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HOW TO USE THE BOOK

Scope of Mathematics

Learning Objectives:

ICT

Summary

Evaluation

Books for Reference

Scope for
Higher Order Thinking

Glossary

Awareness on the scope of higher educational opportunities; courses,
institutions and required competitive examinations.
Possible financial assistance to help students climb academic ladder.

Overview of the unit
Give clarity on the intended learning outcomes of the unit.

Visual representation of concepts with illustrations
Videos, animations, and tutorials.

To increase the span of attention of concepts

To visualize the concepts for strengthening and understanding

To link concepts related to one unit with other units.

To utilize the digital skills in classroom learning and providing students
experimental learning.

Recapitulation of the salient points of each chapter for recalling the
concepts learnt.

Assessing student’s understanding of concepts and get them acquainted
with solving exercise problems.

List of relevant books for further reading.

To motivate students aspiring to take up competitive examinations such
as JEE, KVPY, Math olympiad, etc., the concepts and questions based on
Higher Order Thinking are incorporated in the content of this book.

Frequently used Mathematical terms have been given with their
Tamil equivalents.

Mathematics Learning

The correct way to learn is to understand the concepts throughly. Each chapter opens with an Introduction,

Learning Objectives, Various Definitions, Theorems, Results and Illustrations. These in turn are followed by

solved examples and exercise problems which have been classified in to various types for quick and effective

revision. One can develop the skill of solving mathematical problems only by doing them. So the teacher's

role is to teach the basic concepts and problems related to it and to scaffold students to try the other problems

on their own. Since the second year of Higher Secondary is considered to be the foundation for learning

higher mathematics, the students must be given more attention to each and every concept mentioned in this

book.
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Applications of Matrices and Determinants

Bl e
21RYOC

“The greatest mathematicians, as Archimedes, Newton, and Gauss,
always united theory and applications in equal measure.”
-Felix Klein

1.1 Introduction

Matrices are very important and indispensable in handling system
of linear equations which arise as mathematical models of real-world
problems. Mathematicians Gauss, Jordan, Cayley and Hamilton have
developed the theory of matrices which has been used in investigating
solutions of systems of linear equations.

In this chapter, we present some applications of matrices in
solving system of linear equations. To be specific, we study four
methods, namely (i) Matrix inversion method, (ii) Cramer’s rule
(ii1) Gaussian elimination method, and (iv) Rank method. Before knowing

L]

Carl Friedrich Gauss these methods, we introduce the following: (i) Inverse of a non-singular ®

(1777-1855) square matrix, (ii) Rank of a matrix, (iii) Elementary row and column
German mathematician and transformations, and (iv) Consistency of system of linear equations.

physicist

LEARNING OBJECTIVES

Upon completion of this chapter, students will be able to
* Demonstrate a few fundamental tools for solving systems of linear equations:

» Use row operations to find the inverse of a non-singular matrix
» Illustrate the following techniques in solving system of linear equations by

Test the consistency of system of non-homogeneous linear equations
» Test for non-trivial solution of system of homogeneous linear equations

Adjoint of a square matrix

Inverse of a non-singular matrix
Elementary row and column operations
Row-echelon form

Rank of a matrix

Matrix inversion method
Cramer’s rule
Gaussian elimination method

‘ ‘ Chapter 1 Matrices.indd 1
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1.2 Inverse of a Non-Singular Square Matrix

We recall that a square matrix is called a non-singular matrix if its determinant is not equal to
zero and a square matrix is called singular if its determinant is zero. We have already learnt about
multiplication of a matrix by a scalar, addition of two matrices, and multiplication of two matrices.
But a rule could not be formulated to perform division of a matrix by another matrix since a matrix is
just an arrangement of numbers and has no numerical value. When we say that, a matrix A4 is of order
n, we mean that A4 is a square matrix having » rows and n columns.

. 1 .
In the case of a real number x = 0,there exists a real number y(= —), called the inverse (or
X

reciprocal) of xsuch that xy = yx =1.In the same line of thinking, when a matrix A4 is given, we
search for a matrix B such that the products AB and BA can be found and 4B = BA =1, where [ is
a unit matrix.

In this section, we define the inverse of a non-singular square matrix and prove that a non-singular
square matrix has a unique inverse. We will also study some of the properties of inverse matrix. For
all these activities, we need a matrix called the adjoint of a square matrix.
1.2.1 Adjoint of a Square Matrix
We recall the properties of the cofactors of the elements of a square matrix. Let 4 be a square
matrix of by order n whose determinant is denoted |A| or det (A).Let a; be the element sitting at the
intersection of the i™ row and ;" column of A4.Deleting the i" row and ;" column of 4, we obtain
a submatrix of order (n—1). The determinant of this submatrix is called minor of the element a,. It
® is denoted by M. The product of M and (=)™ is called cofactor of the element a;. It is denoted ®
by 4. Thus the cofactor of a; is 4, =(-1)""M,.

An important property connecting the elements of a square matrix and their cofactors is that the
sum of the products of the entries (elements) of a row and the corresponding cofactors of the elements
of the same row is equal to the determinant of the matrix; and the sum of the products of the entries
(elements) of a row and the corresponding cofactors of the elements of any other row is equal to 0.

That is,
4| ifi=j
ailAjl +ai2Aj2 +"'+ainAjn = ep o .
0 ifi=j,
where A| denotes the determinant of the square matrix A.Here |A| isread as “determinant of 4~ and

not as “ modulus of 4”. Note that |A| is just a real number and it can also be negative. For example,

2 1 1
wehave [1 1 1]=2(1-2)-1(1-2)+12-2)=-2+1+0=—1.
2 21

| Definition 1.1
Let A be a square matrix of order n. Then the matrix of cofactors of A is defined as the

matrix obtained by replacing each element a; of 4 with the corresponding cofactor 4;. The
adjoint matrix of A is defined as the transpose of the matrix of cofactors of A.It is denoted by
adj 4. |

XII - Mathematics 2
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Note
.o . . T i T
adj Ais a square matrix of ordern and adj A= [Ai,.] = [(—1) ’M!.,.] .

In particular, adj 4 of a square matrix of order 3 is given below:

T T
+M11 _MIZ +M13 An Alz A13 An AZ] A31

adjd=|-M, +M,, -M, | =|4,, A, A4,| =|A4, 22 32 |
+M _Msz +M33 A31 Asz Ass A13 Azs Ass

'
'

31

Theorem 1.1
For every square matrix A of order n, A(adj 4) = (adj 4)4=|4|1,.

Proof
For simplicity, we prove the theorem for n = 3 only.
a, 4, d;
Consider 4=|a,, a,, a,, |- Then, we get

ay 4y Ay

an A, +a,A, +a;4; = |A ,» andy tapdy, +aA,; =0, a4y +ap Ay, +a4;, =05

ay A, +and, +aA4;=0, a, 4, +a,4, +a,4,; = |A s Oy Ay +ay Ay, +ay A4y, =0;
ay A, + a5, 4, +apd; =0, a3 4, +apd, +apdy; =0, a4y +ay, Ay, +ag Ay = |A|

By using the above equations, we get

® a, ap ay|[4 Ay A,] [l4 0 0 100 ®

A@djd)= | ay, ay, ay || 4, Ay A, |=|0 |4 0 |=]|4]|0 1 0|=|41 (D)
a; Ay a33__A13 Ay Ay 0 0 |A| 0 0 1
4, 4, ABI__all a, 4y |A| 0 0 100

(adjid)A=|4, A, A, ||a, a, ay|=|0 |4 0 |=]40 1 0|=|45,  ...(2)
Ay, Ay Ay lla, ay ag 0 0 |4 0 0 1

where /; 1is the identity matrix of order 3.
So, by equations (1) and (2), we get A(adj A) = (adj 4) A4 =|A|I,. u

Note
If 4 is a singular matrix of order n, then [4/=0 and so A(adjA)=(adj 4)4=0,, where O,

denotes zero matrix of order n.

Example 1.1

8 -6 2
If4=|-6 7 -4/, verifythatA(adj4)=(adjA)4 = |A4|1,.
2 -4 3
Solution
8 -6 2
We find that| 4| = |[-6 7 —-4|=821-16)+6(—18+8)+2(24—-14)=40-60+20=0.
2 -4 3

3 Applications of Matrices and Determinants
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By the definition of adjoint, we get

So, we get

A(adj A)

Similarly, we get

(adj A) A

(21-16)
adj A=| —(~18+8)
(24-14)

(8 -6 2
-6 7 -4
2 -4 3

[ 40-60+20
—30+70—40

| 10-40+30

5 10 10
10 20 20
10 20 20

40-60+20
80-120+40
80-120+40

(24-4)

5 10 10
10 20 20
10 20 20

80-120+40

-60+140-80

20-80+60

8 -6 2

-6 7 -4
2 -4 3
~30+70—40

-60+140-80
—60+140—-80

Hence, A(adjA) = (adj A)A=|A|I,.

—(~18+8)

—(-32+12)

(24-14)
—(-32+12)
(56 -36)

80-120+40
—60+140-80

20-80+60

10-40+30
20-80+60
20-80+60

1.2.2 Definition of inverse matrix of a square matrix

Now, we define the inverse of a square matrix.

Definition 1.2

Let A be a square matrix of order n.If there exists a square matrix B of order # such that

AB = BA =1, then the matrix B is called an inverse of 4.

o O O

5 10 10
10 20 20|
10 20 20
0 0
0 0|=01 =41,
0 0
0 0
0 0|=01 =41,
0 0

‘ Theorem 1.2

If a square matrix has an inverse, then it is unique.

Proof

Let A be a square matrix order n such that an inverse of A4 exists. If possible, let there be two

inverses B and C of 4. Then, by definition, we have 4B=BA=1 and AC=CA=1, .

Using these equations, we get
C=CIl,=C(4B)=(CA)B=1,B=B.

Hence the uniqueness follows.

Notation The inverse of an A is denoted by 4.

Note
AA ' =A"4=1

XII - Mathematics
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Theorem 1.3
Let 4 be square matrix of order n.Then, A~ exists if and only if 4 is non-singular.

Proof
Suppose that 4" exists. Then 44" =A4"'A=1.

By the product rule for determinants, we get
det(44™") = det(A)det(A ") = det(4™")det(4) = det(/,) =1.So,

A|=det(4) #0.

Hence A is non-singular.
Conversely, suppose that A4 is non-singular.
Then |4]= 0.By Theorem 1.1, we get

A(adj A) = (adj A)A=|4|1,.

, We getA(Ladj A]z(iadj A]A=In.

So, dividing by |A
4 4

Thus, we are able to find a matrix B = Ladj A such that AB=BA=1,.

|4

. . e a1
Hence, the inverse of A exists and it is given by A~ = Madj A.

Remark

The determinant of a singular matrix is 0 and so a singular matrix has no inverse.

Example 1.2

a b, . 5
If 4= J is non-singular, find 4.
c

Solution
_ 3 o [+my M, [d -] [d -b
We first find adj A.By definition, we get adj 4 = = = .
-M,, +M,, -b a -c a
Since A is non-singular, |4|=ad —bc # 0.
-1 1 . -1 1 d _b
As A~ =—adj4, weget A = .
|A| ad—-bc|—-c a m
Example 1.3
2 -1 3
Find the inverse of the matrix | -5 3
-3 2 3
Solution
2 -1 3 2 -1 3
Letd = |-5 3 1|.Then|A]=|-5 3 1|=2(7)+(-12)+3(-1)=-1=0.
-3 2 3 -3 2 3
Therefore, A~ exists. Now, we get
5 Applications of Matrices and Determinants
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31 -5 1 -5 3
2 3 -3 3 -3 2 ’
7 12 -1 7 9 -10
. -1 3 2 3 2 -1
adj4 = | — - =| 9 15 -1| =[12 15 -17
2 3 -3 3 -3 2
-10 -17 1 -1 -1 1
-1 3 2 3 2 -1
+ - +
(31 -5 1 =5 3]
| | 7 9 -10] [-7 -9 10
Hence, 4™ = 7(ade)=—1 12 15 -17|=|-12 =15 17].
4] D -1 -1 1 1 1 -1 m

1.2.3 Properties of inverses of matrices

We state and prove some theorems on non-singular matrices.

Theorem 1.4
If A is non-singular, then

(i)‘A’l‘ :L| (ii) (AT )71 = (A’1 )T (iii) (/IA)*1 = %A‘l, where A is a non-zero scalar.

|4
Proof
Let A be non-singular. Then |A| = 0and A" exists. By definition,
@ AL =4 A=1 . (1) @
(i) By (1), we get 44| =|a"4|=]1,|.

Using the product rule for determinants, we get |AHA‘1‘ =l |=1.

Hence, A*I‘ = L
4

(i1) From (1), we get (AA‘I)T = (A_IA)T = (In )T.

. N oo r -\
Using the reversal law of transpose, we get (A ) A =4 (A ) =], .Hence

() (4.

(iii) Since A is a non-zero number, from (1), we get (AA)(% Al] — (% Alj(lA) =1,
a1
So(ad) ' =™ i

Theorem 1.5 (Left Cancellation Law)
Let A4,B, and C be square matrices of order n.If A is non-singular and AB = AC,then B =C.

Proof

Since 4 is non-singular, 4" exists and A4 = A"'A=1,. Taking AB = AC and pre-multiplying
both sides by A4™', we get 4'(4B)=A"'(AC).By using the associative property of matrix
multiplication and property of inverse matrix, we get B =C. [

XII - Mathematics 6
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Theorem1.6 (Right Cancellation Law)
Let 4,B, and C be square matrices of order n.If 4 is non-singular and B4 = CA4,then B =C.

Proof
Since 4 is non-singular, 4 'exists and 44~ = A4 =1 . Taking BA= CAand post-multiplying
bothsidesby A", weget (BA)A™ = (CA)A™'. By using the associative property of matrix multiplication

and property of inverse matrix, we get B =C. u

Note
If 4 is singular and AB=AC or BA=CA,then Band Cneed not be equal. For instance,

consider the following matrices:

1 1 1 -1 0 -1
A= ,B= and C = )
5 ey e ]

We note that |A| =0and AB = AC; but B=C.

Theorem 1.7 (Reversal Law for Inverses)
If 4 and B are non-singular matrices of the same order, then the product 4B is also non-singular
and (A4B)' =B'4"".

@ Proof ®

B|= 0, both

Assume that 4 and B are non-singular matrices of same order n. Then,| 4 |= 0,
A™" and B' exist and they are of order n. The products 4B and B~' A" can be found and they are also
of ordern. Using the product rule for determinants, we get |AB| =| A|| B |#0.So, AB is non-singular

and
(ABY(B'A™")=(ABB™')A ' =(AI)A"' =447 =1 ;

(B A )(AB)= (B (4"'4)B=(B"'1)B=B"'B=1,.

|
Hence (AB) ' =B'4™".
Theorem 1.8 (Law of Double Inverse)
If 4 is non-singular, then 4~ is also non-singular and (47")™"' = 4.
Proof
Assume that 4 is non-singular. Then |A| #0, and A exists.
Now ‘A_l‘ = ﬁ #0=> A" is also non-singular, and 44~ = A" A=1.
Now, Ad™" =1=(44") =1=(4") 4" =1. (1)
Post-multiplying by 4 on both sides of equation (1), we get (A’1 )71 = A.
|
7 Applications of Matrices and Determinants
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/ Theorem 1.9 N\

If A4 is a non-singular square matrix of order n, then

(i) (adj 4) " = adj(4")= 1y (i) |adj 4= 4]

4

(i) adj(adjd)= |4 4 (iv) adj(A4) = A""adj(4), A is a nonzero scalar

(n-1)*

(v) |adj(adjd)| =4

L (Vi) (adj 4)" =adj(4")

Proof
Since 4 is a non-singular square matrix, we have |A| = 0and so, we get

J

) A_l=j(ade):>ade = |A|A_1:>(ade)_1:(|A|A“)lzj(A—l)lzLA

Replacing 4 by A™' in adj 4=|4|47", we get adj(Afl) :‘Ail‘([l )71 :ﬁA'
1

Hence, we get (adj A)ﬁ1 = adj(A*I) = MA .

(ii) A(adj A)=(adj )4 = | A|I, = det(A(adj A))=det((adj A)A4)= det(| 4|1,)

= |d|[adj 4] = [ A= [adj 4= 4|"".

(111) For any non-singular matrix B of ordern, we have B(adj B)=(adj B)B = |B|I,.
Put B =adj 4. Then, we get (adj A)(adj(adj4))= |adjA]|],.
So, since [adj 4|=| A|"", we get (adj 4)(adj(adj 4))= [A|"" I,
Pre-multiplying both sides by A4, we get A((adj A)(adj (adj A))) = A 41" 1,).

Using the associative property of matrix multiplication, we get

(4(adj 4))adj(adj 4)= A(| A" 1,).

Hence, we get (|A

1,)(adj(adj 4))= |A|"" A.Thatis,adj(adj 4)= | A|"” 4.

(iv) Replacing 4 by A4 in adj(A) =|A|A"1 , we get

1

adj(A4) =|24|(14)" = 1" |4| IA-' ="

A 47 = 2" "adj(4).

(v) By (iii), we have adj(adj A) =| A" A. So, by taking determinant on both sides, we get

(n-1)?

|adj(adJA)| _ “ A |n—2 A‘ _ (l A |(n—2) )” A| = 4 |n2—2n+1= |A

(vi) Replacing Aby A" in 47" = iadj A, we get (AT )71 = | AlT |adj(AT) and hence, we
T
get adj(4")= |47 |(4") S 4l(4") =(14]47) :(|A|jadj A] = (adj 4)".
|
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Note
If A is a non-singular matrix of order 3, then,| 4= 0. By property (ii), we get ‘adj A‘ =| A[* and

adj A| is positive. Then, we get |A| ==, /|adj A|.

S0,

So,we get4™' =+ adj A.

ladj A|
1
4]

Hence, if 4 is a non-singular matrix of order 3, then, we get 4=+

Further, by the property (iii), we get 4 = — adj (adj A).

! adj(adj A).
JJadj A
Example 1.4

If A4 is a non-singular matrix of odd order, prove that |adj A| 1s positive.

Solution

Let 4 be a non-singular matrix of order 2m +1, where m =0,1,2,---. Then, we get |4 =0 and,

by property (ii), we have |adj A| = A 4P

Since | A[*" is always positive, we get that |adj A| is positive. [
Example 1.5
7 7 -7
® . o ®
Find a matrix 4 if adj(4)=|-1 11 7 |.
15 7
Solution
7 7 -7
First, we find [adj(4)|=|-1 11 7 |=7(77-35)-7(-71-77)-7(-5-121) =1764 > 0.
15 7
So, we get

+H77-35) —(-7-77) +(=5-121)]

1
A=+ adj(adj4) = * —(49+35) +(49+77) —-(35-177)
Jladi 4 764 L49477) —(49-7)  +(T17+7)
42 84 -126] 1 -2 3
= 14—12 -84 126 42 | =%l 2 3 -]
126 —42 84 -3 1 2 -
Example 1.6
-1 2 2
Ifadjd=|1 1 2|, find 4.
2 21
9 Applications of Matrices and Determinants
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Solution
-1

2
We compute |adJ A| 2|=9.
1

2

1

2

| | -1 2 2 -1 2 2

So, we get A7 =+——adj(4) = i % 1 2|==% 1 2
[adj(4) 2 1 2 1

Examplel.7

If A is symmetric, prove that then adj 4 is also symmetric.

Solution
Suppose 4 is symmetric. Then, 4" = 4 and so, by property (vi), we get
adj(AT ) =(adj A)T = adj 4 =(ad] A)T = adj 4 is symmetric. -

Theorem 1.10

If 4 and B are any two non-singular square matrices of order n, then

adj(AB) = (adj B)(adj 4).

Proof
Replacing 4 by AB in adj(4) = |A|A’1 , we get

® adj(4B) = |AB|(4B)"' =(|B|B")(| 4| 4")=adj(B)adj(4). m ®

Example 1.8

Verify the property (AT )_1 = (A’1 )T with 4 = [? ﬂ

Solution

We get |A|

Il
~
o
p—
—~
)
A
~
)
N
—~
—
p—
|
—
~
o)
W
wn
kS
R
—_
|
LI
|
N o
L
Il
W
[u—
|
(NN o |

7
Then, (A_I)T = 59 > =l{ ’ _1} : .. (1)

2 1
Weget 4" = |/ 7}.&) 4'[= @) -m©9)=5.

Then, (AT)i1 = %{_79 _21} : .. (2)

From (1) and (2), we get (A’1 )T = (AT )71. Thus, we have verified the given property.
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Example 1.9

. -1 -1 ~1 . O _3 _2 _3

Verify (AB) =B A with 4= ,B= .
1 4 0 -1

Solution -
0 -3||-2 3 0+0 0+3 0 3
We get AB = = =
1 4 0 -1} |-2+0 -3-4 -2 -7
-7 -3 -7 -3
(aBy' = ! L ()

O+6)] 2 0 612 O
PR 4 3 114 3
0+3)|-1 0 3|-1 0

Bl 1 -1 3 _ 1 -1 3

2-0{0 -2 2[0 =2

-1 3 4 3] -7 -3
Bla= L ! L . )
200 -23]-1 0 6/ 2 O
As the matrices in (1) and (2) are same, (A4B)'=B'4™" 1s verified. [ ]
@ Example 1.10 ®

4 3
If 4 :{2 5} find x and y such that 4°> + x4+ yl, = 0,.Hence, find 4.

Since A 4 3[4 3] [22 27
mce = = ,
2 5]|2 5] [18 31

5 (22 27 4 3 1 0 00
A" +xA+yl, =0, = +Xx +y =
18 31 25 0 1 00

Solution

=

[22+4x+y  27+3x | [0 0
1842x  31+5x+y| |0 O]

So, we get 22+4x+y=0,31+5x+y=0,27+3x=0 and 18+2x=0.
Hence x =-9 and y=l4.Then’ we get A2—9A+14[2 =02.

Post-multiplying this equation by 4~', we get 4—9/+1447" = 0,. Hence, we get

T _

11 Applications of Matrices and Determinants
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1.2.4 Application of matrices to Geometry

There is a special type of non-singular matrices which are widely used in applications of matrices

to geometry. For simplicity, we consider two-dimensional analytical geometry.

Let O be the origin, and x'Ox and y'Oy be the x -axis and Y

y -axis. Let P be a point in the plane whose coordinates are (x, y) 9

with respect to the coordinate system. Suppose that we rotate the R 210

x -axis and y -axis about the origin, through an angle 6 as shown ¥
in the figure. Let X'OX and Y'OY be the new X -axis and new
Y -axis. Let (X,Y) be the new set of coordinates of P with

respect to the new coordinate system. Referring to the Fig.1.1, '
we get

X = OL=ON—-LN =Xcos0—QT = XcosO—-Ysinf,

v = PL=PT+TL=0QON+PT =Xsin0O+Y cos0.

These equations provide transformation of one coordinate system into another coordinate system.
The above two equations can be written in the matrix form

x| [cos® —sin@][ X
y - | sinf cosO ||V '
[cos® —sinf]

Let W = . Then
@ _sin@ cos@ i [

X

Y

X 2 <2
=W v and || =cos” 0 +sin”6 =1. @

cos@® sinf

So, W has inverse and W' :[ } We note that W' =W". Then, we get the

—sin@ cos@

inverse transformation by the equation
X Ll x cosf sinf || x xcosf — ysinf
= W = = .
Y y —sin@ cosf ||y xsin6 + ycos6
Hence, we get the transformation X = xcos6 — ysinf, ¥ = xsin6 + ycos6 .

This transformation is used in Computer Graphics and determined by the matrix

cos@® —sinf
sin@ cosO

}. We note that the matrix W satisfies a special property W' =W"; that is,

Wwh=w'w=1.

Definition 1.3

A square matrix A is called orthogonal if 44" = A" A=1.

Note
A is orthogonal if and only if 4 is non-singular and 4" = A4".

XII - Mathematics 12

‘ ‘ Chapter 1 Matrices.indd 12 @ 3/10/2019 8:11:38 PM ‘ ‘



______TIEEEN ® N = HEEN

Example 1.11

cos@® —sinf

Prove that { } is orthogonal.

sin@ cosO

Solution

cosf —sinf ; |cos@ —sinf " [cosO sind
Let A=| . Then, 4" = = .
sinf  cos6

sinf cosO | —sin@ cos0
So, we get
. [cos@® —sinO]] cos® sin6 |
A4 = | . ]
_smO cos@ || —sin@ cos@_
B i cos’ @ +sin’ 6 cos@sinO —sin 6 cosO B 1 0 _J
_sin90059—c0593in9 sin® 6 + cos” O 0 1 :
Similarly, we get 4”4 =1,. Hence 44" = A"A=1,= A is orthogonal. u
Example 1.12
| 6 -3 a
If A:; b -2 6| is orthogonal, find a,hand ¢, and hence 4™'.
2 ¢ 3

@ Solution

If A4 is orthogonal, then 44" = 4" A = I,. So, we have

16 -3 al 6 b 2 1 0 0
AAT=I3:>;Z)—26;—3—20=010
2 ¢ 3 a 6 0 0 1
45+a’ 6b+6+6a 12-3c+3a 1 0 0
= | 6b+6+6a b* +40 2b—-2c+18|=49/0 1 0
12-3c+3a 2b—-2c+18 > +13 0 0 1
45+ a* =49
b>+40=49
2 — 2:4 2: 2:
— C +13—49 — a 7b 9,C 36) :>a=2,b=—3,c=6
6b+6+6a=0 a+b=-l,a-c=-4,b—c=-9
12-3¢+3a=0
2b-2c¢+18=0
. 6 -3 2 . 6 -3 2
So we getA=; -3 -2 6| and hence, we get A‘1=AT=; -3 2 6].
2 6 3 2 6 3
|
13 Applications of Matrices and Determinants
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1.2.5 Application of matrices to Cryptography

One of the important applications of inverse of a non-singular square
matrix is in cryptography. Cryptography is an art of communication
between two people by keeping the information not known to others. It is
based upon two factors, namely encryption and decryption. Encryption
means the process of transformation of an information (plain form) into an
unreadable form (coded form). On the other hand, Decryption means the
transformation of the coded message back into original form. Encryption and decryption require a
secret technique which is known only to the sender and the receiver.

This secret is called a key. One way of generating a key is by using a non-singular matrix to
encrypt a message by the sender. The receiver decodes (decrypts) the message to retrieve the original
message by using the inverse of the matrix. The matrix used for encryption is called encryption
matrix (encoding matrix) and that used for decoding is called decryption matrix (decoding
matrix).

We explain the process of encryption and decryption by means of an example.

Suppose that the sender and receiver consider messages in alphabets 4 —Z only, both assign the
numbers 1-26 to the letters 4—Z respectively, and the number 0 to a blank space. For simplicity, the
sender employs a key as post-multiplication by a non-singular matrix of order 3 of his own choice.
The receiver uses post-multiplication by the inverse of the matrix which has been chosen by the

sender.
Let the encoding matrix be
1 -1 1
@ A=2 -1 0 ®
1 0 O

Let the message to be sent by the sender be “WELCOME”.
Since the key is taken as the operation of post-multiplication by a square matrix of order 3, the
message is cut into pieces (WEL), (COM), (E ), each of length 3, and converted into a sequence

of row matrices of numbers:
[23 5 12],]3 15 13],]5 0 0].

Note that, we have included two zeros in the last row matrix. The reason is to get a row matrix
with 5 as the first entry.

Next, we encode the message by post-multiplying each row matrix as given below:

Uncoded Encoding Coded
row matrix matrix row matrix
I -1 1
[23512]|2 -1 O =[45 —28 23];
10 0]
1 -1 1]
[3 1513] 2 -1 0| =[46 —18 3];
10 0
1 -1 1]
[500]|2 -1 0|=[5 -5 5]
0 0]
XII - Mathematics 14

‘ ‘ Chapter 1 Matrices.indd 14 @ 3/10/2019 8:11:51 PM ‘ ‘



______TIEEEN ® N = HEEN

So the encoded message is [45 —28 23] [46 —18 3] [5 -5 5]
The receiver will decode the message by the reverse key, post-multiplying by the inverse of A.
So the decoding matrix is

0 0 1
Alziade: 0 -1 2.
A o

The receiver decodes the coded message as follows:
Coded Decoding Decoded

row matrix matrix row matrix
[0 0 1]

[45 -28 23] |0 -1 2| =[23 5 12];
1 -1 1]
0 0 1]

[46 —18 3]|0 -1 2| = [31513];
1 -1 1]
0 0 1]

[5 -5 5110 -1 2| =1[500]
1 -1 1

So, the sequence of decoded row matrices is [23 5 12],[3 15 13],[5 0 0].
@ Thus, the receiver reads the message as “WELCOME”. @

EXERCISE 1.1
1. Find the adjoint of the following:

2 31 2 2 1
0 -3 4 @3 4 1| i N, 1
i il i) —|—
6 2 3
3 72 1 -2 2
2. Find the inverse (if it exists) of the following:
51 1 2 31
L |72 4 ..
(1) {1 3} @) (1 5 1| @i |3 4 1
1 1 5 37 2

cosa 0 sina
I F@)=| 0 1 0 |, showthat[F(a)] =F(-a).

—sinat 0 cosa

5 3
4. 1f A:[ | 2}, show that 4> ~34-71, =0, . Hence find 47".

-8 1 4
5. IfA:é 4 4 7|, provethat 4" =4".
1 -8 4

15 Applications of Matrices and Determinants
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6. If A= 5 3 },Verify that A(adj A) = (adj A)A=|A|12.

3 2 -1 =3 . “l_pl 41
7. If A= and B = , verify that (4B) =B~ 4" .
75 5 2

2 -4 2]
8. If adj(4)=| -3 12 -7/, find A.
-2 0 2
0 -2 0]
9. If adj(4)=| 6 2 —6|, find 47"
-3 0 6
1 0 1
10. Find adj(adj(4)) if adjA=| 0 2 0.
-1 0 1

1 tan x s 1 |cos2x —sin2x
11. 4= , showthat 4" 4" =| | .
—tan x 1 sin2x  cos2x

) ) ) 5 3 14 7
12. Find the matrix 4 for which A{ }:[ } .

-1 =2 7 7
® . I -1 3 2 1 1 . @
13. Given 4= , B= and C = , find a matrix X such that 4AXB =C.
2 0 1 1 2 2
0 1 1
14. If A=|1 0 1|, show that A4 =%(A2—31).
1 1 0

-1 -1
15. Decrypt the received encoded message [2  —3][20 4] with the encryption matrix[ ) }

and the decryption matrix as its inverse, where the system of codes are described by the
numbers 1-26 to the letters 4—Z respectively, and the number 0 to a blank space.

1.3 Elementary Transformations of a Matrix

A matrix can be transformed to another matrix by certain operations called elementary row
operations and elementary column operations.

1.3.1 Elementary Row and Column Operations
Elementary row (column) operations on a matrix are

(1) The interchanging of any two rows (columns) of the matrix.
(i) Replacing arow (column) of the matrix by a non-zero scalar multiple of the row (column) by a
non-zero scalar.

(ii1) Replacing a row (column) of the matrix by a sum of the row (column) with a non-zero scalar
multiple of another row (column) of the matrix.

XII - Mathematics 16
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Elementary row operations and elementary column operations on a matrix are known as
elementary transformations.
We use the following notations for elementary row transformations:
(i) Interchanging of i* and j"rows is denoted by R, <> R;.
(ii) The multiplication of each element of " row by a non-zero constant A4 is denoted by R, = AR,.

(iii) Addition to i"row, a non-zero constant A multiple of /" row is denoted by R, - R, + AR, .

Similar notations are used for elementary column transformations.

Definition 1.4
Two matrices 4 and B of same order are said to be equivalent to one another if one can be
obtained from the other by the applications of elementary transformations. Symbolically, we write

A ~ B to mean that the matrix A4 is equivalent to the matrix B .

1 -2 2
For instance, let us consider a matrix A={-1 1 3
1 -1 -4

After performing the elementary row operation R, — R, + R on 4, we get a matrix B in which

the second row is the sum of the second row in A4 and the first row in 4.

1 =2 2
Thus, we get A~ B=|{0 -1 5
1 -1 -4
The above elementary row transformation is also represented as follows:
1 -2 2 1 -2 2
-1 1 3 |—==EA500 -1 5
1 -1 -4 1 -1 -4

Note
An elementary transformation transforms a given matrix into another matrix which need not be

equal to the given matrix.

1.3.2 Row-Echelon form

Using the row elementary operations, we can transform a given non-zero matrix to a simplified
form called a Row-echelon form. In a row-echelon form, we may have rows all of whose entries are
zero. Such rows are called zero rows. A non-zero row is one in which at least one of the entries is not

6 0 -1
zero. For example, in the matrix |0 0 1 |, R, and R, are non-zero rows and R, iS a Zero row.
0 0 0

Definition 1.5

A non-zero matrix E is said to be in a row-echelon form if:

(1) All zero rows of E occur below every non-zero row of E.

(ii) If the first non-zero element in any row i of E occurs in the ;™ column of E, then all
other entries in the j™ column of E below the first non-zero element of row i are zeros.

(iii) The first non-zero entry in the i row of E lies to the left of the first non-zero entry in
(i+1)" row of E.

17 Applications of Matrices and Determinants
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Note

A non-zero matrix is in a row-echelon form if all zero rows occur as bottom rows of the
matrix, and if the first non-zero element in any lower row occurs to the right of the first non-
zero entry in the higher row.

0 1 1 1 0 -1 2
The following matrices are in row-echelon form:(i) [0 0 3 {,(i1)) |0 0 2 8
0 0 0 0 0 0 6

Consider the matrix in (i). Go up row by row from the last row of the matrix. The third row is a
zero row. The first non-zero entry in the second row occurs in the third column and it lies to the right
of the first non-zero entry in the first row which occurs in the second column. So the matrix is in row-
echelon form.

Consider the matrix in (i1). Go up row by row from the last row of the matrix. All the rows are
non-zero rows. The first non-zero entry in the third row occurs in the fourth column and it occurs
to the right of the first non-zero entry in the second row which occurs in the third column. The first
non-zero entry in the second row occurs in the third column and it occurs to the right of the first
non-zero entry in the first row which occurs in the first column. So the matrix is in row-echelon form.

The following matrices are not in row-echelon form:

1 -2 0 03 -2
@lo o 5|, |5 0 o
0 1 0 32 0

Consider the matrix in (i). In this matrix, the first non-zero entry in the third row occurs in the
second column and it is on the left of the first non-zero entry in the second row which occurs in the
third column. So the matrix is not in row-echelon form.

Consider the matrix in (ii). In this matrix, the first non-zero entry in the second row occurs in the
first column and it is on the left of the first non-zero entry in the first row which occurs in the second
column. So the matrix is not in row-echelon form.

Method to reduce a matrix [a,.j]

m X

to a row-echelon form.
n

Step 1

Inspect the first row. If the first row is a zero row, then the row is interchanged with a non-zero
row below the first row. If a,, is not equal to 0, then go to step 2. Otherwise, interchange the first row
R, with any other row below the first row which has a non-zero element in the first column; if no row
below the first row has non-zero entry in the first column, then consider a,,.If a,, is not equal to 0,
then go to step 2. Otherwise, interchange the first row R, with any other row below the first row which
has a non-zero element in the second column; if no row below the first row has non-zero entry in the
second column, then consider ;5. Proceed in the same way till we get a non-zero entry in the first row.
This is called pivoting and the first non-zero element in the first row is called the pivot of the first row.
Step 2

Use the first row and elementary row operations to transform all elements under the pivot to
become zeros.
Step 3

Consider the next row as first row and perform steps 1 and 2 with the rows below this row only.
Repeat the step until all rows are exhausted.
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Example 1.13

3 -1 2
Reduce the matrix | -6 2 4| to a row-echelon form.
-3 1 2
Solution
(3 -1 2 3 -1 2 3 -1 2
Ry—Ry+2R,, Rx%Rx—le
-6 2 42K 510 0 8| ——=
-3 1 2 0 0 4 0O 0 O -
Note
3 -1 2 3 -1 2
0 0 8|—L2%% 510 0 1] Thisis also a row-echelon form of the given matrix.
0 0 0 0O 0 O

So, a row-echelon form of a matrix is not necessarily unique.

Example 1.14

0 316
Reduce the matrix | -1 0 2 5| to row-echelon form.
4 200
Solution
® 0316 1025 1025 ®
-1025[—220 510 3160285010 31 6
4 200 4 200 0 28 20
) -10 2 5 -10 2 5
RoR—R, B3R,
031 6|—=>/0131 6
0 0 22 16 0 0 22 48
3] O

1.3.3 Rank of a Matrix

To define the rank of a matrix, we have to know about sub-matrices and minors of a matrix.

Let A4 be a given matrix. A matrix obtained by deleting some rows and some columns of 4 is
called a sub-matrix of 4. A matrix is a sub-matrix of itself because it is obtained by leaving zero

number of rows and zero number of columns.

Recall that the determinant of a square sub-matrix of a matrix is called a minor of the matrix.

Definition 1.6
The rank of a matrix A4 is defined as the order of a highest order non-vanishing minor of the

matrix 4. It is denoted by the symbol p(A4). The rank of a zero matrix is defined to be 0. |

19 Applications of Matrices and Determinants
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Note
(1) If a matrix contains at-least one non-zero element, then p(A4)>1.

(i1) The rank of the identity matrix /, is n.

(ii1) If the rank of a matrix 4 is r, then there exists at-least one minor of 4 of order » which does
not vanish and every minor of A of orderr+1 and higher order (if any) vanishes.
(iv) If Ais an mxn matrix, then p(A4) < min{m,n} = minimum of m,n.

(v) A square matrix A of order » is invertible if and only if p(4) =n.
Example 1.15

3 25 4 3 1 =2
Find the rank of each of the following matrices: (i) |1 1 2| (i1)|-3 -1 -2 4
3 36 6 7 -1 2

Solution

3
(i) Let A=|1
3

W = N

5
2 |. Then A is a matrix of order 3x3.So p(4) <min{3,3} =3. The highest
6

order of minors of A is 3. There is only one third order minor of 4.

