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Throughout the years, our objective has always been to write in a precise,
readable manner with the fundamental concepts and rules of calculus clearly defined
and demonstrated. When writing for students, we strive to offer features and 
materials that enable mastery by all types of learners. For the instructors, we aim to
provide a comprehensive teaching instrument that employs proven pedagogical 
techniques, freeing instructors to make the most efficient use of classroom time. 

This revision brings us to a new level of change and improvement. For the past
several years, we’ve maintained an independent website—CalcChat.com— that
provides free solutions to all odd-numbered exercises in the text. Thousands of 
students using our textbooks have visited the site for practice and help with their
homework. With the Ninth Edition, we were able to use information from
CalcChat.com, including which solutions students accessed most often, to help guide
the revision of the exercises. This edition of Calculus will be the first calculus textbook
to use actual data from students.

We have also added a new feature called Capstone exercises to this edition. These
conceptual problems synthesize key topics and provide students with a better under-
standing of each section’s concepts. Capstone exercises are excellent for 
classroom discussion or test prep, and instructors may find value in integrating these
problems into their review of the section. These and other new features join our 
time-tested pedagogy, with the goal of enabling students and instructors to make the
best use of this text.

We hope you will enjoy the Ninth Edition of Calculus of a Single Variable. As
always, we welcome comments and suggestions for continued improvements.

Welcome to the Ninth Edition of Calculus of a Single Variable! We are proud to
offer you a new and revised version of our textbook. Much has changed since we
wrote the first edition over 35 years ago. With each edition we have
listened to you, our users, and have incorporated many of your 
suggestions for improvement.
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We would like to thank the many people who have helped us at various stages of
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have been invaluable to us.
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T extbook Features

Tools to Build Mastery

NEW! Capstone exercises now appear in every
section. These exercises synthesize the main
concepts of each section and show students how the
topics relate. They are often multipart problems that
contain conceptual and noncomputational parts, and
can be used for classroom discussion or test prep. 

CAPSTONES

These writing exercises are questions designed to test
students’ understanding of basic concepts in each
section. The exercises encourage students to verbalize
and write answers, promoting technical communication
skills that will be invaluable in their future careers.

WRITING ABOUT CONCEPTS

The devil is in the details. Study Tips help point out some of the troublesome
common mistakes, indicate special cases that can cause confusion, or
expand on important concepts. These tips provide students with valuable
information, similar to what an instructor might comment on in class. 

STUDY TIPS

Throughout the text, examples are worked out
step-by-step. These worked examples
demonstrate the procedures and techniques for
solving problems, and give students an increased
understanding of the concepts of calculus.

EXAMPLES

70. Use the graph of shown in the figure to answer the
following, given that 

(a) Approximate the slope of at Explain.

(b) Is it possible that Explain.

(c) Is Explain.

(d) Approximate the value of where is maximum.
Explain.

(e) Approximate any intervals in which the graph of is
concave upward and any intervals in which it is concave
downward. Approximate the -coordinates of any
points of inflection.

(f) Approximate the -coordinate of the minimum of 

(g) Sketch an approximate graph of To print an enlarged
copy of the graph, go to the website
www.mathgraphs.com.

f.

f � �x�.x

x

f

fx

f �5� � f �4� > 0?

f �2� � �1?

x � 4.f

x

2
3

3 5 721

4
5

8−2

f ′

y

f �0� � �4.
f�

CAPSTONE

p

59. The graph of is shown in the figure.

(a) Evaluate 

(b) Determine the average value of on the interval 

(c) Determine the answers to parts (a) and (b) if the graph
is translated two units upward.

60. If represents the rate of growth of a dog in pounds 
per year, what does represent? What does 
represent about the dog?

�6
2 r��t� dtr�t�

r��t�

�1, 7�.f

�7
1 f �x� dx.

x
1 2 3 4 5 6 7

1

2

3

4

y

f

f

WRITING ABOUT CONCEPTS

Because integration is 
usually more difficult than differentiation,
you should always check your answer to
an integration problem by differentiating.
For instance, in Example 4 you should
differentiate to verify
that you obtain the original integrand.

1
3�2x � 1�3�2 � C

STUDY TIP

Later in this chapter,
you will learn convenient methods for
calculating for continuous 
functions. For now, you must use the
limit definition.

�b
a f �x� dx

STUDY TIP

Remember that you can
check your answer by differentiating.

STUDY TIP

EXAMPLE 6 Evaluation of a Definite Integral

Evaluate using each of the following values.

Solution

■�
4
3

� ��26
3 	 � 4�4� � 3�2�

� �
3

1
x2 dx � 4
3

1
x dx � 3
3

1
dx


3

1
��x2 � 4x � 3� dx � 
3

1
��x2� dx � 
3

1
 4x dx � 
3

1
��3� dx


3

1
dx � 2
3

1
x dx � 4,
3

1
x2 dx �

26
3

,


3

1
��x2 � 4x � 3� dx

www.mathgraphs.com


Textbook Features xiii

Practice makes perfect. Exercises are often the
first place students turn to in a textbook. The
authors have spent a great deal of time analyzing
and revising the exercises, and the result is a
comprehensive and robust set of exercises at the
end of every section. A variety of exercise types
and levels of difficulty are included to
accommodate students with all learning styles. 

In addition to the exercises in the book, 3,000
algorithmic exercises appear in the WebAssign®

course that accompanies Calculus.

EXERCISES

“When will I use this?” The authors attempt to answer this question
for students with carefully chosen applied exercises and examples.
Applications are pulled from diverse sources, such as current events,
world data, industry trends, and more, and relate to a wide range of
interests. Understanding where calculus is (or can be) used promotes
fuller understanding of the material.

APPLICATIONS

Review Exercises at the end of each chapter provide more
practice for students. These exercise sets provide a
comprehensive review of the chapter’s concepts and are 
an excellent way for students to prepare for an exam.

REVIEW EXERCISES

These sets of exercises at the end of each chapter test students’ abilities
with challenging, thought-provoking questions.

P.S. PROBLEM SOLVING

In Exercises 1 and 2, use Example 1 as a model to evaluate the
limit

over the region bounded by the graphs of the equations.

1.

(Hint: Let )

2.

(Hint: Let )

In Exercises 3– 8, evaluate the definite integral by the limit
definition.

3. 4.

5. 6.

7. 8.

In Exercises 13–22, set up a definite integral that yields the area
of the region. (Do not evaluate the integral.)

13. 14.

15. 16.

x

4

3

2

1

y

x

8

6

4

2

y

f �x� � x2f �x� � 4 � �x�

1 2 3 4 5−1−2

1

2

3

4

5

6

x

y

x
1 2 3 4 5

5

4

3

2

1

y

f �x� � 6 � 3xf �x� � 5


1

�2
�2x2 � 3� dx
2

1
�x2 � 1� dx


4

1
 4x2 dx
1

�1
x3 dx


3

�2
x dx
6

2
 8 dx

ci � i 3�n3.

x � 1x � 0,y � 0,f �x� � 3�x,

ci � 3i 2�n2.

x � 3x � 0,y � 0,f �x� � �x,

lim
n � 

n

i�1
f �ci� �xi

4.3 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

f
e

a
h

63. Respiratory Cycle The volume in liters, of air in the lungs
during a five-second respiratory cycle is approximated by the
model where is the time
in seconds. Approximate the average volume of air in the lungs
during one cycle.

64. Average Sales A company fits a model to the monthly sales
data for a seasonal product. The model is

where is sales (in thousands) and is time in months.

(a) Use a graphing utility to graph for
Use the graph to explain why the average

value of is 0 over the interval.

(b) Use a graphing utility to graph and the line
in the same viewing window. Use the

graph and the result of part (a) to explain why is called
the trend line.

65. Modeling Data An experimental vehicle is tested on a
straight track. It starts from rest, and its velocity (in meters per
second) is recorded every 10 seconds for 1 minute (see table).

(a) Use a graphing utility to find a model of the form
for the data.

(b) Use a graphing utility to plot the data and graph the model.

(c) Use the Fundamental Theorem of Calculus to approximate
the distance traveled by the vehicle during the test.

v � at3 � bt2 � ct � d

v

g
g�t� � t�4 � 1.8

S�t�
f �t�

0 � t � 24.
f �t� � 0.5 sin�	t�6�

tS

0 � t � 24S�t� �
t
4

� 1.8 � 0.5 sin�	 t
6 	,

tV � 0.1729t � 0.1522t2 � 0.0374t3,

V,

t 0 10 20 30 40 50 60

v 0 5 21 40 62 78 83

In Exercises 1 and 2, use the graph of to sketch a graph of 
To print an enlarged copy of the graph, go to the website
www.mathgraphs.com.

1. 2.

In Exercises 3– 8, find the indefinite integral.

3. 4.

5. 6.

7. 8.

9. Find the particular solution of the differential equation
whose graph passes through the point 

10. Find the particular solution of the differential equation
whose graph passes through the point 

and is tangent to the line at that point.

Slope Fields In Exercises 11 and 12, a differential equation, a
point, and a slope field are given. (a) Sketch two approximate
solutions of the differential equation on the slope field, one of
which passes through the given point. (To print an enlarged copy
of the graph, go to the website www.mathgraphs.com.) (b) Use
integration to find the particular solution of the differential
equation and use a graphing utility to graph the solution.

11. 12.

13. Velocity and Acceleration An airplane taking off from a
runway travels 3600 feet before lifting off. The airplane starts
from rest, moves with constant acceleration, and makes the run
in 30 seconds. With what speed does it lift off?

14. Velocity and Acceleration The speed of a car traveling in a
straight line is reduced from 45 to 30 miles per hour in a
distance of 264 feet. Find the distance in which the car can be
brought to rest from 30 miles per hour, assuming the same
constant deceleration.

15. Velocity and Acceleration A ball is thrown vertically upward
from ground level with an initial velocity of 96 feet per second.

(a) How long will it take the ball to rise to its maximum height?
What is the maximum height?

(b) After how many seconds is the velocity of the ball one-half
the initial velocity?

(c) What is the height of the ball when its velocity is one-half
the initial velocity?

16. Modeling Data The table shows the velocities (in miles per
hour) of two cars on an entrance ramp to an interstate highway.
The time is in seconds.

(a) Rewrite the velocities in feet per second.

(b) Use the regression capabilities of a graphing utility to find
quadratic models for the data in part (a).

(c) Approximate the distance traveled by each car during the
30 seconds. Explain the difference in the distances.

In Exercises 17 and 18, use sigma notation to write the sum.

17.

18.

In Exercises 19–22, use the properties of summation and
Theorem 4.2 to evaluate the sum.

19. 20.

21. 22.

23. Write in sigma notation (a) the sum of the first ten positive odd
integers, (b) the sum of the cubes of the first positive integers,
and (c) 

24. Evaluate each sum for and

(a) (b)

(c) (d) 
5

i�2
�xi � xi�1�

5

i�1
�2xi � x 2

i �


5

i�1

1
xi

1
5

5

i�1
xi

x5 � 7.
x4 � 3,x3 � 5,x1 � 2, x2 � �1,

6 � 10 � 14 � 18 � .  .  . � 42.
n


12

i�1
i�i 2 � 1�

20

i�1
�i � 1�2


20

i�1
�4i � 1�

20

i�1
 2i

�3
n	�

1 � 1
n 	

2

� �3
n	�

2 � 1
n 	

2

� .  .  . � �3
n	�

n � 1
n 	

2

1
3�1� �

1
3�2� �

1
3�3� � .  .  . �

1
3�10�

t

y

x
7−1

6

−2

x

y

−6

−1 5

�6, 2�dy
dx

�
1
2

x2 � 2x,�4, �2�dy
dx

� 2x � 4,

3x � y � 5 � 0
�2, 1�f � �x� � 6�x � 1�

�1, �2�.f��x� � �6x


 �5 cos x � 2 sec2 x� dx
 �2x � 9 sin x� dx


 x4 � 4x2 � 1
x2 dx
 x4 � 8

x3 dx


 2
3�3x

dx
 �4x2 � x � 3� dx

x

f ′

y

x

f ′

y

f.f�

318 Chapter 4 Integration

4 REVIEW EXERCISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

t 0 5 10 15 20 25 30

v1 0 2.5 7 16 29 45 65

v2 0 21 38 51 60 64 65

1. Let

(a) Find 

(b) Find and 

(c) Use a graphing utility to approximate the value of (to three
decimal places) for which 

(d) Prove that for all positive values of
and

2. Let

(a) Use a graphing utility to complete the table.

(b) Let Use a graphing

utility to complete the table and estimate 

(c) Use the definition of the derivative to find the exact value of
the limit 

In Exercises 3 and 4, (a) write the area under the graph of the
given function defined on the given interval as a limit. Then (b)
evaluate the sum in part (a), and (c) evaluate the limit using the
result of part (b).

3.

Hint:

(d) Locate all points of inflection of on the interval 

6. The Two-Point Gaussian Quadrature Approximation for is

(a) Use this formula to approximate Find the error
of the approximation.

(b) Use this formula to approximate 

(c) Prove that the Two-Point Gaussian Quadrature Approxi-
mation is exact for all polynomials of degree 3 or less.

7. Archimedes showed that the area of a parabolic arch is equal to 
the product of the base and the height (see figure).

(a) Graph the parabolic arch bounded by and the
Use an appropriate integral to find the area 

(b) Find the base and height of the arch and verify Archimedes’
formula.

(c) Prove Archimedes’ formula for a general parabola.

8. Galileo Galilei (1564–1642) stated the following proposition
concerning falling objects:

The time in which any space is traversed by a uniformly
accelerating body is equal to the time in which that same
space would be traversed by the same body moving at a
uniform speed whose value is the mean of the highest
speed of the accelerating body and the speed just before
acceleration began. 

Use the techniques of this chapter to verify this proposition.

9. The graph of the function consists of the three line segments
joining the points , and The function�8, 3�.�6, 2�,�2, �2��0, 0�,

f

A.x-axis.
y � 9 � x2

b

h

2
3


1

�1

1
1 � x2 dx.


1

�1
 cos x dx.


1

�1
f �x� dx � f ��

1
�3	 � f � 1

�3	.

f

�0, 3�.S


n

i�1
i4 �

n�n � 1��2n � 1��3n2 � 3n � 1�
30 	�

�0, 2�y � x4 � 4x3 � 4x2,

lim
x 2

G�x�.

lim
x 2

G�x�.

F�x� �
1

x � 2 

x

2
 sin t2 dt.G�x� �

1
x � 2

F�x� � 
x

2
 sin t2 dt.

x2.x1

L�x1x2� � L�x1� � L�x2�
L�x� � 1.

x

L��1�.L��x�
L�1�.

x > 0.L�x� � 
x

1

1
t

dt,

P.S. PROBLEM SOLVING

x 0 1.0 1.5 1.9 2.0

F�x�

x 2.1 2.5 3.0 4.0 5.0

F�x�

x 1.9 1.95 1.99 2.01 2.1

G�x�

www.CalcChat.com
www.mathgraphs.com
www.mathgraphs.com
www.CalcChat.com


Notes provide additional details about theorems,
definitions, and examples. They offer additional insight,
or important generalizations that students might not
immediately see. Like the
study tips, notes can be
invaluable to students.

NOTES

xiv Textbook Features

Theorems provide the
conceptual framework for
calculus. Theorems are
clearly stated and separated
from the rest of the text 
by boxes for quick visual
reference. Key proofs often
follow the theorem, and
other proofs are provided in
an in-text appendix.

THEOREMS

As with the theorems,
definitions are clearly
stated using precise,
formal wording and are
separated from the text
by boxes for quick
visual reference. 

DEFINITIONS

Formal procedures are set apart from
the text for easy reference. The
procedures provide students with step-
by-step instructions that will help them
solve problems quickly and efficiently.

PROCEDURESPROCEDURES

Classic Calculus with Contemporary Relevance

THEOREM 4.9 THE FUNDAMENTAL THEOREM OF CALCULUS

If a function is continuous on the closed interval and is an antideriv-
ative of on the interval then


b

a

f �x� dx � F�b� � F�a�.

�a, b�,f
F�a, b�f

DEFINITION OF DEFINITE INTEGRAL

If is defined on the closed interval and the limit of Riemann sums over
partitions

exists (as described above), then is said to be integrable on and the
limit is denoted by

The limit is called the definite integral of from to The number is the
lower limit of integration, and the number is the upper limit of integration.b

ab.af

lim
��� 0 

n

i�1
f �ci� �xi � 
b

a

f �x� dx.

�a, b�f

lim
��� 0 

n

i�1
f �ci� �xi

�
�a, b�f

To complete the change of variables in Example 5, you solved for in terms of
Sometimes this is very difficult. Fortunately it is not always necessary, as shown in

the next example.

EXAMPLE 6 Change of Variables

Find

Solution Because you can let Then

Now, because is part of the original integral, you can write

Substituting and in the original integral yields

You can check this by differentiating.

Because differentiation produces the original integrand, you know that you have
obtained the correct antiderivative. ■

� sin2 3x cos 3x

d
dx �

1
9

 sin3 3x� � �1
9	�3��sin 3x�2�cos 3x��3�

�
1
9

 sin3 3x � C.

�
1
3 �

u3

3 	 � C

�
1
3
u2 du


sin2 3x cos 3x dx � 
u2 du
3

du�3u

du
3

� cos 3x dx.

cos 3x dx

du � �cos 3x��3� dx.

u � sin 3x.sin2 3x � �sin 3x�2,


sin2 3x cos 3x dx.

u.
x

NOTE There are two important points that should be made concerning the Trapezoidal Rule
(or the Midpoint Rule). First, the approximation tends to become more accurate as increases.
For instance, in Example 1, if the Trapezoidal Rule yields an approximation of 1.994.
Second, although you could have used the Fundamental Theorem to evaluate the integral in
Example 1, this theorem cannot be used to evaluate an integral as simple as because

has no elementary antiderivative. Yet, the Trapezoidal Rule can be applied easily to 
estimate this integral. ■

sin x2
�	

0 sin x2 dx

n � 16,
n



Textbook Features xv

Chapter Openers provide initial motivation for the upcoming
chapter material. Along with a map of the chapter objectives,
an important concept in the chapter is related to an application
of the topic in the real world. Students are encouraged to see 
the real-life relevance of calculus.

CHAPTER OPENERS

Explorations provide students with
unique challenges to study concepts
that have not yet been formally
covered. They allow students to learn
by discovery and introduce topics
related to ones they are presently studying. 
By exploring topics in this way, students are
encouraged to think outside the box.

EXPLORATIONS

Historical Notes provide students with
background information on the foundations of

calculus, and Biographies
help humanize calculus 
and teach students about 
the people who contributed
to its formal creation. 

PROCEDURESHISTORICAL NOTES AND BIOGRAPHIES

Putnam Exam questions
appear in selected sections
and are drawn from actual
Putnam Exams. These
exercises will push the limits
of students’ understanding
of calculus and provide extra
challenges for motivated
students.

PUTNAM EXAM CHALLENGES

Projects appear in selected sections and more deeply
explore applications related to the topics being studied.
They provide an interesting and engaging way for students
to work and investigate ideas collaboratively.

SECTION PROJECTS

Expanding the Experience of Calculus

THE SUM OF THE FIRST 100 INTEGERS

A teacher of Carl Friedrich Gauss (1777–1855)
asked him to add all the integers from 1 to
100. When Gauss returned with the correct
answer after only a few moments, the teacher
could only look at him in astounded silence.
This is what Gauss did:

This is generalized by Theorem 4.2, where


100

t�1
i �

100�101�
2

� 5050.

100 
 101
2

� 5050

1
100
101

�

�

�

2
99

101

�

�

�

3
98

101

�

�

�

. .   .

.  .  .

.  .  .

�

�

�

100
1

101

139. If .  .  ., are real numbers satisfying

show that the equation

has at least one real zero.

140. Find all the continuous positive functions for
such that

where is a real number.

These problems were composed by the Committee on the Putnam Prize
Competition. © The Mathematical Association of America. All rights reserved.

�


1

0
f �x�x2 dx � �2


1

0
f �x�x dx � �


1

0
f �x� dx � 1

0 � x � 1,
f �x�,

a0 � a1x � a2x2 � .  .  . � anxn � 0

a0

1
�

a1

2
� .  .  . �

an

n � 1
� 0

ana1,a0,

PUTNAM EXAM CHALLENGE

GEORG FRIEDRICH BERNHARD RIEMANN
(1826–1866)

German mathematician Riemann did his most
famous work in the areas of non-Euclidean
geometry, differential equations, and number
theory. It was Riemann’s results in physics
and mathematics that formed the structure
on which Einstein’s General Theory of Relativity
is based.
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Use a graphing utility to graph the function on the
interval Let be the following function of 

(a) Complete the table. Explain why the values of are increasing.

(b) Use the integration capabilities of a graphing utility to 
graph

(c) Use the differentiation capabilities of a graphing utility to graph
How is this graph related to the graph in part (b)?

(d) Verify that the derivative of is 
Graph and write a short paragraph about how this graph is
related to those in parts (b) and (c).

y
sin2 t.y � �1�2�t � �sin 2t��4

F��x�.

F.

F

F�x� � 
 x

0
sin2 t dt

x.F�x�0 � t � 	.
y1 � sin2 t

Demonstrating the Fundamental Theorem

S E C T I O N  P R O J E C T

x 0 	�6 	�3 	�2 2	�3 5	�6 	

F�x�

405

6 Differential Equations

A function is a solution of a differential equation if the equation is satisfied when and its derivatives are
replaced by and its derivatives. One way to solve a differential equation is to use slope fields, which show the general
shape of all solutions of a differential equation. (See Section 6.1.)

f �x�
yy � f �x�

Dr. Dennis Kunkel/Getty Images

In this chapter, you will study one of the
most important applications of calculus—
differential equations. You will learn 
several methods for solving different 
types of differential equations, such 
as homogeneous, first-order linear, and
Bernoulli. Then you will apply these 
methods to solve differential equations 
in applied problems.

In this chapter, you should learn the 
following.

■ How to sketch a slope field of a 
differential equation, and find a 
particular solution. (6.1)

■ How to use an exponential function 
to model growth and decay. (6.2)

■ How to use separation of variables 
to solve a differential equation. (6.3)

■ How to solve a first-order linear 
differential equation and a Bernoulli 
differential equation. (6.4)

Depending on the type of bacteria, the time it takes for a culture’s weight to double
can vary greatly from several minutes to several days. How could you use a 
differential equation to model the growth rate of a bacteria culture’s weight? (See
Section 6.3, Exercise 84.)

■

■

E X P L O R A T I O N

The Converse of Theorem 4.4 Is the converse of Theorem 4.4 true? That is,
if a function is integrable, does it have to be continuous? Explain your reasoning
and give examples.

Describe the relationships among continuity, differentiability, and
integrability. Which is the strongest condition? Which is the weakest? Which
conditions imply other conditions?

E X P L O R A T I O N

Finding Antiderivatives For
each derivative, describe the 
original function 

a. b.

c. d.

e. f.

What strategy did you use to find
F?

F��x� � cos xF��x� �
1
x3

F��x� �
1
x2F��x� � x2

F��x� � xF��x� � 2x

F.



xvi Textbook Features

Examples throughout the book are
accompanied by CAS Investigations.
These investigations are linked
explorations that use a computer
algebra system (e.g., Maple®) to
further explore a related example 
in the book. They allow students to
explore calculus by manipulating
functions, graphs, etc. and observing
the results. (Formerly called Open
Explorations)

CAS INVESTIGATIONS

Understanding is often enhanced by using a
graph or visualization. Graphing Tech Exercises
are exercises that ask students to make use of a
graphing utility to help find a solution. These 
exercises are marked with a special icon.

GRAPHING TECH EXERCISES

NEW! Like the Graphing Tech Exercises, some
exercises may best be solved using a computer
algebra system. These CAS Exercises are new to
this edition and are denoted by a special icon. 

PROCEDURES

Throughout the book,
technology boxes give students
a glimpse of how technology
may be used to help solve
problems and explore the
concepts of calculus. They
provide discussions of not only
where technology succeeds, but
also where it may fail. 

TECHNOLOGY

Integrated Technology for Today’s World

EXAMPLE 5 Change of Variables

Find

Solution As in the previous example, let and obtain 
Because the integrand contains a factor of you must also solve for in terms of 
as shown.

Solve for in terms of 

Now, using substitution, you obtain

■�
1

10
�2x � 1�5�2 �

1
6

�2x � 1�3�2 � C.

�
1
4 �

u5�2

5�2
�

u3�2

3�2	 � C

�
1
4
�u3�2 � u1�2� du


x�2x � 1 dx � 
�u � 1
2 	 u1�2 �du

2 	

u.xx � �u � 1��2u � 2x � 1

u,xx,
dx � du�2.u � 2x � 1


x�2x � 1 dx.

Slope Fields In Exercises 55 and 56, (a) use a graphing utility
to graph a slope field for the differential equation, (b) use 
integration and the given point to find the particular solution of
the differential equation, and (c) graph the solution and the
slope field in the same viewing window.

55. 56.
dy
dx

� 2�x, �4, 12�dy
dx

� 2x, ��2, �2�

Most graphing utilities and computer algebra systems have built-in
programs that can be used to approximate the value of a definite integral. Try using
such a program to approximate the integral in Example 1. How close is your
approximation?

When you use such a program, you need to be aware of its limitations. Often,
you are given no indication of the degree of accuracy of the approximation. Other
times, you may be given an approximation that is completely wrong. For instance,
try using a built-in numerical integration program to evaluate

Your calculator should give an error message. Does yours?


2

�1

1
x

dx.

TECHNOLOGY

parallel to

with

In Exercises 79–82, use a computer algebra system to graph the
plane.

79. 80.

81. 82.

In Exercises 83–86, determine if any of the planes are parallel
or identical.

2.1x � 4.7y � z � �3�5x � 4y � 6z � �8

x � 3z � 32x � y � z � 6

2
.

	�6

CAS

49. Investigation Consider the function

at the point 

(a) Use a computer algebra system to graph the surface
represented by the function.

(b) Determine the directional derivative as a
function of where Use a computer
algebra system to graph the function on the interval 

(c) Approximate the zeros of the function in part (b) and
interpret each in the context of the problem.

(d) Approximate the critical numbers of the function in part (b)
and interpret each in the context of the problem.

(e) Find and explain its relationship to your
answers in part (d).

(f ) Use a computer algebra system to graph the level curve
of the function at the level On this curve, graph
the vector in the direction of and state its
relationship to the level curve.

�f �4, �3�,
c � 7.f

��f �4, �3��

�0, 2	�.
u � cos  i � sin  j.,

Du f �4, �3�

�4, �3, 7�.

f �x, y� � x2 � y 2

CAS

In Exercises 21–24, use a computer algebra system to find 
and a unit vector orthogonal to and 

21. 22.

23. 24.

v � 1.5i � 6.2kv � 0.4i � 0.8j � 0.2k

u � 0.7ku � �3i � 2j � 5k

v � �10, �12, �2�v � �2.5, 9, 3�
u � ��8, �6, 4�u � �4, �3.5, 7�

v.u
u � vCAS

CAS EXERCISES



Student Solutions Manual—Need a leg up on your homework or help to 
prepare for an exam? The Student Solutions Manual contains worked-out 
solutions for all odd-numbered exercises in the text. It is a great resource to
help you understand how to solve those tough problems.

Notetaking Guide—This notebook organizer is designed to help you organize
your notes, and provides section-by-section summaries of key topics and other
helpful study tools. The Notetaking Guide is available for download on the
book’s website.

WebAssign®—The most widely used homework system in higher education,
WebAssign offers instant feedback and repeatable problems, everything you
could ask for in an online homework system. WebAssign’s homework system
lets you practice and submit homework via the web. It is easy to use and loaded
with extra resources. With this edition of Larson’s Calculus, there are over 
3,000 algorithmic homework exercises to use for practice and review.

DVD Lecture Series—Comprehensive, instructional lecture presentations
serve a number of uses. They are great if you need to catch up after missing 
a class, need to supplement online or hybrid instruction, or need material for 
self-study or review.

CalcLabs with Maple® and Mathematica®— Working with Maple or
Mathematica in class? Be sure to pick up one of these comprehensive manuals
that will help you use each program efficiently.

xvii
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WebAssign®—Instant feedback, grading precision, and ease of use are just
three reasons why WebAssign is the most widely used homework system in
higher education. WebAssign’s homework delivery system lets instructors 
deliver, collect, grade, and record assignments via the web. With this edition 
of Larson’s Calculus, there are over 3,000 algorithmic homework exercises to
choose from. These algorithmic exercises are based on the section exercises
from the textbook to ensure alignment with course goals.

Instructor’s Complete Solutions Manual—This manual contains worked-out
solutions for all exercises in the text. It also contains solutions for the special
features in the text such as Explorations, Section Projects, etc. It is available 
on the Instructor’s Resource Center at the book’s website.

Instructor’s Resource Manual—This robust manual contains an abundance 
of resources keyed to the textbook by chapter and section, including chapter
summaries and teaching strategies. New to this edition’s manual are the 
authors’ findings from CalcChat.com (see A Word from the Authors). They
offer suggestions for exercises to cover in class, identify tricky exercises 
with tips on how best to use them, and explain what changes were made in 
the exercise set based on the research.

Power Lecture—This comprehensive CD-ROM includes the Instructor’s
Complete Solutions Manual, PowerPoint® slides, and the computerized test 
bank featuring algorithmically created questions that can be used to create,
deliver, and customize tests.

Computerized Test Bank—Create, deliver, and customize tests and study
guides in minutes with this easy to use assessment software on CD. The 
thousands of algorithmic questions in the test bank are derived from the 
textbook exercises, ensuring consistency between exams and the book.

JoinIn on TurningPoint—Enhance your students’ interactions with you,
your lectures, and each other. Cengage Learning is now pleased to offer you 
book-specific content for Response Systems tailored to Larson’s Calculus,
allowing you to transform your classroom and assess your students’ progress
with instant in-class quizzes and polls. 

xviii Additional Resources

Instructor Resources
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1

P Preparation
for Calculus

Mathematical models are commonly used to describe data sets. These models can be represented by many different
types of functions, such as linear, quadratic, cubic, rational, and trigonometric functions. (See Section P.4.)

Jeremy Walker/Getty Images

This chapter reviews several concepts that
will help you prepare for your study of
calculus. These concepts include sketching
the graphs of equations and functions, and
fitting mathematical models to data. It is
important to review these concepts before
moving on to calculus.

In this chapter, you should learn the 
following.

■ How to identify the characteristics of 
equations and sketch their graphs. (P.1)

■ How to find and graph equations of
lines, including parallel and perpendicular
lines, using the concept of slope. (P.2)

■ How to evaluate and graph functions
and their transformations. (P.3)

■ How to fit mathematical models to
real-life data sets. (P.4)

In 2006, China surpassed the United States as the world’s biggest emitter of carbon
dioxide, the main greenhouse gas. Given the carbon dioxide concentrations in the
atmosphere for several years, can older mathematical models still accurately 
predict future atmospheric concentrations compared with more recent models? (See
Section P.1, Example 6.)

■

■



2 Chapter P Preparation for Calculus

P.1 Graphs and Models
■ Sketch the graph of an equation.
■ Find the intercepts of a graph.
■ Test a graph for symmetry with respect to an axis and the origin.
■ Find the points of intersection of two graphs.
■ Interpret mathematical models for real-life data.

The Graph of an Equation
In 1637 the French mathematician René Descartes revolutionized the study of mathe-
matics by joining its two major fields—algebra and geometry. With Descartes’s
coordinate plane, geometric concepts could be formulated analytically and algebraic
concepts could be viewed graphically. The power of this approach was such that 
within a century of its introduction, much of calculus had been developed.

The same approach can be followed in your study of calculus. That is, by viewing
calculus from multiple perspectives—graphically, analytically, and numerically—
you will increase your understanding of core concepts.

Consider the equation The point is a solution point of the
equation because the equation is satisfied (is true) when 2 is substituted for and 1 is
substituted for This equation has many other solutions, such as and To
find other solutions systematically, solve the original equation for 

Analytic approach

Then construct a table of values by substituting several values of 

Numerical approach

From the table, you can see that and are solutions
of the original equation Like many equations, this equation has an 
infinite number of solutions. The set of all solution points is the graph of the equation,
as shown in Figure P.1.

In this course, you will study many sketching techniques. The simplest is point
plotting—that is, you plot points until the basic shape of the graph seems apparent.

EXAMPLE 1 Sketching a Graph by Point Plotting

Sketch the graph of 

Solution First construct a table of values. Then plot the points shown in the table.

Finally, connect the points with a smooth curve, as shown in Figure P.2. This graph is
a parabola. It is one of the conics you will study in Chapter 10. ■

y � x2 � 2.

3x � y � 7.
�4, �5��3, �2�,�2, 1�,�1, 4�,�0, 7�,

x.

y � 7 � 3x

y.
�0, 7�.�1, 4�y.
x

�2, 1�3x � y � 7.

x 0 1 2 3 4

y 7 4 1 �2 �5

x �2 �1 0 1 2 3

y 2 �1 �2 �1 2 7

864

8

6

4

2

−4

−6

−2
2

x

(3, −2)

(4, −5)

(2, 1) 

(1, 4) 

(0, 7) 

3x + y = 7 

y

Graphical approach:
Figure P.1

3x � y � 7

x
−4 −3 −2 2 3 4

7

6

5

4

3

2

1

y = x2 − 2

y

The parabola 
Figure P.2

y � x2 � 2

NOTE

RENÉ DESCARTES (1596–1650)

Descartes made many contributions to
philosophy, science, and mathematics. The
idea of representing points in the plane by
pairs of real numbers and representing curves
in the plane by equations was described by
Descartes in his book La Géométrie, published
in 1637.
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Even though we refer to the sketch shown in Figure P.1 as the graph of it
really represents only a portion of the graph. The entire graph would extend beyond the page.

■

3x � y � 7,



P.1 Graphs and Models 3

One disadvantage of point plotting is that to get a good idea about the shape of a
graph, you may need to plot many points. With only a few points, you could badly
misrepresent the graph. For instance, suppose that to sketch the graph of

you plotted only five points: and as shown
in Figure P.3(a). From these five points, you might conclude that the graph is a line.
This, however, is not correct. By plotting several more points, you can see that the
graph is more complicated, as shown in Figure P.3(b).

(a) (b)
Figure P.3

y

x
−3 −2 −1 1 2 3 

3

2

1

−1

−2

−3

y = x (39 − 10x2 + x4)1 
30 

x
−3 −2 −1 1 2 3 

3

2

1

−1

−2

−3

(0, 0) 

(1, 1) 

(3, 3) 

(−3, −3)

(−1, −1) Plotting only a 
few points can 
misrepresent a 
graph.

y

�3, 3�,�1, 1�,�0, 0�,��1, �1�,��3, �3�,

y �
1
30 x�39 � 10x2 � x4�

Technology has made sketching of graphs easier. Even with 
technology, however, it is possible to misrepresent a graph badly. For instance, each
of the graphing utility screens in Figure P.4 shows a portion of the graph of

From the screen on the left, you might assume that the graph is a line. From the
screen on the right, however, you can see that the graph is not a line. So, whether
you are sketching a graph by hand or using a graphing utility, you must realize that
different “viewing windows” can produce very different views of a graph. In
choosing a viewing window, your goal is to show a view of the graph that fits well
in the context of the problem.

Graphing utility screens of
Figure P.4

y � x3 � x2 � 25

−5

−35

5 

5

−10

−10

10 

10 

y � x3 � x2 � 25.

TECHNOLOGY

NOTE In this text, the term graphing utility means either a graphing calculator or computer
graphing software such as Maple, Mathematica, or the TI-89. ■

E X P L O R A T I O N

Comparing Graphical and
Analytic Approaches Use a
graphing utility to graph each
equation. In each case, find a
viewing window that shows the
important characteristics of the
graph.

a.

b.

c.

d.

e.

f.

A purely graphical approach to
this problem would involve a 
simple “guess, check, and revise”
strategy. What types of things do
you think an analytic approach
might involve? For instance, does
the graph have symmetry? Does
the graph have turns? If so, where
are they?

As you proceed through
Chapters 1, 2, and 3 of this text,
you will study many new analytic
tools that will help you analyze
graphs of equations such as these.

y � �x � 2��x � 4��x � 6�

y � ��x � 12�3

y � 3x3 � 40x2 � 50x � 45

y � �x3 � 3x2 � 20x � 5

y � x3 � 3x2 � 2x � 25

y � x3 � 3x2 � 2x � 5
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Intercepts of a Graph
Two types of solution points that are especially useful in graphing an equation are those
having zero as their - or -coordinate. Such points are called intercepts because they
are the points at which the graph intersects the - or -axis. The point is an
-intercept of the graph of an equation if it is a solution point of the equation. To find

the -intercepts of a graph, let be zero and solve the equation for The point 
is a -intercept of the graph of an equation if it is a solution point of the equation. To
find the -intercepts of a graph, let be zero and solve the equation for 

It is possible for a graph to have no intercepts, or it might have several. For
instance, consider the four graphs shown in Figure P.5.

EXAMPLE 2 Finding x- and y-intercepts

Find the and intercepts of the graph of 

Solution To find the intercepts, let be zero and solve for 

Let be zero.

Factor.

Solve for 

Because this equation has three solutions, you can conclude that the graph has three
intercepts:

and intercepts

To find the intercepts, let be zero. Doing this produces So, the intercept is

intercept

(See Figure P.6.) ■

y-�0, 0�.

y-y � 0.xy-

x-��2, 0�.�2, 0�,�0, 0�,

x-

x.x � 0, 2, or �2

x�x � 2��x � 2� � 0

yx3 � 4x � 0

x.yx-

y � x3 � 4x.y-x-

y.xy
y

�0, b�x.yx
x

�a, 0�yx
yx

NOTE Some texts denote the -intercept as the -coordinate of the point rather than the
point itself. Unless it is necessary to make a distinction, we will use the term intercept to mean
either the point or the coordinate. ■

�a, 0�xx

x

y

No x-intercepts
One y-intercept
Figure P.5

x

y

Three x-intercepts
One y-intercept

x

y

One x-intercept
Two y-intercepts

x

y

No intercepts

Example 2 uses an analytic approach to finding intercepts. When
an analytic approach is not possible, you can use a graphical approach by finding
the points at which the graph intersects the axes. Use a graphing utility to approxi-
mate the intercepts.

TECHNOLOGY

−4 −3 −1 1 3 4 

−4

−3

−2

−1

3

4

x
(2, 0) (0, 0) (−2, 0)

y = x3 − 4x

y

Intercepts of a graph
Figure P.6



Symmetry of a Graph
Knowing the symmetry of a graph before attempting to sketch it is useful because you
need only half as many points to sketch the graph. The following three types of
symmetry can be used to help sketch the graphs of equations (see Figure P.7).

1. A graph is symmetric with respect to the -axis if, whenever is a point on 
the graph, is also a point on the graph. This means that the portion of 
the graph to the left of the axis is a mirror image of the portion to the right of the 

axis.

2. A graph is symmetric with respect to the axis if, whenever is a point on
the graph, is also a point on the graph. This means that the portion of the
graph above the axis is a mirror image of the portion below the axis.

3. A graph is symmetric with respect to the origin if, whenever is a point on
the graph, is also a point on the graph. This means that the graph is
unchanged by a rotation of about the origin.

The graph of a polynomial has symmetry with respect to the axis if each term
has an even exponent (or is a constant). For instance, the graph of 
has symmetry with respect to the axis. Similarly, the graph of a polynomial has
symmetry with respect to the origin if each term has an odd exponent, as illustrated in
Example 3.

EXAMPLE 3 Testing for Symmetry

Test the graph of for symmetry with respect to the -axis and to the 
origin.

Solution

-axis Symmetry:

Write original equation.

Replace by 

Simplify. It is not an equivalent equation.

Origin Symmetry:

Write original equation.

Replace by and by 

Simplify.

Equivalent equation

Because replacing both by and by yields an equivalent equation, you can 
conclude that the graph of is symmetric with respect to the origin, as
shown in Figure P.8. ■

y � 2x3 � x
�yy�xx

y � 2x3 � x

�y � �2x3 � x

�y.y�xx�y � 2��x�3 � ��x�
y � 2x3 � x

y � �2x3 � x

�x.xy � 2��x�3 � ��x�
y � 2x3 � x

y

yy � 2x3 � x

y-
y � 2x4 � x2 � 2
y-

180�
��x, �y�

�x, y�
x-x-

�x, �y�
�x, y�x-

y-
y-

��x, y�
�x, y�y

P.1 Graphs and Models 5

TESTS FOR SYMMETRY

1. The graph of an equation in and is symmetric with respect to the -axis
if replacing by yields an equivalent equation.

2. The graph of an equation in and is symmetric with respect to the -axis
if replacing by yields an equivalent equation.

3. The graph of an equation in and is symmetric with respect to the origin
if replacing by and by yields an equivalent equation.�yy�xx

yx

�yy
xyx

�xx
yyx

x

(x, y)(−x, y)

y-axis
symmetry

y

x

(x, y)

(x, −y)x-axis
symmetry

y

x

(−x, −y)

(x, y)

Origin
symmetry

y

Figure P.7

x
−2 −1 1 2 

−2

−1

1

2

(1, 1) 

(−1, −1)

y = 2 x3 − xy

Origin symmetry
Figure P.8
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EXAMPLE 4 Using Intercepts and Symmetry to Sketch a Graph

Sketch the graph of 

Solution The graph is symmetric with respect to the axis because replacing by
yields an equivalent equation.

Write original equation.

Replace by 

Equivalent equation

This means that the portion of the graph below the axis is a mirror image of the
portion above the axis. To sketch the graph, first plot the -intercept and the points
above the axis. Then reflect in the axis to obtain the entire graph, as shown in 
Figure P.9. ■

Points of Intersection
A point of intersection of the graphs of two equations is a point that satisfies both
equations. You can find the point(s) of intersection of two graphs by solving their
equations simultaneously.

EXAMPLE 5 Finding Points of Intersection

Find all points of intersection of the graphs of and 

Solution Begin by sketching the graphs of both equations on the same rectangular
coordinate system, as shown in Figure P.10. Having done this, it appears that the
graphs have two points of intersection. You can find these two points, as follows.

Solve first equation for 

Solve second equation for 

Equate values.

Write in general form.

Factor.

Solve for 

The corresponding values of are obtained by substituting and into
either of the original equations. Doing this produces two points of intersection:

and Points of intersection ■��1, �2�.�2, 1�

x � �1x � 2y

x.x � 2 or �1

�x � 2��x � 1� � 0

x2 � x � 2 � 0

y-x2 � 3 � x � 1

y.y � x � 1

y.y � x2 � 3

x � y � 1.x2 � y � 3

x-x-
xx-

x-

x � y2 � 1

�y.yx � ��y�2 � 1

x � y2 � 1

�y
yx-

x � y2 � 1.

Graphing utilities are designed so that they most easily graph 
equations in which is a function of (see Section P.3 for a definition of function).
To graph other types of equations, you need to split the graph into two or more parts
or you need to use a different graphing mode. For instance, to graph the equation in
Example 4, you can split it into two parts.

Top portion of graph

Bottom portion of graphy2 � ��x � 1

y1 � �x � 1

xy
TECHNOLOGY

5432

2

1

−1

−2

x
(1, 0) 

(2, 1) 

(5, 2) x − y2 = 1

x-intercept

y

Figure P.9

x − y = 1 

x
−2 −1 1 2 

2

1

−1

−2(−1, −2)

(2, 1) 

x2 − y = 3 

y

Two points of intersection
Figure P.10

You can check the points
of intersection in Example 5 by 
substituting into both of the original
equations or by using the intersect
feature of a graphing utility.

STUDY TIP

The icon indicates that you will find a CAS Investigation on the book’s website. The CAS
Investigation is a collaborative exploration of this example using the computer algebra systems
Maple and Mathematica.
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Mathematical Models
Real-life applications of mathematics often use equations as mathematical models.
In developing a mathematical model to represent actual data, you should strive for two
(often conflicting) goals: accuracy and simplicity. That is, you want the model to be
simple enough to be workable, yet accurate enough to produce meaningful results.
Section P.4 explores these goals more completely.

EXAMPLE 6 Comparing Two Mathematical Models

The Mauna Loa Observatory in Hawaii records the carbon dioxide concentration (in
parts per million) in Earth’s atmosphere. The January readings for various years are
shown in Figure P.11. In the July 1990 issue of Scientific American, these data were
used to predict the carbon dioxide level in Earth’s atmosphere in the year 2035, using
the quadratic model

Quadratic model for 1960–1990 data

where represents 1960, as shown in Figure P.11(a).
The data shown in Figure P.11(b) represent the years 1980 through 2007 and can

be modeled by

Linear model for 1980–2007 data

where represents 1960. What was the prediction given in the Scientific American
article in 1990? Given the new data for 1990 through 2007, does this prediction for the
year 2035 seem accurate?

(a) (b)
Figure P.11

Solution To answer the first question, substitute (for 2035) into the quadratic
model.

Quadratic model

So, the prediction in the Scientific American article was that the carbon dioxide
concentration in Earth’s atmosphere would reach about 470 parts per million in the
year 2035. Using the linear model for the 1980–2007 data, the prediction for the year
2035 is

Linear model

So, based on the linear model for 1980–2007, it appears that the 1990 prediction was
too high. ■

y � 304.1 � 1.64�75� � 427.1.

y � 316.2 � 0.70�75� � 0.018�75�2 � 469.95

t � 75
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t � 0

y � 304.1 � 1.64t

t � 0

y � 316.2 � 0.70t � 0.018t2

y

The Mauna Loa Observatory in Hawaii
has been measuring the increasing
concentration of carbon dioxide in Earth’s
atmosphere since 1958. Carbon dioxide is
the main greenhouse gas responsible for
global climate warming.

©
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hy
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m
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NOTE The models in Example 6 were
developed using a procedure called least
squares regression (see Section 13.9).
The quadratic and linear models have 
correlations given by and

respectively. The closer 
is to 1, the “better” the model.

r2r 2 � 0.994,
r2 � 0.997
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P.1 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1–4, match the equation with its graph. [The
graphs are labeled (a), (b), (c), and (d).]

(a) (b) 

(c) (d) 

1. 2.

3. 4.

In Exercises 5–14, sketch the graph of the equation by point
plotting.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

In Exercises 15 and 16, describe the viewing window that yields
the figure.

15. 16.

In Exercises 17 and 18, use a graphing utility to graph the
equation. Move the cursor along the curve to approximate the
unknown coordinate of each solution point accurate to two
decimal places.

17. (a) (b)

18. (a) (b)

In Exercises 19–28, find any intercepts.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

In Exercises 29– 40, test for symmetry with respect to each axis
and to the origin.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

In Exercises 41–58, sketch the graph of the equation. Identify
any intercepts and test for symmetry.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

In Exercises 59–62, use a graphing utility to graph the equation.
Identify any intercepts and test for symmetry.

59. 60.

61. 62.

In Exercises 63–70, find the points of intersection of the graphs
of the equations.

63. 64.

65. 66.

y � x � 1x � y � 4

x � 3 � y2x2 � y � 6

 4x � 2y � �104x � y � 7

3x � 2y � �4x � y � 8

3x � 4y2 � 8x � 3y2 � 6

x2 � 4y 2 � 4y2 � x � 9

y � �6 � x�y � 6 � �x�
y �

10

x2 � 1
y �

8

x

x � y 2 � 4x � y3

y � �25 � x2y � x�x � 5

y � x3 � 4xy � x3 � 2

y � 2x2 � xy � �x � 3�2

y � x2 � 3y � 9 � x2

y �
2
3 x � 1y �

1
2 x � 4

y � � 3
2x � 6y � 2 � 3x

�y� � x � 3y � �x3 � x�

y �
x2

x2 � 1
y �

x

x2 � 1

xy � �4 � x2 � 0y � 4 � �x � 3

xy 2 � �10xy � 4

y � x3 � xy 2 � x3 � 8x

y � x2 � xy � x2 � 6

y � 2x � �x2 � 1x2y � x2 � 4y � 0

y �
x2 � 3x

�3x � 1�2
y �

2 � �x
5x

y � �x � 1��x2 � 1y � x�16 � x2

y 2 � x3 � 4xy � x2 � x � 2

y � 4x2 � 3y � 2x � 5

�x, �4���0.5, y�y � x5 � 5x

�x, 3��2, y�y � �5 � x

y � �x� � �x � 16�y � x3 � 4x2 � 3

y �
1

x � 2
y �

3
x

y � �x � 2y � �x � 6

y � �x� � 1y � �x � 2�
y � �x � 3�2y � 4 � x2

y � 5 � 2xy �
1
2 x � 2

y � x3 � xy � 3 � x2

y � �9 � x2y � �
3
2 x � 3

x
2−2

−2

2

4

y

21

2

1

−1

−2

−2
x

y

x

y

−1 1 2 3
−1

1

2

3

x
−1 1−1

1

2

y

The symbol indicates an exercise in which you are instructed to use graphing technology
or a symbolic computer algebra system. The solutions of other exercises may also be facilitated
by use of appropriate technology.

www.CalcChat.com
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67. 68.

69. 70.

In Exercises 71–74, use a graphing utility to find the points
of intersection of the graphs. Check your results analytically.

71. 72.

73. 74.

75. Modeling Data The table shows the Consumer Price Index
(CPI) for selected years. (Source: Bureau of Labor Statistics)

(a) Use the regression capabilities of a graphing utility to find
a mathematical model of the form for the
data. In the model, represents the CPI and represents the
year, with corresponding to 1975.

(b) Use a graphing utility to plot the data and graph the model.
Compare the data with the model.

(c) Use the model to predict the CPI for the year 2010.

76. Modeling Data The table shows the numbers of cellular
phone subscribers (in millions) in the United States for selected
years. (Source: Cellular Telecommunications and Internet
Association)

(a) Use the regression capabilities of a graphing utility to find
a mathematical model of the form for the
data. In the model, represents the number of subscribers
and represents the year, with corresponding to 1990.

(b) Use a graphing utility to plot the data and graph the model.
Compare the data with the model.

(c) Use the model to predict the number of cellular phone sub-
scribers in the United States in the year 2015.

77. Break-Even Point Find the sales necessary to break even
if the cost of producing units is

Cost equation

and the revenue from selling units is

Revenue equation

78. Copper Wire The resistance in ohms of 1000 feet of solid
copper wire at can be approximated by the model

where is the diameter of the wire in mils (0.001 in.). Use a
graphing utility to graph the model. If the diameter of the wire
is doubled, the resistance is changed by about what factor?

True or False? In Exercises 83–86, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

83. If is a point on a graph that is symmetric with respect
to the -axis, then is also a point on the graph.

84. If is a point on a graph that is symmetric with respect
to the -axis, then is also a point on the graph.

85. If and then the graph of 
has two -intercepts.

86. If and then the graph of 
has only one -intercept.

In Exercises 87 and 88, find an equation of the graph that
consists of all points having the given distance from the
origin. (For a review of the Distance Formula, see Appendix C.)

87. The distance from the origin is twice the distance from 

88. The distance from the origin is times the distance
from �2, 0�.

K �K � 1�
�0, 3�.

�x, y�

x
y � ax2 � bx � ca � 0,b2 � 4ac � 0

x
y � ax2 � bx � ca � 0,b2 � 4ac > 0

�4, �5�y
��4, �5�

�4, �5�x
��4, �5�

x

5 � x � 100y �
10,770

x2
� 0.37,

77�F
y

R � 3.29x.

xR

C � 5.5�x � 10,000

xC�R � C�

t � 0t
y

y � at2 � bt � c

t � 5
ty

y � at 2 � bt � c

y � 6 � xy � ��x2 � 4x

y � ��2x � 3� � 6y � �x � 6

y � 1 � x2y � �x2 � 3x � 1

y � x4 � 2x2 � 1y � x3 � 2x2 � x � 1

y � ��x � 2�y � x

y � x3 � 4xy � x3

�3x � y � 15x � y � 1

x2 � y2 � 25x2 � y2 � 5

Year 1975 1980 1985 1990 1995 2000 2005

CPI 53.8 82.4 107.6 130.7 152.4 172.2 195.3

Year 1990 1993 1996 1999 2002 2005

Number 5 16 44 86 141 208

In Exercises 79 and 80, write an equation whose graph has
the indicated property. (There may be more than one
correct answer.)

79. The graph has intercepts at and 

80. The graph has intercepts at and 

81. (a) Prove that if a graph is symmetric with respect to the
-axis and to the -axis, then it is symmetric with

respect to the origin. Give an example to show that the
converse is not true.

(b) Prove that if a graph is symmetric with respect to one
axis and to the origin, then it is symmetric with respect
to the other axis.

yx

x �
5
2.x � 4,x � �

3
2,

x � 8.x � 3,x � �4,

WRITING ABOUT CONCEPTS

82. Match the equation or equations with the given 
characteristic.

(i) (ii) (iii)

(iv) (v) (vi)

(a) Symmetric with respect to the -axis

(b) Three -intercepts

(c) Symmetric with respect to the -axis

(d) is a point on the graph

(e) Symmetric with respect to the origin

(f) Graph passes through the origin

��2, 1�
x

x

y

y � �x � 3y � 3x2 � 3y � 3�x

y � 3x � 3y � �x � 3�2y � 3x3 � 3x

CAPSTONE
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P.2 Linear Models and Rates of Change
■ Find the slope of a line passing through two points.
■ Write the equation of a line with a given point and slope.
■ Interpret slope as a ratio or as a rate in a real-life application.
■ Sketch the graph of a linear equation in slope-intercept form.
■ Write equations of lines that are parallel or perpendicular to a given line.

The Slope of a Line
The slope of a nonvertical line is a measure of the number of units the line rises (or
falls) vertically for each unit of horizontal change from left to right. Consider the two
points and on the line in Figure P.12. As you move from left to right
along this line, a vertical change of

Change in 

units corresponds to a horizontal change of

Change in 

units. ( is the Greek uppercase letter delta, and the symbols and are read
“delta ” and “delta .”)

Figure P.13 shows four lines: one has a positive slope, one has a slope of zero,
one has a negative slope, and one has an “undefined” slope. In general, the greater the
absolute value of the slope of a line, the steeper the line is. For instance, in Figure
P.13, the line with a slope of is steeper than the line with a slope of 15.�5

xy
�x�y�

x�x � x2 � x1

y�y � y2 � y1

�x2, y2��x1, y1�

DEFINITION OF THE SLOPE OF A LINE

The slope of the nonvertical line passing through and is

Slope is not defined for vertical lines.

x1 � x2.m �
�y

�x
�

y2 � y1

x2 � x1

,

�x2, y2��x1, y1�m

NOTE When using the formula for slope, note that

So, it does not matter in which order you subtract as long as you are consistent and both
“subtracted coordinates” come from the same point. ■

y2 � y1

x2 � x1

�
��y1 � y2�
��x1 � x2�

�
y1 � y2

x1 � x2

.

x
−2 −1

−1
1 2 3 

4

3

2

1
(−2, 0)

(3, 1) 

m1 = 1
5

y

If m is positive, then the line rises 
from left to right.
Figure P.13

x
−2 −1

−1
1 2 3 

4

3

1

m2 = 0 

(2, 2) (−1, 2)

y

If m is zero, then the line is 
horizontal.

x
−1

−1
2 3 4 

4

3

2

1

(1, −1)

(0, 4) 
m3 = −5 

y

If m is negative, then the line falls
from left to right.

x
−1

−1
21 4 

4

3

2

1 (3, 1) 

(3, 4) 

y

m4 is
undefined. 

If m is undefined, then the line is
vertical.

x
x2

y2

x1

y1

Δx = x2 − x1

Δy = y2 − y1

(x2, y2)

(x1, y1)

y

change in 
change in 

Figure P.12
x�x � x2 � x1 �
y�y � y2 � y1 �
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Equations of Lines
Any two points on a nonvertical line can be used to calculate its slope. This can be
verified from the similar triangles shown in Figure P.14. (Recall that the ratios of
corresponding sides of similar triangles are equal.)

Any two points on a nonvertical line can be
used to determine its slope.
Figure P.14

You can write an equation of a nonvertical line if you know the slope of the line
and the coordinates of one point on the line. Suppose the slope is and the point is

If is any other point on the line, then

This equation, involving the two variables and can be rewritten in the form
which is called the point-slope equation of a line.

EXAMPLE 1 Finding an Equation of a Line

Find an equation of the line that has a slope of 3 and passes through the point 

Solution

Point-slope form

Substitute for 1 for and 3 for 

Simplify.

Solve for 

(See Figure P.15.) ■

y.y � 3x � 5

y � 2 � 3x � 3

m.x1,y1,�2y � ��2� � 3�x � 1�
y � y1 � m�x � x1�

�1, �2�.

y � y1 � m�x � x1�,
y,x

y � y1

x � x1

� m.

�x, y��x1, y1�.
m

x

m = = 
y2* − y1*
x2* − x1*

y2 − y1
x2 − x1

(x1*, y1*)

(x2*, y2*)

(x1, y1)

(x2, y2)

y

POINT-SLOPE EQUATION OF A LINE

An equation of the line with slope passing through the point is
given by

y � y1 � m�x � x1�.

�x1, y1�m

NOTE Remember that only nonvertical lines have a slope. Consequently, vertical lines 
cannot be written in point-slope form. For instance, the equation of the vertical line passing
through the point is ■x � 1.�1, �2�

x

1

−1

−2

−3

−4

−5

1 3 4 

(1, −2)

y = 3x − 5 

Δy = 3

Δx = 1

y

The line with a slope of 3 passing through
the point 
Figure P.15

�1, �2�

E X P L O R A T I O N

Investigating Equations of Lines
Use a graphing utility to graph
each of the linear equations.
Which point is common to all
seven lines? Which value in the
equation determines the slope of
each line?

a.

b.

c.

d.

e.

f.

g.

Use your results to write an 
equation of a line passing through

with a slope of m.��1, 4�

y � 4 � 2�x � 1�
y � 4 � 1�x � 1�
y � 4 �

1
2�x � 1�

y � 4 � 0�x � 1�
y � 4 � �

1
2�x � 1�

y � 4 � �1�x � 1�
y � 4 � �2�x � 1�
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Ratios and Rates of Change
The slope of a line can be interpreted as either a ratio or a rate. If the and axes
have the same unit of measure, the slope has no units and is a ratio. If the and 

axes have different units of measure, the slope is a rate or rate of change. In your
study of calculus, you will encounter applications involving both interpretations 
of slope.

EXAMPLE 2 Population Growth and Engineering Design

a. The population of Colorado was 3,827,000 in 1995 and 4,665,000 in 2005. Over
this 10-year period, the average rate of change of the population was

If Colorado’s population continues to increase at this same rate for the next 
10 years, it will have a 2015 population of 5,503,000 (see Figure P.16). (Source:
U.S. Census Bureau)

b. In tournament water-ski jumping, the ramp rises to a height of 6 feet on a raft that
is 21 feet long, as shown in Figure P.17. The slope of the ski ramp is the ratio of
its height (the rise) to the length of its base (the run).

Rise is vertical change, run is horizontal change.

In this case, note that the slope is a ratio and has no units.

Dimensions of a water-ski ramp
Figure P.17 ■

The rate of change found in Example 2(a) is an average rate of change. An
average rate of change is always calculated over an interval. In this case, the interval
is In Chapter 2 you will study another type of rate of change called an
instantaneous rate of change.

2005�.�1995,

21 ft

6 ft

�
2

7

�
 6 feet

21 feet

Slope of ramp �
rise

run

� 83,800 people per year.

�
4,665,000 � 3,827,000

2005 � 1995

 Rate of change �
change in population

change in years

y-
x-
y-x-

Po
pu

la
tio

n 
(i

n 
m

ill
io

ns
)

1995 2005 2015

4

3

2

1

5

6

838,000

Year

10

Population of Colorado
Figure P.16



Graphing Linear Models
Many problems in analytic geometry can be classified in two basic categories: (1)
Given a graph, what is its equation? and (2) Given an equation, what is its graph? 
The point-slope equation of a line can be used to solve problems in the first category.
However, this form is not especially useful for solving problems in the second 
category. The form that is better suited to sketching the graph of a line is the slope-
intercept form of the equation of a line.

EXAMPLE 3 Sketching Lines in the Plane

Sketch the graph of each equation.

a. b. c.

Solution

a. Because the intercept is Because the slope is you know that
the line rises two units for each unit it moves to the right, as shown in Figure
P.18(a).

b. Because the intercept is Because the slope is you know that
the line is horizontal, as shown in Figure P.18(b).

c. Begin by writing the equation in slope-intercept form.

Write original equation.

Isolate term on the left.

Slope-intercept form

In this form, you can see that the intercept is and the slope is This
means that the line falls one unit for every three units it moves to the right, as
shown in Figure P.18(c).

■

m � �
1
3.�0, 2�y-

y � �
1

3
x � 2

y- 3y � �x � 6

3y � x � 6 � 0

m � 0,�0, 2�.y-b � 2,

m � 2,�0, 1�.y-b � 1,

3y � x � 6 � 0y � 2y � 2x � 1
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x
321

2

3

(0, 1) 

Δx = 1

Δy = 2

y = 2x + 1 

y

(a) line rises
Figure P.18

m � 2;

x

y = 2 

321

1

3

(0, 2) 

y

(b) line is horizontalm � 0;

x
3 4 5 6 21

1

3

(0, 2) 

Δx = 3

Δy = −1

x + 2y = − 1
3

y

(c) line fallsm � �
1
3 ;

THE SLOPE-INTERCEPT EQUATION OF A LINE

The graph of the linear equation

is a line having a slope of and a intercept at �0, b�.y-m

y � mx � b
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Because the slope of a vertical line is not defined, its equation cannot be written
in the slope-intercept form. However, the equation of any line can be written in the
general form

where and are not both zero. For instance, the vertical line given by can be
represented by the general form 

Parallel and Perpendicular Lines
The slope of a line is a convenient tool for determining whether two lines are parallel
or perpendicular, as shown in Figure P.19. Specifically, nonvertical lines with the same
slope are parallel and nonvertical lines whose slopes are negative reciprocals are
perpendicular.

Parallel lines Perpendicular lines
Figure P.19

x

m1

m2

m1 = − 1
m2

y

x

m1

m2

m1 = m2

y

x � a � 0.
x � aBA

General form of the equation of a lineAx � By � C � 0

SUMMARY OF EQUATIONS OF LINES

1. General form:

2. Vertical line:

3. Horizontal line:

4. Point-slope form:

5. Slope-intercept form: y � mx � b

y � y1 � m�x � x1�
y � b

x � a

�A, B � 0�Ax � By � C � 0,

PARALLEL AND PERPENDICULAR LINES

1. Two distinct nonvertical lines are parallel if and only if their slopes are
equal—that is, if and only if 

2. Two nonvertical lines are perpendicular if and only if their slopes are 
negative reciprocals of each other—that is, if and only if

m1 � �
1

m2

.

m1 � m2.

In mathematics, the
phrase “if and only if” is a way of 
stating two implications in one state-
ment. For instance, the first statement at
the right could be rewritten as the 
following two implications.

a. If two distinct nonvertical lines are
parallel, then their slopes are equal.

b. If two distinct nonvertical lines have
equal slopes, then they are parallel.

STUDY TIP



EXAMPLE 4 Finding Parallel and Perpendicular Lines

Find the general forms of the equations of the lines that pass through the point 
and are

a. parallel to the line b. perpendicular to the line 

(See Figure P.20.)

Solution By writing the linear equation in slope-intercept form,
you can see that the given line has a slope of 

a. The line through that is parallel to the given line also has a slope of 

Point-slope form

Substitute.

Simplify.

General form

Note the similarity to the original equation.

b. Using the negative reciprocal of the slope of the given line, you can determine that
the slope of a line perpendicular to the given line is So, the line through the
point that is perpendicular to the given line has the following equation.

Point-slope form

Substitute.

Simplify.

General form ■3x � 2y � 4 � 0

 2�y � 1� � �3�x � 2�
y � ��1� � �

3
2�x � 2�

y � y1 � m�x � x1�

�2, �1�
�

3
2.

2x � 3y � 7 � 0

 3�y � 1� � 2�x � 2�
y � ��1� �

2
3 �x � 2�

y � y1 � m �x � x1�

2
3.�2, �1�

m �
2
3.y �

2
3 x �

5
3,

2x � 3y � 5

2x � 3y � 5.2x � 3y � 5

�2, �1�
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The slope of a line will appear distorted if you use
different tick-mark spacing on the - and -axes. For instance, the graphing 
calculator screens in Figures P.21(a) and P.21(b) both show the lines given by

and Because these lines have slopes that are negative 
reciprocals, they must be perpendicular. In Figure P.21(a), however, the lines don’t
appear to be perpendicular because the tick-mark spacing on the -axis is not the
same as that on the -axis. In Figure P.21(b), the lines appear perpendicular because
the tick-mark spacing on the axis is the same as on the axis. This type of 
viewing window is said to have a square setting.

(a) Tick-mark spacing on the -axis is not the (b) Tick-mark spacing on the -axis is the
same as tick-mark spacing on the -axis. same as tick-mark spacing on the -axis.
Figure P.21

yy
xx

−9

−6

9

6

−10

−10

10

10

y-x-
y

x

y � �
1
2x � 3.y � 2x

yx
TECHNOLOGY PITFALL

x

−1

2

1

1 4 

(2, −1)

2x − 3y = 7

3x + 2y = 4
2x − 3y = 5

y

Lines parallel and perpendicular to

Figure P.20
2x � 3y � 5
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P.2 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

t 0 1 2 3 4 5

y 282.4 285.3 288.2 291.1 293.9 296.6

t 5 10 15 20 25 30

r 57 74 85 84 61 43

In Exercises 1–6, estimate the slope of the line from its graph.
To print an enlarged copy of the graph, go to the website
www.mathgraphs.com.

1. 2.

3. 4.

5. 6.

In Exercises 7 and 8, sketch the lines through the point with
the indicated slopes. Make the sketches on the same set of
coordinate axes.

7. (a) 1 (b) (c) (d) Undefined

8. (a) 3 (b) (c) (d) 0

In Exercises 9–14, plot the pair of points and find the slope of
the line passing through them.

9. 10.

11.

12.

13.

14.

In Exercises 15–18, use the point on the line and the slope of the
line to find three additional points that the line passes through.
(There is more than one correct answer.)

15. 16. is undefined.

17. 18.

19. Conveyor Design A moving conveyor is built to rise 1 meter
for each 3 meters of horizontal change.

(a) Find the slope of the conveyor.

(b) Suppose the conveyor runs between two floors in a factory.
Find the length of the conveyor if the vertical distance
between floors is 10 feet.

20. Rate of Change Each of the following is the slope of a line
representing daily revenue in terms of time in days. Use the
slope to interpret any change in daily revenue for a one-day
increase in time.

(a) (b) (c)

21. Modeling Data The table shows the populations (in millions)
of the United States for 2000 through 2005. The variable 
represents the time in years, with corresponding to 2000.
(Source: U.S. Bureau of the Census)

(a) Plot the data by hand and connect adjacent points with a
line segment.

(b) Use the slope of each line segment to determine the year
when the population increased least rapidly.

22. Modeling Data The table shows the rate (in miles per hour)
that a vehicle is traveling after seconds.

(a) Plot the data by hand and connect adjacent points with a
line segment.

(b) Use the slope of each line segment to determine the interval
when the vehicle’s rate changed most rapidly. How did the
rate change?

In Exercises 23–28, find the slope and the -intercept (if possible)
of the line.

23. 24.

25. 26.

27.

28.

In Exercises 29–34, find an equation of the line that passes
through the point and has the indicated slope. Sketch the line.

29. 30. is undefined.

31. 32.

33. 34. m � �
3
5��2, 4�m � 3�3, �2�

m � 0�0, 4�m �
2
3�0, 0�

m��5, �2�m �
3
4�0, 3�

SlopePoint        SlopePoint    

y � �1

x � 4

6x � 5y � 15x � 5y � 20

�x � y � 1y � 4x � 3

y

t
r

t � 0
t

y

m � 0m � 250m � 800

xy

m � 2��2, �2�m � �3�1, 7�
m��4, 3�m � 0�6, 2�
SlopePointSlopePoint

�7
8, 3

4�, �5
4, �

1
4�

��1
2, 2

3�, ��3
4, 1

6�
�3, �5�, �5, �5�
�4, 6�, �4, 1�

�1, 1�, ��2, 7��3, �4�, �5, 2�

1
3�3��2, 5�
�

3
2�2�3, 4�

SlopesPoint

x
1 2 3 4 5 6 7 
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x
1 2 3 5 6 7 
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8
4
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In Exercises 35–44, find an equation of the line that passes
through the points, and sketch the line.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. Find an equation of the vertical line with -intercept at 3.

46. Show that the line with intercepts and has the 
following equation.

In Exercises 47–50, use the result of Exercise 46 to write an
equation of the line in general form.

47. -intercept: 48. -intercept:

-intercept: -intercept:

49. Point on line: 50. Point on line:

-intercept: -intercept:

-intercept: -intercept:

In Exercises 51–58, sketch a graph of the equation.

51. 52.

53. 54.

55. 56.

57. 58.

59. Square Setting Use a graphing utility to graph the lines
and in each viewing window.

Compare the graphs. Do the lines appear perpendicular? Are
the lines perpendicular? Explain.

(a) (b)

In Exercises 61– 66, write the general forms of the equations of
the lines through the point (a) parallel to the given line and (b)
perpendicular to the given line.

61. 62.

63. 64.

65. 66.

Rate of Change In Exercises 67– 70, you are given the dollar
value of a product in 2008 and the rate at which the value of the
product is expected to change during the next 5 years. Write a
linear equation that gives the dollar value of the product in
terms of the year (Let represent 2000.)

67. $1850 $250 increase per year

68. $156 $4.50 increase per year

69. $17,200 $1600 decrease per year

70. $245,000 $5600 decrease per year

In Exercises 71 and 72, use a graphing utility to graph the
parabolas and find their points of intersection. Find an equation
of the line through the points of intersection and graph the line
in the same viewing window.

71. 72.

In Exercises 73 and 74, determine whether the points are
collinear. (Three points are collinear if they lie on the same line.)

73.

74. �0, 4�, �7, �6�, ��5, 11�
��2, 1�, ��1, 0�, �2, �2�

y � �x2 � 2x � 3y � 4x � x2

y � x2 � 4x � 3y � x2

Rate2008 Value

t � 0t.
V

3x � 4y � 7�4, �5�5x � 3y � 0�3
4, 7

8�
x � y � 7��3, 2�4x � 2y � 3�2, 1�
y � �3��1, 0�x � 1��7, �2�
LinePoint   LinePoint

Xmin = -6
Xmax = 6
Xscl = 1
Ymin = -4
Ymax = 4
Yscl = 1

Xmin = -5
Xmax = 5
Xscl = 1
Ymin = -5
Ymax = 5
Yscl = 1

y � �
1
2 x � 1y � 2x � 3

x � 2y � 6 � 02x � y � 3 � 0

y � 1 � 3�x � 4�y � 2 �
3
2�x � 1�

y �
1
3 x � 1y � �2x � 1

x � 4y � �3

�a � 0��a � 0�
�0, a�y�0, a�y

�a, 0�x�a, 0�x

��3, 4��1, 2�
�0, �2�y�0, 3�y

��2
3, 0�x�2, 0�x

a � 0, b � 0
x

a
�

y

b
� 1,

�0, b��a, 0�
x

�7
8, 3

4�, �5
4, �

1
4��1

2, 7
2�, �0, 3

4�
�1, �2�, �3, �2��6, 3�, �6, 8�
��3, 6�, �1, 2��2, 8�, �5, 0�
��2, �2�, �1, 7��2, 1�, �0,�3�
�0, 0�, ��1, 5��0, 0�, �4, 8�
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60. A line is represented by the equation 

(a) When is the line parallel to the -axis?

(b) When is the line parallel to the -axis?

(c) Give values for and such that the line has a slope of 

(d) Give values for and such that the line is perpendi-
cular to 

(e) Give values for and such that the line coincides with
the graph of 5x � 6y � 8.

ba

y �
2
5 x � 3.

ba

5
8.ba

y

x

ax � by � 4.

CAPSTONE

In Exercises 75–77, find the coordinates of the point of 
intersection of the given segments. Explain your reasoning.

75. 76.

Perpendicular bisectors Medians

77.

Altitudes

78. Show that the points of intersection in Exercises 75, 76, and
77 are collinear.

(−a, 0) (a, 0) 

(b, c)

(−a, 0) (a, 0) 

(b, c)

(−a, 0) (a, 0) 

(b, c)

WRITING ABOUT CONCEPTS
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79. Temperature Conversion Find a linear equation that expresses
the relationship between the temperature in degrees Celsius 
and degrees Fahrenheit Use the fact that water freezes at 
( F) and boils at C ( F). Use the equation to convert

to degrees Celsius.

80. Reimbursed Expenses A company reimburses its sales repre-
sentatives $175 per day for lodging and meals plus 48¢ per mile
driven. Write a linear equation giving the daily cost to the
company in terms of the number of miles driven. How
much does it cost the company if a sales representative drives
137 miles on a given day?

81. Career Choice An employee has two options for positions in
a large corporation. One position pays $14.50 per hour plus an
additional unit rate of $0.75 per unit produced. The other pays
$11.20 per hour plus a unit rate of $1.30.

(a) Find linear equations for the hourly wages in terms of 
the number of units produced per hour, for each option.

(b) Use a graphing utility to graph the linear equations and find
the point of intersection.

(c) Interpret the meaning of the point of intersection of the
graphs in part (b). How would you use this information 
to select the correct option if the goal were to obtain the
highest hourly wage?

82. Straight-Line Depreciation A small business purchases a
piece of equipment for $875. After 5 years the equipment will
be outdated, having no value.

(a) Write a linear equation giving the value of the equipment
in terms of the time 

(b) Find the value of the equipment when 

(c) Estimate (to two-decimal-place accuracy) the time when
the value of the equipment is $200.

83. Apartment Rental A real estate office manages an apartment
complex with 50 units. When the rent is $780 per month, all 50
units are occupied. However, when the rent is $825, the average
number of occupied units drops to 47. Assume that the
relationship between the monthly rent and the demand is
linear. (Note: The term demand refers to the number of
occupied units.)

(a) Write a linear equation giving the demand in terms of the
rent

(b) Linear extrapolation Use a graphing utility to graph the
demand equation and use the trace feature to predict the
number of units occupied if the rent is raised to $855.

(c) Linear interpolation Predict the number of units occupied
if the rent is lowered to $795. Verify graphically.

84. Modeling Data An instructor gives regular 20-point quizzes
and 100-point exams in a mathematics course. Average scores
for six students, given as ordered pairs where is the
average quiz score and is the average test score, are 

and

(a) Use the regression capabilities of a graphing utility to find
the least squares regression line for the data.

(b) Use a graphing utility to plot the points and graph the
regression line in the same viewing window.

(c) Use the regression line to predict the average exam score
for a student with an average quiz score of 17.

(d) Interpret the meaning of the slope of the regression line.

(e) The instructor adds 4 points to the average test score of every-
one in the class. Describe the changes in the positions of the
plotted points and the change in the equation of the line.

85. Tangent Line Find an equation of the line tangent to the
circle at the point 

86. Tangent Line Find an equation of the line tangent to the
circle at the point 

Distance In Exercises 87–92, find the distance between the
point and line, or between the lines, using the formula for the
distance between the point and the line 

87. Point: 88. Point:

Line: Line:

89. Point: 90. Point:

Line: Line:

91. Line: 92. Line:

Line: Line:

93. Show that the distance between the point and the line
is

94. Write the distance between the point and the line
in terms of Use a graphing utility to graph 

the equation. When is the distance 0? Explain the result
geometrically.

95. Prove that the diagonals of a rhombus intersect at right angles.
(A rhombus is a quadrilateral with sides of equal lengths.)

96. Prove that the figure formed by connecting consecutive
midpoints of the sides of any quadrilateral is a parallelogram.

97. Prove that if the points and lie on the same line
as and then

Assume and 

98. Prove that if the slopes of two nonvertical lines are negative
reciprocals of each other, then the lines are perpendicular.

True or False? In Exercises 99 and 100, determine whether
the statement is true or false. If it is false, explain why or give
an example that shows it is false.

99. The lines represented by and are
perpendicular. Assume and 

100. It is possible for two lines with positive slopes to be perpendi-
cular to each other.

b � 0.a � 0
bx � ay � c2ax � by � c1

� x2
�.x1

�x1 � x2

y2
� � y1

�

x2
� � x1

�
�

y2 � y1

x2 � x1

.

�x2
�, y2

��,�x1
�, y1

��
�x2, y2��x1, y1�

m.y � mx � 4
�3, 1�d

Distance � �Ax1 � By1 � C�
�A2 � B2

.

Ax � By � C � 0
�x1, y1�

3x � 4y � 10x � y � 5

3x � 4y � 1x � y � 1

x � �1x � y � 2 � 0

�6, 2���2, 1�
4x � 3y � 104x � 3y � 10

�2, 3��0, 0�

Distance � �Ax1 1 By1 1 C�
�A2 1 B2

C � 0.
Ax 1 By ��x1, y1�

�4, �3�.�x � 1�2 � � y � 1�2 � 25

�5, 12�.x2 � y2 � 169

�15, 82�.�13, 76�,�16, 79�,�19, 96�,�10, 55�,
�18, 87�,y
x�x, y�,

p.
x

xp

x � 2.

0 � x � 5.x,
y

x,W

x,
C

72�F
212�100�32�

0�CF.
C
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P.3 Functions and Their Graphs
■ Use function notation to represent and evaluate a function.
■ Find the domain and range of a function.
■ Sketch the graph of a function.
■ Identify different types of transformations of functions.
■ Classify functions and recognize combinations of functions.

Functions and Function Notation
A relation between two sets and is a set of ordered pairs, each of the form 
where is a member of and is a member of A function from to is a 
relation between and that has the property that any two ordered pairs with the
same -value also have the same -value. The variable is the independent variable,
and the variable is the dependent variable.

Many real-life situations can be modeled by functions. For instance, the area of
a circle is a function of the circle’s radius 

is a function of 

In this case is the independent variable and is the dependent variable.

Functions can be specified in a variety of ways. In this text, however, we will 
concentrate primarily on functions that are given by equations involving the dependent
and independent variables. For instance, the equation

Equation in implicit form

defines the dependent variable, as a function of the independent variable. To
evaluate this function (that is, to find the -value that corresponds to a given -value),
it is convenient to isolate on the left side of the equation.

Equation in explicit form

Using as the name of the function, you can write this equation as

Function notation

The original equation, implicitly defines as a function of When you
solve the equation for you are writing the equation in explicit form.

Function notation has the advantage of clearly identifying the dependent variable
as while at the same time telling you that is the independent variable and that
the function itself is “ ” The symbol is read “ of ” Function notation allows you
to be less wordy. Instead of asking “What is the value of that corresponds to ”
you can ask “What is ”f�3�?

x � 3?y
x.ff�x�f.

xf�x�

y,
x.yx2 � 2y � 1,

f�x� �
1

2
�1 � x2�.

f

y �
1

2
�1 � x2�

y
xy

x,y,

x2 � 2y � 1

Ar

r.AA � 	r2

r.
A

y
xyx

YX
YXY.yXx
�x, y�,YX

DEFINITION OF A REAL-VALUED FUNCTION OF A REAL VARIABLE

Let and be sets of real numbers. A real-valued function of a real 
variable from to is a correspondence that assigns to each number in 
exactly one number in 

The domain of is the set The number is the image of under and
is denoted by which is called the value of at The range of is a 
subset of and consists of all images of numbers in (see Figure P.22).XY

fx.ff�x�,
fxyX.f

Y.y
XxYXx

fYX

FUNCTION NOTATION

The word function was first used by Gottfried
Wilhelm Leibniz in 1694 as a term to denote
any quantity connected with a curve, such as
the coordinates of a point on a curve or the
slope of a curve. Forty years later, Leonhard
Euler used the word “function” to describe
any expression made up of a variable and
some constants. He introduced the notation
y � f �x�.

Range

x

f

Domain

y = f (x)

Y

X

A real-valued function of a real variable
Figure P.22

f



In an equation that defines a function, the role of the variable is simply that of
a placeholder. For instance, the function given by

can be described by the form

where parentheses are used instead of To evaluate simply place in each
set of parentheses.

Substitute for 

Simplify.

Simplify.

EXAMPLE 1 Evaluating a Function

For the function defined by evaluate each expression.

a. b. c.

Solution

a. Substitute for 

Simplify.

b. Substitute for 

Expand binomial.

Simplify.

c.

■�x � 0� 2x � �x,

�
�x�2x � �x�

�x

�
2x�x � ��x�2

�x

�
x2 � 2x�x � ��x�2 � 7 � x2 � 7

�x

f �x � �x� � f �x�
�x

�
��x � �x�2 � 7� � �x2 � 7�

�x

� b2 � 2b � 8

� b2 � 2b � 1 � 7

x.b � 1f �b � 1� � �b � 1�2 � 7

� 9a2 � 7

x.3af �3a� � �3a�2 � 7

�x � 0
f �x � �x� � f �x�

�x
,f �b � 1�f �3a�

f �x� � x2 � 7,f

� 17

� 2�4� � 8 � 1

x.�2f��2� � 2��2�2 � 4��2� � 1

�2f ��2�,x.

f ��� � 2���2
� 4��� � 1

f�x� � 2x2 � 4x � 1

x
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NOTE The expression in Example 1(c) is called a difference quotient and has a special
significance in calculus. You will learn more about this in Chapter 2. ■

NOTE Although is often used as a convenient function name and as the independent
variable, you can use other symbols. For instance, the following equations all define the 
same function.

Function name is independent variable is 

Function name is independent variable is 

Function name is independent variable is 
■

s.g,g�s� � s2 � 4s � 7

t.f,f�t� � t2 � 4t � 7

x.f,f�x� � x2 � 4x � 7

xf

In calculus, it is important
to specify clearly the domain of a func-
tion or expression. For instance, in
Example 1(c) the two expressions

are equivalent because is
excluded from the domain of each
expression. Without a stated domain
restriction, the two expressions would
not be equivalent.

�x � 0

�x � 0

f �x � �x� � f �x�
� x

  and  2x � �x,

STUDY TIP



The Domain and Range of a Function
The domain of a function can be described explicitly, or it may be described implicitly
by an equation used to define the function. The implied domain is the set of all real
numbers for which the equation is defined, whereas an explicitly defined domain is 
one that is given along with the function. For example, the function given by

has an explicitly defined domain given by On the other hand, the
function given by

has an implied domain that is the set 

EXAMPLE 2 Finding the Domain and Range of a Function

a. The domain of the function

is the set of all -values for which which is the interval To find
the range, observe that is never negative. So, the range is the
interval as indicated in Figure P.23(a).

b. The domain of the tangent function, as shown in Figure P.23(b),

is the set of all -values such that

is an integer. Domain of tangent function

The range of this function is the set of all real numbers. For a review of the
characteristics of this and other trigonometric functions, see Appendix C.

EXAMPLE 3 A Function Defined by More than One Equation

Determine the domain and range of the function.

Solution Because is defined for and the domain is the entire set of
real numbers. On the portion of the domain for which the function behaves as
in Example 2(a). For the values of are positive. So, the range of the
function is the interval (See Figure P.24.) ■

A function from to is one-to-one if to each -value in the range there
corresponds exactly one -value in the domain. For instance, the function given in
Example 2(a) is one-to-one, whereas the functions given in Examples 2(b) and 3 are
not one-to-one. A function from to is onto if its range consists of all of Y.YX

x
yYX

�0, ��.
1 � xx < 1,

x � 1,
x � 1,x < 1f

f�x� � �1 � x,
�x � 1,

if x < 1

if x � 1

nx �
	

2
� n	,

x

f�x� � tan x

�0, ��,
f�x� � �x � 1

�1, ��.x � 1 � 0,x

f�x� � �x � 1

�x: x � ±2�.

g�x� �
1

x2 � 4

�x:  4 � x � 5�.

4 � x � 5f�x� �
1

x2 � 4
,
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2

1

21
x

Domain: x ≥ 1 

Ran
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:y
≥ 

0 

f (x) = x − 1

y

(a) The domain of is and the range is
�0, ��.

�1, ��f

2π π 

y

x

3

2

1

Ran
ge

Domain

f (x) = tan x

(b) The domain of is all -values such that 

and the range is 

Figure P.23

���, ��.x �
	

2
� n	

xf

43

2

1

21
x

y

Ran
ge

:y
≥ 

0 

Domain: all real x

x − 1, x ≥ 1 
f (x) =

1 − x, x < 1 

The domain of is and the range
is
Figure P.24

�0, ��.
���, ��f



The Graph of a Function
The graph of the function consists of all points where is in the
domain of In Figure P.25, note that

the directed distance from the -axis

the directed distance from the -axis.

A vertical line can intersect the graph of a function of at most once. This
observation provides a convenient visual test, called the Vertical Line Test, for
functions of That is, a graph in the coordinate plane is the graph of a function of 
if and only if no vertical line intersects the graph at more than one point. For example,
in Figure P.26(a), you can see that the graph does not define as a function of because
a vertical line intersects the graph twice, whereas in Figures P.26(b) and (c), the graphs
do define as a function of 

(a) Not a function of (b) A function of (c) A function of 
Figure P.26

Figure P.27 shows the graphs of eight basic functions. You should be able to recognize
these graphs. (Graphs of the other four basic trigonometric functions are shown in
Appendix C.)

xxx

x
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1

3
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x.y
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xx.

x

xf�x� �
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f.
x�x, f �x��,y � f �x�
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x

x

f (x)

(x, f (x))
y = f (x)y

The graph of a function
Figure P.25

x
−2 −1 1 2 

2

1

−1

−2

f (x) = x
y

Identity function

x
−2 −1 1 2 

2

3

4

1

x⎜ ⎜ f (x) =

y

Absolute value function

The graphs of eight basic functions
Figure P.27
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−1

f (x) =

y
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x

Rational function

x

2

1

−2

π π π2−

f (x) = sin x

y

Sine function

x

2

1

−2

−1

π π π2π−2 − 

f (x) = cos x

y

Cosine function

x
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f (x) = x2y

Squaring function
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f (x) = x3
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Cubing function
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1

f (x) = x
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Square root function



Transformations of Functions
Some families of graphs have the same basic shape. For example, compare the graph
of with the graphs of the four other quadratic functions shown in Figure P.28.

(a) Vertical shift upward (b) Horizontal shift to the left

(c) Reflection (d) Shift left, reflect, and shift upward
Figure P.28

Each of the graphs in Figure P.28 is a transformation of the graph of The
three basic types of transformations illustrated by these graphs are vertical shifts,
horizontal shifts, and reflections. Function notation lends itself well to describing
transformations of graphs in the plane. For instance, if is considered to be
the original function in Figure P.28, the transformations shown can be represented by
the following equations.

Vertical shift up 2 units

Horizontal shift to the left 2 units

Reflection about the -axis

Shift left 3 units, reflect about -axis, and shift up 1 unitxy � �f�x � 3� � 1

xy � �f�x�
y � f�x � 2�
y � f�x� � 2

f�x� � x2

y � x2.

x
−5 −3 −1 1 2 

−2

1

2

3

4

y = 1 − (x + 3) 2

y = x2

y

x
−2 −1 1 2

1

2

y = x2

y = −x2

y

−1

−2

x
−2−3 −1 1 

3

4

1
y = x2

y = ( x + 2) 2

y

x
−2 −1 1 2 

3

4

1

y = x2 + 2

y = x2

y

y � x2
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BASIC TYPES OF TRANSFORMATIONS 

Original graph:
Horizontal shift units to the right:
Horizontal shift units to the left:
Vertical shift units downward:
Vertical shift units upward:
Reflection (about the -axis):
Reflection (about the -axis):
Reflection (about the origin): y � �f��x�

y � f��x�y
y � �f�x�x
y � f�x� � cc
y � f�x� � cc
y � f�x � c�c
y � f�x � c�c
y � f�x�

�c > 0�

E X P L O R A T I O N

Writing Equations for Functions
Each of the graphing utility screens
below shows the graph of one of
the eight basic functions shown on
page 22. Each screen also shows 
a transformation of the graph.
Describe the transformation. Then
use your description to write an
equation for the transformation.

a.

b.

c.

d.

−6 6 

−3

5

−8 10 

−4

8 

−6 6

−4

4 

−9 9

−3

9



Classifications and Combinations of Functions
The modern notion of a function is derived from the efforts of many seventeenth- and
eighteenth-century mathematicians. Of particular note was Leonhard Euler, to whom
we are indebted for the function notation By the end of the eighteenth
century, mathematicians and scientists had concluded that many real-world phenomena
could be represented by mathematical models taken from a collection of functions
called elementary functions. Elementary functions fall into three categories.

1. Algebraic functions (polynomial, radical, rational)

2. Trigonometric functions (sine, cosine, tangent, and so on)

3. Exponential and logarithmic functions

You can review the trigonometric functions in Appendix C. The other nonalgebraic
functions, such as the inverse trigonometric functions and the exponential and
logarithmic functions, are introduced in Chapter 5.

The most common type of algebraic function is a polynomial function

where is a nonnegative integer. The numbers are coefficients, with the leading
coefficient and the constant term of the polynomial function. If then is
the degree of the polynomial function. The zero polynomial is not assigned
a degree. It is common practice to use subscript notation for coefficients of general
polynomial functions, but for polynomial functions of low degree, the following 
simpler forms are often used. Note that 

Zeroth degree: Constant function

First degree: Linear function

Second degree: Quadratic function

Third degree: Cubic function

Although the graph of a nonconstant polynomial function can have several turns,
eventually the graph will rise or fall without bound as moves to the right or left.
Whether the graph of 

eventually rises or falls can be determined by the function’s degree (odd or even) and
by the leading coefficient as indicated in Figure P.29. Note that the dashed portions
of the graphs indicate that the Leading Coefficient Test determines only the right and
left behavior of the graph.

an,

f�x� � anxn � an�1x
n�1 � .  .  . � a2x2 � a1x � a0

x

f�x� � ax3 � bx2 � cx � d

f�x� � ax2 � bx � c

f�x� � ax � b

f�x� � a

a � 0.��

f �x� � 0
nan � 0,a0

anain

y � f �x�.
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f�x� � anxn � an�1x
n�1 � .  .  . � a2x2 � a1x � a0

■ FOR FURTHER INFORMATION For
more on the history of the concept of a
function, see the article “Evolution of the
Function Concept: A Brief Survey” by
Israel Kleiner in The College Mathematics
Journal. To view this article, go to the
website www.matharticles.com.
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Up to 
right

an > 0

Graphs of polynomial functions of even degree

The Leading Coefficient Test for polynomial functions
Figure P.29

Graphs of polynomial functions of odd degree
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LEONHARD EULER (1707–1783)

In addition to making major contributions to
almost every branch of mathematics, Euler
was one of the first to apply calculus to 
real-life problems in physics. His extensive
published writings include such topics as
shipbuilding, acoustics, optics, astronomy,
mechanics, and magnetism.
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q�x� � 0f�x� �
p�x�
q�x�

,

DEFINITION OF COMPOSITE FUNCTION

Let and be functions. The function given by is called
the composite of with The domain of is the set of all in the domain
of such that is in the domain of (see Figure P.30).fg�x�g

xf � gg.f
� f � g��x� � f�g�x��gf

Just as a rational number can be written as the quotient of two integers, a rational
function can be written as the quotient of two polynomials. Specifically, a function is
rational if it has the form

where and are polynomials.
Polynomial functions and rational functions are examples of algebraic

functions. An algebraic function of is one that can be expressed as a finite number
of sums, differences, multiples, quotients, and radicals involving For example,

is algebraic. Functions that are not algebraic are transcendental. For
instance, the trigonometric functions are transcendental.

Two functions can be combined in various ways to create new functions. For
example, given and you can form the functions shown.

Sum

Difference

Product

Quotient

You can combine two functions in yet another way, called composition. The
resulting function is called a composite function.

The composite of with may not be equal to the composite of with 

EXAMPLE 4 Finding Composite Functions

Given and find each composite function.

a. b.

Solution

a. Definition of 

Substitute cos 

Definition of 

Simplify.

b. Definition of 

Substitute

Definition of 

Note that ■� f � g��x� � �g � f ��x�.

g�x�� cos�2x � 3�
2x � 3 for f �x�.� g�2x � 3�

g � f�g � f ��x� � g� f �x��
� 2 cos x � 3

f �x�� 2�cos x� � 3

x for g�x�.� f�cos x�
f � g� f � g��x� � f�g�x��

g � ff � g

g�x� � cos x,f�x� � 2x � 3

f.ggf

� f�g��x� �
f�x�
g�x�

�
2x � 3

x2 � 1

� fg��x� � f�x�g�x� � �2x � 3��x2 � 1�
� f � g��x� � f�x� � g�x� � �2x � 3� � �x2 � 1�
� f � g��x� � f�x� � g�x� � �2x � 3� � �x2 � 1�

g�x� � x2 � 1,f�x� � 2x � 3

�x � 1f�x� �
xn.

x

q�x�p�x�

f

Domain of g

Domain of f

f
g

x

f (g(x))

g(x)

f g

The domain of the composite function 
Figure P.30

f � g



In Section P.1, an -intercept of a graph was defined to be a point at which
the graph crosses the -axis. If the graph represents a function the number is a zero
of In other words, the zeros of a function are the solutions of the equation 
For example, the function has a zero at because 

In Section P.1 you also studied different types of symmetry. In the terminology of
functions, a function is even if its graph is symmetric with respect to the -axis, and
is odd if its graph is symmetric with respect to the origin. The symmetry tests in
Section P.1 yield the following test for even and odd functions.

EXAMPLE 5 Even and Odd Functions and Zeros of Functions

Determine whether each function is even, odd, or neither. Then find the zeros of the
function.

a. b.

Solution

a. This function is odd because

The zeros of are found as shown.

Let

Factor.

Zeros of 

See Figure P.31(a).

b. This function is even because

The zeros of are found as shown.

Let

Subtract 1 from each side.

is an integer. Zeros of 

See Figure P.31(b). ■

gx � �2n � 1�	, n

 cos x � �1

g�x� � 0. 1 � cos x � 0

g

cos��x� � cos�x�g��x� � 1 � cos��x� � 1 � cos x � g�x�.

fx � 0, 1, �1

x�x2 � 1� � x�x � 1��x � 1� � 0

f �x� � 0.x3 � x � 0

f

f��x� � ��x�3 � ��x� � �x3 � x � ��x3 � x� � �f �x�.

g�x� � 1 � cos xf�x� � x3 � x

y

f�4� � 0.x � 4f �x� � x � 4
f �x� � 0.ff.

af,x
�a, 0�x
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TEST FOR EVEN AND ODD FUNCTIONS

The function is even if

The function is odd if f ��x� � �f �x�.y � f�x�
f��x� � f�x�.y � f�x�

E X P L O R A T I O N

Use a graphing utility to graph
each function. Determine whether
the function is even, odd, or
neither.

Describe a way to identify a 
function as odd or even by
inspecting the equation.

p�x� � x9 � 3x 5 � x 3 � x

k�x� � x5 � 2x 4 � x � 2

j�x� � 2 � x6 � x 8

h�x� � x5 � 2x3 � x

g�x� � 2x3 � 1

f �x� � x2 � x4

x
−2 1 2 

−2

−1

1

2

(1, 0)

(0, 0)

(−1, 0)
f (x) = x3 − x

y

(a) Odd function

x
2 3 4π π ππ 

2

3

1

−1

g(x) = 1 + cos x

y

(b) Even function
Figure P.31

NOTE Each of the functions in Example 5 is either even or odd. However, some functions,
such as are neither even nor odd. ■f �x� � x2 � x � 1,

NOTE Except for the constant function the graph of a function of cannot have
symmetry with respect to the -axis because it then would fail the Vertical Line Test for the
graph of the function. ■

x
xf �x� � 0,



In Exercises 1 and 2, use the graphs of and to answer the
following.

(a) Identify the domains and ranges of and 

(b) Identify and 

(c) For what value(s) of is 

(d) Estimate the solution(s) of 

(e) Estimate the solutions of 

1. 2.

In Exercises 3–12, evaluate (if possible) the function at the given
value(s) of the independent variable. Simplify the results.

3. 4.

(a) (a)

(b) (b)

(c) (c)

(d) (d)

5. 6.

(a) (a)

(b) (b)

(c) (c)

(d) (d)

7. 8.

(a) (a)

(b) (b)

(c) (c)

9. 10.

11. 12.

In Exercises 13 –20, find the domain and range of the function.

13. 14.

15. 16.

17. 18.

19. 20.

In Exercises 21–26, find the domain of the function.

21. 22.

23. 24.

25. 26.

In Exercises 27–30, evaluate the function as indicated.
Determine its domain and range.

27.

(a) (b) (c) (d)

28.

(a) (b) (c) (d)

29.

(a) (b) (c) (d)

30.

(a) (b) (c) (d)

In Exercises 31–38, sketch a graph of the function and find its
domain and range. Use a graphing utility to verify your graph.

31. 32.

33. 34.

35. 36.

37. 38. h�� � �5 cos 


2
g�t� � 3 sin 	t

f �x� � x � �4 � x2f �x� � �9 � x2

f �x� �
1
4 x3 � 3h�x� � �x � 6

g�x� �
4

x
f �x� � 4 � x

f �10�f �5�f �0�f ��3�

f �x� � ��x � 4,

�x � 5�2,

x � 5

x > 5

f �b2 � 1�f �3�f �1�f ��3�

f �x� � � �x� � 1,

�x � 1,

x < 1

x � 1

f �s2 � 2�f �1�f �0�f ��2�

f �x� � �x2 � 2,

2x2 � 2,

x � 1

x > 1

f �t2 � 1�f �2�f �0�f ��1�

f �x� � �2x � 1,

2x � 2,

x < 0

x � 0

g�x� �
1

�x2 � 4�f �x� �
1

�x � 3�

h�x� �
1

sin x �
1
2

g�x� �
2

1 � cos x

f �x� � �x2 � 3x � 2f �x� � �x � �1 � x

g�x� �
2

x � 1
f �x� �

3
x

h�t� � cot tf �t� � sec
	 t
4

h�x� � ��x � 3g�x� � �6x

g�x� � x2 � 5f �x� � 4x2

f �x� � f �1�
x � 1

f �x� � f �2�
x � 2

f �x� � x3 � xf �x� �
1

�x � 1

f �x� � f �1�
x � 1

f �x � �x� � f �x�
�x

f �x� � 3x � 1f �x� � x3

f �2	�3�f �	�3�
f �5	�4�f ��	�4�
f �	�f �0�

f �x� � sin xf �x� � cos 2x

g�t � 4�g�t � 1�
g�c�g��2�
g�3
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P.3 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

39. The graph of the distance
that a student drives in a 
10-minute trip to school 
is shown in the figure. 
Give a verbal description 
of characteristics of the 
student’s drive to school.
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In Exercises 41–44, use the Vertical Line Test to determine
whether is a function of To print an enlarged copy of the
graph, go to the website www.mathgraphs.com.

41. 42.

43. 44.

In Exercises 45– 48, determine whether is a function of 

45. 46.

47. 48.

In Exercises 49–54, use the graph of to match the
function with its graph.

49. 50.

51. 52.

53. 54.

55. Use the graph of shown in the figure to sketch the graph of
each function. To print an enlarged copy of the graph, go to the
website www.mathgraphs.com.

(a) (b)

(c) (d)

(e) (f)

56. Use the graph of shown in the figure to sketch the graph of
each function. To print an enlarged copy of the graph, go to the
website www.mathgraphs.com.

(a) (b)

(c) (d)

(e) (f)

57. Use the graph of to sketch the graph of each
function. In each case, describe the transformation.

(a) (b) (c)

58. Specify a sequence of transformations that will yield each
graph of from the graph of the function 

(a) (b)

59. Given and evaluate each expression.

(a) (b) (c)

(d) (e) (f)

60. Given and evaluate each expression.

(a) (b) (c)

(d) (e) (f)

In Exercises 61– 64, find the composite functions and
What is the domain of each composite function? Are the

two composite functions equal?

61. 62.

63. 64.

65. Use the graphs of and to
evaluate each expression. If the
result is undefined, explain why.

(a) (b)

(c) (d)

(e) (f) f �g��1���g � f ���1�
� f � g���3�g� f �5��
g� f �2��� f � g��3�

y

x
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40. A student who commutes 27 miles to attend college 
remembers, after driving a few minutes, that a term paper
that is due has been forgotten. Driving faster than usual, the
student returns home, picks up the paper, and once again
starts toward school. Sketch a possible graph of the
student’s distance from home as a function of time.

WRITING ABOUT CONCEPTS (cont inued)
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66. Ripples A pebble is dropped into a calm pond, causing
ripples in the form of concentric circles. The radius (in feet) of
the outer ripple is given by where is the time in
seconds after the pebble strikes the water. The area of the circle
is given by the function Find and interpret

Think About It In Exercises 67 and 68, Identify
functions for and (There are many correct answers.)

67. 68.

In Exercises 69–72, determine whether the function is even,
odd, or neither. Use a graphing utility to verify your result.

69. 70.

71. 72.

Think About It In Exercises 73 and 74, find the coordinates of
a second point on the graph of a function f if the given point is
on the graph and the function is (a) even and (b) odd.

73. 74.

75. The graphs of and are shown in the figure. Decide
whether each function is even, odd, or neither.

Figure for 75 Figure for 76

76. The domain of the function shown in the figure is

(a) Complete the graph of given that is even.

(b) Complete the graph of given that is odd.

Writing Functions In Exercises 77– 80, write an equation for a
function that has the given graph.

77. Line segment connecting and 

78. Line segment connecting and 

79. The bottom half of the parabola 

80. The bottom half of the circle 

In Exercises 81–84, sketch a possible graph of the situation.

81. The speed of an airplane as a function of time during a 5-hour
flight

82. The height of a baseball as a function of horizontal distance
during a home run

83. The amount of a certain brand of sneaker sold by a sporting
goods store as a function of the price of the sneaker

84. The value of a new car as a function of time over a period of 
8 years

85. Find the value of such that the domain of

is

86. Find all values of such that the domain of

is the set of all real numbers.

87. Graphical Reasoning An electronically controlled thermostat
is programmed to lower the temperature during the night 
automatically (see figure). The temperature in degrees Celsius
is given in terms of the time in hours on a 24-hour clock.

(a) Approximate and 

(b) The thermostat is reprogrammed to produce a temperature
How does this change the temperature?

Explain.

(c) The thermostat is reprogrammed to produce a temperature
How does this change the temperature?

Explain.
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88. Water runs into a vase of height 30 centimeters at a constant
rate. The vase is full after 5 seconds. Use this information
and the shape of the vase shown to answer the questions if

is the depth of the water in centimeters and is the time in
seconds (see figure).

(a) Explain why is a function of 

(b) Determine the domain and range of the function.

(c) Sketch a possible graph of the function.

(d) Use the graph in part (c) to approximate What
does this represent?

d�4�.

t.d

30 cm

d

td

CAPSTONE
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Year 1955 1965 1975 1985 1995 2005

Acreage 258 340 420 441 438 444

89. Modeling Data The table shows the average numbers of acres
per farm in the United States for selected years. (Source:
U.S. Department of Agriculture)

(a) Plot the data, where is the acreage and is the time in
years, with corresponding to 1955. Sketch a freehand
curve that approximates the data.

(b) Use the curve in part (a) to approximate 

90. Automobile Aerodynamics The horsepower required to
overcome wind drag on a certain automobile is approximated by

where is the speed of the car in miles per hour.

(a) Use a graphing utility to graph 

(b) Rewrite the power function so that represents the speed in
kilometers per hour. Find 

91. Think About It Write the function

without using absolute value signs. (For a review of absolute
value, see Appendix C.)

92. Writing Use a graphing utility to graph the polynomial 
functions and How many
zeros does each function have? Is there a cubic polynomial that
has no zeros? Explain.

93. Prove that the function is odd.

94. Prove that the function is even.

95. Prove that the product of two even (or two odd) functions is
even.

96. Prove that the product of an odd function and an even function
is odd.

97. Volume An open box of maximum volume is to be made
from a square piece of material 24 centimeters on a side by 
cutting equal squares from the corners and turning up the sides
(see figure).

(a) Write the volume as a function of the length of the
corner squares. What is the domain of the function?

(b) Use a graphing utility to graph the volume function and
approximate the dimensions of the box that yield a 
maximum volume.

(c) Use the table feature of a graphing utility to verify your
answer in part (b). (The first two rows of the table are
shown.)

98. Length A right triangle is formed in the first quadrant by the
- and -axes and a line through the point (see figure).

Write the length of the hypotenuse as a function of 

True or False? In Exercises 99–102, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

99. If then 

100. A vertical line can intersect the graph of a function at most
once.

101. If for all in the domain of then the graph of
is symmetric with respect to the -axis.

102. If is a function, then f �ax� � af �x�.f

yf
f,xf �x� � f ��x�

a � b.f �a� � f �b�,
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x

H.

x

10 � x � 100H�x� � 0.002x2 � 0.005x � 0.029,

H

A�20�.

t � 5
tA

Height, x
Length

and Width Volume, V

1 24 � 2�1� 1�24 � 2�1��2 � 484

2 24 � 2�2� 2�24 � 2�2��2 � 800

103. Let be the region consisting of the points of the
Cartesian plane satisfying both and

Sketch the region and find its area.

104. Consider a polynomial with real coefficients having
the property for every polynomial 
with real coefficients. Determine and prove the nature of

These problems were composed by the Committee on the Putnam Prize
Competition. © The Mathematical Association of America. All rights reserved.
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P.4 Fitting Models to Data
■ Fit a linear model to a real-life data set.
■ Fit a quadratic model to a real-life data set.
■ Fit a trigonometric model to a real-life data set.

Fitting a Linear Model to Data
A basic premise of science is that much of the physical world can be described
mathematically and that many physical phenomena are predictable. This scientific
outlook was part of the scientific revolution that took place in Europe during the late
1500s. Two early publications connected with this revolution were On the Revolutions
of the Heavenly Spheres by the Polish astronomer Nicolaus Copernicus and On the
Structure of the Human Body by the Belgian anatomist Andreas Vesalius. Each of
these books was published in 1543, and each broke with prior tradition by suggesting
the use of a scientific method rather than unquestioned reliance on authority.

One basic technique of modern science is gathering data and then describing the
data with a mathematical model. For instance, the data given in Example 1 are
inspired by Leonardo da Vinci’s famous drawing that indicates that a person’s height
and arm span are equal.

EXAMPLE 1 Fitting a Linear Model to Data

A class of 28 people collected the following data, which represent their heights and
arm spans (rounded to the nearest inch).

Find a linear model to represent these data.

Solution There are different ways to model these data with an equation. The
simplest would be to observe that and are about the same and list the model as
simply A more careful analysis would be to use a procedure from statistics
called linear regression. (You will study this procedure in Section 13.9.) The least
squares regression line for these data is

Least squares regression line

The graph of the model and the data are shown in Figure P.32. From this model, you
can see that a person’s arm span tends to be about the same as his or her height.

■

y � 1.006x � 0.23.

y � x.
yx

�67, 67��71, 70�,�64, 63�,�65, 65�,�70, 72�,�69, 70�,�68, 67�,
�71, 71�,�64, 64�,�63, 63�,�60, 61�,�69, 70�,�69, 68�,�70, 70�,
�72, 73�,�62, 62�,�66, 68�,�65, 65�,�62, 60�,�71, 72�,�75, 74�,
�70, 71�,�63, 63�,�61, 62�,�72, 73�,�68, 67�,�65, 65�,�60, 61�,

y
x

Many scientific and graphing calculators have built-in least squares
regression programs. Typically, you enter the data into the calculator and then 
run the linear regression program. The program usually displays the slope and 
-intercept of the best-fitting line and the correlation coefficient The correlation

coefficient gives a measure of how well the model fits the data. The closer 
is to 1, the better the model fits the data. For instance, the correlation coefficient for
the model in Example 1 is which indicates that the model is a good fit for
the data. If the -value is positive, the variables have a positive correlation, as in
Example 1. If the -value is negative, the variables have a negative correlation.r

r
r � 0.97,

�r�
r.y
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Linear model and data
Figure P.32

A computer graphics drawing based on the
pen and ink drawing of Leonardo da Vinci’s
famous study of human proportions, called
Vitruvian Man



Fitting a Quadratic Model to Data
A function that gives the height of a falling object in terms of the time is called a
position function. If air resistance is not considered, the position of a falling object can
be modeled by

where is the acceleration due to gravity, is the initial velocity, and is the initial
height. The value of depends on where the object is dropped. On Earth, is approx-
imately feet per second per second, or meters per second per second.

To discover the value of experimentally, you could record the heights of a
falling object at several increments, as shown in Example 2.

EXAMPLE 2 Fitting a Quadratic Model to Data

A basketball is dropped from a height of about feet. The height of the basketball is
recorded 23 times at intervals of about 0.02 second.* The results are shown in the table.

Find a model to fit these data. Then use the model to predict the time when the 
basketball will hit the ground.

Solution Begin by drawing a scatter plot of the data, as shown in Figure P.33. From
the scatter plot, you can see that the data do not appear to be linear. It does appear,
however, that they might be quadratic. To check this, enter the data into a calculator
or computer that has a quadratic regression program. You should obtain the model

Least squares regression quadratic

Using this model, you can predict the time when the basketball hits the ground by
substituting 0 for and solving the resulting equation for 

Let

Quadratic Formula

Choose positive solution.

The solution is about 0.54 second. In other words, the basketball will continue to fall
for about 0.1 second more before hitting the ground. ■

t � 0.54

t �
1.302 ± ���1.302�2 � 4��15.45��5.2340�

2��15.45�

s � 0.0 � �15.45t2 � 1.302t � 5.2340

t.s

s � �15.45t2 � 1.302t � 5.2340.
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Time 0.0 0.02 0.04 0.06 0.08 0.099996

Height 5.23594 5.20353 5.16031 5.0991 5.02707 4.95146

Time 0.119996 0.139992 0.159988 0.179988 0.199984 0.219984

Height 4.85062 4.74979 4.63096 4.50132 4.35728 4.19523

Time 0.23998 0.25993 0.27998 0.299976 0.319972 0.339961

Height 4.02958 3.84593 3.65507 3.44981 3.23375 3.01048

Time 0.359961 0.379951 0.399941 0.419941 0.439941

Height 2.76921 2.52074 2.25786 1.98058 1.63488

* Data were collected with a Texas Instruments CBL (Calculator-Based Laboratory) System.

H
ei

gh
t (

in
 f

ee
t)

 

0.1 0.2 0.3 0.4 0.5 

1

t

6

5

4

3

2

s

Scatter plot of data
Figure P.33



Fitting a Trigonometric Model to Data
What is mathematical modeling? This is one of the questions that is asked in the book
Guide to Mathematical Modelling. Here is part of the answer.* 

1. Mathematical modeling consists of applying your mathematical skills to obtain
useful answers to real problems.

2. Learning to apply mathematical skills is very different from learning mathematics
itself.

3. Models are used in a very wide range of applications, some of which do not appear
initially to be mathematical in nature.

4. Models often allow quick and cheap evaluation of alternatives, leading to optimal
solutions that are not otherwise obvious.

5. There are no precise rules in mathematical modeling and no “correct” answers.

6. Modeling can be learned only by doing.

EXAMPLE 3 Fitting a Trigonometric Model to Data

The number of hours of daylight on a given day on Earth depends on the latitude and
the time of year. Here are the numbers of minutes of daylight at a location of lat-
itude on the longest and shortest days of the year: June 21, 801 minutes; December 22,
655 minutes. Use these data to write a model for the amount of daylight (in minutes)
on each day of the year at a location of latitude. How could you check the
accuracy of your model?

Solution Here is one way to create a model. You can hypothesize that the model is
a sine function whose period is 365 days. Using the given data, you can conclude that
the amplitude of the graph is or 73. So, one possible model is

In this model, represents the number of each day of the year, with December 22 
represented by A graph of this model is shown in Figure P.34. To check the
accuracy of this model, a weather almanac was used to find the numbers of minutes
of daylight on different days of the year at the location of latitude.

Dec 22 0 655 min 655 min
Jan 1 10 657 min 656 min
Feb 1 41 676 min 672 min
Mar 1 69 705 min 701 min
Apr 1 100 740 min 739 min
May 1 130 772 min 773 min
Jun 1 161 796 min 796 min
Jun 21 181 801 min 801 min
Jul 1 191 799 min 800 min
Aug 1 222 782 min 785 min
Sep 1 253 752 min 754 min
Oct 1 283 718 min 716 min
Nov 1 314 685 min 681 min
Dec 1 344 661 min 660 min

You can see that the model is fairly accurate. ■

Daylight Given by ModelActual DaylightValue of tDate     

20�N

t � 0.
t

d � 728 � 73 sin�2	 t

365
�

	

2	.

�801 � 655��2,

20�N
d

20�N
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The plane of Earth’s orbit about the sun and
its axis of rotation are not perpendicular.
Instead, Earth’s axis is tilted with respect
to its orbit. The result is that the amount 
of daylight received by locations on Earth
varies with the time of year. That is, it varies
with the position of Earth in its orbit.
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Graph of model
Figure P.34

NOTE For a review of trigonometric
functions, see Appendix C. 

* Text from Dilwyn Edwards and Mike Hamson, Guide to Mathematical Modelling (Boca Raton:
CRC Press, 1990), p. 4. Used by permission of the authors.
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P.4 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

F 20 40 60 80 100

d 1.4 2.5 4.0 5.3 6.6

t 0 1 2 3 4

s 0 11.0 19.4 29.2 39.4

Argentina (71, 12.53)

Chile (75, 10.61)

Greece (136, 22.23)

Hungary (106, 15.8)

Mexico (63, 9.64)

Portugal (106, 19.24)

Spain (159, 24.75)

United Kingdom (167, 31.43)

Bangladesh (5, 1.97)

Ecuador (29, 3.77)

Hong Kong (159, 31.56)

India (15, 3.12)

Poland (95, 12.73)

South Korea (186, 20.53)

Turkey (51, 7.72)

Venezuela (115, 5.83)

In Exercises 1– 4, a scatter plot of data is given. Determine
whether the data can be modeled by a linear function, a quadratic
function, or a trigonometric function, or that there appears to be
no relationship between and To print an enlarged copy of the
graph, go to the website www.mathgraphs.com.

1. 2.

3. 4.

5. Carcinogens Each ordered pair gives the exposure index of a
carcinogenic substance and the cancer mortality per 100,000
people in the population.

(a) Plot the data. From the graph, do the data appear to be
approximately linear?

(b) Visually find a linear model for the data. Graph the model.

(c) Use the model to approximate if 

6. Quiz Scores The ordered pairs represent the scores on two
consecutive 15-point quizzes for a class of 18 students.

(a) Plot the data. From the graph, does the relationship between
consecutive scores appear to be approximately linear?

(b) If the data appear to be approximately linear, find a linear
model for the data. If not, give some possible explanations.

7. Hooke’s Law Hooke’s Law states that the force required to
compress or stretch a spring (within its elastic limits) is propor-
tional to the distance that the spring is compressed or stretched
from its original length. That is, where is a measure of
the stiffness of the spring and is called the spring constant. The
table shows the elongation in centimeters of a spring when a
force of newtons is applied.

(a) Use the regression capabilities of a graphing utility to find a
linear model for the data.

(b) Use a graphing utility to plot the data and graph the model.
How well does the model fit the data? Explain your
reasoning.

(c) Use the model to estimate the elongation of the spring when
a force of 55 newtons is applied.

8. Falling Object In an experiment, students measured the speed
(in meters per second) of a falling object seconds after it was

released. The results are shown in the table.

(a) Use the regression capabilities of a graphing utility to find a
linear model for the data.

(b) Use a graphing utility to plot the data and graph the model.
How well does the model fit the data? Explain your
reasoning.

(c) Use the model to estimate the speed of the object after
2.5 seconds.

9. Energy Consumption and Gross National Product The data
show the per capita energy consumptions (in millions of Btu)
and the per capita gross national products (in thousands of U.S.
dollars) for several countries in 2004. (Source: U.S. Census
Bureau)

(a) Use the regression capabilities of a graphing utility to find a
linear model for the data. What is the correlation coefficient?

(b) Use a graphing utility to plot the data and graph the model.

(c) Interpret the graph in part (b). Use the graph to identify the
four countries that differ most from the linear model.

(d) Delete the data for the four countries identified in part
(c). Fit a linear model to the remaining data and give the
correlation coefficient.
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10. Brinell Hardness The data in the table show the Brinell
hardness of 0.35 carbon steel when hardened and tempered
at temperature (degrees Fahrenheit). (Source: Standard
Handbook for Mechanical Engineers)

(a) Use the regression capabilities of a graphing utility to find
a linear model for the data.

(b) Use a graphing utility to plot the data and graph the model.
How well does the model fit the data? Explain your
reasoning.

(c) Use the model to estimate the hardness when is 500 F.

11. Automobile Costs The data in the table show the variable
costs of operating an automobile in the United States for several
recent years. The functions and represent the costs in
cents per mile for gas, maintenance, and tires, respectively.
(Source: Bureau of Transportation Statistics)

(a) Use the regression capabilities of a graphing utility to find
cubic models for and and a linear model for 

(b) Use a graphing utility to graph and 
in the same viewing window. Use the model to estimate the
total variable cost per mile in year 12.

12. Beam Strength Students in a lab measured the breaking
strength (in pounds) of wood 2 inches thick, inches high,
and 12 inches long. The results are shown in the table.

(a) Use the regression capabilities of a graphing utility to fit a
quadratic model to the data.

(b) Use a graphing utility to plot the data and graph the model.

(c) Use the model to approximate the breaking strength when

13. Car Performance The time (in seconds) required to attain a
speed of miles per hour from a standing start for a Honda
Accord Hybrid is shown in the table. (Source: Car & Driver)

(a) Use the regression capabilities of a graphing utility to find
a quadratic model for the data.

(b) Use a graphing utility to plot the data and graph the model.

(c) Use the graph in part (b) to state why the model is not
appropriate for determining the times required to attain
speeds of less than 20 miles per hour.

(d) Because the test began from a standing start, add the point
to the data. Fit a quadratic model to the revised data

and graph the new model.

(e) Does the quadratic model in part (d) more accurately model
the behavior of the car? Explain.

�0, 0�

s
t

x � 2.

xS

y1 � y2 � y3y3,y2,y1,

y2.y3y1

y3y2,y1,

�t

t
H
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t 200 400 600 800 1000 1200

H 534 495 415 352 269 217

Year y1 y2 y3

0 5.60 3.30 1.70

1 6.90 3.60 1.70

2 7.90 3.90 1.80

3 5.90 4.10 1.80

4 7.20 4.10 1.80

5 6.50 5.40 0.70

6 9.50 4.90 0.70

7 8.90 4.90 0.70

x 4 6 8 10 12

S 2370 5460 10,310 16,250 23,860

14. Health Maintenance Organizations The bar graph
shows the numbers of people (in millions) receiving care
in HMOs for the years 1990 through 2004. (Source:
HealthLeaders-InterStudy)

(a) Let be the time in years, with corresponding to
1990. Use the regression capabilities of a graphing 
utility to find linear and cubic models for the data.

(b) Use a graphing utility to graph the data and the linear
and cubic models.

(c) Use the graphs in part (b) to determine which is the 
better model.

(d) Use a graphing utility to find and graph a quadratic
model for the data. How well does the model fit the
data? Explain your reasoning.

(e) Use the linear and cubic models to estimate the number
of people receiving care in HMOs in the year 2007.
What do you notice?

(f) Use a graphing utility to find other models for the data.
Which models do you think best represent the data?
Explain.
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15. Car Performance A V8 car engine is coupled to a
dynamometer, and the horsepower is measured at different
engine speeds (in thousands of revolutions per minute). The
results are shown in the table.

(a) Use the regression capabilities of a graphing utility to find
a cubic model for the data.

(b) Use a graphing utility to plot the data and graph the model.

(c) Use the model to approximate the horsepower when the
engine is running at 4500 revolutions per minute.

16. Boiling Temperature The table shows the temperatures 
at which water boils at selected pressures (pounds per
square inch). (Source: Standard Handbook for Mechanical
Engineers)

(a) Use the regression capabilities of a graphing utility to find
a cubic model for the data.

(b) Use a graphing utility to plot the data and graph the model.

(c) Use the graph to estimate the pressure required for the 
boiling point of water to exceed 300 F.

(d) Explain why the model would not be accurate for pressures
exceeding 100 pounds per square inch.

17. Harmonic Motion The motion of an oscillating weight
suspended by a spring was measured by a motion detector. The
data collected and the approximate maximum (positive and
negative) displacements from equilibrium are shown in the
figure. The displacement is measured in centimeters and the
time is measured in seconds.

(a) Is a function of Explain.

(b) Approximate the amplitude and period of the oscillations.

(c) Find a model for the data.

(d) Use a graphing utility to graph the model in part (c).
Compare the result with the data in the figure.

18. Temperature The table shows the normal daily high tempera-
tures for Miami and Syracuse (in degrees Fahrenheit) for
month with corresponding to January. (Source: NOAA)

(a) A model for Miami is

Find a model for Syracuse.

(b) Use a graphing utility to graph the data and the model for
the temperatures in Miami. How well does the model fit?

(c) Use a graphing utility to graph the data and the model for
the temperatures in Syracuse. How well does the model fit?

(d) Use the models to estimate the average annual temperature
in each city. Which term of the model did you use? Explain.

(e) What is the period of each model? Is it what you expected?
Explain.

(f) Which city has a greater variability in temperature 
throughout the year? Which factor of the models 
determines this variability? Explain.
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x 1 2 3 4 5 6

y 40 85 140 200 225 245

p 5 10 14.696 (1 atmosphere) 20

T 162.24� 193.21� 212.00� 227.96�

p 30 40 60 80 100

T 250.33� 267.25� 292.71� 312.03� 327.81�

t 1 2 3 4 5 6

M 76.5 77.7 80.7 83.8 87.2 89.5

S 31.4 33.5 43.1 55.7 68.5 77.0

t 7 8 9 10 11 12

M 90.9 90.6 89.0 85.4 81.2 77.5

S 81.7 79.6 71.4 59.8 47.4 36.3

21. For 2 let be a triangle with side lengths 
and area Suppose that and
that is an acute triangle. Does it follow that 

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

A1 � A2?T2

c1 � c2,b1 � b2,a1 � a2,Ai .
ci,bi,ai,Tii � 1,

PUTNAM EXAM CHALLENGE

In Exercises 19 and 20, describe a possible real-life situation
for each data set. Then describe how a model could be used
in the real-life setting.

19. 20.

x

y

x

y
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In Exercises 1–4, find the intercepts (if any).

1. 2.

3. 4.

In Exercises 5 and 6, check for symmetry with respect to both
axes and to the origin.

5. 6.

In Exercises 7–14, sketch the graph of the equation.

7. 8.

9. 10.

11. 12.

13. 14.

In Exercises 15 and 16, describe the viewing window of a graph-
ing utility that yields the figure.

15. 16.

In Exercises 17 and 18, use a graphing utility to find the point(s)
of intersection of the graphs of the equations.

17. 18.

19. Think About It Write an equation whose graph has 
intercepts at and and is symmetric with respect
to the origin.

20. Think About It For what value of does the graph of 
pass through the point?

(a) (b) (c) (d)

In Exercises 21 and 22, plot the points and find the slope of the
line passing through the points.

21. 22.

In Exercises 23 and 24, use the concept of slope to find t such
that the three points are collinear.

23. 24.

In Exercises 25–28, find an equation of the line that passes
through the point with the indicated slope. Sketch the line.

25. 26. is undefined.

27. 28.

29. Find equations of the lines passing through and having
the following characteristics.

(a) Slope of 

(b) Parallel to the line 

(c) Passing through the origin

(d) Parallel to the -axis

30. Find equations of the lines passing through and having
the following characteristics.

(a) Slope of 

(b) Perpendicular to the line 

(c) Passing through the point 

(d) Parallel to the -axis

31. Rate of Change The purchase price of a new machine is
$12,500, and its value will decrease by $850 per year. Use this
information to write a linear equation that gives the value of
the machine years after it is purchased. Find its value at the
end of 3 years.

32. Break-Even Analysis A contractor purchases a piece of
equipment for $36,500 that costs an average of $9.25 per hour
for fuel and maintenance. The equipment operator is paid
$13.50 per hour, and customers are charged $30 per hour.

(a) Write an equation for the cost of operating this equip-
ment for hours.

(b) Write an equation for the revenue derived from hours 
of use.

(c) Find the break-even point for this equipment by finding the
time at which 

In Exercises 33–36, sketch the graph of the equation and use
the Vertical Line Test to determine whether the equation
expresses as a function of 

33. 34.

35. 36.

37. Evaluate (if possible) the function at the specified
values of the independent variable, and simplify the results.

(a) (b)

38. Evaluate (if possible) the function at each value of the inde-
pendent variable.

(a) (b) (c)

39. Find the domain and range of each function.
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40. Given and evaluate each
expression.

(a) (b) (c)

41. Sketch (on the same set of coordinate axes) graphs of for
and 2.

(a) (b)

(c) (d)

42. Use a graphing utility to graph Use the graph
to write a formula for the function shown in the figure. 
To print an enlarged copy of the graph, go to the website
www.mathgraphs.com.

(a) (b)

43. Conjecture

(a) Use a graphing utility to graph the functions and in
the same viewing window. Write a description of any
similarities and differences you observe among the graphs.

Odd powers:

Even powers:

(b) Use the result in part (a) to make a conjecture about the
graphs of the functions and Use a graphing
utility to verify your conjecture.

44. Think About It Use the results of Exercise 43 to guess the
shapes of the graphs of the functions and Then use a
graphing utility to graph each function and compare the result
with your guess.

(a) (b)

(c)

45. Area A wire 24 inches long is to be cut into four pieces to
form a rectangle whose shortest side has a length of 

(a) Write the area of the rectangle as a function of 

(b) Determine the domain of the function and use a graphing
utility to graph the function over that domain.

(c) Use the graph of the function to approximate the maximum
area of the rectangle. Make a conjecture about the dimen-
sions that yield a maximum area.

46. Writing The following graphs give the profits for two small
companies over a period of 2 years. Create a story to describe
the behavior of each profit function for some hypothetical
product the company produces.

(a) (b)

47. Think About It What is the minimum degree of the polyno-
mial function whose graph approximates the given graph?
What sign must the leading coefficient have?

(a) (b)

(c) (d)

48. Stress Test A machine part was tested by bending it 
centimeters 10 times per minute until the time (in hours) of 
failure. The results are recorded in the table.

(a) Use the regression capabilities of a graphing utility to find
a linear model for the data.

(b) Use a graphing utility to plot the data and graph the model.

(c) Use the graph to determine whether there may have been an
error made in conducting one of the tests or in recording the
results. If so, eliminate the erroneous point and find the
model for the remaining data.

49. Harmonic Motion The motion of an oscillating weight
suspended by a spring was measured by a motion detector. The
data collected and the approximate maximum (positive and
negative) displacements from equilibrium are shown in the 
figure. The displacement is measured in feet and the time is
measured in seconds.

(a) Is a function of Explain.

(b) Approximate the amplitude and period of the oscillations.

(c) Find a model for the data.

(d) Use a graphing utility to graph the model in part (c).
Compare the result with the data in the figure.
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P.S. PROBLEM SOLVING

1. Consider the circle as shown in the
figure.

(a) Find the center and radius of the circle.

(b) Find an equation of the tangent line to the circle at the point

(c) Find an equation of the tangent line to the circle at the point

(d) Where do the two tangent lines intersect?

Figure for 1 Figure for 2

2. There are two tangent lines from the point to the circle
(see figure). Find equations of these two lines

by using the fact that each tangent line intersects the circle at
exactly one point.

3. The Heaviside function is widely used in engineering
applications.

Sketch the graph of the Heaviside function and the graphs of the
following functions by hand.

(a) (b) (c)

(d) (e) (f)

4. Consider the graph of the function shown below. Use 
this graph to sketch the graphs of the following functions. 
To print an enlarged copy of the graph, go to the website
www.mathgraphs.com.

(a) (b)

(c) (d)

(e) (f )

(g)

5. A rancher plans to fence a rectangular pasture adjacent to a river.
The rancher has 100 meters of fencing, and no fencing is needed
along the river (see figure).

(a) Write the area of the pasture as a function of the length
of the side parallel to the river. What is the domain of 

(b) Graph the area function and estimate the dimensions
that yield the maximum amount of area for the pasture.

(c) Find the dimensions that yield the maximum amount of area
for the pasture by completing the square.

Figure for 5 Figure for 6

6. A rancher has 300 feet of fencing to enclose two adjacent 
pastures.

(a) Write the total area of the two pastures as a function of 
(see figure). What is the domain of 

(b) Graph the area function and estimate the dimensions that
yield the maximum amount of area for the pastures.

(c) Find the dimensions that yield the maximum amount of area
for the pastures by completing the square.

7. You are in a boat 2 miles from the nearest point on the coast. You
are to go to a point located 3 miles down the coast and 
1 mile inland (see figure). You can row at 2 miles per hour and
walk at 4 miles per hour. Write the total time of the trip as a
function of 
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OLIVER HEAVISIDE (1850–1925)

Heaviside was a British mathematician and physicist who contributed to 
the field of applied mathematics, especially applications of mathematics to
electrical engineering. The Heaviside function is a classic type of “on-off”
function that has applications to electricity and computer science.
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8. You drive to the beach at a rate of 120 kilometers per hour. On
the return trip, you drive at a rate of 60 kilometers per hour. What
is your average speed for the entire trip? Explain your reasoning.

9. One of the fundamental themes of calculus is to find the slope
of the tangent line to a curve at a point. To see how this can be
done, consider the point on the graph of (see
figure).

(a) Find the slope of the line joining and Is the
slope of the tangent line at greater than or less than
this number?

(b) Find the slope of the line joining and Is the
slope of the tangent line at greater than or less than
this number?

(c) Find the slope of the line joining and Is
the slope of the tangent line at greater than or less
than this number?

(d) Find the slope of the line joining and 
in terms of the nonzero number Verify that

and 0.1 yield the solutions to parts (a)–(c)
above.

(e) What is the slope of the tangent line at Explain how
you arrived at your answer.

10. Sketch the graph of the function and label the point
on the graph.

(a) Find the slope of the line joining and Is the
slope of the tangent line at greater than or less than
this number?

(b) Find the slope of the line joining and . Is the
slope of the tangent line at greater than or less than
this number?

(c) Find the slope of the line joining and Is
the slope of the tangent line at greater than or less
than this number?

(d) Find the slope of the line joining and 
in terms of the nonzero number 

(e) What is the slope of the tangent line at the point 
Explain how you arrived at your answer.

11. Explain how you would graph the equation

Then sketch the graph.

12. A large room contains two speakers that are 3 meters apart. The
sound intensity of one speaker is twice that of the other, as
shown in the figure. (To print an enlarged copy of the graph, go

to the website www.mathgraphs.com.) Suppose the listener is
free to move about the room to find those positions that receive
equal amounts of sound from both speakers. Such a location
satisfies two conditions: (1) the sound intensity at the listener’s
position is directly proportional to the sound level of a source,
and (2) the sound intensity is inversely proportional to the
square of the distance from the source.

(a) Find the points on the -axis that receive equal amounts of
sound from both speakers.

(b) Find and graph the equation of all locations where
one could stand and receive equal amounts of sound from
both speakers.

Figure for 12 Figure for 13

13. Suppose the speakers in Exercise 12 are 4 meters apart and the
sound intensity of one speaker is times that of the other, as
shown in the figure. To print an enlarged copy of the graph, go
to the website www.mathgraphs.com.

(a) Find the equation of all locations where one could stand
and receive equal amounts of sound from both speakers.

(b) Graph the equation for the case 

(c) Describe the set of locations of equal sound as becomes
very large.

14. Let and be the distances from the point to the points
and respectively, as shown in the figure. Show

that the equation of the graph of all points satisfying
is This curve is called a

lemniscate. Graph the lemniscate and identify three points on
the graph.

15. Let

(a) What are the domain and range of 

(b) Find the composition What is the domain of this
function?

(c) Find What is the domain of this function?

(d) Graph Is the graph a line? Why or why not?f � f � f �x���.
f � f � f �x���.
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1 Limits and Their
Properties

The limit process is a fundamental concept of calculus. One technique you can use to estimate a limit is to graph the
function and then determine the behavior of the graph as the independent variable approaches a specific value. (See
Section 1.2.)

x

y

−1 1

xf (x) = 
x + 1 − 1

x

y

−1 1

1

2

x

y

f is
undefined
at x = 0.

−1 1

xf (x) = 
x + 1 − 1

European Space Agency/NASA

The limit of a function is the primary 
concept that distinguishes calculus from
algebra and analytic geometry. The 
notion of a limit is fundamental to the
study of calculus. Thus, it is important 
to acquire a good working knowledge of
limits before moving on to other topics 
in calculus.

In this chapter, you should learn the 
following.

■ How calculus compares with precalculus.
(1.1)

■ How to find limits graphically and
numerically. (1.2)

■ How to evaluate limits analytically. (1.3)

■ How to determine continuity at a point
and on an open interval, and how to
determine one-sided limits. (1.4)

■ How to determine infinite limits and
find vertical asymptotes. (1.5)

According to NASA, the coldest place in the known universe is the Boomerang 
nebula. The nebula is five thousand light years from Earth and has a temperature of

That is only warmer than absolute zero, the coldest possible temperature.
How did scientists determine that absolute zero is the “lower limit” of the 
temperature of matter? (See Section 1.4, Example 5.)

1��272�C.

■

■



■ Understand what calculus is and how it compares with precalculus.
■ Understand that the tangent line problem is basic to calculus.
■ Understand that the area problem is also basic to calculus.

What Is Calculus?
Calculus is the mathematics of change. For instance, calculus is the mathematics of
velocities, accelerations, tangent lines, slopes, areas, volumes, arc lengths, centroids,
curvatures, and a variety of other concepts that have enabled scientists, engineers, and
economists to model real-life situations.

Although precalculus mathematics also deals with velocities, accelerations,
tangent lines, slopes, and so on, there is a fundamental difference between precalculus
mathematics and calculus. Precalculus mathematics is more static, whereas 
calculus is more dynamic. Here are some examples. 

• An object traveling at a constant velocity can be analyzed with precalculus
mathematics. To analyze the velocity of an accelerating object, you need calculus. 

• The slope of a line can be analyzed with precalculus mathematics. To analyze the
slope of a curve, you need calculus.

• The curvature of a circle is constant and can be analyzed with precalculus mathe-
matics. To analyze the variable curvature of a general curve, you need calculus.

• The area of a rectangle can be analyzed with precalculus mathematics. To analyze
the area under a general curve, you need calculus.

Each of these situations involves the same general strategy—the reformulation of
precalculus mathematics through the use of a limit process. So, one way to answer the
question “What is calculus?” is to say that calculus is a “limit machine” that involves
three stages. The first stage is precalculus mathematics, such as the slope of a line or
the area of a rectangle. The second stage is the limit process, and the third stage is a
new calculus formulation, such as a derivative or integral.

Some students try to learn calculus as if it were simply a collection of new
formulas. This is unfortunate. If you reduce calculus to the memorization of differen-
tiation and integration formulas, you will miss a great deal of understanding,
self-confidence, and satisfaction.

On the following two pages are listed some familiar precalculus concepts coupled
with their calculus counterparts. Throughout the text, your goal should be to learn how
precalculus formulas and techniques are used as building blocks to produce the more
general calculus formulas and techniques. Don’t worry if you are unfamiliar with
some of the “old formulas” listed on the following two pages—you will be reviewing
all of them.

As you proceed through this text, come back to this discussion repeatedly. Try to
keep track of where you are relative to the three stages involved in the study of
calculus. For example, the first three chapters break down as follows.

Chapter P: Preparation for Calculus Precalculus

Chapter 1: Limits and Their Properties Limit process

Chapter 2: Differentiation Calculus
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1.1 A Preview of Calculus

Precalculus
mathematics

Limit
process Calculus

As you progress through
this course, remember that learning
calculus is just one of your goals. Your
most important goal is to learn how to
use calculus to model and solve real-life
problems. Here are a few problem-
solving strategies that may help you.

• Be sure you understand the question.
What is given? What are you asked
to find?

• Outline a plan. There are many
approaches you could use: look for 
a pattern, solve a simpler problem,
work backwards, draw a diagram,
use technology, or any of many
other approaches. 

• Complete your plan. Be sure to
answer the question. Verbalize your
answer. For example, rather than
writing the answer as it
would be better to write the answer
as “The area of the region is
4.6 square meters.”

• Look back at your work. Does your
answer make sense? Is there a way
you can check the reasonableness of
your answer?

x � 4.6,

STUDY TIP
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Without Calculus With Differential Calculus

Value of Limit of as
when approaches 

Slope of a line Slope of a curve

Secant line to Tangent line to
a curve a curve

Average rate of Instantaneous
change between rate of change

and at 

Curvature Curvature
of a circle of a curve

Height of a Maximum height
curve when of a curve on

an interval

Tangent plane Tangent plane
to a sphere to a surface

Direction of Direction of
motion along motion along
a line a curve

x � c

t � ct � bt � a

cxx � c
f �x�f �x�

x

y = f (x)

c

y

y = f (x)

xc

y

Δx

Δy

dx

dy

t = a t = b t = c

xc

y

x
a b

y
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Without Calculus With Integral Calculus

Area of a Area under
rectangle a curve

Work done by a Work done by a
constant force variable force

Center of a Centroid of
rectangle a region

Length of a Length of
line segment an arc

Surface area Surface area of a
of a cylinder solid of revolution

Mass of a solid Mass of a solid
of constant of variable
density density

Volume of a Volume of a 
rectangular region under 
solid a surface

Sum of a Sum of an
finite number infinite number
of terms of terms

a1 � a2 � a3 � .  .  . � Sa1 � a2 � .  .  . � an � S

x

y

x

y
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The Tangent Line Problem
The notion of a limit is fundamental to the study of calculus. The following brief
descriptions of two classic problems in calculus—the tangent line problem and the
area problem—should give you some idea of the way limits are used in calculus.

In the tangent line problem, you are given a function and a point on its graph
and are asked to find an equation of the tangent line to the graph at point as shown
in Figure 1.1.

Except for cases involving a vertical tangent line, the problem of finding the
tangent line at a point is equivalent to finding the slope of the tangent line at You
can approximate this slope by using a line through the point of tangency and a second
point on the curve, as shown in Figure 1.2(a). Such a line is called a secant line. If

is the point of tangency and 

is a second point on the graph of the slope of the secant line through these two points
can be found using precalculus and is given by

(a) The secant line through and (b) As approaches the secant lines
approach the tangent line.

Figure 1.2

As point approaches point the slopes of the secant lines approach the slope
of the tangent line, as shown in Figure 1.2(b). When such a “limiting position” exists,
the slope of the tangent line is said to be the limit of the slopes of the secant lines.
(Much more will be said about this important calculus concept in Chapter 2.)

P,Q

�c � �x, f �c � �x��
P,Q�c, f �c��

x

P

Q

Tangent line

Secant
lines

y

x

Δx

f (c + Δx) − f (c)

Q (c + Δx, f (c + Δx))

P(c, f (c))

y

f,

Q�c � �x, f �c � �x��

P�c, f �c��

P.P

P,
Pf

msec �
f �c � �x� � f �c�

c � �x � c
�

f �c � �x� � f �c�
�x

.

E X P L O R A T I O N

The following points lie on the graph of 

Each successive point gets closer to the point Find the slopes of the
secant lines through and and and so on. Graph these secant lines
on a graphing utility. Then use your results to estimate the slope of the 
tangent line to the graph of at the point P.f

P,Q2P,Q1

P�1, 1�.

Q5�1.0001, f�1.0001��Q4�1.001, f�1.001��,

Q3�1.01, f �1.01��,Q2�1.1, f�1.1��,Q1�1.5, f�1.5��,

f�x� � x2.

x

Tangent line
P

y = f(x)

y

The tangent line to the graph of at 
Figure 1.1

Pf

GRACE CHISHOLM YOUNG (1868–1944)

Grace Chisholm Young received her degree
in mathematics from Girton College in
Cambridge, England. Her early work was 
published under the name of William Young,
her husband. Between 1914 and 1916, Grace
Young published work on the foundations of
calculus that won her the Gamble Prize from
Girton College.
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The Area Problem
In the tangent line problem, you saw how the limit process can be applied to the slope
of a line to find the slope of a general curve. A second classic problem in calculus is
finding the area of a plane region that is bounded by the graphs of functions. This
problem can also be solved with a limit process. In this case, the limit process is
applied to the area of a rectangle to find the area of a general region.

As a simple example, consider the region bounded by the graph of the function
the axis, and the vertical lines and as shown in Figure 1.3.

You can approximate the area of the region with several rectangular regions, as shown
in Figure 1.4. As you increase the number of rectangles, the approximation tends
to become better and better because the amount of area missed by the rectangles
decreases. Your goal is to determine the limit of the sum of the areas of the rectangles
as the number of rectangles increases without bound.

Approximation using four rectangles Approximation using eight rectangles
Figure 1.4

x
a b

y = f (x)

y

x
a b

y = f (x)

y

x � b,x � ax-y � f�x�,

x
a b

y = f (x)

y

Area under a curve
Figure 1.3

E X P L O R A T I O N

Consider the region bounded by the graphs of and as
shown in part (a) of the figure. The area of the region can be approximated by two
sets of rectangles—one set inscribed within the region and the other set circum-
scribed over the region, as shown in parts (b) and (c). Find the sum of the areas of
each set of rectangles. Then use your results to approximate the area of the region.

(a) Bounded region (b) Inscribed rectangles (c) Circumscribed rectangles

x
1

1

f (x) = x2

y

x
1

1

f (x) = x2

y

x
1

1

f (x) = x2

y

x � 1,y � 0,f �x� � x2,

HISTORICAL NOTE

In one of the most astounding events ever to
occur in mathematics, it was discovered 
that the tangent line problem and the area
problem are closely related. This discovery led
to the birth of calculus. You will learn about
the relationship between these two problems
when you study the Fundamental Theorem of
Calculus in Chapter 4.



In Exercises 1–5, decide whether the problem can be solved using
precalculus or whether calculus is required. If the problem can be
solved using precalculus, solve it. If the problem seems to require
calculus, explain your reasoning and use a graphical or numerical
approach to estimate the solution.

1. Find the distance traveled in 15 seconds by an object traveling at
a constant velocity of 20 feet per second.

2. Find the distance traveled in 15 seconds by an object moving
with a velocity of feet per second.

3. A bicyclist is riding on a path modeled by the function
where and are measured in miles.

Find the rate of change of elevation at 

Figure for 3 Figure for 4

4. A bicyclist is riding on a path modeled by the function
where and are measured in miles. Find the

rate of change of elevation at 

5. Find the area of the shaded region.

(a) (b)

6. Secant Lines Consider the function and the point
on the graph of 

(a) Graph and the secant lines passing through and
for -values of 1, 3, and 5.

(b) Find the slope of each secant line.

(c) Use the results of part (b) to estimate the slope of the tangent
line to the graph of at Describe how to improve
your approximation of the slope.

7. Secant Lines Consider the function and the
point on the graph of 

(a) Graph and the secant lines passing through and
for -values of 3, 2.5, and 1.5.

(b) Find the slope of each secant line.

(c) Use the results of part (b) to estimate the slope of the tangent
line to the graph of at Describe how to improve
your approximation of the slope.

8. (a) Use the rectangles in each graph to approximate the area of
the region bounded by and 

(b) Describe how you could continue this process to obtain a
more accurate approximation of the area.

9. (a) Use the rectangles in each graph to approximate the area of
the region bounded by and 

(b) Describe how you could continue this process to obtain a
more accurate approximation of the area.

x
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2

2

3

3

4

4
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5
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1

1

2
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3

4
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5

5

x

y

x � 5.x � 1,y � 0,y � 5�x,

1

x

y

ππ
2

π

1

x

y

π
2

x � 	.x � 0,y � 0,y � sin x,

P�2, 8�.f

xQ �x, f �x��
P�2, 8�f

f.P�2, 8�
f �x� � 6x � x2

P�4, 2�.f

xQ �x, f �x��
P�4, 2�f

f.P�4, 2�
f �x� � �x

x

1

3

−1−2 1

y

x
1

−1

2

3

3

4

4

5

5 6

(2, 4)

(0, 0)

(5, 0)

y

x � 2.
f �x�xf �x� � 0.08x,

x
1 2 3 4 5 6

1

2

3

f (x) = 0.08x

−1

y

x
1 2 3 4 5 6

1

2

3

−1

f (x) = 0.04 8x − x2

y

(            )

x � 2.
f �x�xf �x� � 0.04�8x � x2�,

v�t� � 20 � 7 cos t
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1.1 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

11. Consider the length of the graph of from 
to

(a) Approximate the length of the curve by finding the
distance between its two endpoints, as shown in the
first figure.

(b) Approximate the length of the curve by finding the
sum of the lengths of four line segments, as shown in
the second figure.

(c) Describe how you could continue this process to obtain
a more accurate approximation of the length of the
curve.

x
1

1

2

2

3

3

4

4

5

5
(1, 5)

(5, 1)

y

x
1

1

2

2

3

3

4

4

5

5
(1, 5)

(5, 1)

y

�5, 1�.
�1, 5�f �x� � 5�x

WRITING ABOUT CONCEPTS

10. How would you describe the instantaneous rate of change
of an automobile’s position on the highway?

CAPSTONE

www.CalcChat.com


■ Estimate a limit using a numerical or graphical approach.
■ Learn different ways that a limit can fail to exist.
■ Study and use a formal definition of limit.

An Introduction to Limits
Suppose you are asked to sketch the graph of the function given by

For all values other than you can use standard curve-sketching techniques.
However, at it is not clear what to expect. To get an idea of the behavior of the
graph of near you can use two sets of values—one set that approaches 1
from the left and one set that approaches 1 from the right, as shown in the table.

The graph of is a parabola that has a gap at the point as shown in Figure
1.5. Although cannot equal 1, you can move arbitrarily close to 1, and as a result 
moves arbitrarily close to 3. Using limit notation, you can write

This is read as “the limit of as approaches 1 is 3.”

This discussion leads to an informal definition of limit. If becomes arbitrarily
close to a single number as approaches from either side, the limit of as 
approaches is This limit is written as L.c,

xf�x�,cxL
f�x�

xf �x�lim
x→1

f �x� � 3.

f �x�x
�1, 3�,f

x-x � 1,f
x � 1,

x � 1,

x � 1.f �x� �
x3 � 1

x � 1
,

f
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1.2 Finding Limits Graphically and Numerically

approaches 1 from the left.x approaches 1 from the right.x

approaches 3.f �x� approaches 3.f �x�

x 0.75 0.9 0.99 0.999 1 1.001 1.01 1.1 1.25

f�x� 2.313 2.710 2.970 2.997 ? 3.003 3.030 3.310 3.813

lim
x→c

f �x� � L.

E X P L O R A T I O N

The discussion above gives an example of how you can estimate a limit
numerically by constructing a table and graphically by drawing a graph.
Estimate the following limit numerically by completing the table.

Then use a graphing utility to estimate the limit graphically.

lim
x→2

x2 � 3x � 2

x � 2

x 1.75 1.9 1.99 1.999 2 2.001 2.01 2.1 2.25

f�x� ? ? ? ? ? ? ? ? ?

x

y

−2 −1 1

2

3

f (x) = x3 − 1
x − 1

lim f (x) = 3
x→1 (1, 3)

The limit of as approaches 1 is 3.
Figure 1.5

xf �x�
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EXAMPLE 1 Estimating a Limit Numerically

Evaluate the function at several points near and use
the results to estimate the limit

Solution The table lists the values of for several values near 0.

From the results shown in the table, you can estimate the limit to be 2. This limit is
reinforced by the graph of (see Figure 1.6). ■

In Example 1, note that the function is undefined at and yet appears to
be approaching a limit as approaches 0. This often happens, and it is important to
realize that the existence or nonexistence of at has no bearing on the
existence of the limit of as approaches 

EXAMPLE 2 Finding a Limit

Find the limit of as approaches 2, where is defined as

Solution Because for all other than you can conclude that the limit
is 1, as shown in Figure 1.7. So, you can write

The fact that has no bearing on the existence or value of the limit as 
approaches 2. For instance, if the function were defined as 

the limit would be the same. ■

So far in this section, you have been estimating limits numerically and graphically.
Each of these approaches produces an estimate of the limit. In Section 1.3, you will
study analytic techniques for evaluating limits. Throughout the course, try to develop a
habit of using this three-pronged approach to problem solving.

1. Numerical approach Construct a table of values.

2. Graphical approach Draw a graph by hand or using technology.

3. Analytic approach Use algebra or calculus.

f�x� � �1,

2,

x � 2

x � 2

xf �2� � 0

lim
x→2

f �x� � 1.

x � 2,xf�x� � 1

f �x� � �1,

0,

x � 2

x � 2
.

fxf �x�

c.xf �x�
x � cf �x�

x
f (x)x � 0

f

x-f �x�

lim
x→0

x

�x � 1 � 1
.

x � 0f�x� � x���x � 1 � 1�

approaches 0 from the left.x approaches 0 from the right.x

approaches 2.f �x� approaches 2.f �x�

x �0.01 �0.001 �0.0001 0 0.0001 0.001 0.01

f�x� 1.99499 1.99950 1.99995 ? 2.00005 2.00050 2.00499

−1 1

1

x

x

f is undefined
at x = 0.

f (x) = 
x + 1 − 1

y

The limit of as approaches 0 is 2.
Figure 1.6

xf �x�

32

2

1
x

1, x ≠ 2

0, x = 2
f (x) =

y

The limit of as approaches 2 is 1.
Figure 1.7

xf �x�



Limits That Fail to Exist
In the next three examples you will examine some limits that fail to exist.

EXAMPLE 3 Behavior That Differs from the Right and from the Left

Show that the limit does not exist.

Solution Consider the graph of the function From Figure 1.8 and the
definition of absolute value

Definition of absolute value

you can see that 

This means that no matter how close gets to 0, there will be both positive and
negative values that yield or Specifically, if (the lowercase
Greek letter delta) is a positive number, then for values satisfying the inequality

you can classify the values of as follows.

Because approaches a different number from the right side of 0 than it 
approaches from the left side, the limit does not exist.

EXAMPLE 4 Unbounded Behavior

Discuss the existence of the limit 

Solution Let In Figure 1.9, you can see that as approaches 0 from
either the right or the left, increases without bound. This means that by choosing

close enough to 0, you can force to be as large as you want. For instance,
will be larger than 100 if you choose that is within of 0. That is,

Similarly, you can force to be larger than 1,000,000, as follows.

Because is not approaching a real number as approaches 0, you can conclude
that the limit does not exist. ■

xLf �x�

f �x� �
1

x2
> 1,000,0000 < �x� <

1

1000

f �x�

f �x� �
1

x2
> 100.0 < �x� <

1

10

1
10x

f �x)f �x�x
f �x�

xf �x� � 1�x2.

lim
x→0

1

x2
.

lim
x→0

��x��x�
�x��x

�0, �����, 0�
�x��x0 < �x� < �,

x-
�f �x� � �1.f �x� � 1x-

x

�x�
x

� � 1,
�1,

   if x > 0
if x < 0

.

�x� � � x,
�x,

   if x � 0
if x < 0

f �x� � �x��x.

lim
x→0

�x�
x
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Negative values
yield �x��x � �1.

x- Positive values
yield �x��x � 1.

x-

x2

1

21−1−2

2

3

4

x

1
f (x) =

y

does not exist.

Figure 1.9

lim
x→0

f �x�

x

⎪x⎪
x

−1 1

1

δδ−

f (x) = −1

f (x) = 1

f (x) = 
y

does not exist.

Figure 1.8

lim
x→0

f �x�



EXAMPLE 5 Oscillating Behavior

Discuss the existence of the limit 

Solution Let In Figure 1.10, you can see that as approaches 0,
oscillates between and 1. So, the limit does not exist because no matter how

small you choose , it is possible to choose and within units of 0 such that
and as shown in the table.

■

There are many other interesting functions that have unusual limit behavior. An
often cited one is the Dirichlet function

Because this function has no limit at any real number it is not continuous at any real
number You will study continuity more closely in Section 1.4.c.

c,

f �x� � �0,

1,

   if x is rational.

   if x is irrational.

sin�1�x2� � �1,sin�1�x1� � 1
�x2x1�

�1f �x�
xf �x� � sin�1�x�.

lim
x→0

 sin 
1

x
.
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x 2�	 2�3	 2�5	 2�7	 2�9	 2�11	 x → 0

sin �1/x� 1 �1 1 �1 1 �1 Limit does not exist.

COMMON TYPES OF BEHAVIOR ASSOCIATED WITH NONEXISTENCE OF A LIMIT

1. approaches a different number from the right side of than it approaches
from the left side.

2. increases or decreases without bound as approaches 

3. oscillates between two fixed values as approaches c.xf �x�
c.xf �x�

cf �x�

This is When you use a graphing utility to investigate the
behavior of a function near the value at which you are trying to evaluate a limit,
remember that you can’t always trust the pictures that graphing utilities draw. If you
use a graphing utility to graph the function in Example 5 over an interval containing
0, you will most likely obtain an incorrect graph such as that shown in Figure 1.11.
The reason that a graphing utility can’t show the correct graph is that the graph has
infinitely many oscillations over any interval that contains 0.

Incorrect graph of
Figure 1.11

f �x� � sin�1�x�.

−0.25

−1.2

0.25

1.2

x-
TECHNOLOGY PITFALL

−1

1

1−1
x

f (x) = sin 1
x

y

does not exist.

Figure 1.10

lim
x→0

f �x�

PETER GUSTAV DIRICHLET (1805–1859)

In the early development of calculus, the
definition of a function was much more
restricted than it is today, and “functions”
such as the Dirichlet function would not have
been considered. The modern definition of
function is attributed to the German
mathematician Peter Gustav Dirichlet.
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The icon indicates that you will find a CAS Investigation on the book’s website. The CAS
Investigation is a collaborative exploration of this example using the computer algebra systems
Maple and Mathematica.
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A Formal Definition of Limit
Let’s take another look at the informal definition of limit. If becomes arbitrarily
close to a single number as approaches from either side, then the limit of as

approaches is written as

At first glance, this definition looks fairly technical. Even so, it is informal because
exact meanings have not yet been given to the two phrases

“ becomes arbitrarily close to 

and

approaches

The first person to assign mathematically rigorous meanings to these two phrases was
Augustin-Louis Cauchy. His - definition of limit is the standard used today.

In Figure 1.12, let (the lowercase Greek letter epsilon) represent a (small)
positive number. Then the phrase becomes arbitrarily close to means that 
lies in the interval Using absolute value, you can write this as

Similarly, the phrase approaches means that there exists a positive number 
such that lies in either the interval or the interval This fact can
be concisely expressed by the double inequality

The first inequality

The distance between and is more than 0.

expresses the fact that The second inequality

is within units of 

says that is within a distance of 

Some functions do not have limits as but those that do cannot have two 
different limits as That is, if the limit of a function exists, it is unique (see
Exercise 79).

x → c.
x → c,

c.�x

c.�x�x � c� < �

x � c.

cx0 < �x � c�

0 < �x � c� < �.

�c, c � ��.�c � �, c�x
�c”“x

� f �x� � L� < �.

�L � �, L � ��.
f �x�L”“f �x�

�
��

c.”“x

L”f �x�

lim
x→c

f �x� � L.

L,cx
f �x�cxL

f �x�

NOTE Throughout this text, the expression

implies two statements—the limit exists and the limit is ■L.

lim
x→c

f �x� � L

DEFINITION OF LIMIT

Let be a function defined on an open interval containing (except possibly
at ) and let be a real number. The statement

means that for each there exists a such that if 

then � f �x� � L� < �.0 < �x � c� < �,

� > 0� > 0

lim
x→c

f �x� � L

Lc
cf

c + 

c −
c

L

L + 

L −

(c, L)

ε

ε

δ

δ

The - definition of the limit of as 
approaches 
Figure 1.12

c
xf �x���

■ FOR FURTHER INFORMATION For
more on the introduction of rigor to
calculus, see “Who Gave You the
Epsilon? Cauchy and the Origins of
Rigorous Calculus” by Judith V.
Grabiner in The American Mathematical
Monthly. To view this article, go to the
website www.matharticles.com.

www.matharticles.com


The next three examples should help you develop a better understanding of the 
definition of limit.

EXAMPLE 6 Finding a for a Given 

Given the limit 

find such that whenever 

Solution In this problem, you are working with a given value of —namely,
To find an appropriate notice that

Because the inequality is equivalent to 

you can choose This choice works because

implies that

as shown in Figure 1.13. ■

In Example 6, you found a -value for a given . This does not prove the 
existence of the limit. To do that, you must prove that you can find a for any as
shown in the next example.

EXAMPLE 7 Using the - Definition of Limit

Use the - definition of limit to prove that

Solution You must show that for each there exists a such that
whenever Because your choice of depends

on you need to establish a connection between the absolute values 
and

So, for a given you can choose This choice works because

implies that

as shown in Figure 1.14. ■

��3x � 2� � 4� � 3�x � 2� < 3��

3	 � �

0  < �x � 2�  < � �
�

3

� � ��3.� > 0

��3x � 2� � 4� � �3x � 6� � 3�x � 2�
�x � 2�.

��3x � 2� � 4��,
�0 < �x � 2� < �.��3x � 2� � 4� < �

� > 0� > 0,

lim
x→2

�3x � 2� � 4.

��

�	

�,�
��

��2x � 5� � 1� � 2�x � 3� < 2�0.005� � 0.01

0 < �x � 3� < 0.005

� �
1
2�0.01� � 0.005.

2�x � 3� < 0.01,��2x � 5� � 1� < 0.01

��2x � 5� � 1� � �2x � 6� � 2�x � 3�.
�,� � 0.01.

�

0 < �x � 3� < �.��2x � 5� � 1� < 0.01�

lim
x→3

�2x � 5� � 1

	�

�-�
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NOTE In Example 6, note that 0.005 is the largest value of that will guarantee
whenever Any smaller positive value of would

also work. ■

�0 < �x � 3� < �.��2x � 5� � 1� < 0.01
�

x

y

2

1

−1

−2

1 2 3 4

f (x) = 2x − 5

x = 2.995

x = 3.005
x = 3

y = 1.01

y = 0.99
y = 1

The limit of as approaches 3 is 1.
Figure 1.13

xf �x�

x

y

2

3

4

1

1 2 3 4

− δ

δ

ε

ε

f (x) = 3x − 2

x = 2 +
x = 2
x = 2 −

y = 4 +

y = 4

y = 4 −

The limit of as approaches 2 is 4.
Figure 1.14

xf �x�



EXAMPLE 8 Using the - Definition of Limit

Use the definition of limit to prove that

Solution You must show that for each there exists a such that

whenever

To find an appropriate begin by writing For all in the
interval and thus So, letting be the minimum of 
and 1, it follows that, whenever you have 

as shown in Figure 1.15. ■

Throughout this chapter you will use the definition of limit primarily to prove
theorems about limits and to establish the existence or nonexistence of particular types
of limits. For finding limits, you will learn techniques that are easier to use than the 
definition of limit.

�-�

�-�

�x2 � 4� � �x � 2��x � 2� < ��

5	�5� � �

0 < �x � 2� < �,
��5��x � 2� < 5.x � 2 < 5�1, 3�,

x�x2 � 4� � �x � 2��x � 2�.�,

0 < �x � 2� < �.�x2 � 4� < �

� > 0� > 0,

lim
x→2

x2 � 4.

�-�

�	
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In Exercises 1–8, complete the table and use the result to
estimate the limit. Use a graphing utility to graph the function
to confirm your result.

1.

2.

3.

4.

5.

6.

7.

8. lim
x→0

cos x � 1
x

lim
x→0

sin x
x

lim
x→4

�x��x � 1�� � �4�5�
x � 4

lim
x→3

�1��x � 1�� � �1�4�
x � 3

lim
x→�5

�4 � x � 3

x � 5

lim
x→0

�x � 6 � �6

x

lim
x→2

x � 2

x 2 � 4

lim
x→4

x � 4

x 2 � 3x � 4

1.2 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

(2 +   )2

(2 −   )2

2 +

2 −

4 −

4 +

2

4

δ

δ

δ

δ

ε

ε

f (x) = x2

The limit of as approaches 2 is 4.
Figure 1.15

xf �x�

x 3.9 3.99 3.999 4.001 4.01 4.1

f �x�

x 2.9 2.99 2.999 3.001 3.01 3.1

f �x�

x 3.9 3.99 3.999 4.001 4.01 4.1

f �x�

x 1.9 1.99 1.999 2.001 2.01 2.1

f �x�

x �0.1 �0.01 �0.001 0.001 0.01 0.1

f �x�

x �0.1 �0.01 �0.001 0.001 0.01 0.1

f �x�

x �0.1 �0.01 �0.001 0.001 0.01 0.1

f �x�

x �5.1 �5.01 �5.001 �4.999 �4.99 �4.9

f �x�

www.CalcChat.com


In Exercises 9–14, create a table of values for the function and
use the result to estimate the limit. Use a graphing utility to
graph the function to confirm your result.

9. 10.

11. 12.

13. 14.

In Exercises 15–24, use the graph to find the limit (if it exists).
If the limit does not exist, explain why.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

In Exercises 25 and 26, use the graph of the function to decide
whether the value of the given quantity exists. If it does, find it.
If not, explain why.

25. (a)

(b)

(c)

(d)

26. (a)

(b)

(c)

(d)

(e)

(f )

(g)

(h)

In Exercises 27 and 28, use the graph of to identify the values
of for which exists.

27. 28.

In Exercises 29 and 30, sketch the graph of Then identify the
values of for which exists.

29.

30. f �x� � �sin x,
1 � cos x,
cos x,

x < 0
0 � x � 	

x > 	

f �x� � �x2,
8 � 2x,
4,

x � 2
2 < x < 4
x � 4

lim
x→c

f �x�c
f.

y

x
2−4 4 6

2

4

6

y

x
2 4−2

−2

4

6

lim
x→c

f �x�c
f

lim
x→4

f �x�

f �4�

lim
x→2

f �x�

f �2�

lim
x→0

f �x�

f �0�

lim
x→�2

f �x�

y

x
1−1

−2

2 3 4 5

2

3

4

−2

f ��2�

lim
x→4

f �x�

f �4�

lim
x→1

f �x�

y

x
1−1 2 3 4 5 6

1
2
3

5
6

f �1�

f

x

2

1

π− π
2

3

y

π
2

π
2

x
−1

−1

1

1

y

lim
x→	�2

 tan xlim
x→0

 cos 
1

x

x

− π
2

π
2

2

y

x
1 2

1

y

lim
x→0

 sec xlim
x→1

 sin 	 x

x

y

6 8 10−2

−4

−6

2

4

6

x

y

3 4 5

−2

−3

1

2

3

lim
x→5

2

x � 5
lim
x→2

�x � 2�
x � 2

−2 2 4

2

6

x

y

x
1 2 3 4

4

3

2

1

y

f �x� � �x2 � 3,
2,

x � 1
x � 1

f �x� � �4 � x,
0,

x � 2
x � 2

lim
x→1

f �x�lim
x→2

f �x�

−2 2 4

2

6

x

y

x
1 2 3 4

4

3

2

1

y

lim
x→1

�x 2 � 3�lim
x→3

�4 � x�

lim
x→0

tan x
tan 2x

lim
x→0

sin 2x
x

lim
x→�2

x3 � 8
x � 2

lim
x→1

x4 � 1
x6 � 1

lim
x→�3

x � 3
x2 � 7x � 12

lim
x→1

x � 2
x2 � x � 6
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In Exercises 31 and 32, sketch a graph of a function that
satisfies the given values. (There are many correct answers.)

31. is undefined. 32.

does not exist.

33. Modeling Data For a long distance phone call, a hotel charges
$9.99 for the first minute and $0.79 for each additional
minute or fraction thereof. A formula for the cost is given by

where is the time in minutes.

Note: greatest integer such that For example,
and

(a) Use a graphing utility to graph the cost function for

(b) Use the graph to complete the table and observe the
behavior of the function as approaches 3.5. Use the graph
and the table to find

(c) Use the graph to complete the table and observe the
behavior of the function as approaches 3.

Does the limit of as approaches 3 exist? Explain.

34. Repeat Exercise 33 for

35. The graph of is shown in the figure. Find such
that if then 

36. The graph of

is shown in the figure. Find such that if then

37. The graph of

is shown in the figure. Find such that if then

38. The graph of is shown in the figure. Find such
that if then 

In Exercises 39– 42, find the limit Then find such that
whenever 

39.

40.

41.

42. lim
x→5

�x 2 � 4�

lim
x→2

�x 2 � 3�

lim
x→4

�4 �
x

2	
lim
x→2

�3x � 2�

0 < �x � c� < �.� f �x� � L� < 0.01
� > 0L.

x
1 42 3

1

3

2

4 f

y

y = 2.8
y = 3

y = 3.2

� f �x� � 3� < 0.2.0 < �x � 2� < �
�f �x� � x2 � 1

x
1 2

1

y = 0.9
y = 1

y = 1.1

2

f

y

� f �x� � 1� < 0.1.
0 < �x � 1� < ��

f �x� � 2 �
1
x

y

x
4321

2.0

1.5

1.0

0.5

1.01

201
101

199
99

0.99
1.00

2

f

� f �x� � 1� < 0.01.
0 < �x � 2� < ��

f �x� �
1

x � 1

y

x
2.5 3.02.01.51.00.5

5

4

3

2

2.41.6

3.4

2.6

� f �x� � 3� < 0.4.0 < �x � 2� < �
�f �x� � x � 1

C�t� � 5.79 � 0.99���t � 1��.

tC�t�

t

lim
t→3.5

C �t�.

t

0 < t � 6.

��1.6� � �2.��3.2� � 3
n � x.n�x� ��

t

C�t� � 9.99 � 0.79 ���t � 1��

lim
x→2

f �x�lim
x→2

f �x� � 3

lim
x→�2

f �x� � 0f �2� � 6

f �2� � 0lim
x→0

f �x� � 4

f ��2� � 0f �0�

f

t 3 3.3 3.4 3.5 3.6 3.7 4

C ?

t 2 2.5 2.9 3 3.1 3.5 4

C ?

The symbol indicates an exercise in which you are instructed to use graphing technology
or a symbolic computer algebra system. The solutions of other exercises may also be facilitated
by use of appropriate technology.



In Exercises 43–54, find the limit Then use the - definition
to prove that the limit is 

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55. What is the limit of as approaches 

56. What is the limit of as approaches 

Writing In Exercises 57–60, use a graphing utility to graph the
function and estimate the limit (if it exists). What is the domain
of the function? Can you detect a possible error in determining
the domain of a function solely by analyzing the graph generated
by a graphing utility? Write a short paragraph about the impor-
tance of examining a function analytically as well as graphically.

57. 58.

59.

60.

65. Jewelry A jeweler resizes a ring so that its inner circumference
is 6 centimeters.

(a) What is the radius of the ring?

(b) If the ring’s inner circumference can vary between
5.5 centimeters and 6.5 centimeters, how can the radius vary?

(c) Use the - definition of limit to describe this situation.
Identify and 

66. Sports A sporting goods manufacturer designs a golf ball
having a volume of 2.48 cubic inches.

(a) What is the radius of the golf ball?

(b) If the ball’s volume can vary between 2.45 cubic inches and
2.51 cubic inches, how can the radius vary?

(c) Use the - definition of limit to describe this situation.
Identify and 

67. Consider the function Estimate the limit

by evaluating at values near 0. Sketch the graph of 

68. Consider the function

Estimate

by evaluating at values near 0. Sketch the graph of 

69. Graphical Analysis The statement

means that for each there corresponds a such that
if then

If then

Use a graphing utility to graph each side of this inequality. Use
the zoom feature to find an interval such that the
graph of the left side is below the graph of the right side of the
inequality.

�2 � �, 2 � ��

�x2 � 4

x � 2
� 4� < 0.001.

� � 0.001,

�x2 � 4

x � 2
� 4� < �.

0 < �x � 2� < �,
� > 0� > 0

lim
x→2

x 2 � 4

x � 2
� 4

f.x-f

lim
x→0

�x � 1� � �x � 1�
x

f �x� � �x � 1� � �x � 1�
x

.

f.x-f

lim
x→0

�1 � x�1�x

f �x� � �1 � x�1�x.

�.�
��

�.�
��

lim
x→3

f �x�

f �x� �
x � 3

x 2 � 9

lim
x→9

f �x�

f �x� �
x � 9
�x � 3

lim
x→3

f �x�lim
x→4

f �x)

f �x� �
x � 3

x 2 � 4x � 3
f �x� �

�x � 5 � 3

x � 4

	?xg�x� � x

	?xf �x� � 4

lim
x→�3

�x 2 � 3x�

lim
x→1

�x 2 � 1�

lim
x→6

�x � 6�
lim

x→�5
�x � 5�

lim
x→4

�x

lim
x→0

3�x

lim
x→2

��1�

lim
x→6

 3

lim
x→1

�2
5 x � 7�

lim
x→�4

�1
2 x � 1�

lim
x→�3

�2x � 5�

lim
x→4

�x � 2�

L.
��L.
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61. Write a brief description of the meaning of the notation

62. The definition of limit on page 52 requires that is a 
function defined on an open interval containing except
possibly at Why is this requirement necessary?

63. Identify three types of behavior associated with the 
nonexistence of a limit. Illustrate each type with a graph of
a function.

c.
c,

f

lim
x→8

f �x� � 25.

WRITING ABOUT CONCEPTS

64. (a) If can you conclude anything about the limit
of as approaches 2? Explain your reasoning.

(b) If the limit of as approaches 2 is 4, can you
conclude anything about Explain your reasoning.f �2�?

xf �x�
xf �x�

f �2� � 4,

CAPSTONE



70. Graphical Analysis The statement

means that for each there corresponds a such that
if then

If then

Use a graphing utility to graph each side of this inequality. Use
the zoom feature to find an interval such that the
graph of the left side is below the graph of the right side of the
inequality.

True or False? In Exercises 71–74, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

71. If is undefined at then the limit of as approaches
does not exist.

72. If the limit of  as approaches is 0, then there must exist
a number such that 

73. If then 

74. If then 

In Exercises 75 and 76, consider the function 

75. Is a true statement? Explain.

76. Is a true statement? Explain.

77. Use a graphing utility to evaluate the limit for several

values of What do you notice?

78. Use a graphing utility to evaluate the limit for several 

values of What do you notice?

79. Prove that if the limit of as exists, then the limit must
be unique. Hint: Let

and

and prove that 

80. Consider the line where Use the 

definition of limit to prove that 

81. Prove that is equivalent to 

82. (a) Given that

prove that there exists an open interval containing 0

such that for all in

(b) Given that where prove that there

exists an open interval containing such that

for all in 

83. Programming Use the programming capabilities of a graphing

utility to write a program for approximating 

Assume the program will be applied only to functions whose
limits exist as approaches Let and generate two
lists whose entries form the ordered pairs

for 1, 2, 3, and 

84. Programming Use the program you created in Exercise 83 to
approximate the limit

lim
x→4

x 2 � x � 12

x � 4
.

4.n � 0,

�c ± �0.1� n ,  f �c ± �0.1� n��

y1 � f �x�c.x

lim
x→c

f �x�.

�a, b�.x � cg�x� > 0

c�a, b�
L > 0,lim

x→c
g�x� � L,

�a, b�.
x � 0�3x � 1��3x � 1�x2 � 0.01 > 0

�a, b�

lim
x→0

�3x � 1��3x � 1�x2 � 0.01 � 0.01

lim
x→c

� f �x� � L� � 0.lim
x→c

f �x� � L

lim
x→c

f �x� � mc � b.

�-�m � 0.f �x� � mx � b,

L1 � L2.�

lim
x→c

f �x� � L 2lim
x→c

f �x� � L1

�
x → cf �x�

n.

lim
x→0

tan nx
x

n.

lim
x→0

sin nx
x

lim
x→0

�x � 0

lim
x→0.25

�x � 0.5

f �x� � �x.

f �c� � L.lim
x→c

f �x� � L,

lim
x→c

f �x� � L.f �c� � L,

f �k� < 0.001.k
cxf �x�

c
xf �x�x � c,f

�3 � �, 3 � ��

�x2 � 3x

x � 3
� 3� < 0.001.

� � 0.001,

�x2 � 3x

x � 3
� 3� < �.

0 < �x � 3� < �,
� > 0� > 0

lim
x→3

x 2 � 3x

x � 3
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85. Inscribe a rectangle of base and height and an isosceles
triangle of base in a circle of radius one as shown. For
what value of do the rectangle and triangle have the same
area?

86. A right circular cone has base of radius 1 and height 3. A
cube is inscribed in the cone so that one face of the cube is
contained in the base of the cone. What is the side-length of
the cube?

These problems were composed by the Committee on the Putnam Prize
Competition. © The Mathematical Association of America. All rights reserved.

h

b

h
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PUTNAM EXAM CHALLENGE
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1.3 Evaluating Limits Analytically

THEOREM 1.1 SOME BASIC LIMITS

Let and be real numbers and let be a positive integer.

1. 2. 3. lim
x→c

xn � cnlim
x→c

x � clim
x→c

b � b

ncb

THEOREM 1.2 PROPERTIES OF LIMITS

Let and be real numbers, let be a positive integer, and let and be 
functions with the following limits.

and

1. Scalar multiple:

2. Sum or difference:

3. Product:

4. Quotient: provided 

5. Power: lim
x→c

� f�x��n � Ln

K � 0lim
x→c

f�x�
g�x� �

L
K

,

lim
x→c

� f�x�g�x�� � LK

lim
x→c

� f�x� ± g�x�� � L ± K

lim
x→c

�b f�x�� � bL

lim
x→c

g�x� � Klim
x→c

f�x� � L

gfncb

x

=

=

c +

c +

c −

c −

c

ε

ε

δ δ

δ

δ

ε

ε

f (c) = c

f (c) = xy

Figure 1.16

NOTE When you encounter new 
notations or symbols in mathematics,
be sure you know how the notations are
read. For instance, the limit in Example
1(c) is read as “the limit of as 
approaches 2 is 4.”

xx2

■ Evaluate a limit using properties of limits.
■ Develop and use a strategy for finding limits.
■ Evaluate a limit using dividing out and rationalizing techniques.
■ Evaluate a limit using the Squeeze Theorem.

Properties of Limits
In Section 1.2, you learned that the limit of as approaches does not depend on
the value of at It may happen, however, that the limit is precisely In such
cases, the limit can be evaluated by direct substitution. That is,

Substitute for 

Such well-behaved functions are continuous at You will examine this concept more
closely in Section 1.4.

EXAMPLE 1 Evaluating Basic Limits

a. b. c. ■lim
x→2

x2 � 22 � 4lim
x→�4

x � �4lim
x→2

 3 � 3

c.

x.clim
x→c

f�x� � f�c�.

f�c�.x � c.f
cxf�x�

PROOF To prove Property 2 of Theorem 1.1, you need to show that for each 
there exists a such that whenever To do this,
choose The second inequality then implies the first, as shown in Figure 1.16.
This completes the proof. (Proofs of the other properties of limits in this section are
listed in Appendix A or are discussed in the exercises.) ■

� � �.
0 < �x � c� < �.�x � c� < �� > 0

� > 0



60 Chapter 1 Limits and Their Properties

EXAMPLE 2 The Limit of a Polynomial

Property 2

Property 1

Example 1

Simplify. ■

In Example 2, note that the limit (as ) of the polynomial function
is simply the value of at 

This direct substitution property is valid for all polynomial and rational functions with
nonzero denominators.

EXAMPLE 3 The Limit of a Rational Function

Find the limit:

Solution Because the denominator is not 0 when you can apply Theorem 1.3
to obtain

■

Polynomial functions and rational functions are two of the three basic types of
algebraic functions. The following theorem deals with the limit of the third type of
algebraic function—one that involves a radical. See Appendix A for a proof of this
theorem.

lim
x→1

x2 � x � 2
x � 1

�
12 � 1 � 2

1 � 1
�

4
2

� 2.

x � 1,

lim
x→1

x2 � x � 2
x � 1

.

lim
x→2

p�x� � p�2� � 4�22� � 3 � 19

x � 2.pp�x� � 4x2 � 3
x →  2

� 19

� 4�22� � 3

� 4� lim
x→2

x2	 � lim
x→2

 3

 lim
x→2

�4x2 � 3� � lim
x→2

 4x2 � lim
x→2

 3

THEOREM 1.4 THE LIMIT OF A FUNCTION INVOLVING A RADICAL

Let be a positive integer. The following limit is valid for all if is odd,
and is valid for if is even.

lim
x→c

n�x � n�c

nc > 0
ncn

THE SQUARE ROOT SYMBOL

The first use of a symbol to denote the square
root can be traced to the sixteenth century.
Mathematicians first used the symbol 
which had only two strokes. This symbol was
chosen because it resembled a lowercase 
to stand for the Latin word radix, meaning
root.

r,

�,

THEOREM 1.3 LIMITS OF POLYNOMIAL AND RATIONAL FUNCTIONS

If is a polynomial function and is a real number, then

If is a rational function given by and is a real number
such that then

lim
x→c

r�x� � r�c� �
p�c�
q�c�.

q�c� � 0,
cr�x� � p�x��q�x�r

lim
x→c

p�x� � p�c�.

cp
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The following theorem greatly expands your ability to evaluate limits because it
shows how to analyze the limit of a composite function. See Appendix A for a proof
of this theorem.

EXAMPLE 4 The Limit of a Composite Function

a. Because

and

it follows that

b. Because

and

it follows that

■

You have seen that the limits of many algebraic functions can be evaluated by
direct substitution. The six basic trigonometric functions also exhibit this desirable
quality, as shown in the next theorem (presented without proof).

EXAMPLE 5 Limits of Trigonometric Functions

a.

b.

c. ■lim
x→0

 sin2 x � lim
x→0

�sin x�2 � 02 � 0

lim
x→	

�x cos x� � � lim
x→	

x	� lim
x→	

 cos x	 � 	 cos�	� � �	

lim
x→0

 tan x � tan�0� � 0

lim
x→3

3�2x2 � 10 � 3�8 � 2.

lim
x→8

3�x � 3�8 � 2lim
x→3

�2x2 � 10� � 2�32� � 10 � 8

lim
x→0

�x2 � 4 � �4 � 2.

lim
x→4

�x � �4 � 2lim
x→0

�x2 � 4� � 02 � 4 � 4

THEOREM 1.6 LIMITS OF TRIGONOMETRIC FUNCTIONS

Let be a real number in the domain of the given trigonometric function.

1. 2.

3. 4.

5. 6. lim
x→c

 csc x � csc clim
x→c

 sec x � sec c

lim
x→c

 cot x � cot clim
x→c

 tan x � tan c

lim
x→c

 cos x � cos clim
x→c

 sin x � sin c

c

THEOREM 1.5 THE LIMIT OF A COMPOSITE FUNCTION

If and are functions such that and then

lim
x→c

f�g�x�� � f �lim
x→c

g�x�	 � f �L�. 

lim
x→L

f�x� � f�L�,lim
x→c

g�x� � Lgf
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THEOREM 1.7 FUNCTIONS THAT AGREE AT ALL BUT ONE POINT

Let be a real number and let for all in an open interval
containing If the limit of as approaches exists, then the limit of 
also exists and

lim
x→c

f�x� � lim
x→c

g�x�.

f�x�cxg�x�c.
x � cf�x� � g�x�c

A Strategy for Finding Limits
On the previous three pages, you studied several types of functions whose limits can
be evaluated by direct substitution. This knowledge, together with the following 
theorem, can be used to develop a strategy for finding limits. A proof of this theorem
is given in Appendix A.

EXAMPLE 6 Finding the Limit of a Function

Find the limit:

Solution Let By factoring and dividing out like factors,
you can rewrite as

So, for all values other than the functions and agree, as shown in Figure

1.17. Because exists, you can apply Theorem 1.7 to conclude that and 

have the same limit at 

Factor.

Divide out like factors.

Apply Theorem 1.7.

Use direct substitution.

Simplify. ■� 3

� 12 � 1 � 1

� lim
x→1

�x2 � x � 1�

� lim
x→1

�x � 1��x2 � x � 1�
x � 1

 lim
x→1

x3 � 1
x � 1

� lim
x→1

�x � 1��x2 � x � 1�
x � 1

x � 1.

gflim
x→1

g�x�
gfx � 1,x-

x � 1.f�x� �
�x � 1��x2 � x � 1�

�x � 1� � x2 � x � 1 � g�x�,

f
f�x� � �x3 � 1���x � 1�.

lim
x→1

x3 � 1
x � 1

.

x
−2 −1 1

2

3

y
f (x) = x3 − 1

x − 1

x
−2 −1 1

2

3

g(x) = x2 + x + 1

y

and agree at all but one point.
Figure 1.17

gf

When applying this 
strategy for finding a limit, remember 
that some functions do not have a limit
(as approaches ). For instance, the
following limit does not exist.

lim
x→1

x3 � 1
x � 1

cx

STUDY TIP
A STRATEGY FOR FINDING LIMITS

1. Learn to recognize which limits can be evaluated by direct substitution.
(These limits are listed in Theorems 1.1 through 1.6.)

2. If the limit of as approaches cannot be evaluated by direct substitu-
tion, try to find a function that agrees with for all other than 
[Choose such that the limit of can be evaluated by direct substitution.]

3. Apply Theorem 1.7 to conclude analytically that

4. Use a graph or table to reinforce your conclusion.

lim
x→c

f�x� � lim
x→c

g�x� � g�c�.

g�x�g
x � c.xfg

cxf�x�



Dividing Out and Rationalizing Techniques
Two techniques for finding limits analytically are shown in Examples 7 and 8. The
dividing out technique involves dividing out common factors, and the rationalizing
technique involves rationalizing the numerator of a fractional expression.

EXAMPLE 7 Dividing Out Technique

Find the limit:

Solution Although you are taking the limit of a rational function, you cannot apply
Theorem 1.3 because the limit of the denominator is 0.

Direct substitution fails.

Because the limit of the numerator is also 0, the numerator and denominator have 
a common factor of So, for all you can divide out this factor 
to obtain 

Using Theorem 1.7, it follows that

Apply Theorem 1.7.

Use direct substitution.

This result is shown graphically in Figure 1.18. Note that the graph of the function 
coincides with the graph of the function except that the graph of has
a gap at the point ■

In Example 7, direct substitution produced the meaningless fractional form 
An expression such as is called an indeterminate form because you cannot (from
the form alone) determine the limit. When you try to evaluate a limit and encounter
this form, remember that you must rewrite the fraction so that the new denominator
does not have 0 as its limit. One way to do this is to divide out like factors, as shown
in Example 7. A second way is to rationalize the numerator, as shown in Example 8.

0�0
0�0.

��3, �5�.
fg�x� � x � 2,

f

� �5.

 lim
x→�3

x2 � x � 6
x � 3

� lim
x→�3

�x � 2�

x � �3.f�x� �
x2 � x � 6

x � 3
�

�x � 3��x � 2�
x � 3

� x � 2 � g�x�,

x � �3,�x � 3�.

lim
x→�3

�x � 3� � 0

lim
x→�3

x2 � x � 6
x � 3

lim
x→�3

�x2 � x � 6� � 0

lim
x→�3

x2 � x � 6
x � 3

.

1.3 Evaluating Limits Analytically 63

This is Because the graphs of

and

differ only at the point a standard graphing utility setting may 
not distinguish clearly between these graphs. However, because of the pixel
configuration and rounding error of a graphing utility, it may be possible to find
screen settings that distinguish between the graphs. Specifically, by repeatedly
zooming in near the point on the graph of your graphing utility may
show glitches or irregularities that do not exist on the actual graph. (See Figure
1.19.) By changing the screen settings on your graphing utility you may obtain
the correct graph of f.

f,��3, �5�

��3, �5�,

g�x� � x � 2f�x� �
x2 � x � 6

x � 3

TECHNOLOGY PITFALL

21

−1

−1−2

−2

−4

−3

−5

x

(−3, −5)

f (x) = x2 + x − 6
x + 3

y

is undefined when 
Figure 1.18

x � �3.f

NOTE In the solution of Example 7,
be sure you see the usefulness of the
Factor Theorem of Algebra. This
theorem states that if is a zero of a
polynomial function, is a factor
of the polynomial. So, if you apply
direct substitution to a rational function
and obtain

you can conclude that must be a
common factor of both and q�x�.p�x�

�x � c�

r �c� �
p�c�
q�c� �

0
0

�x � c�
c

− −3 −3 +

Glitch near

δδ

ε

(−3, −5)

−5 +

−5 −

ε

Incorrect graph of
Figure 1.19

f



EXAMPLE 8 Rationalizing Technique

Find the limit:

Solution By direct substitution, you obtain the indeterminate form 

Direct substitution fails.

In this case, you can rewrite the fraction by rationalizing the numerator.

Now, using Theorem 1.7, you can evaluate the limit as shown.

A table or a graph can reinforce your conclusion that the limit is (See Figure 1.20.)

■

1
2.

�
1
2

�
1

1 � 1

 lim
x→0

�x � 1 � 1
x

� lim
x→0

1
�x � 1 � 1

�
1

�x � 1 � 1
, x � 0

�
x

x��x � 1 � 1�

�
�x � 1� � 1

x��x � 1 � 1�

�x � 1 � 1
x

� ��x � 1 � 1
x 	��x � 1 � 1

�x � 1 � 1	

lim
x→0

x � 0

lim
x→0

�x � 1 � 1
x

lim
x→0

��x � 1 � 1� � 0

0�0.

lim
x→0

�x � 1 � 1
x

.
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NOTE The rationalizing technique for evaluating limits is based on multiplication by a
convenient form of 1. In Example 8, the convenient form is

■1 �
�x � 1 � 1
�x � 1 � 1

.

approaches 0 from the left.x approaches 0 from the right.x

approaches 0.5.f �x� approaches 0.5.f �x�

x �0.25 �0.1 �0.01 �0.001 0 0.001 0.01 0.1 0.25

f�x� 0.5359 0.5132 0.5013 0.5001 ? 0.4999 0.4988 0.4881 0.4721

x
−1

−1

1

1
f (x) = x  + 1 − 1

x

y

The limit of as approaches 0 is 
Figure 1.20

1
2.xf �x�



The Squeeze Theorem
The next theorem concerns the limit of a function that is squeezed between two other
functions, each of which has the same limit at a given value, as shown in Figure
1.21. (The proof of this theorem is given in Appendix A.)

You can see the usefulness of the Squeeze Theorem (also called the Sandwich
Theorem or the Pinching Theorem) in the proof of Theorem 1.9.

x-

1.3 Evaluating Limits Analytically 65

y

x

g
g

f

h

c

f

h

f lies in here.

h(x) ≤ f (x) ≤ g(x)

The Squeeze Theorem
Figure 1.21

x

1

θ

θ
θ θ

(1, 0)

(1, tan   )

(cos   , sin   )

y

A circular sector is used to prove Theorem 1.9.
Figure 1.22

THEOREM 1.9 TWO SPECIAL TRIGONOMETRIC LIMITS

1. 2. lim
x→0

1 � cos x
x

� 0lim
x→0

sin x
x

� 1

THEOREM 1.8 THE SQUEEZE THEOREM

If for all in an open interval containing except possibly
at itself, and if

then exists and is equal to L.lim
x→c

f �x�

lim
x→c

h�x� � L � lim
x→c

g�x�

c
c,xh�x� � f �x� � g�x�

PROOF To avoid the confusion of two different uses of the proof is presented using
the variable where is an acute positive angle measured in radians.
Figure 1.22 shows a circular sector that is squeezed between two triangles.

Area of triangle Area of sector Area of triangle

Multiplying each expression by produces

and taking reciprocals and reversing the inequalities yields

Because and you can conclude that
this inequality is valid for all nonzero in the open interval Finally,
because and you can apply the Squeeze Theorem to

conclude that The proof of the second limit is left as an exercise (see

Exercise 123). ■

lim
→0

�sin �� � 1.

 lim
→0

 1 � 1,lim
→0

 cos  � 1
��	�2, 	�2�.

�sin �� � �sin��������,cos  � cos���

cos  ≤ sin 


≤  1.

1
cos 

�


sin 
� 1

2�sin 

sin 

2
�



2
�

tan 

2

��

θ

θ

1

sin

θ

1

θ

θ

tan

1

,
x,
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EXAMPLE 9 A Limit Involving a Trigonometric Function

Find the limit:

Solution Direct substitution yields the indeterminate form To solve this
problem, you can write as and obtain

Now, because

and

you can obtain

(See Figure 1.23.)

EXAMPLE 10 A Limit Involving a Trigonometric Function

Find the limit:

Solution Direct substitution yields the indeterminate form To solve this
problem, you can rewrite the limit as

Multiply and divide by 4.

Now, by letting and observing that if and only if you can write

Apply Theorem 1.9(1).

(See Figure 1.24.) ■

� 4.

� 4�1�

� 4�lim
y→0

sin y
y 	

 lim
x→0

sin 4x
x

� 4�lim
x→0

sin 4x
4x 	

y →  0,x →  0y � 4x

lim
x→0

sin 4x
x

� 4� lim
x→0

sin 4x
4x 	.

0�0.

lim
x→0

sin 4x
x

.

� 1.

� �1��1�

 lim
x→0

tan x
x

� �lim
x→0

sin x
x 	�lim

x→0

1
cos x	

lim
x→0

1
cos x

� 1lim
x→0

sin x
x

� 1

lim
x→0

tan x
x

� lim
x→0 �

sin x
x 	� 1

cos x	.

�sin x���cos x�tan x
0�0.

lim
x→0

tan x
x

.

−

−2

4
f (x) = tan x

x

2
	

2
	

The limit of as approaches 0 is 1.
Figure 1.23

xf �x�

−2

6

g(x) = sin 4x
x

−
2
	

2
	

The limit of as approaches 0 is 4.
Figure 1.24

xg�x�

Use a graphing utility to confirm the limits in the examples and in
the exercise set. For instance, Figures 1.23 and 1.24 show the graphs of

and

Note that the first graph appears to contain the point and the second graph
appears to contain the point which lends support to the conclusions obtained
in Examples 9 and 10.

�0, 4�,
�0, 1�

g�x� �
sin 4x

x
.f�x� �

tan x
x

TECHNOLOGY



In Exercises 1–4, use a graphing utility to graph the function
and visually estimate the limits.

1. 2.

(a) (a)

(b) (b)

3. 4.

(a) (a)

(b) (b)

In Exercises 5–22, find the limit.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

In Exercises 23–26, find the limits.

23.

(a) (b) (c)

24.

(a) (b) (c)

25.

(a) (b) (c)

26.

(a) (b) (c)

In Exercises 27– 36, find the limit of the trigonometric function.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

In Exercises 37–40, use the information to evaluate the limits.

37. 38.

(a) (a)

(b) (b)

(c) (c)

(d) (d)

39. 40.

(a) (a)

(b) (b)

(c) (c)

(d) (d)

In Exercises 41–44, use the graph to determine the limit visually
(if it exists). Write a simpler function that agrees with the given
function at all but one point.

41. 42.

(a) (a)

(b) (b)

43. 44.

(a) (a)

(b) (b) lim
x→0

f �x�lim
x→�1

g�x�

lim
x→1

f �x�lim
x→1

g�x�

x

−2

2

2 3

1

y

x
−2 −1 1

3

2

1

y

f �x� �
x

x2 � x
g�x� �

x3 � x
x � 1

lim
x→0

h�x�lim
x→�1

g�x�

lim
x→2

h�x�lim
x→0

g�x�

x

y

−1 1 2 3 4
−1

1

2

3

4

x

y

−1−2 1 2
−1

−3

1

h�x� �
�x 2 � 3x

x
g�x� �

x2 � x
x

lim
x→c

� f �x�� 2�3lim
x→c

� f �x��3�2

lim
x→c

� f �x�� 2lim
x→c

�3f �x��

lim
x→c

f �x�
18

lim
x→c

�f �x�

lim
x→c

3�f �x�lim
x→c

� f �x��3

lim
x→c

f �x� � 27lim
x→c

f �x� � 4

lim
x→c

f �x�
g�x�lim

x→c

f �x�
g�x�

lim
x→c

� f �x�g�x��lim
x→c

� f �x�g�x��

lim
x→c

� f �x� � g�x��lim
x→c

� f �x� � g�x��

lim
x→c

�4f �x��lim
x→c

�5g�x��

lim
x→c

g�x� �
1
2lim

x→c
g�x� � 2

lim
x→c

f �x� �
3
2lim

x→c
f �x� � 3

lim
x→7

 sec�	x
6 	lim

x→3
 tan�	x

4 	
lim

x→5	�3
 cos xlim

x→5	�6
 sin x

lim
x→	

 cos 3xlim
x→0

 sec 2x

lim
x→2

sin
	x
2

lim
x→1

 cos 
	x
3

lim
x→	

 tan xlim
x→	�2

 sin x

lim
x→4

g� f �x��lim
x→21

g�x�lim
x→4

f �x�

f �x� � 2x2 � 3x � 1, g�x� � 3�x � 6

lim
x→1

g� f �x��lim
x→3

g�x�lim
x→1

f �x�

f �x� � 4 � x2, g�x� � �x � 1

lim
x→�3

g� f �x��lim
x→4

g�x�lim
x→�3

f �x�

f �x� � x � 7, g�x� � x2

lim
x→1

g� f �x��lim
x→4

g�x�lim
x→1

f �x�

f �x� � 5 � x, g�x� � x3

lim
x→2

�x � 2
x � 4

lim
x→7

3x
�x � 2

lim
x→1

2x � 3
x � 5

lim
x→1

x
x2 � 4

lim
x→�3

2
x � 2

lim
x→2

1
x

lim
x→0

�2x � 1�3lim
x→�4

�x � 3�2

lim
x→4

3�x � 4lim
x→3

�x � 1

lim
x→1

�3x3 � 2x2 � 4�lim
x→�3

�2x2 � 4x � 1�

lim
x→1

��x2 � 1�lim
x→�3

�x2 � 3x�

lim
x→�3

�3x � 2�lim
x→0

�2x � 1�

lim
x→�2

x4lim
x→2

x3

lim
t→�1

f �t�lim
x→	�3

f �x�

lim
t→4

f �t�lim
x→0

f �x�

f �t� � t�t � 4�f �x� � x cos x

lim
x→0

g�x�lim
x→�1

h�x�

lim
x→4

g�x�lim
x→4

h�x�

g�x� �
12��x � 3�

x � 9
h�x� � �x2 � 4x
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1.3 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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In Exercises 45–48, find the limit of the function (if it exists).
Write a simpler function that agrees with the given function at
all but one point. Use a graphing utility to confirm your result.

45. 46.

47. 48.

In Exercises 49–64, find the limit (if it exists).

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63.

64.

In Exercises 65–76, determine the limit of the trigonometric
function (if it exists).

65. 66.

67. 68.

69. 70.

71. 72.

73. 74.

75.

76.

Graphical, Numerical, and Analytic Analysis In Exercises
77–84, use a graphing utility to graph the function and estimate
the limit. Use a table to reinforce your conclusion. Then find the
limit by analytic methods.

77. 78.

79. 80.

81. 82.

83. 84.

In Exercises 85–88, find 

85.

86.

87.

88.

In Exercises 89 and 90, use the Squeeze Theorem to find

89.

90.

In Exercises 91–96, use a graphing utility to graph the given
function and the equations and in the same
viewing window. Using the graphs to observe the Squeeze
Theorem visually, find 

91. 92.

93. 94.

95. 96.

101. Writing Use a graphing utility to graph

in the same viewing window. Compare the magnitudes of 
and when is close to 0. Use the comparison to write a
short paragraph explaining why

lim
x→0

h�x� � 1.

xg�x�
f �x�

f �x� � x, g�x� � sin x,    and h�x� �
sin x

x

h�x� � x cos 
1
x

f �x� � x sin 
1
x

f �x� � �x� cos xf �x� � �x� sin x

f �x� � �x sin x�f �x� � x cos x

lim
x→0

f �x�.

y � ��x�y � �x�

b � �x � a� � f �x� � b � �x � a�
c � a

4 � x2 � f �x� � 4 � x2

c � 0

lim
x→c

f �x�.

f �x� � x2 � 4x

f �x� �
1

x � 3

f �x� � �x

f �x� � 3x � 2

lim
�x→0

f �x 1 �x� � f �x�
�x

.

lim
x→0

sin x
3�x

lim
x→0

sin x2

x

lim
x→0

cos x � 1
2x2lim

t→0

sin 3t
t

lim
x→2

x5 � 32
x � 2

lim
x→0

�1��2 � x�� � �1�2�
x

lim
x→16

4 � �x
x � 16

lim
x→0

�x � 2 � �2
x

�Hint: Find lim
x→0

�2 sin 2x
2x 	� 3x

3 sin 3x	 .�lim
x→0

sin 2x
sin 3x

lim
t→0

sin 3t
2t

lim
x→	�4

1 � tan x
sin x � cos x

lim
x→	�2

cos x
cot x

lim
�→	

� sec �lim
h→0

�1 � cos h�2

h

lim
x→0

tan2 x
x

lim
x→0

sin2 x
x

lim
→0

cos  tan 


lim
x→0

sin x�1 � cos x�
x2

lim
x→0

3�1 � cos x�
x

lim
x→0

sin x
5x

lim
�x→0

�x � �x�3 � x3

�x

lim
�x→0

�x � �x�2 � 2�x � �x� � 1 � �x2 � 2x � 1�
�x

lim
�x→0

�x � �x�2 � x 2

�x
lim

�x→0

2�x � �x� � 2x
�x

lim
x→0

�1��x � 4�� � �1�4�
x

lim
x→0

�1��3 � x�� � �1�3�
x

lim
x→0

�2 � x � �2
x

lim
x→0

�x � 5 � �5
x

lim
x→3

�x � 1 � 2
x � 3

lim
x→4

�x � 5 � 3
x � 4

lim
x→4

x2 � 5x � 4
x2 � 2x � 8

lim
x→�3

x2 � x � 6
x2 � 9

lim
x→3

3 � x
x2 � 9

lim
x→4

x � 4
x2 � 16

lim
x→0

3x
x2 � 2x

lim
x→0

x
x2 � x

lim
x→�1

x3 � 1
x � 1

lim
x→2

x 3 � 8
x � 2

lim
x→�1

2x2 � x � 3
x � 1

lim
x→�1

x 2 � 1
x � 1

97. In the context of finding limits, discuss what is meant by
two functions that agree at all but one point.

98. Give an example of two functions that agree at all but one
point.

99. What is meant by an indeterminate form?

100. In your own words, explain the Squeeze Theorem.

WRITING ABOUT CONCEPTS
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116. Let Find lim
x→2

f �x�.f �x� � �3,
5,

x � 2
x � 2

.

CAPSTONE102. Writing Use a graphing utility to graph

in the same viewing window. Compare the magnitudes of 
and when is close to 0. Use the comparison to write a
short paragraph explaining why 

Free-Falling Object In Exercises 103 and 104, use the position
function which gives the height (in feet) of
an object that has fallen for seconds from a height of 500 feet.
The velocity at time seconds is given by

103. If a construction worker drops a wrench from a height of 500
feet, how fast will the wrench be falling after 2 seconds?

104. If a construction worker drops a wrench from a height of 500
feet, when will the wrench hit the ground? At what velocity
will the wrench impact the ground?

Free-Falling Object In Exercises 105 and 106, use the position
function which gives the height (in meters)
of an object that has fallen from a height of 200 meters. The
velocity at time seconds is given by

105. Find the velocity of the object when 

106. At what velocity will the object impact the ground?

107. Find two functions and such that and do

not exist, but does exist.

108. Prove that if exists and does not

exist, then does not exist.

109. Prove Property 1 of Theorem 1.1.

110. Prove Property 3 of Theorem 1.1. (You may use Property 3 of
Theorem 1.2.)

111. Prove Property 1 of Theorem 1.2.

112. Prove that if then 

113. Prove that if and for a fixed number

and all then 

114. (a) Prove that if then 

(Note: This is the converse of Exercise 112.)

(b) Prove that if then 

Hint: Use the inequality 

115. Think About It Find a function to show that the converse

of Exercise 114(b) is not true. [Hint: Find a function such

that but does not exist.]

True or False? In Exercises 117–122, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

117. 118.

119. If for all real numbers other than and

then

120. If then 

121. where

122. If for all then

123. Prove the second part of Theorem 1.9.

124. Let

and

Find (if possible) and 

125. Graphical Reasoning Consider

(a) Find the domain of 

(b) Use a graphing utility to graph Is the domain of 
obvious from the graph? If not, explain.

(c) Use the graph of to approximate 

(d) Confirm your answer to part (c) analytically.

126. Approximation

(a) Find 

(b) Use your answer to part (a) to derive the approximation
for near 0.

(c) Use your answer to part (b) to approximate 

(d) Use a calculator to approximate to four decimal
places. Compare the result with part (c).

127. Think About It When using a graphing utility to generate a
table to approximate a student concluded that 

the limit was 0.01745 rather than 1. Determine the probable
cause of the error.

lim
x→0

��sin x��x�,

cos�0.1�
cos�0.1�.

xcos x � 1 �
1
2x2

lim
x→0

1 � cos x
x2 .

lim
x→0

f �x�.f

ff.

f.

f �x� �
sec x � 1

x2 .

lim
x→0

g�x�.lim
x→0

f �x�

g�x� � �0,
x,

if x is rational
if x is irrational.

f �x� � �0,
1,

if x is rational
if x is irrational

lim
x→0

1 � cos x
x

� 0

lim
x→a

f �x� < lim
x→a

g�x�.

x � a,f �x� < g�x�

f �x� � �3,
0,

x � 2
x > 2

lim
x→2

f �x� � 3,

f �c� � L.lim
x→c

f �x� � L,

lim
x→0

g�x� � L.lim
x→0

f �x� � L,

x � 0,f �x� � g�x�

lim
x→	

sin x
x

� 1lim
x→0

�x�
x

� 1

lim
x→c

f �x�lim
x→c

� f �x�� � �L�
f

f

� f �x�� � �L� � � f �x� � L�.��

lim
x→c

� f �x�� � �L�.lim
x→c

f �x� � L,

lim
x→c

f �x� � 0.lim
x→c

� f �x�� � 0,

lim
x→c

f �x�g�x� � 0.x � c,M

�g�x�� � Mlim
x→c

f �x� � 0

lim
x→c

� f �x�� � 0.lim
x→c

f �x� � 0,

lim
x→c

g�x�

lim
x→c

� f �x� � g�x��lim
x→c

f �x�

lim
x→0

� f �x� � g�x��

lim
x→0

g�x�lim
x→0

f �x�gf

t � 3.

lim
t→a

s�a� � s�t�
a � t

.

t � a

s�t� � �4.9t2 1 200,

lim
t→a

s�a� � s�t�
a � t

.

t � a
t

s�t� � �16t2 1 500,

lim
x→0

h�x� � 0.
xg�x�

f �x�

f �x� � x, g�x� � sin2 x,  and h�x� �
sin2 x

x
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1.4 Continuity and One-Sided Limits
■ Determine continuity at a point and continuity on an open interval.
■ Determine one-sided limits and continuity on a closed interval.
■ Use properties of continuity.
■ Understand and use the Intermediate Value Theorem.

Continuity at a Point and on an Open Interval
In mathematics, the term continuous has much the same meaning as it has in 
everyday usage. Informally, to say that a function is continuous at means that
there is no interruption in the graph of at That is, its graph is unbroken at and
there are no holes, jumps, or gaps. Figure 1.25 identifies three values of at which the
graph of is not continuous. At all other points in the interval the graph of is
uninterrupted and continuous.

Three conditions exist for which the graph of is not continuous at 
Figure 1.25

In Figure 1.25, it appears that continuity at can be destroyed by any one of
the following conditions.

1. The function is not defined at 

2. The limit of does not exist at 

3. The limit of exists at but it is not equal to 

If none of the three conditions above is true, the function is called continuous at 
as indicated in the following important definition.

c,f

f�c�.x � c,f�x�
x � c.f�x�

x � c.

x � c

x � c.f

x

a bc

x→c
lim f (x) ≠ f (c)

y

x

a bc

lim f (x)
x→c
does not exist.

y

x

a bc

f (c) is
not defined.

y

f�a, b�,f
x

cc.f
x � cf

DEFINITION OF CONTINUITY

Continuity at a Point: A function is continuous at if the following three
conditions are met.

1. is defined.

2. exists.

3.

Continuity on an Open Interval: A function is continuous on an open 
interval if it is continuous at each point in the interval. A function that is
continuous on the entire real line is everywhere continuous.���, ��

�a, b�

lim
x→c

f �x� � f �c�

lim
x→c

f �x�
f�c�

cf
■ FOR FURTHER INFORMATION For
more information on the concept of
continuity, see the article “Leibniz and
the Spell of the Continuous” by Hardy
Grant in The College Mathematics
Journal. To view this article, go to the
website www.matharticles.com.

E X P L O R A T I O N

Informally, you might say that a
function is continuous on an open
interval if its graph can be drawn
with a pencil without lifting the
pencil from the paper. Use a graph-
ing utility to graph each function
on the given interval. From the
graphs, which functions would you
say are continuous on the interval?
Do you think you can trust the
results you obtained graphically?
Explain your reasoning.

a.

b.

c.

d.

e. ��3, 3�y � �2x � 4,

x � 1,

x � 0

x > 0

��3, 3�y �
x2 � 4
x � 2

��	, 	�y �
sin x

x

��3, 3�y �
1

x � 2

��3, 3�y � x2 � 1

IntervalFunction

www.matharticles.com
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Consider an open interval that contains a real number If a function is defined
on (except possibly at ), and is not continuous at then is said to have a
discontinuity at Discontinuities fall into two categories: removable and
nonremovable. A discontinuity at is called removable if can be made continuous
by appropriately defining (or redefining) For instance, the functions shown in
Figures 1.26(a) and (c) have removable discontinuities at and the function shown in
Figure 1.26(b) has a nonremovable discontinuity at 

EXAMPLE 1 Continuity of a Function

Discuss the continuity of each function.

a. b. c. d.

Solution

a. The domain of is all nonzero real numbers. From Theorem 1.3, you can conclude
that is continuous at every -value in its domain. At has a nonremovable
discontinuity, as shown in Figure 1.27(a). In other words, there is no way to define

so as to make the function continuous at 

b. The domain of is all real numbers except From Theorem 1.3, you can
conclude that is continuous at every -value in its domain. At the function
has a removable discontinuity, as shown in Figure 1.27(b). If is defined as 2,
the “newly defined” function is continuous for all real numbers.

c. The domain of is all real numbers. The function is continuous on and
and, because is continuous on the entire real line, as shown

in Figure 1.27(c).

d. The domain of is all real numbers. From Theorem 1.6, you can conclude that the
function is continuous on its entire domain, as shown in Figure 1.27(d).

(a) Nonremovable discontinuity at (b) Removable discontinuity at 

(c) Continuous on entire real line (d) Continuous on entire real line
Figure 1.27

■

1

−1

x

y = sin x

y

π
2

3π
2x

1

1

2

2

3

3

−1

−1

h(x) = 
x + 1,

x2 + 1, x > 0

y

x ≤ 0

x � 1x � 0

x

1

1

2

2

3

3

(1, 2)

−1

−1

g(x) = x2 − 1
x − 1

y

x

1

1

2

2

3

3

−1

−1

f (x) = 1
x

y

���, ��,
y

hlim
x→0

h�x� � 1,�0, ��,
���, 0�hh

g�1�
x � 1,xg

x � 1.g

x � 0.f�0�

fx � 0,xf
f

y � sin xh�x� � �x � 1,

x2 � 1,

x � 0

x > 0
g�x� �

x2 � 1
x � 1

f�x� �
1
x

c.
c

f�c�.
fc

c.
fc,fcI

fc.I

x

a bc

y

(a) Removable discontinuity

x

a bc

y

(b) Nonremovable discontinuity

x

a bc

y

(c) Removable discontinuity
Figure 1.26

Some people may refer 
to the function in Example 1(a) as
“discontinuous.” We have found that 
this terminology can be confusing.
Rather than saying that the function is 
discontinuous, we prefer to say that it
has a discontinuity at x � 0.

STUDY TIP



72 Chapter 1 Limits and Their Properties

One-Sided Limits and Continuity on a Closed Interval
To understand continuity on a closed interval, you first need to look at a different type
of limit called a one-sided limit. For example, the limit from the right (or right-hand
limit) means that approaches from values greater than [see Figure 1.28(a)]. This
limit is denoted as

Similarly, the limit from the left (or left-hand limit) means that approaches from
values less than [see Figure 1.28(b)]. This limit is denoted as

One-sided limits are useful in taking limits of functions involving radicals. For
instance, if is an even integer,

EXAMPLE 2 A One-Sided Limit

Find the limit of as approaches from the right.

Solution As shown in Figure 1.29, the limit as approaches from the right is

■

One-sided limits can be used to investigate the behavior of step functions. One
common type of step function is the greatest integer function defined by

For instance, and 

EXAMPLE 3 The Greatest Integer Function

Find the limit of the greatest integer function as approaches 0 from the
left and from the right.

Solution As shown in Figure 1.30, the limit as approaches 0 from the left is given
by

and the limit as approaches 0 from the right is given by

The greatest integer function has a discontinuity at zero because the left and right 
limits at zero are different. By similar reasoning, you can see that the greatest integer 
function has a discontinuity at any integer ■n.

lim
x→0�

�x� � 0.

x

lim
x→0�

�x� � �1

x

xf�x� � �x�

��2.5� � �3.�2.5� � 2

�x�,

lim
x→�2�

�4 � x2 � 0.

�2x

�2xf�x� � �4 � x2

n

c
cx

ccx

Limit from the rightlim
x→c�

f�x� � L.

Limit from the leftlim
x→c�

f�x� � L.

lim
x→0�

n�x � 0.

greatest integer such that Greatest integer functionn � x.n�x� �

x

y

x approaches
c from the right.

c < x

(a) Limit from right

x

y

x approaches
c from the left.

c > x

(b) Limit from left
Figure 1.28

x
1

1

2

3

−1−2

−1

f (x) =     4 − x2

y

The limit of as approaches from
the right is 0.
Figure 1.29

�2xf �x�

x
1

1

2

2

3−1−2

−2

x[[ ]]f (x) =
y

Greatest integer function
Figure 1.30



When the limit from the left is not equal to the limit from the right, the (two-
sided) limit does not exist. The next theorem makes this more explicit. The proof of
this theorem follows directly from the definition of a one-sided limit.

The concept of a one-sided limit allows you to extend the definition of continuity
to closed intervals. Basically, a function is continuous on a closed interval if it is
continuous in the interior of the interval and exhibits one-sided continuity at the 
endpoints. This is stated formally as follows.

Similar definitions can be made to cover continuity on intervals of the form 
and that are neither open nor closed, or on infinite intervals. For example, the
function

is continuous on the infinite interval and the function

is continuous on the infinite interval 

EXAMPLE 4 Continuity on a Closed Interval

Discuss the continuity of 

Solution The domain of is the closed interval At all points in the open
interval the continuity of follows from Theorems 1.4 and 1.5. Moreover,
because

Continuous from the right

and

Continuous from the left

you can conclude that is continuous on the closed interval as shown in
Figure 1.32. ■

��1, 1�,f

lim
x→1�

�1 � x2 � 0 � f�1�

lim
x→�1�

�1 � x2 � 0 � f��1�

f��1, 1�,
��1, 1�.f

f�x� � �1 � x2.

���, 2�.

g�x� � �2 � x

�0, ��,

f�x� � �x

�a, b�
�a, b�
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DEFINITION OF CONTINUITY ON A CLOSED INTERVAL

A function is continuous on the closed interval if it is continuous on
the open interval and

and

The function is continuous from the right at and continuous from the
left at (see Figure 1.31).b

af

lim
x→b�

f�x� � f�b�.lim
x→a�

f�x� � f�a�

�a, b�
[a, b]f

THEOREM 1.10 THE EXISTENCE OF A LIMIT

Let be a function and let and be real numbers. The limit of as 
approaches is if and only if

and lim
x→c�

f�x� � L.lim
x→c�

f�x� � L

Lc
xf�x�Lcf

x

a b

y

Continuous function on a closed interval
Figure 1.31

x

1

1−1

f (x) =     1 − x2

y

is continuous on 
Figure 1.32

��1, 1�.f
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T �40 �20 0 20 40 60 80

V 19.1482 20.7908 22.4334 24.0760 25.7186 27.3612 29.0038

T �40 �4 32 68 104 140 176

V 19.1482 20.7908 22.4334 24.0760 25.7186 27.3612 29.0038

NOTE Charles’s Law for gases (assuming constant pressure) can be stated as

Charles’s Law

where is volume, is a constant, and is temperature. In the statement of this law, what
property must the temperature scale have? ■

TRV

V � RT

T
−100−200−300

5

10

15

25

30

100

V = 0.08213T + 22.4334

(−273.15, 0)

V

The volume of hydrogen gas depends on its
temperature.
Figure 1.33

The next example shows how a one-sided limit can be used to determine the value
of absolute zero on the Kelvin scale.

EXAMPLE 5 Charles’s Law and Absolute Zero

On the Kelvin scale, absolute zero is the temperature 0 K. Although temperatures very
close to 0 K have been produced in laboratories, absolute zero has never been attained.
In fact, evidence suggests that absolute zero cannot be attained. How did scientists
determine that 0 K is the “lower limit” of the temperature of matter? What is absolute
zero on the Celsius scale?

Solution The determination of absolute zero stems from the work of the French
physicist Jacques Charles (1746–1823). Charles discovered that the volume of gas at
a constant pressure increases linearly with the temperature of the gas. The table
illustrates this relationship between volume and temperature. To generate the values
in the table, one mole of hydrogen is held at a constant pressure of one atmosphere.
The volume is approximated and is measured in liters, and the temperature is
measured in degrees Celsius.

The points represented by the table are shown in Figure 1.33. Moreover, by using the
points in the table, you can determine that and are related by the linear equation

or

By reasoning that the volume of the gas can approach 0 (but can never equal or go
below 0), you can determine that the “least possible temperature” is given by

Use direct substitution.

So, absolute zero on the Kelvin scale 0 K is approximately on the Celsius
scale. ■

The following table shows the temperatures in Example 5 converted to the
Fahrenheit scale. Try repeating the solution shown in Example 5 using these temperatures
and volumes. Use the result to find the value of absolute zero on the Fahrenheit scale.

�273.15���

� �273.15.

�
0 � 22.4334

0.08213

lim
V→0�

T � lim
V→0�

V � 22.4334
0.08213

T �
V � 22.4334

0.08213
.V � 0.08213T � 22.4334

VT

TV

In 2003, researchers at the Massachusetts
Institute of Technology used lasers and 
evaporation to produce a supercold gas in
which atoms overlap. This gas is called a
Bose-Einstein condensate. They measured a
temperature of about 450 pK (picokelvin),
or approximately 
(Source: Science magazine, September 12,
2003)

�273.14999999955�C.
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Properties of Continuity
In Section 1.3, you studied several properties of limits. Each of those properties yields
a corresponding property pertaining to the continuity of a function. For instance,
Theorem 1.11 follows directly from Theorem 1.2. (A proof of Theorem 1.11 is given
in Appendix A.)

The following types of functions are continuous at every point in their domains.

1. Polynomial:

2. Rational:

3. Radical:

4. Trigonometric: sin cos tan cot sec csc

By combining Theorem 1.11 with this summary, you can conclude that a wide
variety of elementary functions are continuous at every point in their domains.

EXAMPLE 6 Applying Properties of Continuity

By Theorem 1.11, it follows that each of the functions below is continuous at every
point in its domain.

■

The next theorem, which is a consequence of Theorem 1.5, allows you to determine
the continuity of composite functions such as

f�x� � tan
1
x
.f�x� � �x2 � 1,f�x� � sin 3x,

f�x� �
x2 � 1
cos x

f�x� � 3 tan x,f�x� � x � sin x,

xx,x,x,x,x,

f �x� � n�x

q�x� � 0r�x� �
p�x�
q�x�,

p�x� � anx
n � an�1x

n�1 � .  .  . � a1x � a0
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THEOREM 1.11 PROPERTIES OF CONTINUITY

If is a real number and and are continuous at then the following
functions are also continuous at 

1. Scalar multiple:

2. Sum or difference:

3. Product:

4. Quotient: if g�c� � 0
f
g

,

fg

f ± g

bf

c.
x � c,gfb

THEOREM 1.12 CONTINUITY OF A COMPOSITE FUNCTION

If is continuous at and is continuous at then the composite function
given by is continuous at c.� f � g��x� � f�g�x��

g�c�,fcg

NOTE One consequence of Theorem
1.12 is that if and satisfy the given
conditions, you can determine the limit
of as approaches to be

lim
x→c

f �g�x�� � f �g�c��.

cxf �g�x��

gf

PROOF By the definition of continuity, and 

Apply Theorem 1.5 with to obtain So,

is continuous at ■c.� f � g� � f�g�x��

lim
x→c

f�g�x�� � f�limx→c
g�x�� � f�g�c��.L � g�c�

lim
x→g�c�

f �x� � f �g�c��.lim
x→c

g�x� � g�c�

AUGUSTIN-LOUIS CAUCHY (1789–1857)

The concept of a continuous function was
first introduced by Augustin-Louis Cauchy 
in 1821. The definition given in his text 
Cours d’Analyse stated that indefinite small
changes in y were the result of indefinite
small changes in x. “… will be called a
continuous function if … the numerical 
values of the difference 
decrease indefinitely with those of ….”�

f �x � �� � f �x�

f �x�

B
et

tm
an

n/
C

or
bi

s
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EXAMPLE 7 Testing for Continuity

Describe the interval(s) on which each function is continuous.

a. b. c.

Solution

a. The tangent function is undefined at

is an integer.

At all other points it is continuous. So, is continuous on the open
intervals

as shown in Figure 1.34(a).

b. Because is continuous except at and the sine function is continuous
for all real values of it follows that is continuous at all real values
except At the limit of does not exist (see Example 5, Section
1.2). So, is continuous on the intervals and as shown in Figure
1.34(b).

c. This function is similar to the function in part (b) except that the oscillations are
damped by the factor Using the Squeeze Theorem, you obtain

and you can conclude that

So, is continuous on the entire real line, as shown in Figure 1.34(c).

■

h

lim
x→0

h�x� � 0.

x � 0��x� � x sin 
1
x

� �x�,
x.

�0, ��,���, 0�g
g�x�x � 0,x � 0.
y � sin �1�x�x,

x � 0y � 1�x

.  .  . , ��
3	

2
, �

	

2	, ��
	

2
,

	

2	, �	

2
,

3	

2 	, .  .  .

f�x� � tan x

nx �
	

2
� n	,

f�x� � tan x

h�x� � �x sin 1
x ,

0,

x � 0

x � 0
g�x� � �sin 1

x
,

0,

x � 0

x � 0
f�x� � tan x

x

4

3

2

1

−3

−4

−π π

f (x) = tan x

y

(a) is continuous on each open interval in its
domain.

Figure 1.34

f

x

1

−1

−1 1

g(x) = 
sin    , x ≠ 0

0,

1
x

y

x = 0

(b) is continuous on and �0, ��.���, 0�g

x

1

−1

−1 1

h(x) = 
x = 00,

y = ⎪x⎪

y = −⎪x⎪
x sin    , x ≠ 01

x

y

(c) is continuous on the entire real lineh



The Intermediate Value Theorem
Theorem 1.13 is an important theorem concerning the behavior of functions that are
continuous on a closed interval.

As a simple example of the application of this theorem, consider a person’s
height. Suppose that a girl is 5 feet tall on her thirteenth birthday and 5 feet 7 inches
tall on her fourteenth birthday. Then, for any height between 5 feet and 5 feet 7 inches,
there must have been a time when her height was exactly This seems reasonable
because human growth is continuous and a person’s height does not abruptly change
from one value to another.

The Intermediate Value Theorem guarantees the existence of at least one number
in the closed interval There may, of course, be more than one number such

that as shown in Figure 1.35. A function that is not continuous does not
necessarily exhibit the intermediate value property. For example, the graph of the
function shown in Figure 1.36 jumps over the horizontal line given by and for
this function there is no value of in such that 

is continuous on is not continuous on 
There exist three c’s such that There are no c’s such that 

Figure 1.35 Figure 1.36

The Intermediate Value Theorem often can be used to locate the zeros of a
function that is continuous on a closed interval. Specifically, if is continuous on 
and and differ in sign, the Intermediate Value Theorem guarantees the 
existence of at least one zero of in the closed interval �a, b�.f

f�b�f�a�
�a, b�f

f �c� � k.��f �c� � k.�[
�a, b�.f�a, b�.f

x

b

k

a

f (a)

f (b)

y

x

k

b
c3c2a

c1

f (a)

f (b)

y

f�c� � k.�a, b�c
y � k,

f�c� � k,
c�a, b�.c

h.t
h
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The Intermediate Value Theorem tells you that at least one number exists, but it does
not provide a method for finding Such theorems are called existence theorems. By referring
to a text on advanced calculus, you will find that a proof of this theorem is based on a property
of real numbers called completeness. The Intermediate Value Theorem states that for a 
continuous function if takes on all values between and must take on all values
between and ■f�b�.f�a�

f�x�b,axf,

c.
cNOTE

THEOREM 1.13 INTERMEDIATE VALUE THEOREM

If is continuous on the closed interval and is any 
number between and then there is at least one number in 
such that

f�c� � k.

�a, b�cf�b),f �a�
kf �a� � f �b�,�a, b�,f
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In Exercises 1–6, use the graph to determine the limit, and
discuss the continuity of the function.

(a) (b) (c)

1. 2.

3. 4.

5. 6.

x
1

2

3

4
c = −1

(−1, 2)

(−1, 0)−3

y

x
1

1

2

2 3 4 5 6−1
−2
−3

(2, 3)

(2, −3)

c = 2

y

x

y

(−3, 4)

(−3, 3)

−1−2−3−4−5

2

3

4

5
c = −3

x

y

2 4 6

4

c = 3

(3, 1)

(3, 0)
c = −2

(−2, −2)

x

y

−2
−1

−2

1

2

c = 4

(4, 3)

1 2 3 4 5−1

1

2

3

4

5

x

y

lim
x→c

f �x�lim
x→c�

f �x�lim
x→c�

f �x�

1.4 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

EXAMPLE 8 An Application of the Intermediate Value Theorem

Use the Intermediate Value Theorem to show that the polynomial function
has a zero in the interval 

Solution Note that is continuous on the closed interval Because

and

it follows that and You can therefore apply the Intermediate Value
Theorem to conclude that there must be some in such that

has a zero in the closed interval 

as shown in Figure 1.37. ■

The bisection method for approximating the real zeros of a continuous function
is similar to the method used in Example 8. If you know that a zero exists in the closed
interval the zero must lie in the interval or From
the sign of you can determine which interval contains the zero. By
repeatedly bisecting the interval, you can “close in” on the zero of the function.

f ��a � b��2�,
��a � b��2, b�.�a, �a � b��2��a, b�,

�0, 1�.ff�c� � 0

�0, 1�c
f�1�  >  0.f �0�  <  0

f�1� � 13 � 2�1� � 1 � 2f�0� � 03 � 2�0� � 1 � �1

�0, 1�.f

�0, 1�.f�x� � x3 � 2x � 1

You can also use the zoom feature of a graphing utility to approxi-
mate the real zeros of a continuous function. By repeatedly zooming in on the 
point where the graph crosses the -axis, and adjusting the -axis scale, you can
approximate the zero of the function to any desired accuracy. The zero of

is approximately 0.453, as shown in Figure 1.38.

Figure 1.38 Zooming in on the zero of f �x� � x3 � 2x � 1

0.4

−0.012

0.5

0.013

−0.2

−0.2

1

0.2

x3 � 2x � 1

xx

TECHNOLOGY

x

1

1

2

−1

−1
(c, 0)

(1, 2)

(0, −1)

y f (x) = x3 + 2x − 1

is continuous on with and

Figure 1.37
f �1� > 0.

f �0� < 0�0, 1�f

www.CalcChat.com


In Exercises 7–26, find the limit (if it exists). If it does not exist,
explain why.

7. 8.

9. 10.

11. 12.

13.

14.

15.

16.

17. where

18. where

19. where

20. where

21.

22.

23.

24.

25.

26.

In Exercises 27–30, discuss the continuity of each function.

27. 28.

29. 30.

In Exercises 31–34, discuss the continuity of the function on the
closed interval.

31.

32.

33.

34.

In Exercises 35– 60, find the -values (if any) at which is not
continuous. Which of the discontinuities are removable?

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45.

46.

47.

48.

49.

50.

51.

52. f �x� � ��2x � 3,
x2,

x < 1
x � 1

f �x� � �x,
x2,

x � 1
x > 1

f �x� � �x � 8�
x � 8

f �x� � �x � 7�
x � 7

f �x� �
x � 1

x2 � x � 2

f �x� �
x � 2

x2 � 3x � 10

f �x� �
x � 6

x2 � 36

f �x� �
x

x2 � 1

f �x� �
x

x2 � 1
f �x� �

x
x2 � x

f �x� � cos
	x
2

f �x� � 3x � cos x

f �x� �
1

x2 � 1
f �x� �

1
4 � x2

f �x� � x2 � 2x � 1f �x� � x2 � 9

f �x� �
3

x � 2
f �x� �

6
x

fx

��1, 2�g�x� �
1

x2 � 4

��1, 4�f �x� � �3 � x,

3 �
1
2 x,

x � 0

x > 0

��3, 3�f �t� � 3 � �9 � t2

��7, 7�g�x� � �49 � x2

IntervalFunction

x

−2

−2

−3

−3

1

1

2

2

3

3

y

x
−1−2

−3

−3

1

1

2

2

3

3

y

f �x� � �x,
2,
2x � 1,

x < 1
x � 1
x > 1

f �x� �
1
2�x� � x

x
−1−2

−3

−3

1

1

2

2

3

3

y

x

−1

−2

−3

−3

1

1

2

3

3

y

f �x� �
x2 � 1
x � 1

f �x� �
1

x2 � 4

lim
x→1�1 � ��

x
2�	

lim
x→3

�2 � ��x� �

lim
x→2�

�2x � �x��

lim
x→4�

�5�x� � 7�

lim
x→	�2

 sec x

lim
x→	

 cot x

f �x� � �x, x � 1
1 � x, x > 1

lim
x→1�

f �x�,

f �x� � �x3 � 1, x < 1
x � 1, x � 1

lim
x→1

f �x�,

f �x� � �x2 � 4x � 6, x < 2
�x2 � 4x � 2, x � 2

lim
x→2

f �x�,

f �x� � �
x � 2

2
, x � 3

12 � 2x
3

, x > 3
lim

x→3�
f �x�,

lim
�x→0�

�x � �x�2 � x � �x � �x2 � x�
�x

lim
�x→0�

1
x � �x

�
1
x

�x

lim
x→10�

�x � 10�
x � 10

lim
x→0�

�x�
x

lim
x→9�

�x � 3
x � 9

lim
x→�3�

x

�x2 � 9

lim
x→2�

2 � x

x2 � 4
lim

x→5�

x � 5

x2 � 25

lim
x→5�

�
3

x � 5
lim

x→8�

1

x � 8
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53.

54.

55.

56.

57. 58.

59. 60.

In Exercises 61 and 62, use a graphing utility to graph the
function. From the graph, estimate

and

Is the function continuous on the entire real line? Explain.

61. 62.

In Exercises 63–68, find the constant or the constants and
such that the function is continuous on the entire real line.

63.

64.

65.

66.

67.

68.

In Exercises 69– 72, discuss the continuity of the composite
function

69. 70.

71. 72.

In Exercises 73 –76, use a graphing utility to graph the function.
Use the graph to determine any -values at which the function
is not continuous.

73. 74.

75.

76.

In Exercises 77– 80, describe the interval(s) on which the
function is continuous.

77. 78.

79. 80.

Writing In Exercises 81 and 82, use a graphing utility to graph
the function on the interval Does the graph of the function
appear to be continuous on this interval? Is the function continu-
ous on Write a short paragraph about the importance of
examining a function analytically as well as graphically.

81. 82.

Writing In Exercises 83–86, explain why the function has a
zero in the given interval.

83.

84.

85.

86. �1, 4�f �x� � �
5
x

� tan�	x
10 	

�0, 	�f �x� � x2 � 2 � cos x

�0, 1�f �x� � x3 � 5x � 3

�1, 2�f �x� �
1

12 x 4 � x3 � 4

IntervalFunction

f �x� �
x3 � 8
x � 2

f �x� �
sin x

x

[�4, 4]?

[�4, 4].

x

3

3

4

4

2

2

1

1

y

x

−4

−2

4

−2 2

y

f �x� �
x � 1
�x

f �x� � sec
	x
4

x

−4

−4 2

4

4

2
(−3, 0)

y

x

y

−2 2 4

−1

0.5

1

f �x� � x�x � 3f �x� �
x

x2 � x � 2

f �x� � �cos x � 1
x

, x < 0

5x, x � 0

g�x� � �x2 � 3x,

2x � 5,

x > 4

x � 4

h�x� �
1

x2 � x � 2
f �x� � �x� � x

x

g �x� � x2g�x� � x2 � 5

f �x� � sin xf �x� �
1

x � 6

g �x� � x � 1g �x� � x � 1

f �x� �
1
�x

f �x� � x2

h�x� � f �g�x��.

g �x� � �x2 � a2

x � a
, x � a

8, x � a

f �x� � �2,
ax � b,
�2,

x � �1
�1 < x < 3
x � 3

g�x� � �4 sin x
x

, x < 0

a � 2x, x � 0

f �x� � �x3,
ax2,

x � 2
x > 2

f �x� � �3x3,
ax � 5,

x � 1
x > 1

f �x� � �3x2,
ax � 4,

x � 1
x < 1

b,
aa,

f �x� �
�x2 � 4x��x � 2�

x � 4
f �x� � �x2 � 4�x

x � 2

lim
x→0�

f �x�.lim
x→0�

f �x�

f �x� � 5 � �x�f �x� � �x � 8�

f �x� � tan
	x
2

f �x� � csc 2x

f �x� � �csc 	 x
6

,

2,

�x � 3� � 2

�x � 3� > 2

f �x� � �tan 	 x
 4 

,

x,

�x� < 1

�x� � 1

f �x� � ��2x,
x2 � 4x � 1,

x � 2
x > 2

f �x� � �
1
2 x � 1,

3 � x,

x � 2

x > 2
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95. State how continuity is destroyed at for each of the
following graphs.

(a) (b)

(c) (d)

96. Sketch the graph of any function such that

and

Is the function continuous at Explain.

97. If the functions and are continuous for all real is 
always continuous for all real Is always continuous
for all real If either is not continuous, give an example to
verify your conclusion.

x?
f�gx?

f � gx,gf

x � 3?

lim
x→3�

f �x� � 0.lim
x→3�

f �x� � 1

f

xc

y

xc

y

xc

y

xc

y

x � c

WRITING ABOUT CONCEPTS

98. Describe the difference between a discontinuity that is
removable and one that is nonremovable. In your explana-
tion, give examples of the following descriptions.

(a) A function with a nonremovable discontinuity at

(b) A function with a removable discontinuity at 

(c) A function that has both of the characteristics
described in parts (a) and (b)

x � �4

x � 4

CAPSTONEIn Exercises 87–90, use the Intermediate Value Theorem and a
graphing utility to approximate the zero of the function in the
interval Repeatedly “zoom in” on the graph of the function
to approximate the zero accurate to two decimal places. Use the
zero or root feature of the graphing utility to approximate the
zero accurate to four decimal places.

87.

88.

89.

90.

In Exercises 91–94, verify that the Intermediate Value Theorem
applies to the indicated interval and find the value of guaran-
teed by the theorem.

91.

92.

93.

94.

True or False? In Exercises 99–102, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

99. If and then is continuous at 

100. If for and then either or is
not continuous at 

101. A rational function can have infinitely many -values at which
it is not continuous.

102. The function is continuous on

103. Swimming Pool Every day you dissolve 28 ounces of
chlorine in a swimming pool. The graph shows the amount of
chlorine in the pool after days.

Estimate and interpret and 

104. Think About It Describe how the functions

and

differ.

105. Telephone Charges A long distance phone service charges
$0.40 for the first 10 minutes and $0.05 for each additional
minute or fraction thereof. Use the greatest integer function to
write the cost of a call in terms of time (in minutes). Sketch
the graph of this function and discuss its continuity.

tC

g�x� � 3 � ��x�

f �x� � 3 � �x�

lim
t→4�

f �t�.lim
t→4�

f �t�

y

t
6 754321

140

112

84

56

28

tf �t�

���, ��.
f �x� � �x � 1���x � 1�

x

c.
gff �c� � g�c�,x � cf �x� � g�x�

c.ff �c� � L,lim
x→c

f �x� � L

f �c� � 6�5
2

, 4�,f �x� �
x2 � x
x � 1

,

f �c� � 4�0, 3�,f �x� � x3 � x2 � x � 2,

f �c� � 0�0, 3�,f �x� � x2 � 6x � 8,

f �c� � 11�0, 5�,f �x� � x2 � x � 1,

c

h�� � 1 �  � 3 tan 

g�t� � 2 cos t � 3t

f �x� � x3 � 5x � 3

f �x� � x3 � x � 1

[0, 1].
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106. Inventory Management The number of units in inventory in
a small company is given by

where is the time in months. Sketch the graph of this func-
tion and discuss its continuity. How often must this company
replenish its inventory?

107. Déjà Vu At 8:00 A.M. on Saturday a man begins running up
the side of a mountain to his weekend campsite (see figure). On
Sunday morning at 8:00 A.M. he runs back down the mountain.
It takes him 20 minutes to run up, but only 10 minutes to run
down. At some point on the way down, he realizes that he
passed the same place at exactly the same time on Saturday.
Prove that he is correct. [Hint: Let and be the position
functions for the runs up and down, and apply the Intermediate
Value Theorem to the function ]

108. Volume Use the Intermediate Value Theorem to show that
for all spheres with radii in the interval there is one with
a volume of 1500 cubic centimeters.

109. Prove that if is continuous and has no zeros on then
either

for all in or for all in 

110. Show that the Dirichlet function

is not continuous at any real number.

111. Show that the function

is continuous only at (Assume that is any nonzero real
number.)

112. The signum function is defined by

Sketch a graph of sgn and find the following (if possible).

(a) (b) (c)

113. Modeling Data The table lists the speeds (in feet per 
second) of a falling object at various times (in seconds).

(a) Create a line graph of the data.

(b) Does there appear to be a limiting speed of the object? If
there is a limiting speed, identify a possible cause.

114. Creating Models A swimmer crosses a pool of width by
swimming in a straight line from to . (See figure.)

(a) Let be a function defined as the -coordinate of the point
on the long side of the pool that is nearest the swimmer at
any given time during the swimmer’s crossing of the pool.
Determine the function and sketch its graph. Is 
continuous? Explain.

(b) Let be the minimum distance between the swimmer and
the long sides of the pool. Determine the function and
sketch its graph. Is continuous? Explain.

115. Find all values of such that is continuous on 

116. Prove that for any real number there exists in 
such that 

117. Let What is the domain of
How can you define at in order for to be

continuous there?

