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Scope of Mathematics
•	 	Awareness	on		the	scope	of	higher	educational	opportunities;	courses,	

institutions	and	required	competitive	examinations.
•	 Possible	financial	assistance	to	help	students	climb	academic	ladder.

III

•	 Overview	of	the	unit
•	 Give	clarity	on	the	intended	learning	outcomes	of	the	unit.

Books for Reference •	 List	of	relevant	books	for	further	reading.

Glossary •	 	Frequently	used	Mathematical	terms	have	been	given	with	their	
Tamil	equivalents.

Scope for 
Higher Order Thinking

•	 	To	motivate	students	aspiring	to	take	up	competitive	examinations	such	
as	JEE,	KVPY,	Math	olympiad,	etc.,	the	concepts	and	questions	based	on	
Higher	Order	Thinking	are	incorporated	in	the	content	of	this	book.

•	 To	increase	the	span	of	attention	of	concepts
•	 To	visualize	the	concepts	for	strengthening	and	understanding
•	 To	link	concepts	related	to	one	unit	with	other	units.
•	 	To	utilize	the	digital	skills	in	classroom	learning	and	providing	students	

experimental	learning.

ICT

Summary •	 	Recapitulation	of	the	salient	points	of	each	chapter	for	recalling	the	
concepts	learnt.

Evaluation •	 	Assessing	student’s	understanding	of	concepts	and	get	them	acquainted	
with	solving	exercise	problems.

•	 Visual	representation	of	concepts	with	illustrations
•	 Videos,	animations,	and	tutorials.	

 Learning Objectives:

Mathematics Learning
The correct way to learn is to understand the concepts throughly. Each chapter opens with an Introduction, 
Learning Objectives, Various Definitions, Theorems, Results and Illustrations.  These in turn are followed by 
solved examples and exercise problems which have been classified in to various types for quick and effective 
revision. One can develop the skill of solving mathematical problems only by doing them.  So the teacher's 
role is to teach the basic concepts and problems related to it and to scaffold students to try the other problems 
on their own.  Since the second year of Higher Secondary is considered to be the foundation for learning 
higher mathematics, the students must be given more attention to each and every concept mentioned in this 
book.

HOW TO USE THE BOOK
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E-book Assessment DIGI links

Lets	use	the	QR	code	in	the	text	books	!	How	?
•	Download	the	QR	code	scanner	from	the	Google	PlayStore/	Apple	App	Store	into	your	smartphone
•	Open	the	QR	code	scanner	application
•	Once	the	scanner	button	in	the	application	is	clicked,	camera	opens	and	then	bring	it	closer	to	the	QR	code	in	the	text	book.	
•	Once	the	camera	detects	the	QR	code,	a	url	appears	in	the	screen.Click	the	url	and	goto	the	content	page.
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“The greatest mathematicians, as Archimedes, Newton, and Gauss, 
always united theory and applications in equal measure.”

-Felix Klein

Chapter

1 Applications of Matrices and Determinants

1.1 Introduction
      Matrices are very important and indispensable in handling system 
of linear equations which arise as mathematical models of real-world 
problems. Mathematicians Gauss, Jordan, Cayley and Hamilton have 
developed the theory of matrices which has been used in investigating 
solutions of systems of linear equations. 
       In this chapter, we present some applications of matrices in 
solving system of linear equations. To be specific, we study four 
methods, namely (i) Matrix inversion method, (ii) Cramer’s rule   
(iii) Gaussian elimination method, and (iv) Rank method. Before knowing 
these methods, we introduce the following: (i) Inverse of a non-singular 
square matrix, (ii) Rank of a matrix, (iii) Elementary row and column 
transformations, and (iv) Consistency of system of  linear equations.

LEARNING OBJECTIVES

 Upon completion of this chapter, students will be able to 
 •	 Demonstrate  a few fundamental  tools for solving systems of linear equations:
  ̵ Adjoint of a square matrix
  ̵ Inverse of a non-singular matrix
  ̵ Elementary row and column operations
  ̵ Row-echelon form
  ̵ Rank of a matrix
 •	 Use row operations to find the inverse of a non-singular matrix
 •	 Illustrate the following techniques in solving system of linear equations by 
  ̵ Matrix inversion method
  ̵ Cramer’s rule
  ̵ Gaussian elimination method 
 •	 Test the consistency of system of non-homogeneous linear equations
 •	 Test for non-trivial solution of system of homogeneous linear equations

Carl Friedrich Gauss 
(1777-1855)  

German mathematician and 
physicist
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1.2 Inverse of a Non-Singular Square Matrix
 We recall that a square matrix is called a non-singular matrix if its determinant is not equal to 
zero  and a square matrix is called singular if its determinant is zero. We have already learnt about 
multiplication of a matrix by a scalar, addition of two matrices, and multiplication of two matrices. 
But a rule could not be formulated to perform division of a matrix by another matrix since a matrix is 
just an arrangement of numbers and has no numerical value. When we say that, a matrix A  is of order 
n,  we mean that A  is a square matrix having n  rows and n  columns. 

 In the case of a real number x ¹ 0, there exists a real number y
x

=







1 , called the inverse (or 

reciprocal) of x such that xy yx= =1.In the same line of thinking, when a matrix A  is given, we 
search for a matrix B  such that the products AB and BA  can be found and AB BA I= = ,  where I  is 
a unit matrix.

 In this section, we define the inverse of a non-singular square matrix and prove that a non-singular 
square matrix has a unique inverse. We will also study some of the properties of inverse matrix. For 
all these  activities, we need a matrix called the adjoint of a square matrix.  

1.2.1 Adjoint of a Square Matrix
 We recall the properties of the cofactors of the elements of a square matrix. Let A  be a square 

matrix of by order n  whose determinant is denoted A A or det ( ).Let aij be the element sitting at the 

intersection of the i th  row and j th column of A. Deleting the i th  row and j th column of A,  we obtain 

a submatrix of order ( ).n −1 The determinant of this submatrix is called minor of the element aij .  It 

is denoted by Mij .The product of Mij and ( )− +1 i j  is called cofactor of the element aij .  It is denoted 

by Aij .  Thus the cofactor of  aij  is A Mij
i j

ij== −− ++( ) .1
 An important property connecting the elements of a square matrix and their cofactors is that the 
sum of the products of the entries (elements) of a row and the corresponding cofactors of the elements 
of the same row is equal to the determinant of the matrix; and the sum of the products of the entries 
(elements) of a row and the corresponding cofactors of the elements of any other row is equal to  0. 
That is, 

a A a A a A
A i j

i ji j i j in jn1 1 2 2 0
++ ++ ++ ==

==
≠≠







   if  
      if  ,

where A  denotes the determinant of the square matrix A. Here A is read as  “determinant  of A ” and  

not as “ modulus of A ”.  Note that A  is just a real number and it can also be negative. For example, 

we have 
2 1 1
1 1 1
2 2 1

2 1 2 1 1 2 1 2 2 2 1 0 1= − − − + − = − + + = −( ) ( ) ( ) .

Definition 1.1
 Let A  be a square matrix of order n.Then  the matrix of cofactors of A  is defined as the 

matrix obtained by replacing each element aij  of A  with the corresponding cofactor Aij .  The 

adjoint matrix of A  is defined as the transpose of the matrix of cofactors of A. It is denoted by

adj A.
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Applications of Matrices and Determinants3

Note
 adj A is a square matrix of order n  and adj A A Mij

T i j
ij

T
==   == −− 

++( ) .1

 In particular,  adj A  of  a  square matrix of order 3  is given below:

             adj A
M M M
M M M
M M M

A AT

==
++ −− ++
−− ++ −−
++ −− ++

















==
11 12 13

21 22 23

31 32 33

11 112 13

21 22 23

31 32 33

11 21 31

12 22 32

13

A
A A A
A A A

A A A
A A A
A A

T
















==

223 33A

















.

   Theorem 1.1
 For every square matrix A  of order n , A A A A A In( ) ( ) .adj adj = =  

Proof 
 For simplicity, we prove the theorem for n = 3 only.

Consider A
a a a
a a a
a a a

=
















11 12 13

21 22 23

31 32 33

. Then, we get 

a A a A a A A a A a A a A a A a11 11 12 12 13 13 11 21 12 22 13 23 11 310+ + = + + = +, ,    112 32 13 33

21 11 22 12 23 13 21 21 22 22 23

0

0

A a A

a A a A a A a A a A a

+ =

+ + = + +

;

,   AA A a A a A a A

a A a A a A a
23 21 31 22 32 23 33

31 11 32 12 33 13

0

0

= + + =

+ + =

, ;

,

  

  331 21 32 22 33 23 31 31 32 32 33 330A a A a A a A a A a A A+ + = + + =, .   

By using the above equations, we get 

 A A( )adj =  
a a a
a a a
a a a

A A A
A A A
A

11 12 13

21 22 23

31 32 33

11 21 31

12 22 32

13















 AA A23 33

















 =  
A

A
A

A A I
0 0

0 0
0 0

1 0 0
0 1 0
0 0 1

3

















=
















=   … (1)

 ( )adjA A =
A A A
A A A
A A A

a a a
a a a
a

11 21 31

12 22 32

13 23 33

11 12 13

21 22 23

31















 aa a32 33

















 =  
A

A
A

A A I
0 0

0 0
0 0

1 0 0
0 1 0
0 0 1

3

















=
















= ,  … (2)

where I3   is the identity matrix of order 3. 
 So, by equations (1) and (2), we get  A A A A A I( ) ( ) .adj adj = = 3

Note
 If A  is a singular matrix of order n , then A = 0  and  so A A A A On( ) ( ) ,adj adj = =  where On   

denotes zero matrix of order n.
Example 1.1

 If A =
−

− −
−

















8 6 2
6 7 4

2 4 3
, verify that A A A A A I( ) ( ) | | .adj adj   = = 3

Solution

  We find that | |A  =  
8 6 2
6 7 4

2 4 3
8 21 16 6 18 8 2 24 14 40 60 20 0

−
− −

−
= − + − + + − = − + =( ) ( ) ( ) .
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By the definition of adjoint, we get 

                                       
adj A =

− − − + −
− − + − − − +

−

( ) ( ) ( )
( ) ( ) ( )
( )

21 16 18 8 24 14
18 8 24 4 32 12

24 14 −− − + −

















=














( ) ( )
.

32 12 56 36

5 10 10
10 20 20
10 20 20

T

So, we get 

  A A( )adj  =  

8 6 2
6 7 4

2 4 3

5 10 10
10 20 20
10 20 20

−
− −

−

































   =  

40 60 20 80 120 40 80 120 40
30 70 40 60 140 80 60 140 80

10

− + − + − +
− + − − + − − + −

− 440 30 20 80 60 20 80 60

0 0 0
0 0 0
0 0 0

0 3

+ − + − +

















=
















= =I A II3,

 Similarly, we get 

  ( )adj A A  =  

5 10 10
10 20 20
10 20 20

8 6 2
6 7 4

2 4 3

















−
− −

−

















   =  

40 60 20 30 70 40 10 40 30
80 120 40 60 140 80 20 80 60
80 120

− + − + − − +
− + − + − − +
− ++ − + − − +

















=
















= =
40 60 140 80 20 80 60

0 0 0
0 0 0
0 0 0

0 3I A II3.

  Hence,  A A( )adj  =  ( ) .adj A A A I= 3

1.2.2 Definition of inverse matrix of a square matrix 
 Now, we define the inverse of a square matrix.
Definition 1.2

 Let A  be a square matrix of order n. If there exists a square matrix B  of order n such that 

AB BA In= = ,  then the matrix B  is called an inverse of A.

  Theorem 1.2
 If a square matrix has an inverse, then it is unique. 
Proof
 Let A  be a square matrix order n  such that an inverse of A  exists. If possible, let there be two 

inverses B and C of A.Then, by definition, we have AB BA In= = and  AC CA In= = . 

 Using these equations, we get 

                                    C CI C AB CA B I B Bn n= = = = =( ) ( ) .  

 Hence the uniqueness follows. 
 Notation  The inverse of  an  A  is denoted by A−1.
Note 
 AA A A In

− −= =1 1 .
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Applications of Matrices and Determinants5

  Theorem 1.3
 Let A  be square matrix of order n.Then, A−1 exists if and only if A  is non-singular. 

Proof
 Suppose that A−1 exists. Then AA A A In

− −= =1 1 .

 By the product rule for determinants, we get 

 det( ) det( )det( ) det( )det( ) det( ) .AA A A A A In
− − −= = = =1 1 1 1 So, A A= ≠det( ) .0

 Hence A  is non-singular. 
 Conversely, suppose that A  is non-singular. 
 Then A ¹ 0. By Theorem 1.1, we get              

                                                   A A A A A In(adj ) (adj ) .  = =

 So, dividing by A , we get A
A

A
A

A A In
1 1adj adj 









 =









 = .

 Thus, we are able to find a matrix B
A

A=
1 adj  such that AB BA In= = .

 Hence, the inverse of A exists and it is given by  A
A

A−− ==1 1 adj .

Remark 
 The determinant of a singular matrix is 0 and so a singular matrix has no inverse. 

Example 1.2

 If A
a b
c d

=








 is non-singular, find A−1.

Solution

 We first find adj A.By definition, we get adj A
M M
M M

d c
b a

d b
c a

T T

=
+ −
− +









 =

−
−









 =

−
−











11 12

21 22

.

 Since A  is non-singular, A ad bc= − ≠ 0.

 As A
A

A− =1 1 adj ,  we get A
ad bc

d b
c a

− =
−

−
−











1 1 .

Example 1.3

 Find the inverse of the matrix  
2 1 3
5 3 1
3 2 3

−
−
−
















.

Solution

 Let A  =  
2 1 3
5 3 1
3 2 3

−
−
−

















 .  Then | | ( ) ( ) ( ) .A =
−

−
−

= + − + − = − ≠
2 1 3
5 3 1
3 2 3

2 7 12 3 1 1 0

Therefore, A−1  exists. Now, we get 
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 adj A  =  

+ −
−
−

+
−
−

−
−

+
−

−
−

−

+
−

−
−

+
−

−

 3 1
2 3

5 1
3 3

5 3
3 2

1 3
2 3

2 3
3 3

2 1
3 2

1 3
3 1

2 3
5 1

2 1
5 3























=
−
−

− −

















=
−

T

T7 12 1
9 15 1
10 17 1

7 9 10
12 115 17

1 1 1
−

− −
















.

 Hence, A−1  =  
1 1

1

7 9 10
12 15 17

1 1 1

7 9 10
12 15 1

| |
( )

( )A
Aadj =

−

−
−

− −

















=
− −
− − 77

1 1 1−

















 .

1.2.3 Properties of inverses of matrices
 We state and prove some theorems on non-singular matrices.

  Theorem 1.4
 If A  is non-singular, then

           (i) A
A

− =1 1

   
(ii)  A AT T( ) = ( )− −1 1  (iii) λ

λ
λA A( ) =− −1 11 ,   where   is a non-zero scalar.

Proof 
 Let A  be non-singular. Then A ¹ 0 and A−1 exists. By definition, 

                                        AA A A In
− −= =1 1 .    …(1)

 (i) By (1), we get AA A A In
− −= =1 1 .

  Using the product rule for determinants, we get  A A In
− = =1 1.

  Hence, A
A

− =1 1 .

 (ii) From (1), we get AA A A I
T T

n
T− −( ) = ( ) = ( )1 1 .

  Using the reversal law of transpose, we get A A A A I
T T T T

n
− −( ) = ( ) =1 1 .Hence 

A AT T( ) = ( )− −1 1 .

 (iii) Since λ  is a non-zero number, from (1), we get  λ
λ λ

λA A A A In( )





 = 






( ) =− −1 11 1 .

  So, λ
λ

A A( ) =− −1 11 .

  Theorem 1.5  (Left Cancellation Law)
       Let A B C, ,  and  be square matrices of order n. If A  is non-singular and AB AC= , then  B C= .

Proof
 Since A  is non-singular, A−1 exists and AA A A In

− −= =1 1 .  Taking AB AC= and pre-multiplying 

both sides by A−1,  we get A AB A AC− −=1 1( ) ( ). By using the associative property of matrix 

multiplication and property of inverse matrix, we get B C= .

Chapter 1 Matrices.indd   6 3/10/2019   8:10:32 PM



Applications of Matrices and Determinants7

  Theorem1.6  (Right Cancellation Law)

 Let A B C, ,  and  be square matrices of order n. If A  is non-singular and BA CA= , then  B C= .

Proof

 Since A  is non-singular, A−1 exists and AA A A In
− −= =1 1 .  Taking BA CA= and post-multiplying 

both sides by A−1,  we get ( ) ( ) .BA A CA A− −=1 1 By using the associative property of matrix multiplication 

and property of inverse matrix, we get B C= .

Note
 If A  is singular and AB AC=  or BA CA= , then B and C need not be equal. For instance, 

consider the following matrices:

A B C=








 =

−







 =

−









1 1
2 2

1 1
0 1

0 1
1 1

, . and 

 We note that  A AB AC B C= = ≠0 and  but ; .  

  Theorem 1.7  (Reversal Law for Inverses)

 If A  and B  are non-singular matrices of the same order, then the product AB is also non-singular 

and ( ) .AB B A− − −=1 1 1

Proof

 Assume that A  and B  are non-singular matrices of same order n.  Then, | | , ,A B¹ ¹0 0 both 

A B− −1 1 and exist and they are of order n.The products AB and B A− −1 1  can be found and they are also 

of  order n. Using the product rule for determinants, we get AB A B= ≠| || | .0 So, AB is non-singular 

and 
( )( ) ( ( )) ( ) ;

( )( ) (

AB B A A BB A AI A AA I
B A AB B

n n
− − − − − −

− −

= = = =

=

1 1 1 1 1 1

1 1 −− − − −= = =1 1 1 1( )) ( ) .A A B B I B B B In n

 Hence ( ) .AB B A− − −=1 1 1

 Theorem 1.8 (Law of Double Inverse)

 If A  is non-singular, then A−1  is also non-singular and ( ) .A A− − =1 1

Proof
 Assume that A  is non-singular. Then A A≠ −0 1,  and   exists. 

 Now A
A

A− −= ≠ ⇒1 11 0
 
is also non-singular, and AA A A I− −= =1 1 .

 Now, AA I AA I A A I− − − − − −= ⇒ ( ) = ⇒ ( ) =1 1 1 1 1 1 .  ... (1)

 Post-multiplying by A  on both sides of equation (1), we get A A− −( ) =1 1
.
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   Theorem 1.9
 If A  is a non-singular square matrix of order n ,  then

 (i) adj  adjA A
A

A( ) = ( ) =− −1 1 1  (ii) adj A A n= −| | 1

 (iii) adj adj  A A An( ) = −| | 2   (iv) adj adj   is a nonzero scalar( ) ( ),λ λ λA An= −1  

 (v) adj adj( ) ( )A A n= −1 2

  (vi) ( )adj adjA AT T= ( )  

Proof
 Since A  is a non-singular square matrix, we have A ¹ 0 and so, we get

 (i) A
A

A A A A
A

AA A A− − − − −−= ⇒ ⇒ = ( ) = (=1 1 1 1 111 1
| |

( ) ( )
| |

| |adj adj adj   )) =
−1 1

| |A
A .

  Replacing A  by A−1  in adj A A A= −1 , we get adj A A A
A

A− − − −( ) = ( ) =1 1 1 1 1 .

  Hence, we get adj  adjA A
A

A( ) = ( ) =− −1 1 1 .

 (ii)  A A A A A In( ) ( ) | |adj adj   = =  ⇒  det adj det adj  detA A A A A In( ) ( ) | |( ) = ( ) = ( )  

    ⇒  A A A A An nadj  adj = ⇒ = −| | | | 1 .

 (iii) For any non-singular matrix B of  order n,  we have B B B B B In( ) ( ) | | .adj adj   = =

  Put B A= adj .  Then, we get   adj adj adj  adj A A A In( ) ( ) =( ) | | .

  So, since adj A A n= −| | 1 , we get adj adj adj  A A A In
n( ) ( ) = −( ) | | .1

  Pre-multiplying both sides by A, we get A A A A A In
nadj adj adj  ( ) ( )( )( ) = ( )−| | .1

  Using the associative property of matrix multiplication, we get 

  A A A A A In
nadj adj adj  ( )( ) ( ) = ( )−| | 1 .

  Hence, we get A I A A An
n( ) ( )( ) = −adj adj  | | .1 That is, adj adj  A A An( ) = −| | .2

 (iv) Replacing A  by λA  in adj( )A A A= −1 ,  we get

  adj adj( ) ( ) ( )λ λ λ λ
λ

λ λA A A A A A A An n n= = = =− − − − −1 1 1 1 11 .

 (v) By (iii), we have adj adj A A An( ) = −| | 2 . So, by taking determinant on both sides, we get

   adj adj( ) | | | | | |( ) ( )A A A A A A An n n n n n= = ( ) = =− − − + −2 2 2 1 12 2

.

 (vi) Replacing A by AT  in A
A

A− =1 1
| |

adj  , we get A
A

AT
T

T( ) = ( )−1 1
| |

adj  and hence, we 

get  adj  adj A A A A A A A A
A

AT T T T T( ) = ( ) = ( ) = ( ) =










− − −| | | | | | | |
| |

1 1 1 1
TT

TA= ( )adj .
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Applications of Matrices and Determinants9

Note

 If  A  is a non-singular matrix of order 3, then, | |A ¹ 0 . By property (ii), we get adjA A=| |2  and 

so, adj A is positive. Then, we get A A= ± adj .

 So, we get A
A

A−− == ±±1 1
adj 

adj .

 Further, by the property (iii), we get A
A

A= ( )1 adj adj .

 Hence,  if A  is a non-singular matrix of order 3, then, we get A
A

A== ±± (( ))1
adj 

adj adj .

Example 1.4

 If A  is a non-singular matrix of odd order, prove that  adj A  is positive. 

Solution 

 Let A  be a non-singular matrix  of order 2 1 0 1 2m m+ =, , , , . where   Then, we get A ¹ 0  and, 

by property (ii), we have adj A A Am m= =+ −| | | | .( )2 1 1 2  

 Since | |A m2  is always positive, we get that adj A  is positive. 

Example 1.5

 Find a matrix A  if adj( ) .A =
−

−
















7 7 7
1 11 7

11 5 7

Solution

 First, we find adj( ) ( ) ( ) ( ) .A =
−

− = − − − − − − − = >
7 7 7
1 11 7

11 5 7
7 77 35 7 7 77 7 5 121 1764 0  

 So, we get

   A
A

A= ± ( )1
adj 

adj adj  =  ±
+ − − − − + − −
− + + + − −
+

1
1764

77 35 7 77 5 121
49 35 49 77 35 77
4

( ) ( ) ( )
( ) ( ) ( )
( 99 77 49 7 77 7+ − − + +















) ( ) ( )

T

 

    =  ±
−

−
−

















= ±
−

−
−









1
42

42 84 126
84 126 42

126 42 84

1 2 3
2 3 1
3 1 2

T








 .

Example 1.6

 If adj A =
−















1 2 2
1 1 2
2 2 1

,  find A−1 .
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Solution

   We compute  adj A  =  
−

=
1 2 2

1 1 2
2 2 1

9  .

   So, we get  A
A

A− = ±1 1
adj

adj
( )

( )  =  ±
−















= ±
−















1
9

1 2 2
1 1 2
2 2 1

1
3

1 2 2
1 1 2
2 2 1

 .

Example1.7

 If A  is symmetric, prove that then adj  A is also symmetric. 

Solution

 Suppose A  is symmetric. Then, A AT =  and so, by property  (vi), we get

 adj adj adj adj adj  is symmetric.A A A A AT T T( ) = ( ) ⇒ = ( ) ⇒

  Theorem 1.10 

 If A  and B  are any two non-singular square matrices of order n ,  then 

                                                          adj adj  adj( ) ( )( ).AB B A=

Proof
   Replacing A  by AB  in adj( )A  =  A A−1 , we get

   adj( )AB  =  | | ( ) | | | | adj( ) adj( )AB AB B B A A B A− − −= ( )( ) =1 1 1 .

Example 1.8

 Verify the property A AT T( ) = ( )− −1 1 with A =










2 9
1 7

.

Solution

   We get A  =   ( )( ) ( )( )2 7 9 1 14 9 5− = − = . So, A− =
−

−








 =

−

−



















1 1
5

7 9
1 2

7
5

9
5

1
5

2
5

 .

   Then, A
T−( )1  =  

7
5

1
5

9
5

2
5

1
5

7 1
9 2

−

−



















=
−

−








  . ... (1)

   We get  AT  =  
2 1
9 7









 . So AT = − =( )( ) ( )( )2 7 1 9 5 .

   Then,  AT( )−1
 =  1

5
7 1
9 2

−
−









  . ... (2)

 From  (1) and (2), we get A
T−( )1 =  AT( )−1

.  Thus, we have verified the given property.
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Example 1.9

 Verify ( )AB B A− − −=1 1 1 with A B=
−







 =

− −
−











0 3
1 4

2 3
0 1

, .

Solution

  We get AB  =  
0 3
1 4

2 3
0 1

0 0 0 3
2 0 3 4

0 3
2 7

−









− −
−









 =

+ +
− + − −









 =

− −










   AB( )−1  =  1
0 6

7 3
2 0

1
6

7 3
2 0( )+

− −







 =

− −







  … (1)

   A−1  =  1
0 3

4 3
1 0

1
3

4 3
1 0( )+ −









 =

−










   B−1  =  1
2 0

1 3
0 2

1
2

1 3
0 2( )−

−
−









 =

−
−











   B A− −1 1  =  1
2

1 3
0 2

1
3

4 3
1 0

1
6

7 3
2 0

−
−









 −









 =

− −







 . … (2)

 As the matrices in (1) and (2) are same, ( )AB B A− − −=1 1 1  is verified.

Example 1.10

 If A =










4 3
2 5

,  find x  and y  such that A xA yI O2
2 2+ + = . Hence, find  A−1.

Solution

   Since  A2  =  
4 3
2 5

4 3
2 5

22 27
18 31



















 =









  , 

   A xA yI2
2 20+ + =  ⇒  

22 27
18 31

4 3
2 5

1 0
0 1

0 0
0 0









 +









 +









 =









x y

    ⇒  
22 4 27 3

18 2 31 5
0 0
0 0

+ + +
+ + +









 =











x y x
x x y

 .

 So, we get 22 4 0 31 5 0 27 3 0+ + = + + = + =x y x y x, ,  and 18 2 0+ =x .

 Hence x = −9  and y =14.Then, we get A A I O2
2 29 14− + = .

 Post-multiplying this equation by A−1,  we get A I A O− + =−9 14 1
2.  Hence, we get   

 
A I A− = −( ) =









 −



















 =

−
−




1

2
1

14
9 1

14
9

1 0
0 1

4 3
2 5

1
14

5 3
2 4




 .
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1.2.4 Application of matrices to Geometry
 There is a special type of non-singular matrices which are widely used in applications of matrices 
to geometry. For simplicity, we consider two-dimensional analytical geometry. 

 Let O  be the origin, and x Ox'  and y Oy'  be the x -axis and  

y -axis. Let P  be a point in the plane whose coordinates are ( , )x y

with respect to the coordinate system.  Suppose that we rotate the 
x -axis and  y -axis about the origin, through an angle θ  as shown 

in the figure. Let X OX'  and Y OY'  be the new X -axis and new 

Y -axis. Let ( , )X Y  be the new set of coordinates of  P  with 

respect to the new coordinate system. Referring to the Fig.1.1,  
we get

 x  =  OL ON LN X QT X Y= − = − = −cos cos sinθ θ θ ,

 y  =  PL PT TL QN PT X Y= + = + = +sin cosθ θ .

 These equations provide transformation of  one coordinate system into another coordinate system. 
The above two equations can be written in the matrix form

 
x
y









  =  

cos sin
sin cos

θ θ
θ θ

−



















X
Y

 . 

 Let W  =  
cos sin
sin cos

θ θ
θ θ

−







 . Then 

x
y

W
X
Y









 =









  and W = + =cos sin2 2 1θ θ .

 So, W  has inverse  and W − =
−











1 cos sin
sin cos

θ θ
θ θ

.  We note that W W T− =1 . Then, we get the 

inverse transformation by the equation

 
X
Y









  =  W

x
y

x
y

x y
x

− 







 =

−


















 =

−1 cos sin
sin cos

cos sin
si

θ θ
θ θ

θ θ
nn cosθ θ+









y

. 

 
Hence, we get the transformation X x y= −cos sinθ θ , Y x y= +sin cosθ θ .

 This transformation is used in Computer Graphics and determined by the matrix 

W =
−









cos sin
sin cos

θ θ
θ θ

. We note that the matrix W  satisfies a special property W W T− =1 ; that is, 

WW W W IT T= = .  

Definition 1.3

 A square matrix A  is called orthogonal if AA A A IT T= = .

Note
 A  is orthogonal if and only if A  is non-singular and A AT−− ==1 .

q
O

X
T

L′x

P

Q

x

R

Y

′y

y

′Y

′X

M

N

q

Fig.1.1
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Example 1.11

 Prove that 
cos sin
sin cos

θ θ
θ θ

−







  is orthogonal.

Solution

 Let A =
−









cos sin
sin cos

θ θ
θ θ

. Then, AT
T

=
−







 =

−










cos sin
sin cos

cos sin
sin cos

θ θ
θ θ

θ θ
θ θ

.

So, we get 

   AAT  =  
cos sin
sin cos

cos sin
sin cos

θ θ
θ θ

θ θ
θ θ

−







 −











    =  
cos sin cos sin sin cos

sin cos cos sin sin cos

2 2

2 2

θ θ θ θ θ θ
θ θ θ θ θ θ

+ −
− +









 =









 =

1 0
0 1 2I  .

 Similarly, we get A AT = I2 . Hence AAT = A AT = I2 ⇒   A  is orthogonal.

Example 1.12 

 If  A
a

b
c

=
−
−

















1
7

6 3
2 6

2 3
 is orthogonal, find a b, and c ,  and hence A−1 .

Solution

 If A  is orthogonal, then AA A AT T= = I3 . So, we have 

 AAT  =  I3 ⇒
1
7

6 3
2 6

2 3

1
7

6 2
3 2

6 3

−
−

















− −
















a
b

c

b
c

a
=

1 0 0
0 1 0
0 0 1

















  ⇒  
45 6 6 6 12 3 3

6 6 6 40 2 2 18
12 3 3 2 2 18

2

2

2

+ + + − +
+ + + − +
− + − +

a b a c a
b a b b c

c a b c c ++















13
=  49

1 0 0
0 1 0
0 0 1

















  ⇒  

45 49
40 49
13 49

6 6 6 0
12 3 3 0
2 2 18 0

2

2

2

+ =

+ =

+ =
+ + =
− + =
− + =









a
b
c
b a

c a
b c

























 ⇒
a b c
a b a c b c

2 2 24 9 36
1 4 9

= = =
+ = − − = − − = −









, , ,
, ,

 ⇒ a b c= = − =2 3 6, ,

 So we get A =
−

− −
















1
7

6 3 2
3 2 6

2 6 3
 and hence, we get A AT− = =

−
− −

















1 1
7

6 3 2
3 2 6

2 6 3
.
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1.2.5 Application of matrices to  Cryptography
 One of the important applications of inverse of a non-singular square 
matrix is in cryptography.  Cryptography is an art of communication 
between two people by keeping the information not known to others. It is 
based upon two factors, namely encryption and decryption. Encryption 
means the process of transformation of an information (plain form)  into an 
unreadable form (coded form).  On the other hand, Decryption  means the 
transformation of the coded message back into original form. Encryption and decryption require a  
secret technique which is known only to the  sender and the receiver. 
 This secret is called a key. One way of generating a key is by using a non-singular matrix to 
encrypt a message by the sender. The receiver decodes (decrypts) the message to retrieve the original 
message by using the inverse of the matrix. The matrix used for encryption is called encryption 
matrix (encoding matrix) and that used for decoding is called decryption  matrix (decoding 
matrix). 
 We explain the process of encryption and decryption by means of an example.
 Suppose that the sender and receiver consider messages in alphabets A Z−  only, both assign the 
numbers 1-26 to the letters A Z−   respectively, and the number 0 to a blank space. For simplicity, the 
sender employs a key as post-multiplication by a non-singular matrix of order 3 of his own choice. 
The receiver uses post-multiplication by the inverse of the matrix which has been chosen by the 
sender. 
 Let the encoding matrix be  

                                                        A =
−
−

















1 1 1
2 1 0
1 0 0

.

 Let the message to be sent by the sender be “WELCOME”. 
 Since the key is taken as the operation of post-multiplication by a square matrix of order 3, the 
message is cut into pieces (WEL), (COM), (E     ), each of length 3, and converted into a sequence 
of  row matrices of numbers: 
                                                        [23 5 12],[3 15 13],[5 0 0]. 
 Note that, we have included two zeros in the last row matrix. The reason is to get a row matrix 
with 5 as the first entry. 
 Next, we encode the message by post-multiplying each row matrix as given below:
 Uncoded Encoding Coded
 row matrix matrix row matrix

   23 5 12
1 1 1
2 1 0
1 0 0

  [ ]
−
−

















 =  [ ];45 28 23   −

   3 5 13
1 1 1
2 1 0
1 0 0

 1  [ ]
−
−

















 =  [ ];46 18 3   −

   5  0  0[ ]
−
−

















1 1 1
2 1 0
1 0 0

 =  [ ].5 5     5−
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 So the encoded message is [ ] [ ] [ ]45 28 23 46 18 3 5 5           5− − −
 The receiver will decode the message by the reverse key, post-multiplying by the inverse of  A. 
 So the decoding matrix is   

                                             A
A

A− = = −
−

















1 1
0 0 1
0 1 2
1 1 1

adj .

 The receiver decodes the coded message as follows:

 Coded Decoding Decoded
 row matrix matrix row matrix

   45 28 23
0 0 1
0 1 2
1 1 1

   −[ ] −
−

















 =  [ ];23  5  12

   [ ]46 18 3
0 0 1
0 1 2
1 1 1

   − −
−

















 =  3 5 13 1  [ ];

   [ ]5 5
0 0 1
0 1 2
1 1 1

     5− −
−

















 =  5  0  0[ ].

 So, the sequence of decoded row matrices is 23 5 12 3 15 13 5 0 0      [ ] [ ] [ ], , .

 Thus, the receiver reads the message as “WELCOME”.

EXERCISE 1.1
 1. Find the adjoint of the following:

   (i) 
−









3 4
6 2

    (ii) 
2 3 1
3 4 1
3 7 2

















    (iii)  1
3

2 2 1
2 1 2

1 2 2
−

−

















 2.  Find the inverse (if it exists) of the following:

   (i) 
−

−










2 4
1 3

    (ii)   
5 1 1
1 5 1
1 1 5

















    (iii)  
2 3 1
3 4 1
3 7 2

















 3. If F ( )
cos sin

sin cos
α

α α

α α
=

−

















0
0 1 0

0
, show that F F( ) ( ).α α[ ] = −−1

 4. If A =
− −











5 3
1 2

, show that A A I O2
2 23 7− − = . Hence find A−1 .

 5. If A =
−

−

















1
9

8 1 4
4 4 7
1 8 4

, prove that A AT− =1 .
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 6. If A =
−

−










8 4
5 3

, verify that A A A A A I( ) ( )adj adj = = 2 .

 7. If A B=








 =

− −









3 2
7 5

1 3
5 2

 and ,  verify that ( )AB B A− − −1 1 1= .

 8. If adj( ) ,A =
−

− −
−

















2 4 2
3 12 7
2 0 2

 find A.

 9. If adj( ) ,A =
−

−
−

















0 2 0
6 2 6
3 0 6

 find A−1.

 10. Find  adj adj( ( ))A  if adj A =
−

















1 0 1
0 2 0
1 0 1

.

 11. A
x

x
=

−










1
1

tan
tan

,  show that A A
x x
x x

T − =
−









1 2 2
2 2

cos sin
sin cos

.

 12. Find the matrix A  for which A
5 3
1 2

14 7
7 7− −









 =









  .

 13.  Given A B=
−







 =

−









1 1
2 0

3 2
1 1

,   and C =










1 1
2 2

,  find a matrix X  such that AXB C= .

 14. If A =
















0 1 1
1 0 1
1 1 0

, show that A A I− = −( )1 21
2

3 .

 15. Decrypt the received encoded message 2 3 20 4−[ ][ ]with the encryption matrix
− −









1 1
2 1

and the decryption matrix as its inverse, where the system of  codes  are described by the 
numbers 1-26 to  the letters A Z−  respectively, and the number 0 to  a blank space.

1.3  Elementary Transformations of a Matrix
  A matrix can be transformed to another matrix by certain operations called elementary row 
operations and elementary column operations. 

1.3.1 Elementary Row and Column Operations
 Elementary row (column) operations on a matrix are 
 (i) The interchanging of any two rows (columns) of the matrix.
 (ii) Replacing a row (column) of the matrix by a non-zero scalar multiple of the row (column) by a  

non-zero scalar.
 (iii) Replacing a row (column) of the matrix by a sum of the row (column) with a non-zero scalar 

multiple of another row (column) of the matrix.
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 Elementary row operations and elementary column operations on  a matrix are known as 
elementary transformations. 
 We use the following notations for elementary row transformations:
 (i) Interchanging of ith  and  jth rows is denoted by R Ri j↔ .
 (ii) The multiplication of each element of ith row by a non-zero constantλ is denoted by R Ri i→ λ .

 (iii) Addition to  ith row, a non-zero constantλ multiple of  jth  row is denoted by R R Ri i j→ + λ .

 Similar notations are used for elementary column transformations. 

Definition 1.4
 Two matrices A  and B  of same order are said to be equivalent to one another if one can be 
obtained from the other by the applications of elementary transformations. Symbolically, we write 
A B  to mean that the matrix A  is equivalent to the matrix B .  

 For instance, let us consider a matrix A =
−

−
− −

















1 2 2
1 1 3

1 1 4
.

 After performing the elementary row operation R R R2 2 1→ + on A , we get a matrix B  in which 

the second row is the sum of the second row in A and the first row  in A . 

 Thus, we get A  B =
−
−
− −

















1 2 2
0 1 5
1 1 4

.

 The above elementary row transformation is also represented as follows: 

 

1 2 2
1 1 3

1 1 4

1 2 2

1 1 4
0 1 52 2 1

−
−

− −

















 →
−

− −














−→ +R R R


.  

Note
 An elementary transformation transforms a given matrix into another matrix which need not be 
equal to the given matrix. 

1.3.2 Row-Echelon form
 Using the row elementary operations, we can transform a given non-zero matrix to a simplified 
form called a Row-echelon form. In a row-echelon form, we may have rows all of whose entries are 
zero.  Such rows are called zero rows. A non-zero row is one in which at least one of the entries is not 

zero. For example, in the matrix 
6 0 1
0 0 1
0 0 0

−















, R R1 2 and are non-zero rows and R3 is a zero row.

Definition 1.5

  A non-zero matrix E is said to be in a row-echelon form if:
 (i) All zero rows of E  occur below every non-zero row of E.
 (ii) If  the first non-zero element in any row i  of E  occurs in the j th  column of E , then all 

other entries in the j th   column of E  below the first non-zero element of row i  are zeros.
 (iii) The first non-zero entry in the i th  row of E  lies  to the left of the first non-zero entry in 

( )i +1 th  row of E .
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Note
 A non-zero matrix is in a row-echelon form if all zero rows occur as bottom rows of the 
matrix, and if the first non-zero element in any lower row occurs to the right of the first non-
zero entry in the higher row. 

 The following matrices are in row-echelon form:(i) 
0 1 1
0 0 3
0 0 0

















,(ii) 
1 0 1 2
0 0 2 8
0 0 0 6

−















 

 Consider the matrix in (i).  Go up row by row from the last row of the matrix. The third row is a 
zero row. The first non-zero entry in the second row occurs in the third column and it lies to the right 
of the first non-zero entry in the first row which occurs in the second column. So the matrix is in row-
echelon form.
 Consider the matrix in (ii).  Go up row by row from the last row of the matrix. All the rows are 
non-zero rows. The first non-zero entry in the third row occurs in the fourth column and it occurs 
to the right of the first non-zero entry in the second row which occurs in the third column. The first  
non-zero entry in the second row occurs in the third column and it occurs to the right of the first  
non-zero entry in the first row which occurs in the first column.  So the matrix is in row-echelon form.
 The following matrices are not in row-echelon form:

 (i) 
1 2 0
0 0 5
0 1 0

−















, (ii) 
0 3 2
5 0 0
3 2 0

−















.

  Consider the matrix in (i). In this matrix, the first non-zero entry in the third row occurs in the 
second column and it is on the left of the first non-zero entry in the second row which occurs in the 
third column. So the matrix is not in row-echelon form.
 Consider the matrix in (ii).  In this matrix, the first non-zero entry in the second row occurs in the 
first column and it is on the left of the first non-zero entry in the first row which occurs in the second 
column. So the matrix is not in row-echelon form.

Method to reduce a matrix aij m n
  ×  

 to a row-echelon form.

Step 1
 Inspect the first row. If the first row is a zero row, then the row is interchanged with a non-zero 
row below the first row. If a11  is not equal to 0, then go to step 2. Otherwise, interchange the first row 
R1  with any other row below the first row which has a non-zero element in the first column; if no row 
below the first row has non-zero entry in the first column, then consider a12. If a12  is not equal to 0, 
then go to step 2. Otherwise, interchange the first row R1  with any other row below the first row which 
has a non-zero element in the second column; if no row below the first row has non-zero entry in the 
second column, then consider a13.Proceed in the same way till we get a non-zero entry in the first row. 
This is called pivoting and the first non-zero element in the first row is called the pivot of the first row. 

Step 2
 Use the first row and elementary row operations to transform all elements under the pivot to 
become zeros.
Step 3
 Consider the next row as first row and perform steps 1 and 2 with the rows below this row only. 
Repeat the step until all rows are exhausted.
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Example 1.13

 Reduce the matrix  
3 1 2
6 2 4
3 1 2

−
−
−

















 to a row-echelon form.

Solution

 
3 1 2
6 2 4
3 1 2

3 1 2
0 0 8
0 0 4

2 2 1
3 3 1

2
−

−
−

















 →
−



→ +
→ +

R R R
R R R

, 











 →
−















→ −R R R3 3 2
1
2

3 1 2
0 0 8
0 0 0

.

Note

 
3 1 2
0 0 8
0 0 0

3 1 2

0 0 0
0 0 12 2 8

−















 →
−















→R R / .

 

This is also a row-echelon form of the given matrix. 

 So, a row-echelon form of a matrix is not necessarily unique.

Example 1.14

 Reduce the matrix  
0
1

4

3
0
2

1
2
0

6
5
0

−
















    to row-echelon form.

Solution

 

0
1

4

3
0
2

1
2
0

6
5
0

0
4

3
2

1
0

6
0

1 0 2 5
1 2−

















 →












−
↔      R R 




 →
−















→ +R R R3 3 14

1
0

0
3

2
1

5
6

0 2 8 20
   

                            
R R R3 3 2

2
3

1
0

0
3

2
1

5
6

0 0 22
3

16

→ −
 →

−




















 →
−















→R R3 23

1
0

0
3

2
1

5
6

0 0 22 48
   .

1.3.3 Rank of a Matrix
 To define the rank of a matrix, we have to know about sub-matrices and minors of a matrix. 

 Let A  be a given matrix. A matrix obtained by deleting some rows and some columns of A  is 

called a sub-matrix of A.  A matrix is a sub-matrix of itself because it is obtained by leaving zero 

number of rows and zero number of columns.

 Recall that the determinant of a square sub-matrix of a matrix is called a minor of the matrix. 

Definition 1.6
 The rank of a matrix A is defined as the order of a highest order non-vanishing minor of the 

matrix A.  It is denoted by the symbol ρ( ).A The  rank of a zero matrix is defined to be 0. 
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Note
 (i) If a matrix contains at-least one non-zero element, then ρ( ) .A ≥1

 (ii) The rank of the identity matrix In  is n.
 (iii) If the rank of a matrix A  is r, then there exists at-least one minor of A of order r  which does 

not vanish and every minor of A of order r +1  and higher order (if any) vanishes. 
 (iv) If A is an m n× matrix, then ρ( ) , , .A m n m n≤  min{ } =  minimum of  

 (v) A square matrix A  of order n  is invertible if and only if ρ( ) .A n=

Example 1.15

 Find the rank of each of the following matrices:   (i) 
3 2 5
1 1 2
3 3 6















   

(ii) 
4
3

6

3
1

7

1
2
1

2
4
2

− − −
−

−















   

Solution

 (i) Let A =
















3 2 5
1 1 2
3 3 6

. Then A  is a matrix of order 3 3× . So ρ( ) min ,A ≤ { } =3 3 3 . The highest 

order of minors of A is 3 . There is only one third order minor of A .

  It is 
3 2 5
1 1 2
3 3 6

3 6 6 2 6 6 5 3 3 0= − − − + − =( ) ( ) ( ) . So, ρ( )A < 3 .

  Next consider the second-order minors of A . 

  We find that the second order minor 
3 2
1 1

3 2 1 0= − = ≠ . So ρ( )A = 2 .

 (ii) Let A = − − −
−

−















4
3

6

3
1

7

1
2
1

2
4
2

   . Then A  is a matrix of order 3 4× . So ρ( ) min ,A ≤ { } =3 4 3 . 

  The highest order of minors of A is 3 . We search for a non-zero third-order minor of A . But 
we find that all of them vanish. In fact, we have

   
4 3 1
3 1 2

6 7 1
− − −

−
 = 0 ;

4 3 2
3 1 4

6 7 2

−
− − =0;

4 1 2
3 2 4

6 1 2

−
− −

−
=0; 

3 1 2
1 2 4

7 1 2

−
− −

−
=0.

  So, ρ( )A < 3 . Next, we search for a non-zero second-order minor of A .

  We find that 
4 3
3 1

4 9 5 0
− −

= − + = ≠ . So, ρ( )A = 2 .

Remark
 Finding the rank of a matrix by searching a highest order non-vanishing minor is quite tedious 
when the order of the matrix is quite large. There is another easy method for finding the rank of a 
matrix even if the order of the matrix is quite high. This method is by computing the rank of an 
equivalent row-echelon form of the matrix. If a matrix is in row-echelon form, then all entries below 
the leading diagonal (it is the diagonal line joining the positions of the diagonal elements a a a11 22 33, , , .
of the matrix) are zeros. So, checking whether a minor is zero or not, is quite simple and hence the rank. 
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Example 1.16
 Find the rank of the following matrices which are in row-echelon form :

  (i) 
2 0 7
0 3 1
0 0 1

−















 (ii) 
− −















2 2 1
0 5 1
0 0 0

  (iii) 

6
0
0
0

0
2
0
0

9
0
0
0

     

−

















Solution

 (i) Let A =
−















2
3

1

0 7
0 1
0 0

.  Then A  is a matrix of order 3 3×  and ρ( )A ≤ 3

  The third order minor A =
−

= = ≠
2

3
1

0 7
0 1
0 0

2 3 1 6 0( )( )( ) .  So, ρ( )A = 3 .

  

Note that there are three non-zero rows. 

 (ii) Let A =
− −















2 2 1
0 5 1
0 0 0

. Then A  is a matrix of order 3 3×  and ρ( )A ≤ 3 .

  The only third order minor  is A =
−

= − =
−2

5
0

2 1
0 1
0 0

2 5 0 0( )( )( ) . So ρ( )A ≤ 2 .

  There are several second order minors. We find that there is a second order minor, for 

example, 
−

= − = − ≠
2 2

0 5
2 5 10 0( )( ) . So, ρ( )A = 2 .

  Note that there are two non-zero rows. The third row is a zero row.

 (iii) Let A =

−

















6
0
0
0

0
2
0
0

9
0
0
0

     . Then A  is a matrix of order  4 3×  and ρ( )A ≤ 3 .

  The last two rows are zero rows. There are several second order minors. We find that there 

is a second order minor, for example, 
6 0
0 2

6 2 12 0= = ≠( )( ) . So, ρ( )A = 2 .

  Note that there are two non-zero rows. The third and fourth rows are zero rows.
  We observe from the above example that the rank of a matrix in row echelon form is equal 

to the number of non-zero rows in it. We state this observation as a theorem without proof.

 Theorem 1.11
 The rank of a matrix in row echelon form is the number of non-zero rows in it. 
 The rank of a matrix which is not in a row-echelon form, can be found by applying the following 
result which is stated without proof. 
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  Theorem 1.12
 The rank of a non-zero matrix is equal to the number of non-zero rows in a row-echelon form 
of the matrix.

Example 1.17

 Find the rank of the matrix
1 2 3
2 1 4
3 0 5

















by reducing it to a row-echelon form.

Solution

 Let A =
















1 2 3
2 1 4
3 0 5

.  Applying elementary row operations, we get 

 

A
R R R
R R R R R R

2 2 1
3 3 1 3 3 2

2
3 2

1 2 3
0 3 2
0 6 4

→ −
→ − → − →

















− −
− −

→→ − −
















1 2 3
0 3 2
0 0 0

.

 The last equivalent matrix is in row-echelon form. It has two non-zero rows. So, ρ( ) .A = 2  

Example 1.18

 Find the rank of the matrix 
2
3

6

2
4
2

4
2
1

3
1

7
−

−
−
−

−
















    by reducing it to an echelon form.

Solution
 Let A  be the matrix. Performing elementary row operations, we get 

 

A R R= −
−

−
−

−
















 →
−

−
− −→

2
3

6

2
4
2

4
2
1

3
1

7

2

6

2

2

4

1
6 8 42 22          

3

7

2 2 4 3
2 0 2 8 7

0 8 13

2 2 1
3 3 1

3
3−

















 →
−

− −

→ +
→ −

R R R
R R R

22

















.

            R R R R R3 3 2 34

2
0

2
2

4
8

3
7

0 0 45 30

→ − → →
−













− −

33 15

2
0

2
2

4
8

3
7

0 0 3 2

÷ − →
−















( )    .

 The last equivalent matrix is in row-echelon form. It has three non-zero rows. So, ρ( )A = 3 .
 Elementary row operations on a matrix can be performed by pre-multiplying the given matrix by 
a special class of matrices called elementary matrices. 
Definition 1.7
 An elementary matrix is defined as a matrix which is obtained from an identity matrix by 
applying only one elementary transformation.

Remark
 If we are dealing with matrices with three rows, then all elementary matrices are square matrices 
of order 3  which are obtained by carrying out only one elementary row operations on the unit matrix 
I3.  Every elementary row operation that is carried out on a given matrix A  can be obtained by  
pre-multiplying A  with elementary matrix. Similarly, every elementary column operation that is 
carried out  on a given matrix A  can be obtained by post-multiplying A with an elementary matrix. 
In the present chapter, we use elementary row operations only.
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 For instance, let us consider the matrix A
a a a
a a a
a a a

=
















11 12 13

21 22 23

31 32 33

.

 Suppose that we do the transformation R R R2 2 3→ + λ  on A, where λ ≠ 0  is a constant. Then, we get

 A
a a a

a a a
a a a a a aR R R2 2 3

11 12 13

31 32 33

21 31 22 32 23 33
→ + → + + +λ λ λ λ

















.                       ….(1)

 The matrix 
1 0 0
0 1
0 0 1

λ
















 is an elementary matrix, since we have 
1 0 0
0 1 0
0 0 1

1 0 0

0 0 1
0 12 2 3

















 →
















→ +R R Rλ λ .

Pre-multiplying  A by 
1 0 0
0 1
0 0 1

λ
















, we get 

 

1 0 0
0 1
0 0 1

11 12 13

21 22 23

31 32 33

λ
































=
a a a
a a a
a a a

a111 12 13

21 31 22 32 23 33

31 32 33

a a
a a a a a a

a a a
+ + +

















λ λ λ .               ... (2)

 From (1) and (2), we get    A AR R R2 2 3

1 0 0

0 0 1
0 1→ + →

















λ λ .

 So, the effect of applying the elementary transformation R R R2 2 3→ + λ  on A  is the same as that 

of pre-multiplying the matrix A  with the elementary matrix 
1 0 0
0 1
0 0 1

λ
















. 

 Similarly, we can show that  

 (i) the effect of applying the elementary transformation R R2 3↔  on A  is the same as that of  

pre-multiplying the matrix A  with the elementary matrix 
1 0 0
0 0 1
0 1 0

















 .

 (ii) the effect of applying the elementary transformation R R2 2→ λ  on A  is the same as that of  

pre-multiplying the matrix A  with the elementary matrix  
1 0 0
0 0
0 0 1

λ
















 .

 We state the following result without proof. 
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 Theorem 1.13
 Every non-singular matrix can be transformed to an identity matrix, by a sequence of elementary 
row operations. 

 As an illustration of the above theorem, let us consider the matrix A =
−









2 1
3 4

.

 Then, A = + = ≠12 3 15 0.So, A  is non-singular. Let us transform A  into I2 by a sequence of 

elementary row operations. First, we search for a row operation to make a11  of A  as 1. The elementary 

row operation needed for this is R R1 1
1
2

→ 





 .The corresponding elementary matrix is E1

1
2

0

0 1
=














.

Then, we get E A1

1
2

0

0 1

2 1
3 4

1 1
2

3 4
=















−







 =

−












.

 Next, let us make all elements below a11  of E A1  as 0. There is only one element a21 . 

 The elementary row operation needed for this is  R R R2 2 13→ + −( ) .

 The corresponding elementary matrix is E2

1 0
3 1

=
−









 .

 Then, we get E E A2 1

1 0
3 1

1 1
2

3 4

1 1
2

0 11
2

( ) =
−











−













=
−

















.

 Next, let us make a22  of E E A2 1( )  as 1. The elementary row operation needed for this is 

R R2 2
2

11
→ 






 .

 The corresponding elementary matrix is E3

1 0

0 2
11

=













.

 Then, we get E E E A3 2 1

1 0

0 2
11

1 1
2

0 11
2

1 1
2

0 1
( )( ) =















−

















=
−












.

 Finally, let us find an elementary row operation  to make a12 of E E E A3 2 1( )( ) as 0.  The elementary 

row operation needed for this is R R R1 1 2
1
2

→ + 





 .The corresponding elementary matrix is 

E4
1 1

2
0 1

=













.
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 Then, we get E E E E A I4 3 2 1 2
1 1

2
0 1

1 1
2

0 1

1 0
0 1

( )( )( ) =














−













=








 = .

 We write the above sequence of elementary transformations in the following manner:

 

A
R R

R R R=
−

−






 →














 →
→

→ + −( )2 1

3 4
3 4

1
1

1

2
1 1

2 2 1

1

2 3( )

−−
−



















 →














→ → +( ) (
1

2 1
1

2
0

11

2
0 1

2 2 1 1

2

11

1

2
R R R R )) → 





R2 1 0

0 1

Example 1.19

 Show that the matrix 
3 1 4
2 0 1
5 2 1

−
















 is non-singular and reduce it to the identity matrix by 

elementary row transformations.

Solution

 Let A = −
















3 1 4
2 0 1
5 2 1

.Then, A = + − + + − = − + = ≠3 0 2 1 2 5 4 4 0 6 7 16 15 0( ) ( ) ( ) .  So, A  is  

non-singular. Keeping the identity matrix as our goal, we perform the row operations sequentially on 
A as follows:

      

3 1 4
2 0 1
5 2 1

2 0 1
5 2 1

1
1
3

4
3

1 1
1
3− −

















 →





















→R R R22 2 1 3 3 12 5

1
1
3

4
3

0
1
3

17
3

0
2
3

11
3

→ − → − →













− −

−

R R R R R,   













 →


















→ −








−

R R2 2
3
2

1
1
3

4
3

0
1
3

17
3

0 1
11
2








    

R R R R R R1 1 2 3 3 2
1
3

1
3

1 0 1
2

0 1 11
2

0 0 15
2

→ − → −
 →

−

















−

, 









 →

−





















→ −





R R3 3

2
15

1 0 1
2

0 1 11
2

0 0 1 


 →
















→ + → −R R R R R R1 1 3 2 2 3
1
2

11
2

1 0 0
0 1 0
0 0 1

,
.

1.3.4  Gauss-Jordan Method
 Let A  be a non-singular square matrix of order n . Let B  be the inverse of A.

 Then, we have AB BA In= = . By the property of In , we have A I A AIn n= = .

 Consider the equation A = I An     …(1)
 Since A  is non-singular, pre-multiplying by a sequence of elementary matrices (row operations) 
on both sides of (1), A  on the left-hand-side of (1) is transformed to the identity  matrix In and the 
same sequence of elementary matrices (row operations) transforms In  of the right-hand-side of (1) to 
a matrix B.  So, equation (1) transforms to I BAn = .Hence, the inverse of A  is B.  That is, A B− =1 .
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Note
 If  E E Ek1 2, , ,  are elementary matrices (row operations) such that E E E A Ik n 2 1( ) = ,  then 

A E E Ek
− =1

2 1 .

 Transforming a non-singular matrix A  to the form In  by applying elementary row operations, is 
called Gauss-Jordan method. The steps in finding A−1 by Gauss-Jordan method are given below: 

Step 1
 Augment the identity matrix In on the right-side of A  to get the matrix A In|[ ] .

Step 2
 Obtain elementary matrices (row operations) E E Ek1 2, , , such that E E E A Ik n 2 1( ) = .

 Apply E E Ek1 2, , , on A In|[ ] . Then E E E A E E E Ik k n 2 1 2 1( ) ( ) | .That is, I An | .− 
1

Example 1.20

 Find the inverse of the non-singular matrix A =
−











0 5
1 6

, by Gauss-Jordan method. 

Solution

 Applying Gauss-Jordan method, we get 

 

A I R R| 2

0
1

5
6

1
0

0
1 0 5 1 0

1 6 0 1
1 2[ ] =

−








  →










−↔  
     

  
      →











− −→ −R R1 11 1 6 0 1
0 5 1 0

( )      

                               
R R R R R2 2

1 1 2

1
5 61 6 0 1

00 1 1 5 0
1→ → + →

− −







  →

( / )
00 6 5 1
1 1 5 0

   
( / )
( / )

.
−









 So, we get A− =
−







 =

−









1 6 5 1
1 5 0

1
5

6 5
1 0

( / )
( / )

.

Example 1.21

 Find the inverse of A =
















2 1 1
3 2 1
2 1 2

 by Gauss-Jordan method.

Solution
 Applying Gauss-Jordan method, we get 

 

A I
R R

|
(

3

1
2

2
3
2

1
2
1

1
1
2

1
0
0

0
1
0

0
0
1

3
2

1 1
1 1[ ] =

















 →
→

      
// ) ( / ) ( / )2 1 2 1 2 0 0
2
1

1
2

0
0

1
0

0
1

    
















 

R R R
R R R

2 2 1
3 3 1

3
2

1 1 2 1 2 1 2
0 1 2 1 2
0 0 1

→ −
→ − → − −   

( / ) ( / ) ( / )
( / ) ( / ) (( / )

( / ) ( / )
3 2 1 0

1 0 1

0 0 1

0

1 2

0

1 2

1
0 1 12 22

−

















 → −→     R R

(( / )1 2

1

0

0

0

1
3 2 0−

−
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R R R R R
1 1 2

1 11
2

1 0 1 2 1 0
0
0

1
0

1
1

3
1

2
0

0
1

→ − →

 → − −
−

















−
     

−−
→ + →

−

















−
− −

R
R R R

3
2 2 3

1 0 0 3 1 1
0
0

1
0

0
1 1 0 1

4 2 1     .

 So, A− =
− −

−
−

















1

3 1 1
4 2 1
1 0 1

.

EXERCISE 1.2
 1. Find the rank of the following matrices by minor method:

   (i) 
2 4
1 2

−
−









  (ii) 

−
−
−

















1
4
3

3
7
4

 
 

  
  

 (iii) 
1
3

2
6

1
3

0
1

   
−
−

−
−









  (iv) 

1 2 3
2 4 6
5 1 1

−
−
−

















   (v) 
0 1 2 1
0 2 4 3
8 1 0 2

















 

 2. Find the rank of the following matrices by row reduction method:

   (i) 
1
2
5

1
1
1

1
3
7

3
4

11
   −
−

















 (ii) 

1
3
1
1

2
1
2
1

1
2
3
1

  
−
−
−

−

















 (iii) 
3 8 5 2
2 5 1 4
1 2 3 2

−
−

− −

















 

 3. Find the inverse of each of the following by Gauss-Jordan method:

  (i) 
2 1
5 2

−
−









  (ii) 

1 1 0
1 0 1
6 2 3

−
−

− −

















 (iii) 
1 2 3
2 5 3
1 0 8

















1.4 Applications of Matrices: Solving System of Linear Equations
 One of the important applications of matrices and determinants is solving of system of linear 
equations. Systems of linear equations arise as mathematical models of several phenomena occurring 
in biology, chemistry, commerce, economics, physics and engineering. For instance, analysis of 
circuit theory, analysis of input-output models, and analysis of chemical reactions require solutions 
of systems of linear equations. 

1.4.1 Formation of a System of Linear Equations 
 The meaning of a system of linear equations can be understood by formulating a mathematical 
model of a simple practical problem.

 Three persons A, B and C go to a supermarket to purchase same brands of rice and sugar. Person A 
buys 5 Kilograms of rice and 3 Kilograms of sugar and pays ̀  440. Person B purchases 6 Kilograms of rice 
and 2 Kilograms of sugar and pays ` 400. Person C purchases 8 Kilograms of rice and 5 Kilograms of 
sugar and pays ` 720. Let us formulate a mathematical model to compute the price per Kilogram of rice 
and the price per Kilogram of sugar.  Let x be the price in rupees per Kilogram of rice and y  be the price 
in rupees per Kilogram of sugar.  Person A buys 5 Kilograms of rice and 3 Kilograms sugar and pays   
` 440 . So,5 3 440x y+ = . Similarly, by considering Person B and Person C, we get 6 2 400x y+ =  and 
8 5 720x y+ = . Hence the mathematical model is to obtain x  and y  such that 

5 3 440x y+ = ,  6 2 400x y+ = ,  8 5 720x y+ = .
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Note
 In the above example, the values of x  and y  which satisfy one equation should also satisfy all 
the other equations. In other words, the equations are to be satisfied by the same values of x  and y  
simultaneously. If such values of  x  and y  exist, then they are said to form a solution for the system 
of linear equations. In the three equations, x  and y  appear in first degree only. Hence they are said 
to form a system of linear equations in two unknowns x  and y . They are also called simultaneous 
linear equations in two unknowns x  and y . The system has three linear equations in two unknowns 
x  and y .

 The equations represent three straight lines in two-dimensional analytical geometry.
 In this section, we develop methods using matrices to find solutions of systems of linear equations. 

1.4.2 System of Linear Equations in Matrix Form
 A system of m linear equations in n  unknowns is of the following form:

   

a x a x a x a x b
a x a x a x a x b

n n

n n

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

+ + + + =
+ + + + =





,
,

     



                             
a x a x a x am m m m1 1 2 2 3 3+ + + + nn n mx b= ,

 … (1)

where the coefficients a i m j nij , , , , ; , , ,= =1 2 1 2    and b k mk , , , ,=1 2   are constants. If all the 
bk 's  are zeros, then the above system is called a homogeneous system of linear equations. On the 
other hand,  if at least one of thebk 's is non-zero, then the above system is called a non-homogeneous 
system of  linear equations. If there exist values α α α1 2, ,  ,  n for x x xn1 2,  ,  ,  respectively which 
satisfy every  equation of (1), then the ordered n − tuple α α α1 2,  ,  ,  n( ) is called a solution of (1).

The above system  (1) can be put in a matrix form as follows:

 Let A

a a a a
a a a a

n

n=

11 12 13 1

21 22 23 2

          
          
       





        
        

 

a a a am m m mn1 2 3



















 be the m n×  matrix formed by the coefficients of 

x x x xn1 2 3,  ,  ,   ,  .The first row of A  is formed by the coefficients of x x x xn1 2 3,  ,  ,   ,  in the same 
order in which they occur in the first equation. Likewise, the other rows of A are formed. The first 
column is formed by the coefficients of x1 in the m equations in the same order. The other columns 

are formed in a similar way. 

 Let X

x
x

xn

=



















1

2



 be the n×1 order column matrix formed by the unknowns x x x xn1 2 3,  ,  ,   ,  .

 Let B

b
b

bm

=



















1

2



 be the m×1 order column matrix formed by the right-hand side constants 

b b b bm1 2 3,  ,  ,   ,  .

Chapter 1 Matrices.indd   28 3/10/2019   8:13:27 PM



Applications of Matrices and Determinants29

 Then we get 

 

AX

a a a a
a a a a

n

n=

11 12 13 1

21 22 23 2

          
          
      

�
�

� � �      
        

� �
�

�
a a a a

x
x

xm m m mn n1 2 3

1

2





































=

+ + + +
+ + + +

a x a x a x a x
a x a x a x a

n n

n

11 1 12 2 13 3 1

21 1 22 2 23 3 2

   
   
�
� xx

a x a x a x a

n

m m m

� � � � �
�

                            
 1 1 2 2 3 3+ + + + mmn n mx

b
b

b

B



















=



















=

1

2

�
.

 Then AX B=  is a matrix equation involving matrices and it is called the matrix form of the  

system of linear equations (1). The matrix A  is called the coefficient matrix of the system and the 

matrix  

a a a a b
a a a a b

n

n

11 12 13 1 1

21 22 23 2

            |  
           |  



 22

1 2 3

     



             | 
         |  a a a a bm m m mn m



















 is called the augmented matrix of the system. We denote the 

augmented matrix by A B| .[ ]

 As an example, the matrix form of the system of linear equations 

 2 3 5 7 0 7 2 3 17 6 3 8 24 0x y z y z x x y z+ − + = + − = − − + =, ,  is
2 3 5
3 7 2

6 3 8

7
17
24

−
−

− −

































=
−

−

















x
y
z

.

1.4.3 Solution to a System of Linear equations
 The meaning of solution to a system of linear equations can be understood by considering the 
following cases : 

Case (i)
 Consider the system of linear equations 
   2x y−  =  5 , ... (1)
   x y+ 3  =  6 . ... (2)

 
These two equations represent a pair of straight 

lines in two dimensional analytical geometry (see the 
Fig. 1.2). Using (1),  we get

     x  =  5
2
+ y . ... (3)

 Substituting (3) in (2) and simplifying, we get y =1.

 Substituting y =1 in (1) and simplifying, we                      

get x = 3 .

 Both equations (1) and (2) are satisfied by x = 3  and y =1. 

 That is, a solution of (1) is also a solution of (2). 

 So, we say that the system is consistent and has unique solution ( , )3 1 .
 The point ( , )3 1  is the point of intersection of the two lines 2 5x y− =  and x y+ =3 6 .

Fig.1.2

6

5

4

3

2

1

O 1 2 3 4 5 6 7

2
5

x
y

−
=

( , )4 3

( , )3 1

( , )6 0

x y+
=3

6

( , )0 2

x

y

( , )2 1−−1

′′x

′′y
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–3 –2 –1 O 1 2 4 5 6 7
–1

–2

1

2

3

4

5

3
2

5

x
y

+
=

( , )1 1

( , )3 2−

x

y

3′′x

′′y

Case (ii)
 Consider the system of linear equations 
  3 2x y+  =  5 ,  ... (1)
  6 4x y+  =  10  ... (2)
 Using equation (1), we get 

  x  =  5 2
3
− y   ... (3)

 Substituting (3) in (2) and simplifying, we get 0 = 0 .

 This informs us that equation (2) is an elementary 
transformation of equation (1). In fact, by dividing  equation 
(2) by 2, we get equation (1). It is not possible to find 
uniquely x  and y  with just a single equation (1).  

 So we are forced to assume the value of one unknown, say y t= , where t  is any real number. 

Then, x t
=

−5 2
3

. The two equations (1) and (2) represent one and only one straight line (coincident 

lines) in two dimensional analytical geometry (see Fig. 1.3) . In other words, the system is  consistent (a 
solution of (1) is also a solution of (2)) and has infinitely many solutions, as t  can assume any real value. 

Case (iii)
 Consider the system of linear equations 

   4x y+  =  6 ,  ... (1)

   8 2x y+  =  18 . ... (2)
 Using equation (1), we get 

   x  =  6
4
− y   ... (3)

 Substituting (3) in (2) and simplifying, we get 12 =18 .

 This is a contradicting result, which informs us 
that equation (2) is inconsistent with equation (1). So, 
a  solution of (1) is not a solution of (2). 
 In other words, the system is inconsistent and has no solution. We note that the two equations 
represent two parallel straight lines (non-coincident) in two dimensional analytical geometry (see Fig. 
1.4). We know that two non-coincident parallel lines never meet in real points.
Note 
 (1) Interchanging any two equations of a system of linear equations does not alter the solution 

of the system.

 (2) Replacing an equation of a system of linear equations by a non-zero constant multiple of 
itself does not alter the solution of the system.

 (3)  Replacing an equation of a system of linear equations by addition of itself with a non-zero 
multiple of any other equation of the system does not alter the solution of the system. 

Fig.1.3

Fig.1.4

–3 –2 –1 O 1 2 3 4 5 6 7 8

1

2

3

4

5

–1

–2

x

y

( , )1 5

( , )1 2

( , )2 2−

( , )2 1

4
6

x
y

+
= 8

2
18

x
y

+
=

′′x

′′y
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Definition 1.8

 A system of linear equations having at least one solution is said to be consistent. A system 
of linear equations having no solution is said to be inconsistent.

Remark
 If the number of the equations of a system of linear equations is equal to the number of unknowns 
of the system, then the coefficient matrix A of the system is a square matrix. Further, if A  is a  
non-singular matrix, then the solution of system of equations can be found by any one of the following 
methods :  (i) matrix inversion method, (ii) Cramer’s rule,  (iii) Gaussian elimination method.

1.4.3 (i) Matrix Inversion Method
 This method can be applied only when the coefficient matrix is a square matrix and non-singular. 

 Consider the matrix equation

   AX  =  B , … (1)
where A  is a square matrix and non-singular. Since A  is non-singular, A−1  exists and A A AA I− −= =1 1 .

 Pre-multiplying both sides of (1) by A−1, we get A AX A B− −( ) =1 1 .  That is, A A X A B− −( ) =1 1 .

 Hence, we get X A B= −1 .

Example 1.22
 Solve the following system of  linear  equations, using matrix inversion method: 
 5 2 3 3 2 5x y x y+ = + =,  .
Solution

 The matrix form of the system is AX  =  B , where A X
x
y

B=








 =









 =











5 2
3 2

3
5

, ,  .

 We find  A =  
5 2
3 2

10 6 4 0= − = ≠ .So, A−1  exists and A−1 =
1
4

2 2
3 5

−
−









 . 

 Then, applying the formula X A B= −1 , we get 

 

x
y









 =  1

4
2 2
3 5

3
5

1
4

6 10
9 25

1
4

4
16

4
4

1
−

−


















 =

−
− +









 =

−







 =

−

66
4

1
4



















=
−







 .

 

So the solution is x y= − =( )1 4, .

Example 1.23
 Solve the following system of equations, using matrix inversion method:

 2 3 3 5 2 4 3 2 31 2 3 1 2 3 1 2 3x x x x x x x x x+ + = − + = − − − =, , .     

Solution
 The matrix form of the system is AX B= , where 

  A  =  
2 3 3
1 2 1
3 1 2

5
4

3

1

2

3

−
− −

















=
















= −
















, ,X
x
x
x

B .
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  We find A  =  
2 3 3
1 2 1
3 1 2

2 4 1 3 2 3 3 1 6 10 15 15 40 0−
− −

= + − − − + − + = + + = ≠( ) ( ) ( ) . 

 So, A−1  exists and 

  A−1  =  1 1
40

4 1 2 3 1 6
6 3 4 9 2 9

3
A

A( )
( ) ( ) ( )

( ) ( ) ( )
(

adj =
+ + − − − + − +

− − + + − − − − −
+ + 66 2 3 4 3

1
40

5 3 9
5 13 1
5 11 7) ( ) ( )− − + − −

















= −
−

















T

 Then, applying X A B= −1 , we get

  
x
x
x

1

2

3

















  =  1
40

5 3 9
5 13 1
5 11 7

5
4

3

1
40

25 12 27
25 52−

−

















−
















=
− +
+ + 33

25 44 21

1
40

40
80
40

1
2
1− −

















=
−

















=
−

















 .

 So, the solution is x x x1 2 31 2 1= = = −( ), , .

Example 1.24

 If A =
−
−

− −

















4 4 4
7 1 3

5 3 1
 and B =

−
− −

















1 1 1
1 2 2
2 1 3

,  find the products AB  and BA and hence solve the 

system of equations  x y z x y z x y z− + = − − = + + =4 2 2 9 2 3 1, , .

Solution

We find AB  =  
−
−

− −

















−
− −

















=
− + + − + −4 4 4

7 1 3
5 3 1

1 1 1
1 2 2
2 1 3

4 4 8 4 8 4 44 8 12
7 1 6 7 2 3 7 2 9

5 3 2 5 6 1 5 6 3

8 0 0
0 8 0
0

− +
− + + − + − − +

− − − + − + −

















=
00 8

8 3

















= I  

 and BA  =  
1 1 1
1 2 2
2 1 3

4 4 4
7 1 3

5 3 1

4 7 5 4 1 3 4−
− −

















−
−

− −

















=
− + + − − −− −

− + − − + − +
− − + + − + −

















=
3 1

4 14 10 4 2 6 4 6 2
8 7 15 8 1 9 8 3 3

8 0 0
0 8 0
0 00 8

8 3

















= I . 

 So, we get AB BA I= = 8 3.That is, 1
8

1
8 3A B B A I






 = 






 = .Hence, B A− =1 1

8
.

 Writing the given system of equations in matrix form, we get 

  
1 1 1
1 2 2
2 1 3

−
− −

































x
y
z

 =  
4
9
1

















 .  That is,  B
x
y
z

















=
















4
9
1

.

 So, 
x
y
z

















 =  B A−

















= 























=
−
−

− −





1

4
9
1

1
8

4
9
1

1
8

4 4 4
7 1 3

5 3 1



























=
− + +
− + +

− −

















=
4
9
1

1
8

16 36 4
28 9 3

20 27 1

1
88

24
16
8

3
2
1

−
−

















= −
−

















 .

 

Hence, the solution is ( , , ).x y z= = − = −3 2 1
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EXERCISE 1.3
 1.  Solve the following system of linear equations by matrix inversion method:

   (i) 2 5 2 2 3x y x y+ = − + = −,    (ii) 2 8 2 2x y x y− = + = −,   3

   (iii) 2 3 9 9 3 1x y z x y z x y z+ − = + + = − − = −, ,  

   (iv) x y z x y z x y z+ + − = − + − = + + =2 0 4 5 31 0 2 2 13, , 6  5

 2. If A =
−

−
−

















5 1 3
7 1 5
1 1 1

 and B =
















1 1 2
3 2 1
2 1 3

,  find the products AB  and BA and hence solve the 

system of equations  x y z x y z x y z+ + = + + = + + =2 1 3 2 7 2 3 2, , .        

 3. A man is appointed in a job with a monthly salary of certain amount and a fixed amount of   
annual increment. If his salary was ` 19,800 per month at the end of the first month after 3 
years of service and  ` 23,400 per month  at the end of the first month after 9 years of service, 
find his starting salary and his annual increment.  (Use matrix inversion method to solve the 
problem.)

 4. 4 men and 4 women can finish a piece of work jointly in 3 days while 2 men and 5 women 
can finish the same work jointly in 4 days. Find the time taken by one man alone and that of 
one woman alone to finish the same work by using matrix inversion method.

 5. The prices of three commodities A B,  and C  are ` x y,  and z  per units respectively. A person 
P  purchases 4 units of B  and sells two units of A  and 5 units of C . Person Q  purchases 2 
units of C  and sells 3 units of A  and one unit of B . Person R  purchases one unit of A  and 
sells 3 unit of B  and one unit of C . In the process, P Q,  and R  earn  ` 15,000, ` 1,000 and  
` 4,000 respectively. Find the prices per unit of A B, and C . (Use matrix inversion method to 
solve the problem.)

1.4.3 (ii) Cramer’s Rule
 This rule can be applied only when the coefficient matrix is a square matrix and non-singular.  It 
is explained by considering the following system of equations:

a x a x a x b
a x a x a x b
a x a x a x

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33

+ + =
+ + =
+ +

,
,

33 3= b ,

where the coefficient matrix  
a a a
a a a
a a a

11 12 13

21 22 23

31 32 33

   
  
  

















 is non-singular. Then 
a a a
a a a
a a a

11 12 13

21 22 23

31 32 33

0
   
  
  

¹ .

 Let us put  D  =
a a a
a a a
a a a

11 12 13

21 22 23

31 32 33

   
  
  

 . Then, we have

 x1D  =  x
a a a
a a a
a a a

a x a a
a x1

11 12 13

21 22 23

31 32 33

11 1 12 13

21 1

   
  
  

     
=      

    
  = 

+ +      
a a

a x a a

a x a x a x a a

22 23

31 1 32 33

11 1 12 2 13 3 12 13

aa x a x a x a a
a x a x a x a a

b

21 1 22 2 23 3 22 23

31 1 32 2 33 3 32 33

+ +     
+ +     

 =
11 12 13

2 22 23

3 32 33

1

     
    
    

a a
b a a
b a a

= ∆
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 Since D  ¹  0 , we get x1
1=

∆
∆

 .

 Similarly, we get x2  =     where 
   
  
  

∆
∆

=
∆
∆

∆ = ∆ =2
3

3
2

11 1 13

21 2 23

31 3 33

3, , ,x
a b a
a b a
a b a

aa a b
a a b
a a b

11 12 1

21 22 2

31 32 3

   
  
  

 .

 Thus, we have the Cramer’s rule x1  =     ∆
∆

=
∆
∆

=
∆
∆

1
2

2
3

3, , ,x x  

 where D  =  
a a a
a a a
a a a

b a a
b a a

11 12 13

21 22 23

31 32 33

1

1 12 13

2 22 2

   
  
  

,
   
  ∆ = 33

3 32 33

2

11 1 13

21 2 23

31 3 33

3

11 1

b a a

a b a
a b a
a b a

a a

  

   
  
  

  
, ,∆ = ∆ =

22 1

21 22 2

31 32 3

 
  
  

b
a a b
a a b

Note
 Replacing the first column elements a a a11 21 31, , of D  withb b b1 2 3, ,  respectively, we get D1.

 Replacing the second column elements a a a12 22 32, , of D  withb b b1 2 3, ,  respectively, we get D2.

 Replacing the third column elements a a a13 23 33, , of D  withb b b1 2 3, ,  respectively, we get D3.

 If ∆ = 0, Cramer’s rule cannot be applied.

Example 1.25
 Solve, by Cramer’s rule, the system of equations 

 x x x x x x x1 2 1 2 3 2 33 2 3 4 17 2 7− = + + = + =, , .

Solution
 First we evaluate the determinants

 ∆ =
−

= ≠ ∆ =
− 1     0

 2    3    4
 0    1    2 

0, 
      0
 
3
1

1
6

1

1 77
7

  3    4
     1    2 

=12, ∆ = = − ∆ =
−

2 36
1 1        0

 2      4 
 0        2

 1      
 

3
17
7

3
, 22    3  

 0    1    
17
7

= 24.

 By Cramer’s rule, we get  x x x1
1

2
2

3
12
6

2 6
6

1
6

4=
∆
∆

= = =
∆
∆

=
−

= − = =
     24, , .

 So, the solution is ( , , )x x x1 2 32 1 4= = − = .

Example 1.26  
 In a T20 match, Chennai Super Kings needed just 6 runs to win with 1 ball 
left to go in the last over.  The last ball was bowled and the batsman at the 
crease hit it high up. The ball traversed along a path in a vertical plane and the 
equation of the path is  y ax bx c= + +2  with respect to a xy -coordinate system 
in the vertical plane and the ball  traversed through the points 
( , ), ( , ), ( , )10 8 20 16 30 18 , can you conclude that  Chennai Super Kings won the 
match?
 Justify your answer. (All distances are measured in metres and the meeting point of the plane of 
the path with the farthest boundary line is ( , ).)70 0

Solution 
 The path y ax bx c= + +2  passes through the points ( , ), ( , ), ( , )10 8 20 16 40 22 . So, we get the 
system of equations  100 10 8 400 20 16 1600 40 22a b c a b c a b c+ + = + + = + + =, , .   To apply Cramer’s 
rule, we find
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  D  =  
100 10 1
400 20 1

1600 40 1
1000

1 1 1
4 2 1

16 4 1
1000 2 12 16 6000= = − + − = −[ ] ,

 D1  =  
8

16
22

10 1
20 1
40 1

20
4 1 1
8 2 1
11 4 1

20 8 3 10 100= = − + + =[ ] ,

 D2  =  
100 1
400 1

1600 1
200

1 4 1
4 8 1

16 11 1
200 3 48 84 7800

8
16
22

= = − + − = −[ ] ,

 D3  =  
100 10
400 20

1600 40
2000

1 1 4
4 2 8

16 4 11
2000 10 84 64 2000

8
16
22

= = − + − =[ ] 00 .

 By Cramer’s rule, we get a  =  ∆
∆

= − =
∆
∆

= = = =
∆
∆

= − = − = −1 2 31
60

7800
6000

78
60

13
10

20000
6000

20
6

1, ,b c 00
3

.

  So, the equation of the path is y = − + −
1
60

13
10

10
3

2x x .

 When x = 70, we get y = 6.So, the ball went by 6 metres high over the boundary line and it is  
impossible for a fielder standing even just before the boundary line to jump and catch the ball. Hence 
the ball  went for a super six and the Chennai Super Kings won the match.

EXERCISE 1.4
 1. Solve the following systems of linear equations by Cramer’s rule:  

   (i) 5 2 16 0 3 7 0x y x y− + = + − =,

   (ii) 3 2 12 2 3 13
x

y
x

y+ = + =,  

   (iii) 3 3 11 2 2 9 3 2 25x y z x y z x y z+ − = − + = + + =, ,  4

   (iv) 3 4 2 1 0 1 2 1 2 0 2 5 4 1 0
x y z x y z x y z

− − − = + + − = − − + =, ,

 2.  In a competitive examination, one mark is awarded for every correct answer while 1
4

 mark is 

deducted for every wrong answer. A student answered 100 questions and got 80 marks. How 
many questions did he answer correctly ? (Use Cramer’s rule  to solve the problem).

 3. A chemist has one solution which is 50% acid and another solution which is 25% acid. How 
much each should be mixed to make 10 litres of a 40% acid solution ? (Use Cramer’s rule  to 
solve the problem).

 4. A fish tank can be filled in 10 minutes using both pumps A and B simultaneously. However, 
pump B can pump water in or out at the same rate. If pump B is inadvertently run in reverse, 
then the tank will be filled in 30 minutes. How long would it take each pump to fill the tank by 
itself ? (Use Cramer’s rule  to solve the problem).
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 5. A family of 3 people went out for dinner in a restaurant. The cost of two dosai, three idlies 
and two vadais is ` 150. The cost of the two dosai, two idlies and four vadais is ` 200. The 
cost of five dosai, four idlies and two vadais is ` 250. The family has ` 350 in hand and they 
ate 3 dosai and six idlies and six vadais. Will they be able to manage to pay the bill within the 
amount they had ? 

1.4.3 (iii) Gaussian Elimination Method

 
This method can be applied even if the coefficient matrix is not a square matrix and it is essentially 

the method of substitution which we have already seen. In this method, we transform the augmented 
matrix of the system of linear equations into row-echelon form and then by back-substitution, we get 
the solution.

Example 1.27
 Solve the following system of linear equations, by Gaussian elimination method :

 4 3 6 25 5 7 13 9 1x y z x y z x y z+ + = + + = + + =, , .  2

Solution
 Transforming the augmented matrix to echelon form, we get 

 
4
1
2

3
5
9

6
7
1

25
13
1

4
2

3
9

6
1

25
1 5 7 13

1 2            
















 →↔R R

11

1 5 7
0 17 22
0 1 13

2 2 1
3 3 1

4
2

















 → − −
− −

→ −
→ −

R R R
R R R

,

     
113
27
25

−
−

















 

R R
R R

2 2
3 3

1
1

1 5 7 13
0 17 22 27
0 1 13 25

→ ÷ −
→ ÷ − →













( ),
( )       




 →
















→ −R R R3 3 217

1
0

5
17

7
22

13
27

0 0 199 398
      .

 The equivalent system is written by using the echelon form:

   x y z+ +5 7  =  13 , … (1)

   17 22y z+  =  27 , … (2)

   199z  =  398 . … (3)

 From (3), we get z = =
398
199

2 .

 Substituting z = 2 in (2), we get y =
− ×

=
−

= −
27 22 2

17
17

17
1.

 Substituting z y= = −2 1, in (1), we get x = − × − − × =13 5 1 7 2 4( ) .

 So, the solution is ( , , )x y z= = − =4 1 2 .

