numbers (Yi - Yi- 1)/(xi - Xj-1) for
1 ~ j ~ r (note that they cannot be equal to zero since we are in the principal
part).

The second result gives us a more precise decomposition of pZK than the
one given by Proposition 6.2.1 above, whose notations we keep. We refer to
[Ore) for a proof.

6.2 Decomposition of Prime Numbers II 315

Proposition 6.2.3. Let i be fixed.

(1) To each side [Vj-1, Vj] of the principal part of the Newton polygon ofT
relative to Ti we can associate an ideal qi,j such that the qi,j are pairwise
coprime and

r

ai = IT qi,j .

j=1

(2) Set hi = Yi- Yi-1 and ki = Xj- Xj_ 1. If hi and ki are coprime for some
j, then the corresponding ideal qi,j is of the form qi,j = pk; where p is a
prime ideal of degree ni.

(3) In the special case when the principal part of the Newton polygon has a
single side and h1 = Y1 - Yo = y1 is equal to 1, then ai = pe• where
p = (p, Ti(B)) is a prime ideal of degree ni.

Corollary 6.2.4. LetT E Z[X] be an Eisenstein polynomial with respect to
a prime number p, i.e. a monic polynomial T(X) = E~=O aiXi with p I ai
for all i < n and p2 f ao (see Exercise 11 of Chapter 3}. In the number field
K = Q[B] defined by T the prime p is totally ramified, and more precisely
pZK = pn with p = (p,B).

Proof In this case we have T = xn (mod p), hence T1(X) =X, Qi,i = ai,
and since p I ai for all i < n, the principal part of the Newton polygon is
the whole polygon, and since p2 f a0 we are in the special case (3) of the
proposition, so the corollary follows. D

Although Proposition 6.2.3 gives results in a number of cases, and can be
generalized further (see [Ore] and [Mon-Nar]), it is far from being satisfactory
from an algorithmic point of view.

6.2.2 Theoretical Description of the Buchmann-Lenstra Method

The second method for decomposing primes in number fields, which is com
pletely general, is due to Buchmann and Lenstra ([Buc-Len]). We proceed as
follows. (The reader should compare this to the method used for factoring
polynomials modulo p given in Chapter 3.) Write Ip for the p-radical of 0.
We know that Ip = f}f=1 Pi. Set for any j ;::: 0:

Ki=It+pO.

It is clear that the valuation at Pi of Ki is equal to min(ei, j), hence

g

Kj = 11P~in(e;,j).

i=1

It is also clear that Ki c Ki_ 1. Hence, if we set

316 6 Algorithms for Algebraic Number Theory II

then Ji is an integral ideal, and in fact Ji = lle;2:i Pi so in particular Ji c
Ji+l· Finally, if we define

we have

Hi= 11 l'i·
ei=j

This exactly corresponds to the squarefree decomposition procedure of Sec
tion 3.4.2, the Hi playing the role of the Ai, and without the inseparability
problems. In other words, if we set e = maxi(ei), we have

e

pO= 11 Hj,
j=l

and the Hj are pairwise coprime and are products of distinct maximal ideals.
To find the splitting of pO, it is of course sufficient to find the splitting of each
Hi.

Now, since Hi is a product of distinct maximal ideals, i.e. is squarefree, the
IF p-algebra 0 I Hi is separable. Therefore, by the primitive element theorem
there exists i'ij E 0 I Hj such that 0 I Hi = lF P [i'ij]. Let hi be the characteristic
polynomial of lij over IFp, and hi be any pullback in Z[X]. Then exactly the
same proof as in Section 4.8.2 shows that, if

9;

hj(X) = 11 qi,j(X) (mod p)
i=l

is the decomposition modulo p of the polynomial hi, then the ideals

are maximal and that
9;

Hi= 11 qi,i
i=l

is the desired decomposition of Hi into a product of prime ideals.

We must now give algorithms for all the steps described above. Essentially,
the two new things that we need are operations on ideals in our special case,
and splitting of a separable algebra over IF p·

6.2 Decomposition of Prime Numbers II 317

6.2.3 Multiplying and Dividing Ideals Modulo p

Although the most delicate step in the decomposition of p'ZK is the final
splitting of the ideals H;, experiment (and complexity analysis) shows that this
is paradoxically the fastest part. The conceptually easier steps of multiplying
and dividing ideals take, in fact, most of the time and so must be speeded up
as much as possible.

Looking at what is needed, it is clear that we use only the reductions
modulo pO of the ideals involved. Hence, although for ease of presentation we
have implicitly assumed that the ideals are represented by their HNF, we will
in fact consider only ideals IjpO of 0/pO which will be represented by an IFp
basis. All the difficulties of HNF (Euclidean algorithm, coefficient explosion)
disappear and are replaced by simple linear algebra algorithms. Moreover, we
are working with coefficients in a field which is usually of small cardinality.
(Recall that p divides the index, otherwise the much simpler algorithm of
Section 4.8.2 can be used.)

If I is given by its HNF with respect to () (this will not happen in our
case since we start working directly modulo p), then, since I :J pO :J pZ[()],
the diagonal elements of the HNF will be equal to 1 or p. Therefore, to find
a basis of I, we simply take the basis elements corresponding to the columns
whose diagonal element is equal to 1.

The algorithm for multiplication is straightforward.

Algorithm 6.2.5 (Ideal Multiplication Modulo pO). Given two ideals I jpO
and JjpO by 1Fp-bases (aih:S:i:S:r and (f3;h:s:;::;:m respectively, where the ai and
{3i are expressed as IFp-linear combinations of a fixed integral basis Wt. ..• , Wn of
0, this algorithm computes an IFp-basis of the ideal IJjpO.

1. [Compute matrix] Using the multiplication table of the wi, let M be then x rm
matrix M with coefficients in IFP whose columns express the products ad3i on
the integral basis.

2. [Compute image] Using Algorithm 2.3.2 compute a matrix M1 whose columns
form an 1FP-basis of the image of M. Output the columns of M1 and terminate
the algorithm.

Ideal division modulo pO is slightly more difficult. We first need a lemma.

Lemma 6.2.6. Denote by - reduction mod p. Let I and J two integral ideals
of 0 containing pO and assume that I c J. Then, as a Z/pZ-vector space,
IJ- 1 is equal to the kernel of the map¢ from 0/pO to End(J/I) given by

¢(/3) = (a t---t a{3) .

Indeed, ¢(/3) is equal to 0 if and only if a{3 E I for every a E J, i.e. if
{3J C I, or in other words if {3 E IJ- 1 , proving the lemma. D

318 6 Algorithms for Algebraic Number Theory II

This leads to the following algorithm.

Algorithm 6.2.7 (Ideal Division Modulo pO). Given two ideals IlpO and
J IPO by lF P bases (a;)l:::;;:::;r and ({3j h:::;j:::;m respectively, where the a; and {3j
are expressed as lFp-linear combinations of a fixed integral basis w1, ... ,Wn of 0,
this algorithm computes an lFv-basis of the ideal I J- 1 IPO assuming that I C J.

1. [Find basis of J I I] Apply Algorithm 2.3.7 to the subspaces I lpO and J lpO
of JF~, thus obtaining a basis ('yj h:::;j:::;m-r of a supplement of I lpO in J lpO.

2. [Setup ideal division] By using the multiplication table of thew; and Algorithm
2.3.5, compute elements a;,j,k and b;,j,k in lFP such that

j j

and let M be the (m- r) 2 x n matrix formed by the a;,j,k for 1 ::; i, j ::; m- r

and 1 ::; k ::; n (we can forget the b;,j,k)·

3. [Compute IJ- 1Ip0] Using Algorithm 2.3.1, compute a matrix M1 whose
columns form an lFv-basis of the kernel of M, output M1 and terminate the
Algorithm.

Indeed, M is clearly equal to the matrix of ¢ in the standard basis of
End(JIJ). D

6.2.4 Splitting of Separable Algebras over lFp

To avoid unnecessary indices, we set simply H = Hj. Using the above algo
rithms, it is straightforward to compute an lFp-basis 731, ... ,73m of H = HlpO.
Using Algorithm 2.3.6, we can supplement this basis to a basis 731, ... ,73n of
0 IPO It is then clear that the images of f3m+l, ... ,f3n in 0 I H form an lFP
basis of 0 I H.

In order to finish the decomposition, there remains the problem of splitting
the separable algebra A = 0 I H given by this lFp-basis. As explained above,
one method is to start by finding a primitive element a. Finding a primitive
element is not, however, a completely trivial task. Perhaps the best way is to
choose at random an element x E A \lFv (note that lFp can be considered natu
rally embedded in A), compute its minimal polynomial P(X) over lFp (which
need not be irreducible), and check whether deg(P) =dim(A). Although prac
tical, this method has the disadvantage of being completely non-deterministic,
although it is easy to give estimates for the number of trials that one has to
perform before succeeding in finding a suitable x, see Exercise 6.

We give another method which does not have this disadvantage. It is based
on the following proposition.

6.2 Decomposition of Prime Numbers II 319

Proposition 6.2.8. Let A be a finite separable algebra over IFp. There exists
an efficient probabilistic algorithm which either shows that A is a field, or finds
a non-trivial idempotent in A, i.e. an element c E A such that c2 = c with
c # 0 and c-# 1.

Proof Since A is a finite separable algebra, A is isomorphic to a finite product
of fields, say A ~ A1 x · · · x Ak. Write any element a of A as (o:1, ... , ak)
where o:i E Ai. Consider the map ¢ from A to A defined by ¢(x) = xP- x.
It is clear that IFp, considered as embedded in A, is in the kernel V of¢. By
Algorithm 2.3.1, we can easily compute a basis for V, and, in particular, its
dimension. Note that a = (o:1, ... , ak) E V if and only if for all i such that
1 :S i :S k, ai E IFp where IFp is considered embedded in Ai· It follows that
dim(V) = k, and hence dim(V) = 1 if and only if A is a field.

Therefore assume that dim(V) > 1, and let a E V \ IFp· By computing
successive powers of a, we can find the minimal polynomial ma(X) of a in A.
If a = (0:1, ... , O:k), it is clear that ma (X) is the least common multiple of the
ma; (X), and since a E V, the polynomials ma; (X) are polynomials of degree
1. It follows that ma(X) is a squarefree polynomial equal to a product of at
least two linear factors (since a¢ IFp)· Write ma(X) = m1(X)m2(X) where
m 1 and m 2 are non-constant polynomials in lF P [X]. Since ma is squarefree,
m1 and m2 are coprime, so we can find polynomials U(X) and V(X) in IFp[X]
such that U(X)m1(X) + V(X)m2(X) = 1. We now choose c = Um1(o:).
Since m1m2(o:) = 0, cis an idempotent. In addition, it is clear that (U, m2) =
(V, m1) = 1 and m1, m2 non-constant imply that c -# 0 and c -# 1. 0

Remark. Note that it is not necessary to compute the complete basis of the
kernel of ¢ in order to obtain the result. We need only, either show that the
kernel Vis of dimension 1 (proving that A is a field), or give an element of V
which is not in the one-dimensional subspace IFp. Hence, we can stop algorithm
2.3.1 as soon as such an element is found.

Using this proposition, it is easy to finish the splitting of our ideals H =
Hi. Set A = 0/ H as before. Using the above proposition, either we have shown
that A is a field (hence H is a prime ideal, so we have shown that the splitting
is trivial), or we have found a non-trivial idempotent c. Set H 1 = H +eO,
H2 = H + (1 - e)O where e is any lift to 0 of c. I claim that H = H1 · H2.
Indeed, since e(1 -e) E H, it is clear that H 1 · H2 C H. Conversely, if x E H
we can write x =ex+ (1 - e)x, and ex E eO· H, (1 - e)x E (1 - e)O · H so
x E H1 · H2 as claimed.

Hence, we have split H non-trivially (since e is a non-trivial idempotent)
and we can continue working on H 1 and H 2 separately. This process terminates
in at most k steps, where k is the number of prime factors of H.

A more efficient method would be to use the complete splitting of ma(X)
(in the notation of the proof of Proposition 6.2.8) which gives a corresponding
splitting of H as a product of more than two ideals. This will be done in the
algorithm given below.

320 6 Algorithms for Algebraic Number Theory II

Remark. For some applications, such as computing the values of zeta and
£-functions, it is not necessary to obtain the explicit decomposition of pO,
but only the ramification indices and residual degrees ei and k Once the Hj
above have been computed, this can be done without much further work, as
explained in Exercise 8 (this remark is due to H. W. Lenstra).

Once H has been shown to be a maximal ideal by successive splittings,
what remains is the problem of representing H. Since we will have computed
an 1Fp-basis (o:ih::;i::;m of H/pO, to obtain the HNF of H we arbitrarily lift
the O:i to ai E 0, and then do an HNF reduction of the matrix whose first m
columns are the components of the ai on the Wj, and whose last n columns
form p times the n x n identity matrix. It is obviously possible to do this
HNF reduction modulo p (Algorithm 2.4.8), so no coefficient explosion can
take place.

Even after finding the HNF of H we should still not be satisfied, because
in practice, it is much more efficient to represent prime ideals by a two-element
representation. To obtain this, we apply Algorithm 4.7.10. Note that we know
the degree of H (the number fin the notation of Algorithm 4.7.10), which is
simply equal ton- m (since pn = [0: pO] = [0: HJ[H: pO] = pfpm). Also
we do not need to compute the HNF of H at all to apply Algorithm 4.7.10
since (together with p) the ai clearly form a ZK-generating set.

6.2.5 Detailed Description of the Algorithm for Prime
Decomposition

We can summarize the preceding discussions in the following algorithm

Algorithm 6.2.9 (Prime Decomposition). Let K = Q(O) be a number field
given by an algebraic integer(} as root of its minimal monic polynomial T of degree
n. We assume that we have already computed an integral basis w1 = 1, ... ,wn
and the discriminant d(K) of K, for example, by using the round 2 Algorithm
6.1.8.

Given a prime number p, this algorithm outputs the decomposition pZK =
f1 1::;i::;g p~; by giving for each i the values of ei, fi = deg(pi) and a two-element
representation Pi= (p, o:i)· All the ideals I which we will use (except for the final
Pi) will be represented by 1Fp bases of 1/pO.

1. [Check if easy] If p f disc(T)/d(K), then by applying the algorithms of Section
3.4 factor the polynomial T(X) modulo p, output the decomposition of pZk
given by Theorem 4.8.13 and terminate the algorithm.

2. [Compute radical] Set q +- p, and while q < n set q +- qp. Now compute the
n x n matrix A= (ai,j) over 1Fp such that wJ = L:l<i<n ai,jWi. Note that
the matrix of the Wi will Stay triangular, SO the ai,j are easy tO COmpute.

Finally, using Algorithm 2.3.1, compute a basis {31 , •.. , f3z of the kernel
of the matrix A over 1Fp (this will be a basis of IpjpO). (Note that this step

6.2 Decomposition of Prime Numbers II 321

has already been performed as step 7 of the round 2 algorithm, so if the result
has been kept it is not necessary to recompute this again.)

3. [Compute Ki] Set K 1 +-- lpjpO (computed in step 2), i +-- 1 and while
Ki -:/:- {0} set i +-- i + 1 and Ki +-- K 1Ki_ 1 computed using Algorithm 6.2.5.

- - - - 1 .
4. [Compute Jj] Set J 1 +-- K1 and for j = 2, ... , i set Jj +-- KjKj_ 1 usmg

Algorithm 6.2.7.

5. [Compute Hj] For j = 1, ... , i- 1 set Hi +-- JiJi11 using Algorithm 6.2.7,

and set Hi +-- Ji.

6. [Initialize loop] Set j +-- 0, c +-- 0.

7. [Finished?] If c = 0 do the following: if j = i terminate the algorithm, other
wise set j +-- j + 1 and if dimJFP(Hj) < n set£+-- {Hj} and c +--1, else go
to step 7 (£ will be a list of c ideals of 0 jpO).

8. [Compute separable algebra A] Let H be an element of£. Compute an lFp
basis of A= 0/H = (OjpO)j(HjpO) in the following way. If (31, ... , f3r
is the given lFp-basis of H, set f3r+ 1 +-- (1, 0, ... , O)t (which will be linearly
independent of the f3i for i ~ r since 1 f. H), supplement this family of
vectors using Algorithm 2.3.6 to a basis (31, ... , f3n of OjpO. Then, as an
lFp-basis of A, take f3r+ 1, ... , f3n· (This insures that the first vector of our
basis of A is always (1, 0, ... , o)t, which would not be the case if we applied
Algorithm 2.3.6 directly.)

9. [Compute multiplication table] Denote by ')'1, ... , /J the lFp-basis of A just
obtained (hence li = f3r+i and f= n- r). By using the multiplication table
of the wi and Algorithm 2.3.5, compute elements ai,j,k and bi,j,k in lFp such
that

/i/j = 2.: ai,j,k/j + 2.: bi,j,kf3j.
1SiS! 1SiSr

The multiplication table of the /i (which will be used implicitly from now on)
is given by the ai,j,k (we can forget the bi,j,k).

10. [Compute V = ker(¢>)] Let M be the matrix of the map a f-+ aP- a from A
to A on the lFp basis that we have found. Compute a basis M1 of the kernel
of Musing Algorithm 2.3.1. Note that if some other algorithm is used to find
the kernel, we should nonetheless insure that the first column of M1 is equal
to (1,0, ... ,o)t.

11. [Do we have a field?] If M 1 has at least two columns (i.e. if the kernel of
M is not one-dimensional), go to step 12. Otherwise, set f +-- dimJFp (A), let
(p, a) be the two-element representation of H obtained by applying Algorithm
4.7.10 to H. Output j as ramification index, f as residual degree of H, and
the prime ideal (p, a). Then remove H from the list£, set c +-- c -1 and go
to step 7.

12. [Find m(X)] Let a E A correspond to a column of M 1 which is not propor
tional to (1, 0, ... , o)t. By computing the successive powers of a in A, let
m(X) E lFp[X] be the minimal monic polynomial of a in A.

322 6 Algorithms for Algebraic Number Theory II

13. [Factor m(X)] (We know that m(X) is a squarefree product of linear polyno
mials.) By using one of the final splitting methods described in Section 3.4,
or simply by trial and error if p is small, factor m(X) into linear factors as
m(X) = m1(X) · · ·mk(X).

14. [Split H] Let r = dimrp (H). For s = 1, ... , k do as follows. Set (3. +-- m, (a),
let M, be then x (r+ n) matrix over lFp whose first r columns give the basis
of H and the last n express wif3s on the integral basis. Finally, let H. be the
image of M, computed using Algorithm 2.3.2.

15. [Update list] Remove H and add H 1 , ... , Hk to the list .C, set c +-- c + k- 1
and go to step 8.

The dimension condition in step 7 was added so as to avoid considering
values of j such that there are no prime ideals over p whose ramification index
is equal to j.

The validity of steps 14 and 15 of the algorithm is left as an exercise for
the reader (Exercise 27).

Remark. If we want to avoid writing routines for ideal multiplication and
division, we can also proceed as follows. After step 2 of the above algorithm
set .C +-- {Jp} and go directly to step 8 to compute the decomposition of the
separable algebra A= 0/Ip. In step 11, we must compute the ramification
index j of each prime ideal found, and this is easily done by using Algorithm
4.8.17. We leave the details of these modifications to the reader (Exercise
11). This method is in practice much faster than the method using ideal
multiplication and division.

6.3 Computing Galois Groups

6.3.1 The Resolvent Method

I am indebted to Y. Eichenlaub for help in writing this section.

Let K = Q(B) be a number field of degree n, where B is an algebraic integer
whose minimal monic polynomial is denoted T(X). An important algebraic
question is to compute the Galois group Gal(T) of the polynomial T, in other
words the Galois group of the splitting field ofT, or equivalently of the Galois
closure of K in Q. Since by definition elements of Gal(T) act as permutations
on the roots of T, once an ordering of the roots is given, Gal(T) can naturally
be considered as a subgroup of Bn, the symmetric group on n letters. Changing
the ordering of the roots clearly transforms Gal(T) into a conjugate group,
and since the ordering is not canonical, the natural objects to consider are
subgroups of Sn up to conjugacy. It will be important in what follows to
remember that we have chosen a specific, but arbitrary ordering, since it will
sometimes be necessary to change it.

6.3 Computing Galois Groups 323

Furthermore, since the polynomial T is irreducible, the group Gal(T) is a
transitive subgroup of Sn, i.e. there is a single orbit for the action of Gal(T)
on the roots (}i ofT (each orbit corresponding to an irreducible factor ofT).
Hence, the first task is to classify transitive subgroups of Sn up to conjugacy.
This is a non-trivial (but purely) group-theoretical question. It has been solved
up ton = 32 (see [But-McKay] and [Hiil]), but the number of groups becomes
unwieldy for higher degrees. We will give the classification for n :5 7.

Note that since the cardinality of an orbit divides the order of Gal(T), the
cardinality of a transitive subgroup of Sn is divisible by n.

Once the transitive groups are classified, we must still determine which
corresponds to our Galois group Gal(T). We first note the following simple,
but important proposition.

Proposition 6.3.1. Let An be the alternating group on n letters correspond
ing to the even permutations. Then Gal(T) C An if and only if disc(T) is a
square.

Proof Let (}i be the roots ofT. By Proposition 3.3.5, we know that

disc(T) = f 2 , where f = IT (Oj - Oi)·
l~i<j~n

Clearly f is an algebraic integer, and for any a E Gal(T) we have

a(!)= E(a)f,

where f(a) denotes the signature of a. Hence, if Gal(T) c An, all permutations
of Gal(T) are even, so f is invariant under Gal(T). Thus by Galois theory,
f E z. Conversely, if f E Z, we have f -:f. 0 since the roots of T are distinct.
Therefore f(a) = 1 for all a E Gal(T), so Gal(T) C An· Note that since An
is a normal subgroup, that a group is a subgroup of An depends only on its
conjugacy class, and not on the precise conjugate. D

We now need to introduce a definition which will be basic to our work.

Definition 6.3.2. Let G be a subgroup of Sn containing Gal(T) (not up to
conjugacy, but for the given numbering of the roots), and let F(X1, X2, ... , Xn)
be a polynomial in n variables with coefficients in Z. If H is the stabilizer of
Fin G, i.e.

H ={a E G, F (Xu(l)• Xu(2)• ... ,Xu(n)) = F(X1. X2, ... , Xn)},

we define the resolvent polynomial Rc(F, T) with respect to G, F and the
polynomial T by

Rc(F, T)(X) = IJ (X- F (Bu{l)> Bu{2)> ... , Bu(n))),
uEG/H

324 6 Algorithms for Algebraic Number Theory II

where G I H denotes any set of left coset representatives of G modulo H.

When G = Sn, we will omit the subscript in the notation.
It is clear from elementary Galois theory that Rc(F, T) E Z[X]. The main

theorem which we will use concerning resolvent polynomials is as follows.

Theorem 6.3.3. With the notation of the preceding definition, set m = [G:
H] = deg(Rc(F, T)). Then, if Rc(F, T) is squarefree, its Galois group (as a
subgroup of Sm) is equal to ¢(Gal(T)), where ¢ is the natural group homo
morphism from G to Sm given by the natural left action of G on G I H. In
particular, the list of degrees of the irreducible factors of Rc(F, T) in Z[X]
is the same as the list of the length of the orbits of the action of ¢(Gal(T))
on [1, ... , m]. For example, Rc (F, T) has a root in Z if and only if Gal(T) is
conjugate under G to a subgroup of H.

For the proof, see [Soi].
Note that it is important to specify that Gal(T) is conjugate under G,

since this is a stronger condition than being conjugate under Sn.
Now it will often happen that Rc(F, T) is not squarefree. In that case, to

be able to apply the theorem, we use the following algorithm.

Algorithm 6.3.4 (Tschirnhausen Transformation). Given a monic irreducible
polynomial T defining a number field K = Q(B), we find another such polynomial
U defining the same number field.

1. [Choose random polynomial] Let n- deg(T). Choose at random a polynomial
A E Z[X] of degree less than or equal to n- 1.

2. [Compute characteristic polynomial] Using the method explained in Section
4.3, compute the characteristic polynomial U of a = A(B). In other words,
using the sub-resultant Algorithm 3.3.7, set U- Ry(T(Y), X- A(Y)).

3. [Check degree] Using Euclid's algorithm, compute V - gcd(U, U'). If V is
constant, then output U and terminate the algorithm, otherwise go to step 1.

The validity of this algorithm is clear.

Modifying T if necessary by using such a Tschirnhausen transformation,
it is always easy to reduce to the case where Rc(F, T) is squarefree.

Finally, we need some notation. The elements of the set G I H will be
given as products of disjoint cycles, with I denoting the identity permutation.
Usually, apart from I, G I H will contain only transpositions.

We denote by Cn the cyclic group ZlnZ, and by Dn the dihedral group of
order 2n, isomorphic to the isometries of a regular n-gon. As before, An and Sn
denote the alternating group and symmetric group on n letters respectively.
Finally, A ~ B denotes the semi-direct product of the groups A and B, where
the action of B on A is understood.

6.3 Computing Galois Groups 325

When we compute a group, we will output not only the isomorphism class
of the group, but also a sign expressing whether the group is contained in An
(+ sign) or not (- sign). This will help resolve a number of ambiguities since
isomorphic groups are not always conjugate in 8n·

Let us now examine in turn each degree up to degree 7. The particular
choices of resolvents that we give are in no way canonical, although we have
tried to give the ones which are the most efficient. The reader can find many
other choices in the literature ([Stau], [Gir], [Soi] and [Soi-McKay], [Eicl]).
The validity of the algorithms given can be checked using Theorem 6.3.3.

In degrees 1 and 2 there is of course nothing to say since the only possible
group is 8n in these cases, so we always output (8n,-).

6.3.2 Degree 3

In degree 3, it is obvious that the only transitive subgroups of 83 are C3 ~ A3
and 83 ~ D3 which may be separated by the discriminant. In other words:

Proposition 6.3.5. If n = 3, we have either Gal(T) ~ C3 or Gal(T) ~ 83
depending on whether disc(T) is a square or not.

Thus we output (C3, +) or (83,-) depending on disc(T).

6.3.3 Degree 4

In degree 4, there are (up to conjugacy) five transitive subgroups of 84. These
are C4 (the cyclic group), V4 = C~ (the Klein 4-group), D4 (the dihedral
group of order 8, group of isometries of the square), A4 and 84.

Some inclusions are V4 c D4 n A4, and C4 c D4.

Important remark: note that although we consider the groups only up to
conjugacy, the notion of inclusion for two groups G1 and G2 can reasonably be
defined by saying that G 1 C G 2 only when G 1 is a subgroup of some conjugate
of G2. On the other hand, when we consider abstract groups such as V4, D4,
etc ... , the notion of inclusion is much more delicate since some subgroups of
8n can be isomorphic as abstract groups but not conjugate in 8n. In this case,
we write G1 C G2 only if this is valid for all conjugacy classes isomorphic to
G1 and G2 respectively.

A simple algorithm is as follows.

Algorithm 6.3.6 (Galois Group for Degree 4). Given an irreducible monic
polynomial T E Z[X] of degree 4, this algorithm computes its Galois group.

1. [Compute resolvent] Using Algorithm 3.6.6, compute the roots fh of T in C.
Let

326 6 Algorithms for Algebraic Number Theory II

and let R +- R(F, T), where a system of representatives of G I H is given by

GIH ={I, (12), (13), (14), (23), (34)}.

Then round the coefficients of R to the nearest integer (note that the roots
Bi must be computed to a sufficient accuracy for this rounding to be correct,
and the needed accuracy is easily determined, see Exercise 13).

2. [Squarefree?] Compute V +- (R, R') using the Euclidean algorithm. If Vis non
constant, replace T by the polynomial obtained by applying a Tschirnhausen
transformation using Algorithm 6.3.4 and go to step 1.

3. [Factor resolvent] Using Algorithm 3.5.7, factor Rover Z. Let L be the list of
the degrees of the irreducible factors sorted in increasing order.

4. [Conclude] If R is irreducible, i.e. if L = (6), then output (A4, +) or (84,-)
depending on whether disc(T) is a perfect square or not. Otherwise, output
(C4, -), (V4,+) or (D4, -)depending on whether L = (1, 1,4), L = (2,2,2)
or L = (2, 4) respectively. Terminate the algorithm.

Note that with this choice of resolvent, we have H = C4 =< (1234) >,the
group of cyclic permutations, but this fact is needed in checking the correctness
of the algorithm, not in the algorithm itself, where only G I H is used.

Another algorithm which is computationally slightly simpler is as follows.
We give it also to illustrate the importance of the root ordering.

Algorithm 6.3.7 (Galois Group for Degree 4). Given an irreducible monic
polynomial T E Z[X] of degree 4, this algorithm computes its Galois group.

1. [Compute resolvent] Using Algorithm 3.6.6, compute the roots Bi of T in C.
Let

F +- X1X3 + X2X4

and let R +- R(F, T), where a system of representatives of G I H is given by

GIH= {1,(12),(14)}.

Round the coefficients of R to the nearest integer.

2. [Squarefree?] Compute V +- (R, R') using the Euclidean algorithm. If Vis non
constant, replace T by the polynomial obtained by applying a Tschirnhausen
transformation using Algorithm 6.3.4 and go to step 1.

3. [Integral root?] Check whether R has an integral root by explicitly computing
them in terms of the Bi. (This is usually much faster than using the general
factoring procedure 3.5.7.)

4. [Can one conclude?] If R does not have an integral root (so R is irreducible),
then output (A4, +) or (84,-) depending on whether disc(T) is a perfect
square or not and terminate the algorithm. Otherwise, if disc(T) is a square,
output (V4, +) and terminate the algorithm.

6.3 Computing Galois Groups 327

5. [Renumber] (Here R has an integral root and disc(T) is not a square. The
Galois group must be isomorphic either to C4 or to D4.) Let u be the element
of S4 corresponding to the integral root of R, and set (ti) +-- (ta(i)) {i.e. we
renumber the roots ofT according to u).

6. [Use new resolvent] Set

rounded to the nearest integer (with the same remarks as before about the
accuracy needed for the Oi)· If d -:f. 0, output (C4,-) or (D4 ,-) depending on
whether d is a perfect square or not and terminate the algorithm.

7. [Replace] (Here d = 0.} Replace T by the polynomial obtained by applying a
Tschirnhausen transformation A using Algorithm 6.3.4. Set Oi +-- A(Oi) (which
will be the roots of the newT). Reorder the Oi so that 0103 + 0204 E Z, {only
the 3 elements of G I H given in step 1 need to be tried), then go to step 6.

In principle, this algorithm involves factoring polynomials of degree 3,
hence is computationally simpler than the preceding algorithm, although
its structure is more complicated due to the implicit use of two different
resolvents. The first resolvent corresponds to G = S4 and H = D4 =<
(1234), (13) >. The second resolvent corresponds to F = X1X? + X2Xl +
X3Xl + X4Xt, G = D4, H = C4 and G I H = {I, (13)}, hence the polynomial
of degree 2 need not be explicitly computed in order to find its arithmetic
structure.

Remark. (This remark is valid in any degree.) As can be seen from the preced
ing algorithm, it is not really necessary to compute the resolvent polynomial
R explicitly, but only a sufficiently close approximation to its roots (which
are known explicitly by definition). To check whether R is squarefree or not
can also be done by simply checking that R does not have any multiple root
(to sufficient accuracy). In fact, we have the following slight strengthening of
Theorem 6.3.3 which can be proved in the same way.

Proposition 6.3.8. We keep the notations of Theorem 6.3.3, but we do not
necessarily assume that Ra(F, T) is squarefree. If Ra(F, T) has a simple root
in Z, then Gal(T) is conjugate under G to a subgroup of H.

This proposition shows that it is not necessary to assume Ra(F, T) square
free in order to apply the above algorithms, as well as any other which depend
only on the existence of an integral root and not more generally on the de
grees of the irreducible factors of Ra(F, T). (This is the case for the algorithms
that we give in degree 4 and 5.) This remark should of course be used when
implementing these algorithms.

328 6 Algorithms for Algebraic Number Theory II

6.3.4 Degree 5

In degree 5 there are also (up to conjugacy) five transitive subgroups of Ss.
These are Cs (the cyclic group), Ds (the dihedral group of order 10), M2o (the
metacyclic group of degree 5), As and Ss.

Some inclusions are

Cs c Ds c As n M2o.

The algorithm that we suggest is as follows.

Algorithm 6.3.9 (Galois Group for Degree 5). Given an irreducible monic
polynomial T E Z[X] of degree 5, this algorithm computes its Galois group.

1. [Compute resolvent] Using Algorithm 3.6.6, compute the roots ()i of T in C.
Let

F +- X~(X2Xs + X3X4) + X~(X1X3 + X4Xs) + X5(X!Xs + X2X4)

+ Xt(X1X2 + X3Xs) + X~(X1X4 + X2X3)

and let R +- R(F, T), where a system of representatives of G / H is given by

G/H ={I, (12), (13), (14), (15), (25)}.

Round the coefficients of R to the nearest integer.

2. [Squarefree?] Compute V +- (R, R') using the Euclidean algorithm. If Vis non
constant, replace T by the polynomial obtained by applying a Tschirnhausen
transformation using Algorithm 6.3.4 and go to step 1.

3. [Factor resolvent] Factor R using Algorithm 3.5.7. (Note that one can show
that either R is irreducible or R has an integral root. So, as in the algorithm
for degree 4, it may be better to compute the roots of R which are known
explicitly.)

4. [Can one conclude?]lf R is irreducible, then output (As,+) or (Ss,-) depend
ing on whether disc(T) is a perfect square or not, and terminate the algorithm.
Otherwise, if disc(T) is not a perfect square, output (M2o,-) and terminate
the algorithm.

5. [Renumber] (Here R has an integral root and disc(T) is a square. The Galois
group must be isomorphic either to Cs or to Ds.) Let a be the element of
Ss corresponding to the integral root of R, and set (ti) +- (tu(i)) (i.e. we
renumber the roots ofT according to a).

6. [Compute discriminant of new resolvent] Set

d +- (fhfh(()2- ()1) + ()2()3(()3- ()2) + ()3()4(()4 - ()3)

+ (}48s(8s- 84) + 8s8l((Jl- es))2

6.3 Computing Galois Groups 329

rounded to the nearest integer (with the same remarks as before about the
accuracy needed for the Oi)· If d :f. 0, output (C5 ,+) or (D5 , +)depending on
whether d is a perfect square or not, and terminate the algorithm.

7. [Replace] (Here d = 0.} Replace T by the polynomial obtained by applying a
Tschirnhausen transformation A using Algorithm 6.3.4. Set fh +- A(Oi) (which
will be the roots of the newT). Reorder the (Ji so that F(Bt, Ot, 83, 84, Bs) E Z
where F is as in step 1, (only the 6 elements of G / H given in step 1 need to
be tried}, then go to step 6.

The first resolvent corresponds to G = 85 and

H = M2o =<(12345), (2354)>.

Step 6 corresponds implicitly to the use of the second degree resolvent obtained
with F = X1X~ + X2X~ + X3Xl + X4Xl + X5Xl, G = Ds, H = Cs and
G/H ={I, (12)(35)}.

6.3.5 Degree 6

In degree 6 there are up to conjugation, 16 transitive subgroups of 86. The
inclusion diagram is complicated, and the number of resolvent polynomials is
high. The best way to study this degree is to work using relative extensions,
that is study the number field K as a quadratic or cubic extension of a cubic
or quadratic subfield respectively, if they exist. This is done in [Oli2] and
[BeMaOl].

In this book we have not considered relative extensions. Furthermore,
when a sextic field is given by a sixth degree polynomial over Q, it is not
immediately obvious, even if it is theoretically possible, how to express it
as a relative extension, although the POLRED Algorithm 4.4.11 often gives
such information. Hence, we again turn to the heavier machinery of resolvent
polynomials.

It is traditional to use the notation G k to denote a group of cardinality
k. Also, special care must be taken when considering abstract groups. For
example, the group 84 occurs as two different conjugacy classes of 86, one
which is in A6, the other which is not (the traditional notation would then be
St and 84 respectively).

We will describe the groups as we go along the algorithm. There are many
possible resolvents which can be used. The algorithm that we suggest has the
advantage of needing a single resolvent, except in one case, similarly to degrees
4 and 5.

Algorithm 6.3.10 (Galois Group for Degree 6). Given an irreducible monic
polynomial T E Z[X] of degree 6, this algorithm computes its Galois group.

1. [Compute resolvent] Using Algorithm 3.6.6, compute the roots fh ofT in C.
Let

330 6 Algorithms for Algebraic Number Theory II

F +- X~Xi(X2X4+X3X6)+X~Xl(X1X5+X3X6)+X;X~(X1X5+X2X4)
+X~X~(X2X5+ X3X4) + X~Xi(XIX6+ X3X4) +X;Xl(XIX6 + X2X5)

+X~Xj(X2X6+ X4X5) +X~X~(X1X3+X4X5) +XlXi(X1X3+X2X6)

+X~ Xl(X2X3 + X5X6) + X~Xj(X1X4 + X5X6) + XiX~(X1X4 + X2X3)

+X~ X~(X3X5 + X4X6)+ XjXi(X1X2 + X4X6) + Xl X~(X 1X2 + X3X5)

and let R +- R(F, T), where a system of representatives of G I H is given by

GIH ={I, (12), (13), (14), (15), (16)}.

Round the coefficients of R to the nearest integer.

2. [Squarefree?] Compute V +- (R, R') using the Euclidean algorithm. If Vis non
constant, replace T by the polynomial obtained by applying a Tschirnhausen
transformation using Algorithm 6.3.4 and go to step 1.

3. [Factor resolvent] Factor R using Algorithm 3.5.7. If R is irreducible, then go
to step 5, otherwise let L be the list of the degrees of the irreducible factors
sorted in increasing order.

4. [Conclude]
a) If L = (1, 2, 3), let fi be the irreducible factor of R of degree equal to

3. Output (C6,-) or (D6,-) depending on whether disc(/!) is a square or
not.

b) If L = (3, 3), let h and f2 be the irreducible factors of R. If both
disc(h) and disc(/2) are not squares output (G36 ,-), otherwise output
(G1s, -).Note that G36 = Cb<lC~ ~ D3xD3, and G1s = C~><lC2 ~ C3xD3.

c) If L = (2, 4) and disc(T) is a square, output (84 , +). Otherwise, if
L = (2, 4) and disc(T) is not a square, let h be the irreducible factor of de
gree 4 of R. Then output (A4 X c2,-) or (84 X c2,-) depending on whether
disc(!l) is a square or not.

d) If L = (1,1,4) then output (A4 ,+) or (84,-) depending on whether
disc(T) is a square or not.

e) If L = (1, 5), then output (PSL2(JF5),+) or (PGL2(JF5),-) depending
on whether disc(T) is a square or not. Note that PSL2(JF5) ~ A5 and that
PGL2(lF5) ~ 85.

f) Finally, if L = (1,1,1,3), output (83 ,-).

Then terminate the algorithm.

5. [Compute new resolvent] (Here our preceding resolvent was irreducible. Note
that we do not have to reorder the roots.) Let

and let R +- R(F, T), where a system of representatives of G I H is now given
by

GIH ={I, (14), (15), (16), (24), (25), (26), (34), (35), (36)}.

Round the coefficients of R to the nearest integer.

6.3 Computing Galois Groups 331

6. [Squarefree?] Compute V +-- (R, R') using the Euclidean algorithm. If Vis non
constant, replace T by the polynomial obtained by applying a Tschirnhausen
transformation using Algorithm 6.3.4 and go to step 5.

7. [Factor resolvent] Factor R using Algorithm 3.5.7 (Note that in this case either
R is irreducible, or it has an integral root, so again it is probably better to
compute these 10 roots directly from the roots ofT and check whether they
are integral.)

8. [Conclude] If R is irreducible (or has no integral root), then output (A6, +) or
(86,-) depending on whether disc(T) is a square or not. Otherwise, output
(G36, +) or (Gn,-) depending on whether disc(T) is a square or not. Then
terminate the algorithm. Note that Gt6 = c§ ><1 C4 and Gn = C§ ><1 D4.

The first resolvent corresponds to G = 86 and

H = PGL2(1Fs) =<(12345), (16)(23)(45)>.

The second resolvent, used in step 5, corresponds toG= 86 and

H = G72 =<(123), (14)(25)(36), (1524)(36)>.

Remark. It can be shown that a sextic field has a quadratic subfield if
and only if its Galois group is isomorphic to a (transitive) subgroup of Gn.
This corresponds to the groups (C6,-), (83,-), (D6,-), (G1s,-), (G36,-),
(G36,+) and (Gn,-).

Similarly, it has a cubic sub field if and only if its Galois group is isomorphic
to a (transitive) subgroup of 84 x C2. This corresponds to the groups (C6, -),
(83,-), (D6,-), (A4,+), (84,+), (84,-), (A4 X c2,-) and (84 X c2,-).

Hence, it has both a quadratic and a cubic subfield if and only if its Galois
group is isomorphic to (C6,-), (83,-) or (D6,-).

If the field is primitive, i.e. does not have quadratic or cubic subfields, this
implies that its Galois group can only be PSL2(1F5) ~ A5 , PGL2(1Fs) ~ 8s, A6
or 86 •

6.3.6 Degree 7

In degree 7, there are seven transitive subgroups of 87 which are C1, D1, M21.
M42, PSL2(1F1) ~ PSL3(1F2), A1 and 87.

Some inclusions are

In this case there exists a remarkably simple algorithm.

Algorithm 6.3.11 (Galois Group for Degree 7). Given an irreducible monic
polynomial T E Z[X] of degree 7, this algorithm computes its Galois group.

332 6 Algorithms for Algebraic Number Theory II

1. [Compute resolvent] Using Algorithm 3.6.6, compute the roots (}i ofT in C.
Let

R+- II
l~i<j<k~7

which is a polynomial of degree 35, and round the coefficients of R to the
nearest integer.

2. [Squarefree?] Compute V +- (R, R') using the Euclidean algorithm. If Vis non
constant, replace T by the polynomial obtained by applying a Tschirnhausen
transformation using Algorithm 6.3.4 and go to step 1.

3. [Factor resolvent and conclude] Factor R using Algorithm 3.5.7. If R is ir
reducible, then output (A7 , +) or (87 ,-) depending on whether disc(T) is
a square or not. Otherwise, let L be the list of the degrees of the irre
ducible factors sorted in increasing order. Output (PSL2(IF7),+), (M42,-),
(M21, +), (D7,-) or (C7, +)depending on whether L = (7, 28), L = (14, 21),
L = (7, 7, 21), L = (7, 7, 7, 14) or L = (7, 7, 7, 7, 7) respectively. Then termi
nate the algorithm.

Note that this algorithm does not exactly correspond to the framework
based on Theorem 6.3.3 but it has the advantage of being very simple, and
computationally not too inefficient. It does involves factoring a polynomial of
degree 35 over Z however, and this can be quite slow. (To give some idea of the
speed: on a modern workstation the algorithms take a few seconds for degrees
less than or equal to 6, while for degree 7, a few minutes may be required
using this algorithm.)

Several methods can be used to improve this basic algorithm in practice.
First of all, one expects that the overwhelming majority of polynomials will
have 87 as their Galois group, and hence that our resolvent will be irreducible.
We can test for irreducibility, without actually factoring the polynomial, by
testing this modulo p for small primes p. If it is already irreducible modulo
p for some p, then there is no need to go any further. Of course, this is
done automatically if we use Algorithm 3.5.7, but that algorithm will start
by doing the distinct degree factorization 3.4.3, when it is simpler here to use
Proposition 3.4.4.

Even if one expects that the resolvent will factor, we can use the divisibility
by 7 of the degrees of its irreducible factors in almost every stage of the
factoring Algorithm 3.5.7.

Another idea is to use the resolvent method as explained at the begin
ning of this chapter. Instead of factoring polynomials having large degrees, we
simply find the list of all cosets a of G modulo H such that

F { (}u(l), (}u(2), ... , (}u(n)) E Z.

If there is more than one coset, this means that the resolvent is not squarefree,
hence we must apply a Tschirnhausen transformation. If there is exactly one,
then the Galois group is isomorphic to a subgroup of H, and the coset gives

6.3 Computing Galois Groups 333

the permutation of the roots which must be applied to go further down the
tree of subgroups. If there are none, the Galois group is not isomorphic to a
subgroup of H. Of course, all this applies to any degree, not only to degree 7.

As the reader can see, I do not give explicitly the resolvents and cosets
for degree 7. The resolvents themselves are as simple as the ones that we
have given in lower degrees. On the other hand, the list of cosets is long. For
example for the pair (S7, M42) we need 120 elements. This is cumbersome
to write down. It should be noted however that the resulting algorithm is
much more efficient than the preceding one (again at most a few seconds on
a modern workstation). These cosets and resolvents in degree 7, 8, 9, 10 and
11 may be obtained in electronic form upon request from M. Olivier (same
address as the author).

6.3. 7 A List of Test Polynomials

As a first check of the correctness of an implementation of the above algo
rithms, we give a polynomial for each of the possible Galois groups occurring
in degree less than or equal to 7. This list is taken from [Soi-McKay]. Note that
for many of the given polynomials, it will be necessary to apply a Tschirn
hausen transformation. We list first the group as it is output by the algorithm,
then a polynomial having this as Galois group.

(S1,-): X
(S2,-): X2 +X +1
(Ca,+): xa + X 2 - 2X -1
(Sa,-): Xa+2
(C4,-): X 4 +Xa+ X 2 +X+ 1
(V4,+): X 4 + 1
(D4, -): X 4 - 2

(A4,+): X 4 + 8X + 12
(S4,-): X 4 + x + 1
(Cs,+): X 5 + X 4 - 4Xa- 3X2 + 3X + 1
(Ds,+): X 5 - 5X + 12
(M2o, -): X 5 + 2
(As,+): X 5 +20X+16
(Ss,-): X 5 -X+ 1
(C6,-): X 6 + X 5 +X4 +Xa +X2 +X+ 1
(Sa,-): X 6 + 108
(D6,-): X 6 + 2
(A4,+): X 6 - 3X2 -1
(G1s,-): X6 +3Xa+3
(A4 x c2,-): x 6 - 3X2 +1
(S4,+): X 6 -4X2 -1

334 6 Algorithms for Algebraic Number Theory II

(S4,-): X 6 - 3X5 + 6X4 -7X3 +2X2 +X- 4
(G36, -): X 6 + 2X3 - 2
(G36,+): X 6 + 6X4 + 2X3 + 9X2 + 6X- 4
(S4 x c2,-): x 6 + 2X2 + 2
(PSL2(1Fs), +)~(As,+): X 6 - 2X5 - 5X2 - 2X- 1
(G12,-): X 6 + 2X4 + 2X3 + X 2 + 2X + 2
(PGL2(1F5),-) '::f. (S5 ,-): X 6 - X 5 -10X4 + 30X3- 31X2 + 7 X+ 9
(A6,+): X 6 +24X -20
(S6,-): X 6 +X+1
(C1, +): X 7 + X 6 -12X5 -7X4 + 28X3 + 14X2 - 9X + 1
(D7 ,-): X 7 + 7X3 + 7X2 + 7X -1
(M21,+): X 7 -14X5 + 56X3- 56X + 22
(M42,-): X 7 + 2
(PSL2(IF7),+) '::f. (PSL3(IF2),+): X 7- 7X3 + 14X2 -7X + 1
(A7 ,+): X 7 + 7X4 + 14X + 3
(S7,-):X7 +X+1

6.4 Examples of Families of Number Fields

6.4.1 Making Tables of Number Fields

It is important to try to describe the family of all number fields (say of a given
degree, Galois group of the Galois closure and signature) up to isomorphism.
Unfortunately, this is a hopeless task except for some special classes of fields
such as quadratic fields, cyclic cubic fields, cyclotomic fields, etc. We could,
however, ask for a list of such fields whose discriminant is in absolute value
bounded by a given constant, i.e. ask for tables of number fields. We first ex
plain briefly how this can be done, referring to [Mart] and [Poh1] for complete
details.

We need two theorems. The first is an easy result of the geometry of
numbers (which we already used in Section 2.6 to show that the LLL algorithm
terminates) which we formulate as follows.

Proposition 6.4.1. There exists a positive constant "'n having the following
property. In any lattice (L, q) of IRn, there exists a non-zero vector x such
that q(x) ::; "fnD21n where D = det(L) = det(Q) 112 is the determinant of the
lattice {here Q is the matrix of q in some Z-basis of L, see Section 2.5).

See for example [Knu2] (Section 3.3.4, Exercise 9) for a proof.
The best possible constant "'n is called Hermite's constant, and is known

only for n :S 8:

2 4 3 4 5 6 64 7 8
"/1 = 1, "(2 = 3, "(3 = 2, "(4 = 4, "'s = 8, "(6 = 3 , "(7 = 64, "'s = 256.

6.4 Examples of Families of Number Fields

For larger values of n, the recursive upper bound

n < (n-1)n/(n-2)
'Yn - 'Yn-1

335

gives useful results. The best known bounds are given for n ::; 24 in [Con-Slo],
Table 1.2 and Formula (47).

The basic theorem, due to Hunter (see [Hun] and Exercise 26), is as follows.

Theorem 6.4.2 (Hunter). Let K be a number field of degree n over Q. There
exists (} E ZK \ Z having the following property. Call (}i the conjugates of(} in
K. Then

n 1 (ld(K)I)1/(n-1)
{;IOil2 :S ;:;Tr(0)2 +'Yn-1 -n- '

where d(K) is the discriminant of K and Tr(O) = 2:::~= 1 (}i is the trace of(}
over Q. In addition, we may assume that 0 ::; Tr(O) ::; n/2.

This theorem is used as follows. Assume that we want to make a table
of number fields of degree n and having a given signature, with discriminant
d(K) satisfying ld(K)I ::; M for a given bound M. Then replacing d(K) by
M in Hunter's theorem gives an upper bound for the IOil and hence for the
coefficients of the characteristic polynomial of (} in K.

If K is primitive, i.e. if the only subfields of K are Q and K itself, then
since (} ¢. Z we know that K = Q(O), and thus we obtain a finite (although
usually large) collection of polynomials to consider. Most of these polynomials
can be discarded because their roots will not satisfy Hunter's inequality. Oth
ers can be discarded because they are reducible, or because they do not have
the correct signature. Note that a given signature will give several inequali
ties between the coefficients of acceptable polynomials, and these should be
checked before using Sturm's Algorithm 4.1.11 which is somewhat longer. (We
are talking of millions if not billions of candidate polynomials here, depending
on the degree and, of course, the size of M.)

Finally, using Algorithm 6.1.8 compute the discriminant of the number
fields corresponding to each of the remaining polynomials. This is the most
time-consuming part. After discarding the polynomials which give a field dis
criminant which is larger than M in absolute value, we have a list of poly
nomials which define all the number fields that we are interested in. Many
polynomials may give the same number field, so this is the next thing to
check. Since we have computed an integral basis for each polynomial dur
ing the computation of the discriminant of the corresponding number field,
we can use the POLRED algorithm (or more precisely Algorithm 4.4.12) to
give a pseudo-canonical polynomial for each number field. This will eliminate
practically all the coincidences.

When two distinct polynomials give the same field discriminant, we must
now check whether or not the corresponding number fields are isomorphic,

336 6 Algorithms for Algebraic Number Theory II

and this is done by using one of the algorithms given in Section 4.5.4. Note
that this will now occur very rarely (since most cases have been dealt with
using Algorithm 4.4.12).

If the field K is not primitive, we must use a relative version of Hunter's
theorem due to Martinet (see [Mart]), and make a separate table ofimprimitive
fields.

In the rest of this chapter we will give some examples of families of number
fields.

The simplest of all number fields (apart from Q itself) are quadratic fields.
This case has been studied in detail in Chapter 5, and we have also seen that
there exist methods for computing regulators and class groups which do not
immediately generalize to higher degree fields. Note also that higher degree
fields are not necessarily Galois.

The next simplest case is probably that of cyclic cubic fields, which we
now consider.

6.4.2 Cyclic Cubic Fields

Let K be a number field of degree 3 over Q, i.e. a cubic field. If K is Galois
over Q, its Galois group must be isomorphic to the cyclic group 7l/37l, hence
we say that K is a cyclic cubic field. The Galois group has, apart from its
identity element, two other elements which are inverses. We denote them by
cr and u- 1 = u 2 . The first proposition to note is as follows.

Proposition 6.4.3. Let K = Q(B) be a cubic field, where B is an algebraic
integer whose minimal monic polynomial will be denoted P(X). Then K is a
cyclic cubic field if and only if the discriminant of P is a square.

Proof This is a restatement of Proposition 6.3.5. 0

This proposition clearly gives a trivial algorithm to check whether a cubic
field is Galois or not.

In the rest of this (sub)section, we assume that K is a cyclic cubic field.
Our first task is to determine a general equation for such fields. Let B be an
algebraic integer such that K = Q(B), and let P(X) = X 3 - SX2 + TX- N
be the minimal monic polynomial of B, with integer coefficients S, T and N.

Note first that since any cubic field has at least one real embedding (as
does any odd degree field) and since K is Galois, all the roots of P must be
in K hence they must all be real, so a cyclic cubic field must be totally real
(i.e. r1 = 3 real embeddings, and r 2 = 0 complex ones). Of course, this also
follows because the discriminant of P is a square.

In what follows, we set (= e2i7r/3 , i.e. a primitive cube root of unity. Since
K is totally real, (rf. K, hence the extension field K (() is a sixth degree field
over Q. It is easily checked that it is still Galois, with Galois group generated

6.4 Examples of Families of Number Fields 337

by commuting elements a and T, where a acts on K as above and trivially on
(, and T denotes complex conjugation.

The first result that we need is as follows.

Lemma 6.4.4. Set 'Y = 0 + (2a(O) + (a2(0) E K((), and (3 = 'Y2 /r('Y). Then
(3 E IQ(() and we have

P(X) = X3 _ sx2 + 82- eX_ 83- 3Se + eu
3 27 ,

where we have set e = (3r(f3) and u = (3 +r(f3) {i.e. e and u are the norm and
trace of (3 considered as an element of!Q(()).

Proof. We have r('Y) = 0 + (a(O) + (2a 2 (0). One sees immediately that
a('Y) = ('Y and a(r('Y)) = (2r('Y) hence (3 is invariant under the action of
a, so by Galois theory (3 must belong to the quadratic subfield IQ(() of K(().
In particular, e and u as defined above are in IQ. Now we have the matrix
equation

so it follows by inverting the matrix that

From the formulas T = Oa(O) + Oa2 (0) + a(O)a2 (0) and N = Oa(O)a2 (0), a
little computation gives the result of the lemma. D

We will now modify 0 (hence its minimal polynomial P(X)) so as to obtain
a unique equation for each cyclic cubic field. First note that replacing 'Y by
(b + c()'Y is equivalent to changing 0 into bO + ca(O), and (3 is changed into

(3 (b + c()2

b+ c(2

Let Pk be the primes which split in IQ(() (as Pk = 1rk11'k), i.e. such that Pk = 1
(mod 3), let qk be the inert primes, i.e. such that qk = 2 (mod 3), and let
P = 1 + 2(= A be a ramified element (i.e. a prime element above the
prime 3). We can write

Hence, since b + c(2 = b + c(, we have

338 6 Algorithms for Algebraic Number Theory II

If the decomposition of (3 (which is in IQ(() but perhaps not in Z[(]) is

then we can choose gk = -nk and f = -m. Furthermore, for each k consider
the quantity mk + 2lk. If it is congruent to 0 or 1 modulo 3, we will choose
ek = l(-mk- 2lk + 1)/3J and fk = lk + 2ek. If it is congruent to 2 modulo
3, then lk + 2mk = 1 (mod 3) and we choose fk = l(-lk- 2mk + 1)/3J and
ek = mk+ 2fk.

It is easy to check that, with this choice of exponents, the new value of (3
is an element of Z[(] (and not only of IQ(()), is not divisible by any inert or
ramified prime, and is divisible by split primes only to the first power. Also, at
most one of 7rk or 7rk divides (3. In other words, if e = (3T((3) is the new value
of the norm of (3, then e is equal to a product of distinct primes congruent to
1 modulo 3.

Finally, since 1 + (+ (2 = 0, if we change() into a+() with a E IQ, then 1
does not change and so neither do (3 or e. Taking a = S /3, we obtain a new
value of() whose trace is equal to 0. Putting all this together we have almost
proved the following lemma.

Lemma 6.4.5. For any cyclic cubic field K, there exists a unique pair of
integers e and u such that e is equal to a product of distinct primes congruent
to 1 modulo 3, u = 2 (mod 3) and such that K = Q(B') where()' is a root of
the polynomial

Q(X) = X3 _!!:_X- eu
3 27,

or equivalently K = Q(B) where () is a root of

P(X) = 27Q(X/3) = X 3 - 3eX- eu.

Proof. Since (3 = (u + vH)/2, u cannot be divisible by 3 since (3 is not
divisible by the ramified prime. Hence, by suitably choosing the exponent g
above (which amounts to changing (3 into -(3 if necessary), we may assume
u = 2 (mod 3).

For the uniqueness statement, note that all the possible choices of genera
tors of K are of the form a+ bB+ca(B), and since we want a trace equal to 0,
this gives us the value of a as a function of band c, where these last values are
determined because we want e to be equal to a product of primes congruent
to 1 modulo 3, hence (3 is unique. The last statement is trivial. 0

We can now state the main theorem of this section.

6.4 Examples of Families of Number Fields 339

Theorem 6.4.6. All cyclic cubic fields K are given exactly once (up to iso
morphism) in the following way.

(1) If the prime 3 is ramified inK, then K = Q(O) where 0 is a root of the
equation with coefficients in Z

() 3 e eu
PX =X --X--

3 27'
where

u2 + 27v2 _
e = 4 , u = 6 (mod 9), 3 f v, u = v (mod 2), v > 0

and e/9 is equal to the product of distinct primes congruent to 1 modulo 3.
(2) If the prime 3 is unramified inK, then K = Q(O) where 0 is a root of the

equation with coefficients in Z

P(X) = X3 - X2 + 1 - eX - 1 - 3e + eu where
3 27 ,

u2 + 27v2
e = 4 , u = 2 (mod 3), u = v (mod 2), v > 0

and e is equal to the product of distinct primes congruent to 1 modulo 3.
In both cases, the discriminant of P is equal to e2v2 and the discrim

inant of the number field K is equal to e2 .

(3) Conversely, if e is equal to 9 times the product oft - 1 distinct primes
congruent to 1 modulo 3, {resp. is equal to the product oft distinct primes
congruent to 1 modulo 3}, then there exists up to isomorphism exactly 2t-l

cyclic cubic fields of discriminant e2 defined by the polynomials P(X) given
in {1} (resp. {2)}.

To prove this theorem, we will need in particular to compute explicitly
integral bases and discriminants of cyclic cubic fields. Although there are
other (essentially equivalent) methods, we will apply the round 2 algorithm
to do this.

So, let K be a cyclic cubic field. By Lemma 6.4.5, we have K = Q(0)
where 0 is a root of the equation

P(X) = X 3 - 3eX- eu, where u = 2 (mod 3)

and e is equal to a product of distinct primes congruent to 1 modulo 3.
We first prove a few lemmas.

Lemma 6.4.7. Let pI e. Then the order Z[O] is p-maximal.

Proof. We apply Dedekind's criterion. Since p I e, P(X) = X 3 ' therefore
with the notations of Theorem 6.1.4, t 1 (X) =X, g(X) =X, h(X) = X 2

340 6 Algorithms for Algebraic Number Theory II

and /(X) = (3ejp)X + eujp. Since p I e we cannot have p I u, otherwise
p I v, hence p2 I e which was assumed not to be true. Therefore, p f eujp so
(7, g, h) = 1, showing that Z[B] is p-maximal. D

Corollary 6.4.8. The discriminant of P(X) is equal to 81e2v2 • The discrim
inant of the number field K is divisible by e2 .

Proof. The discriminant of X 3 +aX+ b is equal to -(4a3 + 27b2) (see Exercise
7 of Chapter 3), hence the discriminant of Pis equal to

thus proving the first formula. For the second, we know that the discriminant
of the field K is a square divisor of 81e2v2. By the preceding lemma, Z[B]
is p-maximal for all primes dividing e, and since e is coprime to 81 v2 , the
primes for which Z[B] may not be p-maximal are divisors of 81v2 , hence the
discriminant of K is divisible by e2 • D

Since, as we will see, the prime divisors of v other than 3 are irrelevant,
what remains is to look at the behavior of the prime 3.

Lemma 6.4.9. Assume that 3 f v. Then Z[B] is 3-maximal.

Proof. Again we use Dedekind's criterion. Since eu = 2 (mod 3), we have
P =(X+ 1)3 in IF3 [X] hence t 1 (X) =X+ 1, g(X) =X+ 1, h(X) = (X+ 1)2

and f(X) = X 2 + (e + 1)X + (1 + eu)/3 =(X+ 1)(X +e)+ (eu + 1- 3e)/3
hence

(J,g, h)= (X+ 1,]) = (X+ 1, (eu + 1- 3e)/3).

Now we check that

eu+ 1- 3e
r=

3
(u2 + 3v2)(u- 3) + 4 (u- 2) 2 (u + 1) + 3v2(u- 3)

12 = ..:....__..:...._:....._----,-1~2 __ ..:....__..:...

hence, since u = 2 (mod 3), 4r = v2(u- 3) (mod 9) and, in particular, since
3 f v, r = 1 (mod 3) so (], g, h) = 1, which proves the lemma. D

Lemma 6.4.10. With the above notation, let B be a root of P(X) = X 3 -

3eX- eu, where e = (u2 + 3v2)/4 and u = 2 (mod 3). The conjugates of B
are given by the formulas

6.4 Examples of Families of Number Fields 341

Proof From the proof of Proposition 6.4.3, we have f = (B- B2)(B2- Ba)(Ba
B) = ±9ev (since the discriminant is equal to 81e2v2). If necessary, by ex
changing B2 and Ba, we may assume that B2 - B3 = 9evj(B- B2)(B- Ba) =
9ev/P'(B) = 9evf(3B2 - 3e). Using the extended Euclidean algorithm with
A(X)= X 3 - 3eX- eu and B(X) = X 2 - e, one finds immediately that the
inverse of B modulo A is equal to (2X2 - uX- 4e)/(3v2e) hence

On the other hand, since the trace of B is equal to 0, we have B2 + Ba = -B,
and the formulas for B2 = O"(B) and B3 = 0"2(B) follow immediately.

It would of course have been simple, but less natural, to check directly
with the given formulas that (X- B)(X -O"(B))(X- 0"2(B)) = X 3- 3eX- eu.

D

We can now prove a theorem which immediately implies the first two
statements of Theorem 6.4.6.

Theorem 6.4.11. Let K = Q(B) be a cyclic cubic field where B is a root of
X 3- 3eX- eu = 0 and where, as above, e = (u2 + 3v2) j 4 is equal to a product
of distinct primes congruent to 1 modulo 3.

(1) Assume that 3 f v. Then (1, B, O"(B)) {where O"(B) is given by the above
formula) is an integral basis of K and the discriminant of K is equal to
(9e)2 •

(2) Assume now that 3 I v. Then, if B' = (B + 1)/3, (1, B', O"(B')) is an integral
basis of K and the discriminant of K is equal to e2 •

Proof 1) Since B2 = VO'(B) + ((u + v) /2)B + 2e, the Z-module 0 generated by
(1, B, O"(B)) contains Z[B]. One computes immediately (in fact simply from the
formula that we have just given for B2) that Z[B] is of index v in 0. Hence,
the discriminant of 0 is equal to 81e2. Since we know that Z[B], and a fortiori
that 0 is 3-maximal and p-maximal for every prime dividing e, it follows that
0 is the maximal order, thus proving the first part of the theorem.

2) We now consider the case where 3 I v. The field K can then be defined
by the polynomial

Q(X) =P(3X-1)/27 =X3-X2+ 1-ex_1-3e+eu.
3 27

Since e = 1 (mod 3), u = 2 (mod 3) and 31 v, a simple calculation shows that
Q E Z[X]. Furthermore, from Proposition 3.3.5 the discriminant of Q is equal
to the discriminant of P divided by 36 , i.e. to e2(v/3)2. Set B' = (8 + 1)/3,
which is a root of Q, and let 0 be the Z-module generated by (1,B',0"(8')).
We compute that

342 6 Algorithms for Algebraic Number Theory II

a(B') = 2 + u + 3v - 4e
6v

4 + u + v (}' + ~(}'2
2v v

and so, as in the proof of the first part, one checks that 0 ::) Z[B'] and [0 :
Z[B']] = v/3. Therefore the discriminant of 0 is equal to e2 . By Corollary
6.4.8 the discriminant of K must also be divisible by e2 , and so the theorem
follows. 0

Proof of Theorem 6.4.6. First, we note that the polynomials given in Theorem
6.4.6 are irreducible in Q[X] (see Exercise 17).

From Theorem 6.4.11, one sees immediately that 3 is ramified inK (i.e. 3
divides the discriminant of K) if and only if 3 f v. Hence, Lemma 6.4.5 tells us
that K is given by an equation P(X) = X 3 - 3eX-eu (with several conditions
one and u). If we set u1 = 3u, v1 = v and e1 = 9e, we have e1 = (u~ + 27vD/4,
Ul = 6 (mod 9), 3 f V!, and P(X) = X 3 - (el/3)X- (elul)/27 as claimed in
Theorem 6.4.6 (1).

Assume now that 3 is not ramified, i.e. that 3 I v. From the proof of
the second part of Theorem 6.4.11, we know that K can be defined by the
polynomial X 3 -X2 + ((1- e)/3)X- (1- 3e+ eu)/27 E Z[X] and this time
setting e1 = e, v1 = v /3 and u1 = u, it is clear that the second statement of
Theorem 6.4.6 follows.

We still need to prove that any two fields defined by different polynomials
P(X) given in (1) or (2) are not isomorphic, i.e. that the pair (e, u) deter
mines the isomorphism class. This follows immediately from the uniqueness
statement of Lemma 6.4.5. (Note that thee and u in Lemma 6.4.5 are either
equal to the e and u of the theorem (in case (2)), or to e/9 and u/3 (in case
(1)).)

Let us prove (3). Assume that e is equal to a product oft distinct primes
congruent to 1 modulo 3 (the case where e is equal to 9 times the product
oft - 1 distinct primes congruent to 1 modulo 3 is dealt with similarly, see
Exercise 18). Let A = Z[(1 + H)/2] be the ring of algebraic integers of
Q(y'=-3). It is trivial to check (and in fact we have already implicitly used
this in the proof of (2)) that if a E A with 3 f N(a), there exists a unique a'
associate to a (i.e. generating the same principal ideal) such that

a'= (u + 3vH)/2, u = 2 (mod 3).

Furthermore, since A is a Euclidean domain and in particular a PID, Proposi
tion 5.1.4 shows that if Pi is a prime congruent to 1 modulo 3, then Pi= aiai
for a unique ai = (ui + 3viH)/2 with ui = 2 (mod 3) and vi> 0.

Hence, if e = il 1<i<tPi, then e = (u2 + 27v2)/4 = N(u + 3vH)/2 if
and only if - -

(u + 3vM)/2 = IJ f3i
1:$i:$t

where f3i = ai or f3i = ai, and this gives 2t solutions to the equation e =
(u2+ 27v2)/4. (Note that using associates of f3i do not give any new solutions.)

6.4 Examples of Families of Number Fields 343

But, we have seen above that the isomorphism class of a cyclic cubic field is
determined uniquely by the pair (e, u) satisfying appropriate conditions. Since
e = (u2 + 27(-v)2)/4 gives the same field as e = (u2 + 27v2)/4, this shows,
as claimed, that there exist exactly 2t-l distinct values of u, hence 2t-l non
isomorphic fields of discriminant e2 . This finishes the proof of Theorem 6.4.6.

D

Corollary 6.4.12. With the notation of Theorem 6.4.6 (i.e. not those of
Theorem 6.4.11 }, the conjugates of 9 are given by the formula

±l(n) _ 2e -3v =Fun 1n2 (}' u -=F-+ u±-u
9v 6v v

when 3 is ramified inK (i.e. in case {1}}, and by the formula

(}'±1(9)= 9v±(u+2-4e) + -3v=t=(u+4) 9 ±!92
18v 6v v

when 3 is not ramified inK (i.e. in case {2)).
In addition, in all cases the discriminant of the polynomial P is equal

to e2v2, the discriminant of the field K is equal to e2 and (1,9,0'(9)) is an
integral basis of K.

The proof of this corollary follows immediately from Lemma 6.4.10 and
the proof of Theorems 6.4.11 and 6.4.6. D

For another way to describe cyclic cubic fields parametrically see Exercise
21.