118. Prove that if then is continuous at 

119. Discuss the continuity of the function 

120. (a) Let and be continuous on the closed interval
If and prove that there

exists between and such that 

(b) Show that there exists in such that Use
a graphing utility to approximate to three decimal places.c

cos x � x.�0, 	
2�c

f1�c� � f2�c�.bac
f1�b� > f2�b�,f1�a� < f2�a��a, b�.

f2�x�f1�x�
h�x� � x �x�.

c.flim
�x→0

f �c � �x� � f �c�,

fx � 0ff ?
c > 0.f �x� � ��x � c2 � c��x,

tan x � y.
��	�2, 	�2�xy

f �x� � �1 � x2,
x,

x � c
x > c

���, ��.fc

g
g

g

ff

yf

x
(0, 0)

(2b, b)

b

y

�2b, b��0, 0�
b

t
S

lim
x→0

 sgn�x�lim
x→0�

 sgn�x�lim
x→0�

 sgn�x�
�x�

sgn�x� � ��1,
0,
1,

x < 0
x � 0
x > 0.

kx � 0.

f �x� � �0,
kx,

    if x is rational
    if x is irrational

f �x� � �0,
1,

   if x is rational
   if x is irrational

�a, b�.xf �x� < 0�a, b�xf �x�  >  0

�a, b�,f

�5, 8�,

Saturday 8:00 A.M. Sunday 8:00 A.M.
Not drawn to scale

f �t� � s�t� � r�t�.

r�t�s�t�

t

N�t� � 25�2�t � 2
2 � � t	 t 0 5 10 15 20 25 30

S 0 48.2 53.5 55.2 55.9 56.2 56.3

121. Prove or disprove: if and are real numbers with 
and then 

122. Determine all polynomials such that

and

These problems were composed by the Committee on the Putnam Prize
Competition. © The Mathematical Association of America. All rights reserved.

P�0� � 0.P�x2 � 1� � �P�x��2 � 1

P�x�
y� y � 1� � x2.y� y � 1� � �x � 1�2,

y � 0yx

PUTNAM EXAM CHALLENGE
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1.5 Infinite Limits
■ Determine infinite limits from the left and from the right.
■ Find and sketch the vertical asymptotes of the graph of a function.

Infinite Limits
Let be the function given by From Figure 1.39 and the table, you can see
that decreases without bound as approaches 2 from the left, and increases
without bound as approaches 2 from the right. This behavior is denoted as

decreases without bound as approaches 2 from the left.

and

increases without bound as approaches 2 from the right.

A limit in which increases or decreases without bound as approaches is called
an infinite limit.

Be sure you see that the equal sign in the statement does not mean
that the limit exists! On the contrary, it tells you how the limit fails to exist by denoting
the unbounded behavior of as approaches c.xf �x�

lim f �x� � �

cxf�x�

xf �x�lim
x→2�

3
x � 2

� �

xf �x�lim
x→2�

3
x � 2

� ��

x
f�x�xf�x�

3��x � 2�.f

approaches 2 from the left.x approaches 2 from the right.x

decreases without bound.f �x� increases without bound.f �x�

x 1.5 1.9 1.99 1.999 2 2.001 2.01 2.1 2.5

f�x� �6 �30 �300 �3000 ? 3000 300 30 6

DEFINITION OF INFINITE LIMITS

Let be a function that is defined at every real number in some open interval
containing (except possibly at itself). The statement

means that for each there exists a such that whenever
(see Figure 1.40). Similarly, the statement

means that for each there exists a such that whenever 

To define the infinite limit from the left, replace by
To define the infinite limit from the right, replace
by c < x < c � �.0 < �x � c� < �

c � � < x < c.
0 < �x � c� < �

0 < �x � c� < �.
f �x� < N� > 0N < 0

lim
x→c

f�x� � ��

0 < �x � c� < �
f �x� > M� > 0M > 0

lim
x→c

f�x� � �

cc
f

x

−2

−4

−4

−6

−6

2

4

4

6

6

→ −∞
f (x) = 3

x − 2

3
x − 2
as x → 2−

→ ∞3
x − 2
as x → 2+

y

increases and decreases without bound
as approaches 2.
Figure 1.39

x
f �x�

x

M

lim f (x) = ∞
x→c

δδ

c

y

Infinite limits
Figure 1.40



EXAMPLE 1 Determining Infinite Limits from a Graph

Determine the limit of each function shown in Figure 1.41 as approaches 1 from the
left and from the right.

(a) (b)
Each graph has an asymptote at 
Figure 1.41

Solution

a. When approaches 1 from the left or the right, is a small positive number.
Thus, the quotient is a large positive number and approaches 
infinity from each side of So, you can conclude that 

Limit from each side is infinity.

Figure 1.41(a) confirms this analysis.

b. When approaches 1 from the left, is a small negative number. Thus, the
quotient is a large positive number and approaches infinity from
the left of So, you can conclude that 

Limit from the left side is infinity.

When approaches 1 from the right, is a small positive number. Thus, the
quotient is a large negative number and approaches negative 
infinity from the right of So, you can conclude that 

Limit from the right side is negative infinity.

Figure 1.41(b) confirms this analysis. ■

Vertical Asymptotes
If it were possible to extend the graphs in Figure 1.41 toward positive and negative
infinity, you would see that each graph becomes arbitrarily close to the vertical line

This line is a vertical asymptote of the graph of (You will study other types
of asymptotes in Sections 3.5 and 3.6.)

f.x � 1.

lim
x→1�

�1
x � 1

� ��.

x � 1.
f �x��1��x � 1�

x � 1x

lim
x→1�

� 1
x � 1

� �.

x � 1.
f �x��1��x � 1�

x � 1x

lim
x→1

1
�x � 1�2 � �.

x � 1.
f �x�1��x � 1�2

�x � 1�2x

x � 1.

x

−1
−1

−2

−2

−3

2

2
f (x) = −1

x − 1

y

x

−1
−1

−2

−2

1

2

2

3

3

f (x) = 1
(x − 1)2

y

x
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E X P L O R A T I O N

Use a graphing utility to graph
each function. For each function,
analytically find the single real
number that is not in the
domain. Then graphically find the
limit (if it exists) of as 
approaches from the left and
from the right.

a.

b.

c.

d. f �x� �
�3

�x � 2�2

f �x� �
2

�x � 3�2

f �x� �
1

2 � x

f �x� �
3

x � 4

c
xf �x�

c

DEFINITION OF VERTICAL ASYMPTOTE

If approaches infinity (or negative infinity) as approaches from the
right or the left, then the line is a vertical asymptote of the graph of f.x � c

cxf �x�
NOTE If the graph of a function has

a vertical asymptote at then is
not continuous at c.

fx � c,
f



In Example 1, note that each of the functions is a quotient and that the vertical
asymptote occurs at a number at which the denominator is 0 (and the numerator is not
0). The next theorem generalizes this observation. (A proof of this theorem is given in
Appendix A.)

EXAMPLE 2 Finding Vertical Asymptotes

Determine all vertical asymptotes of the graph of each function.

a. b. c.

Solution

a. When the denominator of

is 0 and the numerator is not 0. So, by Theorem 1.14, you can conclude that
is a vertical asymptote, as shown in Figure 1.42(a).

b. By factoring the denominator as

you can see that the denominator is 0 at and Moreover, because the
numerator is not 0 at these two points, you can apply Theorem 1.14 to conclude
that the graph of has two vertical asymptotes, as shown in Figure 1.42(b).

c. By writing the cotangent function in the form

you can apply Theorem 1.14 to conclude that vertical asymptotes occur at all values
of such that and as shown in Figure 1.42(c). So, the
graph of this function has infinitely many vertical asymptotes. These asymptotes
occur at where is an integer. ■

Theorem 1.14 requires that the value of the numerator at be nonzero. If
both the numerator and the denominator are 0 at you obtain the indeterminate
form and you cannot determine the limit behavior at without further 
investigation, as illustrated in Example 3.

x � c0�0,
x � c,

x � c

nx � n	,

cos x � 0,sin x � 0x

f�x� � cot x �
cos x
sin x

f

x � 1.x � �1

f�x� �
x2 � 1
x2 � 1

�
x2 � 1

�x � 1��x � 1�

x � �1

f�x� �
1

2�x � 1�

x � �1,

f�x� � cot xf �x� �
x2 � 1
x2 � 1

f�x� �
1

2�x � 1�
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THEOREM 1.14 VERTICAL ASYMPTOTES

Let and be continuous on an open interval containing If 
and there exists an open interval containing such that for

all in the interval, then the graph of the function given by

has a vertical asymptote at x � c.

h�x� �
f �x�
g�x�

x � c
g�x� � 0cg�c� � 0,

f�c� � 0,c.gf

x
1

2

−1

−2

f (x) = 1
2(x + 1)

y

−1

(a)

x

2

2

4

4−2−4

f (x) = x2 + 1
x2 − 1

y

(b)

x
ππ−2 π2

2

4

6

−6

−4

f (x) = cot x
y

(c)
Functions with vertical asymptotes
Figure 1.42
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EXAMPLE 3 A Rational Function with Common Factors

Determine all vertical asymptotes of the graph of

Solution Begin by simplifying the expression, as shown.

At all values other than the graph of coincides with the graph of
So, you can apply Theorem 1.14 to to conclude that there

is a vertical asymptote at as shown in Figure 1.43. From the graph, you can
see that

and

Note that is not a vertical asymptote.

EXAMPLE 4 Determining Infinite Limits

Find each limit.

and

Solution Because the denominator is 0 when (and the numerator is not zero),
you know that the graph of

has a vertical asymptote at This means that each of the given limits is either 
or You can determine the result by analyzing at values of close to 1, or by
using a graphing utility. From the graph of shown in Figure 1.44, you can see that
the graph approaches from the left of and approaches from the right of

So, you can conclude that

The limit from the left is infinity.

and

The limit from the right is negative infinity. ■lim
x→1�

x2 � 3x
x � 1

� ��.

lim
x→1�

x2 � 3x
x � 1

� �

x � 1.
��x � 1�

f
xf��.

�x � 1.

f�x� �
x2 � 3x
x � 1

x � 1

lim
x→1�

x2 � 3x
x � 1

lim
x→1�

x2 � 3x
x � 1

x � 2

lim
x→�2�

x2 � 2x � 8
x2 � 4

� �.lim
x→�2�

x2 � 2x � 8
x2 � 4

� ��

x � �2,
gg�x� � �x � 4���x � 2�.

fx � 2,x-

�
x � 4
x � 2

, x � 2

�
�x � 4��x � 2�
�x � 2��x � 2�

f�x� �
x2 � 2x � 8

x2 � 4

f�x� �
x2 � 2x � 8

x2 � 4
.

This is When using a graphing calculator or graphing software,
be careful to interpret correctly the graph of a function with a vertical asymptote—
graphing utilities often have difficulty drawing this type of graph.

TECHNOLOGY PITFALL

4

2

−2

2−4

y

x

Undefined
when x = 2

Vertical
asymptote
at x = −2

f (x) = x2 + 2x − 8
x2 − 4

increases and decreases without bound
as approaches 
Figure 1.43

�2.x
f �x�

−4

−6

6

6

f (x) = x2 − 3x
x − 1

has a vertical asymptote at 
Figure 1.44

x � 1.f



EXAMPLE 5 Determining Limits

a. Because and you can write

Property 1, Theorem 1.15

b. Because and you can write

Property 3, Theorem 1.15

c. Because and you can write

Property 2, Theorem 1.15 ■lim
x→0�

 3 cot x � �.

lim
x→0�

 cot x � �,lim
x→0�

 3 � 3

lim
x→1�

x2 � 1

cot 	x
� 0.

lim
x→1�

�cot 	x� � ��,lim
x→1�

�x2 � 1� � 2

lim
x→0 �1 �

1

x2	 � �.

lim
x→0

1

x2
� �,lim

x→0
 1 � 1
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THEOREM 1.15 PROPERTIES OF INFINITE LIMITS

Let and be real numbers and let and be functions such that

and

1. Sum or difference:

2. Product:

3. Quotient:

Similar properties hold for one-sided limits and for functions for which the
limit of as approaches is ��.cxf �x�

lim
x→c

g�x�
f�x�

� 0

L < 0lim
x→c

� f�x�g�x�� � ��,

L > 0lim
x→c

� f�x�g�x�� � �,

lim
x→c

� f�x� ± g�x�� � �

lim
x→c

g�x� � L.lim
x→c

f�x� � �

gfLc

PROOF To show that the limit of is infinite, choose You then
need to find such that

whenever For simplicity’s sake, you can assume is positive. 
Let Because the limit of is infinite, there exists such that

whenever Also, because the limit of is there
exists such that whenever By letting be the
smaller of and you can conclude that implies 
and The second of these two inequalities implies that 
and, adding this to the first inequality, you can write

So, you can conclude that

The proofs of the remaining properties are left as exercises (see Exercise 78).
■

lim
x→c

� f�x� � g�x�� � �.

f�x� � g�x� > �M � 1� � �L � 1� � M � L > M.

g�x� > L � 1,�g�x� � L� < 1.
f�x� > M � 10 < �x � c� < ��2,�1

�0 < �x � c� < �2.�g�x� � L� < 1�2

L,g�x�0 < �x � c� < �1.f�x� > M1

�1f�x�M1 � M � 1.
L0 < �x � c� < �.

� f �x� � g�x�� > M

� > 0
M > 0.f�x� � g�x�
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1.5 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1– 4, determine whether approaches or
as approaches 4 from the left and from the right.

1. 2.

3. 4.

In Exercises 5– 8, determine whether approaches or
as approaches from the left and from the right.

5. 6.

7. 8.

Numerical and Graphical Analysis In Exercises 9–12, deter-
mine whether approaches or as approaches 
from the left and from the right by completing the table. Use a
graphing utility to graph the function to confirm your answer.

9. 10.

11. 12.

In Exercises 13–32, find the vertical asymptotes (if any) of the
graph of the function.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23.

24.

25. 26.

27. 28.

29. 30.

31. 32.

In Exercises 33– 36, determine whether the graph of the function
has a vertical asymptote or a removable discontinuity at 
Graph the function using a graphing utility to confirm your
answer.

33. 34.

35. 36.

In Exercises 37–54, find the limit (if it exists).

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54. lim
x→1�2

x2 tan 	xlim
x→1�2

x sec 	x

lim
x→0

x � 2
cot x

lim
x→	

�x
csc x

lim
x→�	�2��

 
�2

cos x
lim

x→0�

2
sin x

lim
x→0��x2 �

1
x	lim

x→0� �1 �
1
x	

lim
x→3

x � 2
x2lim

x→1

x � 1
�x2 � 1��x � 1�

lim
x→��1�2��

6x2 � x � 1
4x2 � 4x � 3

lim
x→�3�

x � 3
x2 � x � 6

lim
x→4�

x2

x2 � 16
lim

x→1�

x2

�x � 1�2

lim
x→1�

2 � x
1 � x

lim
x→2�

x
x � 2

lim
x→1�

�1
�x � 1�2lim

x→�1�

1
x � 1

f �x� �
sin�x � 1�

x � 1
f �x� �

x2 � 1
x � 1

f �x� �
x2 � 6x � 7

x � 1
f �x� �

x2 � 1

x � 1

x � �1.

g�� �
tan 


s�t� �

t
sin t

f �x� � sec 	xf �x� � tan 	x

h�t� �
t 2 � 2t
t 4 � 16

f �x� �
x2 � 2x � 15

x3 � 5x2 � x � 5

h�x� �
x2 � 4

x3 � 2x2 � x � 2
g�x� �

x3 � 1
x � 1

f �x� �
4x2 � 4x � 24

x4 � 2x3 � 9x2 � 18x

f �x� �
3

x2 � x � 2

g�x� �
1
2 x3 � x2 � 4x
3x2 � 6x � 24

T�t� � 1 �
4
t2

g�x� �
2 � x

x2�1 � x�h�x� �
x2 � 2

x2 � x � 2

h�s� �
2s � 3
s2 � 25

g�t� �
t � 1
t 2 � 1

f �x� �
�4x

x2 � 4
f �x� �

x2

x2 � 4

f �x� �
4

�x � 2�3f �x� �
1
x2

f �x� � sec
	x
6

f �x� �
x2

x2 � 9

f �x� �
x

x2 � 9
f �x� �

1

x2 � 9

�3x���f�x�

x
−6 −2 2 6

1

y

x
−6 −2 2 6

3

2

1

y

f �x� � sec
	x
4

f �x� � tan
	x
4

x
−1 1

3

2

−2

−3

y

x
−2 2 4

2

−2

4

6

y

f �x� �
1

x � 2
f �x� � 2� x

x2 � 4�
�2x��

�f�x�

f �x� �
�1

�x � 4�2f �x� �
1

�x � 4�2

f �x� �
�1

x � 4
f �x� �

1
x � 4

x��
�f�x�

x �3.5 �3.1 �3.01 �3.001

f�x�

x �2.999 �2.99 �2.9 �2.5

f�x�

www.CalcChat.com


In Exercises 55–58, use a graphing utility to graph the function
and determine the one-sided limit.

55. 56.

57. 58.

65. Relativity According to the theory of relativity, the mass of
a particle depends on its velocity That is,

where is the mass when the particle is at rest and is the
speed of light. Find the limit of the mass as approaches 

66. Boyle’s Law For a quantity of gas at a constant temperature,
the pressure is inversely proportional to the volume Find
the limit of as 

67. Rate of Change A patrol car is parked 50 feet from a long
warehouse (see figure). The revolving light on top of the car
turns at a rate of revolution per second. The rate at which the
light beam moves along the wall is ft sec.

(a) Find the rate when is 

(b) Find the rate when is 

(c) Find the limit of as 

Figure for 67 Figure for 68

68. Rate of Change A 25-foot ladder is leaning against a house
(see figure). If the base of the ladder is pulled away from the
house at a rate of 2 feet per second, the top will move down the
wall at a rate of

ft sec

where is the distance between the base of the ladder and the
house.

(a) Find the rate when is 7 feet.

(b) Find the rate when is 15 feet.

(c) Find the limit of as 

69. Average Speed On a trip of miles to another city, a truck 
driver’s average speed was miles per hour. On the return trip
the average speed was miles per hour. The average speed for
the round trip was 50 miles per hour.

(a) Verify that What is the domain?

(b) Complete the table.

Are the values of different than you expected? Explain.

(c) Find the limit of as and interpret its meaning.

70. Numerical and Graphical Analysis Use a graphing utility to
complete the table for each function and graph each function to
estimate the limit. What is the value of the limit when the power
of in the denominator is greater than 3?

(a) (b)

(c) (d) lim
x→0�

x � sin x
x4lim

x→0�

x � sin x
x3

lim
x→0�

x � sin x
x2lim

x→0�

x � sin x
x

x

x → 25�y

y

y �
25x

x � 25
.

y
x

d

x → 25�.r

xr

xr

x

�r �
2x

�625 � x2

2

25 ftr
ft

sec

x

θ
50 ft

 → �	�2��.r

	�3.r

	�6.r

�r � 50	 sec2 

1
2

V → 0�.P
V.P

c�.v
cm0

m �
m0

�1 � �v2�c2�

v.
m

lim
x→4�

f �x�lim
x→5�

f �x�

f �x� � sec
	x
8

f �x� �
1

x2 � 25

lim
x→1�

f �x�lim
x→1�

f �x�

f �x� �
x3 � 1

x2 � x � 1
f �x� �

x2 � x � 1
x3 � 1
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59. In your own words, describe the meaning of an infinite
limit. Is a real number?

60. In your own words, describe what is meant by an asymptote
of a graph.

61. Write a rational function with vertical asymptotes at 
and and with a zero at 

62. Does the graph of every rational function have a vertical
asymptote? Explain.

63. Use the graph of the function (see figure) to sketch the
graph of on the interval To print
an enlarged copy of the graph, go to the website
www.mathgraphs.com.

321
−1

−1−2

2

x

f

y

��2, 3�.g�x� � 1�f �x�
f

x � 3.x � �2,
x � 6

�

WRITING ABOUT CONCEPTS

64. Given a polynomial is it true that the graph of the

function given by has a vertical asymptote at

Why or why not?x � 1?

f �x� �
p�x�

x � 1

p�x�,
CAPSTONE

x 30 40 50 60

y

x 1 0.5 0.2 0.1 0.01 0.001 0.0001

f�x�

www.mathgraphs.com


71. Numerical and Graphical Analysis Consider the shaded
region outside the sector of a circle of radius 10 meters and
inside a right triangle (see figure).

(a) Write the area of the region as a function of 
Determine the domain of the function.

(b) Use a graphing utility to complete the table and graph the
function over the appropriate domain.

(c) Find the limit of as 

72. Numerical and Graphical Reasoning A crossed belt connects
a 20-centimeter pulley (10-cm radius) on an electric motor with
a 40-centimeter pulley (20-cm radius) on a saw arbor (see
figure). The electric motor runs at 1700 revolutions per minute.

(a) Determine the number of revolutions per minute of the saw.

(b) How does crossing the belt affect the saw in relation to the
motor?

(c) Let be the total length of the belt. Write as a function of
where is measured in radians. What is the domain of

the function? (Hint: Add the lengths of the straight sections
of the belt and the length of the belt around each pulley.)

(d) Use a graphing utility to complete the table.

(e) Use a graphing utility to graph the function over the appro-
priate domain.

(f) Find Use a geometric argument as the basis of

a second method of finding this limit.

(g) Find 

True or False? In Exercises 73–76, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

73. The graph of a rational function has at least one vertical
asymptote.

74. The graphs of polynomial functions have no vertical
asymptotes.

75. The graphs of trigonometric functions have no vertical 
asymptotes.

76. If has a vertical asymptote at then is undefined at

77. Find functions and such that and

but 

78. Prove the difference, product, and quotient properties in
Theorem 1.15.

79. Prove that if then 

80. Prove that if then does not exist.

Infinite Limits In Exercises 81 and 82, use the - definition of
infinite limits to prove the statement.

81. 82. lim
x→5�

1
x � 5

� ��lim
x→3�

1
x � 3

� �

��

lim
x→c

f �x�lim
x→c

1
f �x� � 0,

lim
x→c

1
f �x� � 0.lim

x→c
f �x� � �,

lim
x→c

� f �x� � g�x�� � 0.lim
x→c

g�x� � �

lim
x→c

f �x� � �gf

x � 0.
fx � 0,f

lim
�→0�

L.

lim
�→�	�2��

L.

��,
LL

10 cm 20 cm

φ

 → �	�2��.A

.A � f ��

10 m
θ
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L

Recall from Theorem 1.9 that the limit of as 
approaches 0 is 1.

(a) Use a graphing utility to graph the function on the interval
Explain how the graph helps confirm this

theorem.

(b) Explain how you could use a table of values to confirm the
value of this limit numerically.

(c) Graph by hand. Sketch a tangent line at the point
and visually estimate the slope of this tangent line.

(d) Let be a point on the graph of near and write
a formula for the slope of the secant line joining and

Evaluate this formula at and Then find
the exact slope of the tangent line to at the point 

(e) Sketch the graph of the cosine function What is
the slope of the tangent line at the point Use limits to find
this slope analytically.

(f ) Find the slope of the tangent line to at �0, 0�.k�x� � tan x

�0, 1�?
h�x� � cos x.

�0, 0�.g
x � 0.01.x � 0.1�0, 0�.

�x, sin x�
�0, 0�,g�x, sin x�

�0, 0�
g�x� � sin x

�	 � x � 	.
f

xf �x� � �sin x��x

Graphs and Limits of Trigonometric Functions
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In Exercises 1 and 2, determine whether the problem can be
solved using precalculus or if calculus is required. If the problem
can be solved using precalculus, solve it. If the problem seems to
require calculus, explain your reasoning. Use a graphical or
numerical approach to estimate the solution.

1. Find the distance between the points and along the
curve 

2. Find the distance between the points and along the
line

In Exercises 3 and 4, complete the table and use the result to
estimate the limit. Use a graphing utility to graph the function
to confirm your result.

3.

4.

In Exercises 5– 8, find the limit Then use the - definition to
prove that the limit is 

5. 6.

7. 8.

In Exercises 9 and 10, use the graph to determine each limit.

9. 10.

(a) (b) (a) (b) 

In Exercises 11–26, find the limit (if it exists).

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25.

[Hint: ]

26.

[Hint: ]

In Exercises 27–30, evaluate the limit given and

27. 28.

29. 30.

Numerical, Graphical, and Analytic Analysis In Exercises 31
and 32, consider

(a) Complete the table to estimate the limit.

(b) Use a graphing utility to graph the function and use the
graph to estimate the limit.

(c) Rationalize the numerator to find the exact value of the
limit analytically.

31.

32.

Hint:

Free-Falling Object In Exercises 33 and 34, use the position
function which gives the height (in meters)
of an object that has fallen from a height of 250 meters. The
velocity at time seconds is given by

33. Find the velocity of the object when 

34. At what velocity will the object impact the ground?

t � 4.

lim
t→a

s�a� � s�t�
a � t

.

t � a

s�t� � �4.9t 2 1 250,

a3 � b3 � �a � b��a2 � ab � b2���

f �x� �
1 � 3�x
x � 1

f �x� �
�2x � 1 � �3

x � 1

lim
x→11

f �x�.

lim
x→c

�f �x��2lim
x→c

� f �x� � 2g�x��

lim
x→c

f �x�
g�x�lim

x→c
� f �x�g�x��

lim
x→c

g�x� � 2
3.

lim
x→c

f �x� � �3
4

cos� � �� � cos  cos � � sin  sin �

lim
�x→0

cos�	 � �x� � 1
�x

sin� � �� � sin  cos � � cos  sin �

lim
�x→0

sin��	�6� � �x� � �1�2�
�x

lim
x→	�4

4x
tan x

lim
x→0

1 � cos x
sin x

lim
x→�2

x2 � 4
x3 � 8

lim
x→�5

x3 � 125
x � 5

lim
s→0

�1��1 � s � � 1
s

lim
x→0

�1��x � 1�� � 1
x

lim
x→0

�4 � x � 2
x

lim
x→4

�x � 3 � 1
x � 4

lim
t→3

t 2 � 9
t � 3

lim
t→�2

t � 2
t 2 � 4

lim
y→4

 3�y � 1�lim
t→4

�t � 2

lim
x→7

�10 � x�4lim
x→6

�x � 2�2

lim
x→0

g�x�lim
x→3

g�x�lim
x→�1

h�x�lim
x→0

h�x�

x

y

−3 3 6

−6

−9

3

6

9

x

y

−1 1 2 3 4

1
2
3
4

6

g�x� �
�2x

x � 3
h�x� �

4x � x2

x

lim
x→5

 9lim
x→2

�1 � x2�

lim
x→9

�xlim
x→1

�x � 4�

L.
��L.

lim
x→0

4��x � 2 � �2�
x

lim
x→0

�4��x � 2�� � 2
x

y � 4x � 3.
�3, 9��1, 1�

y � x2.
�3, 9��1, 1�

Review Exercises 91

1 REVIEW EXERCISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

x �0.1 �0.01 �0.001 0.001 0.01 0.1

f �x�

x 1.1 1.01 1.001 1.0001

f �x�

www.CalcChat.com


In Exercises 35– 40, find the limit (if it exists). If the limit does
not exist, explain why.

35. 36.

37. where

38. where

39. where

40. where

In Exercises 41–52, determine the intervals on which the 
function is continuous.

41.

42.

43.

44.

45.

46.

47. 48.

49. 50.

51. 52.

53. Determine the value of such that the function is continuous on
the entire real line.

54. Determine the values of and such that the function is
continuous on the entire real line.

55. Use the Intermediate Value Theorem to show that
has a zero in the interval 

56. Delivery Charges The cost of sending an overnight package
from New York to Atlanta is $12.80 for the first pound and
$2.50 for each additional pound or fraction thereof. Use the
greatest integer function to create a model for the cost of
overnight delivery of a package weighing pounds. Use a
graphing utility to graph the function and discuss its continuity.

57. Let Find each limit (if possible).

(a)

(b)

(c)

58. Let

(a) Find the domain of 

(b) Find 

(c) Find 

In Exercises 59–62, find the vertical asymptotes (if any) of the
graph of the function.

59. 60.

61. 62.

In Exercises 63–74, find the one-sided limit (if it exists).

63. 64.

65. 66.

67. 68.

69. 70.

71. 72.

73. 74.

75. Environment A utility company burns coal to generate 
electricity. The cost in dollars of removing of the air
pollutants in the stack emissions is

Find the costs of removing (a) 15%, (b) 50%, and (c) 90% of
the pollutants. (d) Find the limit of as 

76. The function is defined as shown.

(a) Find (if it exists).

(b) Can the function be defined at such that it is
continuous at x � 0?

x � 0f

lim
x→0

tan 2x
x

x � 0f �x� �
tan 2x

x
,

f

p → 100�.C

0 � p < 100.C �
80,000p
100 � p

,

p%C

lim
x→0�

cos2 x
x

lim
x→0�

csc 2x
x

lim
x→0�

sec x
x

lim
x→0�

sin 4x
5x

lim
x→2�

1
3�x2 � 4

lim
x→0� �x �

1
x3	

lim
x→�1�

x2 � 2x � 1
x � 1

lim
x→1�

x2 � 2x � 1
x � 1

lim
x→�1�

x � 1
x4 � 1

lim
x→�1�

x � 1
x3 � 1

lim
x→�1�2��

x
2x � 1

lim
x→�2�

2x2 � x � 1
x � 2

f �x� � csc 	xf �x� �
8

�x � 10�2

h�x� �
4x

4 � x2g�x� � 1 �
2
x

lim
x→1�

f �x�.

lim
x→0�

f �x�.

f.

f �x� � �x�x � 1�.

lim
x→2

f �x�

lim
x→2�

f �x�

lim
x→2�

f �x�

f �x� �
x2 � 4

�x � 2�.

x
C

�1, 2�.f �x� � 2x3 � 3

f �x� � �x � 1,
x2 � bx � c,

    1 < x < 3

�x � 2� � 1

cb

f �x� � �x � 3,
cx � 6,

x � 2
x > 2

c

f �x� � tan 2xf �x� � csc
	x
2

f �x� �
x � 1

2x � 2
f �x� �

3
x � 1

f �x� ��x � 1
x

f �x� �
1

�x � 2�2

f �x� � �5 � x,
2x � 3,

x � 2
x > 2

f �x� � �3x2 � x � 2,
x � 1

0,

x � 1

x � 1

f �x� �
3x2 � x � 2

x � 1

f �x� � �x � 3�

f �x� � x2 �
2
x

f �x� � �3x2 � 7

f �s� � ��s2 � 4s � 2,

s2 � 4s � 6,

s � �2

s > �2
lim

s→�2
f �s�,

h�t� � �t 3 � 1,
1
2�t � 1�,

t < 1

t � 1
lim
t→1

h�t�,

g�x� � ��1 � x,

x � 1,

x � 1

x > 1
lim

x→1�
g�x�,

f �x� � ��x � 2�2,

2 � x,

x � 2

x > 2
lim
x→2

f �x�,

lim
x→4

�x � 1�lim
x→3�

�x � 3�
x � 3
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1. Let be a point on the parabola in the first quadrant.
Consider the triangle formed by and the 
origin , and the triangle formed by and
the origin.

(a) Write the perimeter of each triangle in terms of 

(b) Let be the ratio of the perimeters of the two triangles,

Complete the table.

(c) Calculate 

2. Let be a point on the parabola in the first quadrant.
Consider the triangle formed by and the 
origin , and the triangle formed by and
the origin.

(a) Write the area of each triangle in terms of 

(b) Let be the ratio of the areas of the two triangles,

Complete the table.

(c) Calculate 

3. (a) Find the area of a regular hexagon inscribed in a circle of
radius 1. How close is this area to that of the circle?

(b) Find the area of an -sided regular polygon inscribed in
a circle of radius 1. Write your answer as a function of 

(c) Complete the table.

(d) What number does approach as gets larger and larger?

Figure for 3 Figure for 4

4. Let be a point on the circle 

(a) What is the slope of the line joining and 

(b) Find an equation of the tangent line to the circle at 

(c) Let be another point on the circle in the first quadrant.
Find the slope of the line joining and in terms of 

(d) Calculate How does this number relate to your

answer in part (b)?

5. Let be a point on the circle 

(a) What is the slope of the line joining and 

(b) Find an equation of the tangent line to the circle at 

(c) Let be another point on the circle in the fourth 
quadrant. Find the slope of the line joining and in
terms of 

(d) Calculate How does this number relate to your

answer in part (b)?

lim
x→5

mx.

x.
QPmx

Q�x, y�
P.

O�0, 0�?P

5−5

15

5

15−15
x

P(5, −12)

Q
O

y

x2 � y2 � 169.P�5, �12�

lim
x→3

mx.

x.QPmx

Q�x, y�
P.

O�0, 0�?P

x2 � y2 � 25.P�3, 4�

2−2

−6

6

2

6−6
x

P(3, 4)

Q

O

y

1

nAn

n.
nAn

lim
x→0�

a�x�.

a�x� �
Area �PBO
Area �PAO

.

a�x�
x.

x

A
P

O
B

1

1

y

B�1, 0�,P,�PBOO�0, 0�
A�0, 1�,P,�PAO

y � x2P�x, y�
lim

x→0�
r�x�.

r�x� �
Perimeter �PAO
Perimeter �PBO

.

r�x�
x.

x

A
P

O
B

1

1

y

B�1, 0�,P,�PBOO�0, 0�
A�0, 1�,P,�PAO

y � x2P�x, y�
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n 6 12 24 48 96

An

x 4 2 1 0.1 0.01

Perimeter �PAO

Perimeter �PBO

r�x�

x 4 2 1 0.1 0.01

Area �PAO

Area �PBO

a�x�



6. Find the values of the constants and such that 

7. Consider the function 

(a) Find the domain of 

(b) Use a graphing utility to graph the function.

(c) Calculate .

(d) Calculate 

8. Determine all values of the constant such that the following
function is continuous for all real numbers.

9. Consider the graphs of the four functions and .

For each given condition of the function which of the graphs
could be the graph of 

(a)

(b) is continuous at 2.

(c)

10. Sketch the graph of the function .

(a) Evaluate and 

(b) Evaluate the limits , and
.

(c) Discuss the continuity of the function.

11. Sketch the graph of the function 

(a) Evaluate and 

(b) Evaluate the limits and .

(c) Discuss the continuity of the function.

12. To escape Earth’s gravitational field, a rocket must be launched
with an initial velocity called the escape velocity. A rocket
launched from the surface of Earth has velocity (in miles per
second) given by

where is the initial velocity, is the distance from the rocket to
the center of Earth, is the gravitational constant, is the mass
of Earth, and is the radius of Earth (approximately 4000 miles).

(a) Find the value of for which you obtain an infinite limit
for as approaches zero. This value of is the escape
velocity for Earth.

(b) A rocket launched from the surface of the moon has
velocity (in miles per second) given by 

Find the escape velocity for the moon.

(c) A rocket launched from the surface of a planet has velocity
(in miles per second) given by 

Find the escape velocity for this planet. Is the mass of this
planet larger or smaller than that of Earth? (Assume that the
mean density of this planet is the same as that of Earth.)

13. For positive numbers the pulse function is defined as

where is the Heaviside function.

(a) Sketch the graph of the pulse function.

(b) Find the following limits:

(i) (ii)

(iii) (iv)

(c) Discuss the continuity of the pulse function.

(d) Why is

called the unit pulse function?

14. Let be a nonzero constant. Prove that if then

Show by means of an example that must be

nonzero.

alim
x→0

f �ax� � L.

lim
x→0

f �x� � L,a

U�x� �
1

b � a
Pa,b�x�

lim
x→b�

Pa,b�x�lim
x→b�

Pa,b�x�

lim
x→a�

Pa,b�x�lim
x→a�

Pa,b�x�

H�x� � �1,
0,

x � 0
x < 0

Pa,b�x� � H�x � a� � H�x � b� � �0,
1,
0,

x < a
a � x < b
x � b

a < b,

v ��10,600
r

� v0
2 � 6.99.

v

v ��1920
r

� v0
2 � 2.17.

v

v0vr
v0

R
MG

rv0

v ��2GM
r

� v0
2 �

2GM
R

��192,000
r

� v0
2 � 48

v

lim
x→1

2

f �x�lim
x→1�

f �x�,lim
x→1�

f �x�,
f ��2.7�.f �1

2�,f �0�,f �1�,
f �x� � �x� � ��x�.

lim
x→0�

f �x�
lim

x→0�
f �x�lim

x→1�
f �x�,lim

x→1�
f �x�,

f �1�.f �3�,f �1
4�,

f �x� � �1
x�

lim
x→2�

f �x� � 3

f

lim
x→2

f �x� � 3

f ?
f,

x
321

g4

y

1

2

3

321

g3

y

x

1

2

3

321

g2

y

x

1

2

3

x
321

1

2

3

g1

y

g4g3,g2,g1,

f �x� � �
ax

tan x
, x � 0

a2 � 2, x < 0

a

lim
x→1

f �x�.

lim
x→�27�

f �x�

f.

f �x� �
�3 � x1�3 � 2

x � 1
.

lim
x→0

�a � bx � �3
x

� �3.

ba
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95

2 Differentiation

To approximate the slope of a tangent line to a graph at a given point, find the slope of the secant line through the
given point and a second point on the graph. As the second point approaches the given point, the approximation tends
to become more accurate. (See Section 2.1.)

Al Bello/Getty Images

In this chapter you will study one of the
most important processes of calculus–
differentiation. In each section, you will
learn new methods and rules for finding
derivatives of functions. Then you will
apply these rules to find such things as
velocity, acceleration, and the rates of
change of two or more related variables.

In this chapter, you should learn the 
following.

■ How to find the derivative of a function
using the limit definition and understand
the relationship between differentiability
and continuity. (2.1)

■ How to find the derivative of a function
using basic differentiation rules. (2.2)

■ How to find the derivative of a function
using the Product Rule and the Quotient
Rule. (2.3)

■ How to find the derivative of a function
using the Chain Rule and the General
Power Rule. (2.4)

■ How to find the derivative of a function
using implicit differentiation. (2.5)

■ How to find a related rate. (2.6)

When jumping from a platform, a diver’s velocity is briefly positive because of the
upward movement, but then becomes negative when falling. How can you use calculus
to determine the velocity of a diver at impact? (See Section 2.2, Example 10.)

■

■



■ Find the slope of the tangent line to a curve at a point.
■ Use the limit definition to find the derivative of a function.
■ Understand the relationship between differentiability and continuity.

The Tangent Line Problem
Calculus grew out of four major problems that European mathematicians were working
on during the seventeenth century.

1. The tangent line problem (Section 1.1 and this section)

2. The velocity and acceleration problem (Sections 2.2 and 2.3)

3. The minimum and maximum problem (Section 3.1)

4. The area problem (Sections 1.1 and 4.2)

Each problem involves the notion of a limit, and calculus can be introduced with any
of the four problems.

A brief introduction to the tangent line problem is given in Section 1.1. Although
partial solutions to this problem were given by Pierre de Fermat (1601–1665), René
Descartes (1596–1650), Christian Huygens (1629–1695), and Isaac Barrow
(1630 –1677), credit for the first general solution is usually given to Isaac Newton
(1642–1727) and Gottfried Leibniz (1646–1716). Newton’s work on this problem
stemmed from his interest in optics and light refraction.

What does it mean to say that a line is tangent to a curve at a point? For a circle,
the tangent line at a point is the line that is perpendicular to the radial line at point

as shown in Figure 2.1.
For a general curve, however, the problem is more difficult. For example, how

would you define the tangent lines shown in Figure 2.2? You might say that a line is
tangent to a curve at a point if it touches, but does not cross, the curve at point 
This definition would work for the first curve shown in Figure 2.2, but not for the
second. Or you might say that a line is tangent to a curve if the line touches or
intersects the curve at exactly one point. This definition would work for a circle but
not for more general curves, as the third curve in Figure 2.2 shows.

Tangent line to a curve at a point
Figure 2.2

x
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y
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Tangent line to a circle
Figure 2.1

ISAAC NEWTON (1642–1727)

In addition to his work in calculus, Newton
made revolutionary contributions to physics,
including the Law of Universal Gravitation
and his three laws of motion.
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E X P L O R A T I O N
Identifying a Tangent Line Use a graphing utility to graph the function

On the same screen, graph 
and Which of these lines, if any, appears to be 

tangent to the graph of at the point Explain your reasoning.�0, �5�?f
y � 3x � 5.y � 2x � 5,

y � x � 5,f�x� � 2x3 � 4x2 � 3x � 5.
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x

(c + Δx, f(c + Δx))

f (c + Δx) − f (c) = Δy

Δx

(c, f (c))

y

The secant line through and

Figure 2.3
�c � �x, f �c � �x��

�c, f �c��

Slope of secant linemsec �
f�c � �x� � f �c�

�x
.

Essentially, the problem of finding the tangent line at a point boils down to the
problem of finding the slope of the tangent line at point You can approximate this
slope using a secant line* through the point of tangency and a second point on the
curve, as shown in Figure 2.3. If is the point of tangency and

is a second point on the graph of the slope of the secant line
through the two points is given by substitution into the slope formula

The right-hand side of this equation is a difference quotient. The denominator is
the change in and the numerator is the change in 

The beauty of this procedure is that you can obtain more and more accurate
approximations of the slope of the tangent line by choosing points closer and closer
to the point of tangency, as shown in Figure 2.4.

Tangent line approximations
Figure 2.4

The slope of the tangent line to the graph of at the point is also called
the slope of the graph of at x � c.f

�c, f �c��f

Tangent line

Δx

Δx

Δx

Δy

Δy

Δy

(c, f (c))

Δx → 0

(c, f (c))

(c, f (c))

(c, f (c))

Δx → 0

Δx

Δy

(c, f (c))

Δx
Δy

(c, f (c))

(c, f (c))

Tangent line

Δx

Δy

(c, f (c))

y.�y � f �c � �x� � f �c�x,
�x

Change in y
Change in x

msec �
f�c � �x� � f �c�

�c � �x� � c

m �
y2 � y1

x2 � x1

f,�c � �x, f �c � �x��
�c, f �c��

P.
P

DEFINITION OF TANGENT LINE WITH SLOPE m

If is defined on an open interval containing and if the limit

exists, then the line passing through with slope is the tangent line
to the graph of at the point �c, f �c��.f

m�c, f �c��

lim
�x→0

�y
�x

� lim
�x→0

f �c � �x� � f �c�
�x

� m

c,f

* This use of the word secant comes from the Latin secare, meaning to cut, and is not a reference
to the trigonometric function of the same name.

THE TANGENT LINE PROBLEM

In 1637, mathematician René Descartes stated
this about the tangent line problem:

“And I dare say that this is not only the most
useful and general problem in geometry that
I know, but even that I ever desire to know.”



EXAMPLE 1 The Slope of the Graph of a Linear Function

Find the slope of the graph of

at the point 

Solution To find the slope of the graph of when you can apply the defini-
tion of the slope of a tangent line, as shown.

The slope of at is as shown in Figure 2.5. ■

The graph of a linear function has the same slope at any point. This is not true of
nonlinear functions, as shown in the following example.

EXAMPLE 2 Tangent Lines to the Graph of a Nonlinear Function

Find the slopes of the tangent lines to the graph of

at the points and as shown in Figure 2.6.

Solution Let represent an arbitrary point on the graph of Then the slope
of the tangent line at is given by

So, the slope at any point on the graph of is At the point the
slope is and at the slope is ■m � 2��1� � �2.��1, 2�,m � 2�0� � 0,

�0, 1�,m � 2c.f�c, f �c��

� 2c.

� lim
�x→0

�2c � �x�

� lim
�x→0

2c��x� � ��x�2

�x

� lim
�x→0

c2 � 2c��x� � ��x�2 � 1 � c2 � 1
�x

 lim
�x→0

f �c � �x� � f �c�
�x

� lim
�x→0

��c � �x�2 � 1� � �c2 � 1�
�x

�c, f �c��
f.�c, f �c��

��1, 2�,�0, 1�

f �x� � x2 � 1

m � 2,�2, 1��c, f �c�� �f

� 2

� lim
�x→0

 2

� lim
�x→0

2�x
�x

� lim
�x→0

4 � 2�x � 3 � 4 � 3
�x

 lim
�x→0

f �2 � �x� � f �2�
�x

� lim
�x→0

�2�2 � �x� � 3� � �2�2� � 3�
�x

c � 2,f

�2, 1�.

f �x� � 2x � 3
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x
1 2 3

3

2

1 (2, 1)

m = 2

f (x) = 2x − 3

Δx = 1

Δy = 2

y

4

21

3

2

−2 −1
x

Tangent line
at (0, 1)

Tangent
line at
(−1, 2)

f (x) = x2 + 1

y

The slope of at any point is

Figure 2.6
m � 2c.

�c, f �c��f

The slope of at is 
Figure 2.5

m � 2.�2, 1�f

NOTE In Example 1, the limit definition of the slope of agrees with the definition of the
slope of a line as discussed in Section P.2. ■

f

NOTE In Example 2, note that is held constant in the limit process ■�as �x → 0�.c
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x

Vertical
tangent
line

c

(c, f (c))

y

The graph of has a vertical tangent line at

Figure 2.7
�c, f �c��.

f

DEFINITION OF THE DERIVATIVE OF A FUNCTION

The derivative of at is given by

provided the limit exists. For all for which this limit exists, is a function
of x.

f�x

f��x� � lim
�x→0

f �x � �x� � f �x�
�x

xf

The definition of a tangent line to a curve does not cover the possibility of a
vertical tangent line. For vertical tangent lines, you can use the following definition.
If is continuous at and

or

the vertical line passing through is a vertical tangent line to the graph
of For example, the function shown in Figure 2.7 has a vertical tangent line at

If the domain of is the closed interval you can extend the definition
of a vertical tangent line to include the endpoints by considering continuity and 
limits from the right and from the left 

The Derivative of a Function
You have now arrived at a crucial point in the study of calculus. The limit used to
define the slope of a tangent line is also used to define one of the two fundamental
operations of calculus—differentiation.

Be sure you see that the derivative of a function of is also a function of This
“new” function gives the slope of the tangent line to the graph of at the point 
provided that the graph has a tangent line at this point.

The process of finding the derivative of a function is called differentiation. A
function is differentiable at if its derivative exists at and is differentiable on an
open interval if it is differentiable at every point in the interval.

In addition to which is read as “ prime of ,” other notations are used to
denote the derivative of The most common are

The notation is read as “the derivative of with respect to ” or simply “
.” Using limit notation, you can writedx

dy,xydy�dx

y � f �x�.
xff��x�,

�a, b�
xx

�x, f �x��,f
x.x

�for x � b�.�for x � a�

�a, b�,f�c, f �c��.
f.

�c, f �c��x � c

lim
�x→0

f �c � �x� � f �c�
�x

� ��lim
�x→0

f �c � �x� � f �c�
�x

� �

cf

Notation for derivativesf��x�,
dy

dx
, y�,

d

dx
� f �x��, Dx �y�.

� f��x�.

� lim
�x→0

f �x � �x� � f �x�
�x

dy

dx
� lim

�x→0

�y

�x

■ FOR FURTHER INFORMATION
For more information on the crediting
of mathematical discoveries to the 
first “discoverers,” see the article
“Mathematical Firsts—Who Done It?”
by Richard H. Williams and Roy D.
Mazzagatti in Mathematics Teacher.
To view this article, go to the website
www.matharticles.com.

www.matharticles.com
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x
1

2

2

3

3 4

(1, 1)

(4, 2)

(0, 0)

m = 1
2

m = 1
4

y

f (x) = x

The slope of at is

Figure 2.8
m � 1��2�x �.

x > 0,�x, f �x��,f

EXAMPLE 3 Finding the Derivative by the Limit Process

Find the derivative of 

Solution

Definition of derivative

■

Remember that the derivative of a function is itself a function, which can be used
to find the slope of the tangent line at the point on the graph of 

EXAMPLE 4 Using the Derivative to Find the Slope at a Point

Find for Then find the slopes of the graph of at the points and
Discuss the behavior of at 

Solution Use the procedure for rationalizing numerators, as discussed in Section 1.3.

Definition of derivative

At the point the slope is At the point the slope is 
See Figure 2.8. At the point the slope is undefined. Moreover, the graph of 
has a vertical tangent line at ■�0, 0�.

f�0, 0�,
f��4� �

1
4.�4, 2�,f��1� �

1
2.�1, 1�,

�
1

2�x
,  x > 0

� lim
�x→0

1
�x � �x � �x

� lim
�x→0

�x

�x��x � �x � �x �

� lim
�x→0

�x � �x� � x

�x��x � �x � �x �

� lim
�x→0 ��x � �x � �x

�x 	��x � �x � �x
�x � �x � �x 	

� lim
�x→0

�x � �x � �x
�x

f��x� � lim
�x→0

f �x � �x� � f �x�
�x

�0, 0�.f�4, 2�.
�1, 1�ff �x� � �x.f��x�

f.�x, f �x��
f

� 3x2 � 2

� lim
�x→0

�3x2 � 3x�x � ��x�2 � 2�

� lim
�x→0

�x �3x2 � 3x�x � ��x�2 � 2�
�x

� lim
�x→0

3x2�x � 3x��x�2 � ��x�3 � 2�x
�x

� lim
�x→0

x3 � 3x2�x � 3x��x�2 � ��x�3 � 2x � 2�x � x3 � 2x
�x

� lim
�x→0

�x � �x�3 � 2�x � �x� � �x3 � 2x�
�x

f��x� � lim
�x→0

f �x � �x� � f �x�
�x

f �x� � x3 � 2x.

When using the definition
to find a derivative of a function, the key
is to rewrite the difference quotient so
that does not occur as a factor of the
denominator.

�x

STUDY TIP

The icon indicates that you will find a CAS Investigation on the book’s website. The CAS
Investigation is a collaborative exploration of this example using the computer algebra systems
Maple and Mathematica.
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4

0

0

6

(1, 2)

y = −2t + 4

y = 2
t

At the point the line is
tangent to the graph of
Figure 2.9

y � 2�t.
y � �2t � 4�1, 2�,

x
c x

x − c

(c, f (c))

(x, f (x))

f (x) − f (c)

y

As approaches the secant line approaches
the tangent line.
Figure 2.10

c,x

A graphing utility can be used to reinforce the result given in
Example 5. For instance, using the formula you know that the
slope of the graph of at the point is Using the point-slope
form, you can find that the equation of the tangent line to the graph at is

or

as shown in Figure 2.9.

y � �2t � 4y � 2 � �2�t � 1�

�1, 2�
m � �2.�1, 2�y � 2�t

dy�dt � �2�t2,
TECHNOLOGY

In many applications, it is convenient to use a variable other than as the
independent variable, as shown in Example 5.

EXAMPLE 5 Finding the Derivative of a Function

Find the derivative with respect to for the function 

Solution Considering you obtain

Definition of derivative

and

Combine fractions in numerator.

Divide out common factor of 

Simplify.

Evaluate limit as ■

Differentiability and Continuity
The following alternative limit form of the derivative is useful in investigating the
relationship between differentiability and continuity. The derivative of at is

provided this limit exists (see Figure 2.10). (A proof of the equivalence of this form
is given in Appendix A.) Note that the existence of the limit in this alternative form
requires that the one-sided limits

and

exist and are equal. These one-sided limits are called the derivatives from the left
and from the right, respectively. It follows that is differentiable on the closed
interval if it is differentiable on and if the derivative from the right at 
and the derivative from the left at both exist.b

a�a, b�[a, b]
f

lim
x→c�

f �x� � f �c�
x � c

lim
x→c�

f �x� � f �c�
x � c

cf

�t → 0.� �
2
t2.

� lim
�t→0

�2
t�t � �t�

�t.� lim
�t→0

�2�t
�t�t��t � �t�

� lim
�t→0

2t � 2�t � �t�
t�t � �t�

�t

f �t� � 2�tf �t � �t� � 2��t � �t�� lim
�t→0

2
t � �t

�
2
t

�t

dy
dt

� lim
�t→0

f �t � �t� � f �t�
�t

y � f �t�,

y � 2�t.t

x

Alternative form of derivativef��c� � lim
x→c

f �x� � f �c�
x � c
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f (x) = 

x

[[ ]]

1

2

1 2 3−1−2

−2

x

y

The greatest integer function is not differen-
tiable at because it is not continuous
at 
Figure 2.11

x � 0.
x � 0,

2

1

3

4321
x

m = −1

m = 1

f (x) =⏐x − 2⏐

y

is not differentiable at because the
derivatives from the left and from the right
are not equal.
Figure 2.12

x � 2,f

x
1

1

2−1

−1

−2

f (x) = x1/3

y

is not differentiable at because has
a vertical tangent line at 
Figure 2.13

x � 0.
fx � 0,f

If a function is not continuous at it is also not differentiable at For
instance, the greatest integer function

is not continuous at and so it is not differentiable at (see Figure 2.11).
You can verify this by observing that

Derivative from the left

and

Derivative from the right

Although it is true that differentiability implies continuity (as shown in Theorem 2.1
on the next page), the converse is not true. That is, it is possible for a function to be
continuous at and not differentiable at Examples 6 and 7 illustrate this
possibility.

EXAMPLE 6 A Graph with a Sharp Turn

The function

shown in Figure 2.12 is continuous at However, the one-sided limits

Derivative from the left

and

Derivative from the right

are not equal. So, is not differentiable at and the graph of does not have a 
tangent line at the point 

EXAMPLE 7 A Graph with a Vertical Tangent Line

The function

is continuous at as shown in Figure 2.13. However, because the limit

is infinite, you can conclude that the tangent line is vertical at So, is not 
differentiable at ■

From Examples 6 and 7, you can see that a function is not differentiable at a point
at which its graph has a sharp turn or a vertical tangent line.

x � 0.
fx � 0.

� �

� lim
x→0

1
x2�3

 lim
x→0

f �x� � f �0�
x � 0

� lim
x→0

x1�3 � 0
x

x � 0,

f �x� � x1�3

�2, 0�.
fx � 2f

lim
x→2�

f �x� � f �2�
x � 2

� lim
x→2�

�x � 2� � 0
x � 2

� 1

lim
x→2�

f �x� � f �2�
x � 2

� lim
x→2�

�x � 2� � 0
x � 2

� �1

x � 2.

f �x� � �x � 2�

x � c.x � c

lim
x→0�

f �x� � f �0�
x � 0

� lim
x→0�

�x� � 0
x

� 0.

lim
x→0�

f �x� � f �0�
x � 0

� lim
x→0�

�x� � 0
x

� �

x � 0x � 0,

f �x� � �x�

x � c.x � c,
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In Exercises 1 and 2, estimate the slope of the graph at the
points and 

1. (a) (b) 

2. (a) (b) 

In Exercises 3 and 4, use the graph shown in the figure. 
To print an enlarged copy of the graph, go to the website
www.mathgraphs.com.

3. Identify or sketch each of the quantities on the figure.

(a) and (b)

(c)

4. Insert the proper inequality symbol between the given
quantities.

(a)

(b)
f �4� � f �1�

4 � 1 � f��1�

f �4� � f �1�
4 � 1 �

f �4� � f �3�
4 � 3

�<  or  >�

y �
f �4� � f �1�

4 � 1
�x � 1� � f �1�

f �4� � f �1�f �4�f �1�

x
1

1

2

2

3

3

5

5

4

4

6

6

(1, 2)

(4, 5)
f

y

y

x

(x1, y1)
(x2, y2)

y

x
(x1, y1)

(x2, y2)

y

x
(x1, y1)

(x2, y2)

y

x

(x1, y1)

(x2, y2)

�x2, y2�.�x1, y1�

2.1 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

Some graphing 
utilities, such as Maple, Mathematica,
and the TI-89, perform symbolic 
differentiation. Others perform 
numerical differentiation by finding
values of derivatives using the formula

where is a small number such as
0.001. Can you see any problems with
this definition? For instance, using 
this definition, what is the value of the
derivative of when x � 0?f �x� � �x�

�x

f��x� �
f �x � �x� � f �x � �x�

2�x

TECHNOLOGY THEOREM 2.1 DIFFERENTIABILITY IMPLIES CONTINUITY

If is differentiable at then is continuous at x � c.fx � c,f

The following statements summarize the relationship between continuity and
differentiability.

1. If a function is differentiable at then it is continuous at So, differen-
tiability implies continuity.

2. It is possible for a function to be continuous at and not be differentiable at
So, continuity does not imply differentiability (see Example 6).x � c.

x � c

x � c.x � c,

PROOF You can prove that is continuous at by showing that approaches
as To do this, use the differentiability of at and consider the

following limit.

Because the difference approaches zero as you can conclude that
So, is continuous at ■x � c.flim

x→c
f �x� � f �c�.

x → c,f �x� � f �c�

� 0

� �0�� f��c��

� �lim
x→c

�x � c���lim
x→c

f �x� � f �c�
x � c �

 lim
x→c

� f �x� � f �c�� � lim
x→c ��x � c�� f �x� � f �c�

x � c 	�

x � cfx → c.f �c�
f �x�x � cf

www.mathgraphs.com
www.CalcChat.com
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In Exercises 5–10, find the slope of the tangent line to the graph
of the function at the given point.

5. 6.

7. 8.

9. 10.

In Exercises 11–24, find the derivative by the limit process.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

In Exercises 25–32, (a) find an equation of the tangent line to the
graph of at the given point, (b) use a graphing utility to graph
the function and its tangent line at the point, and (c) use the 
derivative feature of a graphing utility to confirm your results.

25.

26.

27. 28.

29. 30.

31. 32.

In Exercises 33–38, find an equation of the line that is tangent
to the graph of and parallel to the given line.

33.

34.

35.

36.

37.

38.

In Exercises 39– 42, the graph of is given. Select the graph
of

39. 40.

41. 42.

(a) (b)

(c) (d)

43. The tangent line to the graph of at the point 
passes through the point Find and 

44. The tangent line to the graph of at the point 
passes through the point Find and h���1�.h��1��3, 6�.

��1, 4�y � h�x�
g��4�.g�4��7, 0�.

�4, 5�y � g�x�

−3

1

2

3

x
1 2−2 −1 3−3

f ′

y

−3

1

−2

2

3

x
1 2−2 3−3

f ′

y

2

−2

3

4

x
1 2−2 −1 3−3

f ′

y

1

2

3

4

5

x
1 2−1 3 4 5

f ′

y

2

3

4

5

x
1 2−2 −1 3−3

f

y

1

2

3

4

5

x
1 2−1 3 4 5

f

y

1

2

3

4

5

x
1 2−2 −1 3−3

f

y

−3

1

−2

2

3

x
1 2−2 3−3

f

y

f�.
f

x � 2y � 7 � 0f �x� �
1

�x � 1

x � 2y � 6 � 0f �x� �
1
�x

3x � y � 4 � 0f �x� � x3 � 2

3x � y � 1 � 0f �x� � x3

4x � y � 3 � 0f �x� � 2x2

2x � y � 1 � 0f �x� � x2

Line                    Function            

f

�0, 1�f �x� �
1

x � 1
,�4, 5�f �x� � x �

4
x
,

�5, 2�f �x� � �x � 1,�1, 1�f �x� � �x,

�1, 2�f �x� � x3 � 1,�2, 8�f �x� � x3,

��2, 2�f �x� � x2 � 3x � 4,

�1, 4�f �x� � x2 � 3,

f

f �x� �
4
�x

f �x� � �x � 4

f �x� �
1
x2f �x� �

1
x � 1

f �x� � x3 � x2f �x� � x3 � 12x

f �x� � 2 � x2f �x� � x2 � x � 3

f �x� � 8 �
1
5xh�s� � 3 �

2
3s

f �x� � 3x � 2f �x� � �10x

g�x� � �3f �x� � 7

��2, 7�h�t� � t 2 � 3,�0, 0�f �t� � 3t � t 2,

�1, 5�g�x� � 6 � x2,�2, �5�g�x� � x2 � 9,

��2, �2�g�x� �
3
2 x � 1,��1, 8�f �x� � 3 � 5x,

In Exercises 45–50, sketch the graph of Explain how you
found your answer.

45. 46.

47. 48. y

x
1 2 3

2
3
4

6
7

1

4 5 6 7 8

f

y

x
1 2 3

2
3
4
5
6
7

1

−1 4 5 6 7

f

y

x
2 4−2−4

−2

−6

f

y

x
1 2

2
1

−2
−2
−3
−4

−6

4 5 6

f

f�.

WRITING ABOUT CONCEPTS



In Exercises 53 –56, the limit represents for a function 
and a number Find and 

53. 54.

55. 56.

In Exercises 57–59, identify a function that has the given 
characteristics. Then sketch the function.

57. 58.

for

for

59. for

60. Assume that Find if (a) is an odd function
and if (b) is an even function.

In Exercises 61 and 62, find equations of the two tangent lines
to the graph of that pass through the indicated point.

61. 62.

63. Graphical Reasoning Use a graphing utility to graph each
function and its tangent lines at and 
Based on the results, determine whether the slopes of tangent
lines to the graph of a function at different values of are
always distinct.

(a) (b)

65. Graphical Analysis Consider the function 

(a) Use a graphing utility to graph the function and estimate the
values of and 

(b) Use your results from part (a) to determine the values of
and

(c) Sketch a possible graph of 

(d) Use the definition of derivative to find 

66. Graphical Analysis Consider the function 

(a) Use a graphing utility to graph the function and estimate the
values of and 

(b) Use your results from part (a) to determine the values of

and

(c) Sketch a possible graph of 

(d) Use the definition of derivative to find 

Graphical Reasoning In Exercises 67 and 68, use a graphing
utility to graph the functions and in the same viewing
window where

Label the graphs and describe the relationship between them.

67. 68.

In Exercises 69 and 70, evaluate and and use the
results to approximate 

69. 70.

Graphical Reasoning In Exercises 71 and 72, use a graphing
utility to graph the function and its derivative in the same
viewing window. Label the graphs and describe the relationship
between them.

71. 72. f �x� �
x3

4
� 3xf �x� �

1
�x

f �x� �
1
4 x 3f �x� � x�4 � x�

f��2�.
f �2.1�f �2�

f �x� � 3�xf �x� � 2x � x2

g�x� �
f �x 1 0.01� � f �x�

0.01
.

gf

f� �x�.
f�.

f���3�.f���2�,f���1�,f���1
2�,

f��3�.f��2�,f��1�,f� �1
2�,f��0�,

f �x� �
1
3 x3.

f� �x�.
f�.

f���2�.f���1�,f���1
2�,

f��2�.f��1�,f� �1
2�,f��0�,

f �x� �
1
2 x2.

g�x� � x3f �x� � x2

x

x � 1.x � �1, x � 0,

x
2 6

6
8

10

4

4

−2−4

−4

−6
(1, −3)

y

1

2

3

4

5

x
1 2 3 5

(2, 5)

y

f �x� � x2f �x� � 4x � x2

f

f
ff � ��c�f��c� � 3.

x � 0f �0� � 0; f� �0� � 0; f� �x� > 0

x > 0f� �x� > 0

x < 0;f� �x� < 0f� �x� � �3, �� < x < �

f �0� � 4; f� �0� � 0;f �0� � 2;

f

lim
x→9

2�x � 6
x � 9

lim
x→6

�x2 � 36
x � 6

lim
�x→0

��2 � �x�3 � 8
�x

lim
�x→0

�5 � 3�1 � �x�� � 2
�x

c.fc.
ff��c�
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49. 50.

51. Sketch a graph of a function whose derivative is always
negative. Explain how you found your answer.

52. Sketch a graph of a function whose derivative is always
positive. Explain how you found your answer.

x

y

−1−2−3 1 2 3

−2

1

3

4

f

x

y

−4−8 4 8
−2

2

4

6

f

WRITING ABOUT CONCEPTS (cont inued)

64. The figure shows the graph of 

(a) (b)

(c) What can you conclude about the graph of knowing
that

(d) What can you conclude about the graph of knowing
that

(e) Is positive or negative? Explain.

(f) Is it possible to find from the graph? Explain.g�2�
g�6� � g�4�

g���4� �
7
3?

g

g��1� � �
8
3?

g

g��3� � �g��0� � �

x

g ′

−4−6

−4

−6

6

6

4

4

2

y

g�.

CAPSTONE
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In Exercises 73– 82, use the alternative form of the derivative to
find the derivative at (if it exists).

73. 74.

75.

76.

77. 78.

79.

80.

81. 82.

In Exercises 83–88, describe the -values at which is
differentiable.

83. 84.

85. 86.

87. 88.

Graphical Analysis In Exercises 89–92, use a graphing utility
to graph the function and find the -values at which is 
differentiable.

89. 90.

91.

92.

In Exercises 93–96, find the derivatives from the left and from
the right at (if they exist). Is the function differentiable at

93. 94.

95. 96.

In Exercises 97 and 98, determine whether the function is
differentiable at 

97. 98.

99. Graphical Reasoning A line with slope passes through
the point and has the equation 

(a) Write the distance between the line and the point 
as a function of 

(b) Use a graphing utility to graph the function in part (a).
Based on the graph, is the function differentiable at every
value of If not, where is it not differentiable?

100. Conjecture Consider the functions and 

(a) Graph and on the same set of axes.

(b) Graph and on the same set of axes.

(c) Identify a pattern between and and their respective
derivatives. Use the pattern to make a conjecture about

if where is an integer and 

(d) Find if Compare the result with the
conjecture in part (c). Is this a proof of your conjecture?
Explain.

True or False? In Exercises 101–104, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

101. The slope of the tangent line to the differentiable function at

the point is 

102. If a function is continuous at a point, then it is differentiable
at that point.

103. If a function has derivatives from both the right and the left at
a point, then it is differentiable at that point.

104. If a function is differentiable at a point, then it is continuous
at that point.

105. Let and

Show that is continuous, but not differentiable, at 
Show that is differentiable at 0, and find 

106. Writing Use a graphing utility to graph the two functions
and in the same viewing

window. Use the zoom and trace features to analyze the graphs
near the point What do you observe? Which function is
differentiable at this point? Write a short paragraph describing
the geometric significance of differentiability at a point.

�0, 1�.

g�x� � �x� � 1f �x� � x2 � 1

g��0�.g
x � 0.f

g�x� � �x2 sin 1
x

,

0,

x � 0

x � 0
.f �x� � �x sin 1

x
,

0,

x � 0

x � 0

f �2 � �x� � f �2�
�x

.�2, f �2��

f

f �x� � x4.f��x�
n � 2.nh�x� � xn,h��x�

gf

g�g

f�f

g�x� � x3.f �x� � x2

m?

d

m.
�3, 1�d

y � mx � 4.�0, 4�
m

f �x� � �
1
2x � 1,
�2x ,

x < 2
x � 2

f �x� � �x2 � 1,
4x � 3,

x � 2
x > 2

x � 2.

f �x� � �x,
x2,

x � 1
x > 1

f �x� � ��x � 1�3,
�x � 1�2,

x � 1
x > 1

f �x� � �1 � x2f �x� � �x � 1�
x � 1?

x � 1

f �x� � �x3 � 3x2 � 3x,
x2 � 2x,

x � 1
x > 1

f �x� � x2�5

f �x� �
4x

x � 3
f �x� � �x � 5�

fx

x

2

4

4−4

−4

y

x
21 3 4

3

2

1

y

f �x� � �x2 � 4,
4 � x2,

x � 0
x > 0

f �x� � �x � 1

x

2
3

3

4

4

5

−3

−4

y

x

y

−2−4−6

−2

4

f �x� �
x2

x2 � 4
f �x� � �x � 4�2�3

x
42

4

−2
−4

−4

2

6

10
12

y

x

y

2 4 6
−2

−4

2

4

f �x� � �x2 � 9�f �x� �
2

x � 3

fx

f �x� � �x � 6�, c � 6h�x� � �x � 7�, c � �7

g�x� � �x � 3�1�3, c � �3

f �x� � �x � 6�2�3, c � 6

f �x� � 2�x, c � 5g�x� � ��x�, c � 0

f �x� � x3 � 6x, c � 2

f �x� � x3 � 2x2 � 1, c � �2

g�x� � x�x � 1�, c � 1f �x� � x2 � 5, c � 3

x � c
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2.2 Basic Differentiation Rules and Rates of Change

THEOREM 2.2 THE CONSTANT RULE

The derivative of a constant function is 0. That is, if is a real number, then

(See Figure 2.14.)

d
dx

�c� � 0.

c

E X P L O R A T I O N

Writing a Conjecture Use the definition of the derivative given in Section 2.1
to find the derivative of each function. What patterns do you see? Use your
results to write a conjecture about the derivative of 

a. b. c.

d. e. f. f �x� � x�1f �x� � x1�2f �x� � x4

f �x� � x3f �x� � x2f �x� � x1

f �x� � xn.

x

The slope of a 
horizontal line
is 0.

The derivative of a
constant function
is 0.

f (x) = c

y

Notice that the Constant Rule is equivalent
to saying that the slope of a horizontal line
is 0. This demonstrates the relationship
between slope and derivative.
Figure 2.14

■ Find the derivative of a function using the Constant Rule.
■ Find the derivative of a function using the Power Rule.
■ Find the derivative of a function using the Constant Multiple Rule.
■ Find the derivative of a function using the Sum and Difference Rules.
■ Find the derivatives of the sine function and of the cosine function.
■ Use derivatives to find rates of change.

The Constant Rule
In Section 2.1 you used the limit definition to find derivatives. In this and the next two
sections you will be introduced to several “differentiation rules” that allow you to find
derivatives without the direct use of the limit definition.

EXAMPLE 1 Using the Constant Rule

a.

b.

c.

d. is constant ■y� � 0y � k	 2, k

s��t� � 0s�t� � �3

f��x� � 0f �x� � 0

dy�dx � 0y � 7

DerivativeFunction

PROOF Then, by the limit definition of the derivative,

■� 0.� lim
�x→0

 0

� lim
�x→0

c � c
�x

� lim
�x→0

f �x � �x� � f�x�
�x

d
dx

�c� � f��x�

Let f �x� � c.
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THEOREM 2.3 THE POWER RULE

If is a rational number, then the function is differentiable and

For to be differentiable at must be a number such that is
defined on an interval containing 0.

xn�1nx � 0,f

d
dx

�xn� � nxn�1.

f �x� � xnn

Power Rule when n � 1
d
dx

�x� � 1.

NOTE From Example 7 in Section 2.1,
you know that the function is
defined at but is not differentiable
at This is because is not
defined on an interval containing 0.

x�2�3x � 0.
x � 0,

f�x� � x1�3

x

y = x

y

1

1

2

3

4

2 3 4

The slope of the line is 1.
Figure 2.15

y � x

The Power Rule
Before proving the next rule, it is important to review the procedure for expanding a
binomial.

The general binomial expansion for a positive integer is

is a factor of these terms.

This binomial expansion is used in proving a special case of the Power Rule.

When using the Power Rule, the case for which is best thought of as a
separate differentiation rule. That is,

This rule is consistent with the fact that the slope of the line is 1, as shown in
Figure 2.15.

y � x

n � 1

��x�2

�x � �x�n � xn � nxn�1 ��x� �
n�n � 1�xn�2

2
��x�2 � .  .  . � ��x�n.

n

�x � �x�3 � x3 � 3x2�x � 3x��x�2 � ��x�3

�x � �x�2 � x2 � 2x�x � ��x�2

PROOF If is a positive integer greater than 1, then the binomial expansion produces

This proves the case for which is a positive integer greater than 1. You will prove the
case for Example 7 in Section 2.3 proves the case for which is a negative
integer. In Exercise 76 in Section 2.5 you are asked to prove the case for which is
rational. (In Section 5.5, the Power Rule will be extended to cover irrational
values of ) ■n.

n
nn � 1.

n

� nxn�1.

� nxn�1 � 0 � .  .  . � 0

� lim
�x→0

�nxn�1 �
n�n � 1�xn�2

2
 ��x� � .  .  . � ��x�n�1�

� lim
�x→0

xn � nxn�1��x� �
n�n � 1�xn�2

2
��x�2 � .  .  . � ��x�n � xn

�x

d
dx

�xn� � lim
�x→0

�x � �x�n � xn

�x

n



EXAMPLE 2 Using the Power Rule

a.

b.

c. ■

In Example 2(c), note that before differentiating, was rewritten as 
Rewriting is the first step in many differentiation problems.

EXAMPLE 3 Finding the Slope of a Graph

Find the slope of the graph of when

a. b. c.

Solution The slope of a graph at a point is the value of the derivative at that point.
The derivative of is 

a. When the slope is Slope is negative.

b. When the slope is Slope is zero.

c. When the slope is Slope is positive.

See Figure 2.16.

EXAMPLE 4 Finding an Equation of a Tangent Line

Find an equation of the tangent line to the graph of when 

Solution To find the point on the graph of evaluate the original function at

Point on graph

To find the slope of the graph when evaluate the derivative, at

Slope of graph at 

Now, using the point-slope form of the equation of a line, you can write

Point-slope form

Substitute for and 

Simplify.

See Figure 2.17. ■

y � �4x � 4.

x1.m,y1,y � 4 � �4�x � ��2��
y � y1 � m�x � x1�

��2, 4�m � f���2� � �4

x � �2.
f��x� � 2x,x � �2,

��2, f ��2�� � ��2, 4�

x � �2.
f,

x � �2.f �x� � x2

f��1� � 4�1�3 � 4.x � 1,

f��0� � 4�0�3 � 0.x � 0,

f���1� � 4��1�3 � �4.x � �1,

f��x� � 4x3.f

x � 1.x � 0x � �1

f �x� � x4

x�2.1�x2

dy
dx

�
d
dx

�x�2� � ��2�x�3 � �
2
x3y �

1
x2

g��x� �
d
dx

�x1�3� �
1
3

x�2�3 �
1

3x2�3g�x� � 3�x

f��x) � 3x2f �x� � x3

Derivative                                                 Function
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Given:

y �
1
x2

Rewrite:

y � x�2

Differentiate:
dy
dx

� ��2�x�3

Simplify:
dy
dx

� �
2
x3

x

2

1

−1 1

(1, 1)

(0, 0)

(−1, 1)

f (x) = x4

y

Note that the slope of the graph is negative
at the point the slope is zero at the
point and the slope is positive at the
point
Figure 2.16

�1, 1�.
�0, 0�,

��1, 1�,

x
−2 1 2

4

3

2

1

f (x) = x2

y = −4x − 4

(−2, 4)

y

The line is tangent to the
graph of at the point 
Figure 2.17

��2, 4�.f �x� � x2
y � �4x � 4
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THEOREM 2.4 THE CONSTANT MULTIPLE RULE

If is a differentiable function and is a real number, then is also

differentiable and 
d

dx
�cf�x�� � cf��x�.

cfcf

The Constant Multiple Rule

Informally, the Constant Multiple Rule states that constants can be factored out
of the differentiation process, even if the constants appear in the denominator.

EXAMPLE 5 Using the Constant Multiple Rule

a.

b.

c.

d.

e. ■

The Constant Multiple Rule and the Power Rule can be combined into one rule. The
combination rule is

y� �
d
dx ��

3
2

 x� � �
3
2

�1� � �
3
2

y � �
3x
2

dy
dx

�
d
dx �

1
2

x�2�3� �
1
2 ��

2
3	 x�5�3 � �

1
3x5�3y �

1

2 3�x2

dy
dx

�
d
dx

�2x1�2� � 2�1
2

x�1�2	 � x�1�2 �
1
�x

y � 2�x

f��t� �
d
dt �

4
5

t2� �
4
5

d
dt

�t2� �
4
5

�2t� �
8
5

tf�t� �
4t2

5

dy
dx

�
d
dx

�2x�1� � 2
d
dx

�x�1� � 2��1�x�2 � �
2
x2y �

2
x

Derivative                                                                          Function     

� �1
c	

d
dx

�       f �x�� � �1
c	 f��x�

d
dx �

f �x�
c � �

d
dx ��

1
c	 f �x��

d
dx

�cf �x�� � c
d
dx

� f �x�� � cf��x�

PROOF

Definition of derivative

Apply Theorem 1.2.

■� cf��x�

� c � lim
�x→0

f �x � �x� � f �x�
�x �

� lim
�x→0

c� f �x � �x� � f �x�
�x �

d
dx

�cf�x�� � lim
�x→0

 
cf�x � �x� � cf�x�

�x
 

d
dx

�cxn� � cnxn�1.



EXAMPLE 6 Using Parentheses When Differentiating

a.

b.

c.

d.
■

The Sum and Difference Rules

The Sum and Difference Rules can be extended to any finite number of functions.
For instance, if then 

EXAMPLE 7 Using the Sum and Difference Rules

a.

b. ■g��x� � �2x3 � 9x2 � 2g�x� � �
x4

2
� 3x3 � 2x

f��x� � 3x2 � 4f �x� � x3 � 4x � 5

DerivativeFunction                              

F��x� � f��x� � g��x� � h��x�.F�x� � f �x� � g�x� � h�x�,

y� � 126xy� � 63�2x�y � 63�x2�y �
7

�3x��2

y� �
14x
3

y� �
7
3

�2x�y �
7
3

�x2�y �
7

3x�2

y� � �
15
8x4y� �

5
8

��3x�4�y �
5
8

�x�3�y �
5

�2x�3

y� � �
15
2x4y� �

5
2

��3x�4�y �
5
2

�x�3�y �
5

2x3

SimplifyDifferentiateRewrite         Original Function
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THEOREM 2.5 THE SUM AND DIFFERENCE RULES

The sum (or difference) of two differentiable functions and is itself
differentiable. Moreover, the derivative of or is the sum (or
difference) of the derivatives of and 

Sum Rule

Difference Rule
d
dx

� f �x� � g�x�� � f��x� � g��x�

d
dx

� f �x� � g�x�� � f��x� � g��x�

g.f
f � g��f � g

gf

PROOF A proof of the Sum Rule follows from Theorem 1.2. (The Difference Rule
can be proved in a similar way.)

■� f��x� � g��x�

� lim
�x→0

f �x � �x� � f �x�
�x

� lim
�x→0

g�x � �x� � g�x�
�x

� lim
�x→0 � f �x � �x� � f �x�

�x
�

g�x � �x� � g�x�
�x �

� lim
�x→0

f �x � �x� � g�x � �x� � f �x� � g�x�
�x

d
dx

� f �x� � g�x�� � lim
�x→0

� f �x � �x� � g�x � �x�� � � f �x� � g�x��
�x
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THEOREM 2.6 DERIVATIVES OF SINE AND COSINE FUNCTIONS

d
dx

�cos x� � �sin x
d
dx

�sin x� � cos x

A graphing utility can provide insight into the interpretation of a
derivative. For instance, Figure 2.19 shows the graphs of

for 1, and 2. Estimate the slope of each graph at the point Then
verify your estimates analytically by evaluating the derivative of each function
when x � 0.

�0, 0�.3
2,a �

1
2,

y � a sin x

TECHNOLOGY

x

1

−1

π2π
2

π

y increasing y increasingy decreasing

y ′ = 0

y ′ = −1

y ′ = 0

y ′ = 1

y ′ = 1

y = sin x
y

x

y

−1

π2π
2

π

y ′ = cos x

y ′ positive y ′ positivey ′ negative

The derivative of the sine function is the
cosine function.
Figure 2.18

−2

2

y = sin x

y = 2 sin x

1
2

3
2

−

y =     sin x

y =     sin x

	 	

Figure 2.19

d
dx

�a sin x� � a cos x

■ FOR FURTHER INFORMATION For
the outline of a geometric proof of the
derivatives of the sine and cosine 
functions, see the article “The Spider’s
Spacewalk Derivation of and ”
by Tim Hesterberg in The College
Mathematics Journal. To view this article,
go to the website www.matharticles.com.

cos�sin�

Derivatives of the Sine and Cosine Functions
In Section 1.3, you studied the following limits.

and

These two limits can be used to prove differentiation rules for the sine and cosine
functions. (The derivatives of the other four trigonometric functions are discussed in
Section 2.3.)

EXAMPLE 8 Derivatives Involving Sines and Cosines

a.

b.

c. ■y� � 1 � sin xy � x � cos x

y� �
1
2

 cos x �
cos x

2
y �

sin x
2

�
1
2

 sin x

y� � 2 cos xy � 2 sin x

DerivativeFunction

lim
�x→0

1 � cos �x
�x

� 0lim
�x→0

sin �x
�x

� 1

PROOF

Definition of derivative

This differentiation rule is shown graphically in Figure 2.18. Note that for each the
of the sine curve is equal to the value of the cosine. The proof of the second rule

is left as an exercise (see Exercise 120). ■

slope
x,

� cos x

� �cos x��1� � �sin x��0�

� cos x� lim
�x→0

sin �x
�x 	 � sin x� lim

�x→0

1 � cos �x
�x 	

� lim
�x→0 ��cos x� �sin �x

�x 	 � �sin x��1 � cos �x
�x 	�

� lim
�x→0

cos x sin �x � �sin x��1 � cos �x�
�x

� lim
�x→0

sin x cos �x � cos x sin �x � sin x
�x

d
dx

�sin x� � lim
�x→0

sin�x � �x� � sin x
�x

www.matharticles.com


Rates of Change
You have seen how the derivative is used to determine slope. The derivative can also be
used to determine the rate of change of one variable with respect to another. Applications
involving rates of change occur in a wide variety of fields. A few examples are
population growth rates, production rates, water flow rates, velocity, and acceleration.

A common use for rate of change is to describe the motion of an object moving
in a straight line. In such problems, it is customary to use either a horizontal or a
vertical line with a designated origin to represent the line of motion. On such lines,
movement to the right (or upward) is considered to be in the positive direction, and
movement to the left (or downward) is considered to be in the negative direction.

The function that gives the position (relative to the origin) of an object as a
function of time is called a position function. If, over a period of time the object
changes its position by the amount then, by the familiar
formula

the average velocity is

EXAMPLE 9 Finding Average Velocity of a Falling Object

If a billiard ball is dropped from a height of 100 feet, its height at time is given by
the position function

Position function

where is measured in feet and is measured in seconds. Find the average velocity
over each of the following time intervals.

a. b. c.

Solution

a. For the interval the object falls from a height of 
feet to a height of feet. The average velocity is

feet per second.

b. For the interval the object falls from a height of 84 feet to a height of 
64 feet. The average velocity is

feet per second.

c. For the interval the object falls from a height of 84 feet to a height of 
80.64 feet. The average velocity is

feet per second.

Note that the average velocities are indicating that the object is moving
downward. ■

negative,

�s
�t

�
80.64 � 84

1.1 � 1
�

�3.36
0.1

� �33.6

�1, 1.1�,

�s
�t

�
64 � 84
1.5 � 1

�
�20
0.5

� �40

�1, 1.5�,

�s
�t

�
36 � 84
2 � 1

�
�48

1
� �48

s�2� � �16�2�2 � 100 � 36
s�1� � �16�1�2 � 100 � 84�1, 2�,

�1, 1.1��1, 1.5��1, 2�

ts

s � �16t2 � 100

ts

Rate �
distance

time

�s � s�t � �t� � s�t�,
�t,t

s
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Suppose that in Example 9 you wanted to find the instantaneous velocity (or
simply the velocity) of the object when Just as you can approximate the slope
of the tangent line by calculating the slope of the secant line, you can approximate the
velocity at by calculating the average velocity over a small interval 
(see Figure 2.20). By taking the limit as approaches zero, you obtain the velocity
when Try doing this—you will find that the velocity when is feet
per second.

In general, if is the position function for an object moving along a
straight line, the velocity of the object at time is

In other words, the velocity function is the derivative of the position function. Velocity
can be negative, zero, or positive. The speed of an object is the absolute value of its
velocity. Speed cannot be negative.

The position of a free-falling object (neglecting air resistance) under the influence
of gravity can be represented by the equation

where is the initial height of the object, is the initial velocity of the object, and 
is the acceleration due to gravity. On Earth, the value of is approximately feet
per second per second or meters per second per second.

EXAMPLE 10 Using the Derivative to Find Velocity

At time a diver jumps from a platform diving board that is 32 feet above the
water (see Figure 2.21). The position of the diver is given by

Position function

where is measured in feet and is measured in seconds.

a. When does the diver hit the water?

b. What is the diver’s velocity at impact?

Solution

a. To find the time when the diver hits the water, let and solve for .

Set position function equal to 0.

Factor.

Solve for 

Because choose the positive value to conclude that the diver hits the water
at seconds.

b. The velocity at time is given by the derivative So, the
velocity at time is

feet per second. ■s��2� � �32�2� � 16 � �48

t � 2
s��t� � �32t � 16.t

t � 2
t � 0,

t.t � �1 or 2

�16�t � 1��t � 2� � 0

�16t2 � 16t � 32 � 0

ts � 0t

ts

s�t� � �16t2 � 16t � 32

t � 0,

�9.8
�32g

gv0s0

t
s � s�t�

�32t � 1t � 1.
�t

�1, 1 � �t�t � 1

t � 1.
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Velocity functionv�t� � lim
�t→0

s�t � �t� � s�t�
�t

� s��t�.

Position functions�t� �
1
2

gt2 � v0t � s0

32 ft

Velocity is positive when an object is rising,
and is negative when an object is falling.
Notice that the diver moves upward for the
first half-second because the velocity is 
positive for When the velocity 
is 0, the diver has reached the maximum
height of the dive.
Figure 2.21

0 < t < 1
2.

Secant line

Tangent lineP

t1 = 1 t2

s

t

The average velocity between and is 
the slope of the secant line, and the 
instantaneous velocity at is the slope 
of the tangent line.
Figure 2.20

t1

t2t1



In Exercises 1 and 2, use the graph to estimate the slope of the
tangent line to at the point Verify your answer
analytically. To print an enlarged copy of the graph, go to the
website www.mathgraphs.com.

1. (a) (b)

2. (a) (b)

In Exercises 3 –24, use the rules of differentiation to find the
derivative of the function.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

In Exercises 25–30, complete the table.

25.

26.

27.

28.

29.

30.

In Exercises 31–38, find the slope of the graph of the function at
the given point. Use the derivative feature of a graphing utility
to confirm your results.

31.

32.

33.

34.

35.

36.

37.

38.

In Exercises 39–54, find the derivative of the function.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

In Exercises 55–58, (a) find an equation of the tangent line to
the graph of at the given point, (b) use a graphing utility to
graph the function and its tangent line at the point, and (c) use
the derivative feature of a graphing utility to confirm your
results.

55.

56.

57.

58. �1, 6�y � �x 2 � 2x��x � 1�

�1, 2�f �x� �
   2

4�x3

��1, �2�y � x 3 � x

�1, 0�y � x 4 � 3x 2 � 2

PointFunction

f

f �x� �
2

3�x
� 3 cos xf �x� � 6�x � 5 cos x

f �t� � t2�3 � t1�3 � 4h�s� � s4�5 � s2�3

f �x� � 3�x � 5�xf �x� � �x � 6 3�x

y � 3x�6x � 5x2�y � x�x2 � 1�

h�x� �
2x2 � 3x � 1

x
f �x� �

x3 � 3x2 � 4
x2

f �x� �
x3 � 6

x2f �x� �
4x3 � 3x2

x

f �x� � x �
1
x 2g�t� � t 2 �

4
t3

f �x� � x2 � 3x � 3x�2f �x� � x2 � 5 � 3x �2

�	, 7�g�t� � �2 cos t � 5

�0, 0�f �� � 4 sin  � 

�5, 0�f �x� � 3�5 � x�2

�0, 1�y � �4x � 1�2

�2, 14�y � 3x3 � 10

�0, �
1
2�f �x� � �

1
2 �

7
5x3

�3
5, 2�f �t� � 3 �

3
5t

�2, 2�f �x� �
8
x2

Point    Function                 

y �
4

x�3

y �
�x
x

y �
	

�3x� 2

SimplifyDifferentiateRewriteOriginal Function

y �
6

�5x� 3

y �
2

3x 2

y �
5

2x2

SimplifyDifferentiateRewriteOriginal Function

y �
5

�2x�3 � 2 cos xy �
1
x

� 3 sin x

y � 7 � sin xy � x2 �
1
2 cos x

g�t� � 	 cos ty �
	

2
 sin  � cos 

f �x� � 2x 3 � x 2 � 3xs�t� � t 3 � 5t2 � 3t � 8

y � 8 � x3g�x� � x 2 � 4x3

y � t 2 � 2t � 3f �t� � �2t 2 � 3t � 6

g�x� � 3x � 1f �x� � x � 11

g�x� � 4�xf �x� � 5�x

y �
1
x8y �

1
x5

y � x16y � x7

f �x� � �9y � 12

x
1 2

2

1
(1, 1)

y

x
1 2 3

2

1

y

(1, 1)

y � x�1y � x�1�2

x
1 2

2

1
(1, 1)

y

x
1 2

2

1
(1, 1)

y

y � x 3y � x1�2

�1, 1�.y � xn
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In Exercises 73 and 74, the relationship between and is
given. Explain the relationship between and 

73.

74. g�x� � �5 f �x�
g�x� � f �x� � 6

g�.f�
gf

WRITING ABOUT CONCEPTS

In Exercises 59–64, determine the point(s) (if any) at which the
graph of the function has a horizontal tangent line.

59.

60.

61.

62.

63.

64.

In Exercises 65–70, find such that the line is tangent to the
graph of the function.

65.

66.

67.

68.

69.

70.

71. Sketch the graph of a function such that for all and
the rate of change of the function is decreasing.

77. Sketch the graphs of and and
sketch the two lines that are tangent to both graphs. Find
equations of these lines.

78. Show that the graphs of the two equations and 
have tangent lines that are perpendicular to each other at their
point of intersection.

79. Show that the graph of the function

does not have a horizontal tangent line.

80. Show that the graph of the function

does not have a tangent line with a slope of 3.

In Exercises 81 and 82, find an equation of the tangent line to
the graph of the function through the point not on the
graph. To find the point of tangency on the graph of 
solve the equation

81. 82.

83. Linear Approximation Use a graphing utility, with a square
window setting, to zoom in on the graph of

to approximate Use the derivative to find 

84. Linear Approximation Use a graphing utility, with a square
window setting, to zoom in on the graph of

to approximate Use the derivative to find f��4�.f��4�.

f �x� � 4�x � 1

f��1�.f��1�.

f �x� � 4 �
1
2 x2

�x0, y0� � �5, 0��x0, y0� � ��4, 0�

f �x� �
2
x

f �x� � �x

f��x� �
y0 � y
x0 � x

.

f,�x, y�
�x0, y0�f

f �x� � x5 � 3x3 � 5x

f �x� � 3x � sin x � 2

y � 1�xy � x

�x2 � 6x � 5,y �y � x 2

xf� > 0f

y � 4x � 1f �x� � kx4

y � x � 1f (x) � kx3

y � x � 4f �x� � k�x

y � �
3
4

x � 3f �x� �
k
x

y � �6x � 1f �x� � k � x2

y � 5x � 4f �x� � x2 � kx

LineFunction

k

0 � x < 2	y � �3x � 2 cos x,

0 � x < 2	y � x � sin x,

y � x 2 � 9

y �
1
x 2

y � x 3 � x

y � x 4 � 2x 2 � 3
In Exercises 75 and 76, the graphs of a function and its
derivative are shown on the same set of coordinate axes.
Label the graphs as or and write a short paragraph
stating the criteria you used in making your selection. To
print an enlarged copy of the graph, go to the website
www.mathgraphs.com.

75. 76.

x
−2 −1 1 2 3 4

1
2

y

x
−3 −2

−2

−1 1 2 3

3

1

y

f�f
f�

f

WRITING ABOUT CONCEPTS (cont inued)

72. Use the graph of to answer each question. To print 
an enlarged copy of the graph, go to the website
www.mathgraphs.com.

(a) Between which two consecutive points is the average
rate of change of the function greatest?

(b) Is the average rate of change of the function between 
and greater than or less than the instantaneous rate of
change at 

(c) Sketch a tangent line to the graph between and such
that the slope of the tangent line is the same as the 
average rate of change of the function between and D.C

DC

B?
B

A

x

f

CC
AA

BB

ED E

y

f

CAPSTONE

www.mathgraphs.com
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85. Linear Approximation Consider the function with
the solution point 

(a) Use a graphing utility to graph Use the feature to
obtain successive magnifications of the graph in the neigh-
borhood of the point After zooming in a few times,
the graph should appear nearly linear. Use the feature
to determine the coordinates of a point near Find an
equation of the secant line through the two points.

(b) Find the equation of the line

tangent to the graph of passing through the given point.
Why are the linear functions and nearly the same?

(c) Use a graphing utility to graph and on the same set of
coordinate axes. Note that is a good approximation of 
when is close to 4. What happens to the accuracy of the
approximation as you move farther away from the point of
tangency?

(d) Demonstrate the conclusion in part (c) by completing the
table.

86. Linear Approximation Repeat Exercise 85 for the function
where is the line tangent to the graph at the point

Explain why the accuracy of the linear approximation
decreases more rapidly than in Exercise 85.

True or False? In Exercises 87–92, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

87. If then 

88. If then 

89. If then 

90. If then 

91. If then 

92. If then 

In Exercises 93–96, find the average rate of change of the func-
tion over the given interval. Compare this average rate of
change with the instantaneous rates of change at the endpoints
of the interval.

93. 94.

95. 96.

Vertical Motion In Exercises 97 and 98, use the position
function for free-falling objects.

97. A silver dollar is dropped from the top of a building that is
1362 feet tall.

(a) Determine the position and velocity functions for the coin.

(b) Determine the average velocity on the interval 

(c) Find the instantaneous velocities when and 

(d) Find the time required for the coin to reach ground level.

(e) Find the velocity of the coin at impact.

98. A ball is thrown straight down from the top of a 220-foot
building with an initial velocity of feet per second. What
is its velocity after 3 seconds? What is its velocity after falling
108 feet?

Vertical Motion In Exercises 99 and 100, use the position func-
tion for free-falling objects.

99. A projectile is shot upward from the surface of Earth with an
initial velocity of 120 meters per second. What is its velocity
after 5 seconds? After 10 seconds?

100. To estimate the height of a building, a stone is dropped from
the top of the building into a pool of water at ground level.
How high is the building if the splash is seen 5.6 seconds after
the stone is dropped?

Think About It In Exercises 101 and 102, the graph of a 
position function is shown. It represents the distance in miles
that a person drives during a 10-minute trip to work. Make a
sketch of the corresponding velocity function.

101. 102.

Think About It In Exercises 103 and 104, the graph of a 
velocity function is shown. It represents the velocity in miles per
hour during a 10-minute drive to work. Make a sketch of the 
corresponding position function.

103. 104.
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s�t� � �4.9t 2 1 v0 t 1 s0

�22

t � 2.t � 1

�1, 2�.

s�t� � �16 t2 1 v0 t 1 s0

�0,
	

6�f �x� � sin x,�1, 2�f �x� �
�1
x

,

�3, 3.1�f �t� � t2 � 7,�1, 2�f �t� � 4t � 5,

f��x� � 1��nx n�1�.f �x� � 1�xn,

g��x� � 3f��x�.g�x� � 3 f �x�,
dy�dx � 1�	.y � x�	,

dy�dx � 2	.y � 	 2,

f��x� � g��x�.f �x� � g�x� � c,

f �x� � g�x�.f��x� � g��x�,

�1, 1�.
T�x�f �x� � x 3

x
fT

Tf

TS
f

T�x� � f��4��x � 4� � f �4�

S�x�
�4, 8�.

trace
�4, 8�.

zoomf.

�4, 8�.
f �x� � x3/2
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�x �3 �2 �1 �0.5 �0.1 0

f �4 1 �x�

T�4 1 �x�

�x 0.1 0.5 1 2 3

f �4 1 �x�

T�4 1 �x�



105. Modeling Data The stopping distance of an automobile, on
dry, level pavement, traveling at a speed (kilometers per
hour) is the distance (meters) the car travels during the
reaction time of the driver plus the distance (meters) the car
travels after the brakes are applied (see figure). The table
shows the results of an experiment.

(a) Use the regression capabilities of a graphing utility to find
a linear model for reaction time distance.

(b) Use the regression capabilities of a graphing utility to find
a quadratic model for braking distance.

(c) Determine the polynomial giving the total stopping
distance

(d) Use a graphing utility to graph the functions and 
in the same viewing window.

(e) Find the derivative of and the rates of change of the total
stopping distance for and 

(f) Use the results of this exercise to draw conclusions about
the total stopping distance as speed increases.

106. Fuel Cost A car is driven 15,000 miles a year and gets 
miles per gallon. Assume that the average fuel cost is $2.76
per gallon. Find the annual cost of fuel as a function of and
use this function to complete the table.

Who would benefit more from a one-mile-per-gallon increase
in  fuel efficiency—the driver of a car that gets 15 miles per
gallon or the driver of a car that gets 35 miles per gallon?
Explain.

107. Volume The volume of a cube with sides of length is given
by Find the rate of change of the volume with respect
to when centimeters.

108. Area The area of a square with sides of length is given by
Find the rate of change of the area with respect to 

when meters.

109. Velocity Verify that the average velocity over the time
interval is the same as the instantaneous
velocity at for the position function

110. Inventory Management The annual inventory cost for a
manufacturer is

where is the order size when the inventory is replenished.
Find the change in annual cost when is increased from 350
to 351, and compare this with the instantaneous rate of change
when

111. Writing The number of gallons of regular unleaded
gasoline sold by a gasoline station at a price of dollars per
gallon is given by 

(a) Describe the meaning of 

(b) Is usually positive or negative? Explain.

112. Newton’s Law of Cooling This law states that the rate of
change of the temperature of an object is proportional to the
difference between the object’s temperature and the
temperature of the surrounding medium. Write an equation
for this law.

113. Find an equation of the parabola that passes
through and is tangent to the line at 

114. Let be an arbitrary point on the graph of 
Prove that the area of the triangle formed by the

tangent line through and the coordinate axes is 2.

115. Find the tangent line(s) to the curve through the
point

116. Find the equation(s) of the tangent line(s) to the parabola
through the given point.

(a) (b)

Are there any restrictions on the constant 

In Exercises 117 and 118, find and such that is differen-
tiable everywhere.

117.

118.

119. Where are the functions and 
differentiable?

120. Prove that 

■ FOR FURTHER INFORMATION For a geometric interpretation
of the derivatives of trigonometric functions, see the article “Sines
and Cosines of the Times” by Victor J. Katz in Math Horizons. To
view this article, go to the website www.matharticles.com.

d
dx

�cos x� � �sin x.

f2�x� � sin �x�f1�x� � �sin x�

f �x� � �cos x,

ax � b,

x < 0

x � 0

f �x� � �ax3,

x2 � b,

x � 2

x > 2

fba

a?

�a, 0��0, a�
y � x2

�1, �9�.
y � x3 � 9x

�a, b�
x > 0.

y � 1�x,�a, b�
�1, 0�.y � x � 1�0, 1�

y � ax2 � bx � c

Ta

T

f��2.979�
f��2.979�.

N � f � p�.
p

N

Q � 350.

Q
Q

C �
1,008,000

Q
� 6.3Q

C

s�t� � �
1
2at 2 � c.

t � t0

�t0 � �t, t0 � �t�

s � 6
sA � s2.

s

s � 6s
V � s3.

s

xC

x

v � 100.v � 80,v � 40,
T

TR, B,
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Speed, v 20 40 60 80 100

Reaction Time
Distance, R

8.3 16.7 25.0 33.3 41.7

Braking Time
Distance, B

2.3 9.0 20.2 35.8 55.9

x 10 15 20 25 30 35 40

C

dC/dx

www.matharticles.com
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2.3 Product and Quotient Rules and Higher-Order Derivatives

THEOREM 2.7 THE PRODUCT RULE

The product of two differentiable functions and is itself differentiable.
Moreover, the derivative of is the first function times the derivative of the
second, plus the second function times the derivative of the first.

d
dx

� f�x�g�x�� � f�x�g��x� � g�x� f��x�

fg
gfNOTE A version of the Product Rule

that some people prefer is

The advantage of this form is that it
generalizes easily to products of three 
or more factors.

d
dx

� f �x�g�x�� � f��x�g�x� � f �x�g��x�.

■ Find the derivative of a function using the Product Rule.
■ Find the derivative of a function using the Quotient Rule.
■ Find the derivative of a trigonometric function.
■ Find a higher-order derivative of a function.

The Product Rule
In Section 2.2 you learned that the derivative of the sum of two functions is simply the
sum of their derivatives. The rules for the derivatives of the product and quotient of
two functions are not as simple.

Note that because is given to be differentiable and therefore

is continuous.
The Product Rule can be extended to cover products involving more than two

factors. For example, if and are differentiable functions of then

For instance, the derivative of is

� 2x sin x cos x � x2�cos2x � sin2x�.

dy
dx

� 2x sin x cos x � x2 cos x cos x � x2 sin x��sin x�

y � x2 sin x cos x

d
dx

� f�x�g�x�h�x�� � f��x�g�x�h�x� � f�x�g��x�h�x� � f�x�g�x�h��x�.

x,hg,f,

flim
�x→0

 f �x � �x� � f �x�

PROOF Some mathematical proofs, such as the proof of the Sum Rule, are straight-
forward. Others involve clever steps that may appear unmotivated to a reader. This
proof involves such a step—subtracting and adding the same quantity—which is
shown in color.

■� f�x�g��x� � g�x�f��x�

� lim
�x→0

f�x � �x� � lim
�x→0

g�x � �x� � g�x�
�x

� lim
�x→0

g�x� � lim
�x→0

f�x � �x� � f�x�
�x

� lim
�x→0 �f�x � �x�g�x � �x� � g�x�

�x � � lim
�x→0 �g�x� f�x � �x� � f�x�

�x �

� lim
�x→0 �f�x � �x�g�x � �x� � g�x�

�x
� g�x� f�x � �x� � f�x�

� x �

� lim
�x→0

f�x � �x�g�x � �x� � f�x � �x�g�x� � f�x � �x�g�x� � f�x�g�x�
�x

d
dx

� f�x�g�x�� � lim
�x→0

 
f�x � �x�g�x � �x� � f�x�g�x�

� x

NOTE The proof of the Product Rule
for products of more than two factors is
left as an exercise (see Exercise 141).



The derivative of a product of two functions is not (in general) given by the product
of the derivatives of the two functions. To see this, try comparing the product of the 
derivatives of and with the derivative in Example 1.

EXAMPLE 1 Using the Product Rule

Find the derivative of 

Solution
Derivative Derivative

First of second Second of first

Apply Product Rule.

■

In Example 1, you have the option of finding the derivative with or without the
Product Rule. To find the derivative without the Product Rule, you can write

In the next example, you must use the Product Rule.

EXAMPLE 2 Using the Product Rule

Find the derivative of 

Solution

Apply Product Rule.

EXAMPLE 3 Using the Product Rule

Find the derivative of 

Solution
Product Rule Constant Multiple Rule

■� �2x sin x

� �2x���sin x� � �cos x��2� � 2�cos x�

dy
dx

� �2x�� d
dx

�cos x�	 � �cos x�� d
dx

�2x�	 � 2
d
dx

�sin x�

y � 2x cos x � 2 sin x.

� 3x�x cos x � 2 sin x�
� 3x2 cos x � 6x sin x

� 3x2 cos x � �sin x��6x�

d
dx

�3x2 sin x� � 3x2 d
dx

�sin x� � sin x
d
dx

�3x2�

y � 3x2 sin x.

� �24x2 � 4x � 15.

Dx ��3x � 2x2��5 � 4x�� � Dx��8x3 � 2x2 � 15x�

� �24x2 � 4x � 15

� �12x � 8x2� � �15 � 8x � 16x2�
� �3x � 2x2��4� � �5 � 4x��3 � 4x�

h��x� � �3x � 2x2� d
dx

�5 � 4x� � �5 � 4x� d
dx

�3x � 2x2�

h�x� � �3x � 2x2��5 � 4x�.

g�x� � 5 � 4xf�x� � 3x � 2x2
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NOTE In Example 3, notice that you
use the Product Rule when both factors
of the product are variable, and you use
the Constant Multiple Rule when one of
the factors is a constant.

THE PRODUCT RULE

When Leibniz originally wrote a formula for
the Product Rule, he was motivated by the
expression

from which he subtracted (as being
negligible) and obtained the differential form

This derivation resulted in the
traditional form of the Product Rule. (Source:
The History of Mathematics by David M.
Burton)

x dy � y dx.

dx dy

�x � dx�� y � dy� � xy



The Quotient Rule

Note that because is given to be differentiable and therefore

is continuous.

EXAMPLE 4 Using the Quotient Rule

Find the derivative of 

Solution

Apply Quotient Rule.

■�
�5x2 � 4x � 5

�x2 � 1�2

�
�5x2 � 5� � �10x2 � 4x�

�x2 � 1�2

�
�x2 � 1��5� � �5x � 2��2x�

�x2 � 1�2

d
dx �

5x � 2
x2 � 1� �

�x2 � 1� d
dx

�5x � 2� � �5x � 2� d
dx

�x2 � 1�

�x2 � 1�2

y �
5x � 2
x2 � 1

.

glim
�x→0

 g�x � �x� � g�x�
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A graphing utility
can be used to compare the graph 
of a function with the graph of its 
derivative. For instance, in Figure
2.22, the graph of the function in
Example 4 appears to have two points
that have horizontal tangent lines. What
are the values of at these two points?

Graphical comparison of a function and
its derivative
Figure 2.22

−7

−4

8

6

y = 5x − 2
x2 + 1

y ′ = −5x2 + 4x + 5
(x2 + 1)2

y�

TECHNOLOGY

THEOREM 2.8 THE QUOTIENT RULE

The quotient of two differentiable functions and is itself differentiable 
at all values of for which Moreover, the derivative of is given 
by the denominator times the derivative of the numerator minus the numerator
times the derivative of the denominator, all divided by the square of the
denominator.

g�x� � 0
d

dx�
f�x�
g�x�� �

g�x� f��x� � f�x�g��x�
�g�x��2 ,

f�gg�x� � 0.x
gff�g

PROOF As with the proof of Theorem 2.7, the key to this proof is subtracting and
adding the same quantity.

Definition of derivative

■�
g�x� f��x� � f�x�g��x�

�g�x��2

�

g�x�� lim
�x→0

f�x � �x� � f�x�
�x � � f�x�� lim

�x→0

g�x � �x� � g�x�
�x �

lim
�x→0

�g�x�g�x � �x��

�

lim
�x→0

g�x�� f�x � � x� � f�x��
�x

� lim
�x→0

f�x��g�x � �x� � g�x��
�x

lim
�x→0

�g�x�g�x � �x��

� lim
�x→0

g�x�f�x � �x� � f�x�g�x� � f�x�g�x� � f�x�g�x � �x�
�xg�x�g�x � �x�

� lim
�x→0

g�x� f�x � �x� � f�x�g�x � �x�
�xg�x�g�x � �x�

d
dx�

f�x�
g�x�� � lim

�x→0

f �x � �x�
g�x � �x� �

f�x�
g�x�

�x



Note the use of parentheses in Example 4. A liberal use of parentheses is 
recommended for types of differentiation problems. For instance, with the
Quotient Rule, it is a good idea to enclose all factors and derivatives in parentheses,
and to pay special attention to the subtraction required in the numerator. 

When differentiation rules were introduced in the preceding section, the need for
rewriting differentiating was emphasized. The next example illustrates this
point with the Quotient Rule.

EXAMPLE 5 Rewriting Before Differentiating

Find an equation of the tangent line to the graph of at 

Solution Begin by rewriting the function.

Write original function.

Multiply numerator and denominator by 

Rewrite.

Quotient Rule

Simplify.

To find the slope at evaluate 

Slope of graph at 

Then, using the point-slope form of the equation of a line, you can determine that the
equation of the tangent line at is See Figure 2.23. ■

Not every quotient needs to be differentiated by the Quotient Rule. For example,
each quotient in the next example can be considered as the product of a constant times
a function of In such cases it is more convenient to use the Constant Multiple Rule.

EXAMPLE 6 Using the Constant Multiple Rule

a.

b.

c.

d.

■

y� � �
18
5x3y� �

9
5

��2x�3�y �
9
5

�x�2�y �
9

5x2

y� �
6
7

y� � �
3
7

��2�y � �
3
7

�3 � 2x�y �
�3�3x � 2x2�

7x

y� �
5
2

x3y� �
5
8

�4x3�y �
5
8

x4y �
5x4

8

y� �
2x � 3

6
y� �

1
6

�2x � 3�y �
1
6

�x2 � 3x�y �
x2 � 3x

6

SimplifyDifferentiate        RewriteOriginal Function

x.

y � 1.��1, 1�

��1, 1�f ���1� � 0

f ���1�.��1, 1�,

�
�3x2 � 2x � 5

�x2 � 5x�2

�
�3x2 � 15x� � �6x2 � 13x � 5�

�x2 � 5x�2

f � �x� �
�x2 � 5x��3� � �3x � 1��2x � 5�

�x2 � 5x�2

�
3x � 1
x2 � 5x

x.�

x�3 �
1
x	

x�x � 5�

f �x� �
3 � �1�x�

x � 5

��1, 1�.f �x� �
3 � �1�x�

x � 5

before

all
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y

x

y = 1

f (x) = 
3 −   1

x + 5
x

−1−2−3−4−5−6−7 1 2 3

−2

−3

−4

−5

3

4

5

(−1, 1)

The line is tangent to the graph of
at the point 

Figure 2.23
��1, 1�.f �x�

y � 1

NOTE To see the benefit of using
the Constant Multiple Rule for some
quotients, try using the Quotient Rule
to differentiate the functions in Example
6—you should obtain the same results,
but with more work.
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THEOREM 2.9 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

d
dx

�csc x� � �csc x cot x
d
dx

�sec x� � sec x tan x

d
dx

�cot x� � �csc2x
d
dx

�tan x� � sec2 x

In Section 2.2, the Power Rule was proved only for the case in which the 
exponent is a positive integer greater than 1. The next example extends the proof to
include negative integer exponents.

EXAMPLE 7 Proof of the Power Rule (Negative Integer Exponents)

If is a negative integer, there exists a positive integer such that So, by the
Quotient Rule, you can write

Quotient Rule and Power Rule

So, the Power Rule

Power Rule

is valid for any integer. In Exercise 76 in Section 2.5, you are asked to prove the case
for which is any rational number. ■

Derivatives of Trigonometric Functions
Knowing the derivatives of the sine and cosine functions, you can use the Quotient
Rule to find the derivatives of the four remaining trigonometric functions.

n

d
dx

�xn� � nxn�1

n � �k� nxn�1.

� �kx�k�1

�
0 � kxk�1

x2k

�
xk�0� � �1��kxk�1�

�xk�2

d
dx

�xn� �
d
dx�

1
xk�

n � �k.kn

n

PROOF Considering and applying the Quotient Rule, you
obtain

Apply Quotient Rule.

The proofs of the other three parts of the theorem are left as an exercise (see
Exercise 89). ■

� sec2 x.

�
1

cos2 x

�
cos2 x � sin2 x

cos2 x

d
dx

�tan x� �
�cos x��cos x� � �sin x���sin x�

cos2 x

tan x � �sin x���cos x�
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EXAMPLE 8 Differentiating Trigonometric Functions

a.

b.

EXAMPLE 9 Different Forms of a Derivative

Differentiate both forms of 

Solution

First form:

Second form:

To show that the two derivatives are equal, you can write 

■

The summary below shows that much of the work in obtaining a simplified form
of a derivative occurs differentiating. Note that two characteristics of a simplified
form are the absence of negative exponents and the combining of like terms.

after

� csc2 x � csc x cot x.

1 � cos x
sin2 x

�
1

sin2 x
� � 1

sin x	�
cos x
sin x	

y� � �csc x cot x � csc2 x

y � csc x � cot x

�
1 � cos x

sin2 x

�
sin2 x � cos2 x � cos x

sin2 x

y� �
�sin x��sin x� � �1 � cos x��cos x�

sin2 x

y �
1 � cos x

sin x

y �
1 � cos x

sin x
� csc x � cot x.

� �sec x��1 � x tan x�
y� � x�sec x tan x� � �sec x��1�y � x sec x

dy
dx

� 1 � sec2 xy � x � tan x

DerivativeFunction

After Differentiatingf��x� After Simplifyingf��x�

Example 1 �3x � 2x2��4� � �5 � 4x��3 � 4x� �24x2 � 4x � 15

Example 3 �2x���sin x� � �cos x��2� � 2�cos x� �2x sin x

Example 4
�x2 � 1��5� � �5x � 2��2x�

�x2 � 1�2

�5x2 � 4x � 5
�x2 � 1�2

Example 5
�x2 � 5x��3� � �3x � 1��2x � 5�

�x2 � 5x�2

�3x2 � 2x � 5
�x2 � 5x�2

Example 9 �sin x��sin x� � �1 � cos x��cos x�
sin2 x

1 � cos x
sin2 x

NOTE Because of trigonometric 
identities, the derivative of a trigonometric
function can take many forms. This
presents a challenge when you are trying
to match your answers to those given in
the back of the text.



Higher-Order Derivatives
Just as you can obtain a velocity function by differentiating a position function, you
can obtain an acceleration function by differentiating a velocity function. Another
way of looking at this is that you can obtain an acceleration function by differentiating
a position function 

Position function

Velocity function

Acceleration function

The function given by is the second derivative of and is denoted by 
The second derivative is an example of a higher-order derivative. You can define

derivatives of any positive integer order. For instance, the third derivative is the deriv-
ative of the second derivative. Higher-order derivatives are denoted as follows.

First derivative:

Second derivative:

Third derivative:

Fourth derivative:

nth derivative:

EXAMPLE 10 Finding the Acceleration Due to Gravity

Because the moon has no atmosphere, a falling object on the moon encounters no air
resistance. In 1971, astronaut David Scott demonstrated that a feather and a hammer
fall at the same rate on the moon. The position function for each of these falling
objects is given by

where is the height in meters and is the time in seconds. What is the ratio of
Earth’s gravitational force to the moon’s?

Solution To find the acceleration, differentiate the position function twice.

Position function

Velocity function

Acceleration function

So, the acceleration due to gravity on the moon is meters per second per
second. Because the acceleration due to gravity on Earth is meters per second
per second, the ratio of Earth’s gravitational force to the moon’s is 

■� 6.0.

Earth’s gravitational force
Moon’s gravitational force

�
�9.8

�1.62

�9.8
�1.62

s� �t� � �1.62

s��t� � �1.62t

s�t� � �0.81t2 � 2

ts�t�

s�t� � �0.81t2 � 2

Dx
n�y�dn

dxn � f �x��,dny
dxn,f �n��x�,y�n�,

�

Dx
4 �y�d4

dx4 � f�x��,d4y
dx4,f �4��x�,y�4�,

Dx
3�y�d3

dx3 � f �x��,d3y
dx3,f����x�,y���,

Dx
2�y�d 2

dx2 � f�x��,d 2y
dx2,f� �x�,y�,

Dx�y�d
dx

� f�x��,
dy
dx

,f��x�,y�,

s� �t�.s�t�a�t�

a�t� � v��t� � s��t�
v�t� � s��t�

    s�t�

twice.
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NOTE The second derivative of is the
derivative of the first derivative of f.

f

THE MOON

The moon’s mass is kilograms,
and Earth’s mass is kilograms.
The moon’s radius is 1737 kilometers, and
Earth’s radius is 6378 kilometers. Because
the gravitational force on the surface of a
planet is directly proportional to its mass and
inversely proportional to the square of its
radius, the ratio of the gravitational force on
Earth to the gravitational force on the moon is

�5.976 
 1024��63782

�7.349 
 1022��17372 � 6.0.

5.976 
 1024

7.349 
 1022

Se
th

 R
es
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ck

/G
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ty
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m
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2.3 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1– 6, use the Product Rule to differentiate the
function.

1. 2.

3. 4.

5. 6.

In Exercises 7–12, use the Quotient Rule to differentiate the
function.

7. 8.

9. 10.

11.

12.

In Exercises 13–18, find and 

13.

14.

15.

16.

17.

18.

In Exercises 19–24, complete the table without using the
Quotient Rule.

19.

20.

21.

22.

23.

24.

In Exercises 25–38, find the derivative of the algebraic function.

25. 26.

27. 28.

29. 30.

31. 32.

33.

34.

35.

36.

37. is a constant

38. is a constant

In Exercises 39–54, find the derivative of the trigonometric
function.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

In Exercises 55–58, use a computer algebra system to differen-
tiate the function. 

55.

56.

57.

58. f �� �
sin 

1 � cos 

g�� �


1 � sin 

f �x� � �x2 � x � 3
x2 � 1 	�x2 � x � 1�

g�x� � �x � 1
x � 2	�2x � 5�

h�� � 5 sec  �  tan y � 2x sin x � x2 cos x

f �x� � sin x cos xf �x� � x 2 tan x

y � x sin x � cos xy � �csc x � sin x

y �
sec x

x
y �

3�1 � sin x�
2 cos x

h�x� �
1
x

� 12 sec xg�t� � 4�t � 6 csc t

y � x � cot xf �x� � �x � tan x

f �x� �
sin x

x3f �t� �
cos t

t

f �� � � � 1� cos f �t� � t 2 sin t

cf �x� �
c2 � x 2

c2 � x 2,

cf �x� �
x2 � c2

x2 � c2,

f �x� � �x3 � x��x2 � 2��x2 � x � 1�
f �x� � �2x3 � 5x��x � 3��x � 2�

g�x� � x2�2
x

�
1

x � 1	

f �x� �

2 �
1
x

x � 3

h�x� � �x2 � 1�2h�s� � �s3 � 2�2

f �x� � 3�x��x � 3�f �x� �
3x � 1
�x

f �x� � x 4�1 �
2

x � 1	f �x� � x�1 �
4

x � 3	

f �x� �
x 3 � 5x � 3

x 2 � 1
f �x� �

4 � 3x � x 2

x 2 � 1

y �
5x2 � 8

11

y �
4x3�2

x

y �
10
3x3

y �
6

7x2

y �
5x2 � 3

4

y �
x2 � 3x

7

SimplifyDifferentiateRewriteFunction      

c �
	

6
f �x� �

sin x
x

c �
	

4
f �x� � x cos x

c � 4f �x� �
x � 5
x � 5

c � 1f �x� �
x2 � 4
x � 3

c � 1f �x� � �x 2 � 2x � 1��x3 � 1�
c � 0f �x� � �x3 � 4x��3x 2 � 2x � 5�
Value of cFunction                                      

f��c�.f��x�

f �t� �
cos t

t3

g�x� �
sin x

x2

h�s� �
s

�s � 1
h�x� �

�x
x3 � 1

g�t� �
t2 � 4
5t � 3

f �x� �
x

x2 � 1

g�x� � �x sin xf �x� � x3 cos x

g�s� � �s�s2 � 8�h�t� � �t�1 � t2�
f �x� � �6x � 5��x 3 � 2�g�x� � �x2 � 3��x2 � 4x�

The symbol indicates an exercise in which you are instructed to specifically use a computer
algebra system.

CAS

CAS
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In Exercises 59–62, evaluate the derivative of the function at the
given point. Use a graphing utility to verify your result.

59.

60.

61.

62.

In Exercises 63–68, (a) find an equation of the tangent line to
the graph of at the given point, (b) use a graphing utility to
graph the function and its tangent line at the point, and (c) use
the derivative feature of a graphing utility to confirm your
results.

63.

64.

65. 66.

67. 68.

Famous Curves In Exercises 69–72, find an equation of the
tangent line to the graph at the given point. (The graphs in
Exercises 69 and 70 are called Witches of Agnesi. The graphs in
Exercises 71 and 72 are called serpentines.)

69. 70.

71. 72.

In Exercises 73–76, determine the point(s) at which the graph of
the function has a horizontal tangent line.

73. 74.

75. 76.

77. Tangent Lines Find equations of the tangent lines to the
graph of that are parallel to the line

Then graph the function and the tangent lines.

78. Tangent Lines Find equations of the tangent lines to the
graph of that pass through the point 
Then graph the function and the tangent lines.

In Exercises 79 and 80, verify that and explain the
relationship between and 

79.

80.

In Exercises 81 and 82, use the graphs of and Let
and

81. (a) Find 82. (a) Find 

(b) Find (b) Find 

83. Area The length of a rectangle is given by and its
height is where is time in seconds and the dimensions are
in centimeters. Find the rate of change of the area with respect
to time.

84. Volume The radius of a right circular cylinder is given by
and its height is where is time in seconds and the

dimensions are in inches. Find the rate of change of the volume
with respect to time.

85. Inventory Replenishment The ordering and transportation
cost for the components used in manufacturing a product is

where is measured in thousands of dollars and is the order
size in hundreds. Find the rate of change of with respect to 
when (a) (b) and (c) What do these
rates of change imply about increasing order size?

86. Boyle’s Law This law states that if the temperature of a gas
remains constant, its pressure is inversely proportional to its
volume. Use the derivative to show that the rate of change of the
pressure is inversely proportional to the square of the volume.

87. Population Growth A population of 500 bacteria is introduced
into a culture and grows in number according to the equation 

where is measured in hours. Find the rate at which the popu-
lation is growing when t � 2.

t

P�t� � 500�1 �
4t

50 � t2	

x � 20.x � 15,x � 10,
xC

xC

x � 1C � 100�200
x2 �

x
x � 30	,

C

t1
2�t,�t � 2

t�t,
6t � 5

y

x
2−2 4 6 8 10

2

4

8

10

f

g

y

x

f

g

2−2 4 6 8 10

2

6

8

10

q��7�.q��4�.
p��4�.p��1�.

q�x� � f �x�/g�x�.p�x� � f �x�g�x�
g.f

g�x� �
sin x � 2x

x
f �x� �

sin x � 3x
x

,

g�x� �
5x � 4
x � 2

f �x� �
3x

x � 2
,

g.f
f��x� � g��x�,

��1, 5�.f �x� � x��x � 1�

2y � x � 6.
f �x� � �x � 1���x � 1�

f �x� �
x � 4
x2 � 7

f �x� �
x2

x � 1

f �x� �
x2

x2 � 1
f �x� �

2x � 1
x2

y

x
21 3 4

2
3

1

4

f (x) = 4x
x2 + 6

2, 4
5( (

y

x
4 8

−8

4

8 f (x) = 16x
x2 + 16

−2, − 8
5( (

y

x
2 4−2

−2

−4

4

6 f (x) = 27
x2 + 9

−3, 3
2( (

y

x
2 4−2

−2

−4

4

6

f (x) = 8
x2 + 4

(2, 1)

�	

3
, 2	f �x� � sec x,�	

4
, 1	f �x� � tan x,

�2,
1
3	f �x� �

�x � 1�
�x � 1�,��5, 5�f �x� �

x
x � 4

,

��2, 2�f �x� � �x � 3��x 2 � 2�,
�1, �4�f �x� � �x3 � 4x � 1��x � 2�,

f

�	

4
, 1	f �x� � sin x�sin x � cos x�

�	, �
1
		h�t� �

sec t
t

�1, 1�f �x� � tan x cot x

�	

6
, �3	y �

1 � csc x
1 � csc x

PointFunction

2.3 Product and Quotient Rules and Higher-Order Derivatives 127



88. Gravitational Force Newton’s Law of Universal Gravitation
states that the force between two masses, and is

where is a constant and is the distance between the masses.
Find an equation that gives an instantaneous rate of change of

with respect to (Assume that and represent moving
points.)

89. Prove the following differentiation rules.

(a) (b)

(c)

90. Rate of Change Determine whether there exist any values of
in the interval such that the rate of change of

and the rate of change of are equal.

91. Modeling Data The table shows the quantities (in millions)
of personal computers shipped in the United States and the 
values (in billions of dollars) of these shipments for the years
1999 through 2004. The year is represented by with 
corresponding to 1999. (Source: U.S. Census Bureau)

(a) Use a graphing utility to find cubic models for the quantity
of personal computers shipped and the value of the
personal computers.

(b) Graph each model found in part (a).

(c) Find then graph What does this function
represent?

(d) Interpret in the context of these data.

92. Satellites When satellites observe Earth, they can scan only
part of Earth’s surface. Some satellites have sensors that can
measure the angle shown in the figure. Let represent the
satellite’s distance from Earth’s surface and let represent
Earth’s radius.

(a) Show that 

(b) Find the rate at which is changing with respect to when
(Assume miles.)

In Exercises 93 –100, find the second derivative of the function.

93. 94.

95. 96.

97. 98.

99. 100.

In Exercises 101–104, find the given higher-order derivative.

101. 102.

103. 104.

In Exercises 105–108, use the given information to find 

and

and

105. 106.

107. 108.

In Exercises 113–116, the graph of is shown. Sketch the graphs
of and To print an enlarged copy of the graph, go to the
website www.mathgraphs.com.

113. 114. y

x

f
4

−4

−8

4

8

y

x

f

−2−4 4
−2

2

4

f�.f�
f

f �x� � g�x�h�x�f �x� �
g�x�
h�x�

f �x� � 4 � h�x�f �x� � 2g�x� � h�x�

h��2� � 4h�2� � �1

g��2� � �2g�2� � 3

f��2�.

f �6��x�f �4��x� � 2x � 1,f �4��x�f����x� � 2�x,

f����x�f ��x� � 2 �
2
x
,f � �x�f��x� � x 2,

f �x� � sec xf �x� � x sin x

f �x� �
x 2 � 2x � 1

x
f �x� �

x
x � 1

f �x� � x � 32x�2f �x� � 4x3�2

f �x� � 8x6 � 10x5 � 5x3f �x� � x4 � 2x3 � 3x2 � x

r � 3960 � 30�.
h

h � r �csc  � 1�.

r

r h
θ

r
h

A��t�

A.A � v�t��q�t�,

v�t�q�t�

t � 9t,
v

q

g�x� � csc xf �x� � sec x
�0, 2	 �x

d
dx

�cot x� � �csc2 x

d
dx

�csc x� � �csc x  cot x
d
dx

�sec x� � sec x  tan x

m2m1d.F

dG

F �
Gm1m2

d2

m2,m1F
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Year, t 9 10 11 12 13 14

q 19.6 15.9 14.6 12.9 15.0 15.8

v 26.8 22.6 18.9 16.2 14.7 15.3

109. Sketch the graph of a differentiable function such that
for and for

Explain how you found your answer.

110. Sketch the graph of a differentiable function such that
and for all real numbers Explain how you

found your answer.

In Exercises 111 and 112, the graphs of and are
shown on the same set of coordinate axes. Identify each
graph. Explain your reasoning. To print an enlarged copy of
the graph, go to the website www.mathgraphs.com.

111. 112.

3
−1

−1

−2

x

y

2

2

−1−2
x

y

f�f�,f,

x.f� < 0f > 0
f

2 < x < �.
f� > 0�� < x < 2,f� < 0f �2� � 0,
f

WRITING ABOUT CONCEPTS

www.mathgraphs.com
www.mathgraphs.com


115. 116.

117. Acceleration The velocity of an object in meters per second is
Find the velocity and acceleration

of the object when What can be said about the speed of
the object when the velocity and acceleration have opposite
signs?

118. Acceleration An automobile’s velocity starting from rest is

where is measured in feet per second. Find the acceleration
at (a) 5 seconds, (b) 10 seconds, and (c) 20 seconds.

119. Stopping Distance A car is traveling at a rate of 66 feet per
second (45 miles per hour) when the brakes are applied. The
position function for the car is where 
is measured in feet and is measured in seconds. Use this
function to complete the table, and find the average velocity
during each time interval.

Finding a Pattern In Exercises 121 and 122, develop a general
rule for given 

121. 122.

123. Finding a Pattern Consider the function 

(a) Use the Product Rule to generate rules for finding 
and

(b) Use the results of part (a) to write a general rule for 

124. Finding a Pattern Develop a general rule for 
where is a differentiable function of 

In Exercises 125 and 126, find the derivatives of the function 
for 2, 3, and 4. Use the results to write a general rule for

in terms of 

125. 126.

Differential Equations In Exercises 127–130, verify that the
function satisfies the differential equation.

127.

128.

129.

130.

True or False? In Exercises 131–136, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

131. If then 

132. If then 

133. If and are zero and then 

134. If is an th-degree polynomial, then 

135. The second derivative represents the rate of change of the first
derivative.

136. If the velocity of an object is constant, then its acceleration is
zero.

137. Find a second-degree polynomial such
that its graph has a tangent line with slope 10 at the point

and an -intercept at 

138. Consider the third-degree polynomial

Determine conditions for and if the graph of has (a)
no horizontal tangents, (b) exactly one horizontal tangent, and
(c) exactly two horizontal tangents. Give an example for each
case.

139. Find the derivative of Does exist?

140. Think About It Let and be functions whose first and
second derivatives exist on an interval Which of the following
formulas is (are) true?

(a) (b)

141. Use the Product Rule twice to prove that if and are 
differentiable functions of then

d
dx

� f �x�g�x�h�x�� � f��x�g�x�h�x� � f �x�g��x�h�x� � f �x�g�x�h��x�.

x,
hg,f,

fg� � f �g � � fg��fg� � f �g � � fg� � f�g��

I.
gf

f � �0�f �x� � x�x�.

fdc,b,a,

a � 0.f �x� � ax3 � bx2 � cx � d,

�1, 0�.x�2, 7�

f �x� � ax2 � bx � c

f �n�1��x� � 0.nf �x�
h��c� � 0.h�x� � f �x�g�x�,g��c�f��c�

d 5y�dx5 � 0.y � �x � 1��x � 2��x � 3��x � 4�,
dy�dx � f��x�g��x�.y � f �x�g�x�,

y� � y � 0y � 3 cos x � sin x

y� � y � 3y � 2 sin x � 3

�y�� � xy� � 2y� � �24x2y � 2x3 � 6x � 10

x3 y� � 2x2 y� � 0y �
1
x
, x > 0

Differential EquationFunction

f �x� �
cos x

xnf �x� � xn sin x

n.f��x�
n � 1,

f

x.f
�x f �x���n�

f �n��x�.
f �4��x�.f����x�,

f � �x�,
f �x� � g�x�h�x�.

f �x� �
1
x

f �x� � xn

f �x�.f �n��x�

t
ss�t� � �8.25t 2 � 66t,

v

v�t� �
100t

2t � 15

t � 3.
0 � t � 6.v�t� � 36 � t 2,

y

x

2

4

1

−2

−1

f

π
2

π π2π
2

3

y

x

2
3
4

1

−4

f

π
2

π
2

3
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t 0 1 2 3 4

s�t�

v�t�

a�t�

120. Particle Motion The figure shows the graphs of the 
position, velocity, and acceleration functions of a particle.

(a) Copy the graphs of the
functions shown. Identify
each graph. Explain your
reasoning. To print an
enlarged copy of the
graph, go to the website 
www.mathgraphs.com.

(b) On your sketch, identify 
when the particle speeds
up and when it slows
down. Explain your 
reasoning.

CAPSTONE

y

t
1−1 4 5 6 7

8
4

12
16
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■ Find the derivative of a composite function using the Chain Rule.
■ Find the derivative of a function using the General Power Rule.
■ Simplify the derivative of a function using algebra.
■ Find the derivative of a trigonometric function using the Chain Rule.

The Chain Rule
This text has yet to discuss one of the most powerful differentiation rules—the Chain
Rule. This rule deals with composite functions and adds a surprising versatility to the
rules discussed in the two previous sections. For example, compare the functions
shown below. Those on the left can be differentiated without the Chain Rule, and those
on the right are best differentiated with the Chain Rule.

Basically, the Chain Rule states that if changes times as fast as and 
changes times as fast as then changes times as fast as 

EXAMPLE 1 The Derivative of a Composite Function

A set of gears is constructed, as shown in Figure 2.24, such that the second and third
gears are on the same axle. As the first axle revolves, it drives the second axle, which in
turn drives the third axle. Let and represent the numbers of revolutions per minute
of the first, second, and third axles, respectively. Find and and
show that

Solution Because the circumference of the second gear is three times that of the first,
the first axle must make three revolutions to turn the second axle once. Similarly, the
second axle must make two revolutions to turn the third axle once, and you can write

and

Combining these two results, you know that the first axle must make six revolutions
to turn the third axle once. So, you can write

.

In other words, the rate of change of with respect to is the product of the rate of
change of with respect to and the rate of change of with respect to ■x.uuy

xy

Rate of change of first axle
with respect to third axle�

�
dy
du

�
du
dx

� 3 � 2 � 6

Rate of change of second axle
with respect to third axle�

Rate of change of first axle
with respect to second axle

dy
dx

�

du
dx

� 2.
dy
du

� 3

dy
dx

�
dy
du

�
du
dx

.

dy�dx,du�dx,dy�du,
xy, u,

x.�dy�du��du�dx�yx,du�dx
uu,dy�duy

y � x � tan x2y � x � tan x

y � �3x � 2�5y � 3x � 2

y � sin 6xy � sin x

y � �x2 � 1y � x 2 � 1

With the Chain RuleWithout the Chain Rule
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2.4 The Chain Rule

1

1
2

Axle 1

Axle 2

Axle 3

Gear 1

Gear 2

Gear 3

Gear 4

3

Axle 1: revolutions per minute
Axle 2: revolutions per minute
Axle 3: revolutions per minute
Figure 2.24

x
u
y
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THEOREM 2.10 THE CHAIN RULE

If is a differentiable function of and is a differentiable
function of then is a differentiable function of and 

or, equivalently,

d
dx

� f �g�x��� � f��g�x��g��x�.

dy
dx

�
dy
du

�
du
dx

xy � f �g�x��x,
u � g�x�uy � f �u�

Example 1 illustrates a simple case of the Chain Rule. The general rule is stated
below.

When applying the Chain Rule, it is helpful to think of the composite function
as having two parts—an inner part and an outer part.

Outer function

Inner function

The derivative of is the derivative of the outer function (at the inner function
) times the derivative of the inner function.

y� � f��u� � u�

u
y � f �u�

y � f �g�x�� � f �u�

f � g

E X P L O R A T I O N

Using the Chain Rule Each of
the following functions can be
differentiated using rules that you
studied in Sections 2.2 and 2.3.
For each function, find the 
derivative using those rules. Then
find the derivative using the Chain
Rule. Compare your results.
Which method is simpler?

a.

b.

c. sin 2x

�x � 2�3

2
3x � 1

PROOF Let Then, using the alternative form of the derivative, you
need to show that, for 

An important consideration in this proof is the behavior of as approaches 
A problem occurs if there are values of other than such that 
Appendix A shows how to use the differentiability of and to overcome this
problem. For now, assume that for values of other than In the proofs
of the Product Rule and the Quotient Rule, the same quantity was added and subtracted
to obtain the desired form. This proof uses a similar technique—multiplying and 
dividing by the same (nonzero) quantity. Note that because is differentiable, it is also
continuous, and it follows that as 

■� f��g�c��g��c�

� � lim
x→c

f �g�x�� � f �g�c��
g�x� � g�c� �� lim

x→c

g�x� � g�c�
x � c �

� lim
x→c �

f �g�x�� � f �g�c��
g�x� � g�c� �

g�x� � g�c�
x � c �,   g�x� � g�c�

h��c� � lim
x→c

f �g�x�� � f �g�c��
x � c

x → c.g�x� → g�c�
g

c.xg�x� � g�c�
gf

g�x� � g�c�.c,x,
c.xg

h��c� � f��g�c��g��c�.

x � c,
h�x� � f �g�x��.
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THEOREM 2.11 THE GENERAL POWER RULE

If where is a differentiable function of and is a rational
number, then

or, equivalently,

d
dx

�un� � nun�1 u�.

dy
dx

� n�u�x��n�1 du
dx

nxuy � �u�x��n,

You could also solve the
problem in Example 3 without using the
Chain Rule by observing that

and

Verify that this is the same as the deriva-
tive in Example 3. Which method would
you use to find

d
dx

�x2 � 1�50?

y� � 6x5 � 12x3 � 6x.

y � x 6 � 3x 4 � 3x 2 � 1

STUDY TIP

EXAMPLE 2 Decomposition of a Composite Function

a.

b.

c.

d.

EXAMPLE 3 Using the Chain Rule

Find for 

Solution For this function, you can consider the inside function to be 
By the Chain Rule, you obtain

■

The General Power Rule
The function in Example 3 is an example of one of the most common types of
composite functions, The rule for differentiating such functions is called
the General Power Rule, and it is a special case of the Chain Rule.

y � �u�x��n.

du
dx

dy
du

dy
dx

� 3�x2 � 1�2�2x� � 6x�x2 � 1�2.

u � x2 � 1.

y � �x2 � 1�3.dy�dx

y � u2u � tan xy � tan2 x

y � �uu � 3x2 � x � 1y � �3x2 � x � 1

y � sin uu � 2xy � sin 2x

y �
1
u

u � x � 1y �
1

x � 1

y � f �u�u � g�x�                  y � f �g�x��                 

PROOF Because you apply the Chain Rule to obtain

By the (Simple) Power Rule in Section 2.2, you have and it follows
that

■
dy
dx

� n�u�x��n�1 du
dx

.

Du �un� � nun�1,

�
d

du
�un� du

dx
.

dy
dx

� �dy
du	�

du
dx	

y � un,



2.4 The Chain Rule 133

EXAMPLE 4 Applying the General Power Rule

Find the derivative of 

Solution Let Then

and, by the General Power Rule, the derivative is

Apply General Power Rule.

Differentiate 

EXAMPLE 5 Differentiating Functions Involving Radicals

Find all points on the graph of for which and those for
which does not exist.

Solution Begin by rewriting the function as

Then, applying the General Power Rule (with produces

Apply General Power Rule.

Write in radical form.

So, when and does not exist when as shown in Figure
2.25.

EXAMPLE 6 Differentiating Quotients with Constant Numerators

Differentiate 

Solution Begin by rewriting the function as

Then, applying the General Power Rule produces

Apply General Power Rule.

Constant
Multiple Rule

Simplify.

Write with positive exponent. ■�
28

�2t � 3�3 .

� 28�2t � 3��3

g��t� � ��7���2��2t � 3��3�2�

u�un�1n

g�t� � �7�2t � 3��2.

g�t� �
�7

�2t � 3�2 .

x � ±1,f��x�x � 0f��x� � 0

�
4x

3 3�x2 � 1
.

f��x� �
2
3

�x2 � 1��1�3 �2x�

u�un�1n

u � x2 � 1�

f �x� � �x2 � 1�2�3.

f��x�
f��x� � 0f �x� � 3��x2 � 1�2

3x � 2x 2.� 3�3x � 2x2�2�3 � 4x�.

f��x� � 3�3x � 2x2�2 d
dx

�3x � 2x2�

u�un�1n

f �x� � �3x � 2x2�3 � u3

u � 3x � 2x2.

f �x� � �3x � 2x2�3.

−2 2

2

−1

−2

−1 1
x

y

f ′(x) =

f(x) =     (x2 − 1)2

4x

3 x2 − 13

3

The derivative of is 0 at and is 
undefined at 
Figure 2.25

x � ±1.
x � 0f

NOTE Try differentiating the function
in Example 6 using the Quotient Rule.
You should obtain the same result, but
using the Quotient Rule is less efficient
than using the General Power Rule.
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Simplifying Derivatives
The next three examples illustrate some techniques for simplifying the “raw deriva-
tives” of functions involving products, quotients, and composites.

EXAMPLE 7 Simplifying by Factoring Out the Least Powers

Original function

Rewrite.

Product Rule

General Power Rule

Simplify.

Factor.

Simplify.

EXAMPLE 8 Simplifying the Derivative of a Quotient

Original function

Rewrite.

Quotient Rule

Factor.

Simplify.

EXAMPLE 9 Simplifying the Derivative of a Power

Original function

General Power Rule

Quotient Rule

Multiply.

Simplify. ■�
2�3x � 1���3x2 � 2x � 9�

�x2 � 3�3

�
2�3x � 1��3x2 � 9 � 6x2 � 2x�

�x2 � 3�3

� �2�3x � 1�
x2 � 3 ���x2 � 3��3� � �3x � 1��2x�

�x2 � 3�2 �

y� � 2 �3x � 1
x2 � 3	

d
dx �

3x � 1
x2 � 3�

u�un�1n

y � �3x � 1
x2 � 3	

2

�
x2 � 12

3�x2 � 4�4�3

�
1
3

�x2 � 4��2�3�3�x2 � 4� � �2x2��1�
�x2 � 4�2�3 �

f��x� �
�x2 � 4�1�3�1� � x�1�3��x2 � 4��2�3�2x�

�x2 � 4�2�3

�
x

�x2 � 4�1�3

f �x� �
x

3�x2 � 4

�
x�2 � 3x2�
�1 � x2

� x�1 � x2��1�2��x2�1� � 2�1 � x2��
� �x3�1 � x2��1�2 � 2x�1 � x2�1�2

� x2�1
2

�1 � x2��1�2��2x�� � �1 � x2�1�2�2x�

f��x� � x2 d
dx

��1 � x2�1�2� � �1 � x2�1�2 d
dx

�x2�

� x2�1 � x2�1�2

f �x� � x2�1 � x2

Symbolic differ-
entiation utilities are capable of
differentiating very complicated
functions. Often, however, the result 
is given in unsimplified form. If you
have access to such a utility, use it to
find the derivatives of the functions
given in Examples 7, 8, and 9. Then
compare the results with those given
in these examples.

TECHNOLOGY
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Trigonometric Functions and the Chain Rule
The “Chain Rule versions” of the derivatives of the six trigonometric functions are as
follows.

EXAMPLE 10 Applying the Chain Rule to Trigonometric Functions

a.

b.

c. ■

Be sure that you understand the mathematical conventions regarding parentheses
and trigonometric functions. For instance, in Example 10(a), is written to mean

EXAMPLE 11 Parentheses and Trigonometric Functions

a.

b.

c.

d.

e.

■

To find the derivative of a function of the form you need to
apply the Chain Rule twice, as shown in Example 12.

EXAMPLE 12 Repeated Application of the Chain Rule

Original function

Rewrite.

Apply Chain Rule once.

Apply Chain Rule a second time.

Simplify. ■� 12 sin2 4t cos 4t

� 3�sin 4t�2�cos 4t��4�

� 3�sin 4t�2�cos 4t� d
dt

�4t�

f��t� � 3�sin 4t�2 
d
dt

�sin 4t�

� �sin 4t�3

f�t� � sin3 4t

k�x� � f�g�h�x���,

y� �
1
2

�cos x��1�2��sin x� � �
sin x

2�cos x
y � �cos x � �cos x�1�2

� �2 cos x sin xy� � 2�cos x���sin x�y � cos2 x � �cos x�2

y� � ��sin 9x2��18x� � �18x sin 9x2y � cos�3x�2 � cos�9x2�
y� � �cos 3��2x� � 2x cos 3y � �cos 3�x2

y� � ��sin 3x2��6x� � �6x sin 3x2y � cos 3x2 � cos�3x2�

sin�2x�.
sin 2x

y� � 3 sec2 3xy � tan 3x

y� � �sin�x � 1�y � cos�x � 1�

y� � cos 2x
d
dx

�2x� � �cos 2x��2� � 2 cos 2xy � sin 2x

u�cos uu

d
dx

�csc u� � ��csc u cot u� u�
d
dx

�sec u� � �sec u tan u� u�

d
dx

�cot u� � ��csc2 u� u�
d
dx

�tan u� � �sec2 u� u�

d
dx

�cos u� � ��sin u� u�
d
dx

�sin u� � �cos u� u�
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EXAMPLE 13 Tangent Line of a Trigonometric Function

Find an equation of the tangent line to the graph of

at the point as shown in Figure 2.26. Then determine all values of in the
interval at which the graph of has a horizontal tangent.

Solution Begin by finding 

Write original function.

Apply Chain Rule to 

Simplify.

To find the equation of the tangent line at evaluate 

Substitute.

Slope of graph at 

Now, using the point-slope form of the equation of a line, you can write

Point-slope form

Substitute for and 

Equation of tangent line at 

You can then determine that when and So, has

horizontal tangents at and ■

This section concludes with a summary of the differentiation rules studied so far.
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6
,

f
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5	
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2
,x �

	

6
,f��x� � 0

�	, 1�y � 1 � 2x � 2	.

x1.y1, m,y � 1 � �2�x � 	�
y � y1 � m�x � x1�

�	, 1�� �2

f��	� � 2 cos 	 � 2 sin 2	

f��	�.�	, 1�,

� 2 cos x � 2 sin 2x

cos 2x.f��x� � 2 cos x � ��sin 2x��2�
f �x� � 2 sin x � cos 2x

f��x�.

f�0, 2	�
x�	, 1�,

f �x� � 2 sin x � cos 2x

SUMMARY OF DIFFERENTIATION RULES

General Differentiation Rules Let and be differentiable functions of .

Chain Rule

d
dx

�un� � nun�1 u�
d
dx

� f�u�� � f��u� u�

General Power Rule:Chain Rule:

d
dx

�csc x� � �csc x cot x
d
dx

�cot x� � �csc2 x
d
dx

�cos x� � �sin x

d
dx

�sec x� � sec x tan x
d
dx

�tan x� � sec2 x
d
dx

�sin x� � cos x

d
dx

�x� � 1
d
dx

�xn� � nxn�1,
d
dx

�c� � 0

�Simple� Power Rule:Constant Rule:

d
dx �

f
g� �

gf� � fg�

g2

d
dx

� fg� � fg� � gf�

Quotient Rule:Product Rule:              

d
dx

� f ± g� � f� ± g�
d
dx

�cf� � cf�

Sum or Difference Rule:Constant Multiple Rule:

xug,f,

Derivatives of Trigonometric
Functions

Derivatives of Algebraic
Functions

y

x
π
2

π

π

π2

−2

−3

−4

1

2

(   , 1)

f(x) = 2 sin x + cos 2x

π
2

3

Figure 2.26

To become skilled at
differentiation, you should memorize
each rule in words, not symbols. As 
an aid to memorization, note that the
cofunctions (cosine, cotangent, and 
cosecant) require a negative sign as part
of their derivatives.

STUDY TIP



In Exercises 1–6, complete the table.

1.

2.

3.

4.

5.

6.

In Exercises 7–36, find the derivative of the function.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

In Exercises 37–42, use a computer algebra system to find the
derivative of the function. Then use the utility to graph the
function and its derivative on the same set of coordinate axes.
Describe the behavior of the function that corresponds to any
zeros of the graph of the derivative.

37. 38.

39. 40.

41. 42.

In Exercises 43 and 44, find the slope of the tangent line to the
sine function at the origin. Compare this value with the number
of complete cycles in the interval What can you conclude
about the slope of the sine function sin at the origin?

43. (a) (b)

44. (a) (b)

In Exercises 45–66, find the derivative of the function.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

In Exercises 67–74, evaluate the derivative of the function at the
given point. Use a graphing utility to verify your result.

67.

68.

69.

70.

71.

72.

73.

74. �	

2
,

2
		y �

1
x

� �cos x,

�0, 25�y � 26 � sec 3 4x,

�2, 3�f �x� �
x � 1

2x � 3
,

�0, �2�f �t� �
3t � 2
t � 1

,

�4,
1
16	f �x� �

1
�x 2 � 3x�2,

��2, �
1
2	f �x� �

5
x 3 � 2

,

�2, 2�y � 5�3x 3 � 4x,

�3, 5�s�t� � �t2 � 6t � 2,

y � cos�sin�tan 	x�y � sin�tan 2x�
y � sin 3�x � 3�sin xy � �x �

1
4 sin�2x�2

y � 3x � 5 cos�	x�2f �t� � 3 sec2�	t � 1�
h�t� � 2 cot2�	t � 2�f �� �

1
4 sin 2 2

g�� � cos2 8f �� � tan2 5

g�t� � 5 cos2 	 ty � 4 sec2 x

g�v� �
cos v
csc v

f �x� �
cot x
sin x

g�� � sec�1
2� tan�1

2�h�x� � sin 2x cos 2x

y � cos�1 � 2x�2y � sin�	x�2

h�x� � sec x 2g�x� � 5 tan 3x

y � sin	xy � cos 4x

x

−2

−1

2

1

π π2

y

y = sin
x
2

π
2

3π
2

x

−2

2

1

π π2

y

y = sin 3x

x

−2

2

1

ππ π2

y

2

y = sin 2x

x

−2

2

1

ππ
2

π2

y

y = sin x

ax
[0, 2�].

y � x 2 tan 
1
x

y �
cos 	 x � 1

x

g�x� � �x � 1 ��x � 1y ��x � 1
x

y �� 2x
x � 1

y �
�x � 1
x 2 � 1

g�t� � ��t � 1 � 1f �x� � �2 � �2 � �x

g�x� � �2 � �x2 � 1�4�3f �x� � ��x2 � 3�5 � x�2

g�x� � �3x2 � 2
2x � 3 	

3

f �v� � �1 � 2v
1 � v 	

3

h�t� � � t 2

t 3 � 2	
2

g�x� � � x � 5
x2 � 2	

2

y �
x

�x 4 � 4
y �

x
�x 2 � 1

y �
1
2 x2�16 � x2y � x�1 � x2

f �x� � x�3x � 9�3f �x� � x2�x � 2�4

g�t� �� 1
t 2 � 2

y �
1

�x � 2

y � �
5

�t � 3�3f �t� � � 1
t � 3	

2

s�t� �
1

t 2 � 3t � 1
y �

1
x � 2

f �x� � �3 4�2 � 9xy � 2 4�9 � x 2

g�x� � �x 2 � 2x � 1y � 3�6x 2 � 1

g�x� � �9 � 4xf �t� � �5 � t

f �t� � �9t � 2�2�3g�x� � 3�4 � 9x�4

y � 2�6 � x2�5y � �4x � 1�3

y � sin
5x
2

y � csc 3x

y � 3 tan�	x2�
y � �x3 � 7

y �
1

�x � 1

y � �5x � 8�4

y � f �u�u � g�x�y � f �g�x��
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2.4 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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In Exercises 75–82, (a) find an equation of the tangent line to
the graph of at the given point, (b) use a graphing utility to
graph the function and its tangent line at the point, and (c) use
the derivative feature of the graphing utility to confirm your
results.

75.

76.

77.

78.

79.

80.

81.

82.

In Exercises 83–86, (a) use a graphing utility to find the
derivative of the function at the given point, (b) find an equation
of the tangent line to the graph of the function at the given
point, and (c) use the utility to graph the function and its
tangent line in the same viewing window.

83.

84.

85.

86.

Famous Curves In Exercises 87 and 88, find an equation of the
tangent line to the graph at the given point. Then use a graph-
ing utility to graph the function and its tangent line in the same
viewing window.

87. Top half of circle 88. Bullet-nose curve

89. Horizontal Tangent Line Determine the point(s) in the
interval at which the graph of 
has a horizontal tangent.

90. Horizontal Tangent Line Determine the point(s) at which the

graph of has a horizontal tangent.

In Exercises 91–96, find the second derivative of the function.

91. 92.

93. 94.

95. 96.

In Exercises 97–100, evaluate the second derivative of the func-
tion at the given point. Use a computer algebra system to verify
your result.

97.

98.

99.

100.

107. Think About It The table shows some values of the deriva-
tive of an unknown function Complete the table by finding
(if possible) the derivative of each transformation of 

(a)

(b)

(c)

(d) s�x� � f �x � 2�
r�x� � f ��3x�
h�x� � 2 f �x�
g�x� � f �x� � 2

f.
f.

�	

6
, �3	g�t� � tan 2t,

�0, 1�f �x� � cos x2,

�0,
1
2	f �x� �

1
�x � 4

,

�1, 64
9 �h�x� �

1
9 �3x � 1�3,

f �x� � sec 2 	 xf �x� � sin x 2

f �x� �
4

�x � 2�3f �x� �
1

x � 6

f �x� � 4�x 2 � 2�3f �x� � 5�2 � 7x�4

f �x� �
x

�2x � 1

f �x� � 2 cos x � sin 2x�0, 2	�

y

x

f (x) =

(1, 1)

−1−2−3 1 2 3

−2

1

2

3

4

2 − x2

⎪x⎪
y

x

f (x) = 25 − x2

(3, 4)

−2−4−6 2 4 6

−4

2

4

6

8

�2, �10�y � �t2 � 9��t � 2,

�0,
4
3	s �t� �

�4 � 2t��1 � t
3

,

�4, 8�f �x� � �x �2 � x�2,

�1
2

,
3
2	g�t� �

3t2

�t2 � 2t � 1
,

�	

4
, 2	y � 2 tan3 x

�	

4
, 1	f �x� � tan 2 x

�	

4
, �

�2
2 	y � cos 3x

�	, 0�f �x� � sin 2x

�1, 4�f �x� � �9 � x2�2�3

��1, 1�y � �4x3 � 3�2

�2, 2�f �x� �
1
3x�x 2 � 5

�4, 5�f �x� � �2x 2 � 7
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In Exercises 101–104, the graphs of a function and its
derivative are shown. Label the graphs as or and write
a short paragraph stating the criteria you used in making
your selection. To print an enlarged copy of the graph, go to
the website www.mathgraphs.com.

101. 102.

103. 104.

In Exercises 105 and 106, the relationship between and is
given. Explain the relationship between and 

105. 106. g�x� � f �x2�g�x� � f �3x�

g�.f�
gf

x
4−2

−4

−2
−3

4
3
2

y

x
3

3

y

x
32 41

3
2

4

y

x

−3

−2 3

−2

3
2

y

f�ff�
f
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Table for 107

In Exercises 109 and 110, the graphs of and are shown. Let
and Find each derivative, if it

exists. If the derivative does not exist, explain why.

109. (a) Find 110. (a) Find 

(b) Find (b) Find 

111. Doppler Effect The frequency of a fire truck siren heard
by a stationary observer is where 
represents the velocity of the accelerating fire truck in meters
per second (see figure). Find the rate of change of with
respect to when

(a) the fire truck is approaching at a velocity of 30 meters per
second (use ).

(b) the fire truck is moving away at a velocity of 30 meters
per second (use ).

112. Harmonic Motion The displacement from equilibrium of an
object in harmonic motion on the end of a spring is 

where is measured in feet and is the time in seconds.
Determine the position and velocity of the object when

113. Pendulum A 15-centimeter pendulum moves according to
the equation where is the angular displace-
ment from the vertical in radians and is the time in seconds.
Determine the maximum angular displacement and the rate of
change of when seconds.

114. Wave Motion A buoy oscillates in simple harmonic motion
as waves move past it. The buoy moves a total of

3.5 feet (vertically) from its low point to its high point. It
returns to its high point every 10 seconds.

(a) Write an equation describing the motion of the buoy if it
is at its high point at 

(b) Determine the velocity of the buoy as a function of 

115. Circulatory System The speed of blood that is centimeters
from the center of an artery is

where is a constant, is the radius of the artery, and 
is measured in centimeters per second. Suppose a drug is
administered and the artery begins to dilate at a rate of 
At a constant distance find the rate at which changes with
respect to for and

116. Modeling Data The normal daily maximum temperatures 
(in degrees Fahrenheit) for Chicago, Illinois are shown in 

the table. (Source: National Oceanic and Atmospheric
Administration)

(a) Use a graphing utility to plot the data and find a model for
the data of the form

where is the temperature and is the time in months,
with corresponding to January.

(b) Use a graphing utility to graph the model. How well does
the model fit the data?

(c) Find and use a graphing utility to graph the derivative.

(d) Based on the graph of the derivative, during what times
does the temperature change most rapidly? Most slowly?
Do your answers agree with your observations of the
temperature changes? Explain.

T�

t � 1
tT

T�t� � a � b sin�ct � d�

T

dR�dt � 10�5.
R � 1.2 
 10�2,C � 1.76 
 105,t

Sr,
dR�dt.

SRC

S � C�R 2 � r 2�

rS

t.

t � 0.

y � A cos �t

t � 3

t
 � 0.2 cos 8t,

t � 	�8.

ty

y �
1
3 cos 12t �

1
4 sin 12t

331 + v
F =

331 − v
F =132,400 132,400

�v

�v

v
F

±vF � 132,400��331 ± v�,
F

x

f

g

2 4 6 8 10

2

4

8

10

y

x

g

2 4 6 8 10

2

6

8

10

f

y

s��9�.s��5�.
h��3�.h��1�.

s�x� � g� f �x��.h�x� � f �g�x��
gf

2.4 The Chain Rule 139

108. Given that and
find (if possible) for each of the following.

If it is not possible, state what additional information 
is required.

(a) (b)

(c) (d) f �x� � �g�x�� 3f �x� �
g�x�
h�x�

f �x� � g�h�x��f �x� � g�x�h�x�

f��5�h��5� � �2,
3,h�5� �g��5� � 6,g�5� � �3,

CAPSTONE

x �2 �1 0 1 2 3

f��x� 4 2
3 �

1
3 �1 �2 �4

g��x�

h��x�

r��x�

s��x�

Month Jan Feb Mar Apr May Jun

Temperature 29.6 34.7 46.1 58.0 69.9 79.2

Month Jul Aug Sep Oct Nov Dec

Temperature 83.5 81.2 73.9 62.1 47.1 34.4



117. Modeling Data The cost of producing units of a product is
For one week management determined the

number of units produced at the end of hours during an 
eight-hour shift. The average values of for the week are
shown in the table.

(a) Use a graphing utility to fit a cubic model to the data.

(b) Use the Chain Rule to find 

(c) Explain why the cost function is not increasing at a
constant rate during the eight-hour shift.

118. Finding a Pattern Consider the function 
where is a constant.

(a) Find the first-, second-, third-, and fourth-order derivatives
of the function.

(b) Verify that the function and its second derivative satisfy
the equation 

(c) Use the results of part (a) to write general rules for the
even- and odd-order derivatives

and

[Hint: is positive if is even and negative if is odd.]

119. Conjecture Let be a differentiable function of period 

(a) Is the function periodic? Verify your answer.

(b) Consider the function Is the function 
periodic? Verify your answer.

120. Think About It Let and 
where and are shown in the figure. Find (a) and (b)

121. (a) Find the derivative of the function 
in two ways.

(b) For and show that

122. (a) Show that the derivative of an odd function is even. That
is, if then 

(b) Show that the derivative of an even function is odd. That
is, if then 

123. Let be a differentiable function of Use the fact that
to prove that

In Exercises 124–127, use the result of Exercise 123 to find the
derivative of the function.

124. 125.

126. 127.

Linear and Quadratic Approximations The linear and quad-
ratic approximations of a function at are

and

In Exercises 128 and 129, (a) find the specified linear and
quadratic approximations of (b) use a graphing utility to
graph and the approximations, (c) determine whether or

is the better approximation, and (d) state how the accuracy
changes as you move farther from 

128. 129.

True or False? In Exercises 130 –132, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

130. If then 

131. If then 

132. If is a differentiable function of is a differentiable
function of and is a differentiable function of then

dy
dx

�
dy
du

du
dv

dv
dx

.

x,vv,
uu,y

f��x� � 2�sin 2x��cos 2x�.f �x� � sin2�2x�,
y� �

1
2�1 � x��1�2.y � �1 � x�1�2,

a �
	

6
a �

	

4

f �x� � sec xf �x� � tan x

x � a.
P2

P1f
f,

P2�x� � 1
2 f��a��x � a� 2 1 f��a��x � a� 1 f �a�.

P1�x� � f��a��x � a� 1 f �a�

x � af

f �x� � �sin x�h�x� � �x� cos x

f �x� � �x 2 � 9�g�x� � �3x � 5�

u � 0.
d
dx

��u�� � u�
u

�u�,
�u� � �u2

x.u

f���x� � �f��x�.f ��x� � f �x�,

f���x� � f��x�.f ��x� � �f �x�,

f��x� �g��x�.

g�x� � tan 2 x,f �x� � sec2 x

g�x� � sin 2 x � cos 2 x

x

g

f

1
2
3
4
5
6
7

1 2 3 4 5 6 7

(2, 4)

(6, 6)

(6, 5)

y

s��4�.
r��1�gf

s�x� � g� f �x��,r�x� � f �g�x��

g��x�g�x� � f �2x�.
f�

p.f

kk��1�k

f �2k�1��x�.f �2k��x�

f � �x� � � 2 f �x� � 0.

�
f �x� � sin �x,

dC�dt.

x
t

C � 60x � 1350.
x
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t 0 1 2 3 4 5 6 7 8

x 0 16 60 130 205 271 336 384 392

133. Let where
are real numbers and where is a positive

integer. Given that for all real prove that

134. Let be a fixed positive integer. The th derivative of

has the form

where is a polynomial. Find 

These problems were composed by the Committee on the Putnam Prize
Competition. © The Mathematical Association of America. All rights reserved.

Pn�1�.Pn�x�

Pn�x�
�xk � 1�n�1

1
xk � 1

nk
�a1 � 2a2 � .  .  . � nan� � 1.

x,� f �x�� � �sin x�
na1, a2, .  .  ., an

f �x� � a1 sin x � a2 sin 2x � .  .  . � an sin nx,

PUTNAM EXAM CHALLENGE
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2.5 Implicit Differentiation
■ Distinguish between functions written in implicit form and explicit form.
■ Use implicit differentiation to find the derivative of a function.

Implicit and Explicit Functions
Up to this point in the text, most functions have been expressed in explicit form. For
example, in the equation

Explicit form

the variable is explicitly written as a function of Some functions, however, are
only implied by an equation. For instance, the function is defined implicitly
by the equation Suppose you were asked to find for this equation. You
could begin by writing explicitly as a function of and then differentiating.

This strategy works whenever you can solve for the function explicitly. You cannot,
however, use this procedure when you are unable to solve for as a function of For
instance, how would you find for the equation

where it is very difficult to express as a function of explicitly? To do this, you can
use implicit differentiation.

To understand how to find implicitly, you must realize that the differentia-
tion is taking place with respect to This means that when you differentiate terms
involving alone, you can differentiate as usual. However, when you differentiate
terms involving you must apply the Chain Rule, because you are assuming that is
defined implicitly as a differentiable function of 

EXAMPLE 1 Differentiating with Respect to x

a. Variables agree: use Simple Power Rule.

Variables agree

b. Variables disagree: use Chain Rule.

Variables disagree

c. Chain Rule:

d. Product Rule

Chain Rule

Simplify. ■� 2xy
dy
dx

� y2

� x�2y
dy
dx	 � y2�1�

d
dx

�xy2� � x
d
dx

� y2� � y2 d
dx

�x�

d
dx

�3y� � 3y�
d
dx

�x � 3y� � 1 � 3
dy
dx

d
dx

�y3� � 3y2 dy
dx

u�nun�1un

d
dx

�x3� � 3x2

x.
yy,

x
x.

dy�dx

xy

x2 � 2y3 � 4y � 2

dy�dx
x.y

dy
dx

� �x�2 � �
1
x2y �

1
x

� x�1xy � 1

Derivative                   Explicit FormImplicit Form

xy
dy�dxxy � 1.

y � 1�x
x.y

y � 3x2 � 5

E X P L O R A T I O N

Graphing an Implicit Equation
How could you use a graphing
utility to sketch the graph of the
equation

Here are two possible approaches.

a. Solve the equation for Switch
the roles of and and graph
the two resulting equations. The
combined graphs will show a

rotation of the graph of the
original equation.

b. Set the graphing utility to
parametric mode and graph
the equations

and

From either of these two
approaches, can you decide
whether the graph has a tangent
line at the point Explain
your reasoning.

�0, 1�?

y � t.

x � �2t3 � 4t � 2

y � t

x � ��2t3 � 4t � 2

90�

yx
x.

x2 � 2y3 � 4y � 2?
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Implicit Differentiation

In Example 2, note that implicit differentiation can produce an expression for
that contains both and 

EXAMPLE 2 Implicit Differentiation

Find given that 

Solution

1. Differentiate both sides of the equation with respect to 

2. Collect the terms on the left side of the equation and move all other terms to
the right side of the equation.

3. Factor out of the left side of the equation.

4. Solve for by dividing by 

■

To see how you can use an implicit derivative, consider the graph shown in Figure
2.27. From the graph, you can see that is not a function of Even so, the derivative
found in Example 2 gives a formula for the slope of the tangent line at a point on this
graph. The slopes at several points on the graph are shown below the graph.

x.y

dy
dx

�
2x

3y2 � 2y � 5

�3y2 � 2y � 5�.dy�dx

dy
dx

�3y2 � 2y � 5� � 2x

dy�dx

3y2 dy
dx

� 2y
dy
dx

� 5
dy
dx

� 2x

dy�dx

 3y2 dy
dx

� 2y
dy
dx

� 5
dy
dx

� 2x � 0

d
dx

�y3� �
d
dx

� y2� �
d
dx

�5y� �
d
dx

�x2� �
d
dx

��4�

d
dx

�y3 � y2 � 5y � x2� �
d
dx

��4�

x.

y3 � y2 � 5y � x2 � �4.dy�dx

y.xdy�dx

GUIDELINES FOR IMPLICIT DIFFERENTIATION

1. Differentiate both sides of the equation with respect to 

2. Collect all terms involving on the left side of the equation and move all
other terms to the right side of the equation.

3. Factor out of the left side of the equation.

4. Solve for dy�dx.

dy�dx

dy�dx

x.

With most graphing utilities, it is easy to graph an equation that
explicitly represents as a function of Graphing other equations, however, can
require some ingenuity. For instance, to graph the equation given in Example 2, use
a graphing utility, set in parametric mode, to graph the parametric representations

and for
How does the result compare with the graph shown in Figure 2.27?�5 � t � 5.

y � t,x � ��t3 � t2 � 5t � 4,y � t,x � �t3 � t2 � 5t � 4,

x.y
TECHNOLOGY

x
1 2

2

1

3−1
−1

−2

−2

−3

−4

(1, −3)

(2, 0)
(1, 1)

y3 + y2 − 5y − x2 = −4

y

Undefined

The implicit equation

has the derivative

Figure 2.27

dy
dx

�
2x

3y2 � 2y � 5
.

y3 � y2 � 5y � x2 � �4

�1, 1�
0x � 0

1
8�1, �3�
�

4
5�2, 0�

Slope of GraphPoint on Graph



It is meaningless to solve for in an equation that has no solution points.
(For example, has no solution points.) If, however, a segment of a
graph can be represented by a differentiable function, will have meaning as the
slope at each point on the segment. Recall that a function is not differentiable at (a)
points with vertical tangents and (b) points at which the function is not continuous.

EXAMPLE 3 Representing a Graph by Differentiable Functions

If possible, represent as a differentiable function of 

a. b. c.

Solution

a. The graph of this equation is a single point. So, it does not define as a
differentiable function of See Figure 2.28(a).

b. The graph of this equation is the unit circle, centered at The upper semicircle
is given by the differentiable function

and the lower semicircle is given by the differentiable function

At the points and the slope of the graph is undefined. See Figure
2.28(b).

c. The upper half of this parabola is given by the differentiable function

and the lower half of this parabola is given by the differentiable function

At the point the slope of the graph is undefined. See Figure 2.28(c).

EXAMPLE 4 Finding the Slope of a Graph Implicitly

Determine the slope of the tangent line to the graph of

at the point See Figure 2.29.

Solution

Write original equation.

Differentiate with respect to 

Solve for 

So, at the slope is

Evaluate when and 

■

y � �
1
�2

.x � �2
dy
dx

dy
dx

�
��2

�4��2
�

1
2

.

��2, �1��2 �,

dy
dx

.
dy
dx

�
�2x
8y

�
�x
4y

x. 2x � 8y
dy
dx

� 0

x2 � 4y2 � 4

��2, �1��2 �.
x2 � 4y2 � 4

�1, 0�,

y � ��1 � x,  x < 1.

y � �1 � x,  x < 1

�1, 0�,��1, 0�

y � ��1 � x2,  �1 < x < 1.

y � �1 � x2,  �1 < x < 1

�0, 0�.
x.

y

x � y2 � 1x2 � y2 � 1x2 � y2 � 0

x.y

dy�dx
x2 � y2 � �4

dy�dx

2.5 Implicit Differentiation 143

NOTE To see the benefit of implicit differentiation, try doing Example 4 using the explicit
function ■y � �

1
2�4 � x2.

x

1

1

−1

−1

(0, 0)
x2 + y2 = 0

y

(a)

x

1

1

−1

−1

(−1, 0) (1, 0)

y =     1 − x2

y = −     1 − x2

y

(b)

x

1

1

−1

(1, 0)

−1

y = −    1 − x

y =     1 − x

y

(c)
Some graph segments can be represented by
differentiable functions.
Figure 2.28

x
1

2

−1

−2
2, − )) 1

x2 + 4y2 = 4

y

2

Figure 2.29



EXAMPLE 5 Finding the Slope of a Graph Implicitly

Determine the slope of the graph of at the point 

Solution

At the point the slope of the graph is

as shown in Figure 2.30. This graph is called a lemniscate.

EXAMPLE 6 Determining a Differentiable Function

Find implicitly for the equation Then find the largest interval of the
form on which is a differentiable function of (see Figure 2.31).

Solution

The largest interval about the origin for which is a differentiable function of is
To see this, note that is positive for all in this interval and

is 0 at the endpoints. If you restrict to the interval you should be
able to write explicitly as a function of To do this, you can use

and conclude that

■

You will study this example further when inverse trigonometric functions are defined
in Section 5.6.
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.
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x
1−1

π
2

π
2

−

2
− π3

−1, −π
2))

1,
π
2))

sin y = x

y

The derivative is 

Figure 2.31
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3(x2 + y2)2 = 100xy

y
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Figure 2.30



With implicit differentiation, the form of the derivative often can be simplified (as
in Example 6) by an appropriate use of the original equation. A similar technique can
be used to find and simplify higher-order derivatives obtained implicitly.

EXAMPLE 7 Finding the Second Derivative Implicitly

Given find Evaluate the first and second derivatives at the point

Solution Differentiating each term with respect to produces

At

Differentiating a second time with respect to yields

Quotient Rule

At

EXAMPLE 8 Finding a Tangent Line to a Graph

Find the tangent line to the graph given by at the point
as shown in Figure 2.32.

Solution By rewriting and differentiating implicitly, you obtain

At the point the slope is

and the equation of the tangent line at this point is

■y � 3x � �2.

y �
�2
2

� 3�x �
�2
2 	

dy
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�
��2�2��2�1�2� � �1�2��
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ISAAC BARROW (1630–1677)

The graph in Figure 2.32 is called the kappa
curve because it resembles the Greek letter
kappa, The general solution for the 
tangent line to this curve was discovered 
by the English mathematician Isaac Barrow.
Newton was Barrow’s student, and they 
corresponded frequently regarding their work
in the early development of calculus.
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The kappa curve
Figure 2.32



In Exercises 1–16, find by implicit differentiation.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

In Exercises 17–20, (a) find two explicit functions by solving the
equation for in terms of (b) sketch the graph of the equation
and label the parts given by the corresponding explicit 
functions, (c) differentiate the explicit functions, and (d) find

and show that the result is equivalent to that of part (c).

17. 18.

19. 20.

In Exercises 21–28, find by implicit differentiation and
evaluate the derivative at the given point.

21.

22.

23.

24.

25.

26.

27.

28.

Famous Curves In Exercises 29– 32, find the slope of the 
tangent line to the graph at the given point.

29. Witch of Agnesi: 30. Cissoid:

Point: Point:

31. Bifolium: 32. Folium of Descartes:

Point: Point:

Famous Curves In Exercises 33– 40, find an equation of the
tangent line to the graph at the given point. To print an enlarged
copy of the graph, go to the website www.mathgraphs.com.

33. Parabola 34. Circle

35. Rotated hyperbola 36. Rotated ellipse

37. Cruciform 38. Astroid

y

x
(8, 1)

12

−12

12

x2/3 + y2/3 = 5
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−4, 2    3

−2−4−6 4 62
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7x2 − 6    3xy + 13y2 − 16 = 0
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xy = 1
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−2−4 4 6
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4
6
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(x + 2)2 + (y − 3)2 = 37

(4, 4)
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x
(6, 1)

(y − 3)2 = 4(x − 5)

2 4 6 8 14−2
−4
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2
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2

2 3
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4
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−2

y

x

1

1

2

2
−1

−1
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�4
3, 8

3��1, 1�
x3 � y3 � 6xy � 0�x2 � y 2�2 � 4x2y
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2 3

1

2

−1

−2

y
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1

1
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2
−1

−1−2
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�2, 2��2, 1�
�4 � x�y 2 � x3�x2 � 4�y � 8

�2,
	

3	x cos y � 1,

�0, 0�tan�x � y� � x,

�2, 3�x3 � y3 � 6xy � 1,

�8, 1�x 2�3 � y 2�3 � 5,

��1, 1��x � y�3 � x3 � y3,

�7, 0�y2 �
x2 � 49
x2 � 49

,

�1, 1�x2 � y3 � 0,

��6, �1�xy � 6,

dy/dx

16y2 � x2 � 1616x2 � 25y2 � 400

x2 � y 2 � 4x � 6y � 9 � 0x2 � y 2 � 64

dy/dx

x,y

x � sec
1
y

y � sin xy

cot y � x � ysin x � x�1 � tan y�
�sin 	x � cos 	y�2 � 2sin x � 2 cos 2y � 1

4 cos x sin y � 1x3 � 3x2y � 2xy2 � 12

�xy � x2y � 1x3y3 � y � x

x 2y � y 2x � �2x3 � xy � y 2 � 7

x3 � y3 � 64x1�2 � y1�2 � 16

x2 � y 2 � 25x2 � y 2 � 9

dy/dx
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39. Lemniscate 40. Kappa curve

41. (a) Use implicit differentiation to find an equation of the

tangent line to the ellipse at 

(b) Show that the equation of the tangent line to the ellipse

at is 

42. (a) Use implicit differentiation to find an equation of the

tangent line to the hyperbola at 

(b) Show that the equation of the tangent line to the hyperbola

at is 

In Exercises 43 and 44, find implicitly and find the largest
interval of the form or such that is 
a differentiable function of Write as a function of 

43. 44.

In Exercises 45–50, find in terms of and 

45. 46.

47. 48.

49. 50.

In Exercises 51 and 52, use a graphing utility to graph the
equation. Find an equation of the tangent line to the graph at
the given point and graph the tangent line in the same viewing
window.

51. 52.

In Exercises 53 and 54, find equations for the tangent line and
normal line to the circle at each given point. (The normal line at
a point is perpendicular to the tangent line at the point.) Use a
graphing utility to graph the equation, tangent line, and normal
line.

53. 54.

55. Show that the normal line at any point on the circle
passes through the origin.

56. Two circles of radius 4 are tangent to the graph of at
the point Find equations of these two circles.

In Exercises 57 and 58, find the points at which the graph of the
equation has a vertical or horizontal tangent line.

57.

58.

Orthogonal Trajectories In Exercises 59– 62, use a graphing
utility to sketch the intersecting graphs of the equations and show
that they are orthogonal. [Two graphs are orthogonal if at their
point(s) of intersection their tangent lines are perpendicular to
each other.]

59. 60.

61. 62.

Orthogonal Trajectories In Exercises 63 and 64, verify that the
two families of curves are orthogonal where and are real
numbers. Use a graphing utility to graph the two families for
two values of and two values of 

63. 64.

In Exercises 65–68, differentiate (a) with respect to ( is a func-
tion of ) and (b) with respect to ( and are functions of ).

65.

66.

67.

68.

71. Orthogonal Trajectories The figure below shows the
topographic map carried by a group of hikers. The hikers are in
a wooded area on top of the hill shown on the map and they
decide to follow a path of steepest descent (orthogonal
trajectories to the contours on the map). Draw their routes if
they start from point and if they start from point If their
goal is to reach the road along the top of the map, which
starting point should they use? To print an enlarged copy of the
graph, go to the website www.mathgraphs.com.
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69. Describe the difference between the explicit form of a
function and an implicit equation. Give an example of each.

70. In your own words, state the guidelines for implicit
differentiation.

WRITING ABOUT CONCEPTS

www.mathgraphs.com
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72. Weather Map The weather map shows several isobars—
curves that represent areas of constant air pressure. Three high
pressures and one low pressure are shown on the map.
Given that wind speed is greatest along the orthogonal
trajectories of the isobars, use the map to determine the areas
having high wind speed.

73. Consider the equation 

(a) Use a graphing utility to graph the equation.

(b) Find and graph the four tangent lines to the curve for 

(c) Find the exact coordinates of the point of intersection of the
two tangent lines in the first quadrant.

75. Let be any tangent line to the curve Show
that the sum of the and intercepts of is 

76. Prove (Theorem 2.3) that for the case in
which is a rational number. (Hint: Write in the form

and differentiate implicitly. Assume that and are
integers, where )

77. Slope Find all points on the circle where the
slope is 

78. Horizontal Tangent Determine the point(s) at which the graph
of has a horizontal tangent.

79. Tangent Lines Find equations of both tangent lines to the

ellipse that passes through the point 

80. Normals to a Parabola The graph shows the normal lines
from the point to the graph of the parabola How
many normal lines are there from the point to the graph

of the parabola if (a) (b) and (c)
For what value of are two of the normal lines perpendicular
to each other?

81. Normal Lines (a) Find an equation of the normal line to the

ellipse at the point (b) Use a graphing

utility to graph the ellipse and the normal line. (c) At what other
point does the normal line intersect the ellipse?
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32
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x
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c.Ly-x-
�x � �y � �c.L

y � 3.
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H
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H
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74. Determine if the statement is true. If it is false, explain why
and correct it. For each statement, assume is a function of 

(a) (b)

(c)
d
dx

cos�y2� � �2y sin�y2�

d
dy

cos�y2� � 2y sin�y2�d
dx

cos�x2� � �2x sin�x2�

x.y

CAPSTONE

In each graph below, an optical illusion is created by having
lines intersect a family of curves. In each case, the lines appear
to be curved. Find the value of for the given values of 
and

(a) Circles: (b) Hyperbolas:

(c) Lines: (d) Cosine curves:

x

y

x

y

a � �3, b � 1

x � �3, y � 3,

y � C cos xax � by

x

y

x

y

x � 1, y � 4, C � 4x � 3, y � 4, C � 5

xy � Cx2 � y 2 � C 2

y.
xdy/dx

Optical Illusions

S E C T I O N  P R O J E C T

x �
	

3
, y �

1
3

, C �
2
3

■ FOR FURTHER INFORMATION For more information on
the mathematics of optical illusions, see the article “Descriptive
Models for Perception of Optical Illusions” by David A. Smith
in The UMAP Journal.
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2.6 Related Rates
■ Find a related rate.
■ Use related rates to solve real-life problems.

Finding Related Rates
You have seen how the Chain Rule can be used to find implicitly. Another
important use of the Chain Rule is to find the rates of change of two or more related
variables that are changing with respect to time.

For example, when water is drained out of a conical tank (see Figure 2.33), the
volume the radius and the height of the water level are all functions of time 
Knowing that these variables are related by the equation

Original equation

you can differentiate implicitly with respect to to obtain the related-rate equation

Differentiate with respect to 

From this equation you can see that the rate of change of is related to the rates of
change of both and 

EXAMPLE 1 Two Rates That Are Related

Suppose and are both differentiable functions of and are related by the equation
Find when given that when 

Solution Using the Chain Rule, you can differentiate both sides of the equation with
respect to

Write original equation.

Differentiate with respect to 

Chain Rule

When and you have

■
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E X P L O R A T I O N

Finding a Related Rate In the conical tank shown in Figure 2.33, suppose that
the height of the water level is changing at a rate of foot per minute and
the radius is changing at a rate of foot per minute. What is the rate of
change in the volume when the radius is foot and the height is feet?
Does the rate of change in the volume depend on the values of and Explain.h?r

h � 2r � 1
�0.1

�0.2

■ FOR FURTHER INFORMATION To 
learn more about the history of related-
rate problems, see the article “The
Lengthening Shadow: The Story of
Related Rates” by Bill Austin, Don Barry,
and David Berman in Mathematics
Magazine. To view this article, go to 
the website www.matharticles.com.
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r

h

r
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r

Volume is related to radius and height.
Figure 2.33
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Problem Solving with Related Rates
In Example 1, you were given an equation that related the variables and and were
asked to find the rate of change of when 

Equation:

Given rate: when

Find: when

In each of the remaining examples in this section, you must create a mathematical
model from a verbal description.

EXAMPLE 2 Ripples in a Pond

A pebble is dropped into a calm pond, causing ripples in the form of concentric
circles, as shown in Figure 2.34. The radius of the outer ripple is increasing at a
constant rate of 1 foot per second. When the radius is 4 feet, at what rate is the total
area of the disturbed water changing?

Solution The variables and are related by The rate of change of the
radius is 

Equation:

Given rate:

Find: when

With this information, you can proceed as in Example 1.

Differentiate with respect to 

Chain Rule

Substitute 4 for and 1 for 

When the radius is 4 feet, the area is changing at a rate of square feet per second.
■

8	

dr�dt.r
dA
dt

� 2	 �4��1� � 8	

dA
dt

� 2	r
dr
dt

t.
d
dt

�A� �
d
dt

�	r2�

r � 4
dA
dt

dr
dt

� 1

A � 	r2

dr�dt � 1.r
A � 	r2.Ar

A

r

x � 1
dy
dt

x � 1
dx
dt

� 2

y � x2 � 3

x � 1.y
yx

GUIDELINES FOR SOLVING RELATED-RATE PROBLEMS

1. Identify all given quantities and quantities to be determined. Make a sketch
and label the quantities.

2. Write an equation involving the variables whose rates of change either are
given or are to be determined.

3. Using the Chain Rule, implicitly differentiate both sides of the equation with
respect to time 

4. After completing Step 3, substitute into the resulting equation all known
values for the variables and their rates of change. Then solve for the required
rate of change.

t.
NOTE When using these guidelines,

be sure you perform Step 3 before 
Step 4. Substituting the known values 
of the variables before differentiating
will produce an inappropriate derivative.

Total area increases as the outer radius increases.
Figure 2.34
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The table below lists examples of mathematical models involving rates of change.
For instance, the rate of change in the first example is the velocity of a car.

EXAMPLE 3 An Inflating Balloon

Air is being pumped into a spherical balloon (see Figure 2.35) at a rate of 4.5 cubic
feet per minute. Find the rate of change of the radius when the radius is 2 feet.

Solution Let be the volume of the balloon and let be its radius. Because the 
volume is increasing at a rate of 4.5 cubic feet per minute, you know that at time the
rate of change of the volume is So, the problem can be stated as shown.

Given rate: (constant rate)

Find: when

To find the rate of change of the radius, you must find an equation that relates the
radius to the volume 

Equation: Volume of a sphere

Differentiating both sides of the equation with respect to produces

Differentiate with respect to 

Solve for 

Finally, when the rate of change of the radius is

foot per minute. ■

In Example 3, note that the volume is increasing at a constant rate but the radius
is increasing at a variable rate. Just because two rates are related does not mean that
they are proportional. In this particular case, the radius is growing more and more
slowly as increases. Do you see why?t

dr
dt
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16	 �9
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9
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Verbal Statement Mathematical Model

The velocity of a car after traveling for 1 hour
is 50 miles per hour.

distance traveled

when t � 1
dx
dt

� 50

x �

Water is being pumped into a swimming pool
at a rate of 10 cubic meters per hour.

volume of water in pool
dV
dt

� 10 m3�hr

V �

A gear is revolving at a rate of 25 revolutions
per minute revolution � 2	 rad�.�1

angle of revolution
d

dt
� 25�2	� rad�min

 �

Inflating a balloon
Figure 2.35
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EXAMPLE 4 The Speed of an Airplane Tracked by Radar

An airplane is flying on a flight path that will take it directly over a radar tracking 
station, as shown in Figure 2.36. If is decreasing at a rate of 400 miles per hour when

miles, what is the speed of the plane?

Solution Let be the horizontal distance from the station, as shown in Figure 2.36.
Notice that when 

Given rate: when

Find: when and

You can find the velocity of the plane as shown.

Equation: Pythagorean Theorem

Differentiate with respect to 

Solve for 

Substitute for and 

miles per hour Simplify.

Because the velocity is miles per hour, the speed is 500 miles per hour.
■

EXAMPLE 5 A Changing Angle of Elevation

Find the rate of change in the angle of elevation of the camera shown in Figure 2.37
at 10 seconds after lift-off.

Solution Let be the angle of elevation, as shown in Figure 2.37. When the
height of the rocket is feet.

Given rate: velocity of rocket

Find: when and

Using Figure 2.37, you can relate and by the equation 

Equation: See Figure 2.37.

Differentiate with respect to 

Substitute for 

When and you have

radian per second.

So, when is changing at a rate of radian per second. ■
2
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� 2s
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s � 10ds�dt � �400
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x
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s

NOTE Note that the velocity in Example 4 is negative because represents a distance that is
decreasing. ■

x

s

x

Not drawn to scale

6 mi

An airplane is flying at an altitude of 6 miles,
miles from the station.

Figure 2.36
s

s
θ

θ
2000 ft

tan    = s
2000

Not drawn to scale

A television camera at ground level is filming
the lift-off of a space shuttle that is rising
vertically according to the position equation

where is measured in feet and is
measured in seconds. The camera is 2000 feet
from the launch pad.
Figure 2.37
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EXAMPLE 6 The Velocity of a Piston

In the engine shown in Figure 2.38, a 7-inch connecting rod is fastened to a crank 
of radius 3 inches. The crankshaft rotates counterclockwise at a constant rate of 200
revolutions per minute. Find the velocity of the piston when 

The velocity of a piston is related to the angle of the crankshaft.
Figure 2.38

Solution Label the distances as shown in Figure 2.38. Because a complete
revolution corresponds to radians, it follows that 
radians per minute.

Given rate: (constant rate)

Find: when

You can use the Law of Cosines (Figure 2.39) to find an equation that relates and 

Equation:

When you can solve for as shown.

Choose positive solution.

So, when and the velocity of the piston is

■� �4018 inches per minute.
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b

c

θ

a

Law of Cosines:

Figure 2.39
b2 � a2 � c2 � 2ac cos 

NOTE Note that the velocity in Example 6 is negative because represents a distance that is
decreasing. ■
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2.6 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1– 4, assume that and are both differentiable
functions of and find the required values of and 

1. (a) when 

(b) when 

2. (a) when 

(b) when 

3. (a) when 

(b) when 

4. (a) when 

(b) when 

In Exercises 5–8, a point is moving along the graph of the given
function such that is 2 centimeters per second. Find 
for the given values of 

5. (a) (b) (c)

6. (a) (b) (c)

7. (a) (b) (c)

8. (a) (b) (c)

11. Find the rate of change of the distance between the origin 
and a moving point on the graph of if 
centimeters per second.

12. Find the rate of change of the distance between the origin 
and a moving point on the graph of if 
centimeters per second.

13. Area The radius of a circle is increasing at a rate of 4
centimeters per minute. Find the rates of change of the area
when (a) centimeters and (b) centimeters.

14. Area Let be the area of a circle of radius that is changing
with respect to time. If is constant, is constant?
Explain.

15. Area The included angle of the two sides of constant equal
length of an isosceles triangle is 

(a) Show that the area of the triangle is given by 

(b) If is increasing at the rate of radian per minute, find the
rates of change of the area when and 

(c) Explain why the rate of change of the area of the triangle is
not constant even though is constant.

16. Volume The radius of a sphere is increasing at a rate of 
3 inches per minute.

(a) Find the rates of change of the volume when inches
and inches.

(b) Explain why the rate of change of the volume of the sphere
is not constant even though is constant.

17. Volume A spherical balloon is inflated with gas at the rate of
800 cubic centimeters per minute. How fast is the radius of the
balloon increasing at the instant the radius is (a) 30 centimeters
and (b) 60 centimeters?

18. Volume All edges of a cube are expanding at a rate of 
6 centimeters per second. How fast is the volume changing
when each edge is (a) 2 centimeters and (b) 10 centimeters?

19. Surface Area The conditions are the same as in Exercise 18.
Determine how fast the surface area is changing when each
edge is (a) 2 centimeters and (b) 10 centimeters.

20. Volume The formula for the volume of a cone is 
Find the rates of change of the volume if is 2 inches 
per minute and when (a) inches and (b) 
inches.

21. Volume At a sand and gravel plant, sand is falling off a
conveyor and onto a conical pile at a rate of 10 cubic feet per
minute. The diameter of the base of the cone is approximately
three times the altitude. At what rate is the height of the pile
changing when the pile is 15 feet high?

22. Depth A conical tank (with vertex down) is 10 feet across the
top and 12 feet deep. If water is flowing into the tank at a rate
of 10 cubic feet per minute, find the rate of change of the depth
of the water when the water is 8 feet deep.

23. Depth A swimming pool is 12 meters long, 6 meters wide,
1 meter deep at the shallow end, and 3 meters deep at the deep
end (see figure on next page). Water is being pumped into the
pool at cubic meter per minute, and there is 1 meter of water
at the deep end.

(a) What percent of the pool is filled?

(b) At what rate is the water level rising?
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9. Consider the linear function If changes at a
constant rate, does change at a constant rate? If so, does it
change at the same rate as Explain.

10. In your own words, state the guidelines for solving related-
rate problems.

x?
y

xy � ax � b.

WRITING ABOUT CONCEPTS
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Figure for 23 Figure for 24

24. Depth A trough is 12 feet long and 3 feet across the top (see
figure). Its ends are isosceles triangles with altitudes of 3 feet.

(a) If water is being pumped into the trough at 2 cubic feet per
minute, how fast is the water level rising when the depth 
is 1 foot?

(b) If the water is rising at a rate of inch per minute when
determine the rate at which water is being pumped

into the trough.

25. Moving Ladder A ladder 25 feet long is leaning against the
wall of a house (see figure). The base of the ladder is pulled
away from the wall at a rate of 2 feet per second.

(a) How fast is the top of the ladder moving down the wall
when its base is 7 feet, 15 feet, and 24 feet from the wall?

(b) Consider the triangle formed by the side of the house, the
ladder, and the ground. Find the rate at which the area of
the triangle is changing when the base of the ladder is 7 feet
from the wall.

(c) Find the rate at which the angle between the ladder and the
wall of the house is changing when the base of the ladder is
7 feet from the wall.

Figure for 25 Figure for 26

26. Construction A construction worker pulls a five-meter plank
up the side of a building under construction by means of a rope
tied to one end of the plank (see figure). Assume the opposite
end of the plank follows a path perpendicular to the wall of the
building and the worker pulls the rope at a rate of 0.15 meter
per second. How fast is the end of the plank sliding along the
ground when it is 2.5 meters from the wall of the building?

27. Construction A winch at the top of a 12-meter building pulls
a pipe of the same length to a vertical position, as shown in the
figure. The winch pulls in rope at a rate of meter per
second. Find the rate of vertical change and the rate of horizontal
change at the end of the pipe when 

Figure for 27 Figure for 28

28. Boating A boat is pulled into a dock by means of a winch 
12 feet above the deck of the boat (see figure).

(a) The winch pulls in rope at a rate of 4 feet per second.
Determine the speed of the boat when there is 13 feet of
rope out. What happens to the speed of the boat as it gets
closer to the dock?

(b) Suppose the boat is moving at a constant rate of 4 feet per
second. Determine the speed at which the winch pulls in
rope when there is a total of 13 feet of rope out. What
happens to the speed at which the winch pulls in rope as the
boat gets closer to the dock?

29. Air Traffic Control An air traffic controller spots two planes
at the same altitude converging on a point as they fly at right
angles to each other (see figure). One plane is 225 miles from
the point moving at 450 miles per hour. The other plane is 
300 miles from the point moving at 600 miles per hour.

(a) At what rate is the distance between the planes decreasing?

(b) How much time does the air traffic controller have to get
one of the planes on a different flight path?

Figure for 29 Figure for 30

30. Air Traffic Control An airplane is flying at an altitude of 
5 miles and passes directly over a radar antenna (see figure).
When the plane is 10 miles away the radar detects
that the distance is changing at a rate of 240 miles per hour.
What is the speed of the plane?
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■ FOR FURTHER INFORMATION For more information on the
mathematics of moving ladders, see the article “The Falling Ladder
Paradox” by Paul Scholten and Andrew Simoson in The College
Mathematics Journal. To view this article, go to the website
www.matharticles.com.

www.matharticles.com


156 Chapter 2 Differentiation

31. Sports A baseball diamond has the shape of a square with
sides 90 feet long (see figure). A player running from second
base to third base at a speed of 25 feet per second is 20 feet
from third base. At what rate is the player’s distance from
home plate changing?

Figure for 31 and 32 Figure for 33

32. Sports For the baseball diamond in Exercise 31, suppose the
player is running from first to second at a speed of 25 feet per
second. Find the rate at which the distance from home plate is
changing when the player is 20 feet from second base.

33. Shadow Length A man 6 feet tall walks at a rate of 5 feet per
second away from a light that is 15 feet above the ground (see
figure). When he is 10 feet from the base of the light,

(a) at what rate is the tip of his shadow moving?

(b) at what rate is the length of his shadow changing?

34. Shadow Length Repeat Exercise 33 for a man 6 feet tall
walking at a rate of 5 feet per second toward a light that is 
20 feet above the ground (see figure).

Figure for 34 Figure for 35

35. Machine Design The endpoints of a movable rod of length 
1 meter have coordinates and (see figure). The
position of the end on the axis is

where is the time in seconds.

(a) Find the time of one complete cycle of the rod.

(b) What is the lowest point reached by the end of the rod on
the axis?

(c) Find the speed of the axis endpoint when the axis

endpoint is 

36. Machine Design Repeat Exercise 35 for a position function
of Use the point for part (c).

37. Evaporation As a spherical raindrop falls, it reaches a layer
of dry air and begins to evaporate at a rate that is proportional
to its surface area Show that the radius of the
raindrop decreases at a constant rate.

39. Electricity The combined electrical resistance of and 
connected in parallel, is given by 

where and are measured in ohms. and are
increasing at rates of 1 and 1.5 ohms per second, respectively. At
what rate is changing when ohms and ohms?

40. Adiabatic Expansion When a certain polyatomic gas
undergoes adiabatic expansion, its pressure and volume 
satisfy the equation where is a constant. Find the
relationship between the related rates and 

41. Roadway Design Cars on a certain roadway travel on a
circular arc of radius In order not to rely on friction alone to
overcome the centrifugal force, the road is banked at an angle
of magnitude from the horizontal (see figure). The banking
angle must satisfy the equation where is the
velocity of the cars and feet per second per second is
the acceleration due to gravity. Find the relationship between
the related rates and 

42. Angle of Elevation A balloon rises at a rate of 4 meters per
second from a point on the ground 50 meters from an observer.
Find the rate of change of the angle of elevation of the balloon
from the observer when the balloon is 50 meters above the
ground.
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38. Using the graph of (a) determine whether is 
positive or negative given that is negative, and 
(b) determine whether is positive or negative given
that is positive.

(i) (ii)
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43. Angle of Elevation A fish is reeled in at a rate of 1 foot per
second from a point 10 feet above the water (see figure). At
what rate is the angle between the line and the water changing
when there is a total of 25 feet of line from the end of the rod
to the water?

Figure for 43 Figure for 44

44. Angle of Elevation An airplane flies at an altitude of 5 miles
toward a point directly over an observer (see figure). The speed
of the plane is 600 miles per hour. Find the rates at which the
angle of elevation is changing when the angle is (a)
(b) and (c) 

45. Linear vs. Angular Speed A patrol car is parked 50 feet from
a long warehouse (see figure). The revolving light on top of the
car turns at a rate of 30 revolutions per minute. How fast is the
light beam moving along the wall when the beam makes angles
of (a) (b) and (c) with the
perpendicular line from the light to the wall?

Figure for 45 Figure for 46

46. Linear vs. Angular Speed A wheel of radius 30 centimeters
revolves at a rate of 10 revolutions per second. A dot is painted
at a point on the rim of the wheel (see figure).

(a) Find as a function of 

(b) Use a graphing utility to graph the function in part (a).

(c) When is the absolute value of the rate of change of 
greatest? When is it least?

(d) Find when and 

47. Flight Control An airplane is flying in still air with an
airspeed of 275 miles per hour. If it is climbing at an angle of

find the rate at which it is gaining altitude.

48. Security Camera A security camera is centered 50 feet above
a 100-foot hallway (see figure). It is easiest to design the 
camera with a constant angular rate of rotation, but this results
in a variable rate at which the images of the surveillance area
are recorded. So, it is desirable to design a system with a 
variable rate of rotation and a constant rate of movement of the
scanning beam along the hallway. Find a model for the variable
rate of rotation if feet per second.

Figure for 48

49. Think About It Describe the relationship between the rate of
change of and the rate of change of in each expression.
Assume all variables and derivatives are positive.

(a) (b)

Acceleration In Exercises 50 and 51, find the acceleration of
the specified object. ( Hint: Recall that if a variable is changing
at a constant rate, its acceleration is zero.)

50. Find the acceleration of the top of the ladder described in
Exercise 25 when the base of the ladder is 7 feet from the wall.

51. Find the acceleration of the boat in Exercise 28(a) when there
is a total of 13 feet of rope out.

52. Modeling Data The table shows the numbers (in millions) of
single women (never married) and married women in the
civilian work force in the United States for the years 1997
through 2005. (Source: U.S. Bureau of Labor Statistics)

(a) Use the regression capabilities of a graphing utility to find
a model of the form for the
data, where is the time in years, with corresponding 
to 1997.

(b) Find Then use the model to estimate for
if it is predicted that the number of single women in

the work force will increase at the rate of 0.75 million
per year.

53. Moving Shadow A ball is dropped from a height of
20 meters, 12 meters away from the top of a 20-meter lamppost
(see figure). The ball’s shadow, caused by the light at the top of
the lamppost, is moving along the level ground. How fast is the
shadow moving 1 second after the ball is released?
(Submitted by Dennis Gittinger, St. Philips College, San
Antonio, TX)
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Year 1997 1998 1999 2000 2001 2002 2003 2004 2005

s 16.5 17.1 17.6 17.8 18.0 18.2 18.4 18.6 19.2

m 33.8 33.9 34.4 35.1 35.2 35.5 36.0 35.8 35.9
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2 REVIEW EXERCISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1–4, find the derivative of the function by using the
definition of the derivative.

1. 2.

3. 4.

In Exercises 5 and 6, describe the -values at which is
differentiable.

5. 6.

7. Sketch the graph of 

(a) Is continuous at 

(b) Is differentiable at Explain.

8. Sketch the graph of 

(a) Is continuous at 

(b) Is differentiable at Explain.

In Exercises 9 and 10, find the slope of the tangent line to the
graph of the function at the given point.

9.

10.

In Exercises 11 and 12, (a) find an equation of the tangent line
to the graph of at the given point, (b) use a graphing utility to
graph the function and its tangent line at the point, and (c) use
the derivative feature of the graphing utility to confirm your
results.

11. 12.

In Exercises 13 and 14, use the alternative form of the derivative
to find the derivative at (if it exists).

13. 14.

In Exercises 15–30, use the rules of differentiation to find the
derivative of the function.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

Writing In Exercises 31 and 32, the figure shows the graphs of
a function and its derivative. Label the graphs as or and
write a short paragraph stating the criteria you used in making
your selection. To print an enlarged copy of the graph, go to the
website www.mathgraphs.com.

31. 32.

33. Vibrating String When a guitar string is plucked, it vibrates
with a frequency of where is measured in 
vibrations per second and the tension is measured in pounds.
Find the rates of change of when (a) and (b) 

34. Vertical Motion A ball is dropped from a height of 100 feet.
One second later, another ball is dropped from a height of 
75 feet. Which ball hits the ground first?

35. Vertical Motion To estimate the height of a building, a weight
is dropped from the top of the building into a pool at ground
level. How high is the building if the splash is seen 9.2 seconds
after the weight is dropped?

36. Vertical Motion A bomb is dropped from an airplane at an alti-
tude of 14,400 feet. How long will it take for the bomb to reach
the ground? (Because of the motion of the plane, the fall will not
be vertical, but the time will be the same as that for a vertical
fall.) The plane is moving at 600 miles per hour. How far will the
bomb move horizontally after it is released from the plane?

37. Projectile Motion A thrown ball follows a path described by

(a) Sketch a graph of the path.

(b) Find the total horizontal distance the ball is thrown.

(c) At what value does the ball reach its maximum height?
(Use the symmetry of the path.)

(d) Find an equation that gives the instantaneous rate of change
of the height of the ball with respect to the horizontal
change. Evaluate the equation at 10, 25, 30, and 50.

(e) What is the instantaneous rate of change of the height when
the ball reaches its maximum height?
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38. Projectile Motion The path of a projectile thrown at an angle
of with level ground is

where the initial velocity is feet per second.

(a) Find the coordinate of the point where the projectile
strikes the ground. Use the symmetry of the path of the
projectile to locate the coordinate of the point where 
the projectile reaches its maximum height.

(b) What is the instantaneous rate of change of the height when
the projectile is at its maximum height?

(c) Show that doubling the initial velocity of the projectile
multiplies both the maximum height and the range by a 
factor of 4.

(d) Find the maximum height and range of a projectile thrown
with an initial velocity of 70 feet per second. Use a
graphing utility to graph the path of the projectile.

39. Horizontal Motion The position function of a particle
moving along the axis is

for

(a) Find the velocity of the particle.

(b) Find the open interval(s) in which the particle is moving
to the left.

(c) Find the position of the particle when the velocity is 0.

(d) Find the speed of the particle when the position is 0.

40. Modeling Data The speed of a car in miles per hour and the
stopping distance in feet are recorded in the table.

(a) Use the regression capabilities of a graphing utility to find
a quadratic model for the data.

(b) Use a graphing utility to plot the data and graph the model.

(c) Use a graphing utility to graph 

(d) Use the model to approximate the stopping distance at a
speed of 65 miles per hour.

(e) Use the graphs in parts (b) and (c) to explain the change in
stopping distance as the speed increases.

In Exercises 41–54, find the derivative of the function.

41.

42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

In Exercises 55–58, find an equation of the tangent line to the
graph of at the given point.

55. 56.

57. 58.

59. Acceleration The velocity of an object in meters per second
is Find the velocity and accelera-
tion of the object when 

60. Acceleration The velocity of an automobile starting from 
rest is

where is measured in feet per second. Find the vehicle’s
velocity and acceleration at each of the following times.

(a) 1 second (b) 5 seconds (c) 10 seconds

In Exercises 61– 66, find the second derivative of the function.

61. 62.

63. 64.

65. 66.

In Exercises 67 and 68, show that the function satisfies the
equation.

67.

68.

In Exercises 69–80, find the derivative of the function.

69. 70.

71. 72.

73. 74.

75. 76.

77. 78.

79. 80.

In Exercises 81– 84, find the derivative of the function at the
given point.
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Speed, x 20 30 40 50 60

Stopping Distance, y 25 55 105 188 300
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83.

84.

In Exercises 85– 88, use a computer algebra system to find the
derivative of the function. Use the utility to graph the function
and its derivative on the same set of coordinate axes. Describe
the behavior of the function that corresponds to any zeros of the
graph of the derivative.

85. 86.

87. 88.

In Exercises 89–92, (a) use a computer algebra system to find
the derivative of the function at the given point, (b) find an
equation of the tangent line to the graph of the function at the
point, and (c) graph the function and its tangent line on the
same set of coordinate axes.

89.

90.

91.

92.

In Exercises 93–96, find the second derivative of the function.

93. 94.

95. 96.

In Exercises 97–100, use a computer algebra system to find the
second derivative of the function.

97. 98.

99. 100.

101. Refrigeration The temperature (in degrees Fahrenheit) of
food in a freezer is 

where is the time in hours. Find the rate of change of with
respect to at each of the following times.

(a) (b) (c) (d)

102. Fluid Flow The emergent velocity of a liquid flowing
from a hole in the bottom of a tank is given by 
where is the acceleration due to gravity (32 feet per second
per second) and is the depth of the liquid in the tank. Find
the rates of change of with respect to when (a) and
(b) (Note that feet per second per second.
The sign of depends on how a problem is modeled. In this
case, letting be negative would produce an imaginary value
for )

In Exercises 103–108, find by implicit differentiation.

103. 104.

105. 106.

107. 108.

In Exercises 109 and 110, find the equations of the tangent line
and the normal line to the graph of the equation at the given
point. Use a graphing utility to graph the equation, the tangent
line, and the normal line.

109. 110.

111. A point moves along the curve in such a way that the
value is increasing at a rate of 2 units per second. At what

rate is changing for each of the following values?

(a) (b) (c)

112. Surface Area The edges of a cube are expanding at a rate
of 8 centimeters per second. How fast is the surface area
changing when each edge is 6.5 centimeters?

113. Depth The cross section of a five-meter trough is an isosceles
trapezoid with a two-meter lower base, a three-meter upper
base, and an altitude of 2 meters. Water is running into the
trough at a rate of 1 cubic meter per minute. How fast is the
water level rising when the water is 1 meter deep?

114. Linear and Angular Velocity A rotating beacon is located
1 kilometer off a straight shoreline (see figure). If the beacon
rotates at a rate of 3 revolutions per minute, how fast (in
kilometers per hour) does the beam of light appear to be
moving to a viewer who is kilometer down the shoreline?

115. Moving Shadow A sandbag is dropped from a balloon at a
height of 60 meters when the angle of elevation to the sun 
is (see figure). Find the rate at which the shadow of the
sandbag is traveling along the ground when the sandbag is at
a height of 35 meters. Hint: The position of the sandbag is
given by 
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1. Consider the graph of the parabola 

(a) Find the radius of the largest possible circle centered on the
axis that is tangent to the parabola at the origin, as shown

in the figure. This circle is called the circle of curvature
(see Section 12.5). Find the equation of this circle. Use a
graphing utility to graph the circle and parabola in the same
viewing window to verify your answer.

(b) Find the center of the circle of radius 1 centered on the
axis that is tangent to the parabola at two points, as shown

in the figure. Find the equation of this circle. Use a graphing
utility to graph the circle and parabola in the same viewing
window to verify your answer.

Figure for 1(a) Figure for 1(b)

2. Graph the two parabolas and in the
same coordinate plane. Find equations of the two lines simulta-
neously tangent to both parabolas.

3. (a) Find the polynomial whose value and
slope agree with the value and slope of at the
point

(b) Find the polynomial whose value
and first two derivatives agree with the value and first two
derivatives of at the point This polyno-
mial is called the second-degree Taylor polynomial of

at

(c) Complete the table comparing the values of and
What do you observe?

(d) Find the third-degree Taylor polynomial of at

4. (a) Find an equation of the tangent line to the parabola at
the point 

(b) Find an equation of the normal line to at the point
(The normal line is perpendicular to the tangent line.)

Where does this line intersect the parabola a second time?

(c) Find equations of the tangent line and normal line to 
at the point 

(d) Prove that for any point on the parabola
the normal line intersects the graph a second time.

5. Find a third-degree polynomial that is tangent to the line
at the point and tangent to the line

at the point 

6. Find a function of the form that is tangent
to the line at the point and tangent to the line 

at the point 

7. The graph of the eight curve

is shown below.

(a) Explain how you could use a graphing utility to graph this
curve.

(b) Use a graphing utility to graph the curve for various values
of the constant Describe how affects the shape of the
curve.

(c) Determine the points on the curve at which the tangent line
is horizontal.

8. The graph of the pear-shaped quartic

is shown below.

(a) Explain how you could use a graphing utility to graph this
curve.

(b) Use a graphing utility to graph the curve for various values
of the constants and Describe how and affect the
shape of the curve.

(c) Determine the points on the curve at which the tangent line
is horizontal.
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9. A man 6 feet tall walks at a rate of 5 feet per second toward a
streetlight that is 30 feet high (see figure). The man’s 3-foot-tall
child follows at the same speed, but 10 feet behind the man. At
times, the shadow behind the child is caused by the man, and at
other times, by the child.

(a) Suppose the man is 90 feet from the streetlight. Show that
the man’s shadow extends beyond the child’s shadow.

(b) Suppose the man is 60 feet from the streetlight. Show that
the child’s shadow extends beyond the man’s shadow.

(c) Determine the distance from the man to the streetlight at
which the tips of the two shadows are exactly the same
distance from the streetlight.

(d) Determine how fast the tip of the man’s shadow is moving
as a function of the distance between the man and the
street- light. Discuss the continuity of this shadow speed
function.

Figure for 9 Figure for 10

10. A particle is moving along the graph of (see figure).
When the component of the position of the particle is
increasing at the rate of 1 centimeter per second.

(a) How fast is the component changing at this moment?

(b) How fast is the distance from the origin changing at this
moment?

(c) How fast is the angle of inclination changing at this
moment?

11. Let be a differentiable function for all Prove that if
for all and then for

all What does the graph of look like?

12. Let be a function satisfying Prove that if
for all and then is differentiable

and for all Find an example of a function
satisfying

13. The fundamental limit assumes that is measured

in radians. What happens if you assume that is measured in
degrees instead of radians?

(a) Set your calculator to degree mode and complete the table.

(b) Use the table to estimate

for in degrees. What is the exact value of this limit? (Hint:
radians)

(c) Use the limit definition of the derivative to find 

for in degrees.

(d) Define the new functions and
where Find and 

Use the Chain Rule to calculate 

(e) Explain why calculus is made easier by using radians
instead of degrees.

14. An astronaut standing on the moon throws a rock upward. The
height of the rock is 

where is measured in feet and is measured in seconds.

(a) Find expressions for the velocity and acceleration of the
rock.

(b) Find the time when the rock is at its highest point by
finding the time when the velocity is zero. What is the
height of the rock at this time?

(c) How does the acceleration of the rock compare with the
acceleration due to gravity on Earth?

15. If is the acceleration of an object, the jerk is defined by

(a) Use this definition to give a physical interpretation of 

(b) Find for the slowing vehicle in Exercise 119 in Section 2.3
and interpret the result.

(c) The figure shows the graphs of the position, velocity,
acceleration, and jerk functions of a vehicle. Identify each
graph and explain your reasoning.
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z (in degrees) 0.1 0.01 0.0001

sin z
z



163

3 Applications
of Differentiation

In Chapter 3, you will use calculus to analyze graphs of functions. For example, you can use the derivative of a function
to determine the function’s maximum and minimum values. You can use limits to identify any asymptotes of the 
function’s graph. In Section 3.6, you will combine these techniques to sketch the graph of a function.

© E.J. Baumeister Jr./Alamy

This chapter discusses several applications
of the derivative of a function. These
applications fall into three basic
categories—curve sketching, optimization,
and approximation techniques.

In this chapter, you should learn the 
following.

■ How to use a derivative to locate the
minimum and maximum values of a
function on a closed interval. (3.1)

■ How numerous results in this chapter
depend on two important theorems
called Rolle’s Theorem and the Mean
Value Theorem. (3.2)

■ How to use the first derivative to deter-
mine whether a function is increasing 
or decreasing. (3.3)

■ How to use the second derivative to
determine whether the graph of a 
function is concave upward or concave
downward. (3.4)

■ How to find horizontal asymptotes of
the graph of a function. (3.5)

■ How to graph a function using the 
techniques from Chapters P–3. ( 3.6)

■ How to solve optimization problems.
(3.7)

■ How to use approximation techniques 
to solve problems. (3.8 and 3.9)

A small aircraft starts its descent from an altitude of 1 mile, 4 miles west of the
runway. Given a function that models the glide path of the plane, when would the
plane be descending at the greatest rate? (See Section 3.4, Exercise 75.)

■

■



■ Understand the definition of extrema of a function on an interval.
■ Understand the definition of relative extrema of a function on an open interval.
■ Find extrema on a closed interval.

Extrema of a Function
In calculus, much effort is devoted to determining the behavior of a function on an
interval Does have a maximum value on Does it have a minimum value? Where
is the function increasing? Where is it decreasing? In this chapter you will learn how
derivatives can be used to answer these questions. You will also see why these 
questions are important in real-life applications.

A function need not have a minimum or a maximum on an interval. For instance,
in Figure 3.1(a) and (b), you can see that the function has both a
minimum and a maximum on the closed interval but does not have a maxi-
mum on the open interval Moreover, in Figure 3.1(c), you can see that
continuity (or the lack of it) can affect the existence of an extremum on the interval.
This suggests the theorem below. (Although the Extreme Value Theorem is intuitively
plausible, a proof of this theorem is not within the scope of this text.)

��1, 2�.
��1, 2�,

f �x� � x2 � 1

I?fI.
f
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3.1 Extrema on an Interval

DEFINITION OF EXTREMA

Let be defined on an interval containing 

1. is the minimum of on if for all in 

2. is the maximum of on if for all in 

The minimum and maximum of a function on an interval are the extreme
values, or extrema (the singular form of extrema is extremum), of the 
function on the interval. The minimum and maximum of a function on an
interval are also called the absolute minimum and absolute maximum, or
the global minimum and global maximum, on the interval.

I.xf �c� � f �x�Iff �c�
I.xf �c� � f �x�Iff �c�

c.If

THEOREM 3.1 THE EXTREME VALUE THEOREM

If is continuous on a closed interval then has both a minimum and a
maximum on the interval.

f�a, b�,f

E X P L O R A T I O N

Finding Minimum and Maximum Values The Extreme Value Theorem (like
the Intermediate Value Theorem) is an because it tells of the
existence of minimum and maximum values but does not show how to find 
these values. Use the extreme-value capability of a graphing utility to find the
minimum and maximum values of each of the following functions. In each case,
do you think the -values are exact or approximate? Explain your reasoning.

a. on the closed interval 

b. on the closed interval ��1, 3�f �x� � x3 � 2x2 � 3x � 2

��1, 3�f �x� � x2 � 4x � 5

x

theoremexistence

x

1−1 2

2

3

3

4

5 (2, 5)

(0, 1)

Maximum

Minimum

f(x) = x2 + 1

y

(a) is continuous, is closed.[�1, 2�f

x

1−1 2

2

3

3

4

5

(0, 1)

Not a
maximum

Minimum

f(x) = x2 + 1

y

(b) is continuous, is open.��1, 2�f

x

1−1 2

2

3

3

4

5 (2, 5)

Not a
minimum

Maximum

g(x) = x2 + 1, x ≠ 0
2, x = 0

y

(c) is not continuous, is closed.
Extrema can occur at interior points or end-
points of an interval. Extrema that occur at
the endpoints are called endpoint extrema.
Figure 3.1

[�1, 2�g



Relative Extrema and Critical Numbers
In Figure 3.2, the graph of has a relative maximum at the point

and a relative minimum at the point Informally, for a continuous 
function, you can think of a relative maximum as occurring on a “hill” on the graph,
and a relative minimum as occurring in a “valley” on the graph. Such a hill and 
valley can occur in two ways. If the hill (or valley) is smooth and rounded, the graph
has a horizontal tangent line at the high point (or low point). If the hill (or valley) is
sharp and peaked, the graph represents a function that is not differentiable at the high
point (or low point).

Example 1 examines the derivatives of functions at relative extrema. (Much
more is said about the relative extrema of a function in Section 3.3.)

EXAMPLE 1 The Value of the Derivative at Relative Extrema

Find the value of the derivative at each relative extremum shown in Figure 3.3.

Solution

a. The derivative of is

Differentiate using Quotient Rule.

Simplify.

At the point the value of the derivative is [see Figure 3.3(a)].

b. At the derivative of does not exist because the following 
one-sided limits differ [see Figure 3.3(b)].

Limit from the left

Limit from the right

c. The derivative of is

At the point the value of the derivative is At the
point the value of the derivative is [see
Figure 3.3(c)]. ■

f��3	�2� � cos�3	�2� � 0�3	�2, �1�,
f��	�2� � cos�	�2� � 0.�	�2, 1�,

f��x� � cos x.

f �x� � sin x

lim
x→0�

f�x� � f �0�
x � 0

� lim
x→0�

�x�
x

� 1

lim
x→0�

f�x� � f �0�
x � 0

� lim
x→0�

�x�
x

� �1

f �x� � �x�x � 0,

f��3� � 0�3, 2�,

�
9�9 � x2�

x4 .

f��x� �
x3�18x� � �9��x2 � 3��3x2�

�x3�2

f �x� �
9�x2 � 3�

x3

finding
given

�2, �4�.�0, 0�
f �x� � x3 � 3x2
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x

2

2 4 6

−2

−4

Relative
maximum

(3, 2)

y
f(x) = 

x3

9(x2 − 3)

(a) f��3� � 0

x
−1

−1

2

2

1

1

3

−2

Relative
minimum

(0, 0)

f(x) = ⏐x⏐

y

(b) does not exist.f��0)

x

−1

2

1

−2

Relative
minimum

Relative
maximum

, 1π
2

(

( (

(2
π3

22
ππ 3

, −1

f(x) = sin x

y

(c)

Figure 3.3

f��3	

2 	 � 0f��	

2	 � 0;

x
1 2−1

−2

−3

−4

Hill
(0, 0)

Valley
(2, −4)

y f(x) = x3 − 3x2

has a relative maximum at and a 
relative minimum at 
Figure 3.2

�2, �4�.
�0, 0�f

DEFINITION OF RELATIVE EXTREMA

1. If there is an open interval containing on which is a maximum, then
is called a relative maximum of or you can say that has a relative

maximum at 

2. If there is an open interval containing on which is a minimum, then
is called a relative minimum of or you can say that has a relative

minimum at 

The plural of relative maximum is relative maxima, and the plural of relative
minimum is relative minima. Relative maximum and relative minimum are
sometimes called local maximum and local minimum, respectively.

�c, f�c��.
ff,f �c�

f �c�c

�c, f�c��.
ff,f �c�

f �c�c
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DEFINITION OF A CRITICAL NUMBER

Let be defined at If or if is not differentiable at then is a
critical number of f.

cc,ff��c� � 0c.f

Note in Example 1 that at each relative extremum, the derivative either is zero or
does not exist. The -values at these special points are called critical numbers. Figure
3.4 illustrates the two types of critical numbers. Notice in the definition that the critical
number has to be in the domain of but does not have to be in the domain of 

is a critical number of
Figure 3.4

f.c

xc

Horizontal
tangent

f ′(c) = 0

y

xc

f ′(c) does not exist.

y

f�.cf,c

x

PROOF

Case 1: If is differentiable at then, by definition, is a critical number of
and the theorem is valid.

Case 2: If is differentiable at then must be positive, negative, or 0.
Suppose is positive. Then

which implies that there exists an interval containing such that

for all in [See Exercise 82(b), Section 1.2.]

Because this quotient is positive, the signs of the denominator and numerator must
agree. This produces the following inequalities for -values in the interval 

Left of c: and  is not a relative minimum

Right of c: and  is not a relative maximum

So, the assumption that contradicts the hypothesis that is a relative
extremum. Assuming that produces a similar contradiction, you are left with
only one possibility—namely, So, by definition, is a critical number of 
and the theorem is valid. ■

fcf��c� � 0.
f��c� < 0

f �c�f��c� > 0

f �c�f �x� > f �c�x > c

f �c�f �x� < f �c�x < c

�a, b�.x

�a, b�.x � c
f �x� � f �c�

x � c
> 0,

c�a, b�

f��c� � lim
x→c

f �x� � f �c�
x � c

> 0

f��c�
f��c�x � c,f

f
cx � c,notf

THEOREM 3.2 RELATIVE EXTREMA OCCUR ONLY AT CRITICAL NUMBERS

If has a relative minimum or relative maximum at then is a critical
number of f.

cx � c,f

PIERRE DE FERMAT (1601–1665)

For Fermat, who was trained as a lawyer,
mathematics was more of a hobby than a
profession. Nevertheless, Fermat made many
contributions to analytic geometry, number
theory, calculus, and probability. In letters to
friends, he wrote of many of the fundamental
ideas of calculus, long before Newton or
Leibniz. For instance, Theorem 3.2 is sometimes
attributed to Fermat.
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Finding Extrema on a Closed Interval
Theorem 3.2 states that the relative extrema of a function can occur only at the critical
numbers of the function. Knowing this, you can use the following guidelines to find
extrema on a closed interval.

The next three examples show how to apply these guidelines. Be sure you see that
finding the critical numbers of the function is only part of the procedure. Evaluating
the function at the critical numbers and the endpoints is the other part.

EXAMPLE 2 Finding Extrema on a Closed Interval

Find the extrema of on the interval 

Solution Begin by differentiating the function.

Write original function.

Differentiate.

To find the critical numbers of you must find all -values for which and
all -values for which does not exist.

Set equal to 0.

Factor.

Critical numbers

Because is defined for all you can conclude that these are the only critical
numbers of By evaluating at these two critical numbers and at the endpoints of

you can determine that the maximum is and the minimum is
as shown in the table. The graph of is shown in Figure 3.5.

■

In Figure 3.5, note that the critical number does not yield a relative
minimum or a relative maximum. This tells you that the converse of Theorem 3.2 is
not true. In other words, the critical numbers of a function need not produce relative
extrema.

x � 0

ff �1� � �1,
f �2� � 16��1, 2�,

ff.
x,f�

x � 0, 1

 12x2�x � 1� � 0

f��x�f��x� � 12x3 � 12x2 � 0

f��x�x
f��x� � 0xf,

f� �x� � 12x3 � 12x2

f �x� � 3x4 � 4x3

��1, 2�.f �x� � 3x4 � 4x3
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GUIDELINES FOR FINDING EXTREMA ON A CLOSED INTERVAL

To find the extrema of a continuous function on a closed interval use
the following steps.

1. Find the critical numbers of in 

2. Evaluate at each critical number in 

3. Evaluate at each endpoint of 

4. The least of these values is the minimum. The greatest is the maximum.

�a, b�.f

�a, b�.f

�a, b�.f

�a, b�,f

x
2

4

8

12

16

−1

−4

(0, 0)

(2, 16)
Maximum

Minimum
(1, −1)

(−1, 7)

f (x) = 3x4 − 4x3

y

On the closed interval has a 
minimum at and a maximum 
at 
Figure 3.5

�2, 16�.
�1, �1)

f��1, 2�,

Left
Endpoint

Critical
Number

Critical
Number

Right
Endpoint

f��1� � 7 f �0� � 0
Minimum
f�1� � �1

Maximum
f �2� � 16



EXAMPLE 3 Finding Extrema on a Closed Interval

Find the extrema of on the interval 

Solution Begin by differentiating the function.

Write original function.

Differentiate.

From this derivative, you can see that the function has two critical numbers in the
interval The number 1 is a critical number because and the 
number 0 is a critical number because does not exist. By evaluating at these two
numbers and at the endpoints of the interval, you can conclude that the minimum is

and the maximum is as shown in the table. The graph of is
shown in Figure 3.6.

EXAMPLE 4 Finding Extrema on a Closed Interval

Find the extrema of on the interval 

Solution This function is differentiable for all real , so you can find all critical 
numbers by differentiating the function and setting equal to zero, as shown.

Write original function.

Set equal to 0.

Factor.

In the interval the factor is zero when and when 
The factor is zero when and when By evaluating

at these four critical numbers and at the endpoints of the interval, you can conclude
that the maximum is and the minimum occurs at two points,

and as shown in the table. The graph is shown
in Figure 3.7.

■

f �11	�6� � �3�2,f �7	�6� � �3�2
f �	�2� � 3

f
x � 11	�6.x � 7	�6�1 � 2 sin x�

x � 3	�2.x � 	�2cos x�0, 2	�,

 2�cos x��1 � 2 sin x� � 0

sin 2x � 2 cos x sin x 2 cos x � 4 cos x sin x � 0

f��x�f��x� � 2 cos x � 2 sin 2x � 0

f �x� � 2 sin x � cos 2x

f��x�
x

�0, 2	�.f �x� � 2 sin x � cos 2x

ff �0� � 0,f ��1� � �5

ff��0�
f��1� � 0,��1, 3�.

f��x� � 2 �
2

x1�3 � 2�x1�3 � 1
x1�3 	

f �x� � 2x � 3x2�3

��1, 3�.f �x� � 2x � 3x2�3
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Maximum

Minimum

(0, 0)

−1−2

−4

−5

1 2
x

(1, −1)

(−1, −5)

f(x) = 2x − 3x2/3

y

93, 6 − 3 3 ))

On the closed interval has a 
minimum at and a maximum 
at 
Figure 3.6

�0, 0�.
��1, 5�

f��1, 3�,

ππ

Maximum

Minima

(0, −1)
−1

−2

−3

1

2

3

4

x

(2  , −1)

π
6( (, −7

2
3 π

6( (, −11
2
3

π
2( (, −1

π
2 (( , 3

3

2 π

f (x) = 2 sin x − cos 2x

y

On the closed interval has 
two minima at and

and a maximum at

Figure 3.7
�	�2, 3�.
�11	�6, �3�2�

�7	�6, �3�2�
f�0, 2	�,

Left
Endpoint

Critical
Number

Critical
Number

Right
Endpoint

Minimum
f��1� � �5

Maximum
f �0� � 0

f�1� � �1 f�3� � 6 � 3 3�9 � �0.24

Left
Endpoint

Critical
Number

Critical
Number

Critical
Number

Critical
Number

Right
Endpoint

f�0� � �1
Maximum

f �	

2	 � 3

Minimum

f �7	

6 	 � �
3
2 f �3	

2 	 � �1
Minimum

f �11	

6 	 � �
3
2 f�2	� � �1

The icon indicates that you will find a CAS Investigation on the book’s website. The CAS
Investigation is a collaborative exploration of this example using the computer algebra systems
Maple and Mathematica.



In Exercises 1–6, find the value of the derivative (if it exists) at
each indicated extremum.

1. 2.

3. 4.

5. 6.

In Exercises 7–10, approximate the critical numbers of the
function shown in the graph. Determine whether the function
has a relative maximum, a relative minimum, an absolute 
maximum, an absolute minimum, or none of these at each 
critical number on the interval shown.

7. 8.

9. 10.

In Exercises 11–16, find any critical numbers of the function.

11. 12.

13. , 14.

15. 16.

In Exercises 17–36, locate the absolute extrema of the function
on the closed interval.

17. 18.

19.

20.

21. 22.

23. 24.

25. 26.

27. 28.

29.

30.

31. 32.

33. 34.

35.

36.

In Exercises 37–40, locate the absolute extrema of the function
(if any exist) over each interval.

37. 38.

(a) (b) (a) (b)

(c) (d) (c) (d)

39. 40.

(a) (b) (a) (b)

(c) (d) (c) (d) �1, 2���2, 2��1, 4��0, 2�
��2, 0���2, 2��1, 3���1, 2�

f �x� � �4 � x2f �x� � x2 � 2x

�1, 4��1, 4��0, 2��0, 2�
�1, 4��1, 4��0, 2��0, 2�

f �x� � 5 � xf �x� � 2x � 3

�0, 2�y � tan �	x
8 	,

�0, 2	�y � 3 cos x,

��
	

6
,

	

3�g�x� � sec x,�0,
1
6�f �x� � cos 	 x,

��2, 2�h�x� � �2 � x�,��2, 2�f �x� � �x�,

��3, 3�g�x� �
1

1 � �x � 1�,
��1, 5�y � 3 � �t � 3�,

�3, 5�h�t� �
t

t � 2
,�0, 1�h�s� �

1
s � 2

,

��2, 2�f �x� �
2x

x2 � 1
,��1, 1�g�t� �

t 2

t 2 � 3
,

��1, 1�g�x� � 3�x,��1, 1�y � 3x 2�3 � 2x,

�0, 4�f �x� � x3 � 12x,��1, 2�f �x� � x 3 �
3
2

x2,

��2, 1�h�x� � �x2 � 3x � 5,

�0, 4�g�x� � x2 � 2x,

�0, 5�f �x� �
2x � 5

3
,��1, 2�f �x� � 3 � x,

0 <  < 2	0 < x < 2	

f �� � 2 sec  � tan h�x� � sin2 x � cos x

f �x� �
4x

x2 � 1
t < 3g�t� � t�4 � t

g�x� � x4 � 4x2f �x� � x3 � 3x2

x
42 6−2

−2

2

4

8

6

y

8
x

421 3−1

2

4

5

1

3

y

5

x
1−1

−1

1

y

x
421 3−1

2

4

5

1

3

y

5

x

4

4

2

2

6

−4 −2
−2

(0, 4)

y

x

1

2

−1
−1

−2−3−4

−2

(−2, 0)

y

f �x� � 4 � �x�f �x� � �x � 2�2�3

x
1

2

−1
−2−3

−2

( (2 2
3 3

3− ,

y

(−1, 0)

1 2 3 4 5 6

1

2

3

4

5

6

x

y

(2, 3)

f �x� � �3x�x � 1g�x� � x �
4
x2

x
1 2 3

2

−1

−2

(0, 1)

(2, −1)

y

x
1

1

2

2

−1
−2

−2

(0, 0)

y

f �x� � cos
	x
2

f �x� �
x2

x2 � 4
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3.1 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

www.CalcChat.com
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In Exercises 41–46, use a graphing utility to graph the function.
Locate the absolute extrema of the function on the given 
interval.

41. ,

42. ,

43. 44.

45.

46.

In Exercises 47 and 48, (a) use a computer algebra system to
graph the function and approximate any absolute extrema on
the given interval. (b) Use the utility to find any critical numbers,
and use them to find any absolute extrema not located at the
endpoints. Compare the results with those in part (a).

47.

48.

In Exercises 49 and 50, use a computer algebra system to find
the maximum value of on the closed interval. (This value
is used in the error estimate for the Trapezoidal Rule, as 
discussed in Section 4.6.)

49.

50.

In Exercises 51 and 52, use a computer algebra system to find
the maximum value of on the closed interval. (This
value is used in the error estimate for Simpson’s Rule, as
discussed in Section 4.6.)

51. 52.

53. Writing Write a short paragraph explaining why a continuous
function on an open interval may not have a maximum or 
minimum. Illustrate your explanation with a sketch of the graph
of such a function.

��1, 1�f �x� �
1

x2 � 1
,�0, 2�f �x� � �x � 1�2�3,

� f �4��x��

�1
2

,  3�f �x� �
1

x2 � 1
,

�0, 2�f �x� � �1 � x3,

� f��x��

�0, 3�f �x� �
4
3

x�3 � x,

�0, 1�f �x� � 3.2x5 � 5x3 � 3.5x,

�0, 2	�f �x� � �x � cos
x
2

,

��1, 3�f �x� � x4 � 2x3 � x � 1,

�0, 2�f �x� �
2

2 � x
,�1, 4�f �x� �

3
x � 1

,

�1, 5�f �x� � �2 � x2,

2 � 3x,

     1 � x < 3

     3 � x � 5

�0, 3�f �x� � �2x � 2,

4x2,

     0 � x � 1

     1 < x � 3

54. Decide whether each labeled point is an absolute maximum
or minimum, a relative maximum or minimum, or neither.

x

y

A

B

C

D

E

F

G

CAPSTONE

In Exercises 55 and 56, graph a function on the interval
having the given characteristics.

55. Absolute maximum at , absolute minimum at
relative maximum at 

56. Relative minimum at , critical number (but no
extremum) at absolute maximum at , absolute
minimum at 

In Exercises 57–60, determine from the graph whether 
has a minimum in the open interval 

57. (a) (b)

58. (a) (b)

59. (a) (b)

60. (a) (b)

x
a b

f

y

x
a b

f

y

x
a b

f

y

x
a b

f

y

x
a b

f

y

x
a b

f

y

x
a b

f

y

x
a b

f

y

�a, b�.
f

x � 5
x � 2x � 0,

x � �1

x � 3x � 1,
x � �2

[�2, 5]

WRITING ABOUT CONCEPTS

CAS

CAS

CAS
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61. Power The formula for the power output of a battery is
where is the electromotive force in volts,

is the resistance in ohms, and is the current in amperes. Find
the current that corresponds to a maximum value of in a 
battery for which volts and ohm. Assume that
a 15-ampere fuse bounds the output in the interval 
Could the power output be increased by replacing the 
15-ampere fuse with a 20-ampere fuse? Explain.

62. Lawn Sprinkler A lawn sprinkler is constructed in such a
way that is constant, where ranges between and

(see figure). The distance the water travels horizontally is

where is the speed of the water. Find and explain why
this lawn sprinkler does not water evenly. What part of the lawn
receives the most water?

63. Honeycomb The surface area of a cell in a honeycomb is

where and are positive constants and is the angle at which
the upper faces meet the altitude of the cell (see figure). Find the
angle that minimizes the surface area 

64. Highway Design In order to build a highway, it is necessary
to fill a section of a valley where the grades (slopes) of the sides
are 9% and 6% (see figure). The top of the filled region will
have the shape of a parabolic arc that is tangent to the two
slopes at the points and The horizontal distances from to
the -axis and from to the -axis are both 500 feet.

(a) Find the coordinates of and 

(b) Find a quadratic function 
that describes the top of the filled region.

(c) Construct a table giving the depths of the fill for
0, 100, 200, 300,

400, and 500.

(d) What will be the lowest point on the completed highway?
Will it be directly over the point where the two hillsides
come together?

True or False? In Exercises 65– 68, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

65. The maximum of a function that is continuous on a closed
interval can occur at two different values in the interval.

66. If a function is continuous on a closed interval, then it must
have a minimum on the interval.

67. If is a critical number of the function then it is also a
critical number of the function where is a
constant.

68. If is a critical number of the function then it is also a
critical number of the function where is a
constant.

69. Let the function be differentiable on an interval containing
If has a maximum value at show that has a 

minimum value at 

70. Consider the cubic function 
where Show that can have zero, one, or two critical
numbers and give an example of each case.

fa � 0.
f �x� � ax3 � bx2 � cx � d,

x � c.
�fx � c,fc.

If

kg�x� � f �x � k�,
f,x � c

kg�x� � f �x� � k,
f,x � c

�100,�200,�300,�400,x � �500,
d

x � 500,
�500 �y � ax2 � bx � c,

B.A

A
B

Highway

x

y

500 ft 500 ft

Not drawn to scale

6% grade9% grade

yBy
AB.A

s

h

θ

S. �	�6 �  � 	�2�

sh

S � 6hs �
3s2

2 ��3 � cos 

sin  	

θ  = 135°

x

32
−

θ θ

θ

Water sprinkler: 45° ≤ ≤ 135°θ

v2

32
v2

64
− v2

64
v2

θ  = 45°

 = 105°  = 75°y

dx�dtv

x �
v2 sin 2

32
,  45� �  � 135�

135�
45�d�dt

0 � I � 15.
R � 0.5V � 12

P
IR

VP � V I � R I 2,
P

■ FOR FURTHER INFORMATION For more information on the
“calculus of lawn sprinklers,” see the article “Design of an
Oscillating Sprinkler” by Bart Braden in Mathematics Magazine. To
view this article, go to the website www.matharticles.com.

■ FOR FURTHER INFORMATION For more information on the
geometric structure of a honeycomb cell, see the article “The Design
of Honeycombs” by Anthony L. Peressini in UMAP Module 502,
published by COMAP, Inc., Suite 210, 57 Bedford Street,
Lexington, MA.

71. Determine all real numbers for which there exists a
nonnegative continuous function defined on with
the property that the region 

has perimeter units and area square units
for some real number 

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

k.
kk0 � y � f �x��

0 � x � a,R � �(x, y�;
�0, a�f �x�

a > 0

PUTNAM EXAM CHALLENGE

www.matharticles.com


■ Understand and use Rolle’s Theorem.
■ Understand and use the Mean Value Theorem.

Rolle’s Theorem
The Extreme Value Theorem (Section 3.1) states that a continuous function on a
closed interval must have both a minimum and a maximum on the interval. Both
of these values, however, can occur at the endpoints. Rolle’s Theorem, named after
the French mathematician Michel Rolle (1652–1719), gives conditions that guarantee
the existence of an extreme value in the interior of a closed interval.

From Rolle’s Theorem, you can see that if a function is continuous on and
differentiable on and if there must be at least one -value between

and at which the graph of has a horizontal tangent, as shown in Figure 3.8(a). 
If the differentiability requirement is dropped from Rolle’s Theorem, will still have
a critical number in but it may not yield a horizontal tangent. Such a case is
shown in Figure 3.8(b).

�a, b�,
f

fba
xf �a� � f �b�,�a, b�,

�a, b�f

�a, b�
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E X P L O R A T I O N

Extreme Values in a Closed Interval Sketch a rectangular coordinate plane
on a piece of paper. Label the points and Using a pencil or pen,
draw the graph of a differentiable function that starts at and ends at

Is there at least one point on the graph for which the derivative is zero?
Would it be possible to draw the graph so that there isn’t a point for which the
derivative is zero? Explain your reasoning.

�5, 3�.
�1, 3�f

�5, 3�.�1, 3�

THEOREM 3.3 ROLLE’S THEOREM

Let be continuous on the closed interval and differentiable on the open
interval If

then there is at least one number in such that f��c� � 0.�a, b�c

f �a� � f �b�

�a, b�.
�a, b�f

PROOF Let

Case 1: If for all in is constant on the interval and, by Theorem
2.2, for all in 

Case 2: Suppose for some in By the Extreme Value Theorem, you
know that has a maximum at some in the interval. Moreover, because this
maximum does not occur at either endpoint. So, has a maximum in the 
interval This implies that is a maximum and, by Theorem 3.2, is
a critical number of Finally, because is differentiable at you can conclude that

Case 3: If for some in you can use an argument similar to that in
Case 2, but involving the minimum instead of the maximum. ■

�a, b�,xf �x� < d

f��c� � 0.
c,ff.

crelativef �c��a, b�.
openf

f �c� > d,cf
�a, b�.xf �x� > d

�a, b�.xf��x� � 0
f�a, b�,xf �x� � d

f �a� � d � f �b�.