 Note. The above method of going from the last equation to the first equation is called the method 
of back substitution.
Example 1.28
 The upward speed v t( ) of a rocket  at time t is approximated by  

v t at bt c( ) ,= + +2  0 100£ £t  where a b c, ,  and  are constants.  It has been 

found that the speed at times t t= =3 6, , and t = 9  seconds are respectively, 
64, 133, and 208 miles per second respectively. Find the speed at time 
t =15 seconds.  (Use Gaussian elimination method.)
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Solution
 Since v v v( ) , ( ) , ( )3 64 6 133 9 208= = =  and , we get the following system of linear equations

   9 3a b c+ +  =  64 ,

   36 6a b c+ +  =  133 ,

   81 9a b c+ +   =  208 .

 

We solve the above system of linear equations by Gaussian elimination method. 

 Reducing the augmented matrix to an equivalent row-echelon form by using elementary row 
operations, we get 

  

[ | ] ,A B R R R R R R=

















 → − → −

9
36
81

3
6
9

1
1
1

64
133
208

2 2 1 3 3 14 9   →→
















− − −

− − −

→ ÷ −

9

0

3

18

1

8

64

368
0 6 3 123 2 2 33   R R R( ), →→ ÷ −

→

 →
















 →

R

R R

3

3 3

2

2

9

0

3

9

1

4

64

184

9
0

0 2 1 41( )    

00 18 8 368

3
2

1
1

64
41

9
0

3
2

1
1

64

0 0 1

3 3 29      
















 →→ −

−

R R R 441
9
0

3
2

1
1

64
41

1 0 0 1 1

3 31

−

















 →
















→ −R R( ) �   

 Writing the equivalent equations from the row-echelon matrix, we get 

 9 3 64 41 1a b c b c c+ + = + = =, , . 2  

 By back substitution, we get c b c a b c
= =

−
=

−
= =

− −
=

− −
=1 41

2
41 1

2
20 64 3

9
64 60 1

9
1
3

, ( ) ( ) , .  

 So, we get v t t t( ) .= + +
1
3

20 12  Hence, v( ) ( ) ( ) .15 1
3

225 20 15 1 75 300 1 376= + + = + + =

EXERCISE 1.5

 1. Solve the following systems of linear equations by Gaussian elimination method:  

    (i) 2 2 3 2 2 3 3 2 1x y z x y z x y z− + = + − = − + =, ,

   (ii) 2 4 6 22 3 8 5 27 2 2x y z x y z x y z+ + = + + = − + + =, ,

 2. If ax bx c2 + +   is divided by x x+ −3 5, , and x −1,  the remainders are 21 61 9,  and  

respectively. Find a b c, . and  (Use Gaussian elimination method.)

 3. An amount of ` 65,000 is invested in three bonds at the rates of 6 8%, %  and 10%  per annum 

respectively. The total annual income is ` 4,800. The income from the third bond is ` 600 
more than that from the second bond. Determine the price of each bond. (Use Gaussian 
elimination method.)

 4. A boy is walking along the path y ax bx c= + +2  through the points ( , ),( , )− − −6 8 2 12 , and ( , )3 8 . He 

wants to meet his friend at P( , )7 60 . Will he meet his friend? (Use Gaussian elimination 

method.)
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1.5 Applications of Matrices: Consistency of system of  
      linear equations by rank method
 In section 1.3.3, we have already defined consistency of a system of linear equation. In this 
section, we investigate it by using rank method. We state the following theorem without proof:
  Theorem 1.14 (Rouche’-Capelli Theorem)

 A system of linear equations, written in the matrix form as AX B= ,  is consistent if and only if the 
rank of the coefficient matrix is equal to the rank of the augmented matrix; that is, ρ ρ( ) ([ | ]).A A B=

 We apply the theorem in the following examples.

1.5.1 Non-homogeneous Linear Equations 
Example 1.29
 Test for consistency of the following system of linear equations and if possible solve: 
x y z x y z x y z x y z+ − = − + = − + = − + + =2 3 3 2 1 2 3 3 1 0, , ,   .

Solution
 Here the number of unknowns is 3. 
 The matrix form of the system is AX B= ,  where 

   A  =  

1
3
1
1

2
1
2
1

1
2
3
1

3
1
3
1

  
−
−
−

−

















=
















=

−






, ,X

x
y
z

B












.

 The augmented matrix is [ | ]A B  =  

1
3
1
1

2
1
2
1

1
2
3
1

3
1
3
1

   
−
−
−

−

−





















.

 Applying Gaussian elimination method on [ | ],A B we get 

[ | ]

,
,
,A B

R R R
R R R
R R R

2 2 1
3 3 1
4 4 1

3
1 2 1
0 7 5
0 4 4
0 3 2

→ −
→ −
→ − →

−
−
−
−

   

33 1
8

0
4

0
2 2
3 3
4 4

1
1
1−

−





















 →

→ −
→ −
→ −

R R
R R
R R

( ) ,
,( )

( )

00 4 4 0
0 3 2 4

2 1 3
7 5 8

3 3 2
4

7 4
7

   

       

−



















−
−
−

→ −
→

R R R
R

,
RR R R R4 2 3 33

1
0

2
7

1
5

3
8

0 0 8 32
0 0 1 4

− → ÷ →

−
−





















− −
   (−− → − →

−
−





















 →8

1
0

0

2
7

0

1
5

1

3
8

4
0 0 1 4

4 4 3)    R R R

11
0
0

2
7
0

1
5

1

3
8
4

0 0 0 0

   

−
−





















 There are three non-zero rows in the row-echelon form of  [ | ].A B So, ρ [ | ] .A B( ) = 3

 So, the row-echelon form of  A   is  

1
0
0
0

2
7
0
0

1
5

1
0

  

−
−



















.  There are three non-zero rows in it. So ρ( ) .A = 3
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 Hence,  ρ ρ( ) ([ | ]) .A A B= = 3

 From the echelon form, we write the equivalent system of equations

 x y z y z z+ − = − = = =2 3 7 5 8 4 0 0      , , , .

 The last equation 0 0=  is meaningful. By the method of back substitution, we get 

   z  =  4
   7 20y −  =  8                ⇒     y = 4 ,
   x  =  3 8 4− +     ⇒   x = −1 .

 So, the solution is ( , , ).x y z= − = =1 4 4 (Note that A   is not a square matrix.)

 Here the given system is consistent and the solution is unique.

Example 1.30
 Test for consistency of the following system of linear equations and if possible solve: 
 4 2 6 8 3 1 3 9 21x y z x y z x y z− + = + − = − − + =, , .  15

Solution
 Here the number of unknowns is 3.

 The matrix form of the system is AX B= ,  where 

   A  =  
4
1

15

2
1
3

6
3

9

8
1

21
    

−

−
−

















=
















= −












, ,X
x
y
z

B 



.

 

Applying elementary row operations on the augmented matrix[ | ],A B we get 

[ | ]A B R R=
−

−
− −

















 → −
−

−
↔

4
1

15

2
1
3

6
3

9

8
1

21
4

15
2
3

1 1
1 2     

33 1
6
9

8
21

1 1
0 6
0 18

2 2 1
3 3 1

4
15   

−















 →
−

−
−

→ −
→ −

R R R
R R R

,
33 1

18 12
54 36

 

                                   

−















          
R R
R R

2 2
3 3

6
18

1 1 3 1
0 1 3 2
0 1 3 2

→ ÷ −
→ ÷ − →

− −



− −
− −

( ),
( ) 












 →
−
−

−
−

















→ −R R R3 3 2

1
0

1
1

3
3

1
2

0 0 0 0
   

 
 

 
�

 So, ρ ρ( ) ([ | ]) .A A B= = 2 3 < From the echelon form, we get the equivalent equations
   x y z+ − 3  =  −1, y z−3 = −2 , 0 = 0 .
 The equivalent system has two non-trivial equations and three unknowns. So, one of the unknowns 
should be fixed at our choice in order to get two equations for the other two unknowns. We fix z
arbitrarily as a real number t , and we get   y = 3 2t − , x = − − − + =1 3 2 3 1( )t t . So, the solution is 

x y t z t= = − =( )1 3 2, , , where  is realt . The above solution set is a one-parameter family of solutions. 

Here, the given system is consistent and has infinitely many solutions which form a one parameter 
family of solutions.
Note
 In the above example, the square matrix A is singular and so matrix inversion method cannot be 
applied to solve the system of equations. However, Gaussian elimination method is applicable and we 
are able to decide whether the system is consistent or not. The next example also confirms the 
supremacy of Gaussian elimination method over other methods. 
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Example 1.31
 Test for consistency of the following system of linear equations and if possible solve: 
x y z x y z x y z− + = − − + = − − + + =9 2 2 18 3 3 27 0, , . 2  3
Solution
 Here the number of unknowns is 3.
 The matrix form of the system is AX B= ,  where 

   A  =  
1
2
3

1
2
3

1
2
3

9
18
27

    
−
−
−

















=
















=
−
−
−









, ,X
x
y
z

B








.

 Applying elementary row operations on the augmented matrix[ | ],A B we get 

 

[ | ]
,

A B
R R R
R R R=

−
−
−

−
−
−

















→ −
→ −

1
2
3

1
2
3

1
2
3

9
18
27

2 2 1
3 3 1

2
3    →

− −















1 1 1 9
0 0 0 0
0 0 0 0

   .

 So, ρ ρ( ) ([ | ]) .A A B= =1 3 < 
 From the echelon form, we get the equivalent equations x y z− + = − = =9 0 0 0, , .  0    
 The equivalent system has one non-trivial equation and three unknowns. 
 Taking y s z t= =, arbitrarily, we get x s t x s t− + = − = − + −9 9; . or 
 So, the solution is x s t y s z t s t= − + − = =( )9 , , ,  where  and  are parameters.
 The above solution set is a two-parameter family of solutions.
 Here, the given system of equations is consistent and has infinitely many solutions which form a 
two parameter family of solutions.
Example 1.32
 Test the consistency of the following system of linear equations                                     

 x y z x y z x y z x y z− + = − − + = − + = − + =9 4 6 4 2 7, , , . 2  3
Solution
 Here the number of unknowns is 3.
 The matrix form of the system of equations is AX B= ,  where 

   A  =  

1
2
3
4

1
1
1
1

1
1
1
2

9
4
6
7

   

−
−
−
−



















=
















=

−




, ,X

x
y
z

B 












 .

 Applying elementary row operations on the augmented matrix [ | ],A B we get  

[ | ]

,

A B

R R R
R

=

−
−
−
−

−



















→ −
1
2
3
4

1
1
1
1

1
1
1
2

9
4
6
7

2 2 12

      
33 3 1
4 4 1

3
4

1 1 1 9
0 1 1 22
0 2 2 33
0 3 2 43

→ −
→ − →

− −



 −
−
−

R R
R R R

,

      














→ −

                                       
R R3 3 2RR
R R R

2
4 4 23

1
0

1
1

1
1

9
22

0 0 0 11
0 0 1 23

,
→ − →

−
−

−













−
−

      






 →

−
−

−

−




















−
�R R3 4

1
0

0

1
1

0

1
1

0

9
22

11
0 0 1 23

      


 So, ρ ρ( ) ([ | ]) .A A B= =3 4 and   Hence ρ ρ( ) ([ | ]).A A B≠
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 If we write the equivalent system of equations using the echelon form,  we get 

 x y z y z z− + = − − = = − = −9 22 23 0 11, , , .         
 The last equation is a contradiction.  

 So the given system of equations is inconsistent and has no solution. 

 By Rouche’-Capelli theorem, we have the following rule:

 • If there are n  unknowns in the system of equations and ρρ ρρ( ) ([ | ]) ,A A B n== ==  then the 
system AX B== , is consistent and has a unique solution. 

 • If there are n  unknowns in the system AX B== , and ρρ ρρ( ) ([ | ]) ,A A B n k k== == −− ≠≠ 0  then 

the system is consistent and has infinitely many solutions and these solutions form a  
k −− parameter family. In particular, if there are 3  unknowns in a system of equations 
and ρρ ρρ( ) ([ | ]) ,A A B== == 2  then the system has infinitely many solutions and these 
solutions form a one parameter family. In the same manner, if there are 3  unknowns in 
a system of equations and ρρ ρρ( ) ([ | ]) ,A A B== == 1  then the system has infinitely many 
solutions and these solutions form a two parameter family. 

 • If ρρ ρρ( ) ([ | ]),A A B≠≠  then the system AX B== is inconsistent and has no solution. 

Example 1.33
 Find the condition on a b,  and c  so that the following system of linear equations has one 
parameter family of solutions: x y z a x y z b x y z c+ + = + + = + + =, , .  32 3 5 7

Solution
 Here the number of unknowns is 3.

 The matrix form of the system is AX B= ,  where A X
x
y
z

B
a
b
c

=
















=
















=
















1
1
3

1
2
5

1
3
7

    , , .

 Applying elementary row operations on the augmented matrix [ | ],A B we get

 

[ | ]
,

A B
a
b
c

R R R
R R R=

















 →
→ −
→ −

1
1
3

1
2
5

1
3
7

1
0
0

2 2 1
3 3 13    

11 1

1
0

1
1

1
2

1 2
2 4 3

0 0 0

3 3 22

  

   

a

a
b a

b a
c a

R R R

−
−

















 → −→ −

(( ) ( ) ( )c a b a

a
b a

c b a− − −

















= −
− −
















3 2

1
0
0

1
1
0

1
2
0 2

   

.

 In order that the system should have one parameter family of solutions, we must have 

 ρ ρ( ) ([ , ]) .A A B= = 2 So, the third row in the echelon form should be a zero row. 

 So, c b a− − =2 0   ⇒   c a b= + 2 .
Example 1.34
 Investigate for what values of λ  and μ the system of linear equations                                     

 x y z x y z x y z+ + = + + = + − =2 7 3 5 5, , λ µ
 has (i) no solution (ii) a unique solution (iii) an infinite number of solutions.
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Solution
 Here the number of unknowns is 3.

 The matrix form of the system is AX B= ,  where A X
x
y
z

B=
−

















=
















=
















1
1
1

2
1
3

1

5

7

5
    λ µ, , ..

 Applying elementary row operations on the augmented matrix [ | ],A B we get  

 

[ | ]A B R R=
−

















 →


−↔

1
1
1

2
1
3

1

5

7

5

1

1

2

1

1 7
1 3 5 52 3      λ µ

λ µ













  

R R R
R R R R R

2 2 1
3 3 1 3

1 2 1 7
0 1 6 2
0 1 1 7

→ −
→ − → →















− − −

− −
,

   
λ µ

33 2

1
0

2
1

1
6

7
2

0 0 7 9

+ → − −














− −

R    
λ µ

.

 (i) If  λ = 7  and m ¹ 9 , then ρ ρ( ) ([ | ]) .A A B= =2 3 and   So ρ ρ( ) ([ | ]).A A B≠  Hence the 

given system is inconsistent and has no solution.

 (ii) If  λ ≠ 7  and  m  is any real number, then ρ ρ( ) ([ | ]) .A A B= =3 3 and  

  So ρ ρ( ) ([ | ]) .A A B= = =3  Number of unknowns  Hence the given system is consistent and 

has a unique solution.

 (iii) If  λ = 7  and µ = 9,  then ρ ρ( ) ([ | ]) .A A B= =2 2 and  

 So, ρ ρ( ) ([ | ]) .A A B= = <2  Number of unknowns Hence the given system is consistent and has 

infinite number of solutions.

EXERCISE 1.6

 1. Test for consistency and if possible, solve the following systems of equations by rank method.

   (i) x y z x y z x y z− + = + + = − + =2 2 2 4 7 4 4, ,

   (ii) 3 2 3 2 1 7 4 5x y z x y z x y z+ + = − + = − + =, ,

   (iii) 2 2 5 1 3 2 4x y z x y z x y z+ + = − + = + + =, ,

   (iv) 2 2 6 3 3 6 4 2 2 4x y z x y z x y z− + = − + = − + =, ,

 2. Find the value of k  for which the equations kx y z x ky z x y kz− + = − + = − − + =2 1 2 2 2 1, ,  
have

   (i)  no solution    (ii) unique solution (iii) infinitely many solution

 3. Investigate the values of λ  and m  the system of linear equations 2 3 5 9x y z+ + = ,

  7 3 5 8 2 3x y z x y z+ − = + + =, λ µ , have

  (i)  no solution   (ii) a unique solution     (iii) an infinite number of solutions.
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1.5.2  Homogeneous system of linear equations 
 We recall that a homogeneous system of linear equations is given by 

 

a x a x a x a x
a x a x a x a x

n n

n n

11 1 12 2 13 3 1

21 1 22 2 23 3 2

0+ + + + =
+ + + +





   
  

,
  = 

                               
0

1 1 2 2 3

,
     

a x a x am m m+ + xx a xmn n3 0+ + =  ,

 ... (1)

where  the coefficients a i m j nij , , , , ; , , ,= =1 2 1 2   are constants. The above system is always 

satisfied by x x xn1 20 0 0= = =, , , . This solution is called the trivial solution of (1). In other words, 

the system (1)  always possesses a solution.  

 The above system (1) can be put in the matrix form AX Om= ×  1, where 

 

A

a a a a
a a a a

n

n=

11 12 13 1

21 22 23 2

          
          
       

�
�

� � �      
        

� �
�

�
a a a a

X

x
x

xm m m mn n1 2 3

1

2



















=














,





=



















×, .Om   1

0
0

0
�

 We will denote Om   × 1  simply by the capital letter O.SinceO  is the zero column matrix, it is 

always true that ρ ρ( ) ([ | ]) .A A O m= ≤  So, by Rouche’-Capelli Theorem, any system of 

homogeneous linear equations is always consistent.

 Suppose that m n< , then there are more number of unknowns than the number of equations. So 

ρ ρ( ) ([ | ]) .A A O n= < Hence the system (1) possesses a non-trivial solution. 

 Suppose that m n= ,  then there are equal number of equations and unknowns:

 

a x a x a x a x
a x a x a x a x

n n

n n

11 1 12 2 13 3 1

21 1 22 2 23 3 2

0+ + + + =
+ + + +





   
  

,
  = 

                             
0

1 1 2 2 3 3

,
     

a x a x a xn n n+ + ++ + = a xnn n  0,

 ... (2)

 Two cases arise. 

Case (i)
 If ρ ρ( ) ([ | ]) ,A A O n= = then the system (2) has a unique solution and it is the trivial solution. 

Since ρ( ) ,A n= A ¹ 0.  So for trivial solution | |A ¹ 0 .

Case (ii)
 If ρ ρ( ) ([ | ]) ,A A O n= <  then the system (2) has a non-trivial solution. Since ρ( ) ,A n< A = 0.
In other words, the homogeneous system (2) has a non-trivial solution if and only if the determinant 
of the coefficient matrix is zero.  
 Suppose that m n> ,  then there are more number of equations than the number of unknowns. 
Reducing the system by elementary transformations, we get ρ ρ( ) ([ | ]) .A A O n= ≤
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Example 1.35
 Solve the following system: 

 x y z x y z x y z+ + = + + = + + =2 3 0 3 4 4 0 7 10 12 0, , .  
Solution

 Here the number of equations is equal to the number of unknowns.

 Transforming into echelon form (Gaussian elimination method), the augmented matrix becomes

 

1
3
7

2
4

10

3
4

12

0
0
0

1 2
0 2
0

2 2 1
3 3 1

3
7   

















 → −
→ −
→ −

R R R
R R R

,

−− −
−

















 →
→ ÷ −
→ ÷ −

4 9 0

3 0 1 2
5 0 0 2

0 4

2 2
3 3

1
1    

R R
R R

( ),
( )

33 0

1
0

2
2

3
5

0
0

5 0
9 0

0 0 1 0

3 3 22

  

    

















 →










−

→ −R R R 



 →
















→ ÷ −R R3 3 1

1
0

2
2

3
5

0
0

0 0 1 0

( ) .   

 So, ρ ρ( ) ([ | ]) .A A O= = =3 Number of unknowns  

 Hence, the system has a unique solution. Since x y z= = =0 0 0,   ,   is always a solution of the 

homogeneous system, the only solution is the trivial solution x y z= = =0 0 0, .  ,  

Note

 In the above example, we find that 

 

A = = − − − + − = − + = − ≠
1 2 3
3 4 4
7 10 12

1 48 40 2 36 28 3 30 28 8 16 6 2 0( ) ( ) ( ) .

Example 1.36

 Solve the system: x y z x y z x y z+ − = − + = − + =3 2 0 2 4 0 11 14 0, , .  

Solution
 Here the number of unknowns is 3. 

 Transforming into echelon form (Gaussian elimination method), the augmented matrix becomes

     

1
2
1

3
1
11

2
4

14

0
0
0

1 3
0
0

2 2 1

3 3 1

2

   −

−

−

−

















 →
→ −
→ −

R R R
R R R

,

77 8 0
14 16 0

2 0 1 3
0 7
0 7

2 2

3 3

1
2

−

−















 →
→ ÷ −
→ ÷ −   

R R
R R

( ),
( )

−− −

−−

−

















 →















→ −

2 0 1
0

3
7

2
8

0
08 0

08 0 0 0 0

3 3 2R R R   


.

     

So, ρ ρ( ) ([ | ]) .A A O= = < =2 3 Number of unknowns  

 Hence, the system has a one parameter family of solutions. 

 Writing the equations using the echelon form, we get 

 x y z y z+ − = − = =3 2 0 8 0 0, , .     7                0

 Taking z t= ,  where t  is an arbitrary real number, we get by back substitution,
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z t

y t y t

x t t x t t

=

− = ⇒ =

+ 





 − = ⇒ +

−
= ⇒

,

7 8 0 8
7

3 8
7

2 0 24 14
7

0

     ,

       x t
= −

10
7

.

 So, the solution is x t y t z t t= − = =







10
7

8
7

, , ,  where  is any real number.

Example 1.37
 Solve the system: x y z x y z x y z x y z+ − = − + = − + = − + =2 0 2 3 0 3 7 10 0 6 9 10 0, , , .

Solution
 Here the number of equations is 4 and the number of unknowns is 3. Reducing the augmented 
matrix to echelon-form, we get 

 

[ | ]

,

A O

R R R
R

=
−
−
−

−



















→ −
1
2
3
6

1
3
7
9

2
1

10
10

0
0
0
0

2 2 12

     
33 3 1
4 4 1

3
6

1 1 2 0
0 5 5 0
0 10 16 0
0 15 22 0

→ −
→ − →

−



 −
−
−

R R
R R R

,

      














 →

−

−
−
−

→ ÷ −
→ ÷ −

R R
R R

2 2
3 3

5
2

1

0

1

15

2
0 1 1
0 5

( ),
( )     

88 0
22

0

0

1
0

1
1

0

0
0

3 3 2
4 4 2

5
15

  

  





















 →
→ −
→ +

R R R
R R R

,

00 3 0
0 7 0

2
1

0
0

1
03 3

4 4

3
7    

−
−





















 →
−

→ ÷ −
→ ÷

R R
R R

( ),

00 0 1 0
0 0 1 0

1
1

2
1

0
0

1
0
0

1
1
0

0

4 4 3       

−
−





















 →→ −R R R

00 0 0

2
1

1

0
0
0

    

−
−





















 

So,  Number of unknowns  
Hence the system 

ρ ρ( ) ([ | ]) .A A O= = =3
hhas trivial solution only.

Example 1.38
 Determine the values of λ  for which the following system of equations      

 ( ) , ( ) , ( )3 8 3 3 0 3 8 3 0 3 3 8 0λ λ λ− + + = + − + = + + − =x y z x y z x y z 3  3

 has a non-trivial solution.

Solution
 Here the number of unknowns is 3. So, if the system is consistent and has a non-trivial solution, 
then the rank of the coefficient matrix is equal to the rank of the augmented matrix and is less than 3. 
So the determinant of the coefficient matrix should be 0. 

 Hence we get 

 
3 8

3
3

3
3 8

3

3
3

3 8

λ
λ

λ

−
−

−
   =  0  or 

3 2
3
3

3 2
3 8

3

3 2
3

3 8
0

λ λ
λ

λ

λ

− −
−

−

−
=   (by applying R R R R1 1 2 3→ + + )

 or ( )3 2
1
3
3

1
3 8

3

1
3

3 8
λ λ

λ
− −

−
   =  0  (by taking out ( )3 2λ −  from R1 )
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 or ( )3 2
1
0
0

1
3 11

0

1
0

3 11
λ λ

λ
− −

−
   =  0  (by applying R R R R R R2 2 1 3 3 13 3→ − → −, )

 or ( )( )3 2 3 11 2λ λ− −  0 . So λ =
2
3

 and λ =
11
3

.

 We now give an application of system of linear homogeneous equations to chemistry. You are 
already aware of balancing chemical reaction equations by inspecting the number of atoms present on 
both sides. A direct method is explained in the following example. 
Example 1.39
 By using Gaussian elimination method, balance the chemical reaction equation:

 C H O CO H O5 8 2 2 2+ → + .  

 (The above is the reaction that is taking place in the burning of organic compound called isoprene.)

Solution
 We are searching for positive integers x x x x1 2 3 4, ,  and  such that 

 x C H x O x CO x H O1 5 8 2 2 3 2 4 2+ = + . .. (1)

 The number of carbon atoms on the left-hand side of  (1)  should be equal to the number of carbon 
atoms on the right-hand side of (1). So we get a linear homogenous equation 

 5 1 3x x=  ⇒  5 01 3x x− =  . ... (2)

 Similarly, considering hydrogen and oxygen atoms, we get respectively, 

 8 21 4x x=   ⇒  4 = 0x x1 4− ,  ... (3)

 2 22 3 4x x x= +  ⇒  2 22 3 4x x x− − = 0 . ... (4)

 Equations (2), (3), and (4) constitute a homogeneous system of linear equations in four unknowns. 

 The augmented matrix is [ | ] .A B =
−

−
−
−

















5
4
0

0
0
2

1
0
2

0
1
1

0
0
0

        

 By Gaussian elimination method, we get 

 

[ | ]A B R R R R1 2 2 3

4 0 0 1 0
5
0

0
2

1
2

0
1

0
0

↔ ↔ → −
− −


















−

         →→
−

−















− −
4

5

0

0

0

1

1

0

0

0
0 2 2 1 0         

                                                         R R R3 3 14 5

4
→ − → 00 2 2 1 0

0

0

0

0

4

1

5

0

0
      − −

−

−














.

 Therefore,  Number of unknownsρ ρ( ) ([ | ]) .A A B= = < =3 4

 The system is consistent and has infinite number of solutions.

 Writing the equations using the echelon form, we get 4 0 2 2 0 4 5 01 4 2 3 4 3 4x x x x x x x− = − − = − + =, , .

 So, one of the unknowns should be chosen arbitrarily as a non-zero real number. 

 Let us choose x t t4 0= ≠, . Then, by back substitution, we get x t x t x t
3 2 1

5
4

7
4 4

= = =, , .
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 Since  x x x x1 2 3 4, , , and  are positive integers,  let us choose  t = 4.

 Then, we get   x x x x1 2 3 41 7= =, , =5 and =4.

 So, the balanced equation is  C H O CO H O5 8 2 2 27 5 4+ → + .

Example 1.40
 If the system of equations px by cz ax qy cz ax by rz+ + = + + = + + =0 0 0, , has a non-trivial 

solution and p a q b r c¹ ¹ ¹, , ,  prove that p
p a

q
q b

r
r c−

+
−

+
−

= 2.

Solution
 Assume that the system px by cz ax qy cz ax by rz+ + = + + = + + =0 0 0, ,  has a non-trivial 

solution. 

 So, we have 
p b c
a q c
a b r

= 0.Applying R R R R R R2 2 1 3 3 1→ − → − and  in the above equation, 

we get 
p b c

a p q b
a p r c

p b c
p a q b
p a r c

− −
− −

= − − −
− − −

=0
0

0 0
0

0. ( )
( )

. That is, 

 Since p a q b r c¹ ¹ ¹, , , we get ( )( )( )p a q b r c

p
p a

b
q b

c
r c

− − −
− − −

−
−

=1 1 0
1 0 1

0 .

 So, we have   

p
p a

b
q b

c
r c− − −

−
−

=1 1 0
1 0 1

0.

 Expanding the determinant, we get p
p a

b
q b

c
r c−

+
−

+
−

= 0.

 That is,   p
p a

q q b
q b

r r c
r c

p
p a

q
q b

r
r c−

+
− −

−
+

− −
−

= ⇒
−

+
−

+
−

=
( ) ( ) .0 2   

EXERCISE 1.7
 1.  Solve the following system of homogenous equations.
   (i) 3 2 7 0 4 3 2 0 5 9 23 0x y z x y z x y z+ + = − − = + + =, ,
   (ii) 2 3 0 2 0 3 3 0x y z x y z x y z+ − = − − = + + =, ,

 2. Determine the values of λ  for which the following system of equations      

   x y z x y z x y z+ + = + + = + + =3 0 3 0 2 0, , 4  2λ  has 
  (i) a unique solution  (ii) a non-trivial solution.
 3. By using Gaussian elimination method, balance the chemical reaction equation:
  C H O H O CO2 6 2 2 2+ → +
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EXERCISE 1.8
Choose the Correct answer :

 1. If | ) | | |adj(adj A A= 9 , then the order of the square matrix A  is
  (1) 3   (2)  4 (3) 2 (4) 5
 2. If A  is a 3 3×  non-singular matrix such that AA A AT T= and B A AT= −1 , then BBT =

  (1) A    (2) B  (3) I  (4) BT

 3. If A =










3 5
1 2

, B A= adj  and C A= 3 , then | |
| |

adj B
C

 =

  (1) 1
3

   (2) 1
9

 (3) 1
4

 (4) 1

 4. If A
1 2
1 4

6 0
0 6

−







 =









 , then A =

  (1) 
1 2
1 4

−







  (2) 

1 2
1 4−









  (3) 

4 2
1 1−









  (4) 

4 1
2 1

−









 5. If A =










7 3
4 2

, then 9I A− =

  (1) A−1  (2) A−1

2
 (3) 3 1A−  (4) 2 1A−

 6. If A =










2 0
1 5

 and B =










1 4
2 0

 then | ( ) |adj AB =

  (1) −40  (2) −80  (3) −60  (4) −20

 7. If P
x

=
−

















1 0
1 3 0
2 4 2

 is the adjoint of 3 3×  matrix A and | |A = 4 , then x  is

  (1) 15   (2) 12  (3) 14  (4) 11

 8. If A =
−

−
−

















3 1 1
2 2 0
1 2 1

 and A
a a a
a a a
a a a

− =
















1
11 12 13

21 22 23

31 32 33

 then the value of a23  is

  (1) 0    (2) −2  (3) −3  (4) −1

 9. If A B,  and C  are invertible matrices of some order, then which one of the following is not 

true?
  (1) adj A A A= −| | 1  (2) adj adj adj ( ) ( )( )AB A B=

  (3) det (det )A A− −=1 1  (4) ( )ABC C B A− − − −=1 1 1 1

 10. If ( )AB − =
−

−










1 12 17
19 27

and A− =
−

−










1 1 1
2 3

, then B− =1

  (1) 
2 5
3 8

−
−









  (2) 

8 5
3 2









  (3) 

3 1
2 1









  (4) 

8 5
3 2

−
−
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 11. If A AT −1  is symmetric, then A2 =

  (1) A−1  (2) ( )AT 2  (3) AT  (4) ( )A−1 2

 12. If A  is a non-singular matrix such that A− =
− −











1 5 3
2 1

, then ( )AT − =1

  (1) 
−









5 3
2 1

 (2) 
5 3
2 1− −









  (3) 

− −









1 3
2 5

 (4) 
5 2
3 1

−
−











 13. If A
x

=



















3
5

4
5
3
5

 and A AT = −1 , then the value of x  is

  (1) −4
5

 (2) −3
5

 (3) 3
5

 (4) 4
5

 14. If A =
−



















1
2

2
1

tan

tan

θ

θ
and AB I= , then B =

  (1) cos2

2
θ






 A  (2) cos2

2
θ






 AT  (3) (cos )2θ I  (4) sin2

2
θ






 A

 15. If A =
−











cos sin
sin cos

θ θ
θ θ

and A A
k

k
( )adj =











0
0

, then k =

  (1) 0    (2) sinθ  (3) cosθ  (4) 1

 16. If A =
−











2 3
5 2

 be such that λ A A− =1 , then λ  is

  (1) 17   (2) 14  (3) 19  (4) 21

 17. If adj A =
−











2 3
4 1

 and adj B =
−

−










1 2
3 1

 then adj ( )AB  is

  (1) 
− −

−










7 1
7 9

 (2) 
−
− −











6 5
2 10

 (3) 
−
− −











7 7
1 9

 (4) 
− −

−










6 2
5 10

 18. The rank of the matrix 
1 2 3 4
2 4 6 8
1 2 3 4− − − −

















  is

  (1) 1   (2) 2  (3) 4  (4) 3

 19. If  x y e x y e
m b
n d

a m
c n

a b
c d

a b m c d n= = ∆ = ∆ = ∆ =, , , , ,1 2 3  then the values of x   and y  

are respectively,

  (1) e e( / ) ( / ),D D D D2 1 3 1     (2)  log( / ), log( / )D D D D1 3 2 3  
  (3)  log( / ), log( / )D D D D2 1 3 1    (4) ) e e( / ) ( / ),D D D D1 3 2 3  
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 20. Which of the following is/are correct?
   (i) Adjoint of a symmetric matrix is also a symmetric matrix.
   (ii) Adjoint of a diagonal matrix is also a diagonal matrix.
   (iii) If A  is a square matrix of order n  and λ   is a scalar, then adj adj( ) ( )λ λA An= .

   (iv) A A A A A I( ) ( ) | |adj adj= =

  (1) Only (i) (2) (ii) and (iii) (3) (iii) and  (iv) (4) (i), (ii) and (iv)

 21. If ρ ρ( ) ([ | ])A A B= , then the system AX B= of linear equations is
  (1) consistent and has a unique solution (2) consistent
  (3) consistent and has infinitely many solution (4) inconsistent

 22. If 0 ≤ ≤θ π and the system of equations x y z x y z+ − = − + =(sin ) (cos ) ,(cos ) ,θ θ θ0 0

(sin )θ x y z+ − = 0 has a non-trivial solution then θ  is

  (1) 2
3
p  (2) 3

4
p  (3) 5

6
p  (4) p

4

 23. The augmented matrix of a system of linear equations is 
1 2 7 3
0 1 4 6
0 0 7 5λ µ− +

















 . The system 

has infinitely many solutions if
  (1) λ µ= ≠ −7 5,  (2) λ µ= − =7 5,  (3) λ µ≠ ≠ −7 5,  (4) λ µ= = −7 5,

 24. Let A =
−

− −
−

















2 1 1
1 2 1

1 1 2
 and 4

3 1 1
1 3
1 1 3

B x=
−

−

















 . If B  is the inverse of A , then the value of x  is

  (1) 2    (2) 4   (3) 3   (4) 1 

 25. If A =
−
−
−

















3 3 4
2 3 4
0 1 1

, then adj(adj A)  is 

  (1) 
3 3 4
2 3 4
0 1 1

−
−
−

















 (2) 
6 6 8
4 6 8
0 2 2

−
−
−

















 (3) 
− −
− −

−

















3 3 4
2 3 4

0 1 1
 (4) 

3 3 4
0 1 1
2 3 4

−
−
−

















SUMMARY
 (1) Adjoint of a square matrix A =Transpose of the cofactor matrix of A .

 (2) A A A A A In( ) ( ) .adj adj = =  

 (3) A
A

A− =1 1 adj .  

 (4) (i) A
A

− =1 1

   
(ii) A AT T( ) = ( )− −1 1    (iii) λ

λ
λA A( ) =− −1 11 ,   where   is a non-zero scalar.

Chapter 1 Matrices.indd   50 3/10/2019   8:17:17 PM



Applications of Matrices and Determinants51

 (5) (i) ( ) .AB B A− − −=1 1 1  (ii) ( )A A− − =1 1

 (6) If A  is a non-singular square matrix of order n ,  then

 (i) adj  adjA A
A

A( ) = ( ) =− −1 1 1  (ii) adj A A n= −| | 1

 (iii) adj adj  A A An( ) = −| | 2   (iv) adj adj   is a nonzero scalar( ) ( ),λ λ λA An= −1  

 (v) adj adj( ) ( )A A n= −1 2

  (vi) ( )adj adjA AT T= ( )  

 (vii) adj adj( ) ( )(adj )AB B A=  

 (7) (i) A
A

A− = ±1 1
adj 

adj .    (ii)  A
A

A= ± ( )1
adj 

adj adj .

 (8)  (i) A matrix A is orthogonal if AA A A IT T= =  

   (ii) A matrix A is orthogonal if and only if A is non-singular and A AT− =1  
 (8) Methods to solve the system of linear equations AX B=  
   (i) By matrix inversion method X A B A= ≠−1 0, | |  

   (ii) By Cramer’s rule x y z=
∆
∆

=
∆
∆

=
∆
∆

∆ ≠1 2 3 0, , , .

   (iii) By Gaussian elimination method

 (9)   (i) If ρ ρ( ) ([ | ])A A B= = number of unknowns, then the system has unique solution.

   (ii) If ρ ρ( ) ([ | ])A A B= < number of unknowns, then the system has infinitely many 

solutions.
   (iii) If ρ ρ( ) ([ | ])A A B≠ then the system is inconsistent and has no solution.

 (10) The homogenous  system of linear equations AX = 0  

   (i) has the trivial solution, if   | |A ¹0 .
   (ii) has a non trivial solution, if  | |A = 0 .
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“Imaginary numbers are a fine and wonderful refuge of the divine spirit
almost an amphibian between being and non-being. ”

- Gottfried Leibniz

  Many mathematicians contributed to the full development of complex 
numbers. The rules for addition, subtraction, multiplication, and division of 
complex numbers were developed by the Italian mathematician Rafael Bombelli. 
He is generally regarded as the first person to develop an algebra of complex 
numbers. In honour of his accomplishments, a moon crater was named Bombelli.
Real Life Context 
 Complex numbers are useful in representing a phenomenon that has two parts varying at the 
same time, for instance an alternating current. Engineers, doctors, scientists, vehicle designers and 
others who use electromagnetic signals need to use complex numbers for strong signal to reach its 
destination. Complex numbers have essential concrete applications in signal processing, control 
theory, electromagnetism,  fluid dynamics, quantum  mechanics, cartography, and vibration analysis.

LEARNING OBJECTIVES

Upon completion of this chapter, students will be able to:

 ● perform algebraic operations on complex numbers

 ● plot the complex numbers in Argand plane

 ● find the conjugate and modulus of a complex number

 ● find the polar form and Euler form of a complex number 

 ● apply de Moivre theorem to find the n th roots of complex numbers.

2.1 Introduction to Complex Numbers
 Before introducing complex numbers, let us try to answer the question “Whether there exists 
a real number whose square is negative?” Let’s look at simple examples to get the answer for it. 
Consider the equations 1 and 2.

Equation 1 Equation 2

x

x
x

2 1 0

1
1

− =

= ±
= ±

x

x
x

2 1 0

1

+ =

= ± −
= ±?

Rafael Bombelli

Chapter

2 Complex Numbers
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Complex Numbers53

           This is because, when we square a real number it is impossible to get a negative real number. 
If equation 2 has solutions, then we must create an imaginary number as a square root of −1. This 
imaginary unit −1  is denoted by i .The imaginary number i  tells us that i2 1= − .  We can use this fact 

to find other powers of i .

2.1.1 Powers of imaginary unit i

 We note that, for any integer n , in  has only four possible values:   they correspond to values of 

n when divided by 4 leave the remainders 0, 1, 2, and 3.That is when the integer n n≤ − ≥4 4or , 

using division algorithm, n can be written as n q k k k q= + ≤ <4 0 4, , and are integers  and we 

write 
i i i i i i i in q k q k q k q k k( ) = ( ) = ( ) = ( ) ( ) = ( ) ( ) = ( )+4 4 4 1( ) ( )

Example  2.1 
 Simplify the following 

 (i) i7  (ii) i 1729  (iii) i −1924 + i 2018  (iv)   in

n=
∑

1

102

 (v) i i i i2 3 40


Solution
 (i) i i i i( ) = ( ) =( ) = −+7 4 3 3 ;                   (ii) i i i i1729 1728 1= =

 (iii) i i i i i i( ) + ( ) = ( ) + = ( ) + = − =− − + +1924 2018 1924 0 2016 2 0 2 1 1 0( ) ( )

x

y

1-1-2

1

2

-1

3

2O

 � � 2 1f x x� �

x

y

1

1-1-2 2

2

-1

3

O

 � � 2 1f x x� �

i
0

1= ,  i i1 = i 2 1= − i i i i3 2= = − i i i
4 2 2 1= =

i
i

i
i

i( ) = =
( )

= −−1
2

1
i( ) = −− 2 1 i i( ) =− 3 i i( ) = =− 4 41

Fig. 2.1
 Equation 1 has two real solutions,  
x = −1  and x =1. We know that solving an 
equation in x  is equivalent to finding the  

x -intercepts of a graph of f x x( ) = −2 1   
crosses the x -axis at ( , )−1 0  and ( , )1 0 .

Fig. 2.2
 By the same logic, equation 2 has no real 
solutions since the graph of  f x x( ) = +2 1  does 
not cross the x -axis; we can see this by looking 
at the graph of f x x( ) = +2 1 .

Chapter 2 Complex Numbers.indd   53 3/10/2019   8:22:41 PM



54XII - Mathematics

 (iv) i i i i i i i i i i i i in

n=
∑ = + + +( ) + + + +( ) + + + + +( )

1

102
1 2 3 4 5 6 7 8 97 98 99 100

 ++ +i i101 102

   =  i i i i i i i i i i i i i i1 2 3 4 1 2 3 4 1 2 3 4 1 2+ + +( ) + + + +( ) + + + + +( ) + +

   =  i i i i i i i+ −( ) + −( ) +{ }+ + −( ) + −( ) +{ }+ + + −( ) + −( ) +{ }+ + −( )1 1 1 1 1 1 1�…       
   =  0 0 0 1+ + + − i
   =  − +1 i  (What is this number?)

 (v) i i i i i i i i2 3 40 1 2 3 40
40 41

2 820 0 1

= + + + + = = = =
x

.

Note
 (i) ab a b=  valid only if at least one of a b,  is non-negative.

  For example, 6 36 4 9 4 9= = − − = − −( )( ) ( ) ( ) = ( )( )2 3i i = = −6 62i , a contradiction.

  Since we have taken ( )( ) ( ) ( )− − = − −4 9 4 9 , we arrived at a contradiction. 

  Therefore ab a b=  valid only if at least one of a b,  is non-negative.

 (ii) For y∈ , y2 0≥

          Therefore,    ( )( ) ( )( )− = −1 12 2y y

                          ( ) ( ) ( ) ( )− = −1 12 2y y

                                          iy yi= .  

EXERCISE 2.1
 Simplify the following:

  1.  i i1947 1950+  2. i i1948 1869− −  3. in

n=
∑

1

12

  4.  i
i

59
59

1
+  5. i i i i2 3 2000

  6. in

n

+

=
∑ 50

1

10

 

2.2 Complex Numbers 
 We have seen that the equation x2 1 0+ =  does not have a solution in real number system.
 In general there are polynomial equations with real coefficient which have no real solution. 
 We enlarge the real number system so as to accommodate solutions of such polynomial equations. 
This has triggered the mathematicians to define complex number system.
 In this section, we define
 (i) Complex numbers in rectangular form
 (ii) Argand plane
 (iii) Algebraic operations on complex numbers 
 The complex number system is an extension of real number system with imaginary unit i .

 The imaginary unit i  with the property i2 1= − , is combined with two real numbers x yand

by the process of addition and multiplication, we obtain a complex number x iy+ .  The symbol ' '+  

should be treated as vector addition. It was introduced by Carl Friedrich Gauss (1777-1855).
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2.2.1 Rectangular form

Definition 2.1 (Rectangular form of a complex number)

 A complex number is of the form x iy x yi++ ++( )or , where x and y are real numbers.  
x is called the real part and y  is called the imaginary part of the complex number.

 If x = 0 , the complex number is said to be purely imaginary. If y = 0 , the complex number is 
said to be real. Zero is the only number which is at once real and purely imaginary. It is customary to 
denote the standard rectangular form of a complex number x iy+ as z and we write x z=Re( )  and 
y z= Im( ) . For instance, Re Im5 7 5 5 7 7−( ) = −( ) = −i iand .  

 The numbers of the form α β β+ ≠i , 0  are called imaginary (non real complex) numbers.
 The equality of complex numbers is defined as follows.

Definition 2.2

 Two complex numbers z x iy1 1 1== ++  and z x iy2 2 2== ++  are said to be equal if and only if 
Re( ) Re( )z z1 2== and Im( ) Im( )z z1 2== . That is x x y y1 2 1 2== ==and .

 For instance, if α β+ = − +i i7 3 , then α β= − =7 3and .

2.2.2 Argand plane 
 A complex number z x iy= +  is uniquely determined by an ordered pair of real numbers x y,( ) . 
The numbers 3 8 6− i,  and −4i  are equivalent to 3 8, ,−( ) 6 0, ,( )  and 0 4,−( )  respectively.  In this 
way we are able to associate a complex number z x iy= +  with a point x y,( )  in a coordinate plane.  
If we consider x  axis as real axis and y axis as imaginary axis to represent a complex number, then 
the xy -plane is called complex plane or Argand plane. It is named after the Swiss mathematician Jean 
Argand (1768 – 1822).
 A complex number is represented not only by a point, but also by a position vector pointing from 
the origin to the point. The number, the point, and the vector will all be denoted by the same letter z . 
As usual we identify all vectors which can be obtained from each other by parallel displacements. In this 
chapter,   denotes the set of all complex numbers. Geometrically, a complex number can be viewed as 
either a point in 



2 or a vector in the Argand plane.

 Fig. 2.3 Fig. 2.4 Fig. 2.5

Illustration 2.1
        Here are some complex numbers: 2+ i, − +1 2i,  3 2 0 2- , ,i i  − 3 2+ − ,− −2 3i , cos sinπ π

6 6
+ i ,  

and 3 0+ i.  Some of them are plotted in Argand plane.

O O

iα β+

Re

Im

Complex number by a position vector
pointing from the origin to the point

iα β+

α

β

Re

Im

Complex number 
    as a point

i

α
β

+

Re

Im

Complex number 
    as a vector

O
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The diagram below shows k z for 

z

z2

Re

Im

k = 2 k= 1
2-

z

Re

Im

1
2-

z

z

Re

Im

k =  -1z-

O O O

12, , 1
2

k = −

 Fig. 2.6 Fig. 2.7

2.2.3 Algebraic operations on complex numbers
 In this section, we study the algebraic and geometric structure of the complex number system. 
We assume various corresponding properties of real numbers to be known.
 (i) Scalar multiplication of complex numbers:
  If z x iy= + and k∈ , then we define

  k z kx ky i= ( ) + ( ) .
  In particular 0 0z =  and ( )− = −1 z z .

 Fig. 2.8 Fig. 2.9 Fig. 2.10
 (ii) Addition of complex numbers: 
  If z x iy1 1 1= +  and z x iy2 2 2= + , where x x y y1 2 1 2, , , and ∈ , then we define

   z z1 2+  =  x iy x iy1 1 2 2+( ) + +( )
    =  x x i y y1 2 1 2+( ) + +( )
   z z1 2+  =  x x i y y1 2 1 2+( ) + +( ) .

 We have already seen that vectors are characterized by length 
and direction, and that a given vector remains unchanged under 
translation. When z x iy1 1 1= +  and z x iy2 2 2= +  then by 
parallelogram  law  of  addition, the sum z z1 2+ = x x i y y1 2 1 2+( ) + +( )  

corresponds to the point x x y y1 2 1 2+ +( ), .  It also corresponds to a 

vector with those coordinates as its components. Hence the points
z z1 2, , and z z1 2+   in complex plane may be obtained vectorially as shown in the adjacent figure. 

Re
1z

( )1 2 1 2,x x y y+ +Im

1 2z z+

2z

O

or

Fig. 2.11

1 2 3 4- 1- 2- 3- 4

- 1

- 2

- 3

- 4

1

2

3

4

Re

Im

3-2i
-2-3i

-1+2i

2+i

Complex numbers as points

1 2 3 4- 1- 2- 3- 4

- 1

- 2

- 3

- 4

1

2

3

4

Re

Im

3-2i

-2-3i

-1+2i

2+i

 Complex numbers as vectors

O O
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 (iii) Subtraction of complex numbers
  Similarly the difference z z1 2−  can also be drawn as a position vector whose initial point is 

the origin and terminal point is x x y y1 2 1 2− −( ), .

    z z1 2−  =  x iy x iy1 1 2 2+( ) − +( )

     =  x x i y y1 2 1 2−( ) + −( )

    z z1 2−  =  x x i y y1 2 1 2−( ) + −( ) .

 It is important to note here that the vector representing the difference 
of the vector z z1 2− may also be drawn joining the end point of z2  to the tip of z1  instead of the origin. 
This kind of representation does not alter the meaning or interpretation of the difference operator. The 
difference vector joining the tips of z1  and z2  is shown in (green) dotted line.
 (iv) Multiplication of complex numbers
  The multiplication of complex numbers z1  and z2  is defined as

   z z1 2  =  ( )( )x iy x iy1 1 2 2+ +

    =  ( ) ( )x x y y i x y x y1 2 1 2 1 2 2 1− + +

   z z x x y y i x y x y1 2 1 2 1 2 1 2 2 1= − + +( ) ( ) .

 Although the product of two complex numbers z1  and z2  is itself a complex number represented 

by a vector, that vector lies in the same plane as the vectors z1 and z2 . Evidently, then, this product is 

neither the scalar product nor the vector product used in vector algebra.

Remark     
  Multiplication of complex number z by i
   If z  =  x iy+ , then

   iz  =  i x iy( )+

    =  − +y ix .

 The complex number iz is a rotation of z by 90  or p
2

radians in the 

counter clockwise direction about the origin. In general, multiplication of 
a complex number z  by i successively gives a 90° counter clockwise 
rotation successively about the origin.

Illustration 2.2
 Let z i1 6 7= + and z i2 3 5= − . Then z z1 2+  and z z1 2−  are
 (i)  ( ) ( )3 5 6 7− + +i i  =  ( ) ( )3 6 5 7 9 2+ + − + = +i i
   6 7 3 5+( ) − −( )i i  =  6 3 7 5 3 12−( ) + − −( ) = +( ) i i .

 Let z i1 2 3= +  and z i2 4 7= + . Then z z1 2  is
 (ii)  ( )( )2 3 4 7+ +i i  =  2 4 2 7 4 3 3 7 2× + × + × + ×i i i
    =  8 14 12 21 1+ + + × −i i ( )
    =  ( ) ( )8 21 14 12 13 26− + + = − +i i .

1z

2z
1

2

z
z�

Re

Im

O

2z-
1 2z z�

Fig. 2.12

Fig. 2.13

z
zi

Re

Im

2
π

2i z
3i z

o
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Example  2.2
 Find the value of the real numbers x and y, if the complex number ( ) ( )2 1 2 3+ + − + −i x i y i

and x i y i+ − + + +( )1 2 1 are equal

Solution
 Let  z1  =  ( ) ( )2 1 2 3 2 3 2+ + − + − = + −( ) + − +( )i x i y i x y i x y and

   z2  =  x i y i x y i y+ − + + + = − +( ) + +( )( )1 2 1 1 2 1

 Given that z1  =  z2 .

 Therefore 2 3 2 1 2 1x y i x y x y i y+ −( ) + − +( ) = − +( ) + +( ) .

 Equating real and imaginary parts separately, gives

   2 3x y+ −  =  x y− +1 ⇒ + =x y2 4

   x y− + 2  =  2 1y +  ⇒ − = −x y3 1

 Solving the above equations, gives

x = 2 and y =1.

EXERCISE 2.2

 1. Evaluate the following if z i= −5 2  and w i= − +1 3

   (i) z w+  (ii) z i w−  (iii) 2 3z w+
   (iv) z w  (v) z zw w2 22+ +  (vi) z w+( )2 .

 2. Given the complex number z i= +2 3 , represent the complex numbers in Argand diagram.
   (i) z iz, , and z iz+  (ii) z iz, − , and z iz− .
 3. Find the values of the real numbers x and y, if the complex numbers  
  ( ) ( )3 2 2 5− − − + +i x i y i and 2 1 2 3 2x i y i+ − + + +( ) are equal.

2.3 Basic Algebraic Properties of Complex Numbers
 The properties of addition and multiplication of complex numbers are the same as for real 
numbers. We list here the basic algebraic properties and verify some of them.

2.3.1 Properties of complex numbers

The complex numbers satisfy the following 
properties under addition.

The complex numbers satisfy the following 
properties under multiplication.

 (i) Closure property 
  For any two complex numbers 
  z1  and z2 , the sum z z1 2+
  is also a complex number.

 (i)  Closure property
   For any two complex numbers 
   z1  and z2 , the product z z1 2

   is also a complex number.
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 (ii) The commutative property 
  For any two complex numbers 
  z1  and z2

z + z = z + z1 2 12 .   

 (ii) The commutative property 
  For any two complex numbers 
  z1  and z2

z z = z z1 2 2 1 .

 (iii) The associative property
  For any three complex numbers  
  z z1 2, , and z3

z + z + z = z + z + z1 2 3 1 2 3( ) ( ) .

 (iii) The associative property 
  For any three complex numbers       
  z z1 2, , and z3

z z z = z z z1 2 3 1 2 3( ) ( ) .

 (iv)    The additive identity  
 There exists a complex number  
          0 0 0= + i  such that, for every 
          complex number z ,

z z z+ = + =0 0

       The complex number 0 0 0= + i  is known  
as additive identity.

 (iv)  The Multiplicative identity 
  There exists a complex number
            1 = 1+0i  such that, for every complex 
           number z ,

z z z1 1= =
  The complex number 1 1 0= + i is known as 

multiplicative identity.

 (v) The additive inverse
 

 For every complex number z  there exists 
a complex number −z  such that, 

 
 z z z z+ − = − + =( ) ( ) .0  
  −z is called the additive inverse of z .

 (v) The Multiplicative inverse
  For any nonzero complex number z,                 

there exists a complex number w such 
that,

 z zw w= =1.
  w is called the multiplicative inverse of z . 

w  is denoted by z−1 .
 (vi) Distributive property (multiplication distributes over addition) 

 For any three complex numbers z z1 2, , and z3

z z z z z z z1 2 3 1 2 1 3( )+ = +  and  ( )z z z z z z z1 2 3 1 3 2 3+ = + .

 Let us now prove some of the properties.
Property
 The commutative property under addition
 For any two complex numbers z1  and z2 , prove that z z z z1 2 2 1+ = + .
Proof
 Let z x iy1 1 1= + , z x iy2 2 2= + , and x x y1 2 1, , , and y2 ∈ , 

   z z1 2+  =  x iy x iy1 1 2 2+( ) + +( )
    =  x x i y y1 2 1 2+( ) + +( )
    =  x x i y y2 1 2 1+( ) + +( )  (since x x y1 2 1, , , and y2 ∈ )

    =  x iy x iy2 2 1 1+( ) + +( )
    =  z z2 1+ .
Property
 Inverse Property under multiplication
 Prove that the multiplicative inverse of a nonzero complex number z x iy= +  is 

 

x
x y

i y
x y2 2 2 2+

+
−
+ .
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Proof
 The multiplicative inverse is less obvious than the additive one.
 Let z u iv− = +1 be the inverse of z x iy= +

   We have  z z−1  =  1

   That is    x iy u iv+( ) +( )  =  1

   xu yv i xv uy−( ) + +( )  =  1 0+ i

 Equating real and imaginary parts we get
   xu yv−  =  1and xv uy+ = 0 .

 Solving the above system of simultaneous equations in u  and v

  we get   u x
x y

=
+2 2 and v y

x y
=

−
+2 2 .   ( z is non-zero⇒ x y2 2 0+ > )

  If  z x iy= + , then z x
x y

i y
x y

− =
+

+
−
+

1
2 2 2 2  . ( z−1 is not defined when z = 0 ).

 Note that the above example shows the existence of z−1  of the complex number z . To compute 

the inverse of a given complex number, we conveniently use z
z

− =1 1 . If z1  and z2  are two complex 

numbers where z2 0¹ , then the product of z1  and 
1

2z
 is denoted by 

z
z

1

2

. Other properties can be 

verified in a similar manner.  In the next section, we define the conjugate of a complex number. It 

would help us to find the inverse of a complex number easily. 
Complex numbers obey the laws of indices

 (i) z z zm n m n= +  (ii) z
z

z
m

n
m n= − , z ¹ 0        (iii) z zm n mn( ) =     (iv) z z z zm m m

1 2 1 2( ) =

EXERCISE 2.3
 1. If z i z i1 21 3 4= − = −, , and z3 5= , show that

   (i) z z z z z z1 2 3 1 2 3+( ) + = + +( )  (ii) z z z z z z1 2 3 1 2 3( ) = ( ) .

 2. If z z i1 23 7= = −, , and z i3 5 4= + , show that

   (i) z z z z z z z1 2 3 1 2 1 3( )+ = +  (ii) ( )z z z z z z z1 2 3 1 3 2 3+ = + .

 3. If z i z i1 22 5 3 4= + = − −, , and z i3 1= + , find the additive and multiplicative inverse of
z z1 2, , and z3 .

2.4 Conjugate of a Complex Number
 In this section, we study about conjugate of a complex number, its geometric representation, and 
properties with suitable examples.

Definition 2.3

 The conjugate of the complex number x iy++ is defined as the complex number x iy−− .
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 The complex conjugate of z  is denoted by z .  To get the conjugate of the complex number z , 

simply change i  by −i in z.  For instance 2 5− i  is the conjugate of 2 5+ i.The product of a complex 

number with its conjugate is a real number. 
For instance,          (i)  x iy x iy x iy x y+( ) −( ) = − ( ) = +2 2 2 2

                              (ii) 1 3 1 3 1 3 1 9 102 2+( ) −( ) = ( ) − ( ) = + =i i i .
Geometrically, the conjugate of z is obtained by reflecting z on the real axis.

2.4.1 Geometrical representation of conjugate of a complex number

 Fig. 2.14 Fig. 2.15
Note
 Two complex numbers x iy+  and x iy−  are conjugates to each other. The conjugate is useful 
in division of complex numbers. The complex number can be replaced with a real number in the 
denominator by multiplying the numerator and denominator by the conjugate of the denominator. 
This process is similar to rationalising the denominator to remove surds.

2.4.2 Properties of Complex Conjugates
 (1) z z z z1 2 1 2+ = +  (6) Im( )z z z

i
=

−
2

 (2) z z z z1 2 1 2− = −  (7) z zn n( ) = ( ) , where n is an integer 

 (3) z z z z1 2 1 2=  (8) z is real if and only if z z=  

 (4) z
z

z
z

z1

2

1

2
2 0









 = ≠,  (9) z  is purely imaginary if and only if z z= −  

 (5) Re( )z z z
=

+
2

 (10) z z=

 Let us verify some of the properties. 
Property
 For any two complex numbers z1  and z2 , prove that   z z z z1 2 1 2+ = + .
Proof
 Let z x iy1 1 1= + , z x iy2 2 2= + , and x x y1 2 1, , , and y2 ∈

   z z1 2+  =  x iy x iy1 1 2 2+( ) + +( )

1 2 3 4- 1- 2- 3- 4
- 1

- 2

- 3

- 4

1

2

3
4

 conjugate of a complex number

-2+3i

-2   3i-

Re

Im

o 1 2 3 4- 1- 2- 3- 4

- 1
- 2
- 3
- 4

1
2

3
4

 conjugate of a complex number

Re

Im

x+iy

x-iy

o
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    =  x x i y y x x i y y1 2 1 2 1 2 1 2+( ) + +( ) = +( ) − +( )

    =  x iy x iy1 1 2 2−( ) + −( )

    =  z z1 2+ .

 It can be generalized by means of mathematical induction to sums involving any finite number of 

terms:   z z z z z z z zn n1 2 3 1 2 3+ + + = + + + +  .

Property
 Prove that z z z z1 2 1 2=  where x x y y1 2 1 2, , , and ∈

Proof
 Let   z1  =  x iy1 1+ and z x iy2 2 2= + .

 Then, z z1 2  =  x iy x iy x x y y i x y x y1 1 2 2 1 2 1 2 1 2 2 1+( ) +( ) = −( ) + +( ) .

 Therefore, z z1 2  =  x x y y i x y x y x x y y i x y x y1 2 1 2 1 2 2 1 1 2 1 2 1 2 2 1−( ) + +( ) = −( ) − +( ) , 

 and z z1 2  =  x iy x iy x x y y i x y x y1 1 2 2 1 2 1 2 1 2 2 1−( ) −( ) = −( ) − +( ) . 

 Therefore, z z1 2  =  z z1 2 .
Property 
 z  is purely imaginary if and only if z z= −
Proof
      Let   z  =  x iy+ . Then by definition z x iy= −

   Therefore, z  =  −z
  ⇔  x iy+  =  − −( )x iy

  ⇔  2x  =  0 0⇔ =x

  ⇔ z is purely imaginary.
 Similarly, we can verify the other properties of conjugate of complex numbers.

Example  2.3

 Write 3 4
5 12

+
−

i
i

in the x iy+  form, hence find its real and imaginary parts.

Solution

 To find the real and imaginary parts of 3 4
5 12

+
−

i
i

, first it should be expressed in the rectangular form

x iy+ .To simplify the quotient of two complex numbers, multiply the numerator and denominator by 
the conjugate of the denominator to eliminate i in the denominator. 

   3 4
5 12

+
−

i
i

 =  
3 4 5 12
5 12 5 12

+( ) +( )
−( ) +( )

i i
i i

    =  
15 48 20 36

5 122 2

−( ) + +( )
+

i

    =  − +
= − +

33 56
169

33
169

56
169

i i .
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   Therefore,  3 4
5 12

+
−

i
i

 =  − +
33

169
56

169
i . This is in the x iy+  form.

   Hence real part is  − 33
169

 and imaginary part is 56
169

.

Example  2.4

 Simplify 1
1

1
1

3 3+
−







 −

−
+









i
i

i
i

.

Solution

   We find that 1
1

+
−

i
i

 =  
1 1
1 1

1 2 1
1 1

2
2

+( ) +( )
−( ) +( )

=
+ −

+
= =

i i
i i

i i i ,

   and  1
1

−
+

i
i

 =  1
1

11+
−







 = = −

−i
i i

i .

   Therefore,  1
1

1
1

3 3+
−







 −

−
−









i
i

i
i

 =  i i i i i3 3 2− − = − − = −( ) .

Example  2.5

 If  z
z i

i+
−

=
+3

5
1 4

2
,  find the complex number z .

Solution
   We find that   

z
z i

+
−

3
5  = 1 4

2
+ i

   ⇒ 2 3( )z +  =  1 4 5+( ) −( )i z i

   ⇒   2 6z +  =  1 4 20 5+( ) + −i z i

   ⇒   2 1 4− −( )i z  =  20 5 6− −i

   ⇒   z  = 14 5
1 4

14 5 1 4
1 4 1 4

34 51
17

2 3−
−

=
−( ) +( )

−( ) +( )
=

+
= +

i
i

i i
i i

i i .

Example  2.6
 If z i1 3 2= −  and z i2 6 4= + , find z

z
1

2

 .

Solution

   We find that  z
z

1

2

 =  3 2
6 4

3 2
6 4

6 4
6 4

−
+

=
−
+

×
−
−

i
i

i
i

i
i

    =  ( ) ( )18 8 12 12
6 4

10 24
52

10
52

24
522 2

− + − −
+

=
−

= −
i i i

    =  5
26

6
13

− i .
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Example  2.7

 Find z−1,  if  z i i= +( ) −( )2 3 1 .

Solution
   We find that   z  =  2 3 1 2 3 3 2 5+( ) −( ) = + + − = +i i i i( ) ( )

   ⇒   z−1  =  1 1
5z i

=
+

 .

 Multiplying the numerator and denominator by the conjugate of the denominator, we get

   z−1  =  
5

5 5
5

5 1
5
26

1
262 2

−( )
+( ) −( )

=
−
+

= −
i

i i
i i

   ⇒   z−1  =  5
26

1
26

− i .

Example  2.8 

 Show that (i) 2 3 2 3
10 10

+( ) + −( )i i is real and (ii) 19 9
5 3

8
1 2

15 15+
−







 −

+
+









i
i

i
i

is purely imaginary.

Solution
 (i)  Let  z  =  2 3 2 3

10 10
+( ) + −( )i i . Then, we get

   z  =  2 3 2 3
10 10

+( ) + −( )i i

    =  2 3 2 3
10 10

+( ) + −( )i i  ( z z z z1 2 1 2+ = + )

    =  2 3 2 3
10 10

+( ) + −( )i i   z zn n( ) = ( )( )
    =  2 3 2 3

10 10
−( ) + +( ) =i i z

   z  =  z z⇒ is real.

 (ii)  Let   z  =  19 9
5 3

8
1 2

15 15+
−







 −

+
+









i
i

i
i

.

   Here,  19 9
5 3

+
−

i
i

 =  
19 9 5 3
5 3 5 3

+( ) +( )
−( ) +( )

i i
i i

    =  
95 27 45 57

5 3
68 102

342 2

−( ) + +( )
+

=
+i i

    =  2 3+ i . (1)

   and   8
1 2
+
+

i
i

 =  
8 1 2

1 2 1 2
+( ) −( )

+( ) −( )
i i
i i

    =  
8 2 1 16

1 2
10 15

52 2

+( ) + −( )
+

=
−i i

    =  2 3- i .  (2)
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            Now z  =  19 9
5 3

8
1 2

15 15+
−







 −

+
+









i
i

i
i

   ⇒    z  =  2 3 2 315 15+( ) − −( )i i . (by (1) and (2))

            Then by definition,  z = 2 3 2 315 15+( ) − −( )( )i i

    =  2 3 2 3
15 15

+( ) − −( )i i  (using properties of conjugates)

    =  2 3 2 3 2 3 2 315 15 15 15−( ) − +( ) = − +( ) − −( )( )i i i i

   ⇒   z  =  −z .

   Therefore,   z  =  19 9
5 3

8
1 2

15 15+
−







 −

+
+









i
i

i
i

is purely imaginary.

EXERCISE 2.4

 1. Write the following in the rectangular form:

   (i) ( ) ( )5 9 2 4+ + −i i  (ii) 10 5
6 2

−
+

i
i

 (iii) 3 1
2

i
i

+
−

 2. If z x iy= + , find the following in rectangular form.

   (i) Re 1
z







  (ii) Re( )i z  (iii) Im( )3 4 4z z i+ −

 3. If z i1 2= − and z i2 4 3= − + , find the inverse of z z1 2 and z
z

1

2

.

 4. The complex numbers u v, , and w  are related by 1 1 1
u v w

= + .

  If v i= −3 4  and w i= +4 3 , find u  in rectangular form.

 5. Prove the following properties:

   (i) z is real if and only if z z=      (ii)  Re( )z z z
=

+
2

 and Im( )z z z
i

=
−
2

 6. Find the least value of the positive integer n  for which 3 +( )i n

   (i) real    (ii) purely imaginary.

 7.  Show that (i)  2 3 2 3
10 10

+( ) − −( )i i  is purely imaginary

                (ii) 19 7
9

20 5
7 6

12 12−
+







 +

−
−









i
i

i
i

 is real.
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2.5 Modulus of a Complex Number
 Just as the absolute value of a real number measures the distance 
of that number from origin along the real number line, the modulus 
of a complex number measures the distance of that number from the 
origin in the complex plane. Observe that the length of the line from 
the origin along the radial line to z x iy= + is simply the hypotenuse 
of a right triangle, with one side of length x  and the other side of 
length y . 

Definition 2.4

 If z x iy== ++ , then x y2 2++ is called modulus of z . It is denoted by z .

 For instance (i) i = + =0 1 12 2

   (ii) − = + −( ) =12 0 12 122 2i

   (iii) 12 5 12 5 169 132 2− = + −( ) = =i

Note 
 If z x iy= + , then z x iy= − , then z z x iy x iy= +( ) −( ) = ( ) − ( ) = +x iy x y2 2 2 2 = z 2 .

| |z z z2= .

2.5.1 Properties of Modulus of a complex number

 (1) z z=  (5) z
z

z
z

z1

2

1

2
2 0= ≠,

 (2) z z z z1 2 1 2+ ≤ + (Triangle inequality) (6) z zn n= , where n is an integer

 (3) z z z z1 2 1 2=  (7) Re z z( ) ≤

 (4) z z z z1 2 1 2− ≥ −  (8) Im z z( ) ≤

 Let us prove some of the properties.

Property  Triangle inequality
 For any two complex numbers z z1 2and , prove that z z z z1 2 1 2+ ≤ + .

Proof
   z z1 2

2+  =   ( | | ) z z z2=

    =  ( )( )z z z z1 2 1 2+ +  

    =  z z z z z z z z1 1 1 2 1 2 2 2+ + +( )  

    =  z z z z zz z z1 1 1 2 22 1 2+ ( ) ++   z z=( )

Re

Im P(x, y)

 
2

2

x
y

�

x

y

MO

Fig. 2.16

( ) z z z z1 2 1 2+ = +

( )( )z z z z1 2 1 2+ +

Chapter 2 Complex Numbers.indd   66 3/10/2019   8:25:02 PM



Complex Numbers67

    =  | | Re( ) | |z z z z1
2

1 2 2
22+ +  ( Re( ) ) 2 z z z= +

    £  z z z z1
2

1 2 2
22+ +  ( Re( ) | |) z z£

    =  z z z z1
2

1 2 2
22+ +  ( | | | || | | | | |) z z z z z z1 2 1 2= =and

    ⇒   z z1 2
2+  £  z z1 2

2
+( )

   ⇒ +z z1 2  £  z z1 2+ .

Geometrical interpretation
 Now consider the triangle shown in figure with vertices O z, 1  
or z2 , and z z1 2+ .We know from geometry that the length of the side 
of the triangle corresponding to the vector z z1 2+  cannot be greater 
than the sum of the lengths of the remaining two sides. This is the 
reason for calling the property as "Triangle Inequality".
 It can be generalized by means of mathematical induction to finite 
number of terms:

 z z z z z z z zn n1 2 3 1 2 3+ + + + ≤ + + + +   for n = 2 3, , .

Property The distance between the two points z1  and z2  in complex plane is | |z z1 2−
 If z x iy1 1 1= + and z x iy2 2 2= + , then

   z z1 2−  =  x x y y i1 2 1 2−( ) + −( )

    =  x x y y1 2
2

1 2
2−( ) + −( ) .

 The distance between the two points z1 and z2  in complex plane is z z1 2− .
 If we consider origin, z1  and z2  as vertices of a triangle, by the similar argument we have 

 z z z z1 2 1 2− ≤ +

 
z z z z z z1 2 1 2 1 2− ≤ + ≤ +  and

 
z z z z z z1 2 1 2 1 2− ≤ − ≤ +  .

Property Modulus of the product is equal to product of the moduli.
 For any two complex numbers z z1 2and , prove that z z z z1 2 1 2= .

Proof
   We find that z z1 2

2  =  ( )( )z z z z1 2 1 2  ( | | ) z z z2=

    =  z z z z1 2 1 2( )( )( )( )  
 z z z z1 2 1 2=( )

z2

z1+
z 2

z1

z2

O

z1

Re

Im

z1

z2

z1+z2

z1

2z

2z
z1 2

z-

z1

Re

Im

O

Fig. 2.17

Fig. 2.18
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    =  z z z z z z1 1 2 2 1
2

2
2( )( ) =  (by commutativity z z2 1  = z z1 2 )

   Therefore,  z z1 2  =  z z1 2 .
Note 

 
It can be generalized by means of mathematical induction to any finite number of terms:   

   z z z z z z z zn n1 2 3 1 2 3 =

 That is the modulus value of a product of complex numbers is equal to the product of the moduli 
of complex numbers.
 Similarly we can prove the other properties of modulus of a complex number.
Example  2.9

 If z i z i1 23 4 5 12= + = −, , and z i3 6 8= + , find z z z1 2 3, , , z z z z z z1 2 2 3 1 3+ − +, , and .

Solution
   z1  =  3 4 3 4 52 2+ = + =i

   z2  =  5 12 5 12 132 2− = + − =i ( )

   z3  =  6 8 6 8 102 2+ = + =i

   z z1 2+  =  3 4 5 12 8 8 128 8 2+( ) + −( ) = − = =i i i

   z z2 3−  =  5 12 6 8 1 20 401−( ) − +( ) = − − =i i i

   z z1 3+  =  3 4 6 8 9 12 225 15+( ) + +( ) = + = =i i i

 Note that the triangle inequality is satisfied in all the cases. 

 z z z z1 3 1 3 15+ = + = (why?)

Example  2.10

 Find the following   (i) 2
1 2

+
− +

i
i

 (ii) ( )( )( )1 2 3 4 3+ + −i i i  (iii) i i
i

( )
( )
2
1

3

2

+
+

Solution

 (i)  2
1 2

+
− +

i
i

 =  
2
1 2

2 1

1 2
1

2 2

2 2

+
− +

=
+

−( ) +
=

i
i

. 

z
z

z
z

z1

2

1

2
2 0= ≠









,

 (ii)  ( )( )( )1 2 3 4 3+ + −i i i  =  ( )1 2 3 4 3+ + −i i i   z z z z z z1 2 3 1 2 3=( )
    =  1 2 3 3 4+ + − +i i i   z z=( )
    =  1 1 2 3 3 42 2 2 2 2 2+( ) +( ) − +( )( )

    =  2 13 25 5 26( )( )( ) = .

 (iii)  i i
i

( )
( )
2
1

3

2

+
+

 =  
i i

i
i

i

( )

( )

2

1
1 2
1

4 1

2

3

2

3

2

3

2

+

+
=

+

+
=

+( )
( )

   
z
z

z
z

z1

2

1

2
2 0= ≠









,

    =  
5

2
5 5

2

3( )
= .
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Example  2.11
 Which one of the points i, − +2 i , and 3  is farthest from the origin?

Solution
 The distance between origin to z i i= − +, ,2   and 3  are 

 | |z  =  | |i =1   

 | |z  =  | | ( )− + = − + =2 2 1 52 2i   

 | |z  =  | |3 3=  

 Since 1 5 3< < , the farthest point from the origin is 3 .

Example  2.12
 If z1 , z2 , and z3  are complex numbers  such that z z z z z z1 2 3 1 2 3 1= = = + + = ,

 find the value of 1 1 1

1 2 3z z z
+ + .

Solution

   Since, z1  =  z z2 3 1= = ,  

   z1
2  =  1 1 1 11 1 2

2
2 2⇒ = = ⇒ =z z z z z,| | , and | |z z z3

3
3 31 1= ⇒ =  

   Therefore,  z1  =  1 1

1
2

2z
z

z
, = , and z

z3
3

1
=  and hence

   1 1 1

1 2 3z z z
+ +  =  z z z1 2 3+ +

    =  z z z z z z1 2 3 1 2 3 1+ + = + + = .

Example  2.13

 If z = 2  show that 3 3 4 7≤ + + ≤z i

Solution

 z i z i+ + ≤ + + = + =3 4 3 4 2 5 7

 z i+ + ≤3 4 7     (1)

 z i z i+ + ≥ − + = − =3 4 3 4 2 5 3

 z i+ + ≥3 4 3     (2)

 From (1) and (2) we get, 3 3 4 7≤ + + ≤z i .

Note
 To find the lower bound and upper bound use z z z z z z1 2 1 2 1 2− ≤ + ≤ + .

3

i

Re

Im

O

2 i− +

1 2-- 12

Fig. 2.19

Fig. 2.20

r = 2

Im

Re
O















7

3













( , )− −3 4
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Example  2.14

 Show that the points 1 1
2

3
2

, ,−
+ i  and − −

1
2

3
2

i  are the vertices of an equilateral triangle. 

Solution
 It is enough to prove that the sides of the triangle are equal.

 Let z1 1= , z i2
1

2
3

2
=

−
+ , and z i3

1
2

3
2

=
−

− .

 The length of the sides of the triangles are

 z z1 2−  =  1 1
2

3
2

3
2

3
2

9
4

3
4

2 3
2

3−
−

+








 = − = + = =i i

 z z2 3−  =  −
+









 −

−
−









 = ( ) =

1
2

3
2

1
2

3
2

3 3
2

i i

 z z3 1−  =  −
+









 − =

−
− = + =

1
2

3
2

1 3
2

3
2

9
4

3
4

3i i

 Since the sides are equal, the given points form an equilateral triangle.

Example  2.15

 Let z z1 2, ,  and z3   be complex numbers such that z z z r1 2 3 0= = = > and z z z1 2 3 0+ + ≠ .  

 Prove that z z z z z z
z z z

r1 2 2 3 3 1

1 2 3

+ +
+ +

= .

Solution

        Given that z1  =  z z r z z z z z z r2 3 1 1 2 2 3 3
2= = ⇒ = = =

  ⇒ z1  =  r
z

z r
z

z r
z

2

1
2

2

2
3

2

3

, ,= =

  Therefore  z z z1 2 3+ +  =  r
z

r
z

r
z

2

1

2

2

2

3

+ +

   =  r z z z z z z
z z z

2 2 3 1 3 1 2

1 2 3

+ +









  z z z1 2 3+ +  =  | |r z z z z z z
z z z

2 2 3 1 3 1 2

1 2 3

+ +  ( ) z z z z1 2 1 2+ = +

   =  r
z z z z z z

z z z
2 2 3 1 3 1 2

1 2 3

+ +
   ( | | | | z z=  and | | | | | | | |)z z z z z z1 2 3 1 2 3=

  z z z1 2 3+ +  =  r
z z z z z z

r
z z z z z z

r
2 2 3 1 3 1 2

3
2 3 1 3 1 2+ +

=
+ +

O Re

Im

1

1 3
2 2

i−
+

1 3
2 2

i−
−

Fig. 2.21
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  ⇒    
z z z z z z

z z z
2 3 1 3 1 2

1 2 3

+ +
+ +

 =  r . (given that z z z1 2 3 0+ + ≠ )

 Thus,  z z z z z z
z z z

2 3 1 3 1 2

1 2 3

+ +
+ +

 =  r .

Example  2.16
 Show that the equation z z2 =  has four solutions.
Solution

 We find that, z2  =  z .

    ⇒  | |z 2  =   z  

   ⇒   | |z  z −( )1  =  0 ,

   ⇒    | |z  =  0, or | |z =1 .

   | |z  =  0    ⇒ =z 0  is a solution, | |z  =  1 ⇒ = ⇒ =zz z
z

1 1 .

   Given  z2  =  z  ⇒   z2  =  1
z

   ⇒   z3  =  1.

 It has 3 non-zero solutions. Hence including zero solution, there are four solutions.

2.5.2 Square roots of a complex number 
 Let the square root of a ib+  be x iy+

   That is a ib+  =  x iy+    where x y, ∈

   a ib+  =  x iy x y i xy+( ) = − +2 2 2 2

 Equating real and imaginary parts, we get
   x y2 2−  =  a and 2xy b=

   x y2 2 2
+( )  =  x y x y a b2 2 2 2 2 2 24−( ) + = +

   x y2 2+  =  a b2 2+ , since x y2 2+ is positive

   Solving   x y2 2−  =  a  and x y a b2 2 2 2+ = + , we get

   x  =  ± + +
= ±

+ −a b a y a b a2 2 2 2

2 2
; .

 Since 2xy b=  it is clear that both x  and y will have the same sign when b  is positive, and x  

and y  have different signs when b  is negative.

 Therefore a ib+ = ±
+

+
−











z a
i b

b
z a

2 2
, where b ¹ 0 .  Re( )z z≤( )

 Formula for finding square root of a complex number

 a ib
z a

i b
b

z a
+ = ±

+
+

−









2 2

, where z a ib= + and b ¹ 0 .
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Note
 If b  is negative, b

b
= −1, x  and y  have different signs.

 If b  is positive, b
b
=1, x  and y  have same sign.        

Example  2.17
 Find the square root of 6 8− i .

Solution

   We compute  6 8− i  =  6 8 102 2+ −( ) =  

 and applying the formula for square root, we get

   6 8- i  =  ± +
−

−









10 6
2

10 6
2

i       ( b  is negative, b
b

= −1)

    =  ± −( )8 2i

    =  ± −( )2 2 2i .

EXERCISE 2.5
 1. Find the modulus of the following complex numbers

  (i) 2
3 4

i
i+

 (ii) 2
1

1 2
1

−
+

+
−
−

i
i

i
i

 (iii) ( )1 10− i  (iv) 2 3 4 4 3i i i( )( )− − .

 2. For any two complex numbers z1  and z2 , such that z z1 2 1= =  and z z1 2 1≠ − , then show that  
z z

z z
1 2

1 21
+

+
 is a real number.

 3. Which one of the points10 8− i , 11 6+ i  is closest to1+ i .

 4. If | |z = 3 , show that 7 6 8 13≤ + − ≤| |z i .

 5. If z =1, show that 2 3 42≤ − ≤z .

 6. If z
z

− =
2 2 , show that the greatest and least value of | |z  are 3 1+  and 3 1−  respectively.

 7. If z z1 2, , and z3  are three complex numbers such that z z z1 2 31 2 3= = =, ,  and 

z z z1 2 3 1+ + = , show that 9 4 61 2 1 3 2 3z z z z z z+ + = .

 8. If the area of the triangle formed by the vertices z iz, , and z iz+  is 50  square units, find the 

value of z .

 9. Show that the equation z z3 2 0+ =  has five solutions.

 10. Find the square roots of (i) 4 3+ i   (ii) − +6 8i    (iii) − −5 12i .
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2.6 Geometry and Locus of Complex Numbers
 In this section let us study the geometrical interpretation of complex number z  in complex plane 

and the locus of z  in Cartesian form. 
Example  2.18

Given the complex number z i= +3 2 , represent the complex numbers z iz z iz, , and + in 

one Argand diagram. Show that these complex numbers form the vertices of an isosceles right 
triangle.

Solution
 Given that  z i= +3 2 .

 Therefore, iz i i i= +( ) = − +3 2 2 3

 z iz i i i i+ = +( ) + +( ) = +3 2 3 2 1 5

 Let A B, ,  and C  be z z iz iz, ,+ and respectively.

 

AB z iz z i

BC iz z iz i

CA z iz

2 2 2

2 2 2

2 2

2 3 13

3 2 13

5

= +( ) − = − + =

= − +( ) = − − =

= − = −− =i 2 26

 Since AB BC CA2 2 2+ =  and AB BC= , DABC is an isosceles right triangle.

Definition 2.5 (circle)

       A circle is defined as the locus of a point which moves in a plane such that its distance from a 
fixed point in that plane is always a constant. The fixed point is the centre and the constant distant 
is the radius of the circle.

Equation of Complex Form of a Circle
 The locus of z  that satisfies the equation  z z r− =0  where z0  is 

a fixed complex number and r is a fixed positive real number consists 
of all points z whose distance from z0  is r .

 Therefore z z r− =0  is the complex form of the equation of a 

circle. (see Fig. 2.23)
 (i) z z r− <0  represents the points interior of the circle.

 (ii) z z r− >0  represents the points exterior of the circle.

Illustration 2.3

 z r x y r= ⇒ + =2 2

 ⇒ + =x y r2 2 2 ,  represents a circle centre at the origin with radius r units.

1 2 43-1--3 2- 4

2

3

4

5

-1

-2

z
iz

z+iz

1
Re

Im

o

A

B

C

Fig. 2.22

Fig. 2.23
Re

Im

O

z0

z
r
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Example  2.19

 Show that 3 5 4z i− + =  represents a circle, and, find its centre and radius.

Solution

 The given equation 3 5 4z i− + = can be written as

   3 5
3

z i
−

−
 =  4   Þ  z i

− −







5
3 3  =  

4
3

.  

 It is of the form z z r− =0 and so it represents a circle, 

whose centre and radius are 5
3

1
3

, −





  and 4

3
 respectively.

Example  2.20
 Show that z i+ − <2 2 represents interior points of a circle. Find its centre and radius.

Solution

 Consider the equation | |z i+ − =2 2 .

 This can be written as | ( ) |z i− − + =2 2 .

 The above equation represents the circle  with centre z i0 2= − + and 
 radius r = 2.  Therefore z i+ − <2 2  represents all points inside the 

circle with centre at − +2 i and radius 2  as shown in figure.

Example  2.21
 Obtain the Cartesian form of the locus of  z  in each of the following cases.
 (i) z = z i−    (ii) 2 3 3z i− − =

Solution

 (i)  | |z  =  z i−

   Þ    x iy+  =  x iy i+ −

   Þ    x y2 2+  =  x y2 21+ −( )

   Þ    x y2 2+  =  x y y2 2 2 1+ − +

   Þ    2 1y −  =  0 .

 (ii)  2 3z i− −  =  3

   2 3x iy i+( ) − −  =  3 .

  Squaring on both sides, we get
   2 3 2 1

2
x y i−( ) + −( )  =  9

   Þ    2 3 2 12 2x y−( ) + −( )  =  9

   Þ    4 4 12 4 12 2x y x y+ − − +  =  0 , the locus of z  in Cartesian form.