6.4.3 Pure Cubic Fields

Another class of fields which is easy to describe is the class of pure cubic fields,
i.e. fields K = Q(.qm) where m is an integer which we may assume not to be
divisible by a cube other than ±1.

The defining polynomial is P(X) = X 3 - m whose discriminant is equal
to -27m2 • Let 9 be the root of this polynomial which is inK.

As in the case of cyclic cubic fields, we must compute the maximal order of
K. This is very easy to do using Dedekind's criterion (see Exercise 2). I would
like to show however how the Pohst-Zassenhaus Theorem 6.1.3 is really used in
the round 2 algorithm, so I will deliberately skip the steps of Algorithm 6.1.8
which use the Dedekind criterion. This will of course make the computations
longer, but will illustrate the full use of the round 2 algorithm.

Let p be a prime dividing m and not equal to 3. Then p2 divides the
discriminant of P. Let r be 1 if p = 1 (mod 3), r = 2 if not. Then, clearly
9P = m<p-r)f39r. Hence, in the basis 1, 9, 92 the matrix of the Frobenius at p
(or of its square if p = 2) is clearly equal to

344 6 Algorithms for Algebraic Number Theory II

(
1 0 0)
0 0 0 .
0 0 0

This implies that a basis of the p-radical is given by (B, 02). Hence, in step 9
we take a1 = B, a2 = 02 and a3 = p.

The 9 by 3 matrix Cis obtained by stacking the following three matrices:

(
1 0
0 1
0 0

0) (0 0 , 1
mfp 0

It follows from the first three equations that, if r f m, the kernel of c is
trivial, hence that Z[B] is p-maximal. Therefore, we will write

m = ab2 , a and b squarefree, (a, b) = 1.

Indeed, a is chosen squarefree, but since m is cubefree the other conditions
follow.

With these notations, we have just shown that if p I a then Z[B] is p
maximal. Take now pI b (still with p =f. 3). The kernel of the matrix Cis now
clearly generated over 1Fp by the column vector (0, 0, 1) corresponding to 02 ,

hence in step 10 we will compute the Hermite normal form of the matrix

(
0 p
0 0
1 0

This is clearly equal to the matrix

0 0)
p 0 .
0 p

0 0)
p 0 ,
0 1

thus enlarging the order Z[B] to the order whose Z-basis is (1, B, 02 fp). If we
apply the round 2 algorithm again to this new order, one checks immediately
that the new matrix C will be the same as the one above with mfp replaced
by mfp2 • Since m is cubefree, this is not divisible by p which shows that the
kernel is trivial and so the new order is p-maximal.

Putting together all the local pieces, we can enlarge our order to (1, B, 02 /b')
where b' = b if 3 f b, b' = b/3 if 3 I b. This order will then be p-maximal for
every prime p except perhaps the prime 3, which we now consider.

We start from the order (1, B, 02 fb') and consider separately the cases
where 3 I m and 3 f m.

Assume first that 3 I m. The matrix of the Frobenius with respect to the
basis (1, 9,(J2 /b') is equal to

6.4 Examples of Families of Number Fields 345

and modulo 3 both m and a2b4 /b'3 are equal to 0. Hence, as in the case p # 3,
the kernel of the Frobenius is generated by (B, ()2 fb'). Therefore, in step 9
we take a1 = B, a2 = 02 fb' and a3 = 3. The matrix C is then obtained by
stacking the following three matrices:

(
1 0
0 b'
0 0

0) (0 0 ' 1
m/(3b') 0

0
0

m/(3b')

m/b'2) (0 0 0) 0 ' 0 0 0 .
0 1 0 0

Since 3 f b' but 3 I m, we have m/b'2 = 0 (mod 3). On the other hand, m/(3b')
is equal to 0 modulo 3 if and only if 32 I m, i.e. 3 I b. Hence, we consider two
sub-cases.

If 3 f b, the first three relations show that the kernel of C is equal to 0
and so our order is 3-maximal. Thus, in that case b' = b so an integral basis
is (1, (), ()2 fb) and the discriminant of the field K is equal to -27a2b2 •

If 3 I b, the kernel of C is generated by (0, 0, 1) corresponding to 02 /b'.
The Hermite normal form obtained in step 10 is, as for p # 3, equal to the
matrix

(~ ~ ~).
0 0 1

giving the larger order (1, (), ()2 fb' /3) = (1, (), ()2 fb).
Since the discriminant of this order is still divisible by 9, we must start

again. A similar computation shows that the matrix C is obtained by stacking
the following 3 matrices:

(
1 0
0 0
0 0

0) 0 '
ab/3

0
0

ab/3

a) (0 0 0) 0 ' 0 0 0 0 1 0 0
and since 3 f ab/3, the first, third and sixth relation show that the kernel of C
is trivial, hence that our order is now 3-maximal. So if 3 I b, an integral basis
is (1,B,B2 /b) and the discriminant of K is equal to -27a2b2 , giving exactly
the same result as when 3 f b.

We now assume that 3 f m, and so in particular we have b' = b. The matrix
of the Frobenius is equal to

346 6 Algorithms for Algebraic Number Theory II

Since a2 = b2 = 1 (mod 3), this shows that the kernel of the Frobenius is
equal to the set of elements x + y(} + z(}2 f b such that x + ay + bz = 0 (mod 3).
Hence modulo 3 it is, for example, generated by (B- a, (} 2 jb- b). This means
that in step 9 we can take a 1 = (} -a, a 2 = 02 jb- b and ag = 3. The matrix
C is obtained by stacking the following three matrices:

(
1 -a 0) (0 -b
0 b -a , 1 0
0 (b2 - a2)/3 0 0 0

a) (0 -b 0
(a2 - b2)/3 ' 1

0 0)
0 0 .
a b

We consider two subcases. First assume that a2 ¢. b2 (mod 9). Then from the
first, third and sixth relation we see that the kernel of C is trivial, hence that
our order is 3-maximal. This means, as in the case 3 I m, that (1, B, 02 /b) is
an integral basis and the discriminant of K is equal to -27a2b2 •

Assume now that a2 = b2 (mod 9). In this case, one sees easily that the
kernel of Cis generated by (b, ab, 1) corresponding to 02 jb +abO+ b, and the
computation of the Hermite normal form of the matrix

0 0) 3 0
0 3

leads to the matrix

(~ ~ :b),
0 0 1

thus giving a larger order generated by (1, B, (02 + ab2B + b2)/(3b)), and the
discriminant of this order being equal to -3a2b2 , hence not divisible by 32 ,

this enlarged order is 3-maximal.
We summarize what we have proved in the following theorem.

Theorem 6.4.13. Let K = IQ({lffi) be a pure cubic field, where m is cubefree
and not equal to ±1. Write m = ab2 with a and b squarefree and coprime. Let
(} be the cube root of m belonging to K. Then

(1) If a2 ¢. b2 (mod 9) then

(1, (}, ()b2)

is an integral basis of K and the discriminant of K is equal to -27a2 b2 •

(2) If a2 = b2 (mod 9) then

is an integral basis of K and the discriminant of K is equal to -3a2b2 •

6.4 Examples of Families of Number Fields 347

Proof Simply note that since a and b are coprime, when 3 I m we cannot have
a2 = b2 (mod 9). 0

Remark. The condition a2 = b2 (mod 9) is clearly equivalent to the condition
m = ±1 (mod 9).

6.4.4 Decomposition of Primes in Pure Cubic Fields

As examples of applications of Algorithm 6.2.9, we will give explicitly the
decomposition of primes in pure cubic fields. We could also treat the case of
cyclic cubic fields, but the results would be a little more complicated.

Let () be the real root of the polynomial X 3 - m, and let K = Q(()).
First consider the case of "good" prime numbers p, i.e. such that p does not
divide the index [ZK : Z[e]] (which, by Theorem 6.4.13 is equal to 3b or b
depending on whether a2 = b2 (mod 9) or not). In this case we can directly
apply Theorem 4.8.13. In other words the decomposition of pZK mimics that
of the polynomial T(X) = X 3 - m modulo p.

Now this decomposition is obtained as follows (compare with Section 1.4.2
where the Legendre symbol is defined).

Proposition 6.4.14. Let p be a prime number not dividing m. The decom
position of X 3 - m modulo p is of the following type.

(1) Ifp = 2 (mod 3), then X 3 - m =(X- u)(X2 - vX + w) (mod p) (where
it is of course implicitly understood that the polynomial X 2 - vX + w is
irreducible in JFp[X]).

(2) If p = 1 (mod 3) and m<v-1)/3 = 1 (mod p) then X3- m = (X- u1)(X
u2)(X- u3) (mod p), where u1, u2 and u3 are distinct elements oflFv·

(3) If p = 1 (mod 3) and m<P-1)/3 ¢. 1 (mod p), then X 3 - m is irreducible
in lFp[X].

(4) Ifp=3, thenX3 -m=(X-a)3 (modp).

Proof Consider the group homomorphism 4> such that <J>(x) = x3 from JF; into
itself. It is clear that if </>(x) = 1, then (x- 1)(x2 + x + 1) = 0 (in JFp) hence

(x- 1)((2x + 1)2 + 3) = 0.

If p = 2 (mod 3) the quadratic reciprocity law 1.4.7 shows that (-;,3) = -1,
hence -3 is not equal to a square in lFp. This shows that (2x + 1)2 + 3 = 0 is
impossible, hence that the function 4> is injective, hence bijective. In particular,
there exists a unique u E JF; such that 4>(u) = m, hence a unique root of X 3 - m
in lFp, proving (1).

For (2) and (3), by quadratic reciprocity we have (-;,3) = 1, hence there
exists z E JF; such that z2 = -3. This immediately implies that the kernel of 4>
has exactly 3 elements, and hence that the image of 4> has (p -1)/3 elements.

348 6 Algorithms for Algebraic Number Theory II

Furthermore, if g is a primitive root modulo p, then clearly the image of <P is
the set of elements x of the form g3k for 0 ~ k < (p- 1)/3, and these are
exactly those elements such that xCP-1)/3 = 1 in lF'p, proving (2) and (3).

Finally, (4) is trivial. D

When p 1 m we trivially have x3 - m = x3 (mod P), so we immediately
obtain the following corollary in the "easy" cases where p does not divide the
index.

Corollary 6.4.15. As above let K = Q(.vm) and recall that we have set
m = ab2 • Assume that p t b and that if a2 = b2 (mod 9), then alsop "I 3.
Then the decomposition of pZK is given as follows.

(1) If p I a, then pZK = p3 where p = pZK + OZK.

(2) If pta and p = 2 (mod 3), then pZK = P1P2 where P1 = pZK + (0- u)ZK
is an ideal of degree 1 and P2 = pZK + (02 - vO + w)ZK is an ideal of
degree 2.

(3) If p t a, p = 1 (mod 3) and mCP-1)/3 = 1 (mod p), then pZK = P1P2P3
where Pi= pZK + (0- ui)ZK are three distinct ideals of degree 1.

(4) If p fa, p = 1 (mod 3) and mCP- 1)/3 ¢. 1 (mod p), then the ideal pZK is
inert.

(5) If p = 3 and pta, then pZK = p3 , where p = pZK + (0- a)ZK is an ideal
of degree 1.

We must now consider the more difficult cases where p divides the index.
Here we will follow the Algorithm 6.2.9 more closely, and we will skip the
detailed computations of products and quotients of ideals, which are easy but
tedious.

Assume first that a2 ¢. b2 (mod 9). Then Theorem 6.4.13 tells us that
1, 0, 02 jb is an integral basis, and according to the algorithm described in
Section 6.2 we start by computing the p-radical of ZK, assuming that p I b. It
is easily seen that the matrix of the Frobenius at p (or its square for p = 2) is
always equal to the matrix

(
1 0 0)
0 0 0
0 0 0

in lFP. Therefore (0, 02 /b) is an lF'p-basis of Ip. From this, using Algorithm 6.2.5
we obtain the following lF P bases.

K1 = (0, 02 /b), K2 = (0) and Ki = {0} for j ?: 3.
As a consequence, using Algorithm 6.2.7 we obtain
J1 = J2 = J3 = (0, 02 /b), and Ji = {1, 0, 02 /b) for j ?: 4.
From this, it is clear that we have H1 = H2 = ZK, H3 = K1 and Hi= ZK

for j ?: 4, from which it follows that

6.4 Examples of Families of Number Fields 349

Since K is a field of degree equal to 3, this implies that K1 is a prime ideal
(which of course can be checked directly since it is of norm p). This shows
that p is totally ramified, and the unique prime ideal j:l above p is generated
over z by (p, 0, 02 /b).

Note that most of these computations can be avoided. Indeed, once we
know a Z-basis of lp, a trivial determinant computation shows that lp is of
norm p, hence is a prime ideal of degree 1. Using the notations of Section 6.2,
it follows that g = 1 and that pZK = 1;1 and since we are in a field of degree
3, the relation I: edi = 3 tells us that e1 = 3, thus showing that p is totally
ramified.

We have kept the computations however, so that the reader can check his
implementation of ideal multiplication and division.

Assume now that a2 = b2 (mod 9). Recall that in this case we have 3 f b.
Then Theorem 6.4.13 tells us that 1, 0, (02 + ab20 + b2)/(3b) is an integral
basis, and we must first compute the p-radical of ZK, assuming that p I 3b.

Consider first the case where p =I 3, i.e. p I b. It is easily seen that the
matrix of the Frobenius at p (or its square for p = 2) is still equal to the
matrix

(1 0 0)
0 0 0
0 0 0

in IFP hence we obtain that a 1Fp-basis of lp is (0, (02 + ab20 + b2)/(3b)). As
in the preceding case, one checks trivially that lp has norm equal to p so is a
prime ideal of degree 1, so as before pis totally ramified and pZK = 1;. For
the sake of completeness (or again as exercises), we give the computations as
they would have been carried out without noticing this.

By Algorithm 6.2.5 we obtain the following IFp-bases.

K 1 = (0, (02 + ab2 0 + b2)/(3b)), K 2 = (0) and Kj = {0} for j ;:=: 3.
As a consequence, using Algorithm 6.2.7, we obtain

Jl = h = J3 = (0, (02 + ab20 + b2)/(3b)), and Jj = (1, 0, (02 + ab20 +
b2)/(3b)) for j 2': 4.

From this, as before, we have H1 = H2 = ZK, H3 = K1 and Hj = ZK for
j 2': 4, from which it follows that

Therefore p is totally ramified, and the unique prime ideal j:l above p is gen
erated over Z by (p, 0, (02 + ab2 0 + b2)/(3b)).

Finally, still assuming a 2 = b2 (mod 9), consider the case p = 3. The
matrix of the Frobenius at 3 is now equal to the matrix

350

(
1 ab2

0 0
0 0

6 Algorithms for Algebraic Number Theory II

b(a2 -2b2 +aa2 b2 -aa2 b4 +a4 b4))
27

bl-a2 b4
a-9-

b2 l+a2 +a2 b2

a
with coefficients in !Fa. Since a2 = b2 (mod 9) and 3 f ab, we have

1 + a2 + a2b2 = 1 + a2 + a4 = (1- a2)(1 + 2a2) + 3a4 = 3a4 (mod 9),

hence 3 f (1 + a2 + a2b2)/3. This shows that (3, (}-a, (B2 + ab2B + b2)/b) is a
Z-basis of Ip, and hence (B -a) is an 1Fp-basis of 4,. Here the norm of Ip is
equal to 9, so we cannot obtain the decomposition of 3Zx directly, and it is
really necessary to do the computations of Algorithm 6.2.9

By Algorithm 6.2.5, we obtain the following !Fa-bases.
K1 = (B- a) and Ki = {0} for j ~ 2.
As a consequence, using Algorithm 6.2.7, we obtain
J1 = (B- a), J2 = (B- a, (B2 + ab2 B + a2b4)/(3b)) and Jj = (1, (}, (B2 +

ab2 (} + b2)/(3b)) for j ~ 3.
From this we obtain (after lifting to 0) that H1 = (3, (}-a, (B2 + ab2(}

b2(1 + a2))/(3b)), H2 = J2 = (3, (}-a, (B2 + ab2B + a2b4)/(3b)) and Hi= Zx
for j ~ 3. It is immediately checked (for example using the determinant of the
matrix of Hj) that H1 and H2 are of norm equal to 3, hence are prime ideals.
Thus, we obtain that the prime ideal decomposition of 3Zx is given by

3Zx = H1Hi,

where H 1 and H2 are distinct prime ideals with Z-basis given above. Hence,
3 is ramified (as it must be since the discriminant of the field is divisible by
3), but not totally ramified as in the case a2 ¢. b2 (mod 9).

We summarize the above in the following theorem.

Theorem 6.4.16. Let (1,B,w) be the integral basis ofZx given by Theorem
6.4.13 {hence w = B2 /b if a2 ¢. b2 (mod 9), w = (B2 + ab2B + b2)/(3b) if
a2 = b2 (mod 9)}. Then

(1) If p I b, then p is totally ramified, and we have pZx = pa, where p is a
prime ideal of degree 1 given by

p = pZ + BZ + wZ = pZx + wZx.

(2) If p = 3 and a2 = b2 (mod 9), then 3 is partially ramified and we have
3Zx = P1P~ where P1 and P2 are prime ideals of degree 1 given by

P1 = 3Z + (B- a)Z + (w- b(2 + a2)/3)Z = 3Zx + (w- b(a2 + 2)/3)Zx

and

where

P2 = 3Z + (B- a)Z + (w- b(a2 -1)/3)Z = 3Zx + aZx

a= w- b(a2 - 1)/3 if a2b4 ¢. 1 (mod 27),

a= w+ (}-a- b(a2 -1)/3 if a2b4 = 1 (mod 27).

6.4 Examples of Families of Number Fields 351

Proof. We have shown everything except the generating systems over ZK. If
pI b, a simple HNF computation shows that one has pZK + wZK = (p, O,w).

If p = 3 and a2 = b2 (mod 9), we could also check the result via a HNF
computation. Another method is to notice that 3ZK = P1P~ and that if we
set a1 = w- b(a2 + 2)/3, then a1 E p1, but a 1 ¢ p2 otherwise P1 C P2 which
is absurd, so that a1 = p!q with q prime to 3, so 3ZK + a1ZK = Pl·

For P2, if we set a2 = w- b(a2 - 1)/3, then again a2 E P2 and a2 ¢ Pl·
Hence a2 = p~q with q prime to 3. This implies that 3ZK + a 2ZK = p~in(e,2)
hence this can be equal to P2 or to its square. To distinguish the two cases, we
must compute the norm of a2, whose 3-adic valuation will be equal to e. As it
happens, it is simpler to work with the norm of a~= a 2 + b(a2b2 + a2 - 2)/3
(note that a2b2 + a2 - 2 = (a2 - 1)(a2 + 2) (mod 9) hence 3ZK + a2ZK =
3ZK + a~ZK)·

One computes that n = N(a~) = a 2b(1 - a 2b4) 2 /27. Hence, if a2b4 f= 1
(mod 27), the 3-adic valuation of n is equal to 1, therefore 3ZK + a2ZK = P2·

If a2b4 = 1 (mod 2)7, a similar computation shows that the 3-adic valua-
tion of N(a~ +(}-a) is equal to 1, thus proving the theorem. D

6.4.5 General Cubic Fields

In this section, we give without proof a few results concerning the decompo
sition of primes in general cubic extensions of Q.

Let K be a cubic field. The discriminant d(K) of the number field K can
(as any discriminant) be written in a unique way in the form d(K) = df2 where
d is either a fundamental discriminant or is equal to 1. The field k = Q(v'd)
is either Q if d = 1, or is a quadratic field, and is the unique subfield of index
3 of the Galois closure of K.

In particular, cyclic cubic fields correspond to d = 1, i.e. k = Q, and pure
cubic fields correspond to d = -3, i.e. k = Q(v'-3) the cyclotomic field of
third roots of unity.

Let p be a prime number. If p f d(K), then pis unramified. Therefore by
Proposition 4.8.10 we have the following cases.

(1) If (d(:;)) = -1, then g = 2. Hence, we have a decomposition of pin the
form pZK = P1P2 where P1 is a prime ideal of degree 1 and P2 is a prime
ideal of degree 2.

(2) If (d(:;)) = 1, then g is odd. Hence, either pis inert or pZK is equal to the
product of three prime ideals of degree 1.

If p does not divide the index [ZK : Z[O]] where K = Q(O), then
the two cases are distinguished by the splitting modulo p of the minimal
polynomial T(X) of 0.

If p divides the index, then T has at least a double root modulo p. If
T has a double root, but not a triple root, then T also has a simple root
which corresponds to a prime ideal of degree 1. In this case pZK is the

352 6 Algorithms for Algebraic Number Theory II

product of three ideals of degree 1. Finally, if T has a triple root modulo
p, we must apply other techniques such as the ones in Section 6.2.

Assume now that p I d(K) = dj2, hence that pis ramified. Then the result
is as follows.

(1) If pI f, then pis totally ramified. In other words, p'!L.K = p3 where pis a
prime ideal of degree 1.

(2) If p I d and p f f, then pis partially ramified. In other words, p'!L.K = P1P~,
where P1 and P2 are distinct prime ideals of degree 1.

(3) Furthermore, if there exists a p such that p I (d, f), then we must have
p = 3 (and we are in case (1), since pI f).

See for example [Has] for proofs of these results.

6.5 Computing the Class Group, Regulator and
Fundamental Units

In this section, we shall give a practical generalization of Buchmann's sub
exponential Algorithm 5.9.2 to an arbitrary number field. This algorithm com
putes the class group, the regulator and also if desired a system of fundamental
units, for a number field whose discriminant is not too large. Although based
on essentially the same principles as Algorithm 5.9.2, we do not claim that its
running time is sub-exponential, even assuming some reasonable conjectures.
On the other hand it performs very well in practice. The algorithm originates
in an unpublished paper of J. Buchmann, but the present formulation is due
to F. Diaz y Diaz, M. Olivier and myself. As almost all other algorithms in
this book, this algorithm has been fully implemented in the author's PARl
package (see Appendix A). It is still in an experimental state, hence many
refinements need to be made to achieve optimum performance.

We assume that our number field K is given as usual asK= Q[O] where 0
is an algebraic integer. Let T(X) be the minimal monic polynomial of 0. Let
n = [K: Q] = r1 + 2r2, denote by O'i the complex embeddings of K ordered
as usual, and finally let w1, ... , Wn be an integral basis of '!L.K, found using for
example the round 2 Algorithm 6.1.8.

6.5.1 Ideal Reduction

The only notion that we have not yet introduced and that we will need in an
essential way in our algorithm is that of ideal reduction.

Definition 6.5.1. Let I be a fractional ideal and a a non-zero element of I.
We will say that a is a minimum in I if, for all f3 E I, we have

6.5 Computing the Class Group, Regulator and Fundamental Units 353

We will say that the ideal I is reduced if f(I) is a minimum in I, where
In Q = f(I)Z.

The reader can check that this definition of reduction coincides with the
definitions given for the imaginary and real quadratic case (see Exercise 16 of
Chapter 5).

Definition 6.5.2. Let v = (vih <i<n be a vector of real numbers such that
Vrdi =Vi for r1 < i ::; r1 +r2. We-d~fine the v-norm lladlv of a by the formula

n

llall~ = :~:::>v'lai(a)l 2 .
i=l

Ifa1 , ... ,an is aZ-basis for the ideal I, then II L:j xiaill~ defines a positive
definite quadratic form on I.

Definition 6.5.3. We say that a Z-basis a 11 ••• ,an of an ideal I is LLL
reduced along the vector v if it is LLL-reduced for the quadratic form defined
by llall~·

Thanks to the LLL algorithms seen in Section 2.6 we can efficiently LLL
reduce along v any given basis.

The main point of these definitions is the following.

Proposition 6.5.4. If a E I is a (non-zero) minimum for the quadratic form
llall~, then a is a minimum of I in the sense of Definition 6.5.1 above, and
I/ a is a reduced ideal.

Proof If f3 E I is such that for all i, lai(/3)1 < lai(a)l, then clearly 11/311~ < llaii~
Hence, since a is a minimum non-zero value of the quadratic form, we must
have f3 = 0 so a is a minimum in I. Let us show that I fa is a reduced ideal.
First, I claim that I fan Q = z. Indeed, if r E Q*, r E I fa is equivalent
to ra E I and since a is a minimum and r is invariant under the ai, this
implies that lrl ;:::: 1. Since 1 E I fa, this proves my claim, hence f(Ifa) = 1.
The proposition now follows since a minimum in I is clearly equivalent to 1
minimum in I fa. D

The LLL-algorithm allows us to find a small vector for our quadratic
form, corresponding to an a E I. This a may not be a true minimum, but
the inequalities proved in Chapter 2 show that it will in any case be a small
vector. If we choose this a instead of a minimum, the ideal I/ a will not be
necessarily reduced, but it will be sufficient for our needs. For lack of a better
term, we will say that I/ a is LLL-reduced in the direction v.

354 6 Algorithms for Algebraic Number Theory II

To summarize, this gives the following algorithm for reduction.

Algorithm 6.5.5 (LLL-Reduction of an Ideal Along a Direction v). Given a
vector vas above and an ideal I by a Z-basis o:1, ... ,o:n, this algorithm computes
o: E I and a new ideal J = I lo: such that the v-norm of a is small.

1. [Set up quadratic form] Let

n

qi,j = L evkak(o:i)ak(o:i)
k=l

{note that these are all real numbers), and let Q be the quadratic form on Rn
whose matrix is (qi,i).

2. [Apply LLL] Using the LLL Algorithm 2.6.3, compute an LLL-reduced basis {31,
... ,f3n of I corresponding to this quadratic form, and let o: +-- {31.

3. [Compute J] Output o: and the Z-basis f3do: of the ideal J = I I o: and termi
nate the algorithm.

Remarks.

(1) The ideal J is a fractional ideal. If desired, we can multiply it by a suitable
rational number to make it integral and primitive.

(2) In practice the basis elements o:i are given in terms of a fixed basis l3
of K (for example either a power basis or an integral basis of 'IlK). If
we compute once and for all the quadratic form Qr3 attached to !3, it is
then easier to compute the quadratic form attached to the ideal J. Note
however that this argument is only valid for a fixed choice of the vector v.

6.5.2 Computing the Relation Matrix

As in the quadratic case we choose a suitable integer L such that non-inert
prime ideals of norm less than or equal to L generate the class group. The
GRH implies that we can take L = 12ln2 1DI where Dis the discriminant of
K (see [Bach]). This is only twice the special value used for quadratic fields.
However, if we allow ourselves to be not completely rigorous, we could choose
a lower value.

To obtain relations, we will compute random products I of powers of
prime ideals. Let J = I I o: be an LLL-reduced ideal along a certain direction
v, obtained using Algorithm 6.5.5. If J factors on a given factor base, as in
the quadratic case we will obtain a relation of the type ft pf' = o:'llK. This
relation will be stored in two parts. The non-Archimedean information (xi)
will be stored as a column of an integral relation matrix M. The Archimedean
information o: will be stored as an r 1 + r 2-component column vector, by using
the complex logarithmic embedding Lo(o:) In(~{ a}) V defined in Section 5.8.4.

6.5 Computing the Class Group, Regulator and Fundamental Units 355

Note that, by definition, the sum of the r 1 + r 2 components of this vector is
an integral multiple of 2i7r.

We now give the algorithm which computes the factor bases and the rela
tion matrix.

Algorithm 6.5.6 (Computation of the Relation Matrix). Given a number
field K as above, this algorithm computes integers k and k2 with k2 > k, a
k x k2 integral relation matrix M, an (r1 + r 2) x k2 complex logarithm matrix
Me and an Euler product z. These objects will be needed in the class group and
unit Algorithm 6.5.9 below. We set ru +--- r 1 + r 2 (this is equal to the unit rank
plus one). We choose at will a positive real number B 1 and we set B2 +--- 12.

1. [Compute integral basis and limits] Using Algorithm 6.1.8 compute the field
discriminant D = D(K) and an integral basis w1 = 1, ... , Wn· Set L1 +

Blln2IDI, L2 +--- B2ln2 IDI and L. +--- (4/7rt2 n!/nn.Ji15T.
2. [Compute small factor base] Set u +--- 1, S +--- 0 and for each prime p such that

p f D (i.e. p unramified) do the following until u > L •. Let p'l!.,K = TI1:-:;i:<:;g Pi
be the prime ideal decomposition of p'll,K obtained using Algorithm 6.2.9. For
each i:::; g- 1 such that N(pi) :::; L2, setS+--- S U {Pi} and u +--- uN(pi)·
Then Swill be a set of prime ideals which we call the small factor base. Let
s be its cardinality.

3. [Compute and store powers] For each p E S and each integer e such that
0:::; e:::; 20, compute and store an LLL-reduced ideal equivalent tope, where
the reduction is done using Algorithm 6.5.5 with v equal to the zero vector.
Note that the Archimedean information must also be stored, using the function
Le as explained above.

4. [Compute factor bases and Euler product] For all primes p:::; L2 compute the
prime ideal decomposition of p'l!.,K using Algorithm 6.2.9, and let the large
factor base LFB be the list of all non-inert prime ideals of norm less than or
equal to L2 (where if necessary we also add the elements of S), and let the
factor base FB be the subset of LFB containing only those primes of norm
less than or equal to L 1 as well as the elements of S. Set k equal to the
cardinality of FB, and set k2 +--- k + ru + 10. Finally, using the prime ideal
decompositions, compute the Euler product

IT 1-1/p
Z+- <L f1(1-1/N(p))"

p_ 2 PIP

5. (Store trivial relations] Set m +--- 0. For each p :::; L 1 such that all the prime
ideals above p are in FB, set m +--- m + 1 and store the relation p'll,K =
TI1:-:;i:<:;g p~' found in step 4 as the m-th column of the matrices M and Me
as explained above.

6. (Generate random power products] Call Si the elements of the small factor
base S. Let q be the ideal number m + 1 mod k in FB. Choose random
nonnegative integers Vi :::; 20 fori~ s+ru, set vi+r2 +---vi for s < i ~ s+ru,

356 6 Algorithms for Algebraic Number Theory II

compute the ideal I+-- q Til<i<s Sf' and let J = I fa be the ideal obtained
by LLL-reducing I along the direction determined by the vi for s < i :::; s + n
using Algorithm 6.5.5. Note that the Sf' have been precomputed in step 4.

7. [Relation found?] Using Algorithm 4.8.17, try to factor a (or equivalently the
ideal J) on the factor base FB. If it factors, set m +-- m + 1 and store the
relation IJ- 1 = aZK as the m-th column of the matrices M and Me as
explained above.

8. [Enough relations?] If m :::; k2 go to step 6.

9. [Be honest] For all prime ideals q in the large factor base LFB and not belong
ing to FB, do as follows. Choose randomly integers Vi as in step 6, compute
I+-- q I1l<i<s Sf' and let J= I fa be the ideal obtained by LLL-reducing I
along the direction determined by the vi for s :::; s + n. If all the prime ideals
dividing J belong to FB or have been already checked in this test, then q is
OK, otherwise choose other random integers vi until q passes this test.

10. [Eliminate spurious factors] For each ramified prime ideal q which belongs
to the factor base FB, check whether the GCD of the coefficients occurring
in the matrix M in the row corresponding to q is equal to 1 (this is always
true if q is unramified). If not, as in step 9, choose random Vi, compute
I+-- q I1l<i<s Sf', LLL-reduce along the vi fori> sand see if the resulting
ideal factors-on FB. If it does, add the relation to the matrices M and Me,
set k2 +-- k2 + 1, and continue doing this until the GCD of the coefficients
occurring in the row corresponding to q is equal to 1.

Remarks.

(1) The constant B1 is usually chosen between 0.1 and 0.8, and controls the
execution speed of the general algorithm, as in the quadratic case. On the
other hand, the constant B2 must be taken equal to 12 according to Bach's
result. It can be taken equal to B 1 for maximum speed, but in this case,
the result may not be correct even under the G RH. This is useful for long
searches.

(2) As in the quadratic case, the constants 10 and 20 used in this algorithm
are quite arbitrary but usually work.

(3) Step 10 of this algorithm was added only after the implementation was
finished since it was noticed that for number fields of small discriminant,
the class number was usually a multiple of the correct value due to the
presence of ramified primes.

(4) The Euler product that is computed is closely linked to h(K)R(K) since

h(K)R(K) = 2-r1(27rtr2VId(K)IIJ 1-1fp
w(K) I1 (1-1fN(p))'

P PIP

where the outer product runs over all primes p and the innermost product
runs over the prime ideals above p (see Exercise 23).

6.5 Computing the Class Group, Regulator and Fundamental Units

6.5.3 Computing the Regulator and a System of Fundamental
Units

357

Before giving the complete algorithm, we need to explain how to extract from
the Archimedean information that we have computed, both the regulator and
a system of fundamental units of K.

1\.fter suitable column operations on the matrices M and Me as explained
below in Algorithm 6.5.9, we will obtain a complex matrix C whose columns
correspond to the Archimedean information associated to zero exponents,
i.e. to a relation of the form ZK = o:ZK. In other words, the columns are com
plex logarithmic embeddings of units. As in the real quadratic case, we can
obtain the regulator of the subgroup spanned by these units (which hopefully
is equal to the field regulator) by computing a real GCD of (ru- 1) x (ru -1)
sub-determinants as follows.

Algorithm 6.5. 7 (Computation of the Regulator and Fundamental Unit
Matrix). Given a ru x r complex matrix C whose columns are the complex
logarithmic embeddings of units, this algorithm computes the regulator R of the
subgroup spanned by these units as well as an ru x (ru- 1) complex matrix F
whose columns give a basis of the lattice spanned by the columns of C. As usual
we denote by Cj the columns of the matrix C and we assume that the real part
of C is of rank equal to ru - 1.

1. [Initialize] Let R +--- 0 and j +--- ru - 2.

2. [Loop] Set j +--- j + 1. If j > r, let F be the matrix formed by the last ru - 1
columns of C, output R and F and terminate the algorithm.

3. [Compute determinant] Let A be the (ru - 1) x (ru- 1) matrix obtained by
extracting from C any ru -1 rows, columns j- ru + 2 to j, and taking the
real part. Let R 1 +--- det(A). Using the real GCD Algorithm 5.9.3, compute the
RGCD d of R and R1 as well as integers u and v such that uR + vR1 = d
(note that Algorithm 5.9.3 does not give u and v, but it can be easily extended
to do so, as in Algorithm 1.3.6).

4. [Replace] Set R +--- d, Cj +--- vCj + (-1tuuCj-ru+l (where Co is to be
understood as the zero column) and go to step 2.

The proof of the validity of this algorithm is immediate once we notice
that the GCD and replacement operations in steps 3 and 4 correspond to
computing the sum of two sub-lattices of the unit lattice given by two Z-bases
differing by a single element. The sign (-1 tu is the signature of the cyclic
permutation that is performed. Note also that the real GCD Algorithm 5.9.3
may be applied since by [Zim1] and [Fri] we know that regulators of number
fields are uniformly bounded from below by 0.2. D

To compute the regulator, we have only used the real part of the matrix
C. We now explain how the use of the imaginary part, and more precisely of

358 6 Algorithms for Algebraic Number Theory II

the matrix F output by this algorithm, allows us in principle to compute a
system of fundamental units. Note that, by construction, the columns of F
are the complex logarithmic embeddings of a system of fundamental units of
ZK. However this may be a very badly skewed basis of units, hence the first
thing is to compute a nice basis using the LLL algorithm. This leads to the
following algorithm.

Algorithm 6.5.8 (Computation of a System of Fundamental Units). Given
the regulator Rand the ru x (ru- 1) matrix F output by Algorithm 6.5.7, this
algorithm computes a system of fundamental units, expressing them on an integral
basis Wi. We let /i,j be the coefficients of F.

1. [Build matrix] Set r <---- ru- 1. For j = 1, ... , j = r set bi,j <----hi if i ~ r1.
bi,j <----/i.i/2 if r1 < i ~ ru and bi,j <-/i-r2 ,j/2 if ru < i ~ n. Let B be the
n x r matrix with coefficients bi,j.

2. [LLL reduce] Using the LLL Algorithm 2.6.3 on the real part of the matrix B,
compute a r x r unimodular matrix U such that the real part of BU is LLL
reduced. Let E = (ei,j) be then x r matrix such that ei,j = exp(b~.j), where
BU = (b~)· (Note that the exponential taken here may overflow the possibil
ities of the implementation, in which case the algorithm must be aborted.)

3. [Solve linear system] LeU1 = (wi,j) be the nxn matrix such that wi,j = O"j(wi)
(where, as before, (wi) is an integral basis of ZK). Set Fu <---- n-l E.

4. [Round] The coefficients of Fu should be close to rational integers. If this is
not the case, then either the precision used to make the computations was
insufficient or the units are too large, and the algorithm fails. Otherwise, round
all the coefficients of Fu to the nearest integer.

5. [Check] Check that the columns of Fu correspond to units and that the usual
regulator determinant constructed using the columns of Fu is equal toR. If this
is the case, output the matrix Fu and terminate the algorithm (the columns of
this matrix gives the coefficients of a system of fundamental units expressed
on the integral basis wi)· Otherwise, output an error message saying that the
accuracy is insufficient to compute the fundamental units.

6.5.4 The General Class Group and Unit Algorithm

We are now ready to give a general algorithm for class group, regulator and
fundamental unit computation.

Algorithm 6.5.9 (Class Group, Regulator and Units for General Number
Fields). Let K = Q[e] be a number field of degree n given by a primitive
algebraic number e, letT be the minimal monic polynomial of e. We assume that
we have already computed the signature (r1,r2) of K using Algorithm 4.1.11.
This algorithm computes the class number h(K), the class group Cl(K), the

6.5 Computing the Class Group, Regulator and Fundamental Units 359

order of the subgroup of roots of unity w(K), the regulator R(K) and a system
of fundamental units of ZK.

1. [Compute relation matrices and Euler product] Using Algorithm 6.5.6, com
pute the discriminant D(K), a k x k2 integral relation matrix M, a ru x k2
complex logarithm matrix Me and an Euler product z.

2. [Compute roots of unity] Using Algorithm 4.9.9 compute the order w(K) of
the group of roots of unity in K. Output w(K) and set

(now z should be close to h(K)R(K)).

3. [Simple HNF] Perform a preliminary simple Hermite reduction on the matrix
M as described in the remarks after Algorithm 5.5.2. All column operations
done on the matrix M should also be done on the corresponding columns of
the matrix Me. Denote by M' and M(: the matrices obtained in this way.

4. [Compute probable regulator and units] Using Algorithm 2.7.2, compute
the LLL-reduced integral kernel A of M' as a rectangular matrix, and set
C +-- M(:A. By applying Algorithm 6.5.7 and if desired also Algorithm 6.5.8,
compute a probable value for the regulator R and the corresponding system
of units which will be fundamental if R is correct.

5. [HNF reduction] Using Algorithm 2.4.8, compute the Hermite normal form
H = (hi,j) of the matrix M' using modulo d techniques, where d can be com
puted using standard Gaussian elimination (or simply use Algorithm 2.4.5). If
one of the matrices H or C is not of maximal rank, get 10 more relations
as in steps 6 and 7 of Algorithm 6.5.6 and go to step 3. (It will not be nee·
essary to recompute the whole HNF.)

6. [Simplify H] For every i such that hi,i = 1, suppress row and column i, and
let W be the resulting matrix.

7. [Finished?] Let h +-- det(W) (i.e. the product of the diagonal elements). If
hR ~ zv'2, get 10 more relations in steps 6 and 7 of Algorithm 6.5.6 and go
to step 3 (same remark as above). Otherwise, output has the class number, R
as the regulator, and the system of fundamental units if it has been computed.

8. [Class group] Compute the Smith normal form of W using Algorithm 2.4.14.
Output those among the diagonal elements di which are greater than 1 as
the invariants of the class group (i.e. Cl(K) = ffiZ/diZ) and terminate the
algorithm.

Remarks.

(1) Most implementation remarks given after Algorithm 5.5.2 also apply here.
In particular the correctness of the results given by this algorithm depends
on the validity of GRH and the constant B 2 = 12 chosen in Algorithm
6.5.6. To speed up this algorithm, one can take B 2 to be a much lower
value, and practice shows that this works well, but the results are not

360 6 Algorithms for Algebraic Number Theory II

anymore guaranteed to be correct even under GRH until someone improves
Bach's bounds. r

(2) The randomization of the direction of ideal reduction performed in step 6
of Algorithm 6.5.6 is absolutely essential for the correct performance of the
algorithm. Intuitively the first s values of vi correspond to randomization
of the non-Archimedean components, while the last ru values randomize
the Archimedean components. If the reduction was always done using the
zero vector for instance, we would almost never obtain a relation matrix
giving us the correct class number and regulator.

(3) An important speedup can be obtained by generating some relations in
a completely different way. Assume that we can generate many elements
a E ZK of reasonably small norm. Then it is reasonable to expect that
aZK will factor on the factor base FB, thus giving us a relation. To obtain
elements of small norm we can use the Fincke-Pohst Algorithm 2. 7. 7 on
the quadratic form llo:ll~ defined on the lattice ZK, where 0 denotes the
zero vector. If llo:ll~ ::::; nB2fn then the inequality between arithmetic and
geometric mean easily shows that I N (a) I ::::; B, hence this indeed allows
us to find elements of small norm. The reader is warned however that the
relations that may be obtained in this way will in general not be random
and may generate sub-lattices of the correct lattice.

(4) It is often useful, not only to compute the class group as an abstract
group Cl(K) = EBZ/diZ, but to compute explicitly a generating set of
ideal classes 9i such that 9i is of order di. This can easily be done by
keeping track of the Smith reduction matrices in the above algorithm.

6.5.5 The Principal Ideal Problem

As in the real quadratic case, we can now solve the principal ideal problem
for general number fields. In other words, given an ideal I of ZK, determine
whether I is a principal ideal, and if this is the case, find an a E K such that
I= o:ZK.

To do this, we need to keep some information that was discarde<;l in Algo
rithm 6.5.9. More precisely, we must keep better track of the Hermite reduction
which is performed, including the simple Hermite reduction stage. If we do so,
we will have kept a matrix M" of relations which will be of the form

M" = (0 W B)
0 0 I '

where 0 denotes the zero matrix, I is some identity matrix and W is the
square matrix in Hermite normal form computed in Step 6 of Algorithm 6.5.9.
Together with this matrix, we must also compute the corresponding complex
matrix M;!:, so that each column of M" and M:!: still corresponds to a relation.
Finally, in Step 8 of Algorithm 6.5.9, we also keep the unimodular matrix U
such that D = UWV is in Smith normal form (it is not necessary to keep the
unimodular matrix V).

6.5 Computing the Class Group, Regulator and Fundamental Units 361

Now given an ideal I we can first compute the norm of I. If it is small, then
I will factor on the factor base FB chosen in Algorithm 6.5.6. Otherwise, as in
Algorithm 6.5.6, we choose random exponents Vi and compute If1 1<i<s S~'
and reduce this ideal (along the direction 0 for instance, here it does not
matter). Since this reduced ideal has a reasonably small norm, we may hope
to factor it on our factor base, thus expressing I in the form I= o: TI1<i<k !J~',
where we denote by Pi the elements of FB. - -

Once such an equality is obtained, we proceed as follows. Since the columns
of M" generate the lattice of relations among the Pi in the class group, it is
clear that I is a principal ideal if and only if the column vector of the Xi is
in the image of M". Let r (resp. c) be the number of rows (resp. columns) of
the matrix B occuring in M" as described above, and let c1 be the number
of initial columns of zeros in M". Then if X (resp. Y) is the column vector
of the xi for 1 :$ i :$ r (resp. r < i :$ k), then I is a principal ideal if and
only if there exists an integral column vector Z such that W Z + BY = X.
This is equivalent to u-1 DV- 1 Z =X- BY, and since Vis unimodular this
is equivalent to the existence of an integral column vector Z1 such that

DZ1 = U(X- BY).

Since D is a diagonal matrix, this means that the j-th element of U(X- BY)
must be divisible by the j-th diagonal element of D.

If I is found in this way to be a principal ideal, the use of the complex
matrix M:!J allows us to find o: such that I = o:7L.K.

This gives the following algorithm.

Algorithm 6.5.10 (Principal Ideal Testing). Given an ideal I of 7L.K, this
algorithm tests whether I is a principal ideal, and if it is, computes an o: E K
such that I= o:7L.K. We assume computed the matrices M" and M;!; (and hence
the matrices W and B), as well as the unimodular matrices U and V and the
diagonal matrix D such that UWV = D is in Smith normal form, as explained
above. We keep the notations of Algorithm 6.5.6.

1. [Reduce to primitive] If I is not a primitive integral ideal, compute a rational
number a such that I fa is primitive integral, and set I+-- I fa.

2. [Small norm?]lf N(I) is divisible only by prime numbers below the prime ideals
in the factor base FB (i.e. less than or equal to LI) set vi +-- 0 fori :$ s, /3 +--a
and go to step 4.

3. [Generate random relations] Choose random nonnegative integers Vi :$ 20 for
i :$ s, compute the ideal h +-- I f1 1<i<s S~', and let J = hh be the ideal
obtained by LLL-reducing h along the airection of the zero vector. If N(J) is
divisible only by the prime numbers less than equal to £ 1 , set I+-- J, /3 +-- a7
and go to step 4. Otherwise, go to step 3.

4. (Factor I] Using Algorithm 4.8.17, factor I on the factor base FB. Let I =
f11:::;i::;k p~•. Let X {resp. Y) be the column vector of the Xi -vi for i :$ r

362 6 Algorithms for Algebraic Number Theory II

(resp. i > r), where r is the number of rows of the matrix B, as above, and
where we set vi = 0 fori > s.

5. [Check if principal] Let Z t- D- 1U(X- BY) (since D is a diagonal matrix,
no matrix inverse must be computed here). If some entry of Z is not integral,
output a message saying that the ideal I is not a principal ideal and terminate
the algorithm.

6. [Use Archimedean information] Let A be the (c1 +k)-column vector whose first
c1 elements are zero, whose next r elements are the elements of Z, and whose
last k- r elements are the elements of Y. Let Ac = (aih:5i:5ru +- M;)A.

7. [Restore correct information] Sets t- (lnN(I))jn, and let A'= (a~h::;i::=;n be
defined by a~ t- exp(s+ai) ifi $ r1, a~ +-exp(s+(ai/2)) ifr1 < i $ ru and
a~+- exp(s+(ai-r2 /2)) if ru < i $ n. (As in Algorithm 6.5.8, the exponential
which is computed here may overflow the possibilities of the implementation,
in which case the algorithm must be aborted.)

8. [Round] Set A" f- n-l A' I where n = O"j(Wi) as in Algorithm 6.5.8. The
coefficients of A" must be close to rational integers. If this is not the case,
then either the precision used to make the computation was insufficient or the
desired o: is too large. Otherwise, round the coefficients of A" to the nearest
integer.

9. [Terminate] Let o:' be the element of 'IlK whose coordinates in the integral
basis are given by the vector A". Set o: +- {3o:' (product computed in K). If
I -=/:- o:ZK, output an error message stating that the accuracy is not sufficient
to compute o:. Otherwise, output o: and terminate the algorithm.

Note that, since we chose the complex logarithmic embedding Lc(o:) -
In(~(a)) V as defined in Section 5.8.4, we must adjust the components by
s = (lnN(I))/n before computing the exponential in Step 7.

Remark. It is often useful in step 5 to give more information than just the
negative information that I is not a principal ideal. Indeed, if as suggested in
Remark (4) after Algorithm 6.5.9, the explicit generators 9i of order di of the
class group Cl(K) have been computed, we can easily compute o: and ki such
that I = o: It gf; and 0 $ ki < di. The necessary modifications to the above
algorithm are easy and left to the reader.

6.6 Exercises for Chapter 6

1. By Theorem 6.1.4, Z[O]+ (U(8)/p)Z[8] is an order, hence a ring. Clearly the only
non-trivial fact to check about this is that (U(8)/p) 2 is still in this order. Using
the notations of Theorem 6.1.4, show how to compute polynomials A and B in
Z[X] such that

U(8)2 = A(8) + U(8) B(8).
p2 p

6.6 Exercises for Chapter 6 363

2. Compute the maximal order of pure cubic fields using only Dedekind's criterion
(Theorem 6.1.4) instead of the Pohst-Zassenhaus theorem.

3. (F. Diaz y Diaz.) With the notations of Theorem 6.1.4, show that a restatement
of the Dedekind criterion is the following. Let ri(X) be the remainder of the
Euclidean division of T(X) by ti(X). We have evidently ri E pZ[X]. Set di = 1
if ei ~ 2 and ri E p2Z[X], ~ = 0 otherwise. Then in (3) we can take U(X) =
Ill<i<k t~;-d;. In particular, Z[O] is Jrmaximal if and only if ri ¢ p2Z[X] for
every t such that ei ~ 2.

4. Let 0 be an order in a number field K and let p be a prime number. Show that
0 is Jrmaximal if and only if every ideal Pi of () which lies above p is invertible
in 0.

5. Prove Proposition 6.2.1 by first proving the formula for ai 1 given in the text.

6. Given a finite separable algebra A over Fp isomorphic to a product of k fields
Ai, compute the probability that a random element x of A is a generator of A
in terms of the dimensions~ of the Ai (hint: use Exercise 13 of Chapter 3).

7. Let m and n be distinct squarefree (positive or negative) integers different from
1. Compute an integral basis for the quartic field K = Q(y'n, Jffl). Find also
the explicit decomposition of prime numbers inK.

8. (H. W. Lenstra)
a) Let A be a separable algebra of degree n over lF P (for example A = 0/ H;

in the notation of Section 6.2). Then A is isomorphic to a product of fields
K, and let Xm be the number of such fields which are of degree mover lFp (if
A = 0/ H;, then Xm is the number of prime ideals of 0 of degree m dividing
H;). Show that for all d such that 1 ~ d ~ n one has

L gcd(d,m)xm = dimFP(ker(ad -1)),
l~m~n

where a denotes the Frobenius homomorphism x xP from A to A.
b) Compute explicitly the inverse of the matrix Mn = (gcd(i, j) h~i,j~n and

give an algorithm which computes the local Euler factor

Lp = II(l-N(p)-6)-1
PIP

without splitting explicitly the H; of Section 6.2.

9. Using the ideas used in decomposing prime numbers into a product of prime
ideals, write a general algorithm for factoring polynomials over Qp. You may
assume that the coefficients are known to any necessary accuracy (for example
that they are in Q), and that the required Jradic precision for the result is
sufficiently high. (Hint: If K = Q[B] with T(B) = 0 and if pZK = IJi p~',
consider the characteristic polynomial of the map multiplication by 6 in the
Z/pkZ-module IlK jp~e, .)

10. (Dedekind) Let K = Q(B) be the cubic field defined by the polynomial
P(X) = X 3 + X 2 - 2X + 8.

a) Compute the discriminant of P(X).

364 6 Algorithms for Algebraic Number Theory II

b) Show that (1, 8, (8 + 82)/2) is an integral basis of ZK and that the dis
criminant of K is equal to -503.

c) Using Algorithm 6.2.9 show that the prime 2 is totally split in K.
d) Conclude from Theorem 4.8.13 that 2 is an inessential discriminantal

divisor, i.e. that it divides the index [ZK: Z[a)) for any a E ZK.

11. So as to avoid ideal multiplication and division, implement the idea given in
the remark after Algorithm 6.2.9, and compare the efficiency of this modified
algorithm with Algorithm 6.2.9.

12. Compute the Galois group of the fields generated by the polynomials X 3 - 2,
X 3 - X 2 - 2X + 1 and X 4 - 10X2 + 1.

13. Compute the accuracy needed for the roots ofT so that the rounding procedures
used in computing the resolvents in all the Galois group finding algorithms given
in the text be correct.

14. Implement the Galois group algorithms and check your implementation with the
list of 37 polynomials given at the end of Section 6.3.

15. a) Using Proposition 4.5.3, give an algorithm which determines whether or
not a number field K is Galois over <Q! (without explicitly computing its Galois
group).

b) Using the methods of Section 4.5 write an algorithm which finds explicitly
the conjugates of an element of a number field K belonging to K. The correctness
of the results given by your algorithm should not depend on approximations,
that is once a tentative formula has been found it must be checked exactly. Note
that this algorithm may allow to compute the Galois group of K if K is Galois
over <Q!, even when the degree of K is larger than 7.

16. Determine the decomposition of prime numbers dividing the index in cyclic cubic
fields by using the method of Algorithm 6.2.9. (Note: if the reader wants to find
also the explicit decomposition of prime numbers not dividing the index, which
is given by Theorem 4.8.13, he will first need to solve Exercise 28 of Chapter 1.)

17. Show that the polynomials P(X) given in Theorem 6.4.6 (1) and (2) are irre
ducible in <Q![X).

18. Complete the proof of Theorem 6.4.6 (3) in the case where e is equal to 9 times
a product of t - 1 primes congruent to 1 modulo 3.

19. Check that the fields defined in Theorem 6.4.6 (2) are not isomorphic for distinct
pairs (e, u) (the proof was given explicitly in the text only for case (1)).

20. Generalize the formulas and results of Section 6.4.2 to cyclic quartic fields, re
placing <Q!(() by <Q!(i). (Hint: start by showing that such a field has a unique
quadratic subfield, which is real.)

21. Using the notations of Theorem 6.4.6, find the minimal equation of a= (u(8)-
8) /3, and deduce from this another complete parametrization of cyclic cubic
fields.

22. Let K be a cubic field.
a) Show that there exists a 8 E ZK and a, band c in Z such (1, 8, (82 + a8 +

b)/c) is an integral basis, and give an algorithm for finding 8, a, band c.
b) Such a 8 being found, show that there exists a k E Z such that if we set

w = 8+ k, then (1,w, (w2 + a2w)ja3) is an integral basis of ZK for some integers
a2 and aa.

6.6 Exercises for Chapter 6 365

c) Deduce from this that for any cubic field K there exists a: E K which is
not necessarily an algebraic integer such that ZK = Z[a:) in the sense of Exercise
15 of Chapter 4.

d) Generalize this result to the case of an arbitrary order in a cubic field K
by allowing the polynomial used in Exercise 15 of Chapter 4 to have a content
larger than 1.

23. Prove that, as claimed in the text, Theorem 4.9.12 (4) implies the formula

h(K)R(K) = Tr1(27r)-r2VId(K)I IT 1-1/p .
w(K) Il(1-1/N(p))

P PIP

24. Using Algorithm 6.5.9 compute the class group, the regulator and a system of
fundamental units for the number fields defined by the polynomials T(X) =
X 4 + 6, T(X) = X 4 - 3X + 5 and T(X) = X 4 - 3X- 5.

25. Compute the different of pure cubic fields and of cyclic cubic fields using Propo
sition 4.8.19 and Algorithm 4.8.21.

26. Let (wih9~n be an integral basis for a number field K of degree n such that
Wn = 1, and set ti = TrK;Q(wi)/n. Consider the lattice zn- 1 together with the
quadratic form

q(x) = t ~~k(L x,(wi- t)l2
k=1 1~i~n-1 J

a) Show that the determinant of this lattice is equal to Jld(K)Ifn.
b) Setting B = 2:::~=-11 XiWi -lL:~:11 Xitil prove Hunter's Theorem 6.4.2.

27. Let m(X) = m 1 (X) · · ·mk(X) be the decomposition of m(X) obtained in step
13 of Algorithm 6.2.9. For 1 ~ r ~ k, let er be a lift to 0 of mr(a:), and set
Hr = H + erO. Show that H = H1 · · · Hr, and hence that steps 14 and 15 of
Algorithm 6.2.9 are valid. (Note: the er are not orthogonal idempotents.)

Chapter 7

Introduction to Elliptic Curves

7.1 Basic Definitions

7.1.1 Introduction

The aim of this chapter is to give a brief survey of results, essentially without
proofs, about elliptic curves, complex multiplication and their relations to
class groups of imaginary quadratic fields. A few algorithms will be given (in
Section 7.4, so as not to interrupt the flow of the presentation), but, unlike
other chapters, the main emphasis will be on the theory (some of which will
be needed in the next chapters). We also describe the superb landscape that is
emerging in this theory, although much remains conjectural. It is worth noting
that many of the recent advances on the subject (in particular the Birch and
Swinnerton-Dyer conjecture) were direct consequences of number-theoretical
experiments. This lends further support to the claim that number theory, even
in its sophisticated areas, is an experimental as well as a theoretical science.

As elsewhere this book, we have tried to keep the exposition as self
contained as possible. However, for mastering this information, it would be
useful if the reader had some knowledge of complex variables and basic alge
braic geometry. Nonetheless, the material needed for the applications in the
later chapters is fully described here.

As suggestions for further reading, I heartily recommend Silverman's
books [Sil] and [Sil3], as well as [Cas], [Hus], [Ire-Ros], [Lang3] and [Shi].
Finally, the algorithms and tables contained in [LN476] (commonly called
Antwerp IV) and [Cre] are invaluable.

7.1.2 Elliptic Integrals and Elliptic Functions

Historically, the word elliptic (in the modern sense) came from the theory of
elliptic integrals, which occur in many problems, for example in the compu
tation of the length of an arc of an ellipse (whence the name), or in physical
problems such as the movement of a pendulum. Such integrals are of the form

j R(x,y)dx,

where R(x, y) is a rational function in x and y, and y2 is a polynomial in x of
degree 3 or 4 having no multiple root. It is not our purpose here to explain the

368 7 Introduction to Elliptic Curves

theory of these integrals (for this see e.g. [W-W], Ch. XXII). They have served
as a motivation for the theory of elliptic functions, developed in particular by
Abel, Jacobi and Weierstraf3.

Elliptic functions can be defined as inverse functions of elliptic integrals,
but the main property that interests us here is that these functions f(x) are
doubly periodic. More precisely we have:

Definition 7.1.1. An elliptic function is a meromorphic function f(x) on
the whole complex plane, which is doubly periodic, i.e. such that there exist
complex numbers WI and w2 such that wdw2 ~JR. and for all x which is not a
pole, f(x + wl) = f(x + w2) = f(x).

If
L = {mwi + nw2lm, n E Z}

is the lattice generated by WI and w2, it is clear that f is elliptic if and only
if f(x + w) = f(x) for all x E C and all w E L. The lattice L is called the
period lattice of f. It is clear that every element of C is equivalent modulo
a translation by an element of L to a unique element of the set F = { XWI +
yw2, 0:::; x,y < 1}. Such a set will be called a fundamental domain;for CfL.

Standard residue calculations immediately show the following properties:

Theorem 7.1.2. Let f(x) be an elliptic function with period lattice L, let
{ zi} be the set of zeros and poles off in a fundamental domain for Cf L, and
ni be the order off at Zi (ni > 0 when Zi is a zero, ni < 0 if Zi is a pole).
Then

(1) The sum of the residues off in a fundamental domain is equal to 0.
(2) Li ni = 0, in other words f has as many zeros as poles (counted with

multiplicity).
(3) If f is non-constant, counting multiplicity, f must have at least 2 poles

(and hence 2 zeros) in a fundamental domain.
(4) Li niZi E L. Note that this makes sense since Zi is defined modulo L.

Note that the existence of non-constant elliptic functions is not a priori
obvious from Definition 7.1.1. In fact, we have the following general theorem,
due to Abel and Jacobi:

Theorem 7.1.3. Assume that zi and ni satisfy the above properties. Then
there exists an elliptic function f with zeros and poles at Zi of order ni.

The simplest construction of non-constant elliptic functions is due to
Weierstraf3. One defines

1 (1 1)
p(z) = z2 + L (z+w)2- w2 '

wEL\{0}

7.1 Basic Definitions 369

and one easily checks that this is an absolutely convergent series which de
fines an elliptic function with a double pole at 0. Since non-constant elliptic
functions must have poles, it is then a simple matter to check that if we define

1
.2:'.: w4

wEL\{0}

1
and 93 = 140 .2:'.: 6,

w
wEL\{0}

then p(z) satisfies the following differential equation:

P12 = 4p3 - 92P- 93 ·

In more geometric terms, one can say that the map

Zf-> {
(p(z): p'(z): 1)
(0 : 1 : 0)

for z ¢:. L

for z E L

from <C to the projective complex plane gives an isomorphism between the
torus <C/ L and the projective algebraic curve y2t = 4x3 - 92xt2 - 93t3. This
is in fact a special case of a general theorem of Riemann which states that all
compact Riemann surfaces are algebraic. Note that it is easy to prove that
the field of elliptic functions is generated by p and p' subject to the above
algebraic relation.

Since <C/ Lis non-singular, the corresponding algebraic curve must also be
non-singular, and this is equivalent to saying that the discriminant

.6. = 16(9~- 279~)

of the cubic polynomial is non-zero. This leads directly to the definition of
elliptic curves.

7.1.3 Elliptic Curves over a Field

From the preceding section, we see that there are at least two ways to gen
eralize the above concepts to an arbitrary field: we could define an elliptic
curve as a curve of genus 1 or as a non-singular plane cubic curve. Luckily,
the Riemann-Roch theorem shows that these two definitions are equivalent,
hence we set:

Definition 7 .1.4. Let K be a field. An elliptic curve over K is a non-singular
projective plane cubic curve E together with a point with coordinates in K.
The (non-empty) set of projective points which are on the curve and with
coordinates in K will be called the set of K -rational points of E and denoted
E(K).

Up to a suitable birational transformation, it is a simple matter to check
that such a curve can always be given by an equation of the following (affine)
type:

370 7 Introduction to Elliptic Curves

y2 + a1xy + a3y = x3 + a2x2 + a4x + a5,

the point defined over K being the (unique) point at infinity, and hence this
can be taken as an alternative definition of an elliptic curve (see Algorithm
7.4.10 for the explicit formulas for the transformation). This will be called a
(generalized) Weierstraf3 equation for the curve.

Note that this equation is not unique. Over certain number fields K such
as Q, it can be shown however that there exists an equation which is minimal,
in a well defined sense. We will call it the minimal WeierstraB equation of the
curve. Note that such a minimal equation does not necessarily exist for any
number field K. For example, it can be shown (see [Sil], page 226) that the
elliptic curve y 2 = x 3 + 125 has no minimal WeierstraB equation over the field
Q(FfQ).

Theorem 7.1.5. An elliptic curve over C has the form Cj L where L is
a lattice. In other words, if g2 and g3 are any complex numbers such that
g~ - 27g~ =1- 0, then there exist WI and w2 with lm(wdw2) > 0 and g2

60 I:(m,n)'i"'(O,o)(mwl + nw2)-4, g3 = 140 I:(m,n)'i"'(O,o)(mwl + nw2)-6 .

A fundamental property of elliptic curves is that they are commutative
algebraic groups. This is true over any base field. Over C this follows imme
diately from Theorem 7.1.5. The group law is then simply the quotient group
law of C by L. On the other hand, it is not difficult to prove the addition
theorem for the WeierstraB p function, given by:

if Zl = Z2.

From this and the isomorphism given by the map z 1--+ (p(z), p'(z)), one
obtains immediately:

Proposition 7.1.6. Let y2 = 4x3 - g2x - g3 be the equation of an elliptic
curve. The neutral element for the group law is the point at infinity (0 : 1 : 0).
The inverse of a point (XI.YI) is the point (x1.-y1) i.e. the symmetric point
with respect to the x-axis. Finally, if H = (x~, YI) and P2 = (x2, Y2) are
two non-opposite points on the curve, their sum P3 = (x3, y3) is given by the
following formulas. Set

Then

7.1 Basic Definitions 371

It is easy to see that this theorem enables us to define an addition law on
an elliptic curve over any base field of characteristic zero, and in fact in any
characteristic different from 2 and 3. Furthermore, it can be checked that this
indeed defines a group law.

More generally one can define such a law over any field, in the following
way.

Proposition 7.1.7. Let

be the equation of an elliptic curve defined over an arbitmry base field. Define
the neutml element as the point at infinity (0 : 1 : 0), the opposite of a
point (x1, Yl) as the point (xb -yl - a1x1 - a3). Finally, if P1 = (x1, Yl)
and P2 = (x2, Y2) are two non-opposite points on the curve, define their sum
P3 = (x3, Y3) by the following. Set

and put

Yl- Y2
X1 X2'

3xt + 2a2x1 + a4- a1Y1
2yl + a1x1 + a3

Then these formulas define an (algebmic) Abelian group law on the curve.

The only non-trivial thing to check in this theorem is the associativity of
the law. This can most easily be seen by interpreting the group law in terms
of divisors, but we will not do this here.

The geometric interpretation of the formulas above is the following. Let
P1 and P2 be points on the (projective) curve. The lineD from P1 to P2 (the
tangent to the curve if P1 = P2) intersects the curve at a third point R, say.
Then, if 0 is the point at infinity on the curve, the sum of P 1 and P2 is the
third point of intersection with the curve of the line from 0 to R. One checks
easily that this leads to the above formulas.

For future reference, given a general equation as above, we define the
following quantities:

b2 = ai + 4a2, b4 = a1a3 + 2a4

b6 =a~+ 4a6, bs = aia6 + 4a2a6- a1a3a4 + a2a~- a~
C4 = b~- 24b4, C6 = -b~ + 36b2b4- 216b6 (7.1)

~ = -b~b8 - Bb~- 27b~ + 9b2b4b6, j = d! ~
w = dx/(2y + a1x + a3) = dy/(3x2 + 2a2x + a4- a1y).

372 7 Introduction to Elliptic Curves

Then it is easy to see that if we set Y = 2y+a1x+a3, on a field of characteristic
different from 2, the equation becomes

Setting X = x + b2/12, if the characteristic of the field is different from 2 and
3 the equation becomes

7.1.4 Points on Elliptic Curves

Consider an abstract equation y2 + a1xy + a3y = x 3 + a2x2 + a4x + a6,
where the coefficients ai are in Z. Since for any field K there exists a natural
homomorphism from Z to K, this equation can be considered as defining a
curve over any field K. Note that even if the initial curve was non-singular,
in positive characteristic the curve can become singular.

We shall consider successively the case where K = ffi;, K = lF'q, where q is
a power of a prime p, and K = Q.

Elliptic Curves over ffi;, In the case where the characteristic is different
from 2 and 3, the general equation can be reduced to the following WeierstraB
form:

y 2 = x 3 + a4x + a6 .

(We could put a 4 in front of the x3 as in the equation for the tJ function, but
this introduces unnecessary constant factors in the formulas). The discrimi
nant of the cubic polynomial is -(4a~ + 27a~), however the y2 term must be
taken into account, and general considerations show that one must take

-16(4a~ + 27a~)

as the definition of the discriminant of the elliptic curve.
Several cases can occur. Let Q(x) = x 3+a4x+a6 and D.= -16(4a~+27a~).

(1) D. < 0. Then the equation Q(x) = 0 has only one real root, and the graph
of the curve has only one connected component.

(2) D. > 0. Then the equation Q(x) = 0 has three distinct real roots, and the
graph of the curve has two connected components: a non-compact one,
which is the component of the zero element of the curve (i.e. the point at
infinity), and a compact one, oval shaped.

From the geometric construction of the group law, one sees that the
roots of Q(x) = 0 are exactly the points of order 2 on the curve (the points
of order 3 correspond to the inflection points).

(3) D.= 0. The curve is no longer an elliptic curve, since it now has a singular
point. This case splits into three sub-cases. Since the polynomial Q(x) has
at least a double root, write

7.1 Basic Definitions 373

Q(x) = (x- a)2(x- b)

Note that 2a + b = 0.

(3a) a > b. Then the curve has a unique connected component, which
has a double point at x = a. The tangents at the double point have
distinct real slopes.

(3b) a < b. Then the curve has two connected components: a non
compact one, and the single point of coordinates (a, 0). In fact this
point is again a double point, but with distinct purely imaginary
tangents.

(3c) a = b. (In this case a = b = 0 since 2a + b = 0). Then the curve
has a cusp at x = 0, i.e. the tangents at the singular point are the
same.

See Fig. 7.1 for the different possible cases. Note that case (1) is subdivided
into the case where the curve does not have any horizontal tangent (a4 > 0),
and the case where it does (a4 :::; 0).

In case 3, one says that the curve is a degenerate elliptic curve. One easily
checks that the group law still exists, but on the curve minus the singular point.
This leads to the following terminology: in cases 3a, the group is naturally
isomorphic to IR*, and this is called the case of split multiplicative degeneracy.
In case 3b, the group is isomorphic to the group 8 1 of complex numbers of
modulus equal to 1, and this is called non-split multiplicative degeneracy.
Finally, in case 3c, the group is isomorphic to the additive group IR, and this
case is called additive degeneracy.