325
Itis |1 1 2|=3(6-6)-2(6-6)+53-3)=0.So, p(4)<3.
336

Next consider the second-order minors of 4.

We find that the second order minor

2
l‘=3—2=1;«r&O.So p(A)=2.

4 3 1 =2
(i) Let A=|—3 —1 =2 4 |.Then 4 is a matrix of order 3x4. So p(A4)<min{3,4}=3.
6 7 -1 2

The highest order of minors of A41is 3. We search for a non-zero third-order minor of 4. But
we find that all of them vanish. In fact, we have

4 3 1 4 3 =2 4 1 =2 301 =2
3 -1 -2|=0:;-3 -1 4|=0;-3 -2 4|=0;|-1 -2 4|=0.
6 7 -1 6 7 2 6 -1 2 7 -1 2

So, p(A4) <3. Next, we search for a non-zero second-order minor of 4.

We find that

4 3
=-4+9=5%0.8S0, p(4)=2.
3 -1 |

Remark

Finding the rank of a matrix by searching a highest order non-vanishing minor is quite tedious
when the order of the matrix is quite large. There is another easy method for finding the rank of a
matrix even if the order of the matrix is quite high. This method is by computing the rank of an
equivalent row-echelon form of the matrix. If a matrix is in row-echelon form, then all entries below
theleading diagonal (itis the diagonal line joining the positions of the diagonal elements a,,,a,,,a;;, .

of the matrix) are zeros. So, checking whether a minor is zero or not, is quite simple and hence the rank.
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Example 1.16
Find the rank of the following matrices which are in row-echelon form :

2 0 -7 2 2 -1 60
1|0 3 1 ) |0 5 1 (111) 0 (2)
0 0 1 0 0 O
0 0
Solution
2.0 -7
(i) LetA=|0 3 1 |. Then A is a matrix of order 3x3 and p(4)<3
0 0 1
2 0 -7
The third order minor [4|=[0 3 1 [=(2)3)1)=6=0. So, p(4)=3.
0 0 1
Note that there are three non-zero rows.
-2 2 -1
(i) Let A= 0 5 1 |.Then A4 isamatrix of order 3x3 and p(A4)<3.
0 0 O

-2 2 -1
The only third order minor is |A| =0 5 1[=(-2)5)0)=0.S0 p(4)<2.
@ 0 0 0 ®

There are several second order minors. We find that there is a second order minor, for

example,

i‘:(—Z)(S)z—IO;ﬁO. So, p(4)=2.

Note that there are two non-zero rows. The third row is a zero row.

6 0 -9
0 . .
(111) Let 4= 0 0 . Then A is a matrix of order 4x3 and p(4)<3.
0 0 O

The last two rows are zero rows. There are several second order minors. We find that there

0
is a second order minor, for example, 5 =(6)(2)=12#0.So, p(A4A)=2.

Note that there are two non-zero rows. The third and fourth rows are zero rows.

We observe from the above example that the rank of a matrix in row echelon form is equal
to the number of non-zero rows in it. We state this observation as a theorem without proof. W

Theorem 1.11
The rank of a matrix in row echelon form is the number of non-zero rows in it.

The rank of a matrix which is not in a row-echelon form, can be found by applying the following
result which is stated without proof.
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Theorem 1.12
The rank of a non-zero matrix is equal to the number of non-zero rows in a row-echelon form
of the matrix.

Example 1.17

1 23
Find the rank of the matrix| 2 1 4 |by reducing it to a row-echelon form.
3 05
Solution
1 23
Let A=|2 1 4|. Applying elementary row operations, we get
3 05
1 2 3 1 2 3
Ry,—>R,~2R,
A—L2RSR b 3 g | B2/ g 3 2.
0 -6 4 0 0 O

The last equivalent matrix is in row-echelon form. It has two non-zero rows. So, p(4)=2. m

Example 1.18

2 -2 43
Find the rank of the matrix | -3 4 -2 —1| by reducing it to an echelon form.
6 2 -1 7
Solution
® Let A be the matrix. Performing elementary row operations, we get ®
2 -2 43 2 -2 4 3 Rk 2 -2 4 3
A=|-3 4 2 1|28 516 8 4 2|82k 500 2 8 7
6 2 -1 7 6 2 -1 7 0 8 —-13 2
2 -2 4 3 2243
R, —>Ry—4R, 0 2 8 7 Ry—R;+(—15) 02 8 71
0 0 —45 =30 0 0 32

The last equivalent matrix is in row-echelon form. It has three non-zero rows. So, p(4)=3. N
Elementary row operations on a matrix can be performed by pre-multiplying the given matrix by
a special class of matrices called elementary matrices.
Definition 1.7

An elementary matrix is defined as a matrix which is obtained from an identity matrix by
applying only one elementary transformation.

Remark
If we are dealing with matrices with three rows, then all elementary matrices are square matrices

of order 3 which are obtained by carrying out only one elementary row operations on the unit matrix
I,. Every elementary row operation that is carried out on a given matrix 4 can be obtained by
pre-multiplying 4 with elementary matrix. Similarly, every elementary column operation that is
carried out on a given matrix 4 can be obtained by post-multiplying A4 with an elementary matrix.
In the present chapter, we use elementary row operations only.
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For instance, let us consider the matrix 4 =| a,;, a,, a,; |.

a3 Gy Ay

Suppose that we do the transformation R, — R, + AR, on A4, where A # 0 is a constant. Then, we get

ap ap, s
ALY S g v day,  ay, +Aa,  ay+Aa | (1)
a3 az 33
1 00 1 00 1 00
Thematrix |0 1 A |isanelementarymatrix,sincewehave |0 1 0|—22828 510 1 2
0 0 1 0 0 1 0 0 1
0 0
Pre-multiplying Aby [0 1 A |, we get
0 1
10 0lta, a, a; a4 b i3
0 1 Allay ay ay|=|ay+iay, a,+Aa, a,+Aas | . (2)
0 0 1j|lay ay a; 3 ) s3

1 0

Ry >Ry +ARy

0
From (1) and (2), we get A——"">—=—|0 1 1| A4
1

0 0

So, the effect of applying the elementary transformation R, - R, + AR; on A 1is the same as that

1 0 0

of pre-multiplying the matrix 4 with the elementary matrix |0 1 A |.

0 0 1

Similarly, we can show that

(1) the effect of applying the elementary transformation R, <> R, on A is the same as that of

1

0 0

pre-multiplying the matrix 4 with the elementary matrix [0 0 1

0

1 0

(i1) the effect of applying the elementary transformation R, — AR, on A is the same as that of

We state the following result without proof.

1 0 0
pre-multiplying the matrix 4 with the elementary matrix ([0 A 0
0 0 1
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Theorem 1.13

Every non-singular matrix can be transformed to an identity matrix, by a sequence of elementary
row operations.

2 -1
As an illustration of the above theorem, let us consider the matrix 4 = { 1 }

Then,

A| =12+3=15#0.S0, A4 is non-singular. Let us transform A4 into /, by a sequence of
elementary row operations. First, we search for a row operation to make a,, of 4 as 1. The elementary

1
. . 1 . . =
row operation needed for this is R — [Ele.The corresponding elementary matrix is £, =| 2

0 1
02—1_1_71
3 4| '

1 3 4

0

Then, we get £\ 4=

S N~

Next, let us make all elements below a,, of E A4 as 0. There is only one element a,,.

The elementary row operation needed for thisis R, = R, +(-3)R,.

1 0
The corresponding elementary matrix is E, :{ 3 J.

roollr <Lt 3
Then, we get Ez(ElA):{ ; J 2| = 2

Next, let us make a,, of E,(EA) as 1. The elementary row operation needed for this is

2
R, —>|— |R,.
L

1 0
The corresponding elementary matrix is £; = 0 2
11
1 0|1 L 1
2 |1 —=
Then, we get E; (E2 (EIA)) = o) = 7|,
0 — 11
11110 5 0 1

Finally, let us find an elementary row operation to make a,, of £, (E2 (E] A)) as 0. The elementary

. . 1 . ..
row operation needed for this is R, — R +(E]R2.The corresponding elementary matrix is

L
E, = 2 1.
0 1
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1 1 1 1L 1 0
Then, we get E, (E3(E2 (EIA)))z 2 2 ={ }zlz.
0 1[0 1

We write the above sequence of elementary transformations in the following manner:

R, >R, +(-3)R,

1 -1  Q— .
|:2 —1:| R‘a(:)k 1 _— 2 R:a(f)kl 1 - R‘%R‘+(*)R2 |:1 0:|
A= — | o | —— 2 | —4—

34 3 4 0 E 0 1 01
L 2
Example 1.19
31 4
Show that the matrix |2 0 —1| is non-singular and reduce it to the identity matrix by
5 2 1

elementary row transformations.

Solution
31 4
LetA=|2 0 —1[.Then, |4/=3(0+2)-1(2+5)+4(4-0)=6-7+16=15%0. So, A is
52 1

non-singular. Keeping the identity matrix as our goal, we perform the row operations sequentially on
A as follows:

_1 l f ] 1 l i 1 l i
R—>—R, Ry—>R,~2R,, Ry—>Ry~SR 2 11 Rlﬁ(?jkl 11
20 /=02 0 o EERSRASES 0 o o — 0 1
5 2 1 5 2 1
o L U o L 7
- B L 3 3] . 3 3]
1 0 —; 1 0 —%
1 00
1 1 2 1 11
R>R =Ry, Ry >R =R, Jo 1 % Rr’(*g]& 0 1 % R>R+2 Ry Ry >R~ Ry 01 0
0 0 1
0 0 15 0 0 1
L 2 | L | [ |
1.3.4 Gauss-Jordan Method
Let A4 be a non-singular square matrix of ordern . Let B be the inverse of A.
Then, we have AB = BA =1 . By the property of I ,wehave A=1 A=Al .
Consider the equation 4 =1 A4 ...(1)

Since A is non-singular, pre-multiplying by a sequence of elementary matrices (row operations)
on both sides of (1), 4 on the left-hand-side of (1) is transformed to the identity matrix /, and the
same sequence of elementary matrices (row operations) transforms 7, of the right-hand-side of (1) to
a matrix B. So, equation (1) transforms to /, = BA.Hence, the inverse of 4 is B. Thatis, 4™ = B.

25 Applications of Matrices and Determinants
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Note
If E.E,,---,E, are elementary matrices (row operations) such that (Ek ---EZE,)A =1, then

A"'=E, - EE,.

Transforming a non-singular matrix 4 to the form /, by applying elementary row operations, is
called Gauss-Jordan method. The steps in finding 4™ by Gauss-Jordan method are given below:

Step 1
Augment the identity matrix / on the right-side of 4 to get the matrix [A | In] .

Step 2
Obtain elementary matrices (row operations) E, E,,---, E, such that (E, ---E,E ) A=1,.

Apply E,,E,,+,E on [A]1,]. Then [ (E, -+ E,E, ) A|(E, - E,E,)1, | Thatis, [ 1,] 4" ].

Example 1.20

5
Find the inverse of the non-singular matrix 4 = { 6} , by Gauss-Jordan method.

Solution

Applying Gauss-Jordan method, we get

05| 10] 16|01 1 6|0 -1
[A | 12] :|: ‘ R]<—>R2 { ‘ :' R1—>(—])R1 |: ‘ :|

® -1 6| 01] 05[10 0 5|1 0 ®
Rolr —1} PR {1 0] (6/5) —1}

1 6] o0
0 1 | (1/5 0 0 1] @/5 o

L [6/5) -1] 1[6 -5

So, we get 4™ = == .
1’5y 0] 5|1 0

Example 1.21

Find the inverse of 4 = by Gauss-Jordan method.

N W N
—_— N =
N = =

Solution
Applying Gauss-Jordan method, we get

2111100 . 1 (1/2) 1/2) | 1/2) 0 0
R —>—R,

[A1L]=]321| 01 0)—2—[3 2 1 0 10

2121001 2 1 2 0 01
e |1/ /2 | (1/2) 00 1 1/2) 1/2) | 1/2) 0 0
—RORIR 10 (1/2) =(1/2) | =(3/2) 1 0|—f22 510 1 - -3 20
0 0 1 -1 01 0 0 1 -1 01
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101 2 -10 P 100 3 -1 -1
SR 01 1| 3 2 0Byl 10| -4 2 1
001 |-101 001 -10 1
3 -1 -1
So,A"'=|-4 2 1
-1 0 1
- |
EXERCISE 1.2
1. Find the rank of the following matrices by minor method:
-1 3 1 -2 3 01 21
W2 T e 7] G|y o a2 4 | @]o 2 4 3
i i - iii v — \4
-1 2 3-6-31
3 4 5 1 -1 8 1 0 2
2. Find the rank of the following matrices by row reduction method:
1 2 -1 _
1 113 3 85 2
: |3 -1 2
1|2 -13 4 (11) | 22 3 () |2 -5 1 4
5-1711 -1 2 3 =2
111 -
3. Find the inverse of each of the following by Gauss-Jordan method:
_ 1 -1 0 1 2 3
® (i)L 2} Gy [1 o0 -1 (i) |2 5 3 ®
|6 -2 -3 1 0 8

1.4 Applications of Matrices: Solving System of Linear Equations

One of the important applications of matrices and determinants is solving of system of linear
equations. Systems of linear equations arise as mathematical models of several phenomena occurring
in biology, chemistry, commerce, economics, physics and engineering. For instance, analysis of
circuit theory, analysis of input-output models, and analysis of chemical reactions require solutions
of systems of linear equations.

1.4.1 Formation of a System of Linear Equations
The meaning of a system of linear equations can be understood by formulating a mathematical
model of a simple practical problem.

Three persons A, B and C go to a supermarket to purchase same brands of rice and sugar. Person A
buys 5 Kilograms of rice and 3 Kilograms of sugar and pays X 440. Person B purchases 6 Kilograms of rice
and 2 Kilograms of sugar and pays ¥ 400. Person C purchases 8 Kilograms of rice and 5 Kilograms of
sugar and pays X 720. Let us formulate a mathematical model to compute the price per Kilogram of rice
and the price per Kilogram of sugar. Letx be the price in rupees per Kilogram of rice and y be the price
in rupees per Kilogram of sugar. Person A buys 5 Kilograms of rice and 3 Kilograms sugar and pays
< 440. So,5x+3y =440. Similarly, by considering Person B and Person C, we get 6x+2y =400 and
8x+ 5y =720. Hence the mathematical model is to obtain x and y such that

5x+3y =440, 6x+2y =400, 8x+5y="720.
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Note

In the above example, the values of x and y which satisfy one equation should also satisfy all
the other equations. In other words, the equations are to be satisfied by the same values of x and y
simultaneously. If such values of x and y exist, then they are said to form a solution for the system
of linear equations. In the three equations, x and y appear in first degree only. Hence they are said

to form a system of linear equations in two unknowns x and y . They are also called simultaneous
linear equations in two unknowns x and y . The system has three linear equations in two unknowns
x and y.

The equations represent three straight lines in two-dimensional analytical geometry.
In this section, we develop methods using matrices to find solutions of systems of linear equations.

1.4.2 System of Linear Equations in Matrix Form

A system of m linear equations in n unknowns is of the following form:
ay, X, +a,x, +asx; +---+a, x, =b,
ay X, +ayX, +ayx; +---+a, x, =b,, )

a,x +a, ,x,+a x,+--+a, x =b ,

where the coefficients a;,i=1,2,--,m; j=12,---,n and b ,k=12,---,m are constants. If all the
b,'s are zeros, then the above system is called a homogeneous system of linear equations. On the
other hand, if at least one of the b, 's is non-zero, then the above system is called a non-homogeneous

system of linear equations. If there exist values «,, «t,, -+ , a, for x,, x,, --- , x, respectively which
® satisfy every equation of (1), then the ordered n—tuple (a;, a,, -+, , ) is called a solution of (1). ®

The above system (1) can be put in a matrix form as follows:
Ay Gy Gy o 4y,
Ay Ay Gy 0 Gy, . .

Let A= be the mxn matrix formed by the coefficients of

aml am2 am3 amn

X, X,, X3, -+ ,x,.The firstrow of 4 is formed by the coefficients of x,, x,, x;, ---,x, in the same

order in which they occur in the first equation. Likewise, the other rows of A are formed. The first
column is formed by the coefficients of x,in the m equations in the same order. The other columns
are formed in a similar way.

X

x
Let X =|.° | be the nx1 order column matrix formed by the unknowns x,, x,, x;, --- , X,.

Let B=|." | be the mx1 order column matrix formed by the right-hand side constants

b

m

b, b,, by, ---,b

m*
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Then we get
ay ap 4 4y, X ap X, +anx, +asx; +-0 +4a,x, b,

AX = Ay Uy Gy o0 Gy, .xz _ Ay X, +ayX, +aypXy +-- +a, X, _ 'bz B
aml am2 am3 e amn xn aml‘xl + am2‘x2 + am3‘x3 +ee + amn‘xn bm

Then AX = B is a matrix equation involving matrices and it is called the matrix form of the

system of linear equations (1). The matrix 4 is called the coefficient matrix of the system and the

a, ay a; - a, | b
. Ay Gy Gy a4y, | by | .
matrix is called the augmented matrix of the system. We denote the
aml am2 am3 amn | bm

augmented matrix by [4] B].

As an example, the matrix form of the system of linear equations
2 3 5«x -7
2x+3y-5z+7=0,7y+2z-3x=17,6x-3y-8z+24=01is|-3 7 2 ||y|=| 17
6 -3 8|z —24

1.4.3 Solution to a System of Linear equations

The meaning of solution to a system of linear equations can be understood by considering the
following cases :

Case (i) X
Consider the system of linear equations /
2x—y =5, .. (1) 6 7
x+3y =6. ..(2) 5 <
These two equations represent a pair of straight 4
lines in two dimensional analytical geometry (see the 3 43
Fig. 1.2). Using (1), we get |02
g
x= 24 () T b
2 ~—
x' < 7 0O 5y
Substituting (3) in (2) and simplifying, we get y =1. 0 AR B
=t -1
Substituting y=1 in (1) and simplifying, we y
_ Y
get x=3. Fig.1.2
Both equations (1) and (2) are satisfied by x =3 and y =1.
That is, a solution of (1) is also a solution of (2).
So, we say that the system is consistent and has unique solution (3,1).
The point (3,1) is the point of intersection of the two lines 2x—y =5 and x+3y=6.
29 Applications of Matrices and Determinants
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Case (ii) y
Consider the system of linear equations A
3x+2y = 5, (D )
6x+4y = 10 .. (2) 4
Using equation (1), we get N
X = % .3 , i %
Substituting (3) in (2) and simplifying, we get0=0. R ? X i i
This informs us that equation (2) is an elementary -2 (3.52)
transformation of equation (1). In fact, by dividing equation
(2) by 2, we get equation (1). It is not possible to find X
uniquely x and y with just a single equation (1). M
Fig.1.3
So we are forced to assume the value of one unknown, say y =¢, where ¢ is any real number.

5-2¢ ) . . o
Then, x = 5 The two equations (1) and (2) represent one and only one straight line (coincident

lines) in two dimensional analytical geometry (see Fig. 1.3) . In other words, the system is consistent (a
solution of (1) is also a solution of (2)) and has infinitely many solutions, as ¢ can assume any real value.

y
Case (iii) A

-
-

Consider the system of linear equations :
4x+y = 6, .. (1)
8x+2y = 18. ..(2)

[§%)

®
NS
;6//'
/;%
®

Using equation (1), we get , 3 \ o
6— '
x:Ty -3 X =m0 \\ T 3 o8
Substituting (3) in (2) and simplifying, we get 12 =18. 7 )
S ‘ U
\
This is a contradicting result, which informs us )
that equation (2) is inconsistent with equation (1). So, Fig.1.4

a solution of (1) is not a solution of (2).

In other words, the system is inconsistent and has no solution. We note that the two equations
represent two parallel straight lines (non-coincident) in two dimensional analytical geometry (see Fig.
1.4). We know that two non-coincident parallel lines never meet in real points.

Note

(1) Interchanging any two equations of a system of linear equations does not alter the solution
of the system.

(2) Replacing an equation of a system of linear equations by a non-zero constant multiple of
itself does not alter the solution of the system.

(3) Replacing an equation of a system of linear equations by addition of itself with a non-zero
multiple of any other equation of the system does not alter the solution of the system.
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Definition 1.8

A system of linear equations having at least one solution is said to be consistent. A system
of linear equations having no solution is said to be inconsistent.

Remark

If the number of the equations of a system of linear equations is equal to the number of unknowns
of the system, then the coefficient matrix A4 of the system is a square matrix. Further, if 4 is a

non-singular matrix, then the solution of system of equations can be found by any one of the following
methods : (i) matrix inversion method, (ii) Cramer’s rule, (iii) Gaussian elimination method.

1.4.3 (i) Matrix Inversion Method
This method can be applied only when the coefficient matrix is a square matrix and non-singular.
Consider the matrix equation
AX = B, . (D)
where 4 is a square matrix and non-singular. Since A isnon-singular, A~ existsand A" A= A4~ =1.
Pre-multiplying both sides of (1) by 4", we get 4™ (AX) = A"'B. That is, (A"IA)X =A"'B.
Hence, we get X = A'B.

Example 1.22
Solve the following system of linear equations, using matrix inversion method:

Sx+2y=3, 3x+2y=5.
® . ®
Solution
) ) 5 2 X 3
The matrix form of the system is AX = B, where 4= 3 2 , X = ,B= E
Y
5 2

We find 4| :‘3

2‘=10—6=4¢0.SO,A1 exists and A" :%{

|
b
|
AN
L 1

Then, applying the formula X = 47'B, we get

—4
x| 112 =213] 1| 6-10 1|4 4 -1
L}}_Z{—?) SHS}_Z{—%JS}_ZLJ_ 16 {4}'
4
So the solution is (x=—1,y=4). m

Example 1.23
Solve the following system of equations, using matrix inversion method:

2x, +3x,+3x, =5, x,—2x,+x;,=-4, 3x,—x,—2x;=3.

Solution
The matrix form of the system is AX = B, where
2 3 3 X, 5
A=|1 =2 1[,X=|x,|.B=|-4|.
3 -1 -2 X, 3
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2 3 3
Wefind [4] = |1 -2 1 |=2(4+1)-3(-2-3)+3(-1+6)=10+15+15=40=0.
3 -1 2
So, A™" exists and
+H4+1) —(=2-3) +(-1+6)] 5 3 9
A1=|lj|(ade)=L —(—6+3) +(-4-9) —(-2-9) =70 5 -13 1
+(3+6) —(2-3) +(-4-3) 5 11 -7
Then, applying X = A™'B, we get
X, 5 3 945 25-12+27 40
X, - L -13 1 (|4 -1 25+52+3 _ L 80 |=| 2
40 40 40
X, 5 11 -7| 3 25-44-21 —40 -1
So, the solution is (x, =1,x, =2,x, =—1). m
Example 1.24
-4 4 4 I -1 1
IfA=|-7 1 3 |and B=|1 -2 -2/, find the products 4B and BA and hence solve the
5 -3 -1 2 1 3

system of equations x—y+z=4,x-2y—-2z=9,2x+y+3z=1.
® Solution
-4 4 4101 -1 1 —4+4+8 4-8+4 —4-8+12 8 0 0
Wefind 4B={-7 1 3|1 -2 2(=|-7+1+6 7-2+43 -7-2+9|=|0 8 0|=8/,
5 3 1|2 1 3 5-3-2 -5+6-1 5+6-3 0 0 8

1 -1 11][-4 4 4 —4+7+5 4-1-3 4-3-1 8 0 0
andBA=|1 -2 2|7 1 3 |=|-4+14-10 4-2+6 4-6+2|=|0 8 0|=8I,.
2 1 315 -3 -1 —8-7+15 8+1-9 8+3-3 0 0 8

So, we get AB = BA =8I,.That is, (%AJB = B(é/lj =I,.Hence, B = %A.

Writing the given system of equations in matrix form, we get

I -1 1/|/x 4 X 4
1 -2 2|yl =19]|. Thatis, B|y|=|9].
2 1 3|z 1 z 1

X 4 4 -4 4 44 | -16+36+4 . 24 3
So,|y|=B"9 =(%AJ 9 :é -7 1 3||9|==| -28+9+3 =3 ~16|=| -2

z 1 1 5 3 1|1 20-27-1 -8 -1
Hence, the solutionis (x =3,y =-2,z=-1). -
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EXERCISE 1.3

1. Solve the following system of linear equations by matrix inversion method:
(1) 2x+5y=-2, x+2y=-3 (i) 2x—y=8, 3x+2y=-2
(1) 2x4+3y—-z=9, x+y+z=9, 3x—y—z=-1
(iv) x+y+z-2=0, 6x—4y+5z-31=0, 5x+2y+2z=13

-5 1 3 1 1 2
2.1fA4=[7 1 -5|and B=|3 2 1|, find the products 4B and BA and hence solve the
1 -1 1 2 1 3

system of equations x+y+2z=13x+2y+z=7,2x+y+3z=2.

3. A man is appointed in a job with a monthly salary of certain amount and a fixed amount of
annual increment. If his salary was ¥ 19,800 per month at the end of the first month after 3
years of service and < 23,400 per month at the end of the first month after 9 years of service,
find his starting salary and his annual increment. (Use matrix inversion method to solve the
problem.)

4. 4 men and 4 women can finish a piece of work jointly in 3 days while 2 men and 5 women
can finish the same work jointly in 4 days. Find the time taken by one man alone and that of
one woman alone to finish the same work by using matrix inversion method.

5. The prices of three commodities 4,B and C are¥ x,y and z per units respectively. A person
P purchases 4 units of B and sells two units of 4 and 5 units of C . Person QO purchases 2
units of C and sells 3 units of 4 and one unit of B. Person R purchases one unit of 4 and

@ sells 3 unit of B and one unit of C . In the process, P,Q and R earn I 15,000, 1,000 and ®

< 4,000 respectively. Find the prices per unit of 4,Band C . (Use matrix inversion method to
solve the problem.)

1.4.3 (ii) Cramer’s Rule

This rule can be applied only when the coefficient matrix is a square matrix and non-singular. It
is explained by considering the following system of equations:

ay X, +apx, +a;%;, = b,
Ay X, + Ay Xy + Ay Xy = by,
a X, + aynx, + ayx; =b;,
ay 4y 4y a, 4y, dy
where the coefficient matrix | a,, a,, a,; | is non-singular. Then | @,, a,, a,;| = 0.
Qs Ay U3y Ay A3y Ay
a, 4y di

Letus put A=|a,, a, a,|.Then, we have

ay) A3y Uy
a, 4, a; ap Xy dp a4 ay X, TapX,tasx;  a, ay b a, a;
YA = x| ay ay, Ay | =|ayX, Gy Gy| = |ayXtayX,tayx; a, ay|l =|b, ay, ay|=A,
ay) Ay Ay ay X) Ay, Ay ay X, tayX, Tasx; ay, ay by a,, ay
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Since A = 0, we get x, =—
a, b a; a, ay b

.. A A
Similarly, we get x, = Tz,)@ :f, where A, =|a,, b, a,;|,A, =|a,, a,, b,| .

ay, by ay, as as, b
A A
Thus, we have the Cramer’s rule x, = —,x, =—2%,x, = —,
A A
ay dp 4 b a, ay; a, b ay a, a, b,

where & = |a, ay, ay|, A, =|b, ay, ay|, A, =|a, b, ay|, Ay=|ay ay, b,
a3 Ay Ay by ay, ay ay, by as ay, ay, b
Note
Replacing the first column elements a,,,a,,,a;, of & withb,,b,,b, respectively, we get A,.
Replacing the second column elements a,,,4a,,,a,,0f & withb,,b,, b, respectively, we get A,.

Replacing the third column elements a,,,a,,,a,, of & withb,,b,,b, respectively, we get A;.
IfA =0, Cramer’s rule cannot be applied.

Example 1.25
Solve, by Cramer’s rule, the system of equations

X —x,=3,2x,+3x, +4x; =17,x, +2x;, = 7.
Solution
First we evaluate the determinants

=10 3-10 13 0 1 -1 3
A=|2 3 4]=6#0,A =173 4|=12,A,=2 17 4|=-6,A,=|2 3 17|=24.
0 1 2 7 1 2 0o 7 2 01 7
By Cramer’s rule, we get xlzizgzz, xzzﬁz_—6:_1, x3:ﬁ:4_
A 6 A 6 6

So, the solution is (x, =2,x, =—1,x; =4).

Example 1.26

In a T20 match, Chennai Super Kings needed just 6 runs to win with 1 ball
left to go in the last over. The last ball was bowled and the batsman at the
crease hit it high up. The ball traversed along a path in a vertical plane and the
equation of the pathis y = ax” + bx + ¢ with respect to a Xy -coordinate system
in the wvertical plane and the ball traversed through the points
(10,8),(20,16),(30,18) , can you conclude that Chennai Super Kings won the

match?
Justify your answer. (All distances are measured in metres and the meeting point of the plane of

the path with the farthest boundary line is (70,0).)

Solution
The path y =ax’ +bx+c passes through the points (10,8),(20,16),(40,22). So, we get the

system of equations 100a +10b+c =8,400a +20b+c =16,1600a + 40b +c = 22. To apply Cramer’s
rule, we find
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100 10 1 1 11
A =1400 20 1{=1000{4 2 1/=1000[-2+12-16]=-6000,
1600 40 1 16 4 1
g 10 1 4 1 1
A =1]16 20 1/=20/8 2 1{=20[-8+3+10]=100,
2240 1 11 4 1
100 8 1 1 4 1
A, =1400 16 1/=200{4 8 1[=200[-3+48-84]=-7800,
1600 22 1 16 11 1
100 10 8 1 1 4
A; = 1400 20 16(=2000{4 2 8|=2000[-10+84—-64]=20000.
1600 40 22 16 4 11
A
By Cramer’s rule, we get a = ﬁ:—L,bzﬁ:M:E:E,CZJZ_M:_EZ_E_
A 60 A 6000 60 10 A 6000 6 3
So, the equation of the path is y = —sz +2x—E .
60 10 3

When x =70, we get y =6.So, the ball went by 6 metres high over the boundary line and it is
impossible for a fielder standing even just before the boundary line to jump and catch the ball. Hence
@ the ball went for a super six and the Chennai Super Kings won the match. L @

EXERCISE 1.4

1. Solve the following systems of linear equations by Cramer’s rule:
(1) S5x-2y+16=0,x+3y-7=0

(i) 242y =122 413y =13
X X

(1) 3x+3y—z=11, 2x—y+2z=9, 4x+3y+2z=25

v 322101, 2, 0, 0205 4

X y z x y z x y z
2. In acompetitive examination, one mark is awarded for every correct answer while " mark is

deducted for every wrong answer. A student answered 100 questions and got 80 marks. How
many questions did he answer correctly ? (Use Cramer’s rule to solve the problem).

3. A chemist has one solution which is 50% acid and another solution which is 25% acid. How
much each should be mixed to make 10 litres of a 40% acid solution ? (Use Cramer’s rule to
solve the problem).

4. A fish tank can be filled in 10 minutes using both pumps A and B simultaneously. However,
pump B can pump water in or out at the same rate. If pump B is inadvertently run in reverse,
then the tank will be filled in 30 minutes. How long would it take each pump to fill the tank by
itself ? (Use Cramer’s rule to solve the problem).
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5. A family of 3 people went out for dinner in a restaurant. The cost of two dosai, three idlies
and two vadais is ¥ 150. The cost of the two dosai, two idlies and four vadais is ¥ 200. The
cost of five dosai, four idlies and two vadais is ¥ 250. The family has ¥ 350 in hand and they
ate 3 dosai and six idlies and six vadais. Will they be able to manage to pay the bill within the
amount they had ?

1.4.3 (iii) Gaussian Elimination Method

This method can be applied even if the coefficient matrix is not a square matrix and it is essentially
the method of substitution which we have already seen. In this method, we transform the augmented
matrix of the system of linear equations into row-echelon form and then by back-substitution, we get
the solution.

Example 1.27
Solve the following system of linear equations, by Gaussian elimination method :

4x+3y+6z=25, x+5y+7z=13, 2x+9y+z=1.

Solution
Transforming the augmented matrix to echelon form, we get

4 3 6| 25 1 57 13 . 1 5 7 13
15 7] 13|—28514 3 6| 25|—52828 500 —17 22| =27
2 91 1 2 91 1 0 -1 -13| -25
P 5 7 13 I 5 7 13
@® — A2l CD 10 17 22| 27 |—22RR 10 17 22 | 27 . ®
0 1 13 25 0 0 199 | 398
The equivalent system is written by using the echelon form:
x+5y+7z =13, .. (D
17y+22z = 27, .. (2
199z = 398. ...(3)

398
From (3), we get z=——=
(3), we get z 100

27-22x2  -17
17 17
Substituting z=2,y =-1in (1), we get x =13-5x(-1)-7x2=4.

=-1.

Substituting z=21n (2), we get y =

So, the solutionis (x =4,y =-1,z=2). [ |

Note. The above method of going from the last equation to the first equation is called the method
of back substitution.

Example 1.28
The upward speed v(¢)of a rocket at time ¢ is approximated by

v(t)=at’ +bt+c, 0<t<100 where a,b, and c are constants. It has been

found that the speed at times ¢ =3, =6, and ¢t =9 seconds are respectively,
64, 133, and 208 miles per second respectively. Find the speed at time

t =15 seconds. (Use Gaussian elimination method.)
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Solution
Since v(3) =64, v(6) =133, and v(9) =208, we get the following system of linear equations
9a+3b+c = 64,
36a+6b+c 133,
8la+9bh+c = 208.

We solve the above system of linear equations by Gaussian elimination method.

Reducing the augmented matrix to an equivalent row-echelon form by using elementary row
operations, we get

9 31| 64 9 3 1 64 93 1| 64

[A|B]=]36 6 1| 133 | L2l RR2RDOR 410 6 -3 | —123 | —22frOR2RD 510 2 1 | 4]
81 9 1| 208 0 —-18 -8 | —368 09 4| 184
9 3 1| 64 93 1 | 64 9 31| 64

L2k 510 2 1| 41 |[—R2RPR 5102 1 | 41| —22CPE 500 21| 41 |0
018 8 | 368 00 —1] -1 001 1

Writing the equivalent equations from the row-echelon matrix, we get
9a+3b+c=64, 2b+c =41, c=1.

By back substitution, we get c=1, b= (@1-c) = @1-1) =20, a= 64=3b=c = 64-60-1 =l.
® 2 2 9 9 3 ®
So, we get v(7) :%tz +207+1. Hence, v(15) =%(225)+20(15)+1 =75+300+1=376. L

EXERCISE 1.5

1. Solve the following systems of linear equations by Gaussian elimination method:

(1) 2x-2y+3z=2, x+2y-z=3, 3x—y+2z=1
(1) 2x+4y+6z=22, 3x+8y+5z=27, —x+y+2z=2
2. If ax’>+bx+c is divided by x+3,x—-5, and x—1, the remainders are 21,61 and 9

respectively. Find a,b and c. (Use Gaussian elimination method.)

3. An amount of ¥ 65,000 is invested in three bonds at the rates of 6%, 8% and 10% per annum

respectively. The total annual income is I 4,800. The income from the third bond is ¥ 600
more than that from the second bond. Determine the price of each bond. (Use Gaussian
elimination method.)

4. Aboy is walking along the path y = ax” + bx + ¢ through the points (-6,8),(-2,—12), and (3,8) . He
wants to meet his friend at P(7,60). Will he meet his friend? (Use Gaussian elimination
method.)
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1.5 Applications of Matrices: Consistency of system of

linear equations by rank method
In section 1.3.3, we have already defined consistency of a system of linear equation. In this
section, we investigate it by using rank method. We state the following theorem without proof:

Theorem 1.14 (Rouche’-Capelli Theorem)

A system of linear equations, written in the matrix form as AX = B, is consistent if and only if the
rank of the coefficient matrix is equal to the rank of the augmented matrix; thatis, p(4) = p([4| B]).

We apply the theorem in the following examples.

1.5.1 Non-homogeneous Linear Equations

Example 1.29

Test for consistency of the following system of linear equations and if possible solve:
X+2y—-z=3,3x—y+2z=1, x-2y+3z=3, x—-y+z+1=0.

Solution

Here the number of unknowns is 3.

The matrix form of the system is AX = B, where

12 -1 3
X
3 -1 1
A = ,X=|y|,B=
1 -2 3 3
z
1 -1 1 -1
@ —
1 2 -1
. 3 -1 2
The augmented matrix is [4|B] =
1 23 3
-1 1] -1
Applying Gaussian elimination method on [4 | B], we get
1 2 -1 3 12-1|3
Ry—R,-3R,, Ry—(~1)R,,
BB R, 0 -7 5| -8 B&B2EDR 107 5] 8
[A|B] R,—>R,—R,
0 -4 4 0 04410
0-3 2|4
12 1] 3] 12-1]3 12-1]3
ﬁiix}ii@ﬁi’ 07 -5 8 Ry =R, +(~8) 07518 R,—>R,~R 07-5|38
00 -8 -32 001 |4 001 |4
00 1 4 00 1 |4 00 01O

There are three non-zero rows in the row-echelon form of [A4| B].So, p ([A | B]) =3.
12 -1
07 -5

So, the row-echelon form of A4 is

00 1
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Hence, p(A4)=p([4|B]) =3.

From the echelon form, we write the equivalent system of equations
x+2y—z=3,7y-5z=8, z=4, 0=0.

The last equation 0 =0 is meaningful. By the method of back substitution, we get

z =4
7y—-20 = 8 = y=4,
x =3-8+4 = x=-1.

So, the solution is (x =—1,y =4,z =4).(Note that 4 is not a square matrix.) [
Here the given system is consistent and the solution is unique.