Re

Im

O

5 1,
3 3

 − 
 

0 4
3

r =
Re

z

z

Im

O Re

2 i− +

r=2

0
z

z

=

Fig. 2.25

Fig. 2.24
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EXERCISE 2.6

 1. If z x iy= +  is a complex number such that
z i
z i

−
+

=
4
4

1

             show that the locus of z  is real axis.

 2. If z x iy= +  is a complex number such that Im 2 1
1

0z
iz

+
+







 = , show that the locus of z is

  2 2 2 02 2x y x y+ + − = .
 3. Obtain the Cartesian form of the locus of z x iy= +  in each of the following cases:

  (i) Re iz( )  =
2

3  (ii) Im[( ) ]1 1 0− + =i z  (iii) z i z+ = −1  (iv) z z= −1 .

 4. Show that the following equations represent a circle, and, find its centre and radius.

  (i) z i− − =2 3  (ii) 2 2 4 2z i+ − =  (iii) 3 6 12 8z i− + = .

 5. Obtain the Cartesian equation for the locus of z x iy= +  in each of the following cases:

  (i) z − =4 16  (ii) z z− − − =4 1 162 2 .

2.7 Polar and Euler form of a Complex Number
 When performing addition and subtraction of complex numbers, we use rectangular form. This is 
because we just add real parts and add imaginary parts; or subtract real parts, and subtract imaginary 
parts. When performing multiplication or finding powers or roots of complex numbers, use an alternate 
form namely, polar form, because it is easier to compute in polar form than in rectangular form.

2.7.1 Polar form of a complex number 
 Polar coordinates form another set of parameters that characterize the vector from the origin to 
the point z x iy= + , with magnitude and direction. The polar coordinate system consists of a fixed point 
O called the pole and the horizontal half line emerging from the pole called the initial line (polar axis).  If 
r is the distance from the pole to a point P and q is an angle of inclination measured from the initial line 
in the counter clockwise direction to the line OP, then r and q  of the ordered pair ( , )r θ are called the 
polar coordinates of P. Superimposing this polar coordinate system on the rectangular coordinate 
system, as shown in diagram, leads to

 Fig. 2.26 Fig. 2.27 Fig. 2.28

   x  =  r cosθ  ...(1)
   y  =  r sinθ . ...(2)
 Any non-zero complex number z x iy= + can be expressed as z r i r= +cos sin .θ θ

Polar coordinates

P(r,   )

r

θ

 θ

O

P(x,y)

M

r
2

2

x
y

=

+

Superimpose polar coordinates
on rectangular coordinates

O

P(x,y)

x

y

x+
iy

Rectangular coordinates 

O

θ
x r= cosθ

y r= sinθ
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Definition 2.6

 Let r  and θ be polar coordinates of the point P x y( , ) that corresponds to a non-zero  
complex number z x iy= + . The polar form or trigonometric form of a complex number P  is 

z r i= +(cos sin )θ θ .

 For convenience, we can write Polar form as 
                                  z x iy r i r cis= + = +( ) =cos sin .θ θ θ
 The value r represents the absolute value or modulus of the complex number z . The angleθ is 

called the argument or amplitude of the complex number z denoted byθ = ( )arg .z

 (i) If z = 0 , the argument θ  is undefined; and so it is understood that z ¹ 0 whenever polar 
coordinates are used.

 (ii) If the complex number z x iy= + has polar coordinates ( , )r θ , its conjugate z x iy= −  has 
polar coordinates ( , )r −θ .

 Squaring and adding (1) and (2), and taking square root, the value of r is given by r z x y= = +2 2 .

  Dividing (2) by (1), r
r

y
x

sin
cos

θ
θ

= ⇒ =tanθ
y
x

.

 The real number θ represents the angle, measured in radians, that z makes with the positive real 
axis when z is interpreted as a radius vector. The angle θ  has an infinitely 
many possible values, including negative ones that differ by integral 
multiples of 2p . Those values can be determined from the equation 

tanθ =
y
x

where the quadrant containing the point corresponding to z 

must be specified. Each value of q  is called an argument of z, and the 
set of all such values is obtained by adding multiple of 2p to q , and it 
is denoted by arg z.

 There is a unique value of θ which satisfies the condition − < ≤π θ π . 
 This value is called a principal value of θ or principal argument of z 
and is denoted by Arg z.
 Note that, − < ≤ − < ≤π π π θ πArg( )z or

Fig. 2.29

y

α x
θ α x

y
III-Quadrant 

α-θ =

IV-Quadrant

α π−θ = α-θ =

z

α

θ α=

x

y y

α

x

θ

I-Quadrant

απ −θ =

II-Quadrant

θ α= απ −θ =

Principal Argument of a complex number

z z

z

O O
O

O

α π−θ =

 Fig. 2.30 Fig. 2.31 Fig. 2.32 Fig. 2.33

Re

Im
z = r (cosθ+isinθ)

θ

r

o
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 The capital A is important here to distinguish the principal value from the general value.

 Evidently, in practice to find the principal angle θ, we usually compute α = −tan 1 y
x

 and adjust 

for the quadrant problem by adding or subtracting α πwith  appropriately.

arg , .z Arg z n n     = + ∈2 π 

 Some of the properties of arguments are

 (1) arg arg argz z z z1 2 1 2( ) = +

 (2) arg arg argz
z

z z1

2
1 2









 = −

 (3) arg argz n zn( ) =

 (4) The alternate form of cos sinq q+ i  is cos( ) sin( ),2 2k i k kπ θ π θ+ + + ∈ .

 For instance the principal argument and argument of  1 1, ,i − , and −i  are shown below:-

z 1 i −1 −i

Arg z( ) 0
p
2 p −

p
2

arg z 2np 2
2

np p
+ 2np p+ 2

2
np p

−

Illustration
 Plot the following complex numbers in complex plane

 (i) 5
4 4

cos sinπ π
+






i

 (ii) 4 2
3

2
3

cos sinπ π
+






i

 (iii) 3 5
6

5
6

cos sin−
+

−







π πi

 (iv) 2
6 6

cos π π
−






isin .

2.7.2 Euler’s Form of the complex number
 The following identity is known as Euler’s formula

e iiθ θ θ= +cos sin
 Euler formula gives the polar form z r ei= θ

Note
 When performing multiplication or finding powers or roots of complex numbers, Euler form 
can also be used.

Re

Im

O 1

i

-1

i-

5
4

cis π2
4 3cis

π

2cis π−
6

Re

Im

O 1 2 3 4 5

3
6

cis π− 5

Fig. 2.34

Fig. 2.35

Chapter 2 Complex Numbers.indd   77 3/10/2019   8:27:08 PM



78XII - Mathematics

Example  2.22
  Find the modulus and principal argument of the following complex numbers.
 (i) 3 + i  (ii) − +3 i  (iii) − −3 i  (iv) 3 − i
Solution
 (i) 3 + i
   Modulus =  x y2 2

2
23 1 3 1 2+ = ( ) + = + =

   α  =  tan tan− −= =1 1 1
3 6

y
x

π

 Since the complex number 3 + i lies in the first quadrant, 
     has the principal value

   θ  =  α π
=

6
.

 Therefore, the modulus and principal argument of 3 + i are 2 and p
6

 respectively.

 (ii) − +3 i

   Modulus =  2  and

   α  =  tan tan− −= =1 1 1
3 6

y
x

π

  Since the complex number − +3 i  lies in the second quadrant  

  has the principal value
  
   θ  =  π α π

π π
− − ==

6
5
6

.

  Therefore the modulus and principal argument of − +3 i are 2  and 5
6
p respectively.

 (iii) − −3 i

   r  =  2  and α π
=

6
.

   Since the complex number − −3 i lies in the third quadrant, 

  has the principal value, 

   θ  =  α π
π

π
π

− − = −=
6

5
6

.

  Therefore, the modulus and principal argument of − −3 i are 2  and −
5
6
π respectively.

 (iv) 3 − i

   r  =  2  and α π
=

6
.

  Since the complex number lies in the fourth quadrant, 
  has the principal value,

   θ  =  − = −α
π
6

Fig. 2.36

Fig. 2.37

Fig. 2.38

Fig. 2.39

Re

Im

3 i+

O

r =
2
a q=

Re

Im

3 i− +

α
O

r = 2
q p a= −

Reα
θ α π= −

3 i− −

Im

O

r = 2

Re

Im

θ α= −

3 i−

O
r = 2

Chapter 2 Complex Numbers.indd   78 3/10/2019   8:27:19 PM



Complex Numbers79

  Therefore, the modulus and principal argument of 

  3 − i are 2 and −
π
6

.

  In all the four cases, modulus are equal, but the arguments are depending on the quadrant in 
which the complex number lies.
Example  2.23

 Represent the complex number (i)− −1 i    (ii) 1 3+ i  in polar form.

Solution

 (i)  Let − −1 i  =  r i(cos sin )θ θ+

   We have  r  =  x y2 2 2 21 1 1 1 2+ = + = + =

   α  =  tan tan− −= =1 11
4

y
x

π .

 Since the complex number − −1 i  lies in the third quadrant, it has the principal value,

   θ  =  α π
π

π
π

− − = −=
4

3
4

   Therefore,   − −1 i  =  2 3
4

3
4

cos sin−





 −
















+

π πi

    = 2 3
4

3
4

cos sinπ π
−






i .

   − −1 i  =  2 3
4

2 3
4

2cos sinπ
π

π
π+






 +
















−k ki , k Î .

Note

 Depending upon the various values of k , we get various alternative polar forms.

 (ii) 1 3+ i
   r  =  z = + ( ) =1 3 22

2

   θ  =  tan− 







 =1 1

3 3
π

   Hence  arg z( )  =  
p
3

. 

 Therefore, the polar form of  1 3+ i  can be written as

   1 3+ i  =  2
3 3

cos sinπ π
+






i

    =  2
3

2
3

2cos sin ,π
π

π
π+






 + +
















 ∈k i k k  .
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Example  2.24
 Find the principal argument Arg z , when z

i
=

−
+

2
1 3

.

Solution
 arg z  =  arg −

+
2

1 3i  

  =  arg arg−( ) − +( )2 1 3i ( arg arg arg )

z
z

z z1

2
1 2









 = −

     
= − 
















 −











− −π tan tan1 10
2

3
1

  =  π
π π

− =
3

2
3

 This implies that one of the values of arg z is 2
3
p .

 Since 2
3
p lies between −π  and p , the principal argument Arg isz 2

3
p .

Properties of polar form

Property 1  If z r i= +( )cos sin ,θ θ then z
r

i− = −( )1 1 cos sinθ θ .

Proof

   z−1  =  1 1
z r i

=
+( )cos sinθ θ

  

    =  
cos sin

cos sin cos sin
θ θ

θ θ θ θ
−( )

+( ) −( )
i

r i i
  

    =  
cos sin
cos sin

θ θ
θ θ
−( )
+( )
i

r 2 2

   z−1  =  1
r

icos sinθ θ−( ) .

Property 2  
 If z r i1 1 1 1= +( )cos sinθ θ and z r i2 2 2 2= +( )cos sinθ θ ,

 then  z z1 2 =  r r i1 2 1 2 1 2cos sinθ θ θ θ+( ) + +( )( ) .

Proof

 z1  =  r i1 1 1cos sinθ θ+( ) and

 z2  = r i2 2 2cos sinθ θ+( )

 Þ  z z1 2  =  r ri i1 21 1 2 2cos sin cos sinθ θ θ θ+( ) +( )

Fig. 2.41

Fig. 2.42

1�

1θ
θ 2

+

2�

Re

Im
z 1z

2

z1 z2

1rr 2

21r r
O

O Re

Im

-2 -1 21

2 1 3i+

1
π

3
π

3
π2

Fig. 2.40

θ
θ-

z

z-

r

1-r

Re

Im

O
1
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  =  r r i1 2 1 2 1 2 1 2 2 1cos cos - sin sin sin cos sin cosθ θ θ θ θ θ θ θ( )+ +( )( )
 z z1 2  =  r r i1 2 1 2 1 2cos sinθ θ θ θ+( ) + +( )( ) .

Note
   arg z z1 2( )  =  θ θ1 2 1 2+ = ( ) + ( )arg argz z .

Property 3
If z r i1 1 1 1= +( )cos sinθ θ and z r i2 2 2 2= +( )cos sinθ θ ,  then z

z
r
r

i1

2

1

2
1 2 1 2=  −( ) + −( )cos sinθ θ θ θ .

Proof

 z
z

1

2

 =  
r
r

i
i

1

2

1 1

2 2

cos sin
cos sin

θ θ
θ θ

+( )
+( )

  =  
r
r

i i
i i

1

2

1 1 2 2

2 2 2 2

cos sin cos sin
cos sin cos sin

θ θ θ θ
θ θ θ θ

+( ) −( )
+( ) −(( )

  =  
r
r

i1

2
2

1 2 1 2 1 2 2 1cos cos sin sin sin cos sin cos
cos

θ θ θ θ θ θ θ θ
θ

+( ) + −( )
+ ssin2 θ

 z
z

1

2

 =  r
r

i1

2
1 2 1 2cos sinθ θ θ θ−( ) + −( )( ) .

Note 

 arg z
z

1

2









  =  θ θ1 2 1 2− = ( ) − ( )arg argz z .

Example  2.25

 Find the product 3
2 3 3

6 5
6

5
6

cos sin cos sinπ π π π
+






 ⋅ +






i i  in rectangular from.  

Solution

 
3
2 3 3

6 5
6

5
6

cos sin cos sinπ π π π
+






 ⋅ +






i i

    =  3
2

6
3

5
6 3

5
6







 +






 + +
















( ) cos sinπ π π πi

    =  9 7
6

7
6

cos sinπ π





 + 
















i

    =  9
6 6

cos sinπ
π

π
π

+





 + +
















i

Re

Im

z 1

z 2

z1

z 2-

1θ

1r(
,

)

r1
r2-(

, 1
2

θ
θ-

)

O

2θ

2r(
,

)

Fig. 2.43
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    =  9
6 6

− 





 − 
















cos sinπ πi

    =  9 3
2 2

9 3
2

9
2

− −








 = − −

i i  .

Example  2.26

 Find the quotient
2 9

4
9
4

4 3
2

3
2

cos sin

cos sin

π π

π π

+







−





 +

−

















i

i
 in rectangular form.

Solution

 
2 9

4
9
4

4 3
2

3
2

cos sin

cos sin

π π

π π

+







−





 +

−

















i

i

  =  1
2

9
4

3
2

9
4

3
2

cos sinπ π π π
−

−















 + −

−

























i

  =  1
2

9
4

3
2

9
4

3
2

cos sinπ π π π
+






 + +
















i

  =  1
2

15
4

15
4

1
2

4
4

cos sin cos sinπ π
π

π





 + 
















 = −






 +i i 44

4
π

π
−


















  =  
1
2 4 4

1
2

1
2

1
2

cos sinπ π





 − 
















 = −






i i

 
2 9

4
9
4

4 3
2

3
2

cos sin

cos sin

π π

π π

+







−





 +

−

















i

i
 = 1

2 2
1

2 2
2

4
2

4
− = −i i .

Example  2.27

 If z x iy= +  and arg z
z

−
+







 =

1
1 2

p , then show that x y2 2 1+ = .

Solution

   Now,   z
z

−
+

1
1

 =  x iy
x iy

x iy
x iy

+ −
+ +

=
− +
+ +

1
1

1
1

( )
( )

 =  
x iy x iy
x iy x iy

−( ) +  + −[ ]
+ +[ ] + −[ ]

1 1
1 1

( )
( ) ( )

   ⇒     z
z

−
+

1
1

 =  ( ) ( )
( )

x y i y
x y

2 2

2 2

1 2
1

+ − +
+ +

.

   Since, arg z
z

−
+









1
1

 =  p
2

     Þ  tan−

+ −










1
2 2

2
1

y
x y

 =  p
2

 

   ⇒      2
12 2

y
x y+ −

 =  tan p
2

   ⇒ +x y2 2  =  1.
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EXERCISE 2.7
 1. Write in polar form of the following complex numbers

   (i) 2 2 3+ i  (ii) 3 3− i  (iii) − −2 2i  (iv) i

i

−

+

1

3 3
cos π πsin

.

 2. Find the rectangular form of the complex numbers

   (i) cos sin cos sinπ π π π
6 6 12 12

+





 +





i i  (ii) 

cos sin

cos sin

π π

π π
6 6

2
3 3

−

+







i

i
.

     3.  If x iy x iy x iy x iy a ibn n1 1 2 2 3 3+( ) +( ) +( ) +( ) = + , show that

   (i) x y x y x y x y a bn n1
2

1
2

2
2

2
2

3
2

3
2 2 2 2 2+( ) +( ) +( ) +( ) = +

  ( ) tan tanii −

=

−







 = 






 +∑ 1

1

1 2y
x

b
a

kr

rr

n

π , k∈ .

 4. If 1
1

2 2+
−

= +
z
z

icos sin ,θ θ  show that z i= tanθ .

 5. If cos cos cos sin sin sin ,α β γ α β γ+ + = + + = 0 then show that

   (i) cos cos cos cos3 3 3 3α β γ α β γ+ + = + +( ) and

   (ii) sin sin sin sin3 3 3 3α β γ α β γ+ + = + +( ) .

 6. If z x iy= + and arg z i
z

−
+







 =

2 4
p

, then show that x y x y2 2 3 3 2 0+ + − + = .

2.8 de Moivre’s Theorem and its Applications
      Abraham de Moivre (1667–1754) was one of the mathematicians to use 

complex numbers in trigonometry. 

  The formula (cos sin ) (cos sin )θ θ θ θ+ = +i n i nn  known by his name, was 

instrumental in bringing trigonometry out of the realm of geometry and into that of 
analysis.

2.8.1 de Moivre's Theorem
de Moivre’s Theorem

Given any complex number cos sinθθ θθ++ i  and any integer n,
(cos sin ) cos sinθθ θθ θθ θθ++ == ++i n i nn

.

Corollary
 (1) (cos sin ) cos sinθ θ θ θ− = −i n i nn  (2) (cos sin ) cos sinθ θ θ θ+ = −−i n i nn

 (3) (cos sin ) cos sinθ θ θ θ− = +−i n i nn  (4) sin cos cos sinθ θ θ θ+ = −( )i i i .

 Now let us apply de Moivre’s theorem to simplify complex numbers and to find solution of 
equations.

de Moivre 
1667–1754
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Example  2.28

 If z i= +( )cos sinθ θ , show that z
z

n z
z

i nn
n

n
n+ = − =

1 2 1 2cos sinθ θand .

Solution

 Let z i= +( )cos sinθ θ .
 By de Moivre’s theorem ,

   zn  =  cos sin cos sinθ θ θ θ+( ) = +i n i nn  

   1
zn  =  z n i nn− = cos sinθ − θ

   Therefore,  z
z

n
n+

1  =  cos sin cos sinn i n n i nθ θ θ θ+( ) + −( )

   z
z

n
n+

1  =  2cos nθ .

 Similarly,

   z
z

n
n−

1  =  cos sin cos sinn i n n i nθ θ θ θ+( ) − −( )

   z
z

n
n−

1  =  2i nsin θ .

Example  2.29

 Simplify sin cosπ π
6 6

18

+





i .

Solution
   We get, sin cosπ π

6 6
+ i  =  i icos sinπ π

6 6
−






 .

 Raising the power 18 on both sides,

   sin cosπ π
6 6

18

+





i  =  i i( ) −








18
18

6 6
cos sinπ π

    =  −( ) −





1 18

6
18

6
cos sinπ πi

    =  − −( ) = +cos sin3 3 1 0π πi i

   Therefore,   sin cosπ π
6 6

18

+





i  =  1.

Example  2.30

 Simplify  1 2 2
1 2 2

30+ +
+ −









cos sin
cos sin

θ θ
θ θ

i
i

Solution
  Let   z  =  cos sin2 2θ θ+ i .

  As | |z  =  | |z zz2 1= = , we get 


z
z

i= = −
1 2 2cos sinθ θ .
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  Therefore,  1 2 2
1 2 2

+ +
+ −

cos sin
cos sin

θ θ
θ θ

i
i

 =  1

1 1
1

1
+

+
=

+( )
+

=
z

z

z z
z

z .

  Therefore,   1 2 2
1 2 2

30+ +
+ −









cos sin
cos sin

θ θ
θ θ

i
i

 =  z i30 302 2= +( )cos sinθ θ

   =  cos sin60 60θ θ+ i .

Example  2.31

 Simplify    (i) ( )1 18+ i   (ii) ( )− +3 3 31i .

Solution
 (i) ( )1 18+ i

   Let  1+ i  =  r icos sinθ θ+( ) . Then, we get

   r  =  1 1 22 2+ =  ; α π
= 






 =−tan 1 1

1 4
, 

   θ  =  α
π

=
4

       ( 1+ i  lies in the first Quadrant)

   Therefore 1+ i  =  2
4 4

cos sinπ π
+






i

 Raising the power 18 on both sides,

   ( )1 18+ i  =  2
4 4

2
4 4

18
18

18

cos sin cos sinπ π π π
+
















 = +






i i .

 By de Moivre’s theorem,

   ( )1 18+ i  =  2
18

4
18

4
9 cos sinπ π

+





i

    =  2 4
2

4
2

2
2 2

9 9cos sin cos sinπ
π

π
π π π

+





 + +
















 = +







i i 

   ( )1 18+ i  =  2 5129 ( )i i= .

 (ii) ( )− +3 3 31i

   Let  − +3 3i  = r icos sinθ θ+( ) . Then, we get

   r  =  −( ) + = =3 3 12 2 3
2

2 ,

   α  =  tan tan− −

−
= =1 13

3
3

3
π ,

   θ  =  π α π
π π

− = − =
3

2
3

  ( − +3 3i  lies in II Quadrant)

   Therefore,  − +3 3i  =  2 3 2
3

2
3

cos sinπ π
+






i .
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 Raising power 31 on both sides,

   ( )− +3 3 31i  =  2 3 2
3

2
3

31
31

( ) +





cos sinπ πi

    =  2 3 20 2
3

20 2
3

31( ) +





 + +
















cos sinπ

π
π

πi

    =  2 3 2
3

2
3

31( ) +





cos sinπ πi

    =  2 3
3 3

31( ) −





 + −
















cos sinπ

π
π

πi

    =  2 3
3 3

2 3 1
2

3
2

31 31( ) − +





 = ( ) − +









cos sinπ πi i .

2.8.2 Finding n th roots of a complex number
 de Moivre’s formula can be used to obtain roots of  complex numbers. Suppose n is a positive 

integer and a complex numberω is n th root of z denoted by z n1/ , then we have
   ω n  =  z . ...(1)
   Let  ω  =  ρ φ φcos +( )i sin  and

   z  =  r i r k i k kcos cos ,θ θ θ π θ π+( ) = +( ) + +( )( ) ∈sin sin2 2 

 Since w is the nth root of z , then 
   ω n  =  z
  ⇒  ρ φ φn nicos +( )sin  =  r k i k kcos ,θ π θ π+( ) + +( )( ) ∈2 2sin 

By de Moivre’s theorem,
   ρ φ φn n i ncos sin+( )  =  r k i k kcos ,θ π θ π+( ) + +( )( ) ∈2 2sin 

Comparing the moduli and arguments, we get

   ρ n  =  r  and n k kφ θ π= + ∈2 , 

   ρ  =  r n1/  and φ θ π
=

+
∈

2k
n

k,  .

   Therefore, the values of ω are r k
n

i k
n

kn1 2 2/ cos sin ,θ π θ π+





 +

+















 ∈ .

 Although there are infinitely many values of k , the distinct values of ω  are obtained when

k n= −0 1 2 3 1, , , , , . When k n n n= + +, , ,1 2we get the same roots at regular intervals (cyclically). 

Therefore the nth roots of complex number z r i= +( )cosθ θsin  are

z r k
n

i k
n

n n1 1 2 2/ / cos sin=
+






 +

+

















θ π θ π
, , , , , ,k n= −0 1 2 3 1

.
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 If we setω
θ π

=
+( )

ren
i k

n
2

, the formula for the n th roots of a 

complex number has a nice geometric interpretation, as shown in 

Figure. Note that because | |ω = rn  the n  roots all have the same 

modulus rn  they all lie on a circle of radius rn  with centre at the 

origin. Furthermore, the n  roots are equally spaced along the 

circle, because successive n  roots have arguments that differ by

2p
n

.

Remark

(1) General form of de Moivre's Theorem

 If x is rational, then cos sinx i xθ θ+  is  one of the values of (cos sin )θ θ+ i x .

(2) Polar form of unit circle 

   Let z  =  e iiθ θ θ= +cos sin . Then, we get

   z 2  =  cos sinθ θ+ i 2

   ⇒   x iy+ 2  =  cos sin2 2 1θ θ+ =

   ⇒   x y2 2+  =  1.

 Therefore,  z =1 represents a unit circle (radius one) centre at the origin.

2.8.3 The n th  roots of unity
 The solutions of the equation zn =1 , for positive values of integer n ,  are the n  roots of the unity. 

In polar form the equation z =1 can be written as 

 z k i k= +( ) + +( )cos sin0 2 0 2π π = ei k2 p ,  k = 0 1 2, , , .

 Using deMoivre’s theorem, we find the n th roots of unity from the equation given below:

 z k
n

i k
n

e kn
i k

n1
22 2 0 1 2 3/ cos sin , , , , ,= 






 + 
















 = =

π π π

,,n −1 . … (1)

 Given a positive integer n , a complex number z is called an n th root of unity if  and only if zn =1.

If we denote the complex number byω , then 

   ω  = e i
n

i i
n

i
n

2 2 2π π π
= +cos sin

   ⇒    ω n  =  e e
i

n

n
i

2
2 1

π
π







 = = .

Fig. 2.44

Re

Im

O

P

θ = 
2

n
π

ω

mω

1nω −

2nω −

     nth root of a complex number

θ

 n r
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 Therefore ω is an n th root of unity. From equation (1), the 

complex numbers 1 2 1, , , ,ω ω ω

n− are n th roots of unity. The 
complex numbers 1 2 1, , , ,ω ω ω

n−  are the points in the complex 
plane and are the vertices of a regular polygon of n  sides inscribed 
in a unit circle as shown in diagram. Note that because the n th 
roots all have the same modulus 1, they will lie on a circle of 
radius 1 with centre at the origin. Furthermore, the n roots are 
equally spaced along the circle, because successive n th roots have 

arguments that differ by 2p
n

.

 The n th roots of unity 1 2 1, , , ,ω ω ω

n−  are in geometric 

progression with common ratio ω .

 Therefore 1 1
1

02 1+ + + + =
−
−

=−ω ω ω
ω
ω



n
n

 since ω n =1 and ω ¹1 .

The sum of all the nth roots of unity is
1 02 1+ + + + =−ω ω ω

n .

 The product of  n n, th roots of unit is 

   1 2 1ω ω ω n−  =  ω ω0 1 2 3 1
1

2+ + + + + −
−

= ( )
( )

n
n n

    =  ω π πn
n

i
n

i n ne e( ) = ( ) = ( ) = −
− −

− −
( ) ( )

( )
1

2 2
1

2
1 11

The product of all the nth roots of unity is
1 2 1ω ω ω n− = ( )− −1 1n .

 Since | |ω =1,  we have ωω ω= =| |2 1 ;  hence ω ω ω ω= ⇒ = ≤ ≤ −− −1 0 1( ) ,k k k n

ω ω ω ω ωn k n k k k k n− − −= = = ≤ ≤ −( ) , 0 1

Therefore,    ω ω ωn k k k k n− −= = ( ) ≤ ≤ −, .0 1

Note
 (1) All the n  roots of n th roots unity are in Geometrical Progression

 (2) Sum of the n  roots of n th roots unity is always equal to zero.

 (3) Product of the n  roots of n th roots unity is equal to ( )− −1 1n .

 (4) All the n  roots of n th roots unity lie on the circumference of a circle whose centre is at the 
origin and radius equal to 1 and these roots divide the circle into n  equal parts and form a 
polygon of n  sides.

Fig. 2.45

1 Re

Im

O1-

i

i-

P

Q
θ = 

2
n

π

m

ω

ω

1nω −

2nω −

nth roots of unity

θ
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Example  2.32
 Find the cube roots of unity. 

Solution

 Let z3 1=  .
 In polar form, the equation z =1 can be written as

 z k i k e ki k= + + + = =cos( ) sin( ) , , , ,0 2 0 2 0 1 22p p p
 .

    Therefore, ( ) cos sin , , ,z k i k e k
i k1

3
2

32
3

2
3

0 1 2= 





 + 






 = =

p p p

.

 Taking k = 0 1 2, , , we get,

 k = 0,  z  =  cos sin0 0 1+ =i .

 k =1, z  =  cos sin cos sin2
3

2
3 3 3

p p
p

p
p

p
+ = −






 + −






i i

   =  − + = − +cos sinp p
3 3

1
2

3
2

i i .

 k = 2 , z  =  cos sin cos sin4
3

4
3 3 3

p p
p

p
p

p
+ = +






 + +






i i

   =  − − = − −cos sinp p
3 3

1
2

3
2

i i .

 Therefore,  the cube roots of unity are

          1 3
2

1 3
2

, ,− + − −i i i   Þ   1,ω , and ω 2 ,  where ω
π

= =
− +e ii 2

3 1 3
2

.

Example  2.33
 Find the fourth roots of unity.

Solution
 Let z4 1= .
 In polar form, the equation z =1can be written as

 z  =  cos sin , , , ,0 2 0 2 0 1 22+( ) + +( ) = =k i k e ki kπ π π
 .

 Therefore, ( )z
1
4  =  cos 2

4
2

4

2
4k i k e

i kπ π π





 + 






 =sin , k = 0 1 2, , ,3.

 Taking k = 0 1 2 3, , , , we get  

  k = 0,  z  =  cos 0 0 1+ =i sin .

  k =1,  z  =  cos sinπ π
2 2







 + 






 =i i .

Fourth roots of unity

1 Re

Im

O1-

i

i-

Fig. 2.47

Fig. 2.46
Cube roots of unity

1

1 3
2 2

i− +

 1 3
2 2

i− −

Re

Im

O
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  k = 2,  z  =  cos sinπ π+ = −i 1.

  k = 3,  z  =  cos sin cos sin3
2

3
2 2 2

π π π π
+ = − − = −i i i .

 Fourth roots of unity are 1 1, , ,i i− −    Þ    1 2 3, , ,ω ω ωand , where ω
π

= =e i
i 2

4 .

Note

 (i) In this chapter the letterω is used for n th roots of unity. Therefore the value ofω is depending 

on n as shown in following table.

value of n 2 3 4 5  k

value of ω  e
i 2

2
p

e
i 2

3
p

e
i 2

4
p

e
i 2

5
p



e
i

k
2p

 (ii) The complex number z eiθ  is a rotation of z by θ  radians in the counter clockwise direction 

about the origin.

Example  2.34

 Solve the equation z i3 8 0+ = , where z∈ .

Solution

  Let           z i3 8 0+ = .

  Þ     z3  =  −8i

   =  8 8
2

2
2

2( ) cos ,− = − +





 + − +
















 ∈i k i k kπ

π
π

πsin  . Therefore,

  z  =  8 4
6

4
6

3 cos − +





 +

− +

















π π π πk i ksin , k = 0 1 2, , .

 Taking k = 0 1 2, ,  we get,

 k = 0,  z  =  2
6 6

2 1
2

3
2

2 3
2

1
2

cos −





 + −
















 = − −









 = −

π πi i isin








 = −3 i .

 k =1,  z  =  2
2 2

2 2 0 0 2 2cos π π





 + 
















 = = +( ) = + =i i i isin .

 k = 2,  z  =  2 7
6

7
6

2
6 6

cos cosπ π
π

π
π

π





 + 
















 = +






 + +i isin sin


















   =  2
6 6

2 3
2

1
2

3− 





 − 
















 = − −









 = − −cos π πi i isin .

 The values of z are 3 2 3− − −i i i, , and .
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Example  2.35

 Find all cube roots of 3 + i .

Solution
   Let   z3  =  3 + = +( )i r icosθ θsin .

   Then,   r  =  3 1 2
6

+ = = =, and α θ
π  (

 3 + i lies in the first quadrant)

   Therefore,  z3  =  3 2
6 6

+ = +





i icos sinπ π

   Þ    z  =  2 12
18

12
18

0 1 23 cos sin , , ,π π π π+





 +

+















 =

k i k k .

  Taking k = 0 1 2, , , we get

 k = 0,  z  =  2
18 18

1
3 cos sinπ π

+





  ;

 k =1,  z  =  2 13
18

13
18

1
3 cos sinπ π

+





 ;

 k = 2,  z  =  2 25
18

25
18

2 7
18

7
18

1
3

1
3cos sin cos sinπ π π π

+





 = − −






 .

Example  2.36
 Suppose z z z1 2 3, , and are the vertices of an equilateral triangle inscribed in the circle    

z = 2. If z i1 1 3= + , then find z z2 3and .

Solution
 z = 2  represents the circle with centre ( , )0 0  and radius 2.

 Let A, B, and C be the vertices of the given triangle. Since the vertices z z z1 2 3, , and form an 

equilateral triangle inscribed in the circle z = 2 , the sides of this triangle AB, BC, and CA  

subtend 2
3
p radians (120 degree) at the origin (circumcenter of the triangle).

 (The complex number z eiθ  is a rotation of z  by θ  radians in the counter clockwise direction 

about the origin.)
 Therefore, we can obtain z z2 3and  by the rotation of z1 by 2

3
p  and 4

3
p respectively.

 Given that           OA
� ���

 =  z i1 1 3= + ;

            OB
� ���

 =  z e i e
i i

1

2
3

2
31 3

π π

= +( )
   =  1 3 2

3
2
3

+( ) +





i icos sinπ π

                            =  1 3 1
2

3
2

2+( ) − +








 = −i i ;

Re

Im

O

 
1 1 3z i= +

A

2
3
π

2
3
π

2 2z = −

B

C

2

3 1 3z i= −

Fig. 2.48

Chapter 2 Complex Numbers.indd   91 3/10/2019   8:29:43 PM



92XII - Mathematics

             OC
� ���

 =  z e z e e
i i i

1

4
3

2

2
3

2
32

π π π

= = −

                                 =  − +





2 2

3
2
3

cos sinπ πi

   =  − − +








 = −2 1

2
3

2
1 3i i .

  Therefore,   z2  =  − = −2 1 33, and z i .

EXERCISE 2.8

 1. If ω ≠ 1is a cube root of unity, then show that a b c
b c a

a b c
c a b

+ +
+ +

+
+ +
+ +

= −
ω ω
ω ω

ω ω
ω ω

2

2

2

2 1.

 2. Show that 3
2 2

3
2 2

3
5 5

+








 + −









 = −

i i .

 3. Find the value of 
1

10 10

1
10 10

10

+ +

+ −

















sin cos

sin cos
.

π π

π π

i

i

 4. If 2 1 2 1cos cos ,α β= + = +x
x

y
y

and  show that

   (i) x
y

y
x

+ = −( )2cos α β  (ii) xy
xy

i− = +( )1 2 sin α β

   (iii) x
y

y
x

i m n
m

n

n

m− = −( )2 sin α β  (iv) x y
x y

m nm n
m n+ = +( )1 2cos α β .

 5. Solve the equation z3 27 0+ = .

 6. If ω ≠ 1 is a cube root of unity, show that the roots of the equation z −( ) + =1 8 03 are

− − −1 1 2 1 2 2, ,ω ω .

 7. Find the value of cos sin .2
9

2
91

8 k i k
k

π π
+








=
∑

 8. If ω ≠ 1 is a cube root of unity, show that

   (i) ( ) ( ) .1 1 1282 6 2 6− + + + − =ω ω ω ω

   (ii) 1 1 1 1 1 12 4 8 211

+( ) +( ) +( ) +( ) +( ) =ω ω ω ω ω .

 9. If z i= −2 2 , find the rotation of z  by θ  radians in the counter clockwise direction about the 
origin when

   (i) θ
π

=
3

 (ii) θ π
=

2
3

 (iii) θ π
=

3
2

.

 10. Prove that the values of −14 are ± ±
1
2

1( )i .
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EXERCISE 2.9
Choose the correct or the most suitable answer from the given four alternatives :

 1. i i i in n n n+ + ++ + +1 2 3  is

  (1) 0   (2) 1  (3) −1  (4) i  

 2. The value of ( )i in n

i
+ −

=
∑ 1

1

13

 is

  (1) 1+ i    (2) i   (3) 1  (4) 0  

 3. The area of the triangle formed by the complex numbers z iz, ,  and z iz+ in the Argand’s diagram 
is

  (1) 1
2

2| |z   (2) | |z 2   (3) 3
2

2| |z   (4) 2 2| |z  

 4. The conjugate of a complex number is 1
2i −

. Then, the complex number is

  (1) 1
2i +

   (2) −
+
1
2i

  (3) −
−
1
2i

  (4) 1
2i −

 

 5. If z
i i

i
=

+( ) +

+

3 3 4

8 6

3
2

2

( )

( )
, then | |z  is equal to

  (1) 0   (2) 1  (3) 2   (4) 3  

 6. If z  is a non zero complex number, such that 2 2iz z=  then | |z  is 

  (1) 1
2

  (2) 1  (3) 2   (4) 3  

 7. If | |z i− + ≤2 2 , then the greatest value of | |z  is

  (1) 3 2−   (2) 3 2+    (3) 5 2−   (4) 5 2+  

 8. If z
z

− =
3 2 , then the least value of | |z  is

  (1) 1  (2) 2   (3) 3   (4) 5  

 9. If | |z =1 , then the value of 1
1
+
+

z
z

 is

  (1) z   (2) z   (3) 1
z

  (4) 1 

 10. The solution of the equation | |z z i− = +1 2  is

  (1) 3
2

2− i   (2) − +
3
2

2i   (3) 2 3
2

− i   (4) 2 3
2

+ i  

 11. If | | , | | , | |z z z1 2 31 2 3= = =  and | |9 4 121 2 1 3 2 3z z z z z z+ + = , then the value of | |z z z1 2 3+ +  is

  (1) 1   (2) 2   (3) 3    (4) 4  

 12. If z  is a complex number such that z C R∈ \  and z
z

R+ ∈
1 , then | |z  is

  (1) 0    (2) 1  (3) 2   (4) 3  
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 13. z z1 3, , and z3  are complex numbers such that z z z1 2 3 0+ + =  and | | | | | |z z z1 2 3 1= = =  then 

z z z1
2

2
2

3
2+ +  is

  (1) 3    (2) 2   (3) 1  (4) 0  

 14. If z
z

−
+

1
1

 is purely imaginary, then | |z  is

  (1) 1
2

   (2) 1  (3) 2   (4) 3  

 15. If z x iy= +  is a complex number such that | | | |z z+ = −2 2 , then the locus of z  is

  (1) real axis (2) imaginary axis (3) ellipse (4) circle

 16. The principal argument of 3
1− + i

 is

  (1) −5
6
p   (2) −2

3
p    (3) −3

4
p   (4) −p

2
  

 17. The principal argument of (sin cos )40 40 5° + °i  is

  (1) − °110    (2) − °70    (3) 70°    (4) 110°   

 18. If ( ) ( ) ( ) ( )1 1 2 1 3 1+ + + + = +i i i ni x iy , then 2 5 10 1 2⋅ ⋅ +( )n  is

  (1) 1  (2) i   (3) x y2 2+   (4) 1 2+ n  

 19. If ω ≠ 1 is a cubic root of unity and ( )1 7+ = +ω ωA B , then ( , )A B  equals 

  (1) ( , )1 0   (2) ( , )−1 1   (3) ( , )0 1   (4) ( , )1 1  

 20. The principal argument of the complex number 
1 3

4 1 3

2
+( )

−( )
i

i i
 is

  (1) 2
3
p   (2) p

6
  (3) 5

6
p   (4) p

2
 

 21. If α  and β  are the roots of x x2 1 0+ + = , then α β2020 2020+  is

  (1) −2   (2) −1  (3) 1   (4) 2  

 22. The product of all four values of cos sinπ π
3 3

3
4

+





i  is

  (1) −2   (2) −1  (3) 1  (4) 2  

 23. If ω ≠ 1 is a cubic root of unity and 
1 1 1
1 1
1

32 2

2 7

− − =ω ω
ω ω

k , then k  is equal to

  (1) 1  (2) −1  (3) 3i   (4) − 3i   

 24. The value of 1 3
1 3

10
+
−











i
i

 is

  (1) cis 2
3
p   (2) cis 4

3
p   (3) −cis 2

3
p   (4) −cis 4

3
p  
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 25. If ω π
= cis 2

3
, then the number of distinct  roots of 

z
z

z

+
+

+
=

1
1

1
0

2

2

2

ω ω
ω ω
ω ω

  (1) 1  (2) 2   (3) 3   (4) 4   

SUMMARY
 In this chapter we studied

 Rectangular form of a complex number is x iy x yi++ ++( )or , where x and y are real 
numbers.  

 Two complex numbers z x iy1 1 1== ++  and z x iy2 2 2== ++  are said to be equal if and only if 
Re( ) Re( )z z1 2== and Im( ) Im( )z z1 2== . That is x x y y1 2 1 2== ==and .

 The conjugate of the complex number x iy++ is defined as the complex number x iy−− .

Properties of complex conjugates 

 (1) z z z z1 2 1 2+ = +  (6) Im( )z z z
i

=
−
2

 (2) z z z z1 2 1 2− = −  (7) z zn n( ) = ( ) , where n is an integer 

 (3) z z z z1 2 1 2=  (8) z is real if and only if z z=  

 (4) z
z

z
z

z1

2

1

2
2 0









 = ≠,  (9) z  is purely imaginary if and only if z z= −  

 (5) Re( )z z z
=

+
2

 (10) z z=

  If z x iy== ++ , then x y2 2++ is called modulus of z . It is denoted by z .

Properties of Modulus of a complex number

 (1) z z=  (5) z
z

z
z

z1

2

1

2
2 0= ≠,

 (2) z z z z1 2 1 2+ ≤ + (Triangle inequality) (6) z zn n= , where n is an integer

 (3) z z z z1 2 1 2=  (7) Re z z( ) ≤

 (4) z z z z1 2 1 2− ≥ −  (8) Im z z( ) ≤
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Formula for finding square root of a complex number

 a ib
z a

i b
b

z a
+ = ±

+
+

−









2 2

, where z a ib= + and b ¹ 0 .

 Let r  and θ be polar coordinates of the point P x y( , ) that corresponds to a non-zero  
complex number z x iy= + . The polar form or trigonometric form of a complex number P  is 

z r i= +(cos sin )θ θ .

Properties of polar form

Property 1 

 If z r i= +( )cos sin ,θ θ then z
r

i− = −( )1 1 cos sinθ θ .

Property 2  
 If z r i1 1 1 1= +( )cos sinθ θ and z r i2 2 2 2= +( )cos sinθ θ ,

         then  z z1 2 = r r i1 2 1 2 1 2cos( ) sin( )θ θ θ θ+ + +( ) .

Property3

         If z r i1 1 1 1= +( )cos sinθ θ and z iz, ,  then z
z

r
r

i1

2

1

2
1 2 1 2=  −( ) + −( )cos sinθ θ θ θ .

de Moivre’s Theorem
Given any complex number cos sinθθ θθ++ i  and any integer n,

(cos sin ) cos sinθθ θθ θθ θθ++ == ++i n i nn

 The nth roots of complex number z r i= +( )cosθ θsin  are

z r k
n

i k
n

n n1 1 2 2/ / cos sin=
+






 +

+

















θ π θ π , k n= −0 1 2 3 1, , , , , .
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“It seems that if one is working from the point of 
view of getting beauty in one’s equation, 

and if one has really a sound insight, one is on a sure line of progress.”
- Paul Dirac

Chapter

3 Theory of Equations

3.1 Introduction
	 One	of	the	oldest	problems	in	mathematics	is	solving	algebraic	equations,	in	particular,	finding	
the roots of polynomial equations. Starting from Sumerian and Babylonians around 2000 BC (BCE), 
mathematicians and philosophers of Egypt, Greece, India, Arabia, China, and almost all parts of the 
world attempted to solve polynomial equations.

 The ancient mathematicians stated the problems and their solutions entirely 
in terms of words. They attempted particular problems and there was no generality.  
Brahmagupta	was	the	first	to	solve	quadratic	equations	involving	negative	numbers.	
Euclid,	Diophantus,	Brahmagupta,	Omar	Khayyam,	Fibonacci,	Descartes,	and	Ruffini	
were	a	few	among	the	mathematicians	who	worked	on	polynomial	equations.	Ruffini	
claimed	 that	 there	 was	 no	 algebraic	 formula	 to	 find	 the	 solutions	 to	 fifth	 degree	
equations	by	giving	a	lengthy	argument	which	was	difficult	to	follow;	finally	in	1823,	
Norwegian mathematician Abel proved it.

         Suppose that a manufacturing company wants to pack its product into rectangular 
boxes.  It plans to construct the boxes so that the length of the base is six units more 
than the breadth, and the height of the box is to be the average of the length and the 
breadth of the base. The company wants to know all possible measurements of the 
sides	of	the	box	when	the	volume	is	fixed.

 If we let the breadth of the base as x , then the length is x + 6  and its height is x + 3 . Hence the 
volume of the box is x x x( )( )+ +3 6 .	Suppose	the	volume	is	2618	cubic	units,	 then	we	must	have	
x x x3 29 18 2618+ + = .	If	we	are	able	to	find	an	 x satisfying the above equation, then we can construct 
a box of the required dimension.

 We know a circle and a straight line cannot intersect at more than two points.  But how can we 
prove this?  Mathematical equations help us to prove such statements. The circle with centre at origin 
and radius r is represented by the equation x y r2 2 2+ = , in the xy -plane. We further know that a line, 
in the same plane, is given by the equation ax by c+ + = 0 . The points of intersection of the circle and 
the straight line are the points which satisfy both equations. In other words, the solutions of the 
simultaneous equations

x y r2 2 2+ =  and ax by c+ + = 0  

give the points of intersection.  Solving the above system of equations, we can conclude whether they 
touch each other, intersect at two points or do not intersect each other.

Abel
(1802-1829)
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 There are some ancient problems on constructing geometrical objects using only a compass and 
a ruler (straight edge without units marking).  For instance, a regular hexagon and a regular polygon 
of	17	sides	are	constructible	whereas	a	regular	heptagon	and	a	regular	polygon	of	18	sides	are	not	
constructible. Using only a compass and a ruler certain geometrical constructions, particularly the 
following three, are not possible to construct: 

 • Trisecting an angle (dividing a given angle into three equal angles).

 • Squaring a circle (constructing a square with area of a given circle). [Srinivasa Ramanujan 
has given an approximate solution in his “Note Book”]

 • Doubling a cube (constructing a cube with twice the volume of a given cube).

 These ancient problems are settled only after converting these geometrical problems into 
problems	on	polynomials;	in	fact	these constructions are impossible. Mathematics is a very nice 
tool to prove impossibilities.

When solving a real life problem, mathematicians convert the problem into a mathematical 
problem, solve the mathematical problem using known mathematical techniques, and then convert 
the mathematical solution into a solution of the real life problem. Most of the real life problems, when 
converting into a mathematical problem, end up with a mathematical equation. While discussing the 
problems of deciding the dimension of a box, proving certain geometrical results and proving some 
constructions impossible, we end up with polynomial equations.

In this chapter we learn some theory about equations, particularly about polynomial equations, 
and	 their	 solutions;	we	 study	 some	 properties	 of	 polynomial	 equations,	 formation	 of	 polynomial	
equations with given roots, the fundamental theorem of algebra, and to know about the number of 
positive and negative roots of a polynomial equation. Using these ideas we reach our goal of solving 
polynomial equations of certain types. We also learn to solve some non–polynomial equations using 
techniques developed for polynomial equations.

LEARNING OBJECTIVES

 Upon completion of this chapter, the students will be able to
 • form polynomial equations satisfying given conditions on roots.
 • demonstrate the techniques to solve polynomial equations of higher degree.
 • solve equations of higher degree when some roots are known to be complex or surd, irrational, 

and rational.
 •	 find	solutions	to	some	non-polynomial	equations	using	techniques	developed	for	polynomial	

equations.
 • identify and solve reciprocal equations.
 • determine the number of positive and negative roots of a polynomial equation using Descartes 

Rule.
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3.2 Basics of Polynomial Equations
3.2.1 Different types of Polynomial Equations
 We already know that, for any non–negative integer n , a polynomial of degree n in one variable 
x is an expression given by

 P ≡ P(x)= a x a x a x an
n

n
n+ + + +−

−
1

1
1 0 	 ...	(1)

where ar ∈  are constants, r n= 0 1 2, , , ,  with an ¹ 0 . The variable x  is real or complex.

 When	all	 the	coefficients	of	 a	polynomial	P are real, we say “P is a polynomial over  ”. 
Similarly we use terminologies like “P is a polynomial over  ”, “P is a polynomial over  ”, and 
P is a polynomial over  ”.

 The function P	defined	by	P x a x a x a x an
n

n
n( ) = + + + +−

−
1

1
1 0   is called a polynomial function. 

The equation

 a x a x a x an
n

n
n+ + + + =−

−
1

1
1 0 0  ... (2)

is called a polynomial equation. 

 If  a c a c a c an
n

n
n+ + + + =−

−
1

1
1 0 0 for some c∈ , then c is called a zero of the polynomial (1)	

and root or solution of the polynomial equation (2).

 If c is a root of an equation in one variable x, we write it as“ x c=  is a root”. The constants ar are 

called coefficients. The	coefficient an is called the leading coefficient and the term a xn
n  is called the 

leading term. The	coefficients	may	be	any	number,	real	or	complex.		The	only	restriction	we	made	is	
that	 the	 leading	 coefficient an is	 nonzero.	A	polynomial	with	 the	 leading	 coefficient	 1	 is	 called	 a	
monic polynomial.

Remark: 

 We note the following:

 •	 Polynomial	functions	are	defined	for	all	values	of x .

 • Every nonzero constant is a polynomial of degree 0 .

 • The constant 0 is also a polynomial called the zero polynomial;	its	degree	is	not	defined.

 • The degree of a polynomial is a nonnegative integer.

 •	 The	zero	polynomial	is	the	only	polynomial	with	leading	coefficient0 .

 • Polynomials of degree two are called quadratic polynomials.

 • Polynomials of degree three are called cubic polynomials.
 • Polynomial of degree four are called quartic polynomials.

 It is customary to write polynomials in descending powers of x . That is, we write polynomials 

having	the	term	of	highest	power	(leading	term)	as	the	first	term	and	the	constant	term	as	the	last	term.  

 For instance, 2 3 4 5x y z+ + =  and 6 7 8 92 2 3x x y z+ + =  are equations in three variables  
x , y , z ;	 x x2 4 5 0− + =  is an equation in one variable x. In the earlier classes we have solved 
trigonometric equations, system of linear equations, and some polynomial equations.
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	 We	know	that	3	is	a		zero	of	the	polynomial	 x x2 5 6− + 	and	3	is	a	root	or	solution	of	the	equation	

x x2 5 6 0− + = . We note that cos sinx x=  and cos sinx x+ =1  are also equations in one variable x. 
However, cos sinx x−  and cos sinx x+ −1  are not polynomials and hence cos sinx x=  and 
cos sinx x+ =1  are not “polynomial equations”. We are going to consider only “polynomial equations” 

and equations which can be solved using polynomial equations in one variable.

 We  recall that sin cos2 2 1x x+ =  is an identity on  , while sin cosx x+ =1  and sin cos3 3 1x x+ =  

are equations.

	 It	is	important	to	note	that	the	coefficients	of	a	polynomial	can	be	real	or	complex	numbers,	but	

the exponents must be nonnegative integers. For instance, the expressions 3 12x− +  and 5 1
1
2x +  are 

not polynomials. We already learnt about polynomials and polynomial equations, particularly about 
quadratic equations.  In this section let us quickly recall them and see some more concepts.

3.2.2  Quadratic Equations
 For the quadratic equation ax bx c2 + + =0, b ac2 4-  is called the discriminant and it is usually 

denoted by D . We know that − +b
a

∆
2

and − −b
a

∆
2

are roots of the quadratic equation ax bx c2 0+ + =

. The two roots together are usually written as − ± −b b ac
a

2 4
2

. It is unnecessary to emphasize that 

a ¹ 0 , since by saying that ax bx c2 + +  is a quadratic polynomial, it is implied that a ¹ 0 .

 We also learnt that ∆ = 0  if, and only if, the roots are equal. When a b c, ,  are real, we know
 • ∆ > 0 if, and only if, the roots are real and distinct

 • ∆ < 0 if, and only if, the quadratic equation has no real roots. 

3.3 Vieta’s  Formulae and Formation of Polynomial Equations
 Vieta's	formulae	relate	the	coefficients	of	a	polynomial	to	sums	and	products	of	its	roots.	Vieta	
was a French mathematician whose work on polynomials paved the way for modern algebra.

3.3.1 Vieta’s formula for Quadratic Equations
 Let α  and β  be the roots of the quadratic equation ax bx c a2 0 0+ + = ≠, . Then

   ax bx c2 + +  =  a x x ax a x a−( ) −( ) = − +( ) + ( ) =α β α β αβ2 0 .

 Equating	the	coefficients	of	like	powers,	we	see	that

   α β+  =  −b
a

 and αβ =
c
a

.

 
Soa quadratic equation whose roots are α  and β is x x2 0− + + =( )α β αβ ;	that	is, a quadratic 

equation with given roots is, 

  x2  −	(sum	of	the	roots) x +  product	of	the	roots	=	0.	 ...	(1)
Note
 The	indefinite	article	a  is used in the above statement. In fact, if P x( ) = 0  is a quadratic equation 
whose roots are α and β , then cP x( )  is also a quadratic equation with roots α  and β  for any  
non-zero constant c.
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 In	 earlier	 classes,	 using	 the	 above	 relations	between	 roots	 and	 coefficients	we	 constructed	 a	
quadratic equation, having α and β as	roots.	In	fact,	such	an	equation	is	given	by	(1).	For	instance,	a 
quadratic	equation	whose	roots	are	3	and	4	is	given	by	 x x2 7 12 0− + = .
 Further we construct new polynomial equations whose roots are functions of the roots of a given 
polynomial	equation;	in	this	process	we	form	a	new	polynomial	equation	without	finding	the	roots	of	
the given polynomial equation.  For instance, we construct a polynomial equation by increasing the 
roots	of	a	given	polynomial	equation	by	two	as	in	the	example	3.1.
Example 3.1
 If α  and β  are the roots of the quadratic equation17 43 73 02x x+ − = , construct a quadratic 
equation whose roots are α + 2and β + 2 . 
Solution
 Since α and β  are the roots of 17 43 73 02x x+ − = , we have α β+ =

−43
17

 and αβ =
−73
17

.

 We wish to construct a quadratic equation with roots areα + 2and β + 2 .Thus, to construct such 

a quadratic equation, calculate, 
   the sum of the roots = α β+ + 4  = −

+
43

17
4  = 25

17
      and 

   the product of the roots = αβ α β+ + +2 4( )  = −
+

−





 +

73
17

2 43
17

4  = −91
17

. 

 Hence a quadratic equation with required roots is x x2 25
17

91
17

− −  =  0 .

	 Multiplying	this	equation	by	17,	gives	17 25 912x x− −  =  0

which is also a quadratic equation having roots α + 2and β + 2 .

Example 3.2
 If α  and β  are the roots of the quadratic equation 2 7 13 02x x− + = , construct a quadratic 

equation whose roots are α 2 and β 2 .

Solution
 Since α  and β  are the roots of the quadratic equation, we have α β+  =  7

2
 and αβ =

13
2

.

 
Thus, to construct a new quadratic equation,

   Sum of the roots =  α β α β αβ2 2 2 2 3
4

+ = + − =
−( ) .

   Product of the roots =  α β αβ2 2 2 169
4

= ( ) =  

  Thus a required quadratic equation is x x2 3
4

169
4

0+ + = . From this we see that

 4 3 1692x x+ +  =  0

 is a quadratic equation with roots α 2 and β 2 .

Remark
	 In	Examples	3.1	and	3.2,	we	have	computed	 the	sum	and	 the	product	of	 the	 roots	using	 the	
known α β+ and αβ . In this way we can construct quadratic equation with desired roots, provided 
the sum and the product of the roots of a new quadratic equation can be written using the sum and the 
product of the roots of the given quadratic equation. We note that we have not solved the given 
equation;	we	do	not	know	the	values	of	α  and β  even after completing the task.
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3.3.2 Vieta’s formula for Polynomial Equations
 What we have learnt for quadratic polynomial, can be extended to polynomials of higher degree. 
In	this	section	we	study	the	relations	of	the	roots	of	a	polynomial	of	higher	degree	with	its	coefficients.	
We also learn how to form polynomials of higher degree when some information about the zeros 
are known. In this chapter, we use either zeros of a polynomial of degree n or roots of polynomial 
equation of degree n .

3.3.2 (a) The Fundamental Theorem of Algebra
 If a  is a root of a polynomial equation P x( ) = 0 , then ( )x a−  is a factor of P x( ) = 0 . So,  
deg ( ( ))P x ≥1 . If a and b  are roots of P x( ) = 0 then ( ) ( )x a x b− −  is a factor of P x( ) = 0 and hence 

deg ( ( ))P x ≥ 2 . Similarly if P x( ) = 0  has n roots, then its degree must be greater than or equal to n. In 
other words, a polynomial equation of degree n cannot have more than n  roots.

 In earlier classes we have learnt about “multiplicity”. Let us recall what we mean by “multiplicity”. 
We know if ( )x a k−  is a factor of a polynomial equation P x( ) = 0  and ( )x a k− +1 is not a factor of the 

polynomial equation, P x( ) = 0 , then a  is called a root of multiplicity k .	For	instance,	3	is	a	root	of	

multiplicity 2 for the equation x x2 6 9 0− + = and x x x3 27 159 9 0− + − = . Though we are not going to 

use	complex	numbers	as	coefficients,	it	is	worthwhile	to	mention	that	the	imaginary	number	 2+ i  is 

a root of multiplicity 2 for the polynomials x i x i2 4 2 3 4 0− + + + =( ) and x x x x4 3 28 26 40 25 0− + − + = .

If a  is a root of multiplicity 1 for a polynomial equation, then a  is called a simple root of the 
polynomial equation.

 If P x( ) = 0  has n roots counted with multiplicity, then also, we see that its degree must be 

greater than or equal to n . In other words, “a polynomial equation of degree n  cannot have more than 

n  roots, even if the roots are counted with their multiplicities”. 

 One of the important theorems in the theory of equations is the fundamental theorem of algebra. 
As the proof is beyond the scope of the Course, we state it without proof.

Theorem 3.1 (The Fundamental Theorem of Algebra)
 Every polynomial equation of degree n ≥ 1  has at least one root in  .

 Using this, we can prove that a polynomial equation of degree n  has at least n   roots in   when the 
roots are counted with their multiplicities. This statement together with our discussion above says that 

a polynomial equation of degree n  has exactly n  roots in   
when the roots are counted with their multiplicities.

  Some authors state this statement as the fundamental theorem of algebra. 

3.3.2(b) Vieta’s Formula 
(i) Vieta’s Formula for Polynomial equation of degree 3
 Now we obtain these types of relations to higher degree polynomials. Let us consider a general 
cubic equation
   ax bx cx d3 2+ + +  =  0 0, a ≠ .
 By the fundamental theorem of algebra, it has three roots. Let α , β , and γ be the roots. Thus we 

have
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   ax bx cx d3 2+ + +  =  a x x x( )( )( )− − −α β γ  

 Expanding the right hand side, gives

ax a x a x a3 2− + + + + + −( ) ( ) ( )α β γ αβ βγ γα αβγ .

 Comparing	the	coefficients	of	like	powers,	we	obtain

   α β γ+ +  =  −b
a

,  αβ βγ γα+ + =
c
a

 and αβγ =
−d
a

.

	 Since	the	degree	of	the	polynomial	equation	is	3,	we	must	have	 a ¹ 0  and hence division by a

is meaningful. If a monic cubic polynomial has roots α , β ,  and γ , then

	 	 	 coefficient	of		 x2   = − + +( )α β γ ,

	 	 	 coefficient	of	 x   =  αβ βγ γα+ + , and 

   constant term =  −αβγ .

(ii) Vieta’s Formula for Polynomial equation of degree n>3
 The same is true for higher degree monic polynomial equations as well. If a monic polynomial 
equation  of degree n has roots α α α1 2, ,..., n , then

coefficient	of xn−1  =  
1å  =  −∑α1

coefficient	of xn−2  = 
2å  = α α1 2∑

coefficient	of xn−3  =  
3å  =  −∑α α α1 2 3

coefficient	of x  =  ∑ −n 1 =  −( ) −
−∑1 1

1 2 1
n

nα α α...

coefficient	of x0 =  constant term =  
nå  =  −( )1 1 2

n
nα α α...

where α∑ 1
 denotes the sum of all roots, α α∑ 1 2  denotes the sum of product of all roots taken two at 

a time, α α α∑ 1 2 3  denotes the sum of product of all roots taken three at a time, and so on. If  α β γ, , ,

and δ  are the roots of a quadric equation, then α∑ 1
is written as  α∑ , α α∑ 1 2  is written as αβ∑

and so on. Thus we have,

α α β γ δ

αβ αβ αγ αδ βγ βδ γδ

αβγ αβγ αβδ αγδ βγδ

αβγδ α

∑
∑
∑
∑

= + + +

= + + + + +

= + + +

= ββγδ
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 When the roots are available in explicit numeric form, then also we use these convenient 
notations. We have to be careful when handling roots of higher multiplicity.  For instance, if the roots 
of a cubic	equation	are	1,	2,	2,	then	 α∑ = 5 and αβ = × + × + × =∑ ( ) ( ) ( )1 2 1 2 2 2 8 .

 From the above discussion, we note that for a monic polynomial equation, the sum of the roots 
is	the	coefficient	of	 xn−1 multiplied by −( )1  and the product of the roots is the constant term multiplied 

by −( )1 n .

Example 3.3
 If α , β , and γ  are the roots of the equation x px qx r3 2 0+ + + = ,	find	the	value	of	 1

βγ∑  in 

terms	of	the	coefficients.

Solution
 Since α , β , and γ  are the roots of the equation x px qx r3 2 0+ + + = , we have

   1å α β γ+ +  =  − p  and  3å αβγ = −r .
 Now

   1
βγ∑   =  1 1 1

βγ γα αβ
α β γ

αβγ
+ + =

+ +
=

−
−

=
p
r

p
r

 .

3.3.2( c)  Formation of Polynomial Equations with given Roots
 We have constructed quadratic equations when the roots are known.  Now we learn how to form 
polynomial	equations	of	higher	degree	when	roots	are	known.	How	do	we	find	a	polynomial	equation	
of degree n  with roots α α α1 2, , , n ? One way of writing a polynomial equation is multiplication of 
the factors. That is

x x x x n−( ) −( ) −( ) −( ) =α α α α1 2 3 0

is a polynomial equation with roots α α α1 2, , , n .  But it is not the usual way of writing a polynomial 
equation.  We have to write the polynomial equation in the standard form which involves more 
computations.	But	by	using	the	relations	between	roots	and	coefficients,	we	can	write	the	polynomial	
equation	directly;	moreover,	it	is	possible	to	write	the	coefficient	of	any	particular	power	of	 x without 
finding	the	entire	polynomial	equation.

 A cubic polynomial equation whose roots are α , β , and γ is

x x x3 2 0− + +( ) + + +( ) − =α β γ αβ βγ γα αβγ .

A polynomial equation of degree n with roots α α α1 2, , , n is given by

x x x xn n n n n
n− ( ) + ( ) − ( ) + + −( ) =∑ ∑ ∑− − −α α α α α α α α α1

1
1 2

2
1 2 3

3
1 21 0 

where, α α α α α α1 1 2 1 2 3∑ ∑ ∑, , , 	are	as	defined	earlier.

			For	instance,	a	polynomial	equation	with	roots	1,	−2 ,	and	3	is	given	by

x x x3 21 2 3 1 2 2 3 3 1 1 2 3 0− − +( ) + × −( ) + −( )× + ×( ) − × −( )× =

which,	on	simplification,	becomes	 x x x3 22 5 6 0− − + = . It is interesting to verify that the expansion 

of x x x−( ) +( ) −( ) =1 2 3 0 is x x x3 22 5 6 0− − + = .
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Example 3.4
 Find the sum of the squares of the roots of ax bx cx dx e4 3 2+ + + +  =  0 . 

Solution
 Let  α β γ, , ,  and δ  be the roots of  ax bx cx dx e4 3 2+ + + +  =  0 .

Then, we get 
  å1  =  α β γ δ+ + + = −

b
a

, 

  å2  =  αβ αγ αδ βγ βδ γδ+ + + + + =
c
a

,

  å3  =  αβγ αβδ αγδ βγδ+ + + + = −
d
a

,

  å4  =  αβγδ =
e
a

.

 We have to find  α β γ δ2 2 2 2+ + +  .

 Applying the algebraic identity

  ( ) ( )a b c d a b c d ab ac ad bc bd cd+ + + ≡ + + + + + + + + +2 2 2 2 2 2 ,

we get   
  α β γ δ2 2 2 2+ + +  =  ( ) ( )α β γ δ αβ αγ αδ βγ βδ γδ+ + + − + + + + +2 2

   =  −





 − 








b
a

c
a

2

2

   =  
b ac

a

2

2

2−
.

Example 3.5  
 Find the condition that the roots of x ax bx c3 2+ + +  =  0 are in the ratio p q r: :  . 

Solution 
 Since two roots are in the ratio p q r: : , we can assume the roots as p qλ λ,  and rλ . 

 Then, we get  
  å1  =  p q rλ λ λ+ + = −a ,	 	….(1)

  å2  =  ( )( ) ( )( ) ( )( )p q q r r pλ λ λ λ λ λ+ + = b ,                             ….(2)

  å3  =  ( )( )( )p q rλ λ λ = −c ,	 																																																							….(3)

Now, we get 
                         ( )1  ⇒ λ =  −

+ +
a

p q r
	 																																																																						….(4)																																												

                         ( )3 ⇒ λ3 = −
c

pqr
                                                                              …..(5)

Substituting	(4)	in	(5),	we	get	

                                        −
+ +











a
p q r

3

= −
c

pqr
⇒ pqra3 = c p q r( )+ + 3 .

Example 3.6
 Form the equation whose roots are the squares of the roots of the cubic equation  
 x ax bx c3 2+ + +  =  0 .  
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Solution 
 Let  α β,  and γ  be the roots of  x ax bx c3 2+ + +  =  0 .

 Then, we get 
  å1  =  α β γ+ + = −a ,		 ….(1)

  å2  =  αβ βγ γα+ + = b , ….(2)

  å3  =  αβγ = −c .	 ….(3)

We have to form the equation whose roots are α β2 2,  and γ 2 . 

Using	(1),	(2)	and	(3),	we	find	the	following:
                    å1  =  α β γ2 2 2+ + = ( ) ( )α β γ αβ βγ γα+ + − + +2 2 = ( ) ( )− −a b2 2  = a b2 2− ,

  å2  =  α β β γ γ α2 2 2 2 2 2+ +  = ( ) (( )( ) ( )( ) ( )( ))αβ βγ γα αβ βγ βγ γα γα αβ+ + − + +2 2

   =  ( ) ( )αβ βγ γα αβγ β γ α+ + − + +2 2 = ( ) ( )( )b c a2 2− − − = b ca2 2−

  å3  =  α β γ2 2 2 = ( )αβγ 2 = ( )−c 2 = c2 .

 Hence, the required equation is  

 x x x3 2 2 2 2 2 2 2 2 2 2 2 2 2− + +( ) + + +( ) −α β γ α β β γ γ α α β γ  =0.

 That is,  x a b x b ca x c3 2 2 2 22 2− −( ) + −( ) − =0.

Example 3.7
 If p is real, discuss the nature of the roots of the equation 4 4 2 02x px p+ + + = , in terms of p .
Solution
 The discriminant ∆ =( ) − ( ) +( ) = − −( ) = +( ) −( )4 4 4 2 16 2 16 1 22 2p p p p p p . So, we get

   ∆ < 0  if − < <1 2p

   ∆ = 0  if p = −1 or p = 2

   ∆ > 0  if −∞ < < −p 1 or 2 < < ∞p
Thus the given polynomial has 
   imaginary roots if  − < <1 2p ;	
   equal real roots  if p = −1 or p = 2 ;	
   distinct real roots  if −∞ < < −p 1 or  2 < < ∞p  .    

EXERCISE 3.1
	 1.	 If	the	sides	of	a	cubic	box	are	increased	by	1,	2,	3	units	respectively	to	form	a	cuboid,	then	

the volume is increased by 52 cubic units. Find the volume of the cuboid.

 2. Construct a cubic equation with roots
   (i) 1, 2 , and 3  (ii) 1,1, and −2  (iii) 2 ,−2 , and 4 .

	 3. If α , β  and γ  are the roots of the cubic equation x x x3 22 3 4 0+ + + = , form a cubic equation 

whose roots are
   (i) 2α , 2β , 2γ  (ii) 1

α
, 1
β

, 1
γ

 (iii) −α , −β , −γ

	 4. Solve the equation 3 16 23 6 03 2x x x− + − = if	the	product	of	two	roots	is	1.	

 5. Find the sum of squares of roots of the equation 2 8 6 3 04 3 2x x x− + − = . 
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 6. Solve the equation x x x3 29 14 24 0− + + =  if it is given that two of its roots are in the  
ratio 3 2: .

	 7. If α β, , and γ are the roots of the polynomial equation ax bx cx d3 2 0+ + + = ,	find	the	

value of α
βγ∑ 	in	terms	of	the	coefficients.

	 8. If α β γ, , , and δ  are the roots of the polynomial equation 2 5 7 8 04 3 2x x x+ − + = 	 ,	find	a	

quadratic equation	with	integer	coefficients	whose	roots	are	α β γ δ+ + +   and αβγδ .

 9. If p and q are the roots of the equation lx nx n2 0+ + = , show that 
p
q

q
p

n
l

+ + = 0 . 

	 10. If  the equations x px q2 0+ + =   and x p x q2 0+ ′ + ′ = have a common root, show that it must 

be equal to pq p q
q q
′ ′

′
−
−

  or    q q
p p

−
−

′
′

.

	 	11.	Formalate	into	a	mathematical	problem	to	find	a	number	such	that	when	its	cube	root	is	added	
to it, the result is 6 .

	 12.	 	A	12	metre	tall	tree	was	broken	into	two	parts.	It	was	found	that	the	height	of	the	part	which	
was left standing was the cube root of the length of the part that was cut away. Formulate this 
into	a	mathematical	problem	to	find	the	height	of	the	part	which	was	cut	away.

3.4  Nature of Roots and Nature of Coefficients of Polynomial Equations
3.4.1 Imaginary Roots
	 For	a	quadratic	equation	with	real	coefficients,	if	α β+ i  is a root, then α β− i is also a root. In 
this section we shall prove that this is true for higher degree polynomials as well. 
 We now prove one of the very important theorems in the theory of equations.

Theorem 3.2 (Complex Conjugate Root Theorem)

 If a complex number z0 	is	a	root	of	a	polynomial	equation	with	real	coefficients,	then	its	complex 

conjugate z0 is also a root. 

Proof
 Let P x a x a x a x an

n
n

n
o( ) = + + + + =−

−
1

1
1 0 be	 a	 polynomial	 equation	 with	 real	 coefficients.  

Let z0 be a root of this polynomial equation. So, P( z0 )=0. Now

 P z0( )  =  a z a z a z an
n

n
n

0 1 0
1

1 0 0+ + + +−
−


  =  a z a z a z an
n

n
n

0 1 0
1

1 0 0+ + + +−
−


  =  a z a z a z an
n

n
n

0 1 0
1

1 0 0+ + + +−
−


 ( a ar r= as ar  is real for all r )

  =  a z a z a z an
n

n
n

0 1 0
1

1 0 0+ + + +−
−


  =  a z a z a z an
n

n
n

0 1 0
1

1 0 0+ + + +−
−


 = P z( )0 0 0= =

 That is P z( )0 0= ;	this	implies	that	whenever	 z0 is a root (i.e. P( z0 )=0), its conjugate z0  is also 

a root .
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 If one asks whether 2 is a complex number, many students hesitate to say “yes”. As every integer 
is a rational number, we know that every real number is also a complex number. So to clearly specify 
a complex number that is not a real number, that is to specify numbers of form α β+ i  with β ≠ 0 , 
we use the term “non-real complex number”. Some authors call such a number an imaginary 
number.  
Remark 1

Let z i0 = +α β with β ≠ 0 . Then z i0 = −α β .Ifα β+ i  is a root of a polynomial equation P x( ) = 0

with	real	coefficients,	then	by	Complex	Conjugate	Root	Theorem,α β− i  is also a root of P x( ) = 0 . 

Usually the above statement will be stated as complex roots occur in pairs; but actually it means that 
non-real complex roots or imaginary roots occur as conjugate pairs, being the coefficients of the 
polynomial equation are real.
Remark 2

	 From	this	we	see	that	any	odd	degree	polynomial	equation	with	real	coefficients	has	at	least	one	
real	root;	in	fact,	the	number	of	real	roots	of	an	odd	degree	polynomial	equation	with	real	coefficients	
is always an odd number. Similarly the number of real roots of an even degree polynomial equation 
with	real	coefficients	is	always	an	even	number.

Example 3.8
 Find	the	monic	polynomial	equation	of	minimum	degree	with	real	coefficients	having	 2 3− i  

as a root.

Solution
 Since 2 3− i is	a	root	of	the	required	polynomial	equation	with	real	coefficients,	2 3+ i is also 

a root. Hence the sum of the roots is 4 and the product of the roots is 7 . Thus x x2 4 7 0− + =  is the 

required monic polynomial equation.

3.4.2 Irrational Roots
	 If	we	further	restrict	the	coefficients	of	the	quadratic	equationax bx c a2 0 0+ + = ≠, to be rational, 

we get some interesting results. Let us consider a quadratic equation ax bx c2 0+ + = with a , b  and c  

rational.  As usual let ∆ = −b ac2 4  and let r1 and r2 be the roots. In this case,  when ∆ = 0 , we have 

r r1 2= ;	this	root	is	not	only	real,	it	is	in	fact	a	rational	number.	

 When D  is positive, then no doubt that D  exists in   and we get two distinct real roots. But 
D  will be a rational number for certain values of  a b,  and  c , and it is an irrational number for other 

values of a b,  and  c .  
 If D  is rational, then both r1 and r2 are rational.  

 If D  is irrational, then both r1  and r2 are irrational.

 Immediately we have a question. If ∆ > 0 , when will D  be rational and when will it be 

irrational?	To	answer	this	question,	first	we	observe	that	D 	is	rational,	as	the	coefficients	are	rational	

numbers. So ∆ =
m
n

for some positive integers m  and n  with m n,( ) =1  where m n,( )  denotes the 
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greatest common divisor of m and n . It is now easy to understand that D  is rational if and only if 

both m  and n  are perfect squares. Also, D  is irrational if and only if at least one of m  and n  is not 

a perfect square.

 We are familiar with irrational numbers of the type p q+  where p  and q  are rational numbers 

and q  is irrational. Such numbers are called surds. As in the case of imaginary roots, we can prove 

that if p q+  is a root of a polynomial, then p q−  is also a root of the same polynomial equation, 

when	all	the	coefficients	are	rational	numbers.	Though	this	is	true	for	polynomial	equation	of	any	
degree and can be proved using the technique used in the proof of imaginary roots, we state and prove 
this	only	for	a	quadratic	equation	in	Theorem	3.3.

 Before proving the theorem, we recall that if a and b are rational numbers and c is an irrational 
number such that a bc+ is a rational number, then b must be 0 ;	further	if	 a bc+ = 0 , then a  and b  
must be 0 .

 For instance, if a b+ ∈2  , then b must be 0 , and if a b+ =2 0  then a b= = 0 . Now we 

state and prove a general result as given below.

Theorem 3.3
 Let p  and q  be rational numbers such that q  is irrational. If p q+  is a root of a quadratic 

equation	with	rational	coefficients,	then	 p q−  is also a root of the same equation.

Proof
 We prove the theorem by assuming that the quadratic equation is a monic polynomial equation. 
The result for non-monic polynomial equation can be proved in a similar way.

 Let p and q be rational numbers such that q  is irrational. Let p q+  be a root of the equation

x bx c2 0+ + =  where b  and c are rational numbers.

 Let α  be the other root. Computing the sum of the roots, we get 

   α + +p q  =  −b

and hence α + = − − ∈q b p  . Taking− −b p as s ,  we have α + =q s  .               

 This implies that 
   α  =  s q− .
 Computing the product of the roots, gives

   ( )( )s q p q− +  =  c

and hence ( ) ( )sp q s p q c− + − = ∈ . Thus s p− = 0 . This implies that s p= and hence we get

α = −p q . So, the other root is p q− .  

Remark
	 The	statement	of	Theorem	3.3	may	seem	to	be	a	little	bit	complicated.	We	should	not	be	in	a	
hurry to make the theorem short by writing “for a polynomial equation with rational coefficients, 
irrational roots occur in pairs”. This is not true. 
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 For instance, the equation x3 2 0− =  has only one irrational root, namely 23 . Of course, the 
other two roots are imaginary numbers (What are they?).
Example 3.9
 Find	a	polynomial	equation	of	minimum	degree	with	rational	coefficients,	having 2 3− as a 
root.

Solution
 Since 2 3− is	a	root	and	the	coefficients	are	rational	numbers,	2 3+  is also a root. A required 
polynomial equation is given by

x2 − (Sum of the roots) x + Product of the roots = 0 
and hence

x x2 4 1 0− + =   
is a required equation. 

Note 
 We	note	that	the	term	“rational	coefficients”	is	very	important;	otherwise, x − − =( )2 3 0 will 
be a polynomial equation which has 2 3- as a root but not 2 3+ . We state the following result 
without proof.

Theorem 3.4

 Let p  and q  be rational numbers so that p  and q 	 are	 irrational	numbers;	 further	 let	one	 

of p   and q be not a rational multiple of the other. If p q++  is a root of a polynomial equation 

with	 rational	 coefficients,	 then	 p q p q− − +, , and − −p q  are also roots of the same 

polynomial equation.

Example 3.10

 Form	a	polynomial	equation	with	integer	coefficients	with 2
3

as a  root.

Solution

 Since 2
3

is a root, x − 2
3

 is a factor. To remove the outermost square root, we take 

x + 2
3
as	another	factor	and	find	their	product	

   x x+












−












2
3

2
3

 =  x2 2
3

−  .

 Still we didn’t achieve our goal. So we include another factor x2 2
3

+  and get the product

   x x2 22
3

2
3

−








 +








  =  x4 2

3
−  .

 So, 3 2 04x − = 	is	a	required	polynomial	equation	with	the	integer	coefficients.

 Now we identify the nature of roots of the given equation without solving the equation. The idea 

comes from the negativity, equality to 0, positivity of ∆ = −b ac2 4 . 
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3.4.3 Rational Roots
 If	all	the	coefficients	of	a	quadratic	equation	are	integers,	then	D  is an integer, and when it is 
positive, we have, D  is rational if, and only if, D  is a perfect square. In other words, the equation

ax bx c2 0+ + = 	with	integer	coefficients	has	rational	roots,	if,	and	only	if,	D  is a perfect square.

What	we	discussed	so	far	on	polynomial	equations	of	rational	coefficients	holds	for	polynomial	
equations	with	integer	coefficients	as	well.	In	fact,	multiplying	the	polynomial	equation,	with	rational	
coefficients,	 by	 a	 common	multiple	of	 the	denominators	of	 the	 coefficients,	we	get	 a	 polynomial	
equation	of	integer	coefficients	having	the	same	roots.	Of	course,	we	have	to	handle	this	situation	
carefully.	For	instance,	there	is	a	monic	polynomial	equation	of	degree	1	with	rational	coefficients	

having 1
2

as a root, whereas there is no monic polynomial equation of any degree with integer 

coefficients	having	 1
2

as a root. 

Example 3.11
 Show that the equation 2 6 7 02x x− + = 	cannot	be	satisfied	by	any	real	values	of	x.
Solution
 ∆= − =− <b ac2 4 20 0 . The roots are imaginary numbers.

Example 3.12
 If x k x k2 2 2 9 0+ +( ) + = 	has	equal	roots,	find	k.

Solution
 Here ∆ = − =b ac2 4 0  for equal roots. This implies 4 2 4 92k k+( ) = ( ) �.This implies k = 4� or 1.  

Example 3.13
 Show that, if  p q r, ,  are rational, the roots of the equation x px p q qr r2 2 2 22 2 0− + − + − =  are 
rational.
Solution
 The roots are rational if ∆ = − = −( ) − − + −( )b ac p p q qr r2 2 2 2 24 2 4 2 .

 But this expression reduces to 4 22 2q qr r− +( ) or 4 2q r−( )  which is a perfect square.  Hence the 

roots are rational.

3.5 Applications of Polynomial Equation in  Geometry
 Certain geometrical properties are proved using polynomial equations. We discuss a few 
geometric properties here.

Example 3.14
 Prove that a line cannot intersect a circle at more than two points.

Solution

 By choosing the coordinate axes suitably, we take the equation of the circle as x y r2 2 2+ =  and 

the equation of the straight line as y mx c= + . We know that the points of intersections of the circle 

and the straight line are the points which satisfy the simultaneous equations

   x y2 2+  =  r 2 		 	 ...	(1)
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   y  =  mx c+   ... (2)

 If we substitute mx c+ for y 	in	(1),	we	get

   x mx c r2 2 2+ + −( )  =  0  

which is same as the quadratic equation

   ( ) ( )1 22 2 2 2+ + + −m x mcx c r  =  0 .   ...	(3)	

 This equation cannot have more than two solutions, and hence a line and a circle cannot intersect 
at more than two points.

 It is interesting to note that a substitution makes the problem of solving a system of two equations 
in two variables into a problem of solving a quadratic equation.

	 Further	we	note	that	as	the	coefficients	of	the	reduced	quadratic	polynomial	are	real,	either	both	roots	
are real or both imaginary. If both roots are imaginary numbers, we conclude that the circle and the straight 
line do not intersect. In the case of real roots, either they are distinct or multiple roots of the polynomial. If 
they are distinct, substituting in (2), we get two values for y  and hence two points of intersection. If we 
have	equal	roots,	we	say	the	straight	line	touches	the	circle	as	a	tangent.	As	the	polynomial	(3)	cannot	have	
only one simple real root, a line cannot cut a circle at only one point.
Note
	 A	technique	similar	to	the	one	used	in	example	3.14	may	be	adopted	to	prove	
 •	 two circles cannot intersect at more than two points.
 •	 a circle and an ellipse cannot intersect at more than four points.

EXERCISE 3.2
	 1. If k  is real, discuss the nature of the roots of the polynomial equation 2 02x kx k+ + = , in 

terms of k .

 2.	Find	a	polynomial	equation	of	minimum	degree	with	rational	coefficients,	having 2 3+ i  as 

a root.

	 3.	Find	a	polynomial	equation	of	minimum	degree	with	rational	coefficients,	having	2 3i +  as a 
root.

	 4.	Find	a	polynomial	equation	of	minimum	degree	with	rational	coefficients,	having	 5 3−  as 
a root.

 5.   Prove that a straight line and parabola cannot intersect at more than two points. 

3.6 Roots of Higher Degree Polynomial Equations
 We know that the equation P x( ) = 0  is called a polynomial equation. The root or zero of a 
polynomial equation and the solution of the corresponding polynomial equation are the same. So we 
use both the terminologies.

 We know that it is easy to verify whether a number is a root of a polynomial equation or not, just 
by	substitution.	But	when	finding	the	roots,	the	problem	is	simple	if	the	equation	is	quadratic	and	it	is	
in general not so easy for a polynomial equation of higher degree.
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	 A	solution	of	a	polynomial	equation	written	only	using	its	coefficients,	the	
four basic arithmetic operators (addition, multiplication, subtraction and division), 
and rational exponentiation (power to a rational number, such as square, cube, 
square roots, cube roots and so on) is called a radical solution. Abel proved that it 
is impossible to write a radical solution for general polynomial equation of degree 
five	or	more.
 We state a few results about polynomial equations that are useful in solving higher degree 
polynomial equations.

 •	 Every polynomial in one variable is a continuous function from  to  .

 •	 For a polynomial equation P x( ) = 0 of even degree, P x( )→∞ as P x( )→±∞ . Thus the 
graph of an even degree polynomial start from left top and ends at right top.

 •	 All results discussed on “graphing functions” in Volume I of eleventh standard textbook can 
be applied to the graphs of polynomials. For instance, a change in the constant term of a 
polynomial moves its graph up or down only.

 •	 Every polynomial is differentiable any number of times.

 •	 The real roots of a polynomial equation P x( ) = 0  are the points on the x -axis where the 
graph of P x( ) = 0cuts the x -axis.

 •	 If a  and b  are two real numbers such that P a( )  and P b( )  are of opposite signs, then 

  - there is a point c on the real line for which P c( ) = 0 .