These notions can be used, not only for IR, but for any base field K. In
that case, the condition a > b is replaced by a - b is a (non-zero) square in K.

Elliptic Curves over a Finite Field. To study curves (or more general
algebraic objects) over Q, it is very useful to study first the reduction of the
curve modulo primes. This leads naturally to elliptic curves over IFp, and more
generally over an arbitrary finite field IFq, where q is a power of p. Note that
when one reduces an elliptic curve mod p, the resulting curve over IF P may be
singular, hence no longer an elliptic curve. Such p are called primes of bad
reduction, and are finite in number since they must divide the discriminant of
the curve. According to the terminology introduced in the case of IR, we will
say that the reduction mod pis (split or non-split) multiplicative or additive,
according to the type of degeneracy of the curve over IFp. The main theorem
concerning elliptic curves over finite fields, due to Hasse, is as follows:

Theorem 7.1.8 (Hasse). Let p be a prime, and E an elliptic curve over IFv
Then there exists an imaginary quadratic integer ap such that

(1) If q = pn then

374 7 Introduction to Elliptic Curves

(3b)

Figure 7.1. Non-Degenerate and Degenerate Elliptic Curves over JR.

7.1 Basic Definitions

(2)
apap = p, or equivalently laPI =Vf.

(3) In particular, we have

and O:p is a root of the equation

ap 2 - apap + p = 0.

375

The numbers ap are very important and are (conjecturally) coefficients of
a modular form of weight 2. We will come back to this subject in Section 7.3.

The second important result gives some information on the group structure
of E(IFq), and is as follows.

Proposition 7.1.9. If E is an elliptic curve over a finite field!Fq, then E(IFq)
is either cyclic or isomorphic to a product of two cyclic groups. Furthermore,
in the case where it is not cyclic, if we write E(!Fq) !::::: Z/d1Z x Zjd2Z with
d1 I d2, then d1 I q- 1.

Elliptic Curves over Q. From a number theorist's point of view, this is
of course the most interesting base field. The situation in this case and in
the case of more general number fields is much more difficult. The first basic
theorem, due to Mordell and later generalized by Weil to the case of number
fields and of Abelian varieties, is as follows:

Theorem 7.1.10 (Mordell). Let E be an elliptic curve over Q. The group
of points of E with coordinates in Q (denoted naturally E(Q)) is a finitely
generated Abelian group. In other words,

E(Q) !::::: E(Q)tors E9 zr,

where r is a non-negative integer called the rank of the curve, and E(Q)tors is
the torsion subgroup of E(Q), which is a finite Abelian group.

The torsion subgroup of a given elliptic curve is easy to compute. On the
other hand the study of possible torsion subgroups for elliptic curves over Q
is a difficult problem, solved only in 1977 by Mazur ([Maz]). His theorem is
as follows:

Theorem 7.1.11 (Mazur). Let E be an elliptic curve over Q. The torsion
subgroup E(Q)tors of E can be isomorphic only to one of the 15 following
groups:

'll/m'll for 1 ~ m ~ 10 or m = 12,

376 7 Introduction to Elliptic Curves

Z/2Z x Z/2mZ for 1 :::; m :::; 4 .

In particular, its cardinality is at most 16.

Note that all of the 15 groups above do occur for an infinite number of non
isomorphic elliptic curves. The corresponding theorem for all quadratic fields
(even allowing the discriminant to vary) was proved in 1990 by Kamienny
([Kam]) (with more groups of course), and finally for all number fields in 1994
by Merel ([Mer]).

The other quantity which occurs in Mordell's theorem is the rank r, and
is a much more difficult number to compute, even for an individual curve.
There is no known mathematically proven algorithm to compute r in general.
Even the apparently simpler question of deciding whether r is zero or not (or
equivalently whether the curve has a finite or an infinite number of rational
points) is· still not solved. This is the subject of active research, and we will
come back in more detail to this question in Section 7.4.

Let us give an example of a down to earth application of Mordell's theorem.
Consider the curve

y2 = x 3 - 36x.

It is easy to show (see Exercise 3) that the only torsion points are the points of
order 1 or 2, i.e. the point at infinity and the three points (0, 0), (6, 0), (-6, 0).
But the point (-2, 8) is also on the curve. Therefore we must have r > 0,
hence an infinite number of points, a fact which is not a priori evident. What
Mordell's theorem tells us is that r is finite, and in fact one can show in this
case that r = 1, and that the only rational points on the curve are integral
multiples of the point (-2, 8) added to one of the four torsion points.

This curve is in fact closely related to the so-called congruent number prob
lem, and the statement that we have just made means, in this context, that
there exists an infinite number of non-equivalent right angled triangles with
all three sides rational and area equal to 6, the simplest one (corresponding
to the point (-2, 8)) being the well known (3, 4, 5) Pythagorean triangle.

As an exercise, the reader can check that twice the point (-2, 8) is the
point (21 , 3:) , and that this corresponds to the right-angled triangle of area
6 with sides (1~0 , lo, 1~g 1). See [Kob] for the (almost) complete story on the
congruent number problem.

7.2 Complex Multiplication and Class Numbers

In this section, we will study maps between elliptic curves. We begin by the
case of curves over C.

7.2 Complex Multiplication and Class Numbers 377

7.2.1 Maps Between Complex Elliptic Curves

Recall that a complex elliptic curve E has the form C/ L where L is a lattice.
Let E = C/ L and E 1 = C/ L 1 be two elliptic curves. A map ¢ from E to
E 1 is by definition a holomorphic Z-linear map from E to E 1• Since C is the
universal covering of E 1, ¢ lifts to a holomorphic Z-linear map f from C to C,
and such a map has the form f(z) = az for some complex number a:, which
induces a map from E to E 1 iff o:L c L1• Thus we have:

Proposition 7.2.1. Let E = C/L and E 1 = CjL1 be two elliptic curves over
C. Then

(1) E is isomorphic to E 1 if and only if L1 = o:L for a certain non-zero
complex number a.

(2) The set of maps from E to E 1 can be identified with the set of complex
numbers a such that o:L C L 1 • In particular, the set End(E) of endomor
phisms of E is a commutative ring isomorphic to the set of a such that
o:L c L.

In terms of the WeierstraB equation of the curves, this theorem gives the
following. Recall that the equation of E (resp E 1) is y2 = 4x3 - g2x- g3 (resp.
y2 = 4x3 - g2x - g~) where

92 = 60
wEL\{0}

-4
w ' 93 = 140

wEL\{0}

-6
w '

and similarly for g2 and g~. Hence, the first part of the theorem says that if
E -::::: E 1 , there exists a such that

I -4 I -6
92 = Q: 92 ' 93 = Q: 93 .

The converse is also clear from the WeierstraB equation. Now, since E is a
non-singular curve, the discriminant g~ - 27 g~ is non-zero, so we can define

j(E) = 1728gV(g~- 27g~),

and we obtain:

Proposition 7 .2.2. The function j(E) characterizes the isomorphism class
of E over C. More precisely, E-::::: E 1 if and only if j(E) = j(E1).

The quantity j(E) is called the modular invariant of the elliptic curve
E. The number 1728 = 123 will be explained later. Although we have been
working over C, Proposition 7.2.2 is still valid over any algebraically closed
field of characteristic different from 2 and 3 (it is also valid in characteristic
2 or 3, for a slightly generalized definition of j(E)). On the other hand, it is

378 7 Introduction to Elliptic Curves

false if the field is not algebraically closed (consider for example y2 = 4x3 - 4x
and y2 = 4x3 + 4x over R.).

Remark. It is easy to construct an elliptic curve with a given modular in
variant j. We give the formulas when the characteristic is different from 2 and
3 since we have not given the definition otherwise.

(1) If j = 0, one can take y2 = x 3 -1.
(2) If j = 1728, one can take y2 = x3 - x.
(3) Otherwise, one sets c = jf(j -1728), and then one can take y2 = x3 -

3cx + 2c. (If one wants equations with a coefficient of 4 in front of x 3 ,

multiply by 4 and replace y by y/2.)

Now let E = C/ L be an elliptic curve over C. Then, as a Z-module, L can
be generated by two R.-linearly independent complex numbers w1 and w2, and
by suitably ordering them, we may assume that Im r > 0, where r = wdw2•

Since multiplying a lattice by a non-zero complex number does not change
the isomorphism class of E, we have j(E) = j(Er), where Er = C/Lr and
Lr is the lattice generated by 1 and r. By abuse of notation, we will write
j(r) = j(Er)· This defines a complex function j on the upper half-plane
1t = { r E C, Im r > 0}. If a, b, c and d are integers such that ad- be = 1

(i.e. if (~ :) E SL2 (Z)), then the lattice generated by ar + b and cr + d is

equal to Lr. This implies the modular invariance of j(r):

Theorem 7.2.3. For any (~ :) E SL2 (Z), we have

·(ar+ b) .
J cr+d =J(r).

In particular, j (r) is periodic of period 1. Hence it has a Fourier expansion,
and one can prove the following theorem:

Theorem 7.2.4. There exist positive integers Cn such that, if we set q =
e2iwr, we have for all complex r with Im r > 0:

The factor 1728 used in the definition of j is there to avoid denominators
in the Fourier expansion of j(r), and more precisely to have a residue equal to
1 at infinity (the local variable at infinity being taken to be q). These theorems
show that j is a meromorphic function on the compactification (obtained by
adding a point at infinity) of the quotient 1-t/ SL2 (Z).

7.2 Complex Multiplication and Class Numbers 379

Proposition 7.2.5. The function j is a one-to-one mapping from the com
pactification of 1-t/ SL2(Z) onto the projective complex plane JIP1 (C) {which is
naturally isomorphic to the Riemann sphere 8 2). In other words, j(r) takes
once and only once every possible value {including infinity) on 1-t/ SL2(Z).

Note that this proposition is obtained essentially by combining the remark
made after Proposition 7.2.2 (surjectivity) with Proposition 7.2.1 (injectivity).

Since the field of meromorphic functions on the sphere is the field of ratio
nal functions, we deduce that the field of modular functions, i.e. meromorphic
functions which are meromorphic at infinity and invariant under SL2 (Z), is
the field of rational functions in j. In particular, modular functions which are
holomorphic outside the point at infinity of the Riemann sphere are simply
polynomials in j. Finally, if we want to have such a function which is one to
one as in Theorem 7.2.5, the only possibilities are linear polynomials aj +b.
As mentioned above, the constant 1728 has been chosen so that the residue
at infinity is equal to one. If we want to keep this property, we must have
a = 1. This leaves only the possibility j + b for a function having essentially
the same properties as j. In other words, the only freedom that we really have
in the choice of the modular function j is the constant term 744 in its Fourier
expansion.

Although it is a minor point, I would like to say that the normalization
of j with constant term 7 44 is not the correct one for several reasons. The
"correct" constant should be 24, so the "correct" j function should in fact be
j - 720. Maybe the most natural reason is as follows: there exists a rapidly
convergent series due to Rademacher for the Fourier coefficients Cn of j. For
n = 0, this series gives 24, not 744. Other good reasons are due to Atkin and
Zagier (unpublished).

7.2.2 Isogenies

We now come back to the case of elliptic curves over an arbitrary field.

Definition 7 .2.6. Let E and E' be two elliptic curves defined over a field K.
An isogeny from E toE' is a map of algebraic curves from E toE' sending
the zero element of E to the zero element of E'. The curves are said to be
isogenous if there exists a non-constant isogeny from E to E'.

The following theorem summarizes the main properties of non-constant
isogenies:

Theorem 7.2.7. Let <P be a non-constant isogeny from E toE'. Then:

(1) If K is an algebraically closed field, <P is a surjective map.
(2) <P is a finite map, in other words the fiber over any point of E' is constant

and finite.

380 7 Introduction to Elliptic Curves

(3) ¢ preserves the group laws of the elliptic curves {note that this was not
required in the definition), i.e. it is a map of algebraic groups.

From these properties, one can see that ¢ induces an injective map from
the corresponding function field of E' to that of E (over some algebraic closure
of the base field). The degree of the corresponding field extensions is finite and
called the degree of ¢.

Note that if the above extension of fields is separable, for example if the
base field has characteristic zero, then the degree of ¢ is also equal to the
cardinality of a fiber, i.e. to the cardinality of its kernel ¢ -l (0), but this is
not true in general.

Theorem 7.2.8. Let E be an elliptic curve over a field K, and let m be a
positive integer. Then the map [m] {multiplication by m) is an endomorphism
of E with the following properties:

(1) deg[m] = m 2 .

(2) Let E[m] denote the kernel of [m] in some algebraic closure of K, i.e. the
group of points of order dividing m. If the characteristic of K is prime to
m (or if it is equal to 0}, we have

E[m] ~ (7l/m7l) x (7l/m7l).

Another important point concerning isogenies is the following:

Theorem 7.2.9. Let ¢ be an isogeny from E to E'. There exists a unique
isogeny ¢ from E' to E called the dual isogeny, such that

¢ o ¢ = [m],

where m is the degree of¢. In addition, we also have

¢ o ¢ = [m]',

where [m]' denotes multiplication by m on E'.

Note also the following:

Theorem 7.2.10. Let E be an elliptic curve and~ a finite subgroup of E.
Then there exists an elliptic curve E' and an isogeny ¢ from E to E' whose
kernel is equal to ~. The elliptic curve E' is well defined up to isomorphism
and is denoted E / ~.

We end this section by giving a slightly less trivial example of an isogeny:
Let E and E' be two elliptic curves over a field of characteristic different from
2, given by the equations

7.2 Complex Multiplication and Class Numbers 381

where we assume that b and a 2 - 4b are both non-zero. Then the map ¢ from
E to E' given by

¢(x,y)= (~:, y(x~;b))

is an isogeny of degree 2 with kernel { 0, (0, 0)}.

7.2.3 Complex Multiplication

Let E be an elliptic curve. To make life simpler, we will assume that the base
field has characteristic zero. We have seen that the maps [m] are elements of
End(E). Usually, they are the only ones, and since they are distinct, End(E)-:::::
1£. It may however happen that End(E) is larger than/£.

Definition 7.2.11. We say that E has complex multiplication if End(E)
contains elements other than [m], i.e. if as a ring it is strictly larger than 1£.

The theory of complex multiplication is vast, and we can just give a glimpse
of its contents. The first result is as follows:

Proposition 7.2.12. Let E be an elliptic curve defined over a field of char
acteristic zero, and assume that E has complex multiplication. Then the ring
End(E) is an order in an imaginary quadratic field, i.e. has the form 1£ + Zr
where r is a complex number with positive imaginary part and which is an
algebraic integer of degree 2 (that is, satisfies an equation of the form

r 2 - sr+n = 0,

with s and n in 1£ and s2 - 4n < 0}.

Proof We shall give the proof in the case where the base field is C. Then
E -::::: C/ L for a certain lattice L, and we know that End(E) is canonically
isomorphic to the set of a such that aL c L. After division by one of the
generators of L, we can assume that L is generated by 1 and r for a certain
r E 'H, where we recall that 1i is the upper half-plane. Then if a stabilizes L,
there must exist integers a, b, c and d such that a = a+ br, ar = c + dr. In

other words, a is an eigenvalue of the matrix (~ ~), hence is an algebraic

integer of degree 2 (with s = a+ d, n = ad- be). Since a = a+ br, this shows
that IQ(r) = IQ(a) is a fixed imaginary quadratic extension k of IQ, and hence
End(E) is (canonically isomorphic to) a subring of Ilk, the ring of integers of
k, and hence is an order in k if it is larger than/£. D

382 7 Introduction to Elliptic Curves

Example. The curves y2 = x3 - ax all have complex multiplication by Z[i)
(map (x, y) to (-x, iy)). Similarly, the curves y2 = x3 + b all have complex
multiplication by Z[p), where pis a primitive cube root of unity (map (x, y)
to (px, y)). For a less trivial example, one can check that the curve

has complex multiplication by Z[w), where w = 1+f7", multiplication by w
sending (x,y) to (u,v), where

-2x2- w
u=w --

x-a

_ 3 x2 - 2ax+w
v = w y ()2 ' x-a

where we have set a= (w- 3)/4 (I thank D. Bernardi for these calculations).
For a simple algorithm which makes these computations easy to perform see
[Star).

Remark. Note that if the base field is a finite field, End(E) is either isomor
phic to an order in an imaginary quadratic field or to the maximal order in
a definite quaternion algebra of dimension 4 over Z. In this last case, which
is the only case where End(E) is non-commutative, we say that the elliptic
curve E is supersingular.

The next theorem concerning complex multiplication is as follows:

Theorem 7.2.13. Let r be a quadratic algebraic number with positive imagi
nary part. Then the elliptic curve Er = Cj(Z+Zr) has complex multiplication
by an order in the quadratic field IQ(r), and the j-invariant j(Er) = j(r) is
an algebraic integer.

Note that although the context (and the proof) of this theorem involves
elliptic curves, its statement is simply that a certain explicit function j (r) on
1t takes algebraic integer values at quadratic imaginary points.

7.2 Complex Multiplication and Class Numbers

Examples. Here are a few selected values of j.

j((1 + iv'3)/2) = 0 = 1728- 3(24)2

j(i) = 1728 = 123 = 1728 -4(0) 2

j((1 + iV7)/2) = -3375 = (-15) 3 = 1728- 7(27)2

j(iv'2) = 8000 = 203 = 1728 + 8(28)2

j((1 + iv'U)/2) = -32768 = (-32)3 = 1728 -11(56) 2

j((1 + iv'i9)/2) = -884736 = (-96)3 = 1728 -19(216)2

j((1 + iv'43)/2) = -884736000 = (-960)3 = 1728- 43(4536) 2

j((1+ iv'67)/2) =-147197952000 = (-5280)3 = 1728- 67(46872)2

j((1 + iJi63)/2) = -262537412640768000 = (-640320)3

= 1728 -163(40133016) 2

j(iv'3) = 54000 = 2(30)3 = 1728 + 12(66)2

j(2i) = 287496 = (66) 3 = 1728 + 8(189) 2

j((1 + 3iv'3)/2) = -12288000 = -3(160)3 = 1728- 3(2024) 2

j(i..J7) = 16581375 = (255)3 = 1728 + 7(1539)2

'(('vls)/) -191025- 85995v's J 1+z 1 2 = 2

383

1- y'5 (75 + 27v'5)
3

- 7 (273 + 105v'5)
2

= -1 28-3
2 2 2

j((1 + iV'23)/2) = -(82075002 + 10841250 + 616750)

= -(2502 + 550 + 35)3

= 1728- (302 - 4) (40602 + 5110 + 273)2 ,

where 0 is the real root of the cubic equation X 3 - X - 1 = 0.
The reason for the special values chosen will become clear later.

An amusing consequence of the above results is the following. We know
that if q = e2i11'r then j(r) = 1/q + 744 + O(lql). Hence when lql is very small
(i.e. when the imaginary part of r is large), it can be expected that j(r) is well
approximated by 1/q + 744. Taking the most striking example, this implies
that e11'v'I63 should be close to an integer, and that (e11'v'I63- 744) 113 should
be even closer. This is indeed what one finds:

e11'v'I63 = 262537412640768743.99999999999925007259 ...

(e11'v'I63- 744) 113 = 640319.99999999999999999999999939031735 ...

Note that by well known transcendence results, although these quantities are
very close to integers, they cannot be integers and they are in fact transcen
dental numbers.

384 7 Introduction to Elliptic Curves

7.2.4 Complex Multiplication and Hilbert Class Fields

The following theorem gives more precise information on the nature of the
algebraic integer j(r) and will be one of our basic tools in our study of
Atkin's primality test (see Section 9.2). We define the discriminant of a
quadratic number r as the discriminant of the unique primitive positive defi
nite quadratic form (a, b, c) such that r is a root of the equation ax2+bx+c = 0.

Theorem 7.2.14. Let r E 1t be a quadratic imaginary number, and let D
be its discriminant as just defined. Then j (r) is an algebraic integer of de
gree exactly equal to h(D), where h(D) is the class number of the imaginary
quadratic order of discriminant D. More precisely, the minimal polynomial of
j(r) over Z is the equation il(X- j(a)) = 0, where a runs over the quadratic
numbers associated to the reduced forms of discriminant D.

Note that j(r) is indeed a root of this polynomial, since any quadratic form
of discriminant D is equivalent to a reduced form, and since the j function
is SL2 (Z)-invariant. The difficult part of this theorem is that the polynomial
has integral coefficients.

I can now explain the reason for the selection of j-values given in the
preceding section. From Theorem 7.2.14, we see that j(r) is rational (in fact
integral) if and only if h(D) = 1 (we assume of course that r is a quadratic
number). Hence, by the Heegner-Stark-Baker theorem (see Section 5.3.1), this
corresponds to only 9 quadratic fields. There are 4 more corresponding to
non-maximal orders: -12 and -27 (in the field Q(H)), -16 (in the field
Q(y'-4)), and -28 (in the field Q(N)).

The first 13 values of our little table above correspond to these 13 quadratic
orders, and the last two are for D = -15 and D = -23, which are the first
values for which the class number is 2 and 3 respectively.

Now if r corresponds to a maximal order in an imaginary quadratic field
K, Theorem 7.2.14 tells us that the field H = K(j(r)) obtained by adjoining
j(r) to K is an algebraic extension of degree h(D) (this is not strictly true:
it tells us this for K = Q, but the statement holds nonetheless). Now in
fact much more is true: it is a Galois extension, with Abelian Galois group
isomorphic to the class group of the imaginary quadratic field K. Furthermore,
it is unramified, and it is the maximal Abelian unramified extension of K. By
definition, such a field His called the Hilbert class field of K. One sees that in
the case of imaginary quadratic fields, the Hilbert class field can be obtained
by adjoining a value of the j-function. This kind of construction is lacking
for other types of fields (except of course for Q). See (Shi] for the relevant
definitions and theorems about class fields.

A cursory glance at the table of j-values which we have given reveals
many other interesting aspects. For example, in most cases, it seems that j(r)
is a cube. Furthermore, it can be checked that no large prime factors occur
in the values of j(r) (or of its norm when it is not in Q). These properties

7.2 Complex Multiplication and Class Numbers 385

are indeed quite general, with some restrictions. For example, if D is not
divisible by 3, then up to multiplication by a unit, j(r) is a cube in H. One
can also check that (still up to units) j (r) - 1728 is a square in K if D = 1
(mod 4). Finally, not only the values of j (r), but more generally the differences
j(r1)- j(r2) have only small prime factors (the case of j(rt) is recovered by
taking r 2 = p = (-1 + H) /2). All these properties have been proved by
Gross-Zagier [Gro-Zag1).

The other property of an elliptic curve with complex multiplication, which
will also be basic to Atkin's primality test, is that it is easy to compute the
number of its points in a finite field, i.e. its L-function (see Section 7.3 for the
definition). We state only the special cases which we will need (see [Deu)).

Theorem 7.2.15. Let E be an elliptic curve with complex multiplication by
an imaginary quadratic order of discriminant D, and let p be a prime number.
Then we have

where ap is given as follows.

(1) lfp is inert (i.e. if(~)= -1}, then ap = 0.
(2) If p splits into a product of prime elements, say p = 1r1f", then ap = 1r + 1f"

for a suitable choice of 1r.

Remarks.

(1) If D < -4, there exist only two (opposite) choices for 1r since the order
has only 2 units. These choices give two opposite values of ap, one of these
values giving the correct ap for E, the other one giving the ap for the curve
E ''twisted" by a quadratic non-residue (see Section 7.4.3). On the other
hand if D = -4 or D = -3, there exist 4 (resp. 6) choices for 11", also
corresponding to twisted curves.

(2) If p is ramified or splits into a product of prime ideals which are not
principal, then one can still give the value of ap, but the recipe is more
involved. In terms of L-functions, the general result says that there exists
a Heeke character 1/J on the field Q(.Jl5) such that

L(E, s) = L('I/J, s)L(if;, s).

7.2.5 Modular Equations

Another remarkable property of the j-function, which is not directly linked
to complex multiplication, but rather to the role that j plays as a modu
lar invariant, is that the functions j(Nr) for N integral (or more generally
rational) are algebraic functions of j(r). The minimal equation of the form

386 7 Introduction to Elliptic Curves

~N(j(r),j(Nr)) = 0 satisfied by j(Nr) is called the modular equation of level
N. This result is not difficult to prove. We will prove it explicitly in the special
case N = 2. Set

P(X) =(X- j(2r))(X-j(~))(X- j(; 1)) = X 3 -s(r)X2 +t(r)X -n(r).

I claim that the functions s, t and n are polynomials in j. Since they are clearly
meromorphic, and in fact holomorphic outside infinity, from Section 7.2.1 it is
enough to prove that they are modular functions (i.e. invariant under SL2(Z)).
Since the action of SL2(Z) on 1{ is generated by r ~---+ r + 1, and r ~---+ -1/r,
it suffices to show the invariance of s, t and n under these transformations,
and this is easily done using the modular invariance of j itself. This shows the
existence of a cubic equation satisfied by j(2r) over the field C(j(r)). If one
wants the equation explicitly, one must compute the first few coefficients of
the Fourier expansion of s(r), t(r), and n(r), using the Fourier expansion of
j(r):

1
j(r) =- + 744 + 196884q + 21493760q2 + 864299970q3 + · · ·

q

The result is as follows:

s = j 2 - 243 . 31j - 243453'

t = 243. 31j2 + 34534027j + 283756'

n = -l + 243453j2- 283756j + 2123959.

This gives as modular polynomial of level 2 the polynomial

~2(X, Y) = X 3 + Y3 - X 2Y2 + 243 · 31(X2Y + XY2) - 243453(X2 + Y2)

+ 34534027XY + 283756(X + Y)- 2123959.

As we can see from this example, the modular polynomials are symmetric in X
andY. They have many other remarkable properties that tie them closely to
complex multiplication and class numbers, but we will not pursue this subject
any further here. See for example (Her], (Mah] and (Coh3] for results and more
references on the polynomials ~ N.

7.3 Rank and L-functions

We have seen in Theorem 7.1.10 that if E is an elliptic curve defined over Q,
then

E(Q) ~ E(Qhors EEl zr,
where E(Q)tors is a finite group which is easy to compute for a given curve,
and r is an integer called the rank. As has already been mentioned, r is
very difficult to compute, even for a specific curve. Most questions here have
conjectural answers, but very few are proved. In this section, we try to give
some indications on the status of the subject at the time of this writing.

7.3 Rank and £-functions 387

7.3.1 The Zeta Function of a Variety

I heartily recommend reading [Ire-Ros] for detailed and concrete examples on
this subject.

After clearing the denominators of the coefficients, we may assume that
our curve has coefficients in z. Now it is a classical technique to look at the
equation modulo primes p, and to gather this information to obtain results
on the equation over Q or over Z. This can be done more generally for any
smooth projective algebraic variety (and more general objects if needed), and
not only for elliptic curves. Although it carries us a little away, I believe it
worthwhile to do it in this more general context first.

Let V be a (smooth projective) variety of dimension d, defined by equa
tions with coefficients in Z. For any prime p, we can consider the variety
Vp obtained by reducing the coefficients modulo p (it may, of course, not be
smooth any more). For any n ~ 1, let Nn(p) be the number of points of Vp
defined over the finite field lF pn and consider the following formal power series
in the variable T:

Then we have the following very deep theorem, first conjectured by Weil (and
proved by him for curves and Abelian varieties, see [Weill), and proved com
pletely by Deligne in 1974 [Del]:

Theorem 7.3.1. Let Vp be a smooth projective variety of dimension d over
1Fp. Then:

(1) The series Zp(T) is a rational function ofT, i.e. Zp(T) E Q(T).
(2) There exists an integer e {called the Euler characteristic ofVp}, such that

(3) The rational function Zp(T) factors as follows:

where for all i, Pi(T) E Z[T], Po(T) = 1- T, P2d(T) = 1- pdT, and for
all other i,

Pi(T) = IJ (1- aiiT) with iaiil = pi/2.
j

388 7 Introduction to Elliptic Curves

The first assertion was actually proved by Dwork a few years before
Deligne using relatively elementary methods, but by far the hardest part of
this theorem is the last assertion, that laij I = pi/2 • This is called the Riemann
hypothesis for varieties over finite fields.

Now given all the local Zp(T), we can form a global zeta function by
setting for s complex with Res sufficiently large:

((V,s) =IT Zv(P-").
p

This should be taken with a grain of salt, since there are some p (finite in
number) such that Vp is not smooth. In fact, given the underlying cohomo
logical interpretation of the Pi, it is more reasonable to consider the global
£-functions defined by

Li(V, s) =IT Pi(p-•)- 1 for 0::::; i::::; 2d,
p

and recover the zeta function as

((V,s)= IT Li(V,s)(- 1l'.
O">i">2d

Very little is known about these general zeta function and £-functions.
It is believed (can one say conjectured when so few cases have been closely
examined?) that these functions can be analytically continued to meromorphic
functions on the whole complex plane. When the local factors at the bad
primes p are correctly chosen, they should have a functional equation and the
£-functions should satisfy the Riemann hypothesis, i.e. apart from "trivial"
zeros, all the other complex zeros of Li (V, s) should lie on the vertical line
Res= (i + 1)/2.

One recovers the ordinary Riemann zeta function by taking for V the
single point 0. More generally, one can recover the Dedekind zeta function
of a number field by taking for V the 0-dimensional variety defined in the
projective line by P(X) = 0, where P is a monic polynomial with integer
coefficients defining the field over Q.

7.3.2 £-functions of Elliptic Curves

Let us now consider the special case where V is an elliptic curve E. In that
case, Hasse's Theorem 7.1.8 gives us all the information we need about the
number of points of E over a finite field. This leads to the following corollary:

Corollary 7.3.2. Let E be an elliptic curve over Q, and let p be a prime of
good reduction {i.e. such that Ep is still smooth}. Then

7.3 Rank and £-functions

_ 1- apT+pT2

Zp(E) - (1- T)(1- pT) '

where ap is as in Theorem 7.1. 8.

389

In fact, Hasse's theorem is simply the special case of the Weil conjectures
for elliptic curves (and can be proved quite simply, see e.g. [Sil) pp 134-136).

Ignoring for the moment the question of bad primes, the general definition
of zeta and £-functions gives us

where

~"(E) = ((s)((s -1)
., ,s L(E,s) '

L(E, s) = L1(E, s) = II (1- app-s + pl-2s)-1.

p

The function L(E, s) will be called the Hasse-Weil £-function of the elliptic
curve E. To give a precise definition, we also need to define the local factors
at the bad primes p. This can be done, and finally leads to the following
definition.

Definition 7.3.3. Let E be an elliptic curve overQ, and let y2+a1xy+a3y =
x3+a2x 2+a4x+a6 be a minimal Weierstrafl equation forE (see 7.1.3). When
E has good reduction at p, define ap = p + 1- Np where Np is the number of
(projective) points of E over IF'p. If E has bad reduction, define

if E has split multiplicative reduction at Pi

if E has non-split multiplicative reduction at Pi

if E has additive reduction at p.

Then we define the £-function of E as follows, for Res> 3/2:

L(E s)- II 1 II 1
' - 1 - €(p)p-s 1 -a p-s + pl-2s .

bad p good p P

Note that in this definition it is crucial to take a minimal Weierstraf3
equation for E: taking another equation could increase the number of primes
of bad reduction, and hence change a finite number of local factors. On the
other hand, one can prove that L(E, s) depends only on the isogeny class of
E.

By expanding the product, it is clear that L(E, s) is a Dirichlet series, i.e.
of the form :L:n>l ann-s (this of course is the case for all zeta functions of
varieties). We will set

390 7 Introduction to Elliptic Curves

!E(r) = L anqn, where as usual q = e2i1r-r.

n~l

We can now state the first conjecture on £-functions of elliptic curves:

Conjecture 7.3.4. The function L(E, s) can be analytically continued to the
whole complex plane to an entire function. Furthermore, there exists a positive
integer N, such that if we set

then we have the following functional equation:

A(E, 2- s) = ±A(E, s).

In this case, the Riemann hypothesis states that apart from the trivial
zeros at non-positive integers, the zeros of L(E, s) all lie on the critical line
Res= 1.

The number N occurring in Conjecture 7.3.4 is a very important invariant
of the curve. It is called the (analytic) conductor of E. From work of Carayol
[Car], it follows that it must be equal to the (geometric) conductor of E which
can be defined without reference to any conjectures. It suffices to say that it
has the form IJP pep, where the product is over primes of bad reduction, and
for p > 3, ep = 1 if E has multiplicative reduction at p, ep = 2 if E has
additive reduction. For p ~ 3, the recipe is more complicated and is given in
Section 7.5.

One can also give a recipe for the ± sign occurring in the functional
equation.

7.3.3 The Taniyama-Weil Conjecture

Now if the reader has a little acquaintance with modular forms, he will notice
that the conjectured form of the functional equation of L(E, s) is the same as
the functional equation for the Mellin transform of a modular form of weight
2 over the group

r0(N)={(~ !)ESL2(Z), c:=O(modN)}

(see [Lang4], [Ogg] or [Zag] for all relevant definitions about modular forms).
Indeed, one can prove the following

Theorem 7.3.5. Let f be a modular cusp form of weight 2 on the group
r 0 (N) (equivalently f~ is a differential of the first kind on Xo(N) =

1ljr0 (N)). Assume that f is a normalized newform {hence, in particular,

7.3 Rank and £-functions 391

an eigenform for the Heeke operators} and that f has rational Fourier coeffi
cients. Then there exists an elliptic curue E defined over Q such that f = fE,
i.e. such that the Mellin transform of f(it/v'N) is equal to A(E, s).

Such a curve E is called a modular elliptic curve, and is a natural quotient
of the Jacobian of the curve Xo(N). Since analytic continuation and functional
equations are trivial consequences of the modular invariance of modular forms
we obtain:

Corollary 7.3.6. Let E be a modular elliptic curue, and let f = En>l anqn
be the corresponding cusp form. Then Conjecture 7.3.4 is true for the curue
E. In addition, it is known from Atkin-Lehner theory that one must have
f(-1/(Nr)) = -cNr2 f(r) with c = ±1. Then the functional equation is

A(E, 2- s) = cA(E, s).

(Please note the minus sign in the formula for f(-1/(Nr)) which causes
confusion and many mistakes in tables.) The number c is called the sign of
the functional equation.

With Theorem 7.3.5 in mind, it is natural to ask if the converse is true,
i.e. whether every elliptic curve over Q is modular. This conjecture was first set
forth by Taniyama. Its full importance and plausibility was understood only
after Weil proved the following theorem, which we state only in an imprecise
form (the precise statement can be found e.g. in [Ogg)):

Theorem 7.3.7 (Weil). Let f(r) = En>l anqn, and for all primitive Dirich-
let characters x of conductor m set -

L(f, x, s) = L anx~n),
n n;:::l

A(!, x, s) = 1Nm21812 (27r)- 8 r(s)L(f, X, s).

Assume that these functions satisfy functional equations of the following form:

A(!, x, 2- s) = w(x)A(f, x, s),

where w(x) has modulus one, and assume that as X varies, w(x) satisfies
certain compatibility conditions {being precise here would carry us a little too
far). Then f is a modular form of weight 2 over ro(N).

Because of this theorem, the above conjecture becomes much more plau
sible. The Taniyama-Weil conjecture is then as follows:

Conjecture 7.3.8 (Taniyama-Weil). Let E be an elliptic curue over Q, let
L(E,s) = En;:::l ann-8 be its £-series, and let fE(T) = En;:::l anqn, so that

392 7 Introduction to Elliptic Curves

the Mellin transform of fE(itj../N) is equal to A(E, s). Then f is a cusp
form of weight 2 on r 0 (N) which is an eigenfunction of the Heeke operators.
Furthermore, there exists a morphism¢ of curves from Xo(N) toE, defined
over Q, such that the inverse image by¢ of the differential dx/(2y+ a1x +a3)
is the differential c(2i7r)f(r)dr = cf(r)dqfq, where cis some constant.

Note that the constant c, called Manin's constant, is conjectured to be
always equal to ±1 when¢ is a "strong Weil parametrization" of E (see [Sill).

A curve satisfying the Taniyama-Weil conjecture was called above a mod
ular elliptic curve. Since this may lead to some confusion with modular curves
(the curves Xo(N)) which are in general not elliptic, they are called Weil
curves (which incidentally seems a little unfair to Taniyama).

The main theorem concerning this conjecture is Wiles's celebrated the
orem, which states than when N is squarefree, the conjecture is true (see
[Wiles], [Tay-Wil]). This result has been generalized by Diamond to the case
where N is only assumed not to be divisible by 9 and 25. In addition, us
ing Weil's Theorem 7.3.7, it was proved long ago by Shimura (see [Shil) and
[Shi2]) that it is true for elliptic curves with complex multiplication.

There is also a recent conjecture of Serre (see [Serl]), which roughly states
that any odd 2-dimensional representation of the Galois group Gal(Q/Q) over
a finite field must come from a modular form. It can be shown that Serre's
conjecture implies the Taniyama-Weil conjecture.

The Taniyama-Weil conjecture, and hence the Taylor-Wiles proof, is
mainly important for its own sake. However, it has attracted a lot of attention
because of a deep result due to Ribet [Rib], saying that the Taniyama-Weil
conjecture for squarefree N implies the full strength of Fermat's last "theo
rem" (FLT): if xn+ yn = zn with x, y, z non-zero integers, then one must have
n s 2. Thanks to Wiles, this is now really a theorem. Although it is not so
interesting in itself, FLT has had amazing consequences on the development of
number theory, since it is in large part responsible for the remarkable achieve
ments of algebraic number theorists in the nineteenth century, and also as a
further motivation for the study of elliptic curves, thanks to Ribet's result.

7.3.4 The Birch and Swinnerton-Dyer Conjecture

The other conjecture on elliptic curves which is of fundamental importance
was stated by Birch and Swinnerton-Dyer after doing quite a lot of computer
calculations on elliptic curves (see [Bir-SwD1), [Bir-SwD2]). For the remaining
of this paragraph, we assume that we are dealing with a curve E defined
over Q and satisfying Conjecture 7.3.4, for example a curve with complex
multiplication, or more generally a Weil curve. (The initial computations of
Birch and Swinnerton-Dyer were done on curves with complex multiplication).

Recall that we defined in a purely algebraic way the rank of an elliptic
curve. A weak version of the Birch and Swinnerton-Dyer Conjecture (BSD) is
that the rank is positive (i.e. E(Q) is infinite) if and only if L(E, 1) = 0. This

7.3 Rank and £-functions 393

is quite remarkable, and illustrates the fact that the function L(E, s) which is
obtained by putting together local data for every prime p, conjecturally gives
information on global data, i.e. on the rational points.

The precise statement of the Birch and Swinnerton-Dyer conjecture is as
follows:

Conjecture 7.3.9 (Birch and Swinnerton-Dyer). Let E be an elliptic curve
over Q, and assume that Conjecture 7.3.4 (analytic continuation essentially)
is true for E. Then if r is the rank of E, the function L(E, s) has a zero of
order exactly r at s = 1, and in addition

lim(s- 1)-r L(E, s) = OIIII(E/Q)IR(E/Q)IE(Q)torsl-2 ITev,
s-+1

p

where n is a real period of E, R(E/Q) is the so-called regulator of E, which
is an r x r determinant formed by pairing in a suitable way a basis of the non
torsion points, the product is over the primes of bad reduction, Cp are small
integers, and Ill(E/Q) is the so-called Tate-Shafarevitch group of E.

It would carry us too far to explain in detail these quantities. Note only
that the only quantity which is difficult to compute (in addition to the rank
r) is the Tate-Shafarevitch group. In Sections 7.4 and 7.5 we will give algo
rithms to compute all the quantities which enter into this conjecture, except for
IIII(E/Q)I which is then obtained by division (the result must be an integer,
and in fact even a square, and this gives a check on the computations). More
precisely, Section 7.5.3 gives algorithms for computing lims l(s-1)-r L(E, s),
the quantities nand IE(Q)torsl are computed using Algorithms 7.4.7 and 7.5.5,
the regulator R(E/Q) is obtained by computing a determinant of height pair
ings of a basis of the torsion-free part of E(Q), these heights being computed
using Algorithms 7.5.6 and 7.5. 7. Finally, the Cp are obtained by using Algo
rithm 7.5.1 if p 2: 5 and Algorithm 7.5.2 if p = 2 or 3.

Note that the above computational descriptions assume that we know a
basis of the torsion-free part of E(Q) and hence, in particular, the rank r, and
that this is in general quite difficult.

The reader should compare Conjecture 7.3.9 with the corresponding result
for the 0-dimensional case, i.e. Theorem 4.9.12. Dedekind's formula at s = 0 is
very similar to the BSD formula, with the regulator and torsion points playing
the same role, and with the class group replaced by the Tate-Shafarevitch
group, the units of K being of course analogous to the rational points.

Apart from numerous numerical verifications of BSD, few results have
been obtained on BSD, and all are very deep. For example, only in 1987 was
it proved by Rubin and Kolyvagin (see (Koll), [Kol2], [Rub]) that III is finite
for certain elliptic curves. The first result on BSD was obtained in 1977 by
Coates and Wiles (Coa-Wil] who showed that if E has complex multiplication
and if E(Q) is infinite, then L(E, 1) = 0. Further results have been obtained,

394 7 Introduction to Elliptic Curves

in particular by Gross-Zagier, Rubin and Kolyvagin (see [Gro-Zag2], [GKZ],
[Koll], [Kol2]). For example, the following is now known:

Theorem 7.3.10. Let E be a Weil curve. Then

(1) If L(E, 1) f. 0 then r = 0.
(2) If L(E, 1) = 0 and L'(E, 1) f. 0 then r = 1.

Furthermore, in both these cases lilli is finite, and up to some simple factors
divides the conjectural lilli involved in BSD.

The present status of BSD is essentially that very little is known when the
rank is greater than or equal to 2.

Another conjecture about the rank is that it is unbounded. This seems
quite plausible. Using a construction of J.-F. Mestre (see [Mes3] and Exercise
9), Nagao has obtained an infinite family of curves of rank greater or equal
to 13 (see [Nag]), and Mestre himself has just obtained an infinite family of
curves of rank greater or equal to 14 (see [Mes5]). Furthermore, using Mestre's
construction, several authors have obtained individual curves of much higher
rank, the current record being rank 22 by Fermigier (see [Mes4], [Ferl], [Nag
Kou] and [Fer2]).

7.4 Algorithms for Elliptic Curves

The previous sections finish up our survey of results and conjectures about
elliptic curves. Although the only results which we will need in what follows
are the results giving the group law, and Theorems 7.2.14 and 7.2.15 giving
basic properties of curves with complex multiplication, elliptic curves are a
fascinating field of study per se, so we want to describe a number of algorithms
to work on them. Most of the algorithms will be given without proof since
this would carry us too far. Note that these algorithms are for the most part
scattered in the literature, but others are part of the folklore or are new.
I am particularly indebted to J.-F. Mestre and D. Bernardi for many of the
algorithms of this section. The most detailed collection of algorithms on elliptic
curves can be found in the recent book of Cremona [Cre].

7 .4.1 Algorithms for Elliptic Curves over C

The problems that we want to solve here are the following.

(1) Given WI and w2, compute the coefficients 92 and 93 of the Weierstraf3
equation of the corresponding curve.

(2) Given WI and w2 and a complex number z, compute p(z) and p'(z).
(3) Conversely given 92 and 93 such that g~- 279~ f. 0, compute WI and w2

(which are unique only up to an element of SL2 (Z)).

7.4 Algorithms for Elliptic Curves 395

(4) Similarly, given 92, 93 and a point (x, y) on the corresponding Weierstrafi
curve, compute the complex number z (unique up to addition of an element
of the period lattice generated by w1 and w2) such that x = p(z) and
y = p'(z).

If necessary, after exchanging w1 and w2 , we may assume that Im(wdw2) > 0,
i.e. if we set T = wdw2 then T E 'H.. As usual, we always set q = e2i'll"T, and
we have lql < 1 when T E 'H.. Then we have the following proposition:

Proposition 7.4.1. We have

1 (211")4
(n3qn)

92 = 12 W2 1 + 240 L 1 - qn
n;:::l

and also

This could already be used to compute 92 and 93 reasonably efficiently, but
it would be slow when r is close to the real line. In this case, one should first
find the complex number r' belonging to the fundamental domain :F which
is equivalent tor, compute 92 and 93 for r', and then come back toT using
the (trivial) transformation laws of 92 and 93, i.e. 9k(OiAJ1 + bw2,CC..h + dw2) =

9k(wb w2) when (~ :) E SL2(Z). This leads to the following algorithms.

Algorithm 7.4.2 (Reduction). Given T E 'H., this algorithm outputs the unique
r' equivalent to r under the action of SL2(Z) and which belongs to the standard
fundamental domain :F, as well as the matrix A E SL2(Z) such that r' = Ar.

1. [Initialize] Set A +- (~ ~).

2. [Reduce real part] Let n +- LRe(r)l, r +- r- n, A+- (~ -n) 1 ·A.

3. [Finished] Set m +- rf. If m ~ 1, output T and A and terminate the algorithm.

Otherwisesetr+--7/m, A-(~ ~1)-Aandgotostep2.
This is of course closely related to the reduction algorithm for positive def

inite quadratic forms (Algorithm 5.4.2), as well as to Gauss's lattice reduction
algorithm in dimension 2 (Algorithm 1.3.14).

Warning. The condition m ~ 1 in step 3 should in practice be implem
ented as m > 1 - e for some e > 0 depending on the current accuracy. If this
precaution is not taken the algorithm may loop indefinitely, and the cost is
simply that the final r may land very close to but not exactly in the stand
ard fundamental domain, and this has absolutely no consequence for pract
ical computations.

We can now give the algorithm for computing 92 and 93 •

396 7 Introduction to Elliptic Curves

Algorithm 7.4.3 (g2 and ga). Given WI and w2 generating a lattice L, this
algorithm computes the coefficients g2 and g3 of the WeierstraB equation of the
elliptic curve C/ L.

1. [Initialize] If Im(wl/w2) < 0, exchange WI and w2. Then set T- wdw2.

2. [Reduce] Using Algorithm 7.4.2, find a matrix A = (~ ~) E SL2(Z) such

that r' = Ar is in the fundamental domain :F. Set q' = e2i1rT'.

3. [Compute] Compute 92 and ga using the formulas given in Proposition 7.4.1,
replacing q by q' and w2 by CWI + dw2, and terminate the algorithm.

Since r' E :F, we have Im r' 2: ../3/2 hence lql ::::; e-1rva ~ 4.33 · 10-3 , so
the convergence of the series, although linear, will be very fast.

We can also use the power series expansions to compute p(z) and p'(z):

Proposition 7.4.4. Set T = wl/w2 E 'H., q = e2in and u = e2i1rz!w2 • Then

and

Note that the formula for p'(z) in the first printing of [Sil] is incorrect.
As usual, we must do reductions of r and z before applying the crude

formulas, and this gives the following algorithm.

Algorithm 7.4.5 (p(z) and p'(z)). Given WI and w2 generating a lattice L,
and z E C, this algorithm computes p(z) and p'(z).

1. [Initialize and reduce] If Im(wl/w2) < 0, exchange WI and w2. Then set r -

wl/w2. Using Algorithm 7.4.2, find a matrix A = (~ ~) E SL2(Z) such

that Ar is in the the fundamental domain :F. Finally, set r - Ar and w2 -
CWI + dw2.

2. [Reduce z] Set z - zjw2, n - llm(z)/Im(r)l, z - z- nr and z -
z- lRe(z)l.

3. [Compute] If z = 0, output a message saying that z E L. Otherwise compute
p(z) and p'(z) using the formulas given in Proposition 7.4.4 (with u = e2i1rz

since we have already divided z by w2) and terminate the algorithm.

7.4 Algorithms for Elliptic Curves 397

Remark. For the above computations it is more efficient to use the formulas
that link elliptic functions with the a function, since the latter are theta series
and so can be computed efficiently. For reasonable accuracy however (say less
than 100 decimal digits) the above formulas suffice.

We now consider the inverse problems. Given 9 2 and 93 defining a Weier
straB equation, we want to compute a basis w1 and w2 of the corresponding
lattice.

First, recall the definition of the Arithmetic-Geometric Mean (AGM) of
two numbers.

Definition 7 .4.6. Let a and b be two positive real numbers. The Arithmetic
Geometric mean of a and b, denoted by AGM(a, b) is defined as the common
limit of the two sequences an and bn defined by ao =a, bo = b, an+l =
(an+ bn)l2 and bn+l = v'anbn.

It is an easy exercise to show that these sequences converge and that they
have a common limit AGM(a, b) (see Exercise 10). It can also be proved quite
easily that

7r r/2 dt

2AGM(a,b)- Jo Ja2cos2t+b2sin2t

(see Exercise 11) and this can easily be transformed into an elliptic integral,
which explains the relevance of the AGM to our problems. For many more
details on the AGM, I refer to the marvelous book of Borwein and Borwein
[Bor-Bor].

Apart from their relevance to elliptic integrals, the fundamental property
of the AGM sequences an and bn is that they converge quadratically, i.e. the
number of significant decimals approximately doubles with each iteration (see
Exercise 10). For example, there exists AGM-related methods for computing 1r

to high precision (see again [Bor-Bor]), and since 220 > 106 only 20 iterations
are needed to compute 1000000 decimals of 1r!

The AGM can also be considered when a and b are not positive real
numbers but are arbitrary complex numbers. Here the situation is more com
plicated, but can be summarized as follows. At each stage of the iteration, we
must choose some square root of anbn. Assume that for n sufficiently large the
same branch of the square root is taken (for example the principal branch, but
it can be any other branch). Then the sequences again converge quadratically
to the same limit, but this limit of course now depends on the choices made
for the square roots. In addition, the set of values of 1r I AGM(a, b) (where now
AGM(a, b) has infinitely many values) together with 0 form a lattice Lin C.
The precise link with elliptic curves is as follows. Let e1, e2, e3 be the three
complex roots of the polynomial 4x3 - 92X- 93 such that y2 = 4x3 - 9 2x - 9 3

defines an elliptic curve E. Then, when the AGM runs through all its pos
sible determinations 1r I AGM(v'e1 - e3, y'e1 - e2) gives all the lattice points
(except 0) of the lattice L such that E ~ Cl L.

398 7 Introduction to Elliptic Curves

We however will usually use the AGM over the positive real numbers,
where it is single-valued, since the elliptic curves that we will mainly consider
are defined over IR, and even over Q. In this case, the following algorithm
gives a basis of the period lattice L. Since our curves will usually be given by
a generalized Weierstrafi equation y2 + atXY + a3y = x3 + a2x2 + a4x + a6
instead of the simpler equation Y 2 = 4X3 - 92X- 93, we give the algorithm
in that context.

Algorithm 7.4.7 (Periods of an Elliptic Curve over JR). Given real numbers
a1, ... , a6, this algorithm computes the basis (wt, w2) of the period lattice of E
such that w2 is a positive real number and wt/w2 has positive imaginary part and
a real part equal to 0 or -1/2.

1. [Initialize] Using Formulas (7.1), compute b2, b4, b6 and A, and if A< 0 go
to step 3.

2. [Disconnected case] Let e1, e2 and e3 be the three real roots of the poly
nomial 4x3 + b2x2 + 2b4x + b6 = 0 with e1 > e2 > e3. Set w2-
1r/ AGM(ye1- e3, ye1- e2), Wt- i1r/ AGM(..je1- e3, ye2 -e3) and ter
minate the algorithm.

3. [Connected case] Let e1 be the unique real root of 4x3 + b2x 2 + 2b4x +
b6 = 0. Set a- 3et + b2/4 and b- J3e~ + (b2/2)el + b4/2. Then set
w2- 27r/ AGM(2v'b, y2b +a), Wt- -w2/2 + i7r/AGM(2v'b, y2b-a) and
terminate the algorithm.

Note that the "real period" n occurring in the Birch and Swinnerton-Dyer
conjecture 7.3.9 is 2w2 when A > 0, and w2 otherwise, and that wtfw2 is not
necessarily in the standard fundamental domain for 11./ SL2(Z).

Finally, we need an algorithm to compute the functional inverse of the p
function.

The Weierstrafi parametrization (p(z) : p'(z) : 1) can be seen as an expo
nential morphism from the universal covering C of E(C). It can be considered
as the composition of three maps:

z f-+ u = e2 i1rz/w2 f-+ u mod qz f-+ (p(z), p'(z)),

the last one being an isomorphism. Its functional inverse, which we can natu
rally call the elliptic logarithm, is thus a multi-valued function. In fact, Algo
rithm 7.4.7 can be extended so as to find the inverse image of a given point.
Since square roots occur, this give rise to the same indeterminacy as before,
i.e. the point z is defined only up to addition of a point of the period lattice
L. As in the previous algorithm, taking the positive square root in the real
case gives directly the unique u such that lql < lui ::::; 1. We will therefore only
give the description for a real point.

7.4 Algorithms for Elliptic Curves 399

Algorithm 7.4.8 (Elliptic Logarithm). Given real numbers a1, ... , a6 defining
a generalized WeierstraB equation for an elliptic curve E and a point P = (x, y)
on E(JR), this algorithm computes the unique complex number z such that
p(z) = x + b2/12 and p'(z) = 2y + a1x + a3, where pis the WeierstraB function
corresponding to the period lattice of E, and which satisfies the following addi
tional conditions. Either z is real and 0 ~ z < w2, or t::. > 0, z- w1/2 is real and
satisfies 0 ~ z - wl/2 < w2.

1. [Initialize] Using Formulas (7.1), compute b2, b4, b6 and t::.. If t::. < 0 go to
step 6.

2. [Disconnected case] Let e1o e2 and e3 be the three real roots of the polynomial
4x3 + b2x2 + 2b4x + b6 = 0 with e1 > e2 > e3. Set a+- .je1- e3 and b +

Jel- e2. If x < e1 set f +- 1, >. +- yj(x-e3) and x +- >.2+a11\-a2-x-e3,
otherwise set f +- 0. Finally, set c +- Jx- e3.

3. [Loop] Repeat (a, b, c) +- ((a+ b)/2, .,Jab, (c + Jc2 + b2 - a2)/2) until the
difference a- b is sufficiently small.

4. [Connected component] If f = 0 and 2y + a1x + a3 < 0 or f = 1 and 2y +
a1x+ a3;::: 0 set z +- arcsin(a/c)/a. Otherwise set z +- (7r- arcsin(a/c))/a.
If f = 0 output z and terminate the algorithm.

5. [Other component] Compute w1 +- i71" / AGM(Je1 - e3, Je2 - e3) as in Al
gorithm 7.4.7 (unless of course this has already been done). Output z + w1/2
and terminate the algorithm.

6. [Connected case] Let e1 be the unique real root of 4x3+ b2x2 +2b4x+b6 = 0.
Set fJ +- vf3e~ + (b2/2)el + b4/2, a+- 3el + b2/4, a+- 2.,f/], b +- Ja + 2/3
and c +- (x- e1 + fJ)/Jx- e1.

7. [Loop] Repeat (a, b, c) +- ((a+ b)/2, .,Jab, (c + Jc2 + b2- a2)/2) until the
difference a- b is sufficiently small.

8. [Terminate] If (2y + a1x + a3)((x- e1) 2 - {32) < 0, set z +- arcsin(a/c)/a
otherwise set z +- (7r-arcsin(a/c))/a. If 2y+a1x+a3 > 0, set z +- z+11"/a.
Output z and terminate the algorithm.

Note that we could have avoided the extra AGM in step 5, but this would
have necessitated using the complex AGM and arcsin. Hence, it is simpler to
proceed as above. In addition, in practice w1 will have already been computed
previously and so there is not really any extra AGM to compute.

7.4.2 Algorithm for Reducing a General Cubic

The problem that we want to solve here is the following. Given a general
non-singular irreducible projective plane cubic over an arbitrary field K, say

s1U3 + S2U2V + S3UV2 + 84 V3

+ (ssU2 + s5UV + s1V2)W + (ssU + sgV)W2 + s10W3 ,

400 7 Introduction to Elliptic Curves

where (U : V : W) are the projective coordinates, and a K-rational point
Po = (u0 : vo : wo) on the curve, find a birational transformation which
transforms this into a generalized WeierstraB equation.

We will explain how to do this in the generic situation (i.e. assuming that
no expression vanishes, that our points are in general position, etc ...) , and
then give the algorithm in general. We also assume for simplicity that our field
is of characteristic different from 2.

We first make a couple of reductions. Since the curve is non-singular, its
partial derivatives with respect to U and V cannot vanish simultaneously
on the curve. Hence, by exchanging if necessary U and V, we may assume
that it is the derivative with respect to V at Po which is different from zero.
Consider now the tangent at Po to the curve. This tangent will then have
a (rational) slope >., and intersects the curve in a unique third point which
we will call P1 = (ut : Vt : Wt). After making the change of coordinates
(U', V') = (U- u1. V- Vt) we may assume that Pt has coordinates (0: 0: 1),
i.e. is at the origin, or in other words that the new value of s1o is equal to
zero. We now have the following theorem (for simplicity we state everything
with affine coordinates, but the conversion to projective coordinates is easy
to make).

Theorem 7.4.9. We keep the above notations and reductions. Call c1(U, V)
the coefficient of degree W 3-1 in the equation of the curve {so that c1 is a
homogeneous polynomial of degree j }, and set

d(U, V) = c2(U, V)2 - 4ct (U, V)c3(U, V).

Furthermore, if>. is the slope of the tangent at Po as defined above, set

d(U, >.U + 1) = AU4 + BU3 + CU2 + DU +E.

Then

(1) We have A = 0 and B =f:. 0.
(2) The transformation

BU
X= V- >.U

B
Y= (V _ >.U)2 (2c3(U, V) + c2(U, V))

is a birational transformation whose inverse is given by

U=XBY -c2(X,>.X +B)
2c3(X, >.X+ B)

V= (>.X+ B) BY -c2(X,>.X +B).
2c3(X, >.X+ B)

(3) This birational map transforms the equation of the curve into the Weier
straP equation

7.4 Algorithms for Elliptic Curves 401

Proof. The line V = >..U is the new equation of the tangent at Po that we
started from. This means that it is tangent to the curve. Solving for U, one
has the trivial solution U = 0 corresponding to the point P1, and the two
other roots must be equal. In other words we must have d(l, >..) = 0, since this
is the discriminant of the quadratic equation. Since clearly A= d(l, >..), this
shows that A = 0.

Now solving for the double root, we see that the coordinates of Po (in the
new coordinate system of course) are (a, >..a), where we set

c2(l, >..)
a=- .

2c3(l, >..)

Now I claim that we have the equalities

8d 8f
B = av(l, >..) = -4c3(1, >..) av(a, >..a),

where f(U, V) = 0 is the (affine) equation of the curve. Assuming this for a
moment, this last partial derivative is the partial derivative of f with respect
to V at the point Po, hence is different from zero by the first reduction made
above. Furthermore, c3(l, >..) -:f. 0 also since otherwise Po would be at infinity
and we have assumed (for the moment) that Po is in general position. This
shows that B -:f. 0 and hence the first part of the theorem. To prove my
claim, note that the first equality is trivial. For the second, let us temporarily

abbreviate Cj(l, >..) to Cj and :~ (1, >..) to cj. Then by homogeneity, one sees

immediately that

We know that A= c~-4c1 c3 = 0 (and this can be checked once again explicitly
if desired). Therefore we can replace c~ by 4c1c3, thus giving

and the claim follows by differentiating the formula d = c~ - 4clc3.

By simple replacement, one sees immediately that, since B -:f. 0, the maps
(U, V)--+ (X, Y) and (X, Y)--+ (U, V) are inverse to one another, hence the
second part is clear.

For the last part, we simply replace U and V by their expressions in terms
of X andY. We can multiply by c3(X, >..X+ B) (which is not identically zero),
and we can also simplify the resulting equation by BY- c2 (X, >..X+ B) since
B is different from zero and the curve is irreducible (why?). After expanding
and simplifying we obtain the equation

402 7 Introduction to Elliptic Curves

B 2Y2 = d(X,>.X +B).

Now since d(U, V) is a homogeneous polynomial of degree 4, one sees imme
diately that

thus finishing the proof of the theorem. D

It is now easy to generalize this theorem to the case where the point Po
is not in general position, and this leads to the following algorithm, which we
give in projective coordinates.

Algorithm 7.4.10 (Reduction of a General Cubic). Let K be a field of
characteristic different from 2, and let J(U, V, W) = 0 be the equation of a
general cubic, where

f(U, V, W) = s1U3 + s2U2V + saUV2 + s4V3

+ (ssU2 + s6UV + s7V2)W + (ssU + s9V)W2 + s10W3 .

Finally, let Po = (uo : vo : wo) be a point on the cubic, i.e. such that
f(uo, vo, wo) = 0. This algorithm, either outputs a message saying that the curve
is singular or reducible, or else gives a WeierstraB equation for the curve and a
pair of inverse birational maps which transform one equation into the other. We
will call (X : Y : T) the new projective coordinates, and continue to call si the
coefficients of the transformed equation g during the algorithm.

1. [Initialize] Set (m1,m2,m3) +-- (U,V,W), (n1,n2,na) +-- (X,Y,T) and g +

f. (Here (m1 : m2 : ma)(U, V, W) and (n1 : n2 : na)(X, Y, T) will be the pair
of inverse birational maps. The assignments given in this algorithm for these
maps and for g are formal, i.e. we assign polynomials or rational functions,
not values. In addition, it is understood that the modifications of g imply the
modifications of the coefficients si-)

2. [Send Po to (0: 0: l)]lfwo =f. 0, set (m1.m2,m3) +-- (woml-uoma,wom2-
voma,woma). (n1,n2,na) +-- (won1 + UQna,won2 + vona,wona). g +

g(woU +uoW,woV +voW, woW) and go to step 3. Otherwise, if uo =f. 0, set
(m1. m2, ma) +-- (uoma, uom2- vomlt uom1). (n1, n2, na) +-- (uona, uon2 +
vona,uonl). g +-- g(uoW,uoV + voW,uoU) and go to step 3. Finally, if
wo = uo = 0 (hence Vo =f. 0), exchange m2 and ma, n2 and na. and set
g +-- g(U, W, V).

3. [Exchange U and V?] (Here s10 = 0). If s8 = s9 = 0, output a message
saying that the curve is singular at Po and terminate the algorithm. Otherwise,
if Sg = 0, exchange m1 and m2, n1 and n2, and set g +-- g(V, U, W).

4. [Send P1 to (0: 0: 1)] (Here Sg =f. 0.) Set)..+-- (-ssfsg), c2 +-- s1>.2+s6>.+ss.
ca +-- s4>.3 + sa>.2 + s2>. + s1. Then, if ca =f. 0, set (m1, m2, ma) +-- (cam1 +
c2ma,cam2+>.c2ma,cama). (n1,n2,n3) +-- (can1-c2na,can2->.c2na,cana).

7.4 Algorithms for Elliptic Curves 403

g +- g(c3U- c2W,c3V- >.c2W,c3W) and go to step 5. Otherwise, if c2 = 0
output a message saying that the curve is reducible and terminate the algo
rithm. Finally, if c3 = 0 and c2 -:f. 0, set (m1. m2, m3) +- (ma, m2- >.m1, m1),
(nt. n2, na) +- (n3, n2 + >.n3, n1) and g +- g(W, V + >.W, U), then set>.+- 0.

5. [Apply theorem] (Here we are finally in the situation of the theorem.) Let
as in the theorem ci(U, V) be the coefficient of W 3-i in g(U, V, W), and
d(U, V) +- c2(U, V)2 - 4c1(U, V)c3(U, V). Compute B, C, D and E such
th-at d(U, >.U + 1) = BU3 + CU2 + DU +E. Then set

(mt.m2,m3) +- (Bm1(m2- >.m1)ma,

B(2c3(m1. m2) + c2(m1. m2)ma), (m2- >.m1)2m3),

(nt. n2, n3) +- (n1(Bn2n3- c2(nt. >.n1 + Bn3)),

(>.n1 + Bna)(Bn2n3- c2(n1, >.n1 + Bn3)), 2ca(nt. >.n1 + Bn3)).

Output the maps (X, Y, T) +- (m1, m2, m3) and (U, V, W) +- (n1. n 2 , na),
the projective WeierstraB equation

and terminate the algorithm.

7.4.3 Algorithms for Elliptic Curves over 1Fp

The only algorithms which we will need here are algorithms which count the
number of points of an elliptic curve over 1Fp, or equivalently the numbers ap

such that IE(IFv)l = p + 1- ap. We first describe the naive algorithm which
expresses ap as a sum of Legendre symbols, then give a much faster algorithm
using Shanks's baby-step giant-step method and a trick of Mestre.

Counting the number of points over IF 2 or IF 3 is trivial, so we assume that
p ~ 5. In particular, we may simplify the Weierstraf3 equation, i.e. assume that
a1 = a2 = a3 = 0, so the equation of the curve is of the form y2 = x3 +ax+ b.
The curve has one point at infinity (0 : 1 : 0), and then for every x E 1Fp, there
are 1 + ("' 3+ax+b) values of y. Hence we have N = p + 1 + '""" ("'3+ax+b)

p p L...-xEIF,. p '
thus giving the formula

This formula gives a O(pl+o(l)) time algorithm for computing ap, and this is
reasonable when p does not exceed 10000, say.

However we can use Shanks's baby step-giant step method to obtain a
much better algorithm. By Hasse's theorem, we know that p + 1 - 2..;p <

404 7 Introduction to Elliptic Curves

Np < p + 1 + 2,fP, hence we can apply Algorithm 5.4.1 with C = p + 1-
2,fP and B = p + 1 + 2,fP. This will give an algorithm which runs in time
(B- C)l/2+o(l) = p1/4+o(l), and so will be much faster for large p. Now the
reader will recall that one problem with Shanks's method is that if our group
is not cyclic, or if we do not start with a generator of the group, we need to
do some extra work which is not so easy to implement. There is a nice trick
due, I believe to Mestre, which tells us how to do this extra work in a very
simple manner.

If one considers all the curves over IF P defined by y2 = x3 + ad2x + bd3 with
d =F 0, then there are exactly two isomorphism classes of such curves: those
for which (~) = 1 are all isomorphic to the initial curve correspond to d = 1,

and those for which (~) = -1 are also all isomorphic, but to another curve.
Call E' one of these other curves. Then one has the following proposition.

Proposition 7.4.11. Let

be the Abelian group structures of E(lFp) and E'(lFp) respectively, with d1 I d2
and d~ I d~ (see Proposition 7.1.9). Then for p > 457 we have

This proposition shows that on at least one of the two curves E or E'
there will be points of order greater than 4,fP, hence according to Hasse's
theorem, sufficiently large so as to obtain the cardinality of E(IFp) (or of
E'(lFp)) immediately using Shanks's baby-step giant-step method. In addition,
since each value of x gives either two points on one of the curves and none
on the other, or one on each, it is clear that if IE(!Fp)l = p + 1- ap, we have
IE'(!Fp)l = p + 1 + ap, so computing one value gives immediately the other
one.

This leads to the following algorithm.

Algorithm 7.4.12 (Shanks-Mestre). Given an elliptic curve E over 1Fp with
p > 457 by a WeierstraB equation y2 = x3 +ax+ b, this algorithm computes the
ap such that IE(IFp)l = p + 1 - ap.

1. [Initialize] Set x +- -1, A+- 0, B +- 1, k1 = 0.

2. [Get next point] (Here we have IE(!Fp)l =A (mod B)). Repeat x +- x + 1,
d +- x3 +ax+ b, k +- (~) until k =F 0 and k =F k1. Set k1 +- k. Finally, if
k1 = -1 set A1 +- 2p + 2- A mod B else set A1 +-A.

3. [Find multiple of the order of a point] Let m be the smallest integer such that
m > p+ 1-2..;p and m = A1 (mod B). Using Shanks's baby-step giant-step
strategy, find an integer n such that m ~ n < p + 1 + 2-.jP, n = m (mod B)

7.4 Algorithms for Elliptic Curves 405

and such that n · (xd, d2) = 0 on the curve Y2 = X 3 + ad2 X+ bd3 (note that
this will be isomorphic to the curve E or E' according to the sign of ki).

4. [Find order] Factor n, and deduce from this the exact order h of the point
(xd, d2).

5. [Finished?] Using for instance the Chinese remainder algorithm, find the small
est integer h' which is a multiple of h and such that h' = A1 (mod B).
If h' < 4ylp set B ~ LCM(B, h), then A~ h' mod B if k1 = 1,
A~ 2p + 2- h' mod B if k1 = -1, and go to step 2.

6. [Compute ap] Let N be the unique multiple of h' such that p + 1 - 2ylp <
N < p + 1 + 2ylp. Output ap = p + 1- k1N and terminate the algorithm.