Example 1.30
Test for consistency of the following system of linear equations and if possible solve:
4x-2y+6z=8, x+y—-3z=-1, 15x-3y+9z=21.

Solution
Here the number of unknowns is 3.

The matrix form of the system is AX = B, where

4 -2 6 X 8
A=|1 1 -3|,X=|y|,B=|-1
15 -3 9 z 21
@ Applying elementary row operations on the augmented matrix[ 4 | B], we get ®
4 -2 6 8 I 1 3] -1 1 1 -3] -1
R,—>R,—4R,,
[4|B]=|1 1 3| -1|—2=L514 2 6 | 8 |—L25D8 510 6 18 12
15 -3 9 | 21 15 -3 9 | 21 0 —-18 54 | 36
1 1-3|-1 11 3] -1
Ry =R, +(—6),
— 10 1 3 2|20 1 =3 | 2|0
00 O 0

So, p(A4) = p([4]| B]) =2 < 3.From the echelon form, we get the equivalent equations
x+y-3z = -1,y-3z=-2,0=0.
The equivalent system has two non-trivial equations and three unknowns. So, one of the unknowns
should be fixed at our choice in order to get two equations for the other two unknowns. We fix z
arbitrarily as a real numbers, and we get y =3r-2, x =—-1-(3¢t-2)+3¢=1. So, the solution is

(x =Ly=3t-2,z= t) , Where ¢ is real . The above solution set is a one-parameter family of solutions.

Here, the given system is consistent and has infinitely many solutions which form a one parameter
family of solutions. [ |

Note

In the above example, the square matrix A is singular and so matrix inversion method cannot be
applied to solve the system of equations. However, Gaussian elimination method is applicable and we
are able to decide whether the system is consistent or not. The next example also confirms the
supremacy of Gaussian elimination method over other methods.
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Example 1.31

Test for consistency of the following system of linear equations and if possible solve:
X—y+z=-9, 2x-2y+2z=-18, 3x-3y+3z+27=0.
Solution

Here the number of unknowns is 3.

The matrix form of the system is AX = B, where

I -1 1 X -9
A=12 2 2|,X=|y|,B=|-18
3 33 z =27

Applying elementary row operations on the augmented matrix[4 | B], we get

1 _1 1 _9 R,—R,-2R 1 _1 1 _9
[A|B]=|2 =2 2 | —18 |—R=2R238 500 0 0| 0
333 | -27 0000

So, p(4) = p([4]|B) =1<3.

From the echelon form, we get the equivalent equationsx—y+z=-9, 0=0, 0=0.
The equivalent system has one non-trivial equation and three unknowns.

Taking y =s,z =t arbitrarily, we get x—s+¢=-9; orx=-9+s—1.

So, the solution is (x=-9+s—17,y =s,z=t), where s and ¢ are parameters.

The above solution set is a two-parameter family of solutions.

Here, the given system of equations is consistent and has infinitely many solutions which form a
two parameter family of solutions.
® Example 1.32 - ®
Test the consistency of the following system of linear equations
X—y+z=-9, 2x—y+z=4,3x—y+z=6,4x—y+2z=7.
Solution

Here the number of unknowns is 3.
The matrix form of the system of equations is 4X = B, where

-1 1 -9
X
2 -1 1 4
A = , X=|y|,B=
3-11 6
z
4 -1 2 7
Applying elementary row operations on the augmented matrix [4 | B], we get
1 -1 1|-9 1 -1 1] -9
Ry—>R,—2R,,
2 -1 1 BokSko 10 1 —1 22
[4]B]= e
3 -1 1 02 -2 33
4 -1 2 03 2] 43
I -1 1 -9 1 -1 1 -9
ey S U S 22 01 -1 22
00 O —-11
00 1 -23 00 0 | -11

So, p(A)=3 and p([4]|B])=4. Hence p(A4)# p([4|B)]).
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If we write the equivalent system of equations using the echelon form, we get

xX—y+z=-9, y-z=22, z=-23, 0=-11I.

The last equation is a contradiction.

So the given system of equations is inconsistent and has no solution. [ |

By Rouche’-Capelli theorem, we have the following rule:

» If there are n unknowns in the system of equations and p(A)= p([A4| B]) =n, then the
system AX = B, is consistent and has a unique solution.

»  If there are n unknowns in the system AX = B,and p(A4)=p([4|B])=n—k,k #0 then
the system is consistent and has infinitely many solutions and these solutions form a
k — parameter family. In particular, if there are 3 unknowns in a system of equations
and p(A4)=p([4|B])=2, then the system has infinitely many solutions and these
solutions form a one parameter family. In the same manner, if there are 3 unknowns in

a system of equations and p(A4)= p([4|B])=1, then the system has infinitely many
solutions and these solutions form a two parameter family.

 If p(A)# p([4| B]), then the system AX = B is inconsistent and has no solution.
Example 1.33

Find the condition on a,b and ¢ so that the following system of linear equations has one
parameter family of solutions: x+y+z=a, x+2y+3z=b, 3x+5y+7z=c.

Solution
@ Here the number of unknowns is 3. ®
I 11 X a
The matrix form of the system is AX =B, where 4=|1 2 3|, X=|y|,B=|b
357 z c

Applying elementary row operations on the augmented matrix [4 | B], we get

111 )al . 111 a
[A|B]=|123 | b|—L2E38 5101 2| b-a
3571 ¢ 024 ¢c—3a

111 a 111 a

el N N R ) b—a =012 b—a

000]| (c=3a)-2(b—a)| [0 00| (c—2b-a)

In order that the system should have one parameter family of solutions, we must have

p(A4) = p([4, B]) = 2. So, the third row in the echelon form should be a zero row.

So,c—2b-a=0 = c=a+2b. [ ]
Example 1.34

Investigate for what values of A and u the system of linear equations

x+2y+z=T7, x+y+Az=pu,x+3y-5z=5

has (i) no solution (ii) a unique solution (iii) an infinite number of solutions.
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Solution
Here the number of unknowns is 3.
1 2 1 X 7
The matrix form of the system is AX =B, where 4=|1 1 A [, X=|y|,B=|u|.
1 3 -5 z 5

Applying elementary row operations on the augmented matrix [4 | B], we get

12117 12 1] 7
[A|B]=|11 A | p|—2=28 5113 5] 5
13 -5|5 11 2| u
12 1 7 12 1 7
R, —>R,-R,,
R, —>R,—R, 01 -6 ) R >R+ Ry 5101 —6 )
0 -1 A-1]| u-7 00 A-7| u-9

(1) If A=7 and p =9, then p(4)=2and p([4|B])=3. So p(4)# p([4|B]). Hence the

given system is inconsistent and has no solution.

(i) If A#7 and g is any real number, then p(4)=3 and p([4]|B])=3.
So p(A4) = p([4| B]) =3 = Number of unknowns. Hence the given system is consistent and

has a unique solution.

(i) If A=7 and u=9, then p(4)=2 and p([4]|B])=2.
So, p(A4) = p([4]| B]) = 2 < Number of unknowns. Hence the given system is consistent and has

infinite number of solutions. [ |

EXERCISE 1.6

1. Test for consistency and if possible, solve the following systems of equations by rank method.

(1) x—y+2z=2, 2x+y+4z=7, 4x—-y+z=4
(1) 3x+y+z=2, x-3y+2z=1, Tx—y+4z=5
(1) 2x+2y+z=5, x—y+z=1, 3x+y+2z=4

(iv) 2x—y+z=2, 6x-3y+3z=6, 4x-2y+2z=4

2. Find the value of £ for which the equations kx—2y+z=1, x-2ky+z=-2, x—2y+kz=1
have

(1) no solution (i1) unique solution (ii1) infinitely many solution
3. Investigate the values of 2 and p the system of linear equations 2x+3y+5z=9,
Tx+3y—5z=8, 2x+3y+Az=pu, have

(1) no solution (i1) a unique solution  (iii) an infinite number of solutions.
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1.5.2 Homogeneous system of linear equations
We recall that a homogeneous system of linear equations is given by
a, X, +a,x, +a,x; +--- +a,x, =0,

ay X, +ayX, +ayx, +--- +a, x, =0, 0

a, x+a x,+a x,+--+a x =0,
where the coefficients a;,i=1,2,---,m; j=1,2,---,n are constants. The above system is always
satisfied by x, =0,x, =0,---,x, = 0.This solution is called the trivial solution of (1). In other words,

the system (1) always possesses a solution.

The above system (1) can be put in the matrix form 4X =0, _,, where

ay 4y dz 4y, X 0
a,, a, a - a X 0
21 Yy Ay 20 2
A - ’X | ’Om x1 7|
aml am2 am3 T amn ‘xn O

We will denote O, |, simply by the capital letter O.SinceO is the zero column matrix, it is
always true thatp(A4)=p([4|0])<m. So, by Rouche’-Capelli Theorem, any system of

homogeneous linear equations is always consistent.

Suppose that m < n,then there are more number of unknowns than the number of equations. So
p(A) = p([4]O]) < n. Hence the system (1) possesses a non-trivial solution.
Suppose that m = n, then there are equal number of equations and unknowns:

a,x, +a,x, +ax; +--- +a,x, =0,

Ay X, +ayX, +ayx, +--- +a, x, =0, 2

a,x, +a,x,+a,x;+--+a x =0,
Two cases arise.

Case (i)
If p(A4)= p([A] O]) = n, then the system (2) has a unique solution and it is the trivial solution.

Since p(4)=n, |4 =0. So for trivial solution | 4|=0.
Case (ii)

If p(A4) = p([4]|O]) < n, then the system (2) has a non-trivial solution. Since p(A4)<n, A| =0.
In other words, the homogeneous system (2) has a non-trivial solution if and only if the determinant
of the coefficient matrix is zero.

Suppose that m > n, then there are more number of equations than the number of unknowns.

Reducing the system by elementary transformations, we get p(A4) = p([4]0]) < n.
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Example 1.35
Solve the following system:

xX+2y+3z=0, 3x+4y+4z=0, 7x+10y+12z=0.
Solution

Here the number of equations is equal to the number of unknowns.

Transforming into echelon form (Gaussian elimination method), the augmented matrix becomes

12 3]0 1 2 3]0
Ry—>R,-3R,, R, >R, +(-1),
3 4 4| 0|—L2BTR 10 2 5| 0 |—L2ReCD
710 12| 0 0-4-9]0
12 3] 0] 123]0
—LoRIR G102 5| 0|]——LLD 510250
00 1] 0

So, p(A4) = p([4]| O]) =3 = Number of unknowns.

Hence, the system has a unique solution. Since x=0, y=0, z=0 is always a solution of the

homogeneous system, the only solution is the trivial solution x=0, y =0, z=0. [

Note

In the above example, we find that

® 1 2 3

|4=]3 4 4 |=1(48-40)-2(36—28)+3(30-28)=8-16+6=-2#0.

7 10 12

Example 1.36

Solve the system: x+3y—-2z=0, 2x—y+4z=0, x—-11y+14z=0.

Solution

Here the number of unknowns is 3.

Transforming into echelon form (Gaussian elimination method), the augmented matrix becomes

1320l 13 =2f0] 13 -=2]0 13 2|0
2 1 4| 0|—LE2RR 1o 7 8| 0Lk sl 7 8| 0| —Lt sl0 7 -8 0.
1 -11 14| 0 0 —14 16| 0 07 -8| 0

So, p(A4)=p([4]|O0]) =2 <3 =Number of unknowns.

Hence, the system has a one parameter family of solutions.

Writing the equations using the echelon form, we get

x+3y-2z=0, 7Ty-8z=0, 0=0.

Taking z =1, where ¢ is an arbitrary real number, we get by back substitution,
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z=1,
Ty-8t=0 = y:%,
x+3(%—2t=0 = x+@:0 =N x:—&.

.. 107 8¢ )
So, the solution 1s(x = = y= 7,2 = tj, where ¢ is any real number. L

Example 1.37
Solve the system: x+y—-2z=0,2x-3y+z=0,3x-7y+10z=0,6x-9y+10z=0.
Solution

Here the number of equations is 4 and the number of unknowns is 3. Reducing the augmented
matrix to echelon-form, we get

L2001 1 20 1 1 =210
2 3 1 | 0| BoR3R |0 -5 5 | 0| RoR. o 1 -1 |0
[A | O] — R4—>R476Rl
3 -7 10| 0 0 -10 16 | ©
6 -9 10 | 0 0 -15 22| 0 0 -15 22 | 0
11 2] 0 11 =210 11 =210
Kokas 01 =] 0 B J0 1 ~1 |0 01 -11]0
) 00 3| 0 00 110 01 |o )
00 71 0 00 110

So, p(A4) = p([4]|O]) =3 = Number of unknowns.
Hence the system has trivial solution only. [ |

Example 1.38
Determine the values of 4 for which the following system of equations
BA-8)x+3y+3z=0, 3x+(BAL—-8)y+3z=0, 3x+3y+(BA1-8)z=0

has a non-trivial solution.
Solution

Here the number of unknowns is 3. So, if the system is consistent and has a non-trivial solution,
then the rank of the coefficient matrix is equal to the rank of the augmented matrix and is less than 3.
So the determinant of the coefficient matrix should be 0.

Hence we get

3-8 3 3 3A-2 3A-2 3A-2
3 3-8 3 =0or| 3 31-8 3 |=0 (byapplying R, >R +R,+R,)
3 3 31-8 3 3 31-8
I 1 1
or (BA-2)|3 3-8 3 = 0 (by taking out (34 —-2) from R))
3 3 31-8
45 Applications of Matrices and Determinants
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1 1 1
or BA-2)|0 34-11 O = 0 (by applying R, > R, -3R,R, - R, -3R,))
0 0 31-11

or (34-2)(3A—11)*0. So A=§and /”t=%. -

We now give an application of system of linear homogeneous equations to chemistry. You are
already aware of balancing chemical reaction equations by inspecting the number of atoms present on
both sides. A direct method is explained in the following example.

Example 1.39
By using Gaussian elimination method, balance the chemical reaction equation:

CH,+0,— CO,+H,O.

(The above is the reaction that is taking place in the burning of organic compound called isoprene.)

Solution
We are searching for positive integers x,,x,,x; and x, such that
x,C,H, +x,0, = x,CO, +x,H,0. . (1)

The number of carbon atoms on the left-hand side of (1) should be equal to the number of carbon
atoms on the right-hand side of (1). So we get a linear homogenous equation

5%, =x;,= 5x,—x,=0. .. (2)
Similarly, considering hydrogen and oxygen atoms, we get respectively,

® 8x, =2x, = 4x,—x,=0, ..(3) ®
2x, =2x,+x, = 2x,-2x;-x,=0. .. (4

Equations (2), (3), and (4) constitute a homogeneous system of linear equations in four unknowns.
50 -1 0 0

The augmented matrix is [4|B]=|{4 0 0 -1| O].
02 -2 -1 0

By Gaussian elimination method, we get

40 0 -11] 0 40 0 -1] 0
[4]|B]—<L 515 0 -1 0 0|l—2% 510 2 2 -1 | 0
02 -2 -11]0 50 -1 0 0

40 0 -1]0

Ry—>4R;—5R, 0 2 _2 _1 ()

00 4 5|0
Therefore, p(A) = p([4]| B]) =3 <4 = Number of unknowns.
The system is consistent and has infinite number of solutions.
Writingthe equations using the echelon form, we get 4x, — x, =0,2x, —2x; —x, = 0,—4x; +5x, =0.

So, one of the unknowns should be chosen arbitrarily as a non-zero real number.

.. 5t 7t t
Let us choose x, =¢,t # 0. Then, by back substitution, we get x, = R X, =—,X =—

4 4
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Since x,,x,,x,, and x, are positive integers, let us choose #=4.
Then, we get x, =1,x, =7,x;,=5 and x,=4.
So, the balanced equation is C;H, +70, - 5CO, +4H,0. ]

Example 1.40
If the system of equations px+by+cz=0, ax+qy+cz=0, ax+by+rz=0has a non-trivial

solution and p = a,q = b,r = c, prove that P + q + ! =2.

p—a q-b r—c

Solution
Assume that the system px+by+cz=0,ax+qy+cz=0,ax+by+rz=0 has a non-trivial

solution.
p b ¢
So, we have | , g cl|= 0.Applying R, = R, — R, and R, — R, — R, in the above equation,
a b r
we get
p b c p b c
a-p q-b 0 |=0.Thatis, |-(p—a) g-b 0 [=0.
a-—p 0 r-c —(p—a) 0 r-c
p b c
p—a q-b r—c
Since p=a,q=b,r =c,we get(p—a)(qg—b)(r—c)| —1 1 0 |=0.
-1 0
P b c
p—a q-b r—c
So, we have -1 1 0 |=0.
-1 0
Expanding the determinant, we get L b +—< =0

p—a qg-b r-c

That is, —Z L4==b) r=(r=0) o P 4, " _,

p—a qg—>b r—c p—a q-b r—c [ |

EXERCISE 1.7

1. Solve the following system of homogenous equations.
(1) 3x+2y+7z=0, 4x-3y-2z=0, 5x+9y+23z=0
(1) 2x+3y-z=0, x—-y-2z=0, 3x+y+3z=0
2. Determine the values of A for which the following system of equations
x+y+3z=0,4x+3y+Az=0, 2x+ y+2z=0 has
(1) a unique solution (ii) a non-trivial solution.

3. By using Gaussian elimination method, balance the chemical reaction equation:
GHs+0, — H,0+CO,

47 Applications of Matrices and Determinants

3/10/2019 8:16:17 PM ‘ ‘



______TIEEEN ® N = HEEN

EXERCISE 1.8

Choose the Correct answer :

1. If |adj(adj 4) |=| 4|, then the order of the square matrix 4 is

()3 (2) 4 (3)2 )5
2. If 4 is a 3x3 non-singular matrix such that 44" = 4" 4and B=4"4", then BB" =
(1) 4 () B 3) I 4) B'
3. If 4= 303 , B=adj 4 and C=3A,then|adJB|:
1 2 IC|
1 1 1
D3 23 3) — 4)1
M3 @3 OF )
1 -2
1 4 0 6

(1) E ﬂ @ [_11 ﬂ 3) [_41 ﬂ @) B ﬂ

5. IfAz{7 3},then9I—A=
4 2

1

(1) 4" @) AT_ 3) 34" (4) 24"

2 1 4
6. If A:{ 0} and B:{ } then |adj(4B)|=
1 5 2 0

® (1) —40 (2) -80 (3) —60 (4) 20 ®
1 x O
7. 1f P=|1 3 0 | isthe adjoint of 3x3 matrix 4and | 4|=4, then x is
2 4 2
(1) 15 (2) 12 (3) 14 (4) 11
31 -1 a, a, a;
8. 1f A=|2 -2 0 |and A4"'=|a, a, a, | thenthe valueof a,, is
1 2 -1 a,, Gy, Ay
(1) o (2) -2 (3) -3 “4) -1
9. If 4,B and C are invertible matrices of some order, then which one of the following is not
true?
(1) adjA=|A4| A" (2) adi(4B) = (adj A)(adj B)
(3) detA™ =(detA)” (4) (4BC)'=C'B'4™

12 -17 1 -1
10. If (4B)! :{ }md A7 :{ }, then B™' =
-19 27 3

2 -5 8 5
U1 @ ]
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11. If 447" is symmetric, then 4° =

(1) 4™ 2) 'y (3) 4

5 3
12. If A4 is a non-singular matrix such that 4~ ={ 5 J ,then (4")"' =

(1) {‘25 ﬂ @) [_52 _ﬂ 3) {‘; ‘ﬂ

3 4
13.If 4=|° | and 47 = 4" , then the value of x is
3
5
4 -3 3
1) — 2) — 3) =
O > OF
1 tan —
14. If 4= and AB=1,then B=
—tan— 1
(1) (cos2 %jA @) (cos2 %JAT (3) (cos*0)1
[ 0 in@ k 0
15.1F A=) "7 S and A(adj 4) = then k =
@ | —sinf cosO 0 %
(Ho (2) sin6 (3) cosO
2 3
16. If 4= 5 2} be such that A4 =4, then A is
(1) 17 ) 14 3) 19

2 3 1
17. Ifadez[ }and aijz{
4 1 3

-2 ) .
. } then adj(4B) is

(4) 4y

4) (smz %jA

41

(4) 21

=7 -1 -6 5 =7 7 -6 2
1 2 3 4
o7 %) I B I
1 2 3 4
18. Therank ofthematrix | 2 4 6 8 | is
-1 2 -3 -4
(1 (2) 2 (3) 4 “4) 3
a_ b m _c_.d n m b a m
19. If x"y” =e",xy" =€",A, = A, = A = , then the values of x and y
n d c n c
are respectively,
(1) e(Az/Al)’e(A3/A1) (2) log(Al /A3),10g(A2 /A3)
(3) log(A,/A)),log(A;/A)) (4)) e e
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20. Which of the following is/are correct?
(1) Adjoint of a symmetric matrix is also a symmetric matrix.
(i1) Adjoint of a diagonal matrix is also a diagonal matrix.
(111) If 4 is a square matrix of order » and 4 is a scalar, then adj(14) = 1" adj(A) .

(iv) A(adjd) = (adjd)A=| A|1

(1) Only (1) (2) (i1) and (iii) (3) (iii) and (iv) (4) (1), (ii) and (iv)
21. If p(A)=p(A4|B]), then the system 4X = B of linear equations is

(1) consistent and has a unique solution (2) consistent

(3) consistent and has infinitely many solution (4) inconsistent

22. If 0<6<mand the system of equations x+(sinf)y—(cosf)z=0,(cos@)x—y+z=0,

(sin@)x + y —z =0 has a non-trivial solution then 0 is

2w 3m 57 T
) — 2) — 3) = 4T
(1) 3 () . ()~ 4) 1
1 2 7 3
23. The augmented matrix of a system of linear equationsis |0 1 4 6 | . The system

0 0 A-7 u+5s

has infinitely many solutions if

() A=7,u=-5 2) A=-7,u=5 B) A#T,u#-5 4) A=T,u=-5
® 2 -1 1 31 -1 @
24. Let A=|-1 2 —1|and4B=|1 3 x |.If B istheinverse of A4, then the value of x is
1 -1 2 -1 1 3
()2 (2) 4 (3)3 41
3 -3 4
25. If A={2 -3 4], then adj(adj 4) is
0 -1 1
3 -3 4 6 -6 8 -3 3 4 3 3 4
(1|2 -3 4 2)|4 -6 8 B3)|-2 3 -4 @10 -1 1
0 -1 1 0o -2 2 0o 1 -1 2 -3 4
SUMMARY

(1) Adjoint of a square matrix A4 =Transpose of the cofactor matrix of 4.

(2) A(adj A)=(adj A) A =|A|1,.

3) A" =Ladid

4

(4) (i)‘Al‘:ﬁ (ii) (AT)”:(A*)T (iif) (14) " :%A‘l, where 2 is a non-zero scalar.
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(5) () (AB)'=B'4™". (i) (4 '=4
(6) If A4 is a non-singular square matrix of order n, then

(i) (adj 4) ' = adj(A’l)zLA (ii) [adj 4= 4"

4
(ii1) adj (adj A) = |4 4 (iv) adj(A4)=A""adj(A4), A is a nonzero scalar

(n-1)°

(v) |adj(adjd)|=|4

(Vi) (adj 4)" =adj(4")

(vii) adj(4B)= (adjB)(adj )
(7) () A" == adj 4. (i) A=+

adj A| |adJ

adj (adj A).

(8) (i) A matrix 4 is orthogonal if 44" = A"A=1

(ii) A matrix 4 is orthogonal if and only if 4 is non-singular and 4" = 4"
(8) Methods to solve the system of linear equations AX = B
(i) By matrix inversion method X = A™'B, | 4| #0

A A A
ii) By Cramer’srule x=—1,y=—2z=—2_A#0.
(i) By A7 A A

(i11) By Gaussian elimination method

9) (1) If p(A4) = p([A4| B]) =number of unknowns, then the system has unique solution.

(1) If p(A4)=p([4]| B]) <number of unknowns, then the system has infinitely many

solutions.
(ii1) If p(A4) # p([ 4| B]) then the system is inconsistent and has no solution.

(10) The homogenous system of linear equations AX =0

(1) has the trivial solution, if |A4|=0.
(ii) has a non trivial solution, if |4[=0.
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Complex Numbers

“Imaginary numbers are a fine and wonderful refuge of the divine spirit
almost an amphibian between being and non-being. ”

- Gottfried Leibniz

Many mathematicians contributed to the full development of complex
numbers. The rules for addition, subtraction, multiplication, and division of
complex numbers were developed by the Italian mathematician Rafael Bombelli.
He is generally regarded as the first person to develop an algebra of complex
numbers. In honour of his accomplishments, a moon crater was named Bombelli.
Real Life Context

Complex numbers are useful in representing a phenomenon that has two parts varying at the
same time, for instance an alternating current. Engineers, doctors, scientists, vehicle designers and
others who use electromagnetic signals need to use complex numbers for strong signal to reach its
destination. Complex numbers have essential concrete applications in signal processing, control
® theory, electromagnetism, fluid dynamics, quantum mechanics, cartography, and vibration analysis. @

Rafael Bombelli

@' LEARNING OBJECTIVES

Upon completion of this chapter, students will be able to:
e perform algebraic operations on complex numbers
e plot the complex numbers in Argand plane
e find the conjugate and modulus of a complex number

e find the polar form and Euler form of a complex number

e apply de Moivre theorem to find the 7™ roots of complex numbers.

2.1 Introduction to Complex Numbers

Before introducing complex numbers, let us try to answer the question “Whether there exists
a real number whose square is negative?” Let’s look at simple examples to get the answer for it.
Consider the equations 1 and 2.

Equation 1 Equation 2
2
x-1=0 X +1=0
x =41 x =+
x =l x =%?
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- 01 /1 5 X -2/ -1 ©O 1 > X
-1
e )= e
Equation 1 has two real solutions, By the same logic, equation 2 has no real
x=-1 and x=1. We know that solving an solutions since the graph of f(x) =x"+1 does
equation in x is equivalent to finding the | DOt CTOSS the x -axis; we can see this by looking
at the graph of f(x)=x"+1.
x-intercepts of a graph of f(x)=x"-1 graph of f ()
crosses the x -axis at (—1,0) and (1,0).

This 1s because, when we square a real number it is impossible to get a negative real number.
If equation 2 has solutions, then we must create an imaginary number as a square root of —1. This

imaginary unit J=1 is denoted by i .The imaginary number i tells us that i> = —1. We can use this fact

to find other powers of i.

2.1.1 Powers of imaginary unit i

We note that, for any integer 7, i" has only four possible values: they correspond to values of
n when divided by 4 leave the remainders 0, 1, 2, and 3.That is when the integern <—4 or n>4,
using division algorithm, n can be written as n=4g+k, 0<k <4, k and gare integers and we
write
(i) =" =" @) =(0")" () =) @) =)

Example 2.1

Simplify the following
102
G) i’ (ii) i "% i) i+ vy Dt (v it it i®
n=1
Solution
G (i) =) =) =—; (i)™ ="' =i

Gi) (1) ()" =) )™ = (i) + ()P =1-1=0
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102
(v) D" =47 42 i)+ (i T )k (T )
n=1

+i4)+( +i°
= {i+(=1)+ (=) + 1+ {i+ (=1)+(=i)+ oo i+ (1) + (i) + 1 +i + (1)
=0+0+---0+i—-1

—1+i (What is this number?)
40x41
2

= (i'+i+i° i) (T )

(V) l-iz i3"' i40 :i1+2+3+~'+40 :i

Note
(1) Jab =a+/b valid only if at least one of a, b is non-negative.

For example, 6 =~/36 = [(—4)(=9) = /(-4)/(-9) = (2i)(3i) = 6i* = —6, a contradiction.

Since we have taken \/ (-4)(-9) = \/ (—4) \/ (—9) , we arrived at a contradiction.
Therefore v ab =+/a/b valid only if at least one of a, b is non-negative.

(ii) ForyeR, y* >0

Therefore, \/(—l)(yz) = \/(yz)(—l)

JEDYG?) =YD
@ iy = yi. @

EXERCISE 2.1
Simplify the following:
12
| 1o 1950 5 1948 _ ;1869 3 in
- 59 1 c+2.3 - 2000 S -n+50
4. i+ 5. 01770 6. Zz

1 n=1

2.2 Complex Numbers

We have seen that the equation x> +1=0 does not have a solution in real number system.

In general there are polynomial equations with real coefficient which have no real solution.

We enlarge the real number system so as to accommodate solutions of such polynomial equations.
This has triggered the mathematicians to define complex number system.

In this section, we define

(1) Complex numbers in rectangular form

(i1) Argand plane

(ii1) Algebraic operations on complex numbers

The complex number system is an extension of real number system with imaginary unit 7.

The imaginary unit i with the propertyi* = —1, is combined with two real numbers x and y

by the process of addition and multiplication, we obtain a complex number x +iy. The symbol '+'

should be treated as vector addition. It was introduced by Carl Friedrich Gauss (1777-1855).
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2.2.1 Rectangular form

Definition 2.1 (Rectangular form of a complex number)

A complex number is of the form x + iy (or x + yi) , where X and ) are real numbers.
x is called the real part and Y is called the imaginary part of the complex number.

Ifx =0, the complex number is said to be purely imaginary. If y =0, the complex number is
said to be real. Zero is the only number which is at once real and purely imaginary. It is customary to
denote the standard rectangular form of a complex number x+iy as z and we write x =Re(z) and
y=1Im(z). For instance, Re(5-i7) =5 and Im(5-i7)=-7.

The numbers of the form o +if3, B # 0 are called imaginary (non real complex) numbers.

The equality of complex numbers is defined as follows.

Definition 2.2

Two complex numbers z, = x, +iy, and z, = x, +iy, are said to be equal if and only if
Re(z,) = Re(z,) and Im(z,) =Im(z,). Thatis x, =x, and y, =y,. |

For instance, if a +if8 =—7+3i, then « =—7 and 8 =3.

2.2.2 Argand plane

A complex number z = x+iy is uniquely determined by an ordered pair of real numbers (x, y).
The numbers 3—8i, 6 and —4i are equivalent to (3,-8), (6,0), and (0,—4) respectively. In this
® way we are able to associate a complex number z = x+iy with a point (x, y) in a coordinate plane. ®
If we consider x axis as real axis and y axis as imaginary axis to represent a complex number, then
the xy -plane is called complex plane or Argand plane. It is named after the Swiss mathematician Jean
Argand (1768 — 1822).

A complex number is represented not only by a point, but also by a position vector pointing from
the origin to the point. The number, the point, and the vector will all be denoted by the same letter z .
As usual we identify all vectors which can be obtained from each other by parallel displacements. In this
chapter, C denotes the set of all complex numbers. Geometrically, a complex number can be viewed as

either a point in [R? or a vector in the Argand plane.

Im Im Im
Bl ca+if a+if
0] 0( Re 0] Re [9) Re
Complex number Complex number by a position vector Complex number
as a point pointing from the origin to the point as a vector
Fig. 2.3 Fig. 2.4 Fig. 2.5

Illustration 2.1

Here are some complex numbers: 2+i, —1+2i, 3-2i, 0-2i, 3+~-2,-2-3i, cos%ﬂ'sin% ,

and 3+ 0i. Some of them are plotted in Argand plane.
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Im Im
4 4
3 3
-1+2i -142i
2
2+ A 2+i
;
4 -3 12 1ol 1 2 3 aRe 32 cho/~J 2 37 4 Re
-2 2
. 3-2i
3 3-2i 3
231 | 23,
Complex numbers as points Complex numbers as vectors
Fig. 2.6 Fig. 2.7

2.2.3 Algebraic operations on complex numbers
In this section, we study the algebraic and geometric structure of the complex number system.
We assume various corresponding properties of real numbers to be known.

(i) Scalar multiplication of complex numbers:
If z=x+iyandk € R, then we define
kz= (kx)+(ky)i .
In particular 0z=0 and (-1)z=-z.

The diagram below shows & z for k =2, %, —1
Im, 2z Im Im,
z z
z
1
. 27 .
[0 Re 0] 1 Re 0 . Re
k=2 2 -z N
Fig. 2.8 Fig. 2.9 Fig. 2.10

(ii) Addition of complex numbers:

If z, =x, +iy, and z, =x, +iy,, where x,x,,y,,and y, € R, then we define

zZ,tz, = (x1+iyl)+(x2+iy2) z,+2,
= (x1+x2)+l'(y1+J’2) Ima (xl+x(:fyl+y2)

z+z, = (x5 +x,)+i(y+y,)- !

We have already seen that vectors are characterized by length
and direction, and that a given vector remains unchanged under
translation. Whenz, =x,+iy, and z,=x,+iy, then by
parallelogramlaw of addition, thesum z, + z, = ()c1 +x, ) + z'( W+, )

corresponds to the point(xl +Xy, ¥, + yz) . It also corresponds to a

Fig. 2.11

vector with those coordinates as its components. Hence the points
z,, z,,and z, +z, incomplex plane may be obtained vectorially as shown in the adjacent figure.
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(iii) Subtraction of complex numbers
Similarly the difference z, —z, can also be drawn as a position vector whose initial point is

the origin and terminal point is (x1 — Xy, Y — yz) .

z -z, = (% +iy)—(x, +ip,)

1

= (xl _x2)+i(y1 _yz)

L1745, = (xl_x2)+i(yl_y2)'

2
Fig. 2.12

It is important to note here that the vector representing the difference
of the vector z, — z, may also be drawn joining the end point of z, to the tip of z, instead of the origin.
This kind of representation does not alter the meaning or interpretation of the difference operator. The

difference vector joining the tips of z, and z, is shown in (green) dotted line.

(iv) Multiplication of complex numbers
The multiplication of complex numbers z, and z, is defined as

z,z, = (x, + iy, )(x, +iy,)
= (00X, = 3,) +ilny, +x,0,)
2,2, = (X%, =y, »,) +i(x,y, + X, ) .
Although the product of two complex numbers z, and z, is itself a complex number represented

by a vector, that vector lies in the same plane as the vectors z, and z, . Evidently, then, this product is

® neither the scalar product nor the vector product used in vector algebra.
Remark Im A 2
Multiplication of complex number z by i iz
. T
Ifz = x+iy, then 5
iz = i(x+iy) 0 T{e
= —y+ix.
2 i3Z

The complex number iz is a rotation of zby 90° or g radians in the '
counter clockwise direction about the origin. In general, multiplication of Fig. 2.13
a complex number z by i successively gives a 90° counter clockwise
rotation successively about the origin.
Ilustration 2.2

Let z, =6+7iand z, =3—5i. Then z +2z, and z, —z, are

(1) B-5)+(6+7i) = B+6)+(-5+7)i=9+2i
(6+7i)—(3-5i) = (6-3)+(7—(-5))i =3+12i.
Let z,=2+3i and z, =4+7i. Then z,z, is
(ii) (2+30)(4+7i) = 2x4+2xTi+4x3i+3x7i’
= 8+14i+12i+21x(-1)
= (8-21)+(14+12)i =—-13+26i .
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Example 2.2
Find the value of the real numbers x and y, if the complex number (2+i)x+(1—i)y+2i—3

and x+(—1+2i)y+1+iare equal

Solution
Let z, = (2+i)x+(1—i)y+2i—3:(2x+y—3)+i(x—y+2)and

z, = x+(=1+20)y+1+i=(x—y+1)+i(2y+1)
Given that z, = z,.
Therefore (2x+y—3)+i(x—y+2)=(x—y+1)+i(2y+1).

Equating real and imaginary parts separately, gives

2x+y-3 =x—y+l = x+2y=4

x—y+2 =2y+l = x-3y=-1
Solving the above equations, gives
x=2 and y=1. -
EXERCISE 2.2

1. Evaluate the following if z=5-2i and w=—-1+3i

(1) z+w (i) z—iw (ii1) 2z+3w
(iv) zw (V) z2° +2zw+w (vi) (Z+W)2.

2. Given the complex number z = 2 + 3/, represent the complex numbers in Argand diagram.
(1) z,iz,and z+iz (1) z, —iz,and z—iz.
3. Find the values of the real numbers x and y, if the complex numbers
B-x—Q2-i)y+2i+5and 2x+(—1+2i)y+3+2iare equal.

2.3 Basic Algebraic Properties of Complex Numbers
The properties of addition and multiplication of complex numbers are the same as for real
numbers. We list here the basic algebraic properties and verify some of them.

2.3.1 Properties of complex numbers

The complex numbers satisfy the following | The complex numbers satisfy the following
properties under addition. properties under multiplication.
(1) Closure property (1) Closure property
For any two complex numbers For any two complex numbers
z, and z,, the sum z +z, z, and z,, the product z, z,
is also a complex number. is also a complex number.
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(i1)) The commutative property (i1)) The commutative property
For any two complex numbers For any two complex numbers
z, and z, z, and z,
z,tz,=z,+tz. 2,2, = Z2,Z,.
(iii) The associative property (iii) The associative property
For any three complex numbers For any three complex numbers
z,,2,,and z, z,,2,,and z,
(z,+2,)+z,=2+(z, t2,). (2,2,)2, =2,(2,2,).
(iv) The additive identity (iv) The Multiplicative identity
There exists a complex number There exists a complex number
0=0+0: such that, for every 1=1+0i such that, for every complex
complex number z , number z ,
z+0=0+z=z zZl=lz=z
The complex number 0=0+0; is known The complex number 1=1+0iis known as
as additive identity. multiplicative identity.
(v) The additive inverse (v) The Multiplicative inverse
For any nonzero complex numberz,
For every complex number Z there exists there exists a complex number wsuch
a complex number —z such that, that,
z+(=2)=(=2)+ 2z =0. zw=wz=1.
® _~is called the additive inverse of z . wis called the multillahcatlve inverse of z . ®
w 1is denoted by z ™.
(vi) Distributive property (multiplication distributes over addition)
For any three complex numbers z,, z,, and z,
z,(zy+2z,) =2z, +z,z; and (z,+2,)z; = 2,2, + 2,2, .