  - that is, there is a root between a  and b .

	 	 -	 it	is	not	necessary	that	there	is	only	one	root	between	such	points;	there	may	be	3 5 7, , ,...  
roots;	that	is	the	number	of	real	roots	between	a  and b is odd and not even.

	 However,	if	some	information	about	the	roots	are	known,	then	we	can	try	to	find	the	other	roots.	
For instance, if it is known that two of the roots of a polynomial equation of degree 6 with rational 
coefficients	are	 2 3+ i  and 4 5− , then we can immediately conclude that 2 3− i  and 4 5+  are 
also roots of the polynomial equation. So dividing by the corresponding factors, we can reduce the 
problems into a problem of solving a second degree equation. In this section we learn some ways of 
finding	roots	of	higher	degree	polynomials	when	we	have	some	information.

3.7 Polynomials with Additional Information
 Now we discuss a few additional information with which we can solve higher degree polynomials. 
Sometimes the additional information will directly be given, like, one root is 2 3+ i . Sometimes the 
additional	information	like,	sum	of	the	coefficients	is	zero,	have	to	be	found	by	observation	of	the	
polynomial.

3.7.1  Imaginary or Surds Roots
 If α β+ i 	is	an	imaginary	root	of	a	quartic	polynomial	with	real	coefficients,	then	α β− i is also 

a	root;	 thus	 ( ( ))x i− +α β  and ( ( ))x i− −α β are	factors	of	the	polynomial;	hence	their	product	is	a	

factor;	in	other	words,	 x x2 2 22− + +α α β is	a	factor;	we	can	divide	the	polynomial	with	this	factor	
and	get	the	second	degree	quotient	which	can	be	solved	by	known	techniques;	using	this	we	can	find	
all the roots of the polynomial.
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 If 2 3+ 	is	a	root	of	a	quadric	polynomial	equation	with	rational	coefficients,	then	 2 3−  is 

also	a	root;	thus	their	product	 ( ( )) ( ( ))x x− + − −2 3 2 3 	is	a	factor;	that	is	 x x2 4 1− + 	is	a	factor;	we	

can divide the polynomial with this factor and get the quotient as a second degree factor which can be 
solved by known	 techniques.	Using	 this,	we	 can	 find	 all	 the	 roots	 of	 the	 quadric	 equation.	This	

technique is applicable for all surds taken in place of 2 3+ .
If	an	 imaginary	root	and	a	surd	root	of	a	sixth	degree	polynomial	with	rational	coefficient	are	

known, then step by step we may reduce the problem of solving the sixth degree polynomial equation 
into a problem of solving a quadratic equation.

Example 3.15
 If 2+ i  and 3 2−  are roots of the equation

x x x x x x6 5 4 3 213 62 126 65 127 140 0− + − + + − = , 
	 find	all	roots.

Solution
 Since	the	coefficient	of	the	equations	are	all	rational	numbers,	and	2+ i and3 2−  are roots, we 

get 2− i  and 3 2+   are also roots of the given equation. Thus ( ( )),x i− +2 ( ( )), ( ( ))x i x− − − −2 3 2  

and ( ( ))x − +3 2  are factors.  Thus their product

(( ( )) ( ( )) ( ( )) ( ( ))x i x i x x− + − − − − − +2 2 3 2 3 2
is a factor of the given polynomial equation. That is, 

( ) ( )x x x x2 24 5 6 7− + − +

is a factor. Dividing the given polynomial equation by this factor, we get the other factor as ( )x x2 3 4− −  
which implies that 4  and −1 are the other two roots. Thus 

2 2 3 2 3 2 1+ − + − −i i, , , , , and 4

are the roots of the given polynomial equation.

3.7.2 Polynomial equations with Even Powers Only
 If P x( )  is a polynomial equation of degree 2n , having only even powers of x , (that is, 

coefficients	of	odd	powers	are	 0 ) then by replacing x2  by y ,  we get a polynomial equation with 

degree n  in y;  let y y yn1 2, ,  be the roots of this polynomial equation. Then considering the n  

equations x yr
2 = , 	we	can	find	two	values	for	 x  for each yr 	;	these	2n  numbers are the roots of the 

given polynomial equation in x .

Example 3.16
 Solve the equation x x4 29 20 0− + = .

Solution
 The given equation is 

x x4 29 20 0− + = .

 This is a fourth degree equation. If we replace x2 by y , then we get the quadratic equation

y y2 9 20 0− + = .
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 It is easy to see that 4  and 5  as solutions for y y2 9 20 0− + = . Now taking x2 4= and x2 5= , 

we get 2 2 5 5, , ,− −  as solutions of the given equation.

 We note that the technique adopted above can be applied to polynomial equations like 
x x6 317 30 0− + = , ax bx ck k2 0+ + =  and in general polynomial equations of the form 
a x a x a x an

kn
n

k n k+ + + + =−
−

1
1

1 0 0( )
  where k  is any positive integer.

3.7.3 Zero Sum of all Coefficients

 Let P x( ) = 0be	a	polynomial	equation	such	that	the	sum	of	the	coefficients	is	zero.	What	actually 

the	sum	of	coefficients	is?	The	sum	of	coefficients	is	nothing	but	 P( ).1 	The	sum	of	all	coefficients	is	

zero means that P( )1 0=  which says that 1 is a root of P x( ) . The rest of the problem of solving the 

equation is easy.
Example 3.17
 Solve the equation x x x3 23 33 35 0− − + = .

Solution
 The	sum	of	the	coefficients	of	the	polynomial	is	0.  Hence 1	is	a	root	of	the	polynomial.	To	find	

other roots, we divide x x x3 23 33 35− − +  by x −1 and get x x2 2 35− −  as the quotient. Solving this 

we get 7  and −5  as roots. Thus 1 7 5, ,−  form the solution set of the given equation.

3.7.4  Equal Sums of Coefficients of Odd and Even Powers 
 Let P x( ) = 0be	a	polynomial	equation	such	that	the	sum	of	the	coefficients	of	the	odd	powers 

and that of the even powers are equal.  What does actually this mean?  If a 	is	the	coefficient	of	an	odd	

degree in P x( ) = 0 ,	then	the	coefficient	of	the	same	odd	degree	in	P x−( ) = 0  is −a .	The	coefficients	

of even degree terms of both P x( ) = 0  and P x( )− = 0  are same. Thus the given condition implies that 

the	sum	of	all	coefficients	of		 P x( )− = 0 	is	zero	and	hence	1	is	a	root	of	 P x( )− = 0  which says that 

−1 is a root of P x( ) = 0 . The rest of the problem of solving the equation is easy.

Example 3.18
 Solve the equation 2 11 9 18 03 2x x x+ − − = .

Solution
 We	observe	that	the	sum	of	the	coefficients	of	the	odd	powers	and	that	of	the	even	powers	are	

equal. Hence −1	is	a	root	of	the	equation.	To	find	other	roots,	we	divide		2 11 9 183 2x x x+ − −  by x +1  

and get 2 9 182x x+ −  as the quotient. Solving this we get 3
2

 and −6  as roots. Thus − −6 1 3
2

, ,  are the 

roots or solutions of the given equation.

3.7.5 Roots in Progressions
 As already noted to solve higher degree polynomial equations, we need some information about 
the solutions of the equation or about the polynomial. “The roots are in arithmetic progression” and 
“the roots are in geometric progression” are some of such information. Let us discuss an equation of 
this type.
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Example 3.19
 Obtain the condition that the roots of x px qx r3 2 0+ + + =  are in A.P.

Solution
 Let the roots be in A.P. Then, we can assume them in the form α α α− +d d, , . 

 Applying the Vieta’s formula  ( ) ( )α α α− + + +d d = −
p
1
= p ⇒ 3α = − p ⇒ α = −

p
3

.

 But, we note that α is a root of the given equation. Therefore, we get 

                              −





 + −






 + −






 + =

p p p q p r
3 3 3

0
3 2

⇒ 9 2 273pq p r= + .

Example 3.20
 Find the condition that the roots of ax bx cx d3 2 0+ + + =  are in geometric progression.  Assume 
a b c d, , , ¹ 0

Solution

 Let the roots be in G.P. 

 Then, we can assume them in the form α
λ

α αλ, , . 

 Applying the Vieta’s formula, we get 

  å1  = α
λ

λ
1 1+ +






  =  − b

a
 …	(1)

  å2  =  α
λ

λ2 1 1+ +





  =  c

a
 … (2)

  å3  =  α 3  =  − d
a
.	 …	(3)

 Dividing	(2)	by	(1),	we	get		

                                                  α  =  − c
b

 …	(4)

	 Substituting	(4)	in	(3),	we	get		 −







c
b

3

= −
d
a
⇒ ac db3 3= .

Example 3.21
 If the roots of  x px qx r3 2 0+ + + =  are in H.P. ,  prove that 9 27 23pqr r p= + .

Solution
 Let the roots be in H.P. Then, their reciprocals are in A.P. and roots of the equation 

                                1 1 1 0 1 0
3 2

3 2

x
p

x
q

x
r rx qx px






 + 






 + 






 + = ⇔ + + + =  .													 …	(1)

	 Since	the	roots	of	(1)	are	in	A.P.,	we	can	assume	them		as	α α α− +d d, , . 

 Applying the Vieta’s formula, we get 

         å1 = ( ) ( )α α α− + + +d d = −
q
r
⇒ 3α = −

q
r
⇒ α = −

q
r3

.
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 But, we note that α is	a	root	of	(1).	Therefore,	we	get	                          

 r q
r

q q
r

p q
r

q q pqr r−





 + −






 + −






 + = ⇒ − + − +

3 3 3
1 0 3 9 27

3 2
3 3 22 3 20 9 2 27= ⇒ = +pqr q r .

Example 3.22
 It is known that the roots of the equation x x x3 26 4 24 0− − + =  are in arithmetic progression. 

Find its roots.

Solution
 Let the roots be a d a a d− +, , . Then the sum of the roots is 3a  which is equal to 6  from the 

given equation. Thus 3 6a =  and hence a = 2 . The product of the roots is a ad3 2−  which is equal to 

−24  from the given equation. Substituting the value of a , we get 8 2 242− = −d  and hence d = ±4 . 

If we take d = 4  we get −2 2 6, , as roots and if we take d = −4,  we get 6 2 2, ,−  as roots (same roots 
given in reverse order) of the equation.

EXERCISE 3.3
	 1. Solve the cubic equation : 2 18 9 03 2x x x− − + = �  if sum of two of its roots vanishes.

 2. Solve the equation 9 36 44 16 03 2x x x− + − =  if the roots form an arithmetic progression.

	 3. Solve the equation 3 26 52 24 03 2x x x− + − =  if its roots form a geometric progression.

	 4. Determine k  and solve the equation 2 6 3 03 2x x x k− + + =  if one of its roots is twice the sum 
of the other two roots.

 5. Find all zeros of the polynomial x x x x x x6 5 4 3 23 5 22 39 39 135− − + − − + , if it is known that 

1 2+ i  and 3  are two of its zeros.
 6. Solve the cubic equations :  (i) 2 9 10 33 2x x x− + = ,  (ii) 8 2 7 3 03 2x x x− − + =

 7. Solve the equation : x x4 214 45 0− + =  

3.7.6 Partly Factored Polynomials

 Quadric polynomial equations of the form ax b cx d px q rx s k+( ) +( ) +( ) +( )+ = 0 , k ¹ 0  

which can be rewritten in the form α β λ α β µx x x x k2 2 0+ +( ) + +( )+ =

 We illustrate the method of solving this situation in the next two examples.

Example 3.23
 Solve the equation 

   ( ) ( ) ( ) ( )x x x x− − − + +2 7 3 2 19  =  0 . 
Solution
 We can solve this fourth degree equation by rewriting it suitably and adopting a technique of 
substitution. Rewriting the equation as
   ( ) ( ) ( ) ( )x x x x− − − + +2 3 7 2 19  =  0 . 
the given equation becomes 
   ( ) ( )x x x x2 25 6 5 14 19− + − − +  =  0 . 

If we take x x2 5− as y , then the equation becomes ( ) ( ) ;y y+ − + =6 14 19 0
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that is, 
   y y2 8 65− −  =  0 . 

Solving this we get solutions y =13 and y = −5 . Substituting this we get two quadratic equations

   x x2 5 13− −  =  0  and x x2 5 5 0− + =  
which can be solved by usual techniques.  The solutions obtained for these two equations together 

give  solutions as 5 77
2

5 5
2

± ±, .

Example 3.24
 Solve the equation ( )( )( )( )2 3 6 1 3 2 12 7x x x x− − − − −  =  0 .

Solution
 The given equation is same as 

   ( ) ( ) ( ) ( )2 3 3 2 6 1 12 7x x x x− − − − −  =  0 .

 After a computation, the above equation becomes 

   ( ) ( )6 13 6 6 13 12 72 2x x x x− + − + −  =  0 .

By taking y x x= −6 132 ,  the above equation becomes, 
   ( ) ( )y y+ + −6 12 7  =  0

which is same as 
   y y2 18 65+ +  =  0 .
Solving this equation, we get y = −13 and y = −5 .

Substituting the values of y  in y x x= −6 132 ,   we get
   6 13 52x x− +  =  0

   6 13 132x x− +  =  0
Solving these two equations, we get 

   x x x= =
1
2

5
3

, ,  =  13 143
12
+ i  and x i

=
−13 143
12

 

as the roots of the given equation.

EXERCISE 3.4
	 1. Solve : (i)  x x x x−( ) −( ) +( ) +( ) =5 7 6 4 504 ,   (ii) ( )( )( )( )x x x x− − − + =4 7 2 1 16

 2. Solve : ( )( )( )( )2 1 3 2 2 3 20 0x x x x− + − + + =

3.8 Polynomial Equations with no additional information
3.8.1 Rational Root Theorem
 We	can	find	a	few	roots	of	some	polynomial	equations	by	trial	and	error	method.	For	instance,	
we consider the equation
   4 8 23 2x x x− − +  =  0 	 ...	(1)
 This is a third degree equation which cannot be solved by any method so far we discussed in this 
chapter.	If	we	denote	the	polynomial	in	(1)	as	P x( ) , then we see that P( )2 0=  which says that x − 2  
is a factor. As the rest of the problem of solving the equation is easy, we leave it as an exercise.
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Example 3.25
 Solve the equation x x x3 25 4 20 0− − + = .

Solution

 If P x( )  denotes the polynomial in the equation, then P( )2 0= . Hence 2  is a root of the 

polynomial.	To	find	other	roots,	we	divide	the	given	polynomial	 x x x3 25 4 20− − +  by x − 2  and get 

x x2 3 10− −  as the quotient. Solving this we get −2  and 5  as roots. Thus 2 2 5, ,− are the solutions of 

the given equation.

 Guessing a number as a root by trial and error method is not an easy task. 
But	 when	 the	 coefficients	 are	 integers,	 using	 its	 leading	 coefficient	 and	 the	
constant term, we can list certain rational numbers as possible roots. Rational Root 
Theorem helps us to create such a list of possible rational roots. We recall that if 
a	polynomial	has	rational	coefficients,	 then	by	multiplying	by	suitable	numbers	
we	can	obtain	a	polynomial	with	 integer	coefficients	having	the	same	roots.	So	
we can use Rational Root Theorem, given below, to guess a few roots of polynomial with rational 
coefficient.	We	state	the	theorem	without	proof.

Theorem 3.5 (Rational Root Theorem) 

 Let a x a x an
n + + + 1 0 with an ¹ 0and a0 0¹ ,	be	a	polynomial	with	integer	coefficients.		If	

p
q

,

with ( , )p q =1, is a root of the polynomial, then p  is a factor of a0  and q is a factor of an .

 When an =1, if there is a rational root p
q
,	then	as	per	theorem	3.5	 q  is a factor of an , then we 

must have q = ±1.Thus p 	must	be	an	integer.	So	a	monic	polynomial	with	integer	coefficient	cannot	

have non-integral rational roots. So when an =1, if at all there is a rational root, it must be an integer 

and the integer should divide a0 . (We say an integer a  divides an integer b ,  ifb ad= for some 

integer d .)
 As an example let us consider the equation x x2 5 6 0− − = . The divisors of 6 are ± ± ± ±1 2 3 6, , ,

From Rational Root Theorem we can conclude that ± ± ± ±1 2 3 6, , , are the only possible solutions of 

the equation.  It does not mean that all of them are solutions. The two values −1 and 6 satisfy the 

equation and other values do not satisfy the equation.

Moreover, if we consider the equation x2 4 0+ = , according to the Rational Root theorem, the 

possible solutions are ± ± ±1 2 4, , ;  but none of them is a solution. The Rational Root Theorem helps 

us only to guess a solution and it does not give a solution.

Example 3.26
 Find the roots of 2 3 2 33 2x x x+ + + .

Solution
 According to our notations, an = 2 and a0 3= . If p

q
 is a root of the polynomial, then as 

( , ) ,p q p=1 	must	divide	3	and	q must divide 2. Clearly, the possible values of p  are 1 1 3 3, , ,− −   
and the possible values of q are 1 1 2 2, , ,− − . Using these p  and q  we can form only the fractions  
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±
1
1

,± 1
2

,± 3
2

,± 3
1

.   Among these eight possibilities, after verifying by substitution, we get −3
2

 is the 

only	rational	root.	To	find	other	roots,	we	divide	the	given	polynomial	 2 3 2 33 2x x x+ + +  by 2 3x +  

and get x2 1+  as the quotient with zero remainder. Solving x2 1 0+ = ,we get i  and −i  as roots. Thus 
−

−
3

2
, ,i i  are the roots of the given polynomial equation.

3.8.2 Reciprocal Equations
 Let α  be a solution of the equation.

   2 3 2 7 2 3 26 5 4 3 2x x x x x x− + + + − +  =  0 	 ...	(1)

 Then α ¹ 0  (why?) and 

   2 3 2 7 2 3 26 5 4 3 2α α α α α α− + + + − +  =  0

 Substituting 1
α

 for x 	in	the	left	side	of	(1),	we	get

2 1 3 1 2 1 7 1 2 1 3 16 5 4 3 2

α α α α α α






 − 






 + 






 + 






 + 






 − 






 + 2

    =  2 3 2 7 2 3 2 0 0
2 3 4 5 6

6 6

− + + + − +
= =

α α α α α α
α α

  

 Thus 1
α
	is	also	a	solution	of	(1).	Similarly	we	can	see	that	if	α  is a solution of the equation

   2 3 4 4 3 25 4 3 2x x x x x+ − + − −  =  0  ... (2)

 then 1
α

 is also a solution of (2).

	 The	equations	(1)	and	(2)	have	a	common	property	that,		if	we	replace	 x  by 1
x

 in the equation 

and write it as a polynomial equation, then we get back the same equation.  The immediate question 

that flares	up	in	our	mind	is	“Can	we	identify	whether	a	given	equation	has	this	property	or	not	just	
by	seeing	it?”	Theorem	3.6	below	answers	this	question.

Definition 3.1 

 A polynomial P x( )  of degree n  is said to be a reciprocal polynomial  if  one of the following 

conditions is true:

 (i) P x x P
x

n( ) = 







1  (ii) P x x P
x

n( ) = − 







1 .

 A polynomial P x( )  of degree n  is said to be a reciprocal polynomial  of Type I if   P x x P
x

n( ) = 







1  .   is 

called a reciprocal equation of Type I. 

 A polynomial P x( )  of degree n  is said to be a reciprocal polynomial  of Type II P x x P
x

n( ) = − 







1 . is 

called a reciprocal equation of Type II. 
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Theorem 3.6 
 A polynomial equation   a x a x a x a x a x an

n
n

n
n

n+ + + + + +−
−

−
−

1
1

2
2

2
2

1 0 = 0 , ( )an ¹ 0  is a 

reciprocal equation if, and only if, one of the following two statements is true:
  (i)  a an = 0 ,    a an− =1 1 ,   a an− =2 2



 (ii)  a an = − 0 , a an− = −1 1 , a an− = −2 2 ,

Proof
 Consider the polynomial equation 
          P x( )  =  a x a x a x a x a x an

n
n

n
n

n+ + + + + +−
−

−
−

1
1

2
2

2
2

1 0 = 0 .	 …	(1)

 Replacing x  by 1
x
	in	(1),	we	get	

                                   P
x
1






   =  a

x
a
x

a
x

a
x

a
x

an
n

n
n

n
n+ + + + + +−

−
−
−

1
1

2
2

2
2

1
0 = 0 .  … (2)

 Multiplying both sides of (2) by xn , we get 

                          x P
x

n 1





  =  a x a x a x a x a x an n n

n n n0 1
1

2
2

2
2

1+ + + + + +− −
− − = 0 .		 	…	(3)

	 Now,	(1)	is	a	reciprocal	equation		⇔   P x x P
x

n( ) = ± 





  1
⇔ (1)	and	(3)	are	same	.	

 This is possible ⇔  a
a

a
a

a
a

a
a

a
a

a
a

n n n

n n n0

1

1

2

2

2

2

1

1

0= = = = = =− −

− −

 .   

 Let the proportion  be  equal to λ . Then, we get a
a

n

0

= λ  and  a
an

0 = λ .  Multiplying these 

equations, we get λ 2 1= .  So, we get two cases λ =1and  λ = −1 . 

Case (i) : 
 λ =1  In this case, we have  a a a a a an n n= = =− −0 1 1 2 2, , ,    . 

	 That	is,	the	coefficients	of	(1)	from	the	beginning	are	equal	to	the	coefficients	from	the	end.	

Case (ii) :
 λ = −1  In this case, we have  a a a a a an n n= − = − = −− −0 1 1 2 2, , ,    . 

	 That	is,	the	coefficients	of	(1)	from	the	beginning	are	equal	in	magnitude	to	the	coefficients	from	
the end, but opposite in sign. 
Note 
 Reciprocal	equations	of		Type	I		correspond	to	those	in	which	the	coefficients	from	the	beginning	
are	equal	to	the	coefficients	from	the	end.	
 For instance, the equation 6 43 43 6 05 4 3 2x x x x x+ − − + + =  is of type I. 
	 Reciprocal	equations	of		Type	II		correspond	to	those	in	which	the	coefficients	from	the	beginning	
are	equal	in	magnitude	to	the	coefficients	from	the	end,	but	opposite	in	sign.	
 For instance, the equation  6 41 97 97 41 6 05 4 3 2x x x x x− + − + − =  is of  Type II. 
Remark
 (i) A reciprocal equation cannot have 0  as a solution.

	 (ii)	The	coefficients	and	the	solutions	are	not	restricted	to	be	real.
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 (iii) The statement “If P x( ) = 0  is a polynomial equation such that whenever α  is a root, 1
α

 

is also a root, then the polynomial equation P x( ) = 0  must be a reciprocal equation” is 

not true. For instance 2 7 4 4 03 2x x x− + − =  is a polynomial equation whose roots are 2 2 1
2

, , . 

Note that x P
x

P x3 1




≠ ( ) .	Reciprocal	equations	are	classified	as	Type	I	and	Type	II	according	

to a an r r− =  or a an r r− = − . We state some results without proof :

  •	 For an odd degree reciprocal equation of Type I, x = −1  must be a solution.

  •	 For an odd degree reciprocal equation of Type II, x =1must be a solution.

  •	 For an even degree reciprocal equation of Type II, the middle term must be 0 . Further 
x =1and x = −1  are solutions.

  •	 For an even degree reciprocal equation, by taking x
x

+
1   or x

x
−
1 as y , we can obtain a 

polynomial	equation	of	degree	one	half	of	the	degree	of	the	given	equation	;	solving	this	
polynomial equation,  we can get the roots of the given polynomial equation.

 As an illustration, let us consider the polynomial equation 

6 35 56 56 35 6 06 5 4 2x x x x x− + − + − =  

which  is an even degree reciprocal equation of  Type II. So 1 and −1  are two solutions of the equation 

and hence x2 1−  is a factor of the polynomial. Dividing the polynomial by the factor x2 1− , we get 

6 35 62 35 64 3 2x x x x− + − +   as a factor. Dividing this factor by x2 and rearranging the terms we get 

6 1 35 1 622
2x

x
x

x
+






 − +






 + . Setting u x

x
= +








1  it becomes a quadratic polynomial as  

6 2 35 622u u−( ) − +  which reduces to 6 35 502u u− + . Solving we obtain  u =
10
3

5
2

, . Taking u =
10
3

 

gives   x = 3 1
3

,  and taking u =
5
2

gives x = 2 1
2

, . So the required solutions are + −1 1 2 1
2

3 1
3

, , , , , .  

Example 3.27
 Solve the equation 7 43 43 73 2x x x− = − .

Solution
 The given equation can be written as

7 43 43 7 03 2x x x− − + = .

 This is an odd degree reciprocal equation of Type I. Thus −1 is a solution and hence x +1 is a 

factor. Dividing the polynomial 7 43 43 73 2x x x− − +  by the factor x +1,we get 7 50 72x x− +  as a 

factor. Solving this we get 7  and 1
7

 as roots. Thus −1 1
7

7, , are the solutions of the given equation.

Example 3.28

 Solve the following equation: x x x x4 3 210 26 10 1 0− + − + = .
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Solution 
 This equation is Type I even degree reciprocal equation. Hence it can be rewritten as

x x
x

x x
x

2 2
2

1 10 1 26 0+





 − +






 +









 =

 Let   y =  x
x

+







1

 y y2 2 10 26−( ) − +



  =  0   ⇒  y y2 10 24− +( )  =  0   ⇒  ( )( )y y- -6 4 = 0

Case (i)

 y = 6  ⇒   x
x

+ =
1 6  ⇒   x x= + = −3 2 2 3 2 2,

Case (ii)

 y = 4    ⇒   x x= + = −2 3 2 3,

3.8.3 Non-polynomial Equations

 Some non-polynomial equations can be solved using polynomial equations. As an example let 

us consider the equation 15 2− =x x . First we note that this is not a polynomial equation. Squaring 

both sides, we get x x2 2 15 0+ − = . We know how to solve this polynomial equation.  From the 

solutions of the polynomial equation, we can analyse the given equation. Clearly 3  and −5  are 

solutions of x x2 2 15 0+ − = . If we adopt the notion of assigning only nonnegative values for ·   

then x = 3 	is	the	only	solution;	if	we	do	not	adopt	the	notion,	then	we	get	 x = −5  is also a solution.

Example 3.29

 Find solution, if any, of the equation

   2 9 42cos cosx x− +  =  0  ...	(1)
Solution

 The left hand side of this equation is not a polynomial in x . But it looks like a polynomial. In 

fact, we can say that this is a polynomial in cos x .	However,	we	can	solve	the	equation	(1)	by	using	

our knowledge on polynomial equations. If we replace cos x  by y , then we get the polynomial 

equation 2 9 4 02y y− + =  for which 4  and 1
2

 are solutions.

 From this we conclude that x  must satisfy cos x = 4 or cos x = 1
2

. But cos x = 4  is never possible, 

if we take cos x = 1
2
,	then	we	get	infinitely	many	real	numbers	 x  satisfying cos x = 1

2
;	in	fact,	for	all

n∈ , x n= ±2
3

π
π 	are	solutions	for	the	given	equation	(1).

 If we repeat the steps by taking the equation cos cos ,2 9 20 0x x− + =  we observe that this 
equation has no solution.
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Remarks
 We note that
 •	 not	all	solutions	of	the	derived	polynomial	equation	give	a	solution	for	the	given	equation;

 •	 there	may	be	infinitely	many	solutions	for	non-polynomial	equations	though	they	look	like	
polynomial	equations;

 •	 there may be no solution for such equations.

 •	 the	Fundamental	Theorem	of	Algebra	 is	proved	only	 for	polynomials;	 for	non-polynomial	
expressions, we cannot talk about degree and hence we should not have any confusion on the 
Fundamental Theorem of Algebra having non-polynomial equations in mind.

EXERCISE 3.5
	 1. Solve the following equations

   (i) sin sin2 5 4 0x x− + =  (ii) 12 8 29 43 2x x x+ = −  

 2. Examine for the rational roots of 

   (i) 2 1 03 2x x− − =   (ii) x x8 3 1 0− + = . 

	 3. Solve : 8 8 63
3

2
3

2x xn n− =
−

	 4. Solve : 2 3 6x
a

a
x

b
a

a
b

+ = + .  

 5. Solve the equations 

   (i) 6 35 62 35 6 04 3 2x x x x− + − + =   (ii) x x x4 33 3 1 0+ − − =

 6. Find all real numbers satisfying 4 3 2 2 02 5x x− ( ) + =+ .

	 7. Solve the equation 6 5 38 5 6 04 3 2x x x x− − − + =  if it is known that 1
3

 is a solution.

3.9 Descartes Rule
 In this section we discuss some bounds for the number of positive roots, 
number of negative roots and number of nonreal complex roots for a polynomial 
over . These bounds can be computed using a powerful tool called “Descartes 

Rule”.

3.9.1 Statement of Descartes Rule
 To	discuss	 the	 rule	we	first	 introduce	 the	concept	of change of sign in the coefficients of a 
polynomial.

 Consider the polynomial.
2 3 4 5 6 7 87 6 5 4 3x x x x x x− − + + − +

	 For	this	polynomial,	let	us	denote	the	sign	of	the	coefficients	using	the	symbols		‘+ ’	and	‘− ’as

+ − − + + − +, , , , , ,
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 Note that we have not put any symbol corresponding to x2 . We further note that 4  changes of 

sign occurred (at x x x6 4 1, , and x0 ).

Definition 3.2

 A change of sign in the coefficients is said to occur at the j th power of x   in a polynomial 

P x( ) ,	if	the	coefficient	of	 x j+1 	and	the	coefficient	of	 x j 	(or)	also	coefficient	of	 x j−1 	coefficient	of	
x j are	 of	 different	 signs.	 (For	 zero	 coefficient	we	 take	 the	 sign	 of	 the	 immediately	 preceding	
nonzero	coefficient.)

 From the number of sign changes, we get some information about the roots of the polynomial using 
Descartes Rule. As the proof is beyond the scope of the book, we state the theorem without proof.

Theorem 3.7 (Descartes Rule)
 If p  is the number of positive zeros of a polynomial P x( )with	real	coefficients	and	 s  is the 

number	of	sign	changes	in	coefficients	of	P x( ),   then s p−  is a nonnegative even integer.

 The theorem states that the number of positive roots of a polynomial P x( )  cannot be more than 

the	number	of	sign	changes	in	coefficients	of	 P x( ) . Further it says that the difference between the 

number	of	sign	changes	in	coefficients	of	 P x( )  and the number of positive roots of the polynomial 

P x( )  is even.

 As a negative zero of P x( )  is a positive zero of P x( )−  we may use the theorem and conclude 
that the number of negative zeros of the polynomial P x( )  cannot be more than the number of 
sign changes in coefficients of P x( )−  and the difference between the number of sign changes in 

coefficients of P x( )− and the number of negative zeros of the polynomial P x( )  is even.

 As the multiplication of a polynomial by xk , for some positive integer k , neither changes the 

number	of	positive	zeros	of	the	polynomial	nor	the	number	of	sign	changes	in		coefficients,	we	need	
not worry about the constant term of the polynomial. Some authors assume further that the constant 
term of the polynomial must be nonzero.

 We note that nothing is stated about 0 as a root, in Descartes rule. But from the very sight of the 
polynomial written in the customary form, one can say whether 0  is a root of the polynomial or not. 
Now let us verify Descartes rule by means of certain polynomials.

3.9.2 Attainment of bounds
3.9.2 (a) Bounds for the number of real roots

 The polynomial P x x x x x i x i( ) = + − − + −( )( )( )( )( )1 1 2 has the zeros − −1 1 2, , , ,i i . The 
polynomial, in the customary form is x x x5 42 2− − + .This polynomial P x( )  has 2  sign changes, 
namely at fourth and zeroth powers. Moreover, 

P x x x x( )− = − − + +5 42 2
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has one sign change. By our Descartes rule, the number of positive zeros of the polynomial P x( )  
cannot	be	more	than	2;	the	number	of	negative	zeros	of	the	polynomial	P x( )  cannot be more than 1. 
Clearly 1 and 2   are positive zeros, and −1 is the negative zero for the polynomial, x x x5 42 2− − + , 
and hence the bounds 2 		for	positive	zeros	and	the	bound	1	for	negative	zeros	are	attained.	We	note	
that i  and −i   are neither positive nor negative.

 We know  ( )( )( )( )x x x i x i+ + + −2 3 is a polynomial with roots − − −2 3, , ,i i . The polynomial, say 

P x( ) , in the customary form is
x x x x4 3 25 7 5 6+ + + + .

 This polynomial P x( )  has no sign change and P x x x x x( )− = − + − +4 3 25 7 5 6 	 has	 4	 sign	
changes. By Descartes rule, the polynomial P x( ) cannot have more than 0  positive zeros and the 
number of negative zeros of the polynomial P x( )  cannot be more than 4 . 

 As another example, we consider the polynomial.

x C x C x C x C xn n n n n n n n n
n

n− + − + + − + −− − − −
−1

1
2

2
3

3 1
11 1 ( ) ( )( ) .

 This is the expansion of ( )x n−1 . This polynomial has n 	changes	in	coefficients	and	P x( )−  has no 
change	of	sign	in	coefficients.	This	shows	that	the	number	of	positive	zeros	of	the	polynomial	cannot	be	
more than n  and the number of negative zeros of the polynomial cannot be more than 0. The statement on 
negative zeros gives a very useful information that the polynomial has no negative zeros. But the statement 
on positive zeros gives no good information about the positive zeros, though there are exactlyn  positive 
zeros;	in	fact,	it	is	well-known	that	for	a	polynomial	of	degree	n , the number of zeros cannot be more than 
n  and hence the number of positive zeros cannot be more than n .

3.9.2 (b) Bounds for the number of Imaginary (Nonreal Complex)roots
 Using the Descartes rule, we can compute a lower bound for the number of imaginary roots.  Let 
m 	denote	the	number	of	sign	changes	in	coefficients	of	 P x( ) of degree n;  let k  denote the number 

of	sign	changes	in	coefficients	of	 P x( )− . Then there are at least n m k− +( )  imaginary roots for the 
polynomial P x( ) . Using the other conclusion of the rule, namely, the difference between the number 

of roots and the corresponding sign changes is even, we can sharpen the bounds in particular cases.

Example 3.30
 Show that the polynomial 9 2 7 29 5 4 2x x x x+ − − +  has at least six imaginary roots.

Solution
  Clearly there are 2  sign changes for the given polynomial P x( )  and hence number of positive 

roots of P x( )  cannot be more than two. Further, as P x x x x x( ) ,− = − − − − +9 2 7 29 5 4 2  there is one 

sign change for P x( )−  and hence the number of negative roots cannot be more than one. Clearly 0  

is not a root. So maximum number of real roots is 3  and hence there are atleast six imaginary roots.

Remark
 From the above discussion we note that the Descartes rule gives only upper bounds for the 
number	of	positive	roots	and	number	of	negative	roots;	 the	Descartes	 rule	neither	gives	 the	exact	
number	of	positive	roots	nor	the	exact	number	of	negative	roots.	But	we	can	find	the	exact	number	
of	positive,	negative	and	nonreal	roots	in	certain	cases.	Also,	it	does	not	give	any	method	to	find	the	
roots.
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Example 3.31
 Discuss the nature of the roots of the following polynomials:

 (i) x x x x2018 1950 8 61947 15 26 2019+ + + +      (ii) x x x x5 4 3 219 2 5 11− + + +

Solution
 Let P x( )  be the polynomial under consideration.
 (i) The number of sign changes for P x( )  and P x( )−  are zero and hence it has no positive roots 

and no negative roots. Clearly zero is not a root. Thus the polynomial has no real roots and 
hence all roots of the polynomial are imaginary roots.

 (ii) The number of sign changes for P x( )  and P x( )−  are 2  and 1 respectively. Hence it has at 
most two positive roots and at most one negative root.Since the difference between number 
of	 sign	 changes	 in	 coefficients	 of	 P x( )−  and the number of negative roots is even, we 
cannot have zero negative roots. So the number of negative roots is 1. Since the difference 
between	number	of	sign	changes	in	coefficient	of	 P x( )  and the number of positive roots 
must be even, we must have either zero or two positive roots. But as the sum of the 
coefficients	is	zero,	1	is	a	root.	Thus	we	must	have	two	and	only	two	positive	roots Obviously 
the other two roots are imaginary numbers.

EXERCISE 3.6
	 1. Discuss the maximum possible number of positive and negative roots of the polynomial  

equation9 4 4 3 2 7 7 2 09 8 7 6 5 3 2x x x x x x x x− + − + + + + + = .

 2. Discuss the maximum possible number of positive and negative roots of the polynomial 
equations x x2 5 6− + and x x2 5 16− + . Also draw rough sketch of the graphs.

	 3. Show that the equation x x x x9 5 4 25 4 2 1 0− + + + =  has atleast 6  imaginary solutions.

	 4. Determine the number of positive and negative roots of the equation x x x9 8 75 14 0− − = .

 5. Find the exact number of real roots and imaginary of the equation x x x x x9 7 5 39 7 5 3+ + + + .

EXERCISE 3.7
Choose the most suitable answer.
	 1. A zero of x3 64+  is
	 	 (1)	0	 (2)	4	 (3)	 4i 	 (4)	-4	

 2. If f and g  are polynomials of degrees m  and n  respectively, and if h x f g x( ) ( )= ( ) , then 
the degree of h  is

	 	 (1)mn  (2) m n+ 	 (3)	mn 	 (4) nm  
	 3. A polynomial equation in x  of degree n  always has

	 	 (1) n distinct roots (2) n real	roots	 (3) n 	imaginary	roots	 (4)	at	most	one	root.	

	 4. If α β, , and γ  are the roots of x px qx r3 2+ + + , then 1
α∑  is

	 	 (1)− q
r

 (2)− p
r
	 (3) q

r
	 (4)	− q

p
 5. According to the rational root theorem, which number is not possible rational root of

4 2 10 57 4 3x x x+ − − ?

	 	 (1)−1 (2) 5
4
	 (3) 4

5
	 (4)	5  
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 6. The polynomial x kx x3 2 9− +  has three real roots if and only if, k 	satisfies

	 	 (1) k £ 6  (2) k = 0 	 (3) k > 6 	 (4)	 k ≥ 6  

	 7. The number of real numbers in [ , ]0 2p  satisfying sin sin4 22 1x x− +  is

	 	 (1) 2  (2) 4 	 (3)1	 (4)	¥  

	 8. If x x ax3 212 10 1999+ + + 	definitely	has	a	positive	root,	if	and	only	if	

	 	 (1) a ≥ 0  (2) a > 0 	 (3) a < 0 	 (4)	 a £ 0  

 9. The polynomial x x3 2 3+ +  has

	 	 (1)	one	negative	and	two	real	roots	 (2)	one	positive	and	two	imaginary	roots	

	 	 (3)	three	real	roots	 	 (4)	no	solution	

	 10. The number of positive roots of the polynomial  
j

n
n

r
r rC x

=
∑ −

0
1( )  is

	 	 (1)0  (2) n 	 (3)< n 	 (4)	 r

SUMMARY
 In this chapter we studied

 •	 Vieta’s	Formula	for	polynomial	equations	of	degree	2,3,	and	n>3.
 •	 The Fundamental Theorem of Algebra : A polynomial of degree n ≥1 has at least one root 

in  .
 •	 Complex Conjugate Root Theorem : Imaginary (nonreal complex) roots occur as conjugate 

pairs,	if	the	coefficients	of	the	polynomial	are	real.

 •	 Rational Root Theorem : Let a x a x an
n + + + 1 0  with an ¹ 0  and a0 0¹ , be a polynomial 

with	integer	coefficients.	If	 p
q

, with ( , )p q =1, is a root of the polynomial, then p  is a factor 

of a0  and q  is a factor of an .
 •	 Methods to solve some special types of polynomial equations like polynomials having only 

even	powers,	partly	factored	polynomials,	polynomials	with	sum	of	the	coefficients	is	zero,	
reciprocal equations.

 •	 Descartes Rule : If p  is the number of positive roots of a polynomial P x( )  and s  is the 
number	of	sign	changes	in	coefficients	of	P x( ) , then s p−  is a nonnegative even integer.
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84.1 Introduction
 In everyday life, indirect measurement is used to obtain solutions to problems 
that are impossible to solve using measurement tools. Trigonometry helps us to find 
measurements like heights of mountains and tall buildings without using 
measurement tools. Trigonometric functions and their inverse trigonometric 
functions are widely used in engineering and in other sciences including physics. 
They are useful not only in solving triangles, given the length of two sides of a right 
triangle, but also they help us in evaluating a certain type of integrals, such as 

1 1
2 2 2 2a x

dx
x a

dx
− +∫ ∫ and .The symbol sin-1 x  denoting the inverse trigonometric function 

arcsine ( )x  of sine function was introduced by the British mathematician John  F.W.Herschel (1792-1871). 
For his work along with his father, he was presented with the Gold Medal of the Royal Astronomical 
Society in 1826.

 An oscilloscope is an electronic device that converts electrical signals 
into graphs like that of sine function. By manipulating the controls, we can 
change the amplitude, the period and the phase shift of sine curves. The 
oscilloscope has many applications like measuring human heartbeats, where 
the trigonometric functions play a dominant role.
     Let us consider some simple situations where inverse trigonometric 
functions are often used.

Illustration-1 (Slope problem) 
 Consider a straight line y mx b= + . Let us find the angle θ made by the line with  

x -axis in terms of slope m . The slope or gradient m  is defined as the rate of change of 

a function, usually calculated by m y
x

=
∆
∆

. From right triangle (Fig. 4.1), tanθ =
∆
∆

y
x

. 

Thus, tanθ = m . In order to solve for θ , we need the inverse trigonometric function 

called “inverse tangent function”. 

Chapter

4 Inverse Trigonometric Functions

“The power of Mathematics is often to change one thing into another, 
to change geometry into language”

- Marcus du Sautoy

John F.W. Herschel

Fig. 4.1

( , )x y2 2

∆ = −y y y2 1

∆ = −x x x2 1

( , )x y1 1

θ

θ

 

x

y

Slope: m y
x

= =
∆
∆

tanθ
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Illustration-2  ( Movie Theatre Screens ) 
 Suppose that a movie theatre has a screen of 7 metres tall. When 
someone sits down, the bottom of the screen is 2 metres above the eye level. 
The angle formed by drawing a line from the eye to the bottom of the screen 
and a line from the eye to the top of the screen is called the viewing angle. 
In the Fig. 4.2, θ  is the viewing angle. Suppose that the person sits x  
metres away from the screen. The viewing angle θ  is given by the function  

θ ( ) tan tan .x
x x

= 





 − 








− −1 19 2
Observe that the viewing angle θ  is a function of x .

Illustration-3 ( Drawbridge ) 

 Assume that there is a double-leaf drawbridge as shown in the 
Fig.4.3. Each leaf of the bridge is 40 metres long. A ship of 33 metres 
wide needs to pass through the bridge. Inverse trigonometric function 
helps us to find the minimum angle θ  so that each leaf of the bridge 

should be opened in order to ensure that the ship will pass through the 
bridge.

 In class XI, we have discussed trigonometric functions of real numbers using unit circle, where 
the angles are in radian measure.  In this chapter, we shall study the inverse trigonometric functions, 
their graphs and properties. In our discussion, as usual   and   stand for the set of all real numbers 
and all integers, respectively.  Let us recall the definition of periodicity, domain and range of six 
trigonometric functions. 

LEARNING OBJECTIVES

 Upon completion of this chapter, students will be able to

 ● define inverse trigonometric functions

 ● evaluate the principal values of inverse trigonometric functions

 ● draw the graphs of trigonometric functions and their inverses

 ● apply the properties of inverse trigonometric functions and evaluate some expressions

4.2  Some Fundamental Concepts 

Definition 4.1 (Periodicity)

 A real valued function f  is periodic if there exists a number p > 0  such that for all x  in the 

domain of  f , x p+  is in the domain of  f  and f x p f x( ) ( )+ = . 

      The smallest of all such numbers, is called the period of the function f .

 For instance, sin , cos , secx x x x eixcosec , and  are periodic functions with period 2p  

radians, whereas tan cotx xand  are periodic functions with period p  radians. 

Fig. 4.3

Fig. 4.2
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Definition 4.2 (Odd and Even functions)
 A real valued function f  is an even function if for all x  in the domain  of  f , -x  is also in 
the domain of f  and f x f x( ) ( )− =  .  
 A real valued function f  is an odd function if  for all x  in the domain  of  f , -x  is also in 
the domain of f and f x f x( ) ( )− = − . 
 For instance, x x x x x3, sin , , tan cotcosec and  are all odd functions, whereas 
x x x2 , cos secand  are even functions. 

Remark
 (i) The period of f g h= ± is lcm{period of period of g h, }, whenever they exist.

         For instance, the period of y x x= +cos sin6 4 is p  and that of y x x= −cos sin is 2p .

4.2.1  Domain and Range of trigonometric functions
    The domain and range of trigonometric functions are given in the following table.

Trigonometric 
function sin x cos x tan x cosec x sec x cot x

Domain  

� �\ ( ) ,2 1
2

n n+ ∈







π
� �\ ,n nπ ∈{ } � �\ ( ) ,2 1

2
n n+ ∈








π
� �\ ,n nπ ∈{ }

Range −[ ]1 1, −[ ]1 1,   \ ,−( )1 1  \ ,−( )1 1 

4.2.2  Graphs of  functions
 Let f : →  be a real valued function and f x( ) be the value of the function f at a point x  in 

the domain. Then, the set of all points x f x x, ( ) ,( ) ∈  determines the graph of the function f .   In 

general, a graph in xy -plane need not represent a function. However, if the graph passes the vertical 
line test (any vertical line intersects the graph, if it does, atmost at one point), then the graph represents 
a function. A best way to study a function is to draw its graph and analyse its properties through the 
graph.
 Every day, we come across many phenomena like tides, day or night cycle, which involve 
periodicity over time. Since trigonometric functions are periodic, such phenomena can be studied 
through trigonometric functions. Making a visual representation of a trigonometric function, in the 
form of a graph, can help us to analyse the properties of phenomena involving periodicities. 
 To graph the trigonometric functions in the xy -plane, we use the symbol x  for the independent 

variable representing an angle measure in radians, and y  for the dependent variable. We write 

y x= sin  to represent the sine function, and in a similar way for other trigonometric functions. In the 

following sections, we discuss how to draw the graphs of trigonometric functions and inverse 
trigonometric functions and study their properties.

4.2.3 Amplitude and Period of a graph
 The amplitude is the maximum distance of the graph from the x -axis. Thus, the amplitude of a 
function is the height from the x -axis to its maximum or minimum. The period is the distance required 
for the function to complete one full cycle.

t
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Remark
 (i) The graph of a periodic function consists of repetitions of the portion of the graph on an 

interval of length of its period.
 (ii) The graph of an odd function is symmetric with respect to the origin and the graph of an even 

function is symmetric about the y -axis.

4.2.4  Inverse  functions
 Remember that a function is a rule that, given one value, always gives back a unique value as its 
answer. For existence, the inverse of a function has to satisfy the above functional requirement. Let 
us explain this with the help of an example.
 Let us consider a set of all human beings not containing identical twins. Every human being from 
our set, has a blood type and a DNA sequence. These are functions, where a person is the input and 
the output is blood type or DNA sequence. We know that many people have the same blood type but 
DNA sequence is unique to each individual. Can we map backwards? For instance, if you know the 
blood type, do you know specifically which person it came from? The answer is NO.  On the other 
hand, if you know a DNA sequence, a unique individual from our set corresponds to the known DNA 
sequence. When a function is one-to-one, like the DNA example, then mapping backward is possible. 
The reverse mapping is called the inverse function. Roughly speaking, the inverse function undoes 
what the function does.

 For any right triangle, given one acute angle and the length of one side, we figure out what the 
other angles and sides are. But, if we are given only two sides of a right triangle, we need a procedure 
that leads us from a ratio of sides to an angle. This is where the notion of an inverse to a trigonometric 
function comes into play.
 We know that none of the trigonometric functions is one-to-one over its entire domain.  For 

instance, given sin .θ =0 5 , we have infinitely many θ
π π π π π

= − −
6

5
6

13
6

7
6

11
6

, , , , ,  satisfying 

the equation. Thus, given sinθ , it is not possible to recover θ uniquely.  To overcome the problem of 
having multiple angles mapping to the same value, we will restrict our domain suitably before defining 
the inverse trigonometric function. 

 To construct the inverse of a trigonometric function, we take an interval small enough such that 
the function is one-to-one in the restricted interval, but the range of the function restricted to that 
interval is the whole range. In this chapter, we define the inverses of trigonometric functions with 
their restricted domains.

4.2.5  Graphs of inverse  functions
 Assume that f is a bijective function and f -1 is the inverse of f . Then, y f x= ( )  if and only if 
x f y= −1( ) . Therefore, ( , )a b is a point on the graph of f  if and only if ( , )b a is the corresponding 
point on the graph of f -1 . This suggests that graph of the inverse function f -1  is obtained from the 
graph of f  by interchanging x  and y  axes. In other words,  the graph of f -1 is the mirror image of 
the graph of f in the  line y x=  or equivalently, the graph of f -1 is the reflection of the graph of f in 
the  line y x= .
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4.3 Sine Function and Inverse Sine Function 
 Let us recall that sine function is a function with   as its domain and [ , ]-1 1 as its range. We 

write y x= sin and y x= −sin 1  or y x= arcsin( )  to represent the sine function and the inverse sine 

function, respectively. Here, the symbol -1 is not an exponent. It denotes the inverse and does not 

mean the reciprocal.
 We know that sin sinx x+( ) =2π  is true for all real numbers x . Also, sin x p+( )  need not be 

equal to sin x for 0 2< <p π  and for all x . Hence, the period of the sine function is 2p .  

4.3.1 The graph of sine function 
 The graph of the sine function is the graph of y x= sin , where x  is a real number. Since sine 

function is periodic with period 2p , the graph of the sine function is repeating the same pattern in 

each of the intervals,  , −[ ]2 0π , , 0 2, π[ ] , 2 4π π,[ ] , 4 6π π,[ ] ,   . Therefore, it suffices to 

determine the portion of the graph for x ∈[ ]0 2, π . Let us construct the following table to identify 

some known coordinate pairs for the points ( , )x y  on the graph of y x= sin , x ∈[ ]0 2, π .

x  ( in radian )  0
p
6

p
4

p
3

p
2 p

3
2
p

2p

y x= sin 0
1
2

1
2

3
2

1 0 -1 0

 It is clear that the graph of y x= sin , 0 2≤ ≤x π , begins at the origin. As x  increases from 0 to 
p
2

 , the value of  y x= sin  increases from   0 to 1. As x  increases from p
2

 to p  and then to 3
2
p , the 

value of y  decreases from 1 to 0 and then to -1. As x  increases from 

3
2
p  to 2p ,  the value of y  increases from  -1 to 0. Plot the points listed 

in the table and connect them with a smooth curve. The portion of the 

graph is shown in  Fig. 4.4.      
 The entire graph of  y x= sin , x ∈  consists of 

repetitions of the above portion on either side of the 
interval 0 2, π[ ]  as y x= sin  is periodic with period 2p . 

The graph of sine function is shown in  Fig. 4.5. The 
portion of the curve corresponding to 0 2to p  is called a 

cycle. Its amplitude is 1.

Note
 Observe that sin x ≥ 0  for 0 ≤ ≤x π , which corresponds to the values of the sine function in 

quadrants I and II and sin x < 0  for π π< <x 2 , which corresponds to the values of the sine function 

in quadrants III and IV.

Fig. 4.4

Fig. 4.5

x

y

−4π 4π3π2ππ−π−2π−3π O

y x x= ∈sin , 

period

-1

1

y

x
O

y x= sin [ , ] in 0 2π

-1

1

amplitude

π
2

3
2
π 2ππ
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4.3.2  Properties of the sine function
 From the graph of y x= sin , we observe the following properties of sine function:
 (i) There is no break or discontinuities in the curve. The sine function is continuous. 

 (ii) The sine function is odd, since the graph is symmetric with respect to the origin.

 (iii) The maximum value of sine function is 1 and occurs at x = − , , , ,3
2 2

5
2

π π π  and the minimum 

value is -1 and occurs at x = − , , , ,π π π
2

3
2

7
2

.  In otherwords, − ≤ ≤1 1sin x  for all x Î .

4.3.3  The inverse sine function and its properties
 The sine function is not one-to-one in the entire domain  . This is visualized from the fact that 

every horizontal line y b b= − ≤ ≤, ,1 1  intersects the graph of y x= sin  infinitely many times. In 

other words , the sine function does not pass the horizontal line test, which is a tool to decide the   

one-to-one status of a function. If the domain is restricted to −





π π
2 2

, , then the sine function 

becomes one to one and onto (bijection) with the range [ , ]-1 1 . Now,  let us define the inverse sine 

function with [ , ]-1 1  as its domain and with −





π π
2 2

,  as its range.

Definition 4.3

 For − ≤ ≤1 1x ,  define sin-1 x as the unique number y  in −





π π
2 2

,  such that sin y x= . In other 

words, the inverse sine function sin : [ , ] ,− − → −





1 1 1
2 2
π π   is defined by sin ( )− =1 x y if and only if   

sin y x=  and y ∈ −





π π
2 2

, . 

Note

 (i) The sine function is one-to-one on the restricted domain −





π π
2 2

, , but not on any larger 

interval containing the origin.

 (ii) The cosine function is non-negative on the interval −





π π
2 2

, , the range of sin-1 x . This 

observation is very important for some of the trigonometric substitutions in Integral Calculus.
 (iii) Whenever we talk about the inverse sine function, we have,

   sin : , ,−





→ −[ ]π π
2 2

1 1      and    sin : , ,− −[ ] → −





1 1 1
2 2
π π .

 (iv) We can also restrict the domain of the sine function to any one of the intervals, 

… − −





− −

















5
2

3
2

3
2 2 2

3
2

3
2

5
2

π π π π π π π π, , , , , , , ……where it is one-to-one and its range is 

[ , ]-1 1 . 

  (vi) The restricted domain −





π π
2 2

, is called the principal domain of sine function and the  values 

of y x= −sin 1 , − ≤ ≤1 1x ,  are known as principal values of the function y x= −sin 1 .
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 From the definition of y x= −sin 1 , we observe the following:

 (i) y x= −sin 1  if and only if x y= sin for − ≤ ≤1 1x  and − ≤ ≤
π π
2 2

y .

 (ii) sin sin−( ) = ≤1 1x x xif and has no sense if x >1 . 

 (iii) sin sin− ( ) =1 x x if  − ≤ ≤
π π
2 2

x . Note that sin (sin )-1 2p = ≠0 2p .

 (iv) sin sin− ( ) = −1 x xπ  if    π π
2

3
2

≤ ≤x . Note that − ≤ − ≤
π

π
π

2 2
x .

 (v) y x= −sin 1  is an odd function.

Remark

 Let us distinguish between the equations sin x =
1
2

and x = 







−sin 1 1
2

. To solve the equation 

sin x =
1
2

, one has to find all values of x  in the interval ( , )−∞ ∞  such that sin x =
1
2

. However, to 

find x  in x = 







−sin 1 1
2

, one has to find the unique value x  in the interval −





π π
2 2

,  such that 

sin x =
1
2

.

4.3.4  Graph of the inverse sine function

 The inverse sine function, sin-1 : −[ ]1 1, → −





π π
2 2

, ,  

receives a real number x  in the interval −[ ]1 1,  as input and 

gives a real number  y   in the interval −





π π
2 2

, as output. As 

usual, let us find some points ( , )x y using the equation

y x= −sin 1  and plot them in the xy -plane.  Observe that the 

value of y  increases from -
p
2

 to p
2

 as x  increases from -1 to 1. By connecting these points by a 

smooth curve, we get the graph of  y x= −sin 1  as shown in Fig. 4.6.

Note

 The graph of  y x= −sin 1  

 (i) is also obtained by reflecting the portion of the entire graph of y x= sin  in the interval −





π π
2 2

,

about the line y x=  or by interchanging x  and y  axes from the graph of y x= sin .

 (ii) passes through the origin.

 (iii) is symmetric with respect to the origin and hence, y x= −sin 1  is an odd function.

Fig. 4.6
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−
π
2

y

O

x y

−1 −
π
2

−
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π
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π
2
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  We depict the graphs of both y x x= − ≤ ≤sin , π π
2 2

 and y x x= − ≤ ≤−sin ,1 1 1  together for a 

better understanding. 

  Fig. 4.9 illustrates that the graph of y x= −sin 1  is the mirror image of the graph of  

y x x= − ≤ ≤sin , π π
2 2

,  in the line y x=  and also  shows that the sine function and the inverse sine 

function are symmetric with respect to the origin. 

Example  4.1 

 Find the principal value of sin− −







1 1
2

 (in radians and degrees).  

Solution

 Let sin− −





 =1 1

2
y . Then sin y = −

1
2

.  

 The range of the principal value of sin-1 x  is −





π π
2 2

, and hence, let us find y ∈ −





π π
2 2

,  such 

that sin y = −
1
2

. Clearly, y = −
π
6

.

 Thus, the principal value of  sin− −







1 1
2

is −
π
6

. This corresponds to − °30 .

Example  4.2 
 Find the principal value of sin− ( )1 2 , if it exists.

Solution
 Since the domain of y x= −sin 1  is  −[ ]1 1,  and 2 1 1∉ −[ ], , sin− ( )1 2  does not exist.

Example  4.3 
 Find the principal value of  

 (i)  sin− 







1 1
2

 (ii)  sin sin− −

















1

3
π  (iii)  sin sin− 


















1 5
6
π .

Solution

 We know that   sin : , ,− −[ ] → −





1 1 1
2 2
π π  is given by

 sin− =1 x y  if and only if x y= sin for − ≤ ≤1 1x  and − ≤ ≤
π π
2 2

y .  Thus,

 Fig. 4.7 Fig. 4.8 Fig. 4.9

−1

−
π
2

π
2

x

1

y

O
x

−1 1

π
2

−
π
2

y

O π
2

y

x

π
2

−
π
2

−
π
2

O

y x= −





sin , in π π
2 2

y = sin–1x

y = si
n–

1 x

y = sin x
y = x
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 (i) sin− 







1 1
2

= p
4

,       since π π π
4 2 2

∈ −





,  and sin π
4

1
2

= .

 (ii) sin sin− −















 = −1

3 3
π π ,      since  − ∈ −





π π π
3 2 2

, .

 (iii) sin sin− 

















1 5
6
π = sin sin− −
















 =1

6
π

π sin sin− 





 =1

6 6
π π ,    since π π π

6 2 2
∈ −





, .

Example  4.4 
 Find the domain of   sin− −( )1 22 3x     

Solution
 We know that the domain of sin− ( )1 x  is [ , ]-1 1 .

 This leads to − ≤ − ≤1 2 3 12x , which implies − ≤ − ≤ −3 3 12x .

 Now,  − ≤ −3 3 2x ,  gives x2 1£  and    ... (1)

        − ≤ −3 12x ,  gives x2 1
3

≥          ... (2)

 Combining the equations (1) and (2), we get 
1
3

12£ £x . That is,  
1
3

1£ £x , which gives

 x ∈ − −





∪ 





1 1

3
1
3

1, , ,  since   a x b£ £  implies x b a a b∈ − −[ ]∪[ ], , .

EXERCISE 4.1
 1. Find all the values of x  such that

  (i) − ≤ ≤10 10π πx  and sin x = 0  (ii)  − ≤ ≤8 8π πx  and sin x = −1. 

 2. Find the period and amplitude of 

  (i) y x= sin 7  (ii) y x= − 





sin 1

3
 (iii) y x= −4 2sin( ) .

 3. Sketch the graph of y x= 





sin 1

3
 for 0 6≤ <x π .

 4. Find the value of  (i)  sin sin− 

















1 2
3
π  (ii) sin sin− 


















1 5
4
p

.

 5. For what value of x  does sin sinx x= −1 ?

 6. Find the domain of the following 

  (i)    f x x
x

( ) sin=
+









−1
2 1
2

 (ii)  g x x( ) sin= −( ) −−2 2 1
4

1 π .   

 7. Find the value of sin sin cos cos sin− +







1 5
9 9

5
9 9

π π π π .
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4.4 The Cosine Function and Inverse Cosine Function
     The cosine function is a function with   as its domain and [ , ]-1 1 as its range. We write y x= cos

and y x= −cos 1  or y x= arccos( )  to represent the cosine function and the inverse cosine function, 

respectively.  Since  cos cosx x+( ) =2π  is true for all real numbers x  and cos x p+( ) need not be 

equal to cos x  for 0 2< <p π , x ∈ , the period of y x= cos  is 2p .

4.4.1 Graph of cosine function
 The graph of cosine function is the graph of y x= cos , where x  is a real number. Since cosine 
function is of period 2p , the graph of cosine function is repeating the same pattern in each of the 

intervals  , ,− −[ ]4 2π π , −[ ]2 0π , ,  0 2, π[ ] , 2 4π π,[ ] , 4 6π π,[ ] ,    . Therefore, it suffices to 

determine the portion of the graph of cosine function for x ∈[ , ]0 2π . We construct the following table 

to identify some known coordinate pairs ( , )x y  for points on the graph of y x= cos , x ∈[ ]0 2, π .

x  ( in radian )  0
p
6

p
4

p
3

p
2

p
3
2
p

2p

y x= cos 1 3
2

 
1
2

1
2 0 -1 0 1

 The table shows that the graph of y x= cos , 0 2≤ ≤x π , begins at  

(0,1). As x  increases from 0 to p  , the value of  y x= cos  decreases from 

1  to -1 . As x  increases from p  to 2p , the value of y  increases from 

-1  to 1.  Plot the points listed in the table and connect them with a 

smooth curve. The portion of the graph is shown in Fig. 4.10.   

 The  graph of  y x= cos , x ∈ consists of repetitions of the above 

portion on either side of the interval 0 2, π[ ]  and is shown in Fig. 4.11. 

From the graph of cosine function, observe that cos x  is positive in the 

first quadrant for 0
2

≤ ≤





x π

, negative in the second quadrant  for π
π

2
< ≤






x

and third quadrant for π π
< <






x 3

2
and again it is positive in the fourth quadrant for 3

2
2π
π< <






x .

Note 
 We see from the graph that cos( ) cos− =x x  for all x , which asserts that y x= cos  is an even 

function.

 Fig. 4.10

 Fig. 4.11
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4.4.2  Properties of the cosine function
 From the graph of y x= cos , we observe the following properties of cosine function:

 (i) There is no break or discontinuities in the curve. The cosine function is continuous.
 (ii) The cosine function is even, since the graph is symmetric about y -axis.

 (iii) The maximum value of cosine function is 1 and occurs at x = … − …, , , ,2 0 2π π  and the 
minimum value is - 1 and occurs at x = … − …, , , , ,π π π π3 5 . . In other words, − ≤ ≤1 1cos x
for all x Î .

Remark

 (i) Shifting the graph of y x= cos  to the right p
2

radians, gives the graph of y x= −





cos π

2
, 

which is same as the graph of y x= sin .  Observe that cos x −







π
2

 = cos sinπ
2

−





 =x x .

 (ii) y A x= sinα  and  y B x= cos β  always satisfy the inequalities − ≤ ≤A A x Asinα  and  

− ≤ ≤B B x Bcos β .  The amplitude and period of y x= A sinα are A  and 2π
α

, respectively  

and those of y B x= cos β  are B  and  2π
β

, respectively. 

  The functions y A x= sinα  and  y B x= cos β are known as sinusoidal functions.

 (iii) Graphing of y A x= sinα  and   y B x= cos β  are obtained by extending the 

portion of the graphs on the intervals 0 2, π
α









  and  0 2, π

β








 , respectively.

Applications

 Phenomena in nature like tides and yearly temperature that cycle repetitively through time are 
often modelled using sinusoids. For instance, to model tides using a general form of sinusoidal 
function y d a bt c= + −( )cos , we give the following steps:
 (i) The amplitude of a sinusoidal graph (function) is one-half of the absolute value of the difference 

of the maximum and minimum y -values of the graph. 

  Thus, Amplitude , a =
1
2

( max -  min)   ;  Centre line is y d= , where d   =
1
2

( max + min)

 (ii) Period, p  = 2  ×  ( time from maximum to minimum) ;  b
p

=
2π  

 (iii) c b= ×  time at which maximum occurs.

Model-1 
 The depth of water at the end of a dock varies with tides. The following table shows the depth      
( in metres ) of  water at various time.

time, t 12 am 2 am 4 am 6 am 8 am 10 am 12 noon

depth 3.5 4.2 3.5 2.1 1.4 2.1 3.5
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 Let us construct a sinusoidal function of the form y d a bt c= + −( )cos  to find the depth of water 

at time t. Here, a d p b c= = = = =1 4 2 8 12
6 3

. . ; ;; ;π π . 

 The required sinusoidal function is y = +2 8 1 4. . cos π π
6 3

t −





 . 

Note
 The transformations of sine and cosine functions are useful in numerous applications. A circular 
motion is always modelled using either the sine or cosine function.

Model-2
 A point rotates around a circle with centre at origin and radius 4 centered at the origin. We can 
obtain the y -coordinate of the point as a function of the angle of rotation.

 For a point on a circle with centre at the origin and radius a, 
the y -coordinate of the point  is  y a= sinθ , where θ  is the 

angle of rotation. In this case, we get the equation 
y( ) sinθ θ= 4 , where θ  is in radian, the amplitude is 4 and 

the period is 2p  . The amplitude 4 causes a vertical stretch 

of the y -values of the function sinθ  by a factor of 4.                      

4.4.3 The inverse cosine function and its 
properties
 The cosine function is not one-to-one in the entire domain . However, the cosine function is 

one-to-one on the restricted domain 0, π[ ]and still, on this restricted domain, the range is −[ ]1 1, . 

Now,  let us define the inverse cosine function with [ , ]-1 1 as its domain and with 0, π[ ]  as its range.

Definition 4.4
 For − ≤ ≤1 1x ,  define cos-1 x as the unique number y  in 0, π[ ]  such that cos y x= . In other 

words, the inverse cosine function cos : , ,− −[ ] → [ ]1 1 1 0 π  is defined by cos ( )− =1 x y  if and only if 

cos y x= and y ∈[ ]0, π . 

Note

 (i) The sine function is non-negative on the interval 0, π[ ] , the range of cos-1 x . This observation 
is very important for some of the trigonometric substitutions in Integral Calculus.

 (ii) Whenever we talk about the inverse cosine function, we have cos : , ,x 0 1 1π[ ] → −[ ]  and 

cos : , ,− −[ ] → [ ]1 1 1 0x π .

 (iii) We can also restrict the domain of the cosine function to any one of the intervals  
   , , , , , ,−[ ] [ ]π π π0 2 where it is  one-to-one and its range is [-1,  1]. 
 The restricted domain 0, π[ ] is called the principal domain of cosine function and the values of 

y x= −cos 1 , − ≤ ≤1 1x ,  are known as principal values of the function y x= −cos 1 .

 Fig. 4.12

−3

4
3
2
1

−1
−2

−4

y

4p3p2pp−p−2p−3p−4p O

4 units

θ

y= 4sinθ
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 From the definition of y x= −cos 1 , we observe the following:

 (i) y x= −cos 1  if and only if x y= cos  for − ≤ ≤1 1x  and 0 ≤ ≤y π .

 (ii) cos cos−( ) = ≤1 1x x xif and has no sense if x >1 . 

 (iii) cos cos− ( ) =1 x x if  0 ≤ ≤x π  , the range of cos-1 x . Note that cos cos .− ( ) =1 3π π

4.4.4  Graph of the inverse cosine function
 The inverse cosine function cos-1 : −[ ]1 1, → 0, π[ ] , receives a real number x  in the interval 

−[ ]1 1,  as an input and gives  a real number  y  in the interval 0, π[ ]as an output (an angle in radian 

measure). Let us find some  points ( , )x y  using the equation y x= −cos 1  and plot them in the   

xy -plane. Note that the values of y  decrease from p  to 0  as x  increases from -1 to 1. The inverse 
cosine function is decreasing and continuous in the domain. By connecting the points by a smooth 
curve, we get the graph of y x= −cos 1 as shown in Fig. 4.14

                                    

 Fig. 4.13 Fig. 4.14

Note
 (i) The graph of the function y x= −cos 1  is also obtained from the graph y x= cos  by interchanging 

x  and y  axes. 
 (ii) For the function y x= −cos 1 , the x -intercept is 1 and the y -intercept is p

2
.

 (iii) The graph is not symmetric with respect to either origin or y -axis. So, y x= −cos 1  is neither 

even nor odd function. 

Example  4.5 

 Find the principal value of  cos− 









1 3
2

.       

Solution

 Let  cos− 







 =1 3

2
y .   Then, cos y =

3
2

.

 The range of the principal values of y x= −cos 1  is 0, π[ ] .

 So, let us find y in 0, π[ ]  such that cos y =
3

2
.

  But, cos π
6

3
2

=  and π
π

6
0∈[ , ] . Therefore, y =

π
6

 Thus, the principal value of cos− 









1 3
2

 is p
6

.

y

x
ππ

2

−1

1

O

y = cos x in [0, �]

y

π

π
2

x
−1 O 1

x

−1

−
2

2

0

2
2
1

y

π

3
4
π

π
2
π
4

0

y = cos –1x
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Example  4.6

 Find  (i)  cos− −







1 1
2

 (ii)  cos cos− −

















1

3
π  (iii)  cos cos− 


















1 7
6
π

Solution
 It is known that cos : , ,− −[ ] → [ ]1 1 1 0x π  is given by

 cos− =1 x y  if and only if x y= cos  for − ≤ ≤1 1x  and 0 ≤ ≤y π .  

      Thus, we have

 (i) cos− −







1 1
2

= 3
4
p ,  since 3

4
0π

π∈[ ],  and cos cos cos .3
4 4 4

1
2

π
π

π π
= −






 = − = −

 (ii) cos cos− −

















1

3
π = cos cos− 


















1

3
π = p

3
, since − ∉[ ]π

π
3

0, , but π
π

3
0∈[ ], .

 (iii) cos cos− 

















1 7
6
π = 5

6
p ,  since  cos cos cos7

6 6
3

2
5
6

π
π

π π





 = +






 = − = 






  and 5

6
0π

π∈[ ], .

Example  4.7

 Find the domain of   cos sin− +







1 2
3

x .

Solution
 By definition, the domain of y x= −cos 1  is − ≤ ≤1 1x  or x £1. This leads to

 − ≤
+

≤1 2
3

1sin x  which is same as − ≤ + ≤3 2 3sin x .

 So, − ≤ ≤5 1sin x   reduces to − ≤ ≤1 1sin x , which gives

 − ≤ ≤− −sin ( ) sin ( )1 11 1x    or   − ≤ ≤
π π
2 2

x .

 Thus, the domain of cos sin− +







1 2
3

x  is −





π π
2 2

, .

EXERCISE 4.2
      1. Find  all values of  x  such that

  (i) − ≤ ≤6 6π πx  and cos x = 0  (ii) − ≤ ≤5 5π πx  and cos x =1. 

     2.   State the reason for cos cos− −















 ≠ −1

6 6
π π .

 3. Is  cos ( ) cos ( )− −− = −1 1x xp true?  Justify your answer.

 4. Find the principal value of cos− 







1 1
2

. 

 5. Find the value of 

            (i)  2 1
2

1
2

1 1cos sin− −





 + 






  (ii)  cos sin− −






 + −( )1 11

2
1

        (iii) cos cos cos sin sin− −







1

7 17 7 17
π π π π .
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 6. Find the domain of  (i) f x
x x

( ) sin cos=
−







 +

−









− −1 12
3

1
4

  (ii) g x x x( ) sin cos= +− −1 1      

 7.  For what value of x , the inequality π
π

2
3 11< −( ) <−cos x  holds?

 8. Find the value of 

  (i) cos cos sin− −





 + 


















1 14
5

4
5

   (ii) cos cos cos cos .− −















 + 


















1 14
3

5
4

π π

4.5 The Tangent Function and the Inverse Tangent Function
 We know that the tangent function y x= tan  is used to find heights or distances, such as the 

height of a building, mountain, or flagpole. The domain of y x= tan = sin
cos

x
x

 does not include values

 of x , which make the denominator zero. So, the tangent function is not defined at 

x = − − , , , , ,3
2 2 2

3
2

π π π π . Thus, the domain of the tangent function y x= tan  is 

x x x k k: , ,∈ ≠ + ∈







� �π
π

2
= 

k

k k
=−∞

∞ + +







2 1
2

2 3
2

π π,  and the range is −∞ ∞( ), .The tangent 

function y x= tan  has periodp .

4.5.1 The graph of tangent function
 Graph of the tangent function is useful to find the values of the function over the repeated period 
of intervals. The tangent function is odd and hence the graph of y x= tan  is symmetric with respect 

to the origin.  Since the period of tangent function is p , we need to determine the graph over some 

interval of lengthp . Let us consider the interval −







π π
2 2

,  and construct the following table to draw 

the graph of  y x= tan , x ∈ −







π π
2 2

, . 

   x  ( in radian ) −
π
3

−
π
4

−
π
6

0 p
6

p
4

p
3

y x= tan - 3 -1 - 3
3

0 3
3

1 3

 Now, plot the points and connect them with a smooth curve for a partial 

graph of y x= tan , where  − ≤ ≤
π π
3 3

x .  If x  is close to p
2

but remains less 

than p
2

, the sin x  will be close to 1 and cos x  will be positive and close to 

0. So, as x  approaches to p
2

, the ratio sin
cos

x
x

 is positive and large and thus 

approaching to ¥ . 
Fig. 4.15

x

y

π
2

8

6

4

2

O−
π
2 −2

−4

−6

−8

y x= -
æ
è
ççç

ö
ø
÷÷÷÷tan ,  in  π π

2 2

as
ym

pt
ot

e

as
ym

pt
ot

e
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 Therefore, the line x =
π
2

 is a vertical asymptote to the graph. Similarly, if x  is approaching to 

−
π
2

, the ratio sin
cos

x
x

 is negative  and large in magnitude and thus, approaching to −∞ . So, the line 

x = −
π
2

 is also a vertical asymptote to the graph. Hence, we get a branch of the graph of y x= tan  

for − < <
π π
2 2

x  as shown in the Fig 4.15. The interval −







π π
2 2

,  is called the principal domain of

y x= tan . 

 Since the tangent function is defined for all real numbers except  at 

x n n= + ∈( ) ,2 1
2
π

 , and is increasing , we have vertical  asymptotes 

x n n= + ∈( ) ,2 1
2
π

 . As branches of y x= tan  are symmetric with 

respect to x n n= ∈π ,   , the entire graph of y x= tan is shown in  

Fig. 4.16.

Note

 From the graph, it is seen that  y x= tan  is positive for 0 < <x p
2

 and p < <x 3
2
p  ; y x= tan  is 

negative for  π
π

2
< <x  and for 3

2
2π
π< <x .

4.5.2  Properties of the tangent function

 From the graph of y x= tan , we observe the following properties of tangent function.

 (i) The graph is not continuous and has discontinuity points at x n n= +( ) ∈2 1
2
π ,  .

 (ii) The partial graph is symmetric about the origin for − < <
π π
2 2

x . 

 (iii) It has infinitely many vertical asymptotes x n n= +( ) ∈2 1
2
π ,  .

 (iv) The tangent function has neither maximum nor minimum.

Remark
 (i) The graph of y a bx= tan  goes through one complete cycle for

  − < <
π π

2 2b
x

b
  and its period is p

b
.

 (ii) For y a bx= tan , the asymptotes  are the lines x
b b

k k= + ∈
π π

2
,  .

 (iii) Since the tangent function has no maximum and no minimum value, the term amplitude for  
tan x  cannot be defined. 

Fig. 4.16

x

y

3
2
πππ

2
−
π
2

−π−
3
2
π O

y x= tan
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4.5.3  The inverse tangent function and its properties
 The tangent function  is not one-to-one in the entire domain � �\ ,π

π
2

+ ∈







k k . However, 

tan : ,x −





 →

π π
2 2

 is a bijective function. Now, we define the inverse tangent function with    

as its domain and −







π π
2 2

,  as its range. 

Definition 4.5

 For any real number x,  define tan-1 x  as the unique number y  in −







π π
2 2

,  such that tan .y x=  

In other words, the inverse tangent function tan : , ,− −∞ ∞( ) → −







1

2 2
π π  is defined by tan ( )− =1 x y  

if and only if tan y x=  and y ∈ −







π π
2 2

, . 

From the definition of y x= −tan 1 , we observe the following:

 (i) y x= −tan 1  if and only if x y= tan  for x ∈  and − < <
π π
2 2

y .

 (ii) tan tan−( ) =1 x x for any real number x  and y x= −tan 1  is an odd function.

 (iii) tan tan− ( ) =1 x x if and only if − < <
π π
2 2

x . Note that tan tan− ( ) =1 0π πand not . 

Note
 (i) Whenever we talk about inverse tangent function, we have,

  tan : ,−





 →

π π
2 2

     and  tan : ,− → −







1

2 2


π π .

 (ii) The restricted domain −







π π
2 2

, is called the principal domain of tangent function and the 

values of y x= −tan 1 , x ∈ ,  are known as principal values of the function y x= −tan 1 .

4.5.4  Graph of the inverse tangent function
   y x= −tan 1  is a function with  the entire real line −∞ ∞( ),  as its domain  and whose range is 

−







π π
2 2

, . Note that the tangent function is undefined at -
p
2

 and at p
2

. So, the graph of y x= −tan 1  

lies strictly between the two lines y = −
π
2

 and y =
π
2

, and never touches these two lines. In other 

words, the  two lines y = −
π
2

 and y =
π
2

are horizontal asymptotes to y x= −tan 1 .

         Fig. 4.17 and Fig. 4.18 show the graphs of y x= tan  in the domain −







π π
2 2

,  and y x= −tan 1  

in the domain ( , )−∞ ∞ , respectively.
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 Fig. 4.17 Fig. 4.18

Note
 (i)  The inverse tangent function is strictly increasing and continuous on the domain −∞ ∞( ), .

 (ii) The graph of y x= −tan 1  passes through the origin.

 (iii) The graph is symmetric with respect to origin and hence, y x= −tan 1  is an odd function. 

Example  4.8
 Find the principal value of tan− ( )1 3 .

Solution

 Let tan− ( ) =1 3 y . Then,  tan y = 3 .  Thus, y =
π
3

.  Since π π π
3 2 2

∈ −





,  . 

 Hence, tan− ( ) =1 3
3
π .  

Example  4.9

 Find  (i) tan− −( )1 3  (ii)  tan tan− 







1 3
5
π  (iii)  tan tan ( )−( )1 2019

Solution

 (i) tan− −( )1 3 = tan tan− −















 = −1

3 3
π π ,  since  − ∈ −








π π π
3 2 2

, .

 (ii) tan tan− 







1 3
5
π .  

   Let us find θ π π
∈ −






2 2

, such that tanθ = tan 3
5
p .

   Since the tangent function has period p ,  tan 3
5
p = tan tan3

5
2
5

π
π

π
−






 = −






 .

   Therefore,  tan tan− 







1 3
5
π = tan tan− −


















1 2
5
π = −

2
5
π , since −

∈ −







2
5 2 2
π π π, .

 (iii) Since   tan tan ,−( ) = ∈1 x x x  , we have  tan tan ( ) .−( ) =1 2019 2019     

x

y

1 2 3−3 −2 −1

−
π
2

π
2

O

x

−1

y

−
π
4

−
3

3
−
π
6

0 0

1 π
4

x

y

π
2

8

6

4

2

O−
π
2 −2

−4

−6

−8

as
ym

pt
ot

e

as
ym

pt
ot

e

y = tan –1x

y x= −





tan ,  in  π π

2 2
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Example  4.10

  Find the value of tan ( ) cos sin− − −− + 





 + −








1 1 11 1
2

1
2

.

Solution

 Let tan ( )− − =1 1 y . Then,  tan tan tany = − = − = −





1

4 4
π π .  

 As − ∈ −







π π π
4 2 2

, ,  tan ( )− − = −1 1
4
π .

 Now,   cos− 





 =1 1

2
y  implies cos cosy = =

1
2 3

π .  

 As π
π

3
0∈[ , ] ,   cos-1 1

2






  = p

3
.

 Now, sin− −





 =1 1

2
y  implies sin siny = − = −








1
2 6

π .  

 As − ∈ −





π π π
6 2 2

, ,   sin− −







1 1
2

 = −
π
6

.

 Therefore,    tan ( ) cos sin− − −− + 





 + −






 = − + − = −1 1 11 1

2
1
2 4 3 6 12

π π π π  .

Example  4.11
 Prove that  tan sin , .−( ) =

−
− < <1

21
1 1x x

x
x

Solution
 If  x = 0 , then both sides are equal to 0.   ... (1)
 Assume that  0 1< <x .

 Let θ = −sin 1 x . Then 0
2

< <θ
π .  Now, sinθ =

x
1

 gives tanθ =
−

x
x1 2

.

 Hence,  tan sin .−( ) =
−

1

21
x x

x
    ... (2)

 Assume that− < <1 0x . Then, θ = −sin 1 x gives − < <
π

θ
2

0. Now, sinθ =
x
1

 gives tanθ =
−

x
x1 2

.

  In this case also, tan sin .−( ) =
−

1

21
x x

x
        ... (3)

 Equations (1), (2) and (3) establish that tan sin , .−( ) =
−

− < <1

21
1 1x x

x
x

EXERCISE 4.3

 1. Find the domain of the following functions :

   (i) tan− −( )1 29 x     (ii) 1
2

1
4

1 2tan− −( ) −x π .

 2. Find the value of     (i) tan tan− 







1 5
4
π     (ii) tan tan− −


















1

6
π .

Chapter 4 Inverse Trigonometry.indd   147 3/10/2019   9:12:26 PM



148XII - Mathematics

 3. Find the value of    

  (i) tan tan− 

















1 7
4
π     (ii) tan tan− ( )( )1 1947     (iii) tan tan .− −( )( )1 0 2021 .

 4. Find the value of    (i) tan cos sin− −





 − −


















1 11
2

1
2

    (ii) sin tan cos− −





 − 


















1 11
2

4
5

.

  (iii) cos sin tan .− −





 − 


















1 14
5

3
4

4.6 The Cosecant Function and the Inverse Cosecant Function
 Like sine  function, the cosecant function is an odd function and has period 2p . The values of  

cosecant function y x= cosec  repeat after an interval of length 2p .Observe that y x
x

= =cosec 1
sin

is not defined when sin x = 0 . So, the domain of cosecant function is � �\ :n nπ ∈{ } . Since 

− ≤ ≤1 1sin x ,  y x= cosec does not take any value in between -1 and 1. Thus, the range of cosecant 

function is ( , ] [ , )−∞ ∪ ∞1 1 .

4.6.1 Graph of the cosecant function
 In the interval 0 2, π( ) , the cosecant function is 

continuous everywhere except at the point x = π . It has 

neither maximum nor minimum. Roughly speaking, the 

value of y x= cosec  falls from ¥  to 1 for x ∈






0
2

, π , it 

raises from 1 to ¥ for x ∈ 






π
π

2
, . Again, it raises from 

−∞  to -1 for x ∈






π
π, 3
2

 and falls from -1 to −∞  for 

x ∈ 






3
2

2π
π, . 

 The graph of y x= cosec ,  x ∈ { }( , ) \0 2π π is 

shown in the Fig. 4.19. This portion of the graph is 

repeated for the intervals , , \− −( ) −{ }4 2 3π π π ,

−( ) −{ }2 0π π, \ , 2 4 3π π π, \ ,( ) { } 4 6 5π π π, \ , .( ) { } 

 The entire graph of y x= cosec is shown in  
Fig. 4.20.

Fig. 4.19

Fig. 4.20

π
x

y

π
2

3
2
π 2π

−4
−3
−2
−1

1
2
3
4

y=1

y=− 1
O

y x= cosec  in [ , ]0 2π

4π
x

y

3π2ππ−3π−2π −π

−4
−3
−2
−1

1
2
3
4

O

y x= cosec 

y=1

y=− 1
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4.6.2  The inverse cosecant function
 The cosecant function, cosec : , , ( , ] [ , )−




 ∪ 







→ −∞ − ∪ ∞
π π
2

0 0
2

1 1  is bijective in the 

restricted domain −




 ∪ 







π π
2

0 0
2

, , . So, the inverse cosecant function is defined with  the domain

( , ] [ , )−∞ − ∪ ∞1 1  and the range −




 ∪ 







π π
2

0 0
2

, , .

Definition 4.6

 The inverse cosecant function cosec− −∞ − ∪ ∞ → −




 ∪ 







1 1 1
2

0 0
2

: ( , ] [ , ) , ,π π  is defined by 

cosec− =1( )x y  if and only if cosec y x=  and y ∈ −




 ∪ 







π π
2

0 0
2

, , .

4.6.3  Graph of the inverse cosecant function
 The inverse cosecant function, y x= −cosec 1  is a function whose domain is  \ (- 1, 1) and the 

range is −





π π
2 2

, \ {0}. That is, cosec− −∞ − ∪ ∞ → −




 ∪ 







1 1 1
2

0 0
2

: ( , ] [ , ) , ,π π .