The running time of this algorithm is O(p1/4+<) for any € > 0, but it is
much easier to implement than the algorithm for class numbers because of
the simpler group structure. It should be used instead of the algorithm using
Legendre symbols as soon as p is greater than 457. Note that one can prove
that 457 is best possible, but it is easy to modify slightly the algorithm so
that it works for much lower values of p.

Note also that, as in the case of class groups of quadratic fields, we can
use the fact that the inverse of a point is trivial to compute, and hence enlarge
by a factor y2 the size of the giant steps. In other words, in step 3 the size of
the giant steps should be taken equal to the integer part of J2fo/ B.

Another algorithm for computing ap has been discovered by R. Schoof
([Scho]). What is remarkable about it is that it is a polynomial time algorithm,
more precisely it runs in time O(ln8 p). The initial version did not seem to be
very useful in practice, but a lot of progress has been done since.

Schoof's idea, which we will not explain in detail here, is to use the divi
sion polynomials for the WeierstraB tJ function, i.e. polynomials which express
t~(nz) and t:~'(nz) in terms of t:~(z) and t:~'(z) for integer n (in fact a prime num
ber n). This gives congruences for the ap, and using the Chinese remainder
theorem we can glue together these congruences to compute the ap.

An interesting blend of the baby-step giant-step algorithm and Schoof's
algorithm is to compute Schoof-type congruences for ap modulo a few primes
e. If for example we find the congruences modulo 2, 3 and 5, we can divide
the search interval by 30 in the algorithm above, and hence this allows the
treatment of larger primes.

The main practical problem with Schoof's idea is that the equations giving
the division polynomials are of degree (n2 - 1)/2, and this becomes very
difficult to handle as soon as n is a little large.

Recently N. Elkies has been able to show that for approximately one half
of the primes n, this degree can be reduced to n + 1, which is much more
manageable. J.-M. Couveignes has also shown how to use n which are powers
of small primes and not only primes.

406 7 Introduction to Elliptic Curves

Combining all these ideas, Morain and Lercier (Internet announcement)
have been able to deal with a 500-digit prime, which is the current record at
the time of this writing.

7.5 Algorithms for Elliptic Curves over Q

7.5.1 Tate's algorithm

Given an elliptic curve E defined over Q, using Algorithm 7.4.10 we can assume
that E is given by a generalized WeierstraB equation y2 + a1XY + a3y =
x3 + a2x2 + a4x + a6 with coefficients in Q. We would first like to find a
global minimal WeierstraB equation of E (see [Sil], [LN476] and Algorithm
7.5.3 for the precise definitions). This will be a canonical way of representing
the curve E since this equation exists and is unique. (As already remarked,
it is essential at this point that we work over Q and not over an arbitrary
number field.) Note that this is a major difference with the case of equations
defining number fields, where no really canonical equation for the field can be
found, but only partial approaches such as the pseudo-canonical polynomial
given by Algorithm 4.4.12. In addition, it is necessary to know this minimal
equation for several other algorithms.

Two elliptic curves with different parameters may be isomorphic over Q.
Such an isomorphism must be given by transformations x = u2x' + r, y =
u3y' + su2x' + t, where u E Q*, r, s, t E Q. We obtain a new model for the
same elliptic curve. Using the same quantities as those used in Formulas (7.1),
the parameters of the new model are given by

ua~ = a1 + 2s, u2a~ = a2- sa1 + 3r- s 2

u3a~ = a3 + ra1 + 2t

u4a~ = a4- sa3 + 2ra2- (t + rs)a1 + 3r2 - 2st

u6a~ = a6 + ra4 + r 2a2 + r 3 - ta3- t2 - rta1

u2b~ = b2 + 12r, u4b~ = b4 + rb2 + 6r2

u6b~ = b6 + 2rb4 + r 2b2 + 4r3

u8 b8 = bs + 3rb6 + 3r2b4 + r 3b2 + 3r4
·I .

J =J,

(7.2)

Using these formulas, we may now assume that the coefficients of the equa
tions are integers. We will make this assumption from now on. We first want
to find a model for E which is minimal with respect to a given prime p, and we
also want to know the type of the fiber at p of the elliptic pencil defined by E
over Z (see [Sil], [LN476]). The possible types are described by symbols known
as Kodaira types. They are I0 ,Iv,II,III,IV,I0 ,I~,II*,III*,IV*, where v

7.5 Algorithms for Elliptic Curves over Q 407

is a positive integer. We need also to compute the coefficient Cp which appears
in the formulation of the Birch and Swinnerton-Dyer Conjecture 7.3.9, that
is, the index in E(Qp) of the group E0 (Qp) of points which do not reduce to
the singular point.

The following algorithm is due to Tate (cf [LN476]). We specialize his
description to the case of rational integers. The situation is a bit simpler
when the prime p is greater than 3, so let us start with that case.

Algorithm 7.5.1 (Reduction of an Elliptic Curve Modulo p). Given integers
a1, ... , a6 and a prime p > 3, this algorithm determines the Kodaira symbol
associated with the curve modulo p. In addition, it computes the exponent I of
p in the arithmetic conductor of the curve, the index c = [E(Qp) : E 0 (Qp] and
integers u, r, s, t such that a~, ... , a6 linked to a1, ... , a6 via Formulas (7.2) give
a model with the smallest possible power of p in its discriminant.

1. [Initialize] Compute c4, c6, ~ and j using Formulas (7.1). If vp(j) < 0 set
k +- vp(~) + vp(j) else set k +- vp(~).

2. [Minimal?] If k < 12 set u +- 1, r +- 0, s +- 0, and t +- 0. Otherwise, set
u +- plk/l2J; if a1 is odd then set s +- (u- a1)/2 else set s +- -al/2. Set
a~+- a2 - sa1- s2 . Set r +--a~/3, (u2 - a~)/3 or (-u2 - a~)/3 depending
on a~ being congruent to 0, 1 or -1 modulo 3. Set a~ +- a3 + ra1. If a~ is
odd, then set t +- (u3 - a~)/2 else set t +- -a~/2. Finally, set k +- k mod 12,
~ +- ~ju12 , C4 +- C4ju4 and C6 +- C6/U6 .

3. [Non-integral invariant] If vp(j) < 0, then set v +- -vp(j). k must be equal
to 0 or 6. If k = 0, set I +-1, and set c +-v if(~) = 1 or c +- gcd(2, v)

if (~) = -1, then output Kodaira type Iv. If k = 6 set I +- 2, and set

c +- 3 + (Acap_g_,) if v is odd, c +- 3 + (Ap-a-") if v is even, then output
Kodaira type/;_. In any case, output I, c, u, r, s~t and terminate the algorithm.

4. [Integral invariant] If k = 0 then set I +- 0 else set I+- 2. The possible values

fork are 0, 2, 3, 4, 6, 8, 9 and 10. Set c +- 1, 1, 2, 2+ (-Gc;p- 2
), 1 +the number

of roots of 4X3 - 3c4p-2 X- C6p-3 in Z/pZ, 2 + (-Gcsp- 4
), 2, 1 respectively.

Output respectively the Kodaira types I0 ,II,IIJ,IV,I0,IV*,III*,II*. In
any case, output I, c, u, r, s, t and terminate the algorithm.

When p = 2 or p = 3, the algorithm is much more complicated.

Algorithm 7.5.2 (Reduction of an Elliptic Curve Modulo 2 or 3). Given
integers a1, ... , a6 and p = 2 or 3, this algorithm determines the Kodaira symbol
associated with the curve modulo p. In addition, it computes the exponent I of
p in the arithmetic conductor of the curve, the index c = [E(Qv) : E 0 (Qp] and
integers u, r, s, t such that a~, ... , a6 linked to a 17 ••• , a6 via Formulas (7.2) give
a model with the smallest possible power of pin its discriminant. To simplify the
presentation, we use a variable T which will hold the Kodaira type, coded in any
way one likes.

408 7 Introduction to Elliptic Curves

1. [Initialize] Set u +--- 1, r +--- 0, s +--- 0, and t +--- 0. Compute Ll and j using
Formulas (7.1). Set v +--- vp(Ll).

2. [Type I0]1f v = 0 then set f +--- 0, c +--- 1, T +--- Io and go to step 22.

3. [Type Iv]lf p f b2 = ai +4a2 then set f +--- 1, and set c +--- v if X 2 +a1X -a2
has a root in ZjpZ, set c +--- gcd(2, v) otherwise, then set T +--- Iv and go to
step 22.

4. [Change Equation] If p = 2, then set r 1 +--- a4 mod 2, s1 +--- (r1 + a2) mod 2
and t 1 +--- (a6 + r1(a4 + s1)) mod 2, otherwise compute b6 using Formulas
(7.1) and set r1 +--- -b6 mod 3, s1 +--- a1 mod 3 and t1 +--- (a3 +r1a1) mod 3.
Use Formulas (7.2) with the parameters 1,r1,s1,t1 to compute ai, ... ,a6,
then set a1 +--- ai, a2 +--- a2, ... , a6 +--- a6, r +--- r + u2r1, s +--- s + us1 and
t +--- t + u3t1 + u2sr1.

5. [Type II] If p2 f a6 , then set f +--- v, c +--- 1, T +--- II and go to step 22.

6. [Type III] Compute bs using Formulas (7.1). If p3 f b8 , then set f +--- v- 1,
c +--- 2, T +--- II I and go to step 22.

7. [Type IV] Compute b6 using Formulas (7.1). If p3 f b6, then set f +--- v- 2
and set C+- 3 if X 2 +a3jpX -a6/P2 has a root in Z/pZ, set c +---1 otherwise,
then set T +--- IV and go to step 22.

8. [Change Equation] If p3 f a6 do the following. If p = 2, then set k +--- 2,
otherwise set k +--- a3 mod 9. Use Formulas (7.2) with parameters 1, 0, 0, k to
compute ai, ... ,a6, then set a1 +--- ai, a2 +--- a2, ... , a6 +--- a6 and finally
set t +--- t + u3 k.

9. [Type I0] (At this point, we have pI a2, p2 j a4 and p3 j a5.) Set P +

X3 + a2jpX2 + a4jp2 X+ a5jp3. If P has distinct roots modulo p, then set
f +--- v- 4, set c +--- 1+ the number of roots of Pin Z/pZ, T +--- I0 and go
to step 22.

10. [Change Equation] Let a be the multiple root of the polynomial P modulo
p. If a -=? 0, then use Formulas (7.2) with parameters 1, ap, 0, 0 to compute
ai, ... , a6, then set a1 +--- ai, a2 +--- a2, ... , a6 +--- a6, r +--- r + u2ap and
t +--- t + u2sap. If a is a double root, then go to step 16.

11. [Type IV*] (Here p2 j a3, p4 j a5.) Set P +--- X 2 + a3jp2 X- a5jp4. If P has
a double root in Z/pZ, then let a be that root. Otherwise set f +--- v- 6, set
c +--- 3 if P splits over ZjpZ and c +--- 1 otherwise, set T +--- IV* and go to
step 22.

12. [Change Equation] If a -=? 0 then use Formulas (7.2) with parameters
1, 0, 0, ap2 to compute ai, ... , a6, then set a1 +--- ai, a2 +--- a2, ... , a5 +--- a6
and t +--- t + u3 ap2 •

13. [Type III*] If p4 f a4 , then set f +--- v- 7, c +--- 2, T +---I II* and go to step
22.

14. [Type II*] If p6 f a5, then set f +--- v- 8, c +---1, T+- II* and go to step 22.

7.5 Algorithms for Elliptic Curves over Q 409

15. [Non-minimal equation] Use Formulas (7.2) with parameters p, 0, 0, 0 to com
pute aL ... ,a~, then set a1 +-- a~, a2 +-- a~, ... , a6 +-- a~, u +-- pu,
v +-- v- 12 and go to step 2.

16. [Initialize Loop] Set f +-- v- 5, v +-- 1, q +-- p2 •

17. [Type I~. day in] Set P +-- X 2 + a3jqX- a5jq2. If P has distinct roots
modulo p, then set c +-- 4 if these roots are in ZjpZ, set c +-- 2 otherwise,
then set T +--I~ and go to step 22.

18. [Change Equation] Let a be the double root of P modulo p. If a =/= 0, use
Formulas (7.2) with parameters 1, 0, 0, aq to compute aL ... , a~, then set
a1 +-- ai, a2 +-- a~, ... , a6 +-- a~ and t +-- t + u3aq.

19. [Type I~. day out] Set v +-- v+ 1 and P +-- a2jpX2 +a4j(pq)X +a6j(pq2).
If P has distinct roots modulo p, then set c +-- 4 if these roots are in ZjpZ,
set c +-- 2 otherwise, then set T +--I~ and go to step 22.

20. [Change Equation] Let a be the double root of P modulo p. If a =/= 0, use
Formulas (7.2) with parameters 1, aq, 0, 0 to compute a~, ... , a~, then set
a1 +--a~, a2 +--a~, ... , a6 +--a~, r +-- r + u2aq and t +-- t + u2saq.

21. [Loop] Set v +-- v + 1, q +-- p · q and go to step 17.

22. [Common termination] Output the Kodaira type T, the numbers f, c, u, r,
s, t and terminate the algorithm.

Let us turn now to the global counterpart of this process: what is the best
equation for an elliptic curve defined over IQ?.

Algorithm 7.5.3 (Global Reduction of an Elliptic Curve). Given a1, ... , a6 E
Z, this algorithm computes the arithmetic conductor N of the curve and inte
gers u, r, s, t such that aL ... , a~ linked to a 1, ... , a6 via Formulas (7.2) give a
model with the smallest possible discriminant (in absolute value) and such that
a~,a~ E {0,1} and a~ E {0,±1}.

1. [Initialize] Set N +-- 1, u +-- 1, r +-- 0, s +-- 0 and t +-- 0. Compute D +-- 1~1
using Formulas (7.1).

2. [Finished ?] If D = 1, then output N, u, r, s, t and terminate the algorithm.

3. [Local Reduction] Find a prime divisor p of D. Then use Algorithm 7.5.1 or
7.5.2 to compute the quantities /p, up, rp, sp (the quantity Cp may be discarded
if it is not wanted for other purposes). Set N +-- NpfP. If up =/= 1, set u +-- uup,
r +-- r + u2rp. s +-- s + usp and t +-- t + u3tp + u2srp. Finally, set D +-- Djp
until p f D, then go to step 2.

Note that if only the minimal Weierstrafi equation of the curve is desired,
and not all the local data as well, we can use a simpler algorithm due to Laska
(see [Las] and Section 3.2 of [Cre] for a version due to Kraus and Connell).

410 7 Introduction to Elliptic Curves

7.5.2 Computing rational points

We now turn to the problem of trying to determine the group E(Q) of rational
points on E. As already mentioned, this is a difficult problem for which no
algorithm exists unless we assume some of the standard conjectures.

On the other hand, the determination of the torsion subgroup E(Q)tors is
easy. (This is the elliptic curve analog of computing the subgroup of roots of
unity in a number field, see Algorithms 4.9.9 and 4.9.10.)

By considering the formal group associated with the elliptic curve, one
can prove (see (Sil]) that torsion points of composite order in any number field
have integral coordinates in any Weierstra£ model with integral coefficients.
Moreover, there are bounds on the denominators of the coordinates of torsion
points of order pn where p is a prime. Over Q, these bounds tell us that
only the points of order 2 may have non-integral coordinates in a generalized
Weierstra£ model, and in that case the denominator of the x-coordinate is at
most 4. Using the fact that if P is a torsion point, then 2P is also one, one
obtains the following theorem, due to Nagell and Lutz (see (Sil]).

Theorem 7.5.4 (Nagell-Lutz). If P = (x, y) is a rational point of finite order
n > 2 on the elliptic curve y2 = x 3 + Ax + B, where A and B are integers,
then x andy are integers and y2 divides the discriminant -(4A3 + 27B2).

This result, together with Mazur's Theorem 7.1.11 gives us the following
algorithm.

Algorithm 7.5.5 (Rational Torsion Points). Given integers a1. ... , a6 , this
algorithm lists the rational torsion points on the corresponding elliptic curve E.

1. [2-Division Points] Using Formulas (7.1), compute b2, b4, b5, bs and 6.. Output
the origin of the curve ((0: 1 : 0) in projective coordinates). Set P- 4X3 +
b2X2 +2b4X +bB. For each rational root a of P, output the point (a, -(a1a+
a3)/2).

2. [Initialize Loop] Set n - 4 TiviD. plvp(D.)/2J, the largest integer whose square
divides 166.. Form the list .C of all positive divisors of n.

3. [Loop on 2y + a1x + a3]lf .C is empty, terminate the algorithm. Otherwise, let
d 9e the smallest element of .C, and removed from .C. For each rational root
a of P - d2 execute step 4, then go to step 3.

4. [Check if torsion] Set P1 -(a, (d- a1a- a3)/2). Compute the points 2H,
3Pl. 4Pl. SP1 and 6P1, and let x2, ... , X5 be their x-coordinates. If one of
these points is the origin of the curve, or if one of the Xi is equal to the x
coordinate of a point found in step 1, or if x2 = X3 or X3 = X4 or X4 = xs,
then output the two points P1 and P2 - (a, -(d + a1a + a3)/2).

Indeed, from Mazur's Theorem 7.1.11, it is clear that H will be a torsion
point if and only if kP1 is a point of order dividing 2 for k ~ 6 or if kP1 =

7.5 Algorithms for Elliptic Curves over Q 411

-(k + 1)Pl fork ~ 4, and since opposite points have equal x-coordinates in a
Weierstraf3 model, we deduce the test for torsion used in step 4.

Note that to obtain the torsion subgroup from this algorithm is very easy:
if the polynomial P of step 1 has three rational roots, the torsion subgroup
is isomorphic to (Z/2Z) x (Z/(N/2)Z) otherwise it is isomorphic to Z/NZ,
where N is the total number of torsion points output by the algorithm.

The last algorithm that we will see in this section is an algorithm to
compute the canonical height of a rational point.

The Weil height of a point P = (~, b3) on an elliptic curve E is defined
e e

to be h(P) = ln lei- It is known that the limit

h(P) = lim h(2n P)
n-+oo 22n

exists and defines a positive definite quadratic form on lR ® E(Q), known as
the canonical height function on E(Q). The existence of this limit means that
when a rational point with large denominator is multiplied by some integer
m for the group law on the curve, the number of digits of its denominator is
multiplied by m2 •

The symmetric bilinear form (P, Q) = h(P + Q) - h(P) - h(Q) is called
the canonical height pairing and is used to compute the regulator in the Birch
and Swinnerton-Dyer Conjecture 7.3.9. The canonical height has properties
analogous to those of the logarithmic embedding for number fields (Theorem
4.9.7). More precisely, h(P) = 0 if and only if P is a point of finite order.
More generally if P1, ... , Pr are points onE, then det((Pi,P;)) = 0 if and
only if there exists a linear combination of the points (for the group law of E)
which is a point of finite order. Hence this determinant is called the (elliptic)
regulator of the points Pi.

If Pt, ... , Pr form a basis of the torsion-free part of E(Q), the regulator
R(E/Q) which enters in the Birch and Swinnerton-Dyer conjecture is the
elliptic regulator of the points Pi.

The height function h(P) has a very interesting structure (see [Sill). We
will only note here that it can be expressed as a sum of local functions, one for
each prime number p and one for the "Archimedean prime" oo. To compute
the contribution of a prime p we use an algorithm due in this form to Silverman
(see [Sil2]). We will always assume that the elliptic curve is given by a global
minimal equation, obtained for example by Algorithm 7.5.3.

Algorithm 7.5.6 (Finite part of the height). Given at, ... , a6 E Z the coef
ficients of the global minimal equation of an elliptic curve E and the coordinates
(x, y) of a rational point P on E, this algorithm computes the contribution of
the finite primes to the canonical height h(P).

1. [Initialize] Using Formulas (7.1), compute b2, b4, b5, bs, C4, and .6.. Set
z - (1/2) ln(denominator of x), A -numerator of 3x2 + 2a2x + a4 - a1y,

412 7 Introduction to Elliptic Curves

B +--numerator of 2y + a1x + a3 , C +-numerator of 3x4 + b2x3 + 3b4x2 +
3b6x + bs and D +-- gcd(A, B).

2. (Loop on p)lf D = 1, output z and terminate the algorithm. Otherwise, choose
a prime divisor p of D and set D +-- D fp until p f D.

3. (Add local contribution)lf p f C4, then set N +-- v11(6.), n +-- min(v11 (B), N/2)
and z +-- z- (n(N- n)/(2N)) lnp. Otherwise, if v11(C) ;::: 3v11(B) set z +
z- (v11(B)/3) lnp else set z +-- z- (v11(C)/8) lnp. Go to step 2.

The Archimedean contribution has a more interesting history from the
computational point of view. Initially, it was defined using logarithms of a
functions on the curve, but such objects are not easy to compute by hand or
with a hand-held calculator. Tate then discovered a very nice way to compute
it using a simple series. Silverman's paper [Sil2) also contains an improvement
to that method. However, that series converges only geometrically (the n-th
term is bounded by a constant times 4 -n). The original definition, while more
cumbersome, has a faster rate of convergence by using q-expansions, so it
should be preferred for high-precision calculations.

Algorithm 7.5.7 (Height Contribution at oo). Given a 1, ... ,a6 E lR and the
coordinates (x, y) of a point P on E(JR), this algorithm computes the Archimedean
contribution of the canonical height of P.

1. (Initialize) Using Formulas (7.1), compute b2, b4 , b6 and 6.. Using Algorithm
7.4.7, compute w1 and w2. Using Algorithm 7.4.8, compute the elliptic loga
rithm z of the point P. Set A.+-- 2rrfw2, t +-- A.Re(z) and q +-- e2i7rw1 /w2 •

(Note that q is a real number and iqi < 1.)

2. (Compute theta function) Set

00

() +-- L sin((2n + l)t)(-l)nqn(n+l)/2

n=O

(stopping the sum when qn(n+l)/2 becomes sufficiently small).

3. (Terminate) Output

and terminate the algorithm.

The canonical height h(P) is the sum of the two contributions coming
from Algorithms 7.5.6 and 7.5.7.

7.5 Algorithms for Elliptic Curves over Q 413

7.5.3 Algorithms for computing the £-function

As we have seen, according to the Birch and Swinnerton-Dyer conjecture, most
of the interesting arithmetical invariants of an elliptic curve E are grouped
together in the behavior of L(E, s) around the points= 1, in a manner similar
to the case of number fields. In this section, we would like to explain how to
compute this L function at s = 1, assuming of course that E is a modular
elliptic curve. The result is analogous to Propositions 5.3.14 and 5.6.11 but is
in fact simpler since it (apparently) does not involve any higher transcendental
functions.

Proposition 7.5.8. Let E be a modular elliptic curve, let N be the conductor
of E, let L(E, s) = Ln>l ann-s be the L-series of E and finally let e: = ±1
be the sign in the functzonal equation for L(E, s). Then if A is any positive
real number, we have

00

L(E, 1) = L ~ (e-2 ... nA/v'N + c:e-2,..n/(Av'N))

n=l

and in particular

00

L(E, 1) = (1 + c:) L an e-21rn/v'N.
n=l n

As in the case of quadratic fields, we have given the general formula in
volving a real parameter A, but here the purpose is different. In the case
of quadratic fields, it gave the possibility of checking the correctness of the
computation of certain higher transcendental functions. Here, its use is very
different: since the expression must be independent of A, it gives an indirect
but quite efficient way to compute the sign e: (and also the conductor N for
that matter), which otherwise is not so easy to compute (although there exist
algorithms for doing so which are rather tedious). Indeed, we compute the
right hand side of the formula giving L(E, 1) for two different values of A, say
A= 1 and A= 1.1 (A should be close to 1 for optimal speed), and the results
must agree. Only one of the two possible choices for e: will give results which
agree. Hence the above proposition enables us, not only to compute L(E, 1)
to great accuracy (the series converges exponentially) but also to determine
the sign of the functional equation. Also note that the ap are computed using
Algorithm 7.4.12 or simply as a sum of Legendre symbols, and the an are
computed using the relations a1 = 1, amn = aman if m and n are coprime,
and apk = apapk-l - papk-2 for k 2: 2.

This is not the whole story. Assume that we discover in this way that
e: = -1. Then L(E, 1) = 0 for trivial antisymmetry reasons, but the Birch and
Swinnerton-Dyer conjecture tells us that the interesting quantity to compute

414 7 Introduction to Elliptic Curves

is now the derivative L'(E, 1) of L(E, s) at s = 1. In that case we have the
following proposition which now involves higher transcendental functions.

Proposition 7.5.9. Let E be a modular elliptic curve, let N be the conductor
of E, and let L(E, s) = l::n>l ann-s be the L-series of E. Assume that the
sign c: of the functional equation for L(E, s) is equal to -1 {hence trivially
L(E, 1) = 0}. Then

L'(E,1) = 2~ ~ E1 (~)

where E1 is the exponential integral function already used in Proposition
5.6.11.

In the case where L(E, s) vanishes to order greater than 1 around s = 1,
there exist similar formulas for L(rl(E, 1) using functions generalizing the
function E1(x). We refer to [BGZ] for details. If we assume the Birch and
Swinnerton-Dyer conjecture, these formulas allow us to compute the rank of
the curve E as the exact order of vanishing of L(E, s) around s = 1. Note
that although the convergence of the series which are obtained is exponential,
we need at least 0(.../N) terms before the partial sums start to become sig
nificantly close to the result, hence the limit of this method, as in the case of
quadratic fields, is for N around 1010 . In particular, if we want to estimate the
rank of elliptic curves having a much larger conductor, other methods must
be used (still dependent on all standard conjectures). We refer to [Mes2] for
details.

7.6 Algorithms for Elliptic Curves with Complex
Multiplication

7.6.1 Computing the Complex Values of j(r)

We first describe an efficient way to compute the numerical value of the func
tion j(r) forTE 'H..

Note first that, as in most algorithms of this sort, it is worthwhile to have
T with the largest possible imaginary part, hence to use j(r) = j('y(r)) for
any 'Y E SL2(Z). For this, we use Algorithm 7.4.2.

After this preliminary step, there are numerous formulas available to us
for computing j (T), as is the case for all modular forms or functions. We could
for example use Algorithm 7.4.3 for computing g2 and g3 . It would also be
possible to use formulas based on the use of the arithmetic-geometric mean
which are quadratically convergent. This would be especially useful for high
precision computations of j(r).

7.6 Algorithms for Elliptic Curves with Complex Multiplication 415

We will use an intermediate approach which I believe is best suited for
practical needs. It is based on the following formulas.

Set as usual q = e2i11"T, and

This expression should be computed as written. Note that the convergence is
considerably better than that of an ordinary power series since the exponents
grow quadratically. It is a well known theorem on modular forms that

3 2 (211")12
92 - 27 93 = W2 ~.

Now the formula that we will use for computing j(r) is

"() _ (256/(r) + 1)3

J r - f(r)
~(2r)

where f(r) = ~(r)

(note that changing r into 2r changes q into q2).

7.6.2 Computing the Hilbert Class Polynomials

Our second goal is to compute the equation of degree h(D) satisfied by j(r),
which we will call the Hilbert class polynomial for the discriminant D. For
this we directly apply Theorem 7.2.14. This leads to the following algorithm,
which is closely modeled on Algorithm 5.3.5.

Algorithm 7.6.1 (Hilbert Class Polynomial). Given a negative discriminant
D, this algorithm computes the monic polynomial of degree h(D) in Z[X] of
which j((D + v'D)/2) is a root. We make use of a polynomial variable P.

1. (Initialize) Set P +-- 1, b +-- D mod 2 and B +-l JIDI/3 j.
2. (Initialize a) Set t +-- (b2 - D)/4 and a+-- max(b, 1).

3. (Test) If aft go to step 4. Otherwise compute j +-- j((-b + v'D)/(2a)) using
the above formulas. Now if a= b or a2 =tor b = 0 set P +-- P ·(X- j), else
set P +-- P · (X2 - 2Re(j)X + lil2).

4. (Loop on a) Set a +-- a + 1. If a2 :::; t, go to step 3.

5. (Loop on b) Set b +-- b + 2. If b :::; B go to step 2, otherwise round the
coefficients of P to the nearest integer, output P and terminate the algorithm.

An important remark must be made, otherwise this algorithm would not
make much sense. The final coefficients of P (known to be integers) must be

416 7 Introduction to Elliptic Curves

computed within an error of 0.5 at most. For this, we need to make some a
priori estimate on the size of the coefficients of P. In practice, we look at the
constant term, which is usually not far from being the largest. This term is
equal to the product of the values j((-b + ,fl5)j(2a)) over all reduced forms

(a,b,c), and the modulus of this is approximately equal to e7r/iDI/(2a) hence
the modulus of the constant term is relatively close to 10k, where

k = 1f JiDT "' .!
ln(10) L a'

the sum running over all reduced forms (a, b, c) of discriminant D.
Hence in step 3, the computation of the j-values should be done with at

least k+ 10 significant digits, 10 being an empirical constant which is sufficient
in practice. Note that the value of I: 1/ a is not known in advance, so it should
be computed independently (by again applying a variant of Algorithm 5.3.5),
since this will in any case take a negligible proportion of the time spent.

7.6.3 Computing Weber Class Polynomials

One of the main applications of computing the Hilbert class polynomials is
to explicitly generate the Hilbert class field of K = Q(JD) when D is a
negative fundamental discriminant. As already mentioned, the coefficients of
these polynomials will be very large, and it is desirable to make them smaller.
One method is to use the PO LRED Algorithm 4.4.11. An essentially equivalent
method is given in [Kal-Yui]. A better method is to start by using some extra
algebraic information.

We give an example. Set

(this is the 24-th root of the function .D.(r) defined above, and is called
Dedekind's eta-function). Define

f () = ry(r/2)
1 T rJ(T) .

Then if D = ±8 (mod 32) and 3 f D, if we set

we can use u instead of j for generating the class field. Indeed, one can show
that K(j) = K(u), that u is an algebraic integer (of degree equal to h(D)), and
what is more important, that the coefficients of the minimal monic polynomial

7. 7 Exercises for Chapter 7 417

of u (which we will call the Weber class polynomial for D) have approximately
12 times fewer digits than those of the Hilbert class polynomials.

Note that one can easily recover j from u if needed. For example, in our
special case above we have

This takes care only of certain congruence classes forD, but most can be
treated in a similar manner. We refer the interested reader to [Atk-Mor) or to
[Kal-Yui) for complete details.

The algorithm for computing the Weber class polynomials is essentially
identical to the one for Hilbert class polynomials: we replace j by u, and fur
thermore use a much lower precision for the computation of u. For example, in
the caseD= ±8 (mod 32) and 3 f D, we can take approximately one twelfth
of the number of digits that were needed for the Hilbert class polynomials.

7. 7 Exercises for Chapter 7

1. (J. Cremona) Given C4 and es computed by Formulas (7.1), we would like to
recover the bi and ai, where we assume that the ai are in Z. Show that the
following procedure is valid. Let b2 be the unique integer such that -5 ~ b2 ~ 6
and b2 = -es mod 12. Then set b4 = (b~ -C4)/24, b6= (-b~ + 36b2b4- es)/216.
Finally set a1 = b2 mod 2 E {0, 1}, a2 = (b2-a1)/4 E { -1, 0, 1}, a3 = b6 mod 2
E {0, 1}, a4 = (b4- a1a3)/2 and a6= (b6- a3)/4.

2. Let E be an elliptic curve with complex multiplication by the complex quadratic
order of discriminant D. Show that if pis a prime such that (%) = -1, then
IE(Z/pZ)I = p + 1.

3. Using the result of Exercise 2, show that the only torsion points on the elliptic
curve y 2 = x3 - n2x (which has complex multiplication by Z[i)) are the 4 points
of order 1 or 2. (Hint: use Dirichlet's theorem on the infinitude of primes in
arithmetic progressions.)

4. Show that the elliptic curve y2 = 4x3 - 30x - 28 has complex multiplication
by Z[A] and give explicitly the action of multiplication by ..;=2 on a point
(x,y).

5. Given an elliptic curve defined over Q by a generalized Weierstrafi equation, write
an algorithm which determines whether this curve has complex multiplication,
and if this is the case, gives the complex quadratic order End(E). (This exercise
requires some additional knowledge about elliptic curves.)

6. Using Algorithm 7.4.10, find a Weierstrafi equation for the elliptic curve E given
by the projective equation

x3+ y3 = dt3

with (1 : -1 : 0) as given rational point.

418 7 Introduction to Elliptic Curves

7. Given the point (2 : 1 : 1) on the elliptic curve whose projective equation is
x 3 + y 3 = 9t3 , find another rational point with positive coordinates (apart from
the point (1 : 2 : 1) of course). It may be useful to use the result of Exercise 6.

8. Given an elliptic curve E by a general WeierstraB equation y 2 + a1xy+ aay =
x3 + a2x2 + a4 x + a6 and a complex number z, give the formulas generalizing
those of Proposition 7.4.4 for the coordinates (x, y) on E(C) corresponding to z
considered as an element of C/ L where L is the lattice associated to E.

9. (J.-F. Mestre) Let r1, r2, ra and r 4 be distinct rational numbers and let t be
a parameter (which we will also take to be a rational number). Consider the
polynomial of degree 12

P(X) = II (X- (ri +tr;)).
1:5i,j:54, if'.j

a) By considering the Laurent series expansion of pl/a show that for any
monic polynomial P of degree 12 there exists a unique polynomial g E Q[X]
such that deg(P(X) -l(X)) :5 7, and show that in our special case we have in
fact deg(P(X)- g3 (X)) :5 6.

b) Show that there exists q(X) E Q[X] and r(X) E Q[X] such that P(X) =
l(X) + q(X)g(X) + r(X) with deg(q) :52 and deg(r) :53.

c) Deduce from this that the equation Y 3+q(X)Y +r(X) = 0 is the equation
of a cubic with rational coefficients, and that the 12 points (ri+tr;, g(ri+tr;))if'i
are 12 (not necessarily distinct) rational points on this cubic.

d) Give explicit values of the ri and t such that the cubic is non-singular,
the 12 points above are distinct and in fact linearly independent for the group
law on the cubic.

e) Using Algorithm 7.4.10, find a WeierstraB equation corresponding to the
cubic, and give explicitly an elliptic curve defined over Q whose rank is at least
equal to 11 as well as 11 independent points on the elliptic curve (note that we
have to "lose" a point in order to obtain an elliptic curve). To answer the last
two questions of this exercise, the reader is strongly advised to use a package
such as those described in Appendix A. In [Nag] it is shown how to refine this
construction in order to have infinite families of elliptic curves of rank 13 instead
of 11.

10. Prove that the AGM of two positive real numbers exists, i.e. that the two se
quences an and bn given in the text both converge and to the same limit. Show
also that the convergence is quadratic.

11. The goal of this exercise is to prove the formula giving AGM(a, b) in terms of
an elliptic integral.

a) Set

I(a, b) = 11r /2 --;:==d=t =====:=
0 Va2 cos2 t+ b2 sin2 t

By making the change of variable sin t = 2a sin u/((a +b)+ (a- b) sin2 u) show
that I(a, b)= I((a+ b)/2, Jab).

b) Deduce from this the formula I(a, b)= 7r/(2AGM(a, b)) given in the text.
c) By making the change of variable x =a+ (b -a) sin2 t, express I(a, b) as

an elliptic integral.

Chapter 8

Factoring in the Dark Ages

I owe this title to a talk given by Hendrik Lenstra at MSRl Berkeley in the
spring of 1990.

8.1 Factoring and Primality Testing

Since Fermat, it is known that the problem of decomposing a positive integer
N into the product of its prime factors splits in fact in three subproblems.
The first problem is to decide quickly whether N is composite or probably
prime. Such tests, giving a correct answer when N is composite, but no real
answer when N is prime, will be called compositeness tests (and certainly not
primality tests). We will study them in Section 8.2. The second problem is, if
one is almost sure that N is prime, to prove that it is indeed prime. Methods
used before 1980 to do this will be studied in Section 8.3. Modern methods are
the subject matter of Chapter 9. The third problem is that once one knows
that N is composite, to factor N. Methods used before the 1960's (i.e. in the
dark ages) will be studied starting at Section 8.4. Modern methods are the
subject matter of Chapter 10.

Note that factoring/primality testing is usually a recursive process. Given
a composite number N, a factoring method will not in general give the
complete factorization of N, but only a non-trivial factor d, i.e. such that
1 < d < N. One then starts working on the two pieces d and N /d. Finding
a non-trivial divisor d of N will be called splitting N, or even. sometimes by
abuse of language, factoring N.

Before going to the next section, it should be mentioned that the most
naive method of trial division (which simultaneously does factoring and pri
mality testing) deserves a paragraph. Indeed, in most factoring methods, it
usually never hurts to trial divide up to a certain bound to remove small fac
tors. Now we want to divide N by primes up to the square root of N. For this,
we may or may not have at our disposal a sufficiently large table of primes.
If this is not the case, it is clear that we can divide N by numbers d in given
congruence classes, for example 1 and 5 modulo 6, or 1, 7, 11, 13, 17, 19, 23, 29
modulo 30. We will then make unnecessary divisions (by composite numbers),
but the result will still be correct. Hence we may for instance use the following
algorithm.

420 8 Factoring in the Dark Ages

Algorithm 8.1.1 (Trial Division). We assume given a table of prime numbers
p[1] = 2, p[2] = 3, ... , p[k]. with k > 3, an array t +-- [6, 4, 2, 4, 2, 4, 6, 2], and an
index j such that if p[k] mod 30 is equal to 1, 7, 11, 13, 17, 19, 23 or 29 then j is
set equal to equal to 0, 1, 2, 3, 4, 5, 6 or 7 respectively. Finally, we give ourselves
an upper bound B such that B ;::: p[k], essentially to avoid spending too much
time.

Then given a positive integer N, this algorithm tries to factor (or split N),
and if it fails, N will be free of prime factors less than or equal to B.

1. [Initialize] If N ~ 5, output the factorization 1 = 1, 2 = 2, 3 = 3, 4 = 22 ,

5 = 5 corresponding to the value of N, and terminate the algorithm. Otherwise,
set i +-- -1, m +-- 0, l +-- LJNJ.

2. [Next prime] Set m +-- m + 1. If m > k set i +-- j - 1 and go to step 5,
otherwise set d +-- p[m].

3. [Trial divide] Set r +-- N mod d. If r = 0, then output d as a non-trivial divisor
of Nand terminate the algorithm (or set N +-- N/d, l +-- L JNJ and repeat
step 3 if we want to continue finding factors of N).

4. [Prime?] If d ;::: l, then if N > 1 output a message saying that the remaining
N is prime and terminate the algorithm. Otherwise, if i < 0 go to step 2.

5. [Next divisor] Set i +-- i + 1 mod 8, d +-- d + t[i]. If d > B, then output a
message saying that the remaining prime divisors of N are greater than B,
otherwise go to step 3.

Note that we have i = -1 as long as we are using our prime number table,
i;::: 0 if not.

This test should not be used for factoring completely, except when N is
very small (say N < 108) since better methods are available for that purpose.
On the other hand, it is definitely useful for removing small factors.

Implementation Remark. I suggest using a table of primes up to 500000,
if you can spare the memory (this represents 41538 prime numbers). Trial
division up to this limit usually never takes more than a few seconds on
modern computers. Furthermore, only the difference of the primes (or even
half of these differences) should be stored and not the primes themselves, since
p[k]- p[k -1] can be held in one byte instead of four when p[k] ~ 436273009,
and (p[k] - p[k- 1])/2 can be held in one byte if p[k] ~ 304599508537 (see
[Bre3]).

Also, I suggest not doing any more divisions after exhausting the table of
primes since there are better methods to remove small prime factors. Finally,
note that it is not really necessary to compute l +-- L JNJ in the initialization
step, since the test d ;::: l in step 4 can be replaced by the test q ~ l, where
q is the Euclidean quotient of N by d usually computed simultaneously with
the remainder in step 3.

8.2 Compositeness Tests 421

8.2 Compositeness Tests

The first thing to do after trial dividing a number N up to a certain bound, is
to check whether N (or what remains of the unfactored part) is probably prime
or composite. The possibility of doing this easily is due to Fermat's theorem
aP-1 = 1 {mod p) when pis a prime not dividing a. Fermat's theorem in itself
would not be sufficient however, even for getting a probable answer.

The second reason Fermat's theorem is useful is that aP-1 mod p can be
computed quickly using the powering algorithms of Section 1.2. This is in
contrast with for instance Wilson's theorem stating that (p-1)! = -1 (mod p)
if and only if pis prime. Although superficially more attractive than Fermat's
theorem since it gives a necessary and sufficient condition for primality, and
not only a necessary one, it is totally useless because nobody knows how to
compute (p- 1)! mod pin a reasonable amount of time.

The third reason for the usefulness of Fermat's theorem is that although
it gives only a necessary condition for primality, exceptions (i.e. composite
numbers which satisfy the theorem) are rare. They exist, however. For exam
ple the number N = 561 = 3 · 11 · 17 is such that aN- 1 = 1 (mod N) as
soon as (a, N) = 1. Such numbers are called Carmichael numbers. It has just
recently been proved by Alford, Granville and Pomerance ([AGP]) that there
are infinitely many Carmichael numbers and even that up to x their number
is at least C · x 217 for some positive constant C.

It is not difficult to strengthen Fermat's theorem. If pis an odd prime and p
does not divide a, then a<P- 1)/2 = ±1 (mod p) (more precisely it is congruent
to the Legendre symbol (~), see Section 1.4.2). This is stronger than Fermat,
and for example eliminates 561. It does not however eliminate all counter
examples, since for instance N = 1729 satisfies a<N-1)12 = 1 {mod N) for all
a coprime to N.

The first test which is really useful is due to Solovay and Strassen ([Sol
Str]). It is based on the fact that if we require not only a<N-1)12 = ±1
(mod N) but a<N-1)12 = (-N) {mod N), where (N") is the Jacobi-Kronecker
symbol, then this will be satisfied by at most N /2 values of a when N is not a
prime. This gives rise to the first compositeness test, which is probabilistic in
nature: for 50 (say) randomly chosen values of a, test whether the congruence
is satisfied. If it is not for any value of a, then N is composite. If it is for all
50 values, then we say that N is probably prime, with probability of error less
than 2-50 ~ 10-15 , lower in general than the probability of a hardware error.

This test has been superseded by a test due to Miller and Rabin ([Mil],
[Rab]), which has two advantages. First, it does not require any Jacobi symbol
computation, and second the number of a which will satisfy the test will be
at most N /4 instead of N /2, hence fewer trials have to be made to ensure a
given probability. In addition, one can prove that if a satisfies the Rabin-Miller
test, then it will also satisfy the Solovay-Strassen test, so the Miller-Rabin test
completely supersedes the Solovay-Strassen test.

422 8 Factoring in the Dark Ages

Definition 8.2.1. Let N be an odd positive integer, and a be an integer.
Write N- 1 = 2tq with q odd. We say that N is a strong pseudo-prime in
base a if either aq = 1 (mod N), or if there exists an e such that 0 ~ e < t
and a2•q = -1 (mod N).

If p is an odd prime, it is easy to see that p is a strong pseudo-prime in
any base not divisible by p (see Exercise 1). Conversely, one can prove (see for
example [Knu2]) that if pis not prime, there exist less than p/4 bases a such
that 1 < a < p for which p is a strong pseudo-prime in base a. This leads to
the following algorithm.

Algorithm 8.2.2 (Rabin-Miller). Given an odd integer N ~ 3, this algorithm
determines with high probability if N is composite. If it fails, it will output a
message saying that N is probably prime.

1. [Initialize] Set q +- N -1, t +- 0, and while q is even set q +- q/2 and t +- t+1
(now N -1 = 2tq with q odd). Then set c +- 20.

2. [Choose new a] Using a random number generator, choose randomly an a such
that 1 <a< N. Then set e +- 0, b +- aq mod N. If b = 1, go to step 4.

3. [Squarings] While b ¢. ±1 (mod N) and e ~ t - 2 set b +- b2 mod N and
e +- e + 1. If b =/= N- 1 output a message saying that N is composite and
terminate the algorithm.

4. [Repeat test] Set c +- c- 1. If c > 0 go to step 2, otherwise output a message
saying that N is probably prime.

The running time of this algorithm is essentially the same as that of the
powering algorithm which is used, i.e. in principle O(ln3 N). Note however that
we can reasonably restrict ourselves to single precision values of a (which will
not be random any more, but it probably does not matter), and in that case
if we use the left-right Algorithms (1.2.2 to 1.2.4), the time drops to O(ln2 N).
Hence, it is essentially as fast as one could hope for.

This algorithm is the workhorse of compositeness tests, and belongs in
almost any number theory program. Note once again that it will prove the
compositeness of essentially all numbers, but it will never prove their primal
ity. In fact, by purely theoretical means, it is usually possible to construct
composite numbers which pass the Rabin-Miller test for any given reasonably
small finite set of bases a ([Arn]). For example, the composite number

1195068768795265792518361315725116351898245581

=24444516448431392447461·48889032896862784894921

is a strong pseudo-prime to bases 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 and 31 and
several others.

There is a variation on this test due to Miller which is as follows. If one
assumes the Generalized Riemann Hypothesis, then one can prove that if N

8.3 Primality Tests 423

is not prime, there exists an a < C ln2 N such that N will not be a strong
pseudo-prime in base a, C being an explicit constant. Hence this gives a non
probabilistic primality and compositeness test, but since it is based on an
unproven hypothesis, it cannot be used for the moment. Note that the situ
ation is completely different in factoring algorithms. There, we can use any
kinds of unproven hypotheses or crystal balls for that matter, since once the
algorithm (or pseudo-algorithm) finishes, one can immediately check whether
we have indeed obtained a factor of our number N, without worrying about the
manner in which it was obtained. Primality testing however requires rigorous
mathematical proofs.

Note also that even if one uses the best known values of the constant C,
for our typical range of values of N (say up to 10500), the modern methods
explained in Chapter 9 are in practice faster.

8.3 Primality Tests

We now consider the practical problem of rigorously proving that a number N
is prime. Of course, we will try to do this only after N has successfully passed
the Rabin-Miller test, so that we are morally certain that N is indeed prime.

8.3.1 The Pocklington-Lehmer N - 1 Test

We need a sort of converse to Fermat's theorem. One such converse was found
by Pocklington, and improved by Lehmer. It is based on the following result.

Proposition 8.3.1. Let N be a positive integer, and let p be a prime divisor
of N -1. Assume that we can find an integer ap such that a:-1 = 1 (mod N)

and (a'f- 1>/v - 1, N) = 1. Then if d is any divisor of N, we have d = 1
(mod pap), where pap is the largest power of p which divides N - 1.

Proof It is clearly enough to prove the result for all prime divisors of N, since
any divisor is a product of prime divisors. Now if d is a prime divisor of N,
we have a;- 1 = 1 (mod d), since ap is coprime to N (why?) hence to d. On

the other hand, since (af"-1)/P- 1, N) = 1, we have a~N- 1)/P ¢. 1 (mod d).
If e is the exact order of ap modulo d (i.e. the smallest positive exponent such
that a; = 1 (mod d)), this means that e I d- 1, e f (N- 1)/P but e I N- 1,
hence paP I e I d -1 showing that d = 1 (mod paP). D

Corollary 8.3.2. Assume that we can write N -1 = F · U where (F, U) = 1,
F is completely factored, and F > ..;N. Then, if for each prime p dividing F
we can find an ap satisfying the conditions of Proposition 8.3.1, N is prime.
Conversely, if N is prime, for any prime p dividing N- 1, one can find ap
satisfying the conditions of Proposition 8.3.1.

424 8 Factoring in the Dark Ages

Proof. If the hypotheses of this corollary are satisfied, it follows immediately
from Proposition 8.3.1 that all divisors of N are congruent to 1 mod F. Since
F > .;N, this means that N has no prime divisor less than its square root,
hence N is prime.

Conversely, when N is prime, if we take for ap a primitive root modulo
N, i.e. a generator of the multiplicative group (Z/ N'll)*, it is clear that the
conditions of the proposition are satisfied since the order of ap is exactly equal
toN-1. D

This corollary gives us our first true primality test. Its main drawback is
that we need to be able to factor N - 1 sufficiently, and this is in general very
difficult. It is however quite useful for numbers having special forms where
N -1 factors easily, for example the Fermat numbers 22k + 1 (see Exercise 9).

The condition F > .JN of the corollary can be weakened if we make an
extra test:

Proposition 8.3.3. Assume that we can write N -1 = P.U where (F, U) = 1,
F is completely factored, all the prime divisors of U are greater than B, and
B · F ;::: .;N. Then if for each prime p dividing F we can find an ap satisfying
the conditions of Proposition 8.3.1, and if in addition we can find au such
that a~-l = 1 (mod N) and (a~- 1, N) = 1, then N is prime. Conversely,
if N is prime, such ap and au can always be found.

Proof We follow closely the proof of Proposition 8.3.1. Let d be any prime
divisor of N. Proposition 8.3.1 tells us that d = 1 (mod F). If e is the exact
order of au modulo d, then e I d- 1, e I N- 1 and e f F = (N- 1)/U.
Now one cannot have (e, U) = 1, otherwise from e IN- 1 = FU one would
get e I F, contrary to the hypothesis. Hence (e, U) > 1, and since U has all
its prime factors greater than B, (e, U) > B. Finally, since (F, U) = 1, from
d = 1 (mod e) and d = 1 (mod F) we obtain d = 1 (mod (e, U) ·F) hence
d > B · F;::: .JN, showing that N has no prime divisor less than or equal to
its square root, hence that N is prime. D

Note that the condition that U has all its prime factors greater than B is
very natural in practice since the factorization N - 1 = F · U is often obtained
by trial division.

8.3.2 Briefly, Other Tests

Several important generalizations of this test exist. First, working in the mul
tiplicative group of the field IF N2 instead of IF N, one obtains a test which uses
the factorization of N + 1 instead of N - 1. This gives as a special case the
Lucas-Lehmer test for Mersenne numbers N = 2P- 1. In addition, since IFN
is a subfield of IF N2, it is reasonable to expect that one can combine the in
formation coming from the two tests, and this is indeed the case. One can

8.4 Lehman's Method 425

also use higher degree finite fields (JF Ns, JF N4 and JF N6) which correspond to
using in addition the completely factored part of N 2 + N + 1, N 2 + 1 and
N 2 - N + 1 respectively. These numbers are already much larger, however,
and do not always give much extra information. Other finite fields give even
larger numbers. One last improvement is that, as in Proposition 8.3.3 one can
use the upper bound used in doing the trial divisions to find the factors of
N- 1, N + 1, etc ... For details, I refer to [BLSJ, [Sel-Wun] or [Wil-Jud].

8.4 Lehman's Method

We now turn our attention to factoring methods. The spirit here will be quite
different. For example, we do not need to be completely rigorous since if we
find a number which may be a factor of N, it will always be trivial to check
if it is or not. It will however be useful to have some understanding of the
asymptotic behavior of the algorithm.

Although several methods were introduced to improve trial division (which
is, we recall, a O(N1/2+£) algorithm), the first method which has a run
ning time which could be proved to be substantially lower was introduced
by Lehman (see [Leh1]). Its execution time is at worst O(N1/3+£), and it is
indeed faster than trial division already for reasonably small values of N. The
algorithm is as follows.

Algorithm 8.4.1 (Lehman). Given an integer N ~ 3, this algorithm finds a
non-trivial factor of N if N is not prime, or shows that N is prime.

1. [Trial division] Set B +- l N 113 J. Trial divide N up to the bound B using
Algorithm 8.1.1. If any non-trivial factor is found, output it and terminate the
algorithm. Otherwise set k +- 0.

2. [Loop on k] Set k +- k + 1. If k > B, output the fact that N is prime
and terminate the algorithm. Otherwise, set r = 1 and m = 2 if k is even,
r = k +Nand m = 4 if k is odd.

3. [Loop on a] For all integers a such that 4kN ~ a2 ~ 4kN + B 2 and a = r
(mod m) do as follows. Set c +- a2-4kN. Using Algorithm 1.7.3, test whether
cis a square. If it is, let c = b2 , output gcd(a+b, N) (which will be a non-trivial
divisor of N) and terminate the algorithm. Otherwise, use the next value of a
if any. If all possible values of a have been tested, go to step 2.

Proof (D. Zagier). We only give a sketch, leaving the details as an exercise to
the reader.

If no factors are found during step 1, this means that all the prime factors
of N are greater than N 113 hence N has at most two prime factors.

Assume first that N is prime. Then the test in step 3 can never succeed.
Indeed, if a2 - 4kN = b2 then N I a2 - b2 hence N I (a- b) or N I (a+ b) so
a+ b ~ N, but this is impossible since the given inequalities on k and a imply

426 8 Factoring in the Dark Ages

that a < 2N213 + 1 and b < N 113 so N ~ 13. An easy check shows that for
3 ~ N ~ 13, N prime, the test in step 3 does not succeed.

Assume now that N is composite, so that N = pq with p and q not
necessarily distinct primes, where we may assume that p ~ q. Consider the
convergents Un/Vn of the continued fraction expansion of qfp. Let n be the
unique index such that UnVn < N 113 < Un+lvn+l (which exists since pq >
N 113). Using the elementary properties of continued fractions, if we set k =
UnVn and a= PVn + qun, it is easily checked that the conditions of step 3 are
met, thus proving the validity of the algorithm. D

For each value of k there are at most l/2(v4kN + N 213 - v4kN) ~
N 116k- 112 /8 values of a, and since L:k<x k- 112 ~ 2x112 , the running time of

the algorithm is indeed O(N113+•) as claimed.
We refer to [Leh1] for ways of fine tuning this algorithm, which is now

only of historical interest.

8.5 Pollard's p Method

8.5.1 Outline of the Method

The idea behind this method is the following. Let f(X) be a polynomial
with integer coefficients. We define a sequence by taking any initial x0 , and
setting Xk+l = f(xk) mod N. If p is a (unknown) prime divisor of N, then
the sequence Yk = Xk mod p satisfies the same recursion. Now if f(X) is
chosen suitably, it is not unreasonable to assume that this sequence will behave
like the sequence of iterates of a random map from 'lljp'll into itself. Such a
sequence must of course be ultimately periodic, and a mathematical analysis
shows that it is reasonable to expect that the period and preperiod will have
length 0(/jJ). Now if Yk+t = Yk, this means that Xk+t = Xk (mod p), hence
that (xk+t- Xk, N) > 1. Now this GCD will rarely be equal toN itself, hence
we obtain in this way, maybe not p, but a non-trivial factor of N, so N is
split and we can look at the pieces. The number of necessary steps will be
0(/i)) = O(N114), and the total time in bit operations will be O(N114 ln2 N).

Of course, we have just given a rough outline of the method. It is clear
however that it will be efficient since the basic operations are simple, and
furthermore that its running time depends mostly on the size of the smallest
prime factor of N, not on the size of N itself, hence it can replace trial division
or Lehman's method to cast out small factors. In fact, it is still used along
with more powerful methods for that purpose. Finally, notice that, at least in
a primitive form, it is very easy to implement.

We must now solve a few related problems:

(1) How does one find the periodicity relation Yk+t = Yk?
(2) How does one choose f and xo?
(3) What is the expected average running time, assuming f is a random map?

8.5 Pollard's p Method 427

I would like to point out immediately that although it is believed that the
polynomials that we give below behave like random maps, this is not at all
proved, and in fact the exact mathematical statement to prove needs to be
made more precise.

8.5.2 Methods for Detecting Periodicity

From now on, we consider a sequence Yk+1 = f(Yk) from a finite set E into
itself. Such a sequence will be ultimately periodic, i.e. there exists M and
T > 0 such that fork 2: M, Yk+T = Yk but YM-l+T =/= YM-1· The number M
will be called the preperiod, and T (chosen as small as possible) will be the
period. If the iterates are drawn on a piece of paper starting at the bottom
and ending in a circle the figure that one obtains has the shape of the Greek
letter p, whence the name of the method.

We would like to find a reasonably efficient method for finding k and t > 0
such that Yk+t = Yk (we do not need to compute M and T). The initial
method suggested by Pollard and Floyd is to compute simultaneously with
the sequence Yk the sequence Zk defined by zo =Yo, Zk+l = f(f(zk)). Clearly
Zk = Y2k, and if k is any multiple ofT which is larger than M, we must have
Zk = Y2k = Yk, hence our problem is solved. This leads to a simple-minded
but nonetheless efficient version of Pollard's p method. Unfortunately we need
three function evaluations per step, and this may seem too many.

An improvement due to Brent is the following. Let l(m) be the largest
power of 2 less than or equal to m, i.e.

l(m) = 2Ligmj,

so that in particular l (m) ~ m < 2l (m). Then I claim that there exists an m
such that Ym = Yl(m)- 1. Indeed, if one chooses

m = 2 rigmax(M+l,T)l +T _ 1 ,

we clearly have l(m) = 2rlgmax(M+1,T)l hence l(m) -1;:::: M and m- (l(m)-
1) = T, thus proving our claim.

If instead of computing an extra sequence Zk we compute only the sequence
Yk and keep Y2•-1 each time we hit a power of two minus one, for every m
such that 2e ~ m < 2e+1 it will be enough to compare Ym with Y2•-1 (note
that at any time there is only one value of y to be kept).

Hence Brent's method at first seems definitely superior. It can however
be shown that the number of comparisons needed before finding an equality
Ym = Yl(m)-1 will be on average almost double that of the initial Pollard-Floyd
method. In practice this means that the methods are comparable, the lower
number of function evaluations being compensated by the increased number
of comparisons which are needed.

However a modification of Brent's method gives results which are generally
better t'han the above two methods. It is based on the following proposition.

428 8 Factoring in the Dark Ages

Proposition 8.5.1.

(1) There exists an m such that

Ym = Yl(m)-1 and
3
2t(m) ~ m < 2l(m).

(2) the least such m is mo = 3 if M = 0 and T = 1 {i.e. if Y1 = Yo}, and
otherwise is given by

mo = 2flgmax(M+l,T)l + T rl(M~ + 11-1,
where we set l(O) = 0.

Proof Set e = flgmax(M + 1,T)l We claim that, as in Brent's original
method, we still have l(mo) = 2e. Clearly, 2e ~ m0 , so we must prove that
m0 < 2e+1 or equivalently that

We consider two cases. First, if T ~ l(M), then

T rl(M~ + 11 ~ l(M) + T ~ 2l(M) = 2flg(M+l)l ~ 2e,

since llg MJ + 1 = flg(M + 1)l On the other hand, if T ~ l(M) + 1, then

r!(Mf+ll = 1, and we clearly have T ~ 2e.

Now that our claim is proved, since mo ~ M and mo - (l(mo) - 1) is a
multiple of T we indeed have Ym = Yl(m)- 1 for m = mo. To finish proving
the first part of the proposition, we must show that ~l(mo) ~ m0 (the other
inequality being trivial), or equivalently, keeping our notations above, that

Now clearly the left hand side is greater than or equal to T - 1, and on
the other hand 2flgTl-1 ~ 2IgT- 1 = T- 1. Furthermore, the left hand
side is also greater than or equal to l(M) = 2llgMJ, but one sees easily that
2flg(M+l)l-l = 2llgMJ, thus showing the first part of the proposition. The
proof of the second part (that is, the claim that m0 is indeed the smallest) is
similar (i.e. not illuminating) and is left to the reader. D

Using this proposition, we can decrease the number of comparisons in
Brent's method since it will not be necessary to do anything (apart from a
function evaluation) while m is between 2e and ~2e.

8.5 Pollard's p Method 429

8.5.3 Brent's Modified Algorithm

We temporarily return to our problem of factoring N. We must first explain
how to choose f and xo. The choice of xo seems to be quite irrelevant for
the efficiency of the method. On the other hand, one must choose f carefully.
In order to minimize the number of operations, we will want to take for f
a polynomial of small degree. It is intuitively clear (and easy to prove) that
linear polynomials f will not be random and hence give bad results. The
quadratic polynomials on the other hand seem in practice to work pretty well,
as long as we avoid special cases. The fastest to compute are the polynomials
of the form f(x) = x2 +c. Possible choices for care c = 1 or c = -1. On the
other hand c = 0 should, of course, be avoided. We must also avoid c = -2
since the recursion Xk+l = x~ - 2 becomes trivial if one sets Xk = Uk + 1/uk.

As already explained in Section 8.5.1, the "comparisons" Yk+t = Yk are
done by computing (xk+t -xk, N). Now, even though we have studied efficient
methods for GCD computation, such a computation is slow compared to a
simple multiplication. Hence, instead of computing the GCD's each time, we
batch them up by groups of 20 (say) by multiplying modulo N, and then do
a single GCD instead of 20. If the result is equal to 1 (as will unfortunately
usually be the case) then all the GCD's were equal to 1. If on the other hand
it is non-trivial, we can backtrack if necessary.

The results and discussion above lead to the following algorithm.

Algorithm 8.5.2 (Pollard p). Given a composite integer N, this algorithm
tries to find a non-trivial factor of N.

1. [Initialize) Set y +- 2, x +- 2, x1 +- 2, k +- 1, l +- 1, P +- 1, c +- 0.

2. [Accumulate product) Set x +- x2 + 1 mod N, P +- P · (x1 - x) mod N and
c +- c + 1. (We now have m = 2l- k, l = l(m), x = Xm, X1 = Xl(m)-d If
c = 20, compute g +- (P, N), then if g > 1 go to step 4 else set y +- x and
c+-0.

3. [Advance) Set k +- k - 1. If k ":/= 0 go to step 2. Otherwise, compute g +

(P, N). If g > 1 go to step 4 else set x1 +- x, k +- l, l +- 2l, then repeat k
times x +- x2 + 1 mod N, then set y +- x, c +- 0 and go to step 2.

4. [Backtrack) (Here we know that a factor of N has been found, maybe equal to
N). Repeat y +- y2 + 1 mod N, g +- (x1 -y, N) until g > 1 (this must occur).
If g < N output g, otherwise output a message saying that the algorithm fails.
Terminate the algorithm.

Note that the algorithm may fail (indicating that the period modulo the
different prime factors of N is essentially the same). In that case, do not start
with another value of xo, but rather with another polynomial, for example
x2 - 1 or x2 + 3.

This algorithm has been further improved by P. Montgomery ([Mon2])
and R. Brent ([Bre2]).

430 8 Factoring in the Dark Ages

8.5.4 Analysis of the Algorithm

As has already been said, it is not known how to analyze the above algorithms
without assuming that f is a random map. Hence the analysis that we give
is in fact an analysis of the iterates of a random map from a finite set E of
cardinality p into itself. We also point out that some of the arguments given
here are not rigorous but can be made so. We have given very few detailed
analysis of algorithms in this book, but we make an exception here because
the mathematics involved are quite pretty and the proofs short.

Call P(M, T) the probability that a sequence of iterates Ym has preperiod
M and period T. Then Yo, ... , YM+T-1 are all distinct, and YM+T = YM·

Hence we obtain

P(M,T) = _!_ II (1- ~)-
p 1$k<M+T p

Now we will want to compute the asymptotic behavior as p --+ oo of the
average of certain functions over all maps f, i.e. of sums of the form

s = L P(M,T)g(M,T).
M,T

Now if we set M = J.LVP and T = >...;p, we have

ln(p. P(M,T)) = L ln (1- ~) = L (-~ + o(~))
k<(>.+l')v'P p k<(>.+l')v'P p p2

=- (A+J.L)2 +O(A+J.L) +O((A+J.L)a)·
2 ..;p ..;p

Hence the limiting distribution of P(M, L)dM dL is

so our sum S is asymptotic to

As a first application, let us compute the asymptotic behavior of the average
of the period T.

Proposition 8.5.3. Asp --+ oo, the average ofT is asymptotic to

FP v-s·

8.5 Pollard's p Method 431

Proof Using (*), we see that the average ofT is asymptotic to

By symmetry, this is equal to one half of the integral with x + y instead of y,
and this is easily computed and gives the proposition. D

Now we need to obtain the average of the other quantities entering into
the expression for mo given in Proposition 8.5.1. Note that

We then have

Proposition 8.5.4. As p --+ oo, the average ofT ll(~) J is asymptotic to

(ln 1r- 'Y) {irP
2ln2 V 8

where 'Y = 0.57721 . . . is Euler's constant.

Proof The proof is rather long, so we only sketch the main steps. Using (*),
the average of the quantity that we want to compute is asymptotic to

S = y...JP e-(x+y) 12dx dy. 1ooloo l2Llg(:z:yp)J J 2

0 0 y~

By splitting up the integral into pieces where the floor is constant, it is then
a simple matter to show that

where F(y) = JY00 e-t212dt. Now we assume that if we replace flg(ny~)l by
lg(ny~) + u, where u is a uniformly distributed variable between 0 and 1,
then Swill be replaced by a quantity which is asymptotic to S (this step can
be rigorously justified), i.e.

00 {1 roo
S"' .,JP L Jo du Jo yF(2uny + y) dy.

n=l 0 0

Now using standard methods like integration by parts and power series ex
pansions, we find

432 8 Factoring in the Dark Ages

S rv {iP G(1)- G(1/2)
V8 ln2 '

where

G(x) = f)-1)kk ~ 1 ((k)xk
k=2

and ((s) is the Riemann zeta function. Now from the Taylor series expansion
of the logarithm of the gamma function near x = 1, we immediately see that

r'(x + 1)
G(x) = x r(x + 1) -lnr(x + 1),

and using the special values of the gamma function and its derivative, we
obtain Proposition 8.5.4. D

In a similar way (also by using the trick with the variable u), we can prove:

Proposition 8.5.5. As p -+ oo, the average of

2 pg max(M +l,T)l

is asymptotic to

Combining these three propositions, we obtain the following theorem.

Theorem 8.5.6. As p -+ oo, the average number of function evaluations in
Algorithm 8. 5. 2 is asymptotic to

and the number of multiplications mod N (i.e. implicitly of GCD's) is asymp
totic to

This terminates our analysis of the Pollard p algorithm. As an exercise,
the reader can work out the asymptotics for the unmodified Brent method
and for the Pollard-Floyd method of detecting periodicity.

8.7 Shanks's SQUFOF 433

8.6 Shanks's Class Group Method

Another O(N1/4+E) method (and even O(N1/5+E) if one assumes the GRH)
is due to Shanks. It is a simple by-product of the computation of the class
number of an imaginary quadratic field (see Section 5.4). Indeed, let D = -N
if N = 3 (mod 4), D = -4N otherwise. If his the class number of Q(VD)
and if N is composite, then it is known since Gauss that h must be even (this
is the start of the theory of genera into which we will not go). Hence, there
must be an element of order exactly equal to 2 in the class group. Such an
element will be called an ambiguous element, or in terms of binary quadratic
forms, a form whose square is equivalent to the unit form will be called an
ambiguous form.

Clearly, (a, b, c) is ambiguous if and only if it is equivalent to its inverse
(a,- b, c), and if the form is reduced this means that we have three cases.

(1) Either b = 0, hence D = -4ac, soN= ac.
(2) Or a = b, hence D = b(b- 4c), hence N = (b/2)(2c- b/2) if b is even,

N = b(4c- b) if b is odd.
(3) Or finally a= c, hence D = (b- 2a)(b + 2a) hence N = (b/2 + a)(a- b/2)

if b is even, N = (2a- b)(b + 2a) if b is odd.

We see that each ambiguous form gives a factorization of N (and this is a
one-to-one correspondence).

Hence, Shanks's factoring method is roughly as follows: after having com
puted the class number h, look for an ambiguous form. Such a form will give
a factorization of N (which may be trivial). There must exist a form which
gives a non-trivial factorization however, and in practice it is obtained very
quickly.

There remains the problem of finding ambiguous forms. But this is easy
and standard. Write h = 2tq with q odd. Take a form f at random {for
example one of the prime forms /p used in Algorithm 5.4.10) and compute
g = jQ. Then g is in the 2-Sylow subgroup of the class group, and if g is not
the unit form, there exists an exponent m such that 0 ::;; m < t and such that
g2"' is an ambiguous form. This is identical in group-theoretic terms to the
idea behind the Rabin-Miller compositeness test (Section 8.2 above).

We leave to the reader the details of the algorithm which can be found in
Shanks's paper (Sha1], as well as remarks on what should be done when the
trivial factorization is found too often.

434 8 Factoring in the Dark Ages

8. 7 Shanks's SQUFOF

Still another O(N1/4+e) method, also due to Shanks, is the SQUFOF (SQUare
FOrm Factorization) method. This method is very simple to implement and
also has the big advantage of working exclusively with numbers which are
at most 2VN, hence essentially half of the digits of N. Therefore it is emi
nently practical and fast when one wants to factor numbers less than 1019 ,

even on a pocket calculator. This method is based upon the infrastructure of
real quadratic fields which we discussed in Section 5.8, although little of that
appears in the algorithm itself.