ROLLE’S THEOREM

French mathematician Michel Rolle first
published the theorem that bears his name in
1691. Before this time, however, Rolle was one
of the most vocal critics of calculus, stating
that it gave erroneous results and was based
on unsound reasoning. Later in life, Rolle
came to see the usefulness of calculus.

x

f

d

a bc

Relative
maximum

y

(a) is continuous on and differentiable
on �a, b�.

�a, b�f

x

f

d

a bc

Relative
maximum

y

(b) is continuous on 
Figure 3.8

�a, b�.f
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EXAMPLE 1 Illustrating Rolle’s Theorem

Find the two -intercepts of

and show that at some point between the two -intercepts.

Solution Note that is differentiable on the entire real line. Setting equal to 0
produces

Set equal to 0.

Factor.

So, and from Rolle’s Theorem you know that there at least one
in the interval such that To such a you can solve the equation

Set equal to 0.

and determine that when Note that this -value lies in the open interval
as shown in Figure 3.9. ■

Rolle’s Theorem states that if satisfies the conditions of the theorem, there must
be one point between and at which the derivative is 0. There may of course
be more than one such point, as shown in the next example.

EXAMPLE 2 Illustrating Rolle’s Theorem

Let Find all values of in the interval such that 

Solution To begin, note that the function satisfies the conditions of Rolle’s Theorem.
That is, is continuous on the interval and differentiable on the interval

Moreover, because you can conclude that there exists at
least one in such that Setting the derivative equal to 0 produces

Set equal to 0.

Factor.

-values for which 

So, in the interval the derivative is zero at three different values of as shown
in Figure 3.10. ■

x,��2, 2�,

f��x� � 0xx � 0, 1, �1.

 4x�x � 1��x � 1� � 0

f��x�f��x� � 4x3 � 4x � 0

f��c� � 0.��2, 2�c
f ��2� � f �2� � 8,��2, 2�.

��2, 2�f

f��c� � 0.��2, 2�cf �x� � x4 � 2x2.

baleastat
f

�1, 2�,
xx �

3
2.f��x� � 0

f��x�f��x� � 2x � 3 � 0

c,findf��c� � 0.�1, 2�c
existsf �1� � f �2� � 0,

�x � 1��x � 2� � 0.

f �x�x2 � 3x � 2 � 0

f �x�f

xf��x) � 0

f �x� � x2 � 3x � 2

x

3

2

1

−1

x

Horizontal
tangent

(1, 0) (2, 0)

f ′ 3
2( ) = 0

f (x) = x2 − 3x + 2

y

The -value for which is between
the two -intercepts.
Figure 3.9

x
f��x) � 0x

x
−2

−2

2

8

6

4

2

f (2) = 8
f (−2) = 8

f ′(−1) = 0 f ′(1) = 0

f ′(0) = 0

f (x) = x4 − 2x2y

for more than one -value in the
interval 
Figure 3.10

��2, 2�.
xf��x) � 0

−3

−3

6

3

Figure 3.11

A graphing utility can be used to indicate whether the
points on the graphs in Examples 1 and 2 are relative minima or relative maxima of
the functions. When using a graphing utility, however, you should keep in mind that
it can give misleading pictures of graphs. For example, use a graphing utility to
graph

With most viewing windows, it appears that the function has a maximum of 1 when
(see Figure 3.11). By evaluating the function at however, you can see

that To determine the behavior of this function near you need to
examine the graph analytically to get the complete picture.

x � 1,f �1� � 0.
x � 1,x � 1

f �x� � 1 � �x � 1�2 �
1

1000�x � 1�1�7 � 1
.

TECHNOLOGY PITFALL
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The Mean Value Theorem
Rolle’s Theorem can be used to prove another theorem—the Mean Value Theorem.

Although the Mean Value Theorem can be used directly in problem solving, it is
used more often to prove other theorems. In fact, some people consider this to be the
most important theorem in calculus—it is closely related to the Fundamental Theorem
of Calculus discussed in Section 4.4. For now, you can get an idea of the versatility of
the Mean Value Theorem by looking at the results stated in Exercises 81–89 in this
section.

The Mean Value Theorem has implications for both basic interpretations of the
derivative. Geometrically, the theorem guarantees the existence of a tangent line that
is parallel to the secant line through the points and as shown in
Figure 3.12. Example 3 illustrates this geometric interpretation of the Mean Value
Theorem. In terms of rates of change, the Mean Value Theorem implies that there
must be a point in the open interval at which the instantaneous rate of change is
equal to the average rate of change over the interval This is illustrated in
Example 4.

�a, b�.
�a, b�

�b, f �b��,�a, f �a��

THEOREM 3.4 THE MEAN VALUE THEOREM

If is continuous on the closed interval and differentiable on the open
interval then there exists a number in such that

f��c� �
f �b� � f �a�

b � a
.

�a, b�c�a, b�,
�a, b�f

PROOF Refer to Figure 3.12. The equation of the secant line that passes through the
points and is

Let be the difference between and Then

By evaluating at and you can see that Because is continuous
on it follows that is also continuous on Furthermore, because is
differentiable, is also differentiable, and you can apply Rolle’s Theorem to the
function So, there exists a number in such that which implies that

So, there exists a number in such that

■f��c� �
f �b� � f �a�

b � a
.

�a, b�c

� f��c� �
f �b� � f �a�

b � a
.

 0 � g��c�

g��c� � 0,�a, b�cg.
g

f�a, b�.g�a, b�,
fg�a� � 0 � g�b�.b,ag

� f �x� � � f �b� � f �a�
b � a ��x � a� � f �a�.

g�x� � f �x� � y

y.f �x�g�x�

y � � f �b� � f �a�
b � a � �x � a� � f �a�.

�b, f �b���a, f �a��

NOTE The “mean” in the Mean Value Theorem refers to the mean (or average) rate of change
of in the interval ■�a, b�.f

x

Tangent line

Secant line

Slope of tangent line = f ′(c)

a c b

(b, f (b))

(a, f (a))

y

Figure 3.12

JOSEPH-LOUIS LAGRANGE (1736–1813)

The Mean Value Theorem was first proved 
by the famous mathematician Joseph-Louis
Lagrange. Born in Italy, Lagrange held a 
position in the court of Frederick the Great 
in Berlin for 20 years. Afterward, he moved 
to France, where he met emperor Napoleon
Bonaparte, who is quoted as saying,
“Lagrange is the lofty pyramid of the 
mathematical sciences.”
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EXAMPLE 3 Finding a Tangent Line

Given find all values of in the open interval such that

Solution The slope of the secant line through and is

Note that the function satisfies the conditions of the Mean Value Theorem. That is,
is continuous on the interval and differentiable on the interval So, there
exists at least one number in such that Solving the equation

yields

which implies that So, in the interval you can conclude that as
shown in Figure 3.13.

EXAMPLE 4 Finding an Instantaneous Rate of Change

Two stationary patrol cars equipped with radar are 5 miles apart on a highway, as
shown in Figure 3.14. As a truck passes the first patrol car, its speed is clocked at 
55 miles per hour. Four minutes later, when the truck passes the second patrol car, its
speed is clocked at 50 miles per hour. Prove that the truck must have exceeded the
speed limit (of 55 miles per hour) at some time during the 4 minutes.

Solution Let be the time (in hours) when the truck passes the first patrol car.
The time when the truck passes the second patrol car is

By letting represent the distance (in miles) traveled by the truck, you have
and So, the average velocity of the truck over the five-mile stretch

of highway is

miles per hour.

Assuming that the position function is differentiable, you can apply the Mean Value
Theorem to conclude that the truck must have been traveling at a rate of 75 miles per
hour sometime during the 4 minutes. ■

A useful alternative form of the Mean Value Theorem is as follows: If is
continuous on and differentiable on then there exists a number in 
such that

�a, b�c�a, b�,�a, b�
f

�
5

1�15
� 75Average velocity �

s�1�15� � s�0�
�1�15� � 0

s� 1
15� � 5.s�0� � 0

s�t�

t �
4

60
�

1
15

 hour.

t � 0

c � 2,�1, 4�,x � ±2.

f��x� �
4
x2 � 1

f��x� � 1
f��c� � 1.�1, 4�c

�1, 4�.�1, 4�
f

f �4� � f �1�
4 � 1

�
4 � 1
4 � 1

� 1.

�4, f �4���1, f �1��

f��c� �
f �4� � f �1�

4 � 1
.

�1, 4�cf �x� � 5 � �4�x�,

Alternative form of Mean Value Theoremf �b� � f �a� � �b � a� f��c�.

NOTE When doing the exercises for this section, keep in mind that polynomial functions,
rational functions, and trigonometric functions are differentiable at all points in their domains.

■

Tangent line

Secant line

x
1 2 3 4

4

3

2

1
4
x

(1, 1)

(2, 3)

(4, 4)

f(x) = 5 −

y

The tangent line at is parallel to the
secant line through and 
Figure 3.13

�4, 4�.�1, 1�
�2, 3�

t = 4 minutes t = 0

5 miles

Not drawn to scale

At some time the instantaneous velocity is
equal to the average velocity over 4 minutes.
Figure 3.14
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In Exercises 1–4, explain why Rolle’s Theorem does not apply
to the function even though there exist and such that

1. 2.

3. 4.

In Exercises 5–8, find the two -intercepts of the function and
show that at some point between the two -intercepts.

5. 6.

7. 8.

Rolle’s Theorem In Exercises 9 and 10, the graph of is shown.
Apply Rolle’s Theorem and find all values of such that

at some point between the labeled intercepts.

9. 10.

In Exercises 11–24, determine whether Rolle’s Theorem can be
applied to on the closed interval If Rolle’s Theorem can
be applied, find all values of in the open interval such
that If Rolle’s Theorem cannot be applied, explain
why not.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

In Exercises 25–28, use a graphing utility to graph the function
on the closed interval Determine whether Rolle’s
Theorem can be applied to on the interval and, if so, find all
values of in the open interval such that 

25. 26.

27.

28.

29. Vertical Motion The height of a ball seconds after it is
thrown upward from a height of 6 feet and with an initial
velocity of 48 feet per second is 

(a) Verify that 

(b) According to Rolle’s Theorem, what must the velocity be at
some time in the interval Find that time.

30. Reorder Costs The ordering and transportation cost for
components used in a manufacturing process is approximated

by where is measured in thousands

of dollars and is the order size in hundreds.

(a) Verify that 

(b) According to Rolle’s Theorem, the rate of change of the
cost must be 0 for some order size in the interval 
Find that order size.

In Exercises 31 and 32, copy the graph and sketch the secant
line to the graph through the points and Then
sketch any tangent lines to the graph for each value of 
guaranteed by the Mean Value Theorem. To print an enlarged
copy of the graph, go to the website www.mathgraphs.com.

31. 32.

Writing In Exercises 33–36, explain why the Mean Value
Theorem does not apply to the function on the interval 

33. 34.

35. 36. f �x� � �x � 3�f �x� �
1

x � 3

y

x
1 2 3 4 5 6

1

2

5

6

3

4

y

x
1 2 3 4 5 6

1

2

5

6

3

4

[0, 6].f

x
a b

f

y

x
a b

f

y

c
�b, f �b��.�a, f �a��

�3, 6�.

C�3� � C�6�.
x

CC�x� � 10� 1
x

�
x

x � 3	,

C

�1, 2�?

f �1� � f �2�.
f �t� � �16t2 � 48t � 6.

t

��1, 0�f �x� �
x
2

� sin
	x
6

,

��1
4, 1

4�f �x� � x � tan 	x,

�0, 1�f �x� � x � x1�3,��1, 1�f �x� � �x� � 1,

f��c� � 0.�a, b�c
f

[a, b].

�	, 2	�f �x� � sec x,

�0, 	�f �x� � tan x,

��	, 	�f �x� � cos 2x,

�0,
	

6�f �x� �
6x
	

� 4 sin2 x,

�0, 2	�f �x� � cos x,

�0, 2	�f �x� � sin x,

��1, 1�f �x� �
x2 � 1

x
,

��1, 3�f �x� �
x2 � 2x � 3

x � 2
,

�0, 6�f �x� � 3 � �x � 3�,
��8, 8�f �x� � x2�3 � 1,

��1, 3�f �x� � �x � 3��x � 1�2,

�1, 3�f �x� � �x � 1��x � 2��x � 3�,
�1, 4�f �x� � x2 � 5x � 4,

�0, 3�f �x� � �x2 � 3x,

f��c� � 0.
�a, b�c

[a, b].f

y

x

2

1

−2

π
4

π
2

π
2

π

f (x) = sin 2x

(   , 0)
(0, 0)

y

x

f (x) = x2 + 2x − 3

(−3, 0) (1, 0)

−4 2
−2

2

4

f��c� � 0
c

f

f �x� � �3x�x � 1f �x� � x�x � 4

f �x� � x�x � 3�f �x� � x2 � x � 2

xf��x� � 0
fx

��1, 1��0, 2�
f �x� � ��2 � x2�3�3,f �x� � 1 � �x � 1�,
�	, 3	���1, 1�

f �x� � cot
x
2

,f �x� � �1x �,
f �a� � f �b�.

ba
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37. Mean Value Theorem Consider the graph of the function
(a) Find the equation of the secant line join-

ing the points and (b) Use the Mean Value
Theorem to determine a point in the interval such that
the tangent line at is parallel to the secant line. (c) Find the
equation of the tangent line through (d) Then use a graphing
utility to graph the secant line, and the tangent line.

Figure for 37 Figure for 38

38. Mean Value Theorem Consider the graph of the function
(a) Find the equation of the secant line

joining the points and (b) Use the Mean Value
Theorem to determine a point in the interval such that
the tangent line at is parallel to the secant line. (c) Find the
equation of the tangent line through (d) Then use a graphing
utility to graph the secant line, and the tangent line.

In Exercises 39–48, determine whether the Mean Value
Theorem can be applied to on the closed interval If the
Mean Value Theorem can be applied, find all values of in the

open interval such that If the Mean

Value Theorem cannot be applied, explain why not.

39. 40.

41. 42.

43. 44.

45. 46.

47.

48.

In Exercises 49– 52, use a graphing utility to (a) graph the
function on the given interval, (b) find and graph the secant
line through points on the graph of at the endpoints of the
given interval, and (c) find and graph any tangent lines to the
graph of that are parallel to the secant line.

49. 50.

51.

52.

53. Vertical Motion The height of an object seconds after it is
dropped from a height of 300 meters is 

(a) Find the average velocity of the object during the first 
3 seconds.

(b) Use the Mean Value Theorem to verify that at some time
during the first 3 seconds of fall the instantaneous velocity
equals the average velocity. Find that time.

54. Sales A company introduces a new product for which the
number of units sold is

where is the time in months.

(a) Find the average rate of change of during the first year.

(b) During what month of the first year does equal the
average rate of change?

59. Speed A plane begins its takeoff at 2:00 P.M. on a 2500-mile
flight. After 5.5 hours, the plane arrives at its destination.
Explain why there are at least two times during the flight when
the speed of the plane is 400 miles per hour.

60. Temperature When an object is removed from a furnace and
placed in an environment with a constant temperature of 
its core temperature is Five hours later the core
temperature is Explain why there must exist a time in
the interval when the temperature is decreasing at a rate of

per hour.

61. Velocity Two bicyclists begin a race at 8:00 A.M. They both
finish the race 2 hours and 15 minutes later. Prove that at some
time during the race, the bicyclists are traveling at the same
velocity.

62. Acceleration At 9:13 A.M., a sports car is traveling 35 miles
per hour. Two minutes later, the car is traveling 85 miles per
hour. Prove that at some time during this two-minute interval,
the car’s acceleration is exactly 1500 miles per hour squared.

222�F

390�F.
1500�F.

90�F,

S��t�
S�t�

t

S�t� � 200�5 �
9

2 � t	
S

s�t� � �4.9t2 � 300.
t

�0, 6�f �x� � x4 � 2x3 � x2,

�1, 9�f �x� � �x,

��	, 	�f �x� � x � 2 sin x,��1
2,  2�f �x� �

x
x � 1

,

f

f
f

�0, 	�f �x� � cos x � tan x,

�0, 	�f �x� � sin x,

��7, 2�f �x� � �2 � x,��1, 3�f �x� � �2x � 1�,
��1, 2�f �x� �

x � 1
x

,�0, 1�f �x� � x2�3,

�0, 2�f �x� � x4 � 8x,��1, 1�f �x� � x3 � 2x,

�0, 1�f �x� � x3,��2, 1�f �x� � x2,

f��c� �
f �b� � f �a�

b � a
.�a, b�

c
[a, b].f

f,
c.

c
��2, 4�c

�4, 0�.��2, �6�
f �x� � x2 � x � 12.

(−2, −6)

(4, 0)
x

y
f (x) = x2 − x − 12

−4−8 8

−12−4 2 4

−2

2

6

(−1, 4)

(2, 1)

x

y
f (x) = −x2 + 5

f,
c.

c
��1, 2�c

�2, 1�.��1, 4�
f �x� � �x2 � 5.
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55. Let be continuous on and differentiable on If
there exists in such that does it follow that

Explain.

56. Let be continuous on the closed interval and differ-
entiable on the open interval Also, suppose that

and that is a real number in the interval such
that Find an interval for the function over which
Rolle’s Theorem can be applied, and find the corresponding
critical number of ( is a constant).

(a) (b)

(c)

57. The function

is differentiable on and satisfies 
However, its derivative is never zero on Does this
contradict Rolle’s Theorem? Explain.

58. Can you find a function such that 
and for all Why or why not?x?f��x� < 1

f �2� � 6,f ��2� � �2,f

�0, 1�.
f �0� � f �1�.�0, 1�

f �x� � �0,
1 � x,

x � 0
0 < x � 1

g�x� � f �kx�
g�x� � f �x � k�g�x� � f �x� � k

kg

gf��c� � 0.
cf �a� � f �b�

�a, b�.
�a, b�f

f �a� � f �b�?
f��c� � 0,�a, b�c

�a, b�.�a, b�f

WRITING ABOUT CONCEPTS
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63. Consider the function 

(a) Use a graphing utility to graph and 

(b) Is a continuous function? Is a continuous function?

(c) Does Rolle’s Theorem apply on the interval Does
it apply on the interval Explain.

(d) Evaluate, if possible, and 

Think About It In Exercises 65 and 66, sketch the graph of an
arbitrary function that satisfies the given condition but does
not satisfy the conditions of the Mean Value Theorem on the
interval 

65. is continuous on 

66. is not continuous on 

In Exercises 67–70, use the Intermediate Value Theorem and
Rolle’s Theorem to prove that the equation has exactly one real
solution.

67. 68.

69. 70.

71. Determine the values and such that the function 
satisfies the hypotheses of the Mean Value Theorem on the
interval 

72. Determine the values and such that the function 
satisfies the hypotheses of the Mean Value Theorem on the
interval 

Differential Equations In Exercises 73–76, find a function 
that has the derivative and whose graph passes through
the given point. Explain your reasoning.

73. 74.

75. 76.

True or False? In Exercises 77– 80, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

77. The Mean Value Theorem can be applied to on the
interval 

78. If the graph of a function has three -intercepts, then it must
have at least two points at which its tangent line is horizontal.

79. If the graph of a polynomial function has three -intercepts,
then it must have at least two points at which its tangent line is
horizontal.

80. If for all in the domain of then is a constant 
function.

81. Prove that if and is any positive integer, then the 
polynomial function cannot have two
real roots.

82. Prove that if for all in an interval then is
constant on 

83. Let Prove that for any interval 
the value guaranteed by the Mean Value Theorem is the
midpoint of the interval.

84. (a) Let and Then
and Show that there is at least

one value in the interval where the tangent line to
at is parallel to the tangent line to at 

Identify

(b) Let and be differentiable functions on where
and Show that there is at least one

value in the interval where the tangent line to at
is parallel to the tangent line to at 

85. Prove that if is differentiable on and for
all real numbers, then has at most one fixed point. A fixed
point of a function is a real number such that 

86. Use the result of Exercise 85 to show that has at
most one fixed point.

87. Prove that for all and 

88. Prove that for all and 

89. Let Use the Mean Value Theorem to show that

�b � �a <
b � a

2�a
.

0 < a < b.

b.a�sin a � sin b� � �a � b�
b.a�cos a � cos b� � �a � b�

f �x� �
1
2 cos x

f �c� � c.cf
f

f��x� < 1���, ��f

�c, g�c��.g�c, f �c��
f�a, b�c

f �b� � g�b�.f �a� � g�a�
�a, b�gf

c.
�c, g�c��.g�c, f �c��f

��1, 2�c
f �2� � g�2�.f ��1� � g��1�

g�x� � �x3 � x2 � 3x � 2.f �x� � x2

c
�a, b�,p�x� � Ax2 � Bx � C.

�a, b�.
f�a, b�,xf��x� � 0

p�x� � x2n�1 � ax � b
na > 0

ff,xf��x� � 0

x

x

��1, 1�.
f �x� � 1�x

�1, 0�f��x� � 2x � 3,�1, 0�f��x� � 2x,

�0, 1�f��x� � 4,�2, 5�f��x� � 0,

f� �x�
f

f �x� � �
a,
2,
bx2 � c,
dx � 4,

x � �1
�1 < x � 0
0 < x � 1
1 < x � 2

��1, 2�.

fdc,b,a,

f �x� � �1,
ax � b,
x2 � 4x � c,

x � 0
0 < x � 1
1 < x � 3

�0, 3�.

fcb,a,

2x � 2 � cos x � 03x � 1 � sin x � 0

2x5 � 7x � 1 � 0x5 � x3 � x � 1 � 0

��5, 5�.f

��5, 5�.f

[�5, 5].

f

lim
x→3�

f��x�.lim
x→3�

f��x�
�1, 2�?

��1, 1�?
f�f

f�.f

f �x� � 3 cos2 �	x
2 	.

64. Graphical Reasoning The figure shows two parts of the
graph of a continuous differentiable function on 
The derivative is also continuous. To print an enlarged
copy of the graph, go to the website www.mathgraphs.com.

(a) Explain why must have at least one zero in 

(b) Explain why must also have at least one zero in the
interval What are these zeros called?

(c) Make a possible sketch of the function with one zero of
on the interval 

(d) Make a possible sketch of the function with two zeros
of on the interval 

(e) Were the conditions of continuity of and necessary
to do parts (a) through (d)? Explain.

f�f

��10, 4�.f�

��10, 4�.f�

��10, 4�.
f�

��10, 4�.f

x
−8 −4 4

8

4

−4

−8

y

f�
��10, 4�.f

CAPSTONE

www.mathgraphs.com
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3.3 Increasing and Decreasing Functions and the First Derivative Test
■ Determine intervals on which a function is increasing or decreasing.
■ Apply the First Derivative Test to find relative extrema of a function.

Increasing and Decreasing Functions
In this section you will learn how derivatives can be used to relative extrema
as either relative minima or relative maxima. First, it is important to define increasing
and decreasing functions.

A function is increasing if, its graph moves up, and is
decreasing if its graph moves down. For example, the function in Figure 3.15 is
decreasing on the interval is constant on the interval and is increasing
on the interval As shown in Theorem 3.5 below, a positive derivative implies
that the function is increasing; a negative derivative implies that the function is
decreasing; and a zero derivative on an entire interval implies that the function is 
constant on that interval.

�b, ��.
�a, b�,���, a�,

right,thetomovesxas

classify

DEFINITIONS OF INCREASING AND DECREASING FUNCTIONS

A function is increasing on an interval if for any two numbers and in
the interval, implies 

A function is decreasing on an interval if for any two numbers and in
the interval, implies f �x1� > f�x2�.x1 < x2

x2x1f

f �x1� < f �x2�.x1 < x2

x2x1f

THEOREM 3.5 TEST FOR INCREASING AND DECREASING FUNCTIONS

Let be a function that is continuous on the closed interval and differen-
tiable on the open interval 

1. If for all in then is increasing on 

2. If for all in then is decreasing on 

3. If for all in then is constant on �a, b�.f�a, b�,xf��x� � 0

�a, b�.f�a, b�,xf��x� < 0

�a, b�.f�a, b�,xf��x� > 0

�a, b�.
�a, b�f

PROOF To prove the first case, assume that for all in the interval 
and let be any two points in the interval. By the Mean Value Theorem, you
know that there exists a number such that and

Because and you know that

which implies that So, is increasing on the interval. The second case
has a similar proof (see Exercise 104), and the third case is a consequence of Exercise
82 in Section 3.2. ■

ff �x1� < f�x2�.

f�x2� � f�x1� > 0

x2 � x1 > 0,f��c� > 0

f��c� �
f�x2� � f�x1�

x2 � x1
.

x1 < c < x2,c
x1 < x2

�a, b�xf��x� > 0

NOTE The conclusions in the first two cases of Theorem 3.5 are valid even if at a
finite number of -values in ■�a, b�.x

f��x� � 0

x

f

In
cr

ea
si

ng

D
ecreasing

Constant

x = a x = b

f ′(x) < 0 f ′(x) > 0f ′(x) = 0

y

The derivative is related to the slope of a
function.
Figure 3.15
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EXAMPLE 1 Intervals on Which f Is Increasing or Decreasing

Find the open intervals on which is increasing or decreasing.

Solution Note that is differentiable on the entire real number line. To determine the
critical numbers of set equal to zero.

Write original function.

Differentiate and set equal to 0.

Factor.

Critical numbers

Because there are no points for which does not exist, you can conclude that 
and are the only critical numbers. The table summarizes the testing of the three
intervals determined by these two critical numbers.

So, is increasing on the intervals and and decreasing on the interval
as shown in Figure 3.16. ■

Example 1 gives you one example of how to find intervals on which a function is
increasing or decreasing. The guidelines below summarize the steps followed in that
example.

A function is strictly monotonic on an interval if it is either increasing on the
entire interval or decreasing on the entire interval. For instance, the function 
is strictly monotonic on the entire real number line because it is increasing on the
entire real number line, as shown in Figure 3.17(a). The function shown in Figure
3.17(b) is not strictly monotonic on the entire real number line because it is constant
on the interval �0, 1�.

f�x� � x3

�0, 1�,
�1, �����, 0�f

x � 1
x � 0f�

x � 0, 1

 3�x��x � 1� � 0

f��x�f��x� � 3x2 � 3x � 0

f �x� � x3 �
3
2

x2

f��x�f,
f

f�x� � x3 �
3
2x2

Interval �� < x < 0 0 < x < 1 1 < x < �

Test Value x � �1 x �
1
2 x � 2

Sign of f��x� f� ��1� � 6 > 0 f� �1
2� � �

3
4 < 0 f� �2� � 6 > 0

Conclusion Increasing Decreasing Increasing

GUIDELINES FOR FINDING INTERVALS ON WHICH A FUNCTION IS
INCREASING OR DECREASING

Let be continuous on the interval To find the open intervals on which 
is increasing or decreasing, use the following steps.

1. Locate the critical numbers of in and use these numbers to determine
test intervals.

2. Determine the sign of at one test value in each of the intervals.

3. Use Theorem 3.5 to determine whether is increasing or decreasing on each
interval.

These guidelines are also valid if the interval is replaced by an interval of
the form or ���, ��.���, b�, �a, ��,

�a, b�

f

f��x�

�a, b�,f

f�a, b�.f

x

In
cr

ea
si

ng

In
cr

ea
si

ng

−1 2 3

−2

−1

2

1

Constant

f(x) = 
−x2,

(x − 1)2,
0,

y

x < 0
0 ≤ x ≤ 1

x > 1

(b) Not strictly monotonic
Figure 3.17

x

f (x) = x3

In
cr

ea
si

ng

In
cr

ea
si

ng

−2 −1 1 2

−2

−1

2

1

y

(a) Strictly monotonic function

−1 1 2

−1

2

1

x

1
2

3
2

1, −( )

In
cr

ea
si

ng

In
cr

ea
si

ng

Decreasing

(0, 0)

f(x) = x3 −  x2
y

Figure 3.16



The First Derivative Test
After you have determined the intervals on which a function is increasing or decreasing,
it is not difficult to locate the relative extrema of the function. For instance, in Figure
3.18 (from Example 1), the function

has a relative maximum at the point because is increasing immediately to the
left of and decreasing immediately to the right of Similarly, has a
relative minimum at the point because is decreasing immediately to the left 
of and increasing immediately to the right of The following theorem,
called the First Derivative Test, makes this more explicit.

x � 1.x � 1
f�1, �

1
2�

fx � 0.x � 0
f�0, 0�

f�x� � x3 �
3
2

x2
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THEOREM 3.6 THE FIRST DERIVATIVE TEST

Let be a critical number of a function that is continuous on an open inter-
val containing If is differentiable on the interval, except possibly at 
then can be classified as follows.

1. If changes from negative to positive at then has a relative minimum
at

2. If changes from positive to negative at then has a relative maximum
at

3. If is positive on both sides of or negative on both sides of then 
is neither a relative minimum nor a relative maximum.

Relative minimum Relative maximum

Neither relative minimum nor relative maximum

a c b

(−)
(−)

f ′(x) < 0 f ′(x) < 0

a c b

(+) (+)

f ′(x) > 0 f ′(x) > 0

a c b

f ′(x) < 0f ′(x) > 0

(−)(+)

a c b

(−) (+)

f ′(x) < 0 f ′(x) > 0

f �c�c,cf��x�
�c, f �c��.

fc,f��x�
�c, f �c��.

fc,f��x�

f�c�
c,fc.I

fc

PROOF Assume that changes from negative to positive at Then there exist 
and in such that

for all in 

and

for all in 

By Theorem 3.5, is decreasing on and increasing on So, is a
minimum of on the open interval and, consequently, a relative minimum of 
This proves the first case of the theorem. The second case can be proved in a similar
way (see Exercise 105). ■

f.�a, b�f
f �c��c, b�.�a, c�f

�c, b�.xf��x� > 0

�a, c�xf��x� < 0

Ib
ac.f��x�

−1 1 2

−1

2

1

x
(0, 0)

Relative
maximum

Relative
minimum

y

1
2

3
2

1, −( )

f(x) = x3 −  x2

Relative extrema of
Figure 3.18

f
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EXAMPLE 2 Applying the First Derivative Test

Find the relative extrema of the function in the interval 

Solution Note that is continuous on the interval To determine the critical
numbers of in this interval, set equal to 0.

Set equal to 0.

Critical numbers

Because there are no points for which does not exist, you can conclude that 
and are the only critical numbers. The table summarizes the testing of the
three intervals determined by these two critical numbers.

By applying the First Derivative Test, you can conclude that has a relative minimum
at the point where

-value where relative minimum occurs

and a relative maximum at the point where

-value where relative maximum occurs

as shown in Figure 3.19. ■

Note that in Examples 1 and 2 the given functions are differentiable on the entire
real number line. For such functions, the only critical numbers are those for which

Example 3 concerns a function that has two types of critical numbers—
those for which and those for which is not differentiable.ff��x� � 0
f��x� � 0.

xx �
5	

3

xx �
	

3

f

x � 5	�3
x � 	�3f�

x �
	

3
,

5	

3

 cos x �
1
2

f��x�f��x� �
1
2

� cos x � 0

f��x�f
�0, 2	�.f

�0, 2	�.f �x� �
1
2 x � sin x

Interval 0 < x <
	

3
	

3
< x <

5	

3
5	

3
< x < 2	

Test Value x �
	

4
x � 	 x �

7	

4

Sign of f��x� f��	

4	 < 0 f��	� > 0 f��7	

4 	 < 0

Conclusion Decreasing Increasing Decreasing

E X P L O R A T I O N

Comparing Graphical and Analytic Approaches From Section 3.2, you
know that, by itself, a graphing utility can give misleading information about
the relative extrema of a graph. Used in conjunction with an analytic
approach, however, a graphing utility can provide a good way to reinforce
your conclusions. Use a graphing utility to graph the function in Example 2.
Then use the and features to estimate the relative extrema. How
close are your graphical approximations?

tracezoom

x
π ππ5

3
π4
3

2

4

3

2

1

−1

Relative
maximum

Relative
minimum

f(x) = x − sin x

y

1
2

A relative minimum occurs where changes
from decreasing to increasing, and a relative
maximum occurs where changes from
increasing to decreasing.
Figure 3.19

f

f



EXAMPLE 3 Applying the First Derivative Test

Find the relative extrema of

Solution Begin by noting that is continuous on the entire real number line. The
derivative of 

General Power Rule

Simplify.

is 0 when and does not exist when So, the critical numbers are
and The table summarizes the testing of the four intervals

determined by these three critical numbers.

By applying the First Derivative Test, you can conclude that has a relative minimum
at the point a relative maximum at the point and another relative
minimum at the point as shown in Figure 3.20. ■�2, 0�,

�0, 3�16 �,��2, 0�,
f

x � 2.x � 0,x � �2,
x � ±2.x � 0

�
4x

3�x2 � 4�1�3

f��x� �
2
3

�x2 � 4��1�3�2x�

f
f

f�x� � �x2 � 4�2�3.
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Interval �� < x < �2 �2 < x < 0 0 < x < 2 2 < x < �

Test Value x � �3 x � �1 x � 1 x � 3

Sign of f��x� f� ��3� < 0 f� ��1� > 0 f� �1� < 0 f� �3� > 0

Conclusion Decreasing Increasing Decreasing Increasing

When using a graphing utility to graph a function
involving radicals or rational exponents, be sure you understand the way the utility
evaluates radical expressions. For instance, even though

and

are the same algebraically, some graphing utilities distinguish between these two
functions. Which of the graphs shown in Figure 3.21 is incorrect? Why did the
graphing utility produce an incorrect graph?

Which graph is incorrect?
Figure 3.21

g(x) =   (x2 − 4)2  1/3[ ]

−4

−1

4

5

−4

−1

4

5
f(x) = (x2 − 4)2/3

g�x� � ��x2 � 4�2�1�3

f�x� � �x2 � 4�2�3

TECHNOLOGY PITFALL

(           )0,    16

x
−4 −3 −1 1 3 4

7

6

5

4

3

1

Relative
maximum

3

(2, 0)
Relative
minimum

Relative
minimum

(−2, 0)

f(x) = (x2 − 4)2/3
y

You can apply the First Derivative Test to
find relative extrema.
Figure 3.20



When using the First Derivative Test, be sure to consider the domain of the
function. For instance, in the next example, the function

is not defined when This value must be used with the critical numbers to
determine the test intervals.

EXAMPLE 4 Applying the First Derivative Test

Find the relative extrema of 

Solution

Rewrite original function.

Differentiate.

Rewrite with positive exponent.

Simplify.

Factor.

So, is zero at Moreover, because is not in the domain of you
should use this -value along with the critical numbers to determine the test intervals.

Critical numbers,

0 is not in the domain of 

The table summarizes the testing of the four intervals determined by these three 
-values.

By applying the First Derivative Test, you can conclude that has one relative 
minimum at the point and another at the point as shown in Figure 3.22.

■

�1, 2�,��1, 2�
f

x

f.x � 0

f��±1� � 0x � ±1

x
f,x � 0x � ±1.f��x�

�
2�x2 � 1��x � 1��x � 1�

x3

�
2�x4 � 1�

x3

� 2x �
2
x3

f��x� � 2x � 2x�3

f�x� � x2 � x�2

f�x� �
x4 � 1

x2 .

x-x � 0.

f�x� �
x4 � 1

x2
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Interval �� < x < �1 �1 < x < 0 0 < x < 1 1 < x < �

Test Value x � �2 x � �
1
2 x �

1
2 x � 2

Sign of f��x� f� ��2� < 0 f� ��1
2� > 0 f� �1

2� < 0 f� �2� > 0

Conclusion Decreasing Increasing Decreasing Increasing

The most difficult step in applying the First Derivative Test is 
finding the values for which the derivative is equal to 0. For instance, the values of

for which the derivative of

is equal to zero are and If you have access to technology
that can perform symbolic differentiation and solve equations, use it to apply the
First Derivative Test to this function.

x � ±��2 � 1.x � 0

f�x� �
x4 � 1
x2 � 1

x

TECHNOLOGY

5

4

3

2

1

321−1−2

y

x

Relative
minimum

Relative
minimum

(−1, 2) (1, 2)

f(x) = 
x2

x4 + 1

-values that are not in the domain of as
well as critical numbers, determine test 
intervals for 
Figure 3.22

f�.

f,x



EXAMPLE 5 The Path of a Projectile

Neglecting air resistance, the path of a projectile that is propelled at an angle is

where is the height, is the horizontal distance, is the acceleration due to gravity,
is the initial velocity, and is the initial height. (This equation is derived in Section

12.3.) Let feet per second per second, feet per second, and 
feet. What value of will produce a maximum horizontal distance?

Solution To find the distance the projectile travels, let and use the Quadratic
Formula to solve for 

At this point, you need to find the value of that produces a maximum value of 
Applying the First Derivative Test by hand would be very tedious. Using technology
to solve the equation however, eliminates most of the messy computa-
tions. The result is that the maximum value of occurs when

radian, or 

This conclusion is reinforced by sketching the path of the projectile for different
values of as shown in Figure 3.23. Of the three paths shown, note that the distance
traveled is greatest for 

The path of a projectile with initial angle 
Figure 3.23 ■
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,
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x
dx�d � 0,

x.

x � 0x � 18 cos  �sin  � �sin2  � 1 �,
x �

�tan  ± �tan2  � sec2 

�sec2 �18

�
sec2 

36
x2 � �tan �x � 9 � 0

�32 sec2 

2�242� x2 � �tan �x � 9 � 0

g sec2 

2v0
2 x2 � �tan �x � h � 0

x.
y � 0,


h � 9v0 � 24g � �32

hv0

gxy

0 �  �
	

2
y �

g sec2 

2v0
2 x2 � �tan �x � h,
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NOTE A computer simulation of this example is given in the premium eBook for this text.
Using that simulation, you can experimentally discover that the maximum value of 
occurs when ■ � 35.3�.

x

If a projectile is propelled from ground
level and air resistance is neglected, the
object will travel farthest with an initial
angle of If, however, the projectile is
propelled from a point above ground level,
the angle that yields a maximum horizontal
distance is not (see Example 5).45�

45�.
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In Exercises 1 and 2, use the graph of to find (a) the largest
open interval on which is increasing, and (b) the largest open
interval on which is decreasing.

1. 2.

In Exercises 3– 8, use the graph to estimate the open intervals
on which the function is increasing or decreasing. Then find the
open intervals analytically.

3. 4.

5. 6.

7. 8.

In Exercises 9 –16, identify the open intervals on which the
function is increasing or decreasing.

9. 10.

11. 12.

13.

14.

15.

16.

In Exercises 17– 42, (a) find the critical numbers of (if any), (b)
find the open interval(s) on which the function is increasing or
decreasing, (c) apply the First Derivative Test to identify all
relative extrema, and (d) use a graphing utility to confirm your
results.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

In Exercises 43–50, consider the function on the interval
For each function, (a) find the open interval(s) on which

the function is increasing or decreasing, (b) apply the First
Derivative Test to identify all relative extrema, and (c) use a
graphing utility to confirm your results.

43. 44.

45. 46.

47. 48.

49. 50.

In Exercises 51–56, (a) use a computer algebra system to
differentiate the function, (b) sketch the graphs of and on
the same set of coordinate axes over the given interval, (c) find
the critical numbers of in the open interval, and (d) find the 
interval(s) on which is positive and the interval(s) on which it
is negative. Compare the behavior of and the sign of f�.f

f�
f

f�f

f �x� �
sin x

1 � cos2 x
f �x� � sin2 x � sin x

f �x� � �3 sin x � cos xf �x� � cos2�2x�
f �x� � x � 2 sin xf �x� � sin x � cos x

f �x� � sin x cos x � 5f �x� �
x
2

� cos x

�0, 2��.

f �x� � ��x3 � 1,
�x2 � 2x,

x � 0
x > 0

f �x� � �3x � 1,
5 � x2,

x � 1
x > 1

f �x� � �2x � 1,
x2 � 2,

x � �1
x > �1

f �x� � �4 � x2,
�2x,

x � 0
x > 0

f �x� �
x2 � 3x � 4

x � 2
f �x� �

x2 � 2x � 1
x � 1

f �x� �
x � 4

x2f �x� �
x2

x2 � 9

f �x� �
x

x � 3
f �x� � 2x �

1
x

f �x� � �x � 3� � 1f �x� � 5 � �x � 5�
f �x� � �x � 3�1�3f �x� � �x � 2�2�3

f �x� � x2�3 � 4f �x� � x1�3 � 1

f �x� � x4 � 32x � 4f �x� �
x5 � 5x

5

f �x� � �x � 2�2�x � 1�f �x� � �x � 1�2�x � 3�
f �x� � x3 � 6x2 � 15f �x� � 2x3 � 3x2 � 12x

f �x� � ��x2 � 8x � 12�f �x� � �2x2 � 4x � 3

f �x� � x2 � 6x � 10f �x� � x2 � 4x

f

0 < x < 2	f �x� � cos2 x � cos x,

0 < x < 2	y � x � 2 cos x,

0 < x < 2	h�x� � cos
x
2

,

0 < x < 2	f �x� � sin x � 1,

y � x �
4
x

y � x�16 � x2

h�x� � 27x � x3g�x� � x2 � 2x � 8

x

y

1 2 3 4−1

−2

1

2

3

4

−2 −1−3−4 1 2

1

2

x

y

y �
x2

2x � 1
f �x� �

1
�x � 1�2

x
−2

3

2

1

2

y

x
−2 2

4

4
−2

−4

y

f �x� � x4 � 2x2y �
x3

4
� 3x

x
−3 −1 1

−1

−2

−3

−4

y

x

−1 1 2 4 5

4

3

2

1

y

y � ��x � 1�2f �x� � x2 � 6x � 8

y

x

6

2

4

−2

−4

2 4−2

f

y

x
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3.3 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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51.

52.

53. 54.

55.

56.

In Exercises 57 and 58, use symmetry, extrema, and zeros to
sketch the graph of How do the functions and differ? 

57.

58.

Think About It In Exercises 59– 64, the graph of is 
shown in the figure. Sketch a graph of the derivative of To 
print an enlarged copy of the graph, go to the website 
www.mathgraphs.com.

59. 60.

61. 62.

63. 64.

In Exercises 65–68, use the graph of to (a) identify the
interval(s) on which is increasing or decreasing, and (b)
estimate the value(s) of at which has a relative maximum or
minimum.

65. 66.

67. 68.

In Exercises 69 and 70, use the graph of to (a) identify the 
critical numbers of and (b) determine whether has a relative
maximum, a relative minimum, or neither at each critical 
number.

69. 70.

x

y

f ′

−4−6 2 4 6−2

−4

−6

4

6

x

y

f ′

−1−2−3 3

−2

2

3

4

ff,
f�

x

y

−2−4 2 4
−2

4

6 f ′

y

x
2 4−2

−2

−4

−4

2

4

f ′

y

x
2 4−2−4

−2

6
f ′

y

x
2 4−2

−2

2

−4

f ′

fx
f

f�

x
−4 −2

−2
2 4

4

2

6

y

f

x
−4 −2

−2
2 4

4

6

y

f

x
−4−6 4 6

2
4
6
8

y

f

x
−4 −2 2 6 8

2

−4
−6

y

f

x
−2 −1 1 2 3

2

1

y

f

x
−2 −1

4

2

1

21

y

f

f.
f

g�t� � 1 � 2 sin2 tf �t� � cos2 t � sin2 t,

g�x� � x�x2 � 3)f �x� �
x5 � 4x3 � 3x

x2 � 1
,

gff.

�0, 	�f �x� � 2 sin 3x � 4 cos 3x,

�0, 6	�f �x� � �3 sin 
x
3

,

�0, 4	�f �x� �
x
2

� cos
x
2

,�0, 2	�f �t� � t 2 sin t,

�0, 5�f �x� � 10�5 � �x2 � 3x � 16 �,
��3, 3�f �x� � 2x�9 � x2,
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In Exercises 71–76, assume that is differentiable for all 
The signs of are as follows.

on

on

on

Supply the appropriate inequality sign for the indicated value
of

71.

72.

73.

74.

75.

76.

77. Sketch the graph of the arbitrary function such that

f��x� �> 0,
undefined,
< 0,

x < 4
x � 4
x > 4

.

f

g��8� �0g�x� � f �x � 10�
g��0� �0g�x� � f �x � 10�
g��0� �0g�x� � �f �x�
g���6��0g�x� � �f �x�
g���5��0g�x� � 3f �x� � 3

g��0� �0g�x� � f �x� � 5

Sign of g��c�Function

c.

�6,��f��x� > 0

��4, 6�f��x� < 0

���, �4�f��x� > 0

f�
x.f

WRITING ABOUT CONCEPTS

78. A differentiable function has one critical number at 
Identify the relative extrema of at the critical number if

and f��6� � 3.f��4� � �2.5
f

x � 5.f
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Think About It In Exercises 79 and 80, the function is differ-
entiable on the indicated interval. The table shows for
selected values of (a) Sketch the graph of (b) approximate
the critical numbers, and (c) identify the relative extrema.

79. is differentiable on 

80. is differentiable on 

81. Rolling a Ball Bearing A ball bearing is placed on an
inclined plane and begins to roll. The angle of elevation of the
plane is The distance (in meters) the ball bearing rolls in 
seconds is 

(a) Determine the speed of the ball bearing after seconds.

(b) Complete the table and use it to determine the value of 
that produces the maximum speed at a particular time.

82. Numerical, Graphical, and Analytic Analysis The concen-
tration of a chemical in the bloodstream hours after injection
into muscle tissue is

(a) Complete the table and use it to approximate the time when
the concentration is greatest.

(b) Use a graphing utility to graph the concentration function
and use the graph to approximate the time when the
concentration is greatest.

(c) Use calculus to determine analytically the time when the
concentration is greatest.

83. Numerical, Graphical, and Analytic Analysis Consider the
functions and on the interval 

(a) Complete the table and make a conjecture about which is
the greater function on the interval 

(b) Use a graphing utility to graph the functions and use the
graphs to make a conjecture about which is the greater
function on the interval 

(c) Prove that on the interval [Hint: Show
that where ]

84. Numerical, Graphical, and Analytic Analysis Consider the
functions and on the interval 

(a) Complete the table and make a conjecture about which is
the greater function on the interval 

(b) Use a graphing utility to graph the functions and use the
graphs to make a conjecture about which is the greater
function on the interval 

(c) Prove that on the interval [Hint:
Show that where ]

85. Trachea Contraction Coughing forces the trachea (wind-
pipe) to contract, which affects the velocity of the air passing
through the trachea. The velocity of the air during coughing is

where is a constant, is the 
normal radius of the trachea, and is the radius during 
coughing. What radius will produce the maximum air velocity?

86. Power The electric power in watts in a direct-current circuit
with two resistors and connected in parallel is

where is the voltage. If and are held constant, what resist-
ance produces maximum power?

87. Electrical Resistance The resistance of a certain type of
resistor is where is measured
in ohms and the temperature is measured in degrees Celsius.

(a) Use a computer algebra system to find and the
critical number of the function. Determine the minimum
resistance for this type of resistor.

(b) Use a graphing utility to graph the function and use the
graph to approximate the minimum resistance for this type
of resistor.

R

dR�dT

T
RR � �0.001T 4 � 4T � 100,

R

R2

R1vv

P �
vR1R2

�R1 � R2�2

R2R1

P

r
Rk0 � r < R,v � k�R � r�r 2,

v

h � g � f.h��x� > 0,
�0, 	�2�.f �x� < g�x�

�0, 	�2�.

�0, 	�2�.

�0, 	�2�.g �x� � tan xf �x� � x

h � f � g.h��x� > 0
�0, 	�.f �x� > g�x�

�0, 	�.

�0, 	�.

�0, 	�.g�x� � sin xf �x� � x

t � 0.C(t) �
3t

27 � t3,

tC



t

s�t� � 4.9�sin �t 2.
t.

�0, 	�f

��1, 1�f

f,x.
f��x�

f

x �1 �0.75 �0.50 �0.25

f��x� �10 �3.2 �0.5 0.8

x 0 0.25 0.50 0.75 1

f��x� 5.6 3.6 �0.2 �6.7 �20.1

x 0 	�6 	�4 	�3 	�2

f��x� 3.14 �0.23 �2.45 �3.11 0.69

x 2	�3 3	�4 5	�6 	

f��x� 3.00 1.37 �1.14 �2.84

 0 	�4 	�3 	�2 2	�3 3	�4 	

s��t�

t 0 0.5 1 1.5 2 2.5 3

C�t�

x 0.5 1 1.5 2 2.5 3

f �x�

g�x�

x 0.25 0.5 0.75 1 1.25 1.5

f �x�

g�x�
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88. Modeling Data The end-of-year assets of the Medicare
Hospital Insurance Trust Fund (in billions of dollars) for the
years 1995 through 2006 are shown.

1995: 130.3; 1996: 124.9; 1997: 115.6; 1998: 120.4;

1999: 141.4; 2000: 177.5; 2001: 208.7; 2002: 234.8;

2003: 256.0; 2004: 269.3; 2005: 285.8; 2006: 305.4

(Source: U.S. Centers for Medicare and Medicaid Services)

(a) Use the regression capabilities of a graphing utility to find
a model of the form for the
data. (Let represent 1995.)

(b) Use a graphing utility to plot the data and graph the model.

(c) Find the minimum value of the model and compare the
result with the actual data.

Motion Along a Line In Exercises 89–92, the function 
describes the motion of a particle along a line. For each function,
(a) find the velocity function of the particle at any time 
(b) identify the time interval(s) in which the particle is moving
in a positive direction, (c) identify the time interval(s) in which
the particle is moving in a negative direction, and (d) identify
the time(s) at which the particle changes direction.

89. 90.

91.

92.

Motion Along a Line In Exercises 93 and 94, the graph shows
the position of a particle moving along a line. Describe how the
particle’s position changes with respect to time.

93. 94.

Creating Polynomial Functions In Exercises 95– 98, find a
polynomial function

that has only the specified extrema. (a) Determine the minimum
degree of the function and give the criteria you used in
determining the degree. (b) Using the fact that the coordinates
of the extrema are solution points of the function, and that the
-coordinates are critical numbers, determine a system of linear

equations whose solution yields the coefficients of the required
function. (c) Use a graphing utility to solve the system of
equations and determine the function. (d) Use a graphing 
utility to confirm your result graphically.

95. Relative minimum: Relative maximum:

96. Relative minimum: Relative maximum:

97. Relative minima: Relative maximum:

98. Relative minimum: Relative maxima:

True or False? In Exercises 99–103, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

99. The sum of two increasing functions is increasing.

100. The product of two increasing functions is increasing.

101. Every th-degree polynomial has critical numbers.

102. An th-degree polynomial has at most critical
numbers.

103. There is a relative maximum or minimum at each critical
number.

104. Prove the second case of Theorem 3.5.

105. Prove the second case of Theorem 3.6.

106. Use the definitions of increasing and decreasing functions to
prove that is increasing on 

107. Use the definitions of increasing and decreasing functions to
prove that is decreasing on �0, ��.f �x� � 1�x

���, ��.f �x� � x3

�n � 1�n

�n � 1�n

��1, 4�, �3, 4��1, 2�;
�2, 4��0, 0�, �4, 0�;

�4, 1000��0, 0�;
�2, 2��0, 0�;

x

f �x� � an xn 1 an�1x
n�1 1 .  .  . 1 a2 x2 1 a1x 1 a0

s

t
3 6 9 12 15 18

20

40

60

80

100

120

s

t
1 2 3 4 5 6 8 10

4

−4
−8

−12

8
12
16
20
24
28

s�t� � t3 � 20t2 � 128t � 280

s�t� � t3 � 5t2 � 4t

s�t� � t2 � 7t � 10s�t� � 6t � t2

t � 0,

s�t�

t � 5
M � at4 � bt3 � ct2 � dt � e
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108. Find the minimum value of

for real numbers 

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

x.

�sin x � cos x � tan x � cot x � sec x � csc x�

PUTNAM EXAM CHALLENGE

Rainbows are formed when light strikes raindrops and is reflected
and refracted, as shown in the figure. (This figure shows a cross 
section of a spherical raindrop.) The Law of Refraction states that

where (for water). The angle of
deflection is given by 

(a) Use a graphing utility to graph

(b) Prove that the minimum angle of
deflection occurs when

For water, what is the minimum angle of deflection, (The
angle is called the rainbow angle.) What value of 
produces this minimum angle? (A ray of sunlight that strikes a
raindrop at this angle, is called a rainbow ray.)

■ FOR FURTHER INFORMATION For more information about the
mathematics of rainbows, see the article “Somewhere Within the
Rainbow” by Steven Janke in The UMAP Journal.

�,

�	 � Dmin

Dmin?

cos � ��k2 � 1
3

.

0 � � � 	�2.

D � 	 � 2� � 4 sin�1�1�k sin ��, β

α

α

β
β

β

Water

� 4�.D � 	 � 2�
k � 1.33�sin ����sin �� � k,

Rainbows
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3.4 Concavity and the Second Derivative Test

DEFINITION OF CONCAVITY

Let be differentiable on an open interval The graph of is concave upward
on if is increasing on the interval and concave downward on if is
decreasing on the interval.

f�If�I
fI.f

■ Determine intervals on which a function is concave upward or concave downward.
■ Find any points of inflection of the graph of a function.
■ Apply the Second Derivative Test to find relative extrema of a function.

Concavity
You have already seen that locating the intervals in which a function increases or
decreases helps to describe its graph. In this section, you will see how locating the
intervals in which increases or decreases can be used to determine where the graph
of is or 

The following graphical interpretation of concavity is useful. (See Appendix A
for a proof of these results.)

1. Let be differentiable on an open interval If the graph of is concave upward on
then the graph of lies all of its tangent lines on 

[See Figure 3.24(a).]

2. Let be differentiable on an open interval If the graph of is concave downward
on then the graph of lies all of its tangent lines on 
[See Figure 3.24(b).]

(a) The graph of lies above its tangent lines. (b) The graph of lies below its tangent lines.
Figure 3.24

To find the open intervals on which the graph of a function is concave upward
or concave downward, you need to find the intervals on which is increasing or
decreasing. For instance, the graph of

is concave downward on the open interval because is
decreasing there. (See Figure 3.25.) Similarly, the graph of is concave upward on the
interval because is increasing on �0, ��.f��0, ��

f
f��x� � x2 � 1���, 0�

f �x� �
1
3x3 � x

f�
f

ff

x

Concave downward,
f ′ is decreasing.

y

x

Concave upward,
f ′ is increasing.

y

I.belowfI,
fI.f

I.abovefI,
fI.f

downward.curvingupwardcurvingf
f�

f

−2

−2

1

1

1

1

−1

x

x

y

m = 0

m = 0

m = −1

Concave
downward

Concave
upward

−1

−1

(1, 0)

(0, −1)

(−1, 0)

f ′(x) = x2 − 1

f ′ is decreasing. f ′ is increasing.

f(x) = x3 − x1
3

y

The concavity of is related to the slope of
the derivative.
Figure 3.25

f
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The following theorem shows how to use the derivative of a function 
to determine intervals on which the graph of is concave upward or concave down-
ward. A proof of this theorem (see Appendix A) follows directly from Theorem 3.5
and the definition of concavity.

To apply Theorem 3.7, locate the -values at which or does not exist.
Second, use these -values to determine test intervals. Finally, test the sign of in
each of the test intervals.

EXAMPLE 1 Determining Concavity

Determine the open intervals on which the graph of

is concave upward or downward.

Solution Begin by observing that is continuous on the entire real line. Next, find
the second derivative of 

Rewrite original function.

Differentiate.

First derivative

Differentiate.

Second derivative

Because when and is defined on the entire real line, you should
test in the intervals and The results are shown in the
table and in Figure 3.26.

■

The function given in Example 1 is continuous on the entire real line. If there are
-values at which the function is not continuous, these values should be used, along

with the points at which or does not exist, to form the test intervals.f � �x�f ��x� � 0
x

�1, ��.���, �1�, ��1, 1�,f�
f �x � ±1f ��x� � 0

�
36�x2 � 1�
�x2 � 3�3

f ��x� �
�x2 � 3�2��12� � ��12x��2��x2 � 3��2x�

�x2 � 3�4

�
�12x

�x2 � 3�2

f��x� � ��6��x2 � 3��2�2x�
f�x� � 6�x2 � 3��1

f.
f

f �x� �
6

x2 � 3

f ��x�x
f �f � �x� � 0x

f
fsecond

THEOREM 3.7 TEST FOR CONCAVITY

Let be a function whose second derivative exists on an open interval 

1. If for all in then the graph of is concave upward on 

2. If for all in then the graph of is concave downward on I.fI,xf ��x� < 0

I.fI,xf ��x� > 0

I.f

Interval �� < x < �1 �1 < x < 1 1 < x < �

Test Value x � �2 x � 0 x � 2

Sign of f� �x� f� ��2� > 0 f� �0� < 0 f� �2� > 0

Conclusion Concave upward Concave downward Concave upward

NOTE A third case of Theorem 3.7
could be that if for all in 
then is linear. Note, however, that
concavity is not defined for a line. In
other words, a straight line is neither
concave upward nor concave downward. 

f
I,xf ��x� � 0

x
−2 −1

−1

1 2

1

3

Concave
upward

Concave
upward

Concave
downward

f ″(x) > 0 f ″(x) > 0

f ″(x) < 0

f(x) =
x2 + 3

6y

From the sign of you can determine the
concavity of the graph of
Figure 3.26

f.
f�
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EXAMPLE 2 Determining Concavity

Determine the open intervals on which the graph of is concave upward
or concave downward.

Solution Differentiating twice produces the following.

Write original function.

Differentiate.

First derivative

Differentiate.

Second derivative

There are no points at which but at the function is not continuous,
so test for concavity in the intervals and as shown in the
table. The graph of is shown in Figure 3.27.

■

Points of Inflection
The graph in Figure 3.26 has two points at which the concavity changes. If the 
tangent line to the graph exists at such a point, that point is a point of inflection. Three
types of points of inflection are shown in Figure 3.28.

f
�2, ��,��2, 2�,���, �2�,

fx � ±2f ��x� � 0,

�
10�3x2 � 4�

�x2 � 4�3

f ��x� �
�x2 � 4�2��10� � ��10x��2��x2 � 4��2x�

�x2 � 4�4

�
�10x

�x2 � 4�2

f��x� �
�x2 � 4��2x� � �x2 � 1��2x�

�x2 � 4�2

f �x� �
x2 � 1
x2 � 4

f �x� �
x2 � 1
x2 � 4

Interval �� < x < �2 �2 < x < 2 2 < x < �

Test Value x � �3 x � 0 x � 3

Sign of f� �x� f� ��3� > 0 f� �0� < 0 f� �3� > 0

Conclusion Concave upward Concave downward Concave upward

DEFINITION OF POINT OF INFLECTION

Let be a function that is continuous on an open interval and let be a point
in the interval. If the graph of has a tangent line at this point then
this point is a point of inflection of the graph of if the concavity of 
changes from upward to downward (or downward to upward) at the point.

ff
�c, f �c��,f

cf

NOTE The definition of point of inflection given above requires that the tangent line exists at
the point of inflection. Some books do not require this. For instance, we do not 
consider the function

to have a point of inflection at the origin, even though the concavity of the graph changes from
concave downward to concave upward. ■

f �x� � �x3,          

x2 � 2x,

x < 0

x � 0

x
−6 −4 4 6−2 2

6

4

2

−2

−4

−6

Concave
upward

Concave
upward

Concave
downward

f(x) = 
x2 + 1
x2 − 4

y

Figure 3.27

x

Concave
upward

Concave
downward

y

x

Concave
upward

Concave
downward

y

x

Concave
upward

Concave
downward

y

The concavity of changes at a point of
inflection. Note that the graph crosses its
tangent line at a point of inflection.
Figure 3.28

f



To locate possible points of inflection, you can determine the values of for
which or does not exist. This is similar to the procedure for locating
relative extrema of 

EXAMPLE 3 Finding Points of Inflection

Determine the points of inflection and discuss the concavity of the graph of 

Solution Differentiating twice produces the following.

Write original function.

Find first derivative.

Find second derivative.

Setting you can determine that the possible points of inflection occur at
and By testing the intervals determined by these -values, you can

conclude that they both yield points of inflection. A summary of this testing is shown
in the table, and the graph of is shown in Figure 3.29.

■

The converse of Theorem 3.8 is not generally true. That is, it is possible for the
second derivative to be 0 at a point that is a point of inflection. For instance, the
graph of is shown in Figure 3.30. The second derivative is 0 when 
but the point is not a point of inflection because the graph of is concave upward
in both intervals and 0 < x < �.�� < x < 0

f�0, 0�
x � 0,f�x� � x4

not

f

xx � 2.x � 0
f ��x� � 0,

f ��x� � 12x2 � 24x � 12x�x � 2�
f��x� � 4x3 � 12x2

f �x� � x4 � 4x3

f �x� � x4 � 4x3.

f.
f ��x�f ��x� � 0

x
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THEOREM 3.8 POINTS OF INFLECTION

If is a point of inflection of the graph of then either or 
does not exist at x � c.

f �f ��c� � 0f,�c, f �c��

Interval �� < x < 0 0 < x < 2 2 < x < �

Test Value x � �1 x � 1 x � 3

Sign of f� �x� f� ��1� > 0 f� �1� < 0 f� �3� > 0

Conclusion Concave upward Concave downward Concave upward

E X P L O R A T I O N

Consider a general cubic function of the form

You know that the value of has a bearing on the location of the graph but
has no bearing on the value of the first derivative at given values of 
Graphically, this is true because changes in the value of shift the graph up
or down but do not change its basic shape. Use a graphing utility to graph
several cubics with different values of Then give a graphical explanation of
why changes in do not affect the values of the second derivative.c

c.

d
x.

d

f�x� � ax3 � bx2 � cx � d.

x
−1 2 3

18

9

−9

−18

−27

Points of
inflection

Concave
upward

Concave
upward

Concave
downward

f(x) = x4 − 4x3
y

Points of inflection can occur where
or does not exist.

Figure 3.29
f�f�(x) � 0

x
−1 1

2

1

f(x) = x4

y

but is not a point of
inflection.
Figure 3.30

�0, 0�f�(x) � 0,
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The Second Derivative Test
In addition to testing for concavity, the second derivative can be used to perform a
simple test for relative maxima and minima. The test is based on the fact that if the
graph of a function is concave upward on an open interval containing and

must be a relative minimum of Similarly, if the graph of a function 
is concave downward on an open interval containing and must be a
relative maximum of (see Figure 3.31).

EXAMPLE 4 Using the Second Derivative Test

Find the relative extrema for 

Solution Begin by finding the critical numbers of 

Set equal to 0.

Critical numbers

Using

you can apply the Second Derivative Test as shown below.

Because the Second Derivative Test fails at you can use the First Derivative Test
and observe that increases to the left and right of So, is neither a 
relative minimum nor a relative maximum (even though the graph has a horizontal
tangent line at this point). The graph of is shown in Figure 3.32. ■f

�0, 0�x � 0.f
�0, 0�,

f ��x� � �60x3 � 30x � 30��2x3 � x�

x � �1, 0, 1

f��x�f��x� � �15x4 � 15x2 � 15x2�1 � x2� � 0

f.

f �x� � �3x5 � 5x3.

f
f �c�f��c� � 0,c,

ff.f �c�f��c� � 0,
c,f

THEOREM 3.9 SECOND DERIVATIVE TEST

Let be a function such that and the second derivative of exists on
an open interval containing 

1. If then has a relative minimum at 

2. If then has a relative maximum at 

If the test fails. That is, may have a relative maximum, a relative
minimum, or neither. In such cases, you can use the First Derivative Test.

ff ��c� � 0,

�c, f �c��.ff ��c� < 0,

�c, f �c��.ff ��c� > 0,

c.
ff��c� � 0f

PROOF If and there exists an open interval containing for
which

for all in If then and Also, if then
and So, changes from negative to positive at and the First

Derivative Test implies that is a relative minimum. A proof of the second
case is left to you. ■

f�c�
c,f��x�f��x� > 0.x � c > 0

x > c,f��x� < 0.x � c < 0x < c,I.x � c

f��x� � f��c�
x � c

�
f��x�

x � c
> 0

cIf ��c� > 0,f��c� � 0

Point ��1, �2� �1, 2� �0, 0�

Sign of f� �x� f� ��1� > 0 f� �1� < 0 f� �0� � 0

Conclusion Relative minimum Relative maximum Test fails

x
c

Concave
upward f

f ″(c) > 0

y

If and is a relative
minimum.

f �c�f��c� > 0,f��c� � 0

x
c

f

Concave
downward

f ″(c) < 0
y

If and is a relative
maximum.
Figure 3.31

f �c�f��c� < 0,f��c� � 0

x

y

(1, 2)

(0, 0)

(−1, −2)

Relative
maximum

Relative
minimum

−2 −1 1 2

−2

−1

1

2

f(x) = −3x5 + 5x3

is neither a relative minimum nor a
relative maximum.
Figure 3.32

�0, 0�



In Exercises 1– 4, the graph of is shown. State the signs of 
and on the interval 

1. 2.

3. 4.

In Exercises 5–18, determine the open intervals on which the
graph is concave upward or concave downward.

5. 6.

7. 8.

9.

10.

11. 12.

13. 14.

15. 16.

17. 18.

In Exercises 19–36, find the points of inflection and discuss the
concavity of the graph of the function.

19.

20.

21.

22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33.

34.

35.

36.

In Exercises 37– 52, find all relative extrema. Use the Second
Derivative Test where applicable.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51.

52.

In Exercises 53–56, use a computer algebra system to analyze
the function over the given interval. (a) Find the first and 
second derivatives of the function. (b) Find any relative extrema
and points of inflection. (c) Graph and on the same 
set of coordinate axes and state the relationship between the
behavior of and the signs of and 

53.

54.

55.

56. �0, 2	�f �x� � �2x sin x,

�0, 	�f �x� � sin x �
1
3 sin 3x �

1
5 sin 5x,

���6, �6�f �x� � x2�6 � x2,

��1, 4�f �x� � 0.2x2�x � 3�3,

f�.f�f

f�f�,f,

�0, 2	�f �x� � 2 sin x � cos 2x,

�0, 4	�f �x� � cos x � x,

f �x� �
x

x � 1
f �x� � x �

4
x

f �x� � �x2 � 1f �x� � x2�3 � 3

g�x� � �
1
8�x � 2�2�x � 4�2g�x� � x2�6 � x�3

f �x� � �x4 � 4x3 � 8x2f �x� � x4 � 4x3 � 2

f �x� � x3 � 5x2 � 7xf �x� � x3 � 3x2 � 3

f �x� � x2 � 3x � 8f �x� � 6x � x2

f �x� � ��x � 5�2f �x� � �x � 5�2

�0, 2	�f �x� � x � 2 cos x,

�0, 2	�f �x� � 2 sin x � sin 2x,

�0, 2	�f �x� � sin x � cos x,

�0, 4	�f �x� � sec�x �
	

2	,

�0, 2	�f �x� � 2 csc 
3x
2

,�0, 4	�f �x� � sin
x
2

,

f �x� �
x � 1
�x

f �x� �
4

x2 � 1

f �x� � x�9 � xf �x� � x�x � 3

f �x� � �x � 2�3�x � 1�f �x� � x�x � 4�3

f �x� � 2x4 � 8x � 3f �x� �
1
4x4 � 2x2

f �x� � 2x3 � 3x2 � 12x � 5

f �x� � x3 � 6x2 � 12x

f �x� � �x4 � 24x2

f �x� �
1
2 x4 � 2x3

��	, 	�y � x �
2

sin x
,��	

2
,
	

2	y � 2x � tan x,

h�x� �
x2 � 1
2x � 1

g�x� �
x2 � 4
4 � x2

y �
�3x5 � 40x3 � 135x

270
f �x� �

x2 � 1
x2 � 1

f �x� �
x2

x2 � 1
f �x� �

24
x2 � 12

f �x� � x5 � 5x4 � 40x2

f �x� � �x3 � 6x2 � 9x � 1

h�x� � x 5 � 5x � 2g�x� � 3x2 � x3

y � �x3 � 3x2 � 2y � x2 � x � 2

x

y

f

1 2
x

y

f

1 2

x

y

1 2

f

x

y

f

1 2

�0, 2�.f�
f�f
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3.4 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

57. Consider a function such that is increasing. Sketch
graphs of for (a) and (b) 

58. Consider a function such that is decreasing. Sketch
graphs of for (a) and (b) 

59. Sketch the graph of a function that does have a point
of inflection at even though 

60. represents weekly sales of a product. What can be said of
and for each of the following statements?

(a) The rate of change of sales is increasing.

(b) Sales are increasing at a slower rate.

(c) The rate of change of sales is constant.

(d) Sales are steady.

(e) Sales are declining, but at a slower rate.

(f ) Sales have bottomed out and have started to rise.

S�S�
S

f ��c� � 0.�c, f �c��
notf

f� > 0.f� < 0f
f�f

f� > 0.f� < 0f
f�f

WRITING ABOUT CONCEPTS

CAS
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In Exercises 61– 64, the graph of is shown. Graph and 
on the same set of coordinate axes. To print an enlarged copy of
the graph, go to the website www.mathgraphs.com.

61. 62.

63. 64.

Think About It In Exercises 65– 68, sketch the graph of a 
function having the given characteristics.

65. 66.

if if 

does not exist.

if if 

67. 68.

if if 

does not exist.

if if 

69. Think About It The figure shows the graph of Sketch a
graph of (The answer is not unique.) To print an enlarged
copy of the graph, go to the website www.mathgraphs.com.

Figure for 69 Figure for 70

71. Conjecture Consider the function 

(a) Use a graphing utility to graph for 2, 3, and 4. Use
the graphs to make a conjecture about the relationship
between and any inflection points of the graph of 

(b) Verify your conjecture in part (a).

72. (a) Graph and identify the inflection point.

(b) Does exist at the inflection point? Explain.

In Exercises 73 and 74, find and such that the cubic
satisfies the given conditions.

73. Relative maximum: 74. Relative maximum:

Relative minimum: Relative minimum:

Inflection point: Inflection point:

75. Aircraft Glide Path A small aircraft starts its descent from an
altitude of 1 mile, 4 miles west of the runway (see figure).

(a) Find the cubic on the interval
that describes a smooth glide path for the landing.

(b) The function in part (a) models the glide path of the plane.
When would the plane be descending at the greatest rate?

76. Highway Design A section of highway connecting two
hillsides with grades of 6% and 4% is to be built between two
points that are separated by a horizontal distance of 2000 feet
(see figure). At the point where the two hillsides come together,
there is a 50-foot difference in elevation.

(a) Design a section of highway connecting the hillsides
modeled by the function 

At the points and the slope of
the model must match the grade of the hillside.

(b) Use a graphing utility to graph the model.

(c) Use a graphing utility to graph the derivative of the model.

(d) Determine the grade at the steepest part of the transitional
section of the highway.

B,Ax � 1000�.��1000 �
f �x� � ax3 � bx2 � cx � d

Highway

50 ft

y

x

A(−1000, 60)
B(1000, 90)

6% grade
4% grade

Not drawn to scale

��4, 0�
f �x� � ax3 � bx2 � cx � d

−4 −3 −2 −1

1

x

y

�3, 3��4, 2�
�4, 2��5, 1�
�2, 4��3, 3�

f �x� � ax3 1 bx2 1 cx 1 d
dc,b,a,

f ��x�
f �x� � 3�x

f.n

n � 1,f

f �x� � �x � 2�n.

d

6

4

2
3

5

5321−1 4

1

f ″

x

y

f.
f�.

f ��x� > 0x � 3f ��x� > 0,

x > 1f��x� > 0x > 3f��x� < 0

f��1� � 0f��3�
x < 1f��x� < 0x < 3f��x� > 0

f �0� � f �2� � 0f �2� � f �4� � 0

f ��x� < 0x � 3f � �x� < 0,

x > 1f��x� < 0x > 3f��x� > 0

f��1� � 0f��3�
x < 1f� �x� > 0x < 3f� �x� < 0

f �0� � f �2� � 0f �2� � f �4� � 0

f

1 2 3 4

4

3

2

1

f

x

y

−2 1 2

−4

−2

4

f

x

y

−1 1 2 3
−1

3

2

f

x

y

1−2

−1

1

2

x

y

f

f�f�,f,f
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■ FOR FURTHER INFORMATION For more information on this
type of modeling, see the article “How Not to Land at Lake Tahoe!”
by Richard Barshinger in The American Mathematical Monthly. To
view this article, go to the website www.matharticles.com.

70. Think About It Water is running into the vase shown in
the figure at a constant rate.

(a) Graph the depth of water in the vase as a function of time.

(b) Does the function have any extrema? Explain.

(c) Interpret the inflection points of the graph of d.

d

CAPSTONE

www.mathgraphs.com
www.mathgraphs.com
www.matharticles.com


77. Beam Deflection The deflection of a beam of length is
where is the distance from one

end of the beam. Find the value of that yields the maximum
deflection.

78. Specific Gravity A model for the specific gravity of water is 

where is the water temperature in degrees Celsius.

(a) Use a computer algebra system to find the coordinates of
the maximum value of the function.

(b) Sketch a graph of the function over the specified domain. 
Use a setting in which 

(c) Estimate the specific gravity of water when 

79. Average Cost A manufacturer has determined that the total
cost of operating a factory is 
where is the number of units produced. At what level of
production will the average cost per unit be minimized? (The 
average cost per unit is )

80. Inventory Cost The total cost of ordering and storing 
units is What order size will produce a
minimum cost?

81. Sales Growth The annual sales of a new product are given by

where is time in years. 

(a) Complete the table. Then use it to estimate when the annual
sales are increasing at the greatest rate.

(b) Use a graphing utility to graph the function Then use the
graph to estimate when the annual sales are increasing at
the greatest rate.

(c) Find the exact time when the annual sales are increasing at
the greatest rate.

82. Modeling Data The average typing speed (in words per
minute) of a typing student after weeks of lessons is shown in
the table.

A model for the data is 

(a) Use a graphing utility to plot the data and graph the model.

(b) Use the second derivative to determine the concavity of 
Compare the result with the graph in part (a).

(c) What is the sign of the first derivative for By
combining this information with the concavity of the model,
what inferences can be made about the typing speed as

increases?

Linear and Quadratic Approximations In Exercises 83– 86, use
a graphing utility to graph the function. Then graph the linear
and quadratic approximations

and

in the same viewing window. Compare the values of and
and their first derivatives at How do the approxima-

tions change as you move farther away from 

83.

84.

85.

86.

87. Use a graphing utility to graph Show that the
graph is concave downward to the right of 

88. Show that the point of inflection of lies 
midway between the relative extrema of 

89. Prove that every cubic function with three distinct real zeros
has a point of inflection whose -coordinate is the average of
the three zeros.

90. Show that the cubic polynomial 
has exactly one point of inflection where

and

Use this formula to find the point of inflection of

True or False? In Exercises 91– 94, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

91. The graph of every cubic polynomial has precisely one point of
inflection.

92. The graph of is concave downward for and
concave upward for and thus it has a point of inflection
at

93. If then is concave upward at 

94. If then the graph of must have a point of inflection
at

In Exercises 95 and 96, let and represent differentiable
functions such that and 

95. Show that if and are concave upward on the interval 
then is also concave upward on 

96. Prove that if and are positive, increasing, and concave
upward on the interval then is also concave upward
on �a, b�.

fg�a, b�,
gf

�a, b�.f � g
�a, b�,gf

g�  0.f�  0
gf

x � 2.
ff� �2� � 0,

x � c.ff��c� > 0,

x � 0.
x > 0,

x < 0f �x� � 1�x

x3 � 3x2 � 2.p�x� �

y0 �
2b3

27a2 �
bc
3a

� d.x0 �
�b
3a

�x0, y0�,
p�x� � ax3 � bx2 � cx � d

x

f.
f �x� � x�x � 6�2

x � 1�	.
y � x sin�1�x�.

a � 2f �x� �
�x

x � 1

a � 0f �x� � �1 � x

a � 0f �x� � 2�sin x � cos x�

a �
	

4
f �x� � 2�sin x � cos x�

Value of aFunction

x � a?
x � a.P2

P1,f,

P2�x� � f �a� 1 f��a��x � a� 1 1
2 f��a��x � a�2

P1�x� � f �a� 1 f��a��x � a�

t

t > 0?

S.

t > 0.S �
100t2

65 � t2,

t
S

S.

tS �
5000t 2

8 � t 2, 0 � t � 3,

S

C � 2x � �300,000�x�.
xC

C�x.

x
C � 0.5x2 � 15x � 5000,C

T � 20�.

0.996 � S � 1.001.��

T

0 < T < 25S �
5.755
108 T 3 �

8.521
106 T 2 �

6.540
105 T � 0.99987,

S

x
xD � 2x4 � 5Lx3 � 3L2x2,

LD
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t 0.5 1 1.5 2 2.5 3

S

t 5 10 15 20 25 30

S 38 56 79 90 93 94

CAS



■ Determine (finite) limits at infinity.
■ Determine the horizontal asymptotes, if any, of the graph of a function.
■ Determine infinite limits at infinity.

Limits at Infinity
This section discusses the “end behavior” of a function on an interval.
Consider the graph of

as shown in Figure 3.33. Graphically, you can see that the values of appear to
approach 3 as increases without bound or decreases without bound. You can come
to the same conclusions numerically, as shown in the table.

The table suggests that the value of approaches 3 as increases without bound
Similarly, approaches 3 as decreases without bound 

These limits at infinity are denoted by 

Limit at negative infinity

and

Limit at positive infinity

To say that a statement is true as increases means that for some
(large) real number the statement is true for in the interval The
following definition uses this concept.

The definition of a limit at infinity is shown in Figure 3.34. In this figure, note
that for a given positive number there exists a positive number such that, for

the graph of will lie between the horizontal lines given by and
y � L � �.

y � L � �fx > M,
M�

�x: x > M�.xallM,
boundwithoutx

lim
x→�

f �x� � 3.

lim
x→��

f �x� � 3

�x → ���.xf �x��x → ��.
xf �x�

x
f �x�

f �x� �
3x2

x2 � 1

infinite
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3.5 Limits at Infinity

x decreases without bound.

approaches 3.f �x� approaches 3.f �x�

x increases without bound.

x →

�� �100 �10 �1 0 1 10 100 →�

f�x� 3 → 2.9997 2.97 1.5 0 1.5 2.97 2.9997 → 3

DEFINITION OF LIMITS AT INFINITY

Let be a real number.

1. The statement means that for each there exists an

such that whenever 

2. The statement means that for each there exists an

such that whenever x < N.� f �x� � L�  < �N < 0

� > 0lim
x→��

f �x� � L

x > M.� f �x� � L� < �M > 0

� > 0lim
x→�

f �x� � L

L

x
−4 −3 −2 −1 1 2 3 4

4

2
f (x) → 3
as x → −∞

f(x) → 3
as x → ∞

f(x) = 3x2

x2 + 1

y

The limit of as approaches or 
is 3.
Figure 3.33

���xf �x)

x

L

M

ε
ε

lim f(x) = L
x→∞

y

is within units of as 
Figure 3.34

x →�.L�f �x)

NOTE The statement 

or means that the limit

exists and the limit is equal to L.

lim
x→�

f �x� � L

lim
x→��

f �x� � L
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DEFINITION OF A HORIZONTAL ASYMPTOTE

The line is a horizontal asymptote of the graph of if

or lim
x→�

f �x� � L.lim
x→��

f �x� � L

fy � L

THEOREM 3.10 LIMITS AT INFINITY

If is a positive rational number and is any real number, then

Furthermore, if is defined when then 

lim
x→��

c
xr � 0.

x < 0,xr

lim
x→�

c
xr � 0.

cr

Horizontal Asymptotes
In Figure 3.34, the graph of approaches the line as increases without bound.
The line is called a horizontal asymptote of the graph of 

Note that from this definition, it follows that the graph of a of can have
at most two horizontal asymptotes—one to the right and one to the left.

Limits at infinity have many of the same properties of limits discussed in Section
1.3. For example, if and both exist, then

and

Similar properties hold for limits at 
When evaluating limits at infinity, the following theorem is helpful. (A proof of

this theorem is given in Appendix A.)

EXAMPLE 1 Finding a Limit at Infinity

Find the limit:

Solution Using Theorem 3.10, you can write

Property of limits

■� 5.

� 5 � 0

 lim
x→� �5 �

2
x2	 � lim

x→�
 5 � lim

x→�

2
x2

lim
x→� �5 �

2
x2	.

��.

lim
x→�

� f �x�g�x�� � � lim
x→�

f �x�� � lim
x→�

g�x��.

lim
x→�

� f �x� � g�x�� � lim
x→�

f �x� � lim
x→�

g�x�

lim
x→�

g�x�lim
x→�

f�x�

xfunction

f.y � L
xy � Lf

E X P L O R A T I O N

Use a graphing utility to graph 

Describe all the important 
features of the graph. Can you
find a single viewing window that
shows all of these features clearly?
Explain your reasoning.

What are the horizontal
asymptotes of the graph? How far
to the right do you have to move
on the graph so that the graph is
within 0.001 unit of its horizontal
asymptote? Explain your reasoning.

f �x� �
2x 2 � 4x � 6

3x 2 � 2x � 16
.



EXAMPLE 2 Finding a Limit at Infinity

Find the limit:

Solution Note that both the numerator and the denominator approach infinity as 
approaches infinity.

This results in an indeterminate form. To resolve this problem, you can divide

both the numerator and the denominator by After dividing, the limit may be 
evaluated as shown.

Divide numerator and denominator by 

Simplify.

Take limits of numerator and denominator.

Apply Theorem 3.10.

So, the line is a horizontal asymptote to the right. By taking the limit as
you can see that is also a horizontal asymptote to the left. The graph 

of the function is shown in Figure 3.35. ■

y � 2x → ��,
y � 2

� 2

�
2 � 0
1 � 0

�

lim
x→�

 2 � lim
x→�

1
x

lim
x→�

 1 � lim
x→�

1
x

� lim
x→�

2 �
1
x

1 �
1
x

x. lim
x→�

2x � 1
x � 1

� lim
x→�

2x � 1
x

x � 1
x

x.

�
�

,

lim
x→�

2x � 1
x � 1

x

lim
x→�

2x � 1
x � 1

.
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lim
x→�

�2x � 1� → �

lim
x→�

�x � 1� → �

You can test the reasonableness of the limit found in Example 2 by
evaluating for a few large positive values of For instance,

and

Another way to test the reasonableness of the limit is to use a graphing utility. For
instance, in Figure 3.36, the graph of

is shown with the horizontal line Note that as increases, the graph of 
moves closer and closer to its horizontal asymptote.

fxy � 2.

f �x� �
2x � 1
x � 1

f �10,000� � 1.9997.f �1000� � 1.9970,f �100� � 1.9703,

x.f �x�
TECHNOLOGY

0
0

80

3

As increases, the graph of moves closer
and closer to the line 
Figure 3.36

y � 2.
fx

x

f (x) = 2x − 1

−5 −4 −3 −2
−1

1 2 3

6

5

4

3

1

x + 1

y

is a horizontal asymptote.
Figure 3.35
y � 2

NOTE When you encounter an 
indeterminate form such as the one 
in Example 2, you should divide the
numerator and denominator by the 
highest power of in the denominator.x



EXAMPLE 3 A Comparison of Three Rational Functions

Find each limit.

a. b. c.

Solution In each case, attempting to evaluate the limit produces the indeterminate
form

a. Divide both the numerator and the denominator by 

b. Divide both the numerator and the denominator by 

c. Divide both the numerator and the denominator by 

You can conclude that the limit because the numerator increases
without bound while the denominator approaches 3. ■

Use these guidelines to check the results in Example 3. These limits seem reasonable
when you consider that for large values of the highest-power term of the rational
function is the most “influential” in determining the limit. For instance, the limit as 
approaches infinity of the function

is 0 because the denominator overpowers the numerator as increases or decreases
without bound, as shown in Figure 3.37.

The function shown in Figure 3.37 is a special case of a type of curve studied by
the Italian mathematician Maria Gaetana Agnesi. The general form of this function is 

Witch of Agnesi

and, through a mistranslation of the Italian word vertéré, the curve has come to be
known as the Witch of Agnesi. Agnesi’s work with this curve first appeared in a
comprehensive text on calculus that was published in 1748.

f �x� �
8a3

x2 � 4a2

x

f �x� �
1

x2 � 1

x
x,

existnotdoes

lim
x→�

2x3 � 5
3x2 � 1

� lim
x→�

2x � �5�x2�
3 � �1�x2� �

�
3

x2.

lim
x→�

2x2 � 5
3x2 � 1

� lim
x→�

2 � �5�x2�
3 � �1�x2� �

2 � 0
3 � 0

�
2
3

x2.

lim
x→�

2x � 5
3x2 � 1

� lim
x→�

�2�x� � �5�x2�
3 � �1�x2� �

0 � 0
3 � 0

�
0
3

� 0

x2.

���.

lim
x→�

2x3 � 5
3x2 � 1

lim
x→�

2x2 � 5
3x2 � 1

lim
x→�

2x � 5
3x2 � 1
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MARIA GAETANA AGNESI (1718–1799)

Agnesi was one of a handful of women to
receive credit for significant contributions to
mathematics before the twentieth century. 
In her early twenties, she wrote the first text
that included both differential and integral
calculus. By age 30, she was an honorary
member of the faculty at the University of
Bologna.

For more information on the contributions of
women to mathematics, see the article “Why
Women Succeed in Mathematics” by Mona
Fabricant, Sylvia Svitak, and Patricia Clark
Kenschaft in Mathematics Teacher. To 
view this article, go to the website
www.matharticles.com.
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x

1

−2 −1 1 2

2

lim f (x) = 0
x → −∞

lim f (x) = 0
x → ∞

f(x) =
x2 + 1

y

has a horizontal asymptote at 
Figure 3.37

y � 0.f

GUIDELINES FOR FINDING LIMITS AT OF RATIONAL FUNCTIONS

1. If the degree of the numerator is the degree of the denominator,
then the limit of the rational function is 0.

2. If the degree of the numerator is the degree of the denominator, then
the limit of the rational function is the ratio of the leading coefficients.

3. If the degree of the numerator is the degree of the denominator,
then the limit of the rational function does not exist.

thangreater

toequal

thanless

±�

www.matharticles.com
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In Figure 3.37, you can see that the function approaches the
same horizontal asymptote to the right and to the left. This is always true of rational
functions. Functions that are not rational, however, may approach different horizontal
asymptotes to the right and to the left. This is demonstrated in Example 4.

EXAMPLE 4 A Function with Two Horizontal Asymptotes

Find each limit.

a. b.

Solution

a. For you can write So, dividing both the numerator and the
denominator by produces

and you can take the limit as follows.

b. For you can write So, dividing both the numerator and the
denominator by produces

and you can take the limit as follows.

The graph of is shown in Figure 3.38. ■f �x� � �3x � 2���2x2 � 1

lim
x→��

3x � 2
�2x2 � 1

� lim
x→��

3 �
2
x

��2 �
1
x2

�
3 � 0

��2 � 0
� �

3
�2

3x � 2
�2x2 � 1

�

3x � 2
x

�2x2 � 1
��x2

�

3 �
2
x

��2x2 � 1
x2

�

3 �
2
x

��2 �
1
x2

x
x � ��x2.x < 0,

lim
x→�

3x � 2
�2x2 � 1

� lim
x→�

3 �
2
x

�2 �
1
x2

�
3 � 0
�2 � 0

�
3
�2

3x � 2
�2x2 � 1

�

3x � 2
x

�2x2 � 1
�x2

�

3 �
2
x

�2x2 � 1
x2

�

3 �
2
x

�2 �
1
x2

x
x � �x2.x > 0,

lim
x→��

3x � 2
�2x2 � 1

lim
x→�

3x � 2
�2x2 � 1

f �x� � 1��x2 � 1�

x

2

2
3

,

y = −

y = 

,

Horizontal
asymptote
to the left

Horizontal
asymptote
to the right

−6 −4 −2 2 4

4

−4
f(x) = 3x − 2

2x2 + 1

y 3

Functions that are not rational may have 
different right and left horizontal asymptotes.
Figure 3.38

−8

−1

8

2

The horizontal asymptote appears to be the
line but it is actually the line 
Figure 3.39

y � 2.y � 1

If you use a graphing utility to help estimate a limit,
be sure that you also confirm the estimate analytically—the pictures shown by a
graphing utility can be misleading. For instance, Figure 3.39 shows one view of the
graph of 

From this view, one could be convinced that the graph has as a horizontal
asymptote. An analytical approach shows that the horizontal asymptote is actually

Confirm this by enlarging the viewing window on the graphing utility.y � 2.

y � 1

y �
2x3 � 1000x2 � x

x3 � 1000x2 � x � 1000
.

TECHNOLOGY PITFALL



In Section 1.3 (Example 9), you saw how the Squeeze Theorem can be used to
evaluate limits involving trigonometric functions. This theorem is also valid for 
limits at infinity.

EXAMPLE 5 Limits Involving Trigonometric Functions

Find each limit.

a. b.

Solution

a. As approaches infinity, the sine function oscillates between 1 and So, this
limit does not exist.

b. Because it follows that for 

where and So, by the Squeeze Theorem, you

can obtain

as shown in Figure 3.40.

EXAMPLE 6 Oxygen Level in a Pond

Suppose that measures the level of oxygen in a pond, where is the normal
(unpolluted) level and the time is measured in weeks. When organic waste is
dumped into the pond, and as the waste material oxidizes, the level of oxygen in the
pond is

What percent of the normal level of oxygen exists in the pond after 1 week? After 2
weeks? After 10 weeks? What is the limit as approaches infinity?

Solution When 2, and 10, the levels of oxygen are as shown.

1 week

2 weeks

10 weeks

To find the limit as approaches infinity, divide the numerator and the denominator by
to obtain

See Figure 3.41. ■

lim
t→�

t2 � t � 1
t2 � 1

� lim
t→�

1 � �1�t� � �1�t2�
1 � �1�t2� �

1 � 0 � 0
1 � 0

� 1 � 100%.

t2
t

f�10� �
102 � 10 � 1

102 � 1
�

91
101

� 90.1%

f�2� �
22 � 2 � 1

22 � 1
�

3
5

� 60%

f�1� �
12 � 1 � 1

12 � 1
�

1
2

� 50%

t � 1,

t

f�t� �
t2 � t � 1

t2 � 1
.

t � 0,t
f�t� � 1f�t�

lim
x→�

sin x
x

� 0

lim
x→�

�1�x� � 0.lim
x→�

��1�x� � 0

�
1
x

�
sin x

x
�

1
x

x > 0,�1 � sin x � 1,

�1.x

lim
x→�

sin x
x

lim
x→�

 sin x
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x

1

−1

π

y =

y = − 1
x

1
x

f(x) =

lim           = 0

sin x
x

sin x
xx→∞

y

As increases without bound, 
approaches 0.
Figure 3.40

f �x�x

t

1.00

0.75

0.50

0.25

O
xy
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n 
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l

2 4 6 8 10

Weeks

f(t) = 

(10, 0.9)

(1, 0.5)

(2, 0.6)

t2 − t + 1
t2 + 1

f (t)

The level of oxygen in a pond approaches the
normal level of 1 as approaches 
Figure 3.41

�.t



Infinite Limits at Infinity
Many functions do not approach a finite limit as increases (or decreases) without
bound. For instance, no polynomial function has a finite limit at infinity. The
following definition is used to describe the behavior of polynomial and other functions
at infinity.

Similar definitions can be given for the statements and

EXAMPLE 7 Finding Infinite Limits at Infinity

Find each limit.

a. b.

Solution

a. As increases without bound, also increases without bound. So, you can write

b. As decreases without bound, also decreases without bound. So, you can write

The graph of in Figure 3.42 illustrates these two results. These results agree
with the Leading Coefficient Test for polynomial functions as described in Section P.3.

EXAMPLE 8 Finding Infinite Limits at Infinity

Find each limit.

a. b.

Solution One way to evaluate each of these limits is to use long division to rewrite
the improper rational function as the sum of a polynomial and a rational function.

a.

b.

The statements above can be interpreted as saying that as approaches the 
function behaves like the function In
Section 3.6, you will see that this is graphically described by saying that the line

is a slant asymptote of the graph of as shown in Figure 3.43. ■f,y � 2x � 6

g�x� � 2x � 6.f �x� � �2x2 � 4x���x � 1�
±�,x

lim
x→��

2x2 � 4x
x � 1

� lim
x→���2x � 6 �

6
x � 1	 � ��

lim
x→�

2x2 � 4x
x � 1

� lim
x→��2x � 6 �

6
x � 1	 � �

lim
x→��

2x2 � 4x
x � 1

lim
x→�

2x2 � 4x
x � 1

f �x� � x3

lim
x→��

x3 � ��.
x3x

lim
x→�

x3 � �.
x3x

lim
x→��

x3lim
x→�

x3

lim
x→��

f �x� � ��.
lim

x→��
f �x� � �

x
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DEFINITION OF INFINITE LIMITS AT INFINITY

Let be a function defined on the interval 

1. The statement means that for each positive number there

is a corresponding number such that whenever 

2. The statement means that for each negative number 

there is a corresponding number such that whenever x > N.f �x� < MN > 0

M,lim
x→�

f �x� � ��

x > N.f �x� > MN > 0

M,lim
x→�

f �x� � �

�a, ��.f

NOTE Determining whether a function
has an infinite limit at infinity is useful
in analyzing the “end behavior” of its
graph. You will see examples of this in
Section 3.6 on curve sketching.

x

f(x) = x3

1−1

−3

−2

−1

1

2

3

2−2 3−3

y

Figure 3.42

x

y = 2x − 6

3−3

−6

−3

3

6

6−6 9 12−9−12

f(x) = 2x2 − 4x
x + 1

y

Figure 3.43



In Exercises 1–6, match the function with one of the graphs [(a),
(b), (c), (d), (e), or (f)] using horizontal asymptotes as an aid.

(a) (b)

(c) (d)

(e) (f)

1. 2.

3. 4.

5. 6.

Numerical and Graphical Analysis In Exercises 7–12, use a
graphing utility to complete the table and estimate the limit as

approaches infinity. Then use a graphing utility to graph the
function and estimate the limit graphically.

7. 8.

9. 10.

11. 12.

In Exercises 13 and 14, find if possible.

13. 14.

(a) (a)

(b) (b)

(c) (c)

In Exercises 15–18, find each limit, if possible.

15. (a) 16. (a)

(b) (b)

(c) (c)

17. (a) 18. (a)

(b) (b)

(c) (c)

In Exercises 19–38, find the limit.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38. lim
x→�

x � cos x
x

lim
x→�

sin 2x
x

lim
x→�

 cos 
1
x

lim
x→�

1
2x � sin x

lim
x→��

2x
�x6 � 1�1�3lim

x→�

x � 1
�x2 � 1�1�3

lim
x→��

�x4 � 1
x3 � 1

lim
x→�

�x2 � 1
2x � 1

lim
x→��

�3x � 1
�x 2 � x

lim
x→��

2x � 1
�x 2 � x

lim
x→��

x
�x 2 � 1

lim
x→��

x
�x 2 � x

lim
x→�� �1

2
x �

4
x2	lim

x→��

5x 2

x � 3

lim
x→�

5x3 � 1
10x3 � 3x2 � 7

lim
x→�

x
x 2 � 1

lim
x→�

x2 � 3
2x2 � 1

lim
x→�

2x � 1
3x � 2

lim
x→�� �5

x
�

x
3	lim

x→� �4 �
3
x	

lim
x→�

5x3�2

4�x � 1
lim

x→�

5 � 2x3�2

3x � 4

lim
x→�

5x3�2

4x3�2 � 1
lim

x→�

5 � 2x3�2

3x3�2 � 4

lim
x→�

5x3�2

4x2 � 1
lim

x→�

5 � 2x3�2

3x2 � 4

lim
x→�

3 � 2x2

3x � 1
lim

x→�

x2 � 2
x � 1

lim
x→�

3 � 2x
3x � 1

lim
x→�

x2 � 2
x2 � 1

lim
x→�

3 � 2x
3x 3 � 1

lim
x→�

x2 � 2
x 3 � 1

h�x� �
f �x�
x3h�x� �

f �x�
x 4

h�x� �
f �x�
x2h�x� �

f �x�
x3

h�x� �
f �x�
x

h�x� �
f �x�
x2

f �x� � �4x2 � 2x � 5f �x� � 5x3 � 3x2 � 10x

lim
x→�

h�x�,

f �x� � 4 �
3

x2 � 2
f �x� � 5 �

1
x 2 � 1

f �x� �
20x

�9x2 � 1
f �x� �

�6x
�4x 2 � 5

f �x� �
2x 2

x � 1
f �x� �

4x � 3
2x � 1

x

f �x� �
2x 2 � 3x � 5

x 2 � 1
f �x� �

4 sin x
x 2 � 1

f �x� � 2 �
x 2

x 4 � 1
f �x� �

x
x 2 � 2

f �x� �
2x

�x 2 � 2
f �x� �

2x 2

x 2 � 2

x

y

−1−2−3 1 2 3

−2

1

3

4

2

x
−6 −4 −2 2 4

8

6

4

2

y

x
1 2 3

3

2

1

−1

−2

−3

y

x
−3 −2 −1 1 2 3

−3

3

1

y

x
−3 −1 1 2 3

−3

3

2

1

y
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1

3
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3.5 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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f �x�

www.CalcChat.com


206 Chapter 3 Applications of Differentiation

x 100 101 102 103 104 105 106

f �x�

58. The graph of a function is shown below. To print 
an enlarged copy of the graph, go to the website 
www.mathgraphs.com.

(a) Sketch 

(b) Use the graphs to estimate and 

(c) Explain the answers you gave in part (b).

lim
x→�

f��x�.lim
x→�

f �x�
f�.

x
−4 −2 2 4

−2

2

4

6

f

y

f

CAPSTONEIn Exercises 39–42, use a graphing utility to graph the function
and identify any horizontal asymptotes.

39. 40.

41. 42.

In Exercises 43 and 44, find the limit. Hint: Let and
find the limit as 

43. 44.

In Exercises 45– 48, find the limit. (Hint: Treat the expression
as a fraction whose denominator is 1, and rationalize the
numerator.) Use a graphing utility to verify your result.

45. 46.

47. 48.

Numerical, Graphical, and Analytic Analysis In Exercises
49–52, use a graphing utility to complete the table and estimate
the limit as approaches infinity. Then use a graphing utility to
graph the function and estimate the limit. Finally, find the limit
analytically and compare your results with the estimates.

49. 50.

51. 52.

In Exercises 59–76, sketch the graph of the equation using
extrema, intercepts, symmetry, and asymptotes. Then use a
graphing utility to verify your result.

59. 60.

61. 62.

63. 64.

65. 66.

67. 68.

69. 70.

71. 72.

73. 74.

75. 76.

In Exercises 77– 84, use a computer algebra system to analyze
the graph of the function. Label any extrema and/or asymptotes
that exist.

77. 78.

79. 80.

81. 82.

83. 84. f �x� �
2 sin 2x

x
x > 3g�x� � sin� x

x � 2	,

g�x� �
2x

�3x2 � 1
f �x� �

3x
�4x 2 � 1

f �x� �
x � 1

x 2 � x � 1
f �x� �

x � 2
x 2 � 4x � 3

f �x� �
1

x 2 � x � 2
f �x� � 9 �

5
x 2

y �
x

�x 2 � 4
y �

x 3

�x 2 � 4

y � 4�1 �
1
x 2	y � 3 �

2
x

y � 1 �
1
x

y � 2 �
3
x 2

y �
3x

1 � x 2y �
3x

1 � x

x 2y � 9xy 2 � 9

y �
2x 2

x 2 � 4
y �

2x 2

x 2 � 4

y �
x 2

x 2 � 16
y �

x 2

x 2 � 16

y �
2x

9 � x 2y �
x � 1
x 2 � 4

y �
x � 4
x � 3

y �
x

1 � x

f �x� �
x � 1

x�x
f �x� � x sin 

1
2x

f �x� � x 2 � x�x�x � 1�f �x� � x � �x�x � 1�

x

lim
x→�

�4x � �16x 2 � x �lim
x→��

�3x � �9x 2 � x �

lim
x→�

�x � �x 2 � x �lim
x→��

�x � �x 2 � 3 �

lim
x→�

x tan 
1
x

lim
x→�

x sin 
1
x

�t → 0�.
x � 1/t�

f �x� �
�9x2 � 2

2x � 1
f �x� �

3x
�x2 � 2

f �x� � �3x � 2�
x � 2

f �x� � �x�
x � 1

In Exercises 53 and 54, describe in your own words what the
statement means.

53. 54.

55. Sketch a graph of a differentiable function that satisfies the
following conditions and has as its only critical 
number.

56. Is it possible to sketch a graph of a function that satisfies the
conditions of Exercise 55 and has points of inflection?
Explain.

57. If is a continuous function such that find,

if possible, for each specified condition.

(a) The graph of is symmetric with respect to the -axis.

(b) The graph of is symmetric with respect to the origin.f

yf

lim
x→��

f �x�
lim

x→�
f �x� � 5,f

no

lim
x→��

f�x� � lim
x→�

f�x� � 6

f��x� > 0  for x > 2f��x� < 0  for x < 2

x � 2
f

lim
x→��

f �x� � 2lim
x→�

f �x� � 4

WRITING ABOUT CONCEPTS

CAS

www.mathgraphs.com


In Exercises 85 and 86, (a) use a graphing utility to graph and
in the same viewing window, (b) verify algebraically that and
represent the same function, and (c) zoom out sufficiently far

so that the graph appears as a line. What equation does this line
appear to have? (Note that the points at which the function is
not continuous are not readily seen when you zoom out.)

85. 86.

87. Engine Efficiency The efficiency of an internal combustion
engine is

Efficiency 

where is the ratio of the uncompressed gas to the
compressed gas and is a positive constant dependent on the
engine design. Find the limit of the efficiency as the compres-
sion ratio approaches infinity.

88. Average Cost A business has a cost of for
producing units. The average cost per unit is

Find the limit of as approaches infinity.

89. Physics Newton’s First Law of Motion and Einstein’s Special
Theory of Relativity differ concerning a particle’s behavior as
its velocity approaches the speed of light In the graph,
functions and represent the velocity with respect to time

of a particle accelerated by a constant force as predicted by
Newton and Einstein. Write limit statements that describe these
two theories.

90. Temperature The graph shows the temperature in degrees
Fahrenheit, of molten glass seconds after it is removed from a
kiln.

(a) Find What does this limit represent?

(b) Find What does this limit represent?

(c) Will the temperature of the glass ever actually reach room
temperature? Why?

91. Modeling Data The table shows the world record times for
the mile run, where represents the year, with correspon-
ding to 1900, and is the time in minutes and seconds.

A model for the data is 

where the seconds have been changed to decimal parts of a
minute.

(a) Use a graphing utility to plot the data and graph the model.

(b) Does there appear to be a limiting time for running 1 mile?
Explain.

92. Modeling Data The average typing speeds (in words per
minute) of a typing student after weeks of lessons are shown
in the table.

A model for the data is 

(a) Use a graphing utility to plot the data and graph the model.

(b) Does there appear to be a limiting typing speed? Explain.

93. Modeling Data A heat probe is attached to the heat exchanger
of a heating system. The temperature (in degrees Celsius) is
recorded seconds after the furnace is started. The results for the
first 2 minutes are recorded in the table.

(a) Use the regression capabilities of a graphing utility to find
a model of the form for the data.

(b) Use a graphing utility to graph 

(c) A rational model for the data is Use a

graphing utility to graph 

(d) Find and 

(e) Find 

(f) Interpret the result in part (e) in the context of the problem.
Is it possible to do this type of analysis using Explain.T1?

lim
t→�

T2.

T2�0�.T1�0�
T2.

T2 �
1451 � 86t

58 � t
.

T1.

T1 � at2 � bt � c

t
T

t > 0.S �
100t2

65 � t2,

t
S

y �
3.351t2 � 42.461t � 543.730

t2

y
t � 0t

lim
t→�

T.

lim
t→0�

T.

t

T

72

(0, 1700)

t
T,

t

v

N

E
c

t,
v,EN

c.

xC

C �
C
x

.

x
C � 0.5x � 500

c
v1�v2

�%� � 100 �1 �
1

�v1�v2�c�

g�x� � �
1
2

x � 1 �
1
x2g�x� � x �

2
x�x � 3�

f �x� � �
x3 � 2x2 � 2

2x2f �x� �
x3 � 3x2 � 2

x�x � 3�

g
fg
f
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t 23 33 45 54 58

y 4:10.4 4:07.6 4:01.3 3:59.4 3:54.5

t 66 79 85 99

y 3:51.3 3:48.9 3:46.3 3:43.1

t 5 10 15 20 25 30

S 28 56 79 90 93 94

t 0 15 30 45 60

T 25.2� 36.9� 45.5� 51.4� 56.0�

t 75 90 105 120

T 59.6� 62.0� 64.0� 65.2�
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94. Modeling Data A container holds 5 liters of a 25% brine
solution. The table shows the concentrations of the mixture
after adding liters of a 75% brine solution to the container.

(a) Use the regression features of a graphing utility to find a
model of the form for the data.

(b) Use a graphing utility to graph 

(c) A rational model for these data is Use a

graphing utility to graph 

(d) Find and Which model do you think best

represents the concentration of the mixture? Explain.

(e) What is the limiting concentration?

95. A line with slope passes through the point 

(a) Write the distance between the line and the point as
a function of 

(b) Use a graphing utility to graph the equation in part (a).

(c) Find and Interpret the results

geometrically.

96. A line with slope passes through the point 

(a) Write the distance between the line and the point as
a function of 

(b) Use a graphing utility to graph the equation in part (a).

(c) Find and Interpret the results

geometrically.

97. The graph of is shown.

(a) Find 

(b) Determine and in terms of 

(c) Determine where such that for

(d) Determine where such that for

98. The graph of is shown.

(a) Find and 

(b) Determine and in terms of 

(c) Determine where such that for

(d) Determine where such that for

99. Consider Use the definition of limits at

infinity to find values of that correspond to (a) and
(b)

100. Consider Use the definition of limits at

infinity to find values of that correspond to (a) and
(b)

In Exercises 101–104, use the definition of limits at infinity to
prove the limit.

101. 102.

103. 104.

105. Prove that if and

then

106. Use the definition of infinite limits at infinity to prove that

True or False? In Exercises 107 and 108, determine whether
the statement is true or false. If it is false, explain why or give
an example that shows it is false.

107. If for all real numbers then increases without
bound.

108. If for all real numbers then decreases without
bound.

fx,f � �x� < 0

fx,f��x� > 0

lim
x→�

x3 � �.

lim
x→�

p�x�
q�x� � �

0,
an ,
bm

±�,

n < m

n � m

n > m

.

q�x� � bm x m � .  .  . � b1x � b0 �an � 0, bm � 0�,
p�x� � an x n � .  .  . � a1x � a0

lim
x→��

1
x � 2

� 0lim
x→��

1
x3 � 0

lim
x→�

2
�x

� 0lim
x→�

1
x2 � 0

� � 0.1.
� � 0.5N

lim
x→��

3x
�x2 � 3

.

� � 0.1.
� � 0.5M

lim
x→�

3x
�x2 � 3

.

x < N.
� f �x� � K� < �N < 0,N,

x > M.
� f �x� � L� < �M > 0,M,

�.x2x1

K � lim
x→��

f �x�.L � lim
x→�

f �x�

x

y

ε

x1x2

fε

Not drawn to scale

f �x� �
6x

�x2 � 2

x < N.
� f �x� � L� < �N < 0,N,

x > M.
� f �x� � L� < �M > 0,M,

�.x2x1

L � lim
x→�

f �x�.

x

y

ε

x2 x1

f

Not drawn to scale

f �x� �
2x2

x2 � 2

lim
m→��

d�m�.lim
m→�

d�m�

m.
�4, 2�d

�0, �2�.m

lim
m→��

d�m�.lim
m→�

d�m�

m.
�3, 1�d

�0, 4�.m

lim
x→�

C2.lim
x→�

C1

C2.

C2 �
5 � 3x

20 � 4x
.

C1.

C1 � ax2 � bx � c

x
C

x 0 0.5 1 1.5 2

C 0.25 0.295 0.333 0.365 0.393

x 2.5 3 3.5 4

C 0.417 0.438 0.456 0.472
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3.6 A Summary of Curve Sketching
■ Analyze and sketch the graph of a function.

Analyzing the Graph of a Function
It would be difficult to overstate the importance of using graphs in mathematics.
Descartes’s introduction of analytic geometry contributed significantly to the rapid
advances in calculus that began during the mid-seventeenth century. In the words of
Lagrange, “As long as algebra and geometry traveled separate paths their advance was
slow and their applications limited. But when these two sciences joined company, they
drew from each other fresh vitality and thenceforth marched on at a rapid pace toward
perfection.”

So far, you have studied several concepts that are useful in analyzing the graph of
a function.

• intercepts and intercepts (Section P.1)

• Symmetry (Section P.1)

• Domain and range (Section P.3)

• Continuity (Section 1.4)

• Vertical asymptotes (Section 1.5)

• Differentiability (Section 2.1)

• Relative extrema (Section 3.1)

• Concavity (Section 3.4)

• Points of inflection (Section 3.4)

• Horizontal asymptotes (Section 3.5)

• Infinite limits at infinity (Section 3.5)

When you are sketching the graph of a function, either by hand or with a graph-
ing utility, remember that normally you cannot show the entire graph. The decision as
to which part of the graph you choose to show is often crucial. For instance, which of
the viewing windows in Figure 3.44 better represents the graph of

By seeing both views, it is clear that the second viewing window gives a more
complete representation of the graph. But would a third viewing window reveal other
interesting portions of the graph? To answer this, you need to use calculus to interpret
the first and second derivatives. Here are some guidelines for determining a good
viewing window for the graph of a function.

f �x� � x3 � 25x2 � 74x � 20?

y-x-

GUIDELINES FOR ANALYZING THE GRAPH OF A FUNCTION

1. Determine the domain and range of the function.

2. Determine the intercepts, asymptotes, and symmetry of the graph.

3. Locate the values for which and either are zero or do not exist. Use
the results to determine relative extrema and points of inflection.

f ��x�f��x�x-

NOTE In these guidelines, note the importance of algebra (as well as calculus) for solving
the equations and ■f ��x� � 0.f��x� � 0,f �x� � 0,

−10

5−2

40

−1200

30−10

200

Different viewing windows for the graph of

Figure 3.44
f �x� � x3 � 25x2 � 74x � 20
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EXAMPLE 1 Sketching the Graph of a Rational Function

Analyze and sketch the graph of 

Solution

First derivative:

Second derivative:

x-intercepts:

y-intercept:

Vertical asymptotes:

Horizontal asymptote:

Critical number:

Possible points of inflection: None

Domain: All real numbers except 

Symmetry: With respect to axis

Test intervals:

The table shows how the test intervals are used to determine several characteristics of
the graph. The graph of is shown in Figure 3.45.

■

Be sure you understand all of the implications of creating a table such as that
shown in Example 1. By using calculus, you can be sure that the graph has no relative
extrema or points of inflection other than those shown in Figure 3.45.

f

�2, ���0, 2�,��2, 0�,���, �2�,
y-

x � ±2

x � 0

y � 2

x � 2x � �2,

�0, 9
2�

�3, 0���3, 0�,

f��x� �
�20�3x2 � 4�

�x2 � 4�3

f��x� �
20x

�x2 � 4�2

f �x� �
2�x2 � 9�

x2 � 4
.

Without using the type of analysis outlined in Example 1,
it is easy to obtain an incomplete view of a graph’s basic characteristics. For
instance, Figure 3.46 shows a view of the graph of

From this view, it appears that the graph of is about the same as the graph of
shown in Figure 3.45. The graphs of these two functions, however, differ

significantly. Try enlarging the viewing window to see the differences.
f

g

g�x� �
2�x2 � 9��x � 20�
�x2 � 4��x � 21� .

TECHNOLOGY PITFALL

−8 −4 4 8

4 0,
9
2( )
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x
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f(x) = 
2(x2 − 9)

x2 − 4
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as
ym

pt
ot

e:
x 

=
 −

2

Horizontal
asymptote:

y = 2

V
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tic
al
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ym
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ot

e:
x 

=
 2

(−3, 0) (3, 0)

Using calculus, you can be certain that you
have determined all characteristics of the
graph of
Figure 3.45

f.

■ FOR FURTHER INFORMATION For
more information on the use of technology
to graph rational functions, see the article
“Graphs of Rational Functions for
Computer Assisted Calculus” by Stan
Byrd and Terry Walters in The College
Mathematics Journal. To view this article,
go to the website www.matharticles.com.

−8

6−6

12

By not using calculus you may overlook
important characteristics of the graph of
Figure 3.46

g.

f�x� f� �x� f� �x� Characteristic of Graph

�� < x < �2 � � Decreasing, concave downward

x � �2 Undef. Undef. Undef. Vertical asymptote

�2 < x < 0 � � Decreasing, concave upward

x � 0 9
2 0 � Relative minimum

0 < x < 2 � � Increasing, concave upward

x � 2 Undef. Undef. Undef. Vertical asymptote

2 < x < � � � Increasing, concave downward

www.matharticles.com


EXAMPLE 2 Sketching the Graph of a Rational Function

Analyze and sketch the graph of 

Solution

First derivative:

Second derivative:

x-intercepts: None

y-intercept:

Vertical asymptote:

Horizontal asymptotes: None

End behavior:

Critical numbers:

Possible points of inflection: None

Domain: All real numbers except 

Test intervals:

The analysis of the graph of is shown in the table, and the graph is shown in 
Figure 3.47.

■

Although the graph of the function in Example 2 has no horizontal asymptote, it
does have a slant asymptote. The graph of a rational function (having no common
factors and whose denominator is of degree 1 or greater) has a slant asymptote if the
degree of the numerator exceeds the degree of the denominator by exactly 1. To find
the slant asymptote, use long division to rewrite the rational function as the sum of a
first-degree polynomial and another rational function.

Write original equation.

Rewrite using long division.

In Figure 3.48, note that the graph of approaches the slant asymptote as 
approaches or �.��

xy � xf

� x �
4

x � 2

f �x� �
x2 � 2x � 4

x � 2

f

�4, ���2, 4�,�0, 2�,���, 0�,
x � 2

x � 4x � 0,

lim
x→��

f �x� � ��,  lim
x→�

f �x� � �

x � 2

�0, �2�

f ��x� �
8

�x � 2�3

f��x� �
x�x � 4�
�x � 2�2

f �x� �
x2 � 2x � 4

x � 2
.
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f�x� f� �x� f� �x� Characteristic of Graph

�� < x < 0 � � Increasing, concave downward

x � 0 �2 0 � Relative maximum

0 < x < 2 � � Decreasing, concave downward

x � 2 Undef. Undef. Undef. Vertical asymptote

2 < x < 4 � � Decreasing, concave upward

x � 4 6 0 � Relative minimum

4 < x < � � � Increasing, concave upward

x
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Figure 3.47
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EXAMPLE 3 Sketching the Graph of a Radical Function

Analyze and sketch the graph of 

Solution

The graph has only one intercept, It has no vertical asymptotes, but it has two
horizontal asymptotes: (to the right) and (to the left). The function has
no critical numbers and one possible point of inflection (at ). The domain of the
function is all real numbers, and the graph is symmetric with respect to the origin. The
analysis of the graph of is shown in the table, and the graph is shown in Figure 3.49.

EXAMPLE 4 Sketching the Graph of a Radical Function

Analyze and sketch the graph of 

Solution

The function has two intercepts: and There are no horizontal or verti-
cal asymptotes. The function has two critical numbers ( and ) and two
possible points of inflection ( and ). The domain is all real numbers. The
analysis of the graph of is shown in the table, and the graph is shown in Figure 3.50.

■

f
x � 1x � 0

x � 8x � 0
�125

8 , 0�.�0, 0�

f��x� �
20�x1�3 � 1�

9x2�3f� �x� �
10
3

x1�3�x1�3 � 2�

f �x� � 2x5�3 � 5x4�3.

f

x � 0
y � �1y � 1

�0, 0�.

f��x� � �
6x

�x2 � 2�5�2f� �x� �
2

�x2 � 2�3�2

f �x� �
x

�x2 � 2
.
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f�x� f� �x� f� �x� Characteristic of Graph

�� < x < 0 � � Increasing, concave upward

x � 0 0
1
�2

0 Point of inflection

0 < x < � � � Increasing, concave downward

f�x� f� �x� f� �x� Characteristic of Graph

�� < x < 0 � � Increasing, concave downward

x � 0 0 0 Undef. Relative maximum

0 < x < 1 � � Decreasing, concave downward

x � 1 �3 � 0 Point of inflection

1 < x < 8 � � Decreasing, concave upward

x � 8 �16 0 � Relative minimum

8 < x < � � � Increasing, concave upward

x

1

2 3−1

−1

−2−3

Horizontal
asymptote:

y = 1

Horizontal
asymptote:

y = −1

Point of
inflection

(0, 0)

xf(x) =
x2 + 2

y

Figure 3.49

x
4 8 12

(0, 0)

Point of
inflection

Relative
maximum

Relative minimum

125
8

, 0))

−12

−16
(8, −16)

(1, −3)

y f(x) = 2x5/3 − 5x4/3

Figure 3.50



EXAMPLE 5 Sketching the Graph of a Polynomial Function

Analyze and sketch the graph of 

Solution Begin by factoring to obtain

Then, using the factored form of you can perform the following analysis.

First derivative:

Second derivative:

x-intercepts:

y-intercept:

Vertical asymptotes: None

Horizontal asymptotes: None

End behavior:

Critical numbers:

Possible points of inflection:

Domain: All real numbers

Test intervals:

The analysis of the graph of is shown in the table, and the graph is shown in Figure
3.51(a). Using a computer algebra system such as Maple [see Figure 3.51(b)] can help
you verify your analysis.

■

The fourth-degree polynomial function in Example 5 has one relative minimum
and no relative maxima. In general, a polynomial function of degree can have at
most relative extrema, and at most points of inflection. Moreover,
polynomial functions of even degree must have at least one relative extremum.

Remember from the Leading Coefficient Test described in Section P.3 that the
“end behavior” of the graph of a polynomial function is determined by its leading
coefficient and its degree. For instance, because the polynomial in Example 5 has a
positive leading coefficient, the graph rises to the right. Moreover, because the degree
is even, the graph also rises to the left.

n � 2n � 1
n

f

�4, ���2, 4�,�1, 2�,���, 1�,

x � 4x � 2,

x � 4x � 1,

lim
x→��

f �x� � �,  lim
x→�

f �x� � �

�0, 0�
�4, 0��0, 0�,

f��x� � 12�x � 4��x � 2�
f��x� � 4�x � 1��x � 4�2

f �x�,

� x�x � 4�3.

f�x� � x4 � 12x3 � 48x2 � 64x

f �x� � x4 � 12x3 � 48x2 � 64x.
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f�x� f� �x� f� �x� Characteristic of Graph

�� < x < 1 � � Decreasing, concave upward

x � 1 �27 0 � Relative minimum

1 < x < 2 � � Increasing, concave upward

x � 2 �16 � 0 Point of inflection

2 < x < 4 � � Increasing, concave downward

x � 4 0 0 0 Point of inflection

4 < x < � � � Increasing, concave upward

x
1 2 4 5−1

−5

−10

−15

−20

−25

−30

Point of
inflection

Point of
inflection

(1, −27)
Relative minimum

(2, −16)

(0, 0)

(4, 0)

y f(x) = x4 − 12x3 + 48x2 − 64x

(a)

Generated by Maple

x1 2 4 5 6

−5

5

−10

−15

−20

−25

y

(b)
A polynomial function of even degree must
have at least one relative extremum.
Figure 3.51



EXAMPLE 6 Sketching the Graph of a Trigonometric Function

Analyze and sketch the graph of 

Solution Because the function has a period of you can restrict the analysis of the
graph to any interval of length For convenience, choose 

First derivative:

Second derivative:

Period:

x-intercept:

y-intercept:

Vertical asymptotes: See Note below.

Horizontal asymptotes: None

Critical numbers: None

Possible points of inflection:

Domain: All real numbers except 

Test intervals: ,

The analysis of the graph of on the interval is shown in the table, and
the graph is shown in Figure 3.52(a). Compare this with the graph generated by the
computer algebra system Maple in Figure 3.52(b).

■
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f�x� f� �x� f� �x� Characteristic of Graph

x � �
	

2
Undef. Undef. Undef. Vertical asymptote

�
	

2
< x <

	

2
� � Decreasing, concave upward

x �
	

2
0 �

1
2 0 Point of inflection

	

2
< x <

3	

2
� � Decreasing, concave downward

x �
3	

2
Undef. Undef. Undef. Vertical asymptote

NOTE By substituting or into the function, you obtain the form This 
is called an indeterminate form, which you will study in Section 8.7. To determine that the 
function has vertical asymptotes at these two values, you can rewrite the function as follows.

In this form, it is clear that the graph of has vertical asymptotes at and 
■
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Figure 3.52
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3.6 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1–4, match the graph of in the left column with
that of its derivative in the right column.

1. (a)

2. (b)

3. (c)

4. (d)

In Exercises 5–32, analyze and sketch a graph of the function.
Label any intercepts, relative extrema, points of inflection, and
asymptotes. Use a graphing utility to verify your results.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

In Exercises 33–36, use a computer algebra system to analyze
and graph the function. Identify any relative extrema, points of
inflection, and asymptotes.

33. 34.

35. 36.

In Exercises 37– 46, sketch a graph of the function over the
given interval. Use a graphing utility to verify your graph.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46. �2	 < x < 2	g�x� � x cot x,

�
3	

2
< x <

3	

2
g�x� � x tan x,

�3 < x < 3y � sec2�	x
8 	 � 2 tan�	x

8 	 � 1,

0 < x <
	

2
y � 2�csc x � sec x�,

0 < x < 	y � 2�x � 2� � cot x,

�
	

2
< x <

	

2
y � 2x � tan x,

0 � x � 2	y � cos x �
1
4 cos 2x,

0 � x � 2	y � sin x �
1

18 sin 3x,

0 � x � 2	f �x� � �x � 2 cos x,

0 � x � 2	f �x� � 2x � 4 sin x,

f �x� �
4x

�x2 � 15
f �x� �

�2x

�x2 � 7

f �x� � x �
4

x2 � 1
f �x� �

20x
x2 � 1

�
1
x

y � �x2 � 6x � 5�y � �2x � 3�
y � �x � 1�5y � x5 � 5x

y � 3x4 � 6x2 �
5
3y � 3x4 � 4x3

f �x� �
1
3�x � 1�3 � 2y � 2 � x � x3

y � �
1
3�x3 � 3x � 2�y � x3 � 3x2 � 3

y � 3�x � 1�2�3 � �x � 1�2y � 3x2�3 � 2x

g�x� � x�9 � x2h�x� � x�4 � x2

g�x� � x�9 � xy � x�4 � x

y �
2x2 � 5x � 5

x � 2
y �

x2 � 6x � 12
x � 4

f �x� �
x3

x2 � 9
f �x� �

x2 � 1
x

f �x� � x �
32
x2g�x� � x �

8
x2

f �x� �
x � 3

x
y �

3x
x2 � 1

y �
x2 � 1
x2 � 4

y �
x2

x2 � 3

y �
x

x2 � 1
y �

1
x � 2

� 3

x
1

2

1

2

3

3−1−2

−3

−3

y

x

1

1

2

2

3

3−2 −1

−3

−3

y

x
4

−4

−4 −2

−2

2

y

x

1

2

3

3

−2

−1

−3

−3

y

x

4

4

6

6

−6

−6

−4

−4 −2

y

x
1

1

2 3−1−2−3

y

x
1 2

3

−1

−3

−2

y

x
1

2

2

3

3−1

−2

−2

−3

−3

y

Graph of f�Graph of f

f

47. Suppose for all in the interval Explain why

48. Suppose and for all in the interval
Determine the greatest and least possible values of

f �2�.
��5, 5�.

x2 � f��x� � 4f �0� � 3

f �3� > f �5�.
�2, 8�.tf��t� < 0
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Graphical Reasoning In Exercises 61–64, use the graph of to
sketch a graph of and the graph of To print an enlarged
copy of the graph, go to the website www.mathgraphs.com.

61. 62.

63. 64.

(Submitted by Bill Fox, Moberly Area Community College,
Moberly, MO)

65. Graphical Reasoning Consider the function

(a) Use a computer algebra system to graph the function and
use the graph to approximate the critical numbers visually.

(b) Use a computer algebra system to find and approximate
the critical numbers. Are the results the same as the visual
approximation in part (a)? Explain.

66. Graphical Reasoning Consider the function 

(a) Use a graphing utility to graph the function.

(b) Identify any symmetry of the graph.

(c) Is the function periodic? If so, what is the period?

(d) Identify any extrema on 

(e) Use a graphing utility to determine the concavity of the
graph on 

Think About It In Exercises 67–70, create a function whose
graph has the given characteristics. (There is more than one
correct answer.)

67. Vertical asymptote:

Horizontal asymptote:

68. Vertical asymptote:

Horizontal asymptote: None

69. Vertical asymptote:

Slant asymptote:

70. Vertical asymptote:

Slant asymptote:

71. Graphical Reasoning The graph of is shown in the figure on
the next page.

(a) For which values of is zero? Positive? Negative?

(b) For which values of is zero? Positive? Negative?

(c) On what interval is an increasing function?

(d) For which value of is minimum? For this value of 
how does the rate of change of compare with the rates of
change of for other values of Explain.x?f

f
x,f��x�x

f�

f��x�x

f��x�x

f

y � �x

x � 2

y � 3x � 2

x � 3

x � �5

y � 0

x � 3

�0, 1�.

��1, 1�.

f �x� � tan�sin 	x�.

f�

f �x� �
cos2 	x
�x2 � 1

,  0 < x < 4.

x
−3 −2 −1 1 2 3

3

2

1

−3

f ′

y

x
−9 −6 3 6

3

2

1

−2

−3

f ′

y

x
−8 −4 4 8 12 16

20

16

12

8

4

f ′

y

x
−4 −3 1 3 4

4
3
2
1

y

f ′

f�.f
f�
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In Exercises 49 and 50, the graphs of and are shown
on the same set of coordinate axes. Which is which? Explain
your reasoning. To print an enlarged copy of the graph, go
to the website www.mathgraphs.com.

49. 50.

In Exercises 51–54, use a graphing utility to graph the
function. Use the graph to determine whether it is possible
for the graph of a function to cross its horizontal asymptote.
Do you think it is possible for the graph of a function to cross
its vertical asymptote? Why or why not?

51. 52.

53. 54.

In Exercises 55 and 56, use a graphing utility to graph the
function. Explain why there is no vertical asymptote when a
superficial examination of the function may indicate that
there should be one.

55. 56.

In Exercises 57–60, use a graphing utility to graph the 
function and determine the slant asymptote of the graph.
Zoom out repeatedly and describe how the graph on the 
display appears to change. Why does this occur?

57. 58.

59. 60. h�x� �
�x3 � x2 � 4

x2f �x� �
2x3

x2 � 1

g�x� �
2x2 � 8x � 15

x � 5
f �x� � �

x2 � 3x � 1
x � 2

g�x� �
x2 � x � 2

x � 1
h�x� �

6 � 2x
3 � x

f �x� �
cos 3x

4x
h�x� �

sin 2x
x

g�x� �
3x4 � 5x � 3

x4 � 1
f �x� �

4�x � 1�2

x2 � 4x � 5

x
2 4−2−4

−4

4

y

x
1 2

−1
−1−2

−2

y

f�f�,f,
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Figure for 71 Figure for 72

73. Graphical Reasoning Consider the function

Determine the effect on the graph of as and are changed.
Consider cases where and are both positive or both negative,
and cases where and have opposite signs.

74. Consider the function 

(a) Determine the changes (if any) in the intercepts, extrema,
and concavity of the graph of when is varied.

(b) In the same viewing window, use a graphing utility to graph
the function for four different values of 

75. Investigation Consider the function

for nonnegative integer values of 

(a) Discuss the relationship between the value of and the
symmetry of the graph.

(b) For which values of will the axis be the horizontal
asymptote?

(c) For which value of will be the horizontal
asymptote?

(d) What is the asymptote of the graph when 

(e) Use a graphing utility to graph for the indicated values of
in the table. Use the graph to determine the number of

extrema and the number of inflection points of the
graph.

76. Investigation Let be an arbitrary point on the graph
of such that as shown in the figure. Verify each
statement.

(a) The intercept of the tangent

line is 

(b) The intercept of the tangent

line is 

(c) The intercept of the normal

line is 

(d) The intercept of the normal line is 

(e) (f)

(g)

(h)

77. Modeling Data The data in the table show the number of
bacteria in a culture at time , where is measured in days.

A model for these data is given by

(a) Use a graphing utility to plot the data and graph the model.

(b) Use the model to estimate the number of bacteria when

(c) Approximate the day when the number of bacteria is
greatest.

(d) Use a computer algebra system to determine the time when
the rate of increase in the number of bacteria is greatest.

(e) Find 

Slant Asymptotes In Exercises 78 and 79, the graph of the 
function has two slant asymptotes. Identify each slant asymptote.
Then graph the function and its asymptotes.

78. 79. y � �x2 � 6xy � �4 � 16x2

lim
t→�

N�t�.

t � 10.

N �
24,670 � 35,153t � 13,250t 2

100 � 39t � 7t 2 ,  1 � t � 8.

tt
N

�AP� � � f �x0���1 � � f��x0��2

�AB� � � f �x0� f��x0��
�PC� � � f �x0��1 � � f��x0��2

f��x0� ��BC� � � f �x0�
f��x0��

�0, y0 �
x0

f��x0�	.y-

�x0 � f �x0� f��x0�, 0�.
x-

�0, f �x0� � x0 f��x0��.
y-

�x0 �
f �x0�
f��x0�, 0	.

x-

f��x0� � 0,f
P�x0, y0�

NM
n

f

n � 5?

y � 2n

x-n

n

n.

f �x� �
2xn

x4 � 1

a.

af

a � 0.f �x� �
1
2�ax�2 � ax,

ba
ba

baf

f �x� �
ax

�x � b�2.

xx0 x1 x2 x3 x4

f

y

x

6

6

4

42

−4

−2

−6

−6

y

f
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n 0 1 2 3 4 5

M

N

t 1 2 3 4 5 6 7 8

N 25 200 804 1756 2296 2434 2467 2473

72. Graphical Reasoning Identify the real numbers
and in the figure such that each of the 

following is true.

(a) (b)

(c) does not exist. (d) has a relative maximum.

(e) has a point of inflection.f

ff��x�
f��x� � 0f��x� � 0

x4x0, x1, x2, x3,

CAPSTONE

x
O A B C

f

P(x0, y0)

y

80. Let be defined for Assuming appropriate
properties of continuity and derivability, prove for

that

where is some number between and 

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

b.a�

f �x� � f �a�
x � a

�
f �b� � f �a�

b � a
x � b

�
1
2

f����

a < x < b

a � x � b.f �x�
PUTNAM EXAM CHALLENGE

CAS
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3.7 Optimization Problems
■ Solve applied minimum and maximum problems.

Applied Minimum and Maximum Problems
One of the most common applications of calculus involves the determination of
minimum and maximum values. Consider how frequently you hear or read terms such
as greatest profit, least cost, least time, greatest voltage, optimum size, least size,
greatest strength, and greatest distance. Before outlining a general problem-solving
strategy for such problems, let’s look at an example.

EXAMPLE 1 Finding Maximum Volume

A manufacturer wants to design an open box having a square base and a surface area
of 108 square inches, as shown in Figure 3.53. What dimensions will produce a box
with maximum volume?

Solution Because the box has a square base, its volume is

Primary equation

This equation is called the primary equation because it gives a formula for the
quantity to be optimized. The surface area of the box is

Secondary equation

Because is to be maximized, you want to write as a function of just one variable.
To do this, you can solve the equation for in terms of to obtain

Substituting into the primary equation produces

Function of two variables

Substitute for 

Function of one variable

Before finding which value will yield a maximum value of you should determine
the feasible domain. That is, what values of make sense in this problem? You know
that You also know that must be nonnegative and that the area of the base

is at most 108. So, the feasible domain is

Feasible domain

To maximize find the critical numbers of the volume function on the interval

Set derivative equal to 0.

Simplify.

Critical numbers

So, the critical numbers are You do not need to consider because it is
outside the domain. Evaluating at the critical number and at the endpoints of
the domain produces and So, is maximum
when and the dimensions of the box are inches. ■6 
 6 
 3x � 6

VV��108 � � 0.V�6� � 108,V�0� � 0,
x � 6V

x � �6x � ±6.

x � ±6

 3x2 � 108

dV
dx

� 27 �
3x2

4
� 0

�0, �108�.
V,

0 � x � �108.

�A � x2�
xV � 0.

x
V,x-

� 27x �
x3

4
.

h.� x2�108 � x2

4x 	
V � x2h

h � �108 � x2���4x�.
xhx2 � 4xh � 108

VV

S � x2 � 4xh � 108.

S � �area of base� � �area of four sides�

V � x2h.

x
x

h

Open box with square base:

Figure 3.53
S � x2 � 4xh � 108

You can verify your
answer in Example 1 by using a 
graphing utility to graph the volume
function

Use a viewing window in which
and

and use the trace
feature to determine the maximum
value of V.

0 � y � 120,
0 � x � �108 � 10.4

V � 27x �
x3

4
.

TECHNOLOGY
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In Example 1, you should realize that there are infinitely many open boxes 
having 108 square inches of surface area. To begin solving the problem, you might ask
yourself which basic shape would seem to yield a maximum volume. Should the box
be tall, squat, or nearly cubical?

You might even try calculating a few volumes, as shown in Figure 3.54, to see if
you can get a better feeling for what the optimum dimensions should be. Remember
that you are not ready to begin solving a problem until you have clearly identified
what the problem is.

Which box has the greatest volume?
Figure 3.54

Example 1 illustrates the following guidelines for solving applied minimum and
maximum problems.

8 × 8 × 13
8

Volume = 88

6 × 6 × 3

Volume = 108

3
205 × 5 × 4

Volume = 1033
4

3
44 × 4 × 5

Volume = 92

1
43 × 3 × 8

Volume = 741
4

GUIDELINES FOR SOLVING APPLIED MINIMUM AND MAXIMUM
PROBLEMS

1. Identify all given quantities and all quantities to be determined. If possible,
make a sketch.

2. Write a primary equation for the quantity that is to be maximized or 
minimized. (A review of several useful formulas from geometry is presented
inside the back cover.)

3. Reduce the primary equation to one having a single independent variable.
This may involve the use of secondary equations relating the independent
variables of the primary equation.

4. Determine the feasible domain of the primary equation. That is, determine
the values for which the stated problem makes sense.

5. Determine the desired maximum or minimum value by the calculus 
techniques discussed in Sections 3.1 through 3.4.

NOTE When performing Step 5, recall
that to determine the maximum or 
minimum value of a continuous function

on a closed interval, you should 
compare the values of at its critical
numbers with the values of at the 
endpoints of the interval.

f
f

f



EXAMPLE 2 Finding Minimum Distance

Which points on the graph of are closest to the point 

Solution Figure 3.55 shows that there are two points at a minimum distance from the
point The distance between the point and a point on the graph of

is given by 

Primary equation

Using the secondary equation you can rewrite the primary equation as

Because is smallest when the expression inside the radical is smallest, you need only
find the critical numbers of Note that the domain of is the
entire real line. So, there are no endpoints of the domain to consider. Moreover,
setting equal to 0 yields

The First Derivative Test verifies that yields a relative maximum, whereas both
and yield a minimum distance. So, the closest points are

and

EXAMPLE 3 Finding Minimum Area

A rectangular page is to contain 24 square inches of print. The margins at the top and
bottom of the page are to be inches, and the margins on the left and right are to be
1 inch (see Figure 3.56). What should the dimensions of the page be so that the least
amount of paper is used?

Solution Let be the area to be minimized.

Primary equation

The printed area inside the margins is given by

Secondary equation

Solving this equation for produces Substitution into the primary equation
produces

Function of one variable

Because must be positive, you are interested only in values of for To find
the critical numbers, differentiate with respect to 

So, the critical numbers are You do not have to consider because it
is outside the domain. The First Derivative Test confirms that is a minimum when

So, and the dimensions of the page should be 
inches by inches. ■y � 2 � 6

x � 3 � 9y �
24
6 � 4x � 6.

A
x � �6x � ±6.

x2 � 36
dA
dx

� 2 �
72
x2 � 0

x.
x > 0.Ax

A � �x � 3��24
x

� 2	 � 30 � 2x �
72
x

.

y � 24�x.y

24 � xy.

A � �x � 3��y � 2�

A

11
2

���3�2, 5�2�.��3�2, 5�2�
x � ��3�2x � �3�2

x � 0

x � 0,�3
2

, ��3
2

.

f� �x� � 4x3 � 6x � 2x�2x2 � 3� � 0

f��x�

ff �x� � x4 � 3x2 � 4.
d

d � �x2 � �4 � x2 � 2�2 � �x4 � 3x2 � 4.

y � 4 � x2,

d � ��x � 0�2 � �y � 2�2.

y � 4 � x2
�x, y��0, 2��0, 2�.

�0, 2�?y � 4 � x2
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Newton, Sir Isaac (1643-1727), English mathematician and physicist, who brought the
scientific revolution of the 17th century to its climax and established the principal outlines
of the system of natural science that has since dominated Western thought. In mathematics,
he was the first person to develop the calculus. In optics, he established the heterogeneity
of light and the periodicity of certain phenomena. In mechanics, his three laws of motion
became  the  foundation  of  modern  dynamics,  and  from  them  he  derived  the  law  of
universal gravitation.

Newton was born on January 4, 1643, at W oolsthorpe, near Grantham in Lincolnshire.
When he was three years old, his widowed mother remarried, leaving him to be reared by
her mother. Eventually, his mother, by then widowed a second time, was persuaded to
send him to grammar school in Grantham; then, in the summer of 1661, he was sent to
Trinity College, University of Cambridge.

After receiving his bachelor's degree in 1665, and after an intermission of nearly two
years caused by the plague, Newton stayed on at Trinity, which elected him to a
fellowship in 1667; he took his master's degree in 1668. Meanwhile, he had largely
ignored the established curriculum of the university to pursue his own interests:
mathematics and natural philosophy. Proceeding entirely on his own, Newton investigated
the latest developments in 17th-century mathematics and the new natural philosophy that
treated  nature  as  a  complicated  machine.  Almost  immediately, he  made  fundamental
discoveries that laid the foundation of his career in science.
The Fluxional Method

Newton's first achievement came in mathematics. He generalized the earlier methods
that were being used to draw tangents to curves (similar to differentiation) and to calculate
areas under curves (similar to integration), recognized that the two procedures were inverse
operations, and—joining them in what he called the fluxional method—developed in the
autumn of 1666 what is now known as the calculus. The calculus was a new and powerful
instrument that carried modern mathematics above the level of Greek geometry. Although
Newton was its inventor, he did not introduce it into European mathematics. Always
morbidly fearful of publication and criticism, he kept his discovery to himself, although
enough was known of his abilities to effect his appointment in 1669 as Lucasian Professor
of Mathematics at the University of Cambridge. In 1675 the German mathematician
Gottfried Wilhelm Leibniz arrived independently at virtually the same method, which he
called the differential calculus.  Leibniz proceeded to publish his method, and the world of
mathematics not only learned it from him but also accepted his name for it and his
notation. Newton himself did not publish any detailed exposition of his fluxional method
until 1704.
Optics

Optics was another of Newton's early interests. In trying to explain how phenomena of
colors arise, he arrived at the idea that sunlight is a heterogeneous mixture of different
rays—each of which provokes the sensation of a different color—and that reflections and
refractions cause colors to appear by separating the mixture into its components. He
devised an experimental demonstration of this theory, one of the great early exhibitions of
the power of experimental investigation in science. His measurement of the rings reflected
from  a  thin  film  of  air  confined  between  a  lens  and  a  sheet  of glass  was  the  first
demonstration of periodicity in optical phenomena. In 1672 Newton sent a brief
exposition of his theory of colors to the Royal Society in London. Its appearance in the
Philosophical  Transactions led  to  a  number  of  criticisms  that  confirmed  his  fear  of
publication, and he subsequently withdrew as much as possible into the solitude of his
Cambridge study. He did not publish his full Opticks until 1704.

x

y

1 in.1
2

1 in.1
2

1 in. 1 in.

The quantity to be minimized is area:

Figure 3.56
A � �x � 3�� y � 2�.

3

1

1−1
x

d (x, y)

(0, 2)

y = 4 − x2

y

The quantity to be minimized is distance:

Figure 3.55
d � ��x � 0�2 � � y � 2�2.



EXAMPLE 4 Finding Minimum Length

Two posts, one 12 feet high and the other 28 feet high, stand 30 feet apart. They are
to be stayed by two wires, attached to a single stake, running from ground level to the
top of each post. Where should the stake be placed to use the least amount of wire?

Solution Let be the wire length to be minimized. Using Figure 3.57, you can write

Primary equation

In this problem, rather than solving for in terms of (or vice versa), you can solve
for both and in terms of a third variable as shown in Figure 3.57. From the
Pythagorean Theorem, you obtain

which implies that

So, is given by

Differentiating with respect to yields

By letting you obtain

Because is not in the domain and 

and

you can conclude that the wire should be staked at 9 feet from the 12-foot pole.
■

W�30� � 60.31W�9� � 50,W�0� � 53.04,

x � �22.5

x � 9, �22.5.

 320�x � 9��2x � 45� � 0

 640x2 � 8640x � 129,600 � 0

x4 � 60x3 � 1684x2 � x4 � 60x3 � 1044x2 � 8640x � 129,600

x2�x2 � 60x � 1684� � �30 � x�2�x2 � 144�
x�x2 � 60x � 1684 � �30 � x��x2 � 144

x

�x2 � 144
�

x � 30

�x2 � 60x � 1684
� 0

dW�dx � 0,

dW
dx

�
x

�x2 � 144
�

x � 30

�x2 � 60x � 1684
.

xW

0 � x � 30.� �x2 � 144 � �x2 � 60x � 1684,

W � y � z

W

z � �x2 � 60x � 1684.

y � �x2 � 144

�30 � x�2 � 282 � z2

x2 � 122 � y2

x,zy
zy

W � y � z.

W
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From Example 4, you can see that applied optimization problems
can involve a lot of algebra. If you have access to a graphing utility, you can 
confirm that yields a minimum value of by graphing

as shown in Figure 3.58.

W � �x2 � 144 � �x2 � 60x � 1684

Wx � 9

TECHNOLOGY

12 ft
y

28 ft
z

30 − xx

W = y + z

The quantity to be minimized is length.
From the diagram, you can see that varies
between 0 and 30.
Figure 3.57

x

45
0 30

(9, 50)

60

You can confirm the minimum value of
with a graphing utility.
Figure 3.58

W



In each of the first four examples, the extreme value occurred at a critical 
number. Although this happens often, remember that an extreme value can also occur
at an endpoint of an interval, as shown in Example 5.

EXAMPLE 5 An Endpoint Maximum

Four feet of wire is to be used to form a square and a circle. How much of the wire
should be used for the square and how much should be used for the circle to enclose
the maximum total area?

Solution The total area (see Figure 3.59) is given by

Primary equation

Because the total length of wire is 4 feet, you obtain

So, and by substituting into the primary equation you have

The feasible domain is restricted by the square’s perimeter. Because

the only critical number in is So, using

and

you can conclude that the maximum area occurs when That is, all the wire is
used for the circle. ■

Let’s review the primary equations developed in the first five examples. As
applications go, these five examples are fairly simple, and yet the resulting primary
equations are quite complicated.

You must expect that real-life applications often involve equations that are at least as
complicated as these five. Remember that one of the main goals of this course is to
learn to use calculus to analyze equations that initially seem formidable.

A � 30 � 2x �
72
x

A �
1
	

��	 � 4�x2 � 8x � 4�d � �x4 � 3x2 � 4

W � �x2 � 144 � �x2 � 60x � 1684V � 27x �
x3

4

x � 0.

A�1� � 1A�0.56� � 0.56,A�0� � 1.273,

x � 4��	 � 4� � 0.56.�0, 1�

dA
dx

�
2�	 � 4�x � 8

	

0 � x � 1

�
1
	

��	 � 4�x2 � 8x � 4�.

� x2 �
4�1 � x�2

	

A � x2 � 	�2�1 � x�
	 �

2

r � 2�1 � x��	,

4 � 4x � 2	r.

4 � �perimeter of square� � �circumference of circle�

A � x2 � 	r2.

A � �area of square� � �area of circle�
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4 feet

?
Perimeter: 4x

Area: x2

Area:   r2

x

Circumference: 2 r

r

π

π

x

The quantity to be maximized is area:

Figure 3.59
A � x2 � 	r2.

E X P L O R A T I O N

What would the answer be if
Example 5 asked for the dimen-
sions needed to enclose the 
minimum total area?
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3.7 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

First
Number x

Second
Number Product P

10 110 � 10 10�110 � 10� � 1000

20 110 � 20 20�110 � 20� � 1800

Height x
Length and

Width Volume V

1 24 � 2�1� 1�24 � 2�1��2 � 484

2 24 � 2�2� 2�24 � 2�2��2 � 800

1. Numerical, Graphical, and Analytic Analysis Find two
positive numbers whose sum is 110 and whose product is a 
maximum.

(a) Analytically complete six rows of a table such as the one
below. (The first two rows are shown.)

(b) Use a graphing utility to generate additional rows of the
table. Use the table to estimate the solution. (Hint: Use the
table feature of the graphing utility.)

(c) Write the product as a function of 

(d) Use a graphing utility to graph the function in part (c) and
estimate the solution from the graph.

(e) Use calculus to find the critical number of the function in
part (c). Then find the two numbers.

2. Numerical, Graphical, and Analytic Analysis An open box 
of maximum volume is to be made from a square piece of
material, 24 inches on a side, by cutting equal squares from the
corners and turning up the sides (see figure).

(a) Analytically complete six rows of a table such as the one
below. (The first two rows are shown.) Use the table to guess
the maximum volume.

(b) Write the volume as a function of 

(c) Use calculus to find the critical number of the function in
part (b) and find the maximum value.

(d) Use a graphing utility to graph the function in part (b) and
verify the maximum volume from the graph.

In Exercises 3–8, find two positive numbers that satisfy the
given requirements.

3. The sum is and the product is a maximum.

4. The product is 185 and the sum is a minimum.

5. The product is 147 and the sum of the first number plus three
times the second number is a minimum.

6. The second number is the reciprocal of the first number and the
sum is a minimum.

7. The sum of the first number and twice the second number is
108 and the product is a maximum.

8. The sum of the first number squared and the second number is
54 and the product is a maximum.

In Exercises 9 and 10, find the length and width of a rectangle
that has the given perimeter and a maximum area.

9. Perimeter: 80 meters 10. Perimeter: units

In Exercises 11 and 12, find the length and width of a rectangle
that has the given area and a minimum perimeter.

11. Area: 32 square feet 12. Area: square centimeters

In Exercises 13–16, find the point on the graph of the function
that is closest to the given point.

13. 14.

15. 16.

17. Area A rectangular page is to contain 30 square inches of
print. The margins on each side are 1 inch. Find the dimensions
of the page such that the least amount of paper is used.

18. Area A rectangular page is to contain 36 square inches of
print. The margins on each side are inches. Find the dimen-
sions of the page such that the least amount of paper is used.

19. Chemical Reaction In an autocatalytic chemical reaction, the
product formed is a catalyst for the reaction. If is the amount
of the original substance and is the amount of catalyst formed,
the rate of chemical reaction is

For what value of will the rate of chemical reaction be 
greatest?

20. Traffic Control On a given day, the flow rate (cars per
hour) on a congested roadway is

where is the speed of the traffic in miles per hour. What speed
will maximize the flow rate on the road?

v

F �
v

22 � 0.02v2

F

x

dQ
dx

� kx�Q0 � x�.

x
Q0

11
2

�12, 0�f �x� � �x � 8�4, 0�f �x� � �x

��5, 3�f �x� � �x � 1�2�2, 1
2 �f �x� � x2

PointFunctionPointFunction

A

P

S

x.V

24 − 2x

24
− 

2x

xx

x

x

x.P
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21. Area A farmer plans to fence a rectangular pasture adjacent
to a river (see figure). The pasture must contain 245,000 square
meters in order to provide enough grass for the herd. What
dimensions will require the least amount of fencing if no 
fencing is needed along the river?

22. Maximum Area A rancher has 400 feet of fencing with
which to enclose two adjacent rectangular corrals (see figure).
What dimensions should be used so that the enclosed area will
be a maximum?

23. Maximum Volume

(a) Verify that each of the rectangular solids shown in the
figure has a surface area of 150 square inches.

(b) Find the volume of each solid.

(c) Determine the dimensions of a rectangular solid (with a
square base) of maximum volume if its surface area is 
150 square inches.

24. Maximum Volume Determine the dimensions of a rectangular
solid (with a square base) with maximum volume if its surface
area is 337.5 square centimeters.

25. Maximum Area A Norman window is constructed by
adjoining a semicircle to the top of an ordinary rectangular
window (see figure). Find the dimensions of a Norman window
of maximum area if the total perimeter is 16 feet.

Figure for 25

26. Maximum Area A rectangle is bounded by the and axes
and the graph of (see figure). What length and
width should the rectangle have so that its area is a maximum?

Figure for 26 Figure for 27

27. Minimum Length A right triangle is formed in the first
quadrant by the and axes and a line through the point 
(see figure).

(a) Write the length of the hypotenuse as a function of 

(b) Use a graphing utility to approximate graphically such
that the length of the hypotenuse is a minimum.

(c) Find the vertices of the triangle such that its area is a 
minimum.

28. Maximum Area Find the area of the largest isosceles triangle
that can be inscribed in a circle of radius 6 (see figure).

(a) Solve by writing the area as a function of 

(b) Solve by writing the area as a function of 

(c) Identify the type of triangle of maximum area.

Figure for 28 Figure for 29

29. Maximum Area A rectangle is bounded by the axis and the
semicircle (see figure). What length and width
should the rectangle have so that its area is a maximum?

30. Area Find the dimensions of the largest rectangle that can be
inscribed in a semicircle of radius (see Exercise 29).r

y � �25 � x2
x-

y =     25 − x2

x
−4 −2 42

6

(x, y)

y

h
6

6
α

�.

h.

x

x.L

�1, 2�y-x-

x

1

1

2

2

3

3

4

4

(x, 0)

(1, 2)

(0, y)

y

2
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31. Numerical, Graphical, and Analytic Analysis An exercise
room consists of a rectangle with a semicircle on each end. A
200-meter running track runs around the outside of the room.

(a) Draw a figure to represent the problem. Let and repre-
sent the length and width of the rectangle. 

(b) Analytically complete six rows of a table such as the one
below. (The first two rows are shown.) Use the table to
guess the maximum area of the rectangular region.

(c) Write the area as a function of 

(d) Use calculus to find the critical number of the function in
part (c) and find the maximum value.

(e) Use a graphing utility to graph the function in part (c) and
verify the maximum area from the graph.

32. Numerical, Graphical, and Analytic Analysis A right circular
cylinder is to be designed to hold 22 cubic inches of a soft 
drink (approximately 12 fluid ounces).

(a) Analytically complete six rows of a table such as the one
below. (The first two rows are shown.)

(b) Use a graphing utility to generate additional rows of the
table. Use the table to estimate the minimum surface area.
(Hint: Use the table feature of the graphing utility.)

(c) Write the surface area as a function of 

(d) Use a graphing utility to graph the function in part (c) and
estimate the minimum surface area from the graph.

(e) Use calculus to find the critical number of the function in
part (c) and find dimensions that will yield the minimum
surface area.

33. Maximum Volume A rectangular package to be sent by a
postal service can have a maximum combined length and girth
(perimeter of a cross section) of 108 inches (see figure). Find
the dimensions of the package of maximum volume that can be
sent. (Assume the cross section is square.)

34. Maximum Volume Rework Exercise 33 for a cylindrical
package. (The cross section is circular.)

35. Maximum Volume Find the volume of the largest right
circular cone that can be inscribed in a sphere of radius 

36. Maximum Volume Find the volume of the largest right
circular cylinder that can be inscribed in a sphere of radius 

39. Minimum Surface Area A solid is formed by adjoining two
hemispheres to the ends of a right circular cylinder. The total
volume of the solid is 14 cubic centimeters. Find the radius of
the cylinder that produces the minimum surface area.

40. Minimum Cost An industrial tank of the shape described in
Exercise 39 must have a volume of 4000 cubic feet. The hemi-
spherical ends cost twice as much per square foot of surface
area as the sides. Find the dimensions that will minimize cost.

41. Minimum Area The sum of the perimeters of an equilateral
triangle and a square is 10. Find the dimensions of the triangle
and the square that produce a minimum total area.

42. Maximum Area Twenty feet of wire is to be used to form two
figures. In each of the following cases, how much wire should
be used for each figure so that the total enclosed area is
maximum?

(a) Equilateral triangle and square

(b) Square and regular pentagon

(c) Regular pentagon and regular hexagon

(d) Regular hexagon and circle

What can you conclude from this pattern? {Hint: The area 
of a regular polygon with sides of length is

}

43. Beam Strength A wooden beam has a rectangular cross
section of height and width (see figure on the next page).
The strength of the beam is directly proportional to the width
and the square of the height. What are the dimensions of the
strongest beam that can be cut from a round log of diameter
20 inches? (Hint: where is the proportionality
constant.)

kS � kh2w,

S
wh

A � �n�4��cot�	�n��x2.
xn

r.

r

r

r.

x

y

x

r.S

x.A
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Length x Width y Area xy

10 2
	

�100 � 10� �10� 2
	

�100 � 10� � 573

20 2
	

�100 � 20� �20� 2
	

�100 � 20� � 1019

Radius r Height Surface Area S

0.2
22

	 �0.2�2 2	 �0.2��0.2 �
22

	 �0.2�2� � 220.3

0.4
22

	 �0.4�2 2	 �0.4��0.4 �
22

	 �0.4�2� � 111.0

38. The perimeter of a rectangle is 20 feet. Of all possible 
dimensions, the maximum area is 25 square feet when its
length and width are both 5 feet. Are there dimensions that
yield a minimum area? Explain.

CAPSTONE

37. A shampoo bottle is a right circular cylinder. Because the 
surface area of the bottle does not change when it is
squeezed, is it true that the volume remains the same? Explain.

WRITING ABOUT CONCEPTS



Figure for 43 Figure for 44

44. Minimum Length Two factories are located at the coordi-
nates and and their power supply is at (see
figure). Find such that the total length of power line from the
power supply to the factories is a minimum.

45. Projectile Range The range of a projectile fired with 
an initial velocity at an angle with the horizontal is

where is the acceleration due to gravity. Find

the angle such that the range is a maximum.

46. Conjecture Consider the functions and
on the domain 

(a) Use a graphing utility to graph the functions on the 
specified domain.

(b) Write the vertical distance between the functions as a
function of and use calculus to find the value of for
which is maximum.

(c) Find the equations of the tangent lines to the graphs of and
at the critical number found in part (b). Graph the

tangent lines. What is the relationship between the lines?

(d) Make a conjecture about the relationship between tangent
lines to the graphs of two functions at the value of at
which the vertical distance between the functions is
greatest, and prove your conjecture.

47. Illumination A light source is located over the center of a
circular table of diameter 4 feet (see figure). Find the height 
of the light source such that the illumination at the perimeter
of the table is maximum if where is the slant
height, is the angle at which the light strikes the table, and 
is a constant.

48. Illumination The illumination from a light source is directly
proportional to the strength of the source and inversely
proportional to the square of the distance from the source.
Two light sources of intensities and are units apart.
What point on the line segment joining the two sources has
the least illumination?

49. Minimum Time A man is in a boat 2 miles from the nearest
point on the coast. He is to go to a point located 3 miles
down the coast and 1 mile inland (see figure). He can row at 
2 miles per hour and walk at 4 miles per hour. Toward what
point on the coast should he row in order to reach point in the
least time?

50. Minimum Time Consider Exercise 49 if the point is on the
shoreline rather than 1 mile inland.

(a) Write the travel time as a function of 

(b) Use the result of part (a) to find the minimum time to 
reach

(c) The man can row at miles per hour and walk at miles
per hour. Write the time as a function of Show that the
critical number of depends only on and and not on
the distances. Explain how this result would be more 
beneficial to the man than the result of Exercise 49.

(d) Describe how to apply the result of part (c) to minimizing
the cost of constructing a power transmission cable that
costs dollars per mile under water and dollars per mile
over land.

51. Minimum Time The conditions are the same as in Exercise
49 except that the man can row at miles per hour and walk at

miles per hour. If and are the magnitudes of the angles,
show that the man will reach point in the least time when

52. Minimum Time When light waves traveling in a transparent
medium strike the surface of a second transparent medium, they
change direction. This change of direction is called refraction
and is defined by Snell’s Law of Refraction,

where and are the magnitudes of the angles shown in the
figure and and are the velocities of light in the two media.
Show that this problem is equivalent to that in Exercise 51, and
that light waves traveling from to follow the path of
minimum time.
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53. Sketch the graph of on the interval 

(a) Find the distance from the origin to the intercept and the
distance from the origin to the intercept.

(b) Write the distance from the origin to a point on the graph
of as a function of Use your graphing utility to graph 
and find the minimum distance.

(c) Use calculus and the zero or root feature of a graphing
utility to find the value of that minimizes the function 
on the interval What is the minimum distance?

(Submitted by Tim Chapell, Penn Valley Community
College, Kansas City, MO)

54. Minimum Cost An offshore oil well is 2 kilometers off the
coast. The refinery is 4 kilometers down the coast. Laying pipe
in the ocean is twice as expensive as on land. What path should
the pipe follow in order to minimize the cost?

55. Minimum Force A component is designed to slide a block of
steel with weight across a table and into a chute (see 
figure). The motion of the block is resisted by a frictional force
proportional to its apparent weight. (Let be the constant of
proportionality.) Find the minimum force needed to slide the
block, and find the corresponding value of Hint: is
the force in the direction of motion, and is the amount
of force tending to lift the block. So, the apparent weight of the
block is 

56. Maximum Volume A sector with central angle is cut from a
circle of radius 12 inches (see figure), and the edges of the
sector are brought together to form a cone. Find the magnitude
of such that the volume of the cone is a maximum.

Figure for 56 Figure for 57

57. Numerical, Graphical, and Analytic Analysis The cross
sections of an irrigation canal are isosceles trapezoids of which
three sides are 8 feet long (see figure). Determine the angle of
elevation of the sides such that the area of the cross sections
is a maximum by completing the following.

(a) Analytically complete six rows of a table such as the one
below. (The first two rows are shown.)

(b) Use a graphing utility to generate additional rows of the
table and estimate the maximum cross-sectional area.
(Hint: Use the table feature of the graphing utility.)

(c) Write the cross-sectional area as a function of 

(d) Use calculus to find the critical number of the function in
part (c) and find the angle that will yield the maximum
cross-sectional area.

(e) Use a graphing utility to graph the function in part (c) and
verify the maximum cross-sectional area.

58. Maximum Profit Assume that the amount of money deposited
in a bank is proportional to the square of the interest rate the bank
pays on this money. Furthermore, the bank can reinvest this
money at 12%. Find the interest rate the bank should pay to
maximize profit. (Use the simple interest formula.)

59. Minimum Cost The ordering and transportation cost of the
components used in manufacturing a product is

where is measured in thousands of dollars and is the order
size in hundreds. Find the order size that minimizes the cost.
(Hint: Use the root feature of a graphing utility.)

60. Diminishing Returns The profit (in thousands of dollars)
for a company spending an amount (in thousands of dollars)
on advertising is

(a) Find the amount of money the company should spend on
advertising in order to yield a maximum profit.

(b) The point of diminishing returns is the point at which the
rate of growth of the profit function begins to decline. Find
the point of diminishing returns.

Minimum Distance In Exercises 61–63, consider a fuel distri-
bution center located at the origin of the rectangular coordinate
system (units in miles; see figures on next page). The center
supplies three factories with coordinates and

A trunk line will run from the distribution center along
the line and feeder lines will run to the three factories.
The objective is to find such that the lengths of the feeder
lines are minimized.

m
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Base 1 Base 2 Altitude Area

8 8 � 16 cos 10� 8 sin 10� �  22.1

8 8 � 16 cos 20� 8 sin 20� �  42.5

8 ft 8 ft

8 ft

θ θ
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61. Minimize the sum of the squares of the lengths of the vertical
feeder lines (see figure) given by

Find the equation of the trunk line by this method and then
determine the sum of the lengths of the feeder lines.

62. Minimize the sum of the absolute values of the lengths of the
vertical feeder lines (see figure) given by

Find the equation of the trunk line by this method and then
determine the sum of the lengths of the feeder lines. (Hint: Use
a graphing utility to graph the function and approximate the
required critical number.)

Figure for 61 and 62 Figure for 63

63. Minimize the sum of the perpendicular distances (see figure and
Exercises 87–92 in Section P.2) from the trunk line to the 
factories given by

Find the equation of the trunk line by this method and then
determine the sum of the lengths of the feeder lines. (Hint: Use
a graphing utility to graph the function and approximate the
required critical number.)

64. Maximum Area Consider a symmetric cross inscribed in a
circle of radius (see figure).

(a) Write the area of the cross as a function of and find the
value of that maximizes the area.

(b) Write the area of the cross as a function of and find the
value of that maximizes the area.

(c) Show that the critical numbers of parts (a) and (b) yield the
same maximum area. What is that area?
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65. Find the maximum value of on the set of all

real numbers satisfying Explain your
reasoning.

66. Find the minimum value of

for

These problems were composed by the Committee on the Putnam Prize
Competition. © The Mathematical Association of America. All rights reserved.

x > 0.
�x � 1�x�6 � �x6 � 1�x6� � 2

�x � 1�x�3 � �x3 � 1�x3�

x4 � 36 � 13x2.x
f �x� � x3 � 3x

PUTNAM EXAM CHALLENGE

Whenever the Connecticut River reaches a level of 105 feet above
sea level, two Northampton, Massachusetts flood control station
operators begin a round-the-clock river watch. Every 2 hours, they
check the height of the river, using a scale marked off in tenths of a
foot, and record the data in a log book. In the spring of 1996, the
flood watch lasted from April 4, when the river reached 105 feet and
was rising at 0.2 foot per hour, until April 25, when the level 
subsided again to 105 feet. Between those dates, their log shows that
the river rose and fell several times, at one point coming close to the
115-foot mark. If the river had reached 115 feet, the city would have
closed down Mount Tom Road (Route 5, south of Northampton).

The graph below shows the rate of change of the level of the river
during one portion of the flood watch. Use the graph to answer each
question.

(a) On what date was the river rising most rapidly? How do you
know?

(b) On what date was the river falling most rapidly? How do
you know?

(c) There were two dates in a row on which the river rose, then
fell, then rose again during the course of the day. On which
days did this occur, and how do you know?

(d) At 1 minute past midnight, April 14, the river level was
111.0 feet. Estimate its height 24 hours later and 48 hours
later. Explain how you made your estimates.

(e) The river crested at 114.4 feet. On what date do you think
this occurred?

(Submitted by Mary Murphy, Smith College, Northampton,
MA)
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3.8 Newton’s Method
■ Approximate a zero of a function using Newton’s Method.

Newton’s Method
In this section you will study a technique for approximating the real zeros of a
function. The technique is called Newton’s Method, and it uses tangent lines to
approximate the graph of the function near its -intercepts.

To see how Newton’s Method works, consider a function that is continuous on
the interval and differentiable on the interval If and differ in sign,
then, by the Intermediate Value Theorem, must have at least one zero in the interval

Suppose you estimate this zero to occur at

First estimate

as shown in Figure 3.60(a). Newton’s Method is based on the assumption that the
graph of and the tangent line at both cross the -axis at the same
point. Because you can easily calculate the -intercept for this tangent line, you can
use it as a second (and, usually, better) estimate of the zero of The tangent line
passes through the point with a slope of In point-slope form, the
equation of the tangent line is therefore

Letting and solving for produces

So, from the initial estimate you obtain a new estimate

Second estimate [see Figure 3.60(b)]

You can improve on and calculate yet a third estimate

Third estimate

Repeated application of this process is called Newton’s Method.

x3 � x2 �
f�x2�
f��x2�

.

x2

x2 � x1 �
f�x1�
f��x1�

.

x1

x � x1 �
f�x1�
f��x1�

.

xy � 0

y � f��x1��x � x1� � f�x1�.
y � f�x1� � f��x1��x � x1�

f��x1�.�x1, f�x1��
f.

x
aboutx�x1, f�x1��f

x � x1

�a, b�.
f

f�b�f�a��a, b�.�a, b�
f

x

NEWTON’S METHOD FOR APPROXIMATING THE ZEROS OF A FUNCTION

Let where is differentiable on an open interval containing Then,
to approximate use the following steps.

1. Make an initial estimate that is close to (A graph is helpful.)

2. Determine a new approximation

3. If is within the desired accuracy, let serve as the final approx-
imation. Otherwise, return to Step 2 and calculate a new approximation.

Each successive application of this procedure is called an iteration.

xn�1�xn � xn�1�

xn�1 � xn �
f �xn�
f��xn�

.

c.x1

c,
c.ff �c� � 0,

xa c
b

Tangent line

x1 x2

(x1, f(x1))

y

(a)

x
a

c

Tangent line

b
x1 x3

x2

(x1, f(x1))

y

(b)
The -intercept of the tangent line 
approximates the zero of
Figure 3.60

f.
x

NEWTON’S METHOD

Isaac Newton first described the method for
approximating the real zeros of a function
in his text Method of Fluxions. Although
the book was written in 1671, it was not
published until 1736. Meanwhile, in 1690,
Joseph Raphson (1648–1715) published a
paper describing a method for approximating
the real zeros of a function that was very
similar to Newton’s. For this reason, the
method is often referred to as the Newton-
Raphson method.



EXAMPLE 1 Using Newton’s Method

Calculate three iterations of Newton’s Method to approximate a zero of
Use as the initial guess.

Solution Because you have and the iterative process is
given by the formula

The calculations for three iterations are shown in the table.

Of course, in this case you know that the two zeros of the function are To six
decimal places, So, after only three iterations of Newton’s Method,
you have obtained an approximation that is within 0.000002 of an actual root. The first
iteration of this process is shown in Figure 3.61.

EXAMPLE 2 Using Newton’s Method

Use Newton’s Method to approximate the zeros of

Continue the iterations until two successive approximations differ by less than 0.0001.

Solution Begin by sketching a graph of as shown in Figure 3.62. From the graph,
you can observe that the function has only one zero, which occurs near 
Next, differentiate and form the iterative formula

The calculations are shown in the table.

Because two successive approximations differ by less than the required 0.0001, you
can estimate the zero of to be ■�1.23375.f

xn�1 � xn �
f �xn�
f��xn�

� xn �
2xn

3 � xn
2 � xn � 1

6xn
2 � 2xn � 1

.

f
x � �1.2.

f,

f�x� � 2x3 � x2 � x � 1.

�2 � 1.414214.
±�2.

xn�1 � xn �
f �xn�
f��xn�

� xn �
xn

2 � 2
2xn

.

f��x� � 2x,f�x� � x2 � 2,

x1 � 1f�x� � x2 � 2.
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n xn f�xn� f� �xn� f�xn�
f��xn� xn �

f�xn�
f��xn�

1 1.000000 �1.000000 2.000000 �0.500000 1.500000

2 1.500000 0.250000 3.000000 0.083333 1.416667

3 1.416667 0.006945 2.833334 0.002451 1.414216

4 1.414216

n xn f�xn� f� �xn� f�xn�
f��xn� xn �

f�xn�
f��xn�

1 �1.20000 0.18400 5.24000 0.03511 �1.23511

2 �1.23511 �0.00771 5.68276 �0.00136 �1.23375

3 �1.23375 0.00001 5.66533 0.00000 �1.23375

4 �1.23375

NOTE For many functions, just a
few iterations of Newton’s Method will
produce approximations having very
small errors, as shown in Example 1.

−1

x
x2 = 1.5

x1 = 1

f (x) = x2 − 2

y

The first iteration of Newton’s Method
Figure 3.61

x
−2 −1

1

2f(x) = 2x3 + x2 − x + 1

y

After three iterations of Newton’s Method,
the zero of is approximated to the desired
accuracy.
Figure 3.62

f



When, as in Examples 1 and 2, the approximations approach a limit, the sequence
is said to Moreover, if the limit is it can be

shown that must be a zero of 
Newton’s Method does not always yield a convergent sequence. One way it can

fail to do so is shown in Figure 3.63. Because Newton’s Method involves division by
it is clear that the method will fail if the derivative is zero for any in the

sequence. When you encounter this problem, you can usually overcome it by choosing
a different value for Another way Newton’s Method can fail is shown in the 
next example.

Newton’s Method fails to converge if
Figure 3.63

EXAMPLE 3 An Example in Which Newton’s Method Fails

The function is not differentiable at Show that Newton’s Method
fails to converge using 

Solution Because the iterative formula is

The calculations are shown in the table. This table and Figure 3.64 indicate that 
continues to increase in magnitude as and so the limit of the sequence does
not exist.

■

n → �,
xn

� �2xn.

� xn � 3xn

� xn �
xn

1�3

1
3xn

�2�3

xn�1 � xn �
f �xn�
f��xn�

f��x� �
1
3 x�2�3,

x1 � 0.1.
x � 0.f �x� � x1�3

f��xn� � 0.

x
x1

f ′(x1) = 0

y

x1.

xnf��xn�,

f.c
c,converge.x1, x2, x3, .  .  . , xn, .  .  .
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n xn f�xn� f� �xn� f�xn�
f��xn� xn �

f�xn�
f��xn�

1 0.10000 0.46416 1.54720 0.30000 �0.20000

2 �0.20000 �0.58480 0.97467 �0.60000 0.40000

3 0.40000 0.73681 0.61401 1.20000 �0.80000

4 �0.80000 �0.92832 0.38680 �2.40000 1.60000

NOTE In Example 3, the initial estimate fails to produce a convergent sequence. Try
showing that Newton’s Method also fails for every other choice of (other than the 
actual zero). ■

x1

x1 � 0.1

x

−1

−1

1

x1
x2 x3 x5

x4

f(x) = x1/3

y

Newton’s Method fails to converge for every
-value other than the actual zero of

Figure 3.64
f.x



It can be shown that a condition sufficient to produce convergence of Newton’s
Method to a zero of is that

on an open interval containing the zero. For instance, in Example 1 this test would
yield and

Example 1

On the interval this quantity is less than 1 and therefore the convergence of
Newton’s Method is guaranteed. On the other hand, in Example 3, you have

and

Example 3

which is not less than 1 for any value of so you cannot conclude that Newton’s
Method will converge.

Algebraic Solutions of Polynomial Equations
The zeros of some functions, such as

can be found by simple algebraic techniques, such as factoring. The zeros of other
functions, such as

cannot be found by algebraic methods. This particular function has only
one real zero, and by using more advanced algebraic techniques you can determine the
zero to be

Because the solution is written in terms of square roots and cube roots, it is
called a 

The determination of radical solutions of a polynomial equation is one of the 
fundamental problems of algebra. The earliest such result is the Quadratic Formula,
which dates back at least to Babylonian times. The general formula for the zeros of a
cubic function was developed much later. In the sixteenth century an Italian mathe-
matician, Jerome Cardan, published a method for finding radical solutions to cubic
and quartic equations. Then, for 300 years, the problem of finding a general quintic
formula remained open. Finally, in the nineteenth century, the problem was answered
independently by two young mathematicians. Niels Henrik Abel, a Norwegian 
mathematician, and Evariste Galois, a French mathematician, proved that it is not 
possible to solve a fifth- (or higher-) degree polynomial equation by radicals.
Of course, you can solve particular fifth-degree equations such as but
Abel and Galois were able to show that no general solution exists.radical

x5 � 1 � 0,
general

radicals.bysolution
exact

x � � 3�3 � �23�3
6

� 3�3 � �23�3
6

.

elementary

f�x� � x3 � x � 1

f�x� � x3 � 2x2 � x � 2

x,

� f�x� f � �x�
� f��x��2 � � �x1�3��2�9��x�5�3�

�1�9��x�4�3� � � 2

f�x� � x1�3, f��x� �
1
3x�2�3, f � �x� � �

2
9x�5�3,

�1, 3�,
� f�x� f � �x�

� f��x��2 � � ��x2 � 2��2�
4x2 � � �12 �

1
x2�.

f�x� � x2 � 2, f��x� � 2x, f � �x� � 2,

f
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Condition for convergence� f�x� f ��x�
� f��x��2 � < 1

NOTE Try approximating the real zero of and compare your result with
the exact solution shown above. ■

f �x� � x3 � x � 1

NIELS HENRIK ABEL (1802–1829)

EVARISTE GALOIS (1811–1832)

Although the lives of both Abel and Galois
were brief, their work in the fields of analysis
and abstract algebra was far-reaching.
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In Exercises 1– 4, complete two iterations of Newton’s Method
for the function using the given initial guess.

1. 2.

3. 4.

In Exercises 5–14, approximate the zero(s) of the function. Use
Newton’s Method and continue the process until two successive
approximations differ by less than 0.001. Then find the zero(s)
using a graphing utility and compare the results.

5. 6.

7. 8.

9. 10.

11.

12.

13. 14.

In Exercises 15–18, apply Newton’s Method to approximate the
-value(s) of the indicated point(s) of intersection of the two

graphs. Continue the process until two successive approxima-
tions differ by less than 0.001. [Hint: Let ]

15. 16.

17. 18.

19. Mechanic’s Rule The Mechanic’s Rule for approximating
is

where is an approximation of 

(a) Use Newton’s Method and the function to
derive the Mechanic’s Rule.

(b) Use the Mechanic’s Rule to approximate and to
three decimal places.

20. (a) Use Newton’s Method and the function to
obtain a general rule for approximating 

(b) Use the general rule found in part (a) to approximate 
and to three decimal places.

In Exercises 21–24, apply Newton’s Method using the given 
initial guess, and explain why the method fails.

21.

22.

Figure for 21 Figure for 22

23.

24.

Figure for 23 Figure for 24

Fixed Point In Exercises 25 and 26, approximate the fixed
point of the function to two decimal places. A of a
function is a value of such that 

25.

26.

27. Use Newton’s Method to show that the equation
can be used to approximate if is an 

initial guess of the reciprocal of Note that this method of
approximating reciprocals uses only the operations of multipli-
cation and subtraction. [Hint: Consider ]

28. Use the result of Exercise 27 to approximate (a) and (b) to
three decimal places.

1
11

1
3

f �x� � �1�x� � a.

a.
x11�axn�1 � xn�2 � axn�

0 < x < 	f �x) � cot x,

f �x� � cos x

f �x0� � x0.]xf
x0pointfixed[

x

1

2

−3

x1

π2

y

π
2

x

1

3

2

3x2 x1

y

x1 �
3	

2
f �x� � 2 sin x � cos 2x,

x1 � 2f �x� � �x3 � 6x2 � 10x � 6,

y

1−1 2

−2

−3

x

x

1

x1 2

2

y

x1 � 0y � x3 � 2x � 2,

x1 � 1y � 2x3 � 6x2 � 6x � 1,

3�15

4�6

x � n�a.
f �x� � xn � a

�7�5

f �x� � x2 � a

�a.x1

n � 1, 2, 3 .  .  .xn�1 �
1
2 �xn �

a
xn
	,

a > 0,�a,
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π π−

y

x
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4

2

f

g

π
2

π
2

3

y

g�x� � cos xg�x� � tan x

f �x� � x2f �x� � x

x
1 2

3

2

3

f

g

y

x

1

1 2

3

3

f
g

y

g�x� � 1��x2 � 1�g�x� � �x � 4

f �x� � 3 � xf �x� � 2x � 1

h�x� � f �x� � g�x�.

x

f �x� � x3 � cos xf �x� � �x � sin x

f �x� � x 4 � x3 � 1

f �x� � x3 � 3.9x2 � 4.79x � 1.881

f �x� � x � 2�x � 1f �x� � 5�x � 1 � 2x

f �x� � x5 � x � 1f �x� � x3 � x � 1

f �x� � 2 � x3f �x� � x3 � 4

x1 � 0.1f �x� � tan x,x1 � 1.6f �x� � cos x,

x1 � 1.4f �x� � x3 � 3,x1 � 2.2f �x� � x2 � 5,
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3.8 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

www.CalcChat.com


In Exercises 33 and 34, approximate the critical number of on
the interval Sketch the graph of labeling any extrema.

33. 34.

Exercises 35–38 present problems similar to exercises from the
previous sections of this chapter. In each case, use Newton’s
Method to approximate the solution.

35. Minimum Distance Find the point on the graph of
that is closest to the point 

36. Minimum Distance Find the point on the graph of 
that is closest to the point 

37. Minimum Time You are in a boat 2 miles from the nearest
point on the coast (see figure). You are to go to a point which
is 3 miles down the coast and 1 mile inland. You can row at
3 miles per hour and walk at 4 miles per hour. Toward what
point on the coast should you row in order to reach in the
least time?

38. Medicine The concentration of a chemical in the blood-
stream hours after injection into muscle tissue is given by

When is the concentration greatest?

39. Crime The total number of arrests (in thousands) for all
males ages 14 to 27 in 2006 is approximated by the model

where is the age in years (see figure). Approximate the two ages
that had total arrests of 225 thousand. (Source: U.S. Department
of Justice)

Figure for 39 Figure for 40

40. Advertising Costs A manufacturer of digital audio players
estimates that the profit for selling a particular model is

where is the profit in dollars and is the advertising expense
in tens of thousands of dollars (see figure). Find the smaller of
two advertising amounts that yield a profit of $2,500,000.

True or False? In Exercises 41–44, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

41. The zeros of coincide with the zeros of 

42. If the coefficients of a polynomial function are all positive, then
the polynomial has no positive zeros.

43. If is a cubic polynomial such that is never zero, then
any initial guess will force Newton’s Method to converge to the
zero of 

44. The roots of coincide with the roots of 

45. Tangent Lines The graph of has infinitely
many tangent lines that pass through the origin. Use Newton’s
Method to approximate to three decimal places the slope of the
tangent line having the greatest slope.

46. Point of Tangency The graph of and a tangent
line to through the origin are shown. Find the coordinates of
the point of tangency to three decimal places.
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29. Consider the function 

(a) Use a graphing utility to graph 

(b) Use Newton’s Method with as an initial guess.

(c) Repeat part (b) using as an initial guess and
observe that the result is different.

(d) To understand why the results in parts (b) and (c) are
different, sketch the tangent lines to the graph of at the
points and Find the -intercept of each
tangent line and compare the intercepts with the first
iteration of Newton’s Method using the respective initial
guesses.

(e) Write a short paragraph summarizing how Newton’s
Method works. Use the results of this exercise to
describe why it is important to select the initial guess
carefully.

30. Repeat the steps in Exercise 29 for the function 
with initial guesses of and 

31. In your own words and using a sketch, describe Newton’s
Method for approximating the zeros of a function.

x1 � 3.x1 � 1.8
f �x� � sin x

x�1
4, f �1

4��.�1, f �1��
f

x1 �
1
4

x1 � 1

f.

f �x� � x3 � 3x2 � 3.

WRITING ABOUT CONCEPTS

32. Under what conditions will Newton’s Method fail?

CAPSTONE
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3.9 Differentials
■ Understand the concept of a tangent line approximation.
■ Compare the value of the differential, with the actual change in 
■ Estimate a propagated error using a differential.
■ Find the differential of a function using differentiation formulas.

Tangent Line Approximations
Newton’s Method (Section 3.8) is an example of the use of a tangent line to a graph
to approximate the graph. In this section, you will study other situations in which the
graph of a function can be approximated by a straight line.

To begin, consider a function that is differentiable at The equation for the
tangent line at the point is given by

and is called the tangent line approximation (or linear approximation) of f at c.
Because is a constant, is a linear function of Moreover, by restricting the values
of to those sufficiently close to the values of can be used as approximations (to
any desired degree of accuracy) of the values of the function In other words, as

the limit of is 

EXAMPLE 1 Using a Tangent Line Approximation

Find the tangent line approximation of

at the point Then use a table to compare the -values of the linear function with
those of on an open interval containing 

Solution The derivative of is

First derivative

So, the equation of the tangent line to the graph of at the point is

Tangent line approximation

The table compares the values of given by this linear approximation with the values
of near Notice that the closer is to 0, the better the approximation is. This
conclusion is reinforced by the graph shown in Figure 3.65.

■

xx � 0.f �x�
y

y � 1 � x.

y � 1 � �1��x � 0�
y � f �0� � f��0��x � 0�

�0, 1�f

f��x� � cos x.

f

x � 0.f �x�
y�0, 1�.

f �x� � 1 � sin x

f �c�.yx → c,
f.

yc,x
x.yc

y � f �c� � f��c��x � c�

�c, f �c��
c.f

�y.y,dy,

y � f �c� � f��c��x � c�

NOTE Be sure you see that this linear approximation of depends on the
point of tangency. At a different point on the graph of you would obtain a different tangent
line approximation. ■

f,
f �x� � 1 � sin x

x �0.5 �0.1 �0.01 0 0.01 0.1 0.5

f�x� � 1 1 sin x 0.521 0.9002 0.9900002 1 1.0099998 1.0998 1.479

y � 1 1 x 0.5 0.9 0.99 1 1.01 1.1 1.5

E X P L O R A T I O N

Tangent Line Approximation
Use a graphing utility to graph

In the same viewing window,
graph the tangent line to the graph
of at the point Zoom in
twice on the point of tangency.
Does your graphing utility 
distinguish between the two
graphs? Use the feature to
compare the two graphs. As the
-values get closer to 1, what can

you say about the -values?y
x

trace

�1, 1�.f

f �x� � x2.

Tangent line

πππ
244

−

−1

1

2

f(x) = 1 + sin x

x

y

The tangent line approximation of at the
point
Figure 3.65

�0, 1�
f
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Differentials
When the tangent line to the graph of at the point 

Tangent line at 

is used as an approximation of the graph of the quantity is called the change
in and is denoted by as shown in Figure 3.66. When is small, the change in

(denoted by ) can be approximated as shown.

Actual change in 

Approximate change in 

For such an approximation, the quantity is traditionally denoted by and is
called the differential of The expression is denoted by and is called the
differential of 

In many types of applications, the differential of can be used as an approximation of
the change in That is,

or

EXAMPLE 2 Comparing y and dy

Let Find when and Compare this value with for 
and

Solution Because you have and the differential is 
given by

Differential of 

Now, using the change in is

Figure 3.67 shows the geometric comparison of and Try comparing other 
values of and You will see that the values become closer to each other as 

approaches 0. ■

In Example 2, the tangent line to the graph of at is

or Tangent line to the graph of at 

For -values near 1, this line is close to the graph of as shown in Figure 3.67. For
instance,

and g�1.01� � 2�1.01� � 1 � 1.02.f �1.01� � 1.012 � 1.0201

f,x

x � 1.fg�x� � 2x � 1.y � 2x � 1

x � 1f �x� � x2

�or �x�
dx�y.dy

�y.dy

� 0.0201.� �1.01�2 � 12� f�1.01� � f �1��y � f �x � �x� � f �x�

y�x � 0.01,

y� 0.02.� 2�0.01�� f��1��0.01�dy � f��x� dx

dyf��x� � 2x,y � f �x� � x2,

�x � 0.01.
x � 1�ydx � 0.01.x � 1dyy � x2.

�

�y � f��x�dx.�y � dy

y.
y

y.
dy,f��x�dxx.

dx,�x

y� f��c��x

y�y � f �c � �x� � f �c�

�yy
�x�x,x,
x � cf,

�c, f �c��y � f �c� � f��c��x � c�

�c, f �c��f

x

f(c + Δx)

f(c)

f ′(c)Δx(

f

c c + Δx

Δy

Δx

(c, f(c))

(c + Δx, f(c + Δx))

y

When is small, 
is approximated by 
Figure 3.66

f��c��x.
�y � f �c � �x� � f �c��x

Δy

dy

(1, 1)

y = x2

y = 2x − 1

The change in is approximated by the
differential of
Figure 3.67

dy.y,
�y,y,

DEFINITION OF DIFFERENTIALS

Let represent a function that is differentiable on an open interval
containing The differential of x (denoted by ) is any nonzero real number.
The differential of y (denoted by ) is

dy � f��x� dx.

dy
dxx.

y � f �x�



Error Propagation
Physicists and engineers tend to make liberal use of the approximation of by 
One way this occurs in practice is in the estimation of errors propagated by physical
measuring devices. For example, if you let represent the measured value of a vari-
able and let represent the exact value, then is the error in measurement.
Finally, if the measured value is used to compute another value the difference
between and is the propagated error.

Measurement Propagated
error error

Exact Measured
value value

EXAMPLE 3 Estimation of Error

The measured radius of a ball bearing is 0.7 inch, as shown in Figure 3.68. If the 
measurement is correct to within 0.01 inch, estimate the propagated error in the 
volume of the ball bearing.

Solution The formula for the volume of a sphere is where is the radius
of the sphere. So, you can write

Measured radius

and

Possible error

To approximate the propagated error in the volume, differentiate to obtain
and write

Approximate by 

Substitute for and 

So, the volume has a propagated error of about 0.06 cubic inch. ■

Would you say that the propagated error in Example 3 is large or small? The
answer is best given in terms by comparing with The ratio

Ratio of to 

Simplify.

Substitute for and 

is called the The corresponding is approximately
4.29%.

errorpercenterror.relative

� ±0.0429

r.dr�
3

0.7
�±0.01�

�
3 dr

r

VdV
dV
V

�
4	r2 dr

4
3	r3

V.dVrelative

� ±0.06158 cubic inch.

dr.r� 4	�0.7�2�±0.01�
� 4	r2 dr

dV.�V�V � dV

dV�dr � 4	r2
V

�0.01 � �r � 0.01.

r � 0.7

rV �
4
3	r3,

V

f �x � �x� � f �x� � �y

f �x�f �x � �x�
f �x�,x

�xx � �x
x

dy.�y
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0.7

Ball bearing with measured radius that is
correct to within 0.01 inch.
Figure 3.68
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Calculating Differentials
Each of the differentiation rules that you studied in Chapter 2 can be written in
differential form. For example, suppose and are differentiable functions of By
the definition of differentials, you have 

and

So, you can write the differential form of the Product Rule as shown below.

Differential of 

Product Rule

EXAMPLE 4 Finding Differentials

a.

b.

c.

d. ■

The notation in Example 4 is called the Leibniz notation for derivatives and
differentials, named after the German mathematician Gottfried Wilhelm Leibniz. The
beauty of this notation is that it provides an easy way to remember several important
calculus formulas by making it seem as though the formulas were derived from
algebraic manipulations of differentials. For instance, in Leibniz notation, the Chain
Rule

would appear to be true because the ’s divide out. Even though this reasoning is
incorrect, the notation does help one remember the Chain Rule.

du

dy
dx

�
dy
du

du
dx

dy � �
dx
x2

dy
dx

� �
1
x2y �

1
x

dy � ��x sin x � cos x� dx
dy
dx

� �x sin x � cos xy � x cos x

dy � 2 cos x dx
dy
dx

� 2 cos xy � 2 sin x

dy � 2x dx
dy
dx

� 2xy � x2

DifferentialDerivativeFunction

� u dv � v du

� uv� dx � vu� dx

� �uv� � vu�� dx

uvd �uv� �
d
dx

�uv� dx

dv � v� dx.du � u� dx

x.vu

DIFFERENTIAL FORMULAS

Let and be differentiable functions of 

Constant multiple:

Sum or difference:

Product:

Quotient: d �u
v� �

v du � u dv
v2

d �uv� � u dv � v du

d �u ± v� � du ± dv

d �cu� � c du

x.vu

GOTTFRIED WILHELM LEIBNIZ (1646–1716)

Both Leibniz and Newton are credited with
creating calculus. It was Leibniz, however,
who tried to broaden calculus by developing
rules and formal notation. He often spent days
choosing an appropriate notation for a new
concept.
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EXAMPLE 5 Finding the Differential of a Composite Function

Original function

Apply Chain Rule.

Differential form

EXAMPLE 6 Finding the Differential of a Composite Function

Original function

Apply Chain Rule.

Differential form

■

Differentials can be used to approximate function values. To do this for the function
given by use the formula

which is derived from the approximation The key to
using this formula is to choose a value for that makes the calculations easier, as
shown in Example 7. (This formula is equivalent to the tangent line approximation
given earlier in this section.)

EXAMPLE 7 Approximating Function Values

Use differentials to approximate 

Solution Using you can write

Now, choosing and you obtain the following approximation.

■

The tangent line approximation to at is the line
For -values near 16, the graphs of and are close together, as shown

in Figure 3.69. For instance,

and

In fact, if you use a graphing utility to zoom in near the point of tangency , you
will see that the two graphs appear to coincide. Notice also that as you move farther
away from the point of tangency, the linear approximation becomes less accurate.

�16, 4�

g�16.5� �
1
8

�16.5� � 2 � 4.0625.f �16.5� � �16.5 � 4.0620

gfxg�x� �
1
8 x � 2.

x � 16f �x� � �x

� 4.0625� 4 � �1
8	�

1
2	� �16 �

1

2�16
�0.5�f �x � �x� � �16.5

dx � 0.5,x � 16

f �x � �x� � f �x� � f��x� dx � �x �
1

2�x
dx.

f �x� � �x,

�16.5.

x
�y � f �x � �x� � f �x� � dy.

y � f �x�,

dy � f��x� dx �
x

�x2 � 1
dx

f��x� �
1
2

�x2 � 1��1�2�2x� �
x

�x2 � 1

y � f �x� � �x2 � 1�1�2

dy � f��x� dx � 3 cos 3x dx

f��x� � 3 cos 3x

y � f �x� � sin 3x
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f �x � �x� � f �x� � dy � f �x� � f��x� dx

x
4

−2

2

4

6

8 12 16 20

(16, 4)
g(x) =    x + 21

8

f(x) = x

y

Figure 3.69
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3.9 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

x 1.9 1.99 2 2.01 2.1

f �x�

T�x�

In Exercises 1–6, find the equation of the tangent line to the
graph of at the given point. Use this linear approximation to
complete the table.

1.

2.

3.

4.

5.

6.

In Exercises 7–10, use the information to evaluate and compare
and

7.

8.

9.

10.

In Exercises 11–20, find the differential of the given function.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

In Exercises 21–24, use differentials and the graph of to
approximate (a) and (b) To print an enlarged
copy of the graph, go to the website www.mathgraphs.com.

21. 22.

23. 24.

In Exercises 25 and 26, use differentials and the graph of to
approximate (a) and (b) given that 

25. 26.

27. Area The measurement of the side of a square floor tile is 
10 inches, with a possible error of inch. Use differentials to
approximate the possible propagated error in computing the
area of the square.

28. Area The measurements of the base and altitude of a triangle
are found to be 36 and 50 centimeters, respectively. The
possible error in each measurement is 0.25 centimeter. Use
differentials to approximate the possible propagated error in
computing the area of the triangle.

29. Area The measurement of the radius of the end of a log is
found to be 16 inches, with a possible error of inch. Use
differentials to approximate the possible propagated error in
computing the area of the end of the log.

30. Volume and Surface Area The measurement of the edge of a
cube is found to be 15 inches, with a possible error of 0.03 inch.
Use differentials to approximate the maximum possible 
propagated error in computing (a) the volume of the cube and
(b) the surface area of the cube.

31. Area The measurement of a side of a square is found to be 
12 centimeters, with a possible error of 0.05 centimeter.

(a) Approximate the percent error in computing the area of the
square.

(b) Estimate the maximum allowable percent error in measuring
the side if the error in computing the area cannot exceed
2.5%.

32. Circumference The measurement of the circumference of a
circle is found to be 64 centimeters, with a possible error of 
0.9 centimeter.

(a) Approximate the percent error in computing the area of the
circle.

1
4

1
32

x
1 42

4

2

3

1

g′

3 5

y

(3, 3)

x
1 2 4 5

4

2

3

1
g′

y

(         )3, − 1
2

g�3� � 8.g�3.1�g�2.93�
g�

x
42

4

5

2

3

1

f

31 5

y

(2, 1)
x

42

4

5

2

3

1

f

31 5

y

(2, 1)

42

4

5

2

3

1

f

x
31 5

y

(2, 1)
x

42

4

5

2

3

1

f

3 5

y

(2, 1)

f �2.04�.f �1.9�
f

y �
sec2 x
x2 � 1

y �
1
3

 cos�6	x � 1
2 	

y � x cos xy � 3x � sin2 x

y � �x �
1
�x

y � x�1 � x2

y � �9 � x2y �
x � 1

2x � 1

y � 3x2�3y � 3x2 � 4

dy

�x � dx � 0.01x � 2y � 2 � x4

�x � dx � 0.01x � �1y � x4 � 1

�x � dx � �0.1x � 0y � 1 � 2x2

�x � dx � 0.1x � 1y � x3

dy.�y

�2, csc 2�f �x� � csc x,

�2, sin 2�f �x� � sin x,

�2, �2 �f �x� � �x,

�2, 32�f �x� � x5,

�2,
3
2	f �x� �

6
x2,

�2, 4�f �x� � x2,

f
T
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(b) Estimate the maximum allowable percent error in
measuring the circumference if the error in computing the
area cannot exceed 3%.

33. Volume and Surface Area The radius of a spherical balloon
is measured as 8 inches, with a possible error of 0.02 inch. Use
differentials to approximate the maximum possible error in 
calculating (a) the volume of the sphere, (b) the surface area of
the sphere, and (c) the relative errors in parts (a) and (b).

34. Stopping Distance The total stopping distance of a vehicle
is

where is in feet and is the speed in miles per hour.
Approximate the change and percent change in total stopping
distance as speed changes from to miles per
hour.

Volume In Exercises 35 and 36, the thickness of each shell is
0.2 centimeter. Use differentials to approximate the volume of
each shell.

35. 36.

37. Pendulum The period of a pendulum is given by

where is the length of the pendulum in feet, is the 
acceleration due to gravity, and is the time in seconds. The
pendulum has been subjected to an increase in temperature
such that the length has increased by 

(a) Find the approximate percent change in the period.

(b) Using the result in part (a), find the approximate error in
this pendulum clock in 1 day.

38. Ohm’s Law A current of amperes passes through a resistor
of ohms. Ohm’s Law states that the voltage applied to the
resistor is If the voltage is constant, show that the
magnitude of the relative error in caused by a change in is
equal in magnitude to the relative error in 

39. Triangle Measurements The measurement of one side of a
right triangle is found to be 9.5 inches, and the angle opposite
that side is with a possible error of 

(a) Approximate the percent error in computing the length of
the hypotenuse.

(b) Estimate the maximum allowable percent error in measuring
the angle if the error in computing the length of the
hypotenuse cannot exceed 2%.

40. Area Approximate the percent error in computing the area of
the triangle in Exercise 39.

41. Projectile Motion The range of a projectile is

where is the initial velocity in feet per second and is the
angle of elevation. If feet per second and is
changed from to use differentials to approximate the
change in the range.

42. Surveying A surveyor standing 50 feet from the base of a
large tree measures the angle of elevation to the top of the tree
as How accurately must the angle be measured if the
percent error in estimating the height of the tree is to be less
than 6%?

In Exercises 43–46, use differentials to approximate the value of
the expression. Compare your answer with that of a calculator.

43. 44.

45. 46.

In Exercises 47 and 48, verify the tangent line approximation of
the function at the given point. Then use a graphing utility to
graph the function and its approximation in the same viewing
window.

47.

48.

True or False? In Exercises 53–56, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

53. If then 

54. If then 

55. If is differentiable, then 

56. If is increasing and differentiable, and then
�y � dy.

�x > 0,fy � f �x�,
lim

�x→0
��y � dy� � 0.y

�y��x � dy�dx.y � ax � b,

dy � dx.y � x � c,

�0, 0�y � xf �x� � tan x

�0, 2�y � 2 �
x
4

f �x� � �x � 4

PointApproximationFunction

�2.99�34�624

3�26�99.4

71.5�.

11�,10�
v0 � 2500

v0

R �
v0

2

32
�sin 2�

R

15�.26�45�

I.
IR

E � IR.
ER

I

1
2%.

T
gL

T � 2	�L
g

100 cm

0.2 cm

5 cm

40 cm

0.2 cm

x � 26x � 25

xT

T � 2.5x � 0.5x2

T
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49. Describe the change in accuracy of as an approximation
for when is decreased.

50. When using differentials, what is meant by the terms
propagated error, relative error, and percent error?

51. Give a short explanation of why the approximation is valid.

(a)

(b) tan 0.05 � 0 � 1�0.05�
�4.02 � 2 �

1
4�0.02�

�x�y
dy

WRITING ABOUT CONCEPTS

52. Would you use to approximate near
Why or why not?x � 0?

f �x� � sin xy � x

CAPSTONE



1. Give the definition of a critical number, and graph a function 
showing the different types of critical numbers.

2. Consider the odd function that is continuous and differentiable
and has the functional values shown in the table.

(a) Determine 

(b) Determine 

(c) Plot the points and make a possible sketch of the graph of 
on the interval What is the smallest number of
critical points in the interval? Explain.

(d) Does there exist at least one real number in the interval
where Explain.

(e) Is it possible that does not exist? Explain.

(f) Is it necessary that exists at Explain.

In Exercises 3–6, find the absolute extrema of the function on
the closed interval. Use a graphing utility to graph the 
function over the given interval to confirm your results.

3. 4.

5. 6.

In Exercises 7–10, determine whether Rolle’s Theorem can be
applied to on the closed interval If Rolle’s Theorem can
be applied, find all values of in the open interval such
that If Rolle’s Theorem cannot be applied, explain
why not.

7.

8.

9.

10.

11. Consider the function 

(a) Graph the function and verify that 

(b) Note that is not equal to zero for any in 
Explain why this does not contradict Rolle’s Theorem.

12. Can the Mean Value Theorem be applied to the function
on the interval Explain.

In Exercises 13–18, determine whether the Mean Value
Theorem can be applied to on the closed interval If the
Mean Value Theorem can be applied, find all values of in the

open interval such that If the Mean

Value Theorem cannot be applied, explain why not.

13. 14.

15.

16.

17.

18.

19. For the function determine the value of 
guaranteed by the Mean Value Theorem on the interval 

20. Demonstrate the result of Exercise 19 for 
on the interval 

In Exercises 21–26, find the critical numbers (if any) and the
open intervals on which the function is increasing or decreasing.

21. 22.

23. 24.

25.

26.

In Exercises 27–30, use the First Derivative Test to find any 
relative extrema of the function. Use a graphing utility to 
confirm your results.

27. 28.

29.

30.

31. Harmonic Motion The height of an object attached to a spring
is given by the harmonic equation

where is measured in inches and is measured in seconds.

(a) Calculate the height and velocity of the object when
second.

(b) Show that the maximum displacement of the object is 
inch.

(c) Find the period of Also, find the frequency (number
of oscillations per second) if 

32. Writing The general equation giving the height of an oscillating
object attached to a spring is

where is the spring constant and is the mass of the object.

(a) Show that the maximum displacement of the object is

(b) Show that the object oscillates with a frequency of

f �
1

2	� k
m

.

�A2 � B2.

mk

y � A sin � k
m

t � B cos � k
m

t

f � 1�P .
fy.P

5
12

t � 	�8

ty

y �
1
3 cos 12t �

1
4 sin 12t

�0, 4�g�x� �
3
2

 sin�	x
2

� 1	 ,

h�t� �
1
4

t 4 � 8t

g�x� �
x3 � 8x

4
f �x� � 4x3 � 5x

�0, 2	�f �x� � sin x � cos x,

x > 0h�x� � �x�x � 3�,
g�x� � �x � 1�3f �x� � �x � 1�2�x � 3�
h�x� � �x � 2�1�3 � 8f �x� � x2 � 3x � 12

�0, 4�.
f �x� � 2x2 � 3x � 1

�x1, x2�.
cf �x� � Ax2 � Bx � C,

f �x� � �x � 2x,  �0, 4�

f �x� � x � cos x,  ��
	

2
,

	

2�
f �x� � 2x � 3�x,  ��1, 1�
f �x� � �5 � x�,  �2, 6�

f �x� �
1
x
,  �1, 4�f �x� � x2�3,  �1, 8�

f��c� �
f �b� � f �a�

b � a
.�a, b�

c
[a, b].f

��2, 1�?f �x� � 1�x2

�1, 7�.xf��x�
f �1� � f �7�.

f �x� � 3 � �x � 4�.
�0, 4�f �x� � �x � 2� � 2,

��2, 2�f �x� �
x2

1 � x2,

��3, 2�f �x� � �x � 2��x � 3�2,

�0, 4�f �x� � 2x2 � 7,

f��c� � 0.
�a, b�c

[a, b].f

�0, 2�f �x� �
x

�x2 � 1
,�0, 2	�g�x� � 2x � 5 cos x,

�0, 9�h�x� � 3�x � x,��4, 0�f �x� � x2 � 5x,

x � 2?f��x�

lim
x→0

f �x�
f��c� � �1?��6, 6�

c

��6, 6�.
f

f ��3�.
f �4�.

f

f
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x �5 �4 �1 0 2 3 6

f �x� 1 3 2 0 �1 �4 0

www.CalcChat.com


In Exercises 33–36, determine the points of inflection and 
discuss the concavity of the graph of the function.

33. 34.

35. 36.

In Exercises 37– 40, use the Second Derivative Test to find all 
relative extrema.

37.

38.

39.

40.

Think About It In Exercises 41 and 42, sketch the graph of a
function having the given characteristics.

41.

if

if

if

if or 

if

43. Writing A newspaper headline states that “The rate of growth
of the national deficit is decreasing.” What does this mean? What
does it imply about the graph of the deficit as a function of time?

44. Inventory Cost The cost of inventory depends on the ordering
and storage costs according to the inventory model

Determine the order size that will minimize the cost, assuming
that sales occur at a constant rate, is the number of units sold
per year, is the cost of storing one unit for 1 year, is the cost
of placing an order, and is the number of units per order.

45. Modeling Data Outlays for national defense (in billions of
dollars) for selected years from 1970 through 2005 are shown
in the table, where is time in years, with corresponding
to 1970. (Source: U.S. Office of Management and Budget)

(a) Use the regression capabilities of a graphing utility to fit a
model of the form

to the data.

(b) Use a graphing utility to plot the data and graph the model.

(c) For the years shown in the table, when does the model
indicate that the outlay for national defense was at a 
maximum? When was it at a minimum?

(d) For the years shown in the table, when does the model
indicate that the outlay for national defense was increasing
at the greatest rate?

46. Modeling Data The manager of a store recorded the annual
sales (in thousands of dollars) of a product over a period of 
7 years, as shown in the table, where is the time in years, with

corresponding to 2001.

(a) Use the regression capabilities of a graphing utility to find
a model of the form for the data.

(b) Use a graphing utility to plot the data and graph the model.

(c) Use calculus and the model to find the time when sales
were increasing at the greatest rate.

(d) Do you think the model would be accurate for predicting
future sales? Explain.

In Exercises 47– 56, find the limit.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

In Exercises 57–60, find any vertical and horizontal asymptotes
of the graph of the function. Use a graphing utility to verify
your results.

57. 58.

59. 60.

In Exercises 61–64, use a graphing utility to graph the function.
Use the graph to approximate any relative extrema or
asymptotes.

61. 62.

63. 64. g�x� �
	 2

3
� 4 cos x � cos 2xf �x� �

x � 1
1 � 3x2

f �x� � �x3 � 3x2 � 2x�f �x� � x3 �
243

x

f �x� �
3x

�x2 � 2
h�x� �

2x � 3
x � 4

g�x� �
5x2

x2 � 2
f �x� �

3
x

� 2

lim
x→��

x
2 sin x

lim
x→��

6x
x � cos x

lim
x→�

3x
�x2 � 4

lim
x→�

5 cos x
x

lim
x→��

�x2 � x
�2x

lim
x→��

3x2

x � 5

lim
x→�

2x
3x2 � 5

lim
x→�

2x2

3x2 � 5

lim
x→�

3 � x
2x � 5

lim
x→�

�8 �
1
x	

t

S � at3 � bt2 � ct � d

t � 1
t

S

D � at4 � bt3 � ct2 � dt � e

t � 0t

D

x
sr

Q

C � �Q
x 	s � �x

2	 r.

3 < x < 4f � �x� > 0

x > 4x < 3f � �x� < 0

x > 5f��x� < 0

3 < x < 5f��x� > 0

x < 3f��x� > 0

f��3� � f��5� � 0

f �0� � f �6� � 0

f

h�t� � t � 4�t � 1

g�x� � 2x2�1 � x2�
�0, 4	�h�x� � x � 2 cos x,

f �x� � �x � 9�2

f �x� � �x � 2�2�x � 4�f �x� � x � cos x,  �0, 2	�
g�x� � x�x � 5f �x� � x3 � 9x2
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t 0 5 10 15 20

D 81.7 86.5 134.0 252.7 299.3

t 25 30 35

D 272.1 294.5 495.3

t 1 2 3 4 5 6 7

S 5.4 6.9 11.5 15.5 19.0 22.0 23.6

42.

if or 

does not exist.

if

if x � 2f � �x� < 0

2 < x < 4f��x� > 0

f��4� � 0

f��2�
x > 4x < 2f��x� < 0

f �6� � 0f �0� � 4,



In Exercises 65–82, analyze and sketch the graph of the
function.

65. 66.

67. 68.

69. 70.

71. 72.

73. 74.

75. 76.

77. 78.

79.

80.

81.

82.

83. Find the maximum and minimum points on the graph of 

(a) without using calculus.

(b) using calculus.

84. Consider the function for positive integer values of 

(a) For what values of does the function have a relative
minimum at the origin?

(b) For what values of does the function have a point of
inflection at the origin?

85. Distance At noon, ship is 100 kilometers due east of ship
Ship is sailing west at 12 kilometers per hour, and ship 

is sailing south at 10 kilometers per hour. At what time will the
ships be nearest to each other, and what will this distance be?

86. Maximum Area Find the dimensions of the rectangle of
maximum area, with sides parallel to the coordinate axes, that
can be inscribed in the ellipse given by

87. Minimum Length A right triangle in the first quadrant has
the coordinate axes as sides, and the hypotenuse passes through
the point Find the vertices of the triangle such that the
length of the hypotenuse is minimum.

88. Minimum Length The wall of a building is to be braced by a
beam that must pass over a parallel fence 5 feet high and 4 feet
from the building. Find the length of the shortest beam that can
be used.

89. Maximum Area Three sides of a trapezoid have the same
length Of all such possible trapezoids, show that the one of
maximum area has a fourth side of length 

90. Maximum Area Show that the greatest area of any rectangle
inscribed in a triangle is one-half the area of the triangle.

91. Distance Find the length of the longest pipe that can be car-
ried level around a right-angle corner at the intersection of two
corridors of widths 4 feet and 6 feet. (Do not use trigonometry.)

92. Distance Rework Exercise 91, given corridors of widths 
meters and meters.

93. Distance A hallway of width 6 feet meets a hallway of width
9 feet at right angles. Find the length of the longest pipe that
can be carried level around this corner. [Hint: If is the length
of the pipe, show that

where is the angle between the pipe and the wall of the
narrower hallway.]

94. Length Rework Exercise 93, given that one hallway is of
width meters and the other is of width meters. Show that
the result is the same as in Exercise 92.

Minimum Cost In Exercises 95 and 96, find the speed in
miles per hour, that will minimize costs on a 110-mile delivery
trip. The cost per hour for fuel is dollars, and the driver is
paid dollars per hour. (Assume there are no costs other than
wages and fuel.)

95. Fuel cost: 96. Fuel cost:

Driver: Driver:

In Exercises 97 and 98, use Newton’s Method to approximate
any real zeros of the function accurate to three decimal places.
Use the zero or root feature of a graphing utility to verify your
results.

97.

98.

In Exercises 99 and 100, use Newton’s Method to approximate,
to three decimal places, the -value(s) of the point(s) of intersec-
tion of the equations. Use a graphing utility to verify your
results.

99. 100.

In Exercises 101 and 102, find the differential 

101. 102.

103. Surface Area and Volume The diameter of a sphere is
measured as 18 centimeters, with a maximum possible error of
0.05 centimeter. Use differentials to approximate the possible
propagated error and percent error in calculating the surface
area and the volume of the sphere.

104. Demand Function A company finds that the demand for its
commodity is

If changes from 7 to 8, find and compare the values of 
and dp.

�px

p � 75 �
1
4

x.

y � �36 � x2y � x�1 � cos x�
dy.

y � 1 � xy � x � 3

y � sin 	 xy � x4

x

f �x� � x3 � 2x � 1

f �x� � x3 � 3x � 1

W � $7.50W � $5

C �
v2

500
C �

v2

600

W
C

v,

ba



L � 6 csc  � 9 csc�	

2
� 	

L

b
a

2s.
s.

�1, 8�.

x2

144
�

y 2

16
� 1.

BAB.
A

n

n

n.f �x� � xn

x2 � 4y 2 � 2x � 16y � 13 � 0

�1 � x � 1f �x� �
1
	

�2 sin 	 x � sin 2	 x�,

0 � x � 2	f �x� � x � cos x,

f �x� � �x � 1� � �x � 3�
f �x� � �x2 � 9�

f �x� � x2 �
1
x

f �x� � x3 � x �
4
x

f �x� �
x2

1 � x4f �x� �
4

1 � x2

f �x� �
2x

1 � x2f �x� �
5 � 3x
x � 2

f �x� � �x � 2�1�3�x � 1�2�3f �x� � x1�3�x � 3�2�3

f �x� � �x � 3��x � 2�3f �x� � �x � 1�3�x � 3�2

f �x� � �x2 � 4�2f �x� � x�16 � x2

f �x� � 4x3 � x4f �x� � 4x � x2
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1. Graph the fourth-degree polynomial for
various values of the constant 

(a) Determine the values of for which has exactly one
relative minimum.

(b) Determine the values of for which has exactly one
relative maximum.

(c) Determine the values of for which has exactly two
relative minima.

(d) Show that the graph of cannot have exactly two relative
extrema.

2. (a) Graph the fourth-degree polynomial for
0, 1, 2, and 3. For what values of the con-

stant does have a relative minimum or relative maximum?

(b) Show that has a relative maximum for all values of the 
constant

(c) Determine analytically the values of for which has a
relative minimum.

(d) Let be a relative extremum of Show that
lies on the graph of Verify this result graph-

ically by graphing together with the seven curves
from part (a).

3. Let Determine all values of the constant such

that has a relative minimum, but no relative maximum.

4. (a) Let be a quadratic polynomial.
How many points of inflection does the graph of have?

(b) Let be a cubic polyno-
mial. How many points of inflection does the graph of have?

(c) Suppose the function satisfies the equation 

where and are positive constants.

Show that the graph of has a point of inflection at the point

where (This equation is called the logistic differential

equation.)

5. Prove Darboux’s Theorem: Let be differentiable on the closed
interval such that and If lies
between and , then there exists in such that

6. Let and be functions that are continuous on and
differentiable on . Prove that if and

for all in then 

7. Prove the following Extended Mean Value Theorem. If and 
are continuous on the closed interval , and if exists in 
the open interval then there exists a number in 
such that

8. (a) Let . Find and Show that for small values of
the difference is very small in the sense that

there exists such that where as

(b) Generalize this result by showing that if is a
differentiable function, then where 
as

9. The amount of illumination of a surface is proportional to the
intensity of the light source, inversely proportional to the
square of the distance from the light source, and proportional to

where is the angle at which the light strikes the surface.
A rectangular room measures 10 feet by 24 feet, with a 10-foot
ceiling (see figure). Determine the height at which the light
should be placed to allow the corners of the floor to receive as
much light as possible.

10. Consider a room in the shape of a cube, 4 meters on each side.
A bug at point wants to walk to point at the opposite
corner, as shown in the figure. Use calculus to determine the
shortest path. Can you solve the problem without calculus?

11. The line joining and crosses the two parallel lines, as
shown in the figure. The point is units from How far
from should the point be positioned so that the sum of the
areas of the two shaded triangles is a minimum? So that the
sum is a maximum?

RP
d

S Q

SQ
P.dR

QP

4 m

4 m4 m

Q

P

QP

5 ft
12 ft

d

θ
x

13 ft

10 f

sin ,

�x → 0.
� → 0�y � dy � ��x,

y � f �x�
�x → 0.

� → 0�V � dV � ��x,�
�V � dVx,

�V.dVV � x3

f �b� � f �a� � f��a��b � a� �
1
2

f ��c��b � a�2.

�a, b�c�a, b�,
f ��a, b�

f�f

g�b� > f �b�.�a, b�,xg��x� > f��x�
f �a� � g�a��a, b�

�a, b�gf

f��c� � d.
�a, b�cy2y1

df��b� � y2.f��a� � y1�a, b�
f

y �
L
2

.

f

Lk
dy
dx

� ky�1 �
y
L	

y � f �x�
f

a � 0,f �x� � ax3 � bx2 � cx � d,

f
a � 0,f �x� � ax2 � bx � c,

f

cf �x� �
c
x

� x2.

y � �3x2
y � �3x2.�x, y�

p.�x, y� � �x, p�x��

pa

a.
p

pa
�1,�2,a � �3,

p�x� � ax 4 � 6x2

p

pa

pa

pa

a.
p�x� � x 4 � ax2 � 1
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12. The figures show a rectangle, a circle, and a semicircle
inscribed in a triangle bounded by the coordinate axes and the
first-quadrant portion of the line with intercepts and

Find the dimensions of each inscribed figure such that its
area is maximum. State whether calculus was helpful in finding
the required dimensions. Explain your reasoning.

13. (a) Prove that 

(b) Prove that 

(c) Let be a real number. Prove that if then

14. Find the point on the graph of (see figure) where

the tangent line has the greatest slope, and the point where the
tangent line has the least slope.

15. (a) Let be a positive number. Use the table feature of a
graphing utility to verify that 

(b) Use the Mean Value Theorem to prove that 
for all positive real numbers 

16. (a) Let be a positive number. Use the table feature of a graph-
ing utility to verify that 

(b) Use the Mean Value Theorem to prove that for all
positive real numbers 

17. The police department must determine the speed limit on a
bridge such that the flow rate of cars is maximum per unit time.
The greater the speed limit, the farther apart the cars must be in
order to keep a safe stopping distance. Experimental data on
the stopping distances (in meters) for various speeds (in 
kilometers per hour) are shown in the table.

(a) Convert the speeds in the table to speeds in meters per
second. Use the regression capabilities of a graphing utility
to find a model of the form for the
data.

(b) Consider two consecutive vehicles of average length 
5.5 meters, traveling at a safe speed on the bridge. Let be
the difference between the times (in seconds) when the
front bumpers of the vehicles pass a given point on the
bridge. Verify that this difference in times is given by

(c) Use a graphing utility to graph the function and estimate
the speed that minimizes the time between vehicles. 

(d) Use calculus to determine the speed that minimizes What
is the minimum value of Convert the required speed to
kilometers per hour.

(e) Find the optimal distance between vehicles for the posted
speed limit determined in part (d).

18. A legal-sized sheet of paper (8.5 inches by 14 inches) is folded
so that corner touches the opposite 14-inch edge at (see 
figure). Note:

(a) Show that 

(b) What is the domain of 

(c) Determine the -value that minimizes 

(d) Determine the minimum length 

19. The polynomial is the
quadratic approximation of the function at if

and

(a) Find the quadratic approximation of

at

(b) Use a graphing utility to graph and in the same
viewing window.

20. Let and be real numbers. Prove that
�1 � x�n > 1 � nx.

n > 1x > 0

f �x�P�x�
�0, 0�.

f �x� �
x

x � 1

P� �a� � f � �a�.P��a� � f��a�,P�a� � f �a�,
�a, f �a��f

P�x� � c0 � c1�x � a� � c2�x � a�2

C.

C.x

C?

C 2 �
2x3

2x � 8.5
.

Rx

x

QP

C

8.5 in.

14 in.

PQ � �C2 � x2.��
RP

T?
T.

s
T

T �
d�s�

s
�

5.5
s

.

T

d�s� � as2 � bs � c

sv

vd

x.
sin x < x

sin x < x.
x

x.1
2x � 1�1 � x <

�1 � x < 1
2x � 1.

x

x
1 32−3 −1

1

−2

y = 1
1 + x2

y

y �
1

1 � x2

lim
y→0�

f �1
y	 � L.

lim
x→�

f �x� � L,L

lim
x→��

1
x2	 � 0.

lim
x→�

x2 � �.

x
1

1

2

2

3

3

4

4

r

y

x
1

1

2

2

3

3

4

4

r r
r

y
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1

1

2

2

3

3
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4 Integration

The area of a parabolic region can be approximated as the sum of the areas of rectangles. As you increase the number
of rectangles, the approximation tends to become more and more accurate. In Section 4.2, you will learn how the limit
process can be used to find areas of a wide variety of regions.

© Chuck Pefley/Alamy

In this chapter, you will study an important
process of calculus that is closely related
to differentiation–integration. You will
learn new methods and rules for solving
definite and indefinite integrals, including
the Fundamental Theorem of Calculus.
Then you will apply these rules to find
such things as the position function for an
object and the average value of a function.

In this chapter, you should learn the 
following.

■ How to evaluate indefinite integrals using
basic integration rules. (4.1)

■ How to evaluate a sum and approximate
the area of a plane region. (4.2)

■ How to evaluate a definite integral using
a limit. (4.3)

■ How to evaluate a definite integral using
the Fundamental Theorem of Calculus.
(4.4)

■ How to evaluate different types of 
definite and indefinite integrals using 
a variety of methods. (4.5)

■ How to approximate a definite integral
using the Trapezoidal Rule and
Simpson’s Rule. (4.6)

Although its official nickname is the Emerald City, Seattle is sometimes called the
Rainy City due to its weather. But there are several cities, including New York and
Boston, that typically get more annual precipitation. How could you use integration
to calculate the normal annual precipitation for the Seattle area? (See Section 4.5,
Exercise 117.)

■

■
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4.1 Antiderivatives and Indefinite Integration

DEFINITION OF ANTIDERIVATIVE

A function is an antiderivative of on an interval if for all in I.xF��x� � f�x�IfF

THEOREM 4.1 REPRESENTATION OF ANTIDERIVATIVES

If is an antiderivative of on an interval then is an antiderivative of 
on the interval if and only if is of the form 
where is a constant.C

G�x� � F�x� � C, for all x in IGI
fGI,fF

■ Write the general solution of a differential equation.
■ Use indefinite integral notation for antiderivatives.
■ Use basic integration rules to find antiderivatives.
■ Find a particular solution of a differential equation.

Antiderivatives
Suppose you were asked to find a function whose derivative is From
your knowledge of derivatives, you would probably say that

The function is an antiderivative of

Note that is called antiderivative of rather than antiderivative of . To
see why, observe that

and

are all antiderivatives of In fact, for any constant the function given by
is an antiderivative of f.F�x� � x3 � C

C,f �x� � 3x2.

F3�x� � x3 � 97F2�x� � x3 � 5,F1�x� � x3,

fthef,anF

f.F

F�x� � x3 because 
d
dx

�x3� � 3x2.

f �x� � 3x2.F

PROOF The proof of Theorem 4.1 in one direction is straightforward. That is, if
and is a constant, then

To prove this theorem in the other direction, assume that G is an antiderivative of f.
Define a function such that

For any two points and in the interval, is continuous on and 
differentiable on By the Mean Value Theorem,

for some in However, so Because and are
arbitrary points in the interval, you know that is a constant function So,

and it follows that ■G�x� � F�x� � C.G�x� � F�x� � C
C.H

baH�a� � H�b�.H��c� � 0,�a, b�.c

H��c� �
H�b� � H�a�

b � a

�a, b�.
�a, b�Hb �a < b�a

H�x� � G(x� � F�x�.

H

G��x� �
d
dx

�F�x� � C� � F��x� � 0 � f �x�.

CF��x� � f �x�,G�x� � F�x� � C,

E X P L O R A T I O N

Finding Antiderivatives For
each derivative, describe the 
original function 

a. b.

c. d.

e. f.

What strategy did you use to find
F?

F��x� � cos xF��x� �
1
x3

F��x� �
1
x2F��x� � x2

F��x� � xF��x� � 2x

F.
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Using Theorem 4.1, you can represent the entire family of antiderivatives of a
function by adding a constant to a known antiderivative. For example, knowing that

you can represent the family of all antiderivatives of by

Family of all antiderivatives of 

where is a constant. The constant is called the constant of integration. The
family of functions represented by is the general antiderivative of and

is the general solution of the differential equation

Differential equation

A differential equation in and is an equation that involves and
derivatives of For instance, and are examples of differential
equations.

EXAMPLE 1 Solving a Differential Equation

Find the general solution of the differential equation 

Solution To begin, you need to find a function whose derivative is 2. One such 
function is

is an antiderivative of 2.

Now, you can use Theorem 4.1 to conclude that the general solution of the differential
equation is

General solution

The graphs of several functions of the form are shown in Figure 4.1.
■

Notation for Antiderivatives
When solving a differential equation of the form

it is convenient to write it in the equivalent differential form

The operation of finding all solutions of this equation is called antidifferentiation (or
indefinite integration) and is denoted by an integral sign The general solution is
denoted by

The expression is read as the antiderivative of with respect to So, the
differential serves to identify as the variable of integration. The term indefinite
integral is a synonym for antiderivative.

xdx
x.f� f �x�dx

y � 
f �x� dx � F�x� � C.

�.

dy � f �x� dx.

dy
dx

� f �x�

y � 2x � C

y � 2x � C.

2xy � 2x.

y� � 2.

y� � x2 � 1y� � 3xy.
y,x,yx

G��x� � 2x.

G(x� � x2 � C
f,G

CC

f (x� � 2xG�x� � x2 � C

f �x� � 2xDx�x2� � 2x,

Variable of
integration

Constant of
integration

Integrand An antiderivative 
of f �x�

NOTE In this text, the notation
means that is

an antiderivative of f on an interval.
F� f �x� dx � F�x� � C

x

−1

−2

2

2

1

1

C = 2

C = 0

C = −1

y

Functions of the form 
Figure 4.1

y � 2x � C
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Basic Integration Rules
The inverse nature of integration and differentiation can be verified by substituting

in the indefinite integration definition to obtain

Moreover, if then

These two equations allow you to obtain integration formulas directly from 
differentiation formulas, as shown in the following summary.

� f �x� dx � F�x� � C,

F��x� for f �x�

Integration is the “inverse” of differentiation.
 F��x� dx � F�x) � C.

Differentiation is the “inverse” of integration.
d
dx�
 f�x� dx� � f�x�.

BASIC INTEGRATION RULES

Power Rule


csc x cot x dx � �csc x � C


csc2 x dx � �cot x � C


sec x tan x dx � sec x � C


sec2 x dx � tan x � C


sin x dx � �cos x � C


cos x dx � sin x � C

n � �1
xn dx �
xn�1

n � 1
� C,


� f �x� ± g�x�� dx � 
f �x� dx ± 
g�x� dx


kf �x� dx � k
f �x� dx


k dx � kx � C


0 dx � C

Integration Formula

d
dx

�csc x� � �csc x cot x

d
dx

�cot x� � �csc2 x

d
dx

�sec x� � sec x tan x

d
dx

�tan x� � sec2 x

d
dx

�cos x� � �sin x

d
dx

�sin x� � cos x

d
dx

�xn� � nxn�1

d
dx

� f �x� ± g�x�� � f��x� ± g��x�

d
dx

�kf �x�� � k f��x�

d
dx

�kx� � k

d
dx

�C� � 0

Differentiation Formula                  

NOTE Note that the Power Rule for Integration has the restriction that The
evaluation of must wait until the introduction of the natural logarithmic function in
Chapter 5. ■

�1�x dx
n � �1.



EXAMPLE 2 Applying the Basic Integration Rules

Describe the antiderivatives of 

Solution Constant Multiple Rule

Rewrite as

Power Rule 

Simplify.

So, the antiderivatives of are of the form where is any constant. 
■

When indefinite integrals are evaluated, a strict application of the basic integration
rules tends to produce complicated constants of integration. For instance, in Example 2,
you could have written

However, because represents constant, it is both cumbersome and unnecessary
to write as the constant of integration. So, is written in the simpler form,

In Example 2, note that the general pattern of integration is similar to that of
differentiation.

EXAMPLE 3 Rewriting Before Integrating

a.

b.

c.

■

Remember that you can check your answer to an antidifferentiation problem by
differentiating. For instance, in Example 3(b), you can check that is the
correct antiderivative by differentiating the answer to obtain

Use differentiation to check antiderivative.Dx�2
3

x3�2 � C� � �2
3	�

3
2	x1�2 � �x.

2
3x 3�2 � C

�2 cos x � C2��cos x� � C2
sin x dx
2 sin x dx

2
3

x3�2 � C
x3�2

3�2
� C
x1�2 dx
�x dx

�
1

2x2 � C
x�2

�2
� C
x�3 dx
 1

x3 dx

Simplify            Integrate             RewriteOriginal Integral

SimplifyIntegrateRewriteOriginal integral

3
2x2 � C.

3
2 x2 � 3C3C

anyC

�
3
2

x2 � 3C.� 3�x2

2
� C	
3x dx � 3
x dx

C3
2 x2 � C,3x

�
3
2

x2 � C

�n � 1�� 3�x2

2 	 � C

x1.x� 3
x1 dx


3x dx � 3
x dx

3x.
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Some software
programs, such as Maple,
Mathematica, and the TI-89, are 
capable of performing integration
symbolically. If you have access to
such a symbolic integration utility,
try using it to evaluate the indefinite
integrals in Example 3.

TECHNOLOGY

The icon indicates that you will find a CAS Investigation on the book’s website. The CAS
Investigation is a collaborative exploration of this example using the computer algebra systems
Maple and Mathematica.
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The basic integration rules listed on page 250 allow you to integrate any 
polynomial function, as shown in Example 4.

EXAMPLE 4 Integrating Polynomial Functions

a. Integrand is understood to be 1.

Integrate.

b.

Integrate.

The second line in the solution is usually omitted.

c. Integrate.

Simplify.

EXAMPLE 5 Rewriting Before Integrating

Rewrite as two fractions.

Integrate.

Simplify.

■

is not the same as 

EXAMPLE 6 Rewriting Before Integrating

Rewrite as a product.

Integrate. ■� sec x � C

Rewrite using trigonometric
identities.

� 
sec x tan x dx


 sin x
cos2 x

dx � 
� 1
cos x	�

sin x
cos x	 dx

��x � 1� dx
��x dx

�

1
2 x2 � x � C1

2
3 x�x � C2

.
x � 1
�x

dx �
2
3
�x �x � 3� � C

�
2
3
�x�x � 3� � C

�
2
3

x3�2 � 2x1�2 � C

�
x3�2

3�2
�

x1�2

1�2
� C

Rewrite with fractional
exponents.� 
�x1� 2 � x�1� 2� dx


x � 1
�x

dx � 
� x
�x

�
1
�x	 dx

�
3
5

x5 �
5
3

x3 �
1
2

x2 � C


�3x4 � 5x2 � x� dx � 3�x5

5 	 � 5�x3

3 	 �
x2

2
� C

C � C1 � C2�
x2

2
� 2x � C

�
x2

2
� C1 � 2x � C2


�x � 2� dx � 
x dx � 
2 dx

� x � C


dx � 
1 dx

NOTE When integrating quotients, do not integrate the numerator and denominator
separately. This is no more valid in integration than it is in differentiation. For instance, in
Example 5, be sure you understand that

■

Remember that you can
check your answer by differentiating.

STUDY TIP



Initial Conditions and Particular Solutions
You have already seen that the equation has many solutions (each
differing from the others by a constant). This means that the graphs of any two
antiderivatives of are vertical translations of each other. For example, Figure 4.2
shows the graphs of several antiderivatives of the form

General solution

for various integer values of Each of these antiderivatives is a solution of the
differential equation

In many applications of integration, you are given enough information to
determine a particular solution. To do this, you need only know the value of

for one value of This information is called an initial condition. For
example, in Figure 4.2, only one curve passes through the point To find this
curve, you can use the following information.

General solution

Initial condition

By using the initial condition in the general solution, you can determine that
which implies that So, you obtain

Particular solution

EXAMPLE 7 Finding a Particular Solution

Find the general solution of

and find the particular solution that satisfies the initial condition 

Solution To find the general solution, integrate to obtain

Rewrite as a power.

Integrate.

General solution

Using the initial condition you can solve for as follows. 

So, the particular solution, as shown in Figure 4.3, is

Particular solution ■x > 0.F�x� � �
1
x

� 1,

C � 1F�1� � �
1
1

� C � 0

CF�1� � 0,

� �
1
x

� C,  x > 0.

�
x�1

�1
� C

� 
x�2 dx

F�x� � �F��x�dxF�x� � 
 1
x2 dx

F�1� � 0.

x > 0F��x� �
1
x2,

F�x� � x3 � x � 2.

C � �2.F�2� � 8 � 2 � C � 4,

F�2� � 4

F�x� � x3 � x � C

(2, 4�.
x.y � F�x�

dy
dx

� 3x2 � 1.

C.

y � 
�3x2 � 1�dx � x3 � x � C

f

y � � f �x�dx
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F(x) = x3 − x + C
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The particular solution that satisfies the initial
condition is 
Figure 4.2

F�x� � x3 � x � 2.F�2) � 4
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F(x) = −    + C1
x
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The particular solution that satisfies the initial
condition is 

Figure 4.3
x > 0.

F�x� � ��1�x� � 1,F�1) � 0
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So far in this section you have been using as the variable of integration. In
applications, it is often convenient to use a different variable. For instance, in the
following example involving time, the variable of integration is 

EXAMPLE 8 Solving a Vertical Motion Problem

A ball is thrown upward with an initial velocity of 64 feet per second from an initial
height of 80 feet.

a. Find the position function giving the height as a function of the time 

b. When does the ball hit the ground?

Solution

a. Let represent the initial time. The two given initial conditions can be written
as follows.

Initial height is 80 feet.

Initial velocity is 64 feet per second.

Using feet per second per second as the acceleration due to gravity, you can
write

Using the initial velocity, you obtain which implies
that Next, by integrating you obtain

Using the initial height, you obtain

which implies that So, the position function is

See Figure 4.4.

b. Using the position function found in part (a), you can find the time at which the
ball hits the ground by solving the equation 

Because must be positive, you can conclude that the ball hits the ground
5 seconds after it was thrown. ■

Example 8 shows how to use calculus to analyze vertical motion problems in
which the acceleration is determined by a gravitational force. You can use a similar
strategy to analyze other linear motion problems (vertical or horizontal) in which the
acceleration (or deceleration) is the result of some other force, as you will see in
Exercises 81–89.

t

t � �1, 5

�16�t � 1��t � 5� � 0

s�t� � �16t2 � 64t � 80 � 0

s�t� � 0.

s�t� � �16t2 � 64t � 80.

C2 � 80.

s�0� � 80 � �16�02� � 64�0� � C2

s�t� � 
s��t� dt � 
��32t � 64� dt � �16 t2 � 64 t � C2.

s��t�,C1 � 64.
s��0� � 64 � �32�0� � C1,

s��t� � 
s� �t� dt � 
�32dt � �32t � C1.

s� �t� � �32
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s(t) = −16t2 + 64t + 80

Height of a ball at time 
Figure 4.4

t

NOTE In Example 8, note that the
position function has the form

where is the initial velocity,
and is the initial height, as presented
in Section 2.2.

s0

g � �32, v0

s�t� �
1
2gt2 � v0t � s0



Before you begin the exercise set, be sure you realize that one of the most
important steps in integration is rewriting the integrand in a form that fits the basic
integration rules. To illustrate this point further, here are some additional examples.

3
7

x7�3 � 3x4�3x7�3

7�3
� 4�x4�3

4�3	� C
�x4�3 � 4x1�3� dx
3�x�x � 4� dx

1
2

x2 �
3
x

� C
x2

2
� 3�x�1

�1	 � C
�x � 3x�2� dx
x3 � 3
x2 dx

1
5

t5 �
2
3

t3 � t � C
t5

5
� 2�t3

3	� t � C
�t4 � 2t2 � 1� dt
�t2 � 1�2 dt

4x1�2 � C2�x1�2

1�2	 � C2
x�1�2 dx
 2
�x

dx

SimplifyIntegrate                    Rewrite                     Original Integral
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In Exercises 1– 4, verify the statement by showing that the
derivative of the right side equals the integrand of the left side.

1.

2.

3.

4.

In Exercises 5–8, find the general solution of the differential
equation and check the result by differentiation.

5. 6.

7. 8.

In Exercises 9–14, complete the table.

9.

10.

11.

12.

13.

14.

In Exercises 15–34, find the indefinite integral and check the
result by differentiation.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

In Exercises 35–44, find the indefinite integral and check the
result by differentiation.

35. 36.

37. 38.

39. 40. 
sec y �tan y � sec y� dy
�sec2  � sin � d


� 2 � sec2 � d
�1 � csc t cot t� dt


�t2 � cos t� dt
�5 cos x � 4 sin x� dx


14 dt
dx


�1 � 3t� t2 dt
y2�y dy


�2t2 � 1�2 dt
�x � 1��3x � 2� dx


x2 � 2x � 3
x 4 dx
x � 6

�x
dx


 1
x6 dx
 1

x5 dx


� 4�x3 � 1� dx
 3�x2 dx


��x �
1

2�x	 dx
�x3�2 � 2x � 1� dx


�x3 � 10x � 3� dx
�x5 � 1� dx


�8x3 � 9x2 � 4� dx
�2x � 3x2� dx


�13 � x� dx
�x � 7� dx


 1
�3x�2 dx


 1
2x3 dx


x�x3 � 1� dx


 1

x�x
dx


 1
4x2 dx


 3�x dx

SimplifyIntegrateRewriteOriginal Integral

dy
dx

� 2x�3dy
dx

� x3�2

dr
d

� 	
dy
dt

� 9t2


x 2 � 1
x3�2 dx �

2�x 2 � 3�
3�x

� C


�x � 4��x � 4�dx �
1
3x3 � 16x � C


�8x3 �
1

2x 2	 dx � 2x 4 �
1
2x

� C


��
6
x4	 dx �

2
x3 � C

4.1 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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41. 42.

43. 44.

In Exercises 45–48, the graph of the derivative of a func-
tion is given. Sketch the graphs of two functions that have the
given derivative. (There is more than one correct answer.) To
print an enlarged copy of the graph, go to the website
www.mathgraphs.com.

45. 46.

47. 48.

In Exercises 49 and 50, find the equation of given the deriva-
tive and the indicated point on the curve.

49. 50.

Slope Fields In Exercises 51–54, a differential equation, a
point, and a slope field are given. A slope field (or direction field)
consists of line segments with slopes given by the differential
equation. These line segments give a visual perspective of the
slopes of the solutions of the differential equation. (a) Sketch
two approximate solutions of the differential equation on the
slope field, one of which passes through the indicated point. (To
print an enlarged copy of the graph, go to the website
www.mathgraphs.com.) (b) Use integration to find the particular
solution of the differential equation and use a graphing utility to
graph the solution. Compare the result with the sketches in
part (a).

51. 52.

53. 54.

Slope Fields In Exercises 55 and 56, (a) use a graphing utility
to graph a slope field for the differential equation, (b) use 
integration and the given point to find the particular solution of
the differential equation, and (c) graph the solution and the
slope field in the same viewing window.

55. 56.

In Exercises 57–64, solve the differential equation.

57. 58.

59.

60.

61.

62.

63.

64.