 Fig. 4.21 and Fig. 4.22 show the graphs of cosecant function in the principal domain and the 
inverse cosecant function in the corresponding domain respectively.

                                 

 Fig. 4.21 Fig. 4.22

4.7 The Secant Function and Inverse Secant Function

 The secant function is defined as the reciprocal of cosine function. So, y x
x

= =sec 1
cos

 is 

defined for all values of x  except when cos x = 0  .Thus,  the  domain of the function y x= sec  is  

� �\ ( ) :2 1
2

n n+ ∈







π . As − ≤ ≤1 1cos x , y x= sec  does not take values in ( , )-1 1 . Thus, the range 

of the secant function is ( , ] [ , )−∞ ∪ ∞1 1 . The secant function has neither maximum nor minimum. The 
function y x= sec  is a periodic function with period 2p  and it is also an even function.

x

y

−
π
2

π
2

−4 −3 −2 −1 4321

y = π
2

y = − π
2

Ox

y

−1

1
y =1

y = −1O-
π
2

π
2

y = cosec–1x
y = cosecx in -

é

ë
ê
ê

ù

û
ú
ú

π π
2 2

,
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4.7.1 The graph of the secant function

      The graph of secant function in 0£ £x 2p , x ≠
π π
2

3
2

, , is 

shown in Fig. 4.23.  In the first and fourth quadrants or  in  the 

interval − < <
π π
2 2

x ,  y x= sec  takes only positive values,  

whereas it takes only negative values in  the second and third 

quadrants or in the interval π π
2

3
2

< <x  .                         

 For 0£ £x 2p , x ¹
p p
2

3
2

, , the secant function is continuous. The value of secant function 

raises from 1 to ¥ for x ∈ 




0

2
, π  ;  it raises from −∞  to -1 for x ∈







π
π

2
, . It falls from -1 to −∞

for x ∈ 




π

π, 3
2

 and falls from ¥  to 1 for x ∈






3
2

2π
π, . 

 As y x= sec  is periodic with period 2p , the same 

segment of the graph for 0 2≤ ≤x π , x ≠
π π
2

3
2

, , is repeated 

in  2 4 5
2

7
2

π π
π π, \ ,[ ] 








, 4 6 9
2

11
2

π π
π π, \ ,[ ] 








, 


 and in  



, − −[ ] − −







4 2 7
2

5
2

π π
π π, \ , , −[ ] − −








2 0 3
2 2

π
π π, \ , . 

 Now, the entire graph of y x= sec  is shown in  

Fig. 4.24.

4.7.2  Inverse secant function  

 The secant function, sec : , \ \ , x 0
2

1 1π
π[ ] 








→ −( )  is bijective in the restricted domain 

0
2

, \π
π[ ] 








. So, the inverse secant function is defined with  \ ,−( )1 1  as its domain and with 

0
2

, \π
π[ ] 








as its range.

Definition 4.7

 The inverse secant function sec : \ , , \− −( ) → [ ] 







1 1 1 0
2

  π
π  is defined by sec ( )− =1 x y  

whenever sec y x=  and y ∈[ ] 







0
2

, \π
π .

Fig. 4.23

Fig. 4.24

2π3π
x

−7
−5
−3
−1

1
3
5
7

y=1

y=− 1

y x= sec  in [ , ]0 2π

O

2
ππ

2

y

x
−2π −π O π 2π 3π 4π

−4
−3
−2
−1

1
2
3
4 y x= sec

y
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4.7.3 Graph of the inverse secant function
 The inverse secant function, y x= −sec 1  is a function whose domain is  \ ,−( )1 1  and the range 

is 0
2

, \π
π[ ] 








. That is, sec : \ , , \− −( ) → [ ] 







1 1 1 0
2

 π
π .

 Fig. 4.25 and Fig. 4.26 are the graphs of the secant function in the principal domain and the 
inverse secant function in the corresponding domain, respectively.

 Fig. 4.25 Fig. 4.26

Remark
 A nice way to draw the graph of y x x= sec or cosec :  

 (i) Draw the graph of y x x= cos sinor

 (ii) Draw the vertical asymptotes at the x -intercepts and take reciprocals of y  values.

4.8  The Cotangent Function and the Inverse Cotangent Function

 The cotangent function is given by cot
tan

x
x

=
1 . It is defined for all real values of x , except 

when tan x = 0  or  x n n= ∈π ,  . Thus, the domain of cotangent function is � �\ :n nπ ∈{ } and its 

range is  −∞ ∞( ), . Like tan x , the cotangent function is an odd function and periodic with periodp .  

4.8.1 The graph of the cotangent function
 The cotangent function is continuous on the set 0 2, \π π( ) { }  .  Let us first draw the graph of 

cotangent function in 0 2, \π π( ) { }  . In the first and third quadrants, the cotangent function takes only 

positive values and in the second and fourth quadrants, it takes only negative values. The cotangent 
function has no maximum value and no minimum value. The cotangent function falls from ¥  to 0 

for x ∈






0
2

, π   ; falls from 0 to −∞  for x ∈ 






π
π

2
,   ; falls from ¥ to 0 for x ∈







π π
2

3
2

, and falls 

from 0 to −∞  for x ∈ 






3
2

2π
π, . 

π
2

π x

y

O
−1

1

y =1

y = −1

y x= 







sec [ , ] \ in 0
2

π π

x

π
2

π

O 4321−4 −3 −2 −1

y =
π
2

y = π
y = sec–1x
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 Fig. 4.27 Fig. 4.28

 The graph of y x= cot , x ∈( ) { }0 2, \π π is shown in Fig 4.27. The same segment of the graph of 

cotangent for 0 2, \π π( ) { }  is repeated for 2 4 3π π π, \( ) { } , 4 6 5π π π, \ , ( ) { }  , and for  , 

− −( ) −{ }4 2 3π π π, \ , −( ) −{ }2 0π π, \ .   The entire graph of cotangent function with domain 

� �\ :n nπ ∈{ }  is shown in Fig. 4.28.

4.8.2 Inverse cotangent function
 The cotangent function is not one-to-one in its entire domain � �\ :n nπ ∈{ } . However, 

cot : , ,0 π( ) → −∞ ∞( )  is bijective with the restricted domain 0, π( ) . So, we can define the inverse 

cotangent function with −∞ ∞( ),  as its domain and 0, π( )  as its range.

Definition 4.8

 The inverse cotangent function cot : , ,− −∞ ∞( ) → ( )1 0 π  is defined by cot ( )− =1 x y  if and only if 

cot y x=  and y ∈( )0, π .

4.8.3  Graph of the inverse cotangent function
 The inverse cotangent function, y x= −cot 1  is a function whose domain is    and the range is 

( , )0 p . That is, cot : , ,− −∞ ∞( ) → ( )1 0x π .

 Fig. 4.29 and Fig. 4.30 show the cotangent function in the principal domain and the inverse 
cotangent function in the corresponding domain, respectively.

 Fig. 4.29 Fig. 4.30

x

y

3
2
π 2ππ

2

−4
−3
−2
−1

1
2
3
4

O

−4
−3
−2
−

4

−3π −2π −π π 2π 3π

1
2
3

1

x

y

O

y x= { }cot ( , ) \  in  0 2π π

π

y x= cot

π
2

π x

y

O

4
3
2
1

−4

−3
−2
−1

x
3−3 −2

π
2

y

O 21−1

y = cot–1x

y = cot x in (0,�)
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4.9  Principal Value of Inverse Trigonometric Functions
 Let us recall that the principal value of a inverse trigonometric function at a point x  is the value 
of the inverse function at the point x ,  which lies in the range of principal branch. For instance, the 

principal value of cos-1 3
2











 is p
6

, since π
π

6
0∈[ ], . When there are two values, one is positive and 

the other is negative such that they are numerically equal, then the principal value of the inverse 
trigonometric function is the positive one. Now, we list out the principal domain and range of 
trigonometric functions and the domain and range of inverse trigonometric functions.

Function
Principal 
Domain 

Range
Inverse

 Function
Domain

Range of 
Principal 

value branch

sine
−





π π
2 2

, [ , ]-1 1 sin-1 [ , ]-1 1  
−





π π
2 2

,

cosine [ , ]0 p  [ , ]-1 1  cos-1  [ , ]-1 1  [ , ]0 p  

tangent
−








π π
2 2

,
 tan-1  

−







π π
2 2

,

cosecant
−





π π
2 2

, \ {0}
 \ (-1, 1) cosec-1  R \ ( , )-1 1  

−





π π
2 2

0, \{ }

secant [ , ] \0
2

π
π








 / ( , )-1 1  sec-1
 \ ( , )-1 1 [ , ] \0

2
p

p







cotangent ( , )0 p   cot-1  
 ( , )0 p

Example  4.12
 Find the principal value of
        (i) cosec− −( )1 1         (ii) sec− −( )1 2 .

Solution
 (i) Let cosec− −( ) =1 1 y .  Then, cosec   y = −1

  Since the range of principal value branch of y = cosec-1x  is −





π π
2 2

0, \{ }and

  cosec −





 = −

π
2

1,  we have  y = −
π
2

.  Note that − ∈ −





{ }π π π
2 2 2

0, \ .

  Thus, the principal value of cosec− −( )1 1   is −
π
2

 .

 (ii)  Let y = −( )−sec 1 2 .  Then, sec y = −2  .

  By the definition, the range of the principal value branch of y x= −sec 1  is [ , ] \0
2

π
π








.   

  Let us find y  in  [ , ]0
2

π
π

− 







such that sec y = −2 .  
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  But, sec cosy y=− ⇒ =−2 1
2

.

  Now, cos cos cos cosy = − = − = −





 =

1
2 3 3

2
3

π
π

π π  . Therefore,  y =
2
3
π .

  Since 2
3

0
2

π
π

π
∈[ ] 








, \ , the principal value of sec− −( )1 2  is 2
3
p .  

Example  4.13

 Find the value of  sec− −










1 2 3
3

.

Solution

 Let sec− −








 =1 2 3

3
θ .  Then, secθ = −

2
3

 where θ π
π

∈[ ] 







0
2

, \ . Thus, cos  θ = −
3

2
.

 Now, cos cos cos . 5
6 6 6

3
2

π
π

π π
= −






 = − 






 = −     Hence, sec− −









 =1 2 3

3
5
6
π .

Example  4.14

 If cot− 





 =1 1

7
θ , find the value of cosθ .

Solution
 By definition, cot ( , )− ∈1 0x p .

 Therefore, cot− 





 =1 1

7
θ  implies θ π∈ ( , )0 .

 But cot− 





 =1 1

7
θ  implies cot tan .θ θ= =

1
7

7and hence

 Using tanθ =
7
1

, we construct a right  triangle as shown .  Then, we have, cosθ =
1

5 2
.

Example  4.15

 Show that cot−

−









 =1

2

1
1x

sec-1 x , x >1 . 

Solution

 Let cot .−

−









 =1

2

1
1x

α  Then,  cot .α =
−

1
12x

 We construct a right triangle with the given data.  

 From the triangle, secα = =
x x
1

. Thus,  α = −sec 1 x .

 Hence, cot−

−









 =1

2

1
1x

sec-1 x , x >1 .

EXERCISE 4.4
 1. Find the principal value of

   (i)    sec− 









1 2
3

 (ii) cot− ( )1 3  (iii) cosec− −( )1 2

7

1
q

5
2

1

x

α

x2 –
1
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 2. Find the value of 

  (i) tan sec− −( ) − −( )1 13 2  (ii) sin-1 (- 1) + cos-1  1
2







  +  cot-1 (2)

  (iii) cot-1(1) + sin-1 −










3
2

 - sec-1 −( )2  

4.10 Properties of Inverse Trigonometric Functions
 In this section, we investigate some properties of inverse trigonometric functions. The properties 
to be discussed are valid within the principal value branches of the corresponding inverse trigonometric 
functions and where they are defined. 

Property-I 

 (i) sin (sin )− =1 θ θ ,  if θ π π
∈ −



2 2

, . (ii) cos (cos )− =1 θ θ ,   if θ π∈[ , ]0  .

 (iii) tan (tan )− =1 θ θ ,    if θ π π
∈ −






2 2

, . (iv) cosec cosec1( )θ θ= ,   if  θ π π
∈ −





{ }
2 2

0, \  

 (v) sec (sec )− =1 θ θ ,  if θ π
π

∈ 







[ , ] \0
2

 . (vi) cot (cot )− =1 θ θ ,      if θ π∈ ( , )0  .

Proof  
 All the above results follow from the definition of the respective inverse functions. 

 For instance, (i)    let  sinθ = x ;   θ π π
∈ −



2 2

,

 Now, sinθ = x   gives  θ = −sin 1 x , by definition of inverse sine function.

 Thus, sin sin− ( ) =1 θ θ .

Property-II 
 (i) sin sin−( ) =1 x x ,   if  x ∈ −[ , ]1 1 . (ii) cos cos−( ) =1 x x ,      if  x ∈ −[ , ]1 1

 (iii) tan tan−( ) =1 x x ,   if  x ∈  (iv) cosec cosec−( ) =1 x x ,   if  x ∈ − \ ( , )1 1  

 (v) sec sec−( ) =1 x x ,   if x ∈ − \ ( , )1 1  (vi) cot cot−( ) =1 x x ,    if x ∈

Proof
 (i) For   x ∈ −[ ]1 1,  ,  sin-1 x  is well defined.

  Let   sin− =1 x θ . Then, by definition θ π π
∈ −



2 2

, and  sinθ = x

  Thus,  sinθ = x  implies  sin sin−( ) =1 x x .
  Similarly, other results are proved.
Note
 (i) For any trigonometric function y f x= ( ), we have f f x x−( ) =1( )  for all x  in the range of  f . 

This follows from the definition of f x-1( ) . When we have, f g x−( )1( ) , where 

g x x x− − −=1 1 1( ) sin cos ,or  it will usually be necessary to draw a triangle defined by the inverse 

trigonometric function to solve the problem. For instance, to find cot sin−( )1 x , we have to 

draw a triangle using sin .-1 x   However, we have to be a little more careful with expression of 

the form f f x− ( )1 ( ) .
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 (ii) Evaluation of  f f x-1[ ( )] , where f is any one of the six trigonometric functions. 

  (a) If x  is in the restricted domain  (principal domain) of f , then f f x x− =1[ ( )] .

  (b) If x  is not in the restricted domain of f , then find x1 within the restricted domain of f

such that f x f x( ) ( )= 1 . Now, f f x x− =1
1[ ( )] . For instance,

   sin sin
,

, , sin

− ( ) =
∈ −





∉ −





1

1

2 2

2 2

x
x x

x x x

if

if where  

π π

π π
== ∈ −














sin , .x x1 1 2 2
and π π

Property-III (Reciprocal inverse identities)

 (i) sin− 







1 1
x

= cosec x ,   if x ∈ −( ) \ ,1 1 .  (ii) cos .− 







1 1
x

= sec x ,  if x ∈ −( ) \ ,1 1 .

 (iii) tan
cot

cot .
−

−

−







 =

>

− + <






1

1

1

1 0
0x

x x
x x

if
ifp

Proof
 (i) If x ∈ −( ) \ ,1 1 , then 1 1 1

x
∈ −[ ], and x ¹ 0 . Thus, sin− 








1 1
x

 is well defined. 

  Let sin− 







1 1
x

= θ . Then,  by definition  θ π π
∈ −





{ }
2 2

0, \ and sinθ =
1
x

.

  Thus, cosecθ = x , which in turn gives  θ = −cosec 1 x .

  Now, sin− 







1 1
x

= θ = cosec-1 x . Thus,  sin− −





 =1 11

x
xcosec , x ∈ −( ) \ ,1 1

  Similarly, other results are proved.

Property-IV  (Reflection identities)

 (i) sin ( ) sin− −− = −1 1x x , if  x ∈ −[ , ]1 1 .

 (ii) tan ( ) tan− −− = −1 1x x , if  x ∈ .

 (iii) cosec cosec− −− = −1 1( )x x ,  if  x ≥1 or x ∈ −( ) \ ,1 1 .

 (iv) cos ( ) cos− −− = −1 1x xπ ,  if  x ∈ −[ , ]1 1 .

 (v) sec ( ) sec− −− = −1 1x xπ ,  if  x ≥1 or x ∈ −( ) \ ,1 1 .

 (vi) cot ( ) cot− −− = −1 1x xπ ,  if  x ∈ .

Proof
 (i) If x ∈ −[ ]1 1, , then − ∈ −[ ]x 1 1, . Thus,   sin ( )- -1 x is well defined

  Let sin ( )− − =1 x θ . Then θ π π
∈ −



2 2

,  and  sinθ = −x .

  Now,    sinθ = −x  gives x = − = −sin sin( )θ θ
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  From x = −sin( )θ , we must have  sin− = −1 x θ , which in turn gives θ  = − −sin 1 x .

  Hence, sin ( ) sin− −− = −1 1x x .
 (iv) If x ∈ −[ ]1 1, , then − ∈ −[ ]x 1 1, .       Thus,   cos ( )- -1 x is well defined

  Let cos ( )− − =1 x θ . Then θ π∈[ ]0,  and  cos  θ = −x .

   Now, cos cos cosθ θ π θ= − = − = −( )x ximplies .

   Thus,  π θ θ π− = = −− −cos , cos1 1x xwhich gives .

  Hence, cos ( ) cos− −− = −1 1x xπ .
  Similarly, other results are proved.
Note
 (i) The inverse function of  an one-to-one and odd function is also an odd function. For instance, 

y x= −sin 1  is an odd function, since sine function  is  both  one-to-one and odd in the restricted 

domain −





π π
2 2

, .

 (ii) Is the inverse function of an even function also even? It turns out that the question does not 
make sense, because an even function cannot be one-to-one if it is defined anywhere other 
than 0.  Observe that cos-1 x  and sec-1 x  are not even functions.

Property-V ( cofunction inverse identities )

 (i) sin cos , [ , ].− −+ = ∈ −1 1

2
1 1x x xπ                     (ii) tan cot , .− −+ = ∈1 1

2
x x xπ



 (iii) cosec− −+ =1 1

2
x xsec ,π  x ∈ −( ) \ ,1 1  or x ≥1. 

Proof 
 (i) Here,  x ∈ −[ ]1 1, .   Let sin− =1 x θ . Then θ π π

∈ −



2 2

,   and sinθ = x .

  Note that − ≤ ≤ ⇔ ≤ − ≤
π

θ
π π

θ π
2 2

0
2

. 

   So,  cos sin , cos sinπ
θ θ

π
θ

π
2 2 2

1 1−





 = = = − = −− −x x xwhich gives .

  Hence, cos sin− −+ =1 1

2
x x π , | | .x £1

 (ii) Let cot− =1 x θ .      Then,  cot ,θ = x  0 < <θ π  and  x ∈ . 

  Now, tan cot .π
θ θ

2
−






 = = x  ... (1)

  Thus, for x ∈ , tan(tan )− =1 x x  and (1) gives  tan(tan ) tan− = −







1

2
x π

θ . 

  Hence,    tan(tan ) tan cot− −= −







1 1

2
x xπ  ... (2)

  Note that 0 1< <−cot x π  gives  − < − <−π π π
2 2 2

1cot .x

   Thus, (2) gives tan cot− −= −1 1

2
x xπ .     So,  tan cot , .− −+ = ∈1 1

2
x x xπ



  Similarly, (iii) can be proved.
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Property-VI
 (i) sin sin− −+1 1x y  =  sin− − + −( )1 2 21 1x y y x ,   where either x y2 2 1+ ≤  or xy < 0 .

 (ii) sin sin- --1 1x y  =  sin− − − −( )1 2 21 1x y y x , where either x y2 2 1+ ≤  or xy > 0 .

 (iii) cos cos cos ,− − −+ = − − −





1 1 1 2 21 1x y xy x y if x y+ ≥ 0 .

 (iv) cos cos cos ,− − −− = + − −





1 1 1 2 21 1x y xy x y   if x y£ .

 (v) tan tan tan− − −+ =
+

−










1 1 1

1
x y x y

xy
,     if   xy <1.

 (vi) tan tan tan− − −− =
−

+










1 1 1

1
x y x y

xy
     if  xy > −1. 

Proof
 (i) Let   A x= −sin 1 . Then,   x A= sin   ;   A∈ −





π π
2 2

, ;  x £1 and cos A  is positive

  Let   B y= −sin 1 .  Then,   y B= sin   ; B ∈ −





π π
2 2

, ;  y £1 and cos B is positive

  Now,  cos sinA A x= + − = −1 12 2  and    cos sinB B y= + − = −1 12 2

   Thus, sin( ) sin cos cos sinA B A B A B+ = +  

                           =  x y y x1 12 2− + − ,  where x £1; y £1 and hence, x y2 2 1+ ≤

  Therefore,      A + B =  sin− − + −( )1 2 21 1x y y x

  Thus, sin sin− −+1 1x y  =  sin− − + −( )1 2 21 1x y y x ,   where either x y2 2 1+ ≤  or xy < 0 .             

   Similarly, other results are proved.

Property-VII
 (i) 2 2

1
11 1

2tan tan ,− −=
−







 <x x

x
x  (ii) 2 1

1
1 1

2

2tan cos− −=
−
+









x x

x
, x ≥ 0  

 (iii) 2 2
1

11 1
2tan sin ,− −=

+






 ≤x x

x
x .   

Proof
 (i)   By taking  y x=  in Property-VI (v) , we get the desired result

  2 2
1

11 1
2tan tan ,− −=

−






 <x x

x
x .

 (ii) Let       θ = −2 1tan x .  Then,  tanθ
2

= x . 

  The identity  cos
tan

tan
θ

θ

θ
=

−

+

1
2

1
2

2

2
 = 1

1

2

2

−
+

x
x

 gives  θ =
−
+











−cos 1
2

2

1
1

x
x

.
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  Hence,     2 1
1

1 1
2

2tan cos− −=
−
+









x x

x
, x ≥ 0 .

  Similarly, other result is proved.

Property-VIII

 (i) sin sin− −−( ) =1 2 12 1 2x x x   if  | |x £
1
2

  or  − ≤ ≤
1
2

1
2

x .

 (ii) sin cos− −−( ) =1 2 12 1 2x x x   if   
1
2

1£ £x .

Proof
 (i) Let   x = sinθ . 

  Now,  2 1 2 22x x− = =sin cos sinθ θ θ  

  Thus, 2 2 11 2θ = −( )−sin x x .  Hence,   sin sin− −−( ) =1 2 12 1 2x x x .

 (ii) Let     x = cosθ .

  Now,  2 1 2 22x x− = =cos sin sinθ θ θ , which gives

  2 2 11 2θ = −( )−sin x x .  Hence,    sin-1 2 1 22 1x x x−( ) = −cos .

Property-IX

 (i) sin cos− −= −1 1 21x x if 0 1£ £x . (ii) sin cos− −= − −1 1 21x x       if − ≤ <1 0x .

 (ii) sin tan− −=
−











1 1

21
x x

x
if − < <1 1x . (iv) cos sin− −= −1 1 21x x    if 0 1£ £x .

 (v) cos sin− −= − −1 1 21x xπ  if − ≤ <1 0x . (v) tan sin cos− − −=
+









 =

+











1 1

2

1

21
1

1
x x

x x
.ifx > 0.

Proof
 (i) Let  sin− =1 x θ . Then, sinθ   = x . Since   0 1£ £x  , we get   0

2
≤ ≤θ

π .

  cosθ = −1 2x or  cos sin− −− = =1 2 11 x xθ .

  Thus, sin cos ,− −= − ≤ ≤1 1 21 0 1x x x

 (ii) Suppose that − ≤ ≤1 0x    and sin− =1 x θ . Then − ≤ <
π

θ
2

0

  So, sinθ = x  and cos ( )− = −θ 1 2x       (since cosθ > 0 )

  Thus, cos sin− −− = − = −1 2 11 x xθ . Hence, sin cos .− −= − −1 1 21x x

  Similarly, other results are proved.

Property-X 

 (i) 3 3 41 1 3sin sin ( )− −= −x x x ,  x ∈ −





1
2

1
2

, .     (ii) 3 4 31 1 3cos cos ( )− −= −x x x ,  x ∈ 





1
2

1, .
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Proof 
 (i) Let  x = sinθ .  Thus,  θ = −sin 1 x .
  Now,  3 4 3 4 33 3x x− = − =sin sin sinθ θ θ .

  Thus,  sin ( ) sin− −− = =1 3 13 4 3 3x x xθ .
   The other result is proved in a similar way.

Remark

      (i)  
if  

  if   and 
sin (cos )

, [ , ]

, [ , ] co

− =
− ∈

− ∉

1 2
0

2
0

x
x x

y x

π
π

π
π ss cos , [ , ]x y y= ∈










0 π

    (ii)  
  if  

  if  
cos (sin )

, ,

,

− =
− ∈ −





− ∉ −

1 2 2 2

2

x
x x

y x

π π π

π π
22 2 2 2

, sin sin , ,π π π





= ∈ −














 and x y y

Example  4.16

 Prove that π π
2

2 3
2

1 1≤ + ≤− −sin cosx x .

Solution

       sin cos sin cos cos− − − − −+ = + +1 1 1 1 12x x x x x = + −π
2

1cos x

 We know that   0 1≤ ≤−cos x π . Thus, π π
π

π
2

0
2 2

1+ ≤ + ≤ +−cos x  . 

 Thus,  π π
2

2 3
2

1 1≤ + ≤− −sin cosx x .

Example  4.17

 Simplify (i) cos cos− 

















1 13
3
π  (ii) tan tan− 


















1 3
4
π

   (iii) sec sec− 

















1 5
3
π  (iv) sin sin− [ ]1 10

Solution

 (i) cos cos− 

















1 13
3
π . The range of principal values of cos-1 x  is [ , ]0 p .

  Since 13
3

0π
π∉[ , ] , we write 13

3
p as 13

3
4

3
p

p
p

= + , where π
π

3
0∈[ ], .

  Now,   cos cos cos13
3

4
3 3

π
π

π π





 = +






 = .

  Thus, cos cos cos cos− −















 = 
















 =1 113

3 3 3
π π π , since p p

3
0Î[ , ] .
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 (ii) tan tan− 

















1 3
4
π . 

  Observe that  3
4
p  is not in the interval −








π π
2 2

, , the  principal range of tan-1 x .

  So, we write  3
4 4
π

π
π

= − .

  Now,  tan tan tan tan3
4 4 4 4
π

π
π π π






 = −






 = − = −






 and − ∈ −








π π π
4 2 2

, .

   Hence, tan tan tan tan− −















 = −
















 = −1 13

4 4 4
π π π , since − ∈ −









p p p
4 2 2

, .

 (iii) sec sec− 

















1 5
3
π . 

  Note that 5
3
p  is not in 0

2
, \π

π[ ] 







, the principal range of sec-1 x .

  We  write  5
3

2
3

π
π

π
= − .  Now, sec sec sec5

3
2

3 3
π

π
π π






 = −






 = 






  and π

π
π

3
0

2
∈[ ] 








, \ .

  Hence,  sec sec sec sec− −















 = 
















 =1 15

3 3 3
π π π .

 (iv) sin sin− [ ]1 10

  We know that sin sin− ( ) =1 θ θ  if θ π π
∈ −



2 2

, . Considering the approximation p
2

11
7

 , 

  we conclude that 10
2 2

∉ −





π π, , but ( ) ,10 3
2 2

− ∈ −





π
π π .

  Now , sin sin ( ) sin( ( ) sin( ) sin( )10 3 10 3 10 3 10 3 3 10= + −( ) = + − = − − = −π π π π π π ..

  Hence, sin sin sin sin− −[ ] = −( )  = −1 110 3 10 3 10π π ,  since ( ) ,3 10
2 2

π
π π

− ∈ −





.

Example  4.18

 Find the value of (i) sin sinπ
3

1
2

1− −

















−  (ii) cos cos1
2

1
8

1− 

















   (iii) tan sin cos1
2

2
1

1
2

1
1

1
2

1
2

2
− −

+






 +

−
+





















a
a

a
a

. 

Solution

 (i) sin sin sin sinπ π π π
3

1
2 3 6 2

1− −















 = − −
















 = 




−


 =1.

 (ii) Consider cos cos1
2

1
8

1− 















 .   Let cos− 






 =1 1

8
θ . Then,  cosθ =

1
8

 and θ π∈[ ]0, .
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  Now, cosθ =
1
8

 implies 2
2

1 1
8

2cos θ
− = . Thus,  cos θ

2
3
4







 = , since cos q

2






 is positive.

  Thus, cos cos cos1
2

1
8 2

1− 















 = 








θ = 3
4

.

 (iii) tan sin cos1
2

2
1

1
2

1
1

1
2

1
2

2
− −

+






 +

−
+





















a
a

a
a

  Let  a = tanθ . 

  Now, 

   tan sin cos tan si1
2

2
1

1
2

1
1

1
2

1
2

1
2

2
− −

+






 +

−
+



















 =

a
a

a
a

nn tan
tan

cos tan
tan

− −

+






 +

−
+





















1
2

1
2

2

2
1

1
2

1
1

θ
θ

θ
θ

  = ( ) + ( )





− −tan sin sin cos cos1
2

2 1
2

21 1θ θ = [ ] =
−

=
−

tan tan
tan

2 2
1

2
12 2θ

θ
θ

a
a

.

Example 4.19

 Prove that   tan(sin )− =
−

1

21
x x

x
 for  x <1.

Solution

 Let sin− =1 x θ .   Then,  x = sinθ  and − ≤ ≤1 1x

 Now,   tan(sin ) tan sin
cos

− = =1 x θ
θ
θ

=  
sin

sin
θ

θ1 2−
   =  x

x1 2-
, x <1.

Example 4.20

 Evaluate   sin sin sec− −





 + 


















1 13
5

5
4

 

Solution

 Let  sec− =1 5
4

θ . Then,  secθ =
5
4

 and hence,  cosθ =
4
5

. 

 Also,   sin cosθ θ= −1 2  =  1 4
5

3
5

2

− 





 =  , which gives θ = 








−sin 1 3
5 .   

 Thus,  sec-1 5
4







  = sin-1  3

5






  and  sin-1 3

5
 + sec-1 5

4






  =  2 sin-1 3

5






 .

 We know that sin-1 2 1 22 1x x x−( ) = −sin ,    if   | |x £
1
2

. 

 Since  3
5

 < 1
2

, we have  2 sin-1  3
5







  = sin-1 2 3

5
1 3

5

2

× − 



















 = sin-1 24
25







 . 

 Hence,  sin sin sec− −





 + 


















1 13
5

5
4

 =  sin sin− 

















1 24
25

 = 24
25

,  since 24
25

1 1∈ −[ ], .
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Example 4.21

 Prove that  (i) tan tan− −+ =1 11
2

1
3 4

π      (ii) 2 1
2

1
7

31
17

1 1 1tan tan tan− − −+ =

Solution

 (i) We know that tan tan tan , .− − −+ =
+

−
<1 1 1

1
1x y x y

xy
xy

  Thus,  tan tan tan tan− − − −+ =
+

− 














= ( ) =1 1 1 11
2

1
3

1
2

1
3

1 1
2

1
3

1
4
π .

 (ii) We know that 2 2
1

1 11 1
2tan tan ,− −=

−
− < <x x

x
x

  So,   2 1
2

2 1
2

1 1
2

4
3

1 1
2

1tan tan tan .− − −=









− 







= 







  Hence,   2 1
2

1
7

4
3

1
7

1 1 1 1tan tan tan tan− − − −+ = + =
+

− 
































= 







− −tan tan1 1

4
3

1
7

1 4
3

1
7

31
17

.

Example 4.22 

 If cos cos cos− − −+ + =1 1 1x y z π and 0 1< <x y z, , ,   show that

 x y z xyz2 2 2 2 1+ + + =

Solution
 Let cos cos .− −= =1 1x yα βand     Then,  x y= =cos cos .α βand  
 cos cos cos− − −+ + =1 1 1x y z π  gives  α β π+ = − −cos .1 z             ... (1)

 Now, cos cos cos sin sinα β α β α β+( ) = −  = − − −xy x y1 12 2 .

 From (1), we get cos cosπ −( ) = − − −−1 2 21 1z xy x y

 − ( ) = − − −−cos cos 1 2 21 1z xy x y .

 So,         − = − − −z xy x y1 12 2 , which gives − − = − − −xy z x y1 12 2 .

 Squaring on both sides and simplifying, we get  x y z xyz2 2 2 2 1+ + + = .

Example 4.23
 If a1, a2, a3, ... an  is an arithmetic progression with common difference d, 

 prove that  tan tan tan ... tan− − −

−+








 +

+








 + +

+
1

1 2

1

2 3

1

1 1 1
d
a a

d
a a

d
a an n 11



















  =  a a

a a
n

n

−
+

1

11
. 

Solution
 Now,          tan−

+










1

1 21
d
a a

 =  tan tan tan− − −−
+









 = −1 2 1

2

1
2

1
11

a a
a a

a a
l

.
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 Similarly,  tan−

+










1

2 31
d
a a

 =  tan tan tan− − −−
+









 = −1 3 2

2 3

1
3

1
21

a a
a a

a a .

 Continuing inductively, we get

 tan tan tan ta−

−

− −

−

−

+








 =

−
+









 = −1

1

1 1

1

1

1 1
d
a a

a a
a a

a
n n

n n

n n
n nn−

−
1

1an . 

 Adding vertically, we get

 tan tan tan− − −

−+








 +

+








 + +

+





1

1 2

1

2 3

1

11 1 1
d
a a

d
a a

d
a an n




 = tan tan- --1 1

1a an . 

 tan tan tan ... tan− − −

−+








 +

+








 + +

+
1

1 2

1

2 3

1

1 1 1
d
a a

d
a a

d
a an n 11

1 1
1



















 = −− −tan[tan tan ]a an

   =  tan tan− −
+





















1 1

1
a a
a a

n

l n

 = a a
a a

n

l n

−
+

1

1
.  

Example 4.24

 Solve tan tan .− −−
+







 = >1 11

1
1
2

0x
x

x xfor

Solution

 tan tan− −−
+







 =1 11

1
1
2

x
x

x  gives  tan tan tan− − −− =1 1 11 1
2

x x .

 Therefore,     π
4

3
2

1= −tan x , which in turn reduces to  tan− =1

6
x π

 Thus,             x = =tan π
6

1
3

.

Example 4.25
 Solve sin cos− −>1 1x x
Solution
 Given that   sin cos− −>1 1x x . Note that − ≤ ≤1 1x .

 Adding both sides by  sin ,-1 x   we get

 sin sin cos sin− − − −+ > +1 1 1 1x x x x , which reduces to 2
2

1sin− >x π .

 As sine function increases in the interval −





π π
2 2

, , we have x > sin π
4

 or x >
1
2

.

 Thus, the solution set is the interval 1
2

1,






.

Example 4.26

 Show that  cot(sin ) ,− =
−

− ≤ ≤1
21 1 1x x

x
x  and  x ¹ 0  

Solution
 Let   sin− =1 x θ . Then,  x = sinθ  and hence,  cosθ = −1 2x . 

 Thus,  cot(sin ) cot− = =
−1

21x x
x

θ , | |x £ 1 and  x ¹ 0  

1
x

q

x2–1
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Example 4.27
 Solve  tan tan− −+ =1 12 3

4
x x π ,  if  6 12x < .

Solution

 Now,  tan tan− −+1 12 3x x  =  tan− +
−









1
2

2 3
1 6

x x
x

,  since 6 12x < .

 So,   tan−

−








1
2

5
1 6

x
x

 =  p
4

, which implies 5
1 6 4

12

x
x−

= =tan π .

 Thus,    1 6 2- x  =  5x , which gives 6 5 1 02x x+ − =  

 Hence, x  =  1
6

1,- .  But x = −1  does not satisfy 6 12x < .

 Observe that  x = −1  makes the left side of the equation negative whereas the right side is a 

positive number. Thus, x = −1  is not a solution. Hence,  x =
1
6

 is the only solution of the equation.

Example 4.28

 Solve tan tan− −−
−







 +

+
+







 =1 11

2
1
2 4

x
x

x
x

π  .

Solution

 Now,    tan tan− −−
−







 +

+
+









1 11
2

1
2

x
x

x
x

 =  tan−

−
−

+
+
+

−
−
−

+
+



























=1

1
2

1
2

1 1
2

1
2

4

x
x

x
x

x
x

x
x

π . 

 Thus,    

x
x

x
x

x
x

x
x

−
−

+
+
+

−
−
−

+
+









1
2

1
2

1 1
2

1
2

 = 1, which on simplification gives   2 4 32x − = −  

 Thus,   x2  =  1
2

 gives x = ±
1
2

.

Example 4.29

 Solve   cos sin−

+





















1

21
x

x
 = sin cot− 
















1 3
4

.

Solution

 We know that sin-1 x
x1 2+









  = cos-1 1

1 2+











x

 Thus,       cos sin−

+





















1

21
x

x
 = 1

1 2+ x
               ...(1)

 From the diagram, we have cot− 







1 3
4

  = sin− 







1 4
5

 

 Hence,                  sin cot− 















1 3
4

= 4
5

                            ... (2)

        Using (1) and (2) in the given equation, we get 1
1 2+ x

 =  4
5

, which gives  1 2+ x = 5
4

 Thus,   x = ±
3
4

. 

5
4

3
q
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EXERCISE 4.5
 1. Find the value, if it exists. If not, give the reason for non-existence.

   (i)  sin cos− ( )1 π  (ii) tan sin− −

















1 5
2
π  (iii) sin sin− [ ]1 5  

 2. Find the value of the expression in terms of x , with the help of a reference triangle.

   (i) sin cos− −( )( )1 1 x  (iii) cos tan− −( )( )1 3 1x  (iii) tan sin− +

















1 1
2

x

 3.  Find the value of 

   (i) sin cos sin− − 































1 1 3
2

 (ii) cot sin sin− −+







1 13
5

4
5

 (iii) tan sin cot− −+







1 13
5

3
2

 4. Prove that

   (i) tan tan tan− − −+ =1 1 12
11

7
24

1
2

 (ii) sin cos sin− − −− =1 1 13
5

12
13

16
65

 5. Prove that tan tan tan tan− − − −+ + =
+ + −

− − −










1 1 1 1

1
x y z x y z xyz

xy yz zx
.

 6. If tan tan tan− − −+ + =1 1 1x y z π  ,  show that x y z xyz+ + = .

 7. Prove that tan tan tan− − −+
−

=
−

−
1 1

2
1

3

2

2
1

3
1 3

x x
x

x x
x

, | |x <
1
3

.

 8. Simplify:  tan tan− −−
−
+

1 1x
y

x y
x y

.

 9. Solve:
   (i) sin sin− −+ =1 15 12

2x x
π   (ii) 2 1

1
1
1

1 1
2

2
1

2

2tan cos cos− − −=
−
+

−
−
+

x a
a

b
b

, a b> >0 0,

    (iii) 2 21 1tan cos tan− −( ) = ( )x xcosec   (iv) cot cot ,− −− +( ) = >1 1 2
12

0x x xπ  

 10. Find the number of solution of the equation tan tan tan tan− − − −−( ) + + +( ) = ( )1 1 1 11 1 3x x x x

EXERCISE 4.6
Choose the correct or the most suitable answer from the given four alternatives.

 1. The value of sin cos ,− ( ) ≤ ≤1 0x x π    is

  (1) π − x  (2) x −
π
2

 (3) π
2

− x  (4) π − x

 2. If sin sin ;− −+ =1 1 2
3

x y π   then cos cos− −+1 1x y  is equal to

     (1) 2
3
p       (2) p

3
      (3) p

6
     (4) p
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 3. sin cos sec− − − −− + −1 1 1 13
5

12
13

5
3

13
12

cosec  is equal to

     (1) 2p       (2) p     (3) 0           (4) tan-1 12
65

 4. If sin sin− −=1 12x α  has a solution, then

       (1) α ≤
1
2

     (2) α ≥
1
2

     (3) α <
1
2

   (4) α >
1
2

 5. sin (cos )− = −1

2
x xp  is valid for 

       (1) − ≤ ≤p x 0   (2) 0£ £x p   (3) − ≤ ≤
p p
2 2

x   (4)  − ≤ ≤
p p
4

3
4

x  

 6. If sin sin sin− − −+ + =1 1 1 3
2

x y z π , the value of x y z
x y z

2017 2018 2019
101 101 101

9
+ + −

+ +
 is

  (1) 0          (2) 1 (3) 2  (4)  3

 7. If cot− =1 2
5

x π  for some x R∈ ,  the value of tan-1 x  is

         (1) -
p
10

 (2) p
5

 (3) p
10

 (4)  -
p
5

 8. The domain of the function defined by f x x( ) sin= −−1 1  is

  (1) 1 2,[ ]  (2) −[ ]1 1,  (3) 0 1,[ ]  (4) −[ ]1 0,

 9 If x =
1
5

, the value of cos cos sin− −+( )1 12x x  is

  (1) -
24
25

 (2) 24
25

 (3) 1
5

    (4) -
1
5

 

 10. tan tan− −





 + 








1 11
4

2
9

 is equal to

  (1) 1
2

3
5

1cos− 





  (2) 1

2
3
5

1sin− 





  (3) 1

2
3
5

1tan− 





  (4) tan− 








1 1
2

 11. If the function   f x x( ) sin= −( )−1 2 3 , then x  belongs to 

  (1) −[ ]1 1,    (2) 2 2,



  

  (3) − −



 ∪ 



2 2 2 2, ,    (4) − −



 ∩ 



2 2 2 2, ,

 12. If cot-1 2  and cot-1 3  are two angles of a triangle, then the third angle is
  (1) 

p
4  (2) 

3
4
p

 (3) 
p
6   (4) 

p
3

 13. sin tan sin− −





−










=1 1

4
3

6
p p

x
. Then x  is a root of the equation

  (1) x x2 6 0− − =  (2) x x2 12 0− − =   (3) x x2 12 0+ − =   (4) x x2 6 0+ − =  
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 14. sin cos cos sin− −−( ) + −( ) =1 2 1 22 1 1 2x x

  (1) p
2

       (2) p
3

     (3) p
4

    (4) p
6

 15. If cot sin tan sin− −( )+ ( )=1 1α α u , then cos 2u  is equal to

  (1) tan2 α   (2) 0   (3) -1  (4) tan 2α  

 16. If x £1, then 2 2
1

1 1
2tan sin− −−

+
x x

x
 is equal to

  (1) tan-1 x  (2) sin-1 x  (3) 0 (4) p

 17. The equation tan cot tan− − −− = 









1 1 1 1
3

x x  has

  (1) no solution   (2) unique solution
  (3) two solutions   (4) infinite number of solutions

 18. If   sin cot− −+ 





 =1 1 1

2 2
x π , then x   is equal to 

  (1) 1
2

 (2) 1
5

 (3) 2
5

 (4) 3
2

 19. If sin− −+ =1 1

5
5
4 2

x cosec π , then the value of x  is

  (1) 4 (2) 5 (3) 2 (4)  3

 20. sin(tan ), | |− <1 1x x  is equal to
  (1)  

x
x1 2-

 (2) 
1

1 2- x
 (3) 

1
1 2+ x

 (4) 
x

x1 2+
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SUMMARY
Inverse Trigonometric Functions

Inverse sine 
function

Inverse cosine 
function

Inverse 
tangent 
function

Inverse 
cosecant 
function

Inverse 
secant 

function

Inverse cot 
function

Domain
[ , ]-1 1

Domain   
[ , ]-1 1

Domain   


Domain   
−∞ −( ]∪ ∞[ ), ,1 1

Domain   
−∞ −( ]∪ ∞[ ), ,1 1

Domain   


Range
−





π π
2 2

,

Range 
0, π[ ]

Range 
−








π π
2 2

,

Range 
−





−{ }π π
2 2

0,

Range 
0

2
, π

π( ) − 







Range 
0, π( )

not a periodic 
function

not a periodic 
function

not a periodic 
function

not a periodic 
function

not a periodic 
function

not a periodic 
function

odd function neither even 
nor odd 
function

odd function odd function neither even 
nor odd 
function

neither even 
nor odd 
function

strictly 
increasing 
function

strictly 
decreasing 
function

strictly 
increasing 
function

strictly 
decreasing 
function with 
respect to its 
domain.

strictly 
decreasing 
function with 
respect to its 
domain.

strictly 
decreasing 
function

one to one 
function

one to one 
function

one to one 
function

one to one 
function

one to one 
function

one to one 
function

Properties of Inverse Trigonometric Functions
Property-I 

 (i) sin-1(sin θ ) = θ  ,  if ¸ ∈ −





p p
2 2

,  (ii) cos-1 (cos θ ) = θ ,   if θ π∈[ , ]0  

 (iii) tan-1 (tanθ ) = θ ,   if θ π π
∈ −






2 2

,  (iv) cosec-1 (cosec θ ) = θ ,   if θ π π
∈ −





{ }
2 2

0, \

 (v) sec-1 (sec θ ) = θ ,  if θ π
π

∈ 







[ , ] \0
2

  (vi) cot-1 (cot θ ) = θ ,      if θ π∈ ( , )0  

Property-II 

 (i) sin sin−( ) =1 x x ,  if  x∈ −[ , ]1 1  (ii) cos cos−( ) =1 x x , if  x∈ −[ , ]1 1

 (iii) tan tan−( ) =1 x x ,   if  x∈  (iv) cosec cosec−( ) =1 x x ,   if  x∈ − \ ( , )1 1

 (v) sec sec−( ) =1 x x ,   if x∈ − \ ( , )1 1  (vi) cot cot−( ) =1 x x ,    if x∈

Property-III  (Reciprocal inverse identities)

 (i) sin .− 







1 1
x

= cosec x ,   if x∈ −( ) \ ,1 1 .  (ii) cos .− 







1 1
x

= sec x ,  if x∈ −( ) \ ,1 1

 (iii) tan
cot

cot .
−

−

−







 =

>

− + <






1

1

1

1 0
0x

x x
x x

if
ifÀ
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Property-IV(Reflection identities)

 (i) sin ( ) sin− −− = −1 1x x ,if  x∈ −[ , ]1 1 .

 (ii) tan ( ) tan− −− = −1 1x x ,if x∈ .

 (iii) cosec cosec− −− = −1 1( )x x ,if x ≥1 or x∈ −( ) \ ,1 1 .

 (iv) cos ( ) cos− −− = −1 1x xp ,if x∈ −[ , ]1 1 .

 (v) sec ( ) sec− −− = −1 1x xp ,if x ≥1 or x∈ −( ) \ ,1 1 .

 (vi) cot ( ) cot− −− = −1 1x xp ,if x∈ .

Property-V ( cofunction inverse identities )

 (i) sin cos , [ , ].− −+ = ∈ −1 1

2
1 1x x xp  (ii) tan cot , .− −+ = ∈1 1

2
x x xp



 (iii) cos sec ,ec x x− −+ =1 1

2
p x∈ −( ) \ ,1 1  or x ≥1. 

Property-VI

 (i) sin sin− −+1 1x y  =  sin− − + −( )1 2 21 1x y y x ,   where either x y2 2 1+ ≤  or xy < 0 .

 (ii) sin sin- --1 1x y  =  sin− − − −( )1 2 21 1x y y x ,, where either x y2 2 1+ ≤  or xy > 0 .

 (iii) cos cos cos ,− − −+ = − − −





1 1 1 2 21 1x y xy x y if x y+ ≥ 0 .

 (iv) cos cos cos ,− − −− = + − −





1 1 1 2 21 1x y xy x y   if x y″ .

 (v) tan tan tan− − −+ =
+

−










1 1 1

1
x y x y

xy
,     if   xy <1 .

 (vi) tan tan tan− − −− =
−

+










1 1 1

1
x y x y

xy
     if  xy > −1.

Property-VII

 (i) 2 2
1

11 1
2tan tan ,− −=

−






 <x x

x
x     (ii) 2 1

1
1 1

2

2tan cos− −=
−
+









x x

x
, x≥ 0

 (iii) 2 2
1

11 1
2tan sin ,− −=

+






 ≤x x

x
x ,   | x |  ≤ 1

Property-VIII

 (i) sin sin− −−( ) =1 2 12 1 2x x x  if  |x| ≤ 1
2

  or  - 1
2

≤x≤ 1
2

.

 (ii) sin cos− −−( ) =1 2 12 1 2x x x   if   1
2

 ≤ x ≤ 1.
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Property-IX
 (i) sin cos− −= −1 1 21x x if 0 1£ £x . (ii) sin cos− −= − −1 1 21x x if − ≤ <1 0x .

 (ii) sin tan− −=
−











1 1

21
x x

x
if − < <1 1x . (iv) cos sin− −= −1 1 21x x    if 0 1£ £x .

 (v) cos sin− −= − −1 1 21x xÀ  if − ≤ <1 0x . (v) tan sin cos− − −=
+









 =

+









1 1

2

1

21
1

1
x x

x x
 if x > 0

.
Property-X 

(i) 3 3 41 1 3sin sin ( )− −= −x x x ,  x∈ −





1
2

1
2

, .   (ii)    3 4 31 1 3cos cos ( )− −= −x x x ,  x∈ 





1
2

1, .
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Chapter

5 Two Dimensional Analytical Geometry-II

"Divide each difficulty into as many parts as is feasible and necessary to resolve it"
René Descartes

5.1 Introduction
 Analytical Geometry of two dimension is used to describe geometric objects 
such as point, line, circle, parabola, ellipse, and hyperbola using Cartesian 
coordinate system.	Two	thousand	years	ago	(≈	2- 1 BC (BCE)), the ancient Greeks 
studied conic curves, because studying them elicited ideas that were exciting, 
challenging, and interesting. They could not have imagined the applications of these 
curves in the later centuries.
 Solving problems by the method of Analytical Geometry was systematically 
developed	 in	 the	 first	 half	 of	 the	 17th century majorly, by Descartes and also by other great 
mathematicians like Fermat, Kepler, Newton, Euler, Leibniz, l’Hôpital, Clairaut, Cramer, and the 
Jacobis.
 Analytic Geometry grew out of need for establishing algebraic techniques for solving geometrical 
problems	and	the	development	in	this	area	has	conquered	industry,	medicine,	and	scientific	research.
 The theory of Planetary motions developed by Johannes Kepler, the German mathematician cum 
physicist stating that all the planets in the solar system including the earth are moving in elliptical 
orbits with Sun at one of a foci, governed by inverse square law paved way to established work in 
Euclidean geometry. Euler applied the co-ordinate method in a systematic study of space curves and 
surfaces, which was further developed by Albert Einstein in his theory of relativity.
	 Applications	 in	 various	 fields	 encompassing	 gears, vents in dams, wheels and circular 
geometry leading to trigonometry as application based on properties of circles; arches, dish, 
solar cookers, head-lights, suspension bridges, and search lights as application based on 
properties of parabola; arches, Lithotripsy	 in	 the	 field	 of	 Medicine,	 whispering galleries,  
Ne-de-yag lasers and gears as application based on properties of ellipse; and  telescopes, cooling 
towers, spotting locations of ships or aircrafts as application based on properties of hyperbola, to 
name a few.

	 Fig.	5.1	 Fig.	5.2	 Fig.	5.3

René Descartes
1596 – 1650
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 Fig. 5.4 Fig. 5.5

 A driver took the job of delivering a truck of books ordered on line. 
The truck is of 3m  wide and 2 7. m  high, while driving he noticed a sign 
at the semielliptical entrance of a tunnel; Caution! Tunnel is of 3m  high 
at the centre peak. Then he saw another sign; Caution! Tunnel is of 12m  
wide. Will his truck pass through the opening of tunnel’s archway? We 
will be able to answer this question at the end of this chapter.

LEARNING OBJECTIVES

 Upon completion of this chapter, students will be able to
	 ●	 write the equations of circle, parabola, ellipse, hyperbola in standard form,
	 ●	 find	the	centre,	vertices,	foci	etc.	from	the	equation	of	different	conics,
	 ●	 derive the equations of tangent and normal to different conics,
	 ●	 classify the conics and their degenerate forms,
	 ●	 form  equations of conics in parametric form, and its application,
	 ●	 apply conics in various real life situations.

5.2 Circle
	 The	word	circle	is	of	Greek	origin	and	reference	to	circles	is	found	as	early	as	1700	BC	(BCE).	In	Nature	
circles	would	have	been	observed,	such	as	the	Moon,	Sun,	and ripples in water. The circle is the basis 
for the wheel, which, with related inventions such as gears, makes much of modern machinery possible. 
In	mathematics,	the	study	of	the	circle	has	helped	to	inspire	the	development	of	geometry,	astronomy and 
calculus.	In	Bohr-Sommerfeld	theory	of	the	atom,	electron orbit can be modelled as circle.

Definition 5.1
 A	circle	is	the	locus	of	a	point	in	a	plane	which	moves	such	that	its	distance	from	a	fixed	point	
in the plane is always a constant.
	 The	fixed	point	is	called	the	centre and the constant distance is called radius of the circle

5.2.1 Equation of a circle in standard form
(i) Equation of circle with centre (0, 0) and radius r
  Let the centre C( , )0 0  and radius r  and P x y( , )  be the moving point.  

 Note that the point P  having coordinates ( , )x y  is represented as P x y( , ) .
   Then,   CP  =  r    and so CP r2 2=

   ( ) ( )x y− + −0 02 2  =  r 2

   x y2 2+  =  r 2  
  which is the equation of the circle with centre ( , )0 0   and radius r .

Fig. 5.6

Fig.5.7

P(x, y)

x

y

C(0, 0)
r
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(ii) Equation of circle with centre (h, k) and radius r  
 Let the centre be C h k( , )  and r  be the radius and P x y( , )  be the moving 
point. 
 Then, CP r=  and so CP r2 2=  

 That is, ( ) ( )x h y k r− + − =2 2 2 .This is the equation of the circle in 

Standard form also known as centre-radius form.
 Expanding the equation, we get 

 x y hx ky h k r2 2 2 2 22 2 0+ − − + + − =
 Taking 2 2 2 2 2 2 2g h f k c h k r= − = − = + −, , , the equation takes the form  

 x y gx fy c2 2 2 2 0+ + + + =  called the general form of a circle.

 The equation x y gx fy c2 2 2 2 0+ + + + =  is a second degree equation in x  and y   possessing the 

following characteristics:
	 (i)	 It	is	a	second	degree	equation	in	 x  and y , 

	 (ii)	coefficient	of	 x2 = 	coefficient	of	 y2 0¹ ,
	 (iii)	coefficient	of	 xy = 0 .
 Conversely, we prove that an equation possessing these three characteristics, always represents 
a circle. Let
       ax ay g x f y c2 2 2 2 0+ + ′ + ′ + =  … (1) 

 be a second degree equation in x  and y  having characteristics (i), (ii), and a ¹ 0 .  Dividing (1) 

by a , gives 

 x y g
a

x f
a

y c
a

2 2 2 2 0+ +
′

+
′

+
′

= . …	(2)

 Taking 
′

=
′

=
g
a

g f
a

f, and 
′

=
c
a

c ,	equation	(2)	becomes x y gx fy c2 2 2 2 0+ + + + = .

 Adding and subtracting g 2 and f 2 , we get x gx g y fy f g f c2 2 2 2 2 22 2 0+ + + + + − − + =

 ( ) ( )x g y f g f c+ + + = + −2 2 2 2

 ( ( )) ( ( ))x g y f g f c− − + − − = + −( )2 2 2 2
2

 which is in standard form of a circle with centre C ( , )- -g f and radius r = g f c2 2+ − . Hence 

 equation (1) represents a circle with centre ( , ) ,− − =
− ′ − ′






g f g

a
f

a
 and radius  

 = + − = ′ + ′ − ′g f c
a

g f c a2 2 2 21 .

Remark
 The equation x y gx fy c2 2 2 2 0+ + + + = represents 

 a real circle if g f c2 2 0+ − > ;

 a point circle if g f c2 2 0+ − = ;

 an imaginary circle if g f c2 2 0+ − <  with no locus.

x

y

P(x, y)

C(h, k)
r

Fig.5.8
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Example 5.1
 Find the general equation of a circle with centre ( , )- -3 4 and radius 3units.
Solution
 Equation of the circle in standard form is x h y k r−( ) + −( ) =2 2 2

   x y− −( )( ) + − −( )( )3 4
2 2  =  32

   x y+( ) + +( )3 42 2  =  32

   x y x y2 2 6 8 16+ + + +  =  0 .
Theorem 5.1
 The circle passing through the points of intersection of the line lx my n+ + = 0
 and the circle x y gx fy c2 2 2 2 0+ + + + =  is the circle of the form
 x y gx fy c lx my n2 2 2 2 0+ + + + + + +( ) =λ , λ ∈1 .

Proof
  Let the circle be S : x y gx fy c2 2 2 2+ + + +  =  0 ,  … (1)
  and the line be L : lx my n+ +  =  0 .																															 		…	(2)
 Consider S L+ =l 0  .  That is x y gx fy c lx my n2 2 2 2 0+ + + + + + +( )=l 		 ...	(3)
 grouping the terms of x y,  and constants yield

 x y x g l y f m c n2 2 2 2 0+ + +( )+ +( )+ + =l l l  which is a second degree equation in  x  and 
y 	with	coefficients	of	 x2 and y2  are equal and there is no xy  term.
	 If	 ( , )α β is a point of intersection of S and L	satisfying	equation	(1)	and	(2)	will	satisfy	equation	3.
 Hence S L+ =l 0  represents a circle.

Example 5.2
    Find the equation of the circle described on the chord 3 5 0x y+ + =  of the circle x y2 2 16+ =  as 
diameter.
Solution
 Equation of the circle passing through the points of intersection of the chord and circle by 
Theorem 5.1 is  x y x y2 2 16 3 5 0+ − + + +( ) =λ .

 The chord 3 5 0x y+ + =  is a diameter of this circle if the centre − −







3
2 2
λ λ,  lies on the chord.

   So we have 3 3
2 2

5−





 − +

λ λ  =  0 ,

   −
− +

9
2 2

5λ λ  =  0 ,

   − +5 5λ  =  0 ,
   λ  =  1.
 Therefore, the equation of the required circle is x y x y2 2 3 11 0+ + + − = .

Example 5.3
 Determine whether x y+ − =1 0  is the equation of a diameter of the circle 

 x y x y c2 2 6 4 0+ − + + = for all possible values of c .

Solution
 Centre of the circle is ( , )3 2- which lies on x y+ − =1 0 .  So the line x y+ − =1 0  passes through 

the centre and therefore the line x y+ − =1 0  is a diameter of the circle for all possible values of c .
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Theorem 5.2 
 The equation of a circle with ( , )x y1 1  and ( , )x y2 2 as extremities of one of the diameters of the 

circle is ( )( ) ( )( )x x x x y y y y− − + − − =1 2 1 2 0 .

Proof
 Let A x y( , )1 1  and B x y( , )2 2 be the two extremities of the diameter AB , and P x y( , ) be any point 

on the circle. Then ∠ =APB π
2

 . (angle in a semi-circle)

 Therefore, the product of slopes of AP  and PB is equal to -1.

 

y y
x x

y y
x x

−( )
−( )











−( )
−( )











1

1

2

2

=−1 yielding the equation of the required circle as

 ( )( ) ( )( )x x x x y y y y− − + − − =1 2 1 2 0 .

Example 5.4
 Find the general equation of the circle whose diameter is the line segment joining  the points 

− −( )4 2, and 1 1,( ) .
Solution
 Equation of the circle with end points of the diameter as x y1 1,( ) and x y2 2,( ) given in  

theorem	5.2	is
   x x x x y y y y−( ) −( ) + −( ) −( )1 2 1 2  =  0

   x x y y+( ) −( ) + +( ) −( )4 1 2 1  =  0  

 x y x y2 2 3 6 0+ + + − = is the required equation of the circle.
Theorem 5.3
 The position of a point P x y( , )1 1 with respect to a given circle x y gx fy c2 2 2 2 0+ + + + = in the 

plane containing the circle is outside or on or inside the circle according as 

x y gx fy c1
2

1
2

1 12 2
0
0
0

+ + + +
>
=
<










 is 
or,
or,

.

Proof

 Equation of the circle is x y gx fy c2 2 2 2 0+ + + + =  with centre C 

( , )- -g f  and radius r g f c= + −2 2 .

 Let P x y( , )1 1 be a point in the plane. Join CP and let it meet the 

circle atQ .Then the point P is outside, on or within the circle according 

as

| |
| |
| |
| | .

CP
CQ
CQ
CQ

 is 
or,
or,

>
=
<










Fig.5.9

Fig.5.10

P x y( , )

A B
( , )x y2 2

( , )x y1 1

P x y
( , )1

1
Q

C
g
f

(
,

)
-

-
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CP
r
r CQ r
r

2

2

2

2

 is 
or,
or

>

= =

<










{ },
.

( ) ( )
.

x g y f
g f c
g f c
g f c

1
2

1
2

2 2

2 2

2 2

+ + +

> + −

= + −

< + −










 is 
or,
or,



x y gx fy c1
2

1
2

1 12 2
0
0
0

+ + + +
>
=
<










 is 
or,
or,

.

Example 5.5
 Examine the position of the point ( , )2 3 with respect to the circle x y x y2 2 6 8 12 0+ − − + = .

Solution

 

x y gx fy c1
2

1
2

1 1
2 22 2 2 3 6 2 8 3 12+ + + + = + − × − × + , taking x y1 12 3= =,

    

= + − − +
= − <

4 9 12 24 12
11 0.

      Therefore the point ( , )2 3 lies	inside	the	circle,	by	theorem	5.3.

Example 5.6

     The line 3 4 12 0x y+ − = meets the coordinate axes at A  and B . Find the equation of the circle 

drawn on AB as diameter.
Solution 
 Writing the line 3 4 12x y+ = ,  in intercept form yields x y

4 3
1+ = . Hence the points A  and B  are 

( , )4 0  and ( , )0 3 .
  Equation of the circle in diameter form is 
   x x x x y y y y−( ) −( ) + −( ) −( )1 2 1 2  =  0

   x x y y−( ) −( ) + −( ) −( )4 0 0 3  =  0

   x y x y2 2 4 3+ − −  =  0 .

Example 5.7
     A line 3 4 10 0x y+ + = cuts a chord of length 6 units on a circle with centre of the circle ( , )2 1 . Find 

the equation of the circle in general form. 
Solution
 C( , )2 1 is the centre and 3 4 10 0x y+ + =  cuts a chord AB on the circle.  Let 

M be the midpoint of AB , then
 AM  =  BM = 3 . Now BMC is a right  triangle.

 CM  =  
3 2 4 1 10

3 4
4

2 2

( ) ( )+ +

+
=

 BC 2  =  BM MC2 2 2 23 4 25+ = + = . Fig.5.11

C A

B

M5
4

3
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 BC  =  5 =  radius
     Equation of the required circle is

 ( ) ( )x y− + −2 12  =  52

 x y x y2 2 4 2 20+ − − −  =  0 .

Example 5.8
	 A	circle	of	radius	3	units	touches	both	the	axes.	Find	the	equations		of	
all possible circles formed in the general form.
Solution
 As the circle touches both the axes, the distance of the centre from 
both	the	axes	is	3	units,	centre	can	be	 ( , )± ±3 3  and hence there are four 
circles	with	 radius	 3,	 and	 the	 required	 equations	 of	 the	 four	 circles	 are	
x y x y2 2 6 6 9 0+ ± ± + = .

Example 5.9
 Find the centre and radius of the circle3 1 6 9 4 02 2x a y x y a+ +( ) + − + + = .
Solution
	 Coefficient	of	 x2 =	Coefficient	of	 y2 (characteristic (ii) for a second degree equation to represent 
a circle).
 That is, 3 1= +a  and a = 2 .  
 Therefore the equation of the circle is
   3 3 6 9 62 2x y x y+ + − +  =  0

   x y x y2 2 2 3 2+ + − +  =  0

   Centre is −





1 3

2
,  and radius r  =  1 9

4
2+ −

    =  5
2

.

Example 5.10
 Find the equation of the circle passing through the points ( , ), ( , )1 1 2 1- , and ( , )3 2 .
Solution
 Let the general equation of the circle be
   x y gx fy c2 2 2 2+ + + +  =  0  . ... (1)

	 It	passes	through	points	 ( , ), ( , )1 1 2 1-   and ( , )3 2 .

 Therefore, 2 2g f c+ +  =  -2 																									 		…	(2)

   4 2g f c− +  =  -5 																											 …	(3)

   6 4g f c+ +  =  -13 .                        … (4)

	 (2)	–	(3)	gives	 − +2 4g f  =  3   ... (5)

	 (4)	–	(3)	gives	 2 6g f+  =  -8   ... (6)

 (5) + (6) gives f  =  - 1
2

Fig.5.12

x

y

O

C3(–3,–3) C4(3,–3)

C1(3,3)C2(–3,3)
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 Substituting f  =  -1
2

  in (6), g =− 5
2

 Substituting f  =  -1
2

 and g =− 5
2
	in	(2)	, c = 4 .

 Therefore the required equation of the circle is

   x y x y2 2 2 5
2

2 1
2

4+ + −





 + −






 +  =  0

   and  x y x y2 2 5 4+ − − +  =  0 .

Note 
 Three points on a circle determine equation to the circle uniquely. Conversely three equidistant 
points from a centre point forms a circle.

5.2.2 Equations of tangent and normal at a point P  on a given circle
 Tangent of a circle is a line which touches the circle at only one point and normal is a line 
perpendicular to the tangent and passing through the point of contact.
 Let P x y( , )1 1  and Q x y( , )2 2  be two points on the circle x y gx fy c2 2 2 2 0+ + + + = .

 Therefore,
 x y gx fy c1

2
1
2

1 12 2+ + + +  =  0  ... (1)

 and x y gx fy c2
2

2
2

2 22 2+ + + +  =  0 	 ,,,	(2)

 ( ) ( )2 1-  gives 

 x x y y g x x f y y2
2

1
2

2
2

1
2

2 1 2 12 2 0− + − + − + − =( ) ( )  

 ( )( ) ( )( )x x x x g y y y y f2 1 2 1 2 1 2 12 2 0− + + + − + + =

 x x g
y y f

2 1

2 1

2
2

+ +
+ +

 =  - -
-

( )
( )
y y
x x

2 1

2 1

 

 Therefore, slope of PQ  =  −
+ +
+ +

( )
( )

x x g
y y f

1 2

1 2

2
2

. 

 When Q P→ ,  the chord PQ  becomes tangent at P  

 Slope  of tangent is −
+
+

( )
( )
2 2
2 2

1

1

x g
y f

 = −
+
+

( )
( )
x g
y f

1

1

. 

 Hence the equation of tangent is  y y- 1  =  −
+
+

−
( )
( )

( )x g
y f

x x1

1
1 . Simplifying,

 yy fy y fy xx x gx gx1 1
2

1 1 1
2

1+ − − + − + −  =  0

 xx yy gx fy x y gx fy1 1 1
2

1
2

1 1+ + + − + + +( )  =  0 .

 Since ( , )x y1 1 is a point on the circle, we have x y gx fy c1
2

1
2

1 12 2 0+ + + + =

 Therefore − + + + = + +( )x y gx fy gx fy c1
2

1
2

1 1 1 1 .

 Hence the required equation of tangent at ( , )x y1 1 is

 xx yy g x x f y y c1 1 1 1 0+ + + + + + =( ) ( ) .

Fig.5.13

P x y
( , )1

1

Q x y( , )2 2

′Q
′′Q

C
g
f

(
,

)
-

-
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 and the equation of normal is  y y−( )1  =  
y f
x g

x x1

1
1

+( )
+( )

−( )

   y y x g−( ) +( )1 1  =  y f x x1 1+( ) −( )
   x y y g y y1 1 1−( ) + −( )  =  y x x f x x1 1 1−( ) + −( )
   yx xy g y y f x x1 1 1 1− + −( ) − −( )  =  0 .
Remark
 (1) The equation of tangent at x y1 1,( ) to the circle with centre ( , )0 0  is xx yy a1 1

2+ = .

	 (2)	 The	equation	of	normal	at x y1 1,( )  to the circle with centre ( , )0 0  is xy yx1 1 0− = .

								(3)		The	normal	passes	through	the	centre	of	the	circle.

5.2.3 Condition for the line y mx c= +  to be a tangent to the circle x y a2 2 2+ =     
	 and	finding	the	point	of	contact
 Let the line y mx c= +  touch the circle x y a2 2 2+ = . The centre and radius of the circle 

x y a2 2 2+ = are ( , )0 0 and a respectively.

(i) Condition for a line to be tangent
 Then the perpendicular distance of the line y mx c− − = 0  from ( , )0 0  is

 0 0
1 12 2

− −

+
=

+

m c
m

c
m

. | | .

 This must be equal to radius .Therefore | |c
m

a
1 2+

=  or c a m2 2 21= +( ) .

 Thus the condition for the line y mx c= +  to be a tangent to the circle x y a2 2 2+ =  is 
c a m2 2 21= +( ) .

(ii) Point of contact

 Let ( , )x y1 1  be the the point of contact of y mx c= +  with the 
circle x y a2 2 2+ = ,
 then y1  =  mx c1 +   ... (1)

 Equation of tangent at ( , )x y1 1  is

 xx yy1 1+  =  a2

 yy1  =  − +xx a1
2 		 ...	(2)

	 Equations	(1)	and	(2)	represent	the	same	line	and	hence	the	coefficients	are	proportional.

             So,  y1

1
 =  − =

x
m

a
c

1
2

   y1  =  a
c

x a m
c

2

1

2

, =
− , c a m=± +1 2 .

 Then the points of contacts are   (1) −

+ +











am
m

a
m1 12 2

,   or

																																																												(2)	 am
m

a
m1 12 2+

−

+









, .

Fig.5.14

(0, 0)

P x y( , )1 1

C

a
y mx c
= +
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Note
 The equation of tangent at P to a circle is y mx a m= ± +1 2 .
Theorem 5.4 
 From any point outside the circle x y a2 2 2+ =  two tangents can be drawn.

Proof
 Let P x y( , )1 1  be the given point. The equation of any tangent is 

y mx a m= ± +1 2 .	It	passes	through	 ( , )x y1 1 . Therefore 

 y1  =  mx a m1
21± +

 y mx1 1-  =  a m1 2+ . Squaring both sides,

 ( )y mx1 1
2-  =  a m2 21( )+

 y m x mx y a a m1
2 2

1
2

1 1
2 2 22+ − − −  =  0  

 m x a mx y y a2
1
2 2

1 1 1
2 22( ) ( )− − + −  =  0 .

 This quadratic equation in m  gives two values for m .
 These values give two tangents to the circle x y a2 2 2+ = .
Note
	 (1)	 If	 ( , )x y1 1  is a point outside the circle then both the tangents are real.
	 (2)	 If	 ( , )x y1 1  is a point inside the circle then both the tangents are imaginary.
	 (3)	 If	 ( , )x y1 1  is a point on the circle then both the tangents coincide.

Example 5.11
 Find the equations of the tangent and normal to the circle x y2 2 25+ =  at P( , )-3 4 .
Solution
 Equation of tangent to the circle at P x y( , )1 1 is xx yy a1 1

2+ = .

 That is,  x y( ) ( )− +3 4  =  25
   − +3 4x y  =  25
 Equation of normal is xy yx1 1-  =  0

 That is,  4 3x y+  = 0 .

Example 5.12
 If	 y x c= +4 is a tangent to the circle x y2 2 9+ = , find	 c .
Solution
 The condition for the line y mx c= +  to be a tangent to the circle x y a2 2 2+ =   is c a m2 2 21= +( )  
from	5.2.3.
  Then c  =  ± +9 1 16( )  

   c  =  ±3 17 .
Example 5.13
  A road  bridge over  an irrigation canal have two 
semi circular vents each with a span of 20m  and the 
supporting pillars of width 2m . Use Fig.5.16 to write 
the equations that model the arches.
Solution
 Let O O1 2  be the centres of the two semi 
circular vents.

Fig.5.15

Fig.5.16

P x y( , )1
1

T1

T2

C

20m 20m

y

xO1 O2

2m 2m
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 First vent with centre O1 12 0( , )  and radius 
r =10 	yields	equation	to	first	semicircle	as

 ( ) ( )x y− + −12 02 2  =  102

 x y x2 2 24 44+ − +  =  0 , y > 0 .

 Second vent with centre O2  ( , )34 0  and      

radius r =10  yields equation to second vent as

  ( )x y− +34 2 2  = 102  

 x y x2 2 68 1056+ − +  =  0 , y > 0 .

EXERCISE 5.1
 1. Obtain the equation of the circles with radius 5 cm and touching x-axis at the origin in general 

form.
	 2.	 Find the equation of the circle with centre ( , )2 1-  and passing through the point ( , )3 6  in 

standard form.
	 3.	 Find the equation of circles that touch both the axes and pass through ( , )- -4 2  in general form.

 4. Find the equation of the circle with centre ( , )2 3 and passing through the intersection of the 

lines 3 2 1 0x y− − = and 4 27 0x y+ − = .

 5. Obtain the equation of the circle for which ( , )3 4 and ( , )2 7-   are the ends of a diameter.

 6. Find the equation of the circle through the points ( , ), ( , )1 0 1 0- , and ( , )0 1 .

	 7.	 A circle of area 9p  square units has two of its diameters along the lines  x y+ = 5  and x y− =1. 
Find the equation of the circle.

 8. If y x c= +2 2 is a tangent to the circle x y2 2 16+ = ,	find	the	value	of c .

 9. Find the equation of the tangent and normal to the circle x y x y2 2 6 6 8 0+ − + − =  at ( , )2 2 .

	 10.	 Determine whether the points ( , ) , ( , )-2 1 0 0  and ( , )- -4 3 lie outside, on or inside the circle 

x y x y2 2 5 2 5 0+ − + − =  .
   11.  Find centre and radius of the following circles.
  (i) x y2 22 0+ +( ) =  (ii) x y x y2 2 6 4 4 0+ + − + =  

  (iii) x y x y2 2 2 3 0+ − + − =       (iv) 2 2 6 4 2 02 2x y x y+ − + + =

				12.		If	the	equation3 3 2 82 2x p xy qy px pq+ −( ) + − = represents a circle, 

	 	 find	 p and q . Also determine the centre and radius of the circle.

5.3. Conics

Definition 5.2
	 A	conic	is	the	locus	of	a	point	which	moves	in	a	plane,	so	that	its	distance	from	a	fixed	point	
bears	a	constant	ratio	to	its	distance	from	a	fixed	line	not	containing	the	fixed	point.
							The	fixed	point	is	called	focus, the	fixed	line	is	called	directrix and the constant ratio is called 
eccentricity, which is denoted by e.
	 (i)	 If	this	constant	 e =1then the conic is called a parabola
	 (ii)	 If	this	constant	 e <1 then the conic is called a ellipse
	 (iii)	 If	this	constant	 e >1then the conic is called a hyperbola
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5.3.1 The general equation of Conic
 Let S x y1 1,( )  be the focus,  l  the directrix, and P x y,( )  be the moving point .
	 By	the	definition	of	conic,	we	have

   SP
PM

 =  constant = e , the eccentricity

   SP  =  ( ) ( )x x y y− + −1
2

1
2

   and PM  =  perpendicular distance from P x y( , )

     to the line lx my n+ + = 0

    =  lx my n
l m
+ +

+2 2
.

   Also SP2  =  e PM2 2

   ( ) ( )x x y y− + −1
2

1
2  =  e lx my n

l m
2

2 2

2
+ +

+









 .

	 On	simplification	the	above	equation	takes	the	form	of	general	second-degree	equation
 Ax Bxy Cy Dx Ey F2 2 0+ + + + + = , where

 A e l
l m

B lme
l m

C e m
l m

= −
+

=
+

= −
+

1 2 1
2 2

2 2

2

2 2

2 2

2 2, ,

Now , 

 

B AC l m e

l m

e l
l m

e m
l m

2
2 2 4

2 2 2

2 2

2 2

2 2

2 24 4 4 1 1− =
+( )

− −
+









 −

+










                 
= −( )4 12e

 yielding the following cases:
  (i) B AC2 4- 	=	0	 Û   e =1 hence the conic is a parabola,
  (ii)  B AC2 4 0− <   Û   0 1< <e  hence the conic is an ellipse,
  (iii)   B AC2 4 0− >   Û   e>1 hence the conic is a hyperbola.

5.3.2 Parabola
 Since e =1, for a parabola, we note that the 
parabola is the locus of points in a plane that are 
equidistant from both the directrix and the focus.

(i) Equation of a parabola in standard form with 
     vertex at (0, 0)
 Let S be the focus and l be the directrix.
 Draw SZ perpendicular to the line l .
 Let us assume SZ  as x -axis and the perpendicular 
bisector of SZ  as y - axis. The intersection of this 
perpendicular bisector with SZ be the originO .

Fig.5.17

Fig.5.18

P x y( , )
M

S x y( , )1 1

l

Directrix Focus

l

O(0,0)z

M

Axis

x

′L

Vertex
L

Latus Rectum

y

S a( , )0

P(x, y)
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 Let SZ a= 2 . Then S is ( , )a 0  and the equation of the directrix l is x a+ = 0 .

 Let P x y( , )  be the moving point in the locus that yield a parabola. Draw PM perpendicular to the 

directrix.  By	definition	 e =  SP
PM

=1,  SP PM2 2= .

 Then ( ) ( )x a y x a− + = +2 2 2 . On simplifying, we get y ax2 4= which is the equation of the 

parabola in the standard form.
 The other standard forms of parabola are y ax x ay2 24 4= − =, , and x ay2 4= − .

Definition 5.3

	 ●	 The line perpendicular to the directrix and passing through the focus is known as the Axis 
of the parabola.

	 ●	 The intersection point of the axis with the curve is called vertex of the parabola

	 ●	 Any chord of the parabola, through its focus is called focal chord of the parabola

	 ●	 The length of the focal chord perpendicular to the axis is called latus rectum of the parabola

Example 5.14
 Find the length of Latus rectum of the parabola y ax2 4= . 

Solution
 Equation of the parabola is y ax2 4= .

 Latus rectum LL′  passes through the focus ( , )a 0 . Refer (Fig. 5.18)

 Hence the point L  is ( , )a y1 .

 Therefore y a1
2 24= .

 Hence y a1 2= ± .

 The end points of latus rectum are ( , )a a2  and ( , )a a-2 .

 Therefore length of the latus rectum LL a′ = 4 . 

Remark
 The standard form of the parabola y ax2 4=  has for its vertex ( , )0 0 ,  axis as x -axis, focus as 
( , )a 0 , which is symmetric about x-axis.

(ii) Parabolas with vertex at ( , )h k

 When the vertex is ( , )h k and the axis of symmetry is parallel to x -axis, the equation of the 

parabola is either ( ) ( )y k a x h− = −2 4  or ( ) ( )y k a x h− = − −2 4 	(Fig.	5.19,	5.20).

 When the vertex is ( , )h k and the axis of symmetry is parallel to y -axis, the equation of the 

parabola is either ( ) ( )x h a y k− = −2 4 or ( ) ( )x h a y k− = − −2 4 	(Fig.	5.21,	5.22).	
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Equation Graph Vertices Focus Axis of 
symmetry

Equation of 
directrix

Length 
of latus 
rectum

( ) ( )y k a x h− = −2 4  

(a) The graph of

( ) ( )y k a x h− = −2 4

Fig. 5.19

( , )h k  ( , )h a k+ +0  y k=  x h a= −  4a  

( ) ( )y k a x h− = − −2 4  

(b) The graph of

 ( ) ( )y k a x h− = − −2 4

Fig.	5.20

( , )h k  ( , )h a k− +0  y k=  x h a= +  4a  

( ) ( )x h a y k− = −2 4  

(c) The graph of

( ) ( )x h a y k− = −2 4

Fig.	5.21

( , )h k  ( , )0+ +h a k  x h=  y k a= −  4a  

( ) ( )x h a y k− = − −2 4

(d) The graph of

( ) ( )x h a y k− = − −2 4

Fig.	5.22

( , )h k ( , )0 + − +h a k  x h=  y k a= +  4a  

y

x

S(h + a,k)
A(h,k)

x = h – a

x'
y'

Directrix

y

x
S(h – a,k)

A(h,k)

x = h + a
Directrix

x'

y'

x

y

S(
h, 

k +
 a)

A(h,k)

y = k – a
Directrix

x'

y'

y

x

S(h, k – a)

A(h,k)

y = k + a
Directrix

x'

y'
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5.3.3 Ellipse
 We invoke that an ellipse is the locus of a point which moves such that its distance from its focus 
is always less than its distance from its directrix bearing a constant ratio e ( )0 1< <e .
(i) Equation of an Ellipse in standard form with center 
     at (0, 0)
 Let S be a focus, l  be a directrix line, eccentricity 
0 1< <e and the moving point be P x y( , ) .  Draw SZ and PM

perpendicular to l .
 Let A  and ′A  be the points which divide SZ internally 
and externally in the ratio e :1  respectively. Let AA a′ = 2 . Let 
the point of intersection of the perpendicular bisector with AA′  beC . Choose C  as origin and CZ  as 
x -axis and the perpendicular bisector of AA′  as y -axis. ThereforeCA a=  and CA a′ = .
	 By	definition,

  SA
AZ

 =  e
1

  and SA
A Z

'
'

 =  e
1

 

  SA  =  eAZ   SA '  =  eA Z'
  CA CS-  =  e CZ CA−( )    A C CS' +  =  e A C CZ' +( )
  a CS-  =  e CZ a−( )   ... (1) a CS+  =  e a CZ+( ) 		 ...	(2)

  2 1( ) + ( )  gives CZ a
e

=   and 2 1( ) − ( )  gives CS ae= .

	 Therefore	M	is	 a
e

y,





  and S is ae,0( ) .

	 	 By	the	definition	of	a	conic	 SP
PM

 =  e  or SP e PM2 2 2=  

  x ae y−( ) + −( )2 0  =  e x a
e

2
2

0−





 +













 which

	 	 on	simplification	yields	 x
a

y
a e

2

2

2

2 21
+

−( )
 =  1.

  Since 1 2- e  is a positive quantity, write b2  =  a e2 21−( )  

  Taking  ae  =  c b a c, 2 2 2= − .

 Hence we obtain the locus of P as x
a

y
b

2

2

2

2 1+ = which is the equation of an ellipse in standard 

form and note that it is symmetrical about x and y axis.

Definition 5.4
 (1) The line segment AA′  is called the major axis of the ellipse and is of length 2a .
	 (2)	 The	line	segment	BB′  is called the minor axis of  the ellipse and is of length 2b .
	 (3)	 The	line	segment	CA =  the line segment CA′ =  semi major axis= a   and  the line segment 

CB =  the line segment CB′ =  semi minor axis = b  .
 (4) By symmetry, taking ′ −S ae( , )0 as focus and x a

e
= −  as directrix ′l  gives the same ellipse.

 Thus, we see that an ellipse has two foci, S ae( , )0  and ′ −S ae( , )0  and two vertices A a( , )0  and 

′ −A a( , )0  and also two directrices, x a
e

=  and x a
e

= −  .

Fig.5.23

y

P(x,y)
M

ZC(0,0)

S(ae
,0)

′
-

L
a

b
(

,
)

2

l

A(a,0)

L
(a
,2
b)

′Z

′l

S'(–ae,0)

A'(–a,
0)

B'

B

Centre

Latus rectum

Foci

Vertices
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Example 5.15

 Find the length of Latus rectum of the ellipse x
a

y
b

2

2

2

2 1+ = .

Solution

 The Latus rectum LL′ 	(Fig.	5.22)	of	an	ellipse	 x
a

y
b

2

2

2

2 1+ =  passes through S ae( , )0 .

 Hence L   is ( , )ae y1 .

 Therefore,  
a e
a

y
b

2 2

2
1
2

2+  =  1 

   
y
b

1
2

2  =  1 2- e

   y1
2  =  b e2 21( )-  

    =  b b
a

2
2

2









     s ince,  e b

a
2

2

21= −










   y1  =  ± b
a

2

.

 That is the end points of Latus rectum L  and ′L  are ae b
a

,
2







  and ae b

a
,−











2

.

 Hence the length of latus rectum LL b
a

′ =
2 2

. 

(ii) Types of ellipses with centre at ( , )h k

(a) Major axis parallel to the x-axis

	 From	Fig.	5.24
x h

a
y k

b
a b

−( )
+

−( )
= >

2

2

2

2 1,

 The length of the major axis is 2a . The length of the minor axis is 2b . The coordinates of the 

vertices are h a k+( ), and h a k−( ), , and the coordinates of the foci are h c k+( ),  and h c k−( ),  

where c a b2 2 2= − .