Let D be a positive discriminant chosen to be a small multiple of the
number N that we want to factor (for example we could take D = N if N = 1
(mod 4), D = 4N otherwise). Without loss of generality, we may assume that
if D = 0 (mod 4), then D I 4 = 2 or 3 (mod 4), since otherwise we may replace
D by D I 4, and furthermore we may assume that DIN is squarefree, up to a
possible factor of 4.

As in Shanks's class group method seen in the preceding section, we are
going to look for ambiguous forms of discriminant D. Since here D is positive,
we must be careful with the definitions. Recall from Chapter 5 that we have
defined composition of quadratic forms only modulo the action of r 00 • We will
say that a form is ambiguous if its square is equal to the identity modulo the
action of r 00 , and not simply equivalent to it. In other words, the square off =
(a, b, c) as given by Definition 5.4.6 must be of the form (1, b', c'). Clearly this
is equivalent to a I b. Hence, a will be a factor of D, so once again ambiguous
forms give us factorizations of D. The notion of ambiguous form must not be
confused with the weaker notion of form belonging to an ambiguous cycle (see
Section 5. 7) which simply means that its square is equivalent to the identity
modulo the action of PSL2(Z) and not only ofr 00 , i.e. belongs to the principal
cycle.

Now let g = (a, b, c) be a reduced quadratic form of discriminant D such
that a I c. We note that since g is reduced hence primitive, we must have
gcd(a, b) = 1. Using Definition 5.4.6, one obtains immediately that

this form being of course not necessarily reduced. This suggests the following
idea.

We start from the identity form and use the p reduction operator used
at length in Chapter 5 to proceed along the principal cycle, and we look for
a form f = (A, B, C) such that A is a square (such a form will be called a
square form). We will see in a moment how plausible it is to believe that we
can find such a form. Assume for the moment that we have found one, and
set A= a2 and g = (a, B, aC).

Now g may not be primitive. In that case let p be a prime dividing the
coefficients of g. Then if p = 2 we have 4 I A and 2 1 B. Hence, D = B 2 =

8.7 Shanks's SQUFOF 435

0 or 4 (mod 16), contradicting D/4 = 2 or 3 (mod 4) when 41 D. If p > 2,
then p2 I D hence since DfN or Df(4N) is squarefree, we have p2 I N.
Although this case is rare in practice, it could occur, so we must compute
gcd(a, B), and if this is not equal to 1 it gives a non-trivial factor of N (in
fact its square divides N), and we can start the factorization after removing
this factor.

Therefore we may assume that g is primitive. It is then clear from the
definition that g2 = f, whence the name "square form" given to f.

Now we start from g-1 = (a, -B,aC) (which may not be reduced) and
proceed along its cycle by applying the p operator. Since g2 lies on the principal
cycle, the reduced forms equivalent to g-1 will be on an ambiguous cycle.

Now we have the following proposition.

Proposition 8.7.1. Keeping the above notations, there exists an ambiguous
form g1 on the cycle of g-1 at exactly half the distance (measured with the 6
function introduced in Chapter 5) off from the unit form.

Proof We prove this in the language of ideals, using the correspondence be
tween classes of forms modulo r 00 and classes of ideals modulo multiplication
by Q* given in Section 5.2.

Let a be a representative of the ideal class (modulo Q*) corresponding to
the quadratic form g = (a, B, aC). Then by assumption, a2 =-yZK for some
'Y E K which is of positive norm since A= a2 > 0, and hence, in particular,
N('Y) = N(a) 2 . Set

(Note that if desired, we can choose a > 0 and a to be the unique primitive
integral ideal corresponding tog, and then N(a) =a.)

If, as usual, G' denotes real conjugation in K, we have chosen [3 such that

G'([3) N(a) G'('Y)
T =-'Y- = N(a)"

Although it is trivial to give [3 explicitly, the knowledgeable reader will recog
nize that the existence of such a [3 is guaranteed by Hilbert's Theorem 90.

Now I claim that the quadratic form corresponding to b is the ambiguous
form that we are looking for. First, using the equations given above, we have

so the ideal b2 is indeed equivalent up to multiplication by an element of
Q* to the unit ideal, so if g1 is the quadratic form corresponding to b-\ it
is ambiguous.

Second, we clearly have -yjG'('y) = ([3/G'([3)) 2 hence

436 8 Factoring in the Dark Ages

thus proving the proposition. D

Using this proposition, we see that with approximately half the number of
applications of the p operator that were necessary to go from the identity to f,
we go back from g-1 to an ambiguous form. In fact, since we know the exact
distance that we have to go, we could use a form of the powering algorithm
to make this last step much faster.

Now there are two problems with this idea. First, some ambiguous forms
will correspond to trivial factorizations of N. Second, we have no guarantee
that we will find square forms other than the identity. This will for instance
be the case when the principal cycle is very short.

For the first problem, we could simply go on along the principal cycle if
a trivial factorization is found. This would however not be satisfactory since
for each square form that we encounter which may correspond to a trivial
factorization, we would have to go back half the distance starting from g- 1

before noticing this.
A good solution proposed by Shanks is as follows. Assume for the moment

that D =NorD= 4N. We obtain trivial factorizations of N exactly when the
ambiguous cycle on which g- 1 lies is the principal cycle itself. Hence, f = g2

will be a square form which is equal to the square of a form on the principal
cycle. Since all the forms considered are reduced, this can happen only if
g = (a, b, c) with a2 < ...fl5, hence Ia I < D 114, which is quite a rare occurrence.
When such an a occurs, we store Ia I in a list of dubious numbers, which Shanks
calls the queue. Note that the condition lal < D 114 is a necessary, but in
general not a sufficient condition for the form g to be on the principal cycle,
hence we may be discarding some useful numbers. In practice, this has little
importance.

Now when a square form (A, B, C) with A= a2 is found, we check whether
a is in the queue. If it is, we ignore it. Otherwise, we are certain that the corre
sponding square root g is not in the principal cycle. (Note that the distance of
the identity to f = g2 is equal to twice the distance of the identity to g. This
means that if g was in the principal cycle, we would have encountered it before
encountering f.) Hence, we get a non-trivial factorization of D. This may of
course give the spurious factors occurring in D/N, in which case one must go
on. In fact, one can in this case modify the queue so that these factorizations
are also avoided.

The second problem is more basic: what guarantee do we have that we
can find a square form different from the identity in the principal cycle? For
example, when the length of the cycle is short, there are none. This is the
case, for example, for numbers N of the form N = a2 + 4 for a odd, where the
length of the cycle is equal to 1.

There are two different and complementary answers to this question. First,
a heuristic analysis of the algorithm shows that the average number of reduc-

8. 7 Shanks's SQUFOF 437

tion steps necessary to obtain a useful square form is O(N114) (no f here).
This is much shorter than the usual length of the period which is in general
of the order of O(N112), so we can reasonably hope to obtain a square form
before hitting the end of the principal cycle.

Second, to avoid problems with the length of the period, it may be worth
while to work simultaneously with two discriminants D which are multiples
of N, for example Nand 5N when N = 1 (mod 4), 3N and 4N when N = 3
(mod 4). It is highly unlikely that both discriminants will have short periods.
In addition, although the average number of reduction steps needed is on the
order of N 114 , experiments show that there is a very large dispersion around
the mean, some numbers being factored much more easily than others. This
implies that by running simultaneously two discriminants, one may hope to
gain a substantial factor on average, which would compensate for the fact that
twice as much work must be done.

We now give the basic algorithm, i.e. using only D = N if N = 1 (mod 4),
D = 4N otherwise, and not using the fact than once g is found we can go
back much faster by keeping track of distances.

Algorithm 8.7.2 (Shanks's SQUFOF). Given an odd integer N, this algo
rithm tries to find a non-trivial factor of N.

1. [Is N prime?] Using Algorithm 8.2.2, check whether N is a probable prime. If
it is, output a message to that effect and terminate the algorithm.

2. [Is N square?] Using Algorithm 1.7.3, test whether N is a square. If it is, let
n be its square root (also given by the algorithm), output nand terminate the
algorithm.

3. [lnitializations]lf N = 1 (mod 4), let D t- N, d t- Lv'DJ, b t- 2l(d-
1)/2J + 1. Otherwise, let D t- 4N, d t- Lv'DJ, b t- 2ld/2J. Then set
f t- (1, b, (b2 -D)/4), Q t- 0 (Q is going to be our queue), it- 0, L t- l v'dJ.

4. [Apply rho] Let f = (A, B, C) t- p(J), where p is given by Definition 5.6.4,
and set it- i + 1. If i is odd, go to step 7.

5. [Squareform?] Using Algorithm 1.7.3, test whether A is a square. If it is, let a
be the (positive) square root of A (which is also output by Algorithm 1.7.3)
and if a f/. Q go to step 8.

6. [Short period?] If A = 1, output a message saying that the algorithm ran
through the i elements of the principal cycle without finding a non-trivial
squareform, and terminate the algorithm.

7. [Fill queue and cycle] If IAI ::; L, set Q t- Q U {IAI}. Go to step 4.

8. [Initialize back-cycle] (Here we have found a non-trivial square form). Let s t
gcd(a, B, D). If s > 1, output s2 as a factor of Nand terminate the algorithm
(or start again with N replaced by N/s2). Otherwise, set g t- (a,-B,aC).
Apply p tog until g is reduced, and write g = (a, b, c).

9. (Back-cycle] Let b1 t- b and g = (a, b, c) t- p(g). If b1 =I= b go to step
9. Otherwise, output lal if a is odd, la/21 if a is even, and terminate the
algorithm.

438 8 Factoring in the Dark Ages

Some remarks are in order. First, it is essential that N be a composite
number, otherwise the queue will fill up indefinitely without the algorithm
finding a square form. Also, N must not be a square, otherwise we do not
have a quadratic field to work with. This is the reason why steps 1 and 2 have
been explicitly included.

Second, once these cases out of the way, experiment shows that the queue
stays small. A storage capacity of 50 is certainly more than sufficient.

Third, during the back-cycle part of the algorithm, we need to test whether
we hit upon our ambiguous form. To do this, we could use the necessary and
sufficient condition that a I b. It is however a simple exercise (see Exercise 12)
to show that this is equivalent to the condition b1 = b used in step 9.

Several improvements are possible to this basic algorithm, including those
mentioned earlier. For example, the queue could be used to shorten the back
cycle length, starting at hg-1 instead of g-1, where his the form corresponding
to the last element put in the queue. We will not dwell on this here.

One of the main reasons why SQUFOF is attractive is that it works exclu
sively with reduced quadratic forms (a, b, c) of discriminant at most a small
multiple of N, hence such that a, b and c are of the order of N 112 . This im
plies that the basic operations in SQUFOF are much faster than in the other
factoring algorithms where operations on numbers of size N or N 2 must be
performed. Of course, this is only a constant factor, but in practice it is very
significant. Furthermore, the algorithm is extremely simple, so it can easily
be implemented even on a 10-digit pocket calculator, and one can then factor
numbers having up to 19 or 20 digits without any multi-precision arithmetic.

Unfortunately, SQUFOF is not sensitive to the size of the small prime
factors of N, hence contrary to Pollard's rho method, cannot be used to cast
out small primes. So if N has more than 25 digits, say, SQUFOF becomes
completely useless, while Pollard rho still retains its value (although it is
superseded by ECM for larger numbers, see Chapter 10).

8.8 The p - 1-method

The last factoring method which we will study in this chapter is a little special
for two reasons. First, it is not a general purpose factoring method, but a way
to find quickly prime factors of N that may be very large, but which possess
certain properties. Second, the idea behind the method has successfully been
used in some of the most successful modern factoring method like the elliptic
curve method (see Section 10.3). Hence it is important to understand this
method at least as an introduction to Chapter 10.

8.8 The p- 1-method 439

8.8.1 The First Stage

We need a definition.

Definition 8.8.1. Let B be a positive integer. A positive integer n will be
said to be B-smooth if all the prime divisors of n are less than or equal to B.
We will say that n is B-powersmooth if all prime powers dividing n are less
than or equal to B.

These notions of smoothness are quite natural in factoring methods, and
we will see that they become essential in the modern methods. The idea behind
the p - 1 method is the following. Let p be a prime dividing the number N
that we want to split (p is of course a priori unknown). Let a > 1 be an
integer (which we can assume coprime toN by computing a GCD, otherwise
N will have split). Then by Fermat's theorem, aP-l = 1 (mod p). Now assume
that p- 1 is B-powersmooth for a certain B which is not too large. Then by
definition p - 1 divides the least common multiple of the numbers from 1 to
B, which we will denote by lcm[l..B]. Hence, alcm(l..B) = 1 (mod p), which
implies that

(alcm(l..B) _ 1, N) > 1.

As in the Pollard p method, if this is tested for increasing values of B, it is
highly improbable that this GCD will be equal toN, hence we will have found
a non-trivial divisor of N. This leads to the following algorithm, which in this
form is due to Pollard.

Algorithm 8.8.2 (p- 1 First Stage). Let N be a composite number, and B
be an a priori chosen bound. This algorithm will try to find a non-trivial factor
of N, and has a chance of succeeding only when there exists a prime factor p of
N such that p- 1 is B-powersmooth. We assume that we have precomputed a
table p[1], ... , p[k] of all the primes up to B.
1. [Initialize) Set x +--- 2, y +--- x, c +--- 0, i +--- 0, and j +--- i.

2. [Next prime) Set i +--- i + 1. If i > k, compute g +--- (x -1, N). If g = 1 output
a message saying that the algorithm has not succeeded in splitting N, and
terminate, else set i +--- j, x +--- y and go to step 5. Otherwise (i.e. if i ::S: k),
set q +--- p[i], q1 +--- q, l +--- LBfqj.

3. [Compute power) While q1 ::S: l, set q1 +--- q · q1. Then, set x +--- xq1 mod N,
c +--- c + 1 and if c < 20 go to step 2.

4. [Compute GCD) Set g +--- (x- 1, N). If g = 1, set c +--- 0, j +--- i, y +--- x and
go to step 2. Otherwise, set i +--- j and x +--- y.

5. [Backtrack) Set i +--- i + 1, q +--- p[i] and q1 +--- q.

6. [Finished?) Set x +--- xq mod N, g +--- (x- 1, N). If g = 1, set q1 +--- q · q1 and
if q1 ::S: B, go to step 6, else go to step 5. Otherwise (i.e. if g > 1), if g < N
output g and terminate the algorithm. Finally, if g = N (a rare occurrence),
output that the algorithm has failed and terminate.

440 8 Factoring in the Dark Ages

Note that this algorithm may fail for two completely different reasons. The
first one, by far the most common, occurs in step 2, and comes because N
does not have any prime divisor p such that p- 1 is B-powersmooth. In fact,
it proves this. The second reason why it may fail occurs in step 6, but this is
extremely rare. This would mean that all the prime p divisors of N are found
simultaneously. If this is the case, then this means that there certainly exists
a p dividing N which is B-powersmooth. Hence, it may be worthwhile to try
the algorithm with a different initial value of x, for example x +-- 3 instead of
X+-- 2.

Even in this simple form, the behavior of the p - 1 algorithm is quite
impressive. Of course, it does not pretend to be a complete factoring algorithm
(in fact when N = (2p + 1)(2q + 1) where p, q, 2p + 1 and 2q + 1 are primes
with p and q about the same size, the running time of the algorithm will in
general be O(N1/2+e) if we want to factor N completely, no better than trial
division). On the other hand, it may succeed in finding very large factors of N,
since it is not the size of the prime factors of N which influence the running
time but rather the smoothness of the prime factors minus 1.

The size of B depends essentially on the time that one is willing to spend.
It is however also strongly conditioned by the existence of a second stage to
the algorithm as we shall see presently. Usual values of B which are used
are, say, between 105 and 106 .

8.8.2 The Second Stage

Now an important practical improvement to the p- 1 algorithm (which one
also uses in the modern methods using similar ideas) is the following. It may
be too much to ask that there should exist a prime divisor p of N such that
p - 1 is B-powersmooth. It is more reasonable to ask that p - 1 should be
completely factored by trial division up to B. But this means that p -1 = fq,
where f is B-smooth, and q is a prime which may be much larger than B (but
not than B2). For our purposes, we will slightly strengthen this condition and
assume that N has a prime factor p such that p- 1 = fq where f is Bl
powersmooth and q is a prime such that B1 < q 5,. B2, where B1 is our old B,
and B2 is a much larger constant. We must explain how we are going to find
such a p. Of course, p - 1 is B2-powersmooth so we could use the p -1 alg
orithm with B1 replaced by B2. This is however unrealistic since B2 is much
larger than B1.

Now we have as usual

(aqicm[l.Bi] -1, N) > 1

and we will proceed as follows. At the end of the first stage (i.e. of Algorithm
8.8.2 above), we will have computed b +-- alcm[l..Bt] mod N. We store a table
of the difference of primes from B1 to B2. Now these differences are small, and
there will not be many of them. So we can quickly compute bd for all possible

8.8 The p- 1-method 441

differences d, and obtain all the bq by multiplying successively an initial power
of b by these precomputed bd. Hence, for each prime, we replace a powering
operation by a simple multiplication, which is of course much faster, and this
is why we can go much further. This leads to the following algorithm.

Algorithm 8.8.3 (p- 1 with Stage 2). Let N be a composite number, and
B1 and B2 be a priori chosen bounds. This algorithm will try to find a non-trivial
factor of N, and has a chance of succeeding only when there exists a prime factor
p of N such that p -1 is equal to a B1-powersmooth number times a prime less
than or equal to B2. We assume that we have precomputed a table p[1). ... , p[k1]

of all the primes up to B1 and a table d[1). ... , d[k2] of the differences of the
primes from B1 to B2, with d[1] = p[k1 + 1] - p[k1]. etc ...

1. [First stage] Using B = B~o try to split N using Algorithm 8.8.2 {i.e. the
first stage. If this succeeds, terminate the algorithm. Otherwise, we will have
obtained a number x at the end of Algorithm 8.8.2, and we set b +- x, c +- 0,
P +- 1, i +- 0, j +- i and y +- x.

2. [Precomputations] For all values of the differences d[i] (which are small and
few in number), precompute and store bd[iJ. Set x +- xP[kd.

3. [Advance] Set i +- i + 1, x +- x · bd[i] (using the precomputed value of bd[il),

P +- P · (x- 1), c +- c + 1. If i ;:::: k2, go to step 6. Otherwise, if c < 20, go
to step 3.

4. [Compute GCD] Set g +- (P, N). If g = 1, set c +- 0, j +- i, y +- x and go to
step 3.

5. [Backtrack] Set i +- j, x +- y. Then repeat x +- x · bd[i], i +- i + 1, g +

(x - 1, N) until g > 1 (this must occur). If g < N output g and terminate
the algorithm. Otherwise (i.e. if g = N, a rare occurrence), output that the
algorithm has failed (or try again using x +- 3 instead of x +- 2 in the first
step of Algorithm 8.8.2), and terminate.

6. [Failed?] Set g +- (P, N). If g = 1, output that the algorithm has failed and
terminate. Otherwise go to step 5.

In this form, the p -1 algorithm is much more efficient than using the first
stage alone. Typical values which could be used are B1 = 2 · 106 , B2 = 108 •

See also [Mon2] and [Bre2] for further improvements.

8.8.3 Other Algorithms of the Same Type

The main drawback of the p - 1 algorithm is that there is no reason for N
to have a prime divisor p such that p - 1 is smooth. As with the primality
tests (see Section 8.3.2), we can also detect the primes p such that p + 1 is
smooth, or also p2 + p + 1, p2 + 1, p2 - p + 1 (although since these numbers
are much larger, their probability of being smooth for a given bound B is
much smaller). We leave as an exercise for the reader (Exercise 13) to write
an algorithm when p + 1 is B-powersmooth.

442 8 Factoring in the Dark Ages

We see that the number of available groups which give numbers of reason
able size (here IF; and IF;2 /IF;, which give p -1 and p + 1 respectively) is very
small (2) and this limits the usefulness of the method. The idea of the elliptic
curve method (ECM) is to use the group of points of an elliptic curve over
1Fp, which also has approximately p elements by Hasse's Theorem 7.1.8, and
this will lead to a much better algorithm since we will have at our disposal a
large number of groups of small size instead of only two. See Section 10.3 for
details.

8.9 Exercises for Chapter 8

1. Show that an odd prime number p is a strong pseudo-prime in any base not
divisible by p.

2. If N is the 46 digit composite number due to Arnault given in the text as an
example of a strong pseudoprime to all prime bases a~ 31, compute explicitly
a<N-l)/4 mod N for these a and show that -1 has at least 5 different square
roots modulo N (showing clearly N that is not prime even without knowing its
explicit factorization). From this remark, deduce a strengthening of the Rabin
Miller test which would not be passed for example by Arnault's number.

3. Show that if N is any odd integer, the congruence

aN-I ::::-1 (mod N)

is impossible. More generally, show that

ak ::::-1 (mod N)

implies that

(N-1) V2(k) s; V2 - 2- .

The following four exercises are due to H. W. Lenstra.

4. Show that there are only a finite number of integers N such that for all a E Z
we have

aN +I :=a (mod N),

and give the complete list.
5. Let N be a positive integer such that 2N = 1 (mod N). Show that N = 1.

6. Let a be a positive integer such that a4 +4a is a prime number. Show that a= 1.

7. Show that there exists infinitely many n for which at least one of 22n + 1 or
62n + 1 is composite.

• 2k
8. Denote by Fk the k-th Fermat number, 1.e. Fk = 2 + 1.

a) Show manually that Fk is prime for 0 ~ k ~ 4 but that 641 I Fs.
b) Let h > 1 be an integer such that h = 1 (mod FoHF2FaF4). If h2n + 1

is prime show that 32 I n.
c) Conclude that there exists an a such that if

8.9 Exercises for Chapter 8 443

and h > 1, then for all n, h2n + 1 is composite.

9. Let N = 22k + 1 be a Fermat number. Prove that in this case Proposition 8.3.1
can be made more precise as follows: N is prime if and only if 3(N-1)/2 = -1
(mod N) (use the quadratic reciprocity law).

10. Using implicitly the finite field lF N2, write a primality testing algorithm in the
case where N + 1 is completely factored, using a proposition similar to 8.3.1.

11. Using the algorithm developed in Exercise 10, show that the Mersenne number
N = 2P- 1 is prime if and only p is prime and (for p "I 2) if the sequence
defined by uo = 4 and Uk+1 = u~ - 2 mod N satisfies Up-2 = 0 (this is called
the Lucas-Lehmer test).

12. Let 9 = (a,b,c) and 91 = (a1,b1,c1) = p(9) be reduced forms with positive
discriminant. Show that 91 is an ambiguous form if and only if b = b1.

13. The p -!-algorithm is based on the properties of the finite field lF p· Using instead
the field lF p2 , develop a p + 1-factoring algorithm for use when a prime factor p
of N is such that p + 1 is B-powersmooth for some reasonable bound B.

14. Let N be a number to be factored. Assume that after one of the factoring algo
rithms seen in this chapter we have found a number a such that d = gcd(N, a)
satisfies 1 < d < N hence gives a non-trivial divisor of N. Write an algorithm
which extracts as much information as possible from this divisor d, i.e. which
finds N1 and N2 such that N = N1N2, gcd(N1, N2) = 1 and d I N1.

Chapter 9

Modern Primality Tests

In Section 8.3, we studied various primality tests, essentially the N - 1 test,
and saw that they require knowing the factorization of N -1 (or N + 1, ...),
which are large numbers. Even though only partial factorizations are needed,
the tests of Section 8.3 become impractical as soon as N has more than 100
digits, say. A breakthrough was made in 1980 by Adleman, Pomerance and
Rumely, that enabled testing the primality of much larger numbers. The APR
test was further simplified and improved by H. W. Lenstra and the author,
and the resulting APRCL test was implemented in 1981 by A. K. Lenstra and
the author, with the help of D. Winter. It is now possible to prove the pri
mality of numbers with 1000 decimal digits in a not too unreasonable amount
of time. The running time of this algorithm is O((lnN)ClnlnlnN) for a suit
able constant C. This is almost a polynomial time algorithm since for all
practical purposes the function lnlnlnN acts like a constant. (Note that the
practical version of the algorithm is probabilistic, but that there exists a non
probabilistic but less practical version.)

We will describe the algorithm in Section 9.1, without giving all the the
implementation tricks. The reader will find a detailed description of this al
gorithm and its implementation in [Coh-Len2], [Coh-Len3] and [Bos-Hul].

In 1986, another primality testing algorithm was invented, first for theo
retical purposes by Goldwasser and Kilian, and then considerably modified so
as to obtain a practical algorithm by Atkin. This algorithm has been imple
mented by Atkin and Morain, and is also practical for numbers having up to
1000 digits. The expected running time of this algorithm is O(ln6 N), hence
is polynomial time, but this is only on average since for some numbers the
running time could be much larger. A totally non-practical version using a
higher dimensional analog of this test has been given by Adleman and Huang,
and they can prove that their test is polynomial time. In other words, they
prove the following theorem ([Adl-Hua]).

Theorem 9.1. There exists a probabilistic polynomial time algorithm which
can prove or disprove that a given number N is prime.

Their proof is pretty but very complex, and this theorem is one of the
major achievements of theoretical algorithmic number theory.

We will describe Atkin's practical primality test in Section 9.2, and we
refer to [Atk-Mor] and to [Mor2] for implementation details.

446 9 Modern Primality Tests

9.1 The Jacobi Sum Test

The idea of the APRCL method is to test Fermat-type congruences in higher
degree number fields, and more precisely in certain well chosen cyclotomic
fields. We need a few results about group rings in this context.

9.1.1 Group Rings of Cyclotomic Extensions

Recall first the following definitions and results about cyclotomic fields (see
[Was]).

Definition 9.1.1. If n is a positive integer, the n-th cyclotomic field is the
number field Q((n), where (n is a primitive n-th root of unity, for example
(n = e2i-rr/n.

Proposition 9.1.2. Let K = Q((n) be the n-th cyclotomic field.

(1) The extension KjQ is a Galois extension, with Abelian Galois group given
by

G = Gal(K/Q) = {aa, (a,n) = 1, where O"a((n) = (~}.

In particular, the degree of KjQ is ¢(n), where¢ is Euler's phi function.
(2) The ring of integers of K is ZK = Z[(n]·

We now come to the definition of a group ring. We could of course bypass
this definition, but the notations would become very cumbersome.

Definition 9.1.3. Let G be any finite group. The group ring Z[G] is the set
of maps {not necessarily homomorphisms) from G to Z with the following two
operations. If !I and h are in Z[G], we naturally define

(It + h)(a) =!I (a)+ h(a)

for all a E G. The multiplication law is more subtle, and is defined by

!I· h(a) = L !I(T)/2(T-1a).
rEG

The name group ring is justified by the easily checked fact that the above
operations do give a ring structure to Z[G]. If for f E Z[G], we set formally

f = L f(a)[a],
uEG

9.1 The Jacobi Sum Test 447

where [a] is just a notation, then it is easy to see that addition and multiplica
tion become natural Z-algebra laws, if we set, as is natural, [a1]· [a2] = [a1a2].
This is the notation which we will use. Note also that although we have only
defined group rings Z[G] for finite groups G, it is easy to extend this to infi
nite groups by requiring that all but a finite number of images of the maps be
equal to 0 (in order to have finite sums).

We can consider Z as a subring of Z[G] by identifying n with n[1], where
1 is the unit element of G, and we will use this identification from now on.

We now specialize to the situation where G = Gal(K/Q) for a number
field K Galois over Q, and in particular to the case where K is a cyclotomic
field. By definition, the group G acts on K, and also on all objects naturally
associated to K: the unit group, the class group, etc ... One can extend this
action of G in a natural way to an action of Z[G] in the following way. If
f E Z[G] and x E K, then we set

f(x) = II a(x)f(a)_
aEG

In the expanded form where we write f = L:aEG na[a], one sees immediately
that this corresponds to a multiplicative extension of the action of G, and
suggests using the notation xf instead of f(x) so that

x1 = II a(xt".
aEG

Indeed, it is easy to check the following properties (x, x1 and x 2 are inK and
J, h and h are in Z[G]):

(1) xh+h = xh. xh.

(2) xh·h = (xh)h = (xh)h.

(3) (x1 + x2)f = x{ + x{
(4) (x1x2)f = x{ x{

We now fix a prime number p and an integer k, and consider the n-th
cyclotomic field K, where n = pk. Let G be its Galois group, which is the set
of all aa for a E (Z/nZ)* by Proposition 9.1.2. Since it is Abelian, the group
ring Z[G] is a commutative ring. Set

p = {! E Z[G]/ (£ = 1},

where (p = e2i7r/p is a primitive pth root (not pk) of unity. Then one checks
immediately that pis an ideal of Z[G]. In fact, iff= L:aE(Z/nZ)• na[aa], then
f E P if and only if L:aE(Z/nZ)• ana= 0 (mod p). This shows that the number
of cosets of Z[G] modulo p is equal top (the number of different incongruent
sums L: ana modulo p), hence that p is in fact a prime ideal of degree one
(i.e. of norm equal top). Clearly, it is generated over Z by p (i.e. p[l]) and all
the a- [aa]·

448 9 Modern Primality Tests

9.1.2 Characters, Gauss Sums and Jacobi Sums

Recall that a character (more precisely a Dirichlet character) X modulo q
is a group homomorphism from (ZfqZ)* to C* for some integer q. This can
be naturally extended to a multiplicative map from (ZfqZ) to C by setting
x(x) = 0 if x fj. (ZfqZ)*. It can then be lifted to a map from Z to C, which
by abuse of notation we will still denote by X· The set of characters modulo q
forms a group, and for instance using Section 1.4.1 one can easily show that
this group is (non-canonically) isomorphic to (ZfqZ)*, and in particular has
¢(q) elements. The unit element of this group is the character xo such that
xo(x) = 1 if (x, q) = 1 and 0 otherwise.

Proposition 9.1.4. Let X be a character different from xo. Then

L x(x)=O.
xE(Z/qZ)•

Dually, if x ¢. 1 (mod q), then

LX(x) = 0,
X

where the sum is over all characters modulo q.

Proof Since x f. xo, there exists a number a coprime to q such that x(a) f. 1.
Sets= Ex x(x). Since X is multiplicative we have x(a)S = Ex x(ax). Since a
is coprime to q and hence invertible modulo q, the map x ~---+ax is a bijection of
(ZfqZ)* onto itself. It follows that x(a)S = EY x(y) = S, and since x(a) f. 1,
this shows that S = 0 as claimed. The second part of the proposition is proved
in the same way using the existence of a character x1 such that x1(x) f. 1
when x ¢. 1 (mod q). D

The order of a character xis the smallest positive n such that x(a)n = 1
for all integers a prime to q, in other words it is the order of x considered as
an element of the group of characters modulo q.

Definition 9.1.5.

(1) Let x be a character modulo q. The Gauss sum r(x) is defined by

r(x) = L x(x)(:,
xE(Z/qZ)•

where as usual (q = e2i"'fq.

(2) Let X1 and X2 be two characters modulo q. The Jacobi sum j(XI. X2) is
defined by

i(XI.X2)= L x1(x)x2(1-x).
xE(ZfqZ)•

9.1 The Jacobi Sum Test 449

Note that since we have extended characters by 0, we can replace (Z/ qZ)*
by Z(qZ, and also that in the definition of Jacobi sums, one could exclude
x = 1 which contributes 0 to the sum.

From the definitions, it is clear that if x is a character modulo q of order
n (hence n I ¢(q)), then

while if X1 and X2 are two characters modulo q of order dividing n, then

This will in general be a much simpler ring than Z[(n, (q], and this observation
will be important in the test.

The basic results about Gauss sums and Jacobi sums that we will need
are summarized in the following proposition. Note that we assume that q is a
prime, which makes things a little simpler.

Proposition 9.1.6.

(1) Let x f:. Xo be a chamcter modulo a prime q. Then

r(x)r(x) = x(-1)q and lr(x)l =VQ.

(2) Let X1 and X2 be two chamcters modulo q such that X1X2 f:. Xo· Then

.() _ r(xt)r(x2)
JX1,X2- ().

T X1X2

Proof To simplify notations, except if explicitly stated otherwise, the sum
mations will always be over (Z/qZ)*, and we abbreviate (q to(. We have:

r(x)r(x) = L x(x)C' L x(y)(Y = L x(t) L x(y)x(y)(Y(l+t)'
:r: y t y

by setting x = ty. Since x(y)x(y) = 1, the inner sum is simply a sum of powers
of (, and since q is prime, is a geometric series whose sum is equal to -1 if
1 + t f:. 0 and to q - 1 otherwise. Hence, our product is equal to

- L: x(t) + (q -1)x(-1) = qx(-1)- L:x(t) = qx(-1)
t~-1 t

by Proposition 9.1.4. Finally, note that

r(x) = L:x(x)C"' = LX(-x)("' = x(-1)r(x),
:r: X

and the first part of the proposition is proved.

450 9 Modern Primality Tests

The second part is proved analogously. We have

r(xt)r(x2) = L L Xl(x)x2(Y)("'+Y = L L X1 (t)X1X2(Y)(Y(l+t)
"' y t y

by setting x = ty. Now by setting x = ay it is clear that for any x f:. xo we
have

LX(Y)(ay = {
y

Hence, since X1X2 f:. xo, we have

0 if a = 0 (mod q)
x(a)r(x) otherwise.

r(x1)r(x2) = r(x1x2) L Xl(t)X1X2(1 + t) = r(x1x2) L:x1(u)x2(1- u)
tt-l u

if we set u = t/(1 + t) which sends bijectively (Z/qZ) \ {0, -1} onto (Z/qZ) \
{0, 1}, proving the identity. D

9.1.3 The Basic Test

We now come back to our basic purpose, i.e. testing the primality of a number
N. It is assumed that N has already passed the Rabin-Miller test 8.2.2, so
that it is highly improbable that N is composite. The aim is to prove that N
is prime.

In this section, we fix a prime p and a character x of order pk modulo a
prime q (hence with pk I (q -1)). We can of course assume that N is prime to
p and q. We set for simplicity n = pk, and denote by ((n) the group of n-th
roots of unity, which is generated by (n. We shall use a modified version of
Fermat's theorem as follows.

Proposition 9.1.7. Let (3 E Z[G]. Then if N is prime, there exists 1J(X) E

((n) such that
r(x){j(N-aN) = rJ(X)-{jN (mod N),

where in fact rJ(X) = x(N).

Note that we consider Z[G] as acting not only on Q((n) but also on
Q((n, (q), the action being trivial on (q. Note also that the congruences modulo
N are in fact modulo NZ[(n, (q]·

Proof. We know that in characteristic N, (I: ak)N = I: af since the binomial
coefficients (~) are divisible by N if 0 < i < N. Hence,

"' "'

9.1 The Jacobi Sum Test 451

and the proposition follows since r(xN) = r(x)uN by definition of aN. Note
that r(x) is also coprime to N since by Proposition 9.1.6, r(x)r(x) = q is
coprime to N. o

This proposition is a generalization of Fermat's theorem since one checks
immediately that if we take n = p = 2 and f3 = 1, the proposition is equivalent
to the statement q(N-1)/2 = ±1 (mod N). What we are now going to prove
is in essence that if, conversely, condition (*/3) is satisfied for a number of
characters x (with different pk and q), then we can easily finish the proof that
N is prime. First, we prove the following

Lemma 9.1.8. Let N be any integer, and assume that (*!3) is satisfied. Then

(1) For all i > 0

(2)
{3 (N(p- 1Jpk- 1 -1) k-1

r(x) = 77(x)13P (mod N).

(3) If r is prime and coprime to p and q then

r(x) (r(p-1)pk-1-1) =: X(r)Pk-1
(mod r).

Proof Assertion (1) follows from (* 13) by induction on i using the identity

Ni+l- aNi+1 = Ni (N-aN)+ aN (Ni- aN;)

and 1"/(X)uN = 17(X)N since 1"/(X) E ((n)· For (2) we apply the first assertion to
i = (p- 1)pk-l and use Euler's Theorem 1.4.2 which tells us that

N(P- 1)Pk- 1 = 1 (mod pk).

The last assertion follows immediately since Proposition 9.1.7 tells us that
(*/3) is satisfied for a prime number r with f3 = 1 and 77(X) = x(r). 0

We now introduce a condition which will be crucial to all our future work.
We will show that this condition is a consequence of (* 13) conditions for suitable
characters X· This means that it will have a similar nature to the Fermat tests,
but it is much more convenient to isolate it from the rest of the tests.

Definition 9.1.9. We say that condition Cp is satisfied (with respect toN of
course) if for all prime divisors r of N and all integers a > 0 we can find an
integer lp(r, a) such that

452 9 Modern Primality Tests

Note that if N is prime this condition is trivially satisfied with lp(r, a) = 1.
We will see later that this condition is not as difficult as it looks and that it
can easily be checked. For the moment, let us see what consequences we can
deduce from it. Note first that if lp(r, a) exists for all primes r dividing N, it
exists by additivity for every divisor r of N.

Note also that condition .Cp is more nicely stated in p-adic terms, but we
will stay with the present definition. One consequence of this fact which we
will use (and prove later) is the following result.

Lemma 9.1.10. Let u = vp (NP- 1 -1) if p;::::: 3, u = v2 (N2 -1) if p = 2.
Then for a ;::::: b ;::::: u we have

The main consequence of condition .Cp which we need is the following.

Proposition 9.1.11. Assume that condition .Cp is satisfied.

(1) If X satisfies (*.a) for some (3 1. p, then for all sufficiently large a and all
r IN we have

x(r) = x(N)1v(r,a) and TJ(X) = x(N).

(2) If 'If; is a character modulo a power of p and of order a power of p, then
we also have

for sufficiently large a.

Proof. Set for simplicity x = r(x)f3. From the first part of Lemma 9.1.8 we
have

xN<v-llvk - 1 = 1 (mod N).

Set N(P- 1)Pk -1 =peN1 with pf N 1 . Set I!= lp(r,max(e,k+u)), where u is
as in Lemma 9.1.10. Then again using the first part of Lemma 9.1.8 we have

N(p-l)l ()-.B(p-1)lN(p-l)i (N(p-l)t).B (d N)
x = TJ X r x mo

= TJ(X)-.B(p-1)erv-lr(xrv-lt (mod N)

since TJ(X) and x are of order dividing pk. If r is a prime divisor of N, we have
by Proposition 9.1.7

9.1 The Jacobi Sum Test 453

xrp-1 =x(r)-,8(p-1)rp-lr(xrp-1),8 (modr)

hence, since r (xrp-l) .8 is invertible modulo r by Proposition 9.1.6, we obtain

finally

x(N<p-!Jt_rp-l) := (,8(p-1)rP-1 (mod r) with (= x(r)7J(X)-l.

Now from our choice of£, we have N(p-l)l = rP- 1 (mod pe), hence

N1 (N(p-1)£- rP-1) = 0 (mod N(P- 1)Pk -1).

So if we combine this with our preceding congruences we obtain

Nl(N(p-l)t_rp-1) = 1 = ;-Nl,B(p-1)rp-1 (d) x __ ., mor.

Now we trivially have Ntf3(p- 1)rP-1 fj. p since p is a prime ideal and none
of the factors belong to p. Since (is a pk-th root of unity, the definition of p
implies that it must be equal to 1, i.e. that

x(r) = 7J(X)l = 7J(X)Ip(r,a)

for a sufficiently large, and for all primer dividing N (by Lemma 9.1.10 and
our choice off). By additivity of lp (i.e. lp(rr', a) = lp(r, a)+ lp(r', a)) it im
mediately follows that this is true for all divisors r of N, not only prime
ones. In particular, it is true for r= Nand since we can take lp(N, a)= 1 we
have x(N) = 7J(X) and the first part of the proposition is proved.

For the second part, if '1/J is of order pk1 modulo pk2 then if we take
f = lp(r,max(k1 , k2)) it is clear that '1/J (rP-1) = '1/J (NP-1)£ and since p -1 is
coprime to the order of '1/J we immediately get the second part of the propo
sition. Note that we have implicitly used Lemma 9.1.10 in the proof of both
parts. D

From this result, we obtain the following theorem which is very close to
our final goal of proving N to be prime.

Theorem 9.1.12. Lett be an even integer, let

e(t) = 2 IT qv.(t)+1

q prime
(q-1)lt

and assume that (N, te(t)) = 1. For each pair of prime numbers (p, q) such
that (q- 1) I t and Pkll(q -1), let Xp,q be a character modulo q of order pk
(for example Xp,q (g;) = (;k if 9q is a primitive root modulo q). Assume that

(1) For each pair (p, q) as above the character X= Xp,q satisfies condition (*.a)
for some (3 ¢ p (but of course depending on p and q).

(2) For all primes pIt, condition £p is satisfied.

454 9 Modern Primality Tests

Then for every divisor r of N there exists an integer i such that 0 ~ i < t
satisfying

r = Ni (mod e(t)).

Proof From Proposition 9.1.11 and Lemma 9.1.10, there exists a sufficiently
large a such that x(r) = x(N)1p(r,a) for every a and every x = Xp,q· By the
Chinese remainder Theorem 1.3.9, we can find l(r) defined modulo t such that
l(r) = lp(r, a) (mod pvp(t)) for all primes p dividing t, hence since pk I (q -1) I
t, for all p and q as above we have

Xp,q(r) = Xp,q (Nl(rl).

Now I claim that Xq = f1PI(q- 1) Xp,q is a character of order exactly q- 1.
Indeed, if xo is the trivial character modulo q, then x~ = Xo implies that for
every Pkll(q -1),

Xa(q-1)/pk - X p,q - o.

hence since Xp,q is of order a power of p, hence prime to (q - 1) / pk, that
x~,q = Xo· This shows that pk I a since Xp,q is of order exactly equal to pk.
Since this is true for every p I q - 1, we have (q - 1) I a, thus proving our
assertion.

Hence, Xq is a generator of the group of characters modulo q, and this
implies that for any character X1 modulo q we have X1(r) = X1 (N!(rl).

Now let x be a character modulo qvq(t)+l+o where 8 = 0 if q > 2, 8 = 1
if q = 2. We can write x = X1X2, where X1 is a character modulo q and X2
modulo qvq(t)+l+o of order dividing qvq(t)+l+c5-(l+c5) = qvq(t) (this follows
from Theorem 1.4.1). Hence, if q f t, X= x 1 so x(r) = x(N1(rl). On the other
hand, if q I t, then by assumption, condition Cq is satisfied. Hence, by Prop
osition 9.1.11 (2) we have

X2(r) = X2(N)l(r) = X2 (Nl(r))

since x2 is of order qvq(t) and l(r) = lq(r,a) (mod qvq(t)) for a sufficiently
large. Therefore for every x modulo e(t) this equality is true, and this proves
that

r = Nl(r) (mod e(t)).

Finally note that for every prime q such that (q - 1) I t we have

N(q-1)q"q<•l = 1 (mod qvq(t)+l+o).

Hence, Nt = 1 (mod e(t)), so we may reduce the exponent l(r) modulo t, thus
proving the theorem. 0

Corollary 9.1.13. We keep all the notations and assumptions of the theorem.
Set ri = Ni mod e(t), so that 0 < ri < e(t). If e(t) > .JN and if for every i
such that 0 < i < t we have ri = 1 or ri = N or ri f N, then N is prime.

9.1 The Jacobi Sum Test 455

Proof. If N was not prime, there would exist a prime divisor r of N such that
1 < r ~ v'N < e(t), and by the theorem there would exist i < t such that
r = Ni (mod e(t)) hence r = ri, contradiction. 0

9.1.4 Checking Condition Cp

We must now see how to check condition Cp, and incidentally prove Lemma
9.1.10. We have the following result:

Lemma 9.1.14.

(1) If p;::: 3, condition Cp is equivalent to the inequality

(2) For p = 2, condition C2 is equivalent to the inequality

Proof. That condition Cp implies the above inequalities is trivial and left to
the reader. Conversely, assume they are satisfied, and consider first the case
p;::: 3. Set u = Vp (NP-l -1). Then it is easy to prove by induction on a;::: 0
that there exist integers Xi for 0 ~ i < l satisfying 0 ~ Xi < p and such that
if we set lp(r, a+ u) = L:o::=;i<l Xipi, we will have

A similar induction works for p = 2 with u = v2 (N 2 - 1) and a + u replaced
by a+ u -1. This proves both the above lemma and Lemma 9.1.10 since the
xi are independent of a. 0

Corollary 9.1.15. If p ;::: 3 and NP-l ¢. 1 (mod p2), then condition Cp is
satisfied.

This is clear, since in this case vp(NP-l -1) = 1. 0

This result is already useful for testing Cp, but it is not a systematic way
of doing so. Before giving a more systematic result, we need another lemma.

Lemma 9.1.16. Let a and b be positive integers, and let x be in Z[(pk,(q]·
Assume that for an integer r coprime to p we have the congruences

xa = TJa (mod r) and xb = TJ& (mod r),

456 9 Modern Primality Tests

where rJa and rJb are primitive roots of unity of order p1"" and p1b respectively,
where la and lb are less than or equal to k.

Assume, in addition, that la ~ lb and la ~ 1. Then:

Vp(b)- Vp(a) =la -lb

vp(b)- Vp(a) ~la

if lb > 0,

if lb = 0.

Proof. Write a= pvp(a)m, b = pvp(b)n sop f mn. If we had vp(a) > vp(b), then,
computing xan in two different ways (an= pvp(a)-vp(b)bm) we would obtain

sola< lb, contrary to our assumption. Hence, vp(b) ~ vp(a), and we can now
similarly compute xmb in two different ways, giving

m np"p(b)-vp(o.)

"lb = "1a ·

This immediately implies the lemma. Note that a congruence between roots
of unity of order a power of p is in fact an equality since p is coprime to r. 0

The main result which allows us to test condition Cp is the following:

Proposition 9.1.17. Assume that we can find a character x modulo q, of
order pk and a (3rt p, for which (*.a) is satisfied with rJ(x) a primitive pk-th
root of unity. Then, if one of the following supplementary conditions is true,
condition Cp is satisfied:

(1) lfp~3;
(2) lfp=2, k=1 andN=:=1 (mod4);
(3) lfp = 2, k ~ 2 and q(N-1)12 = -1 (mod N).

Proof. Assume that p ~ 3. By Lemma 9.1.8, if r is a prime divisor of Nand
if we set x = r(x).B, then we have

xN<P-1)pk-1_1 = rJ(x).BPk-1 (mod r)

and
Xr(p-1)pk-1 -1 '= x(r).8Pk-1 (mod r).

Since (3 ¢ p, ry(x).BPk- 1 is a primitive p-th root of unity. From Lemma 9.1.16,
we deduce that

But, since p ~ 3 for any integer m we have

9.1 The Jacobi Sum Test 457

vp (m<P- 1)Pk-l - 1) = k- 1 + vp (mP-1 - 1),

hence
Vp (rP-1 - 1) ~ Vp (NP-1 - 1)

and this proves the theorem in this case by Lemma 9.1.14.
The proof of the two other cases is similar and left to the reader (see

Exercise 5). 0

It is easy to show that if N is prime, one can always find a x satisfying
the hypotheses of Proposition 9.1.17. In practice, such a x, if not already
found among the X which are used to test (*13), will be found after a few
trials at most. Strictly speaking, however, this part of the algorithm makes
it probabilistic, but in a weak sense. A non-probabilistic, but less practical
version also exists (see (APR]).

9.1.5 The Use of Jacobi Sums

It is clear that we now have an asymptotically fast primality testing algorithm.
In this form, however, it is far from being practical. The main reason is as
follows: we essentially have to test a number of conditions of the form (* 13) for
certain f3's and characters. This number is not that large, for example if N
has less than 100 decimal digits, less than 80 tests will usually be necessary.
The main problem lies in the computation of r(x)i3(N-uN) mod N. One needs
to work in the ring Z((pk, (q], and this will be hopelessly slow (to take again
the case of N < 10100 , we can take t = 5040, hence pk will be very small, more
precisely pk ~ 16, but q will be much larger, the largest value being q = 2521).
We must therefore find a better way to test these conditions. The reader may
have wondered why we have carried along the element f3 E Z(G], which up to
now was not necessary. Now, however we are going to make a specific choice
for (3, and it will not be f3 = 1. We have the following proposition.

Proposition 9.1.18. Let x be a character modulo q of order pk, and let a
and b be integers such that p f ab(a+ b). Denote by E be the set of integers x
such that 1 ~ x < pk and p f x. Finally, let

a= L lN:j a;1
xEE p

and

Then, we have

458 9 Modern Primality Tests

Proof Set

e = L xa;; 1 E Z[G].
xEE

An easy computation shows that for any integer r not divisible by p we have

k"' lrxJ -1 e(ar- r) = -p ~ k ax .
xEE p

Using this formula for r = N, a, band a+ b (which are all coprime top) we
obtain

and

hence
[3(N- O"N) = a(aa + O"b- O"a+b)·

Now it follows from Proposition 9.1.6 that

and our proposition follows. D

One sees from this proposition that if we can find suitable values of a and
b, we can replace taking powers of r(x), which are in a large ring, by powers
of a Jacobi sum, which are in the much smaller ring Z[(pk]. This is the basic
observation needed to make this test practical.

However this is not enough. First, note that the condition p f ab(a + b)
excludes immediately the case p = 2, which will, as usual, have to be treated
separately. Hence, we first assume that p ;::: 3. Recall that to get anything
useful from (*13) we must have {3 ¢. p. This is easily dealt with by the following
lemma.

Lemma 9.1.19. With the notations of the above proposition, a necessary and
sufficient condition for {3 ¢. p is that

Proof If we set

9.1 The Jacobi Sum Test 459

where x-1 is an inverse of x modulo pk, it is clear from the definition of p that
f3 rt p is equivalent top f K. Now by computing the product of ax for x E E
in two different ways, it is easy to show that if p fa

'"' lxaJ -1 = a(p-1)pk-t - 1
~ k x _a k
xEE p p

(A)

(see Exercise 1). The lemma follows immediately from this identity and the
congruence

(mod p)

(see Exercise 2). D

From this we obtain the following.

Proposition 9.1.20. If 3 ~ p < 6 · 109 and p =f:. 1093, 3511, we can take
a = b = 1. In other words, if we take

(3=
pk /2<x<pk ,ptx

-1
ax

then f3 rt p and condition (* 13) is equivalent to the congruence

where as before

and

-'"' lNxJ -1 a-~ k ax
xEE p

2(p-1)pk-1 -1
c = 2-----,--

pk

Proof. By the preceding lemma, we can take a = b = 1 if we have 2P =:/= 2
(mod p2). This congruence is exactly the Wieferich congruence which occurs
for the first case of Fermat's last theorem and has been tested extensively (see
[Leh2]). One knows that the only solutions for p < 6 · 109 are p = 1093 and
p = 3511. The proposition now follows from Proposition 9.1.18 and formula
(A) for a= 2. D

Note that the restriction on p in the above proposition is completely ir
relevant in practice. Even if we were capable one day of using this test to
prove the primality of numbers having 109 decimal digits, we would never
need primes as large as 1093. This means that we have solved the practical
problem of testing (*13) for p ~ 3.

460 9 Modern Primality Tests

The case p = 2 is a little more complicated, since we cannot use the above
method. Let us first assume that k ;::: 3. We must now consider the triple
Jacobi sum defined by

ia(XI, X2, X3) = L Xl(x)x2(Y)X3(z),
x+y+z=l

where the variables x, y and z range over Wq. A similar proof to the proof of
Proposition 9.1.6 shows that if x1x2x3 is not the trivial character, then

and in particular,
J3 (x, x, x) = r(x)3-<73 •

Now what we want is an analog of Proposition 9.1.18. This can be easily
obtained for one half of the values of N as follows.

Proposition 9.1.21. Let x be a character modulo q of order 2k with k ;::: 3.
Denote by E be the set of integers x such that 1 ~ x < 2k and x congruent to
1 or 3 modulo 8. Finally, let

"" lNxJ _1 a= L...t 2"k CJx
xEE

and

Then, if N is congruent to 1 or 3 modulo 8, we have

Furthermore, f3 (j. p.

Proof. The proof is essentially the same as that of Proposition 9.1.18, using
8 = LxEE xCJ; 1 . The condition on N is necessary since 8(CJr- r) does not
take any special form if r is not congruent to 1 or 3 modulo 8. The restriction
to these congruences classes is also mandatory since (Z/2kZ)* is not cyclic
but has cyclic subgroups of index 2. (We could also have taken for E those
x congruent to 1 or 5 modulo 8, but that would have required the use of
quintuple Jacobi sums). D

When N is congruent to 5 or 7 modulo 8, we use the following trick: - N
will be congruent to 1 or 3 modulo 8, hence 8(CJ-N + N) will have a nice

9.1 The Jacobi Sum Test 461

form. But on the other hand, it is immediate to transform condition (*.a) into
a condition involving a-N + N:

and by Proposition 9.1.6 we have

the last equality coming from x(-1) = (-1)(q-1)/2k = -1. This enables us to
give a proposition analogous to Proposition 9.1.21 for N congruent to 5 or 7
modulo 8.

Proposition 9.1.22. Let x be a character modulo q of order 2k with k ~ 3.
Denote by E be the set of integers x such that 1 ~ x < 2k and x congruent to
1 or 3 modulo 8. Finally, let

and

'"' l3xJ _1 {3 = ~ 2k Clx .

xEE

Then, if N is congruent to 5 or 7 modulo 8, we have

Furthermore, {3 fj. p.

The proof of this proposition follows immediately from what we have said
before and is left to the reader. 0

Corollary 9.1.23. Let x and E be as in the proposition. Set ON= 0 if N is
congruent to 1 or 3 modulo 8, tiN = 1 if N is congruent to 5 or 7 modulo 8.
We may replace condition (*.a) by the following condition:

where

'"' lxNJ _1
Q = ~ """2k Clx

xEE

and

462 9 Modern Primality Tests

Proof. Note first that using the formulas linking triple Jacobi sums with Gauss
sums, and the analogous formula for ordinary Jacobi sums (Proposition 9.1.6),
we have

and this is the most efficient way to compute j3.

Now if N is congruent to 1 or 3 modulo 8, the result follows immediately
from Proposition 9.1.21 and formula (A) for a = 3.

Assume now that N is congruent to 5 or 7 modulo 8. From Proposition
9.1.22, formula (A) and the identity

2: l~~J = 2k-2 -1,
xEE

we obtain
JJ(X, X, xr•t := rJ(X)-cN (-q)d

with d = 2k-2 - 1. It is clear that the corollary will follow from this formula
and the following lemma:

Lemma 9.1.24. Set"(= ExEE 0"; 1 and d = 2k-2 -1. We have the identity:

Proof. Using the formula expressing triple Jacobi sums in terms of Gauss sums,
we have

h(x, x, x)" = IT r 2 (xx).
xEE

Now we have the following theorem, due to Hasse and Davenport (see for
example [Was] and [Ire-Ros]).

Theorem 9.1.25 (Hasse-Davenport). Let '1/J be any character and x1 a char
acter of order exactly equal to m. We have the identity

o::;x<m o:-s:x<m

Applying this identity to '1/J = xa, x1 = x2k-t, one easily shows by induc
tion on l that

II T2(xa+n2k-l) = q21-172 (x21a) x(2)-al21+1 •

o::;n<21

9.1 The Jacobi Sum Test 463

If we now take l = k- 3 and multiply the identities for a= 1 and a= 3, we
easily obtain the lemma by using Proposition 9.1.6, thus proving our corollary.

D

Note that one can give a direct proof of Lemma 9.1.24 without explicitly
using the Hasse-Davenport theorem (see Exercise 3).

We have assumed that k ~ 3. What remains is the easy case of k ~ 2. Here
we have the following proposition, whose proof is an immediate consequence
of Proposition 9.1.6.

Proposition 9.1.26. For p = 2 and k = 1, condition (*1) is equivalent to
the congruence

(-q)(N-1)/2 := T/(X) (mod N) .

For p = 2 and k = 2, condition (*1) is equivalent to the congruence

j(x, x)(N-1)/2q(N-1)/4 = ?J(x)-1 (mod N)

if N = 1 (mod 4), and to the congruence

j(x, x)(N+1)/2q(N-3)/4 = -71(X) (mod N)

if N = 3 (mod 4).

This ends our transformation of condition (*13) into conditions involving
only the ring Z[(pk].

9.1.6 Detailed Description of the Algorithm

We can now give a detailed and complete description of the Jacobi sum pri
mality test.

Algorithm 9.1.27 (Precomputations). Let B be an upper bound on the num
bers that we want to test for primality using the Jacobi sum test. This algorithm
makes a number of necessary precomputations which do not depend on N but
only on B.

1. (Find t] Using a table of e(t), find at such that e2 (t) >B.

2. (Compute Jacobi sums] For every prime q dividing e(t) with q ~ 3, do as
follows.

(1) Using Algorithm 1.4.4, compute a primitive root gq modulo q, and a table
of the function f(x) defined for 1 ~ x ~ q - 2 by 1 - g: = g[(x) and
1 ~ f(x)~ q-2.

(2) For every primep dividing q-1, let k = vp(q-1) and let Xp,q be the character
defined by Xp,q (g:) = (:k ·

464 9 Modern Primality Tests

(3) If p ~ 3 or p = 2 and k = 2, compute

J() '() "" l'pxk+f(x). p,q = J Xv,qoXp,q = L...., .,
l~x~q-2

If p = 2 and k ~ 3, compute J(2, q) as above,

j(x~.q• X2,q) = r2x+ f(x)
"2k ,

J3(q) = j3(X2,q, X2,q, X2,q) = J(2, q)j(x~,q' X2,q)

and

J () = ·2 (2k-s 3·2k- 3) = ("" /'3x+ J(x))
2

2 q J X2,q , X2,q L...., "B
l~x~q-2

Note that it is very easy to build once and for all a table of e(t). For
example, e(5040) ~ 1.532 · 1052 hence t = 5040 can be used for numbers
having up to 104 decimal digits, e(720720) ~ 2.599 ·10237 , for numbers having
up to 474 decimal digits (see however the remarks at the end of this section).

The Jacobi sum primality testing algorithm is then as follows.

Algorithm 9.1.28 (Jacobi Sum Primality Test). Let N be a positive integer.
We assume that N is a strong pseudo-prime in 20 randomly chosen bases (so that
N is almost certainly prime). We also assume that N:::; B and that the precom
putations described in the preceding algorithm have been made. This algorithm
decides (rigorously!) whether N is prime or not.

1. [Check GCD] If (te(t), N) > 1, then N is composite and terminate the algo
rithm.

2. [Initialize] For every prime p It, set lp +-- 1 if p ~ 3 and NP- 1 ¢ 1 (mod p2),

lp +-- 0 otherwise.

3. [Loop on characters] For each pair (p, q) of primes such that pk II (q - 1) I t,
execute step 4a if p ~ 3, step 4b if p = 2 and k ~ 3, step 4c if p = 2 and
k = 2, step 4d if p = 2 and k = 1. Then go to step 5.

4a.[Check (*.a) for p ~ 3] Let E be the set of integers between 0 and pk
which are not divisible by p. Set e +-- ExEE xu; 1, r +-- N mod pk I Q +--

ExEE l;~ J u; 1, and compute s1 +-- J(p, q) 9 mod N, s2 +-- stN/pkJ mod N,

and finally S(p, q) = s2J(p, q)0 mod N.
If there does not exist a pk-th root of unity 'T/ such that S(p, q) = 'T/

(mod N), then N is composite and terminate the algorithm. If 'T/ exists and if
it is a primitive pk-th root of unity, set lv +-- 1.

9.1 The Jacobi Sum Test 465

4b.[Check (*13) for p = 2 and k ;::: 3] Let E be the set of integers between
0 and 2k which are congruent to 1 or 3 modulo 8. Set e t- LxeE xu;1 ,

r t- N mod 2k, at- LxeE l;~J u;1, and compute 81 t- J3(q)9 mod N,

82 t- 8lNfpk J mod N, and finally 8(2, q) = 82h(q) 01 J2(q)6N, where 8N = 0
if r E E (i.e. if N if congruent to 1 or 3 modulo 8), 8N = 1 otherwise.

If there does not exist a 2k-th root of unity 11 such that 8(2, q) = 11
(mod N), then N is composite and terminate the algorithm. If 11 exists and
is a primitive 2k-th root of unity, and if in addition q<N-1)/2 = -1 (mod N),
set l2 t- 1.

4c.[Check (*13) for p = 2 and k = 2] Set 81 t- J(2,q) 2 · q mod N, s2 t-

8lN/4J mod N, and finally 8(2, q) t- 8 2 if N = 1 (mod 4), 8(2, q) t-

821(2, q)2 if N = 3 (mod 4).
If there does not exist a fourth root of unity 11 such that 8(2, q) = 11

(mod N), then N is composite and terminate the algorithm. If 11 exists and is
a primitive fourth root of unity (i.e. T/ = ±i), and if in addition q(N-1)/2 = -1
(mod N), set l2 t- 1.

4d.[Check (*13) for p = 2 and k = 1] Compute 8(2, q) t- (-q)(N-1)/2 mod N.
If 8(2, q) "¢ ±1 (mod N), then N is composite and terminate the algorithm.
If 8(2,q) = -1 (mod N) and N = 1 (mod 4), set l2 t-1.

5. [Check conditions .Cp] For every p I t such that lp = 0, do as follows. Choose
random primes q such that q f e(t), q = 1 (mod p), (q, N) = 1, execute step
4a, 4b, 4c, 4d according to the value of the pair (p, q). To do this, we will
have to compute a number of new Jacobi sums, since these will not have been
precomputed, and we do this as explained in the precomputation algorithm.

If after a reasonable number of attempts, some lp is still equal to 0, then
output a message saying that the test has failed (this is highly improbable).

6. For i = 1, ... , t - 1, compute (by induction of course, not by the binary
powering algorithm) Ti t- Ni mod e(t). lffor some i, Ti is a non-trivial divisor
of N, then N is composite and terminate the algorithm. Otherwise (i.e. if for
every i either ri f Nor ri = 1 or Ti = N), output the message that N is prime
and terminate the algorithm.

9.1. 7 Discussion

The above algorithm works already quite well both in theory and in practice.
Pomerance and Odlyzko have shown that the running time of the Jacobi sum
algorithm is

O((lnN)CinlnlnN)

for some constant G. Hence this is almost (but not quite) a polynomial time
algorithm. Many improvements are however still possible.

For example, it is not difficult to combine the Jacobi sum test with the
information gained from the Pocklington N - 1 and N + 1 tests (Proposition

466 9 Modern Primality Tests

8.3.1). One can go even further and combine the test with the so-called Galois
theory test. This has been done by Bosma and van der Hulst (see [Bos-Hul]).

Note also that the part of the algorithm which is the most time-critical

is the computation of s2 +- slN/pk J. To do this, we of course use the fastest
powering algorithms possible, in practice the 2k-left to right Algorithm 1.2.4.
But we must also do multiplications in the rings Z[(pk] which is of dimension
n = ¢(pk) = (p- 1)pk-1 over Z. A priori such a multiplication would require
n 2 multiplications in Z. Using the same tricks as explained in Section 3.1.2,
it is possible to substantially decrease the number of necessary multiplica
tions. Furthermore, special squaring routines must also be written. All this is
explained in complete detail in [Coh-Len2] and [Coh-Len3].

Another important improvement uses an algorithm due to H. W. Lenstra
(see [Len2]) for finding in polynomial time factors of N which are in a given
residue class modulo s when s > N 113 . This can be applied here, and allows
us to replace the condition e2(t) > B of the precomputations by e3 (t) > B.
This gives a substantial saving in time since one can choose a much smaller
value of t. We give the algorithm here, and refer to [Len2] for its proof.

Algorithm 9.1.29 (Divisors in Residue Classes). Let r, s, N be integers
such that 0 ~ r < s < N, (r, s) = 1 and s > ifN. This algorithm determines all
the divisors d of N such that d = r (mods).

1. [Initialization] Using Euclid's extended Algorithm 1.3.6 compute u and v such
that ur + vs = 1. Set r' +- uN mods {hence 0 ~ r' < s), ao +- s, bo +- 0,
Co +- 0, a1 +- ur' mods, b1 +- 1, c1 +- u(N- rr')/s mods and j +- 1.
Finally, if a1 = 0 set a1 = s {so 0 < a1 ~ s).

2. [Compute c]lf j is even let c +- Cj. Otherwise, let c +- Cj + sl(N + s2(aibi
Cj))/s3J and if c < 2ajbj go to step 6.

3. [Solve quadratic equation]lf (cs +air+ bir')2 - 4aibiN is not the square of
an integer, go to step 5. Otherwise, let t1 and t2 be the two {integral) solutions
of the quadratic equation T 2 - (cs +air+ bir')T + aibiN = 0.

4. [Divisor found?] If ai I t1. bj I t2, tdai = r (mods) and t2/bi = r' (mods),
then output ttfai as a divisor of N congruent tor modulo s.

5. [Other value of c] If j is even and c > 0, set c +- c- s and go to step 3.

6. [Next j] If ai = 0, terminate the algorithm. Otherwise, set j +- j + 1, and
Qj +- Lai-2/ai-d if j is even, Qj +- L(ai-2 -1)/ai-d if j is odd. Finally,
set ai +- aj-2 - qiai-1• bi +- bj-2 - qibi-1. Cj +- Cj-2 - QjCj-1 and go to
step 2.

Remarks.

(1) [Len2] also shows that under the conditions of this algorithm, there exist
at most 11 divisors of N congruent tor modulo s.

(2) In step 4, h/bi is a divisor of N congruent tor' modulo s. Since in the case
of the Jacobi sum test r = Ni mod s and so r' = N 1-i mod s, Lenstra's

9.2 The Elliptic Curve Test 467

algorithm allows us to test simultaneously two residue classes modulo s,
reducing the time spent in step 6 of Algorithm 9.1.28.

9.2 The Elliptic Curve Test

We now come to the other modern primality test, based on the use of elliptic
curves over finite fields. Here, instead of looking for suitably strong gener
alizations of Fermat's theorem in cyclotomic fields, or equivalently instead
of implicitly using the multiplicative group of lF Nd, we will use the group of
points of elliptic curves over lF N itself.

Now recall that when we start using a primality test, we are already
morally certain that our number N is prime, since it has passed the Rabin
Miller pseudo-primality test. Hence, we can work as if N was prime, for ex
ample by assuming that any non-zero element modulo N is invertible. In the
unlikely event that some non-zero non-invertible element appears, we can im
mediately stop the algorithm since we know not only that N is composite, but
even an explicit prime factor by taking a GCD with N.

We will consider an "elliptic curve over Z/N7l}'. What this means is that
we consider a Weierstra£ equation

a, bE Z/NZ, (4a3 + 27b2) E (Z/NZ)*.

(It is not necessary to consider a completely general Weierstra£ equation since
we may of course assume that (N, 6) = 1.)

We then add points on this curve as if N was prime. Since the group
law involves only addition/subtraction/multiplication/division in Z/NZ, the
only phenomenon which may happen if N is not prime is that some division
is impossible, and in that case as already mentioned, we know that N is
composite and we stop whatever algorithm we are executing.

Hence, from now on, we implicitly assume that all operations take place
without any problems.

9.2.1 The Goldwasser-Kilian Test

The basic proposition which will enable us to prove that N is prime is the
following analog of Pocklington's Theorem 8.3.1.

Proposition 9.2.1. Let N be an integer coprime to 6 and different from 1.
and E be an elliptic curve modulo N.

Assume that we know an integer m and a point P E E(Z/ NZ) satisfying
the following conditions.

{1) There exists a prime divisor q of m such that

468 9 Modern Primality Tests

(2) m · P = OE = (0: 1 : 0).
(3) (mfq) · P = (x: y: t) with t E (Z/NZ)*.

Then N is prime. (As above, it is assumed that all the computations are
possible.)

Proof Let p be a prime divisor of N. By reduction modulo p, we know that
in the group E(Zfp'Z), the image of P has order a divisor of m, but not a
divisor of mfq since t E (Z/NZ)*. Since q is a prime, this means that q divides
the order of the image of Pin E(Zfp'Z), and in particular q ~ IE(Z/pZ)I. By
Hasse's Theorem 7.1.8, we thus have

Assume that N was not prime. We can then choose for p the smallest
prime divisor of N which will be less than or equal to .../N. Hence we obtain
q < (m + 1)2 ' contradicting the hypothesis on the size of q and thus proving
the proposition. D

For this proposition to be of any use, we must explain three things. First,
how one chooses the elliptic curve, second how one finds P, and finally how
one chooses m. Recall that for all these tasks, we may as well assume that N is
prime, since this only helps us in making a choice. Only the above proposition
will give us a proof that N is prime.