Let us now prove some of the properties.
Property
The commutative property under addition

For any two complex numbers 2, and z,, prove that z, +z, =z, + z,.
Proof

Let z, =x, +iy,, z, =x, +iy,, and x,,x,,y,,and y, eR,
ztz, = (xl+iy1)+(x2+iy2)
= (x+x)+i(y,+»,)
= (%, +x)+i(y,+ ) (sincex,,x,,y,,and y, eR)
)

(x2 + iy2)+ (x1 +1iy,

Z, + Zy.

Property |
Inverse Property under multiplication
Prove that the multiplicative inverse of a nonzero complex number z = x +iy is

.Y
2 2 +l 2

Xty X +y

2
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Proof
The multiplicative inverse is less obvious than the additive one.
Let z~' = u +iv be the inverse of z = x+iy

We have zz™' =1
Thatis (x+iy)(u+iv) =1
(xu—yv)+i(xv+uy) =1+i0

Equating real and imaginary parts we get
xu—yv = landxv+uy=0.

Solving the above system of simultaneous equations in # and v

we get u=———and v= 2_y > (s zis non-zero=> x* +y° > 0)
X +y X +y
If z=x+iy,then z' = 2x Ty — . (v z 'is not defined when z =0). [

x*+y x4y
1

Note that the above example shows the existence of z~ of the complex number z . To compute

. . . o1
the inverse of a given complex number, we conveniently usez™' = —. If z, and z, are two complex
z

| z .

numbers where z, = 0, then the product of z and — is denoted by —. Other properties can be
2 2

verified in a similar manner. In the next section, we define the conjugate of a complex number. It

would help us to find the inverse of a complex number easily. ®

Complex numbers obey the laws of indices

m
z .
o0 G () =2 9 (an) =z

() z'z"=z"" (i)

EXERCISE 2.3
1. If z, =1-3i, z,=-4i,and z, =5, show that
(1) (z1 +22)+Z3 =z +(z2 +Z3) (i1) (2122)23 =z, (2223) .
2.1f z, =3, z, =-T7i,and z, =5+4i, show that
(1) z,(zy +z,) =z,z, + 2,24 (1) (z,+2z,)zy = 2,2, + 2,2

3.If z;=2+5i, z,=-3-4i, and z,=1+i, find the additive and multiplicative inverse of

z,, Z,,and z.

1°

2.4 Conjugate of a Complex Number
In this section, we study about conjugate of a complex number, its geometric representation, and
properties with suitable examples.

| Definition 2.3

The conjugate of the complex number x + iy is defined as the complex number x — iy.
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The complex conjugate of z is denoted by z. To get the conjugate of the complex number z ,

simply changei by —iin z. For instance 2—5i is the conjugate of 2+ 5i.The product of a complex

number with its conjugate is a real number.
. . . . 2 . \2 2 2
For instance, (1) (x+ ly)(x—zy) =X —(zy) =x"+y
(if) (1+3i)(1-3i)=(1)" = (3i)" =1+9=10.
Geometrically, the conjugate of z is obtained by reflecting z on the real axis.

2.4.1 Geometrical representation of conjugate of a complex number
Im

Im
-2+3i ¢ 4 iy
3 3 /’
N\ 2 2 1
\ /
1 1 .
43 -2 -1 /01 2 3 7 Re 4 -3 2.1 0\1 2 B ; Re
/ ] :
/-2 : 5
/ 2N
e -3 X1y
2=31 4 i
conjugate of a complex number conjugate of a complex number
Fig. 2.14 Fig. 2.15
Note
® Two complex numbers x+iy and x—iy are conjugates to each other. The conjugate is useful ®

in division of complex numbers. The complex number can be replaced with a real number in the
denominator by multiplying the numerator and denominator by the conjugate of the denominator.
This process is similar to rationalising the denominator to remove surds.

2.4.2 Properties of Complex Conjugates

() z+2,=2+z (6) Im(z) ===

Q) z,-2z,=2,-2, (7) (z_”) = (;)n , where nis an integer

() zz, =22 (8) zisrealifand only if z=2

4) (iJ = ?, z,#0 (9) z is purely imaginary if and only if z=—Z
4 4

(5) Re(@) =27 (10) T=z

Let us verify some of the properties.
Property

For any two complex numbers z, and z,, prove that z, +z, =z +z, .
Proof
Let z, =x, +iy,, z, =x, +iy,, and x,,x,,y,,and y, €R

z+z, = (x+iy)+(x, +i,)
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= (x1+x2)+i(y1+J’2)=(x1+x2)_i(J’1+J’2)

(xl _iy1)+(x2 _iyz)

= Zl+22.

It can be generalized by means of mathematical induction to sums involving any finite number of

terms: z +z,+z,+-z, =z +z,+z;+ 2, . ]
Property

Prove that z, z, =z z, where x,,x,,y,,andy, eR
Proof

Let z = x,+iy, and z, =x, +iy,.

Then, z,z, = (x,+iy, ) (x, +iv,) = (%%, =y, ) +i(x 0, +5,0,).

Therefore, z,z, = (x1x2 _y1y2)+i(x1y2 +x2y1) = (xlxz _ylyZ)_i(xlyZ +x2y1)a

and z;z, = (xl _iyl)(xz _iyz) = (x1x2 _y1y2)_i(x1y2 +x2y1)'

Therefore, z,z, = z,Z,. [ |
Property
z is purely imaginary if and only if z=—-Z
Proof
Let z = x+iy. Then by definition z = x—iy
® _ ®
Therefore, z = —z
= x+iy = —(x—1iy)
= 2x = 0 & x=0

< z is purely imaginary.
Similarly, we can verify the other properties of conjugate of complex numbers. u

Example 2.3

+4i

Write 53 oy in the x+iy form, hence find its real and imaginary parts.
—12i

Solution

To find the real and imaginary parts of 53 +1421' , first it should be expressed in the rectangular form
—12i

x + iy .To simplify the quotient of two complex numbers, multiply the numerator and denominator by
the conjugate of the denominator to eliminate 7 in the denominator.

3+4i (3+4i)(5+12i)
5-12i  (5-12i)(5+12i)

_ (15—48)+(20+36)i

524122
_-33+5a_2_33+i56
169 169 169
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Therefore, Sl = - 33 +i 56 . This 1s in the x+iy form.
5-12i 169
Hence real part is _33 and imaginary part is 6
P 169 SAYP 169 |
Example 2.4
1+i) (1-iY
Simplify | — | —-| — | .
1-i I+
Solution
i I+i)(1+i) 1+2i-1 2i
We find that 1+ =( )( ,)= l =—l=i,
1-i (1=i)(1+i) 1+1 2
. N
and LZE (ﬂj o
1+i 1-i I
3 A3
Therefore, (lij —(l;lj =P (i) =—i—i=-2i
1-1i 1—i ]
Example 2.5
z+3 1+4i
If - = , find the complex numberz .
z—5i
Solution
® 3 1+4i @
We find that ——( =
z—5i 2
= 2(z+3) = (1+4i)(z-5i)
= 2z+6 = (1+4i)z+20-5i
= (2—1—41‘)2 =20-5i—-6
-5 (14-50)(1+4i j
14 5i_ (14-5i)(1+ 1)234+51122+3i.
1-4i  (1-4i)(1+4i) 17 m
Example 2.6
If z,=3-2i and z, =6+4i, find -
2
Solution
We find that 2L = S—21 3720 6-4
Z, 6+4i 6+4i 6-4i
_ (18-8)+i(-12-12) | 10-24; 10 24
6> +4° 52 52 52
_5_6,
26 13 -
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Example 2.7
Findz™', if z=(2+3i)(1-i).

Solution
We find that z = (2+3i)(1-i)=(2+3)+(3-2)i =5+
41 1
=z =—-=—0
z S5+i
Multiplying the numerator and denominator by the conjugate of the denominator, we get

S Chul) B S NS B
(5+i)(5-i) 5°+1° 26 26

271 i —7 L

26 26 [

Example 2.8

10 10 A5 .\I5
Show that (1) (2 +i3 ) + (2 ~i3 ) is real and (ii) (159__'_3911 j - ( 18:2:] is purely imaginary.

Solution
(1) Let z =

Z = z = zisreal.

S A\IS
(ii) Let = — (19+91j (8+1‘].
5-3i 1+2i
19+9i _ (19+90)(5+3i)
5-3i  (5-30)(5+3i)

Here,

_(95-27)+i(45+57)  68+102i
- 52 432 S 34
=2+3i, (1)

_ (8+i)(1-2)

1+2i (1+20)(1-2i)

and

_(8+2)+i(1-16) 10-15i
12 4+22 5
—2_3i. )
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Now z

19+9)° (8+i)°
5-3i 1+2i

= z=(2+3) —(2-3i)". (by (1) and (2))

Then by definition, z

((z +3)° —(2—31-)”)

15 15
= (2 +3i ) — (2 —-3i ) (using properties of conjugates)

_ (2—31')15 —(2+3i)15 =—((2+3i)15 —(2—31')15)

= z =-z.

1949\ (8+i ). o
Therefore, z = %)\ is purely imaginary.
—3i i

EXERCISE 2.4

1. Write the following in the rectangular form:
® . ®
10-5i -
(111) 3i+——
6+2i 2—i
2. If z=x+1iy, find the following in rectangular form.

(1) 5+90)+(2—-4i) (11)

z

G)Rﬁ[l] (i) Re(iZ) (iii) Im(3z + 47 — 4i)

3. If zy =2—iand z, = -4 +3i, find the inverse of z,z,and 4,
2

4. The complex numbers u,v, and w are related by 1 = 1 + L .

u vow
If v=3-4i and w=4+3i, find u in rectangular form.

5. Prove the following properties:
z+z z—z

and Im(z) =

2 ) 2i

(1) zisrealifand only if z=Z  (i1) Re(z) =

6. Find the least value of the positive integern for which (\/5 +i )n
(1) real (i1) purely imaginary.

7. Show that (i) (2 + i\/g)lo —(2 - z'\/g)m is purely imaginary

(19707 (20-5iY"
(i1) + is real.
9+i 7—6i
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2.5 Modulus of a Complex Number Im}  P(x, y)
Just as the absolute value of a real number measures the distance v :

of that number from origin along the real number line, the modulus n <

of a complex number measures the distance of that number from the N Ly

origin in the complex plane. Observe that the length of the line from
the origin along the radial line to z = x +iyis simply the hypotenuse
of a right triangle, with one side of length x and the other side of 0 -
length y.

Fig. 2.16

Definition 2.4
If 7= x+iy,then \x* +y” is called modulus of z. It is denoted by |z|.

For instance (i) |i|=+0"+1* =1
(i) | -12i] = /0* +(-12)" =12
(i) [12-5i |= /12> +(=5)" =169 =13

Note

|zf=zZ.

2.5.1 Properties of Modulus of a complex nhumber

(1) |z|:H (5) |2 =@, z, #0
5| |z
(2) |z, + 2, <|z,| +|z,| (Triangle inequality) (6) |2"|=|z[", where n is an integer
3) |zlzz|:|zl||zz| (7) Re(z)S|Z|
4) |z1 —zz| ZHZI|—|ZZH (8) Im(z)S|z|

Let us prove some of the properties.

Property Triangle inequality
For any two complex numbers z, and z, , prove that |z, + z,| <|z,|+|z,|.

Proof
|zl+zz|2 = (z,+2,)(z +2,) (o lz[=z2%)
= (ZI+ZZ)(EI+22) (."ZITZ2:EI+EZ)
= 2z, +(z,2, + 2,2,) + 2,2,
= zz, + (2122 + ﬁ)jt z,z, ( z= Z)
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= |z, " +2Re(z,Z,)+]| z, (- 2Re(z)=z+72)
< [l + 2z =l (: Re(2) <)z
= |2 +2]z| |z]+ |z (222 =2 ||z, | and | |5 Z|)

= |Zl"‘Zz|2 < (|Zl|+|zz|)2

:>|Z1 +22| < |Zl|+|22|.

Geometrical interpretation

Now consider the triangle shown in figure with vertices O, z; Im A z, 1Z1]_..om 7 !
or z,,andz, +z, .We know from geometry that the length of the side

of the triangle corresponding to the vector z, +z, cannot be greater

than the sum of the lengths of the remaining two sides. This is the
reason for calling the property as "Triangle Inequality".

It can be generalized by means of mathematical induction to finite
number of terms:

|Zl+Zz+Z3+"'+Zn|S|Zl|+|Zz|+|Z3|+"'+|Zn| for n=2,3,---.

Property The distance between the two points z, and z, in complex planeis |z, -z, |

If z =x, +iy,and z, = x, +iy,, then
@ | =X T 2 =X T,
|ZI_ZZ| = ‘(xl_x2)+(yl_y2)i‘
= \/(xl_xz)z"'()ﬁ_yz)z-

The distance between the two points z, and z, in complex plane is |z1 - z2| .

If we consider origin, z, and z, as vertices of a triangle, by the similar argument we have

Im )
|Zl_ZZ|S|Zl|+|ZZ| 2-3,|
|2,
||zl|—|zz||£|zl+zz|£|zl|+|zz| and 2, -
EX apubod
||z,|—|zz|| <lz - z,|<|z[+]z] - = ElH"l’..i 3
0 Re
Fig. 2.18 [ |
Property Modulus of the product is equal to product of the moduli.
For any two complex numbers z, and z, , prove that|zlzz| = |zl||zz| .
Proof o
We find that |zlzz|2 = (z,2,)(z,z,) (z=z22)
= (Zl )(Zz)(z_l)(z_z) ( 212y = Z_IZ_Z)
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—\(_ — 2 . - -
= (z, Zl)(z2 zz)=|zl| |z, (by commutativity z,z, = z,z,)

Therefore,

2,5,| = |z
Note
It can be generalized by means of mathematical induction to any finite number of terms:

|lezz3 "'Zn| = |Z]||Zz||Z3|"'|Z”|
That is the modulus value of a product of complex numbers is equal to the product of the moduli
of complex numbers.
Similarly we can prove the other properties of modulus of a complex number.

Example 2.9

If z, =3+4i, z,=5-12i, and z, :6+8l',ﬁnd|z1 12,05 1235 |2, + 25|, |2, — 24|, and |zl+z3|.
Solution

|z,| = [3+4i|=v3’+4° =5
|z,| = [5-12i] = /5% +(-12)* =13
|z,| = |6+8i]|=v6 +8 =10

|2, +2,| = [(3+4i)+(5-12i)| =[8-8i| =128 =82

|z, — 25| = |(5-12i) = (6 +8i)| = |-1-20i| = /401

® |2+ 25| = |(3+4i)+(6+8i)| =]9+12i| =+/225 =15 ®

Note that the triangle inequality is satisfied in all the cases.
|z, + 2| =z, +|z| = 15 (Why?)

m
Example 2.10
. . 3
Find the following (i) —211121‘ (i) [T+ D@ +30i-3) (i) l((f:,l))z
Solution
(1) ‘ 2 | - el _ V2l =1 0 ﬁZM z, #0
2 2 Gpez o Ulal BRI
(i) |AFD@+30@-3)| =|a+| [2+3] [4i-3] (- [z22] =z llz12])
= [1+i| [2+3i] |-3+ 4] (-.- EE \;\)
_ (Jf e )(J22 132 )(\/(—3)2 Ve )
= (v2)(\13)(V25) =526 .
3
i ie+iy| _lj@+iy| 1+ (VA+1) ( z|_lal ¢o]
a+0* | s e (ﬁ)z | |zl
3
5) s
2 2 m
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Example 2.11
Which one of the points i, =2+, and 3 is farthest from the origin?

Solution
The distance between origin to z=i,—2+i, and 3 are I{H
|z| = [i]=1
-2+ ,
1z| = |2+i|= (=2 +1* =5 : i
|z| = [3]=3 — ‘ -

Since 1<+/5 <3, the farthest point from the origin is 3.
Fig. 2.19 m

Example 2.12
If z,, z,,and z, are complex numbers such that |Z1| = |zz| = |z3| = |z1 +2z,+z,|=1,

1 1 1
find the value of | —+—+—]|.
Z Z, Z3
Solution
Since, |z,| = |z,|=z|=1,
|Zl|2 =1=zz =1z =1=z7 =1,and |z, [=1= 2,7, =1

® 1 | | ®

Therefore, z, = —,z, =—, and z; = — and hence
Z ) Z3
11 1 - = —
—t—+—| =z, +z,+2z,
4 5 5
= |ZI+ZZ+Z3|=|Zl+Z2+Z3 =1. -

Example 2.13
If || =2 show that 3<|z+3+4i|<7

I
Solution o o,
3 Re
|2+ 3+4i|<|z|+[3+4i|=2+5=7 /
|z+3+4i|<7 (D ?
|2+ 3+4i| | |2| |3+ 4i]|=|2-5| =3
|z+3+4i[>3 2)
From (1) and (2) we get, 3<|z+3+4i[<7. Fig. 2.20 -
Note
To find the lower bound and upper bound use |z|~|z,||<|z + 2, <|z]+|z,]-
69 Complex Numbers
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Example 2.14

NG) 1

Show that the points 1, _?1 +i—, and — —173 are the vertices of an equilateral triangle.

Solution
It is enough to prove that the sides of the triangle are equal.

Let z, =1, z, =_—1+i§,andz3=_?l—i§. Im
-1 \/g A
The length of the sides of the triangles are 7“7 \
2 —2) = [1- SR EI | N O e N E R \
2 2 2 2 44 ) >
/ Re
-1 3 -1 3 2 -1 3|7
|z2 z3| 2—1—12]{2 lzj (\/7) \/7 212
Fig. 2.21
1.3 -3 J_ /
|Z3—Zl| = 7+17]—1 — =3
Since the sides are equal, the given points form an equilateral triangle. [ |

Example 2.15

Let z,2,, and z; be complex numbers such that |z,|=|z,|=|z,|=r>0andz +z, +z, #0.

|zz + 2,2, + 2.2
Prove that |[-=2 =273 =371

_,
z,+z,+2z, ‘
Solution
. — — — 2
Given that |Zl| =|Z|—|Z|—F:>ZIZ =zZ =Zz.Z.=F
2 2 2
r r r
=z =, =/, Z3=—
Z, zZ, z,
e
Therefore Zl'|'Z2'|'Z3 = T+T+T
zZ, z, I,
_ r2(2223+zlz3+2122
212,23
Z.Z.+zz, +2z - -
2 ..
z+z,+z| = ||| PR (cz1+z2=2+2,)
212,24
5 |2223 + 2,2, +zlzz| _
C-lz[=1z| and | z;z,z, [ =z, [ 2, | | 2z |)
|Zl||Zz||Z3|
5 |2223 +2,2, + lez| |zzz3 + 2,2, +lez|
z+z,+z| = =
3
r r
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|Z2Z3 +2z,z, + le2|

|z, + 2, + 2,

Z,Z,+ZZ +ZZ|
Thus, 243 143 1“2 _

Zl-l‘Zz-i-Z3

Example 2.16
Show that the equation z* =Z has four solutions.

Solution
We find that, 2 =Z.
= |z =|z]
= =l = o,

— |z| =0, o0r|z|=1.

|z]=0 = z=01isasolution, |z|] =1 =2 zz=1=Z=—.

2

. _ 1
Given z2 =7z = z2 = - = 2 =1.
z

It has 3 non-zero solutions. Hence including zero solution, there are four solutions.

2.5.2 Square roots of a complex number
Let the square root ofa+ib be x+iy
® That is Va+ib = x+iy where x,yeR
a+ib = (x+iy)2 =x"—y* +i2xy

Equating real and imaginary parts, we get
2 2

x"—y" =aand2xy=>b
(x2 +y2)2 = (xz —yz)2 +4x’y* =a’ + b
x*+y° =+a’ +b* ,since x” + )’ is positive
Solving x*—3* = a and x> +y° =+a’ +b* , we get

X

and y have different signs when b is negative.

Therefore Va+ib = +[,/|Z|%+i b |Z|—_aJ , where b= 0. ( Re(Z)£|z|)

B\ 2

Formula for finding square root of a complex number

NJa+ib +[1/|Z|%+iﬁ MT_GJ ,where z=a+iband b=0.

71
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=r. (giventhat z, +z, +z, #0)

NJat+b* +a Na*+b* —a
YT

Since 2xy =b it is clear that both x and y will have the same sign when b is positive, and x
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Note
If b is negative, %: —1, x and y have different signs.
. . b .
If b is positive, a =1, x and y have same sign.

Example 2.17
Find the square root of 6 —8i .

Solution

We compute |6—8i| = ,/62+(—8)2 =10

and applying the formula for square root, we get

10+6 10-6 b
_ R =+ —1 '.'b i t ,_=_1
6—8i (\/ 5 z\/ 5 J ( is negative b| )

= +(\8-i2)
- J_r(zx/i—iﬁ). m

EXERCISE 2.5

1. Find the modulus of the following complex numbers
® 2 2—i 1-2i 0 N @
(1) (i) —+ (1) (1-1) (iv) 2i(3—4i)(4-3i).
3+4i 1+i 1-i

2. For any two complex numbers z, and z,, such that |Z1| = |22| =1 and z,z, # —1, then show that

z, +z, .
ZL =2 jsareal number.
1+2zz,

3. Which one of the points10—8;, 11+ 6i is closesttol+i .

4. If |z|=3, show that 7<|z+6—8i| <13.

5. If |z|=1, show that 2<|z* -3|<4.

6. If |z 2 =2, show that the greatest and least value of | z | are /3 +1 and /3 —1 respectively.
z
7.1f z,, z, , and z, are three complex numbers such that |z,|=1, |z, ‘ =2,|z,|=3 and

|z, +z, +2,| =1, show that |9zlz2 +4zz, + zzz3| =6.
8. If the area of the triangle formed by the vertices z, iz, and z+iz is 50 square units, find the
value of |z|
9. Show that the equation z° +2Z =0 has five solutions.
10. Find the square roots of (i) 4+3i (ii) —6+8i (iii) —-5-12i.
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2.6 Geometry and Locus of Complex Numbers

In this section let us study the geometrical interpretation of complex number z in complex plane
and the locus of z in Cartesian form.
Example 2.18
Given the complex number z =3+ 2}, represent the complex numbers z, iz, and z+iz in

one Argand diagram. Show that these complex numbers form the vertices of an isosceles right
triangle.

Solution

Given that z=3+2i.

AR
Therefore, iz =i(3+2i)=-2+3i C< '

iz =(3+2i)+i(3+2i)=1+5i i

Let 4,B, and C be z, z+iz, and iz respectively.
i 2 -4 3 -2 10 1 2 3 aRe
AB* =|(z+iz)-z| =|-2+3i =13

BC? =|iz—(z+iz)[ =]-3-2if =13

-2
CA =|z—ie| =[5-i =26 Fig. 2.22
® Since AB* +BC* =CA* and AB = BC, A4BC is an isosceles right triangle. L ®

Definition 2.5 (circle)

A circle is defined as the locus of a point which moves in a plane such that its distance from a
fixed point in that plane is always a constant. The fixed point is the centre and the constant distant
is the radius of the circle.

Equation of Complex Form of a Circle

. . . Imy
The locus of z that satisfies the equation |z—z,|=r where z, is z

a fixed complex number and r is a fixed positive real number consists
of all points z whose distance from z, is r.

Therefore |z—z)|=7r is the complex form of the equation of a

circle. (see Fig. 2.23)
(i) |z—z,|<r represents the points interior of the circle.

(ii) |z—z,|>r represents the points exterior of the circle.
Fig. 2.23

Illustration 2.3
lz2|=r = {yx*+)y* =r

= x" + )’ =717, represents a circle centre at the origin with radius 7 units.
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Example 2.19

Show that |3z -5+ i| =4 represents a circle, and, find its centre and radius.

Solution

The given equation [3z—5+i| = 4 can be written as

i
=4 33

It is of the form|z - zo| =r and so it represents a circle,

5—i

Z—_
3

3

whose centre and radius are (%, —%) and % respectively.

Example 2.20

4

Im |

Show that|z +2- i| < 2 represents interior points of a circle. Find its centre and radius.

Solution

Consider the equation |z+2—i|=2.

This can be written as |z —(—2+i)|=2.

The above equation represents the circle with centre z, =-2+i and

radius » =2. Therefore |Z +2- i| < 2 represents all points inside the

Example 2.21

circle with centre at —2 +7and radius 2 as shown in figure.

Fig. 2.24 -
Im
r=2
Z =—2+i
O Re
Fig. 2.25 | @

Obtain the Cartesian form of the locus of z in each of the following cases.

(i) |2|=|z -] (i) |2z -3-i|=3
Solution
(i) 2] = |z-1

= |x+iy| = |x+iy—i|

= \/x2+y2 = \/x2+(y—1)2
= xX+)y =x"+)y" -2y+l
= 2y-1=0.
(ii) 2z-3-i =3

2(x+iy)-3-i = 3.

Squaring on both sides, we get
(2x-3)+(2y-1)i =9

= (2x-3)+(2y-1)" =9

—  4x°+4y* —12x—4y+1 = 0, the locus of z in Cartesian form.
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EXERCISE 2.6

z—4i
z+4i

=1

1. If z = x+iy is a complex number such that

show that the locus of z is real axis.
2z+1
iz+1

2. If z=x+iy is a complex number such that Im( j =0, show that the locus of z is

2x° +2y" +x-2y=0.
3. Obtain the Cartesian form of the locus of z = x+iy in each of the following cases:
@) [Re(iz)]2 =3 (i) Im[(1-D)z+1]=0  (iii) |z +i] =]z~ (v) z=z".
4. Show that the following equations represent a circle, and, find its centre and radius.
(i) |z-2-i=3 (i) [2z +2-4i|=2 (iii) [3z—6+12i|=38.
5. Obtain the Cartesian equation for the locus of z = x+iy in each of the following cases:

(i) |z-4/=16 (i) |z -4 —|]z-1]" =16.

2.7 Polar and Euler form of a Complex Number

When performing addition and subtraction of complex numbers, we use rectangular form. This is
because we just add real parts and add imaginary parts; or subtract real parts, and subtract imaginary
parts. When performing multiplication or finding powers or roots of complex numbers, use an alternate
form namely, polar form, because it is easier to compute in polar form than in rectangular form.

2.7.1 Polar form of a complex number

Polar coordinates form another set of parameters that characterize the vector from the origin to
the point z = x + iy, with magnitude and direction. The polar coordinate system consists of a fixed point

O called the pole and the horizontal half line emerging from the pole called the initial line (polar axis). If
r is the distance from the pole to a point P and @ is an angle of inclination measured from the initial line
in the counter clockwise direction to the line OP, then r and @ of the ordered pair (r,0) are called the
polar coordinates of P. Superimposing this polar coordinate system on the rectangular coordinate
system, as shown in diagram, leads to

) P(xy) P(x
X ’\]
X g 3
{ 7 'y =rsinf
0 o :
0 X 0 0 x=rcos® M
) ) Superimpose polar coordinates
Rectangular coordinates Polar coordinates on rectangular coordinates
Fig. 2.26 Fig. 2.27 Fig. 2.28
x = rcosf (1)
y = rsin6. ..(2)

Any non-zero complex number z = x + iy can be expressed asz =rcos6 +i rsin6.

75 Complex Numbers

‘ ‘ Chapter 2 Complex Numbers.indd 75 @ 3/10/2019 8:26:51 PM ‘ ‘



______TIEEEN ® N = HEEN

Definition 2.6

Let » and @ be polar coordinates of the point P(x,y)that corresponds to a non-zero

complex number z = x +iy . The polar form or trigonometric form of a complex number P is

z=r(cosO +isinf).

For convenience, we can write Polar form as
z=x+iy= r(cos@ +isin0) =rcis®.
The value 7 represents the absolute value or modulus of the complex number z . The angle 0 is

called the argument or amplitude of the complex number z denoted by 6 = arg (z)

(1) If z=0, the argument 6 is undefined; and so it is understood that z = 0 whenever polar
coordinates are used.
(i1) If the complex number z = x+iyhas polar coordinates(7,60), its conjugate z = x—iy has

polar coordinates (r,—8).

Squaring and adding (1) and (2), and taking square root, the value of » is given by r = |z| = x>+,

Dividing (2) by (1), 239 =2 — tang =2
rcosf x X
The real number O represents the angle, measured in radians, that z makes with the positive real
axis when z is interpreted as a radius vector. The angle @ has an infinitely . z =r (cosO+isinf)
many possible values, including negative ones that differ by integral my
multiples of 27r. Those values can be determined from the equation /
@ tan§ = 2 where the quadrant containing the point corresponding to z / p \ ®
X
must be specified. Each value of @ is called an argument of z, and the Q‘/ Re
set of all such values is obtained by adding multiple of 27rto €, and it
. Fig. 2.29
is denoted by arg z.
There is a unique value of § which satisfies the condition —7 <0 <7 .
This value is called a principal value of @ or principal argument of z
and is denoted by Arg z. -
Note that, ~n<Arg(z)<m or —-mw<0<nm a :l
Principal Argument of a complex number 21RYOL
I-Quadrant II-Quadrant [11-Quadrant IV-Quadrant
3 0=« YN o= 71— y“@:a—ﬂ’ ) O=-a
z Z
o O 7N\ 0
. N, ol .
> ) 5 >
o X X a /9 X o X
z z
0=« O=r-u O=a-rx =-a
Fig. 2.30 Fig. 2.31 Fig. 2.32 Fig. 2.33
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The capital A is important here to distinguish the principal value from the general value.

Y

X

Evidently, in practice to find the principal angle 6, we usually compute o = tan™' and adjust

for the quadrant problem by adding or subtracting o with 7 appropriately.

argz = Arg z + 2nm, neZ.

Some of the properties of arguments are

(1) arg(z z,)=argz +argz,

(2) arg[ij =argz, —argz,
z

2
3) arg(z" ) =narg z
(4) The alternate form of cosf +isinf is cos(2km+0)+isin(2km+0), k € 7.

For instance the principal argument and argument of 1,i,—1, and —i are shown below:-

z 1 i -1 =i

D,
Y

Imi .
. a
Arg(z) 0 2 T > _1!
=i

arg z 2nm 2nm+ - 2nm+T 2nm—— .
2 2 Fig. 2.34
® : ®
Ilustration
Plot the following complex numbers in complex plane Im
2w |
. T .. T O U 2
(1 5 coszﬂsmzj //m/c\S /\\\\ \-\5c\1s4
/ AN \
/ .
(ii) 4 cosz—ﬂ+isin2—7r P Vo
| L INA
3 3 | \ ' \ T T2 /3 J4 }5=
by - ¥ 2cis L e
-5t .. -5m \ GRS |~ 6
(iii) 3| cos——+isin—— \ / /
6 6 N N R
/
\\\\ \/////
(iv) 2| cos——isin— |. T
6 6 Fig. 2.35

2.7.2 Euler’s Form of the complex number

The following identity is known as Euler’s formula
¢’ =cosO+isinf
Euler formula gives the polar form z = re”
Note

When performing multiplication or finding powers or roots of complex numbers, Euler form
can also be used.
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Example 2.22
Find the modulus and principal argument of the following complex numbers.

(i) 3 +i (i) —/3 +i (i) —~/3 —i (iv)\/3 —i
Solution
(i) B+i my
2
Modulus = /x* +y* = (\/5) +17 =/3+1=2 g ,L B+i
! /a = 9
-1y a1 o7 o F
a =tan'|=|=tan' (=== 1 Re
X 3 6 ’
Since the complex number J3+i lies in the first quadrant, 17
. Fig. 2.36
has the principal value
0=a="2.
Therefore, the modulus and principal argument of V3 +i are 2and % respectively.
(i) —v3+i
Modulus= 2 and B e
, B 0 B
a =tan |2 =tam‘li=Z oane e
X 3 6 19) ! Re
Since the complex number —3+i lies in the second quadrant |
® has the principal value Fig. 2.37

O=n-a=n-21 =5—7T.
6 6

Therefore the modulus and principal argument of —3+i are 2 and 5%Trespectively.

(i) —/3—i Im

r=2 andazz.
6

Since the complex number — J3 =i lies in the third quadrant, Re
has the principal value,
0—aq-n="_gz=2F
TR TR T S, Fig.238
Therefore, the modulus and principal argument of —J3—iare 2 and —?ﬂ respectively.
Im
(iv) V3-i i
r=2and a="2. .'
6
Since the complex number lies in the fourth quadrant, o 6 Re
has the principal value, < :/g i
9 = —0 = _% ..............
Fig. 2.39
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Therefore, the modulus and principal argument of

\/g—i are 2and—%.

In all the four cases, modulus are

which the complex number lies.

equal, but the arguments are depending on the quadrant in

|
Example 2.23
Represent the complex number (i)—1—-i (i1) 1+ J3 in polar form.
Solution
(1) Let —1—-i = r(cosO +isin0)
We have 7 = x> +1> =P +1* =4/1+1=42
a =tan' | =tan'1=2.
x 4
Since the complex number —1—i lies in the third quadrant, it has the principal value,
0 =a-n="-1 __3
4 4
Therefore, —-1-i = \/5 (cos [—%j +isin (——D
= \/E(cos3—n—isin3—n j
4 4
. 3r .. (37
—1-i = /2] cos T+2k7r —isin T+2k7£ s kel
Note
Depending upon the various values of k, we get various alternative polar forms.
(i) 1+i\/3 .
r o= |Z|= 12+(\/§) =2
1 T
0 = tan™' —) ==
(ﬁ 3
Hence arg(z) = g .
Therefore, the polar form of 1+i+/3 can be written as
1+i\3 = 2(cos£+isin£j
3 3
= 2(C0$(%+2kﬂ'j+ isin(%+2knD, keZ.
|
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Example 2.24
Find the principal argument Arg z , when z = -2 .
1+i3

Solution

2
= ar
g1+i\/§

= arg(—2)—arg(1+i\/§) ('.'arg[

feom (B (£

3 3

This implies that one of the values of arg z is 2% .

argz
A

2

3
j=argz1 —argz,) A\ x
z B 2 3
0

Since 2T lies between —z and 7, the principal argument Arg z is 2%

Properties of polar form

7

Property 1 If z=r(cos6 +isin6),then z™ :l(cosé—isinQ).

Proof
1

r(cos@+isin@)

(cos®—isin@)

L1
z =—=
z

o

B (cosO—isin@)

r(cos2 0 +sin” 9)
(

1 ..
z " = cosO—lsmG).

N | =

r(cosO +isind)(cosd —isinb)

Property 2
Ifz, =1 (cos6, +isin6, ) and z, =r,(cos6, +isinb, ),

then z,z, = K1, (cos(6, +6,)+isin(6, +6,)).

Proof
z, = 1;(cos, +isin6, ) and

z, =1,(cos0, +isinb,)
= z,z, = 1,(cos B, +isin6,)r, (cos6, +isin0,)
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-2 -1 1 2 Re
Fig. 2.40
[ |
z
Im @
N
0 -
S -
0 0 Re
i 2—1
T
Fig. 2.41
|
Im‘
A
2} r, *Z
A %)) W S
%%“'//’ Y 9
% ,I/ el\\ 2\ =
Zl Zl‘//O Re
° r\YZ
Fig. 2.42
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= nr, ((cos@1 cos 6, -sin 0, sin 6, )+i(sin 6, cos b, +sin 6, cos 91))

2,2, = 11y (cos (6, +6,) +isin(6, +6,)).

Note
arg(zz,) = 6,+0, =arg(z,)+arg(z,).

Property 3

Ifz; =7, (cosb, +isin6, ) and z, = r, (cos B, +isinb, ), then i:i[cos(Ql —0,)+isin(6,-6,)].
Z, h

1 (cosO, +isin, ) Im |

z, 1 (cosO,+isin,) N

_ 1;(cosO, +isin@,)(cos O, —isin0,) A

1, (cos®, +isin6, )(cos6, —isin6,)

7, (cos6, cos B, +sin, sin6, )+i(sind, cosd, —sinb, cos6,) s

2 r a2
r cos” 0 +sin” 0 19)

A i(COS(Ql —0,)+isin(6, -0, )) Fig. 2.43
Z, h

Note
z
arg[z—lj =6,-0, =arg(z)—arg(z,).
2
Example 2.25
. 3 T .. T Sm .. 5m).
Find the product > cos? +i smg -6 cos? +i sm? in rectangular from.

Solution

o)
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Find the quotient

Solution

ol onfs)

=9

2 2

NE) ZJ 93 9i

( or . . 971)
2| cos — +isin —
4 4

2 27

4(cos( 3
2

( or .. 971)
2| cos— +isin—
4 4
3

or . . 97rj
2| cos —+isin—
4 4

157‘[]
cos| —
4

IS EQEED R

Example 2.27
If z=x+iy

Solution

Since, arg[ — 1]

=

XII - Mathematics
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and arg (Z—
z+1

z—1

x+iy—1 (x—

Y

1 73 (—37[]
—| cos| ——| —
2 4 2

3 ..
Cos —+7 +1S1n

1 b4 L. (T
—| cos| = |—isin| —
i(e(5) (J

D+iy

j=g,then show that szry2 =1.

in rectangular form.

[(x - 1) + iy] [(x +1)— iy]

Now,
z+1

z—1

x+iy+1 _(x+l)+iy

=
z+1

z+1

2y
x*+y* -1

= x’+)’

(P 4y =D+i2y)

(x+1)> +y°

T = tan
2

T
tan —
2

| 2y
X +y? -

82
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EXERCISE 2.7

1. Write in polar form of the following complex numbers

() 2+i23  (i)3-iV3 (i) —2-i2 (iv) ﬂ’;l
COS —+isin—
2. Find the rectangular form of the complex numbers 3 3

T o .. 7T
COS— —181In—

COS = +isin —
( 3 3)

300F (x +iy, ) (x, +iv, ) (x; +ivy )-++(x, +iv,) = a+ib, show that

(1) | cos—+isin— || cos—+isin— (i1)
6 6 12 12 ’

(@) (x12 +y12)(x22 +y22)(x32 +y32)-~-(xn2 +yn2): a’ +b*

(i) Z‘,tan_1 (i—’j =tan' (Sj +2k7, ke -
r=1

I

4, IfH—Z:cos29+isin29, show that z=itan0 .