(b) Major axis parallel to the y-axis
	 From	Fig.	5.25

  
x h

b
y k

a
a b

−( )
+

−( )
= >

2

2

2

2 1,

 The length of the major axis is 2a . The length of the minor axis is 2b . The coordinates of the 

vertices are h k a, +( ) and h k a, −( ) , and the coordinates of the foci are h k c, +( )  and h k c, −( ) , 

where c a b2 2 2= − .
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Equation Centre Major Axis Vertices Foci

x h
a

y k
b

−( )
+

−( )
=

2

2

2

2 1    a b2 2>  

Fig.5.24
(a)	Major	axis	parallel	to	the	x-axis

  Foci are c units right and c units left of 
centre, where c a b2 2 2= − .

h k,( ) parallel to the 
x-axis

h a k−( ),

h a k+( ),

h c k−( ),

h c k+( ),

( ) ( )x h
b

y k
a

a b−
+

−
= >

2

2

2

2
2 21

x

y

x'

y'A(h,k+a)

S(h,k+c)
O

C(h,k)

S'(h,k–c)
A'(h,k–a)

Fig.5.25
(b)	Major	axis	parallel	to	the	y-axis

  Foci are c units right and c units left of 
centre, where c a b2 2 2= − .

h k,( ) parallel to the 
y-axis

( , )h k a-
( , )h k a+

( , )h k c-
( , )h k c+

Theorem 5.5
 The sum of the focal distances of any point on the ellipse is equal to length of the major axis.

Proof

 Let P x y( , )  be a point on the ellipse x
a

y
b

2

2

2

2 1+ = .

 Draw MM ′  through P , perpendicular to 
directrices l  and ′l .

 Draw PN ⊥  to x -axis.

 By	definition	 SP  =  ePM

    =  eNZ

    =  e CZ CN[ ]- Fig.5.26

S'(–c,0)

S(c,0)

P(x,y)
d1 d2

y

x

M

Z(a/e, 0)
Z'(–a/e, 0)

M'

ll'

NC(0,0)

y

x
C(h,k)

O

S(h+c,k)S'(h–c,k)

A(h+a,k)A'(h –a,k)

y'

x'
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   =  e a x a ex
2

−





= −  ... (1)

 and  SP′  =  ePM ′

    =  e CN CZ[ ]+ ′

    =  e x a
e

ex a+





= + 			 ...	(2)

   SP S P+ ′  =  a ex a ex a− + + = 2

            Hence,  SP S P a+ ′ = 2  

Remark

 When b a= , the equation ( ) ( )x h
a

y k
b

−
+

−
=

2

2

2

2 1, becomes ( ) ( )x h y k a− + − =2 2 2 the equation 

of circle with centre ( , )h k and radius a .

 Whenb a e a
a

= = − =, 1 0
2

2 . Hence the eccentricity of the circle is zero.

 SP
PM

= 0  implies PM → ∞ .	That	is,	the	directrix	of	the	circle	is	at	infinity.

Remark

 Auxiliary circle or circumcircle is the circle with length of major axis as 
diameter and Incircle is the circle with length of minor axis as diameter.  They 
are given by x y a2 2 2+ =  and x y b2 2 2+ =  respectively.

5.3.4 Hyperbola
 We invoke that a hyperbola is the locus of a point which moves such that its distance from its 
focus is greater than its distance from its directrix, bearing a constant ratio e ( )e >1 .

(i) Equation of a Hyperbola in standard form with 
centre at (0, 0)

 Let S be a focus, l be the directrix line, e be the eccentricity 

e >1 and P x y( , )  be the moving point.  Draw SZ and PM

perpendicular to l .

 Let A  and ′A  be the points which divide SZ

internally and externally in the ratio e :1  respectively.

 Let AA a′ = 2 . Let the point of intersection of the perpendicular bisector with AA′  be C . Choose 

C  as origin and the line CZ  produced as x -axis and the perpendicular bisector of AA′  as y -axis. 

Therefore CA a CA= = ′ .

	 By	definition,	 AS
AZ

e=  and 
′
′

=
A S
A Z

e .

Fig.5.27

Fig.5.28

y

x
AC

x'

B'
γ'

B

A'

P(x,y)
B

Z

B′

S(ae,0)S′
(–
ae
,0

)

M
L

A(a,0)

C(0,0)

Z′

A′(–a,0)

L′

l

x

y

Vertices

Foci

Latus rectum

Centre
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 AS
AZ

e
=

1
 

′
′

=
A S
A Z

e
1

 AS eAZ=  ′ = ′A S eA Z

 CS CA e CA CZ− = −( )  ′ + = ′ +A C CS e A C CZ( )

 CS a e a CZ− = −( ) … (1) a CS e a CZ+ = +( )…	(2)

 ( ) ( )1 2+  gives CS ae=  and ( ) ( )2 1-  gives CZ a
e

=

 Hence, the coordinates of  S  are ( , )ae 0 . Since PM x a
e

= − , the equation of directrix is x a
e

− = 0 .

 Let P x y( , )  be any point on the hyperbola. 

	 By	the	definition	of	a	conic,		 SP
PM

e=   or  SP e PM2 2 2= .

  Then ( ) ( )x ae y− + −2 20  =  e x a
e

2
2

−





  

  ( )x ae y− +2 2  =  ( )ex a- 2  

  ( )e x y2 2 21- -  =  a e2 2 1( )-  

  x
a

y
a e

2

2

2

2 2 1
-

-( )
 =  1.  Calling a e b2 2 21( )− =  we obtain the locus of P  as

  x
a

y
b

2

2

2

2-  =  1 which is the equation of a Hyperbola in standard form and 

note that it is symmetrical about x and y-axes.
  Taking ae  =  c , we get b c a2 2 2= − .

Definition 5.5
 (1) The line segment AA′  is the transverse axis of length 2a .
	 (2)	 The	line	segment	BB′  is the conjugate axis of length 2b .
	 (3)	 The	line	segment	CA =  the line segment CA′ =  semi transverse  axis= a   and 
  the line segment CB =  the line segment CB′ =  semi conjugate axis = b  .
 (4) By symmetry, taking ′ −S ae( , )0  as focus and x a

e
= −  as directrix ′l  gives the same 

hyperbola.
  Thus we see that a hyperbola has two foci S ae( , )0  and ′ −S ae( , )0 , two vertices A a( , )0  

and ′ −A a( , )0  and two directrices x a
e

=  and x a
e

= − .

  Length of latus rectum of hyperbola can be obtained to be 2
2b

a
, along lines as that of the 

ellipse.

Asymptotes
 Let P x y( , ) be	a	point	on	the	curve	defined	by	 y f x= ( ) , which moves further and further 
away from the origin such that the distance between P and	some	fixed	line	tends	to	zero.	This	fixed	
line is called an asymptote.

Note that the hyperbolas admit asymptotes while parabolas and ellipses do not.
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(ii) Types of  Hyperbola with centre at (h, k)

Fig.	5.29
(a) transverse axis parallel to the x-axis

 (a) Transverse axis parallel to the x-axis.
  The equation of a hyperbola with centre C

h k,( ) and transverse axis parallel to the x-axis 

(Fig.	5.29)	is	given	by	
x h

a
y k

b
−( )

−
−( )

=
2

2

2

2 1 .

  The coordinates of the vertices are  
A h a k( , )+ and ′ −A h a k( , ) . The coordinates of 

the foci are S h c k( , )+ and ′ −S h c k( , ) where 

c a b2 2 2= + .

  The equations of directrices are x a
e

= ± .

Fig.	5.30
(b) transverse axis parallel to the y-axis

 (b) Transverse axis parallel to the y-axis
 The equation of a hyperbola with centre  
C h k( , )  and transverse axis parallel to the  

y -axis	(Fig.	5.0)	is	given	by

 
y k

a
x h

b
−( )

−
−( )

=
2

2

2

2 1 .

 The coordinates of the vertices are 
A h k a( , )+ and ′ −A h k a( , ) .The coordinates of 

the foci are S h k c( , )+ and ′ −S h k c( , ) , where 

c a b2 2 2= + .
 The equations of directrices are y a

e
= ±  .

Remark
 (1) The circle described on the transverse axis of hyperbola as its diameter is called the auxiliary 

circle	of	the	hyperbola.	Its	equation	is x y a2 2 2+ = .

	 (2)	 The	absolute	difference	of	the	focal	distances	of	any	point	on	the	hyperbola	is	constant	and	is	
equal to length of transverse axis. That is, | |PS PS a− ′ = 2 . (can be proved similar that of ellipse)

      So far we have discussed four standard types of parabolas, two types of ellipses and two types 
of	hyperbolas.	There	are	plenty	of	parabolas,	ellipses	and	hyperbolas	which	can	not	be	classified	
under the standard types, For instance consider the following parabola, ellipse, and hyperbola.

Fig.	5.31
   But the above curves with suitable transformation of coordinate axes can be brought to standard 
forms. 

x

y

S(h + c,k)S(h – c,k) A(h + a,k)

A'(h – a,k)

C(h,k)

x

y

S(
h,

 k
 +

 c
)

S'(h,k – c)

C(h,k)

A(h,k + c)

A'(h,k – a)

x x x

y y y

O O O
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x

′y

′xA(2,–1)

O

y

Example 5.14
 Find the equation of the parabola with focus  −( )2 0,  and directrix 

x = 2 .

Solution
 Parabola is open left and axis of symmetry as x -axis and vertex ( , )0 0 . 

 Then the equation of the required parabola is
  
   y −( )0 2  =  − −( )4 2 0x
   y2  =  -4 2 x .

Example 5.15
 Find the equation of the parabola whose vertex is ( , )5 2- and focus ( , )2 2- . 

Solution
 Given vertex A( , )5 2- and focus S( , )2 2-  and the focal distance 

AS a= = 3 .

 Parabola is open left and symmetric about the line parallel to  
x -axis.
 Then, the equation of the required parabola is

   y +( )2 2  =  − ( ) −( )4 3 5x
   y y2 4 4+ +  =  − +12 60x

   y y x2 4 12 56+ + −  =  0 .

Example 5.16
 Find the equation of the parabola with vertex ( , )- -1 2 , axis parallel to y -axis and passing through

( , )3 6 .

Solution
 Since axis is parallel to y -axis the required equation of the  
parabola is
   x +( )1 2  =  4 2a y +( ) .

	 Since	this	passes	through	(3,6)
   3 1 2+( )  =  4 6 2a +( )
   a  =  1

2
.

 Then the equation of parabola is  x y+( ) = +( )1 2 22 which on simplifying yields,

   x x y2 2 2 3+ − −  =  0 . 
Example 5.17
 Find the vertex, focus, directrix, and length of the latus rectum of the parabola x x y2 4 5 1 0− − − = .
Solution
 For the parabola,
  x x y2 4 5 1- - -  =  0

  x x2 4-  =  5 1y +

  x x2 4 4− +  =  5 1 4y + + .

Fig.5.32

Fig.5.33

Fig.5.34

Fig.5.35

x=
2

y

x

S -( )2 0,

A(0,0)

S(2,−2)
A(5,−2)

y

xO

y

x

A(–1,–2)

y'

x'

O
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 By completing squares on the LHS, we get,

 x −( )2 2 =  5 1y +( )  which is in standard form. Therefore 4 5a =  and  the vertex is ( , )2 1- , and

 focus is 2 1
4

,





 .

 Equation of directrix is  y k a+ +  =  0

  y − +1 5
4

 =  0

  4 1y +  =  0 .
  Length of latus rectum is 5  units.

Example 5.18
 Find the equation of the ellipse with foci ( , )± 2 0 ,  vertices ( , )±3 0 .

Solution
	 From	Fig.	5.36,
   SS ′  =  2c  and 2 4c =   ; ′ = =A A a2 6
   c  =  2  and a = 3 , 
   b2  =  a c2 2 9 4 5− = − = . 
	 Major	axis	is	along	 x -axis, since a b> . 
	 Centre	(0,	0)	and	Foci	are	 ( , )±2 0 .

 Therefore, equation of the ellipse is x y2 2

9 5
1+ = .

Example 5.19
 Find the equation of the ellipse whose eccentricity is 1

2
, one of the foci is ( , )2 3 and a directrix is 

x = 7 .	Also	find	the	length	of	the	major	and	minor	axes	of	the	ellipse.

Solution
	 By	the	definition	of	a	conic	 SP

PM
 =  e  or SP e PM2 2 2=  .

 Then x y−( ) + −( )2 32 2  =  1
4

7 2x −( )

   3 4 2 24 32 2x y x y+ − − +  =  0 , which can be written as

   3 1
3

4 3
2

2x y−





 + −( )  =  3 1

9
4 9 3 100

3






 + × − =

   
x y−








+
−( )

1
3

100
9

3
100
12

2

2

 =  1 which is in the standard form.

   Therefore,  the length of major axis= 2a  =  2 100
9

20
3

=  and

   the length of minor  axis= 2b  =  2 100
12

10
3

= .

Fig.5.36

CS ' S(0,0)

A'(–3,0)

A (3,0)

y

(–2,0)
x

(2,0)
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Example 5.20
 Find the foci, vertices and length of major and minor axis of the conic 
 4 36 40 288 532 02 2x y x y+ + − + = .

Solution
 Completing the square on x and y  of 4 36 40 288 532 02 2x y x y+ + − + = ,

  4 10 25 25 36 8 16 16 5322 2( ) ( )x x y y+ + − + − + − +  =  0 , gives

  4 10 25 36 8 162 2( ) ( )x x y y+ + + − +  =  − + +532 100 576

  4 5 36 42 2x y+( ) + −( )  =  144 .

 Dividing both sides by 144 , the equation reduces to 

  
x y+( )

+
−( )5

36
4

4

2 2

 =  1.

 This is an ellipse with centre ( , )-5 4 , major axis is parallel to x -axis, length of major axis is	12	
and length of minor axis is 4. Vertices are ( , )1 4  and ( , )-11 4 .

   Now,  c2  =  a b2 2 36 4 32− = − =

   and c  =  ±4 2 .

 Then the foci are − −( )5 4 2 4, and − +( )5 4 2 4,  .

   Length of the major axis =  2 12a =  units and
   the length of the minor axis =  2 4b =  units.

Example 5.21

 For the ellipse 4 24 2 21 02 2x y x y+ + − + = ,	find	the	centre,	vertices,	and	the	foci.	Also	prove	that	

the length of latus rectum is2 .
Solution
 Rearranging the terms, the equation of ellipse is

   4 24 2 212 2x x y y+ + − +  =  0

   That is, 4 6 9 9 2 1 1 212 2x x y y+ + −( ) + − + −( ) +  =  0 ,

   4 3 36 1 1 212 2x y+( ) − + −( ) − +  =  0 ,

   4 3 12 2x y+( ) + −( )  =  16 ,

   
x y+( )

+
−( )3

4
1

16

2 2

 =  1.

Centre is ( , )-3 1  a b= =4 2, , and the major axis is parallel to y -axis

   c2  =  16 4 12− =

   c  =  ±2 3 .

 Therefore, the foci are  − +( )3 2 3 1,  and − − +( )3 2 3 1, .

   Vertices are  1 4 1,± +( ) . That is the vertices are ( , )1 5  and ( , )1 3- , and

   the length of Latus rectum =  2 2
2b

a
= 	units.	(see	Fig.	5.37)

Fig.5.37

y

x

C( , )
-3 1

S '

S

′y

′x

O
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Example 5.22
 Find the equation of the hyperbola with vertices ( , )0 4± and foci ( , )0 6± .
Solution
	 From	Fig.	5.38,	the	midpoint	of	line	joining	foci	is	the
  centre C 0 0,( ) .

 Transverse axis is y -axis

  AA′  =  2a ⇒ =2 8a ,

  SS ′  =  2 12 6c c= =,

  a  =  4

  b2  =  c a2 2 36 16 20− = − = .

 Hence the equation of the required hyperbola is y x2 2

16 20
-  =  1.

Example 5.23
 Find the vertices, foci for the hyperbola 9 16 1442 2x y− = .
Solution
   Reducing 9 162 2x y-  =  144  to the standard form,

   we have,        x y2 2

16 9
-  =  1.

 With the transverse axis is along x -axis vertices are −( )4 0, and 4 0,( ) ;

   and   c2  =  a b2 2 16 9 25+ = + = ,  c = 5 . 

 Hence the foci are −( )5 0, and 5 0,( ) .

Example 5.24
 Find the centre, foci, and eccentricity of the hyperbola 11 25 44 50 256 02 2x y x y− − + − =

Solution
 Rearranging terms in the equation of hyperbola to bring it to standard form,

  we have,  11 4 25 2 2562 2( ) ( )x x y y- - - -  =  0

   11 2 25 12 2x y−( ) − −( )  =  256 44 25− +

   11 2 25 12 2x y−( ) − −( )  =  275

   
x y−( )

−
−( )2

25
1

11

2 2

 = 1.

 Centre ( , )2 1 ,  a2  =  25 112,b =

   c2  =  a b2 2+

    =  25 11 36+ =

 Therefore, c  =  ±6

 and e c
a

=  = 6
5

 and the coordinates of foci are ( , )8 1 and ( , )-4 1 from	Fig.	5.39.

Fig.5.38

C

S (0,6)

(0,4)

(0,0)

(0,–6)

x

y

S '

(0,– 4)
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Fig.	5.39
Example 5.25
 The orbit of Halley’s Comet (Fig. 5.51) is an ellipse 36 18.  astronomical units long and by 9 12.  

astronomical units wide.  Find its eccentricity.
Solution
 Given that 2 36 18 2 9 12a b= =. , . , we get

   e  =  1
2

2-
b
a

=  a b
a

2 2

2 236 18
2

9 12
2

36 18
2

−
=







 − 








. .

.  

    =  
( . ) ( . )

( . )
.

18 09 4 56
8 09

0 97
2 2−

≈ . 

Note
 One astronomical unit (mean distance of Sun and earth) is 1 49 597 870, , , km , the semi major 

axis of the Earth’s orbit.

EXERCISE 5.2
 1. Find the equation of the parabola in each of the cases given below:
   (i) focus ( , )4 0 and directrix x = −4 .

   (ii) passes through ( , )2 3- and symmetric about y -axis.

   (iii) vertex ( , )1 2- and focus ( , )4 2- .

   (iv) end points of latus rectum ( , )4 8- and ( , )4 8 .

	 2. Find the equation of the ellipse in each of the cases given below:

   (i) foci ±( ) =3 0 1
2

, ,e .

   (ii) foci 0 4,±( ) and end points of major axis are 0 5,±( ) .

   (iii) length of latus rectum 8, eccentricity = 3
5

 and major axis on x -axis.

   (iv) length of latus rectum 4 , distance between foci 4 2 and major axis as y - axis.

	 3. Find the equation of the hyperbola in each of the cases given below:

   (i) foci ±( )2 0, , eccentricity = 3
2

 .

   (ii) Centre ( , )2 1 , one of the foci ( , )8 1 and corresponding directrix x = 4 .

   (iii) passing through 5 2,−( ) and length of the transverse axis along x axis and of length 8 units.

S '(−4,1)
C(2,1) S(8

,1)

y

x

y'

x'

O
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Axis

Ellipse

Circle

Parabola

Hyperbola

Axis Axis

E

C

◄

◄

◄
◄

◄

◄

 4. Find the vertex, focus, equation of directrix and length of the latus rectum of the following:
  (i) y x2 16=  (ii) x y2 24=  (iii) y x2 8= −

  (iv) x x y2 2 8 17 0− + + =  (v) y y x2 4 8 12 0− − + =

 5.	Identify	the	type	of	conic	and	find	centre,	foci,	vertices,	and	directrices	of	each	of	the	following:

  (i) x y2 2

25 9
1+ =  (ii) x y2 2

3 10
1+ =  (iii) x y2 2

25 144
1− =  (iv) y x2 2

16 9
1− =

 6. Prove that the length of the latus rectum of the hyperbola x
a

y
b

2

2

2

2 1− =  is 2
2b

a
.

	 7. Show that the absolute value of difference of the focal distances of any point P on the hyperbola 
is the length of its transverse axis. 

 8.	Identify	the	type	of	conic	and	find	centre,	foci,	vertices,	and	directrices	of	each	of	the	following	:

   (i) 
x y−( )

+
−( )

=
3

225
4

289
1

2 2

 (ii) 
x y+( )

+
−( )

=
1

100
2

64
1

2 2

 (iii) 
x y+( )

−
−( )

=
3

225
4

64
1

2 2

   (iv) 
y x−( )

−
+( )

=
2

25
1

16
1

2 2

 (v) 18 12 144 48 120 02 2x y x y+ − + + =

   (vi) 9 36 6 18 02 2x y x y− − − + =

5.4 Conic Sections
	 In	addition	to	the	method	to	determine	the	curves	discussed	in	Section	5.3,	geometric	description 
of a conic section is given here. The graph of a circle, an ellipse, a parabola, or a hyperbola can be 
obtained	by	the	intersection	of	a	plane	and	a	double	napped	cone.	Hence,	these	figures	are	referred	to	
as conic sections or simply conics. 
5.4.1 Geometric description of conic section
 A plane perpendicular to the axis of the cone (planeC ) intersecting any one nape of the double 
napped	cone	yields	a	circle	(Fig.	5.40)	.	The	plane	E , tilted so that it is not perpendicular to the axis, 
intersecting	any	one	nape	of	the	double	napped	cone	yields	an	ellipse	(Fig.	5.40).	When	the	plane	is	
parallel to a side of one napes of the double napped cone, the plane intersecting the cone yields a 
parabola (Fig. 5.41). When the plane is parallel to the plane containing the axis of the double cone, 
intersecting	the	double	cone	yields	a	hyperbola	(Fig.	5.42).	

	 Fig.	5.40	 Fig.	5.41	 Fig.	5.42
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5.4.2 Degenerate Forms
	 Degenerate	forms	of	various	conics	(Fig.	5.43)	are	either	a	point	or	a	line	or	a	pair	of	straight	
lines or two intersecting lines or empty set depending on the angle (nature) of intersection of the 
plane with the double napped cone and passing through the vertex or when the cones degenerate into 
a cylinder with the plane parallel to the axis of the cylinder.
	 If	the	intersecting	plane	passes	through	the	vertex	of	the	double	napped	cone	and	perpendicular	
to	the	axis,	then	we	obtain	a	point	or	a	point	circle.	If	the	intersecting	plane	passes	through	a	generator	
then we obtain a line or a pair of parallel lines, a degenerate form of a parabola for which A B C= = = 0  
in general equation of a conic and if the intersecting plane passes through the axis and passes through 
the vertex of the double napped cone, then we obtain intersecting lines a degenerate of the hyperbola.

Fig.	5.43
Remark 

	 In	the	case	of	an	ellipse	 ( )0 1< <e  where e b
a

= −1
2

2 .  As e b
a

→ →0 1,   i.e., b a→  or the 

lengths of the minor and major axes are close in size.  i.e., the ellipse is close to being a circle. As 

e b
a

→ →1 0, 	and	the	ellipse	degenerates	into	a	line	segment	i.e.,	the	ellipse	is	flat.

Remark

 In	the	case	of	a	hyperbola	 ( )e >1  where e b
a

= +1
2

2 . As e b
a

→ →1 0,  i.e., as e b→1,  is very 

small related to a  and the hyperbola becomes a pointed nose. As e → ∞ , b  is very large related to a  

and	the	hyperbola	becomes	flat.

5.4.3 Identifying the conics from the general equation of the conic 
Ax Bxy Cy Dx Ey F2 2 0+ + + + + = .
 The graph of the second degree equation is one of a circle, parabola, an ellipse, a hyperbola, a 
point, an empty set, a single line or a pair of lines. When,
 (1) A C B D h E k F h k r= = = = − = − = + −1 0 2 2 2 2 2, , , ,  the general equation reduces to 

( ) ( )x h y k r− + − =2 2 2 , which is a circle.

	 (2)	 B = 0  and either A  or C = 0 ,  the general equation yields a parabola under study, at this level.

	 (3)	 A C¹  and A  and C  are of the same sign, the general equation yields an ellipse.

 (4) A C¹  and A  and C  are of opposite signs, the general equation yields a hyperbola

 (5) A C=  and B D E F= = = = 0 , the general equation yields a point x y2 2 0+ = .

ntersecting LinesLinesntersecsecssecseceeecseessecssecececssecsecseceeccssecseeccseccecssececesececseccseccceeecsecceccsecseececctingtingingngtingttingtingtingtingtingtingtingtingtingingnningingtingtingingtinnnngggtingtingtininingiiningtingtiitinngngggtinngtini gtitiingtingttititingg LLLLLLLLLLLLLLLLLLLLLLLL Single LineSingngnngngnngngngngngnnnngnngnnngngggngnngnngngggnggggnngngngngngggggngngngnnggnngngggnnngngggggle Lle Lle Lle LLe Lle LLle Lle Lee LLLle Lle Llee Lle LLLle Llleeee LLLLLleeee Le LLLlelee Lle Le Le Lele Llele LLeele Lleee LLLl ineiinniiiiniiinnniiiniiiininiinniiniiiin Single PointSingSSinngSingSinSingSSingSingSingSSingSiningSingSinginingSingSingnngSingggSSinSingSinSinSinSinSiniSiiinSingnSinnnSingSinggggSingngSSSSSingingngggSingSSingSiSingngSinggnnnggS nngSSSS nnnngggingingggle Ple Ple Ple PPle Ple PPe Plele Plele Pe Pe Pe Ple Plle Ple Pe Peeee Pe PPlele Ple Plelelele Pe Peeeeele Ple Pee Ple Pe Plle PPe PPPlee PPe ointoinoinoinooinooooinoininoinoooooinooiiinoinoinoioioinoooiiinoioiniiioooiinnoooinnooiiinnnooooiinSingle Line Intersecting LinesSingle Point
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 (6) A C F= =  and B D E= = = 0 , the general equation yields an empty set x y2 2 1 0+ + = , as 
there is no real solution.

	 (7)	 A¹ 0  or C ¹ 0  and others are zeros, the general equation yield coordinate axes.

 (8) A C= −  and rests are zero, the general equation yields a pair of lines x y2 2 0− = .

Example 5.26
							Identify	the	type	of	the	conic	for	the	following	equations:

 (1) 16 4 642 2y x=− + 	 (2)	 x y x y2 2 4 4+ =− − +

	 (3)	 x y x2 2 3− = +  (4) 4 9 16 18 29 02 2x y x y− − + − =
Solution

Q.no. Equation condition Type of the conic

1 16 4 642 2y x=− + 3 Ellipse

2 x y x y2 2 4 4+ =− − + 1 Circle

3 x y x2 2 3− = + 2 parabola

4 4 9 16 18 29 02 2x y x y− − + − =  4 Hyperbola

EXERCISE 5.3
Identify	the	type	of	conic	section	for	each	of	the	equations.

  1. 2 72 2x y− =  2. 3 3 4 3 10 02 2x y x y+ − + + = 	 3. 3 2 142 2x y+ =

 4. x y x y2 2 0+ + − =  5. 11 25 44 50 256 02 2x y x y− − + − =  6. y x y2 4 3 4 0+ + + =

5.5 Parametric form of Conics
5.5.1 Parametric equations
 Suppose f t( ) and g t( ) are functions of ' 't . Then the equations x f t= ( )  and y g t= ( )  together describe 

a	curve	in	the	plane	.	In	general	 ' 't  is simply an arbitrary variable, called in this case a parameter, and this 

method of specifying a curve is known as parametric equations. One important interpretation of ' 't  is time 

.	In	this	interpretation,the	equations	 x f t= ( )  and y g t= ( )  give the position of an object at time ' 't .

 So a parametric equation simply has a third variable, expressing x and y in terms of that third 

variable as a parameter . A parameter does not always have to be  ' 't . Using ' 't  is more standard but 

one can use any other variable. 

(i) Parametric form of the circle x y a2 2 2+ =

 Let P x y( , ) be any point on the circle x y a2 2 2+ = .

 Join OP and let it make an angle θ with x -axis. 

 Draw PM perpendicular to x -axis. From triangle OPM ,
 x OM a= = cosθ

 y MP a= = sinθ
Fig. 5.44

P(x,y)
a

MO x

y

θ
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 x a y a= =cos , sin ,θ θ  0 2≤ ≤θ π  are the parametric equations of the circle x y a2 2 2+ = .

   Conversely, if     x  =  a y acos , sin , ,θ θ θ π= ≤ ≤0 2

   then,   x
a

 =  cos , sinθ θ
y
a

= .

 Squaring and adding, we get,

   x
a

y
a

2

2

2

2+  =  cos sin2 2 1θ θ+ = .

   Thus   x y2 2+  =  a2  yields the equation to circle with centre ( , )0 0  and radius a  units.
Note
 (i) x a t y a t= =cos , sin , 0 2≤ ≤t π  also represents the same parametric equations 

of circle x y a2 2 2+ = , 
  t  increasing in anticlockwise direction.

 (ii) x a t y a t t= = ≤ ≤sin , cos ,0 2π  also represents the same parametric equations 
  of circle x y a2 2 2+ = , 
  t  increasing in clockwise direction.
(ii) Parametric form of the parabola y ax2 4=

 Let P x y( , )1 1  be a point on the parabola

 y1
2  =  4 1ax

 ( )( )y y1 1  =  ( )( )2 2 1a x

 y
a
1

2
 =  2 1

1

x
y

t=   ( )−∞ < < ∞t  say

 y1  =  2 2 1 1at x y t, =

 2 1x  =  2at t( )

 x1  =  at 2

 Parametric form of y ax2 4=  is x at y at t= = − ∞ < < ∞2 2, , .

 Conversely if x at= 2  and y at t= −∞ < < ∞2 , , then eliminating ' 't  between these equations we 

get y ax2 4= .

(iii) Parametric form of the Ellipse x
a

y
b

2

2

2

2 1+ =  

 Let P  be any point on the ellipse. Let the ordinate MP  meet the 

auxiliary circle at Q .
 Let ∠ ACQ  =  α
  ∴  CM  = a MQ acos , sinα α=
 and         Q a a( cos , sin )α α

 Now x -coordinate of P  is a cosα .	If	its		 y -coordinate is ′y ,  then P a y( cos , )α ′  lies on

   x
a

y
b

2

2

2

2+  =  1

Fig. 5.46

Fig. 5.45

Fig.	5.47

y

xA

Q

MC

P
α

′A
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 whence cos2
2

2α +
′y

b
 =  1

  ⇒   ′y  =  bsinα .
 Hence P  is ( cos , sin )a bα α .

 The parameter α  is called the eccentric angle of the point P . Note that α  is the angle which the 

line CQ  makes with the x -axis and not the angle which the line CP  makes with it.

 Hence the parametric equation of an ellipse is x a y b= =cos , sinθ θ , where θ  is the parameter 

0 2≤ ≤θ π . 

(iv) Parametric form of the Hyperbola x
a

y
b

2

2

2

2 1− =

 Similarly, parametric equation of a hyperbola can be derived as x a y b= =sec , tanθ θ , where 

θ  is the parameter. − ≤ ≤π θ π  except θ π
= ±

2
.

	 In	nutshell	the	parametric	equations		of	the	circle,	parabola,ellipse	and	hyperbola	are	given	in	the	
following table.

Conic Parametric 
equations Parameter Range of

parameter
Any point on the 

conic

Circle
x a= cosθ

y a= sinθ
θ 0 2≤ ≤θ π

‘θ ’ or 

( cos , sin )a aθ θ

Parabola
x at= 2

y at= 2
t −∞ < < ∞t

‘ t ’ or 

( , )at at2 2

Ellipse
x a= cosθ

y b= sinθ
θ 0 2≤ ≤θ π

‘θ ’ or 

( cos , sin )a bθ θ

Hyperbola
x a= secθ

y b= tanθ
θ

− ≤ ≤π θ π  

except θ π
= ±

2

‘θ ’  or

( sec , tan )a bθ θ

Remark
 (1) Parametric form represents a family of points on the conic which is the role of a parameter. 

Further parameter plays the role of a constant and a variable, while cartesian form represents 
the locus of a point describing the conic. Parameterisation denotes the orientation of the 
curve.

	 (2)	 A	parametric	representation	need	not	be	unique.	
	 (3)	 Note	that	using	parameterisation	reduces	the	number	of	variables	at	least	by	one.

5.6 Tangents and Normals to Conics
 Tangent to a plane curve is a straight line touching the curve at exactly one point and a straight line 
perpendicular  to the tangent and passing through the point of contact is called the normal at that point.

5.6.1  Equation of tangent and normal to the parabola y ax2 4=  
(i) Equation of tangent in cartesian form
 Let P x y1 1,( )  and Q x y2 2,( ) be two points on a parabola y ax2 4= .
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 Then,    y1
2  =  4 1ax  and y ax2

2
24= ,

 and   y y1
2

2
2-  =  4 1 2a x x( )- .

 Simplifying, y y
x x

1 2

1 2

-
-

 = 4

1 2

a
y y+

, the slope of the chord PQ .

 Thus  y y−( )1  =  4

1 2
1

a
y y

x x
+

−( ) , represents the equation 

of the chord PQ .

 When Q P→ , or y y2 1→  the chord becomes tangent at P .

 Thus the equation of tangent at x y1 1,( ) is

  y y- 1  =  4
2 1

1
a
y

x x−( )  where 2

1

a
y

 is the slope of the tangent ... (1)

  yy y1 1
2-  =  2 2 1ax ax-

  yy ax1 14-  =  2 2 1ax ax-

   yy a x x1 12= +( )

(ii) Equation of tangent in parametric form
 Equation of tangent at ( , )at at2 2  on the parabola is

   y at( )2  =  2 2a x at( )+  

   yt x at= + 2

(iii) Equation of normal in cartesian form

 From (1) the slope of normal is- y
a
1

2
 Therefore equation of the normal is

   y y- 1  =  − −( )y
a

x x1
12

   2 2 1ay ay-  =  − +y x y x1 1 1

   xy ay1 2+  =  y x a1 1 2+( )

   xy ay x y ay1 1 1 12 2+ = +

(iv) Equation of normal in parametric form
 Equation of the normal at ( , )at at2 2  on the parabola is

   x at ay2 2+  =  at at a at2 2 2 2( ) ( )+

   2a xt y( )+  =  2 23a at at( )+

   y xt at at+ = +3 2

Theorem 5.6
 Three normals can be drawn to a parabola y ax2 4=  from a given point, one of which is always real.

Fig. 5.48

P(x1,y1)

Q(x2,y2)

x

y

y2 = 4ax

Q'

Q''
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Proof
 y ax2 4=  is the given parabola.  Let ( , )α β  be the given point.

 Equation of the normal in parametric form is
   y  =  tx at at+ +2 3  ... (1)
	 If	m  is the slope of the normal then m t= − .

 Therefore the equation (1) becomes y  =  mx am am- -2 3 .
 Let it passes through ( , )α β , then
   b  =  m am ama - -2 3

   am a m3 2+ − +( )α β  =  0

 which being a cubic equation in m , has three values of m . Consequently three normals, in 
general, can be drawn from a point to the parabola, since complex roots of real equation, always occur 
in conjugate pairs and (1) being an odd degree equation, it has atleast one real root. Hence atleast  one 
normal to the parabola is real. 

5.6.2 Equations of tangent and normal to Ellipse and Hyperbola 
(the proof of the following are left to the reader)

 (1) Equation of the tangent  to the ellipse x
a

y
b

2

2

2

2 1+ =

  (i) at ( , )x y1 1  is  xx
a

yy
b

1
2

1
2 1+ =   cartesian form

  (ii) at ' 'θ  x
a

y
b

cos sinθ θ
+ =1 . parametric form

	 (2)	Equation	of	the	normal	to	the	ellipse	 x
a

y
b

2

2

2

2 1+ =  

  (i) at ( , )x y1 1  is a x
x

b y
y

a b
2

1

2

1

2 2− = −  cartesian form

  (ii) at ' 'θ is ax by a b
cos sinθ θ

− = −2 2  parametric form

	 (3)	Equation	of	the	tangent		to	the	hyperbola x
a

y
b

2

2

2

2 1− =

  (i) at ( , )x y1 1  is xx
a

yy
b

1
2

1
2 1− =  cartesian form

  (ii) at ' 'θ  is x
a

y
b

sec tanθ θ
− =1  parametric form

 (4) Equation of the normal  to the hyperbola x
a

y
b

2

2

2

2 1− =  

  (i) at ( , )x y1 1  is a x
x

b y
y

a b
2

1

2

1

2 2+ = +  cartesian form

  (ii) at ' 'θ  is ax by a b
sec tanθ θ

+ = +2 2  parametric form.
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5.6.3 Condition for the line y mx c= +  to be a tangent to the conic sections       
(i) parabola y ax2 4=

 Let ( , )x y1 1  be the point on the parabola y ax2 4= . Then y ax1
2

14=  ... (1)
 Let y mx c= + 	be	the	tangent	to	the	parabola	 ...	(2)
 Equation of tangent at x y1 1,( ) to the parabola from 5.6.1 is yy a x x1 12= +( ) . …	(3)
	 Since	(2)	and	(3)	represent	the	same	line,	coefficients	are	proportional.

   y1

1
 =  2 2 1a

m
ax
c

=

   ⇒ y1  =  2 1
a

m
x c

m
, =

   Then (1) becomes,   2 2a
m







  =  4a c

m








   ⇒   c
a
m

=

 So the point of contact is a
m

a
m2

2,





  and the equation of tangent to parabola is y mx a

m
= + .

 The condition for the line y mx c= + to be tangent to the ellipse or hyperbola can be derived as 
follows in the same way as in the case of parabola.

(ii) ellipse x
a

y
b

2

2

2

2 1+ =

 Condition for line y mx c= +  to be the tangent to the ellipse x
a

y
b

2

2

2

2 1+ =   

is c a m b2 2 2 2= + ,  with the point of contact is −










a m
c

b
c

2 2

,  and the equation of tangent is 

y mx a m b= ± +2 2 2 .

(iii) Hyperbola x
a

y
b

2

2

2

2 1− =

 Condition for line y mx c= +  to be the tangent to the hyperbola x
a

y
b

2

2

2

2 1− =   

is c a m b2 2 2 2= − , with the point of contact is − −










a m
c

b
c

2 2

,  and the equation of tangent is 

y mx a m b= ± −2 2 2 .

Note

	 (1)	 In	 y mx a m b= ± +2 2 2 ,  either y mx a m b= + +2 2 2  or y mx a m b= − +2 2 2 is the equation 

to the tangent of ellipse but not both.

	 (2)	 In	 y mx a m b= ± −2 2 2 , either y mx a m b= + −2 2 2  or y mx a m b= − −2 2 2 is the equation 

to the tangent of hyperbola but not both.
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Results (Proof, left to the reader)
 (1) Two tangents can be drawn to (i) a parabola (ii) an ellipse and (iii) a hyperbola, from any 

external point on the plane.
	 (2)	Four	normals	can	be	drawn	to	(i)	an	ellipse	and	(ii)	a	hyperbola	from	any	external	point	on	the	

plane.
	 (3)	The	locus	of	the	point	of	intersection	of	perpendicular		tangents	to

   (i) the parabola y ax2 4=  is x a= −   (the directrix).

   (ii) the ellipse x
a

y
b

2

2

2

2 1+ =  is x y a b2 2 2 2+ = + ( called the director circle of ellipse).

   (iii)  the hyperbola x
a

y
b

2

2

2

2 1− =  is x y a b2 2 2 2+ = −  (called director circle of hyperbola).

Example 5.27

 Find the equations of tangent and normal to the parabola x x y2 6 4 5 0+ + + = at ( , )1 3- .

Solution
 Equation of parabola is x x y2 6 4 5 0+ + + = .

   x x y2 6 9 9 4 5+ + − + +  =  0

   ( )x + 3 2  =  - -4 1( )y  ... (1)

   Let  X   =  x Y y+ = −3 1,  

 Equation (1) takes the standard form
   X 2  =  -4Y  
 Equation of tangent is  XX1  =  − +2 1( )Y Y

 At ( , )1 3-   X1  =  1 3 4 3 1 41+ = = − − = −;Y  

 Therefore, the equation of tangent at ( , )1 3-  is

   ( )x + 3 4  =   - - -2 1 4( )y

   2 6x +  =  − +y 5  .

   2 1x y+ +  =  0 .

 Slope of tangent at ( , )1 3- is-2 ,  so slope of normal at ( , )1 3- is  1
2

   Therefore, the equation of normal  at ( , )1 3-  is given by 

   y + 3  =  1
2

1( )x -

   2 6y +  =  x -1

   x y- -2 7  =  0 . 

Example 5.28
 Find the equations of tangent and normal to the ellipse x y2 24 32+ =  when θ π

=
4

.
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Solution
 Equation of ellipse is  x y2 24+  =  32

   x y2 2

32 8
+  =  1

   a2  =  32 82, b =  

   a  =  4 2 2 2, b =

 Equation of tangent at  θ =
p
4

 is

   
x ycos sinπ π

4
4 2

4
2 2

+  =  1

   x y
8 4
+  =  1

   x y+ −2 8  =  0 .

 Equation of normal is 4 2

4

2 2

4

x y

cos sinπ π
−  =  32 8-

  That is 8 4x y-  =  24
   2 6x y- -  =  0 .
Aliter
   At,   θ  =  p

4
 ,

   ( cos , sin )a bθ θ  =  4 2
4

2 2
4

cos , sinπ π







    =  ( , )4 2

 ∴  Equation of tangent at θ π
=

4
 is same at ( , )4 2 .

 Equation of tangent in cartesian form is   xx
a

yy
b

1
2

1
2+  =  1

   x y+ −2 8   =  0

 Slope of tangent is - 1
2

 Slope of normal is 2
 Equation of normal is y - 2  =  2 4( )x -

   y x− +2 6  =  0 . 

EXERCISE 5.4
 1. Find the equations of the two tangents  that can be drawn from ( , )5 2 to the ellipse 

2 7 142 2x y+ = .

	 2. Find the equations of tangents to the hyperbola x y2 2

16 64
1− = which are parallel to10 3 9 0x y− + = .

	 3. Show that the line x y− + =4 0  is a tangent to the ellipse x y2 23 12+ = .	Also	find	the	coordinates	

of the point of contact.
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 4. Find the equation of the tangent to the parabola y x2 16= perpendicular to 2 2 3 0x y+ + = .

 5. Find the equation of the tangent at t = 2 to the parabola y x2 8= . (Hint: use parametric form)

 6. Find the equations of the tangent and normal to hyperbola 12 9 1082 2x y− = at θ π
=
3

. (Hint: 

use parametric form)
	 7. Prove that the point of intersection of the tangents at ‘ t1 ’ and ‘ t2 ’on the parabola y ax2 4= is 

at t a t t1 2 1 2, +( )  .

 8.	If	the	normal	at	the	point	‘ t1 ’ on the parabola y ax2 4=  meets the parabola again at the point  

‘ t2 ’, then prove that t t
t2 1
1

2
= − +









 .

5.7 Real life Applications of Conics
5.7.1 Parabola
	 The	 interesting	 applications	 of	 Parabola	 involve	 their	 use	 as	 reflectors	 and	 receivers	 of	 light	
or	radio	waves.	For	instance,	cross	sections	of	car	headlights,	flashlights	are	parabolas	wherein	the	
gadgets	are	formed	by	the	paraboloid	of	revolution	about	its	axis.	The	bulb	in	the	headlights,	flash	
lights	 is	 located	 at	 the	 focus	 and	 light	 from	 that	point	 is	 reflected	outward	parallel	 to	 the	 axis	of	
symmetry	(Fig.	5.60)	while	Satellite	dishes	and	field	microphones	used	at	sporting	events,	incoming	
radio	waves	or	sound	waves	parallel	to	the	axis	that	are	reflected	into	the	focus	intensifying	the	same	
(Fig. 5.59). Similarly, in solar cooking, a parabolic mirror is mounted on a rack with a cooking pot 
hung	in	the	focal	area	(Fig.	5.1).	Incoming	Sun	rays	parallel	to	the	axis	are	reflected	into	the	focus	
producing a temperature high enough for cooking.
 Parabolic arches are the best stable structures also considered for their beauty to name a few, the 
arches	on	the	bridge	of	river	in	Godavari,	Andhra	Pradesh,	India,	the	Eiffel	tower	in	Paris,	France.	

	 Fig.	5.49	 Fig.	5.50

5.7.2 Ellipse
  According to Johannes Kepler, all planets in the solar system revolve 
around Sun in elliptic orbits with Sun at one of the foci. Some comets have 
elliptic orbits with Sun at one of the foci as well. E.g. Halley’s Comet that is 
visible	once	every	75	years	with	 e » 0 97. in elliptic orbit  (Fig. 5.51). Our 
satellite moon travels around the Earth in an elliptical orbit with earth at one 
of its foci. Satellites of other planets also revolve around their planets in 
elliptical orbits as well.

 Elliptic arches are often built for its beauty and stability. Steam boilers 
are believed to have greatest strength when heads are made elliptical with 
major	and	minor	axes	in	the	ratio	2:1.	

Fig. 5.51
The elliptical orbit of Halley’s Comet

Neptune

76 years Earth

Su
n

Jupiter
Uranus
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	 In	Bohr-Sommerfeld	theory	of	the	atom	electron	orbit	can	be	
circular or elliptical. Gears are sometimes (for particular need) 
made	elliptical	in	shape.	(Fig.	5.52)

 The shape of our mother Earth is an oblate spheroid i.e., the 
solid of revolution of an ellipse about its minor axis, bulged along 
equatorial	region	and	flat	along	the	polar	region.	
 The property of ellipse, any ray of light or sound released from a focus of the ellipse on touching 
the	ellipse	gets	reflected	to	reach	the	other	focus	(Fig.	5.62),	which	could	be	proved	using	concepts	of	
incident rays and reflected rays in Physics.
	 An	 exciting	medical	 application	 of	 an	 ellipsoidal	 reflectors	 is	 a	 device	 called	 a Lithotripter 
(Fig.	5.4	and	5.63)	 	 that	uses	electromagnetic	 technology	or	ultrasound	 to	generate	a	shock	wave	
to pulverize kidney stones. The wave originates at one focus of the cross-sectional ellipse and is 
reflected	to	the	kidney	stone,	which	is	positioned	at	the	other	focus.	Recovery	time	following	the	use	
of this technique is much shorter than the conventional surgery, non-invasive and the mortality rate is 
lower.

5.7.3 Hyperbola
 Some Comets travel in hyperbolic paths with the Sun at one focus, such comets pass by the Sun 
only one time unlike those in elliptical orbits, which reappear at intervals. 
	 We	also	see	hyperbolas	in	architecture,	such	as	Mumbai	Airport	terminal	(Fig.	5.53),	in	cross	section	
of a planetarium, an locating ships (Fig. 5.54), or a cooling tower for a steam or nuclear power plant.  
(Fig. 5.5)

	 Fig.	5.53	 Fig.	5.54

Example 5.30
 A semielliptical archway over a one-way road has a height of 3m  and a width of 12m . The truck 

has a width of 3m  and a height of 2 7. m . Will the truck clear the opening of the archway? (Fig. 5.6)

Solution
 Since the truck’s width is3m , to determine the clearance, 

we	must	find	the	height	of	the	archway	1 5. m  from the centre. 
If	this	height	is	2 7. m  or less the truck will not clear the archway.

 From the diagram a = 6  and b =1 5.  yielding the equation 

of ellipse as x y2

2

2

26 3
1+ = .

Fig.	5.52

x

y

2.
7

(0,3)

(6,0)(–6,0) 1.5
6 6

1.5

Fig. 5.55
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 The edge of the 3m  wide truck corresponds to x m=1 5. .	We	will	find	the	height	of	the	archway	

1 5. m  from the centre by substituting x =1 5. and solving for y

   

3
2
36 9

2

2








+
y  =  1 

   y2  =  9 1 9
144

−







    =  9 135
144

135
16

( )
=  

   y  =  135
4

 

    =  11 62
4
.  

    =  2 90.  
 Thus the height of arch way 1 5. m  from the centre is approximately 2 90. m . Since the truck’s 
height is 2 7. m , the truck will clear the archway.

Example 5.31
 The maximum and minimum distances of the Earth from the Sun respectively are 152 106× km 

and 94 5 106. × km. The Sun is at one focus of the elliptical orbit. Find the distance from the Sun to the 

other focus.
Solution
 AS  =  94 5 106. ×  km, SA ' = ×152 106  km
 a c+  =  152 106×

 a c-  =  94 5 106. ×

 Subtracting 2c  =  57 5 10 575 106 5. × = ×  km

 Distance of the Sun from the other focus is SS ′ = ×575 105  km.

Example 5.32
 A concrete bridge is designed as a parabolic arch. The road over bridge is 40m  long and the 
maximum height of the arch is 15m . Write the equation of the parabolic arch.
Solution

 From the graph the vertex is at ( , )0 0 and the parabola is open down

 Equation of the parabola is x2  = -4ay

 ( , )- -20 15  and ( , )20 15-  lie on the parabola

 202  = - -4 15a( )  

 4a  =  400
15

 

 x2  = −
×

80
3

y  

 Therefore equation is 3 2x  =  -80y

Fig. 5.56

Fig.	5.57

Sun

SS'

Earth

15
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(20,–15)

O
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y
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Example 5.33
 The parabolic communication antenna has a focus at 2m  distance from the vertex of the antenna. 

Find the width of the antenna 3m  from the vertex.

Solution
   Let the parabola be y2  =  4ax .

  Since focus is 2m  from the vertex a  =  2

   Equation of the parabola is y2  =  8x

 Let P be a point on the parabola whose x -coordinate is 3m  from the 

vertex P ( , )3 y

   y2  =  8 3×

   y  =  8 3×

   =  2 6
 The width of the antenna 3m  from the vertex is 4 6 m .

5.7.4	Reflective	property	of	parabola
	 The	light	or	sound	or	radio	waves	originating	at	a	parabola’s	focus	are	reflected	parallel	to	the	
parabola’s	axis	(Fig.	5.60)	and	conversely	the	rays	arriving	parallel	to	the	axis	are	directed	towards	
the focus (Fig. 5.59).

Example 5.34

 The equation y x=
1
32

2  models cross sections of parabolic mirrors that are used for solar energy. 

There is a heating tube located at the focus of each parabola; how high is this tube located above the 
vertex of the parabola?
Solution

 Equation of the parabola is
  
   y  =  1

32
2x  

 That is  x2  =  32y   ; the vertex is ( , )0 0

    =  4 8( )y

   ⇒ a  =  8  
 So the heating tube needs to be placed at focus ( , )0 a . Hence the heating tube needs to be placed 

8 units above the vertex of the parabola.

Example 5.35
	 A	search	light	has	a	parabolic	reflector	(has	a	cross	section	that	forms	a	‘bowl’).	The	parabolic	
bowl is 40cm  wide from rim to rim and 30cm  deep. The bulb is located at the focus .

	 (1)	 What	is	the	equation	of	the	parabola	used	for	reflector?
	 (2)	How	far	from	the	vertex	is	the	bulb	to	be	placed	so	that	the	maximum	distance	covered?	

Fig. 5.59

Fig. 5.58

P(3, y)

S(2,0)

P'

X

Y

S

xO

◄ ◄◄ ◄

◄

◄ ◄◄

y
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Solution

 Let the vertex be ( , )0 0 .

 The equation of the parabola is 
  
 y2  =  4ax

 (1) Since the diameter is 40cm  and the depth is 30cm , the point 

( , )30 20  lies on the parabola.

   202  =  4 30a×

   4a  =  400
30

40
3

= .

   Equation is y2  =  
40
3

x .

	 (2)	 The	bulb	is	at	focus	 ( , )0 a . Hence the bulb is at a distance of 10
3

cm   from the vertex.

Example 5.36

 An equation of the elliptical part of an optical lens system is x y2 2

16 9
1+ = . The parabolic part of 

the system has a focus in common with the right focus of the ellipse .The vertex of the parabola is at 
the origin and the parabola opens to the right. Determine the equation of the parabola.

Solution
	 In	the	given	ellipse	a2  =  16 92, b =

   then    c2  =  a b2 2-

   c2  =  16 9-

    =  7
   c  =  ± 7

 Therefore the foci are F F7 0 7 0, , ,( ) ′ −( ) . The focus of the parabola is 7 0 7,( ) ⇒ =a .

 Equation of the parabola is y x2 4 7= .

5.7.5	Reflective	Property	of	an	Ellipse
 The lines from the foci to a point on an 
ellipse make equal angles with the tangent line at 
that	point	(Fig.	5.62).

 The light or sound or radio waves emitted 
from one focus hits any point P  on the ellipse is 
received	at	the	other	focus	(Fig.	5.63).

Example 5.37
 A room 34m  long is constructed to be a whispering gallery. The room has an elliptical ceiling, 

as	shown	in	Fig.	5.64.	If	the	maximum	height	of	the	ceiling	is		 8m , determine where the foci are 

located.

Fig.	5.60

Fig. 5.61

	 Fig.	5.62	 Fig.	5.63
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Solution
 The length a of the semi major axis of the elliptical 
ceiling is17m . The height b of the semi minor axis is 8m . 
Thus
  c2  =  a b2 2- =  17 82 2-

  then   c  =  289 64 225− =

     15
 For the elliptical ceiling the foci are located on either side about 15m  from the centre, along its 
major axis.
A non-invasive medical miracle
	 In	a	lithotripter,	a	high-frequency	sound	wave	is	emitted	from	a	source	that	is	located	at	one	of	
the foci of the ellipse. The patient is placed so that the kidney stone is located at the other focus of the 
ellipse.
Example 5.38

	 If	the	equation	of	the	ellipse	is	
x y−( )

+ =
11

484 64
1

2 2

 ( x  and y  are measured in centimeters) where 

to	the	nearest	centimeter,	should	the	patient’s	kidney	stone	be	placed	so	that	the	reflected	sound	hits	
the kidney stone?
Solution

 The equation of the ellipse is 
x y−( )

+ =
11

484 64
1

2 2

. The origin 

of the sound wave and the kidney stone of patient should be at the 
foci in  order to crush the stones.
  a2  = 484  and b2 64=  

  c2  =  a b2 2-  

   =  484 64-  

   =  420

  c    20 5.
	 Therefore	the	patient’s	kidney	stone	should	be	placed	20.5cm	from	the	centre	of	the	ellipse.

5.7.6	Reflective	Property	of	a	Hyperbola
 The lines from the foci to a point on a hyperbola make equal angles with the 
tangent line at that point (Fig. 5.66).
 The light or sound or radio waves directed from one focus is received at the 
other focus as in the case ellipse (Fig. 5.54) used in spotting location of ships 
sailing in deep sea.

Example 5.39
 Two coast guard stations are located 600 km apart at points A( , )0 0 and B( , )0 600 . A distress 
signal from a ship at P 	is	received	at	slightly	different	times	by	two	stations.	It	is	determined	that	the	
ship is 200 km farther from station A  than it is from station B . Determine the equation of hyperbola 
that passes through the location of the ship.

Fig. 5.64

Fig. 5.65

 Fig. 5.66
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Solution
 Since the centre is located at ( , )0 300 , midway between the two 

foci, which are the coast guard stations, the equation is  
y

a
x

b
−( )

−
−( )

=
300 0

1
2

2

2

2 . ... (1)

 To determine the values of a  and b , select two points known to 

be on the hyperbola and substitute each point in the above equation.
 The point ( , )0 400  lies on the hyperbola, since it is 200  km 

further from Station A  than from station B . 
400 300 0 1

2

2 2

−( )
− =

a b
100 1 10000

2

2
2

a
a= =, . There is 

also a point ( , )x 600  on the hyperbola such that 600 2002 2 2+ = +( )x x .

   360000 2+ x  =  x x2 400 40000+ +
   x  =  800

 Substituting in (1), we have 
600 300

10000
800 02 2

2

−( )
−

−( )
b

 =  1

   9 640000
2-

b
 =  1

   b2  =  80000

 Thus the required equation of the hyperbola is
y x−( )

− =
300

10000 80000
1

2 2

 The ship lies somewhere on this hyperbola. The exact location can be determined using data from 
a third station.

Example 5.40
				Certain	telescopes	contain	both	parabolic	mirror	and	a	hyperbolic	mirror.	In	the	telescope	shown	in	
figure	the	parabola	and	hyperbola	share	focus	F1  which is 14m above the vertex of the parabola. The 

hyperbola’s second focus F2  is 2m  above the parabola’s vertex. The vertex of the hyperbolic mirror 

is 1m  below F1 . Position a coordinate system with the origin at the centre of the hyperbola and with 

the foci on the y -axis.	Then	find		the	equation	of	the	hyperbola.

Solution

 Let V1 be the vertex of the parabola and 

 V2 be the vertex of the hyperbola.

   F F1 2  =  14 2 12 2 12 6− = = =m c c, ,

 The distance of centre to the vertex of the hyperbola is a = − =6 1 5

   b2  =  c a2 2-

    =  36 25 11− = .

 Therefore the equation of the hyperbola is y x2 2

25 11
1− = .

Fig.	5.67
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EXERCISE 5.5
 1. A bridge has a parabolic arch that is 10m  high in the centre and 30m  wide at the bottom. Find 

the height of the arch 6m  from the centre, on either sides.

	 2. A tunnel through a mountain for a four lane highway is to have a elliptical opening. The total 
width of the highway (not the opening) is to be 16m , and the height at the edge of the road 
must	be	sufficient	for	a	truck	 4m  high to clear if the highest point of the opening is to be 5m  
approximately . How wide must the opening be?

	 3. At a water fountain, water attains a maximum height of 4m  at horizontal distance of 0 5. m  
from	 its	 origin.	 If	 the	 path	 of	water	 is	 a	 parabola,	 find	 the	 height	 of	water	 at	 a	 horizontal	
distance of 0 75. m  from the point of origin.

 4. An engineer designs a satellite dish with a parabolic cross section. The dish is 5m  wide at the 
opening, and the focus is placed 1 2. m  from the vertex 

  (a) Position a coordinate system with the origin at the vertex and the x -axis on the parabola’s 
axis	of	symmetry	and	find	an	equation	of	the	parabola.

  (b) Find the depth of the satellite dish at the vertex.

 5. Parabolic cable of a 60m  portion of the roadbed of a suspension bridge are positioned as 
shown below. Vertical Cables are to be spaced every 6m  along this portion of the roadbed. 
Calculate	the	lengths	of	first	two	of	these	vertical	cables	from	the	vertex.

Fig. 5.69

 6. Cross section of a Nuclear cooling tower is in the shape of a hyperbola with equation
x y2

2

2

230 44
1− =  .   The tower is 150m  tall and the distance from the top of the tower to the centre 

of the hyperbola is half the distance from the base of the tower to the centre of the hyperbola. 
Find the diameter of the top and base of the tower.

Fig.	5.70
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	 7. A rod of length 1 2. m  moves with its ends always touching the coordinate axes. The locus of a 
point P on the rod, which is 0 3. m  from the end in contact with x -axis is an ellipse. Find the 
eccentricity.

 8. Assume that water issuing from the end of a horizontal pipe, 7 5. m  above the ground, describes 

a parabolic path. The vertex of the parabolic path is at the end of the pipe. At a position 2 5. m  

below	the	line	of	the	pipe,	the	flow	of	water	has	curved	outward	 3m  beyond the vertical line 

through the end of the pipe. How far beyond this vertical line will the water strike the ground?

 9. On lighting a rocket cracker it gets projected in a parabolic path and reaches a maximum height 
of 4m  when it is 6m  away from the point of projection. Finally it reaches the ground 12m  

away from the starting point. Find the angle of projection.

	 10. Points A  and B are 10km  apart and it is determined from the sound of an explosion heard at 

those points at different times that the location of the explosion is 6  km  closer to A  than B . 

Show	that	the	location	of	the	explosion	is	restricted	to	a	particular	curve	and	find	an	equation	
of it.

EXERCISE 5.6

Choose the most appropriate answer.

 1. The equation of the circle passing through ( , )1 5  and ( , )4 1 and touching y -axis is

  x y x y x y2 2 5 6 9 4 3 19 0+ − − + + + −( ) =λ whereλ  is equal to

  (1) 0 40
9

,- 	 (2)	 0 	 (3)	 40
9

 (4) -40
9

	 2. The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half 
the distance between the foci is 

  (1) 
4
3
	 (2)	

4
3
	 (3)	

2
3

 (4) 
3
2

	 3. The circle x y x y2 2 4 8 5+ = + + intersects the line3 4x y m− =  at two distinct points if

  (1) 15 65< <m 	 (2)	35 85< <m 	 (3)	− < < −85 35m  (4) − < <35 15m

 4. The length of the diameter of the circle which touches the x -axis	at	the	point	(1,0)	and	passes	

through the point ( , )2 3 .

  (1) 6
5
	 (2)	 5

3
	 (3)	10

3
 (4) 3

5
 5. The radius of the circle3 4 6 02 2 2x by bx by b+ + − + =  is

  (1) 1	 (2)	3 	 (3)	 10  (4) 11

 6. The centre of the circle inscribed in a square formed by the lines x x2 8 12 0− − =   and 
y y2 14 45 0− + =  is

  (1) ( , )4 7 		 (2)	 ( , )7 4 		 (3)	 ( , )9 4   (4) ( , )4 9  
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	 7. The equation of the normal to the circle x y x y2 2 2 2 1 0+ − − + =  which is parallel to the line 

2 4 3x y+ =  is

  (1) x y+ =2 3 		 (2)	 x y+ + =2 3 0 		 (3)	 2 4 3 0x y+ + =   (4) x y− + =2 3 0

 8.	 If	P x y( , )  be any point on 16 25 4002 2x y+ =  with foci F1 3 0( , )  and F2 3 0( , )-  then PF PF1 2+  

is
	 	 (1)	8	 (2)	6	 (3)	10	 (4)	12

 9. The radius of the circle passing through the point ( , )6 2 two of whose diameter are x y+ = 6  
and x y+ =2 4  is

  (1) 10 	 (2)	 2 5 	 (3)	6  (4) 4

	 10. The area of quadrilateral formed with foci of the hyperbolas x
a

y
b

2

2

2

2 1− =   and x
a

y
b

2

2

2

2 1− = −  

is

  (1) 4 2 2( )a b+ 		 (2)	 2 2 2( )a b+ 		 (3)	 a b2 2+   (4) 1
2

2 2( )a b+  

 11.	 If	the	normals	of	the	parabola	 y x2 4=  drawn at the end points of its latus rectum are tangents 

to the circle ( ) ( )x y r− + + =3 22 2 2 , then the value of r 2  is

  (1) 2 		 (2)	3 		 (3)	1  (4) 4  

	 12.	If	 x y k+ =  is a normal to the parabola y x2 12= , then the value of k  is

  (1) 3 		 (2)	-1		 (3)	1  (4) 9

	 13. The ellipse E1  : x y2 2

9 4
1+ = is inscribed in a rectangle R whose sides are parallel to the 

coordinate axes. Another ellipse E2 passing through the point ( , )0 4 circumscribes the rectangle

R . The eccentricity of the ellipse is

  (1) 2
2

	 (2)	 3
2
	 (3)	 1

2
 (4) 3

4

 14. Tangents are drawn to the hyperbola x y2 2

9 4
1− = parallel to the straight line 2 1x y− = . One of 

the points of contact of tangents on the hyperbola is

  (1) 9
2 2

1
2

, −





 	 (2)	 −








9
2 2

1
2

, 	 (3)	 9
2 2

1
2

,





  (4) 3 3 2 2,−( )

 15. The equation of the circle passing through the foci of the ellipse x y2 2

16 9
1+ = having centre at

( , )0 3  is

  (1) x y y2 2 6 7 0+ − − = 	 	 (2)	 x y y2 2 6 7 0+ − + =

	 	 (3)	 x y y2 2 6 5 0+ − − =   (4) x y y2 2 6 5 0+ − + =
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 16. Let C  be the circle with centre at ( , )1 1  and radius =1 .	 If	 T is the circle centered at ( , )0 y

passing through the origin and touching the circleC externally, then the radius of T  is equal 

to 
  (1) 3

2
	 (2)	 3

2
	 (3)	 1

2
 (4) 1

4

	 17. Consider an ellipse whose centre is of the origin and its major axis is along x-axis.	 	 If	 its	

eccentrcity is 3
5

and the distance between its foci is 6, then the area of the quadrilateral 

inscribed in the ellipse with diagonals as major and minor axis of the ellipse is
	 	 (1)	8	 (2)	32	 (3)	80	 (4)	40

 18. Area of the greatest rectangle inscribed in the ellipse x
a

y
b

2

2

2

2 1+ =  is

  (1) 2ab 	 (2)	 ab 	 (3)	 ab  (4) a
b

 19. An ellipse hasOB as semi minor axes, F  and ′F  its foci and the angle FBF ′  is a right angle. 

Then the eccentricity of the ellipse is

  (1) 1
2
	 (2)	 1

2
	 (3)	 1

4
 (4) 1

3

	 20. The eccentricity of the ellipse ( ) ( )x y y
− + − =3 4

9
2 2

2

  is

  (1) 3
2
			 (2)	 1

3
			 (3)	 1

3 2
   (4) 1

3
  

	 21.	 If	the	two	tangents	drawn	from	a	pointP to the parabola y x2 4= are at right angles then the 

locus of P  is
  (1) 2 1 0x + = 	 (2)	 x = −1 	 (3)	 2 1 0x − =  (4) x =1

	 22. The circle passing through ( , )1 2- and touching the axis of x  at ( , )3 0 passing through the point

  (1) ( , )-5 2 	 (2)	 ( , )2 5- 	 (3)	 ( , )5 2-  (4) ( , )-2 5

	 23. The locus of a point whose distance from ( , )-2 0   is 2
3

 times its distance from the line

   x =
−9
2

 is 

	 	 (1)	a	parabola	 (2)	a	hyperbola	 (3)	an	ellipse	 (4)	a	circle

	 24. The values of m  for which the line y mx= + 2 5  touches the hyperbola 16 9 1442 2x y− =  are 

the roots of x a b x2 4 0− + − =( ) , then the value of ( )a b+  is

  (1) 2 		 (2)	 4 		 (3)	 0   (4) -2

	 25.	 If	the	coordinates	at	one	end	of	a	diameter	of	the	circle	 x y x y c2 2 8 4 0+ − − + =  are ( , )11 2 , 
the coordinates of the other end are

  (1) ( , )-5 2 		 (2)	 ( , )2 5- 		 (3)	 ( , )5 2-   (4) ( , )-2 5  
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SUMMARY
 (1) Equation of the circle in a standard form is ( ) ( )x h y k r− + − =2 2 2 .

  (i) Centre ( , )h k   (ii) radius ‘ r ’ 

	 (2)	Equation	of	a	circle	in	general	form	is	 x y gx fy c2 2 2 2 0+ + + + = .

  (i) centre ( , )- -g f     (ii) radius = g f c2 2+ −

	 (3)	The	circle	through	the	intersection	of	the	line	 lx my n+ + = 0  and the circle 

x y gx fy c2 2 2 2 0+ + + + =  is x y gx fy c lx my n2 2 12 2 0+ + + + + + + = ∈λ λ( ) ,  .

 (4) Equation of a circle with ( , )x y1 1  and ( , )x y2 2  as extremities of one of the diameters is 

( )( ) ( )( )x x x x y y y y− − + − − =1 2 1 2 0 .

 (5) Equation of tangent at ( , )x y1 1  on  circle x y gx fy c2 2 2 2 0+ + + + =  is 

xx yy g x x f y y c1 1 1 1 0+ + + + + + =( ) ( )  

 (6) Equation of normal at ( , )x y1 1   on circle x y gx fy c2 2 2 2 0+ + + + =   is 

yx xy g y y f x x1 1 1 1 0− + − − − =( ) ( ) .

Table 1

Tangent and normal

Curve Equation Equation  of tangent Equation of normal

Circle

x y a2 2 2+ =   (i) cartesian form
  xx yy a1 1

2+ =  

 (ii) parametric form
  x y acos sinθ θ+ =  

 (i) cartesian form
  xy yx1 1 0− =  

 (ii) parametric form
  x ysin cosθ θ− = 0  

Parabola
y ax2 4=   (i) yy a x x1 12= +( )  

 (ii) yt x at= + 2  

 (i) xy y ay x y1 1 1 12 2+ = +  

 (ii) y xt at at+ = +3 2  

Ellipse

x
a

y
b

2

2

2

2 1+ =   (i) xx
a

yy
b

1
2

1
2 1+ =  

 (ii) x
a

y
b

cos sinθ θ
+ =1  

 (i) a x
x

b y
y

a b
2

1

2

1

2 2+ = −  

 (ii) ax by a b
cos sinθ θ

− = −2 2  

Hyperbola

x
a

y
b

2

2

2

2 1− =   (i) xx
a

yy
b

1
2

1
2 1− =  

 (ii) x
a

y
b

sec tanθ θ
− =1  

 (i) a x
x

b y
y

a b
2

1

2

1

2 2+ = +  

 (ii) ax by a b
sec tanθ θ

+ = +2 2  
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Table 2

Condition for the sine  y mx c= +  to be a tangent to the Conics

Conic Equation Condition to be 
tangent Point of contact Equation of tangent

Circle
x y a2 2 2+ =  c a m2 2 21= +( )

am
m

a
m1 12 2+

±

+









,  y mx m= ± +1 2  

Parabola
y ax2 4=  c a

m
=  a

m
a

m2

2,





  y mx a

m
= +  

Ellipse
x
a

y
b

2

2

2

2 1+ =  
c a m b2 2 2 2= +  −









a m
c

b
c

2 2

,  y mx a m b= ± +2 2 2  

Hyperbola
x
a

y
b

2

2

2

2 1− =  
c a m b2 2 2 2= − − −









a m
c

b
c

2 2

,  y mx a m b= ± −2 2 2

Table 3

Parametric forms

Conic Parametric 
equations Parameter Range of

parameter
Any point on the 

conic

Circle
x a= cosθ

y a= sinθ
θ 0 2≤ ≤θ π

‘θ ’ or 

( cos , sin )a aθ θ

Parabola
x at= 2

y at= 2
t −∞ < < ∞t

‘ t ’ or 

( , )at at2 2

Ellipse
x a= cosθ

y b= sinθ
θ 0 2≤ ≤θ π

‘θ ’ or 

( cos , sin )a bθ θ

Hyperbola
x a= secθ

y b= tanθ
θ

− ≤ ≤π θ π  

except θ π
= ±

2

‘θ ’  or

( sec , tan )a bθ θ

Identifying the conic from the general equation of conic Ax Bxy Cy Dx Ey F2 2 0+ + + + + =  

 The graph of the second degree equation is one of a circle, parabola, an ellipse, a hyperbola, a 
point, an empty set, a single line or a pair of lines. When,
 (1) A C B D h E k F h k r= = = = − = − = + −1 0 2 2 2 2 2, , , ,  the general equation reduces to 

( ) ( )x h y k r− + − =2 2 2 , which is a circle.
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	 (2)	 B = 0  and either A  or C = 0 ,  the general equation yields a parabola under study, at this level.

	 (3)	 A C¹  and A  and C  are of the same sign the general equation yields an ellipse.

 (4) A C¹  and A  and C  are of opposite signs the general equation yields a hyperbola

 (5) A C=  and B D E F= = = = 0 , the general equation yields a point x y2 2 0+ = .

 (6) A C F= =  and B D E= = = 0 , the general equation yields an empty set x y2 2 1 0+ + = , as 

there is no real solution.
	 (7)	 A¹ 0  or C ¹ 0  and others are zeros, the general equation yield coordinate axes.

 (8) A C= −  and rests are zero, the general equation yields a pair of lines x y2 2 0− = .
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“Mathematics is the science of the connection of magnitudes. 
Magnitude is anything that can be put equal or unequal to another thing. 

Two things are equal when in every assertion each may be replaced by the other.”

— Hermann Günther Grassmann

6.1  Introduction
 We are familiar with the concept of vectors, (vectus in Latin means “to 
carry”) from our XI standard text book.  Further the modern version of  Theory 
of Vectors arises from the ideas of Wessel(1745-1818) and Argand (1768-1822) 
when they attempt to describe the complex numbers geometrically as a directed 
line segment in a coordinate plane. We have seen that a vector has magnitude 
and  direction and  two vectors with same magnitude and  direction regardless 
of positions of their initial points are  always  equal.  
       We also  have  studied addition of two vectors, scalar multiplication 
of vectors, dot product, and  cross  product by denoting an arbitrary vector by 
the notation a  or 1 2 3

ˆˆ ˆa i a j a k+ + . To understand the direction and  magnitude of a given vector and  
all other concepts with a little more rigor, we shall recall the geometric introduction of vectors, which 
will be useful to discuss the equations of straight lines and  planes. Great mathematicians Grassmann, 
Hamilton, Clifford and Gibbs were pioneers to introduce the dot and  cross  products of vectors.

 The vector algebra has a few direct applications in physics and it has a lot of applications along 
with vector calculus in physics, engineering, and  medicine. Some of them are mentioned below.

	 •	 To	calculate	the	volume	of	a	parallelepiped,	the	scalar	triple	product	is	used.

	 •	 To	find	the	work	done	and	torque	in	mechanics,	the	dot	and	cross	products	are	used.
	 •	 To	introduce	curl	and	divergence	of	vectors,	vector	algebra	is	used	along	with	calculus.	Curl	

and divergence are very much used in the study of electromagnetism, hydrodynamics, blood 
flow,	rocket	launching,	and	the	path	of	a	satellite.

	 •	 To	calculate	the	distance	between	two	aircrafts	in	the	space	and	the	angle	between	their	paths,	
the dot and cross products are used.

	 •	 To	install	the	solar	panels	by	carefully	considering	the	tilt	of	the	roof,	and	the	direction	of	
sun so that it generates more solar power, a simple application of dot product of vectors is 
used. One can calculate the amount of solar power generated by a solar panel by using vector 
algebra.

	 •	 To	measure	angles	and	distance	between	the	panels	in	the		satellites,	in	the	construction	of	
networks of pipes in various industries, and, in calculating angles and  distance between  
beams and  structures in civil engineering,  vector algebra is used.

Josiah Williard Gibbs
(1839 – 1903)

Chapter

6 Applications of Vector Algebra
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LEARNING OBJECTIVES

Upon completion of this chapter, students will be able to

    apply scalar and vector products of two and three vectors

    solve problems in geometry, trigonometry and physics

    derive equations of a line in parametric, non-parametric and cartesian forms in different 
situations

    derive equations of a plane in parametric, non-parametric and cartesian forms in different 
situations

  		 find,	angle	between	the	lines,	and	distance	between	skew	lines

  		 find	the	coordinates	of	the	image	of	a	point

6.2 Geometric introduction to vectors 
 A vector v  is represented as a directed straight line  segment in a 

3-dimensional space 3
 , with an  initial  point  A =  ( ) 3

1 2 3, ,a a a ∈ and 

an end point B = ( ) 3
1 2 3, ,b b b ∈ , and  it is denoted by AB



.  The length 

of the line segment AB  is the magnitude of the vector v  and the direction 

from A  to B  is the direction of the vector v .  Hereafter, a vector will be 

interchangeably  denoted  by v or AB


. Two vectors AB


andCD


 in 3


are said  to be equal if  and only if the length AB is equal to the length CD  and the direction from A  

to B is parallel to the direction from C  to D . If AB


andCD


are equal, we write AB CD=
 

, and CD


 

is called  a translate of AB


.

 It is easy  to observe that every  vector AB


can be translated to anywhere in 3
 , equal to a vector 

with  initial point 3U ∈  and end point 3V ∈  such that AB


=UV


. In particular, if O  is the  origin 

of 3
 , then  a point 3P∈  can be found such that AB



= OP


. The vector OP


is called  the position 

vector of the point P .  Moreover, we observe that given any vector v , there exists a unique point 
3P∈  such that the position vector OP



 of P  is equal to v .  A vector AB


 is said to be the zero 

vector if the initial point A  is the same as the end point B . We use the standard notations ˆˆ ˆ, ,i j k  and  


0  to denote the position vectors of  the points (1,0,0), (0,1,0), (0,0,1),  and (0,0,0),  respectively. For 

a given point 3
1, 2 3( , )a a a ∈ , 1 2 3

ˆˆ ˆa i a j a k+ +  is called  the position vector of the point 1 2 3( , , ),a a a  

which is the directed straight line segment with initial point (0,0,0)  and end point 1 2 3( , , )a a a . All real 

numbers are called  scalars.

Fig. 6.1
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 Given a vector AB


, the length of the vector is calculated by

2 2 2
1 1 2 2 3 3( ) ( ) ( )b a b a b a− + − + − ,

where A  is 1 2 3( , , )a a a  and B  is 1 2 3( , , ).b b b  In particular, if  a vector is the position vector b


 of 

1 2 3( , , ),b b b  then its length is 2 2 2
1 2 3b b b+ + . A vector having length 1 is called a unit vector. We use 

the  notation û , to distinguish that it is a unit vector.  Note that ˆ ˆ,i j , and k̂  are unit vectors and 0


 is 

the unique vector with length 0 . The direction of 0


	is	specified	according	to	the	context.

 The Addition and scalar multiplication on	vectors	in	3-dimensional	space	are	defined	by	

   a b+


  =  1 1 2 2 3 3
ˆˆ ˆ( ) ( ) ( )a b i a b j a b k+ + + + + .

   aα   =  1 2 3
ˆˆ ˆ( ) ( ) ( )a i a j a kα α α+ + ;

 where a  =  3
1 2 3 1 2 3

ˆ ˆˆ ˆ ˆ ˆ,a i a j a k b b i b j b k+ + = + + ∈


  and α ∈ .

 To see the geometric interpretation of a b+


 , let a  and b


, denote the position vectors of 

1 2 3( , , )A a a a=  and 1 2 3( , , )B b b b= , respectively. Translate the position vector b


 to the vector with 

initial point as A  and end point as 1 2 3( , , )C c c c= , for a suitable 3
1 2 3( , , )c c c ∈ . See the  

diagram (6.2). Then, the position vector c  of the point 1 2 3( , , )c c c  is equal to a b+


 .

 The vector aα   is another vector parallel to a 	and	its	length	is	magnified	(if	 1)α > or contracted 

(if 0 1)α< < . If 0α < , then aα   is a vector whose magnitude is | |α  times that of a  and direction 

opposite to that of . In particular, if 1α = − , then a aα = −
   is the vector with same length and  

direction opposite to that of a .

 Fig. 6.2 Fig. 6.3
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6.3  Scalar Product and Vector Product
 Next we recall  the  scalar product and  vector product of vectors as follows.

Definition 6.1 

 Given  two  vectors 1 2 3
ˆˆ ˆa a i a j a k= + +

  and 1 2 3
ˆˆ ˆb b i b j b k= + +



 the scalar product (or dot 

product) is denoted by a b⋅


 and is calculated by

   a b⋅


  =  1 1 2 2 3 3a b a b a b+ + ,

and the vector product (or cross product) is denoted by a b×


  and is calculated by

   a b×


  =  1 2 3

1 2 3

ˆˆ ˆi j k
a a a
b b b

Note 
 



a b⋅ is a scalar, and 


a b×  is a vector. 

6.3.1 Geometrical interpretation
 Geometrically, if a  is an arbitrary vector and n̂  is a unit vector, then ˆa n⋅  is the projection of 

the  vector a  on the straight line on which n̂  lies. The quantity ˆa n⋅  is positive if the angle between 

a  and n̂  is acute, and negative if the angle between a  and n̂  is obtuse.  

 Fig. 6.4 Fig. 6.5

 If a  and b


 are arbitrary non-zero vectors, then | | | |
| |

| |
| |



 















a b b a b
b

a b a
a

⋅ = ⋅








 = ⋅









  and so 

| |a b⋅


  means either the length of the straight line  segment obtained by projecting the  vector | |b a


  

along  the direction of b


or the length of the line segment obtained by projecting  the vector | |a b


  

along  the direction of a . We recall that | | | | cosa b a b θ⋅ =
 

  , where θ  is the angle  between the two 

vectors a  and b


. We recall that the angle between a  and b


	is	defined	as	the	measure	from	 a


 to b


in the counter clockwise direction. 
 The vector a b×



  is either 0


 or a vector perpendicular to the plane parallel to both a  and b


 

having magnitude as the area  of  the parallelogram formed by coterminus vectors parallel to  and 

b


.  If a  and b


 are non-zero vectors, then the magnitude of a b×


  can be calculated by the formula 

   | |a b×


  =  | | | | | sin |,a b θ


  where θ  is the angle between a  and b


.

 Two vectors are said to be coterminus if they have same initial point.

�a

n̂ˆa n⋅�
q

Positive dot product

a�
θ

ˆa n⋅�
n̂

Negative dot product
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Remark 
 (1)  An angle between two  non-zero vectors a  and b



 is found by the following formula 

1cos
| | | |

a b
a b

θ −  ⋅
=  

 









.

 (2) a  and b


 are said to be parallel if the angle between them is 0  or π .

 (3) a  and b


 are said to be perpendicular if the angle between them is 
2
π  or 3

2
p .

Property
 (1) Let a  and b



 be any two nonzero vectors. Then

    0a b⋅ =


  if and only if a  and b


 are perpendicular to each other.

    0a b× =
 

  if and only if a  and b


 are parallel to each other.

 (2) If ,a b


 ,  and c  are any three vectors and α  is a scalar, then

   a b⋅


  =  


 



 

 

 











b a a b c a b b c a b a b a b⋅ + ⋅ = ⋅ + ⋅ ⋅ = ⋅ = ⋅, ( ) , ( ) ( ) ( );α α α

   a b×


  =  − × + × = × + × × = × = ×( ), ( ) , ( ) ( ) ( )


 



  



 











b a a b c a c b c a b a b a bα α α .

6.3.2 Application of dot and cross products in plane Trigonometry
 We apply the concepts of dot and cross products of two vectors to derive a few formulae in plane 
trigonometry.
Example  6.1 (Cosine formulae)
 With usual notations, in any triangle ABC, prove the following by vector method. 
  (i) 2 2 2 2 cosa b c bc A= + −  (ii) 2 2 2 2 cosb c a ca B= + −

  (iii) 2 2 2 2 cosc a b ab C= + −
Solution

 With usual notations in triangle ABC, let ,BC a CA b= =
  

  and AB c=


 . Then | | , | |BC a CA b
� ��� � ���

= = , 

| |AB c=


 and BC CA AB+ +
  

 =  0


.
    So,  BC



  CA AB− −
 

. 
 Then applying dot product, we get

  BC BC⋅
 

 =  ( ) ( )CA AB CA AB− − ⋅ − −
   

      ⇒    2| |BC


 =  2 2| | | | 2CA AB CA AB+ + ⋅
   

  ⇒  2a  =  2 2 2 cos( )b c bc Aπ+ + −  

  ⇒  2a  =  2 2 2 cosb c bc A+ − .

 The results (ii) and (iii) are proved in a similar way.

Example  6.2

 With usual notations, in any triangle ABC,  prove the following by vector method.

  (i) a b C c B= +cos cos  (ii) b c A a C= +cos cos
  (iii)  c a B b A= +cos cos

Fig. 6.6
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Solution
 With usual notations in triangle  ABC, let BC a CA b

� ��� � � ��� �
= =, ,  and 

AB c
� ��� �

= . Then 

  | | , | |BC a CA b
� ��� � ���

= = ,  | |AB c
� ���

=  and BC CA AB
� ��� � ��� � ��� �

+ + = 0   

 So,  BC CA AB
� ��� � ��� � ���

= − −
 Applying dot product, we get 

   BC BC
� ��� � ���

⋅  =  − ⋅ − ⋅BC CA BC AB
� ��� � ��� � ��� � ���

  ⇒   | |BC
� ���

2  =  − − − −| | | | cos( ) | | | | cos( )BC CA C BC AB B
� ��� � ��� � ��� � ���

p p

  ⇒  a2  =  − +ab C ac Bcos cos
 Therefore a b C c B= +cos cos . The results (ii) and (iii) are proved in a similar way.
Example  6.3
 By vector method,  prove that cos( ) cos cos sin sinα β α β α β+ = − .

Solution
 Let â OA=



 and b̂ OB=


 be the unit vectors and which make angles  α  and β , respectively, with 

positive x -axis, where  and B  are as in the diagram. Draw AL  and BM  perpendicular to the  

x -axis. Then | | | | cos cos , | | | | sin sinOL OA LA OA
� ��� � ��� � �� � ����

= = = =α α α α .

 So,  ˆ| |OL OL i=
 

 =  ˆ ˆcos , sin ( )i LA jα α= −


.

 Therefore, â  =  ˆ ˆcos sinOA OL LA i jα α= + = −
  

. ... (1)

 Similarly, b̂  =  ˆ ˆcos sini jβ β+  ... (2) 

 The angle between â  and b̂  is α β+   and so,

  ˆâ b⋅  =  ˆˆ| | | | cos( ) cos( )a b α β α β+ = +  ... (3) 

 On the other hand, from (1) and (2)

  ˆâ b⋅  = ˆ ˆ ˆ ˆ(cos sin ) (cos sin ) cos cos sin sini j i jα α β β α β α β− ⋅ + = − . ... (4)
 From (3) and (4), we get cos( ) cos cos sin sinα β α β α β+ = − .

Example 6.4

 With usual notations, in any triangle ABC, prove by vector method that 
a

A
b

B
c

Csin sin sin
= = .

Solution

 With usual notations in triangle ,ABC  let ,BC a CA b= =
  

  and AB c=


 . Then | | , | | ,BC a CA b= =
 

 

and | |AB c=


.

 Since in ABC∆ , 0BC CA AB+ + =
  

, we have ( ) 0BC BC CA AB× + + =
   



.

 Simplifying, we get,

  BC CA×
 

 =  AB BC×
 

. ... (1)

 Similarly, since 0BC CA AB+ + =
  



, we have

  ( )CA BC CA AB× + +
   

 =  0


.