The only non-trivial choice is that of the integer m. First, we have:

Proposition 9.2.2. Let N be a prime coprime to 6, E an elliptic curve
modulo N and let

m = IE(Z/NZ)I.

If m has a prime divisor q satisfying

then there exists a point P E E(Z/ NZ) such that

m · P = OE and (mfq) · P = (x : y : t) with t E (Z/NZ)*.

Proof First note that any point P will satisfy m · P = OE. Second, since
N is assumed here to be prime, t E (Z/NZ)* means t =f. 0 hence the second
condition is (mfq) · P =f. OE.

Set G = E(Z/NZ) and assume by contradiction that for every PEG we
have (mfq) · P = OE. This means that the order of any Pis a divisor of mfq,

9.2 The Elliptic Curve Test 469

hence that the exponent of the Abelian group G divides mfq. (Recall that the
exponent of an Abelian group is the LCM of the orders of the elements of the
group.)

Now, by Theorem 7.1.9, we know that G is the product of at most two
cyclic groups, i.e. that

(and d2 = 1 if G is cyclic). Hence the exponent of G is equal to dt, while the
cardinality of G is equal to d1d2 ~ d~. Thus we obtain

m = IGI ~ d~ ~ (m/q)2 ,

hence q2 ~ m. Using our hypothesis on the size of q and Hasse's bound 7.1.8
on m, we obtain

and this is clearly a contradiction, thus proving the proposition. D

We now know that Proposition 9.2.1 can in principle be applied to prove
the primality of N, by choosing m = IE(Z/NZ)I, where this cardinality is
computed as if N was prime. But that is precisely the main question: how
is this computed? We could of course use the baby-step giant-step Algorithm
7.4.12, but this is a O(N114) algorithm, hence totally unsuitable.

The idea of Goldwasser and Kilian ([Gol-Kil]) is to make use of the remark
able algorithm of Schoof already mentioned in Section 7.4.3 ([Scho]), which
computes m = IE(Z/NZ)I in time O(ln8 N). Of course, this algorithm may
fail since it is not absolutely certain that N is prime, but if it fails, we will
know that N is composite.

Once m has been computed, we trial divide m by small primes, hoping that
the unfactored part will be a large strong pseudo-prime. In fact, Goldwasser
and Kilian's aim was purely theoretical, and in that case one looks for m
equal to twice a strong pseudo-prime. If this is the case, and q is the large
pseudo-prime that remains (large meaning larger than (ifN + 1)2 of course),
we temporarily assume that q is prime, and look at random for a point P so
as to satisfy the hypothesis of Proposition 9.2.1. This will be possible (and in
fact quite easy) by Proposition 9.2.2.

If such a P is found, there remains the task of proving that our strong
pseudo-prime q is prime. For this, we apply the algorithm recursively. Indeed,
since q ~ m/2 ~ (N+2Jiii+1)/2, the size of N will decrease by a factor which
is at least approximately equal to 2 at each iteration, hence the number of
recursive uses of the algorithm will be O(ln N). We stop using this algorithm as
soon as N becomes small enough so that other algorithms (even trial division!)
may be used.

The algorithm may be formally stated as follows.

470 9 Modern Primality Tests

Algorithm 9.2.3 (Goldwasser-Kilian). Let N be a positive integer different
from 1 and coprime to 6. This algorithm will try to prove that N is prime. If N
is not a prime, the algorithm may detect it, or it may run indefinitely (hence we
must absolutely use the Rabin-Miller test before entering this algorithm).

1. [Initialize] Set i t- 0 and Ni t- N.

2. [Is Ni small?]lf Ni < 230 , trial divide Ni by the primes up to 215 . IfNi is not
prime go to step 9.

3. [Choose a random curve] Choose a and bat random in Z/N/Z, and check that
4a3 + 27b2 E (Z/ NiZ)*. Let E be the elliptic curve whose affine WeierstraB
equation is y2 = x 3 + ax + b.

4. [Use Schoof] Using Schoof's algorithm, compute m t- IE(Z/NiZ)I. If Schoof's
algorithm fails go to step 9.

5. [Ism OK?] Check whether m = 2q where q passes the Rabin-Miller test 8.2.2
(or more generally, trial divide m up to a small bound, and check that the
remaining factor q passes the Rabin-Miller test and is larger than ({!Ni + 1)2).

If this is not the case, go to step 3.

6. [Find P] Choose at random x E Z/NiZ until the Legendre-Jacobi symbol
(x 3+;:+b) is equal to 0 or 1 (this will occur after a few trials at most). Then
using Algorithm 1.5.1, compute y E Z/NiZ such that y2 = x3 +ax+b (again,
if this algorithm fails, go to step 9).

7. [Check P] Compute P1 t- m · P and P2 t- (m/q) · P. If during the com
putations some division was impossible, go to step 9. Otherwise, check that
P1 = OE, i.e. that P1 = (0 : 1 : 0) in projective coordinates. If P1 f OE, go
to step 9. Finally, if P2 = OE, go to step 6.

8. [Recurse] Set it- i + 1, Ni t- q and go to step 2.

9. [Backtrack] (We are here when Ni is not prime, which is a very unlikely occur
rence.) If i = 0, output a message saying that N is composite and terminate
the algorithm. Otherwise, set i t- i- 1 and go to step 3.

Some remarks are in order. As stated in the algorithm, if N is not prime,
the algorithm may run indefinitely and so should perhaps not be called an
"algorithm" in our sense. Note however that it will never give a false answer.
But even if N is prime, the algorithm is probabilistic in nature since we need
to find an elliptic curve whose number of points has a special property, and
in addition a certain point P on that curve. It can be shown that under
reasonable hypotheses on the distribution of primes in short intervals, the
expected running time of the algorithm is 0 (In 12 N), hence is polynomial in
InN. Therefore it is asymptotically faster than the Jacobi sum test. Note
however that the Goldwasser-Kilian test is not meant to be practical.

The sequence of primes No= N, N11 ••• Ni, ... together with the elliptic
curves Ei, the points Pi and the cardinality mi obtained in the algorithm
is called a primality certificate. The reason for this is clear: although it may

9.2 The Elliptic Curve Test 471

have been difficult to find Ei, Pi or mi, once they are given, to check that the
conditions of Proposition 9.2.1 are satisfied (with q = Ni+l) is very easy, so
anybody can prove to his or her satisfaction the primality of N using much
less work than executing the algorithm. This is quite different from the Jacobi
sum test where to check that the result given by the algorithm is correct,
there is little that one can do but use a different implementation and run the
algorithm again.

To finish this (sub)section, note that, as stated in the beginning of this
chapter, an important theoretical advance has been made by Adleman and
Huang.

Their idea is to use, in addition to elliptic curves, Jacobians of curves of
genus 2, and a similar algorithm to the one above. Although their algorithm
is also not practical, the important point is that they obtain a probabilistic
primality testing algorithm which runs in polynomial time, in other words
they prove Theorem 9.1. Note that the Goldwasser-Kilian test is not of this
kind since only the expected running time is polynomial, but the worst case
may not be.

9.2.2 Atkin's Test

Using the same basic idea, i.e. Proposition 9.2.1, Atkin has succeeded in finding
a practical version of the elliptic curve test. It involves a number of new ideas.
This version has been implemented by Atkin and by Morain, and has been
able to prove the primality of titanic numbers, i.e. numbers having more than
1000 decimal digits. The Jacobi sum test could of course do the same, but time
comparisons have not yet been done, although it seems that at least up to 800
digits the Jacobi sum test is slightly faster. Of course, since asymptotically
Atkin's test is polynomial while the Jacobi sum test is not, the former must
win for N sufficiently large.

The main (if not the sole) practical stumbling block in the algorithm of
Goldwasser-Kilian is the computation of m = IE(Z/NZ)I using Schoof's algo
rithm. Although progress has been made in the direction of making Schoof's
algorithm practical, for example by Atkin and Elkies, Atkin has found a much
better idea.

Instead of taking random elliptic curves, we choose instead elliptic curves
with complex multiplication by an order in a quadratic number field K =
Q(..,fi5) where N splits as a product of two elements. This will enable us to
use Theorem 7.2.15 which (if N is prime) gives us immediately the cardinality
of E(Z/NZ).

The test proceeds as follows. As always we can work as if N was prime.
We must first find a negative discriminant D such that N splits in the order
of discriminant D as a product of two elements. This is achieved by using
Cornacchia's Algorithm 1.5.3. Indeed, Cornacchia's algorithm gives us, if it
exists, a solution to the equation x 2 +dy2 = 4p, where d = -D, hence 7r7i' = p,
with

472 9 Modern Primality Tests

x+yvD
7r=

2

Once such a D is found, using Theorem 7.2.15 we obtain that, if N is
prime,

m = IE(Z/NZ)I = N + 1- 1r -7f = N + 1- x

with the above notations, if E is an elliptic curve with complex multiplication
by the order of discriminant D. We now check whether m satisfies the condition
which will enable us to apply Proposition 9.2.1, i.e. that m is not prime, but
its largest prime factor is larger than ({IN+ 1)2 . Since we are describing
a practical algorithm, this is done much more seriously than in Goldwasser
Kilian's test: we trial divide m up to a much higher bound, and then we can
also use Pollard p and p - 1 to factor m.

If m is not suitable, we still have at least another chance. Recall from
Section 5.3 that we denote by w(D) the number of roots of unity in the
quadratic order of discriminant D, hence w(D)=2 if D<-4, w(-4) = 4
and w(-3) = 6.

Then it can be shown that there exist exactly w(D) isomorphism classes of
elliptic curves modulo N with complex multiplication by the quadratic order
of discriminant D. These correspond to the factorizations N = ((1r) ((1r) where
(runs over all w(D)-th roots of unity (in particular (= ±1 if D < -4).

Hence we can compute w(D) different values of m in this way and hope
that at least one of them is suitable. If none are, we go on to another discrim
inant.

Therefore, let us assume that we have found a suitable value for m corre
sponding to a certain discriminant D. It remains to find explicitly the equa
tions of elliptic curves modulo N with complex multiplication by the order of
discriminant D.

Now since N splits in the order of discriminant D, we have w(D) I N -1
and there exist (N- 1)/2 values of g E Z/NZ ((N -1)/3 if D = -3) such
that g(N-l)/p f:. 1 for each prime pI w(D). Choose one of these values of g.

If D =- 4 (resp. D =- 3), then the four (resp. six) isomorphism classes
of elliptic curves with complex multiplication by the order of discriminant -4
are given by the affine equations

(resp.

If D is not equal to -3 or -4, we set

9.2 The Elliptic Curve Test 473

is the j-invariant which corresponds to the order of discriminant D. Then the
two isomorphism classes of elliptic curves with complex multiplication by the
order of discriminant D can be given by the affine equations

Note that j = j((D + ,fl5)/2) has been defined in Section 7.2.1 as a
complex number, and not as an element of Z/NZ. Hence we must make sense
of the above definition.

Recall that according to Theorem 7.2.14, j is an algebraic integer of degree
exactly equal to h(D). Furthermore, it can easily be shown that our hypothesis
that N splits into a product of two elements is equivalent (if N is prime) to
the fact that the minimal monic polynomial T of j in Z[X] splits completely
modulo N as a product of linear factors. Since the roots of T in <C are the
conjugates of j((D + ,fl5)/2), any one will define by the above equations the
isomorphism classes of elliptic curves with complex multiplication by the order
of discriminant D, hence we define j as being any of the h(D) roots of T(X)
in Z/NZ.

Once the elliptic curve has been found, the rest of the algorithm proceeds
as in the Goldwasser-Kilian algorithm, i.e. we must find a point P on the
curve satisfying the required properties, etc ...

There are, however, two remarks to be made. First, we have w(D) elliptic
curves modulo N at our disposal, but a priori only one corresponds to a
suitable value of m, and it is not clear which one. ForD = -3 and D = -4,
it is easy to give a recipe that will tell us which elliptic curve to choose. For
D < -4, such a recipe is more difficult to find, and we then simply compute
m · P for our suitable m and a random P on one of the two curves. If this is not
equal to the identity, we are on the wrong curve. If it is equal to the identity,
this does not prove that we are on the right curve, but if P has really been
chosen randomly, we can probably still use the curve to satisfy the hypotheses
of Proposition 9.2.1.

The second remark is much more important. To obtain the equation of
the curve, it is necessary to obtain the value of j modulo N. This clearly is
more difficult if the class number h(D) is large. Hence, we start by considering
discriminants whose class number is as small as possible. So we start by looking
at the 13 quadratic orders with class number 1, then class number 2, etc ...

But now a new difficulty appears. The coefficients in the minimal poly
nomial T of j become large when the class number grows. Of course, they
will afterwards be reduced modulo N, but to compute them we will need to
use high precision computations of the values of j(T) for every quadratic irra
tional T corresponding to a reduced quadratic form of discriminant D. Since
this computation is independent of N, it could be done only once and the re
sults stored, but the coefficients are so large that even for a moderately sized
table we would need an enormous amount of storage.

474 9 Modern Primality Tests

Several methods are available to avoid this. First, one can use the notion
of genus field to reduce the computations to a combination of relative com
putations of smaller degree. Second, we can use Weber functions, which are
meromorphic functions closely related to the function j(r) and which have
analogous arithmetic properties. In the best cases, these functions reduce the
number of digits of the coefficients of the minimal polynomial T by a factor
24 (see Section 7.6.3).

All these tricks and many more, and the detailed implementation proce
dures, are described completely in [Atk-Mor] and in Morain's thesis [Mor2].
Here, we will simply give a formal presentation of Atkin's algorithm without
any attempt at efficiency.

Algorithm 9.2.4 (Atkin). Given an integer N coprime to 6 and different from
1, this algorithm tries to prove that N is prime. It is assumed that N is already
known to be a strong pseudo-prime in the sense of the Rabin-Miller test 8.2.2.
We assume that we have a list of negative discriminants Dn (n ~ 1) ordered
by increasing computational complexity (for example as a first approximation by
increasing class number).

1. [Initialize] Set i t-- 0, n t-- 0 and Ni t-- N.

2. [Is Ni small?] IfNi < 230 , trial divide Ni by the primes up to 215. IfNi is
not prime go to step 14.

3. [Choose next discriminant] Let n t-- n + 1 and D t-- Dn. If (~) =f- 1, go to
step 3. Otherwise, use Cornacchia's Algorithm 1.5.3 to find a solution, if it
exists, of the equation x 2 + 1Diy2 = 4N. If no solution exists, go to step 3.

4. [Factor m] For m = N + 1 + x, m = N + 1 - x (and in addition for
m=N+1+2y, m=N+1-2y ifD=-4, orm=N+1+(x+3y)/2.
m=N +1-(x+3y)/2, m=N +1+ (x- 3y)/2, m=N +1-(x- 3y)/2 if
D = -3), factor m using trial division (up to 1000000, say), then Pollard p
and p- 1. It is worthwhile to spend some time factoring m here.

5. [Does a suitable m exist?] If, using the preceding step, for at least one value
of m we can find a q dividing m which passes the Rabin-Miller test 8.2.2 and
is larger than ({INi + 1)2 , then go to step 6, otherwise go to step 3.

6. [Compute elliptic curve] If D = -4, set a t-- -1 and b t-- 0. If D = -3,
set a t-- 0, b t-- -1. Otherwise, using Algorithm 7.6.1, compute the minimal
polynomial T E Z[X] of j((D+ VD)/2). Then reduce T modulo Ni and let
j be one of the roots ofT = T mod Ni obtained by using Algorithm 1.6.1
(note that we know that T I xN•- X so the computation of A(X) in step
1 of that algorithm is not necessary, we can simply set A t-- T). Then set
c t-- jf(j -1728) mod Ni, at-- -3c mod Ni. b t-- 2c mod Ni.

7. [Find g] By making several random choices of g, find g such that g is a
quadratic non-residue modulo Ni and in addition if D = -3, g(N;- 1)/3 ¢:. 1
(mod Ni)·

9.3 Exercises for Chapter 9 475

8. [Find P] Choose at random x E Z/N/L until the Legendre-Jacobi symbol

(x3+;:+b) is equal to 0 or 1 {this will occur after a few trials at most). Then

using Algorithm 1.5.1, compute y E Z/NiZ such that y2 = x3 +ax+ b. {If
this algorithm fails, go to step 14, but see also Exercise 6.) Finally, set k +-- 0.

9. [Find right curve] Compute P2 +-- (mfq) · P and P1 +-- q · P2 on the curve
whose affine equation is y2 = x 3 + ax+ b. If during the computations some
division was impossible, go to step 14. If P1 = (0 : 1 : 0) go to step 12.

10. Set k +-- k + 1. If k ? w(D) go to step 14, else if D < -4 set a +-- ag2 ,

b +-- bg3 , if D = -4 set a+-- ag, if D = -3 set b +-- bg and go to step 8.

11. [Find a new P] Choose at random x E Z/NiZ until the Legendre-Jacobi

symbol (x3+;:+b) is equal to 0 or 1 (this will occur after a few trials at most).

Then using Algorithm 1.5.1, compute y E Z/NiZ such that y2 = x3 +ax+ b
{if this algorithm fails, go to step 14). If P1 -:f. (0 : 1 : 0) go to step 10.

12. [Check P] If P2 = OE, go to step 11.

13. [Recurse] Set i +-- i + 1, Ni +-- q and go to step 2.

14. [Backtrack] (We are here when Ni is not prime, which is unlikely.) If i = 0,
output a message saying that N is composite and terminate the algorithm.
Otherwise, set i +-- i- 1 and go to step 3.

Most remarks that we have made about the Goldwasser-Kilian algorithm
are still valid here. In particular, this algorithm is probabilistic, but its ex
pected running time is polynomial in ln N. More important, it is practical,
and as already mentioned, it has been used to prove the primality of numbers
having more than 1000 decimal digits, by using weeks of workstation time.

Also, as for the Goldwasser-Kilian test, it gives a certificate of primality
for the number N, hence the primality of N can be re-checked much faster.

9.3 Exercises for Chapter 9

1. a) Let p be a prime, E the set of integers x such that 1 ::::; x < pk and p f x,
and a an integer such that p f a. By computing the product of ax for x E E in
two different ways, show that we have

xa -1 a p- P - 1 k l J (1) k-1

L -k x =a k (mod p).
:z:EE p p

b) Generalize this result, replacing pk by an arbitrary integer m and the
condition p fa by (a, m) = 1.

2. Show that if p is an odd prime and p f a, we have

(mod p).

476 9 Modern Primality Tests

3. Prove Lemma 9.1.24 without explicitly using the Hasse-Davenport relations.

4. (Wolstenholme's theorem)
a) Let p be a prime, and set

where Ap and Bp are coprime integers. By first adding together the terms for x
and for p- x, show that p2 I Ap (note that pI Ap is immediate).

b) As in Exercise 1, generalize to arbitrary integers m, replacing I:I::;:z:::;p- 1

by I:1 ::;:z:::;m,(:z:,m)=1"

5. Let a E Z and assume that a<N- 1)/2 = -1 (mod N).
a) Show that for every r I N we have v2(r- 1) 2': v2(N- 1).
b) Show that equality holds if and only if (%) = -1, and in particular that

(N) = -1.
c) If N = 1 (mod 4) show that condition £ 2 is satisfied.
d) If N = 3 (mod 8) and a= 2 show that condition £2 is satisfied.

6. Show how to avoid the search in step 8 of Algorithm 9.2.4 by setting d <

x3 + ax + b for some x and modifying the equation of the curve as in step 3 of
Algorithm 7.4.12.

7. Let X be a character modulo q, where q is not necessarily prime. We will say that
X is primitive if for all divisors d of q such that d < q, there exists an x such that
X= 1 (mod d) and x(x) i= 0 and 1. Set (,= e2irr/q, and '!f!(a) = I::z:E(Z/qZ)• x(x)(,a"'.

a) Let a be such that d =(a, q) = 1. Show that '!f!(a) = x(a)r(x).
b) Assume that x is a primitive character and that d = (a, q) > 1. Show that

there exists au E (Z/qZ)* such that au= d. Deduce from this that '!f!(a) = 0,
and hence that the formula '!f!(a) = x(a)r(x) is still valid.

c) Show that if xis a primitive character modulo q which is not necessarily
a prime, we still have lr(x)l =v'Q.

8. Let x be a primitive character modulo q > 1, as defined in the preceding
exercise, and set S(x) = I:n::;:z: x(n).

a) Using the preceding exercise, give an explicit formula for r(x)S(x).
b) Deduce that

v'QIS(x)l:::;
1

sin rrm ·
1:'0m<q, m#q/2 q

c) Show finally the Polya-Vinogradov inequality

IS(x)l =I L x(n)l:::; yqlogq.
1:-::;n::;:z:

Chapter 10

Modern Factoring Methods

The aim of this chapter is to give an overview of the fastest factoring methods
known today. This could be the object of a book in itself, hence it is unrea
sonable to be as detailed here as we have been in the preceding chapters. In
particular, most methods will not be written down as formal algorithms as we
have done before. We hope however that we will have given sufficient informa
tion so that the reader may understand the methods and be able to implement
them, at least in unoptimized form. The reader who wants to implement these
methods in a more optimized form is urged to read the abundant literature
after reading this chapter, before doing so.

10.1 The Continued Fraction Method

We will start this survey of modern factoring methods by the continued frac
tion factoring algorithm (CFRAC). Although superseded by better methods,
it is important for two reasons. First, because it was historically the first algo
rithm which is asymptotically of sub-exponential running time (although this
is only a heuristic estimate and was only realized later), and also because in the
late 60's and 70's it was the main factoring method in use. The second reason
is that it shares a number of properties with more recent factoring methods:
it finds a large number of congruences modulo N, and the last step consists
in Gaussian elimination over the field Z/2Z. Since the ideas underlying it are
fairly simple, it is also a natural beginning.

The main idea of CFRAC, as well as the quadratic sieve algorithm (Section
10.4) or the number field sieve (Section 10.5), is to find integers x andy such
that

x ¢ ±y (mod N).

Since x2 - y2 = (x - y)(x + y), it is clear that the gcd(N, x + y) will be a
non-trivial factor of N.

Now finding randomly such integers x andy is a hopeless task. The trick,
common to the three factoring methods mentioned above, is to find instead
congruences of the form

478 10 Modern Factoring Methods

where the Pi are "small" prime numbers. If we find sufficiently many such con
gruences, by Gaussian elimination over Z/2Z we may hope to find a relation
of the form

L fk(eok,··· ,emk) = (0,···,0) (mod 2)
l~k:$n

where fk = 0 or 1, and then if

x= IT x~", y=(-1)vop~!···p~
1:$k:$n

where Ek fk(eok, · · ·, emk) = 2(vo, · · ·, vm), it is clear that we have x2 = y2

(mod N). This splits N if, in addition x ¢. ±y (mod N), condition which will
usually be satisfied.

The set of primes Pi (for 1 :::; i :::; m) which are chosen to find the congru
ences is called the factor base. We will see in each of the factoring methods
how to choose it in an optimal manner. These methods differ mainly in the
way they generate the congruences.

The CFRAC method, stemming from ideas of Legendre, Kraitchik, Lehmer
and Powers, and developed for computer use by Brillhart and Morrison ([Bri
Mor]), consists in trying to find small values oft such that x2 = t (mod N)
has a solution. In that case, since t is small, it has a reasonably good chance
of being a product of the primes of our factor base, thus giving one of the
sought for congruences.

Now if tis small and x2 = t (mod N), we can write x2 = t + kd2 N for some
k and d, hence (x/d)2 - kN = tjd2 will be small. In other words, the rational
number xfd is a good approximation to the quadratic number ../kFi. Now it
is well known (and easy, see [H-W]) that continued fraction expansions of real
numbers give good (and in a certain sense the best) rational approximations.
This is the basic idea behind CFRAC. We compute the continued fraction
expansion of v'kFi for a number of values of k. This gives us good rational
approximations P / Q, say, and we then try to factor the corresponding integer
t = P2 - Q2kN (which will be not too large) on our factor base. If we succeed,
we will have a new congruence.

Now from Section 5.7, we know that it is easy to compute the continued
fraction expansion of a quadratic number, using no real approximations, but
only rather simple integer arithmetic. Note that although we know that the
expansion will be ultimately periodic (in fact periodic after one term in the
case of ../kFi), this is completely irrelevant for us since, except for very special
numbers, we will never compute the expansion on a whole period or even a
half period. The main point which I stress again is that the expansion can be
computed simply, in contrast with more general numbers.

The formulas of Sections 5.6 and 5.7, adapted to our situation, are as
follows. LetT= (-U + v'I5)/2V be a quadratic number in the interval [0, 1[
with 4V I U2 - D and V > 0 (hence lUI < v'I5). We have

10.1 The Continued Fraction Method 479

1/ = 2V(U + VD) = U + .fi5
r D-U2 2V'

where V' = (D- U2)j(4V) is a positive integer. Hence, if we set

= l!.J = lu + v'Dj a r 2V' '

then
-U + VJ5 1 1 ---

2V -U' + v'D a +r'
a+ 2V'

with U' = U- 2aV'. Clearly r' E [0, 1[, and since 4VV' = D- U2 = D- U'2

(mod 4V') the conditions on (U, V) are also satisfied for (U', V') hence the
process can continue. Thus we obtain the continued fraction expansion of our
initial r.

Note we have simply repeated the proof of Proposition 5.6.6 (2) that if a
quadratic form f = (V, U, (U2-D)/(4V)) is reduced, then p(f) is also reduced.
In addition, Proposition 5.6.3 tells us that we will always have U and V less
than VJ5 if we start with a reduced form. This will be the case for the form
corresponding to the quadratic number r = VJ5 - l VJ5 J. If we denote by an
(resp Un, Vn, rn), the different quantities a, U, V and r occurring in the above
process, we have, with the usual notation of continued fractions

where we have set ao = l ffiJ. Hence, if we set

we have the usual recursions

with (P-l. Q-1) = (1, 0), (Po, Qo) = (ao, 1).

Returning to our factoring process, we apply this continued fraction al
gorithm to D = kN for squarefree values of k such that kN = 0 or 1
(mod 4). Then Pn/Qn will be a good rational approximation to ..JkN, hence
t = P~- Q';kN will not be too large (more precisely It I < 2..Jkii, see Propo
sition 5.7.3), and we can try to factor it on our factor base. For every success,
we obtain a congruence

as above, and as already explained, once we have obtained at least m + 2
such congruences then by Gaussian elimination over 7l/27l we can obtain a

480 10 Modern Factoring Methods

congruence x2 = y2 (mod N), and hence (usually) a non-trivial splitting of N.

Remarks.

(1) For a prime p to be useful in our factor base we must have (k:) = 0 or 1.

Indeed, if pIP~- Q~kN, we cannot have pI Qn otherwise Pn and Qn
would not be coprime. Hence kN is congruent to a square modulo p,
which is equivalent to my claim.

(2) An important improvement to the method of factoring on a fixed factor
base is to use the so-called large prime variation which is as follows. A large
number of residues will not quite factor completely on our factor base, but
will give congruences of the form x2 = Fp (mod N) where F does factor
completely and p is a large prime number not in the factor base. A single
such relation is of course useless. But if we have two with the same large
prime p, say x~ = F1P (mod N) and x~ = F2p (mod N), we will have
(x1x2 jp)2 = F1F2 (mod N) which is a useful relation.

Now since p is large (typically more than 105), it could be expected
that getting the same p twice is very rare. That this is not true is an
instance of the well known "birthday paradox". What it says in our case
is that if k numbers are picked at random among integers less than some
bound B, then if k > B 112 (approximately) there will be a probability
larger than 1/2 that two of the numbers picked will be equal (see Exercise
5). Hence this large prime variation will give us quite a lot of extra relations
essentially for free.

(3) Another important improvement to CFRAC is the so-called early abort
strategy. It is based on the following idea. Most of the time is being spent
in the factorization of the residues (this is why methods using sieves such as
MPQS or NFS are so much faster). Instead of trying to factor completely
on our factor base, we can decide that if after a number of primes have
been tried the unfactored portion is too large, then we should abort the
factoring procedure and generate the next residue. With a suitable choice
of parameters, this gives a considerable improvement.

(4) Finally, note that the final Gaussian elimination over Z/2Z is a non-trivial
task since the matrices involved can be huge. These matrices are however
very sparse, hence special techniques apply. See for example the "intel
ligent Gaussian elimination" method used by LaMacchia and Odlyzko
([LaM-Odl]), as well as [Cop1], [Cop2].

10.2 The Class Group Method 481

10.2 The Class Group Method

10.2.1 Sketch of the Method

The continued fraction method, as well as the more recent quadratic sieve
(Section 10.4) or number field sieve (Section 10.5) have sub-exponential run
ning time, which make them quite efficient, but require also sub-exponential
space.

The class group method due to Schnorr and Lenstra was the first sub
exponential method which required a negligible amount of space, say poly
nomial space. The other prominent method having this characteristic is the
elliptic curve method (see Section 10.3).

Note that we name this method after Schnorr and Lenstra since they
published it ([Schn-Len]), but essentially the same method was independently
discovered and implemented by Atkin and Rickert, who nicknamed it SPAR
(Shanks, Pollard, Atkin, Rickert).

The idea of the method is as follows. We have seen in Section 8.6 that the
determination of the 2-Sylow subgroup of the class group of the quadratic field
Q(FN) is equivalent to knowing all the factorizations of N. In a manner
analogous to the continued fraction method, we consider the class numbers
h(-kN) of Q(v' -kN) for several values of k. Then, if h(-kN) is smooth, we
will be able to apply the p - 1 method, replacing the group IF; by the class
group of Q(v' -kN). As for the p- 1 method, this will enable us to compute
the (unknown) order of a group, the only difference being that from the order
of IF; we split N by computing a GCD with N, while in our case we will split
N by using ambiguous forms.

Since we will use p- 1-type methods, we need to specify the bounds B1
(for the first stage), and B 2 (for the second stage). Since we have a large
number of groups at our disposal, we will be able to create a method which
will be a systematic factoring method by choosing B 1 and B 2 appropriately,
since we can hope that h(-kN) will be smooth for a value of k which is not
too large.

To choose these values appropriately, we need a fundamental theorem
about smooth numbers. The upper bound was first proved by de Bruijn ([de
Bru]), and the complete result by Canfield, Erdos and Pomerance ([CEP]). It
is as follows.

Theorem 10.2.1 (Canfield, Erdos, Pomerance). Let

'1/J(x, y) = l{n :<:;: x, n is y-smooth }I.

Then if we set u = lnx/ ln y, we have

'ljJ(x,y) = xu-u(l+o(l))

uniformly for x-+ oo if (lnx)• < u < (lnx) 1-• for a fixed E E (0, 1).

482 10 Modern Factoring Methods

In particular, if we set

L(x) = ev'Inxlnlnx'

then
'1/J(x, L(x)a) = xL(x)-1/(2a)+o(ll.

Now heuristic methods (see Section 5.10 and [Coh-Len1]) seem to indicate
that class numbers are not only as smooth, but even slightly smoother than
average. Furthermore, it is not difficult to see that there is little quantitative
difference between B-smoothness and B-powersmoothness. Hence, it is not un
reasonable to apply Theorem 10.2.1 to estimate the behavior ofpowersmooth
ness of class numbers. In addition, the class number h(-N) is O(N112+') (for
example h(-N) < ~vNlnN, see Exercise 27 of Chapter 5).

Hence, if we take x = .JN and B = L(x)a, we expect that the probability
that a given class number of size around x is B-powersmooth should be at
least L(xt11(2a)+o(ll, hence the expected number of values of k which we will
have to try before hitting a B-powersmooth number should be approximately
L(x)11(2a)+o(ll. (Note that the class number h(-kN) is still O(N112+') for
such values of k.) Hence, ignoring step 2 of the p - 1 algorithm (which in
any case influences only on the 0 constant, not the exponents), the expected
running time with this choice of B is O(L(x)a+l/(2a)+o(ll), and this is minimal

for a= 1/../2. Since L(x) 11V2 ~ L(N) 112 , we see that the optimal choice of
B is approximately L(N)112, and the expected running time is L(N)1+o(l).
Note also that the storage is negligible.

10.2.2 The Schnorr-Lenstra Factoring Method

We now give the algorithm. Note that contrary to the p - 1 method, we do
not need to do any backtracking since if x is an ambiguous form which is not
the unit form (i.e. is of order exactly equal to 2), so is xr for any odd number
r).

Algorithm 10.2.2 (Schnorr-Lenstra). Let N be a composite number. This
algorithm will attempt to split N. We assume that we have precomputed a table
p[1]. ... , p[k] of all the primes up to L(N) 112 .

1. [Initialize] Set B +-lL(N)112j, K +- 1, e +-llgBJ.

2. [Initialize forK] Let D = -KN if KN =. 3 (mod 4), D = -4KN otherwise.

3. [Choose form] Let /p be a random primeform of discriminant D (see Algorithm
5.4.10). Set x +- /p. c +- 0 and i +- 1.

4. [Next prime] Set i +- i + 1. If i > k, set K +- K + 1 and go to step 2.
Otherwise, set q +- p[i]. Ql +- q, l +- l B / qJ.

10.3 The Elliptic Curve Method 483

5. [Compute power] While q1 ~ l, set Ql +--- q · Ql· Then, set x +--- Xq 1 {powering
in the class group), c +--- c + 1 and if c < 20 go to step 4.

6. [Success?] Set e1 +--- 0, and while x is not an ambiguous form and e1 < e set
x +--- x 2 and e1 +--- e1 + 1. Now if x is not an ambiguous form, set c +--- 0, and
go to step 4.

7. [Finished?] (Here x is an ambiguous form.) Find the factorization of KN
corresponding to x. If this does not split N (for example if x is the unit form),
go to step 3. Otherwise, output a non-trivial factor of N and terminate the
algorithm.

Note that if in step 7 we obtain an ambiguous form which does not succeed
in splitting N, this very probably still means that the K used is such that
h(-KN) is B-powersmooth. Therefore we must keep this value of K and
try another random form in the group, but we should not change the group
anymore. Note also that the first prime tried in step 4 is p[2] = 3, and not
p[1] = 2.

To give a numerical example of the numbers involved, for N = 1060 , which
is about the maximum size of numbers which one can factor in a reasonable
amount of time with this method, we have B ~ 178905, and since we need
the primes only up to B, this is quite reasonable. In fact, it is better to take
a lower value of B 1 = B, and use the second stage of the p- 1 method with
quite a larger value for B 2 . This reduces the expected running time of the
algorithm, but the optimal values to take are implementation dependent. We
leave as an exercise for the reader the incorporation of step 2 of the p - 1
method into this algorithm, using these remarks (see Exercise 2).

As in all algorithms using class groups of quadratic fields, the basic opera
tion in this algorithm is composition of quadratic forms. Even with the use of
optimized methods like NUDUPL and NUCOMP (Algorithms 5.4.8 and 5.4.9),
this is still a slow operation. Hence, although this method is quite attractive
because of its running time, which is as good as all the other modern factoring
algorithms with the exception of the number field sieve, and although it uses
little storage, to the author's knowledge it has never been used intensively in
factoring projects. Indeed, the elliptic curve method for instance has the same
characteristics as the present one as far as speed and storage are concerned,
but the group operations on elliptic curves can be done faster than in class
groups, especially when (as will be the case), several curves have to be dealt
with simultaneously (see Section 10.3).

Also note that it has been proved by Lenstra and Pomerance that for
composite numbers of a special form the running time of this algorithm is
very poor (i.e. exponential time).

484 10 Modern Factoring Methods

10.3 The Elliptic Curve Method

10.3.1 Sketch of the Method

We now come to another method which also uses ideas from the p-I-method,
but uses the group of points of an elliptic curve over ZfpZ instead of the
group (ZfpZ)*. This method, due to H. W. Lenstra, is one of the three main
methods in use today, together with the quadratic sieve (see Section 10.4) and
the number field sieve (see Section 10.5). In addition it possesses a number of
properties which make it useful even if it is only used in conjunction with other
algorithms. Like the class group method, it requires little storage and has a
similar expected running time. Unique among modern factoring algorithms
however, it is sensitive to the size of the prime divisors. In other words, its
running time depends on the size of the smallest prime divisor p of N, and
not on N itself. Hence, it can be profitably used to remove "small" factors,
after having used trial division and the Pollard p method 8.5.2. Without too
much trouble, it can find prime factors having 10 to 20 decimal digits. On the
other hand, it very rarely finds prime factors having more than 30 decimal
digits. This means that if N is equal to a product of two roughly equal prime
numbers having no special properties, the elliptic curve method will not be
able to factor N if it has more than, say, 70 decimal digits. In this case, one
should use the quadratic sieve or the number field sieve.

We now describe the algorithm. As in the class group algorithm, for sim
plicity we give only the version which uses stage 1 of the p - 1-method, the
extension to stage 2 being straightforward.

Recall that the group law on an elliptic curve of the form y2 = x 3+ax+b is
given by formulas which generically involve the expression (Y2- Yl) j(x2- x1).
This makes perfect sense in a field (when x2 =I xi), but if we decide to work
in Z/ NZ, this will not always make sense since x2 - x1 will not always be
invertible when x2 =1- x1. But this is exactly the point: if x2 - x1 is not
invertible in Z/ NZ with x 2 =I XI. this means that (x2 - x1. N) is a non-trivial
divisor of N, and this is what we want. Hence we are going to work on an
elliptic curve modulo N (whatever that is, we will define it in Section 10.3.2),
and work as if N is prime. Everything will work out as long as every non-zero
number modulo N that we encounter is invertible. As soon as it does not work
out, we have found a non-trivial factorization of N. At this point, the reader
may wonder what elliptic curves have to do with all this. We could just as well
choose numbers x at random modulo Nand compute (x, N), hoping to find
a non-trivial divisor of N. It is easy to see that this would be a O(N1/2+<)
algorithm, totally unsuitable. But if N has a prime divisor p such that our
elliptic curve E has a smooth number of points modulo p, the p - 1-method
will discover this fact, i.e. find a power of a point giving the unit element of
the cu~ve modulo p. This means that we will have some x1 and x2 such that
x1 = x2 (mod p), hence (x2- x1. N) > 1, and as with all these methods, this
is in fact equal to a non-trivial divisor of N. This means it is reasonable to
expect that something will break down, which is what we hope in this case.

10.3 The Elliptic Curve Method 485

Before turning to the detailed description of the algorithm, it is instructive
to compare the different methods using the p -1-idea. For this discussion, we
assume that we obtain exactly the prime p which is at the basis of the method.
Let B be the stage 1 bound, M = lcm[l..B], and let G be the underlying group
and a an element of G.

(1) In the p- 1 method itself (or its variants like the p + 1 method), G = JF;
(or G = lF;2), and we obtain p directly as gcd(aM- 1, N).

(2) In the class group method, G = Cl(Q(J-KN)) for a suitable K, and we
obtain p indirectly through the correspondence between a factorization
KN = p · KNjp and some ambiguous forms x in G, which is obtained as
aM/2• for a suitable value oft.

(3) In the elliptic curve method, G = E(JF p) and we obtain p indirectly because
of the impossibility of computing aM modulo N (that is, we encountered
a non-invertible element).

We see that the reasons why we obtain the factorization of N are quite
diverse. The running time is essentially governed by the abundance of smooth
numbers, i.e. by the theorem of Canfield, Erdos and Pomerance, and so it
is not surprising that the running time of the elliptic curve method will be
similar to that of the class group method, with the important difference of
being sensitive to the size of p.

10.3.2 Elliptic Curves Modulo N

Before giving the details of the method, it is useful to give some idea of
projective geometry over Z/ NZ when N is not a prime. When N is a prime,
the projective line over Z/NZ can simply be considered as the set ZjNZ to
which is added a single "point at infinity", hence has N + 1 elements. When
N is not a prime, the situation is more complicated.

Definition 10.3.1. We define projective n-space over Z/NZ as follows.
Let E = {(xo,Xl, ... ,xn) E (Z/NZ)n+l, gcd(xo,xl, ... ,xn,N) = 1}. lf

R is the relation on E defined by multiplication by an invertible element of
Z/ NZ, then R is an equivalence relation, and we define

IP'n(ZjNZ) = EjR,

i.e. the set of equivalence classes of E modulo the relation R.
We will denote by (xo : x1 : · · · : Xn) the equivalence class in IP'n(Z/NZ)

of (xo, x1, ... , Xn)·

Remarks.

(1) Note that even though the Xi are in Z/NZ, it makes sense to take their
GCD together with N by taking any representatives in 71., and then com
puting the GCD.

486 10 Modern Factoring Methods

(2) We recover the usual definition of projective n-space over a field when N
is prime.

(3) The set (Z/NZ)n can be naturally embedded into 1Fn(Z/NZ) by sending
(xo,Xt, ... ,Xn-1) to (xo: x1: · · ·: Xn-1: 1). This subset ofiFn(Z/NZ) will
be called for our purposes its affine subspace, and denoted IJP~ff(Z/NZ),
although it is not canonically defined.

(4) If p is a prime divisor of N (or in fact any divisor), there exists a nat
ural map from 1Fn(Z/NZ) to IFn(Z/pZ) induced by reducing projective
coordinates modulo p. Then P belongs to IJP~ff(Z/NZ) if and only if the
reduction of P modulo every prime divisor p of N belongs to IJP~ff(Z/pZ).

(5) When N is a prime, we have a natural decomposition 1Fn(Z/NZ) =
IJP~ff(Z/NZ) U 1Fn-1(Z/NZ), by identifying (xo : x1 : · · · : Xn-1) with
(x0 : x1 : · · · : Xn- 1 : 0). In the general case, this is no longer true. We can
still make the above identification of 1Fn-1 with a subspace of 1Fn. (It is
easy to check that it is compatible with the equivalence relation defining
the projective spaces.) There is however a third subset which enters, made
up of points P = (x0 : x1 : · · · : Xn) such that Xn is neither invertible nor
equal to 0 modulo N, i.e. such that (xn, N) is a non-trivial divisor of N.
We will call this set the special subset, and denote it by JJP~(Z/NZ). For
any subset E of 1Fn(Z/NZ) we will denote by EAff, En_ 1 and E 8 the in
tersection of E with JJP~ff, 1Fn_1 and IF~ respectively. Hence, we have the
disjoint union

Let us give an example. The projective line over Z/6Z has 12 elements,
which are (0 : 1), (1 : 1), (2 : 1), (3 : 1), (4 : 1), (5 : 1), (1 : 2), (3 : 2),
(5 : 2), (1 : 3), (2 : 3) and (1 : 0) (denoting by the numbers 0 to 5 the
elements of Z/6Z). The first 6 elements make up the affine subspace, and the
last element (1 : 0) corresponds to the usual point at infinity, i.e. to JJP0 . The
other 5 elements are the special points.

It is clear that finding an element in the special subset of 1Fn(Z/NZ)
will immediately factor N, hence the special points are the ones which are
interesting for factoring.

We leave as an exercise for the reader to show that

I1Fn(Z/NZ)I = Nn IT (1 + ~ + · · · + ~),
piN p p

and in particular

IJJP1(Z/NZ)I =NIT (1 + ~)
PIN p

(see Exercise 6).

Definition 10.3.2. Let N be a positive integer coprime to 6. We define an
elliptic curve E over 'll/N'll as a projective equation of the form

10.3 The Elliptic Curve Method 487

where (x : y : t) are the projective coordinates, and a and b are elements of
Z/ NZ such that 4a3 + 27b2 is invertible modulo N.

As usual, by abuse of notation we shall use affine equations and affine
coordinates even though it is understood that we work in the projective plane.

Now if N is a prime, the above definition is indeed the definition of an
elliptic curve over the field IFN. When N is not a prime the reduction maps
modulo the prime divisors p of N clearly send E(Z/NZ) into E(ZfpZ). (Note
that the condition that 4a3 + 27b2 is invertible modulo N ensures that the
reduced curves will all be elliptic curves.) Hence, as with any other set we can
write

E(Zf NZ) = EAff U E1 U E 8 ,

and E 8 is the set of points (x : y : t) such that tis neither invertible nor equal
to 0 modulo N. This means, in particular, that the reduction of (x : y : t)
modulo p will not always be in the affine part modulo p.

Warning. Note that if the reduction of (x : y : t) modulo every prime
divisor p of N is the point at infinity, this does not imply that t is equal to 0
modulo N. What it means is that tis divisible by all the primes dividing N,
and this implies t = 0 (mod N) only if N is squarefree.

Now we can use the addition laws given by Proposition 7.1.7 to try and
define a group law on E(Z/NZ). They will of course not work as written,
since even if x1-::/= x2, x1 -x2 may not be invertible modulo N. There are two
ways around this. The first one, which we will not use, is to define the law on
the projective coordinates. This can be done, and involves essentially looking
at 9 different cases (see [Bos]). We then obtain a true group law, and on the
affine part it is clear that the reduction maps modulo p are compatible with
the group laws.

The second way is to stay ignorant of the existence of a complete group law.
After all, we only want to factor N. Hence we use the formulas ()f Proposition
7.1.7 as written. If we start with two points in the affine part, their sum P
will either be in the affine part, or of the form (x : y : 0) (i.e. belong to
E1), or finally in the special part. If Pis in the special part, we immediately
split N since (t, N) is a non-trivial factor of N. If P = (x : y : 0), then
note that since P E E(Z/NZ) we have x 3 = 0 (mod N). Then either x = 0
(mod N), corresponding to the non-special point at infinity of E, or (x, N) is
a non-trivial divisor of N, and again we will have succeeded in splitting N.

10.3.3 The ECM Factoring Method of Lenstra

Before giving the algorithm in detail, we must still settle a few points. First,
we must explain how to choose the elliptic curves, and how to choose the stage
1 bound B.

488 10 Modern Factoring Methods

As for the choice of elliptic curves, one can simply choose y2 = x3 +ax+ 1
which has the point (0 : 1 : 1) on it, and a is small. For the stage 1 bound,
since the number of points of E modulo p is around p by Hasse's theorem, one
expects E(ZfpZ) to be L(p)a-powersmooth with probability L(p)-l/(2a)+o(l)
by the Canfield-Erdos-Pomerance theorem, hence if we take B = L(p)a we
expect to try L(p)lf(2a)+o(l) curves before getting a smooth order, giving as
total amount of work L(p)a+l/(2a)+o(l) group operations on the curve. This is

minimal for a= 1/V'i, giving a running time of L(p)v'2+o(l) group operations.
Since, when N is composite, there exists a pI N with p::; .JN, this gives

the announced running time of L(N)l+o(l). But of course what is especially
interesting is that the running time depends on the size of the smallest prime
factor of N, hence the ECM can be used in a manner similar to trial division.
In particular, contrary to the class group method, the choice of B should be
done not with respect to the size of N, but, as in the original p - 1 method,
with respect to the amount of time that one is willing to spend, more precisely
to the approximate size of the prime p one is willing to look for.

For example, if we want to limit our search to primes less than 1020 ,

one can take B = 12000 since this is close to the value of £(1020) 11¥'2, and
we expect to search through 12000 curves before successfully splitting N. Of
course, in actual practice the numbers will be slightly different since we will
also use stage 2. The algorithm is then as follows.

Algorithm 10.3.3 (Lenstra's ECM). Let N be a composite integer coprime
to 6, and B be a bound chosen as explained above. This algorithm will attempt
to split N. We assume that we have precomputed a table, p[1]. ... , p[k] of all the
primes up to B.

1. [Initialize curves] Set a +-- 0 and let E be the curve y2t = x3 + axt2 + t3 .

2. [Initialize] Set x +-- (0 : 1 : 1), i +-- 0.

3. [Next prime] Set i +-- i + 1. If i > k, set a +-- a+ 1 and go to step 2. Otherwise,
set q +-- p[i]. Q1 +-- q, l +-- lB/qJ.

4. [Compute power] While Ql::; l, set Ql +-- q·q1. Then, try to compute x +-- q1 ·X

(on the curve E) using the law given by Proposition 7.1.7. If the computation
never lands in the set of special points or the n- 1 part of E (i.e. if one does
not hit a non-invertible element t modulo N), go to step 3.

5. [Finished?] (Here the computation has failed, which is what we want.) Lett
be the non-invertible element. Set g +-- (t, N) (which will not be equal to 1).
If g < N, output g and terminate the algorithm. Otherwise, set a +-- a+ 1 and
go to step 2.

Note that when g = N in step 5, this means that our curve has a smooth
order modulo p, hence, as with the class group algorithm, we should keep the
same curve and try another point. Finding another point may however not be
easy since N is not prime, so there is no easy way to compute a square root
modulo N (this is in fact essentially equivalent to factoring N, see Exercise

10.3 The Elliptic Curve Method 489

1). Therefore we have no other choice but to try again. As usual, this is an
exceedingly rare occurrence, and so in practice it does not matter.

10.3.4 Practical Considerations

The ECM algorithm as given above in particular involves one division modulo
N per operation on the elliptic curve, and this needs approximately the same
time as computing a GCD with N. Thus we are in a similar situation to the
Schnorr-Lenstra Algorithm 10.2.2 where the underlying group is a class group
and the group operation is composition of quadratic forms, which also involves
computing one, and sometimes two GCD's. Hence, outside from the property
that ECM usually gives small factors faster, it seems that the practical running
time should be slowed down for the same reason, i.e. the relative slowness of
the group operation.

In the case of the ECM method however, many improvements are possible
which do not apply to the class group method. The main point to notice is that
here all the GCD's (or extended GCD's) are with the same number N. Hence,
we can try grouping all these extended GCD's by working with several curves
in parallel. That this can easily be done was first noticed by P. Montgomery.
We describe his trick as an algorithm.

Algorithm 10.3.4 (Parallel Inverse Modulo N). Given a positive integer N
and k integers a 1 , ... , ak which are not divisible by N, this algorithm either
outputs a non-trivial factor of N or outputs the inverses b1. ... , bk of the ai
modulo N.

1. [Initialize] Set c1 <-- a1 and for i = 2, ... , k set ci <-- ci-1 · ai mod N.

2. [Apply Euclid] Using one of Euclid's extended algorithms of Section 1.3, com
pute (u,v,d) such that uck + vN = d and d = (ck,N). If d = 1 go to step
3. Otherwise, if d = N, then set d <-- (ai, N) for i = 1, ... , k until d > 1
(this will happen). Output d as a non-trivial factor of N and terminate the
algorithm.

3. [Compute inverses] For i = k, k - 1, ... i = 2 do the following. Output
bi <-- uci-l mod N, and set u <-- uai mod N. Finally, output b1 <-- u and
terminate the algorithm.

Proof We clearly have ci = a1 · · · ai mod N, hence at the beginning of step 3
we have u = (a1 · · · ai)- 1 mod N, showing that the algorithm is valid. 0

Let us see the improvements that this algorithm brings. The naive method
would have required k extended Euclid to do the job. The present algorithm
needs only 1 extended Euclid, plus 3k - 3 multiplications modulo N. Hence,
it is superior as soon as 1 extended Euclid is slower than 3 multiplications
modulo N, and this is almost always the case.

Now recall from Chapter 7 that the computation of the sum of two points
on an elliptic curve y2 = x3 + ax + b requires the computation of m = (y2 -

490 10 Modern Factoring Methods

y1)(x2 - x1)- 1 if the points are distinct, m = (3x~ + a)(2yl)- 1 if the points
coincide, plus 2 multiplications modulo N and a few additions or subtractions.
Since the addition/subtraction times are small compared to multiplication
modulo N, we see that by using Montgomery's trick on a large number C of
curves, the actual time taken for a group operation on the curve in the context
of the ECM method is 6 +T /C multiplications modulo N when the points are
distinct, or 7 + T fC when they are equal, where T is the ratio between the
time of an extended GCD with N and the time of a multiplication modulo N.
(Incidentally, note that in every other semi-group that we have encountered,
including Z, JR., Z[X] or even class groups, squaring is always faster than
general multiplication. In the case of elliptic curves, it is the opposite.) If we
take C large enough (say C = 50) this gives numbers which are not much
larger than 6 (resp. 7), and this is quite reasonable.

Another way to speed up group computations on elliptic curves modulo
N is to use projective coordinates instead of affine ones. The big advantage
is then that no divisions modulo N are required at all. Unfortunately, since
we must now keep track of three coordinates instead of two, the total number
of operations increases, and the best that one can do is 12 multiplications
modulo N when the points are distinct, 13 when they are equal (see Exercise
3). Thanks to Montgomery's trick, this is worse than the affine method when
we work on many curves simultaneously.

By using other parametrizations of elliptic curves than the WeierstraB
model y2 = x3 +ax+ b, one can reduce the number 12 to 9 (see [Chu] and
Exercise 4), but this still does not beat the 6 + T fC above when C is large.
Hence, in practice I suggest using affine coordinates on the WeierstraB equation
and Montgomery's trick.

Finally, as for the class group method, it is necessary to include a stage 2
into the algorithm, as for the p - 1 method. The details are left to the reader
(see [Mon2], [Bre2]).

As a final remark in this section, we note that one can try to use other
algebraic groups than elliptic curves, for example Abelian varieties. D. and
G. Chudnovsky have explored this (see [Chu]), but since the group law requires
a lot more operations modulo N, this does not seem to be useful in practice.

10.4 The Multiple Polynomial Quadratic Sieve

We now describe the quadratic sieve factoring algorithm which, together with
the elliptic curve method, is the most powerful general factoring method in
use at this time (1994). (The number field sieve has been successfully applied
to numbers of a special form, the most famous being the ninth Fermat number
229 + 1 = 2512 + 1, a 155 digit number, but for general numbers, the quadratic
sieve is still more powerful in the feasible range.) This method is due to C.
Pomerance, although some of the ideas were already in Kraitchik.

10.4 The Multiple Polynomial Quadratic Sieve 491

10.4.1 The Basic Quadratic Sieve Algorithm

As in the continued fraction method CFRAC explained in Section 10.1, we
look for many congruences of the type

(mod N)

where the Pi are "small" prime numbers, and if we have enough, a Gaussian
stage will give us a non-trivial congruence x2 = y2 (mod N) and hence a
factorization of N. The big difference with CFRAC is the way in which the
congruences are generated. In CFRAC, we tried to keep x2 mod N as small as
possible so that it would have the greatest possible chance of factoring on our
factor base of Pi· We of course assume that N is not divisible by any element
of the factor base.

Here we still want the x2 mod N to be not too large but we allow residues
larger than .JN (although still O(N1/2+£). The simplest way to do this is to
consider the polynomial

Q(a) = (lmJ +at -N.

It is clear that Q(a) = x2 (mod N) for x = l.JNJ +a and as long as a=

O(N£), we will have Q(a) = O(N1/2+£).
Although this is a simpler and more general way to generate small squares

modulo N than CFRAC, it is not yet that interesting. The crucial point, from
which part of the name of the method derives, is that contrary to CFRAC
we do not need to (painfully) factor all these x2 mod N over the factor base.
(In fact, most of them do not factor so this would represent a waste of time.)
Here, since Q(a) is a polynomial with integer coefficients, we can use a sieve.
Let us see how this works. Assume that for some number m we know that
m I Q(a). Then, for every integer k, m I Q(a + km) automatically. To find
an a (if it exists) such that m I Q(a) is of course very easy since we solve
x2 = N (mod m) using the algorithm of Exercise 30 of Chapter 1, and take

a = x - l.JN J mod m.

Since we are going to sieve, without loss of generality we can restrict to
sieving with prime powers m = pk. If pis an odd prime, then x2 = N (mod pk)
has a solution (in fact two) if and only if (~) = 1, so we include only those
primes in our factor base (this was also the case in the CFRAC algorithm)
and we compute explicitly the two possible values of a (mod pk) such that
pk I Q(a), say apk and bpk. If p = 2 and k ;::: 3, then x2 = N (mod 2k) has
a solution (in fact four) if and only if N = 1 (mod 8) and we again compute
them explicitly. Finally, if p = 2 and k = 2, we take x = 1 if N = 1 (mod 4)
(otherwise a does not exist) and if p = 2 and k = 1 we take x = 1.

Now for a in a very long interval (the sieving interval), we compute very
crudely In IQ(a)l. (As we will see, an absolute error of 1 for instance is enough,

492 10 Modern Factoring Methods

hence we certainly will not use the internal floating point log but some ad hoc
program.) We then store this in an array indexed by a. For every prime p in
our factor base, and more generally for small prime powers when pis small (a
good rule of thumb is to keep all possible pk less than a certain bound), we
subtract a crude approximation to lnp to every element of the array which
is congruent to apk or to bpk modulo pk (this is the sieving part). When all
the primes of the factor base have been removed in this way, it is clear that
a Q(a) will factor on our factor base if and only if what remains at index a
in our array is close to 0 (if the logs were exact, it would be exactly zero). In
fact, if Q(a) does not factor completely, then the corresponding array element
will be at least equal to In B (where B is the least prime which we have not
included in our factor base), and since this is much larger than 1 this explains
why we can take very crude approximations to logs.

It can be shown on heuristic grounds, again using the theorem of Canfield,
Erdos and Pomerance, that using suitable sieving intervals and factor bases,
the running time is of the form O(L(N)l+o(ll). Although this is comparable
to the class group or ECM methods, note that the basic operation in the
quadratic sieve is a single precision subtraction, and it is difficult to have a
faster basic operation than that! As a consequence, for practical ranges (say up
to 100 decimal digits) the quadratic sieve runs faster than the other methods
that we have seen, although as already explained, ECM may be lucky if N
has a relatively small prime divisor.

The method that we have just briefly explained is the basic quadratic
sieve (QS). Many improvements are possible. The two remarks made at the
end of Section 10.1 also apply here. First, only primes p such that p = 2
or (~) = 1 need to be taken in the prime base (or more generally (ki:) =
0 or 1 if a multiplier is used). Second, the large prime variation is just as
useful here as before. (This is also the case for the number field sieve, and
more generally for any algorithm which uses in some way factor bases, for
example McCurley or Buchmann's sub-exponential algorithms for class group
and regulator computation.)

10.4.2 The Multiple Polynomial Quadratic Sieve

There is however a specific improvement to the quadratic sieve which explains
the first two words of the complete name of the method (MPQS). The poly
nomial Q(a) introduced above is nice, but unfortunately it stands all alone,
hence the values of Q(a) increase faster than we would like. The idea of the
Multiple Polynomial Quadratic Sieve is to use several polynomials Q so that
the size of Q(a) can be kept as small as possible. The following idea is due to
P. Montgomery.

We will take quadratic polynomials of the form Q(x) = Ax2 + 2Bx + C
with A > 0, B 2 - AC > 0 and such that N I B2 - AC. This gives congruences
just as nicely as before since

AQ(x) = (Ax+ B)2 - (B2 - AC) := (Ax+ B)2 (mod N).

10.4 The Multiple Polynomial Quadratic Sieve 493

In addition, we want the values of Q(x) to be as small as possible on the
sieving interval. If we want to sieve on an interval of length 2M, it is therefore
natural to center the interval at the minimum of the function Q, i.e. to sieve
in the interval

I= [-BIA-M,-BIA+M].

Then, for x E I, we have Q(-BIA) ::; Q(x) ::; Q(-BIA + M). Therefore to
minimize the absolute value ofQ(x) we ask that Q(-BIA) ~ -Q(-BIA+M),
which is equivalent to A2 M 2 ~ 2{B2 - AC) i.e. to

and we will have

B 2 -AC
max IQ(x)i ~ A ~ M .j(B2 -AC)I2.
xEI

Since we want this to be as small as possible, but still have N I B 2 - AC, we
will choose A, B and C such that B 2 - AC = N itself, and the maximum of
IQ(x)i will then be approximately equal toM .JNfi.

This is of the same order of magnitude {in fact even slightly smaller)
than the size of the values of our initial polynomial Q(x), but now we have
the added freedom to change polynomials as soon as the size of the residues
become too large for our taste.

To summarize, we first choose an appropriate sieving length M. Then we
choose A close to ..fiN I M such that A is prime and (~) = 1. Using Algorithm
1.5.1 we find B such that B 2 = N (mod A) and finally we set C = (B 2 -N)IA.

Now as in the ordinary quadratic sieve, we must compute for each prime
power pk in our factor base the values apk(Q) and bpk(Q) with which we will
initialize our sieve. These are simply the roots mod pk of Q(a) = 0. Hence,
since the discriminant of Q has been chosen equal to N, they are equal to
(-B + apk) I A and (-B + bpk) I A, where apk and bpk denote the square roots
of N modulo pk which should be computed once and for all. The division
by A (which is the only time-consuming part of the operation) is understood
modulo pk.

As for the basic quadratic sieve, heuristically the expected running time
of MPQS is O(L(N)l+o(l)), as for the class group method and ECM. How
ever, as already mentioned above, the basic operation being so simple, MPQS
is much faster than these other methods on numbers which are difficult to
factor {numbers equal to a product of two primes having the same order of
magnitude).

494 10 Modern Factoring Methods

10.4.3 Improvements to the MPQS Algorithm

The detailed aspects of the implementation of the MPQS algorithm, such as
the choice of the sieving intervals, the size of the factor base and criteria to
switch from one polynomial to the next, are too technical to be given here. We
refer the interested reader to [Sill] which contains all the necessary information
for a well tuned implementation of this algorithm.

A number of improvements can however be mentioned. We have already
discussed above the large prime variation. Other improvements are as follows.

(1) One improvement is the double large prime variation. This means that we
allow the unfactored part of the residues to be equal not only to a single
prime, but also to a product of two primes of reasonable size. This idea
is a natural one, but it is then more difficult to keep track of the true
relations that are obtained, and A. Lenstra and M. Manasse have found a
clever way of doing this. I refer to [LLMP] for details.

(2) A second improvement is the ~mall prime variation which is as follows.
During the sieving process, the small primes or prime powers take a very
long time to process since about 1/p numbers are divisible by p. In ad
dition, their contribution to the logarithms is the smallest. So we do not
sieve at all with prime powers less than 100, say. This makes it necessary
keep numbers whose residual logarithm is further away from zero than
usuat, but practice shows that it makes little difference. The main thing
is to avoid missing any numbers which factor, at the expense of having a
few extra which do not.

(3) A third improvement is the self-initialization procedure. This is as follows.
We could try changing polynomials extremely often, since this would be
the best chance that the residues stay small, hence factor. Unfortunately,
as we have mentioned above, each time the polynomial is changed we
must "reinitialize" our sieve, i.e. recompute starting values apk (Q) and
bpk (Q) for each pk in our factor base. Although all the polynomials have
the same discriminant Nand the square roots have been precomputed (so
no additional square root computations are involved), the time-consuming
part is to invert the leading coefficient A modulo each element of the factor
base. This prevents us from changing polynomial too often since otherwise
this would dominate the running time.

The self-initialization procedure deals with this problem by choosing
A not to be a prime, but a product of a few (say 10) distinct medium
sized primes p such that (~) = 1. The number of possible values for B
(hence the number of polynomials with leading term A) is equal to the
number of solutions of B 2 = N (mod A), and this is equal to 2t-l if t is
the number of prime factors of A (see Exercise 30 of Chapter 1). Hence
this procedure essentially divides by 2t-l most of the work which must be
done in initializing the sieve.

10.5 The Number Field Sieve 495

10.5 The Number Field Sieve

10.5.1 Introduction

We now come to the most recent and potentially the most powerful known
factoring method, the number field sieve (NFS). For complete details I refer to
(Len-Len2]. The basic idea is the same as in the quadratic sieve: by a sieving
process we look for congruences modulo N by working over a factor base,
and then we do a Gaussian elimination over Z/2Z to obtain a congruence of
squares, hence hopefully a factorization of N.

Before describing in detail the method, we will comment on its perfor
mance. Prior to the advent of the NFS, all modern factoring methods had
an expected running time of at best 0 (e v'In N In In N (1+ o(1))). Because of the
theorem of Canfield, Erdos and Pomerance, some people believed that this
could not be improved, except maybe for the (1 + o(1)). The invention by Pol
lard of the NFS has now changed this belief, since under reasonable heuristic
assumptions, one can show that the expected running time of the NFS is

0 (e(InN) 113 (InlnN)213 (C+o(1)))

for a small constant C (an admissible value is C = (64/9) 113 and this has been
slightly lowered by Coppersmith). This is asymptotically considerably better
than what existed before. Unfortunately, the practical situation is less simple.
First, for a number N having no special form, it seems that the practical
cutoff point with, say, the MPQS method, is for quite large numbers, maybe
around 130 digits, and these numbers are in any case much too large to be
factored by present methods. On the other hand, for numbers having a special
form, for example Mersenne numbers 2P- 1 or Fermat numbers 22k + 1, NFS
can be considerably simplified (one can in fact decrease the constant C to
C = (32/9) 113), and stays practical for values of N up to 120 digits. In fact,
using a system of distributed e-mail computing, and the equivalent of years
of CPU time on small workstations, A. K. Lenstra and Manasse succeeded in
1990 in factoring the ninth Fermat number F9 = 2512 + 1, which is a number
of 155 decimal digits. The factors have respectively 7, 49 and 99 digits and
the 7-digit factor was of course already known. Note that the knowledge of
this 7-digit factor does not help NFS at all in this case.

The idea of the number field sieve is as follows. We choose a number field
K = Q(O) for some algebraic integer 0, let T(X) E Z[X] be the minimal
monic polynomial of 0, and let d be the degree of K. Assume that we know
an integer m such that T(m) = kN for a small integer k. Then we can define
a ring homomorphism¢ from Z(O] to Z/NZ, by setting

¢(0) = m mod N.

This homomorphism can be extended to ZK in the following way. Let f =
[ZK: Z(O]] be the index of Z[O] in ZK. We may assume that (!, N) = 1

496 10 Modern Factoring Methods

otherwise we have found a non-trivial factor of N. Hence f is invertible modulo
N, and if u E Z is an inverse off modulo N, for all a: E ZK we can set
¢(a:) = u¢(fo:) since fa E Z[OJ.

We can use ¢ as follows. To take the simplest example, if we can find
integers a and b such that a+ bm is a square (in Z), and also such that a+ be
is a square (in ZK), then we may have factored N: write a+ bm = x2 , and
a+ be = {32 . Since ¢ is a ring homomorphism, ¢(a+ bO) = a+ bm = y2

(mod N) where we have set y (mod N) = ¢(/3), hence x2 = y 2 (mod N),
so (x - y, N) may be a non-trivial divisor of N. Of course, in practice it
will be impossible to obtain such integers a and b directly, but we can use
techniques similar to those which we used in the continued fraction or in the
quadratic sieve method, i.e. factor bases. Here however the situation is more
complicated. We can take a factor base consisting of primes less than a given
bound for the a+ bm numbers. But for the a+ be, we must take prime ideals
of ZK. In general, if K is a number field with large discriminant, this will be
quite painful. This is the basic distinction between the general number field
sieve and the special one: if we can take for K a simple number field (i.e. one
for which we know everything: units, class number, generators of small prime
ideals, etc . . .) then we are in the special case.

We will start by describing the simplest case of NFS, which can be applied
only to quite special numbers, and in the following section we will explain what
must be done to treat numbers of a general form.

10.5.2 Description of the Special NFS when h(K) = 1

In this section we not only assume that K is a simple number field in the sense
explained above, but in addition that ZK has class number equal to 1 (we will
see in the next section what must be done if this condition is not satisfied).

Let a: E ZK and write

where we assume that for all i, Vi > 0. We will say that a: is B-smooth if
N KfQ(o:) is B-smooth, or in other words if all the primes below Pi are less
than or equal to B. Since ZK has class number equal to 1, we can write

a= II u>-u rrg~-~9,
uEU gEG

where U is a generating set of the group of units of K (i.e. a system of
fundamental units plus a generator of the subgroup of roots of unity in K),
and G is a set of ZK-generators for the prime ideals p above a prime p ::; B
(since the ideals p are principal).

If a lift of ¢(a) to Z is also B-smooth (in practice we always take the lift
in [-N/2, N/2]) then we have

10.5 The Number Field Sieve 497

hence the congruence

uEU gEG p5,B

If Pis the set of primes less than or equal to B, then as in the quadratic sieve
and similar algorithms, if we succeed in finding more than JUI + IGI + IPI such
congruences, we can factor N by doing Gaussian elimination over Z/2Z.

By definition an HNF basis of ZK is of the form (1, (uB + v)jw, ...).
Replacing, if necessary, (} by (uB + v)jw, without loss of generality we may
assume that there exists an HNF basis of ZK of the form (w1,w2,w3, ... ,wd)
where w1 = 1, w2 =Band wi is of degree exactly equal to i- 1 in B. We will
say in this case that (} is primitive.

This being done, we will in practice choose a to be of the form a + bB with
a and b in Z and coprime. We have the following lemma.