65. Tree Growth An evergreen nursery usually sells a certain
type of shrub after 6 years of growth and shaping. The growth
rate during those 6 years is approximated by 
where is the time in years and is the height in centimeters.
The seedlings are 12 centimeters tall when planted 

(a) Find the height after years.

(b) How tall are the shrubs when they are sold?

66. Population Growth The rate of growth of a population
of bacteria is proportional to the square root of where is the
population size and is the time in days That is,

The initial size of the population is 500. After
1 day the population has grown to 600. Estimate the population
after 7 days.

dP�dt � k�t.
�0 � t � 10�.t

Pt,
dP�dt

t

�t � 0�.
ht

dh�dt � 1.5t � 5,
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Vertical Motion In Exercises 71–74, use feet per
second per second as the acceleration due to gravity. (Neglect
air resistance.)

71. A ball is thrown vertically upward from a height of 6 feet with an
initial velocity of 60 feet per second. How high will the ball go?

72. Show that the height above the ground of an object thrown
upward from a point feet above the ground with an initial
velocity of feet per second is given by the function

73. With what initial velocity must an object be thrown upward
(from ground level) to reach the top of the Washington
Monument (approximately 550 feet)?

74. A balloon, rising vertically with a velocity of 16 feet per
second, releases a sandbag at the instant it is 64 feet above the
ground.

(a) How many seconds after its release will the bag strike the
ground?

(b) At what velocity will it hit the ground?

Vertical Motion In Exercises 75–78, use meters
per second per second as the acceleration due to gravity.
(Neglect air resistance.)

75. Show that the height above the ground of an object thrown
upward from a point meters above the ground with an initial
velocity of meters per second is given by the function

76. The Grand Canyon is 1800 meters deep at its deepest point. A
rock is dropped from the rim above this point. Write the height
of the rock as a function of the time in seconds. How long will
it take the rock to hit the canyon floor?

77. A baseball is thrown upward from a height of 2 meters with
an initial velocity of 10 meters per second. Determine its
maximum height.

78. With what initial velocity must an object be thrown upward (from
a height of 2 meters) to reach a maximum height of 200 meters?

79. Lunar Gravity On the moon, the acceleration due to gravity
is meters per second per second. A stone is dropped from
a cliff on the moon and hits the surface of the moon 20 seconds
later. How far did it fall? What was its velocity at impact?

80. Escape Velocity The minimum velocity required for an object
to escape Earth’s gravitational pull is obtained from the
solution of the equation

where is the velocity of the object projected from Earth, is
the distance from the center of Earth, is the gravitational
constant, and is the mass of Earth. Show that and are
related by the equation

where is the initial velocity of the object and is the radius
of Earth. 

Rv0

v2 � v0
2 � 2GM�1

y
�

1
R	

yvM
G

yv


v dv � �GM
 1
y2 dy

�1.6

t

f �t� � �4.9t2 � v0t � s0.

v0

s0

a�t� � �9.8

f �t� � �16t2 � v0t � s0.

v0

s0

a�t� � �32
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67. What is the difference, if any, between finding the 
antiderivative of and evaluating the integral 

68. Consider and What do you
notice about the derivatives of and What can you
conclude about the relationship between and 

69. The graphs of and each pass through the origin. Use the
graph of shown in the figure to sketch the graphs of and

To print an enlarged copy of the graph, go to the website
www.mathgraphs.com.

x

2

2

4

4−2−4

−4

−2

f ″

y

f�.
ff �

f�f

g�x�?f �x�
g�x�?f �x�

g�x� � sec2 x.f �x� � tan2 x

� f �x� dx?f �x�

WRITING ABOUT CONCEPTS

70. Use the graph of shown in the figure to answer the
following, given that 

(a) Approximate the slope of at Explain.

(b) Is it possible that Explain.

(c) Is Explain.

(d) Approximate the value of where is maximum.
Explain.

(e) Approximate any intervals in which the graph of is
concave upward and any intervals in which it is concave
downward. Approximate the -coordinates of any
points of inflection.

(f) Approximate the -coordinate of the minimum of 

(g) Sketch an approximate graph of To print an enlarged
copy of the graph, go to the website
www.mathgraphs.com.
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Rectilinear Motion In Exercises 81– 84, consider a particle
moving along the -axis where is the position of the particle
at time is its velocity, and is its acceleration.

81.

(a) Find the velocity and acceleration of the particle.

(b) Find the open intervals on which the particle is moving to
the right.

(c) Find the velocity of the particle when the acceleration is 0.

82. Repeat Exercise 81 for the position function

83. A particle moves along the -axis at a velocity of 
At time its position is Find the acceleration

and position functions for the particle.

84. A particle, initially at rest, moves along the -axis such that its
acceleration at time is given by At the time

its position is 

(a) Find the velocity and position functions for the particle.

(b) Find the values of for which the particle is at rest.

85. Acceleration The maker of an automobile advertises that it
takes 13 seconds to accelerate from 25 kilometers per hour to
80 kilometers per hour. Assuming constant acceleration,
compute the following.

(a) The acceleration in meters per second per second

(b) The distance the car travels during the 13 seconds

86. Deceleration A car traveling at 45 miles per hour is brought
to a stop, at constant deceleration, 132 feet from where the
brakes are applied.

(a) How far has the car moved when its speed has been reduced
to 30 miles per hour?

(b) How far has the car moved when its speed has been reduced
to 15 miles per hour?

(c) Draw the real number line from 0 to 132, and plot the points
found in parts (a) and (b). What can you conclude?

87. Acceleration At the instant the traffic light turns green, a car
that has been waiting at an intersection starts with a constant
acceleration of 6 feet per second per second. At the same
instant, a truck traveling with a constant velocity of 30 feet per
second passes the car.

(a) How far beyond its starting point will the car pass the truck?

(b) How fast will the car be traveling when it passes the truck?

88. Acceleration Assume that a fully loaded plane starting from
rest has a constant acceleration while moving down a runway.
The plane requires 0.7 mile of runway and a speed of 160 miles
per hour in order to lift off. What is the plane’s acceleration?

89. Airplane Separation Two airplanes are in a straight-line
landing pattern and, according to FAA regulations, must keep
at least a three-mile separation. Airplane A is 10 miles from
touchdown and is gradually decreasing its speed from 
150 miles per hour to a landing speed of 100 miles per hour.
Airplane B is 17 miles from touchdown and is gradually
decreasing its speed from 250 miles per hour to a landing speed
of 115 miles per hour.

(a) Assuming the deceleration of each airplane is constant, find
the position functions and for airplane A and airplane
B. Let represent the times when the airplanes are 10
and 17 miles from the airport.

(b) Use a graphing utility to graph the position functions.

(c) Find a formula for the magnitude of the distance between
the two airplanes as a function of Use a graphing utility
to graph Is for some time prior to the landing of
airplane A? If so, find that time.

True or False? In Exercises 90–95, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

90. Each antiderivative of an th-degree polynomial function is an
th-degree polynomial function.

91. If is a polynomial function, then has exactly one
antiderivative whose graph contains the origin.

92. If and are antiderivatives of then

93. If

94.

95. The antiderivative of is unique.

96. Find a function such that the graph of has a horizontal
tangent at and 

97. The graph of is shown. Sketch the graph of given that is
continuous and 

98. If is continuous, and 

find Is differentiable at 

99. Let be two functions satisfying and
for all If prove that

�s�x��2 � �c�x��2 � 1.
s�0� � 0 and c�0� � 1,x.c��x� � �s�x�

s��x� � c�x�s�x� and c�x�
x � 2?ff.
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ff
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� f �x�g�x� dx � � f �x� dx �g�x� dx

f��x� � g�x�, then �g�x� dx � f �x� � C.
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f �x�,G�x�F�x�

pp�x�
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d < 3d.
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d

t � 0
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x � 3.t � 0,
a�t� � cos t.t  >  0
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x � 4.t � 1,t > 0.
v�t� � 1��t ,x

x�t� � �t � 1��t � 3�2,  0 � t � 5

t-

x�t� � t3 � 6t2 � 9t � 2,  0 � t � 5

x� �t�x��t�t,
x�t�x

100. Suppose and are nonconstant, differentiable, real-valued
functions on Furthermore, suppose that for each pair of
real numbers and 
and If prove
that for all 

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.
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4.2 Area
■ Use sigma notation to write and evaluate a sum.
■ Understand the concept of area.
■ Approximate the area of a plane region.
■ Find the area of a plane region using limits.

Sigma Notation
In the preceding section, you studied antidifferentiation. In this section, you will look
further into a problem introduced in Section 1.1—that of finding the area of a region
in the plane. At first glance, these two ideas may seem unrelated, but you will discover
in Section 4.4 that they are closely related by an extremely important theorem called
the Fundamental Theorem of Calculus.

This section begins by introducing a concise notation for sums. This notation is
called sigma notation because it uses the uppercase Greek letter sigma, written as 

EXAMPLE 1 Examples of Sigma Notation

a.

b.

c.

d.

e.

From parts (a) and (b), notice that the same sum can be represented in different ways
using sigma notation. ■

Although any variable can be used as the index of summation and are often
used. Notice in Example 1 that the index of summation does not appear in the terms
of the expanded sum.

kj,i,


n

i�1
f�xi��x � f�x1��x � f�x2� �x � .  .  . � f�xn� �x


n

k�1

1
n

�k2 � 1� �
1
n

�12 � 1� �
1
n

�22 � 1� � .  .  . �
1
n

�n2 � 1�


7

j�3
j2 � 32 � 42 � 52 � 62 � 72


5

i�0
�i � 1� � 1 � 2 � 3 � 4 � 5 � 6


6

i�1
i � 1 � 2 � 3 � 4 � 5 � 6

.

SIGMA NOTATION

The sum of terms is written as

where is the index of summation, is the ith term of the sum, and the
upper and lower bounds of summation are and 1.n

aii


n

i�1
ai � a1 � a2 � a3 � .  .  . � an

a1, a2, a3, .  .  . , ann

NOTE The upper and lower bounds must be constant with respect to the index of summation.
However, the lower bound doesn’t have to be 1. Any integer less than or equal to the upper
bound is legitimate. ■

■ FOR FURTHER INFORMATION For
a geometric interpretation of summation
formulas, see the article, “Looking at 

and Geometrically” by Eric

Hegblom in Mathematics Teacher. To
view this article, go to the website
www.matharticles.com.


n

k�1
k2

n

k�1
k

www.matharticles.com


The following properties of summation can be derived using the associative and
commutative properties of addition and the distributive property of addition over
multiplication. (In the first property, is a constant.)

1.

2.

The next theorem lists some useful formulas for sums of powers. A proof of this
theorem is given in Appendix A.

EXAMPLE 2 Evaluating a Sum

Evaluate for 100, 1000, and 10,000.

Solution Applying Theorem 4.2, you can write

Factor the constant out of sum.

Write as two sums.

Apply Theorem 4.2.

Simplify.

Simplify.

Now you can evaluate the sum by substituting the appropriate values of as shown
in the table at the left. ■

In the table, note that the sum appears to approach a limit as increases. Although
the discussion of limits at infinity in Section 3.5 applies to a variable where can
be any real number, many of the same results hold true for limits involving the
variable where is restricted to positive integer values. So, to find the limit of

as approaches infinity, you can write

lim
n→�

n � 3
2n

� lim
n→�

� n
2n

�
3

2n	 � lim
n→�

�1
2

�
3

2n	 �
1
2

� 0 �
1
2

.

n�n � 3��2n
nn,

xx,
n

n,

�
n � 3

2n
.

�
1
n2�n2 � 3n

2 �

�
1
n2�n�n � 1�

2
� n�

�
1
n2�

n

i�1
i � 

n

i�1
1	

1�n 2
n

i�1

i � 1
n2 �

1
n2 

n

i�1
�i � 1�

n � 10,
n

i�1

i � 1
n2


n

i�1
�ai ± bi� � 

n

i�1
ai ± 

n

i�1
bi


n

i�1
kai � k

n

i�1
ai

k
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THEOREM 4.2 SUMMATION FORMULAS

1. 2.

3. 4. 
n

i�1
i3 �

n2�n � 1�2

4
n

i�1
i2 �

n�n � 1��2n � 1�
6


n

i�1
i �

n�n � 1�
2

n

i�1
c � cn

THE SUM OF THE FIRST 100 INTEGERS

A teacher of Carl Friedrich Gauss (1777–1855)
asked him to add all the integers from 1 to
100. When Gauss returned with the correct
answer after only a few moments, the teacher
could only look at him in astounded silence.
This is what Gauss did:

This is generalized by Theorem 4.2, where


100

t�1
i �

100�101�
2

� 5050.

100 
 101
2

� 5050

1
100
101

�

�

�

2
99

101

�

�

�

3
98

101

�

�

�

. .   .

.  .  .

.  .  .

�

�

�

100
1

101

n 
n

i�1

i 1 1
n2 �

n 1 3
2n

10 0.65000

100 0.51500

1,000 0.50150

10,000 0.50015



Area
In Euclidean geometry, the simplest type of plane region is a rectangle. Although 
people often say that the formula for the area of a rectangle is it is actually
more proper to say that this is the definition of the area of a rectangle.

From this definition, you can develop formulas for the areas of many other plane
regions. For example, to determine the area of a triangle, you can form a rectangle
whose area is twice that of the triangle, as shown in Figure 4.5. Once you know
how to find the area of a triangle, you can determine the area of any polygon by
subdividing the polygon into triangular regions, as shown in Figure 4.6.

Parallelogram Hexagon Polygon
Figure 4.6

Finding the areas of regions other than polygons is more difficult. The ancient
Greeks were able to determine formulas for the areas of some general regions
(principally those bounded by conics) by the exhaustion method. The clearest
description of this method was given by Archimedes. Essentially, the method is a
limiting process in which the area is squeezed between two polygons—one inscribed
in the region and one circumscribed about the region.

For instance, in Figure 4.7 the area of a circular region is approximated by an 
-sided inscribed polygon and an -sided circumscribed polygon. For each value of 

the area of the inscribed polygon is less than the area of the circle, and the area of the
circumscribed polygon is greater than the area of the circle. Moreover, as increases,
the areas of both polygons become better and better approximations of the area of 
the circle.

The exhaustion method for finding the area of a circular region
Figure 4.7

A process that is similar to that used by Archimedes to determine the area of a
plane region is used in the remaining examples in this section.

n = 12n = 6

n

n,nn

A � bh,
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b

h

Triangle:
Figure 4.5

A �
1
2 bh

■ FOR FURTHER INFORMATION For an
alternative development of the formula for
the area of a circle, see the article “Proof
Without Words: Area of a Disk is ”
by Russell Jay Hendel in Mathematics
Magazine. To view this article, go to the
website www.matharticles.com.

	R 2

ARCHIMEDES (287–212 B.C.)

Archimedes used the method of exhaustion 
to derive formulas for the areas of ellipses,
parabolic segments, and sectors of a spiral.
He is considered to have been the greatest
applied mathematician of antiquity.
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The Area of a Plane Region
Recall from Section 1.1 that the origins of calculus are connected to two classic
problems: the tangent line problem and the area problem. Example 3 begins the
investigation of the area problem.

EXAMPLE 3 Approximating the Area of a Plane Region

Use the five rectangles in Figure 4.8(a) and (b) to find two approximations of the area
of the region lying between the graph of

and the -axis between and 

Solution

a. The right endpoints of the five intervals are where The width
of each rectangle is and the height of each rectangle can be obtained by evaluating

at the right endpoint of each interval.

Evaluate at the right endpoints of these intervals.

The sum of the areas of the five rectangles is

Height Width

Because each of the five rectangles lies inside the parabolic region, you can 
conclude that the area of the parabolic region is greater than 6.48.

b. The left endpoints of the five intervals are where The
width of each rectangle is and the height of each rectangle can be obtained by
evaluating at the left endpoint of each interval. So, the sum is

Height Width

Because the parabolic region lies within the union of the five rectangular regions,
you can conclude that the area of the parabolic region is less than 8.08.

By combining the results in parts (a) and (b), you can conclude that

■6.48 < �Area of region� < 8.08.


5

i�1
f �2i � 2

5 	 �2
5	 � 

5

i�1
���2i � 2

5 	
2

� 5��2
5	 �

202
25

� 8.08.

f

2
5,

i � 1, 2, 3, 4, 5.2
5�i � 1�,


5

i�1
f �2i

5 	 �2
5	 � 

5

i�1
���2i

5 	
2

� 5��2
5	 �

162
25

� 6.48.

f

�0,
2
5�, �2

5
,

4
5�, �4

5
,

6
5�, �6

5
,

8
5�, �8

5
,

10
5 �

f

2
5,

i � 1, 2, 3, 4, 5.2
5i,

x � 2.x � 0x

f�x� � �x2 � 5

NOTE By increasing the number of rectangles used in Example 3, you can obtain closer and
closer approximations of the area of the region. For instance, using 25 rectangles of width 
each, you can conclude that

■7.17 < �Area of region� < 7.49.

2
25

x

1

2

3

4

5

5 5 5 5 5
2 4 6 8 10

f(x) = −x2 + 5

y

(a) The area of the parabolic region is greater
than the area of the rectangles.

x

1

2

3

4

5

5 5 5 5 5
2 4 6 8 10

f(x) = −x2 + 5

y

(b) The area of the parabolic region is less
than the area of the rectangles.

Figure 4.8



Upper and Lower Sums
The procedure used in Example 3 can be generalized as follows. Consider a plane
region bounded above by the graph of a nonnegative, continuous function as
shown in Figure 4.9. The region is bounded below by the -axis, and the left and right
boundaries of the region are the vertical lines and 

To approximate the area of the region, begin by subdividing the interval into
subintervals, each of width as shown in Figure 4.10. The

endpoints of the intervals are as follows.

Because is continuous, the Extreme Value Theorem guarantees the existence of a
minimum and a maximum value of in each subinterval.

Minimum value of in th subinterval

Maximum value of in th subinterval

Next, define an inscribed rectangle lying inside the th subregion and a
circumscribed rectangle extending outside the th subregion. The height of the th
inscribed rectangle is and the height of the th circumscribed rectangle is 
For each the area of the inscribed rectangle is less than or equal to the area of the
circumscribed rectangle.

The sum of the areas of the inscribed rectangles is called a lower sum, and the sum
of the areas of the circumscribed rectangles is called an upper sum.

Area of inscribed rectangles

Area of circumscribed rectangles

From Figure 4.11, you can see that the lower sum is less than or equal to the upper
sum Moreover, the actual area of the region lies between these two sums.

Area of inscribed rectangles Area of region Area of circumscribed
is less than area of region. rectangles is greater than

area of region.
Figure 4.11

y = f (x)

S(n)

a b
x

y

a b
x

y = f (x)

y

s(n)

a b
x

y = f(x)
y

s�n� � �Area of region� � S�n�

S�n�.
s�n�

Upper sum � S�n� � 
n

i�1
f�Mi� �x

Lower sum � s�n� � 
n

i�1
f�mi � �x

�Area of inscribed
rectangle 	 � f�mi� �x � f�Mi� �x � �Area of circumscribed

rectangle 	

i,
f�Mi�.if�mi�

ii
i

if�x�f�Mi� �

if�x�f�mi� �

f �x�
f

a � 0��x� < a � 1��x� < a � 2��x� < .  .  . < a � n��x�

xn � bx2x1a � x0

�x � �b � a��n,n
�a, b�

x � b.x � a
x

y � f�x�,
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a b
x

f

y

The region under a curve
Figure 4.9

a b
x

f

Δx

f (mi)
f (Mi)

y

The interval is divided into 

subintervals of width 

Figure 4.10

�x �
b � a

n
.

n�a, b�



EXAMPLE 4 Finding Upper and Lower Sums for a Region

Find the upper and lower sums for the region bounded by the graph of and
the -axis between and 

Solution To begin, partition the interval into subintervals, each of width

Figure 4.12 shows the endpoints of the subintervals and several inscribed and
circumscribed rectangles. Because is increasing on the interval the minimum
value on each subinterval occurs at the left endpoint, and the maximum value occurs
at the right endpoint.

Using the left endpoints, the lower sum is

Lower sum

Using the right endpoints, the upper sum is

Upper sum ■�
8
3

�
4
n

�
4

3n2.

�
4

3n3 �2n3 � 3n2 � n�

�
8
n3�n�n � 1��2n � 1�

6 �

� 
n

i�1
� 8

n3	 i2

� 
n

i�1
�2i

n 	
2

�2
n	

S�n� � 
n

i�1
f�Mi� �x � 

n

i�1
f �2i

n 	 �2
n	

�
8
3

�
4
n

�
4

3n2.

�
4

3n3 �2n3 � 3n2 � n�

�
8
n3 �n�n � 1��2n � 1�

6
� 2�n�n � 1�

2 � � n�
�

8
n3�

n

i�1
i2 � 2

n

i�1
i � 

n

i�1
1	

� 
n

i�1
� 8

n3	�i2 � 2i � 1�

� 
n

i�1
�2�i � 1�

n �
2

�2
n	

s�n� � 
n

i�1
f�mi� �x � 

n

i�1
f �2�i � 1�

n ��2
n	

Mi � 0 � i �2
n	 �

2i
n

mi � 0 � �i � 1��2
n	 �

2�i � 1�
n

Right Endpoints             Left Endpoints

�0, 2�,f

�x �
b � a

n
�

2 � 0
n

�
2
n

.

n�0, 2�

x � 2.x � 0x
f�x� � x2
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x

1

1

2

2 3

3

4

−1

f (x) = x2

y

Inscribed rectangles

1 2 3
x

1

2

3

4

−1

f (x) = x2

y

Circumscribed rectangles
Figure 4.12



Example 4 illustrates some important things about lower and upper sums. First,
notice that for any value of the lower sum is less than (or equal to) the upper sum.

Second, the difference between these two sums lessens as increases. In fact, if you
take the limits as both the upper sum and the lower sum approach 

Lower sum limit

Upper sum limit

The next theorem shows that the equivalence of the limits (as ) of the upper
and lower sums is not mere coincidence. It is true for all functions that are continuous
and nonnegative on the closed interval The proof of this theorem is best left to
a course in advanced calculus.

Because the same limit is attained for both the minimum value and the
maximum value it follows from the Squeeze Theorem (Theorem 1.8) that the
choice of in the th subinterval does not affect the limit. This means that you are free
to choose an arbitrary -value in the th subinterval, as in the following definition of
the area of a region in the plane.

ix
ix

f �Mi�,
f�mi �

�a, b�.

n →�

lim
n→�

S�n� � lim
n→� �8

3
�

4
n

�
4

3n2	 �
8
3

lim
n→�

s�n� � lim
n→� �8

3
�

4
n

�
4

3n2	 �
8
3

8
3.n →�,

n

s�n� �
8
3

�
4
n

�
4

3n2 <
8
3

�
4
n

�
4

3n2 � S�n�

n,
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THEOREM 4.3 LIMITS OF THE LOWER AND UPPER SUMS

Let be continuous and nonnegative on the interval The limits as
of both the lower and upper sums exist and are equal to each other.

That is,

where and and are the minimum and maximum
values of on the subinterval.f

f �Mi�f�mi��x � �b � a��n

� lim
n→�

S�n�

� lim
n→� 

n

i�1
f�Mi� �x

 lim
n→�

s�n� � lim
n→� 

n

i�1
f�mi� �x

n →�
�a, b�.f

DEFINITION OF THE AREA OF A REGION IN THE PLANE

Let be continuous and nonnegative on the interval The area of the
region bounded by the graph of the -axis, and the vertical lines and

is

where (see Figure 4.13).�x � �b � a��n

xi�1 � ci � xiArea � lim
n→� 

n

i�1
f�ci� �x,

x � b
x � axf,

�a, b�.f

x

f

a b
xixi−1

ci

f (ci)

y

The width of the th subinterval is

Figure 4.13
�x � xi � xi�1.

i

E X P L O R A T I O N

For the region given in Example 4,
evaluate the lower sum

and the upper sum

for and 1000. Use
your results to determine the area
of the region.

n � 10, 100,

S�n� �
8
3

�
4
n

�
4

3n2

s�n� �
8
3

�
4
n

�
4

3n2



EXAMPLE 5 Finding Area by the Limit Definition

Find the area of the region bounded by the graph the -axis, and the vertical
lines and as shown in Figure 4.14.

Solution Begin by noting that is continuous and nonnegative on the interval 
Next, partition the interval into subintervals, each of width 
According to the definition of area, you can choose any -value in the th subinterval.
For this example, the right endpoints are convenient.

Right endpoints:

The area of the region is 

EXAMPLE 6 Finding Area by the Limit Definition

Find the area of the region bounded by the graph of the -axis, and the
vertical lines and as shown in Figure 4.15.

Solution The function is continuous and nonnegative on the interval and so
begin by partitioning the interval into subintervals, each of width 
Choosing the right endpoint

Right endpoints

of each subinterval, you obtain

The area of the region is ■
5
3.

�
5
3

.

� 3 � 1 �
1
3

� lim
n→� �3 � �1 �

1
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i
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i
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4
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1
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�
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1
n4 

n
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x � 1,x � 0
xf�x� � x3,
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x
1

1

(0, 0)

(1, 1)

f (x) = x3

y

The area of the region bounded by the graph
of the -axis, and is 
Figure 4.14

1
4.x � 1x � 0,xf,

x

1

1

2

2

3

4
f (x) = 4 − x2

y

The area of the region bounded by the graph
of the -axis, and is 
Figure 4.15

5
3.x � 2x � 1,xf,



The last example in this section looks at a region that is bounded by the -axis
(rather than by the -axis).

EXAMPLE 7 A Region Bounded by the y-axis

Find the area of the region bounded by the graph of and the -axis for
as shown in Figure 4.16.

Solution When is a continuous, nonnegative function of you still can use the
same basic procedure shown in Examples 5 and 6. Begin by partitioning the interval

into subintervals, each of width Then, using the upper endpoints
you obtain

Upper endpoints:

The area of the region is ■
1
3.

�
1
3

.

� lim
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3
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x
y
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In Exercises 1–6, find the sum. Use the summation capabilities
of a graphing utility to verify your result.

1. 2.

3. 4.

5. 6.

In Exercises 7–14, use sigma notation to write the sum.

7.

8.

9.

10.

11.

12.

13.

14.

In Exercises 15–22, use the properties of summation and
Theorem 4.2 to evaluate the sum. Use the summation capabili-
ties of a graphing utility to verify your result.

15. 16.

17. 18.

19. 20.

21. 22.

In Exercises 23 and 24, use the summation capabilities of a
graphing utility to evaluate the sum. Then use the properties of
summation and Theorem 4.2 to verify the sum.

23. 24. 
15

i�1
�i 3 � 2i�

20

i�1
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4.2 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

1

1

x

(1, 1)

(0, 0)

f(y) = y2

y

The area of the region bounded by the graph
of and the -axis for is 
Figure 4.16

1
3.0 � y � 1yf
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25. Consider the function 

(a) Estimate the area between the graph of and the -axis
between and using six rectangles and right
endpoints. Sketch the graph and the rectangles.

(b) Repeat part (a) using left endpoints.

26. Consider the function 

(a) Estimate the area between the graph of and the -axis
between and using four rectangles and right
endpoints. Sketch the graph and the rectangles.

(b) Repeat part (a) using left endpoints.

In Exercises 27–32, use left and right endpoints and the given
number of rectangles to find two approximations of the area of
the region between the graph of the function and the -axis over
the given interval.

27. 4 rectangles

28. 6 rectangles

29. 6 rectangles

30. 8 rectangles

31. 4 rectangles

32. 6 rectangles

In Exercises 33–36, bound the area of the shaded region by
approximating the upper and lower sums. Use rectangles of
width 1.

33. 34.

35. 36.

In Exercises 37– 40, find the limit of as 

37.

38.

39. 40.

In Exercises 41–44, use upper and lower sums to approximate
the area of the region using the given number of subintervals (of
equal width).

41. 42.

43. 44.

In Exercises 45–48, use the summation formulas to rewrite the
expression without the summation notation. Use the result to
find the sums for 100, 1000, and 10,000.

45. 46.

47. 48.

In Exercises 49– 54, find a formula for the sum of terms. Use
the formula to find the limit as 

49. 50.

51. 52.

53. 54.

55. Numerical Reasoning Consider a triangle of area 2 bounded
by the graphs of and 

(a) Sketch the region.

(b) Divide the interval into subintervals of equal width
and show that the endpoints are

(c) Show that 

(d) Show that S�n� � 
n

i�1
�i �2

n	��
2
n	.

s�n� � 
n

i�1
��i � 1��2

n	��
2
n	.

0 < 1�2
n	 < .  .  . < �n � 1��2

n	 < n�2
n	.

n�0, 2�

x � 2.y � 0,y � x,

lim
n→� 

n

i�1
�1 �

2i
n 	

3

�2
n	lim

n→� 
n

i�1
�1 �

i
n	�

2
n	

lim
n→� 

n

i�1
�1 �

2i
n 	

2

�2
n	lim

n→� 
n

i�1

1
n3 �i � 1�2

lim
n→� 

n

i�1
�2i

n 	�
2
n	lim

n→� 
n

i�1

24i
n2

n →�.
n


n

i�1

4i2�i � 1�
n 4

n

k�1

6k�k � 1�
n3


n

j�1

4j � 3
n2

n

i�1

2i � 1
n2

n � 10,

x

1

1

y

x
1 2

1

y

y � �1 � x2y �
1
x

1 2

1

2

x

3

y

x

1

1

y

y � �x � 2y � �x

s�n� �
1
n2�n�n � 1�

2 �s�n� �
18
n2 �n�n � 1�

2 �

s�n� �
64
n3 �n�n � 1��2n � 1�

6 �

s�n� �
81
n4 �n2�n � 1�2

4 �
n →�.s�n�

x
1 2 3 4 5

1

2

3

4

5

f

y

x
1 2 3 4 5

1

2

3

4

5
f

y

x
1 2 3 4 5

1

2

3

4

5
f

y

x
1 2 3 4 5

1

2

3

4

5
f

y

�0, 	�,g�x� � sin x,

�0,
	

2�,f �x� � cos x,

�1, 3�,g�x� � x2 � 1,

�2, 5�,g�x� � 2x2 � x � 1,

�2, 4�,f �x� � 9 � x,

�0, 2�,f �x� � 2x � 5,

x

x � 4x � 2
xg

g�x� � x2 � x � 4.

x � 3x � 0
xf

f �x� � 3x � 2.



(e) Complete the table.

(f ) Show that 

56. Numerical Reasoning Consider a trapezoid of area 4 bounded
by the graphs of and 

(a) Sketch the region.

(b) Divide the interval into subintervals of equal width
and show that the endpoints are

(c) Show that 

(d) Show that 

(e) Complete the table.

(f) Show that 

In Exercises 57–66, use the limit process to find the area of the
region between the graph of the function and the -axis over the
given interval. Sketch the region.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

In Exercises 67–72, use the limit process to find the area of the
region between the graph of the function and the -axis over the
given -interval. Sketch the region.

67. 68.

69. 70.

71. 72.

In Exercises 73–76, use the Midpoint Rule

with to approximate the area of the region bounded 
by the graph of the function and the -axis over the given 
interval.

73. 74.

75. 76.

Programming Write a program for a graphing utility to
approximate areas by using the Midpoint Rule. Assume that the
function is positive over the given interval and that the subintervals
are of equal width. In Exercises 77– 80, use the program to
approximate the area of the region between the graph of the func-
tion and the -axis over the given interval, and complete the table.

77.

78.

79.

80.

85. Graphical Reasoning Consider the region bounded by the
graphs of and as
shown in the figure. To print an enlarged copy of the graph, go
to the website www.mathgraphs.com.

(a) Redraw the figure, and complete 
and shade the rectangles
representing the lower sum when

Find this lower sum.

(b) Redraw the figure, and complete
and shade the rectangles
representing the upper sum when

Find this upper sum.

(c) Redraw the figure, and complete
and shade the rectangles whose heights are determined by
the functional values at the midpoint of each subinterval
when Find this sum using the Midpoint Rule.n � 4.

n � 4.

n � 4.

x
1

2

2 3

4

4

6

8

y

f

y � 0,x � 4,x � 0,f �x� � 8x��x � 1),

�0, 2]f �x� � cos �x,

�1, 3�f �x� � tan�	x
8 	,

�2, 6�f �x� �
8

x2 � 1
,

�0, 4�f �x� � �x,

x

�0,
	

2�f �x� � sin x,�0,
	

4�f �x� � tan x,

�0, 4�f �x� � x2 � 4x,�0, 2�f �x� � x2 � 3,

x
n � 4

Area y 
n

i�1
f�xi 1 xi�1

2 ��x

h� y� � y3 � 1, 1 � y � 2g� y� � 4y2 � y3, 1 � y � 3

f � y� � 4y � y2, 1 � y � 2f � y� � y2, 0 � y � 5

g� y� �
1
2 y, 2 � y � 4f � y� � 4y, 0 � y � 2

y
y

��1, 0�y � x2 � x3,��1, 1�y � x2 � x3,

�0, 1�y � 2x � x3,[1, 3 �y � 27 � x3,

��2, 2�y � 4 � x2,�1, 4�y � 25 � x2,

�0, 3�y � x2 � 1,�0, 1�y � x2 � 2,

�2, 5�y � 3x � 2,�0, 1�y � �4x � 5,

x

lim
n→�

s�n� � lim
n→�

S�n� � 4.

S�n� � 
n

i�1
�1 � i �2

n	��
2
n	.

s�n� � 
n

i�1
�1 � �i � 1��2

n	��
2
n	.

1 < 1 � 1�2
n	 < .  .  . < 1 � �n � 1��2

n	 < 1 � n�2
n	.

n�1, 3�

x � 3.x � 1,y � 0,y � x,

lim
n→�

s�n� � lim
n→�

S�n� � 2.

4.2 Area 269

n 5 10 50 100

s�n�

S�n�

n 4 8 12 16 20

Approximate Area

n 5 10 50 100

s�n�

S�n�

Approximation In Exercises 81 and 82, determine which
value best approximates the area of the region between the 
-axis and the graph of the function over the given interval.

(Make your selection on the basis of a sketch of the region
and not by performing calculations.)

81.

(a) (b) 6 (c) 10 (d) 3 (e) 8

82.

(a) 3 (b) 1 (c) (d) 8 (e) 6

83. In your own words and using appropriate figures, describe
the methods of upper sums and lower sums in approximating
the area of a region.

84. Give the definition of the area of a region in the plane.

�2

�0, 4�f �x� � sin
	x
4

,

�2

�0, 2�f �x� � 4 � x2,

x

WRITING ABOUT CONCEPTS

www.mathgraphs.com
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n 4 8 20 100 200

s�n�

S�n�

M�n�

x 0 50 100 150 200 250 300

y 450 362 305 268 245 156 0

(d) Verify the following formulas for approximating the area of
the region using subintervals of equal width.

Lower sum:

Upper sum:

Midpoint Rule:

(e) Use a graphing utility and the formulas in part (d) to
complete the table.

(f ) Explain why increases and decreases for
increasing values of as shown in the table in part (e).

True or False? In Exercises 87 and 88, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

87. The sum of the first positive integers is 

88. If is continuous and nonnegative on then the limits as
of its lower sum and upper sum both exist and

are equal.

89. Writing Use the figure to write a short paragraph explaining
why the formula is valid for
all positive integers 

Figure for 89 Figure for 90

90. Graphical Reasoning Consider an -sided regular polygon
inscribed in a circle of radius Join the vertices of the polygon to
the center of the circle, forming congruent triangles (see figure).

(a) Determine the central angle in terms of 

(b) Show that the area of each triangle is 

(c) Let be the sum of the areas of the triangles. Find

91. Modeling Data The table lists the measurements of a lot
bounded by a stream and two straight roads that meet at right
angles, where and are measured in feet (see figure).

(a) Use the regression capabilities of a graphing utility to find
a model of the form 

(b) Use a graphing utility to plot the data and graph the model.

(c) Use the model in part (a) to estimate the area of the lot.

Figure for 91 Figure for 92

92. Building Blocks A child places cubic building blocks in a
row to form the base of a triangular design (see figure). Each
successive row contains two fewer blocks than the preceding
row. Find a formula for the number of blocks used in the
design. (Hint: The number of building blocks in the design
depends on whether is odd or even.)

93. Prove each formula by mathematical induction. (You may need
to review the method of proof by induction from a precalculus
text.)

(a) (b) 
n

i�1
i 3 �

n2�n � 1�2

4
n

i�1
2i � n�n � 1�

n

n

n is even.
x

Road

Road

Stream

50 100 150 200 250 300

450

360

270

180

90

y

y � ax3 � bx2 � cx � d.

yx

lim
n→�

An.
nAn

1
2r 2 sin .

n.

n
r.

n

θ

n.
1 � 2 � .  .  . � n �

1
2n�n � 1�

S�n�s�n�n→�
�a, b�,f

n�n � 1��2.n

n,
S�n�s�n�

M�n� � 
n

i�1
f ��i �

1
2	

4
n� �

4
n	

S�n� � 
n

i�1
f ��i� 4

n� �
4
n	

s�n� � 
n

i�1
f ��i � 1� 4

n��
4
n	

n

94. A dart, thrown at random, hits a square target. Assuming that
any two parts of the target of equal area are equally likely to
be hit, find the probability that the point hit is nearer to the
center than to any edge. Write your answer in the form

where and are positive integers.

This problem was composed by the Committee on the Putnam Prize Competition.
©The Mathematical Association of America. All rights reserved.

dc,b,a,�a�b � c��d,

PUTNAM EXAM CHALLENGE

86. Consider a function that is increasing on the interval
The interval is divided into 12 subintervals.

(a) What are the left endpoints of the first and last 
subintervals?

(b) What are the right endpoints of the first two 
subintervals?

(c) When using the right endpoints, will the rectangles lie
above or below the graph of Use a graph to
explain your answer.

(d) What can you conclude about the heights of the rectan-
gles if a function is constant on the given interval?

f �x�?

�1, 4��1, 4�.
f �x�

CAPSTONE
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4.3 Riemann Sums and Definite Integrals
■ Understand the definition of a Riemann sum.
■ Evaluate a definite integral using limits.
■ Evaluate a definite integral using properties of definite integrals.

Riemann Sums
In the definition of area given in Section 4.2, the partitions have subintervals of equal
width. This was done only for computational convenience. The following example
shows that it is not necessary to have subintervals of equal width.

EXAMPLE 1 A Partition with Subintervals of Unequal Widths

Consider the region bounded by the graph of and the axis for 
as shown in Figure 4.17. Evaluate the limit

where is the right endpoint of the partition given by and is the width
of the th interval.

Solution The width of the th interval is given by

So, the limit is

■

From Example 7 in Section 4.2, you know that the region shown in Figure 4.18
has an area of Because the square bounded by and has an
area of 1, you can conclude that the area of the region shown in Figure 4.17 has an
area of This agrees with the limit found in Example 1, even though that example
used a partition having subintervals of unequal widths. The reason this particular 
partition gave the proper area is that as increases, the width of the largest subinterval
approaches zero. This is a key feature of the development of definite integrals.

n

2
3.

0 � y � 10 � x � 11
3.

�
2
3

.
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4n3 � 3n2 � n
6n3
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n�n � 1�

2 �

� lim
n→�

1
n3 

n

i�1
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n
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2i � 1

n2
.

�
i2 � i2 � 2i � 1

n2

�xi �
i2

n2 �
�i � 1�2

n2

i
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�xici � i2�n2ci

lim
n→� 

n

i�1
f �ci� �xi

0 � x � 1,x-f �x� � �x

x

n2 n2 n2

n

n

n

1

1

1

2

22
. . .

. .
 .

1
(n − 1)2

n − 1

y f (x) = x

The subintervals do not have equal widths.
Figure 4.17

x
1

1 (1, 1)

(0, 0)

Area = 1
3

x = y2

y

The area of the region bounded by the graph
of and the -axis for 
is
Figure 4.18

1
3.

0 � y � 1yx � y2
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In the preceding section, the limit of a sum was used to define the area of a region
in the plane. Finding area by this means is only one of applications involving
the limit of a sum. A similar approach can be used to determine quantities as diverse
as arc lengths, average values, centroids, volumes, work, and surface areas. The
following definition is named after Georg Friedrich Bernhard Riemann. Although the
definite integral had been defined and used long before the time of Riemann, he
generalized the concept to cover a broader category of functions.

In the following definition of a Riemann sum, note that the function has no
restrictions other than being defined on the interval (In the preceding section,
the function was assumed to be continuous and nonnegative because we were dealing
with the area under a curve.)

The width of the largest subinterval of a partition is the norm of the partition
and is denoted by If every subinterval is of equal width, the partition is regular
and the norm is denoted by

For a general partition, the norm is related to the number of subintervals of in
the following way.

General partition

So, the number of subintervals in a partition approaches infinity as the norm of the
partition approaches 0. That is, implies that 

The converse of this statement is not true. For example, let be the partition of
the interval given by

As shown in Figure 4.19, for any positive value of the norm of the partition is 
So, letting approach infinity does not force to approach 0. In a regular partition,
however, the statements and are equivalent.n → ���� → 0

���n

1
2.�nn,

0  <
1
2n <

1
2n�1 < .  .  . <

1
8

<
1
4

<
1
2

< 1.

�0, 1�
�n

n → �.��� → 0

b � a
��� � n

�a, b�

���.
�

f
�a, b�.

f

many

DEFINITION OF RIEMANN SUM

Let be defined on the closed interval and let be a partition of 
given by 

where is the width of the th subinterval. If is point in the th 
subinterval then the sum

is called a Riemann sum of for the partition �.f

xi�1 � ci � xi
n

i�1
f �ci� �xi ,

�xi�1, xi�,
ianycii�xi

a � x0 < x1 < x2 < .  .  . < xn�1 < xn � b

�a, b���a, b�,f

NOTE The sums in Section 4.2 are examples of Riemann sums, but there are more general
Riemann sums than those covered there. ■

Regular partition��� � �x �
b � a

n
.

10

1
2n

1
8

1
4

1
2

1
2⏐⏐                                               Δ⏐⏐   =

does not imply that 
Figure 4.19

��� → 0.n →�

GEORG FRIEDRICH BERNHARD RIEMANN
(1826–1866)

German mathematician Riemann did his most
famous work in the areas of non-Euclidean
geometry, differential equations, and number
theory. It was Riemann’s results in physics
and mathematics that formed the structure
on which Einstein’s General Theory of Relativity
is based.
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Definite Integrals
To define the definite integral, consider the following limit.

To say that this limit exists means there exists a real number such that for each
there exists a so that for every partition with it follows that

regardless of the choice of in the th subinterval of each partition 

It is not a coincidence that the notation for definite integrals is similar to that used
for indefinite integrals. You will see why in the next section when the Fundamental
Theorem of Calculus is introduced. For now it is important to see that definite
integrals and indefinite integrals are different concepts. A definite integral is a
number, whereas an indefinite integral is a family of functions.

Though Riemann sums were defined for functions with very few restrictions, a
sufficient condition for a function to be integrable on is that it is continuous on

A proof of this theorem is beyond the scope of this text.�a, b�.
�a, b�f

�.ici

�L � 
n

i�1
f �ci� �xi� < �

��� < �� > 0� > 0
L

lim
���→0 

n

i�1
f �ci� �xi � L

DEFINITION OF DEFINITE INTEGRAL

If is defined on the closed interval and the limit of Riemann sums over
partitions

exists (as described above), then is said to be integrable on and the
limit is denoted by

The limit is called the definite integral of from to The number is the
lower limit of integration, and the number is the upper limit of integration.b

ab.af

lim
���→0 

n

i�1
f �ci� �xi � 
b

a

f �x� dx.

�a, b�f

lim
���→0 

n

i�1
f �ci� �xi

�
�a, b�f

THEOREM 4.4 CONTINUITY IMPLIES INTEGRABILITY

If a function is continuous on the closed interval then is integrable
on That is, exists.�b

a f�x� dx�a, b�.
f�a, b�,f

E X P L O R A T I O N

The Converse of Theorem 4.4 Is the converse of Theorem 4.4 true? That is,
if a function is integrable, does it have to be continuous? Explain your reasoning
and give examples.

Describe the relationships among continuity, differentiability, and
integrability. Which is the strongest condition? Which is the weakest? Which
conditions imply other conditions?

■ FOR FURTHER INFORMATION For
insight into the history of the definite
integral, see the article “The Evolution
of Integration” by A. Shenitzer and J.

in The American Mathematical
Monthly. To view this article, go to the
website www.matharticles.com.

Steprans

Later in this chapter,
you will learn convenient methods for
calculating for continuous 
functions. For now, you must use the
limit definition.

�b
a f �x� dx

STUDY TIP

www.matharticles.com
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EXAMPLE 2 Evaluating a Definite Integral as a Limit

Evaluate the definite integral 

Solution The function is integrable on the interval because it is
continuous on Moreover, the definition of integrability implies that any par-
tition whose norm approaches 0 can be used to determine the limit. For computational
convenience, define by subdividing into subintervals of equal width

Choosing as the right endpoint of each subinterval produces

So, the definite integral is given by

■

Because the definite integral in Example 2 is negative, it does not represent the
area of the region shown in Figure 4.20. Definite integrals can be positive, negative,
or zero. For a definite integral to be interpreted as an area (as defined in Section 4.2),
the function must be continuous and nonnegative on as stated in the following
theorem. The proof of this theorem is straightforward—you simply use the definition
of area given in Section 4.2, because it is a Riemann sum.

�a, b�,f

� �3.
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��12 � 9 �
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� lim
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n ��2n �
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 2��2 �
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i�1
f �ci� �x
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�2
2x dx � lim

���→0
 

n

i�1
f �ci� �xi

ci � a � i��x� � �2 �
3i
n

.

ci

�xi � �x �
b � a

n
�

3
n

.

n��2, 1��

��2, 1�.
��2, 1�f �x� � 2x


1

�2
 2x dx.

THEOREM 4.5 THE DEFINITE INTEGRAL AS THE AREA OF A REGION

If is continuous and nonnegative on the closed interval then the area
of the region bounded by the graph of the axis, and the vertical lines

and is given by

(See Figure 4.21.)

Area � 
b

a

f �x� dx.

x � bx � a
x-f,

�a, b�,f

x
1

2

1

−2

−3

−4

f (x) = 2x

y

Because the definite integral is negative, it
does not represent the area of the region.
Figure 4.20

a b

f

x

y

You can use a definite integral to find the
area of the region bounded by the graph of

the -axis, and 
Figure 4.21

x � b.x � a,xf,
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As an example of Theorem 4.5, consider the region bounded by the graph of

and the axis, as shown in Figure 4.22. Because is continuous and nonnegative on
the closed interval the area of the region is

A straightforward technique for evaluating a definite integral such as this will be
discussed in Section 4.4. For now, however, you can evaluate a definite integral in two
ways—you can use the limit definition you can check to see whether the definite
integral represents the area of a common geometric region such as a rectangle, triangle,
or semicircle.

EXAMPLE 3 Areas of Common Geometric Figures

Sketch the region corresponding to each definite integral. Then evaluate each integral
using a geometric formula.

a. b. c.

Solution A sketch of each region is shown in Figure 4.23.

a. This region is a rectangle of height 4 and width 2.

(Area of rectangle)

b. This region is a trapezoid with an altitude of 3 and parallel bases of lengths 2 and
5. The formula for the area of a trapezoid is 

(Area of trapezoid)

c. This region is a semicircle of radius 2. The formula for the area of a semicircle is

(Area of semicircle)

(a) (b) (c)
Figure 4.23 ■
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f (x) =     4 − x2
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f(x) = x + 2
y
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1 2 3 4

f(x) = 4
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1
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0
�x � 2� dx �

1
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� 4�2� � 8
3

1
 4 dx �


2

�2

�4 � x2 dx
3

0
�x � 2� dx
3

1
 4 dx
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Area � 
4

0
�4x � x2� dx.

�0, 4�,
fx-

f �x� � 4x � x2

x

4

3

2

1

1 2 3 4

f(x) = 4x − x2y

Figure 4.22
Area � �4

0 �4x � x2� dx

NOTE The variable of integration in 
a definite integral is sometimes called 
a dummy variable because it can be
replaced by any other variable without
changing the value of the integral. For
instance, the definite integrals

and

have the same value.


3

0
�t � 2� dt


3

0
�x � 2� dx



276 Chapter 4 Integration

Properties of Definite Integrals
The definition of the definite integral of on the interval specifies that 
Now, however, it is convenient to extend the definition to cover cases in which 
or Geometrically, the following two definitions seem reasonable. For instance,
it makes sense to define the area of a region of zero width and finite height to be 0.

EXAMPLE 4 Evaluating Definite Integrals

a. Because the sine function is defined at and the upper and lower limits of
integration are equal, you can write

b. The integral is the same as that given in Example 3(b) except that the
upper and lower limits are interchanged. Because the integral in Example 3(b) has
a value of you can write

■

In Figure 4.24, the larger region can be divided at into two subregions
whose intersection is a line segment. Because the line segment has zero area, it
follows that the area of the larger region is equal to the sum of the areas of the two
smaller regions.

EXAMPLE 5 Using the Additive Interval Property

Theorem 4.6

Area of a triangle

■� 1

�
1
2

�
1
2


1

�1
�x� dx � 
0

�1
�x dx � 
1

0
x dx

x � c


0

3
�x � 2� dx � �
3

0
�x � 2� dx � �

21
2

.

21
2 ,

�0
3 �x � 2� dx


	

	

 sin x dx � 0.

x � 	,

a > b.
a � b

a < b.�a, b�f

DEFINITIONS OF TWO SPECIAL DEFINITE INTEGRALS

1. If is defined at then we define 

2. If is integrable on then we define 
a

b

f �x� dx � �
b

a

f �x� dx.�a, b�,f


a

a

f �x� dx � 0.x � a,f

THEOREM 4.6 ADDITIVE INTERVAL PROPERTY

If is integrable on the three closed intervals determined by and then


b

a

f �x� dx � 
c

a

f �x� dx � 
b

c

f �x� dx.

c,b,a,f

∫

∫

∫c

b

b

a

a

c
+

f (x) dx

x
a c b

f

f (x) dx f (x) dx

y

Figure 4.24
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Because the definite integral is defined as the limit of a sum, it inherits the
properties of summation given at the top of page 260.

Note that Property 2 of Theorem 4.7 can be extended to cover any finite number of
functions. For example,

EXAMPLE 6 Evaluation of a Definite Integral

Evaluate using each of the following values.

Solution

■

If and are continuous on the closed interval and

for the following properties are true. First, the area of the region bounded
by the graph of and the axis (between and ) must be nonnegative. Second, this
area must be less than or equal to the area of the region bounded by the graph of and
the axis (between and ), as shown in Figure 4.25. These two properties are 
generalized in Theorem 4.8. (A proof of this theorem is given in Appendix A.)

bax-
g

bax-f
a � x � b,

0 � f �x� � g�x�

�a, b�gf

�
4
3

� ��26
3 	 � 4�4� � 3�2�

� �
3

1
x2 dx � 4
3

1
x dx � 3
3

1
dx


3

1
��x2 � 4x � 3� dx � 
3

1
��x2� dx � 
3

1
 4x dx � 
3

1
��3� dx


3

1
dx � 2
3

1
x dx � 4,
3

1
x2 dx �

26
3

,


3

1
��x2 � 4x � 3� dx


b

a

� f �x� � g�x� � h�x�� dx � 
b

a

f �x� dx � 
b

a

g�x� dx � 
b

a

h(x� dx.

x

g

a b

f

y

Figure 4.25


b

a
f �x� dx � 
b

a
g�x� dx

THEOREM 4.7 PROPERTIES OF DEFINITE INTEGRALS

If and are integrable on and is a constant, then the functions and
are integrable on and

1.

2. 
b

a

� f �x� ± g�x�� dx � 
b

a

f �x� dx ± 
b

a

g�x� dx.


b

a

kf �x� dx � k
b

a

f �x� dx

�a, b�,f ± g
kfk�a, b�gf
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In Exercises 1 and 2, use Example 1 as a model to evaluate the
limit

over the region bounded by the graphs of the equations.

1.

(Hint: Let )

2.

(Hint: Let )

In Exercises 3– 8, evaluate the definite integral by the limit
definition.

3. 4.

5. 6.

7. 8.

In Exercises 9–12, write the limit as a definite integral on the
interval where is any point in the th subinterval.

9.

10.

11.

12.

In Exercises 13–22, set up a definite integral that yields the area
of the region. (Do not evaluate the integral.)

13. 14.

15. 16.

17. 18.

x

y

−1 1

1

x

y

−2−4−6 2 4 6

5

10

15

f �x� �
4

x2 � 2
f �x� � 25 � x2

x

4

3

2

1

−1 1 2 3

y

x

8

6

4

2

−2−4 2 4

y

f �x� � x2f �x� � 4 � �x�

1 2 3 4 5−1−2

1

2

3

4

5

6

x

y

x
1 2 3 4 5

5

4

3

2

1

y

f �x� � 6 � 3xf �x� � 5

�1, 3�lim
���→0 

n

i�1
� 3

ci
2	�xi

�0, 3�lim
���→0 

n

i�1

�ci
2 � 4 �xi

�0, 4�lim
���→0 

n

i�1
 6ci �4 � ci �2 �xi

��1, 5�lim
���→0 

n

i�1
�3ci � 10� �xi

IntervalLimit

ici[a, b],


1

�2
�2x2 � 3� dx
2

1
�x2 � 1� dx


4

1
 4x2 dx
1

�1
x3 dx


3

�2
x dx
6

2
 8 dx

ci � i 3�n3.

x � 1x � 0,y � 0,f �x� � 3�x,

ci � 3i 2�n2.

x � 3x � 0,y � 0,f �x� � �x,

lim
n→� 

n

i�1
f �ci� �xi

4.3 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

THEOREM 4.8 PRESERVATION OF INEQUALITY

1. If is integrable and nonnegative on the closed interval then

2. If and are integrable on the closed interval and for
every in then


b

a

f �x� dx � 
b

a

g�x� dx.

�a, b�,x
f �x� ≤ g�x��a, b�gf

0 � 
b

a

f �x� dx.

�a, b�,f

www.CalcChat.com
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19. 20.

21. 22.

In Exercises 23–32, sketch the region whose area is given by the
definite integral. Then use a geometric formula to evaluate the
integral

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

In Exercises 33– 40, evaluate the integral using the following
values.

33. 34.

35. 36.

37. 38.

39. 40.

41. Given and evaluate

(a) (b)

(c) (d)

42. Given and evaluate

(a) (b)

(c) (d)

43. Given and evaluate

(a) (b)

(c) (d)

44. Given and evaluate

(a) (b)

(c) (d)

45. Use the table of values to find lower and upper estimates of
Assume that is a decreasing function.

46. Use the table of values to estimate Use three equal
subintervals and the (a) left endpoints, (b) right endpoints, and
(c) midpoints. If is an increasing function, how does each esti-
mate compare with the actual value? Explain your reasoning.

47. Think About It The graph of consists of line segments and
a semicircle, as shown in the figure. Evaluate each definite
integral by using geometric formulas.

(a) (b) (c)

(d) (e) (f) 
6

�4
� f �x� � 2� dx
6

�4
� f �x�� dx
6

�4
f �x� dx


2

�4
f �x� dx
6

2
f �x� dx
2

0
f �x� dx

x

(4, 2)

−4 −1 1 3 4 5 6

2

1

−1
(−4, −1)

y

f

f

f

�6
0 f �x� dx.

f�10
0 f �x� dx.


1

0
 3f �x� dx.
1

�1
 3f �x� dx.


1

0
f �x� dx � 
0

�1
f �x� dx.
0

�1
f �x� dx.


1

0
f �x� dx � 5,
1

�1
f �x� dx � 0


6

2
 3f �x� dx.
6

2
 2g�x� dx.


6

2
�g�x� � f �x�� dx.
6

2
� f �x� � g�x�� dx.


6

2
g�x� dx � �2,
6

2
f �x� dx � 10


6

3
�5f �x� dx.
3

3
f �x� dx.


3

6
f �x� dx.
6

0
f �x� dx.


6

3
f �x� dx � �1,
3

0
f �x� dx � 4


5

0
 3f �x� dx.
5

5
f �x� dx.


0

5
f �x� dx.
7

0
f �x� dx.


7

5
f �x� dx � 3,
5

0
f �x� dx � 10


4

2
�10 � 4x � 3x3� dx
4

2
�1

2 x3 � 3x � 2� dx


4

2
�x 3 � 4� dx
4

2
�x � 9� dx


4

2
25 dx
4

2
8x dx


2

2
x 3 dx
2

4
x dx


4

2
dx � 2
4

2
x dx � 6,
4

2
x 3 dx � 60,


r

�r

�r 2 � x2 dx
7

�7

�49 � x2 dx


a

�a

�a � �x�� dx
1

�1
�1 � �x�� dx


6

0
�6 � x� dx
2

0
�3x � 4� dx


4

0

x
2

dx
4

0
x dx


a

�a

 4 dx
3

0
 4 dx

�a > 0, r > 0�

x

4

3

2

1

21 3 4

y

x

4

3

2

1

42 6 8

y

f �y� � �y � 2�2g�y� � y3

x

1

π π
4 2

y

x

1

π π
4 2

y

f �x� � tan xf �x� � cos x

x 0 2 4 6 8 10

f �x� 32 24 12 �4 �20 �36

x 0 1 2 3 4 5 6

f �x� �6 0 8 18 30 50 80



48. Think About It The graph of consists of line segments, as
shown in the figure. Evaluate each definite integral by using
geometric formulas.

(a) (b)

(c) (d)

(e) (f)

49. Think About It Consider the function that is continuous on
the interval and for which 

Evaluate each integral.

(a) (b)

(c) ( is even.) (d) ( is odd.)

50. Think About It A function is defined below. Use geometric
formulas to find 

51. Think About It A function is defined below. Use geometric
formulas to find 

In Exercises 57–60, determine which value best approximates
the definite integral. Make your selection on the basis of a
sketch.

57.

(a) 5 (b) (c) 10 (d) 2 (e) 8

58.

(a) 4 (b) (c) 16 (d) (e)

59.

(a) 6 (b) (c) 4 (d)

60.

(a) (b) 9 (c) 27 (d) 3�3


9

0
�1 � �x� dx

5
4

1
2


1

0
 2 sin 	x dx

�62	4
3


1�2

0
 4 cos 	x dx

�3


4

0

�x dx

f �x� � �6,
�

1
2 x � 9,

x > 6
x � 6

�12
0 f �x� dx.

f

f �x� � �4,
x,

x < 4
x � 4

�8
0 f �x� dx.

f

f
5

�5
f �x� dxf
5

�5
f �x� dx


3

�2
f �x � 2� dx
5

0
� f �x� � 2� dx


5

0
f �x� dx � 4.

��5, 5�
f


10

4
f �x� dx
11

0
f �x� dx


11

5
f �x� dx
7

0
f �x� dx


4

3
3 f �x� dx
1

0
�f �x� dx

x

(4, 2)
(11, 1)

(8, −2)

(3, 2)

−1 1 2 3 4 5 6 8 10 11

−2

1

y

−3
−4

2
3
4

f

f
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In Exercises 53 and 54, use the figure to fill in the blank with
the symbol or

53. The interval is partitioned into subintervals of equal
width and is the left endpoint of the subinterval.

54. The interval is partitioned into subintervals of equal
width and is the right endpoint of the subinterval.

55. Determine whether the function is integrable
on the interval Explain.

56. Give an example of a function that is integrable on the
interval but not continuous on ��1, 1�.��1, 1�,

�3, 5�.
f �x� �

1
x � 4


5

1
f �x� dx�

n

i�1
f �xi � �x

ithxi�x,
n�1, 5�


5

1
f �x� dx�

n

i�1
f �xi � �x

ithxi�x,
n�1, 5�

x
1 2 3 4 5 6

6

5

4

3

2

1

y

�.<, >,

WRITING ABOUT CONCEPTS

52. Find possible values of and that make the statement
true. If possible, use a graph to support your answer. (There
may be more than one correct answer.)

(a)

(b)

(c)

(d) 
b

a

 cos x dx � 0


b

a

 sin x dx < 0


3

�3
f �x� dx � 
6

3
f �x� dx � 
b

a

f �x� dx � 
6

�1
f �x� dx


1

�2
f �x� dx � 
5

1
f �x� dx � 
b

a

f �x� dx

ba

CAPSTONE
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Programming Write a program for your graphing utility to
approximate a definite integral using the Riemann sum

where the subintervals are of equal width. The output should
give three approximations of the integral, where is the 
left-hand endpoint the midpoint and the right-hand
endpoint of each subinterval. In Exercises 61–64, use the
program to approximate the definite integral and complete the
table.

61. 62.

63. 64.

True or False? In Exercises 65–70, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

65.

66.

67. If the norm of a partition approaches zero, then the number of
subintervals approaches infinity.

68. If is increasing on then the minimum value of on
is

69. The value of must be positive.

70. The value of is 0.

71. Find the Riemann sum for over the interval
where and and

where and 

Figure for 71 Figure for 72

72. Find the Riemann sum for over the interval
where and
and where and

73. Prove that 

74. Prove that 

75. Think About It Determine whether the Dirichlet function

is integrable on the interval Explain.

76. Suppose the function is defined on as shown in the
figure.

Show that does not exist. Why doesn’t this contradict
Theorem 4.4?

77. Find the constants and that maximize the value of

Explain your reasoning.

78. Evaluate, if possible, the integral 

79. Determine

by using an appropriate Riemann sum.

lim
n→�

1
n3 �12 � 22 � 32 � .  .  . � n2�


2

0
�x� dx.


b

a

�1 � x2� dx.

ba

�1
0 f �x� dx

−0.5 0.5 1.0 1.5 2.0

1.0

2.0

3.0

4.0

5.0

y

x

f �x� � �0,
1
x
,

x � 0

0 < x � 1

�0, 1�,f

�0, 1�.

f �x� � �1,
0,

x is rational
x is irrational


b

a
x2 dx �

b3 � a3

3
.


b

a
x dx �

b2 � a2

2
.

c4 � 3	�2.
c3 � 2	�3,c2 � 	�3,c1 � 	�6,x4 � 2	,

x3 � 	,x2 � 	�3,x1 � 	�4,x0 � 0,�0, 2	�,
f �x� � sin x

−1.5

0.5

1.0

1.5

π
2

π
2

3

y

x

−2 2 4 6 8 10

20

40

60

80

100

x

y

c4 � 8.c3 � 5,c2 � 2,c1 � 1,
x4 � 8,x3 � 7,x2 � 3,x1 � 1,x0 � 0,�0, 8�,

f �x� � x2 � 3x

�2
2  sin �x2� dx

�b
a f �x� dx

f �a�.�a, b�
f �x��a, b�,f


b

a

f �x�g�x� dx � �
b

a

f �x� dx��
b

a

g�x� dx�


b

a

� f �x� � g�x�� dx � 
b

a

f �x� dx � 
b

a

g�x� dx


3

0
x sin x dx
	�2

0
 sin2 x dx


3

0

5
x2 � 1

dx
3

0
x�3 � x dx

R�n�
M�n�,L�n�,

ci


n

i�1
f �ci��xi

n 4 8 12 16 20

L�n�

M�n�

R�n�

80. For each continuous function let
and Find the

maximum value of over all such functions 

This problem was composed by the Committee on the Putnam Prize Competition.
©The Mathematical Association of America. All rights reserved.

f.I� f � � J� f �
J�x� � �1

0 x� f �x��2 dx.I� f � � �1
0 x2 f �x� dx

�0, 1� → R,f:

PUTNAM EXAM CHALLENGE



■ Evaluate a definite integral using the Fundamental Theorem of Calculus.
■ Understand and use the Mean Value Theorem for Integrals.
■ Find the average value of a function over a closed interval.
■ Understand and use the Second Fundamental Theorem of Calculus.
■ Understand and use the Net Change Theorem.

The Fundamental Theorem of Calculus
You have now been introduced to the two major branches of calculus: differential
calculus (introduced with the tangent line problem) and integral calculus (introduced
with the area problem). At this point, these two problems might seem unrelated—but
there is a very close connection. The connection was discovered independently by
Isaac Newton and Gottfried Leibniz and is stated in a theorem that is appropriately
called the Fundamental Theorem of Calculus.

Informally, the theorem states that differentiation and (definite) integration are
inverse operations, in the same sense that division and multiplication are inverse
operations. To see how Newton and Leibniz might have anticipated this relationship,
consider the approximations shown in Figure 4.26. The slope of the tangent line was
defined using the (the slope of the secant line). Similarly, the area of
a region under a curve was defined using the (the area of a rectangle).
So, at least in the primitive approximation stage, the operations of differentiation and
definite integration appear to have an inverse relationship in the same sense that
division and multiplication are inverse operations. The Fundamental Theorem of
Calculus states that the limit processes (used to define the derivative and definite
integral) preserve this inverse relationship.

(a) Differentiation (b) Definite integration
Differentiation and definite integration have an “inverse”relationship.
Figure 4.26

Δy

Area = ΔyΔx Area ≈ ΔyΔx

Area of
rectangle

Area of
region
under
curve

Δx

Δx Δx

Δy

Δy Δy

Secant
line

Tangent
line

Slope = Slope ≈

Δx

�y�xproduct
�y��xquotient
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4.4 The Fundamental Theorem of Calculus

THEOREM 4.9 THE FUNDAMENTAL THEOREM OF CALCULUS

If a function is continuous on the closed interval and is an antideriv-
ative of on the interval then


b

a

f �x� dx � F�b� � F�a�.

�a, b�,f
F�a, b�f

E X P L O R A T I O N

Integration and Antidifferentiation
Throughout this chapter, you have
been using the integral sign to 
denote an antiderivative (a family 
of functions) and a definite integral
(a number).

Antidifferentiation:

Definite integration:

The use of this same symbol for
both operations makes it appear
that they are related. In the early
work with calculus, however, it
was not known that the two 
operations were related. Do you
think the symbol was first
applied to antidifferentiation or to
definite integration? Explain your
reasoning. (Hint: The symbol was
first used by Leibniz and was
derived from the letter )S.

�


b

a

f �x� dx


 f �x� dx



The following guidelines can help you understand the use of the Fundamental
Theorem of Calculus.
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PROOF The key to the proof is in writing the difference in a convenient
form. Let be any partition of 

By pairwise subtraction and addition of like terms, you can write

By the Mean Value Theorem, you know that there exists a number in the th subin-
terval such that

Because you can let and obtain

This important equation tells you that by repeatedly applying the Mean Value
Theorem, you can always find a collection of ’s such that the 
is a Riemann sum of on for any partition. Theorem 4.4 guarantees that the limit
of Riemann sums over the partition with exists. So, taking the limit

produces

■F�b� � F�a� � 
b

a

f �x� dx.

�as ��� → 0�
��� → 0

�a, b�f
F�b� � F�a�constantci

F�b� � F�a� � 
n

i�1
f�ci� �xi .

� xi � xi � xi�1F��ci� � f �ci�,

F��ci� �
F�xi� � F�xi�1�

xi � xi�1
.

ici

� 
n

i�1
�F�xi� � F�xi�1��.

F�b� � F�a� � F�xn� � F�xn�1� � F�xn�1� � .  .  . � F�x1� � F�x1� � F�x0�

a � x0 < x1 < x2 < .  .  . < xn�1 < xn � b

�a, b�.�
F�b� � F�a�

GUIDELINES FOR USING THE FUNDAMENTAL THEOREM OF CALCULUS

1. Provided you can find an antiderivative of you now have a way to evaluate
a definite integral without having to use the limit of a sum.

2. When applying the Fundamental Theorem of Calculus, the following notation
is convenient.

For instance, to evaluate you can write

3. It is not necessary to include a constant of integration in the antiderivative
because

� F�b� � F�a�.
� �F�b� � C� � �F�a� � C�


b

a

f �x� dx � �F�x� � C�
b

a

C


3

1
x3 dx �

x4

4 �
3

1
�

34

4
�

14

4
�

81
4

�
1
4

� 20.

�3
1 x3 dx,

� F�b� � F�a�


b

a

f �x� dx � F�x��
b

a

f,
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EXAMPLE 1 Evaluating a Definite Integral

Evaluate each definite integral.

a. b. c.

Solution

a.

b.

c.

EXAMPLE 2 A Definite Integral Involving Absolute Value

Evaluate 

Solution Using Figure 4.27 and the definition of absolute value, you can rewrite the
integrand as shown.

From this, you can rewrite the integral in two parts.

EXAMPLE 3 Using the Fundamental Theorem to Find Area

Find the area of the region bounded by the graph of the -axis, and
the vertical lines and as shown in Figure 4.28.

Solution Note that on the interval 

Integrate between and 

Find antiderivative.

Apply Fundamental Theorem.

Simplify. ■�
10
3

� �16
3

� 6 � 4	 � �0 � 0 � 0�

� �2x3

3
�

3x2

2
� 2x�

2

0

x � 2.x � 0 Area � 
2

0
�2x2 � 3x � 2� dx

�0, 2�.y > 0

x � 2,x � 0
xy � 2x2 � 3x � 2,

�
5
2

� ��1
4

�
1
2	 � �0 � 0� � �4 � 2� � �1

4
�

1
2	

� ��x2 � x�
1�2

0
� �x2 � x�

2

1�2


2

0
�2x � 1�dx � 
1�2

0
��2x � 1� dx � 
2

1�2
�2x � 1� dx

�2x � 1� � ���2x � 1�,
2x � 1,

x < 1
2

x �
1
2


2

0
�2x � 1� dx.


	�4

0
 sec2 x dx � tan x�

	�4

0
� 1 � 0 � 1


4

1
 3�x dx � 3
4

1
x1�2 dx � 3�x3�2

3�2�
4

1
� 2�4�3�2 � 2�1�3�2 � 14


2

1
�x2 � 3� dx � �x3

3
� 3x�

2

1
� �8

3
� 6	 � �1

3
� 3	 � �

2
3


	�4

0
sec2 x dx
4

1
3�x dx
2

1
�x2 � 3� dx

x
−1 1 2

3

2

1

y = 2x − 1y = −(2x − 1)

y = ⏐2x − 1⏐y

The definite integral of on is 
Figure 4.27

5
2.�0, 2�y

x
1 2 3 4
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2

1

y = 2x2 − 3x + 2
y

The area of the region bounded by the graph
of the -axis, and is 
Figure 4.28
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The Mean Value Theorem for Integrals
In Section 4.2, you saw that the area of a region under a curve is greater than the area
of an inscribed rectangle and less than the area of a circumscribed rectangle. The
Mean Value Theorem for Integrals states that somewhere “between” the inscribed and
circumscribed rectangles there is a rectangle whose area is precisely equal to the area
of the region under the curve, as shown in Figure 4.29.
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THEOREM 4.10 MEAN VALUE THEOREM FOR INTEGRALS

If is continuous on the closed interval then there exists a number in
the closed interval such that


b

a

f �x� dx � f �c��b � a�.

�a, b�
c�a, b�,f

NOTE Notice that Theorem 4.10 does not specify how to determine It merely
guarantees the existence of at least one number in the interval. ■c

c.

PROOF

Case 1: If is constant on the interval the theorem is clearly valid because 
can be any point in 

Case 2: If is not constant on then, by the Extreme Value Theorem, you can
choose and to be the minimum and maximum values of on 
Because for all in you can apply Theorem 4.8 to write
the following.

See Figure 4.30.

From the third inequality, you can apply the Intermediate Value Theorem to conclude
that there exists some in such that

or

Inscribed rectangle Mean value rectangle Circumscribed rectangle
(less than actual area) (equal to actual area) (greater than actual area)

Figure 4.30
■


b

a
f �M� dx � f �M��b � a�
b

a
f �x� dx
b

a
f �m� dx � f �m��b � a�

f

a b

f (M)
f

a b

f

a b

f (m)

f �c��b � a� � 
b

a

f �x� dx.f �c� �
1

b � a 

b

a

f �x� dx

�a, b�c

f �M�1
b � a


b

a

f �x� dx �f �m� �

f �M��b � a��
b

a

f �x� dxf �m��b � a� �


b

a

f �M� dx�
b

a

f �x� dx
b

a

f �m� dx �

�a, b�,xf �m� � f �x� � f �M�
�a, b�.ff �M�f �m�

�a, b�,f

�a, b�.
c�a, b�,f

x

f (c)
f

a c b

y

Mean value rectangle:

Figure 4.29

f �c��b � a� � 
b

a
f �x� dx
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Average Value of a Function
The value of given in the Mean Value Theorem for Integrals is called the average
value of on the interval 

To see why the average value of is defined in this way, suppose that you 
partition into subintervals of equal width If is any point in
the th subinterval, the arithmetic average (or mean) of the function values at the ’s
is given by

Average of 

By multiplying and dividing by you can write the average as

Finally, taking the limit as produces the average value of on the interval
as given in the definition above.

This development of the average value of a function on an interval is only one
of many practical uses of definite integrals to represent summation processes. In
Chapter 7, you will study other applications, such as volume, arc length, centers of
mass, and work.

EXAMPLE 4 Finding the Average Value of a Function

Find the average value of on the interval 

Solution The average value is given by

(See Figure 4.32.) ■

�
1
3

�64 � 16 � �1 � 1�� �
48
3

� 16.

�
1
3 �x3 � x2�

4

1

1
b � a 


b

a

f �x� dx �
1

4 � 1 

4

1
�3x2 � 2x� dx

�1, 4�.f �x� � 3x2 � 2x

�a, b�,
fn →�

�
1

b � a 
n

i�1
f �ci� �x.

an �
1
n 

n

i�1
f �ci��b � a

b � a	 �
1

b � a 
n

i�1
f �ci��b � a

n 	
�b � a�,

f �c1�, .  .  . , f �cn�an �
1
n

� f �c1� � f �c2� � .  .  . � f �cn�� .

cii
ci�x � �b � a��n.n�a, b�

f

�a, b�.f
f �c�

NOTE Notice in Figure 4.31 that the area of the region under the graph of is equal to the
area of the rectangle whose height is the average value. ■

f

DEFINITION OF THE AVERAGE VALUE OF A FUNCTION ON AN INTERVAL

If is integrable on the closed interval then the average value of on
the interval is

1
b � a


b

a

f �x� dx.

f�a, b�,f

x

f

a b

Average value

y

Average value

Figure 4.31
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a
f �x� dx

x
1 2 3 4
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10 Average
value = 16

(4, 40)

(1, 1)

f(x) = 3x2 − 2x

y

Figure 4.32



EXAMPLE 5 The Speed of Sound

At different altitudes in Earth’s atmosphere, sound travels at different speeds. The
speed of sound (in meters per second) can be modeled by

where is the altitude in kilometers (see Figure 4.33). What is the average speed of
sound over the interval 

Solution Begin by integrating over the interval To do this, you can break
the integral into five parts.

By adding the values of the five integrals, you have

So, the average speed of sound from an altitude of 0 kilometers to an altitude of
80 kilometers is

Speed of sound depends on altitude.
Figure 4.33 ■
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0
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s�x� dx � 
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�3

2x � 254.5� dx � �3
4x2 � 254.5x�
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32
� 5688


32

22
s�x� dx � 
32
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�3

4x � 278.5� dx � �3
8x2 � 278.5x�
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22
� 2987.5
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11.5
s�x� dx � 
22
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�295� dx � �295x�
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0
s�x� dx � 
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0
��4x � 341� dx � ��2x2 � 341x�
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�0, 80�?
x

s�x� � �
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3
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3
2x � 404.5,

     0 � x < 11.5
     11.5 � x < 22
     22 � x < 32

32 � x < 50

50 � x � 80
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The first person to fly at a speed greater
than the speed of sound was Charles
Yeager. On October 14, 1947, Yeager was
clocked at 295.9 meters per second at an
altitude of 12.2 kilometers. If Yeager had
been flying at an altitude below 11.275
kilometers, this speed would not have
“broken the sound barrier.” The photo
above shows an F-14 Tomcat, a supersonic,
twin-engine strike fighter. Currently, 
the Tomcat can reach heights of 15.24
kilometers and speeds up to 2 mach
(707.78 meters per second).
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The Second Fundamental Theorem of Calculus
Earlier you saw that the definite integral of on the interval was defined using
the constant as the upper limit of integration and as the variable of integration.
However, a slightly different situation may arise in which the variable is used in the
upper limit of integration. To avoid the confusion of using in two different ways,
is temporarily used as the variable of integration. (Remember that the definite integral
is a function of its variable of integration.)

EXAMPLE 6 The Definite Integral as a Function

Evaluate the function

at

Solution You could evaluate five different definite integrals, one for each of the
given upper limits. However, it is much simpler to fix (as a constant) temporarily
to obtain

Now, using you can obtain the results shown in Figure 4.34.

■

You can think of the function as the area under the curve
from to For the area is 0 and For 
gives the accumulated area under the cosine curve on the entire interval

This interpretation of an integral as an is used often
in applications of integration.

functionaccumulation�0, 	�2�.
F�	�2� � 1

x � 	�2,F�0� � 0.x � 0,t � x.t � 0f �t� � cos t
accumulatingF�x�

F�x� � sin x,

� sin x.� sin x � sin 0
x

0
 cos t dt � sin t�

x

0

x

x � 0, 	�6, 	�4, 	�3, and 	�2.

F�x� � 
x

0
 cos t dt

F�x� � 
x

a

f �t� dt
b

a

f �x� dx
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is the area under the curve from 0 to 

Figure 4.34

x.f �t� � cos tF�x� � 
x

0
 cos t dt

E X P L O R A T I O N

Use a graphing utility to graph
the function

for Do you recognize
this graph? Explain.

0 � x � 	.

F�x� � 
x

0
 cos t dt



In Example 6, note that the derivative of is the original integrand (with only the
variable changed). That is,

This result is generalized in the following theorem, called the Second Fundamental
Theorem of Calculus.

d
dx

�F�x�� �
d
dx

�sin x� �
d
dx �


x

0
 cos t dt� � cos x.

F
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NOTE Using the area model for definite integrals, you can view the approximation

as saying that the area of the rectangle of height and width is approximately equal to
the area of the region lying between the graph of and the -axis on the interval as
shown in Figure 4.35. ■

�x, x � �x�,xf
�xf �x�

f �x� �x � 
x��x

x

f �t� dt

PROOF Begin by defining as

Then, by the definition of the derivative, you can write

From the Mean Value Theorem for Integrals you know there
exists a number in the interval such that the integral in the expression
above is equal to Moreover, because it follows that 
as So, you obtain

A similar argument can be made for ■�x < 0.

� f �x�.

� lim
�x→0

f �c�

F��x� � lim
�x→0 �

1
�x

f �c� �x�
�x → 0.

c → xx � c � x � �x,f �c� �x.
�x, x � �x�c

�assuming �x > 0�,

� lim
�x→0

1
�x �


x��x

x

f �t� dt�.

� lim
�x→0

1
�x �


x��x

a

f �t� dt � 
a

x

f �t� dt�

� lim
�x→0

1
�x �


x��x

a

f �t� dt � 
x

a

f �t� dt�

F��x� � lim
�x→0

F�x � �x� � F�x�
�x

F�x� � 
x

a

f �t� dt.

F

THEOREM 4.11 THE SECOND FUNDAMENTAL THEOREM OF CALCULUS

If is continuous on an open interval containing then, for every in the
interval,

d
dx �


x

a

f �t� dt� � f �x�.

xa,If

t
x x + Δx

f (x)

Δx

f (t)

Figure 4.35

f �x� �x � 
x��x

x
f �t� dt



Note that the Second Fundamental Theorem of Calculus tells you that if a func-
tion is continuous, you can be sure that it has an antiderivative. This antiderivative
need not, however, be an elementary function. (Recall the discussion of elementary
functions in Section P.3.)

EXAMPLE 7 Using the Second Fundamental Theorem of Calculus

Evaluate 

Solution Note that is continuous on the entire real line. So, using
the Second Fundamental Theorem of Calculus, you can write

■

The differentiation shown in Example 7 is a straightforward application of the
Second Fundamental Theorem of Calculus. The next example shows how this theorem
can be combined with the Chain Rule to find the derivative of a function.

EXAMPLE 8 Using the Second Fundamental Theorem of Calculus

Find the derivative of 

Solution Using you can apply the Second Fundamental Theorem of
Calculus with the Chain Rule as shown.

Chain Rule

Definition of 

Substitute for 

Substitute for 

Apply Second Fundamental Theorem of Calculus.

Rewrite as function of ■

Because the integrand in Example 8 is easily integrated, you can verify the
derivative as follows.

In this form, you can apply the Power Rule to verify that the derivative is the same as
that obtained in Example 8.

F��x� � �cos x3��3x2�

� �sin x3� � 1� sin x3 � sin
	

2
� sin t�

x3

	�2
F�x� � 
x3

	�2
 cos t dt

x.� �cos x3��3x2�
� �cos u��3x2�

x3.u�
d

du �

u

	�2
 cos t dt�du

dx

F�x�.
x3

	�2
cos t dt�

d
du�


x3

	�2
cos t dt�du

dx

dF
du

�
d
du

�F�x�� du
dx

F��x� �
dF
du

du
dx

u � x3,

F�x� � 
x3

	�2
 cos t dt.

d
dx �


x

0

�t2 � 1 dt� � �x2 � 1.

f �t� � �t2 � 1

d
dx �


x

0

�t2 � 1 dt�.
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Net Change Theorem
The Fundamental Theorem of Calculus (Theorem 4.9) states that if is continuous on
the closed interval and is an antiderivative of on then

But because this statement can be rewritten as

where the quantity represents the net change of F on the interval 

EXAMPLE 9 Using the Net Change Theorem

A chemical flows into a storage tank at a rate of liters per minute, where
Find the amount of the chemical that flows into the tank during the first

20 minutes.

Solution Let be the amount of the chemical in the tank at time Then 
represents the rate at which the chemical flows into the tank at time During the first
20 minutes, the amount that flows into the tank is

So, the amount that flows into the tank during the first 20 minutes is 4200 liters.
■

Another way to illustrate the Net Change Theorem is to examine the velocity of
a particle moving along a straight line where is the position at time Then its
velocity is and 

This definite integral represents the net change in position, or displacement, of the
particle.


b

a

v�t� dt � s�b� � s�a�.

v�t� � s��t�
t.s�t�

� 3600 � 600 � 4200.

� �180t �
3
2

t2�
20

0


20

0
c��t� dt � 
20

0
�180 � 3t� dt

t.
c��t�t.c�t�

0 � t � 60.
180 � 3t

�a, b�.F�b� � F�a)


b

a

F��x� dx � F�b� � F�a�

F��x) � f �x�,


b

a

f�x� dx � F�b� � F�a�.

�a, b�,fF�a, b�
f

THEOREM 4.12 THE NET CHANGE THEOREM

The definite integral of the rate of change of a quantity gives the total
change, or net change, in that quantity on the interval 

Net change of F
b

a

F��x� dx � F�b� � F�a�

�a, b�.
F��x�
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When calculating the total distance traveled by the particle, you must consider the
intervals where and the intervals where When the 
particle moves to the left, and when the particle moves to the right. To 
calculate the total distance traveled, integrate the absolute value of velocity So,
the displacement of a particle and the total distance traveled by a particle over 
can be written as

Displacement on 

Total distance traveled on 

(see Figure 4.36).

EXAMPLE 10 Solving a Particle Motion Problem

A particle is moving along a line so that its velocity is 
feet per second at time 

a. What is the displacement of the particle on the time interval 

b. What is the total distance traveled by the particle on the time interval 

Solution

a. By definition, you know that the displacement is

So, the particle moves feet to the right.

b. To find the total distance traveled, calculate Using Figure 4.37 
and the fact that can be factored as you can determine
that on and on So, the total distance traveled is

■�
71
6
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1
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1
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1
v�t� dt � 
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4
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29
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1
v�t� dt � 
5

1
�t3 � 10t2 � 29t � 20� dt
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a
�v�t�� dt � A1 � A2 � A3

[a, b] � 
b

a

v�t� dt � A1 � A2 � A3

�a, b�
�v�t��.

v�t� � 0,
v�t� � 0,v�t� � 0.v�t� � 0

t

v(t)

v

1 2 3 4 5

2

−2

4

6

8

Figure 4.37

t

A1

A2

A3

a

v(t)

b

v

and are the areas of the shaded
regions.
Figure 4.36

A3A2,A1,



Graphical Reasoning In Exercises 1– 4, use a graphing utility
to graph the integrand. Use the graph to determine whether the
definite integral is positive, negative, or zero.

1. 2.

3. 4.

In Exercises 5–26, evaluate the definite integral of the algebraic
function. Use a graphing utility to verify your result.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

In Exercises 27–34, evaluate the definite integral of the trigono-
metric function. Use a graphing utility to verify your result.

27. 28.

29. 30.

31.

32.

33.

34.

In Exercises 35–38, determine the area of the given region.

35. 36.

37. 38.

In Exercises 39– 44, find the area of the region bounded by the
graphs of the equations.

39.

40.

41.

42.

43. 44.

In Exercises 45–50, find the value(s) of guaranteed by the
Mean Value Theorem for Integrals for the function over the
given interval.

45. 46.

47. 48.

49.

50.

In Exercises 51–56, find the average value of the function over
the given interval and all values of in the interval for which the
function equals its average value.

51.

52.

53.

54.

55.

56. �0, 	�2�f �x� � cos x,

�0, 	�f �x� � sin x,

��1, 2]f �x� � 4x3 � 3x2,

�0, 1�f �x� � x3,

�1, 3�f �x� �
4�x2 � 1�

x2 ,

��3, 3�f �x� � 9 � x2,

x

��	�3, 	�3�f �x� � cos x,

��	�4, 	�4�f �x� � 2 sec2 x,

�0, 2�f �x� � x � 2�x,�4, 9�f �x� � �x,

�1, 3�f �x� �
9
x3,�0, 3�f �x� � x3,

c

y � 0y � 1 � x4,y � 0y � �x2 � 4x,

y � 0y � �3 � x��x,

y � 0x � 8,x � 0,y � 1 � 3�x,

y � 0x � 2,y � x3 � x,
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1 2
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1
� 3

x2 � 1	 dx


1

�1
�t3 � 9t� dt
1

0
�2t � 1�2 dt


7

1
�6x2 � 2x � 3� dx
1

�1
�t2 � 2� dt


5

2
��3v � 4� dv
0

�1
�2x � 1� dx


9

4
 5 dv
2

0
 6x dx


2

�2
x�2 � x dx
2

�2
x�x2 � 1 dx


	

0
 cos x dx
	

0

4
x2 � 1

dx
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4.4 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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57. Velocity The graph shows the velocity, in feet per second, of
a car accelerating from rest. Use the graph to estimate the
distance the car travels in 8 seconds.

Figure for 57 Figure for 58

58. Velocity The graph shows the velocity, in feet per second, of a
decelerating car after the driver applies the brakes. Use the graph
to estimate how far the car travels before it comes to a stop.

61. Force The force (in newtons) of a hydraulic cylinder in a
press is proportional to the square of where is the
distance (in meters) that the cylinder is extended in its cycle.
The domain of is and 

(a) Find as a function of 

(b) Find the average force exerted by the press over the 
interval 

62. Blood Flow The velocity of the flow of blood at a distance
from the central axis of an artery of radius is 

where is the constant of proportionality. Find the average rate
of flow of blood along a radius of the artery. (Use 0 and as
the limits of integration.)

63. Respiratory Cycle The volume in liters, of air in the lungs
during a five-second respiratory cycle is approximated by the
model where is the time
in seconds. Approximate the average volume of air in the lungs
during one cycle.

64. Average Sales A company fits a model to the monthly sales
data for a seasonal product. The model is

where is sales (in thousands) and is time in months.

(a) Use a graphing utility to graph for
Use the graph to explain why the average

value of is 0 over the interval.

(b) Use a graphing utility to graph and the line
in the same viewing window. Use the

graph and the result of part (a) to explain why is called
the trend line.

65. Modeling Data An experimental vehicle is tested on a
straight track. It starts from rest, and its velocity (in meters per
second) is recorded every 10 seconds for 1 minute (see table).

(a) Use a graphing utility to find a model of the form
for the data.

(b) Use a graphing utility to plot the data and graph the model.

(c) Use the Fundamental Theorem of Calculus to approximate
the distance traveled by the vehicle during the test.

In Exercises 67–72, find as a function of and evaluate it at
and

67. 68. F�x� � 
x

2
�t3 � 2t � 2� dtF�x� � 
x

0
�4t � 7� dt

x � 8.x � 5,x � 2,
xF

v � at3 � bt2 � ct � d

v

g
g�t� � t�4 � 1.8

S�t�
f �t�

0 � t � 24.
f �t� � 0.5 sin�	t�6�

tS

0 � t � 24S�t� �
t
4

� 1.8 � 0.5 sin�	 t
6 	,

tV � 0.1729t � 0.1522t2 � 0.0374t3,

V,

R
k

v � k�R2 � r 2�

Rr
v
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x.F
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59. The graph of is shown in the figure.

(a) Evaluate 

(b) Determine the average value of on the interval 

(c) Determine the answers to parts (a) and (b) if the graph
is translated two units upward.

60. If represents the rate of growth of a dog in pounds 
per year, what does represent? What does 
represent about the dog?

�6
2 r��t� dtr�t�

r��t�

�1, 7�.f

�7
1 f �x� dx.

x
1 2 3 4 5 6 7

1

2

3

4

y

f

f

WRITING ABOUT CONCEPTS

t 0 10 20 30 40 50 60

v 0 5 21 40 62 78 83

66. The graph of is shown in the figure. The shaded region 
has an area of 1.5, and Use this 

information to fill in the blanks.

(a)

(b)

(c)

(d)

(e)

(f) The average value of over the interval is �.�0, 6�f


6

0
�2 � f �x�� dx � �


2

0
�2 f �x� dx � �


6

0
� f �x�� dx � �


6

2
f �x� dx � �

x
2 3 4 5 6

A
B

y

f


2

0
f �x� dx � �

�6
0 f �x� dx � 3.5.A

f
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69. 70.

71. 72.

73. Let where is the function whose graph is
shown in the figure.

(a) Estimate and 

(b) Find the largest open interval on which is increasing. Find
the largest open interval on which is decreasing.

(c) Identify any extrema of 

(d) Sketch a rough graph of 

Figure for 73 Figure for 74

74. Let where is the function whose graph is
shown in the figure.

(a) Estimate and 

(b) Find the largest open interval on which is increasing. Find
the largest open interval on which is decreasing.

(c) Identify any extrema of 

(d) Sketch a rough graph of 

In Exercises 75– 80, (a) integrate to find as a function of and
(b) demonstrate the Second Fundamental Theorem of Calculus
by differentiating the result in part (a).

75. 76.

77. 78.

79. 80.

In Exercises 81–86, use the Second Fundamental Theorem of
Calculus to find 

81. 82.

83. 84.

85. 86.

In Exercises 87–92, find 

87. 88.

89. 90.

91. 92.

93. Graphical Analysis Sketch an approximate graph of on the
interval where Identify the 
-coordinate of an extremum of To print an enlarged copy of

the graph, go to the website www.mathgraphs.com.

94. Use the graph of the function shown in the figure and the 
function defined by 

(a) Complete the table.

(b) Plot the points from the table in part (a) and graph 

(c) Where does have its minimum? Explain.

(d) Where does have a maximum? Explain.

(e) On what interval does increase at the greatest rate?
Explain.

(f) Identify the zeros of 

95. Cost The total cost (in dollars) of purchasing and maintain-
ing a piece of equipment for years is

(a) Perform the integration to write as a function of 

(b) Find and 

96. Area The area between the graph of the function
and the axis over the interval is

(a) Find the horizontal asymptote of the graph of 

(b) Integrate to find as a function of Does the graph of 
have a horizontal asymptote? Explain.

Ax.A

g.

A�x� � 
x

1
�4 �

4
t2	 dt.

�1, x�t-4 � 4�t 2g�t� �
A

C�10�.C�1�, C�5�,
x.C

C�x� � 5000�25 � 3
x

0
t1�4 dt	.

x
C

g.

g

g

g

g.

t

4

2

−2

−4

2 4 6 8 10

f

y

g�x� � �x
0 f �t� dt.g

f

t

f

42

2

1

−2

−1

y

g.x
g�x� � �x

0 f �t� dt.0 � x � 4,
g

F�x� � 
x2

0
sin 2 dF�x� � 
x3

0
sin t2 dt

F�x� � 
x2

2

1
t 3 dtF�x� � 
sin x

0

�t dt

F�x� � 
x

�x

t3 dtF�x� � 
x�2

x

�4t � 1� dt

F��x�.

F�x� � 
x

0
 sec3 t dtF�x� � 
x

0
t cos t dt

F�x� � 
x

1

4�t dtF�x� � 
x

�1

�t 4 � 1 dt

F�x� � 
x

1

t2

t2 � 1
dtF�x� � 
x

�2
�t2 � 2t� dt

F��x�.

F�x� � 
x

	�3
 sec t tan t dtF�x� � 
x

	�4
 sec2 t dt

F�x� � 
x

4

�t dtF�x� � 
x

8

3�t dt

F�x� � 
x

0
t�t2 � 1� dtF�x� � 
x

0
�t � 2� dt
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g
g
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v2 dv
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In Exercises 97–102, the velocity function, in feet per second, is
given for a particle moving along a straight line. Find (a) the
displacement and (b) the total distance that the particle travels
over the given interval.

97.

98.

99.

100.

101. 102.

103. A particle is moving along the -axis. The position of the par-
ticle at time is given by 

Find the total distance the particle travels in 
5 units of time.

104. Repeat Exercise 103 for the position function given by

105. Water Flow Water flows from a storage tank at a rate of
liters per minute. Find the amount of water that

flows out of the tank during the first 18 minutes.

106. Oil Leak At 1:00 P.M., oil begins leaking from a tank at a
rate of gallons per hour.

(a) How much oil is lost from 1:00 P.M. to 4:00 P.M.?

(b) How much oil is lost from 4:00 P.M. to 7:00 P.M.?

(c) Compare your answers from parts (a) and (b). What do
you notice?

In Exercises 107–110, describe why the statement is incorrect.

107.

108.

109.

110.

111. Buffon’s Needle Experiment A horizontal plane is ruled
with parallel lines 2 inches apart. A two-inch needle is tossed
randomly onto the plane. The probability that the needle will
touch a line is

where is the acute angle between the needle and any one of
the parallel lines. Find this probability.

112. Prove that 

True or False? In Exercises 113 and 114, determine whether
the statement is true or false. If it is false, explain why or give
an example that shows it is false.

113. If on the interval then 

114. If is continuous on then is integrable on 

115. Show that the function

is constant for 

116. Find the function and all values of such that

117. Let where is continuous for all 

real Find (a) (b) (c) and (d) G��0�.G� �x�,G��0�,G�0�,t.

fG�x� � 
x

0
�s
s

0
f �t�dt� ds,


x

c

f �t� dt � x2 � x � 2.

cf �x)

x > 0.

f �x� � 
1�x

0

1
t 2 � 1

dt � 
x

0

1
t 2 � 1

dt

�a, b�.f�a, b�,f

G�b� � G�a�.
F�b� � F�a� ��a, b�,F��x� � G��x�

d
dx �


v�x�

u�x�
f �t� dt� � f �v�x��v��x� � f �u�x��u��x�.

θ



P �
2
	 
	�2

0
 sin  d


3	�2

	�2
 csc x cot x dx � ��csc x�3	�2

	�2 � 2


3	�4

	�4
 sec2 x dx � �tan x�3	�4

	�4 � �2


1

�2

2
x3 dx � ��

1
x2�

1

�2
� �

3
4


1

�1
x�2 dx � ��x�1� 1

�1 � ��1� � 1 � �2

4 � 0.75t

500 � 5t

0 � t � 5.x�t� � �t � 1��t � 3�2,

0 � t � 5.
x�t� � t3 � 6t2 � 9t � 2,t

x

0 � t � 3	v�t� � cos t,1 � t � 4v�t� �
1
�t

,

0 � t � 5v�t� � t3 � 8t2 � 15t,

1 � t � 7v�t� � t3 � 10t2 � 27t � 18,

1 � t � 5v�t� � t2 � t � 12,

0 � t � 3v�t� � 5t � 7,
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Use a graphing utility to graph the function on the
interval Let be the following function of 

(a) Complete the table. Explain why the values of are increasing.

(b) Use the integration capabilities of a graphing utility to 
graph

(c) Use the differentiation capabilities of a graphing utility to graph
How is this graph related to the graph in part (b)?

(d) Verify that the derivative of is 
Graph and write a short paragraph about how this graph is
related to those in parts (b) and (c).

y
sin2 t.y � �1�2�t � �sin 2t��4

F��x�.

F.

F

F�x� � 
 x

0
sin2 t dt

x.F�x�0 � t � 	.
y1 � sin2 t

Demonstrating the Fundamental Theorem

S E C T I O N  P R O J E C T

x 0 	�6 	�3 	�2 2	�3 5	�6 	

F�x�
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4.5 Integration by Substitution
■ Use pattern recognition to find an indefinite integral.
■ Use a change of variables to find an indefinite integral.
■ Use the General Power Rule for Integration to find an indefinite integral.
■ Use a change of variables to evaluate a definite integral.
■ Evaluate a definite integral involving an even or odd function.

Pattern Recognition
In this section you will study techniques for integrating composite functions. The
discussion is split into two parts—pattern recognition and change of variables. Both
techniques involve a -substitution. With pattern recognition you perform the
substitution mentally, and with change of variables you write the substitution steps.

The role of substitution in integration is comparable to the role of the Chain Rule
in differentiation. Recall that for differentiable functions given by and

the Chain Rule states that

From the definition of an antiderivative, it follows that

These results are summarized in the following theorem.

Examples 1 and 2 show how to apply Theorem 4.13 directly, by recognizing the
presence of and Note that the composite function in the integrand has an
outside function and an inside function Moreover, the derivative is present as
a factor of the integrand.


f�g�x��g��x� dx � F�g�x�� � C

g��x�g.f
g��x�.f�g�x��


F��g�x��g��x� dx � F�g�x�� � C.

d
dx

�F�g�x��� � F��g�x��g��x�.

u � g�x�,
y � F�u�

u

THEOREM 4.13 ANTIDIFFERENTIATION OF A COMPOSITE FUNCTION

Let be a function whose range is an interval and let be a function that is
continuous on If is differentiable on its domain and is an antiderivative
of on then

Letting gives and


f�u� du � F�u� � C.

du � g��x� dxu � g�x�


f�g�x��g��x� dx � F�g�x�� � C.

I,f
FgI.
fI,gNOTE The statement of Theorem 4.13

doesn’t tell how to distinguish between
and in the integrand. As you

become more experienced at integration,
your skill in doing this will increase. Of
course, part of the key is familiarity with
derivatives.

g��x�f �g�x��

Inside function Derivative of
inside function

Outside function



EXAMPLE 1 Recognizing the Pattern

Find

Solution Letting you obtain

and

From this, you can recognize that the integrand follows the pattern. Using
the Power Rule for Integration and Theorem 4.13, you can write

Try using the Chain Rule to check that the derivative of is the
integrand of the original integral.

EXAMPLE 2 Recognizing the Pattern

Find

Solution Letting you obtain

and

From this, you can recognize that the integrand follows the pattern. Using
the Cosine Rule for Integration and Theorem 4.13, you can write

You can check this by differentiating to obtain the original integrand.
■

sin 5x � C


�cos �5x���5� dx � sin 5x � C.

g��x�f �g�x��

f�g�x��g��x�

f�g�x�� � f �5x� � cos 5x.

g��x� � 5

g�x� � 5x,


5 cos 5x dx.

f �g�x��g��x�

1
3�x2 � 1)3 � C


�x2 � 1�2�2x� dx �
1
3

�x2 � 1�3 � C.

g��x�f �g�x��

f�g�x��g��x�

f�g�x�� � f�x2 � 1� � �x2 � 1�2.

g��x� � 2x

g�x� � x2 � 1,


�x2 � 1�2�2x� dx.

f �g�x��g��x�
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E X P L O R A T I O N

Recognizing Patterns The integrand in each of the following integrals fits
the pattern Identify the pattern and use the result to evaluate the
integral.

a. b. c.

The next three integrals are similar to the first three. Show how you can 
multiply and divide by a constant to evaluate these integrals.

d. e. f. 
2 sec2 x(tan x � 3� dx
x2�x3 � 1 dx
x�x2 � 1�4 dx


 sec2 x�tan x � 3� dx
3x2�x3 � 1 dx
2x�x2 � 1�4 dx

f�g�x��g��x�.

Try using
a computer algebra system, such
as Maple, Mathematica, or the TI-89,
to solve the integrals given in Examples
1 and 2. Do you obtain the same 
antiderivatives that are listed in the
examples?

TECHNOLOGY



The integrands in Examples 1 and 2 fit the pattern exactly—you only
had to recognize the pattern. You can extend this technique considerably with the
Constant Multiple Rule

Many integrands contain the essential part (the variable part) of but are missing
a constant multiple. In such cases, you can multiply and divide by the necessary
constant multiple, as shown in Example 3.

EXAMPLE 3 Multiplying and Dividing by a Constant

Find

Solution This is similar to the integral given in Example 1, except that the integrand
is missing a factor of 2. Recognizing that is the derivative of you can let

and supply the as follows.

Multiply and divide by 2.

Constant Multiple Rule

Integrate.

Simplify. ■

In practice, most people would not write as many steps as are shown in Example 3.
For instance, you could evaluate the integral by simply writing

�
1
6

�x2 � 1�3 � C.

�
1
2�

�x2 � 1�3

3 � � C


x�x2 � 1�2 dx �
1
2 
�x2 � 1�2 2x dx

�
1
6

�x2 � 1�3 � C

�
1
2�

�x2 � 1�3

3 � � C

�
1
2
�x2 � 1�2 �2x� dx


x�x2 � 1�2 dx � 
�x2 � 1�2 �1
2	�2x� dx

2xg�x� � x2 � 1
x2 � 1,2x


x�x2 � 1�2 dx.

g��x�

f�g�x��g��x�
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kf�x� dx � k
f�x� dx.

NOTE Be sure you see that the Constant Multiple Rule applies only to constants. You cannot
multiply and divide by a variable and then move the variable outside the integral sign. For
instance,

After all, if it were legitimate to move variable quantities outside the integral sign, you could
move the entire integrand out and simplify the whole process. But the result would be incorrect.

■


�x2 � 1�2 dx �
1
2x 
�x2 � 1�2 �2x� dx.

g��x�f �g�x��



Change of Variables
With a formal change of variables, you completely rewrite the integral in terms of 
and (or any other convenient variable). Although this procedure can involve more
written steps than the pattern recognition illustrated in Examples 1 to 3, it is useful for
complicated integrands. The change of variables technique uses the Leibniz notation
for the differential. That is, if then and the integral in
Theorem 4.13 takes the form

EXAMPLE 4 Change of Variables

Find

Solution First, let be the inner function, Then calculate the differential
to be Now, using and substitute to obtain

Integral in terms of 

Constant Multiple Rule

Antiderivative in terms of 

Simplify.

Antiderivative in terms of 

EXAMPLE 5 Change of Variables

Find

Solution As in the previous example, let and obtain 
Because the integrand contains a factor of you must also solve for in terms of 
as shown.

Solve for in terms of 

Now, using substitution, you obtain

■�
1

10
�2x � 1�5�2 �

1
6

�2x � 1�3�2 � C.

�
1
4 �

u5�2

5�2
�

u3�2

3�2	 � C

�
1
4
�u3�2 � u1�2� du


x�2x � 1 dx � 
�u � 1
2 	 u1�2 �du

2 	

u.xx � �u � 1��2u � 2x � 1

u,xx,
dx � du�2.u � 2x � 1


x�2x � 1 dx.

x�
1
3

�2x � 1�3�2 � C.

�
1
3

u3�2 � C

u�
1
2 �

u3�2

3�2	 � C

�
1
2 
u1�2 du

u
�2x � 1 dx � 
�u �du
2 	

dx � du�2,�2x � 1 � �udu � 2 dx.du
u � 2x � 1.u


�2x � 1 dx.

du � g��x� dx,u � g�x�,

du
u
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f�g�x��g��x� dx � 
f�u� du � F�u� � C.

Because integration is 
usually more difficult than differentiation,
you should always check your answer to
an integration problem by differentiating.
For instance, in Example 4 you should
differentiate to verify
that you obtain the original integrand.

1
3�2x � 1�3�2 � C

STUDY TIP



To complete the change of variables in Example 5, you solved for in terms of
Sometimes this is very difficult. Fortunately it is not always necessary, as shown in

the next example.

EXAMPLE 6 Change of Variables

Find

Solution Because you can let Then

Now, because is part of the original integral, you can write

Substituting and in the original integral yields

You can check this by differentiating.

Because differentiation produces the original integrand, you know that you have
obtained the correct antiderivative. ■

The steps used for integration by substitution are summarized in the following
guidelines.

� sin2 3x cos 3x

d
dx �

1
9

 sin3 3x� � �1
9	�3��sin 3x�2�cos 3x��3�

�
1
9

 sin3 3x � C.

�
1
3 �

u3

3 	 � C

�
1
3
u2 du


sin2 3x cos 3x dx � 
u2 du
3

du�3u

du
3

� cos 3x dx.

cos 3x dx

du � �cos 3x��3� dx.

u � sin 3x.sin2 3x � �sin 3x�2,


sin2 3x cos 3x dx.

u.
x
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GUIDELINES FOR MAKING A CHANGE OF VARIABLES

1. Choose a substitution Usually, it is best to choose the part of
a composite function, such as a quantity raised to a power.

2. Compute

3. Rewrite the integral in terms of the variable 

4. Find the resulting integral in terms of 

5. Replace by to obtain an antiderivative in terms of 

6. Check your answer by differentiating.

x.g�x�u

u.

u.

du � g��x� dx.

inneru � g�x�.

When making a change 
of variables, be sure that your answer is
written using the same variables as in 
the original integrand. For instance, in
Example 6, you should not leave your
answer as

but rather, replace by sin 3x.u

1
9 u3 � C

STUDY TIP
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The General Power Rule for Integration
One of the most common substitutions involves quantities in the integrand that are
raised to a power. Because of the importance of this type of substitution, it is given a
special name—the General Power Rule for Integration. A proof of this rule follows
directly from the (simple) Power Rule for Integration, together with Theorem 4.13.

EXAMPLE 7 Substitution and the General Power Rule

a.

b.

c.

d.

e. ■

Some integrals whose integrands involve quantities raised to powers cannot be
found by the General Power Rule. Consider the two integrals

and

The substitution works in the first integral but not in the second. In the
second, the substitution fails because the integrand lacks the factor needed for 
Fortunately, for this particular integral, you can expand the integrand as

and use the (simple) Power Rule to integrate each term.�x2 � 1�2 � x4 � 2x2 � 1

du.x
u � x2 � 1


�x2 � 1�2 dx.
x�x2 � 1�2 dx


cos2 x sin x dx � �
�cos x�2 ��sin x� dx � �
�cos x�3

3
� C

u3�3duu2


 �4x
�1 � 2x2�2 dx � 
�1 � 2x2��2 ��4x� dx �

�1 � 2x2��1

�1
� C � �

1
1 � 2x2 � C

u�1���1�duu�2


3x2�x3 � 2 dx � 
�x3 � 2�1�2�3x2� dx �
�x3 � 2�3�2

3�2
� C �

2
3

�x3 � 2�3�2 � C

u3�2��3�2�duu1�2


�2x � 1��x2 � x� dx � 
�x2 � x�1 �2x � 1� dx �
�x2 � x�2

2
� C

u2�2duu1


3�3x � 1�4 dx � 
�3x � 1�4�3� dx �
�3x � 1�5

5
� C

u5�5duu4

u-

THEOREM 4.14 THE GENERAL POWER RULE FOR INTEGRATION

If is a differentiable function of then

Equivalently, if then

n � �1.
un du �
un�1

n � 1
� C,

u � g�x�,

n � �1.
�g�x��ng��x� dx �
�g�x��n�1

n � 1
� C,

x,g

E X P L O R A T I O N

Suppose you were asked to find
one of the following integrals.
Which one would you choose?
Explain your reasoning.

a. or

b. or


tan�3x� dx


tan�3x� sec2�3x� dx


x2�x3 � 1 dx


�x3 � 1 dx



Change of Variables for Definite Integrals
When using substitution with a definite integral, it is often convenient to determine
the limits of integration for the variable rather than to convert the antiderivative back
to the variable and evaluate at the original limits. This change of variables is stated
explicitly in the next theorem. The proof follows from Theorem 4.13 combined with
the Fundamental Theorem of Calculus.

EXAMPLE 8 Change of Variables

Evaluate 

Solution To evaluate this integral, let Then, you obtain

Before substituting, determine the new upper and lower limits of integration.

When When 

Now, you can substitute to obtain

Integration limits for 

Integration limits for 

Try rewriting the antiderivative in terms of the variable and evaluate the
definite integral at the original limits of integration, as shown.

Notice that you obtain the same result. ■

�
1
2�4 �

1
4	 �

15
8

1
2�

u4

4 �
2

1
�

1
2�

�x2 � 1�4

4 �
1

0

x1
2�u4�4�

�
15
8

.

�
1
2 �4 �

1
4	

�
1
2�

u4

4 �
2

1

u�
1
2


2

1
u3 du

x
1

0
x�x2 � 1�3 dx �

1
2 


1

0
�x2 � 1�3�2x� dx

u � 12 � 1 � 2.x � 1,u � 02 � 1 � 1.x � 0,

Upper Limit                                    Lower Limit                                   

u � x2 � 1 ⇒ du � 2x dx.

u � x2 � 1.


1

0
x�x2 � 1�3 dx.

x
u

u-
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THEOREM 4.15 CHANGE OF VARIABLES FOR DEFINITE INTEGRALS

If the function has a continuous derivative on the closed interval
and is continuous on the range of then


b

a

f�g�x��g��x� dx � 
g�b�

g�a�
f�u� du.

g,f�a, b�
u � g�x�



EXAMPLE 9 Change of Variables

Evaluate 

Solution To evaluate this integral, let Then, you obtain

Differentiate each side.

Before substituting, determine the new upper and lower limits of integration.

When When 

Now, substitute to obtain

■

Geometrically, you can interpret the equation

to mean that the two regions shown in Figures 4.38 and 4.39 have the 
area.

When evaluating definite integrals by substitution, it is possible for the upper
limit of integration of the variable form to be smaller than the lower limit. If this
happens, don’t rearrange the limits. Simply evaluate as usual. For example, after
substituting in the integral

you obtain when and when So,
the correct variable form of this integral is

�2
0

1
�1 � u2�2u2 du.

u-
x � 0.u � �1 � 0 � 1x � 1,u � �1 � 1 � 0


1

0
x2�1 � x�1�2 dx

u � �1 � x

u-

samedifferent


5

1

x
�2x � 1

dx � 
3

1

u2 � 1
2

du

�
16
3

.

�
1
2 �9 � 3 �

1
3

� 1	
�

1
2�

u3

3
� u�

3

1

�
1
2 


3

1
�u2 � 1� du


5

1

x
�2x � 1

dx � 
3

1

1
u �

u2 � 1
2 	 u du

u � �10 � 1 � 3.x � 5,u � �2 � 1 � 1.x � 1,

Upper LimitLower Limit                                       

u du � dx.

u2 � 1
2

� x

u2 � 1 � 2x

u2 � 2x � 1

u � �2x � 1.

A � 
5

1

x
�2x � 1

dx.
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u

f(u)
f(u) =

(1, 1)

(3, 5)

−1 1 2 3 4 5

5

4

3

2

1

2
u2 + 1

The region after substitution has an area 
of
Figure 4.39

16
3 .

x

y = x
2x − 1

5, 5
3( )(1, 1)

−1 1 2 3 4 5

5

4

3

2

1

y

The region before substitution has an area 
of
Figure 4.38

16
3 .



Integration of Even and Odd Functions
Even with a change of variables, integration can be difficult. Occasionally, you can
simplify the evaluation of a definite integral over an interval that is symmetric about
the axis or about the origin by recognizing the integrand to be an even or odd 
function (see Figure 4.40).

EXAMPLE 10 Integration of an Odd Function

Evaluate 

Solution Letting produces

So, is an odd function, and because is symmetric about the origin over
you can apply Theorem 4.16 to conclude that

■
	�2

�	�2
�sin3 x cos x � sin x cos x� dx � 0.

��	�2, 	�2�,
ff

� �sin3 x cos x � sin x cos x � �f�x�.
f��x� � sin3��x� cos��x� � sin��x� cos��x�

f�x� � sin3 x cos x � sin x cos x


	�2

�	�2
�sin3 x cos x � sin x cos x� dx.

y-
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PROOF Because is even, you know that Using Theorem 4.13 with the
substitution produces

Finally, using Theorem 4.6, you obtain

This proves the first property. The proof of the second property is left to you (see
Exercise 137). ■

� 
a

0
f�x� dx � 
a

0
f�x� dx � 2 
a

0
f�x� dx.


a

�a

f�x� dx � 
0

�a

f�x� dx � 
a

0
f�x� dx


0

�a

f�x� dx � 
0

a

f��u���du� � �
0

a

f �u� du � 
a

0
f �u� du � 
a

0
f �x� dx.

u � �x
f�x� � f��x�.f

NOTE From Figure 4.41 you can see that the two regions on either side of the axis have the
same area. However, because one lies below the axis and one lies above it, integration
produces a cancellation effect. (More will be said about this in Section 7.1.) ■

x-
y-

−a a
x

y

Even function

−a a
x

y

Odd function
Figure 4.40

x

y

1

−1

π
4

−

f (x) = sin3 x  cos x + sin x cos x

π
4

π
2

Because is an odd function,

Figure 4.41


	�2

�	�2
f �x� dx � 0.

f

THEOREM 4.16 INTEGRATION OF EVEN AND ODD FUNCTIONS

Let be integrable on the closed interval 

1. If is an function, then 

2. If is an function, then 
a

�a

f�x� dx � 0.oddf


a

�a

f�x� dx � 2 
a

0
f�x� dx.evenf

��a, a�.f



In Exercises 1–6, complete the table by identifying and for
the integral.

1.

2.

3.

4.

5.

6.

In Exercises 7–10, determine whether it is necessary to use sub-
stitution to evaluate the integral. (Do not evaluate the integral.)

7. 8.

9. 10.

In Exercises 11–38, find the indefinite integral and check the
result by differentiation.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30

31. 32.

33. 34.

35. 36.

37. 38.

In Exercises 39–42, solve the differential equation.

39. 40.

41. 42.

Slope Fields In Exercises 43–46, a differential equation, a
point, and a slope field are given. A consists of line
segments with slopes given by the differential equation. These line
segments give a visual perspective of the directions of the
solutions of the differential equation. (a) Sketch two approximate
solutions of the differential equation on the slope field, one of
which passes through the given point. (To print an enlarged copy
of the graph, go to the website www.mathgraphs.com.) (b) Use
integration to find the particular solution of the differential
equation and use a graphing utility to graph the solution.
Compare the result with the sketches in part (a).

43. 44.

45. 46.

x

y

3

−3

3−3
x

y

4

−4

4−4

�0, �1��0, 1�

dy
dx

� �2 sec�2x� tan�2x�dy
dx

� x cos x2

x

y

2

−2

2−2
x

y

3

−1

2−2

�1, 0��2, 2�

dy
dx

� x2�x3 � 1�2dy
dx

� x�4 � x2

fieldslope

dy
dx

�
x � 4

�x2 � 8x � 1

dy
dx

�
x � 1

�x2 � 2x � 3�2

dy
dx

�
10x2

�1 � x3

dy
dx

� 4x �
4x

�16 � x2


4	y�6 � y3�2� dy
�9 � y��y dy


�t3

3
�

1
4t2	 dt
t2�t �

8
t 	 dt


t � 9t2

�t
dt
x2 � 5x � 8

�x
dx


 1

2�x
dx
 1

�2x
dx


�x2 �
1

�3x�2� dx
�1 �
1
t 	

3

�1
t2	 dt


 x3

�1 � x4
dx
 x

�1 � x2
dx


 x2

�16 � x3�2 dx
 x2

�1 � x3�2 dx


 x3

�1 � x4�2 dx
 x
�1 � x2�3 dx


u2�u3 � 2 du
5x 3�1 � x2 dx


t3�t4 � 5 dt
t�t2 � 2 dt


x�5x2 � 4�3 dx
x2�x3 � 1�4 dx


x2�x3 � 5�4 dx
x3�x4 � 3�2 dx


 3�3 � 4x2��8x� dx
�25 � x2 ��2x� dx


�x2 � 9�3�2x� dx
�1 � 6x�4�6� dx


 x cos x2 dx
 x 3�1 � x2 dx


 x�x � 4 dx
�x�6 � x� dx


cos x
sin2 x

dx


tan2 x sec2 x dx


sec 2x tan 2x dx


 x
�x2 � 1

dx


x2�x3 � 1 dx


�8x2 � 1�2�16x� dx

du � g��x� dxu � g�x�
f�g�x��g��x� dx

duu
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4.5 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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In Exercises 47– 60, find the indefinite integral.

47. 48.

49. 50.

51. 52.

53.

54.

55. 56.

57. 58.

59. 60.

In Exercises 61–66, find an equation for the function that has
the given derivative and whose graph passes through the given
point.

61.

62.

63.

64.

65.

66.

In Exercises 67–74, find the indefinite integral by the method
shown in Example 5.

67. 68.

69. 70.

71. 72.

73. 74.

In Exercises 75– 86, evaluate the definite integral. Use a graphing
utility to verify your result.

75. 76.

77. 78.

79. 80.

81. 82.

83. 84.

85.

86.

Differential Equations In Exercises 87–90, the graph of a
function is shown. Use the differential equation and the given
point to find an equation of the function.

87. 88.

89. 90.

In Exercises 91–96, find the area of the region. Use a graphing
utility to verify your result.

91. 92.

x
−2 2 4 6

80

60

40

20

y

2 4 6 8

16

12

8

4

x

y


6

�2
x2 3�x � 2 dx
7

0
x 3�x � 1 dx

y

x
−1−2−3 54321

5
4
3

6
7

(0, 2)

f

y

x
−4−6−8 4 6 8

−4
−6
−8

4
2

6
8

(5, 4)

f

dy
dx

� 4x �
9x2

�3x3 � 1��3�2�
dy
dx

�
2x

�2x2 � 1

y

x
−2 −1−3−4−5−6 1 2

−2

4
5
6

(−1, 3)

f

y

x
−2−3−4 1 2 3 4

1
2

4
5
6
7

(0, 4)

f

dy
dx

�
�48

�3x � 5�3

dy
dx

� 18x2�2x3 � 1�2

f


	�2

	�3
�x � cos x� dx


	�2

0
 cos �2x

3 	 dx


5

1

x
�2x � 1

dx
2

1
�x � 1��2 � x dx


2

0
x 3�4 � x2 dx
9

1

1
�x �1 � �x �2

dx


2

0

x
�1 � 2x2

dx
4

0

1
�2x � 1

dx


1

0
x�1 � x2 dx
2

1
2x2�x3 � 1 dx


4

�2
x2�x3 � 8�2 dx
1

�1
x�x2 � 1�3 dx


t 3�t � 10 dt
 �x

�x � 1) � �x � 1
dx


 2x � 1
�x � 4

dx
 x2 � 1
�2x � 1

dx


�x � 1��2 � x dx
x2�1 � x dx


x�4x � 1 dx
x�x � 6 dx

�2, 7�f��x� � �2x�8 � x2

�2, 10�f��x� � 2x�4x2 � 10�2

�	

2
, 2	f��x� � sec2�2x�

�	

4
, �

1
2	f��x� � 2 sin 4x

�1
3, 1�f��x� � 	 sec 	 x tan 	 x

�0, 6�f��x� � �sin
x
2

PointDerivative                      

f


csc2�x
2	 dx
cot2 x dx


 sin x
cos3 x

dx
csc2 x
cot3 x

dx


�tan x sec2 x dx
tan4 x sec2 x dx


sec�1 � x� tan�1 � x� dx


sin 2x cos 2x dx


x sin x2 dx
 1
2 cos 

1


d


cos 8x dx
sin 4x dx


 4x3 sin x4 dx
	 sin 	x dx
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93. 94.

95. 96.

In Exercises 97–102, use a graphing utility to evaluate the
integral. Graph the region whose area is given by the definite
integral.

97. 98.

99. 100.

101. 102.

In Exercises 103–106, evaluate the integral using the properties
of even and odd functions as an aid.

103. 104.

105. 106.

107. Use to evaluate each definite integral without
using the Fundamental Theorem of Calculus.

(a) (b)

(c) (d)

108. Use the symmetry of the graphs of the sine and cosine
functions as an aid in evaluating each definite integral.

(a) (b)

(c) (d)

In Exercises 109 and 110, write the integral as the sum of the 
integral of an odd function and the integral of an even function.
Use this simplification to evaluate the integral.

109. 110.

115. Cash Flow The rate of disbursement of a 2 million
dollar federal grant is proportional to the square of 
Time is measured in days and is the
amount that remains to be disbursed. Find the amount that
remains to be disbursed after 50 days. Assume that all the
money will be disbursed in 100 days.

116. Depreciation The rate of depreciation of a machine is
inversely proportional to the square of where is the
value of the machine years after it was purchased. The initial
value of the machine was $500,000, and its value decreased
$100,000 in the first year. Estimate its value after
4 years.

117. Precipitation The normal monthly precipitation at the
Seattle-Tacoma airport can be approximated by the model

where is measured in inches and is the time in months,
with corresponding to January 1. ( Source: U.S.
National Oceanic and Atmospheric Administration)

(a) Determine the extrema of the function over a one-year
period.

(b) Use integration to approximate the normal annual 
precipitation. Hint: Integrate over the interval 

(c) Approximate the average monthly precipitation during the
months of October, November, and December.

�0, 12�.��

t � 0
tR

R � 2.876 � 2.202 sin�0.576t � 0.847�

t
Vt � 1,

dV�dt

Q�0 � t � 100�,t
100 � t.

dQ�dt


	�2

�	�2
�sin 4x � cos 4x� dx
3

�3
�x3 � 4x2 � 3x � 6� dx


	�2

�	�2
 sin x cos x dx
	�2

�	�2
 cos x dx


	�4

�	�4
 cos x dx
	�4

�	�4
 sin x dx


0

�4
3x2 dx
4

0
�x2 dx


4

�4
x2 dx
0

�4
x2 dx

�4
0 x2 dx �

64
3


	�2

�	�2
sin x cos x dx
	�2

�	�2
sin2 x cos x dx


2

�2
x�x2 � 1�3 dx
2

�2
x2�x2 � 1� dx


	�6

0
 cos 3x dx
4

1
� � sin



4	 d


5

1
x2�x � 1 dx
7

3
x�x � 3 dx


2

0
x3�2x � 3 dx
6

0

x
�4x � 1

dx

x
π ππ π
8 1616 4

2

1

3

4

3

y

x

2

3

4

ππ π
24

y

π
4

3


	�4

	�12
 csc 2x cot 2x dx
2	�3

	�2
 sec2�x

2	 dx

x
π

2

1

π
2

y

x
π ππ π
2 44

1

2

3

4

3

y

y � sin x � cos 2xy � 2 sin x � sin 2x

111. Describe why

where

112. Without integrating, explain why 

113. If is continuous and find 
4

0
f �2x� dx.
8

0
f �x� dx � 32,f


2

�2
x�x2 � 1�2 dx � 0.

u � 5 � x2.


x�5 � x2�3 dx � 
u3 du

WRITING ABOUT CONCEPTS

114. Writing Find the indefinite integral in two ways. Explain
any difference in the forms of the answers.

(a) (b)

(c) 
 tan x sec2 x dx


sin x cos x dx
�2x � 1�2 dx

CAPSTONE



118. Sales The sales (in thousands of units) of a seasonal
product are given by the model

where is the time in months, with corresponding to
January. Find the average sales for each time period.

(a) The first quarter 

(b) The second quarter 

(c) The entire year 

119. Water Supply A model for the flow rate of water at a 
pumping station on a given day is

where is the flow rate in thousands of gallons
per hour, and is the time in hours.

(a) Use a graphing utility to graph the rate function and
approximate the maximum flow rate at the pumping
station.

(b) Approximate the total volume of water pumped in 1 day.

120. Electricity The oscillating current in an electrical circuit is

where is measured in amperes and is measured in seconds.
Find the average current for each time interval.

(a)

(b)

(c)

Probability In Exercises 121 and 122, the function

where and is a constant, can be used to repre-
sent various probability distributions. If is chosen such that

the probability that will fall between and 
is

121. The probability that a person will remember between 
and of material learned in an experiment is

where represents the proportion remembered. (See figure.)

(a) For a randomly chosen individual, what is the probability
that he or she will recall between 50% and 75% of the
material?

(b) What is the median percent recall? That is, for what value
of is it true that the probability of recalling 0 to is 0.5?

Figure for 121

122. The probability that ore samples taken from a region contain
between and iron is

where represents the proportion of iron. (See figure.) What is
the probability that a sample will contain between

(a) 0% and 25% iron?

(b) 50% and 100% iron?

123. Temperature The temperature in degrees Fahrenheit in a
house is 

where is time in hours, with representing midnight.
The hourly cost of cooling a house is $0.10 per degree.

(a) Find the cost of cooling the house if its thermostat is set
at by evaluating the integral

(See figure.)

T
em

pe
ra

tu
re

 (
in

 °F
)

Time (in hours)

t

60

66

72

78

84

2 4 6 8 10 12 14 16 18 20 22 24

Thermostat setting: 72 °

T

C � 0.1
20

8
�72 � 12 sin 

	 �t � 8�
12

� 72� dt.

72�F
C

t � 0t

T � 72 � 12 sin�	�t � 8�
12 �

x

2

1 2

1

a b

y

Pa, b

x

Pa, b � 
b

a

1155
32

x3�1 � x�3�2 dx

100b%100a%

x
0.5 1.5

0.5

1.5

1.0

1.0

a b

y

Pa, b

bb

x

Pa, b � 
b

a

15
4

x�1 � x dx

100b%
100a%

Pa, b � 
b

a
f �x� dx.

�0 � a � b � 1�bax


1

0
f �x� dx � 1

k
km > 0,n > 0,

0 � x � 1f �x� � kx n�1 � x�m,

0 � t �
1
30

0 � t �
1

240

0 � t �
1
60

tI

I � 2 sin�60	 t� � cos�120	 t�

t
R0 � t � 24.

R�t� � 53 � 7 sin�	 t
6

� 3.6	 � 9 cos�	 t
12

� 8.9	

�0 � t � 12�
�3 � t � 6�

�0 � t � 3�

t � 1t

S � 74.50 � 43.75 sin 
	 t
6

S
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(b) Find the savings from resetting the thermostat to by
evaluating the integral

(See figure.)

124. Manufacturing A manufacturer of fertilizer finds that
national sales of fertilizer follow the seasonal pattern

where is measured in pounds and represents the time in
days, with corresponding to January 1. The manufacturer
wants to set up a schedule to produce a uniform amount of
fertilizer each day. What should this amount be?

125. Graphical Analysis Consider the functions and where

and

(a) Use a graphing utility to graph and in the same view-
ing window.

(b) Explain why is nonnegative.

(c) Identify the points on the graph of that correspond to the
extrema of 

(d) Does each of the zeros of correspond to an extremum of
Explain.

(e) Consider the function

Use a graphing utility to graph What is the relationship
between and Verify your conjecture.

126. Find by evaluating an

appropriate definite integral over the interval 

127. (a) Show that 

(b) Show that 

128. (a) Show that 

(b) Show that where is a
positive integer.

True or False? In Exercises 129–134, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

129.

130.

131.

132.

133.

134.

135. Assume that is continuous everywhere and that is a
constant. Show that

136. (a) Verify that 

(b) Use part (a) to show that 

137. Complete the proof of Theorem 4.16.

138. Show that if is continuous on the entire real number line,
then


b

a

f �x � h� dx � 
b�h

a�h

f �x� dx.

f

�	2

0  sin�x dx � 2	.

sin u � u cos u � C � �u sin u du.


cb

ca

f �x� dx � c
b

a

f �cx� dx.

cf


sin2 2x cos 2x dx �
1
3 sin3 2x � C

4
sin x cos x dx � �cos 2x � C


b

a

 sin x dx � 
b�2	

a

 sin x dx


10

�10
�ax3 � bx2 � cx � d� dx � 2
10

0
�bx2 � d� dx


x�x2 � 1� dx �
1
2x2�1

3x3 � x� � C


�2x � 1�2 dx �
1
3�2x � 1�3 � C

n�	�2
0  sinn x dx � �	�2

0  cosn x dx,

�	�2
0  sin2 x dx � �	�2

0  cos2 x dx.

�1
0 xa�1 � x�b dx � �1

0 xb�1 � x�a dx.

�1
0 x2�1 � x�5 dx � �1

0 x5�1 � x�2 dx.

�0, 1�.

lim
n→ �� 

n

i�1

sin�i	�n�
n

h?g
h.

h�t� � 
t

	�2
f �x� dx.

g?
f

f.
g

g

gf

g�t� � 
t

0
f �x� dx.f �x� � 6 sin x cos2 x

g,f

t � 1
tF

F � 100,000�1 � sin
2	 �t � 60�

365 �

T
em

pe
ra

tu
re

 (
in

 °F
)

Time (in hours)

t

60

66

72

78

84

2 4 6 8 10 12 14 16 18 20 22 24

Thermostat setting: 78 °

T

C � 0.1
18

10
�72 � 12 sin 

	 �t � 8�
12

�78� dt.

78�F

139. If .  .  ., are real numbers satisfying

show that the equation

has at least one real zero.

140. Find all the continuous positive functions for
such that

where is a real number.

These problems were composed by the Committee on the Putnam Prize
Competition. ©The Mathematical Association of America. All rights reserved.
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1

0
f �x�x2 dx � �2


1

0
f �x�x dx � �


1

0
f �x� dx � 1

0 � x � 1,
f �x�,

a0 � a1x � a2x2 � .  .  . � anxn � 0

a0

1
�

a1

2
� .  .  . �

an

n � 1
� 0

ana1,a0,
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4.6 Numerical Integration
■ Approximate a definite integral using the Trapezoidal Rule.
■ Approximate a definite integral using Simpson’s Rule.
■ Analyze the approximate errors in the Trapezoidal Rule and Simpson’s Rule.

The Trapezoidal Rule
Some elementary functions simply do not have antiderivatives that are elementary
functions. For example, there is no elementary function that has any of the following
functions as its derivative.

If you need to evaluate a definite integral involving a function whose antiderivative
cannot be found, then while the Fundamental Theorem of Calculus is still true, it 
cannot be easily applied. In this case, it is easier to resort to an approximation 
technique. Two such techniques are described in this section.

One way to approximate a definite integral is to use trapezoids, as shown in
Figure 4.42. In the development of this method, assume that is continuous and 
positive on the interval So, the definite integral

represents the area of the region bounded by the graph of and the axis, from 
to First, partition the interval into subintervals, each of width

such that

Then form a trapezoid for each subinterval (see Figure 4.43). The area of the th
trapezoid is

Area of th trapezoid 

This implies that the sum of the areas of the trapezoids is

Letting you can take the limit as to obtain

The result is summarized in the following theorem. 

� 0 � 
b

a

f �x� dx.

� lim
n→�

� f �a� � f�b���b � a�
2n

� lim
n→� 

n

i�1
f�xi�� x

� lim
n→�

�� f�a� � f �b�� �x
2

� 
n

i�1
f �xi� �x�

lim
n→� �b � a

2n 	 � f�x0� � 2f�x1� � .  .  . � 2f�xn�1� � f�xn��

n → ��x � �b � a��n,

� �b � a
2n 	� f �x0� � 2 f �x1� � 2 f �x2� � .  .  . � 2 f �xn�1� � f �xn��.

� �b � a
2n 	� f �x0� � f �x1� � f �x1� � f �x2� � .  .  . � f �xn�1� � f �xn��

Area � �b � a
n 	� f �x0� � f �x1�

2
� .  .  . �

f �xn�1� � f �xn�
2 �

n

� � f �xi�1� � f �xi�
2 ��b � a

n 	.i

i

a � x0 < x1 < x2 < .  .  . < xn � b.

�x � �b � a��n,
n�a, b�x � b.

x � ax-f


b

a

f �x� dx

�a, b�.
f

n

3�x�1 � x,    �x cos x,    cos x
x

,    �1 � x3,    sin x2

x

f

x1 x2 x3x0 = a x4 = b

y

The area of the region can be approximated
using four trapezoids.
Figure 4.42

x
x0 x1

b − a
n

f (x1)

f (x0)

y

The area of the first trapezoid is

Figure 4.43

�f �x0� � f �x1�
2 ��b � a

n 	.



EXAMPLE 1 Approximation with the Trapezoidal Rule

Use the Trapezoidal Rule to approximate

Compare the results for and as shown in Figure 4.44.

Solution When and you obtain

When and you obtain

For this particular integral, you could have found an antiderivative and determined that
the exact area of the region is 2. ■

�
	

16 �2 � 2�2 � 4 sin 
	

8
� 4 sin 

3	

8 	 � 1.974.

                     � 2 sin 
5	

8
� 2 sin 

3	

4
� 2 sin 

7	

8
� sin 	�


	

0
 sin x dx �

	

16 �sin 0 � 2 sin 
	

8
� 2 sin 

	

4
� 2 sin 

3	

8
� 2 sin 

	

2

n � 8, �x � 	�8,

�
	

8
�0 � �2 � 2 � �2 � 0� �

	 �1 � �2 �
4

� 1.896.


	

0
 sin x dx �

	

8 �sin 0 � 2 sin 
	

4
� 2 sin 

	

2
� 2 sin 

3	

4
� sin 		

n � 4, �x � 	�4,

n � 8,n � 4


	

0
 sin x dx.
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THEOREM 4.17 THE TRAPEZOIDAL RULE

Let be continuous on The Trapezoidal Rule for approximating
is given by

Moreover, as the right-hand side approaches �b
a f �x� dx.n →�,


b

a

f �x� dx �
b � a

2n
� f �x0� � 2 f �x1� � 2 f �x2� � .  .  . � 2 f �xn�1� � f �xn��.

�b
a f �x� dx

�a, b�.f

NOTE Observe that the coefficients in the Trapezoidal Rule have the following pattern.

1 2 2 2 .  .  . 2 2 1 ■

Most graphing utilities and computer algebra systems have built-in
programs that can be used to approximate the value of a definite integral. Try using
such a program to approximate the integral in Example 1. How close is your
approximation?

When you use such a program, you need to be aware of its limitations. Often,
you are given no indication of the degree of accuracy of the approximation. Other
times, you may be given an approximation that is completely wrong. For instance,
try using a built-in numerical integration program to evaluate

Your calculator should give an error message. Does yours?


2

�1

1
x

dx.

TECHNOLOGY

π ππ π
2 44

3
x

1

y = sin x

Four subintervals

y

ππππ π
2848

3
x

1

y = sin x

Eight subintervals

y

π
8

5 π
8

7π
4

3

Trapezoidal approximations
Figure 4.44



It is interesting to compare the Trapezoidal Rule with the Midpoint Rule given in
Section 4.2 (Exercises 73–76). For the Trapezoidal Rule, you average the function
values at the endpoints of the subintervals, but for the Midpoint Rule you take the
function values of the subinterval midpoints.

Midpoint Rule

Trapezoidal Rule

Simpson’s Rule
One way to view the trapezoidal approximation of a definite integral is to say that on
each subinterval you approximate by a first-degree polynomial. In Simpson’s Rule,
named after the English mathematician Thomas Simpson (1710–1761), you take this
procedure one step further and approximate by second-degree polynomials.

Before presenting Simpson’s Rule, we list a theorem for evaluating integrals of
polynomials of degree 2 (or less).

f

f


b

a

f �x� dx � 
n

i�1
� f�xi� � f�xi�1�

2 	 �x


b

a

f �x� dx � 
n

i�1
f �xi � xi�1

2 	 � x
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NOTE There are two important points that should be made concerning the Trapezoidal Rule
(or the Midpoint Rule). First, the approximation tends to become more accurate as increases.
For instance, in Example 1, if the Trapezoidal Rule yields an approximation of 1.994.
Second, although you could have used the Fundamental Theorem to evaluate the integral in
Example 1, this theorem cannot be used to evaluate an integral as simple as because

has no elementary antiderivative. Yet, the Trapezoidal Rule can be applied easily to 
estimate this integral. ■

sin x2
�	

0 sin x2 dx

n � 16,
n

THEOREM 4.18 INTEGRAL OF 

If then


b

a

p�x� dx � �b � a
6 	�p�a� � 4p�a � b

2 	 � p�b��.

p�x� � Ax2 � Bx � C,

p�x� � Ax2 1 Bx 1 C

PROOF

By expansion and collection of terms, the expression inside the brackets becomes

and you can write

■
b

a

p�x� dx � �b � a
6 	�p�a� � 4p�a � b

2 	 � p�b��.

�Aa2 � Ba � C� � 4�A�b � a
2 	

2

� B�b � a
2 	 � C� � �Ab2 � Bb � C�

� �b � a
6 	 �2A�a2 � ab � b2� � 3B�b � a� � 6C�

�
A�b3 � a3�

3
�

B�b2 � a2�
2

� C�b � a�

� �Ax3

3
�

Bx2

2
� Cx�

b

a


b

a

p�x� dx � 
b

a

�Ax2 � Bx � C� dx

p �a�
4p �a � b

2 	 p �b�



To develop Simpson’s Rule for approximating a definite integral, you again
partition the interval into subintervals, each of width This
time, however, is required to be even, and the subintervals are grouped in pairs such
that

On each (double) subinterval , you can approximate by a polynomial of
degree less than or equal to 2. (See Exercise 56.) For example, on the subinterval

choose the polynomial of least degree passing through the points
as shown in Figure 4.45. Now, using as an approxima-

tion of on this subinterval, you have, by Theorem 4.18,

Repeating this procedure on the entire interval produces the following theorem.

In Example 1, the Trapezoidal Rule was used to estimate In the next
example, Simpson’s Rule is applied to the same integral.

EXAMPLE 2 Approximation with Simpson’s Rule

Use Simpson’s Rule to approximate

Compare the results for 

Solution When you have

When you have ■
	

0
 sin x dx � 2.0003.n � 8,

� 2.005.
	

0
 sin x dx �

	

12 �sin 0 � 4 sin 
	

4
� 2 sin 

	

2
� 4 sin 

3	

4
�  sin 		

n � 4,

n � 4 and n � 8.


	

0
 sin x dx.

�	
0  sin x dx.

�a, b�

�
b � a

3n
� f �x0� � 4 f �x1� � f �x2��.

�
2��b � a��n�

6
� p�x0� � 4p �x1� � p�x2��


x2

x0

f �x� dx � 
x2

x0

p�x� dx �
x2 � x0

6 �p�x0� � 4p�x0 � x2

2 	 � p�x2��
f

p�x0, y0�, �x1, y1�, and �x2, y2�,
�x0, x2�,

pf�xi�2, xi�

a � x0 < x1 < x2 < x3 < x4 < .  .  . < xn�2 < xn�1 < xn � b.

n
�x � �b � a��n.n�a, b�
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�x0, x2� �x2, x4� �xn�2, xn�

THEOREM 4.19 SIMPSON’S RULE

Let be continuous on and let be an even integer. Simpson’s Rule for
approximating is 

Moreover, as the right-hand side approaches �b
a f �x� dx.n → �,

� 4 f �xn�1� � f �xn��.


b

a

f �x� dx �
b � a

3n
� f �x0� � 4 f �x1� � 2 f �x2� � 4 f �x3� � .  .  .

�b
a f �x� dx

n�a, b�f

NOTE Observe that the coefficients in Simpson’s Rule have the following pattern.

1 4 2 4 2 4 .  .  . 4 2 4 1 ■

NOTE In Example 1, the Trapezoidal
Rule with approximates 
as 1.974. In Example 2, Simpson’s Rule
with gives an approximation of
2.0003. The antiderivative would produce
the true value of 2.

n � 8

�	
0  sin x dxn � 8

x

p
f

x0 x1 x2 xn

(x0, y0)

(x2, y2)

(x1, y1)

y

Figure 4.45


x2

x0

p�x� dx � 
x2

x0

f �x� dx



Error Analysis
If you must use an approximation technique, it is important to know how accurate you
can expect the approximation to be. The following theorem, which is listed without
proof, gives the formulas for estimating the errors involved in the use of Simpson’s
Rule and the Trapezoidal Rule. In general, when using an approximation, you can
think of the error as the difference between and the approximation.

Theorem 4.20 states that the errors generated by the Trapezoidal Rule and
Simpson’s Rule have upper bounds dependent on the extreme values of and

in the interval Furthermore, these errors can be made arbitrarily small by
increasing provided that and are continuous and therefore bounded in 

EXAMPLE 3 The Approximate Error in the Trapezoidal Rule

Determine a value of such that the Trapezoidal Rule will approximate the value of
with an error that is less than or equal to 0.01.

Solution Begin by letting and finding the second derivative of 

and

The maximum value of on the interval So, by Theorem
4.20, you can write

To obtain an error that is less than 0.01, you must choose such that

So, you can choose (because must be greater than or equal to 2.89) and apply
the Trapezoidal Rule, as shown in Figure 4.46, to obtain

So, by adding and subtracting the error from this estimate, you know that

■1.144 � 
1

0

�1 � x2 dx � 1.164.

� 1.154.


1

0

�1 � x2 dx �
1
6

��1 � 02 � 2�1 � �1
3�2

� 2�1 � �2
3�2

� �1 � 12�

nn � 3

n � �100
12 �2.89100 � 12n2

1��12n2� � 1�100.
nE

�E� �
�b � a�3

12n2 � f� �0�� �
1

12n2 �1� �
1

12n2.

�0, 1� is � f� �0�� � 1.� f� �x��
f ��x� � �1 � x2��3�2f��x� � x�1 � x2��1�2

f.f �x� � �1 � x2

�1
0 �1 � x2 dx

n

�a, b�.f �4�f�n,
�a, b�.f �4��x�

f��x�

�b
a f�x� dxE
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THEOREM 4.20 ERRORS IN THE TRAPEZOIDAL RULE AND SIMPSON’S RULE

If has a continuous second derivative on then the error in approxi-
mating by the Trapezoidal Rule is

Trapezoidal Rule

Moreover, if has a continuous fourth derivative on then the error in
approximating by Simpson’s Rule is

Simpson’s Rulea � x � b.�E� �
�b � a�5

180n4 �max � f �4��x�� �,

�b
a f �x� dx

E�a, b�,f

a � x � b.�E� �
�b � a�3

12n2 �max � f� �x���, 

�b
a f �x� dx

E�a, b�,f

If you have access
to a computer algebra system, use it 
to evaluate the definite integral in
Example 3. You should obtain a 
value of

(“ln” represents the natural logarithmic
function, which you will study in
Section 5.1.)

� 1.14779.


1

0

�1 � x2 dx �
1
2 ��2 � ln �1 ��2 ��

TECHNOLOGY

x
1

1

2

2

n = 3

y

y =    1 + x2

Figure 4.46

1.144 � 
1

0
�1 � x2 dx � 1.164



In Exercises 1–10, use the Trapezoidal Rule and Simpson’s Rule
to approximate the value of the definite integral for the given
value of Round your answer to four decimal places and 
compare the results with the exact value of the definite integral.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

In Exercises 11–20, approximate the definite integral using the
Trapezoidal Rule and Simpson’s Rule with Compare
these results with the approximation of the integral using a
graphing utility.

11. 12.

13. 14.

15. 16.

17. 18.

19.

20.

In Exercises 23–28, use the error formulas in Theorem 4.20 to
estimate the errors in approximating the integral, with 
using (a) the Trapezoidal Rule and (b) Simpson’s Rule.

23. 24.

25. 26.

27. 28.

In Exercises 29–34, use the error formulas in Theorem 4.20 to
find such that the error in the approximation of the definite
integral is less than or equal to 0.00001 using (a) the Trapezoidal
Rule and (b) Simpson’s Rule.

29. 30.

31. 32.

33. 34.

In Exercises 35–38, use a computer algebra system and the
error formulas to find such that the error in the approxima-
tion of the definite integral is less than or equal to 0.00001 using
(a) the Trapezoidal Rule and (b) Simpson’s Rule.

35. 36.

37. 38.

39. Approximate the area of the shaded region using (a) the
Trapezoidal Rule and (b) Simpson’s Rule with 

Figure for 39 Figure for 40

40. Approximate the area of the shaded region using (a) the
Trapezoidal Rule and (b) Simpson’s Rule with 

41. Programming Write a program for a graphing utility to
approximate a definite integral using the Trapezoidal Rule and
Simpson’s Rule. Start with the program written in Section 4.3,
Exercises 61–64, and note that the Trapezoidal Rule can be
written as and Simpson’s Rule can be
written as

[Recall that represent the Riemann sums
using the left-hand endpoints, midpoints, and right-hand
endpoints of subintervals of equal width.]

L �n�, M �n�, and R�n�

S�n� �
1
3 �T �n�2� � 2M�n�2��.

T �n� �
1
2 �L�n� � R�n��

n � 8.

x
2 4 6 8 10

2

4

6

8

10

y

x
1 2 3 4 5

2

4

6

8

10

y

n � 4.


1

0
 sin x2 dx
1

0
 tan x2 dx


2

0
�x � 1�2�3 dx
2

0

�1 � x dx

n


	�2

0
 sin x dx
1

0
 cos�	x� dx


3

1

1
�x

dx
2

0

�x � 2 dx


1

0

1
1 � x

dx
3

1

1
x

dx

n


1

0
 sin�	x� dx
	

0
 cos x dx


4

2

1
�x � 1�2 dx
1

0

1
x � 1

dx


5

3
�5x � 2� dx
3

1
2x3 dx

n � 4,

f �x� � �
sin x ,

x

1,

x > 0

x � 0

	

0
f �x� dx,


	�4

0
x tan x dx


	�2

0

�1 �  sin 2 x dx
3.1

3
 cos x2 dx


�	�4

0
 tan x2 dx
�	�2

0
 sin x2 dx


	

	�2

�x sin x dx
1

0

�x �1 � x dx


2

0

1

�1 � x3
dx
2

0

�1 � x3 dx

n � 4.


2

0
x�x2 � 1 dx,  n � 4
1

0

2
�x � 2�2 dx,  n � 4


4

1
�4 � x2� dx,  n � 6
9

4

�x dx,  n � 8


8

0

3�x dx,  n � 8
3

1
x3 dx,  n � 6


3

2

2
x2 dx,  n � 4
2

0
x3 dx,  n � 4


2

1
�x2

4
� 1	 dx,  n � 4
2

0
x2 dx,  n � 4

n.
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4.6 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

21. The Trapezoidal Rule and Simpson’s Rule yield 
approximations of a definite integral based on
polynomial approximations of What is the degree of the
polynomials used for each?

22. Describe the size of the error when the Trapezoidal Rule is
used to approximate when is a linear 
function. Use a graph to explain your answer.

f �x��b
a f �x� dx

f.
�b

a f �x� dx

WRITING ABOUT CONCEPTS

CAS

www.CalcChat.com


x 0 10 20 30 40 50 60

y 75 81 84 76 67 68 69

x 70 80 90 100 110 120

y 72 68 56 42 23 0

x 0 100 200 300 400 500

y 125 125 120 112 90 90

x 600 700 800 900 1000

y 95 88 75 35 0

Programming In Exercises 42–44, use the program in Exercise
41 to approximate the definite integral and complete the table.

42. 43. 44.

45. Area Use Simpson’s Rule with to approximate the
area of the region bounded by the graphs of 

and

47. Circumference The elliptic integral

gives the circumference of an ellipse. Use Simpson’s Rule with
to approximate the circumference.

48. Work To determine the size of the motor required to operate
a press, a company must know the amount of work done when
the press moves an object linearly 5 feet. The variable force to
move the object is where is given in
pounds and gives the position of the unit in feet. Use
Simpson’s Rule with to approximate the work (in
foot-pounds) done through one cycle if 

49. The table lists several measurements gathered in an experiment
to approximate an unknown continuous function 

(a) Approximate the integral using the Trapezoidal
Rule and Simpson’s Rule.

(b) Use a graphing utility to find a model of the form
for the data. Integrate the 

resulting polynomial over and compare the result
with the integral from part (a).

Approximation of Pi In Exercises 50 and 51, use Simpson’s
Rule with to approximate using the given equation. (In
Section 5.7, you will be able to evaluate the integral using
inverse trigonometric functions.)

50. 51.

Area In Exercises 52 and 53, use the Trapezoidal Rule to
estimate the number of square meters of land in a lot where 
and are measured in meters, as shown in the figures. The land
is bounded by a stream and two straight roads that meet at right
angles.

52.

Figure for 52 Figure for 53

53.

54. Prove that Simpson’s Rule is exact when approximating the
integral of a cubic polynomial function, and demonstrate the
result for 

55. Use Simpson’s Rule with and a computer algebra
system to approximate in the integral equation

56. Prove that you can find a polynomial 
that passes through any three points and

where the ’s are distinct.xi�x3, y3�,
�x2, y2�,�x1, y1�,

p�x� � Ax2 � Bx � C

�t
0 sin �x dx � 2.

t
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n � 2.�1
0 x3 dx,

x
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1

0
 

4
1 � x2 dx	 � 
1�2

0
 

6
�1 � x2

 dx

�n � 6

�0, 2�
y � ax3 � bx2 � cx � d

�2
0 f �x� dx

y � f �x�.

W � �5
0 F�x� dx.

Wn � 12
x

FF�x� � 100x�125 � x3,

n � 8

8�3 
	�2

0
�1 �

2
3 sin2  d

x � 	�2.x � 0,y � 0,
y � �x cos x,

n � 14


4

0
 sin �x dx
1

0

�1 � x2 dx
4

0

�2 � 3x2 dx
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n L�n� M�n� R�n� T�n� S�n�

4

8

10

12

16

20

x 0.00 0.25 0.50 0.75 1.00

y 4.32 4.36 4.58 5.79 6.14

x 1.25 1.50 1.75 2.00

y 7.25 7.64 8.08 8.14

46. Consider a function that is concave upward on the
interval and a function that is concave downward
on

(a) Using the Trapezoidal Rule, which integral would be
overestimated? Which integral would be underestimated?
Assume Use graphs to explain your answer.

(b) Which rule would you use for more accurate approxi-
mations of and the Trapezoidal
Rule or Simpson’s Rule? Explain your reasoning.

�2
0 g�x� dx,�2

0 f �x� dx

n � 4.

�0, 2�.
g�x)�0, 2�

f (x)

CAPSTONE

CAS



In Exercises 1 and 2, use the graph of to sketch a graph of 
To print an enlarged copy of the graph, go to the website
www.mathgraphs.com.

1. 2.

In Exercises 3– 8, find the indefinite integral.

3. 4.

5. 6.

7. 8.

9. Find the particular solution of the differential equation
whose graph passes through the point 

10. Find the particular solution of the differential equation
whose graph passes through the point 

and is tangent to the line at that point.

Slope Fields In Exercises 11 and 12, a differential equation, a
point, and a slope field are given. (a) Sketch two approximate
solutions of the differential equation on the slope field, one of
which passes through the given point. (To print an enlarged copy
of the graph, go to the website www.mathgraphs.com.) (b) Use
integration to find the particular solution of the differential
equation and use a graphing utility to graph the solution.

11. 12.

13. Velocity and Acceleration An airplane taking off from a
runway travels 3600 feet before lifting off. The airplane starts
from rest, moves with constant acceleration, and makes the run
in 30 seconds. With what speed does it lift off?

14. Velocity and Acceleration The speed of a car traveling in a
straight line is reduced from 45 to 30 miles per hour in a
distance of 264 feet. Find the distance in which the car can be
brought to rest from 30 miles per hour, assuming the same
constant deceleration.

15. Velocity and Acceleration A ball is thrown vertically upward
from ground level with an initial velocity of 96 feet per second.

(a) How long will it take the ball to rise to its maximum height?
What is the maximum height?

(b) After how many seconds is the velocity of the ball one-half
the initial velocity?

(c) What is the height of the ball when its velocity is one-half
the initial velocity?

16. Modeling Data The table shows the velocities (in miles per
hour) of two cars on an entrance ramp to an interstate highway.
The time is in seconds.

(a) Rewrite the velocities in feet per second.

(b) Use the regression capabilities of a graphing utility to find
quadratic models for the data in part (a).

(c) Approximate the distance traveled by each car during the
30 seconds. Explain the difference in the distances.

In Exercises 17 and 18, use sigma notation to write the sum.

17.

18.

In Exercises 19–22, use the properties of summation and
Theorem 4.2 to evaluate the sum.

19. 20.

21. 22.

23. Write in sigma notation (a) the sum of the first ten positive odd
integers, (b) the sum of the cubes of the first positive integers,
and (c) 

24. Evaluate each sum for and

(a) (b)

(c) (d) 
5

i�2
�xi � xi�1�
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�2xi � x 2

i �
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1
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i�i 2 � 1�

20
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20
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 2i
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1 � 1
n 	
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2 � 1
n 	

2

� .  .  . � �3
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n � 1
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1
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1
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1
3�3� � .  .  . �

1
3�10�

t

y

x
7−1

6

−2

x

y
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−1 5

�6, 2�dy
dx

�
1
2

x2 � 2x,�4, �2�dy
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� 2x � 4,

3x � y � 5 � 0
�2, 1�f � �x� � 6�x � 1�

�1, �2�.f��x� � �6x


 �5 cos x � 2 sec2 x� dx
 �2x � 9 sin x� dx
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x2 dx
 x4 � 8

x3 dx


 2
3�3x

dx
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x
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In Exercises 25 and 26, use upper and lower sums to approxi-
mate the area of the region using the indicated number of 
subintervals of equal width.

25. 26.

In Exercises 27–30, use the limit process to find the area of the
region between the graph of the function and the -axis over the
given interval. Sketch the region.

27. 28.

29. 30.

31. Use the limit process to find the area of the region bounded by
and

32. Consider the region bounded by and

(a) Find the upper and lower sums to approximate the area of
the region when 

(b) Find the upper and lower sums to approximate the area of
the region when 

(c) Find the area of the region by letting approach infinity in
both sums in part (b). Show that in each case you obtain the
formula for the area of a triangle.

In Exercises 33 and 34, write the limit as a definite integral on
the interval , where is any point in the th subinterval.

33.

34.

In Exercises 35 and 36, set up a definite integral that yields the
area of the region. (Do not evaluate the integral.)

35. 36.

In Exercises 37 and 38, sketch the region whose area is given by
the definite integral. Then use a geometric formula to evaluate
the integral.

37. 38.

39. Given evaluate

(a) (b)

(c) (d)

40. Given evaluate

(a) (b)

(c) (d)

In Exercises 41– 48, use the Fundamental Theorem of Calculus
to evaluate the definite integral. 

41. 42.

43. 44.

45. 46.

47. 48.

In Exercises 49–54, sketch the graph of the region whose area is
given by the integral, and find the area.

49. 50.

51. 52.

53. 54.

In Exercises 55 and 56, determine the area of the given region.

55. 56.
y
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π
2

3π− π
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In Exercises 57 and 58, sketch the region bounded by the graphs
of the equations, and determine its area.

57.

58.

In Exercises 59 and 60, find the average value of the function
over the given interval. Find the values of at which the
function assumes its average value, and graph the function.

59. 60.

In Exercises 61–64, use the Second Fundamental Theorem of
Calculus to find 

61. 62.

63. 64.

In Exercises 65–76, find the indefinite integral.

65. 66.

67. 68.

69. 70.

71. 72.

73. 74.

75. 76.

In Exercises 77–84, evaluate the definite integral. Use a
graphing utility to verify your result.

77. 78.

79. 80.

81. 82.

83. 84.

Slope Fields In Exercises 85 and 86, a differential equation, a
point, and a slope field are given. (a) Sketch two approximate
solutions of the differential equation on the slope field, one of
which passes through the given point. (To print an enlarged
copy of the graph, go to the website www.mathgraphs.com.)
(b) Use integration to find the particular solution of the differ-
ential equation and use a graphing utility to graph the solution.

85. 86.

In Exercises 87 and 88, find the area of the region. Use a
graphing utility to verify your result.

87. 88.

89. Precipitation The normal monthly precipitation in Portland,
Oregon can be approximated by the model

where is measured in inches and is the time in months, with
corresponding to January 1. (Source: U.S. National

Oceanic and Atmospheric Administration)

(a) Write an integral and approximate the normal annual 
precipitation.

(b) Approximate the average monthly precipitation during the
months of September and October.

90. Respiratory Cycle After exercising for a few minutes, a
person has a respiratory cycle for which the rate of air intake is

Find the volume, in liters, of air inhaled during one cycle by
integrating the function over the interval 

In Exercises 91–94, use the Trapezoidal Rule and Simpson’s Rule
with and use the integration capabilities of a graphing 
utility, to approximate the definite integral. Compare the results.

91. 92.

93. 94. 
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1. Let

(a) Find 

(b) Find and 

(c) Use a graphing utility to approximate the value of (to three
decimal places) for which 

(d) Prove that for all positive values of
and

2. Let

(a) Use a graphing utility to complete the table.

(b) Let Use a graphing

utility to complete the table and estimate 

(c) Use the definition of the derivative to find the exact value of
the limit 

In Exercises 3 and 4, (a) write the area under the graph of the
given function defined on the given interval as a limit. Then (b)
evaluate the sum in part (a), and (c) evaluate the limit using the
result of part (b).

3.

Hint:

4.

Hint:

5. The Fresnel function is defined by the integral

(a) Graph the function on the interval 

(b) Use the graph in part (a) to sketch the graph of on the
interval 

(c) Locate all relative extrema of on the interval 

(d) Locate all points of inflection of on the interval 

6. The Two-Point Gaussian Quadrature Approximation for is

(a) Use this formula to approximate Find the error
of the approximation.

(b) Use this formula to approximate 

(c) Prove that the Two-Point Gaussian Quadrature Approxi-
mation is exact for all polynomials of degree 3 or less.

7. Archimedes showed that the area of a parabolic arch is equal to 
the product of the base and the height (see figure).

(a) Graph the parabolic arch bounded by and the
Use an appropriate integral to find the area 

(b) Find the base and height of the arch and verify Archimedes’
formula.

(c) Prove Archimedes’ formula for a general parabola.

8. Galileo Galilei (1564–1642) stated the following proposition
concerning falling objects:

The time in which any space is traversed by a uniformly
accelerating body is equal to the time in which that same
space would be traversed by the same body moving at a
uniform speed whose value is the mean of the highest
speed of the accelerating body and the speed just before
acceleration began. 

Use the techniques of this chapter to verify this proposition.

9. The graph of the function consists of the three line segments
joining the points , and The function

is defined by the integral 

(a) Sketch the graph of 

(b) Complete the table.

(c) Find the extrema of on the interval 

(d) Determine all points of inflection of on the interval �0, 8�.F

�0, 8�.F

f.
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10. A car travels in a straight line for 1 hour. Its velocity in miles
per hour at six-minute intervals is shown in the table.

(a) Produce a reasonable graph of the velocity function by
graphing these points and connecting them with a smooth
curve.

(b) Find the open intervals over which the acceleration is
positive.

(c) Find the average acceleration of the car (in miles per hour
squared) over the interval 

(d) What does the integral signify? Approximate this
integral using the Trapezoidal Rule with five subintervals.

(e) Approximate the acceleration at 

11. Prove 

12. Prove 

13. Use an appropriate Riemann sum to evaluate the limit

14. Use an appropriate Riemann sum to evaluate the limit

15. Suppose that is integrable on and 
for all in the interval Prove that 

Use this result to estimate 

16. Let be continuous on the interval where
on

(a) Show that 

(b) Use the result in part (a) to evaluate

(c) Use the result in part (a) to evaluate

17. Verify that

by showing the following.

(a)

(b)

(c)

18. Prove that if is a continuous function on a closed interval
then

19. Let where is shown in the figure. Let and
represent the Riemann sums using the left-hand endpoints

and right-hand endpoints of subintervals of equal width.
(Assume is even.) Let and be the corresponding
values of the Trapezoidal Rule and Simpson’s Rule.

(a) For any list and in increasing order.

(b) Approximate 

20. The sine integral function

is often used in engineering. The function is not

defined at but its limit is 1 as So, define 

Then is continuous everywhere.

(a) Use a graphing utility to graph 

(b) At what values of does have relative maxima?

(c) Find the coordinates of the first inflection point where

(d) Decide whether has any horizontal asymptotes. If so,
identify each.

21. Determine the limits of integration where such that

has minimal value.
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t (hours) 0 0.1 0.2 0.3 0.4 0.5

v (mi h)/ 0 10 20 40 60 50

t (hours) 0.6 0.7 0.8 0.9 1.0

v (mi h)/ 40 35 40 50 65
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5 Logarithmic, Exponential, and
Other Transcendental Functions

In Section 5.1, you will see how the function can be used to define the natural logarithmic function. To do
this, consider the definite integral When the value of this definite integral is negative. When the
value is 0. When the value is positive.x > 1,

x � 1,x < 1,�x
1  1�t dt.

f �x� � 1�x

dt = ln ≈ 0.41
1

1
t

3
2

3
2

dt = ln1 = 0
1

1

1
t

dt = ln 2 ≈ 0.69
2

1

1
t

dt = ln 3 ≈ 1.10
3

1

1
t
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So far in this text, you have studied two
types of elementary functions—algebraic
functions and trigonometric functions. 
This chapter concludes the introduction 
of elementary functions. As each new type
is introduced, you will study its properties,
its derivative, and its antiderivative.

In this chapter, you should learn the 
following.

■ The properties of the natural logarithmic
function. How to find the derivative and
antiderivative of the natural logarithmic
function. (5.1, 5.2)

■ How to determine whether a function
has an inverse function. (5.3)

■ The properties of the natural exponential
function. How to find the derivative and
antiderivative of the natural exponential
function. (5.4)

■ The properties, derivatives, and antideriv-
atives of logarithmic and exponential
functions that have bases other than e.
(5.5)

■ The properties of inverse trigonometric 
functions. How to find derivatives and
antiderivatives of inverse trigonometric
functions. (5.6, 5.7)

■ The properties of hyperbolic functions.
How to find derivatives and antideriva-
tives of hyperbolic functions. (5.8)

The Gateway Arch in St. Louis, Missouri is over 600 feet high and covered with 
886 tons of quarter-inch stainless steel. A mathematical equation used to construct
the arch involves which function? (See Section 5.8, Section Project.)

■

■



■ Develop and use properties of the natural logarithmic function.
■ Understand the definition of the numbere.
■ Find derivatives of functions involving the natural logarithmic function.

The Natural Logarithmic Function
Recall that the General Power Rule

General Power Rule

has an important disclaimer—it doesn’t apply when Consequently, you have
not yet found an antiderivative for the function In this section, you will
use the Second Fundamental Theorem of Calculus to define such a function. This
antiderivative is a function that you have not encountered previously in the text. It is
neither algebraic nor trigonometric, but falls into a new class of functions called
logarithmic functions. This particular function is the natural logarithmic function.

From this definition, you can see that is positive for and negative for
as shown in Figure 5.1. Moreover, because the upper and lower

limits of integration are equal when 

If then If then 
Figure 5.1

ln x < 0.0 < x < 1,ln x > 0.x > 1,

tx
1

1

2

2

3

3

4

4

y

y = 1
t

If x < 1, dt < 0.
x

1∫ 1
t

tx
1

1

2

2

3

3

4

4

y = 1
t

If x > 1, dt > 0.
x

1∫ 1
t

y

x � 1.
ln�1� � 0,0 < x < 1,

x > 1ln x

f�x� � 1�x.
n � �1.

n � �1
xn dx �
xn�1

n � 1
� C,
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5.1 The Natural Logarithmic Function: Differentiation

DEFINITION OF THE NATURAL LOGARITHMIC FUNCTION

The natural logarithmic function is defined by 

The domain of the natural logarithmic function is the set of all positive real
numbers.

x > 0.ln x � 
x

1

1
t

dt,

E X P L O R A T I O N

Graphing the Natural Logarithmic Function Using only the definition of
the natural logarithmic function, sketch a graph of the function. Explain your
reasoning.

JOHN NAPIER (1550–1617)

Logarithms were invented by the Scottish
mathematician John Napier. Napier coined the
term logarithm, from the two Greek words
logos (or ratio) and arithmos (or number), to
describe the theory that he spent 20 years
developing and that first appeared in the
book Mirifici Logarithmorum canonis descriptio
(A Description of the Marvelous Rule of
Logarithms). Although he did not introduce
the natural logarithmic function, it is some-
times called the Napierian logarithm.

T
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To sketch the graph of you can think of the natural logarithmic function
as an antiderivative given by the differential equation

Figure 5.2 is a computer-generated graph, called a slope (or direction) field, showing
small line segments of slope The graph of is the solution that passes
through the point You will study slope fields in Section 6.1.

The following theorem lists some basic properties of the natural logarithmic
function.

Using the definition of the natural logarithmic function, you can prove several
important properties involving operations with natural logarithms. If you are already
familiar with logarithms, you will recognize that these properties are characteristic of
all logarithms.

�1, 0�.
y � ln x1�x.

dy
dx

�
1
x
.

y � ln x,
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THEOREM 5.1 PROPERTIES OF THE NATURAL LOGARITHMIC FUNCTION

The natural logarithmic function has the following properties.

1. The domain is and the range is 

2. The function is continuous, increasing, and one-to-one.

3. The graph is concave downward.

���, ��.�0, ��

PROOF The domain of is by definition. Moreover, the function is
continuous because it is differentiable. It is increasing because its derivative

First derivative

is positive for as shown in Figure 5.3. It is concave downward because 

Second derivative

is negative for The proof that is one-to-one is given in Appendix A. The 
following limits imply that its range is the entire real line.

and

Verification of these two limits is given in Appendix A. ■

lim
x→�

 ln x � �lim
x→0�

 ln x � ��

fx > 0.

f��x� � �
1
x2

x > 0,

f��x� �
1
x

�0, ��f �x� � ln x

THEOREM 5.2 LOGARITHMIC PROPERTIES

If and are positive numbers and is rational, then the following properties 
are true.

1.

2.

3.

4. ln�a
b	 � ln a � ln b

ln�an� � n ln a

ln�ab� � ln a � ln b

ln�1� � 0

nba

x

−1

−2

−3

1

1

2 3 4 5

(1, 0)

y x= ln

y

Each small line segment has a slope of

Figure 5.2

1
x
.

x

−1

−2

1

1

2 3 4

y ′ = 4
y ′ = 3

y ′ = 2

y ′ = 1

x = 1

x = 2
x = 3

x = 4y ′ = 1
2

x = 1
2

y ′ = 1
3

x = 1
3

y ′ = 1
4

x = 1
4

y = ln x

y

The natural logarithmic function is increasing,
and its graph is concave downward.
Figure 5.3



Example 1 shows how logarithmic properties can be used to expand logarithmic
expressions.

EXAMPLE 1 Expanding Logarithmic Expressions

a. Property 4

b. Rewrite with rational exponent.

Property 3

c. Property 4

Property 2

d.

■

When using the properties of logarithms to rewrite logarithmic functions, you must
check to see whether the domain of the rewritten function is the same as the domain of
the original. For instance, the domain of is all real numbers except 
and the domain of is all positive real numbers. (See Figure 5.4.)g�x� � 2 ln x

x � 0,f�x� � ln x2

� 2 ln�x2 � 3� � ln x �
1
3

 ln�x2 � 1�

� 2 ln�x2 � 3� � ln x � ln�x2 � 1�1�3

� 2 ln�x2 � 3� � �ln x � ln�x2 � 1�1�3�

ln
�x2 � 3�2

x 3�x2 � 1
� ln�x2 � 3�2 � ln�x 3�x2 � 1 �

� ln 6 � ln x � ln 5

 ln
6x
5

� ln�6x� � ln 5

�
1
2

 ln�3x � 2�

 ln�3x � 2 � ln�3x � 2�1�2

ln
10
9

� ln 10 � ln 9
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PROOF The first property has already been discussed. The proof of the second 
property follows from the fact that two antiderivatives of the same function differ at
most by a constant. From the Second Fundamental Theorem of Calculus and the
definition of the natural logarithmic function, you know that

So, consider the two derivatives

and

Because and are both antiderivatives of they must differ at
most by a constant.

By letting you can see that The third property can be proved similarly
by comparing the derivatives of and Finally, using the second and third
properties, you can prove the fourth property.

■� ln a � ln b� ln a � ln�b�1�ln�a
b	 � ln�a�b�1��

n lnx.ln�xn�
C � 0.x � 1,

ln�ax� � ln a � ln x � C

1�x,�ln a � ln x�ln�ax�

d
dx

�ln a � ln x� � 0 �
1
x

�
1
x
.

d
dx

�ln�ax�� �
a
ax

�
1
x

d
dx

�ln x� �
d
dx �


x

1

1
t

dt� �
1
x
.

5

−5

−5

5f (x) = ln x2

5

−5

−5

5 g(x) = 2 ln x

Figure 5.4



The Number e
It is likely that you have studied logarithms in an algebra course. There, without the
benefit of calculus, logarithms would have been defined in terms of a base number.
For example, common logarithms have a base of 10 and therefore (You
will learn more about this in Section 5.5.)

The base for the natural logarithm is defined using the fact that the natural
logarithmic function is continuous, is one-to-one, and has a range of So,
there must be a unique real number such that as shown in Figure 5.5. This
number is denoted by the letter It can be shown that is irrational and has the
following decimal approximation.

Once you know that you can use logarithmic properties to evaluate the
natural logarithms of several other numbers. For example, by using the property 

you can evaluate for various values of as shown in the table and in Figure 5.6.

The logarithms shown in the table above are convenient because the values are
integer powers of Most logarithmic expressions are, however, best evaluated with a
calculator.

EXAMPLE 2 Evaluating Natural Logarithmic Expressions

a.

b.

c. ■ln 0.1 � �2.303

ln 32 � 3.466

ln 2 � 0.693

e.
x-

n,ln�en�

� n

� n�1�
 ln�en� � n ln e

ln e � 1,

ee.
ln x � 1,x

���, ��.

log1010 � 1.
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t

1

1

2

2

3

3

Area = dt = 1

e ≈ 2.72

e

1∫

y

y = 1
t

1
t

is the base for the natural logarithm
because
Figure 5.5

ln e � 1.
e

x

1

−1

−2

−3

1

2

2 3 4 5 6 7 8

y = ln x

(e−3, −3)

(e−2, −2)

(e−1, −1)

(e0, 0)

(e2, 2)

(e, 1)

y

If then 
Figure 5.6

ln x � n.x � en,

e � 2.71828182846

DEFINITION OF e

The letter denotes the positive real number such that

ln e � 
e

1

1
t

dt � 1.

e

■ FOR FURTHER INFORMATION To learn more about the number see the article
“Unexpected Occurrences of the Number ” by Harris S. Shultz and Bill Leonard in
Mathematics Magazine. To view this article, go to the website www.matharticles.com. ■

e
e,

x 1
e3 � 0.050

1
e2 � 0.135

1
e

� 0.368 e0 � 1 e � 2.718 e2 � 7.389

ln x �3 �2 �1 0 1 2

www.matharticles.com


The Derivative of the Natural Logarithmic Function
The derivative of the natural logarithmic function is given in Theorem 5.3. The first
part of the theorem follows from the definition of the natural logarithmic function as
an antiderivative. The second part of the theorem is simply the Chain Rule version of
the first part.

EXAMPLE 3 Differentiation of Logarithmic Functions

a.

b.

c. Product Rule

d. Chain Rule

■

Napier used logarithmic properties to simplify calculations involving products,
quotients, and powers. Of course, given the availability of calculators, there is now
little need for this particular application of logarithms. However, there is great value
in using logarithmic properties to simplify differentiation involving products,
quotients, and powers.

EXAMPLE 4 Logarithmic Properties as Aids to Differentiation

Differentiate 

Solution Because

Rewrite before differentiating.

you can write 

Differentiate. ■f��x� �
1
2 �

1
x � 1	 �

1
2�x � 1�.

f�x� � ln�x � 1 � ln�x � 1�1�2 �
1
2

ln �x � 1�

f�x� � ln�x � 1.

� 3�ln x�2 1
x

d
dx

��ln x�3� � 3�ln x�2 d
dx

�ln x�

� x�1
x	 � �ln x��1� � 1 � ln x

d
dx

�x ln x� � x� d
dx

�ln x�	 � �ln x�� d
dx

�x�	
u � x 2 � 1

d
dx

�ln�x2 � 1�� �
u�

u
�

2x
x2 � 1

u � 2x
d

dx
�ln �2x�� �

u�

u
�

2
2x

�
1
x
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THEOREM 5.3 DERIVATIVE OF THE NATURAL LOGARITHMIC FUNCTION

Let be a differentiable function of 

1. 2. u > 0
d

dx
�ln u� �

1
u

du
dx

�
u�

u
,x > 0

d
dx

�ln x� �
1
x

,

x.u

E X P L O R A T I O N

Use a graphing utility to graph

and

in the same viewing window, in
which and

Explain why the
graphs appear to be identical.
�2 � y � 8.

0.1 � x � 5

y2 �
d

dx
�ln x�

y1 �
1
x

The icon indicates that you will find a CAS Investigation on the book’s website. The CAS
Investigation is a collaborative exploration of this example using the computer algebra systems
Maple and Mathematica.



EXAMPLE 5 Logarithmic Properties as Aids to Differentiation

Differentiate 

Solution

Write original function.

Rewrite before differentiating.

Differentiate.

Simplify. ■

On occasion, it is convenient to use logarithms as aids in differentiating 
logarithmic functions. This procedure is called logarithmic differentiation.

EXAMPLE 6 Logarithmic Differentiation

Find the derivative of

Solution Note that for all So, is defined. Begin by taking the
natural logarithm of each side of the equation. Then apply logarithmic properties and
differentiate implicitly. Finally, solve for 

Write original equation.

Take natural log of each side.

Logarithmic properties

Differentiate.

Simplify.

Solve for 

Substitute for 

Simplify. ■�
�x � 2��x2 � 2x � 2�

�x2 � 1�3� 2

y.�
�x � 2�2

�x2 � 1�
x2 � 2x � 2

�x � 2��x2 � 1��

y�.y� � y� x2 � 2x � 2
�x � 2��x2 � 1��

�
x2 � 2x � 2

�x � 2��x2 � 1�

y�

y
� 2� 1

x � 2	 �
1
2�

2x
x2 � 1	

 ln y � 2 ln�x � 2� �
1
2

 ln�x2 � 1�

 ln y � ln
�x � 2�2

�x2 � 1

y �
�x � 2�2

�x2 � 1
,  x � 2

y�.

ln yx � 2.y > 0

y �
�x � 2�2

�x2 � 1
,  x � 2.

non

�
1
x

�
4x

x2 � 1
�

3x2

2x3 � 1

f��x� �
1
x

� 2� 2x
x2 � 1	 �

1
2 �

6x2

2x3 � 1	
� ln x � 2 ln�x2 � 1� �

1
2

 ln�2x3 � 1�

f�x� � ln
x�x2 � 1�2

�2x3 � 1

f�x� � ln
x�x2 � 1�2

�2x3 � 1
.
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NOTE In Examples 4 and 5, be sure you see the benefit of applying logarithmic properties
differentiating. Consider, for instance, the difficulty of direct differentiation of the

function given in Example 5. ■

before



Because the natural logarithm is undefined for negative numbers, you will often
encounter expressions of the form The following theorem states that you can
differentiate functions of the form as if the absolute value notation was not
present.

EXAMPLE 7 Derivative Involving Absolute Value

Find the derivative of 

Solution Using Theorem 5.4, let and write

Simplify.

EXAMPLE 8 Finding Relative Extrema

Locate the relative extrema of 

Solution Differentiating you obtain

Because when you can apply the First Derivative Test and
conclude that the point is a relative minimum. Because there are no other
critical points, it follows that this is the only relative extremum (see Figure 5.7).

■

��1, ln 2�
x � �1,dy�dx � 0

dy
dx

�
2x � 2

x2 � 2x � 3
.

y,

y � ln�x2 � 2x � 3�.

� �tan x.

u � cos x�
�sin x
cos x

d
dx

�ln�u�� �
u�

u

d
dx

�ln�cos x�� �
u�

u

u � cos x

f�x� � ln�cos x�.

y � ln�u�
ln�u�.
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THEOREM 5.4 DERIVATIVE INVOLVING ABSOLUTE VALUE

If is a differentiable function of such that then

d
dx

�ln�u�� �
u�

u
.

u � 0,xu

PROOF If then and the result follows from Theorem 5.3. If 
then and you have 

■�
u�

u
.

�
�u�

�u

d
dx

�ln�u�� �
d

dx
�ln��u��

�u� � �u,
u < 0,�u� � u,u > 0,

x

2

−1−2

Relative minimum

(−1, ln 2)

y = ln (x2 + 2x + 3)

y

The derivative of changes from negative to
positive at 
Figure 5.7

x � �1.
y



1. Complete the table below. Use a graphing utility and Simpson’s
Rule with to approximate the integral 

2. (a) Plot the points generated in Exercise 1 and connect them
with a smooth curve. Compare the result with the graph of

(b) Use a graphing utility to graph for
Compare the result with the graph of

In Exercises 3–6, use a graphing utility to evaluate the
logarithm by (a) using the natural logarithm key and (b) using
the integration capabilities to evaluate the integral 

3. ln 45 4. ln 8.3

5. ln 0.8 6. ln 0.6

In Exercises 7–10, match the function with its graph. [The
graphs are labeled (a), (b), (c), and (d).]

(a) (b)

(c) (d)

7. 8.

9. 10.

In Exercises 11–18, sketch the graph of the function and state its
domain.

11. 12.

13. 14.

15. 16.

17. 18.

In Exercises 19 and 20, use the properties of logarithms to
approximate the indicated logarithms, given that 
and

19. (a) (b) (c) (d)

20. (a) (b) (c) (d)

In Exercises 21–30, use the properties of logarithms to expand
the logarithmic expression.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

In Exercises 31–36, write the expression as a logarithm of a
single quantity.

31. 32.

33.

34.

35.

36.

In Exercises 37 and 38, (a) verify that by using a graphing
utility to graph and in the same viewing window and 
(b) verify that algebraically.

37.

38.

In Exercises 39–42, find the limit.

39. 40.

41. 42.

In Exercises 43– 46, find an equation of the tangent line to the
graph of the logarithmic function at the point 

43. 44.

45. 46.

In Exercises 47–76, find the derivative of the function.

47. 48.

49. 50.

51. 52. y � x2 ln xy � �ln x�4

h�x� � ln�2x2 � 1�g�x� � ln x2

f �x� � ln�x � 1�f �x� � ln�3x�

y � ln x1�2y � x4

y � ln x3�2y � ln x 3

�1, 0�.

lim
x→5�

 ln 
x

�x � 4
lim

x→2�
 ln�x 2�3 � x��

lim
x→6�

 ln�6 � x�lim
x→3�

 ln�x � 3�

g�x� �
1
2�ln x � ln�x 2 � 1��f �x� � ln�x�x 2 � 1�,

g�x� � 2 ln x � ln 4x > 0,f �x� � ln  
x 2

4
,

f � g
gf

f � g

3
2�ln�x 2 � 1� � ln�x � 1� � ln�x � 1��
2 ln 3 �

1
2 ln�x 2 � 1�

2�ln x � ln�x � 1� � ln�x � 1��

1
3�2 ln�x � 3� � ln x � ln�x 2 � 1��

3 ln x � 2 ln y � 4 ln zln�x � 2� � ln�x � 2�

ln  
1
e

ln z�z � 1�2

ln�3e2�ln�x � 1
x

ln�a � 1ln�x�x2 � 5�

ln�xyz�ln
xy
z

ln�x5ln
x
4

ln 1
72ln 3�12ln 24ln 0.25

ln �3ln 81ln 2
3ln 6

ln 3 y 1.0986.
ln 2 y 0.6931

f �x� � ln�x � 2) � 1h�x) � ln�x � 2)

g�x� � 2 � ln xf �x� � ln�x � 1�
f �x� � ln�x�f �x� � ln 2x

f �x� � �2 ln xf �x� � 3 ln x

f �x� � �ln��x�f �x� � ln�x � 1�
f �x� � �ln xf �x� � ln x � 1

x

1

2

−1

−3

−2

31 4 5 

y

x

2

−1
−1−3−4

−2

y

x

1

2

3

4

y

1 2 3 4 5

x

1

2

−1

−3

−2

2 3 4 5 

y

�x
1 �1/t� dt.

y � ln x.
0.2 � x � 4.

y � �x
1�1�t� dt

y � ln x.

�x
1 �1�t� dt.n � 10
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5.1 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

x 0.5 1.5 2 2.5 3 3.5 4


x

1
�1/t� dt

www.CalcChat.com


53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67.

68.

69. 70.

71. 72.

73. 74.

75. 76.

In Exercises 77– 82, (a) find an equation of the tangent line to
the graph of at the given point, (b) use a graphing utility to
graph the function and its tangent line at the point, and (c) use the
derivative feature of a graphing utility to confirm your results.

77.

78.

79.

80.

81.

82.

In Exercises 83–86, use implicit differentiation to find 

83. 84.

85. 86.

In Exercises 87 and 88, use implicit differentiation to find an
equation of the tangent line to the graph at the given point.

87.

88.

In Exercises 89 and 90, show that the function is a solution of
the differential equation.

89.

90.

In Exercises 91–96, locate any relative extrema and inflection
points. Use a graphing utility to confirm your results.

91. 92.

93. 94.

95. 96.

Linear and Quadratic Approximations In Exercises 97 and 98,
use a graphing utility to graph the function. Then graph 

and

in the same viewing window. Compare the values of and 
and their first derivatives at 

97. 98.

In Exercises 99 and 100, use Newton’s Method to approximate,
to three decimal places, the -coordinate of the point of intersec-
tion of the graphs of the two equations. Use a graphing utility to
verify your result.

99. 100.

In Exercises 101–106, use logarithmic differentiation to find

101.

102.

103. 104.

105.

106. y �
�x � 1��x � 2�
�x � 1��x � 2�,  x > 2

y �
x�x � 1�3�2

�x � 1
,  x > 1

y ��x2 � 1
x2 � 1

,  x > 1y �
x2�3x � 2

�x � 1�2 ,  x >
2
3

y � �x2�x � 1��x � 2�,  x > 0

y � x�x2 � 1,  x > 0

dy/dx.

y � 3 � xy � ln x,y � �xy � ln x,

x

f �x� � x ln xf �x� � ln x

x � 1.
P2P1,f,

P2�x� � f �1� 1 f��1��x � 1� 1 1
2 f� �1��x � 1�2

P1�x� � f �1� 1 f��1��x � 1�

y � x2 ln
x
4

y �
x

ln x

y �
ln x

x
y � x ln x

y � x � ln xy �
x2

2
� ln x

x � y � xy� � 0y � x ln x � 4x

xy� � y� � 0y � 2 ln x � 3

Differential EquationFunction

�e, 1�y2 � ln xy � 2,

�1, 0�x � y � 1 � ln�x2 � y2�,

4xy � ln x2y � 74x3 � ln y2 � 2y � 2x

ln xy � 5x � 30x2 � 3 ln y � y2 � 10

dy/dx.

��1, 0�f �x� �
1
2

x ln x2,

�1, 0�f �x� � x3 ln x,

�1, 0�f �x� � sin 2x ln x2,

�	

4
, ln�3

2	f �x� � ln�1 � sin2 x,

�0, 4�f �x� � 4 � x2 � ln�1
2 x � 1�,
�1, 3�f �x� � 3x2 � ln x,

f

g�x� � 
ln x

1
�t 2 � 3� dtf �x� � 
ln�2x�

2
�t � 1� dt

y � ln�2 � cos2 xy � ln��1 � sin x
2 � sin x �

y � ln�sec x � tan x�y � ln� cos x
cos x � 1�

y � ln�csc x�y � ln�sin x�
y �

��x2 � 4
2x2 �

1
4

 ln �2 � �x2 � 4
x 	

y �
��x2 � 1

x
� ln�x � �x2 � 1 �

f �x� � ln�x � �4 � x 2 �f �x� � ln��4 � x2

x 	
y � ln 3�x � 1

x � 1
y � ln�x � 1

x � 1

y � ln�ln x�y � ln�ln x2�

h�t� �
ln t

t
g�t� �

ln t
t 2

f �x� � ln� 2x
x � 3	f �x� � ln� x

x2 � 1	
y � ln�t�t2 � 3�3]y � ln�x�x2 � 1 �
y � ln�x2 � 4y � ln�t � 1�2
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107. In your own words, state the properties of the natural
logarithmic function.

108. Define the base for the natural logarithmic function.

109. Let be a function that is positive and differentiable on the
entire real line. Let 

(a) If is increasing, must be increasing? Explain.

(b) If the graph of is concave upward, must the graph of
be concave upward? Explain.

110. Consider the function on 

(a) Explain why Rolle’s Theorem (Section 3.2) does not
apply.

(b) Do you think the conclusion of Rolle’s Theorem is
true for Explainf ?

�1, 3�.f �x� � x � 2 ln x

g
f

fg

g�x� � ln f �x�.
f

WRITING ABOUT CONCEPTS



True or False? In Exercises 111–114, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

111.

112.

113. If then 

114. If then 

115. Home Mortgage The term (in years) of a $200,000 home
mortgage at 7.5% interest can be approximated by

where is the monthly payment in dollars.

(a) Use a graphing utility to graph the model.

(b) Use the model to approximate the term of a home mortgage
for which the monthly payment is $1398.43. What is the
total amount paid?

(c) Use the model to approximate the term of a home mortgage
for which the monthly payment is $1611.19. What is the
total amount paid?

(d) Find the instantaneous rates of change of with respect to
when and 

(e) Write a short paragraph describing the benefit of the
higher monthly payment.

116. Sound Intensity The relationship between the number of
decibels and the intensity of a sound in watts per
centimeter squared is 

Use the properties of logarithms to write the formula in
simpler form, and determine the number of decibels of a
sound with an intensity of watt per square centimeter.

117. Modeling Data The table shows the temperatures ( ) at
which water boils at selected pressures (pounds per square
inch). (Source: Standard Handbook of Mechanical Engineers)

A model that approximates the data is

(a) Use a graphing utility to plot the data and graph the model.

(b) Find the rates of change of with respect to when
and

(c) Use a graphing utility to graph Find and

interpret the result in the context of the problem.

118. Modeling Data The atmospheric pressure decreases with
increasing altitude. At sea level, the average air pressure is one
atmosphere (1.033227 kilograms per square centimeter). The
table shows the pressures (in atmospheres) at selected
altitudes (in kilometers).

(a) Use a graphing utility to find a model of the form
for the data. Explain why the result is an

error message.

(b) Use a graphing utility to find the logarithmic model
for the data.

(c) Use a graphing utility to plot the data and graph the model.

(d) Use the model to estimate the altitude when 

(e) Use the model to estimate the pressure when 

(f) Use the model to find the rates of change of pressure when
and Interpret the results.

119. Tractrix A person walking along a dock drags a boat by a
10-meter rope. The boat travels along a path known as a
tractrix (see figure). The equation of this path is

(a) Use a graphing utility to       
graph the function.

(b) What are the slopes of this
path when and 

(c) What does the slope of the
path approach as 

121. Conjecture Use a graphing utility to graph and in the
same viewing window and determine which is increasing at
the greater rate for large values of What can you conclude
about the rate of growth of the natural logarithmic function?

(a) (b)

122. To approximate you can use a function of the form

(This function is known as a Padé

approximation.) The values of and are equal
to the corresponding values of Show that these values are
equal to 1 and find the values of and such that

Then use a graphing utility to 
compare the graphs of and ex.f
f �0� � f��0� � f��0� � 1.

cb,a,
ex.

f��0�f��0�,f �0�,
f �x� �

a � bx
1 � cx

.

ex,

g�x� � 4�xf �x� � ln x,g�x� � �xf �x� � ln x,

x.

gf

x → 10?

x � 9?x � 5

x

5

5

10

10

Tractrix

y

y � 10 ln�10 � �100 � x2

x 	 � �100 � x2.

h � 20.h � 5

h � 13.

p � 0.75.

h � a � b ln p

p � a � b ln h

h
p

lim
p→�

T��p�T�.

p � 70.p � 10
pT

T � 87.97 � 34.96 ln p � 7.91�p.

p
�FT

10�10

� � 10 log10� I
10�16	.

I�

x � $1611.19.x � $1398.43x
t

x

x > 1250t � 13.375 ln� x
x � 1250	,

t

y� � 1.y � ln e,

y� � 1�	.y � ln 	,

ln xy � ln x ln y

ln�x � 25� � ln x � ln 25
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p 5 10 14.696 �1 atm� 20

T 162.24� 193.21� 212.00� 227.96�

p 30 40 60 80 100

T 250.33� 267.25� 292.71� 312.03� 327.81�

h 0 5 10 15 20 25

p 1 0.55 0.25 0.12 0.06 0.02

120. Given that where is a real number such that
determine the rates of change of when (a) 

and (b) x � 100.
x � 10fa > 0,

af �x� � ln xa,

CAPSTONE



■ Use the Log Rule for Integration to integrate a rational function.
■ Integrate trigonometric functions.

Log Rule for Integration
The differentiation rules

and

that you studied in the preceding section produce the following integration rule.

Because the second formula can also be written as

EXAMPLE 1 Using the Log Rule for Integration

Constant Multiple Rule

Log Rule for Integration

Property of logarithms

Because cannot be negative, the absolute value notation is unnecessary in the final
form of the antiderivative.

EXAMPLE 2 Using the Log Rule with a Change of Variables

Find

Solution If you let then 

Multiply and divide by 4.

Substitute:

Apply Log Rule.

Back-substitute. ■�
1
4

 ln�4x � 1� � C

�
1
4

 ln�u� � C

u � 4x � 1.�
1
4
1

u
du


 1
4x � 1

dx �
1
4
� 1

4x � 1	4 dx

du � 4 dx.u � 4x � 1,


 1
4x � 1

dx.

x2

� ln�x2� � C

� 2 ln�x� � C


2
x

dx � 2
1
x

dx

du � u� dx,

d
dx

�ln�u�� �
u�

u
d

dx
�ln�x�� �

1
x
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5.2 The Natural Logarithmic Function: Integration

THEOREM 5.5 LOG RULE FOR INTEGRATION

Let be a differentiable function of 

1. 2. 
1
u

du � ln�u� � C
1
x

dx � ln�x� � C

x.u

Alternative form of Log Rule
u�

u
dx � ln�u� � C.

E X P L O R A T I O N

Integrating Rational Functions
Early in Chapter 4, you learned
rules that allowed you to integrate

polynomial function. The Log
Rule presented in this section goes
a long way toward enabling you to
integrate rational functions. For
instance, each of the following
functions can be integrated with
the Log Rule.

Example 1

Example 2

Example 3

Example 4(a)

Example 4(c)

Example 4(d)

Example 5

Example 6

There are still some rational 
functions that cannot be integrated
using the Log Rule. Give examples
of these functions, and explain
your reasoning.

2x
�x � 1�2

x2 � x � 1
x2 � 1

1
3x � 2

x � 1
x2 � 2x

3x2 � 1
x3 � x

x
x2 � 1

1
4x � 1

2
x

any



Example 3 uses the alternative form of the Log Rule. To apply this rule, look for
quotients in which the numerator is the derivative of the denominator.

EXAMPLE 3 Finding Area with the Log Rule

Find the area of the region bounded by the graph of 

the -axis, and the line 

Solution In Figure 5.8, you can see that the area of the region is given by the 
definite integral

If you let then To apply the Log Rule, multiply and divide by 2
as shown.

Multiply and divide by 2.

EXAMPLE 4 Recognizing Quotient Forms of the Log Rule

a.

b.

c.

d.

■

With antiderivatives involving logarithms, it is easy to obtain forms that look
quite different but are still equivalent. For instance, both of the following are
equivalent to the antiderivative listed in Example 4(d).

and ln�3x � 2�1�3 � Cln��3x � 2�1�3� � C

�
1
3

 ln�3x � 2� � C

u � 3x � 2
 1
3x � 2

dx �
1
3
 3

3x � 2
dx

�
1
2

 ln�x2 � 2x� � C

u � x2 � 2x
 x � 1
x2 � 2x

dx �
1
2
 2x � 2

x2 � 2x
dx

u � tan x
sec2 x
tan x

dx � ln�tan x� � C

u � x3 � x
3x2 � 1
x3 � x

dx � ln�x3 � x� � C

� 1.151

ln 1 � 0�
1
2

 ln 10

�
1
2

�ln 10 � ln 1�


u�

u
dx � ln�u� � C�

1
2�ln�x2 � 1��

3

0


3

0

x
x2 � 1

dx �
1
2


3

0

2x
x2 � 1

dx

u� � 2x.u � x2 � 1,


3

0

x
x2 � 1

dx.

x � 3.x

y �
x

x2 � 1
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x

0.1

0.2

0.3

0.4

0.5

1 2 3

xy = 
x2 + 1

y

Area

The area of the region bounded by the graph
of the -axis, and is 
Figure 5.8

1
2 ln 10.x � 3xy,

� 
3

0

x
x2 � 1

dx



Integrals to which the Log Rule can be applied often appear in disguised form.
For instance, if a rational function has a numerator of degree greater than or equal to
that of the denominator, division may reveal a form to which you can apply the Log
Rule. This is shown in Example 5.

EXAMPLE 5 Using Long Division Before Integrating

Find

Solution Begin by using long division to rewrite the integrand.

Now, you can integrate to obtain

Rewrite using long division.

Rewrite as two integrals.

Integrate.

Check this result by differentiating to obtain the original integrand. ■

The next example presents another instance in which the use of the Log Rule is
disguised. In this case, a change of variables helps you recognize the Log Rule.

EXAMPLE 6 Change of Variables with the Log Rule

Find

Solution If you let then and 

Substitute.

Rewrite as two fractions.

Rewrite as two integrals.

Integrate.

Simplify.

Back-substitute.

Check this result by differentiating to obtain the original integrand. ■

� 2 ln�x � 1� �
2

x � 1
� C

� 2 ln�u� �
2
u

� C

� 2 ln�u� � 2�u�1

�1	 � C

� 2
du
u

� 2
u�2 du

� 2
� u
u2 �

1
u2	 du


 2x
�x � 1�2 dx � 
2�u � 1�

u2 du

x � u � 1.du � dxu � x � 1,


 2x
�x � 1�2 dx.

� x �
1
2

 ln�x2 � 1� � C.

� 
dx �
1
2
 2x

x2 � 1
dx


x2 � x � 1
x2 � 1

dx � 
�1 �
x

x2 � 1	 dx

1 �
x

x2 � 1
x2 � x � 1

x2 � 1


x2 � x � 1
x2 � 1

dx.
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1
x2 � 1 ) x2 � x � 1

x2 � 1
x

If you have access
to a computer algebra system, use 
it to find the indefinite integrals in
Examples 5 and 6. How does the form
of the antiderivative that it gives you
compare with that given in Examples
5 and 6?

TECHNOLOGY



As you study the methods shown in Examples 5 and 6, be aware that both
methods involve rewriting a disguised integrand so that it fits one or more of the basic
integration formulas. Throughout the remaining sections of Chapter 5 and in Chapter
8, much time will be devoted to integration techniques. To master these techniques,
you must recognize the “form-fitting” nature of integration. In this sense, integration
is not nearly as straightforward as differentiation. Differentiation takes the form

“Here is the question; what is the answer?”

Integration is more like

“Here is the answer; what is the question?”

The following are guidelines you can use for integration.

EXAMPLE 7 u-Substitution and the Log Rule

Solve the differential equation 

Solution The solution can be written as an indefinite integral.

Because the integrand is a quotient whose denominator is raised to the first power, you
should try the Log Rule. There are three basic choices for The choices and

fail to fit the form of the Log Rule. However, the third choice does fit.
Letting produces and you obtain the following.

Divide numerator and denominator by 

Substitute:

Apply Log Rule.

Back-substitute.

So, the solution is ■y � ln�ln x� � C.

� ln�ln x� � C

� ln�u� � C

u � ln x.� 
u�

u
dx

x.
 1
x ln x

dx � 
1�x
ln x

dx

u� � 1�x,u � ln x
u��uu � x ln x

u � xu.

y � 
 1
x ln x

dx

dy
dx

�
1

x ln x
.
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Keep in mind that you 
can check your answer to an integration
problem by differentiating the answer.
For instance, in Example 7, the deriva-
tive of is
y� � 1��x ln x�.

y � ln�ln x� � C

STUDY TIP

GUIDELINES FOR INTEGRATION

1. Learn a basic list of integration formulas. (Including those given in this
section, you now have 12 formulas: the Power Rule, the Log Rule, and ten
trigonometric rules. By the end of Section 5.7, this list will have expanded 
to 20 basic rules.)

2. Find an integration formula that resembles all or part of the integrand, and,
by trial and error, find a choice of that will make the integrand conform 
to the formula.

3. If you cannot find a -substitution that works, try altering the integrand. You
might try a trigonometric identity, multiplication and division by the same
quantity, addition and subtraction of the same quantity, or long division. 
Be creative.

4. If you have access to computer software that will find antiderivatives
symbolically, use it.

u

u



Integrals of Trigonometric Functions
In Section 4.1, you looked at six trigonometric integration rules—the six that 
correspond directly to differentiation rules. With the Log Rule, you can now complete
the set of basic trigonometric integration formulas.

EXAMPLE 8 Using a Trigonometric Identity

Find

Solution This integral does not seem to fit any formulas on our basic list. However,
by using a trigonometric identity, you obtain

Knowing that you can let and write

Trigonometric identity

Substitute:

Apply Log Rule.

Back-substitute. ■

Example 8 uses a trigonometric identity to derive an integration rule for the
tangent function. The next example takes a rather unusual step (multiplying and
dividing by the same quantity) to derive an integration rule for the secant function.

EXAMPLE 9 Derivation of the Secant Formula

Find

Solution Consider the following procedure.

Letting be the denominator of this quotient produces

So, you can conclude that 

Rewrite integrand.

Substitute:

Apply Log Rule.

Back-substitute. ■� ln�sec x � tan x� � C.

� ln�u� � C

u � sec x � tan x.� 
u�

u
dx


sec x dx � 
sec2 x � sec x tan x
sec x � tan x

dx

u� � sec x tan x � sec2 x.u � sec x � tan x

u

� 
sec2 x � sec x tan x
sec x � tan x

dx


sec x dx � 
sec x�sec x � tan x
sec x � tan x	 dx


sec x dx.

� �ln�cos x� � C.

� �ln�u� � C

u � cos x.� �
u�

u
dx


tan x dx � �
�sin x
cos x

dx

u � cos xDx�cos x� � �sin x,


tan x dx � 
sin x
cos x

dx.


tan x dx.
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INTEGRALS OF THE SIX BASIC TRIGONOMETRIC FUNCTIONS


csc u du � �ln�csc u � cot u� � C
sec u du � ln�sec u � tan u� � C


cot u du � ln�sin u� � C
tan u du � �ln�cos u� � C


cos u du � sin u � C
sin u du � �cos u � C

With the results of Examples 8 and 9, you now have integration formulas for
and All six trigonometric rules are summarized below. (For

proofs of and see Exercises 91 and 92.)

EXAMPLE 10 Integrating Trigonometric Functions

Evaluate 

Solution Using you can write

for

EXAMPLE 11 Finding an Average Value

Find the average value of on the interval 

Solution

Simplify.

Integrate.

The average value is about 0.441, as shown in Figure 5.9. ■

� 0.441

� �
4
	

 ln��2
2 	

� �
4
	�ln��2

2 	 � ln�1��
�

4
	��ln�cos x��

	�4

0

�
4
	
	�4

0
tan x dx

Average value �
1

b � a

b

a

f �x� dxAverage value �
1

�	�4� � 0 
	�4

0
tan x dx

�0,
	

4�.f �x� � tan x

� 0.881.

� ln��2 � 1� � ln 1

� ln�sec x � tan x��	�4

0

0 � x �
	

4
.sec x � 0� 
	�4

0
sec x dx


	�4

0

�1 � tan2 x dx � 
	�4

0

�sec2 x dx

1 � tan2 x � sec2 x,


	�4

0

�1 � tan2 x dx.

csc u,cot u
sec x.tan x,cos x,sin x,

NOTE Using trigonometric identities
and properties of logarithms, you could
rewrite these six integration rules in
other forms. For instance, you could
write

(See Exercises 93–96.)


csc u du � ln�csc u � cot u� � C.

x

1

2

π
4

Average value ≈ 0.441

y

f (x) = tan x

Figure 5.9



In Exercises 1–26, find the indefinite integral.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

In Exercises 27–30, find the indefinite integral by -substitution.
( : Let be the denominator of the integrand.)

27. 28.

29. 30.

In Exercises 31– 40, find the indefinite integral.

31. 32.

33. 34.

35. 36.

37. 38.

39.

40.

In Exercises 41– 46, solve the differential equation. Use a
graphing utility to graph three solutions, one of which passes
through the given point.

41. 42.

43. 44.

45.

46.

47. Determine the function if 

48. Determine the function if 

Slope Fields In Exercises 49– 52, a differential equation, a
point, and a slope field are given. (a) Sketch two approximate
solutions of the differential equation on the slope field, one of
which passes through the given point. (b) Use integration to find
the particular solution of the differential equation and use a
graphing utility to graph the solution. Compare the result with
the sketches in part (a). To print an enlarged copy of the graph,
go to the website www.mathgraphs.com.

49. 50.

51. 52.

x

y

−

4

−4

π
2

π
2x

y

6
−1

−2

1

2

3

4

�0, 1�dy
dx

� sec x,�1, 4�dy
dx

� 1 �
1
x
,

x

1

2

3

−1

−2

−1

−3

y

5
x

3

4−2

−3

y

�1, �2�dy
dx

�
ln x

x
,�0, 1�dy

dx
�

1
x � 2

,

f��2� � 0, x > 1.

f �2� � 3,f��x� � �
4

�x � 1�2 � 2,f

f��1� � 1, x > 0.

f �1� � 1,f��x� �
2
x2,f

�	, 4�dr
dt

�
sec2 t

tan t � 1
,

�0, 2�ds
d

� tan 2,

�0, 4�dy
dx

�
2x

x2 � 9
,�1, 0�dy

dx
�

3
2 � x

,

��1, 0�dy
dx

�
x � 2

x
,�1, 2�dy

dx
�

4
x
,


�sec 2x � tan 2x� dx


sec x tan x
sec x � 1

dx


csc2 t
cot t

dt
 cos t
1 � sin t

dt


�2 � tan


4	 d
 �cos 3 � 1� d


sec
x
2

dx
csc 2x dx


tan 5 d
 cot 


3
d


 3�x
3�x � 1

dx
 �x
�x � 3

dx


 1

1 � �3x
dx
 1

1 � �2x
dx

uHint
u


x�x � 2�
�x � 1�3 dx
 2x

�x � 1�2 dx


 1
x2�3�1 � x1�3� dx
 1

�x � 1
dx


 1
x ln x3 dx
�ln x�2

x
dx


x3 � 3x2 � 4x � 9
x2 � 3

dx
x 4 � x � 4
x2 � 2

dx


x3 � 6x � 20
x � 5

dx
x3 � 3x2 � 5
x � 3

dx


2x2 � 7x � 3
x � 2

dx
x2 � 3x � 2
x � 1

dx


 x�x � 2�
x3 � 3x2 � 4

dx
 x2 � 2x � 3
x3 � 3x2 � 9x

dx


 x
�9 � x2

dx
x2 � 4
x

dx


 x2 � 2x
x3 � 3x2 dx
4x3 � 3

x4 � 3x
dx


 x2

5 � x3 dx
 x
x2 � 3

dx


 1
4 � 3x

dx
 1
2x � 5

dx


 1
x � 5

dx
 1
x � 1

dx


10
x

dx
5
x

dx
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5.2 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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In Exercises 85– 88, state the integration formula you would
use to perform the integration. Do not integrate.

85. 86.

87. 88. 
sec2 x
tan x

dx
 x
x2 � 4

dx


 x
�x2 � 4�3 dx
 3�x dx

WRITING ABOUT CONCEPTS

In Exercises 53– 60, evaluate the definite integral. Use a graphing
utility to verify your result.

53. 54.

55. 56.

57. 58.

59. 60.

In Exercises 61– 66, use a computer algebra system to find or
evaluate the integral.

61. 62.

63. 64.

65. 66.

In Exercises 67–70, find 

67. 68.

69. 70.

Approximation In Exercises 71 and 72, determine which value
best approximates the area of the region between the -axis and
the graph of the function over the given interval. (Make your
selection on the basis of a sketch of the region and not by
performing any calculations.)

71.

(a) (b) (c) (d) (e)

72.

(a) 3 (b) 7 (c) (d) 5 (e) 1

Area In Exercises 73–76, find the area of the given region. Use
a graphing utility to verify your result.

73. 74.

75. 76.

Area In Exercises 77–80, find the area of the region bounded
by the graphs of the equations. Use a graphing utility to verify
your result.

77.

78.

79.

80.

Numerical Integration In Exercises 81– 84, use the Trapezoidal
Rule and Simpson’s Rule to approximate the value of the
definite integral. Let and round your answer to four
decimal places. Use a graphing utility to verify your result.

81. 82.

83. 84.

89. Find a value of such that 
x

1

3
t

dt � 
x

1�4

1
t

dt.x


	�3

�	�3
 sec x dx
6

2
 ln x dx


4

0

8x
x2 � 4

dx
5

1

12
x

dx

n � 4

y � 0x � 4,x � 1,y � 2x � tan 0.3x,

y � 0x � 2,x � 0,y � 2 sec 
	x
6

,

y � 0x � 5,x � 1,y �
x � 6

x
,

y � 0x � 4,x � 1,y �
x2 � 4

x
,

y

x

−1

1

2

π− π
2

π

y

x

1

− π
2

π
2

y �
sin x

1 � cos x
y � tan x

y

x
1 2 3 4

1

2

3

4

y

x
−2 2 4 6

−2

2

4

6

y �
2

x ln x
y �

6
x

�2

�0, 4�f �x� �
2x

x2 � 1
,

31.251
2�66

�0, 1�f �x� � sec x,

x

F�x� � 
x2

1

1
t

dtF �x� � 
3x

1

1
t

dt

F �x� � 
x

0
 tan t dtF �x� � 
x

1

1
t

dt

F��x�.


	�4

�	�4

sin2 x � cos2 x
cos x

dx
	�2

	�4
�csc x � sin x� dx


 x2

x � 1
dx
 �x

x � 1
dx


 1 � �x
1 � �x

dx
 1
1 � �x

dx


0.2

0.1
�csc 2 � cot 2�2 d
2

1

1 � cos 

 � sin 
d


1

0

x � 1
x � 1

dx
2

0

x2 � 2
x � 1

dx


e2

e

1
x ln x

dx
e

1

�1 � ln x�2

x
dx


1

�1

1
2x � 3

dx
4

0

5
3x � 1

dx

90. Find a value of such that 

is equal to (a) ln 5 and (b) 1.


x

1

1
t

dt

x

CAPSTONE

CAS
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91. Show that 

92. Show that 

In Exercises 93–96, show that the two formulas are equivalent.

93.

94.

95.

96.

In Exercises 97–100, find the average value of the function over
the given interval.

97. 98.

99. 100.

101. Population Growth A population of bacteria is changing at
a rate of 

where is the time in days. The initial population (when
is 1000. Write an equation that gives the population at

any time and find the population when days.

102. Heat Transfer Find the time required for an object to cool
from 300 F to F by evaluating

where is time in minutes.

103. Average Price The demand equation for a product is 

Find the price on the interval 

104. Sales The rate of change in sales is inversely proportional
to time measured in weeks. Find as a function of 
if sales after 2 and 4 weeks are 200 units and 300 units,
respectively.

True or False? In Exercises 105–108, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

105.

106.

107.

108.

109. Orthogonal Trajectory

(a) Use a graphing utility to graph the equation

(b) Evaluate the integral to find in terms of 

For a particular value of the constant of integration, graph
the result in the same viewing window used in part (a).

(c) Verify that the tangents to the graphs in parts (a) and (b)
are perpendicular at the points of intersection.

110. Graph the function

on the interval 

(a) Find the area bounded by the graph of and the line

(b) Determine the values of the slope such that the line
and the graph of enclose a finite region. 

(c) Calculate the area of this region as a function of 

111. Napier’s Inequality For show that

112. Prove that the function

is constant on the interval �0, ��.

F �x� � 
2x

x

1
t

dt

1
y

<
ln y � ln x

y � x
<

1
x
.

0 < x < y,

m.

fy � mx
m

y �
1
2 x.

f

�0, ��.

f �x� �
x

1 � x2

y2 � e���1�x� dx

x.y2

2x2 � y2 � 8.


2

�1

1
x

dx � �ln�x��
2

�1
� ln 2 � ln 1 � ln 2

c � 0
1
x

dx � ln�cx�,
� ln x dx � �1�x� � C

�ln x�1�2 �
1
2�ln x�

tS�t > 1�t
S

40 � x � 50.paverage

p �
90,000

400 � 3x
.

t

t �
10

ln 2

300

250

1
T � 100

dT

250��

t � 3t,
t � 0)

t

dP
dt

�
3000

1 � 0.25t

�0, 2�f �x� � sec
	x
6

,�1, e�f �x� �
2 ln x

x
,

y

x
1 2 3 4

−2
−1

Average
value

y

x
−2 −1−3−4 1 2 3 4

1
2
3
4
5
6
7

Average
value

�2, 4�f �x� �
4�x � 1�

x2 ,�2, 4�f �x� �
8
x2,


csc x dx � ln�csc x � cot x� � C


csc x dx � �ln�csc x � cot x� � C


sec x dx � �ln�sec x � tan x� � C


sec x dx � ln�sec x � tan x� � C


cot x dx � �ln�csc x� � C


cot x dx � ln�sin x� � C


tan x dx � ln�sec x� � C


tan x dx � �ln�cos x� � C


 csc u du � �ln�csc u � cot u� � C.


 cot u du � ln�sin u� � C.
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5.3 Inverse Functions
■ Verify that one function is the inverse function of another function.
■ Determine whether a function has an inverse function.
■ Find the derivative of an inverse function.

Inverse Functions
Recall from Section P.3 that a function can be represented by a set of ordered pairs.
For instance, the function from to can
be written as

By interchanging the first and second coordinates of each ordered pair, you can form
the inverse function of This function is denoted by It is a function from to

and can be written as

Note that the domain of is equal to the range of and vice versa, as shown in
Figure 5.10. The functions and have the effect of “undoing” each other. That is,
when you form the composition of with or the composition of with you
obtain the identity function.

and

Here are some important observations about inverse functions.

1. If is the inverse function of then is the inverse function of 

2. The domain of is equal to the range of and the range of is equal to the
domain of 

3. A function need not have an inverse function, but if it does, the inverse function is
unique (see Exercise 108).

You can think of as undoing what has been done by For example, subtrac-
tion can be used to undo addition, and division can be used to undo multiplication.
Use the definition of an inverse function to check the following.

and are inverse functions of each other.

and are inverse functions of each other.f�1�x� �
x
c

, c � 0,f �x� � cx

f�1�x� � x � cf �x� � x � c

f.f�1

f.
f�1f,f�1

g.ff,g

f�1� f �x�� � xf � f�1�x�� � x

f,f�1f�1f
f�1f

f�1,f

f�1: ��4, 1�, �5, 2�, �6, 3�, �7, 4��.

A,
Bf�1.f.

f : ��1, 4�, �2, 5�, �3, 6�, �4, 7��.

B � �4, 5, 6, 7�A � �1, 2, 3, 4�f �x� � x � 3

DEFINITION OF INVERSE FUNCTION

A function is the inverse function of the function if

for each in the domain of 

and

for each in the domain of 

The function is denoted by (read “ inverse”).ff�1g

f.xg� f �x�� � x

gxf �g�x�� � x

fg

NOTE Although the notation used to denote an inverse function resembles exponential
notation, it is a different use of as a superscript. That is, in general, ■f �1�x� � 1�f �x�.�1

f

f −1

Domain of range of
Domain of range of
Figure 5.10

ff�1 �
f�1f �

E X P L O R A T I O N

Finding Inverse Functions
Explain how to “undo” each of
the following functions. Then use
your explanation to write the
inverse function of

a.

b.

c.

d.

e.

f.

Use a graphing utility to graph
each function and its inverse
function in the same “square”
viewing window. What observation
can you make about each pair of
graphs?

f �x� � 4�x � 2�
f �x� � x3

f �x� � 3x � 2

f �x� �
x
2

f �x� � 6x

f �x� � x � 5

f.



EXAMPLE 1 Verifying Inverse Functions

Show that the functions are inverse functions of each other.

and

Solution Because the domains and ranges of both and consist of all real numbers,
you can conclude that both composite functions exist for all The composition of 
with is given by

The composition of with is given by

Because and you can conclude that and are inverse
functions of each other (see Figure 5.11). ■

In Figure 5.11, the graphs of and appear to be mirror images of each
other with respect to the line The graph of is a reflection of the graph of 
in the line This idea is generalized in the following theorem.y � x.

ff�1y � x.
g � f�1f

gfg� f �x�� � x,f �g�x�� � x

� x.

� 3�x3

� 3�2x3

2

g� f �x�� � 3��2x3 � 1� � 1
2

fg

� x.

� x � 1 � 1

� 2�x � 1
2 	 � 1

f �g�x�� � 2� 3�x � 1
2 	

3

� 1

g
fx.

gf

g�x� � 3�x � 1
2

f �x� � 2x3 � 1
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In Example 1, try comparing the functions and verbally.

For First cube then multiply by 2, then subtract 1.

For First add 1, then divide by 2, then take the cube root.

Do you see the “undoing pattern”? ■

g:

x,f :

gfSTUDY TIP

THEOREM 5.6 REFLECTIVE PROPERTY OF INVERSE FUNCTIONS

The graph of contains the point if and only if the graph of contains
the point �b, a�.

f�1�a, b�f

PROOF If is on the graph of then and you can write

So, is on the graph of as shown in Figure 5.12. A similar argument will
prove the theorem in the other direction. ■

f�1,�b, a�

f�1�b� � f�1� f �a�� � a.

f �a� � bf,�a, b�

x

−2

−2

1

1

2

2

y = x

f(x) = 2x3 − 1

g(x) = 3
x + 1

2

y

and are inverse functions of each other.
Figure 5.11

gf

x

(b, a)

(a, b)

y = f(x)

y = x
y

y = f −1(x)

The graph of is a reflection of the graph
of in the line 
Figure 5.12

y � x.f
f�1



Existence of an Inverse Function
Not every function has an inverse function, and Theorem 5.6 suggests a graphical test
for those that do—the Horizontal Line Test for an inverse function. This test states that
a function has an inverse function if and only if every horizontal line intersects the
graph of at most once (see Figure 5.13). The following theorem formally states why
the Horizontal Line Test is valid. (Recall from Section 3.3 that a function is strictly
monotonic if it is either increasing on its entire domain or decreasing on its entire
domain.)

EXAMPLE 2 The Existence of an Inverse Function

Which of the functions has an inverse function?

a. b.

Solution

a. From the graph of shown in Figure 5.14(a), it appears that is increasing over its
entire domain. To verify this, note that the derivative, is positive
for all real values of So, is strictly monotonic and it must have an inverse 
function.

b. From the graph of shown in Figure 5.14(b), you can see that the function does not
pass the horizontal line test. In other words, it is not one-to-one. For instance, has
the same value when 0, and 1.

Not one-to-one

So, by Theorem 5.7, does not have an inverse function. ■f

f ��1� � f �1� � f �0� � 1

x � �1,
f

f

fx.
f��x� � 3x2 � 1,

ff

f �x� � x3 � x � 1f �x� � x3 � x � 1

f
f
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THEOREM 5.7 THE EXISTENCE OF AN INVERSE FUNCTION

1. A function has an inverse function if and only if it is one-to-one.

2. If is strictly monotonic on its entire domain, then it is one-to-one and
therefore has an inverse function.

f

PROOF To prove the second part of the theorem, recall from Section P.3 that is
one-to-one if for and in its domain

Now, choose and in the domain of If then, because is strictly
monotonic, it follows that either

or

In either case, So, is one-to-one on the interval. The proof of the first
part of the theorem is left as an exercise (see Exercise 109). ■

ff �x1� � f �x2�.

f �x1� > f �x2�.f �x1� < f �x2�

fx1 � x2,f.x2x1

f �x1� � f �x2�.x1 � x2

x2x1

f

NOTE Often it is easier to prove that a function has an inverse function than to find the
inverse function. For instance, it would be difficult algebraically to find the inverse function of
the function in Example 2(a). ■

x

y = f(x)

a b 

f(a) = f(b)

y

If a horizontal line intersects the graph of
twice, then is not one-to-one.
Figure 5.13

f
f

x

−3

−2

−2

−1

−1

1

1

2

2

3

f (x) = x3 + x − 1

y

(a) Because is increasing over its entire
domain, it has an inverse function.

f

x
−2 −1

−1

1 2 

2

3

f(x) = x3 − x + 1

(0, 1)(−1, 1)

(1, 1)

y

(b) Because is not one-to-one, it does not
have an inverse function.

Figure 5.14

f



The following guidelines suggest a procedure for finding an inverse function.

EXAMPLE 3 Finding an Inverse Function

Find the inverse function of 

Solution From the graph of in Figure 5.15, it appears that is increasing over its

entire domain, To verify this, note that is positive on the

domain of So, is strictly monotonic and it must have an inverse function. To find
an equation for the inverse function, let and solve for in terms of 

Let

Square each side.

Solve for 

Interchange and 

Replace by 

The domain of is the range of which is You can verify this result as
shown.

■x �
3
2

f�1� f �x�� �
��2x � 3 �2

� 3
2

�
2x � 3 � 3

2
� x,

x � 0f � f�1�x�� ��2�x2 � 3
2 	 � 3 � �x2 � x,

�0, ��.f,f�1

f �1�x�.yf�1�x� �
x2 � 3

2

y.xy �
x2 � 3

2

x.x �
y2 � 3

2

 2x � 3 � y2

y � f �x�.�2x � 3 � y

y.xy � f �x�
ff.

f� �x� �
1

�2x � 3�3
2

, �	.

ff

f �x� � �2x � 3.
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NOTE Remember that any letter can be used to represent the independent variable. So,

all represent the same function. ■

f�1�s� �
s2 � 3

2

f�1�x� �
x2 � 3

2

f �1�y� �
y 2 � 3

2

x
1

1

2

2

3

3

4

4

y = x

f(x) =     2x − 3

f −1(x) =
2

x2 + 3

(2, 1) 

(1, 2)

0,( (3
2

, 0( (3
2

y

The domain of is the range of
Figure 5.15

f.�0, ��,f�1,

GUIDELINES FOR FINDING AN INVERSE FUNCTION

1. Use Theorem 5.7 to determine whether the function given by has
an inverse function.

2. Solve for as a function of 

3. Interchange and The resulting equation is 

4. Define the domain of as the range of 

5. Verify that and f�1� f �x�� � x.f � f�1�x�� � x

f.f�1

y � f�1�x�.y.x

x � g�y� � f�1�y�.y:x

y � f �x�



Theorem 5.7 is useful in the following type of problem. Suppose you are given a
function that is one-to-one on its domain. By restricting the domain to an interval
on which the function is strictly monotonic, you can conclude that the new function 
one-to-one on the restricted domain.

EXAMPLE 4 Testing Whether a Function Is One-to-One

Show that the sine function 

is not one-to-one on the entire real line. Then show that is the largest
interval, centered at the origin, on which is strictly monotonic.

Solution It is clear that is not one-to-one, because many different values yield the
same value. For instance,

Moreover, is increasing on the open interval because its derivative

is positive there. Finally, because the left and right endpoints correspond to relative
extrema of the sine function, you can conclude that is increasing on the closed
interval that on any larger interval the function is not strictly 
monotonic (see Figure 5.16). ■

Derivative of an Inverse Function
The next two theorems discuss the derivative of an inverse function. The reasonableness
of Theorem 5.8 follows from the reflective property of inverse functions, as shown in
Figure 5.12. Proofs of the two theorems are given in Appendix A.

and��	�2, 	�2�
f

f��x� � cos x

��	�2, 	�2�,f

sin�0� � 0 � sin�	�.

y-
x-f

f
��	�2, 	�2�

f �x� � sin x

is
not
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THEOREM 5.8 CONTINUITY AND DIFFERENTIABILITY OF INVERSE FUNCTIONS

Let be a function whose domain is an interval If has an inverse function,
then the following statements are true.

1. If is continuous on its domain, then is continuous on its domain.

2. If is increasing on its domain, then is increasing on its domain.

3. If is decreasing on its domain, then is decreasing on its domain.

4. If is differentiable on an interval containing and then is
differentiable at f �c�.

f�1f��c� � 0,cf

f�1f

f�1f

f�1f

fI.f

THEOREM 5.9 THE DERIVATIVE OF AN INVERSE FUNCTION

Let be a function that is differentiable on an interval If has an inverse
function then is differentiable at any for which Moreover,

f��g�x�� � 0.g��x� �
1

f��g�x�� ,

f��g�x�� � 0.xgg,
fI.f

x

1

−1

π π 

( (, 1
2

−

f(x) = sin x

y

π

( (−   , −1
2
π

is one-to-one on the interval

Figure 5.16
��	�2, 	�2�.
f

E X P L O R A T I O N

Graph the inverse functions

and

Calculate the slopes of at 
and and the slopes

of at and 
What do you observe? What 
happens at �0, 0�?

�27, 3�.�8, 2�,�1, 1�,g
�3, 27�,�2, 8�,

�1, 1�,f

g�x� � x1�3.

f �x� � x3



348 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions

dy
dx

�
1

dx�dy
.

x
−2

−2

−1

−1

1

1

2

2

3

3

m = 4

m = 1
4

(2, 3)

(3, 2)

y

f −1(x)

f (x)

The graphs of the inverse functions and 
have reciprocal slopes at points and

Figure 5.17
�b, a�.

�a, b�
f�1f

x
2

2

4

4

(4, 2)

(2, 4)

(3, 9)

6

6

8

8

10

10

(9, 3)

m = 4

m = 6

m =

m =

f −1(x) = x

f (x) = x2

y

1
4

1
6

At the derivative of is 0, and the
derivative of does not exist.
Figure 5.18

f�1
f�0, 0�,

EXAMPLE 5 Evaluating the Derivative of an Inverse Function

Let

a. What is the value of when 

b. What is the value of when 

Solution Notice that is one-to-one and therefore has an inverse function.

a. Because when you know that 

b. Because the function is differentiable and has an inverse function, you can apply
Theorem 5.9 to write

Moreover, using you can conclude that

■

In Example 5, note that at the point the slope of the graph of is 4 and at
the point the slope of the graph of is (see Figure 5.17). This reciprocal
relationship (which follows from Theorem 5.9) can be written as shown below.

If then and Theorem 5.9 says that

So,

EXAMPLE 6 Graphs of Inverse Functions Have Reciprocal Slopes

Let and let Show that the slopes of the graphs of
and are reciprocals at each of the following points.

a. and b. and

Solution The derivatives of and are given by

and

a. At the slope of the graph of is At the slope of the
graph of is

b. At the slope of the graph of is At the slope of the
graph of is

So, in both cases, the slopes are reciprocals, as shown in Figure 5.18. ■

� f�1���9� �
1

2�9
�

1
2�3� �

1
6

.

f�1
�9, 3�,f��3� � 2�3� � 6.f�3, 9�,

� f�1���4� �
1

2�4
�

1
2�2� �

1
4

.

f�1
�4, 2�,f��2� � 2�2� � 4.f�2, 4�,

� f�1���x� �
1

2�x
.f��x� � 2x

f�1f

�9, 3��3, 9��4, 2��2, 4�

f�1f
f�1�x� � �x .�for x ≥  0�f �x� � x2

g��x� �
dy
dx

�
1

f��g�x�� �
1

f�� y� �
1

�dx�dy�.

f�� y� �
dx
dy

.f � y� � xy � g�x� � f�1�x�,

1
4f�1�3, 2�

f�2, 3�

� f�1���3� �
1

f��2� �
1

3
4�22� � 1

�
1
4

.

f��x� �
3
4x2 � 1,

� f�1���3� �
1

f�� f�1�3�� �
1

f��2� .

�with g � f�1�
f

f�1�3� � 2.x � 2,f �x� � 3

f

x � 3?� f�1�� �x�
x � 3?f�1�x�

f �x� �
1
4x3 � x � 1.



In Exercises 1–8, show that and are inverse functions (a)
analytically and (b) graphically.

1.

2.

3.

4.

5.

6.

7.

8.

In Exercises 9–12, match the graph of the function with the
graph of its inverse function. [The graphs of the inverse 
functions are labeled (a), (b), (c), and (d).]

(a) (b)

(c) (d)

9. 10.

11. 12.

In Exercises 13–22, use a graphing utility to graph the function.
Then use the Horizontal Line Test to determine whether the
function is one-to-one on its entire domain and therefore has an
inverse function.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

In Exercises 23–30, (a) find the inverse function of (b) graph
and on the same set of coordinate axes, (c) describe the 

relationship between the graphs, and (d) state the domain and
range of and 

23.

24.

25.

26.

27.

28.

29.

30.

In Exercises 31– 36, (a) find the inverse function of (b) use a
graphing utility to graph and in the same viewing window,
(c) describe the relationship between the graphs, and (d) state
the domain and range of and 

31. 32.

33. 34.

35.

36.

In Exercises 37 and 38, use the graph of the function to make
a table of values for the given points. Then make a second table
that can be used to find and sketch the graph of 
To print an enlarged copy of the graph, go to the website 
www.mathgraphs.com.

37. 38.

x
1

1

4 5 6

6

4

3

3

2

2

y

f

x
1

1

4

4

3

3

2

2

y

f

f �1.f �1,

f

f �x� �
x � 2

x

f �x� �
x

�x2 � 7

f �x� � x3�5x ≥  0f �x� � x2�3,

f �x� � 3 5�2x � 1f �x� � 3�x � 1

f �1.f

f �1f
f,

x � 2f �x� � �x2 � 4,

0 � x � 2f �x� � �4 � x2 ,

x � 0f �x� � x2,

f �x� � �x

f �x� � x3 � 1

f �x� � x5

f �x� � 3x

f �x� � 2x � 3

f �1.f

f �1f
f,

h�x� � �x � 4� � �x � 4�g�x� � �x � 5�3

f �x� � 5x�x � 1f �x� � ln x

g�t� �
1

�t2 � 1
h�s� �

1
s � 2

� 3

f �x� �
x2

x2 � 4
f �� � sin 

f �x� � 5x � 3f �x� �
3
4x � 6

1

2

3

1

2 3−2−3
x

y

1

2

3

1

2 3−2 −1−3

−3

x

−2

y

42

4

6

6

8

8

−4

x
−2−4

y

1

2

2 3 4 −1

−2

−2

−4

x

y

1

2

3

1

2 3−2−3

−3

x

−2

y

x

2

3

4

21−1

−2

−2−4

y

2

4

4

6

6

8

−4

x
−2−4

y

1

2

3

4

5

1

2 3−2 −1−3
x

y

0 < x � 1g�x� �
1 � x

x
,x � 0,f �x� �

1
1 � x

,

g�x� �
1
x

f �x� �
1
x
,

g�x� � �16 � xx � 0,f �x� � 16 � x2,

x � 0g�x� � x2 � 4,f �x� � �x � 4,

g�x� � 3�1 � xf �x� � 1 � x3,

g�x� � 3�xf �x� � x3,

g�x� �
3 � x

4
f �x� � 3 � 4x,

g�x� �
x � 1

5
f �x� � 5x � 1,

gf
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5.3 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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39. Cost You need 50 pounds of two commodities costing $1.25
and $1.60 per pound.

(a) Verify that the total cost is 
where is the number of pounds of the less expensive
commodity.

(b) Find the inverse function of the cost function. What does
each variable represent in the inverse function?

(c) What is the domain of the inverse function? Validate or
explain your answer using the context of the problem.

(d) Determine the number of pounds of the less expensive
commodity purchased if the total cost is $73.

40. Temperature The formula where
represents Celsius temperature as a function

of Fahrenheit temperature 

(a) Find the inverse function of 

(b) What does the inverse function represent?

(c) What is the domain of the inverse function? Validate or
explain your answer using the context of the problem.

(d) The temperature is What is the corresponding
temperature in degrees Fahrenheit?

In Exercises 41– 46, use the derivative to determine whether the
function is strictly monotonic on its entire domain and therefore
has an inverse function.

41. 42.

43. 44.

45. 46.

In Exercises 47–52, show that is strictly monotonic on the
given interval and therefore has an inverse function on that
interval.

47. 48.

49. 50.

51. 52.

In Exercises 53 and 54, find the inverse function of over the
given interval. Use a graphing utility to graph and in the
same viewing window. Describe the relationship between the
graphs.

53. 54.

Graphical Reasoning In Exercises 55–58, (a) use a graphing
utility to graph the function, (b) use the drawing feature of
a graphing utility to draw the inverse function of the function,
and (c) determine whether the graph of the inverse relation is an
inverse function. Explain your reasoning.

55. 56.

57. 58.

In Exercises 59–62, determine whether the function is one-to-
one. If it is, find its inverse function.

59. 60.

61. 62.

In Exercises 63–66, delete part of the domain so that the
function that remains is one-to-one. Find the inverse function of
the remaining function and give the domain of the inverse
function. (Note: There is more than one correct answer.)

63. 64.

65. 66.

Think About It In Exercises 67–70, decide whether the func-
tion has an inverse function. If so, what is the inverse function?

67. is the volume of water that has passed through a water line
minutes after a control valve is opened.

68. is the height of the tide hours after midnight, where

69. is the cost of a long distance call lasting minutes.

70. is the area of a circle of radius 

In Exercises 71–80, verify that has an inverse. Then use the
function and the given real number to find (Hint:
See Example 5.)

71. 72.

73.

74.

75.

76.

77. a � 3x > 2,f �x� �
x � 6
x � 2

,

a � 10 � x �
	

2
,f �x� � cos 2x,

a �
1
2

�
	

2
� x �

	

2
,f �x� � sin x,

a � �11f �x� �
1

27�x5 � 2x3�,
a � 2f �x� � x3 � 2x � 1,

a � 7f �x� � 5 � 2x3,a � 26f �x� � x3 � 1,

� f �1�� �a�.af
f

r.A�r�
tC�t�

0 � t < 24.
th�t�

t
g�t�

x
1

1

2

2

3

3

4

4

5

5

y

x

1

−1−2−3−4−5

2

3

4

5

y

f �x� � �x � 3�f �x� � �x � 3�

4

8

12

20

x
1 3−1−3

y

x
1

1

2

2

3

3

4

4

5

5

y

f �x� � 16 � x4f �x� � �x � 3�2

a � 0f �x� � ax � b,x � 2f �x� � �x � 2�,
f �x� � �3f �x� � �x � 2

f �x� �
4x

�x2 � 15
g�x� �

3x2

x2 � 1

h�x� � x�4 � x2f �x� � x3 � x � 4

�0, 10�f �x� � 2 �
3
x2,��2, 2�f �x� �

x
x2 � 4

,

f �1f
f

�0,
	

2 	f �x� � sec x,�0, 	�f �x� � cos x,

�0, 	�f �x� � cot x,�0, ��f �x� �
4
x2,

��2, ��f �x� � �x � 2�,�4, ��f �x� � �x � 4�2,

f

f �x� � cos
3x
2

f �x� � ln�x � 3�

f �x� � �x � a�3 � bf �x� �
x4

4
� 2x2

f �x� � x3 � 6x2 � 12xf �x� � 2 � x � x3

22�C.

C.

F.
CF � �459.6,

C �
5
9 �F � 32�,

x
y � 1.25x � 1.60�50 � x�,
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78.

79.

80.

In Exercises 81– 84, (a) find the domains of and (b) find
the ranges of and (c) graph and and (d) show that
the slopes of the graphs of and are reciprocals at the given
points.

81.

82.

83.

84.

In Exercises 85 and 86, find for the equation at the given
point.

85.

86.

In Exercises 87–90, use the functions and
to find the given value.

87. 88.

89. 90.

In Exercises 91–94, use the functions and
to find the given function.

91. 92.

93. 94.

99. Think About It The function is 
one-to-one and Find 

True or False? In Exercises 101–104, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

101. If is an even function, then exists.

102. If the inverse function of exists, then the intercept of is an
intercept of 

103. If where is odd, then exists.

104. There exists no function such that 

105. (a) Show that is not one-to-one on

(b) Determine the greatest value such that is one-to-one on

106. Let and be one-to-one functions. Prove that (a) is 
one-to-one and (b)

107. Prove that if has an inverse function, then 

108. Prove that if a function has an inverse function, then the
inverse function is unique.

109. Prove that a function has an inverse function if and only if it
is one-to-one.

110. Is the converse of the second part of Theorem 5.7 true? That
is, if a function is one-to-one (and therefore has an inverse
function), then must the function be strictly monotonic? If so,
prove it. If not, give a counterexample.

111. Let be twice-differentiable and one-to-one on an open
interval Show that its inverse function satisfies

If is increasing and concave downward, what is the concavity
of

112. If find 

113. Show that is one-to-one and find

114. Let Show that is its own inverse function. What

can you conclude about the graph of Explain.

115. Let

(a) Show that is one-to-one if and only if 

(b) Given find 

(c) Determine the values of and such that f � f �1.dc,b,a,

f �1.bc � ad � 0,

bc � ad � 0.f

f �x� �
ax � b
cx � d

.

f ?

yy �
x � 2
x � 1

.

� f�1���0�.

f �x� � 
x

2

�1 � t2 dt

� f �1���0�.f �x� � 
x

2

dt
�1 � t4

,

f �1 � g?
f

g� �x� � �
f ��g�x��

� f��g�x���3 .

gI.
f

� f �1��1 � f.f

� f � g��1�x� � �g�1
� f �1��x�.

f � ggf

��c, c�.
fc

���, ��.
f �x� � 2x3 � 3x2 � 36x

f � f �1.f

f �1nf �x� � xn,

f �1.x-
fy-f

f �1f

k.f �1�3� � �2.
f �x� � k�2 � x � x3�

�g � f ��1� f � g��1

f �1
� g�1g�1

� f �1

g�x� � 2x � 5
f �x� � x 1 4

�g�1
� g�1���4�� f �1

� f �1��6�
�g�1

� f �1���3�� f �1
� g�1��1�

g�x� � x3
f �x� � 1

8 x � 3

�0, 2�x � 2 ln�y 2 � 3�,
��4, 1�x � y 3 � 7y 2 � 2,

dy/dx

�2, 1�f �1�x� ��4 � x
x

�1, 2�x ≥  0f �x� �
4

1 � x2 ,

�1, 5�x � 0f �1�x� � x2 � 4,

�5, 1�f �x� � �x � 4

��1, 1�f �1�x� �
3 � x

4

�1, �1�f �x� � 3 � 4x

�1
8, 1

2�f �1�x� � 3�x

�1
2, 1

8�f �x� � x3

Point    Functions

f �1f
f �1,ff �1,f

f �1,f

a � 2f �x� � �x � 4,

a � 6x > 0,f �x� � x3 �
4
x
,

a � 2x > �1,f �x� �
x � 3
x � 1

,
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95. Describe how to find the inverse function of a one-to-one
function given by an equation in and Give an example.

96. Describe the relationship between the graph of a function
and the graph of its inverse function.

In Exercises 97 and 98, the derivative of the function has
the same sign for all in its domain, but the function is not
one-to-one. Explain.

97. 98. f �x� �
x

x2 � 4
f �x� � tan x

x

y.x

WRITING ABOUT CONCEPTS

100. Think About It The point lies on the graph of 
and the slope of the tangent line through this point is

Assume exists. What is the slope of the tangent
line to the graph of at the point �3, 1)?f �1

f �1m � 2.

f,�1, 3)

CAPSTONE



■ Develop properties of the natural exponential function.
■ Differentiate natural exponential functions.
■ Integrate natural exponential functions.