-z
5. If cosa +cos B +cosy =sina +sin  +siny =0, then show that
(1) cos3a +cos3f +cos3y =3cos(a+[)’+y)and

(1) sin3c +sin3f +sin 3y :3sin(a+ﬂ+y).

z—1

6.If z=x+iyand arg( j=%, then show that x* +y* +3x-3y+2=0.

zZ+

2.8 de Moivre’s Theorem and its Applications
Abraham de Moivre (1667-1754) was one of the mathematicians to use
complex numbers in trigonometry.

The formula (cos6 +isin@)" =(cosnf +isinnd) known by his name, was

instrumental in bringing trigonometry out of the realm of geometry and into that of
ﬁ‘i’T‘.‘
de Moivre
1667-1754

analysis.

2.8.1 de Moivre's Theorem

de Moivre’s Theorem
Given any complex number cos0 +isin6 and any integer n,
(cosO +isinB)" = cos n + isin no

Corollary

(1) (cosO—isin@)" = cosnb —isin nb (2) (cosO+isinB)™" =cosnb —isinnd

(3) (cos@—isinB)™" =cosnd +isinnd (4) sinO+icosf = i(cos@ —isin@) .

Now let us apply de Moivre’s theorem to simplify complex numbers and to find solution of
equations.
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Example 2.28

. 1 1 .
If z=(cosO +isin@), show that z" + —=2cosnd and z" —— = 2isinnf .
zZ z

Solution
Let z=(cos6 +isin@).

By de Moivre’s theorem ,

z" = (cosO+isinB)" =cosnb +isinnd

1
— = z " =cosnb —isinnd
z
Therefore, z" +Ln = (cosn9+isin n9)+(cosn9—isin n9)
z
.1
z"+— = 2cosnb.
zZ
Similarly,
z”—in = (cosnf +isinnf)—(cos nf —isinnd )
z
| .
z"—— = 2isinnb .
z" [ ]
Example 2.29
18
Vs T
Simplify| sin—+icos— | .
@ P y( 6 6] @
Solution
We get, sin—+icos— = i| cos——isin— |.
6 6 ( 6 6)

Raising the power 18 on both sides,

18
. T . T
sin—+1icos—
6 6

18
(i)18 (cos%—isin%)
(—1)(c0518—ﬂ —isinlg—ﬂj
6 6

= —(cos3m —isin37)=1+0i

18
Therefore, (sin%+ icos %J =1.

Example 2.30

. . 1+c0s260 +isin20 "
Simplify -
1+ cos260 —isin 260

Solution
Let z = c0s20+isin20.
As|z|= |z[’=zz =1, we get E=l=00329—isin29.

z
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1+cos20+isin20  1+z (l+z)z

Therefore, - = = =z
1+ cos 20 —isin 20 1_'_1 z+1
z
. . 30
Therefore, (1 +€0s20 +isin 20 ) = 2" =(c0s20 +isin20 )30
1+ cos260 —isin20
= ¢c0s600 +isin 600 . m
Example 2.31
Simplify (i) (1+4)"® (ii) (=3 +30)*.
Solution
(i) (1+0)"
Let 1+i = r(cos@ +isin9). Then, we get
r=Jr+’=y2;a :tan_l(%j:%,

0=0oa= % (.- 141 lies in the first Quadrant)

Therefore 1+i = ﬁ(cos%ﬂ'sin%)

Raising the power 18 on both sides,

18

® (1+0)"*® = {\/E(coszﬂ'sinzﬂ =\/§18(cos£+isinﬁ] . ®
4 4 4 4

By de Moivre’s theorem,

1+ =2° cos£+zsin18—ﬂ
4 4

= 2°| cos| 4m+Z |+isin| 4r+Z | |=2°| cosZE+isinZ
2 2 2 2
(1+0)* = 2°()=512i.

(i) (/3 +3i)"

Let —/3+3i=r(cosO+isin0). Then, we get
ro= ( f) +32 =12=23,

tan™'

IS
Il

=tan"' —,
3

\f‘
0 = ﬂ—azﬂ—%:?ﬂ (. —3+3i liesin I Quadrant)

Therefore, —/3 +3i = Zﬁ(cos% +isin %Tj .
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Raising power 31 on both sides,

(—/3+3i)" =

(243)

= (243) | cos (207? . %’Tj +isin(20ﬂ " %”D
(243)
(243)

31
31
2\/5 cos 2?7[ +isin 2?7[)

2 .. 271)
CO0S — +isin —
3 3

[eoln=3)ron(=5)
cos| m—— |+isin| 7 ——
3 3

= (2\/5)31 —cos%ﬂ‘sin%)=(2\/§)31(—%+i£)

2.8.2 Finding »* roots of a complex number

de Moivre’s formula can be used to obtain roots of complex numbers. Suppose 7 is a positive

1/n

integer and a complex number @ is 7 ™ root of z denoted by z", then we have

o =z (D)
Let @ = p(cos¢+ising) and
z = r(cos0+isin9):r(cos(@+2k7t)+isin(0+2k7r)), keZ

Since wis the n® root of z , then

n

O =z

= p"(cos¢+ising)” = r(cos(0+2kr)+isin(0 +2kn)), keZ

By de Moivre’s theorem,
p" (cosng+isinng) = r(cos(0+2kr)+isin(0 +2kn)), keZ

Comparing the moduli and arguments, we get

p" =r and np =0 +2kr, keZ

p =r"" and ¢:0+2kn,keZ.
Therefore, the values of w are »"” (cos(9+2kﬁj+isin(9+2kﬂ D, keZ.
n n

Although there are infinitely many values of &, the distinct values of @ are obtained when
k=0,1,2,3,...,n—1. When k=n,n+1,n+2,... we get the same roots at regular intervals (cyclically).

Therefore the nth roots of complex number z =r (cos 0+i sin9) are

1/n 1/n 9+2k” . . 9+2k7T
z'""=r CcoS +1S1n ,k=0,1,2,3,...,n—1'

n n
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i(0+2kn) Im
If we seto=4/re " the formula for the n™ roots of a A IR
. L. . . " ’ -,
complex number has a nice geometric interpretation, as shown in o~ J L p
: ol
Figure. Note that because | ® |=4/; the n roots all have the same ! "o
H __-;.‘: el ,: Re
modulus &/ they all lie on a circle of radius &/~ with centre at the % e 2 I P
S
origin. Furthermore, the n roots are equally spaced along the ‘ p @
/’)ﬁ s\‘ih. _—"/¢
circle, because successive n roots have arguments that differ by 0~ "

n" root of a complex number
2w

n Fig. 2.44

Remark

(1) General form of de Moivre's Theorem

If xis rational, then cosx0 +isinx@ is one of the values of (cos@ +isin6)”.

(2) Polar form of unit circle

Let z = € =cosO +isin@ . Then, we get
= |(:0$9+isin9|2

= |x+iy|2 = cos’O+sin’ 0 =1

= x'+y° =1.

Therefore,

z| =1 represents a unit circle (radius one) centre at the origin.
2.8.3 The »'™ roots of unity

The solutions of the equation z” =1, for positive values of integer n, are the n roots of the unity.

In polar form the equation z =1 can be written as
z=cos(0+2kn)+isin(0+2kn)=€"", k=0,1,2,....

Using deMoivre’s theorem, we find the 7™ roots of unity from the equation given below:

i2krm
z' =(cos[2k—ﬂj+isin(2k—nn=e " L,k=0,1,2,3,...,n—1. . (1)
n n

Given a positive integern, a complex number z is called an n ™ root of unity if and only if z" =1.

If we denote the complex number by @, then

2mi

= 2wi .. 2mi
w=e" =CoOS——+ISIn——
n n
E n
= " =|e" | =M =1.
87 Complex Numbers
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Therefore wis an n™ root of unity. From equation (1), the Im

complex numbers 1,0,0°,---, 0" are n™ roots of unity. The

-1 a)m

complex numbers 1,m,>,---,0"" are the points in the complex
plane and are the vertices of a regular polygon of n sides inscribed

in a unit circle as shown in diagram. Note that because the n ™

roots all have the same modulus 1, they will lie on a circle of

radius 1 with centre at the origin. Furthermore, the nroots are

equally spaced along the circle, because successive n ™ roots have Y o

~i

. 2
arguments that differ by =, n™ roots of unity

n
Fig. 2.45
The n™ roots of unity l,m,0°,---,0"" are in geometric
progression with common ratio .
2 i 1-0" : n
Therefore 1+ w+ @’ +---+ 0" = =0 since ®" =1 and @ =1.
-0
The sum of all the n™ roots of unity is
I+ o+0°+ -+ 0" =0.
The product of n, n ™roots of unit is
(n—1)n

@ lo®? o' = @230 _ 2 @

P )("21) _ (eiZn')(nZl) = (e" )"*l _ -1y

The product of all the n™ roots of unity is
low* " =(=1)"".

Since |w|=1, we have w® =|w['=1; hence d=0"' = (@) =0, 0<k<n-1

Therefore, |p"* =@ = (a_))k , 0<k<n-1.

Note
(1) All the n roots of n™ roots unity are in Geometrical Progression

2) Sum of the n roots of n ™ roots unity is always equal to zero.
Yy ys €q

(3) Product of the n roots of n ™ roots unity is equal to (—1)"".

(4) All the n roots of n™ roots unity lie on the circumference of a circle whose centre is at the
origin and radius equal to 1 and these roots divide the circle into n equal parts and form a
polygon of n sides.
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Example 2.32

Find the cube roots of unity.

Solution
Let 2 =1.
In polar form, the equation z =1 can be written as

z=cos(0+2km)+isin(0+2km) =€, k=01, 2,--- .

I 2km
Therefore, (z)* = cos(szﬂjﬂ'sin(szwj =e ?, k=0,1,2.

Taking k£ =0,1,2, we get,

k=0, =z =cos0+isin0=1.

27 .. 27 T . T
k=1 7z = COS— +isin—=cos| m—— |[+isin| T——
’ 3 3 3 3

Therefore, the cube roots of unity are

—i+i3 -1-i\3 2
1, , =

2 2

Example 2.33
Find the fourth roots of unity.

Solution
Let z* =1.
In polar form, the equation z =1can be written as

z = cos(0+2kn)+isin(0+2krw)=e""" k=0,1,2,....

1 2kn\ .. (2kn i%
Therefore, (z)* = €OS 1 +ism 1 =e " k=0,12.73.
Taking k£ =0,1,2,3, we get

k=0, z =cos0+isin0=1,

k=1, Z = COS z +isin z =1.
2 2

89
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I3
l,w,and ®*, where o =¢ 3 =

Cube roots of unity

Fig. 2.46

—1+i\/§

Re

Fourth roots of unity

Fig. 2.47
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z=cosw+isint =-1.

T .. 3 T .. T .
7z = COS— +isSin—=—CcoS——isin—=—i |
2 2 2

2

. . . = .
Fourth roots of unity are 1,7, =1, —i = 1, o, ®°, and @’, where o =e * =i.

Note

(i) In this chapter the letter @ is used for n ™ roots of unity. Therefore the value of w is depending

on n as shown in following table.

value of n 2 3 4 5 k
value of @ i 2 2T 2T 2
e? e’ e e’ ek

(ii) The complex number ze” is a rotation of zby 0 radians in the counter clockwise direction

about the origin.

Example 2.34

Solve the equationz’ +8i =0, wherez e C.

Let

Solution

22 +8i=0.

= 7’ =-8i

= 8(—i) = 8[005(—%+ 2kﬂj + isin(—% + ZkﬂD,k € 7 . Therefore,

sin(wn, k=012,

Taking k£ =0,1,2 we get,

k=0,
k=1, z =2
k=2, z =2

z = 2(005(—%)+isin[—%j}:2[—%—1'?]:2(?—1'%]:\6—1'.

cos(zjﬂ'sin(z) =2=2(0+i)=0+2i=2i.
2 2
T . (T T . b4
cos| — |+isin| — | |=2| cos| m+— |+isin| T +—
(6j (6D ( ( 6) ( 6D

The values of z are \/5—1', 2i, and —\/§—i .
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Example 2.35
Find all cube roots of \/3 +i.

Solution
Let zZ° = \/§+i:r(c059+isin9).

Then, r =+3+1=2, and x =6 =% (- </3 +ilies in the first quadrant)

Therefore, z° = /3 +i :2(cos%+isin%j

= z=32 [Cos(%jﬂsin(%n,k:0,1,2.

Taking k£ =0,1,2, we get

1
k=0, z =23 cos£+sin£j ;
18 18
1
k=1, z =23 cosl?’—ﬂ+sinl3—n ;
18 18
1 1
k=2, z =23 coszs—7r+sin25—7rj=23 (—cosz—sinzj.
18 18 18 18 [ |

Example 2.36
Suppose z,, z,, and z, are the vertices of an equilateral triangle inscribed in the circle

|z| =2.1f z, =1+i/3, then findz, and z,.

Solution

|z| =2 represents the circle with centre (0,0) and radius 2.

Let 4, B, and C be the vertices of the given triangle. Since the vertices z,, z,, and z, form an

equilateral triangle inscribed in the circle|z|=2, the sides of this triangle 4B, BC, and CA

subtendz?7T radians (120 degree) at the origin (circumcenter of the triangle).

(The complex number ze” is a rotation of z by 0 radians in the counter clockwise direction

about the origin.) 5 4
Therefore, we can obtain z, and z, by the rotation of z by ?ﬂ- and ?Wrespectively.

Given that 04 = z, =1+ iN3; "

Azl=1+i\/§
— 2z 2z ’
OB = ze* :(1+i\/§)e 3

= (1+i\/§)[cosz—n+isin2—ﬂj ?) Re
3 3
\ 23:1—1\/5
= (1+i\/§)(—l+i£J=—2; ¢
2 2 Fig. 2.48
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OC = ze?® =z’ =-2e°
( 2r .. 27rj

= —-2| cos— +isin—

3 3

1 B .
= —2(—E+17]:1—1\/§.

Therefore, z, = -2, and z, =1-i3.

EXERCISE 2.8

a+bo+cw’ +a+ba)+ca)2 B

1. If @ #1is a cube root of unity, then show that -1.

2. Show that(?Jri]S J{Q—L}S =-3.

2 2 2

b+cw+aw® c+aw+bw’

10
LT T
1+sin—+icos—

3. Find the value of 10 10
. 7T . T

I+sin——icos—

10 10

4. If 2cosa =x+l and 2cos 8 =y+l, show that

@ x y @

) £+X=2008(a—ﬁ) (i) xy—L:2isin(a+ﬂ)
yox Xy

(i) - = 2isin(ma —np) (iv) x’”y”+—m1 _—2cos(ma +nB).
y'ox X"y

5. Solve the equationz® +27=0.

6. If o #1 is a cube root of unity, show that the roots of the equation (z - 1)3 +8=0are
-1,1-20,1-2".
8
7. Find the value ofz (cos %Tﬂ +isin %TEJ
k=1

8. If @ =1 is a cube root of unity, show that
() I—o+0”) +(1+o-0”)" =128.
(i) (1+a))(1+a)2)(l+a)4)(l+a)8)---(l+a)2“):1.

9. If z=2-2i,find the rotation of z by 6 radians in the counter clockwise direction about the

origin when
(1) =" (i1) 9—2—ﬂ (111) 0_3_7r
3 3 2

10. Prove that the values of 4/—] are i% (1£iQ).

N
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EXERCISE 2.9
Choose the correct or the most suitable answer from the given four alternatives :
Lo+ i 4 s
(o 21 3) -1 4 i

13
2. The value of Z(z’” +i"") is

i=1

(1) 1+i 2) i 3) 1 4) 0

3. The area of the triangle formed by the complex numbers z,iz, and z + iz in the Argand’s diagram
is { 3
(1)5|Z|2 )|z (3)5|Z|2 4) 2]zf

. .1 .
4. The conjugate of a complex number is ——. Then, the complex number is
l —

1 -1 -1 1
1) — 2) — 3) — 4) —
()i+2 ()i+2 ()i—2 ()i—2
3
(V3+i) Gi+ay
51f z= 5 , then | z| is equal to
(8+6i)
(1o )1 (3) 2 4) 3
6.If z is a non zero complex number, such that 2iz* =z then | z| is
® | ®
(1 5 )1 (3) 2 4) 3
7.1f | z—2+1i|< 2, then the greatest value of | z| is
(1) 3-2 (2) 3 +2 (3) 5-2 (4) \/5+2
8. If z—E =2, then the least value of | z| is
z
(H1 ()2 3)3 45
9.1f | z|=1, then the value of 1+f is
1+z {
1) z 2z 3) 2 41
10. The solution of the equation |z |—z =1+2i is
3 3 3 3
1) =—2i 2) —=+2i 3) 2—=i 4) 2+=i
()2 i ()2 i 3) X 4 5

11.If |z |=L |z,|=2, |z;| =3 and |9z,z, + 4z,z; + z,z, |=12, then the value of |z, +z, + z, | 1s
(D1 (22 3)3 4) 4

12.1If z is a complex number such that ze C\ R and z+§eR, then |z | is
(o @1 3)2 4)3
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13. z,,z,, and z, are complex numbers such that z, +z,+2z,=0 and |z |=|z, |=|z,|=1 then

2 2 2
z, " +z,"+z 18

(13

14.1f Z—_i is purely imaginary, then | z| is
zZ+

1
=

31

()2

15.1f z=x+iy is a complex number such that |z+2| =|z—2], then the locus of z is

(1) real axis

16. The principal argument of

=57
D=

(1) =110°

18.If (1+7)(1+2i)(1+3i)---(1+ ni) = x+iy , then 2-5-10---(1+r>) is

(D1

(1) (1,0)

20. The principal argument of the complex number

27 Sw
(1 3 3) 3
21.If o and B are the roots of x* +x+1=0, then o’ + B> is
(1) -2 31

22. The product of all four values of (cos % +isin %)

3) 1

(1) -2

23.If @ #1 is a cubic root of unity and |1

(H1
24. The value of (
2m
1) cis—
(D 3
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(2) imaginary axis

1+\/§i
1-/3i

4
2) cis—
(2) 3

(3) ellipse

3y 27
3) 2
17. The principal argument of (sin40°+icos40°)’ is

(3) 70°

(3) X+
19.1f @ #1 is a cubic root of unity and (1+®)’ = A+ Bw , then (4, B) equals

3) (0.1
(1+i3 )2 _

4i(1-iv3)

1

0’ -1 ®°

2
Q)

(3) \3i

2
3) —cis—
3) 3

94

=3k, then k is equal to

47
4) —cis —
4) 3
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z+1 *

25.1f o =cis %T , then the number of distinct rootsof | @ z+®’ 1 |=0
o’ 1 Z+m
(H1 (2) 2 (3)3 4) 4

SUMMARY

In this chapter we studied

Rectangular form of a complex number is x+iy(orx+ yi), where Xand ) are real
numbers.

Two complex numbers z, = x, +iy; and z, = x, +iy, are said to be equal if and only if
Re(z,) = Re(z,) and Im(z,)=Im(z,). Thatis x, =x, and y =y,.

The conjugate of the complex number x + iy is defined as the complex number x —iy.

Properties of complex conjugates

(1) z+z,=2+2, (6) Im(z) =
Q) z,-2z,=2,-2, (7 (z_”) = (E)n , where nis an integer
® _— ®
(3) z,z, =z, z, (8) zisrealifandonlyif z=2
4) [iJ = ?, z, #0 (9) z is purely imaginary if and only if z=—Z
Z 2
(5) Re(z):Z;Z (10) =z

If 7 = x+iy,then \x* + y” is called modulus of 7. It is denoted by |z|.

Properties of Modulus of a complex number

(1) |2|=[] 3) |2 Ll 2, #0
zZ, |z2
(2) |z1 +z2| < |zl|+|zz| (Triangle inequality) 6) |z"|= |Z", where 7 is an integer
3) |le2|=|21||22| (7) Re(z)£|z|
(4) |ZI—ZZ|ZHZI|—|22” (8) Im(z)S|Z|
95
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Formula for finding square root of a complex number

NJa+ib —i[«/M%Hé |Z|T_a] ,where z=a+iband b=0.

Let » and 6 be polar coordinates of the point P(x,y)that corresponds to a non-zero

complex number z = x + iy . The polar form or trigonometric form of a complex number P is

z=r(cosO +isinf).

Properties of polar form

Property 1

. 1 )
Ifz=r(cosf +isinB),then z~' =—(cosO —isin6).
r
Property 2
Ifz, =7 (cos B, +isin6, ) and z, =r,(cos0, +isiné, ),

then zz, = 17, (cos(6, +6,)+isin(6, +6,)).

Property3
If z, =7 (cos6, +isin6, ) and z,iz, then j—l = :—1[005(01 —0,)+isin(6,-0,)].
2 2
@ de Moivre’s Theorem @

Given any complex number cos0 +isin6 and any integer n,

(cosO +isin@)" = cos nO + isin no

The n™ roots of complex number z = r(cos@ +i sinQ) are

2/ =pln (cos(9+2kn]+isin(9+2kﬂn, k=0,1,2,3,...,n—1.

n n
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Theory of Equations

“It seems that if one is working from the point of
view of getting beauty in one’s equation,
and if one has really a sound insight, one is on a sure line of progress.”
1’ - Paul Dirac

S1RYOC

3.1 Introduction

One of the oldest problems in mathematics is solving algebraic equations, in particular, finding
the roots of polynomial equations. Starting from Sumerian and Babylonians around 2000 BC (BCE),
mathematicians and philosophers of Egypt, Greece, India, Arabia, China, and almost all parts of the
world attempted to solve polynomial equations.

The ancient mathematicians stated the problems and their solutions entirely .
in terms of words. They attempted particular problems and there was no generality. =
Brahmagupta was the first to solve quadratic equations involving negative numbers. .
Euclid, Diophantus, Brahmagupta, Omar Khayyam, Fibonacci, Descartes, and Ruffini =7
were a few among the mathematicians who worked on polynomial equations. Ruffini
claimed that there was no algebraic formula to find the solutions to fifth degree
equations by giving a lengthy argument which was difficult to follow; finally in 1823, Abel
Norwegian mathematician Abel proved it. (1802-1829)

Suppose that a manufacturing company wants to pack its product into rectangular
boxes. It plans to construct the boxes so that the length of the base is six units more
than the breadth, and the height of the box is to be the average of the length and the
breadth of the base. The company wants to know all possible measurements of the
sides of the box when the volume is fixed.

If we let the breadth of the base as x, then the length is x+ 6 and its height is x+ 3. Hence the
volume of the box is x(x+3)(x+6). Suppose the volume is 2618 cubic units, then we must have
X +9x* +18x = 2618 . If we are able to find an x satisfying the above equation, then we can construct
a box of the required dimension.

We know a circle and a straight line cannot intersect at more than two points. But how can we
prove this? Mathematical equations help us to prove such statements. The circle with centre at origin
and radius 7 is represented by the equation x* + y*> = 7, in the xy -plane. We further know that a line,
in the same plane, is given by the equation ax + by +c =0. The points of intersection of the circle and
the straight line are the points which satisfy both equations. In other words, the solutions of the
simultaneous equations

x’+y =r>and ax+by+c=0

give the points of intersection. Solving the above system of equations, we can conclude whether they
touch each other, intersect at two points or do not intersect each other.
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There are some ancient problems on constructing geometrical objects using only a compass and
a ruler (straight edge without units marking). For instance, a regular hexagon and a regular polygon
of 17 sides are constructible whereas a regular heptagon and a regular polygon of 18 sides are not
constructible. Using only a compass and a ruler certain geometrical constructions, particularly the

following three, are not possible to construct:
+ Trisecting an angle (dividing a given angle into three equal angles).

» Squaring a circle (constructing a square with area of a given circle). [Srinivasa Ramanujan

has given an approximate solution in his “Note Book™]
* Doubling a cube (constructing a cube with twice the volume of a given cube).

These ancient problems are settled only after converting these geometrical problems into
problems on polynomials; in fact these constructions are impossible. Mathematics is a very nice

tool to prove impossibilities.

When solving a real life problem, mathematicians convert the problem into a mathematical
problem, solve the mathematical problem using known mathematical techniques, and then convert
the mathematical solution into a solution of the real life problem. Most of the real life problems, when
converting into a mathematical problem, end up with a mathematical equation. While discussing the
problems of deciding the dimension of a box, proving certain geometrical results and proving some

constructions impossible, we end up with polynomial equations.

In this chapter we learn some theory about equations, particularly about polynomial equations,
and their solutions; we study some properties of polynomial equations, formation of polynomial
equations with given roots, the fundamental theorem of algebra, and to know about the number of
positive and negative roots of a polynomial equation. Using these ideas we reach our goal of solving
polynomial equations of certain types. We also learn to solve some non—polynomial equations using

techniques developed for polynomial equations.

LEARNING OBJECTIVES

Upon completion of this chapter, the students will be able to

» form polynomial equations satisfying given conditions on roots.

» demonstrate the techniques to solve polynomial equations of higher degree.

 solve equations of higher degree when some roots are known to be complex or surd, irrational,
and rational.

+ find solutions to some non-polynomial equations using techniques developed for polynomial
equations.

+ identify and solve reciprocal equations.

» determine the number of positive and negative roots of a polynomial equation using Descartes
Rule.
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3.2 Basics of Polynomial Equations

3.2.1 Different types of Polynomial Equations

We already know that, for any non—negative integer 7, a polynomial of degree » in one variable
X is an expression given by

P=Px)=ax"+a, x""' +-+ax+a, . (1)
where a, € C are constants, »=0,1,2,...,n with a, = 0. The variable x is real or complex.

When all the coefficients of a polynomial P are real, we say “P is a polynomial over R ”.
Similarly we use terminologies like “P is a polynomial over C ”, “P is a polynomial over Q”, and

Pis a polynomial over Z ”.

The function P definedby P(x)=a,x"+a, x"" +--+ax+a, iscalledapolynomial function.
The equation

ax"+a, x""++ax+a,=0 .. (2)
is called a polynomial equation.

If ac"+a, " ++ac+a,=0for some c e C, then c is called a zero of the polynomial (1)
and root or solution of the polynomial equation (2).

If c is a root of an equation in one variable x, we write it as“ x = ¢ is aroot”. The constants a, are
called coefficients. The coefficienta, is called the leading coefficient and the term a,x” is called the

@ leading term. The coefficients may be any number, real or complex. The only restriction we made is @
that the leading coefficient a,is nonzero. A polynomial with the leading coefficient 1 is called a
monic polynomial.

Remark:

We note the following:

* Polynomial functions are defined for all values of x.

* Every nonzero constant is a polynomial of degree 0.

» The constant 0 is also a polynomial called the zero polynomial,; its degree is not defined.
» The degree of a polynomial is a nonnegative integer.

* The zero polynomial is the only polynomial with leading coefficientO .

* Polynomials of degree two are called quadratic polynomials.

* Polynomials of degree three are called cubic polynomials.

» Polynomial of degree four are called quartic polynomials.

It is customary to write polynomials in descending powers of x . That is, we write polynomials
having the term of highest power (leading term) as the first term and the constant term as the last term.

For instance,2x+3y+4z=5 and 6x>+7x’y’+8z=9 are equations in three variables
X,y,z; x’—4x+5=0 is an equation in one variable x. In the earlier classes we have solved
trigonometric equations, system of linear equations, and some polynomial equations.
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We know that 3 is a zero of the polynomial x* —5x+6 and 3 is a root or solution of the equation

x> —5x+6=0. We note that cosx =sinx and cosx+sinx =1 are also equations in one variable x.
However, cosx—sinx and cosx+sinx—1 are not polynomials and hence cosx=sinx and
cos x +sin x =1 are not “polynomial equations”. We are going to consider only “polynomial equations”

and equations which can be solved using polynomial equations in one variable.

We recall that sin” x + cos” x = 1 isanidentity on R , while sin x + cos x =1 and sin’ x +cos’ x =1

are equations.

It is important to note that the coefficients of a polynomial can be real or complex numbers, but
1

the exponents must be nonnegative integers. For instance, the expressions 3x2+1 and 5x2 +1 are
not polynomials. We already learnt about polynomials and polynomial equations, particularly about
quadratic equations. In this section let us quickly recall them and see some more concepts.

3.2.2 Quadratic Equations

For the quadratic equation ax” +bx +c =0, h> —4qc is called the discriminant and it is usually

—b+A —b—~A . .
denoted by A . We know that b+ A and b2 VA areroots of the quadratic equation ax’ + bx+c =0
a a
: ~btb* -4 : .
. The two roots together are usually written as bivd 9 Itis unnecessary to emphasize that

2a
a =0, since by saying that ax’ +bx +c¢ is a quadratic polynomial, it is implied that a = 0.

We also learnt that A =0 if, and only if, the roots are equal. When a,b,c are real, we know
* A >0if, and only if| the roots are real and distinct

* A <0if, and only if, the quadratic equation has no real roots.

3.3 Vieta’s Formulae and Formation of Polynomial Equations

Vieta's formulae relate the coefficients of a polynomial to sums and products of its roots. Vieta
was a French mathematician whose work on polynomials paved the way for modern algebra.
3.3.1 Vieta’s formula for Quadratic Equations
Let o and B be the roots of the quadratic equationax’ + bx+c =0,a # 0. Then
ax’* +bx+c = a(x—a)(x—ﬁ) = ax’ —a(a +ﬂ)x+a(aﬁ) =0.
Equating the coefficients of like powers, we see that
c

oa+pf :_—bandaﬁ:
a a

Soa quadratic equation whose roots are a and fis x° —(a + B)x +off =0 ; that is, a quadratic
equation with given roots is,

x” — (sum of the roots) x+ product of the roots = 0. .. (1)
Note

The indefinite article a is used in the above statement. In fact, if P(x) =0 is a quadratic equation

whose roots are a and S, then cP(x) is also a quadratic equation with roots ¢ and S for any
non-zero constant c.
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In earlier classes, using the above relations between roots and coefficients we constructed a
quadratic equation, having o and  as roots. In fact, such an equation is given by (1). For instance, a
quadratic equation whose roots are 3 and 4 is given by x> —7x+12 =0.

Further we construct new polynomial equations whose roots are functions of the roots of a given
polynomial equation; in this process we form a new polynomial equation without finding the roots of
the given polynomial equation. For instance, we construct a polynomial equation by increasing the
roots of a given polynomial equation by two as in the example 3.1.

Example 3.1
If o and B are the roots of the quadratic equation17x” +43x—73 =0, construct a quadratic
equation whose roots are o +2and f+2.

Solution 7

Since o and B are the roots of 17x” +43x—73=0, we have o + 3 =_1;‘;3 and aff =7.

We wish to construct a quadratic equation with roots area + 2and S + 2 .Thus, to construct such

a quadratic equation, calculate,

thesumoftheroots=a+[3+4:_1;f73+4:f_; and

the product of the roots = aff +2(a + f)+4 = _1—773+2(_1;‘;3J+4 = _1—971

91

. ) . . . 2
Hence a quadratic equation with required roots is x° — ﬁx T =

Multiplying this equation by 17, gives 17x> —=25x-91 = 0
® which is also a quadratic equation having roots o +2and S +2. n ®

Example 3.2
If o and B are the roots of the quadratic equation2x”—7x+13=0, construct a quadratic

equation whose roots are o> and 3°.

Solution . 3
Since a and f are the roots of the quadratic equation, we have a+ f = 5 and aff = PR
Thus, to construct a new quadratic equation,

-3
Sum of the roots = a” + B> = (o + B)* —2af = o
Product of the roots = a’f* =(af8 )2 = %
. . .. 5,3 169 .
Thus a required quadratic equation is x~ + Zx + e =0. From this we see that
4x* +3x+169 = 0
is a quadratic equation with roots oc*and B>. u

Remark
In Examples 3.1 and 3.2, we have computed the sum and the product of the roots using the

known a + f and «ff . In this way we can construct quadratic equation with desired roots, provided
the sum and the product of the roots of a new quadratic equation can be written using the sum and the
product of the roots of the given quadratic equation. We note that we have not solved the given
equation; we do not know the values of o and [ even after completing the task.
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3.3.2 Vieta’s formula for Polynomial Equations

What we have learnt for quadratic polynomial, can be extended to polynomials of higher degree.
In this section we study the relations of the roots of a polynomial of higher degree with its coefficients.
We also learn how to form polynomials of higher degree when some information about the zeros
are known. In this chapter, we use either zeros of a polynomial of degree n or roots of polynomial
equation of degree 7 .

3.3.2 (a) The Fundamental Theorem of Algebra

If a is a root of a polynomial equation P(x) =0, then (x—a) is a factor of P(x)=0. So,
deg(P(x))>1.1If aand b are roots of P(x)=0then (x—a)(x—»b) is a factor of P(x)=0and hence

deg(P(x)) = 2. Similarly if P(x)=0 has n roots, then its degree must be greater than or equal to . In

other words, a polynomial equation of degree n cannot have more than » roots.

In earlier classes we have learnt about “multiplicity”. Let us recall what we mean by “multiplicity”.

We know if (x—a)" is a factor of a polynomial equation P(x)=0 and (x —a)""'is not a factor of the

polynomial equation, P(x)=0, then a is called a root of multiplicity k£ . For instance, 3 is a root of
multiplicity 2 for the equation x* —6x+9=0and x’ —7x* +159x—9 = 0. Though we are not going to
use complex numbers as coefficients, it is worthwhile to mention that the imaginary number 2+i is
aroot of multiplicity 2 for the polynomials x* — (4 + 2i)x +3+4i = 0and x* —8x° +26x” —40x+25=0.
If a is a root of multiplicity 1 for a polynomial equation, then a is called a simple root of the
polynomial equation.
® If P(x)=0 has nroots counted with multiplicity, then also, we see that its degree must be ®
greater than or equal to » . In other words, “a polynomial equation of degree n cannot have more than
n roots, even if the roots are counted with their multiplicities”.

One of the important theorems in the theory of equations is the fundamental theorem of algebra.
As the proof is beyond the scope of the Course, we state it without proof.

Theorem 3.1 (The Fundamental Theorem of Algebra)
Every polynomial equation of degreen =1 has at least one root in C.

Using this, we can prove that a polynomial equation of degree » has at least n roots in C when the
roots are counted with their multiplicities. This statement together with our discussion above says that

a polynomial equation of degree n has exactly » roots in C

when the roots are counted with their multiplicities.

Some authors state this statement as the fundamental theorem of algebra.

3.3.2(b) Vieta’s Formula
(i) Vieta’s Formula for Polynomial equation of degree 3

Now we obtain these types of relations to higher degree polynomials. Let us consider a general
cubic equation

ax’ +bx* +ex+d = 0,a#0.
By the fundamental theorem of algebra, it has three roots. Let o , B, and y be the roots. Thus we

have
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ax’ +bx* +ex+d = a(x—a)(x— B)(x—7y)
Expanding the right hand side, gives
ax’ —a(o+ B +y)x* +a(of + By +ya)x—a(afy).
Comparing the coefficients of like powers, we obtain

a+pB+y = %b, aﬂ+ﬁy+ya=§ and a[)’y=7.

Since the degree of the polynomial equation is 3, we must have a = 0 and hence division by a

is meaningful. If a monic cubic polynomial has roots a, f, and y, then
coefficient of x* =—(a+B+7),
coefficient of x = aff + By +ya , and

constant term= —afy .

(ii) Vieta’s Formula for Polynomial equation of degree n>3

The same is true for higher degree monic polynomial equations as well. If a monic polynomial
equation of degree » has roots «,,a,,...,a,, then

coefficient of x"' = Zl = —Zal
coefficient of x" =Y = D
coefficient of x"° =Y., = Do,
coefficient of x =2, ,= (—1)”71 doa,.a,,
coefficient of x° = constantterm = " = = (-1)'aa,.q,

where Zal denotes the sum of all roots, Z o, denotes the sum of product of all roots taken two at

a time, Zalaz% denotes the sum of product of all roots taken three at a time, and so on. If «, 3,7,
and 6 are the roots of a quadric equation, then Z o s written as Za , Zalaz is written as Za B
and so on. Thus we have,

Za =o+pB+y+06

Za,B =af+ay+ad+ Py +Bo+yo

Zaﬁy =afy +afo +ayd + Byd

> apys =apys
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When the roots are available in explicit numeric form, then also we use these convenient
notations. We have to be careful when handling roots of higher multiplicity. For instance, if the roots

of a cubic equation are 1, 2, 2, then Za =5 andZaﬁ =(1x2)+(1x2)+(2x2)=8.

From the above discussion, we note that for a monic polynomial equation, the sum of the roots

is the coefficient of x"' multiplied by (—l) and the product of the roots is the constant term multiplied

by (—1)".
Example 3.3
If o, B,and y are the roots of the equation x’ + px” +gx+r =0, find the value of zﬁi in
/4
terms of the coefficients.
Solution
Since o, B, and y are the roots of the equation x’ + px° +gx+r =0, we have
Zl a+p+y =—p and ZB afy =-r.
Now
o, v v axBry _p_p
Br By ya aBf  aBy - u

3.3.2( ¢) Formation of Polynomial Equations with given Roots

We have constructed quadratic equations when the roots are known. Now we learn how to form
@ polynomial equations of higher degree when roots are known. How do we find a polynomial equation @
of degree n with roots a,,a,,--,c,? One way of writing a polynomial equation is multiplication of

the factors. That is
(x—o)(x—a,)(x—a;)-+(x—a,)=0

is a polynomial equation with roots «,,a,,---,a, . Butitis not the usual way of writing a polynomial

equation. We have to write the polynomial equation in the standard form which involves more
computations. But by using the relations between roots and coefficients, we can write the polynomial
equation directly; moreover, it is possible to write the coefficient of any particular power of x without

finding the entire polynomial equation.
A cubic polynomial equation whose roots are ¢, 3, and y is
x’ —(a +p +y)x2 +(a/5'+ﬂy+ya)x—aﬂy =0.