Fig. 6.7

Fig. 6.8

Fig. 6.9
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â
M

L

π − A

c

B

π − B
a C

π −C



b

A

Chapter 6 Vector Algebra.indd   226 3/10/2019   9:40:25 PM



Applications of Vector Algebra227

 Simplifying, we get BC CA×
 

 =  CA AB×
 

 ... (2)
 From equations (1) and (2), we get

  AB BC×
 

  CA AB BC CA× = ×
   

.

  So,  | |AB BC×
 

 =  | | | |CA AB BC CA× = ×
   

. Then, we get

  sin( )ca Bπ −  =  sin( ) sin( )bc A ab Cπ π− = − .

  That is, sinca B  =  sin sinbc A ab C= . Dividing by abc , we get

  sin A
a

 =  sin sinB C
b c

=   or  
a

A
b

B
c

Csin sin sin
= =

Example 6.5
 Prove by vector method that sin( ) sin cos cos sinα β α β α β− = − .

Solution

 Let â OA=


 and b OB=


 be the unit vectors making 

angles  α  and β  respectively, with positive x -axis, where 

A  and B  are as shown in the diagram. Then, we get 
ˆ ˆˆ cos sina i jα α= +  and ˆ ˆ ˆcos sinb i jβ β= + , 

 The angle between â  and b̂  is α β−  and, the vectors 
ˆ ˆˆ, ,b a k  form a right-handed system.

 Hence, we get

  ˆ ˆb a×  =  ˆ ˆ ˆˆ| | | | sin( ) sin( )b a k kα β α β− = − . ... (1)
 On the other hand,

  ˆ ˆb a×  =  

ˆˆ ˆ
ˆcos sin 0 (sin cos cos sin )

cos sin 0

i j k
kβ β α β α β

α α
= −  ... (2)

 Hence, by equations (1) and (2), we get
  sin( )α β−  =  sin cos cos sinα β α β− .

6.3.3 Application of dot and cross products in Geometry
Example 6.6 (Apollonius's theorem)
 If D  is the midpoint of the side BC of a triangle ABC, then show by vector method that 

2 2 2 2| | | | 2(| | | | )AB AC AD BD+ = +
   

.

Solution 

 Let A  be the origin, b


 be the position vector of B  and c  be the position 

vector of C . Now D  is the midpoint of BC , and so the position vector of D  

is 
2

b c+




 . Therefore, we get

Fig. 6.10

Fig. 6.11
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  2| |AD AD AD= ⋅
  

 =  2 21 (| | | | 2 )
2 2 4

b c b c b c b c
   + +

⋅ = + + ⋅   
   

 

 

 

 

. ... (1)

  Now,  BD


 =  
2 2

b c c bAD AB b+ −
− = − =

 

 

  

.

  Then, we get,  2| |BD BD BD= ⋅
  

 =  2 2(| | | | 2 )
2 2 4

c b c b b c b c
   − −

⋅ = + − ⋅   
   

 

 

 

    ... (2)

 Now, adding (1) and (2), we get

 Therefore, 2 2| | | |AD BD+
 

 =  2 2 2 2 2 21 1 1(| | | | 2 ) (| | | | 2 ) (| | | | )
4 4 2

b c b c b c b c b c+ + ⋅ + + − ⋅ = +
    

     

 ⇒  2 2| | | |AD BD+
 

 =  2 21 (| | | | )
2

AB AC+
 

.

 Hence, 2 2| | | |AB AC+
 

 =  2 22(| | | | )AD BD+
 

 

Example 6.7

 Prove by vector method that the perpendiculars (attitudes) from the vertices to the opposite sides 
of a triangle are concurrent.

Solution

 Consider a triangle ABC in which the two altitudes AD and BE intersect at 
O . Let CO be produced to meet AB at F. We take O  as the origin and let 

,OA a OB b= =
  

  and OC c=


 .

 Since AD


 is perpendicular to BC


, we have OA


 is perpendicular to BC


, and hence we get 

0OA BC⋅ =
 

. That is, ( ) 0a c b⋅ − =


  , which means

  a c a b⋅ − ⋅


  

 =  0 . ... (1)

 Similarly, since BE


 is perpendicular to CA


, we have OB


 is perpendicular to CA


, and hence we 

get 0OB CA⋅ =
 

. That is, ( ) 0b a c⋅ − =


  , which means,

  a b b c⋅ − ⋅
 

   =  0 . ... (2)

 Adding equations (1) and (2), gives 0a c b c⋅ − ⋅ =


   . That is, ( ) 0c a b⋅ − =


  .

 That is, 0OC BA⋅ =
 

. Therefore, BA


 is perpendicular to OC


. Which implies that CF


 is 

perpendicular to AB


. Hence, the perpendicular drawn from C  to the side AB  passes through O . 

Therefore, the altitudes are concurrent.

Example 6.8

 In triangle ,ABC  the points , ,D E F  are the midpoints of the sides  ,BC CA  and AB  respectively. 

Using vector method, show that the area of DEF∆  is equal to 1
4

 (area of )ABC∆ . 

Fig. 6.12
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Solution
 In triangle ,ABC  consider A  as the origin. Then the position vectors of  

, ,D E F  are given by  , ,
2 2 2

AB AC AC AB+
   

respectively. Since | |AB AC×
 

 is the 

area of the parallelogram formed by the two vectors ,AB AC
 

 as adjacent sides, the 

area of  ABC∆  is 1 | |
2

AB AC×
 

. Similarly, considering DEF∆ ,  we get

  the area of DEF∆  =  
1 | |
2

DE DF×
 

 

   =   
1 | ( ) ( ) |
2

AE AD AF AD− × −
   

   =  1
2 2 2

AB AC
×

 

 

   =  1
4

 1 | |
2

AB AC × 
 

 

 

   =  1
4

 (the area of )ABC∆ .

6.3.4 Application of dot and cross product in Physics

Definition 6.2

 If  d


 is the displacement vector of a particle moved from a point to another point after applying 

a constant force 


F on the particle, then the work done by the force on the particle is w F d= ⋅



.

Fig. 6.14

 If the force has an acute angle, perpendicular angle, and an obtuse angle, the work done by the 
force is positive, zero, and negative respectively.

Example  6.9
 A particle acted upon by constant forces ˆˆ ˆ2 5 6i j k+ +  and ˆˆ ˆ2i j k− − −  is displaced from the point  

(4, 3, 2)− −  to the point (6,1, 3)− . Find the total work done by the forces.

Solution 

 Resultant of the given forces is ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ(2 5 6 ) ( 2 ) 3 5F i j k i j k i j k= + + + − − − = + +


.

 Let A  and B  be the points (4, 3, 2)− −  and (6,1, 3)−  respectively. Then the displacement vector 

of the particle is ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ(6 3 ) (4 3 2 ) 2 4d AB OB OA i j k i j k i j k= = − = + − − − − = + −
  

.

 Therefore the work done ˆ ˆˆ ˆ ˆ ˆ( 3 5 ) (2 4 ) 9w F d i j k i j k= ⋅ = + + ⋅ + − =




 units.

Fig. 6.13
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Example 6.10
 A particle is acted upon by the forces ˆˆ ˆ3 2 2i j k− +  and ˆˆ ˆ2i j k+ −  is displaced from the point 

(1,3, 1)−  to the point (4, 1, )λ− .	If	the	work	done	by	the	forces	is	16	units,	find	the	value	of		λ .

Solution

 Resultant of the given forces is ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ(3 2 2 ) (2 ) 5F i j k i j k i j k= − + + + − = − +


.

 The displacement of the particle is given by 
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ(4 ) ( 3 ) (3 4 ( 1) )d i j k i j k i j kλ λ= − + − + − = − + +



.

 As the work done by the forces  is 16 units, we have 

16F d⋅ =




.

 That is, ˆ ˆˆ ˆ ˆ ˆ(5 ) (3 4 ( 1) 16 20 16i j k i j kλ λ− + ⋅ − + + = ⇒ + = .

 So, 4λ = − .

Definition 6.3

 If a force 


F  is applied on a particle at a point with position vector r , then the torque or 

moment on the particle is given by  






t r F= × .  The torque is also called the rotational force.

Fig. 6.15

Example 6.11
 Find the magnitude and the direction cosines of the torque about the point (2,0, 1)−  of a force 

ˆˆ ˆ2 ,i j k+ −  whose line of action passes through the origin.

Solution
 Let A be the point (2,0, 1)− . Then the position vector of A is ˆˆ2OA i k= −



 

and therefore ˆˆ2r AO i k= = − +


 .

 Then the given force is ˆˆ ˆ2F i j k= + −


. So, the torque is  

 

ˆˆ ˆ
ˆˆ2 0 1 2

2 1 1

i j k
t r F i k= × = − = − −

−





 .

 The magnitude of the torque  ˆˆ| 2 | 5i k= − − =  and the direction cosines of the torque are 
1 2,0,
5 5

− −  .

Fig. 6.15
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EXERCISE  6.1
 1. Prove by vector method that if a line is drawn from the centre of a circle to the midpoint of 

a chord, then the line is perpendicular to the chord.
 2. Prove by vector method that the median to the base of an isosceles triangle is perpendicular 

to the base.
 3. Prove by vector method that an angle in a semi-circle is a right angle.
 4. Prove by vector method that the diagonals of a rhombus bisect each other at right angles.
 5. Using vector method, prove that if the diagonals of a parallelogram are equal, then it is a 

rectangle.
 6. Prove by vector method that the area of the quadrilateral  ABCD  having  diagonals  AC and  

BD  is 1 | |
2

AC BD×
 

.

 7. Prove by vector method that the parallelograms on the same base and between the same 
parallels are equal in area.

 8. If G is the centroid of a ABC∆ , prove that
  (area of )GAB∆ =  (area of )GBC∆ =  (area of )GCA∆

1
3

=  (area of )ABCD .

 9. Using vector method, prove that cos( ) cos cos sin sinα β α β α β− = + .

 10. Prove by vector method that sin( ) sin cos cos sinα β α β α β+ = + ,

 11. A particle acted on by constant forces ˆˆ ˆ8 2 6i j k+ −  and ˆˆ ˆ6 2 2i j k+ −  is displaced from the 

point (1, 2,3)  to the point (5, 4,1) . Find the total work done by the forces.

 12. Forces of magnitudes 5 2  and 10 2  units acting in the directions ˆˆ ˆ3 4 5i j k+ +  and 
ˆˆ ˆ10 6 8i j k+ − , respectively, act on a particle which is displaced from the point with position 

vector ˆˆ ˆ4 3 2i j k− −  to the point with position vector ˆˆ ˆ6 3i j k+ − .Find the work done by the 

forces.
 13. Find the magnitude and direction cosines of the torque of a force represented by ˆˆ ˆ3 4 5i j k+ −

about the point with position vector ˆˆ ˆ2 3 4i j k− + acting through a point whose position vector 
is ˆˆ ˆ4 2 3i j k+ − .

 14. Find the torque of the resultant of the three forces represented by ˆˆ ˆ3 6 3i j k− + − , ˆˆ ˆ4 10 12i j k− +
and ˆ ˆ4 7i j+ acting at the point with position vector ˆˆ ˆ8 6 4i j k− − , about the point with position 
vector ˆˆ ˆ18 3 9i j k+ − .

6.4 Scalar triple product

Definition 6.4

  For a given set of three vectors ,a b


  and c , the scalar ( )a b c× ⋅


   is called a scalar triple 

product of , ,a b c


  .

Remark
 a b⋅



  is a scalar and so ( )a b c⋅ ×


   has no meaning.
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Note 
 Given any three vectors ,a b



  and c , the following are scalar triple products: 

  ( ) , ( ) , ( ) , ( ), ( ), ( ),a b c b c a c a b a b c b c a c a b× ⋅ × ⋅ × ⋅ ⋅ × ⋅ × ⋅ ×
     

           

  ( ) , ( ) , ( ) , ( ), ( ), ( )b a c c b a a c b a c b b a c c b a× ⋅ × ⋅ × ⋅ ⋅ × ⋅ × ⋅ ×
     

             
Geometrical interpretation of scalar triple product
 Geometrically, the absolute value of the scalar triple product ( )a b c× ⋅



   is the volume of the 
parallelepiped formed by using the three vectors 





a b, ,  and 
c  as co-terminus edges.   Indeed, the 

magnitude of the vector ( )a b×


  is the area of the parallelogram formed by using a  and b


 ; and  the 
direction of the vector ( )a b×



  is perpendicular to the plane parallel to both a  and b


.

 Therefore, | ( ) |a b c× ⋅


   is | | | | | cos |a b c θ×


  , 
where θ  is the  angle  between a b×



  and c .From  

Fig. 6.17, we observe that | | | cos |c θ  is the  

height of the parallelepiped formed by using the 
three vectors as adjacent vectors. Thus, | ( ) |a b c× ⋅



   
is the volume of the parallelepiped.
 The following theorem is useful for 
computing scalar triple products.

Theorem 6.1
  If  a  =  1 2 3 1 2 3

ˆ ˆˆ ˆ ˆ ˆ,a i a j a k b b i b j b k


+ + = + +  and 1 2 3
ˆˆ ˆc c i c j c k= + +

 , then 

  ( )a b c× ⋅


   =  
1 2 3

1 2 3

1 2 3

a a a
b b b
c c c

.

Proof
 By	definition,	we	have

  ( )a b c× ⋅


   =  1 2 3

1 2 3

ˆˆ ˆi j k
a a a c
b b b

⋅
  

   =  2 3 3 2 1 3 3 1 1 2 2 1 1 2 3
ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( )a b a b i a b a b j a b a b k c i c j c k − − − + − ⋅ + +   

   =  2 3 3 2 1 3 1 1 3 2 1 2 2 1 3( ) ( ) ( )a b a b c a b a b c a b a b c− + − + −  

   =  
1 2 3

1 2 3

1 2 3

a a a
b b b
c c c

.

 Hence the theorem follows.

6.4.1 Properties of the scalar triple product

Theorem 6.2
 For any three vectors , ,a b



  and  , ( ) ( )c a b c a b c× ⋅ = ⋅ ×
 

     .

Fig. 6.17
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Proof
  Let a  =  1 2 3 1 2 3

ˆ ˆˆ ˆ ˆ ˆ,a i a j a k b b i b j b k+ + = + +


 and 1 2 3
ˆˆ ˆc c i c j c k= + +

 .

  Then,  ( )a b c⋅ ×


   =  
1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

( )
b b b a a a

b c a c c c c c c
a a a b b b

× ⋅ = = −


  , by 1 3R R↔

   =  
1 2 3

1 2 3

1 2 3

,
a a a
b b b
c c c

 by 2 3R R↔

   =  ( )a b c× ⋅


  .
 Hence the theorem follows.
Note 
 By Theorem 6.2, it follows that, in a scalar triple product, dot and cross can be interchanged 
without altering the order of occurrences of the vectors, by placing the parentheses in such a way 
that dot lies outside the parentheses, and cross lies between the vectors inside the parentheses. For 
instance, we have 
  ( )



a b c× ⋅  =  




a b c⋅ ×( ) , since dot and cross can be interchanged.
   =  ( )



 b c a× ⋅ , since dot product is commutative.
   =  



 b c a⋅ ×( ) , since dot and cross can be interchanged
   =  ( ) 



c a b× ⋅ , since dot product is commutative
   =   



c a b⋅ ×( ) , since dot and cross can be interchanged
Notation
 For any three vectors 



a b, and 
c , the scalar triple product  ( )



a b c× ⋅  is denoted by [ , , ]



a b c .
 [ , , ]a b c



   is read as box , ,a b c


  . For this reason and also because the absolute value of a scalar 
triple product represents the volume of a box (rectangular parallelepiped),a scalar triple product is 
also called a box product.
Note
 (1)  [ , , ]a b c



   =  ( ) ( ) ( ) ( ) [ , , ]a b c a b c b c a b c a b c a× ⋅ = ⋅ × = × ⋅ = ⋅ × =
    

           
   [ , , ]b c a



   =  ( ) ( ) ( ) ( ) [ , , ].b c a b c a c a b c a b c a b× ⋅ = ⋅ × = × ⋅ = ⋅ × =
    

           
  In other words, [ , , ] [ , , ] [ , , ]a b c b c a c a b= =

  

       ; that is, if the three vectors  are permuted in 
the  same  cyclic order,  the value of the scalar triple product remains the same. 

 (2) If any two vectors are interchanged in their position in a scalar triple product, then  the 
value  of the scalar triple product is ( 1)−  times the original value.  More explicitly,

   [ , , ]a b c


   =  [ , , ] [ , , ] [ , , ] [ , , ] [ , , ]b c a c a b a c b c b a b a c= = − = − = −
    

          .

Theorem 6.3
 The scalar triple  product preserves addition and  scalar multiplication. That is,

  [( ), , ]a b c d+
 

   =  [ , , ] [ , , ]a c d b c d+
  

   ;

  [ , , ]a b cλ


    =  [ , , ],a b cλ λ∀ ∈


 



  [ , ( ), ]a b c d+
 

   =  [ , , ] [ , , ]a b d a c d+
  

   ;

  [ , , ]a b cλ


   =  [ , , ],a b cλ λ∀ ∈


 



  [ , , ( )]a b c d+
 

   =  [ , , ] [ , , ]a b c a b d+
  

   ;
  [ , , ]a b cλ



   =  [ , , ],a b cλ λ∀ ∈


 

 .
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Proof
 Using the properties of scalar product and vector product, we get
  [( ), , ]a b c d+

 

   =  (( ) )a b c d+ × ⋅
 

 

   =  ( )a c b c d× + × ⋅
 

  

   =  ( ) ( )a c d b c d× ⋅ + × ⋅
  

  

   =  [ , , ] [ , , ]a c d b c d+
  

  

  [ , , ]a b cλ


   =  (( ) ) ( ( )) (( ) ) [ , , ]a b c a b c a b c a b cλ λ λ λ× ⋅ = × ⋅ = × ⋅ =
   

        .

 Using	the	first	statement	of	this	result,	we	get	the	following.

   [ , ( ), ]a b c d+
 

   =  [( ), , ] [ , , ] [ , , ]b c d a b d a c d a+ = +
    

    

    =  [ , , ] [ , , ]a b d a c d+
  

    

   [ , , ]a b cλ


   =  [ , , ] [ , , ] [ , , ]b c a b c a a b cλ λ λ= =
  

      .
Similarly, the remaining equalities are proved.
  We have studied about coplanar vectors in XIth  standard as three nonzero vectors of which, 
one can be expressed as  a linear combination of the other two. Now we use scalar triple product for 
the characterisation of coplanar vectors.

Theorem 6.4 
 The scalar triple product of three non-zero vectors is zero if, and only if, the three vectors are 
coplanar. 

Proof
 Let , ,a b c

  

 be any three non-zero vectors. Then, 

  ( )a b c× ⋅
  

=0  ⇔  c


 is perpendicular to a b×
 

   ⇔  c


 lies in the plane which is parallel to both a


 and b


                  ⇔  , ,a b c
  

 are coplanar.

Theorem 6.5 
 Three vectors , ,a b c

  

 are coplanar if, and only if,  there exist scalars , ,r s t∈  such that 

atleast one of them is non-zero  and  0ra sb tc+ + =
   

.

Proof 
 Let      

1 2 3 1 2 3 1 2 3,  ,  a a i a j a k b b i b j b k c c i c j c k= + + = + + = + +
  

   . Then, we have 

           , ,a b c
  

 are coplanar ⇔  , ,a b c  
  

=0 ⇔
1 2 3

1 2 3

1 2 3

a a a
b b b
c c c

=0 

 ⇔  there exist scalars , ,r s t∈  , 

   atleast one of them non-zero such that

  1 2 3a r a s a t+ + =0,  1 2 3b r b s b t+ + =0, 1 2 3c r c s c t+ + =0

 ⇔  there exist scalars , ,r s t∈  , 

  atleast one of them non-zero such that 0ra sb tc+ + =
   

.
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Theorem 6.6

  If , ,a b c
  

 and , ,p q r
  

 are any two systems of three vectors, and if  p


= 1 1 1 ,x a y b z c+ +
  

 

  q


= 2 2 2 ,x a y b z c+ +
  

and, r


= 3 3 3x a y b z c+ +
  

, then 

                                         , ,p q r  
  

 =
1 1 1

2 2 2

3 3 3

, ,
x y z
x y z a b c
x y z

  
  

.

Proof
 Applying the distributive law of cross product and using

 0, , ,a a b b c c b a a b a c c a c b b c× = × = × = × = − × × = − × × = − ×
                  

,
we get  
                              p q×

 

 =  ( ) ( )1 1 1 2 2 2x a y b z c x a y b z c+ + × + +
     

   =  ( )( ) ( )( ) ( )( )1 2 2 1 1 2 2 1 1 2 2 1x y x y a b y z y z b c z x z x c a− × + − × + − ×
     

   =  ( ) ( ) ( )1 2 1 2 1 2

1 2 1 2 1 2

x x y y z z
a b b c c a

y y z z x x
× + × + ×
     

 .

 Hence, we get 

  
, ,p q r  
  

 
=  ( ) ( )3 3 3p q x a y b z c× ⋅ + +

    

 

   =  1 2 1 2 1 2
3 3 3

1 2 1 2 1 2

y y z z x x
x y z

z z x x y y
  + + 
  

, ,a b c  
  

   =  1 1 1 1 1 1
3 3 3

2 2 2 2 2 2

y z z x x y
x y z

y z z x x y
  + + 
  

, ,a b c  
  

   =  
1 1 1

2 2 2

3 3 3

x y z
x y z
x y z

, ,a b c  
  

.

Note
 By theorem 6.6, if  , ,a b c

  

  are non-coplanar and 

                                                                 
1 1 1

2 2 2

3 3 3

0
x y z
x y z
x y z

≠ , 

then the three vectors p


= 1 1 1 ,x a y b z c+ +
  

  q


= 2 2 2 ,x a y b z c+ +
  

and, r


= 3 3 3x a y b z c+ +
  

 are also  
non-coplanar. 

Example  6.12

 If  ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ3 5 , 2 , 4 5a i j k b i j k c j k= − − + = − + = −


  ,	find	 ( )a b c⋅ ×


  .

Solution

	 	 We	find,	 ( )a b c⋅ ×


   =  
3 1 5

1 2 1 3
0 4 5

− −
− = −

−
.

Chapter 6 Vector Algebra.indd   235 3/10/2019   9:40:45 PM



236XII - Mathematics

Example  6.13
 Find the volume of the parallelepiped whose coterminus edges are given by the vectors 

ˆ ˆˆ ˆ ˆ ˆ2 3 4 , 2i j k i j k− + + −  and ˆˆ ˆ3 2i j k− + .
Solution
 We know that the volume of the parallelepiped whose coterminus edges are  , ,a b c



   is given by 

| [ , , ] |a b c


  . Here, ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 3 4 , 2 , 3 2a i j k b i j k c i j k= − + = + − = − +


  .

 Since 
2 3 4

[ , , ] 1 2 1 7
3 1 2

a b c
−

= − = −
−



  , the volume of the given parallelepiped is | 7 | 7− =  cubic 

units.

Example  6.14
 Show that the vectors ˆ ˆˆ ˆ ˆ ˆ2 3 , 2 2i j k i j k+ − − +  and ˆˆ ˆ3i j k+ −  are coplanar.

Solution
 Here, ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 3 , 2 2 , 3a i j k b i j k c i j k= + − = − + = + −



 

 We know that , ,a b c


   are coplanar if and only if [ , , ] 0a b c =


  . Now, 
1 2 3

[ , , ] 2 1 2 0
3 1 1

a b c
−

= − =
−



  . 

Therefore, the three given vectors are coplanar. 

Example  6.15

 If  ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 3 , 3 2 , 4i j k i j k i mj k− + + + + + 	are	coplanar,	find	the	value	of		m .

Solution

 Since the given three vectors are coplanar, we have 
2 1 3
3 2 1 0 3
1 4

m
m

−
= ⇒ = − .

Example  6.16
 Show that the four points (6, 7,0), (16, 19, 4), (0,3, 6), (2, 5,10)− − − − −  lie on a same plane.

Solution
 Let (6, 7,0), (16, 19, 4), (0,3, 6), (2, 5,10)A B C D= − = − − = − = − . To show that the four points  

, , ,A B C D  lie on a plane, we have to prove that the three vectors , ,AB AC AD
  

 are coplanar.

 Now, AB


 =  ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ(16 19 4 ) (6 7 ) 10 12 4OB OA i j k i j i j k− = − − − − = − −
 

  AC


 =  ˆˆ ˆ6 10 6OC OA i j k− = − + −
 

 and ˆˆ ˆ4 2 10AD OD OA i j k= − = − + +
  

.

 We have [ , , ]AB AC AD
  

 =  
10 12 4

6 10 6 0
4 2 10

− −
− − =
−

.

 Therefore, the three vectors , ,AB AC AD
  

 are coplanar and hence the four points , , ,A B C  and  

D  lie on a plane.
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Example  6.17

 If  the vectors , ,a b c   are coplanar, then prove that the vectors , ,a b b c c a+ + +
 

     are also coplanar.

Solution

 Since the vectors , ,a b c


   are coplanar, we have [ , , ] 0.a b c =


   Using the properties of the scalar 

triple product, we get

 [ , , ]a b b c c a+ + +
 

     =  [ , , ] [ , , ]a b c c a b b c c a+ + + + +
  

      

  =  [ , , ] [ , , ] [ , , ] [ , , ]a b c a a c c a b b c a b c c a+ + + + + + +
   

           

  =  [ , , ] [ , , ] [ , , ] [ , , ] [ , , ] [ , , ] [ , , ] [ , , ]a b c a b a a c c a c a b b c b b a b c c b c a+ + + + + + +
       

                 

  =  [ , , ] [ , , ] 2[ , , ] 0a b c a b c a b c+ = =
 

    .

 Hence the vectors , ,a b b c c a+ + +
 

     are coplanar.

Example  6.18

 If , ,a b c


   are three vectors, prove that [ , , ] [ , , ]a c a b a b c a b c+ + + + = −
  

       .

Solution

 Using theorem 6.6, we get

 [ , , ]a c a b a b c+ + + +
 

      =  
1 0 1
1 1 0 [ , , ]
1 1 1

a b c


   

  =  [ , , ]a b c−


 

.

EXERCISE 6.2

 1. If ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 3 , 2 2 , 3 2a i j k b i j k c i j k= − + = + − = + +


  ,		find	 ( )a b c⋅ ×


  .

 2. Find the volume of the parallelepiped whose coterminous edges are represented by the vectors 

  ˆ ˆˆ ˆ ˆ ˆ6 14 10 , 14 10 6i j k i j k− + + − − and ˆˆ ˆ2 4 2i j k+ - .
 3. The volume of the parallelepiped whose coterminus edges are ˆ ˆˆ ˆ ˆ ˆ7 3 , 2 ,i j k i j kλ+ − + −
  ˆˆ ˆ3 7 5i j k− + +  is 90 cubic units. Find the value of λ .

 4. If , ,a b c


   are three non-coplanar vectors represented by concurrent edges of a parallelepiped 

of	volume	4	cubic	units,		find	the	value	of	 ( ) ( ) ( ) ( ) ( ) ( )a b b c b c c a c a a b+ ⋅ × + + ⋅ × + + ⋅ ×
   

        .

 5. Find the altitude of a parallelepiped determined by the vectors ˆ ˆ ˆˆ ˆ ˆ ˆ2 5 3 , 3 2a i j k b i j k= − + + = + −
  

and 3 4c i j k= − + +


 

  if the base is taken as the parallelogram determined by b


 and c .

 6. Determine whether the three vectors ˆ ˆˆ ˆ ˆ ˆ2 3 , 2 2i j k i j k+ + − +  and ˆˆ ˆ3 3i j k+ +  are coplanar.

 7. Let ˆˆ ˆ ˆ,a i j k b i= + + =


  and 1 2 3
ˆˆ ˆc c i c j c k= + +

 . If 1 1c =  and 2 2c = ,	find	 3c  such that ,a b


  and 
c  are coplanar.
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 8. If ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, (1 ) , (1 ) ,a i k b xi j x k c yi xj x y k= − = + + − = + + + −


   show that [ , , ]a b c


   depends on 
neither x  nor y .

 9. If the vectors ˆ ˆˆ ˆ ˆ,ai aj ck i k+ + +  and ˆˆ ˆci cj bk+ +  are coplanar, prove that c  is the geometric 
mean of  a  and b .

 10. Let , ,a b c


   be three non-zero vectors such that c  is a unit vector perpendicular to both a  and b


. 

If the angle between a  and b


 is 
6
π , show that 2 2 21[ , , ] | | | |

4
a b c a b=
 

   .

6.5 Vector triple product
Definition 6.5

 For a given set of three vectors , ,a b c


  , the vector 


a b c× ×( )  is called a  vector triple product.

Note
 Given any three vectors 





a b c, ,  the following are vector triple products : 
 ( ) , ( ) , ( ) , ( ), ( ),







   



 











a b c b c a c a b c a b a b c b× × × × × × × × × × × (( ) c a×  
Using the well known properties of the vector product, we get the following theorem.

Theorem 6.7
 The	vector	triple	product	satisfies	the	following	properties.

 (1)  1 2( ) ( )a a b c+ × ×


    =  �
� � � � � � � � � � � �a b c a b c a b c a b c1 2× × + × × × × = × × ∈( ) ( ), ( ) ( ) ( ( )),λ λ λ

 (2)  1 2(( ) )a b b c× + ×
 

   =  �
� � � � � � � � � � � �a b c a b c a b c a b c× × + × × × × = × × ∈( ) ( ), (( ) ) ( ( )),1 2 λ λ λ

 (3)  1 2( ( ))a b c c× × +


    =  
� � � � � � � � � � � � �a b c a b c a b c a b c× × + × × × × = × × ∈( ) ( ), ( ( )) ( ( )),1 2 λ λ λ

Remark 
 Vector triple product is not associative. This means that ( ) ( )a b c a b c× × ≠ × ×

 

    , for some 

vectors , ,a b c


  .

Justification
 We take ˆ ˆ ˆ, ,a i b i c j= = =



  . Then,  ˆˆ ˆ ˆ ˆ ˆ( ) ( )a b c i i j i k j× × = × × = × = −


   but ˆ ˆ ˆ ˆ( ) 0 0i i j j× × = × =
 

.

 Therefore, ( ) ( )a b c a b c× × ≠ × ×
 

    .

 The following theorem gives a simple formula to evaluate the vector triple product in terms of 
scalar product.

Theorem 6.8 (Vector Triple product expansion)

 For any three vectors , ,a b c


   we have ( ) ( ) ( )a b c a c b a b c× × = ⋅ − ⋅
  

      .

Proof
 Let us choose the coordinate axes as follows : 
 Let x -axis be chosen along the line of action of ,a y -axis be chosen in the plane passing through 

a  and parallel to b


, and z -axis be chosen perpendicular to the plane containing a  and b


. Then, we 

have 
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   a  =  1
ˆa i

   b


 =  1 2
ˆ ˆb i b j+

   c  =  1 2 3
ˆˆ ˆc i c j c k+ +

 Now, ( )a b c× ×


   =  1 1 2 3

1 2

ˆˆ ˆ
ˆˆ ˆ0 0 ( )

0

i j k
a c i c j c k
b b

× + +

    =  1 2 1 2 3
ˆ ˆˆ ˆ( )a b k c i c j c k× + +

    =  1 2 1 1 2 2
ˆ ˆa b c j a b c i−  ... (1)

   ( ) ( )a c b b c a⋅ − ⋅
 

     =  1 1 1 2 1 1 2 2 1
ˆ ˆ ˆ( ) ( )( )a c b i b j b c b c a i+ − +  

    =  1 1 1 1 2 1 1 1 1 1 2 2
ˆ ˆ ˆ ˆa b c i a b c j a b c i a b c i+ − −

    =  1 2 1 1 2 2
ˆ ˆa b c j a b c i−   ... (2)

 From equations (1) and (2), we get

   ( )a b c× ×


   =  ( ) ( )a c b a b c⋅ − ⋅
 

  

Note
 (1) 







a b c b c× × = +( ) α β , where α = ⋅
 a c  and β = − ⋅( )



a b , and so it lies in the plane parallel 
to 


b and 
c .

 (2) We also note that
   ( )



a b c× ×  =  − × ×
 



c a b( )
    =  − ⋅ − ⋅[( ) ( ) ]



  



c b a c a b
    =  ( ) ( ) 

 

 a c b b c a⋅ − ⋅
  Therefore,  ( )



a b c× ×  lies in the plane parallel to 
a and 



b .

 (3) In ( )



a b c× × , consider the vectors inside the brackets, call 


b  as the middle vector and 
a as the non-middle vector. Similarly, in 







a b c b× ×( ), is the middle vector and 
c  is the  

non-middle vector. Then we observe that a vector triple product of these vectors is equal to 
λ  (middle vector) −µ (non-middle vector)

  where  λ  is the dot product of the vectors other than the middle vector and μ is the dot 
product of the vectors other than the non-middle vector.

6.6 Jacobi’s Identity and  Lagrange’s Identity

Theorem 6.9 (Jacobi’s identity)
 For any three vectors , , ,a b c



   we have ( ) ( ) ( ) 0a b c b c a c a b× × + × × + × × =
   

      .

Proof
 Using vector triple product expansion, we have

  ( )a b c× ×


   = ( ) ( )a c b a b c⋅ − ⋅
 

   

  ( )b c a× ×


   =  ( ) ( )b a c b c a⋅ − ⋅
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  ( )c a b× ×


   =  ( ) ( )c b a c a b⋅ − ⋅
 

    .

 Adding the above equations and using the scalar product of two vectors is commutative, we get  
( ) ( ) ( ) 0a b c b c a c a b× × + × × + × × =
   

      .

Theorem 6.10  (Lagrange’s identity)

 For any  four  vectors , , , ,a b c d
 

   we have ( ) ( )
a c a d

a b c d
b c b d

⋅ ⋅
× ⋅ × =

⋅ ⋅



  

 

 

  



 .

Proof
 Since dot and cross can be interchanged in a scalar product, we get
  ( ) ( )a b c d× ⋅ ×

 

   =  ( ( ))a b c d⋅ × ×
 

 

   =  (( ) ( ) )a b d c b c d⋅ ⋅ − ⋅
   

     (by vector triple product expansion)

   =  ( )( ) ( )( )a c b d a d b c⋅ ⋅ − ⋅ ⋅
   

   

   =  
a c a d

b c b d

⋅ ⋅

⋅ ⋅



  

  



 

Example  6.19
 Prove that  2[ , , ] [ , , ]a b b c c a a b c× × × =

  

      .

Solution
 Using	the	definition	of	the	scalar	triple	product,	we	get	

 [ , , ]

  

  a b b c c a× × × = ( ) [( ) ( )]a b b c c a× ⋅ × × ×
 

    . ... (1)
 By treating ( )b c×



 as	the	first	vector	in	the	vector	triple	product,	we	find
  ( ) ( )b c c a× × ×



    =  (( ) ) (( ) ) [ , , ]b c a c b c c a a b c c× ⋅ − × ⋅ =
  

        

.
Using this value in (1), we get 

  [ , , ]a b b c c a× × ×
 

     =  2( ) ([ , , ] ) [ , , ]( ) [ , , ]a b a b c c a b c a b c a b c× ⋅ = × ⋅ =
    

          .

Example 6.20
 Prove that  ( ( )) ( ) ( )a b c a a b a c⋅ × = × × ×

 

      .

Solution
 Treating ( )a b×



  as	the	first	vector	on	the	right	hand	side	of	the	given	equation	and	using	the	

vector triple product expansion, we get 

  ( ) ( )a b a c× × ×


    =  (( ) ) (( ) ) ( ( ))a b c a a b a c a b c a× ⋅ − × ⋅ = ⋅ ×
  

         .

Example  6.21
 For any four vectors , , , ,a b c d

 

   we have

  ( ) ( )a b c d× × ×
 

   =  [ , , ] [ , , ] [ , , ] [ , , ]a b d c a b c d a c d b b c d a− = −
       

        .

Solution
 Taking   



p a b= ×( )  as a single vector and  using the vector triple product expansion, we get
  ( ) ( )a b c d× × ×

 

   =    



p c d× ×( )
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   =  ( ) ( )



  



p d c p c d⋅ − ⋅

   =  (( ) ) (( ) ) [ , , ] [ , , ]

 

 









 

 







a b d c a b c d a b d c a b c d× ⋅ − × ⋅ = −  

 Similarly, taking  



q c d= × , we get

  ( ) ( )







a b c d× × ×  =  ( )



a b q× ×

   =  ( ) ( ) 

 

 a q b b q a⋅ − ⋅

   =  [ , , ] [ , , ] 

  





a c d b b c d a−  
 We leave the second one as an exercise. 

Example 6.22 
 If ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 3 2 , 3 3 , 2 5a i j k b i j k c i j k= − + − = − + = − +



  ,	 find	 ( )a b c× ×


   and ( )a b c× ×


  . State 

whether they are equal.

Solution 

	 	 By	definition,	 a b×


  =  

ˆˆ ˆ
ˆˆ2 3 2 7 7

3 1 3

i j k
i k− − = −

−
 .

 Then, ( )a b c× ×


   =  

ˆˆ ˆ
ˆˆ ˆ7 0 7 35 21 35

2 5 1

i j k
i j k− = − − −

−
. ... (1)

  b c×


  =  

ˆˆ ˆ
ˆˆ ˆ3 1 3 14 3 13

2 5 1

i j k
i j k− = + −

−
.

  Next,  ( )a b c× ×


   =  

ˆˆ ˆ
ˆˆ ˆ2 3 2 33 54 48

14 3 13

i j k
i j k− − = − − −

−
. ... (2)

 Therefore, equations (1) and (2) show that ( ) ( )a b c a b c× × ≠ × ×
 

    .

Example  6.23
 If ˆ ˆˆ ˆ ˆ ˆ, 4 , 3a i j b i j k c j k= − = − − = −





   and ˆˆ ˆ2 5d i j k= + +


, verify that

  (i) ( ) ( ) [ , , ] [ , , ]a b c d a b d c a b c d× × × = −
     

     

  (ii) ( ) ( ) [ , , ] [ , , ]a b c d a c d b b c d a× × × = −
     

     

Solution (i)
	 By	definition,	

  a b×


  =  

ˆ ˆˆ ˆ ˆ ˆ
ˆˆ ˆ ˆ ˆ1 1 0 4 4 , 0 3 1 8 2 6

1 1 4 2 5 1

i j k i j k
i j c d i j k− = + × = − = − −

− −
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 Then,  ( ) ( )a b c d× × ×
 

   =  

ˆˆ ˆ
ˆˆ ˆ4 4 0 24 24 40

8 2 6

i j k
i j k= − + −

− −
 ... (1)

 On the other hand, we have

  [ , , ] [ , , ]a b d c a b c d−
   

     =  ˆ ˆˆ ˆ ˆ ˆ28(3 ) 12(2 5 ) 24 24 40j k i j k i j k− − + + = − + −




  ... (2)

	 Therefore,	from	equations	(1)	and	(2),	identity	(i)	is	verified.
	 The	verification	of	identity	(ii)	is	left	as	an	exercise	to	the	reader.

EXERCISE 6.3
 1. If  ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 3 , 2 2 , 3 2a i j k b i j k c i j k= − + = + − = + +



 

,  find (i) ( )a b c× ×


 

 (ii) ( )a b c× ×


 

.

 2. For any vector a , prove that ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) 2i a i j a j k a k a× × + × × + × × =
    .

 3.  Prove that [ , , ] 0a b b c c a− − − =
 

    .

 4. If ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 3 , 3 5 2 , 2 3a i j k b i j k c i j k= + − = + + = − − +


  , verify that

   (i) ( ) ( ) ( )a b c a c b b c a× × = ⋅ − ⋅
  

       (ii) ( ) ( ) ( )a b c a c b a b c× × = ⋅ − ⋅
  

       

 5. ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 3 , 2 4 ,a i j k b i j k c i j k= + − = − + − = + +


  	then	find	the	value	of	 ( ) ( )a b a c× ⋅ ×


   .

 6. If , , ,a b c d
 

   are coplanar vectors, then show that ( ) ( ) 0a b c d× × × =
  

  .

 7. If ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 3 , 2 , 3 2a i j k b i j k c i j k= + + = − + = + +


   and ( )a b c la mb nc× × = + +
 

    ,	find	the	
values of , ,l m n  .

 8. If ˆˆ ˆ, ,a b c  are three unit vectors such that b̂  and ĉ  are non-parallel and 1ˆ ˆˆ ˆ( )
2

a b c b× × = ,	find	

the angle between â  and c .

6.7 Application of Vectors to 3-Dimensional  Geometry
 Vectors provide an elegant approach to study straight lines and planes in three dimension. The 
terms	Straight	 line	and	 	Plane	are	undefined.	The	definition	of	a	plane	requires	 the	definition	of	a	
straight	line,	and	likewise,	the	definition	of	a	straight	line	requires	the	definition	of	a	plane.	However,	
we understand about straight lines and planes by intuition.  All straight lines and planes are subsets of 


3 . For brevity, we shall call a straight line simply as line. A plane is a surface which is understood 
as a set P of points in 3  such that , if A B, , and C are any three non-collinear points of  P , then the 
line passing through any two of them is a subset of P . Two planes are said to be intersecting if they 
have at least one point in common and at least one point which lies on one plane but not on the other.  
Two planes are said to be coincident if they have exactly the same points. Two planes are said to be 
parallel but not coincident if they have no point in common. Similarly, a straight line can be understood 
as the set of points common to two intersecting planes. In this section, we obtain vector and Cartesian 
equations of straight line and plane by applying vector methods. By a vector form of equation of a 
geometrical	object,	we	mean	an	equation	which	is	satisfied	by	the	position	vector	of	every	point	of	the	
object. The equation may a vector equation or a scalar equation. 
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6.7.1 Different forms of equation of a straight line
	 A	straight	line	can	be	uniquely	fixed	if		
   a point on the straight line and the direction of the straight line are given
  two points on the straight line are given
	 We	find	equations	of	a	straight	line	in	vector	and	Cartesian	form.	To	find	the	equation	of	a	straight line 
in vector form, an arbitrary point P  with position vector r  on the straight line is taken and a relation 
satisfied	by	 r  is obtained by using the given conditions. This relation is called the vector equation of  the 
straight line. A vector  equation of a straight line may or may not involve parameters. If a vector equation 
involves parameters, then it is called a vector equation in parametric form. If no parameter is involved, 
then the equation is called a vector equation in non – parametric form.

6.7.2  A point on the straight line and the direction of the straight line  
are given 
(a) Parametric form of vector equation

Theorem 6.11
 The	vector	equation	of	a	straight	line	passing	through	a	fixed	point	with	position	vector		a  and 
parallel to a given vector b



 is r a tb= +


  , where t∈ .

Proof
 If a  is the position vector of a given point A  and r is the 

position vector of an arbitrary point P on the straight line, then 

AP r a= −


  .
 Since AP



 is parallel to b


, we have
  r a−   =  ,tb t∈



   ... (1)
  or   r  =  ,a tb t+ ∈





  ... (2)

This is the vector equation of the straight line in parametric form.

Remark 
 The position vector of any point on the line is taken as a tb+



  .

(b) Non-parametric form of vector equation
 Since AP



 is parallel to b


, we have 0AP b× =
  

 That is, ( ) 0r a b− × =
 

  .
 This is known as the vector equation of the straight line in non-parametric form.

(c) Cartesian equation
 Suppose P is ( , , )x y z , A is ( , , )x y z1 1 1  and 1 2 3

ˆˆ ˆb b i b j b k= + +


. Then,  substituting ˆˆ ˆr xi yj zk= + +
 , 

1 1 1
ˆˆ ˆa x i y j z k= + +

 	in	(1)	and	comparing	the	coefficients	of	 ˆˆ ˆ, ,i j k , we get

   1x x−  =  1 1 2 1 3, ,tb y y tb z z tb− = − =  ... (4)

 Conventionally (4) can be written as

   1

1

x x
b
−  =  1 1

2 3

y y z z
b b
− −

=  ... (5)

Fig. 6.18

z

y

x

O

A

P

l

a



b

r
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 which are called the Cartesian equations or symmetric equations of a straight line passing 
through the point 1 1 1( , , )x y z  and parallel to a vector with direction ratios  1 2 3, ,b b b .
Remark 

 (i) Every point on the line (5) is of the form 1 1 1 2 1 3( , , )x tb y tb z tb+ + + , where t∈ .
 (ii) Since the direction cosines of a line are proportional to direction ratios of the line, if , ,l m n  

are the  direction cosines of the line, then the Cartesian equations of the line are

   1x x
l
−  =  1 1y y z z

m n
− −

= .

 (iii) In (5), if any one or two of  1 2 3, ,b b b  are zero, it does not mean that we are dividing by zero. But 

it  means that the corresponding numerator is zero. For instance, If 1 20, 0b b≠ ≠  and b3 0=  , then 

1 1 1

1 2 0
x x y y z z

b b
− − −

= =  should be written as  1 1
1

1 2

, 0x x y y z z
b b
− −

= − = .

 (iv) We know that the direction cosines of  x - axis  are 1,0,0 . Therefore, the equations of x -axis 
are 

   0
1

x −  =  0 0
0 0

y z− −
=  or , 0, 0x t y z= = = , where t∈ .

  Similarly the equations of y -axis  and z -axis are given by 0 0 0
0 1 0

x y z− − −
= =  and 

0 0 0
0 0 1

x y z− − −
= =  respectively.

6.7.3  Straight Line passing through two given points
(a) Parametric form of vector equation

Theorem 6.12
 The parametric form of vector equation of  a line passing through two given points whose 
position vectors are a  and b



 respectively is ( ),r a t b a t= + − ∈


  

 . 

(b) Non-parametric form of  vector equation

 The above equation can be written equivalently in non-parametric form of vector equation as 

( ) ( ) 0r a b a− × − =
 

    
(c) Cartesian form of equation
 Suppose P  is ( , , )x y z , A  is 1 1 1( , , )x y z  and B  

is 2 2 2( , , )x y z . Then substituting ˆˆ ˆr xi yj zk= + +
 , 

1 1 1
ˆˆ ˆa x i y j z k= + +

  and 2 2 2
ˆˆ ˆb x i y j z k= + +



 in 6.7.3(b) 

and	 comparing	 the	 coefficients	 of	 ˆˆ ˆ, ,i j k , we get

1 2 1 1 2 1 1 2 1( ), ( ), ( )x x t x x y y t y y z z t z z− = − − = − − = −  

and so the Cartesian equations of  a line passing 
through two given points 1 1 1( , , )x y z  and 2 2 2( , , )x y z  
are given by Fig. 6.19

O

A
P

B

a
r



b

( , , )
x y z

1 1 1

( , , )x y z
( , , )
x y z

2
2 2

z

y

x
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  1

2 1

x x
x x
−
−

 =  1 1

2 1 2 1

y y z z
y y z z
− −

=
− −

.

 From the above equation, we observe that the direction ratios of  a line passing through two 
given points  1 1 1)( , ,x y z  and 2 2 2( , , )x y z  are given by 2 1 2 1 2 1, ,x x y y z z− − − , which are also given by 

any three numbers proportional to them and in particular 1 2 1 2 1 2, ,x x y y z z− − − .

Example 6.24
 A straight line passes through the point (1, 2, 3)−  and parallel to ˆˆ ˆ4 5 7i j k+ − . Find (i) vector 
equation in parametric form (ii) vector equation in non-parametric form (iii) Cartesian equations of 
the straight line.
Solution
 The required line passes through (1,2, 3)− . So, the position vector of the point is ˆˆ ˆ2 3i j k+ − .

 Let ˆˆ ˆ2 3a i j k= + −
  and ˆˆ ˆ4 5 7b i j k= + −



. Then, we have  

 (i) vector  equation of  the required straight line in parametric form is ,r a tb t= + ∈


 

 .

  Therefore, ˆ ˆˆ ˆ ˆ ˆ( 2 3 ) (4 5 7 ),r i j k t i j k t= + − + + − ∈


 .

 (ii) vector equation of the required straight line in non-parametric form is ( ) 0r a b− × =
 

  .

  Therefore, ˆ ˆˆ ˆ ˆ ˆ( ( 2 3 )) (4 5 7 ) 0r i j k i j k− + − × + − =


 .

 (iii) Cartesian equations of  the required line are 1 1 1

1 2 3

x x y y z z
b b b
− − −

= = .  

  Here, 1 1 1( , , ) (1, 2, 3)x y z = −  and direction ratios of the required line are proportional to 

4,5, 7− . Therefore, Cartesian equations of the straight line are 
1 2 3

4 5 7
x y z− − +

= =
−

.

Example 6.25
 The vector equation in parametric form of a line is ˆ ˆˆ ˆ ˆ ˆ(3 2 6 ) (2 3 )r i j k t i j k= − + + − +

 . Find (i) the 
direction cosines of the straight line (ii) vector equation in non-parametric form of the line  
(iii) Cartesian equations of the line.

Solution
 Comparing the given equation with equation of  a straight line r a tb= +



  , we have ˆˆ ˆ3 2 6a i j k= − +
  

and ˆˆ ˆ2 3b i j k= − +


. Therefore, 

 (i) If 1 2 3
ˆˆ ˆb b i b j b k= + +



, then direction ratios of the straight line are 1 2 3, ,b b b . Therefore, 

direction ratios of the given straight line are proportional to 2, 1,3− , and hence the direction 

cosines of the given straight line are 2 1 3, ,
14 14 14

− .

 (ii) vector equation of the straight line in non-parametric form is given by ( ) 

 

r a b− × = 0 .

  Therefore, ˆ ˆˆ ˆ ˆ ˆ( (3 2 6 )) (2 3 ) 0r i j k i j k− − + × − + =


 .
 (iii) Here 1 1 1( , , ) (3, 2,6)x y z = −  and the direction ratios are proportional to 2, 1,3− .

  Therefore, Cartesian equations of the straight line are 3 2 6
2 1 3

x y z− + −
= =

−
.
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Example 6.26
 Find the vector equation in parametric form and Cartesian equations of the line passing through 

( 4,2, 3)− −  and is parallel to the line 2 3 2 6
4 2 3

x y z− − + −
= =

−
.

Solution
     Rewriting the given equations  as 2 3 3

4 2 3 / 2
x y z+ + −

= =
− −

 and  comparing  with 1 1 1

1 2 3

x x y y z z
b b b
− − −

= = ,  

we have 1 2 3
3 1ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ4 2 (8 4 3 )
2 2

b b i b j b k i j k i j k= + + = − − + = − + −


. Clearly, b


 is parallel to the vector 

ˆˆ ˆ8 4 3i j k+ − . Therefore, a vector equation of the required straight line passing through the given point 

( 4, 2, 3)− −  and parallel to the vector ˆˆ ˆ8 4 3i j k+ −  in parametric form is 

  r  =  ˆ ˆˆ ˆ ˆ ˆ( 4 2 3 ) (8 4 3 ),i j k t i j k t− + − + + − ∈ .

 Therefore, Cartesian equations of the required straight line are given by

  4
8

x +  =  2 3
4 3

y z− +
=

−
.

Example 6.27
 Find the vector equation in parametric form and Cartesian equations of a straight passing through 
the points ( 5,7, 4)− −   and (13, 5,2)− . Find the point where the straight line crosses the xy -plane.

Solution 
 The straight line passes through the points ( 5,7, 4)− −  and (13, 5,2)− , and therefore, direction 

ratios of the straight line joining these two points are 18, 12,6− . That is 3, 2,1− .

 So, the straight line is parallel to ˆˆ ˆ3 2i j k− + . Therefore, 

   vector equation of the straight line in parametric form is ˆ ˆˆ ˆ ˆ ˆ( 5 7 4 ) (3 2 )r i j k t i j k= − + − + − +
  

or ˆ ˆˆ ˆ ˆ ˆ(13 5 2 ) (3 2 )r i j k s i j k= − + + − +
  where ,s t∈ .

   Cartesian equations of the straight line are 5 7 4
3 2 1

x y z+ − +
= =

−
  or 13 5 2

3 2 1
x y z− + −

= =
−

.

An arbitrary point on the straight line is of the form

(3 5, 2 7, 4)t t t− − + −  or (3 13, 2 5, 2)s s s+ − − +

 Since the straight line crosses the xy -plane, the z -coordinate of the point of intersection is zero. 

Therefore, we have 4 0t − = , that is, 4t = , and hence the straight line crosses the xy -plane at 

(7, 1,0)− .

Example 6.28

 Find the angle between the straight line 
x y z+

=
−

= −
3

2
1

2
 with coordinate axes.

Solution 

 If b̂  is a unit vector parallel to the given line, then 
ˆˆ ˆ2 2 1ˆ ˆˆ ˆ(2 2 )ˆˆ ˆ 3| 2 2 |

i j kb i j k
i j k
+ −

= = + −
+ −

. Therefore, 

from	the	definition	of	direction	cosines	of	 b̂ , we have

Chapter 6 Vector Algebra.indd   246 3/10/2019   9:41:13 PM



Applications of Vector Algebra247

   cosα  =  2 2 1, cos , cos
3 3 3

β γ= = − ,

where , ,α β γ  are the angles made by b̂  with the positive x -axis, positive y -axis, and positive  

z -axis, respectively. As the angle between the given  straight line with the coordinate axes are same as the 

angles made by b̂  with the coordinate axes, we have α β γ= 





 = 






 =

−







− − −cos , cos , cos1 1 12
3

2
3

1
3

, 

respectively.

6.7.4 Angle between two straight lines 
(a) Vector form

 The acute angle between two given straight lines r a sb= +


   and r c td= +


   is same as that of the 

angle between b


 and d


. So, | |cos
| | | |

b d
b d

θ ⋅
=

 

   or 1 | |cos
| | | |

b d
b d

θ −  ⋅
=  

 

 

  .

Remark 
 (i) The two given lines r a sb= +



   and r c td= +


   are parallel  

  Û 0θ = Û cos 1θ = Û | | | | | |b d b d⋅ =
   

.

 (ii) The two given lines r a sb= +


   and r c td= +


   are parallel if, and only if  b d
 

, for some 

scalar λ .

 (iii) The two given lines r a sb= +


   and r c td= +


   are perpendicular if, and only if  0b d⋅ =
 

.

(b) Cartesian form

  If two lines are given in Cartesian form as 1 1 1

1 2 3

x x y y z z
b b b
− − −

= =  and 2 2 2

1 2 3

x x y y z z
d d d
− − −

= = , 

then the acute angle θ  between the two given lines is given by

θ =
+ +

+ + + +













−cos | |1 1 1 2 2 3 3

1
2

2
2

3
2

1
2

2
2

3
2

b d b d b d
b b b d d d

Remark 
 (i) The two given lines with direction ratios 1 2 3, ,b b b  and 1 2 3, ,d d d  are parallel if, and only if 

31 2

1 2 3

bb b
d d d

= = .

 (ii) The two given lines with direction ratios 1 2 3, ,b b b  and 1 2 3, ,d d d  are perpendicular if and only 

if  1 1 2 2 3 3 0b d b d b d+ + = .

 (iii) If the direction cosines of two given straight lines are 1 1 1, ,l m n  and 2 2 2, ,l m n , then the angle 

between the two given straight lines is 1 2 1 2 1 2cos | |l l m m n nθ = + + .
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Example 6.29
 Find the angle between the lines ˆ ˆˆ ˆ ˆ ˆ( 2 4 ) (2 2 )r i j k t i j k= + + + + +

  and the straight line passing 

through the points (5,1, 4)  and (9,2,12) .

Solution
 We know that the line ˆ ˆˆ ˆ ˆ ˆ( 2 4 ) (2 2 )r i j k t i j k= + + + + +

  is parallel to the vector ˆˆ ˆ2 2i j k+ + .

 Direction ratios of the straight line joining the two given points (5,1, 4)  and (9,2,12)  are 4,1,8  

and hence this line is parallel to the vector ˆˆ ˆ4 8i j k+ + .

 Therefore, the angle between the given two straight lines is

  θ  =  1 | |cos
| | | |

b d
b d

−  ⋅
 
 

 

  , where ˆˆ ˆ2 2b i j k= + +


 and ˆˆ ˆ4 8d i j k= + +


.

  Therefore,  θ  =  1 1
ˆ ˆˆ ˆ ˆ ˆ| (2 2 ) (4 8 ) | 2cos cosˆ ˆˆ ˆ ˆ ˆ 3| 2 2 | | 4 8 |

i j k i j k
i j k i j k

− − + + ⋅ + +  =    + + + +   
.

Example 6.30

 Find the angle between the straight lines 4 1
2 1 2

x y z− +
= =

−
 and 1 1 2

4 4 2
x y z− + −

= =
−

 and state 

whether they are parallel or perpendicular.

Solution
 Comparing the given lines with the general Cartesian equations of straight lines,

  1

1

x x
b
−  =  1 1

2 3

y y z z
b b
− −

=  and 2 2 2

1 2 3

x x y y z z
d d d
− − −

= =

	 we	find	 1 2 3( , , ) (2,1, 2)b b b = −  and 1 2 3( , , ) (4, 4, 2)d d d = − . Therefore, the angle between the two 

straight lines is

  θ  =  cos | ( )( ) ( )( ) ( )( ) |
( ) ( )

− + − + −

+ + − + − +










1

2 2 2 2 2 2

2 4 1 4 2 2
2 1 2 4 4 2 

= =−cos ( )1 0
2
π

 Thus the two straight lines are perpendicular.

Example 6.31
 Show that the straight line passing through the points (6,7,5)A  and (8,10,6)B  is perpendicular 

to the straight line passing through the points (10,2, 5)C −  and (8,3, 4)D − .

Solution
 The straight line passing through the points (6,7,5)A  and (8,10,6)B  is parallel to the vector 

ˆˆ ˆ2 3b AB OB OA i j k= = − = + +
  

 and the straight line passing through the points (10,2, 5)C −  and 

(8,3, 4)D −  is parallel to the vector ˆˆ ˆ2d CD i j k= = − + +


. Therefore, the angle between the two 

straight lines is the angle between the two vectors  and d


. Since

  b d⋅
 

 =  ˆ ˆˆ ˆ ˆ ˆ(2 3 ) ( 2 ) 0i j k i j k+ + ⋅ − + + = .

the two vectors are perpendicular, and hence the two straight lines are perpendicular.
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Aliter
 We	find	that	direction	ratios	of	the	straight	line	joining	the	points	 (6,7,5)A  and (8,10,6)B  are 

1 2 3( , , ) (2,3,1)b b b =  and direction ratios of the line joining the points (10,2, 5)C −  and (8,3, 4)D −  are 

1 2 3( , , ) ( 2,1,1)d d d = − . Since 1 1 2 2 3 3 (2)( 2) (3)(1) (1)(1) 0b d b d b d+ + = − + + = , the two straight lines are 

perpendicular.
Example 6.32
 Show that the lines 1 2 4

4 6 12
x y z− − −

= =  and 3 3 5
2 3 6

x y z− − −
= =

−
 are parallel.

Solution

 We observe that the straight line 1 2 4
4 6 12

x y z− − −
= =  is parallel to the vector ˆˆ ˆ4 6 12i j k− +  and 

the straight line 3 3 5
2 3 6

x y z− − −
= =

−
 is parallel to the vector ˆˆ ˆ2 3 6i j k− + − . 

 Since ˆ ˆˆ ˆ ˆ ˆ4 6 12 2( 2 3 6 )i j k i j k− + = − − + − , the two vectors are parallel, and hence the two straight 

lines are parallel.

EXERCISE 6.4
 1.  Find the non-parametric form of vector equation and Cartesian equations of the straight line 

passing through the point with position vector ˆˆ ˆ4 3 7i j k+ −  and parallel to the vector 
ˆˆ ˆ2 6 7i j k− + .

 2.  Find the parametric form of vector equation and Cartesian equations of the straight line 

passing through the point ( 2,3, 4)−  and parallel to the straight line 1 3 8
4 5 6

x y z− + −
= =

−
.

 3.  Find the points where the straight line passes through (6,7,4)  and (8,4,9)  cuts the xz  and 

yz  planes.

 4.  Find the direction cosines of the straight line passing through the points (5,6,7)  and (7,9,13) . 
Also,	find	the	parametric	form	of	vector	equation	and	Cartesian	equations	of	the	straight	line	
passing through two given points.

 5.  Find the angle between the following lines.

   (i) ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(4 ) ( 2 2 ), ( 2 4 ) ( 2 2 )r i j t i j k r i j k s i j k= − + + − = − + + − − +
 

   (ii) 4 7 5 ˆ ˆˆ ˆ, 4 (2 )
3 4 5

x y z r k t i j k+ − +
= = = + + +

 .

   (iii) 2 3x y z= = −  and 6 4x y z= − = − .

 6. The vertices of ABC∆  are (7, 2,1), (6,0,3)A B , and (4,2,4)C . Find ABC∠ .

 7. If the straight line joining the points (2,1, 4)  and ( 1,4, 1)a − −  is parallel to the line joining the 

points (0, 2, 1)b −  and (5,3, 2)− ,	find	the	values	of	 a  and b .

 8. If the straight lines 5 2 1
5 2 5 1
x y z
m
− − −

= =
+ −

 and  x y
m

z
=

+
=

−
−

2 1
4

1
3

are perpendicular to each 

other,		find	the	value	of	m .

 9.  Show that the points (2,3, 4), ( 1, 4,5)−  and (8,1,2)  are collinear.
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6.7.5  Point of intersection of two straight lines

 If  1 1 1

1 2 3

x x y y z z
a a a
− − −

= =  and 2 2 2

1 2 3

x x y y z z
b b b
− − −

= =  are two lines, then every point on the 

line is of the form 1 1 1 2 1 3( , , )x sa y sa z sa+ + +  and 2 1 2 2 2 3( , , )x tb y tb z tb+ + +  respectively. If the lines 

are intersecting, then there must be a common point. So, at the point of intersection, for some values 
of s  and t , we have

  1 1 1 2 1 3( , , )x sa y sa z sa+ + +  =  2 1 2 2 2 3( , , )x tb y tb z tb+ + +

  Therefore,   1 1x sa+  =  2 1 1 2 2 2 1 3 2 3, ,x tb y sa y tb z sa z tb+ + = + + = +

 By solving any two of the above three equations, we obtain the values of s  and t . If s  and t  
satisfy the remaining equation, the lines are intersecting lines. Otherwise the lines are non-intersecting . 
Substituting the value of s , (or by substituting the value of t ), we get the point of intersection of two 
lines.
 If the equations of straight lines are given in vector form, write them in cartesian form and 
proceed	as	above	to	find	the	point	of	intersection.

Example 6.33

 Find the point of intersection of the lines 1 2 3
2 3 4

x y z− − −
= =  and 4 1

5 2
x y z− −

= = .

Solution 
 Every point on the line 1 2 3

2 3 4
x y z s− − −

= = =  (say) is of the form (2 1, 3 2, 4 3)s s s+ + +  and 

every point on the line 4 1
5 2

x y z t− −
= = =  (say) is of the form (5 4, 2 1, )t t t+ + . So, at the point of 

intersection, for some values of s  and t , we have

  (2 1, 3 2, 4 3)s s s+ + +  =  (5 4, 2 1, )t t t+ +

 Therefore, 2 5 3 3 2 1s t s t− = − = −,  and 4 3s t− = − .	 Solving	 the	 first	 two	 equations	 we	 get	

1, 1t s= − = − . These values of s  and t  satisfy the third equation. Therefore, the given lines intersect. 

Substituting, these values of t  or s  in the respective points, the point of intersection is ( 1, 1, 1)− − − .

6.7.6  Shortest distance between two straight lines
 We have just explained how the point of intersection of two lines are found and we have also 
studied how to determine whether the given two lines are parallel or not.

Definition 6.6

 Two lines are said to be coplanar if they lie in the same plane. 

Note
 If two lines are either parallel or intersecting, then they are coplanar.

Definition 6.7

 Two lines in space are called skew lines if they are not parallel and do not intersect 
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Note
 If two lines are skew lines, then they are non coplanar.
 If the lines are not parallel and intersect, the distance 
between them is zero. If they are parallel and non-intersecting, 
the distance is determined by the length of the line segment 
perpendicular to both the parallel lines. In the same way, the 
shortest	distance	between	two	skew	lines	is	defined	as	the	length	
of the line segment perpendicular to both the skew lines. Two 
lines will either be parallel or skew.

Theorem 6.13
 The shortest distance between the two parallel lines r a sb= +



   and r c tb= +


   is given by 
| ( ) |

| |
c a bd

b
− ×

=


 

 , where | |


b ¹ 0 .

Proof 
 The given two parallel lines r a sb= +



   and r c tb= +


   are 

denoted by 1L  and 2L  respectively. Let A  and B  be the points 

on 1L  and 2L  whose position vectors are a  and c  respectively. 

The two given lines are parallel to b


.

 Let AD  be a perpendicular to the two given lines. If θ  is 

the acute angle between AB


 and b


, then

  sinθ  =  
| | | ( ) |

| | | || | | |
AB b c a b

c a bAB b
× − ×

=
−

  

 

 

 

  ... (1)

 But, from the right angle triangle ABD ,

  sinθ   
d

AB
d

AB
d

c a
= =

−| | | |
� ��� � �  ... (2)

  From (1) and (2), we have d  =  | ( ) |
| |

c a b
b

− ×


 

  , where | |


b ¹ 0 .

Theorem 6.14

 The shortest distance between the two skew lines r a sb= +


   and r c td= +


   is given by

  δ  =  | ( ) ( ) |
| |

c a b d
b d

− ⋅ ×
×

 

 

  , where | |
 

b d× ≠ 0

Proof 
 The two skew lines r a sb= +



   and r c td= +


   are denoted by 1L  and 2L  respectively.

 Let A  and C  be the points on 1L  and 2L  with position vectors a  and c  respectively.

Fig. 6.20

Fig. 6.21

L2

L1

D

L1

L2

d

θ

( )B c�
b
�

( )A a�

�
�

a
c

−
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 From the given equations of skew lines, we observe that 1L  is 

parallel to the vector b


 and 2L  is parallel to the vector d


. So, b d×
 

 

is perpendicular to the lines 1L  and 2L .

 Let SD  be the line segment perpendicular to both the lines 1L  

and 2L . Then the vector SD


 is perpendicular to the vectors b


 and d


 

and therefore it is parallel to the vector b d×
 

.

 So, 
| |
b d
b d
×
×

 

   is a unit vector in the direction of SD


. Then, the 

shortest distance | |SD


 is the absolute value of the projection of AC


 

on SD


. That is,

  δ  =  | | |SD AC=
 

. (Unit vector in the direction of SD


)| ( )
| |
b dc a
b d
×

= − ⋅
×

 

 

   

  δ  =  | ( ) ( ) |
| |

c a b d
b d

− ⋅ ×
×

 

 

  , where | |
 

b d× ≠ 0 .

Remark

 (i) It follows from theorem (6.14) that two straight lines r a sb= +


   and r c td= +


   intersect 

each other (that is, coplanar) if ( ) ( ) 0c a b d− ⋅ × =
 

  .

 (2) If two lines 1 1 1

1 2 3

x x y y z z
b b b
− − −

= =  and 2 2 2

1 2 3

x x y y z z
d d d
− − −

= =  intersect (that is, coplanar), 

then we have 
2 1 2 1 2 1

1 2 3

1 2 3

0
x x y y z z

b b b
d d d

− − −
=

Example 6.34

 Find the equation of a straight line passing through the point of intersection of the straight lines 

ˆ ˆˆ ˆ ˆ ˆ( 3 ) (2 3 2 )r i j k t i j k= + − + + +
  and 2 4 3

1 2 4
x y z− − +

= = , and perpendicular to both straight lines.

Solution

 The Cartesian equations of the straight line ˆ ˆˆ ˆ ˆ ˆ( 3 ) (2 3 2 )r i j k t i j k= + − + + +
  is

1 3 1
2 3 2

x y z s− − +
= = =  (say)

 Then any point on this line is of the form (2 1, 3 3, 2 1)s s s+ + −  ... (1)

 The Cartesian equation of the second line is 2 4 3
1 2 4

x y z t− − +
= = =  (say)

 Then any point on this line is of the form ( 2, 2 4,4 3)t t t+ + −   ... (2)

Fig. 6.22
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 If the given lines intersect, then there must be a common point. Therefore, for some s t, ∈ ,
 we have (2 1, 3 3, 2 1) ( 2, 2 4,4 3)s s s t t t+ + − = + + − .

 Equating the coordinates of ,x y  and z  we get

2 1, 3 2 1s t s t− = − =  and 2 1s t− = − .

	 Solving	the	first	two	of	the	above	three	equations,	we	get	 1s =  and 1t = . These values of s  and 

t  satisfy the third equation. So, the lines are intersecting.

 Now, using the value of s  in (1) or the value of t  in (2), the point of intersection (3,6,1)  of these 
two straight lines is obtained.

 If we take ˆˆ ˆ2 3 2b i j k= + +


 and ˆˆ ˆ2 4d i j k= + +


, then 

ˆˆ ˆ
ˆˆ ˆ2 3 2 8 6

1 2 4

i j k
b d i j k× = = − +
 

 is a vector 

perpendicular to both the given straight lines. Therefore, the required straight line passing through (3,6,1)  

and perpendicular to both the given straight lines is the same as the straight line passing through 

(3,6,1)  and parallel to ˆˆ ˆ8 6i j k− + . Thus, the equation of  the required straight line is 

ˆ ˆˆ ˆ ˆ ˆ(3 6 ) (8 6 ),r i j k m i j k k= + + + − + ∈


 .

Example 6.35

 Determine whether the pair of straight lines ˆ ˆˆ ˆ ˆ ˆ(2 6 3 ) (2 3 4 )r i j k t i j k= + + + + +
 , 

 ˆ ˆˆ ˆ ˆ(2 3 ) ( 2 3 )r j k s i j k= − + + +
  are parallel. Find the shortest distance between them.

Solution
 Comparing the given two equations with 

 



r a sb= +  and  



r c sd= +

 We have ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ2 6 3 , 2 3 4 , 2 3 , 2 3a i j k b i j k c j k d i j k= + + = + + = − = + +
 

 

 Clearly, b


 is not a scalar multiple of d


. So, the two vectors are not parallel and hence the two 

lines are not parallel.
 The shortest distance between the two straight lines is given by

  δ  =  | ( ) ( ) |
| |

c a b d
b d

− ⋅ ×
×

 

 

   

  Now,  b d×
 

 =  

ˆˆ ˆ
ˆˆ ˆ2 3 4 2

1 2 3

i j k
i j k= − +

  So,  ( ) ( )c a b d− ⋅ ×
 

   =  ˆ ˆˆ ˆ ˆ ˆ( 2 4 6 ) ( 2 ) 0i j k i j k− − − ⋅ − + = .

 Therefore, the distance between the two given straight lines is zero.Thus, the given lines intersect 
each other.
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Example 6.36

 Find the shortest distance between the two given straight lines ˆ ˆˆ ˆ ˆ ˆ(2 3 4 ) ( 2 2 )r i j k t i j k= + + + − + −
  

and 3 2
2 1 2

x y z− +
= =
−

.

Solution
 The parametric form of vector equations of the given straight lines are

  r  =  ˆ ˆˆ ˆ ˆ ˆ(2 3 4 ) ( 2 2 )i j k t i j k+ + + − + −

  and   r  =  ˆ ˆˆ ˆ ˆ(3 2 ) (2 2 )i k t i j k− + − +

 Comparing the given two equations with ,r a tb r c sd= + = +
 

   

 we have ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ2 3 4 , 2 2 , 3 2 , 2 2a i j k b i j k c i k d i j k= + + = − + − = − = − +
 

  .

 Clearly, b


 is a scalar multiple of d


, and hence the two straight lines are parallel. We know that 

the shortest distance between two parallel straight lines is given by | ( ) |
| |

c a bd
b

− ×
=



 

 .

  Now,   ( )c a b− ×


   =  

ˆˆ ˆ
ˆˆ ˆ1 3 6 12 14 5

2 1 2

i j k
i j k− − = + −

− −
 

  Therefore,  d  =  
ˆˆ ˆ|12 14 5 | 365

ˆˆ ˆ 3| 2 2 |
i j k

i j k
+ −

=
− + −

.

Example 6.37

 Find the coordinates of the foot of the perpendicular drawn from the point ( 1, 2,3)−  to the 
straight line ˆ ˆˆ ˆ ˆ ˆ( 4 3 ) (2 3 )r i j k t i j k= − + + + +

 .	Also,	find	 the	shortest	distance	from	the	point	 to	 the	
straight line.

Solution

 Comparing the given equation ˆ ˆˆ ˆ ˆ ˆ( 4 3 ) (2 3 )r i j k t i j k= − + + + +
  with 

r a tb= +


  , we get ˆˆ ˆ4 3a i j k= − +
 , and ˆˆ ˆ2 3b i j k= + +



. We denote the given 

point ( 1, 2,3)−  by D , and the point (1, 4,3)−  on the straight line by A . If F  

is the foot of the perpendicular from  to the straight line, then F  is of the 

form (2 1, 3 4, 3)t t t+ − +  and ˆˆ ˆ(2 2) (3 6)DF OF OD t i t j tk= − = + + − +
  

.

 Since b


 is perpendicular to DF


, we have 

  b DF⋅


 =  0 2(2 2) 3(3 6) 1( ) 0 1t t t t⇒ + + − + = ⇒ =

 Therefore, the coordinate of F is ( , , )3 1 4-
 Now, the perpendicular distance from the given point to the given line is 

  DF  =  2 2 2| | 4 ( 3) 1 26DF = + − + =


 units.

Fig. 6.23
F Line

D

b
�
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EXERCISE 6.5
 1. Find the parametric form of vector equation and Cartesian equations of a straight line passing 

through (5,2,8)  and is perpendicular to the straight lines ˆ ˆˆ ˆ ˆ ˆ( ) (2 2 )r i j k s i j k= + − + − +
  and 

  ˆ ˆˆ ˆ ˆ ˆ(2 3 ) ( 2 2 )r i j k t i j k= − − + + +
 .

 2. Show that the lines ˆ ˆˆ ˆ ˆ ˆ(6 2 ) ( 2 3 )r i j k s i j k= + + + + −
  and  ˆ ˆˆ ˆ ˆ ˆ(3 2 2 ) (2 4 5 )r i j k t i j k= + − + + −

  

are	skew	lines	and	hence	find	the	shortest	distance	between	them.

 3. If the two lines 1 1 1
2 3 4

x y z− + −
= =  and  3

1 2
x y m z− −

= = 	intersect	at	a	point,	find	the	value	

of m .
 4. Show that the lines x y z−

=
−
−

− =
3

3
3

1
1 0,  and x z y−

=
−

− =
6

2
1

3
2 0, 	intersect.	Also	find	

the point of intersection.
 5.  Show that the straight lines 1 2 12x y z+ = = −  and 2 6 6x y z= + = − 	are	skew	and	hence	find	

the shortest distance between them.
 6. Find the parametric form of vector equation of the straight line passing through ( 1,2,1)−  and 

parallel to the straight line  ˆ ˆˆ ˆ ˆ ˆ(2 3 ) ( 2 )r i j k t i j k= + − + − +
 and	hence	find	the	shortest	distance	

between the lines.
 7. Find the foot of the perpendicular drawn from the point (5, 4, 2)  

  to the line 1 3 1
2 3 1

x y z+ − −
= =

−
.	Also,	find	the	equation	of	the	perpendicular.

6.8 Different forms of Equation of a plane
 We have already seen the notion of a plane.

Definition 6.8

 A straight line which is perpendicular to a plane is called a normal to the plane. 

Note
 Every normal to a plane is perpendicular to every straight line lying on the plane.
	 A	plane	is	uniquely	fixed	if	any	one	of	the	following	is	given:
   (i)  a  normal to the plane and the distance of the plane from the origin
   (ii)  a point of the plane and a normal to the plane
   (iii)  three non-collinear points of the plane
   (iv) a point of the plane and two non-parallel lines or vectors which are parallel to the 

plane
   (v) two points of the plane and a straight line or vector parallel to the plane  but not 

parallel to the line joining the two points.
	 Let	us	find	the	vector	and	Cartesian	equations	of		planes	using	the	above	situations.

6.8.1 Equation of a plane when a normal to the plane and the distance of 
the plane from the origin are given
(a) Vector equation of a plane in  normal form

Theorem 6.15
 The equation of the plane at a distance p from the origin and perpendicular to the unit normal 

vector d̂  is ˆr d p⋅ =
 .
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Proof 
 Consider a plane whose perpendicular distance from the origin is p .
 Let A be the foot of the perpendicular from O to the plane.

 Let d̂  be the unit normal vector in the direction of OA


.  

Then ˆOA pd=


.

 If r  is the position vector of an arbitrary point P on the plane, 

then AP


 is perpendicular to OA


.

 Therefore, AP OA⋅
 

 =  ˆ ˆ0 ( ) 0r pd pd⇒ − ⋅ =


         ˆ ˆ( ) 0r pd d⇒ − ⋅ =


 which gives ˆr d⋅  =  p . ... (1)

 The above equation is called the vector equation of the plane in normal form.

(b) Cartesian equation of a plane in normal form

 Let , ,l m n  be the direction cosines of d̂ . Then we have ˆ ˆˆ ˆd li mj nk= + + .
 Thus,  equation (1) becomes

   ˆˆ ˆ( )r li mj nk⋅ + +
  =  p  

 which implies ˆ ˆˆ ˆ ˆ ˆ( ) ( )xi yj zk li mj nk+ + ⋅ + + =  p  or lx my nz p+ + =   ... (2)

 Equation (2) is called the Cartesian equation of the plane in normal form.
Remark 

 (i) If the plane passes through the origin, then 0p = . So, the equation of the plane is 

0.lx my nz+ + =

 (ii) If d


 is normal vector to the plane, then ˆ
| |
dd
d

=


  is a unit normal to the plane. So, the vector 

equation of the plane is 
| |
dr p
d

⋅ =




   or   r d q⋅ =


 , where | |q p d=


. The equation r d q⋅ =


  is 

the vector equation of a plane in standard form.
Note
 In the standard form 





r d q⋅ = , 


d  need not be a unit normal and q need not be the perpendicular 
distance.

6.8.2 Equation of a plane perpendicular to a vector and passing through 
a given point
(a) Vector form of equation

 Consider a plane passing through a point A  with position vector a  

and n  is a normal vector to the given plane. 

 Let r  be the position vector of an arbitrary point P . Fig. 6.25

Fig. 6.24
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 Then AP


 is perpendicular to n .

 So, 0AP n⋅ =


  which gives ( ) 0r a n− ⋅ =
   . ... (1)

which is the vector form of the equation of a plane passing through a point with position vector a  and 
perpendicular to n .

Note
   ( )  r a n− ⋅ = 0  ⇒     r n a n⋅ = ⋅   ⇒ ⋅ =

 r n q , where q a n= ⋅
 

.

(b) Cartesian form of equation
 If , ,a b c are the direction ratios of n , then we have ˆˆ ˆn ai bj ck= + +

 . Suppose, A is 1 1 1( , , )x y z  

then equation (1) becomes 1 1 1
ˆ ˆˆ ˆ ˆ ˆ(( ) ( ) ( ) ) ( ) 0x x i y y j z z k ai bj ck− + − + − ⋅ + + = . That is,

  1 1 1( ) ( ) ( )a x x b y y c z z− + − + −  =  0  

which is the Cartesian equation of a plane, normal to a vector with direction ratios , ,a b c  and  passing 

through a given point 1 1 1( , , )x y z .

6.8.3  Intercept form of the equation of a plane
 Let the plane r n q⋅ =

   meets the coordinate axes at , ,A B C  

respectively such that the intercepts on the axes are 
, ,OA a OB b OC c= = = . Now position vector of the point A  is ˆai . 

Since A lies on the given plane, we have ˆai n q⋅ =
  which gives 

ˆ qi n
a

⋅ =
 . Similarly, since the vectors ˆbj  and ˆck  lie on the given plane, 

we have ˆ qj n
b

⋅ =
  and ˆ qk n

c
⋅ =
 . Substituting ˆˆ ˆr xi yj zk= + +

  in 

 r n q⋅ = , we get  ˆˆ ˆ .xi n yj n zk n q⋅ + ⋅ + ⋅ =
     So q q qx y z q

a b c
     + + =     
     

.

 Dividing by q, we get, 1x y z
a b c
+ + = . This is called the  intercept form of equation of the plane 

having intercepts , ,a b c  on the , ,x y z  axes respectively.

Theorem 6.16
 The general equation 0ax by cz d+ + + =  of	first	degree	in , ,x y z  represents a plane.

Proof 
 The equation 0ax by cz d+ + + =  can be written in the vector form as follows

 ˆ ˆˆ ˆ ˆ ˆ( ) ( )xi yj zk ai bj ck d+ + ⋅ + + = −   or  r n d⋅ = −
  .

 Since this is the vector form of the equation of a plane in standard form, the given equation 
0ax by cz d+ + + =  represents a plane. Here ˆˆ ˆn ai bj ck= + +

  is a vector normal to the plane.

Note
 In the general equation 0ax by cz d+ + + =  of a plane, , ,a b c  are direction ratios of the normal  

to the plane.

Fig. 6.26
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Example 6.38
 Find the vector and Cartesian form of the equations of a plane which is at a distance of 12  units 

from the origin and perpendicular to ˆˆ ˆ6 2 3i j k+ − .

Solution
 Let ˆˆ ˆ6 2 3d i j k= + −



 and 12p = .

 If d̂  is the unit normal vector in the direction of the vector ˆˆ ˆ6 2 3i j k+ − ,

 then 1ˆ ˆˆ ˆ(6 2 3 )
7| |

dd i j k
d

= = + −


 .

 If r  is the position vector of an arbitrary point ( , , )x y z  on the plane, then using ˆr d p⋅ =
 , the 

vector equation of the plane in normal form is 1 ˆˆ ˆ(6 2 3 ) 12
7

r i j k⋅ + − =
 .

 Substituting ˆˆ ˆr xi yj zk= + +
  in the above equation, we get 1ˆ ˆˆ ˆ ˆ ˆ( ) (6 2 3 ) 12

7
xi yj zk i j k+ + ⋅ + − = . 

Applying dot product in the above equation and simplifying, we get 6 2 3 84,x y z+ − =  which is the 
Cartesian equation of the required plane.

Example 6.39
 If the Cartesian equation of a plane is 3 4 3 8x y z− + = − ,	find	the	vector	equation	of	the	plane	in	
the standard form.
Solution
 If  ˆˆ ˆr xi yj zk= + +

  is the position vector of an arbitrary point ( , , )x y z  on the plane, then the given 

equation can be written as ˆ ˆˆ ˆ ˆ ˆ( ) (3 4 3 ) 8xi yj zk i j k+ + ⋅ − + = −  or ˆ ˆˆ ˆ ˆ ˆ( ) ( 3 4 3 ) 8xi yj zk i j k+ + ⋅ − + − = . That 

is, ˆˆ ˆ( 3 4 3 ) 8r i j k⋅ − + − =
  which is the vector equation of the given plane in standard form.

Example 6.40
 Find the direction cosines and length of the perpendicular from the origin to the plane 

ˆˆ ˆ(3 4 12 ) 5r i j k⋅ − + =
 .
Solution
 Let ˆˆ ˆ3 4 12d i j k= − +



 and 5q = .

 If d̂  is the unit vector in the direction of the vector ˆˆ ˆ3 4 12i j k− + , then 1ˆ ˆˆ ˆ(3 4 12 )
13

d i j k= − + .

 Now, dividing the given equation by 13 , we get

  3 4 12 ˆˆ ˆ
13 13 13

r i j k ⋅ − + 
 

  =  5
13

which is the equation of the plane in the normal form ˆr d p⋅ =
 .

 From this equation, we infer that  1ˆ ˆˆ ˆ(3 4 12 )
13

d i j k= − +  is a unit vector normal to the plane from 

the origin. Therefore, the direction cosines of d̂  are 3 4 12, ,
13 13 13

−  and the length of the perpendicular 

from the origin to the plane is 5
13

.
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Example 6.41

 Find the vector and Cartesian equations of the plane passing through the point with position 
vector ˆˆ ˆ4 2 3i j k+ −  and normal to  vector ˆˆ ˆ2i j k− + .

Solution

 If the position vector of the given point is ˆˆ ˆ4 2 3a i j k= + −
  and ˆˆ ˆ2n i j k= − +

 , then the equation 

of the plane passing through a point and normal to a vector is given by ( ) 0r a n− ⋅ =
    or  r n a n⋅ = ⋅

    .

  Substituting a  =  ˆˆ ˆ4 2 3i j k+ −  and ˆˆ ˆ2n i j k= − +
  in the above equation, we get

  ˆˆ ˆ(2 )r i j k⋅ − +
  =  ˆ ˆˆ ˆ ˆ ˆ(4 2 3 ) (2 )i j k i j k+ − ⋅ − +

 Thus, the required vector equation of the plane is ˆˆ ˆ(2 ) 3r i j k⋅ − + =
 . If ˆˆ ˆr xi yj zk= + +

  then we 

get the Cartesian equation of the plane 2 3x y z− + = .