The Natural Exponential Function
The function is increasing on its entire domain, and therefore it has an
inverse function The domain of is the set of all reals, and the range is the set
of positive reals, as shown in Figure 5.19. So, for any real number 

is any real number.

If happens to be rational, then

is a rational number.

Because the natural logarithmic function is one-to-one, you can conclude that 
and agree for rational values of The following definition extends the meaning of

to include all real values of 

The inverse relationship between the natural logarithmic function and the natural
exponential function can be summarized as follows.

EXAMPLE 1 Solving Exponential Equations

Solve 

Solution You can convert from exponential form to logarithmic form by taking the
natural logarithm of each side of the equation.

Write original equation.

Take natural logarithm of each side.

Apply inverse property.

Solve for 

Use a calculator.

Check this solution in the original equation. ■

0.946 � x

x.�1 � ln 7 � x

 ln 7 � x � 1

 ln 7 � ln�ex�1�
 7 � ex�1

7 � ex�1.

x.ex
x.ex

f�1�x�

xln�ex� � x ln e � x�1� � x.

x

xf � f �1�x�� � ln � f�1�x�� � x.

x,
f�1f�1.

f �x� � ln x
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5.4 Exponential Functions: Differentiation and Integration

DEFINITION OF THE NATURAL EXPONENTIAL FUNCTION

The inverse function of the natural logarithmic function is called
the natural exponential function and is denoted by

That is,

if and only if x � ln y.y � ex

f�1�x� � ex.

f �x� � ln x

and Inverse relationshipeln x � xln�ex� � x

3

2

−1

−2

321−2 −1

y

x

f (x) = ln x

f −1(x) = ex

The inverse function of the natural logarithmic
function is the natural exponential function.
Figure 5.19

THE NUMBER e

The symbol e was first used by mathematician
Leonhard Euler to represent the base of 
natural logarithms in a letter to another
mathematician, Christian Goldbach, in 1731.



EXAMPLE 2 Solving a Logarithmic Equation

Solve 

Solution To convert from logarithmic form to exponential form, you can exponentiate
each side of the logarithmic equation.

Write original equation.

Exponentiate each side.

Apply inverse property.

Solve for 

Use a calculator. ■

The familiar rules for operating with rational exponents can be extended to the
natural exponential function, as shown in the following theorem.

In Section 5.3, you learned that an inverse function shares many properties
with So, the natural exponential function inherits the following properties from the
natural logarithmic function (see Figure 5.20).

f.
f�1

x � 75.707

x.x �
1
2�e5 � 3�

 2x � 3 � e5

eln�2x�3� � e5

 ln�2x � 3� � 5

ln�2x � 3� � 5.
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THEOREM 5.10 OPERATIONS WITH EXPONENTIAL FUNCTIONS

Let and be any real numbers.

1.

2.
ea

eb � ea�b

eaeb � ea�b

ba

PROOF To prove Property 1, you can write

Because the natural logarithmic function is one-to-one, you can conclude that

The proof of the other property is given in Appendix A. ■

eaeb � ea�b.

� ln�ea�b�.
� a � b

 ln�eaeb� � ln�ea� � ln�eb�

PROPERTIES OF THE NATURAL EXPONENTIAL FUNCTION

1. The domain of is and the range is 

2. The function is continuous, increasing, and one-to-one on its entire
domain.

3. The graph of is concave upward on its entire domain.

4. and lim
x→�

ex � �lim
x→��

ex � 0

f �x� � ex

f �x� � ex

�0, ��.���, ��,f �x� � ex

x
−1−2

1

1

2

3

(0, 1)

))−2, 1
e2

))−1,
1
e

y = ex

(1, e)

y

The natural exponential function is increasing,
and its graph is concave upward.
Figure 5.20



Derivatives of Exponential Functions
One of the most intriguing (and useful) characteristics of the natural exponential func-
tion is that it is its own derivative. In other words, it is a solution to the differential
equation This result is stated in the next theorem.

EXAMPLE 3 Differentiating Exponential Functions

a.

b.

EXAMPLE 4 Locating Relative Extrema

Find the relative extrema of 

Solution The derivative of is given by

Product Rule

Because is never 0, the derivative is 0 only when Moreover, by the First
Derivative Test, you can determine that this corresponds to a relative minimum, as
shown in Figure 5.21. Because the derivative is defined for all 
there are no other critical points. ■

x,f��x� � ex�x � 1�

x � �1.ex

� ex�x � 1�.
f��x� � x�ex� � ex�1�

f

f �x� � xex.

u � �
3
x

d
dx

�e�3�x� � eu du
dx

� � 3
x2	e�3�x �

3e�3�x

x2

u � 2x � 1
d
dx

�e2x�1� � eu du
dx

� 2e2x�1

y� � y.
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THEOREM 5.11 DERIVATIVES OF THE NATURAL EXPONENTIAL FUNCTION

Let be a differentiable function of 

1.

2.
d
dx

�eu� � eu du
dx

d
dx

�ex� � ex

x.u

PROOF To prove Property 1, use the fact that and differentiate each side
of the equation.

Definition of exponential function

Differentiate each side with respect to 

The derivative of follows from the Chain Rule. ■eu

d
dx

�ex� � ex

1
ex

d
dx

�ex� � 1

x.
d
dx

�ln ex� �
d
dx

�x�

 ln ex � x

ln ex � x,

NOTE You can interpret this theorem geometrically by saying that the slope of the graph of
at any point is equal to the coordinate of the point. ■y-�x, ex�f �x� � ex

x

1

1

2

3

f (x) = xex

Relative minimum
(−1, −e−1)

y

The derivative of changes from negative to
positive at 
Figure 5.21

x � �1.
f

■ FOR FURTHER INFORMATION To
find out about derivatives of exponential
functions of order 1/2, see the article 
“A Child’s Garden of Fractional
Derivatives” by Marcia Kleinz and
Thomas J. Osler in The College
Mathematics Journal. To view this article,
go to the website www.matharticles.com.

www.matharticles.com


EXAMPLE 5 The Standard Normal Probability Density Function

Show that the standard normal probability density function

has points of inflection when 

Solution To locate possible points of inflection, find the values for which the 
second derivative is 0.

Write original function.

First derivative

Product Rule

Second derivative

So, when and you can apply the techniques of Chapter 3 to
conclude that these values yield the two points of inflection shown in Figure 5.22.

■

EXAMPLE 6 Shares Traded

The numbers of shares traded (in millions) on the New York Stock Exchange from
1990 through 2005 can be modeled by

where represents the year, with corresponding to 1990. At what rate was the
number of shares traded changing in 2000? (Source: New York Stock Exchange, Inc.)

Solution The derivative of the given model is

By evaluating the derivative when you can conclude that the rate of change in
2000 was about

37,941 million shares per year.

The graph of this model is shown in Figure 5.23. ■

t � 10,

� 6828e0.1715t.

y� � �0.1715��39,811�e0.1715t

t � 0t

y � 39,811e0.1715t

y

x � ±1,f � �x� � 0

�
1

�2	
�e�x2�2��x2 � 1�

f � �x� �
1

�2	
���x���x�e�x2�2 � ��1�e�x2�2�

f��x� �
1

�2	
��x�e�x2�2

f �x� �
1

�2	
e�x2�2

x-

x � ±1.

f �x� �
1

�2	
e�x2�2
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x
1 2−1−2

0.1

0.2

0.3

Two points of
inflection

1
2π

f(x) = e−x2/2

y

The bell-shaped curve given by a standard
normal probability density function
Figure 5.22

NOTE The general form of a normal probability density function (whose mean is 0) is 
given by

where is the standard deviation ( is the lowercase Greek letter sigma). This “bell-shaped
curve” has points of inflection when ■x � ±�.

��

f �x� �
1

��2	
e�x2�2�2

Sh
ar

es
 tr

ad
ed

 (
in

 m
ill

io
ns

)

Year (0 ↔ 1990)

t = 10

t
12 15

50,000

100,000

150,000

200,000

250,000

350,000

450,000

550,000

500,000

400,000

300,000

3 6 9

y = 39,811e0.1715t

y

Figure 5.23



Integrals of Exponential Functions
Each differentiation formula in Theorem 5.11 has a corresponding integration formula.

EXAMPLE 7 Integrating Exponential Functions

Find

Solution If you let then 

Multiply and divide by 3.

Substitute:

Apply Exponential Rule.

Back-substitute. ■

EXAMPLE 8 Integrating Exponential Functions

Find

Solution If you let then or 

Regroup integrand.

Substitute:

Constant Multiple Rule

Apply Exponential Rule.

Back-substitute. ■� �
5
2

e�x2�C

� �
5
2

eu � C

� �
5
2 
eu du

u � �x2.� 
 5eu ��du
2 	


 5xe�x 2
dx � 
 5e�x2�x dx�

x dx � �du�2.du � �2x dxu � �x2,


 5xe�x2
dx.

�
e3x�1

3
� C

�
1
3

eu � C

u � 3x � 1.�
1
3
eu du


e3x�1dx �
1
3
e3x�1�3� dx

du � 3 dx.u � 3x � 1,


e3x�1 dx.
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THEOREM 5.12 INTEGRATION RULES FOR EXPONENTIAL FUNCTIONS

Let be a differentiable function of 

1. 2. 
 eu du � eu � C
 ex dx � ex � C

x.u

NOTE In Example 7, the missing constant factor 3 was introduced to create 
However, remember that you cannot introduce a missing variable factor in the integrand. For
instance,

■
 e�x2
dx �

1
x 
 e�x2 �x dx�.

du � 3 dx.



EXAMPLE 9 Integrating Exponential Functions

a.

b.

EXAMPLE 10 Finding Areas Bounded by Exponential Functions

Evaluate each definite integral.

a. b. c.

Solution

a. See Figure 5.24(a).

b. See Figure 5.24(b).

c. See Figure 5.24(c).

(a) (b) (c)
Figure 5.24 ■

x

1

−1
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In Exercises 1–16, solve for accurate to three decimal places.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

In Exercises 17–22, sketch the graph of the function.

17. 18.

19. 20.

21. 22.

23. Use a graphing utility to graph and the given function
in the same viewing window. How are the two graphs related?

(a) (b) (c)

24. Use a graphing utility to graph the function. Use the graph to
determine any asymptotes of the function.

(a)

(b)

In Exercises 25–28, match the equation with the correct graph.
Assume that and are positive real numbers. [The graphs are
labeled (a), (b), (c), and (d).]

(a) (b)

(c) (d)

25. 26.

27. 28.

In Exercises 29–32, illustrate that the functions are inverses of
each other by graphing both functions on the same set of 
coordinate axes.

29. 30.

31. 32.

33. Graphical Analysis Use a graphing utility to graph

and

in the same viewing window. What is the relationship between
and as 

34. Conjecture Use the result of Exercise 33 to make a conjec-
ture about the value of

as

In Exercises 35 and 36, compare the given number with the
number Is the number less than or greater than 

35. (See Exercise 34.)

36.

In Exercises 37 and 38, find an equation of the tangent line to
the graph of the function at the point 

37. (a) (b)

38. (a) (b)
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In Exercises 39– 60, find the derivative.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

In Exercises 61– 68, find an equation of the tangent line to the
graph of the function at the given point.

61. 62.

63. 64.

65.

66.

67. 68.

In Exercises 69 and 70, use implicit differentiation to find 

69. 70.

In Exercises 71 and 72, find an equation of the tangent line to
the graph of the function at the given point.

71. 72.

In Exercises 73 and 74, find the second derivative of the
function.

73. 74.

In Exercises 75–78, show that the function is a 
solution of the differential equation.

75. 76.

77. 78.

In Exercises 79– 86, find the extrema and the points of inflection
(if any exist) of the function. Use a graphing utility to graph the
function and confirm your results.

79. 80.

81. 82.

83. 84.

85. 86.

87. Area Find the area of the largest rectangle that can be
inscribed under the curve in the first and second
quadrants.

88. Area Perform the following steps to find the maximum area
of the rectangle shown in the figure.

(a) Solve for in the equation 

(b) Use the result in part (a) to write the area as a function of

(c) Use a graphing utility to graph the area function. Use the
graph to approximate the dimensions of the rectangle of
maximum area. Determine the maximum area.

(d) Use a graphing utility to graph the expression for found
in part (a). Use the graph to approximate

and

Use this result to describe the changes in dimensions and
position of the rectangle for 

89. Find a point on the graph of the function such that
the tangent line to the graph at that point passes through the
origin. Use a graphing utility to graph and the tangent line in
the same viewing window.

90. Find the point on the graph of where the normal line to
the curve passes through the origin. (Use Newton’s Method or
the zero or root feature of a graphing utility.)

91. Depreciation The value of an item years after it is
purchased is 

(a) Use a graphing utility to graph the function.

(b) Find the rates of change of with respect to when 
and

(c) Use a graphing utility to graph the tangent lines to the
function when and 

92. Harmonic Motion The displacement from equilibrium of a
mass oscillating on the end of a spring suspended from a 
ceiling is where is the displacement
in feet and is the time in seconds. Use a graphing utility to
graph the displacement function on the interval Find a
value of past which the displacement is less than 3 inches from
equilibrium.
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93. Modeling Data A meteorologist measures the atmospheric
pressure (in kilograms per square meter) at altitude (in
kilometers). The data are shown below.

(a) Use a graphing utility to plot the points Use the
regression capabilities of the graphing utility to find a 
linear model for the revised data points.

(b) The line in part (a) has the form Write the
equation in exponential form.

(c) Use a graphing utility to plot the original data and graph the
exponential model in part (b).

(d) Find the rate of change of the pressure when and

94. Modeling Data The table lists the approximate values of
a mid-sized sedan for the years 2003 through 2009. The variable

represents the time in years, with corresponding to 2003.

(a) Use the regression capabilities of a graphing utility to fit
linear and quadratic models to the data. Plot the data and
graph the models.

(b) What does the slope represent in the linear model in 
part (a)?

(c) Use the regression capabilities of a graphing utility to fit an
exponential model to the data.

(d) Determine the horizontal asymptote of the exponential
model found in part (c). Interpret its meaning in the context
of the problem.

(e) Find the rate of decrease in the value of the sedan when
and using the exponential model.

Linear and Quadratic Approximations In Exercises 95 and 96,
use a graphing utility to graph the function. Then graph

and

in the same viewing window. Compare the values of and 
and their first derivatives at 

95. 96.

Stirling’s Formula For large values of 

can be approximated by Stirling’s Formula,

In Exercises 97 and 98, find the exact value of and then
approximate using Stirling’s Formula.

97. 98.

In Exercises 99–116, find the indefinite integral.

99. 100.

101. 102.

103. 104.

105. 106.

107. 108.

109. 110.

111. 112.

113. 114.

115. 116.

In Exercises 117–126, evaluate the definite integral. Use a
graphing utility to verify your result.

117. 118.

119. 120.

121. 122.

123. 124.

125. 126.

Differential Equations In Exercises 127 and 128, solve the
differential equation.

127. 128.

Differential Equations In Exercises 129 and 130, find the
particular solution that satisfies the initial conditions.

129. 130.
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h 0 5 10 15 20

P 10,332 5583 2376 1240 517

t 3 4 5 6

V $23,046 $20,596 $18,851 $17,001

t 7 8 9

V $15,226 $14,101 $12,841



Slope Fields In Exercises 131 and 132, a differential equation,
a point, and a slope field are given. (a) Sketch two approximate
solutions of the differential equation on the slope field, one of
which passes through the given point. (b) Use integration to find
the particular solution of the differential equation and use a
graphing utility to graph the solution. Compare the result with
the sketches in part (a). To print an enlarged copy of the graph,
go to the website www.mathgraphs.com.

131. 132.

Area In Exercises 133–136, find the area of the region bounded
by the graphs of the equations. Use a graphing utility to graph the
region and verify your result.

133.

134.

135.

136.

Numerical Integration In Exercises 137 and 138, approximate
the integral using the Midpoint Rule, the Trapezoidal Rule, and
Simpson’s Rule with Use a graphing utility to verify
your results.

137. 138.

139. Probability A car battery has an average lifetime of 
48 months with a standard deviation of 6 months. The battery
lives are normally distributed. The probability that a given
battery will last between 48 months and 60 months is

Use the integration capabilities of
a graphing utility to approximate the integral. Interpret the
resulting probability.

140. Probability The median waiting time (in minutes) for people
waiting for service in a convenience store is given by the 
solution of the equation Solve the equation.

141. Horizontal Motion The position function of a particle 
moving along the -axis is where 
and are positive constants.

(a) During what times is the particle closest to the origin?

(b) Show that the acceleration of the particle is proportional
to the position of the particle. What is the constant of 
proportionality?

142. Modeling Data A valve on a storage tank is opened for 
4 hours to release a chemical in a manufacturing process. The
flow rate (in liters per hour) at time (in hours) is given in
the table.

Table for 142

(a) Use the regression capabilities of a graphing utility to find
a linear model for the points Write the resulting
equation of the form in exponential form.

(b) Use a graphing utility to plot the data and graph the
exponential model.

(c) Use the definite integral to approximate the number of
liters of chemical released during the 4 hours.

147. Given for it follows that 

Perform this integration to derive the inequality 
for

149. Find, to three decimal places, the value of such that 
(Use Newton’s Method or the zero or root feature of a
graphing utility.)

150. Find the value of such that the area bounded by the
-axis, and is 

151. Verify that the function

increases at a maximum rate when 

152. Let

(a) Graph on and show that is strictly decreasing on

(b) Show that if then 

(c) Use part (b) to show that e	 > 	 e.
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t 0 1 2 3 4

R 425 240 118 71 36

143. In your own words, state the properties of the natural
exponential function.

144. Is there a function such that If so, identify it.

145. Without integrating, state the integration formula you can
use to integrate each of the following.

(a) (b)

146. Consider the function 

(a) Use a graphing utility to graph 

(b) Write a short paragraph explaining why the graph has
a horizontal asymptote at and why the function
has a nonremovable discontinuity at x � 0.

y � 1

f.

f �x� �
2

1 � e1�x .


xex2
dx
 e x

e x � 1
dx

f �x� � f��x�?f

WRITING ABOUT CONCEPTS

148. Describe the relationship between the graphs of
and g�x� � e x.f �x� � ln x

CAPSTONE
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■ Define exponential functions that have bases other than e.
■ Differentiate and integrate exponential functions that have bases other than e.
■ Use exponential functions to model compound interest and exponential growth.

Bases Other than e
The base of the natural exponential function is This “natural” base can be used to
assign a meaning to a general base 

These functions obey the usual laws of exponents. For instance, here are some
familiar properties.

1. 2.

3. 4.

When modeling the half-life of a radioactive sample, it is convenient to use as
the base of the exponential model. (Half-life is the number of years required for half
of the atoms in a sample of radioactive material to decay.)

EXAMPLE 1 Radioactive Half-Life Model

The half-life of carbon-14 is about 5715 years. A sample contains 1 gram of carbon-14.
How much will be present in 10,000 years?

Solution Let represent the present time and let represent the amount (in
grams) of carbon-14 in the sample. Using a base of you can model by the 
equation

Notice that when the amount is reduced to half of the original amount.

gram

When the amount is reduced to a quarter of the original amount, and so
on. To find the amount of carbon-14 after 10,000 years, substitute 10,000 for 

gram

The graph of is shown in Figure 5.25. ■y
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5.5 Bases Other Than e and Applications

DEFINITION OF EXPONENTIAL FUNCTION TO BASE a

If is a positive real number and is any real number, then the
exponential function to the base a is denoted by and is defined by

If then is a constant function.y � 1x � 1a � 1,

ax � e�ln a�x.

ax
x�a � 1�a

t
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The half-life of carbon-14 is about 5715
years.
Figure 5.25



Logarithmic functions to bases other than can be defined in much the same way
as exponential functions to other bases are defined.

Logarithmic functions to the base have properties similar to those of the
natural logarithmic function given in Theorem 5.2. (Assume and are positive 
numbers and is rational.)

1. Log of 1

2. Log of a product

3. Log of a power

4. Log of a quotient

From the definitions of the exponential and logarithmic functions to the base it
follows that and are inverse functions of each other.

The logarithmic function to the base 10 is called the common logarithmic
function. So, for common logarithms, if and only if 

EXAMPLE 2 Bases Other Than e

Solve for in each equation.

a. b.

Solution

a. To solve this equation, you can
apply the logarithmic function to the
base 3 to each side of the equation.

■x � �4

x � log3 3
�4

log3 3
x � log3

1
81

 3x �
1

81

log2 x � �43x �
1

81

x

x � log10 y.y � 10x

g�x� � loga xf�x� � ax
a,

loga

x
y

� loga x � loga y

loga xn � n loga x

loga xy � loga x � loga y

loga 1 � 0

n
yx

a

e
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DEFINITION OF LOGARITHMIC FUNCTION TO BASE a

If is a positive real number and is any positive real number, then
the logarithmic function to the base a is denoted by and is defined as

loga x �
1

ln a
ln x.

loga x
x�a � 1�a

PROPERTIES OF INVERSE FUNCTIONS

1. if and only if 

2. for

3. for all xloga ax � x,

x > 0alogax � x,

x � loga yy � ax

b. To solve this equation, you can apply
the exponential function to the base 2
to each side of the equation.

x �
1

16

x �
1
24

2log2 x � 2�4

log2 x � �4

NOTE In precalculus, you learned that
is the value to which must be

raised to produce This agrees with the
definition given here because

� x.

� e ln x

� e �ln a�ln a�ln x

� �e ln a��1�ln a�ln x

a loga x � a�1�ln a�ln x

x.
aloga x



Differentiation and Integration
To differentiate exponential and logarithmic functions to other bases, you have three
options: (1) use the definitions of and and differentiate using the rules for the
natural exponential and logarithmic functions, (2) use logarithmic differentiation, or
(3) use the following differentiation rules for bases other than 

EXAMPLE 3 Differentiating Functions to Other Bases

Find the derivative of each function.

a.

b.

c.

Solution

a.

b.

Try writing as and differentiating to see that you obtain the same result.

c. ■y� �
d
dx

�log10 cos x� �
�sin x

�ln 10�cos x
� �

1
ln 10

 tan x

8x23x

y� �
d
dx

�23x� � �ln 2�23x�3� � �3 ln 2�23x

y� �
d
dx

�2x� � �ln 2�2x

y � log10 cos x

y � 23x

y � 2x

e.

loga xax

364 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions

THEOREM 5.13 DERIVATIVES FOR BASES OTHER THAN e

Let be a positive real number and let be a differentiable function of 

1. 2.

3. 4.
d
dx

�loga u� �
1

�ln a�u
du
dx

d
dx

�loga x� �
1

�ln a�x

d
dx

�au� � �ln a�au du
dx

d
dx

�ax� � �ln a�ax

x.u�a � 1�a

PROOF By definition, So, you can prove the first rule by letting
and differentiating with base to obtain

To prove the third rule, you can write

The second and fourth rules are simply the Chain Rule versions of the first and third
rules. ■

d
dx

�loga x� �
d
dx �

1
ln a

ln x� �
1

ln a �1
x	 �

1
�ln a�x.

d
dx

�ax� �
d
dx

�e�ln a�x� � eu du
dx

� e�ln a�x�ln a� � �ln a�ax.

eu � �ln a�x
ax � e�ln a�x.

NOTE These differentiation rules are similar to those for the natural exponential function and
the natural logarithmic function. In fact, they differ only by the constant factors and

This points out one reason why, for calculus, is the most convenient base. ■e1�ln a.
ln a



Occasionally, an integrand involves an exponential function to a base other than
When this occurs, there are two options: (1) convert to base using the formula

and then integrate, or (2) integrate directly, using the integration formula

(which follows from Theorem 5.13).

EXAMPLE 4 Integrating an Exponential Function to Another Base

Find

Solution

■

When the Power Rule, was introduced in Chapter 2, the
exponent was required to be a rational number. Now the rule is extended to cover
any real value of Try to prove this theorem using logarithmic differentiation.

The next example compares the derivatives of four types of functions. Each 
function uses a different differentiation formula, depending on whether the base and
the exponent are constants or variables.

EXAMPLE 5 Comparing Variables and Constants

a. Constant Rule

b. Exponential Rule

c. Power Rule

d. Logarithmic differentiation

■y� � y�1 � ln x� � xx�1 � ln x�

y�

y
� x�1

x	 � �ln x��1� � 1 � ln x

 ln y � x ln x

 ln y � ln xx

y � xx

d
dx

�xe� � exe�1

d
dx

�ex� � ex

d
dx

�ee� � 0

n.
n

Dx �xn] � nxn�1,


2x dx �
1

ln 2
2x � C

� 2x dx.

ax � e�ln a�x
ee.
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ax dx � � 1
ln a	ax � C

THEOREM 5.14 THE POWER RULE FOR REAL EXPONENTS

Let be any real number and let be a differentiable function of 

1.

2.
d
dx

�un� � nun�1 du
dx

d
dx

�xn� � nxn�1

x.un

NOTE Be sure you see that there is no
simple differentiation rule for calculating
the derivative of In general, if

you need to use logarithmic
differentiation.
y � u�x�v�x�,

y � xx.



Applications of Exponential Functions
Suppose dollars is deposited in an account at an annual interest rate (in decimal
form). If interest accumulates in the account, what is the balance in the account at the
end of 1 year? The answer depends on the number of times the interest is
compounded according to the formula

For instance, the result for a deposit of $1000 at 8% interest compounded times a
year is shown in the upper table at the left.

As increases, the balance approaches a limit. To develop this limit, use 
the following theorem. To test the reasonableness of this theorem, try evaluating

for several values of as shown in the lower table at the left. (A proof
of this theorem is given in Appendix A.)

Now, let’s take another look at the formula for the balance in an account in
which the interest is compounded times per year. By taking the limit as approaches
infinity, you obtain

Take limit as 

Rewrite.

Let Then as 

Apply Theorem 5.15.

This limit produces the balance after 1 year of continuous compounding. So, for a
deposit of $1000 at 8% interest compounded continuously, the balance at the end of
1 year would be

These results are summarized below.

� $1083.29.

A � 1000e0.08

� Per.

n →�.x →�x � n�r.� P� lim
x→� �1 �

1
x	

x

�
r

� P lim
n→�

��1 �
1

n�r	
n�r

�
r

n →�.A � lim
n→�

P�1 �
r
n	

n

nn
A

x,��x � 1��x�x

An

n

A � P�1 �
r
n	

n

.

n

rP
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THEOREM 5.15 A LIMIT INVOLVING e

lim
x→�

�1 �
1
x	

x

� lim
x→�

�x � 1
x 	

x

� e

SUMMARY OF COMPOUND INTEREST FORMULAS

Let amount of deposit, number of years, balance after years,
annual interest rate (decimal form), and number of compoundings per

year.

1. Compounded times per year:

2. Compounded continuously: A � Pert

A � P�1 �
r
n	

nt

n

n �r �
tA �t �P �

n A

1 $1080.00

2 $1081.60

4 $1082.43

12 $1083.00

365 $1083.28

x �x 1 1
x 	

x

10 2.59374

100 2.70481

1000 2.71692

10,000 2.71815

100,000 2.71827

1,000,000 2.71828
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t

A

A

The balance in a savings account grows 
exponentially.
Figure 5.26

W
ei
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t o

f 
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 (
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m
s)

Time (in hours)

1 2 3 4 5 7 8 9 106

1.05

1.00

1.10

1.15

1.20

1.25

t

y = 1.25
1 + 0.25e−0.4t

y

The limit of the weight of the culture as
is 1.25 grams.

Figure 5.27
t →�

EXAMPLE 6 Comparing Continuous, Quarterly, and Monthly Compounding

A deposit of $2500 is made in an account that pays an annual interest rate of 5%.
Find the balance in the account at the end of 5 years if the interest is compounded (a)
quarterly, (b) monthly, and (c) continuously.

Solution

a. Compounded quarterly

b. Compounded monthly

c. Compounded continuously

Figure 5.26 shows how the balance increases over the five-year period. Notice that the
scale used in the figure does not graphically distinguish among the three types of
exponential growth in (a), (b), and (c).

EXAMPLE 7 Bacterial Culture Growth

A bacterial culture is growing according to the logistic growth function

where is the weight of the culture in grams and is the time in hours. Find the weight
of the culture after (a) 0 hours, (b) 1 hour, and (c) 10 hours. (d) What is the limit as 
approaches infinity?

Solution

a. When

b. When

c. When

d. Finally, taking the limit as approaches infinity, you obtain

The graph of the function is shown in Figure 5.27. ■

lim
t→�

1.25
1 � 0.25e�0.4t �

1.25
1 � 0

� 1.25 grams.

t

� 1.244 grams.

y �
1.25

1 � 0.25e�0.4�10�t � 10,

� 1.071 grams.

y �
1.25

1 � 0.25e�0.4�1�t � 1,

� 1 gram.

y �
1.25

1 � 0.25e�0.4�0�t � 0,

t
ty

t � 0y �
1.25

1 � 0.25e�0.4t,

� $3210.06� 2500e0.25

A � Pert � 2500�e0.05�5��

� $3208.40

� 2500�1.0041667�60

A � P�1 �
r
n	

nt

� 2500�1 �
0.05
12 	

12�5�

� $3205.09

� 2500�1.0125�20

A � P�1 �
r
n	

nt

� 2500�1 �
0.05

4 	
4�5�



In Exercises 1– 4, evaluate the expression without using a
calculator.

1. 2.

3. 4.

In Exercises 5–8, write the exponential equation as a logarithmic
equation or vice versa.

5. (a) 6. (a)

(b) (b)

7. (a) 8. (a)

(b) (b)

In Exercises 9–14, sketch the graph of the function by hand.

9. 10.

11. 12.

13. 14.

In Exercises 15–18, match the function with its graph. [The
graphs are labeled (a), (b), (c), and (d).]

(a) (b)

(c) (d)

15. 16.

17. 18.

In Exercises 19–24, solve for or 

19. (a) 20. (a)

(b) (b)

21. (a) 22. (a)

(b) (b)

23. (a)

(b)

24. (a)

(b)

In Exercises 25–34, solve the equation accurate to three decimal
places.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

In Exercises 35–38, use a graphing utility to graph the function
and approximate its zero(s) accurate to three decimal places.

35.

36.

37.

38.

In Exercises 39 and 40, illustrate that the functions are inverse
functions of each other by sketching their graphs on the same
set of coordinate axes.

39. 40.

In Exercises 41– 62, find the derivative of the function. (Hint: In
some exercises, you may find it helpful to apply logarithmic
properties before differentiating.)

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

In Exercises 63–66, find an equation of the tangent line to the
graph of the function at the given point.

63. 64.

65. 66. �5, 1�y � log10 2x,�27, 3�y � log3 x,

�2, 1�y � 5x�2,��1, 2�y � 2�x,

f �t� � t 3�2 log2 �t � 1g�t� �
10 log4 t

t

g�x� � log5
4

x2�1 � x
h�x� � log3

x�x � 1
2

y � log10
x2 � 1

x
f �x� � log2

x2

x � 1

f �x� � log2
3�2x � 1y � log5 �x2 � 1

g�t� � log2�t2 � 7�3h�t� � log5�4 � t�2

y � log3�x2 � 3x�y � log4�5x � 1)

g��� � 5���2 sin 2�h�� � 2� cos 	

f �t� �
32t

t
g�t� � t 22t

y � x�6�2x�f �x� � x 9x

y � 72x�1y � 5�4x

f �x� � 32xf �x� � 4x

g�x� � log3 xg�x� � log4 x

f �x� � 3xf �x� � 4x

g�x� � 1 � 2 log10�x�x � 3��
h�s� � 32 log10�s � 2� � 15

f �t� � 300�1.007512t� � 735.41

g�x� � 6�21�x� � 25

log5�x � 4 � 3.2log3 x2 � 4.5

log10�t � 3� � 2.6log2�x � 1� � 5

�1 �
0.10
365 	

365t

� 2�1 �
0.09
12 	

12t

� 3

3�5x�1� � 8623�z � 625

56x � 832032x � 75

log10�x � 3� � log10 x � 1

log3 x � log3�x � 2� � 1

3x � 5 � log2 64

x2 � x � log5 25

logb 125 � 3log2 x � �4

logb 27 � 3log3 x � �1

log6 36 � xlog10 0.1 � x

log3
1
81 � xlog10 1000 � x

b.x

f �x) � 3x�1f �x� � 3x � 1

f �x) � 3�xf �x� � 3x

x

y

−2−4 2 4
−2

4

2

6

x

y

−2−4 2 4
−2

4

6

x

y

2 4
−2

2

4

6

x

y

−2−4 2 4
−2

2

4

6

y � 3��x�h�x� � 5x�2

y � 2x2
y � �1

3�x

y � 3x�1y � 3x

491�2 � 7log0.5 8 � �3

log3
1
9 � �2log10 0.01 � �2

163�4 � 83�1 �
1
3

272�3 � 923 � 8

loga

1
a

log7 1

log27 9log2
1
8
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In Exercises 67–70, use logarithmic differentiation to find 

67. 68.

69. 70.

In Exercises 71–74, find an equation of the tangent line to the
graph of the function at the given point.

71. 72.

73. 74.

In Exercises 75– 82, find the integral.

75. 76.

77. 78.

79. 80.

81. 82.

In Exercises 83– 86, evaluate the integral.

83. 84.

85. 86.

Area In Exercises 87 and 88, find the area of the region
bounded by the graphs of the equations.

87.

88.

Slope Fields In Exercises 89 and 90, a differential equation, a
point, and a slope field are given. (a) Sketch two approximate
solutions of the differential equation on the slope field, one of
which passes through the given point. (b) Use integration to find
the particular solution of the differential equation and use a
graphing utility to graph the solution. Compare the result with
the sketches in part (a). To print an enlarged copy of the graph,
go to the website www.mathgraphs.com.

89. 90.
95. Inflation If the annual rate of inflation averages 5% over the

next 10 years, the approximate cost of goods or services 
during any year in that decade is

where is the time in years and is the present cost.

(a) The price of an oil change for your car is presently $24.95.
Estimate the price 10 years from now.

(b) Find the rates of change of with respect to when 
and

(c) Verify that the rate of change of is proportional to 
What is the constant of proportionality?

C.C

t � 8.
t � 1tC

Pt

C�t� � P�1.05�t

C

x
10

−2

6

4

2

y

−4

−4 4

4

y

x

�	, 2�dy
dx

� esin x cos x,�0, 1
2�dy

dx
� 0.4x�3,

y � 3cos x sin x, y � 0, x � 0, x � 	

y � 3x, y � 0, x � 0, x � 3


e

1
�6x � 2x� dx
1

0
�5x � 3x� dx


2

�2
 4x�2 dx
2

�1
 2x dx


 2sin x cos x dx
 32x

1 � 32x dx


 �3 � x�7�3�x�2
dx
 x�5�x 2�dx


 �x3 � 3�x� dx
 �x2 � 2�x� dx


 5�x dx
 3x dx

�1, 1�y � x1�x,�e, 1�y � �ln x�cos x,

�	

2
, 1	y � �sin x�2x,�	

2
,

	

2	y � xsin x,

y � �1 � x�1�xy � �x � 2�x�1

y � xx�1y � x2�x

dy/dx.

5.5 Bases Other Than e and Applications 369

91. Consider the function 

(a) What is the domain of

(b) Find

(c) If is a real number between 1000 and 10,000,
determine the interval in which will be found.

(d) Determine the interval in which will be found if
is negative.

(e) If is increased by one unit, must have been
increased by what factor?

(f) Find the ratio of to given that and

92. Order the functions

and

from the one with the greatest rate of growth to the one with
the least rate of growth for large values of 

93. Find the derivative of each function, given that is 
constant.

(a) (b)

(c) (d) y � aay � xx

y � axy � xa

a

x.

k�x� � 2xh�x� � x2,g�x� � xx,f �x� � log2 x,

f �x2� � n.
f �x1� � 3nx2x1

xf �x�

f �x�x

f �x�
x

f �1.

f ?

f �x� � log10 x.

WRITING ABOUT CONCEPTS

94. The table of values below was obtained by evaluating a
function. Determine which of the statements may be true
and which must be false, and explain why.

(a) is an exponential function of 

(b) is a logarithmic function of 

(c) is an exponential function of 

(d) is a linear function of x.y

y.x

x.y

x.y

CAPSTONE

x 1 2 8

y 0 1 3

www.mathgraphs.com


96. Depreciation After years, the value of a car purchased for
$25,000 is

(a) Use a graphing utility to graph the function and determine
the value of the car 2 years after it was purchased.

(b) Find the rates of change of with respect to when 
and

(c) Use a graphing utility to graph and determine the 
horizontal asymptote of Interpret its meaning in the
context of the problem.

Compound Interest In Exercises 97–100, complete the table by
determining the balance for dollars invested at rate for 
years and compounded times per year.

97.

years

98.

years

99.

years

100.

years

Compound Interest In Exercises 101–104, complete the table by
determining the amount of money (present value) that should
be invested at rate to produce a balance of $100,000 in years.

101.

Compounded continuously

102.

Compounded continuously

103.

Compounded monthly

104.

Compounded daily

105. Compound Interest Assume that you can earn 6% on an
investment, compounded daily. Which of the following
options would yield the greatest balance after 8 years?

(a) $20,000 now

(b) $30,000 after 8 years

(c) $8000 now and $20,000 after 4 years

(d) $9000 now, $9000 after 4 years, and $9000 after 8 years

106. Compound Interest Consider a deposit of $100 placed in an
account for 20 years at compounded continuously. Use a
graphing utility to graph the exponential functions describing
the growth of the investment over the 20 years for the 
following interest rates. Compare the ending balances for the
three rates.

(a)

(b)

(c)

107. Timber Yield The yield (in millions of cubic feet per acre)
for a stand of timber at age is

where is measured in years.

(a) Find the limiting volume of wood per acre as approaches
infinity.

(b) Find the rates at which the yield is changing when 
years and years.

108. Learning Theory In a group project in learning theory, a
mathematical model for the proportion of correct responses
after trials was found to be

(a) Find the limiting proportion of correct responses as 
approaches infinity.

(b) Find the rates at which is changing after trials and
trials.

109. Forest Defoliation To estimate the amount of defoliation
caused by the gypsy moth during a year, a forester counts the
number of egg masses on of an acre the preceding fall. The
percent of defoliation is approximated by

where is the number of egg masses in thousands. (Source:
USDA Forest Service)

(a) Use a graphing utility to graph the function.

(b) Estimate the percent of defoliation if 2000 egg masses are
counted.

(c) Estimate the number of egg masses that existed if you
observe that approximately of a forest is defoliated.

(d) Use calculus to estimate the value of for which is
increasing most rapidly.

yx

2
3

x

y �
300

3 � 17e�0.0625x

y

1
40

n � 10
n � 3P

n

P �
0.86

1 � e�0.25n.

n
P

t � 60
t � 20

t

t

V � 6.7e��48.1��t

t
V

r � 6%

r � 5%

r � 3%

r%

r � 7%

r � 5%

r � 6%

r � 5%

tr
P

t � 25

r � 7%

P � $5000

t � 30

r � 5%

P � $1000

t � 20

r � 6%

P � $2500

t � 10

r � 31
2%

P � $1000

n
trPA

V��t�.
V��t�

t � 4.
t � 1tV

V�t) � 25,000�3
4�t

.

t
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110. Population Growth A lake is stocked with 500 fish, and the
population increases according to the logistic curve

where is measured in months.

(a) Use a graphing utility to graph the function.

(b) What is the limiting size of the fish population?

(c) At what rates is the fish population changing at the end of
1 month and at the end of 10 months?

(d) After how many months is the population increasing most
rapidly?

111. Modeling Data The breaking strengths (in tons) of steel
cables of various diameters (in inches) are shown in the table.

(a) Use the regression capabilities of a graphing utility to fit
an exponential model to the data.

(b) Use a graphing utility to plot the data and graph the
model.

(c) Find the rates of growth of the model when and

112. Comparing Models The numbers (in thousands) of organ
transplants in the United States in the years 2001 through
2006 are shown in the table, with corresponding to
2001. (Source: Organ Procurement and Transplantation
Network)

(a) Use the regression capabilities of a graphing utility to find
the following models for the data.

(b) Use a graphing utility to plot the data and graph each of
the models. Which model do you think best fits the data?

(c) Interpret the slope of the linear model in the context of the
problem.

(d) Find the rate of change of each of the models for the year
2004. Which model is increasing at the greatest rate in
2004?

113. Conjecture

(a) Use a graphing utility to approximate the integrals of the
functions

and

on the interval 

(b) Use a graphing utility to graph the three functions.

(c) Use the results of parts (a) and (b) to make a conjecture
about the three functions. Could you make the conjecture
using only part (a)? Explain. Prove your conjecture
analytically.

114. Complete the table to demonstrate that can also be defined
as

In Exercises 115 and 116, find an exponential function that fits
the experimental data collected over time 

115.

116.

In Exercises 117–120, find the exact value of the expression.

117. 118.

119. 120.

True or False? In Exercises 121–126, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

121.

122. If then for any value of 

123. The functions and are inverse
functions of each other.

124. The exponential function is a solution of the 
differential equation 

125. The graphs of and meet at right angles.

126. If then the only zeros of are the zeros of 

127. (a) Show that 

(b) Are and the same function? Why
or why not?

(c) Find and 

128. Let for Show that has an

inverse function. Then find 

129. Show that solving the logistic differential equation

results in the logistic growth function in Example 7.

Hint:
1

y�5
4

� y� �
4
5 �1

y
�

1
5
4

� y	��

y�0� � 1
dy
dt

�
8

25
y�5

4
� y	,

f �1.

fa � 1.a > 0,f �x� �
ax � 1
ax � 1

g��x�.f��x�

g�x) � x�xx�f �x� � �xx�x

�23�2 � 2�32�.

g.ff �x� � g�x�ex,

g�x� � e�xf �x� � ex

n � 1, 2, 3,  .  .  . .dn y�dxn � y,
y � Cex

g�x� � ln�x � 2�f �x� � 2 � ex

n.f �en�1� � f �en� � 1f �x� � ln x,

e �
271,801
99,900

321�ln 291�ln 3

6ln 10�ln 651�ln 5

t.

lim
x→0�

�1 � x�1�x.
e

�0, 4�.

h�t� � 4e�0.653886tf �t� � 4�3
8	

2t�3

, g�t� � 4� 3�9
4 	t

,

y4 � axby3 � abx

y2 � a � b ln xy1 � ax � b

x � 1

y

d � 1.5.
d � 0.8

d
B

t

p�t� �
10,000

1 � 19e�t�5
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d 0.50 0.75 1.00 1.25 1.50 1.75

B 9.85 21.8 38.3 59.2 84.4 114.0

x 1 2 3 4 5 6

y 24.2 24.9 25.5 27.0 28.1 28.9

x 1 10�1 10�2 10�4 10�6

�1 1 x�1/x

t 0 1 2 3 4

y 1200.00 720.00 432.00 259.20 155.52

t 0 1 2 3 4

y 600.00 630.00 661.50 694.58 729.30



130. Given the exponential function show that

(a)

(b)

131. (a) Determine given 

(b) Find the slope of the tangent line to the graph of 
at each of the following points.

(i)

(ii)

(iii)

(c) At what points on the graph of does the tangent
line not exist?

132. Consider the functions and 

(a) Given use a graphing utility to graph and in the
same viewing window. Identify the point(s) of intersection.

(b) Repeat part (a) using 

(c) Find all values of such that for all x.g�x� � f �x�b

b � 3.

gfb � 2,

b > 1.g�x� � bx,f �x� � 1 � x

yx � xy

�4, 2�
�2, 4�
�c, c�

yx � xy

yx � xy.y�

f �2x� � � f �x��2.

f �u � v� � f �u� � f �v�.
f �x� � ax,
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Let

(a) Use a graphing utility to graph in the viewing window
What is the domain of 

(b) Use the zoom and trace features of a graphing utility to 
estimate

(c) Write a short paragraph explaining why the function is
continuous for all real numbers.

(d) Visually estimate the slope of at the point 

(e) Explain why the derivative of a function can be approximated
by the formula

for small values of Use this formula to approximate the
slope of at the point 

What do you think the slope of the graph of is at 

(f ) Find a formula for the derivative of and determine 
Write a short paragraph explaining how a graphing utility
might lead you to approximate the slope of a graph 
incorrectly.

(g) Use your formula for the derivative of to find the relative
extrema of Verify your answer using a graphing utility.

■ FOR FURTHER INFORMATION For more information on using
graphing utilities to estimate slope, see the article “Computer-Aided
Delusions” by Richard L. Hall in The College Mathematics Journal.
To view this article, go to the website www.matharticles.com.

f.
f

f��0�.f

�0, 1�?f

f��0� �
f �0 � �x� � f �0 � �x�

2�x
�

f ��x� � f ���x�
2�x

�0, 1�.f
�x.

f �x � �x� � f �x � �x�
2�x

�0, 1�.f

f

lim
x→0

f �x�.

f ?�2 ≤ y ≤  2.�3 ≤ x ≤  3,
f

f �x� � ��x�x,
1,

x � 0
x � 0.

Using Graphing Utilities to Estimate Slope

S E C T I O N  P R O J E C T

133. Which is greater

or

where

134. Show that if is positive, then

These problems were composed by the Committee on the Putnam Prize
Competition. © The Mathematical Association of America. All rights reserved.

loge �1 �
1
x	 >

1
1 � x

.

x

n > 8?

��n � 1��n��n��n�1

PUTNAM EXAM CHALLENGE

www.matharticles.com
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5.6 Inverse Trigonometric Functions: Differentiation
■ Develop properties of the six inverse trigonometric functions.
■ Differentiate an inverse trigonometric function.
■ Review the basic differentiation rules for elementary functions.

Inverse Trigonometric Functions
This section begins with a rather surprising statement: None of the six basic
trigonometric functions has an inverse function. This statement is true because all six
trigonometric functions are periodic and therefore are not one-to-one. In this section
you will examine these six functions to see whether their domains can be redefined in
such a way that they will have inverse functions on the restricted domains.

In Example 4 of Section 5.3, you saw that the sine function is increasing (and
therefore is one-to-one) on the interval (see Figure 5.28). On this
interval you can define the inverse of the restricted sine function as

if and only if

where and 
Under suitable restrictions, each of the six trigonometric functions is one-to-one

and so has an inverse function, as shown in the following definition.

�	�2 � arcsin x � 	�2.�1 � x � 1

sin y � xy � arcsin x

��	�2, 	�2�

DEFINITIONS OF INVERSE TRIGONOMETRIC FUNCTIONS

y � 0�
	

2
� y �

	

2
,�x� � 1y �  arccsc x iff csc y � x

y �
	

2
0 � y � 	,�x� � 1y � arcsec x iff sec y � x

0 < y < 	�� < x < �y � arccot x iff cot y � x

�
	

2
< y <

	

2
�� < x < �y � arctan x iff tan y � x

0 � y � 	�1 � x � 1y � arccos x iff cos y � x

�
	

2
� y �

	

2
�1 � x � 1y � arcsin x iff sin y � x

RangeDomainFunction

NOTE The term is read as “the arcsine of ” or sometimes “the angle whose sine
is .” An alternative notation for the inverse sine function is ■“sin�1 x.”x

x“arcsin x”

E X P L O R A T I O N

The Inverse Secant Function In the definition above, the inverse secant
function is defined by restricting the domain of the secant function to the

intervals Most other texts and reference books agree with

this, but some disagree. What other domains might make sense? Explain your
reasoning graphically. Most calculators do not have a key for the inverse
secant function. How can you use a calculator to evaluate the inverse secant
function?

�0,
	

2	� �	

2
, 	�.

x

y

1

−1

−−π ππ
2

π
2

y x= sin
Domain:   [ /2,    /2]
Range: [ 1, 1]

−
−

π π

The sine function is one-to-one on

Figure 5.28
��	�2, 	�2�.

NOTE The term “iff” is used to 
represent the phrase “if and only if.”



The graphs of the six inverse trigonometric functions are shown in Figure 5.29.

EXAMPLE 1 Evaluating Inverse Trigonometric Functions

Evaluate each function.

a. b. arccos 0 c. d.

Solution

a. By definition, implies that In the interval
the correct value of is 

b. By definition, implies that In the interval you have

c. By definition, implies that In the interval
you have 

d. Using a calculator set in radian mode produces

■arcsin�0.3� � 0.305.

arctan �3 �
	

3

y � 	�3.��	�2, 	�2�,
tan y � �3.y � arctan �3

arccos 0 �
	

2

y � 	�2.
�0, 	�,cos y � 0.y � arccos 0

arcsin��
1
2	 � �

	

6

�	�6.y��	�2, 	�2�,
sin y � �

1
2.y � arcsin��1

2�

arcsin�0.3�arctan �3arcsin��
1
2	
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x
−2 −1 1 2 

−

y = arcsin x

y

π
2

π
2

Domain:
Range: ��	�2, 	�2�

��1, 1�

x
−2 −1 1 2

y = arccos x

y

π

π

2

Domain:
Range : �0, 	�

��1, 1�

x
−2 −1 1 2 

−

y = arctan x

y

π
2

π
2

Domain:
Range : ��	�2, 	�2�

���, ��

x
−1 1 2

−

y = arccsc x

y

π
2

π
2

Domain:
Range :
Figure 5.29

��	�2, 0� � �0, 	�2�
���, �1� � �1, ��

x
−2 −1 1 2 

y = arcsec x

y

π

π

2

Domain:
Range : �0, 	�2� � �	�2, 	�

���, �1� � �1, ��

x
−2 −1 1 2 

y = arccot x

π 

y

π
2

Domain:
Range : �0, 	�

���, ��

NOTE When evaluating inverse
trigonometric functions, remember that
they denote angles in radian measure.



Inverse functions have the properties

and

When applying these properties to inverse trigonometric functions, remember that the
trigonometric functions have inverse functions only in restricted domains. For values
outside these domains, these two properties do not hold. For example, is
equal to 0, not 

EXAMPLE 2 Solving an Equation

Original equation

Take tangent of each side.

Solve for ■

Some problems in calculus require that you evaluate expressions such as
as shown in Example 3.

EXAMPLE 3 Using Right Triangles

a. Given where find 

b. Given find 

Solution

a. Because you know that This relationship between and 
can be represented by a right triangle, as shown in Figure 5.30.

(This result is also valid for )

b. Use the right triangle shown in Figure 5.31.

■tan y � tan�arcsec��5
2 	� �

opp.
adj.

�
1
2

�	�2 < y < 0.

cos y � cos�arcsin x� �
adj.
hyp.

� �1 � x2

yxsin y � x.y � arcsin x,

tan y.y � arcsec��5�2�,
cos y.0 < y < 	�2,y � arcsin x,

cos�arcsin x�,

x.x � 2

tan�arctan x� � x 2x � 3 � 1

 tan�arctan�2x � 3�� � tan
	

4

 arctan�2x � 3� �
	

4

	.
arcsin�sin 	�

x-

f�1� f �x�� � x.f � f�1�x�� � x
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PROPERTIES OF INVERSE TRIGONOMETRIC FUNCTIONS

If and then

and

If then

and

If and or then

and

Similar properties hold for the other inverse trigonometric functions.

arcsec�sec y� � y.sec�arcsec x� � x

	�2 < y � 	,0 � y < 	�2�x� � 1

arctan�tan y� � y.tan�arctan x� � x

�	�2 < y < 	�2,

arcsin�sin y� � y.sin�arcsin x� � x

�	�2 � y � 	�2,�1 � x � 1

E X P L O R A T I O N

Graph for
Why isn’t the

graph the same as the graph of
y � x?

�4	 � x � 4	.
y � arccos�cos x�

1 x

y

1 − x2

Figure 5.30
y � arcsin x

1

y

2

5

Figure 5.31

y � arcsec
�5

2



Derivatives of Inverse Trigonometric Functions
In Section 5.1 you saw that the derivative of the transcendental function
is the algebraic function You will now see that the derivatives of
the inverse trigonometric functions also are algebraic (even though the inverse
trigonometric functions are themselves transcendental).

The following theorem lists the derivatives of the six inverse trigonometric
functions. Proofs for arcsin and arcos are given in Appendix A, and the rest are left
as an exercise. (See Exercise 104.) Note that the derivatives of arccos arccot 
and arccsc are the negatives of the derivatives of arcsin arctan and arcsec 
respectively.

EXAMPLE 4 Differentiating Inverse Trigonometric Functions

a.

b.

c.

d.

The absolute value sign is not necessary because 

EXAMPLE 5 A Derivative That Can Be Simplified

■� 2�1 � x2� �1 � x2 � �1 � x2

�
1

�1 � x2
�

x2

�1 � x2
� �1 � x2

y� �
1

�1 � x2
� x �1

2	��2x��1 � x2��1�2 � �1 � x2

y � arcsin x � x�1 � x2

e2x > 0.

d
dx

�arcsec e2x� �
2e2x

e2x��e2x�2 � 1
�

2e2x

e2x�e4x � 1
�

2
�e4x � 1

d
dx

�arcsin �x� �
�1�2� x�1�2

�1 � x
�

1

2�x�1 � x
�

1

2�x � x2

d
dx

�arctan�3x�� �
3

1 � �3x�2 �
3

1 � 9x2

d
dx

�arcsin�2x�� �
2

�1 � �2x�2
�

2
�1 � 4x2

u,u,u,u
u,u,

uu

f��x� � 1�x.
f �x� � ln x
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THEOREM 5.16 DERIVATIVES OF INVERSE TRIGONOMETRIC FUNCTIONS

Let be a differentiable function of 

d
dx

�arccsc u� �
�u�

�u��u2 � 1

d
dx

�arcsec u� �
u�

�u��u2 � 1

d
dx

�arccot u� �
�u�

1 � u2

d
dx

�arctan u� �
u�

1 � u2

d
dx

�arccos u� �
�u�

�1 � u2

d
dx

�arcsin u� �
u�

�1 � u2

x.u

NOTE From Example 5, you can see one of the benefits of inverse trigonometric functions—
they can be used to integrate common algebraic functions. For instance, from the result shown
in the example, it follows that

■�
1
2

�arcsin x � x�1 � x2�.
�1 � x2 dx

NOTE There is no common agreement
on the definition of (or )
for negative values of When we
defined the range of the arcsecant, we
chose to preserve the reciprocal identity

For example, to evaluate you
can write

One of the consequences of the definition
of the inverse secant function given in
this text is that its graph has a positive
slope at every value in its domain. 
(See Figure 5.29.) This accounts for the
absolute value sign in the formula for the
derivative of arcsec x.

x-

arcsec��2� � arccos��0.5� � 2.09.

arcsec ��2�,

arcsec x � arccos
1
x
.

x.
arccsc xarcsec x

If your graphing
utility does not have the arcsecant
function, you can obtain its graph
using

f �x� � arcsec x � arccos
1
x
.

TECHNOLOGY



EXAMPLE 6 Analyzing an Inverse Trigonometric Graph

Analyze the graph of 

Solution From the derivative

you can see that the only critical number is By the First Derivative Test, this
value corresponds to a relative minimum. From the second derivative

it follows that points of inflection occur when Using Newton’s
Method, these points occur when Finally, because

it follows that the graph has a horizontal asymptote at The graph is shown
in Figure 5.32.

EXAMPLE 7 Maximizing an Angle

A photographer is taking a picture of a painting hung in an art gallery. The height of
the painting is 4 feet. The camera lens is 1 foot below the lower edge of the painting,
as shown in Figure 5.33. How far should the camera be from the painting to maximize
the angle subtended by the camera lens?

Solution In Figure 5.33, let be the angle to be maximized.

Differentiating produces

Because when you can conclude from the First Derivative Test
that this distance yields a maximum value of So, the distance is feet and
the angle is radian ■�  41.81�.� � 0.7297

x � 2.236�.
x � �5,d��dx � 0

�
4�5 � x2�

�25 � x2��1 � x2�.

�
�5

25 � x2 �
1

1 � x2

d�

dx
�

�1�5
1 � �x2�25� �

�1
1 � x2

� arccot
x
5

� arccot x

� �  � �

�

y � 	2�4.

lim
x→±�

�arctan x�2 �
	2

4

x � ±0.765.
2x arctan x � 1.

�
2 �1 � 2x arctan x�

�1 � x2�2

y� �

�1 � x2�� 2
1 � x2	 � �2 arctan x��2x�

�1 � x2�2

x � 0.

�
2 arctan x

1 � x2

y� � 2 �arctan x�� 1
1 � x2	

y � �arctan x�2.

5.6 Inverse Trigonometric Functions: Differentiation 377

x
−2

1

1

−1

−1

2

3

2

y = (arctan x)2

y = π
4

2

Points of
inflection

y

The graph of has a 
horizontal asymptote at 
Figure 5.32

y � 	 2�4.
y � �arctan x�2

α
β θ

1 ft

4 ft

x

Not drawn to scale

The camera should be 2.236 feet from the
painting to maximize the angle 
Figure 5.33

�.



Review of Basic Differentiation Rules
In the 1600s, Europe was ushered into the scientific age by such great thinkers as
Descartes, Galileo, Huygens, Newton, and Kepler. These men believed that nature is
governed by basic laws—laws that can, for the most part, be written in terms of
mathematical equations. One of the most influential publications of this period—
Dialogue on the Great World Systems, by Galileo Galilei—has become a classic
description of modern scientific thought.

As mathematics has developed during the past few hundred years, a small num-
ber of elementary functions have proven sufficient for modeling most* phenomena in
physics, chemistry, biology, engineering, economics, and a variety of other fields. An
elementary function is a function from the following list or one that can be formed
as the sum, product, quotient, or composition of functions in the list.

Polynomial functions Logarithmic functions

Rational functions Exponential functions

Functions involving radicals Trigonometric functions

Inverse trigonometric functions

With the differentiation rules introduced so far in the text, you can differentiate any
elementary function. For convenience, these differentiation rules are summarized
below.

Transcendental FunctionsAlgebraic Functions
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BASIC DIFFERENTIATION RULES FOR ELEMENTARY FUNCTIONS

1. 2. 3.

4. 5. 6.

7. 8. 9.

10. 11. 12.

13. 14. 15.

16. 17. 18.

19. 20. 21.

22. 23. 24.
d
dx

�arccsc u� �
�u�

�u��u2 � 1

d
dx

�arcsec u� �
u�

�u��u2 � 1

d
dx

�arccot u� �
�u�

1 � u2

d
dx

�arctan u� �
u�

1 � u2

d
dx

�arccos u� �
�u�

�1 � u2

d
dx

�arcsin u� �
u�

�1 � u2

d
dx

�csc u� � ��csc u cot u�u�
d
dx

�sec u� � �sec u tan u�u�
d
dx

�cot u� � ��csc2 u�u�

d
dx

�tan u� � �sec2 u�u�
d
dx

�cos u� � ��sin u�u�
d
dx

�sin u� � �cos u�u�

d
dx

�au� � �ln a�auu�
d
dx

�loga u� �
u�

�ln a�u
d
dx

�eu� � eu u�

d
dx

�ln u� �
u�

u
d
dx

��u�� �
u

�u� �u��,  u � 0
d
dx

�x� � 1

d
dx

�un� � nun�1u�
d
dx

�c� � 0
d
dx �

u
v� �

vu� � uv�

v2

d
dx

�uv� � uv� � vu�
d
dx

�u ± v� � u� ± v�
d
dx

�cu� � cu�

GALILEO GALILEI (1564–1642)

Galileo’s approach to science departed from
the accepted Aristotelian view that nature
had describable qualities, such as “fluidity”
and “potentiality.” He chose to describe the
physical world in terms of measurable 
quantities, such as time, distance, force, 
and mass.

* Some important functions used in engineering and science (such as Bessel functions and
gamma functions) are not elementary functions.



Numerical and Graphical Analysis In Exercises 1 and 2,
(a) use a graphing utility to complete the table, (b) plot the
points in the table and graph the function by hand, (c) use a
graphing utility to graph the function and compare the result
with your hand-drawn graph in part (b), and (d) determine any
intercepts and symmetry of the graph.

1. 2.

In Exercises 3 and 4, determine the missing coordinates of the
points on the graph of the function.

3. 4.

In Exercises 5–12, evaluate the expression without using a
calculator.

5. 6.

7. 8.

9. 10.

11. 12.

In Exercises 13–16, use a calculator to approximate the value.
Round your answer to two decimal places.

13. 14.

15. 16.

In Exercises 17–20, evaluate each expression without using a
calculator. (Hint: See Example 3.)

17. (a) 18. (a)

(b) (b)

19. (a) 20. (a)

(b) (b)

In Exercises 21– 26, use the figure to write the expression in
algebraic form given where 

21.

22.

23.

24.

25.

26.

In Exercises 27–34, write the expression in algebraic form.
[Hint: Sketch a right triangle, as demonstrated in Example 3.]

27. 28.

29. 30.

31. 32.

33. 34.

In Exercises 35 and 36, (a) use a graphing utility to graph and
in the same viewing window to verify that they are equal,

(b) use algebra to verify that and are equal, and (c) identify
any horizontal asymptotes of the graphs.

35.

36.

In Exercises 37– 40, solve the equation for 

37. 38.

39. 40.

In Exercises 41 and 42, verify each identity.

41. (a)

(b)

42. (a)

(b)

In Exercises 43–62, find the derivative of the function.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52. f �x� � arcsin x � arccos xh �t� � sin �arccos t�

h �x� � x2 arctan 5xg �x� �
arcsin 3x

x

f �x� � arctan�xf �x� � arctan ex

f �x� � arcsec 2xg�x� � 3 arccos 
x
2

f �t� � arcsin t2f �x� � 2 arcsin �x � 1�

arccos��x� � 	 � arccos x,  �x� � 1

arcsin��x� � �arcsin x,  �x� � 1

arctan x � arctan
1
x

�
	

2
,  x > 0

arccsc x � arcsin
1
x
,  x � 1

arccos x � arcsec xarcsin�2x � arccos�x

arctan�2x � 5� � �1arcsin �3x � 	) �
1
2

x.

f �x� � tan�arccos
x
2	,    g �x� �

�4 � x2

x

f �x� � sin �arctan 2x�,    g �x� �
2x

�1 � 4x2

gf
g

f

cos�arcsin
x � h

r 	csc�arctan
x
�2	

sec�arcsin�x � 1��tan�arcsec
x
3	

cos�arccot x�sin�arcsec x�
sec�arctan 4x�cos�arcsin 2x�

csc y

sec y

cot y

tan y

sin y

x

1

y

cos y

0 < y < �/2.y � arccos x,

tan�arcsin��
5
6	�csc�arctan��

5
12	�

sec�arctan��
3
5	�cot�arcsin��

1
2	�

cos�arcsin
5
13	sec�arcsin

4
5	

tan�arccos
�2
2 	sin�arctan

3
4	

arctan��5�arcsec 1.269

arcsin��0.39�arccos��0.8�

arcsec���2�arccsc���2�

arccot���3 �arctan
�3
3

arccos 1arccos 1
2

arcsin 0arcsin 1
2

       , 

y

x

π
4

3− ,

))       , − π
6 ))

) )

π
2

π
2

−

−3 −2 1 2 3

y = arctan x

       ,        ,

y

x

π

π3

1
2

4

y = arccos x

−1 − 11
2

1
2

3
2

       ,

) )))
) )

y � arccos xy � arcsin x

5.6 Inverse Trigonometric Functions: Differentiation 379

5.6 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

x �1 �0.8 �0.6 �0.4 �0.2 0 0.2 0.4 0.6 0.8 1

y

www.CalcChat.com


53.

54.

55.

56.

57.

58.

59.

60.

61. 62.

In Exercises 63–68, find an equation of the tangent line to the
graph of the function at the given point.

63.

64.

65. 66.

67.

68.

Linear and Quadratic Approximations In Exercises 69–72, use
a computer algebra system to find the linear approximation

and the quadratic approximation
of the function 

at Sketch the graph of the function and its linear and
quadratic approximations.

69. 70.

71. 72.

In Exercises 73–76, find any relative extrema of the function.

73. 74.

75.

76.

In Exercises 77– 80, analyze and sketch a graph of the function.
Identify any relative extrema, points of inflection, and 
asymptotes. Use a graphing utility to verify your results.

77. 78.

79. 80.

Implicit Differentiation In Exercises 81– 84, find an equation of
the tangent line to the graph of the equation at the given point.

81.

82.

83.

84.

89. (a) Use a graphing utility to evaluate arcsin and 
arcsin

(b) Let Find the values of in the 
interval such that is a real number.

True or False? In Exercises 91–96, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

91. Because it follows that 

92.

93. The slope of the graph of the inverse tangent function is
positive for all 

94. The range of is 

95. for all in the domain.

96.

97. Angular Rate of Change An airplane flies at an altitude of 
5 miles toward a point directly over an observer. Consider and

as shown in the figure on the next page.x


arcsin2 x � arccos2 x � 1

x
d
dx

�arctan�tan x�� � 1

�0, 	�.y � arcsin x

x.

arcsin
	

4
�

�2
2

arccos
1
2

� �
	

3
.cos��

	

3	 �
1
2

,

f (x)�1 � x � 1
xf �x� � arcsin�arcsin x�.

�arcsin 1�.
�arcsin 0.5�

�1, 0�arctan�x � y� � y2 �
	

4
,

��2
2

,
�2
2 	arcsin x � arcsin y �

	

2
,

�0, 0�arctan�xy� � arcsin�x � y�,
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4
, 1	x2 � x arctan y � y � 1,

f �x� � arccos
x
4

f �x� � arcsec 2x

f �x� � arctan x �
	

2
f �x) � arcsin�x � 1�

h�x� � arcsin x � 2 arctan x

f �x� � arctan x � arctan�x � 4�
f �x� � arcsin x � 2xf �x� � arcsec x � x

a � 1f �x� � arctan x,a �
1
2f �x� � arcsin x,

a � 0f �x� � arccos x,a � 0f �x� � arctan x,

x � a.
fP2 �x� � f �a� 1 f��a��x � a� 1 1

2 f� �a��x � a�2
P1�x� � f �a� 1 f��a��x � a�

�1
2

,
	

4	y � 3x arcsin x,

�1, 2	)y � 4x arccos�x � 1�,

��2
4

,
	

4	y � arcsec 4x,�2,
	

4	y � arctan
x
2

,

��
�2
2

,
3	

8 	y �
1
2

 arccos x,

�1
2

,
	

3	y � 2 arcsin x,

y � arctan
x
2

�
1

2�x2 � 4�y � arctan x �
x

1 � x2

y � 25 arcsin 
x
5

� x�25 � x2

y � 8 arcsin 
x
4

�
x�16 � x2

2

y � x arctan 2x �
1
4

 ln�1 � 4x2�

y � x arcsin x � �1 � x2

y �
1
2�x�4 � x2 � 4 arcsin�x

2	�

y �
1
2 �

1
2

 ln 
x � 1
x � 1

� arctan x	

y � ln�t 2 � 4� �
1
2

 arctan 
t
2

y � 2x arccos x � 2�1 � x2
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85. Explain why the domains of the trigonometric functions are
restricted when finding the inverse trigonometric functions.

86. Explain why does not imply that 

87. Explain how to graph on a graphing utility that
does not have the arccotangent function.

88. Are the derivatives of the inverse trigonometric functions
algebraic or transcendental functions? List the derivatives
of the inverse trigonometric functions.

y � arccot x

arctan 0 � 	.tan 	 � 0

WRITING ABOUT CONCEPTS

90. The point is on the graph of Does

lie on the graph of If not, does this

contradict the definition of inverse function?

y � arccos x?�0,
3	

2 	
y � cos x.�3	

2
, 0	

CAPSTONE

CAS



Figure for 97

(a) Write as a function of 

(b) The speed of the plane is 400 miles per hour. Find 
when miles and miles.

98. Writing Repeat Exercise 97 for an altitude of 3 miles and
describe how the altitude affects the rate of change of 

99. Angular Rate of Change In a free-fall experiment, an object
is dropped from a height of 256 feet. A camera on the ground
500 feet from the point of impact records the fall of the object
(see figure).

(a) Find the position function that yields the height of the
object at time assuming the object is released at time

At what time will the object reach ground level?

(b) Find the rates of change of the angle of elevation of the
camera when and 

Figure for 99 Figure for 100

100. Angular Rate of Change A television camera at ground 
level is filming the lift-off of a space shuttle at a point 
800 meters from the launch pad. Let be the angle of 
elevation of the shuttle and let be the distance between the
camera and the shuttle (see figure). Write as a function of 
for the period of time when the shuttle is moving vertically.
Differentiate the result to find in terms of and 

101. Maximizing an Angle A billboard 85 feet wide is perpendi-
cular to a straight road and is 40 feet from the road (see figure).
Find the point on the road at which the angle subtended by
the billboard is a maximum.

Figure for 101 Figure for 102

102. Angular Speed A patrol car is parked 50 feet from a long
warehouse (see figure). The revolving light on top of the car
turns at a rate of 30 revolutions per minute. Write as a 
function of How fast is the light beam moving along the
wall when the beam makes an angle of with the line
perpendicular from the light to the wall?

103. (a) Prove that 

(b) Use the formula in part (a) to show that

104. Verify each differentiation formula.

(a)

(b)

(c)

(d)

105. Existence of an Inverse Determine the values of such that
the function has an inverse function.

106. Think About It Use a graphing utility to graph 
and

(a) Why isn’t the graph of the line 

(b) Determine the extrema of 

107. (a) Graph the function on the
interval 

(b) Describe the graph of 

(c) Verify the result of part (b) analytically.

108. Prove that 

109. In the figure find the value of in the interval on the -
axis thatmaximizes angle 

Figure for 109 Figure for 110

110. In the figure find such that and is a
maximum.

111. Some calculus textbooks define the inverse secant function
using the range 

(a) Sketch the graph using this range.

(b) Show that y� �
1

x�x2 � 1
.

y � arcsec x

�0, 	�2� � �	, 3	�2�.

m � 0 � PR � 3PR

R

Q

P

3

2

5

θ

y

x
c

(0, 2) (4, 2)

θ

.
x�0, 4�c

�x� < 1.arcsin x � arctan� x
�1 � x2	,

f.

��1, 1�.
f �x� � arccos x � arcsin x

g.

y � x?g

g �x� � arcsin �sin x�.
f �x� � sin x

f �x� � kx � sin x
k

d
dx

�arccsc u� �
�u�

�u��u2 � 1

d
dx

�arcsec u� �
u�

�u��u2 � 1

d
dx

�arccot u� �
�u�

1 � u2

d
dx

�arctan u� �
u�

1 � u2

arctan
1
2

� arctan
1
3

�
	

4
.

xy � 1.arctan x � arctan y � arctan
x � y
1 � xy

,

 � 45�
x.
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x
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ds�dt.sd�dt

s
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h
s

θ
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Not drawn to scale

256 ft

θ
500 ft
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t � 2.t � 1

t � 0.
t

.

x � 3x � 10
d�dt

x.

x
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θ

Not drawn to scale
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■ Integrate functions whose antiderivatives involve inverse trigonometric functions.
■ Use the method of completing the square to integrate a function.
■ Review the basic integration rules involving elementary functions.

Integrals Involving Inverse Trigonometric Functions
The derivatives of the six inverse trigonometric functions fall into three pairs. In each
pair, the derivative of one function is the negative of the other. For example,

and

When listing the antiderivative that corresponds to each of the inverse trigonometric
functions, you need to use only one member from each pair. It is conventional to use

as the antiderivative of rather than The next theorem
gives one antiderivative formula for each of the three pairs. The proofs of these
integration rules are left to you (see Exercises 87–89).

EXAMPLE 1 Integration with Inverse Trigonometric Functions

a.

b.

c.

■

The integrals in Example 1 are fairly straightforward applications of integration
formulas. Unfortunately, this is not typical. The integration formulas for inverse
trigonometric functions can be disguised in many ways.

�
1
3

 arcsec �2x�
3

� C

a � 3u � 2x,
 dx

x�4x2 � 9
� 
 2 dx

2x��2x�2 � 32

�
1

3�2
 arctan 

3x
�2

� C

a � �2u � 3x,
 dx
2 � 9x2 �

1
3 
 3 dx

��2 �2
� �3x�2


 dx
�4 � x2

� arcsin
x
2

� C

�arccos x.1��1 � x2,arcsin x

d
dx

�arccos x� � �
1

�1 � x2
.

d
dx

�arcsin x� �
1

�1 � x2
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5.7 Inverse Trigonometric Functions: Integration

THEOREM 5.17 INTEGRALS INVOLVING INVERSE TRIGONOMETRIC 
FUNCTIONS

Let be a differentiable function of and let 

1. 2.

3. 
 du

u�u2 � a2
�

1
a

 arcsec �u�
a

� C


 du
a2 � u2 �

1
a

 arctan 
u
a

� C
 du
�a2 � u2

� arcsin
u
a

� C

a > 0.x,u

■ FOR FURTHER INFORMATION For a
detailed proof of rule 2 of Theorem 5.17,
see the article “A Direct Proof of the
Integral Formula for Arctangent” by
Arnold J. Insel in The College
Mathematics Journal. To view this article,
go to the website www.matharticles.com.

www.matharticles.com


EXAMPLE 2 Integration by Substitution

Find

Solution As it stands, this integral doesn’t fit any of the three inverse trigonometric
formulas. Using the substitution however, produces

With this substitution, you can integrate as follows.

Write as 

Substitute.

Rewrite to fit Arcsecant Rule.

Apply Arcsecant Rule.

Back-substitute.

EXAMPLE 3 Rewriting as the Sum of Two Quotients

Find

Solution This integral does not appear to fit any of the basic integration formulas.
By splitting the integrand into two parts, however, you can see that the first part can
be found with the Power Rule and the second part yields an inverse sine function.

■

Completing the Square
Completing the square helps when quadratic functions are involved in the integrand.
For example, the quadratic can be written as the difference of two
squares by adding and subtracting 

� �x �
b
2	

2

� �b
2	

2

� c

x2 � bx � c � x2 � bx � �b
2	

2
� �b

2	
2

� c

�b�2�2.
x2 � bx � c

� ��4 � x2 � 2 arcsin 
x
2

� C

� �
1
2 ��4 � x2�1�2

1�2 � � 2 arcsin 
x
2

� C

� �
1
2 
�4 � x2��1�2��2x� dx � 2 
 1

�4 � x2
dx


 x � 2
�4 � x2

dx � 
 x
�4 � x2

dx � 
 2
�4 � x2

dx


 x � 2
�4 � x2

dx.

� arcsec ex � C

� arcsec �u�
1

� C

� 
 du

u�u2 � 1

� 
 du�u
�u2 � 1

�e x�2.e2x
 dx
�e2x � 1

� 
 dx
��ex�2 � 1

dx �
du
ex �

du
u

.du � ex dxu � ex

u � ex,


 dx
�e2x � 1

.
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Computer software that can perform
symbolic integration is useful for
integrating functions such as the 
one in Example 2. When using 
such software, however, you must
remember that it can fail to find an
antiderivative for two reasons. First,
some elementary functions simply 
do not have antiderivatives that are
elementary functions. Second, every
symbolic integration utility has 
limitations—you might have entered 
a function that the software was not
programmed to handle. You should
also remember that antiderivatives
involving trigonometric functions or
logarithmic functions can be written 
in many different forms. For instance,
one symbolic integration utility found
the integral in Example 2 to be

Try showing that this antiderivative 
is equivalent to that obtained in
Example 2.


 dx
�e2x � 1

� arctan �e2x � 1 � C.
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EXAMPLE 4 Completing the Square

Find

Solution You can write the denominator as the sum of two squares, as follows.

Now, in this completed square form, let and 

■

If the leading coefficient is not 1, it helps to factor before completing the square.
For instance, you can complete the square of by factoring first.

To complete the square when the coefficient of is negative, use the same factoring
process shown above. For instance, you can complete the square for as
shown.

EXAMPLE 5 Completing the Square (Negative Leading Coefficient)

Find the area of the region bounded by the graph of 

the axis, and the lines and 

Solution In Figure 5.34, you can see that the area is given by

Using the completed square form derived above, you can integrate as shown.

■� 0.524

�
	

6
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1
2

�arcsin 0
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x � �3�2�

3�2 �
9�4

3�2


9�4
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dx
�3x � x2

� 
9�4

3�2
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��3�2�2 � �x � �3�2��2

Area � 
9�4

3�2

1
�3x � x2

dx.

x �
9
4.x �

3
2x-

f�x� �
1

�3x � x2

� �3
2�2

� �x �
3
2�2

� ��x2 � 3x � �3
2�2

� �3
2�2�

 3x � x2 � ��x2 � 3x�

3x � x2
x2

� 2��x � 2�2 � 1�
� 2�x2 � 4x � 4 � 4 � 5�

 2x2 � 8x � 10 � 2�x2 � 4x � 5�

2x2 � 8x � 10


 dx
x2 � 4x � 7

� 
 dx
�x � 2�2 � 3

�
1
�3

 arctan 
x � 2
�3

� C

a � �3.u � x � 2

� �x � 2�2 � 3 � u2 � a2

x2 � 4x � 7 � �x2 � 4x � 4� � 4 � 7


 dx
x2 � 4x � 7

.
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x
1

1

2 3

2

3

x = 3
2

x = 9
4

f(x) = 1
3x − x2

y

The area of the region bounded by the graph
of the -axis, and is 
Figure 5.34

	�6.x �
9
4x �

3
2,xf,

With definite
integrals such as the one given in
Example 5, remember that you can
resort to a numerical solution. For
instance, applying Simpson’s Rule
(with ) to the integral in the
example, you obtain

This differs from the exact value of
the integral by
less than one millionth.

�	�6 � 0.5235988�


9�4

3�2

1
�3x � x2

dx � 0.523599.

n � 12
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Review of Basic Integration Rules
You have now completed the introduction of the basic integration rules. To be
efficient at applying these rules, you should have practiced enough so that each rule is
committed to memory.

You can learn a lot about the nature of integration by comparing this list with the
summary of differentiation rules given in the preceding section. For differentiation,
you now have rules that allow you to differentiate any elementary function. For
integration, this is far from true.

The integration rules listed above are primarily those that were happened on 
during the development of differentiation rules. So far, you have not learned any rules
or techniques for finding the antiderivative of a general product or quotient, the 
natural logarithmic function, or the inverse trigonometric functions. More importantly,
you cannot apply any of the rules in this list unless you can create the proper 
corresponding to the in the formula. The point is that you need to work more on 
integration techniques, which you will do in Chapter 8. The next two examples should
give you a better feeling for the integration problems that you can and cannot do with
the techniques and rules you now know.

u
du
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BASIC INTEGRATION RULES 

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20. 
 du

u�u2 � a2
�

1
a

 arcsec �u�
a

� C
 du
a2 � u2 �

1
a

 arctan 
u
a

� C


 du
�a2 � u2

� arcsin
u
a

� C
csc u cot u du � �csc u � C


sec u tan u du � sec u � C
csc2 u du � �cot u � C


sec2 u du � tan u � C
csc u du � �ln�csc u � cot u� � C


sec u du � ln�sec u � tan u� � C
cot u du � ln�sin u� � C


tan u du � �ln�cos u� � C
cos u du � sin u � C


sin u du � �cos u � C
au du � � 1
ln a	au � C


eu du � eu � C
du
u

� ln�u� � C

n � �1
un du �
un�1

n � 1
� C,
du � u � C


� f�u� ± g�u�� du � 
f�u� du ± 
g�u� du
k f�u� du � k
f�u� du

�a > 0�



EXAMPLE 6 Comparing Integration Problems

Find as many of the following integrals as you can using the formulas and techniques
you have studied so far in the text.

a. b. c.

Solution
a. You can find this integral (it fits the Arcsecant Rule).

b. You can find this integral (it fits the Power Rule).

c. You cannot find this integral using the techniques you have studied so far. (You
should scan the list of basic integration rules to verify this conclusion.)

EXAMPLE 7 Comparing Integration Problems

Find as many of the following integrals as you can using the formulas and techniques
you have studied so far in the text.

a. b. c.

Solution
a. You can find this integral (it fits the Log Rule).

b. You can find this integral (it fits the Power Rule).

c. You cannot find this integral using the techniques you have studied so far. ■

�
�ln x�2

2
� C


ln x dx
x

� 
�1
x	�ln x�1 dx

� ln�ln x� � C


 dx
x ln x

� 
1�x
ln x

dx


ln x dx
ln x dx
x
 dx

x ln x

� �x2 � 1 � C

�
1
2 ��x2 � 1�1�2

1�2 � � C


 x dx
�x2 � 1

�
1
2
�x2 � 1��1�2�2x� dx


 dx

x�x2 � 1
� arcsec�x� � C


 dx
�x2 � 1


 x dx
�x2 � 1


 dx

x�x2 � 1
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NOTE Note in Examples 6 and 7 that the simplest functions are the ones that you cannot
yet integrate. ■



In Exercises 1–24, find the integral.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

In Exercises 25–38, evaluate the integral.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

In Exercises 39– 50, find or evaluate the integral. (Complete the
square, if necessary.)

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

In Exercises 51– 54, use the specified substitution to find or
evaluate the integral.

51. 52.

53. 54.

u � �x � 1u � �x


1

0

dx

2�3 � x�x � 1

3

1

dx
�x�1 � x�

u � �x � 2u � �et � 3


 �x � 2
x � 1

dx
�et � 3 dt


 x
�9 � 8x2 � x 4

dx
 x
x 4 � 2x2 � 2

dx


 1

�x � 1��x2 � 2x
dx
3

2

2x � 3
�4x � x2

dx


 x � 1
�x2 � 2x

dx
 x � 2
��x2 � 4x

dx


 2
��x2 � 4x

dx
 1
��x2 � 4x

dx


 2x � 5
x2 � 2x � 2

dx
 2x
x2 � 6x � 13

dx


2

�2

dx
x2 � 4x � 13
2

0

dx
x2 � 2x � 2


1��2

0

arccos x
�1 � x2

dx
1��2

0

arcsin x
�1 � x2

dx


	�2

0

cos x
1 � sin2 x

dx
	

	�2
 

sin x
1 � cos2 x

 dx


ln 4

ln 2

e�x

�1 � e�2x dx
ln 5

0

ex

1 � e2x dx


4

1

1
x�16x2 � 5

dx
6

3

1
25 � �x � 3�2 dx


0

��3

x
1 � x2 dx
0

�1�2

x
�1 � x2

dx


3

�3

6
9 � x2 dx
�3�2

0

1
1 � 4x2 dx


1

0

dx
�4 � x2
1�6

0

3
�1 � 9x2

dx


 x � 2
�x � 1�2 � 4

dx
 x � 5
�9 � �x � 3�2

dx


 4x � 3
�1 � x2

dx
 x � 3
x2 � 1

dx


 3

2�x�1 � x�
dx
 1

�x�1 � x
dx


x 4 � 1
x2 � 1

dx
 x3

x2 � 1
dx


 sin x
7 � cos2 x

dx
 sec2 x
�25 � tan2 x

dx


 1
3 � �x � 2�2 dx
 e2x

4 � e4x dx


 1

x�1 � �ln x�2
dx
 t

t4 � 25
dt


 1

x�x 4 � 4
dx
 t

�1 � t4
dt


 t
t4 � 16

dt
 1
�1 � �x � 1�2

dx


 1
4 � �x � 3�2 dx
 1

x�4x2 � 1
dx


 12
1 � 9x2 dx
 7

16 � x2 dx


 dx
�1 � 4x2
 dx

�9 � x2
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5.7 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 55–57, determine which of the integrals can be
found using the basic integration formulas you have studied
so far in the text.

55. (a) (b) (c)

56. (a) (b) (c)

57. (a) (b) (c)

58. Determine which value best approximates the area of the
region between the axis and the function

over the interval (Make your selection on the
basis of a sketch of the region and not by performing any
calculations.)

(a) 4 (b) (c) 1 (d) 2 (e) 3

59. Decide whether you can find the integral 

using the formulas and techniques you have studied so far.
Explain your reasoning.


 2 dx
�x2 � 4

�3

��0.5, 0.5�.

f �x� �
1

�1 � x2

x-


 x
�x � 1

dx
x�x � 1 dx
�x � 1 dx


 1
x2 e1�x dx
xex2

dx
ex2
dx


 1

x�1 � x2
dx
 x

�1 � x2
dx
 1

�1 � x2
dx

WRITING ABOUT CONCEPTS
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Differential Equations In Exercises 61 and 62, use the
differential equation and the specified initial condition to find 

61. 62.

Slope Fields In Exercises 63–66, a differential equation, a
point, and a slope field are given. (a) Sketch two approximate
solutions of the differential equation on the slope field, one of
which passes through the given point. (b) Use integration to find
the particular solution of the differential equation and use a
graphing utility to graph the solution. Compare the result with
the sketches in part (a). To print an enlarged copy of the graph,
go to the website www.mathgraphs.com.

63. 64.

65. 66.

Slope Fields In Exercises 67–70, use a computer algebra
system to graph the slope field for the differential equation and
graph the solution satisfying the specified initial condition.

67. 68.

69. 70.

Area In Exercises 71–76, find the area of the region.

71. 72.

73. 74.

75. 76.

In Exercises 77 and 78, (a) verify the integration formula, then
(b) use it to find the area of the region.

77.

Figure for 77 Figure for 78

78.

� x�arcsin x�2 � 2x � 2�1 � x2 arcsin x � C


 �arcsin x�2 dx

y

x

1

2

1−1 −

1
2

1
2

1
2

3
2

y = (arcsin x)2
y

x

2

1

−1
1 2

x =    3

y = arctan x
x2


 arctan x
x2 dx � ln x �

1
2

 ln�1 � x2� �
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x
� C

y

x

x = ln    3

−1−2 1 2
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4ex

1 � e2xy �
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1
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2
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y�0� � 4
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�
�y
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�
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,
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�
1
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60. Determine which of the integrals can be found using the
basic integration formulas you have studied so far in the
text.

(a) (b) (c) 
 x3

1 � x 4 dx
 x
1 � x 4 dx
 1

1 � x 4 dx
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CAS
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79. (a) Sketch the region whose area is represented by

(b) Use the integration capabilities of a graphing utility to
approximate the area.

(c) Find the exact area analytically.

80. (a) Show that 

(b) Approximate the number using Simpson’s Rule (with
) and the integral in part (a).

(c) Approximate the number by using the integration 
capabilities of a graphing utility.

81. Investigation Consider the function 

(a) Write a short paragraph giving a geometric interpretation of

the function relative to the function 

Use what you have written to guess the value of that will
make maximum.

(b) Perform the specified integration to find an alternative form
of Use calculus to locate the value of that will make

maximum and compare the result with your guess in
part (a).

82. Consider the integral 

(a) Find the integral by completing the square of the radicand.

(b) Find the integral by making the substitution 

(c) The antiderivatives in parts (a) and (b) appear to be
significantly different. Use a graphing utility to graph each
antiderivative in the same viewing window and determine
the relationship between them. Find the domain of each.

True or False? In Exercises 83–86, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

83.

84.

85.

86. One way to find is to use the Arcsine Rule.

Verifying Integration Rules In Exercises 87– 89, verify each
rule by differentiating. Let 

87.

88.

89.

90. Numerical Integration (a) Write an integral that represents
the area of the region in the figure. (b) Then use the Trapezoidal
Rule with to estimate the area of the region. (c) Explain
how you can use the results of parts (a) and (b) to estimate 

91. Vertical Motion An object is projected upward from ground
level with an initial velocity of 500 feet per second. In this
exercise, the goal is to analyze the motion of the object during
its upward flight.

(a) If air resistance is neglected, find the velocity of the object
as a function of time. Use a graphing utility to graph this
function.

(b) Use the result of part (a) to find the position function and
determine the maximum height attained by the object.

(c) If the air resistance is proportional to the square of the
velocity, you obtain the equation

where feet per second per second is the acceleration
due to gravity and is a constant. Find the velocity as a
function of time by solving the equation

(d) Use a graphing utility to graph the velocity function in
part (c) for Use the graph to approximate the
time at which the object reaches its maximum height.

(e) Use the integration capabilities of a graphing utility to
approximate the integral

where and are those found in part (d). This is the
approximation of the maximum height of the object.

(f ) Explain the difference between the results in parts (b) and (e).

92. Graph and on 

Prove that for x > 0.
x

1 � x2 < arctan x < x

�0, 10�.y3 � xy2 � arctan x,y1 �
x

1 � x2,

t0v�t�


t0

0
v�t� dt

t0

k � 0.001.
v�t�


 dv
32 � kv2 � �
dt.

k
�32

dv
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� ��32 � kv2�

y

x
−1−2 1 2

2

3
2

1
2

y = 1
1 + x2

	.
n � 8
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u�u2 � a2
�

1
a

 arcsec �u�
a

� C


 du
a2 � u2 �

1
a

 arctan 
u
a

� C


 du
�a2 � u2 � arcsin

u

a
� C

a > 0.


 2e2x

�9 � e 2x dx


 dx
�4 � x2 � �arccos

x
2

� C


 dx
25 � x2 �

1
25

 arctan 
x

25
� C


 dx

3x�9x2 � 16
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1
4

 arcsec 
3x
4

� C

u � �x.


 1
�6x � x2

dx.

F
xF�x�.

F
x

f �x� �
2

x2 � 1
.F�x�

F�x� �
1
2


x�2

x

2
t2 � 1

dt.

	

n � 6
	


1

0

4
1 � x2 dx � 	.


1

0
 arcsin x dx.
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■ FOR FURTHER INFORMATION For more information on 
this topic, see “What Goes Up Must Come Down; Will Air
Resistance Make It Return Sooner, or Later?” by John Lekner in
Mathematics Magazine. To view this article, go to the website 
www.matharticles.com.

www.matharticles.com


■ Develop properties of hyperbolic functions.
■ Differentiate and integrate hyperbolic functions.
■ Develop properties of inverse hyperbolic functions.
■ Differentiate and integrate functions involving inverse hyperbolic functions.

Hyperbolic Functions
In this section you will look briefly at a special class of exponential functions called
hyperbolic functions. The name hyperbolic function arose from comparison of the
area of a semicircular region, as shown in Figure 5.35, with the area of a region under
a hyperbola, as shown in Figure 5.36. The integral for the semicircular region involves
an inverse trigonometric (circular) function:

The integral for the hyperbolic region involves an inverse hyperbolic function:

This is only one of many ways in which the hyperbolic functions are similar to the
trigonometric functions.

Circle: Hyperbola:
Figure 5.35 Figure 5.36

�x2 � y2 � 1x2 � y2 � 1

x
−1 1

2

y

y =    1 + x2

x
−1 1

2

y =    1 − x2

y


1

�1

�1 � x2 dx �
1
2�x�1 � x2 � sinh�1x �

1

�1
� 2.296.


1

�1

�1 � x2 dx �
1
2�x�1 � x2 � arcsin x �

1

�1
�

	

2
� 1.571.
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5.8 Hyperbolic Functions

JOHANN HEINRICH LAMBERT (1728–1777)

The first person to publish a comprehensive
study on hyperbolic functions was Johann
Heinrich Lambert, a Swiss-German 
mathematician and colleague of Euler.
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NOTE is read as “the hyperbolic sine of as “the hyperbolic cosine of and
so on. ■

x,”cosh xx,”sinh x

DEFINITIONS OF THE HYPERBOLIC FUNCTIONS

x � 0coth x �
1

tanh x
,tanh x �

sinh x
cosh x

sech x �
1

cosh x
cosh x �

ex � e�x

2

x � 0csch x �
1

sinh x
,sinh x �

ex � e�x

2

■ FOR FURTHER INFORMATION For
more information on the development 
of hyperbolic functions, see the article 
“An Introduction to Hyperbolic
Functions in Elementary Calculus”
by Jerome Rosenthal in Mathematics
Teacher. To view this article, go to the
website www.matharticles.com.

www.matharticles.com


The graphs of the six hyperbolic functions and their domains and ranges are
shown in Figure 5.37. Note that the graph of can be obtained by adding the cor-
responding -coordinates of the exponential functions and 
Likewise, the graph of can be obtained by adding the corresponding 
-coordinates of the exponential functions and h�x� �

1
2e�x.f �x� �

1
2exy

cosh x
g�x� � �

1
2e�x.f�x� �

1
2exy

sinh x

Many of the trigonometric identities have corresponding hyperbolic identities.
For instance,

and

� sinh 2x.

�
e2x � e�2x

2

2 sinh x cosh x � 2�ex � e�x

2 	�ex � e�x

2 	

� 1

�
4
4

�
e2x � 2 � e�2x

4
�

e2x � 2 � e�2x

4

cosh2 x � sinh2 x � �ex � e�x

2 	2

� �ex � e�x

2 	2
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y = sinh x
f(x) = ex

2

g(x) = −e−x

2
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−1 1
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1
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y = tanh x
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sinh x2
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−1 1
x

y
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Figure 5.37
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2
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−2 1
x

y = sech x = 1
cosh x

y

Domain:
Range: �0, 1�

���, ��

2−1−2

−1

1

1

x

y = coth x = 1
tanh x

y

Domain:
Range: ���, �1� � �1, ��
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■ FOR FURTHER INFORMATION To
understand geometrically the relation-
ship between the hyperbolic and
exponential functions, see the article 
“A Short Proof Linking the Hyperbolic
and Exponential Functions” by Michael
J. Seery in The AMATYC Review.



Differentiation and Integration of Hyperbolic Functions
Because the hyperbolic functions are written in terms of and you can easily
derive rules for their derivatives. The following theorem lists these derivatives with the
corresponding integration rules.

In Exercises 122–124, you are asked to prove some of the other differentiation rules.

e�x,ex
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HYPERBOLIC IDENTITIES

cosh 2x � cosh2 x � sinh2 xsinh 2x � 2 sinh x cosh x

cosh2 x �
1 � cosh 2x

2
sinh2 x �

�1 � cosh 2x
2

cosh�x � y� � cosh x cosh y � sinh x sinh y

cosh�x � y� � cosh x cosh y � sinh x sinh ycoth2 x � csch2 x � 1

sinh�x � y� � sinh x cosh y � cosh x sinh ytanh2 x � sech2 x � 1

sinh�x � y� � sinh x cosh y � cosh x sinh ycosh2 x � sinh2 x � 1

THEOREM 5.18 DERIVATIVES AND INTEGRALS OF HYPERBOLIC FUNCTIONS

Let be a differentiable function of 


csch u coth u du � �csch u � C
d
dx

�csch u� � ��csch u coth u�u�


sech u tanh u du � �sech u � C
d
dx

�sech u� � ��sech u tanh u�u�


csch2 u du � �coth u � C
d
dx

�coth u� � ��csch2 u�u�


sech2 u du � tanh u � C
d
dx

�tanh u� � �sech2 u�u�


sinh u du � cosh u � C
d
dx

�cosh u� � �sinh u�u�


cosh u du � sinh u � C
d
dx

�sinh u� � �cosh u�u�

x.u

PROOF

■� sech2 x

�
1

cosh2 x

�
cosh x�cosh x� � sinh x �sinh x�

cosh2 x

d
dx

�tanh x� �
d
dx�

sinh x
cosh x�

�
ex � e�x

2
� cosh x

d
dx

�sinh x� �
d
dx�

ex � e�x

2 �



EXAMPLE 1 Differentiation of Hyperbolic Functions

a. b.

c.

EXAMPLE 2 Finding Relative Extrema

Find the relative extrema of 

Solution Begin by setting the first derivative of equal to 0.

So, the critical numbers are and Using the Second Derivative Test, you
can verify that the point yields a relative maximum and the point 
yields a relative minimum, as shown in Figure 5.38. Try using a graphing utility to
confirm this result. If your graphing utility does not have hyperbolic functions, you
can use exponential functions, as follows.

■

When a uniform flexible cable, such as a telephone wire, is suspended from two
points, it takes the shape of a catenary, as discussed in Example 3.

EXAMPLE 3 Hanging Power Cables

Power cables are suspended between two towers, forming the catenary shown in
Figure 5.39. The equation for this catenary is

The distance between the two towers is Find the slope of the catenary at the point
where the cable meets the right-hand tower.

Solution Differentiating produces

At the point the slope (from the left) is given by 

■

m � sinh
b
a

.�b, a cosh�b�a��,

y� � a�1
a	 sinh

x
a

� sinh
x
a

.

2b.

y � a cosh 
x
a

.

�
1
2�xex � xe�x � 2ex�

�
1
2�xex � xe�x � ex � e�x � ex � e�x�

f�x� � �x � 1��1
2��ex � e�x� �

1
2�ex � e�x�

�1, �sinh 1��0, �1�
x � 0.x � 1

�x � 1� sinh x � 0

f��x� � �x � 1� sinh x � cosh x � cosh x � 0

f

f�x� � �x � 1� cosh x � sinh x.

d
dx

�x sinh x � cosh x� � x cosh x � sinh x � sinh x � x cosh x

d
dx

�ln�cosh x�� �
sinh x
cosh x

� tanh x
d
dx

�sinh�x2 � 3�� � 2x cosh�x2 � 3�
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■ FOR FURTHER INFORMATION In Example 3, the cable is a catenary between two supports
at the same height. To learn about the shape of a cable hanging between supports of different
heights, see the article “Reexamining the Catenary” by Paul Cella in The College Mathematics
Journal. To view this article, go to the website www.matharticles.com. ■
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EXAMPLE 4 Integrating a Hyperbolic Function

Find

Solution

■

Inverse Hyperbolic Functions
Unlike trigonometric functions, hyperbolic functions are not periodic. In fact, by
looking back at Figure 5.37, you can see that four of the six hyperbolic functions are
actually one-to-one (the hyperbolic sine, tangent, cosecant, and cotangent). So, you
can apply Theorem 5.7 to conclude that these four functions have inverse functions.
The other two (the hyperbolic cosine and secant) are one-to-one if their domains are
restricted to the positive real numbers, and for this restricted domain they also
have inverse functions. Because the hyperbolic functions are defined in terms of
exponential functions, it is not surprising to find that the inverse hyperbolic functions
can be written in terms of logarithmic functions, as shown in Theorem 5.19.

�
sinh3 2x

6
� C

�
1
2�

�sinh 2x�3

3 � � C

u � sinh 2x
cosh 2x sinh2 2x dx �
1
2
�sinh 2x�2�2 cosh 2x� dx


cosh 2x sinh2 2x dx.
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THEOREM 5.19 INVERSE HYPERBOLIC FUNCTIONS

���, 0� � �0, ��csch�1 x � ln�1
x

�
�1 � x2

�x� 	
�0, 1�sech�1 x � ln

1 � �1 � x2

x

���, �1� � �1, ��coth�1 x �
1
2

 ln 
x � 1
x � 1

��1, 1�tanh�1 x �
1
2

 ln 
1 � x
1 � x

�1, ��cosh�1 x � ln�x � �x2 � 1 �
���, ��sinh�1 x � ln�x � �x2 � 1�
DomainFunction

PROOF The proof of this theorem is a straightforward application of the properties
of the exponential and logarithmic functions. For example, if

and

you can show that and which implies that is the inverse
function of ■f.

gg� f�x�� � x,f�g�x�� � x

g�x� � ln�x � �x2 � 1 �

f�x� � sinh x �
ex � e�x

2



The inverse hyperbolic secant can be used to define a curve called a tractrix or
pursuit curve, as discussed in Example 5.

The graphs of the inverse hyperbolic functions are shown in Figure 5.41.
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You can use a graphing utility to confirm graphically the
results of Theorem 5.19. For instance, graph the following functions.

Hyperbolic tangent

Definition of hyperbolic tangent

Inverse hyperbolic tangent

Definition of inverse hyperbolic tangent

The resulting display is shown in Figure 5.40. As you watch the graphs being
traced out, notice that and Also notice that the graph of is the
reflection of the graph of in the line y � x.y3

y1y3 � y4.y1 � y2

y4 �
1
2

 ln 
1 � x
1 � x

y3 � tanh�1 x

y2 �
ex � e�x

ex � e�x

y1 � tanh x
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Figure 5.40



EXAMPLE 5 A Tractrix

A person is holding a rope that is tied to a boat, as shown in Figure 5.42. As the 
person walks along the dock, the boat travels along a tractrix, given by the equation

where is the length of the rope. If feet, find the distance the person must
walk to bring the boat to a position 5 feet from the dock.

Solution In Figure 5.42, notice that the distance the person has walked is given by

When this distance is

feet. ■

Differentiation and Integration of Inverse Hyperbolic
Functions
The derivatives of the inverse hyperbolic functions, which resemble the derivatives of
the inverse trigonometric functions, are listed in Theorem 5.20 with the corresponding
integration formulas (in logarithmic form). You can verify each of these formulas by
applying the logarithmic definitions of the inverse hyperbolic functions. (See Exercises
119–121.)

� 41.27

� 20 ln�4 � �15 �
y1 � 20 sech�1 5

20
� 20 ln 

1 � �1 � �1�4�2

1�4

x � 5,

� 20 sech�1 x
20

.

y1 � y � �202 � x2 � �20 sech�1 x
20

� �202 � x2	 � �202 � x2

a � 20a

y � a sech�1 x
a

� �a2 � x2
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THEOREM 5.20 DIFFERENTIATION AND INTEGRATION INVOLVING
INVERSE HYPERBOLIC FUNCTIONS

Let be a differentiable function of 
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 ln 
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� C
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d
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A person must walk 41.27 feet to bring the
boat to a position 5 feet from the dock.
Figure 5.42



EXAMPLE 6 More About a Tractrix

For the tractrix given in Example 5, show that the boat is always pointing toward the
person.

Solution For a point on a tractrix, the slope of the graph gives the direction of
the boat, as shown in Figure 5.42.

However, from Figure 5.42, you can see that the slope of the line segment connecting
the point with the point is also

So, the boat is always pointing toward the person. (It is because of this property that
a tractrix is called a pursuit curve.)

EXAMPLE 7 Integration Using Inverse Hyperbolic Functions

Find

Solution Let and 

EXAMPLE 8 Integration Using Inverse Hyperbolic Functions

Find

Solution Let and 

■�
1

4�5
 ln��5 � 2x

�5 � 2x� � C

1
2a

 ln�a � u
a � u� � C�

1
2� 1

2�5
 ln��5 � 2x

�5 � 2x�	 � C


 du
a2 � u2
 dx

5 � 4x2 �
1
2
 2 dx

��5 �2 � �2x�2

u � 2x.a � �5


 dx
5 � 4x2.

�
1
a

 ln 
a � �a2 � u2

�u� � C� �
1
2

 ln 
2 � �4 � 9x2

�3x� � C


 du

u�a2 � u2
 dx

x�4 � 9x2
� 
 3 dx

�3x��4 � 9x2

u � 3x.a � 2


 dx

x�4 � 9x2
.

m � �
�202 � x2

x
.

�x, y��0, y1�

� �
�202 � x2

x

�
�202

x�202 � x2
�

x
�202 � x2

� �20� 1
20	� 1

�x�20��1 � �x�20�2� � �1
2	� �2x

�202 � x2	
y� �

d
dx�20 sech�1 x

20
� �202 � x2�

�x, y�
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In Exercises 1–6, evaluate the function. If the value is not a
rational number, give the answer to three-decimal-place
accuracy.

1. (a) 2. (a)

(b) (b)

3. (a) 4. (a)

(b) (b)

5. (a) 6. (a)

(b) (b)

In Exercises 7–16, verify the identity.

7. 8.

9. 10.

11. 12.

13.

14.

15.

16.

In Exercises 17 and 18, use the value of the given hyperbolic
function to find the values of the other hyperbolic functions at 

17. 18.

In Exercises 19–30, find the derivative of the function.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

In Exercises 31–34, find an equation of the tangent line to the
graph of the function at the given point.

31. 32.

33. 34.

In Exercises 35–38, find any relative extrema of the function.
Use a graphing utility to confirm your result.

35.

36.

37. 38.

In Exercises 39 and 40, show that the function satisfies the 
differential equation.

39.

40.

Linear and Quadratic Approximations In Exercises 41 and 42,
use a computer algebra system to find the linear approximation

and the quadratic approximation

of the function at Use a graphing utility to graph the
function and its linear and quadratic approximations.

41. 42.

Catenary In Exercises 43 and 44, a model for a power cable
suspended between two towers is given. (a) Graph the model,
(b) find the heights of the cable at the towers and at the
midpoint between the towers, and (c) find the slope of the model
at the point where the cable meets the right-hand tower.

43.

44.

In Exercises 45–58, find the integral.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

In Exercises 59– 64, evaluate the integral.

59. 60.

61. 62.

63. 64. 
ln 2

0
 2e�x cosh x dx
�2�4

0

2
�1 � 4x2

dx


4

0

1
�25 � x2

dx
4

0

1
25 � x2 dx


1

0
 cosh2 x dx
ln 2

0
 tanh x dx


 2

x�1 � 4x2
dx
 x

x 4 � 1
dx


 cosh x
�9 � sinh2 x

dx
csch�1�x� coth�1�x�
x2 dx


sech3 x tanh x dx
x csch2 x2

2
dx


sech2�2x � 1� dx
cosh x
sinh x

dx


 sinh x
1 � sinh2 x

dx
cosh2�x � 1� sinh�x � 1� dx


cosh �x
�x

dx
sinh�1 � 2x� dx


 sech2 ��x� dx
 cosh 2x dx

y � 18 � 25 cosh 
x

25
,  �25 � x � 25

y � 10 � 15 cosh 
x

15
,  �15 � x � 15

a � 0f �x� � cosh x,a � 0f �x� � tanh x,

x � a.f

P2�x� � f �a� 1 f��a��x � a� 1 1
2 f� �a��x � a�2

P1�x� � f �a� 1 f��a��x � a�

y� � y � 0y � a cosh x

y��� � y� � 0y � a sinh x

Differential EquationFunction      

h�x� � 2 tanh x � xg�x� � x sech x

f �x� � x sinh�x � 1� � cosh�x � 1�
�4 ≤ x ≤  4f �x� � sin x sinh x � cos x cosh x,

�0, 1)y � esinh x,�0, 1)y � �cosh x � sinh x�2,

�1, 1)y � xcosh x,�1, 0)y � sinh�1 � x2�,

g�x� � sech2 3xf �t� � arctan�sinh t�

h�t� � t � coth th�x� �
1
4

 sinh 2x �
x
2

y � x cosh x � sinh xy � ln�tanh
x
2	

g�x� � ln�cosh x�f �x� � ln�sinh x�
y � tanh�3x2 � 1�y � sech�5x2�
f �x� � cosh�x � 2�f �x� � sinh 3x

tanh x �
1
2

sinh x �
3
2

x.

cosh x � cosh y � 2 cosh 
x � y

2
 cosh 

x � y
2

sinh 3x � 3 sinh x � 4 sinh3 x

sinh 2x � 2 sinh x cosh x

sinh�x � y� � sinh x cosh y � cosh x sinh y

sinh2 x �
�1 � cosh 2x

2
cosh2 x �

1 � cosh 2x
2

coth2 x � csch2 x � 1tanh2 x � sech2 x � 1

e2x � sinh 2x � cosh 2xex � sinh x � cosh x

coth�1 3sech�1 2
3

csch�1 2cosh�1 2

tanh�1 0coth�ln 5�
sinh�1 0csch�ln 2�
sech 1tanh��2�
cosh 0sinh 3
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75. Discuss several ways in which the hyperbolic functions are
similar to the trigonometric functions.

76. Sketch the graph of each hyperbolic function. Then identify
the domain and range of each function.

77. Which hyperbolic derivative formulas differ from their
trigonometric counterparts by a minus sign?

WRITING ABOUT CONCEPTS

In Exercises 65 –74, find the derivative of the function.

65. 66.

67. 68.

69. 70.

71.

72.

73.

74.

Limits In Exercises 79–86, find the limit.

79. 80.

81. 82.

83. 84.

85. 86.

In Exercises 87–96, find the indefinite integral using the
formulas from Theorem 5.20.

87. 88.

89. 90.

91. 92.

93. 94.

95. 96.

In Exercises 97–100, evaluate the integral using the formulas
from Theorem 5.20.

97. 98.

99. 100.

In Exercises 101–104, solve the differential equation.

101.

102.

103. 104.

Area In Exercises 105–108, find the area of the region.

105. 106.

107. 108.

In Exercises 109 and 110, evaluate the integral in terms of
(a) natural logarithms and (b) inverse hyperbolic functions.

109. 110.

111. Chemical Reactions Chemicals A and B combine in a 
3-to-1 ratio to form a compound. The amount of compound 
being produced at any time is proportional to the unchanged
amounts of A and B remaining in the solution. So, if 
3 kilograms of A is mixed with 2 kilograms of B, you have

One kilogram of the compound is formed after 10 minutes. Find
the amount formed after 20 minutes by solving the equation


3k
16

dt � 
 dx
x2 � 12x � 32

.

dx
dt

� k�3 �
3x
4 	�2 �

x
4	 �

3k
16

�x2 � 12x � 32�.

t
x


1�2

�1�2

dx
1 � x2
�3

0

dx
�x2 � 1

x

y

−2−4 2 4
−2

2

6

8

4
x

y

−1−2−3−4 1 2 3 4

−4

1
2
3
4

y �
6

�x2 � 4
y �

5x
�x 4 � 1

−2 −1−3 1 2 3

−2

−3

2

1

3

x

y

−1−2−3−4 1 2 3 4

0.2
0.4
0.6

1.2
1.4

x

y

y � tanh 2xy � sech
x
2

dy
dx

�
1 � 2x
4x � x2

dy
dx

�
x3 � 21x

5 � 4x � x2

dy
dx

�
1

�x � 1���4x2 � 8x � 1

dy
dx

�
1

�80 � 8x � 16x2


1

0

1
�25x2 � 1

dx
1

�1

1
16 � 9x2 dx


3

1

1

x�4 � x2
dx
7

3

1
�x2 � 4

dx


 dx

�x � 1��2x2 � 4x � 8

 1

1 � 4x � 2x2 dx


 dx
�x � 2��x2 � 4x � 8


 �1
4x � x2 dx


 �x
�1 � x3

dx
 1
�x�1 � x

dx


 x
9 � x 4 dx
 1

�1 � e2x
dx


 1

2x�1 � 4x2
dx
 1

3 � 9x2 dx

lim
x→0�

 coth xlim
x→0

sinh x
x

lim
x→��

 csch xlim
x→�

 sech x

lim
x→��

 tanh xlim
x→�

 tanh x

lim
x→��

 sinh xlim
x→�

 sinh x

y � x tanh�1 x � ln�1 � x2

y � 2x sinh�1�2x� � �1 � 4x2

0 < x < 	�4y � sech�1�cos 2x�,
y � �csch�1 x�2

y � tanh�1�sin 2x�y � sinh�1�tan x�
f �x� � coth�1�x2�y � tanh�1�x

y � tanh�1 x
2

y � cosh�1�3x�

78. Which hyperbolic functions take on only positive values?
Which hyperbolic functions are increasing on their
domains?
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112. Vertical Motion An object is dropped from a height of 400 feet.

(a) Find the velocity of the object as a function of time 
(neglect air resistance on the object).

(b) Use the result in part (a) to find the position function.

(c) If the air resistance is proportional to the square of the
velocity, then where feet per
second per second is the acceleration due to gravity and 
is a constant. Show that the velocity as a function of 
time is by performing

and simplifying the result. 

(d) Use the result of part (c) to find and give its 
interpretation.

(e) Integrate the velocity function in part (c) and find the 
position of the object as a function of Use a graphing
utility to graph the position function when and
the position function in part (b) in the same viewing window.
Estimate the additional time required for the object to
reach ground level when air resistance is not neglected.

(f) Give a written description of what you believe would
happen if were increased. Then test your assertion with
a particular value of 

Tractrix In Exercises 113 and 114, use the equation of the 
tractrix

113. Find

114. Let be the tangent line to the tractrix at the point If 
intersects the axis at the point show that the distance
between and is 

115. Prove that 

116. Prove that 

117. Show that 

118. Let and Show that 

In Exercises 119–124, verify the differentiation formula.

119. 120.

121. 122.

123.

124.
d
dx

�sech x� � �sech x tanh x

d
dx

�coth x� � �csch2 x

d
dx

�cosh x� � sinh x
d
dx

�sinh�1 x� �
1

�x2 � 1

d
dx

�cosh�1 x� �
1

�x2 � 1

d
dx

�sech�1 x� �
�1

x�1 � x2


b

�b

ext dt �
2 sinh bx

x
.b > 0.x > 0

arctan�sinh x� � arcsin�tanh x�.
sinh�1 t � ln�t � �t2 � 1 �.

�1 < x < 1.tanh�1 x �
1
2

 ln�1 � x
1 � x	,

a.QP
Q,y-

LP.L

dy�dx.

a > 0.y � a sech�1 �x/a� � �a2 � x2,

k.
k

k � 0.01
t.s

lim
t→�

v�t�
� dv��32 � kv2� � �� dt

v�t� � ��32�k tanh��32k t�
v

k
�32dv�dt � �32 � kv2,
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125. From the vertex of the catenary a
line is drawn perpendicular to the tangent to the catenary
at a point Prove that the length of intercepted by the
axes is equal to the ordinate of the point 

126. Prove or disprove that there is at least one straight line 
normal to the graph of at a point 
and also normal to the graph of at a point

At a point on a graph, the normal line is the perpendicular
to the tangent at that point. Also,
and

These problems were composed by the Committee on the Putnam Prize
Competition. © The Mathematical Association of America. All rights reserved.

sinh x � �ex � e�x��2.�
cosh x � �ex � e�x��2

�
�c, sinh c�.

y � sinh x
�a, cosh a�y � cosh x

P.y
LP.

L
y � c cosh �x�c��0, c�

PUTNAM EXAM CHALLENGE

The Gateway Arch in St. Louis, Missouri was constructed using the
hyperbolic cosine function. The equation used for construction was

where and are measured in feet. Cross sections of the arch are
equilateral triangles, and traces the path of the centers of mass
of the cross-sectional triangles. For each value of the area of the
cross-sectional triangle is 
(Source: Owner’s Manual for the Gateway Arch, Saint Louis, MO,
by William Thayer)

(a) How high above the ground is the center of the highest triangle?
(At ground level, )

(b) What is the height of the arch? (Hint: For an equilateral 
triangle, where is one-half the base of the 
triangle, and the center of mass of the triangle is located at 
two-thirds the height of the triangle.)

(c) How wide is the arch at ground level?

cA � �3c2,

y � 0.

A � 125.1406 cosh 0.0100333x.
x,

�x, y�
yx

�299.2239 � x � 299.2239

y � 693.8597 � 68.7672 cosh 0.0100333x,

St. Louis Arch
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In Exercises 1 and 2, sketch the graph of the function by hand.
Identify any asymptotes of the graph.

1. 2.

In Exercises 3 and 4, use the properties of logarithms to expand
the logarithmic function.

3. 4.

In Exercises 5 and 6, write the expression as the logarithm of a
single quantity.

5.

6.

In Exercises 7 and 8, solve the equation for 

7. 8.

In Exercises 9–14, find the derivative of the function.

9. 10.

11. 12.

13.

14.

In Exercises 15 and 16, find an equation of the tangent line to
the graph of the function at the given point.

15. 16.

In Exercises 17–24, find or evaluate the integral.

17. 18.

19. 20.

21. 22.

23. 24.

In Exercises 25–30, (a) find the inverse function of (b) use a
graphing utility to graph and in the same viewing window,
(c) verify that and and (d) state
the domains and ranges of and 

25. 26.

27. 28.

29. 30.

In Exercises 31–34, verify that has an inverse. Then use the
function and the given real number to find (Hint:
Use Theorem 5.9.)

31. 32.

33.

34.

In Exercises 35 and 36, (a) find the inverse function of (b) use
a graphing utility to graph and in the same viewing 
window, (c) verify that and and
(d) state the domains and ranges of and 

35. 36.

In Exercises 37 and 38, graph the function without the aid of a
graphing utility.

37. 38.

In Exercises 39– 44, find the derivative of the function.

39. 40.

41. 42.

43. 44.

In Exercises 45 and 46, find an equation of the tangent line to
the graph of the function at the given point.

45. 46.

In Exercises 47 and 48, use implicit differentiation to find 

47. 48.

In Exercises 49–56, find or evaluate the integral.

49. 50.

51. 52. 
 e2x � e�2x

e2x � e�2x dx
 e4x � e2x � 1
ex dx


2

1�2

e1�x

x2 dx
1

0
xe�3x 2

dx

cos x2 � xeyy ln x � y 2 � 0

dy/dx.

�0,
1
2	f �� �

1
2

esin 2,�2, �4�f �x� � ln�e�x2�,

y � 3e�3�tg�x� �
x2

ex

h�z� � e�z2�2y � �e2x � e�2x

g�x� � ln
ex

1 � exg�t� � t2et

y � e�x2
y � e�x�2

f �x� � e1�xf �x� � ln�x

f �1.f
f � f �1�x�� � x,f �1� f �x�� � x

f �1f
f,

a � 00 � x � 	,f �x� � cos x,

a �
�3
3

�
	

4
� x �

	

4
,f �x� � tan x,

a � 4f �x� � x�x � 3,a � �1f �x� � x3 � 2,

� f �1�� �a�.af
f

x ≥  0f �x� � x2 � 5,f �x� � 3�x � 1

f �x� � x3 � 2f �x� � �x � 1

f �x� � 5x � 7f �x� �
1
2x � 3

f �1.f
f � f �1�x�� � x,f �1� f �x�� � x

f �1f
f,


	�4

0
tan�	

4
� x	 dx
	�3

0
sec  d


e

1

ln x
x

dx
4

1

2x � 1
2x

dx


 ln �x
x

dx
 sin x
1 � cos x

dx


 x
x2 � 1

dx
 1
7x � 2

dx

(1, ln 2)

1 2 3

1

2

3

x

y

x

y

(−1, 2)

−1−2 1 2

1

2

3

4

y � ln
1 � x

x
y � ln�2 � x� �

2
2 � x

y � �
1
ax

�
b
a2 ln 

a � bx
x

y �
1
b2 �a � bx � a ln�a � bx��

f �x� � ln�x�x2 � 2�2�3�f �x� � x�ln x

h�x� � ln
x�x � 1�

x � 2
g�x� � ln�2x

ln x � ln�x � 3� � 0ln �x � 1 � 2

x.

3�ln x � 2 ln�x2 � 1�� � 2 ln 5

ln 3 �
1
3 ln�4 � x2� � ln x

ln��x2 � 1��x � 1��ln 5�4x2 � 1
4x2 � 1

f �x� � ln�x � 3�f �x� � ln x � 3
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53. 54.

55. 56.

57. Show that satisfies the differential
equation

58. Depreciation The value of an item years after it is
purchased is 

(a) Use a graphing utility to graph the function.

(b) Find the rates of change of with respect to when 
and

(c) Use a graphing utility to graph the tangent lines to the
function when and 

In Exercises 59 and 60, find the area of the region bounded by
the graphs of the equations.

59.

60.

In Exercises 61–64, sketch the graph of the function by hand.

61. 62.

63. 64.

In Exercises 65–70, find the derivative of the function.

65. 66.

67. 68.

69. 70.

In Exercises 71 and 72, find the indefinite integral.

71. 72.

73. Climb Rate The time (in minutes) for a small plane to climb
to an altitude of feet is

where 18,000 feet is the plane’s absolute ceiling.

(a) Determine the domain of the function appropriate for the
context of the problem.

(b) Use a graphing utility to graph the time function and
identify any asymptotes.

(c) Find the time when the altitude is increasing at the greatest
rate.

74. Compound Interest

(a) How large a deposit, at 5% interest compounded 
continuously, must be made to obtain a balance of $10,000
in 15 years?

(b) A deposit earns interest at a rate of percent compounded
continuously and doubles in value in 10 years. Find 

In Exercises 75 and 76, sketch the graph of the function.

75. 76.

In Exercises 77 and 78, evaluate the expression without using a
calculator. (Hint: Make a sketch of a right triangle.)

77. (a) 78. (a)

(b) (b)

In Exercises 79– 84, find the derivative of the function.

79. 80.

81. 82.

83.

84.

In Exercises 85–90, find the indefinite integral.

85. 86.

87. 88.

89. 90.

In Exercises 91 and 92, find the area of the region.

91. 92.

93. Harmonic Motion A weight of mass is attached to a spring
and oscillates with simple harmonic motion. By Hooke’s Law,
you can determine that

where is the maximum displacement, is the time, and is a
constant. Find as a function of given that when 

In Exercises 94 and 95, find the derivative of the function.

94. 95.

In Exercises 96 and 97, find the indefinite integral.

96. 97. 
 x2 sech2 x3 dx
 x
�x4 � 1

dx

y � x tanh�1 2xy � 2x � cosh �x

t � 0.y � 0t,y
ktA


 dy
�A2 � y 2

� 
� k
m

dt

m

x

y

−3−4 1 2 3 4

−0.4
−0.3

−0.2

0.1
0.2
0.3
0.4

x

y

−1−2 1 2

1

2

3

4

y �
x

16 � x2y �
4 � x

�4 � x2


 arcsin 2x
�1 � 4x2

dx
 arctan�x�2�
4 � x2 dx


 1
16 � x2 dx
 x

�1 � x4
dx


 1
3 � 25x2 dx
 1

e2x � e�2x dx

2 < x < 4y � �x2 � 4 � 2 arcsec 
x
2

,

y � x�arcsin x�2 � 2x � 2�1 � x2 arcsin x

y �
1
2 arctan e2xy � x arcsec x

y � arctan�x2 � 1�y � tan�arcsin x�

cos�arcsec �5 �cos�arcsin 1
2�

tan�arccot 2�sin�arcsin 1
2�

h�x� � �3 arcsin 2xf �x� � 2 arctan�x � 3�

r.
r

t � 50 log10
18,000

18,000 � h

h
t


2�1�t

t2 dt
�x � 1�5�x�1�2
dx

h�x� � log5
x

x � 1
g�x� � log3 �1 � x

y � x�4�x�y � x2x�1

f �x� � �4e�xf �x� � 3x�1

y � log4 x2y � log2�x � 1�
y � 6�2�x2 �y � 3 x�2

x � 2x � 0,y � 0,y � 2e�x,

x � 4x � 0,y � 0,y � xe�x 2
,

t � 4.t � 1

t � 4.
t � 1tV

0 � t � 5.V � 9000e�0.6t,
tV

y� � 2y� � 10y � 0.
y � ex �a cos 3x � b sin 3x�


2

0

e2x

e2x � 1
dx
3

1

ex

e x � 1
dx


 x2e x 3�1 dx
xe1�x2
dx
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1. Find the value of that maximizes the angle shown in the 
figure. What is the approximate measure of this angle?

2. Recall that the graph of a function is symmetric with
respect to the origin if, whenever is a point on the graph,

is also a point on the graph. The graph of the function
is symmetric with respect to the point if, when-

ever is a point on the graph, is
also a point on the graph, as shown in the figure.

(a) Sketch the graph of on the interval Write a
short paragraph explaining how the symmetry of the graph
with respect to the point allows you to conclude that

(b) Sketch the graph of on the interval 
Use the symmetry of the graph with respect to the point

to evaluate the integral 

(c) Sketch the graph of on the interval 
Use the symmetry of the graph to evaluate the integral 

(d) Evaluate the integral

3. (a) Use a graphing utility to graph on the 

interval 

(b) Use the graph to estimate 

(c) Use the definition of derivative to prove your answer to
part (b).

4. Let

(a) Determine the domain of the function 

(b) Find two values of satisfying 

(c) Find two values of satisfying 

(d) What is the range of the function 

(e) Calculate and use calculus to find the maximum value
of on the interval 

(f ) Use a graphing utility to graph in the viewing window
and estimate if it exists.

(g) Determine analytically, if it exists.

5. Graph the exponential function for 1.2, and 2.0.
Which of these curves intersects the line Determine all
positive numbers for which the curve intersects the line

6. (a) Let be a point on the unit circle in
the first quadrant (see figure). Show that is equal to twice
the area of the shaded circular sector 

(b) Let be a point on the unit hyperbola
in the first quadrant (see figure). Show that is

equal to twice the area of the shaded region Begin by
showing that the area of the shaded region is given by
the formula 

7. Apply the Mean Value Theorem to the function on
the closed interval Find the value of in the open interval

such that

8. Show that is a decreasing function for and

n > 0.

x > ef �x� �
ln xn

x

f��c� �
f �e� � f �1�

e � 1
.

�1, e�
c�1, e�.

f �x� � ln x

x

1

1O

P

A(1, 0)

y

t

A�t� �
1
2

 cosh t sinh t � 
cosh t

1

�x2 � 1 dx.

AOP
AOP.

tx2 � y2 � 1
P�cosh t, sinh t�

x

1

1O

P

A(1, 0)t

y

AOP.
t

x2 � y2 � 1P�cos t, sin t�
y � x.

y � a xa
y � x?
a � 0.5,y � ax

lim
x→0�

f �x�
lim

x→0�
f �x�,�0, 5� 
 ��2, 2�

f

�1, 10�.f
f��x�

f?

f �x� � �1.x

f �x� � 1.x

f.

f �x� � sin�ln x�.

lim
x→0

f �x�.
��1, 1�.

f �x� �
ln�x � 1�

x


	�2

0

1
1 � �tan x��2

dx.


1

�1
arccos x dx.

��1, 1�.y � arccos x


2	

0
�sin x � 2� dx.

�	, 2�

�0, 2	�.y � sin x � 2


2	

0
sin x dx � 0.

�0, 	�

�0, 2	�.y � sin x

x

(a, b)

(a − x, b − y)

(a + x, b + y)

y

�a � x, b � y��a � x, b � y�
�a, b�y � f �x�

��x, �y�
�x, y�

y � f �x�

0 10

3

6

θ

a

a
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9. Consider the three regions and determined by the graph
of as shown in the figure.

(a) Calculate the areas of regions and 

(b) Use your answers in part (a) to evaluate the integral 

(c) Use your answers in part (a) to evaluate the integral 

(d) Use your answers in part (a) to evaluate the integral 

10. Let be the tangent line to the graph of the function 
at the point Show that the distance between and is
always equal to 1.

Figure for 10 Figure for 11

11. Let be the tangent line to the graph of the function at
the point Show that the distance between and is
always equal to 1.

12. The Gudermannian function of is 

(a) Graph gd using a graphing utility.

(b) Show that gd is an odd function.

(c) Show that gd is monotonic and therefore has an inverse.

(d) Find the inflection point of gd.

(e) Verify that 

(f) Verify that 

13. Use integration by substitution to find the area under the curve 

between and 

14. Use integration by substitution to find the area under the curve 

between and 

15. (a) Use a graphing utility to compare the graph of the function
with the graph of each given function.

(i)

(ii)

(iii)

(b) Identify the pattern of successive polynomials in part (a)
and extend the pattern one more term and compare the
graph of the resulting polynomial function with the graph
of

(c) What do you think this pattern implies?

16. A $120,000 home mortgage for 35 years at has a monthly
payment of $985.93. Part of the monthly payment goes for the
interest charge on the unpaid balance and the remainder of the
payment is used to reduce the principal. The amount that goes
for interest is 

and the amount that goes toward reduction of the principal is

In these formulas, is the amount of the mortgage, is the
interest rate, is the monthly payment, and is the time in
years.

(a) Use a graphing utility to graph each function in the same
viewing window. (The viewing window should show all 35
years of mortgage payments.)

(b) In the early years of the mortgage, the larger part of the
monthly payment goes for what purpose? Approximate the
time when the monthly payment is evenly divided between
interest and principal reduction.

(c) Use the graphs in part (a) to make a conjecture about the
relationship between the slopes of the tangent lines to the
two curves for a specified value of Give an analytical
argument to verify your conjecture. Find and 

(d) Repeat parts (a) and (b) for a repayment period of 20 years
What can you conclude?�M � $1118.56�.

v��15�.u��15�
t.

tM
rP

v � �M �
Pr
12	 �1 �

r
12	

12t
.

u � M � �M �
Pr
12	 �1 �

r
12	

12t

91
2%

y � ex.

y3 � 1 �
x
1!

�
x2

2!
�

x3

3!

y2 � 1 �
x
1!

�
x2

2!

y1 � 1 �
x
1!

y � ex

x � 	�4.x � 0

y �
1

sin2 x � 4 cos2 x

x � 4.x � 1

y �
1

�x � x

gd�x� � 
x

0

dx
cosh t

.

gd�x) � arcsin�tanh x�.

gd�x� � arctan�sinh x�.x

ca�a, b�.
y � exL

xa

b

c

L

y

xa

b

c

L

y

cb�a, b�.
y � ln xL


�3

1
 arctan x dx.


3

1
ln x dx.


�2�2

1�2
 arcsin x dx.

B.A

x

A

CB

y

1
π
4

11
2

2
2

π
6

f �x� � arcsin x,
CB,A,
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6 Differential Equations

A function is a solution of a differential equation if the equation is satisfied when and its derivatives are
replaced by and its derivatives. One way to solve a differential equation is to use slope fields, which show the general
shape of all solutions of a differential equation. (See Section 6.1.)

f �x�
yy � f �x�

Dr. Dennis Kunkel/Getty Images

In this chapter, you will study one of the
most important applications of calculus—
differential equations. You will learn 
several methods for solving different 
types of differential equations, such 
as homogeneous, first-order linear, and
Bernoulli. Then you will apply these 
methods to solve differential equations 
in applied problems.

In this chapter, you should learn the 
following.

■ How to sketch a slope field of a 
differential equation, and find a 
particular solution. (6.1)

■ How to use an exponential function 
to model growth and decay. (6.2)

■ How to use separation of variables 
to solve a differential equation. (6.3)

■ How to solve a first-order linear 
differential equation and a Bernoulli 
differential equation. (6.4)

Depending on the type of bacteria, the time it takes for a culture’s weight to double
can vary greatly from several minutes to several days. How could you use a 
differential equation to model the growth rate of a bacteria culture’s weight? (See
Section 6.3, Exercise 84.)

■

■



■ Use initial conditions to find particular solutions of differential equations.
■ Use slope fields to approximate solutions of differential equations.
■ Use Euler’s Method to approximate solutions of differential equations.

General and Particular Solutions
In this text, you will learn that physical phenomena can be described by differential
equations. Recall that a differential equation in and is an equation that involves

and derivatives of In Section 6.2, you will see that problems involving 
radioactive decay, population growth, and Newton’s Law of Cooling can be formulated
in terms of differential equations.

A function is called a solution of a differential equation if the equation
is satisfied when and its derivatives are replaced by and its derivatives. For
example, differentiation and substitution would show that is a solution of the
differential equation It can be shown that every solution of this
differential equation is of the form 

General solution of 

where is any real number. This solution is called the general solution. Some
differential equations have singular solutions that cannot be written as special cases
of the general solution. However, such solutions are not considered in this text. The
order of a differential equation is determined by the highest-order derivative in the
equation. For instance, is a first-order differential equation. First-order linear
differential equations are discussed in Section 6.4.

In Section 4.1, Example 8, you saw that the second-order differential equation
has the general solution

General solution of 

which contains two arbitrary constants. It can be shown that a differential equation of
order has a general solution with arbitrary constants.

EXAMPLE 1 Verifying Solutions

Determine whether the function is a solution of the differential equation 

a. b. c.

Solution

a. Because and it follows that

So, is a solution.

b. Because and it follows that

So, is a solution.

c. Because and it follows that

So, is a solution for any value of ■C.y � Cex

y� � y � Cex � Cex � 0.

y� � Cex,y� � Cex,y � Cex,

y � 4e�x

y� � y � 4e�x � 4e�x � 0.

y� � 4e�x,y� � �4e�x,y � 4e�x,

noty � sin x

y� � y � �sin x � sin x � �2 sin x � 0.

y� � �sin x,y� � cos x,y � sin x,

y � Cexy � 4e�xy � sin x

y� � y � 0.

nn

s� �t� � �32s�t� � �16t2 � C1t � C2

s� �t� � �32

y� � 4y

C

y� � 2y � 0y � Ce�2x

y� � 2y � 0.
y � e�2x

f�x�y
y � f�x�

y.y,x,
yx
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Geometrically, the general solution of a first-order differential equation
represents a family of curves known as solution curves, one for each value assigned
to the arbitrary constant. For instance, you can verify that every function of the form

General solution of 

is a solution of the differential equation Figure 6.1 shows four of the
solution curves corresponding to different values of 

As discussed in Section 4.1, particular solutions of a differential equation are
obtained from initial conditions that give the values of the dependent variable or one
of its derivatives for particular values of the independent variable. The term “initial
condition” stems from the fact that, often in problems involving time, the value of the
dependent variable or one of its derivatives is known at the initial time
For instance, the second-order differential equation having the general
solution

General solution of 

might have the following initial conditions.

Initial conditions

In this case, the initial conditions yield the particular solution

Particular solution

EXAMPLE 2 Finding a Particular Solution

For the differential equation verify that is a solution, and find
the particular solution determined by the initial condition when 

Solution You know that is a solution because and

Furthermore, the initial condition when yields

General solution

Substitute initial condition.

Solve for 

and you can conclude that the particular solution is 

Particular solution

Try checking this solution by substituting for and in the original differential
equation. ■

y�y

y � �
2x3

27
.

C.�
2
27

� C

 2 � C��3�3

y � Cx3

x � �3y � 2

� 0.

xy� � 3y � x�3Cx2� � 3�Cx3�

y� � 3Cx2y � Cx3

x � �3.y � 2
y � Cx3xy� � 3y � 0,

s�t� � �16t2 � 64t � 80.

s��0� � 64s�0� � 80,

s��t� � �32s�t� � �16t2 � C1t � C2

s� �t� � �32
t � 0.

C.
xy� � y � 0.

xy� � y � 0y �
C
x

6.1 Slope Fields and Euler’s Method 407

21

2

1

−1

−1−2
x

C = 2

C = 1

C = −1

C = −2

xy = C
C = −2

C = −1

C = 2

C = 1

General
solution:

y

Solution curves for 
Figure 6.1

xy� � y � 0

NOTE To determine a particular solution, the number of initial conditions must match the
number of constants in the general solution. ■

The icon indicates that you will find a CAS Investigation on the book’s website. The CAS
Investigation is a collaborative exploration of this example using the computer algebra systems
Maple and Mathematica.



Slope Fields
Solving a differential equation analytically can be difficult or even impossible.
However, there is a graphical approach you can use to learn a lot about the solution of
a differential equation. Consider a differential equation of the form

Differential equation

where is some expression in and At each point in the -plane where
is defined, the differential equation determines the slope of the solution

at that point. If you draw short line segments with slope at selected points 
in the domain of then these line segments form a slope field, or a direction field,
for the differential equation Each line segment has the same slope as the
solution curve through that point. A slope field shows the general shape of all 
the solutions and can be helpful in getting a visual perspective of the directions of the
solutions of a differential equation.

EXAMPLE 3 Sketching a Slope Field

Sketch a slope field for the differential equation for the points 
and

Solution The slope of the solution curve at any point is So,
the slope at is the slope at is 
and the slope at is Draw short line segments at the three points
with their respective slopes, as shown in Figure 6.2.

EXAMPLE 4 Identifying Slope Fields for Differential Equations

Match each slope field with its differential equation.

a. b. c.

Figure 6.3

i. ii. iii.

Solution

a. In Figure 6.3(a), you can see that the slope at any point along the -axis is 0. The
only equation that satisfies this condition is So, the graph matches 
equation (ii).

b. In Figure 6.3(b), you can see that the slope at the point is 0. The only
equation that satisfies this condition is So, the graph matches 
equation (i).

c. In Figure 6.3(c), you can see that the slope at any point along the -axis is 0. The
only equation that satisfies this condition is So, the graph matches 
equation (iii).

■

y� � y.
x

y� � x � y.
�1, �1�

y� � x.
y

y� � yy� � xy� � x � y

x

y

2

−2

2−2
x

y

2

−2

2−2
x

y

2

−2

2−2

y� � 1 � 1 � 0.�1, 1�
y� � 0 � 1 � �1,�0, 1�y� � �1 � 1 � �2,��1, 1�

F�x, y� � x � y.�x, y�

�1, 1�.�0, 1�,
��1, 1�,y� � x � y

y� � F�x, y�.
F,

�x, y�F�x, y�
y� � F�x, y�F

xy�x, y�y.xF�x, y�

y� � F�x, y�
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x
−1−2 1 2

1

2

Figure 6.2



A solution curve of a differential equation is simply a curve in the
-plane whose tangent line at each point has slope equal to This is

illustrated in Example 5.

EXAMPLE 5 Sketching a Solution Using a Slope Field

Sketch a slope field for the differential equation

Use the slope field to sketch the solution that passes through the point 

Solution Make a table showing the slopes at several points. The table shown is 
a small sample. The slopes at many other points should be calculated to get a 
representative slope field.

Next draw line segments at the points with their respective slopes, as shown in
Figure 6.4.

Slope field for Particular solution for 
Figure 6.4 passing through 

Figure 6.5

After the slope field is drawn, start at the initial point and move to the right in
the direction of the line segment. Continue to draw the solution curve so that it moves
parallel to the nearby line segments. Do the same to the left of The resulting
solution is shown in Figure 6.5. ■

In Example 5, note that the slope field shows that increases to infinity as 
increases.

xy�

�1, 1�.

�1, 1�

�1, 1�
y� � 2x � yy� � 2x � y

x

2

2−2

−2

y

x

2

2−2

−2

y

�1, 1�.

y� � 2x � y.

F�x, y�.�x, y�xy
y� � F�x, y�
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x �2 �2 �1 �1 0 0 1 1 2 2

y �1 1 �1 1 �1 1 �1 1 �1 1

y� � 2x 1 y �5 �3 �3 �1 �1 1 1 3 3 5

NOTE Drawing a slope field by hand is tedious. In practice, slope fields are usually drawn
using a graphing utility. ■



Euler’s Method
Euler’s Method is a numerical approach to approximating the particular solution of
the differential equation

that passes through the point From the given information, you know that the
graph of the solution passes through the point and has a slope of at
this point. This gives you a “starting point” for approximating the solution.

From this starting point, you can proceed in the direction indicated by the slope.
Using a small step move along the tangent line until you arrive at the point 
where

and

as shown in Figure 6.6. If you think of as a new starting point, you can repeat
the process to obtain a second point The values of and are as follows.

EXAMPLE 6 Approximating a Solution Using Euler’s Method

Use Euler’s Method to approximate the particular solution of the differential equation 

passing through the point Use a step of 

Solution Using and you have 
.  .  . , and

The first ten approximations are shown in the table. You can plot these values to see a
graph of the approximate solution, as shown in Figure 6.7.

■

y3 � y2 � hF�x2, y2� � 0.82 � �0.1��0.2 � 0.82� � 0.758.

y2 � y1 � hF�x1, y1� � 0.9 � �0.1��0.1 � 0.9� � 0.82

y1 � y0 � hF�x0, y0� � 1 � �0.1��0 � 1� � 0.9

x3 � 0.3,x2 � 0.2,x1 � 0.1,
x0 � 0,F�x, y� � x � y,y0 � 1,x0 � 0,h � 0.1,

h � 0.1.�0, 1�.

y� � x � y

yn � yn�1 � hF�xn�1, yn�1�xn � xn�1 � h

��
y2 � y1 � hF�x1, y1�x2 � x1 � h

y1 � y0 � hF�x0, y0�x1 � x0 � h

yixi�x2, y2�.
�x1, y1�

y1 � y0 � hF�x0, y0�x1 � x0 � h

�x1, y1�,h,

F�x0, y0��x0, y0�
�x0, y0�.

y� � F�x, y�
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NOTE You can obtain better approximations of the exact solution by choosing smaller and
smaller step sizes. ■

n 0 1 2 3 4 5 6 7 8 9 10

xn 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

yn 1 0.900 0.820 0.758 0.712 0.681 0.663 0.657 0.661 0.675 0.697

NOTE For the differential equation in Example 6, you can verify the exact solution to be
Figure 6.7 compares this exact solution with the approximate solution

obtained in Example 6.
y � x � 1 � 2e�x.

y

x
1.00.80.60.40.2

1.0

0.8

0.6

0.4

0.2

Exact
solution

Approximate
solution

Figure 6.7

x

y

Exact solution
curve

Euler
approximation

(x1, y1)

(x2, y2)

hF(x0, y0)

x0

y0

x0 + h

Slope F(x0, y0)
h

Figure 6.6



In Exercises 1–8, verify the solution of the differential equation.

1.

2.

3.

4.

5.

6.

7.

8.

In Exercises 9–12, verify the particular solution of the
differential equation.

9.

10.

11.

12.

In Exercises 13–20, determine whether the function is a solution
of the differential equation 

13.

14.

15.

16.

17.

18.

19.

20.

In Exercises 21–28, determine whether the function is a solution
of the differential equation 

21. 22.

23. 24.

25. 26.

27. 28.

In Exercises 29–32, some of the curves corresponding to
different values of in the general solution of the differential
equation are given. Find the particular solution that passes
through the point shown on the graph.

29.

30.

31.

32.

Figure for 29 Figure for 30

Figure for 31 Figure for 32

In Exercises 33 and 34, the general solution of the differential
equation is given. Use a graphing utility to graph the particular
solutions for the given values of 

33. 34.

In Exercises 35– 40, verify that the general solution satisfies the
differential equation. Then find the particular solution that
satisfies the initial condition.

35. 36.

when when 

37. 38.

when when 

when when x � 2y� �
1
2x � 	�6y� � 1

x � 2y � 0x � 	�6y � 2

xy� � y� � 0y� � 9y � 0

y � C1 � C2 ln xy � C1 sin 3x � C2 cos 3x

x � 1y � 3x � 0y � 3

3x � 2yy� � 0y� � 2y � 0

3x2 � 2y2 � Cy � Ce�2x

C � 4C � 1,C � 0,C � ±4C � ±1,C � 0,

x2 � y2 � C4y2 � x2 � C

yy� � x � 04yy� � x � 0

C.

x
3 4−3−4

4

3

2

−2

−3

−4

(3, 4)

y

x
3 4 5 6 7−1

4

3

2

1

−2

−3

−4

(4, 4)

y

x

(0, 2)
4

2 4−2−4

y

x
1−1−2

2

(0, 3)

y

2 3

yy� � 2x � 02x2 � y2 � C

2xy� � 3y � 0y2 � Cx3

2xy � �x2 � 2y�y� � 0y�x2 � y� � C

2y� � y � 0y � Ce�x�2

Differential EquationSolution

C

y � x2ex � 5x2y � ln x

y � cos xy � sin x

y � x2�2 � ex�y � x2ex

y � x3y � x2

xy� � 2y � x3ex.

y � 3e2x � 4 sin 2x

y � C1e
2x � C2e

�2x � C3 sin 2x � C4 cos 2x

y � 5 ln x

y � e�2x

y � 3 sin 2x

y � 3 cos 2x

y � 2 sin x

y � 3 cos x

y�4� � 16y � 0.

y�	

2	 � 1

y� � y sin xy � e�cos x

y�0� � 4

y� � �12xyy � 4e�6x2

y�0� � �5

y� � x � 2 sin xy �
1
2 x2 � 2 cos x � 3

y�	

4	 � 0

2y � y� � 2 sin�2x� � 1y � sin x cos x � cos2 x

and Initial ConditionSolution                         
Differential Equation

y� � 4y� � 2exy �
2
5�e�4x � ex�

y� � y � tan xy � �cos x ln�sec x � tan x�
y� � 2y� � 2y � 0y � C1e

�x cos x � C2e
�x sin x

y� � y � 0y � C1 sin x � C2 cos x

dy
dx

�
xy

y2 � 1
y2 � 2 ln y � x2

y� � 2xy��x2 � y2�x2 � y2 � Cy

3y� � 5y � �e�2xy � e�2x

y� � 4yy � Ce4x

Differential EquationSolution                                    
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39. 40.

when when 

when when 

In Exercises 41–52, use integration to find a general solution of
the differential equation.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

Slope Fields In Exercises 53–56, a differential equation and its
slope field are given. Complete the table by determining the
slopes (if possible) in the slope field at the given points.

53. 54.

55. 56.

In Exercises 57– 60, match the differential equation with its
slope field. [The slope fields are labeled (a), (b), (c), and (d).]

(a) (b)

(c) (d)

57. 58.

59. 60.

Slope Fields In Exercises 61–64, (a) sketch the slope field for
the differential equation, (b) use the slope field to sketch the
solution that passes through the given point, and (c) discuss the
graph of the solution as and Use a graphing
utility to verify your results.

61.

62.

63.

64.

65. Slope Field Use the slope field for the differential equation
where to sketch the graph of the solution that

satisfies each given initial condition. Then make a conjecture
about the behavior of a particular solution of 
as To print an enlarged copy of the graph, go to the
website www.mathgraphs.com.

(a) (b) �2, �1��1, 0�

x

y

3

2

1

−3

−2

−1
6

x →�.
y� � 1�x

x > 0,y� � 1�x,

�0, �4�y� � y � xy,

�2, 2�y� � y � 4x,

�1, 1�y� �
1
3 x2 �

1
2 x,

�4, 2�y� � 3 � x,

x → ��.x →�

dy
dx

�
1
x

dy
dx

� e�2x

dy
dx

�
1
2

 cos x
dy
dx

� sin�2x�

x

y

2

−1

− 3
2

3
2

x

y

3

−3

3−3

x

y

3

−3

3−3
x

y

2−2

2

−2

y

8

8

−8

x
−8

x
−10 10

−6

14

y

dy
dx

� tan�	y
6 	dy

dx
� x cos 

	y
8

x

y

8−8

10

−6

x
10

−6

14

y

−10

dy
dx

� y � x
dy
dx

�
2x
y

dy
dx

� 5e�x�2dy
dx

� xe x 2

dy
dx

� 2x�3 � x
dy
dx

� x�x � 6

dy
dx

� tan2 x
dy
dx

� sin 2x

dy
dx

� x cos x2dy
dx

�
x � 2

x

dy
dx

�
ex

4 � ex

dy
dx

�
x

1 � x2

dy
dx

� 2x3 � 3x
dy
dx

� 6x2

x � 3y � 0x � 2y� � 4

x � 0y � 4x � 2y � 0

9y� � 12y� � 4y � 0x2y� � 3xy� � 3y � 0

y � e2x�3�C1 � C2x�y � C1x � C2x3
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66. Slope Field Use the slope field for the differential equation
where to sketch the graph of the solution that

satisfies each initial condition. Then make a conjecture about
the behavior of a particular solution of as 
To print an enlarged copy of the graph, go to the website
www.mathgraphs.com.

(a) (b)

Slope Fields In Exercises 67–72, use a computer algebra 
system to (a) graph the slope field for the differential equation
and (b) graph the solution satisfying the specified initial 
condition.

67.

68.

69.

70.

71.

72.

Euler’s Method In Exercises 73–78, use Euler’s Method to
make a table of values for the approximate solution of the
differential equation with the specified initial value. Use steps
of size 

73.

74.

75.

76.

77.

78.

In Exercises 79– 81, complete the table using the exact solution
of the differential equation and two approximations obtained
using Euler’s Method to approximate the particular solution of
the differential equation. Use and and compute
each approximation to four decimal places.

Table for 79–81

79.

80.

81.

82. Compare the values of the approximations in Exercises 79–81
with the values given by the exact solution. How does the error
change as increases?

83. Temperature At time minutes, the temperature of an
object is The temperature of the object is changing at the
rate given by the differential equation

(a) Use a graphing utility and Euler’s Method to approximate
the particular solutions of this differential equation at

2, and 3. Use a step size of (A graphing
utility program for Euler’s Method is available at the
website college.hmco.com.)

(b) Compare your results with the exact solution

(c) Repeat parts (a) and (b) using a step size of 
Compare the results.

h � 0.05.

y � 72 � 68e�t�2.

h � 0.1.t � 1,

dy
dt

� �
1
2

� y � 72�.

140�F.
t � 0

h

y �
1
2 �sin x � cos x � ex��0, 0�dy

dx
� y � cos�x�

y � �2x2 � 4�0, 2�dy
dx

�
2x
y

y � 3ex�0, 3�dy
dx

� y

SolutionConditionEquation
ExactInitialDifferential

h � 0.1h � 0.2

h � 0.1n � 10,y�0� � 5,y� � cos x � sin y,

h � 0.1n � 10,y�0� � 1,y� � exy,

h � 0.4n � 5,y�0� � 1,y� � 0.5x�3 � y�,
h � 0.05n � 10,y�0� � 3,y� � 3x � 2y,

h � 0.05n � 20,y�0� � 2,y� � x � y,

h � 0.1n � 10,y�0� � 2,y� � x � y,

h.
n

y�0� � 2
dy
dx

�
1
2

e�x�8 sin 
	y
4

,

y�0� � 1
dy
dx

� 0.4y�3 � x�,

y�0� � 9
dy
dx

� 0.2x�2 � y�,

y�0� � 2
dy
dx

� 0.02y�10 � y�,

y�0� � 6
dy
dx

� 4 � y,

y�0� � 4
dy
dx

� 0.25y,

�1, 1��0, 1�

x

y

6

31 2−3 −2 −1

x →�.y� � 1�y

y > 0,y� � 1�y,
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x 0 0.2 0.4 0.6 0.8 1

(exact)
y�x�

�h � 0.2�
y�x�

�h � 0.1�
y�x�

84. The graph shows a solution of one of the following differ-
ential equations. Determine the correct equation. Explain
your reasoning.

(a)

(b)

(c)

(d) y� � 4 � xy

y� � �4xy

y� �
4x
y

x

yy� � xy

CAPSTONE

CAS
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True or False? In Exercises 89–92, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

89. If is a solution of a first-order differential equation,
then is also a solution.

90. The general solution of a differential equation is
To find a particular solution, you

must be given two initial conditions.

91. Slope fields represent the general solutions of differential
equations.

92. A slope field shows that the slope at the point is 6. This
slope field represents the family of solutions for the differential
equation

93. Errors and Euler’s Method The exact solution of the differen-
tial equation

where is 

(a) Use a graphing utility to complete the table, where is the
exact value of the solution, is the approximate solution
using Euler’s Method with is the approximate
solution using Euler’s Method with is the
absolute error is the absolute error 
and is the ratio 

(b) What can you conclude about the ratio as changes?

(c) Predict the absolute error when 

94. Errors and Euler’s Method Repeat Exercise 93 for which the
exact solution of the differential equation

where is 

95. Electric Circuits The diagram shows a simple electric circuit
consisting of a power source, a resistor, and an inductor.

A model of the current in amperes at time is given by
the first-order differential equation

where is the voltage produced by the power source,
is the resistance, in ohms and is the inductance, in henrys

Suppose the electric circuit consists of a 24-V power
source, a 12- resistor, and a 4-H inductor.

(a) Sketch a slope field for the differential equation.

(b) What is the limiting value of the current? Explain.

96. Think About It It is known that is a solution of the
differential equation Find the values of 

97. Think About It It is known that is a solution of
the differential equation Find the values of �.y� � 16y � 0.

y � A sin �t

k.y� � 16y � 0.
y � ekt

�
�H�.

L���,
R�V�E�t�

L
dI
dt

� RI � E�t�

t�A�,I,

E

R

L

y � x � 1 � 2e�x.y�0� � 1,

dy
dx

� x � y

h � 0.05.

hr

e1�e2.r
�y � y2�,e2�y � y1�,
e1h � 0.2,

y2h � 0.1,
y1

y

y � 4e�2x.y�0� � 4,

dy
dx

� �2y

y� � 4x � 2y.

�1, 1�

y � �4.9x2 � C1x � C2.

y � f �x� � C
y � f �x�
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85. In your own words, describe the difference between a
general solution of a differential equation and a particular
solution.

86. Explain how to interpret a slope field.

87. Describe how to use Euler’s Method to approximate a 
particular solution of a differential equation.

88. It is known that is a solution of the differential
equation Is it possible to determine or from
the information given? If so, find its value.

kCy� � 0.07y.
y � Cekx

WRITING ABOUT CONCEPTS

x 0 0.2 0.4 0.6 0.8 1

y

y1

y2

e1

e2

r

98. Let be a twice-differentiable real-valued function satisfying

where for all real Prove that is bounded.

99. Prove that if the family of integral curves of the differential
equation

is cut by the line the tangents at the points of inter-
section are concurrent.

These problems were composed by the Committee on the Putnam Prize
Competition. © The Mathematical Association of America. All rights reserved.

x � k,

p�x� � q�x� � 0
dy
dx

� p�x�y � q�x�,

� f �x��x.g�x� � 0

f �x� � f��x� � �xg�x� f��x�

f

PUTNAM EXAM CHALLENGE
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6.2 Differential Equations: Growth and Decay
■ Use separation of variables to solve a simple differential equation.
■ Use exponential functions to model growth and decay in applied problems.

Differential Equations
In the preceding section, you learned to analyze visually the solutions of differential
equations using slope fields and to approximate solutions numerically using Euler’s
Method. Analytically, you have learned to solve only two types of differential
equations—those of the forms and In this section, you will learn
how to solve a more general type of differential equation. The strategy is to rewrite the
equation so that each variable occurs on only one side of the equation. This strategy
is called separation of variables. (You will study this strategy in detail in Section 6.3.)

EXAMPLE 1 Solving a Differential Equation

Original equation

Multiply both sides by 

Integrate with respect to 

Apply Power Rule.

Rewrite, letting 

So, the general solution is given by ■

Notice that when you integrate both sides of the equation in Example 1, you don’t
need to add a constant of integration to both sides. If you did, you would obtain the
same result.

Some people prefer to use Leibniz notation and differentials when applying 
separation of variables. The solution of Example 1 is shown below using this notation.

y2 � 2x2 � C

1
2

y2 � x2 � C1


y dy � 
2x dx

y dy � 2x dx

dy
dx

�
2x
y

1
2 y2 � x2 � C1

1
2 y2 � x2 � �C3 � C2�

1
2 y2 � C2 � x2 � C3


y dy � 
2x dx

y2 � 2x2 � C.

C � 2C1.y2 � 2x2 � C

1
2

y2 � x2 � C1

dy � y� dx
y dy � 
2x dx

x.
yy� dx � 
2x dx

y.yy� � 2x

y� �
2x
y

y� � f�x�.y� � f�x�

You can use implicit 
differentiation to check the solution in
Example 1.

STUDY TIP

E X P L O R A T I O N

In Example 1, the general solution
of the differential equation is

Use a graphing utility to sketch
the particular solutions for

and
Describe the solutions graphically.
Is the following statement true of
each solution?

The slope of the graph at the 
point is equal to twice
the ratio of and 

Explain your reasoning. Are all
curves for which this statement is
true represented by the general
solution?

y.x
�x, y�

C � 0.C � ±1,C � ±2,

y 2 � 2x2 � C.



Growth and Decay Models
In many applications, the rate of change of a variable is proportional to the value of

If is a function of time the proportion can be written as follows.

Rate of change of is proportional to 

The general solution of this differential equation is given in the following theorem.

EXAMPLE 2 Using an Exponential Growth Model

The rate of change of is proportional to When and when 
What is the value of when 

Solution Because you know that and are related by the equation
You can find the values of the constants and by applying the initial

conditions.

When

When

So, the model is When the value of is 
(see Figure 6.8). ■

2e0.3466�3� � 5.657yt � 3,y � 2e0.3466t.

t � 2, y � 4.k �
1
2

 ln 2 � 0.34664 � 2e2k

t � 0, y � 2.C � 22 � Ce0

kCy � Cekt.
tyy� � ky,

t � 3?yy � 4.
t � 2,y � 2,t � 0,y.y

dy
dt

� ky

y.y

t,yy.
y
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THEOREM 6.1 EXPONENTIAL GROWTH AND DECAY MODEL

If is a differentiable function of such that and for some
constant then

is the initial value of and is the proportionality constant. Exponential
growth occurs when and exponential decay occurs when k < 0.k > 0,

ky,C

y � Cekt.

k,
y� � kyy > 0ty

PROOF

Write original equation.

Separate variables.

Integrate with respect to 

Find antiderivative of each side.

Solve for 

Let

So, all solutions of are of the form Remember that you can
differentiate the function with respect to to verify that ■y� � ky.ty � Cekt

y � Cekt.y� � ky

C � eC1.y � Cekt

y.y � ekteC1

 ln y � kt � C1

dy � y� dt
1
y

dy � 
k dt

t.
y�
y

dt � 
k dt

y�
y

� k

y� � ky

t
1

1

2

2

3

3

4

4

5

6

7

(0, 2)

(2, 4)

(3, 5.657)

y = 2e0.3466t

y

If the rate of change of is proportional to
then follows an exponential model.

Figure 6.8
yy,

y

Using logarithmic proper-
ties, note that the value of in Example 2
can also be written as So, the
model becomes which can
then be rewritten as y � 2��2�t

.
y � 2e�ln�2�t,

ln��2�.
k

STUDY TIP



Radioactive decay is measured in terms of half-life—the number of years
required for half of the atoms in a sample of radioactive material to decay. The rate 
of decay is proportional to the amount present. The half-lives of some common
radioactive isotopes are shown below.

Uranium 4,470,000,000 years

Plutonium 24,100 years

Carbon 5715 years

Radium 1599 years

Einsteinium 276 days

Nobelium 25 seconds

EXAMPLE 3 Radioactive Decay

Suppose that 10 grams of the plutonium isotope was released in the Chernobyl
nuclear accident. How long will it take for the 10 grams to decay to 1 gram?

Solution Let represent the mass (in grams) of the plutonium. Because the rate of
decay is proportional to you know that

where is the time in years. To find the values of the constants and apply the 
initial conditions. Using the fact that when you can write 

which implies that Next, using the fact that the half-life of is 24,100
years, you have when so you can write

So, the model is 

Half-life model

To find the time it would take for 10 grams to decay to 1 gram, you can solve for in
the equation

The solution is approximately 80,059 years. ■

From Example 3, notice that in an exponential growth or decay problem, it is easy
to solve for when you are given the value of at The next example
demonstrates a procedure for solving for and when you do not know the value of

at t � 0.y
kC

t � 0.yC

1 � 10e�0.000028761t.

t

y � 10e�0.000028761t.

�0.000028761 � k.

1
24,100

 ln 
1
2

� k

1
2

� e24,100k

 5 � 10ek�24,100�

t � 24,100,y � 10�2 � 5

239PuC � 10.

10 � Cek�0� � Ce0

t � 0,y � 10
k,Ct

y � Cekt

y,
y

239Pu

�257No�
�254Es�

�226Ra�
�14C�

�239Pu�
�238U�
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Most graphing utilities have curve-fitting capabilities that can be
used to find models that represent data. Use the exponential regression feature of a
graphing utility and the information in Example 2 to find a model for the data. How
does your model compare with the given model?
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NOTE The exponential decay model
in Example 3 could also be written

as This model is much
easier to derive, but for some applications
it is not as convenient to use.

y � 10�1
2�t�24,100.



EXAMPLE 4 Population Growth

Suppose an experimental population of fruit flies increases according to the law of
exponential growth. There were 100 flies after the second day of the experiment and
300 flies after the fourth day. Approximately how many flies were in the original 
population?

Solution Let be the number of flies at time where is measured in days.
Note that is continuous whereas the number of flies is discrete. Because 
when and when you can write

and

From the first equation, you know that Substituting this value into the
second equation produces the following.

So, the exponential growth model is

To solve for reapply the condition when and obtain

So, the original population (when ) consisted of approximately 
flies, as shown in Figure 6.9.

EXAMPLE 5 Declining Sales

Four months after it stops advertising, a manufacturing company notices that its sales
have dropped from 100,000 units per month to 80,000 units per month. If the sales 
follow an exponential pattern of decline, what will they be after another 2 months?

Solution Use the exponential decay model where is measured in months.
From the initial condition you know that Moreover, because

when you have

So, after 2 more months you can expect the monthly sales rate to be

See Figure 6.10. ■

� 71,500 units.

y � 100,000e�0.0558�6�

�t � 6�,

�0.0558 � k.

 ln�0.8� � 4k

 0.8 � e4k

 80,000 � 100,000e4k

t � 4,y � 80,000
C � 100,000.�t � 0�,

ty � Cekt,

y � C � 33t � 0

C � 100e�1.0986 � 33.

 100 � Ce0.5493�2�

t � 2y � 100C,

y � Ce0.5493t.

 0.5493 � k

1
2

 ln 3 � k

 ln 3 � 2k

 300 � 100e2k

 300 � 100e�2ke4k

C � 100e�2k.

300 � Ce4k.100 � Ce2k

t � 4,y � 300t � 2
y � 100y

tt,y � Cekt
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In Examples 2 through 5, you did not actually have to solve the differential
equation

(This was done once in the proof of Theorem 6.1.) The next example demonstrates a
problem whose solution involves the separation of variables technique. The example
concerns Newton’s Law of Cooling, which states that the rate of change in the
temperature of an object is proportional to the difference between the object’s 
temperature and the temperature of the surrounding medium.

EXAMPLE 6 Newton’s Law of Cooling

Let represent the temperature of an object in a room whose temperature is
kept at a constant If the object cools from to in 10 minutes, how much
longer will it take for its temperature to decrease to 

Solution From Newton’s Law of Cooling, you know that the rate of change in is
proportional to the difference between and 60. This can be written as 

To solve this differential equation, use separation of variables, as follows.

Differential equation

Separate variables.

Integrate each side.

Find antiderivative of each side.

Because and you can omit the absolute value signs.
Using exponential notation, you have

Using when you obtain which implies
that Because when 

So, the model is

Cooling model

and finally, when you obtain

So, it will require about 14.09 minutes for the object to cool to a temperature of
(see Figure 6.11). ■80�

more

t � 24.09 minutes.

 ln 12 � �0.02877t

1
2 � e�0.02877t

 20 � 40e�0.02877t

 80 � 60 � 40e�0.02877t

y � 80,

y � 60 � 40e�0.02877t

k �
1
10 ln 34 � �0.02877.

 30 � 40e10k

 90 � 60 � 40ek�10�

t � 10,y � 90C � 40.
100 � 60 � Cek�0� � 60 � C,t � 0,y � 100

C � eC1y � 60 � Cekt.y � 60 � ekt�C1

�y � 60� � y � 60,y > 60,

 ln�y � 60� � kt � C1


 1
y � 60

dy � 
k dt

� 1
y � 60	 dy � k dt

dy
dt

� k�y � 60�

80 � y � 100.y� � k� y � 60�,

y
y

80�?
90�100�60�.

�in �F�y

y� � ky.
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In Exercises 1–10, solve the differential equation.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

In Exercises 11–14, write and solve the differential equation
that models the verbal statement.

11. The rate of change of with respect to is inversely propor-
tional to the square of 

12. The rate of change of with respect to is proportional to

13. The rate of change of with respect to is proportional to

14. The rate of change of with respect to varies jointly as and

Slope Fields In Exercises 15 and 16, a differential equation, a
point, and a slope field are given. (a) Sketch two approximate
solutions of the differential equation on the slope field, one of
which passes through the given point. (b) Use integration to find
the particular solution of the differential equation and use a
graphing utility to graph the solution. Compare the result with
the sketch in part (a). To print an enlarged copy of the graph, go
to the website www.mathgraphs.com.

15. 16.

In Exercises 17–20, find the function passing through
the point with the given first derivative. Use a graphing
utility to graph the solution.

17. 18.

19. 20.

In Exercises 21–24, write and solve the differential equation
that models the verbal statement. Evaluate the solution at the
specified value of the independent variable.

21. The rate of change of is proportional to When 
and when What is the value of when 

22. The rate of change of is proportional to When 
and when What is the value of 

when

23. The rate of change of is proportional to When 
and when What is the value of

when

24. The rate of change of is proportional to When 
and when What is the value of 

when

In Exercises 25–28, find the exponential function that
passes through the two given points.

25. 26.

27. 28.
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t � 0,P.P

t � 6?V
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t � 0,V.V
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t � 0,N.N

x � 8?yy � 15.x � 4,
y � 6,x � 0,y.y

dy
dt

�
3
4

y
dy
dt

� �
1
2

y

dy
dt

� �
3
4
�t

dy
dt

�
1
2

t

�0, 10�
y � f �t�

x

4

−4

−4 4

y

x
−5 −1

9

5

y

�0, 1
2�dy

dx
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6.2 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

29. Describe what the values of and represent in the 
exponential growth and decay model,

30. Give the differential equation that models exponential
growth and decay.

In Exercises 31 and 32, determine the quadrants in which
the solution of the differential equation is an increasing
function. Explain. (Do not solve the differential equation.)

31. 32.
dy
dx

�
1
2

x2y
dy
dx

�
1
2

xy

y � Cekt.
kC
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Radioactive Decay In Exercises 33–40, complete the table for
the radioactive isotope.

Half-Life

33. 1599 20 g

34. 1599 1.5 g

35. 1599 0.1 g

36. 5715 3 g

37. 5715 5 g

38. 5715 1.6 g

39. 24,100 2.1 g

40. 24,100 0.4 g

41. Radioactive Decay Radioactive radium has a half-life of
approximately 1599 years. What percent of a given amount
remains after 100 years?

42. Carbon Dating Carbon-14 dating assumes that the carbon
dioxide on Earth today has the same radioactive content as it
did centuries ago. If this is true, the amount of absorbed by
a tree that grew several centuries ago should be the same as the
amount of absorbed by a tree growing today. A piece of
ancient charcoal contains only 15% as much of the radioactive
carbon as a piece of modern charcoal. How long ago was the
tree burned to make the ancient charcoal? (The half-life of 
is 5715 years.)

Compound Interest In Exercises 43–48, complete the table for
a savings account in which interest is compounded continuously.

43. $4000 6%

44. $18,000

45. $750

46. $12,500 5 yr

47. $500 $1292.85

48. $2000 $5436.56

Compound Interest In Exercises 49–52, find the principal 
that must be invested at rate compounded monthly, so that
$1,000,000 will be available for retirement in years.

49. 50.

51. 52.

Compound Interest In Exercises 53 –56, find the time neces-
sary for $1000 to double if it is invested at a rate of compounded
(a) annually, (b) monthly, (c) daily, and (d) continuously.

53. 54.

55. 56.

Population In Exercises 57– 61, the population (in millions) of
a country in 2007 and the expected continuous annual rate of
change of the population are given. (Source: U.S. Census
Bureau, International Data Base)

(a) Find the exponential growth model for the popula-
tion by letting correspond to 2000.

(b) Use the model to predict the population of the country in
2015.

(c) Discuss the relationship between the sign of and the
change in population for the country.

57. Latvia 2.3

58. Egypt 80.3 0.017

59. Paraguay 6.7 0.024

60. Hungary 10.0

61. Uganda 30.3 0.036

63. Modeling Data One hundred bacteria are started in a culture
and the number of bacteria is counted each hour for 5 hours.
The results are shown in the table, where is the time in hours.

(a) Use the regression capabilities of a graphing utility to find
an exponential model for the data.

(b) Use the model to estimate the time required for the popula-
tion to quadruple in size.

64. Bacteria Growth The number of bacteria in a culture is
increasing according to the law of exponential growth. There
are 125 bacteria in the culture after 2 hours and 350 bacteria
after 4 hours.

(a) Find the initial population.

(b) Write an exponential growth model for the bacteria popula-
tion. Let represent time in hours.

(c) Use the model to determine the number of bacteria after
8 hours.

(d) After how many hours will the bacteria count be 25,000?

65. Learning Curve The management at a certain factory has
found that a worker can produce at most 30 units in a day. The
learning curve for the number of units produced per day after
a new employee has worked days is After 20
days on the job, a particular worker produces 19 units.

N � 30�1 � ekt�.t
N

t

t
N

�0.003

�0.006

k2007 PopulationCountry

k

t � 0
P � Cekt

k

r � 5.5%r � 8.5%

r � 6%r � 7%

r

t � 25r � 9%,t � 35r � 8%,

t � 40r � 6%,t � 20r � 71
2%,

t
r,

P

7 3
4 yr

5 1
2%

10 Years       DoubleRate    Investment
Amount AfterTime toAnnualInitial

14C

14C

14C

239Pu

239Pu

14C

14C

14C

226Ra

226Ra

226Ra

10,000 Years1000 YearsQuantity�in years�Isotope
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AmountAmount
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t 0 1 2 3 4 5

N 100 126 151 198 243 297

62. (a) Suppose an insect population increases by a constant
number each month. Explain why the number of insects
can be represented by a linear function.

(b) Suppose an insect population increases by a constant
percentage each month. Explain why the number of
insects can be represented by an exponential function.

CAPSTONE



(a) Find the learning curve for this worker.

(b) How many days should pass before this worker is producing
25 units per day?

66. Learning Curve If the management in Exercise 65 requires a
new employee to produce at least 20 units per day after 30 days
on the job, find (a) the learning curve that describes this
minimum requirement and (b) the number of days before a
minimal achiever is producing 25 units per day.

67. Modeling Data The table shows the populations (in
millions) of the United States from 1960 to 2000. (Source:
U.S. Census Bureau)

(a) Use the 1960 and 1970 data to find an exponential model
for the data. Let represent 1960.

(b) Use a graphing utility to find an exponential model for
all the data. Let represent 1960.

(c) Use a graphing utility to plot the data and graph models 
and in the same viewing window. Compare the actual
data with the predictions. Which model better fits the data?

(d) Estimate when the population will be 320 million.

68. Modeling Data The table shows the net receipts and the
amounts required to service the national debt (interest on
Treasury debt securities) of the United States from 2001
through 2010. The years 2007 through 2010 are estimated, and
the monetary amounts are given in billions of dollars.
(Source: U.S. Office of Management and Budget)

(a) Use the regression capabilities of a graphing utility to find
an exponential model for the receipts and a quartic model

for the amount required to service the debt. Let represent
the time in years, with corresponding to 2001.

(b) Use a graphing utility to plot the points corresponding to the
receipts, and graph the exponential model. Based on the
model, what is the continuous rate of growth of the receipts?

(c) Use a graphing utility to plot the points corresponding to
the amounts required to service the debt, and graph the
quartic model.

(d) Find a function that approximates the percent of the
receipts that is required to service the national debt. Use a
graphing utility to graph this function.

69. Sound Intensity The level of sound (in decibels) with an
intensity of is where is an intensity
of watt per square centimeter, corresponding roughly to
the faintest sound that can be heard. Determine for the 
following.
(a) watt per square centimeter (whisper)

(b) watt per square centimeter (busy street corner)

(c) watt per square centimeter (air hammer)

(d) watt per square centimeter (threshold of pain)

70. Noise Level With the installation of noise suppression
materials, the noise level in an auditorium was reduced from
93 to 80 decibels. Use the function in Exercise 69 to find the
percent decrease in the intensity level of the noise as a result of
the installation of these materials.

71. Forestry The value of a tract of timber is 
where is the time in years, with corresponding to 2008.
If money earns interest continuously at 10%, the present value
of the timber at any time is Find the year in
which the timber should be harvested to maximize the present
value function.

72. Earthquake Intensity On the Richter scale, the magnitude 
of an earthquake of intensity is

where is the minimum intensity used for comparison.
Assume that 

(a) Find the intensity of the 1906 San Francisco earthquake

(b) Find the factor by which the intensity is increased if the
Richter scale measurement is doubled.

(c) Find 

73. Newton’s Law of Cooling When an object is removed from
a furnace and placed in an environment with a constant
temperature of its core temperature is One hour
after it is removed, the core temperature is Find the
core temperature 5 hours after the object is removed from the
furnace.

74. Newton’s Law of Cooling A container of hot liquid is placed
in a freezer that is kept at a constant temperature of The
initial temperature of the liquid is After 5 minutes, the
liquid’s temperature is How much longer will it take for
its temperature to decrease to 

True or False? In Exercises 75–78, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

75. In exponential growth, the rate of growth is constant.

76. In linear growth, the rate of growth is constant.

77. If prices are rising at a rate of 0.5% per month, then they are
rising at a rate of 6% per year.

78. The differential equation modeling exponential growth is
where is a constant.kdy�dx � ky,

30�F?
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1120�F.
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Year 1960 1970 1980 1990 2000

Population, P 181 205 228 250 282

Year 2001 2002 2003 2004 2005

Receipts 1991.4 1853.4 1782.5 1880.3 2153.9

Interest 359.5 332.5 318.1 321.7 352.3

Year 2006 2007 2008 2009 2010

Receipts 2407.3 2540.1 2662.5 2798.3 2954.7

Interest 405.9 433.0 469.9 498.0 523.2
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6.3 Separation of Variables and the Logistic Equation
■ Recognize and solve differential equations that can be solved by separation of

variables.
■ Recognize and solve homogeneous differential equations.
■ Use differential equations to model and solve applied problems.
■ Solve and analyze logistic differential equations.

Separation of Variables
Consider a differential equation that can be written in the form

where is a continuous function of alone and is a continuous function of alone.
As you saw in the preceding section, for this type of equation, all terms can
be collected with and all terms with and a solution can be obtained by
integration. Such equations are said to be separable, and the solution procedure is
called separation of variables. Below are some examples of differential equations
that are separable.

EXAMPLE 1 Separation of Variables

Find the general solution of 

Solution To begin, note that is a solution. To find other solutions, assume that
and separate variables as shown.

Differential form

Separate variables.

Now, integrate to obtain

Integrate.

Because is also a solution, you can write the general solution as 

General solution ■�C � ± eC1�y � C�x2 � 4.

y � 0

y � ±eC1�x2 � 4.
�y� � eC1�x2 � 4

 ln�y� � ln�x2 � 4 � C1

 ln�y� �
1
2

 ln�x2 � 4� � C1


dy
y

� 
 x
x2 � 4

dx

dy
y

�
x

x2 � 4
dx

�x2 � 4� dy � xy dx

y � 0
y � 0

�x2 � 4� dy
dx

� xy.

1
ey � 1

dy �
2
x

dx
xy�

ey � 1
� 2

dy � cot x dx�sin x�y� � cos x

3y dy � �x2 dxx2 � 3y
dy
dx

� 0

Rewritten with Variables SeparatedOriginal Differential Equation

dy,ydx
x

yNxM

M�x� � N�y� dy
dx

� 0

NOTE Be sure to check your solutions
throughout this chapter. In Example 1, you
can check the solution by
differentiating and substituting into the
original equation.

So, the solution checks.

Cx�x2 � 4 � Cx�x2 � 4

�x2 � 4� Cx
�x2 � 4

�
?

x�C�x2 � 4 �

�x2 � 4� dy
dx

� xy

y � C�x2 � 4



In some cases it is not feasible to write the general solution in the explicit form
The next example illustrates such a solution. Implicit differentiation can be

used to verify this solution.

EXAMPLE 2 Finding a Particular Solution

Given the initial condition find the particular solution of the equation

Solution Note that is a solution of the differential equation—but this solution
does not satisfy the initial condition. So, you can assume that To separate
variables, you must rid the first term of and the second term of So, you should
multiply by and obtain the following.

From the initial condition you have which implies that
So, the particular solution has the implicit form

You can check this by differentiating and rewriting to get the original equation.

EXAMPLE 3 Finding a Particular Solution Curve

Find the equation of the curve that passes through the point and has a slope of
at any point 

Solution Because the slope of the curve is given by you have

with the initial condition Separating variables and integrating produces

Because when it follows that and So, the equation of
the specified curve is

Because the solution is not defined at and the initial condition is given at 
is restricted to positive values. See Figure 6.12. ■x

x � 1,x � 0

x > 0.y � �3e�e�1�x � 3e�x�1��x,

C � 3e.3 � Ce�1x � 1,y � 3

y � e��1�x��C1 � Ce�1�x.

 ln�y� � �
1
x

� C1

y � 0
dy
y

� 
dx
x2 ,

y�1� � 3.

dy
dx

�
y
x2

y�x2,

�x, y�.y�x2
�1, 3�

y2 � ln y2 � ex2
� 2.

y2

2
� ln �y� � �

1
2

ex2
� 1

C � 1.

1
2 � 0 � �

1
2 � C,y�0� � 1,

y2

2
� ln �y� � �

1
2

ex2
� C


�y �
1
y	 dy � 
�xex2

dx

e�x2� y2 � 1� dy � �xy dx

xy dx � e�x2�y2 � 1� dy � 0

ex2�y
e�x2

.y
y � 0.

y � 0

xy dx � e�x2�y2 � 1� dy � 0.

y�0� � 1,

y � f�x�.
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Figure 6.12

■ FOR FURTHER INFORMATION
For an example (from engineering) of 
a differential equation that is separable,
see the article “Designing a Rose Cutter”
by J. S. Hartzler in The College
Mathematics Journal. To view this article,
go to the website www.matharticles.com.

www.matharticles.com


Homogeneous Differential Equations
Some differential equations that are not separable in and can be made separable by
a change of variables. This is true for differential equations of the form 
where is a homogeneous function. The function given by is homogeneous of
degree if

where is an integer.

EXAMPLE 4 Verifying Homogeneous Functions

a. is a homogeneous function of degree 3 because

b. is a homogeneous function of degree 1 because 

c. is not a homogeneous function because

d. is a homogeneous function of degree 0 because

■

EXAMPLE 5 Testing for Homogeneous Differential Equations

a. is homogeneous of degree 2.

b. is homogeneous of degree 3.

c. is a homogeneous differential equation. ■not�x2 � 1� dx � y2 dy � 0

x3 dx � y3 dy

�x2 � xy� dx � y2 dy � 0

f�tx, ty� �
tx
ty

� t0 x
y
.

f�x, y� � x�y

f�tx, ty� � tx � t2y2 � t�x � ty2� � tn�x � y2�.

f �x, y� � x � y2

� t f�x, y�.

� t�xex�y � y sin 
y
x	

f�tx, ty� � txetx�ty � ty sin 
ty
tx

f�x, y� � xex�y � y sin�y�x�

� t3f�x, y�.
� t3�x2y � 4x3 � 3xy2�
� t3�x2y� � t3�4x3� � t3�3xy2�

f�tx, ty� � �tx�2�ty� � 4�tx�3 � 3�tx��ty�2

f�x, y� � x2y � 4x3 � 3xy2

n

n
f�x, y�f

y� � f�x, y�,
yx
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Homogeneous function of degree nf �tx, ty� � tnf �x, y�

DEFINITION OF HOMOGENEOUS DIFFERENTIAL EQUATION

A homogeneous differential equation is an equation of the form

where and are homogeneous functions of the same degree.NM

M�x, y� dx � N�x, y�dy � 0

NOTE The notation is used to
denote a function of two variables in
much the same way as denotes a
function of one variable. You will study
functions of two variables in detail in
Chapter 13.

f �x�

f �x, y�



To solve a homogeneous differential equation by the method of separation of
variables, use the following change of variables theorem.

EXAMPLE 6 Solving a Homogeneous Differential Equation

Find the general solution of

Solution Because and are both homogeneous of degree 2, let 
to obtain Then, by substitution, you have

Dividing by and separating variables produces

Substituting for produces the following general solution.

General solution

You can check this by differentiating and rewriting to get the original equation.
■

�x2 � 2y2�3 � Cx2

�1 �
2y2

x2 	
3

x4 � C

x4 � C�1 � 2�y
x	

2

�
�3

v

x4 � C�1 � 2v2��3.

 ln x4 � ln�C�1 � 2v2��3�
4 ln�x� � �3 ln�1 � 2v2� � ln�C�

 ln�x� � �
3
4

 ln�1 � 2v2� � C1


dx
x

� 
 �3v
1 � 2v2 dv

�1 � 2v2� dx � �3vx dv

x2

x2�1 � 2v2� dx � x2�3vx� dv � 0.

�x2 � 2v2x2� dx � 3x3v dv � 0

�x2 � v2x2� dx � 3x�vx��x dv � v dx� � 0

dy

dy � x dv � v dx.
y � vx3xy�x2 � y2�

�x2 � y2� dx � 3xy dy � 0.
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THEOREM 6.2 CHANGE OF VARIABLES FOR HOMOGENEOUS EQUATIONS

If is homogeneous, then it can be transformed
into a differential equation whose variables are separable by the substitution

where is a differentiable function of x.v

y � vx

M�x, y� dx � N�x, y� dy � 0

The substitution 
will yield a differential equation that is
separable with respect to the variables 

and You must write your final 
solution, however, in terms of and y.x

v.x

y � vxSTUDY TIP

If you have access to a graphing utility, try using it to graph several
solutions of the equation in Example 6. For instance, Figure 6.13 shows the graphs of

for 2, 3, and 4.C � 1,

�x2 � 2y2�3 � Cx2

TECHNOLOGY

x

(x2 + 2y2)3 = Cx2

C = 1 C = 2

C = 3
C = 4

1

1

−1

y

General solution of

Figure 6.13
�x2 � y2� dx � 3xy dy � 0



Applications

EXAMPLE 7 Wildlife Population

The rate of change of the number of coyotes in a population is directly propor-
tional to where is the time in years. When the population is 300,
and when the population has increased to 500. Find the population when 

Solution Because the rate of change of the population is proportional to 
you can write the following differential equation.

You can solve this equation using separation of variables.

Differential form

Separate variables.

Integrate.

Assume

General solution

Using when you can conclude that which produces

Then, using when it follows that 

So, the model for the coyote population is 

Model for population

When you can approximate the population to be

coyotes.

The model for the population is shown in Figure 6.14. Note that is the 
horizontal asymptote of the graph and is the carrying capacity of the model. You will
learn more about carrying capacity later in this section.

Figure 6.14 ■
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k � 0.4236.e�2k �
3
7500 � 650 � 350e�2k

t � 2,N � 500

N � 650 � 350e�kt.

C � 350,t � 0,N � 300

N � 650 � Ce�kt

N < 650. 650 � N � e�kt�C1

 ln�650 � N� � �kt � C1

�ln�650 � N� � kt � C1

dN
650 � N

� k dt

dN � k�650 � N� dt

dN
dt

� k�650 � N�

650 � N�t�,

t � 3.t � 2,
t � 0,t650 � N�t�,
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A common problem in electrostatics, thermodynamics, and hydrodynamics
involves finding a family of curves, each of which is orthogonal to all members of a
given family of curves. For example, Figure 6.15 shows a family of circles

Family of circles

each of which intersects the lines in the family

Family of lines

at right angles. Two such families of curves are said to be mutually orthogonal, and
each curve in one of the families is called an orthogonal trajectory of the other
family. In electrostatics, lines of force are orthogonal to the equipotential curves.
In thermodynamics, the flow of heat across a plane surface is orthogonal to the
isothermal curves. In hydrodynamics, the flow (stream) lines are orthogonal
trajectories of the velocity potential curves.

EXAMPLE 8 Finding Orthogonal Trajectories

Describe the orthogonal trajectories for the family of curves given by

for Sketch several members of each family.

Solution First, solve the given equation for and write Then, by differen-
tiating implicitly with respect to you obtain the differential equation

Differential equation

Slope of given family

Because represents the slope of the given family of curves at it follows that
the orthogonal family has the negative reciprocal slope So,

Slope of orthogonal family

Now you can find the orthogonal family by separating variables and integrating.

The centers are at the origin, and the transverse axes are vertical for and
horizontal for If the orthogonal trajectories are the lines If

the orthogonal trajectories are hyperbolas. Several trajectories are shown in
Figure 6.16. ■

K � 0,
y � ± x.K � 0,K < 0.
K > 0

y2 � x2 � K

y2

2
�

x2

2
� C1


y dy � 
x dx

dy
dx

�
x
y

.

x�y.
�x, y�,y�

dy
dx

� �
y
x

.

x
dy
dx

� �y

xy� � y � 0

x,
xy � C.C

C � 0.

y �
C
x

y � Kx

x2 � y2 � C
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Given family:
xy = C

Orthogonal
family:
y2 − x2 = K

Orthogonal trajectories
Figure 6.16

x

y

Each line is an orthogonal trajectory
of the family of circles.
Figure 6.15

y � Kx



Logistic Differential Equation
In Section 6.2, the exponential growth model was derived from the fact that the rate
of change of a variable is proportional to the value of You observed that the
differential equation has the general solution Exponential
growth is unlimited, but when describing a population, there often exists some upper
limit past which growth cannot occur. This upper limit is called the carrying
capacity, which is the maximum population that can be sustained or supported as
time increases. A model that is often used to describe this type of growth is the logistic
differential equation

Logistic differential equation

where and are positive constants. A population that satisfies this equation does not
grow without bound, but approaches the carrying capacity as increases.

From the equation, you can see that if is between 0 and the carrying capacity 
then and the population increases. If is greater than then 
and the population decreases. The graph of the function is called the logistic curve,
as shown in Figure 6.17.

EXAMPLE 9 Deriving the General Solution

Solve the logistic differential equation 

Solution Begin by separating variables.

Write differential equation.

Separate variables.

Integrate each side.

Rewrite left side using partial fractions.

Find antiderivative of each side.

Multiply each side by and simplify.

Exponentiate each side.

Let

Solving this equation for produces ■

From Example 9, you can conclude that all solutions of the logistic differential
equation are of the general form

y �
L

1 � be�kt .

y �
L

1 � be�kt .y

±e�C � b.
L � y

y
� be�kt

�L � y
y � � e�kt�C � e�Ce�kt

�1 ln�L � y
y � � �kt � C

 ln�y� � ln�L � y� � kt � C


�1
y

�
1

L � y	dy � 
 kdt


 1
y�1 � y�L�dy � 
 kdt

1
y�1 � y�L�dy � kdt

dy
dt

� ky�1 �
y
L	

dy
dt

� ky�1 �
y
L	.

y
dy�dt < 0,L,ydy�dt > 0,

L,y
tL

Lk

dy
dt

� ky�1 �
y
L	

t
y�t�

LL

y � Cekt.dy�dt � ky
y.y
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t

y

L

Logistic
curve

y = L

Note that as 
Figure 6.17

y → L.t →�,

E X P L O R A T I O N

Use a graphing utility to investigate
the effects of the values of 
and on the graph of

Include some examples to support
your results.

y �
L

1 � be�kt .

k
b,L,



EXAMPLE 10 Solving a Logistic Differential Equation

A state game commission releases 40 elk into a game refuge. After 5 years, the elk
population is 104. The commission believes that the environment can support no more
than 4000 elk. The growth rate of the elk population is

where is the number of years.

a. Write a model for the elk population in terms of 

b. Graph the slope field for the differential equation and the solution that passes
through the point 

c. Use the model to estimate the elk population after 15 years.

d. Find the limit of the model as 

Solution

a. You know that So, the solution of the equation is of the form

Because you can solve for as follows.

Then, because when you can solve for 

So, a model for the elk population is given by 

b. Using a graphing utility, you can graph the slope field for

and the solution that passes through as shown in Figure 6.18.

c. To estimate the elk population after 15 years, substitute 15 for in the model.

Substitute 15 for 

Simplify.

d. As increases without bound, the denominator of gets closer and

closer to 1.

So, ■lim
t→�

4000
1 � 99e�0.194t � 4000.

4000
1 � 99e�0.194tt

�
4000

1 � 99e�2.91 � 626

t.p �
4000

1 � 99e�0.194�15�

t

�0, 40�,

dp
dt

� 0.194p�1 �
p

4000	

p �
4000

1 � 99e�0.194t .

k � 0.194104 �
4000

1 � 99e�k�5�

k.t � 5,p � 104

b � 9940 �
4000
1 � b

40 �
4000

1 � be�k�0�

bp�0� � 40,

p �
4000

1 � be�kt .

L � 4000.

t →�.

�0, 40�.

t.

t

40 � p � 4000
dp
dt

� kp�1 �
p

4000	,

p
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5000

Slope field for

and the solution passing through 
Figure 6.18

�0, 40�

dp
dt

� 0.194p�1 �
p

4000	

E X P L O R A T I O N

Explain what happens if p�0� � L.



In Exercises 1–14, find the general solution of the differential
equation.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

In Exercises 15–24, find the particular solution that satisfies the
initial condition.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

In Exercises 25–28, find an equation of the graph that passes
through the point and has the given slope.

25. 26.

27. 28.

In Exercises 29 and 30, find all functions having the indicated
property.

29. The tangent to the graph of at the point intersects the 
axis at 

30. All tangents to the graph of pass through the origin.

In Exercises 31–38, determine whether the function is homoge-
neous, and if it is, determine its degree.

31. 32.

33. 34.

35. 36.

37. 38.

In Exercises 39– 44, solve the homogeneous differential equation.

39. 40.

41. 42.

43. 44.

In Exercises 45–48, find the particular solution that satisfies the
initial condition.

45.

46.

47.

48.

Slope Fields In Exercises 49–52, sketch a few solutions of the
differential equation on the slope field and then find the general
solution analytically. To print an enlarged copy of the graph, go
to the website www.mathgraphs.com.

49. 50.

51. 52.

x
−4 −2−3 −1 2 31 4

y

8

x
3 41 2−3 −1−2

y

8

dy
dx

� 0.25x�4 � y�dy
dx

� 4 � y

x
4

−4

4

y

−42
x

−2

y

2

−2

dy
dx

� �
x
y

dy
dx

� x

y�1� � 0�2x2 � y2� dx � xy dy � 0

y�1� � 0�x sec 
y
x

� y	 dx � x dy � 0

y�1� � 1�y2 dx � x�x � y� dy � 0

y�1� � 0x dy � �2xe�y�x � y� dx � 0

Initial ConditionDifferential Equation

y� �
2x � 3y

x
y� �

xy
x2 � y2

y� �
x2 � y2

2xy
y� �

x � y
x � y

y� �
x3 � y3

xy2y� �
x � y

2x

f �x, y� � tan
y
x

f �x, y� � 2 ln 
x
y

f �x, y� � tan�x � y�f �x, y� � 2 ln xy

f �x, y� �
xy

�x2 � y2
f �x, y� �

x2y2

�x2 � y2

f �x, y� � x3 � 3x2y2 � 2y2f �x, y� � x3 � 4xy2 � y3

f

�x � 2, 0�.x-
�x, y�f

f

y� �
2y
3x

�8, 2�,y� �
y

2x
�9, 1�,

y� � �
9x

16y
�1, 1�,y� �

x
4y

�0, 2�,

T�0� � 140dT � k�T � 70� dt � 0

P�0� � P0dP � kP dt � 0

r�0� � 0
dr
ds

� er�2s

u�0� � 1
du
dv

� uv sin v2

y�0� � 1y�1 � x2 y� � x�1 � y2 � 0

y�0� � �3y�1 � x2�y� � x�1 � y2� � 0

y�1� � 22xy� � ln x2 � 0

y��2� � 1y�x � 1� � y� � 0

y�1� � 9�x � �y y� � 0

y�0� � 3yy� � 2ex � 0

Initial ConditionDifferential Equation                

12yy� � 7ex � 0y ln x � xy� � 0

�x2 � 16y� � 11x�1 � 4x2 y� � x

yy� � �8 cos�	x�yy� � 4 sin x

xy� � y�2 � x�y� � 3y

dr
ds

� 0.75s
dr
ds

� 0.75r

dy
dx

�
x2 � 3

6y2x2 � 5y
dy
dx

� 0

dy
dx

�
3x2

y2

dy
dx

�
x
y
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6.3 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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Euler’s Method In Exercises 53 –56, (a) use Euler’s Method
with a step size of to approximate the particular
solution of the initial value problem at the given -value, (b) find
the exact solution of the differential equation analytically, and
(c) compare the solutions at the given -value.

53.

54.

55.

56.

57. Radioactive Decay The rate of decomposition of radioactive
radium is proportional to the amount present at any time. The
half-life of radioactive radium is 1599 years. What percent of a
present amount will remain after 50 years?

58. Chemical Reaction In a chemical reaction, a certain 
compound changes into another compound at a rate proportional
to the unchanged amount. If initially there is 40 grams of the
original compound, and there is 35 grams after 1 hour, when
will 75 percent of the compound be changed?

Slope Fields In Exercises 59–62, (a) write a differential
equation for the statement, (b) match the differential equation
with a possible slope field, and (c) verify your result by using a
graphing utility to graph a slope field for the differential
equation. [The slope fields are labeled (a), (b), (c), and (d).] To
print an enlarged copy of the graph, go to the website
www.mathgraphs.com.

(a) (b) 

(c) (d) 

59. The rate of change of with respect to is proportional to the
difference between and 4.

60. The rate of change of with respect to is proportional to the
difference between and 4.

61. The rate of change of with respect to is proportional to the
product of and the difference between and 4.

62. The rate of change of with respect to is proportional to 

63. Weight Gain A calf that weighs 60 pounds at birth gains
weight at the rate where is weight in
pounds and is time in years. Solve the differential equation.

(a) Use a computer algebra system to solve the differential
equation for and 1. Graph the three solutions.

(b) If the animal is sold when its weight reaches 800 pounds,
find the time of sale for each of the models in part (a).

(c) What is the maximum weight of the animal for each of the
models?

64. Weight Gain A calf that weighs pounds at birth gains
weight at the rate where is weight in
pounds and is time in years. Solve the differential equation.

In Exercises 65–70, find the orthogonal trajectories of the
family. Use a graphing utility to graph several members of each
family.

65. 66.

67. 68.

69. 70.

In Exercises 71–74, match the logistic equation with its graph.
[The graphs are labeled (a), (b), (c), and (d).]

(a) (b) 

(c) (d) 

71. 72.

73. 74. y �
12

1 � e�2xy �
12

1 � 1
2e�x

y �
12

1 � 3e�xy �
12

1 � e�x

y

x
−2−4−6 108642

10
8
6
4

12
14

y

x
−2−4−6 108642

10
8
6
4

12
14

y

x
−2−4−6 108642

10
8

2

12
14

y

x
−2−4−6 108642

10
8
6
4

12
14

y � Cexy2 � Cx3

y2 � 2Cxx2 � Cy

x2 � 2y2 � Cx2 � y2 � C

t
wdw�dt � 1200 � w,

w0

0.9,k � 0.8,

t
wdw�dt � k�1200 � w�,

y2.xy

yy
xy

x
xy

y
xy

x
−5 5

y

−2.5

2.5

x
−5 −1

9

5

y

x
−1

−5

5

9

y

x
−5 −1

9

5

y

x � 1.5�1, 0�dy
dx

� 2x�1 � y2�

x � 2�1, 2�dy
dx

�
2x � 12
3y2 � 4

x � 1�0, 3�dy
dx

� 6xy2 � 0

x � 1�0, 5�dy
dx

� �6xy

x-valueInitial ConditionDifferential Equation

x

x
h � 0.1
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In Exercises 75 and 76, the logistic equation models the growth
of a population. Use the equation to (a) find the value of 
(b) find the carrying capacity, (c) find the initial population,
(d) determine when the population will reach 50% of its
carrying capacity, and (e) write a logistic differential equation
that has the solution 

75. 76.

In Exercises 77 and 78, the logistic differential equation models
the growth rate of a population. Use the equation to (a) find the
value of (b) find the carrying capacity, (c) graph a slope field
using a computer algebra system, and (d) determine the value
of at which the population growth rate is the greatest.

77. 78.

In Exercises 79–82, find the logistic equation that satisfies the
initial condition.

79.

80.

81.

82.

83. Endangered Species A conservation organization releases 25
Florida panthers into a game preserve. After 2 years, there are
39 panthers in the preserve. The Florida preserve has a carrying
capacity of 200 panthers.

(a) Write a logistic equation that models the population of 
panthers in the preserve.

(b) Find the population after 5 years.

(c) When will the population reach 100?

(d) Write a logistic differential equation that models the
growth rate of the panther population. Then repeat part (b)
using Euler’s Method with a step size of Compare
the approximation with the exact answers.

(e) At what time is the panther population growing most rapidly?
Explain.

84. Bacteria Growth At time a bacterial culture weighs
1 gram. Two hours later, the culture weighs 4 grams. The
maximum weight of the culture is 20 grams.

(a) Write a logistic equation that models the weight of the
bacterial culture.

(b) Find the culture’s weight after 5 hours.

(c) When will the culture’s weight reach 18 grams?

(d) Write a logistic differential equation that models the
growth rate of the culture’s weight. Then repeat part (b)
using Euler’s Method with a step size of Compare
the approximation with the exact answers.

(e) At what time is the culture’s weight increasing most
rapidly? Explain.

89. Show that if then 

90. Sailing Ignoring resistance, a sailboat starting from rest
accelerates at a rate proportional to the difference
between the velocities of the wind and the boat.

(a) The wind is blowing at 20 knots, and after 1 half-hour the
boat is moving at 10 knots. Write the velocity as a 
function of time 

(b) Use the result of part (a) to write the distance traveled by
the boat as a function of time.

True or False? In Exercises 91– 94, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

91. The function is always a solution of a differential
equation that can be solved by separation of variables.

92. The differential equation can be written
in separated variables form.

93. The function is homogeneous.

94. The families and are mutually
orthogonal.

x2 � y2 � 2Kxx2 � y2 � 2Cy

f �x, y� � x2 � 4xy � 6y2 � 1

y� � xy � 2y � x � 2

y � 0

t.
v

�dv�dt�

dy
dt

� ky�1 � y�.y �
1

1 � be�kt ,

h � 1.

t � 0,

h � 1.

�0, 15�dy
dt

�
3y
20

�
y2

1600

�0, 8�dy
dt

�
4y
5

�
y2

150

�0, 7�dy
dt

� 2.8y�1 �
y

10	

�0, 4�dy
dt

� y�1 �
y

36	
Initial ConditionLogistic Differential Equation

dP
dt

� 0.1P � 0.0004P2dP
dt

� 3P�1 �
P

100	
P

k,

P�t� �
5000

1 � 39e�0.2tP�t� �
2100

1 � 29e�0.75t

P�t�.

k,
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85. In your own words, describe how to recognize and solve
differential equations that can be solved by separation of
variables.

86. State the test for determining if a differential equation is
homogeneous. Give an example.

87. In your own words, describe the relationship between two
families of curves that are mutually orthogonal.

WRITING ABOUT CONCEPTS

88. Suppose the growth of a population is modeled by a 
logistic equation. As the population increases, its rate of
growth decreases. What do you think causes this to occur in
real-life situations such as animal or human populations?

CAPSTONE

95. A not uncommon calculus mistake is to believe that the
product rule for derivatives says that If

determine, with proof, whether there exists an
open interval and a nonzero function defined on

such that this wrong product rule is true for in 

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

�a, b�.x�a, b�
g�a, b�

f �x� � ex2,
� fg�� � f�g�.

PUTNAM EXAM CHALLENGE

CAS



■ Solve a first-order linear differential equation.
■ Use linear differential equations to solve applied problems.
■ Solve a Bernoulli differential equation.

First-Order Linear Differential Equations
In this section, you will see how to solve a very important class of first-order 
differential equations—first-order linear differential equations.

To solve a linear differential equation, write it in standard form to identify the
functions and Then integrate and form the expression

Integrating factor

which is called an integrating factor. The general solution of the equation is

General solution

EXAMPLE 1 Solving a Linear Differential Equation

Find the general solution of

Solution For this equation, and So, the integrating factor is

Integrating factor

This implies that the general solution is

General solution ■�
1
2

ex � Ce�x.

� e�x�1
2

e2x � C	
�

1
ex 
 ex�ex� dx

y �
1

u�x� 
 Q�x�u�x� dx

� ex.

� e�dx

u�x� � e� P�x� dx

Q�x� � ex.P�x� � 1

y� � y � ex.

y �
1

u�x� 
 Q�x�u�x� dx.

u�x� � e�P�x�dx

P�x�Q�x�.P�x�
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6.4 First-Order Linear Differential Equations

DEFINITION OF FIRST-ORDER LINEAR DIFFERENTIAL EQUATION

A first-order linear differential equation is an equation of the form

where and are continuous functions of This first-order linear differential
equation is said to be in standard form.

x.QP

dy
dx

� P�x�y � Q�x�

NOTE It is instructive to see why the
integrating factor helps solve a linear
differential equation of the form

When both sides 
of the equation are multiplied by the
integrating factor the 
left-hand side becomes the derivative 
of a product.

Integrating both sides of this second
equation and dividing by produces
the general solution.

u�x�

�ye� P�x� dx�� � Q�x�e� P�x� dx

y�e�P�x� dx � P�x�ye �P�x� dx � Q�x�e� P�x� dx

u�x� � e�P�x� dx,

y� � P�x�y � Q�x�.



EXAMPLE 2 Solving a First-Order Linear Differential Equation

Find the general solution of

Solution The standard form of the given equation is

Standard form

So, and you have

Integrating factor

So, multiplying each side of the standard form by yields

General solution

Several solution curves are shown in Figure 6.19.
■

�for C � �2, �1, 0, 1, 2, 3, and 4�

y � x2�ln �x� � C�.

y
x2 � ln �x� � C

y
x2 � 
 1

x
dx

d
dx �

y
x2� �

1
x

y�

x2 �
2y
x3 �

1
x

1�x2

�
1
x2.

�
1

eln x2

e� P�x� dx � e�ln x2

� �ln x2


 P�x� dx � �
 2
x

dx

P�x� � �2�x,

y� � �2
x	y � x.

y� � P�x�y � Q�x�

xy� � 2y � x2.
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THEOREM 6.3 SOLUTION OF A FIRST-ORDER LINEAR 
DIFFERENTIAL EQUATION

An integrating factor for the first-order linear differential equation

is The solution of the differential equation is

ye� P�x� dx �
 Q�x�e� P�x� dx dx � C.

u�x� � e�P�x� dx.

y� � P�x�y � Q�x�

Rather than memorizing the formula in Theorem 6.3, just remember that
multiplication by the integrating factor converts the left side of the differential
equation into the derivative of the product ■ye� P�x� dx.

e� P�x� dx

STUDY TIP

ANNA JOHNSON PELL WHEELER
(1883–1966)

Anna Johnson Pell Wheeler was awarded a
master’s degree from the University of Iowa
for her thesis The Extension of Galois Theory
to Linear Differential Equations in 1904.
Influenced by David Hilbert, she worked on
integral equations while studying infinite
linear spaces.
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EXAMPLE 3 Solving a First-Order Linear Differential Equation

Find the general solution of 

Solution The equation is already in the standard form So,
and

Because you can drop the absolute value signs and conclude that
the integrating factor is

Integrating factor

So, multiplying by produces

General solution

Several solution curves are shown in Figure 6.20. ■

Applications
One type of problem that can be described in terms of a differential equation involves
chemical mixtures, as illustrated in the next example.

EXAMPLE 4 A Mixture Problem

A tank contains 50 gallons of a solution composed of 90% water and 10% alcohol.
A second solution containing 50% water and 50% alcohol is added to the tank at
the rate of 4 gallons per minute. As the second solution is being added, the tank
is being drained at a rate of 5 gallons per minute, as shown in Figure 6.21. Assuming
the solution in the tank is stirred constantly, how much alcohol is in the tank after
10 minutes?

Solution Let be the number of gallons of alcohol in the tank at any time You
know that when Because the number of gallons of solution in the tank at
any time is and the tank loses 5 gallons of solution per minute, it must lose

gallons of alcohol per minute. Furthermore, because the tank is gaining
2 gallons of alcohol per minute, the rate of change of alcohol in the tank is given by

To solve this linear equation, let and obtain

Because you can drop the absolute value signs and conclude that

e� P�t� dt � e�5 ln�50� t� �
1

�50 � t�5
.

t  <  50,


P�t� dt � 
 5
50 � t

dt � �5 ln �50 � t�.
P�t� � 5��50 � t�

dy
dt

� � 5
50 � t	y � 2.

dy
dt

� 2 � � 5
50 � t	y

�5��50 � t��y
50 � t,

t � 0.y � 5
t.y

y � tan t � C sec t.

y cos t � sin t � C

y cos t � 
 cos t dt

d
dt

� y cos t� � cos t

cos ty� � y tan t � 1

� cos t.e� P�t� dt � e ln �cos t�

�	�2 < t < 	�2,


 P�t� dt � �
 tan t dt � ln �cos t�.
P�t� � �tan t,

y� � P�t�y � Q�t�.

�	�2  < t  < 	�2.y� � y tan t � 1,
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So, the general solution is

Because when you have

which means that the particular solution is

Finally, when the amount of alcohol in the tank is

which represents a solution containing 33.6% alcohol. ■

In most falling-body problems discussed so far in the text, air resistance has been
neglected. The next example includes this factor. In the example, the air resistance on
the falling object is assumed to be proportional to its velocity If is the gravitational
constant, the downward force on a falling object of mass is given by the 
difference But by Newton’s Second Law of Motion, you know that

acceleration

which yields the following differential equation.

EXAMPLE 5 A Falling Object with Air Resistance

An object of mass is dropped from a hovering helicopter. Find its velocity as a
function of time Assume that the air resistance is proportional to the object’s velocity.

Solution The velocity satisfies the equation

gravitational constant, constant of proportionality

Letting you can separate variables to obtain

Because the object was dropped, when so and it follows that

■v �
g � ge�bt

b
�

mg
k

�1 � e�kt�m�.�bv � �g � ge�bt

g � C,t � 0;v � 0

C � e�bC1g � bv � Ce�bt.

 ln �g � bv� � �bt � bC1

�
1
b

 ln �g � bv� � t � C1


 dv
g � bv

� 
 dt

dv � �g � bv� dt

b � k�m,

k �g �
dv
dt

�
kv
m

� g.

v

t.
m

dv
dt

�
kv
m

� gm
dv
dt

� mg � kv

�a� m�dv�dt�F � ma

mg � kv.
mF

gv.

y �
50 � 10

2
� 20�50 � 10

50 	5
� 13.45 gal

t � 10,

y �
50 � t

2
� 20�50 � t

50 	
5

.

�
20
505 � C5 �

50
2

� C�50�5

t � 0,y � 5

y �
50 � t

2
� C�50 � t�5.

y
�50 � t�5 � 
 2

�50 � t�5
dt �

1
2�50 � t�4 � C
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NOTE Notice in Example 5 that the
velocity approaches a limit of as 
a result of the air resistance. For falling-
body problems in which air resistance is
neglected, the velocity increases without
bound.

mg�k



A simple electric circuit consists of electric current (in amperes), a resistance 
(in ohms), an inductance (in henrys), and a constant electromotive force (in volts),
as shown in Figure 6.22. According to Kirchhoff’s Second Law, if the switch is
closed when the applied electromotive force (voltage) is equal to the sum of the
voltage drops in the rest of the circuit. This in turn means that the current 
satisfies the differential equation

EXAMPLE 6 An Electric Circuit Problem

Find the current as a function of time (in seconds), given that satisfies the
differential equation

where and are nonzero constants.

Solution In standard form, the given linear equation is 

Let so that and, by Theorem 6.3,

So the general solution is

■

Bernoulli Equation
A well-known nonlinear equation that reduces to a linear one with an appropriate
substitution is the Bernoulli equation, named after James Bernoulli (1654–1705).

I �
1

4L2 � R2 �R sin 2t � 2L cos 2t� � Ce��R�L�t.

I � e��R�L�t � 1
4L2 � R2 e�R�L�t�R sin 2t � 2L cos 2t� � C�

�
1

4L2 � R2 e�R�L�t�R sin 2t � 2L cos 2t� � C.

Ie�R�L�t �
1
L 
 e�R�L�t sin 2t dt

e� P�t� dt � e�R�L�t,P�t� � R�L,

dI
dt

�
R
L

I �
1
L

 sin 2t.

LR

L�dI�dt� � RI � sin 2t

ItI

L
dI
dt

� RI � E.

I
t � 0,

S
EL

RI

438 Chapter 6 Differential Equations

E
S

R I

L

Figure 6.22

TECHNOLOGY

Bernoulli equationy� � P�x�y � Q�x�yn

The integral in Example 6 was found using symbolic algebra 
software. If you have access to Maple, Mathematica, or the TI-89, try using it to
integrate

In Chapter 8 you will learn how to integrate functions of this type using integration
by parts.

1
L 
 e�R�L�t sin 2t dt.



This equation is linear if and has separable variables if So, in the
following development, assume that and Begin by multiplying by 
and to obtain

which is a linear equation in the variable Letting produces the linear
equation

Finally, by Theorem 6.3, the general solution of the Bernoulli equation is

EXAMPLE 7 Solving a Bernoulli Equation

Find the general solution of 

Solution For this Bernoulli equation, let and use the substitution

Let

Differentiate.

Multiplying the original equation by produces

Write original equation.

Multiply each side by 

Linear equation:

This equation is linear in Using produces

which implies that is an integrating factor. Multiplying the linear equation by this
factor produces

Linear equation

Multiply by integrating factor.

Write left side as derivative.

Integrate each side.

Divide each side by 

Finally, substituting the general solution is

General solution ■y4 � 2e�x2
� Ce�2x2

.

z � y4,

e2x2
.z � 2e�x2

� Ce�2x2
.

ze2x2
� 2ex2

� C

ze2x2
� 
 4xex2

dx

d
dx

�ze2x2� � 4xex2

z�e2x2
� 4xze2x2

� 4xex2

z� � 4xz � 4xe�x2

e2x2

� 2x2


 P�x� dx � 
 4x dx

P�x� � 4xz.

z� � P�x�z � Q�x�z� � 4xz � 4xe�x2
.

4y3. 4y3y� � 4xy4 � 4xe�x2

y� � xy � xe�x2
y�3

4y3

z� � 4y3y�.

z � y1�n � y1���3�.z � y4

n � �3,

y� � xy � xe�x2
y�3.

dz
dx

� �1 � n�P�x�z � �1 � n�Q�x�.

z � y1�ny1�n.

d
dx

� y1�n� � �1 � n�P�x�y1�n � �1 � n�Q�x�

�1 � n�y�ny� � �1 � n�P�x�y1�n � �1 � n�Q�x�
y�ny� � P�x�y1�n � Q�x�

�1 � n�
y�nn � 1.n � 0

n � 1.n � 0,
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y1�ne

�1�n�P�x� dx

� 
 �1 � n�Q�x�e
�1�n�P�x� dx dx � C.



So far you have studied several types of first-order differential equations. Of these,
the separable variables case is usually the simplest, and solution by an integrating
factor is ordinarily used only as a last resort.
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SUMMARY OF FIRST-ORDER DIFFERENTIAL EQUATIONS

1. Separable variables:

2. Homogeneous: where and are 
th-degree homogeneous functions

3. Linear:

4. Bernoulli equation: y� � P�x�y � Q�x�yn

y� � P�x�y � Q�x�
n

NMM�x, y�dx � N�x, y�dy � 0,

M�x�dx � N�y�dy � 0

Form of EquationMethod                             

In Exercises 1– 4, determine whether the differential equation is
linear. Explain your reasoning.

1. 2.

3. 4.

In Exercises 5–14, solve the first-order linear differential
equation.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

Slope Fields In Exercises 15 and 16, (a) sketch an approximate
solution of the differential equation satisfying the given initial
condition by hand on the slope field, (b) find the particular 
solution that satisfies the given initial condition, and (c) use a
graphing utility to graph the particular solution. Compare the
graph with the hand-drawn graph in part (a). To print an
enlarged copy of the graph, go to the website www.mathgraphs.com.

15. 16.

In Exercises 17–24, find the particular solution of the differen-
tial equation that satisfies the boundary condition.

17.

18.

19.

20.

21.

22.

23.

24.

25. Population Growth When predicting population growth,
demographers must consider birth and death rates as well as
the net change caused by the difference between the rates of
immigration and emigration. Let be the population at time 
and let be the net increase per unit time resulting from the
difference between immigration and emigration. So, the rate of
growth of the population is given by

is constant.

Solve this differential equation to find as a function of time if
at time the size of the population is 

26. Investment Growth A large corporation starts at time to
invest part of its receipts continuously at a rate of dollars per
year in a fund for future corporate expansion. Assume that the
fund earns percent interest per year compounded continuously.
So, the rate of growth of the amount in the fund is given by

where when Solve this differential equation for 
as a function of t.

At � 0.A � 0

dA
dt

� rA � P

A
r

P
t � 0

P0.t � 0
P

N
dP
dt

� kP � N,

N
tP

y�4� � 22x y� � y � x3 � x

y�1� � 10x dy � �x � y � 2� dx

y�1� � 2y� � �2x � 1�y � 0

y�2� � 2y� � �1
x	y � 0

y�0� � 4y� � y sec x � sec x

y�0� � 1y� � y tan x � sec x � cos x

y�1� � ex3y� � 2y � e1�x2

y�0� � 5y� cos2 x � y � 1 � 0

Boundary ConditionDifferential Equation               

−4

x

y

4

−4 4x
−4 4

−3

5

y

��	, 0��0, 1�

y� � �1
x	y � sin x2,

dy
dx

� ex � y,

y� � y tan x � sec xy� � 3x2y � ex3

y� � 3y � e3x�x � 1�y� � y � x2 � 1

�y � 1� sin x dx � dy � 0�y � 1� cos x dx � dy � 0

y� � 2xy � 10xy� � y � 16

dy
dx

� �2
x	y � 3x � 5

dy
dx

� �1
x	y � 6x � 2

2 � y�

y
� 5xy� � y sin x � xy2

2xy � y� ln x � yx3y� � xy � ex � 1

6.4 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

www.mathgraphs.com
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Investment Growth In Exercises 27 and 28, use the result of
Exercise 26.

27. Find for the following.

(a) and years

(b) and years

28. Find if the corporation needs $1,000,000 and it can invest
$125,000 per year in a fund earning 8% interest compounded
continuously.

29. Intravenous Feeding Glucose is added intravenously to the
bloodstream at the rate of units per minute, and the body
removes glucose from the bloodstream at a rate proportional to
the amount present. Assume that is the amount of glucose
in the bloodstream at time 

(a) Determine the differential equation describing the rate of
change of glucose in the bloodstream with respect to time.

(b) Solve the differential equation from part (a), letting 
when

(c) Find the limit of as 

30. Learning Curve The management at a certain factory has
found that the maximum number of units a worker can produce
in a day is 75. The rate of increase in the number of units 
produced with respect to time in days by a new employee is
proportional to 

(a) Determine the differential equation describing the rate of
change of performance with respect to time.

(b) Solve the differential equation from part (a).

(c) Find the particular solution for a new employee who
produced 20 units on the first day at the factory and 35 units
on the twentieth day.

Mixture In Exercises 31–35, consider a tank that at time 
contains gallons of a solution of which, by weight, pounds
is soluble concentrate. Another solution containing pounds of
the concentrate per gallon is running into the tank at the rate of

gallons per minute. The solution in the tank is kept well
stirred and is withdrawn at the rate of gallons per minute.

31. If is the amount of concentrate in the solution at any time 
show that

32. If is the amount of concentrate in the solution at any time 
write the differential equation for the rate of change of with
respect to if 

33. A 200-gallon tank is full of a solution containing 25 pounds of
concentrate. Starting at time distilled water is admitted
to the tank at a rate of 10 gallons per minute, and the
well-stirred solution is withdrawn at the same rate.

(a) Find the amount of concentrate in the solution as a
function of 

(b) Find the time at which the amount of concentrate in the
tank reaches 15 pounds.

(c) Find the quantity of the concentrate in the solution as

34. Repeat Exercise 33, assuming that the solution entering the
tank contains 0.04 pound of concentrate per gallon.

35. A 200-gallon tank is half full of distilled water. At time 
a solution containing 0.5 pound of concentrate per gallon enters
the tank at the rate of 5 gallons per minute, and the well-stirred
mixture is withdrawn at the rate of 3 gallons per minute.

(a) At what time will the tank be full?

(b) At the time the tank is full, how many pounds of concentrate
will it contain?

(c) Repeat parts (a) and (b), assuming that the solution entering
the tank contains 1 pound of concentrate per gallon.

Falling Object In Exercises 37 and 38, consider an eight-pound
object dropped from a height of 5000 feet, where the air
resistance is proportional to the velocity.

37. Write the velocity of the object as a function of time if the
velocity after 5 seconds is approximately feet per 
second. What is the limiting value of the velocity function?

38. Use the result of Exercise 37 to write the position of the object
as a function of time. Approximate the velocity of the object
when it reaches ground level.

Electric Circuits In Exercises 39 and 40, use the differential
equation for electric circuits given by

In this equation, is the current, is the resistance, is the
inductance, and is the electromotive force (voltage).

39. Solve the differential equation for the current given a constant
voltage 

40. Use the result of Exercise 39 to find the equation for the current
if volts, ohms, and henrys.
When does the current reach 90% of its limiting value?

L � 4R � 600I�0� � 0, E0 � 120

E0.

E
LRI

L
dI
dt

1 RI � E.

�101

t � 0,

t →�.

t.
Q

t � 0,

r1 � r2 � r.t
Q

t,Q

dQ
dt

�
r2Q

v0 � �r1 � r2�t
� q1r1.

t,Q

r2

r1

q1

q0v0

t � 0

75 � N.
t

N

t → �.Q�t�
t � 0.

Q � Q0

t.
Q�t�

q

t

t � 25P � $550,000, r � 5.9%,

t � 10P � $275,000, r � 8%,

A
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36. Suppose the expression is an integrating factor for
Which of the following is equal to

Verify your answer.

(a)

(b)

(c)

(d) Q��x� u�x)

Q�x� u�x)

P��x) u�x�
P�x) u�x�

u��x�?
y� � P�x�y � Q�x�.

u�x�
CAPSTONE

41. Give the standard form of a first-order linear differential
equation. What is its integrating factor?

42. Give the standard form of the Bernoulli equation. Describe
how one reduces it to a linear equation.

WRITING ABOUT CONCEPTS



In Exercises 43–46, match the differential equation with its
solution.

43. (a)

44. (b)

45. (c)

46. (d)

In Exercises 47–54, solve the Bernoulli differential equation.

47.

48.

49.

50.

51.

52.

53.

54.

Slope Fields In Exercises 55–58, (a) use a graphing utility to
graph the slope field for the differential equation, (b) find the
particular solutions of the differential equation passing through
the given points, and (c) use a graphing utility to graph the
particular solutions on the slope field.

55.

56.

57.

58.

In Exercises 59–70, solve the first-order differential equation by
any appropriate method.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

True or False? In Exercises 71 and 72, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

71. is a first-order linear differential equation.

72. is a first-order linear differential equation.y� � xy � exy

y� � x�y � x2

x dx � �y � ey��x2 � 1� dy � 0

3�y � 4x2� dx � x dy � 0

y dx � �3x � 4y� dy � 0

�x2y4 � 1� dx � x3y3 dy � 0

�y2 � xy� dx � x2 dy � 0

�2y � ex�dx � x dy � 0

�x � y� dx � x dy � 0

�3y2 � 4xy�dx � �2xy � x2�dy � 0

y� � 2x�1 � y2

y cos x � cos x �
dy
dx

� 0

dy
dx

�
x � 3

y�y � 4�

dy
dx

�
e2x�y

ex�y

�0, 3�, �0, 1�dy
dx

� 2xy � xy2

�1, 1�, �3, �1�dy
dx

� �cot x�y � 2

PointsDifferential Equation

�0, 7
2�, �0, �

1
2�dy

dx
� 4x3y � x3

��2, 4�, �2, 8�dy
dx

�
1
x

y � x2

PointsDifferential Equation

yy� � 2y2 � ex

y� � y � e x 3�y

y� � y � y3

xy� � y � xy3

y� � �1
x	y � x�y

y� � �1
x	y � xy2

y� � xy � xy�1

y� � 3x2y � x2y3

y � Ce2xy� � 2xy � x

y � x2 � Cy� � 2xy � 0

y � �
1
2 � Cex2

y� � 2y � 0

y � Cex2
y� � 2x � 0

SolutionDifferential Equation
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A person’s weight depends on both the number of calories consumed
and the energy used. Moreover, the amount of energy used depends on
a person’s weight—the average amount of energy used by a person is
17.5 calories per pound per day. So, the more weight a person loses,
the less energy a person uses (assuming that the person maintains a
constant level of activity). An equation that can be used to model
weight loss is

where is the person’s weight (in pounds), is the time in days, and
is the constant daily calorie consumption.

(a) Find the general solution of the differential equation.

(b) Consider a person who weighs 180 pounds and begins a diet of
2500 calories per day. How long will it take the person to lose 
10 pounds? How long will it take the person to lose 35 pounds?

(c) Use a graphing utility to graph the solution. What is the
“limiting” weight of the person?

(d) Repeat parts (b) and (c) for a person who weighs 200 pounds
when the diet is started.

C
tw

�dw
dt 	 �

C
3500

�
17.5
3500

w

Weight Loss

S E C T I O N  P R O J E C T

■ FOR FURTHER INFORMATION For more information on 
modeling weight loss, see the article “A Linear Diet Model” by Arthur
C. Segal in The College Mathematics Journal.



1. Determine whether the function is a solution of the
differential equation 

2. Determine whether the function is a solution of
the differential equation 

In Exercises 3–10, use integration to find a general solution of
the differential equation.

3. 4.

5. 6.

7. 8.

9. 10.

Slope Fields In Exercises 11 and 12, a differential equation
and its slope field are given. Determine the slopes (if possible) in
the slope field at the points given in the table.

11. 12.

Slope Fields In Exercises 13–18, (a) sketch the slope field for
the differential equation, and (b) use the slope field to sketch the
solution that passes through the given point. Use a graphing
utility to verify your results.

13.

14.

15.

16.

17.

18.

In Exercises 19–24, solve the differential equation.

19. 20.

21. 22.

23. 24.

In Exercises 25–28, find the exponential function that
passes through the two points.

25. 26.

27. 28.

29. Air Pressure Under ideal conditions, air pressure decreases
continuously with the height above sea level at a rate propor-
tional to the pressure at that height. The barometer reads
30 inches at sea level and 15 inches at 18,000 feet. Find the
barometric pressure at 35,000 feet.

30. Radioactive Decay Radioactive radium has a half-life of
approximately 1599 years. The initial quantity is 15 grams.
How much remains after 750 years?

31. Sales The sales (in thousands of units) of a new product
after it has been on the market for years is given by

(a) Find as a function of if 5000 units have been sold after
1 year and the saturation point for the market is 30,000
units that is,

(b) How many units will have been sold after 5 years?

(c) Use a graphing utility to graph this sales function.

32. Sales The sales (in thousands of units) of a new product
after it has been on the market for years is given by

(a) Find as a function of if 4000 units have been sold after
1 year.

(b) How many units will saturate this market?

(c) How many units will have been sold after 5 years?

(d) Use a graphing utility to graph this sales function.

33. Population Growth A population grows continuously at the
rate of 1.85%. How long will it take the population to double?

tS

S � 25�1 � ekt�.

t
S

lim
t→�

S � 30�.�

tS

S � Cek�t.

t
S

�1, 9�, �6, 2��0, 5�, �5,
1
6	

−1 1 2 3 4 5
−1

1
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3

4

5

t

y

(4, 5)

2, 3
2))

−1 1 2 3 4 5
−1

1

2

3

4

5

t

y

(5, 5)

3
40, ))

y � Cekt

xy� � �x � 1�y � 0�2 � x�y� � xy � 0

dy
dx

� 10�y
dy
dx

� �3 � y�2

dy
dx

� y � 8
dy
dx

� 8 � x

�0, �2�y� �
y

x2 � 1

�0, 1�y� �
xy

x2 � 4

��1, 1�y� � y � 4x

�0, 3�y� �
1
4

x2 �
1
3

x

�0, 2�y� � 2x2 � x

�2, 1�y� � 3 � x
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y
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−2

8
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x

y

8
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8
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dx

� x sin�	y
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dx
� 2x � y
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dx

� 3e�x�3dy
dx

� e2�x
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dx

� 2x�x � 7
dy
dx

� x�x � 5

dy
dx

� 2 sin x
dy
dx

� cos 2x

dy
dx

� 3x3 � 8x
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� 4x2 � 7

y�� � 8y � 0.
y � 2 sin 2x

2xy� � 4y � 10x3.
y � x3
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34. Fuel Economy An automobile gets 28 miles per gallon of
gasoline for speeds up to 50 miles per hour. Over 50 miles per
hour, the number of miles per gallon drops at the rate of
12 percent for each 10 miles per hour.

(a) is the speed and is the number of miles per gallon. Find
as a function of by solving the differential equation

(b) Use the function in part (a) to complete the table.

In Exercises 35– 40, solve the differential equation.

35. 36.

37. 38.

39. 40.

41. Verify that the general solution satisfies the
differential equation Then find the
particular solution that satisfies the initial condition and

when

42. Vertical Motion A falling object encounters air resistance that
is proportional to its velocity. The acceleration due to gravity is

meters per second per second. The net change in velocity
is

(a) Find the velocity of the object as a function of time if the
initial velocity is 

(b) Use the result of part (a) to find the limit of the velocity as
approaches infinity.

(c) Integrate the velocity function found in part (a) to find the
position function 

Slope Fields In Exercises 43 and 44, sketch a few solutions of
the differential equation on the slope field and then find the 
general solution analytically. To print an enlarged copy of the
graph, go to the website www.mathgraphs.com.

43. 44.

In Exercises 45 and 46, the logistic equation models the growth
of a population. Use the equation to (a) find the value of 
(b) find the carrying capacity, (c) find the initial population,
(d) determine when the population will reach 50% of its
carrying capacity, and (e) write a logistic differential equation
that has the solution 

45. 46.

In Exercises 47 and 48, find the logistic equation that satisfies
the initial condition.

47.

48.

49. Environment A conservation department releases 1200 
brook trout into a lake. It is estimated that the carrying capacity
of the lake for the species is 20,400. After the first year, there
are 2000 brook trout in the lake.

(a) Write a logistic equation that models the number of brook
trout in the lake.

(b) Find the number of brook trout in the lake after 8 years.

(c) When will the number of brook trout reach 10,000?

50. Environment Write a logistic differential equation that
models the growth rate of the brook trout population in
Exercise 49. Then repeat part (b) using Euler’s Method with a
step size of Compare the approximation with the exact
answers.

In Exercises 51–60, solve the first-order linear differential
equation.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

In Exercises 61–64, solve the Bernoulli differential equation.

61. Hint:

62.

63.

64.

In Exercises 65–68, write an example of the given differential
equation. Then solve your equation.

65. Homogeneous 66. Logistic

67. First-order linear 68. Bernoulli

xy� � y � xy2

y� � �1
x	y �

y3

x2

y� � 2xy � xy2

� xe�x dx � ��x � 1�e�x��y� � y � xy2

xy� � ay � bx4y� � 5y � e5x

dy � � y tan x � 2ex� dx�3y � sin 2x� dx � dy � 0

�x � 3�y� � 2y � 2�x � 3�2�x � 2�y� � y � 1

dy
dx

�
5y
x2 �

1
x24y� � ex�4 � y

ex y� � 4ex y � 1y� � y � 10

h � 1.

�0, 3�dy
dt

� 1.76y�1 �
y
8	

�0, 8�dy
dt

� y�1 �
y

80	
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1. The differential equation

where and are positive constants, is called the doomsday
equation.

(a) Solve the doomsday equation

given that Find the time at which

(b) Solve the doomsday equation

given that Explain why this equation is called the
doomsday equation.

2. A thermometer is taken from a room at to the outdoors,
where the temperature is The reading drops to 
after 1 minute. Determine the reading on the thermometer after
5 minutes.

3. Let represent sales of a new product (in thousands of units), let
represent the maximum level of sales (in thousands of units),

and let represent time (in months). The rate of change of with
respect to varies jointly as the product of and 

(a) Write the differential equation for the sales model if
when and when 

Verify that

(b) At what time is the growth in sales increasing most rapidly?

(c) Use a graphing utility to graph the sales function.

(d) Sketch the solution from part (a) on the slope field shown in
the figure below. To print an enlarged copy of the graph, go
to the website www.mathgraphs.com.

(e) If the estimated maximum level of sales is correct, use the
slope field to describe the shape of the solution curves for
sales if, at some period of time, sales exceed 

4. Another model that can be used to represent population growth
is the Gompertz equation, which is the solution of the
differential equation

where is a constant and is the carrying capacity.

(a) Solve the differential equation.

(b) Use a graphing utility to graph the slope field for the differ-
ential equation when and 

(c) Describe the behavior of the graph as 

(d) Graph the equation you found in part (a) for 
and Determine the concavity of the

graph and how it compares with the general solution of the
logistic differential equation.

5. Show that the logistic equation can be 
written as

What can you conclude about the graph of the logistic equation?

6. Although it is true for some functions and a common mistake
in calculus is to believe that the Product Rule for derivatives is

(a) Given find such that 

(b) Given an arbitrary function find a function such that

(c) Describe what happens if 

7. Torricelli’s Law states that water will flow from an opening at
the bottom of a tank with the same speed that it would attain
falling from the surface of the water to the opening. One of the
forms of Torricelli’s Law is

where is the height of the water in the tank, is the area of the
opening at the bottom of the tank, is the horizontal cross-
sectional area at height and is the acceleration due to gravity

feet per second per second A hemispherical water
tank has a radius of 6 feet. When the tank is full, a circular valve
with a radius of 1 inch is opened at the bottom, as shown in the
figure. How long will it take for the tank to drain completely?

6 ft

h

6 − h

�.�g � 32
gh,

A�h�
kh

A�h� dh
dt

� �k�2gh

g�x� � ex.

� fg�� � f� g�.
fg,

� fg�� � f�g�.fg�x� � x,

� fg�� � f�g�.

g,f

y �
1
2

L�1 � tanh�1
2

k�t �
ln b

k 		�.

y � L��1 � be�kt�
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t →�.
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Lk

dy
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� k ln�L
y	y

L.

t
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S

S �
L

1 � Ce�kt .
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L
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dy
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dy
dt
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8. The cylindrical water tank shown in the figure has a height of
18 feet. When the tank is full, a circular valve is opened at the
bottom of the tank. After 30 minutes, the depth of the water is
12 feet.

(a) How long will it take for the tank to drain completely?

(b) What is the depth of the water in the tank after 1 hour?

9. Suppose the tank in Exercise 8 has a height of 20 feet and a radius
of 8 feet, and the valve is circular with a radius of 2 inches.
The tank is full when the valve is opened. How long will it take
for the tank to drain completely?

10. In hilly areas, radio reception may be poor. Consider a situation
in which an FM transmitter is located at the point 
behind a hill modeled by the graph of

and a radio receiver is on the opposite side of the hill. (Assume
that the axis represents ground level at the base of the hill.)

(a) What is the closest position the radio can be to the hill
so that reception is unobstructed?

(b) Write the closest position of the radio with 
represented as a function of if the transmitter is located at

(c) Use a graphing utility to graph the function for in part (b).
Determine the vertical asymptote of the function and
interpret its meaning.

11. Biomass is a measure of the amount of living matter in an
ecosystem. Suppose the biomass in a given ecosystem
increases at a rate of about 3.5 tons per year, and decreases by
about 1.9% per year. This situation can be modeled by the
differential equation

(a) Solve the differential equation.

(b) Use a graphing utility to graph the slope field for the
differential equation. What do you notice?

(c) Explain what happens as 

In Exercises 12–14, a medical researcher wants to determine the
concentration (in moles per liter) of a tracer drug injected
into a moving fluid. Solve this problem by considering a single-
compartment dilution model (see figure). Assume that the fluid
is continuously mixed and that the volume of the fluid in the
compartment is constant.

Figure for 12–14

12. If the tracer is injected instantaneously at time then the
concentration of the fluid in the compartment begins diluting
according to the differential equation

when

(a) Solve this differential equation to find the concentration 
as a function of time 

(b) Find the limit of as 

13. Use the solution of the differential equation in Exercise 12 to
find the concentration as a function of time and use a
graphing utility to graph the function.

(a) liters, liter per minute, and mole
per liter

(b) liters, liters per minute, and mole
per liter

14. In Exercises 12 and 13, it was assumed that there was a single
initial injection of the tracer drug into the compartment. Now
consider the case in which the tracer is continuously injected
beginning at at the rate of moles per minute.

Considering to be negligible compared with use the
differential equation

when

(a) Solve this differential equation to find the concentration 
as a function of time 

(b) Find the limit of as t →�.C

t.
C

t � 0.C � 0
dC
dt

�
Q
V

� �R
V	C,

R,Q
Qt � 0��

C0 � 0.6R � 1.5V � 2

C0 � 0.6R � 0.5V � 2

t,C

t →�.C

t.
C

t � 0.C � C0
dC
dt

� ��
R
V	C,

t � 0,

Flow R (pure)

Flow R
(concentration C)

Tracer
injected

Volume V

C

t →�.

ds
dt

� 3.5 � 0.019s.

s�t�

x

��1, h�.
h

x�x, 0�

�x, 0�
x-

y � x � x2

��1, 1�

h

r

18 ft
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7 Applications
of Integration

The disk method is one method that is used to find the volume of a solid. This method requires finding the sum of 
the volumes of representative disks to approximate the volume of the solid. As you increase the number of disks, the
approximation tends to become more accurate. In Section 7.2, you will use limits to write the exact volume of the solid
as a definite integral.

Eddie Hironaka/Getty Images

Integration has a wide variety of applica-
tions. For each of the applications presented
in this chapter, you will begin with a known
formula, such as the area of a rectangular
region, the volume of a circular disk, or the
work done by a constant force. Then you
will learn how the limit of a sum gives rise
to new formulas that involve integration.

In this chapter, you should learn the 
following.

■ How to use a definite integral to find the
area of a region bounded by two curves.
(7.1)

■ How to find the volume of a solid of
revolution by the disk and shell methods.
(7.2 and 7.3)

■ How to find the length of a curve 
and the surface area of a surface of 
revolution. (7.4)

■ How to find the work done by a constant
force and by a variable force. (7.5)

■ How to find centers of mass and 
centroids. (7.6)

■ How to find fluid pressure and fluid
force. (7.7)

An electric cable is hung between two towers that are 200 feet apart. The cable
takes the shape of a catenary. What is the length of the cable between the two 
towers? (See Section 7.4, Example 5.)

■

■



■ Find the area of a region between two curves using integration.
■ Find the area of a region between intersecting curves using integration.
■ Describe integration as an accumulation process.

Area of a Region Between Two Curves
With a few modifications, you can extend the application of definite integrals from the
area of a region under a curve to the area of a region between two curves. Consider
two functions and that are continuous on the interval If, as in Figure 7.1, the
graphs of both and lie above the axis, and the graph of lies below the graph of

you can geometrically interpret the area of the region between the graphs as the area
of the region under the graph of subtracted from the area of the region under the
graph of as shown in Figure 7.2.

To verify the reasonableness of the result shown in Figure 7.2, you can partition
the interval into subintervals, each of width Then, as shown in Figure 7.3,
sketch a representative rectangle of width and height where is in
the th subinterval. The area of this representative rectangle is

By adding the areas of the rectangles and taking the limit as you
obtain

Because and are continuous on is also continuous on and the
limit exists. So, the area of the given region is

� 
b

a

� f �x� � g�x�� dx.

 Area � lim
n→� 

n

i�1
� f �xi� � g�xi�� �x

�a, b�f � g�a, b�,gf

lim
n→� 

n

i�1
� f �xi� � g�xi�� �x.

�n →��,�� �→ 0n

�Ai � �height��width� � � f �xi� � g�xi�� �x.

i
xif �xi� � g�xi�,�x

�x.n�a, b�

f,
g

f,
gx-gf

�a, b�.gf
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In Figure 7.1, the graphs of and are shown above the axis. This, however, is
not necessary. The same integrand can be used as long as and are
continuous and for all in the interval This is summarized 
graphically in Figure 7.4. Notice in Figure 7.4 that the height of a representative 
rectangle is regardless of the relative position of the -axis.

Figure 7.4

Representative rectangles are used throughout this chapter in various applications
of integration. A vertical rectangle implies integration with respect to 
whereas a horizontal rectangle implies integration with respect to 

EXAMPLE 1 Finding the Area of a Region Between Two Curves

Find the area of the region bounded by the graphs of and

Solution Let and Then for all in as
shown in Figure 7.5. So, the area of the representative rectangle is

and the area of the region is

■�
17
6

.

�
1
3

�
1
2

� 2

� �x3

3
�

x2

2
� 2x�

1

0

A � 
b

a

� f �x� � g�x�� dx � 
1

0
��x2 � 2� � ��x�� dx

� ��x2 � 2� � ��x�� �x

�A � � f �x� � g�x�� �x

�0, 1�,xg�x� � f �x�f �x� � x2 � 2.g�x� � �x

x � 1.
x � 0,y � �x,y � x2 � 2,

y.�of width �y�
x,�of width �x�

x

f(x) − g(x)

(x, g(x))
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a b

f

g
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x

f(x) − g(x)

(x, g(x))

(x, f(x))

a b

f

g

y

xf �x� � g�x)

�a, b�.xg�x� � f �x�
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Area of a Region Between Intersecting Curves
In Example 1, the graphs of and do not intersect, and the
values of and are given explicitly. A more common problem involves the area of
a region bounded by two intersecting graphs, where the values of and must be 
calculated.