A polynomial equation of degree n with roots a,,,,...,a,1s given by
x" —(Zal )x”‘1 +(Zala2 )x"‘2 —(Zalaz% )x”‘3 +ot (1) o, -, =0

where, Zal,Zalaz,Zalaz%,. .. are as defined earlier.

For instance, a polynomial equation with roots 1, —2, and 3 is given by
= (1=-243)x7 +(1x(=2) +(=2)x3+3x1)x = 1x(-2)x3=0
which, on simplification, becomes x’* —2x> —5x+6 =0. It is interesting to verify that the expansion
of (x—l)(x+2)(x—3) =0isx’ —2x> —5x+6=0.
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Example 3.4
Find the sum of the squares of the roots of ax*+bx’ +cx* +dx+e = 0.

Solution
Let o,pB,y, and & be the roots of ax*+bx’ +cx’ +dx+e = 0.

Then, we get b
Y= a+B+y+6 =——,
! c
>, = aff+ay+ad+ By + LS +y5 =—,
a
d
2y = afy+afd++ayd + pys = ——,
a
e
>, = affyd =—.
a

We have to find o’ +p>+y*+68> .
Applying the algebraic identity
(a+b+c+dY =a’ +b*+c* +d* +2(ab+ac+ad +bc+bd +cd) ,

we get 2 2 2 2 2
a +B +y +0 = (a+P+y+90) -2 af+ay+ad+ Py + Po+yd)
()
a a
@ 3 b* =2ac @
at
Example 3.5

Find the condition that the roots of x’ +ax’ +bx+c¢ = 0are in the ratio p:q:r .

Solution
Since two roots are in the ratio p:gq:», we can assume the roots as pA,qA and rA.

Then, we get

2 = pAt+gr+ri=-a, (D)
2o = (pAgA) +(g)(rA) +(rA)(pA) = b, --(2)
2 = (pA)gA)rA) = —c, E)

Now, we get 4
O =4=-— (4

p + q +r

B =4 =-— (5)

pqr

Substituting (4) in (5), we get

3
—Lj L EREN pgra’ =c(p+q+r)’.
prq+r pqr ]
Example 3.6

Form the equation whose roots are the squares of the roots of the cubic equation
X +ax’ +bx+c = 0.
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Solution
Let a,B and y be the roots of x’ +ax’ +bx+c = 0.

Then, we get
Xi=a+pf+y=-a, (1)
>, =aB+By+yo =b, ...(2)
25 =afy =—c. ...(3)

We have to form the equation whose roots are o.”, f° and y°.

Using (1), (2) and (3), we find the following:
Y= a4+ By =(a+B+y) —2af+ Py +ya)=(~a)’ -2(b) =a’ -2b,

Y, = @By +yial = (af+ By +ya) = 2((@B)(By)+(By)(ye) +(ya) (o))
= (aB+ By +ya) —20fy(B+y+a) = (b)’ ~2(~c)(~a) = b* —2ca
2y = @Byt =(afy) =(-c) =",
Hence, the required equation is
x’ —(az + B’ +7/2)x2 +(a2ﬁ2 + By’ +y2a2)x—a2ﬁ2y2 =0.

That is, x’ —(a2 —Zb)x2 4—(b2 —26‘61))6—6’2 =0. -
Example 3.7
If p is real, discuss the nature of the roots of the equation4x” +4px+ p+2=0, in terms of p .
Solution
® ThediscriminantA:(4p)2—4(4)(p+2):16(p2—p—2):16(p+1)(p—2).So,we get ®

A<Oif -1<p<?2
A=01if p=-lor p=2
A>0 if —o<p<—-lor2<p<ow
Thus the given polynomial has
imaginary roots if —1< p<2;
equal real roots if p=—1or p=2;

distinct real roots if —o<p<—-1lor 2<p<ow . m

EXERCISE 3.1

1. If the sides of a cubic box are increased by 1, 2, 3 units respectively to form a cuboid, then
the volume is increased by 52 cubic units. Find the volume of the cuboid.

2. Construct a cubic equation with roots
(i) 1,2,and 3 (i1) 1,1,and -2 (iii) 2,-2,and 4.
3. Ifa, B and y are the roots of the cubic equation x’ +2x” +3x +4 =0, form a cubic equation

whose roots are
0 20, 28,27 G —. L1 i) —a,-B.—
a By

4. Solve the equation 3x” —16x” +23x — 6 = 0if the product of two roots is 1.

5. Find the sum of squares of roots of the equation 2x* —8x” +6x* -3=0.
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6. Solve the equation x’ —9x> +14x+24=0 if it is given that two of its roots are in the

ratio 3:2.
7. If a, B, and y are the roots of the polynomial equation ax’ +bx” +cx+d =0, find the

value of Zﬁi in terms of the coefficients.
Y

8. If a,B,y,and & are the roots of the polynomial equation2x*+5x’ —7x*+8=0 , find a

quadratic equation with integer coefficients whose roots are a + f+y +06 and af3yo .

9. If pand g are the roots of the equation /x* + nx+n =0, show that \/E + \/E + \/% =0.
q P

10. If the equations x* + px+¢ =0 and x”+ p'x+¢' =0 have a common root, show that it must
P4 —PICI or 6]'—(] .
q9-49 p-p
11. Formalate into a mathematical problem to find a number such that when its cube root is added
to it, the result is 6.

be equal to

12. A 12 metre tall tree was broken into two parts. It was found that the height of the part which
was left standing was the cube root of the length of the part that was cut away. Formulate this
into a mathematical problem to find the height of the part which was cut away.

3.4 Nature of Roots and Nature of Coefficients of Polynomial Equations
3.4.1 Imaginary Roots

® For a quadratic equation with real coefficients, if a +if3 is a root, then o —if3 is also a root. In ®

this section we shall prove that this is true for higher degree polynomials as well.
We now prove one of the very important theorems in the theory of equations.

hoaieaia)
IICOTCIIT)

If a complex number z, is a root of a polynomial equation with real coefficients, then its complex

conjugate z,1s also a root.

Proof
Let P(x)=a,x"+a, x"" +--+ax+a,=0be a polynomial equation with real coefficients.

Let z,be a root of this polynomial equation. So, P(z,)=0. Now

-\ _ =n —n-1 =
P(ZO) = az, +a, z, +--+az, +a,

—_ n n_l DY
= a,z, +a,, z, +---t+az,+a,

_ n-1 - _ .
= a,z,"+a, z,)" ++a z,+a, (a, =a, asqa, isreal forall )

_ n -1 -
= anZO + an_lZO + + alzo + ao

n n—1 n
= az)/"+a, z,)" +---+az,+a, =P(z))=0=0

That is P(z,) = 0; this implies that whenever z,is a root (i.e. P( z,)=0), its conjugate z, is also
aroot . |
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If one asks whether 2 is a complex number, many students hesitate to say “yes”. As every integer
is a rational number, we know that every real number is also a complex number. So to clearly specify
a complex number that is not a real number, that is to specify numbers of form o +if with g #0,
we use the term “non-real complex number”. Some authors call such a number an imaginary
number.

Remark 1
Let z, =a +if with B #0.Then z, =a —if Ifo +if 1saroot of a polynomial equation P(x) =0
with real coefficients, then by Complex Conjugate Root Theorem,a —if8 is also a root of P(x)=0.

Usually the above statement will be stated as complex roots occur in pairs; but actually it means that
non-real complex roots or imaginary roots occur as conjugate pairs, being the coefficients of the
polynomial equation are real.

Remark 2

From this we see that any odd degree polynomial equation with real coefficients has at least one
real root; in fact, the number of real roots of an odd degree polynomial equation with real coefficients
is always an odd number. Similarly the number of real roots of an even degree polynomial equation
with real coefficients is always an even number.

Example 3.8
Find the monic polynomial equation of minimum degree with real coefficients having 2 — J3i
as a root.
Solution
@ Since 2 —~/3 iis a root of the required polynomial equation with real coefficients, 2 + J3iis also @

a root. Hence the sum of the roots is 4 and the product of the roots is 7. Thus x* —4x+7 =0 is the

required monic polynomial equation. [

3.4.2 Irrational Roots

If we further restrict the coefficients of the quadratic equation ax® + bx + ¢ = 0, a # 0 to be rational,
we get some interesting results. Let us consider a quadratic equation ax” + bx + ¢ = Owith a, b and ¢
rational. As usual let A=5>—4ac and let 7,and r, be the roots. In this case, when A =0, we have

1, = r,; this root is not only real, it is in fact a rational number.

When A is positive, then no doubt that VA exists in R and we get two distinct real roots. But

VA will be a rational number for certain values of a,b and c, and it is an irrational number for other

values of a,b and c.

If VA is rational, then both 7 and r, are rational.
If VA is irrational, then both 7 and 7, are irrational.

Immediately we have a question. If A>0, when will VA be rational and when will it be

irrational? To answer this question, first we observe that A is rational, as the coefficients are rational

numbers. So A =— for some positive integers m and n with (m,n)=1 where (m,n) denotes the
n
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greatest common divisor of m andn . It is now easy to understand that JA is rational if and only if
both m and n are perfect squares. Also, VA is irrational if and only if at least one of m and n is not
a perfect square.

We are familiar with irrational numbers of the type p + \/E where p and ¢ are rational numbers
and 4/q is irrational. Such numbers are called surds. As in the case of imaginary roots, we can prove
that if p+ \/5 is a root of a polynomial, then p — \/E is also a root of the same polynomial equation,

when all the coefficients are rational numbers. Though this is true for polynomial equation of any
degree and can be proved using the technique used in the proof of imaginary roots, we state and prove

this only for a quadratic equation in Theorem 3.3.

Before proving the theorem, we recall that if a and b are rational numbers and c is an irrational
number such that a + bc is a rational number, then b must be 0 ; further if a+bc =0, then a and b
must be 0.

For instance, if a+b\/§e(@, then b must be 0, and if a+byJ2 =0 then a=bh=0. Now we

state and prove a general result as given below.

Theorem 3.3
Let p and ¢ be rational numbers such that \/5 is irrational. If p+ \/5 is a root of a quadratic

equation with rational coefficients, then p— \/5 is also a root of the same equation.

@ Proof @

We prove the theorem by assuming that the quadratic equation is a monic polynomial equation.
The result for non-monic polynomial equation can be proved in a similar way.

Let p and ¢ be rational numbers such that \/5 is irrational. Let p + \/5 be a root of the equation
x* +bx+c=0 where b and care rational numbers.

Let o be the other root. Computing the sum of the roots, we get
o+ p+ \/5 =-b
and hence o ++/g=—b—p Q. Taking—b— pas s, we have a+\/5:s .

S

Computing the product of the roots, gives
(s=Na)p+iq) = ¢

and hence (sp—q)+ (s — p)\/g =ceQ. Thuss— p=0. This implies that s = pand hence we get

This implies that

a:p—\/g.So,theotherrootis p—\/g. -

Remark
The statement of Theorem 3.3 may seem to be a little bit complicated. We should not be in a
hurry to make the theorem short by writing “for a polynomial equation with rational coefficients,

irrational roots occur in pairs ”. This is not true.
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For instance, the equationx’ —2 =0 has only one irrational root, namely J2.0f course, the
other two roots are imaginary numbers (What are they?).
Example 3.9

Find a polynomial equation of minimum degree with rational coefficients, having2—\/§ as a
root.
Solution

Since 2—+/3 is a root and the coefficients are rational numbers, 2+ J3 isalsoaroot. A required
polynomial equation is given by

x” — (Sum of the roots) x + Product of the roots = 0

and hence
x'—4x+1=0
is a required equation. n

Note
We note that the term “rational coefficients” is very important; otherwise, x —(2 —\/5) =0will

be a polynomial equation which has 2 —+/3 as a root but not 2+ J3 . We state the following result
without proof.

ﬁ“heorem 3.4 )

Let p and ¢ be rational numbers so that \/; and /g are irrational numbers; further let one

of \/p and \/5 be not a rational multiple of the other. If \/; + \/; is a root of a polynomial equation

with rational coefficients, then \/; —\/a,—\/; +\/5 , and —\/; —\/5 are also roots of the same
olynomial equation.
N Y,

Example 3.10

Form a polynomial equation with integer coefficients with % as a root.

Solution

: V2. V2 .
Since ,|—is a root, x—,|— is a factor. To remove the outermost square root, we take
\'V3 V3
\2

X+, /ﬁ as another factor and find their product

e 2 s Y2 a2
x\/gx\/g—x\/g.

Still we didn’t achieve our goal. So we include another factor x* + V2 and get the product

-4+
X \/5 X \/5 =X 3

So, 3x* =2 =0 is a required polynomial equation with the integer coefficients. n
Now we identify the nature of roots of the given equation without solving the equation. The idea

comes from the negativity, equality to 0, positivity of A =5> —4ac .
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3.4.3 Rational Roots

If all the coefficients of a quadratic equation are integers, then A is an integer, and when it is

positive, we have, VA is rational if, and only if, A is a perfect square. In other words, the equation
ax® +bx+c =0 with integer coefficients has rational roots, if, and only if, A is a perfect square.

What we discussed so far on polynomial equations of rational coefficients holds for polynomial
equations with integer coefficients as well. In fact, multiplying the polynomial equation, with rational
coefficients, by a common multiple of the denominators of the coefficients, we get a polynomial
equation of integer coefficients having the same roots. Of course, we have to handle this situation
carefully. For instance, there is a monic polynomial equation of degree 1 with rational coefficients

having Eas a root, whereas there is no monic polynomial equation of any degree with integer

. .1
coefficients having 5 as a root.

Example 3.11
Show that the equation 2x> —6x+ 7 =0 cannot be satisfied by any real values of x.

Solution
A =b*—4ac=—-20< 0. The roots are imaginary numbers. m

Example 3.12
Ifx® + Z(k + 2)x+9k =0 has equal roots, find k.

Solution
® Here A =b° —4ac = 0 for equal roots. This implies 4(k + 2)2 = 4(9)k . This impliesk=4or 1. g ®

Example 3.13
Show that, if p,q,r are rational, the roots of the equation x* —2px+ p*> —g¢*> +2qr—r’> =0 are
rational.

Solution
The roots are rational if A =b* —4ac =(-2p) - 4(p2 —q° +2qr— rz) .

But this expression reduces to 4 (q2 —2qr+r’ ) or 4 (q - r)2 which is a perfect square. Hence the

roots are rational. [ ]

3.5 Applications of Polynomial Equation in Geometry
Certain geometrical properties are proved using polynomial equations. We discuss a few
geometric properties here.

Example 3.14
Prove that a line cannot intersect a circle at more than two points.

Solution

By choosing the coordinate axes suitably, we take the equation of the circle asx* + y* = »* and
the equation of the straight line as y = mx+c. We know that the points of intersections of the circle

and the straight line are the points which satisfy the simultaneous equations
2

X +y = .. (1)
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Yy = mx+c .. (2)
If we substitute mx+c for y in (1), we get
x>+ (mx+c)Y-r’ =0

which is same as the quadratic equation
(I+m>)x*> +2mex+(c* —=r*) = 0. ..(3)

This equation cannot have more than two solutions, and hence a line and a circle cannot intersect
at more than two points. [ |

It is interesting to note that a substitution makes the problem of solving a system of two equations

in two variables into a problem of solving a quadratic equation.

Further we note that as the coefficients of the reduced quadratic polynomial are real, either both roots
are real or both imaginary. If both roots are imaginary numbers, we conclude that the circle and the straight
line do not intersect. In the case of real roots, either they are distinct or multiple roots of the polynomial. If

they are distinct, substituting in (2), we get two values for y and hence two points of intersection. If we
have equal roots, we say the straight line touches the circle as a tangent. As the polynomial (3) cannot have
only one simple real root, a line cannot cut a circle at only one point.

Note
A technique similar to the one used in example 3.14 may be adopted to prove
* two circles cannot intersect at more than two points.
 acircle and an ellipse cannot intersect at more than four points.

EXERCISE 3.2

1. If k is real, discuss the nature of the roots of the polynomial equation2x” + kx+k =0, in
terms of k .

2. Find a polynomial equation of minimum degree with rational coefficients, having 2 + J3i as
a root.

3. Find a polynomial equation of minimum degree with rational coefficients, having 2i+3 as a
root.

4. Find a polynomial equation of minimum degree with rational coefficients, having V543 as
aroot.

5. Prove that a straight line and parabola cannot intersect at more than two points.

3.6 Roots of Higher Degree Polynomial Equations

We know that the equation P(x)=0 is called a polynomial equation. The root or zero of a
polynomial equation and the solution of the corresponding polynomial equation are the same. So we
use both the terminologies.

We know that it is easy to verify whether a number is a root of a polynomial equation or not, just
by substitution. But when finding the roots, the problem is simple if the equation is quadratic and it is
in general not so easy for a polynomial equation of higher degree.
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A solution of a polynomial equation written only using its coefficients, the
four basic arithmetic operators (addition, multiplication, subtraction and division),
and rational exponentiation (power to a rational number, such as square, cube,
square roots, cube roots and so on) is called a radical solution. Abel proved that it
is impossible to write a radical solution for general polynomial equation of degree =
five or more. 21RYQC

We state a few results about polynomial equations that are useful in solving higher degree
polynomial equations.

« Every polynomial in one variable is a continuous function from R to R.

. For a polynomial equation P(x) =0of even degree, P(x)— ocas P(x)— £oco. Thus the
graph of an even degree polynomial start from left top and ends at right top.

« All results discussed on “graphing functions” in Volume I of eleventh standard textbook can
be applied to the graphs of polynomials. For instance, a change in the constant term of a
polynomial moves its graph up or down only.

« Every polynomial is differentiable any number of times.

« The real roots of a polynomial equation P(x) =0 are the points on the x -axis where the
graph of P(x)=0cuts the x -axis.

« If a and b are two real numbers such that P(a) and P(b) are of opposite signs, then
- there is a point ¢ on the real line for which P(c)=0.
- that is, there is a root between a and b .

- itis not necessary that there is only one root between such points; there may be 3,5,7,...
roots; that is the number of real roots between a and b is odd and not even.

However, if some information about the roots are known, then we can try to find the other roots.
For instance, if it is known that two of the roots of a polynomial equation of degree 6 with rational
coefficients are 2+ 3; and 4—+/5, then we can immediately conclude that 2—3i and 4++/5 are
also roots of the polynomial equation. So dividing by the corresponding factors, we can reduce the
problems into a problem of solving a second degree equation. In this section we learn some ways of
finding roots of higher degree polynomials when we have some information.

3.7 Polynomials with Additional Information

Now we discuss a few additional information with which we can solve higher degree polynomials.
Sometimes the additional information will directly be given, like, one root is 2+ 3i. Sometimes the
additional information like, sum of the coefficients is zero, have to be found by observation of the
polynomial.

3.7.1 Imaginary or Surds Roots

If a +ip is an imaginary root of a quartic polynomial with real coefficients, then o —ip is also
a root; thus (x—(a +if)) and(x—(a —ip))are factors of the polynomial; hence their product is a

factor; in other words, x* —2ax+a’ + ”is a factor; we can divide the polynomial with this factor
and get the second degree quotient which can be solved by known techniques; using this we can find
all the roots of the polynomial.
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If 2++/3 is aroot of a quadric polynomial equation with rational coefficients, then 2 —3 is
also a root; thus their product (x—(2+ V3 N(x—(2- V3 ) is a factor; that is x> —4x+1 is a factor; we

can divide the polynomial with this factor and get the quotient as a second degree factor which can be
solved by known techniques. Using this, we can find all the roots of the quadric equation. This

technique is applicable for all surds taken in place of 2 + J3.

If an imaginary root and a surd root of a sixth degree polynomial with rational coefficient are
known, then step by step we may reduce the problem of solving the sixth degree polynomial equation
into a problem of solving a quadratic equation.

Example 3.15
If 2+i and 3—+/2 are roots of the equation

x°—13x" +62x* —126x° +65x> +127x-140=0,
find all roots.

Solution
Since the coefficient of the equations are all rational numbers, and 2 +iand3— J2 are roots, we

get 2—i and 3+ J2 are also roots of the given equation. Thus (x — (2 +1)), (x—(2-1)),(x—(3— 2 )
and (x—(3+ 2 )) are factors. Thus their product
(x= Q2+ (r=2-))(x=B-V2)(x~(B++2))
is a factor of the given polynomial equation. That is,
(x> —4x+5)(x* —6x+7)

is a factor. Dividing the given polynomial equation by this factor, we get the other factoras (x” —3x —4)
which implies that 4 and —1 are the other two roots. Thus

2+i,2-i,3++2,3-2,-1, and 4

are the roots of the given polynomial equation. u

3.7.2 Polynomial equations with Even Powers Only

If P(x) is a polynomial equation of degree 2n, having only even powers of x, (that is,
coefficients of odd powers are 0) then by replacing x> by y, we get a polynomial equation with
degree n in y; let y,,y,,---y, be the roots of this polynomial equation. Then considering the n
equations x* =y, we can find two values for x for each ¥, ; these 2n numbers are the roots of the
given polynomial equation in x.
Example 3.16

Solve the equation x* —9x”> +20=0.

Solution
The given equation is
x*=9x*+20=0.

This is a fourth degree equation. If we replace x°by y, then we get the quadratic equation

¥ =9y+20=0.
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It is easy to see that 4 and 5 as solutions for y* —9y+20=0. Now taking x* =4and x° =5,
we get 2, —2,/5,—/5 as solutions of the given equation. u

We note that the technique adopted above can be applied to polynomial equations like
X =17x*+30=0, ax* +bx"*+¢=0 and in general polynomial equations of the form
ax" +a,_x"""V+...+ax"+a, =0 where k is any positive integer.

3.7.3 Zero Sum of all Coefficients

Let P(x) = 0be a polynomial equation such that the sum of the coefficients is zero. What actually
the sum of coefficients is? The sum of coefficients is nothing but P(1). The sum of all coefficients is
zero means that P(1) =0 which says that 1 is a root of P(x). The rest of the problem of solving the

equation is easy.
Example 3.17
Solve the equation x* —3x* —33x+35=0.

Solution
The sum of the coefficients of the polynomial is 0. Hence 1 is a root of the polynomial. To find

other roots, we divide x’ —3x”> —33x+35 by x—1 and get x* —2x—35 as the quotient. Solving this

we get 7 and -5 as roots. Thus 1,7,—5 form the solution set of the given equation. [ |

3.7.4 Equal Sums of Coefficients of Odd and Even Powers

Let P(x)=0be a polynomial equation such that the sum of the coefficients of the odd powers
and that of the even powers are equal. What does actually this mean? If a is the coefficient of an odd
degree in P(x) =0, then the coefficient of the same odd degree in P(—x) =0 is —a . The coefficients
of even degree terms of both P(x) =0 and P(—x) =0 are same. Thus the given condition implies that
the sum of all coefficients of P(—x)=0 is zero and hence 1 is a root of P(—x)=0 which says that
—1 is aroot of P(x)=0. The rest of the problem of solving the equation is easy.

Example 3.18
Solve the equation2x’ +11x> —9x—18=0.

Solution
We observe that the sum of the coefficients of the odd powers and that of the even powers are

equal. Hence —1 is a root of the equation. To find other roots, we divide 2x’ +11x* —=9x—18 by x+1
. . : 3 3

and get 2x° +9x—18 as the quotient. Solving this we get 5 and —6 as roots. Thus —6,—1,5 are the

roots or solutions of the given equation. u

3.7.5 Roots in Progressions

As already noted to solve higher degree polynomial equations, we need some information about
the solutions of the equation or about the polynomial. “The roots are in arithmetic progression” and
“the roots are in geometric progression” are some of such information. Let us discuss an equation of
this type.
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Example 3.19
Obtain the condition that the roots of x* + px* +gx+r =0 are in A.P.

Solution
Let the roots be in A.P. Then, we can assume them in the form a —d,o, o +d .

Applying the Vieta’s formula (a—-d)+a+(a+d) = —% =p=>3a=-p=>a =—§.

But, we note that « is a root of the given equation. Therefore, we get

3 2
(oA rmomomeaeens

|

Example 3.20

Find the condition that the roots of ax’ +bx” +cx+d =0 are in geometric progression. Assume
a,b,c,d =0
Solution

Let the roots be in G.P.

Then, we can assume them in the form %,a,al .

Applying the Vieta’s formula, we get

>, = a(%+l+}t] == (D)

1 c
=a2[—+1+/1j = — (2
22 A/ a ( )
23 — 0632—1. ...(3)
a
Dividing (2) by (1), we get
c
o =—— .. (4
5 “
3
o ) c d N N
Substituting (4) in (3), we get (——j =——=ac =db .
b a ]
Example 3.21
If the roots of x° + px* +gx+r =0 are in H.P., prove that 9pgr =27r"+2p.
Solution
Let the roots be in H.P. Then, their reciprocals are in A.P. and roots of the equation
3 2
(1] +p[lj +q[lj+r=0 S X +gx’ + px+1=0. .. (D)
X X X

Since the roots of (1) are in A.P., we can assume them as a —d,a,a +d .
Applying the Vieta’s formula, we get

Yio=(a-d)+a+(a+d) =—2:>3O£ :—g:a:_i_
r r 3r
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But, we note that « is a root of (1). Therefore, we get

3 2
rl L +q 4 +p 4 +1=0=-¢+3¢ —9pqr+27r* =0=9pqr=2q¢" +27r* . B
3r 3r 3r

Example 3.22

It is known that the roots of the equation x’ —6x° —4x+24 =0 are in arithmetic progression.
Find its roots.
Solution

Let the roots bea—d,a,a+d . Then the sum of the roots is 3a¢ which is equal to 6 from the
given equation. Thus 3a =6 and hencea = 2. The product of the roots is @’ —ad”> which is equal to
—24 from the given equation. Substituting the value of a, we get 8—2d* =24 and hence d =+4.

If we take d =4 we get —2,2,6as roots and if we take d =—4, we get 6,2,—2 as roots (same roots
given in reverse order) of the equation. u

EXERCISE 3.3

1. Solve the cubic equation : 2x° —x* —18x+9 =01 if sum of two of its roots vanishes.
Solve the equation 9x° —36x” +44x—16 =0 if the roots form an arithmetic progression.

Solve the equation 3x’ —26x” +52x —24 =0 if its roots form a geometric progression.

Eall

Determine & and solve the equation 2x’ —6x” +3x+k =0 if one of its roots is twice the sum
@ of the other two roots. @

5. Find all zeros of the polynomial x®—3x* —5x* +22x” —39x” —39x+135, if it is known that
1+2i and /3 are two of its zeros.

6. Solve the cubic equations : (i) 2x° —9x” +10x =3, (ii) 8x* —2x* -7x+3=0

7. Solve the equation : x* —14x* +45=0

3.7.6 Partly Factored Polynomials

Quadric polynomial equations of the form (ax+b)(cx+d)(px+q)(rx+s)+ k=0, k=0
which can be rewritten in the form (ax2 + Bx + /\> (ax2 + Bx+ ,u) +k=0

We illustrate the method of solving this situation in the next two examples.

Example 3.23
Solve the equation

(x=-2)(x=7)(x=3)(x+2)+19 =0.
Solution
We can solve this fourth degree equation by rewriting it suitably and adopting a technique of
substitution. Rewriting the equation as
(x=2)(x=3)(x=7)(x+2)+19 =0.

the given equation becomes
(x> =5x+6)(x* =5x—14)+19 = 0.

If we take x> —5xas y , then the equation becomes (y +6)(y —14)+19 =0;
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that is,

¥ —8y—-65 = 0.

Solving this we get solutions y =13 and y = -5 . Substituting this we get two quadratic equations

x*=5x—13 =0 and x> =5x+5=0

which can be solved by usual techniques. The solutions obtained for these two equations together

give solutions as 5

Example 3.24

Solve the equation  (2x—-3)(6x—-1)(3x—-2)(x—12)-7

Solution

The given equation is same as

(2x-3)(3x—2) (6x—1)(x—12)—7

After a computation, the above equation becomes
(6x> —13x+6)(6x> —13x+12)-7

By taking y = 6x° —13x, the above equation becomes,
(y+6)(y+12)-7

which is same as

Substituting the values of y in y =6x> —13x, we get

Solving these two equations, we get

5
X = x:—’x:
3

1
2’

as the roots of the given equation.

5477 5445
2 7 '

13+
— an
12

y* +18y+65
Solving this equation, we get y=—13and y=-5.

EXERCISE 3.4

6x*—13x+5 =
6x° —13x+13 =

13—-+/143;
X=—

1. Solve : (i) (x=5)(x=7)(x+6)(x+4)=504, (i) (x=4(x=T)(x-2)(x+1)=16
2. Solve : 2x—1)(x+3)(x—-2)(2x+3)+20=0

3.8 Polynomial Equations with no additional information

3.8.1 Rational Root Theorem

We can find a few roots of some polynomial equations by trial and error method. For instance,

we consider the equation

45 —8x* —x+2 =0

(D

This is a third degree equation which cannot be solved by any method so far we discussed in this
chapter. If we denote the polynomial in (1) as P(x), then we see that P(2) =0 which says that x -2

is a factor. As the rest of the problem of solving the equation is easy, we leave it as an exercise.
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Example 3.25
Solve the equation x® —5x”> —4x+20=0.

Solution

If P(x) denotes the polynomial in the equation, then P(2)=0. Hence 2 is a root of the
polynomial. To find other roots, we divide the given polynomial x’ —5x*> —4x+20 by x—2 and get
x> —3x—10 as the quotient. Solving this we get —2 and 5 as roots. Thus 2,—2, 5are the solutions of

the given equation.

Guessing a number as a root by trial and error method is not an easy task.
But when the coefficients are integers, using its leading coefficient and the
constant term, we can list certain rational numbers as possible roots. Rational Root

Theorem helps us to create such a list of possible rational roots. We recall that if EoZ
a polynomial has rational coefficients, then by multiplying by suitable numbers ER"I"..EE: -

we can obtain a polynomial with integer coefficients having the same roots. So
we can use Rational Root Theorem, given below, to guess a few roots of polynomial with rational
coefficient. We state the theorem without proof.

Theorem 3.5 (Rational Root Theorem)
P
Let a x" +---+ax+a,with a, = 0and a, = 0, be a polynomial with integer coefficients. If °

with (p,q) =1, is aroot of the polynomial, then p is a factor of a, and qis a factor of a, .

® When a, =1, if there is a rational root P , then as per theorem 3.5 ¢ is a factor of a,, then we ®

must have ¢ =%1.Thus p must be an integer. So a monic polynomial with integer coefficient cannot
have non-integral rational roots. So whena, =1, if at all there is a rational root, it must be an integer
and the integer should divide q,. (We say an integer a divides an integer b, ifb=ad for some

integer d .)
As an example let us consider the equation x* —5x — 6 = 0. The divisors of 6 are £1, +2, 3, +6

From Rational Root Theorem we can conclude that £1, £2, +3, £+ 6 are the only possible solutions of
the equation. It does not mean that all of them are solutions. The two values —1 and 6 satisfy the
equation and other values do not satisfy the equation.

Moreover, if we consider the equation x* +4 =0, according to the Rational Root theorem, the
possible solutions are +1, +2, +£4; but none of them is a solution. The Rational Root Theorem helps
us only to guess a solution and it does not give a solution.

Example 3.26
Find the roots of 2x” +3x* +2x+3.
Solution

According to our notations, a, =2and a,=3. If P s a root of the polynomial, then as
q
(p,q)=1, p must divide 3 and ¢ must divide 2. Clearly, the possible values of p are 1,—1,3,-3

and the possible values of gare 1,-1,2,-2. Using these p and ¢ we can form only the fractions
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3

5 — .

. o o o -3 .
+ Among these eight possibilities, after verifying by substitution, we get > is the

—_ | —
N | W

oyt %

N | —

only rational root. To find other roots, we divide the given polynomial 2x° +3x* +2x+3 by 2x+3

and get x” +1 as the quotient with zero remainder. Solving x> +1=0,we get i and —i as roots. Thus

-3 .. . . .
—,—1, 1 are the roots of the given polynomial equation. -

3.8.2 Reciprocal Equations
Let a be a solution of the equation.
2x° =3x° +2x + 7 #4237 =3x+2 =0 (1)
Then a = 0 (why?) and
20° =3a’ +\2a* +70° +2a> =30 +2 =0

Substitutingl for x in the left side of (1), we get

A AT A A

_ 2-3a+\20 +70° +\2a" -3’ +2a° 0

a’ Tat 0
@ Thus L is also a solution of (1). Similarly we can see that if a is a solution of the equation @
a
2x° +3x* —4x’ +4x° -3x-2 =0 .. (2)

thenl is also a solution of (2).
o

The equations (1) and (2) have a common property that, if we replace x by 1 in the equation
X
and write it as a polynomial equation, then we get back the same equation. The immediate question

that flares up in our mind is “Can we identify whether a given equation has this property or not just
by seeing it?”” Theorem 3.6 below answers this question.

Definition 3.1

A polynomial P(x) of degree n is said to be a reciprocal polynomial if one of the following

conditions is true:

(i) P(x) = x”P( ! j (i) P(x)= —x"P[ ! j :

X X

Apolynomial P(x) ofdegree n is said to be a reciprocal polynomial of Typelif P(x)=x"P (lj . is
X

called a reciprocal equation of Type L.

A polynomial P(x) of degree n is said to be a reciprocal polynomial of Type Il P(x) = —x”P(lj .18
X

called a reciprocal equation of Type II.
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(Theorem 3.6 )
A polynomial equation  ax"+a, x"'+a, X"+ +ax’+ax+a,=0, (a,=0) is a
reciprocal equation if, and only if, one of the following two statements is true:
W a,=ay,, a,,=a, a,,=a,

\=ay, A, 5 =0y, -

(i) a =—a,» a

" J
Proof
Consider the polynomial equation
P(x) = ax"+a, x"" +a, x""++ax’+ax+a,=0. .. (1)
: 1.
Replacing x by — in (1), we get
x
P(lj = a—z+%+%+---+a—§+ﬂ+%:0. .. (2)
X X" x X X x
Multiplying both sides of (2) by x", we get
1
x"P(;j = ax" +ax"" +a,x"++a _,x +a,_x+a,=0. .. (3)

Now, (1) is a reciprocal equation < P(x)= =+ x”P(lj <> (1) and (3) are same .
X

. . a, a_, a_ a a a
This is possible < 2 =—l="r2—...= 2 =1 -0
a, 4 a, a,, 4

Let the proportion be equal to A. Then, we get D _ 2 and Y=, Multiplying these
a, a

n

equations, we get 1> =1. So, we get two cases A =land A=-1.

Case (i) :

A =1 In this case, we have a,=a,, a, ,=a,, a, ,=a,, -

That is, the coefficients of (1) from the beginning are equal to the coefficients from the end.
Case (ii) :

A =-1 In this case, we have a, =-a,, a,, =—a,, a, ,=—a,, .

That is, the coefficients of (1) from the beginning are equal in magnitude to the coefficients from
the end, but opposite in sign. m
Note

Reciprocal equations of Type I correspond to those in which the coefficients from the beginning
are equal to the coefficients from the end.

For instance, the equation 6x° +x* —43x> —43x” +x+6 =0 is of type 1.

Reciprocal equations of Type II correspond to those in which the coefficients from the beginning
are equal in magnitude to the coefficients from the end, but opposite in sign.

For instance, the equation 6x° —41x* +97x> —97x*> +41x—6=0 is of Type II.
Remark

(i) A reciprocal equation cannot have 0 as a solution.

(i1) The coefficients and the solutions are not restricted to be real.
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(i11) The statement “If P(x) =0 is a polynomial equation such that whenever « is a root, —
a

is also a root, then the polynomial equation P(x) =0 must be a reciprocal equation” is

. . . . 1
not true. For instance 2x’ —7x° + 4x —4 =0 is a polynomial equation whose roots are 2,2, 5

Note that x* P[l] = P(x) . Reciprocal equations are classified as Type I and Type II according
X

to a,, =a, ora, =-—a,.We state some results without proof :

* For an odd degree reciprocal equation of Type I, x = —1 must be a solution.
» For an odd degree reciprocal equation of Type II, x =1 must be a solution.

* For an even degree reciprocal equation of Type II, the middle term must be 0. Further

x=1and x =-1 are solutions.

. . . 1 1 .
* For an even degree reciprocal equation, by taking x+— or x——as y, we can obtain a
X X

polynomial equation of degree one half of the degree of the given equation ; solving this
polynomial equation, we can get the roots of the given polynomial equation.

As an illustration, let us consider the polynomial equation
6x° —35x° +56x* —56x” +35x—6=0
which is an even degree reciprocal equation of Type II. So 1 and —1 are two solutions of the equation
® and hence x° —1 is a factor of the polynomial. Dividing the polynomial by the factor x* —1, we get ®
6x* —35x° +62x* —35x+6 as a factor. Dividing this factor by x’and rearranging the terms we get
6(x2 + %j -35 (x + ij +62. Setting u= (x + ij it becomes a quadratic polynomial as

. . ) 1
6(u>—2)—35u+62 which reduces to 6u* —35u+50 . Solving we obtain u = ?,% . Taking u =?0

. ) . 1 1
gives x= 3,% and taking u = % gives x = 2,% . So the required solutions are +1,—1, 2,5,3,5

Example 3.27
Solve the equation 7x® —43x?> =43x—7 .

Solution
The given equation can be written as

7x® —43x* —43x+7=0.

This is an odd degree reciprocal equation of Type I. Thus —1 is a solution and hence x+1 is a

factor. Dividing the polynomial 7x’ —43x* —43x+7 by the factor x+1,we get 7x° —50x+7 as a

factor. Solving this we get 7 and % as roots. Thus —1,%,7 are the solutions of the given equation.