Example 6.42

 A variable plane moves in such a way that the sum of the reciprocals of its intercepts on the 
coordinate	axes	is	a	constant.	Show	that	the	plane	passes	through	a	fixed	point

Solution

 The equation of the plane having intercepts , ,a b c  on the , ,x y z   axes respectively is  

1x y z
a b c
+ + = . Since the sum of the reciprocals of the intercepts on the coordinate axes is a constant, 

we have 1 1 1 k
a b c
+ + = , where k is a constant, and which can be written as 1 1 1 1 1 1 1

a k b k c k
     + + =     
     

.

 This shows that the plane 1x y z
a b c
+ + = 	passes	through	the	fixed	point	 1 1 1, ,

k k k
 
 
 

.

EXERCISE 6.6
 1. Find a parametric form of  vector equation of a plane which is at a distance of 7 units from the 

origin having 3, 4,5−  as direction ratios of a normal to it.

 2. Find the direction cosines of the normal to the plane 12 3 4 65x y z+ − = .	 Also,	 find	 

the non-parametric form of vector equation of a plane and the length of the perpendicular to 
the plane from the origin.

 3. Find the vector and Cartesian equations of the plane passing through the point with position 
vector ˆˆ ˆ2 6 3i j k+ +  and normal to the vector ˆˆ ˆ3 5i j k+ + .

 4. A plane passes through the point ( 1,1, 2)−  and the normal to the plane of magnitude 3 3   
makes equal acute angles with the coordinate axes. Find the equation of the plane. 

 5. Find the intercepts cut off by the plane ˆˆ ˆ(6 4 3 ) 12r i j k⋅ + − =
  on the coordinate axes. 

        6.  If a plane meets the coordinate axes at , ,A B C  such that the centriod of the triangle ABC  is 

the point ( , , )u v w ,	find	the	equation	of	the	plane.
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6.8.4 Equation of a plane passing through three given non-collinear points
(a) Parametric form of vector equation

Theorem 6.17
 If three non-collinear points with position vectors , ,a b c



   are given, then the vector equation of the 

plane passing through the given points in parametric form is 
 ( ) ( )r a s b a t c a= + − + −



     , where 0, 0b c≠ ≠
  

  and ,s t∈ .

Proof 
 Consider a plane passing through three non-collinear points 

, ,A B C  with position vectors , ,a b c


   respectively. Let r  be the 

position vector of an arbitrary point P  on the plane. Take a point D  

on AB  (produced) such that AD


 is parallel to AB


 and DP


 is 

parallel to AC


. Therefore, 
  AD



 =  ( ), ( )s b a DP t c a− = −


   .

 Now, in triangle ADP , we have

  AP


 =  AD DP+
 

 or ( ) ( )r a s b a t c a− = − + −


    , 

where 0, 0b c≠ ≠
  

  and ,s t∈ .

  That is,  r  =  ( ) ( )a s b a t c a+ − + −


    .
 This is the parametric form of vector equation of the plane passing through the given three  
non-collinear points.

(b) Non-parametric form of vector equation

 Let , ,A B  and C  be the three non collinear points on the plane with 

position vectors , ,a b c


   respectively. Then  atleast two of them are  

non-zero vectors. Let us take 0b ≠
 

 and 0c ≠


 . Now AB b a= −
 

  and 

AC c a= −


  . The vectors ( )b a−


  and ( )c a−   lie on the plane. Since 

, ,a b c


 

 are non-collinear, AB


 is not parallel to AC


. Therefore, 

( ) ( )b a c a− × −


    is perpendicular to the plane.

 If r  is the position  vector of an arbitrary point  ( , , )P x y z on the 
plane, then the equation of the plane passing through the point A  with 
position vector a  and perpendicular to the vector ( ) ( )b a c a− × −



    is given by

  ( ) (( ) ( ))r a b a c a− ⋅ − × −


      =  0    or  [ , , ] 0r a b a c a− − − =


    

 This is the non-parametric form of vector equation of the plane passing through three  
non-collinear points.

(c) Cartesian form of equation

 If 1 1 1 2 2 2( , , ), ( , , )x y z x y z  and 3 3 3( , , )x y z  are the coordinates of three non-collinear points , ,A B C  with 

position vectors , ,a b c


   respectively and ( , , )x y z  is the coordinates of the point P  with position vector  

r , then we have 1 1 1 2 2 2 3 3 3
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, ,a x i y j z k b x i y j z k c x i y j z k= + + = + + = + +


   and ˆˆ ˆr xi yj zk= + +
 . 

Fig. 6.27

Fig. 6.28
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 Using  these vectors, the non-parametric form of vector equation of the plane passing through the 
given three non-collinear points can be equivalently written as

  
1 1 1

2 1 2 1 2 1

3 1 3 1 3 1

x x y y z z
x x y y z z
x x y y z z

− − −
− − −
− − −

 =  0  

which is the Cartesian equation of the plane passing through three non-collinear points.

6.8.5 Equation of a plane passing through a given point and parallel to 
two given non-parallel vectors.
(a) Parametric form of vector equation 

 Consider a plane passing through a given point A  with position vector a  and parallel to two  

given non-parallel vectors b


 and c . If r  is the position vector of an arbitrary point P  on the plane, 

then the vectors ( ),r a b−


   and c  are coplanar. So, ( )r a−   lies in the plane containing b


 and c . Then, 

there exists scalars ,s t∈  such that r a sb tc− = +


    which implies

  r  =  a sb tc+ +


  , where ,s t∈  ... (1)

 This is the parametric form of vector equation of the plane passing through a given point and 
parallel to two given non-parallel vectors .

(b) Non-parametric form of vector equation 
 Equation (1) can be equivalently written as

  ( ) ( )r a b c− ⋅ ×


    =  0  ... (2)

which is  the non-parametric form of vector equation of the plane passing through a given point and 
parallel to two given non-parallel vectors .

(c) Cartesian form of equation

 If 1 1 1 1 2 3 1 2 3
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, ,a x i y j z k b b i b j b k c c i c j c k= + + = + + = + +


   and ˆˆ ˆr xi yj zk= + +
 , then the equation 

(2) is equivalent to

  
1 1 1

1 2 3

1 2 3

x x y y z z
b b b
c c c

− − −
 =  0

 This is the Cartesian equation of the plane passing through a given point and parallel to two given 
non-parallel vectors.

6.8.6 Equation of a plane passing through two given distinct points and 
is parallel to a non-zero vector
(a) Parametric form of vector equation

 The parametric form of vector equation of the plane passing through two given distinct points A  

and B  with position vectors a  and b


, and parallel to a non-zero vector c  is
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  r  =  ( )a s b a tc+ − +


     or  (1 )r s a sb tc= − + +


     ... (1)

where , , ( )s t b a∈ −




  and c  are not parallel vectors.

(b) Non-parametric form of vector equation
  Equation (1) can be written equivalently in non-parametric vector form as 
  ( ) (( ) )r a b a c− ⋅ − ×



     =  0  ... (2)

where ( )b a−


  and c  are not parallel vectors.

(c) Cartesian form of equation

 If 1 1 1 2 2 2 1 2 3
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, , 0a x i y j z k b x i y j z k c c i c j c k= + + = + + = + + ≠
 

   and ˆˆ ˆr xi yj zk= + +
 , then 

equation (2) is equivalent to 

  
1 1 1

2 1 2 1 2 1

1 2 3

x x y y z z
x x y y z z

c c c

− − −
− − −  =  0

 This is the required Cartesian equation of the plane.

Example 6.43

 Find the non-parametric form of vector equation, and Cartesian equation of the plane passing 
through the point (0,1, 5)−  and parallel to the straight lines ˆ ˆˆ ˆ ˆ ˆ( 2 4 ) (2 3 6 )r i j k s i j k= + − + + +

  and  
ˆ ˆˆ ˆ ˆ ˆˆ ( 3 5 ) ( )r i j k t i j k= − + + + − .

Solution
 We observe that the required plane is parallel to the vectors ˆ ˆˆ ˆ ˆ ˆ2 3 6 ,b i j k c i j k= + + = + −



  and  

passing through the point (0,1, 5)− with position vector a . We observe that 


b is not parallel to c . 

Then the vector equation of the plane in non-parametric form is given by ( ) ( ) 0r a b c− ⋅ × =


   . …(1)

 Substituting ˆˆ 5a j k= −
  and b c×



  =  

ˆˆ ˆ
ˆˆ ˆ2 3 6 9 8

1 1 1

i j k
i j k= − + −

−
 in equation (1), we get

 ˆ ˆˆ ˆ ˆ( ( 5 )) ( 9 8 )r j k i j k− − ⋅ − + −


 =  0 , which implies that

 
ˆˆ ˆ( 9 8 )r i j k⋅ − + −



 = 13 .

 If ˆˆ ˆr xi yj zk= + +
  is the position vector of an arbitrary point on the plane, then from the above 

equation, we get the Cartesian equation of the plane as 9 8 13x y z− + − = or 9 8 13 0x y z− + + = .

Example 6.44
 Find the vector parametric, vector non-parametric and Cartesian form of the equation of the plane 

passing through the points ( 1,2,0),  (2,2 1)− − and parallel to the straight line 1 2 1 1
1 2 1

x y z− + +
= =

−
.

Solution
 The required plane is parallel to the given line and so it is parallel to  the vector ˆˆ ˆc i j k= + −

 and 
the plane passes through the points ˆ ˆ2 ,a i j= − +

 ˆˆ ˆ2 2b i j k= + −


.
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   vector equation of the plane in parametric form is ( )r a s b a tc= + − +


    , where s, t ∈  

which implies that  ( ) ( ) ( )ˆ ˆˆ ˆ ˆ ˆ ˆ2 3r i j s i k t i j k= − + + − + + −
  , where s, t ∈ .

   vector equation of the plane in non-parametric form is ( ) (( ) ) 0r a b a c− ⋅ − × =


    .

  Now,

ˆˆ ˆ
ˆˆ ˆ( ) 3 0 1 2 3

1 1 1

i j k
b a c i j k− × = − = + +

−



  ,

  we have ˆˆ ˆ ˆ ˆ( ( 2 )) ( 2 3 ) 0r i j i j k− − + ⋅ + + =
 ˆˆ ˆ( 2 3 ) 3r i j k⇒ ⋅ + + =



   If ˆˆ ˆr xi yj zk= + +
  is the position vector of an arbitrary point on the plane, then from the  

above equation, we get the Cartesian equation of the plane as 2 3 3x y z+ + = .

EXERCISE 6.7

 1.  Find the non-parametric form of vector equation, and Cartesian equation of the plane 

passing through the point (2,3,6) and parallel to the straight lines 1 1 3
2 3 1

x y z− + −
= =  and 

3 3 1
2 5 3

x y z+ − +
= =

− −
 2.  Find the parametric form of vector equation, and Cartesian equations of the plane passing 

through the points (2,2,1), (9,3,6) and perpendicular to the plane 2 6 6 9x y z+ + = .
 3.  Find parametric form of vector equation and Cartesian equations of the plane passing through 

the points (2, 2,1), (1, 2,3)−  and parallel to the straight line passing through the points ( )2,1, 3−
and ( )1,5, 8− − . 

 4.  Find the non-parametric form of vector equation of the plane passing through the point (1, 2, 4)−  

and perpendicular to the plane 2 3 11x y z+ − =  and parallel to the line 7 3
3 1 1

x y z+ +
= =

−
.

 5.  Find the parametric form of vector  equation, and Cartesian equations of the plane containing 

the line ˆ ˆˆ ˆ ˆ ˆ( 3 ) (2 4 )r i j k t i j k= − + + − +
 and perpendicular to plane ˆˆ ˆ( 2 ) 8r i j k⋅ + + =

 .
 6. Find the parametric vector, non-parametric vector and Cartesian form of the equations of the 

plane passing through the points (3,6, 2), ( 1, 2,6)− − − , and (6, 4, 2)− − .

 7. Find the non-parametric form of vector equation, and Cartesian equations of the plane 

( ) ( ) ( )ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ6 2 5 4 5r i j k s i j k t i j k= − + + − + + + − − −
 .

6.8.7 Condition for a line to lie in a plane
 We observe that a straight line will lie in a plane if  every point on the line, lie on the plane and 
the normal to the  plane is perpendicular to the line.

 (i) If the line r a tb= +


 

 lies in the plane r n d⋅ =
  , then a n d⋅ =

   and 0b n⋅ =




. 

 (ii) If the line 1 1 1x x y y z z
a b c
− − −

= =  lies in the plane 0Ax By Cz D+ + + = , then 

   1 1 1 0Ax By Cz D+ + + =  and 0aA bB cC+ + = . 
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Example 6.45

 Verify whether the line 3 4 3
4 7 12

x y z− − +
= =

− −
 lies in the plane 5 8x y z− + = .

Solution
 Here, ( ) ( )1 1 1, , 3,4, 3x y z = −  and direction ratios of the given straight line are ( ) ( ), , 4, 7,12a b c = − − . 
Direction ratios of the normal to the given plane are ( ) ( ), , 5, 1,1A B C = − .

 We observe that, the given point ( ) ( )1 1 1, , 3,4, 3x y z = − satisfies	the	given	plane	5 8x y z− + =

 Next, ( 4)(5) ( 7)( 1) (12)(1) 1 0aA bB cC+ + = − + − − + = − ≠ .  So, the normal to the plane is not 
perpendicular to the line. Hence, the given line does not lie in the plane.

6.8.8 Condition for coplanarity of two lines
(a) Condition in vector form

 The two given non-parallel lines  r a sb= +


 

and r c td= +


 

 are 

coplanar. So they lie in a single plane. Let A and C be the points whose 

position vectors are a and c . Then A and C lie on the plane. Since b


 

and d


 are parallel to the plane, b d×
 

 is perpendicular to the plane. So 

AC


 is perpendicular to b d×
 

. That is, 

( ) ( )c a b d− ⋅ ×
 

 

 =  0

 
This is the required condition for coplanarity of  two lines in vector form.

(b) Condition in Cartesian form

 Two lines 1 1 1

1 2 3

x x y y z z
b b b
− − −

= =   and 2 2 2

1 2 3

x x y y z z
d d d
− − −

= =  are coplanar  if

2 1 2 1 2 1

1 2 3

1 2 3

x x y y z z
b b b
d d d

− − −
= 0

 This is the required condition for coplanarity of  two lines in Cartesian form.

6.8.9 Equation of plane containing two non-parallel coplanar lines
(a) Parametric form of vector equation 

 Let  



r a sb= + and r c td
� � ��

= +  be two non-parallel coplanar lines. Then b d
� �� �

× ≠ 0 . Let P be any 

point on the plane and let r0

��
 be its position vector. Then, the vectors r a b d0

�� � � ��
− , ,  as well as r c b d0

�� � � ��
− , ,  

are also coplanar. So, we get r a tb sd0

�� � � ��
− = +   or  r c tb sd0

�� � � ��
− = + . Hence, the vector equation in 

parametric form is r a tb sd
� � � ��

= + +  or r c tb sd
� � � ��

= + + .

Fig. 6.30
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(b) Non-parametric form of vector equation 

 Let r a sb
  

= + and r c td
� � ��

= +  be two non-parallel coplanar lines. Then b d
� �� �

× ≠ 0 . Let P be any 

point on the plane and let r0

��
 be its position vector. Then, the vectors r a b d0

�� � � ��
− , ,  as well as r c b d0

�� � � ��
− , ,  

are also coplanar. So, we get r a b d0 0
�� � � ��

−( ) ×( ) =.  or r c b d0 0
�� � � ��

−( ) ×( ) =. . Hence, the vector equation in 

non-parametric form is r a b d
� � � ��

−( ) ×( ) =. 0  or r c b d
� � � ��

−( ) ×( ) =. 0 .

(C) Cartesian form of equation of plane
 In Cartesian form the equation of the plane containing the two given coplanar lines  

 1 1 1

1 2 3

x x y y z z
b b b
− − −

= = and 2 2 2

1 2 3

x x y y z z
d d d
− − −

= =  is given by 

  
1 1 1

1 2 3

1 2 3

x x y y z z
b b b
d d d

− − −
 =  0    or  

             

2 2 2

1 2 3

1 2 3

0
x x y y z z

b b b
d d d

− − −
=   

Example 6.46

 Show that the lines ( ) ( )ˆ ˆˆ ˆ ˆ ˆ3 5 3 5 7r i j k s i j k= − − − + + +
  and ( ) ( )ˆ ˆˆ ˆ ˆ ˆ2 4 6 4 7r i j k t i j k= + + + + +

  

are	coplanar.		Also,find	the	non-parametric	form	of	vector	equation	of	the	plane	containing	these	lines.	
Solution
 Comparing the two given lines with
   r  = ,a tb r c sd+ = +

 

    

 we have, a   =  ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ3 5 , 3 5 7 , 2 4 6i j k b i j k c i j k− − − = + + = + +


  and ˆˆ ˆ4 7d i j k= + +


 

 We know that the two given lines are coplanar , if  ( ) ( ) 0c a b d− ⋅ × =
 

 

 Here,  

ˆˆ ˆ

3 5 7
1 4 7

i j k
b d× =
 

 =  ˆˆ ˆ7 14 7i j k− +   and  ˆˆ ˆ3 7 11c a i j k− = + +
   

 Then, ( ) ( )c a b d− ⋅ ×
 

   =  ( ) ( )ˆ ˆˆ ˆ ˆ ˆ3 7 11 7 14 7 0i j k i j k+ + ⋅ − + = . 

	 Therefore	the	two	given	lines	are	coplanar.Then	we	find		the	 non	 parametric	 form	 of	 vector	
equation of the plane containing the two given coplanar lines. We know that the plane containing the 
two given coplanar lines is 

   ( ) ( )r a b d− ⋅ ×
 

   =  0  

which implies that ( )( ) ( )ˆ ˆˆ ˆ ˆ ˆ3 5 7 14 7 0r i j k i j k− − − − ⋅ − + =
 . Thus, the required non-parametric 

vector equation of the plane containing the two given coplanar lines is ( )ˆˆ ˆ2 0r i j k⋅ − + =
 .
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EXERCISE 6.8

 1. Show that the straight lines ˆ ˆˆ ˆ ˆ ˆ(5 7 3 ) (4 4 5 )r i j k s i j k= + − + + −
   and 

( ) ( )ˆ ˆˆ ˆ ˆ ˆ8 4 5 7 3r i j k t i j k= + + + + +
 are coplanar. Find the vector equation of the plane in which 

they lie.

 2. Show that the lines 2 3 4
1 1 3

x y z− − −
= =   and  1 4 5

3 2 1
x y z− − −

= =
−

	are	coplanar.Also,	find	the	

plane containing these lines.

 3. If the straight lines 
x y z

m
−

=
−

=
−1

1
2

2
3

2  and  x y
m

z−
=

−
=

−3
1

2 1
22 	 are	 coplanar,	 find	 the	

distinct real values of m.

 4. If the straight lines 1 1
2 2

x y z
λ

− +
= =   and 1 1

5 2
x y z

λ
+ +

= = 		are	coplanar,	find	λ  and equations 

of the planes containing these two lines.

6.8.10 Angle between two planes
 The angle between two given planes is same as the angle between their normals.

Theorem 6.18
 The acute angle θ  between the two planes  r n p⋅ =1 1  and  r n p⋅ =2 2  is given by

 1 21

1 2

cos
n n
n n

θ −  ⋅
=   

 

 

 

 

Proof 

     If θ  is the acute angle between two planes  r n p⋅ =1 1  and  r n p⋅ =2 2 , then 

θ  is the acute angle between their normal  vectors 
n1  and 

n2 . 

Therefore,       1 2 1 21

1 2 1 2

cos cos
n n n n
n n n n

θ θ −   ⋅ ⋅
= ⇒ =      
   

   

   

  ... (1) 

Remark

 (i) If two planes 1 1r n p⋅ =
   and 2 2r n p⋅ =

   are perpendicular, then 1 2 0n n⋅ =
 

 (ii) If the planes 1 1r n p⋅ =
   and 2 2r n p⋅ =

   are parallel, then 1 2n nλ=  , where λ  is a scalar

 (iii) Equation of a plane parallel to the plane r n p⋅ =
   is ,r n k k⋅ = ∈

 

  

Theorem 6.19

 The acute angle θ  between the planes 1 1 1 1 0a x b y c z d+ + + =  and 

 2 2 2 2 0a x b y c z d+ + + =  is given by 1 2 1 2 1 21

2 2 2 2 2 2
1 1 1 2 2 2

cos
a a b b c c

a b c a b c
θ −

 + +
 =
 + + + + 

 

Fig. 6.30

n1

90
° − θ

θ

 r n p⋅ =2 2

n2





r
n
p

⋅
=

1

1

90
90

−

−
=

(

)θ
θ
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Proof 
 If 1n  and 2n  are the vectors normal to the two given planes 1 1 1 1 0a x b y c z d+ + + =  and

2 2 2 2 0a x b y c z d+ + + =  respectively. Then, 1 1 1 1
ˆˆ ˆn a i b j c k= + +

  and 2 2 2 2
ˆˆ ˆn a i b j c k= + +



 Therefore, using equation (1) in theorem 6.18 the acute angle θ  between the planes is given by

 1 2 1 2 1 21

2 2 2 2 2 2
1 1 1 2 2 2

cos
a a b b c c

a b c a b c
θ −

 + +
 =
 + + + + 

  

Remark
 (i) The planes 1 1 1 1 0a x b y c z d+ + + =  and 2 2 2 2 0a x b y c z d+ + + = are perpendicular if 

1 2 1 2 1 2 0a a b b c c+ + =  

 (ii) The planes 1 1 1 1 0a x b y c z d+ + + =  and 2 2 2 2 0a x b y c z d+ + + = are parallel if 1 1 1

2 2 2

a b c
a b c

= =  

 (iii) Equation of a plane parallel to the plane ax by cz p+ + =  is  ax by cz k+ + = , k∈  

Example 6.47
 Find the acute angle between the planes  ( )ˆˆ ˆ2 2 2 11r i j k⋅ + + =

  and 4 2 2 15x y z− + =   .

Solution

 The normal vectors of the two given planes ( )ˆˆ ˆ2 2 2 11r i j k⋅ + + =
  and 4 2 2 15x y z− + =  are 

1
ˆˆ ˆ2 2 2n i j k= + +

 and 2
ˆˆ ˆ4 2 2n i j k= − +

  respectively.  

 If θ  is the acute angle between the planes, then we have

( ) ( )
1 21 1 1

1 2

ˆ ˆˆ ˆ ˆ ˆ2 2 2 4 2 2 2cos cos cosˆ ˆˆ ˆ ˆ ˆ 32 2 2 4 2 2

i j k i j kn n
n n i j k i j k

θ − − −

 + + ⋅ − +   ⋅  = = =       + + − +      

 

 

6.8.11 Angle between a line and a plane

 We know that the angle between a line and a plane is the 

complement of the angle between the normal to the plane and 
the line 

  Let r a tb= +


   be the equation of  the line and r n p⋅ =
   be 

the equation of the plane. We know that b


is parallel to the given 

line and n  is normal to the given plane. If θ  is the acute angle 

between the line and the plane, then the acute angle between n  

and b


 is 
2
π θ − 
 

. Therefore, 

cos sin
2

b n

b n
π θ θ

⋅ − = = 
 









90
° − θ

θ

�n

� �r n p⋅ =

�
�
�

r
a
tb

=
+

Fig. 6.31
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 So, the acute angle between the line and the plane is given by θ =
⋅













−sin 1









b n

b n
 ... (1)

 In Cartesian form if 1 1 1

1 1 1

x x y y z z
a b c
− − −

= =  and ax by cz p+ + =  are the equations of the line and 

the plane, then  1 1 1
ˆˆ ˆb a i b j c k= + +



 and ˆˆ ˆn ai bj ck= + +
 . Therefore, using (1), the acute angle θ  

between the line and plane is given by 

    1 1 11

2 2 2 2 2 2
1 1 1

sin
aa bb cc

a b c a b c
θ −

 + +
 =
 + + + + 

    

Remark

 (i) If the line is perpendicular to the plane, then the line is parallel to the normal to the plane.  

  So, b


 is perpendicular to n . Then we have b nλ=


where λ∈ ,which gives 1 1 1a b c
a b c
= = . 

 (ii) If the line is parallel to the plane, then the line is perpendicular to the normal to the plane.  

  Therefore, 1 1 10 0b n aa bb cc⋅ = ⇒ + + =


  

Example 6.48

 Find the angle between the straight line ( ) ( )ˆ ˆˆ ˆ ˆ ˆ2 3r i j k t i j k= + + + − +
  and the plane

 2 5x y z− + = .

Solution

 The angle between a line r a tb= +


  and a plane  r n p⋅ = with normal n  is 1sin
b n

b n
θ −

 ⋅
 =
 
 









. 

 Here, ˆˆ ˆb i j k= − +


and ˆˆ ˆ2n i j k= − +
 . 

 So,we get 1sin
b n

b n
θ −

 ⋅
 =
 
 









 =  
( ) ( )

1 1
ˆ ˆˆ ˆ ˆ ˆ2 2 3sin sinˆ ˆˆ ˆ ˆ ˆ 32

i j k i j k

i j k i j k
− −

 − + ⋅ − +    =    − + − +    

6.8.12  Distance of a point from a plane
(a) Vector form of equation

Theorem 6.20
 The perpendicular distance from a point with position vector u  to the plane r n p⋅ =

   is given by 

u n p
n

δ
⋅ −

=
 



.

Proof 

 Let A be the point whose position vector is u . 
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 Let F be the foot of the perpendicular from the point A to the plane 
r n p⋅ =
  . The line joining F  and A is parallel to the normal vector n



 and 
hence its equation is r u tn= +

   .

 But  F is the point of intersection of the line r u tn= +
    and the 

given plane r n p⋅ =
  . If 1r

  is the position vector of  F, then 1 1r u t n= +
    

for some 1t ∈ , and 1r n p⋅ =
  .Eliminating 1r

  we get   

 ( )1u t n n p+ ⋅ =
    which implies 

( )
1 2

p u n
t

n
− ⋅

=
 



 .

 Now,   ( )1FA u u t n= − +


    =  
( )

1 2

u n p
t n n

n

 ⋅ −
− =  

 
 

 

 



 

 Therefore, the length of the perpendicular from the point A to the given plane is 

   

δ  =  ( ) ( )
2

u n p u n p
FA n

nn

 ⋅ − ⋅ −
=   =
 
 

   









 

 The position vector of the foot F of the perpendicular AF is given by 

   1r
  =  1u t n+

    or

   1r
  =  2

u n pu n
n

 ⋅ −
+  
 
 

 

 



  

(b) Cartesian form of equation

 In Caretesian form if ( )1 1 1, ,A x y z  is the given point with position vector u and ax by cz p+ + =  

is the Cartesian equation of the given plane, then 1 1 1
ˆˆ ˆu x i y j z k= + +

  and ˆˆ ˆn ai bj ck= + +
 . Therefore, 

using these vectors in | |
| |

u n p
n

δ ⋅ −
=
 



, we get the perpendicular distance from a point to the plane in 

Cartesian form  as
1 1 11 1 1

2 2 2 2 2 2

ax by cz pax by cz p
a b c a b c

δ
+ + −+ + −

= =
+ + + +

Remark
 The perpendicular distance from the origin to the plane ax by cz d+ + + = 0  is given by 

2 2 2

d

a b c
δ =

+ +

Example 6.49
 Find the distance of a point (2,5, 3)−  from the plane ( )ˆˆ ˆ6 3 2 5r i j k⋅ − + =

 .

Solution

 Comparing the given equation of the plane with  r n p⋅ = , we have ˆˆ ˆ6 3 2n i j k= − +
 .

Fig. 6.32

� �r n p⋅ =

F

δ

�n
A u( )�
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 We know that the perpendicular distance from the given point with position vector u  to the 

plane r n p⋅ =
  is given by δ =

⋅ −
 



u n p
n  . Therefore, substituting  ( ) ˆˆ ˆ2,5, 3 2 5 3u i j k= − = + −

  and

ˆˆ ˆ6 3 2n i j k= − +
  in the formula, we get

( ) ( )ˆ ˆˆ ˆ ˆ ˆ2 5 3 6 3 2 5
2ˆˆ ˆ6 3 2

i j k i j ku n p
n i j k

δ
+ − ⋅ − + −⋅ −

= = =
− +

 



units.

Example 6.50

 Find the distance of the point ( )5, 5, 10− − from the point of intersection of a straight line passing 

through the points ( )4,1,2A and ( )7,5,4B with the plane 5x y z− + = .
Solution
 The Cartesian equation of the straight line joining A and B is

4 1 2
3 4 2

x y z t− − −
= = =   (say).

 Therefore, an arbitrary point on the straight line is of the form ( )3 4,4 1,2 2t t t+ + + .	To	find	the	

point of intersection of the straight line and the plane, we substitute 3 4, 4 1, 2 2x t y t z t= + = + = +    in 

5x y z− + = , and we get 0t = . Therefore,the point of intersection of the straight line is ( )2, 1,2− . 

Now, the distance between the two points ( )2, 1,2− and ( )5, 5, 10− − is

( ) ( ) ( )2 2 22 5 1 5 2 10 13− + − + + + = units.

6.8.13 Distance between two parallel planes

Theorem 6.21

 The distance between two parallel planes 1 0ax by cz d+ + + =  and 2 0ax by cz d+ + + =  is given 

by 1 2

2 2 2

d d

a b c

−

+ +
.  

Proof

 Let ( )1 1 1, ,A x y z  be any point on the plane 2 0ax by cz d+ + + = , then we have  

 1 1 1 2 0ax by cz d+ + + = ⇒  1 1 1 2ax by cz d+ + = −  

 The distance of the plane 1 0ax by cz d+ + + =  from the point ( )1 1 1, ,A x y z  is given by

δ   = 1 1 1 1

2 2 2

ax by cz d

a b c

+ + +

+ +
 = 1 2

2 2 2

d d

a b c

−

+ +

 Hence, the distance between two parallel planes 1 0ax by cz d+ + + = and 2 0ax by cz d+ + + =  is 

given by δ =  1 2

2 2 2

d d

a b c

−

+ +
.
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Example 6.51
 Find the distance between the parallel planes 2 2 1 0x y z+ − + =  and 2 4 4 5 0x y z+ − + = .
Solution

 We know that the formula for the distance between two parallel planes 1 0ax by cz d+ + + =    and 

2 0ax by cz d+ + + =  is 1 2

2 2 2

d d

a b c
δ

−
=

+ +
. Rewrite the second equation as 52 2 0

2
x y z+ − + = .  

Comparing the given equations  with the general equations, we get 1 2
51, 2, 2, 1,
2

a b c d d= = = − = = . 

Substituting these values in the formula, we get the distance 

( )
1 2

2 2 2 2 2 2

51
12
21 2 2

d d

a b c
δ

−
−

= = =
+ + + + −

 units.

Example 6.52
 Find the distance between the planes ( )ˆˆ ˆ2 2 6r i j k⋅ − − =

    and ( )ˆˆ ˆ6 3 6 27r i j k⋅ − − =
  

Solution
 Let u  be the position vector of an arbitrary point on the plane ˆˆ ˆ(2 2 ) 6r i j k⋅ − − =

 . Then, we have 

  ˆˆ ˆ(2 2 ) 6u i j k⋅ − − =
 .   ... (1)

 If δ  is the distance between the given planes, then δ  is the perpendicular distance from u  to the 
plane

ˆ ˆ ˆ(6 3 6 ) 27r i j i⋅ − − =
 .

Therefore, 
2 2 2

ˆ ˆˆ ˆ ˆ ˆ| | (6 3 6 ) 27 3( (2 2 )) 27 (3(6) 27 1
| | 9 96 ( 3) ( 6)

u n p u i j k u i j k
n

δ ⋅ − ⋅ − − − ⋅ − − − −
= = = = =

+ − + −

   



 unit.

6.8.14 Equation of line of intersection of two planes 

 Let r n p⋅ =
 

 and r m q⋅ =
 

 be two non-parallel planes. We know 

that n  and m  are perpendicular to the given planes respectively. 

So, the line of  intersection of these planes is perpendicular to both 
n  and m . Therefore, it is parallel to the vector n m×  . Let 

1 2 3
ˆˆ ˆn m l i l j l k× = + +

 

 Consider the equations of two planes 1 1 1a x b y c z p+ + =  and 

2 2 2a x b y c z q+ + = . The line of intersection of the two given planes 

intersects atleast one of the coordinate planes. For simplicity, we 
assume that the line meets the coordinate plane 0z = . Substitute 

0z =  and obtain the two equations 1 1 0a x b y p+ − =  and 

2 2 0a x b y q+ − = .Then by solving these equations, we get the values of  x and y as 1x  and 1y  respectively. 

Fig. 6.33

n m×
� �

m�

n�

r
m

q
⋅

=
�
�

r n p⋅ =
� �
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So, x y1 1 0, ,( )  is a point on the required line, which is parallel to 1 2 3
ˆˆ ˆl i l j l k+ + . So, the equation of the 

line is 1 1

1 2 3

0x x y y z
l l l
− − −

= = .

6.8.15 Equation of a plane passing through the line of intersection of two 
given planes

Theorem 6.22

 The vector equation of a plane which passes through the line of intersection of the planes  

1 1r n d⋅ =
   and 2 2r n d⋅ =

  is given by ( ) ( )1 1 2 2 0r n d r n dλ⋅ − + ⋅ − =
    ,  where λ ∈ .

Proof

 Consider the equation

 ( ) ( )1 1 2 2 0r n d r n dλ⋅ − + ⋅ − =
      ... (1)

	 The	above	equation	can	be	simplified	as	

 ( ) ( )1 2 1 2 0r n n d dλ λ⋅ + − + =
    ... (2)

 Put 1 2n n nλ= +
   , ( )1 2d d dλ= + .

 Then the equation (2) becomes 
 r n d⋅ =

    ... (3)

 The equation (3) represents a plane. Hence (1) represents a plane.

 Let 1r
  be the position vector of any point on the line of intersection of the plane. Then 1r

 	satisfies	
both the equations 1 1r n d⋅ =

   and 2 2r n d⋅ =
  . So, we have

   1 1r n⋅   =  1d  ... (4)

   and   2 2r n⋅   =  2d  ... (5)

 By (4) and (5), 1r
 	satisfies	(1).	So,	any	point	on	the	line	of	intersection	lies	on	the	plane	(1).	This	

proves that the plane (1) passes through the line of intersection. 
 The cartesian equation of a plane which passes through the line of intersection of the planes 

1 1 1 1a x b y c z d+ + =  and 2 2 2 2a x b y c z d+ + =   is given by 

 ( ) ( )1 1 1 1 2 2 2 2 0a x b y c z d a x b y c z dλ+ + − + + + − =  

Example 6.53
 Find the equation of the plane passing through the intersection of the planes ( )ˆˆ ˆ 1 0r i j k⋅ + + + =



and ( )ˆˆ ˆ2 3 5 2r i j k⋅ − + =
 and the point ( )1,2,1− . 

Solution
 We know that the vector equation of a plane passing through the line of intersection of the planes 

1 1r n d⋅ =
   and 2 2r n d⋅ =

  is given by ( ) ( )1 1 2 2 0r n d r n dλ⋅ − + ⋅ − =
   

 Substituting ˆˆ ˆr xi yj zk= + +
 , 1

ˆˆ ˆn i j k= + +
 , 2

ˆˆ ˆ2 3 5n i j k= − +
 , 1 21, 2d d= = −  in the above 

equation, we get 
 ( ) ( )1 2 3 5 2 0x y z x y zλ+ + + + − + − =   

�r n
d

⋅ =
2

(
)

(
)

�
�

�
�

r
n

d
r

n
d

⋅
−

+
⋅

−
=

1
1

2
2

0
λ

� �r n d. 1 1=
Fig. 6.34
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 Since this plane passes through the point ( )1,2,1− , we get 3
5

λ = , and hence the required equation 

of the plane is 11 4 20 1x y z− + =  .

Example 6.54

 Find the equation of the plane passing through the intersection of the planes 2 3 7 0x y z+ − + =    

and 2 5 0x y z+ − + =  and is perpendicular to the plane 3 5 0x y z+ − − =   .

Solution
 The equation of the plane passing through the intersection of the planes 2 3 7 0x y z+ − + = and

2 5 0x y z+ − + =  is ( ) ( )2 3 7 2 5 0x y z x y zλ+ − + + + − + =  or 

( ) ( ) ( ) ( )2 3 1 2 7 5 0x y zλ λ λ λ+ + + + − − + + =

since this plane is  perpendicular to the given plane 3 5 0x y z+ − − = , the normals of these two planes 

are perpendicular to each other. Therefore, we have 

( )( ) ( )( ) ( )( )1 2 1 3 3 1 2 0zλ λ λ+ + + + − − − =

which implies that 1λ = − .Thus the required equation of the plane is 

( ) ( )2 3 7 2 5 0 2 2 0x y z x y z x y z+ − + − + − + = ⇒ + + + =  .

6.9 Image of a point in a plane 
 Let A be the given point whose position vector is u  . Let r n p⋅ =

   be the equation of the plane. 

Let v  be the position vector of the mirror image A′  of  A  in the plane. Then 'AA


 is perpendicular to 

the plane. So it is parallel to n . Then 

                                        AA nλ′ =


  or v u nλ− =
    ⇒  v u nλ= +

  

 ... (1)

 Let M  be the middle point of AA′ . Then the position vector of M   is 
2

u v+ 

 . But  M   lies on 

the plane.

  So,  
 

u v n p+





 ⋅ =

2
.

 Sustituting (1) in (2), we get

 2
u n u n pλ+ +  ⋅ = 

 

  

  ⇒  
( )

2

2
| |

p u
n

n
λ

− ⋅  =






 

 Therefore, the position vector of A′  

 is 2

2[ ( )]
| |

p u nv u
n
− ⋅

= +
 

 



 

Note
 The mid point of M of AA′  is the foot of the perpendicular from the point A  to the plane r n p⋅ =

  . So 

the position vector of the foot M of the perpendicular is 
2

u v+ 

.

  



 



u v u u p u n
n

n+
= + +

− ⋅







2 2

1
2

2
2

[ ( )
| |

Fig. 6.35

M

( )A u�
n�

r n p⋅ =
� �
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6.9.1 The coordinates of the image of a point in a plane
 Let ( )1 2 3, ,a a a  be the point u  whose image in the plane is required. Then 1 2 3

ˆˆ ˆu a i a j a k= + +
 .

 Let ax by cz d+ + =  be the equation of the given plane.Writing the equation in the vector form we 

get r n p⋅ =
  where ˆˆ ˆn ai bj ck= + +

  .Then the position vector of the image is 

( )
2

2
| |

p u
v u n

n
n− ⋅  = +



  





 If 1 2 3
ˆˆ ˆv v i v j v k= + +

  , then 1 1 2v a aα= + , 2 2 2v a aα= + , 3 3 2v a aα= +  

where 
( )1 2 3

2 2 2

2 p aa ba ca
a b c

α
− + +  =

+ +
Example 6.55
 Find the image of the point whose position vector is ˆˆ ˆ2 3i j k+ +  in the plane ( )ˆˆ ˆ2 4 38r i j k⋅ + + =

  .

Solution

 Here, ˆˆ ˆ2 3u i j k= + +
 , ˆˆ ˆ2 4n i j k= + +

 , 38p =  . Then the position vector of the image v  of

    ˆˆ ˆ2 3u i j k= + +
  is given by 

( )
2

2
| |

p u
v u n

n
n− ⋅  = +



  





 

( ) ( ) ( )( )
( ) ( ) ( )

ˆ ˆˆ ˆ ˆ ˆ2 38 2 3 2 4
ˆ ˆˆ ˆ ˆ ˆ2 3 2 4

ˆ ˆˆ ˆ ˆ ˆ2 4 2 4

i j k i j k
v i j k i j k

i j k i j k

 − + + ⋅ + +  = + + + + +
+ + ⋅ + +



 That is, ( ) ( )38 17ˆ ˆˆ ˆ ˆ ˆ2 3 2 4
21

v i j k i j k− = + + + + + 
 

  = ˆˆ ˆ2 4 7i j k+ +  

 Therefore, the image of the point with position vector ˆˆ ˆ2 3i j k+ +  is ˆˆ ˆ2 4 7i j k+ +   

Note
 The foot of the perpendicular from the point with position vector ˆˆ ˆ2 3i j k+ +  in the given plane is 

ˆ ˆˆ ˆ ˆ ˆ( 2 3 ) (2 4 7 ) 3 ˆˆ ˆ3 5
2 2

i j k i j k i j k+ + + + +
= + +  

6.10 Meeting point of a line and a plane

Theorem 6.23

 The position vector of the point of intersection of the straight line r a tb= +


   and the plane 

r n p⋅ =
   is ( )p a na b

b n
− ⋅ +  ⋅ 

 









, provided 0b n⋅ ≠
 

 .

Proof
 Let r a tb= +



   be the equation of the given line which is not parallel to the given plane whose 

equation is r n p⋅ =
  . So, 0b n⋅ ≠






.
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 Let  u  be the position vector of the meeting point of the line with the plane. Then u 	satisfies	both	r a tb= +


   

and r n p⋅ =
   for some value of t , say  t1. So, We get

 u a tb= +


    ... (1) 

 u n p⋅ =
   ...(2)

 Sustituting (1) in (2), we get

  ( )1a t b n p+ ⋅ =


   

 or ( )1a n t b n p⋅ + ⋅ =


    

 or  
( )

1

p a n
t

b n
− ⋅

=
⋅

 





  ...(3)

 Sustituting (3) in (1), we get
     

 

 





 

u a
p a n

b n
b b n= +

− ⋅( )
⋅











⋅ ≠, 0

 

Example 6.56
 Find the coordinates of the point where the straight line ( ) ( )ˆ ˆˆ ˆ ˆ ˆ2 2 3 4 2r i j k t i j k= − + + + +

  

intersects the plane 5 0x y z− + − = .  

Solution

 Here, ˆˆ ˆ2 2 ,a i j k= − +
  ˆˆ ˆ3 4 2b i j k= + +



.

 The vector form of the given plane is ( )ˆˆ ˆ 5r i j k⋅ − + =
 . Then ˆˆ ˆn i j k= − +

  and  5p = .

 We know that the position vector of the point of intersection of the line r a tb= +


   and the plane

r d p⋅ =


  is given by ( )p a n
u a b

b n
− ⋅ 

= +  
⋅ 

 



 





, where 0b n⋅ ≠
 

 . 

 Clearly, we observe that 0b n⋅ ≠
 

 .

 Now,  
( ) ( )

( ) ( )
ˆ ˆˆ ˆ ˆ ˆ5 2 2

0
ˆ ˆˆ ˆ ˆ ˆ3 4 2

i j k i j kp a n
b n i j k i j k

− − + ⋅ − +− ⋅
= =

⋅ + + ⋅ − +

 





. Therefore,the position vector of the point of  

intersection of the given line  and the given plane is  

( ) ( )( )ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 2 0 3 4 2 2 2r i j k i j k i j k= − + + + + = − +


That is, the given straight line intersects the plane at the point ( )2, 1,2− .

Aliter  

 The Cartesian equation of the given straight line is 2 1 2
3 4 2

x y z t− + −
= = =  (say)

 We know that any point on the given straight line is of the form ( )3 2,4 t 1,2 t 2+ − +t . If the 
given line and the plane intersects, then this point lies on the given pane 5 0− + − =x y z . 
 So, ( ) ( ) ( )3 2 4 t 1 2 t 2 5 0 0+ − − + + − = ⇒ =t t .
Therefore, the given line intersects the given plane at the point ( , , )2 1 2-

Fig. 6.36

� �r n p⋅ =
�
�
�

r
a

tb

=
+�n

M
�b
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EXERCISE 6.9
 1. Find the equation of the plane passing through the line of intersection of the planes 

( )ˆˆ ˆ2 7 4 3⋅ − + =
r i j k  and 3 5 4 11 0− + + =x y z , and the point ( )2,1,3− . 

 2. Find the equation of the plane passing through the line of intersection of the planes 
2 3 2+ + =x y z  and 11 3− + + =x y z , and at a distance 2

3
 from the point ( )3,1, 1− . 

 3. Find the angle between the line ( ) ( )ˆ ˆˆ ˆ ˆ ˆ2 2 2= − + + + −
r i j k t i j k  and the plane

( )ˆˆ ˆ6 3 2 8⋅ + + =
r i j k

 4. Find the angle between the planes ( )ˆˆ ˆ 2 3⋅ + − =
r i j k  and 2 2 2− + =x y z .

 5. Find the equation of the plane which passes through the point ( )3,4, 1− and is parallel to the 

plane 2 3 5 7 0− + + =x y z .	Also,	find	the	distance	between	the	two	planes.

 6. Find the length of the perpendicular from the point ( )1, 2,3− to the plane 5− + =x y z .  

 7.  Find the point of intersection of the line 1 1
2

− = = +
yx z  with the plane 2 2 2− + =x y z . Also, 

find	the	angle	between	the	line	and	the	plane.
 8. Find the coordinates of the foot of the perpendicular and length of the perpendicular from the 

point  ( 4,3,2) to the plane 2 3 2+ + =x y z .

EXERCISE 6.10
 Choose the correct or most suitable answer :

 1. If a  and 


b  are parallel vectors, then [ , , ]


 a c b  is equal to
  (1) 2  (2) 1−   (3) 1  (4) 0  

 2. If a vector α  lies in the plane of β


 and γ , then 

  (1) [ , , ] 1α β γ =


    (2) [ , , ] 1α β γ = −


    (3) [ , , ] 0α β γ =


    (4) [ , , ] 2α β γ =


   

 3. If 0,⋅ = ⋅ = ⋅ =
 

   a b b c c a  then the value of [ , , ]


 a b c  is 

  (1) | | | | | |


 a b c   (2) 1 | | | | | |
3



 a b c   (3) 1  (4) 1−  

 4. If , ,


 a b c  are three unit vectors such that a  is perpendicular to 


b , and is parallel to c  then 

( )× ×


 a b c  is equal to

  (1) a   (2) 


b   (3) c   (4) 0


 

 5. If [ , , ] 1,=


 a b c  then the value of ( ) ( ) ( )
( ) ( ) ( )
⋅ × ⋅ × ⋅ ×

+ +
× ⋅ × ⋅ × ⋅

  

     

  

     

a b c b c a c a b
c a b a b c c b a

 is

  (1) 1  (2) 1−   (3) 2   (4) 3

 6. The volume of the parallelepiped with its edges represented by the vectors 
ˆˆ ˆ ˆ ˆ ˆ ˆ,  2 ,  π+ + + +i j i j i j k  is

  (1)
2
π   (2) 

3
π   (3) π   (4) 

4
π  
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 7. If a  and 


b  are unit vectors such that [ ,  ,  ]
4
π

× =
 

 a b a b , then the angle between a  and 


b  is

  (1) 
6
π   (2) 

4
π   (3) 

3
π   (4) 

2
π

 8. If ˆˆ ˆ ˆ ˆ ˆ, ,= + + = + =


 a i j k b i j c i  and ( ) ,λ µ× × = +
 

  a b c a b  then the value of λ µ+  is

  (1) 0   (2) 1  (3) 6   (4) 3  

 9. If , ,


 a b c  are non-coplanar, non-zero vectors such that [ , , ]



a b c = 3 , then 2{[ ,  ,  ]}× × ×
 

   a b b c c a  

is equal to

  (1) 81 (2) 9  (3) 27   (4)18

 10.  If , ,


 a b c  are three non-coplanar vectors such that ( )
2

b ca b c +
× × =







  , then the angle between 
a  and 



b is

  (1) 
2
π   (2) 

3
4
p

 (3) 
4
π   (4) π  

 11. If the volume of the parallelepiped with , ,× × ×
 

   a b b c c a  as coterminous edges is 8  cubic 

units, then the volume of the parallelepiped with ( ) ( ), ( ) ( )× × × × × ×
  

    a b b c b c c a  and 

( ) ( )× × ×


  c a a b  as coterminous edges is,

  (1) 8  cubic units (2) 512  cubic units    (3) 64  cubic units     (4) 24  cubic units

 12. Consider the vectors , , ,
 

 a b c d  such that ( ) ( ) 0× × × =
  

 a b c d . Let 1P  and 2P  be the planes 

determined by the pairs of vectors ,


a b  and ,


c d  respectively. Then the angle between 1P  and 

2P  is

  (1) 0°   (2) 45°   (3) 60°   (4) 90°  

 13. If ( ) ( ) ,× × = × ×
 

   a b c a b c  where , ,


 a b c  are any three vectors such that 0⋅ ≠


b c  and 0⋅ ≠


a b , 

then a  and c  are 

  (1) perpendicular  (2) parallel

  (3) inclined at an angle 
3
π   (4) inclined at an angle 

6
π  

 14. If ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 3 , 2 5 , 3 5 ,a i j k b i j k c i j k= + − = + − = + −


   then a vector perpendicular to a  and lies 

in the plane containing 


b  and c  is

  (1) ˆˆ ˆ17 21 97− + −i j k    (2) ˆˆ ˆ17 21 123+ −i j k   

  (3) ˆˆ ˆ17 21 97− − +i j k   (4) ˆˆ ˆ17 21 97− − −i j k  

 15. The angle between the lines x y z−
=
+
−

=
2

3
1

2
2, and 

x y z−
=

+
=
+1

1
2 3

3
5

2
is

  (1) 
p
6

 (2) 
p
4

 (3) 
p
3

 (4) 
p
2
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 16. If the line 2 1 2
3 5 2
− − +

= =
−

x y z  lies in the plane 3 0,α β+ − + =x y z  then ( , )α β  is

  (1) ( 5,5)−   (2) ( 6,7)−   (3) (5, 5)−   (4) (6, 7)−  

 17. The angle between the line ˆ ˆˆ ˆ ˆ ˆ( 2 3 ) (2 2 )= + − + + −
r i j k t i j k  and the plane ˆ ˆ( ) 4 0⋅ + + =

r i j  is
  (1) 0°   (2) 30°   (3) 45°   (4) 90°  

 18. The coordinates of the point where the line ˆ ˆˆ ˆ ˆ(6 3 ) ( 4 )= − − + − +
r i j k t i k  meets the plane 

ˆˆ ˆ.( ) 3+ − =
r i j k  are

  (1) (2,1,0)   (2) (7, 1, 7)− −   (3) (1, 2, 6)−   (4) (5, 1,1)−  

 19. Distance from the origin to the plane 3 6 2 7 0− + + =x y z  is

  (1) 0   (2) 1  (3) 2  (4) 3

 20. The distance between the planes 2 3 7 0+ + + =x y z  and 2 4 6 7 0+ + + =x y z  is

  (1) 7
2 2

  (2) 7
2

  (3) 7
2

  (4) 7
2 2

 

 21. If the direction cosines of a line are 1 1 1, , ,
c c c

 then 

  (1) 3= ±c   (2) 3= ±c   (3) 0>c   (4) 0 1< <c  

 22. The vector equation ˆ ˆˆ ˆ ˆ( 2 ) (6 )= − − + −
r i j k t i k represents a straight line passing through the 

points

  (1) (0,6, 1)−  and (1, 2, 1)− −   (2) (0,6, 1)−  and ( 1, 4, 2)− − −  

  (3) (1, 2, 1)− −  and (1,4, 2)−   (4) (1, 2, 1)− −  and (0, 6,1)−

 23. If the distance of the point (1,1,1)  from the origin is half of its distance from the plane 

0+ + + =x y z k ,  then the values of k are

  (1) 3±   (2) 6±   (3) 3,9−   (4) 3, 9−  

 24. If the planes ˆˆ ˆ.(2 ) 3λ− + =
r i j k  and ˆˆ ˆ.(4 ) 5µ+ − =

r i j k  are parallel, then the value of λ  and 

µ  are 

  (1) 1 , 2
2
−   (2) 1 , 2

2
−   (3) 1 , 2

2
− −   (4) 1 , 2

2
 

 25. If the length of the perpendicular from the origin to the plane 2 3 1λ+ + =x y z , 0λ >  is  
1
5

, then the value of λ  is   

  (1) 2 3    (2)   3 2  (3) 0  (4) 1 

Chapter 6 Vector Algebra.indd   278 3/10/2019   9:42:21 PM



Applications of Vector Algebra279

SUMMARY
 1. For a given set of three vectors



a ,


b and 


c , the scalar ( )× ⋅


 a b c is called a scalar triple product 

of 


a ,


b , .


c
 2. The volume of the parallelepiped formed by using the three vectors , ,  and 



 a b c as  

co-terminus  edges is given by ( )× ⋅


 a b c . 
 3. The scalar triple product of three non-zero vectors is zero if the three vectors are coplanar.
 4. Three vectors 





a b c, , are coplanar, if, and only if there exist scalars r s t, , Î  such that atleast 
one of them is non-zero and ra sb tc







+ + = 0 .

 5. If , ,a b c
  

 and , ,p q r
  

 are any two systems of three vectors, and if  p


= 1 1 1 ,x a y b z c+ +
  

 

  q


= 2 2 2 ,x a y b z c+ +
  

and, r


= 3 3 3x a y b z c+ +
  

, then  , ,p q r  
  

=  
1 1 1

2 2 2

3 3 3

, ,
x y z
x y z a b c
x y z

  
  

.

 6. For a given set of three vectors 


a ,


b ,


c , the vector ( )× ×


 a b c   is called vector triple product .

 7. For any three vectors , ,


 a b c we have 


  







a b c a c b a b c× × = ⋅ − ⋅( ) ( ) ( ) .

 8. Parametric form of the vector equation of a straight line that passes through a given point 
with  position  vector a  and parallel to a given vector 



b  is = +


 r a tb , where .∈t   

 9. Cartesian equations of a straight line that passes through the point ( )1 1 1, ,x y z and parallel to a 

vector  with direction ratios 1 2 3, ,b b b  are 1 1 1

1 2 3

− − −
= =

x x y y z z
b b b

 .

 10.  Any point on the line 1 1 1

1 2 3

− − −
= =

x x y y z z
b b b

is of the form ( )1 1 1 2 1 3,  ,  + + +x tb y tb z tb , .∈t

 11.  Parametric form of vector equation of a straight line that passes through two given points  
with  position vectors  a  and 



b  is  ( )= + −


  r a t b a , .∈t

  12.  Cartesian equations of a line that passes through two given points ( )1 1 1, ,x y z and ( )2 2 2, ,x y z

are  1 1 1

2 1 2 1 2 1

− − −
= =

− − −
x x y y z z
x x y y z z

 .

 13. If θ  is the acute angle between two straight lines = +


 r a sb and = +


 r c td , then 

1cosθ −
 ⋅
 =
 
 

 

 

b d

b d

 14. Two lines are said to be coplanar if they lie in the same plane.
 15.  Two lines in space are called skew lines if they are not parallel and do not intersect 
 16. The shortest distance between the two skew lines is the length of the line segment perpendicular 

to both the skew lines.
 17. The shortest distance between the two skew lines = +



 r a sb and = +


 r c td is

  δ =
( ) ( )− ⋅ ×

×

 

 

 

c a b d

b d
, where | |

 

b d× ≠ 0 .
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 18.  Two straight lines = +


 r a sb and = +


 r c td intersect each other if ( ) ( ) 0− ⋅ × =
 

 c a b d

 19. The shortest distance between the two parallel lines = +


 r a sb and = +


 r c tb is 
( )− ×

=



 



c a b
d

b
, 

where | |


b ¹ 0

 20.  If  two lines 1 1 1

1 2 3

− − −
= =

x x y y z z
b b b

 and 2 2 2

1 2 3

− − −
= =

x x y y z z
d d d

intersect, then  

2 1 2 1 2 1

1 2 3

1 2 3

− − −x x y y z z
b b b
d d d

= 0

 21.  A straight line which is perpendicular to a plane is called a normal to the plane. 
 22.  The equation of the plane at a distance p from the origin and perpendicular to the unit normal 

vector  d̂  is ˆ⋅ =
r d p ( normal form)

 23. Cartesian equation of the plane in normal form is + + =lx my nz p
 24. Vector form of the equation of a plane passing through a point with position vector a  and 

perpendicular to n  is  ( ) 0− ⋅ =
  r a n .

 25. Cartesian equation of a plane normal to a vector with direction ratios a,b,c and passing through 
a  given point  ( )1 1 1, ,x y z is ( ) ( ) ( )1 1 1 0− + − + − =a x x b y y c z z .

  26.  Intercept form of the equation of the plane ⋅ =
 r n q , having intercepts , ,a b c on the , ,x y z  

axes respectively is 1+ + =
x y z
a b c

.

 27. Parametric form of vector equation of the plane passing through three given non-collinear 
points is r = ( ) ( )+ − + −



   a s b a t c a  
 28. Cartesian equation of the plane passing through three non-collinear points is 

1 1 1

2 1 2 1 2 1

3 1 3 1 3 1

0
− − −
− − − =
− − −

x x y y z z
x x y y z z
x x y y z z

.

 29. A straight will lie on a plane if  every point on the line, lie on the plane and the normal to the  
plane  is perpendicular to the line.

 30. The two given non-parallel lines = +


 r a sb and = +


 r c td  are coplanar if ( ) ( ) 0− ⋅ × =
 

 c a b d .

 31. Two lines 1 1 1

1 2 3

− − −
= =

x x y y z z
b b b

  and 2 2 2

1 2 3

− − −
= =

x x y y z z
d d d

 are coplanar if

2 1 2 1 2 1

1 2 3

1 2 3

− − −x x y y z z
b b b
d d d

 = 0

   32. Non-parametric form of vector equation of the plane containing the two coplanar lines = +


 r a sb

and = +


 r c td  is ( ) ( )− ⋅ ×
 

 r a b d =  0  or ( ) ( ) 0− ⋅ × =
 

 r c b d .  

 33. The acute angle θ  between the two planes 1 1r n p⋅ =
   and 2 2r n p⋅ =

   is θ = 1 21

1 2
cos

n n
n n

−  ⋅
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 34. If θ  is the acute angle between the line = +


 r a tb  and the plane ⋅ =
 r n p , then 1sin

b n

b n
θ −

 ⋅
 =
 
 









 35. The perpendicular distance from a point with position vector u  to the plane r n p⋅ =
   is given 

by  δ = ⋅ −| |
| |

 



u n p
n

 36. The perpendicular distance from a point ( , , )x y z2 1 1 to the plane ax by cz p+ + = is

d =
+ + −

+ +

| |ax by cz p
a b c

1 1 1
2 2 2 .

 37. The perpendicular distance from the origin to the plane 0ax by cz d+ + + =  is given by

  δ  =  
2 2 2

d

a b c+ +
 

 38. The distance between two parallel planes 1 0ax by cz d+ + + = and 2 0ax by cz d+ + + =  is 

given by  1 2

2 2 2

d d

a b c

−

+ +
.

 39. The vector equation of a plane which passes through the line of intersection of the planes 

1 1r n d⋅ =
    and 2 2r n d⋅ =

   is given by 1 1 2 2( ) ( )r n d r n dλ⋅ − + ⋅ −
   

= 0 , where λ Î  is an.
 40. The equation of a plane passing through the line of intersection of the planes a x b y c z d1 1 1 1+ + =

and a x b y c z d2 2 2 2+ + =  is given by
( ) ( )a x b y c z d a x b y c z d1 1 1 1 2 2 2 2 0+ + − + + + − =l

 41. The position vector of the point of intersection of the line r a tb= +


   and the plane r n p⋅ =
 

  

is  ( )p a n
u a b

b n
− ⋅ 

= +  
⋅ 

 



 





, where 0b n⋅ ≠
 

 .

 42. If v  is the position vector of the image  of u in the plane ⋅ =
 r n p ,then  

( )
2

2
| |

p u n
v u n

n

 

  

− ⋅  = +  .
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Exercise 1.1

 1. (i) 
2 4
6 3

− 
 − − 

 (ii) 
1 1 1
3 1 1

9 5 1

− 
 − 
 − − 

 (iii) 
2 2 1

1 2 1 2
3

1 2 2

− 
 − 
 + 

 2. (i) 
3 41
1 22

− − 
 − − 

 (ii) 
6 1 1

1 1 6 1
28

1 1 6

− − 
 − − 
 − − 

 (iii) 
1 1 1

1 3 1 1
2

9 5 1

− 
 − 
 − − 

 8. 
6 2 1
5 2 2
6 2 3

 
 ±  
  

 9. 
0 2 0

1 6 2 6
6

3 0 6

− 
 ± − 
 − 

 10. 
2 0 2
0 2 0
2 0 2

− 
 
 
  

  
 

 12. 
3 1
1 2
 
 − 

 13. 
0 1
0 0
 
 
 

 15. HELP

Exercise 1.2
 1. (i) 1    (ii) 2    (iii) 2    (iv) 3    (v) 3 2. (i) 2    (ii) 3    (iii) 3

 3. (i) 
2 1
5 2

− 
 − 

 (ii) 
2 3 1
3 3 1
2 4 1

− − 
 − − 
 − − 

 (iii) 
40 16 9

13 5 3
5 2 1

− 
 − − 
 − − 

Exercise 1.3
 1. (i) 11, 4x y= − =  (ii) 2, 4x y= = −

  (iii) 2, 3, 4x y z= = =  (iv) 3, 2, 1x y z= = − =

 2. 2, 1, 1x y z= = = −                3. ` 18000, ` 600
 4. 18 days, 36 days                   5. ` 2000, ` 1000, ` 3000

Exercise 1.4
 1.  (i) 2, 3x y= − =   (ii) 1 , 3

2
x y= =

   (iii) 2, 3, 4x y z= = =  (iv) 1, 3, 3x y z= = =

 2. 84 3. 50% acid is 6 litres, 25% acid is 4 litres
 4. Pump A : 15 minutes,   Pump B : 30 minutes
 5. `  30/-,  ` 10/-,  ` 30/-, yes

Exercise 1.5
 1. (i) 1, 4, 4x y z= − = =   (ii) 3, 1, 2x y z= = =

 2. 2, 1, 6a b c= = =    3. ` 30000, ` 15000, ` 20000
 4. 1, 3, 10a b c= = = − , yes

Exercise 1.6
 1. (i) 1x y z= = =  (ii) 1 1(7 4 ), (5 1), ,

10 10
x t y t z t t R= − = − = ∈
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  (iii) No solution (iv) 1 ( 2), , and ,
2

x s t y s z t s t R= − + = = ∈

 2. (i) 1k =  (ii) 1, 2k k≠ ≠ −  (iii) 2k = −

 3. (i) 5λ =  (ii) 5, 9λ µ≠ ≠  (iii) 5, 9λ µ= =

Exercise 1.7
 1. (i) , 2 , ,x t y t z t t R= − = − = ∈    (ii) Trivial solutions only
 2. (i) 8λ ≠  (ii) 8λ =

 3. 2 6 2 2 22 7 6 4C H O H O Co+ → +

Exercise 1.8
1 2 3 4 5 6 7 8 9 10

(2) (3) (2) (3) (4) (2) (4) (4) (2) (1)
11 12 13 14 15 16 17 18 19 20
(2) (4) (1) (2) (4) (3) (2) (1) (4) (4)
21 22 23 24 25
(2) (4) (4) (4) (1)

Exercise 2.1
 1. 1 i− −   (2) 1 i+   (3) 0  (4) 0
 5. 1 (6) 1 i−  

Exercise 2.2
 1. (i) 4 i+   (ii) 8 i−   (iii) 7 5i+   (iv) 1 17i+  
  (v) 15 8i+   (vi) 15 8i+

 3. 1x = − , 1y =  
Exercise 2.3

 3. 1 2 5z i− = − −  ,  ( )1
1

1 2 5
29

z i− = −

   2 3 4z i− = +  ,  ( )1
2

1 3 4
25

z i− = − +

  3 1z i− = − −  ,  ( )1
3

1 1
2

z i− = −

Exercise 2.4
 1. (i) 7 5i−   (ii) ( )5 1

4
i−   (iii) 2 14

5 5
i

−  

 2. (i) 2 2

x
x y+

  (ii) y (iii) 4y− −  

 3. ( )1 1 2
25

i− − , ( )1 11 2
5

i− +   (4) 1 (7 )
2

i−  

 6. (i) 6  (ii) 3
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Exercise 2.5
 1. (i) 2

5
  (ii) 2 2   (iii) 32 (iv) 50

 4. 11 6i+  
 7. 10  (9) (i) 3 1

2 2
i ± + 

 
  (ii) ( )2 2 2i± −        (iii) ( )2 3i± −  

Exercise 2.6
 3. (i) 2 3y =   (ii) 0x y− =   (iii) 0x y+ =   (iv) 2 2 1x y+ =  
 4.  (i) 2 ,3i+    (ii) 1 2 ,1i− +   (iii) 82 4 ,

3
i−   

 5. (i) 2 2 8 240 0x y x+ − − =   (ii) 6 1 0x + =  
Exercise 2.7

 1. (i) 4 cos 2 sin 2 ,
3 3

k i kn kπ ππ    + + + ∈        
  

  (ii)  2 3 cos 2 sin 2 ,
6 6

k i k kπ ππ π    − + − ∈        


  (iii) 3 32 2 cos 2 sin 2 ,
4 4

k i k kπ ππ π    − + − ∈        
  

  (iv) 5 52 cos 2 sin 2 ,
12 12

k i k kπ ππ π    + + + ∈        
  

 2. (i) ( )1 1
2

i+   (ii) 
2
i−  

Exercise 2.8

 3. 1 5. 53cis , 3, 3cis
3 3
π π

−   7. 1−  

 9. (i) 122
i

e
π

  (ii) 
5
122
i

e
π

   (iii) 
5
42

i

e
π

 

Exercise 2.9

1 2 3 4 5 6 7 8 9 10
(1) (1) (1) (2) (3) (1) (4) (1) (1) (1)
11 12 13 14 15 16 17 18 19 20
(2) (2) (4) (2) (2) (3) (1) (3) (4) (4)
21 22 23 24 25
(2) (3) (4) (1) (1)

EXERCISE – 3.1
 1. 8   

 2. (i) 3 26 11 6 0x x x- + - =  (ii) 3 3 2 0x x- - =   (iii) 3 22 7 7 2 0x x x- + - =  3. 

 3. (i) 3 24 12 32 0x x x+ + + =  (ii) 3 24 3 2 1 0x x x+ + + =    (ii) 3 22 3 4 0x x x- + - =  
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 4.  12,3,
3

   5. 10       6.  21 14 136, ,
19 19 19

  and 6 4 1, ,-        7. 1 c
dα

=∑ ,
22ac b

ad
-

=å α
βγ

    

        8. 22 13 20 0x x+ + =               11.  3 218 109 216 0x x x- + - =    (12) 3 12 0x x+ - =

Exercise– 3.2
 1. When 0k < , the polynomial has real roots.
  When 0k = or 8k = , the roots are real and equal.
  When 0 8k< <  the roots are imaginary.
  When 8k >  the roots are real and distinct.
  2. 2 4 7 0x x− + =  3. 2 6 13 0x x− + =   4. 4 216 4x x− +

Exercise– 3.3

 1.  13,3,
2

-  2 . 2 4, ,2
3 3

 3. 2 ,2,6
3

  4.  k = ±2 2 1 3
2

, ,

 5. 1 37 1 371 2 ,1 2 , 3, 3, ,
2 2

i i + -
- + -      6.  (i) 11, ,3

2
 (ii) 1− , 1

2
, 3

4
    7. 3, 5± ±

Exercise– 3.4

 1. (i){ }2,3, 7,8- -      (ii) 3 ,3 ,3 17+ , 3 17-              2. 1 2 5 1 2 51, 2, ,
2 2

ì üï ï- + - -ï ï-í ýï ïï ïî þ

Exercise– 3.5

 (1)  (i) 2
2

nπ π+ , no solution for sin 4x =      (ii)  
1 22, ,
4 3

−            

 (2)  (i) 1x =  (ii)   no rational roots   (3)  4n  (4) 
2

4
b
a

,
3

2

9a
b

 

 (5) (i) 1 11, 1,2, ,3,
2 3

+ -       (ii) 3 5 3 51, 1, ,
2 2

- + - -
+ -

 (6) 2,2,3-  (7) 1 1,3,
3 2

and 2

Exercise– 3.6
 (1) It has at most four positive roots and at most two negative roots.
 (2) It has at most two positive roots and no negative roots.
 (4) It has one positive real root and one negative real root.
 (5) no positive real roots and no negative real roots.

Exercise– 3.7
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
4 1 3 2 2 4 1 3 1 2
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Exercise 4.1

 1. (i) , 0, 1, 2,... 10x n nπ= = ± ± ±            (ii)  ( )4 1 , 0, 1, 2, 3, 4
2

x n nπ
= − = ± ± ±

 2. (i) 1,  2
7
π

(ii) 1, 6π       (iii)   4, π        4. (i)  
3
π

      (ii)  
4
π

−

 5. 0x =  6. (i)  { }1, 1−   (ii)  [ ]0, 1  7.  
3
π

Exercise 4.2

 1. (i)  ( )2 1 , 0, 1, 2, 3, 4, 5
2

x n nπ
= + = ± ± ± ± ±          (ii) ( )2 1 , 0, 1, 2, 3x n nπ= + = ± ± −

 2. [ ]0,
6
π π− ∉  3. True 4. 

3
π

 5. (i)  5
6
π     (ii)  

6
π

−         (iii)  24
119
π                                       6. (i)  [ ]5, 5−      (ii)   [ ]1, 1−

 7.  10
3

x< <  8. (i) 0    (ii)  7
12
π

−

Exercise 4.3

 1. (i)  [ 3, 3]−       (ii)     2. (i)  
4
π        (ii)  p

6

 3. (i)  7
4
π      (ii)  1947     (iii)   0.2021−  4. (i)  ∞      (ii)   2 5

25
−       (iii)   24

25

Exercise 4.4

 1. (i) 
6
π     (ii)    

6
π      (iii)  

4
π

−                 2. (i)  
3
π

−    (ii)  1cot (2)
6
π− −        (iii)  5

6
π

−

Exercise 4.5

 1. (i)  
2
π

−       (ii)  
4
π

−     (iii)  5 2π−  

 2. (i)  22x x−     (ii) 
1

9 6 22x x− +
    (iii) 

2

2 1
3 4 4

x
x x
+

− −

 3. (i)  
6
π    (ii)  0   (iii)   17

6            
8. 

4
π

 9.  (i)  13x =    (ii)  
1
a bx

ab
−

=
+

      (iii) x n x n= = +π π
π,
4

  (iv)   3x =   
 10. Three

Answers.indd   286 3/10/2019   9:48:55 PM



Answers287

Exercise 4.6
1 2 3 4 5 6 7 8 9 10

(3) (2) (3) (1) (2) (1) (3) (1) (4) (4)

11 12 13 14 15 16 17 18 19 20

(3) (2) (2) (1) (3) (3) (2) (2) (4) (4)

Exercise 5.1

 1. 2 2 10 0x y y+ ± =    2. 2 2( 2) ( 1) 50x y− + + =  

 3. 2 2 4 4 4 0x y x y+ + + + =   or 2 2 20 20 100 0x y x y+ + + + =   4. 2 2 4 6 12 0x y x y+ − − − =  

 5. 2 2 5 3 22 0x y x y+ − + − =   6. 2 2 1x y+ =  

 7. 2 2 6 4 4 0x y x y+ − − + =   8. 12±  

 9. 5 8 0, 5 12 0x y x y− + = + − =    10. out side, inside, outside

 11. (i) ( )0, 2 ,0−       (ii) ( 3, 2),3−      (iii) 1 17, 1 ,
2 2

 − 
 

    (iv) 3 3, 1 ,
2 2

 − 
 

 

 12. 3p q= = , (1,0),5

Exercise 5.2

 1.  (i) 2 16y x=  (ii) 23 4x y= −  (iii) ( ) ( )22 12 1y x+ = −  (iv) 2 16y x=

 2. (i) 
2 2

1
36 27
x y

+ =  (ii) 
2 2

1
9 25
x y

+ =  (iii) 
2 216 1

625 25
x y

+ =  (iii) 
2 2

1
8 16
x y

+ =

 3. (i) 
2 29 9 1

16 20
x y

− =  (ii) ( ) ( )2 22 1
1

12 24
x y− −

− =  (iii) 
2 29 1

16 64
x y

− =

 4. 

Vertex Focus Equation of 
directrix

Length of
latus rectum

i. ( )0,0 ( )4,0 4x = − 16

ii. ( )0,0 ( )0,6 6y = − 24

iii. ( )0,0 ( )2,0− 2x = 8

iv. ( )1, 2− ( )1,4 0y = 8

v. ( )1, 2 ( )3,2 1x = − 8
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 5.
Type of conic Centre Vertices Foci Directrices

i. Ellipse ( )0,0 ( )5,0± ( )4,0± 25
4

x = ±

ii. Ellipse ( )0,0 ( )0, 10± ( )0, 7±
10

7
y = ±

iii. Hyperbola ( )0,0 ( )5,0± ( )13,0± 25
13

x = ±

iv. Hyperbola ( )0,0 ( )0, 4± ( )0, 5± 16
5

y = ±

 8.
Type of 
Conic

Centre Vertices Foci Directrices

i. Ellipse ( )3,4 ( ) ( )3,21 , 3, 13− ( )(3,12), 3, 4−

321,
8
257
8

y

y

=

−
=

ii. Ellipse ( )1,2− ( ) ( )11,2 , 9,2− ( 7,2), (5, 2)−

47 ,
3
53
3

x

x

=

−
=

iii. Hyperbola ( )3, 4− ( ) ( )18,4 , 12,4− ( 20,4), (14,4)−

176 ,
17
276
17

x

x

=

−
=

iv. Hyperbola ( )1,2− ( )1,7 , ( 1, 3)− − −
( 1, 2 41)

( 1,2 41)

− +

− −

25 2,
41
25 2
41

y

y

= +

−
= +

V Ellipse ( )4, 2−
( )4, 2 3 2 ,

(4, 2 3 2)

− +

− −

(4, 2 6),

(4, 2 6)

− +

− −

2 3 6,

2 3 6

y

y

= − +

= − −

Vi Hyperbola ( )2, 3− ( )3, 3 , (1, 3)− − (2 10 3),

(2 10, 3)

+ −

− −

1 2,
10
1 2

10

x

x

= +

−
= +
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Exercise 5.3
 1. hyperbola       2   circle       3. ellipse         4. circle     5. hyperbola          6.  parabola

Exercise 5.4
 1. 3 0, 9 13 0x y x y− − = − + =  2. 10 3 32 0, 10 3 32 0x y x y− + = + − =

 3. ( )3,1−  4. 4 0x y− + =

 5. 2 8 0x y− + =  6. 4 3 6 0,3 4 12 0x y x y− − = + − =

Exercise 5.5
 1. 8.4 m 2. 9.6 m 3. 3 m 
 4. 2 4.8 , 1.3y x m=  5. 3.52 , 5.08m m   6. 45.41m, 74.45m 
 7. 2 2

3
 8. 3 3m  9. 1 4tan

3
−  
 
 

 10. 
2 2

1
9 16
x y

− =

Exercise 5.6
1 2 3 4 5 6 7 8 9 10 11 12 13

(1) (3) (4) (3) (3) (1) (1) (3) (2) (2) (1) (4) (3)

14 15 16 17 18 19 20 21 22 23 24 25 ---

(3) (1) (4) (4) (1) (1) (2) (2) (3) (3) (3) (2) ---

Exercise 6.1
 11. 80 units   12. 69 units  

 13. 179 , 3
179

, 11
179
− , 7

179
−     14.  ˆ96 115 15i j k− + +  

Exercise 6.2
 1. 24 2. 720 cubic units 3. 5−  

 4. 12±   5. 2 3
5

  6. coplanar 7. 2

Exercise 6.3
 1. (i)  ˆ2 14 22i j k− + −  (ii)  ˆ22 14 2i j k+ +   5. 74−  

 7. 0l = , 10m = ,  3n = −   8. 
3
πθ =  

Exercise 6.4

 1. ( ) ( )ˆ ˆ4 3 7 2 6 7 0r i j k i j k− + − × − + =
 

  , 4 3 7
2 6 7

x y z− − +
= =

−
 

 2. ( ) ( )ˆ ˆ2 3 4 4 5 6r i j k t i j k= − + + + − + −


  , 2 3 4
4 5 6

x y z+ − −
= =

− −
 

 3. 32 47,0, ,
0 3

 
 
 

( )0,16, 11−
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 4. 2 3 6, , ,
7 7 7

 
 
   

( ) ( )ˆ ˆˆ5 6 7 2 3 6r i j k t i j k= + + + + +


 

 
or

  
( ) ( )ˆ ˆ7 9 13 2 3 6 ,r i j k t i j k= + + + + +



 

 

  
5 6 7

2 3 6
x y z− − −

= =  or 7 9 13
2 3 6

x y z− − −
= =

 5. (i) 0°    (ii) 1 3cos
2 3

−  
 
 

   (iii) 
2
π

        
6. 

2
π  7. 18,a =

2
3

b =
        

8.  1

Exercise 6.5
 1. ( ) ( )ˆ ˆ5 2 8 2 2 , ,r i j k t i j k t= + + + + − ∈



   



 
 5 2

2 1 2
x y z− −

= =
−

 2. 7
5

units 3. 9
2  

4. (6, 2,1)   5. 2 units

 6. 83
6

 units 7. 5 4 2(1,6,0),
4 2 2

x y z− − −
= =

− −
 

Exercise 6.6

 1. 
 ˆ3 4 5 7

5 2
i j kr

 − +
⋅ =  
 





 
2. 12 3 4, ,

13 13 13
− ;  

ˆˆ ˆ12 3 4. 5
13

i j kr
 + −

=  
 

 ;  5

 3. ( )ˆ3 5 35r i j k⋅ + + =


 ; 3 5 35x y z+ + =  4. ( )ˆ 2r i j k⋅ + + =


 ; 2x y z+ + =

 5. x -intercept 2= ,  y- intercept 3= ,  z- intercept 4= −               6.  3x y z
u v w
+ + =

Exercise 6.7
 1. ( )ˆ2 4 20r i j k⋅ − + =



 ; 2 4 20 0x y z− + − =

 2. ( )ˆ3 4 5 9r i j k⋅ + − =


 ; 3 4 5 9 0x y z+ − − =

 3. ( ) ( ) ( )ˆ ˆ ˆ2 2 4 2 3 4 5 ,r i j k s i j k t i j k s t⋅ + + + − − + + − + ∈


     

 ;

      12 11 16 14 0x y z− − + =

 4. ( )ˆ10 7 9r i j k⋅ + + =


 ;   10 7 9 0x y z+ + − =

 5. ( ) ( ) ( )ˆ ˆ ˆ3 2 4 2 ,r i j k s i j k t i j k s t⋅ − + + − + + + + ∈


     

 ; 9 2 5 4 0x y z− − + =

 6. ( ) ( ) ( )ˆ ˆ3 6 2 4 8 8 3 2 ,r i j k s i j k t i j s t⋅ + − + − − + + − ∈


     

 ;   ( )ˆ2 3 4 16r i j k⋅ + + =


 ;

       2 3 4 16 0x y z+ + − =

 7. ( )ˆ3 5 7 6r i j k⋅ + − =


 ; 3 5 7 6 0x y z+ − − =

Exercise 6.8
 1. ( )ˆ17 47 24 172r i j k⋅ − − =





  
2. 2 4 0x y z+ − − =  

 
3. 2m = ±   4. 2, 2, 1 0, 1 0y z y z− + + = − + =
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Exercise 6.9
 1. 15 47 28 7 0x y z− + − =  2. 5 11 17 0x y z− + − =

 3. 1 8sin
21

−  
 
   

4. 1 2cos
3 6

−  
 
 

 5. 2 3 5 11 0x y z− + − = ; 4
38          

6. 1
3

units     7.  ( )2,2,0       8. ( )3, 1, 1− − ; 14 units.

Exercise 6.10
1 2 3 4 5 6 7 8 9 10

(4) (3) (1) (2) (3) (3) (1) (1) (1) (2)
11 12 13 14 15 16 17 18 19 20
(3) (1) (2) (4) (4) (2) (3) (4) (2) (1)
21 22 23 24 25
(2) (3) (4) (3) (1)
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GLOSSARY
CHAPTER 1

APPLICATIONS OF MATRICES AND DETERMINANTS

Adjoint matrix சேர்ப்பு அணி

Inverse matrix சேர்்மாறு அணி

Rank தரம்

Elementary transformation ேமாதமாரண உரு்மாற்றங்கள்

Echelon form ஏறுபடி வடிவம்

Trivial solution வவளிப்படைத் தீர்வு

Non-trivial solution வவளிப்படையற்ற தீர்வு

Augmented matrix விரிவுபடுத்தப்படை அணி

Consistent முரணபமாைற்ற

Pivot சுழறசித்தமான உறுப்பு

CHAPTER 2

COMPLEX NUMBER

Complex numbers ்கலப்பு எண்கள்
Imaginary unit ்கறபடன அலகு
Rectangular form வேவவ்க வடிவம்
Argand Plane  ஆர்்கன்ட தளம்
Conjugate of a complex number  ஒரு ்கலப்வபணணின் இடணக் 

்கலப்வபண
Upper bound ச்ல் எல்டல
Lower bound கீழ் எல்டல
Polar form  துருவ வடிவம்
Exponential form  அடுக்குக்குறி வடிவம்
Trigonometric form முக்ச்கமாணவியல் வடிவம்
Absolute value  எணணளவு
Modulus  ்டடு ்திப்பு
Argument or amplitude  வீச்சு
Principal argument முதன்ட் வீச்சு
Euler’s form யூலரின் வடிவம்
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CHAPTER 3

THEORY OF EQUATION

Complex conjugate root theorem இடணக்்கலப்வபண மூலத் சதற்றம்
Leading coefficient முதன்ட்க் வ்கழு
Leading term முதன்ட் உறுப்பு

Monic polynomial ஒறட்ற முதன்ட் உறுப்பு 
பல்லுறுப்புக் ச்கமாடவ

Non-polynomial equation பல்லுறுப்புக் ச்கமாடவயற்ற 
ே்ன்பமாடு

Non real complex number வ்யயற்ற ்கலப்வபண

Quartic polynomial ேமாறபடி பல்லுறுப்புக் ச்கமாடவ

Radical solution அடிப்படைத்தீர்வு

Rational root Theorem விகிதமுறு மூலத்சதற்றம்

Reciprocal equation தடலகீழ் ே்ன்பமாடு

Reciprocal polynomial தடலகீழ் பல்லுறுப்புக் ச்கமாடவ

Simple root எளிய மூலம்

Zero polynomial பூஜ்ஜிய பல்லுறுப்புக் ச்கமாடவ

CHAPTER 4

INVERSE TRIGONOMETRIC FUNCTION

Inverse trigonometric functions சேர்்மாறு முக்ச்கமாணவியல் 
ேமார்பு்கள்

Principal value முதன்ட் ்திப்பு

Amplitude வீச்சு

Period ்கமாலம்

Principal domain முதன்ட் ேமார்ப்கம்

Periodic function ்கமாலமுட்றச் ேமார்பு

Reciprocal inverse identities சேர்்மாறு தடலகீழி 
முறவ்றமாருட்்கள்

Reflection identities பிரதிபலிப்பு முறவ்றமாருட்்கள்

Cofunction inverse identities சேர்்மாறு துடணச் ேமார்பு 
முறவ்றமாருட்்கள்
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CHAPTER 5

ANALYTICAL GEOMETRY II AND FUNCTIONS

Circle வடைம்

Parabola பரவடளயம்

Ellipse நீள்வடைம்

Hyperbola அதிபரவடளயம்

Algebraic techniques இயற்கணித நுடபங்கள்

Geometrical problems வடிவியல் ்கணக்கு்கள்

Astronomy வமானியல்

Conics கூம்பு வடளவு்கள்

Focus குவியம்

Directrix இயக்குவடர

Eccentricity ட்யத்வதமாடலத் த்கவு

Focal chord குவி ேமாண

Vertex முடன

Latus rectum வேவவ்கலம்

Major axis வேடைச்சு

Minor axis குற்றச்சு

Transverse axis துடணயச்சு

Conjugate axis குறுக்்கச்சு

Auxiliary circle துடண வடைம்

Incircle உள் வடைம்

Asymptotes வதமாடலத் வதமாடுச்கமாடு்கள்

Degenerate forms சிடதநத வடிவங்கள்

Double napped cone இரடடைக் கூம்பு

Parametric equation துடணயலகுச் ே்ன்பமாடு்கள்

Director circle இயக்கு வடைம்

Elliptic orbit நீள்வடை சுறறுப்பமாடத

Reflective property பிரதிபலிப்பு பணபு்கள்
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CHAPTER 6

VECTOR ALGEBRA AND ITS APPLICATIONS

Box product வபடடிப் வபருக்்கல்

Line of intersection வவடடுக்ச்கமாடு

Moment திருப்புத்தி்றன்

Normal வேஙகுத்து

Parallelepiped இடண்கரத்திண்ம்

Parameter துடணயலகு

Plane தளம்

Rotaional force சுழல் விடே

Skew lines ஒரு தள அட்யமாக் ச்கமாடு்கள்

Torque முறுக்குத்தி்றன்

Triple product முப்வபருக்்கல்
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