EXAMPLE 2 A Region Lying Between Two Intersecting Graphs

Find the area of the region bounded by the graphs of and 

Solution In Figure 7.6, notice that the graphs of and have two points of
intersection. To find the coordinates of these points, set and equal to each
other and solve for 

Set equal to 

Write in general form.

Factor.

Solve for 

So, and Because for all in the interval the
representative rectangle has an area of

and the area of the region is

EXAMPLE 3 A Region Lying Between Two Intersecting Graphs

The sine and cosine curves intersect infinitely many times, bounding regions of equal
areas, as shown in Figure 7.7. Find the area of one of these regions.

Solution

Set equal to 

Divide each side by 

Trigonometric identity

Solve for 

So, and Because for all in the interval
the area of the region is

■� 2�2.

A � 
5	�4

	�4
�sin x � cos x� dx � ��cos x � sin x�

5	�4

	�4

�	�4, 5	�4�,
xsin x � cos xb � 5	�4.a � 	�4

x.0 � x � 2	x �
	

4
 or  

5	

4
,

 tan x � 1

cos x.
sin x
cos x

� 1

g�x�.f �x� sin x � cos x

�
9
2

.

A � 
1

�2
��2 � x2� � x� dx � ��x3

3
�

x2

2
� 2x�

1

�2

� ��2 � x2� � x� �x

�A � � f �x� � g�x�� �x

��2, 1�,xg�x� � f �x�b � 1.a � �2

x.x � �2 or 1

��x � 2��x � 1� � 0

�x2 � x � 2 � 0

g�x�.f �x� 2 � x2 � x

x.
g�x�f�x�x-

gf

g�x� � x.f �x� � 2 � x2

ba
ba

g�x� � �xf �x� � x2 � 2
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If two curves intersect at more than two points, then to find the area of the region
between the curves, you must find all points of intersection and check to see which
curve is above the other in each interval determined by these points.

EXAMPLE 4 Curves That Intersect at More Than Two Points

Find the area of the region between the graphs of and

Solution Begin by setting and equal to each other and solving for This
yields the values at all points of intersection of the two graphs.

Set equal to 

Write in general form.

Factor.

Solve for 

So, the two graphs intersect when and 2. In Figure 7.8, notice that
on the interval However, the two graphs switch at the origin, and
on the interval So, you need two integrals—one for the interval

and one for the interval 

■

If the graph of a function of is a boundary of a region, it is often convenient to
use representative rectangles that are horizontal and find the area by integrating with
respect to In general, to determine the area between two curves, you can use

Vertical rectangles

in variable 

Horizontal rectangles

in variable 

where and are either adjacent points of intersection of the two curves
involved or points on the specified boundary lines.

�x2, y2��x1, y1�

y

A � 
y2

y1

��right curve� � �left curve�� dy

x

A � 
x2

x1

��top curve� � �bottom curve�� dx

y.

y

� ��12 � 24� � ��12 � 24� � 24

� �3x4

4
� 6x2�

0

�2
� ��3x4

4
� 6x2�

2

0

� 
0

�2
�3x3 � 12x� dx � 
2

0
��3x3 � 12x� dx

A � 
0

�2
� f �x� � g�x�� dx � 
2

0
�g�x� � f �x�� dx

�0, 2�.��2, 0�
�0, 2�.f �x� � g�x�

��2, 0�.g�x� � f �x�
x � �2, 0,

x.x � �2, 0, 2

 3x�x � 2��x � 2� � 0

 3x3 � 12x � 0

g�x�.f �x� 3x3 � x2 � 10x � �x2 � 2x

x-
x.g�x�f �x�

g�x� � �x2 � 2x.
f �x� � 3x3 � x2 � 10x
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EXAMPLE 5 Horizontal Representative Rectangles

Find the area of the region bounded by the graphs of and 

Solution Consider

and

These two curves intersect when and as shown in Figure 7.9. Because
on this interval, you have

So, the area is 

■

Horizontal rectangles integration with Vertical rectangles integration with
respect to respect to 
Figure 7.9 Figure 7.10

In Example 5, notice that by integrating with respect to you need only one
integral. If you had integrated with respect to you would have needed two integrals
because the upper boundary would have changed at as shown in Figure 7.10. 
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Integration as an Accumulation Process
In this section, the integration formula for the area between two curves was developed
by using a rectangle as the representative element. For each new application in the
remaining sections of this chapter, an appropriate representative element will be 
constructed using precalculus formulas you already know. Each integration formula
will then be obtained by summing or accumulating these representative elements.

For example, the area formula in this section was developed as follows.

EXAMPLE 6 Describing Integration as an Accumulation Process

Find the area of the region bounded by the graph of and the axis.
Describe the integration as an accumulation process.

Solution The area of the region is given by

You can think of the integration as an accumulation of the areas of the rectangles
formed as the representative rectangle slides from to as shown in
Figure 7.11.

x � 2,x � �2

A � 
2

�2
�4 � x2� dx.

x-y � 4 � x2
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In Exercises 1– 6, set up the definite integral that gives the area
of the region.

1. 2.

3. 4.

5. 6.

In Exercises 7–14, the integrand of the definite integral is a
difference of two functions. Sketch the graph of each function
and shade the region whose area is represented by the integral.

7. 8.

9. 10.

11. 12.

13. 14.

Think About It In Exercises 15 and 16, determine which value
best approximates the area of the region bounded by the graphs
of and (Make your selection on the basis of a sketch of the
region and not by performing any calculations.)

15.

(a) (b) 2 (c) 10 (d) 4 (e) 8

16.

(a) 1 (b) 6 (c) (d) 3 (e) 4

In Exercises 17 and 18, find the area of the region by integrating
(a) with respect to and (b) with respect to (c) Compare your
results. Which method is simpler? In general, will this method
always be simpler than the other one? Why or why not?

17. 18.

In Exercises 19–36, sketch the region bounded by the graphs of
the algebraic functions and find the area of the region.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36. g�x� �
4

2 � x
, y � 4, x � 0

f �x� �
10
x

, x � 0, y � 2, y � 10
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y

�16 � y 2
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In Exercises 37– 46, (a) use a graphing utility to graph the
region bounded by the graphs of the equations, (b) find the area
of the region, and (c) use the integration capabilities of the
graphing utility to verify your results.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

In Exercises 47– 52, sketch the region bounded by the graphs of
the functions, and find the area of the region.

47.

48.

49.

50.

51.

52.

In Exercises 53–56, (a) use a graphing utility to graph the
region bounded by the graphs of the equations, (b) find the area
of the region, and (c) use the integration capabilities of the
graphing utility to verify your results.

53.

54.

55.

56.

In Exercises 57–60, (a) use a graphing utility to graph the
region bounded by the graphs of the equations, (b) explain why
the area of the region is difficult to find by hand, and (c) use the
integration capabilities of the graphing utility to approximate
the area to four decimal places.

57.

58.

59.

60.

In Exercises 61–64, find the accumulation function Then
evaluate at each value of the independent variable and graph-
ically show the area given by each value of 

61. (a) (b) (c)

62. (a) (b) (c)

63. (a) (b) (c) 

64. (a) (b) (c)

In Exercises 65–68, use integration to find the area of the figure
having the given vertices.

65. 66.

67.

68.

69. Numerical Integration Estimate the surface area of the golf
green using (a) the Trapezoidal Rule and (b) Simpson’s Rule.

70. Numerical Integration Estimate the surface area of the oil
spill using (a) the Trapezoidal Rule and (b) Simpson’s Rule.

In Exercises 71 and 72, evaluate the integral and interpret it as
the area of a region. Then use a graphing utility to graph the
region.

71. 72.

In Exercises 73 –76, set up and evaluate the definite integral that
gives the area of the region bounded by the graph of the function
and the tangent line to the graph at the given point.

73. 74.
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In Exercises 83 and 84, find such that the line divides
the region bounded by the graphs of the two equations into two
regions of equal area.

83. 84.

In Exercises 85 and 86, find such that the line divides
the region bounded by the graphs of the equations into two
regions of equal area.

85. 86.

In Exercises 87 and 88, evaluate the limit and sketch the graph
of the region whose area is represented by the limit.

87. where and 

88. where and 

In Exercises 89 and 90, (a) find the two points of inflection of the
graph of (b) determine the equation of the line that intersects
both points, and (c) calculate the areas of the three regions
bounded by the graphs of and the line. What do you observe?

89. 90.

Revenue In Exercises 91 and 92, two models and are
given for revenue (in billions of dollars per year) for a large
corporation. The model gives projected annual revenues
from 2008 through 2013, with corresponding to 2008, and

gives projected revenues if there is a decrease in the rate of
growth of corporate sales over the period. Approximate the total
reduction in revenue if corporate sales are actually closer to the
model

91. 92.

93. Lorenz Curve Economists use Lorenz curves to illustrate the
distribution of income in a country. A Lorenz curve,
represents the actual income distribution in the country. In this
model, represents percents of families in the country and 
represents percents of total income. The model represents
a country in which each family has the same income. The area
between these two models, where indicates a
country’s “income inequality.” The table lists percents of income

for selected percents of families in a country.

(a) Use a graphing utility to find a quadratic model for the
Lorenz curve.

(b) Plot the data and graph the model.

xy

0 � x � 100,

y � x
yx

y � f �x�,
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y � bb
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x 10 20 30 40 50

y 3.35 6.07 9.17 13.39 19.45

x 60 70 80 90

y 28.03 39.77 55.28 75.12

77. The graphs of and intersect
at three points. However, the area between the curves can
be found by a single integral. Explain why this is so, and
write an integral for this area.

78. The area of the region bounded by the graphs of 
and cannot be found by the single integral

Explain why this is so. Use symmetry to
write a single integral that does represent the area.

79. A college graduate has two job offers. The starting salary
for each is $32,000, and after 8 years of service each will
pay $54,000. The salary increase for each offer is shown in
the figure. From a strictly monetary viewpoint, which is the
better offer? Explain.

Figure for 79 Figure for 80

80. A state legislature is debating two proposals for eliminating
the annual budget deficits after 10 years. The rate of
decrease of the deficits for each proposal is shown in the
figure. From the viewpoint of minimizing the cumulative
state deficit, which is the better proposal? Explain.

81. Two cars are tested on a straight track with velocities and
(in meters per second). Consider the following.

(a) Write a verbal interpretation of each integral.

(b) Is it possible to determine the distance between the two
cars when seconds? Why or why not?

(c) Assume both cars start at the same time and place.
Which car is ahead when seconds? How far
ahead is the car?

(d) Suppose Car 1 has velocity and is ahead of Car 2 by 
13 meters when seconds. How far ahead or
behind is Car 1 when seconds?t � 30

t � 20
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WRITING ABOUT CONCEPTS

82. Let and be continuous functions on and let
for all in Write in words the area given

by Does the area interpretation of this
integral change when and g�x� � 0?f �x� � 0

�b
a � f �x� � g�x�� dx.

�a, b�.xg�x) � f �x�
�a, b�gf
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(c) Graph the model How does this model compare with
the model in part (a)?

(d) Use the integration capabilities of a graphing utility to
approximate the “income inequality.”

94. Profit The chief financial officer of a company reports that
profits for the past fiscal year were $15.9 million. The officer
predicts that profits for the next 5 years will grow at a continuous
annual rate somewhere between and 5%. Estimate the
cumulative difference in total profit over the 5 years based on
the predicted range of growth rates.

95. Area The shaded region in the figure consists of all points
whose distances from the center of the square are less than their
distances from the edges of the square. Find the area of the
region.

Figure for 95 Figure for 96

96. Mechanical Design The surface of a machine part is the
region between the graphs of and 
(see figure).

(a) Find where the parabola is tangent to the graph of 

(b) Find the area of the surface of the machine part.

97. Building Design Concrete sections for a new building have
the dimensions (in meters) and shape shown in the figure.

(a) Find the area of the face of the section superimposed on the
rectangular coordinate system.

(b) Find the volume of concrete in one of the sections by
multiplying the area in part (a) by 2 meters.

(c) One cubic meter of concrete weighs 5000 pounds. Find the
weight of the section.

98. Building Design To decrease the weight and to aid in the
hardening process, the concrete sections in Exercise 97 often
are not completely solid. Rework Exercise 97 to allow for
cylindrical openings such as those shown in the figure.

Figure for 98

True or False? In Exercises 99–102, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

99. If the area of the region bounded by the graphs of and 
is 1, then the area of the region bounded by the graphs of

and is also 1.

100. If then 

101. If the graphs of and intersect midway between and
then

102. The line divides the region under the curve
on into two regions of equal area.

103. Area Find the area between the graph of and

the line segment joining the points and as

shown in the figure.

Figure for 103 Figure for 104

104. Area Let and Show that the area of the ellipse

is (see figure).	ab
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105. The horizontal line 
intersects the curve

in the first
quadrant as shown in the
figure. Find so that the
areas of the two shaded
regions are equal.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.
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y = c

y � c

PUTNAM EXAM CHALLENGE



■ Find the volume of a solid of revolution using the disk method.
■ Find the volume of a solid of revolution using the washer method.
■ Find the volume of a solid with known cross sections.

The Disk Method
You have already learned that area is only one of the many applications of the definite
integral. Another important application is its use in finding the volume of a three-
dimensional solid. In this section you will study a particular type of three-dimensional
solid—one whose cross sections are similar. Solids of revolution are used commonly
in engineering and manufacturing. Some examples are axles, funnels, pills, bottles,
and pistons, as shown in Figure 7.12.

If a region in the plane is revolved about a line, the resulting solid is a solid of
revolution, and the line is called the axis of revolution. The simplest such solid is a
right circular cylinder or disk, which is formed by revolving a rectangle about an axis
adjacent to one side of the rectangle, as shown in Figure 7.13. The volume of such a
disk is

where is the radius of the disk and is the width.
To see how to use the volume of a disk to find the volume of a general solid of

revolution, consider a solid of revolution formed by revolving the plane region in
Figure 7.14 about the indicated axis. To determine the volume of this solid, consider
a representative rectangle in the plane region. When this rectangle is revolved about
the axis of revolution, it generates a representative disk whose volume is 

Approximating the volume of the solid by such disks of width and radius 
produces

� 	
n

i�1
�R�xi��2 �x.

 Volume of solid � 
n

i�1
	 �R�xi��2 �x

R�xi��xn

wR

� 	R2w

 Volume of disk � �area of disk��width of disk�
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Volume of a disk:
Figure 7.13

	R2w

�V � 	R2�x.



This approximation appears to become better and better as So, you
can define the volume of the solid as

Schematically, the disk method looks like this.

A similar formula can be derived if the axis of revolution is vertical.

Horizontal axis of revolution Vertical axis of revolution
Figure 7.15

R(y)

c

d

Δy

c

d
V = π ∫ [R(y)]2 dy

R(x)

a b

Δx

a
V = π ∫ [R(x)]2 dx

b

Formula                               Element                                 Formula                        
New IntegrationRepresentativeKnown Precalculus

� 	
b

a

�R�x��2 dx. Volume of solid � lim
���→0

	
n

i�1
�R�xi��2 �x

�n →��.�� � → 0
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THE DISK METHOD

To find the volume of a solid of revolution with the disk method, use one of
the following, as shown in Figure 7.15.

Volume � V � 	
d

c

�R�y��2 dyVolume � V � 	
b

a

�R�x�� 2 dx

Vertical Axis of RevolutionHorizontal Axis of Revolution

NOTE In Figure 7.15, note that you
can determine the variable of integration
by placing a representative rectangle in
the plane region “perpendicular” to the
axis of revolution. If the width of the
rectangle is integrate with respect to

and if the width of the rectangle is 
integrate with respect to y.

�y,x,
�x,



The simplest application of the disk method involves a plane region bounded by
the graph of and the axis. If the axis of revolution is the axis, the radius is
simply

EXAMPLE 1 Using the Disk Method

Find the volume of the solid formed by revolving the region bounded by the graph of

and the axis about the axis.

Solution From the representative rectangle in the upper graph in Figure 7.16, you
can see that the radius of this solid is

So, the volume of the solid of revolution is

Apply disk method.

Simplify.

Integrate.

EXAMPLE 2 Revolving About a Line That Is Not a Coordinate Axis

Find the volume of the solid formed by revolving the region bounded by

and about the line as shown in Figure 7.17.

Solution By equating and you can determine that the two graphs intersect
when To find the radius, subtract from 

Finally, integrate between and 1 to find the volume.

Apply disk method.

Simplify.

Integrate.
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The Washer Method
The disk method can be extended to cover solids of revolution with holes by replac-
ing the representative disk with a representative washer. The washer is formed by
revolving a rectangle about an axis, as shown in Figure 7.18. If and are the inner
and outer radii of the washer and is the width of the washer, the volume is given by

To see how this concept can be used to find the volume of a solid of revolution,
consider a region bounded by an outer radius and an inner radius as
shown in Figure 7.19. If the region is revolved about its axis of revolution, the volume
of the resulting solid is given by

Note that the integral involving the inner radius represents the volume of the hole and
is subtracted from the integral involving the outer radius.

Figure 7.19

EXAMPLE 3 Using the Washer Method

Find the volume of the solid formed by revolving the region bounded by the graphs of
and about the axis, as shown in Figure 7.20.

Solution In Figure 7.20, you can see that the outer and inner radii are as follows.

Outer radius

Inner radius

Integrating between 0 and 1 produces

Apply washer method.

Simplify.

Integrate.

■�
3	

10
.

� 	�x2

2
�

x5

5 �
1

0

� 	
1

0
�x � x4� dx

� 	
1

0
���x �2

� �x2�2� dx

V � 	
b

a

��R�x��2 � �r �x��2� dx

r�x� � x2

R�x� � �x

x-y � x2y � �x

Solid of revolution
with hole

R(x) r(x)

Plane region

a b

r�x�,R�x�

Volume of washer � 	 �R2 � r2�w.

w
Rr
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r = x2
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x

1

1

Δx
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y

−1

1

1

Solid of
revolution

x

y

Solid of revolution
Figure 7.20

Washer methodV � 	
b

a

��R�x��2 � �r�x��2� dx.



In each example so far, the axis of revolution has been horizontal and you have
integrated with respect to In the next example, the axis of revolution is vertical and
you integrate with respect to In this example, you need two separate integrals to
compute the volume.

EXAMPLE 4 Integrating with Respect to y, Two-Integral Case

Find the volume of the solid formed by revolving the region bounded by the graphs of
and about the axis, as shown in Figure 7.21.

Figure 7.21

Solution For the region shown in Figure 7.21, the outer radius is simply 
There is, however, no convenient formula that represents the inner radius. When

but when is determined by the equation 
which implies that 

Using this definition of the inner radius, you can use two integrals to find the volume.

Apply washer method.

Simplify.

Integrate.

Note that the first integral represents the volume of a right circular cylinder
of radius 1 and height 1. This portion of the volume could have been determined
without using calculus. ■

	 �1
0  1 dy

� 	 � 	 �4 � 2 � 2 �
1
2	 �

3	

2

� 	�y�
1

0
� 	 �2y �

y2

2 �
2

1

� 	
1

0
 1 dy � 	
2

1
�2 � y� dy

V � 	
1

0
�12 � 02� dy � 	
2

1
�12 � ��y � 1 �2� dy

r� y� � �0,
�y � 1,

     0 � y � 1
     1 � y � 2

r � �y � 1 .
y � x2 � 1,r1 � y � 2,r � 0,0 � y � 1,

R � 1.

x
1−1

2

Solid of
revolution

y

Δy

Δy

(1, 2)

r

1

2

1

x

For 1 ≤ y ≤ 2:
R = 1
r = y − 1

For 0 ≤ y ≤ 1:
R = 1
r = 0

Plane region

R
y

y-x � 1y � x2 � 1, y � 0, x � 0,

y.
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Generated by Mathematica

Figure 7.22

Some graphing utilities have the capability of generating (or have
built-in software capable of generating) a solid of revolution. If you have access to
such a utility, use it to graph some of the solids of revolution described in this 
section. For instance, the solid in Example 4 might appear like that shown in 
Figure 7.22.
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EXAMPLE 5 Manufacturing

A manufacturer drills a hole through the center of a metal sphere of radius 5 inches,
as shown in Figure 7.23(a). The hole has a radius of 3 inches. What is the volume of
the resulting metal ring?

Solution You can imagine the ring to be generated by a segment of the circle whose
equation is as shown in Figure 7.23(b). Because the radius of the hole
is 3 inches, you can let and solve the equation to determine that
the limits of integration are So, the inner and outer radii are and

and the volume is given by

■

Solids with Known Cross Sections
With the disk method, you can find the volume of a solid having a circular cross
section whose area is This method can be generalized to solids of any
shape, as long as you know a formula for the area of an arbitrary cross section. Some
common cross sections are squares, rectangles, triangles, semicircles, and trapezoids.

(a) Cross sections perpendicular to -axis (b) Cross sections perpendicular to -axis
Figure 7.24

yx

y

y = c

y = d

x

Δy

x

y

x = a

x = b

Δx

A � 	R2.

�
256	

3
 cubic inches.

� 	 �16x �
x3

3 �
4

�4

� 	
4

�4
�16 � x2� dx

V � 	
b

a

��R�x��2 � �r�x��2� dx � 	
4

�4
���25 � x2�2

� �3�2� dx

R�x� � �25 � x2
r�x� � 3x � ±4.

x2 � y2 � 25y � 3
x2 � y2 � 25,
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−5 −4 −3 −2 −1

r(x) = 3

R(x) =     25 − x2 y =     25 − x2

y = 3
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(b)
Figure 7.23

VOLUMES OF SOLIDS WITH KNOWN CROSS SECTIONS

1. For cross sections of area taken perpendicular to the axis,

See Figure 7.24(a).

2. For cross sections of area taken perpendicular to the axis,

See Figure 7.24(b).Volume � 
d

c

A�y� dy.

y-A�y�

Volume � 
b

a

A�x� dx.

x-A�x�



EXAMPLE 6 Triangular Cross Sections

Find the volume of the solid shown in Figure 7.25. The base of the solid is the region
bounded by the lines

and

The cross sections perpendicular to the axis are equilateral triangles.

Solution The base and area of each triangular cross section are as follows.

Length of base

Area of equilateral triangle

Area of cross section

Because ranges from 0 to 2, the volume of the solid is

EXAMPLE 7 An Application to Geometry

Prove that the volume of a pyramid with a square base is where is the
height of the pyramid and is the area of the base.

Solution As shown in Figure 7.26, you can intersect the pyramid with a plane
parallel to the base at height to form a square cross section whose sides are of length

Using similar triangles, you can show that

or

where is the length of the sides of the base of the pyramid. So,

Integrating between 0 and produces

■B � b2�
1
3

hB.
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h2 �h3

3 	
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0
�h � y)2 dy
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0
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0
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b
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b
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3hB,

�
2�3

3
.� �

�3
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A�x� dx � 
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0

�3
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�2 � x�2 dx

x
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4
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In Exercises 1–6, set up and evaluate the integral that gives the
volume of the solid formed by revolving the region about the 
-axis.

1. 2.

3. 4.

5. 6.

In Exercises 7–10, set up and evaluate the integral that gives the
volume of the solid formed by revolving the region about the 
-axis.

7. 8.

9. 10.

In Exercises 11–14, find the volumes of the solids generated by
revolving the regions bounded by the graphs of the equations
about the given lines.

11.

(a) the axis (b) the axis

(c) the line (d) the line 

12.

(a) the axis (b) the axis

(c) the line (d) the line 

13.

(a) the axis (b) the line 

14.

(a) the axis (b) the line 

In Exercises 15–18, find the volume of the solid generated by
revolving the region bounded by the graphs of the equations
about the line 

15. 16.

17.

18.

In Exercises 19–22, find the volume of the solid generated by
revolving the region bounded by the graphs of the equations
about the line 

19.

20.

21.

22.

In Exercises 23–30, find the volume of the solid generated by
revolving the region bounded by the graphs of the equations
about the -axis.

23.

24. y � x�9 � x2 ,  y � 0

y �
1

�x � 1
,  y � 0,  x � 0,  x � 4

x

xy � 5,  y � 2,  y � 5,  x � 5

x � y 2,  x � 4

y � 5 � x,  y � 0,  y � 4,  x � 0

y � x,  y � 0,  y � 4,  x � 5

x � 5.

y � sec x,  y � 0,  0 ≤ x ≤ 	

3

y �
3

1 � x
,  y � 0,  x � 0,  x � 3

y �
1
2 x3,  y � 4,  x � 0y � x,  y � 3,  x � 0

y � 4.

y � 3x-

y � 6 � 2x � x2, y � x � 6

y � 6x-

y � x2, y � 4x � x2

x � 2y � 8

x-y-

y � 2x2, y � 0, x � 2

x � 6x � 3

y-x-

y � �x, y � 0, x � 3

x

1

2

2

3

3

4

41

y

x

1

1

y

x � �y2 � 4yy � x2�3
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1

2
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3

4

41
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4
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7.2 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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25.

26.

27.

28.

29.

30.

In Exercises 31 and 32, find the volume of the solid generated by
revolving the region bounded by the graphs of the equations
about the -axis.

31.

32.

In Exercises 33–36, find the volume of the solid generated by
revolving the region bounded by the graphs of the equations
about the -axis. Verify your results using the integration
capabilities of a graphing utility.

33.

34.

35.

36.

In Exercises 37– 40, use the integration capabilities of a graphing
utility to approximate the volume of the solid generated by
revolving the region bounded by the graphs of the equations
about the -axis.

37.

38.

39.

40.

In Exercises 41–48, find the volume generated by rotating the
given region about the specified line.

41. about 42. about

43. about 44. about

45. about 46. about

47. about 48. about

Think About It In Exercises 49 and 50, determine which value
best approximates the volume of the solid generated by revolving
the region bounded by the graphs of the equations about the 
-axis. (Make your selection on the basis of a sketch of the solid

and not by performing any calculations.)

49.

(a) 3 (b) (c) 10 (d) 7 (e) 20

50.

(a) 10 (b) (c) 5 (d) (e) 15�63
4

y � arctan x, y � 0, x � 0, x � 1

�5

y � e�x2�2, y � 0, x � 0, x � 2

x

x � 1R2x � 0R2

x � 1R3x � 0R3

y � 1R2y � 0R2

x � 1R1x � 0R1

R2
R3

R1

0.5 1

0.5

1

x

y

y = x

y = x2

y � �2x,  y � x2

y � 2 arctan�0.2x�,  y � 0,  x � 0,  x � 5

y � ln x,  y � 0,  x � 1,  x � 3

y � e�x2,  y � 0,  x � 0,  x � 2

x

y � ex�2 � e�x�2,  y � 0,  x � �1,  x � 2

y � ex�1,  y � 0,  x � 1,  x � 2

y � cos 2x, y � 0, x � 0, x �
	

4

y � sin x, y � 0, x � 0, x � 	

x

y � 9 � x2,  y � 0,  x � 2,  x � 3

y � 3�2 � x�,  y � 0,  x � 0

y

y � �x,  y � �
1
2 x � 4,  x � 0,  x � 8

y � x2 � 1,  y � �x2 � 2x � 5,  x � 0,  x � 3

y � ex�2,  y � 0,  x � 0,  x � 4

y � e�x,  y � 0,  x � 0,  x � 1

y �
2

x � 1
,  y � 0,  x � 0,  x � 6

y �
1
x

,  y � 0,  x � 1,  x � 3
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In Exercises 51 and 52, the integral represents the volume of
a solid. Describe the solid.

51. 52.

53. A region bounded by the parabola and the 
axis is revolved about the axis. A second region bounded

by the parabola and the axis is revolved about
the axis. Without integrating, how do the volumes of the
two solids compare? Explain.

54. The region in the figure is revolved about the indicated axes
and line. Order the volumes of the resulting solids from
least to greatest. Explain your reasoning.

(a) axis (b) axis (c)

55. Discuss the validity of the following statements.

(a) For a solid formed by rotating the region under a graph
about the -axis, the cross sections perpendicular to the
-axis are circular disks.

(b) For a solid formed by rotating the region between two
graphs about the -axis, the cross sections perpendicular
to the -axis are circular disks.x

x

x
x

1 2 3 4

2

4

6

8

10

y = x2

x

y

x � 3y-x-

x-
x-y � 4 � x2

x-x-
y � 4x � x2

	 
4

2
y4 dy	 
	�2

0
 sin2 x dx

WRITING ABOUT CONCEPTS

56. Identify the integral that represents the volume of the solid
obtained by rotating the area between and

about the -axis. Assume

(a) (b) 	
b

a
�� f �x��2 � �g�x��2� dx	
b

a

� f �x� � g�x��2 dx

f �x� � g�x� � 0.�
�xa � x � b,y � g�x�,

y � f �x)

CAPSTONE



57. If the portion of the line lying in the first quadrant is
revolved about the axis, a cone is generated. Find the volume
of the cone extending from to 

58. Use the disk method to verify that the volume of a right circular
cone is where is the radius of the base and is the
height.

59. Use the disk method to verify that the volume of a sphere is

60. A sphere of radius is cut by a plane units above the
equator. Find the volume of the solid (spherical segment) above
the plane.

61. A cone of height with a base of radius is cut by a plane
parallel to and units above the base. Find the volume of the
solid (frustum of a cone) below the plane.

62. The region bounded by and is revolved
about the axis.

(a) Find the value of in the interval that divides the
solid into two parts of equal volume.

(b) Find the values of in the interval that divide the
solid into three parts of equal volume.

63. Volume of a Fuel Tank A tank on the wing of a jet aircraft is
formed by revolving the region bounded by the graph of

and the axis about the -axis,
where and are measured in meters. Use a graphing 
utility to graph the function and find the volume of the tank.

64. Volume of a Lab Glass A glass container can be modeled by
revolving the graph of

about the axis, where and are measured in centimeters.
Use a graphing utility to graph the function and find the volume
of the container.

65. Find the volumes of the solids (see figures) generated if the
upper half of the ellipse is revolved about
(a) the axis to form a prolate spheroid (shaped like a football),
and (b) the axis to form an oblate spheroid (shaped like half
of a candy).

Figure for 65(a) Figure for 65(b)

66. Water Depth in a Tank A tank on a water tower is a sphere of
radius 50 feet. Determine the depths of the water when the tank
is filled to one-fourth and three-fourths of its total capacity.
(Note: Use the zero or root feature of a graphing utility after
evaluating the definite integral.)

67. Minimum Volume The arc of on the interval
is revolved about the line (see figure).

(a) Find the volume of the resulting solid as a function of 

(b) Use a graphing utility to graph the function in part (a), and
use the graph to approximate the value of that minimizes
the volume of the solid.

(c) Use calculus to find the value of that minimizes the
volume of the solid, and compare the result with the answer
to part (b).

Figure for 67 Figure for 68

68. Modeling Data A draftsman is asked to determine the
amount of material required to produce a machine part (see
figure). The diameters of the part at equally spaced points 
are listed in the table. The measurements are listed in
centimeters.

(a) Use these data with Simpson’s Rule to approximate the 
volume of the part.

(b) Use the regression capabilities of a graphing utility to find
a fourth-degree polynomial through the points representing
the radius of the solid. Plot the data and graph the model.

(c) Use a graphing utility to approximate the definite integral
yielding the volume of the part. Compare the result with the
answer to part (a).

69. Think About It Match each integral with the solid whose
volume it represents, and give the dimensions of each solid.

(a) Right circular cylinder (b) Ellipsoid

(c) Sphere (d) Right circular cone (e) Torus

(i) (ii)

(iii) (iv)

(v) 	
r

�r
��R � �r2 � x2 �2

� �R � �r2 � x2 �2� dx

	
b

�b
�a�1 �

x2

b2 	
2

dx	
r

�r
��r2 � x2 �2 dx

	
h

0
r2 dx	
h

0
�rx

h 	2
dx

xd

x
11

3

−3

y

3−1 4
x

y = b

4

−2

y

b

b

b.

y � b�0, 4�
y � 4 � �x2�4�

4

−4
6

x

y

x6

4

−4

y

y-
x-

9x 2 � 25y 2 � 225

yxx-

y � ��0.1x3 � 2.2x2 � 10.9x � 22.2,
2.95,

     0 � x � 11.5
     11.5 < x � 15

yx
x�0 � x � 2�x-y �

1
8x2�2 � x

�0, 4�x

�0, 4�x

x-
x � 4y � �x, y � 0,

h
rH

h �h < r�r

4
3	r 3.

hr1
3	r2h,

x � 6.x � 0
x-

y �
1
2x
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x 0 1 2 3 4 5

d 4.2 3.8 4.2 4.7 5.2 5.7

x 6 7 8 9 10

d 5.8 5.4 4.9 4.4 4.6



70. Cavalieri’s Theorem Prove that if two solids have equal
altitudes and all plane sections parallel to their bases and at
equal distances from their bases have equal areas, then the
solids have the same volume (see figure).

71. Find the volumes of the solids whose bases are bounded by the
graphs of and with the indicated cross
sections taken perpendicular to the axis.

(a) Squares (b) Rectangles of height 1

72. Find the volumes of the solids whose bases are bounded by the 
circle with the indicated cross sections taken 
perpendicular to the axis.

(a) Squares (b) Equilateral triangles

(c) Semicircles (d) Isosceles right triangles

73. Find the volume of the solid of intersection (the solid common
to both) of the two right circular cylinders of radius whose
axes meet at right angles (see figure).

Two intersecting cylinders Solid of intersection

■ FOR FURTHER INFORMATION For more information on this
problem, see the article “Estimating the Volumes of Solid Figures
with Curved Surfaces” by Donald Cohen in Mathematics Teacher.
To view this article, go to the website www.matharticles.com.

74. The base of a solid is bounded by and 
Find the volume of the solid for each of the following cross
sections (taken perpendicular to the axis): (a) squares,
(b) semicircles, (c) equilateral triangles, and (d) semiellipses
whose heights are twice the lengths of their bases.

75. A manufacturer drills a hole through the center of a metal
sphere of radius The hole has a radius Find the volume of
the resulting ring.

76. For the metal sphere in Exercise 75, let What value of 
will produce a ring whose volume is exactly half the volume of
the sphere?

77. The region bounded by the graphs of 
and is revolved about the -axis. Use a graphing

utility and Simpson’s Rule with to approximate the
volume of the solid.

78. The solid shown in the figure has cross sections bounded by the
graph of where 

(a) Describe the cross section when and 

(b) Describe a procedure for approximating the volume of the
solid.

79. Two planes cut a right circular cylinder to form a wedge. One
plane is perpendicular to the axis of the cylinder and the second
makes an angle of degrees with the first (see figure).

(a) Find the volume of the wedge if 

(b) Find the volume of the wedge for an arbitrary angle 
Assuming that the cylinder has sufficient length, how does
the volume of the wedge change as increases from 
to

Figure for 79 Figure for 80

80. (a) Show that the volume of the torus shown in the figure is
given by the integral where

(b) Find the volume of the torus.

R > r > 0.
8	 R � r

0 �r2 � y2 dy,

x

y

R r

y

x θ

90�?
0�

.

 � 45�.
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⏐ ⏐ ⏐ ⏐x 1 + y 1 = 1 ⏐ ⏐ ⏐ ⏐x a + y a = 1 ⏐ ⏐ ⏐ ⏐x 2 + y 2 = 1

a � 2.a � 1

1 � a � 2.�x�a � �y�a � 1,

n � 10��
xx � 5x � 0,

y � 0,y � 8x��9 � x2�,

rR � 6.

r.R.
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x � 1.y � x3, y � 0,
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2 2y
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7.3 Volume: The Shell Method
■ Find the volume of a solid of revolution using the shell method.
■ Compare the uses of the disk method and the shell method.

The Shell Method
In this section, you will study an alternative method for finding the volume of a solid
of revolution. This method is called the shell method because it uses cylindrical
shells. A comparison of the advantages of the disk and shell methods is given later in
this section.

To begin, consider a representative rectangle as shown in Figure 7.27, where is
the width of the rectangle, is the height of the rectangle, and is the distance
between the axis of revolution and the center of the rectangle. When this rectangle is
revolved about its axis of revolution, it forms a cylindrical shell (or tube) of thickness

To find the volume of this shell, consider two cylinders. The radius of the larger
cylinder corresponds to the outer radius of the shell, and the radius of the smaller
cylinder corresponds to the inner radius of the shell. Because is the average radius
of the shell, you know the outer radius is and the inner radius is 

Outer radius

Inner radius

So, the volume of the shell is

You can use this formula to find the volume of a solid of revolution. Assume that
the plane region in Figure 7.28 is revolved about a line to form the indicated solid. If
you consider a horizontal rectangle of width then, as the plane region is revolved 
about a line parallel to the axis, the rectangle generates a representative shell whose
volume is

You can approximate the volume of the solid by such shells of thickness height
and average radius 

This approximation appears to become better and better as So,
the volume of the solid is

� 2	 
d

c

�p�y�h�y�� dy.

 Volume of solid � lim
���→0

 2	
n

i�1
�p�yi�h�yi�� �y

��� →  0 �n →  ��.

 Volume of solid � 
n

i�1
2	 � p�yi�h�yi�� �y � 2	

n

i�1
� p� yi �h� yi �� �y

p�yi�.h�yi�,
�y,n

x-
�y,

� 2	 �average radius��height��thickness�.
� 2	phw

� 	�p �
w
2	

2
h � 	�p �

w
2	

2
h

 Volume of shell � �volume of cylinder� � �volume of hole�

p �
w
2

p �
w
2

p � �w�2�.p � �w�2�
p

w.

ph
w

p

w

Axis of revolution

p −
p + w

2w
2

h

Figure 7.27

d

cp(y)

Δy

Plane region

h(y)

Solid of revolution

Axis of
revolution

Figure 7.28

�V � 2	� p�y�h�y�� �y.



Horizontal axis of revolution Vertical axis of revolution
Figure 7.29

EXAMPLE 1 Using the Shell Method to Find Volume

Find the volume of the solid of revolution formed by revolving the region bounded by 

and the axis about the axis.

Solution Because the axis of revolution is vertical, use a vertical representative
rectangle, as shown in Figure 7.30. The width indicates that is the variable of
integration. The distance from the center of the rectangle to the axis of revolution is

and the height of the rectangle is 

Because ranges from 0 to 1, the volume of the solid is

Apply shell method.

Simplify.

Integrate.

■�
4	

15
.

� 2	 ��
1
5

�
1
3	

� 2	 ��
x5

5
�

x3

3 �
1

0

� 2	 
1

0
��x4 � x2� dx

V � 2	 
b

a

p�x�h�x� dx � 2	 
1

0
x�x � x3� dx

x

h�x� � x � x3.

p�x� � x,

x�x

y-�0 � x � 1�x-

y � x � x3

ba

Δx

h(x)

p(x)

d

c

Δy

p(y)

h(y)
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x

h(x) = x − x3

p(x) = x

Δx

(1, 0)

Axis of
revolution

y = x − x3

y

Figure 7.30

THE SHELL METHOD

To find the volume of a solid of revolution with the shell method, use one of
the following, as shown in Figure 7.29.

Volume � V � 2	 
b

a

p�x�h�x� dxVolume � V � 2	 
d

c

p�y�h�y� dy

Vertical Axis of Revolution                   Horizontal Axis of Revolution



EXAMPLE 2 Using the Shell Method to Find Volume

Find the volume of the solid of revolution formed by revolving the region bounded by
the graph of

and the axis about the axis.

Solution Because the axis of revolution is horizontal, use a horizontal representative
rectangle, as shown in Figure 7.31. The width indicates that is the variable of
integration. The distance from the center of the rectangle to the axis of revolution is

and the height of the rectangle is Because ranges from 0 to
1, the volume of the solid is

Apply shell method.

Integrate.

■

Comparison of Disk and Shell Methods
The disk and shell methods can be distinguished as follows. For the disk method, the
representative rectangle is always perpendicular to the axis of revolution, whereas
for the shell method, the representative rectangle is always parallel to the axis of
revolution, as shown in Figure 7.32.

� 1.986.

� 	 �1 �
1
e	

� �	�e�y 2�
1

0

V � 2	 
d

c

p�y�h�y� dy � 2	 
1

0
ye�y2

dy

yh�y� � e�y 2
.p�y� � y,

y�y

x-�0 � y � 1�y-

x � e�y 2
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x

h(y) = e−y2
p(y) = y

Δy

Axis of
revolution

x = e−y2
1

y

Figure 7.31

NOTE To see the advantage of using the shell method in Example 2, solve the equation
for

Then use this equation to find the volume using the disk method. ■

y � �1,
��ln x,

     0 � x � 1�e
     1�e < x � 1

y.x � e�y2

c

d

Δy

c

d
V = π ∫ (R2 − r2) dy

xR

r

y

Vertical axis
of revolution

Disk method: Representative rectangle is
perpendicular to the axis of revolution.
Figure 7.32

a b
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Horizontal axis
of revolution
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d
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V = 2π ∫ ph dy
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p

y

Horizontal axis
of revolution

a b

Δx
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b
V = 2π ∫ ph dx
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Vertical axis
of revolution

Shell method: Representative rectangle is
parallel to the axis of revolution.



Often, one method is more convenient to use than the other. The following
example illustrates a case in which the shell method is preferable.

EXAMPLE 3 Shell Method Preferable

Find the volume of the solid formed by revolving the region bounded by the graphs of 

and

about the axis.

Solution In Example 4 in the preceding section, you saw that the washer method
requires two integrals to determine the volume of this solid. See Figure 7.33(a).

Apply washer method.

Simplify.

Integrate.

In Figure 7.33(b), you can see that the shell method requires only one integral to find
the volume.

Apply shell method.

Integrate.

■

Suppose the region in Example 3 were revolved about the vertical line 
Would the resulting solid of revolution have a greater volume or a smaller volume than
the solid in Example 3? Without integrating, you should be able to reason that the
resulting solid would have a smaller volume because “more” of the revolved region
would be closer to the axis of revolution. To confirm this, try solving the following
integral, which gives the volume of the solid.

p�x� � 1 � xV � 2	 
1

0
�1 � x��x2 � 1� dx

x � 1.

�
3	

2

� 2	 �3
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2 �
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2
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1
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0
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y2

2 �
2

1
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1

0
 1 dy � 	 
2

1
�2 � y� dy
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1

0
�12 � 02� dy � 	 
2

1
�12 � ��y � 1 �2� dy
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x � 1x � 0,y � 0,y � x2 � 1,
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2

r

(1, 2)

Δy

Δy

For 0 ≤ y ≤ 1:
R = 1
r = 0

For 1 ≤ y ≤ 2:
R = 1
r = y − 1

y

(a) Disk method

x

Axis of
revolution

h(x) = x2 + 1

1

1

2

p(x) = x

(1, 2)

Δx

y

(b) Shell method
Figure 7.33

■ FOR FURTHER INFORMATION To learn more about the disk and shell methods, see the
article “The Disk and Shell Method” by Charles A. Cable in The American Mathematical
Monthly. To view this article, go to the website www.matharticles.com. ■
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EXAMPLE 4 Volume of a Pontoon

A pontoon is to be made in the shape shown in Figure 7.34. The pontoon is designed
by rotating the graph of

about the axis, where and are measured in feet. Find the volume of the pontoon.

Solution Refer to Figure 7.35(a) and use the disk method as follows.

Apply disk method.

Simplify.

Integrate.

Try using Figure 7.35(b) to set up the integral for the volume using the shell method.
Does the integral seem more complicated? ■

To use the shell method in Example 4, you would have to solve for in terms of
in the equation 

Sometimes, solving for is very difficult (or even impossible). In such cases you
must use a vertical rectangle (of width ), thus making the variable of integration.
The position (horizontal or vertical) of the axis of revolution then determines the
method to be used. This is shown in Example 5.

EXAMPLE 5 Shell Method Necessary

Find the volume of the solid formed by revolving the region bounded by the graphs of
and about the line as shown in Figure 7.36.

Solution In the equation you cannot easily solve for in terms of
(See Section 3.8 on Newton’s Method.) Therefore, the variable of integration must

be and you should choose a vertical representative rectangle. Because the rectangle
is parallel to the axis of revolution, use the shell method and obtain

Apply shell method.

Simplify.

Integrate.
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8 ft

2 ft

Figure 7.34
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In Exercises 1–14, use the shell method to set up and evaluate
the integral that gives the volume of the solid generated by
revolving the plane region about the -axis.

1. 2.

3. 4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

In Exercises 15–22, use the shell method to set up and evaluate
the integral that gives the volume of the solid generated by
revolving the plane region about the -axis.

15. 16.

17. 18.

19. 20.

21.

22.

In Exercises 23–26, use the shell method to find the volume of
the solid generated by revolving the plane region about the
given line.

23. about the line 

24. about the line 

25. about the line 

26. about the line 

In Exercises 27 and 28, decide whether it is more convenient to
use the disk method or the shell method to find the volume of
the solid of revolution. Explain your reasoning. (Do not find the
volume.)

27. 28.

In Exercises 29–32, use the disk or the shell method to find the
volume of the solid generated by revolving the region bounded
by the graphs of the equations about each given line.

29.

(a) the axis (b) the axis (c) the line 

30.

(a) the axis (b) the axis (c) the line 

31.

(a) the axis (b) the axis (c) the line x � ay-x-

y � 0x � 0,x1�2 � y1�2 � a1�2,

y � 10y-x-

x � 5x � 1,y � 0,y �
10
x2 ,

x � 4y-x-

x � 2y � 0,y � x3,

−1−2−3 1 2 3
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32. (hypocycloid)

(a) the axis (b) the axis

In Exercises 33–36, (a) use a graphing utility to graph the plane
region bounded by the graphs of the equations, and (b) use the
integration capabilities of the graphing utility to approximate
the volume of the solid generated by revolving the region about
the -axis.

33. first quadrant

34.

35.

36.

Think About It In Exercises 37 and 38, determine which value
best approximates the volume of the solid generated by
revolving the region bounded by the graphs of the equations
about the -axis. (Make your selection on the basis of a sketch of
the solid and not by performing any calculations.)

37.

(a) (b) (c) 4 (d) 7.5 (e) 15

38.

(a) 3.5 (b) (c) 8 (d) 10 (e) 1

45. Machine Part A solid is generated by revolving the region
bounded by and about the axis. A hole,
centered along the axis of revolution, is drilled through this
solid so that one-fourth of the volume is removed. Find the
diameter of the hole.

46. Machine Part A solid is generated by revolving the region
bounded by and about the axis. A hole,
centered along the axis of revolution, is drilled through this
solid so that one-third of the volume is removed. Find the
diameter of the hole.

47. Volume of a Torus A torus is formed by revolving the region
bounded by the circle about the line (see
figure). Find the volume of this “doughnut-shaped” solid.
(Hint: The integral represents the area of a
semicircle.)

48. Volume of a Torus Repeat Exercise 47 for a torus formed by
revolving the region bounded by the circle about
the line where 

In Exercises 49–52, the integral represents the volume of a solid
of revolution. Identify (a) the plane region that is revolved and
(b) the axis of revolution.

49. 50.

51. 52. 2	 
1

0
�4 � x�ex dx2	 
6

0
� y � 2��6 � y dy

2	 
1

0
y � y3�2 dy2	 
2

0
x3 dx

r < R.x � R,
x2 � y 2 � r2

x

1

1 2

−1

−1

y

�1
�1 �1 � x2 dx

x � 2x2 � y 2 � 1

y-y � 0y � �9 � x2

y-y � 2y �
1
2x2

�
9
4

y � tan x, y � 0, x � 0, x �
	

4

�23
2

y � 2e�x, y � 0, x � 0, x � 2

y

x � 3x � 1,y � 0,y �
2

1 � e1�x,

x � 6x � 2,y � 0,y � 3��x � 2�2�x � 6�2,

x � 0y � 0,y � �1 � x3,

y � 0,x � 0,x 4�3 � y4�3 � 1,

y

y-x-

a > 0x2�3 � y2�3 � a2�3,

39. The region in the figure is revolved about the indicated axes
and line. Order the volumes of the resulting solids from
least to greatest. Explain your reasoning. 

(a) axis (b) axis (c)

Figure for 39 Figure for 40

40. (a) Describe the figure generated by revolving segment 
about the -axis (see figure).

(b) Describe the figure generated by revolving segment 
about the -axis.

(c) Assume the curve in the figure can be described as
or A solid is generated by revolving

the region bounded by the curve, and 
about the -axis. Set up integrals to find the volume of
this solid using the disk method and the shell method.
(Do not integrate.)

y
x � 0y � 0,

x � g�y�.y � f �x)

y
BC

y
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y = f (x)

x = g(y)

x

y

2.45C

B

3

A

y = x2/5

1 2 3 4

1

2

3

4

x

y

x � 4y-x-

WRITING ABOUT CONCEPTS

In Exercises 41 and 42, give a geometric argument that
explains why the integrals have equal values.

41.

42.

43. Consider a solid that is generated by revolving a plane
region about the -axis. Describe the position of a represen-
tative rectangle when using (a) the shell method and (b) the
disk method to find the volume of the solid.

y

2	 
4

0
x�x

2	 dx	 
2

0
�16 � �2y�2� dy �

2	 
2

0
y�5 � �y 2 � 1�� dy	
5

1
�x � 1� dx �

WRITING ABOUT CONCEPTS (cont inued)

44. Consider the plane region bounded by the graphs of 
and where and What are

the heights and radii of the cylinders generated when this
region is revolved about (a) the -axis and (b) the -axis?yx

b > 0.k > 0x � b,x � 0,y � 0,
y � k,

CAPSTONE
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53. (a) Use differentiation to verify that

(b) Use the result of part (a) to find the volume of the solid
generated by revolving each plane region about the -axis.

(i) (ii)

54. (a) Use differentiation to verify that

(b) Use the result of part (a) to find the volume of the solid
generated by revolving each plane region about the -axis.
(Hint: Begin by approximating the points of intersection.)

(i) (ii)

55. Volume of a Segment of a Sphere Let a sphere of radius be
cut by a plane, thereby forming a segment of height Show
that the volume of this segment is 

56. Volume of an Ellipsoid Consider the plane region bounded
by the graph of

where and Show that the volume of the ellipsoid
formed when this region is revolved about the -axis is 
What is the volume when the region is revolved about the 
-axis?

57. Exploration Consider the region bounded by the graphs of
and (see figure).

(a) Find the ratio of the area of the region to the area of
the circumscribed rectangle.

(b) Find and compare the result with the area of the

circumscribed rectangle.

(c) Find the volume of the solid of revolution formed by
revolving the region about the axis. Find the ratio of
this volume to the volume of the circumscribed right
circular cylinder.

(d) Find and compare the result with the volume of

the circumscribed cylinder.

(e) Use the results of parts (b) and (d) to make a conjecture about
the shape of the graph of as 

58. Think About It Match each integral with the solid whose
volume it represents, and give the dimensions of each solid.

(a) Right circular cone (b) Torus (c) Sphere

(d) Right circular cylinder (e) Ellipsoid

(i) (ii)

(iii) (iv)

(v)

59. Volume of a Storage Shed A storage shed has a circular base
of diameter 80 feet. Starting at the center, the interior height is
measured every 10 feet and recorded in the table (see figure).

(a) Use Simpson’s Rule to approximate the volume of the shed.

(b) Note that the roof line consists of two line segments. Find
the equations of the line segments and use integration to
find the volume of the shed.

Figure for 59 Figure for 60

60. Modeling Data A pond is approximately circular, with a
diameter of 400 feet. Starting at the center, the depth of the
water is measured every 25 feet and recorded in the table (see
figure).
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 x sin x dx � sin x � x cos x � C.

x 0 10 20 30 40

Height 50 45 40 20 0

x 0 25 50 75 100 125 150 175 200

Depth 20 19 19 17 15 14 10 6 0
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(a) Use Simpson’s Rule to approximate the volume of water in
the pond.

(b) Use the regression capabilities of a graphing utility to find
a quadratic model for the depths recorded in the table. Use
the graphing utility to plot the depths and graph the model.

(c) Use the integration capabilities of a graphing utility and the
model in part (b) to approximate the volume of water in the
pond.

(d) Use the result of part (c) to approximate the number of 
gallons of water in the pond if 1 cubic foot of water is
approximately 7.48 gallons.

61. Let and be the volumes of the solids that result when the
plane region bounded by and

is revolved about the -axis and the -axis,
respectively. Find the value of for which 

62. The region bounded by and is
revolved about the -axis to form a paraboloid. A hole, centered
along the axis of revolution, is drilled through this solid. The
hole has a radius Find the volume of the resulting
ring (a) by integrating with respect to and (b) by integrating
with respect to 

63. Consider the graph of (see figure). Find the
volumes of the solids that are generated when the loop of this
graph is revolved about (a) the -axis, (b) the -axis, and
(c) the line 

Figure for 63 Figure for 64

64. Consider the graph of (see figure). Find the
volumes of the solids that are generated when the loop of this
graph is revolved about (a) the -axis, (b) the -axis, and (c) the
line x � �5.
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The Oblateness of Saturn Saturn is the most oblate of the nine
planets in our solar system. Its equatorial radius is 60,268
kilometers and its polar radius is 54,364 kilometers. The color-
enhanced photograph of Saturn was taken by Voyager 1. In the 
photograph, the oblateness of Saturn is clearly visible.

(a) Find the ratio of the volumes of the sphere and the oblate
ellipsoid shown below.

(b) If a planet were spherical and had the same volume as Saturn,
what would its radius be?

Saturn

S E C T I O N  P R O J E C T

Computer model of
“spherical Saturn,”
whose equatorial
radius is equal to its
polar radius. The
equation of the cross
section passing
through the pole is

x2 � y 2 � 60,2682.

N
SS

D
C

Computer model of
“oblate Saturn,” whose
equatorial radius is 
greater than its polar
radius. The equation of 
the cross section passing
through the pole is

x2

60,2682 �
y 2

54,3642 � 1.



■ Find the arc length of a smooth curve.
■ Find the area of a surface of revolution.

Arc Length
In this section, definite integrals are used to find the arc lengths of curves and the areas
of surfaces of revolution. In either case, an arc (a segment of a curve) is approximated
by straight line segments whose lengths are given by the familiar Distance Formula

A rectifiable curve is one that has a finite arc length. You will see that a sufficient
condition for the graph of a function to be rectifiable between 
is that be continuous on Such a function is continuously differentiable on

and its graph on the interval is a smooth curve.
Consider a function that is continuously differentiable on the interval

You can approximate the graph of by line segments whose endpoints are
determined by the partition

as shown in Figure 7.37. By letting and you can
approximate the length of the graph by

This approximation appears to become better and better as So, the
length of the graph is

Because exists for each in the Mean Value Theorem guarantees the
existence of in such that

Because is continuous on it follows that is also continuous
(and therefore integrable) on which implies that

where is called the arc length of between and b.afs
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Figure 7.37

CHRISTIAN HUYGENS (1629–1695)

The Dutch mathematician Christian Huygens,
who invented the pendulum clock, and James
Gregory (1638–1675), a Scottish mathemati-
cian, both made early contributions to the
problem of finding the length of a rectifiable
curve.
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Because the definition of arc length can be applied to a linear function, you can
check to see that this new definition agrees with the standard Distance Formula for the
length of a line segment. This is shown in Example 1.

EXAMPLE 1 The Length of a Line Segment

Find the arc length from to on the graph of as shown
in Figure 7.38.

Solution Because

it follows that

Formula for arc length

Integrate and simplify.

which is the formula for the distance between two points in the plane. ■
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�x2 � x1�2 �x��
x2

x1
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x2
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2

dx
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x2

x1

�1 � � f��x��2 dx

m � f��x� �
y2 � y1

x2 � x1

f �x� � mx � b,�x2, y2��x1, y1�
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x

x2 − x1

y2 − y1

f(x) = mx + b

(x1, y1)

(x2, y2)

y

The formula for the arc length of the graph
of from to is the same as the
standard Distance Formula.
Figure 7.38

�x2, y2��x1, y1�f

DEFINITION OF ARC LENGTH

Let the function given by represent a smooth curve on the interval
The arc length of between and is

Similarly, for a smooth curve given by the arc length of between
and is

s � 
d

c

�1 � �g��y��2 dy.

dc
gx � g�y�,

s � 
b

a

�1 � � f��x��2 dx.

baf�a, b�.
y � f �x�

Definite integrals representing arc length often are very difficult to
evaluate. In this section, a few examples are presented. In the next chapter, with
more advanced integration techniques, you will be able to tackle more difficult arc
length problems. In the meantime, remember that you can always use a numerical
integration program to approximate an arc length. For instance, use the numerical
integration feature of a graphing utility to approximate the arc lengths in Examples
2 and 3.

TECHNOLOGY

■ FOR FURTHER INFORMATION To
see how arc length can be used to define
trigonometric functions, see the article
“Trigonometry Requires Calculus, Not
Vice Versa” by Yves Nievergelt in
UMAP Modules.



EXAMPLE 2 Finding Arc Length

Find the arc length of the graph of 

on the interval as shown in Figure 7.39.

Solution Using

yields an arc length of

Formula for arc length

Simplify.

Integrate.

EXAMPLE 3 Finding Arc Length

Find the arc length of the graph of on the interval as shown in
Figure 7.40.

Solution Begin by solving for in terms of Choosing the
positive value of produces 

The interval corresponds to the interval and the arc length is

Formula for arc length

Simplify.

Integrate.

■� 9.073.
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EXAMPLE 4 Finding Arc Length

Find the arc length of the graph of from to as shown in
Figure 7.41.

Solution Using

yields an arc length of

Formula for arc length

Trigonometric identity

Simplify.

Integrate.

EXAMPLE 5 Length of a Cable

An electric cable is hung between two towers that are 200 feet apart, as shown in
Figure 7.42. The cable takes the shape of a catenary whose equation is

Find the arc length of the cable between the two towers.

Solution Because you can write

and

Therefore, the arc length of the cable is

Formula for arc length

Integrate.

■� 215 feet.
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Area of a Surface of Revolution
In Sections 7.2 and 7.3, integration was used to calculate the volume of a solid
of revolution. You will now look at a procedure for finding the area of a surface of
revolution.

The area of a surface of revolution is derived from the formula for the lateral
surface area of the frustum of a right circular cone. Consider the line segment in
Figure 7.43, where is the length of the line segment, is the radius at the left end
of the line segment, and is the radius at the right end of the line segment. When the
line segment is revolved about its axis of revolution, it forms a frustum of a right
circular cone, with

Lateral surface area of frustum

where

Average radius of frustum

(In Exercise 62, you are asked to verify the formula for )
Suppose the graph of a function having a continuous derivative on the interval

is revolved about the axis to form a surface of revolution, as shown in Figure
7.44. Let be a partition of with subintervals of width Then the line
segment of length

generates a frustum of a cone. Let be the average radius of this frustum. By the
Intermediate Value Theorem, a point exists (in the subinterval) such that

The lateral surface area of the frustum is

Figure 7.44
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DEFINITION OF SURFACE OF REVOLUTION

If the graph of a continuous function is revolved about a line, the resulting
surface is a surface of revolution.



By the Mean Value Theorem, a point exists in such that

So, and the total surface area can be approximated
by

It can be shown that the limit of the right side as is

In a similar manner, if the graph of is revolved about the axis, then is

In these two formulas for you can regard the products and as the 
circumferences of the circles traced by a point on the graph of as it is revolved
about the -axis and the axis (Figure 7.45). In one case the radius is and in
the other case the radius is Moreover, by appropriately adjusting you can 
generalize the formula for surface area to cover horizontal or vertical axis of 
revolution, as indicated in the following definition.

The formulas in this definition are sometimes written as
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DEFINITION OF THE AREA OF A SURFACE OF REVOLUTION

Let have a continuous derivative on the interval The area of
the surface of revolution formed by revolving the graph of about a horizontal
or vertical axis is

is a function of 

where is the distance between the graph of and the axis of revolution. If
on the interval then the surface area is

is a function of 

where is the distance between the graph of and the axis of revolution.gr�y�
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d
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EXAMPLE 6 The Area of a Surface of Revolution

Find the area of the surface formed by revolving the graph of

on the interval about the axis, as shown in Figure 7.46.

Solution The distance between the axis and the graph of is , and
because the surface area is

Formula for surface area

Simplify.

Integrate.

EXAMPLE 7 The Area of a Surface of Revolution

Find the area of the surface formed by revolving the graph of

on the interval about the axis, as shown in Figure 7.47.

Solution In this case, the distance between the graph of and the axis is 
Using you can determine that the surface area is

Formula for surface area

Simplify.

Integrate.

■� 13.614.
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In Exercises 1 and 2, find the distance between the points using
(a) the Distance Formula and (b) integration.

1. 2.

In Exercises 3–16, find the arc length of the graph of the
function over the indicated interval.

3. 4.

5. 6.

7. 8.

9. 10.

11.

12.

13.

14.

15.

16.

In Exercises 17–26, (a) sketch the graph of the function, high-
lighting the part indicated by the given interval, (b) find a definite
integral that represents the arc length of the curve over the indi-
cated interval and observe that the integral cannot be evaluated
with the techniques studied so far, and (c) use the integration
capabilities of a graphing utility to approximate the arc length.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Approximation In Exercises 27 and 28, determine which value
best approximates the length of the arc represented by the
integral. (Make your selection on the basis of a sketch of the arc
and not by performing any calculations.)

27.

(a) 25 (b) 5 (c) 2 (d) (e) 3

28.

(a) 3 (b) (c) 4 (d) (e) 1

Approximation In Exercises 29 and 30, approximate the arc
length of the graph of the function over the interval in four
ways. (a) Use the Distance Formula to find the distance between
the endpoints of the arc. (b) Use the Distance Formula to find
the lengths of the four line segments connecting the points on
the arc when and Find the
sum of the four lengths. (c) Use Simpson’s Rule with to
approximate the integral yielding the indicated arc length. 
(d) Use the integration capabilities of a graphing utility to
approximate the integral yielding the indicated arc length.

29.

30.

31. Length of a Catenary Electrical wires suspended between
two towers form a catenary (see figure) modeled by the equation

where and are measured in meters. The towers are 40 meters
apart. Find the length of the suspended cable.
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32. Roof Area A barn is 100 feet long and 40 feet wide (see
figure). A cross section of the roof is the inverted catenary

Find the number of square feet of
roofing on the barn.

33. Length of Gateway Arch The Gateway Arch in St. Louis,
Missouri is modeled by

(See Section 5.8, Section Project: St. Louis Arch.) Find the
length of this curve (see figure).

Figure for 33 Figure for 34

34. Astroid Find the total length of the graph of the astroid

35. Find the arc length from clockwise to along the
circle

36. Find the arc length from clockwise to along the
circle Show that the result is one-fourth the
circumference of the circle.

In Exercises 37– 42, set up and evaluate the definite integral for
the area of the surface generated by revolving the curve about
the -axis.

37. 38.

39.

40.

41.

42.

In Exercises 43– 46, set up and evaluate the definite integral for
the area of the surface generated by revolving the curve about
the -axis.

43. 44.

45. 46.

In Exercises 47 and 48, use the integration capabilities of a
graphing utility to approximate the surface area of the solid of
revolution.

47.

revolved about the axis

48.

revolved about the axisy-
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49. Define a rectifiable curve.

50. What precalculus formula and representative element are
used to develop the integration formula for arc length?

51. What precalculus formula and representative element are
used to develop the integration formula for the area of a
surface of revolution?

52. The graphs of the functions and on the interval 
are shown in the figure. The graph of each function is
revolved about the axis. Which surface of revolution has
the greater surface area? Explain.

x
a b

f1

f2

y

x-

�a, b]f2f1

WRITING ABOUT CONCEPTS



53. Think About It The figure shows the graphs of the functions
and on the interval

To print an enlarged copy of the graph, go to the website
www.mathgraphs.com.

(a) Label the functions.

(b) List the functions in order of increasing arc length.

(c) Verify your answer in part (b) by approximating each arc
length accurate to three decimal places.

55. A right circular cone is generated by revolving the region
bounded by and about the axis. Find
the lateral surface area of the cone.

56. A right circular cone is generated by revolving the region
bounded by and about the axis.
Verify that the lateral surface area of the cone is

57. Find the area of the zone of a sphere formed by revolving the
graph of about the axis.

58. Find the area of the zone of a sphere formed by revolving the
graph of about the axis. Assume
that

59. Modeling Data The circumference (in inches) of a vase is
measured at three-inch intervals starting at its base. The
measurements are shown in the table, where is the vertical
distance in inches from the base.

(a) Use the data to approximate the volume of the vase by
summing the volumes of approximating disks.

(b) Use the data to approximate the outside surface area
(excluding the base) of the vase by summing the outside
surface areas of approximating frustums of right circular
cones.

(c) Use the regression capabilities of a graphing utility to find
a cubic model for the points where Use
the graphing utility to plot the points and graph the model.

(d) Use the model in part (c) and the integration capabilities of
a graphing utility to approximate the volume and outside
surface area of the vase. Compare the results with your
answers in parts (a) and (b).

60. Modeling Data Property bounded by two perpendicular
roads and a stream is shown in the figure. All distances are
measured in feet.

(a) Use the regression capabilities of a graphing utility to fit a
fourth-degree polynomial to the path of the stream.

(b) Use the model in part (a) to approximate the area of the
property in acres.

(c) Use the integration capabilities of a graphing utility to find
the length of the stream that bounds the property.

61. Let be the region bounded by the axis, and
where Let be the solid formed when is

revolved about the axis.

(a) Find the volume of 

(b) Write the surface area as an integral.

(c) Show that approaches a finite limit as 

(d) Show that as 

62. (a) Given a circular sector with radius and central angle 
(see figure), show that the area of the sector is given by

(b) By joining the straight-line edges of the sector in part (a), a
right circular cone is formed (see figure) and the lateral
surface area of the cone is the same as the area of the sector.
Show that the area is where is the radius of the
base of the cone. (Hint: The arc length of the sector equals
the circumference of the base of the cone.)

Figure for 62(a) Figure for 62(b)
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54. Think About It Explain why the two integrals are equal.

Use the integration capabilities of a graphing utility to 
verify that the integrals are equal.


e

1
�1 �

1
x2 dx � 
1

0

�1 � e2x dx

CAPSTONE

www.mathgraphs.com


(c) Use the result of part (b) to verify that the formula for the
lateral surface area of the frustum of a cone with slant height

and radii (see figure) is 
(Note: This formula was used to develop the integral for
finding the surface area of a surface of revolution.)

63. Think About It Consider the equation 

(a) Use a graphing utility to graph the equation.

(b) Set up the definite integral for finding the first-quadrant arc
length of the graph in part (a).

(c) Compare the interval of integration in part (b) and the
domain of the integrand. Is it possible to evaluate the
definite integral? Is it possible to use Simpson’s Rule to
evaluate the definite integral? Explain. (You will learn how
to evaluate this type of integral in Section 8.8.)

64. Writing Read the article “Arc Length, Area and the Arcsine
Function” by Andrew M. Rockett in Mathematics Magazine.
Then write a paragraph explaining how the arcsine function can
be defined in terms of an arc length. (To view this article, go to
the website www.matharticles.com.)

In Exercises 65– 68, set up the definite integral for finding the
indicated arc length or surface area. Then use the integration
capabilities of a graphing utility to approximate the arc length
or surface area. (You will learn how to evaluate this type of 
integral in Section 8.8.)

65. Length of Pursuit A fleeing object leaves the origin and
moves up the axis (see figure). At the same time, a pursuer
leaves the point and always moves toward the fleeing
object. The pursuer’s speed is twice that of the fleeing object.
The equation of the path is modeled by

How far has the fleeing object traveled when it is caught? Show
that the pursuer has traveled twice as far.

Figure for 65 Figure for 66

66. Bulb Design An ornamental light bulb is designed by
revolving the graph of about the

axis, where and are measured in feet (see figure). Find the
surface area of the bulb and use the result to approximate the
amount of glass needed to make the bulb. (Assume that the
glass is 0.015 inch thick.)

67. Astroid Find the area of the surface formed by revolving the
portion in the first quadrant of the graph of 

about the -axis.

Figure for 67 Figure for 68

68. Consider the graph of (see figure). Find the
area of the surface formed when the loop of this graph is
revolved about the -axis.

69. Suspension Bridge A cable for a suspension bridge has the
shape of a parabola with equation Let represent the
height of the cable from its lowest point to its highest point 
and let represent the total span of the bridge (see figure).
Show that the length of the cable is given by

70. Suspension Bridge The Humber Bridge, located in the
United Kingdom and opened in 1981, has a main span of about
1400 meters. Each of its towers has a height of about 
155 meters. Use these dimensions, the integral in Exercise 69,
and the integration capabilities of a graphing utility to approx-
imate the length of a parabolic cable along the main span.

71. Let be the curve given by for where
Show that the arc length of is equal to the area bounded

by and the -axis. Identify another curve on the interval
with this property.0 � x � t
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72. Find the length of the curve from the origin to the
point where the tangent makes an angle of with the -axis.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

x45�
y2 � x3

PUTNAM EXAM CHALLENGE

www.matharticles.com
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7.5 Work
■ Find the work done by a constant force.
■ Find the work done by a variable force.

Work Done by a Constant Force
The concept of work is important to scientists and engineers for determining the
energy needed to perform various jobs. For instance, it is useful to know the amount
of work done when a crane lifts a steel girder, when a spring is compressed, when a
rocket is propelled into the air, or when a truck pulls a load along a highway.

In general, work is done by a force when it moves an object. If the force applied
to the object is then the definition of work is as follows.

There are many types of forces—centrifugal, electromotive, and gravitational, to
name a few. A force can be thought of as a or a a force changes the state of
rest or state of motion of a body. For gravitational forces on Earth, it is common to use
units of measure corresponding to the weight of an object.

EXAMPLE 11 Lifting an Object

Determine the work done in lifting a 50-pound object 4 feet.

Solution The magnitude of the required force is the weight of the object, as shown
in Figure 7.48. So, the work done in lifting the object 4 feet is

pounds,

foot-pounds. ■

In the U.S. measurement system, work is typically expressed in foot-pounds
(ft-lb), inch-pounds, or foot-tons. In the centimeter-gram-second (C-G-S) system, the
basic unit of force is the dyne—the force required to produce an acceleration of
1 centimeter per second per second on a mass of 1 gram. In this system, work is
typically expressed in dyne-centimeters (ergs) or newton-meters (joules), where 
1 joule ergs.� 107

� 200

distance � 4 feetForce � 50� 50�4�
Work � �force��distance�W � FD

F

pull;push

constant,

DEFINITION OF WORK DONE BY A CONSTANT FORCE

If an object is moved a distance in the direction of an applied constant force
then the work done by the force is defined as W � FD.WF,

D

E X P L O R A T I O N

How Much Work? In Example 1, 200 foot-pounds of work was needed to
lift the 50-pound object 4 feet vertically off the ground. Suppose that once
you lifted the object, you held it and walked a horizontal distance of 4 feet.
Would this require an additional 200 foot-pounds of work? Explain your 
reasoning.

y

x

4 ft

1

2

3

4
50 lb

50 lb

The work done in lifting a 50-pound object
4 feet is 200 foot-pounds.
Figure 7.48



Work Done by a Variable Force
In Example 1, the force involved was constant. If a variable force is applied to an
object, calculus is needed to determine the work done, because the amount of force
changes as the object changes position. For instance, the force required to compress a
spring increases as the spring is compressed.

Suppose that an object is moved along a straight line from to by a
continuously varying force Let be a partition that divides the interval 
into subintervals determined by

and let For each choose such that Then at the
force is given by Because is continuous, you can approximate the work done
in moving the object through the th subinterval by the increment

as shown in Figure 7.49. So, the total work done as the object moves from to is
approximated by

This approximation appears to become better and better as So, the
work done is

The remaining examples in this section use some well-known physical laws. The
discoveries of many of these laws occurred during the same period in which calculus
was being developed. In fact, during the seventeenth and eighteenth centuries, there
was little difference between physicists and mathematicians. One such physicist-
mathematician was Emilie de Breteuil. Breteuil was instrumental in synthesizing the
work of many other scientists, including Newton, Leibniz, Huygens, Kepler, and
Descartes. Her physics text was widely used for many years.Institutions

� 
b

a

F�x� dx.

W � lim
� ��→0 

n

i�1
F�ci� �xi

�� � → 0 �n →��.

� 
n

i�1
F�ci� �xi.

W � 
n

i�1
�Wi

ba

�Wi � F�ci� �xi

i
FF�ci�.

cixi�1 � ci � xi.cii,�xi � xi � xi�1.

a � x0 < x1 < x2 < .  .  . < xn � b

n
�a, b��F�x�.

x � bx � a
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DEFINITION OF WORK DONE BY A VARIABLE FORCE

If an object is moved along a straight line by a continuously varying force
then the work done by the force as the object is moved from 

to is

� 
b

a

F�x� dx.

W � lim
� ��→0 

n

i�1
�Wi

x � b
x � aWF�x�,

EMILIE DE BRETEUIL (1706–1749)

Another major work by Breteuil was the 
translation of Newton’s “Philosophiae
Naturalis Principia Mathematica” into French.
Her translation and commentary greatly 
contributed to the acceptance of Newtonian
science in Europe.
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F(x)

Δx

The amount of force changes as an object
changes position 
Figure 7.49
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The following three laws of physics were developed by Robert Hooke
(1635–1703), Isaac Newton (1642–1727), and Charles Coulomb (1736 –1806).

1. Hooke’s Law: The force required to compress or stretch a spring (within its
elastic limits) is proportional to the distance that the spring is compressed or
stretched from its original length. That is,

where the constant of proportionality (the spring constant) depends on the
specific nature of the spring.

2. Newton’s Law of Universal Gravitation: The force of attraction between two
particles of masses and is proportional to the product of the masses and
inversely proportional to the square of the distance between the two particles.
That is,

If and are given in grams and in centimeters, will be in dynes for a value
of cubic centimeter per gram-second squared.

3. Coulomb’s Law: The force between two charges and in a vacuum is
proportional to the product of the charges and inversely proportional to the square
of the distance between the two charges. That is,

If and are given in electrostatic units and in centimeters, will be in dynes
for a value of 

EXAMPLE 2 Compressing a Spring

A force of 750 pounds compresses a spring 3 inches from its natural length of 
15 inches. Find the work done in compressing the spring an additional 3 inches.

Solution By Hooke’s Law, the force required to compress the spring units
(from its natural length) is Using the given data, it follows that 

and so and as shown in Figure 7.50. To find the
increment of work, assume that the force required to compress the spring over a small
increment is nearly constant. So, the increment of work is

Because the spring is compressed from to inches less than its natural
length, the work required is

Formula for work

inch-pounds.

Note that you do integrate from to because you were asked to
determine the work done in compressing the spring an 3 inches (not
including the first 3 inches). ■
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F � kd

F � k
m1m2

d2 .

F � k
q1q2

d2 .

E X P L O R A T I O N

The work done in compressing
the spring in Example 2 from

inches to inches is
3375 inch-pounds. Should the
work done in compressing the
spring from inches to

inches be more than, the
same as, or less than this?
Explain.

x � 3
x � 0

x � 6x � 3

x
0 15

Natural length (F = 0)

3

Compressed 3 inches (F = 750)

x
0 15

x

Compressed x inches (F = 250x)

x
0 15

Figure 7.50



EXAMPLE 3 Moving a Space Module into Orbit

A space module weighs 15 metric tons on the surface of Earth. How much work is
done in propelling the module to a height of 800 miles above Earth, as shown in
Figure 7.51? (Use 4000 miles as the radius of Earth. Do not consider the effect of air
resistance or the weight of the propellant.)

Solution Because the weight of a body varies inversely as the square of its distance
from the center of Earth, the force exerted by gravity is

is the constant of proportionality.

Because the module weighs 15 metric tons on the surface of Earth and the radius of
Earth is approximately 4000 miles, you have

So, the increment of work is

Finally, because the module is propelled from to miles, the total
work done is

Formula for work

Integrate.

In the C-G-S system, using a conversion factor of 1 foot-pound joules, the
work done is

joules. ■

The solutions to Examples 2 and 3 conform to our development of work as the
summation of increments in the form

Another way to formulate the increment of work is

This second interpretation of is useful in problems involving the movement of
nonrigid substances such as fluids and chains.
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�W � �force��distance increment� � �F���x�.

�W � �force increment��distance� � ��F��x�.
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Figure 7.51



EXAMPLE 4 Emptying a Tank of Oil

A spherical tank of radius 8 feet is half full of oil that weighs 50 pounds per cubic
foot. Find the work required to pump oil out through a hole in the top of the tank.

Solution Consider the oil to be subdivided into disks of thickness and radius 
as shown in Figure 7.52. Because the increment of force for each disk is given by its
weight, you have

For a circle of radius 8 and center at you have

and you can write the force increment as

In Figure 7.52, note that a disk feet from the bottom of the tank must be moved a
distance of feet. So, the increment of work is

Because the tank is half full, ranges from 0 to 8, and the work required to empty the
tank is

■

To estimate the reasonableness of the result in Example 4, consider that the
weight of the oil in the tank is

Lifting the entire half-tank of oil 8 feet would involve work of 
foot-pounds. Because the oil is actually lifted between 8 and 16 feet, it seems reason-
able that the work done is 589,782 foot-pounds.

8�53,616.5� � 428,932

� 53,616.5 pounds.
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1
2 �

4
3

	83	�50�
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3 	

� 50	�128y2 �
32
3

y3 �
y4

4 �
8

0

W � 
8

0
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EXAMPLE 5 Lifting a Chain

A 20-foot chain weighing 5 pounds per foot is lying coiled on the ground. How much
work is required to raise one end of the chain to a height of 20 feet so that it is fully
extended, as shown in Figure 7.53?

Solution Imagine that the chain is divided into small sections, each of length 
Then the weight of each section is the increment of force

Because a typical section (initially on the ground) is raised to a height of the 
increment of work is

Because ranges from 0 to 20, the total work is

■

In the next example you will consider a piston of radius in a cylindrical casing,
as shown in Figure 7.54. As the gas in the cylinder expands, the piston moves and
work is done. If represents the pressure of the gas (in pounds per square foot) against
the piston head and represents the volume of the gas (in cubic feet), the work 
increment involved in moving the piston feet is

So, as the volume of the gas expands from to the work done in moving the
piston is

Assuming the pressure of the gas to be inversely proportional to its volume, you have
and the integral for work becomes

EXAMPLE 6 Work Done by an Expanding Gas

A quantity of gas with an initial volume of 1 cubic foot and a pressure of 500 pounds
per square foot expands to a volume of 2 cubic feet. Find the work done by the gas.
(Assume that the pressure is inversely proportional to the volume.)

Solution Because and when you have So, the
work is

■� 500 ln�V��
2

1
� 346.6 foot-pounds.
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y

Work required to raise one end of the chain
Figure 7.53

x

r
Gas

Work done by expanding gas
Figure 7.54



Constant Force In Exercises 1–4, determine the work done by
the constant force.

1. A 100-pound bag of sugar is lifted 20 feet.

2. An electric hoist lifts a 3500-pound car 4 feet.

3. A force of 112 newtons is required to slide a cement block 
8 meters in a construction project.

4. The locomotive of a freight train pulls its cars with a constant
force of 9 tons a distance of one-half mile.

Hooke’s Law In Exercises 5–12, use Hooke’s Law to determine
the variable force in the spring problem.

5. A force of 5 pounds compresses a 15-inch spring a total of 
3 inches. How much work is done in compressing the spring 
7 inches?

6. How much work is done in compressing the spring in Exercise
5 from a length of 10 inches to a length of 6 inches?

7. A force of 250 newtons stretches a spring 30 centimeters. How
much work is done in stretching the spring from 20 centimeters
to 50 centimeters?

8. A force of 800 newtons stretches a spring 70 centimeters on a
mechanical device for driving fence posts. Find the work done
in stretching the spring the required 70 centimeters.

9. A force of 20 pounds stretches a spring 9 inches in an exercise
machine. Find the work done in stretching the spring 1 foot
from its natural position.

10. An overhead garage door has two springs, one on each side of
the door. A force of 15 pounds is required to stretch each spring
1 foot. Because of the pulley system, the springs stretch only
one-half the distance the door travels. The door moves a total of
8 feet and the springs are at their natural length when the door
is open. Find the work done by the pair of springs.

11. Eighteen foot-pounds of work is required to stretch a spring 
4 inches from its natural length. Find the work required to
stretch the spring an additional 3 inches.

12. Seven and one-half foot-pounds of work is required to com-
press a spring 2 inches from its natural length. Find the work
required to compress the spring an additional one-half inch.

13. Propulsion Neglecting air resistance and the weight of the
propellant, determine the work done in propelling a five-ton
satellite to a height of

(a) 100 miles above Earth.

(b) 300 miles above Earth.

14. Propulsion Use the information in Exercise 13 to write the
work of the propulsion system as a function of the height 
of the satellite above Earth. Find the limit (if it exists) of as

approaches infinity.

15. Propulsion Neglecting air resistance and the weight of the
propellant, determine the work done in propelling a 10-ton
satellite to a height of

(a) 11,000 miles above Earth.

(b) 22,000 miles above Earth.

16. Propulsion A lunar module weighs 12 tons on the surface of
Earth. How much work is done in propelling the module from
the surface of the moon to a height of 50 miles? Consider the
radius of the moon to be 1100 miles and its force of gravity to
be one-sixth that of Earth.

17. Pumping Water A rectangular tank with a base 4 feet by 
5 feet and a height of 4 feet is full of water (see figure). The
water weighs 62.4 pounds per cubic foot. How much work is
done in pumping water out over the top edge in order to empty
(a) half of the tank? (b) all of the tank?

18. Think About It Explain why the answer in part (b) of
Exercise 17 is not twice the answer in part (a).

19. Pumping Water A cylindrical water tank 4 meters high with
a radius of 2 meters is buried so that the top of the tank is 
1 meter below ground level (see figure). How much work is
done in pumping a full tank of water up to ground level? (The
water weighs 9800 newtons per cubic meter.)

Figure for 19 Figure for 20

20. Pumping Water Suppose the tank in Exercise 19 is located on
a tower so that the bottom of the tank is 10 meters above the
level of a stream (see figure). How much work is done in filling
the tank half full of water through a hole in the bottom, using
water from the stream?

21. Pumping Water An open tank has the shape of a right circular
cone (see figure on the next page). The tank is 8 feet across the
top and 6 feet high. How much work is done in emptying the
tank by pumping the water over the top edge?
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7.5 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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Figure for 21 Figure for 24

22. Pumping Water Water is pumped in through the bottom of
the tank in Exercise 21. How much work is done to fill the tank

(a) to a depth of 2 feet?

(b) from a depth of 4 feet to a depth of 6 feet?

23. Pumping Water A hemispherical tank of radius 6 feet is
positioned so that its base is circular. How much work is
required to fill the tank with water through a hole in the base if
the water source is at the base?

24. Pumping Diesel Fuel The fuel tank on a truck has trapezoidal
cross sections with the dimensions (in feet) shown in the figure.
Assume that the engine is approximately 3 feet above the top of
the fuel tank and that diesel fuel weighs approximately 53.1
pounds per cubic foot. Find the work done by the fuel pump in
raising a full tank of fuel to the level of the engine.

Pumping Gasoline In Exercises 25 and 26, find the work done
in pumping gasoline that weighs 42 pounds per cubic foot.
(Hint: Evaluate one integral by a geometric formula and the
other by observing that the integrand is an odd function.)

25. A cylindrical gasoline tank 3 feet in diameter and 4 feet long 
is carried on the back of a truck and is used to fuel tractors. 
The axis of the tank is horizontal. The opening on the tractor
tank is 5 feet above the top of the tank in the truck. Find the
work done in pumping the entire contents of the fuel tank into
the tractor.

26. The top of a cylindrical gasoline storage tank at a service 
station is 4 feet below ground level. The axis of the tank is 
horizontal and its diameter and length are 5 feet and 12 feet,
respectively. Find the work done in pumping the entire contents
of the full tank to a height of 3 feet above ground level.

Lifting a Chain In Exercises 27–30, consider a 20-foot chain
that weighs 3 pounds per foot hanging from a winch 20 feet
above ground level. Find the work done by the winch in winding
up the specified amount of chain.

27. Wind up the entire chain.

28. Wind up one-third of the chain.

29. Run the winch until the bottom of the chain is at the 10-foot
level.

30. Wind up the entire chain with a 500-pound load attached to it.

Lifting a Chain In Exercises 31 and 32, consider a 15-foot
hanging chain that weighs 3 pounds per foot. Find the work
done in lifting the chain vertically to the indicated position.

31. Take the bottom of the chain and raise it to the 15-foot level,
leaving the chain doubled and still hanging vertically (see 
figure).

32. Repeat Exercise 31 raising the bottom of the chain to the 
12-foot level.

37. Verify your answer to Exercise 36 by calculating the work for
each force function.

38. Demolition Crane Consider a demolition crane with a 
50-pound ball suspended from a 40-foot cable that weighs 
2 pounds per foot.

(a) Find the work required to wind up 15 feet of the apparatus.

(b) Find the work required to wind up all 40 feet of the apparatus.
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33. State the definition of work done by a constant force.

34. State the definition of work done by a variable force.

35. Which of the following requires more work? Explain your
reasoning.

(a) A 60-pound box of books is lifted 3 feet.

(b) A 60-pound box of books is held 3 feet in the air for 
2 minutes.

WRITING ABOUT CONCEPTS

36. The graphs show the force (in pounds) required to move
an object 9 feet along the axis. Order the force functions
from the one that yields the least work to the one that yields
the most work without doing any calculations. Explain your
reasoning.

(a) (b)

(c) (d)
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Boyle’s Law In Exercises 39 and 40, find the work done by the
gas for the given volume and pressure. Assume that the pressure
is inversely proportional to the volume. (See Example 6.)

39. A quantity of gas with an initial volume of 2 cubic feet and a
pressure of 1000 pounds per square foot expands to a volume
of 3 cubic feet.

40. A quantity of gas with an initial volume of 1 cubic foot and a
pressure of 2500 pounds per square foot expands to a volume
of 3 cubic feet.

41. Electric Force Two electrons repel each other with a force
that varies inversely as the square of the distance between them.
One electron is fixed at the point Find the work done in
moving the second electron from to 

42. Modeling Data The hydraulic cylinder on a woodsplitter has
a four-inch bore (diameter) and a stroke of 2 feet. The hydraulic
pump creates a maximum pressure of 2000 pounds per square
inch. Therefore, the maximum force created by the cylinder is

pounds.

(a) Find the work done through one extension of the cylinder
given that the maximum force is required.

(b) The force exerted in splitting a piece of wood is variable.
Measurements of the force obtained in splitting a piece of
wood are shown in the table. The variable measures the
extension of the cylinder in feet, and is the force in
pounds. Use Simpson’s Rule to approximate the work done
in splitting the piece of wood.

Table for 42(b)

(c) Use the regression capabilities of a graphing utility to find
a fourth-degree polynomial model for the data. Plot the data
and graph the model.

(d) Use the model in part (c) to approximate the extension of
the cylinder when the force is maximum.

(e) Use the model in part (c) to approximate the work done in
splitting the piece of wood.

Hydraulic Press In Exercises 43– 46, use the integration
capabilities of a graphing utility to approximate the work done
by a press in a manufacturing process. A model for the variable
force (in pounds) and the distance (in feet) the press moves
is given.

43.

44.

45.

46. 0 � x � 2F�x� � 1000 sinh x

0 � x � 5F�x� � 100x�125 � x3

0 � x � 4F�x� �
ex 2

� 1
100

0 � x � 5F�x� � 1000�1.8 � ln�x � 1��
IntervalForce

xF

F
x

2000�	22� � 8000	

�1, 4�.��2, 4�
�2, 4�.
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Tidal power plants use “tidal energy” to produce electrical energy.
To construct a tidal power plant, a dam is built to separate a basin
from the sea. Electrical energy is produced as the water flows back
and forth between the basin and the sea. The amount of “natural
energy” produced depends on the volume of the basin and the tidal
range—the vertical distance between high and low tides. (Several
natural basins have tidal ranges in excess of 15 feet; the Bay of
Fundy in Nova Scotia has a tidal range of 53 feet.)

(a) Consider a basin with a rectangular base, as shown in the figure.
The basin has a tidal range of 25 feet, with low tide correspon-
ding to How much water does the basin hold at high
tide?

(b) The amount of energy produced during the filling (or the
emptying) of the basin is proportional to the amount of work
required to fill (or empty) the basin. How much work is required
to fill the basin with seawater? (Use a seawater density of 
64 pounds per cubic foot.)

The Bay of Fundy in Nova Scotia has an extreme tidal range, as 
displayed in the greatly contrasting photos above.
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■ FOR FURTHER INFORMATION For more information on tidal
power, see the article “LaRance: Six Years of Operating a Tidal
Power Plant in France” by J. Cotillon in Water Power Magazine.



■ Understand the definition of mass.
■ Find the center of mass in a one-dimensional system.
■ Find the center of mass in a two-dimensional system.
■ Find the center of mass of a planar lamina.
■ Use the Theorem of Pappus to find the volume of a solid of revolution.

Mass
In this section you will study several important applications of integration that are
related to mass. Mass is a measure of a body’s resistance to changes in motion, and is
independent of the particular gravitational system in which the body is located.
However, because so many applications involving mass occur on Earth’s surface, an
object’s mass is sometimes equated with its weight. This is not technically correct.
Weight is a type of force and as such is dependent on gravity. Force and mass are
related by the equation

The table below lists some commonly used measures of mass and force, together with
their conversion factors.

EXAMPLE 1 Mass on the Surface of Earth

Find the mass (in slugs) of an object whose weight at sea level is 1 pound.

Solution Using 32 feet per second per second as the acceleration due to gravity 
produces

Because many applications involving mass occur on Earth’s surface, this amount of
mass is called a pound mass. ■

� 0.03125 slug.

� 0.03125
pound

foot per second per second

�
1 pound

32 feet per second per second

Force � �mass��acceleration� Mass �
force

acceleration
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Force � �mass��acceleration�.

System of 
Measurement

Measure 
of Mass Measure of Force

U.S. Slug Pound � �slug��ft�sec2�

International Kilogram Newton � �kilogram��m�sec2�

C-G-S Gram Dyne � �gram��cm�sec2�

Conversions:

1 foot � 0.3048 meter1 dyne � 0.00001 newton
1 gram � 0.00006852 slug1 dyne � 0.000002248 pound
1 kilogram � 0.06852 slug1 newton � 0.2248 pound
1 slug � 14.59 kilograms1 pound � 4.448 newtons



Center of Mass in a One-Dimensional System
You will now consider two types of moments of a mass—the moment about a point
and the moment about a line. To define these two moments, consider an idealized
situation in which a mass is concentrated at a point. If is the distance between this
point mass and another point the moment of m about the point P is

and is the length of the moment arm.
The concept of moment can be demonstrated simply by a seesaw, as shown in

Figure 7.55. A child of mass 20 kilograms sits 2 meters to the left of fulcrum and
an older child of mass 30 kilograms sits 2 meters to the right of From experience,
you know that the seesaw will begin to rotate clockwise, moving the larger child
down. This rotation occurs because the moment produced by the child on the left is
less than the moment produced by the child on the right.

kilogram-meters

kilogram-meters

To balance the seesaw, the two moments must be equal. For example, if the larger
child moved to a position meters from the fulcrum, the seesaw would balance,
because each child would produce a moment of 40 kilogram-meters.

To generalize this, you can introduce a coordinate line on which the origin
corresponds to the fulcrum, as shown in Figure 7.56. Suppose several point masses are
located on the axis. The measure of the tendency of this system to rotate about the
origin is the moment about the origin, and it is defined as the sum of the products

If the system is in equilibrium.
Figure 7.56

If is 0, the system is said to be in equilibrium.
For a system that is not in equilibrium, the center of mass is defined as the point

at which the fulcrum could be relocated to attain equilibrium. If the system were
translated units, each coordinate would become and because the moment
of the translated system is 0, you have

Solving for produces

If the system is in equilibrium.m1x1 � m2x2 � .  .  . � mnxn � 0,

x �

n

i�1
mixi


n

i�1
mi

�
moment of system about origin

total mass of system
.

x


n

i�1
mi�xi � x� � 

n

i�1
mixi � 

n

i�1
mix � 0.

�xi � x �,xix
x

M0

m1 x1 � m2 x2 � .  .  . � mn xn � 0,

m1
x

x1

m2

x2

mn − 1

xn − 1

mn

xn

m3

x30

M0 � m1x1 � m2x2 � .  .  . � mnxn

mi xi.
n

x-

4
3

Right moment � �30��2� � 60

 Left moment � �20��2� � 40

P.
P,

x

P,
xm
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Moment � mx

2 m2 m

20 kg 30 kg

P

The seesaw will balance when the left and the
right moments are equal.
Figure 7.55
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MOMENTS AND CENTER OF MASS: ONE-DIMENSIONAL SYSTEM

Let the point masses be located at 

1. The moment about the origin is

2. The center of mass is where is the

total mass of the system.

m � m1 � m2 � .  .  . � mnx �
M0

m
,

M0 � m1x1 � m2x2 � .  .  . � mnxn.

x1, x2,  .  .  . , xn.m1, m2, .  .  . , mn

EXAMPLE 2 The Center of Mass of a Linear System

Find the center of mass of the linear system shown in Figure 7.57.

Figure 7.57

Solution The moment about the origin is

Because the total mass of the system is the center of
mass is

■

Rather than define the moment of a mass, you could define the moment of a force.
In this context, the center of mass is called the center of gravity. Suppose that a
system of point masses is located at Then, because

the total force of the system is

The torque (moment) about the origin is

and the center of gravity is

So, the center of gravity and the center of mass have the same location.

T0

F
�

M0a
ma

�
M0

m
� x.

� M0a

T0 � �m1a�x1 � �m2a�x2 � .  .  . � �mna�xn

� ma.

F � m1a � m2a � .  .  . � mna

force � �mass��acceleration�,
x1, x2, .  .  . , xn.m1, m2, .  .  . , mn

x �
M0

m
�

40
40

� 1.

m � 10 � 15 � 5 � 10 � 40,

� 40.

� �50 � 0 � 20 � 70

� 10��5� � 15�0� � 5�4� � 10�7�
M0 � m1x1 � m2x2 � m3x3 � m4x4

0 1 2 3 4 5 6 7 8 9−5 −4 −3 −2 −1

x1010 515

m4m3m2m1

NOTE In Example 2, where should you locate the fulcrum so that the point masses will be
in equilibrium? ■



Center of Mass in a Two-Dimensional System
You can extend the concept of moment to two dimensions by considering a system of
masses located in the plane at the points as shown in
Figure 7.58. Rather than defining a single moment (with respect to the origin), two
moments are defined—one with respect to the axis and one with respect to the

axis.

The moment of a system of masses in the plane can be taken about any horizontal
or vertical line. In general, the moment about a line is the sum of the product of the
masses and the directed distances from the points to the line.

Horizontal line 

Vertical line 

EXAMPLE 3 The Center of Mass of a Two-Dimensional System

Find the center of mass of a system of point masses and
located at

and

as shown in Figure 7.59.

Solution

Mass

Moment about axis

Moment about axis

So,

and

and so the center of mass is ■�11
5 , 3

5�.

y �
Mx

m
�

12
20

�
3
5

x �
My

m
�

44
20

�
11
5

x-Mx � 6��2� � 3�0� � 2(3� � 9�2� � 12

y-My � 6�3� � 3�0� � 2��5� � 9�4� � 44

m � 6 � 3 � 2 � 9 � 20

�4, 2��3, �2�, �0, 0�, ��5, 3�,

m4 � 9,
m1 � 6, m2 � 3, m3 � 2,

x � aMoment � m1�x1 � a� � m2�x2 � a� � .  .  . � mn�xn � a�
y � bMoment � m1� y1 � b� � m2� y2 � b� � .  .  . � mn� yn � b�

y-
x-

�x1, y1�, �x2, y2�, .  .  . , �xn, yn�,xy-
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MOMENT AND CENTER OF MASS: TWO-DIMENSIONAL SYSTEM

Let the point masses be located at 

1. The moment about the -axis is

2. The moment about the -axis is

3. The center of mass (or center of gravity) is

and

where is the total mass of the system.m � m1 � m2 � .  .  . � mn

y �
Mx

m
x �

My

m

�x, y�
Mx � m1y1 � m2y2 � .  .  . � mnyn.x

My � m1x1 � m2x2 � .  .  . � mnxn.y

�x1, y1�, �x2, y2�, .  .  . , �xn, yn�.m1,m2, .  .  . , mn

m2

mn
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x

(x2, y2)

(x1, y1)

(xn, yn)

y

In a two-dimensional system, there is 
a moment about the -axis, and a 
moment about the -axis, 
Figure 7.58
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Center of Mass of a Planar Lamina
So far in this section you have assumed the total mass of a system to be distributed at
discrete points in a plane or on a line. Now consider a thin, flat plate of material of
constant density called a planar lamina (see Figure 7.60). Density is a measure of
mass per unit of volume, such as grams per cubic centimeter. For planar laminas,
however, density is considered to be a measure of mass per unit of area. Density is 
denoted by the lowercase Greek letter rho.

Consider an irregularly shaped planar lamina of uniform density bounded by
the graphs of and as shown in Figure 7.61. The mass
of this region is given by

where is the area of the region. To find the center of mass of this lamina, partition
the interval into subintervals of equal width Let be the center of the 
subinterval. You can approximate the portion of the lamina lying in the subinterval
by a rectangle whose height is Because the density of the rectangle
is its mass is

Density Height Width

Now, considering this mass to be located at the center of the rectangle, the
directed distance from the axis to is So, the moment
of about the axis is

Summing the moments and taking the limit as suggest the definitions below.n →�

� � � f �xi� � g�xi�� �x�f�xi� � g�xi�
2 �.

� miyi

 Moment � �mass��distance�

x-mi

yi � �f�xi� � g�xi���2.�xi, yi�x-
�xi, yi�

� � � f �xi� � g�xi�� �x .

mi � �density��area�

�,
h � f�xi� � g�xi�.

ith
ithxi�x.n�a, b�

A

� �A

� � 
b

a

� f�x� � g�x�� dx

m � �density��area�

a � x � b,y � f�x�, y � g�x�,
�,

�,
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MOMENTS AND CENTER OF MASS OF A PLANAR LAMINA

Let and be continuous functions such that on and
consider the planar lamina of uniform density bounded by the graphs of

and

1. The moments about the x- and y-axes are

2. The center of mass is given by and where

is the mass of the lamina.m � � �b
a � f�x� � g�x�� dx

y �
Mx

m
,x �

My

m
�x, y�

My � � 
b

a

x� f�x� � g�x�� dx.

Mx � � 
b

a
� f�x� � g�x�

2 �� f�x� � g�x�� dx

a � x � b.y � g�x�,y � f�x�,
�

�a, b�,f�x� � g�x�gf

(x, y) (x, y)

You can think of the center of mass 
of a lamina as its balancing point. For a 
circular lamina, the center of mass is the
center of the circle. For a rectangular 
lamina, the center of mass is the center of
the rectangle.
Figure 7.60
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EXAMPLE 4 The Center of Mass of a Planar Lamina

Find the center of mass of the lamina of uniform density bounded by the graph of
and the axis.

Solution Because the center of mass lies on the axis of symmetry, you know that
Moreover, the mass of the lamina is

To find the moment about the axis, place a representative rectangle in the region, as
shown in Figure 7.62. The distance from the axis to the center of this rectangle is

Because the mass of the representative rectangle is

you have

and is given by

So, the center of mass (the balancing point) of the lamina is as shown in
Figure 7.63. ■

The density in Example 4 is a common factor of both the moments and the
mass, and as such divides out of the quotients representing the coordinates of the 
center of mass. So, the center of mass of a lamina of uniform density depends only on
the shape of the lamina and not on its density. For this reason, the point

Center of mass or centroid

is sometimes called the center of mass of a region in the plane, or the centroid of the
region. In other words, to find the centroid of a region in the plane, you simply assume
that the region has a constant density of and compute the corresponding center
of mass.
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EXAMPLE 5 The Centroid of a Plane Region

Find the centroid of the region bounded by the graphs of and

Solution The two graphs intersect at the points and as shown in
Figure 7.64. So, the area of the region is

The centroid of the region has the following coordinates.

So, the centroid of the region is ■

For simple plane regions, you may be able to find the centroids without resorting
to integration.

EXAMPLE 6 The Centroid of a Simple Plane Region

Find the centroid of the region shown in Figure 7.65(a).

Solution By superimposing a coordinate system on the region, as shown in Figure
7.65(b), you can locate the centroids of the three rectangles at

and

Using these three points, you can find the centroid of the region.

So, the centroid of the region is (2.9, 1). ■
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NOTE In Example 6, notice that (2.9, 1) is not the “average” of and 
■
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2, 1
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2, 3

2�,

x
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x

g(x) = x + 2f(x) = 4 − x2
y

Figure 7.64
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(b) The centroids of the three rectangles
Figure 7.65

E X P L O R A T I O N

Cut an irregular shape from a
piece of cardboard.

a. Hold a pencil vertically and move
the object on the pencil point
until the centroid is located.

b. Divide the object into repre-
sentative elements. Make the
necessary measurements and
numerically approximate the
centroid. Compare your result
with the result in part (a).



Theorem of Pappus
The final topic in this section is a useful theorem credited to Pappus of Alexandria (ca.
300 A.D.), a Greek mathematician whose eight-volume Mathematical Collection is a
record of much of classical Greek mathematics. You are asked to prove this theorem
in Section 14.4.

The Theorem of Pappus can be used to find the volume of a torus, as shown in
the following example. Recall that a torus is a doughnut-shaped solid formed by
revolving a circular region about a line that lies in the same plane as the circle (but
does not intersect the circle).

EXAMPLE 7 Finding Volume by the Theorem of Pappus

Find the volume of the torus shown in Figure 7.67(a), which was formed by revolving
the circular region bounded by 

about the axis, as shown in Figure 7.67(b).

(a) (b)
Figure 7.67

Solution In Figure 7.67(b), you can see that the centroid of the circular region is 
So, the distance between the centroid and the axis of revolution is 

Because the area of the circular region is the volume of the torus is

■� 39.5.

� 4	2

� 2	�2��	�
V � 2	 rA

A � 	,
r � 2.�2, 0�.

x
−3 −2

−1

−1

1

2

2

Centroid

(2, 0)r = 2

(x − 2)2 + y2 = 1

y

Torus

y-

�x � 2�2 � y2 � 1
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R

r

Centroid of R

L

The volume is where is the area
of region 
Figure 7.66

R.
A2	 rA,V

THEOREM 7.1 THE THEOREM OF PAPPUS

Let be a region in a plane and let be a line in the same plane such that 
does not intersect the interior of as shown in Figure 7.66. If is the distance
between the centroid of and the line, then the volume of the solid of 
revolution formed by revolving about the line is

where is the area of (Note that is the distance traveled by the centroid
as the region is revolved about the line.)

2	rR.A

V � 2	 rA

R
VR

rR,
LLR

E X P L O R A T I O N

Use the shell method to show 
that the volume of the torus in
Example 7 is given by

Evaluate this integral using a
graphing utility. Does your
answer agree with the one in
Example 7?

V � 
3

1
 4	x�1 � �x � 2�2 dx.



mi 12 6 4.5 15

�x1, y1� �2, 3� ��1, 5� �6, 8� �2, �2�

mi 3 4

�x1, y1� ��2, �3� �5, 5�

mi 2 1 6

�x1, y1� �7, 1� �0, 0� ��3, 0�

mi 5 1 3

�x1, y1� �2, 2� ��3, 1� �1, �4�

mi 10 2 5

�x1, y1� �1, �1� �5, 5� ��4, 0�

In Exercises 1– 4, find the center of mass of the point masses
lying on the -axis.

1.

2.

3.

4.

5. Graphical Reasoning

(a) Translate each point mass in Exercise 3 to the right four
units and determine the resulting center of mass.

(b) Translate each point mass in Exercise 4 to the left two units
and determine the resulting center of mass.

6. Conjecture Use the result of Exercise 5 to make a conjecture
about the change in the center of mass that results when each
point mass is translated units horizontally.

Statics Problems In Exercises 7 and 8, consider a beam of
length with a fulcrum feet from one end (see figure). There
are objects with weights and placed on opposite ends of
the beam. Find such that the system is in equilibrium.

7. Two children weighing 48 pounds and 72 pounds are going to
play on a seesaw that is 10 feet long.

8. In order to move a 600-pound rock, a person weighing 
200 pounds wants to balance it on a beam that is 5 feet long.

In Exercises 9–12, find the center of mass of the given system of
point masses.

9.

10.

11.

12.

In Exercises 13–26, find and for the laminas of
uniform density bounded by the graphs of the equations.

13. 14.

15. 16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

In Exercises 27–30, set up and evaluate the integrals for finding
the area and moments about the - and -axes for the region
bounded by the graphs of the equations. (Assume )

27.

28.

29.

30.

In Exercises 31–34, use a graphing utility to graph the region
bounded by the graphs of the equations. Use the integration
capabilities of the graphing utility to approximate the centroid
of the region.

31.

32.

33. Prefabricated End Section of a Building

34. Witch of Agnesi
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7.6 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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In Exercises 35–40, find and/or verify the centroid of the
common region used in engineering.

35. Triangle Show that the centroid of the triangle with vertices
and is the point of intersection of the

medians (see figure).

Figure for 35 Figure for 36

36. Parallelogram Show that the centroid of the parallelogram
with vertices and is the point of
intersection of the diagonals (see figure).

37. Trapezoid Find the centroid of the trapezoid with vertices
and Show that it is the intersection of

the line connecting the midpoints of the parallel sides and the
line connecting the extended parallel sides, as shown in the 
figure.

Figure for 37 Figure for 38

38. Semicircle Find the centroid of the region bounded by the
graphs of and (see figure).

39. Semiellipse Find the centroid of the region bounded by the

graphs of and (see figure).

Figure for 39 Figure for 40

40. Parabolic Spandrel Find the centroid of the parabolic
spandrel shown in the figure.

41. Graphical Reasoning Consider the region bounded by the
graphs of and where 

(a) Sketch a graph of the region.

(b) Use the graph in part (a) to determine Explain.

(c) Set up the integral for finding Because of the form of the
integrand, the value of the integral can be obtained without
integrating. What is the form of the integrand and what is the
value of the integral? Compare with the result in part (b).

(d) Use the graph in part (a) to determine whether or

Explain.

(e) Use integration to verify your answer in part (d).

42. Graphical and Numerical Reasoning Consider the region
bounded by the graphs of and where and

is a positive integer.

(a) Set up the integral for finding Because of the form of
the integrand, the value of the integral can be obtained
without integrating. What is the form of the integrand and
what is the value of the integral? Compare with the result in
part (b).

(b) Is or Explain.

(c) Use integration to find as a function of 

(d) Use the result of part (c) to complete the table.

(e) Find 

(f) Give a geometric explanation of the result in part (e).

43. Modeling Data The manufacturer of glass for a window in a
conversion van needs to approximate its center of mass. A coor-
dinate system is superimposed on a prototype of the glass (see
figure). The measurements (in centimeters) for the right half of
the symmetric piece of glass are shown in the table.

(a) Use Simpson’s Rule to approximate the center of mass of
the glass.

(b) Use the regression capabilities of a graphing utility to find
a fourth-degree polynomial model for the data.

(c) Use the integration capabilities of a graphing utility and the
model to approximate the center of mass of the glass.
Compare with the result in part (a).
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n 1 2 3 4

y

x 0 10 20 30 40

y 30 29 26 20 0



44. Modeling Data The manufacturer of a boat needs to approx-
imate the center of mass of a section of the hull. A coordinate
system is superimposed on a prototype (see figure). The
measurements (in feet) for the right half of the symmetric 
prototype are listed in the table.

(a) Use Simpson’s Rule to approximate the center of mass of
the hull section.

(b) Use the regression capabilities of a graphing utility to find
fourth-degree polynomial models for both curves shown in
the figure. Plot the data and graph the models.

(c) Use the integration capabilities of a graphing utility and the
model to approximate the center of mass of the hull section.
Compare with the result in part (a).

In Exercises 45–48, introduce an appropriate coordinate system
and find the coordinates of the center of mass of the planar
lamina. (The answer depends on the position of the coordinate
system.)

45. 46.

47. 48.

49. Find the center of mass of the lamina in Exercise 45 if the
circular portion of the lamina has twice the density of the
square portion of the lamina.

50. Find the center of mass of the lamina in Exercise 45 if the
square portion of the lamina has twice the density of the
circular portion of the lamina.

In Exercises 51–54, use the Theorem of Pappus to find the
volume of the solid of revolution.

51. The torus formed by revolving the circle 
about the axis

52. The torus formed by revolving the circle 
about the axis

53. The solid formed by revolving the region bounded by the
graphs of and about the axis

54. The solid formed by revolving the region bounded by the
graphs of and about the axis

In Exercises 59 and 60, use the Second Theorem of Pappus,
which is stated as follows. If a segment of a plane curve is
revolved about an axis that does not intersect the curve (except
possibly at its endpoints), the area of the resulting surface of
revolution is equal to the product of the length of times the
distance traveled by the centroid of 

59. A sphere is formed by revolving the graph of 
about the axis. Use the formula for surface area, to
find the centroid of the semicircle 

60. A torus is formed by revolving the graph of 
about the axis. Find the surface area of the torus.

61. Let be constant, and consider the region bounded by
the axis, and Find the centroid of this

region. As what does the region look like, and where is
its centroid?
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x 0 0.5 1.0 1.5 2

l 1.50 1.45 1.30 0.99 0

d 0.50 0.48 0.43 0.33 0

55. Let the point masses be located at 
Define the center of mass 

56. What is a planar lamina? Describe what is meant by the
center of mass of a planar lamina.

57. State the Theorem of Pappus.

�x, y�

�x, y�.�x2, y2�, .  .  . , �xn, yn�.
�x1, y1�,m2, .  .  . , mnm1,

WRITING ABOUT CONCEPTS

58. The centroid of the plane region bounded by the graphs of
and is Is it possible to

find the centroid of each of the regions bounded by the
graphs of the following sets of equations? If so, identify the
centroid and explain your answer.

(a) and 

(b) and 

(c) and 

(d) and x � 1y � f �x�, y � 0, x � �1,

x � 1y � �f �x�, y � 0, x � 0,

x � 3y � f �x � 2�, y � 0, x � 2,

x � 1y � f �x� � 2, y � 2, x � 0,

�5
6, 5

18�.x � 1x � 0,y � 0,y � f �x�,

CAPSTONE

62. Let be the region in the cartesian plane consisting of all
points satisfying the simultaneous conditions

and Find the centroid of 

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

V.�x, y�y � 4.�x� � y � �x� � 3
�x, y�

V

PUTNAM EXAM CHALLENGE
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7.7 Fluid Pressure and Fluid Force
■ Find fluid pressure and fluid force.

Fluid Pressure and Fluid Force
Swimmers know that the deeper an object is submerged in a fluid, the greater the
pressure on the object. Pressure is defined as the force per unit of area over the
surface of a body. For example, because a column of water that is 10 feet in height and
1 inch square weighs 4.3 pounds, the fluid pressure at a depth of 10 feet of water is
4.3 pounds per square inch.* At 20 feet, this would increase to 8.6 pounds per square
inch, and in general the pressure is proportional to the depth of the object in the fluid.

Below are some common weight-densities of fluids in pounds per cubic foot.

Ethyl alcohol 49.4

Gasoline 41.0–43.0

Glycerin 78.6

Kerosene 51.2

Mercury 849.0

Seawater 64.0

Water 62.4

When calculating fluid pressure, you can use an important (and rather surprising)
physical law called Pascal’s Principle, named after the French mathematician Blaise
Pascal. Pascal’s Principle states that the pressure exerted by a fluid at a depth is
transmitted equally in all directions. For example, in Figure 7.68, the pressure at the
indicated depth is the same for all three objects. Because fluid pressure is given in
terms of force per unit area the fluid force on a submerged horizontal
surface of area is

Fluid force (pressure)(area).

The pressure at is the same for all three objects.
Figure 7.68

h

h

� F � PA �

A
�P � F�A�,

h

DEFINITION OF FLUID PRESSURE

The pressure on an object at depth in a liquid is 

Pressure

where is the weight-density of the liquid per unit of volume.w

� P � wh

h

* The total pressure on an object in 10 feet of water would also include the pressure due to
Earth’s atmosphere. At sea level, atmospheric pressure is approximately 14.7 pounds per
square inch.

BLAISE PASCAL (1623–1662)

Pascal is well known for his work in many
areas of mathematics and physics, and also 
for his influence on Leibniz. Although much 
of Pascal’s work in calculus was intuitive and
lacked the rigor of modern mathematics, he
nevertheless anticipated many important
results.
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EXAMPLE 11 Fluid Force on a Submerged Sheet

Find the fluid force on a rectangular metal sheet measuring 3 feet by 4 feet that is
submerged in 6 feet of water, as shown in Figure 7.69.

Solution Because the weight-density of water is 62.4 pounds per cubic foot and the
sheet is submerged in 6 feet of water, the fluid pressure is

Because the total area of the sheet is square feet, the fluid force is

This result is independent of the size of the body of water. The fluid force would be
the same in a swimming pool or lake. ■

In Example 1, the fact that the sheet is rectangular and horizontal means that you
do not need the methods of calculus to solve the problem. Consider a surface that is
submerged vertically in a fluid. This problem is more difficult because the pressure is
not constant over the surface.

Suppose a vertical plate is submerged in a fluid of weight-density (per unit of
volume), as shown in Figure 7.70. To determine the total force against one side of the
region from depth to depth you can subdivide the interval into subinter-
vals, each of width Next, consider the representative rectangle of width and
length where is in the th subinterval. The force against this representative
rectangle is

The force against such rectangles is

Note that is considered to be constant and is factored out of the summation.
Therefore, taking the limit as suggests the following definition.��� →  0 �n →  ��

w


n

i�1
�Fi � w

n

i�1
h �yi�L �yi� �y.

n

� wh�yi�L �yi� �y.

�Fi � w �depth��area�

iyiL�yi�,
�y�y.

n�c, d�d,c

w

� 4492.8 pounds.

F � PA � �374.4
pounds

square foot	 �12 square feet�

A � �3��4� � 12

� 374.4 pounds per square foot.

P � whP � �62.4��6�
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DEFINITION OF FORCE EXERTED BY A FLUID

The force exerted by a fluid of constant weight-density (per unit of
volume) against a submerged vertical plane region from to is

where is the depth of the fluid at and is the horizontal length of
the region at y.

L�y�yh�y�

� w
d

c

h �y�L �y� dy

F � w lim
���→0 

n

i�1
h�yi�L �yi� �y

y � dy � c
wF

3

6

4

The fluid force on a horizontal metal sheet is
equal to the fluid pressure times the area.
Figure 7.69

x

L(yi)

h(yi)
Δy

d

c

y

Calculus methods must be used to find the
fluid force on a vertical metal plate.
Figure 7.70



EXAMPLE 2 Fluid Force on a Vertical Surface

A vertical gate in a dam has the shape of an isosceles trapezoid 8 feet across the top
and 6 feet across the bottom, with a height of 5 feet, as shown in Figure 7.71(a). What
is the fluid force on the gate when the top of the gate is 4 feet below the surface of the
water?

Solution In setting up a mathematical model for this problem, you are at liberty to
locate the and axes in several different ways. A convenient approach is to let the
-axis bisect the gate and place the axis at the surface of the water, as shown in

Figure 7.71(b). So, the depth of the water at in feet is

Depth

To find the length of the region at find the equation of the line forming the right
side of the gate. Because this line passes through the points and its
equation is

In Figure 7.71(b) you can see that the length of the region at is

Finally, by integrating from to you can calculate the fluid force to be

■� 13,936 pounds.

� �62.4�2
5	 �
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3 	

� �62.4 �2
5	�

y3
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� 12y2�
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�9
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NOTE In Example 2, the axis coincided with the surface of the water. This was convenient,
but arbitrary. In choosing a coordinate system to represent a physical situation, you should
consider various possibilities. Often you can simplify the calculations in a problem by locating
the coordinate system to take advantage of special characteristics of the problem, such as
symmetry. ■

x-

8 ft

6 ft

5 ft

4 ft

(a) Water gate in a dam

x

h(y) = −y

Δy
x

−2−6 2 6

2

−2

−10 (3, −9)

(4, −4)

y

(b) The fluid force against the gate
Figure 7.71



EXAMPLE 3 Fluid Force on a Vertical Surface

A circular observation window on a marine science ship has a radius of 1 foot, and the
center of the window is 8 feet below water level, as shown in Figure 7.72. What is the
fluid force on the window?

Solution To take advantage of symmetry, locate a coordinate system such that the
origin coincides with the center of the window, as shown in Figure 7.72. The depth at

is then

Depth

The horizontal length of the window is and you can use the equation for the 
circle, to solve for as follows.

Finally, because ranges from to and using 64 pounds per cubic foot as the
weight-density of seawater, you have

Initially it looks as if this integral would be difficult to solve. However, if you break
the integral into two parts and apply symmetry, the solution is simple.

The second integral is 0 (because the integrand is odd and the limits of integration are
symmetric with respect to the origin). Moreover, by recognizing that the first integral
represents the area of a semicircle of radius 1, you obtain

So, the fluid force on the window is 1608.5 pounds. ■

� 1608.5 pounds.

� 512	

F � 64 �16��	

2	 � 64 �2��0�

F � 64 �16�
1

�1

�1 � y2 dy � 64 �2�
1

�1
y�1 � y2 dy

� 64
1

�1
�8 � y��2��1 � y2 dy.

F � w
d

c

h �y�L �y� dy

1,�1y

� 2�1 � y2 � L�y�
 Length � 2x

xx2 � y2 � 1,
2x,

� h�y� � 8 � y.

y
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To confirm the result obtained in Example 3, you might have
considered using Simpson’s Rule to approximate the value of

From the graph of

however, you can see that is not differentiable when (see Figure 7.73).
This means that you cannot apply Theorem 4.19 from Section 4.6 to determine the
potential error in Simpson’s Rule. Without knowing the potential error, the approx-
imation is of little value. Use a graphing utility to approximate the integral.

x � ±1f

f �x� � �8 � x��1 � x2

128
1

�1
�8 � x��1 � x2 dx.

TECHNOLOGY

1.5−1.5

−2

10

is not differentiable at 
Figure 7.73

x � ±1.f

x

8 − y

Observation
window

2 3

8

7

6

5

4

3

2

Δy

x

y

The fluid force on the window
Figure 7.72



Force on a Submerged Sheet In Exercises 1–4, the area of the
top side of a piece of sheet metal is given. The sheet metal is 
submerged horizontally in 8 feet of water. Find the fluid force
on the top side.

1. 3 square feet 2. 16 square feet

3. 10 square feet 4. 22 square feet

Buoyant Force In Exercises 5 and 6, find the buoyant force of
a rectangular solid of the given dimensions submerged in water
so that the top side is parallel to the surface of the water. The
buoyant force is the difference between the fluid forces on the
top and bottom sides of the solid.

5. 6.

Fluid Force on a Tank Wall In Exercises 7–12, find the fluid
force on the vertical side of the tank, where the dimensions are
given in feet. Assume that the tank is full of water.

7. Rectangle 8. Triangle

9. Trapezoid 10. Semicircle

11. Parabola, 12. Semiellipse,

Fluid Force of Water In Exercises 13–16, find the fluid force on
the vertical plate submerged in water, where the dimensions are
given in meters and the weight-density of water is 9800 newtons
per cubic meter.

13. Square 14. Square

15. Triangle 16. Rectangle

Force on a Concrete Form In Exercises 17–20, the figure is the
vertical side of a form for poured concrete that weighs 140.7
pounds per cubic foot. Determine the force on this part of the
concrete form.

17. Rectangle 18. Semiellipse,

19. Rectangle 20. Triangle

21. Fluid Force of Gasoline A cylindrical gasoline tank is placed
so that the axis of the cylinder is horizontal. Find the fluid force
on a circular end of the tank if the tank is half full, assuming
that the diameter is 3 feet and the gasoline weighs 42 pounds
per cubic foot.

3 ft

5 ft

6 ft

4 ft

3 ft

4 ft
2 ft

10 ft

y � �
3
4�16 � x2

5

1

1

9

3

6

1

3 3

2

2

3

4

4

4

y � �
1
2�36 � 9x2

y � x2

2
3

2

4

3

4

3

4

4 ft

6 ft
8 ft

h

2 ft

2 ft

3 ft

h

7.7 Fluid Pressure and Fluid Force 513

7.7 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

www.CalcChat.com


22. Fluid Force of Gasoline Repeat Exercise 21 for a tank that is
full. (Evaluate one integral by a geometric formula and the
other by observing that the integrand is an odd function.)

23. Fluid Force on a Circular Plate A circular plate of radius 
feet is submerged vertically in a tank of fluid that weighs 
pounds per cubic foot. The center of the circle is feet
below the surface of the fluid. Show that the fluid force on the
surface of the plate is

(Evaluate one integral by a geometric formula and the other by
observing that the integrand is an odd function.)

24. Fluid Force on a Circular Plate Use the result of Exercise 23
to find the fluid force on the circular plate shown in each 
figure. Assume the plates are in the wall of a tank filled with
water and the measurements are given in feet.

(a) (b)

25. Fluid Force on a Rectangular Plate A rectangular plate of
height feet and base feet is submerged vertically in a tank
of fluid that weighs pounds per cubic foot. The center is 
feet below the surface of the fluid, where Show that
the fluid force on the surface of the plate is

26. Fluid Force on a Rectangular Plate Use the result of
Exercise 25 to find the fluid force on the rectangular plate
shown in each figure. Assume the plates are in the wall of a tank
filled with water and the measurements are given in feet.

(a) (b)

27. Submarine Porthole A square porthole on a vertical side of a
submarine (submerged in seawater) has an area of 1 square
foot. Find the fluid force on the porthole, assuming that the 
center of the square is 15 feet below the surface.

28. Submarine Porthole Repeat Exercise 27 for a circular
porthole that has a diameter of 1 foot. The center is 15 feet
below the surface.

29. Modeling Data The vertical stern of a boat with a superim-
posed coordinate system is shown in the figure. The table shows
the widths of the stern at indicated values of Find the fluid
force against the stern if the measurements are given in feet.

30. Irrigation Canal Gate The vertical cross section of an
irrigation canal is modeled by where is 
measured in feet and corresponds to the center of the
canal. Use the integration capabilities of a graphing utility to
approximate the fluid force against a vertical gate used to stop
the flow of water if the water is 3 feet deep.

In Exercises 31 and 32, use the integration capabilities of a
graphing utility to approximate the fluid force on the vertical
plate bounded by the -axis and the top half of the graph of the
equation. Assume that the base of the plate is 15 feet beneath the
surface of the water.

31. 32.
x2

28
�

y2

16
� 1x2�3 � y2�3 � 42�3

x

x � 0
xf �x� � 5x2��x2 � 4�,

w

Water level
Stern

2

2

4

4

6

6

−2−4−6

y

y.w

6

10

5

4

5

3

F � wkhb.

k > h�2.
kw

bh

2

3

5

2

F � wk �	 r2�.

k �k > r�
w
r
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y 0 1
2

1 3
2

2 5
2

3 7
2

4

w 0 3 5 8 9 10 10.25 10.5 10.5

33. Think About It Approximate the depth of the water in the
tank in Exercise 7 if the fluid force is one-half as great as
when the tank is full. Explain why the answer is not 

34. (a) Define fluid pressure.

(b) Define fluid force against a submerged vertical plane
region.

35. Explain why fluid pressure on a surface is calculated using
horizontal representative rectangles instead of vertical 
representative rectangles.

3
2.

WRITING ABOUT CONCEPTS

36. Two identical semicircular windows are placed at the same
depth in the vertical wall of an aquarium (see figure).
Which is subjected to the greater fluid force? Explain.

d d
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7 REVIEW EXERCISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1–10, sketch the region bounded by the graphs of
the equations, and determine the area of the region.

1.

2.

3.

4.

5.

6.

7.

8. (one region)

9.

10.

In Exercises 11–14, use a graphing utility to graph the region
bounded by the graphs of the functions, and use the integration
capabilities of the graphing utility to find the area of the region.

11.

12.

13.

14.

In Exercises 15–18, use vertical and horizontal representative
rectangles to set up integrals for finding the area of the region
bounded by the graphs of the equations. Find the area of the
region by evaluating the easier of the two integrals.

15.

16.

17.

18.

19. Estimate the surface area of the pond using (a) the Trapezoidal
Rule and (b) Simpson’s Rule.

20. Modeling Data The table shows the annual service revenues 
in billions of dollars for the cellular telephone industry for the
years 2000 through 2006. (Source: Cellular Telecommunications
& Internet Association)

(a) Use the regression capabilities of a graphing utility to find an
exponential model for the data. Let represent the year, with

corresponding to 2000. Use the graphing utility to
plot the data and graph the model in the same viewing 
window.

(b) A financial consultant believes that a model for service
revenues for the years 2010 through 2015 is

What is the difference in total service
revenues between the two models for the years 2010
through 2015?

In Exercises 21–28, find the volume of the solid generated by
revolving the plane region bounded by the equations about the
indicated line(s).

21.

(a) the axis (b) the axis
(c) the line (d) the line 

22.

(a) the axis (b) the line 
(c) the axis (d) the line 

23. (a) the axis (oblate spheroid)

(b) the axis (prolate spheroid)

24. (a) the axis (oblate spheroid)

(b) the axis (prolate spheroid)

25.
revolved about the axis

26.

revolved about the axis

27.

revolved about the axis

28.

revolved about the axis

29. Area and Volume Consider the region bounded by the graphs
of the equations and 

(a) Find the area of the region.

(b) Find the volume of the solid generated by revolving the
region about the axis.

(c) Find the volume of the solid generated by revolving the
region about the axis.y-

x-

y � 0.y � x�x � 1

x-

y � e�x, y � 0, x � 0, x � 1

y-

y � 1��1 � �x � 2�, y � 0, x � 2, x � 6

x-

y � 1��1 � x2, y � 0, x � �1, x � 1

y-
y � 1��x4 � 1�, y � 0, x � 0, x � 1

x-

y-
x2

a2 �
y2

b2 � 1

x-

y-
x2

16
�

y2

9
� 1

x � �1y-
y � 2x-

y � �x, y � 2, x � 0

x � 6x � 3
y-x-

y � x, y � 0, x � 3

R2 � 6 � 13.9e0.14t.

t � 10
t

R1

20 ft

50 ft
54 ft 82 ft 75 ft

82 ft 73 ft 80 ft

y � �x � 1, y � 2, y � 0, x � 0

y � 1 �
x
2

, y � x � 2, y � 1

y � �x � 1, y �
x � 1

2

x � y2 � 2y, x � 0

y � x4 � 2x2, y � 2x2

�x � �y � 1, y � 0, x � 0

y � x2 � 4x � 3, y � x3, x � 0

y � x2 � 8x � 3, y � 3 � 8x � x2

x � cos y, x �
1
2

,
	

3
� y �

7	

3

y � sin x, y � cos x,
	

4
� x �

5	

4

y � csc x, y � 2

y � ex, y � e2, x � 0

x � y2 � 1, x � y � 3

y � x, y � x3

x � y2 � 2y, x � �1, y � 0

y �
1

x2 � 1
, y � 0, x � �1, x � 1

y �
1
x2, y � 4, x � 5

y �
1
x2, y � 0, x � 1, x � 5

Year 2000 2001 2002 2003 2004 2005 2006

R1 52.5 65.3 76.5 87.6 102.1 113.5 125.5
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30. Think About It A solid is generated by revolving the region
bounded by and about the 
-axis. Set up the integral that gives the volume of this solid using

(a) the disk method and (b) the shell method. (Do not integrate.)
(c) Does each method lead to an integral with respect to 

31. Depth of Gasoline in a Tank A gasoline tank is an oblate
spheroid generated by revolving the region bounded by the
graph of about the axis, where and 
are measured in feet. Find the depth of the gasoline in the tank
when it is filled to one-fourth its capacity.

32. Magnitude of a Base The base of a solid is a circle of radius
and its vertical cross sections are equilateral triangles. The

volume of the solid is 10 cubic meters. Find the radius of
the circle.

In Exercises 33 and 34, find the arc length of the graph of the
function over the given interval.

33. 34.

35. Length of a Catenary A cable of a suspension bridge forms
a catenary modeled by the equation

where and are measured in feet. Use a graphing utility to
approximate the length of the cable.

36. Approximation Determine which value best approximates
the length of the arc represented by the integral

(Make your selection on the basis of a sketch of the arc and not
by performing any calculations.)

(a) (b) 1 (c) (d) 4 (e) 3

37. Surface Area Use integration to find the lateral surface area
of a right circular cone of height 4 and radius 3.

38. Surface Area The region bounded by the graphs of
and is revolved about the axis.

Find the surface area of the solid generated.

39. Work A force of 5 pounds is needed to stretch a spring 1 inch
from its natural position. Find the work done in stretching the
spring from its natural length of 10 inches to a length of
15 inches.

40. Work A force of 50 pounds is needed to stretch a spring 1 inch
from its natural position. Find the work done in stretching the
spring from its natural length of 10 inches to double that length.

41. Work A water well has an eight-inch casing (diameter) and is
190 feet deep. The water is 25 feet from the top of the well.
Determine the amount of work done in pumping the well dry,
assuming that no water enters it while it is being pumped.

42. Work Repeat Exercise 41, assuming that water enters the well
at a rate of 4 gallons per minute and the pump works at a rate
of 12 gallons per minute. How many gallons are pumped in
this case?

43. Work A chain 10 feet long weighs 4 pounds per foot and is
hung from a platform 20 feet above the ground. How much
work is required to raise the entire chain to the 20-foot level?

44. Work A windlass, 200 feet above ground level on the top of a
building, uses a cable weighing 5 pounds per foot. Find the
work done in winding up the cable if

(a) one end is at ground level.

(b) there is a 300-pound load attached to the end of the cable.

45. Work The work done by a variable force in a press is 80 foot-
pounds. The press moves a distance of 4 feet and the force is a
quadratic of the form Find 

46. Work Find the work done by the force shown in the figure.

In Exercises 47–50, find the centroid of the region bounded by
the graphs of the equations.

47. 48.

49. 50.

51. Centroid A blade on an industrial fan has the configuration of
a semicircle attached to a trapezoid (see figure). Find the
centroid of the blade.

52. Fluid Force A swimming pool is 5 feet deep at one end and
10 feet deep at the other, and the bottom is an inclined plane.
The length and width of the pool are 40 feet and 20 feet. If the
pool is full of water, what is the fluid force on each of the
vertical walls?

53. Fluid Force Show that the fluid force against any vertical
region in a liquid is the product of the weight per cubic volume
of the liquid, the area of the region, and the depth of the
centroid of the region.

54. Fluid Force Using the result of Exercise 53, find the fluid
force on one side of a vertical circular plate of radius 4 feet that
is submerged in water so that its center is 10 feet below the
surface.

x
1

1

2

2

3

3

4

4

5 7−1

−2

−3

−4

y

y � x2�3, y �
1
2xy � a2 � x2, y � 0

y � x2, y � 2x � 3�x � �y ��a, x � 0, y � 0

x

Po
un

ds

Feet

2

2

4

4

6

6

8

8

10

10

12

12

(9, 4)

F

F

a.F � ax2.

x-x � 8x � 3,y � 0,y � 2�x,

	�2


	�4

0

�1 � �sec2 x�2 dx.

yx

y � 300 cosh� x
2000	 � 280,  �2000 ≤ x ≤ 2000

y �
1
6

x3 �
1
2x

,  �1, 3�f �x� �
4
5

x5�4,  �0, 4�

a,

yxy-�x2�16� � �y2�9� � 1

x?

x
x � 3x � 0,y � 0,y � x2 � 4,
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1. Let be the area of the region in the first quadrant bounded by
the parabola and the line Let be the area
of the triangle Calculate the limit

Figure for 1 Figure for 2

2. Let be the lamina of uniform density obtained by
removing circle of radius from circle of radius (see 
figure).

(a) Show that for 

(b) Show that for is equal to 

(c) Find for and for Then use part (b) to compute 
for

(d) What is the center of mass of 

3. Let be the region bounded by the parabola and the
axis. Find the equation of the line that divides this

region into two regions of equal area.

4. (a) A torus is formed by revolving the region bounded by the
circle

about the axis (see figure). Use the disk method to calcu-
late the volume of the torus.

(b) Use the disk method to find the volume of the general torus
if the circle has radius and its center is units from the
axis of rotation.

5. Graph the curve

Use a computer algebra system to find the surface area of the
solid of revolution obtained by revolving the curve about the
-axis.

6. A hole is cut through the center of a sphere of radius (see
figure). The height of the remaining spherical ring is Find the
volume of the ring and show that it is independent of the radius
of the sphere.

7. A rectangle of length and width is revolved about the 
line (see figure). Find the volume of the resulting solid of
revolution.

Figure for 7 Figure for 8

8. (a) The tangent line to the curve at the point 
intersects the curve at another point Let be the area of
the region bounded by the curve and the tangent line. The
tangent line at intersects the curve at another point 
(see figure). Let be the area of the region bounded by the
curve and this second tangent line. How are the areas and

related?

(b) Repeat the construction in part (a) by selecting an arbitrary
point on the curve Show that the two areas and

are always related in the same way.

9. The graph of passes through the origin. The arc length
of the curve from to is given by 

Identify the function f.

s�x� � 
x

0

�1 � et dt.

�x, f �x���0, 0�
y � f �x�

S
Ry � x3.A

S
R

S
CB

RB.
A�1, 1�y � x3

x
2 4

16

32

48

64

A(1, 1)

B
R

S

y = x3

y

C

d
R

L

w

L
wlR

r
h

h.
r

y

8y2 � x2�1 � x2�.

Rr

x
−3 −2

−1

−1

1

2

2

Centroid

(2, 0)R = 2

(x − 2)2 + y2 = 1

y

y-

�x � 2�2 � y2 � 1

x
1

y = mx

y = x − x2

y

y � mxx-
y � x � x2R

L?

L.
MyA.MyBMy

�My for B) � �My for A�.LMy

L.Mx � 0

2rBrA
� � 1L

B A

2r r
x

y

x

R

T

O

A
B(c, c2)c2

c

y = x2

y

lim
c→0�

T
R

.

AOB.
Tc > 0.y � cx,y � x2

R
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10. Let be rectifiable on the interval and let 

(a) Find 

(b) Find and 

(c) If find on 

(d) Calculate and describe what it signifies.

11. Archimedes’Principle states that the upward or buoyant force
on an object within a fluid is equal to the weight of the fluid that
the object displaces. For a partially submerged object, you can
obtain information about the relative densities of the floating
object and the fluid by observing how much of the object is
above and below the surface. You can also determine the size of
a floating object if you know the amount that is above the 
surface and the relative densities. You can see the top of a floating
iceberg (see figure). The density of ocean water is 
kilograms per cubic meter, and that of ice is kilo-
grams per cubic meter. What percent of the total iceberg is
below the surface?

12. Sketch the region bounded on the left by bounded above
by and bounded below by 

(a) Find the centroid of the region for 

(b) Find the centroid of the region for 

(c) Where is the centroid as 

13. Sketch the region to the right of the axis, bounded above by
and bounded below by 

(a) Find the centroid of the region  for 

(b) Find the centroid of the region for 

(c) Where is the centroid as 

14. Find the work done by each force 

(a) (b)

In Exercises 15 and 16, find the consumer surplus and producer
surplus for the given demand and supply curves.
The consumer surplus and producer surplus are represented by
the areas shown in the figure.

15.

16.

17. A swimming pool is 20 feet wide, 40 feet long, 4 feet deep at
one end, and 8 feet deep at the other end (see figure). The
bottom is an inclined plane. Find the fluid force on each 
vertical wall.

18. (a) Find at least two continuous functions that satisfy each
condition.

(i) on 

(ii) and 

(iii) The area bounded by the graph of and the -axis for
equals 1.

(b) For each function found in part (a), approximate the arc
length of the graph of the function on the interval 
(Use a graphing utility if necessary.)

(c) Can you find a function that satisfies each condition in
part (a) and whose graph has an arc length of less than 3 on
the interval �0, 1�?

f

�0, 1�.

0 ≤ x ≤ 1
xf

f �1� � 0f �0� � 0

�0, 1�f �x� ≥ 0

f

x
10

8

20 30 40

Δy

(40, 4)

8 − y

y

40 ft

20 ft

8 ft
4 ft

p2�x� � 42xp1�x� � 1000 � 0.4x2,

p2�x� � 0.125xp1�x� � 50 � 0.5x,

xx0

P0
(x0, P0)

Point of
equilibrium

Demand
curve

Supply
curve

Producer
surplus

Consumer
surplus

P

[ p2�x�][ p1�x�]

x
1 65432

F

1

2

3

4

y

x
1 65432

1

2

3

4

F

y

F.

b →�?

1 � x � b.

1 � x � 6.

y � �1�x4.y � 1�x 4
y-

b →�?

1 � x � b.

1 � x � 6.

y � �1�x3.y � 1�x3,
x � 1,

L
h

y = −h

y = 0

y = L − h

0.92 
 103
1.03 
 103

s�2�
�1, 3�.s�x�f �t� � t 3�2,

�ds�2.ds

ds
dx

.

s�x� � 
x

a

�1 � � f��t��2 dt.

�a, b�,f
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8
Integration Techniques,
L’Hôpital’s Rule, and
Improper Integrals

From your studies of calculus thus far, you know that a definite integral has finite limits of integration and a continuous
integrand. In Section 8.8, you will study improper integrals. Improper integrals have at least one infinite limit of integration
or have an integrand with an infinite discontinuity. You will see that improper integrals either converge or diverge.

1
dx = 2

4

1 x

1
dx = 2

1

0 x
1

dx = ∞
∞

4 x

AP Photo/Topeka Capital-Journal, Anthony S. Bush/Wide World

In previous chapters, you studied several
basic techniques for evaluating simple
integrals. In this chapter, you will study
other integration techniques, such as inte-
gration by parts, that are used to evaluate
more complicated integrals. You will also
learn an important rule for evaluating limits
called L’Hôpital’s Rule. This rule can also
help you evaluate improper integrals.

In this chapter, you should learn the 
following.

■ How to fit an integrand to one of the
basic integration rules. (8.1)

■ How to find an antiderivative using 
integration by parts. (8.2)

■ How to evaluate trigonometric 
integrals. (8.3)

■ How to use trigonometric substitution 
to evaluate an integral. (8.4)

■ How to use partial fraction decomposi-
tion to integrate rational functions. (8.5)

■ How to evaluate an indefinite integral
using a table of integrals and using
reduction formulas. (8.6)

■ How to apply L’Hôpital’s Rule to 
evaluate a limit. (8.7)

■ How to evaluate an improper integral.
(8.8)

Partial fraction decomposition is an integration technique that can be used to
evaluate integrals involving rational functions. How can partial fraction decomposition
be used to evaluate an integral that gives the average cost of removing a certain 
percent of a chemical from a company’s waste water? (See Section 8.5, 
Exercise 63.)

■

■



■ Review procedures for fitting an integrand to one of the basic integration rules.

Fitting Integrands to Basic Integration Rules
In this chapter, you will study several integration techniques that greatly expand the set
of integrals to which the basic integration rules can be applied. These rules are reviewed
on page 522. A major step in solving any integration problem is recognizing which
basic integration rule to use. As shown in Example 1, slight differences in the integrand
can lead to very different solution techniques.

EXAMPLE 1 A Comparison of Three Similar Integrals

Find each integral.

a. b. c.

Solution
a. Use the Arctangent Rule and let and 

Constant Multiple Rule

Arctangent Rule

Simplify.

b. Here the Arctangent Rule does not apply because the numerator contains a factor
of Consider the Log Rule and let Then and you have

Constant Multiple Rule

Substitution:

Log Rule

c. Because the degree of the numerator is equal to the degree of the denominator, you
should first use division to rewrite the improper rational function as the sum of a
polynomial and a proper rational function.

Rewrite using long division.

Write as two integrals.

Integrate.

Simplify. ■� 4x � 12 arctan 
x
3

� C

� 4x � 36�1
3

 arctan 
x
3	 � C

� 
 4 dx � 36
 1
x2 � 9

dx


 4x2

x2 � 9
dx � 
 �4 �

36
x2 � 9	 dx

� 2 ln�x2 � 9� � C.� 2 ln�u� � C

u � x2 � 9� 2
du
u


 4x
x2 � 9

dx � 2
 2x dx
x2 � 9

du � 2x dx,u � x2 � 9.x.

�
4
3

 arctan 
x
3

� C

� 4�1
3

 arctan 
x
3	 � C


 4
x2 � 9

dx � 4
 1
x2 � 32 dx

a � 3.u � x


 4x2

x2 � 9
dx
 4x

x2 � 9
dx
 4

x2 � 9
dx
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8.1 Basic Integration Rules

E X P L O R A T I O N

A Comparison of Three Similar
Integrals Which, if any, of 
the following integrals can be
evaluated using the 20 basic 
integration rules? For any that 
can be evaluated, do so. For any
that can’t, explain why.

a.

b.

c. 
 3x2

�1 � x2
dx


 3x
�1 � x2

dx


 3
�1 � x2

dx

NOTE Notice in Example 1(c) that
some preliminary algebra is required
before applying the rules for integration,
and that subsequently more than one
rule is needed to evaluate the resulting
integral.

The icon indicates that you will find a CAS Investigation on the book’s website. The CAS
Investigation is a collaborative exploration of this example using the computer algebra systems
Maple and Mathematica.



EXAMPLE 2 Using Two Basic Rules to Solve a Single Integral

Evaluate 

Solution Begin by writing the integral as the sum of two integrals. Then apply the
Power Rule and the Arcsine Rule, as follows.

See Figure 8.1. ■

EXAMPLE 3 A Substitution Involving 

Find

Solution Because the radical in the denominator can be written in the form

you can try the substitution Then and you have

Rewrite integral.

Substitution:

Arcsine Rule

Rewrite as a function of ■x.�
1
3

 arcsin 
x3

4
� C.

�
1
3

 arcsin 
u
4

� C

u � x3�
1
3 
 du

�42 � u2


 x2

�16 � x6
dx �

1
3
 3x2 dx

�16 � �x3�2

du � 3x2 dx,u � x3.

�a2 � u2 � �42 � �x3�2


 x2

�16 � x6
dx.

a2 � u2

� 1.839

� ���3 �
	

2	 � ��2 � 0�

� ���4 � x2�1�2 � 3 arcsin 
x
2�

1

0

� �
1
2 


1

0
�4 � x2��1�2��2x� dx � 3 
1

0

1
�22 � x2

dx


1

0

x � 3
�4 � x2

dx � 
1

0

x
�4 � x2

dx � 
1

0

3
�4 � x2

dx


1

0

x � 3
�4 � x2

dx.
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Simpson’s Rule can be used to give a good approximation of the
value of the integral in Example 2 (for the approximation is 1.839). When
using numerical integration, however, you should be aware that Simpson’s Rule
does not always give good approximations when one or both of the limits of
integration are near a vertical asymptote. For instance, using the Fundamental
Theorem of Calculus, you can obtain

Applying Simpson’s Rule (with ) to this integral produces an approximation
of 6.889.

n � 10


1.99

0

x � 3
�4 � x2

dx � 6.213.

n � 10,
TECHNOLOGY

2

1

1−1
x

4 − x2
y =

x + 3

y

The area of the region is approximately
1.839.
Figure 8.1

Rules 18, 19, and 20 of
the basic integration rules on the next
page all have expressions involving the
sum or difference of two squares:

These expressions are often apparent
after a -substitution, as shown in
Example 3.

u

u2 � a2

a2 � u2

a2 � u2

STUDY TIP



Surprisingly, two of the most commonly overlooked integration rules are the Log
Rule and the Power Rule. Notice in the next two examples how these two integration
rules can be disguised.

EXAMPLE 4 A Disguised Form of the Log Rule

Find

Solution The integral does not appear to fit any of the basic rules. However, the 
quotient form suggests the Log Rule. If you let then You can
obtain the required by adding and subtracting in the numerator, as follows.

Add and subtract in numerator.

Rewrite as two fractions.

Rewrite as two integrals.

Integrate. ■

EXAMPLE 5 A Disguised Form of the Power Rule

Find

Solution Again, the integral does not appear to fit any of the basic rules. However,
considering the two primary choices for you can see
that the second choice is the appropriate one because

and

So,

Substitution:

Integrate.

Rewrite as a function of 

■

x.�
1
2

�ln�sin x��2 � C.

�
u2

2
� C

u � ln�sin x�
 �cot x��ln�sin x�� dx � 
 u du

� cot x dx.du �
cos x
sin x

dxu � ln�sin x�

�u � cot x and u � ln�sin x��,u


 �cot x��ln�sin x�� dx.

� x � ln�1 � ex� � C

� 
 dx � 
 ex dx
1 � ex

� 
 �1 � ex

1 � ex �
ex

1 � ex	 dx

e x
 1
1 � ex dx � 
 1 � ex � ex

1 � ex dx

exdu
du � ex dx.u � 1 � ex,


 1
1 � ex dx.
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NOTE There is usually more than one way to solve an integration problem. For instance, in
Example 4, try integrating by multiplying the numerator and denominator by to obtain 
an integral of the form See if you can get the same answer by this procedure. (Be
careful: the answer will appear in a different form.) ■

�� du�u.
e�x

NOTE In Example 5, try checking that the derivative of

is the integrand of the original integral. ■

1
2

�ln�sin x��2 � C

REVIEW OF BASIC
INTEGRATION RULES (a 0)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20. 
 du

u�u2 � a2
�

1
a

 arcsec �u�
a

� C


 du
a2 � u2 �

1
a

 arctan 
u
a

� C


 du
�a2 � u2

� arcsin
u
a

� C


csc u cot u du � �csc u � C


sec u tan u du � sec u � C


csc2 u du � �cot u � C


sec2 u du � tan u � C

�ln�csc u � cot u� � C


csc u du �

ln�sec u � tan u� � C


sec u du �


cot u du � ln�sin u� � C


 tan u du � �ln�cos u� � C


cos u du � sin u � C


sin u du � �cos u � C


au du � � 1
ln a	au � C


eu du � eu � C


du
u

� ln�u� � C

n � �1
un du �
un�1

n � 1
� C,


du � u � C


 f �u� du ± 
g�u� du


� f �u� ± g�u�� du �


kf �u� du � k
 f �u� du

>



Trigonometric identities can often be used to fit integrals to one of the basic
integration rules.

EXAMPLE 6 Using Trigonometric Identities

Find

Solution Note that is not in the list of basic integration rules. However,
is in the list. This suggests the trigonometric identity If you let

then and

Substitution:

Trigonometric identity

Rewrite as two integrals.

Integrate.

Rewrite as a function of ■

This section concludes with a summary of the common procedures for fitting
integrands to the basic integration rules.

x.�
1
2

 tan 2x � x � C.

�
1
2

 tan u �
u
2

� C

�
1
2
 sec2 u du �

1
2
 du

�
1
2
 �sec2 u � 1� du

u � 2x
 tan2 2x dx �
1
2
 tan2 u du

du � 2 dxu � 2x,
tan2 u � sec2 u � 1.

sec2 utan2 u


 tan2 2x dx.

8.1 Basic Integration Rules 523

If you have access
to a computer algebra system, try
using it to evaluate the integrals in 
this section. Compare the forms of the
antiderivatives given by the software
with the forms obtained by hand.
Sometimes the forms will be the
same, but often they will differ. For
instance, why is the antiderivative

equivalent to the antideriva-
tive ln x � C?
ln 2x � C

TECHNOLOGY

PROCEDURES FOR FITTING INTEGRANDS TO BASIC INTEGRATION RULES

Expand (numerator).

Separate numerator.

Complete the square.

Divide improper rational function.

Add and subtract terms in numerator.

Use trigonometric identities.

Multiply and divide by Pythagorean conjugate.

�
1 � sin x

cos2 x
� sec2 x �

sin x
cos2 x

1
1 � sin x

� � 1
1 � sin x	�

1 � sin x
1 � sin x	 �

1 � sin x
1 � sin2 x

cot2 x � csc2 x � 1

2x
x2 � 2x � 1

�
2x � 2 � 2
x2 � 2x � 1

�
2x � 2

x2 � 2x � 1
�

2
�x � 1�2

x2

x2 � 1
� 1 �

1
x2 � 1

1
�2x � x2

�
1

�1 � �x � 1�2

1 � x
x2 � 1

�
1

x2 � 1
�

x
x2 � 1

�1 � ex�2 � 1 � 2ex � e2x

ExampleTechnique

NOTE Remember that you can separate numerators but not denominators. Watch out for this
common error when fitting integrands to basic rules.

Do not separate denominators. ■
1

x2 � 1
�

1
x2 �

1
1



In Exercises 1–4, select the correct antiderivative.

1.

(a) (b)

(c) (d)

2.

(a) (b)

(c) (d)

3.

(a) (b)

(c) (d)

4.

(a) (b)

(c) (d)

In Exercises 5–14, select the basic integration formula you 
can use to find the integral, and identify and when
appropriate.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

In Exercises 15–52, find the indefinite integral.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47.

48.

49. 50.

51. 52.

Slope Fields In Exercises 53–56, a differential equation, a
point, and a slope field are given. (a) Sketch two approximate
solutions of the differential equation on the slope field, one of
which passes through the given point. (b) Use integration to
find the particular solution of the differential equation and use
a graphing utility to graph the solution. Compare the result
with the sketches in part (a). To print an enlarged copy of the
graph, go to the website www.mathgraphs.com.

53. 54.

x

y

1

−1

−1 1

t

s

1−1

1

−1

�0, 0��0, �
1
2	

dy
dx

� tan2�2x�ds
dt

�
t

�1 � t4


 12
�3 � 8x � x2

dx
 1
�1 � 4x � x2

dx


 1
x2 � 4x � 9

dx
 4
4x2 � 4x � 65

dx


 1

�x � 1��4x2 � 8x � 3
dx


 6
�10x � x2

dx


 e1�t

t 2 dt
 tan�2�t�
t 2 dt


 1
9 � 5x2 dx
 �1

�1 � �4t � 1�2
dt


 2
3�sec x � 1� dx
 1

cos  � 1
d


 1 � cos �

sin �
d�
 1 � sin x

cos x
dx


 �tan x��ln�cos x�� dx
 ln x2

x
dx


 5
3ex � 2

dx
 2
e�x � 1

dx


 csc2 xecot x dx
 e11x dx


 sin x
�cos x

dx
csc 	x cot 	x dx


 sec 4x dx
 x cos 2	x2 dx


 x�1 �
1
x	

3

dx
 �5 � 4x2�2 dx


 � 1
7x � 2

�
1

7x � 2	 dx
 ex

1 � ex dx


 4x
x � 8

dx
 x2

x � 1
dx


 x � 1
�x2 � 2x � 4

dx
 t 2 � 3
�t3 � 9t � 1

dt


 �x �
5

�3x � 5�2� dx
 �v �
1

�3v � 1�3� dv


 t2 3�t3 � 1 dt
 7
�z � 10�7 dz


 9
�t � 8�2 dt
 14�x � 5�6 dx


 1

x�x2 � 4
dx
 �cos x�esin x dx


 sec 5x tan 5x dx
 t sin t 2 dt


 �2x
�x2 � 4

dx
 3
�1 � t 2

dt


 2
�2t � 1�2 � 4

dt
 1
�x �1 � 2�x � dx


 2t � 1
t 2 � t � 4

dt
 �5x � 3�4 dx

au

�2x sin�x2 � 1� � C1
2 sin�x2 � 1� � C

�
1
2 sin�x2 � 1� � C2x sin�x2 � 1� � C

dy
dx

� x cos�x2 � 1�

ln�x2 � 1� � Carctan x � C

2x
�x2 � 1�2 � Cln�x2 � 1 � C

dy
dx

�
1

x2 � 1

ln�x2 � 1� � Carctan x � C

2x
�x2 � 1�2 � Cln�x2 � 1 � C

dy
dx

�
x

x2 � 1

ln�x2 � 1� � C1
2�x2 � 1 � C

�x2 � 1 � C2�x2 � 1 � C

dy
dx

�
x

�x2 � 1
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8.1 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

www.mathgraphs.com
www.CalcChat.com


55. 56.

Slope Fields In Exercises 57 and 58, use a computer algebra
system to graph the slope field for the differential equation and
graph the solution through the specified initial condition.

57. 58.

In Exercises 59– 64, solve the differential equation.

59. 60.

61. 62.

63. 64.

In Exercises 65–72, evaluate the definite integral. Use the inte-
gration capabilities of a graphing utility to verify your result.

65. 66.

67. 68.

69. 70.

71. 72.

Area In Exercises 73–78, find the area of the region.

73. 74.

75. 76.

77. 78.

In Exercises 79–82, use a computer algebra system to find the
integral. Use the computer algebra system to graph two
antiderivatives. Describe the relationship between the graphs of
the two antiderivatives.

79. 80.

81. 82.

87. Determine the constants and such that

Use this result to integrate 

88. Show that Then use this identity to

derive the basic integration rule


 sec x dx � ln�sec x � tan x� � C.

sec x �
sin x
cos x

�
cos x

1 � sin x
.


 dx
sin x � cos x

.

sin x � cos x � a sin�x � b�.

ba


 �ex � e�x

2 	
3

dx
 1
1 � sin 

d


 x � 2
x2 � 4x � 13

dx
 1
x2 � 4x � 13

dx

4
π

0.5

1.0

x

y

−2 2

−1

−2

1

2

y

x

y � sin 2xy2 � x2�1 � x2�

y

x
−1−2−3−4 1 2 3 4

1

2

5

y

x
1 2 3 4 5

0.2

0.4

0.6

0.8

y �
5

x2 � 1
y �

3x � 2
x2 � 9

x

y

−1 1 2 3

1

2

3

y

x
(1.5, 0)

−1 1 2

5

10

15

y � x�8 � 2x2y � ��4x � 6�3�2


7

0

1
�100 � x2

dx
2��3

0

1
4 � 9x2 dx


2

1

x � 2
x

dx
8

0

2x
�x2 � 36

dx


e

1

1 � ln x
x

dx
1

0
xe�x2

dx


	

0
 sin2 t cos t dt
	�4

0
 cos 2x dx

y� �
1

x�4x2 � 1
�4 � tan2 x�y� � sec2 x

dr
dt

�
�1 � et�2

et

dr
dt

�
10et

�1 � e2t

dy
dx

� �3 � ex�2dy
dx

� �ex � 5�2

y�0� � 1
dy
dx

� 5 � y,y�0� � 4
dy
dx

� 0.8y,

4

−1

−2

1

2

x

y

−9 9

−9

9

y

x

�2,
1
2	�0, 1�

dy
dx

�
1

�4x � x2

dy
dx

� �sec x � tan x�2
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In Exercises 83–86, state the integration formula you would
use to perform the integration. Explain why you chose that
formula. Do not integrate.

83. 84.

85. 86. 
 1
x2 � 1

dx
 x
x2 � 1

dx


x sec�x2 � 1� tan�x2 � 1� dx
x�x2 � 1�3 dx

WRITING ABOUT CONCEPTS

CAS

CAS



89. Area The graphs of and intersect at the
points and Find such that the area
of the region bounded by the graphs of these two functions is 

91. Think About It Use a graphing utility to graph the function
Use the graph to determine

whether is positive or negative. Explain.

92. Think About It When evaluating is it appropriate 

to substitute and to obtain

Explain.

Approximation In Exercises 93 and 94, determine which value
best approximates the area of the region between the -axis and
the function over the given interval. (Make your selection on the
basis of a sketch of the region and by integrating.)

93.

(a) 3 (b) 1 (c) (d) 8 (e) 10

94.

(a) 3 (b) 1 (c) (d) 4 (e) 10

Interpreting Integrals In Exercises 95 and 96, (a) sketch the
region whose area is given by the integral, (b) sketch the solid
whose volume is given by the integral if the disk method is used,
and (c) sketch the solid whose volume is given by the integral if
the shell method is used. (There is more than one correct answer
for each part.)

95. 96.

97. Volume The region bounded by and
is revolved about the -axis.

(a) Find the volume of the solid generated if 

(b) Find such that the volume of the generated solid is 
cubic units.

98. Volume Consider the region bounded by the graphs of 
and Find the volume of

the solid generated by revolving the region about the -axis.

99. Arc Length Find the arc length of the graph of 
from to 

100. Arc Length Find the arc length of the graph of 
from to 

101. Surface Area Find the area of the surface formed by
revolving the graph of on the interval about
the axis.

102. Centroid Find the coordinate of the centroid of the region
bounded by the graphs of

and

In Exercises 103 and 104, find the average value of the function
over the given interval.

103.

104. is a positive integer.

Arc Length In Exercises 105 and 106, use the integration
capabilities of a graphing utility to approximate the arc length
of the curve over the given interval.

105. 106.

107. Finding a Pattern

(a) Find (b) Find 

(c) Find 

(d) Explain how to find without actually 
integrating.

108. Finding a Pattern

(a) Write in terms of Then find

(b) Write in terms of 

(c) Write where is a positive integer, in terms
of

(d) Explain how to find without actually
integrating.

109. Methods of Integration Show that the following results are
equivalent.

:

:


�x2 � 1 dx �
1
2

�x�x2 � 1 � arcsinh�x�� � C

systemalgebracomputerbyIntegration


�x2 � 1 dx �
1
2

�x�x2 � 1 � ln�x � �x2 � 1�� � C

tablesbyIntegration

� tan15 x dx

� tan2k�1 x dx.
k� tan2k�1 x dx,

� tan3 x dx.� tan5 x dx

� tan3 x dx.
� tan x dx.� tan3 x dx

� cos15 x dx


cos7 x dx.


cos5 x dx.
cos3 x dx.

�1, 8�y � x 2�3,�0, 1
4�y � tan 	x,

n0 � x � 	�n,f �x� � sin nx,

�3 � x � 3f �x� �
1

1 � x2,

x � 4.x � 0,y � 0,y �
5

�25 � x2
,

x-

x-
�0, 9�y � 2�x

x � 	�3.x � 0
y � ln�cos x�

x � 	�2.x � 	�4
y � ln�sin x�

y
x � �	�2.y � sin x2,y � cos x2,

x � 0,

4
3b

b � 1.

yx � b �b > 0�
x � 0,y � 0,y � e�x 2,


4

0
	 y dy
2

0
 2	 x2 dx

�4

�0, 2�f �x� �
4

x2 � 1
,

�8

�0, 2�f �x� �
4x

x2 � 1
,

not

x

1
2 


1

1

�u du � 0?

dx �
du

2�u
x � �u,u � x2,

�1
�1 x2 dx,

�5
0 f �x� dx

f �x� �
1
5�x3 � 7x2 � 10x�.

2
3.

a �a > 0��1�a, 1�a�.�0, 0�
g�x� � ax2f �x� � x
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90. (a) Explain why the antiderivative is equivalent
to the antiderivative 

(b) Explain why the antiderivative is
equivalent to the antiderivative y2 � tan2 x � C.

y1 � sec2 x � C1

y2 � Ce x.
y1 � e x�C1

CAPSTONE

110. Evaluate 

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.


4

2

�ln�9 � x� dx
�ln�9 � x� � �ln�x � 3�

.

PUTNAM EXAM CHALLENGE
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8.2 Integration by Parts
■ Find an antiderivative using integration by parts.
■ Use a tabular method to perform integration by parts.

Integration by Parts
In this section you will study an important integration technique called integration by
parts. This technique can be applied to a wide variety of functions and is particularly
useful for integrands involving products of algebraic and transcendental functions. For
instance, integration by parts works well with integrals such as

and

Integration by parts is based on the formula for the derivative of a product

where both and are differentiable functions of If and are continuous, you
can integrate both sides of this equation to obtain

By rewriting this equation, you obtain the following theorem.

This formula expresses the original integral in terms of another integral. Depending
on the choices of and it may be easier to evaluate the second integral than the
original one. Because the choices of and are critical in the integration by parts
process, the following guidelines are provided.

dvu
dv,u

� 
u dv � 
v du.

uv � 
uv� dx � 
vu� dx

v�u�x.vu

� uv� � vu�

d
dx

�uv� � u
dv
dx

� v
du
dx


ex sin x dx.
x2 ex dx,
x ln x dx,

THEOREM 8.1 INTEGRATION BY PARTS

If and are functions of and have continuous derivatives, then


u dv � uv � 
v du.

xvu

GUIDELINES FOR INTEGRATION BY PARTS

1. Try letting be the most complicated portion of the integrand that fits a
basic integration rule. Then will be the remaining factor(s) of the integrand.

2. Try letting be the portion of the integrand whose derivative is a function
simpler than Then will be the remaining factor(s) of the integrand.

Note that always includes the of the original integrand.dxdv

dvu.
u

u
dv

E X P L O R A T I O N

Proof Without Words Here is a
different approach to proving the
formula for integration by parts.
Exercise taken from “Proof
Without Words: Integration by
Parts” by Roger B. Nelsen,
Mathematics Magazine, 64, No.
2, April 1991, p. 130, by
permission of the author.

Explain how this graph proves the
theorem. Which notation in this
proof is unfamiliar? What do you
think it means?


s

r

u dv � �uv�
�q,s�

� p,r�
� 
p

q

v du


s

r

u dv � 
p

q

v du � �uv�
�q,s�

� p,r�

� qs � pr� Area �Area �

u

s = g(b)

r = g(a)

u = f(x) v = g(x)

p = f(a) q = f(b)

v



EXAMPLE 1 Integration by Parts

Find

Solution To apply integration by parts, you need to write the integral in the form
There are several ways to do this.

u dv u dv u dv u dv

The guidelines on page 527 suggest the first option because the derivative of is
simpler than and is the most complicated portion of the integrand that
fits a basic integration formula.

Now, integration by parts produces

Integration by parts formula

Substitute.

Integrate.

To check this, differentiate to see that you obtain the original integrand.

EXAMPLE 2 Integration by Parts

Find

Solution In this case, is more easily integrated than Furthermore, the
derivative of is simpler than So, you should let 

Integration by parts produces

Integration by parts formula

Substitute.

Simplify.

Integrate.

You can check this result by differentiating.

■
d
dx�

x3

3
 ln x �

x3

9 � �
x3

3 �1
x	 � �ln x��x2� �

x2

3
� x2 ln x

�
x3

3
 ln x �

x3

9
� C.

�
x3

3
 ln x �

1
3 
 x2 dx


x2 ln x dx �
x3

3
 ln x � 
�x3

3 	�
1
x	 dx


u dv � uv � 
v du

du �
1
x

dxu � ln x

v � 
x2 dx �
x3

3
dv � x2 dx

dv � x2 dx.ln x.ln x
ln x.x2


 x2 ln x dx.

xex � ex � C

� xex � ex � C.


xex dx � xex � 
 ex dx


u dv � uv � 
v du

du � dxu � x

v � 
dv � 
ex dx � exdv � ex dx

dv � ex dxx,
u � x


�xex��dx�
 �1� �xex dx�,
�ex��x dx�,
 �x� �exdx�,

� u dv.


 xex dx.
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NOTE In Example 1, note that it is 
not necessary to include a constant of
integration when solving

To illustrate this, replace by
and apply integration by

parts to see that you obtain the same
result.

v � e x � C1

v � e x

v � 
 ex dx � ex � C1.

Try graphing

and

on your graphing utility. Do you get
the same graph? (This will take a
while, so be patient.)

x3

3
 ln x �

x3

9
 x2 ln x dx

TECHNOLOGY



One surprising application of integration by parts involves integrands consisting
of single terms, such as or In these cases, try letting 
as shown in the next example.

EXAMPLE 3 An Integrand with a Single Term

Evaluate 

Solution Let

Integration by parts now produces

Substitute.

Rewrite.

Integrate.

Using this antiderivative, you can evaluate the definite integral as follows.

The area represented by this definite integral is shown in Figure 8.2. ■

� 0.571

�
	

2
� 1


1

0
 arcsin x dx � �x arcsin x � �1 � x2 �

1

0

� x arcsin x � �1 � x2 � C.

� x arcsin x �
1
2 
 �1 � x2��1�2 ��2x� dx


 arcsin x dx � x arcsin x � 
 x
�1 � x2

dx

Integration by parts
formula
u dv � uv � 
v du

du �
1

�1 � x2
dxu � arcsin x

v � 
dx � xdv � dx

dv � dx.


1

0
 arcsin x dx.

dv � dx,� arcsin x dx.� ln x dx
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Remember that there are two ways to use technology to evaluate a
definite integral: (1) you can use a numerical approximation such as the Trapezoidal
Rule or Simpson’s Rule, or (2) you can use a computer algebra system to find the
antiderivative and then apply the Fundamental Theorem of Calculus. Both methods
have shortcomings. To find the possible error when using a numerical method, the
integrand must have a second derivative (Trapezoidal Rule) or a fourth derivative
(Simpson’s Rule) in the interval of integration: the integrand in Example 3 fails to
meet either of these requirements. To apply the Fundamental Theorem of Calculus,
the symbolic integration utility must be able to find the antiderivative.

Which method would you use to evaluate

Which method would you use to evaluate


1

0
 arctan x2 dx?


1

0
 arctan x dx?

TECHNOLOGY

y = arcsin x

x

2 ))1,

1

y

2
π

π

The area of the region is approximately
0.571.
Figure 8.2

■ FOR FURTHER INFORMATION To
see how integration by parts is used to
prove Stirling’s approximation 

see the article “The Validity of Stirling’s
Approximation: A Physical Chemistry
Project” by A. S. Wallner and K. A.
Brandt in Journal of Chemical
Education.

ln�n!� � n ln n � n



Some integrals require repeated use of the integration by parts formula.

EXAMPLE 4 Repeated Use of Integration by Parts

Find

Solution The factors and sin are equally easy to integrate. However, the
derivative of becomes simpler, whereas the derivative of sin does not. So, you
should let 

Now, integration by parts produces

First use of integration by parts

This first use of integration by parts has succeeded in simplifying the original integral,
but the integral on the right still doesn’t fit a basic integration rule. To evaluate that
integral, you can apply integration by parts again. This time, let 

Now, integration by parts produces

Second use of integration by parts

Combining these two results, you can write

■

When making repeated applications of integration by parts, you need to be care-
ful not to interchange the substitutions in successive applications. For instance, in
Example 4, the first substitution was and If, in the second
application, you had switched the substitution to and you would
have obtained

thereby undoing the previous integration and returning to the original integral. When
making repeated applications of integration by parts, you should also watch for the
appearance of a constant multiple of the original integral. For instance, this occurs
when you use integration by parts to evaluate and also occurs in
Example 5 on the next page.

The integral in Example 5 is an important one. In Section 8.4 (Example 5), you
will see that it is used to find the arc length of a parabolic segment.

� ex cos 2x dx,

� 
x2 sin x dx� �x2 cos x � x2 cos x � 
x2 sin x dx


x2 sin x dx � �x2 cos x � 
 2x cos x dx

dv � 2x,u � cos x
dv � sin x dx.u � x2


 x2 sin x dx � �x2 cos x � 2x sin x � 2 cos x � C.

� 2x sin x � 2 cos x � C.


2x cos x dx � 2x sin x � 
 2 sin x dx

du � 2 dxu � 2x

v � 
 cos x dx � sin xdv � cos x dx

u � 2x.


x2 sin x dx � �x2 cos x � 
 2x cos x dx.

du � 2x dxu � x2

v � 
 sin x dx � �cos xdv � sin x dx

u � x2.
xx2

xx2


 x2 sin x dx.
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E X P L O R A T I O N

Try to find

by letting and
in the first substitution.

For the second substitution, let
and dv � ex dx.u � sin 2x

dv � ex dx
u � cos 2x


ex cos 2x dx



EXAMPLE 5 Integration by Parts

Find

Solution The most complicated portion of the integrand that can be easily integrated
is so you should let and 

Integration by parts produces

Substitute.

Trigonometric identity

Rewrite.

Collect like integrals.

Integrate.

Divide by 2.

EXAMPLE 6 Finding a Centroid

A machine part is modeled by the region bounded by the graph of and the
axis, as shown in Figure 8.3. Find the centroid of this region.

Solution Begin by finding the area of the region.

Now, you can find the coordinates of the centroid as follows.

You can evaluate the integral for with integration by parts. To
do this, let and This produces and and you
can write

Finally, you can determine to be

So, the centroid of the region is ■�1, 	�8�.

x �
1
A 


	�2

0
x sin x dx � ��x cos x � sin x�

	�2

0
� 1.

x

� �x cos x � sin x � C.
 x sin x dx � �x cos x � 
 cos x dx

du � dx,v � �cos xu � x.dv � sin x dx
x, �1�A� �	�2

0 x sin x dx,

y �
1
A 


	�2

0

sin x
2

�sin x� dx �
1
4 


	�2

0
�1 � cos 2x� dx �

1
4 �x �

sin 2x
2 �

	�2

0
�

	

8

A � 
	�2

0
 sin x dx � ��cos x�

	�2

0
� 1

0 � x � 	�2,x-
y � sin x


 sec3 x dx �
1
2

 sec x tan x �
1
2

 ln�sec x � tan x� � C.

 2 
sec3 x dx � sec x tan x � ln�sec x � tan x� � C

 2 
sec3 x dx � sec x tan x � 
 sec x dx


sec3 x dx � sec x tan x � 
sec3 x dx � 
 sec x dx


sec3 x dx � sec x tan x � 
 sec x�sec2 x � 1� dx


 sec3 x dx � sec x tan x � 
 sec x tan2 x dx

Integration by parts
formula
u dv � uv � 
v du

du � sec x tan x dxu � sec x

v � 
 sec2 x dx � tan xdv � sec2 x dx

u � sec x.dv � sec2 x dxsec2 x,


 sec3 x dx.
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The trigonometric
identities

play an important role in this chapter.

cos2 x �
1 � cos 2x

2

sin2 x �
1 � cos 2x

2

STUDY TIP

1

x

x

Δx

sin x
2

y = sin x

y

2 )) , 1 

2
π

π

Figure 8.3



As you gain experience in using integration by parts, your skill in determining 
and will increase. The following summary lists several common integrals with
suggestions for the choices of and 

Tabular Method
In problems involving repeated applications of integration by parts, a tabular method,
illustrated in Example 7, can help to organize the work. This method works well for
integrals of the form and 

EXAMPLE 7 Using the Tabular Method

Find

Solution Begin as usual by letting and Next, create
a table consisting of three columns, as shown.

2

0

Differentiate until you obtain
0 as a derivative.

The solution is obtained by adding the signed products of the diagonal entries:

■
 x2 sin 4x dx � �
1
4

x2 cos 4x �
1
8

x sin 4x �
1
32

 cos 4x � C.

1
64 cos 4x�

�
1
16 sin 4x�

�
1
4 cos 4x2x�

sin 4xx2�

v� and Its
Antiderivatives

u and Its
Derivatives

Alternate
Signs

dv � v� dx � sin 4x dx.u � x2


 x2 sin 4x dx.

� xn eax dx.� xn cos ax dx,� xn sin ax dx,

dv.u
dv

u
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SUMMARY OF COMMON INTEGRALS USING INTEGRATION BY PARTS

1. For integrals of the form

or

let and let or 

2. For integrals of the form

or

let or and let 

3. For integrals of the form

or

let or and let dv � eax dx.cos bxu � sin bx


 eax cos bx dx
eax sin bx dx

dv � xn dx.arctan axarcsin ax,u � ln x,


 xn arctan ax dx
 xn arcsin ax dx,
 xn ln x dx,

cos ax dx.sin ax dx,dv � eax dx,u � xn


 xn cos ax dx
 xn sin ax dx,
xn eax dx,

■ FOR FURTHER INFORMATION
For more information on the tabular
method, see the article “Tabular
Integration by Parts” by David Horowitz
in The College Mathematics Journal,
and the article “More on Tabular
Integration by Parts” by Leonard
Gillman in The College Mathematics
Journal. To view these articles, go to the
website www.matharticles.com.

You can use the acronym
LIATE as a guideline for choosing in
integration by parts. In order, check the
integrand for the following.

Is there a Logarithmic part?

Is there an Inverse trigonometric part?

Is there an Algebraic part?

Is there a Trigonometric part?

Is there an Exponential part?

u
STUDY TIP

www.matharticles.com


In Exercises 1–6, identify and for finding the integral using
integration by parts. (Do not evaluate the integral.)

1. 2.

3. 4.

5. 6.

In Exercises 7–10, evaluate the integral using integration by
parts with the given choices of and 

7.

8.

9.

10.

In Exercises 11–38, find the integral. (Note: Solve by the 
simplest method—not all require integration by parts.)

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

In Exercises 39– 44, solve the differential equation.

39. 40.

41. 42.

43. 44.

Slope Fields In Exercises 45 and 46, a differential equation, a
point, and a slope field are given. (a) Sketch two approximate
solutions of the differential equation on the slope field, one of
which passes through the given point. (b) Use integration to find
the particular solution of the differential equation and use a
graphing utility to graph the solution. Compare the result with
the sketches in part (a). To print an enlarged copy of the graph,
go to the website www.mathgraphs.com.

45. 46.

Slope Fields In Exercises 47 and 48, use a computer algebra
system to graph the slope field for the differential equation and
graph the solution through the specified initial condition.

47. 48.

In Exercises 49–60, evaluate the definite integral. Use a graphing
utility to confirm your result.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60. 
	�8

0
x sec2 2x dx
4

2
x arcsec x dx


1

0
ln�4 � x2� dx
2

1

�x ln x dx


2

0
e�x cos x dx
1

0
e x sin x dx


1

0
x arcsin x2 dx
1�2

0
arccos x dx


	

0
x sin 2x dx
	�4

0
x cos 2x dx


2

0
x2 e�2x dx
3

0
xex�2 dx

y�0� � 4y�0� � 2

dy
dx

�
x
y
 sin x

dy
dx

�
x
y
ex�8

x
4

5

−6

−5

y

x
42−2

11

y

−4

�0, �
18
37�dy

dx
� e�x�3 sin 2x,�0, 4�dy

dx
� x�y cos x,

y� � arctan
x
2

�cos y�y� � 2x

dy
dx

� x2�x � 3
dy
dt

�
t2

�3 � 5t

y� � ln xy� � xex2


 e3x cos 4x dx
 e�x cos 2x dx


 e�3x sin 5x dx
 e2x sin x dx


 4 arccos x dx
 arctan x dx


  sec  tan  d
 t csc t cot t dt


 x2 cos x dx
 x3 sin x dx


 x sin x dx
 x cos x dx


 x
�5 � 4x

dx
 x�x � 5 dx


 ln 2x
x2 dx
 �x2 � 1�e x dx


 x3 ex2

�x2 � 1�2 dx
 xe2x

�2x � 1�2 dx


 ln x
x2 dx
 �ln x�2

x
dx


 1
x�ln x�3 dx
 t ln�t � 1� dt


 x 4 ln x dx
 x2e x3
dx


 e1�t

t2 dt
 x3e x dx


 4x
e x dx
 xe�4x dx


 x cos 4x dx; u � x, dv � cos 4x dx


 x sin 3x dx; u � x, dv � sin 3x dx


 �4x � 7)ex dx; u � 4x � 7, dv � ex dx


 x3 ln x dx; u � ln x, dv � x3 dx

dv.u

� x2 cos x dx� x sec2 x dx

� ln 5x dx� �ln x�2 dx

� x2 e2x dx� xe2x dx

dvu
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8.2 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

CAS

www.mathgraphs.com
www.CalcChat.com


In Exercises 61– 66, use the tabular method to find the integral.

61. 62.

63. 64.

65. 66.

In Exercises 67–74, find or evaluate the integral using substitu-
tion first, then using integration by parts.

67. 68.

69. 70.

71. 72.

73. 74.

In Exercises 79– 82, use a computer algebra system to (a) find or
evaluate the integral and (b) graph two antiderivatives.
(c) Describe the relationship between the graphs of the
antiderivatives.

79. 80.

81. 82.

83. Integrate 

(a) by parts, letting 

(b) by substitution, letting 

84. Integrate 

(a) by parts, letting 

(b) by substitution, letting 

85. Integrate 

(a) by parts, letting 

(b) by substitution, letting 

86. Integrate 

(a) by parts, letting 

(b) by substitution, letting 

In Exercises 87 and 88, use a computer algebra system to find
the integrals for 1, 2, and 3. Use the result to obtain a
general rule for the integrals for any positive integer and test
your results for 

87. 88.

In Exercises 89–94, use integration by parts to prove the formula.
(For Exercises 89–92, assume that is a positive integer.)

89.

90.

91.

92.

93.

94.

In Exercises 95–98, find the integral by using the appropriate
formula from Exercises 89–94.

95. 96.

97. 98.

Area In Exercises 99–102, use a graphing utility to graph the
region bounded by the graphs of the equations, and find the
area of the region.

99.

100.

101.

102. y � x sin x, y � 0, x � 	

y � e�x sin 	x, y � 0, x � 1

y �
1

16 xe�x�4, y � 0, x � 0, x � 4

y � 2xe�x, y � 0, x � 3


 x3e2x dx
 e2x cos 3x dx


 x2 cos x dx
 x5 ln x dx


 eax cos bx dx �
eax�a cos bx � b sin bx�

a2 � b2 � C


 eax sin bx dx �
eax�a sin bx � b cos bx�

a2 � b2 � C


 x n eax dx �
x neax

a
�

n
a 
 x n�1 eax dx


 x n ln x dx �
x n�1

�n � 1�2 ��1 � �n � 1� ln x� � C


 x n cos x dx � x n sin x � n 
 x n�1 sin x dx


 x n sin x dx � �x n cos x � n 
 x n�1 cos x dx

n


 x ne x dx
 x n ln x dx

n � 4.
n

n � 0,

u � 4 � x.

dv � �4 � x dx.


 x�4 � x dx

u � 4 � x2.

�4 � x2 � dx.�dv � �x

 x3

�4 � x2
dx

u � 9 � x.

dv � �9 � x dx.


 x�9 � x dx

u � 2x � 3.

dv � �2x � 3 dx.


  2x�2x � 3 dx


5

0
x 4�25 � x2�3�2 dx
	�2

0
e�2x sin 3x dx


 �4 sin 	� d�
 t3 e�4t dt


 ln�x2 � 1� dx
 cos�ln x� dx


2

0
e�2x dx
 x5ex2

dx


 2x3 cos x2 dx
4

0
x�4 � x dx


 cos�x dx
 sin�x dx


 x2�x � 2�3�2 dx
 x sec2 x dx


 x3 cos 2x dx
 x3 sin x dx


 x3e�2x dx
 x2e2x dx
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75. Integration by parts is based on what differentiation rule?
Explain.

76. In your own words, state how you determine which parts of
the integrand should be and 

77. When evaluating explain how letting 
and makes the solution more difficult to find.dv � x dx

u � sin x� x sin x dx,

dv.u

WRITING ABOUT CONCEPTS

78. State whether you would use integration by parts to evaluate
each integral. If so, identify what you would use for and

Explain your reasoning.

(a) (b) (c)

(d) (e) (f) 
 x
�x2 � 1

dx
 x
�x � 1

dx
2x e x2
dx


x2e�3x dx
x ln x dx
 ln x
x

dx

dv.
u

CAPSTONE

CAS

CAS



103. Area, Volume, and Centroid Given the region bounded by
the graphs of and find

(a) the area of the region.

(b) the volume of the solid generated by revolving the region
about the axis.

(c) the volume of the solid generated by revolving the region
about the axis.

(d) the centroid of the region.

104. Volume and Centroid Given the region bounded by the
graphs of and find

(a) the volume of the solid generated by revolving the region
about the -axis.

(b) the volume of the solid generated by revolving the region
about the -axis.

(c) the centroid of the region.

105. Centroid Find the centroid of the region bounded by the
graphs of and How is this 
problem related to Example 6 in this section?

106. Centroid Find the centroid of the region bounded by the
graphs of and 

107. Average Displacement A damping force affects the
vibration of a spring so that the displacement of the spring is
given by Find the average value
of on the interval from to 

108. Memory Model A model for the ability of a child to
memorize, measured on a scale from 0 to 10, is given by

where is the child’s age in
years. Find the average value of this model

(a) between the child’s first and second birthdays.

(b) between the child’s third and fourth birthdays.

Present Value In Exercises 109 and 110, find the present value
of a continuous income flow of dollars per year if

where is the time in years and is the annual interest rate
compounded continuously.

109.

110.

Integrals Used to Find Fourier Coefficients In Exercises 111
and 112, verify the value of the definite integral, where is a
positive integer.

111.

112.

113. Vibrating String A string stretched between the two points
and is plucked by displacing the string units at

its midpoint. The motion of the string is modeled by a Fourier
Sine Series whose coefficients are given by

Find

114. Find the fallacy in the following argument that 

So,

115. Let be positive and strictly increasing on the interval
Consider the region bounded by the graphs

of and If is revolved about
the axis, show that the disk method and shell method yield
the same volume.

116. Euler’s Method Consider the differential equation
with the initial condition 

(a) Use integration to solve the differential equation.

(b) Use a graphing utility to graph the solution of the
differential equation.

(c) Use Euler’s Method with and the recursive
capabilities of a graphing utility, to generate the first 80
points of the graph of the approximate solution. Use the
graphing utility to plot the points. Compare the result with
the graph in part (b).

(d) Repeat part (c) using and generate the first 40
points.

(e) Why is the result in part (c) a better approximation of the
solution than the result in part (d)?

Euler’s Method In Exercises 117 and 118, consider the
differential equation and repeat parts (a)–(d) of Exercise 116.

117. 118.

119. Think About It Give a geometric explanation of why

Verify the inequality by evaluating the integrals.

120. Finding a Pattern Find the area bounded by the graphs of
and over each interval.

(a) (b) (c)

Describe any patterns that you notice. What is the area
between the graphs of and over the interval

where is any nonnegative integer? Explain.n�n	, �n � 1�	�,
y � 0y � x sin x

�2	, 3	��	, 2	��0, 	�
y � 0y � x sin x


	�2

0
x sin x dx � 
	�2

0
x dx.

f �0� � 1f �0� � 0

f��x� � cos�xf��x� � 3x sin�2x�

h � 0.1

h � 0.05,

f �0� � 0.f��x� � xe�x

y-
Rx � b.x � a,y � 0,y � f �x�,

R0 < a � x � b.
y � f �x�
0 � 1.

0 � 
 dx
x

� �1
x	�x� � 
 ��

1
x2	�x� dx � 1 � 
 

dx
x

du � �
1
x2 dxu �

1
x

v � 
 dx � xdv � dx

0 � 1.

bn.

bn � h 
1

0
x sin 

n	x
2

dx � h 
2

1
��x � 2� sin 

n	x
2

dx.

h�2, 0��0, 0�


	

�	

x2 cos nx dx �
��1�n 4	

n2


	

�	

x sin nx dx � �
2	
 n

�
2	

n

,

,

n is odd

n is even

n

c�t� � 30,000 � 500t, r � 7%, t1 � 5

c�t� � 100,000 � 4000t, r � 5%, t1 � 10

rt1

P � 
t1

0
c�t�e�rt dt

c�t�P

t0 < t � 4,M � 1 � 1.6t ln t,

M

t � 	.t � 0y
y � e�4t �cos 2t � 5 sin 2t�.

x � 4.x � 2,g�x� � 2x,f �x� � x2,

y � 	�2.x � 0,y � arcsin x,

y

x

x � 	,x � 0,y � 0,y � x sin x,

y-

x-

x � e,y � 0,y � ln x,
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■ Solve trigonometric integrals involving powers of sine and cosine.
■ Solve trigonometric integrals involving powers of secant and tangent.
■ Solve trigonometric integrals involving sine-cosine products with different angles.

Integrals Involving Powers of Sine and Cosine
In this section you will study techniques for evaluating integrals of the form

and

where either or is a positive integer. To find antiderivatives for these forms, try to
break them into combinations of trigonometric integrals to which you can apply the
Power Rule.

For instance, you can evaluate with the Power Rule by letting
Then, and you have

To break up into forms to which you can apply the Power Rule,
use the following identities.

Pythagorean identity

Half-angle identity for 

Half-angle identity for cos2 xcos2 x �
1 � cos 2x

2

sin2 xsin2 x �
1 � cos 2x

2

sin2 x � cos2 x � 1

� sinm x cosn x dx


sin5 x cos x dx � 
u5 du �
u6

6
� C �

sin6 x
6

� C.

du � cos x dxu � sin x.
�sin5 x cos x dx

nm


secm x tann x dx
sinm x cosn x dx
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8.3 Trigonometric Integrals

GUIDELINES FOR EVALUATING INTEGRALS INVOLVING POWERS OF SINE AND COSINE

1. If the power of the sine is odd and positive, save one sine factor and convert the remaining factors to
cosines. Then, expand and integrate.

Odd Convert to cosines Save for 

2. If the power of the cosine is odd and positive, save one cosine factor and convert the remaining factors
to sines. Then, expand and integrate.

Odd Convert to sines Save for 

3. If the powers of both the sine and cosine are even and nonnegative, make repeated use of the identities

and

to convert the integrand to odd powers of the cosine. Then proceed as in guideline 2.

cos2 x �
1 � cos 2x

2
sin2 x �

1 � cos 2x
2


sinm x cos2k�1 x dx � 
sinm x�cos2 x�k cos x dx � 
sinm x �1 � sin2 x�k cos x dx

du


sin2k�1 x cosn x dx � 
�sin2 x�k cosn x sin x dx � 
�1 � cos2 x�k cosn x sin x dx

du

SHEILA SCOTT MACINTYRE (1910–1960)

Sheila Scott Macintyre published her first
paper on the asymptotic periods of integral
functions in 1935. She completed her doctorate
work at Aberdeen University, where she
taught. In 1958 she accepted a visiting
research fellowship at the University of
Cincinnati.



EXAMPLE 1 Power of Sine Is Odd and Positive

Find

Solution Because you expect to use the Power Rule with 
to form and convert the remaining sine factors to cosines.

Rewrite.

Trigonometric identity

Multiply.

Rewrite.

Integrate. ■

In Example 1, of the powers and happened to be positive integers.
However, the same strategy will work as long as either or is odd and positive. For
instance, in the next example the power of the cosine is 3, but the power of the sine 
is

EXAMPLE 2 Power of Cosine Is Odd and Positive

Evaluate 

Solution Because you expect to use the Power Rule with save one cosine
factor to form and convert the remaining cosine factors to sines.

Figure 8.4 shows the region whose area is represented by this integral. ■

� 0.239

� 2��3
2 	1�2

�
2
5��3

2 	5�2

� �2 �
�32
80

� ��sin x�1�2

1�2
�

�sin x�5�2

5�2 �
	�3

	�6

� 
	�3

	�6
��sin x��1�2 cos x � �sin x�3�2 cos x� dx

� 
	�3

	�6

�1 � sin2 x��cos x�
�sin x

dx


	�3

	�6

cos3 x
�sin x

dx � 
	�3

	�6

cos2 x cos x
�sin x

dx

du
u � sin x,


	�3

	�6

cos3 x
�sin x

dx.

�
1
2.

nm
nmboth

� �
cos5 x

5
�

cos7 x
7

� C

� �
cos4 x��sin x� dx � 
cos6 x��sin x� dx

� 
cos4 x sin x dx � 
cos6 x sin x dx

� 
�cos4 x � cos6 x� sin x dx

� 
�1 � cos2 x� cos4 x sin x dx


sin3 x cos4 x dx � 
sin2 x cos4 x�sin x� dx

dufactor
sineonesaveu � cos x,


sin3 x cos4 x dx.
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A computer algebra
system used to find the integral in
Example 1 yielded the following.

Is this equivalent to the result obtained
in Example 1?

�cos5 x�1
7

 sin2 x �
2

35	 � C


sin3 x cos4 x dx �

TECHNOLOGY

1.0

0.8

0.6

0.4

0.2

y = cos3 x
sin x

x

y

6
π

3
π

The area of the region is approximately
0.239.
Figure 8.4



EXAMPLE 3 Power of Cosine Is Even and Nonnegative

Find

Solution Because and are both even and nonnegative you can replace
by

Half-angle identity

Expand.

Half-angle identity

Rewrite.

Integrate.

Use a symbolic differentiation utility to verify this. Can you simplify the derivative to
obtain the original integrand? ■

In Example 3, if you were to evaluate the definite integral from 0 to you
would obtain

Note that the only term that contributes to the solution is This observation is
generalized in the following formulas developed by John Wallis.

These formulas are also valid if is replaced by (You are asked to
prove both formulas in Exercise 108.)

sinn x.cosn x

3x�8.

�
3	

16
.

� �3	

16
� 0 � 0	 � �0 � 0 � 0�


	�2

0
cos4 x dx � �3x

8
�

sin 2x
4

�
sin 4x

32 �
	�2

0

	�2,

�
3x
8

�
sin 2x

4
�

sin 4x
32

� C

�
3
8
dx �

1
4
2 cos 2x dx �

1
32
4 cos 4x dx

� 
�1
4

�
cos 2x

2
�

1
4�

1 � cos 4x
2 	� dx

� 
�1
4

�
cos 2x

2
�

cos2 2x
4 	 dx


cos4 x dx � 
�1 � cos 2x
2 	

2

dx

��1 � cos 2x��2�2. cos4 x
�m � 0�,nm


cos4 x dx.
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WALLIS’S FORMULAS

1. If is odd then

2. If is even then 


	�2

0
cosn x dx � �1

2	�
3
4	�

5
6	  .  .  . �n � 1

n 	�	

2	.

�n � 2�,n


	�2

0
cosn x dx � �2

3	�
4
5	�

6
7	  .  .  . �n � 1

n 	.

�n � 3�,n

JOHN WALLIS (1616–1703)

Wallis did much of his work in calculus prior
to Newton and Leibniz, and he influenced the
thinking of both of these men. Wallis is also
credited with introducing the present symbol
( ) for infinity.�

B
et

tm
an

n/
C

or
bi

s



Integrals Involving Powers of Secant and Tangent

The following guidelines can help you evaluate integrals of the form

EXAMPLE 4 Power of Tangent Is Odd and Positive

Find

Solution Because you expect to use the Power Rule with save a factor of
to form and convert the remaining tangent factors to secants.

■�
2
3

�sec x�3�2 � 2�sec x��1�2 � C

� 
��sec x�1�2 � �sec x��3�2��sec x tan x� dx

� 
�sec x��3�2�sec2 x � 1��sec x tan x� dx

� 
�sec x��3�2�tan2 x��sec x tan x� dx


 tan3 x
�sec x

dx � 
�sec x��1�2 tan3 x dx

du�sec x tan x�
u � sec x,


 tan3 x
�sec x

dx.


secm x tann x dx.
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GUIDELINES FOR EVALUATING INTEGRALS INVOLVING POWERS OF SECANT AND TANGENT

1. If the power of the secant is even and positive, save a secant-squared factor and convert the remaining factors
to tangents. Then expand and integrate.

Even Convert to tangents Save for 

2. If the power of the tangent is odd and positive, save a secant-tangent factor and convert the remaining factors
to secants. Then expand and integrate.

Odd Convert to secants Save for 

3. If there are no secant factors and the power of the tangent is even and positive, convert a tangent-squared
factor to a secant-squared factor, then expand and repeat if necessary.

Convert to secants

4. If the integral is of the form where is odd and positive, use integration by parts, as illustrated in
Example 5 in the preceding section.

5. If none of the first four guidelines applies, try converting to sines and cosines.

m�secm x dx,


tann x dx � 
tann�2 x�tan2 x� dx � 
tann�2 x�sec2 x � 1� dx


secm x tan2k�1 x dx � 
secm�1 x�tan2 x�k sec x tan x dx � 
secm�1 x�sec2 x � 1�k sec x tan x dx

du


sec2k x tann x dx � 
�sec2 x�k�1 tann x sec2 x dx � 
�1 � tan2 x�k�1 tann x sec2 x dx

du



EXAMPLE 5 Power of Secant Is Even and Positive

Find

Solution Let then and you can write

EXAMPLE 6 Power of Tangent Is Even

Evaluate 

Solution Because there are no secant factors, you can begin by converting a tangent-
squared factor to a secant-squared factor.

You can evaluate the definite integral as follows.

The area represented by the definite integral is shown in Figure 8.5. Try using
Simpson’s Rule to approximate this integral. With you should obtain an
approximation that is within 0.00001 of the actual value. ■

n � 18,

� 0.119

�
	

4
�

2
3


	�4

0
tan4 x dx � �tan3 x

3
� tan x � x�

	�4

0

�
tan3 x

3
� tan x � x � C

� 
tan2 x sec2 x dx � 
�sec2 x � 1� dx

� 
tan2 x sec2 x dx � 
tan2 x dx

� 
tan2 x�sec2 x � 1� dx


tan4 x dx � 
tan2 x�tan2 x� dx


	�4

0
tan4 x dx.

�
tan4 3x

12
�

tan6 3x
18

� C.

�
1
3 �

tan4 3x
4

�
tan6 3x

6 	 � C

�
1
3
�tan3 3x � tan5 3x��3 sec2 3x� dx

� 
�1 � tan2 3x� tan3 3x�sec2 3x� dx


sec4 3x tan3 3x dx � 
sec2 3x tan3 3x�sec2 3x� dx

du � 3 sec2 3x dxu � tan 3x,


sec4 3x tan3 3x dx.
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NOTE In Example 5, the power of the
tangent is odd and positive. So, you
could also find the integral using the
procedure described in guideline 2 on
page 539. In Exercise 89, you are asked
to show that the results obtained by these
two procedures differ only by a constant.

x

0.5

1.0

y = tan4 x

y

8
π

4
π

4 )) , 1 
π

The area of the region is approximately
0.119.
Figure 8.5



For integrals involving powers of cotangents and cosecants, you can follow a
strategy similar to that used for powers of tangents and secants. Also, when integrating
trigonometric functions, remember that it sometimes helps to convert the entire 
integrand to powers of sines and cosines.

EXAMPLE 7 Converting to Sines and Cosines

Find

Solution Because the first four guidelines on page 539 do not apply, try converting
the integrand to sines and cosines. In this case, you are able to integrate the resulting
powers of sine and cosine as follows.

■

Integrals Involving Sine-Cosine Products with Different
Angles
Integrals involving the products of sines and cosines of two different angles occur in
many applications. In such instances you can use the following product-to-sum
identities.

EXAMPLE 8 Using Product-to-Sum Identities

Find

Solution Considering the second product-to-sum identity above, you can write

■� �
cos x

2
�

cos 9x
18

� C.

�
1
2��cos x �

cos 9x
9 	 � C


sin 5x cos 4x dx �
1
2
�sin x � sin 9x� dx


sin 5x cos 4x dx.

� �csc x � C

� ��sin x��1 � C

� 
�sin x��2�cos x� dx


 sec x
tan2 x

dx � 
� 1
cos x	�

cos x
sin x	

2

dx


 sec x
tan2 x

dx.
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cos mx cos nx �
1
2

�cos��m � n�x� � cos��m � n�x��

sin mx cos nx �
1
2

�sin ��m � n�x� � sin ��m � n�x��

sin mx sin nx �
1
2

�cos��m � n�x� � cos��m � n�x��

■ FOR FURTHER INFORMATION
To learn more about integrals involving
sine-cosine products with different angles,
see the article “Integrals of Products of
Sine and Cosine with Different Arguments”
by Sherrie J. Nicol in The College
Mathematics Journal. To view this article,
go to the website www.matharticles.com.

www.matharticles.com


In Exercises 1– 4, use differentiation to match the antiderivative
with the correct integral. [Integrals are labeled (a), (b), (c),
and (d).]

(a) (b)

(c) (d)

1.

2.

3.

4.

In Exercises 5–18, find the integral.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

In Exercises 19–24, use Wallis’s Formulas to evaluate the
integral.

19. 20.

21. 22.

23. 24.

In Exercises 25– 42, find the integral involving secant and 
tangent.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

In Exercises 43– 46, solve the differential equation.

43. 44.

45. 46.

Slope Fields In Exercises 47 and 48, a differential equation, a
point, and a slope field are given. (a) Sketch two approximate
solutions of the differential equation on the slope field, one of
which passes through the given point. (b) Use integration to find
the particular solution of the differential equation and use a
graphing utility to graph the solution. Compare the result with
the sketches in part (a). To print an enlarged copy of the graph,
go to the website www.mathgraphs.com.

47. 48.

Slope Fields In Exercises 49 and 50, use a computer algebra
system to graph the slope field for the differential equation, and
graph the solution through the specified initial condition.

49. 50.

In Exercises 51–56, find the integral.

51. 52.

53. 54.

55. 56. 
 sin 5x sin 4x dx
sin  sin 3 d


sin��4x� cos 3x dx
 sin 2x cos 4x dx


cos 4 cos��3� d
cos 2x cos 6x dx

y�0� � 3
dy
dx

� 3�y tan2 x,y�0� � 2
dy
dx

�
3 sin x

y
,

x

y

1.5

1.5

−1.5

−1.5

x

y

−4 4

4

−4

dy
dx

� sec2 x tan2 x, �0, �
1
4	

dy
dx

� sin2 x, �0, 0�

y� � �tan x sec4 xy� � tan3 3x sec 3x

ds
d�

� sin2 �

2
 cos2 �

2
dr
d

� sin4 	


tan2 x
sec5 x

dx
tan2 x
sec x

dx


tan3 3x dx
sec5 x tan3 x dx


sec2 x
2

 tan 
x
2

dx
sec6 4x tan 4x dx


tan5 2x sec4 2x dx
tan2 x sec4 x dx


tan3 2t sec3 2t dt
sec2 x tan x dx


tan3 	x
2

 sec2 	x
2

dx
tan5 x
2

dx


tan5 x dx
sec3 	 x dx


sec6 3x dx
sec4 5x dx


sec2�2x � 1� dx
sec 7x dx


	�2

0
 sin8 x dx
	�2

0
 sin6 x dx


	�2

0
sin5 x dx
	�2

0
 cos10 x dx


	�2

0
 cos9 x dx
	�2

0
 cos7 x dx


x2 sin2 x dx
x sin2 x dx


sin4 6 d
cos4 3� d�


sin2 5x dx
cos2 3x dx


 cos5 t
�sin t

dt
sin3 2�cos 2 d


cos3 x
3

dx
sin3 x cos2 x dx


sin3 x dx
sin7 2x cos 2x dx


cos3 x sin4 x dx
cos5 x sin x dx

y � 3x � 2 sin x cos3 x � 3 sin x cos x

y � x � tan x �
1
3 tan3 x

y � cos x � sec x

y � sec x


tan4 x dx
sin x sec2 x dx

8
cos4 x dx
sin x tan2 x dx
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8.3 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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In Exercises 57–66, find the integral. Use a computer algebra
system to confirm your result.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

In Exercises 67–74, evaluate the definite integral.

67. 68.

69. 70.

71. 72.

73. 74.

In Exercises 75– 80, use a computer algebra system to find the
integral. Graph the antiderivatives for two different values of
the constant of integration.

75. 76.

77. 78.

79. 80.

In Exercises 81–84, use a computer algebra system to evaluate
the definite integral.

81. 82.

83. 84.

87. Evaluate using the given method. Explain how
your answers differ for each method.

(a) Substitution where 

(b) Substitution where 

(c) Integration by parts

(d) Using the identity 

In Exercises 89 and 90, (a) find the indefinite integral in two
different ways. (b) Use a graphing utility to graph the antideriv-
ative (without the constant of integration) obtained by each
method to show that the results differ only by a constant. (c)
Verify analytically that the results differ only by a constant.

89. 90.

Area In Exercises 91–94, find the area of the region bounded
by the graphs of the equations.

91.

92.

93.

94.

Volume In Exercises 95 and 96, find the volume of the solid
generated by revolving the region bounded by the graphs of the
equations about the -axis.

95.

96.

Volume and Centroid In Exercises 97 and 98, for the region
bounded by the graphs of the equations, find (a) the volume of
the solid formed by revolving the region about the -axis and
(b) the centroid of the region.

97.

98.

In Exercises 99–102, use integration by parts to verify the
reduction formula.

99.

100.

101.

n � 1
m � n 
cosm x sinn�2 x dx


cosm x sinn x dx � �
cosm�1 x sinn�1 x

m � n
�


cosn x dx �
cosn�1 x sin x

n
�

n � 1
n 
cosn�2 x dx


sinn x dx � �
sinn�1 x cos x

n
�

n � 1
n 
sinn�2 x dx

x � 	�2x � 0,y � 0,y � cos x,

x � 	x � 0,y � 0,y � sin x,

x

x � 	�2x � 0,y � sin
x
2

,y � cos
x
2

,

x � 	�4x � �	�4,y � 0,y � tan x,

x

x � 	�4x � �	�2,y � sin x cos x,y � cos2 x,

x � 	�4x � �	�4,y � sin2 x,y � cos2 x,

x � 1x � 0,y � 0,y � sin2 	x,

x � 	�2x � 0,y � sin3 x,y � sin x,

� sec2 x tan x dx� sec4 3x tan3 3x dx

sin 2x � 2 sin x cos x

u � cos x

u � sin x

� sin x cos x dx


	�2

0
sin12 x dx
	�2

0
sin4 x dx


	�2

0
�1 � cos �2 d
	�4

0
sin 3 sin 4 d


sec4�1 � x� tan�1 � x� dx
sec5 	x tan 	x dx


tan3�1 � x� dx
sec5 	x dx


sin2 x cos2 x dx
cos4 x
2

dx


	�2

�	�2
�sin2 x � 1� dx
	�2

�	�2
 3 cos3 x dx


	

�	

 sin 5x cos 3x dx
	�2

0

cos t
1 � sin t

dt


	�4

0
sec2 t�tan t dt
	�4

0
6 tan3 x dx


	�3

0
tan2 x dx
	

�	

 sin2 x dx


 1 � sec t
cos t � 1

dt
 �tan4 t � sec4 t� dt


 sin2 x � cos2 x
cos x

dx
 1
sec x tan x

dx


 cot3 t
csc t

dt
 cot2 t
csc t

dt


 cot3 x csc3 x dx
 csc4 2x dx


 tan4 x
2

 sec4 x
2

dx
 cot3 2x dx
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85. In your own words, describe how you would integrate
for each condition.

(a) is positive and odd. (b) is positive and odd.

(c) and are both positive and even.

86. In your own words, describe how you would integrate
for each condition.

(a) is positive and even. (b) is positive and odd.

(c) is positive and even, and there are no secant factors.

(d) is positive and odd, and there are no tangent factors.m

n

nm

� secm x tann x dx

nm

nm

� sinm x cosn x dx

WRITING ABOUT CONCEPTS

88. For each pair of integrals, determine which one is more 
difficult to evaluate. Explain your reasoning.

(a)

(b) � tan400 x sec x dx� tan400 x sec2 x dx,

� sin4 x cos4 x dx� sin372 x cos x dx,

CAPSTONE

CAS

CAS



102.

In Exercises 103–106, use the results of Exercises 99–102 to find
the integral.

103. 104.

105. 106.

107. Modeling Data The table shows the normal maximum
(high) and minimum (low) temperatures (in degrees
Fahrenheit) in Erie, Pennsylvania for each month of the year.
(Source: NOAA)

The maximum and minimum temperatures can be modeled by
where

corresponds to January 1 and and are as follows.

(a) Approximate the model for the maximum 
temperatures. (Hint: Use Simpson’s Rule to approximate
the integrals and use the January data twice.)

(b) Repeat part (a) for a model for the minimum temper-
ature data.

(c) Use a graphing utility to graph each model. During what
part of the year is the difference between the maximum
and minimum temperatures greatest?

108. Wallis’s Formulas Use the result of Exercise 100 to prove
the following versions of Wallis’s Formulas.

(a) If is odd then

(b) If is even then 

109. The inner product of two functions and on is given
by Two distinct functions and are
said to be orthogonal if Show that the following
set of functions is orthogonal on 

110. Fourier Series The following sum is a finite Fourier series.

(a) Use Exercise 109 to show that the th coefficient is

given by 

(b) Let Find and a3.a2,a1,f �x� � x.

an � �1�	�
	

�	
f �x� sin nx dx.

ann

� a1 sin x � a2 sin 2x � a3 sin 3x � .  .  . � aN sin Nx

f �x� � 
N

i�1
ai sin ix

�sin x, sin 2x, sin 3x,  .  .  .  , cos x, cos 2x, cos 3x,  .  .  .�

��	, 	�.
� f, g� � 0.

gf� f, g� � �b
a f �x�g�x� dx.

�a, b�gf
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b1 �
1
6


12

0
f �t� sin 

	t
6

dt

a1 �
1
6


12

0
f �t� cos 

	t
6

dta0 �
1

12

12

0
f �t� dt

b1a1,a0,
t � 0f �t� � a0 � a1 cos �	t�6� � b1 sin �	t�6�,


sin4 x cos2 x dx
sec4 �2	x�5� dx


cos4 x dx
sin5 x dx


secn x dx �
1

n � 1
 secn�2 x tan x �

n � 2
n � 1 
secn�2 x dx
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Month Jan Feb Mar Apr May Jun

Max 33.5 35.4 44.7 55.6 67.4 76.2

Min 20.3 20.9 28.2 37.9 48.7 58.5

Month Jul Aug Sep Oct Nov Dec

Max 80.4 79.0 72.0 61.0 49.3 38.6

Min 63.7 62.7 55.9 45.5 36.4 26.8

Power lines are constructed by stringing wire between supports and
adjusting the tension on each span. The wire hangs between
supports in the shape of a catenary, as shown in the figure.

Let be the tension (in pounds) on a span of wire, let be the
density (in pounds per foot), let be the acceleration due to
gravity (in feet per second per second), and let be the distance (in
feet) between the supports. Then the equation of the catenary is

where and are measured in feet.

(a) Find the length of the wire between two spans.

(b) To measure the tension in a span, power line workers use 
the return wave method. The wire is struck at one support,
creating a wave in the line, and the time (in seconds) it takes
for the wave to make a round trip is measured. The velocity 
(in feet per second) is given by How long does it
take the wave to make a round trip between supports?

(c) The sag (in inches) can be obtained by evaluating when
in the equation for the catenary (and multiplying by

12). In practice, however, power line workers use the “lineman’s
equation” given by Use the fact that

to derive this equation.�cosh�ugL�2T � � 1� � 2
s � 12.075t 2.

x � L�2
ys

v � �T�u.
v

t

yxy �
T
ug �cosh

ugx
T

� 1	,

L
g � 32.2

uT

x

(−L /2, 0)

(0, 0)

(L/2, 0)

y

Power Lines

S E C T I O N  P R O J E C T

■ FOR FURTHER INFORMATION To learn more about the
mathematics of power lines, see the article “Constructing Power
Lines” by Thomas O’Neil in The UMAP Journal.
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8.4 Trigonometric Substitution
■ Use trigonometric substitution to solve an integral.
■ Use integrals to model and solve real-life applications.

Trigonometric Substitution
Now that you can evaluate integrals involving powers of trigonometric functions, you
can use trigonometric substitution to evaluate integrals involving the radicals

and

The objective with trigonometric substitution is to eliminate the radical in the
integrand. You do this by using the Pythagorean identities

For example, if let where Then

Note that because �	�2 �  � 	�2.cos  � 0,

� a cos .

� �a2 cos2 

� �a2�1 � sin2 �
�a2 � u2 � �a2 � a2 sin2 

�	�2 �  � 	�2.u � a sin ,a > 0,

�u2 � a2.�a2 � u2,�a2 � u2,

and tan2  � sec2  � 1.sec2  � 1 � tan2 ,cos2  � 1 � sin2 ,

NOTE The restrictions on ensure that the function that defines the substitution is one-to-one.
In fact, these are the same intervals over which the arcsine, arctangent, and arcsecant are defined.

■



TRIGONOMETRIC SUBSTITUTION 

1. For integrals involving let

Then where 

2. For integrals involving let

Then where

3. For integrals involving let

Then

�u2 � a2 � �a tan  if u > a, where 0 �  < 	�2
�a tan  if u < �a, where 	�2 <  � 	

u � a sec .

a

u

θ

u2 − a2

�u2 � a2,

�	�2 <  < 	�2.
�a2 � u2 � a sec ,

u � a tan .

a

u

θ

a
2 + u

2
�a2 � u2,

�	�2 �  � 	�2.
�a2 � u2 � a cos ,

u � a sin . a u

θ

a2 − u2

�a2 � u2,

�a > 0�

E X P L O R A T I O N

Integrating a Radical Function
Up to this point in the text, you
have not evaluated the following
integral.

From geometry, you should be
able to find the exact value of 
this integral—what is it? Using
numerical integration, with
Simpson’s Rule or the Trapezoidal
Rule, you can’t be sure of the
accuracy of the approximation.
Why?

Try finding the exact value using
the substitution

and

Does your answer agree with 
the value you obtained using
geometry?

dx � cos d.x � sin 


1

�1

�1 � x2 dx



EXAMPLE 1 Trigonometric Substitution: 

Find

Solution First, note that none of the basic integration rules applies. To use trigono-
metric substitution, you should observe that is of the form So,
you can use the substitution

Using differentiation and the triangle shown in Figure 8.6, you obtain 

and

So, trigonometric substitution yields

Substitute.

Simplify.

Trigonometric identity

Apply Cosecant Rule.

Substitute for 

Note that the triangle in Figure 8.6 can be used to convert the ’s back to ’s, as follows.

■

In an earlier chapter, you saw how the inverse hyperbolic functions can be used
to evaluate the integrals

and

You can also evaluate these integrals using trigonometric substitution. This is shown
in the next example.


 du

u�a2 ± u2
.
 du

a2 � u2,
 du
�u2 ± a2

,

�
�9 � x2

x

 cot  �
adj.
opp.

x

� �
�9 � x2

9x
� C.

cot .� �
1
9��9 � x2

x 	 � C

� �
1
9

 cot  � C

�
1
9
csc2  d

�
1
9
 d

sin2 


 dx

x2�9 � x2
� 
 3 cos  d

�9 sin2 ��3 cos �

x2 � 9 sin2 .�9 � x2 � 3 cos ,dx � 3 cos  d,

x � a sin  � 3 sin .

�a2 � u2.�9 � x2


 dx

x2�9 � x2
.

u � a sin 
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θ

3 x

9 − x2

Figure 8.6

cot  �
�9 � x2

x
sin  �

x
3
,

Use a computer algebra system to find each indefinite integral.

Then use trigonometric substitution to duplicate the results obtained with the
computer algebra system.


 dx

x3�9 � x2
 dx

x2�9 � x2
 dx

x�9 � x2
 dx
�9 � x2

TECHNOLOGY



EXAMPLE 2 Trigonometric Substitution: u a tan

Find

Solution Let and as shown in Figure 8.7. Then,

and

Trigonometric substitution produces

Substitute.

Simplify.

Apply Secant Rule.

Back-substitute.

Try checking this result with a computer algebra system. Is the result given in this
form or in the form of an inverse hyperbolic function? ■

You can extend the use of trigonometric substitution to cover integrals involving
expressions such as by writing the expression as

EXAMPLE 3 Trigonometric Substitution: Rational Powers

Find

Solution Begin by writing as Then, let and
as shown in Figure 8.8. Using

and

you can apply trigonometric substitution, as follows.

Rewrite denominator.

Substitute.

Simplify.

Trigonometric identity

Apply Cosine Rule.

Back-substitute. ■�
x

�x2 � 1
� C

� sin  � C

� 
cos  d

� 
 d

sec 

� 
sec2  d

sec3 


 dx
�x2 � 1�3�2 � 
 dx

��x2 � 1 �3

�x2 � 1 � sec dx � sec2  d

u � x � tan ,
a � 1��x2 � 1 �3.�x2 � 1�3�2


 dx
�x2 � 1�3�2.

�a2 � u2�n�2 � ��a2 � u2 �n.

�a2 � u2�n�2

�
1
2

 ln��4x2 � 1 � 2x� � C.

�
1
2

 ln�sec  � tan � � C

�
1
2
sec  d


 1
�4x2 � 1

dx �
1
2
sec2  d

sec 

�4x2 � 1 � sec .dx �
1
2

 sec2  d

2x � tan ,a � 1,u � 2x,


 dx
�4x2 � 1

.


�
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θ
1

2x4x
2 + 1

Figure 8.7
sec  � �4x2 � 1tan  � 2x,

θ
1

xx
2  + 1

Figure 8.8

sin  �
x

�x2 � 1
tan  � x,



For definite integrals, it is often convenient to determine the integration limits for
that avoid converting back to You might want to review this procedure in Section

4.5, Examples 8 and 9.

EXAMPLE 4 Converting the Limits of Integration

Evaluate 

Solution Because has the form you can consider 

and

as shown in Figure 8.9. Then,

and

To determine the upper and lower limits of integration, use the substitution
as follows.

When When 

and
and

So, you have

■

In Example 4, try converting back to the variable and evaluating the antiderivative at
the original limits of integration. You should obtain


2

�3

�x2 � 3
x

dx � �3
�x2 � 3

�3
� arcsec

x
�3�

2

�3
.

x

� 0.0931.

� 1 �
�3	

6

� �3� 1
�3

�
	

6	
� �3 �tan  � �

	�6

0

� �3 
	�6

0
�sec2  � 1� d

� 
	�6

0

�3 tan2  d


2

�3

�x2 � 3
x

dx � 
	�6

0

��3 tan ���3 sec  tan � d

�3 sec 

 �
	

6
.

 � 0.

sec  �
2
�3

x � 2,sec  � 1x � �3,

Upper LimitLower Limit

x � �3 sec ,

�x2 � 3 � �3 tan .dx � �3 sec  tan  d

x � �3 sec a � �3,u � x,

�u2 � a2,�x2 � 3


2

�3

�x2 � 3
x

dx.

x.
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Integration
limits for x

Integration
limits for 

θ

x
x2 − 3

3

Figure 8.9

tan  �
�x2 � 3
�3

sec  �
x
�3

,



When using trigonometric substitution to evaluate definite integrals, you must be
careful to check that the values of lie in the intervals discussed at the beginning of
this section. For instance, if in Example 4 you had been asked to evaluate the definite
integral

then using and in the interval would imply that 
So, when determining the upper and lower limits of integration, you would have to
choose such that In this case the integral would be evaluated as
follows.

Trigonometric substitution can be used with completing the square. For instance,
try evaluating the following integral.

To begin, you could complete the square and write the integral as 

Trigonometric substitution can be used to evaluate the three integrals listed in the
following theorem. These integrals will be encountered several times in the remainder
of the text. When this happens, we will simply refer to this theorem. (In Exercise 85,
you are asked to verify the formulas given in the theorem.)


��x � 1�2 � 12 dx.


�x2 � 2x dx

� �0.0931

� �1 �
�3	

6

� ��3��0 � 	� � ��
1
�3

�
5	

6 	�
� ��3 �tan  � �

	

5	�6

� ��3 
	

5	�6
�sec2  � 1� d

� 
	

5	�6
��3 tan2  d


��3

�2

�x2 � 3
x

dx � 
	

5	�6

���3 tan ���3 sec  tan � d

�3 sec 

	�2 <  � 	.

u < �a.��2, ��3�a � �3u � x


��3

�2

�x2 � 3
x

dx
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THEOREM 8.2 SPECIAL INTEGRATION FORMULAS 

1.

2.

3. 
�u2 � a2 du �
1
2

�u�u2 � a2 � a2 ln�u � �u2 � a2�� � C

u > a
�u2 � a2 du �
1
2

�u�u2 � a2 � a2 ln�u � �u2 � a2�� � C,


�a2 � u2 du �
1
2 �a2 arcsin 

u
a

� u�a2 � u2	 � C

�a > 0�



Applications

EXAMPLE 5 Finding Arc Length

Find the arc length of the graph of from to (see Figure 8.10).

Solution Refer to the arc length formula in Section 7.4.

Formula for arc length

Let and 

Example 5, Section 8.2

EXAMPLE 6 Comparing Two Fluid Forces

A sealed barrel of oil (weighing 48 pounds per cubic foot) is floating in seawater
(weighing 64 pounds per cubic foot), as shown in Figures 8.11 and 8.12. (The barrel
is not completely full of oil. With the barrel lying on its side, the top 0.2 foot of the
barrel is empty.) Compare the fluid forces against one end of the barrel from the inside
and from the outside.

Solution In Figure 8.12, locate the coordinate system with the origin at the center of
the circle given by To find the fluid force against an end of the barrel
from the inside, integrate between and 0.8 (using a weight of ).

General equation (see Section 7.7)

To find the fluid force from the outside, integrate between and 0.4 (using a weight
of ).

The details of integration are left for you to complete in Exercise 84. Intuitively,
would you say that the force from the oil (the inside) or the force from the seawater
(the outside) is greater? By evaluating these two integrals, you can determine that 

and ■Foutside � 93.0 pounds.Finside � 121.3 pounds

� 51.2 
0.4

�1

�1 � y2 dy � 128
0.4

�1
y�1 � y2 dy

Foutside � 64
0.4

�1
�0.4 � y��2��1 � y2 dy

w � 64
�1

� 76.8
0.8

�1

�1 � y2 dy � 96
0.8

�1
y�1 � y2 dy

Finside � 48
0.8

�1
�0.8 � y��2��1 � y2 dy

F � w
d

c

h�y�L�y� dy

w � 48�1
x2 � y2 � 1.

�
1
2

��2 � ln��2 � 1�� � 1.148

�
1
2�sec  tan  � ln�sec  � tan ��

	�4

0

x � tan .a � 1� 
	�4

0
sec3  d

f��x� � x� 
1

0

�1 � x2 dx

s � 
1

0

�1 � � f��x��2 dx

x � 1x � 0f�x� �
1
2x2

550 Chapter 8 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

1

1
x

x2

1
2

1
2

1,

f(x) = 

(0, 0)

y

))

The arc length of the curve from to 
Figure 8.10

�1, 1
2��0, 0�

The barrel is not quite full of oil—the top
0.2 foot of the barrel is empty.
Figure 8.11

x

1

1

−1

−1

x2 + y2 = 1

0.4 ft
0.8 ft

y

Figure 8.12



In Exercises 1–4, state the trigonometric substitution you would
use to find the integral. Do not integrate.

1. 2.

3. 4.

In Exercises 5–8, find the indefinite integral using the
substitution

5. 6.

7. 8.

In Exercises 9–12, find the indefinite integral using the
substitution

9. 10.

11. 12.

In Exercises 13–16, find the indefinite integral using the
substitution

13. 14.

15. 16.

In Exercises 17–20, use the Special Integration Formulas
(Theorem 8.2) to find the integral.

17. 18.

19. 20.

In Exercises 21–42, find the integral.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

In Exercises 43–46, complete the square and find the integral.

43. 44.

45. 46.

In Exercises 47–52, evaluate the integral using (a) the given
integration limits and (b) the limits obtained by trigonometric
substitution.

47. 48.

49. 50.

51. 52.

In Exercises 53 and 54, find the particular solution of the
differential equation.

53.

54.

In Exercises 55–58, use a computer algebra system to find the
integral. Verify the result by differentiation.

55. 56.

57. 58. 
 x2�x2 � 4 dx
 x2

�x2 � 1
dx


 �x2 � 2x � 11�3�2 dx
 x2

�x2 � 10x � 9
dx

y�0� � 4x � �2,�x2 � 4
dy
dx

� 1,

y�3� � 1x � 3,x
dy
dx

� �x2 � 9,


6

3

�x2 � 9
x2 dx
6

4

x2

�x2 � 9
dx


3�5

0

�9 � 25x2 dx
3

0

x 3

�x2 � 9
dx


�3�2

0

1
�1 � t2�5�2 dt
�3�2

0

t2

�1 � t2�3�2 dt


 x
�x2 � 6x � 5

dx
 x
�x2 � 6x � 12

dx


 x2

�2x � x2
dx
 1

�4x � x2
dx


 x arcsin x dxx > 1
2
 arcsec 2x dx,


 x3 � x � 1
x4 � 2x2 � 1

dx
 1
4 � 4x2 � x4 dx


 �1 � x
�x

dx
 ex�1 � e2x dx


 �x � 1��x2 � 2x � 2 dx
 e2x �1 � e2x dx


 1
�x2 � 5�3�2 dx
 �3x

�x2 � 3�3�2 dx


 1

x�4x2 � 16
dx
 1

x�4x2 � 9
dx


 �4x2 � 9
x4 dx
 �1 � x2

x4 dx


 t
�4 � t2�3�2 dt
 1

�x2 � 4
dx


 x�16 � 4x2 dx
�16 � 4x2 dx


 1
�49 � x2

dx
 1
�16 � x2

dx


 x
�36 � x2

dx
 x
�x2 � 36

dx


�5x2 � 1 dx
�25 � 4x2 dx


�4 � x2 dx
�9 � 16x2 dx


 x2

�1 � x2�2 dx
 1
�1 � x2�2 dx


 9x3

�1 � x2
dx
 x�1 � x2 dx

x � tan 
.


 x3

�x2 � 25
dx
 x3�x2 � 25 dx


 �x2 � 25
x

dx
 1
�x2 � 25

dx

x � 5 sec 
.


 x2

�16 � x2
dx
 �16 � x2

x
dx


 4

x2�16 � x2
dx
 1

�16 � x2�3�2 dx

x � 4 sin 
.


 x2�x2 � 25�3�2 dx
 x2

�16 � x2
dx


�4 � x2 dx
 �9 � x2��2 dx
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8.4 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

59. State the substitution you would make if you used trigono-
metric substitution and the integral involving the given
radical, where Explain your reasoning.

(a) (b) (c) �u2 � a2�a2 � u2�a2 � u2

a > 0.

WRITING ABOUT CONCEPTS

CAS

www.CalcChat.com


True or False? In Exercises 63–66, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

63. If then 

64. If then 

65. If then

66. If then 

67. Area Find the area enclosed by the ellipse shown in the figure.

Figure for 67 Figure for 68

68. Area Find the area of the shaded region of the circle of radius
if the chord is units from the center of the

circle (see figure).

69. Mechanical Design The surface of a machine part is the
region between the graphs of and 
(see figure).

(a) Find if the circle is         
tangent to the graph of

(b) Find the area of the 
surface of the machine
part.

(c) Find the area of the 
surface of the machine
part as a function of the
radius of the circle.

70. Volume The axis of a storage tank in the form of a right
circular cylinder is horizontal (see figure). The radius and
length of the tank are 1 meter and 3 meters, respectively.

(a) Determine the volume of fluid in the tank as a function of
its depth 

(b) Use a graphing utility to graph the function in part (a).

(c) Design a dip stick for the tank with markings of and 

(d) Fluid is entering the tank at a rate of cubic meter per
minute. Determine the rate of change of the depth of the
fluid as a function of its depth 

(e) Use a graphing utility to graph the function in part (d).
When will the rate of change of the depth be minimum?
Does this agree with your intuition? Explain.

Volume of a Torus In Exercises 71 and 72, find the volume of
the torus generated by revolving the region bounded by the
graph of the circle about the -axis.

71. (see figure)

72. h > r�x � h�2 � y2 � r2,

x

2

4

1

Circle:
(x − 3)2 + y2 = 1

y

�x � 3�2 � y2 � 1

y

d.

1
4

3
4.1

2,1
4,

d.

3 m

1 m

d

r

y � �x�.

x

(0, k)

yk

x2 � �y � k�2 � 25y � �x�

�0 < h < a�ha,

x
a

a

−a

−a

h

y

b

a
x

y

y = − b
a

a2 − x2

y = b
a

a2 − x2

x2

a2 �
y2

b2 � 1


1

�1
x2�1 � x2 dx � 2
	�2

0
 sin2  cos2  d.x � sin ,


�3

0

dx
�1 � x2�3�2 � 
4	�3

0

cos  d.x � tan ,


�x2 � 1
x

dx � 
sec  tan  d.x � sec ,


 dx
�1 � x2

� 
d.x � sin ,
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62. (a) Evaluate the integral using -substitution. 

Then evaluate using trigonometric substitution. Discuss
the results.

(b) Evaluate the integral algebraically using

Then evaluate using trigonometric
substitution. Discuss the results.

(c) Evaluate the integral using trigonometric

substitution. Then evaluate using the identity

Discuss the results.
4

4 � x2 � � 1
x � 2

�
1

x � 2	.


 4
4 � x2 dx

x2 � �x2 � 9� � 9.


 x2

x2 � 9
dx

u
 x
x2 � 9

dx

CAPSTONE

In Exercises 60 and 61, state the method of integration you
would use to perform each integration. Explain why you
chose that method. Do not integrate.

60. 61. 
x2�x2 � 1 dx
x�x2 � 1 dx

WRITING ABOUT CONCEPTS (cont inued)



Arc Length In Exercises 73 and 74, find the arc length of the
curve over the given interval.

73. 74.

75. Arc Length Show that the length of one arch of the sine curve
is equal to the length of one arch of the cosine curve.

76. Conjecture

(a) Find formulas for the distances between and 
along the line between these points and along the parabola

(b) Use the formulas from part (a) to find the distances for
and

(c) Make a conjecture about the difference between the two
distances as increases.

Projectile Motion In Exercises 77 and 78, (a) use a graphing
utility to graph the path of a projectile that follows the path
given by the graph of the equation, (b) determine the range
of the projectile, and (c) use the integration capabilities of a
graphing utility to determine the distance the projectile travels.

77. 78.

Centroid In Exercises 79 and 80, find the centroid of the region
determined by the graphs of the inequalities.

79.

80.

81. Surface Area Find the surface area of the solid generated by
revolving the region bounded by the graphs of 

and about the axis.

82. Field Strength The field strength of a magnet of length 
on a particle units from the center of the magnet is

where are the poles of the magnet (see figure). Find the
average field strength as the particle moves from 0 to units
from the center by evaluating the integral

Figure for 82 Figure for 83

83. Fluid Force Find the fluid force on a circular observation
window of radius 1 foot in a vertical wall of a large water-filled
tank at a fish hatchery when the center of the window is (a) 3 feet
and (b) feet below the water’s surface (see figure). Use
trigonometric substitution to evaluate the one integral. (Recall
that in Section 7.7 in a similar problem, you evaluated one
integral by a geometric formula and the other by observing that
the integrand was odd.)

84. Fluid Force Evaluate the following two integrals, which
yield the fluid forces given in Example 6.

(a)

(b)

85. Use trigonometric substitution to verify the integration formulas
given in Theorem 8.2.

86. Arc Length Show that the arc length of the graph of 
on the interval is equal to the circumference of the
ellipse (see figure).

Figure for 86 Figure for 87

87. Area of a Lune The crescent-shaped region bounded by two
circles forms a lune (see figure). Find the area of the lune given
that the radius of the smaller circle is 3 and the radius of the
larger circle is 5.

88. Area Two circles of radius 3, with centers at and
intersect as shown in the figure. Find the area of the 

shaded region.
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5
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x
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−

2
3π

π

2
π

π

x2 � 2y2 � 2
�0, 2	�

y � sin x

Foutside � 64
0.4

�1
�0.4 � y��2��1 � y2 dy

Finside � 48
0.8

�1
�0.8 � y��2��1 � y2 dy

�d > 1�d

x

2

3

2−2

3 − y

x2 + y2 = 1
y

−m

2L
r

+m

1
R


R

0

2mL
�r2 � L2�3�2 dr.

R
±m

H �
2mL

�r2 � L2�3�2

r
2LH

x-x � �2x � 0,
y � 0,y � x2,

y � 0�x � 4�2 � y2 � 16,y �
1
4x2,

x � 4x � �4,y � 0,y � 3��x2 � 9,

y � x �
x2

72
y � x � 0.005x2

a

a � 10.a � 1

y � x2.

�a, a2��0, 0�

�0, 4�y �
1
2 x2,�1, 5�y � ln x,
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89. Evaluate

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.


1

0

ln�x � 1�
x2 � 1

dx.

PUTNAM EXAM CHALLENGE



■ Understand the concept of partial fraction decomposition.
■ Use partial fraction decomposition with linear factors to integrate rational functions.
■ Use partial fraction decomposition with quadratic factors to integrate rational 

functions.

Partial Fractions
This section examines a procedure for decomposing a rational function into simpler
rational functions to which you can apply the basic integration formulas. This
procedure is called the method of partial fractions. To see the benefit of the method
of partial fractions, consider the integral

To evaluate this integral without partial fractions, you can complete the square and use
trigonometric substitution (see Figure 8.13) to obtain

Now, suppose you had observed that

Partial fraction decomposition

Then you could evaluate the integral easily, as follows.

This method is clearly preferable to trigonometric substitution. However, its use
depends on the ability to factor the denominator, and to find the partial
fractions

and

In this section, you will study techniques for finding partial fraction decompositions.

�
1

x � 2
.

1
x � 3

x2 � 5x � 6,

� ln�x � 3� � ln�x � 2� � C


 1
x2 � 5x � 6

dx � 
 � 1
x � 3

�
1

x � 2	 dx

1
x2 � 5x � 6

�
1

x � 3
�

1
x � 2

.

� ln�x � 3� � ln�x � 2� � C.

� ln�x � 3
x � 2� � C

� 2 ln��x � 3
�x � 2� � C

� 2 ln� x � 3
�x2 � 5x � 6� � C

� 2 ln� 2x � 5

2�x2 � 5x � 6
�

1

2�x2 � 5x � 6� � C

� 2 ln�csc  � cot � � C

� 2
 csc  d

dx �
1
2 sec  tan  d� 
 �1�2� sec  tan  d

�1�4� tan2 

a �
1
2, x �

5
2 �

1
2 sec 
 1

x2 � 5x � 6
dx � 
 dx

�x � 5�2�2 � �1�2�2


 1
x2 � 5x � 6

dx.
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θ

2x − 5

1

x2 − 5x + 62

Figure 8.13
sec  � 2x � 5

JOHN BERNOULLI (1667–1748)

The method of partial fractions was introduced
by John Bernoulli, a Swiss mathematician who
was instrumental in the early development of
calculus. John Bernoulli was a professor at the
University of Basel and taught many outstanding
students, the most famous of whom was
Leonhard Euler.
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Recall from algebra that every polynomial with real coefficients can be factored
into linear and irreducible quadratic factors.* For instance, the polynomial 

can be written as

where is a linear factor, is a repeated linear factor, and is an
irreducible quadratic factor. Using this factorization, you can write the partial fraction
decomposition of the rational expression

where is a polynomial of degree less than 5, as follows.

N�x�
�x � 1��x � 1�2�x2 � 1� �

A
x � 1

�
B

x � 1
�

C
�x � 1�2 �

Dx � E
x2 � 1

N�x�

N�x�
x5 � x4 � x � 1

�x2 � 1��x � 1�2�x � 1�

� �x � 1��x � 1�2�x2 � 1�
� �x2 � 1��x � 1��x � 1��x � 1�
� �x2 � 1��x2 � 1��x � 1�
� �x4 � 1��x � 1�

x5 � x4 � x � 1 � x4�x � 1� � �x � 1�

x5 � x4 � x � 1
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DECOMPOSITION OF INTO PARTIAL FRACTIONS

1. Divide if improper: If is an improper fraction (that is, if the
degree of the numerator is greater than or equal to the degree of the denom-
inator), divide the denominator into the numerator to obtain

where the degree of is less than the degree of Then apply Steps
2, 3, and 4 to the proper rational expression 

2. Factor denominator: Completely factor the denominator into factors of
the form

and

where is irreducible.

3. Linear factors: For each factor of the form the partial fraction
decomposition must include the following sum of fractions.

4. Quadratic factors: For each factor of the form the partial 
fraction decomposition must include the following sum of fractions. 

B1x � C1

ax2 � bx � c
�

B2x � C2

�ax2 � bx � c�2 � .  .  . �
Bnx � Cn

�ax2 � bx � c�n

n
�ax2 � bx � c�n,

A1

� px � q� �
A2

� px � q�2 � .  .  . �
Am

� px � q�m

m
� px � q�m,

ax2 � bx � c

�ax2 � bx � c�n� px � q�m

N1�x��D�x�.
D�x�.N1�x�

N�x�
D�x� � �a polynomial� �

N1�x�
D�x�

N�x��D�x�

N�x�/D�x�

* For a review of factorization techniques, see Precalculus, 7th edition, by Larson and Hostetler
or Precalculus: A Graphing Approach, 5th edition, by Larson, Hostetler, and Edwards (Boston,
Massachusetts: Houghton Mifflin, 2007 and 2008, respectively).

In precalculus you learned
how to combine functions such as

The method of partial fractions shows
you how to reverse this process.

5
�x � 2��x � 3� �

?
x � 2

�
?

x � 3

1
x � 2

�
�1

x � 3
�

5
�x � 2��x � 3�.

STUDY TIP



Linear Factors
Algebraic techniques for determining the constants in the numerators of a partial 
fraction decomposition with linear or repeated linear factors are shown in Examples 1
and 2.

EXAMPLE 1 Distinct Linear Factors

Write the partial fraction decomposition for 

Solution Because you should include one partial
fraction for each factor and write

where and are to be determined. Multiplying this equation by the least common
denominator yields the basic equation

Basic equation

Because this equation is to be true for all you can substitute any convenient values
for to obtain equations in and The most convenient values are the ones that
make particular factors equal to 0.

To solve for let and obtain

Let in basic equation.

To solve for let and obtain

Let in basic equation.

So, the decomposition is

as shown at the beginning of this section. ■

Be sure you see that the method of partial fractions is practical only for integrals
of rational functions whose denominators factor “nicely.” For instance, if the
denominator in Example 1 were changed to its factorization as

would be too cumbersome to use with partial fractions. In such cases, you should use
completing the square or a computer algebra system to perform the integration. If you
do this, you should obtain


 1
x2 � 5x � 5

dx �
�5
5

 ln�2x � �5 � 5� �
�5
5

 ln�2x � �5 � 5� � C.

x2 � 5x � 5 � �x �
5 � �5

2 � �x �
5 � �5

2 �
x2 � 5x � 5,

1
x2 � 5x � 6

�
1

x � 3
�

1
x � 2

B � �1.

1 � A�0� � B��1�
x � 21 � A�2 � 2� � B�2 � 3�

x � 2B,

A � 1.

1 � A�1� � B�0�
x � 31 � A�3 � 2� � B�3 � 3�

x � 3A,

B.Ax
x,

1 � A�x � 2� � B�x � 3�.

�x � 3��x � 2)
BA

1
x2 � 5x � 6

�
A

x � 3
�

B
x � 2

x2 � 5x � 6 � �x � 3��x � 2�,

1
x2 � 5x � 6

.

556 Chapter 8 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

NOTE Note that the substitutions for
in Example 1 are chosen for their

convenience in determining values for
and is chosen to eliminate

the term and is chosen
to eliminate the term The goal
is to make convenient substitutions
whenever possible.

B�x � 3�.
x � 3A�x � 2�,

x � 2B;A

x

■ FOR FURTHER INFORMATION To
learn a different method for finding 
partial fraction decompositions, called 
the Heavyside Method, see the article
“Calculus to Algebra Connections in
Partial Fraction Decomposition” by
Joseph Wiener and Will Watkins in The
AMATYC Review.



EXAMPLE 2 Repeated Linear Factors

Find

Solution Because

you should include one fraction for each power of and and write

Multiplying by the least common denominator yields the basic equation

Basic equation

To solve for let This eliminates the and terms and yields

To solve for let This eliminates the and terms and yields

The most convenient choices for have been used, so to find the value of you can
use any other value of along with the calculated values of and Using 

and produces

So, it follows that

Try checking this result by differentiating. Include algebra in your check, simplifying
the derivative until you have obtained the original integrand. ■

� ln� x6

x � 1� �
9

x � 1
� C.

� 6 ln�x� � ln�x � 1� � 9
�x � 1��1

�1
� C


 5x2 � 20x � 6
x�x � 1�2 dx � 
 �6

x
�

1
x � 1

�
9

�x � 1�2	 dx

B � �1.

�2 � 2B

31 � 6�4� � 2B � 9

5 � 20 � 6 � A�4� � B�2� � C

C � 9A � 6,
x � 1,C.Ax

B,x

C � 9.

 5 � 20 � 6 � 0 � 0 � C

BAx � �1.C,

A � 6.

 6 � A�1� � 0 � 0

CBx � 0.A,

5x2 � 20x � 6 � A�x � 1�2 � Bx�x � 1� � Cx.

x�x � 1�2

5x2 � 20x � 6
x�x � 1�2 �

A
x

�
B

x � 1
�

C
�x � 1�2.