Example 3.28

Solve the following equation: x* —10x’ +26x* —10x+1=0.
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Solution

This equation is Type I even degree reciprocal equation. Hence it can be rewritten as

x* sz +%J—10x(x+l)+26} =0
X X

1
X

(57 -2)-10y+26] =0 = (¥ ~10y+24) = 0 = (y=6O)(y—4 =0

Case (i)
y=06 = x+l:6 = x:3+2\/5,x:3—2\/§
X
Case (ii)
y=4 = x:2+\/§,x=2—\/§ u

3.8.3 Non-polynomial Equations

Some non-polynomial equations can be solved using polynomial equations. As an example let
us consider the equation+/15—2x = x. First we note that this is not a polynomial equation. Squaring
both sides, we get x*+2x—15=0. We know how to solve this polynomial equation. From the

solutions of the polynomial equation, we can analyse the given equation. Clearly 3 and —5 are

solutions of x* +2x—15=0. If we adopt the notion of assigning only nonnegative values for Jo

then x =3 is the only solution; if we do not adopt the notion, then we get x =—5 is also a solution.

Example 3.29
Find solution, if any, of the equation

2cos’x—9cosx+4 =0 .. (1)

Solution
The left hand side of this equation is not a polynomial in x. But it looks like a polynomial. In
fact, we can say that this is a polynomial in cos x. However, we can solve the equation (1) by using

our knowledge on polynomial equations. If we replace cosx byy, then we get the polynomial

equation2y” —9y+4 =0 for which 4 and % are solutions.

. . 1 . .
From this we conclude that x must satisfy cosx =4orcosx =—. But cos x =4 is never possible,
2
. 1 o e 1 .
if we take cosx = 5 then we get infinitely many real numbers x satisfying cosx = 5 ; in fact, for all

net,x=2nr+t 3 are solutions for the given equation (1). -

If we repeat the steps by taking the equation cos’ x—9cosx+20=0, we observe that this

equation has no solution.
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Remarks
We note that

L]

3.9 Descartes Rule

In this section we discuss some bounds for the number of positive roots,
number of negative roots and number of nonreal complex roots for a polynomial

over R . These bounds can be computed using a powerful tool called “Descartes

Rule”.

not all solutions of the derived polynomial equation give a solution for the given equation;

there may be infinitely many solutions for non-polynomial equations though they look like
polynomial equations;
there may be no solution for such equations.

the Fundamental Theorem of Algebra is proved only for polynomials; for non-polynomial
expressions, we cannot talk about degree and hence we should not have any confusion on the
Fundamental Theorem of Algebra having non-polynomial equations in mind.

EXERCISE 3.5

. Solve the following equations

(i) sin’x—5sinx+4=0 (i) 12x° +8x=29x" —4

. Examine for the rational roots of

(1) 2x*—x*=1=0 (ii) x* =3x+1=0.

3 -3
Solve : 8x2" —8x2" =63

. Solve : 2\/g+3\/§=é+6—a.
a x a b

. Solve the equations

(i) 6x*—35x° +62x° =35x+6=0 (i) x* +3x —~3x-1=0

. Find all real numbers satisfying 4* —3(2"2)+2° =0.

. Solve the equation 6x* —5x” —38x> —5x+6 =0 if it is known that % is a solution.

21RYOC

3.9.1 Statement of Descartes Rule

To discuss the rule we first introduce the concept of change of sign in the coefficients of a
polynomial.

Consider the polynomial.

2x" =3x* —4x° +5x* +6x° = 7x+8

For this polynomial, let us denote the sign of the coefficients using the symbols “+ ’and ‘—’as

+,— =+, +, =t
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Note that we have not put any symbol corresponding to x°. We further note that 4 changes of

. 4 1
sign occurred (at x°,x*,x"and x°).

Definition 3.2
A change of sign in the coefficients is said to occur at the ;"™ power of x in a polynomial
P(x), if the coefficient of x’*' and the coefficient of x’ (or) also coefficient of x’~ coefficient of

x’ are of different signs. (For zero coefficient we take the sign of the immediately preceding
nonzero coefficient.)

From the number of sign changes, we get some information about the roots of the polynomial using
Descartes Rule. As the proof'is beyond the scope of the book, we state the theorem without proof.

Theorem 3.7 (Descartes Rule)

If p is the number of positive zeros of a polynomial P(x)with real coefficients and s is the

number of sign changes in coefficients of P(x), then s— p is a nonnegative even integer.

The theorem states that the number of positive roots of a polynomial P(x) cannot be more than
the number of sign changes in coefficients of P(x). Further it says that the difference between the
number of sign changes in coefficients of P(x) and the number of positive roots of the polynomial
P(x) is even.
®
As a negative zero of P(x) is a positive zero of P(—x) we may use the theorem and conclude

that the number of negative zeros of the polynomial P(x) cannot be more than the number of

sign changes in coefficients of P(-x) and the difference between the number of sign changes in

coefficients of P(—x)and the number of negative zeros of the polynomial P(x) is even.

As the multiplication of a polynomial by x*, for some positive integer k , neither changes the

number of positive zeros of the polynomial nor the number of sign changes in coefficients, we need
not worry about the constant term of the polynomial. Some authors assume further that the constant
term of the polynomial must be nonzero.

We note that nothing is stated about ( as a root, in Descartes rule. But from the very sight of the
polynomial written in the customary form, one can say whether 0 is a root of the polynomial or not.

Now let us verify Descartes rule by means of certain polynomials.

3.9.2 Attainment of bounds

3.9.2 (a) Bounds for the number of real roots

The polynomial P(x)=(x+1)(x—1)(x—2)(x+i)(x—i)has the =zeros -1,1,2,—i,i. The
polynomial, in the customary form is x° —2x* —x+ 2 .This polynomial P(x) has 2 sign changes,

namely at fourth and zeroth powers. Moreover,

P(—x)=—x" -2x"+x+2
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has one sign change. By our Descartes rule, the number of positive zeros of the polynomial P(x)
cannot be more than 2; the number of negative zeros of the polynomial P(x) cannot be more than 1.
Clearly 1 and 2 are positive zeros, and —1 is the negative zero for the polynomial, x* —2x* —x+2,
and hence the bounds 2 for positive zeros and the bound 1 for negative zeros are attained. We note
that i and —i are neither positive nor negative.

We know (x+2)(x+3)(x+i)(x—1i)is a polynomial with roots —2,—3,—i, i. The polynomial, say
P(x), in the customary form is

x5 +7x* +5x+6.

This polynomial P(x) has no sign change and P(—x)=x"—5x"+7x>—5x+6 has 4 sign

changes. By Descartes rule, the polynomial P(x)cannot have more than 0 positive zeros and the

number of negative zeros of the polynomial P(x) cannot be more than 4.

As another example, we consider the polynomial.

xn _n Clxn—l +n szn—Z _n C3xn—3 4t (_l)n—lnc

Xt -=D".

This is the expansion of (x—1)". This polynomial has »n changes in coefficients and P(—x) has no
change of sign in coefficients. This shows that the number of positive zeros of the polynomial cannot be
more than »n and the number of negative zeros of the polynomial cannot be more than 0. The statement on
negative zeros gives a very useful information that the polynomial has no negative zeros. But the statement
on positive zeros gives no good information about the positive zeros, though there are exactlyn positive
zeros; in fact, it is well-known that for a polynomial of degree 7, the number of zeros cannot be more than
n and hence the number of positive zeros cannot be more than 7.

3.9.2 (b) Bounds for the number of Imaginary (Nonreal Complex)roots

Using the Descartes rule, we can compute a lower bound for the number of imaginary roots. Let
m denote the number of sign changes in coefficients of P(x)of degree n; let k denote the number

of sign changes in coefficients of P(—x). Then there are at least n—(m+ k) imaginary roots for the

polynomial P(x). Using the other conclusion of the rule, namely, the difference between the number

of roots and the corresponding sign changes is even, we can sharpen the bounds in particular cases.

Example 3.30
Show that the polynomial 9x” +2x° —x* —7x* +2 has at least six imaginary roots.

Solution
Clearly there are 2 sign changes for the given polynomial P(x) and hence number of positive

roots of P(x) cannot be more than two. Further, as P(—x) = -9x” —2x° —x* —7x* + 2, there is one
sign change for P(—x) and hence the number of negative roots cannot be more than one. Clearly 0
is not a root. So maximum number of real roots is 3 and hence there are atleast six imaginary roots.  H

Remark

From the above discussion we note that the Descartes rule gives only upper bounds for the
number of positive roots and number of negative roots; the Descartes rule neither gives the exact
number of positive roots nor the exact number of negative roots. But we can find the exact number
of positive, negative and nonreal roots in certain cases. Also, it does not give any method to find the
roots.
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Example 3.31
Discuss the nature of the roots of the following polynomials:

(i) X" +1947x"° +15x* +26x° +2019 (i) x° —19x* +2x° +5x° +11
Solution

Let P(x) be the polynomial under consideration.

(1) The number of sign changes for P(x) and P(—x) are zero and hence it has no positive roots
and no negative roots. Clearly zero is not a root. Thus the polynomial has no real roots and
hence all roots of the polynomial are imaginary roots.

(i) The number of sign changes for P(x) and P(—x) are 2 and 1 respectively. Hence it has at
most two positive roots and at most one negative root.Since the difference between number
of sign changes in coefficients of P(—x) and the number of negative roots is even, we
cannot have zero negative roots. So the number of negative roots is 1. Since the difference
between number of sign changes in coefficient of P(x) and the number of positive roots
must be even, we must have either zero or two positive roots. But as the sum of the

coefficients is zero, 1 is a root. Thus we must have two and only two positive roots Obviously
the other two roots are imaginary numbers. u

EXERCISE 3.6

1. Discuss the maximum possible number of positive and negative roots of the polynomial
equation9x’ —4x® +4x” =3x° +2x° + X’ + 7x* + 7Tx+2=0.

2. Discuss the maximum possible number of positive and negative roots of the polynomial

@ equations x° —5x+6and x° —5x+16. Also draw rough sketch of the graphs. @

3. Show that the equation x” —5x° +4x"* + 2x> +1=0 has atleast 6 imaginary solutions.
4. Determine the number of positive and negative roots of the equationx” —5x* —14x” =0.
5. Find the exact number of real roots and imaginary of the equation x’ +9x” +7x° +5x° +3x.

EXERCISE 3.7

Choose the most suitable answer.
1. A zero of x° +64 is
(Ho (2)4 (3) 4i 4) -4

2. If fand g are polynomials of degrees m and n respectively, and if #(x) =( f o g)(x), then
the degree of 4 is

(1)ymn 2) m+n 3) m" 4)yn"
3. A polynomial equation in x of degree n always has

(1)ndistinct roots  (2)n real roots (3)n imaginary roots (4) at most one root.

4. If o, B, and y are the roots of x° + px* +gx+r, then Zl is
a
(-2 2-£ 34 4 <
r r r p

5. According to the rational root theorem, which number is not possible rational root of
4x7 +2x* —=10x* =57
5 4
1)-1 2)— 3)— 4) 5
(1 27 )3 4)
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6. The polynomial x’ —kx” +9x has three real roots if and only if, k satisfies

(DHIkl<6 2)k=0 3)lkl>6 4) [k|>6

7. The number of real numbers in [0, 27] satisfying sin* x—2sin” x+1 is

(1)2 (2)4 31 (4) oo
8. If X’ +12x° +10ax +1999 definitely has a positive root, if and only if
(1Ha=0 (2)a >0 3)a <0 4) a<0
9. The polynomial x’ +2x+3 has
(1) one negative and two real roots (2) one positive and two imaginary roots
(3) three real roots (4) no solution

10. The number of positive roots of the polynomial z "C (-1)'x" is

J=0

(1)0 ) n (3)<n 4) r

SUMMARY

In this chapter we studied
» Vieta’s Formula for polynomial equations of degree 2,3, and n>3.
* The Fundamental Theorem of Algebra : A polynomial of degree n >1 has at least one root
in C.
® . . ®
» Complex Conjugate Root Theorem : Imaginary (nonreal complex) roots occur as conjugate
pairs, if the coefficients of the polynomial are real.

* Rational Root Theorem : Let a,x" +---+a,x+a, with a, =0 and g, =0, be a polynomial

with integer coefficients. If P , with (p,q) =1, is a root of the polynomial, then p is a factor
q

of a, and ¢ is a factor of a, .

» Methods to solve some special types of polynomial equations like polynomials having only
even powers, partly factored polynomials, polynomials with sum of the coefficients is zero,
reciprocal equations.

* Descartes Rule : If p is the number of positive roots of a polynomial P(x) and s is the
number of sign changes in coefficients of P(x), then s— p is a nonnegative even integer.
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Inverse Trigonometric Functions

“The power of Mathematics is often to change one thing into another,
to change geometry into language”

- Marcus du Sautoy

Bl e
21RYOC

84.1 Introduction
In everyday life, indirect measurement is used to obtain solutions to problems

that are impossible to solve using measurement tools. Trigonometry helps us to find
measurements like heights of mountains and tall buildings without using
measurement tools. Trigonometric functions and their inverse trigonometric
functions are widely used in engineering and in other sciences including physics.

They are useful not only in solving triangles, given the length of two sides of a right
triangle, but also they help us in evaluating a certain type of integrals, such as

1 1
[t I

dx and J. ———dx .The symbol sin”' x denoting the inverse trigonometric function
arcsine (x) of sine function was introduced by the British mathematician John F.W.Herschel (1792-1871).

John F.W. Herschel

2
X" +a

For his work along with his father, he was presented with the Gold Medal of the Royal Astronomical
Society in 1826.

An oscilloscope is an electronic device that converts electrical signals
into graphs like that of sine function. By manipulating the controls, we can |
change the amplitude, the period and the phase shift of sine curves. The |
oscilloscope has many applications like measuring human heartbeats, where
the trigonometric functions play a dominant role.

Let us consider some simple situations where inverse trigonometric
functions are often used.

Ilustration-1 (Slope problem) Y
Consider a straight line y = mx +b. Let us find the angle § made by the line with

X -axis in terms of slope m . The slope or gradient m is defined as the rate of change of

. Ay . . ) Ay
a function, usually calculated by m = E-From right triangle (Fig. 4.1), tan0 = E

Slope: m = b _ tan 6
Ax

Thus, tan @ = m . In order to solve for @, we need the inverse trigonometric function

Fig. 4.1
called “inverse tangent function”. '8
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Ilustration-2 ( Movie Theatre Screens )
Suppose that a movie theatre has a screen of 7 metres tall. When |
someone sits down, the bottom of the screen is 2 metres above the eye level. |

The angle formed by drawing a line from the eye to the bottom of the screen

and a line from the eye to the top of the screen is called the viewing angle. LAY

xm

In the Fig. 4.2, 6 is the viewing angle. Suppose that the person sits x Fig. 42
metres away from the screen. The viewing angle @ is given by the function '

9 2 . . :
0(x)=tan™ (—j —tan”' (—j Observe that the viewing angle 6 is a function of x.

X X
Ilustration-3 ( Drawbridge ) P

. . . 2 —33m—,
Assume that there is a double-leaf drawbridge as shown in the 40m A X\ 40m

Fig.4.3. Each leaf of the bridge is 40 metres long. A ship of 33 metres =+ =
wide needs to pass through the bridge. Inverse trigonometric function ,j/g‘
helps us to find the minimum angle 6 so that each leaf of the bridge

should be opened in order to ensure that the ship will pass through the Fig. 4.3
bridge.

In class XI, we have discussed trigonometric functions of real numbers using unit circle, where
the angles are in radian measure. In this chapter, we shall study the inverse trigonometric functions,
their graphs and properties. In our discussion, as usual R and 7Z stand for the set of all real numbers
and all integers, respectively. Let us recall the definition of periodicity, domain and range of six
trigonometric functions.

LEARNING OBJECTIVES

Upon completion of this chapter, students will be able to

e define inverse trigonometric functions

e cvaluate the principal values of inverse trigonometric functions
e draw the graphs of trigonometric functions and their inverses

e apply the properties of inverse trigonometric functions and evaluate some expressions

4.2 Some Fundamental Concepts

Definition 4.1 (Periodicity)

A real valued function f is periodic if there exists a number p >0 such that for all x in the

domain of f, x+ p is in the domain of f and f(x+ p)= f(x).
The smallest of all such numbers, is called the period of the function £ .

For instance, sinx, cosx, cosecx, secx and e* are periodic functions with period 27

radians, whereas tan x and cot x are periodic functions with period 7 radians.
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Definition 4.2 (Odd and Even functions)

A real valued function f is an even function if for all x in the domain of f, —x is also in
the domain of f and f(—x)= f(x) .

A real valued function f is an odd function if for all x in the domain of f, —x is alsoin
the domain of fand f(—x)=-f(x).

For instance, x°, sinx, cosecx, tanx and cotx are all odd functions, whereas
x%,cosx and secx are even functions.

Remark
(1) The period of f =g this lem{period of g, period of /}, whenever they exist.

For instance, the period of y =cos6x+sin4xis 7w and that of y =cosx—sinxis 27.

4.2.1 Domain and Range of trigonometric functions

The domain and range of trigonometric functions are given in the following table.

Trigonometric |
function sinx | COSX tan x cosec x sec x cotx
Doman | R | R R\{(znﬂ)’;,neZ} B\ {nr. n e 2} R\{(z“l)’;,neZ} B\ {nr. n e 2}
Range [-1.1] | [ 1] R R\(-1, 1) R\(-1, 1) R

4.2.2 Graphs of functions
Let /:R — R be areal valued function and f(x) be the value of the function f ata point x in

the domain. Then, the set of all points (x, f(x)),x€R determines the graph of the function/. In

general, a graph in xy -plane need not represent a function. However, if the graph passes the vertical
line test (any vertical line intersects the graph, if it does, atmost at one point), then the graph represents
a function. A best way to study a function is to draw its graph and analyse its properties through the
graph.

Every day, we come across many phenomena like tides, day or night cycle, which involve
periodicity over time. Since trigonometric functions are periodic, such phenomena can be studied
through trigonometric functions. Making a visual representation of a trigonometric function, in the
form of a graph, can help us to analyse the properties of phenomena involving periodicities.

To graph the trigonometric functions in the xy-plane, we use the symbol x for the independent
variable representing an angle measure in radians, and y for the dependent variable. We write
y=sinx to represent the sine function, and in a similar way for other trigonometric functions. In the

following sections, we discuss how to draw the graphs of trigonometric functions and inverse
trigonometric functions and study their properties.

4.2.3 Amplitude and Period of a graph

The amplitude is the maximum distance of the graph from the x -axis. Thus, the amplitude of a
function is the height from the x -axis to its maximum or minimum. The period is the distance required
for the function to complete one full cycle.
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Remark
(1) The graph of a periodic function consists of repetitions of the portion of the graph on an
interval of length of its period.

(i1) The graph of an odd function is symmetric with respect to the origin and the graph of an even
function is symmetric about the y -axis.

4.2.4 Inverse functions

Remember that a function is a rule that, given one value, always gives back a unique value as its
answer. For existence, the inverse of a function has to satisfy the above functional requirement. Let
us explain this with the help of an example.

Let us consider a set of all human beings not containing identical twins. Every human being from
our set, has a blood type and a DNA sequence. These are functions, where a person is the input and
the output is blood type or DNA sequence. We know that many people have the same blood type but
DNA sequence is unique to each individual. Can we map backwards? For instance, if you know the
blood type, do you know specifically which person it came from? The answer is NO. On the other
hand, if you know a DNA sequence, a unique individual from our set corresponds to the known DNA
sequence. When a function is one-to-one, like the DNA example, then mapping backward is possible.
The reverse mapping is called the inverse function. Roughly speaking, the inverse function undoes
what the function does.

For any right triangle, given one acute angle and the length of one side, we figure out what the
other angles and sides are. But, if we are given only two sides of a right triangle, we need a procedure
that leads us from a ratio of sides to an angle. This is where the notion of an inverse to a trigonometric
function comes into play.

We know that none of the trigonometric functions is one-to-one over its entire domain. For

instance, given sinf=0.5, we have infinitely many 6 = %, %T, 13?”, —%T,—%,--- satisfying

the equation. Thus, given sin@, it is not possible to recover 8 uniquely. To overcome the problem of
having multiple angles mapping to the same value, we will restrict our domain suitably before defining
the inverse trigonometric function.

To construct the inverse of a trigonometric function, we take an interval small enough such that
the function is one-to-one in the restricted interval, but the range of the function restricted to that
interval is the whole range. In this chapter, we define the inverses of trigonometric functions with
their restricted domains.

4.2.5 Graphs of inverse functions

Assume that 1 is a bijective function and f'is the inverse of /. Then, y = f(x) if and only if
x= f'(y). Therefore, (a, b)is a point on the graph of f if and only if (b, a)is the corresponding
point on the graph of f~'. This suggests that graph of the inverse function /' is obtained from the
graph of f by interchanging x and y axes. In other words, the graph of f~'is the mirror image of
the graph of f inthe line y = x or equivalently, the graph of f~'is the reflection of the graph of f in
the line y=x.
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4.3 Sine Function and Inverse Sine Function
Let us recall that sine function is a function with R as its domain and [—1, 1] as its range. We

write y=sinxand y=sin"' x or y=arcsin(x) to represent the sine function and the inverse sine
function, respectively. Here, the symbol —1 is not an exponent. It denotes the inverse and does not

mean the reciprocal.
We know that sin(x+27)=sinx is true for all real numbers x. Also, sin(x+ p) need not be

equal to sinx for 0 < p <27 and for all x. Hence, the period of the sine function is 27 .

4.3.1 The graph of sine function

The graph of the sine function is the graph of y =sinx, where x is a real number. Since sine
function is periodic with period 27, the graph of the sine function is repeating the same pattern in
[—27r ,0], [0, 27r] , [271, 4%], [471, 671],
determine the portion of the graph for x e [0, 27r]. Let us construct the following table to identify

each of the intervals, -, . Therefore, it suffices to

some known coordinate pairs for the points (x, y) on the graph of y =sinx, x € [0, 27r].

. T ks s s 3m
x (in radian) 0 6 4 3 5 s > 27
1 1
y=sinx 0 3 5 73 1 0 - 0

It is clear that the graph of y =sinx, 0 <x < 2x, begins at the origin. As x increases from 0 to

. ) s 3
— , the value of y =sinx increases from 0to 1. As x increases from — to 7 and then to —7T, the

value of y decreases from 1 to 0 and then to —1. As x increases from | Y y=sinxin[0,27]

: amplitude
3T : p

~— to 27, the value of y increases from —1 to 0. Plot the points listed X

o 7‘\\3;7777
in the table and connect them with a smooth curve. The portion of the -1 2 :
graph is shown in Fig. 4.4. Fig. 4.4

The entire graph of y=sinx, xeR consists of

y=sinx, xR
repetitions of the above portion on either side of the
interval [O 271] asy =sinx 1is periodic with period 27 .

The graph of sine function is shown in Fig. 4.5. The _

portion of the curve corresponding to 0 to 27 is called a 7” vw - \7" v
cycle. Its amplitude is 1.

Note Fig. 4.5
Observe that sinx >0 for 0 <x <7, which corresponds to the values of the sine function in

quadrants I and II and sin x <0 for 7 < x <27, which corresponds to the values of the sine function

in quadrants III and IV.
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4.3.2 Properties of the sine function
From the graph of y =sinx, we observe the following properties of sine function:

(1) There is no break or discontinuities in the curve. The sine function is continuous.

(i1) The sine function is odd, since the graph is symmetric with respect to the origin.

. . . 3t © Sm ..
(i11)) The maximum value of sine functionis 1 and occursat x =---, — 7 , E s 7 ,-+-+ and the minimum
) n 3n Ix )
value is —1 and occurs at x =---, ECEIC I In otherwords, —1 <sinx <1 forall xe R.

4.3.3 The inverse sine function and its properties

The sine function is not one-to-one in the entire domain R . This is visualized from the fact that
every horizontal line y =5, —1<b <1, intersects the graph of y =sin x infinitely many times. In

other words , the sine function does not pass the horizontal line test, which is a tool to decide the

one-to-one status of a function. If the domain is restricted to [—5, E}, then the sine function

becomes one to one and onto (bijection) with the range [—1,1]. Now, let us define the inverse sine

function with [—1,1] as its domain and with [—%, %} as its range.

Definition 4.3

For —1< x <1, define sin”' x as the unique number y in {—% , %} such that sin y = x . In other

words, the inverse sine function sin™" : [-1, 1]— [—%,%} is defined by sin"'(x) = y if and only if

siny=x and y e rz
y y A

Note
. . . . . T
(1) The sine function is one-to-one on the restricted domain [—E, 5}, but not on any larger
interval containing the origin.

.. ) .. . ) noT . .
ii) The cosine function is non-negative on the interval | ——, = |, the range of sin”' x. This
g 25 g

observation is very important for some of the trigonometric substitutions in Integral Calculus.

(ii1)) Whenever we talk about the inverse sine function, we have,
sin:| %, % —[-11] and sin™:[-1,1]—> T
2 2 22

(iv) We can also restrict the domain of the sine function to any one of the intervals,

St 3m 3r x| [n 3n 3r 5S¢ L i )
S I U R ) el L et ...where it is one-to-one and its range is

[-1,1].

(vi) The restricted domain [— is called the principal domain of sine function and the values

of y=sin~' x,~1<x<1, are known as principal values of the function y =sin"" x.
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From the definition of y =sin™' x, we observe the following:
T

(i) y=sin"' x ifand only if x =sin y for -1<x<1 and —%Syﬁ 2

(ii) sin(sin” x)=x if |x|<land has no senseif [x|>1.

(iii) sin”' (sinx)=x if —%Sxé%.Notethat sin”'(sin 27) = 0= 27r.
o . 3

(iv) sin”'(sinx)=m-x if %Sxﬁ%.Notethat—%Sn—xS%.

(v) y=sin"' x is an odd function.

Remark

. ) . 1 . 1 )
Let us distinguish between the equations sinx ZE and x=sin"' (Ej To solve the equation
. 1 . . ) 1
sinx = 5 one has to find all values of x in the interval (—oo, o) such that sinx = 5 However, to
. . 1 ) . )
find x in x=sin" (Ej , one has to find the unique value x in the interval [—%, %} such that
) 1
sinx =—.
2

4.3.4 Graph of the inverse sine function

) ) ) . T
® The inverse sine function, sin™':[-1,1]— {—E, 5}, i : ’ ®
—1 1=
2
. . . . V2|
receives a real number x in the interval [—1, 1] as input and | 5| 4 y =sinx
0 0 —1 [0 1
gives a real number y in the interval {—E, 5} asoutput. As | V2| 7
2 | 4
usual, let us find some points (x, y)using the equation ! % 2
Fig. 4.6

y=sin"'x and plot them in the xy-plane. Observe that the
. 7 . . .
value of y increases from ~T t0 = as x increases from —1 to 1. By connecting these points by a

smooth curve, we get the graph of y =sin”' x as shown in Fig. 4.6.

Note
The graph of y=sin"' x

(1) isalso obtained by reflecting the portion of the entire graph of y =sin x in the interval [— % , %}

about the line y = x or by interchanging x and y axes from the graph of y =sinx.

(i1) passes through the origin.

(iii) is symmetric with respect to the origin and hence, y =sin”' x is an odd function.
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We depict the graphs of both y =sinx, —% <x< % and y=sin"'x, —1<x<1 together for a
better understanding.

Y
A

SR
®-
%

1

S

y=sinx in 75,6 y=sin'x
2°2

< X ¢ - X

-1 _
\

SR

\

Fig. 4.7 Fig. 4.8 Fig. 4.9

Fig. 4.9 illustrates that the graph of y=sin"'x is the mirror image of the graph of
y =sinx, —% <x< % , in the line y = x and also shows that the sine function and the inverse sine

function are symmetric with respect to the origin.
Example 4.1
. . . 1) . .
Find the principal value of sin™' (—Ej (in radians and degrees).

Solution

1 1
Let sin”'| —— |=y.Then siny =——.
-3)-» y=—t
_ o T T T
The range of the principal value of sin™ x is [—5, 5} and hence, letus find y [—5, 5} such
1 T
that sin y=——. Clearly, y=——.
Y > Y.y 6
Thus, the principal value of sin™' (—%) is —% . This corresponds to —30°. [
Example 4.2

Find the principal value of sin™' (2) , if it exists.

Solution
Since the domain of y = sin”' x is [—l, 1] and 2 ¢ [—l, 1] , sin”’ (2) does not exist. [ ]

| wwinlz)

, % is given by

Example 4.3
Find the principal value of

(i) sin™' (%j (i) sin™ (sin(—

Solution

w9

We know that sin™ :[-1, 1] —> {—%

T

sin”' x = y if and only if x =sin y for ~-1<x <1 and —%Syﬁ 5

. Thus,
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Do

(i) sin™' Lz ,  since Tel-
4 4

V2

ST T T . n [ non

(i) sin” | sin| —— | |=——, since ——e|——,—|.
3 3 30 22

(iii) sin™"| sin S—EJ = sin”' sin(n—Z = sin”'| sin =£, since ~ e _Z,Z .
6 6 6) 6 6 22 ]

Example 4.4
Find the domain of sin™ (2 - 3x2)

T LT
,— | and sin— =
2 ]

5i-

Solution
We know that the domain of sin™ (x) is [-1,1].

This leads to—1<2—3x” <1, which implies —3<-3x" <-1.

Now, —3<-3x%, gives x° <1 and . (1)

. 1
—3x* <1, gives x* >— .. (2)

1 1
Combining the equations (1) and (2), we get 3 <x*<1.Thatis, N <|x| <1, which gives

xe{—l, —%}u{%, 1}, since a§|x|§b implies xe[—b,—a]u[a, b]. ]

EXERCISE 4.1
1. Find all the values of x such that
(1) —10r <x <107 and sinx=0 (ii)) —87 <x<8r and sinx=-1.
2. Find the period and amplitude of
(1) y=sin7x (i) y= —sin(%xj (iii) y =4sin(—2x).

3. Sketch the graph of y =sin (%x} for 0<x<6r.

. . (5
4. Find the value of (i) sin”' [sin(z?ﬂn (ii) sin™ (sm(%j] )

5. For what value of x does sinx =sin"' x?

6. Find the domain of the following

241 b4
) f)=sin| 2T i) g(x)=2sin" (2x-1)-Z.
1 f(x) [ o (i) g(x) ( ) p
. .4 . 5w T St .ow
7. Find the value of sin sm?cosgjtcos?sm— .
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4.4 The Cosine Function and Inverse Cosine Function

The cosine function is a function with R as its domain and [—1, 1] as its range. We write y =cosx
and y=cos™' x or y=arccos(x) to represent the cosine function and the inverse cosine function,
respectively. Since cos(x+ 271) =cosx is true for all real numbers x and cos(x+ p)need not be

equal to cosx for 0< p<27m, xR, the period of y =cosx is27.

4.4.1 Graph of cosine function
The graph of cosine function is the graph of y = cosx, where x is a real number. Since cosine

function is of period 27, the graph of cosine function is repeating the same pattern in each of the

intervals ---,[-4m, —27], [-27,0], [0, 27], [27, 4x], [4r, 67], --- . Therefore, it suffices to
determine the portion of the graph of cosine function for x €[0,27]. We construct the following table

to identify some known coordinate pairs (x, y) for points on the graph of y =cosx, x € [O, 277] .

- radi 0 s s s w 3
x (in radian ) 5 4 3 > s > 27
1 1
Y =Ccosx 1 ? 7 > 0 -1 0 1

The table shows that the graph of y=cosx, 0<x<2x, begins at

1
(0,1). As x increases from 0 to 7 , the value of y =cosx decreases from \ /
X

1 to —1 .As x increases from 7 to 27, the value of y increases from [o 7\ 7 /3 2r
2 2
—1 to 1. Plot the points listed in the table and connect them with a

1

smooth curve. The portion of the graph is shown in Fig. 4.10. Fig. 4.10

y=cosx, xeR i
The graph of y =cosx, x € R consists of repetitions of the above 1

—A4r\=371f 27\ x| |O\ 7 [ 27 \37w [ 4x *
portion on either side of the interval [O, 271] and is shown in Fig. 4.11. \/ vl \/ \/

From the graph of cosine function, observe that cosx is positive in the Fig. 4.11

first quadrant (for 0<x< %J , negative in the second quadrant (for % <x< nj

and third quadrant (for T<x< 37”} and again it is positive in the fourth quadrant (for % <x< 27rj.

Note

We see from the graph that cos(—x)=cosx for allx, which asserts that y =cosx is an even
function.
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4.4.2 Properties of the cosine function
From the graph of y =cos x, we observe the following properties of cosine function:
(1) There 1s no break or discontinuities in the curve. The cosine function is continuous.

(i1) The cosine function is even, since the graph is symmetric about y -axis.

(ii1) The maximum value of cosine function is 1 and occurs at x=...,—2x,0,2x, ... and the
minimum value is — 1 and occurs at x=...,—m, 7,37, 57, ..... In other words, —1 <cosx <1
forall xeR.

Remark

(1) Shifting the graph of y=cosx to the right gradians, gives the graph of y = cos(x—%j ,

which is same as the graph of y =sinx. Observe that cos(x — %j = cos (% - x] =sinx.

(i) y=Asinax and y=Bcosfx always satisfy the inequalities —|A4|< Asinax<|4| and

. . . 2 .
—|B| < Bcos Bx <|B|. The amplitude and period of y = A sinaxare |4| and |—7T , respectively
a
2 .
and those of y = Bcos fx are |B| and |Fﬂ , respectively.

The functions y = Asinax and y = Bcos x are known as sinusoidal functions.

(ii1) Graphing of y = Asinax and y = Bcos fx are obtained by extending the

® portion of the graphs on the intervals {0 , 2—”& and {0 , %} , respectively.
o

B e
21RYOC

Applications

Phenomena in nature like tides and yearly temperature that cycle repetitively through time are
often modelled using sinusoids. For instance, to model tides using a general form of sinusoidal
function y =d +acos(bt—c), we give the following steps:

(1) The amplitude of a sinusoidal graph (function) is one-half of the absolute value of the difference

of the maximum and minimum y -values of the graph.

Thus, Amplitude , a = % (max— min) ; Centre lineis y=d, where d = %( max + min)

(i1) Period, p =2 x (time from maximum to minimum) ; b=—

(iil) ¢ =bx time at which maximum occurs.

Model-1

The depth of water at the end of a dock varies with tides. The following table shows the depth
(in metres ) of water at various time.

‘ ‘ Chapter 4 Inverse Trigonometry.indd 139

time, ¢ 12 am 2 am 4 am 6 am 8 am 10 am 12 noon
depth 3.5 4.2 3.5 2.1 1.4 2.1 3.5
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Let us construct a sinusoidal function of the form y =d +acos (bt - c) to find the depth of water

attime ¢. Here, a=1.4 ; d=28 ; p=12 ; b=% ; c=%.

The required sinusoidal function is y =2.8+1.4 cos (% t— %) .

Note
The transformations of sine and cosine functions are useful in numerous applications. A circular
motion is always modelled using either the sine or cosine function.

Model-2

A point rotates around a circle with centre at origin and radius 4 centered at the origin. We can

obtain the y -coordinate of the point as a function of the angle of rotation.
y

A
For a point on a circle with centre at the origin and radius a, y=4sind

4
the y -coordinate of the point is y =asin@, where 0 is the 3
2
1

4 units
angle of rotation. In this case, we get the equation

y(0)=4sin0 , where g is in radian, the amplitude is 4 and

the period is 27 . The amplitude 4 causes a vertical stretch

of the y -values of the function sin6 by a factor of 4.

\/
4.4.3 The inverse cosine function and its Fig. 4.12
properties
The cosine function is not one-to-one in the entire domain R . However, the cosine function is
one-to-one on the restricted domain [O, ﬂ]and still, on this restricted domain, the range is [—l, 1].

Now, let us define the inverse cosine function with [—1, 1]as its domain and with [O, 77,'] as its range.

Definition 4.4
For —1<x<1, define cos™' xas the unique number y in [0, 7] such that cos y =x. In other

words, the inverse cosine function cos™ :[~1, 1]— [0, 7] is defined by cos™(x) =y if and only if

cosy=xandye[0, 7].

Note

(1) The sine function is non-negative on the interval [0, n] , the range of cos™' x . This observation
is very important for some of the trigonometric substitutions in Integral Calculus.
(i1)) Whenever we talk about the inverse cosine function, we have cosx:[O, 7r] —)[—1, 1] and

cos” x:[-1,1] =0, x].
(ii1)) We can also restrict the domain of the cosine function to any one of the intervals

- [-m, 0],[x, 27],---, where it is one-to-one and its range is [-1, 1].
The restricted domain [O, 7'[] is called the principal domain of cosine function and the values of

y=cos 'x,-1<x<1, are known as principal values of the function y =cos ' x.
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From the definition of y =cos™ x, we observe the following:
(i) y=cos'x ifand only if x=cosy for -1<x<1and 0<y<rx.
(i1) cos (cos‘1 x) =x if |x| <1and has no sense if |x| >1.

(iii) cos™ (cosx)=x if 0<x<x ,therange of cos™ x. Note that cos™ (cos37)=7.

4.4.4 Graph of the inverse cosine function

The inverse cosine function cos™ :[—1, 1] — [0, 71], receives a real number x in the interval
[—1, 1] as an input and gives a real number y in the interval [O, n] as an output (an angle in radian
measure). Let us find some points (x, y) using the equation y =cos”' x and plot them in the

xy -plane. Note that the values of y decrease from 7 to 0 as x increases from —1 to 1. The inverse
cosine function is decreasing and continuous in the domain. By connecting the points by a smooth
curve, we get the graph of y =cos™' x as shown in Fig. 4.14

Y y

A X
1
T1 y=cosx
\

\
Fig. 4.13 Fig. 4.14

3 | <

y=cosx in [0, n] —

—_

Q
o |
3
\
=
|
—_ M‘s‘ o N‘&
SNSRI N
A
/

Note
(i) The graph ofthe function y = cos™ x isalso obtained from the graph y = cos x by interchanging
x and y axes.
(ii) For the function y =cos™' x, the x -intercept is 1 and the y -intercept is g .