Lemma 10.5.1. If a and b are coprime integers, then any prime ideal p which
divides a+ bB, either divides the index f = [ZK: Z[B]] or is of degree 1.

Proof. Let p be the prime number below p. Then p f b otherwise a E p n Z
hence p I a, contradicting a and b being coprime. Now assume that p f f,
and let b-1 be an inverse of b modulo p and u be an inverse off modulo p.
We have (} = -ab-1 (mod p). Hence, if x E ZK, fx E Z[B] so there exists a
polynomial P E Z[X] such that x = uP(-ab-1) (mod p) so any element of
ZK is congruent to a rational integer modulo p, hence to an element of the
set {0, 1, ... ,p- 1}, thus proving the lemma. 0

Let d = deg(T) be the degree of the number field K. By Theorem 4.8.13,
prime ideals of degree 1 dividing a prime number p not dividing the index
correspond to linear factors of T(X) modulo p, i.e. to roots of T(X) in IFw
These can be found very simply by using Algorithm 1.6.1.

For any root Cp E {0, 1, ... , p - 1} of T(X) modulo p, we thus have the
corresponding prime ideal of degree 1 above p generated over ZK by (p, B-cp)·
Now when we factor numbers a of the form a+ b(} with (a, b) = 1, we will need
to know the p-adic valuation of a for all prime ideals p such that a E p. But
clearly, if p does not divide f, then a E p if and only if pI a+ bep, and if this
is the case then a does not belong to any other prime above p since the Cp are
distinct. Hence, if p I a+ bcp, the p-adic valuation of a (with p = (p, B- ep))
is equal to the p-adic valuation of N(a) which is simple to compute.

For p I f, we can use an HNF basis of p with respect to 0, where
we may assume that 8 is primitive. This basis will then be of the form
(p, -cP + yO, 'Y2, ... , 'Yd-d where Cp and y are integers with y I p and the

498 10 Modern Factoring Methods

'Yi are polynomials of degree exactly i in() (not necessarily with integral coef
ficients). It is clear that a+b() E p if and only if y I band a= -bcp/Y (mod p).
But p I b is impossible since as before it would imply p I a hence a and b would
not be coprime. It follows that we must have y = 1. Hence, a E p if and only if
pI a+bep. Furthermore, 0-cp E p implies clearly that T(cp) = 0 (mod p), i.e.
that cp is a root of T modulo p. The condition is therefore exactly the same as
in the case p f f. Note however that now there may be several prime ideals p
with the same value of cp, so in that case the p-adic valuation of a should be
computed using for example Algorithm 4.8.17. (Since this will be done only
when we know that a and ¢(a) are B-smooth, it does not matter in practice
that Algorithm 4.8.17 takes longer than the computation of vp(N(a)).)

Thus, we will compute once and for all the roots cp of the polynomial
T(X) modulo each prime p:::; B, and the constants /3p (/3 in the notation of
Algorithm 4.8.17) necessary to apply directly step 3 of Algorithm 4.8.17 for
each prime ideal p dividing the index. It is then easy to factor a = a + b() into
prime ideals as explained above. Note that in the present situation, it is not
necessary to split completely the polynomial T(X) modulo p using one of the
methods explained in Chapter 3, but only to find its roots modulo p, and in
that case Algorithm 1.6.1 is much faster.

We must however do more, that is we need to factor a into prime elements
and units. This is more delicate.

First, we will need to find explicit generators of the prime ideals in our
factor base (recall that we have assumed that ZK = Z[OJ is a PID). This
can be done by computing norms of a large number of elements of ZK which
can be expressed as polynomials in () with small coefficients, and combining
the norms to get the desired prime numbers. This operation is quite time
consuming, and can be transformed into a probabilistic algorithm, for which
we refer to [LLMP]. This part is the essential difference with the general NFS
since in the general case it will be impossible in practice to find generators
of principal ideals. (The fact that ZK is not a PID in general also introduces
difficulties, but which are less important.)

Second, we also need generators for the group of units. This can be done
during the search for generators of prime ideals. We find in this way a gener
ating system for the units, and the use of the complex logarithmic embedding
allows us to extract a multiplicative basis for the units as in Algorithm 6.5.9.

Choosing a factor base limit B, we will take as factor base for the numbers
a+ bm the primes p such that p :::; B, and as factor base for the numbers a+ b()
we will take,a system G of non-associate prime elements of ZK whose norm
is either equal to ±p, where p is a prime such that p :::; B and p f I, or equal
to ±pk for some k if p :::; B and p I I, plus a generating system of the group
of units of ZK.

We have seen that a E p if and only if p I a + bep which is a linear
congruence for a and b. Hence, we can sieve using essentially the same sieving
procedure as the one that we have described for the quadratic sieve.

10.5 The Number Field Sieve 499

1) By sieving on small primes, eliminate pairs (a, b) divisible by a small
prime. (We will therefore keep a few pairs with (a, b) > 1, but this will not
slow down the procedure in any significant way.)

2) Initialize the entries in the sieving interval to a crude approximation to
ln(a +mb).

3) First sieve: for every pk ~ B, subtract lnp from the entries where
pk I a + mb by sieving modulo p, p2 , ..•

4) Set a flag on all the entries which are still large (i.e. which are not
B-smooth), and initialize the other entries with ln(N(a + bO)).

5) Second sieve: for every pair (p, cp), subtract lnp from the unflagged
entries for which p I a + bep. Note that we cannot sieve modulo p2 , ••.

6) For each entry which is smaller than 2lnB (say), check whether the
corresponding N(a + bO) is indeed smooth and in that case compute the com
plete factorization of a+b(J on GUU. Note that since we have not sieved with
powers of prime ideals, we must check some entries which are larger than ln B.

In practice, the factorization of a+bO is obtained as follows. Since N(a+bO)
is smooth we know that N(a + b(J) = np~BPv". We can obtain the element
relations as follows. If only one prime ideal p above p corresponds to a given cp
(this is always true if p f f), then if we let d be the degree of p (1 if p f !), the
p-adic valuation of a+ b(J is vvfd, and the p'-adic valuation is zero for every
other prime ideal above p. If several prime ideals correspond to the same cp
(this is possible only in the case p I !), then we use Algorithm 4.8.17 to
compute the p-adic valuations. As already mentioned, this will be done quite
rarely and does not really increase the running time which is mainly spent in
the sieving process. Using the set G of explicit generators of our prime ideals,
we thus obtain a decomposition

a + b(J = u 11 g~-'9
gEG

where u is a unit. If (u1, ... , Ur) is a system of fundamental units of K and (
is a generator of the group of roots of unity inK, we now want to write

r

u = cno 11 u~· .
i=l

To achieve this, we can use the logarithmic embedding L (see Definition 4.9.6)
and compute L(a+bO)-EgeG ~-t9 L(g). This will lie in the hyperplane E Xi= 0
of JRrt +r2 , and by Dirichlet's theorem, the L(ui) form a basis of this hyper
plane, hence we can find the ni for i ~ 1 by solving a linear system (over
R, but we know that the solution is integral). Finally, n0 can be obtained by
comparing arguments of complex numbers (or even more simply by comparing
signs if everything is real, which can be assumed if dis odd).

500 10 Modern Factoring Methods

10.5.3 Description of the Special NFS when h(K) > 1

In this section, we briefly explain what modifications should be made to the
above method in the case h(K) > 1, hence when '!L.K is not a PID.

In this case we do not try to find generators of the prime ideals, but
we look as before for algebraic integers (not necessarily of the form a + bO)
with small coordinates in an integral basis, having a very smooth norm. More
precisely, let P1, P2, ... be the prime ideals of norm less than or equal to B
ordered by increasing norm. We first look for an algebraic integer a1 whose
decomposition gives a1'1L.K = p~1 ' 1 where k1,1 is minimal and hence is equal to
the order of p1 in Cl(K). Then we look for another algebraic integer a2 such
that a27L.K = p~1 ' 2 P~2 ' 2 where k2,2 is minimal and hence is equal to the order of
p2 in Cl(K)/ < P1 >.We may also assume that k1,2 < k1,1· We proceed in this
way for each Pi of norm less than or equal to B, and thus we have constructed
an upper triangular matrix M whose rows correspond to the prime ideals and
whose columns correspond to the numbers ai. With high probability we have
h(K) = Il ki,i, but it does not matter if this is not the case.

We can now replace the set G of generators of the Pi which was used in
the case h(K) = 1 by the set of numbers ai in the following way.

Assume that a is B-smooth and that a'!L.K = Il p~;. Let V be the column
vector whose components are the Vi· It is clear that a'!L.K = Ilia~; '!L.K where
the f.Li are the components of the vector M-1 V which are integers by con
struction of the matrix M. Hence a= u Ilia~; where u is a unit, and we can
proceed as before. Note that since M is an upper triangular matrix it is easy
to compute M-1 V by induction.

An Example of the Special NFS. Assume that N is of the form re - s,
where r and s are small. Choose a suitable degree d (d = 5 is optimal for

numbers having 70 digits or more), and set k = r ~ l· Consider the polynomial

T(X) = Xd- srkd-e.

Since 0 < kd - e < d and s and r are small, so is srkd-e. If we choose
m = rk, it is clear that T(m) = rkd-e N is a small multiple of N. If Tis an
irreducible polynomial, we will work in the number field K of degree d defined
by T. (If T is reducible, which almost never happens, we usually obtain a non
trivial factorization of N from a non-trivial factorization ofT.) Since typically
d = 5, and srkd-e is small, K is a simple field, i.e. it will not be difficult to
find generators for ideals of small norm, the class number and a generating
system for the group of units.

As mentioned above, the first success of the special NFS was obtained by
[LLMP] with the ninth Fermat number N = 2512 + 1 which is of the above
form. They chose d = 5, hence k = 103 and T(X) = X 5 +8, thus K = Q(2115)

which happens to be a field with class number equal to 1.

10.5 The Number Field Sieve 501

10.5.4 Description of the General NFS

The initial ideas of the general NFS are due to Buhler and Pomerance (see
[BLP]). We do not assume anymore that K is a simple field. Hence it is out
of the question to compute explicit generators for prime ideals of small norm,
a system of fundamental units, etc ... Hence, we must work with ideals (and
not with algebraic numbers) as long as possible.

So we proceed as before, but instead of keeping relations between elements
(which is not possible anymore), we keep relations between the prime ideals
themselves. As usual in our factor base we take the prime ideals of degree 1
whose norm is less than or equal to B and the prime ideals of norm less than
or equal to B which divide the index f; since the index may not be easy to
compute, we can use instead the prime ideals above primes p ::; B such that
p2 divides the discriminant of the polynomial T).

After the usual Gaussian elimination step over 7l./27l., we will obtain alge
braic numbers of the form

y = II (a+ boy:a,b

where without loss of generality we may assume that ca.,b = 0 or 1, such that

¢(y) = II pvp (i.e. ¢(y) is B-smooth), and
p~B

y'!L.K = II !J2Vp'

p

this last product being over the prime ideals of our factor base. Although the
principal ideal y'!L.K is equal to the square of an ideal, this does not imply that
it is equal to the square of a principal ideal. Fortunately, this difficulty can
easily be overcome by using a trick due to L. Adleman (see [Adl]).

Let us say that a non-zero algebraic number y E K is singular if y'!L.K is
the square of a fractional ideal. Let S be the multiplicative group of singular
numbers. If U(K) is the group of units of K, it is easy to check that we have
an exact sequence

1---+ U(K)/U(K) 2 ---+ SjK* 2 ---+ Cl(K)[2]---+ 1,

where for any Abelian group G, G[2] is the subgroup of elements of G whose
square is equal to the identity (see Exercise 9). This exact sequence can be
considered as an exact sequence of vector spaces over JF2 = 7l./27l.. Furthermore,
using Dirichlet's Theorem 4.9.5 and the parity of the number w(K) of roots
of unity in K, it is clear that

For any finite Abelian group G, the exact sequence

502 10 Modern Factoring Methods

1 -----+ G [2] -----+ G -----+ G -----+ G I G2 -----+ 1 '

where the map from G toG is squaring, shows that IG[2]1 = IG/G2 1 hence

where the 2-rank rk2(G) of G is by definition equal to dimJF2 G/G2 (and also
to the number of even factors in the decomposition of G into a direct product
of cyclic factors). Putting all this together, we obtain

Hence, if we obtain more thane= r 1+r2+rk2 (Cl(K)) singular numbers which
are algebraic integers, a suitable multiplicative combination with coefficients
0 or 1 will give an element of 'llx n K* 2 , i.e. a square of 'llx, as in the special
NFS, hence a true relation of the form we are looking for. Since e is very small,
this simply means that instead of stopping at the first singular integer that we
find, we wait till we have at least e + 1 more relations than the cardinality of
our factor base. Note that it is not necessary (and in practice not possible) to
compute rk2 (Cl(K)). Any guess is sufficient, since afterwards we will have to
check that we indeed obtain a square with a suitable combination, and if we
do not obtain a square, this simply means that our guess is not large enough.

To find a suitable combination, following Adleman we proceed as follows.
Choose a number r of prime ideals p which do not belong to our factor base. A
reasonable choice is r = 3e, where e can (and must) be replaced by a suitable
upper bound. For example, we can choose for p ideals of degree 1 above primes
which are larger than B. Then p = (p, e- ep). We could also choose prime
ideals of degree larger than 1 above primes (not dividing the index) less than
B.

Whatever choice is made, the idea is then to compute a generalized Leg
endre symbol (a~b9) (see Exercise 19 of Chapter 4) for every a+ be which is
kept after the sieving process. Hence each relation will be stored as a vector
over Z/27!. with lEI+ IPI + r components, where E is the set of prime ideals
in our factor base. As soon as we have more relations than components, by
Gaussian elimination over Z/27!. we can find an algebraic number x which is
a singular integer and which is a quadratic residue modulo our r extra primes
p. It follows that x is quite likely a square.

Assuming this to be the case, one of the most difficult problems of the
general number field sieve, which is not yet satisfactorily solved at the time of
this writing, is the problem of finding an algorithm to compute a square root
y of x. Note that in practice x will be a product of thousands of a+ be, hence
will be an algebraic number with coefficients (as polynomials in e, say) having
several hundred thousand decimal digits. Although feasible in principle, it
does not seem that the explicit computation of x as a polynomial in e will be
of much help because of the size of the coefficients involved. Similarly for any
other practical representation of x, for example by its minimal polynomial.

10.5 The Number Field Sieve 503

Let us forget this practical difficulty for the moment. We would like an
algorithm which, given an algebraic integer x of degree d, either finds y E Ql[x]
such that y2 = x, or says that such a y does not exist. A simple-minded
algorithm to achieve this is as follows.

Algorithm 10.5.2 (Square Root in a Number Field). Given an algebraic in
teger x by its minimal monic polynomial A(X) E Z[X] of degree d, this algorithm
finds a y such that y2 = x and y E Ql[x]. or says that such a y does not exist.
(If x is given in some other way than by its minimal polynomial, compute the
minimal polynomial first.) We let K = Ql[x].

1. [Factor A(X2)] Factor the polynomial A(X2) in Z[X]. If A(X2) is irreducible,
then y does not exist and terminate the algorithm. Otherwise, let A(X2) =
±S(X)S(-X) for some monic polynomial S E Z[X] of degree d be the
factorization of A(X2) (it is necessarily of this form with S irreducible, see
Exercise 10).

2. [Reduce to degree 1] Let S(X) = (X2 - x)Q(X) + R(X) be the Euclidean
division of S(X) by X 2 - x in K[X].

3. [Output result] Write R(X) = aX+ b with a and b in K and a =f. 0. Output
y ~ -bja and terminate the algorithm.

The proof of the validity of this algorithm is easy and left to the reader
(Exercise 10).

Unfortunately, in our case, simply computing the polynomial A(X) is al
ready not easy, and factoring A(X2) will be even more difficult (although it
will be a polynomial of degree 10 for example, but with coefficients having
several hundred thousand digits). So a new idea is needed at this point. For
example, H. W. Lenstra has suggested looking for y of the form y = TJ(a+bB),
the product being over coprime pairs (a, b) such that a+ bB is smooth, but
not necessarily a+ bm. This has the advantage that many more pairs (a, b)
are available, and also leads to a linear system over Z/2Z. Future work will
tell whether this method or similar ones are sufficiently practical.

10.5.5 Miscellaneous Improvements to the Number Field Sieve

Several improvements have been suggested to improve the (theoretical as well
as practical) performance of NFS. Most of the work has been done on the
general NFS, since the special NFS seems to be in a satisfactory state. We
mention only two, since lots of work is being done on this subject.

The most important choice in the general NFS is the choice of the number
field K, i.e. of the polynomial T E Z[XJ such that T(m) = kN for some small
integer k. Choosing a fixed degree d (as already mentioned, d = 5 is optimal
for numbers having more than 60 or 70 digits), we choose m = LN1fdJ. If
N = md+ad-lmd-l + · · ·+ ao is the base m expansion of N (with 0:5: ai < m),
we can choose

504 10 Modern Factoring Methods

T(X) = Xd + ad-1xd-1 + · · · + ao.

It is however not necessary to take the base m expansion of N in the strictest
sense, since any base m expansion of N whose coefficients are at most of
the order of m is suitable. In addition, we can choose to expand some small
multiple kN of N instead of N itself. This gives us additional freedom.

Another idea is to use m = fN1/{d+l)l instead of lN1fdJ. The base m
expansion of N is then of the form N = admd + ad-1md-1 + · · · + ao with ad
not necessarily equal to 1, but still less than m. We take as before

and if () is a root ofT, then () is not an algebraic integer if ad > 1. We can now
use Exercise 15 of Chapter 4 which tells us that ad(), ad()2 + ad-1(), ... are
algebraic integers. The map¢ is defined as usual by ¢(0) = m and extended to
polynomials in() with integer coefficients. In particular, if a and bare integers,
ad(a+ bO) is an algebraic integer and

is always divisible by ad. Also,

with bdT(-ajb) E Z. We then proceed as before, but using numbers of the
form ad(a + bO) with a and b coprime, instead of simply a+ b().

To get rid of ad in the final relations, it is not necessary to include the
prime factors of ad in the factor base, but simply to take an even number of
factors in each relation.

A second type of improvement, studied by D. Coppersmith, is to use sev
eral number fields K. This leads to an improvement of the constant in the
exponent of the running time of NFS, but its practicality has not yet been
tested. The idea is a little similar to the use of several polynomials in MPQS.

10.6 Exercises for Chapter 10

1. Show that the problem of computing a square root modulo an arbitrary integer
N is probabilistically polynomial time equivalent to the problem of factoring N
in the following sense. If we have an algorithm for one of the problems, then we
can solve the other in probabilistic polynomial time.

2. Generalize Algorithm 10.2.2 by incorporating a second stage in the manner of
Algorithm 8.8.3.

3. Show how to write the addition law on an elliptic curve modulo N given by a
Weierstra6 equation using projective coordinates, using 12 multiplications mod
ulo N, or 13 for the double of a point.

10.6 Exercises for Chapter 10 505

4. By using a Fermat parametrization of an elliptic curve, i.e. a projective equation
of the form x 3 + ay3 = bt3 , show how to compute the addition law using only 9
multiplications modulo N, or 10 for the double of a point.

5. Let B and k be large integers, and let a 1 , . • . ak be a randomly chosen sequence
of integers less than B. Give an estimate of the average number of pairs (i,j)
such that ai = ai. You may assume that k > B 1' 2 .

6. Let n be fixed, and set f(N) = llP'n(Z/NZ)I.
a) Show that f(N) = g(N)jrp(N) where rjJ(N) is the Euler r/J function,

and g(N) is the number of n + 1-uples (xo, ... , xn) E (Z/ Nzt+1 such that
gcd(xo, ... , Xn, N) = 1.

b) Show that L:diNg(d) = Nn+l.

c) Using the Mobius inversion formula (see [H-W] Section 16.4), prove the
formula for f(N) given in the text.

7. In the multiple polynomial version of the quadratic sieve factoring algorithm,
we have aQ(x) = y2 (mod N) for some N, and not Q(x) itself. Then why do we
take into account in the explanation the maximum of IQ(x)l and not of laQ(x)l?

8. Let p = (p, (J- cp) be a prime ideal of degree 1 in ZK, where K = Q(O). If
x = a+ b(J E ZK, show that (:) = (a+:cp), where (:) is defined in Exercise 19
of Chapter 4.

9. Prove that, as claimed in the text, if S is the group of singular numbers, the
following sequence is exact:

1--+ U(K)/U(K) 2 --+ S/K* 2 --+ Cl(K)[2]--+1,

where Cl(K)[2] is the subgroup of elements of Cl(K) whose square is equal to
the identity.

10. Let A(X) be an irreducible monic polynomial in Z[X].
a) Show that either A(X2) is irreducible in Z[X], or there exists an irre

ducible monic polynomialS E Z[X] such that A(X2) =±S(X)S(-X).
b) Prove the validity of Algorithm 10.5.2.

11. For any finite Abelian group G and n ~ 1 show that

G[n] '::::!.G/Gn

(although this isomorphism is not canonical in general).

Appendix A

Packages for Number Theory

There exist several computer packages which can profitably be used for
number-theoretic computations. In this appendix, I will briefly describe the
advantages and disadvantages of some of these systems.

Most general-purpose symbolic algebra packages have been written pri
marily for applied mathematicians, engineers and physicists, and are not al
ways well suited for number theory. These packages roughly fall into two
categories. In the first category one finds computer algebra systems developed
in the 1970's, of which the main representatives are Macsyma and Reduce.
Because of their maturity, these systems have been extensively tested and
have probably less bugs than more recent systems. In addition they are very
often mathematically more robust. In the second category, I include more
recent packages developed in the 1980's of which the most common are Math
ematica, by Wolfram Research, Inc., Maple, by the University of Waterloo,
Canada, and more recently Axiom, developed by IBM and commercialized
by NAG. These second-generation systems being more recent have more bugs
and have been less tested. They are also often more prone to mathematical
errors. On the other hand they have been aggressively commercialized and as
a consequence have become more popular. However, the older systems have
also been improved, and in particular recently Macsyma was greatly improved
in terms of speed, user friendliness and efficiency and now compares very fa
vorably to more recent packages. Mathematica has a very nice user interface,
and its plotting capabilities, for example on the Macintosh, are superb. Maple
is faster and often simpler to use, and has my preference. Axiom is a monster
(in the same sense that ADA is a monster as a programming language). It
certainly has a large potential for developing powerful applications, but I do
not believe that there is the need for such power (which is usually obtained
at the expense of speed) for everyday (number-theoretic) problems.

Some other packages were specially designed for small machines like Per
sonal Computers (PC's). One of these is Derive, which is issued from p.-Math,
and requires only half a megabyte of main memory. Derive even runs on
some pocket computers! Another system, the Calculus Calculator (CC), is a
symbolic manipulator with three-dimensional graphics and matrix operations
which also runs on PC's. A third system, Numbers, is a shareware calcula
tor for number theory that runs on PC's. It is designed to compute number
theoretic functions for positive integers up to 150 decimal digits (modular

508 A Packages for Number Theory

arithmetic, primality testing, continued and Farey fractions, Fibonacci and
Lucas numbers, encryption and decryption).

In addition to commercial packages, free software systems (which are not
complete symbolic packages) also exist. One is Ubasic, written by Y. Kida,
which is a math-oriented high-precision Basic for PC's (see the review in the
Notices of the AMS of M~arch 1991). Its extensions to Basic allow it to handle
integers and reals of several thousand digits, as well as fractions, complex
numbers and polynomials in one variable. Many number-theoretic functions
are included in Ubasic, including the factoring algorithm MPQS. Since the
package is written in assembly language, Ubasic is very fast.

Another package, closer to a symbolic package, is Pari, written by the au
thor and collaborators (see the review in the Notices of the AMS of October
1991). This package can be used on Unix workstations, Macintosh, Amiga,
PC's, etc. Its kernel is also written in assembler, so it is also very fast. Fur
thermore, it has been specially tailored for number-theoretic computations. In
addition, it provides tools which are rarely or never found in other symbolic
packages such as the direct handling of concrete mathematical objects, for
example p-adic numbers, algebraic numbers and finite fields, etc . . . It also
gives mathematically more correct results than many packages on fundamen
tal operations (e.g. subtraction of two real numbers which are approximately
equal).

Source is included in the package so it is easy to correct, improve and
expand. Essentially all of the algorithms described in the present book have
been implemented in Pari, so I advise the reader to obtain a copy of it.

Apart from those general computer algebra systems, some special-purpose
systems exist: GAP, Kant, Magma, Simath. The Magma system is designed
to support fast computations in algebra (groups, modules, rings, polynomial
r~s over various kinds of coefficient domains), number theory and finite
geometry. It includes general machinery for classical number theory (for ex
ample the ECM program of A.K. Lenstra), finite fields and cyclotomic fields
and facilities for computing in a general algebraic number field. It will even
tually include a MPQS factoring algorithm, a Jacobi sum-type primality test
and a general purpose elliptic curve calculator. According to the developers,
it should eventually include "just about all of the algorithms of this book".
GAP (Groups, Algorithms and Programming) is specially designed for compu
tations in group theory. It includes some facilities for doing elementary number
theory, in particular to calculate with arbitrary length integers and rational
numbers, cyclotomic fields and their subfields, and finite fields. It has func
tions for integer factorization (based on elliptic curves), for primality testing,
and for some elementary functions from number theory and combinatorics. Its
programming language is Maple-like. Kant (Komputational Algebraic Number
Theory) is a subroutine package for algorithms from the geometry of numbers
and algebraic number theory, which will be included in Magma. Simath, devel
oped at the university of Saarbrucken, is another system for number-theoretic
computations which is quite fast and has a nice user interface called simcalc.

A Packages for Number Theory 509

In addition to specific packages, handling of multi-precision numbers or
more general types can be easily achieved with several languages, Lisp, C
and C++. For Lisp, the INRJA implementation LeLisp (which is not public
domain) contains a package written in assembler to handle large numbers,
and hence is very fast. The GNU Calc system is an advanced desk calculator
for GNU Emacs, written in Emacs Lisp. An excellent public domain C++
compiler can be obtained from the Free Software Foundation, and its library
allows to use multi-precision numbers or other types. The library is however
written in C++ hence is slow, so it is strongly advised to write a library in
assembler for number-theoretic uses. Another multi-precision system written
inC is the desk calculator (Calc) of Hans-J. Boehm for Unix workstations. Its
particularity is to handle "constructive" real numbers, that is to remember the
best known approximation to a number already computed. For PC's, Timothy
C. Frenz has developed an "infinite" precision calculator, also named Calc.

Finally, a few free packages exist which have been specifically written for
handling multi-precision integers as part of a C library in an efficient way. In
addition to Pari mentioned above, there is the Bignum package of DEC PRL
(which is essentially the package used in LeLisp as mentioned above) which
can be obtained by sending an e-mail message to librarian<Ddecprl. dec. com,
and the GNU multi-precision package Gmp which can be obtained by anony
mous ftp from prep. ai. mit. edu, the standard place where one can ftp all
the GNU software.

Conclusions.
My personal advice (which is certainly not objective) is the following. If

you are on an IBM-PC 286, you do not have much choice. Obtain Ubasic,
Derive or the Calculus Calculator. On an IBM-PC 386 or more, Maple, Mac
syma, Mathcad (see Maple below) and Pari are also available. If you are on
a Macll or on a Unix workstation then, if you really need all the power of a
symbolic package, buy either Maple or Mathematica, my preference going to
Maple. If you want a system that is already specialized for number theoretic
computations, then buy Magma. In any case, as a complement to this package,
obtain Pari.

Where to obtain these packages.
You can order Maple at the following address: Waterloo Maple Software,

160 Columbia St. W., Waterloo, Ontario, Canada N2L 3L3, phone (519) 747-
2373, fax (519) 747-5284, e-mail wmsi<Ddaisy. waterloo. edu. Maple has been
ported to many different machines and it is highly probable that it has been
ported to the machine that you want. There is also a system named Mathcad
that uses some parts of Maple for its symbolic manipulations; Mathcad runs
under Microsoft Windows and is published by MathSoft Inc., 201 Broadway,
Cambridge, Massachussets, USA, 02139 Phone: (617) 577-1017.

You can order Mathematica from Wolfram Research, Inc. at the following
address: Wolfram. Research, 100 Trade Center Drive, Champaign, IL 61820,
phone 800-441-Math, fax 217-398-0747, e-mail info<Dwri.com. Mathematica

510 A Packages for Number Theory

has also been ported to quite a number of machines, and in addition you can
use a friendly "front-end" like the Macintosh II linked to a more powerful
computer (including supercomputers) which will do the actual computations.

Macsyma exists in two flavors : the commercial versions (Macsyma, AL
JABR, ParaMacs) are licensed from MIT, the non-commercial versions (Vax
ima, Maxima, and DOE-Macsyma) officially come from the American De
partment of Energy (DOE). All these versions are derived from the Mac
syma developed by the Mathlab Group at MIT. The commercial version runs
on PC 386, Symbolics computers, VMS machines and most Unix worksta
tions; the address to order it is: Macsyma Inc., 20 Academy Street, Suite
201, Arlington MA 02174-6436, phone (617) 646-4550 or 1-800-MACSYMA
(free from the U.S.), fax (617) 646-3161, e-mail info-macsyma<Dmacsyma.com.
Vaxima is available from the Energy Science and Technology Software Cen
ter (ESTSC), P.O. Box 1020, Oak Ridge, Tennessee 37831, phone (615) 576-
2606. Maxima is a Common Lisp version maintained by William Schelter
(e-mail wf s<Dmath. utexas. edu) at Texas University. Although it is a non
commercial version, one must get a license from the Energy Science and
Technology Software Center (see above) to use it. For more information, get
the file README. MAXIMA by anonymous ftp on rascal. ics. utexas. edu. Para
Macs, is available from Leo Harten, Paradigm Associates, Inc., 29 Putnam
Avenue, Suite 6, Cambridge, MA 02139, phone (617) 492-6079, fax (617)
876-8186, e-mail lph<Dparadigm. com. ALJABR is available from Fort Pond
Research, 15 Fort Pond Road, Acton, MA 01720, phone 508-263-9692, e-mail
aljabr<Dfpr. com. It runs on Macintosh, Sun and SGI computers.

There are many distributors of Reduce, depending on the machine and
version of Lisp that is used. The main one is Herbert Melenk, Konrad
Zuse-Zentrum fiir Informationstechnik Berlin (ZIB), Heilbronner Str. 10,
D 1000 Berlin 31, Germany, phone 30-89604-195, fax 30-89604-125, e-mail
me~<Dsc. zib-berlin. de. You will get detailed informations if you send an
electronic message with send info-package as subject to
reduce-netlib<Drand.org.

Axiom on IBM RS/6000 is distributed by NAG: contact the Numerical
Algorithms Group Ltd., Wilkinson House, Jordan Hill Rd., Oxford, UK OX2
8DR, phone (0)-865-511245, e-mail nagttt<Dvax.oxford.ac.uk. A Spare ver
sion is also available.

Derive is available from Soft Warehouse, Inc., 3615 Harding Avenue, Suite
505, Honolulu, Hawaii 96816, USA, phone (808) 734-5801, fax (808) 735-1105.

You can obtain Ubasic by anonymous ftp at shape .mps. ohio-state. edu
or wuarchi ve. wustl. edu. Or you can write directly to Kida at the follow
ing address: Prof. Yuji Kida, Department of Mathematics, Rikkyo University,
Nishi-Ikebukuro 3, Tokyo 171, JAPAN, e-mail kida<Drkmath.rikkyo.ac.jp.

The Calculus Calculator (CC) is developed by David Meredith, Depart
ment of Mathematics, San Francisco State University, 1600 Holloway Avenue,
San Francisco, CA 94132, phone (415) 338-2199. Version 3 (CC3) is published

A Packages for Number Theory 511

with a 200 page manual by Prentice Hall, phone (201) 767-5937. Version 4
(CC4) is available by anonymous ftp from wuarchi ve . wust 1. edu.

You can order Magma from The Secretary, Computational Algebra Group,
Pure Mathematics, University of Sydney, NSW 2006, Australia, phone (2) 692-
3338, fax (2) 692-4534, e-mail magma<Omaths.su.oz.au. It runs on Sun, HP,
Apollo, VAX/VMS, Convex and various IBM machines.

GAP is available free of charge through ftp from Aachen: the ordinary mail
address is Lehrstuhl D fur Mathematik, RWTH Aachen, Templergraben 64, D-
5100 Aachen, Germany. For technical questions, contact Martin Schoenert (e
mail martin<Omath.rwth-aachen.de), and for more general questions, contact
Prof. Joachim Neubiiser (e-mail neubueser<Dmath.rwth-aachen.de).

There are two versions of Kant: Kant V1 is written in Ansi-Fortran 77,
while Kant V2 is built on the Magma Platform and written in Ansi-C. These
two versions are available from the KANT Group: e-mail to pohst<Dmath. tu
berlin.de or daberkow<Omath.tu-berlin.de. You can get the system by
anonymous ftp from ftp. math. tu-berlin. de, directory /pub/ algebra/Kant.
Note that Kant V2 is now also part of the Magma package.

You can obtain Simath by anonymous ftp from ftp.math.uni-sb.de.
Numbers is developed by Ivo Diintsch, Moorlandstr. 59, W-4500 Os

nabriick, phone (541) 189-106, fax (541) 969-2470, e-mail
duentsch<Ddosuni1. bitnet. You can get the system by anonymous ftp from
dione.rz.uni-osnabrueck.de.

You can obtain Gmp (as well as all software from the Free Software Foun
dation) by anonymous ftp on prep. ai. mit. edu.

The three multi-precision systems named Calc can all be obtained by
anonymous ftp: the GNU calculator (written and maintained by Dave Gille
spie, e-mail daveg<Dcsvax. cs. cal tech. edu, 256-80 Caltech, Pasadena, CA
91125) from csvax.cs.caltech.edu, the calculator of Hans-J. Boehm from
arisia.xerox. com and the calculator of Timothy C. Frenz (5361 Amalfi
Drive, Clay, NY 13041) from the site wuarchive. wustl. edu.

Finally, you can obtain Pari by anonymous ftp from the sites
megrez.ceremab.u-bordeaux.fr, ftp.inria.fr andmath.ucla.edu.

Internet addresses and numbers for ftp

arisia.xerox.com
csvax.cs.caltech.edu

dione.rz.uni-osnabrueck.de
ftp.math.tu-berlin.de

ftp.math.uni-sb.de
math.ucla.edu

megrez.ceremab.u-bordeaux.fr
prep. ai. mit . edu

rascal.ics.utexas.edu
shape.mps.ohio-state.edu

wuarchive.wustl.edu

13.1.64.94
131.215.131.131
131.173.128.15
130.149.12.72
134.96.32.23
128.97.4.254
147.210.16.17

18.71.0.38
128.83.138.20
128.146.110.30
128.252.135.4

Boehm-Calc
GNU Calc
Numbers
Kant
Simath
Pari
Pari
Gmp
Maxima
Ubasic
Most packages

Appendix B

Some Useful Tables

In this appendix, we give five short tables which may be useful as basic data
on which to work in algebraic number fields and on elliptic curves. The first
two tables deal with quadratic fields and can be found in many places.

The third and fourth table give the corresponding tables for complex and
totally real cubic fields respectively, and have been produced by M. Olivier
using the method explained in Section 6.4.1 and the KANT package (see
Appendix A).

The fifth table is a short table of elliptic curves extracted from [LN476]
and [Cre].

I give here a list of references to the main tables that I am aware of. Not
included are tables which have been superseded, and also papers containing
only a few of the smallest number fields.

For quadratic fields see [Bue1] and [Ten-Wil].
For cubic fields see [Enn-Thr1], [Enn-Thr2], [Gras], [Ang], [Sha-Wil] and

[Ten-Wil].
For quartic fields see [Ford3], [Buc-Ford] and [BFP].
For quintic fields see [Diaz] and [SPD].
For sextic fields see [Oli3], [Oli4], [Oli5] and [Oli6].

Finally, for an extensive table of elliptic curves see Cremona's book [Cre].

B.l Table of Class Numbers of Complex Quadratic
Fields

Recall that the group of units of complex quadratic fields is equal to ± 1 except
when the discriminant is equal to -3 or -4 in which case it is equal to the
group of sixth or fourth roots of unity respectively.

The following table list triples (d,h(d),H(-d)) where dis negative and
congruent to 0 or 1 modulo 4, h(d) is the class number of the quadratic order of
discriminant d, and H(-d) is the Hurwitz class number of discriminant d (see
Definition 5.3.6). Note that h(d) = H(-d) if and only if d is a fundamental
discriminant, that H(-d) has a denominator equal to 2 (resp. 3) if and only
if dis of the form -4j2 (resp. -3j2) and otherwise is an integer.

514 B Some Useful Tables

(-3,1,1/3) (-4,1,1/2) (-7,1,1) (-8,1,1)
(-11,1,1) (-12,1,4/3) (-15,2,2) (-16,1,3/2)
(-19,1,1) (-20,2,2) (-23,3,3) (-24,2,2)
(-27,1,4/3) (-28,1,2) (-31,3,3) (-32,2,3)
(-35,2,2) (-36,2,5/2) (-39,4,4) (-40,2,2)
(-43,1,1) (-44,3,4) (-47,5,5) (-48,2,10/3)
(-51,2,2) (-52,2,2) (-55,4,4) (-56,4,4)
(-59,3,3) (-60,2,4) (-63,4,5) (-64,2, 7/2)
(-67,1,1) (-68,4,4) (-71,7,7) (-72,2,3)
(-75,2, 7/3) (-76,3,4) (-79,5,5) (-80,4,6)
(-83,3,3) (-84,4,4) (-87,6,6) (-88,2,2)
(-91,2,2) (-92,3,6) (-95,8,8) (-96,4,6)
(-99,2,3) (-100,2,5/2) (-103,5,5) (-104,6,6)
(-107,3,3) (-108,3,16/3) (-111,8,8) (-112,2,4)
(-115,2,2) (-116,6,6) (-119,10,10) (-120,4,4)
(-123,2,2) (-124,3,6) (-127,5,5) (-128,4,7)
(-131,5,5) (-132,4,4) (-135,6,8) (-136,4,4)
(-139,3,3) (-140,6,8) (-143,10,10) (-144,4,15/2)
(-147,2,7/3) (-148,2,2) (-151,7,7) (-152,6,6)
(-155,4,4) (-156,4,8) (-159,10,10) (-160,4,6)
(-163,1,1) (-164,8,8) (-167,11,11) (-168,4,4)
(-171,4,5) (-172,3,4) (-175,6,7) (-176,6,10)
(-179,5,5) (-180,4,6) (-183,8,8) (-184,4,4)
(-187,2,2) (-188,5,10) (-191,13,13) (-192,4,22/3)
(-195,4,4) (-196,4,9/2) (-199,9,9) (-200,6,7)
(-203,4,4) (-204,6,8) (-207,6,9) (-208,4,6)
(-211,3,3) (-212,6,6) (-215,14,14) (-216,6,8)
(-219,4,4) (-220,4,8) (-223,7,7) (-224,8,12)
(-227,5,5) (-228,4,4) (-231,12,12) (-232,2,2)
(-235,2,2) (-236,9,12) (-239,15,15) (-240,4,8)
(-243,3,13/3) (-244,6,6) (-247,6,6) (-248,8,8)
(-251,7,7) (-252,4,10) (-255,12,12) (-256,4,15/2)
(-259,4,4) (-260,8,8) (-263,13,13) (-264,8,8)
(-267,2,2) (-268,3,4) (-271,11,11) (-272,8,12)
(-275,4,5) (-276,8,8) (-279,12,15) (-280,4,4)
(-283,3,3) (-284,7,14) (-287,14,14) (-288,4,9)
(-291,4,4) (-292,4,4) (-295,8,8) (-296,10,10)
(-299,8,8) (-300,6,28/3) (-303,10,10) (-304,6,10)
(-307,3,3) (-308,8,8) (-311,19,19) (-312,4,4)
(-315,4,6) (-316,5,10) (-319,10,10) (-320,8,14)
(-323,4,4) (-324,6,17/2) (-327,12,12) (-328,4,4)
(-331,3,3) (-332,9,12) (-335,18,18) (-336,8,12)
(-339,6,6) (-340,4,4) (-343,7,8) (-344,10,10)
(-347,5,5) (-348,6,12) (-351,12,16) (-352,4,6)

B.2 Table of Class Numbers and Units of Real Quadratic Fields

(-355,4,4)
(-363,4,13/3)
(-371,8,8)
(-379,3,3)
(-387,4,5)
(-395,8,8)
(-403,2,2)
(-411,6,6)
(-419,9,9)
(-427,2,2)
(-435,4,4)
(-443,5,5)
(-451,6,6)
(-459,6,8)
(-467,7,7)
(-475,4,5)
(-483,4,4)
(-491,9,9)
(-499,3,3)

(-356,12,12)
(-364,6,8)
(-372,4,4)
(-380,8,16)
(-388,4,4)
(-396,6,12)
(-404,14,14)
(-412,5,10)
(-420,8,8)
(-428,9,12)
(-436,6,6)
(-444,8,16)
(-452,8,8)
(-460,6,8)
(-468,8,10)
(-476,10,20)
(-484,6,13/2)
(-492,6,8)
(-500,10,12)

(-359,19,19)
(-367,9,9)
(-375,10,12)
(-383,17,17)
(-391,14,14)
(-399,16,16)
(-407,16,16)
(-415,10,10)
(-423,10,15)
(-431,21,21)
(-439,15,15)
(-447,14,14)
(-455,20,20)
(-463,7,7)
(-471,16,16)
(-479,25,25)
(-487,7,7)
(-495,16,20)
(-503,21,21)

(-360,8,10)
(-368,6,12)
(-376,8,8)
(-384,8,14)
(-392,8,9)
(-400,4,15/2)
(-408,4,4)
(-416,12,18)
(-424,6,6)
(-432,6,40/3)
(-440,12,12)
(-448,4,8)
(-456,8,8)
(-464,12,18)
(-472,6,6)
(-480,8,12)
(-488,10,10)
(-496,6,12)
(-504,8,12)

B.2 Table of Class Numbers and Units of Real
Quadratic Fields

515

In the following table of real quadratic fields K we list the following data
from left to right: the discriminant d = d(K), the class number h = h(K),
the regulator R = R(K), the norm of the fundamental unit and finally the
fundamental unit itself given as a pair of coordinates (a, b) on the canonical
integral basis (1,w) where w = (1 + ../d)/2 if d = 1 (mod 4), w = ../d/2 if
d = 0 (mod 4).

d h R N(€) f.

5 1 0.4812 -1 (0,1)
8 1 0.8814 -1 (1,1)

12 1 1.317 1 (2,1)
13 1 1.195 -1 (1,1)
17 1 2.095 -1 (3,2)
21 1 1.567 1 (2,1)
24 1 2.292 1 (5,2)
28 1 2.769 1 (8,3)
29 1 1.647 -1 (2,1)
33 1 3.828 1 (19,8)
37 1 2.492 -1 (5,2)

516 B Some Useful Tables

40 2 1.818 -1 (3,1)
41 1 4.159 -1 (27,10)
44 1 2.993 1 (10,3)
53 1 1.966 -1 (3,1)
56 1 3.400 1 (15,4)
57 1 5.710 1 (131,40)
60 2 2.063 1 (4,1)
61 1 3.664 -1 (17,5)
65 2 2.776 -1 (7,2)
69 1 3.217 1 (11,3)
73 1 7.667 -1 (943,250)
76 1 5.829 1 (170,39)
77 1 2.185 1 (4,1)
85 2 2.209 -1 (4,1)
88 1 5.976 1 (197,42)
89 1 6.908 -1 (447,106)
92 1 3.871 1 (24,5)
93 1 3.366 1 (13,3)
97 1 9.324 -1 (5035,1138)

101 1 2.998 -1 (9,2)
104 2 2.312 -1 (5,1)
105 2 4.407 1 (37,8)
109 1 5.565 -1 (118,25)
113 1 7.347 -1 (703,146)
120 2 3.089 1 (11,2)
124 1 8.020 1 (1520,273)
129 1 10.43 1 (15371,2968)
133 1 5.153 1 (79,15)
136 2 4.248 1 (35,6)
137 1 8.157 -1 (1595,298)
140 2 2.478 1 (6,1)
141 1 5.247 1 (87,16)
145 4 3.180 -1 (11,2)
149 1 4.111 -1 (28,5)
152 1 4.304 1 (37,6)
156 2 3.912 1 (25,4)
157 1 5.361 -1 (98,17)
161 1 10.07 1 (10847,1856)
165 2 2.559 1 (6,1)
168 2 3.257 1 (13,2)
172 1 8.849 1 (3482,531)
173 1 2.571 -1 (6,1)
177 1 11.73 1 (57731,9384)
181 1 7.174 -1 (604,97)
184 1 10.79 1 (24335,3588)

B.2 Table of Class Numbers and Units of Real Quadratic Fields 517

185 2 4.913 -1 (63,10)
188 1 4.564 1 (48,7)
193 1 15.08 -1 (1637147,253970)
197 1 3.333 -1 (13,2)
201 1 13.85 1 (478763,72664)
204 2 4.605 1 (50,7)
205 2 3.761 1 (20,3)
209 1 11.44 1 (43331,6440)
213 1 4.290 1 (34,5)
217 1 15.86 1 (3583111,521904)
220 2 5.182 1 (89,12)
221 2 2.704 1 (7,1)
229 3 2.712 -1 (7,1)
232 2 5.288 -1 (99,13)
233 1 10.74 -1 (21639,3034)
236 1 6.966 1 (530,69)
237 1 4.344 1 (36,5)
241 1 18.77 -1 (66436843,9148450)
248 1 4.836 1 (63,8)
249 1 16.66 1 (8011739,1084152)
253 1 7.529 1 (872,117)
257 3 3.467 -1 (15,2)
264 2 4.867 1 (65,8)
265 2 9.405 -1 (5699,746)
268 1 11.49 1 (48842,5967)
269 1 5.100 -1 (77,10)
273 2 7.282 1 (683,88)
277 1 7.868 -1 (1228,157)
280 2 6.219 1 (251,30)
281 1 14.57 -1 (1000087,126890)
284 1 8.848 1 (3480,413)
285 2 2.830 1 (8,1)
293 1 2.837 -1 (8,1)
296 2 4.454 -1 (43,5)
301 1 10.03 1 (10717,1311)
305 2 6.886 1 (461,56)
309 1 8.526 1 (2379,287)
312 2 4.663 1 (53,6)
313 1 19.35 -1 (119691683,14341370)
316 3 5.075 1 (80,9)
317 1 4.489 -1 (42,5)
321 3 6.064 1 (203,24)
328 4 2.893 -1 (9,1)
329 1 15.37 1 (2245399,262032)
332 1 5.100 1 (82,9)

518 B Some Useful Tables

337 1 21.43 -1 (960491695,110671282)
341 1 5.624 1 (131,15)
344 1 9.943 1 (10405,1122)
345 2 9.512 1 (6397,728)
348 2 4.025 1 (28,3)
349 1 9,821 -1 (8717,986)
353 1 11.87 -1 (67471,7586)
357 2 2.942 1 (9,1)
364 2 8.055 1 (1574,165)
365 2 2.947 -1 (9,1)
373 1 9.234 -1 (4853,530)
376 1 15.27 1 (2143295,221064)
377 2 6.144 1 (221,24)
380 2 4.357 1 (39,4)
381 1 7.616 1 (963,104)
385 2 12.16 1 (90947,9768)
389 1 7.849 -1 (1217,130)
393 1 18.35 1 (44094699,4684888)
397 1 8.145 -1 (1637,173)
401 5 3.690 -1 (19,2)
408 2 5.308 1 (101,10)
409 1 26.13 -1 (106387620283,11068353370)
412 1 13.03 1 (227528,22419)
413 1 4.111 1 (29,3)
417 1 18.96 1 (81144379,8356536)
421 1 13.01 -1 (211627,21685)
424 2 8.988 -1 (4005,389)
428 1 7.562 1 (962,93)
429 2 4.977 1 (69,7)
433 1 23.39 -1 (6883177307,694966754)
437 1 3.042 1 (10,1)
440 2 3.737 1 (21,2)
444 2 6.380 1 (295,28)
445 4 3.047 -1 (10,1)
449 1 19.75 -1 (180529627,17883410)
453 1 5.004 1 (71,7)
456 2 7.626 1 (1025,96)
457 1 25.50 -1 (56325840235,5528222698)
460 2 7.720 1 (1126,105)
461 1 5.900 -1 (174,17)
465 2 10.37 1 (15135,1472)
469 3 4.174 1 (31,3)
472 1 13.33 1 (306917,28254)
473 3 5.159 1 (83,8)
476 2 5.481 1 (120,11)

B.3 Table of Class Numbers and Units of Complex Cubic Fields

481 2 14.47 -1 (920179,87922)
485 2 3.785 -1 (21,2)
488 2 3.093 -1 (11,1)
489 1 23.44 1 (7249279379,686701192)
492 2 5.497 1 (122,11)
493 2 4.710 -1 (53,5)
497 1 14.69 1 (1147975,107824)

B.3 Table of Class Numbers and Units of Complex
Cubic Fields

519

Any number field can be defined as K = Q[a] where a is a primitive algebraic
integer (see Section 10.5.2), and we will denote by A(X) the minimal monic
polynomial of a. We will choose A so that the index f = [ZK : Z[a]] is as
small as possible and with small coefficients (hence A will not always be the
pseudo-canonical polynomial given by Algorithm 4.4.12). The choice of the
particular polynomials A which we will give is therefore not at all canonical.

Let now K be a cubic field. Since we have chosen a primitive, there exists
an integral basis of the form (1, a, ,B). Furthermore any cubic field has at least
one real embedding hence the set of roots of unity is always equal to ±1. On
the other hand complex cubic fields have unit rank equal to 1, while real cubic
fields have unit rank equal to 2. Since the norm of -1 is equal to -1, there is
no such thing as the sign of the norm of fundamental units.

The following is a table of the first hundred complex cubic fields. For
each field K we give the following data from left to right: the discriminant
d = d(K), the index f = [ZK : Z[a]], the polynomial A, the third element
,8 of an integral basis (1,a,,B), the class number h = h(K), the regulator
R = R(K) and the fundamental unit € expressed on the integral basis (for
example (2, 3, 1) means 2 + 3a +,B). Since the signature of K is equal to (1, 1),
the Galois group of the Galois closure of K is always equal to the symmetric
group s3.

d f A f3 h R E

-23 1 x 3 +X2 -1 a2 1 0.2812 (0,1,1)
-31 1 x3- x2 -1 a2 1 0.3822 (0, 1,0)
-44 1 X 3 -X2 - X -1 a2 1 0.6094 (0,1,0)
-59 1 x 3 +2X -1 a2 1 0.7910 (2,0,1)
-76 1 x 3 - 2x- 2 a2 1 1.019 (1,1,0)
-83 1 X 3 -X2 +X -2 a2 1 1.041 (1,0,1)
-87 1 X 3 +X2 +2X -1 a2 1 0.9348 (2,1,1)

-104 1 x 3 - x- 2 a2 1 1.576 (1,1,1)
-107 1 X 3 -X2 +3X -2 a2 1 1.256 (3,0,1)
-108 1 X 3 -2 a2 1 1.347 (1,1,1)

520 B Some Useful Tables

-116 1 x 3 - X 2 - 2 a2 1 1.718 (1,1,1)
-135 1 x 3 +3X -1 a2 1 1.133 (3,0,1)
-139 1 X 3 +X2 +X -2 a2 1 1.664 (3,2,1)
-140 1 x 3 + 2x- 2 a2 1 1.474 (3,1,1)
-152 1 x 3 - x 2 - 2x- 2 a2 1 2.131 (-1,-1,-1)
-172 1 X 3 +X2 - X- 3 a2 1.882 (-2,-2,-1)
-175 x 3 - x 2 + 2x- 3 a2 1.289 (2,0,1)
-199 1 x 3 - x 2 +4X -1 a2 1.337 (4,-1,1)
-200 1 X3 +X2 +2X -2 a2 1 2.604 (9,5,3)
-204 1 X 3 -X2 +X -3 a2 1 2.355 (4, 1,2)
-211 1 x 3 - 2x- 3 a2 1 2.238 (-2,-2,-1)
-212 1 X 3 -X2 +4X- 2 a2 1 2.713 (-15,2,-4)
-216 1 x 3 +3X- 2 a2 1 3.024 (-17,-3,-5)
-231 1 x 3 +X2 - 3 a2 1.745 (2,2,1)
-239 1 x 3 - x- 3 a2 1 2.097 (2,2,1)
-243 1 x 3 -3 a2 1 2.525 (4,3,2)
-244 1 X 3 +X2 -4X -6 a2 3.303 (5,6,2)
-247 1 x 3 +X -3 a2 1.545 (2,1,1)
-255 1 x 3 -X2 - 3 a2 1 1.993 (-2,-1,-1)
-268 1 X 3 +X2 - 3X- 5 a2 1 2.521 (3,3,1)
-283 x 3 +4X -1 a2 2 1.401 (4,0,1)
-300 X 3 - X 2 - 3X- 3 a2 1 3.149 (2,3,2)
-307 1 X 3 +X2 + 3X- 2 a2 1 2.958 (-15,-6,-4)
-324 1 x 3 - 3X- 4 a2 1 4.048 (-9,-11,-5)
-327 1 X3 -X2 -2X -3 a2 1 2.199 (1,1,1)
-331 1 X 3 -X2 +3X- 4 a2 2 1.503 (3,0,1)
-335 1 X 3 +X2 +4X -1 a2 1 1.456 (4,1,1)
-339 1 X 3 +X2 - X -4 a2 1 3.546 (11,10,4)
-351 1 x 3 +3X- 3 a2 1 1.702 (-4,-1,-1)
-356 2 X 3 -X2 +4X -8 (a+ a 2)/2 3.755 (-25,2,-10)
-364 1 x 3 +4X- 2 a2 1 2.936 (17,2,4)
-367 1 X 3 +X2 + 2X- 3 a2 1 1.856 (4,2,1)
-379 1 X 3 -X2 +X -4 a2 1 3.273 (9,3,4)
-411 1 x 3 - x 2 + 5X- 2 a2 1 4.029 (57,-7,12)
-419 1 x 3 -4X- 5 a2 3.345 (-4,-5,-2)
-424 2 x 3 - 2x- 8 a 2/2 4.859 (31,21,18)
-431 2 x 3 -x -8 (a+ a 2)/2 1 6.155 (133,42,72)
-436 1 x 3 +X -4 a2 1 4.948 (-61,-29,-21)
-439 X 3 +X2 - 2X- 5 a2 1 2.430 (3,3,1)
-440 2 x 3 +2X -8 a 2/2 1 4.534 (-43,-15,-18)
-451 1 X 3 +X2 -5X -8 a2 1 3.576 (-7,-7,-2)
-459 1 x 3 - 6X -7 a2 1 3.669 (-5,-6,-2)
-460 1 X 3 -X2 +5X -3 a2 1 3.671 (38,-3,8)
-472 1 x 3 - 5X- 6 a2 1 5.380 (29,35,13)
-484 1 X 3 +X2 +4X- 2 a2 1 5.303 (171,53,37)
-491 1 X 3 +X2 +X -4 a2 2 1.891 (3,2,1)
-492 1 X 3 +X2 +3X -3 a2 1 4.421 (59,24,14)
-499 1 x 3 +4X- 3 a2 1 3.874 (-40,-6,-9)
-503 2 x 3 - x 2 - 2x- 8 (a+ a 2)/2 1 7.027 (-211,-56,-146)
-515 x 3 - x 2 - x -4 a2 1 3.646 (-7,-5,-4)
-516 2 x 3 - x 2 - 4X- 8 (a+ a 2)/2 1 6.385 (-81,-35,-63)
-519 1 X 3 +X2 - 4X -7 a2 1 2.681 (3,3,1)
-524 1 x 3 - x 2 + 3X- 5 a2 1 3.422 (18,2,5)
-527 1 X 3 +5X -1 a2 1 1.617 (5,0, 1)

B.4 Table of Class Numbers and Units of Totally Real Cubic Fields 521

-543 1 x 3 - X 2 + 2X- 5 a2 1 3.013 (-9,-2,-3)
-547 1 X 3 - X 2 - 3X- 4 a2 1 4.367 (9,10,6)
-563 1 x 3 - x 2 + 5X- 4 a2 2 1.737 (5,0,1)
-567 X 3 - 3X- 5 a2 1 2.464 (-2,-2,-1)
-588 x 3 + X 2 +5X -1 a2 3 1.654 (5,1,1)
-620 1 x 3 - X 2 - 5X- 5 a2 3.553 (3,4,2)
-628 2 X 3 + X 2 - 3X - 11 (1 + a 2)/2 6.494 (-138,-123,-74)
-643 1 x 3 - 2x- 5 a2 2 2.359 (2,2,1)
-648 2 x 3 - 3X -10 (a+ a 2)/2 3 2.234 (2,1,1)
-652 1 x 3 - 8X -1o a2 1 4.320 (-11,0,1)
-655 1 x 3 + X 2 - 5 a2 1 2.906 (-7,-5,-2)
-671 1 X 3 - x- 5 a2 1 2.345 (-3,-2,-1)
-675 1 X 3 - 5 a2 1 4.812 (-41,-24,-14)
-676 2 x 3 + X 2 - 4X - 12 (a+ a 2)/2 3 2.186 (2,1,1)
-679 1 x 3 +X -5 a2 1 3.443 (13,6,4)
-680 1 x 3 + X 2 - 6X - 10 a2 1 6.071 (-79,-77,-21)
-687 1 X 3 +X2 +4X -3 a2 1 3.455 (-25,-8,-5)
-695 1 xa- X2- 5 a2 1 2.151 (2,1,1)
-696 1 X 3 +X2 -2X -6 a2 1 7.810 (-673,-589,-207)
-707 X 3 + 2X- 5 a2 1 4.187 (34,12,9)
-716 X 3 - 4X- 6 a2 1 6.405 (-95,-101,-40)
-728 1 x 3 - X 2 + 6X- 2 a2 1 6.052 (-433,49,-75)
-731 1 x 3 + X 2 + 3X- 4 a2 2 2.013 (-5,-2,-1)
-743 1 x 3 + 5X- 3 a2 1 4.556 (-85,-9,-16)
-744 1 x 3 - X 2 - 6X -6 a2 1 8.294 (-347,-451,-193)
-748 1 x 3 +X2 +X -5 a2 1 4.532 (-43,-25,-11)
-751 1 X 3 - X 2 +6X -1 a2 2 1.768 (6,-1,1)
-755 1 x 3 + X 2 + 5X- 2 a2 1 4.904 (121 ,30,22)
-756 2 x 3 + 9X- 2 (a+ a 2)/2 1 7.107 (1208,-104,267)
-759 1 x 3 -X2 +6X -3 a2 1 3.137 (23,-2,4)
-771 1 x 3 - X 2 +3X -6 a2 1 6.140 (-251,-36,-65)
-780 1 x 3 - X 2 - x- 5 a2 1 6.159 (94,59,44)
-804 1 x 3 -X2 +4X -6 a2 1 8.571 (-3499,-270,-784)
-808 1 x 3 - X 2 + 2X- 6 a2 1 7.625 (-875,-201,-259)
-812 1 X 3 -X2 -7X-7 a2 1 3.844 (4,5,2)
-815 1 x 3 -7X- 9 a2 1 5.064 (20,22,7)

B.4 Table of Class Numbers and Units of Totally Real
Cubic Fields

The following is a table of the first hundred totally real cubic fields. We give the
following data from left to right: the discriminant d(K), the index [ZK : Z[a]],
the polynomial A (X), the third element {3 of an integral basis (1, a, {3), the
class number h(K), the regulator R(K) and a pair of fundamental units t:1

and t:2 expressed on the integral basis (1, a, {3). The Galois group of the Galois
closure of K is equal to S3 except for the fields whose discriminant is marked
with an asterisk, which are cyclic cubic fields, i.e. with Galois group equal to
CJ.

522 B Some Useful Tables

d I A {3 h R fl f2

49* 1 X 3 +X2 - 2X -1 a2 1 0.5255 (-1,1,1) (2,0,-1)
81* 1 x 3 - 3X -1 a2 1 0.8493 (2,1,-1) (0,-1,0)
148 1 X 3 +X2 -3X -1 a2 1 1.662 (0,1,0) (2,0,-1)

169* 1 x3- x 2 - 4X -1 a2 1 1.365 (2,2,-1) (0,-1,0)
229 1 x 3 -4X -1 a2 1 2.355 (0,1,0) (2,1,0)
257 1 x 3 - 5X- 3 a2 1 1.975 (4,1,-1) (5,1,-1)
316 1 X 3 +X2 -4X -2 a2 1 3.913 (-3,1,1) (-5,1,1)
321 1 X3 +X2 -4X -1 a2 1 2.569 (0,-1,0) (-1,2,1)

361* 1 X3 +X2 -6X -7 a2 1 1.952 (4,1,-1) (5,0,-1)
404 1 X3 -X2 - 5X -1 a2 1 3.760 (0,-1,0) (1,-1,-1)
469 1 X 3 +X2 -5X -4 a2 1 3.853 (-1,-1,0) (-1,2,1)
473 1 x 3 -5X -1 a2 1 2.843 (0,-1,0) (-2,-1,0)
564 1 X 3 +X2 -5X -3 a2 1 5.403 (-2,1,0) (-1,-1,1)
568 1 x 3 - x 2 - 6X- 2 a2 1 6.087 (-5,-1,1) (-7,-4,2)
621 1 x 3 -6X- 3 a2 1 5.400 (-2,-1,0) (1,2,0)
697 1 X 3 -X2 -8X -5 a2 1 2.712 (6,2,-1) (7,2,-1)
733 1 X3 +X2 -7X -8 a2 1 5.309 (1,1,0) (-5,-2,0)
756 1 x 3 -6X- 2 a2 1 5.692 (5,0,-1) (11, 1,-2)
761 1 x3 -x2- 6X -1 a2 1 3.526 (0,1,0) (2,1,0)
785 1 X 3 +X2 - 6X- 5 a2 1 4.098 (1,1,0) (-4,1,1)
788 1 X 3 - X 2 -7X- 3 a2 1 5.987 (2,1,0) (-1,-2,0)
837 1 x 3 -6X -1 a2 1 6.801 (0,-1,0) (-3,-6,-2)
892 1 X 3 + X 2 - 8X - 10 a2 1 8.323 (3,1,-1) (1,3,1)
940 1 x 3 -7X -4 a2 1 8.908 (-11,-2,2) (-3,1,1)

961* 2 x 3 + x 2 - 1ox - 8 (a2 + a)/2 1 12.20 (-1,2,2) (3,4,-2)
985 1 X 3 +X2 - 6X -1 a2 1 3.724 (0,1,0) (-2,1,0)
993 1 X 3 +X2 - 6X- 3 a2 1 5.555 (5,-1,-1) (5,0,-1)

1016 1 X 3 +X2 - 6X- 2 a2 1 10.13 (7,-1,-1) (-11,-1,1)
1076 1 X3 -8X -6 a2 1 6.932 (1,1,0) (-7,-3,0)
1101 1 x 3 + x 2 - 9X - 12 a2 1 9.184 (5,2,-1) (-7,-4,2)
1129 1 x 3 -7X- 3 a2 1 6.728 (-8,0,1) (1,2,-1)
1229 1 X 3 +X2 -7X -6 a2 1 8.232 (-1,-1,0) (11,15,4)
1257 1 X 3 +X2 - 8X- 9 a2 1 6.197 (-1,-1,0) (2,-2,-1)
1300 1 X 3 -lOX -10 a2 1 6.550 (-1,-1,0) (-1,2,1)
1304 2 X3 - X 2 - 11X - 1 (a2 + 1)/2 1 11.93 (0,-1,0) (-5,14,10)
1345 1 x 3 -7X -1 a2 1 4.923 (0,1,0) (2)2,-1)

1369* 1 X 3 - X 2 - 12X - 11 a2 1 3.126 (6,3,-1) (9,2,-1)
1373 1 X 3 -8X -5 a2 1 9.423 (-6,0,1) (-13,-2,2)
1384 1 X 3 + X 2 - lOX - 14 a2 1 10.38 (-3,-2,0) (-5,1,1)
1396 1 X 3 +X2 -7X- 5 a2 1 8.146 (-8,0,1) (-9,1,1)
1425 1 X 3 -X2 - 8X- 3 a2 1 6.676 (-2,-1,0) (1,2,-1)
1436 1 x 3 -11x -12 a2 1 12.70 (5,2,0) (-11,-6,2)
1489 1 x3 + x 2 - 12x - 19 a2 1 3.361 (10,1,-1) (11,1,-1)
1492 1 X 3 -X2 -9X -5 a2 1 7.646 (-2,-1,0) (-1,-1,1)
1509 1 x 3 + x 2 -7x- 4 a2 1 11.30 (3,1,0) (-3,-6,-1)
1524 1 X 3 + X 2 -7X -1 a2 1 10.45 (0,1,0) (-6,-11,6)
1556 1 X 3 + X 2 - 9X - 11 a2 1 8.376 (8,0,-1) (19,0,-2)
1573 1 X 3 +X2 -7X- 2 a2 1 8.445 (-3,-1,0) (1,4,1)
1593 1 x 3 -9X -7 a2 1 6.331 (1,1,0) (5,2,0)
1620 1 x 3 -12x -14 a2 1 10.17 (9,1,-1) (5,5,1)
1708 1 X 3 -X2 - 8X- 2 a2 1 12.87 (7,1,-1) (-29,-9,5)
1765 1 X 3 + X 2 - 11X - 16 a2 1 9.445 (-3,-1,0) (-7,-6,-1)

B.4 Table of Class Numbers and Units of Totally Real Cubic Fields 523

1772 2 x 3 -14X -12 a 2 /2 1 15.37 (-1,-1,0) (-23,-36,-18)
1825 1 X 3 +X2 -8X-7 a2 1 4.488 (1,1,0) (3,1,0)

1849* 2 X 3 - X 2 - 14X - 8 (a2 + a)/2 1 18.92 (-9,2,0) (-17,-4,2)
1901 1 X 3 -X2 - 9X -4 a2 1 10.66 (-1,-2,0) (-5,0,1)
1929 1 X 3 + X 2 - lOX - 13 a2 1 8.218 (3,1,0) (5,5,1)
1937 1 x 3 - X 2 -8X -1 a2 1 6.542 (0,-1,0) (-3,1,1)
1940 1 x 3 - 8X- 2 a2 1 11.09 (3,-1,0) (39,1,-5)
1944 1 X 3 - 9X- 6 a2 1 15.60 (1,3,-1) (-1,0,2)
1957 1 X 3 + X 2 - 9X - 10 a2 2 4.551 (1,1,0) (3,1,0)
2021 1 x 3 - 8X -1 a2 1 11.52 (0,-1,0) (-1,-28,-10)
2024 1 x 3 - x 2 - 1ox - 6 a2 1 15.77 (5,6,-2) (-11,-9,3)
2057 1 x 3 -11x -11 a2 1 6.782 (1,1,0) (-1,-3,-1)
2089 2 x 3 -13X -4 (a2 + a)/2 1 20.76 (-1,-4,2) (-15,4,0)
2101 1 x 3 - x 2 - 11x - 8 a2 1 8.543 (-1,-1,0) (15,2,-2)
2177 1 X 3 +X2 - 8X- 5 a2 1 7.518 (-3,-1,0) {17,-1,-2)
2213 1 x 3 - x 2 - 13X - 12 a2 1 12.68 (-1,-1,0) (-1,9,4)
2228 1 x 3 -14X -18 a2 1 11.09 (-7,-3,1) (-41,-16,6)
2233 1 X 3 +X2 -8X -1 a2 1 5.523 (0,1,0) (-1,3,1)
2241 1 X 3 - 9X- 5 a2 1 8.264 (-4,-2,1) (-2,-3,1)
2292 2 x 3 + x 2 - 13X - 1 (a2 + 1)/2 1 14.36 (0,1,0) (-4,36,17)
2296 1 xa - x 2 - 14X - 14 a2 1 14.27 (13,3,-1) (-5,-4,0)
2300 1 X3 +X2 -8X -2 a2 1 18.12 (5,-2,0) (73,-7,-9)
2349 1 x 3 -12x -13 a2 1 11.92 (-4,-2,1) (15,4,-2)
2429 1 xa - X 2 - 15X - 16 a2 1 13.28 (-11,-2,1) (85,16,-7)
2505 1 xa - X 2 - lOX - 5 a2 1 10.68 (-2,-3,1) (7,6,-2)
2557 1 X 3 -X2 -9X -2 a2 1 10.72 (-1,2,1) (1,4,-1)
2589 2 X 3 + X 2 - 14X - 12 (a2 + a)/2 1 16.29 (-5,-1,1) (31,38,-20)
2597 1 xa +X2 -9X-8 a2 3 4.796 (1,1,0) (-3,-1,0)
2636 1 x 3 - x 2 - 16X - 18 a2 1 18.38 (-5,-2,0) (25,13,-3)
2673 1 x 3 - 9X- 3 a2 1 7.760 (10,0,-1) (-8,0,1)
2677 1 xa -lOX -7 a2 1 11.16 (-12,0,1) (2,2,-1)
2700 1 x 3 -15X- 20 a2 1 20.37 (1,-1,-1) (-59,-22,8)
2708 1 x3 - x 2 - 11x - 7 a2 1 12.95 {6,7,-2) (9,6,-2)
2713 1 x 3 -13X -15 a2 1 12.34 (-13,-2,1) (-17,-4,2)
2777 1 X 3 + X 2 - 14X - 23 a2 2 3.949 (-2,-1,0) (-3,-1,0)
2804 1 xa- X 2 - 9X -1 a2 1 15.24 (0,-1,0) (10,56,21)
2808 1 x 3 - 9X- 2 a2 1 20.31 (-1,-9,3) (-1,-4,2)
2836 1 X 3 +X2 - 9X -7 a2 1 9.692 (10,0,-1) (-17,0,2)
2857 1 x 3 + x 2 - 1ox - 11 a2 1 4.870 (-1,-1,0) (-3,-1,0)
2917 1 X 3 + X 2 - 13X - 20 a2 1 11.93 (3,1,0) (13,6,-1)
2920 2 X 3 + X 2 - 16X - 20 (a2 + a)/2 1 17.94 (-9,-8,4) (-4,-3,1)
2941 1 X 3 - X 2 - 17 X - 20 a2 1 13.72 {3,2,0) (-17,-4,1)
2981 1 x3 + x 2 - 11x - 14 a2 1 14.63 (3,1,0) (15,10,-1)
2993 1 x 3 + x 2 - 12x - 11 a2 1 7.514 (-3,-1,0) (3,2,0)
3021 1 X 3 +X2 - 9X -6 a2 1 17.40 (-5,-4,2) (5,9,2)
3028 1 X 3 -lOX- 6 a2 1 20.35 (-1,-1,1) (5,13,4)
3124 2 x 3 -16X -12 a 2/2 1 19.56 (-5,-1,1) (115,121,-68)
3132 2 x 3 -18X- 20 a 2/2 1 22.49 (7,2,0) (7,7,2)

524 B Some Useful Tables

B.5 Table of Elliptic Curves

In the table below we give a table of all modular elliptic curves defined over Q
with conductor N less than or equal to 44 (up to isomorphism). Recall that
according to the Taniyama-Weil Conjecture 7.3.8, all elliptic curves defined
over Q are modular.