�x � 1�x

� x�x � 1�2

x3 � 2x2 � x � x(x2 � 2x � 1�


 5x2 � 20x � 6
x3 � 2x2 � x

dx.
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NOTE It is necessary to make as many substitutions for as there are unknowns
to be determined. For instance, in Example 2, three substitutions 

and were made to solve for and ■C.B,A,x � 1�x � �1,
�x � 0,�A, B, C,  .  .  .�

x

■ FOR FURTHER INFORMATION For
an alternative approach to using partial
fractions, see the article “A Shortcut in
Partial Fractions” by Xun-Cheng Huang
in The College Mathematics Journal.

Most computer
algebra systems, such as Maple,
Mathematica, and the TI-89, can be
used to convert a rational function to
its partial fraction decomposition. For
instance, using Maple, you obtain the
following.

6
x

�
9

�x � 1�2 �
1

x � 1

>  convert�5x2 � 20x � 6
x3 � 2x2 � x

, parfrac, x	

TECHNOLOGY



Quadratic Factors
When using the method of partial fractions with factors, a convenient choice of

immediately yields a value for one of the coefficients. With factors,
a system of linear equations usually has to be solved, regardless of the choice of 

EXAMPLE 3 Distinct Linear and Quadratic Factors

Find

Solution Because

you should include one partial fraction for each factor and write

Multiplying by the least common denominator yields the basic
equation

To solve for let and obtain

To solve for let and obtain

At this point, and are yet to be determined. You can find these remaining
constants by choosing two other values for and solving the resulting system of 
linear equations. If then, using and you can write

If you have

Solving the linear system by subtracting the first equation from the second

yields Consequently, and it follows that

■

� 2 ln�x� � 2 ln�x � 1� � ln�x2 � 4� � 2 arctan 
x
2

� C.


 �2
x

�
2

x � 1
�

2x
x2 � 4

�
4

x2 � 4	 dx
 2x3 � 4x � 8
x�x � 1��x2 � 4� dx �

D � 4,C � 2.

 2C � D � 8

�C � D � 2

 8 � 2C � D.

 0 � �2��1��8� � ��2��2��8� � �2C � D��2��1�

x � 2,

 2 � �C � D.

�6 � �2���2��5� � ��2���1��5� � ��C � D���1���2�

B � �2,A � 2x � �1,
x

DC

�2 � B.�10 � 0 � B�5� � 0

x � 1B,

2 � A.�8 � A��1��4� � 0 � 0

x � 0A,

2x3 � 4x � 8 � A�x � 1��x2 � 4� � Bx�x2 � 4� � �Cx � D��x��x � 1�.

x�x � 1��x2 � 4�

2x3 � 4x � 8
x�x � 1��x2 � 4� �

A
x

�
B

x � 1
�

Cx � D
x2 � 4

.

�x2 � x��x2 � 4� � x�x � 1��x2 � 4�


 2x3 � 4x � 8
�x2 � x��x2 � 4� dx.

x.
quadraticx

linear
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In Examples 1, 2, and 3, the solution of the basic equation began with substituting
values of that made the linear factors equal to 0. This method works well when the
partial fraction decomposition involves linear factors. However, if the decomposition
involves only quadratic factors, an alternative procedure is often more convenient.

EXAMPLE 4 Repeated Quadratic Factors

Find

Solution Include one partial fraction for each power of and write

Multiplying by the least common denominator yields the basic equation

Expanding the basic equation and collecting like terms produces

Now, you can equate the coefficients of like terms on opposite sides of the equation.

Using the known values and you can write

Finally, you can conclude that

■� 4 ln�x2 � 2� �
3

2�x2 � 2� � C.


 8x3 � 13x
�x2 � 2�2 dx � 
 � 8x

x2 � 2
�

�3x
�x2 � 2�2	 dx

D � 0.0 � 2B � D � 2�0� � D

C � �313 � 2A � C � 2�8� � C

B � 0,A � 8

13 � 2A � C

0 � B

8x3 � 0x2 � 13x � 0 � Ax3 � Bx2 � �2A � C�x � �2B � D�

0 � 2B � D8 � A

8x3 � 13x � Ax3 � Bx2 � �2A � C�x � �2B � D�.
8x3 � 13x � Ax3 � 2Ax � Bx2 � 2B � Cx � D

8x3 � 13x � �Ax � B��x2 � 2� � Cx � D.

�x2 � 2�2

8x3 � 13x
�x2 � 2�2 �

Ax � B
x2 � 2

�
Cx � D

�x2 � 2�2.

�x2 � 2�


 8x3 � 13x
�x2 � 2�2 dx.

x

8.5 Partial Fractions 559

Use a computer algebra system to evaluate the integral in 
Example 4—you might find that the form of the antiderivative is different. For
instance, when you use a computer algebra system to work Example 4, you obtain

Is this result equivalent to that obtained in Example 4?


 8x3 � 13x
�x2 � 2�2 dx � ln�x8 � 8x6 � 24x4 � 32x2 � 16� �

3
2�x2 � 2� � C.

TECHNOLOGY



When integrating rational expressions, keep in mind that for improper rational
expressions such as

you must first divide to obtain

The proper rational expression is then decomposed into its partial fractions by the
usual methods. Here are some guidelines for solving the basic equation that is
obtained in a partial fraction decomposition.

Before concluding this section, here are a few things you should remember. First,
it is not necessary to use the partial fractions technique on all rational functions. For
instance, the following integral is evaluated more easily by the Log Rule.

Second, if the integrand is not in reduced form, reducing it may eliminate the need for
partial fractions, as shown in the following integral.

Finally, partial fractions can be used with some quotients involving transcendental
functions. For instance, the substitution allows you to write

u � sin x, du � cos x dx
 cos x
sin x�sin x � 1� dx � 
 du

u�u � 1�.

u � sin x

�
1
2

 ln�x2 � 2x � 2� � C

� 
 x � 1
x2 � 2x � 2

dx


 x2 � x � 2
x3 � 2x � 4

dx � 
 �x � 1��x � 2�
�x � 2��x2 � 2x � 2� dx

�
1
3

 ln�x3 � 3x � 4� � C


 x2 � 1
x3 � 3x � 4

dx �
1
3
 3x2 � 3

x3 � 3x � 4
dx

N�x�
D�x� � 2x � 1 �

�2x � 5
x2 � x � 2

.

N�x�
D�x� �

2x3 � x2 � 7x � 7
x2 � x � 2
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GUIDELINES FOR SOLVING THE BASIC EQUATION

1. Substitute the roots of the distinct linear factors in the basic equation.

2. For repeated linear factors, use the coefficients determined in guideline 1 to
rewrite the basic equation. Then substitute other convenient values of and
solve for the remaining coefficients.

1. Expand the basic equation.

2. Collect terms according to powers of 

3. Equate the coefficients of like powers to obtain a system of linear equations
involving and so on.

4. Solve the system of linear equations.

C,B,A,

x.

Quadratic Factors                                                                                                                 

x

Linear Factors                                                                                                                       



In Exercises 1–6, write the form of the partial fraction decom-
position of the rational expression. Do not solve for the
constants.

1. 2.

3. 4.

5. 6.

In Exercises 7–28, use partial fractions to find the integral.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

In Exercises 29–32, evaluate the definite integral. Use a graphing
utility to verify your result.

29. 30.

31. 32.

In Exercises 33–40, use a computer algebra system to
determine the antiderivative that passes through the given
point. Use the system to graph the resulting antiderivative.

33. 34.

35. 36.

37.

38.

39.

40.

In Exercises 41–50, use substitution to find the integral.

41. 42.

43. 44.

45. 46.

47. 48

49. 50.

In Exercises 51–54, use the method of partial fractions to verify
the integration formula.

51.

52.

53.

54.

Slope Fields In Exercises 55 and 56, use a computer algebra
system to graph the slope field for the differential equation and
graph the solution through the given initial condition.

55. 56.

y�0� � 5y�0� � 3

dy
dx

�
4

x2 � 2x � 3
dy
dx

�
6

4 � x2


 1
x2�a � bx� dx � �

1
ax

�
b
a2 ln� x

a � bx� � C


 x
�a � bx�2 dx �

1
b2 � a

a � bx
� ln�a � bx�	 � C


 1
a2 � x2 dx �

1
2a

 ln�a � x
a � x� � C


 1
x�a � bx� dx �

1
a

 ln� x
a � bx� � C


 1
�x � 3�x

dx
 �x
x � 4

dx


 ex

�e2x � 1��ex � 1� dx
 ex

�ex � 1��ex � 4� dx


 sec2 x
tan x�tan x � 1� dx
 sec2 x

tan2 x � 5 tan x � 6
dx


 5 cos x
sin2 x � 3 sin x � 4

dx
 cos x
sin x � sin2 x

dx


 sin x
cos x � cos2 x

dx
 sin x
cos x�cos x � 1� dx

�2, 6�
 x2 � x � 2
x3 � x2 � x � 1

dx,

�7, 2�
 1
x2 � 25

dx,

�3, 2�
 x�2x � 9�
x3 � 6x2 � 12x � 8

dx,

�3, 10�
 2x2 � 2x � 3
x3 � x2 � x � 2

dx,

�3, 4�
 x3

�x2 � 4�2 dx,�0, 1�
 x2 � x � 2
�x2 � 2�2 dx,

�2, 1�
 6x2 � 1
x2�x � 1�3 dx,�6, 0�
 5x

x2 � 10x � 25
dx,


1

0

x2 � x
x2 � x � 1

dx
2

1

x � 1
x�x2 � 1� dx


5

1

x � 1
x2�x � 1� dx
2

0

3
4x2 � 5x � 1

dx


 x2 � x � 3
x4 � 6x2 � 9

dx
 x2 � 5
x3 � x2 � x � 3

dx


 x2 � 4x � 7
x3 � x2 � x � 3

dx
 x
16x4 � 1

dx


 x2 � x � 9
�x2 � 9�2 dx
 x2

x4 � 2x2 � 8
dx


 6x
x3 � 8

dx
 x2 � 1
x3 � x

dx


 4x2

x3 � x2 � x � 1
dx
 x2 � 3x � 4

x3 � 4x2 � 4x
dx


 3x � 4
�x � 1�2 dx
 4x2 � 2x � 1

x3 � x2 dx


 x � 2
x2 � 4x

dx
 2x3 � 4x2 � 15x � 5
x2 � 2x � 8

dx


 x3 � x � 3
x2 � x � 2

dx
 x2 � 12x � 12
x3 � 4x

dx


 5x2 � 12x � 12
x3 � 4x

dx
 5 � x
2x2 � x � 1

dx


 x � 2
x2 � 11x � 18

dx
 5
x2 � 3x � 4

dx


 1
4x2 � 1

dx
 1
x2 � 9

dx

2x � 1
x�x2 � 1�2

x � 9
x2 � 6x

x � 4
x2 � 6x � 5

2x � 3
x3 � 10x

2x2 � 1
�x � 3�3

4
x2 � 8x
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8.5 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

57. What is the first step when integrating Explain.

58. Describe the decomposition of the proper rational function
(a) if and (b) if 

where is irreducible.
Explain why you chose that method.

ax2 � bx � c�ax2 � bx � c�n,
D�x� �D�x� � � px � q�mN�x��D�x�


 x3

x � 5
dx?

WRITING ABOUT CONCEPTS
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CAS
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59. Area Find the area of the region bounded by the graphs of
and

60. Area Find the area of the region bounded by the graphs of
and

61. Area Find the area of the region bounded by the graphs of
and

63. Modeling Data The predicted cost (in hundreds of thousands
of dollars) for a company to remove of a chemical from its
waste water is shown in the table.

A model for the data is given by 

Use the model to find the average cost of 
removing between 75% and 80% of the chemical.

64. Logistic Growth In Chapter 6, the exponential growth 
equation was derived from the assumption that the rate of
growth was proportional to the existing quantity. In practice,
there often exists some upper limit past which growth cannot
occur. In such cases, you assume the rate of growth to be
proportional not only to the existing quantity, but also to the
difference between the existing quantity and the upper limit

That is, In integral form, you can write
this relationship as

(a) A slope field for the differential equation 
is shown. Draw a possible solution to the differential
equation if and another if To print 
an enlarged copy of the graph, go to the website
www.mathgraphs.com.

(b) Where is greater than 3, what is the sign of the slope
of the solution?

(c) For find 

(d) Evaluate the two given integrals and solve for as a function
of where is the initial quantity.

(e) Use the result of part (d) to find and graph the solutions in
part (a). Use a graphing utility to graph the solutions and
compare the results with the solutions in part (a).

(f ) The graph of the function is a logistic curve. Show that
the rate of growth is maximum at the point of inflection,
and that this occurs when 

65. Volume and Centroid Consider the region bounded by the
graphs of and Find
the volume of the solid generated by revolving the region about
the axis. Find the centroid of the region.

66. Volume Consider the region bounded by the graph of
on the interval Find the volume

of the solid generated by revolving this region about the -axis.

67. Epidemic Model A single infected individual enters a
community of susceptible individuals. Let be the number of
newly infected individuals at time The common epidemic
model assumes that the disease spreads at a rate proportional to
the product of the total number infected and the number not yet
infected. So, and you obtain

Solve for as a function of 

68. Chemical Reactions In a chemical reaction, one unit of
compound Y and one unit of compound Z are converted into a
single unit of compound X. is the amount of compound X
formed, and the rate of formation of X is proportional to the
product of the amounts of unconverted compounds Y and Z. So,

where and are the initial
amounts of compounds Y and Z. From this equation you obtain

(a) Perform the two integrations and solve for in terms of 

(b) Use the result of part (a) to find as if (1) 
(2) and (3) 

69. Evaluate

in two different ways, one of which is partial fractions.


1

0

x
1 � x4 dx

y0 � z0.y0 > z 0,
y0 < z0,t → �x

t.x


 1
�y0 � x��z0 � x� dx � 
k dt.

z0y0dx�dt � k�y0 � x��z0 � x�,

x

t.x


 1
�x � 1��n � x� dx � 
 k dt.

dx�dt � k�x � 1��n � x�

t.
xn

x
�0, 1�.y2 � �2 � x�2��1 � x�2

x-

x � 3.x � 0,y � 0,y � 2x��x2 � 1�,

y � L�2.

y

y0t,
y

lim
t→�

y�t�.y > 0,

y�0�

t
1

1

2

2

3

3

4

4

5

5

y

y�0� �
1
2.y�0� � 5,

y�3 � y�dy�dt �


 dy
y�L � y� � 
 k dt.

dy�dt � ky�L � y�.L.
y

L

0 � p < 100.

C �
124p

�10 � p��100 � p�,

p%
C

y � 1.y � 7��16 � x2�

x � 2.x � 0,y � 0,y � 15��x2 � 7x � 12�,

x � 1.x � 0,y � 0,y � 12��x2 � 5x � 6�,
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62. State the method you would use to evaluate each integral.
Explain why you chose that method. Do not integrate.

(a) (b)

(c) 
 4
x2 � 2x � 5

dx


 7x � 4
x2 � 2x � 8

dx
 x � 1
x2 � 2x � 8

dx

CAPSTONE

p 0 10 20 30 40 50 60 70 80 90

C 0 0.7 1.0 1.3 1.7 2.0 2.7 3.6 5.5 11.2

70. Prove 

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

22
7

� 	 � 
1

0

x4�1 � x�4

1 � x2 dx.
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8.6 Integration by Tables and Other Integration Techniques
■ Evaluate an indefinite integral using a table of integrals.
■ Evaluate an indefinite integral using reduction formulas.
■ Evaluate an indefinite integral involving rational functions of sine and cosine.

Integration by Tables
So far in this chapter you have studied several integration techniques that can be used
with the basic integration rules. But merely knowing how to use the various
techniques is not enough. You also need to know when to use them. Integration is first
and foremost a problem of recognition. That is, you must recognize which rule or
technique to apply to obtain an antiderivative. Frequently, a slight alteration of an
integrand will require a different integration technique (or produce a function whose
antiderivative is not an elementary function), as shown below.

Integration by parts

Power Rule

Log Rule

Not an elementary function

Many people find tables of integrals to be a valuable supplement to the integra-
tion techniques discussed in this chapter. Tables of common integrals can be found in
Appendix B. Integration by tables is not a “cure-all” for all of the difficulties that
can accompany integration—using tables of integrals requires considerable thought
and insight and often involves substitution.

Each integration formula in Appendix B can be developed using one or more of
the techniques in this chapter. You should try to verify several of the formulas. For
instance, Formula 4

Formula 4

can be verified using the method of partial fractions, and Formula 19

Formula 19

can be verified using integration by parts. Note that the integrals in Appendix B are
classified according to forms involving the following.

Trigonometric functions

Inverse trigonometric functions Exponential functions

Logarithmic functions

�a2 � u2

�u2 ± a2�a2 ± u2�
�a � bu�a � bu � cu2�
�a � bu�un


 �a � bu
u

du � 2�a � bu � a 
 du

u�a � bu


 u
�a � bu�2 du �

1
b2 � a

a � bu
� ln�a � bu�	 � C


 x
ln x

dx � ?


 1
x ln x

dx � ln�ln x� � C


 ln x
x

dx �
�ln x�2

2
� C


 x ln x dx �
x2

2
 ln x �

x2

4
� C

TECHNOLOGY A computer algebra
system consists, in part, of a database
of integration formulas. The primary
difference between using a computer
algebra system and using tables of
integrals is that with a computer
algebra system the computer searches
through the database to find a fit. 
With integration tables, you must do
the searching.



EXAMPLE 1 Integration by Tables

Find

Solution Because the expression inside the radical is linear, you should consider
forms involving 

Formula 17 

Let and Then and you can write

EXAMPLE 2 Integration by Tables

Find

Solution Because the radical has the form you should consider
Formula 26.

Let and Then and you have

EXAMPLE 3 Integration by Tables

Find

Solution Of the forms involving consider the following formula.

Formula 84

Let Then and you have

■�
1
2

�x2 � ln�1 � e�x2�� � C.

� �
1
2

��x2 � ln�1 � e�x2�� � C


 x
1 � e�x2 dx � �

1
2 
 �2x dx

1 � e�x2

du � �2x dx,u � �x2.


 du
1 � eu � u � ln�1 � eu� � C

eu,


 x
1 � e�x2 dx.

�
1
4

�x2�x4 � 9 � 9 ln�x2 � �x4 � 9�� � C.


 x�x4 � 9 dx �
1
2 
��x2�2 � 32 �2x� dx

du � 2x dx,a � 3.u � x2


�u2 � a2 du �
1
2

�u�u2 � a2 � a2 ln�u � �u2 � a2�� � C

�u2 � a2,


 x�x4 � 9 dx.


 dx

x�x � 1
� 2 arctan �x � 1 � C.

du � dx,u � x.b � 1,a � �1,

�a < 0�
 du

u�a � bu
�

2
��a

 arctan �a � bu
�a

� C

�a � bu.


 dx

x�x � 1
 .
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Example 3 shows the importance of having several solution 
techniques at your disposal. This integral is not difficult to solve with a table, but
when it was entered into a well-known computer algebra system, the utility was
unable to find the antiderivative.

TECHNOLOGY

E X P L O R A T I O N

Use the tables of integrals in
Appendix B and the substitution

to evaluate the integral in
Example 1. If you do this, you
should obtain

Does this produce the same result
as that obtained in Example 1?


 dx

x�x � 1
� 
 2 du

u2 � 1
.

u � �x � 1



Reduction Formulas
Several of the integrals in the integration tables have the form 

Such integration formulas are called reduction formulas because they
reduce a given integral to the sum of a function and a simpler integral.

EXAMPLE 4 Using a Reduction Formula

Find

Solution Consider the following three formulas.

Formula 52

Formula 54

Formula 55

Using Formula 54, Formula 55, and then Formula 52 produces

EXAMPLE 5 Using a Reduction Formula

Find

Solution Consider the following two formulas.

Formula 17 

Formula 19

Using Formula 19, with and produces

Using Formula 17, with and produces

■� �3 � 5x �
�3
2

 ln��3 � 5x � �3
�3 � 5x � �3� � C.


 �3 � 5x
2x

dx � �3 � 5x �
3
2� 1

�3
 ln��3 � 5x � �3

�3 � 5x � �3�	 � C

u � x,b � �5,a � 3,

� �3 � 5x �
3
2 
 dx

x�3 � 5x
.

1
2 
 �3 � 5x

x
dx �

1
2 �2�3 � 5x � 3 
 dx

x�3 � 5x	
u � x,a � 3, b � �5,


 �a � bu
u

du � 2�a � bu � a 
 du

u�a � bu

�a > 0�
 du

u�a � bu
�

1
�a

 ln��a � bu � �a
�a � bu � �a� � C


 �3 � 5x
2x

dx.

� �x3 cos x � 3x2 sin x � 6x cos x � 6 sin x � C.

� �x3 cos x � 3 �x2 sin x � 2 
 x sin x dx	

 x3 sin x dx � �x3 cos x � 3 
 x2 cos x dx


 un cos u du � un sin u � n 
un�1 sin u du


 un sin u du � �un cos u � n 
 un�1 cos u du


 u sin u du � sin u � u cos u � C


 x3 sin x dx.

� h�x� dx.
� f�x� dx � g�x� �
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Sometimes when
you use computer algebra systems you
obtain results that look very different,
but are actually equivalent. Here is 
how two different systems evaluated 
the integral in Example 5.

Notice that computer algebra systems 
do not include a constant of integration.

�Sqrt�3 � 5x�
Sqrt�3� �Sqrt�3� ArcTanh

Sqrt�3 � 5x� �

Mathematica

�3 arctanh�1
3�3 � 5x�3 �

�3 � 5x �

Maple

TECHNOLOGY



Rational Functions of Sine and Cosine

EXAMPLE 6 Integration by Tables

Find

Solution Substituting for produces

A check of the forms involving or in Appendix B shows that none of those
listed applies. So, you can consider forms involving For example,

Formula 3

Let and Then and you have

■

Example 6 involves a rational expression of and If you are unable to
find an integral of this form in the integration tables, try using the following special
substitution to convert the trigonometric expression to a standard rational expression.

cos x.sin x

� �2 cos x � 4 ln�2 � cos x� � C.

� �2�cos x � 2 ln�2 � cos x�� � C

 2 
 sin x cos x
2 � cos x

dx � �2 
 cos x��sin x dx �
2 � cos x

du � �sin x dx,u � cos x.b � 1,a � 2,


 u du
a � bu

�
1
b2 �bu � a ln�a � bu�� � C.

a � bu.
cos usin u


 sin 2x
2 � cos x

dx � 2 
 sin x cos x
2 � cos x

dx.

sin 2x2 sin x cos x


 sin 2x
2 � cos x

dx.
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SUBSTITUTION FOR RATIONAL FUNCTIONS OF SINE AND COSINE

For integrals involving rational functions of sine and cosine, the substitution

yields

and dx �
2 du

1 � u2.sin x �
2u

1 � u2,cos x �
1 � u2

1 � u2,

u �
sin x

1 � cos x
� tan

x
2

PROOF From the substitution for it follows that

Solving for produces To find write
as

Finally, to find consider Then you have and
■dx � �2 du���1 � u2�.

arctan u � x�2u � tan�x�2�.dx,

sin x � u �1 � cos x� � u�1 �
1 � u2

1 � u2	 �
2u

1 � u2.

u � sin x��1 � cos x�
sin x,cos x � �1 � u2���1 � u2�.cos x

u2 �
sin2 x

�1 � cos x�2 �
1 � cos2 x

�1 � cos x�2 �
1 � cos x
1 � cos x

.

u,



In Exercises 1 and 2, use a table of integrals with forms involving
to find the integral.

1. 2.

In Exercises 3 and 4, use a table of integrals with forms involving
to find the integral.

3. 4.

In Exercises 5 and 6, use a table of integrals with forms involving
to find the integral.

5. 6.

In Exercises 7–10, use a table of integrals with forms involving
the trigonometric functions to find the integral.

7. 8.

9. 10.

In Exercises 11 and 12, use a table of integrals with forms
involving to find the integral.

11. 12.

In Exercises 13 and 14, use a table of integrals with forms
involving ln to find the integral.

13. 14.

In Exercises 15–18, find the indefinite integral (a) using
integration tables and (b) using the given method.

15. Integration by parts

16. Integration by parts

17. Partial fractions

18. Partial fractions

In Exercises 19–42, use integration tables to find the integral.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35.

36.

37. 38.

39. 40.

41. 42.

In Exercises 43–50, use integration tables to evaluate the
integral.

43. 44.

45. 46.

47. 48.

49. 50.

In Exercises 51–56, verify the integration formula.

51.

52.

53.

54.

55.

56. 
 �ln u�n du � u�ln u�n � n
 �ln u�n�1 du


 arctan u du � u arctan u � ln�1 � u2 � C


 u n cos u du � un sin u � n 
 u n�1 sin u du


 1
�u2 ± a2�3�2 du �

±u

a2�u2 ± a2
� C

2
�2n � 1�b�un�a � bu � na
 un�1

�a � bu
du	
 un

�a � bu
du �

1
b3 �bu �

a2

a � bu
� 2a ln�a � bu�	 � C
 u2

�a � bu�2 du �


1

0

�3 � x2 dx
	�2

0
t3 cos t dt


6

4

x2

�2x � 7�2 dx
	�2

�	�2

cos x
1 � sin2 x

dx


	�2

0
x cos x dx
2

1
x4 ln x dx


7

0

x
�9 � x

dx
1

0
xex2 dx


 cot4  d
 e3x

�1 � e x�3 dx


�5 � x
5 � x

dx
 x3

�4 � x2
dx


 cos x
�sin2 x � 1

dx
 x
�x 4 � 6x2 � 5

dx


 �2x � 3�2��2x � 3�2 � 4 dx


 x
�x2 � 6x � 10�2 dx


 ex

�1 � e2x�3�2 dx
 ln x
x�3 � 2 ln x� dx


�x arctan x3�2 dx
 1

x2�2 � 9x2
dx


 x2�2 � 9x2 dx
 cos 

3 � 2 sin  � sin2 
d


 1
t �1 � �ln t�2� dt
 x

1 � sec x2 dx


 e x

1 � tan e x dx
 e x arccos e x dx


  2

1 � sin 3 d
 4x
�2 � 5x�2 dx


 1
x2 � 4x � 8

dx
 1

x2�x2 � 4
dx


 arcsec 2x dx
 x arccsc�x2 � 1� dx


 1
x2 � 48

dx


 1
x2�x � 1� dx


x6 ln x dx


 x2 e3x dx

MethodIntegral


�ln x�3 dx
 x7 ln x dx

u


 e�x�2 sin 2x dx
 1
1 � e2x dx

eu


 1
1 � tan 5x

dx
 1
�x �1 � cos�x � dx


 sin3 �x
�x

dx
 cos4 3x dx


 x
�100 � x 4

dx
 1

x2�1 � x2
dx

�a2 � u2


 �x2 � 36
6x

dx
 ex�1 � e2x dx

�u2 ± a2


 2
3x2�2x � 5�2 dx
 x2

5 � x
dx

a 1 bu
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8.6 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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78. State (if possible) the method or integration formula you
would use to find the antiderivative. Explain why you chose
that method or formula. Do not integrate.

(a) (b)

(c) (d)

(e) (f) 
e2x�e2x � 1 dx
ex2 dx


x ex dx
x ex2 dx


 ex

ex � 1
dx
 ex

e2x � 1
dx

CAPSTONE

85. Evaluate 

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.


	�2

0

dx
1 � �tan x��2

.

PUTNAM EXAM CHALLENGE

In Exercises 57–62, use a computer algebra system to determine
the antiderivative that passes through the given point. Use the
system to graph the resulting antiderivative.

57.

58.

59.

60.

61.

62.

In Exercises 63–70, find or evaluate the integral.

63. 64.

65. 66.

67. 68.

69. 70.

Area In Exercises 71 and 72, find the area of the region
bounded by the graphs of the equations.

71. 72.

True or False? In Exercises 75 and 76, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

75. To use a table of integrals, the integral you are evaluating must
appear in the table.

76. When using a table of integrals, you may have to make substi-
tutions to rewrite your integral in the form in which it appears
in the table.

77. Volume Consider the region bounded by the graphs of
and Find the volume of

the solid generated by revolving the region about the -axis.

79. Work A hydraulic cylinder on an industrial machine pushes a
steel block a distance of feet where the variable
force required is pounds. Find the work done
in pushing the block the full 5 feet through the machine.

80. Work Repeat Exercise 79, using pounds.

81. Building Design The cross section of a precast concrete
beam for a building is bounded by the graphs of the equations

and

where and are measured in feet. The length of the beam is
20 feet (see figure). (a) Find the volume and the weight of
the beam. Assume the concrete weighs 148 pounds per cubic
foot. (b) Then find the centroid of a cross section of the beam.

82. Population A population is growing according to the logistic

model where is the time in days. Find the

average population over the interval 

In Exercises 83 and 84, use a graphing utility to (a) solve the
integral equation for the constant k and (b) graph the region
whose area is given by the integral.

83. 84. 
k

0
 6x2 e�x�2 dx � 50
4

0

k
2 � 3x

dx � 10

�0, 2�.

tN �
5000

1 � e4.8�1.9t ,

x
1 2

3

2

1

3−1−2−3

20 ft

y

WV
yx

y � 3x �
2

�1 � y 2
, x �

�2
�1 � y 2

, y � 0,

F�x� �
500x

�26 � x2

F�x� � 2000xe�x

�0 � x � 5�,x

y
x � 4.x � 0,y � 0,y � x�16 � x2,

y �
x

1 � ex2, y � 0, x � 2y �
x

�x � 3
, y � 0, x � 6


 4
csc  � cot 

d
 sin �

�
d


 cos 

1 � cos 
d
 sin 

3 � 2 cos 
d


	�2

0

1
3 � 2 cos 

d
	�2

0

1
1 � sin  � cos 

d


 sin 

1 � cos2 
d
 1

2 � 3 sin 
d

�0, 1�
 sin 

�cos ��1 � sin � d,

�	
4, 2�
 1

sin  tan 
d,

�0, �2 �
 �2 � 2x � x2

x � 1
dx,

�3, 0�
 1
�x2 � 6x � 10�2 dx,

�0, 0�
 x�x2 � 2x dx,

�1
2, 5�
 1

x3�2�1 � x
dx,

73. (a) Evaluate for 2, and 3. Describe any
patterns you notice.

(b) Write a general rule for evaluating the integral in part
(a), for an integer 

74. Describe what is meant by a reduction formula. Give an
example.

n � 1.

n � 1,� xn ln x dx

WRITING ABOUT CONCEPTS

CAS
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8.7 Indeterminate Forms and L’Hôpital’s Rule
■ Recognize limits that produce indeterminate forms.
■ Apply L’Hôpital’s Rule to evaluate a limit.

Indeterminate Forms
Recall that the forms and are called indeterminate because they do not 
guarantee that a limit exists, nor do they indicate what the limit is, if one does exist.
When you encountered one of these indeterminate forms earlier in the text, you
attempted to rewrite the expression by using various algebraic techniques.

Occasionally, you can extend these algebraic techniques to find limits of
transcendental functions. For instance, the limit

produces the indeterminate form Factoring and then dividing produces

However, not all indeterminate forms can be evaluated by algebraic manipulation.
This is often true when both algebraic and transcendental functions are involved. For
instance, the limit

produces the indeterminate form Rewriting the expression to obtain

merely produces another indeterminate form, Of course, you could use tech-
nology to estimate the limit, as shown in the table and in Figure 8.14. From the table
and the graph, the limit appears to be 2. (This limit will be verified in Example 1.)

� � �.

lim
x→0 �

e2x

x
�

1
x	

0�0.

lim
x→0

e2x � 1
x

lim
x→0

e2x � 1
ex � 1

� lim
x→0

�ex � 1��ex � 1�
ex � 1

� lim
x→0

�ex � 1� � 2.

0�0.

lim
x→0

e2x � 1
ex � 1

�
3
2

lim
x→�

3x2 � 1
2x2 � 1

� lim
x→�

3 � �1�x2�
2 � �1�x2�

�
�

� �4

lim
x→�1

2x2 � 2
x � 1

� lim
x→�1

2�x � 1�0
0

Algebraic TechniqueLimitForm
Indeterminate

���0�0

Divide numerator and
denominator by �x � 1�.

Divide numerator and 
denominator by x2.

x �1 �0.1 �0.01 �0.001 0 0.001 0.01 0.1 1

e2x � 1
x

0.865 1.813 1.980 1.998 ? 2.002 2.020 2.214 6.389

x
−4 −3 −2 −1 1

2

2

3

3

4

4

5

6

7

8

e2x − 1
x

y =

y

The limit as approaches 0 appears to be 2.
Figure 8.14

x



L’Hôpital’s Rule
To find the limit illustrated in Figure 8.14, you can use a theorem called L’Hôpital’s
Rule. This theorem states that under certain conditions the limit of the quotient

is determined by the limit of the quotient of the derivatives

To prove this theorem, you can use a more general result called the Extended Mean
Value Theorem.

The Extended Mean Value Theorem and L’Hôpital’s Rule are both proved in
Appendix A.

L’Hôpital’s Rule can also be applied to one-sided limits. For instance, if the limit
of as approaches produces the indeterminate form 

then

provided the limit exists (or is infinite).

lim
x→c�

f�x�
g�x� � lim

x→c�

f��x�
g��x�

0�0,
rightthefromcxf �x��g�x�

f��x�
g��x�.

f�x��g�x�
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THEOREM 8.3 THE EXTENDED MEAN VALUE THEOREM

If and are differentiable on an open interval and continuous on 
such that for any in then there exists a point in such
that

f��c�
g��c� �

f�b� � f�a�
g�b� � g�a�.

�a, b�c�a, b�,xg��x� � 0
�a, b��a, b�gf

THEOREM 8.4 L’HÔPITAL’S RULE

Let and be functions that are differentiable on an open interval 
containing except possibly at itself. Assume that for all in

except possibly at itself. If the limit of as approaches 
produces the indeterminate form then

provided the limit on the right exists (or is infinite). This result also applies if
the limit of as approaches produces any one of the indeterminate
forms or ���������.���, ������, ������,

cxf�x��g�x�

lim
x→c

f�x�
g�x� � lim

x→c

f��x�
g��x�

0�0,
cxf�x��g�x�c�a, b�,

xg��x� � 0cc,
�a, b�gf

NOTE To see why this is called the Extended Mean Value Theorem, consider the special case
in which For this case, you obtain the “standard” Mean Value Theorem as presented
in Section 3.2. ■

g�x� � x.

NOTE People occasionally use L’Hôpital’s Rule incorrectly by applying the Quotient Rule to
Be sure you see that the rule involves not the derivative of 

■

f �x��g�x�.f��x��g��x�,f �x��g�x�.

■ FOR FURTHER INFORMATION
To enhance your understanding of the 
necessity of the restriction that be
nonzero for all in except possibly
at see the article “Counterexamples to
L’Hôpital’s Rule” by R. P. Boas in The
American Mathematical Monthly. To
view this article, go to the website
www.matharticles.com.

c,
�a, b�,x

g��x�

GUILLAUME L’HÔPITAL (1661–1704)

L’Hôpital’s Rule is named after the French
mathematician Guillaume François Antoine de
L’Hôpital. L’Hôpital is credited with writing the
first text on differential calculus (in 1696) in
which the rule publicly appeared. It was
recently discovered that the rule and its proof
were written in a letter from John Bernoulli to
L’Hôpital. “… I acknowledge that I owe very
much to the bright minds of the Bernoulli
brothers. … I have made free use of their
discoveries …,” said L’Hôpital.
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EXAMPLE 1 Indeterminate Form 0 0

Evaluate 

Solution Because direct substitution results in the indeterminate form 

you can apply L’Hôpital’s Rule, as shown below.

Apply L’Hôpital’s Rule.

Differentiate numerator and denominator.

Evaluate the limit. ■

Another form of L’Hôpital’s Rule states that if the limit of as approaches
(or ) produces the indeterminate form or then

provided the limit on the right exists.

EXAMPLE 2 Indeterminate Form 

Evaluate 

Solution Because direct substitution results in the indeterminate form you
can apply L’Hôpital’s Rule to obtain

Apply L’Hôpital’s Rule.

Differentiate numerator and denominator.

Evaluate the limit. ■� 0.

� lim
x→�

1
x

 lim
x→�

ln x
x

� lim
x→�

d
dx

�ln x �

d
dx

�x�

���,

lim
x→�

ln x
x

.

�/�

���,0�0���
xf�x��g�x�

� 2

� lim
x→0

2e2x

1

 lim
x→0

e2x � 1
x

� lim
x→0

d
dx

�e2x � 1�

d
dx

�x�

lim
x→0

x � 0

lim
x→0

e2x � 1
x

lim
x→0

�e2x � 1� � 0

0�0

lim
x→0

e2x � 1
x

.

/
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NOTE In writing the string of equations in Example 1, you actually do not know that the first
limit is equal to the second until you have shown that the second limit exists. In other words, if
the second limit had not existed, it would not have been permissible to apply L’Hôpital’s Rule.

■

lim
x→�

f�x�
g�x� � lim

x→�

f��x�
g��x�

NOTE Try graphing and
in the same viewing window.

Which function grows faster as 
approaches How is this observation
related to Example 2?

�?
x

y2 � x
y1 � ln x

Numerical and
Graphical Approaches Use a 
numerical or a graphical approach 
to approximate each limit.

a.

b.

c.

d.

What pattern do you observe? Does an
analytic approach have an advantage
for these limits? If so, explain your
reasoning.

lim
x→0

52x � 1
x

lim
x→0

42x � 1
x

lim
x→0

32x � 1
x

lim
x→0

22x � 1
x

TECHNOLOGY



Occasionally it is necessary to apply L’Hôpital’s Rule more than once to remove
an indeterminate form, as shown in Example 3.

EXAMPLE 3 Applying L’Hôpital’s Rule More Than Once

Evaluate 

Solution Because direct substitution results in the indeterminate form you
can apply L’Hôpital’s Rule.

This limit yields the indeterminate form so you can apply L’Hôpital’s
Rule again to obtain

■

In addition to the forms and there are other indeterminate forms such
as and For example, consider the following four limits
that lead to the indeterminate form 

Limit is 1. Limit is 2. Limit is 0. Limit is 

Because each limit is different, it is clear that the form is indeterminate in the
sense that it does not determine the value (or even the existence) of the limit. The 
following examples indicate methods for evaluating these forms. Basically, you
attempt to convert each of these forms to or so that L’Hôpital’s Rule can
be applied.

EXAMPLE 4 Indeterminate Form 0

Evaluate 

Solution Because direct substitution produces the indeterminate form you
should try to rewrite the limit to fit the form or In this case, you can rewrite
the limit to fit the second form.

Now, by L’Hôpital’s Rule, you have

■lim
x→�

�x
ex � lim

x→�

1��2�x �
ex � lim

x→�

1

2�x ex
� 0.

lim
x→�

e�x�x � lim
x→�

�x
ex

���.0�0
0 � �,

lim
x→�

e�x�x.

� �

���0�0

0 � �

�.

lim
x→�

�ex��1
x	lim

x→�
�x�� 1

ex	,lim
x→0

�x��2
x	,lim

x→0
�x��1

x	,

0 � �.
� � �.0 � �, 1�, �0, 00,

���,0�0

lim
x→��

2x
�e�x � lim

x→��

d
dx

�2x�

d
dx

��e�x�
� lim

x→��

2
e�x � 0.

���������,

lim
x→��

x2

e�x � lim
x→��

d
dx

�x2�

d
dx

�e�x�
� lim

x→��

2x
�e�x

���,

lim
x→��

x2

e�x .
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If rewriting a limit in one of the forms or does not seem to work, try
the other form. For instance, in Example 4 you can write the limit as

which yields the indeterminate form As it happens, applying L’Hôpital’s Rule to
this limit produces

which also yields the indeterminate form 
The indeterminate forms and arise from limits of functions that have

variable bases and variable exponents. When you previously encountered this type of
function, you used logarithmic differentiation to find the derivative. You can use a
similar procedure when taking limits, as shown in the next example.

EXAMPLE 5 Indeterminate Form 1

Evaluate 

Solution Because direct substitution yields the indeterminate form you can 
proceed as follows. To begin, assume that the limit exists and is equal to 

Taking the natural logarithm of each side produces

Because the natural logarithmic function is continuous, you can write

Indeterminate form 

Indeterminate form 

L’Hôpital’s Rule

Now, because you have shown that you can conclude that and obtain

You can use a graphing utility to confirm this result, as shown in Figure 8.15.
■

lim
x→�

�1 �
1
x	

x

� e.

y � eln y � 1,

� 1.

� lim
x→�

1
1 � �1�x�

� lim
x→�

���1�x2��1��1 � �1�x���
�1�x2 	

0�0� lim
x→�

�ln�1 � �1�x��
1�x 	

� � 0 ln y � lim
x→�

�x ln�1 �
1
x	�

ln y � ln� lim
x→�

�1 �
1
x	

x

�.

y � lim
x→�

�1 �
1
x	

x

y.
1�,

lim
x→�

�1 �
1
x	

x

.

�

001�, �0,
0�0.

lim
x→�

e�x

x�1�2 � lim
x→�

�e�x

�1��2x3�2�

0�0.

lim
x→�

e�x�x � lim
x→�

e�x

x�1�2

���0�0
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6

5

−1

−3

1
x

y =   1 +
x( (

The limit of as approaches
infinity is 
Figure 8.15

e.
x�1 � �1�x��x



L’Hôpital’s Rule can also be applied to one-sided limits, as demonstrated in
Examples 6 and 7.

EXAMPLE 6 Indeterminate Form 00

Find

Solution Because direct substitution produces the indeterminate form you can
proceed as shown below. To begin, assume that the limit exists and is equal to 

Indeterminate form 

Take natural log of each side.

Continuity

Indeterminate form 

Indeterminate form 

L’Hôpital’s Rule

Indeterminate form 

L’Hôpital’s Rule

Now, because you can conclude that and it follows that

■lim
x→0�

�sin x�x � 1.

y � e0 � 1,ln y � 0,

� lim
x→0�

�2x
sec2x

� 0

0�0� lim
x→0�

�x2

tan x

� lim
x→0�

cot x
�1�x2

����� lim
x→0�

ln�sin x�
1�x

0 � ����� lim
x→0�

�x ln�sin x��

� lim
x→0�

�ln�sin x�x�

 ln y � ln � lim
x→0�

�sin x�x�

00y � lim
x→0�

�sin x�x

y.
00,

lim
x→0�

�sin x�x.
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When evaluating complicated limits such as the one in Example 6,
it is helpful to check the reasonableness of the solution with a computer or with a
graphing utility. For instance, the calculations in the following table and the graph
in Figure 8.16 are consistent with the conclusion that approaches 1 as 
approaches 0 from the right.

Use a computer algebra system or graphing utility to estimate the following limits:

and

Then see if you can verify your estimates analytically.

lim
x→0�

�tan x�x.

lim
x→0

�1 � cos x�x

x�sin x�x

TECHNOLOGY

x 1.0 0.1 0.01 0.001 0.0001 0.00001

�sin x�x 0.8415 0.7942 0.9550 0.9931 0.9991 0.9999

−1

−1

2

2

y = (sin x)x

The limit of is 1 as approaches 0
from the right.
Figure 8.16

x�sin x�x



EXAMPLE 7 Indeterminate Form 

Evaluate 

Solution Because direct substitution yields the indeterminate form you
should try to rewrite the expression to produce a form to which you can apply
L’Hôpital’s Rule. In this case, you can combine the two fractions to obtain

Now, because direct substitution produces the indeterminate form you can apply
L’Hôpital’s Rule to obtain

This limit also yields the indeterminate form so you can apply L’Hôpital’s Rule
again to obtain

■

The forms and have been identified as
indeterminate. There are similar forms that you should recognize as “determinate.”

Limit is positive infinity.

Limit is negative infinity.

Limit is zero.

Limit is positive infinity.

(You are asked to verify two of these in Exercises 116 and 117.)
As a final comment, remember that L’Hôpital’s Rule can be applied only to

quotients leading to the indeterminate forms and For instance, the
following application of L’Hôpital’s Rule is incorrect.

Incorrect use of L’Hôpital’s Rule

The reason this application is incorrect is that, even though the limit of the 
denominator is 0, the limit of the numerator is 1, which means that the hypotheses of
L’Hôpital’s Rule have not been satisfied.

lim
x→0

ex

x
� lim

x→0

ex

1
� 1

���.0�0

0�� → �

0� →  0

�� � � → ��

� � � → �

�00�0, ���, � � �, 0 � �, 00, 1�,

�
1
2

.

 lim
x→1�� 1

ln x
�

1
x � 1	 � lim

x→1�� 1
1 � x�1�x� � ln x�

0�0,

� lim
x→1� � x � 1

x � 1 � x ln x	.

� lim
x→1� � 1 � �1�x�

�x � 1��1�x� � ln x�

 lim
x→1� � 1

ln x
�

1
x � 1	 � lim

x→1�

d
dx

�x � 1 � ln x�

d
dx

��x � 1� ln x�

0�0,

lim
x→1� � 1

ln x
�

1
x � 1	 � lim

x→1� �x � 1 � ln x
�x � 1� ln x �.

� � �,

lim
x→1�� 1

ln x
�

1
x � 1	.

� � �
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In each of the examples
presented in this section, L’Hôpital’s
Rule is used to find a limit that exists. 
It can also be used to conclude that a
limit is infinite. For instance, try using
L’Hôpital’s Rule to show that

lim
x→�

ex

x
� �.

STUDY TIP



Numerical and Graphical Analysis In Exercises 1–4, complete
the table and use the result to estimate the limit. Use a graphing
utility to graph the function to support your result.

1.

2.

3.

4.

In Exercises 5–10, evaluate the limit (a) using techniques from
Chapters 1 and 3 and (b) using L’Hôpital’s Rule.

5. 6.

7. 8.

9. 10.

In Exercises 11– 44, evaluate the limit, using L’Hôpital’s Rule if
necessary. (In Exercise 18, is a positive integer.)

11. 12.

13. 14.

15. 16.

17. 18.

19. 20. where

21. 22. where

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

In Exercises 45–62, (a) describe the type of indeterminate form
(if any) that is obtained by direct substitution. (b) Evaluate the
limit, using L’Hôpital’s Rule if necessary. (c) Use a graphing
utility to graph the function and verify the result in part (b).

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62. lim
x→0��10

x
�

3
x2	lim

x→1�� 3
ln x

�
2

x � 1	

lim
x→2�� 1

x2 � 4
�

�x � 1
x2 � 4 	lim

x→2�� 8
x2 � 4

�
x

x � 2	

lim
x→0� �cos�	

2
� x	�

x

lim
x→1�

�ln x� x�1

lim
x→4�

�3�x � 4�� x�4lim
x→0�

�3�x�x�2�

lim
x→�

�1 � x�1�xlim
x→0�

�1 � x�1�x

lim
x→�

�1 �
1
x	

x

lim
x→�

x1�x

lim
x→0�

�e x � x�2�xlim
x→0�

x1�x

lim
x→�

x tan 
1
x

lim
x→�

�x sin 
1
x	

lim
x→0�

x 3 cot xlim
x→�

x ln x

lim
x→1�

�x
1 cos  d

x � 1
lim

x→�

�x
1 ln�e4t�1� dt

x

lim
x→0

x
arctan 2x

lim
x→0

arctan x
sin x

lim
x→1

ln x
sin 	x

lim
x→0

sin 5x
tan 9x

lim
x→�

e x�2

x
lim

x→�

ex

x4

lim
x→�

ln x4

x3lim
x→�

ln x
x2

lim
x→�

sin x
x � 	

lim
x→�

cos x
x

lim
x→�

x2

�x2 � 1
lim

x→�

x
�x2 � 1

lim
x→�

x3

ex2lim
x→�

x3

ex�2

lim
x→�

x3

x � 2
lim

x→�

x2 � 4x � 7
x � 6

lim
x→�

x � 6
x2 � 4x � 7

lim
x→�

5x2 � 3x � 1
4x2 � 5

lim
x→1

arctan x � �	�4�
x � 1

lim
x→0

arcsin x
x

b � 0a,lim
x→0

sin ax
sin bx

,lim
x→0

sin 3x
sin 5x

b � 0a,lim
x→1

xa � 1
xb � 1

,lim
x→1

x11 � 1
x4 � 1

lim
x→0�

e x � �1 � x�
xnlim

x→0�

e x � �1 � x�
x3

lim
x→1

ln x2

x2 � 1
lim
x→0

e x � �1 � x�
x

lim
x→5�

�25 � x2

x � 5
lim
x→0

�25 � x2 � 5
x

lim
x→�1

x2 � 2x � 3
x � 1

lim
x→3

x2 � 2x � 3
x � 3

n

lim
x→�

2x � 1
4x2 � x

lim
x→�

5x2 � 3x � 1
3x2 � 5

lim
x→0

sin 6x
4x

lim
x→6

�x � 10 � 4
x � 6

lim
x→�2

2x2 � x � 6
x � 2

lim
x→4

3�x � 4�
x2 � 16

lim
x→�

6x
�3x2 � 2x

lim
x→�

x5 e�x�100

lim
x→0

1 � ex

x

lim
x→0

sin 4x
sin 3x
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8.7 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

x �0.1 �0.01 �0.001 0.001 0.01 0.1

f �x�

x �0.1 �0.01 �0.001 0.001 0.01 0.1

f �x�

x 1 10 102 103 104 105

f �x�

x 1 10 102 103 104 105

f �x�

www.CalcChat.com


In Exercises 63–66, use a graphing utility to (a) graph the 
function and (b) find the required limit (if it exists).

63. 64.

65. 66.

71. Numerical Approach Complete the table to show that 
eventually “overpowers”

72. Numerical Approach Complete the table to show that 
eventually “overpowers”

Comparing Functions In Exercises 73–78, use L’Hôpital’s Rule
to determine the comparative rates of increase of the functions

and where 
and

73. 74.

75. 76.

77. 78.

In Exercises 79–82, find any asymptotes and relative extrema
that may exist and use a graphing utility to graph the function.
(Hint: Some of the limits required in finding asymptotes have
been found in previous exercises.)

79. 80.

81. 82.

Think About It In Exercises 83–87, L’Hôpital’s Rule is used
incorrectly. Describe the error.

83.

84.

85.

86.

87.

Analytical Approach In Exercises 89 and 90, (a) explain why
L’Hôpital’s Rule cannot be used to find the limit, (b) find the
limit analytically, and (c) use a graphing utility to graph the
function and approximate the limit from the graph. Compare
the result with that in part (b).

89. 90.

Graphical Analysis In Exercises 91 and 92, graph and
near What do you notice about these ratios as

How does this illustrate L’Hôpital’s Rule?

91.

92. g�x� � xf �x� � e3x � 1,

g�x� � sin 4xf �x� � sin 3x,

x → 0?
x � 0.f��x��g��x�

f �x�/g�x�

lim
x→	�2�

tan x
sec x

lim
x→�

x
�x2 � 1

� 1

� lim
x→�

 lim
x→�

e�x

1 � e�x � lim
x→�

�e�x

�e�x

� 0

� lim
x→�

��sin�1�x���1�x2�
�1�x2

 lim
x→�

x cos 
1
x

� lim
x→�

cos�1�x�
1�x

lim
x→0

sin 	x � 1
x

� lim
x→0

	 cos 	x
1

� 	

lim
x→0

e2x � 1
e x � lim

x→0

2e2x

e x � lim
x→0

 2e x � 2

lim
x→2

3x2 � 4x � 1
x2 � x � 2

� lim
x→2

6x � 4
2x � 1

� lim
x→2

6
2

� 3

y �
ln x

x
y � 2xe�x

x  >  0y � xx,x > 0y � x1�x,

lim
x→�

xm

enxlim
x→�

�ln x�n

xm

lim
x→�

�ln x�2

x3lim
x→�

�ln x�3

x

lim
x→�

x3

e2xlim
x→�

x2

e5x

x → �.
n > 0, m > 0,h�x� � �ln x�n,g�x� � enx,f �x� � xm,

x5.
e x

�ln x�4.
x

lim
x→�

x3

e2xlim
x→�

��x2 � 5x � 2 � x�

lim
x→0�

�sin x�xlim
x→3

x � 3
ln�2x � 5�
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67. List six different indeterminate forms.

68. State L’Hôpital’s Rule.

69. Find differentiable functions and that satisfy the 
specified condition such that and

Explain how you obtained your answers. (Note: There are
many correct answers.)

(a) (b)

(c)

70. Find differentiable functions and such that

and

Explain how you obtained your answers. (Note: There are
many correct answers.)

lim
x→�

� f�x� � g�x�� � 25.

lim
x→�

f �x� � lim
x→�

g�x� � �

gf

lim
x→5

f �x�
g�x� � �

lim
x→5

f �x�
g�x� � 0lim

x→5

f �x�
g�x� � 10

lim
x→5

g�x� � 0.
lim
x→5

f �x� � 0
gf

WRITING ABOUT CONCEPTS

x 10 102 104 106 108 1010

�ln x�4

x

x 1 5 10 20 30 40 50 100

ex

x5

88. Determine which of the following limits can be evaluated
using L’Hôpital’s Rule. Explain your reasoning. Do not
evaluate the limit.

(a) (b)

(c) (d)

(e) (f) lim
x→1

1 � x�ln x � 1�
ln x�x � 1)

lim
x→1

cos 	x
ln x

lim
x→3

ex2
� e9

x � 3
lim

x→�

x3

ex

lim
x→0

x2 � 4x
2x � 1

lim
x→2

x � 2
x3 � x � 6

CAPSTONE



93. Velocity in a Resisting Medium The velocity of an object
falling through a resisting medium such as air or water is given
by

where is the initial velocity, is the time in seconds, and is
the resistance constant of the medium. Use L’Hôpital’s Rule to
find the formula for the velocity of a falling body in a vacuum
by fixing and and letting approach zero. (Assume that the
downward direction is positive.)

94. Compound Interest The formula for the amount in a
savings account compounded times per year for years at an
interest rate and an initial deposit of is given by

Use L’Hôpital’s Rule to show that the limiting formula as the
number of compoundings per year approaches infinity is given
by

95. The Gamma Function The Gamma Function is defined
in terms of the integral of the function given by

Show that for any fixed value of 
the limit of as approaches infinity is zero.

96. Tractrix A person moves from the origin along the positive
axis pulling a weight at the end of a 12-meter rope (see

figure). Initially, the weight is located at the point 

(a) Show that the slope of the tangent line of the path of the
weight is

(b) Use the result of part (a) to find the equation of the path of
the weight. Use a graphing utility to graph the path and
compare it with the figure.

(c) Find any vertical asymptotes of the graph in part (b).

(d) When the person has reached the point how far has
the weight moved?

In Exercises 97–100, apply the Extended Mean Value Theorem
to the functions and on the given interval. Find all values 
in the interval such that

97.

98.

99.

100.

True or False? In Exercises 101–104, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

101.

102. If then 

103. If is a polynomial, then 

104. If then 

105. Area Find the limit, as approaches 0, of the ratio of the
area of the triangle to the total shaded area in the figure.

106. In Section 1.3, a geometric argument (see figure) was used to
prove that

(a) Write the area of in terms of 

(b) Write the area of the shaded region in terms of 

(c) Write the ratio of the area of to that of the 
shaded region.

(d) Find lim
→0

R.
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.

.�ABD
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θ

y

lim
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sin 


� 1.

x
− −

1

2

(−x, 1 − cos x) (x, 1 − cos x)

f(x) = 1 − cos x
y

2
ππ

2
π π

x

lim
x→�

� f �x� � g�x�� � 0.lim
x→�

f �x�
g�x� � 1,

lim
x→�

�p�x��e x� � 0.p�x�
y� � e x�2x.y � e x�x2,

lim
x→0 �x2 � x � 1

x � � lim
x→0 �2x � 1

1 � � 1

�1, 4�g�x� � x3f �x� � ln x,

�0,
	

2�g�x� � cos xf �x� � sin x,

�1, 2�g�x� � x2 � 4f �x� �
1
x
,

�0, 1�g�x� � x2 � 1f �x� � x3,

IntervalFunctions

f��c�
g��c� �

f �b� � f �a�
g�b� � g�a� .

�a, b�
cgf

�0, 12�,

dy
dx

� �
�144 � x2

x
.
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�12, 0�.
y-

xf �x�
n,n > 0.f �x� � x n�1e�x,

��n�
A � Pert.

A � P�1 �
r
n	

nt

.

Pr
tn

A

ktv0

ktv0

v �
32
k �1 � e�kt �

v0 ke�kt

32 	

v
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Continuous Functions In Exercises 107 and 108, find the value
of that makes the function continuous at 

107.

108.

109. Find the values of and such that 

110. Show that for any integer 

111. (a) Let be continuous. Show that

(b) Explain the result of part (a) graphically.

112. Let be continuous. Show that

113. Sketch the graph of

and determine 

114. Use a graphing utility to graph

for 0.1, and 0.01. Then evaluate the limit

115. Consider the limit 

(a) Describe the type of indeterminate form that is obtained
by direct substitution.

(b) Evaluate the limit. Use a graphing utility to verify the
result.

116. Prove that if and then

117. Prove that if and 

then

118. Prove the following generalization of the Mean Value
Theorem. If is twice differentiable on the closed interval

then

119. Indeterminate Forms Show that the indeterminate forms 
and do not always have a value of 1 by evaluating

each limit.

(a)

(b)

(c)

120. Calculus History In L’Hôpital’s 1696 calculus textbook, he
illustrated his rule using the limit of the function

as approaches Find this limit.

121. Consider the function

(a) Use a graphing utility to graph the function. Then use the
zoom and trace features to investigate 

(b) Find analytically by writing 

(c) Can you use L’Hôpital’s Rule to find Explain
your reasoning.

122. Let and 

(a) Show that 

(b) Show that and 

(c) Evaluate the limit What do you notice?

(d) Do your answers to parts (a) through (c) contradict
L’Hôpital’s Rule? Explain your reasoning.

lim
x→�

f��x�
g��x)

.

lim
x→�

g�x� � �.lim
x→�

f �x� � �

lim
x→�

f �x�
g�x)

� 0.

g�x� � x2 � 4.f �x� � x � x sin x

lim
x→�

h�x�?

h�x� �
x
x

�
sin x

x
.

lim
x→�

h�x�
lim

x→�
h�x�.

h�x� �
x � sin x

x
.

a > 0.a,x

f �x� �
�2a3 x � x4 � a 3�a2 x

a � 4�ax3

lim
x→0

�x � 1��ln 2��x

lim
x→�

xln 2��1� ln x�

lim
x→0�

xln 2��1� ln x�

1��0,
00,

f �b� � f �a� � f��a��b � a� � 
b

a

f � �t��t � b� dt.

�a, b�,
f

lim
x→a

f �x�g�x� � �.

lim
x→a

g�x� � ��,lim
x→a

f �x� � 0,f �x� � 0,

lim
x→a

f �x�g�x� � 0.

lim
x→a

g�x� � �,lim
x→a

f �x� � 0,f �x� � 0,

lim
x→0�

��x ln x�.

lim
k→0�

x k � 1
k

.

k � 1,

f �x� �
x k � 1

k

g��0�.

g�x� � �e�1�x 2

0,
, x � 0

x � 0

lim
h→0

f �x � h� � 2f �x� � f �x � h�
h2 � f��x�.

f� �x�

y

x
x − h x + hx

f

lim
h→0

f �x � h� � f �x � h�
2h

� f��x�.

f��x�

n > 0.lim
x→�

xn

ex � 0

lim
x→0

a � cos bx
x2 � 2.ba

f �x� � ��ex � x�1�x,
c,

x � 0
x � 0

f �x� � �4x � 2 sin 2x
2x3 ,

c,

x � 0

x � 0

x � 0.c
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123. Evaluate where 

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

a � 1.a > 0,lim
x→�

�1
x

�
ax � 1
a � 1 �

1�x

PUTNAM EXAM CHALLENGE

■ FOR FURTHER INFORMATION For a geometric approach to
this exercise, see the article “A Geometric Proof of

” by John H. Mathews in the College

Mathematics Journal. To view this article, go to the website
www.matharticles.com.

lim
d→0�

��d ln d� � 0

www.matharticles.com


■ Evaluate an improper integral that has an infinite limit of integration.
■ Evaluate an improper integral that has an infinite discontinuity.

Improper Integrals with Infinite Limits of Integration
The definition of a definite integral

requires that the interval be finite. Furthermore, the Fundamental Theorem of
Calculus, by which you have been evaluating definite integrals, requires that be
continuous on In this section you will study a procedure for evaluating integrals
that do not satisfy these requirements—usually because either one or both of the limits
of integration are infinite, or has a finite number of infinite discontinuities in the
interval Integrals that possess either property are improper integrals. Note that
a function is said to have an infinite discontinuity at if, from the right or left,

or

To get an idea of how to evaluate an improper integral, consider the integral

which can be interpreted as the area of the shaded region shown in Figure 8.17. Taking
the limit as produces

This improper integral can be interpreted as the area of the unbounded region between
the graph of and the axis (to the right of ).x � 1x-f �x� � 1�x2


�

1

dx
x2 � lim

b→�
�
b

1

dx
x2	 � lim

b→�
�1 �

1
b	 � 1.

b →�


b

1

dx
x2 � �

1
x�

b

1
� �

1
b

� 1 � 1 �
1
b

lim
x→c

f�x� � ��.lim
x→c

f�x� � �

cf
�a, b�.

f

�a, b�.
f

�a, b�


b

a

f�x� dx
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8.8 Improper Integrals

DEFINITION OF IMPROPER INTEGRALS WITH INFINITE INTEGRATION
LIMITS

1. If is continuous on the interval then

2. If is continuous on the interval then

3. If is continuous on the interval then

where is any real number (see Exercise 120).

In the first two cases, the improper integral converges if the limit exists—
otherwise, the improper integral diverges. In the third case, the improper inte-
gral on the left diverges if either of the improper integrals on the right diverges.

c


�

��

f�x� dx � 
c

��

f�x� dx � 
�

c

f�x� dx

���, ��,f


b

��

f�x� dx � lim
a→��


b

a

f�x� dx.

���, b�,f


�

a

f�x� dx � lim
b→�


b

a

f�x� dx.

�a, ��,f

432

2

1

1
x

1
dx

x2

b

1 x2

b

1
f(x) =

b → ∞

y

The unbounded region has an area of 1.
Figure 8.17



EXAMPLE 1 An Improper Integral That Diverges

Evaluate 

Solution

Take limit as 

Apply Log Rule.

Apply Fundamental Theorem of Calculus.

Evaluate limit.

See Figure 8.18. ■

EXAMPLE 2 Improper Integrals That Converge

Evaluate each improper integral.

a. b.

Solution

a.

See Figure 8.19.

The area of the unbounded region is 1. The area of the unbounded region is 
Figure 8.19 Figure 8.20

■

	�2.

2

1

321
x

1
x2 + 1

y =

y

2

1

321
x

y = e−x

y

� 1

� lim
b→�

��e�b � 1�

� lim
b→� ��e�x�

b

0


�

0
e�x dx � lim

b→�

b

0
e�x dx


�

0

1
x2 � 1

dx
�

0
e�x dx

� �

� lim
b→�

�ln b � 0�

� lim
b→� �ln x�

b

1

b → �.
�

1

dx
x

� lim
b→�


b

1

dx
x


�

1

dx
x

.
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NOTE Try comparing the regions shown in Figures 8.17 and 8.18. They look similar, yet the
region in Figure 8.17 has a finite area of 1 and the region in Figure 8.18 has an infinite area.

■

b.

See Figure 8.20.

�
	

2

� lim
b→�

 arctan b

� lim
b→� �arctan x�

b

0


�

0

1
x2 � 1

dx � lim
b→�


b

0

1
x2 � 1

dx

2

1

321
x

1
x

Diverges
(infinite area)

y =

y

This unbounded region has an infinite area.
Figure 8.18



In the following example, note how L’Hôpital’s Rule can be used to evaluate an
improper integral.

EXAMPLE 3 Using L’Hôpital’s Rule with an Improper Integral

Evaluate 

Solution Use integration by parts, with and 

Now, apply the definition of an improper integral.

Finally, using L’Hôpital’s Rule on the right-hand limit produces

from which you can conclude that

See Figure 8.21.

EXAMPLE 4 Infinite Upper and Lower Limits of Integration

Evaluate 

Solution Note that the integrand is continuous on To evaluate the
integral, you can break it into two parts, choosing as a convenient value.

See Figure 8.22. ■

�
	

2

�
	

4
� 0 �

	

2
�

	

4

� lim
b→�� �	

4
� arctan eb	 � lim

b→� �arctan eb �
	

4	
� lim

b→�� �arctan ex�
0

b
� lim

b→� �arctan ex�
b

0


�

��

ex

1 � e2x dx � 
0

��

ex

1 � e2x dx � 
�

0

ex

1 � e2x dx

c � 0
���, ��.


�

��

ex

1 � e2x dx.


�

1
�1 � x�e�x dx � �

1
e
.

lim
b→�

b
eb � lim

b→�

1
eb � 0

� � lim
b→�

b
eb	 �

1
e


�

1
�1 � x�e�x dx � lim

b→� �xe�x�
b

1

� xe�x � C

� �e�x � xe�x � e�x � C


 �1 � x�e�x dx � �e�x�1 � x� � 
 e�x dx

u � �1 � x�.dv � e�x dx


�

1
�1 � x�e�x dx.
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x

−0.03

−0.06

−0.09

−0.12

−0.15

y = (1 − x)e−x

42 8

y

The area of the unbounded region is

Figure 8.21
��1�e�.

2−1−2 1
x

ex

1 + e2xy =

y

1
2

The area of the unbounded region is 
Figure 8.22

	�2.



EXAMPLE 5 Sending a Space Module into Orbit

In Example 3 in Section 7.5, you found that it would require 10,000 mile-tons of work
to propel a 15-metric-ton space module to a height of 800 miles above Earth. How
much work is required to propel the module an unlimited distance away from Earth’s
surface?

Solution At first you might think that an infinite amount of work would be required.
But if this were the case, it would be impossible to send rockets into outer space.
Because this has been done, the work required must be finite. You can determine the
work in the following manner. Using the integral in Example 3, Section 7.5, replace
the upper bound of 4800 miles by and write

mile-tons

foot-pounds.

See Figure 8.23. ■

Improper Integrals with Infinite Discontinuities
The second basic type of improper integral is one that has an infinite discontinuity at
or between the limits of integration.

� 6.984 
 1011

� 60,000

� lim
b→�

��
240,000,000

b
�

240,000,000
4000 	

� lim
b→�

��
240,000,000

x �
b

4000

W � 
�

4000

240,000,000
x2 dx

�
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DEFINITION OF IMPROPER INTEGRALS WITH INFINITE DISCONTINUITIES

1. If is continuous on the interval and has an infinite discontinuity at
then

2. If is continuous on the interval and has an infinite discontinuity at
then

3. If is continuous on the interval except for some in at which
has an infinite discontinuity, then

In the first two cases, the improper integral converges if the limit exists—
otherwise, the improper integral diverges. In the third case, the improper 
integral on the left diverges if either of the improper integrals on the right
diverges.


b

a

f�x� dx � 
c

a

f�x� dx � 
b

c

f�x� dx.

f
�a, b�c�a, b�,f


b

a

f�x� dx � lim
c→a� 
b

c

f�x� dx.

a,
�a, b�f


b

a

f�x� dx � lim
c→b� 
c

a

f�x� dx.

b,
�a, b�f

The work required to move a space module
an unlimited distance away from Earth is
approximately foot-pounds.
Figure 8.23

6.984 
 1011



EXAMPLE 6 An Improper Integral with an Infinite Discontinuity

Evaluate 

Solution The integrand has an infinite discontinuity at as shown in Figure
8.24. You can evaluate this integral as shown below.

EXAMPLE 7 An Improper Integral That Diverges

Evaluate 

Solution Because the integrand has an infinite discontinuity at you can write

So, you can conclude that the improper integral diverges.

EXAMPLE 8 An Improper Integral with an Interior Discontinuity

Evaluate 

Solution This integral is improper because the integrand has an infinite discontinuity
at the interior point as shown in Figure 8.25. So, you can write

From Example 7 you know that the second integral diverges. So, the original improper
integral also diverges. ■


2
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dx
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�1
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2

0
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x3.
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b
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2

0

dx
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�
3
2

� lim
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1
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1
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3�x
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NOTE Remember to check for infinite discontinuities at interior points as well as at endpoints
when determining whether an integral is improper. For instance, if you had not recognized that
the integral in Example 8 was improper, you would have obtained the incorrect result

Incorrect evaluation ■
2

�1

dx
x3 �

�1
2x2�

2

�1
� �

1
8

�
1
2

�
3
8

.

21

2

1

x

1
3y =

(1, 1)

x

y

Infinite discontinuity at 
Figure 8.24
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1

1

2

2
y =

−1

−1

−2

x

y

x3
1

The improper integral diverges.

Figure 8.25


2

�1
 1�x3 dx



The integral in the next example is improper for two reasons. One limit of
integration is infinite, and the integrand has an infinite discontinuity at the outer limit
of integration.

EXAMPLE 9 A Doubly Improper Integral

Evaluate 

Solution To evaluate this integral, split it at a convenient point (say, ) and write

See Figure 8.26.

EXAMPLE 10 An Application Involving Arc Length

Use the formula for arc length to show that the circumference of the circle
is

Solution To simplify the work, consider the quarter circle given by 
where The function is differentiable for any in this interval except

Therefore, the arc length of the quarter circle is given by the improper integral

This integral is improper because it has an infinite discontinuity at So, you can
write

Finally, multiplying by 4, you can conclude that the circumference of the circle is
as shown in Figure 8.27. ■4s � 2	,
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1

1

2

2

x

y = 1
x (x + 1)

y

The area of the unbounded region is 
Figure 8.26
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1

−1

−1
x

1 − x2y =
y

, 0 ≤ x ≤ 1

The circumference of the circle is 
Figure 8.27
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This section concludes with a useful theorem describing the convergence or
divergence of a common type of improper integral. The proof of this theorem is left
as an exercise (see Exercise 55).

EXAMPLE 11 An Application Involving A Solid of Revolution

The solid formed by revolving (about the axis) the unbounded region lying between
the graph of and the axis is called Gabriel’s Horn. (See Figure
8.28.) Show that this solid has a finite volume and an infinite surface area.

Solution Using the disk method and Theorem 8.5, you can determine the volume 
to be

Theorem 8.5,

The surface area is given by

Because

on the interval and the improper integral

diverges, you can conclude that the improper integral

also diverges. (See Exercise 58.) So, the surface area is infinite.

Gabriel’s Horn has a finite volume and an infinite surface area.
Figure 8.28 ■
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THEOREM 8.5 A SPECIAL TYPE OF IMPROPER INTEGRAL


�

1

dx
xp � �

1
p � 1

,        if p > 1

diverges,     if p � 1

■ FOR FURTHER INFORMATION For
further investigation of solids that have
finite volumes and infinite surface areas,
see the article “Supersolids: Solids Having
Finite Volume and Infinite Surfaces” by
William P. Love in Mathematics Teacher.
To view this article, go to the website
www.matharticles.com.

■ FOR FURTHER INFORMATION
To learn about another function that 
has a finite volume and an infinite 
surface area, see the article “Gabriel’s
Wedding Cake” by Julian F. Fleron in
The College Mathematics Journal. To
view this article, go to the website 
www.matharticles.com.

www.matharticles.com
www.matharticles.com


In Exercises 1–8, decide whether the integral is improper.
Explain your reasoning.

1. 2.

3. 4.

5. 6.

7. 8.

In Exercises 9–14, explain why the integral is improper and
determine whether it diverges or converges. Evaluate the
integral if it converges.

9. 10.

11. 12.

13. 14.

Writing In Exercises 15–18, explain why the evaluation of the
integral is incorrect. Use the integration capabilities of a graphing
utility to attempt to evaluate the integral. Determine whether
the utility gives the correct answer.

15. 16.

17. 18.

In Exercises 19–36, determine whether the improper integral
diverges or converges. Evaluate the integral if it converges.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

In Exercises 37–54, determine whether the improper integral
diverges or converges. Evaluate the integral if it converges, and
check your results with the results obtained by using the
integration capabilities of a graphing utility.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50. 
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51. 52.

53. 54.

In Exercises 55 and 56, determine all values of p for which the
improper integral converges.

55. 56.

57. Use mathematical induction to verify that the following integral
converges for any positive integer 

58. Comparison Test for Improper Integrals In some cases, it is
impossible to find the exact value of an improper integral but it
is important to determine whether the integral converges or
diverges. Suppose the functions and are continuous and

on the interval It can be shown that 
if converges, then also converges, and if

diverges, then also diverges. This is
known as the Comparison Test for improper integrals.

(a) Use the Comparison Test to determine if 
converges or diverges. Hint: Use the fact that 
for

(b) Use the Comparison Test to determine if 

converges or diverges. Hint: Use the fact that 

for

In Exercises 59–70, use the results of Exercises 55–58 to 
determine whether the improper integral converges or diverges.

59. 60.

61. 62.

63. 64.

65. 66.

67. 68.

69. 70.

Area In Exercises 75–78, find the area of the unbounded
shaded region.

75. 76.

77. Witch of Agnesi: 78. Witch of Agnesi:

Area and Volume In Exercises 79 and 80, consider the region
satisfying the inequalities. (a) Find the area of the region. (b)
Find the volume of the solid generated by revolving the region
about the -axis. (c) Find the volume of the solid generated by
revolving the region about the -axis.

79. 80.

81. Arc Length Sketch the graph of the hypocycloid of four
cusps and find its perimeter.

82. Arc Length Find the arc length of the graph of
over the interval 

83. Surface Area The region bounded by is
revolved about the axis to form a torus. Find the surface area
of the torus.
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71. Describe the different types of improper integrals.

72. Define the terms and when working
with improper integrals.

divergesconverges

WRITING ABOUT CONCEPTS

73. Explain why 

74. Consider the integral

To determine the convergence or divergence of the integral,
how many improper integrals must be analyzed? What must
be true of each of these integrals if the given integral
converges?


3

0

10
x2 � 2x

dx.


1

�1

1
x3 dx � 0.

WRITING ABOUT CONCEPTS (cont inued)
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98. For each integral, find a value of that makes the inte-
gral improper. Explain your reasoning.

(a) (b)

(c) (d)

(e) (f ) 
b

0

cos x
1 � sin x

dx
b

0
 tan 2x dx


10

b

 ln x dx
b

0

x
x2 � 7x � 12

dx


b

0

1
�4 � x

dx
b

0

1
x2 � 9

dx

b � 0

CAPSTONE

84. Surface Area Find the area of the surface formed by revolving
the graph of on the interval about the -axis.

Propulsion In Exercises 85 and 86, use the weight of the rocket
to answer each question. (Use 4000 miles as the radius of Earth
and do not consider the effect of air resistance.)

(a) How much work is required to propel the rocket an
unlimited distance away from Earth’s surface?

(b) How far has the rocket traveled when half the total work
has occurred?

85. 5-ton rocket 86. 10-ton rocket

Probability A nonnegative function is called a probability
density function if

The probability that lies between and is given by

The expected value of is given by

In Exercises 87 and 88, (a) show that the nonnegative function
is a probability density function, (b) find and 
(c) find 

87. 88.

Capitalized Cost In Exercises 89 and 90, find the capitalized
cost of an asset (a) for years, (b) for years, and
(c) forever. The capitalized cost is given by

where is the original investment, is the time in years, is the
annual interest rate compounded continuously, and is the
annual cost of maintenance.

89. 90.

91. Electromagnetic Theory The magnetic potential at a point
on the axis of a circular coil is given by

where and are constants. Find 

92. Gravitational Force A “semi-infinite” uniform rod occupies
the nonnegative -axis. The rod has a linear density which
means that a segment of length has a mass of A particle
of mass is located at the point The gravitational
force that the rod exerts on the mass is given by

where is the gravitational constant.

Find

True or False? In Exercises 93–96, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

93. If is continuous on and then 
converges.

94. If is continuous on and diverges, then

95. If is continuous on and then

96. If the graph of is symmetric with respect to the origin or the
axis, then converges if and only if 

converges.

97. (a) Show that diverges.

(b) Show that 

(c) What do parts (a) and (b) show about the definition of
improper integrals?

99. Writing

(a) The improper integrals

and

diverge and converge, respectively. Describe the essential
differences between the integrands that cause one integral
to converge and the other to diverge.

(b) Sketch a graph of the function over the interval
Use your knowledge of the definite integral to

make an inference as to whether or not the integral

converges. Give reasons for your answer.

(c) Use one iteration of integration by parts on the integral in
part (b) to determine its divergence or convergence.
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100. Exploration Consider the integral

where is a positive integer.

(a) Is the integral improper? Explain.

(b) Use a graphing utility to graph the integrand for 4,
8, and 12.

(c) Use the graphs to approximate the integral as 

(d) Use a computer algebra system to evaluate the integral for
the values of in part (b). Make a conjecture about the
value of the integral for any positive integer Compare
your results with your answer in part (c).

101. The Gamma Function The Gamma Function is
defined by

(a) Find and 

(b) Use integration by parts to show that 

(c) Write using factorial notation where is a 
positive integer.

102. Prove that where

Then evaluate each integral.

(a) (b)

(c)

Laplace Transforms Let be a function defined for all
positive values of The Laplace Transform of is defined by

if the improper integral exists. Laplace Transforms are used to
solve differential equations. In Exercises 103–110, find the
Laplace Transform of the function.

103. 104.

105. 106.

107. 108.

109. 110.

111. Normal Probability The mean height of American men
between 20 and 29 years old is 70 inches, and the standard
deviation is 3 inches. A 20- to 29-year-old man is chosen at
random from the population. The probability that he is 6 feet
tall or taller is

(Source: National Center for Health Statistics)

(a) Use a graphing utility to graph the integrand. Use the
graphing utility to convince yourself that the area between
the axis and the integrand is 1.

(b) Use a graphing utility to approximate 

(c) Approximate using a graphing
utility. Use the graph in part (a) to explain why this result
is the same as the answer in part (b).

112. (a) Sketch the semicircle 

(b) Explain why

without evaluating either integral.

113. For what value of does the integral

converge? Evaluate the integral for this value of 

114. For what value of does the integral

converge? Evaluate the integral for this value of 

115. Volume Find the volume of the solid generated by revolving
the region bounded by the graph of about the -axis.

116. Volume Find the volume of the solid generated by revolving
the unbounded region lying between and the -axis

about the -axis.

u-Substitution In Exercises 117 and 118, rewrite the improper
integral as a proper integral using the given -substitution.
Then use the Trapezoidal Rule with to approximate the
integral.

117.

118.

119. (a) Use a graphing utility to graph the function 

(b) Show that 

120. Let be convergent and let and be real numbers

where Show that
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In Exercises 1– 8, use the basic integration rules to find or
evaluate the integral.

1. 2.

3. 4.

5. 6.

7. 8.

In Exercises 9–18, use integration by parts to find the integral.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

In Exercises 19–24, find the trigonometric integral.

19. 20.

21. 22.

23. 24.

Area In Exercises 25 and 26, find the area of the region.

25. 26.

In Exercises 27–32, use trigonometric substitution to find or
evaluate the integral.

27. 28.

29. 30.

31. 32.

In Exercises 33 and 34, find the integral using each method.

33.

(a) Trigonometric substitution

(b) Substitution:

(c) Integration by parts:

34.

(a) Trigonometric substitution

(b) Substitution:

(c) Substitution:

(d) Integration by parts:

In Exercises 35– 40, use partial fractions to find the integral.

35. 36.

37. 38.

39. 40.

In Exercises 41– 48, use integration tables to find or evaluate
the integral.

41. 42.

43. 44.

45. 46.

47. 48.

49. Verify the reduction formula

50. Verify the reduction formula
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In Exercises 51–58, find the integral using any method.

51. 52.

53. 54.

55. 56.

57. 58.

In Exercises 59–62, solve the differential equation using any
method.

59. 60.

61. 62.

In Exercises 63–68, evaluate the definite integral using any
method. Use a graphing utility to verify your result.

63. 64.

65. 66.

67. 68.

Area In Exercises 69 and 70, find the area of the region.

69. 70.

Centroid In Exercises 71 and 72, find the centroid of the region
bounded by the graphs of the equations.

71.

72.

Arc Length In Exercises 73 and 74, approximate to two decimal
places the arc length of the curve over the given interval.

73.

74.

In Exercises 75–82, use L’Hôpital’s Rule to evaluate the limit.

75. 76.

77. 78.

79. 80.

81. 82.

In Exercises 83–90, determine whether the improper integral
diverges or converges. Evaluate the integral if it converges.

83. 84.

85. 86.

87. 88.

89. 90.

91. Present Value The board of directors of a corporation is 
calculating the price to pay for a business that is forecast to
yield a continuous flow of profit of $500,000 per year. If money
will earn a nominal rate of 5% per year compounded 
continuously, what is the present value of the business

(a) for 20 years?

(b) forever (in perpetuity)?

(Note: The present value for years is )

92. Volume Find the volume of the solid generated by revolving
the region bounded by the graphs of and

about the axis.

93. Probability The average lengths (from beak to tail) of
different species of warblers in the eastern United States are
approximately normally distributed with a mean of 12.9
centimeters and a standard deviation of 0.95 centimeter (see
figure). The probability that a randomly selected warbler has a
length between and centimeters is

Use a graphing utility to approximate the probability that a
randomly selected warbler has a length of (a) 13 centimeters or
greater and (b) 15 centimeters or greater. (Source: Peterson’s
Field Guide: Eastern Birds)
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1. (a) Evaluate the integrals 

and

(b) Use Wallis’s Formulas to prove that 

for all positive integers 

2. (a) Evaluate the integrals and 

(b) Prove that 

for all positive integers 

3. Find the value of the positive constant such that

4. Find the value of the positive constant such that

5. The line is tangent to the unit circle at The length of
segment equals the length of the circular arc (see 
figure). Show that the length of segment approaches 2 as 
approaches

6. The segment is the height of Let be the ratio of the
area of to that of the shaded region formed by deleting

from the circular sector subtended by angle (see 
figure). Find 

7. Consider the problem of finding the area of the region bounded
by the axis, the line and the curve

(a) Use a graphing utility to graph the region and approximate
its area.

(b) Use an appropriate trigonometric substitution to find the
exact area.

(c) Use the substitution to find the exact area and
verify that you obtain the same answer as in part (b).

8. Use the substitution to find the area of the shaded 

region under the graph of 

(see figure).

Figure for 8 Figure for 9

9. Find the arc length of the graph of the function 
on the interval (see figure).

10. Find the centroid of the region above the axis and bounded
above by the curve where is a positive constant
(see figure).

Hint: Show that 

11. Some elementary functions, such as , do not have
antiderivatives that are elementary functions. Joseph Liouville
proved that 

does not have an elementary antiderivative. Use this fact to
prove that 

is not elementary.


 1
ln x

dx


ex

x
dx

f �x� � sin�x2�

x

y = e−c2x2

y


�

0
e�c2x2 dx �

1
c
�

0
e�x2 dx.	�

cy � e�c2x2,
x-

0 � x �
1
2

y � ln�1 � x2�

x

y

1
2

1
2

−
x

y

1

2
π π

2
3π 2π

0 � x � 	�2y �
1

2 � cos x
,

u � tan
x
2

x � 3 sinh u

y �
x2

�x2 � 9�3�2.

x � 4,x-

x
AO D

B

θ

y

(1, 0)

lim
→0�

R.
�OAB

�DAB
R�OAB.BD

x
A(1, 0)

R

Q

O

P

y

A.
POR

�PAQA
A.x � 1

lim
x→�

�x � c
x � c	

x

�
1
4

.

c

lim
x→�

�x � c
x � c	

x

� 9.

c

n.


1

0
�ln x�n dx � ��1�n n!


1

0
�ln x�2 dx.
1

0
ln x dx

n.


1

�1
�1 � x2�n dx �

22n�1�n!�2

�2n � 1�!


1

�1
�1 � x2�2 dx.
1

�1
�1 � x2� dx
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12. (a) Let be the inverse function of Use integration
by parts to derive the formula

(b) Use the formula in part (a) to find the integral

(c) Use the formula in part (a) to find the area under the graph
of (see figure).

13. Factor the polynomial and then find the area

under the graph of (see figure).

14. (a) Use the substitution to evaluate the integral

(b) Let be a positive integer. Evaluate the integral

15. Use a graphing utility to estimate each limit. Then calculate
each limit using L’Hôpital’s Rule. What can you conclude
about the form 0

(a) (b)

(c)

16. Suppose the denominator of a rational function can be factored
into distinct linear factors

for a positive integer and distinct real numbers 
If is a polynomial of degree less than show that

where for Note that this is
the partial fraction decomposition of 

17. Use the result of Exercise 16 to find the partial fraction decom-
position of 

18. The velocity (in feet per second) of a rocket whose initial
mass (including fuel) is is given by

where is the expulsion speed of the fuel, is the rate at which
the fuel is consumed, and feet per second per second
is the acceleration due to gravity. Find the position equation for
a rocket for which pounds, feet per
second, and pounds per second. What is the height of
the rocket when seconds? (Assume that the rocket was
fired from ground level and is moving straight upward.)

19. Suppose that and the second
derivatives of and are continuous on the closed interval

Prove that

20. Suppose that and the second derivatives of 
exist on the closed interval Prove that

21. Using the inequality

for approximate 

22. Consider the shaded region between the graph of 
where and the line where (see
figure). A solid is formed by revolving the region about the line

(a) For what value of does the solid have minimum volume?

(b) For what value of does the solid have maximum volume?

y

x
π

y = c

y = sin x

c

c

y � c.

0 � c � 1y � c,0 � x � 	,
y � sin x,


�

2

1
x5 � 1

dx.x � 2,

1
x5 �

1
x10 �

1
x15 <

1
x5 � 1

<
1
x5 �

1
x10 �

2
x15


b

a

�x � a��x � b�f ��x� dx � 2
b

a

f �x� dx.

�a, b�.
ff �a� � f �b� � 0


b

a

f �x�g��x� dx � 
b

a

f ��x�g�x� dx.

�a, b�.
gf

f �a� � f �b� � g�a� � g�b� � 0

t � 100
r � 400

u � 12,000m � 50,000

g � �32
ru

t <
m
r

v � gt � u ln 
m

m � rt
,

m
v

x3 � 3x2 � 1
x4 � 13x2 � 12x

.

N�x��D�x�.
k � 1, 2, .  .  . , n.Pk � N�ck��D��ck�

N�x�
D�x� �

P1

x � c1
�

P2

x � c2
� .  .  . �

Pn

x � cn

n,N
c1, c2, .  .  . , cn.n

D�x� � �x � c1��x � c2� .  .  . �x � cn�

lim
x→0� ��cot x �

1
x	�cot x �

1
x	�

lim
x→0� �cot x �

1
x	lim

x→0� �cot x �
1
x	

� �?


	�2

0

sinn x
cosn x � sinn x

dx.

n


	�2

0

sin x
cos x � sin x

dx.

u �
	

2
� x

x

y

1

1

0 � x � 1y �
1

x 4 � 1
,

p�x� � x 4 � 1

x

y

1

e1 2 3

1 � x � ey � ln x,


arcsin x dx.


f �1�x� dx � x f �1�x� � 
f �y� dy.

f.y � f �1�x�
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9 Infinite Series

Maclaurin polynomials approximate a given function in an interval around As you add terms to the Maclaurin 
polynomial, it becomes a better and better approximation of the given function near In Section 9.10, you will see
that a Maclaurin series is equivalent to the given function (under suitable conditions).

x � 0.
x � 0.

Eric Haines

This chapter is divided into two basic
parts. The first six sections discuss infinite
sequences and infinite series. The last four
sections discuss Taylor and Maclaurin
polynomials and power series.

In this chapter, you should learn the 
following.

■ How to determine whether a 
sequence converges or diverges. (9.1)

■ How to determine whether an 
infinite series converges or diverges.
(9.2–9.6)

■ How to find Taylor or Maclaurin 
polynomial approximations of 
elementary functions. (9.7)

■ How to find the radius and interval of
convergence of a power series and how 
to differentiate and integrate power
series. (9.8)

■ How to represent functions by power
series. (9.9)

■ How to find a Taylor or Maclaurin 
series for a function. (9.10)

The sphereflake shown above is a computer-generated fractal that was created by
Eric Haines. The radius of the large sphere is 1. To the large sphere, nine spheres
of radius are attached. To each of these, nine spheres of radius are attached.
This process is continued infinitely. Does the sphereflake have a finite or an infinite
surface area? (See Section 9.2, Exercise 114.)

1
9

1
3

■

■
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9.1 Sequences

E X P L O R A T I O N

Finding Patterns Describe a
pattern for each of the following
sequences. Then use your descrip-
tion to write a formula for the 

term of each sequence. As 
increases, do the terms appear to
be approaching a limit? Explain
your reasoning.

a.

b.

c.

d.

e. 3
7, 5

10, 7
13, 9

16, 11
19, .  .  .

1
4, 4

9, 9
16, 16

25, 25
36, .  .  .

10, 10
3 , 10

6 , 10
10, 10

15, .  .  .

1, 1
2, 1

6, 1
24, 1

120, .  .  .

1, 1
2, 1

4, 1
8, 1

16, .  .  .

nnth

NOTE Occasionally, it is convenient
to begin a sequence with so that the
terms of the sequence become
a0, a1, a2, a3, .  .  . , an, .  .  .

a0,

Some sequences are
defined recursively. To define a sequence
recursively, you need to be given one or
more of the first few terms. All other
terms of the sequence are then defined
using previous terms, as shown in
Example 1(d).

STUDY TIP

■ List the terms of a sequence.
■ Determine whether a sequence converges or diverges.
■ Write a formula for the nth term of a sequence.
■ Use properties of monotonic sequences and bounded sequences.

Sequences
In mathematics, the word “sequence” is used in much the same way as in ordinary
English. To say that a collection of objects or events is in sequence usually means that
the collection is ordered so that it has an identified first member, second member, third
member, and so on.

Mathematically, a sequence is defined as a function whose domain is the set of
positive integers. Although a sequence is a function, it is common to represent
sequences by subscript notation rather than by the standard function notation. For
instance, in the sequence

1, 2, 3, 4,

Sequence

1 is mapped onto 2 is mapped onto and so on. The numbers 
are the terms of the sequence. The number is the nth term of the sequence,

and the entire sequence is denoted by 

EXAMPLE 1 Listing the Terms of a Sequence

a. The terms of the sequence are

2, 4, 2, 4,

b. The terms of the sequence are

c. The terms of the sequence are

d. The terms of the recursively defined sequence where and
are

■

.  .  . .15 � 5 � 10,20 � 5 � 15,25 � 5 � 20,25,

dn�1 � dn � 5,
d1 � 25�dn�,

.  .  . .
16
15

,
9
7

,
4
3

,
1
1

,

.  .  .42

24 � 1
,

32

23 � 1
,

22

22 � 1
,

12

21 � 1
,

�cn� � � n2

2n � 1�

.  .  . .�
4
7

,�
3
5

,�
2
3

,�1,

.  .  . 
4

1 � 2 � 4
,

3
1 � 2 � 3

,
2

1 � 2 � 2
,

1
1 � 2 � 1

,

�bn� � � n
1 � 2n�

.  .  . .

.  .  . 3 � ��1�4,3 � ��1�3,3 � ��1�2,3 � ��1�1,

�an� � �3 � ��1�n�

�an�.
an.  .  .

a1, a2, a3, .  .  . , an,a2,a1,

.  .  .an,.  .  . ,a4,a3,a2,a1,

.  .  .n,.  .  . ,



Limit of a Sequence
The primary focus of this chapter concerns sequences whose terms approach limiting
values. Such sequences are said to converge. For instance, the sequence 

converges to 0, as indicated in the following definition.

Graphically, this definition says that eventually (for and ) the terms
of a sequence that converges to will lie within the band between the lines 
and as shown in Figure 9.1.

If a sequence agrees with a function at every positive integer, and if 
approaches a limit as the sequence must converge to the same limit 

EXAMPLE 2 Finding the Limit of a Sequence

Find the limit of the sequence whose term is 

Solution In Theorem 5.15, you learned that

So, you can apply Theorem 9.1 to conclude that

■� e.

lim
n→�

an � lim
n→�

�1 �
1
n	

n

lim
x→�

�1 �
1
x	

x

� e.

an � �1 �
1
n	

n

.

nth

L.x →�,L
f �x�f�an�

y � L � �,
y � L � �L

� > 0n > M

1
2

,
1
4

,
1
8

,
1
16

,
1
32

, .  .  .

�1�2n�
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DEFINITION OF THE LIMIT OF A SEQUENCE

Let be a real number. The limit of a sequence is written as

if for each there exists such that whenever 
If the limit of a sequence exists, then the sequence converges to If the limit
of a sequence does not exist, then the sequence diverges.

L.L
n > M.�an � L� < �M > 0� > 0,

lim
n→�

an � L

L,�an�L

THEOREM 9.1 LIMIT OF A SEQUENCE

Let be a real number. Let be a function of a real variable such that

If is a sequence such that for every positive integer then

lim
n→�

an � L.

n,f �n� � an�an�

lim
x→�

f �x� � L.

fL

NOTE The converse of Theorem 9.1 is not true (see Exercise 138). ■

n
642 31 5

ε

ε
L

M

L +

L −

y = an

For the terms of the sequence all lie
within units of
Figure 9.1

L.�
n > M,

NOTE There are different ways in
which a sequence can fail to have a
limit. One way is that the terms of the
sequence increase without bound or
decrease without bound. These cases 
are written symbolically as follows. 

Terms increase without bound:

Terms decrease without bound:

lim
n→�

an � ��

lim
n→�

an � �



The following properties of limits of sequences parallel those given for limits of
functions of a real variable in Section 1.3.

EXAMPLE 3 Determining Convergence or Divergence

a. Because the sequence has terms

See Example 1(a), page 596.

that alternate between 2 and 4, the limit

does not exist. So, the sequence diverges.

b. For divide the numerator and denominator by to obtain

See Example 1(b), page 596.

which implies that the sequence converges to 

EXAMPLE 4 Using L’Hôpital’s Rule to Determine Convergence

Show that the sequence whose term is converges.

Solution Consider the function of a real variable

Applying L’Hôpital’s Rule twice produces

Because for every positive integer, you can apply Theorem 9.1 to conclude
that

See Example 1(c), page 596.

So, the sequence converges to 0. ■

lim
n→�

n2

2n � 1
� 0.

f �n� � an

lim
x→�

x2

2x � 1
� lim

x→�

2x
�ln 2�2x � lim

x→�

2
�ln 2�22x � 0.

f �x� �
x2

2x � 1
.

an �
n2

2n � 1
nth

�
1
2.

lim
n→�

n
1 � 2n

� lim
n→�

1
�1�n� � 2

� �
1
2

n�bn� � � n
1 � 2n� ,

lim
n→�

an

2, 4, 2, 4, .  .  .

�an� � �3 � ��1�n�
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THEOREM 9.2 PROPERTIES OF LIMITS OF SEQUENCES

Let and 

1. 2. is any real number

3. 4. and K � 0bn � 0lim
n→�

an

bn

�
L
K

,lim
n→�

�anbn� � LK

clim
n→�

can � cL,lim
n→�

�an ± bn� � L ± K

lim
n→�

bn � K.lim
n→�

an � L

Use a graphing
utility to graph the function in
Example 4. Notice that as approaches
infinity, the value of the function gets
closer and closer to 0. If you have
access to a graphing utility that can
generate terms of a sequence, try
using it to calculate the first 20 terms
of the sequence in Example 4. Then
view the terms to observe numerically
that the sequence converges to 0.

x

TECHNOLOGY

The icon indicates that you will find a CAS Investigation on the book’s website. The CAS
Investigation is a collaborative exploration of this example using the computer algebra systems
Maple and Mathematica.



The symbol (read “ factorial”) is used to simplify some of the formulas
developed in this chapter. Let be a positive integer; then n factorial is defined as

As a special case, zero factorial is defined as From this definition, you can
see that and so on. Factorials follow the
same conventions for order of operations as exponents. That is, just as and 
imply different orders of operations, and imply the following orders.

and

Another useful limit theorem that can be rewritten for sequences is the Squeeze
Theorem from Section 1.3.

EXAMPLE 5 Using the Squeeze Theorem

Show that the sequence converges, and find its limit.

Solution To apply the Squeeze Theorem, you must find two convergent sequences
that can be related to the given sequence. Two possibilities are and

both of which converge to 0. By comparing the term with you can
see that

factors

and

factors

This implies that for and you have

as shown in Figure 9.2. So, by the Squeeze Theorem it follows that 

■lim
n→�

��1�n 1
n!

� 0.

n � 4
�1
2n � ��1�n 1

n!
�

1
2n ,

n � 4, 2n < n!,

n � 4

�n � 4�2n � 2 � 2 � 2 � 2 � 2 � 2 .  .  . 2 � 16 � 2 � 2 .  .  . 2.

n � 4

�n � 4�n! � 1 � 2 � 3 � 4 � 5 � 6 .  .  . n � 24 � 5 � 6 .  .  . n

2n,n!bn � 1�2n,
an � �1�2n

�cn� � ���1�n 1
n!�

�2n�! � 1 � 2 � 3 � 4 .  .  . n � �n � 1� .  .  . 2n

2n! � 2�n!� � 2�1 � 2 � 3 � 4 .  .  . n�

�2n�!2n!
�2x�32x3

3! � 1 � 2 � 3 � 6,2! � 1 � 2 � 2,1! � 1,
0! � 1.

n! � 1 � 2 � 3 � 4 .  .  . �n � 1� � n.

n
nn!
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THEOREM 9.3 SQUEEZE THEOREM FOR SEQUENCES

If

and there exists an integer such that for all then

lim
n→�

cn � L.

n > N,an � cn � bnN

lim
n→�

an � L � lim
n→�

bn

n
1

0.5

1.0

−1.5

−1.0

−0.5
1
2n

(−1)n

n!

−

1
2n

an

For is squeezed between
and

Figure 9.2
1�2n.�1�2n
��1�n�n!n � 4,

NOTE Example 5 suggests something
about the rate at which increases as

As Figure 9.2 suggests, both
and approach 0 as 

Yet approaches 0 so much faster
than does that

In fact, it can be shown that for any fixed
number

This means that the factorial function
grows faster than any exponential
function.

lim
n→�

kn

n!
� 0.

k,

lim
n→�

1�n!
1�2n � lim

n→�

2n

n!
� 0.

1�2n

1�n!
n →�.1�n!1�2n

n →�.
n!



In Example 5, the sequence has both positive and negative terms. For this
sequence, it happens that the sequence of absolute values, also converges to 0.
You can show this by the Squeeze Theorem using the inequality

In such cases, it is often convenient to consider the sequence of absolute values—and
then apply Theorem 9.4, which states that if the absolute value sequence converges to
0, the original signed sequence also converges to 0.

Pattern Recognition for Sequences
Sometimes the terms of a sequence are generated by some rule that does not
explicitly identify the term of the sequence. In such cases, you may be required to
discover a pattern in the sequence and to describe the term. Once the term has
been specified, you can investigate the convergence or divergence of the sequence.

EXAMPLE 6 Finding the nth Term of a Sequence

Find a sequence whose first five terms are

and then determine whether the particular sequence you have chosen converges or
diverges.

Solution First, note that the numerators are successive powers of 2, and the denom-
inators form the sequence of positive odd integers. By comparing with you have
the following pattern.

Using L’Hôpital’s Rule to evaluate the limit of you obtain

So, the sequence diverges. ■

lim
n→�

2n

2n � 1
� �.lim

x→�

2x

2x � 1
� lim

x→�

2x�ln 2�
2

� �

f �x� � 2x��2x � 1�,

21

1
,

22

3
,

23

5
,

24

7
,

25

9
, .  .  . , 

2n

2n � 1

n,an

2
1

,
4
3

,
8
5

,
16
7

,
32
9

, .  .  .

�an�

nthnth
nth

n � 4.0 �
1
n!

�
1
2n ,

��cn��,
�cn�
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THEOREM 9.4 ABSOLUTE VALUE THEOREM

For the sequence if

then lim
n→�

an � 0.lim
n→�

�an� � 0

�an�,

PROOF Consider the two sequences and Because both of these
sequences converge to 0 and

you can use the Squeeze Theorem to conclude that converges to 0. ■�an�

��an� � an � �an�

���an��.��an��



Without a specific rule for generating the terms of a sequence or some knowledge
of the context in which the terms of the sequence are obtained, it is not possible to
determine the convergence or divergence of the sequence merely from its first several
terms. For instance, although the first three terms of the following four sequences are
identical, the first two sequences converge to 0, the third sequence converges to and
the fourth sequence diverges.

The process of determining an term from the pattern observed in the first several
terms of a sequence is an example of inductive reasoning.

EXAMPLE 7 Finding the nth Term of a Sequence

Determine an term for a sequence whose first five terms are

and then decide whether the sequence converges or diverges.

Solution Note that the numerators are 1 less than So, you can reason that the
numerators are given by the rule Factoring the denominators produces

This suggests that the denominators are represented by Finally, because the signs
alternate, you can write the term as

From the discussion about the growth of it follows that

Applying Theorem 9.4, you can conclude that

So, the sequence converges to 0. ■�an�

lim
n→�

an � 0.

lim
n→�

�an� � lim
n→�

3n � 1
n!

� 0.

n!,

an � ��1�n�3n � 1
n! 	.

nth
n!.

 120 � 1 � 2 � 3 � 4 � 5 .  .  . .

 24 � 1 � 2 � 3 � 4

 6 � 1 � 2 � 3

 2 � 1 � 2

 1 � 1

3n � 1.
3n.

�
2
1

,
8
2

, �
26
6

,
80
24

, �
242
120

, .  .  .

nth

nth

�dn� :
1
2

,
1
4

,
1
8

,  0, .  .  . ,
�n�n � 1��n � 4�

6�n2 � 3n � 2� , .  .  .

�cn� :
1
2

,
1
4

,
1
8

,
7
62

, .  .  . ,
n2 � 3n � 3

9n2 � 25n � 18
, .  .  .

�bn� :
1
2

,
1
4

,
1
8

,
1
15

, .  .  . ,
6

�n � 1��n2 � n � 6� , .  .  .

�an� :
1
2

,
1
4

,
1
8

,
1
16

, .  .  . ,
1
2n , .  .  .

1
9,
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Monotonic Sequences and Bounded Sequences
So far you have determined the convergence of a sequence by finding its limit. Even
if you cannot determine the limit of a particular sequence, it still may be useful to
know whether the sequence converges. Theorem 9.5 (on page 603) provides a test for
convergence of sequences without determining the limit. First, some preliminary 
definitions are given.

EXAMPLE 8 Determining Whether a Sequence Is Monotonic

Determine whether each sequence having the given term is monotonic.

a. b. c.

Solution

a. This sequence alternates between 2 and 4. So, it is not monotonic.

b. This sequence is monotonic because each successive term is larger than its
predecessor. To see this, compare the terms and [Note that, because is
positive, you can multiply each side of the inequality by and 
without reversing the inequality sign.]

Starting with the final inequality, which is valid, you can reverse the steps to
conclude that the original inequality is also valid.

c. This sequence is not monotonic, because the second term is larger than the first
term, and larger than the third. (Note that if you drop the first term, the remaining
sequence is monotonic.)

Figure 9.3 graphically illustrates these three sequences. ■

c2, c3, c4, .  .  .

 0 < 2

 4n � 2n2 <
?

2 � 4n � 2n2

 2n�2 � n� <
? �1 � n��2n � 2�

bn �
2n

1 � n
<
? 2�n � 1�

1 � �n � 1� � bn�1

�2 � n��1 � n�
nbn�1.bn

cn �
n2

2n � 1
bn �

2n
1 � n

an � 3 � ��1�n

nth
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DEFINITION OF MONOTONIC SEQUENCE

A sequence is monotonic if its terms are nondecreasing

or if its terms are nonincreasing

a1 � a2 � a3 � .  .  . � an � .  .  . .

a1 � a2 � a3 � .  .  . � an � .  .  .

�an�

NOTE In Example 8(b), another way to see that the sequence is monotonic is to argue that
the derivative of the corresponding differentiable function is positive for all

This implies that is increasing, which in turn implies that is increasing. ■�an�fx.
f �x� � 2x��1 � x�

n
1

1

2

2

3

3

4

4

a1

a2

a3

a4

{an} = {3 + (−1)n}

an

(a) Not monotonic

n
1

1

2

2

3

3

4

4

b1

b2
b3

b4

{bn} = { }2n
1 + n

bn

(b) Monotonic

n
1

1

2

2

3

3

4

4

c1

c2 c3 c4

{cn} = n2

2n − 1{ }

cn

(c) Not monotonic
Figure 9.3



One important property of the real numbers is that they are complete.
Informally, this means that there are no holes or gaps on the real number line. (The set
of rational numbers does not have the completeness property.) The completeness
axiom for real numbers can be used to conclude that if a sequence has an upper bound,
it must have a least upper bound (an upper bound that is smaller than all other
upper bounds for the sequence). For example, the least upper bound of the sequence

is 1. The completeness axiom is used in the proof of Theorem 9.5.

EXAMPLE 9 Bounded and Monotonic Sequences

a. The sequence is both bounded and monotonic and so, by Theorem
9.5, must converge.

b. The divergent sequence is monotonic, but not bounded. (It is
bounded below.)

c. The divergent sequence is bounded, but not monotonic.

■

�cn� � ���1�n�

�bn� � �n2��n � 1��

�an� � �1�n�

1
2

,
2
3

,
3
4

,
4
5

, .  .  . , 
n

n � 1
, .  .  .

�an� � �n��n � 1��,
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DEFINITION OF BOUNDED SEQUENCE

1. A sequence is bounded above if there is a real number such that
for all The number is called an upper bound of the sequence.

2. A sequence is bounded below if there is a real number such that
for all The number is called a lower bound of the sequence.

3. A sequence is bounded if it is bounded above and bounded below.�an�
Nn.N � an

N�an�
Mn.an � M

M�an�

THEOREM 9.5 BOUNDED MONOTONIC SEQUENCES

If a sequence is bounded and monotonic, then it converges.�an�

PROOF Assume that the sequence is nondecreasing, as shown in Figure 9.4. For the
sake of simplicity, also assume that each term in the sequence is positive. Because the
sequence is bounded, there must exist an upper bound such that

From the completeness axiom, it follows that there is a least upper bound such that

For it follows that and therefore cannot be an upper 
bound for the sequence. Consequently, at least one term of is greater than 

That is, for some positive integer Because the terms of 
are nondecreasing, it follows that for You now know that

for every It follows that 
for which by definition means that converges to The proof for a
nonincreasing sequence is similar (see Exercise 139). ■

L.�an�n > N,
�an � L� < �n > N.L � � < aN � an � L < L � �,

n > N.aN � an

�an�N.L � � < aNL � �.
�an�

L � �L � � < L,� > 0,

a1 � a2 � a3 � .  .  . � an � .  .  . � L.

L

a1 � a2 � a3 � .  .  . � an � .  .  . � M.

M

n
1

1

2

2

3

3

4 5

4

a1

a2

a3

a4
a5

L

a1 ≤ a2 ≤ a3 ≤ ⋅⋅⋅ ≤ L

an

Every bounded nondecreasing sequence 
converges.
Figure 9.4

NOTE All three sequences shown in
Figure 9.3 are bounded. To see this,
consider the following.

0 � cn �
4
3

1 � bn � 2

2 � an � 4



In Exercises 1–10, write the first five terms of the sequence.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

In Exercises 11–14, write the first five terms of the recursively
defined sequence.

11. 12.

13. 14.

In Exercises 15–18, match the sequence with its graph. [The
graphs are labeled (a), (b), (c), and (d).]

(a) (b)

(c) (d)

15. 16.

17. 18.

In Exercises 19–22, match the sequence with the correct 
expression for its th term. [The th terms are labeled (a), (b),
(c), and (d).]

(a) (b)

(c) (d)

19. 20.

21. 22.

In Exercises 23–28, write the next two apparent terms of the
sequence. Describe the pattern you used to find these terms.

23. 24.

25. 26.

27. 28.

In Exercises 29–34, simplify the ratio of factorials.

29. 30.

31. 32.

33. 34.

In Exercises 35–40, find the limit (if possible) of the sequence.

35. 36.

37. 38.

39. 40.

In Exercises 41–44, use a graphing utility to graph the first 10
terms of the sequence. Use the graph to make an inference
about the convergence or divergence of the sequence. Verify
your inference analytically and, if the sequence converges, find
its limit.

41. 42.

43. 44.

In Exercises 45–72, determine the convergence or divergence of
the sequence with the given nth term. If the sequence converges,
find its limit.

45. 46.

47. 48.

49. 50.

51. 52.

53.

54.

55. 56. an �
1 � ��1�n

n2an �
1 � ��1�n

n

an �
1 � 3 � 5 � .  .  . � �2n � 1�

n!

an �
1 � 3 � 5 � .  .  . � �2n � 1�

�2n�n

an �
3�n

3�n � 1
an �

3n2 � n � 4
2n2 � 1

an � 1 � ��1�nan � ��1�n� n
n � 1	

an �
2
n!

an �
5

n � 2

an � 4 �
3
n

an � �0.3�n � 1

an � 3 �
1
2nan � cos

n	

2

an �
1

n3�2an �
n � 1

n

an � cos
2
n

an � sin
1
n

an �
5n

�n2 � 4
an �

2n
�n2 � 1

an � 5 �
1
n2an �

5n2

n2 � 2

�2n � 2�!
�2n�!

�2n � 1�!
�2n � 1�!

�n � 2�!
n!

�n � 1�!
n!

25!
20!

11!
8!

1, �
3
2, 9

4, �
27
8 , .  .  .3, �

3
2, 3

4, �
3
8, .  .  .

1, �
1
2, 1

4, �
1
8, .  .  .5, 10, 20, 40, .  .  .

7
2, 4, 92, 5, .  .  .2, 5, 8, 11, .  .  .

1, 4
3, 3

2, 8
5, .  .  .2

3, 4
3, 2, 83, .  .  .

16, �8, 4, �2, .  .  .�2, 0, 23, 1, .  .  .

an �
2n

n � 1
an � 16��0.5�n�1

an � 2 �
4
n

an �
2
3

n

nn

an �
��1�n

n
an � ��1�n

an �
10n

n � 1
an �

10
n � 1

2 4 6 8 10
−1

−2

1

2

n

anan

2 4 6 8 10

2

4

6

8

10

n

−2 2 4 6 8 10

−0.8

−0.4
−0.6

−1.0

0.4
0.2

0.6

n

anan

2 4 6 8 10

2

4

6

8

10

n

a1 � 6, ak�1 �
1
3ak

2a1 � 32, ak�1 �
1
2ak

a1 � 4, ak�1 � �k � 1
2 	 aka1 � 3, ak�1 � 2�ak � 1�

an � 10 �
2
n

�
6
n2an � 5 �

1
n

�
1
n2

an � ��1�n�1�2
n	an �

��1�n�n�1��2

n2

an �
2n

n � 3
an � sin

n	

2

an � ��2
3�n

an � ��1
4�n

an �
3n

n!
an � 3n
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57. 58.

59. 60.

61. 62.

63.

64.

65. 66.

67. 68.

69. 70.

71. 72.

In Exercises 73–86, write an expression for the th term of the
sequence. (There is more than one correct answer.)

73. 74.

75. 76.

77. 78.

79.

80.

81. 82.

83.

84.

85. 2, 24, 720, 40,320, 3,628,800, .  .  .

86. 1, 6, 120, 5040, 362,880, .  .  .

In Exercises 87–98, determine whether the sequence with the
given th term is monotonic and whether it is bounded. Use a
graphing utility to confirm your results.

87. 88.

89. 90.

91. 92.

93. 94.

95. 96.

97. 98.

In Exercises 99–102, (a) use Theorem 9.5 to show that the
sequence with the given nth term converges and (b) use a 
graphing utility to graph the first 10 terms of the sequence and
find its limit.

99. 100.

101. 102.

103. Let be an increasing sequence such that 
Explain why has a limit. What can you conclude about
the limit?

104. Let be a monotonic sequence such that Discuss
the convergence of If converges, what can you 
conclude about its limit?

105. Compound Interest Consider the sequence whose th
term is given by

where is the principal, is the account balance after 
months, and is the interest rate compounded annually.

(a) Is a convergent sequence? Explain.

(b) Find the first 10 terms of the sequence if and

106. Compound Interest A deposit of $100 is made at the beginning
of each month in an account at an annual interest rate of 3%
compounded monthly. The balance in the account after 
months is 

(a) Compute the first six terms of the sequence 

(b) Find the balance in the account after 5 years by computing
the 60th term of the sequence.

(c) Find the balance in the account after 20 years by
computing the 240th term of the sequence.

�An�.

An � 100�401��1.0025n � 1�.
n

r � 0.055.
P � $10,000

�An�
r

nAnP

An � P�1 �
r

12	
n

n�An�

�an��an�.
an � 1.�an�

�an�
2 � an � 4.�an�

an � 4 �
1
2nan �

1
3 �1 �

1
3n	

an � 4 �
3
n

an � 5 �
1
n

an �
sin�n

n
an �

cos n
n

an � cos
n	

2
an � sin

n	

6

an � �3
2	

n

an � �2
3	

n

an � ��2
3	

n

an � ��1�n�1
n	

an � ne�n�2an �
n

2n�2

an �
3n

n � 2
an � 4 �

1
n

n

1, x,
x2

2
,

x3

6
,

x4

24
,

x5

120
, .  .  .

1, �
1

1 � 3
,

1
1 � 3 � 5

, �
1

1 � 3 � 5 � 7
, .  .  .

1, 1
2, 1

6, 1
24, 1

120, .  .  .
1

2 � 3
,

2
3 � 4

,
3

4 � 5
,

4
5 � 6

, .  .  .

1 �
1
2, 1 �

3
4, 1 �

7
8, 1 �

15
16, 1 �

31
32, .  .  .

2, 1 �
1
2, 1 �

1
3, 1 �

1
4, 1 �

1
5, .  .  .

2, �1, 1
2, �

1
4, 1

8, .  .  .2
3, 3

4, 4
5, 5

6, .  .  .

1, �
1
4, 1

9, �
1

16, .  .  .�1, 2, 7, 14, 23, .  .  .

3, 7, 11, 15, .  .  .1, 4, 7, 10, .  .  .

n

an �
cos 	n

n2an �
sin n

n

an � �1 �
1
n2	

n

an � �1 �
k
n	

n

an � �3�nan � 21�n

an � n sin 
1
n

an �
n p

en , p > 0

an �
n2

2n � 1
�

n2

2n � 1

n � 2an �
n � 1

n
�

n
n � 1

,

an �
�n � 2�!

n!
an �

�n � 1�!
n!

an � �0.5�nan �
3n

4n

an �
ln �n

n
an �

ln�n3�
2n
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107. Is it possible for a sequence to converge to two different
numbers? If so, give an example. If not, explain why not.

108. In your own words, define each of the following.

(a) Sequence (b) Convergence of a sequence

(c) Monotonic sequence (d) Bounded sequence

109. The graphs of two sequences are shown in the figures.
Which graph represents the sequence with alternating
signs? Explain.

n
2 4 6

2

−2

1

−1

an

n
2 6

2

−2

1

−1

an

WRITING ABOUT CONCEPTS



111. Government Expenditures A government program that
currently costs taxpayers $4.5 billion per year is cut back by
20 percent per year.

(a) Write an expression for the amount budgeted for this
program after years.

(b) Compute the budgets for the first 4 years.

(c) Determine the convergence or divergence of the sequence
of reduced budgets. If the sequence converges, find its
limit.

112. Inflation If the rate of inflation is per year and the
average price of a car is currently $25,000, the average price
after years is

Compute the average prices for the next 5 years.

113. Modeling Data The federal debts (in billions of dollars) of
the United States from 2002 through 2006 are shown in the
table, where represents the year, with corresponding to
2002. (Source: U.S. Office of Management and Budget)

(a) Use the regression capabilities of a graphing utility to find
a model of the form

for the data. Use the graphing utility to plot the points and
graph the model.

(b) Use the model to predict the amount of the federal debt in
the year 2012.

114. Modeling Data The per capita personal incomes in the
United States from 1996 through 2006 are given below as
ordered pairs of the form where represents the year,
with corresponding to 1996. (Source: U.S. Bureau of
Economic Analysis)

(a) Use the regression capabilities of a graphing utility to find
a model of the form

for the data. Graphically compare the points and the
model.

(b) Use the model to predict per capita personal income in the
year 2012.

115. Comparing Exponential and Factorial Growth Consider
the sequence 

(a) Find two consecutive terms that are equal in magnitude.

(b) Are the terms following those found in part (a) increasing
or decreasing?

(c) In Section 8.7, Exercises 73–78, it was shown that for
“large” values of the independent variable an exponential
function increases more rapidly than a polynomial function.
From the result in part (b), what inference can you make
about the rate of growth of an exponential function versus
a factorial function for “large” integer values of 

116. Compute the first six terms of the sequence

If the sequence converges, find its limit.

117. Compute the first six terms of the sequence If
the sequence converges, find its limit.

118. Prove that if converges to and then there exists
a number such that for 

True or False? In Exercises 119–124, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

119. If converges to 3 and converges to 2, then 
converges to 5.

120. If converges, then 

121. If then 

122. If converges, then converges to 0.

123. If converges to 0 and is bounded, then 
converges to 0.

124. If diverges and diverges, then diverges.

125. Fibonacci Sequence In a study of the progeny of rabbits,
Fibonacci (ca. 1170–ca. 1240) encountered the sequence 
now bearing his name. The sequence is defined recursively as

where and 

(a) Write the first 12 terms of the sequence.

(b) Write the first 10 terms of the sequence defined by

(c) Using the definition in part (b), show that

(d) The golden ratio can be defined by Show

that and solve this equation for �.� � 1 � 1��

lim
n→�

bn � �.�

bn � 1 �
1

bn�1
.

n � 1.bn �
an�1

an

,

a2 � 1.a1 � 1an�2 � an � an�1,

�an � bn}�bn��an�

�anbn}�bn��an�
�an �n��an�

n! � n�n � 1�!.n > 1,

lim
n→�

�an � an�1� � 0.�an�

�an � bn��bn��an�

n > N.sn > 0N
L > 0,L�sn�

�an� � � n�n�.

�an� � ��1 �
1
n	

n�.

n?

an � 10n�n!.

n � 6, 7, .  .  . , 16an � bn � c,

�14, 33,102�, �15, 34,493�, �16, 36,313�
�10, 29,855�, �11, 30,572), �12, 30,805�, �13, 31,469�,
�6, 24,176�, �7, 25,334�, �8, 26,880�, �9, 27,933�,

n � 6
n�n, an�,

an

n � 2, 3, 4, 5, 6an � bn2 � cn � d,

n � 2n

an

Pn � $25,000�1.045�n.

n

41
2%

n
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110. Give an example of a sequence satisfying the condition or
explain why no such sequence exists. (Examples are not
unique.)

(a) A monotonically increasing sequence that converges
to 10

(b) A monotonically increasing bounded sequence that
does not converge

(c) A sequence that converges to 

(d) An unbounded sequence that converges to 100

3
4

CAPSTONE

n 2 3 4 5 6

an 6198.4 6760.0 7354.7 7905.3 8451.4



126. Conjecture Let and consider the sequence given
by the formula

Use a graphing utility to compute the first 10 terms of the
sequence and make a conjecture about the limit of the
sequence.

127. Consider the sequence

(a) Compute the first five terms of this sequence.

(b) Write a recursion formula for for 

(c) Find 

128. Consider the sequence

(a) Compute the first five terms of this sequence.

(b) Write a recursion formula for for 

(c) Find 

129. Consider the sequence where 
and

(a) Show that is increasing and bounded.

(b) Prove that exists.

(c) Find 

130. Arithmetic-Geometric Mean Let Let be the
arithmetic mean of and and let be the geometric mean
of and 

Arithmetic mean

Geometric mean

Now define the sequences and as follows.

(a) Let and Write out the first five terms of
and Compare the terms of Compare 

and What do you notice?

(b) Use induction to show that for

(c) Explain why and are both convergent.

(d) Show that 

131. (a) Let and Show that

(b) Let be differentiable on the interval and
Consider the sequence where

Show that 

132. Consider the sequence Decide whether 
converges for each value of r.

(a) (b) (c)

(d) For what values of r does the sequence converge?

133. (a) Show that for 

(b) Draw a graph similar to the one above that shows

(c) Use the results of parts (a) and (b) to show that

for

(d) Use the Squeeze Theorem for Sequences and the result of
part (c) to show that 

(e) Test the result of part (d) for and 100.

134. Consider the sequence 

(a) Write the first five terms of 

(b) Show that by interpreting as a Riemann

sum of a definite integral.

135. Prove, using the definition of the limit of a sequence, that

136. Prove, using the definition of the limit of a sequence, that
for

137. Find a divergent sequence such that converges.

138. Show that the converse of Theorem 9.1 is not true. Hint:
Find a function such that converges but

does not exist.

139. Prove Theorem 9.5 for a nonincreasing sequence.

�lim
x→�

f �x�
f �n� � anf �x�

�
�a2n��an�

�1 < r < 1.lim
n→�

rn � 0

lim
n→�

1
n3 � 0.

anlim
n→�

an � ln 2

�an�.

�an� � �1
n 

n

k�1

1
1 � �k�n��.

n � 20, 50,

lim
n→�

� n�n!�n� � 1�e.

n > 1.
nn

en�1 < n! <
�n � 1�n�1

en ,

ln�n!� < �n�1
1  ln x dx.

1 2 3 4 n

0.5

1.0

1.5

2.0

2.5
y = ln x

x

y

n � 2.�n
1  ln x dx < ln�n!�

�nrn�
r �

3
2r � 1r �

1
2

�an��an� � �nr n�.

lim
n→�

an � f��0�.an � n f �1�n�.
�an�,f �0� � 0.

�0, 1�f �x�

lim
n→�

an � f��0� � 1.
an � n sin 1�n.f �x� � sin x

lim
n→�

an � lim
n→�

bn.

�bn��an�
a0 > b0 > 0.

an > an�1 > bn�1 > bn,

bn.
an�bn�.�bn�.�an�

b0 � 3.a0 � 10

bn � �an�1bn�1an �
an�1 � bn�1

2

�bn��an�

b1 � �a0b0

a1 �
a0 � b0

2

b0.a0

b1b0a0

a1a0 > b0 > 0.

lim
n→�

an.

lim
n→�

an

�an�
k > 0.

an�1 ��k � an,a1 � �k,�an�
lim

n→�
an.

n � 2.an,

�6, �6 � �6, �6 � �6 � �6, .  .  .

lim
n→�

an.

n � 2.an,

�2, �2 � �2, �2 � �2 � �2, .  .  .

n � 1, 2, .  .  . .xn �
1
2

xn�1 �
1

xn�1
,

xnx0 � 1
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140. Let be a sequence of nonzero real numbers
such that for 
Prove that there exists a real number such that

for all 

141. Let and, for 

The first 10 terms of the sequence are

2, 3, 6, 14, 40, 152, 784, 5168, 40,576, 363,392.

Find, with proof, a formula for of the form
where and are well-known

sequences.

These problems were composed by the Committee on the Putnam Prize
Competition. © The Mathematical Association of America. All rights reserved.

�Bn��An�Tn � An � Bn,
Tn

Tn � �n � 4�Tn�1 � 4nTn�2 � �4n � 8�Tn�3.

n � 3,T2 � 6,T1 � 3,T0 � 2,

n � 1.xn�1 � axn � xn�1,
a

n � 1, 2, 3, .  .  . .x 2
n � xn�1 xn�1 � 1

n � 0,�xn�,

PUTNAM EXAM CHALLENGE



■ Understand the definition of a convergent infinite series.
■ Use properties of infinite geometric series.
■ Use the n th-Term Test for Divergence of an infinite series.

Infinite Series
One important application of infinite sequences is in representing “infinite
summations.” Informally, if is an infinite sequence, then

is an infinite series (or simply a series). The numbers are the terms of the
series. For some series it is convenient to begin the index at (or some other
integer). As a typesetting convention, it is common to represent an infinite series as
simply In such cases, the starting value for the index must be taken from the
context of the statement.

To find the sum of an infinite series, consider the following sequence of partial
sums.

If this sequence of partial sums converges, the series is said to converge and has the
sum indicated in the following definition.

Sn � a1 � a2 � a3 � .  .  . � an

�
S3 � a1 � a2 � a3

S2 � a1 � a2

S1 � a1

 an.

n � 0
a3,a2,a1,

�an�
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9.2 Series and Convergence

Infinite series
�

n�1
an � a1 � a2 � a3 � .  .  . � an � .  .  .

DEFINITIONS OF CONVERGENT AND DIVERGENT SERIES

For the infinite series the nth partial sum is given by

If the sequence of partial sums converges to then the series 

converges. The limit is called the sum of the series.

If diverges, then the series diverges.�Sn�

S � 
�

n�1
anS � a1 � a2 � .  .  . � an � .  .  .

S


�

n�1
anS,�Sn�

Sn � a1 � a2 � .  .  . � an.


�

n�1
an,

E X P L O R A T I O N

Finding the Sum of an Infinite Series Find the sum of each infinite series.
Explain your reasoning.

a. b.

c. d. 15
100 �

15
10,000 �

15
1,000,000 � .  .  .1 �

1
2 �

1
4 �

1
8 �

1
16 � .  .  .

3
10 �

3
100 �

3
1000 �

3
10,000 � .  .  .0.1 � 0.01 � 0.001 � 0.0001 � .  .  .

As you study this chapter,
you will see that there are two basic
questions involving infinite series. Does
a series converge or does it diverge? If a
series converges, what is its sum? These
questions are not always easy to answer,
especially the second one.

STUDY TIP

INFINITE SERIES

The study of infinite series was considered a
novelty in the fourteenth century. Logician
Richard Suiseth, whose nickname was
Calculator, solved this problem.

If throughout the first half of a given
time interval a variation continues at a 
certain intensity, throughout the next quarter
of the interval at double the intensity,
throughout the following eighth at triple 
the intensity and so ad infinitum; then the 
average intensity for the whole interval will 
be the intensity of the variation during the
second subinterval (or double the intensity).
This is the same as saying that the sum of
the infinite series

is 2.

1
2

�
2
4

�
3
8

� .  .  . �
n
2n � .  .  .



EXAMPLE 1 Convergent and Divergent Series

a. The series

has the following partial sums.

Because

it follows that the series converges and its sum is 1.

b. The partial sum of the series

is given by

Because the limit of is 1, the series converges and its sum is 1.

c. The series

diverges because and the sequence of partial sums diverges. ■

The series in Example 1(b) is a telescoping series of the form

Note that is canceled by the second term, is canceled by the third term, and so
on. Because the partial sum of this series is

it follows that a telescoping series will converge if and only if approaches a finite
number as Moreover, if the series converges, its sum is

S � b1 � lim
n→�

bn�1.

n →�.
bn

Sn � b1 � bn�1

nth
b3b2

Sn � n


�

n�1
1 � 1 � 1 � 1 � 1 � .  .  .

Sn

Sn � 1 �
1

n � 1
.


�

n�1
�1

n
�

1
n � 1	 � �1 �

1
2	 � �1

2
�

1
3	 � �1

3
�

1
4	 � .  .  .

nth

lim
n→�

2n � 1
2n � 1

Sn �
1
2

�
1
4

�
1
8

� .  .  . �
1
2n �

2n � 1
2n

�

S3 �
1
2

�
1
4

�
1
8

�
7
8

S2 �
1
2

�
1
4

�
3
4

S1 �
1
2


�

n�1

1
2n �

1
2

�
1
4

�
1
8

�
1

16
� .  .  .
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Telescoping series�b1 � b2� � �b2 � b3� � �b3 � b4� � �b4 � b5� � .  .  . .

Figure 9.5 shows
the first 15 partial sums of the infinite
series in Example 1(a). Notice how
the values appear to approach the line
y � 1.

TECHNOLOGY

1

1

1
4

1
2

1
8

1
32

1
64

1
16

Figure 9.6

NOTE You can geometrically 
determine the partial sums of the series
in Example 1(a) using Figure 9.6.

■ FOR FURTHER INFORMATION To
learn more about the partial sums of 
infinite series, see the article “Six Ways
to Sum a Series” by Dan Kalman in The
College Mathematics Journal. To view
this article, go to the website
www.matharticles.com.

0 16
0

1.25

Figure 9.5

www.matharticles.com


EXAMPLE 2 Writing a Series in Telescoping Form

Find the sum of the series 

Solution

Using partial fractions, you can write

From this telescoping form, you can see that the partial sum is

So, the series converges and its sum is 1. That is,

■

Geometric Series
The series given in Example 1(a) is a geometric series. In general, the series given by

is a geometric series with ratio r.


�

n�1

2
4n2 � 1

� lim
n→�

Sn � lim
n→�

�1 �
1

2n � 1	 � 1.

Sn � �1
1

�
1
3	 � �1

3
�

1
5	 � .  .  . � � 1

2n � 1
�

1
2n � 1	 � 1 �

1
2n � 1

.

nth

an �
2

4n2 � 1
�

2
�2n � 1��2n � 1� �

1
2n � 1

�
1

2n � 1
.


�

n�1

2
4n2 � 1

.
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Geometric seriesa � 0
�

n�0
arn � a � ar � ar2 � .  .  . � arn � .  .  . ,

THEOREM 9.6 CONVERGENCE OF A GEOMETRIC SERIES

A geometric series with ratio diverges if If then the
series converges to the sum

0 < �r� < 1.
�

n�0
arn �

a
1 � r

,

0 < �r� < 1,�r� � 1.r

PROOF It is easy to see that the series diverges if If then 
Multiplication by yields

Subtracting the second equation from the first produces Therefore,
and the partial sum is

If it follows that as and you obtain

which means that the series and its sum is It is left to you to
show that the series diverges if ■�r� > 1.

a��1 � r�.converges

lim
n→�

Sn � lim
n→�

� a
1 � r

�1 � rn�� �
a

1 � r � lim
n→�

�1 � rn�� �
a

1 � r

n →�,rn → 00 < �r� < 1,

Sn �
a

1 � r
�1 � rn�.

nthSn�1 � r� � a�1 � rn�,
Sn � rSn � a � arn.

rSn � ar � ar2 � ar3 � .  .  . � arn.

ra � ar � ar2 � .  .  . � arn�1.
Sn �r � ±1,r � ±1.

E X P L O R A T I O N

In “Proof Without Words,” by
Benjamin G. Klein and Irl C.
Bivens, the authors present the
following diagram. Explain why
the final statement below the 
diagram is valid. How is this
result related to Theorem 9.6?

Exercise taken from “Proof Without
Words” by Benjamin G. Klein and
Irl C. Bivens, Mathematics
Magazine, 61, No. 4, October 1988,
p. 219, by permission of the
authors.

1 � r � r2 � r3 � .  .  . �
1

1 � r

�PQR � �TSP

P

Q

R

S1

1 1

1 − r r

r

r2

r2r3
r3

T



EXAMPLE 3 Convergent and Divergent Geometric Series

a. The geometric series

has a ratio of with Because the series converges and its
sum is 

b. The geometric series

has a ratio of Because the series diverges. ■

The formula for the sum of a geometric series can be used to write a repeating
decimal as the ratio of two integers, as demonstrated in the next example.

EXAMPLE 4 A Geometric Series for a Repeating Decimal

Use a geometric series to write as the ratio of two integers.

Solution For the repeating decimal you can write

For this series, you have and So,

Try dividing 8 by 99 on a calculator to see that it produces ■

The convergence of a series is not affected by removal of a finite number of terms
from the beginning of the series. For instance, the geometric series

and

both converge. Furthermore, because the sum of the second series is 
you can conclude that the sum of the first series is

�
1
8

.� 2 �
15
8

S � 2 � ��1
2	

0

� �1
2	

1

� �1
2	

2

� �1
2	

3

�

a��1 � r� � 2,


�

n�0
�1

2	
n


�

n�4
�1

2	
n

0.08.

0.080808 .  .  . �
a

1 � r
�

8�102

1 � �1�102� �
8

99
.

r � 1�102.a � 8�102

� 
�

n�0
� 8

102	� 1
102	

n

.

0.080808 .  .  . �
8

102 �
8

104 �
8

106 �
8

108 � .  .  .

0.08,

0.08

�r� � 1,r �
3
2.


�

n�0
�3

2	
n

� 1 �
3
2

�
9
4

�
27
8

� .  .  .

S �
a

1 � r
�

3
1 � �1�2� � 6.

0 < �r� < 1,a � 3.r �
1
2

� 3�1� � 3�1
2	 � 3�1

2	
2

� .  .  .


�

n�0

3
2n � 

�

n�0
 3�1

2	
n
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Try using a graphing
utility or writing a computer program
to compute the sum of the first 20
terms of the sequence in Example
3(a). You should obtain a sum of 
about 5.999994.

TECHNOLOGY



The following properties are direct consequences of the corresponding properties
of limits of sequences.

nth-Term Test for Divergence
The following theorem states that if a series converges, the limit of its term must
be 0.

The contrapositive of Theorem 9.8 provides a useful test for divergence. This
nth-Term Test for Divergence states that if the limit of the term of a series does
not converge to 0, the series must diverge.

nth

nth
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THEOREM 9.7 PROPERTIES OF INFINITE SERIES

Let and be convergent series, and let and be real numbers. If
and then the following series converge to the indicated

sums.

1.

2.

3. 
�

n�1
�an � bn� � A � B


�

n�1
�an � bn� � A � B


�

n�1
can � cA

 bn � B, an � A
cB,A, bn an

THEOREM 9.8 LIMIT OF THE nTH TERM OF A CONVERGENT SERIES

If converges, then lim
n→�

an � 0.
�

n�1
an

PROOF Assume that

Then, because and

it follows that

which implies that converges to 0. ■�an�

� L � lim
n→�

an

� lim
n→�

Sn�1 � lim
n→�

an

L � lim
n→�

Sn � lim
n→�

�Sn�1 � an�

lim
n→�

Sn � lim
n→�

Sn�1 � L

Sn � Sn�1 � an


�

n�1
an � lim

n→�
Sn � L.

THEOREM 9.9 nTH-TERM TEST FOR DIVERGENCE

If then diverges.
�

n�1
anlim

n→�
an � 0,

As you study this chapter,
it is important to distinguish between an
infinite series and a sequence. A
sequence is an ordered collection of
numbers

whereas a series is an infinite sum of
terms from a sequence

a1 � a2 � .  .  . � an � .  .  . .

a1, a2, a3, .  .  . , an, .  .  .

STUDY TIP

NOTE Be sure you see that the
converse of Theorem 9.8 is generally 
not true. That is, if the sequence 
converges to 0, then the series may
either converge or diverge.

 an

�an�



EXAMPLE 5 Using the nth-Term Test for Divergence

a. For the series you have

So, the limit of the term is not 0, and the series diverges.

b. For the series you have

So, the limit of the term is not 0, and the series diverges.

c. For the series you have

Because the limit of the term is 0, the -Term Test for Divergence does 
apply and you can draw no conclusions about convergence or divergence. (In the
next section, you will see that this particular series diverges.)

EXAMPLE 6 Bouncing Ball Problem

A ball is dropped from a height of 6 feet and begins bouncing, as shown in Figure 9.7.
The height of each bounce is three-fourths the height of the previous bounce. Find the
total vertical distance traveled by the ball.

Solution When the ball hits the ground for the first time, it has traveled a distance of
feet. For subsequent bounces, let be the distance traveled up and down. For

example, and are as follows.

Up Down

Up Down

By continuing this process, it can be determined that the total vertical distance is

■� 42 feet.

� 6 � 9�4�

� 6 � 9� 1

1 �
3
4
	

� 6 � 12�3
4� 

�

n�0
�3

4�n

� 6 � 12 
�

n�0
�3

4�n�1

D � 6 � 12�3
4� � 12�3

4�2
� 12�3

4�3
� .  .  .

D3 � 6�3
4��3

4� � 6�3
4��3

4� � 12�3
4�2

D2 � 6�3
4� � 6�3

4� � 12�3
4�

D3D2

DiD1 � 6

notnthnth

lim
n→�

1
n

� 0.


�

n�1

1
n

,

nth

lim
n→�

n!
2n! � 1

�
1
2

.


�

n�1

n!
2n! � 1

,

nth

lim
n→�

 2n � �.


�

n�0
 2n,
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The series in Example 
5(c) will play an important role in this
chapter.

You will see that this series diverges
even though the term approaches 
0 as approaches �.n

nth


�

n�1

1
n

� 1 �
1
2

�
1
3

�
1
4

� .  .  .

STUDY TIP

i
1 2 3 4 5 6 7

1

2

3

4

5

6

7

D

The height of each bounce is three-fourths
the height of the preceding bounce.
Figure 9.7



In Exercises 1–6, find the sequence of partial sums 
and

1.

2.

3.

4.

5. 6.

In Exercises 7 and 8, determine whether and are
convergent.

7. 8.

In Exercises 9–18, verify that the infinite series diverges.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

In Exercises 19–24, match the series with the graph of its
sequence of partial sums. [The graphs are labeled (a), (b), (c),
(d), (e), and (f).] Use the graph to estimate the sum of the series.
Confirm your answer analytically.

(a) (b)

(c) (d)

(e) (f)

19. 20.

21. 22.

23. 24.

In Exercises 25–30, verify that the infinite series converges.

25. 26.

27.

28.

29.

30.

Numerical, Graphical, and Analytic Analysis In Exercises
31–36, (a) find the sum of the series, (b) use a graphing utility
to find the indicated partial sum and complete the table, (c)
use a graphing utility to graph the first 10 terms of the sequence
of partial sums and a horizontal line representing the sum, and
(d) explain the relationship between the magnitudes of the
terms of the series and the rate at which the sequence of partial
sums approaches the sum of the series.

31. 32.

33. 34.

35. 36.

In Exercises 37–52, find the sum of the convergent series.

37. 38. 
�

n�0
6�4

5	
n


�

n�0
�1

2	
n


�

n�1
5��1

3	
n�1


�

n�1
10�0.25�n�1


�

n�1
3�0.85�n�1

�

n�1
2�0.9�n�1


�

n�1

4
n�n � 4�

�

n�1

6
n�n � 3�

Sn


�

n�1

1
n�n � 2� �Use partial fractions.�


�

n�1

1
n�n � 1� �Use partial fractions.�


�

n�0
��0.6�n � 1 � 0.6 � 0.36 � 0.216 � .  .  .


�

n�0
�0.9�n � 1 � 0.9 � 0.81 � 0.729 � .  .  .


�

n�1
2 ��1

2	
n


�

n�0
�5

6	
n


�

n�0
�2

5	
n


�

n�0

17
3 ��

1
2	

n


�

n�0

17
3 ��8

9	
n


�

n�0

15
4 ��1

4	
n


�

n�0
�2

3	
n


�

n�0

9
4 �1

4	
n

Sn

n
1 2 3 4 5 6 7 8 9−1

1

2

3

4

5

6

Sn

n
−1 1 2 3 4 5 6 7 8 9

0.5

1.0

1.5

2.0

Sn

n

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9

Sn

n

1

2

3

4

1 2 3 4 5 6 7 8 9

Sn

n

1

2

3

4

1 2 3 4 5 6 7 8 9
n

1

1

2

2

3

3

4

4

5 6 7 8 9

Sn


�

n�1

n!
2n

�

n�1

2n � 1
2n�1


�

n�1

n
�n2 � 1

�

n�1

n2

n2 � 1


�

n�1

n
2n � 3

�

n�1

n
n � 1


�

n�0
2��1.03�n

�

n�0
1000�1.055�n


�

n�0
 5�11

10	
n


�

n�0
� 7

6	
n

an � 3�4
5	

n

an �
n � 1

n

an{an}


�

n�1

��1�n�1

n!
�

n�1

3
2n�1

1
1 �

1
3 �

1
5 �

1
7 �

1
9 �

1
11 � .  .  .

3 �
9
2 �

27
4 �

81
8 �

243
16 � .  .  .

1
2 � 3

�
2

3 � 4
�

3
4 � 5

�
4

5 � 6
�

5
6 � 7

� .  .  .

1 �
1
4 �

1
9 �

1
16 �

1
25 � .  .  .

S5.
S4,S3,S2,S1,
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9.2 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

n 5 10 20 50 100

Sn

www.CalcChat.com


39. 40.

41. 42.

43. 44.

45.

46.

47. 48.

49. 50.

51. 52.

In Exercises 53–58, (a) write the repeating decimal as a 
geometric series and (b) write its sum as the ratio of two integers.

53. 54.

55. 56.

57. 58.

In Exercises 59–76, determine the convergence or divergence of
the series.

59. 60.

61. 62.

63. 64.

65. 66.

67. 68.

69. 70.

71. 72.

73. 74.

75. 76.

In Exercises 83–90, find all values of for which the series 
converges. For these values of write the sum of the series as a
function of 

83. 84.

85. 86.

87. 88.

89. 90.

In Exercises 91 and 92, find the value of for which the series
equals the indicated sum.

91. 92.

93. Think About It Consider the formula

Given and can you conclude that either of the
following statements is true? Explain your reasoning.

(a)

(b)

In Exercises 95 and 96, (a) find the common ratio of the
geometric series, (b) write the function that gives the sum of the
series, and (c) use a graphing utility to graph the function and
the partial sums and What do you notice?

95. 96. 1 �
x
2

�
x2

4
�

x3

8
� .  .  .1 � x � x2 � x3 � .  .  .

S5.S3

�1 � 1 � 2 � 4 � 8 � .  .  .

1
2

� 1 � 1 � 1 � 1 � .  .  .

x � 2,x � �1

1
1 � x

� 1 � x � x2 � x3 � .  .  . .


�

n�0
ecn � 5

�

n�2
�1 � c��n � 2

c


�

n�1
� x2

x2 � 4	
n


�

n�0
�1

x	
n


�

n�0
��1�n x2n

�

n�0
��1�n xn


�

n�0
 4�x � 3

4 	
n


�

n�1
�x � 1�n


�

n�1
�3x�n

�

n�1

xn

2n

x.
x,

x


�

n�1
 ln�n � 1

n 	
�

n�1
 arctan n


�

n�1
e�n

�

n�1
�1 �

k
n	

n


�

n�1
 ln

1
n

�

n�2

n
ln n


�

n�0

3
5n

�

n�0

4
2n


�

n�1

3n

n3
�

n�1

3n � 1
2n � 1


�

n�1
� 1

2n�n � 1�	
�

n�1

1
n�n � 3�


�

n�1
� 1

n � 1
�

1
n � 2	

�

n�1
�1

n
�

1
n � 2	


�

n�1

4n � 1
3n � 1

�

n�1

n � 10
10n � 1


�

n�0

3n

1000
�

n�0
�1.075�n

0.2150.075

0.010.81

0.90.4


�

n�1

1
9n2 � 3n � 2

�

n�1
�sin 1�n


�

n�1
��0.7�n � �0.9�n�

�

n�0
� 1

2n �
1
3n	

4 � 2 � 1 �
1
2 � .  .  .3 � 1 �

1
3 �

1
9 � .  .  .

8 � 6 �
9
2 �

27
8 � .  .  .

1 � 0.1 � 0.01 � 0.001 � .  .  .


�

n�1

1
�2n � 1��2n � 3�

�

n�1

8
�n � 1��n � 2�


�

n�1

4
n�n � 2�

�

n�2

1
n2 � 1


�

n�0
3��6

7	
n


�

n�0
��1

3	
n
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77. State the definitions of convergent and divergent series.

78. Describe the difference between and

79. Define a geometric series, state when it converges, and give
the formula for the sum of a convergent geometric series.

80. State the Term Test for Divergence.nth-


�

n�1
an � 5.

lim
n→�

an � 5

WRITING ABOUT CONCEPTS

81. Explain any differences among the following series.

(a) (b) (c)

82. (a) You delete a finite number of terms from a divergent
series. Will the new series still diverge? Explain your
reasoning.

(b) You add a finite number of terms to a convergent series.
Will the new series still converge? Explain your reasoning.


�

n�1
ak

�

k�1
ak

�

n�1
an

WRITING ABOUT CONCEPTS (cont inued)

94. Think About It Are the following statements true? Why
or why not?

(a) Because approaches 0 as approaches 

(b) Because the series converges.
�

n�1

1
4�n

lim
n→�

1
4�n

� 0,


�

n�1

1
n4 � 0.

�,n
1
n4

CAPSTONE



In Exercises 97 and 98, use a graphing utility to graph the 
function. Identify the horizontal asymptote of the graph and
determine its relationship to the sum of the series.

97.

98.

Writing In Exercises 99 and 100, use a graphing utility to
determine the first term that is less than 0.0001 in each of the
convergent series. Note that the answers are very different.
Explain how this will affect the rate at which the series 
converges.

99. 100.

101. Marketing An electronic games manufacturer producing
a new product estimates the annual sales to be 8000 units.
Each year 5% of the units that have been sold will become
inoperative. So, 8000 units will be in use after 1 year,

units will be in use after 2 years, and so
on. How many units will be in use after years?

102. Depreciation A company buys a machine for $475,000 that
depreciates at a rate of 30% per year. Find a formula for the
value of the machine after years. What is its value after
5 years?

103. Multiplier Effect The total annual spending by tourists in a
resort city is $200 million. Approximately 75% of that 
revenue is again spent in the resort city, and of that amount
approximately 75% is again spent in the same city, and so on.
Write the geometric series that gives the total amount of
spending generated by the $200 million and find the sum of
the series.

104. Multiplier Effect Repeat Exercise 103 if the percent of the
revenue that is spent again in the city decreases to 60%.

105. Distance A ball is dropped from a height of 16 feet. Each
time it drops feet, it rebounds 0.81 feet. Find the total
distance traveled by the ball.

106. Time The ball in Exercise 105 takes the following times for
each fall.

Beginning with the ball takes the same amount of time to
bounce up as it does to fall, and so the total time elapsed

before it comes to rest is given by Find

this total time.

Probability In Exercises 107 and 108, the random variable 
represents the number of units of a product sold per day in a
store. The probability distribution of is given by Find the
probability that two units are sold in a given day and
show that 

107. 108.

109. Probability A fair coin is tossed repeatedly. The probability
that the first head occurs on the toss is given by

where

(a) Show that 

(b) The expected number of tosses required until the first

head occurs in the experiment is given by Is

this series geometric?

(c) Use a computer algebra system to find the sum in part (b).

110. Probability In an experiment, three people toss a fair coin
one at a time until one of them tosses a head. Determine, for
each person, the probability that he or she tosses the first head.
Verify that the sum of the three probabilities is 1.

111. Area The sides of a square are 16 inches in length. A new
square is formed by connecting the midpoints of the sides of
the original square, and two of the triangles outside the second
square are shaded (see figure). Determine the area of the
shaded regions (a) if this process is continued five more times
and (b) if this pattern of shading is continued infinitely.

Figure for 111 Figure for 112

112. Length A right triangle is shown above where 
and Line segments are continually drawn to be 
perpendicular to the triangle, as shown in the figure.

(a) Find the total length of the perpendicular line segments
in terms of z and

(b) If and find the total length of the perpendi-
cular line segments.

In Exercises 113–116, use the formula for the th partial sum of
a geometric series

113. Present Value The winner of a $2,000,000 sweepstakes will
be paid $100,000 per year for 20 years. The money earns 6%
interest per year. The present value of the winnings is 

Compute the present value and interpret

its meaning.


20

n�1
100,000� 1

1.06	
n

.


n�1

i�0
ari �

a�1 � rn�
1 � r

.

n

 � 	�6,z � 1

.�Yy1� � �x1y1� � �x1y2� � .  .  .

�X � .
�XY� � zXYZ

Y Zx1

y1
y2

y3 y4 y5

x2 x3 x4 x5

z

X
θ

16 in.


�

n�1
n�1

2	
n

.


�

n�1
�1

2	
n

� 1.

n � 1.P�n� � �1
2�n

,
nth

P�n� �
1
3 �

2
3	

n

P�n� �
1
2 �

1
2	

n

P�0� 1 P�1� 1 P�2� 1 P�3� 1 .  .  . � 1.
[P�2�]

P�n�.n

n

t � 1 � 2 
�

n�1
�0.9�n.

s2,

sn � 0 if t � �0.9�n�1sn � �16t2 � 16�0.81�n�1,

��

s4 � 0 if t � �0.9�3s4 � �16t2 � 16�0.81�3,

s3 � 0 if t � �0.9�2s3 � �16t2 � 16�0.81�2,

s2 � 0 if t � 0.9s2 � �16t2 � 16�0.81�,

s1 � 0 if t � 1s1 � �16t2 � 16,

hh

n

n
�8000 � 0.95�8000��


�

n�1
�0.01�n

�

n�1

1
2n ,

�

n�1
�1

8	
n


�

n�1

1
n�n � 1� ,


�

n�0
2�4

5	
n

f �x� � 2�1 � �0.8�x

1 � 0.8 �

�

n�0
3�1

2	
n

f �x� � 3�1 � �0.5�x

1 � 0.5 �
SeriesFunction                     
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114. Sphereflake The sphereflake shown below is a computer-
generated fractal that was created by Eric Haines. The radius
of the large sphere is 1. To the large sphere, nine spheres of
radius are attached. To each of these, nine spheres of radius

are attached. This process is continued infinitely. Prove that
the sphereflake has an infinite surface area.

115. Salary You go to work at a company that pays $0.01 for the
first day, $0.02 for the second day, $0.04 for the third day, and
so on. If the daily wage keeps doubling, what would your total
income be for working (a) 29 days, (b) 30 days, and (c) 31
days?

116. Annuities When an employee receives a paycheck at the
end of each month, dollars is invested in a retirement
account. These deposits are made each month for years and
the account earns interest at the annual percentage rate If the
interest is compounded monthly, the amount in the account
at the end of years is

If the interest is compounded continuously, the amount in
the account after years is

Verify the formulas for the sums given above.

Annuities In Exercises 117–120, consider making monthly
deposits of dollars in a savings account at an annual interest
rate Use the results of Exercise 116 to find the balance 
after years if the interest is compounded (a) monthly and 
(b) continuously.

117.

118.

119.

120.

121. Salary You accept a job that pays a salary of $50,000 for the
first year. During the next 39 years you receive a 4% raise
each year. What would be your total compensation over the
40-year period?

122. Salary Repeat Exercise 121 if the raise you receive each
year is 4.5%. Compare the results.

True or False? In Exercises 123–128, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

123. If then converges.

124. If then 

125. If then 

126. The series diverges.

127.

128. Every decimal with a repeating pattern of digits is a rational
number.

129. Show that the series can be written in the telescoping 

form

where and is the partial sum.

130. Let be a convergent series, and let

be the remainder of the series after the first terms. Prove that

131. Find two divergent series and such that 
converges.

132. Given two infinite series and such that 
converges and diverges, prove that diverges.

133. Suppose that diverges and c is a nonzero constant. Prove
that diverges.

134. If converges where is nonzero, show that 

diverges.

135. The Fibonacci sequence is defined recursively by
where and 

(a) Show that 

(b) Show that 

136. Find the values of for which the infinite series 

converges. What is the sum when the series converges?

137. Prove that for �r� > 1.
1
r

�
1
r2 �

1
r3 � .  .  . �

1
r � 1

,

1 � 2x � x2 � 2x3 � x4 � 2x5 � x6 � .  .  .
x
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an�1 an�3

� 1.
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�
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an�1 an�2
�

1
an�2 an�3

.

a2 � 1.a1 � 1an�2 � an � an�1,


�

n�1

1
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an
�

n�1
an

 can

 an

�an � bn� bn

 an bn an

�an � bn� bn an

lim
N→�

RN � 0.
N

RN � aN�1 � aN�2 � .  .  .

 an

nthSnS0 � 0


�

n�1
��c � Sn�1� � �c � Sn ��


�

n�1
an

0.75 � 0.749999 .  .  . .


�

n�1

n
1000�n � 1�


�

n�1
arn �

a
�1 � r�.�r� < 1,


�

n�0
an � L � a0.

�

n�1
an � L,


�

n�1
anlim

n→�
an � 0,

t � 50 yearsr � 6%,P � $30,

t � 35 yearsr � 4%,P � $100,

t � 25 yearsr � 5.5%,P � $75,

t � 20 yearsr � 3%,P � $45,

t
Ar.

P

�
P�ert � 1�
er�12 � 1
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A � P � Per�12 � Pe2r�12 � Pe�12t�1�r�12
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A

� P�12
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r
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P
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138. Find the sum of the series 

Hint: Find the constants and such that

139. (a) The integrand of each definite integral is a difference of
two functions. Sketch the graph of each function and
shade the region whose area is represented by the integral.

(b) Find the area of each region in part (a).

(c) Let Evaluate and What 

do you observe?

140. Writing The figure below represents an informal way of

showing that Explain how the figure implies this 

conclusion.

141. Writing Read the article “The Exponential-Decay Law
Applied to Medical Dosages” by Gerald M. Armstrong and
Calvin P. Midgley in Mathematics Teacher. (To view this
article, go to the website www.matharticles.com.) Then write a
paragraph on how a geometric sequence can be used to find the
total amount of a drug that remains in a patient’s system after 
equal doses have been administered (at equal time intervals).

n

11

1

1
32

1
22

1
42

1
52

1
62

1
72

1
2

1
4


�

n�1

1
n2 < 2.


�

n�1
an.anan � �1

0 �xn�1 � xn� dx.

�1
0 �x2 � x3� dx�1

0 �x � x2) dx�1
0 �1 � x� dx

1
n�n � 1��n � 2� �

A
n

�
B

n � 1
�

C
n � 2

.

CB,A,


�

n�1

1
n�n � 1��n � 2�.
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142. Write as a rational number.

143. Let be the sum of the first terms of the sequence 0,
1, 1, 2, 2, 3, 3, 4, .  .  . , where the th term is given by

Show that if and are positive integers and then

These problems were composed by the Committee on the Putnam Prize
Competition. © The Mathematical Association of America. All rights reserved.

xy � f �x � y� � f �x � y�.
x > yyx

an � � n�2,
�n � 1��2,

if n is even
if n is odd

.

n
nf �n�


�

k�1

6k

�3k�1 � 2k�1��3k � 2k�

PUTNAM EXAM CHALLENGE

■ FOR FURTHER INFORMATION For more on this exercise, see
the article “Convergence with Pictures” by P.J. Rippon in American
Mathematical Monthly.

The following procedure shows how to make a table disappear by
removing only half of the table!

(a) Original table has a length of 

(b) Remove of the table centered at the midpoint. Each
remaining piece has a length that is less than 

(c) Remove of the table by taking sections of length from the
centers of each of the two remaining pieces. Now, you have
removed of the table. Each remaining piece has a length
that is less than 

(d) Remove of the table by taking sections of length from the
centers of each of the four remaining pieces. Now, you have
removed of the table. Each remaining piece has a
length that is less than 

Will continuing this process cause the table to disappear, even
though you have only removed half of the table? Why?

1
8L.

1
4 �

1
8 �

1
16

1
64L1

16

1
4L.

1
4 �

1
8

1
16L1

8

1
2L.

1
4

L

L.

Cantor’s Disappearing Table

S E C T I O N  P R O J E C T

■ FOR FURTHER INFORMATION Read the article “Cantor’s
Disappearing Table” by Larry E. Knop in The College 
Mathematics Journal. To view this article, go to the website
www.matharticles.com.

www.matharticles.com
www.matharticles.com
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9.3 The Integral Test and p-Series
■ Use the Integral Test to determine whether an infinite series converges or diverges.
■ Use properties of p-series and harmonic series.

The Integral Test
In this and the following section, you will study several convergence tests that apply
to series with positive terms.

THEOREM 9.10 THE INTEGRAL TEST

If is positive, continuous, and decreasing for and then

and

either both converge or both diverge.


�

1
f �x� dx

�

n�1
an

an � f �n�,x � 1f

PROOF Begin by partitioning the interval into unit intervals, as shown
in Figure 9.8. The total areas of the inscribed rectangles and the circumscribed
rectangles are as follows.

Inscribed area

Circumscribed area

The exact area under the graph of from to lies between the inscribed
and circumscribed areas.

Using the partial sum, you can write this
inequality as

Now, assuming that converges to it follows that for 

Consequently, is bounded and monotonic, and by Theorem 9.5 it converges. So,
converges. For the other direction of the proof, assume that the improper integral

diverges. Then approaches infinity as and the inequality

implies that diverges. So, diverges. ■ an�Sn�Sn�1 � �n
1 f �x� dx

n →�,�n
1 f �x� dx

 an

�Sn�

Sn � L � f �1�.Sn � f �1� � L

n � 1L,��
1 f �x� dx

Sn � f �1� � 
n

1
f �x� dx � Sn�1.

Sn � f �1� � f �2� � .  .  . � f �n�,nth


n

i�2
f �i� � 
n

1
f �x� dx � 

n�1

i�1
f �i�

x � nx � 1f


n�1

i�1
f �i� � f �1� � f �2� � .  .  . � f �n � 1�


n

i�2
f �i� � f �2� � f �3� � .  .  . � f �n�

n � 1�1, n�

NOTE Remember that the convergence or divergence of is not affected by deleting the
first terms. Similarly, if the conditions for the Integral Test are satisfied for all 
you can simply use the integral to test for convergence or divergence. (This is 
illustrated in Example 4.) ■

��
N f �x� dx

x � N > 1,N
 an

x
1 2 3 4 n − 1 n

a

a4 = f (4)
a3 = f (3)

a2 = f (2)

an = f (n)

Σ f (i) = area
n

i = 2

Inscribed rectangles:

y

x
1 2 3 4 n − 1 n

a1 = f (1)
a2 = f (2)

a3 = f (3)

an − 1 = f (n − 1)

Σ f (i) = area
n − 1

i = 1

Circumscribed rectangles:

y

Figure 9.8



EXAMPLE 1 Using the Integral Test

Apply the Integral Test to the series 

Solution The function is positive and continuous for To
determine whether is decreasing, find the derivative.

So, for and it follows that satisfies the conditions for the Integral
Test. You can integrate to obtain

So, the series diverges.

EXAMPLE 2 Using the Integral Test

Apply the Integral Test to the series 

Solution Because satisfies the conditions for the Integral Test
(check this), you can integrate to obtain

So, the series converges (see Figure 9.9). ■
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4
.�

	

2
�

	

4

� lim
b→�

�arctan b � arctan 1�

� lim
b→�

�arctan x�
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dx � lim
b→�


b

1

1
x2 � 1

dx
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� �.
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�ln�b2 � 1� � ln 2�

�
1
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  lim
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�ln�x2 � 1��
b

1

�
1
2

 lim
b→�


b

1

2x
x2 � 1

dx


�

1

x
x2 � 1

dx �
1
2 
�

1

2x
x2 � 1

dx

fx > 1f��x� < 0

f��x� �
�x2 � 1��1� � x�2x�

�x2 � 1�2 �
�x2 � 1
�x2 � 1�2

f
x � 1.f �x� � x��x2 � 1�


�

n�1

n
n2 � 1

.
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In Example 2, the fact that the improper integral converges to 
does not imply that the infinite series converges to To approximate the sum of
the series, you can use the inequality

(See Exercise 68.) The larger the value of the better the approximation. For
instance, using produces 1.072 �  1��n2 � 1� � 1.077.N � 200

N,


N

n�1

1
n2 � 1

≤ 
�

n�1

1
n2 � 1

≤ 
N

n�1

1
n2 � 1

� 
�

N

1
x2 � 1

dx.

	�4.
	�4TECHNOLOGY

x
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1.00

1.25

f(x) =
x2 + 1

1

y

Because the improper integral converges, the
infinite series also converges.
Figure 9.9



p-Series and Harmonic Series
In the remainder of this section, you will investigate a second type of series that has a
simple arithmetic test for convergence or divergence. A series of the form

is a p-series, where is a positive constant. For the series

is the harmonic series. A general harmonic series is of the form In
music, strings of the same material, diameter, and tension, whose lengths form a
harmonic series, produce harmonic tones.

The Integral Test is convenient for establishing the convergence or divergence of
series. This is shown in the proof of Theorem 9.11.

EXAMPLE 3 Convergent and Divergent p-Series

Discuss the convergence or divergence of (a) the harmonic series and (b) the series
with

Solution

a. From Theorem 9.11, it follows that the harmonic series

diverges.

b. From Theorem 9.11, it follows that the series

converges. ■

p � 2
�

n�1

1
n2 �

1
12 �

1
22 �

1
32 � .  .  .

p-

p � 1
�

n�1

1
n

�
1
1

�
1
2

�
1
3

� .  .  .

p � 2.
p-

p-

1��an � b�.

p � 1,p
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seriesp-
�

n�1

1
np �

1
1p �

1
2p �

1
3p � .  .  .

Harmonic series
�

n�1

1
n

� 1 �
1
2

�
1
3

� .  .  .

THEOREM 9.11 CONVERGENCE OF p-SERIES

The series

1. converges if and

2. diverges if 0 < p � 1.

p > 1,


�

n�1

1
np �

1
1p �

1
2p �

1
3p �

1
4p � .  .  .

p-

PROOF The proof follows from the Integral Test and from Theorem 8.5, which states
that

converges if and diverges if ■0 < p � 1.p > 1


�

1

1
xp dx

HARMONIC SERIES

Pythagoras and his students paid close
attention to the development of music as an
abstract science. This led to the discovery of
the relationship between the tone and the
length of the vibrating string. It was observed
that the most beautiful musical harmonies
corresponded to the simplest ratios of whole
numbers. Later mathematicians developed
this idea into the harmonic series, where the
terms in the harmonic series correspond to
the nodes on a vibrating string that produce
multiples of the fundamental frequency. For
example, is twice the fundamental frequency,

is three times the fundamental frequency,
and so on.

1
3

1
2

NOTE The sum of the series in
Example 3(b) can be shown to be 
(This was proved by Leonhard Euler,
but the proof is too difficult to present
here.) Be sure you see that the Integral
Test does not tell you that the sum of
the series is equal to the value of the
integral. For instance, the sum of the
series in Example 3(b) is

but the value of the corresponding
improper integral is


�

1

1
x2 dx � 1.


�

n�1

1
n2 �

	 2

6
� 1.645

	 2�6.



EXAMPLE 4 Testing a Series for Convergence

Determine whether the following series converges or diverges.

Solution This series is similar to the divergent harmonic series. If its terms were 
larger than those of the harmonic series, you would expect it to diverge. However,
because its terms are smaller, you are not sure what to expect. The function

is positive and continuous for To determine whether is
decreasing, first rewrite as and then find its derivative.

So, for and it follows that satisfies the conditions for the Integral
Test.

The series diverges. ■

� lim
b→�

�ln�ln b� � ln�ln 2�� � �

� lim
b→�

�ln�ln x��
b

2


�

2

1
x ln x

dx � 
�

2

1�x
ln x

dx

fx > 2f��x� < 0

f��x� � ��1��x ln x��2�1 � ln x� � �
1 � ln x
x2�ln x�2

f �x� � �x ln x��1f
fx � 2.f �x� � 1��x ln x�


�

n�2

1
n ln n
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In Exercises 1–24, confirm that the Integral Test can be applied
to the series. Then use the Integral Test to determine the
convergence or divergence of the series.

1. 2.

3. 4.

5. 6.

7.

8.

9.

10.

11.

12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24. 
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9.3 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

NOTE The infinite series in Example 4 diverges very slowly. For instance, the sum of the first
10 terms is approximately 1.6878196, whereas the sum of the first 100 terms is just slightly
larger: 2.3250871. In fact, the sum of the first 10,000 terms is approximately 3.015021704.You
can see that although the infinite series “adds up to infinity,” it does so very slowly. ■
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In Exercises 25 and 26, use the Integral Test to determine the
convergence or divergence of the series, where is a positive
integer.

25. 26.

In Exercises 27–30, explain why the Integral Test does not apply
to the series.

27. 28.

29. 30.

In Exercises 31–34, use the Integral Test to determine the
convergence or divergence of the -series.

31. 32.

33. 34.

In Exercises 35–42, use Theorem 9.11 to determine the conver-
gence or divergence of the -series.

35. 36.

37.

38.

39.

40.

41.

42.

In Exercises 43– 48, match the series with the graph of its
sequence of partial sums. [The graphs are labeled (a), (b), (c),
(d), (e), and (f ).] Determine the convergence or divergence of
the series.

(a) (b)

(c) (d)

(e) (f)

43. 44.

45. 46.

47. 48.

49. Numerical and Graphical Analysis Use a graphing utility to
find the indicated partial sum and complete the table. Then
use a graphing utility to graph the first 10 terms of the sequence
of partial sums. For each series, compare the rate at which the
sequence of partial sums approaches the sum of the series.

(a) (b)

50. Numerical Reasoning Because the harmonic series diverges,
it follows that for any positive real number there exists a
positive integer such that the partial sum

(a) Use a graphing utility to complete the table.

(b) As the real number increases in equal increments, does
the number increase in equal increments? Explain.N
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In Exercises 57–62, find the positive values of for which the
series converges.

57. 58.

59. 60.

61. 62.

In Exercises 63–66, use the result of Exercise 57 to determine
the convergence or divergence of the series.

63. 64.

65. 66.

67. Let f be a positive, continuous, and decreasing function for
such that Prove that if the series

converges to S, then the remainder is bounded by

68. Show that the result of Exercise 67 can be written as

In Exercises 69–74, use the result of Exercise 67 to approximate
the sum of the convergent series using the indicated number of
terms. Include an estimate of the maximum error for your
approximation.

69. six terms

70. four terms

71. ten terms

72. ten terms

73. four terms

74. four terms

In Exercises 75–80, use the result of Exercise 67 to find such
that for the convergent series.

75. 76.

77. 78.

79. 80.

81. (a) Show that converges and diverges.

(b) Compare the first five terms of each series in part (a).

(c) Find such that

82. Ten terms are used to approximate a convergent series.
Therefore, the remainder is a function of and is

(a) Perform the integration in the inequality.

(b) Use a graphing utility to represent the inequality graphically.

(c) Identify any asymptotes of the error function and interpret
their meaning.
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51. State the Integral Test and give an example of its use.

52. Define a series and state the requirements for its 
convergence.

53. A friend in your calculus class tells you that the following
series converges because the terms are very small and
approach 0 rapidly. Is your friend correct? Explain.

54. In Exercises 43–48, for each series, but they do 

not all converge. Is this a contradiction of Theorem 9.9?
Why do you think some converge and others diverge?
Explain.

55. Let be a positive, continuous, and decreasing function for
such that Use a graph to rank the follow-

ing quantities in decreasing order. Explain your reasoning.

(a) (b) (c) 
6

n�1
an
7

1
f �x� dx

7

n�2
an

an � f �n�.x � 1,
f

lim
n→�

an � 0

1
10,000

�
1

10,001
�

1
10,002

� .  .  .

p-

WRITING ABOUT CONCEPTS

56. Use a graph to show that the inequality is true. What can
you conclude about the convergence or divergence of the
series? Explain.

(a) (b) 
�

n�2

1
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�

1

1
x2 dx
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n�1

1
�n

> 
�

1

1
�x

dx
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83. Euler’s Constant Let

(a) Show that 

(b) Show that the sequence is bounded.

(c) Show that the sequence is decreasing.

(d) Show that converges to a limit (called Euler’s 
constant).

(e) Approximate using 

84. Find the sum of the series 

85. Consider the series

(a) Determine the convergence or divergence of the series for

(b) Determine the convergence or divergence of the series for

(c) Find the positive values of x for which the series converges.

86. The Riemann zeta function for real numbers is defined for all
for which the series

converges. Find the domain of the function.

Review In Exercises 87–98, determine the convergence or
divergence of the series.

87. 88.

89. 90.

91. 92.

93. 94.

95. 96.

97. 98. 
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The harmonic series

is one of the most important series in this chapter. Even though its
terms tend to zero as increases,

the harmonic series diverges. In other words, even though the terms
are getting smaller and smaller, the sum “adds up to infinity.”

(a) One way to show that the harmonic series diverges is attributed
to Jakob Bernoulli. He grouped the terms of the harmonic series
as follows:

Write a short paragraph explaining how you can use this grouping
to show that the harmonic series diverges.

(b) Use the proof of the Integral Test, Theorem 9.10, to show that

(c) Use part (b) to determine how many terms you would need
so that

(d) Show that the sum of the first million terms of the harmonic
series is less than 15.

(e) Show that the following inequalities are valid.

(f ) Use the inequalities in part (e) to find the limit
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■ Use the Direct Comparison Test to determine whether a series converges or
diverges.

■ Use the Limit Comparison Test to determine whether a series converges or
diverges.

Direct Comparison Test
For the convergence tests developed so far, the terms of the series have to be fairly
simple and the series must have special characteristics in order for the convergence
tests to be applied. A slight deviation from these special characteristics can make a test
nonapplicable. For example, in the following pairs, the second series cannot be tested
by the same convergence test as the first series even though it is similar to the first.

1. is geometric, but is not.

2. is a series, but is not.

3. is easily integrated, but is not.

In this section you will study two additional tests for positive-term series. These two
tests greatly expand the variety of series you are able to test for convergence or
divergence. They allow you to compare a series having complicated terms with a
simpler series whose convergence or divergence is known.

bn �
n2

�n2 � 3�2an �
n

�n2 � 3�2


�

n�1

1
n3 � 1

p-
�

n�1

1
n3


�

n�0

n
2n

�

n�0

1
2n
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9.4 Comparisons of Series

THEOREM 9.12 DIRECT COMPARISON TEST

Let for all 

1. If converges, then converges.

2. If diverges, then diverges.
�

n�1
bn

�

n�1
an


�

n�1
an

�

n�1
bn

n.0 < an � bn

PROOF To prove the first property, let and let

Because the sequence is nondecreasing and bounded
above by so, it must converge. Because

it follows that converges. The second property is logically equivalent to the first.
■

 an

lim
n→�

Sn � 
�

n�1
an

L;
S3, .  .  .S2,S1,0 < an � bn,

Sn � a1 � a2 � .  .  . � an.

L � 
�

n�1
bn

NOTE As stated, the Direct Comparison Test requires that for all Because the
convergence of a series is not dependent on its first several terms, you could modify the test to
require only that for all greater than some integer ■N.n0 < an � bn

n.0 < an � bn



EXAMPLE 1 Using the Direct Comparison Test

Determine the convergence or divergence of

Solution This series resembles

Convergent geometric series

Term-by-term comparison yields

So, by the Direct Comparison Test, the series converges.

EXAMPLE 2 Using the Direct Comparison Test

Determine the convergence or divergence of 

Solution This series resembles

Divergent series

Term-by-term comparison yields

which does not meet the requirements for divergence. (Remember that if term-by-term
comparison reveals a series that is smaller than a divergent series, the Direct
Comparison Test tells you nothing.) Still expecting the series to diverge, you can
compare the given series with

Divergent harmonic series

In this case, term-by-term comparison yields

and, by the Direct Comparison Test, the given series diverges. ■

Remember that both parts of the Direct Comparison Test require that 
Informally, the test says the following about the two series with nonnegative terms.

1. If the “larger” series converges, the “smaller” series must also converge.

2. If the “smaller” series diverges, the “larger” series must also diverge.
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NOTE To verify the last inequality
in Example 2, try showing that

whenever n � 4.2 � �n � n



Limit Comparison Test
Often a given series closely resembles a series or a geometric series, yet you cannot
establish the term-by-term comparison necessary to apply the Direct Comparison
Test. Under these circumstances you may be able to apply a second comparison test,
called the Limit Comparison Test.

EXAMPLE 3 Using the Limit Comparison Test

Show that the following general harmonic series diverges.

Solution By comparison with

Divergent harmonic series

you have

Because this limit is greater than 0, you can conclude from the Limit Comparison Test
that the given series diverges. ■

lim
n→�

1��an � b�
1�n

� lim
n→�

n
an � b

�
1
a

.


�

n�1

1
n

b > 0a > 0,
�

n�1

1
an � b

,

p-
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THEOREM 9.13 LIMIT COMPARISON TEST

Suppose that and

where is finite and positive. Then the two series and either both
converge or both diverge.

 bn anL

lim
n→� �an

bn
	 � L

bn > 0,an > 0,

PROOF Because and 

there exists such that

for

This implies that

So, by the Direct Comparison Test, the convergence of implies the convergence
of Similarly, the fact that

can be used to show that the convergence of implies the convergence of 
■

 bn. an

lim
n→�

�bn

an
	 �

1
L

 an.
 bn

0 < an < �L � 1�bn.

n � N.0 <
an

bn

< L � 1,

N > 0

lim
n→�

�an

bn
	 � L

bn > 0,an > 0,NOTE As with the Direct Comparison
Test, the Limit Comparison Test could
be modified to require only that and

be positive for all greater than some
integer N.

nbn

an



The Limit Comparison Test works well for comparing a “messy” algebraic series
with a series. In choosing an appropriate series, you must choose one with an 
term of the same magnitude as the term of the given series.

Both series converge.

Both series diverge.

Both series converge.

In other words, when choosing a series for comparison, you can disregard all but the
highest powers of in both the numerator and the denominator.

EXAMPLE 4 Using the Limit Comparison Test

Determine the convergence or divergence of 

Solution Disregarding all but the highest powers of in the numerator and the
denominator, you can compare the series with

Convergent series

Because

you can conclude by the Limit Comparison Test that the given series converges.

EXAMPLE 5 Using the Limit Comparison Test

Determine the convergence or divergence of 

Solution A reasonable comparison would be with the series

Divergent series

Note that this series diverges by the Term Test. From the limit

you can conclude that the given series diverges. ■
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1. Graphical Analysis The figures show the graphs of the first 
10 terms, and the graphs of the first 10 terms of the sequence of
partial sums, of each series.

and

(a) Identify the series in each figure.

(b) Which series is a series? Does it converge or diverge?

(c) For the series that are not series, how do the magnitudes of
the terms compare with the magnitudes of the terms of the

series? What conclusion can you draw about the
convergence or divergence of the series?

(d) Explain the relationship between the magnitudes of the
terms of the series and the magnitudes of the terms of the
partial sums.

Graphs of terms Graphs of partial sums

2. Graphical Analysis The figures show the graphs of the first 
10 terms, and the graphs of the first 10 terms of the sequence of
partial sums, of each series.

and

(a) Identify the series in each figure.

(b) Which series is a series? Does it converge or diverge?

(c) For the series that are not series, how do the magnitudes of
the terms compare with the magnitudes of the terms of the

series? What conclusion can you draw about the
convergence or divergence of the series?

(d) Explain the relationship between the magnitudes of the
terms of the series and the magnitudes of the terms of the
partial sums.

Graphs of terms Graphs of partial sums

In Exercises 3–14, use the Direct Comparison Test to determine
the convergence or divergence of the series.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

In Exercises 15–28, use the Limit Comparison Test to determine
the convergence or divergence of the series.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

In Exercises 29–36, test for convergence or divergence, using
each test at least once. Identify which test was used.

(a) th-Term Test (b) Geometric Series Test

(c) -Series Test (d) Telescoping Series Test

(e) Integral Test (f) Direct Comparison Test

(g) Limit Comparison Test

29. 30.

31. 32.

33. 34.

35. 36. 
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9.4 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

www.CalcChat.com


37. Use the Limit Comparison Test with the harmonic series to
show that the series (where ) diverges if

is finite and nonzero.

38. Prove that, if and are polynomials of degree and 
respectively, then the series

converges if and diverges if 

In Exercises 39– 42, use the polynomial test given in Exercise 38
to determine whether the series converges or diverges.

39.

40.

41. 42.

In Exercises 43 and 44, use the divergence test given in Exercise
37 to show that the series diverges.

43. 44.

In Exercises 45–48, determine the convergence or divergence of
the series.

45.

46.

47.

48.

53. Consider the series 

(a) Verify that the series converges.

(b) Use a graphing utility to complete the table.

(c) The sum of the series is Find the sum of the series

(d) Use a graphing utility to find the sum of the series

True or False? In Exercises 55–60, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

55. If and converges, then diverges.

56. If and converges, then converges.

57. If and converges, then the series 

and both converge. (Assume that the terms of all three

series are positive.)

58. If and diverges, then the series and

both diverge. (Assume that the terms of all three series

are positive.)

59. If and diverges, then diverges.

60. If and diverges, then diverges.
�
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bn0 < an � bn
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1
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49. Review the results of Exercises 45–48. Explain why careful
analysis is required to determine the convergence or diver-
gence of a series and why only considering the magnitudes
of the terms of a series could be misleading.

50. State the Direct Comparison Test and give an example of its
use.

51. State the Limit Comparison Test and give an example of its
use.

52. The figure shows the first 20 terms of the convergent series

and the first 20 terms of the series Identify

the two series and explain your reasoning in making the
selection.

0.2

0.4

0.6

0.8

1.0

n
4 8 12 16 20


�

n�1
a 2

n .
�

n�1
an

WRITING ABOUT CONCEPTS

n 5 10 20 50 100

Sn

54. It appears that the terms of the series

are less than the corresponding terms of the convergent
series

If the statement above is correct, the first series converges.
Is this correct? Why or why not? Make a statement about
how the divergence or convergence of a series is affected by
inclusion or exclusion of the first finite number of terms.

1 �
1
4 �

1
9 �

1
16 � .  .  . .

1
1000 �

1
1001 �

1
1002 �

1
1003 � .  .  .
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61. Prove that if the nonnegative series

and

converge, then so does the series

62. Use the result of Exercise 61 to prove that if the nonnegative

series converges, then so does the series 

63. Find two series that demonstrate the result of Exercise 61.

64. Find two series that demonstrate the result of Exercise 62.

65. Suppose that and are series with positive terms. Prove

that if and converges, also converges.

66. Suppose that and are series with positive terms. Prove

that if and diverges, also diverges.

67. Use the result of Exercise 65 to show that each series converges.

(a) (b)

68. Use the result of Exercise 66 to show that each series diverges.

(a) (b)

69. Suppose that is a series with positive terms. Prove that if
converges, then also converges.

70. Prove that the series converges.

71. Show that converges by comparison with 
�
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1
n5�4.
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Most wines are produced entirely from grapes grown in a single
year. Sherry, however, is a complex mixture of older wines with new
wines. This is done with a sequence of barrels (called a solera)
stacked on top of each other, as shown in the photo.

The oldest wine is in the bottom tier of barrels, and the newest is in
the top tier. Each year, half of each barrel in the bottom tier is
bottled as sherry. The bottom barrels are then refilled with the wine
from the barrels above. This process is repeated throughout the 
solera, with new wine being added to the top barrels. A mathematical

model for the amount of year-old wine that is removed from a
solera (with tiers) each year is

(a) Consider a solera that has five tiers, numbered 2, 3, 4,
and 5. In 1990 , half of each barrel in the top tier (tier 1)
was refilled with new wine. How much of this wine was
removed from the solera in 1991? In 1992? In 1993? .  .  . In
2005? During which year(s) was the greatest amount of the
1990 wine removed from the solera?

(b) In part (a), let be the amount of 1990 wine that is removed
from the solera in year Evaluate


�

n� 0
an.

n.
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�n � 0�
k � 1,

k � n.f �n, k� � �n � 1
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,
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Solera Method

S E C T I O N  P R O J E C T

■ FOR FURTHER INFORMATION See the article “Finding
Vintage Concentrations in a Sherry Solera” by Rhodes Peele and
John T. MacQueen in the UMAP Modules.

72. Is the infinite series

convergent? Prove your statement.

73. Prove that if is a convergent series of positive real

numbers, then so is

These problems were composed by the Committee on the Putnam Prize
Competition. © The Mathematical Association of America. All rights reserved.
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9.5 Alternating Series
■ Use the Alternating Series Test to determine whether an infinite series converges.
■ Use the Alternating Series Remainder to approximate the sum of an alternating

series.
■ Classify a convergent series as absolutely or conditionally convergent.
■ Rearrange an infinite series to obtain a different sum.

Alternating Series
So far, most series you have dealt with have had positive terms. In this section and the
following section, you will study series that contain both positive and negative terms.
The simplest such series is an alternating series, whose terms alternate in sign. For
example, the geometric series

is an alternating geometric series with Alternating series occur in two ways:
either the odd terms are negative or the even terms are negative.

r � �
1
2.

� 1 �
1
2

�
1
4

�
1
8

�
1

16
� .  .  .


�

n�0
��

1
2	

n

� 
�

n�0
��1�n 1

2n

THEOREM 9.14 ALTERNATING SERIES TEST

Let The alternating series

and

converge if the following two conditions are met.

1. 2. for all nan�1 � an,lim
n→�

an � 0


�

n�1
��1�n�1 an

�

n�1
��1�n an

an > 0.

NOTE The second condition in the Alternating Series Test can be modified to require only
that for all greater than some integer ■N.n0 < an�1 � an

PROOF Consider the alternating series For this series, the partial sum
(where is even)

has all nonnegative terms, and therefore is a nondecreasing sequence. But you
can also write

which implies that for every integer So, is a bounded, nondecreasing
sequence that converges to some value Because and 
you have

Because both and converge to the same limit it follows that also
converges to Consequently, the given alternating series converges. ■L.

�Sn�L,S2n�1S2n

� L.� L � lim
n→�

a2n

 lim
n→�

S2n�1 � lim
n→�

S2n � lim
n→�

a2n

a2n →  0,S2n�1 � a2n � S2nL.
�S2n�n.S2n � a1

S2n � a1 � �a2 � a3� � �a4 � a5� � .  .  . � �a2n�2 � a2n�1� � a2n

�S2n�

S2n � �a1 � a2� � �a3 � a4� � �a5 � a6� � .  .  . � �a2n�1 � a2n�

2n
 ��1�n�1 an.



EXAMPLE 1 Using the Alternating Series Test

Determine the convergence or divergence of 

Solution Note that So, the first condition of Theorem 9.14 is

satisfied. Also note that the second condition of Theorem 9.14 is satisfied because

for all So, applying the Alternating Series Test, you can conclude that the series
converges.

EXAMPLE 2 Using the Alternating Series Test

Determine the convergence or divergence of 

Solution To apply the Alternating Series Test, note that, for 

So, for all Furthermore, by L’Hôpital’s Rule,

Therefore, by the Alternating Series Test, the series converges.

EXAMPLE 3 When the Alternating Series Test Does Not Apply

a. The alternating series

passes the second condition of the Alternating Series Test because for
all You cannot apply the Alternating Series Test, however, because the series
does not pass the first condition. In fact, the series diverges.

b. The alternating series

passes the first condition because approaches 0 as You cannot apply the
Alternating Series Test, however, because the series does not pass the second
condition. To conclude that the series diverges, you can argue that equals the

partial sum of the divergent harmonic series. This implies that the sequence of
partial sums diverges. So, the series diverges. ■
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NOTE The series in Example 1 is called
the alternating harmonic series. More is
said about this series in Example 7.

NOTE In Example 3(a), remember
that whenever a series does not pass the
first condition of the Alternating Series
Test, you can use the Term Test for
Divergence to conclude that the series
diverges.

nth-



Alternating Series Remainder
For a convergent alternating series, the partial sum can be a useful approximation
for the sum of the series. The error involved in using is the remainder

EXAMPLE 4 Approximating the Sum of an Alternating Series

Approximate the sum of the following series by its first six terms.

Solution The series converges by the Alternating Series Test because

and

The sum of the first six terms is

and, by the Alternating Series Remainder, you have

So, the sum lies between and and you have

■0.63174 � S � 0.63214.

0.63194 � 0.0002,0.63194 � 0.0002S

�S � S6� � �R6� � a7 �
1

5040
� 0.0002.
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1
2
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1
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RN � S � SN.
S � SNS
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9.5 Alternating Series 635

THEOREM 9.15 ALTERNATING SERIES REMAINDER

If a convergent alternating series satisfies the condition then the
absolute value of the remainder involved in approximating the sum by 
is less than (or equal to) the first neglected term. That is,

�S � SN� � �RN� � aN�1.

SNSRN

an�1 � an,

PROOF The series obtained by deleting the first terms of the given series satisfies
the conditions of the Alternating Series Test and has a sum of 

Consequently, which establishes the theorem. ■�S � SN� � �RN� � aN�1,

� aN�1 � �aN�2 � aN�3� � �aN�4 � aN�5� � .  .  . � aN�1

�RN� � aN�1 � aN�2 � aN�3 � aN�4 � aN�5 � .  .  .
� ��1�N �aN�1 � aN�2 � aN�3 � .  .  .�
� ��1�N aN�1 � ��1�N�1 aN�2 � ��1�N�2 aN�3 � .  .  .

RN � S � SN � 
�

n�1
��1�n�1 an � 

N

n�1
��1�n�1 an

RN.
N

Later, in Section
9.10, you will be able to show that 
the series in Example 4 converges to 

For now, try using a computer to
obtain an approximation of the sum
of the series. How many terms do you
need to obtain an approximation that
is within 0.00001 unit of the actual
sum?

e � 1
e

� 0.63212.

TECHNOLOGY



Absolute and Conditional Convergence
Occasionally, a series may have both positive and negative terms and not be an
alternating series. For instance, the series

has both positive and negative terms, yet it is not an alternating series. One way to
obtain some information about the convergence of this series is to investigate the
convergence of the series

By direct comparison, you have for all so

Therefore, by the Direct Comparison Test, the series converges. The next 

theorem tells you that the original series also converges.

The converse of Theorem 9.16 is not true. For instance, the alternating
harmonic series

converges by the Alternating Series Test. Yet the harmonic series diverges. This type
of convergence is called conditional.
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THEOREM 9.16 ABSOLUTE CONVERGENCE

If the series converges, then the series also converges. an�an�

DEFINITIONS OF ABSOLUTE AND CONDITIONAL CONVERGENCE

1. is absolutely convergent if converges.

2. is conditionally convergent if converges but diverges. �an� an an

 �an� an

PROOF Because for all the series

converges by comparison with the convergent series

Furthermore, because you can write

where both series on the right converge. So, it follows that converges. ■ an
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n�1
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n�1
 2�an�.
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n,0 � an � �an� � 2�an�



EXAMPLE 5 Absolute and Conditional Convergence

Determine whether each of the series is convergent or divergent. Classify any
convergent series as absolutely or conditionally convergent.

a.

b.

Solution

a. By the Term Test for Divergence, you can conclude that this series diverges.

b. The given series can be shown to be convergent by the Alternating Series Test.
Moreover, because the series

diverges, the given series is conditionally convergent.

EXAMPLE 6 Absolute and Conditional Convergence

Determine whether each of the series is convergent or divergent. Classify any convergent
series as absolutely or conditionally convergent.

a.

b.

Solution

a. This is not an alternating series. However, because

is a convergent geometric series, you can apply Theorem 9.16 to conclude that the
given series is absolutely convergent (and therefore convergent).

b. In this case, the Alternating Series Test indicates that the given series converges.
However, the series

diverges by direct comparison with the terms of the harmonic series. Therefore, the
given series is conditionally convergent. ■

Rearrangement of Series
A finite sum such as can be rearranged without changing the
value of the sum. This is not necessarily true of an infinite series—it depends on
whether the series is absolutely convergent (every rearrangement has the same sum)
or conditionally convergent.
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EXAMPLE 7 Rearrangement of a Series

The alternating harmonic series converges to That is,

(See Exercise 59, Section 9.10.) 

Rearrange the series to produce a different sum.

Solution Consider the following rearrangement.

By rearranging the terms, you obtain a sum that is half the original sum. ■
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In Exercises 1–6, match the series with the graph of its sequence
of partial sums. [The graphs are labeled (a), (b), (c), (d), (e), and
(f).]

(a) (b)

(c) (d)

(e) (f)

1. 2.

3. 4.

5. 6.

Numerical and Graphical Analysis In Exercises 7–10, explore
the Alternating Series Remainder.

(a) Use a graphing utility to find the indicated partial sum 
and complete the table. 

(b) Use a graphing utility to graph the first 10 terms of the
sequence of partial sums and a horizontal line representing
the sum. 

(c) What pattern exists between the plot of the successive points
in part (b) relative to the horizontal line representing the
sum of the series? Do the distances between the successive
points and the horizontal line increase or decrease? 

(d) Discuss the relationship between the answers in part (c) and
the Alternating Series Remainder as given in Theorem 9.15.

7.

8.

9.

10. 
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9.5 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

■ FOR FURTHER INFORMATION
Georg Friedrich Bernhard Riemann
(1826–1866) proved that if is 
conditionally convergent and is any
real number, the terms of the series can
be rearranged to converge to For more
on this topic, see the article “Riemann’s
Rearrangement Theorem” by Stewart
Galanor in Mathematics Teacher. To
view this article, go to the website
www.matharticles.com.
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In Exercises 11–36, determine the convergence or divergence of 
the series.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33.

34.

35.

36.

In Exercises 37– 40, approximate the sum of the series by using
the first six terms. (See Example 4.)

37. 38.

39. 40.

In Exercises 41–46, (a) use Theorem 9.15 to determine the 
number of terms required to approximate the sum of the
convergent series with an error of less than 0.001, and (b) use a
graphing utility to approximate the sum of the series with an
error of less than 0.001.

41. 42.

43. 44.

45. 46.

In Exercises 47–50, use Theorem 9.15 to determine the 
number of terms required to approximate the sum of the series
with an error of less than 0.001.

47. 48.

49. 50.

In Exercises 51–70, determine whether the series converges 
conditionally or absolutely, or diverges.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67. 68.

69. 70. 
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71. Define an alternating series.

72. State the Alternating Series Test.

73. Give the remainder after terms of a convergent alternating
series.

74. In your own words, state the difference between absolute
and conditional convergence of an alternating series.

75. The graphs of the sequences of partial sums of two series
are shown in the figures. Which graph represents the partial
sums of an alternating series? Explain.

(a) (b)

n
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2

1

2 4 6

Sn

n

−2
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−1

1

2 4 6

Sn

N

WRITING ABOUT CONCEPTS



640 Chapter 9 Infinite Series

■ FOR FURTHER INFORMATION For more on this exercise, see
the article “Riemann’s Rearrangement Theorem” by Stewart
Galanor in Mathematics Teacher. To view this article, go to the
website www.matharticles.com.

99. Assume as known the (true) fact that the alternating 
harmonic series

(1)

is convergent, and denote its sum by Rearrange the series
(1) as follows:

(2)

Assume as known the (true) fact that the series (2) is also
convergent, and denote its sum by Denote by the

partial sum of the series (1) and (2), respectively. Prove
each statement.

(i) (ii)

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved. 
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1
2 s2n,

kth
sk , SkS.
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4 �
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5 �
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1
8 � .  .  .

PUTNAM EXAM CHALLENGE

True or False? In Exercises 77 and 78, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

77. For the alternating series the partial sum is an

overestimate of the sum of the series.

78. If and both converge, then converges.

In Exercises 79 and 80, find the values of for which the series
converges.

79. 80.

81. Prove that if converges, then converges. Is the 
converse true? If not, give an example that shows it is false.

82. Use the result of Exercise 79 to give an example of an alternating
series that converges, but whose corresponding series

diverges.

83. Give an example of a series that demonstrates the statement you
proved in Exercise 81.

84. Find all values of for which the series (a) converges
absolutely and (b) converges conditionally.

85. Consider the following series.

(a) Does the series meet the conditions of Theorem 9.14?
Explain why or why not.

(b) Does the series converge? If so, what is the sum?

86. Consider the following series.

(a) Does the series meet the conditions of Theorem 9.14?
Explain why or why not.

(b) Does the series converge? If so, what is the sum?

Review In Exercises 87–96, test for convergence or divergence
and identify the test used.

87. 88.

89. 90.

91. 92.

93. 94.

95. 96.

97. The following argument, that is incorrect. Describe the
error.

98. The following argument, is incorrect. Describe the error.
Multiply each side of the alternating harmonic series

by 2 to get

Now collect terms with like denominators (as indicated by the
arrows) to get

The resulting series is the same one that you started with. So,
and divide each side by S to get 2 � 1.2S � S
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76. Do you agree with the following statements? Why or why
not?

(a) If both and converge, then 
converges.

(b) If diverges, then diverges. �an� an

 �an� ��an� an

CAPSTONE

www.matharticles.com
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9.6 The Ratio and Root Tests
■ Use the Ratio Test to determine whether a series converges or diverges.
■ Use the Root Test to determine whether a series converges or diverges.
■ Review the tests for convergence and divergence of an infinite series.

The Ratio Test
This section begins with a test for absolute convergence—the Ratio Test.

THEOREM 9.17 RATIO TEST

Let be a series with nonzero terms.

1. converges absolutely if 

2. diverges if or 

3. The Ratio Test is inconclusive if lim
n→� �an�1

an � � 1.

lim
n→� �an�1

an � � �.lim
n→� �an�1

an � > 1 an
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n→� �an�1

an � < 1. an

 an

NOTE The fact that the Ratio Test is inconclusive when can be seen by 
comparing the two series and The first series diverges and the second one
converges, but in both cases

■lim
n→� �an�1

an � � 1.

 �1�n2�. �1�n�
�an�1�an� → 1

PROOF To prove Property 1, assume that

and choose such that By the definition of the limit of a sequence,
there exists some such that for all Therefore, you can
write the following inequalities.

The geometric series 
converges, and so, by the Direct Comparison Test, the series

also converges. This in turn implies that the series converges, because
discarding a finite number of terms does not affect convergence.
Consequently, by Theorem 9.16, the series converges absolutely. The proof of
Property 2 is similar and is left as an exercise (see Exercise 99). ■

 an
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Although the Ratio Test is not a cure for all ills related to testing for convergence,
it is particularly useful for series that converge rapidly. Series involving factorials or
exponentials are frequently of this type.

EXAMPLE 1 Using the Ratio Test

Determine the convergence or divergence of 

Solution Because you can write the following.

This series converges because the limit of is less than 1.

EXAMPLE 2 Using the Ratio Test

Determine whether each series converges or diverges.

a. b.

Solution

a. This series converges because the limit of is less than 1.

b. This series diverges because the limit of is greater than 1.
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A step frequently used in
applications of the Ratio Test involves
simplifying quotients of factorials. In
Example 1, for instance, notice that

n!
�n � 1�! �

n!
�n � 1�n!

�
1

n � 1
.

STUDY TIP



EXAMPLE 3 A Failure of the Ratio Test

Determine the convergence or divergence of 

Solution The limit of is equal to 1.

So, the Ratio Test is inconclusive. To determine whether the series converges, you
need to try a different test. In this case, you can apply the Alternating Series Test. To
show that let

Then the derivative is

Because the derivative is negative for you know that is a decreasing function.
Also, by L’Hôpital’s Rule,

Therefore, by the Alternating Series Test, the series converges. ■

The series in Example 3 is conditionally convergent. This follows from the fact
that the series

diverges by the Limit Comparison Test with but the series

converges.


�

n�1
an

�, 1��n�

�

n�1
�an�

� 0.

� lim
x→�

1
2�x

 lim
x→�

�x
x � 1

� lim
x→�

1��2�x �
1

fx > 1,

f��x� �
�x � 1

2�x�x � 1�2
.

f�x� �
�x

x � 1
.

an�1 � an,

� 1

� �1 �1�

� lim
n→� ��n � 1

n �n � 1
n � 2	�

 lim
n→� �an�1

an � � lim
n→� ���n � 1

n � 2 	�n � 1
�n 	�

�an�1�an�

�

n�1
��1�n

�n
n � 1

.

9.6 The Ratio and Root Tests 643

A computer or programmable calculator can reinforce the conclusion
that the series in Example 3 converges conditionally. By adding the first 100 terms
of the series, you obtain a sum of about (The sum of the first 100 terms of the
series is about 17.) �an�

�0.2.

TECHNOLOGY

NOTE The Ratio Test is also inconclu-
sive for any -series.p



The Root Test
The next test for convergence or divergence of series works especially well for series
involving powers. The proof of this theorem is similar to the proof given for the
Ratio Test, and is left as an exercise (see Exercise 100).

EXAMPLE 4 Using the Root Test

Determine the convergence or divergence of

Solution You can apply the Root Test as follows.

Because this limit is less than 1, you can conclude that the series converges absolutely
(and therefore converges). ■

To see the usefulness of the Root Test for the series in Example 4, try applying
the Ratio Test to that series. When you do this, you obtain the following.

Note that this limit is not as easily evaluated as the limit obtained by the Root Test in
Example 4.
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THEOREM 9.18 ROOT TEST

Let be a series.

1. converges absolutely if 

2. diverges if or 

3. The Root Test is inconclusive if lim
n→�

n��an� � 1.

lim
n→�

n��an� � �.lim
n→�

n��an� > 1 an

lim
n→�

n��an� < 1. an

 an

NOTE The Root Test is always inconclusive for any -series. ■p

■ FOR FURTHER INFORMATION For
more information on the usefulness of
the Root Test, see the article “ and 
the Root Test” by Charles C. Mumma II
in The American Mathematical Monthly.
To view this article, go to the website
www.matharticles.com.

N!

www.matharticles.com


Strategies for Testing Series
You have now studied 10 tests for determining the convergence or divergence of an
infinite series. (See the summary in the table on page 646.) Skill in choosing and
applying the various tests will come only with practice. Below is a set of guidelines
for choosing an appropriate test.

In some instances, more than one test is applicable. However, your objective should
be to learn to choose the most efficient test.

EXAMPLE 5 Applying the Strategies for Testing Series

Determine the convergence or divergence of each series.

a. b. c.

d. e. f.

g.

Solution

a. For this series, the limit of the term is not 0 as So, by the 
Term Test, the series diverges.

b. This series is geometric. Moreover, because the ratio of the terms is less
than 1 in absolute value, you can conclude that the series converges.

c. Because the function is easily integrated, you can use the Integral Test
to conclude that the series converges.

d. The term of this series can be compared to the th term of the harmonic series.
After using the Limit Comparison Test, you can conclude that the series diverges.

e. This is an alternating series whose term approaches 0. Because you
can use the Alternating Series Test to conclude that the series converges.

f. The term of this series involves a factorial, which indicates that the Ratio Test
may work well. After applying the Ratio Test, you can conclude that the series
diverges.

g. The term of this series involves a variable that is raised to the power, which
indicates that the Root Test may work well. After applying the Root Test, you can
conclude that the series converges. ■
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GUIDELINES FOR TESTING A SERIES FOR CONVERGENCE OR DIVERGENCE

1. Does the term approach 0? If not, the series diverges.

2. Is the series one of the special types—geometric, series, telescoping, or
alternating?

3. Can the Integral Test, the Root Test, or the Ratio Test be applied?

4. Can the series be compared favorably to one of the special types?

p-

nth
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SUMMARY OF TESTS FOR SERIES

Test

Term

Geometric Series

Telescoping Series

Series

Alternating Series

Integral
( is continuous,
positive, and
decreasing)

Root

Ratio

Direct Comparison
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to show convergence.

Sum:

Sum:

Remainder:

Remainder:

Test is inconclusive if

Test is inconclusive if

lim
n→� �an�1

an � � 1.

lim
n→�

n��an� � 1.

0 < RN < 
�

N

f�x� dx

�RN� � aN�1

S � b1 � L

S �
a

1 � r

Condition(s)
of Divergence

diverges

or

or

and diverges

and diverges
�

n�1
bn

lim
n→�

an

bn

� L > 0


�

n�1
bn

0 < bn � an

� �

lim
n→� �an�1

an � > 1

� �

lim
n→�

n��an� > 1


�

1
f �x� dx

0 < p � 1

�r� � 1

lim
n→�

an � 0



In Exercises 1–4, verify the formula.

1.

2.

3.

4.

In Exercises 5–10, match the series with the graph of its
sequence of partial sums. [The graphs are labeled (a), (b), (c),
(d), (e), and (f).]

(a) (b)

(c) (d)

(e) (f)

5.

6.

7.

8.

9.

10.

Numerical, Graphical, and Analytic Analysis In Exercises 11
and 12, (a) verify that the series converges. (b) Use a graphing
utility to find the indicated partial sum and complete the
table. (c) Use a graphing utility to graph the first 10 terms of the
sequence of partial sums. (d) Use the table to estimate the sum of
the series. (e) Explain the relationship between the magnitudes
of the terms of the series and the rate at which the sequence of
partial sums approaches the sum of the series.

11.

12.

In Exercises 13–34, use the Ratio Test to determine the conver-
gence or divergence of the series.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27.

28.

29.

30.

31.

32.

33.
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k � 3
1

1 � 3 � 5 .  .  . �2k � 5� �
2kk!�2k � 3��2k � 1�

�2k�! ,

1 � 3 � 5 .  .  . �2k � 1� �
�2k�!
2kk!
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�2k�! �

1
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9.6 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

n 5 10 15 20 25
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In Exercises 35–50, use the Root Test to determine the conver-
gence or divergence of the series.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

In Exercises 51–68, determine the convergence or divergence of
the series using any appropriate test from this chapter. Identify
the test used.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67.

68.

In Exercises 69–72, identify the two series that are the same.

69. (a) 70. (a)

(b) (b)

(c) (c)

71. (a) 72. (a)

(b) (b)

(c) (c)

In Exercises 73 and 74, write an equivalent series with the index
of summation beginning at 

73. 74.

In Exercises 75 and 76, (a) determine the number of terms
required to approximate the sum of the series with an error less
than 0.0001, and (b) use a graphing utility to approximate the
sum of the series with an error less than 0.0001.

75.

76.

In Exercises 77–82, the terms of a series are defined

recursively. Determine the convergence or divergence of the
series. Explain your reasoning.

77.

78.

79.

80.

81.

82.

In Exercises 83–86, use the Ratio Test or the Root Test to deter-
mine the convergence or divergence of the series.

83.

84.

85.

86.

� .  .  .�
1 � 3 � 5 � 7

1 � 2 � 3 � 4 � 5 � 6 � 7

1 �
1 � 3

1 � 2 � 3
�

1 � 3 � 5
1 � 2 � 3 � 4 � 5

1
�ln 3�3 �

1
�ln 4�4 �

1
�ln 5�5 �

1
�ln 6�6 � .  .  .

1 �
2
3

�
3
32 �

4
33 �

5
34 �

6
35 � .  .  .

1 �
1 � 2
1 � 3

�
1 � 2 � 3
1 � 3 � 5

�
1 � 2 � 3 � 4
1 � 3 � 5 � 7

� .  .  .

a1 �
1
4

, an�1 � n�an

a1 �
1
3

, an�1 � �1 �
1
n	an

a1 �
1
5

, an�1 �
cos n � 1

n
an

a1 � 1, an�1 �
sin n � 1

�n
an

a1 � 2, an�1 �
2n � 1
5n � 4

an

a1 �
1
2

, an�1 �
4n � 1
3n � 2

an


�

n�1
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�

k�0

��3�k

1 � 3 � 5 .  .  . �2k � 1�
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In Exercises 87–92, find the values of for which the series 
converges.

87. 88.

89. 90.

91.

92.

99. Prove Property 2 of Theorem 9.17.

100. Prove Theorem 9.18. (Hint for Property 1: If the limit equals
choose a real number such that By the

definitions of the limit, there exists some such that
for

In Exercises 101–104, verify that the Ratio Test is inconclusive
for the -series.

101. 102.

103. 104.

105. Show that the Root Test is inconclusive for the p-series

106. Show that the Ratio Test and the Root Test are both inconclusive
for the logarithmic p-series

107. Determine the convergence or divergence of the series

when (a) (b) (c) and (d) is a positive
integer.

108. Show that if is absolutely convergent, then

109. Writing Read the article “A Differentiation Test for
Absolute Convergence” by Yaser S. Abu-Mostafa in
Mathematics Magazine. Then write a paragraph that describes
the test. Include examples of series that converge and examples
of series that diverge.

� �n�1
an� � 

�

n�1
�an�.


�

n�1
an

xx � 3,x � 2,x � 1,


�

n�1

�n!�2

�xn�!


�

n�2

1
n�ln n�p.


�

n�1

1
np.


�

n�1

1
np

�

n�1

1
n4


�

n�1

1
n1�2

�

n�1

1
n3�2

p

n > N.�n��an� < R
N > 0

r < R < 1.Rr < 1,


�

n�0

�x � 1�n

n!


�

n�0
n!�x

2	
n


�

n�0
 2�x � 1�n

�

n�1

��1�n�x � 1�n

n


�

n�0
�x � 1

4 	
n


�

n�0
 2�x

3	
n

x
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93. State the Ratio Test.

94. State the Root Test.

95. You are told that the terms of a positive series appear to
approach zero rapidly as approaches infinity. In fact,

Given no other information, does this imply
that the series converges? Support your conclusion with
examples.

96. The graph shows the first 10 terms of the sequence of
partial sums of the convergent series

Find a series such that the terms of its sequence of partial
sums are less than the corresponding terms of the sequence
in the figure, but such that the series diverges. Explain your
reasoning.

97. Using the Ratio Test, it is determined that an alternating
series converges. Does the series converge conditionally or
absolutely? Explain.

Sn

n
2 64 8 10

1

3
2

1
2


�

n�1
� 2n

3n � 2	
n

.

a 7 � 0.0001.
n

WRITING ABOUT CONCEPTS

98. What can you conclude about the convergence or diver-
gence of for each of the following conditions? Explain
your reasoning.

(a) (b)

(c) (d)

(e) (f) lim
n→�

n��an� � elim
n→�

n��an� � 1

lim
n→�

n��an� � 2lim
n→� �an�1

an � �
3
2

lim
n→� �an�1

an � � 1lim
n→� �an�1

an � � 0

 an

CAPSTONE

110. Is the following series convergent or divergent?

111. Show that if the series

converges, then the series

converges also.

These problems were composed by the Committee on the Putnam Prize
Competition. ©The Mathematical Association of America. All rights reserved.

a1 �
a2

2
�

a3

3
� .  .  . �

an

n
� .  .  .

a1 � a2 � a3 � .  .  . � an � .  .  .

1 �
1
2

�
19
7

�
2!
32�19

7 	
2

�
3!
43�19

7 	
3

�
4!
54�19

7 	
4

� .  .  .
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■ Find polynomial approximations of elementary functions and compare them with the
elementary functions.

■ Find Taylor and Maclaurin polynomial approximations of elementary functions.
■ Use the remainder of a Taylor polynomial.

Polynomial Approximations of Elementary Functions
The goal of this section is to show how polynomial functions can be used as
approximations for other elementary functions. To find a polynomial function that
approximates another function begin by choosing a number in the domain of at
which and have the same value. That is,

Graphs of and pass through 

The approximating polynomial is said to be expanded about c or centered at c.
Geometrically, the requirement that means that the graph of passes
through the point Of course, there are many polynomials whose graphs pass
through the point Your task is to find a polynomial whose graph resembles
the graph of near this point. One way to do this is to impose the additional require-
ment that the slope of the polynomial function be the same as the slope of the graph
of at the point 

Graphs of and have the same slope at 

With these two requirements, you can obtain a simple linear approximation of as
shown in Figure 9.10.

EXAMPLE 1 First-Degree Polynomial Approximation of 

For the function find a first-degree polynomial function

whose value and slope agree with the value and slope of at 

Solution Because and the value and the slope of at are
given by

and

Because you can use the condition that to conclude
that Moreover, because you can use the condition that 

to conclude that Therefore,

Figure 9.11 shows the graphs of ■P1�x� � 1 � x and f �x� � ex.

P1�x� � 1 � x.

a1 � 1.f��0�
P1��0� �P1��x� � a1,a0 � 1.

P1�0� � f �0�P1�x� � a0 � a1x,

f��0� � e0 � 1.

f�0� � e0 � 1

x � 0,f,f��x� � ex,f �x� � ex

x � 0.f

P1�x� � a0 � a1x

f �x� � ex,

f �x� � ex

f,

�c, f �c��.PfP��c� � f��c�

�c, f �c��.f

f
�c, f �c��.
�c, f �c��.

PP�c� � f �c�

�c, f �c��.PfP�c� � f �c�.

Pf
fcf,

P
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NOTE Example 1 isn’t the first time you have used a linear function to approximate another
function. The same procedure was used as the basis for Newton’s Method. ■

x

P(c) = f (c)

P ′(c) = f ′(c)

(c, f (c))f

P

y

Near the graph of can be used to
approximate the graph of
Figure 9.10

f.
P�c, f �c��,

1 2

2

1

y

x

P1(x) = 1 + x

f (x) = ex

is the first-degree polynomial 
approximation of
Figure 9.11

f �x� � ex.
P1



In Figure 9.12 you can see that, at points near (0, 1), the graph of

1st-degree approximation

is reasonably close to the graph of However, as you move away from 
the graphs move farther and farther from each other and the accuracy of the 
approximation decreases. To improve the approximation, you can impose yet another
requirement— that the values of the second derivatives of and agree when 
The polynomial, of least degree that satisfies all three requirements 

and can be shown to be

2nd-degree approximation

Moreover, in Figure 9.12, you can see that is a better approximation of than 
If you continue this pattern, requiring that the values of and its first derivatives
match those of at you obtain the following.

degree approximation

EXAMPLE 2 Third-Degree Polynomial Approximation of 

Construct a table comparing the values of the polynomial

3rd-degree approximation

with for several values of near 0.

Solution Using a calculator or a computer, you can obtain the results shown in the
table. Note that for the two functions have the same value, but that as moves
farther away from 0, the accuracy of the approximating polynomial decreases.

■

P3�x�
xx � 0,

xf �x� � ex

P3�x� � 1 � x �
1
2

x2 �
1
3!

x3

f �x� � ex

� ex

nth-Pn�x� � 1 � x �
1
2

x2 �
1
3!

x3 � .  .  . �
1
n!

xn

x � 0,f �x� � ex
nPn�x�

P1.fP2

P2�x� � 1 � x �
1
2

x2.

P2� �0� � f� �0�P2��0� � f��0�,
P2�0� � f �0�,P2,

x � 0.fP

�0, 1�,f �x� � ex.

P1�x� � 1 � x
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x �1.0 �0.2 �0.1 0 0.1 0.2 1.0

ex 0.3679 0.81873 0.904837 1 1.105171 1.22140 2.7183

P3�x� 0.3333 0.81867 0.904833 1 1.105167 1.22133 2.6667

A graphing utility can be used to compare the graph of the approx-
imating polynomial with the graph of the function For instance, in Figure 9.13,
the graph of

3rd-degree approximation

is compared with the graph of If you have access to a graphing utility, try
comparing the graphs of

4th-degree approximation

5th-degree approximation

6th-degree approximation

with the graph of What do you notice?f.

P6�x� � 1 � x �
1
2 x2 �

1
6 x3 �

1
24 x4 �

1
120 x5 �

1
720 x6

P5�x� � 1 � x �
1
2 x2 �

1
6 x3 �

1
24 x4 �

1
120 x5

P4�x� � 1 � x �
1
2 x2 �

1
6 x3 �

1
24 x4

f �x� � ex.

P3�x� � 1 � x �
1
2 x2 �

1
6 x3

f.
TECHNOLOGY

1 2

2

1

y

x

P2(x) = 1 + x + x21
2

f (x) = ex

P1

is the second-degree polynomial 
approximation of
Figure 9.12

f �x� � ex.
P2

−3 3

−1

9

f P3

f P3

is the third-degree polynomial 
approximation of
Figure 9.13

f �x� � ex.
P3



Taylor and Maclaurin Polynomials
The polynomial approximation of given in Example 2 is expanded about

For expansions about an arbitrary value of it is convenient to write the
polynomial in the form

In this form, repeated differentiation produces

Letting you then obtain

and because the values of and its first derivatives must agree with the values of 
and its first derivatives at it follows that

With these coefficients, you can obtain the following definition of Taylor polynomials,
named after the English mathematician Brook Taylor, and Maclaurin polynomials,
named after the English mathematician Colin Maclaurin (1698–1746).

EXAMPLE 3 A Maclaurin Polynomial for 

Find the Maclaurin polynomial for 

Solution From the discussion on page 651, the Maclaurin polynomial for 

is given by

■Pn �x� � 1 � x �
1
2!

x2 �
1
3!

x3 � .  .  . �
1
n!

xn.

f �x� � ex

nth

f �x� � ex.nth

f �x� � ex

f �c� � a0,    f��c� � a1,    f ��c�
2!

� a2,  .  .  . ,   f �n��c�
n!

� an.

x � c,n
Pnnf

Pn �c� � a0,    Pn� �c� � a1,    Pn� �c� � 2a2,   .  .  . ,    Pn
�n��c� � n!an

x � c,

Pn
�n��x� � n �n � 1��n � 2� .  .  . �2��1�an.

�
Pn�� �x� � 2�3a3� � .  .  . � n�n � 1��n � 2�an�x � c�n�3

Pn� �x� � 2a2 � 2�3a3��x � c� � .  .  . � n �n � 1�an�x � c�n�2

Pn� �x� � a1 � 2a2�x � c� � 3a3�x � c�2 � .  .  . � nan�x � c�n�1

Pn�x� � a0 � a1�x � c� � a2�x � c�2 � a3�x � c�3 � .  .  . � an�x � c�n.

c,c � 0.
f �x� � ex
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DEFINITIONS OF nTH TAYLOR POLYNOMIAL AND nTH MACLAURIN 
POLYNOMIAL

If has derivatives at then the polynomial

is called the nth Taylor polynomial for at If then

is also called the nth Maclaurin polynomial for f.

Pn �x� � f �0� � f��0�x �
f ��0�
2!

x2 �
f ����0�

3!
x3 � .  .  . �

f �n��0�
n!

xn

c � 0,c.f

Pn �x� � f �c� � f��c��x � c� �
f ��c�
2!

�x � c�2 � .  .  . �
f �n��c�

n!
�x � c�n

c,nf

■ FOR FURTHER INFORMATION To
see how to use series to obtain other
approximations to see the article
“Novel Series-based Approximations to
” by John Knox and Harlan J. Brothers

in The College Mathematics Journal.
To view this article, go to the website
www.matharticles.com.

e

e,

NOTE Maclaurin polynomials are
special types of Taylor polynomials for
which c � 0.

BROOK TAYLOR (1685–1731)

Although Taylor was not the first to seek
polynomial approximations of transcendental
functions, his account published in 1715 was
one of the first comprehensive works on the
subject.
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EXAMPLE 4 Finding Taylor Polynomials for ln x

Find the Taylor polynomials and for centered at 

Solution Expanding about yields the following.

Therefore, the Taylor polynomials are as follows.

Figure 9.14 compares the graphs of and with the graph of 
Note that near the graphs are nearly indistinguishable. For instance,

and

■

ln �0.9� � �0.105361.�0.105358
P4 �0.9� �x � 1

f �x� � ln x.P4P3 ,P2 ,P1,

� �x � 1� �
1
2

�x � 1�2 �
1
3

�x � 1�3 �
1
4

�x � 1�4

     �
f �4��1�

4!
�x � 1�4

P4 �x� � f �1� � f��1��x � 1� �
f � �1�
2!

�x � 1�2 �
f�� �1�

3!
�x � 1�3

� �x � 1� �
1
2

�x � 1�2 �
1
3

�x � 1�3

P3 �x� � f �1� � f��1��x � 1� �
f � �1�
2!

�x � 1�2 �
f ���1�

3!
�x � 1�3

� �x � 1� �
1
2

�x � 1�2

P2 �x� � f �1� � f��1��x � 1� �
f � �1�
2!

�x � 1�2

P1 �x� � f �1� � f��1��x � 1� � �x � 1�
P0 �x� � f �1� � 0

f �4��1� � �
3!
14 � �6f �4��x� � �

3!
x4

f ���1� �
2!
13 � 2f�� �x� �

2!
x3

f ��1� � �
1
12 � �1f ��x� � �

1
x2

f��1� �
1
1

� 1f��x� �
1
x

f �1� � ln 1 � 0f �x� � ln x

c � 1

c � 1.f �x� � ln xP4P3 ,P2 ,P1 ,P0 ,
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x
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2

−1

−2

1 2 3 4

P1

f

y

x

1

2

−1

1 2 3 4

P2

f

y

x

1

2

−1

−2

1 2 3 4

P3

f

y

x

1

2

−1

−2

1 2 3 4

f

P4

y

As increases, the graph of becomes a better and better approximation of the graph of near 
Figure 9.14

x � 1.f �x� � ln xPnn



EXAMPLE 5 Finding Maclaurin Polynomials for cos x

Find the Maclaurin polynomials and for Use to
approximate the value of 

Solution Expanding about yields the following.

Through repeated differentiation, you can see that the pattern continues,
and you obtain the following Maclaurin polynomials.

Using you obtain the approximation which coincides
with the calculator value to nine decimal places. Figure 9.15 compares the graphs of

■

Note in Example 5 that the Maclaurin polynomials for cos have only even
powers of Similarly, the Maclaurin polynomials for sin have only odd powers of

(see Exercise 17). This is not generally true of the Taylor polynomials for sin and
cos expanded about as you can see in the next example.

EXAMPLE 6 Finding a Taylor Polynomial for sin x

Find the third Taylor polynomial for expanded about 

Solution Expanding about yields the following.

So, the third Taylor polynomial for expanded about is 

Figure 9.16 compares the graphs of and ■P3 .f �x� � sin x

�
1
2

�
�3
2 �x �

	

6	 �
1

2 �2!� �x �
	

6	
2

�
�3

2�3!� �x �
	

6	
3
.

P3 �x� � f �	

6	 � f��	

6	�x �
	

6	 �

f � �	6	
2! �x �

	

6	
2

�

f ���	

6	
3! �x �

	

6	
3

c � 	�6,f �x� � sin x,

f ��� �	

6	 � �cos
	

6
��

�3
2

f ����x� � �cos x

f � �	

6	 � �sin
	

6
� �

1
2

f � �x� � �sin x

f��	

6	 � cos
	

6
�

�3
2

f��x� � cos x

f �	

6	 � sin
	

6
�

1
2

f �x� � sin x

c � 	�6

c � 	�6.f �x� � sin x,

c � 0,x
xx

xx.
x

f �x� � cos x and P6 .

cos�0.1� � 0.995004165,P6 �x�,

P6 �x� � 1 �
1
2!

x2 �
1
4!

x4 �
1
6!

x6P4 �x� � 1 �
1
2!

x2 �
1
4!

x4,

P2 �x� � 1 �
1
2!

x2,P0 �x� � 1,

1, 0, �1, 0

f ��� �0� � sin 0 � 0f ����x� � sin x

f � �0� � �cos 0 � �1f � �x� � �cos x

f��0� � �sin 0 � 0f��x� � �sin x

f �0� � cos 0 � 1f �x� � cos x

c � 0

cos�0.1�.
P6 �x�f �x� � cos x.P6P4 ,P2 ,P0 ,

654 Chapter 9 Infinite Series

x

2

2

−2

−1

P6

f (x) = cos x

y

πππ−

Near the graph of can be used to
approximate the graph of
Figure 9.15

f �x� � cos x.
P6�0, 1�,

x

2

1

−2

−1

P3

f (x) = sin x

y

π− −
2
π

2
ππ

Near the graph of can be used
to approximate the graph of
Figure 9.16

f �x� � sin x.
P3�	�6, 1�2�,



Taylor polynomials and Maclaurin polynomials can be used to approximate the
value of a function at a specific point. For instance, to approximate the value of

you can use Taylor polynomials for expanded about as
shown in Example 4, or you can use Maclaurin polynomials, as shown in Example 7.

EXAMPLE 7 Approximation Using Maclaurin Polynomials

Use a fourth Maclaurin polynomial to approximate the value of 

Solution Because 1.1 is closer to 1 than to 0, you should consider Maclaurin
polynomials for the function 

Note that you obtain the same coefficients as in Example 4. Therefore, the fourth
Maclaurin polynomial for is

Consequently,

Check to see that the fourth Taylor polynomial (from Example 4), evaluated at 
yields the same result. ■

The table at the left illustrates the accuracy of the Taylor polynomial approxima-
tion of the calculator value of You can see that as becomes larger,
approaches the calculator value of 0.0953102.

On the other hand, the table below illustrates that as you move away from the
expansion point the accuracy of the approximation decreases.

Fourth Taylor Polynomial Approximation of 

These two tables illustrate two very important points about the accuracy of Taylor
(or Maclaurin) polynomials for use in approximations.

1. The approximation is usually better at values close to than at values far
from

2. The approximation is usually better for higher-degree Taylor (or Maclaurin)
polynomials than for those of lower degree.

c.
x-cx-

ln�1 1 x�

c � 1,

Pn �0.1�nln�1.1�.

x � 1.1,

ln�1.1� � ln�1 � 0.1� � P4 �0.1� � 0.0953083.

� x �
1
2

x2 �
1
3

x3 �
1
4

x4.

P4 �x� � g�0� � g��0�x �
g� �0�

2!
x2 �

g�� �0�
3!

x3 �
g�4��0�

4!
x4

g�x) � ln�1 � x�

g�4��x� � �6 �1 � x��4

g�� �x� � 2�1 � x��3

g� �x� � ��1 � x��2

g��x� � �1 � x��1

g�x� � ln�1 � x�

g�x� � ln �1 � x�.

ln�1.1�.

c � 1,f �x� � ln xln�1.1�,
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x 0 0.1 0.5 0.75 1.0

ln�1 1 x� 0 0.0953102 0.4054651 0.5596158 0.6931472

P4�x� 0 0.0953083 0.4010417 0.5302734 0.5833333

n Pn�0.1�

1 0.1000000

2 0.0950000

3 0.0953333

4 0.0953083

g�4��0� � �6�1 � 0��4 � �6

g�� �0� � 2�1 � 0��3 � 2

g� �0� � ��1 � 0��2 � �1

g��0� � �1 � 0��1 � 1

g�0� � ln�1 � 0� � 0



Remainder of a Taylor Polynomial
An approximation technique is of little value without some idea of its accuracy. To
measure the accuracy of approximating a function value by the Taylor
polynomial you can use the concept of a remainder defined as follows.

So, The absolute value of is called the error associated
with the approximation. That is,

The next theorem gives a general procedure for estimating the remainder
associated with a Taylor polynomial. This important theorem is called Taylor’s
Theorem, and the remainder given in the theorem is called the Lagrange form of the
remainder. (The proof of the theorem is lengthy, and is given in Appendix A.)

For Taylor’s Theorem states that if is differentiable in an interval containing
then, for each in there exists between and such that

or

Do you recognize this special case of Taylor’s Theorem? (It is the Mean Value
Theorem.)

When applying Taylor’s Theorem, you should not expect to be able to find the
exact value of (If you could do this, an approximation would not be necessary.)
Rather, you try to find bounds for from which you are able to tell how large
the remainder is.Rn�x�

f �n�1��z�
z.

f��z� �
f �x� � f �c�

x � c
.f �x� � f �c� � f��z��x � c�

cxzI,xc,
Ifn � 0,

Rn�x�Rn�x� � f �x� � Pn �x�.

Rn�x�,Pn �x�,
f �x�
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Remainder

Error � �Rn�x�� � � f �x� � Pn �x��.

f �x� � Pn �x� � Rn�x�

Exact
value

Approximate
Value

THEOREM 9.19 TAYLOR’S THEOREM

If a function is differentiable through order in an interval containing
then, for each in there exists between and such that

where

Rn�x� �
f �n�1��z�
�n � 1�! �x � c�n�1.

f �x� � f �c� � f��c��x � c� �
f � �c�
2!

�x � c�2
� .  .  . �

f �n��c�
n!

�x � c�n
� Rn�x�

cxzI,xc,
In � 1f

NOTE One useful consequence of Taylor’s Theorem is that

max

where is the maximum value of between and ■c.xf �n�1��z�max� f �n�1��z��

� f �n�1��z���Rn�x�� ≤ �x � c�n�1

�n � 1�!



EXAMPLE 8 Determining the Accuracy of an Approximation

The third Maclaurin polynomial for sin is given by

Use Taylor’s Theorem to approximate by and determine the accuracy
of the approximation.

Solution Using Taylor’s Theorem, you have

where Therefore,

Because it follows that the error can be bounded as follows.

This implies that

EXAMPLE 9 Approximating a Value to a Desired Accuracy

Determine the degree of the Taylor polynomial expanded about that
should be used to approximate so that the error is less than 0.001.

Solution Following the pattern of Example 4, you can see that the st
derivative of is given by

Using Taylor’s Theorem, you know that the error is given by

where In this interval, is less than
So, you are seeking a value of such that

By trial and error, you can determine that the smallest value of that satisfies this
inequality is So, you would need the third Taylor polynomial to achieve the
desired accuracy in approximating ■ln�1.2�.

n � 3.
n

1000 < �n � 1�5n�1.
�0.2�n�1

�n � 1� < 0.001

n�0.2�n�1��n � 1�.
�0.2�n�1��zn�1�n � 1��1 < z < 1.2.

�
�0.2�n�1

zn�1�n � 1�

�Rn�1.2�� � � f �n�1��z�
�n � 1�! �1.2 � 1�n�1� �

n!
zn�1� 1

�n � 1�!��0.2�n�1

�Rn�1.2��

f �n�1��x� � ��1�n n!
xn�1.

f �x� � ln x
�n � 1�

ln�1.2�
c � 1Pn �x�

0.099833 < sin�0.1� < 0.099837.

0.099833 < sin�0.1� � 0.099833 � R3�x� < 0.099833 � 0.000004

0 < R3�0.1� �
sin z
4!

�0.1�4 <
0.0001

4!
� 0.000004

�R3�0.1��f �4��z� � sin z,

sin �0.1� � 0.1 �
�0.1�3

3!
� 0.1 � 0.000167 � 0.099833.

0 < z < 0.1.

sin x � x �
x3

3!
� R3�x� � x �

x3

3!
�

f �4��z�
4!

x4

P3 �0.1�sin �0.1�

P3 �x� � x �
x3

3!
.

x
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NOTE Try using a calculator to verify
the results obtained in Examples 8 and 9.
For Example 8, you obtain

For Example 9, you obtain

and

ln�1.2� � 0.1823.

P3 �1.2� � 0.1827

sin�0.1� � 0.0998334.



In Exercises 1–4, match the Taylor polynomial approximation
of the function with the corresponding graph. [The
graphs are labeled (a), (b), (c), and (d).]

(a) (b)

(c) (d)

1.

2.

3.

4.

In Exercises 5– 8, find a first-degree polynomial function 
whose value and slope agree with the value and slope of at

Use a graphing utility to graph and What is 
called?

5. 6.

7. 8.

Graphical and Numerical Analysis In Exercises 9 and 10, use a
graphing utility to graph and its second-degree polynomial
approximation at Complete the table comparing the
values of and 

9.

10.

11. Conjecture Consider the function and its
Maclaurin polynomials and (see Example 5).

(a) Use a graphing utility to graph and the indicated 
polynomial approximations.

(b) Evaluate and compare the values of and for
4, and 6.

(c) Use the results in part (b) to make a conjecture about 
and

12. Conjecture Consider the function 

(a) Find the Maclaurin polynomials and for 

(b) Use a graphing utility to graph and 

(c) Evaluate and compare the values of and for
3, and 4.

(d) Use the results in part (c) to make a conjecture about 
and

In Exercises 13–24, find the Maclaurin polynomial of degree n
for the function.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

In Exercises 25–30, find the th Taylor polynomial centered
at

25.

26.

27.

28.

29.

30. f �x� � x2 cos x,  n � 2,  c � 	

f �x� � ln x,  n � 4,  c � 2

f �x� � 3�x,  n � 3,  c � 8

f �x� � �x,  n � 3,  c � 4

f �x� �
1
x2,  n � 4,  c � 2

f �x� �
2
x
,  n � 3,  c � 1

c.
n

f �x� � tan x,  n � 3f �x� � sec x,  n � 2

f �x� �
x

x � 1
,  n � 4f �x� �

1
x � 1

,  n � 5

f �x� � x2e�x,  n � 4f �x� � xex,  n � 4

f �x� � sin 	x,  n � 3f �x� � sin x,  n � 5

f �x� � ex�3,  n � 4f �x� � e�x�2,  n � 4

f �x� � e�x,  n � 5f �x� � e3x,  n � 4

Pn
�n��0�.

f �n��0�
n � 2,

Pn
�n��0�f �n��0�

P4 .P3 ,P2 ,f,

f.P4P3 ,P2 ,

f �x� � x2ex.

Pn
�n��0�.

f �n��0�
n � 2,

Pn
�n��0�f �n��0�

f

P6P4 ,P2 ,
f �x� � cos x

P2�x� � �2 � �2�x �
	

4	 �
3
2
�2�x �

	

4	
2

f �x� � sec x,  c �
	

4

P2�x� � 4 � 2�x � 1� �
3
2�x � 1�2

f �x� �
4
�x

,    c � 1

P2.f
x � c.P2

f

f �x� � tan x,  c �
	

4
f �x� � sec x,  c �

	

4

f �x� �
6

3�x
,  c � 8f �x� �

8
�x

,  c � 4

P1P1.fx � c.
f

P1

g�x� � e�1�2�1
3�x � 1�3 � �x � 1� � 1�

g�x� � e�1�2��x � 1� � 1�
g�x� �

1
8x4 �

1
2x2 � 1

g�x� � �
1
2 x2 � 1

x
1

2

2
−1

−1

−2

−2

y

x
1

2

2
−1

−1

−2

−2

y

x
1

2

2
−1

−2

−2

y

x
1

2

2
−1

−1

−2

−2

y

f �x� � e�x2/2
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9.7 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

x 0 0.8 0.9 1 1.1 1.2 2

f �x�

P2�x�

x �2.15 0.585 0.685
	

4
0.885 0.985 1.785

f �x�

P2�x�

www.CalcChat.com


In Exercises 31 and 32, use a computer algebra system to find
the indicated Taylor polynomials for the function Graph the
function and the Taylor polynomials.

31. 32.

(a) (a)

(b) (b)

33. Numerical and Graphical Approximations

(a) Use the Maclaurin polynomials and for
to complete the table.

(b) Use a graphing utility to graph and the
Maclaurin polynomials in part (a).

(c) Describe the change in accuracy of a polynomial approxi-
mation as the distance from the point where the polynomial
is centered increases.

Numerical and Graphical Approximations In Exercises 35 and
36, (a) find the Maclaurin polynomial for (b) 
complete the table for and and (c) sketch the graphs
of and on the same set of coordinate axes.

35. 36.

In Exercises 37– 40, the graph of is shown with four of
its Maclaurin polynomials. Identify the Maclaurin polynomials
and use a graphing utility to confirm your results.

37. 38.

39. 40.

In Exercises 41–44, approximate the function at the given value
of using the polynomial found in the indicated exercise.

41. Exercise 13

42. Exercise 20

43. Exercise 29

44. Exercise 30

In Exercises 45–48, use Taylor’s Theorem to obtain an upper
bound for the error of the approximation. Then calculate the
exact value of the error.

45.

46.

47.

48.

In Exercises 49–52, determine the degree of the Maclaurin
polynomial required for the error in the approximation of the
function at the indicated value of to be less than 0.001.

49.

50.

51.

52. ln�1.25�
e0.6

cos�0.1�
sin�0.3�

x

arctan�0.4� � 0.4 �
�0.4�3

3

arcsin�0.4� � 0.4 �
�0.4�3

2 � 3

e � 1 � 1 �
12

2!
�

13

3!
�

14

4!
�

15

5!

cos�0.3� � 1 �
�0.3�2

2!
�

�0.3�4

4!

f �7	

8 	,f �x� � x2 cos x,

f �2.1�,f �x� � ln x,

f �1
5�,f �x� � x2e�x,

f �1
2�,f �x� � e3x,

x,

x

2

4

−4 4

y y = 4xe (−x2/4)

x

2

1

−1

3

−2 21

y y = ln(x2 + 1)

−2

2

11

x

y = arctan x

1 3−3 −2

y

−6

−4

2

4

6

x

y = cos x

86−6

y

y � f �x�

f �x� � arctan xf �x� � arcsin x

P3 �x�f �x�
P3 �x�,f �x�

f �x�,P3 �x�

f �x� � sin x

f �x� � sin x
P5 �x�P3�x�,P1 �x�,

n � 4,  c � 1n � 3,  c � 1�4

n � 4,  c � 0n � 3,  c � 0

f �x� � 1��x2 � 1�f �x� � tan 	x

f.
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x 0 0.25 0.50 0.75 1.00

sin x 0 0.2474 0.4794 0.6816 0.8415

P1�x�

P3�x�

P5�x�

x �0.75 �0.50 �0.25 0 0.25 0.50 0.75

f �x�

P3�x�

34. Numerical and Graphical Approximations

(a) Use the Taylor polynomials and for
centered at to complete the table.

(b) Use a graphing utility to graph and the Taylor
polynomials in part (a).

(c) Describe the change in accuracy of polynomial approx-
imations as the degree increases.

f �x� � ex

c � 1f �x� � ex

P4�x�P2�x�,P1 �x�,

CAPSTONE

x 1.00 1.25 1.50 1.75 2.00

ex e 3.4903 4.4817 5.7546 7.3891

P1�x�

P2�x�

P4�x�

CAS



In Exercises 53–56, determine the degree of the Maclaurin
polynomial required for the error in the approximation of the
function at the indicated value of to be less than 0.0001. Use a
computer algebra system to obtain and evaluate the required
derivative.

53. approximate

54. approximate

55. approximate

56. approximate

In Exercises 57–60, determine the values of for which the
function can be replaced by the Taylor polynomial if the error
cannot exceed 0.001.

57.

58.

59.

60.

67. Comparing Maclaurin Polynomials

(a) Compare the Maclaurin polynomials of degree 4 and
degree 5, respectively, for the functions and

What is the relationship between them?

(b) Use the result in part (a) and the Maclaurin polynomial of
degree 5 for to find a Maclaurin polynomial of
degree 6 for the function 

(c) Use the result in part (a) and the Maclaurin polynomial of
degree 5 for to find a Maclaurin polynomial of
degree 4 for the function 

68. Differentiating Maclaurin Polynomials

(a) Differentiate the Maclaurin polynomial of degree 5 for
and compare the result with the Maclaurin

polynomial of degree 4 for 

(b) Differentiate the Maclaurin polynomial of degree 6 for
and compare the result with the Maclaurin

polynomial of degree 5 for 

(c) Differentiate the Maclaurin polynomial of degree 4 for
Describe the relationship between the two series.

69. Graphical Reasoning The figure shows the graphs of the
function and the second-degree Taylor 
polynomial centered at 

(a) Use the symmetry of the graph of to write the second-
degree Taylor polynomial for centered at 

(b) Use a horizontal translation of the result in part (a) to find
the second-degree Taylor polynomial for centered at

(c) Is it possible to use a horizontal translation of the result in
part (a) to write a second-degree Taylor polynomial for 
centered at Explain.

70. Prove that if is an odd function, then its Maclaurin
polynomial contains only terms with odd powers of 

71. Prove that if is an even function, then its Maclaurin
polynomial contains only terms with even powers of 

72. Let be the Taylor polynomial for at Prove that
and for (See

Exercises 9 and 10.)

73. Writing The proof in Exercise 72 guarantees that the Taylor
polynomial and its derivatives agree with the function and its
derivatives at Use the graphs and tables in Exercises
33–36 to discuss what happens to the accuracy of the Taylor
polynomial as you move away from x � c.

x � c.

1 � k � n.P�k��c� � f �k��c�Pn �c� � f �c�
c.fnthPn �x�

x.
nthf

x.
nthf

x � 4?
f

x � 6.
fR2�x�

x � �2.fQ2�x�
f

x

2

4

−4

2 4

y

f(x)

P2(x)

x � 2.P2�x� � 1 � �	2�32��x � 2�2
f �x� � sin �	x�4�

f �x� � ex.

g�x� � sin x.
f �x� � cos x

g�x� � cos x.
f �x� � sin x

g�x� � �sin x��x.
f �x) � sin x

g�x� � x sin x.
f �x� � sin x

g�x� � xex.
f �x� � ex

f �x� � e�2x � 1 � 2x � 2x2 �
4
3

x3

f �x� � cos x � 1 �
x2

2!
�

x4

4!

f �x� � sin x � x �
x3

3!

f �x� � ex � 1 � x �
x2

2!
�

x3

3!
,  x < 0

x

f �1�.f �x� � e�x,

f �1.3�.f �x� � e�	x,

f �0.6�.f �x� � cos�	 x2�,
f �0.5�.f �x� � ln�x � 1�,

x
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61. An elementary function is approximated by a polynomial.
In your own words, describe what is meant by saying that
the polynomial is expanded about or centered at

62. When an elementary function is approximated by a
second-degree polynomial centered at what is known
about and at Explain your reasoning.