(iii) The graph is not symmetric with respect to either origin or y -axis. So, y =cos™ x is neither

even nor odd function.

Example 4.5

2

ﬁ)

Find the principal value of cos™' (—

Solution
3
Let cos™ (%J =y. Then, cosy=

The range of the principal values of y =cos™ x is [0, 7].

NG
2

So, let us find y in [0, 7] such that cosy = g

V3 x

But, cosZ =Y and T e [0,7]. Therefore, y=—
6 2 6 6

. LGB
Thus, the principal value of cos™ | — | is —.
2 6
[ |
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Example 4.6
) ) af 1 .. r T O r
Find (i) cos ( _\/Ej (i) cos (cos( 3)] (ii1) cos (cos(—6 D

Solution
It is known that cos™' x: [—1, 1] - [O, 71] is given by
cos'x=y ifand only if x=cosy for -1<x<land 0<y<r.
Thus, we have
(i) cos™ _ L =3—7T, since 37 e[0,7] and cos3—ﬂ = COS(TL’ _E] = —cosZ= —L.
4 4 4 4 NG

V2 4
(ii) cos™ cos(—zj = cos” cos[zj =T since - L ¢ [0, 7], but e [0, 7].
3 3 3 3 3

O 1 St . T T \/g Sz Sz
(ii1) cos™ | cos o =Z_, since cos =cos| T+— |=———=coS s and ?E[O,ﬂ.’].

Example 4.7
Find the domain of cos™ [

Solution
By definition, the domain of y =cos™' x is —1<x <1 or |x|<1. This leads to

2+sinx L .
—-1< <1 whichis sameas —3<2+sinx<3.

@ K @

So, —-5<sinx <1 reducesto —1<sinx<1, which gives

2
2

—sin'(1)<x<sin'(1) or —% <x<

Thus, the domain of cos™ (2+§1nxj is {—%, %}

EXERCISE 4.2

1. Find all values of x such that

(1) -6mr <x <6 and cosx=0 (i) =57 <x <57 and cosx=1.
2. State the reason for cos™ {cos(—%ﬂ * —%.

3. Is cos '(—x)=m—cos '(x)true? Justify your answer.
4. Find the principal value of cos™ (%j .

5. Find the value of
. 1 1 .. 1
1) 2cos™'| = |+sin”'| = 1) cos™'| = |+sin' (-1
@) 2c0'(Jrsin(3] () oos”( 3 ]sin” (1)

(iii) cos™ [cos 7 cos - —sin X sin ij .
7 17 7 17
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) 1—
6. Find the domain of (i) f(x)=sin"' [%j +cos” (#] (i) g(x)=sin"' x+cos™' x

7. For what value of x, the inequality % <cos™ (3x—1) <z holds?

8. Find the value of
(1) cos| cos™ | — |+sin" | — (i1) cos™ | cos| — | |+cos | cos| — | |.
5 5 3 4

4.5 The Tangent Function and the Inverse Tangent Function

We know that the tangent function y =tanx is used to find heights or distances, such as the

height of a building, mountain, or flagpole. The domain of y =tanx= Y does not include values

COS X

of x, which make the denominator zero. So, the tangent function is not defined at
3r © nm 3m . ) .

x:---,—T,—E, 5, 7, Thus, the domain of the tangent function y=tanx is

{x:xeR,x¢%+kn,keZ}: G (21{;1%, 2k2+37rj and the range is (—oo,oo).The tangent

k=—0

function y =tanx has period .

4.5.1 The graph of tangent function
Graph of the tangent function is useful to find the values of the function over the repeated period

of intervals. The tangent function is odd and hence the graph of y =tan x is symmetric with respect

to the origin. Since the period of tangent function is 7, we need to determine the graph over some

interval of length 7 . Let us consider the interval (—Z , Ej and construct the following table to draw

the graph of y:tanx,xe(—z E].

27 2
x (inradian) T _r _r 0 T T z
3 4 6 6 4 3
—/3 3
y=tanx -3 -1 —\/— 0 £ 1 NE
3 3
. . . y=tanx in [73 E] i
Now, plot the points and connect them with a smooth curve for a partial F 8 §
7 v . 77 . L I -
graph of y =tanx, where Y <x< 3 If x is close to 5 but remains less g4 &
ol )
g 2 '8
than % , the sinx will be close to 1 and cos x will be positive and close to T . 0 g *
™ . Sinx . .. o |
0. So, as x approaches to —, the ratio is positive and large and thus -
2 CcoS X 1
approaching to oo. |
Fig. 4.15
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Therefore, the line x :% is a vertical asymptote to the graph. Similarly, if x is approaching to

is negative and large in magnitude and thus, approaching to —oo. So, the line

T . sinx
——, the ratio
2 cos X

X = —% is also a vertical asymptote to the graph. Hence, we get a branch of the graph of y =tanx

for - < x <Z as shown in the Fig 4.15. The interval (—%, %j is called the principal domain of

y=tanx.
y=tanx

Since the tangent function is defined for all real numbers except at

X = (2n+1)5, neZ, and is increasing , we have vertical asymptotes

ro| =
Q
I e e L
5
53
=¥

x:(2n+l)%, nelZ . As branches of y=tanx are symmetric with —31{1 X T
respect to x=nn,neZ , the entire graph of y=tanxis shown in I I
Fig. 4.16. S
Fig. 4.16
Note
3m .

.. . .. 7T .
From the graph, it is seen that y =tan x is positive for 0 <X < 5 and m <X<__ ; y=tanx is
2

@ negative for %<x<7r and for 377r<x<27r. @

4.5.2 Properties of the tangent function

From the graph of y =tan x, we observe the following properties of tangent function.

(1) The graph is not continuous and has discontinuity points at x = (2n + 1)%, new.
(i1) The partial graph is symmetric about the origin for —% <x< % .

(ii1) It has infinitely many vertical asymptotes x = (2n + 1)%

, nel.
(iv) The tangent function has neither maximum nor minimum.

Remark
(i) The graph of y = atanbx goes through one complete cycle for

T cx< T andits period is i
I i
(i1) For y = atanbx, the asymptotes are the lines x = ﬁ + |%k, keZ.

(ii1) Since the tangent function has no maximum and no minimum value, the term amplitude for
tan x cannot be defined.
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4.5.3 The inverse tangent function and its properties

The tangent function is not one-to-one in the entire domain R\ E+kﬂ’ ke Z}. However,

tan x : (— 2 Ej — Ris a bijective function. Now, we define the inverse tangent function with R

as its domain and (— 2 5] as its range.

Definition 4.5

. . T
For any real number x, define tan™' x as the unique number y in (_E , Ej such that tan y = x.

In other words, the inverse tangent function tan™ : (—o0, 00) — (—%, %j is defined by tan~'(x) = y
ifandonlyif tany=x and y e (—%, %j .

From the definition of y =tan™' x, we observe the following:
(i) y=tan™' x ifand only if x =tany for xR and —%<y<%.

(i1) tan(tan*1 x) = x for any real number x and y =tan"' x is an odd function.
4 . o T T 4 _
® (iii) tan™ (tanx)=x ifand only if S <x< Note that tan™' (tanz ) =0and not 7 . ®

Note
(1) Whenever we talk about inverse tangent function, we have,

tan:| - Z 2| S5R and tan:R—| - Z. 2|
22 2°2
(i1) The restricted domain (—%, %) is called the principal domain of tangent function and the

values of y=tan"' x, xe R, are known as principal values of the function y =tan' x.

4.5.4 Graph of the inverse tangent function
y=tan"' x is a function with the entire real line (—oo, oo) as its domain and whose range is

(—%, %j . Note that the tangent function is undefined at —% and at g . So, the graph of y =tan' x

lies strictly between the two lines y = —% and y= %, and never touches these two lines. In other
words, the two lines y = —% and y = % are horizontal asymptotes to y =tan ™' x.

Fig. 4.17 and Fig. 4.18 show the graphs of y =tanx in the domain (—%, %) and y=tan ' x
in the domain (—o0, ), respectively.
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. y .
y=tanx in (—E,Ej v
2028 |

=
<
Bl

1symptote
-~
ois| Tasymptote
|
|

Aoy (@RI
\
98]
|
N
|
Q
N
[95)

|
3
I
b
S
|3
— (=]
w|&

Fig. 4.17 Fig. 4.18

Note
(1) The inverse tangent function is strictly increasing and continuous on the domain (—oo, oo).

(ii) The graph of y =tan™' x passes through the origin.
(iii) The graph is symmetric with respect to origin and hence, y =tan"' x is an odd function.

Example 4.8
Find the principal value of tan™ (\E ) .

Solution

Let tan*(\/g):y.Then, tany:\/g. Thus, yz%. Since %e(—%,%j )

Hence, tan™ (\/g) = % .

|
Example 4.9
Find (i) tan™ (—JE ) (i) tan™ (tan 3?”) (iii) tan(tan"'(2019))
Solution
(i) tan™ (—\/g)ztan*1 tan| ~Z | |=-Z  since ~Ze|-Z. 21
3 3 3 2°2
(i) tan™ [tan 3—”}
5
Letus find 9 _Z, 7 |such that tan@ = tan3—7T.
2°2 5
Since the tangent function has period 7, tan 3?# =tan (3?” — ﬂ'j = tan (—2?”) .
Therefore, tan™ tan3—ﬂ =tan"'| tan —2—7[ = —2—7[ , since —2_71 € _E,E .
5 5 5 5 22
(ii1) Since tan(tan"1 x) =x,x€ R, wehave tan (tan_1(2019)) =2019.
|
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Example 4.10
Find the value of tan™' (1) +cos™ (%j +sin”’ (—%j .

Solution

Let tan'(=1)=y. Then, tany=—1= —tan% = tan(—%j .

As—Ze (—1 E] , tan"'(=1)= —%.

4 272
1 o
Now, cos (E] =y implies cos y =—=cos—.
T (1 7
As —e[0,7], cos™ (—j = —
2 3
Now, sin”' (——j =y implies siny=——= sin(——)

Therefore, tan'(—1)+cos™ 1 psint| = =42 2T
2 4 3 6 12 [
Example 4.11
Prove that tan(sin_l x) S = -1l<x<l.
I-x
Solution
If x=0, then both sides are equal to 0. .. (1)

Assume that 0<x<1.

Let O =sin"' x. Then 0 <6 <~ Now, sinf == gives tan0 =
2 1 1-x?
X

. (2
= )
X

Assume that—1 < x < 0. Then, 0 =sin "' x gives —% <6 < 0. Now, sin0 =% gives tan 6 =

|
Hence, tan(sm x)=

2
1—x
X

: N
o )

Equations (1), (2) and (3) establish that tan<sin‘l x) - =, —l<x<l. -
I-x

In this case also, tan (sin*1 x) =

EXERCISE 4.3

1. Find the domain of the following functions :

(i) tan' (V9 —x (i1) ltan_1 1-x2)-Z.
2

4
2. Find the value of (i) tanl(tan%rj (i) tan™ (tan(—%jj.
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3. Find the value of

(i) tan (tanl (%TD (ii) tan (tzm’1 (1947)) (iii) tan (tan’1 (—0.2021)) .
4. Find the value of (i) tan| cos™ | — |—sin | —— (i1) sin| tan~ | — [—cos™ | — | |.
2 2 2 5
(ii1) cos (sin"l (%j —tan”' (%D

4.6 The Cosecant Function and the Inverse Cosecant Function

Like sine function, the cosecant function is an odd function and has period 27 . The values of

cosecant function y =cosec x repeat after an interval of length 27r .Observe that y = cosec x = —
sin x

is not defined when sinx=0. So, the domain of cosecant function is R\{nn:neZ}. Since

—1<sin x <1, y=-cosec x does not take any value in between —1 and 1. Thus, the range of cosecant

function is (—o0,1]U[1,0).

4.6.1 Graph of the cosecant function

In the interval (0, 27), the cosecant function is

@ A y=cosecx in [0, 27] @
continuous everywhere except at the point x= 7 . It has 4 l l
| |
neither maximum nor minimum. Roughly speaking, the ; | |
| |
I y=1
value of y =cosec x falls from oo to 1 for x € (O,Z}, it ! 'l | -
2 A
-1 5 y=- 1! 7 |
raises from 1 to oo for x l:%,ﬂ'j Again, it raises from -2 | |
-3 l l
3n —4 : :
—oo to —1 for x e(n,—} and falls from —1 to —oo for J
2 Fig. 4.19
XE':3—7[,27T]. ]]/ Y = cosec x
2 o , |
I A
| | | 3 |
The graph of y=cosecx, xe(0,27)\{r}is A 5. i i L
| | | I I | |
shown in the Fig. 4.19. This portion of the graph is i i i L :y=li i
< I M S N S o
) - |3 B 1 0 - N I j o
repeated for the intervals ---,(—4m,—27)\{-37}, T ?W T T:r zr " 4:7r
| 1y=-1 | |
RV N L N
(—27,0)\{-7},(27,47)\ {37}, (4r,6m)\ {57}, . |- i i I
| | | | |
1 I T o
The entire graph of y =cosec xis shown in et L
Fig. 4.20.
Fig. 4.20
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4.6.2 The inverse cosecant function

The cosecant function, cosec :[—%,0) v, (0, %} — (—o0,—1] U [1,0) is bijective in the
restricted domain [— %,0] U (O, %} . So, the inverse cosecant function is defined with the domain

(—o0,—1] U [1,00) and the range [— %,Oj U (0, %} )

Definition 4.6

The inverse cosecant function cosec™ : (—o0,—1] U [1,00) — [— %,0) v, [0, %} is defined by

cosec ' (x) = y if and only if cosecy=x and y e {— %,Oj W/ (O, %} . ‘

4.6.3 Graph of the inverse cosecant function

The inverse cosecant function, y =cosec™'x is a function whose domain is R\ (- 1, 1) and the

range is {— %, %}\ {0}. That is, cosec i (—00,—1] U [l,00) > [— %,Oj ) (0, %} .

Fig. 4.21 and Fig. 4.22 show the graphs of cosecant function in the principal domain and the
@ inverse cosecant function in the corresponding domain respectively. @

y

-,

I
y=cosetx in
I

Fig. 4.21 Fig. 4.22
4.7 The Secant Function and Inverse Secant Function

The secant function is defined as the reciprocal of cosine function. So, y=sec x = is

COS X

defined for all values of x except when cos x =0 .Thus, the domain of the function y =sec x is

R\{Qn + l)% ‘ne Z} .As —1<cos x <1, y=sec x does not take values in (-1, 1). Thus, the range

of' the secant function is (—o0,1]U[1,) . The secant function has neither maximum nor minimum. The
function y =sec x is a periodic function with period 27 and it is also an even function.
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4.7.1 The graph of the secant function b

.. T 3m .
The graph of secant function in 0 <x <27, x#—,—, is

y=secx in [0,27]

7
5
3

shown in Fig. 4.23. In the first and fourth quadrants or in thei

interval Y <x< EX y=secx takes only positive values,

-7
whereas it takes only negative values in the second and third

quadrants or in the interval % <x< 37” . Fig. 4.23

T 37w . . .
For 0<x<2m, x= PRPE the secant function is continuous. The value of secant function

raises from 1 to cofor x € [O,%j ; itraises from —oo to —1 for x (%,77,’:| . It falls from —1 to —o0

for xe{n,?’?ﬂj and falls from oo to 1 for XE(%,Zﬂ}.

As y=secx is periodic with period 27, the same y
1 I | A 1 1 1
A R I S A
T 3m . 1 1 113 1 I I 1
segment of the graph for 0 < x <27, xi;,?,ls repeated ! ! ! ! ! ! !
AN A
. St 7 or 11 . ! ! ! ! ! ! -
® in [2%4”]\{7%,7%}’ [471,671]\{77[,7%}, ... and in i_zﬂi - J:,l OE pa E Py E 3 E - * @
1 1 J_2 1 1 1 1
OO PP [ LR ) i [ . G R A I
2 2 2 2 1 1 +4 1 1 1 |
o e e

Now, the entire graph of y=secx is shown in

Fig. 4.24.

4.7.2 Inverse secant function

The secant function,sec x:[O,n]\{%}—)R\(—l,l) is bijective in the restricted domain

[O,n]\{%}. So, the inverse secant function is defined with R\(-11) as its domain and with

[0, 7]\ {%} as its range.

Definition 4.7

The inverse secant function sec™ :R\(—l,l)—)[O,n]\{%} is defined by sec”'(x)=y

whenever secy =x and y €[0,7]\ {%}
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4.7.3 Graph of the inverse secant function

The inverse secant function, y =sec™' x is a function whose domain is R\ (—1,1) and the range

is [0,7‘[]\{%}. That is, sec™ :R\(—l,l)—)[o,n]\{%},
Fig. 4.25 and Fig. 4.26 are the graphs of the secant function in the principal domain and the

inverse secant function in the corresponding domain, respectively.

/

y=secx in[0,7]\ {7}

2

________________ T(---___________yzﬂ'
7f _T
---------------- 5-------------)1—2

Fig. 4.25 Fig. 4.26

Remark

@ A nice way to draw the graph of y =secx or cosec x: @

(i) Draw the graph of y = cos x or sin x

(i1)) Draw the vertical asymptotes at the x -intercepts and take reciprocals of y values.

4.8 The Cotangent Function and the Inverse Cotangent Function

The cotangent function is given by cotx =

. It is defined for all real values of x, except
tan x

when tanx =0 or x=nnr,neZ. Thus, the domain of cotangent function is R\ {n Tine Z} and its

range is (—oo,oo). Like tan x, the cotangent function is an odd function and periodic with period = .

4.8.1 The graph of the cotangent function

The cotangent function is continuous on the set (0, 271)\{7r} . Let us first draw the graph of
cotangent function in (O, 271) \ {77,'} . In the first and third quadrants, the cotangent function takes only

positive values and in the second and fourth quadrants, it takes only negative values. The cotangent

function has no maximum value and no minimum value. The cotangent function falls from oo to 0

T3

for xe(O,%} ; falls from 0 to —oo for xe[%,ﬂj ; falls from ooto 0 for xe(z ' }and falls

from 0 to —oo for xe{%, 2nj.
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Fig. 4.27 Fig. 4.28

The graph of y =cotx, x €(0,27)\{x}is shown in Fig 4.27. The same segment of the graph of
cotangent for (0,27)\{r} is repeated for (27,47)\{37} ,(4rn, 6w)\{5x},--, and for -,
(—47r,—27r)\{—371}, (—271, O)\{—ﬂ}. The entire graph of cotangent function with domain
R\{nm :neZ} is shown in Fig. 4.28.

4.8.2 Inverse cotangent function
The cotangent function is not one-to-one in its entire domain R\ {mr ‘ne Z} . However,
cot : (0, ) — (—o0, ) is bijective with the restricted domain (0, 7). So, we can define the inverse

cotangent function with (—oo,oo) as its domain and (0, 71) as its range.

| Definition 4.8
The inverse cotangent function cot™ :(—o0, ) — (0, 7) is defined by cot™ (x) =y if and only if
coty=xandye(0,7).

4.8.3 Graph of the inverse cotangent function

The inverse cotangent function, y =cot™' x is a function whose domain is R and the range is
(0,m). That is, cot™ x:(—o0,0) = (0, 7).

Fig. 4.29 and Fig. 4.30 show the cotangent function in the principal domain and the inverse
cotangent function in the corresponding domain, respectively.

y = cotx in (0,7) :
y=cot'x
; T

y

A
|
— O
0|
=~
/
po
=3
'/
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4.9 Principal Value of Inverse Trigonometric Functions
Let us recall that the principal value of a inverse trigonometric function at a point x is the value

of the inverse function at the point x, which lies in the range of principal branch. For instance, the

_ 3. ™ . T . .
principal value of cos™ (TJ 1s P since s € [0, n] When there are two values, one is positive and

the other is negative such that they are numerically equal, then the principal value of the inverse
trigonometric function is the positive one. Now, we list out the principal domain and range of
trigonometric functions and the domain and range of inverse trigonometric functions.

Princi Range of
. rincipal Inverse . e,
Function . Range . Domain Principal
Domain Function
value branch
. -T T ) -T T
sine 55 [-1,1] sin” [—11] B
cosine [0, 7] [-1.1] cos! [-1,1] [0, 7]
tangent T R 1 R T
g 2 ’ 2 tan 2 ’ 2
cosecant {7, E}\ 0} | R\ (=1, 1) cosec! R\(=1,1) [7, 5} \ {0}
T s
secant [0, 7]\ {E} R/(-11) sec! R\(-1,1) [0, 7]\ {E}
cotangent (0, 7) R cot™' R (0,7)

Example 4.12
Find the principal value of
(i) cosec™ (-1) (ii) sec™ (-2).
Solution
(i) Let cosec™ (=1)=y. Then, cosec y=-1
Since the range of principal value branch of y = cosec™'x is [—%, %} \ {0} and
noz

cosec (—£J=—l, we have y=—z. Note that —Ee -, \{O}.
2 2 2 2 2

Thus, the principal value of cosec™ (—1) is —% .

(ii) Let y =sec™ (—2). Then, secy=-2 .

By the definition, the range of the principal value branch of y =sec™ x is [0,7]\ {%} .

. T
Letus find y in [0,7]- {E} such that secy=-2.
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But, secy=—2 = cosy=——
Now, COSy=—l=—Cos£:cos r-Z _cosz— Therefore, y_z_”
2 3 3 3 3

. 2 . .2
Since 2% [0, ]\ 7\ the principal value of sec” (-2) is dlly
3 2 3 u
Example 4.13

23

Find the value of sec™ (_TJ )

Solution

Let sec™ (—%):9. Then, secO = _2 where 6 E[O,TL’] { } Thus, cos 6 ——ﬁ.

NG)
51 T T NE) _2V3 NE) _ S
Now, cos — =cos| 7 —— |=—cos| — |=——. Hence, sec”' —
6 6 2 3 6

6
Example 4.14

If cot™ (lj =0, find the value of cos0 .
7 o
“
Solution 7
By definition, cot™' x € (0, 7). /
. = .

Therefore, cot‘l( j @ implies 0 € (0,7).
7

But cot™' (%J =6 implies cotf = % and hence tan = 7.

|
Using tan@ = % , we construct a right triangle as shown . Then, we have, cos6 = %
Example 4.15
Show that cot™ 1. sec”' x, |x[>1.
Jx* -1
Solution
1 1
Let cot™' =a. Then, cota = .
(\/xz—lj Vx? -1 p T
=
We construct a right triangle with the given data.
From the triangle, seca = % =x.Thus, a=sec x. @ - [
Hence, cot™ ( ! ] =sec' x, [x[>1. -
Vx® -1
EXERCISE 4.4

1. Find the principal value of

(1) sec (%j (ii) cot‘l(\/g ) (111) cosec_l(—\/i)
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2. Find the value of
(1) tan™' (\/g)—sec*1 (-2) (i1) sin™ (= 1) + cos™ (%j + cot™! (2)

(iii) cot (1) + sin™! (—?] —sec™! (—\/5)

4.10 Properties of Inverse Trigonometric Functions

In this section, we investigate some properties of inverse trigonometric functions. The properties
to be discussed are valid within the principal value branches of the corresponding inverse trigonometric
functions and where they are defined.

Property-I

(i) sin"'(sin@) =6, if@e[—%, ﬂ (i) cos'(cos0) =0, if 6 [0, x].

(iii) tan"'(tan0) =0, ifee(—%, %) (iv) cosec'(cosecO) =0, if ee{—%, 5}\{0}

(v) sec”'(secO) =0, if 6 [0, 7] \ {%} (vi) cot'(cotf)=0, ifOe(0, ).
Proof

All the above results follow from the definition of the respective inverse functions.
T T

For instance, (i) let sin@=x; 0¢€ {—5, 5}
@ Now, sinf = x gives 0 =sin"' x, by definition of inverse sine function. @
Thus, sin”' (sin0)=0.
Property-I1
(1) sin(sin‘1 x) =x, if xe[-1,1]. (i1) cos(cos"1 x) =x, if xe[-1,1]
(iii) tan(tan'x)=x, if xeR (iv) cosec(cosec' x)=x, if xeR\(-1,1)

x, if xeR\(-L1)  (vi) cot(cot”x)=x, ifxeR

v) sec(sec*1 x)
Proof
(i) For xe[-1,1], sin™ x is well defined.

Let sin”' x=6 . Then, by definition 0 € [—%, %} and sinf =x

Thus, sin® = x implies sin (sin*1 x) =x.
Similarly, other results are proved.

Note
(i) For any trigonometric function y = f(x), we have f ( [ (x)) =x for all x in the range of f .

This follows from the definition of 7 '(x). When we have, f ( gil(x)), where
g '(x)=sin"" x or cos™" x, it will usually be necessary to draw a triangle defined by the inverse
trigonometric function to solve the problem. For instance, to find cot(sin_] x) , we have to

draw a triangle using sin~' x. However, we have to be a little more careful with expression of
the form /7' ( f(x)).
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(ii) Evaluation of f'[f(x)], where f is any one of the six trigonometric functions.
(a) If x is in the restricted domain (principal domain) of f, then 7'[ f(x)]=x.

(b) If x is not in the restricted domain of f*, then find x, within the restricted domain of f
such that f(x)= f(x,). Now, £ '[f(x)]=x, . For instance,

x ifxe —E,E
2 2

sin”' (sinx) =
x, if x¢|——, —|,wheresin x=sinx, and x, €| ——, — |.
2°2 2°2

Property-III (Reciprocal inverse identities)

(i) sin™ (lj= cosecx, if xeR\(-1,1). (ii) cos™ (lj= secx, if xeR\(-11).
x x

(1 cot ' x if x>0
(i11) tan™ | — |=

x —m+cot ' x if x<O.
Proof . .
(1) If xe R\(—l, 1) ,then—e [—l, 1] and x=0. Thus, sin™' (—j is well defined.
X

T

X
-=, E}\{O}and sinezl.
2 2

Let sin”' (lj = 0. Then, by definition 6 € [
X

X

Thus, cosecO = x , which in turn gives 6 = cosec™' x.

Now, sin™ (lj = @=cosec”' x. Thus, sin™ (lj =cosec'x, xe R\ (—1, 1)

X X

Similarly, other results are proved.

Property-IV (Reflection identities)

(i) sin”'(=x)=—sin""x, if xe[-1,1].
(ii) tan™'(=x)=—tan" x, if xeR.
(iii) cosec™'(—x)=— cosec 'x, if |x| >l orxe ]R\(—l, 1).
(iv) cos'(=x)=m—cos' x, if xe[-1,1].
(v) sec'(—x)=m—sec' x, if |x|21 or xe]R\(—l, 1).
(vi) cot'(=x)=m—cot'x, if xeR.
Proof
(1) If xe [—1, 1] ,then —x € [—1, 1]. Thus, sin~'(—x)is well defined
- T .
Let sin” (—x) =6 . Then 6 e{—;, 5} and sinf =-x.

Now, sinf =-x gives x =—sinf =sin(—0)
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From x =sin(—0), we must have sin™' x =—0 , which in turn gives 0 =—sin"' x.
b b

Hence, sin™'(-x) =—sin" x.
(iv) If xe[-1,1], then —xe[-1,1].  Thus, cos™(-x)is well defined
Let cos'(—x)=6.Then 6 €[0, 7] and cos 6 =—x.
Now, cosf =—x implies x=—-cos6 =cos(z—0).
Thus, 7 —0 =cos™' x, which gives 0 =7 —cos ™' x.
Hence, cos ' (—x)=m —cos ' x.
Similarly, other results are proved.

Note
(i) The inverse function of an one-to-one and odd function is also an odd function. For instance,
y =sin"' x is an odd function, since sine function is both one-to-one and odd in the restricted
. T T
domain | ——, — |.
22
(11) Is the inverse function of an even function also even? It turns out that the question does not
make sense, because an even function cannot be one-to-one if it is defined anywhere other
than 0. Observe that cos™ x and sec™ x are not even functions.
Property-V ( cofunction inverse identities )

(1) sin_1x+cos_1x=%, xe[-1,1]. (i1) tan_1x+cot"1x:%, xeR.
® (iii) cosec"1x+sec_1x:%, xeR\(-1,1) or [x|>1. ®
Proof

(i) Here, xe[-1,1]. Let sin” x=0.Then 6 e[—%, %} and sin@ =x.
Note that -2 <0<Z = 0<Z-9<z.
2 2 2
So, cos(%—@j =sin@ = x, which gives cos™' x =%—9 = %—sin"1 X.

- . T
Hence, cos™ x+sin lx:E, x| <1.

(ii) Let cot'x=60. Then, cot@ =x, 0<O<rm and xeR.
Now, tan(%—9j=cot9=x. .. (1)

Thus, for x € R, tan(tan™' x) = x and (1) gives tan(tan”' x) = tan(% - 0).

Hence, tan(tan ' x)=tan (% —cot™ xj . (2)

) . T ow LT
Note that 0 <cot™ x <7 gives —5<——cot Ix<5.

1

. . T _ _ _ n
Thus, (2) gives tanlx:E—cotlx. So, tan x+c0t1x:E, xeR.

Similarly, (iii) can be proved.
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Property- VI
(i) sin” x+sin”' y = sin 1(x\/l 12+ pl—x ), where either x” +y” <1 or xy<0.

(ii) sin”' x—sin”' y = sin”' x\/l y? y\/l X ) where either x* +y” <1 or xy>0.

(iii) cos*1x+cos*1y:c0s1[xy NI l—yz} if x+y2>0.

(iv) cos™' x—cos™' y =cos” 1[xy l—yz} if x<y.

X+

(&
(i

<

(v) tan"' x+tan"' y =tan" j, if xy<l1.

Q

(vi) tan"' x—tan”' y =tan" j if xy>-1.

%} x| <1 and cos 4 is positive
I
2 2

Now, cosA=+\/1—sin2A=\/l—x2 and cosB=+\/1—sinzB=\/1—

¥|<1 and cos Bis positive

Proof
(i) Let A=sin"'x.Then, x=sind ; Ae {
Let B=sin"'y. Then, y=sinB ; Be {

l\>|"\ l\)lR\

Thus, sin(A4+ B) =sin Acos B+cos Asin B

= x\/l—y2 +yv1-x>, where x| <1;

Therefore, A+ B=sin™ (x\/l —y* + y\/l —x’ )

Thus, sin”' x+sin”' y = sin™ (x\/l—y2 +y\/1—x2 ), where either x” +)* <1 or xy<0.

Similarly, other results are proved.

Property-VII 2y 152
(i) 2tan”' x =tan™' ( j <1 (ii) 2tan”' x =cos”' ( - j , x>0
x I+x
(iii) 2tan”' x =sin™ (lixz j, <1.
X
Proof
(1) By taking y=x in Property-VI (v), we get the desired result
2tan”' x = tanl( 2x2 j, <1.
I-x
(ii) Let @ =2tan"'x. Then, tang =X
1- tan20 1— 2 1= 2
The identity cosf = e ~ gives 6 =cos™ = .
1+tan2 Y 1+x I1+x
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1_ 2
Hence, 2tan'x=cos” [1 le, x=>0.
+Xx

Similarly, other result is proved.

Property-VIII
(i) sin”! (2xx/1—x2)=25in_1x if [x]<— o

IN
=
IN

5i-

=
|

N
~

1
(i1) sin’1(2x\/1—x2):2c0s’1x if —2§X§1.

Proof
(1) Let x=sinf.

Now, ZxW =2sin6 cosO =sin 20
Thus, 260 =sin™' (Zx\/g) . Hence, sin™ (2xﬁ) =2sin"' x.
(i1)) Let x=cosH.
Now, ZxW =2cos0sinf =sin 20 , which gives
20 =sin™ (Zx\/g) . Hence, sin™! (Zx\/E) =2cos ' x.
Property-I1X
() sin” x=cos '1—x* f0<x<I. (i) sin” x=—cos ' V1-x? if-1<x<0.

(ii) sin‘1x=tan‘l{ Jif—1<x<1. (iv) cos” x=sin"'vlI-x* f0<x<I.

X
NI

X 1
V) cos ' x=m—sin'Vl-x> f-1<x<0. (V) tanlxzsinl( J:cosl( j.ifx>0.
V1+x? V1+x?
i3

2

Proof
(i) Let sin”'x=6.Then, sin@ = x.Since 0<x<1,weget 0<0<

cosO =+1—x” or cos'V1—-x* =60 =sin"x.
Thus, sin 'x=cos 'V1—x*,0<x<1
(i) Suppose that —1<x<0 and sin"' x=0 . Then —% <6<0

So, sinf = x and cos (-0)=+/1-x*>  (since cos® >0)

Thus, cos™' V1—-x> =—0 =—sin"' x. Hence, sin”' x =—cos ' V1—x~.

Similarly, other results are proved.

Property-X

(i) 3sin' x=sin"'Bx—4x’), xe {—%, %} . (ii) 3cos ' x=cos ™' (4x’ =3x), xe€ [%, 1} .
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Proof
(i) Let x=sin@. Thus, O =sin"'x.
Now, 3x—4x’ =3sin6—4sin’ 0 =sin30.
Thus, sin”'(3x—4x’)=30 =3sin"' x.
The other result is proved in a similar way.

Remark

%—x, if xe[0,7]

(i) sin'(cosx)=
%—y, if x¢[0,7]and cosx=cosy,ye[0,7]
Ty ifx{_g,g}

(ii) cos™'(sinx)=
T if xe T Z | and sinx=siny, ye Lz
2P 272 ’ 272

Example 4.16
Prove that % <sin'x+2cos ' x< 377[ )

Solution

. _ . _ _ T _
Sin 1)6'-1—2008 1)C=Sll’1 1)C-i-COS l)C+COS IX:E-FCOS IX

T T T
We know that 0<cos™' x<x . Thus, 5+0Scos"1x+zﬁn+5 .

T . _ 3z
Thus, Eﬁsm 1x+2coslxs?-

cos| — (i) tan™ | tan| —
3 4
(iii) sec™ [sec(s?ﬂjj (iv) sin”'[sin10]

Example 4.17
Simplify (i) cos™

Solution

(i) cos™ (COS(BTﬂjj . The range of principal values of cos™' x is [0,7].

137 13«7

Since 13Tﬂeé[o,ﬂ],we write Tas 7 —4r+ X where %6[0, ).

Now, cos 13—” =Cos 47r+z :cosz.
3 3 3

Thus, cos™ COS(B—ﬂj =cos’ COS(EJ T since L e [0,7].
3 3 3 3
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.. 0 RY4
(i1) tan (tan [TD .

Observe that 3—7T is not in the interval (—%, %J , the principal range of tan™' x.

. 3m T
So, we write — =7 ——.
4 4

Now, tan| — |=tan| 7 —— |=—tan—=tan| —— |and ——¢€| ——, — |.
4 4 4 4 4 2 2
a 3r i s T T T T
Hence, tan™ | tan| — | [=tan | tan| —— | |=——, since —— & |——,—].
4 4 4 4
(iii) sec™ (sec(%}j.

Note that S?W is not in [0, ﬂ]\{%}, the principal range of sec™ x.

We write 5—ﬂ=27r—£. Now, sec S —sec| 272 |=sec| £ | and Ze[O, 7]\ zt
3 3 3 3 3 3 2

Hence, sec”! sec(s—ﬂ] =sec’ sec(zj :E_
3 3 3

@ (iv) sin™ [sinlO] @

We know that sin™ (sin6) =6 if 6 e {—%, %} . Considering the approximation g = % ,

we conclude that 10 ¢ —z, z ,but (10-37) e —Z, 2 .
22 22
Now, sinl0 = sin(37r +(10—37T)) =sin(z + (10-37) = —sin(10-37) = sin(37 —10).
Hence, sin"'[sin10]=sin"' | sin(37 —10) | =37 —10, since (37 —10) e —E, x .
[sin10] =sin” [sin (37 -10)] ero0e| -2 2]
Example 4.18
Find the value of (i) sin| = —sin"' . (ii) cos Leost( L
3 2 2 8
2
(iii) tan L gint 2a2 +Leost| ] a2 .
2 l+a 2 l+a
Solution
w T . 1 e T . (T
(1) sin| ——sin" | —— | |=sin| ——| —— | |=sin| — |=1.
3 2 | 3 6 2
y . 1 (1] (1 1
(ii) Consider cos Seos | 2| Let cos 3 =0 . Then, cosé):g and 0 €0, 7].
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0
Now, cosf = l implies 2cos’ Q —1= l . Thus, cos Q = E , since COS(—] is positive.
2 8 2) 4 2

Thus, cos lcos’1 1 =cos o =§.

2 8 2 4
2
(i) tan| L sin| 29 |+ Leos | 122
2 1+a 2 1+a

Let a=tan0.

Now,

1. _1[ 2a j 1
tan| —sin > | +—=cos
2 1+a 2

Example 4.19

1

Prove that tan(sin”

X)= al
V1-x?

Solution

Let sin'x=6. Then, x=sinf and -1<x<1

sin@  sin0

(1-a° 1. _1(
5 =tan| —sin
1+a 2

=tan [% sin™ (sin 20) + % cos” (cos 29)} =tan [29] =

for |x|<1.

Now, tan(sin' x)=tan = =
® cos®  \1-sin’@
Example 4.20
.3 (5
Evaluate sin|sin | = |+sec | —
5 4
Solution
) 5 4
Let sec Z =0.Then, secO =— and hence, cosf = g )

Also, sin@=+/1-cos’0 =

4
2
1—(ij zé , Whi
5 5
3

1+tan’ 0

1+tan’ 0

2tan9j 1 _l[l—tanZQ
el LU ey

2tan0 2a

1-tan’0 1-da’

. (3
ch gives 0 =sin '(EJ

Thus, sec™ > = gin™! 3 and sin™' = +sec! EAE 2 sin™! 3 .
4 5 5 4 5

We