To every elliptic curve is attached quite a large set of invariants. We refer to
[Cre] for details and a complete table. In the following table, we only give the
minimal WeierstraB equation of the curve, its rank and its torsion subgroup.
The rank is always equal to 0 except in the two cases N = 37 (curve A1) and
N = 43 for which it is equal to 1, and in these two cases a generator of the
group E(Q) is the point with coordinates (0, 0). The canonical height of this
point, computed using Algorithms 7.5.6 and 7.5.7 is equal to 0.0255557041 ...
for N = 37 and to 0.0314082535. . . for N = 43.

The Kodaira types and the constants cp can be found by using Tate's
Algorithm 7.5.1. The coefficients ap of the L-series can be computed using
Algorithm 7.4.12 or simply by adding Legendre symbols if p is small. The
periods can be computed using Algorithm 7.4.7. In the limit of the present
table the Tate-Shafarevitch group ill is always trivial.

We follow the notations of [Cre]. We give from left to right: the conductor
N of the curve E, an identifying label of the curve among those having the
same conductor. This label is of the form letter-number. The letter (A or B)
denotes the isogeny class, and the number is the ordinal number of the curve
in its isogeny class. Curves numbered 1 are the strong Weil curves (see [Sill).
The next 5 columns contain the coefficients a1. a2 , a3, a4 and a6. The last two
columns contain the rank rand the torsion subgroup T of E(Q) expressed as
t if T ~ ZjtZ and as t1 x t2 if T ~ Z/t1Z x Z/t2Z.

N a1 a2 a a a4 a6 r T

11 A1 0 -1 1 -10 -20 0 5
11 A2 0 -1 1 -7820 -263580 0 1
11 A3 0 -1 1 0 0 0 5
14 A1 1 0 1 4 -6 0 6
14 A2 1 0 1 -36 -70 0 6
14 A3 1 0 1 -171 -874 0 2
14 A4 1 0 1 -1 0 0 6
14 A5 1 0 1 -2731 -55146 0 2
14 A6 1 0 1 -11 12 0 6
15 A1 1 1 1 -10 -10 0 2x4
15 A2 1 1 1 -135 -660 0 2x2
15 A3 1 1 1 -5 2 0 2x4
15 A4 1 1 1 35 -28 0 8
15 A5 1 1 1 -2160 -39540 0 2

B.5 Table of Elliptic Curves 525

15 A6 1 1 1 -110 -880 0 2
15 A7 1 1 1 -80 242 0 4
15 A8 1 1 1 0 0 0 4
17 A1 1 -1 1 -1 -14 0 4
17 A2 1 -1 1 -6 -4 0 2x2
17 A3 1 -1 1 -91 -310 0 2
17 A4 1 -1 1 -1 0 0 4
19 A1 0 1 1 -9 -15 0 3
19 A2 0 1 1 -769 -8470 0 1
19 A3 0 1 1 1 0 0 3
20 A1 0 1 0 4 4 0 6
20 A2 0 1 0 -1 0 0 6
20 A3 0 1 0 -36 -140 0 2
20 A4 0 1 0 -41 -116 0 2
21 A1 1 0 0 -4 -1 0 2x4
21 A2 1 0 0 -49 -136 0 2x2
21 A3 1 0 0 -39 90 0 8
21 A4 1 0 0 1 0 0 4
21 A5 1 0 0 -784 -8515 0 2
21 A6 1 0 0 -34 -217 0 2
24 A1 0 -1 0 -4 4 0 2x4
24 A2 0 -1 0 -24 -36 0 2x2
24 A3 0 -1 0 -64 220 0 4
24 A4 0 -1 0 1 0 0 4
24 A5 0 -1 0 -384 -2772 0 2
24 A6 0 -1 0 16 -180 0 2
26 A1 1 0 1 -5 -8 0 3
26 A2 1 0 1 -460 -3830 0 1
26 A3 1 0 1 0 0 0 3
26 B1 1 -1 1 -3 3 0 7
26 B2 1 -1 1 -213 -1257 0 1
27 A1 0 0 1 0 -7 0 3
27 A2 0 0 1 -270 -1708 0 1
27 A3 0 0 1 0 0 0 3
27 A4 0 0 1 -30 63 0 3
30 A1 1 0 1 1 2 0 6
30 A2 1 0 1 -19 26 0 2x6
30 A3 1 0 1 -14 -64 0 2
30 A4 1 0 1 -69 -194 0 6
30 A5 1 0 1 -289 1862 0 6
30 A6 1 0 1 -334 -2368 0 2x2
30 A7 1 0 1 -5334 -150368 0 2
30 A8 1 0 1 -454 -544 0 2
32 A1 0 0 0 4 0 0 4
32 A2 0 0 0 -1 0 0 2x2

526 B Some Useful Tables

32 A3 0 0 0 -11 -14 0 2
32 A4 0 0 0 -11 14 0 4
33 A1 1 1 0 -11 0 0 2x2
33 A2 1 1 0 -6 -9 0 2
33 A3 1 1 0 -146 621 0 4
33 A4 1 1 0 44 55 0 2
34 A1 1 0 0 -3 1 0 6
34 A2 1 0 0 -43 105 0 6
34 A3 1 0 0 -103 -411 0 2
34 A4 1 0 0 -113 -329 0 2
35 A1 0 1 1 9 1 0 3
35 A2 0 1 1 -131 -650 0 1
35 A3 0 1 1 -1 0 0 3
36 A1 0 0 0 0 1 0 6
36 A2 0 0 0 -15 22 0 6
36 A3 0 0 0 0 -27 0 2
36 A4 0 0 0 -135 -594 0 2
37 A1 0 0 1 -1 0 1 1
37 B1 0 1 1 -23 -50 0 3
37 B2 0 1 1 -1873 -31833 0 1
37 B3 0 1 1 -3 1 0 3
38 A1 1 0 1 9 90 0 3
38 A2 1 0 1 -86 -2456 0 1
38 A3 1 0 1 -16 22 0 3
38 B1 1 1 1 0 1 0 5
38 B2 1 1 1 -70 -279 0 1
39 A1 1 1 0 -4 -5 0 2x2
39 A2 1 1 0 -69 -252 0 2
39 A3 1 1 0 -19 22 0 4
39 A4 1 1 0 1 0 0 2
40 A1 0 0 0 -7 -6 0 2x2
40 A2 0 0 0 -107 -426 0 2
40 A3 0 0 0 -:~ 1 0 4
40 A4 0 0 0 13 -34 0 4
42 A1 1 1 1 -4 5 0 8
42 A2 1 1 1 -84 261 0 2x4
42 A3 1 1 1 -104 101 0 2x2
42 A4 1 1 1 -1344 18405 0 4
42 A5 1 1 1 -914 -10915 0 2
42 A6 1 1 1 386 1277 0 2
43 A1 0 1 1 0 0 1 1
44 A1 0 1 0 3 -1 0 3
44 A2 0 1 0 -77 -289 0 1

Bibliography

Essential Introductory Books.

[Bo-Sh] Z.I. Borevitch and I.R. Shafarevitch, Number Theory, Academic Press, New York,
1966.

A classic must which gives a fairly advanced introduction to algebraic number theory, with
applications for example to Fermat's last theorem. Contains numerous exercises.

[GCL] K. Geddes, S. Czapor and G. Labahn, Algorithms for Computer Algebm, Kluwer
Academic Publishers, Boston, Dordrecht, London, 1992.

This book contains a very detailed description of the basic algorithms used for handling
fundamental mathematical objects such as polynomials, power series, rational functions,
as well as more sophisticated algorithms such as polynomial factorization, Grabner bases
computation and symbolic integration. The algorithms are those which have been imple
mented in the Maple system (see Appendix A). This is required reading for anyone wanting
to understand the inner workings of a computer algebra system.

[H-W] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, (5-th
ed.), Oxford University Press, Oxford, 1979.

This is another classic must for a beginning introduction to number theory. The presentation
is very clear and simple, and the book contains all basic essential material. Avoid reading
parts like the "elementary" proof of the prime number theorem. Proofs based on complex
function theory, while requiring deeper concepts, are much more enlightening.

[Ire-Ros] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory,
(2nd ed.), Graduate texts in Math. 84, Springer-Verlag, New York, 1982.

A remarkable introductory book on the more analytic and computational parts of algebraic
number theory, with numerous concrete examples and exercises. This book can be read
profitably jointly with the present book for a deeper understanding of several subjects
such as Gauss and Jacobi sums and related identities (used in Chapter 9), quadratic and
cyclotomic fields (Chapters 5 and 9), zeta functions of varieties (Chapter 7), etc A
must.

[Knul] D.E. Knuth, The Art of Computer Progmmming, Vol. 1: Fundamental Algorithms,
(2nd ed.), Addison-Wesley, Reading, Mass., 1973.

This is the first volume of the "bible" of computer science. Although not specifically targeted
to number theory, this volume introduces a large number of fundamental concepts and
techniques (mathematical or otherwise) which are of constant use to anyone implementing
algorithms. The style of writing is crystal clear, and I have copied the style of presentation
of algorithms from Knuth. A must.

[Knu2] D.E. Knuth, The Art of Computer Progmmming, Vol. 8: Seminumerical Algo-
rithms, (2nd ed.), Addison-Wesley, Reading, Mass., 1981.

This is the second volume of the "bible" of computer science. Essentially all the contents
of chapter 4 of Knuth's book is basic to computational number theory, and as stated in
the preface, some parts of chapters 1 and 3 of the present book have been merely adapted
from Knuth. The section on factoring and primality testing is of course outdated. The book
contains also a huge number of fascinating exercises, with solutions. An absolute must.

528 Bibliography

[Knu3) D.E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching,
Addison-Wesley, Reading, Mass., 1973.

This is the third volume of the "bible" of computer science. The description of searching
and sorting methods (in particular heapsort and quicksort) as well as hashing techniques
can be used for number-theoretic applications.

One can find at the URL
http://www-cs-faculty.stanford.edu/-knuth/index.html

nearly 350 pages of corrections and additions to [Knu1], [Knu2] and [Knu3], absolutely
necessary for those having the older editions of Knuth's books. This has been incorporat
ed in a new 3 volume set which came out in 1996.

[Langl) S. Lang, Algebra, (2nd ed.), Addison-Wesley, Reading, Mass., 1984.

This book is quite abstract in nature and in fact contains little concrete examples. On the
other hand one can find the statements and proofs of most of the basic algebraic results
needed in number theory.

[Mar) D.A. Marcus, Number Fields, Springer-Verlag, New York, 1977.

An excellent textbook on algebraic number theory with numerous very concrete examples,
not far from the spirit of this book, although much Jess algorithmic in nature.

[Rie) H. Riesel, Prime Numbers and Computer Methods for Factorization, Birkhii.user,
Boston, 1985.

An excellent elementary text on prime number theory and algorithms for primality testing
and factoring. As in the present book the algorithms are ready to implement, and in fact
implementations of many of them are given in Pascal. The subject matter of the algorithmic
part overlaps in a large part with chapters 8 to 10 of this book.

[Sam) P. Samuel, Theorie algebrique des nombres, Hermann, Paris, 1971.

Another excellent textbook on algebraic number theory. Gives the basic proofs and results
in a very nice and concise manner.

[Ser) J.-P. Serre, A Course in Arithmetic, Springer-Verlag, New York, 1973.

A very nice little book which contains an introduction to some basic number-theoretic ob
jects such as Z/nZ, finite fields, quadratic forms, modular forms, etc A must, although
further reading is necessary in almost all cases. The original was published in French in
1970.

Other Books and Volumes.

[AHU) A. Aho, J. Hopcroft and J. Ullman, The Design and Analysis of Computer Algo-
rithms, Addison-Wesley, Reading, Mass., 1974.

This book discusses many issues related to basic computer algorithms and their complexity.
In particular, it discusses in detail the notion of NP-complete problems, and has chapters
on integer and polynomial arithmetic, on the LU P decomposition of matrices and on the
Fast Fourier transform.

[Bac-Sha) E. Bach and J. Shallit, Algorithmic Number Theory, Vol. 1: Efficient Algo
rithms, MIT Press, Cambridge, Mass, 1996.

Studies in detail the complexity of number-theoretic algorithms.

[Bor-Bor) J. Borwein and P. Borwein, Pi and the AGM, Canadian Math. Soc. Series, John
Wiley and Sons, New York, 1987.

A marvelous book containing a wealth of formulas in the style of Ramanujan, including
formulas coming from complex multiplication for computing 1r to great accuracy.

[Bue) D. Buell, Binary Quadratic Forms: Classical Theory and Modem Computations,
Springer-Verlag, New York, 1990.

A nice and easy to read book on the theory of binary quadratic forms, which expands on
some of the subjects treated in Chapter 5.

Bibliography 529

[Cas] J. Cassels, Lectures on elliptic curves, Cambridge Univ. Press, 1991.

An excellent small introductory book to the subject of elliptic curves containing a wealth
of deeper subjects not so easily accessible otherwise. The viewpoint is different from Silver
man's, and hence is a highly recommended complementary reading.

[Cas-Fro] J. Cassels and A. Frohlich, Algebroic number theory, Academic Press, London
and New York, 1967.

This book has been one of the main reference books for a generation of algebraic num
ber theorists and is still the standard book to read before more sophisticated books like
Shimura's.

[Cohn] H. Cohn, A Classical Introduction to Algebroic Numbers and Class Fields, Univer-
sitext, Springer-Verlag, New York, 1978.

A highly recommended concrete introduction to algebraic number theory and class field
theory, with a large number of detailed examples.

[Con-Slo] J. Conway and N. Sloane, Sphere Packings, Lattices and Groups, Grundlehren
der math. Wiss. 290, Springer-Verlag, New York, 1988.

The bible on lattices and sphere packings. Everything you ever wanted to know and much
more, including a large number of tables. An irreplaceable tool for research in the Geometry
of Numbers.

[Cox] D. Cox, Primes of the Form x 2 + ny2 • Fermat, Class Field Theory and Complex
Multiplication, John Wiley and Sons, New York, 1989.

This is an excellent book on class field theory and complex multiplication. It is written in
a very concrete manner with many examples and exercises, and I recommend it highly.

[Cre] J. Cremona, Algorithms for Modular Elliptic Curves, Cambridge Univ. Press, 1992.

An extension of [LN476] to conductors less than 1000, and much more information. Also
many algorithms related to elliptic curves are listed, most of which are not given in this
book. A must on the subject.

[Dah-Bjo] G. Dahlquist and A. Bjork (translated by N. Anderson), Numerical Methods,
Prentice Hall, Englewood Cliffs, N.J., 1974.

A basic reference book on numerical algorithms, especially for linear algebra.

[Del-Fad] B.N. Delone and D.K. Fadeev, The Theory of Irrotionalities of the Third Degree,
Trans. Math. Mon. 10, A.M.S., Providence, R.I., 1964.

Although quite old, this book contains a wealth of theoretical and algorithmic information
on cubic fields.

[Gol-Van] G. Golub and C. Van Loan, Matrix Computations, (2nd ed.), Johns Hopkins
Univ. Press, Baltimore and London, 1989.

An excellent comprehensive introduction to basic techniques of numerical analysis used in
linear algebra.

[Hus] D. Husemoller, Elliptic Curves, Graduate texts in Math. 111, Springer-Verlag, New
York, 1987.

Simpler than Silverman's book, this gives a good introduction to elliptic curves.

[Kap] I. Kaplansky, Commutative Rings, Allyn and Bacon, Boston, 1970.

A very nicely written little book on abstract algebra.

[Kob] N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Graduate texts in
Math. 97, Springer-Verlag, New York, 1984.

This nice book gives the necessary tools for obtaining the complete solution of the congruent
number problem modulo a weak form of the Birch-Swinnerton Dyer conjecture. In passing,
a lot of very concrete material on elliptic curves and modular forms is covered.

[Lang2] S. Lang, Algebroic Number Theory, Addison-Wesley, Reading, Mass., 1970.

An advanced abstract introduction to the subject.

530 Bibliography

[Lang3] S. Lang, Elliptic Functions, Addison Wesley, Reading, Mass., 1973.

A nice introductory book on elliptic functions and elliptic curves.

[Lang4] S. Lang, Introduction to Modular Forms, Springer-Verlag, Berlin, Heidelberg, New
York, 1976.

A nice introductory book on modular forms.

[LN476] B. Birch and W. Kuyk (eds.), Modular Forms in one Variable IV, LN in Math.
476, Springer-Verlag, Berlin, Heidelberg, 1975.

A fundamental book of tables and algorithms on elliptic curves, containing in particular a
detailed description of all elliptic curves of conductor less than or equal to 200. A must on
the subject.

[MCC] H.W. Lenstra and R. Tijdeman (eds.), Computational Methods in Number Theory,
Math. Centre tracts 154/155, Math. Centrum Amsterdam, 1982.

A very nice two volume collection on computational number theory, covering many different
topics.

[Nau-Qui] P. Naudin and C. Quitte, Algorithmique Algebrique, Masson, Paris, 1992.

A very nice and leisurely introduction to computational algebra (in French) with many
detailed algorithms and a complete chapter devoted to the use of the Fast Fourier Transform
in computer algebra.

[Ogg] A. Ogg, Modular Forms and Dirichlet Series, Benjamin, 1969.

A nice little introductory book on modular forms, containing in particular a detailed proof
of Weil's Theorem 7.3. 7.

[PPWZ] A. Petho, M. Pohst, H. Williams and H. G. Zimmer (eds.), Computational Number
Theory, Walter de Gruyter, 1991.

Similar to [MCC] but very up to date and more oriented towards algebraic number theory.
Contains very important contributions which are referenced separately here.

[Poh] M. Pohst (ed.), Algorithmic Methods in Algebra and Number Theory, Academic
Press, 1987.

A special volume of the Journal of Symbolic Computation devoted to computational number
theory, and containing a number of important individual contributions which are referenced
separately here.

[Poh-Zas] M. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge
Univ. Press, 1989.

The reference book on algorithmic algebraic number theory. Contains detailed descriptions
of numerous algorithms for solving the fundamental tasks of algebraic number theory in the
general number field case. The notation is sometimes heavy, and direct computer implemen
tation of the algorithms is not always easy, but the wealth of information is considerable.
A must for further reading on the subject.

[Poh5] M. Pohst, Computational Algebraic Number Theory, DMV Seminar 21, Birkhauser,
Boston, 1993.

Writeup of a course given by the author in 1990. This can be considered as an update to
parts of [Poh-Zas].

[PFTV] W. Press, B. Flannery, S. Teukolsky and W. Vetterling, Numerical Recipes in C,
(2nd ed.), Cambridge University Press, Cambridge, 1988.

The algorithms presented in this book are essentially unrelated to number theory, but
this is a basic reference book for implementing algorithms in numerical analysis, and in
particular for number theory, polynomial root finding and linear algebra over JR. A must for
implementing numerical analysis-related algorithms.

Bibliography 531

[Sha) H. Williams (ed.), Math. Comp 48(January) (1987).

A special volume of Mathematics of Computation dedicated to D. Shanks. Contains a large
number of important individual contributions.

[Shi) G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Iwa-
nami Shoten and Princeton Univ. Press, Princeton, 1971.

This book is one of the great classics of advanced number theory, in particular about class
fields, elliptic curves and modular forms. It contains a great wealth of information, and
even though it is quite old, it is still essentially up to date and still a basic reference book.
Beware however that the mathematical sophistication is high. A must for people wanting
to know more about class fields, complex multiplication and modular forms at a high level.

[Sil) J. Silverman, The Arithmetic of Elliptic Curves, Graduate texts in Math. 106,
Springer-Verlag, New York, 1986.

This excellent book has now become the reference book on elliptic curves, and a large part
is of very advanced level. It is excellently written, contains numerous exercises and is a great
pleasure to study. A must for further study of elliptic curves.

[Sil3) J. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Graduate texts
in Math. 151, Springer-Verlag, New York, 1994.

The long awaited sequel to [Sil).

[Was) L. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Math. 83,
Springer-Verlag, New York, 1982.

An excellent advanced introduction to algebraic number theory, with many concrete exam
ples.

[W-W) E. Whittaker and G. Watson, A Course of Modern Analysis, (4th ed.), Cambridge
Univ. Press, 1927.

Still the reference book on practical use of complex analysis. The chapters on elliptic func
tions and theta functions are of special interest to number theorists.

[Zag) D. Zagier, The Analytic Theory of Modular Forms, in preparation.

A thorough introduction to the analytic theory of modular forms, including a number of
advanced topics. Very clear exposition. A must on the subject (when it comes out).

[Zim) H. Zimmer, Computational Problems, Methods and Results in Algebmic Number
Theory, LN in Math. 262, Springer-Verlag, Berlin, Heidelberg, 1972.

A very thorough list of commented bibliographic references on computational number theory
prior to 1971.

Papers and other references

[Adl) L. Adleman, Factoring numbers using singular integers, Proc. 18th Annual ACM
Symp. on Theory of Computing (1991), 64-71.

[Adl-Hua) L. Adleman and M. Huang, Primality testing and Abelian varieties over finite
fields, LN in Math 1512, Springer-Verlag, Berlin, Heidelberg, 1992.

[APR) L. Adleman, C. Pomerance and R. Rumely, On distinguishing prime numbers from
composite numbers, Ann. of Math. 117 (1983), 173-206.

[AGP) R. Alford, A. Granville and C. Pomerance, There are infinitely many Carmichael
numbers, Ann. of Math. 139 (1994), 703-722.

[Ang) I. Angell, A table of complex cubic fields, Bull. London Math. Soc. 5 (1973), 37-38.
[Arn) F. Arnault, The Rabin-Miller primality test: composite numbers which pass it, Math.

Comp. 64 (1995), 335-361.
[ARW) S. Arno, M. Robinson and F. Wheeler, Imaginary qu.admtic fields with small odd

class number (to appear).
[Atk1) 0. Atkin, Composition of binary quadmtic forms, manuscript (1990).

532 Bibliography

[Atk2] 0. Atkin, The number of points on an elliptic curve modulo a prime, manuscript
(1991).

[Atk-Mor] 0. Atkin and F. Morain, Elliptic curves and primality proving, Math. Comp.
61 (1993), 29-68.

[Ayo] R. Ayoub, An Introduction to the Analytic Theory of Numbers, Mathematical sur
veys 10, A.M.S., 1963.

[Bach] E. Bach, Explicit bounds for primality testing and related problems, Math. Comp.
55 (1990), 355-380.

[Bar] E. Bareiss, Sylvester's identity and multistep integer-preserving Gaussian elimina
tion, Math. Comp. 22 (1968), 565-578.

[BeMaOl] A.-M. Berge, J. Martinet and M. Olivier, The computation of sextic fields with
a quadratic subfield, Math. Comp. 54 (1990), 869-884.

[Ber] E. Berlekamp, Factoring polynomials over large finite fields, Math. Comp. 24 (1970),
713-735.

[Bir-SwD) B. Birch and H.P.F. Swinnerton-Dyer, Notes on elliptic curves I, J. Reine
Angew. Math. 212 (1963), 7-25; II, ibid. 218 (1965), 79-108.

[BFHT] A. Borodin, R. Fagin, J. Hopcroft and M. Tompa, Decreasing the nesting depth
of expressions involving square roots, J. Symb. Comp. 1 (1985), 169-188.

[Bos] W. Bosma, Primality testing using elliptic curves, Report 85-12, Math. Instituut,
Univ. of Amsterdam (1985).

[Bos-Hul] W. Bosma and M.-P. van der Hulst, Primality proving with cyclotomy, thesis,
Univ. of Amsterdam, 1990.

[Bra] G. Bradley, Algorithms for Hermite and Smith normal form matrices and linear
Diophantine equations, Math. Comp. 25 (1971), 897-907.

[Brau] R. Brauer, On the Zeta-function of algebraic number fields I, Amer. J. Math. 69
(1947), 243-250; II, ibid. 72 (1950), 739-746.

[Bre1] R.P. Brent, Some integer factorization algorithms using elliptic curves, in Proc. 9th
Australian Computer science conference (1985).

[Bre2] R.P. Brent, An improved Monte-Carlo factorization algorithm, BIT 20 (1980), 176-
184.

[Bre3] R.P. Brent, The first occurence of large gaps between successive primes, Math.
Comp. 27 (1973), 959-963.

[BLSTW] J. Brillhart, D.H. Lehmer, J. Selfridge, B. Tuckerman and S. Wagstaff, Fac
torizations of bn ± 1, b = 2, 3, 5, 6, 7, 10, 11, 12, up to high powers, Contemporary
Mathematics 22, A.M.S., Providence, R.I., 1983.

[Bri-Mor] J. Brillhart and M. Morrison, A method of factoring and the factorization of
F1, Math. Comp. 29 (1975), 183-205.

[BLS] J. Brillhart, D.H. Lehmer and J. Selfridge, New primality criteria and factorizations
of 2m± 1, Math. Comp. 29 (1975), 620-647.

[BCSJ S. Brlek, P. Casteran and R. Strandh, On addition schemes, TAPSOFT 1991, LN
in Comp. Sci. 494, 1991, pp. 379-393.

[deBru] N. G. de Bruijn, The asymptotic behavior of a function occurring in the theory of
primes, J. Indian Math. Soc. (N. S.) 15 (1951), 25-32.

[Bucl] J. Buchmann, A generalization of Voronoi's unit algorithm I and II, J. Number
Theory 20 (1985), 177-209.

[Buc2] J. Buchmann, On the computation of units and class numbers by a generalization
of Lagrange's algorithm, J. Number Theory 26 (1987), 8-30.

[Buc3) J. Buchmann, On the period length of the generalized Lagrange algorithm, J. Num
ber Theory 26 (1987), 31-37.

(Buc4) J. Buchmann, Zur Komplexitiit der Berechnung von Einheiten und Klassenzahlen
algebraischer Zahlkorper, Habilitationsschrift, University of Dusseldorf, 1988.

(Buc-Diil) J. Buchmann and S. Diillmann, A probabilistic class group and regulator algo
rithm and its implementation, in (PPWZ), 1991, pp. 53-72.

(Buc-Ford) J. Buchmann and D. Ford, On the computation of totally real quartic fields of
small discriminant, Math. Comp. 52 (1989), 161-174.

Bibliography 533

[BFP] J. Buchmann, D. Ford and M. Pohst, Enumeration of quartic fields of small dis
criminant, Math. Comp. 61 (1993), 873-879.

[Buc-Len] J. Buchmann and H.W. Lenstra, Computing maximal orders and factoring over
Zp, preprint.

[Buc-Len2] J. Buchmann and H.W. Lenstra, Approximating rings of integers in number
fields, J. Th. des Nombres Bordeaux (Serie 2) 6 (1994), 221-260.

[Buc-Pet] J. Buchmann and A. Petho, On the computation of independent units in number
fields by Dirichlet's method, Math. Comp. 52 (1989), 149-159.

[Buc-Poh-Sch] J. Buchmann, M. Pohst and J. Graf von Schmettow, On the computation
of unit groups and class groups of totally real quartic fields, Math. Comp. 53 (1989),
387-397.

[Buc-Thi-Wil] J. Buchmann, C. Thiel and H. Williams, Short representation of quadratic
integers, Computational Algebra and Number Theory, Mathematics and its Appli
cations, Kluwer, Dordrecht, 1995, pp. 159-185.

[Buc-Wil] J. Buchmann and H. Williams, On principal ideal testing in algebraic number
fields, J. Symb. Comp. 4 (1987), 11-19.

[Buel] D. Buell, The expectation of success using a Monte-Carlo factoring method-some
statistics on quadratic class numbers, Math. Comp. 43 (1984), 313-327.

[BGZ] J. Buhler, B. Gross and D. Zagier, On the conjecture of Birch and Swinnerton-Dyer
for an elliptic curve of rank 3, Math. Comp. 44 (1985), 473-481.

[BLP] J. Buhler, H. W. Lenstra and C. Pomerance, Factoring integers with the number
field sieve, [Len-Len2], 1993, pp. 50-94.

[But-McKay] G. Butler and J. McKay, The transitive groups of degree up to eleven,
Comm. in Algebra 11 (1983), 863-911.

[CEP] E.R. Canfield, P. Erdos and C. Pomerance, On a problem of Oppenheim concerning
"Factorisatio Numerorum", J. Number Theory 17 (1983), 1-28.

[Can-Zas] D. Cantor and H. Zassenhaus, A new algorithm for factoring polynomials over
finite fields, Math. Comp. 36 (1981), 587-592.

[Car] H. Carayol, Sur les representations 1-adiques associ€es aux formes modulaires de
Hilbert, Ann. Sci. E.N.S. 19 (1986), 409-468.

[Chu] D. and G. Chudnovsky, Sequences of numbers generated by addition in formal groups
and new primality and factorization tests, Adv. in Appl. Math. 7 (1986), 187-237.

[Coa-Wil] J. Coates and A. Wiles, On the conjecture of Birch and Swinnerton-Dyer, In
vent. Math. 39 (1977), 223-251.

[Cohl] H. Cohen, Variations sur un theme de Siegel et Heeke, Acta Arith. 30 (1976),
63-93.

[Coh2] H. Cohen, Formes modulaires a une et deux variables, Thesis, Univ. de Bordeaux
I, 1976.

[Coh3] P. Cohen, On the coefficients of the transformation polynomials for the elliptic
modular function, Math. Proc. Cambridge Phil. Soc. 95 (1984), 389-402.

[Coh-Diaz] H. Cohen and F. Diaz y Diaz, A polynomial reduction algorithm, Sem. Th.
Nombres Bordeaux (Serie 2) 3 (1991), 351-360.

[CohDiOl] H. Cohen, F. Diaz y Diaz and M. Olivier, Calculs de nombres de classes et de
regulateurs de corps quadratiques en temps sous-exponentiel, Seminaire de Theorie
des Nombres Paris 1990-91 (1993), 35-46.

[Coh-Lenl] H. Cohen and H.W. Lenstra, Heuristics on class groups of number fields,
Number Theory, Noordwijkerhout 1983, LN in Math. 1068, Springer-Verlag, 1984,
pp. 33-62.

[Coh-Len2] H. Cohen and H.W. Lenstra, Primality testing and Jacobi sums, Math. Comp.
42 (1984), 297-330.

[Coh-Len3] H. Cohen and A.K. Lenstra, Implementation of a new primality test, Math.
Comp. 48 (1987), 103-121.

[Cob-Marl] H. Cohen and J. Martinet, Class groups of number fields: numerical heuris
tics, Math. Comp. 48 (1987), 123-137.

534 Bibliography

[Coh-Mar2] H. Cohen and J. Martinet, Etude heuristique des groupes de classes des corps
de nombres, J. Reine Angew. Math. 404 (1990), 39-76.

[Coh-Mar3] H. Cohen and J. Martinet, Heuristics on class groups: some good primes are
not too good, Math. Comp. 63 (1994), 329-334.

[Col] G. Collins, The calculation of multivariate polynomial resultants, JACM 18 (1971),
515-532.

[Cop1] D. Coppersmith, Solving linear equations over GF(2), RC 16997, IBM Research,
T.J. Watson research center (1991).

[Cop2] D. Coppersmith, Solving homogeneous linear equations over GF(2) via block
Wiedemann algorithm, Math. Comp. 62 (1994), 333-350.

[Del] P. Deligne, La conjecture de Wei! I, Pub!. Math. IHES 43 (1974), 273-307.
[Deu] Deuring, Die Klassenkorper der komplexen Multiplication, Enzyklopadie der math

ematischen Wissenschaften 12 (Book 10, Part II), Teubner, Stuttgart, 1958.
[Diaz] F. Diaz y Diaz, A table of totally real quintic number fields, Math. Comp. 56 (1991),

801-808 and Sl-Sl2.
[DKT] P. Domich, R. Kannan and L. Trotter, Hermite normal form computation using

modulo determinant arithmetic, Math. Oper. Research 12 (1987), 5(}-59.
[Duk] W. Duke, Hyperbolic distribution functions and half-integral weight Maass forms,

Invent. Math. 92 (1988), 73-90.
[Duv] D. Duval, Diverses questions relatives au calculformel avec des nombres algebriques,

Thesis, Univ. of Grenoble, 1987.
[Eic1] Y. Eichenlaub, Methodes de calcul des groupes de Galois sur IQ, Memoire DEA,

1990.
[Eic2] M. Eichler, On the class number of imaginary quadratic fields and the sums of

divisors of natural numbers, J. Indian Math. Soc. 19 (1955), 153-180.
[Enn-Tur1] V. Ennola and R. Turunen, On totally real cubic fields, Math. Comp. 44

(1985)' 495-518.
[Enn-Tur2] V. Ennola and R. Turunen, On cyclic cubic fields, Math. Comp. 45 (1985),

585-589.
[Fa!] G. Faltings, Endlichkeitssiitze fur abelsche Varietiiten iiber Zahlkorpem, Invent. Math.

73 (1983), 349-366.
[Ferl] S. Fermigier, Un exemple de courbe elliptique definie sur IQl de rang ~ 19, C.R.

Acad. Sci. Paris 315 (1992), 719-722.
[Fer2] S. Fermigier, in preparation.
[Fin-Poh] U. Fincke and M. Pohst, Improved methods for calculating vectors of short length

in a lattice, including a complexity analysis, Math. Comp. 44 (1985), 463-471.
[Ford1] D. Ford, On the computation of the maximal order in a Dedekind domain, Thesis,

Ohio State Univ., 1978.
[Ford2] D. Ford, The construction of maximal orders over a Dedekind domain, J. Symb.

Comp. 4 (1987), 69--75.
[Ford3] D. Ford, Enumeration of totally complex quartic fields of small discriminant, in

[PPWZ], 1991, pp. 129-138.
[Fri] E. Friedman, Analytic formulas for the regulator of a number field, Invent. math. 98

(1989), 599-622.
[Gir] K. Girstmair, On invariant polynomials and their application in field theory, Math.

Comp. 48 (1987), 781-797.
[Go!] D. Goldfeld, The class number of quadratic fields and the conjectures of Birch and

Swinnerton-Dyer, Ann. Sc. Norm. Super. Pisa 3 (1976), 623-663.
[Gol-Kil] S. Goldwasser and J. Kilian, Almost all primes can be quickly certified, Proc.

18th Annual ACM Symp. on Theory of Computing (1986), 316-329.
[Gras] M.-N. Gras, Methodes et algorithmes pour le calcul numerique du nombre de classes

et des unites des extensions cubiques cycliques de IQ, J. Reine Angew. Math. 277
(1975), 89-116.

[Gro-Zag1] B. Gross and D. Zagier, On singular moduli, J. Reine Angew. Math. 355
(1985), 191-220.

Bibliography 535

[Gro-Zag2] B. Gross and D. Zagier, Heegner points and derivatives of L-series, Invent.
Math. 84 (1986), 225-320.

[GKZ] B. Gross, W. Kohnen and D. Zagier, Heegner points and derivatives of L-series II,
Math. Ann. 278 (1987), 497-562.

[Haf-McCur1] J. Hafner and K. McCurley, A rigorous subexponential algorithm for com
putation of class groups, Journal American Math. Soc. 2 (1989), 837-850.

[Haf-McCur2] J. Hafner and K. McCurley, Asymptotically fast triangularization of ma
trices over rings, SIAM J. Comput. 20 (1991), 1068-1083.

[Has] H. Hasse, Arithmetische Theorie der kubischen Zahlkiirper auf klassenkiirpertheore
tischer Grundlage, Math. Zeit. 31 (1930), 565-582; Math. Abhandlungen, Walter de
Gruyter, 1975, pp. 423-440.

[HJLS] J. Hastad, B. Just, J.C. Lagarias and C.P. Schnorr, Polynomial time algorithms for
finding integer relations among real numbers, Siam J. Comput. 18 (1989), 859-881.

[Her] 0. Hermann, Uber die Berechnung der Fouriercoefficienten der Funktion j(T), J.
Reine Angew. Math. 274/275 (1975), 187-195.

[Hiil] A. Hiilpke, in preparation.
[Hun] J. Hunter, The minimum discriminants of quintic fields, Proc. Glasgow Math. Ass.

3 (1957), 57--67.
[Kal-Yui] E. Kaltofen and N. Yui, Explicit construction of the Hilbert class fields of imagi

nary quadratic fields by integer lattice reduction, New York Number Theory Seminar
1989-1990, Springer-Verlag, 1991, pp. 15G-202.

[Kam] S. Kamienny, Torsion points on elliptic curves and q-coefficients of modular forms,
Invent. Math. 109 (1992), 221-229.

[Kan-Bac] R. Kannan and A. Bachem, Polynomial algorithms for computing the Smith
and Hermite normal form of an integer matrix, Siam J. Comput. 8 (1979), 499-507.

[Kol1] V.A. Kolyvagin, Finiteness of E(IQ) and III(E/IQ) for a subclass of Weil curves,
Izv. Akad. Nauk. SSSR 52 (1988), 522-540.

[Kol2] V.A. Kolyvagin, Euler systems, Progress in Math. 87, Grothendieck Festschrift II,
Birkhiiuser, Boston, 1991, pp. 435-483.

[LaM] B. LaMacchia, Basis reduction algorithms and subset sum problems, Thesis, MIT
Artificial Intelligence Lab., 1991.

[LaM-Odl] B. LaMacchia and A.M. Odlyzko, Solving large sparse linear systems over
finite fields, Advances in cryptology: Crypto 90, A. Menezes and S. Vanstone (eds.),
LN in Comp. Sci. 537, Springer-Verlag, 1991, pp. 109-133.

[Las] M. Laska, An algorithm for finding a minimal Weierstrafl equation for an elliptic
curve, Math. Comp. 38 (1982), 257-260.

[Leh1] S. Lehman, Factoring large integers, Math. Comp. 28 (1974), 637--646.
[Leh2] D.H. Lehmer, On Fermat's quotient, base two, Math. Comp. 36 (1981), 289-290.
[Len1] H.W. Lenstra, On the computation of regulators and class numbers of quadratic

fields, Lond. Math. Soc. Lect. Note Ser. 56 (1982), 123-150.
[Len2] H.W. Lenstra, Divisors in residue classes, Math. Comp. 42 (1984), 331-334.
[Len3] H.W. Lenstra, Factoring integers with elliptic curves, Ann. of Math. 126 (1987),

649--673.
[Len4] A.K. Lenstra, Polynomial time algorithms for the factorization of polynomials, dis

sertation, Univ. of Amsterdam, 1984.
[Len-Len1] A.K. Lenstra and H.W. Lenstra, Algorithms in number theory, Handbook of

theoretical computer science, J. Van Leeuwen, A. Mayer, M. Nivat, M. Patterson and
D. Perrin (eds.), Elsevier, Amsterdam, 1990, pp. 673-715.

[Len-Len2] A.K. Lenstra and H.W. Lenstra (eds.), The development of the number field
sieve, LN in Math. 1554, Springer-Verlag, Berlin, Heidelberg, New-York, 1993.

[LLL] A.K. Lenstra, H.W. Lenstra and L. Lovasz, Factoring polynomials with rational
coefficients, Math. Ann. 261 (1982), 515-534.

[LLMP] A.K. Lenstra, H.W. Lenstra, M.S. Manasse and J.M. Pollard, The Number Field
Sieve, in [Len-Len2], 1993, pp. 11-42.

536 Bibliography

[Llo-Quer) P. Llorente and J. Quer, On the 3-Sylow subgroup of the class group of quadratic
fields, Math. Comp. 50 (1988), 321-333.

[Mah) K. Mahler, On a class of non-linear functional equations connected with modular
functions, J. Austral. Math. Soc. 22A (1976), 65--118.

[Mart) J. Martinet, Methodes geometriques dans Ia recherche des petits discriminants,
Progress in Math 59, 1985, pp. 147-179.

[Maz) B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978), 129--162.
[McCur) K. McCurley, Cryptographic key distribution and computation in class groups,

Proceedings of NATO ASI Number Theory and applications, Kluwer Academic Pub
lishers, 1989, pp. 459--479.

[Mer) L. Merel, Barnes pour Ia torsion des courbes elliptiques sur les corps de nombres,
Invent. Math. 124 (1996), 437-449.

[Mes1) J.-F. Mestre, Construction d'une courbe elliptique de rang ~ 12, C.R. Acad. Sci.
Paris 295 (1982), 643-644.

[Mes2) J.-F. Mestre, Formules explicites et minorations de conducteurs de varietes algebri
ques, Compositio Math. 58 (1986), 209--232.

[MesS) J.-F. Mestre, Courbes elliptiques de rang ~ 12 sur IQ(t), C.R. Acad. Sci. Paris
(1991), 171-174.

[Mes4) J.-F. Mestre, Un exemple de courbe elliptique sur 1Q de rang~ 15, C.R. Acad. Sci.
Paris 314 (1992), 453--455.

[Mes5) J.-F. Mestre, private communication.
[Mig) M. Mignotte, An inequality about factors of polynomials, Math. Comp. 28 (1974),

1153-1157.
[Mil) G. Miller, Riemann's hypothesis and tests for primality, J. Comput. and System Sc.

13 (1976), 30G--317.
[Mol-Wil) R. Mollin and H. Williams, Computation of the class number of a real quadratic

field, Utilitas Math. 41 (1992), 259-308.
[Mon-Nar) J. Montes and E. Nart, On a theorem of Ore, Journal of Algebra 146 (1992),

318--339.
[Mon1) P. Montgomery, Modular multiplication without trial division, Math. Comp. 44

(1985), 519-521.
[Mon2) P. Montgomery, Speeding the Pollard and elliptic curve methods of factorization,

Math. Comp. 48 (1987), 243-264.
[Morl) F. Morain, Resolution d'equations de petit degre modulo de grands nombres pre

miers, Rapport de recherche INRIA 1085 (1989).
[Mor2) F. Morain, Courbes elliptiques et tests de primalite, Thesis, Univ. Claude Bernard,

Lyon, 1990.
[Mor-Nic) F. Morain and J.-L. Nicolas, On Cornacchia's algorithm for solving the Dio

phantine equation u2 + dv2 = m (to appear).
[Nag) K. Nagao, An example of elliptic curve over IQ(T) with rank~ 13, Proc. Japan Acad.

70 (1994), 152-153.
[Nag-Kou) K. Nagao and T. Kouya, An example of elliptic curve over 1Q with rank~ 21,

Proc. Japan Acad. 70 (1994), 104-105.
[Nic) J.-L. Nicolas, Etre ou ne pas etre un carre, Dopo le Parole, (a collection of not always

serious papers for A. K. Lenstra's doctorate), Amsterdam, 1984.
[Odl) A.M. Odlyzko, Bounds for discriminants and related estimates for class numbers,

regulators and zeros of zeta functions: a survey of recent results, Sem. Th. des Nom
bres Bordeaux (Serie 2) 2 (1991), 117-141.

[Oes) J. Oesterle, Nombre de classes des corps quadratiques imaginaires, in Seminaire Bour
baki 1983-84, Asterisque 121-122, Soc. Math. de France, 1985, pp. 309-323.

[Oii1) M. Olivier, Corps sextiques primitifs, Ann. Institut Fourier 40 (1990), 757-767.
[Oii2) M. Olivier, The computation of sextic fields with a cubic subfield and no quadratic

subfield, Math. Comp. 58 (1992), 419--432.
[OU3) M. Olivier, Tables de corps sextiques contenant un sous-corps quadratique (I), Sem.

Th. des Nombres Bordeaux (Serie 2) 1 (1989), 205--250.

Bibliography 537

[Oli4] M. Olivier, Corps sextiques contenant un corps quadratique (II), Sem. Th. des Nom
bres Bordeaux (Serie 2) 2 (1990), 49-102.

[Oli5] M. Olivier, Corps sextiques contenant un corps cubique (III), Sem. Th. des Nombres
Bordeaux (Serie 2) 3 (1991), 201-245.

[Oli6] M. Olivier, Corps sextiques primitifs (IV}, Sem. Th. des Nombres Bordeaux (Serie
2) 3 (1991), 381-404.

[Ore] 6. Ore, Newtonsche Polygone in der Theorie der algebraischen Korper, Math. Ann.
99 (1928), 84-117.

[Poh1] M. Pohst, On the computation of number fields of small discriminants including the
minimum discriminants of sixth degree fields, J. Number Theory 14 (1982), 99-117.

[Poh2] M. Pohst, A modification of the LLL-algorithm, J. Symb. Comp. 4 (1987), 123-128.
[Poh3] M. Pohst, On computing isomorphisms of equation orders, Math. Comp. 48 (1987),

309-314.
[Poh4] M. Pohst, A note on index divisors, in [PPWZ], 1991, pp. 173-182.
[Poh-Wei-Zas] M. Pohst, P. Weiler and H. Zassenhaus, On effective computation of fun

damental units I and II, Math. Comp. 38 (1982), 275-329.
[Poh-Zas1] M. Pohst and H. Zassenhaus, Uber die Berechnung von Klassenzahlen und

Klassengruppen algebraische Zahlkorper, J. Reine Angew. Math. 361 (1985), 50-72.
[Poll] J. Pollard, Theorems on factorization and primality testing, Proc. Cambridge Phil.

Soc. 76 (1974), 521-528.
[Pol2] J. Pollard, A Monte-Carlo method for factorization, BIT 15 (1975), 331-334.
[Porn] C. Pomerance, Analysis and comparison of some integer factoring algorithms, in

[MCC], 1983, pp. 89-139.
[Quer] J. Quer, Corps quadratiques de 3-rang 6 et courbes elliptiques de rang 12, C.R.

Acad. Sci. Paris 305 (1987), 1215-1218.
[Rab] M. Rabin, Probabilistic algorithms for testing primality, J. Number Theory 12

(1980), 128-138.
[Rib] K. Ribet, On modular representations of Gal(Q/IQ) arising from modular forms,

Invent. Math. 100 (1990), 431-476.
[Rub] K. Rubin, Tate-Shafarevitch groups and £-functions of elliptic curves with complex

multiplication, Invent. Math. 93 (1987), 527-560.
[von Schm1] J. Grafv. Schmettow, Beitriige zur Klassengruppenberechnung, Dissertation,

Univ. Dusseldorf, 1991.
[von Schm2] J. Graf v. Schmettow, KANT- a tool for computations in algebraic number

fields, in [PPWZ], 1991, pp. 321-330.
[Schn] C.P. Schnorr, A more efficient algorithm for lattice basis reduction, J. Algorithms

9 (1988), 47--62.
[Schn-Euch] C.P. Schnorr and M. Euchner, Lattice basis reduction: Improved practical

algorithms and solving subset sum problems, Proc. of the FCT 1991, LN in Comp.
Sci. 529, Springer-Verlag, Berlin, Heidelberg, 1991, pp. 68-85.

[Schn-Len] C.P. Schnorr and H.W Lenstra, A Monte-Carlo factoring algorithm with linear
storage, Math. Comp. 43 (1984), 289-312.

[Schon] A. Schonhage, Probabilistic computation of integer polynomial GCD, J. Algorithms
9 (1988), 365-371.

[Scho] R. Schoof, Elliptic curves over finite fields and the computation of square roots mod
p, Math. Comp. 43 (1985), 483-494.

[Scho2] R. Schoof, Counting points of elliptic curves over finite fields, J. Th. des Nombres
Bordeaux (Serie 2) 7 (1995), 219-254.

(SPD] A. Schwarz, M. Pohst and F. Diaz y Diaz, A table of quintic number fields, Math.
Comp. 63 (1994), 361-376.

(Sel-Wun] J. Selfridge and M. Wunderlich, An efficient algorithm for testing large numbers
for primality, Proc. Fourth Manitoba Conf. Numer. Math. (1974), 109-120.

(Ser1] J.-P. Serre, Surles representations modulaires de degre 2 de Gal(Q/IQ), Duke Math.
J. 54 (1987), 179-230.

538 Bibliography

[Seyl] M. Seysen, A probabilistic factorization algorithm with quadratic forms of negative
discriminants, Math. Comp. 48 (1987}, 757-780.

[Sey2] M. Seysen, Simultaneous reduction of a lattice basis and its reciprocal basis, Com
binatorica 13 (1993}, 363-376.

[Shal] D. Shanks, Class number, a theory of factorization, and genera, Proc. Symp. in
Pure Maths. 20, A.M.S., Providence, R.I., 1969, pp. 415-440.

[Sha2] D. Shanks, On Gauss and composition I and II, Number theory and applications,
R. Mollin (ed.), Kluwer Academic Publishers, 1989, pp. 163-204.

[Sha3] D. Shanks, The infrastructure of a real quadratic field and its applications, Proc.
1972 Number theory conference, Boulder (1972}, 217-224.

[Sha4] D. Shanks, Incredible identities, Fibon. Quart. 12 (1974}.
[Sha-Wil] D. Shanks and H. Williams, A note on class number one in pure cubic fields,

Math. Comp. 33 (1979}, 1317-1320.
[Shil] G. Shimura, On the zeta-function of an Abelian variety with complex multiplication,

Ann. of Math. 94 (1971}, 504-533.
[Shi2] G. Shimura, On elliptic curves with complex multiplication as factors of the Jaco

bians of modular function fields, Nagoya Math. J. 43 (1971}, 199-208.
[Sie] C.L. Siegel, Uber die Classenzahl quadratischer Zahlkorper, Acta Arith. 1 (1935},

83-86.
[Sill] R. Silverman, The multiple polynomial quadratic sieve, Math. Comp. 48 (1987},

329-340.
[Sil2] J. Silverman, Computing heights on elliptic curves, Math. Comp. 51 (1988}, 339-358.
[Soi] L. Soicher, The computation of Galois groups, Thesis, Concordia Univ., Montreal,

1981.
[Soi-McKay] L. Soicher and J. McKay, Computing Galois groups over the rationals, J.

Number Theory 20 (1985}, 273-281.
[Sol-Str] R. Solovay and V. Strassen, A fast Monte-Carlo test for primality, SIAM J.

Comput. 6 (1977}, 84-85; erratum ibid. 7 (1978}, p. 118.
[Star] H. Stark, Class numbers of complex quadratic fields, in Modular Functions of one

variable I, LN in Math. 320, Springer-Verlag, Berlin, Heidelberg, 1973, pp. 153-17 4.
[Stau] R.P. Stauduhar, The determination of Galois groups, Math. Comp. 27 (1973}, 981-

996.
[Tay-Wil] R. Taylor and A. Wiles, Ring-theoretic properties of certain Heeke algebras,

Ann. of Math. 141 (1995}, 553-572.
[Ten-Wil] M. Tennenhouse and H. Williams, A note on class number one in certain real

quadratic and pure cubic fields, Math. Comp. 46 (1986}, 333-336.
[Tra] B. Trager, Algebraic factoring and rational function integration, Proceedings of SYM

SAC '76 (1976}, 219-226.
[Val] B. Vallee, Une approche g~om~trique des algorithmes de reduction en petite dimen

sion, Thesis, Univ. of Caen, 1986.
[Wag] C. Wagner, Class number 5, 6 and 7, Math. Comp. 65 (1996}, 785-800.
[de Weg] B. de Weger, Algorithms for Diophantine equations, Dissertation, Centrum voor

Wiskunde en Informatica, Amsterdam, 1988.
[Weil] A. Wei!, Number of solutions of equations in finite fields, Bull. A.M.S. 55 (1949},

497-508.
[Wie] D. Wiedemann, Solving sparse linear equations over finite fields, IEEE Trans. Infor

mation Theory 32 (1986}, 54--62.
[Wiles] A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. 141

(1995}, 443-551.
[Wil-Jud) H. Williams and J. Judd, Some algorithms for prime testing using generalized

Lehmer functions, Math. Comp. 30 (1976}, 157-172 and 867-886.
[Wil-Zar) H. Williams and C. Zarnke, Some algorithms for solving a cubic congruence

modulo p, Utilitas Math. 6 (1974}, 285-306.
[Zagl) D. Zagier, On the values at negative integers of the zeta-function of a real quadratic

field, Ens. Math. 22 {1976}, 55-95.

Bibliography 539

[Zag2] D. Zagier, Modular forms whose Fourier coefficients involve zeta-functions of qua
dratic fields, Modular functions of one variable VI, LN in Math. 627, Springer-Verlag,
Berlin, Heidelberg, New-York, 1977, pp. 105-169.

[Zag3] D. Zagier, Large integral points on elliptic curves, Math. Comp. 48 (1987), 425-436.
[Ziml] R. Zimmert, /deale kleiner Norm in /dealklassen und eine Regulatorabschiitzung,

Invent. Math. 62 (1981), 367-380.
[Zip] R. Zippel, Simplification of expressions involving radicals, J. Symb. Comp. 1 (1985),

189-210.

Index

A

Abelian group, 66
addition chain, 11
addition theorem, 370
additive degeneracy, 373
adeles, 188
adjoint matrix, 54
Adleman, L., 445, 471, 501
affine subspace, 486
algebraic integer, 153
algebraic number, 153
algorithm, 1
ambiguous cycle, 270, 434
ambiguous form, 255, 433, 434
Antwerp IV, 367
approximation theorem, 192
Archimedean valuations, 187
Artinian rings, 303
Atkin, 0., 32, 247, 252, 445, 471, 481
Axiom, 2, 507

B

baby step giant step, 240
Bach, E., 34, 254
bad reduction, 373
Bareiss, E., 52
Berge, A.-M., 175, 329
Berlekamp, E., 130
Bernardi, D., 305, 382, 394
Bignum, 2, 509
binary quadratic form, 225
Birch and Swinnerton-Dyer conjecture, 393
Birch, B., 392
birthday paradox, 480
bit operations, 1
Bosma, W., 466
Brauer-Siegel theorem, 216
Brent, R., 420, 427, 429, 441
Buchmann, J., 288, 303, 315, 352
Buhler, J., 501

c
Canfield, E., 481
canonical height, 411
canonical height pairing, 411
Cantor, D., 127
Carayol, H, 390
Carmichael numbers, 421
Cartan decomposition, 107
Cartan, E., 107
ceiling, 7
CFRAC, 477
character, 448
characteristic polynomial, 53, 162
Chinese remainder theorem, 19
Cholesky decomposition, 104
Chudnovsky, D. and G., 490
Cl(K), 208
class group, 207, 228
class number, 208
codifferent, 205
coefficient explosion, 5, 112, 114
Cohen, H., 168, 254, 288, 296, 352, 445
Collins, G., 118
column echelon form, 59
column vector, 7
comatrix, 54
compact representation of units, 279, 285
complementary error function, 238
completely split prime, 197
complex multiplication, 381
compositeness test, 419
composition, 243
conductor, 224
conductor-discriminant formula, 168
congruent number, 376
conjugate vector representation, 161
conjugates, 154
content, 116
continued fraction, 21, 265, 271, 426, 478
coordinate recurrence method, 254
Coppersmith, D., 480, 504
coprime elements, 116

Index

coprime ideals, 182
Couveignes, J.-M., 405
Cremona, J., 394, 417
cycle of reduced forms, 262
cyclotomic field, 446

D

Davenport, H., 462
de Bruijn, N., 481
de Weger, B., 93
Dedekind domain, 185
Dedekind zeta function, 214
Dedekind's eta-function, 416
Dedekind, R., 305
deep insertion, 91
degenerate elliptic curve, 373
degree

of a prime ideal, 197
Deligne, P., 387
denominator of a module, 74
Derive, 2, 507
determinant, 52
determinant of a lattice, 80
Diaz y Diaz, F., 168, 254, 288, 313, 352, 363
different, 205
Dirichlet character, 448
Dirichlet, P., 211
discriminant

of a number field, 166
of a polynomial, 119
of a quadratic number, 384
of an n-element set, 165

distance function, 279
distinct degree factorization, 126
divisibility (in a ring), 114
division polynomials, 405
double large prime variation, 494
doubly periodic function, 368
dual isogeny, 380
Duke, W, 298
Diillmann, S., 252, 254
Dwork, B., 388

E

early abort strategy, 259, 480
ECM, 487
Eichler, M., 236
Eisenstein polynomial, 315
elementary divisor, 76
elementary operations, 48
elimination, 48
Elkies, N., 405, 471
elliptic curve over K, 369

elliptic function, 368
elliptic integral, 367, 397
elliptic logarithm, 398
enlarging procedure, 304
equivalence

of quadratic forms, 225
Erdos, P., 481
Euchner, M., 91
Euclid's algorithm, 12
Euclidean domain, 114
Euler product, 250
expected running time, 2
exponential time, 2

F

factor base, 260, 478
fast multiplication methods, 3
Fermat number, 424, 495

541

Fermat's last theorem, 151, 208, 392, 459
Fermat's little theorem, 421, 439, 450
Fermigier, S., 394
field membership problem, 179
Fincke, U., 105
floor, 7
Floyd, R., 427
FLT, 151, 208
fractional ideal, 183
Frobenius homomorphism, 309
functional equation

for elliptic curves, 390
for number fields, 215
for quadratic fields, 238, 266, 267
sign of, 391

fundamental discriminant, 224
fundamental domain, 368
fundamental units, 210

G

ro(N), 390
Galois closure, 157
Galois group, 157, 322
GAP, 508
Gauss sum, 448
Gauss's lemma, 116
Gauss, K.F., 52
Gaussian elimination, 48
Gaussian pivoting, 48
Gaussian reduction, 23
GCD, 7, 115
Generalized Riemann Hypothesis, 34
genus field, 474
Germain, S., 151
Gmp, 2, 509

542

Goldfeld, D., 216, 234
Goldwasser, S., 445
Gram matrix, 80
Gram-Schmidt orthogonalization, 82
greatest common divisor, 7, 12, 115
GRH, 34
Gross, B., 216, 234, 385, 394
group ring, 446

H

h(K), 208
H(N), 234
'H., 378
Hadamard's inequality, 51, 82
Hafner, J., 69, 70, 77, 252
hashing, 299
Hasse, H., 373, 462
Hasse-Wei! £-function, 389
height, 411
Hensel's lemma, 137
Hermite normal form, 67

of a Z-module, 67
of a matrix, 67

Hermite's constant, 334
Hermite, C., 198
Hessenberg form, 55
Hilbert class field, 384, 416
Hilbert class polynomial, 415
HNF, 67
HNF-basis, 189
Huang, M. D., 445, 471
Hurwitz class number, 234

I

I(K), 208
ideal, 182

class, 208
equivalence, 207
intersection, 207, 219
inversion, 204
product, 190
representation, 188, 190
two-element representation, 192
valuation, 201

idele class group, 209
ideles, 188
image of a matrix, 58
index, 167
inert prime, 197
inessential discriminantal divisor, 199, 364
infinite prime, 198
infrastructure method, 279
integral basis, 166

integral domain, 114
integral ideal, 183
integral kernel, 74, 98
integrally closed, 185

Index

intelligent Gaussian elimination, 480
intelligent Hermite reduction, 254
inverse image, 60
irreducible element, 114
irreducible polynomial, 124
isogeny, 379
isomorphism problem, 179
Iwasawa decomposition, 83

J

j(T), 378
j(E), 377
Jacobi sum, 448
Jacobi symbol, 28

K

Kant, 508
Karatsuba, A., 3
kernel of a matrix, 57
Kilian, J., 445
Knuth, D., 298
Kodaira type, 407
Kolyvagin, V., 394
Kouya, T., 394
Kraitchik, M., 478
Kronecker symbol, 28
Kronecker, L., 211

L

l(P), 109
£-function, 266, 388, 389
£-series, 237
L(x), 254
LaMacchia, B., 89, 254
large prime variation, 258, 480
Laska, M., 409
lattice, 23, 80

determinant of, 80
Legendre symbol, 27

generalized, 219
Legendre, A., 478
Lehman, S., 425
Lehmer, D. H., 13, 423, 443, 478
Lenstra, A. K., 84, 141, 494, 495
Lenstra, H. W., 84, 141, 184, 201, 296, 298,
303,315,320,419,442,445,466,481,484,
503

Leopoldt's conjecture, 216
lg, 7
Lisp, 2

Index

LLL algorithm, 87
integral, 94

LLL-reduced basis, 85
logarithmic embedding, 210
Louboutin, S., 301
Lovasz, L., 84, 141
Lucas, E., 443
Lucas-Lehmer test, 443
LUP form of a matrix, 50

M

Macsyma, 2, 507
Magma, 2, 508
Manasse, M., 494, 495
Manin's constant, 392
Manin, Y., 392
Maple, 2, 507
Martinet, J., 217, 329
Mathematica, 2, 507
matrix representation, 160
maximal ideal, 184
maximal order, 186, 303
Mazur, B., 375
McCurley, K., 69, 70, 77, 252, 288
Mersenne number, 424, 443, 495
Mestre, J.-F., 394, 418
Mignotte, M., 134
Miller, G., 421
minimal polynomial, 153
Minkowski, H., 198
MLLL algorithm, 96
mod, 7
modular equation, 386
modular forms, 234, 390
modular functions, 379
modular invariant, 377
modular multiplication, 4
module, 188

denominator, 188
modules

product of, 189
Montgomery, P., 5, 429, 489, 492
Morain, F., 445, 471, 474
Mordell, L., 375
MPQS, 490

self-initializing, 494
multi-precision, 2

N

Nagao, K., 394
narrow class group, 228
Neumann, W., 102
Newton polygon, 313

Newton's formulas, 163
Newton's method, 38, 45
NFS, 495

543

non-split multiplicative degeneracy, 373
norm

of a fractional ideal, 187
of an element, 162
of an ideal, 182

normal closure, 157
NP-complete, 103
NUCOMP, 247
NUDUPL, 247
number field, 154

primitive, 335

0

Odlyzko, A., 254, 465
Oesterle, J., 295
Olivier, M., 171, 175, 254, 288, 313, 329,

333, 352, 513
order, 181
order of a group element, 24
orthogonal basis, 82
orthogonal matrix, 81

p

p(z), 368
p-adic factorisation, 363
p-adic regulator, 300
p-adic valuation, 186
Pari, 2, 508
partial quotients, 22
period lattice, 368, 398
permutation matrix, 50
PID, 183
pivot, 48, 65
place

finite, 187
infinite, 187
of a number field, 187

p-maximal, 303
Pohst, M., 96, 304
Pollard, J., 426, 439, 495
Polya-Vinogradov inequality, 301, 476
polynomial time, 2
Pomerance, C., 445, 465, 481, 490, 501
powering algorithms, 8, 42, 466
Powers, R., 478
powersmooth number, 439
p-radical, 303
primality certificate, 4 70
prime element, 114
prime form, 252

544

prime ideal, 184
prime ideal theorem, 215
prime number theorem, 215
primitive algebraic integer, 274
primitive algebraic number, 497
primitive element, 155
primitive element problem, 181
primitive ideal, 225
primitive part, 116
primitive polynomial, 116
primitive quadratic form, 225
primitive root, 24
principal ideal, 183, 287
principal ideal domain, 114, 183
principal minors, 53
probabilistic algorithm, 2
product of ideals, 182
projective geometry over Z/NZ, 485
pseudo-division, 112
pseudo-prime, 422

Q

ij, 153
q, 378
QS, 490
quadratic form, 79, 225

positive definite, 80
quadratic reciprocity law, 27
Quer, J., 297

R

2k-representation, 10
Rabin, M., 421
ramification index, 197
ramified prime, 197
rank, 66
rank of an elliptic curve, 375
Reduce, 2, 507
reduced basis, 84
reduced ideal, 300
reduced quadratic form, 231, 262
reduction of quadratic forms, 243
regular primes, 209
regular representation, 160
regulator, 211

elliptic, 411
relative extensions, 329
residual degree, 197
resolvent polynomial, 323
resultant, 119
llibet, K., 392
roots of unity, 209
row vector, 7

Rubin, K., 394
Rumely, R., 445

s

Schonhage, A., 3, 150
Schnorr, C., 91, 481
Schoof, R., 32, 405, 469
separable extension, 166
Serre, J.-P., 392

Index

Shanks, D., 32, 241, 247, 251, 279, 288, 433,
434

Shimura, G., 392
side exit, 65
signature, 155
Silverman, J., 367
Simath, 508
singular number, 501
size of a polynomial, 168
small prime variation, 494
Smith normal form, 67, 75
smooth number, 439
SNF, 67, 75
Solovay, R., 421
SPAR, 481
sparse matrix, 254, 480
sparse representation, 109
special subset, 486
split multiplicative degeneracy, 373
splitting, 419
square form, 434
square root

in Z, 38
modulo p, 31

standard fundamental domain, 231
standard representation, 159
Stark, H., 382
Stickelberger, L., 167, 198
Strassen, V., 3, 421
strong pseudo-prime, 422
Sturm, J., 155
sub-exponential algorithm, 2
sub-resultant algorithm, 118, 122
subfield problem, 174
supersingular, 382
supplement, 61
Swinnerton-Dyer, H., 392
Sylvester's matrix, 120
symmetric function, 162

Index

T

Taniyama, T., 391
Taniyama-Weil conjecture, 391
Tate, J., 407
Tate-Shafarevitch group, 393
Taylor, R., 392
titanic numbers, 471
torsion subgroup, 66, 375
totally complex, 155
totally real, 155
trace, 162
transitive, 323
trial division, 419
triple Jacobi sum, 460
Tschirnhausen transformation, 324
two element representation, 193

u
Ubasic, 2, 508
UFD, 114
Unique factorization domain, 114
unit, 114, 209
unramified prime, 197
upper half-plane, 378

v
Vp(I), 186

Vallee, B., 84
valuation, 201
van der Hulst, P., 466

w

Weber class polynomial, 417
Weber functions, 474
WeierstraB equation, 370

minimal, 370, 406
Wei! conjectures, 387
Wei! curve, 392
Wei!, A., 375, 387, 391
Wiedemann, D., 254
Wieferich congruence, 459
Wiles, A., 392
Williams, H., 279, 285
Winter, D., 445
Wolstenholme's theorem, 476

z
Z-module, 66
Zagier, D., 216, 234, 236, 385, 394
Zassenhaus, H., 127, 304
zeta function

of a number field, 214
of a variety, 388

'llK, 154

~· 153

545