63. State the definition of an degree Taylor polynomial of 
centered at 

64. Describe the accuracy of the degree Taylor polynomial
of centered at as the distance between and increases.

65. In general, how does the accuracy of a Taylor polynomial
change as the degree of the polynomial increases? Explain
your reasoning.

66. The graphs show first-, second-, and third-degree polyno-
mial approximations and of a function Label
the graphs of and To print an enlarged copy of
the graph, go to the website www.mathgraphs.com.

x
20−20 10

2

−2

−4

4

6

8

10 f

y

P3.P2,P1,
f.P3P2,P1,

xccf
nth-

c.
fnth-

c?P2f
c,P2

f

c.c

WRITING ABOUT CONCEPTS

CAS
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9.8 Power Series 661

9.8 Power Series
■ Understand the definition of a power series.
■ Find the radius and interval of convergence of a power series.
■ Determine the endpoint convergence of a power series.
■ Differentiate and integrate a power series.

Power Series
In Section 9.7, you were introduced to the concept of approximating functions by
Taylor polynomials. For instance, the function can be approximated by its
Maclaurin polynomials as follows.

1st-degree polynomial

2nd-degree polynomial

3rd-degree polynomial

4th-degree polynomial

5th-degree polynomial

In that section, you saw that the higher the degree of the approximating polynomial,
the better the approximation becomes.

In this and the next two sections, you will see that several important types of
functions, including

can be represented exactly by an infinite series called a power series. For example,
the power series representation for is

For each real number it can be shown that the infinite series on the right converges
to the number Before doing this, however, some preliminary results dealing with
power series will be discussed—beginning with the following definition.

ex.
x,

ex � 1 � x �
x2

2!
�

x3

3!
� .  .  . �

xn

n!
� .  .  . .

ex

f�x� � ex

ex � 1 � x �
x2

2!
�

x3

3!
�

x4

4!
�

x5

5!

ex � 1 � x �
x2

2!
�

x3

3!
�

x4

4!

ex � 1 � x �
x2

2!
�

x3

3!

ex � 1 � x �
x2

2!

ex � 1 � x

f�x� � ex

NOTE To simplify the notation for power series, we agree that even if 
■

x � c.�x � c�0 � 1,

DEFINITION OF POWER SERIES

If is a variable, then an infinite series of the form

is called a power series. More generally, an infinite series of the form

is called a power series centered at where is a constant.cc,


�

n�0
an�x � c�n � a0 � a1�x � c� � a2�x � c�2 � .  .  . � an�x � c�n � .  .  .


�

n�0
anxn � a0 � a1x � a2x

2 � a3x
3 � .  .  . � anxn � .  .  .

x

E X P L O R A T I O N

Graphical Reasoning Use a
graphing utility to approximate the
graph of each power series near

(Use the first several terms
of each series.) Each series 
represents a well-known function.
What is the function?

a.

b.

c.

d.

e. 
�

n�0

2n xn

n!


�

n�0

��1�n x2n�1

2n � 1


�

n�0

��1�n x2n�1

�2n � 1�!


�

n�0

��1�n x2n

�2n�!


�

n�0

��1�nxn

n!

x � 0.



EXAMPLE 1 Power Series

a. The following power series is centered at 0.

b. The following power series is centered at 

c. The following power series is centered at 1.

■

Radius and Interval of Convergence
A power series in can be viewed as a function of 

where the domain of is the set of all for which the power series converges.
Determination of the domain of a power series is the primary concern in this section.
Of course, every power series converges at its center because

So, always lies in the domain of The following important theorem states that the
domain of a power series can take three basic forms: a single point, an interval
centered at or the entire real line, as shown in Figure 9.17. A proof is given in
Appendix A.

c,

f.c

� a0.

� a0�1� � 0 � 0 � .  .  . � 0 � .  .  .

f�c� � 
�

n�0
an�c � c�n

c

xf

f�x� � 
�

n�0
an�x � c�n

xx


�

n�1

1
n

�x � 1�n � �x � 1� �
1
2

�x � 1�2 �
1
3

�x � 1�3 � .  .  .


�

n�0
��1�n �x � 1�n � 1 � �x � 1� � �x � 1�2 � �x � 1�3 � .  .  .

�1.


�

n�0

xn

n!
� 1 � x �

x2

2
�

x3

3!
� .  .  .
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THEOREM 9.20 CONVERGENCE OF A POWER SERIES

For a power series centered at precisely one of the following is true.

1. The series converges only at 

2. There exists a real number such that the series converges absolutely for
and diverges for 

3. The series converges absolutely for all 

The number is the radius of convergence of the power series. If the series
converges only at the radius of convergence is and if the series
converges for all the radius of convergence is The set of all values of

for which the power series converges is the interval of convergence of the
power series.
x

R � �.x,
R � 0,c,

R

x.
�x � c� > R.�x � c� < R,

R > 0

c.

c,

c
x

A single point

c
x

R R

An interval

c
x

The real line

The domain of a power series has only three
basic forms: a single point, an interval 
centered at or the entire real line.
Figure 9.17

c,



EXAMPLE 2 Finding the Radius of Convergence

Find the radius of convergence of 

Solution For you obtain

For any fixed value of such that let Then

Therefore, by the Ratio Test, the series diverges for and converges only at its
center, 0. So, the radius of convergence is 

EXAMPLE 3 Finding the Radius of Convergence

Find the radius of convergence of

Solution For let Then

By the Ratio Test, the series converges if and diverges if 
Therefore, the radius of convergence of the series is 

EXAMPLE 4 Finding the Radius of Convergence

Find the radius of convergence of 

Solution Let Then

For any value of this limit is 0. So, by the Ratio Test, the series converges for
all Therefore, the radius of convergence is ■R � �.x.

x,fixed

� lim
n→�

x2

�2n � 3��2n � 2�.

 lim
n→� �un�1

un � � lim
n→� � ��1�n�1 x2n�3

�2n � 3�!
��1�n x2n�1

�2n � 1�! �
un � ��1�nx2n�1��2n � 1�!.


�

n�0

��1�nx2n�1

�2n � 1�! .

R � 1.
�x � 2� > 1.�x � 2� < 1

� �x � 2�.
� lim

n→�
�x � 2�

 lim
n→� �un�1

un � � lim
n→� �3�x � 2�n�1

3�x � 2�n �
un � 3�x � 2�n.x � 2,


�

n�0
 3�x � 2�n.

R � 0.
�x� > 0

� �.

� �x� lim
n→�

�n � 1�

 lim
n→� �un�1

un � � lim
n→� ��n � 1�!xn�1

n!xn �
un � n!xn.�x� > 0,x

f�0� � 
�

n�0
n!0n � 1 � 0 � 0 � .  .  . � 1.

x � 0,


�

n�0
n!xn.
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To determine the radius of
convergence of a power series, use the
Ratio Test, as demonstrated in Examples
2, 3, and 4.

STUDY TIP



Endpoint Convergence
Note that for a power series whose radius of convergence is a finite number 
Theorem 9.20 says nothing about the convergence at the endpoints of the interval of
convergence. Each endpoint must be tested separately for convergence or divergence.
As a result, the interval of convergence of a power series can take any one of the six
forms shown in Figure 9.18.

Intervals of convergence
Figure 9.18

EXAMPLE 5 Finding the Interval of Convergence

Find the interval of convergence of 

Solution Letting produces

So, by the Ratio Test, the radius of convergence is Moreover, because the
series is centered at 0, it converges in the interval This interval,
however, is not necessarily the interval of convergence. To determine this, you must
test for convergence at each endpoint. When you obtain the divergent harmonic
series

Diverges when 

When you obtain the convergent alternating harmonic series

Converges when 

So, the interval of convergence for the series is as shown in Figure 9.19.

Figure 9.19 ■

Radius: R = 1

c = 0
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� .  .  . .

x � 1,

��1, 1�.
R � 1.

� �x�.
� lim

n→� � nx
n � 1�

 lim
n→� �un�1

un � � lim
n→� � xn�1

�n � 1�
xn

n �
un � xn�n


�

n�1

xn

n
.
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x
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x
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c
x

c
x

Radius: 0

R,
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EXAMPLE 6 Finding the Interval of Convergence

Find the interval of convergence of 

Solution Letting produces

By the Ratio Test, the series converges if or So, the
radius of convergence is Because the series is centered at it will
converge in the interval Furthermore, at the endpoints you have

Diverges when 

and

Diverges when 

both of which diverge. So, the interval of convergence is as shown in Figure
9.20.

EXAMPLE 7 Finding the Interval of Convergence

Find the interval of convergence of 

Solution Letting produces

So, the radius of convergence is Because the series is centered at it
converges in the interval When you obtain the convergent series

Converges when 

When you obtain the convergent alternating series

Converges when 

Therefore, the interval of convergence for the given series is ■��1, 1�.

x � �1
�

n�1

��1�n

n2 � �
1
12 �

1
22 �

1
32 �

1
42 � .  .  . .

x � �1,

x � 1
�

n�1

1
n2 �

1
12 �

1
22 �

1
32 �

1
42 � .  .  . .

p-x � 1,��1, 1�.
x � 0,R � 1.

� lim
n→� � n2x

�n � 1�2� � �x�.

 lim
n→� �un�1

un � � lim
n→� �xn�1��n � 1�2

xn�n2 �
un � xn�n2


�

n�1

xn

n2.

��3, 1�,

x � 1
�

n�0

��1�n�2�n

2n � 
�

n�0
��1�n

x � �3
�

n�0

��1�n ��2�n

2n � 
�

n�0

2n

2n � 
�

n�0
 1

��3, 1�.
x � �1,R � 2.

�x � 1� < 2.��x � 1��2� < 1

� �x � 1
2 �.

� lim
n→� �2n�x � 1�

2n�1 �
 lim
n→� �un�1

un � � lim
n→� � ��1�n�1�x � 1�n�1

2n�1

��1�n�x � 1�n

2n �
un � ��1�n�x � 1�n�2n


�

n�0

��1�n�x � 1�n

2n .
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Radius: R = 2

c = −1
x

−3 −2 10

Interval: (−3, 1)

Figure 9.20



Differentiation and Integration of Power Series
Power series representation of functions has played an important role in the develop-
ment of calculus. In fact, much of Newton’s work with differentiation and integration
was done in the context of power series—especially his work with complicated
algebraic functions and transcendental functions. Euler, Lagrange, Leibniz, and the
Bernoullis all used power series extensively in calculus.

Once you have defined a function with a power series, it is natural to wonder how
you can determine the characteristics of the function. Is it continuous? Differentiable?
Theorem 9.21, which is stated without proof, answers these questions.

Theorem 9.21 states that, in many ways, a function defined by a power series
behaves like a polynomial. It is continuous in its interval of convergence, and both its
derivative and its antiderivative can be determined by differentiating and integrating
each term of the given power series. For instance, the derivative of the power series 

is

Notice that Do you recognize this function?f��x� � f�x�.

� f�x�.

� 1 � x �
x2

2
�

x3

3!
�

x4

4!
� .  .  .

f��x� � 1 � �2� x
2

� �3� x2

3!
� �4� x3

4!
� .  .  .

� 1 � x �
x2

2
�

x3

3!
�

x4

4!
� .  .  .

f�x� � 
�

n�0

xn

n!
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THEOREM 9.21 PROPERTIES OF FUNCTIONS DEFINED BY POWER SERIES

If the function given by

has a radius of convergence of then, on the interval 
is differentiable (and therefore continuous). Moreover, the derivative and

antiderivative of are as follows.

1.

2.

The radius of convergence of the series obtained by differentiating or integrating
a power series is the same as that of the original power series. The interval of
convergence, however, may differ as a result of the behavior at the endpoints.

� C � a0�x � c� � a1
�x � c�2

2
� a2

�x � c�3

3
� .  .  .


f�x� dx � C � 
�

n�0
an

�x � c�n�1

n � 1

� a1 � 2a2�x � c� � 3a3�x � c�2 � .  .  .

f��x� � 
�

n�1
nan�x � c�n�1

f
f

�c � R, c � R�,R > 0,

� a0 � a1�x � c� � a2�x � c�2 � a3�x � c�3 � .  .  .

f�x� � 
�

n�0
an�x � c�n

JAMES GREGORY (1638–1675)

One of the earliest mathematicians to work
with power series was a Scotsman, James
Gregory. He developed a power series method
for interpolating table values—a method that
was later used by Brook Taylor in the develop-
ment of Taylor polynomials and Taylor series.
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EXAMPLE 8 Intervals of Convergence for and 

Consider the function given by

Find the interval of convergence for each of the following.

a. b. c.

Solution By Theorem 9.21, you have

and

By the Ratio Test, you can show that each series has a radius of convergence of 
Considering the interval you have the following.

a. For the series

Interval of convergence:

converges for and its interval of convergence is See Figure
9.21(a).

b. For the series

Interval of convergence:

converges for and diverges for So, its interval of convergence is
See Figure 9.21(b).

c. For the series

Interval of convergence:

diverges for and its interval of convergence is See Figure 9.21(c).

(a) (b) (c)
Figure 9.21 ■

From Example 8, it appears that of the three series, the one for the derivative,
is the least likely to converge at the endpoints. In fact, it can be shown that if the

series for converges at the endpoints the series for will also 
converge there.

f�x�x � c ± R,f��x�
f��x�,

Radius: R = 1

c = 0

x

−1 1

Interval: (−1, 1)
Radius: R = 1

c = 0

x

−1 1

Interval: [−1, 1)
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c = 0

x

−1 1

Interval: [−1, 1]

��1, 1�.x � ±1,

��1, 1�
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x � 1.x � �1

��1, 1�
�

n�1

xn

n

f�x�,

��1, 1�.x � ±1,

��1, 1�
�

n�1

xn�1

n�n � 1�

� f�x� dx,

��1, 1�,
R � 1.

� C �
x2

1 � 2
�

x3

2 � 3
�

x4

3 � 4
� .  .  . .


 f�x� dx � C � 
�

n�1

xn�1

n�n � 1�

� 1 � x � x2 � x3 � .  .  .

f��x� � 
�

n�1
xn�1

f��x�f�x�� f�x� dx

f�x� � 
�

n�1

xn

n
� x �

x2

2
�

x3

3
� .  .  . .

�f �x� dxf��x�,f�x�,
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In Exercises 1–4, state where the power series is centered.

1. 2.

3. 4.

In Exercises 5–10, find the radius of convergence of the power
series.

5. 6.

7. 8.

9. 10.

In Exercises 11–34, find the interval of convergence of the
power series. (Be sure to include a check for convergence at the
endpoints of the interval.)

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31.

32.

33.

34.

In Exercises 35 and 36, find the radius of convergence of the
power series, where and is a positive integer.

35. 36.

In Exercises 37– 40, find the interval of convergence of the
power series. (Be sure to include a check for convergence at the
endpoints of the interval.)

37. 38.

39.

40.

In Exercises 41–44, write an equivalent series with the index of
summation beginning at 

41. 42.

43. 44.

In Exercises 45– 48, find the intervals of convergence of (a) 
(b) (c) and (d) Include a check for 
convergence at the endpoints of the interval.

45.

46.

47.

48.

Writing In Exercises 49–52, match the graph of the first 10
terms of the sequence of partial sums of the series

with the indicated value of the function. [The graphs are labeled
(a), (b), (c), and (d).] Explain how you made your choice.

(a) (b) Sn

n
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4
6
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4 6 8

Sn
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4 6 8
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n5n

f �x� � 
�

n�0
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3	
n

� f �x� dx.f��x�,f��x�,
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�
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k � 1
�

n�1
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�
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(c) (d)

49. 50.

51. 52.

Writing In Exercises 53–56, match the graph of the first 10
terms of the sequence of partial sums of the series

with the indicated value of the function. [The graphs are labeled
(a), (b), (c), and (d).] Explain how you made your choice.

(a) (b)

(c) (d)

53. 54.

55. 56.

63. Let and

(a) Find the intervals of convergence of and 

(b) Show that 

(c) Show that 

(d) Identify the functions and 

64. Let

(a) Find the interval of convergence of 

(b) Show that 

(c) Show that 

(d) Identify the function 

In Exercises 65–70, show that the function represented by the
power series is a solution of the differential equation.

65.

66.

67.

68.

69.

70.

71. Bessel Function The Bessel function of order 0 is

(a) Show that the series converges for all 

(b) Show that the series is a solution of the differential 
equation

(c) Use a graphing utility to graph the polynomial composed of
the first four terms of 

(d) Approximate accurate to two decimal places.�1
0 J0 dx

J0.
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57. Define a power series centered at 

58. Describe the radius of convergence of a power series.
Describe the interval of convergence of a power series.

59. Describe the three basic forms of the domain of a power
series.

60. Describe how to differentiate and integrate a power series
with a radius of convergence Will the series resulting
from the operations of differentiation and integration have a
different radius of convergence? Explain.

R.

c.

WRITING ABOUT CONCEPTS

61. Give examples that show that the convergence of a power
series at an endpoint of its interval of convergence may be
either conditional or absolute. Explain your reasoning.

WRITING ABOUT CONCEPTS (cont inued)

62. Write a power series that has the indicated interval of 
convergence. Explain your reasoning.

(a) (b) (c) (d) ��2, 6���1, 0���1, 1���2, 2�

CAPSTONE



72. Bessel Function The Bessel function of order 1 is

(a) Show that the series converges for all 

(b) Show that the series is a solution of the differential equation

(c) Use a graphing utility to graph the polynomial composed of
the first four terms of 

(d) Show that 

In Exercises 73–76, the series represents a well-known function.
Use a computer algebra system to graph the partial sum and
identify the function from the graph.

73. 74.

75.

76.

77. Investigation The interval of convergence of the geometric

series is 

(a) Find the sum of the series when Use a graphing 
utility to graph the first six terms of the sequence of partial
sums and the horizontal line representing the sum of the
series.

(b) Repeat part (a) for 

(c) Write a short paragraph comparing the rates of convergence
of the partial sums with the sums of the series in parts (a)
and (b). How do the plots of the partial sums differ as they
converge toward the sum of the series?

(d) Given any positive real number there exists a positive
integer such that the partial sum

Use a graphing utility to complete the table.

78. Investigation The interval of convergence of the series

is

(a) Find the sum of the series when Use a graphing utility
to graph the first six terms of the sequence of partial sums
and the horizontal line representing the sum of the series.

(b) Repeat part (a) for 

(c) Write a short paragraph comparing the rates of convergence
of the partial sums with the sums of the series in parts (a)
and (b). How do the plots of the partial sums differ as they
converge toward the sum of the series?

(d) Given any positive real number M, there exists a positive
integer N such that the partial sum

Use a graphing utility to complete the table.

True or False? In Exercises 79–82, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

79. If the power series converges for then it also

converges for 

80. It is possible to find a power series whose interval of conver-
gence is 

81. If the interval of convergence for is then the 

interval of convergence for is 

82. If converges for then

83. Prove that the power series

has a radius of convergence of if p and q are positive
integers.

84. Let where the 
coefficients are and for 

(a) Find the interval of convergence of the series.

(b) Find an explicit formula for 

85. Let where for 

(a) Find the interval of convergence of the series.

(b) Find an explicit formula for 

86. Prove that if the power series has a radius of conver-

gence of R, then has a radius of convergence of 

87. For let and Prove that if the interval of

convergence of the series is 

then the series converges conditionally at x0 � R.

�x0 � R, x0 � R�,
�

n�0
cn�x � x0�n

cn > 0.R > 0n > 0,

�R.
�

n�0
cn x2n


�

n�0
cn x n

f �x�.

n � 0.cn�3 � cnf �x� � 
�

n�0
cn xn,

g�x�.

n � 0.c2n�1 � 2c2n � 1
g�x� � 1 � 2x � x2 � 2x3 � x4 � .  .  . ,

R � �


�

n�0

�n � p�!
n!�n � q�! xn


�

n�0

an

n � 1
.
1

0
f �x� dx �

�x� < 2,f �x� � 
�

n�0
an xn

�0, 2�.
�

n�0
an�x � 1�n

��1, 1�,
�

n�0
an xn

�0, ��.

x � �2.

x � 2,
�

n�1
an xn


N

n�0
�3 �

2
3	

n

> M.

x � �
1
6.

x �
1
6.

��1
3, 1

3�.
�

n�0
�3x�n


N

n�0
�5

4	
n

> M.

N
M,

x � �
5
2.

x �
5
2.

��4, 4�.
�

n�0
�x

4	
n

�1 � x � 1f �x� � 
�

n�0
��1�n x2n�1

2n � 1
,

�1 < x < 1f �x� � 
�

n�0
��1�n xn,

f �x� � 
�

n�0
��1�n x2n�1

�2n � 1�!f �x� � 
�

n�0
��1�n x2n

�2n�!

S10

J0��x� � �J1�x�.
J1.

x2 J1� � x J1� � �x2 � 1� J1 � 0.

x.

J1�x� � x 
�

k�0

��1�k x2k

22k�1 k!�k � 1�!.
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9.9 Representation of Functions by Power Series 671

9.9 Representation of Functions by Power Series
■ Find a geometric power series that represents a function.
■ Construct a power series using series operations.

Geometric Power Series
In this section and the next, you will study several techniques for finding a power
series that represents a given function.

Consider the function given by The form of closely resembles
the sum of a geometric series

In other words, if you let and a power series representation for 
centered at 0, is

Of course, this series represents only on the interval 
whereas is defined for all as shown in Figure 9.22. To represent in another
interval, you must develop a different series. For instance, to obtain the power series 
centered at you could write

which implies that and So, for you have

which converges on the interval 

Figure 9.22

x

2

1

−1

−2

1 2 3−1

f (x) = Σ
∞

n = 0
xn, Domain: −1 < x < 1

y

f (x) = 1
1 − x

, Domain: all x ≠ 1

x

2

1

−1

−2

1 2 3−1

y

��3, 1�.

�x � 1� < 2�
1
2�1 �

�x � 1�
2

�
�x � 1�2

4
�

�x � 1�3

8
� .  .  .�,

1
1 � x

� 
�

n�0
�1

2	�
x � 1

2 	
n

�x � 1� < 2,r � �x � 1��2.a �
1
2

1
1 � x

�
1

2 � �x � 1� �
1�2

1 � ��x � 1��2� �
a

1 � r

�1,

fx � 1,f
��1, 1�,f�x� � 1��1 � x�

�x� < 1.� 1 � x � x2 � x3 � .  .  . ,

1
1 � x

� 
�

n�0
xn

1��1 � x�,r � x,a � 1

�r� < 1.
�

n�0
arn �

a
1 � r

,

ff�x� � 1��1 � x�.

JOSEPH FOURIER (1768–1830)

Some of the early work in representing func-
tions by power series was done by the French
mathematician Joseph Fourier. Fourier’s work
is important in the history of calculus, partly
because it forced eighteenth century mathe-
maticians to question the then-prevailing
narrow concept of a function. Both Cauchy
and Dirichlet were motivated by Fourier’s work
with series, and in 1837 Dirichlet published
the general definition of a function that is
used today.
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EXAMPLE 1 Finding a Geometric Power Series Centered at 0

Find a power series for centered at 0.

Solution Writing in the form produces

which implies that and So, the power series for is

This power series converges when

which implies that the interval of convergence is ■

Another way to determine a power series for a rational function such as the one
in Example 1 is to use long division. For instance, by dividing into 4, you obtain
the result shown at the left.

EXAMPLE 2 Finding a Geometric Power Series Centered at 1

Find a power series for centered at 1.

Solution Writing in the form produces

which implies that and So, the power series for is

This power series converges when

which implies that the interval of convergence is ■�0, 2�.
�x � 1� < 1

� 1 � �x � 1� � �x � 1�2 � �x � 1�3 � .  .  . .

� 
�

n�0
��1�n�x � 1�n

� 
�

n�0
���x � 1��n

1
x

� 
�

n�0
arn

f�x�r � 1 � x � ��x � 1�.a � 1

1
x

�
1

1 � ��x � 1� �
a

1 � r

a��1 � r�f�x�

f�x� �
1
x
,

2 � x

��2, 2�.
��x

2� < 1

� 2�1 �
x
2

�
x2

4
�

x3

8
� .  .  .	.

� 
�

n�0
 2��

x
2	

n

4
x � 2

� 
�

n�0
arn

f�x�r � �x�2.a � 2

4
2 � x

�
2

1 � ��x�2� �
a

1 � r

a��1 � r�f�x�

f�x� �
4

x � 2
,
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             �1
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             �1
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 4 �  2x         
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1
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Operations with Power Series
The versatility of geometric power series will be shown later in this section, following a
discussion of power series operations. These operations, used with differentiation and
integration, provide a means of developing power series for a variety of 
elementary functions. (For simplicity, the following properties are stated for a series
centered at 0.)

The operations described above can change the interval of convergence for the
resulting series. For example, in the following addition, the interval of convergence for
the sum is the intersection of the intervals of convergence of the two original series.

EXAMPLE 3 Adding Two Power Series

Find a power series, centered at 0, for 

Solution Using partial fractions, you can write as

By adding the two geometric power series

and

you obtain the following power series.

The interval of convergence for this power series is ■��1, 1�.

3x � 1
x2 � 1

� 
�

n�0
�2��1�n � 1� xn � 1 � 3x � x2 � 3x3 � x4 � .  .  .

�x� < 1
1

x � 1
�

�1
1 � x

� � 
�

n�0
xn,

�x� < 1
2

x � 1
�

2
1 � ��x� � 

�

n�0
 2��1�nxn,

3x � 1
x2 � 1

�
2

x � 1
�

1
x � 1

.

f�x�

f �x� �
3x � 1
x2 � 1

.

��1, 1����2, 2����1, 1�


�

n�0
�1 �

1
2n	xn�

�

n�0
�x

2	
n

�
�

n�0
xn
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OPERATIONS WITH POWER SERIES

Let and 

1.

2.

3. f�x� ± g�x� � 
�

n�0
�an ± bn�xn

f�xN � � 
�

n�0
anxnN

f�kx� � 
�

n�0
anknxn

g�x� �  bnxn.f�x� �  anxn



EXAMPLE 4 Finding a Power Series by Integration

Find a power series for centered at 1.

Solution From Example 2, you know that

Interval of convergence:

Integrating this series produces

By letting you can conclude that Therefore,

Note that the series converges at This is consistent with the observation in the
preceding section that integration of a power series may alter the convergence at the
endpoints of the interval of convergence. ■

x � 2.

�
�x � 1�

1
�

�x � 1�2

2
�

�x � 1�3

3
�

�x � 1�4

4
� .  .  . .

 ln x � 
�

n�0
��1�n �x � 1�n�1

n � 1

C � 0.x � 1,

� C � 
�

n�0
��1�n �x � 1�n�1

n � 1
.

 ln x � 
 1
x

dx � C

�0, 2�
1
x

� 
�

n�0
��1�n�x � 1�n.

f�x� � ln x,
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Interval of 
convergence: �0, 2�

In Section 9.7, the fourth-degree Taylor polynomial for the natural
logarithmic function

was used to approximate 

You now know from Example 4 that this polynomial represents the first four terms
of the power series for Moreover, using the Alternating Series Remainder, you
can determine that the error in this approximation is less than

During the seventeenth and eighteenth centuries, mathematical tables for logarithms
and values of other transcendental functions were computed in this manner. Such
numerical techniques are far from outdated, because it is precisely by such means
that many modern calculating devices are programmed to evaluate transcendental
functions.

� 0.000002.

�
1
5

�0.1�5

�R4� � �a5�

ln x.

� 0.0953083

 ln�1.1� � �0.1� �
1
2

�0.1�2 �
1
3

�0.1�3 �
1
4

�0.1�4

ln�1.1�.

ln x � �x � 1� �
�x � 1�2

2
�

�x � 1�3

3
�

�x � 1�4

4
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EXAMPLE 5 Finding a Power Series by Integration

Find a power series for centered at 0.

Solution Because you can use the series

Interval of convergence:

Substituting for produces

Finally, by integrating, you obtain

Let then 

Interval of convergence:

■

It can be shown that the power series developed for in Example 5 also
converges (to ) for For instance, when you can write

However, this series (developed by James Gregory in 1671) does not give us a practi-
cal way of approximating because it converges so slowly that hundreds of terms
would have to be used to obtain reasonable accuracy. Example 6 shows how to use two
different arctangent series to obtain a very good approximation of using only a few
terms. This approximation was developed by John Machin in 1706.

EXAMPLE 6 Approximating with a Series

Use the trigonometric identity

to approximate the number [see Exercise 50(b)].

Solution By using only five terms from each of the series for and
you obtain

which agrees with the exact value of with an error of less than 0.0000001.
■

	

4�4 arctan 
1
5

� arctan
1

239	 � 3.1415926

arctan�1�239�,
arctan�1�5�

	

4 arctan 
1
5

� arctan
1

239
�

	

4

�

	

	

�
	

4
.

arctan 1 � 1 �
1
3

�
1
5

�
1
7

� .  .  .

x � 1,x � ±1.arctan x
arctan x

��1, 1�� x �
x3

3
�

x5

5
�

x7

7
� .  .  . .

C � 0.x � 0,� 
�

n�0
��1�n x2n�1

2n � 1

� C � 
�

n�0
��1�n x2n�1

2n � 1

 arctan x � 
 1
1 � x2 dx � C

f�x2� �
1

1 � x2 � 
�

n�0
��1�nx2n.

xx2

��1, 1�f�x� �
1

1 � x
� 

�

n�0
��1�nxn.

Dx�arctan x� � 1��1 � x2�,

g�x� � arctan x,

9.9 Representation of Functions by Power Series 675

SRINIVASA RAMANUJAN (1887–1920)

Series that can be used to approximate 
have interested mathematicians for the past
300 years. An amazing series for approximating

was discovered by the Indian mathe-
matician Srinivasa Ramanujan in 1914 
(see Exercise 67). Each successive term of
Ramanujan’s series adds roughly eight more
correct digits to the value of For more
information about Ramanujan’s work, see the
article “Ramanujan and Pi” by Jonathan M.
Borwein and Peter B. Borwein in Scientific
American.
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In Exercises 1–4, find a geometric power series for the function,
centered at 0, (a) by the technique shown in Examples 1 and 2
and (b) by long division.

1. 2.

3. 4.

In Exercises 5–16, find a power series for the function, centered
at and determine the interval of convergence.

5. 6.

7. 8.

9. 10.

11. 12.

13.

14.

15.

16.

In Exercises 17–26, use the power series

to determine a power series, centered at 0, for the function.
Identify the interval of convergence.

17.

18.

19.

20.

21.

22.

23. 24.

25. 26.

Graphical and Numerical Analysis In Exercises 27 and 28, let

� 

Use a graphing utility to confirm the inequality graphically.
Then complete the table to confirm the inequality numerically.

27.

28.

In Exercises 29 and 30, (a) graph several partial sums of the
series, (b) find the sum of the series and its radius of conver-
gence, (c) use 50 terms of the series to approximate the sum
when and (d) determine what the approximation 
represents and how good the approximation is.

29.

30.

In Exercises 31–34, match the polynomial approximation of the
function with the correct graph. [The graphs
are labeled (a), (b), (c), and (d).]

(a) (b)

(c) (d)

31. 32.

33. 34. g�x� � x �
x3

3
�

x5

5
�

x7

7
g�x� � x �

x3

3
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x5

5

g�x� � x �
x3

3
g�x� � x

x
1 3−2−3

3

2

1

−2

−3

y

x
1 2 3−2−3

3

2

1

−2

−3

y

x
1 2 3−2−3

3

2

1

−2

−3

y

x
1 2 3−2−3

3

2

1

−2

−3

y

f �x� � arctan x


�

n�0

��1�nx2n�1

�2n � 1�!


�

n�1

��1�n�1�x � 1�n

n

x � 0.5,

S4 � ln�x � 1� � S5

S2 � ln�x � 1� � S3

xn

n
.Sn � x �

x2

2
1

x3

3
�

x4

4
1 .  .  .

f �x� � arctan 2xh�x� �
1

4x2 � 1

f �x� � ln�x2 � 1�g�x� �
1

x2 � 1

f �x� � ln�1 � x2� � 
 1
1 � x

dx � 
 1
1 � x

dx

f �x� � ln�x � 1� � 
 1
x � 1

dx

f �x� �
2

�x � 1�3 �
d 2

dx2 � 1
x � 1�

f �x� � �
1

�x � 1�2 �
d
dx �

1
x � 1�

h�x� �
x

x2 � 1
�

1
2�1 � x� �

1
2�1 � x�

h�x� �
�2

x2 � 1
�

1
1 � x

�
1

1 � x

1
1 1 x

� 
�

n�0
��1�n xn

c � 0f �x� �
5

5 � x2,

c � 0f �x� �
2

1 � x2,

c � 0g�x� �
3x � 8

3x2 � 5x � 2
,

c � 0g�x� �
4x

x2 � 2x � 3
,

c � 3f �x� �
4

3x � 2
,c � 0f �x� �

2
2x � 3

,

c � 2f �x� �
3

2x � 1
,c � �3g�x� �

5
2x � 3

,

c � 0h�x� �
1

1 � 5x
,c � 0f �x� �

1
1 � 3x

,

c � �3f �x� �
4

5 � x
,c � 1f �x� �

1
3 � x

,

c,

f �x� �
2

5 � x
f �x� �

3
4 � x

f �x� �
1

2 � x
f �x� �

1
4 � x
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In Exercises 35–38, use the series for to approx-
imate the value, using 

35. 36.

37. 38.

In Exercises 39–42, use the power series

Find the series representation of the function and determine its
interval of convergence.

39. 40.

41. 42.

43. Probability A fair coin is tossed repeatedly. The probability
that the first head occurs on the toss is When
this game is repeated many times, the average number of tosses
required until the first head occurs is

(This value is called the expected value of ) Use the results of
Exercises 39–42 to find Is the answer what you expected?
Why or why not?

44. Use the results of Exercises 39–42 to find the sum of each series.

(a) (b)

Writing In Exercises 45– 48, explain how to use the geometric
series

to find the series for the function. Do not find the series.

45. 46.

47. 48.

49. Prove that for 

provided the value of the left side of the equation is between
and

50. Use the result of Exercise 49 to verify each identity.

(a)

(b)

[Hint: Use Exercise 49 twice to find Then use part
(a).]

In Exercises 51 and 52, (a) verify the given equation and (b) use
the equation and the series for the arctangent to approximate 
to two-decimal-place accuracy.

51. 52.

In Exercises 53–58, find the sum of the convergent series by
using a well-known function. Identify the function and explain
how you obtained the sum.

53. 54.

55. 56.

57. 58.

In Exercises 65 and 66, find the sum of the series.

65. 66.

67. Ramanujan and Pi Use a graphing utility to show that 
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xy � 1arctan x � arctan y � arctan
x � y

1 � xy

f �x� � ln�1 � x�f �x� �
5

1 � x

f �x� �
1

1 � x2f �x� �
1

1 � x

�x� < 1g�x� �
1

1 � x
� 

�

n�0
xn,

1
10 

�

n�1
n� 9

10	
n1

3 
�

n�1
n�2

3	
n

E�n�.
n.

E�n� � 
�

n�1
nP�n�.

P�n� � �1
2�n

.nth

f �x� �
x�1 � x�
�1 � x�2f �x� �

1 � x
�1 � x�2

f �x� �
x

�1 � x�2f �x� �
1

�1 � x�2

�x� < 1.
1

1 � x
� 

�

n�0
xn,


1�2

0
x2 arctan x dx
1�2

0

arctan x2

x
dx


3�4

0
 arctan x2 dxarctan

1
4

RN � 0.001.
f �x� � arctan x
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59. Use the results of Exercises 31–34 to make a geometric
argument for why the series approximations of

have only odd powers of 

60. Use the results of Exercises 31–34 to make a conjecture
about the degrees of series approximations of

that have relative extrema.

61. One of the series in Exercises 53–58 converges to its sum at
a much lower rate than the other five series. Which is it?
Explain why this series converges so slowly. Use a graphing
utility to illustrate the rate of convergence.

62. The radius of convergence of the power series 

is 3. What is the radius of convergence of the series

Explain.

63. The power series converges for 

What can you conclude about the series 

Explain.

�

n�0
an

xn�1

n � 1
?

�x � 1� < 4.
�

n�0
an x n


�

n�1
nan x n�1?


�

n�0
an x n

f �x� � arctan x

x.f �x� � arctan x

WRITING ABOUT CONCEPTS

64. Find the Error Describe why the statement is incorrect.


�

n�0
xn � 

�

n�0
�x

5	
n

� 
�

n�0
�1 �

1
5	 xn

CAPSTONE



■ Find a Taylor or Maclaurin series for a function.
■ Find a binomial series.
■ Use a basic list of Taylor series to find other Taylor series.

Taylor Series and Maclaurin Series
In Section 9.9, you derived power series for several functions using geometric series
with term-by-term differentiation or integration. In this section you will study a 
general procedure for deriving the power series for a function that has derivatives of
all orders. The following theorem gives the form that every convergent power series
must take.

Notice that the coefficients of the power series in Theorem 9.22 are precisely the
coefficients of the Taylor polynomials for at as defined in Section 9.7. For this
reason, the series is called the Taylor series for at c.f �x�

cf�x�
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9.10 Taylor and Maclaurin Series

COLIN MACLAURIN (1698–1746)

The development of power series to represent
functions is credited to the combined work of
many seventeenth and eighteenth century
mathematicians. Gregory, Newton, John and
James Bernoulli, Leibniz, Euler, Lagrange,
Wallis, and Fourier all contributed to this
work. However, the two names that are most
commonly associated with power series are
Brook Taylor (1685–1731) and Colin
Maclaurin.

B
et

tm
an

n/
C

or
bi

s

THEOREM 9.22 THE FORM OF A CONVERGENT POWER SERIES

If is represented by a power series for all in an open
interval containing then and

f�x� � f�c� � f��c��x � c� �
f��c�
2!

�x � c�2 � .  .  . �
f �n��c�

n!
�x � c�n � .  .  . .

an � f �n��c��n!c,I
xf�x� �  an�x � c�nf

PROOF Suppose the power series has a radius of convergence Then,
by Theorem 9.21, you know that the derivative of exists for and by
successive differentiation you obtain the following.

Evaluating each of these derivatives at yields

and, in general, By solving for you find that the coefficients of the
power series representation of are

■an �
f �n��c�

n!
.

f�x�
an,f �n��c� � n!an.

f �3��c� � 3!a3

f �2��c� � 2!a2

f �1��c� � 1!a1

f �0��c� � 0!a0

x � c

f �n��x� � n!an � �n � 1�!an�1�x � c� � .  .  .
�

f �3��x� � 3!a3 � 4!a4�x � c� � .  .  .
f �2��x� � 2a2 � 3!a3�x � c� � 4 � 3a4�x � c�2 � .  .  .
f �1��x� � a1 � 2a2�x � c� � 3a3�x � c�2 � 4a4�x � c�3 � .  .  .
f �0��x� � a0 � a1�x � c� � a2�x � c�2 � a3�x � c�3 � a4�x � c�4 � .  .  .

�x � c� < R,fnth
R. an�x � c�n

NOTE Be sure you understand
Theorem 9.22. The theorem says that 
if a power series converges to the
series must be a Taylor series. The 
theorem does not say that every series
formed with the Taylor coefficients

will converge to f �x�.an � f �n��c��n!

f �x�,



If you know the pattern for the coefficients of the Taylor polynomials for a
function, you can extend the pattern easily to form the corresponding Taylor series.
For instance, in Example 4 in Section 9.7, you found the fourth Taylor polynomial for

centered at 1, to be

From this pattern, you can obtain the Taylor series for centered at 

EXAMPLE 1 Forming a Power Series

Use the function to form the Maclaurin series

and determine the interval of convergence.

Solution Successive differentiation of yields

and so on. The pattern repeats after the third derivative. So, the power series is as
follows.

By the Ratio Test, you can conclude that this series converges for all ■x.

� x �
x3

3!
�

x5

5!
�

x7

7!
� .  .  .

�
��1�

7!
x7 � .  .  .


�

n�0

��1�n x2n�1

�2n � 1�! � 0 � �1�x �
0
2!

x2 �
��1�

3!
x3 �

0
4!

x4 �
1
5!

x5 �
0
6!

x6


�

n�0

f �n��0�
n!

xn � f�0� � f��0�x �
f��0�
2!

x2 �
f �3��0�

3!
x3 �

f �4��0�
4!

x4 � .  .  .

f �5��0� � cos 0 � 1f �5��x� � cos x

f �4��0� � sin 0 � 0f �4��x� � sin x

f �3��0� � �cos 0 � �1f �3��x� � �cos x

f� �0� � �sin 0 � 0f� �x� � �sin x

f��0� � cos 0 � 1f��x� � cos x

f�0� � sin 0 � 0f�x� � sin x

f�x�


�

n�0

f �n��0�
n!

xn � f�0� � f��0�x �
f��0�
2!

x2 �
f �3��0�

3!
x3 �

f �4��0�
4!

x4 � .  .  .

f�x� � sin x

�x � 1� �
1
2

�x � 1�2 � .  .  . �
��1�n�1

n
�x � 1�n � .  .  . .

c � 1,ln x

P4�x� � �x � 1� �
1
2

�x � 1�2 �
1
3

�x � 1�3 �
1
4

�x � 1�4.

ln x,
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DEFINITION OF TAYLOR AND MACLAURIN SERIES

If a function has derivatives of all orders at then the series

is called the Taylor series for at Moreover, if then the series is
the Maclaurin series for f.

c � 0,c.f�x�


�

n�0

f �n��c�
n!

�x � c�n � f�c� � f��c��x � c� � .  .  . �
f �n��c�

n!
�x � c�n � .  .  .

x � c,f



Notice that in Example 1 you cannot conclude that the power series converges to
for all You can simply conclude that the power series converges to some

function, but you are not sure what function it is. This is a subtle, but important, point
in dealing with Taylor or Maclaurin series. To persuade yourself that the series

might converge to a function other than remember that the derivatives are being
evaluated at a single point. It can easily happen that another function will agree with
the values of when and disagree at other values. For instance, if you
formed the power series (centered at 0) for the function shown in Figure 9.23, you
would obtain the same series as in Example 1. You know that the series converges for
all and yet it obviously cannot converge to both and for all 

Let have derivatives of all orders in an open interval centered at The Taylor
series for may fail to converge for some in Or, even if it is convergent, it may fail
to have as its sum. Nevertheless, Theorem 9.19 tells us that for each 

where

Note that in this remainder formula the particular value of that makes the
remainder formula true depends on the values of and If then the following
theorem tells us that the Taylor series for actually converges to for all in I.xf �x�f

Rn → 0,n.x
z

Rn�x� �
f �n�1��z�
�n � 1�! �x � c�n�1.

f �x� � f �c� � f��c��x � c� �
f ��c�
2!

�x � c�2 � .  .  . �
f �n��c�

n!
�x � c�n � Rn�x�,

n,f �x�
I.xf

c.If
x.sin xf �x�x,

x-x � cf �n��x�

f,

f�c� � f��c��x � c� �
f� �c�
2!

�x � c�2 � .  .  . �
f �n��c�

n!
�x � c�n � .  .  .

x.sin x
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THEOREM 9.23 CONVERGENCE OF TAYLOR SERIES

If for all in the interval then the Taylor series for converges

and equals 

f �x� � 
�

n�0

f �n��c�
n!

�x � c�n.

f �x�,

fI,xlim
n→�

Rn � 0

NOTE Stated another way, Theorem 9.23 says that a power series formed with Taylor 
coefficients converges to the function from which it was derived at precisely
those values for which the remainder approaches 0 as ■n →�.

an � f �n��c��n!

PROOF For a Taylor series, the partial sum coincides with the Taylor 
polynomial. That is, Moreover, because

it follows that

So, for a given the Taylor series (the sequence of partial sums) converges to 
if and only if as ■n →�.Rn�x� → 0

f�x�x,

� f�x� � lim
n→�

Rn�x�.

� lim
n→�

� f�x� � Rn�x��

 lim
n→�

Sn�x� � lim
n→�

Pn�x�

Pn�x� � f�x� � Rn�x�

Sn�x� � Pn�x�.
nthnth

ππ
2

f (x) = sin x, ⎪ ⎪ ≤x

1, x >

−1, x < −
2

x

y

−

1

−1

2
π

2
π

π

π
2

Figure 9.23



In Example 1, you derived the power series from the sine function and you also
concluded that the series converges to some function on the entire real line. In
Example 2, you will see that the series actually converges to sin The key observa-
tion is that although the value of is not known, it is possible to obtain an upper bound
for

EXAMPLE 2 A Convergent Maclaurin Series

Show that the Maclaurin series for converges to sin for all 

Solution Using the result in Example 1, you need to show that

is true for all Because

or

you know that for every real number Therefore, for any fixed you
can apply Taylor’s Theorem (Theorem 9.19) to conclude that

From the discussion in Section 9.1 regarding the relative rates of convergence of
exponential and factorial sequences, it follows that for a fixed 

Finally, by the Squeeze Theorem, it follows that for all as So, by
Theorem 9.23, the Maclaurin series for sin converges to sin for all 

■

Figure 9.24 visually illustrates the convergence of the Maclaurin series for 
by comparing the graphs of the Maclaurin polynomials and 
with the graph of the sine function. Notice that as the degree of the polynomial
increases, its graph more closely resembles that of the sine function.

P7�x�P5�x�,P3�x�,P1�x�,
sin x

x.xx
n →�.Rn�x� → 0x,

lim
n→�

�x�n�1

�n � 1�! � 0.

x

0 � �Rn�x�� � � f �n�1��z�
�n � 1�! xn�1� � �x�n�1

�n � 1�!.

x,z.� f �n�1��z�� � 1

f �n�1��x� � ±cos x

f �n�1��x� � ±sin x

x.

sin x � x �
x3

3!
�

x5

5!
�

x7

7!
� .  .  . �

��1�n x2n�1

�2n � 1�! � .  .  .

x.xf�x� � sin x

� f �n�1��z��.
z

x.
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x

y = sin x

P1(x) = x

1
2
3
4

−2
−3
−4

πππ 2−

y

x

y = sin x

P3(x) = x − x
3

3!

−

1
2
3
4

−2
−3
−4

y

ππ 2
x

y x= sin

1
2
3
4

−2
−3
−4

y

P5(x) = x −      +  x3

3!
x5

5!

ππ 2
x

y = sin x

1
2
3
4

−2
−3

−

−4

y

P7(x) = x −      + − x3

3!
x5

5!
x7

7!

πππ 2

As increases, the graph of more closely resembles the sine function.
Figure 9.24

Pnn



The guidelines for finding a Taylor series for at are summarized below.

The direct determination of Taylor or Maclaurin coefficients using successive
differentiation can be difficult, and the next example illustrates a shortcut for finding
the coefficients indirectly—using the coefficients of a known Taylor or Maclaurin
series.

EXAMPLE 3 Maclaurin Series for a Composite Function

Find the Maclaurin series for 

Solution To find the coefficients for this Maclaurin series directly, you must
calculate successive derivatives of By calculating just the first two,

and

you can see that this task would be quite cumbersome. Fortunately, there is an
alternative. First consider the Maclaurin series for sin found in Example 1.

Now, because you can substitute for in the series for to obtain

■

Be sure to understand the point illustrated in Example 3. Because direct
computation of Taylor or Maclaurin coefficients can be tedious, the most practical
way to find a Taylor or Maclaurin series is to develop power series for a basic list of
elementary functions. From this list, you can determine power series for other
functions by the operations of addition, subtraction, multiplication, division, differen-
tiation, integration, and composition with known power series.

� x2 �
x6

3!
�

x10

5!
�

x14

7!
� .  .  . .

sin x2 � g�x2�

sin xxx2sin x2 � g�x2�,

� x �
x3

3!
�

x5

5!
�

x7

7!
� .  .  .

g�x� � sin x

x

f��x� � �4x2 sin x2 � 2 cos x2f��x� � 2x cos x2

f�x� � sin x2.

f�x� � sin x2.

cf �x�
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GUIDELINES FOR FINDING A TAYLOR SERIES

1. Differentiate several times and evaluate each derivative at 

Try to recognize a pattern in these numbers.

2. Use the sequence developed in the first step to form the Taylor coefficients
and determine the interval of convergence for the resulting

power series

3. Within this interval of convergence, determine whether or not the series
converges to f �x�.

f�c� � f��c��x � c� �
f� �c�
2!

�x � c�2 � .  .  . �
f �n��c�

n!
�x � c�n � .  .  . .

an � f �n��c��n!,

f�c�, f��c�, f� �c�, f����c�, .  .  . , f �n� �c�, .  .  .

c.f�x�



Binomial Series
Before presenting the basic list for elementary functions, you will develop one more
series—for a function of the form This produces the binomial series.

EXAMPLE 4 Binomial Series

Find the Maclaurin series for and determine its radius of convergence.
Assume that is not a positive integer.

Solution By successive differentiation, you have

which produces the series

Because you can apply the Ratio Test to conclude that the radius of
convergence is So, the series converges to some function in the interval

■

Note that Example 4 shows that the Taylor series for converges to some
function in the interval However, the example does not show that the series
actually converges to To do this, you could show that the remainder 
converges to 0, as illustrated in Example 2.

EXAMPLE 5 Finding a Binomial Series

Find the power series for 

Solution Using the binomial series

let and write

which converges for ■�1 � x � 1.

�1 � x�1�3 � 1 �
x
3

�
2x2

322!
�

2 � 5x3

333!
�

2 � 5 � 8x4

344!
� .  .  .

k �
1
3

�1 � x�k � 1 � kx �
k�k � 1�x2

2!
�

k�k � 1��k � 2�x3

3!
� .  .  .

f�x� � 3�1 � x.

Rn�x��1 � x�k.
��1, 1�.

�1 � x�k

��1, 1�.
R � 1.

an�1�an → 1,

1 � kx �
k�k � 1�x2

2
� .  .  . �

k�k � 1� .  .  . �k � n � 1�xn

n!
� .  .  . .

f �n��x� � k .  .  . �k � n � 1��1 � x�k�n

�
f����x� � k�k � 1��k � 2��1 � x�k�3

f��x� � k�k � 1��1 � x�k�2

f��x� � k�1 � x�k�1

f�x� � �1 � x�k

k
f�x� � �1 � x�k

f�x� � �1 � x�k.
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Use a graphing utility to confirm the result in Example 5. When
you graph the functions

and

in the same viewing window, you should obtain the result shown in Figure 9.25.

P4�x� � 1 �
x
3

�
x2

9
�

5x3

81
�

10x4

243
f�x� � �1 � x�1�3

TECHNOLOGY−2 2

−1

P4

f(x) =     1 + x3

2

Figure 9.25

f �n��0� � k�k � 1� .  .  . �k � n � 1�
�

f����0� � k�k � 1��k � 2�
f��0� � k�k � 1�
f��0� � k

f�0� � 1



Deriving Taylor Series from a Basic List
The following list provides the power series for several elementary functions with the
corresponding intervals of convergence.

EXAMPLE 6 Deriving a Power Series from a Basic List

Find the power series for 

Solution Using the power series

you can replace by to obtain the series

This series converges for all in the domain of —that is, for 
■

x � 0.cos�xx

cos�x � 1 �
x
2!

�
x2

4!
�

x3

6!
�

x4

8!
� .  .  . .

�xx

cos x � 1 �
x2

2!
�

x4

4!
�

x6

6!
�

x8

8!
� .  .  .

f�x� � cos�x.

684 Chapter 9 Infinite Series

POWER SERIES FOR ELEMENTARY FUNCTIONS

Interval of

* The convergence at depends on the value of k.x � ±1

�1 � x�k � 1 � kx �
k�k � 1�x2

2!
�

k�k � 1��k � 2�x3

3!
�

k�k � 1��k � 2��k � 3�x4

4!
� .  .  .

 arcsin x � x �
x3

2 � 3
�

1 � 3x5

2 � 4 � 5
�

1 � 3 � 5x7

2 � 4 � 6 � 7
� .  .  . �

�2n�!x2n�1

�2nn!�2�2n � 1� � .  .  .

 arctan x � x �
x3

3
�

x5

5
�

x7

7
�

x9

9
� .  .  . �

��1�n x2n�1

2n � 1
� .  .  .

 cos x � 1 �
x2

2!
�

x4

4!
�

x6

6!
�

x8

8!
� .  .  . �

��1�n x2n

�2n�! � .  .  .

 sin x � x �
x3

3!
�

x5

5!
�

x7

7!
�

x9

9!
� .  .  . �

��1�n x2n�1

�2n � 1�! � .  .  .

ex � 1 � x �
x2

2!
�

x3

3!
�

x4

4!
�

x5

5!
� .  .  . �

xn

n!
� .  .  .

 ln x � �x � 1� �
�x � 1�2

2
�

�x � 1�3

3
�

�x � 1�4

4
� .  .  . �

��1�n�1�x � 1�n

n
� .  .  .

1
1 � x

� 1 � x � x2 � x3 � x4 � x5 � .  .  . � ��1�n xn � .  .  .

1
x

� 1 � �x � 1� � �x � 1�2 � �x � 1�3 � �x � 1�4 � .  .  . � ��1�n �x � 1�n � .  .  .

ConvergenceFunction

*�1 < x < 1

�1 � x � 1

�1 � x � 1

�� < x < �

�� < x < �

�� < x < �

0 < x � 2

�1 < x < 1

0 < x < 2

NOTE The binomial series is valid for noninteger values of Moreover, if happens to be
a positive integer, the binomial series reduces to a simple binomial expansion. ■

kk.



Power series can be multiplied and divided like polynomials. After finding the
first few terms of the product (or quotient), you may be able to recognize a pattern.

EXAMPLE 7 Multiplication and Division of Power Series

Find the first three nonzero terms in each Maclaurin series.

a. b.

Solution

a. Using the Maclaurin series for and arctan in the table, you have

Multiply these expressions and collect like terms as you would in multiplying 
polynomials.

So,

b. Using the Maclaurin series for sin and cos in the table, you have

Divide using long division.

So, ■tan x � x �
1
3 x3 �

2
15 x5 � .  .  . .

           
2

15
x5 � .  .  .

       
1
3

x3 �
1
6

x5 � .  .  .

       
1
3

x3 �
1

30
x5 � .  .  .

    x �
1
2

x3 �
1

24
x5 � .  .  .

1 �
1
2

x2 �
1

24
x4 � .  .  .	    x �

1
6

x3 �
1

120
x5 � .  .  .

   x �
1
3

x3 �
2

15
x5 � .  .  .

tan x �
sin x
cos x

�

x �
x3

3!
�

x5

5!
� .  .  .

1 �
x2

2!
�

x4

4!
� .  .  .

.

xx

ex arctan x � x � x2 �
1
6 x3 � .  .  . .

x � x2 �
1
6x3 �

1
6x4 �

3
40 x5 � .  .  .

                � 1
5x5 � .  .  .

       � 1
3x3 �

1
3x4 �

1
6 x5 � .  .  .

x � x2 �
1
2 x3 �

1
6x4 �

1
24x5 � .  .  .

x       � 1
3 x3      �

1
5 x5 � .  .  .

 1 � x �
1
2 x2 �

1
6 x3 �

1
24x4 � .  .  .

ex arctan x � �1 �
x
1!

�
x2

2!
�

x3

3!
�

x4

4!
� .  .  .	�x �

x3

3
�

x5

5
� .  .  .	.

xex

tan xex arctan x
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EXAMPLE 8 A Power Series for 

Find the power series for 

Solution Consider rewriting as follows.

Now, use the series for cos 

This series converges for ■

As mentioned in the preceding section, power series can be used to obtain tables
of values of transcendental functions. They are also useful for estimating the values of
definite integrals for which antiderivatives cannot be found. The next example demon-
strates this use.

EXAMPLE 9 Power Series Approximation of a Definite Integral

Use a power series to approximate

with an error of less than 0.01.

Solution Replacing with in the series for produces the following.

Summing the first four terms, you have

which, by the Alternating Series Test, has an error of less than 
■

1
216 � 0.005.


1

0
e�x2

dx � 0.74

� 1 �
1
3

�
1
10

�
1

42
�

1
216

� .  .  .


1

0
e�x2

dx � �x �
x3

3
�

x5

5 � 2!
�

x7

7 � 3!
�

x9

9 � 4!
� .  .  .�

1

0

e�x2
� 1 � x2 �

x4

2!
�

x6

3!
�

x8

4!
� .  .  .

ex�x2x


1

0
e�x2

dx

�� < x < �.

�
2
2!

x2 �
23

4!
x4 �

25

6!
x6 �

27

8!
x8 � .  .  .

 sin2 x �
1
2

�
1
2

 cos 2x �
1
2

�
1
2

�
2
2!

x2 �
23

4!
x4 �

25

6!
x6 �

27

8!
x8 � .  .  .

�
1
2

 cos 2x � �
1
2

�
2
2!

x2 �
23

4!
x4 �

25

6!
x6 �

27

8!
x8 � .  .  .

 cos 2x � 1 �
22

2!
x2 �

24

4!
x4 �

26

6!
x6 �

28

8!
x8 � .  .  .

 cos x � 1 �
x2

2!
�

x4

4!
�

x6

6!
�

x8

8!
� .  .  .

x.

sin2 x �
1 � cos 2x

2
�

1
2

�
cos 2x

2

sin2 x

f�x� � sin2 x.

sin2 x

686 Chapter 9 Infinite Series



In Exercises 1–12, use the definition of Taylor series to find the
Taylor series (centered at ) for the function.

1. 2.

3. 4.

5. 6.

7.

8.

9.

10.

11. (first three nonzero terms)

12. (first three nonzero terms)

In Exercises 13–16, prove that the Maclaurin series for the
function converges to the function for all 

13. 14.

15. 16.

In Exercises 17–26, use the binomial series to find the
Maclaurin series for the function.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

In Exercises 27– 40, find the Maclaurin series for the function.
(Use the table of power series for elementary functions.)

27. 28.

29. 30.

31. 32.

33. 34.

35.

36.

37.

38.

39.

40.

Hint: Integrate the series for 

In Exercises 41– 44, find the Maclaurin series for the function.
(See Example 7.)

41. 42.

43. 44.

In Exercises 45 and 46, use a power series and the fact that
to verify the formula.

45.

46.

In Exercises 47–52, find the first four nonzero terms of the
Maclaurin series for the function by multiplying or dividing the
appropriate power series. Use the table of power series for
elementary functions on page 684. Use a graphing utility 
to graph the function and its corresponding polynomial 
approximation.

47. 48.

49. 50.

51. 52.

In Exercises 53–56, match the polynomial with its graph. [The
graphs are labeled (a), (b), (c), and (d).] Factor a common 
factor from each polynomial and identify the function approxi-
mated by the remaining Taylor polynomial.

(a) (b)

(c) (d)

53. 54.

55. 56. y � x2 � x3 � x 4y � x � x2 �
x3

2!

y � x �
x3

2!
�

x5

4!
y � x2 �

x 4

3!

x

2

4

4
−2

−4

−4

y

x

2

4

2 4
−2

−4

−4

y

x
42−2

−4

−2
−4

y

x

2

4

2 4

−4

−4

y

f �x� �
ex

1 � x
g�x� �

sin x
1 � x

f �x� � ex ln�1 � x�h�x� � cos x ln�1 � x�
g�x� � ex cos xf �x� � ex sin x

g�x� �
1
2 �eix � e�ix� � cos x

g�x� �
1
2i

�eix � e�ix� � sin x

i 2 � �1

f �x� � �arcsin x ,
x

1,

x � 0

x � 0
g�x� � �sin x ,

x

1,

x � 0

x � 0

h�x� � x cos xf �x� � x sin x

1
�x2 � 1

.	�
f �x� � sinh�1 x � ln�x � �x2 � 1 �
f �x� � cos2 x

f �x� � e x � e�x � 2 cosh x

f �x� �
1
2�ex � e�x� � sinh x

g�x� � 2 sin x3

f �x� � cos x3�2

f �x� � cos 	xf �x� � cos 4x

f �x� � sin 	xg�x� � sin 3x

f �x� � ln�1 � x2�f �x� � ln�1 � x�
g�x� � e�3xf �x� � ex2�2

f �x� � �1 � x3f �x� � �1 � x2

f �x� � 4�1 � xf �x� � �1 � x

f �x� �
1

�2 � x�3f �x� �
1

�4 � x2

f �x� �
1

�1 � x2
f �x� �

1
�1 � x

f �x� �
1

�1 � x�4f �x� �
1

�1 � x�2

f �x� � cosh xf �x� � sinh x

f �x� � e�2xf �x� � cos x

x.

c � 0f �x� � tan x,

c � 0f �x� � sec x,

c � 0f �x� � ln�x2 � 1�,
c � 0f �x� � sin 3x,

c � 1f �x� � ex,

c � 1f �x� � ln x,

c � 2f �x� �
1

1 � x
,c � 1f �x� �

1
x
,

c �
	

4
f �x� � sin x,c �

	

4
f �x� � cos x,

c � 0f �x� � e3x,c � 0f �x� � e2x,

c
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In Exercises 57 and 58, find a Maclaurin series for 

57.

58.

In Exercises 59–62, verify the sum. Then use a graphing utility
to approximate the sum with an error of less than 0.0001.

59.

60.

61.

62.

In Exercises 63–66, use the series representation of the function
to find (if it exists).

63. 64.

65. 66.

In Exercises 67–74, use a power series to approximate the value
of the integral with an error of less than 0.0001. (In Exercises 69
and 71, assume that the integrand is defined as 1 when )

67. 68.

69. 70.

71. 72.

73. 74.

Area In Exercises 75 and 76, use a power series to approximate
the area of the region. Use a graphing utility to verify the result.

75. 76.

Probability In Exercises 77 and 78, approximate the normal
probability with an error of less than 0.0001, where the 
probability is given by

77.

78.

In Exercises 79–82, use a computer algebra system to find the
fifth-degree Taylor polynomial (centered at ) for the function.
Graph the function and the polynomial. Use the graph to
determine the largest interval on which the polynomial is a
reasonable approximation of the function.

79.

80.

81.

82. c � 1h�x� � 3�x arctan x,

c � 1g�x� � �x ln x,

c � 0f �x� � sin
x
2

 ln�1 � x�,

c � 0f �x� � x cos 2x,

c

P�1 < x < 2�
P�0 < x < 1�

a b

f(x) =
2π
1 e−x2/2

x

y

P�a  < x  < b� �
1

�2�

b

a
e�x2/ 2 dx.

0.5 1 1.5

0.5

1.0

1.5

x

y

5π
8

x

y

1
4

1
2

3
4

3π
8

π
8

π
4


1

0.5
 cos�x dx
	�2

0

�x cos x dx


0.2

0

�1 � x2 dx
0.3

0.1

�1 � x3 dx


1�2

0
 arctan x2 dx
1�2

0

arctan x
x

dx


1

0
 cos x2 dx
1

0

sin x
x

dx


1�4

0
x ln�x � 1� dx
1

0
e�x3

dx

x � 0.

f �x� �
ln �x � 1�

x
f �x� �

ex � 1
x

f �x� �
sin x

x
f �x� �

1 � cos x
x

lim
x→0

f �x�f


�

n�1
��1�n�1 � 1

n!	 �
e � 1

e


�

n�0

2n

n!
� e2


�

n�0
��1�n � 1

�2n � 1�!� � sin 1


�

n�1
��1�n�1 1

n
� ln 2

f �x� � 
x

0

�1 � t3 dt

f �x� � 
x

0
�e�t 2

� 1� dt

f �x�.
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83. State the guidelines for finding a Taylor series.

84. If is an even function, what must be true about the
coefficients in the Maclaurin series

Explain your reasoning.

85. Define the binomial series. What is its radius of
convergence?

f �x� � 
�

n�0
anxn?

an

f

WRITING ABOUT CONCEPTS

86. Explain how to use the series

to find the series for each function. Do not find the series.

(a)

(b)

(c)

(d) f �x� � e2x � e�2x

f �x� � xex

f �x� � e3x

f �x� � e �x

g�x� � ex � 
�

n�0

xn

n!

CAPSTONE

CAS



87. Projectile Motion A projectile fired from the ground 
follows the trajectory given by

where is the initial speed, is the angle of projection, is the
acceleration due to gravity, and is the drag factor caused by
air resistance. Using the power series representation

verify that the trajectory can be rewritten as

88. Projectile Motion Use the result of Exercise 87 to determine
the series for the path of a projectile launched from ground
level at an angle of with an initial speed of 
feet per second and a drag factor of 

89. Investigation Consider the function defined by

(a) Sketch a graph of the function.

(b) Use the alternative form of the definition of the derivative
(Section 2.1) and L’Hôpital’s Rule to show that 
[By continuing this process, it can be shown that 
0 for ]

(c) Using the result in part (b), find the Maclaurin series for 
Does the series converge to 

90. Investigation

(a) Find the power series centered at 0 for the function

(b) Use a graphing utility to graph and the eighth-degree
Taylor polynomial for 

(c) Complete the table, where

and

(d) Describe the relationship between the graphs of and 
and the results given in the table in part (c).

91. Prove that for any real 

92. Find the Maclaurin series for

and determine its radius of convergence. Use the first four
terms of the series to approximate 

In Exercises 93–96, evaluate the binomial coefficient using the
formula

where is a real number, is a positive integer, and

93. 94.

95. 96.

97. Write the power series for in terms of binomial 
coefficients.

98. Prove that is irrational. Hint: Assume that is 

rational ( and are integers) and consider

99. Show that the Maclaurin series for the function

is

where is the th Fibonacci number with and
for

Hint: Write

and multiply each side of this equation by 1 � x � x2.�

x
1 � x � x2 � a0 � a1x � a2 x2 � .  .  .

�
n � 3.Fn � Fn�2 � Fn�1,

F1 � F2 � 1nFn


�

n�1
Fn x n

g�x� �
x

1 � x � x2

e � 1 � 1 �
1
2!

� .  .  . �
1
n!

� .  .  . .�
qp

e � p�q�e

�1 � x�k

��1�3
5 	�0.5

4 	
��2

2 	�5
3	

�k
0� � 1.

nk

�k
n� �

k�k � 1��k � 2��k � 3� .  .  . �k � n 1 1�
n!

ln 3.

f �x� � ln
1 � x
1 � x

x.lim
n→�

xn

n!
� 0

P8f

G�x� � 
x

0
P8�t� dt.F�x� � 
x

0

ln�t2 � 1�
t2 dt

f.P8�x�
f

f �x� �
ln�x2 � 1�

x2 .

f ?
f.

n > 1.
f �n��0� �

f��0� � 0.

f �x� � �e�1�x2,
0,

x � 0
x � 0.

f

k �
1

16.
v0 � 64 � 60�,

y � �tan �x �
gx2

2v0
2 cos2 

�
kgx3

3v0
3 cos3 

�
k2 gx4

4v0
4 cos4 

� .  .  . .

�1 < x < 1ln�1 � x� � x �
x2

2
�

x3

3
�

x 4

4
� .  .  . ,

k
gv0

y � �tan  �
g

kv0 cos 	 x �
g
k2 ln�1 �

kx
v0 cos 	

9.10 Taylor and Maclaurin Series 689

x 0.25 0.50 0.75 1.00 1.50 2.00

F�x�

G�x� 100. Assume that and for all on an

interval of length at least 2. Show that on the
interval.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

� f��x�� � 2

x� f ��x�� � 1�f �x�� � 1
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In Exercises 1 and 2, write an expression for the nth term of the
sequence.

1. 2.

In Exercises 3–6, match the sequence with its graph. [The
graphs are labeled (a), (b), (c), and (d).]

(a) (b)

(c) (d)

3. 4.

5. 6.

In Exercises 7 and 8, use a graphing utility to graph the first 10
terms of the sequence. Use the graph to make an inference about
the convergence or divergence of the sequence. Verify your infer-
ence analytically and, if the sequence converges, find its limit.

7. 8.

In Exercises 9–18, determine the convergence or divergence of
the sequence with the given th term. If the sequence converges,
find its limit. ( and are positive real numbers.)

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. Compound Interest A deposit of $8000 is made in an account
that earns 5% interest compounded quarterly. The balance in
the account after quarters is

(a) Compute the first eight terms of the sequence 

(b) Find the balance in the account after 10 years by computing
the 40th term of the sequence.

20. Depreciation A company buys a machine for $175,000.
During the next 5 years the machine will depreciate at a rate of
30% per year. (That is, at the end of each year, the depreciated
value will be 70% of what it was at the beginning of the year.)

(a) Find a formula for the term of the sequence that gives
the value of the machine full years after it was 
purchased.

(b) Find the depreciated value of the machine at the end of 5
full years.

Numerical, Graphical, and Analytic Analysis In Exercises
21–24, (a) use a graphing utility to find the indicated partial
sum and complete the table, and (b) use a graphing utility to
graph the first 10 terms of the sequence of partial sums.

21. 22.

23. 24.

In Exercises 25–28, find the sum of the convergent series.

25. 26.

27.

28.

In Exercises 29 and 30, (a) write the repeating decimal as a
geometric series and (b) write its sum as the ratio of two integers.

29. 30.

In Exercises 31–34, determine the convergence or divergence of
the series.

31. 32.

33. 34. 
�

n�0

2n � 1
3n � 2

�

n�2

��1�nn
ln n


�

n�0
�0.67�n

�

n�0
�1.67�n

0.640.09


�

n�0
��2

3	
n

�
1

�n � 1��n � 2��

�

n�1
��0.6�n � �0.8�n�


�

n�0

2n�2

3n
�

n�0
�2

3	
n


�

n�1

1
n�n � 1�

�

n�1

��1�n�1

�2n�!


�

n�1

��1�n�1

2n
�

n�1
�3

2	
n�1

Sn

tV
nth

�An�.

n � 1, 2, 3, .  .  . .An � 8000�1 �
0.05

4 	
n

,

n

an � �bn � cn�1�nan �
sin �n
�n

an � �1 �
1

2n	
n

an � �n � 1 � �n

an �
n

ln n
an �

n
n2 � 1

an �
1
�n

an �
n3 � 1

n2

an � 1 �
5

n � 1
an � �7

8	
n

� 3

cb
n

an � sin
n	

2
an �

5n � 2
n

an � 6��2
3�n�1

an � 10�0.3�n�1

an � 4 �
1
2

nan � 4 �
2
n

n
2

2

4

4

8

8

6

6

10

10

an

n
2

2

1

4

4

3

86 10
−1

an

n
2

2

4

4

6

8 10
−2

−4

an

n
2

2

1

4

4

3

6

6

5

8 10

an

1
2

,
2
5

,
3
10

,
4
17

, .  .  .1
2

,
1
3

,
1
7

,
1
25

,
1

121
, .  .  .

690 Chapter 9 Infinite Series

9 REVIEW EXERCISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

n 5 10 15 20 25

Sn

www.CalcChat.com


35. Distance A ball is dropped from a height of 8 meters. Each
time it drops meters, it rebounds 0.7 meters. Find the total
distance traveled by the ball.

36. Salary You accept a job that pays a salary of $42,000 the first
year. During the next 39 years, you will receive a 5.5% raise
each year. What would be your total compensation over the
40-year period?

37. Compound Interest A deposit of $300 is made at the end of
each month for 2 years in an account that pays 6% interest,
compounded continuously. Determine the balance in the
account at the end of 2 years.

38. Compound Interest A deposit of $125 is made at the end of
each month for 10 years in an account that pays 3.5% interest,
compounded monthly. Determine the balance in the account at
the end of 10 years.

In Exercises 39– 42, determine the convergence or divergence of
the series.

39. 40.

41. 42.

In Exercises 43– 48, determine the convergence or divergence of
the series.

43. 44.

45. 46.

47. 48.

In Exercises 49–54, determine the convergence or divergence of
the series.

49. 50.

51. 52.

53. 54.

In Exercises 55–60, determine the convergence or divergence of
the series.

55. 56.

57. 58.

59.

60.

Numerical, Graphical, and Analytic Analysis In Exercises 61
and 62, (a) verify that the series converges, (b) use a graphing
utility to find the indicated partial sum and complete the
table, (c) use a graphing utility to graph the first 10 terms of 
the sequence of partial sums, and (d) use the table to estimate
the sum of the series.

61. 62.

63. Writing Use a graphing utility to complete the table for (a)
and (b) Write a short paragraph describing and

comparing the entries in the tables.

64. Writing You are told that the terms of a positive series appear
to approach zero very slowly as approaches infinity. (In fact,

) If you are given no other information, can you
conclude that the series diverges? Support your answer with an
example.

In Exercises 65 and 66, find the third-degree Taylor polynomial
centered at 

65.

66.

In Exercises 67–70, use a Taylor polynomial to approximate the
function with an error of less than 0.001.

67. 68.

69. 70.

71. A Taylor polynomial centered at 0 will be used to approximate
the cosine function. Find the degree of the polynomial required
to obtain the desired accuracy over each interval.

(a) 0.001

(b) 0.001

(c) 0.0001

(d) 0.0001

72. Use a graphing utility to graph the cosine function and the
Taylor polynomials in Exercise 71.

��2, 2�
��0.5, 0.5�
��1, 1�
��0.5, 0.5�
Interval      Maximum Error

e�0.25ln�1.75�
cos�0.75�sin 95�

c � �
	

4
f �x� � tan x,

c � 0f �x� � e�3x,

c.

a75 � 0.7.
n

p � 5.p � 2


�

n�1

��1�n�1n
n3 � 5

�

n�1
n�3

5	
n

Sn


�

n�1

1 � 3 � 5 .  .  . �2n � 1�
2 � 5 � 8 .  .  . �3n � 1�


�

n�1

2n

n3


�

n�1

n!
en

�

n�1

n
en2


�

n�1
� 4n

7n � 1	
n


�

n�1
�3n � 1

2n � 5	
n


�

n�2

��1�n ln n3

n
�

n�4

��1�nn
n � 3


�

n�1

��1�n �n
n � 1

�

n�2

��1�nn
n2 � 3


�

n�1

��1�n �n � 1�
n2 � 1

�

n�1

��1�n

n5


�

n�1

1
3n � 5

�

n�1

1 � 3 � 5 .  .  . �2n � 1�
2 � 4 � 6 .  .  . �2n�


�

n�1

n � 1
n�n � 2�

�

n�1

1
�n3 � 2n


�

n�1

n
�n3 � 3n

�

n�1

6
5n � 1


�

n�1
� 1

n2 �
1
2n	

�

n�1
� 1

n2 �
1
n	


�

n�1

1
4�n3

�

n�1

ln n
n4

hh
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In Exercises 73–78, find the interval of convergence of the
power series. (Be sure to include a check for convergence at the
endpoints of the interval.)

73. 74.

75. 76.

77. 78.

In Exercises 79 and 80, show that the function represented by
the power series is a solution of the differential equation.

79.

80.

In Exercises 81 and 82, find a geometric power series centered
at 0 for the function.

81.

82.

83. Find a power series for the derivative of the function in
Exercise 81.

84. Find a power series for the integral of the function in 
Exercise 82.

In Exercises 85 and 86, find a function represented by the series
and give the domain of the function.

85.

86.

In Exercises 87–94, find a power series for the function 
centered at 

87. 88.

89. 90.

(first three terms)

91. 92.

93. 94.

In Exercises 95–100, find the sum of the convergent series by
using a well-known function. Identify the function and explain
how you obtained the sum.

95. 96.

97.

98.

99.

100.

101. Writing One of the series in Exercises 45 and 57 converges
to its sum at a much lower rate than the other series. Which
is it? Explain why this series converges so slowly. Use a
graphing utility to illustrate the rate of convergence.

102. Use the binomial series to find the Maclaurin series for

103. Forming Maclaurin Series Determine the first four terms of
the Maclaurin series for 

(a) by using the definition of the Maclaurin series and the 
formula for the coefficient of the term,

(b) by replacing by in the series for 

(c) by multiplying the series for by itself, because 

104. Forming Maclaurin Series Follow the pattern of Exercise
103 to find the first four terms of the series for sin (Hint:

)

In Exercises 105–108, find the series representation of the func-
tion defined by the integral.

105.

106.

107.

108.

In Exercises 109 and 110, use a power series to find the limit (if
it exists). Verify the result by using L’Hôpital’s Rule.

109.

110. lim
x→0

arcsin x
x

lim
x→0�

arctan x
�x


x

0

et � 1
t

dt


x

0

ln�t � 1�
t

dt


x

0
 cos 

�t
2

dt


x

0

sin t
t

dt

sin 2x � 2 sin x cos x.
2x.
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1. The Cantor set (Georg Cantor, 1845–1918) is a subset of the
unit interval To construct the Cantor set, first remove the

middle third of the interval, leaving two line segments. For
the second step, remove the middle third of each of the two
remaining segments, leaving four line segments. Continue this
procedure indefinitely, as shown in the figure. The Cantor set
consists of all numbers in the unit interval that still remain.

(a) Find the total length of all the line segments that are
removed.

(b) Write down three numbers that are in the Cantor set.

(c) Let denote the total length of the remaining line segments
after steps. Find 

2. (a) Given that and show that 

is convergent and 

(b) Let and Write out the first eight

terms of Use part (a) to show that This

gives the continued fraction expansion

3. It can be shown that 

[see Example 3(b), Section 9.3]. 

Use this fact to show that 

4. Let be an equilateral triangle with sides of length 1. Let be
the number of circles that can be packed tightly in rows inside
the triangle. For example, and as shown
in the figure. Let be the combined area of the circles. Find

5. Identical blocks of unit length are stacked on top of each other at
the edge of a table. The center of gravity of the top block must lie
over the block below it, the center of gravity of the top two blocks
must lie over the block below them, and so on (see figure).

(a) If there are three blocks, show that it is possible to stack
them so that the left edge of the top block extends unit
beyond the edge of the table.

(b) Is it possible to stack the blocks so that the right edge of the
top block extends beyond the edge of the table?

(c) How far beyond the table can the blocks be stacked?

6. (a) Consider the power series

in which the coefficients 1, 2, 3, 1, 2, 3, 1, .  .  . are
periodic of period Find the radius of convergence
and the sum of this power series.

(b) Consider a power series 

in which the coefficients are periodic, and
Find the radius of convergence and the sum of this

power series.

7. For what values of the positive constants and does the
following series converge absolutely? For what values does it
converge conditionally?

8. (a) Find a power series for the function 

centered at 0. Use this representation to find the sum of the
infinite series

(b) Differentiate the power series for Use the result
to find the sum of the infinite series
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9. Find if (Hint: Do not calculate 12
derivatives.)

10. The graph of the function 

is shown below. Use the Alternating Series Test to show that the 

improper integral converges.

11. (a) Prove that converges if and only if 

(b) Determine the convergence or divergence of the series

12. (a) Consider the following sequence of numbers defined
recursively.

Write the decimal approximations for the first six terms of
this sequence. Prove that the sequence converges, and find
its limit.

(b) Consider the following sequence defined recursively by
and where 

.  .  .

Prove that this sequence converges, and find its limit.

13. Let be a sequence of positive numbers satisfying

Prove that the series 

converges.

14. Consider the infinite series 

(a) Find the first five terms of the sequence of partial sums.

(b) Show that the Ratio Test is inconclusive for this series.

(c) Use the Root Test to test for the convergence or divergence
of this series.

15. Derive each identity using the appropriate geometric series.

(a) (b)

16. Consider an idealized population with the characteristic that
each member of the population produces one offspring at the
end of every time period. Each member has a life span of three
time periods and the population begins with 10 newborn
members. The following table shows the population during the
first five time periods.

The sequence for the total population has the property that

Find the total population during each of the next five time
periods.

17. Imagine you are stacking an infinite number of spheres of
decreasing radii on top of each other, as shown in the figure.
The radii of the spheres are 1 meter, meter, meter,
etc. The spheres are made of a material that weighs 1 newton
per cubic meter.

(a) How high is this infinite stack of spheres?

(b) What is the total surface area of all the spheres in the stack?

(c) Show that the weight of the stack is finite.

18. (a) Determine the convergence or divergence of the series

(b) Determine the convergence or divergence of the series
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Age Bracket

Time Period

1 2 3 4 5

0–1 10 10 20 40 70

1–2 10 10 20 40

2–3 10 10 20

Total 10 20 40 70 130
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10
Conics, Parametric
Equations, and 
Polar Coordinates

In the polar coordinate system, graphing an equation involves tracing a curve about a fixed point called the pole.
Consider a region bounded by a curve and by the rays that contain the endpoints of an interval on the curve. You
can use sectors of circles to approximate the area of such a region. In Section 10.5, you will see how the limit
process can be used to find this area.

© Chuck Savage/Corbis

In this chapter, you will analyze and write
equations of conics using their properties.
You will also learn how to write and graph
parametric equations and polar equations,
and see how calculus can be used to study
these graphs. In addition to the rectangular
equations of conics, you will also study
polar equations of conics.

In this chapter, you should learn the 
following.

■ How to analyze and write equations of 
a parabola, an ellipse, and a hyperbola.
(10.1)

■ How to sketch a curve represented by
parametric equations. (10.2)

■ How to use a set of parametric equations
to find the slope of a tangent line to a
curve and the arc length of a curve.
(10.3)

■ How to sketch the graph of an equation
in polar form, find the slope of a tangent
line to a polar graph, and identify special
polar graphs. (10.4)

■ How to find the area of a region 
bounded by a polar graph and find the
arc length of a polar graph. (10.5)

■ How to analyze and write a polar 
equation of a conic. (10.6)

The path of a baseball hit at a particular height at an angle with the horizontal can
be modeled using parametric equations. How can a set of parametric equations be
used to find the minimum angle at which the ball must leave the bat in order for the
hit to be a home run? (See Section 10.2, Exercise 75.)

■

■



■ Understand the definition of a conic section.
■ Analyze and write equations of parabolas using properties of parabolas.
■ Analyze and write equations of ellipses using properties of ellipses.
■ Analyze and write equations of hyperbolas using properties of hyperbolas.

Conic Sections
Each conic section (or simply conic) can be described as the intersection of a plane
and a double-napped cone. Notice in Figure 10.1 that for the four basic conics, the
intersecting plane does not pass through the vertex of the cone. When the plane passes
through the vertex, the resulting figure is a degenerate conic, as shown in Figure 10.2.

There are several ways to study conics. You could begin as the Greeks did by
defining the conics in terms of the intersections of planes and cones, or you could
define them algebraically in terms of the general second-degree equation

However, a third approach, in which each of the conics is defined as a locus (collection)
of points satisfying a certain geometric property, works best. For example, a circle can
be defined as the collection of all points that are equidistant from a fixed point

This locus definition easily produces the standard equation of a circle

For information about rotating second-degree equations in two variables, see Appendix D.

�h, k�.
(x, y�
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10.1 Conics and Calculus

Circle
Conic sections
Figure 10.1

Parabola Ellipse Hyperbola

Point
Degenerate conics
Figure 10.2

Line Two intersecting lines

General second-degree equationAx2 � Bxy � Cy2 � Dx � Ey � F � 0.

Standard equation of a circle�x � h�2 � � y � k�2 � r2.

HYPATIA (370– 415 A.D.)

The Greeks discovered conic sections 
sometime between 600 and 300 B.C. By the
beginning of the Alexandrian period, enough
was known about conics for Apollonius
(262–190 B.C.) to produce an eight-volume
work on the subject. Later, toward the end of
the Alexandrian period, Hypatia wrote a textbook
entitled On the Conics of Apollonius. Her
death marked the end of major mathematical
discoveries in Europe for several hundred years.

The early Greeks were largely concerned
with the geometric properties of conics. It
was not until 1900 years later, in the early
seventeenth century, that the broader appli-
cability of conics became apparent. Conics
then played a prominent role in the develop-
ment of calculus.
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■ FOR FURTHER INFORMATION To
learn more about the mathematical activ-
ities of Hypatia, see the article “Hypatia
and Her Mathematics” by Michael A. B.
Deakin in The American Mathematical
Monthly. To view this article, go to the
website www.matharticles.com.

www.matharticles.com


Parabolas
A parabola is the set of all points that are equidistant from a fixed line called
the directrix and a fixed point called the focus not on the line. The midpoint between
the focus and the directrix is the vertex, and the line passing through the focus and the
vertex is the axis of the parabola. Note in Figure 10.3 that a parabola is symmetric
with respect to its axis.

EXAMPLE 1 Finding the Focus of a Parabola

Find the focus of the parabola given by 

Solution To find the focus, convert to standard form by completing the square.

Write original equation.

Factor out 

Multiply each side by 2.

Group terms.

Add and subtract 1 on right side.

Write in standard form.

Comparing this equation with you can conclude that

and

Because is negative, the parabola opens downward, as shown in Figure 10.4. So, the
focus of the parabola is units from the vertex, or

Focus ■

A line segment that passes through the focus of a parabola and has endpoints on
the parabola is called a focal chord. The specific focal chord perpendicular to the axis
of the parabola is the latus rectum. The next example shows how to determine the
length of the latus rectum and the length of the corresponding intercepted arc.

�h, k � p� � ��1, 1
2�.
p

p

p � �
1
2.k � 1,h � �1,

�x � h�2 � 4p� y � k�,

�x � 1�2 � �2�y � 1�
x2 � 2x � 1 � �2y � 2

 2y � 2 � �x2 � 2x � 1�
 2y � 1 � �x2 � 2x�
 2y � 1 � 2x � x2

1
2.y �

1
2 �1 � 2x � x2�

y �
1
2 � x �

1
2x2

y �
1
2

� x �
1
2

x2.

�x, y�
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THEOREM 10.1 STANDARD EQUATION OF A PARABOLA

The standard form of the equation of a parabola with vertex and
directrix is

Vertical axis

For directrix the equation is

Horizontal axis

The focus lies on the axis units (directed distance) from the vertex. The
coordinates of the focus are as follows.

Vertical axis

Horizontal axis�h � p, k�
�h, k � p�

p

� y � k�2 � 4p�x � h�.

x � h � p,

�x � h�2 � 4p� y � k�.

y � k � p
�h, k�

x

Focus

−2 −1

−1

1

−1, )) 1
2

1
2

1
2

1
2

y = − x − x2

p = −

y

Vertex

Parabola with a vertical axis, 
Figure 10.4

p < 0

Parabola

Directrix

Vertex

Focus

d1

d1
d2

d2

p

Axis

(x, y)

Figure 10.3



EXAMPLE 2 Focal Chord Length and Arc Length

Find the length of the latus rectum of the parabola given by Then find the
length of the parabolic arc intercepted by the latus rectum.

Solution Because the latus rectum passes through the focus and is perpendi-
cular to the axis, the coordinates of its endpoints are and Substituting

for in the equation of the parabola produces

So, the endpoints of the latus rectum are and and you can conclude
that its length is as shown in Figure 10.5. In contrast, the length of the intercepted
arc is

Use arc length formula.

Simplify.

Theorem 8.2

■

One widely used property of a parabola is its reflective property. In physics, a
surface is called reflective if the tangent line at any point on the surface makes equal
angles with an incoming ray and the resulting outgoing ray. The angle corresponding
to the incoming ray is the angle of incidence, and the angle corresponding to the
outgoing ray is the angle of reflection. One example of a reflective surface is a flat
mirror.

Another type of reflective surface is that formed by revolving a parabola about its
axis. A special property of parabolic reflectors is that they allow us to direct all incoming
rays parallel to the axis through the focus of the parabola—this is the principle behind
the design of the parabolic mirrors used in reflecting telescopes. Conversely, all light
rays emanating from the focus of a parabolic reflector used in a flashlight are 
parallel, as shown in Figure 10.6.
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x

Latus rectum

(0, p)

x2 = 4py

(−2p, p) (2  ,   )p p

y

Length of latus rectum: 4p
Figure 10.5

THEOREM 10.2 REFLECTIVE PROPERTY OF A PARABOLA

Let be a point on a parabola. The tangent line to the parabola at the point 
makes equal angles with the following two lines.

1. The line passing through and the focus

2. The line passing through parallel to the axis of the parabolaP

P

PP

The icon indicates that you will find a CAS Investigation on the book’s website. The CAS
Investigation is a collaborative exploration of this example using the computer algebra systems
Maple and Mathematica.

Light source
at focus

Axis

Parabolic reflector: light is reflected in 
parallel rays.
Figure 10.6



Ellipses
More than a thousand years after the close of the Alexandrian period of Greek
mathematics, Western civilization finally began a Renaissance of mathematical and
scientific discovery. One of the principal figures in this rebirth was the Polish
astronomer Nicolaus Copernicus. In his work On the Revolutions of the Heavenly
Spheres, Copernicus claimed that all of the planets, including Earth, revolved about
the sun in circular orbits. Although some of Copernicus’s claims were invalid, the
controversy set off by his heliocentric theory motivated astronomers to search for a
mathematical model to explain the observed movements of the sun and planets. The
first to find an accurate model was the German astronomer Johannes Kepler
(1571–1630). Kepler discovered that the planets move about the sun in elliptical
orbits, with the sun not as the center but as a focal point of the orbit.

The use of ellipses to explain the movements of the planets is only one of many
practical and aesthetic uses. As with parabolas, you will begin your study of this
second type of conic by defining it as a locus of points. Now, however, two focal
points are used rather than one.

An ellipse is the set of all points the sum of whose distances from two
distinct fixed points called foci is constant. (See Figure 10.7.) The line through the foci
intersects the ellipse at two points, called the vertices. The chord joining the vertices
is the major axis, and its midpoint is the center of the ellipse. The chord perpendicular
to the major axis at the center is the minor axis of the ellipse. (See Figure 10.8.)

Figure 10.7 Figure 10.8

You can visualize the definition of an ellipse by imagining two thumbtacks placed at
the foci, as shown in Figure 10.9.

CenterFocus Focus

Minor axis

Major axis
Vertex Vertex(h, k)

Focus Focus

d1
d2

(x, y)

�x, y�
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If the ends of a fixed length of string are 
fastened to the thumbtacks and the string is
drawn taut with a pencil, the path traced by
the pencil will be an ellipse.
Figure 10.9

■ FOR FURTHER INFORMATION To learn about how an ellipse may be “exploded” into a
parabola, see the article “Exploding the Ellipse” by Arnold Good in Mathematics Teacher. To
view this article, go to the website www.matharticles.com. ■

THEOREM 10.3 STANDARD EQUATION OF AN ELLIPSE

The standard form of the equation of an ellipse with center and major
and minor axes of lengths and where is

Major axis is horizontal.

or

Major axis is vertical.

The foci lie on the major axis, units from the center, with c2 � a2 � b2.c

�x � h�2

b2 �
�y � k�2

a2 � 1.

�x � h�2

a2 �
�y � k�2

b2 � 1

a > b,2b,2a
�h, k�

NICOLAUS COPERNICUS (1473–1543)

Copernicus began to study planetary motion
when asked to revise the calendar. At that
time, the exact length of the year could not 
be accurately predicted using the theory that
Earth was the center of the universe.
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EXAMPLE 3 Analyzing an Ellipse

Find the center, vertices, and foci of the ellipse given by

Solution By completing the square, you can write the original equation in standard
form.

Write original equation.

Write in standard form.

So, the major axis is parallel to the axis, where and
So, you obtain the following.

Center:

Vertices: and 

Foci: and 

The graph of the ellipse is shown in Figure 10.10. ■

EXAMPLE 4 The Orbit of the Moon

The moon orbits Earth in an elliptical path with the center of Earth at one focus, as
shown in Figure 10.11. The major and minor axes of the orbit have lengths of 768,800
kilometers and 767,640 kilometers, respectively. Find the greatest and least distances
(the apogee and perigee) from Earth’s center to the moon’s center.

Solution Begin by solving for and 

Length of major axis

Solve for 

Length of minor axis

Solve for 

Now, using these values, you can solve for as follows.

The greatest distance between the center of Earth and the center of the moon is
kilometers, and the least distance is kilometers.

■

a � c � 363,292a � c � 405,508

c � �a2 � b2 � 21,108

c

b.b � 383,820

 2b � 767,640

a.a � 384,400

 2a � 768,800

b.a

�h, k ± c��1, �2 � 2�3 ��1, �2 � 2�3 �
�h, k ± a��1, 2��1, �6�
�h, k��1, �2�

c � �16 � 4 � 2�3.
b � 2,a � 4,k � �2,h � 1,y-

�x � 1�2

4
�

�y � 2�2

16
� 1

 4�x � 1�2 � �y � 2�2 � 16

4�x2 � 2x � 1� � �y2 � 4y � 4� � 8 � 4 � 4

 4x2 � 8x � y2 � 4y � 8

 4x2 � y2 � 8x � 4y � 8 � 0

4x2 � y2 � 8x � 4y � 8 � 0.
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NOTE If the constant term in the equation in Example 3 had been greater than or
equal to 8, you would have obtained one of the following degenerate cases.

1. single point,

2. no solution points: ■
�x � 1�2

4
�

�y � 2�2

16
< 0F > 8,

�x � 1�2

4
�

�y � 2�2

16
� 0�1, �2�:F � 8,

F � �8

Perigee Apogee

Earth

Moon

Figure 10.11

Vertex

Vertex

Center

Focus

Focus

x

(x − 1)2

4
= 1

(y + 2)2

16
+

y

−2−4

−6

2

2

4

Ellipse with a vertical major axis
Figure 10.10



Theorem 10.2 presented a reflective property of parabolas. Ellipses have a similar
reflective property. You are asked to prove the following theorem in Exercise 112.

One of the reasons that astronomers had difficulty in detecting that the orbits of
the planets are ellipses is that the foci of the planetary orbits are relatively close to the
center of the sun, making the orbits nearly circular. To measure the ovalness of an
ellipse, you can use the concept of eccentricity.

To see how this ratio is used to describe the shape of an ellipse, note that because
the foci of an ellipse are located along the major axis between the vertices and the 
center, it follows that

For an ellipse that is nearly circular, the foci are close to the center and the ratio 
is small, and for an elongated ellipse, the foci are close to the vertices and the ratio

is close to 1, as shown in Figure 10.12. Note that for every ellipse.
The orbit of the moon has an eccentricity of and the eccentricities of

the eight planetary orbits are as follows.

Mercury: Jupiter:

Venus: Saturn:

Earth: Uranus:

Mars: Neptune:

You can use integration to show that the area of an ellipse is For
instance, the area of the ellipse

is given by

Trigonometric substitution 

However, it is not so simple to find the circumference of an ellipse. The next example
shows how to use eccentricity to set up an “elliptic integral” for the circumference of
an ellipse.

x � a sin .�
4b
a 


	�2

0
a2 cos2  d.

A � 4
a

0

b
a
�a2 � x2 dx

x2

a2 �
y2

b2 � 1

A � 	ab.

e � 0.0086e � 0.0934

e � 0.0472e � 0.0167

e � 0.0542e � 0.0068

e � 0.0484e � 0.2056

e � 0.0549,
0 < e < 1c�a

c�a

0 < c < a.
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THEOREM 10.4 REFLECTIVE PROPERTY OF AN ELLIPSE

Let be a point on an ellipse. The tangent line to the ellipse at point makes
equal angles with the lines through and the foci.P

PP

DEFINITION OF ECCENTRICITY OF AN ELLIPSE

The eccentricity of an ellipse is given by the ratio

e �
c
a

.

e

a

c

Foci

(a) is small.
c
a

a

c

Foci

(b) is close to 1.

Eccentricity is the ratio 
Figure 10.12

c
a

.

c
a

■ FOR FURTHER INFORMATION
For more information on some uses of
the reflective properties of conics, see
the article “Parabolic Mirrors, Elliptic
and Hyperbolic Lenses” by Mohsen
Maesumi in The American Mathematical
Monthly. Also see the article “The
Geometry of Microwave Antennas” by
William R. Parzynski in Mathematics
Teacher.



EXAMPLE 5 Finding the Circumference of an Ellipse

Show that the circumference of the ellipse is

Solution Because the given ellipse is symmetric with respect to both the axis 
and the axis, you know that its circumference is four times the arc length of

in the first quadrant. The function is differentiable for all in
the interval except at So, the circumference is given by the improper
integral

Using the trigonometric substitution you obtain

Because you can rewrite this integral as

■

A great deal of time has been devoted to the study of elliptic integrals. Such
integrals generally do not have elementary antiderivatives. To find the circumference
of an ellipse, you must usually resort to an approximation technique.

EXAMPLE 6 Approximating the Value of an Elliptic Integral

Use the elliptic integral in Example 5 to approximate the circumference of the ellipse 

Solution Because you have

Applying Simpson’s Rule with produces

So, the ellipse has a circumference of about 28.36 units, as shown in Figure 10.13.
■

� 28.36.

C � 20�	

6	�
1
4	�1 � 4�0.9733� � 2�0.9055� � 4�0.8323� � 0.8�

n � 4

C � �4��5�
	�2

0
�1 �

9 sin2 

25
d.

e2 � c2�a2 � �a2 � b2��a2 � 9�25,

x2

25
�

y2

16
� 1.

C � 4a
	�2

0

�1 � e2 sin2  d.

e2 � c2�a2 � �a2 � b2��a2,

� 4
	�2

0

�a2 � �a2 � b2�sin2  d.

� 4
	�2

0

�a2�1 � sin2 � � b2 sin2  d

� 4
	�2

0

�a2 cos2  � b2 sin2  d

C � 4
	�2

0
�1 �

b2 sin2 

a2 cos2 
�a cos � d

x � a sin ,

C � lim
d→a

 4
d

0

�1 � � y��2 dx � 4
a

0

�1 � � y��2 dx � 4
a

0
�1 �

b2x2

a2�a2 � x2� dx.

x � a.�0, a�
xyy � �b�a��a2 � x2

Cy-
x-

e �
c
a

4a
	�2

0

�1 � e2 sin2  d.

�x2�a2� � � y2�b2� � 1
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x

y

2 4 6−2

−2

2

6

−4−6

−6

x2

25
 = 1+

y2

16

C ≈ 28.36 units

Figure 10.13

AREA AND CIRCUMFERENCE 
OF AN ELLIPSE

In his work with elliptic orbits in the early
1600’s, Johannes Kepler successfully developed
a formula for the area of an ellipse,

He was less successful in 
developing a formula for the circumference 
of an ellipse, however; the best he could do
was to give the approximate formula
C � 	 �a � b�.

A � 	ab.



Hyperbolas
The definition of a hyperbola is similar to that of an ellipse. For an ellipse, the sum
of the distances between the foci and a point on the ellipse is fixed, whereas for a
hyperbola, the absolute value of the difference between these distances is fixed.

A hyperbola is the set of all points for which the absolute value of the
difference between the distances from two distinct fixed points called foci is constant.
(See Figure 10.14.) The line through the two foci intersects a hyperbola at two points
called the vertices. The line segment connecting the vertices is the transverse axis,
and the midpoint of the transverse axis is the center of the hyperbola. One
distinguishing feature of a hyperbola is that its graph has two separate branches.

An important aid in sketching the graph of a hyperbola is the determination of its
asymptotes, as shown in Figure 10.15. Each hyperbola has two asymptotes that
intersect at the center of the hyperbola. The asymptotes pass through the vertices of a
rectangle of dimensions by with its center at The line segment of length

joining and is referred to as the conjugate axis of the 
hyperbola.

In Figure 10.15 you can see that the asymptotes coincide with the diagonals of
the rectangle with dimensions and centered at This provides you with a
quick means of sketching the asymptotes, which in turn aids in sketching the
hyperbola.

�h, k�.2b,2a

�h, k � b��h, k � b�2b
�h, k�.2b,2a

�x, y�
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THEOREM 10.5 STANDARD EQUATION OF A HYPERBOLA

The standard form of the equation of a hyperbola with center at is

Transverse axis is horizontal.

or

Transverse axis is vertical.

The vertices are units from the center, and the foci are units from the center,
where, c2 � a2 � b2.

ca

�y � k�2

a2 �
�x � h�2

b2 � 1.

�x � h�2

a2 �
�y � k�2

b2 � 1

�h, k�

NOTE The constants and do not have the same relationship for hyperbolas as they
do for ellipses. For hyperbolas, but for ellipses, ■c2 � a2 � b2.c2 � a2 � b2,

cb,a,

THEOREM 10.6 ASYMPTOTES OF A HYPERBOLA

For a horizontal transverse axis, the equations of the asymptotes are

and

For a vertical transverse axis, the equations of the asymptotes are

and y � k �
a
b

�x � h�.y � k �
a
b

�x � h�

y � k �
b
a

�x � h�.y � k �
b
a

�x � h�

Asymptote

(h, k + b)

(h, k − b)

(h + a, k)(h − a, k) (  , )h k a
b

Conjugate axis Asymptote

Figure 10.15

d2 − d1 = 2a
d2 − d1 is constant.

Focus Focus

d2

(x, y)

d1

Vertex

VertexCenter

Transverse axis

a

c

Figure 10.14



EXAMPLE 7 Using Asymptotes to Sketch a Hyperbola

Sketch the graph of the hyperbola whose equation is 

Solution Begin by rewriting the equation in standard form.

The transverse axis is horizontal and the vertices occur at and The ends
of the conjugate axis occur at and Using these four points, you can
sketch the rectangle shown in Figure 10.16(a). By drawing the asymptotes through the
corners of this rectangle, you can complete the sketch as shown in Figure 10.16(b).

(a) (b)
Figure 10.16 ■

As with an ellipse, the eccentricity of a hyperbola is Because for
hyperbolas, it follows that for hyperbolas. If the eccentricity is large, the
branches of the hyperbola are nearly flat. If the eccentricity is close to 1, the branches
of the hyperbola are more pointed, as shown in Figure 10.17.

Figure 10.17

x
VertexVertex

Eccentricity
is close to 1.

FocusFocus

c

a

y

e =
c
a

x

VertexVertex

Eccentricity
is large.

FocusFocus

e =
c
a

c

a

y

e > 1
c > ae � c�a.

x

6

4 6

−6

−6 −4

x2 y2

4 16
− = 1

y

4

−4

x

6

4 6

−6

−6 −4

(0, 4)

(2, 0)

(0, −4)

(−2, 0)

y

�0, 4�.�0, �4�
�2, 0�.��2, 0�

x2

4
�

y2

16
� 1

4x2 � y2 � 16.

704 Chapter 10 Conics, Parametric Equations, and Polar Coordinates

DEFINITION OF ECCENTRICITY OF A HYPERBOLA

The eccentricity of a hyperbola is given by the ratio

e �
c
a

.

e

You can use a
graphing utility to verify the graph
obtained in Example 7 by solving the
original equation for and graphing
the following equations.

y2 � ��4x2 � 16

y1 � �4x2 � 16

y

TECHNOLOGY



The following application was developed during World War II. It shows how the
properties of hyperbolas can be used in radar and other detection systems.

EXAMPLE 8 A Hyperbolic Detection System

Two microphones, 1 mile apart, record an explosion. Microphone receives the sound
2 seconds before microphone Where was the explosion?

Solution Assuming that sound travels at 1100 feet per second, you know that the
explosion took place 2200 feet farther from than from as shown in Figure 10.18.
The locus of all points that are 2200 feet closer to than to is one branch of the
hyperbola where

and

Because it follows that

and you can conclude that the explosion occurred somewhere on the right branch of
the hyperbola given by

■

In Example 8, you were able to determine only the hyperbola on which the
explosion occurred, but not the exact location of the explosion. If, however, you had
received the sound at a third position then two other hyperbolas would be
determined. The exact location of the explosion would be the point at which these
three hyperbolas intersect.

Another interesting application of conics involves the orbits of comets in our
solar system. Of the 610 comets identified prior to 1970, 245 have elliptical orbits,
295 have parabolic orbits, and 70 have hyperbolic orbits. The center of the sun is a
focus of each orbit, and each orbit has a vertex at the point at which the comet is
closest to the sun. Undoubtedly, many comets with parabolic or hyperbolic orbits have
not been identified—such comets pass through our solar system only once. Only
comets with elliptical orbits such as Halley’s comet remain in our solar system.

The type of orbit for a comet can be determined as follows.

1. Ellipse:

2. Parabola:

3. Hyperbola:

In these three formulas, is the distance between one vertex and one focus of the
comet’s orbit (in meters), is the velocity of the comet at the vertex (in meters per
second), kilograms is the mass of the sun, and 
cubic meters per kilogram-second squared is the gravitational constant.

G � 6.67 
 10�8M � 1.989 
 1030
v

p

v > �2GM�p

v � �2GM�p

v < �2GM�p

C,

x2

1,210,000
�

y2

5,759,600
� 1.

� 5,759,600

b2 � c2 � a2

c2 � a2 � b2,

a �
2200 ft

2
� 1100 feet.

c �
1 mile

2
�

5280 ft
2

� 2640 feet

�x2�a2� � � y2�b2� � 1,
BA

A,B

B.
A
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d2 � d1 � 2a � 2200
2c � 5280

CAROLINE HERSCHEL (1750–1848)

The first woman to be credited with detecting
a new comet was the English astronomer
Caroline Herschel. During her life, Caroline
Herschel discovered a total of eight new
comets.
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In Exercises 1–8, match the equation with its graph. [The
graphs are labeled (a), (b), (c), (d), (e), (f), (g), and (h).]

(a) (b)

(c) (d)

(e) (f)

(g) (h)

1. 2.

3. 4.

5. 6.

7. 8.

In Exercises 9–16, find the vertex, focus, and directrix of the
parabola, and sketch its graph.

9. 10.

11. 12.

13. 14.

15. 16.

In Exercises 17–20, find the vertex, focus, and directrix of the
parabola. Then use a graphing utility to graph the parabola.

17. 18.

19. 20.

In Exercises 21–28, find an equation of the parabola.

21. Vertex: 22. Vertex:

Focus: Focus:

23. Vertex: 24. Focus:

Directrix: Directrix:

25. 26.

27. Axis is parallel to axis; graph passes through 
and

28. Directrix: endpoints of latus rectum are and

In Exercises 29–34, find the center, foci, vertices, and eccentricity
of the ellipse, and sketch its graph.

29. 30.

31. 32.

33.

34.

In Exercises 35–38, find the center, foci, and vertices of the
ellipse. Use a graphing utility to graph the ellipse.

35.

36.

37.

38.

In Exercises 39–44, find an equation of the ellipse.

39. Center: 40. Vertices:

Focus: Eccentricity:

Vertex:

41. Vertices: 42. Foci:

Minor axis length: 6 Major axis length: 22

43. Center: 44. Center:

Major axis: horizontal Major axis: vertical

Points on the ellipse: Points on the ellipse:

�1, 6�, �3, 2��3, 1�, �4, 0�

�1, 2��0, 0�

�0, ±9��3, 1�, �3, 9�
�6, 0�

3
4�5, 0�

�0, 3�, �8, 3��0, 0�

2x2 � y 2 � 4.8x � 6.4y � 3.12 � 0

x2 � 2y 2 � 3x � 4y � 0.25 � 0

36x2 � 9y 2 � 48x � 36y � 43 � 0

12x2 � 20y 2 � 12x � 40y � 37 � 0

16x2 � 25y 2 � 64x � 150y � 279 � 0

9x2 � 4y2 � 36x � 24y � 36 � 0

�x � 4�2 �
�y � 6�2

1�4
� 1

�x � 3�2

16
�

�y � 1�2

25
� 1

3x2 � 7y 2 � 6316x2 � y 2 � 16

�8, 2�.
�0, 2�y � �2;

�4, 11�.
�3, 4�,�0, 3�,y-

x
1 2 3

2

1

3

4

(4, 0)(0, 0)

(2, 4)

y

x
−1 1

2

3

(2, 0)(−2, 0)

(0, 4)

y

x � �2y � �3

�2, 2��0, 5�
��2, �1��3, 4�
��2, 1��5, 4�

x2 � 2x � 8y � 9 � 0y 2 � 4x � 4 � 0

y � �
1
6�x2 � 8x � 6�y 2 � x � y � 0

y 2 � 4y � 8x � 12 � 0x2 � 4x � 4y � 4 � 0

y 2 � 6y � 8x � 25 � 0y 2 � 4y � 4x � 0

�x � 6�2 � 8�y � 7� � 0�x � 5� � �y � 3�2 � 0

x2 � 6y � 0y 2 � �8x

�x � 2�2

9
�

y2

4
� 1

y 2

16
�

x2

1
� 1

x2

16
�

y 2

16
� 1

x2

4
�

y 2

9
� 1

�x � 2�2

16
�

�y � 1�2

4
� 1�x � 4�2 � �2�y � 2�

�x � 4�2 � 2�y � 2�y 2 � 4x

x

2

2 4 6

4

−4

−2
−2

y

x

y

−2−6 2 6

−6

2

6

x

y

−1−3 1 3

−2

1

2
x

y

−4 −2−8 2 4

−8

−6

−4
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2
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2

2 4 6

4
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−2

y

2

2 4

4

6
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10.1 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

www.CalcChat.com


In Exercises 45–52, find the center, foci, and vertices of the
hyperbola, and sketch its graph using asymptotes as an aid.

45. 46.

47. 48.

49.

50.

51.

52.

In Exercises 53 –56, find the center, foci, and vertices of the
hyperbola. Use a graphing utility to graph the hyperbola and its
asymptotes.

53.

54.

55.

56.

In Exercises 57– 64, find an equation of the hyperbola.

57. Vertices: 58. Vertices:

Asymptotes: Asymptotes:

59. Vertices: 60. Vertices:

Point on graph: Foci:

61. Center: 62. Center:

Vertex: Vertex:

Focus: Focus:

63. Vertices: 64. Focus:

Asymptotes: Asymptotes:

In Exercises 65 and 66, find equations for (a) the tangent lines
and (b) the normal lines to the hyperbola for the given value 
of

65. 66.

In Exercises 67–76, classify the graph of the equation as a 
circle, a parabola, an ellipse, or a hyperbola.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

81. Solar Collector A solar collector for heating water is 
constructed with a sheet of stainless steel that is formed into 
the shape of a parabola (see figure). The water will flow
through a pipe that is located at the focus of the parabola. At
what distance from the vertex is the pipe?

Figure for 81 Figure for 82

82. Beam Deflection A simply supported beam that is 16 meters
long has a load concentrated at the center (see figure). The
deflection of the beam at its center is 3 centimeters. Assume
that the shape of the deflected beam is parabolic.

(a) Find an equation of the parabola. (Assume that the origin is
at the center of the beam.)

(b) How far from the center of the beam is the deflection 
1 centimeter?

83. Find an equation of the tangent line to the parabola at
Prove that the intercept of this tangent line is

84. (a) Prove that any two distinct tangent lines to a parabola 
intersect.

(b) Demonstrate the result of part (a) by finding the point 
of intersection of the tangent lines to the parabola

at the points and 

85. (a) Prove that if any two tangent lines to a parabola intersect at
right angles, their point of intersection must lie on the
directrix.

(b) Demonstrate the result of part (a) by proving that the
tangent lines to the parabola at the
points and intersect at right angles, and that
the point of intersection lies on the directrix.

�3, 5
4���2, 5�

x2 � 4x � 4y � 8 � 0

�6, 3�.�0, 0�x2 � 4x � 4y � 0

�x0�2, 0�.
x-x � x0.

y � ax2

3 cm

16 m

Not drawn to scale

1 m

6 m

9�x � 3�2 � 36 � 4�y � 2�2

3�x � 1�2 � 6 � 2�y � 1�2

2x�x � y� � y�3 � y � 2x�
9x2 � 9y 2 � 36x � 6y � 34 � 0

y 2 � 4y � x � 5

4x2 � 4y 2 � 16y � 15 � 0

25x2 � 10x � 200y � 119 � 0

y 2 � 8y � 8x � 0

4x2 � y 2 � 4x � 3 � 0

x2 � 4y 2 � 6x � 16y � 21 � 0

x � 4
y 2

4
�

x2

2
� 1,x � 6

x2

9
� y 2 � 1,

x.

y � 4 �
2
3x

y � ±3
4xy �

2
3x

�20, 0��0, 2�, �6, 2�
�10, 0��0, 4�
�6, 0��0, 2�
�0, 0��0, 0�

�2, ±5��0, 5�
�2, ±3��2, ±3�

y � ±2xy � ±5x

�0, ±4��±1, 0�

3y 2 � x2 � 6x � 12y � 0

3x2 � 2y2 � 6x � 12y � 27 � 0

9x2 � y 2 � 54x � 10y � 55 � 0

9y 2 � x2 � 2x � 54y � 62 � 0

9x2 � 4y2 � 54x � 8y � 78 � 0

x2 � 9y 2 � 2x � 54y � 80 � 0

y 2 � 16x2 � 64x � 208 � 0

9x2 � y 2 � 36x � 6y � 18 � 0

�y � 3�2

225
�

�x � 5�2

64
� 1

�x � 1�2

4
�

�y � 2�2

1
� 1

x2

25
�

y 2

16
� 1y 2 �

x2

9
� 1
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77. (a) Give the definition of a parabola.

(b) Give the standard forms of a parabola with vertex at 

(c) In your own words, state the reflective property of a
parabola.

78. (a) Give the definition of an ellipse.

(b) Give the standard forms of an ellipse with center at 

79. (a) Give the definition of a hyperbola.

(b) Give the standard forms of a hyperbola with center at

(c) Write equations for the asymptotes of a hyperbola.

80. Define the eccentricity of an ellipse. In your own words,
describe how changes in the eccentricity affect the ellipse.

�h, k�.

�h, k�.

�h, k�.

WRITING ABOUT CONCEPTS



86. Find the point on the graph of that is closest to the
focus of the parabola.

87. Radio and Television Reception In mountainous areas,
reception of radio and television is sometimes poor. Consider
an idealized case where a hill is represented by the graph of the
parabola a transmitter is located at the point

and a receiver is located on the other side of the hill at
the point What is the closest the receiver can be to the
hill while still maintaining unobstructed reception?

88. Modeling Data The table shows the average amounts of time
A (in minutes) women spent watching television each day for the
years 1999 through 2005. (Source: Nielsen Media Research)

(a) Use the regression capabilities of a graphing utility to find
a model of the form for the data. Let t
represent the year, with corresponding to 1999.

(b) Use a graphing utility to plot the data and graph the model.

(c) Find and sketch its graph for What
information about the average amount of time women
spent watching television is given by the graph of the 
derivative?

89. Architecture A church window is bounded above by a
parabola and below by the arc of a circle (see figure). Find the
surface area of the window.

Figure for 89 Figure for 91

90. Arc Length Find the arc length of the parabola 
over the interval 

91. Bridge Design A cable of a suspension bridge is suspended
(in the shape of a parabola) between two towers that are 120
meters apart and 20 meters above the roadway (see figure). The
cables touch the roadway midway between the towers.

(a) Find an equation for the parabolic shape of each cable.

(b) Find the length of the parabolic supporting cable.

92. Surface Area A satellite signal receiving dish is formed by
revolving the parabola given by about the axis. The
radius of the dish is feet. Verify that the surface area of the
dish is given by

93. Investigation Sketch the graphs of for 1,
and 2 on the same coordinate axes. Discuss the change in the
graphs as increases.

94. Area Find a formula for the area of the shaded region in the
figure.

Figure for 94 Figure for 96

95. Writing On page 699, it was noted that an ellipse can be
drawn using two thumbtacks, a string of fixed length (greater
than the distance between the tacks), and a pencil. If the ends of
the string are fastened at the tacks and the string is drawn taut
with a pencil, the path traced by the pencil will be an ellipse.

(a) What is the length of the string in terms of 

(b) Explain why the path is an ellipse.

96. Construction of a Semielliptical Arch A fireplace arch is to be
constructed in the shape of a semiellipse. The opening is to have
a height of 2 feet at the center and a width of 5 feet along the
base (see figure). The contractor draws the outline of the ellipse
by the method shown in Exercise 95. Where should the tacks be
placed and what should be the length of the piece of string?

97. Sketch the ellipse that consists of all points such that the
sum of the distances between and two fixed points is 
16 units, and the foci are located at the centers of the two sets
of concentric circles in the figure. To print an enlarged copy of
the graph, go to the website www.mathgraphs.com.

98. Orbit of Earth Earth moves in an elliptical orbit with the
sun at one of the foci. The length of half of the major axis is
149,598,000 kilometers, and the eccentricity is 0.0167. Find
the minimum distance (perihelion) and the maximum distance
(aphelion) of Earth from the sun.

99. Satellite Orbit The apogee (the point in orbit farthest from
Earth) and the perigee (the point in orbit closest to Earth) of
an elliptical orbit of an Earth satellite are given by and 
Show that the eccentricity of the orbit is

100. Explorer 18 On November 27, 1963, the United States
launched the research satellite Explorer 18. Its low and high
points above the surface of Earth were 119 miles and 123,000
miles. Find the eccentricity of its elliptical orbit.
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Year 1999 2000 2001 2002 2003 2004 2005

A 280 286 291 298 305 307 317
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101. Explorer 55 On November 20, 1975, the United States
launched the research satellite Explorer 55. Its low and high
points above the surface of Earth were 96 miles and 1865
miles. Find the eccentricity of its elliptical orbit.

103. Halley’s Comet Probably the most famous of all comets,
Halley’s comet, has an elliptical orbit with the sun at one
focus. Its maximum distance from the sun is approximately
35.29 AU (1 astronomical unit miles), and
its minimum distance is approximately 0.59 AU. Find the
eccentricity of the orbit.

104. The equation of an ellipse with its center at the origin can be
written as

Show that as with remaining fixed, the ellipse
approaches a circle.

105. Consider a particle traveling clockwise on the elliptical path

The particle leaves the orbit at the point and travels in
a straight line tangent to the ellipse. At what point will the
particle cross the axis?

106. Volume The water tank on a fire truck is 16 feet long, and its
cross sections are ellipses. Find the volume of water in the 
partially filled tank as shown in the figure.

In Exercises 107 and 108, determine the points at which is
zero or does not exist to locate the endpoints of the major and
minor axes of the ellipse.

107.

108.

Area and Volume In Exercises 109 and 110, find (a) the area of
the region bounded by the ellipse, (b) the volume and surface
area of the solid generated by revolving the region about its
major axis (prolate spheroid), and (c) the volume and surface
area of the solid generated by revolving the region about its
minor axis (oblate spheroid).

109. 110.

111. Arc Length Use the integration capabilities of a graphing
utility to approximate to two-decimal-place accuracy the
elliptical integral representing the circumference of the ellipse

112. Prove Theorem 10.4 by showing that the tangent line to an
ellipse at a point makes equal angles with lines through 
and the foci (see figure). [Hint: (1) Find the slope of the tan-
gent line at (2) find the slopes of the lines through and
each focus, and (3) use the formula for the tangent of the angle
between two lines.]

Figure for 112 Figure for 113

113. Geometry The area of the ellipse in the figure is twice the
area of the circle. What is the length of the major axis?

114. Conjecture

(a) Show that the equation of an ellipse can be written as

(b) Use a graphing utility to graph the ellipse

for and 

(c) Use the results of part (b) to make a conjecture about the
change in the shape of the ellipse as approaches 0.

115. Find an equation of the hyperbola such that for any point on
the hyperbola, the difference between its distances from the
points and is 6.

116. Find an equation of the hyperbola such that for any point on
the hyperbola, the difference between its distances from the
points and is 2.��3, 3���3, 0�

�10, 2��2, 2�
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102. Consider the equation

(a) Classify the graph of the equation as a circle, a parabola,
an ellipse, or a hyperbola.

(b) Change the -term in the equation to Classify
the graph of the new equation.

(c) Change the -term in the original equation to 
Classify the graph of the new equation.

(d) Describe one way you could change the original 
equation so that its graph is a parabola.

4x2.9x2

�4y2.4y2

9x2 � 4y2 � 36x � 24y � 36 � 0.

CAPSTONE



117. Sketch the hyperbola that consists of all points such 
that the difference of the distances between and 
two fixed points is 10 units, and the foci are located at the
centers of the two sets of concentric circles in the figure. To
print an enlarged copy of the graph, go to the website
www.mathgraphs.com.

118. Consider a hyperbola centered at the origin with a horizontal
transverse axis. Use the definition of a hyperbola to derive its
standard form:

119. Sound Location A rifle positioned at point is fired
at a target positioned at point A person hears the sound
of the rifle and the sound of the bullet hitting the target at the
same time. Prove that the person is positioned on one branch
of the hyperbola given by

where is the muzzle velocity of the rifle and is the speed
of sound, which is about 1100 feet per second.

120. Navigation LORAN (long distance radio navigation) for
aircraft and ships uses synchronized pulses transmitted by
widely separated transmitting stations. These pulses travel at
the speed of light (186,000 miles per second). The difference
in the times of arrival of these pulses at an aircraft or ship is
constant on a hyperbola having the transmitting stations as
foci. Assume that two stations, 300 miles apart, are positioned
on a rectangular coordinate system at and 
and that a ship is traveling on a path with coordinates 
(see figure). Find the coordinate of the position of the ship
if the time difference between the pulses from the transmitting
stations is 1000 microseconds (0.001 second).

Figure for 120 Figure for 121

121. Hyperbolic Mirror A hyperbolic mirror (used in some
telescopes) has the property that a light ray directed at the
focus will be reflected to the other focus. The mirror in the 
figure has the equation At which
point on the mirror will light from the point be
reflected to the other focus?

122. Show that the equation of the tangent line to 

at the point is 

123. Show that the graphs of the equations intersect at right angles:

and

124. Prove that the graph of the equation

is one of the following (except in degenerate cases).

(a) Circle

(b) Parabola or (but not both)

(c) Ellipse

(d) Hyperbola

True or False? In Exercises 125–130, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

125. It is possible for a parabola to intersect its directrix.

126. The point on a parabola closest to its focus is its vertex.

127. If is the circumference of the ellipse

then

128. If or then the graph of 
is a hyperbola.

129. If the asymptotes of the hyperbola
intersect at right angles, then 

130. Every tangent line to a hyperbola intersects the hyperbola only
at the point of tangency.
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131. For a point on an ellipse, let be the distance from the
center of the ellipse to the line tangent to the ellipse at 
Prove that is constant as varies on the
ellipse, where and are the distances from to the
foci and of the ellipse.

132. Find the minimum value of 

for and 

These problems were composed by the Committee on the Putnam Prize
Competition. © The Mathematical Association of America. All rights reserved.
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10.2 Plane Curves and Parametric Equations
■ Sketch the graph of a curve given by a set of parametric equations.
■ Eliminate the parameter in a set of parametric equations.
■ Find a set of parametric equations to represent a curve.
■ Understand two classic calculus problems, the tautochrone and 

brachistochrone problems.

Plane Curves and Parametric Equations
Until now, you have been representing a graph by a single equation involving 
variables. In this section you will study situations in which variables are used to
represent a curve in the plane.

Consider the path followed by an object that is propelled into the air at an angle
of If the initial velocity of the object is 48 feet per second, the object travels the
parabolic path given by

Rectangular equation

as shown in Figure 10.19. However, this equation does not tell the whole story.
Although it does tell you the object has been, it doesn’t tell you the object
was at a given point To determine this time, you can introduce a third variable

called a parameter. By writing both and as functions of you obtain the
parametric equations

Parametric equation for 

and

Parametric equation for 

From this set of equations, you can determine that at time the object is at the

point (0, 0). Similarly, at time the object is at the point 
and so on. (You will learn a method for determining this particular set of parametric
equations—the equations of motion—later, in Section 12.3.)

For this particular motion problem, and are continuous functions of and the
resulting path is called a plane curve.

t,yx

24�2 � 16�,�24�2,t � 1,

t � 0,

yy � �16 t2 � 24�2 t.

xx � 24�2 t

t,yxt,
�x, y�.

whenwhere

y � �
x2

72
� x

45�.

three
two

DEFINITION OF A PLANE CURVE

If and are continuous functions of on an interval then the equations

and

are called parametric equations and is called the parameter. The set of
points obtained as varies over the interval is called the graph of the
parametric equations. Taken together, the parametric equations and the graph
are called a plane curve, denoted by C.

It�x, y�
t

y � g�t�x � f �t�

I,tgf

NOTE At times it is important to distinguish between a graph (the set of points) and a curve
(the points together with their defining parametric equations). When it is important, we will
make the distinction explicit. When it is not important, we will use to represent the graph or
the curve. ■
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Curvilinear motion: two variables for 
position, one variable for time
Figure 10.19



When sketching (by hand) a curve represented by a set of parametric equations,
you can plot points in the plane. Each set of coordinates is determined from
a value chosen for the parameter By plotting the resulting points in order of
increasing values of the curve is traced out in a specific direction. This is called the
orientation of the curve.

EXAMPLE 1 Sketching a Curve

Sketch the curve described by the parametric equations

and

Solution For values of on the given interval, the parametric equations yield the
points shown in the table.

By plotting these points in order of increasing and using the continuity of and 
you obtain the curve shown in Figure 10.20. Note that the arrows on the curve
indicate its orientation as increases from to 3. ■

It often happens that two different sets of parametric equations have the same
graph. For example, the set of parametric equations

and

has the same graph as the set given in Example 1. (See Figure 10.21.) However,
comparing the values of in Figures 10.20 and 10.21, you can see that the second
graph is traced out more rapidly (considering as time) than the first graph. So, in
applications, different parametric representations can be used to represent various
speeds at which objects travel along a given path.

t
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t �2 �1 0 1 2 3

x 0 �3 �4 �3 0 5

y �1 �
1
2 0 1

2 1 3
2

NOTE From the Vertical Line Test, you can see that the graph shown in Figure 10.20 does
not define as a function of This points out one benefit of parametric equations—they can
be used to represent graphs that are more general than graphs of functions. ■

x.y

Most graphing utilities have a parametric graphing mode. If you
have access to such a utility, use it to confirm the graphs shown in Figures 10.20
and 10.21. Does the curve given by the parametric equations

and

represent the same graph as that shown in Figures 10.20 and 10.21? What do you
notice about the orientation of this curve?

�
1
2 � t � 2y � 1 � t,x � 4t2 � 8 t

TECHNOLOGY
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Eliminating the Parameter
Finding a rectangular equation that represents the graph of a set of parametric
equations is called eliminating the parameter. For instance, you can eliminate the
parameter from the set of parametric equations in Example 1 as follows.

Once you have eliminated the parameter, you can recognize that the equation
represents a parabola with a horizontal axis and vertex at as

shown in Figure 10.20.
The range of and implied by the parametric equations may be altered by the

change to rectangular form. In such instances the domain of the rectangular equation
must be adjusted so that its graph matches the graph of the parametric equations. Such
a situation is demonstrated in the next example.

EXAMPLE 2 Adjusting the Domain After Eliminating the Parameter

Sketch the curve represented by the equations

and

by eliminating the parameter and adjusting the domain of the resulting rectangular
equation.

Solution Begin by solving one of the parametric equations for For instance, you
can solve the first equation for as follows.

Parametric equation for 

Square each side.

Solve for 

Now, substituting into the parametric equation for produces

Parametric equation for 

Substitute for 

Simplify.

The rectangular equation, is defined for all values of but from the
parametric equation for you can see that the curve is defined only when 
This implies that you should restrict the domain of to positive values, as shown in
Figure 10.22. ■
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It is not necessary for the parameter in a set of parametric equations to represent
time. The next example uses an angle as the parameter.

EXAMPLE 3 Using Trigonometry to Eliminate a Parameter

Sketch the curve represented by

and

by eliminating the parameter and finding the corresponding rectangular equation.

Solution Begin by solving for and in the given equations.

and Solve for and 

Next, make use of the identity to form an equation involving only
and

Trigonometric identity

Substitute.

Rectangular equation

From this rectangular equation you can see that the graph is an ellipse centered at
with vertices at and and minor axis of length as shown

in Figure 10.23. Note that the ellipse is traced out counterclockwise as varies from
0 to ■

Using the technique shown in Example 3, you can conclude that the graph of the
parametric equations

and

is the ellipse (traced counterclockwise) given by

The graph of the parametric equations

and

is also the ellipse (traced clockwise) given by

Use a graphing utility in parametric mode to graph several ellipses.
In Examples 2 and 3, it is important to realize that eliminating the parameter is

primarily an aid to curve sketching. If the parametric equations represent the path of
a moving object, the graph alone is not sufficient to describe the object’s motion. You
still need the parametric equations to tell you the position, direction, and speed at a
given time.
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Finding Parametric Equations
The first three examples in this section illustrate techniques for sketching the graph
represented by a set of parametric equations. You will now investigate the reverse
problem. How can you determine a set of parametric equations for a given graph or a
given physical description? From the discussion following Example 1, you know that
such a representation is not unique. This is demonstrated further in the following
example, which finds two different parametric representations for a given graph.

EXAMPLE 4 Finding Parametric Equations for a Given Graph

Find a set of parametric equations that represents the graph of using each
of the following parameters.

a. b. The slope at the point 

Solution

a. Letting produces the parametric equations

and

b. To write and in terms of the parameter you can proceed as follows.

Differentiate 

Solve for 

This produces a parametric equation for To obtain a parametric equation for 
substitute for in the original equation.

Write original rectangular equation.

Substitute for 

Simplify.

So, the parametric equations are

and

In Figure 10.24, note that the resulting curve has a right-to-left orientation as
determined by the direction of increasing values of slope For part (a), the curve
would have the opposite orientation. ■
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To be efficient at using a graphing utility, it is important that you
develop skill in representing a graph by a set of parametric equations. The reason
for this is that many graphing utilities have only three graphing modes—(1) 
functions, (2) parametric equations, and (3) polar equations. Most graphing utilities
are not programmed to graph a general equation. For instance, suppose you want to
graph the hyperbola To graph the hyperbola in function mode, you
need two equations: and In parametric mode, you
can represent the graph by and y � tan t.x � sec t

y � ��x2 � 1.y � �x2 � 1
x2 � y2 � 1.

TECHNOLOGY
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EXAMPLE 5 Parametric Equations for a Cycloid

Determine the curve traced by a point on the circumference of a circle of radius 
rolling along a straight line in a plane. Such a curve is called a cycloid.

Solution Let the parameter be the measure of the circle’s rotation, and let the point
begin at the origin. When is at the origin. When is at a

maximum point When is back on the axis at From
Figure 10.25, you can see that So,

which implies that and 
Because the circle rolls along the axis, you know that 

Furthermore, because you have 

So, the parametric equations are and 

Figure 10.25 ■

The cycloid in Figure 10.25 has sharp corners at the values Notice
that the derivatives and are both zero at the points for which 

Between these points, the cycloid is called smooth.

y��2n	� � 0x��2n	� � 0

y�� � � a sin x�� � � a � a cos 

y� � � a�1 � cos  �x� � � a� � sin  �

 � 2n	.y�� �x�� �
x � 2n	 a.

2a

a

π π3 aπaO
x

P = (x, y)

θ
A

B

C

D

Cycloid:
x = a( − sin   )
y = a(1 − cos   )

θ θ
θy

(2 a, 0)

π(3 a, 2a)π( a, 2a)

π(4 a, 0)

y � a�1 � cos  �.x � a� � sin  �

y � BA � AP � a � a cos .

x � OD � BD � a � a sin 

BA � DC � a,
OD � PD� � a.x-

BD � a sin .AP � �a cos 

 cos  � �cos�180� �  � � �cos��APC� �
AP
�a

 sin  � sin�180� �  � � sin��APC� �
AC
a

�
BD
a

�APC � 180� � .
�2	a, 0�.x- � 2	, P�	a, 2a�.

P � 	,P � 0,P � �x, y�


aP
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Some graphing utilities allow you to simulate the motion of an
object that is moving in the plane or in space. If you have access to such a utility,
use it to trace out the path of the cycloid shown in Figure 10.25.

TECHNOLOGY

DEFINITION OF A SMOOTH CURVE

A curve represented by and on an interval is called
smooth if and are continuous on and not simultaneously 0, except 
possibly at the endpoints of The curve is called piecewise smooth if it is
smooth on each subinterval of some partition of I.

CI.
Ig�f�

Iy � g�t�x � f �t�C

CYCLOIDS

Galileo first called attention to the cycloid,
once recommending that it be used for the
arches of bridges. Pascal once spent 8 days
attempting to solve many of the problems of
cycloids, such as finding the area under one
arch, and the volume of the solid of revolution
formed by revolving the curve about a line.
The cycloid has so many interesting properties
and has caused so many quarrels among
mathematicians that it has been called 
“the Helen of geometry” and “the apple of
discord.”

■ FOR FURTHER INFORMATION For
more information on cycloids, see the
article “The Geometry of Rolling
Curves” by John Bloom and Lee Whitt
in The American Mathematical Monthly.
To view this article, go to the website
www.matharticles.com.

www.matharticles.com


The Tautochrone and Brachistochrone Problems
The type of curve described in Example 5 is related to one of the most famous pairs
of problems in the history of calculus. The first problem (called the tautochrone
problem) began with Galileo’s discovery that the time required to complete a full
swing of a given pendulum is approximately the same whether it makes a large
movement at high speed or a small movement at lower speed (see Figure 10.26). Late
in his life, Galileo (1564–1642) realized that he could use this principle to construct
a clock. However, he was not able to conquer the mechanics of actual construction.
Christian Huygens (1629–1695) was the first to design and construct a working
model. In his work with pendulums, Huygens realized that a pendulum does not take
exactly the same time to complete swings of varying lengths. (This doesn’t affect a
pendulum clock, because the length of the circular arc is kept constant
by giving the pendulum a slight boost each time it passes its lowest point.) But, in
studying the problem, Huygens discovered that a ball rolling back and forth on an
inverted cycloid does complete each cycle in exactly the same time.

An inverted cycloid is the path down which a ball will roll in the shortest time.
Figure 10.27

The second problem, which was posed by John Bernoulli in 1696, is called the
brachistochrone problem—in Greek, brachys means short and chronos means time.
The problem was to determine the path down which a particle will slide from point 
to point in the shortest time. Several mathematicians took up the challenge, and the
following year the problem was solved by Newton, Leibniz, L’Hôpital, John
Bernoulli, and James Bernoulli. As it turns out, the solution is not a straight line from

to but an inverted cycloid passing through the points and as shown in Figure
10.27. The amazing part of the solution is that a particle starting at rest at other
point of the cycloid between and will take exactly the same time to reach as
shown in Figure 10.28.

A ball starting at point takes the same time to reach point as one that starts at point 
Figure 10.28

A.BC

A

B

C

B,BAC
any

B,AB,A

B
A

A

B
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■ FOR FURTHER INFORMATION To see a proof of the famous brachistochrone problem, see
the article “A New Minimization Proof for the Brachistochrone” by Gary Lawlor in The
American Mathematical Monthly. To view this article, go to the website www.matharticles.com.

■

A B

C

The time required to complete a full swing of
the pendulum when starting from point is
only approximately the same as when starting
from point 
Figure 10.26

A.

C

JAMES BERNOULLI (1654–1705)

James Bernoulli, also called Jacques, was the
older brother of John. He was one of several
accomplished mathematicians of the Swiss
Bernoulli family. James’s mathematical
accomplishments have given him a prominent
place in the early development of calculus.
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1. Consider the parametric equations and 

(a) Construct a table of values for 1, 2, 3, and 4.

(b) Plot the points generated in the table, and sketch a
graph of the parametric equations. Indicate the orientation
of the graph.

(c) Use a graphing utility to confirm your graph in part (b).

(d) Find the rectangular equation by eliminating the parameter,
and sketch its graph. Compare the graph in part (b) with the
graph of the rectangular equation.

2. Consider the parametric equations and 

(a) Construct a table of values for 0, and 

(b) Plot the points generated in the table, and sketch a
graph of the parametric equations. Indicate the orientation
of the graph.

(c) Use a graphing utility to confirm your graph in part (b).

(d) Find the rectangular equation by eliminating the parameter,
and sketch its graph. Compare the graph in part (b) with the
graph of the rectangular equation.

(e) If values of were selected from the interval 
for the table in part (a), would the graph in part (b) be
different? Explain.

In Exercises 3–20, sketch the curve represented by the
parametric equations (indicate the orientation of the curve),
and write the corresponding rectangular equation by
eliminating the parameter.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17.

18.

19.

20.

In Exercises 21–32, use a graphing utility to graph the curve
represented by the parametric equations (indicate the orientation
of the curve). Eliminate the parameter and write the
corresponding rectangular equation.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

Comparing Plane Curves In Exercises 33–36, determine any
differences between the curves of the parametric equations. Are
the graphs the same? Are the orientations the same? Are the
curves smooth? Explain.

33. (a) (b)

(c) (d)

34. (a) (b)

(c) (d)

35. (a) (b)

36. (a) (b)

37. Conjecture

(a) Use a graphing utility to graph the curves represented by
the two sets of parametric equations.

(b) Describe the change in the graph when the sign of the
parameter is changed.

(c) Make a conjecture about the change in the graph of
parametric equations when the sign of the parameter is
changed.

(d) Test your conjecture with another set of parametric
equations.

38. Writing Review Exercises 33–36 and write a short paragraph
describing how the graphs of curves represented by different
sets of parametric equations can differ even though eliminating
the parameter from each yields the same rectangular equation.

In Exercises 39–42, eliminate the parameter and obtain the
standard form of the rectangular equation.

39. Line through and 

40. Circle:

41. Ellipse:

42. Hyperbola: y � k � b tan x � h � a sec ,  
y � k � b sin x � h � a cos ,  

x � h � r cos ,  y � k � r sin 

x � x1 � t �x2 � x1�,  y � y1 � t �y2 � y1�
�x2, y2�:�x1, y1�

y � 3 sin��t�y � 3 sin t

x � 4 cos��t�x � 4 cos t

y � ��t�3x � �t � 1,y � t3x � t � 1,

0 <  < 	0 <  < 	

y � 2 sin2���y � 2 sin2 

x � cos���x � cos 

y � ety � �4 � t

x � ��4 � e2tx � �t

y � 1�ty � 2 sin 

x � �4t2 � 1��t�x � 2 cos 

y � 2et � 1y � 2e�t � 1

x � etx � e�t

y � 2 cos  � 1y � 2t � 1

x � cos x � t

x � e2t,  y � etx � e�t,  y � e3t

x � ln 2t,  y � t2x � t3,  y � 3 ln t

x � cos3 ,  y � sin3 x � 4 sec ,  y � 3 tan 

y � tan y � 2 � 5 sin 

x � sec x � �3 � 4 cos 

y � �5 � 3 sin y � �1 � sin 

x � �2 � 3 cos x � 4 � 2 cos 

y � 2 sin 2x � cos ,y � 4 cos 2x � 6 sin 2,

x � 3 cos ,  y � 7 sin 

x � 8 cos ,  y � 8 sin 

x � tan2 ,  y � sec2 

x � sec ,  y � cos ,  0 �  < 	�2,  	�2 <  � 	

x � e �t,  y � e2t � 1x � e t,  y � e3t � 1

x � �t � 1�,  y � t � 2x � 2t,  y � �t � 2�
x � 1 �

1
t
,  y � t � 1x � t � 3,  y �

t
t � 3

x � 4�t,  y � 8 � tx � �t,  y � t � 5

x � t2 � t,  y � t2 � tx � t3,  y �
t2

2

x � 2t 2,  y � t4 � 1x � t � 1,  y � t2

x � 5 � 4t,  y � 2 � 5tx � 2t � 3,  y � 3t � 1

�	�2, 3	�2�

�x, y�

	

2
.

	

4
,�

	

4
, � �

	

2
,

2 sin .y �x � 4 cos2 

�x, y�
t � 0,

y � 3 � t.x � �t
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10.2 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

www.CalcChat.com


In Exercises 43–50, use the results of Exercises 39–42 to find a
set of parametric equations for the line or conic.

43. Line: passes through and 

44. Line: passes through and 

45. Circle: center: radius: 2

46. Circle: center: ; radius: 4

47. Ellipse: vertices: ; foci:

48. Ellipse: vertices: foci:

49. Hyperbola: vertices: foci:

50. Hyperbola: vertices: foci:

In Exercises 51–54, find two different sets of parametric
equations for the rectangular equation.

51. 52.

53. 54.

In Exercises 55–58, find a set of parametric equations for the
rectangular equation that satisfies the given condition.

55. at the point 

56. at the point 

57. at the point 

58. at the point 

In Exercises 59–66, use a graphing utility to graph the curve
represented by the parametric equations. Indicate the direction
of the curve. Identify any points at which the curve is not smooth.

59. Cycloid:

60. Cycloid:

61. Prolate cycloid:

62. Prolate cycloid:

63. Hypocycloid:

64. Curtate cycloid:

65. Witch of Agnesi:

66. Folium of Descartes:

69. Curtate Cycloid A wheel of radius rolls along a line with-
out slipping. The curve traced by a point that is units from
the center is called a curtate cycloid (see figure). Use
the angle to find a set of parametric equations for this curve.

Figure for 69 Figure for 70

70. Epicycloid A circle of radius 1 rolls around the outside of a
circle of radius 2 without slipping. The curve traced by a point
on the circumference of the smaller circle is called an epicy-
cloid (see figure). Use the angle to find a set of parametric
equations for this curve.

True or False? In Exercises 71–73, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

71. The graph of the parametric equations and is the
line

72. If is a function of and is a function of then is a
function of x.

yt,xty

y � x.
y � t2x � t2



1

1

3

3

4

4
x

θ
(x, y)

y

2a

(0, a − b)

b

a

P

θ

( a, a + b)π

x

y


�b < a�

bP
a

x � 3t��1 � t3�,  y � 3t2��1 � t3�
x � 2 cot ,  y � 2 sin2 

x � 2 � sin ,  y � 2 � cos 

x � 3 cos3 ,  y � 3 sin3 

x � 2 � 4 sin ,  y � 2 � 4 cos 

x �  �
3
2 sin ,  y � 1 �

3
2 cos 

x �  � sin ,  y � 1 � cos 

x � 2� � sin �,  y � 2�1 � cos �

�1, 3�t � 1y � 4 � x2,

�4, 16�t � 4y � x2,

��2, �7�t � �1y � 4x � 1,

�3, 1�t � 0y � 2x � 5,

y � x2y � x3

y � 4��x � 1�y � 6x � 5

�0, ±2��0, ±1�;
�±5, 0��±4, 0�;

�4, �1��4, 5�,�4, �3�;�4, 7�,
�±8, 0��±10, 0�

��6, 2�
�3, 1�;

�5, �2��1, 4�
�4, �7��0, 0�
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67. Explain the process of sketching a plane curve given by
parametric equations. What is meant by the orientation of
the curve?

68. Match each set of parametric equations with the correct
graph. [The graphs are labeled (a), (b), (c), (d), (e), and (f).]
Explain your reasoning.

(a) (b)

x

y

−2

−4

−1−2−3 1 2 3

1
2

4

x
1

2

2−1−2

−2

y

WRITING ABOUT CONCEPTS

(c) (d)

(e) (f)

(i)

(ii)

(iii) Lissajous curve:

(iv) Evolute of ellipse:

(v) Involute of circle:

(vi) Serpentine curve: x � cot , y � 4 sin  cos 

y � sin  �  cos 
x � cos  �  sin ,

x � cos3 ,  y � 2 sin3 

x � 4 cos ,  y � 2 sin 2

y � sin  � 2x � sin2  � 1,

y � t � 2x � t2 � 1,

x
1 2 3 4−1

−1

1

4

y

x
1

1

2

2

3

3−1−2

−3

−3

y

x
−2

−2
−3
−4

2

2

3

3

4

y

x
1 2 3 4−1−1

1

4

y

WRITING ABOUT CONCEPTS (cont inued)



73. The curve represented by the parametric equations and
can be written as an equation of the form 

Projectile Motion In Exercises 75 and 76, consider a projectile
launched at a height feet above the ground and at an angle 

with the horizontal. If the initial velocity is feet per second,
the path of the projectile is modeled by the parametric
equations and 

75. The center field fence in a ballpark is 10 feet high and 400 feet
from home plate. The ball is hit 3 feet above the ground. It
leaves the bat at an angle of degrees with the
horizontal at a speed of 100 miles per hour (see figure).

(a) Write a set of parametric equations for the path of the ball.

(b) Use a graphing utility to graph the path of the ball when
Is the hit a home run?

(c) Use a graphing utility to graph the path of the ball when
Is the hit a home run?

(d) Find the minimum angle at which the ball must leave the
bat in order for the hit to be a home run.

76. A rectangular equation for the path of a projectile is

(a) Eliminate the parameter from the position function for the
motion of a projectile to show that the rectangular equation is

(b) Use the result of part (a) to find and Find the
parametric equations of the path.

(c) Use a graphing utility to graph the rectangular equation for
the path of the projectile. Confirm your answer in part (b) by
sketching the curve represented by the parametric equations.

(d) Use a graphing utility to approximate the maximum height
of the projectile and its range.

.v0,h,

y � �
16 sec2 

v0
2 x2 � �tan � x � h.

t

y � 5 � x � 0.005x2.

 � 23�.

 � 15�.

θ

400 ft

3 ft

10 ft



y � h 1 �v0 sin 
� t � 16t 2.x � �v0 cos 
� t

v0

h

y � f �x�.y � cos t
x � t
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74. Consider the parametric equations and

(a) Describe the curve represented by the parametric 
equations.

(b) How does the curve represented by the parametric
equations and com-
pare to the curve described in part (a)?

(c) How does the original curve change when cosine and
sine are interchanged?

y � 8 sin t � 6x � 8 cos t � 3

y � 8 sin t.
x � 8 cos t

CAPSTONE

In Greek, the word cycloid means wheel, the word hypocycloid
means under the wheel, and the word epicycloid means upon the
wheel. Match the hypocycloid or epicycloid with its graph. [The
graphs are labeled (a), (b), (c), (d), (e), and (f).]

Hypocycloid, H(A, B)

The path traced by a fixed point on a circle of radius as it rolls
around the inside of a circle of radius 

Epicycloid, E(A, B)

The path traced by a fixed point on a circle of radius as it rolls
around the outside of a circle of radius 

I. H(8, 3) II. E(8,3) III. H(8, 7)

IV. E(24, 3) V. H(24, 7) VI. E(24, 7)

(a) (b)

(c) (d)

(e) (f)

Exercises based on “Mathematical Discovery via Computer
Graphics: Hypocycloids and Epicycloids” by Florence S. Gordon
and Sheldon P. Gordon, College Mathematics Journal, November
1984, p.441. Used by permission of the authors.

x

y

x

y

x

y

x

y

x

y

x

y

y � �A � B� sin t � B sin�A � B
B 	t

x � �A � B� cos t � B cos�A � B
B 	t

A
B

y � �A � B� sin t � B sin�A � B
B 	t

x � �A � B� cos t � B cos�A � B
B 	t

A
B

Cycloids

S E C T I O N  P R O J E C T



10.3 Parametric Equations and Calculus 721

10.3 Parametric Equations and Calculus
■ Find the slope of a tangent line to a curve given by a set of parametric equations.
■ Find the arc length of a curve given by a set of parametric equations.
■ Find the area of a surface of revolution (parametric form).

Slope and Tangent Lines
Now that you can represent a graph in the plane by a set of parametric equations, it is
natural to ask how to use calculus to study plane curves. To begin, let’s take another
look at the projectile represented by the parametric equations

and

as shown in Figure 10.29. From the discussion at the beginning of Section 10.2, you
know that these equations enable you to locate the position of the projectile at a given
time. You also know that the object is initially projected at an angle of But how
can you find the angle representing the object’s direction at some other time The
following theorem answers this question by giving a formula for the slope of the 
tangent line as a function of t.

t?
45�.

y � �16t2 � 24�2 tx � 24�2 t

THEOREM 10.7 PARAMETRIC FORM OF THE DERIVATIVE

If a smooth curve is given by the equations and then the
slope of at is

dx
dt

� 0.
dy
dx

�
dy�dt
dx�dt

,

�x, y�C
y � g�t�,x � f �t�C

PROOF In Figure 10.30, consider and let

and

Because as you can write

Dividing both the numerator and denominator by you can use the differentiability
of and to conclude that

■�
dy�dt
dx�dt

.

�
g��t�
f��t�

�

 lim
�t→0

g�t � �t� � g�t�
�t

lim
�t→0

f �t � �t� � f �t�
�t

dy
dx

� lim
�t→0

�g�t � �t� � g�t����t
� f �t � �t� � f �t����t

gf
�t,

� lim
�t→0

g�t � �t� � g�t�
f �t � �t� � f �t� .

dy
dx

� lim
�x→0

�y
�x

�t →  0,�x →  0

�x � f �t � �t� � f �t�.�y � g�t � �t� � g�t�

�t > 0

30

20

30

10

10

20
x

θ

x = 24   2t
y = −16t2 + 24   2t

y

45°

At time the angle of elevation of the 
projectile is the slope of the tangent line
at that point.
Figure 10.29

,
t,

x

Δy

Δx

( f(t), g(t))

( f(t + Δt), g(t + Δt))

y

The slope of the secant line through the
points and 

is
Figure 10.30

�y��x.g�t � �t��
� f �t � �t�,g�t��� f �t�,



EXAMPLE 1 Differentiation and Parametric Form

Find for the curve given by and 

Solution

■

Because is a function of you can use Theorem 10.7 repeatedly to find
higher-order derivatives. For instance,

EXAMPLE 2 Finding Slope and Concavity

For the curve given by

and

find the slope and concavity at the point 

Solution Because

Parametric form of first derivative

you can find the second derivative to be

At it follows that and the slope is

Moreover, when the second derivative is

and you can conclude that the graph is concave upward at as shown in
Figure 10.31. ■

Because the parametric equations and need not define as a
function of it is possible for a plane curve to loop around and cross itself. At such
points the curve may have more than one tangent line, as shown in the next example.

x,
yy � g�t�x � f �t�

�2, 3�,

d2y
dx2 � 3�4� � 12 > 0

t � 4,

dy
dx

� �4�3�2 � 8.

t � 4,�x, y� � �2, 3�,

Parametric form of second
derivatived2y

dx2 �

d
dt

�dy�dx�

dx�dt
�

d
dt

�t3�2�

dx�dt
�

�3�2�t1�2

�1�2�t�1�2 � 3t.

dy
dx

�
dy�dt
dx�dt

�
�1�2�t

�1�2�t�1�2 � t3�2

�2, 3�.

t � 0y �
1
4

�t2 � 4�,x � �t

t,dy�dx

dy
dx

�
dy�dt
dx�dt

�
�sin t
cos t

� �tan t

y � cos t.x � sin tdy�dx
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Second derivative

Third derivative
d3y
dx3 �

d
dx �

d 2y
dx2� �

d
dt�

d 2y
dx2�

dx�dt
.

d2y
dx2 �

d
dx �

dy
dx� �

d
dt�

dy
dx�

dx�dt

The curve traced out in
Example 1 is a circle. Use the formula

to find the slopes at the points and
�0, 1�.

�1, 0�

dy
dx

� �tan t

STUDY TIP

x =     t

y = 1
4

(t2 − 4)

x
1

1

2

2

3

−1

−1

(2, 3)
t = 4
m = 8

y

The graph is concave upward at when

Figure 10.31
t � 4.

�2, 3�,



EXAMPLE 3 A Curve with Two Tangent Lines at a Point

The prolate cycloid given by

and

crosses itself at the point as shown in Figure 10.32. Find the equations of both
tangent lines at this point.

Solution Because and when and

you have when and when So, the
two tangent lines at are

Tangent line when 

and

Tangent line when  ■

If and when the curve represented by and
has a horizontal tangent at For instance, in Example 3, the given

curve has a horizontal tangent at the point Similarly, if
and when the curve represented by and 

has a vertical tangent at 

Arc Length
You have seen how parametric equations can be used to describe the path of a particle
moving in the plane. You will now develop a formula for determining the distance
traveled by the particle along its path.

Recall from Section 7.4 that the formula for the arc length of a curve given by
over the interval is

If is represented by the parametric equations and and
if you can write

� 
b

a

�� f��t��2 � �g��t��2 dt.

� 
b

a
��dx

dt	
2

� �dy
dt	

2

dt

� 
b

a
��dx�dt�2 � �dy�dt�2

�dx�dt�2

dx
dt

dt

s � 
x1

x0

�1 � �dy
dx	

2

dx � 
x1

x0

�1 � �dy�dt
dx�dt	

2

dx

dx�dt � f��t� > 0,
a � t � b,y � g�t�,x � f �t�C

� 
x1

x0

�1 � �dy
dx	

2

dx.

s � 
x1

x0

�1 � �h��x��2 dx

�x0, x1�y � h�x�
C

� f �t0�, g�t0��.
y � g�t�x � f �t�t � t0,dy�dt � 0dx�dt � 0

�when t � 0�.�0, 2 � 	�
� f �t0�, g�t0��.y � g�t�

x � f �t�t � t0,dx�dt � 0dy�dt � 0

t �
	

2
y � 2 � �	

2	x.

t � �
	

2
y � 2 � ��	

2	x

�0, 2�
t � 	�2.dy�dx � 	�2t � �	�2dy�dx � �	�2

dy
dx

�
dy�dt
dx�dt

�
	 sin t

2 � 	 cos t

t � ±	�2,y � 2x � 0

�0, 2�,

y � 2 � 	 cos tx � 2t � 	 sin t
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y

x = 2t −    sin t
π
π

π

π

x
π

−2

2

4

6

π−

(0, 2)

Tangent line (t =   /2)

Tangent line (t = −   /2)

y = 2 −    cos t

This prolate cycloid has two tangent lines at
the point 
Figure 10.32

�0, 2�.



In the preceding section you saw that if a circle rolls along a line, a point on its
circumference will trace a path called a cycloid. If the circle rolls around the circum-
ference of another circle, the path of the point is an epicycloid. The next example
shows how to find the arc length of an epicycloid.

EXAMPLE 4 Finding Arc Length

A circle of radius 1 rolls around the circumference of a larger circle of radius 4, as
shown in Figure 10.33. The epicycloid traced by a point on the circumference of the
smaller circle is given by

and

Find the distance traveled by the point in one complete trip about the larger circle.

Solution Before applying Theorem 10.8, note in Figure 10.33 that the curve has
sharp points when and Between these two points, and are
not simultaneously 0. So, the portion of the curve generated from to is
smooth. To find the total distance traveled by the point, you can find the arc length of
that portion lying in the first quadrant and multiply by 4.

Parametric form for arc length

Trigonometric identity

For the epicycloid shown in Figure 10.33, an arc length of 40 seems about right  
because the circumference of a circle of radius 6 is ■2	r � 12	 � 37.7.

� 40

� �20�cos 2t�
	�2

0

� 40 
	�2

0
 sin 2t dt

� 20 
	�2

0

�4 sin2 2t dt

� 20 
	�2

0

�2 � 2 cos 4t dt

� 20 
	�2

0

�2 � 2 sin t sin 5t � 2 cos t cos 5t dt

� 4 
	�2

0

���5 sin t � 5 sin 5t�2 � �5 cos t � 5 cos 5t�2 dt

s � 4
	�2

0
��dx

dt	
2

� �dy
dt	

2

dt

t � 	�2t � 0
dy�dtdx�dtt � 	�2.t � 0

y � 5 sin t � sin 5t.x � 5 cos t � cos 5t
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THEOREM 10.8 ARC LENGTH IN PARAMETRIC FORM

If a smooth curve is given by and such that does not
intersect itself on the interval (except possibly at the endpoints),
then the arc length of over the interval is given by

s � 
b

a
��dx

dt	
2

� �dy
dt	

2

dt � 
b

a

�� f��t��2 � �g��t��2 dt.

C
a � t � b

Cy � g�t�x � f �t�C

NOTE When applying the arc length formula to a curve, be sure that the curve is traced out
only once on the interval of integration. For instance, the circle given by and 
is traced out once on the interval but is traced out twice on the interval

■0 � t � 4	.
0 � t � 2	,

y � sin tx � cos t

ARCH OF A CYCLOID

The arc length of an arch of a cycloid was
first calculated in 1658 by British architect
and mathematician Christopher Wren, famous
for rebuilding many buildings and churches in
London, including St. Paul’s Cathedral.

2

2

−2
−2−6

−6

x

nit

ea
se

s

cr

x = 5 cos t − cos 5t
y = 5 sin t − sin 5t

y

An epicycloid is traced by a point on the
smaller circle as it rolls around the larger 
circle.
Figure 10.33



EXAMPLE 5 Length of a Recording Tape

A recording tape 0.001 inch thick is wound around a reel whose inner radius is 0.5
inch and whose outer radius is 2 inches, as shown in Figure 10.34. How much tape is
required to fill the reel?

Solution To create a model for this problem, assume that as the tape is wound
around the reel, its distance from the center increases linearly at a rate of 0.001 inch
per revolution, or

where is measured in radians. You can determine that the coordinates of the point
corresponding to a given radius are

and

Substituting for you obtain the parametric equations

and

You can use the arc length formula to determine that the total length of the tape is

■

The length of the tape in Example 5 can be approximated by adding the circum-
ferences of circular pieces of tape. The smallest circle has a radius of 0.501 and the
largest has a radius of 2.

� 11,786 inches

� 2	 �1500�0.5� � 0.001�1500��1501��2�

� 
1500

i�1
 2	 �0.5 � 0.001i�

s � 2	 �0.501� � 2	 �0.502� � 2	 �0.503� � .  .  . � 2	 �2.000�

� 982 feet.

� 11,781 inches

Integration tables 
(Appendix B), Formula 26�

1
2000	 �1

2	��2 � 1 � ln� � �2 � 1 ��
4000	

1000	

�
1

2000	 
4000	

1000	

�2 � 1 d

�
1

2000	 
4000	

1000	

��� sin  � cos �2 � � cos  � sin �2 d

s � 
4000	

1000	
��dx

d	
2

� �dy
d	

2

d

y � � 

2000		 sin .x � � 

2000		 cos 

r,

y � r sin .

x � r cos 

�x, y�


1000	 �  � 4000	r � �0.001� 

2	
�



2000	
,

r
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■ FOR FURTHER INFORMATION For more information on the mathematics of recording
tape, see “Tape Counters” by Richard L. Roth in The American Mathematical Monthly. To view
this article, go to the website www.matharticles.com. ■

NOTE The graph of is called
the spiral of Archimedes. The graph of

(in Example 5) is of this
form.
r � �2000	

r � a

2 in.

0.5 in.

0.001 in.

x

x = r cos
y = r sin

θ
θ

θ

(x, y)

r

y

Figure 10.34

www.matharticles.com


Area of a Surface of Revolution
You can use the formula for the area of a surface of revolution in rectangular form to
develop a formula for surface area in parametric form.

These formulas are easy to remember if you think of the differential of arc length as

Then the formulas are written as follows.

1. 2.

EXAMPLE 6 Finding the Area of a Surface of Revolution

Let be the arc of the circle

from to as shown in Figure 10.35. Find the area of the surface
formed by revolving about the axis.

Solution You can represent parametrically by the equations

and

Note that you can determine the interval for by observing that when 
and when On this interval, is smooth and is nonnegative, and
you can apply Theorem 10.9 to obtain a surface area of

Trigonometric identity

■� 9	.

� �18	�1
2

� 1	
� �18	 �cos t�

	�3

0

� 6	 
	�3

0
 3 sin t dt

� 6	 
	�3

0
 sin t�9�sin2 t � cos2 t� dt

Formula for area of a
surface of revolutionS � 2	 
	�3

0
�3 sin t����3 sin t�2 � �3 cos t�2 dt

yCx � 3�2.�t � 	�3
x � 3t � 0t�

0 � t � 	�3.y � 3 sin t,x � 3 cos t

C

x-C
�3�2, 3�3�2�,�3, 0�

x2 � y2 � 9

C

S � 2	
b

a

f �t� dsS � 2	 
b

a

g�t� ds

ds ���dx
dt	

2
� �dy

dt	
2

dt.
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THEOREM 10.9 AREA OF A SURFACE OF REVOLUTION

If a smooth curve given by and does not cross itself on an
interval then the area of the surface of revolution formed by
revolving about the coordinate axes is given by the following.

1. Revolution about the axis:

2. Revolution about the axis: f �t� � 0y-S � 2	
b

a

f �t���dx
dt	

2

� �dy
dt	

2

dt

g�t� � 0x-S � 2	
b

a

g�t���dx
dt	

2

� �dy
dt	

2

dt

C
Sa � t � b,

y � g�t�x � f �t�C

x

−3

−2

−1

−1

1

2

3

41

C

(3, 0)

3
2

3
2

 , )) 3
y

The surface of revolution has a surface area
of
Figure 10.35

9	.



In Exercises 1– 4, find 

1. 2.

3. 4.

In Exercises 5–14, find and and find the slope
and concavity (if possible) at the given value of the parameter.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

In Exercises 15–18, find an equation of the tangent line at each
given point on the curve.

15. 16.

17. 18.

and and 

In Exercises 19–22, (a) use a graphing utility to graph the curve
represented by the parametric equations, (b) use a graphing
utility to find and at the given value of the
parameter, (c) find an equation of the tangent line to the curve
at the given value of the parameter, and (d) use a graphing
utility to graph the curve and the tangent line from part (c).

19.

20.

21.

22.

In Exercises 23–26, find the equations of the tangent lines at the
point where the curve crosses itself.

23.

24.

25.

26.

In Exercises 27 and 28, find all points (if any) of horizontal and
vertical tangency to the portion of the curve shown.

27. Involute of a circle: 28.

In Exercises 29–38, find all points (if any) of horizontal and 
vertical tangency to the curve. Use a graphing utility to confirm
your results.

29. 30.

31.

32.

33.

34.

35.

36.

37.

38.

In Exercises 39– 44, determine the t intervals on which the
curve is concave downward or concave upward.

39.

40.

41.

42.

43.

44. 0 < t < 2	y � 2 sin t,x � 4 cos t,

0 < t < 	y � cos t,x � sin t,

y � ln tx � t2,

y � 2t � ln tx � 2t � ln t,

y � t2 � t3x � 2 � t2,

y � t3 � tx � 3t2,

x � cos2 ,  y � cos 

x � sec ,  y � tan 

y � 2 sin x � 4 cos2 ,

y � �2 � sin x � 5 � 3 cos ,

x � cos ,  y � 2 sin 2

x � 3 cos ,  y � 3 sin 

x � t 2 � t � 2,  y � t 3 � 3t

x � t � 4,  y � t 3 � 3t

x � t � 1,  y � t 2 � 3tx � 4 � t,  y � t 2

x

2

2

4

4

6

6

8

10

8 10 12

y

x
2

2

4

4

6

6

8

8−2−6

−4

θ

y

y � sin �  cos

y � 2�1 � cos�x � cos �  sin

x � 2

y � t2x � t3 � 6t,

x � t2 � t,  y � t3 � 3t � 1

y � 2t � 	 sin tx � 2 � 	 cos t,

x � 2 sin 2t,  y � 3 sin t

 �
3	

4
x � 4 cos , y � 3 sin 

t � �1x � t 2 � t � 2, y � t 3 � 3t

ParameterParametric Equations

t � 1x � t � 2, y �
1
t

� 3

t � 1x � 6t, y � t 2 � 4

ParameterParametric Equations

dy/dxdy/dt,dx/dt,

�18, 10��3, �2�,�2, 0�,��3, 3���3, �1�,�0, 0�,
y � t3 � ty � t2 � 2t

x � t4 � 2x � t2 � 4

x
−1 21

1

6

65

5

43

4 + 3
2

, 2))(2, 5)

(−1, 3)

3

y

x
−4 −2

−2

2

6

4

4 (0, 2)

2
1
2

, )) 3

y

2 3
2

,−) )3

y � 3 � 2 sin y � 2 sin2 

x � 2 � 3 cos x � 2 cot 

 � 	x �  � sin , y � 1 � cos 

 �
	

4
x � cos3 , y � sin3 

t � 2x � �t, y � �t � 1

 �
	

6
x � 2 � sec , y � 1 � 2 tan 

 � 0x � cos , y � 3 sin 

 �
	

4
x � 4 cos , y � 4 sin 

t � 0x � t 2 � 5t � 4, y � 4t

t � �1x � t � 1, y � t 2 � 3t

t � 1x � �t , y � 3t � 1

t � 3x � 4t, y � 3t � 2

Point   Parametric Equations                

d 2y/dx 2,dy/dx

x � 2e, y � e��2x � sin2 , y � cos2 

x � 3�t, y � 4 � tx � t2, y � 7 � 6t

dy/dx.
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10.3 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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Arc Length In Exercises 45–48, write an integral that repre-
sents the arc length of the curve on the given interval. Do not
evaluate the integral.

45.

46.

47.

48.

Arc Length In Exercises 49–56, find the arc length of the curve
on the given interval.

49.

50.

51.

52.

53.

54.

55.

56.

Arc Length In Exercises 57–60, find the arc length of the curve
on the interval 

57. Hypocycloid perimeter:

58. Circle circumference:

59. Cycloid arch:

60. Involute of a circle:

61. Path of a Projectile The path of a projectile is modeled by the
parametric equations

and

where and are measured in feet.

(a) Use a graphing utility to graph the path of the projectile.

(b) Use a graphing utility to approximate the range of the
projectile.

(c) Use the integration capabilities of a graphing utility to
approximate the arc length of the path. Compare this result
with the range of the projectile.

62. Path of a Projectile If the projectile in Exercise 61 is
launched at an angle with the horizontal, its parametric
equations are

and

Use a graphing utility to find the angle that maximizes the
range of the projectile. What angle maximizes the arc length of
the trajectory?

63. Folium of Descartes Consider the parametric equations

and

(a) Use a graphing utility to graph the curve represented by the
parametric equations.

(b) Use a graphing utility to find the points of horizontal
tangency to the curve.

(c) Use the integration capabilities of a graphing utility to
approximate the arc length of the closed loop. Hint: Use
symmetry and integrate over the interval 

64. Witch of Agnesi Consider the parametric equations

and

(a) Use a graphing utility to graph the curve represented by the
parametric equations.

(b) Use a graphing utility to find the points of horizontal
tangency to the curve.

(c) Use the integration capabilities of a graphing utility
to approximate the arc length over the interval

65. Writing

(a) Use a graphing utility to graph each set of parametric
equations.

(b) Compare the graphs of the two sets of parametric equations
in part (a). If the curve represents the motion of a particle
and is time, what can you infer about the average speeds
of the particle on the paths represented by the two sets of
parametric equations?

(c) Without graphing the curve, determine the time required for
a particle to traverse the same path as in parts (a) and (b) if
the path is modeled by

and

66. Writing

(a) Each set of parametric equations represents the motion of a
particle. Use a graphing utility to graph each set.

(b) Determine the number of points of intersection.

(c) Will the particles ever be at the same place at the same
time? If so, identify the point(s).

(d) Explain what happens if the motion of the second particle
is represented by

0 � t � 2	.y � 2 � 4 cos t,x � 2 � 3 sin t,

0 � t � 2	0 � t � 2	

y � 3 cos ty � 4 sin t

x � 4 sin tx � 3 cos t

Second ParticleFirst Particle

y � 1 � cos�1
2t�.x �

1
2t � sin�1

2t�

t

0 � t � 	0 � t � 2	

y � 1 � cos�2t�y � 1 � cos t

x � 2t � sin�2t�x � t � sin t

	�4 �  � 	�2.

�
	

2
�  �

	

2
.y � 4 sin2 ,x � 4 cot 

0 � t � 1.�
�

y �
4t 2

1 � t 3.x �
4t

1 � t 3

y � �90 sin �t � 16t2.x � �90 cos �t



yx

y � �90 sin 30��t � 16t2x � �90 cos 30��t

x � cos  �  sin , y � sin  �  cos 

x � a� � sin �, y � a�1 � cos �
x � a cos , y � a sin 

x � a cos3 , y � a sin3 

[0, 2�].

1 � t � 2x � t,  y �
t 5

10
�

1
6t 3

0 � t � 1x � �t,  y � 3t � 1

0 � t �
1
2x � arcsin t,  y � ln�1 � t 2

0 � t �
	

2
x � e�t cos t,  y � e�t sin t

�1 � t � 0x � t 2 � 1,  y � 4t 3 � 3

1 � t � 4x � 6t 2,  y � 2t3
0 � t � 2x � t 2,  y � 2t

�1 � t � 3x � 3t � 5,  y � 7 � 2t

IntervalParametric Equations

0 � t � 	y � t � cos tx � t � sin t,

�2 � t � 2y � 2t � 1x � et � 2,

1 � t � 5y � 4t � 3x � ln t,

1 � t � 3y � 2t3�2x � 3t � t2,

IntervalParametric Equations
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Surface Area In Exercises 67–70, write an integral that 
represents the area of the surface generated by revolving the
curve about the x-axis. Use a graphing utility to approximate
the integral.

67.

68.

69.

70.

Surface Area In Exercises 71–76, find the area of the surface
generated by revolving the curve about each given axis.

71. (a) axis (b) axis

72. (a) axis (b) axis

73. axis

74. axis

75. axis

76.

(a) axis (b) axis

83. Use integration by substitution to show that if is a continuous
function of on the interval where and

then

where and both and are continuous on

84. Surface Area A portion of a sphere of radius is removed by
cutting out a circular cone with its vertex at the center of the
sphere. The vertex of the cone forms an angle of Find the
surface area removed from the sphere.

Area In Exercises 85 and 86, find the area of the region. (Use
the result of Exercise 83.)

85. 86.

Areas of Simple Closed Curves In Exercises 87–92, use a
computer algebra system and the result of Exercise 83 to match
the closed curve with its area. (These exercises were based on
“The Surveyor’s Area Formula,”by Bart Braden, College
Mathematics Journal, September 1986, pp. 335–337, by 
permission of the author.)

(a) (b) (c)

(d) (e) (f)

87. Ellipse: 88. Astroid:

89. Cardioid: 90. Deltoid:

x

a

y

x
a

y

y � 2a sin t � a sin 2ty � 2a sin t � a sin 2t

x � 2a cos t � a cos 2tx � 2a cos t � a cos 2t

�0 � t � 2	��0 � t � 2	�

x

a

a

y

x

a

b

y

y � a sin3 ty � a sin t

x � a cos3 tx � b cos t

�0 � t � 2	��0 � t � 2	�

6�a22�ab�ab

2�a23
8�a28

3 ab

x
−1

−1
−2

−2

21

1

y

x

1

1 2

2

−1
−1

−2

−2

y

0 <  < 	0 �  <
	

2

y � 2 sin2 y � 2 sin2  tan 

x � 2 cot x � 2 sin2 

2.

r

�t1, t2�.
f�gf �t2� � b,f �t1� � a,


b

a

y dx � 
t2

t1

g�t� f��t� dt

y � g�t�,
x � f �t�a � x � b,x

y

y-x-

0 �  � 2	,x � a cos , y � b sin ,

x-0 �  � 	,x � a cos3 , y � a sin3 ,

y-1 � t � 2,x �
1
3t 3,  y � t � 1,

y-0 �  �
	

2
,x � 5 cos , y � 5 sin ,

y-x-0 � t � 2,x � t,  y � 4 � 2t,

y-x-0 � t � 3,x � 2t,  y � 3t,

0 �  �
	

2
y �  � cos x �  � sin ,

0 �  �
	

2
y � cos x � cos2 ,

0 � t � 3y � t � 3x �
1
4

t2,

0 � t � 4y � t � 2x � 3t,

IntervalParametric Equations
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77. Give the parametric form of the derivative.

In Exercises 78 and 79, mentally determine 

78. 79.

80. Give the integral formula for arc length in parametric form.

81. Give the integral formulas for the areas of the surfaces of
revolution formed when a smooth curve is revolved about
(a) the axis and (b) the axis.y-x-

C

y � 6t � 5x � t,y � 3x � t,

dy/dx.

WRITING ABOUT CONCEPTS

82. (a) Sketch a graph of a curve defined by the parametric
equations and such that 
and for all real numbers 

(b) Sketch a graph of a curve defined by the parametric
equations and such that 
and for all real numbers t.dy�dt < 0

dx�dt < 0y � f �t�x � g�t�

t.dy�dt < 0
dx�dt > 0y � f �t�x � g�t�

CAPSTONE

CAS



91. Hourglass: 92. Teardrop:

Centroid In Exercises 93 and 94, find the centroid of the region
bounded by the graph of the parametric equations and the
coordinate axes. (Use the result of Exercise 83.)

93. 94.

Volume In Exercises 95 and 96, find the volume of the solid
formed by revolving the region bounded by the graphs of the
given equations about the -axis. (Use the result of Exercise 83.)

95.

96.

97. Cycloid Use the parametric equations

and

to answer the following.

(a) Find and 

(b) Find the equation of the tangent line at the point where

(c) Find all points (if any) of horizontal tangency.

(d) Determine where the curve is concave upward or concave
downward.

(e) Find the length of one arc of the curve.

98. Use the parametric equations

and

to answer the following.

(a) Use a graphing utility to graph the curve on the interval

(b) Find and 

(c) Find the equation of the tangent line at the point 

(d) Find the length of the curve.

(e) Find the surface area generated by revolving the curve
about the x-axis.

99. Involute of a Circle The involute of a circle is described by
the endpoint P of a string that is held taut as it is unwound from
a spool that does not turn (see figure). Show that a parametric
representation of the involute is

and

Figure for 99 Figure for 100

100. Involute of a Circle The figure shows a piece of string tied
to a circle with a radius of one unit. The string is just long
enough to reach the opposite side of the circle. Find the area
that is covered when the string is unwound counterclockwise.

101. (a) Use a graphing utility to graph the curve given by

(b) Describe the graph and confirm your result analytically.

(c) Discuss the speed at which the curve is traced as 
increases from to 20.

102. Tractrix A person moves from the origin along the positive 
axis pulling a weight at the end of a 12-meter rope. Initially,

the weight is located at the point 

(a) In Exercise 96 of Section 8.7, it was shown that the path
of the weight is modeled by the rectangular equation

where Use a graphing utility to graph the 
rectangular equation.

(b) Use a graphing utility to graph the parametric equations

and

where How does this graph compare with the graph
in part (a)? Which graph (if either) do you think is a 
better representation of the path?

(c) Use the parametric equations for the tractrix to verify that
the distance from the intercept of the tangent line to the
point of tangency is independent of the location of the
point of tangency.

True or False? In Exercises 103 and 104, determine whether
the statement is true or false. If it is false, explain why or give
an example that shows it is false.

103. If and then 

104. The curve given by has a horizontal tangent at
the origin because when 

105. Recording Tape Another method you could use to solve
Example 5 is to find the area of the reel with an inner radius
of 0.5 inch and an outer radius of 2 inches, and then use the 
formula for the area of the rectangle where the width is 0.001
inch. Use this method to determine how much tape is required
to fill the reel.

t � 0.dy�dt � 0
y � t 2x � t 3,

d 2y�dx2 � g� �t��f � �t�.y � g�t�,x � f �t�

y-

t � 0.

y � t � 12 tanh 
t

12
x � 12 sech 

t
12

0 < x � 12.

y � �12 ln�12 � �144 � x2

x 	 � �144 � x2

�12, 0�.
y-

�20
t

�20 � t � 20.x �
1 � t 2

1 � t 2 , y �
2t

1 � t 2 ,

1

xr

r

P

θ

y

y � r�sin  �  cos �.x � r�cos  �  sin �

��3, 8
3�.

d2y�dx2.dy�dx

�3 � t � 3.

y � 3t �
1
3

t3x � t2�3

 � 	�6.

d2y�dx2.dy�dx

y � a�1 � cos �, a > 0x � a� � sin �

x � cos ,  y � 3 sin ,  a > 0

x � 6 cos ,  y � 6 sin 

x

x � �4 � t,  y � �tx � �t,  y � 4 � t

x

b

aa

y

x

b

a

y

y � b sin ty � b sin t

x � 2a cos t � a sin 2tx � a sin 2t

�0 ≤ t ≤  2	��0 � t � 2	�
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10.4 Polar Coordinates and Polar Graphs
■ Understand the polar coordinate system.
■ Rewrite rectangular coordinates and equations in polar form and vice versa.
■ Sketch the graph of an equation given in polar form.
■ Find the slope of a tangent line to a polar graph.
■ Identify several types of special polar graphs.

Polar Coordinates
So far, you have been representing graphs as collections of points on the rectan-
gular coordinate system. The corresponding equations for these graphs have been in
either rectangular or parametric form. In this section you will study a coordinate
system called the polar coordinate system.

To form the polar coordinate system in the plane, fix a point called the pole
(or origin), and construct from an initial ray called the polar axis, as shown in
Figure 10.36. Then each point in the plane can be assigned polar coordinates
as follows.

Figure 10.37 shows three points on the polar coordinate system. Notice that in this
system, it is convenient to locate points with respect to a grid of concentric circles
intersected by radial lines through the pole.

(a) (b) (c)
Figure 10.37

With rectangular coordinates, each point has a unique representation. This
is not true with polar coordinates. For instance, the coordinates and 
represent the same point [see parts (b) and (c) in Figure 10.37]. Also, because is a
directed distance, the coordinates and represent the same point. In
general, the point can be written as

or

where is any integer. Moreover, the pole is represented by where is any
angle.

�0, �,n

�r, � � ��r,  � �2n � 1�	�
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��r,  � 	��r, �

r
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2 3
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2
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3
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θ

 � directed angle, counterclockwise from polar axis to segment OP

r � directed distance from O to P

�r, �,P
O

O,

�x, y�

POLAR COORDINATES

The mathematician credited with first using
polar coordinates was James Bernoulli, who
introduced them in 1691. However, there is
some evidence that it may have been Isaac
Newton who first used them.

O

= directed angle
Polar
axis

P = (r,   )

r =
 dire

cte
d dista

nce

θ

θ

Polar coordinates
Figure 10.36



Coordinate Conversion
To establish the relationship between polar and rectangular coordinates, let the polar
axis coincide with the positive axis and the pole with the origin, as shown in Figure
10.38. Because lies on a circle of radius it follows that 
Moreover, for the definitions of the trigonometric functions imply that

and

If you can show that the same relationships hold.

EXAMPLE 1 Polar-to-Rectangular Conversion

a. For the point 

and

So, the rectangular coordinates are 

b. For the point 

and

So, the rectangular coordinates are 

See Figure 10.39.

EXAMPLE 2 Rectangular-to-Polar Conversion

a. For the second quadrant point 

Because was chosen to be in the same quadrant as you should use a positive
value of 

This implies that one set of polar coordinates is 

b. Because the point lies on the positive axis, choose and
and one set of polar coordinates is 

See Figure 10.40. ■

�r, � � �2, 	�2�.r � 2,
 � 	�2y-�x, y� � �0, 2�
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� ���1�2 � �1�2

r � �x2 � y2

r.
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 �
3	

4
.tan  �

y
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� �1
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6
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2

.x � �3 cos 
	

6
�
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�r, � � ��3, 	�6�,
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y � r sin  � 2 sin 	 � 0.x � r cos  � 2 cos 	 � �2
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sin  �
y
r .cos  �
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y
x ,
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THEOREM 10.10 COORDINATE CONVERSION

The polar coordinates of a point are related to the rectangular coordinates
of the point as follows.

1. 2.

r2 � x2 � y2y � r sin 

tan  �
y
x

x � r cos 

�x, y�
�r, �

x
1

1

2

2

−1

−1

−2

−2

(x, y) = (−2, 0)

(r,   ) = (2,   )πθ

(r,   ) =θ ,

(x, y) = ,3
2

3
2

3

y

6
π

))
) )

To convert from polar to rectangular 
coordinates, let and 
Figure 10.39

y � r sin .x � r cos 

1

2

(x, y) = (−1, 1)

(x, y) = (0, 2)

(r,   ) =θ 2,

(r,   ) =θ ,

x
1 2−1−2

2

y

2
π ))

)) 4
3π

To convert from rectangular to polar coordi-
nates, let and 
Figure 10.40

r � �x2 � y2.tan  � y�x

y
r

x

x

θPole

Polar axis
(x-axis)(Origin)

(x, y)
(r, )θy

Relating polar and rectangular coordinates
Figure 10.38



Polar Graphs
One way to sketch the graph of a polar equation is to convert to rectangular coordi-
nates and then sketch the graph of the rectangular equation.

EXAMPLE 3 Graphing Polar Equations

Describe the graph of each polar equation. Confirm each description by converting to
a rectangular equation.

a. b. c.

Solution

a. The graph of the polar equation consists of all points that are two units from
the pole. In other words, this graph is a circle centered at the origin with a radius
of 2. [See Figure 10.41(a).] You can confirm this by using the relationship

to obtain the rectangular equation

Rectangular equation

b. The graph of the polar equation consists of all points on the line that
makes an angle of with the positive axis. [See Figure 10.41(b).] You can
confirm this by using the relationship to obtain the rectangular
equation

Rectangular equation

c. The graph of the polar equation is not evident by simple inspection, so
you can begin by converting to rectangular form using the relationship 

Polar equation

Rectangular equation

From the rectangular equation, you can see that the graph is a vertical line. [See
Figure 10.41(c).] ■

x � 1

r cos  � 1

r � sec 

r cos  � x.
r � sec 

y � �3 x.

tan  � y�x
x-	�3

 � 	�3

x2 � y2 � 22.

r2 � x2 � y2

r � 2

r � sec  �
	

3
r � 2
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Sketching the graphs of complicated polar equations by hand can
be tedious. With technology, however, the task is not difficult. If your graphing
utility has a polar mode, use it to graph the equations in the exercise set. If your
graphing utility doesn’t have a polar mode, but does have a parametric mode, you
can graph by writing the equation as

For instance, the graph of shown in Figure 10.42 was produced with a
graphing calculator in parametric mode. This equation was graphed using the
parametric equations

with the values of varying from to This curve is of the form and
is called a spiral of Archimedes.

r � a4	.�4	

y �
1
2

 sin 

x �
1
2

 cos 

r �
1
2

y � f �� sin .

x � f �� cos 

r � f ��

TECHNOLOGY

−9 9

−6

6

Spiral of Archimedes
Figure 10.42
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(a) Circle: r � 2

1 2 3
0π

2
π3

π
2

(b) Radial line:  �
	

3

1 2 3
0π

2
π3

π
2

(c) Vertical line:
Figure 10.41

r � sec 



EXAMPLE 4 Sketching a Polar Graph

Sketch the graph of 

Solution Begin by writing the polar equation in parametric form.

and

After some experimentation, you will find that the entire curve, which is called a rose
curve, can be sketched by letting vary from 0 to as shown in Figure 10.43. If you
try duplicating this graph with a graphing utility, you will find that by letting vary
from 0 to you will actually trace the entire curve twice.

Figure 10.43 ■

Use a graphing utility to experiment with other rose curves they are of the form
or For instance, Figure 10.44 shows the graphs of two

other rose curves.

Rose curves
Figure 10.44

Generated by Mathematica
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y � 2 cos 3 sin x � 2 cos 3 cos 

r � 2 cos 3.
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NOTE One way to sketch the graph of
by hand is to make a table

of values.

By extending the table and plotting the
points, you will obtain the curve shown
in Example 4.

r � 2 cos 3


 0
	

6
	

3
	

2
2	

3

r 2 0 �2 0 2



Slope and Tangent Lines
To find the slope of a tangent line to a polar graph, consider a differentiable function
given by To find the slope in polar form, use the parametric equations

and

Using the parametric form of given in Theorem 10.7, you have

which establishes the following theorem.

From Theorem 10.11, you can make the following observations.

1. Solutions to yield horizontal tangents, provided that 

2. Solutions to yield vertical tangents, provided that 

If and are simultaneously 0, no conclusion can be drawn about tangent
lines.

EXAMPLE 5 Finding Horizontal and Vertical Tangent Lines

Find the horizontal and vertical tangent lines of 

Solution Begin by writing the equation in parametric form.

and

Next, differentiate and with respect to and set each derivative equal to 0.

So, the graph has vertical tangent lines at and and it has
horizontal tangent lines at and as shown in Figure 10.46. ■�1, 	�2�,�0, 0�

��2�2, 3	�4�,��2�2, 	�4�

 � 0,
	

2
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 �
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THEOREM 10.11 SLOPE IN POLAR FORM

If is a differentiable function of then the slope of the tangent line to the
graph of at the point is

provided that at See Figure 10.45.���r, �.dx�d � 0

dy
dx
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EXAMPLE 6 Finding Horizontal and Vertical Tangent Lines

Find the horizontal and vertical tangents to the graph of 

Solution Using differentiate and set equal to 0.

So, and and you can conclude that when
and 0. Similarly, using you have

So, or and you can conclude that when 
and From these results, and from the graph shown in Figure 10.47, you

can conclude that the graph has horizontal tangents at and and
has vertical tangents at and This graph is called a cardioid.
Note that both derivatives and are 0 when Using this
information alone, you don’t know whether the graph has a horizontal or vertical
tangent line at the pole. From Figure 10.47, however, you can see that the graph has a
cusp at the pole. ■

Theorem 10.11 has an important consequence. Suppose the graph of 
passes through the pole when and Then the formula for 
simplifies as follows.

So, the line is tangent to the graph at the pole,

Theorem 10.12 is useful because it states that the zeros of can be used
to find the tangent lines at the pole. Note that because a polar curve can cross the pole
more than once, it can have more than one tangent line at the pole. For example, the
rose curve

has three tangent lines at the pole, as shown in Figure 10.48. For this curve,
cos is 0 when is and Moreover, the derivative

is not 0 for these values of .f��� � �6 sin 3
5	�6.	�2,	�6,3f �� � 2
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THEOREM 10.12 TANGENT LINES AT THE POLE

If and then the line is tangent at the pole to the
graph of r � f ��.
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Special Polar Graphs
Several important types of graphs have equations that are simpler in polar form than
in rectangular form. For example, the polar equation of a circle having a radius of 
and centered at the origin is simply Later in the text you will come to appreciate
this benefit. For now, several other types of graphs that have simpler equations in 
polar form are shown below. (Conics are considered in Section 10.6.)

r � a.
a
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Rose Curves

Circles and Lemniscates

The rose curves described above are of the form 
or where is a positive integer that is greater than or equal to 2. Use
a graphing utility to graph or for some noninteger values
of Are these graphs also rose curves? For example, try sketching the graph of

0 �  � 6	.r � cos 2
3,

n.
r � a sin nr � a cos n

nr � a sin n,
r � a cos nTECHNOLOGY

■ FOR FURTHER INFORMATION For more information on rose curves and related curves,
see the article “A Rose is a Rose .  .  .” by Peter M. Maurer in The American Mathematical
Monthly. The computer-generated graph at the left is the result of an algorithm that Maurer calls
“The Rose.” To view this article, go to the website www.matharticles.com. ■Generated by Maple

www.matharticles.com


In Exercises 1–6, plot the point in polar coordinates and find
the corresponding rectangular coordinates for the point.

1. 2.

3. 4.

5. 6.

In Exercises 7–10, use the angle feature of a graphing utility to
find the rectangular coordinates for the point given in polar
coordinates. Plot the point.

7. 8.

9. 10.

In Exercises 11–16, the rectangular coordinates of a point are
given. Plot the point and find two sets of polar coordinates for
the point for 

11. 12.

13. 14.

15. 16.

In Exercises 17–20, use the angle feature of a graphing utility to
find one set of polar coordinates for the point given in rectangular
coordinates.

17. 18.

19. 20.

21. Plot the point if the point is given in (a) rectangular
coordinates and (b) polar coordinates.

22. Graphical Reasoning

(a) Set the window format of a graphing utility to rectangular
coordinates and locate the cursor at any position off the
axes. Move the cursor horizontally and vertically. Describe
any changes in the displayed coordinates of the points.

(b) Set the window format of a graphing utility to polar
coordinates and locate the cursor at any position off the
axes. Move the cursor horizontally and vertically. Describe
any changes in the displayed coordinates of the points.

(c) Why are the results in parts (a) and (b) different?

In Exercises 23–26, match the graph with its polar equation.
[The graphs are labeled (a), (b), (c), and (d).]

(a) (b)

(c) (d)

23. 24.

25. 26.

In Exercises 27–36, convert the rectangular equation to polar
form and sketch its graph.

27. 28.

29. 30.

31. 32.

33. 34.

35.

36.

In Exercises 37– 46, convert the polar equation to rectangular
form and sketch its graph.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

In Exercises 47–56, use a graphing utility to graph the polar
equation. Find an interval for over which the graph is traced
only once.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. Convert the equation

to rectangular form and verify that it is the equation of a circle.
Find the radius and the rectangular coordinates of the center of
the circle.
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58. Distance Formula

(a) Verify that the Distance Formula for the distance between
the two points and in polar coordinates is 

(b) Describe the positions of the points relative to each other
for Simplify the Distance Formula for this case. Is
the simplification what you expected? Explain.

(c) Simplify the Distance Formula for Is the
simplification what you expected? Explain.

(d) Choose two points on the polar coordinate system and find
the distance between them. Then choose different polar
representations of the same two points and apply the
Distance Formula again. Discuss the result.

In Exercises 59– 62, use the result of Exercise 58 to approximate
the distance between the two points in polar coordinates.

59. 60.

61. 62.

In Exercises 63 and 64, find and the slopes of the tangent
lines shown on the graph of the polar equation.

63. 64.

In Exercises 65– 68, use a graphing utility to (a) graph the polar
equation, (b) draw the tangent line at the given value of and
(c) find at the given value of Hint: Let the increment
between the values of equal 

65. 66.

67. 68.

In Exercises 69 and 70, find the points of horizontal and vertical
tangency (if any) to the polar curve.

69. 70.

In Exercises 71 and 72, find the points of horizontal tangency 
(if any) to the polar curve.

71. 72.

In Exercises 73–76, use a graphing utility to graph the polar
equation and find all points of horizontal tangency.

73. 74.

75. 76.

In Exercises 77–84, sketch a graph of the polar equation and
find the tangents at the pole.

77. 78.

79. 80.

81. 82.

83. 84.

In Exercises 85–96, sketch a graph of the polar equation.

85. 86.

87. 88.

89. 90.

91. 92.

93. 94.

95. 96.

In Exercises 97–100, use a graphing utility to graph the equa-
tion and show that the given line is an asymptote of the graph.

97. Conchoid

98. Conchoid

99. Hyperbolic spiral

100. Strophoid

105. Sketch the graph of over each interval.

(a) (b) (c)

106. Think About It Use a graphing utility to graph the polar
equation for (a) (b) 
and (c) Use the graphs to describe the effect of the
angle Write the equation as a function of sin for part (c).�.

� � 	�2.
� � 	�4,� � 0,r � 6 �1 � cos� � ���

�
	

2
�  �

	

2
	

2
�  � 	0 �  �

	

2

r � 4 sin 

x � �2r � 2 cos 2 sec 

y � 2r � 2�

y � 1r � 2 � csc 

x � �1r � 2 � sec 

AsymptotePolar EquationName of Graph

r 2 � 4 sin r 2 � 4 cos 2

r �
1


r � 2

r �
6

2 sin  � 3 cos 
r � 3 csc 

r � 5 � 4 sin r � 3 � 2 cos 

r � 1 � sin r � 4�1 � cos �
r � 1r � 8

r � 3 cos 2r � 3 sin 2

r � �sin 5r � 4 cos 3

r � 3�1 � cos �r � 2�1 � sin �
r � 5 cos r � 5 sin 

r � 2 cos�3 � 2�r � 2 csc  � 5

r � 3 cos 2 sec r � 4 sin  cos2 

r � a sin  cos2 r � 2 csc  � 3

r � a sin r � 1 � sin 

r � 4,  �
	

4
r � 3 sin ,  �

	

3

r � 3 � 2 cos ,  � 0r � 3�1 � cos �,  �
	

2

�/24.�

�
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,
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2
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3π
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7π
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π
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r � 2�1 � sin �r � 2 � 3 sin 

dy/dx

�12, 1��4, 2.5�,�7, 1.2��2, 0.5�,

�5, 	��8,
7	

4 	,�4,
	

3	�1,
5	

6 	,

1 � 2 � 90�.

1 � 2.

d � �r1
2 � r2

2 � 2r1r2 cos�1 � 2� .

�r2, 2��r1, 1�
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101. Describe the differences between the rectangular coordinate
system and the polar coordinate system.

102. Give the equations for the coordinate conversion from
rectangular to polar coordinates and vice versa.

103. How are the slopes of tangent lines determined in polar
coordinates? What are tangent lines at the pole and how
are they determined?

WRITING ABOUT CONCEPTS

104. Describe the graphs of the following polar equations.

(a) (b)

(c) (d)

(e) (f) r � 7 sin r � 7 cos 

r �
7

sin 
r �

7
cos 

r2 � 7r � 7

CAPSTONE



107. Verify that if the curve whose polar equation is is
rotated about the pole through an angle then an equation for
the rotated curve is 

108. The polar form of an equation of a curve is Show
that the form becomes

(a) if the curve is rotated counterclockwise
radians about the pole.

(b) if the curve is rotated counterclockwise 
radians about the pole.

(c) if the curve is rotated counterclockwise 
radians about the pole.

In Exercises 109–112, use the results of Exercises 107 and 108.

109. Write an equation for the limaçon after it has
been rotated by the given amount. Use a graphing utility to
graph the rotated limaçon.

(a) (b) (c) (d)

110. Write an equation for the rose curve after it has
been rotated by the given amount. Verify the results by using
a graphing utility to graph the rotated rose curve.

(a) (b) (c) (d)

111. Sketch the graph of each equation.

(a) (b) 

112. Prove that the tangent of the angle between
the radial line and the tangent line at the point on the
graph of (see figure) is given by tan 

In Exercises 113–118, use the result of Exercise 112 to find the
angle between the radial and tangent lines to the graph for
the indicated value of Use a graphing utility to graph the
polar equation, the radial line, and the tangent line for the
indicated value of Identify the angle 

113.

114.

115.

116.

117.

118.

True or False? In Exercises 119–122, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

119. If and represent the same point on the polar
coordinate system, then 

120. If and represent the same point on the polar
coordinate system, then for some integer 

121. If then the point on the rectangular coordinate
system can be represented by on the polar coordinate
system, where and 

122. The polar equations and
all have the same graph.r � sin��2�

r � �sin 2,r � sin 2,

 � arctan�y�x�.r � �x2 � y 2
�r, �

�x, y�x > 0,

n.1 � 2 � 2	n
�r, 2��r, 1�

�r1� � �r2�.
�r2, 2��r1, 1�

 � 	�6r � 5

 � 2	�3r �
6

1 � cos 

 � 	�6r � 4 sin 2

 � 	�4r � 2 cos 3

 � 3	�4r � 3�1 � cos �
 � 	r � 2�1 � cos �
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.
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θ= (  )r f
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6

r � 2 sin 2
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4

r � 2 � sin 

3	�2r � f �cos �
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r � f �sin �.
r � f � � ��.
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740 Chapter 10 Conics, Parametric Equations, and Polar Coordinates

Anamorphic art appears distorted, but when the art is viewed from
a particular point or is viewed with a device such as a mirror, it
appears to be normal. Use the anamorphic transformations

and

to sketch the transformed polar image of the rectangular graph.
When the reflection (in a cylindrical mirror centered at the pole) of
each polar image is viewed from the polar axis, the viewer will see
the original rectangular image.

(a) (b) (c) (d)

This example of anamorphic art is from the Millington-Barnard
Collection at the University of Mississippi. When the reflection of
the transformed “polar painting” is viewed in the mirror, the viewer
sees the distorted art in its proper proportions.

x2 � �y � 5�2 � 52y � x � 5x � 2y � 3

�
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4
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4
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8
x,r � y � 16

Anamorphic Art
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■ FOR FURTHER INFORMATION For more information on
anamorphic art, see the article “Anamorphisms” by Philip Hickin in
the Mathematical Gazette.
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10.5 Area and Arc Length in Polar Coordinates
■ Find the area of a region bounded by a polar graph.
■ Find the points of intersection of two polar graphs.
■ Find the arc length of a polar graph.
■ Find the area of a surface of revolution (polar form).

Area of a Polar Region
The development of a formula for the area of a polar region parallels that for the area
of a region on the rectangular coordinate system, but uses sectors of a circle instead
of rectangles as the basic elements of area. In Figure 10.49, note that the area of a
circular sector of radius is given by provided is measured in radians.

Consider the function given by where is continuous and nonnegative
on the interval given by The region bounded by the graph of and the
radial lines and is shown in Figure 10.50(a). To find the area of this
region, partition the interval into equal subintervals

Then approximate the area of the region by the sum of the areas of the sectors, as
shown in Figure 10.50(b).

Taking the limit as produces

which leads to the following theorem.

�
1
2 


�

�

� f���2 d

A � lim
n→�

1
2 

n

i�1
� f�i��2 �

n →�

A � 
n

i�1
�1

2	 � � f�i��2

 Central angle of ith sector �
� � �

n
� �

 Radius of ith sector � f�i�

n

� � 0 < 1 < 2 < .  .  . < n�1 < n � �.

n��, ��
 � � � �

f� ≤    ≤  �.
fr � f��,
1

2r2,r

THEOREM 10.13 AREA IN POLAR COORDINATES

If is continuous and nonnegative on the interval 
then the area of the region bounded by the graph of between the 
radial lines and is given by

0 < � � � � 2	�
1
2 


�

�

r2 d.

A �
1
2 


�

�

� f���2 d

 � � � �
r � f��

0 < � � � � 2	,��, ��,f

NOTE You can use the same formula to find the area of a region bounded by the graph of a
continuous function. However, the formula is not necessarily valid if takes on
both positive negative values in the interval ■��, ��.and

fnonpositive

r

θ

The area of a sector of a circle is 
Figure 10.49

A �
1
2r2.

r = f(  )
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α

θ
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(a)

r = f(  )
β θ

θ

θ

α

n − 1

1

2

θ

0

π
2

(b)
Figure 10.50



EXAMPLE 1 Finding the Area of a Polar Region

Find the area of one petal of the rose curve given by 

Solution In Figure 10.51, you can see that the petal on the right is traced as 
increases from to So, the area is

■

EXAMPLE 2 Finding the Area Bounded by a Single Curve

Find the area of the region lying between the inner and outer loops of the limaçon

Solution In Figure 10.52, note that the inner loop is traced as increases from 
to So, the area inside the inner loop is

Simplify.

In a similar way, you can integrate from to to find that the area of the
region lying inside the outer loop is The area of the region
lying between the two loops is the difference of and 

■

A � A2 � A1 � �2	 �
3�3

2 	 � �	 �
3�3

2 	 � 	 � 3�3 � 8.34

A1.A2

A2 � 2	 � �3�3�2�.
13	�65	�6

� 	 �
3�3

2
.

�
1
2

�2	 � 3�3 �

�
1
2�3 � 4 cos  � sin 2�

5	�6

	�6

�
1
2 


5	�6

	�6
�3 � 4 sin  � 2 cos 2� d

Trigonometric
identity�

1
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5	�6

	�6
�1 � 4 sin  � 4�1 � cos 2

2 	� d

�
1
2 


5	�6

	�6
�1 � 4 sin  � 4 sin2 � d

Formula for area in
polar coordinatesA1 �

1
2


�

�

r2 d �
1
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5	�6

	�6
�1 � 2 sin �2 d

5	�6.
	�6

r � 1 � 2 sin .
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4
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sin 6
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1 � cos 6
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Formula for area in
polar coordinatesA �

1
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r � 3 cos 3.
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3

r = 3 cos 3θ

0

π
2

The area of one petal of the rose curve that
lies between the radial lines and

is
Figure 10.51

3	�4. � 	�6
 � �	�6

32

θr = 1 − 2 sin

0

=
6
πθ=

6
5πθ

π
2

The area between the inner and outer loops
is approximately 8.34.
Figure 10.52

NOTE To find the area of the region lying inside all three petals of the rose curve in Example 1,
you could not simply integrate between 0 and In doing this you would obtain which
is twice the area of the three petals. The duplication occurs because the rose curve is
traced twice as increases from 0 to ■2	.

9	�2,2	.



Points of Intersection of Polar Graphs
Because a point may be represented in different ways in polar coordinates, care must
be taken in determining the points of intersection of two polar graphs. For example,
consider the points of intersection of the graphs of

and

as shown in Figure 10.53. If, as with rectangular equations, you attempted to find the
points of intersection by solving the two equations simultaneously, you would obtain

First equation

Substitute from 2nd equation into 1st equation.

Simplify.

Solve for 

The corresponding points of intersection are and However, from
Figure 10.53 you can see that there is a point of intersection that did not show
up when the two polar equations were solved simultaneously. (This is one reason why
you should sketch a graph when finding the area of a polar region.) The reason the
third point was not found is that it does not occur with the same coordinates in the two
graphs. On the graph of the point occurs with coordinates but on the
graph of the point occurs with coordinates 

You can compare the problem of finding points of intersection of two polar
graphs with that of finding collision points of two satellites in intersecting orbits about
Earth, as shown in Figure 10.54. The satellites will not collide as long as they reach
the points of intersection at different times ( -values). Collisions will occur only 
at the points of intersection that are “simultaneous points”—those reached at the same
time ( -value).

Three points of intersection: The paths of satellites can cross without causing
a collision.

Figure 10.53 Figure 10.54
�1, 3	�2���1, 0�,

�1, 	�2�,

1

Limaçon: r = 1 − 2 cos θ

Circle:
r = 1

0

π
2





��1, 0�.r � 1 � 2 cos ,
�1, 	�,r � 1,

third
�1, 3	�2�.�1, 	�2�

. �
	

2
,  3	

2
.

 cos  � 0

r � 11 � 1 � 2 cos 

r � 1 � 2 cos 

r � 1r � 1 � 2 cos 

10.5 Area and Arc Length in Polar Coordinates 743

NOTE Because the pole can be represented by where is angle, you should check
separately for the pole when finding points of intersection. ■

any�0, �,

■ FOR FURTHER INFORMATION For
more information on using technology to
find points of intersection, see the article
“Finding Points of Intersection of Polar-
Coordinate Graphs” by Warren W. Esty
in Mathematics Teacher. To view this
article, go to the website 
www.matharticles.com.

www.matharticles.com


EXAMPLE 3 Finding the Area of a Region Between Two Curves

Find the area of the region common to the two regions bounded by the following
curves.

Circle

Cardioid

Solution Because both curves are symmetric with respect to the axis, you can work
with the upper half-plane, as shown in Figure 10.55. The gray shaded region lies
between the circle and the radial line Because the circle has coordinates

at the pole, you can integrate between and to obtain the area of this
region. The region that is shaded red is bounded by the radial lines and

and the cardioid. So, you can find the area of this second region by integrating
between and The sum of these two integrals gives the area of the 
common region lying the radial line 

Region between circle Region between cardioid and

and radial line radial lines and 

Finally, multiplying by 2, you can conclude that the total area is ■

To see the benefit of polar coordinates for finding the area in Example 3, consider
the following integral, which gives the comparable area in rectangular coordinates.

Use the integration capabilities of a graphing utility to show that you obtain the same
area as that found in Example 3.
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NOTE To check the reasonableness of the result obtained in Example 3, note that the area of
the circular region is So, it seems reasonable that the area of the region lying inside
the circle and the cardioid is ■5	.

	r 2 � 9	.

Circle:
r = −6 cos θ

Cardioid:
r = 2 − 2 cos θ

C
ar

di
oi

d

Circle

0

π
2

3
4π

3
2π

Figure 10.55



Arc Length in Polar Form
The formula for the length of a polar arc can be obtained from the arc length formula
for a curve described by parametric equations. (See Exercise 89.)

EXAMPLE 4 Finding the Length of a Polar Curve

Find the length of the arc from to for the cardioid

as shown in Figure 10.56.

Solution Because you can find the arc length as follows.

Formula for arc length of a polar curve

Simplify.

Trigonometric identity

for

In the fifth step of the solution, it is legitimate to write

rather than 

because for ■0 �  � 2	.sin��2�  ≥  0

�2 sin2��2� � �2 �sin��2��

�2 sin2��2� � �2 sin��2�

� 16

� 8�1 � 1�

� 8��cos


2�
2	

0

0 �  � 2	sin


2
� 0� 4 
2	

0
 sin 



2
d

� 2�2 
2	

0
�2 sin2 

2
d

� 2�2 
2	

0

�1 � cos  d

� 
2	

0

��2 � 2 cos �2 � �2 sin �2 d

s � 
�

�

�� f���2 � � f� ���2 d

f��� � 2 sin ,

r � f�� � 2 � 2 cos 

 � 2	 � 0
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THEOREM 10.14 ARC LENGTH OF A POLAR CURVE

Let be a function whose derivative is continuous on an interval 
The length of the graph of from to is

s � 
�

�

�� f���2 � � f����2 d � 
�

�
�r2 � �dr

d	
2

d.

 � � � �r � f��
� �  � �.f

NOTE Using Figure 10.56, you can determine the reasonableness of this answer by 
comparing it with the circumference of a circle. For example, a circle of radius has a
circumference of ■5	 � 15.7.

5
2

NOTE When applying the arc length
formula to a polar curve, be sure that 
the curve is traced out only once on the
interval of integration. For instance, the
rose curve given by is traced
out once on the interval but
is traced out twice on the interval
0 �  � 2	.

0 �  � 	,
r �  cos 3

r = 2 − 2 cos

1

θ

0

π
2

Figure 10.56



Area of a Surface of Revolution
The polar coordinate versions of the formulas for the area of a surface of revolution can
be obtained from the parametric versions given in Theorem 10.9, using the equations

and

EXAMPLE 5 Finding the Area of a Surface of Revolution

Find the area of the surface formed by revolving the circle about the
line as shown in Figure 10.57.

(a) (b)
Figure 10.57

Solution You can use the second formula given in Theorem 10.15 with
Because the circle is traced once as increases from 0 to you have

Trigonometric identity

Trigonometric identity

■� 	� �
sin 2

2 �
	

0
� 	2.

� 	 
	

0
�1 � cos 2� d

� 2	 
	

0
 cos2  d

� 2	 
	

0
 cos  �cos ��cos2  � sin2  d

Formula for area of a surface of
revolutionS � 2	 
�

�

f�� cos �� f ���2 � � f����2 d

	,f��� � �sin .

0

Pinched
torus

π
2

r = cos θ

1
0

π
2

 � 	�2,
r � f �� � cos 

y � r sin .x � r cos 
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THEOREM 10.15 AREA OF A SURFACE OF REVOLUTION

Let be a function whose derivative is continuous on an interval 
The area of the surface formed by revolving the graph of from 
to about the indicated line is as follows.

1. About the polar axis

2. About the line  �
	

2
S � 2	 
�

�

f�� cos �� f���2 � � f����2 d

S � 2	 
�

�

f�� sin �� f���2 � � f����2 d

 � �
 � �r � f��

� �  � �.f
NOTE When using Theorem 10.15,

check to see that the graph of 
is traced only once on the interval

For example, the circle
given by is traced only once
on the interval 0 �  � 	.

r � cos 
� �  � �.

r � f ��



In Exercises 1–4, write an integral that represents the area of the
shaded region of the figure. Do not evaluate the integral.

1. 2.

3. 4.

In Exercises 5–16, find the area of the region.

5. Interior of 

6. Interior of 

7. One petal of 

8. One petal of 

9. One petal of 

10. One petal of 

11. Interior of 

12. Interior of (above the polar axis)

13. Interior of 

14. Interior of 

15. Interior of 

16. Interior of 

In Exercises 17–24, use a graphing utility to graph the polar
equation and find the area of the given region.

17. Inner loop of 

18. Inner loop of 

19. Inner loop of 

20. Inner loop of 

21. Between the loops of 

22. Between the loops of 

23. Between the loops of 

24. Between the loops of 

In Exercises 25–34, find the points of intersection of the graphs
of the equations.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

In Exercises 35 and 36, use a graphing utility to graph the polar
equations and approximate the points of intersection of the
graphs. Confirm your results analytically.

35.

36.

Writing In Exercises 37 and 38, use a graphing utility to graph
the polar equations and find the points of intersection of the
graphs. Watch the graphs as they are traced in the viewing win-
dow. Explain why the pole is not a point of intersection obtained
by solving the equations simultaneously.

37.

38.

r � 2�1 � sin �
r � 4 sin 

r � 2 � 3 sin 

r � cos 

r �
6

1 � cos 

r � 3�1 � cos �

r �
sec 

2

r � 2 � 3 cos 

r � 2 csc r � 1

r � 3 � sin r � 2 sin 2

r � 2r � 2

 �
	

4
r �



2

r � 3 cos r � 3 sin 

r � 1 � cos r � 4 � 5 sin 

1
0

π
2

1
0

π
2

r � cos r � 1 � sin 

r � 2 � 3 cos r � 1 � cos 

3 5
0

π
2

1
0

π
2

r � 3�1 � sin �r � 1 � cos 

r � 3�1 � sin �r � 1 � cos 

r �
1
2 � cos 

r � 3 � 6 sin 

r � 2�1 � 2 sin �
r � 1 � 2 cos 

r � 4 � 6 sin 

r � 1 � 2 sin 

r � 2 � 4 cos 

r � 1 � 2 cos 

r2 � 6 sin 2

r2 � 4 cos 2

r � 4 � 4 cos 

r � 5 � 2 sin 

r � 1 � sin 

r � 1 � sin 

r � cos 5

r � sin 2

r � 4 sin 3

r � 2 cos 3

r � 3 cos 

r � 6 sin 

1 2
0

π
2

0

π
2

1 2 3 4

r � 1 � cos 2r � 3 � 2 sin 

1
0

π
2

0
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π
2

r � cos 2r � 4 sin 
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In Exercises 39–46, use a graphing utility to graph the polar
equations and find the area of the given region.

39. Common interior of and 

40. Common interior of and 

41. Common interior of and 

42. Common interior of and 

43. Common interior of and 

44. Common interior of and 

45. Inside and outside 

46. Inside and outside 

In Exercises 47–50, find the area of the region.

47. Inside and outside 

48. Inside and outside 

49. Common interior of and 

50. Common interior of and where 

51. Antenna Radiation The radiation from a transmitting
antenna is not uniform in all directions. The intensity from a
particular antenna is modeled by 

(a) Convert the polar equation to rectangular form.

(b) Use a graphing utility to graph the model for and

(c) Find the area of the geographical region between the two
curves in part (b).

52. Area The area inside one or more of the three interlocking
circles and is divided into
seven regions. Find the area of each region.

53. Conjecture Find the area of the region enclosed by 

for Use the results to make a conjecture about
the area enclosed by the function if is even and if is odd.

54. Area Sketch the strophoid

Convert this equation to rectangular coordinates. Find the area
enclosed by the loop.

In Exercises 55–60, find the length of the curve over the given
interval.

55.

56.

57.

58.

59.

60.

In Exercises 61–66, use a graphing utility to graph the polar
equation over the given interval. Use the integration capabilities
of the graphing utility to approximate the length of the curve
accurate to two decimal places.

61.

62.

63.

64.

65.

66

In Exercises 67–70, find the area of the surface formed by
revolving the curve about the given line.

67. Polar axis

68.

69.

70. Polar axis

In Exercises 71 and 72, use the integration capabilities of a
graphing utility to approximate to two decimal places the area
of the surface formed by revolving the curve about the polar
axis.

71.

72. 0 �  � 	r � ,

0 �  �
	

4
r � 4 cos 2,

0 �  � 	r � a�1 � cos �

 �
	

2
0 �  �

	

2
r � ea

 �
	

2
0 �  �

	

2
r � a cos 

0 �  �
	

2
r � 6 cos 

Axis of RevolutionInterval       Polar Equation    

0 �  � 	r � 2 sin�2 cos �,
0 �  � 	r � sin�3 cos �,

0 �  � 	r � e,

	 �  � 2	r �
1


,

0 �  �
	

3
r � sec ,

0 �  �
	

2
r � 2,

0 �  � 2	r � 8�1 � cos �
0 �  � 2	r � 1 � sin 

�
	

2
�  �

	

2
r � 2a cos 

0 �  � 	r � 4 sin 

0 �  � 2	r � a

0 �  � 2	r � 8

IntervalPolar Equation   

�
	

2
<  <

	

2
.r � sec  � 2 cos ,

nn
n � 1, 2, 3, .  .  . .

a cos�n�r �

r � ar � 2a sin ,r � 2a cos ,

a � 6.
a � 4

r � a cos2 .

a > 0r � a sin ,r � a cos 

r � a sin r � a�1 � cos �
r � ar � 2a cos 

r � a cos r � a�1 � cos �

r � 1 � sin r � 3 sin 

r � 1r � 2 cos 

r � 2 sin r � 2 cos 

r � 2r � 4 sin 

r � 5 � 3 cos r � 5 � 3 sin 

r � �3 � 2 sin r � 3 � 2 sin 

r � 2�1 � cos �r � 2�1 � cos �
r � 2r � 4 sin 2
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73. Explain why finding points of intersection of polar graphs
may require further analysis beyond solving two equations
simultaneously.

74. Which integral yields the arc length of 
State why the other integrals are incorrect.

(a)

(b)

(c)

(d)

75. Give the integral formulas for the area of the surface of
revolution formed when the graph of is revolved
about (a) the axis and (b) the axis.y-x-

r � f ��

6
	�2

0

��1 � cos 2�2 � 4 sin2 2 d

3
	

0

��1 � cos 2�2 � 4 sin2 2 d

12
	�4

0

��1 � cos 2�2 � 4 sin2 2 d

3
2	

0

��1 � cos 2�2 � 4 sin2 2 d

r � 3�1 � cos 2�?
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77. Surface Area of a Torus Find the surface area of the torus
generated by revolving the circle given by about the line

78. Surface Area of a Torus Find the surface area of the torus
generated by revolving the circle given by about the line

where

79. Approximating Area Consider the circle 

(a) Find the area of the circle.

(b) Complete the table giving the areas of the sectors of the
circle between and the values of in the table.

(c) Use the table in part (b) to approximate the values of for
which the sector of the circle composes and of the
total area of the circle.

(d) Use a graphing utility to approximate, to two decimal
places, the angles for which the sector of the circle
composes and of the total area of the circle.

(e) Do the results of part (d) depend on the radius of the circle?
Explain.

80. Approximate Area Consider the circle 

(a) Find the area of the circle.

(b) Complete the table giving the areas A of the sectors of the
circle between and the values of in the table.

(c) Use the table in part (b) to approximate the values of for
which the sector of the circle composes and of the
total area of the circle.

(d) Use a graphing utility to approximate, to two decimal
places, the angles for which the sector of the circle
composes and of the total area of the circle.

81. What conic section does the following polar equation represent?

82. Area Find the area of the circle given by 
Check your result by converting the polar equation to
rectangular form, then using the formula for the area of a circle.

83. Spiral of Archimedes The curve represented by the equation
where a is a constant, is called the spiral of

Archimedes.

(a) Use a graphing utility to graph where 
What happens to the graph of as increases? What
happens if 

(b) Determine the points on the spiral 
where the curve crosses the polar axis.

(c) Find the length of over the interval 

(d) Find the area under the curve for 

84. Logarithmic Spiral The curve represented by the equation
where a and b are constants, is called a logarithmic

spiral. The figure shows the graph of 
Find the area of the shaded region.

85. The larger circle in the figure is the graph of Find the
polar equation of the smaller circle such that the shaded regions
are equal.

86. Folium of Descartes A curve called the folium of Descartes
can be represented by the parametric equations

and

(a) Convert the parametric equations to polar form.

(b) Sketch the graph of the polar equation from part (a).

(c) Use a graphing utility to approximate the area enclosed by
the loop of the curve.

True or False? In Exercises 87 and 88, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

87. If for all and for all then the graphs of
and do not intersect.

88. If for and then the graphs of
and have at least four points of intersection.

89. Use the formula for the arc length of a curve in parametric form
to derive the formula for the arc length of a polar curve.

r � g��r � f ��
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 � 0?
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 � 0.r � ,

r � a,

r � sin  � cos .

r � a sin  � b cos 

1
2

1
4,1

8,


1
2

1
4,1

8,


 � 0

r � 3 sin .

3
4

1
4, 1

2,


3
4

1
4, 1

2,


 � 0
A

r � 8 cos .

0 < a < b.r � b sec ,
r � a

r � 5 sec .
r � 2
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76. For each polar equation, sketch its graph, determine the
interval that traces the graph only once, and find the area of
the region bounded by the graph using a geometric formula
and integration.

(a) (b) r � 5 sin r � 10 cos 

CAPSTONE


 0.2 0.4 0.6 0.8 1.0 1.2 1.4

A


 0.2 0.4 0.6 0.8 1.0 1.2 1.4

A



■ Analyze and write polar equations of conics.
■ Understand and use Kepler’s Laws of planetary motion.

Polar Equations of Conics
In this chapter you have seen that the rectangular equations of ellipses and hyperbolas
take simple forms when the origin lies at their centers. As it happens, there are many
important applications of conics in which it is more convenient to use one of the foci
as the reference point (the origin) for the coordinate system. For example, the sun lies
at a focus of Earth’s orbit. Similarly, the light source of a parabolic reflector lies at its
focus. In this section you will see that polar equations of conics take simple forms if
one of the foci lies at the pole.

The following theorem uses the concept of eccentricity, as defined in Section
10.1, to classify the three basic types of conics. A proof of this theorem is given in
Appendix A.

Ellipse: Parabola: Hyperbola:

Figure 10.58

In Figure 10.58, note that for each type of conic the pole corresponds to the fixed
point (focus) given in the definition. The benefit of this location can be seen in the
proof of the following theorem.
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10.6 Polar Equations of Conics and Kepler’s Laws

THEOREM 10.16 CLASSIFICATION OF CONICS BY ECCENTRICITY

Let be a fixed point ( focus) and let be a fixed line (directrix) in the plane. 
Let be another point in the plane and let (eccentricity) be the ratio of the
distance between and to the distance between and The collection of
all points with a given eccentricity is a conic.

1. The conic is an ellipse if 

2. The conic is a parabola if 

3. The conic is a hyperbola if e > 1.

e � 1.

0 < e < 1.

P
D.PFP

eP
DF

E X P L O R A T I O N

Graphing Conics Set a graphing
utility to polar mode and enter
polar equations of the form

or

As long as the graph
should be a conic. What values of

and produce parabolas? What
values produce ellipses? What
values produce hyperbolas?

ba

a � 0,

r �
a

1 ± b sin 
 .

r �
a

1 ± b cos 



The four types of equations indicated in Theorem 10.17 can be classified as
follows, where 

a. Horizontal directrix above the pole:

b. Horizontal directrix below the pole:

c. Vertical directrix to the right of the pole:

d. Vertical directrix to the left of the pole:

Figure 10.60 illustrates these four possibilities for a parabola.

r �
ed

1 � e cos 

r �
ed

1 � e cos 

r �
ed

1 � e sin 

r �
ed

1 � e sin 

d > 0.
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THEOREM 10.17 POLAR EQUATIONS OF CONICS

The graph of a polar equation of the form

or

is a conic, where is the eccentricity and is the distance between the
focus at the pole and its corresponding directrix.

�d�e > 0

r �
ed

1 ± e sin 
r �

ed
1 ± e cos 

PROOF The following is a proof for with In Figure
10.59, consider a vertical directrix units to the right of the focus If

is a point on the graph of the distance between 
and the directrix can be shown to be

Because the distance between and the pole is simply the ratio of to
is and, by Theorem 10.16, the graph of the

equation must be a conic. The proofs of the other cases are similar. ■
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PFPF � �r�,P
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e

� r cos  � � �re�.
Pr � ed��1 � e cos  �,P � �r, �

F � �0, 0�.d
d > 0.r � ed��1 � e cos �

x

r = ed
1 + e sin θ

Directrix y = d

y

x

Directrix y = −d

y

r = ed
1 − e sin θ

x

Directrix
x = d

y

r = ed
1 + e cos θ

x

Directrix
x = −d
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r = ed
1 − e cos θ

(a) (b) (c) (d)
The four types of polar equations for a parabola
Figure 10.60
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EXAMPLE 1 Determining a Conic from Its Equation

Sketch the graph of the conic given by 

Solution To determine the type of conic, rewrite the equation as

Write original equation.

So, the graph is an ellipse with You can sketch the upper half of the ellipse by
plotting points from to as shown in Figure 10.61. Then, using symmetry
with respect to the polar axis, you can sketch the lower half. ■

For the ellipse in Figure 10.61, the major axis is horizontal and the vertices lie at
(15, 0) and So, the length of the major axis is To find the length of
the minor axis, you can use the equations and to conclude that

Because you have

which implies that So, the length of the minor axis is 
A similar analysis for hyperbolas yields

EXAMPLE 2 Sketching a Conic from Its Polar Equation

Sketch the graph of the polar equation 

Solution Dividing the numerator and denominator by 3 produces

Because the graph is a hyperbola. Because the directrix is the line
The transverse axis of the hyperbola lies on the line and the vertices

occur at

and

Because the length of the transverse axis is 12, you can see that To find write

Therefore, Finally, you can use and to determine the asymptotes of the
hyperbola and obtain the sketch shown in Figure 10.62. ■
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Ellipseb2 � a2 � c2 � a2 � �ea�2 � a2�1 � e2�.

Hyperbolab2 � c2 � a2 � �ea�2 � a2 � a2�e2 � 1�.

(3,   )π (15, 0)

D
ir

ec
tr

ix
x

=
−

15 2

5 10

15r =
3 − 2 cos θ

0

π
2

The graph of the conic is an ellipse with
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Kepler’s Laws
Kepler’s Laws, named after the German astronomer Johannes Kepler, can be used to
describe the orbits of the planets about the sun.

1. Each planet moves in an elliptical orbit with the sun as a focus.

2. A ray from the sun to the planet sweeps out equal areas of the ellipse in equal
times.

3. The square of the period is proportional to the cube of the mean distance between
the planet and the sun.*

Although Kepler derived these laws empirically, they were later validated by Newton.
In fact, Newton was able to show that each law can be deduced from a set of
universal laws of motion and gravitation that govern the movement of all heavenly
bodies, including comets and satellites. This is shown in the next example,
involving the comet named after the English mathematician and physicist Edmund
Halley (1656–1742).

EXAMPLE 3 Halley’s Comet

Halley’s comet has an elliptical orbit with the sun at one focus and has an eccentricity
of The length of the major axis of the orbit is approximately 35.88
astronomical units (AU). (An astronomical unit is defined as the mean distance between
Earth and the sun, 93 million miles.) Find a polar equation for the orbit. How close does
Halley’s comet come to the sun?

Solution Using a vertical axis, you can choose an equation of the form

Because the vertices of the ellipse occur when and you can
determine the length of the major axis to be the sum of the values of the vertices, as
shown in Figure 10.63. That is,

So, and Using this value in the equation
produces

where is measured in astronomical units. To find the closest point to the sun (the
focus), you can write Because is the distance
between the focus and the center, the closest point is

miles. ■� 55,000,000

� 0.59 AU

a � c � 17.94 � 17.35

cc � ea � �0.967��17.94� � 17.35.
r

r �
1.164

1 � 0.967 sin 

ed � �0.967��1.204� � 1.164.d � 1.204

2a � 35.88 35.88 � 29.79d.

 2a �
0.967d

1 � 0.967
�

0.967d
1 � 0.967

r-
 � 3	�2, � 	�2

r �
ed

�1 � e sin  �.

e � 0.967.
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* If Earth is used as a reference with a period of 1 year and a distance of 1 astronomical unit,
the proportionality constant is 1. For example, because Mars has a mean distance to the sun of

1.524 AU, its period is given by So, the period for Mars is 1.88.P �D3 � P2.PD �

JOHANNES KEPLER (1571–1630)

Kepler formulated his three laws from the
extensive data recorded by Danish astronomer
Tycho Brahe, and from direct observation of
the orbit of Mars.
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Kepler’s Second Law states that as a planet moves about the sun, a ray from the
sun to the planet sweeps out equal areas in equal times. This law can also be applied
to comets or asteroids with elliptical orbits. For example, Figure 10.64 shows the orbit
of the asteroid Apollo about the sun. Applying Kepler’s Second Law to this asteroid,
you know that the closer it is to the sun, the greater its velocity, because a short ray
must be moving quickly to sweep out as much area as a long ray.

A ray from the sun to the asteroid Apollo sweeps out equal areas in equal times.
Figure 10.64

EXAMPLE 4 The Asteroid Apollo

The asteroid Apollo has a period of 661 Earth days, and its orbit is approximated by
the ellipse

where is measured in astronomical units. How long does it take Apollo to move from
the position given by to as shown in Figure 10.65?

Solution Begin by finding the area swept out as increases from to 

Formula for area of a polar graph

Using the substitution as discussed in Section 8.6, you obtain

Because the major axis of the ellipse has length and the eccentricity is
you can determine that So, the area of the ellipse

is

Area of ellipse 

Because the time required to complete the orbit is 661 days, you can apply Kepler’s
Second Law to conclude that the time required to move from the position 
to is given by

which implies that 109 days. ■t �

t
661

�
area of elliptical segment

area of ellipse
�

0.90429
5.46507
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56	�

9
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b � a�1 � e2 � 9��56.e � 5�9,
2a � 81�28

A �
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112 � �5 sin 
9 � 5 cos 
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18
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�56 tan��2�
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Graphical Reasoning In Exercises 1–4, use a graphing
utility to graph the polar equation when (a) (b) 
and (c) Identify the conic.

1. 2.

3. 4.

5. Writing Consider the polar equation

(a) Use a graphing utility to graph the equation for 
and Identify the conic

and discuss the change in its shape as and 

(b) Use a graphing utility to graph the equation for 
Identify the conic.

(c) Use a graphing utility to graph the equation for 
and Identify the conic and discuss the

change in its shape as and 

6. Consider the polar equation

(a) Identify the conic without graphing the equation.

(b) Without graphing the following polar equations, describe
how each differs from the polar equation above.

(c) Verify the results of part (b) graphically.

In Exercises 7–12, match the polar equation with the correct
graph. [The graphs are labeled (a), (b), (c), (d), (e), and (f).]

(a) (b)

(c) (d)

(e) (f)

7. 8.

9. 10.

11. 12.

In Exercises 13–26, find the eccentricity and the distance from
the pole to the directrix of the conic. Then sketch and identify
the graph. Use a graphing utility to confirm your results.

13. 14.

15. 16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

In Exercises 27– 30, use a graphing utility to graph the polar
equation. Identify the graph and find its eccentricity.

27. 28.

29. 30. r �
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r �
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r �
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2 � cos 
r �

6
1 � cos 

0π
1 2

2
π3

π
2

0π
1 3

2
π3

π
2

0π
1 3 4

2
π3

π
2

0π
2 4 6

2
π3

π
2

0π
4 6

2
π3

π
2

0
3

π

2
π3

π
2

r �
4

1 � 0.4 sin 
r �

4
1 � 0.4 cos 

,

r �
4

1 � 0.4 cos 
.

e → �.e →  1�

e � 2.e � 1.5,
e � 1.1,

e � 1.

e →  0�.e →  1�

e � 0.9.e � 0.75,e � 0.5,e � 0.25,
e � 0.1,

r �
4

1 � e sin 
.

r �
2e

1 � e sin 
r �

2e
1 � e sin 

r �
2e

1 � e cos 
r �

2e
1 � e cos 

e � 1.5.
e � 0.5,e � 1,
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In Exercises 31–34, use a graphing utility to graph the conic.
Describe how the graph differs from the graph in the indicated
exercise.

31. (See Exercise 15.)

32. (See Exercise 16.)

33. (See Exercise 17.)

34. (See Exercise 22.)

35. Write the equation for the ellipse rotated radian clockwise
from the ellipse

36. Write the equation for the parabola rotated radian
counterclockwise from the parabola

In Exercises 37–48, find a polar equation for the conic with its
focus at the pole. (For convenience, the equation for the direc-
trix is given in rectangular form.)

37. Parabola

38. Parabola

39. Ellipse

40. Ellipse

41. Hyperbola

42. Hyperbola

43. Parabola

44. Parabola

45. Ellipse

46. Ellipse

47. Hyperbola

48. Hyperbola

49. Find a polar equation for the ellipse with focus eccentricity
and a directrix at 

50. Find a polar equation for the hyperbola with focus eccen-
tricity 2, and a directrix at 

55. Show that the polar equation for is 

Ellipse

56. Show that the polar equation for is

Hyperbola

In Exercises 57–60, use the results of Exercises 55 and 56 to
write the polar form of the equation of the conic.

57. Ellipse: focus at (4, 0); vertices at (5, 0),

58. Hyperbola: focus at (5, 0); vertices at (4, 0),

59.

60.

In Exercises 61–64, use the integration capabilities of a graphing
utility to approximate to two decimal places the area of the
region bounded by the graph of the polar equation.

61. 62.

63. 64. r �
3

6 � 5 sin 
r �

2
3 � 2 sin 

r �
9

4 � cos 
r �

3
2 � cos 

x2

4
� y2 � 1

x2

9
�

y2

16
� 1

�4, 	�
�5, 	�

r2 �
�b2

1 � e2 cos2 
.

x2

a2 �
y2

b2 � 1

r2 �
b2

1 � e2 cos2 
.

x2

a2 �
y2

b2 � 1

r � �8 csc .
�0, 0�,

r � 4 sec .1
2,

�0, 0�,

�2, 0�, �10, 0�

�1,
3	

2 	, �9,
3	

2 	
�2,

	

2	, �4,
3	

2 	
�2, 0�, �8, 	�
�5, 	�

�1, �
	

2	
Vertex or VerticesConic

x � �1e �
3
2

x � 1e � 2

y � �2e �
3
4

y � 1e �
1
2

y � 4e � 1

x � �3e � 1

DirectrixEccentricityConic

r �
9

1 � sin 
.

	�4

r �
8

8 � 5 cos 
.

	�6

r �
�6

3 � 7 sin� � 2	�3�

r �
6

2 � cos� � 	�6�

r �
4

1 � cos� � 	�3�

r �
�4

1 � sin� � 	�4�
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51. Classify the conics by their eccentricities.

52. Identify each conic.

(a) (b)

(c) (d)

53. Describe what happens to the distance between the directrix
and the center of an ellipse if the foci remain fixed and 
approaches 0.

e

r �
5

1 � 3 sin� � 	�4�r �
5

3 � 3 cos 

r �
5

10 � sin 
r �

5
1 � 2 cos 

WRITING ABOUT CONCEPTS

54. Explain how the graph of each conic differs from the graph 

of

(a) (b)

(c) (d) r �
4

1 � sin� � 	�4�r �
4

1 � cos 

r �
4

1 � sin 
r �

4
1 � cos 

r �
4

1 � sin 
.

CAPSTONE



65. Explorer 18 On November 27, 1963, the United States
launched Explorer 18. Its low and high points above the surface
of Earth were approximately 119 miles and 123,000 miles (see
figure). The center of Earth is the focus of the orbit. Find the
polar equation for the orbit and find the distance between the
surface of Earth and the satellite when (Assume that
the radius of Earth is 4000 miles.)

66. Planetary Motion The planets travel in elliptical orbits with
the sun as a focus, as shown in the figure.

(a) Show that the polar equation of the orbit is given by

where is the eccentricity.

(b) Show that the minimum distance (perihelion) from the sun
to the planet is and the maximum distance
(aphelion) is 

In Exercises 67–70, use Exercise 66 to find the polar equation of
the elliptical orbit of the planet, and the perihelion and aphelion
distances.

67. Earth kilometers

68. Saturn kilometers

69. Neptune kilometers

70. Mercury kilometers

71. Planetary Motion In Exercise 69, the polar equation for the
elliptical orbit of Neptune was found. Use the equation and a 
computer algebra system to perform each of the following.

(a) Approximate the area swept out by a ray from the sun to the
planet as increases from 0 to Use this result to 
determine the number of years required for the planet to
move through this arc if the period of one revolution around
the sun is 165 years.

(b) By trial and error, approximate the angle such that the
area swept out by a ray from the sun to the planet as 
increases from to equals the area found in part (a) (see
figure). Does the ray sweep through a larger or smaller
angle than in part (a) to generate the same area? Why is this
the case?

(c) Approximate the distances the planet traveled in parts (a)
and (b). Use these distances to approximate the average
number of kilometers per year the planet traveled in the two
cases.

72. Comet Hale-Bopp The comet Hale-Bopp has an elliptical
orbit with the sun at one focus and has an eccentricity
of The length of the major axis of the orbit is
approximately 500 astronomical units.

(a) Find the length of its minor axis.

(b) Find a polar equation for the orbit.

(c) Find the perihelion and aphelion distances.

In Exercises 73 and 74, let represent the distance from the
focus to the nearest vertex, and let represent the distance
from the focus to the farthest vertex.

73. Show that the eccentricity of an ellipse can be written as

Then show that 

74. Show that the eccentricity of a hyperbola can be written as

Then show that 

In Exercises 75 and 76, show that the graphs of the given equa-
tions intersect at right angles.

75. and

76. and r �
d

1 � cos 
r �

c
1 � cos 

r �
ed

1 � sin 
r �

ed
1 � sin 

r1

r0
�

e � 1
e � 1

.e �
r1 � r0

r1 � r0
.

r1

r0
�

1 � e
1 � e

.e �
r1 � r0

r1 � r0
.

r1

r0

e � 0.995.

−α π

0

π
2

=
9
πθ

�	


�

	�9.

e � 0.2056

a � 5.791 
 107

e � 0.0086

a � 4.498 
 109

e � 0.0542

a � 1.427 
 109

e � 0.0167

a � 1.496 
 108

r � a�1 � e�.
r � a�1 � e�

e

r �
�1 � e2�a

1 � e cos 

0

a

r

Sun

Planet

θ

Not drawn to scale

π
2

0

a

60°r

Earth

Explorer 18

Not drawn to scale

90°

 � 60�.
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In Exercises 1– 6, match the equation with the correct graph.
[The graphs are labeled (a), (b), (c), (d), (e), and (f).]

(a) (b)

(c) (d)

(e) (f)

1. 2.

3. 4.

5. 6.

In Exercises 7–12, analyze the equation and sketch its graph.
Use a graphing utility to confirm your results.

7.

8.

9.

10.

11.

12.

In Exercises 13 and 14, find an equation of the parabola.

13. Vertex: directrix:

14. Vertex: focus:

In Exercises 15 and 16, find an equation of the ellipse.

15. Vertices: foci:

16. Center: solution points: (1, 2), (2, 0)

In Exercises 17 and 18, find an equation of the hyperbola.

17. Vertices: foci:

18. Foci: asymptotes:

In Exercises 19 and 20, use a graphing utility to approximate
the perimeter of the ellipse.

19. 20.

21. A line is tangent to the parabola and perpen-
dicular to the line Find the equation of the line.

22. A line is tangent to the parabola and perpen-
dicular to the line Find the equation of the line.

23. Satellite Antenna A cross section of a large parabolic antenna
is modeled by the graph of

The receiving and transmitting equipment is positioned at the
focus.

(a) Find the coordinates of the focus. 

(b) Find the surface area of the antenna.

24. Fire Truck Consider a fire truck with a water tank 16 feet
long whose vertical cross sections are ellipses modeled by the
equation

(a) Find the volume of the tank.

(b) Find the force on the end of the tank when it is full of water.
(The density of water is 62.4 pounds per cubic foot.)

(c) Find the depth of the water in the tank if it is full (by
volume) and the truck is on level ground.

(d) Approximate the tank’s surface area.

In Exercises 25–32, sketch the curve represented by the
parametric equations (indicate the orientation of the curve),
and write the corresponding rectangular equation by eliminating
the parameter.

25.

26.

27.

28.

29.

30.

31.

32. y � 5 cos3 x � 5 sin3 ,

y � 3 � tan x � 2 � sec ,

y � 3 � 2 sin tx � 2 � 5 cos t,

y � 6 sin x � 6 cos ,

y � t � 4x � e4t,

y � e3tx � et � 1,

y � t2x � t � 6,

y � 3 � 4tx � 1 � 8t,

3
4

x2

16
�

y2

9
� 1.

�100 � x � 100.y �
x2

200
,

2x � y � 5.
3x2 � y � x � 6

y � x � 2.
y � x2 � 2x � 2

x2

4
�

y2

25
� 1

x2

9
�

y2

4
� 1

y � ±4x�0, ±8�;
�±9, 0��±7, 0�;

�0, 0�;
�5, 0���3, 0�,�7, 0�;��5, 0�,

�2, 4��2, 6�;
x � �3�0, 2�;

12x2 � 12y2 � 12x � 24y � 45 � 0

3x2 � 2y2 � 12x � 12y � 29 � 0

5x2 � y2 � 20x � 19 � 0

3x2 � 2y2 � 24x � 12y � 24 � 0

y2 � 12y � 8x � 20 � 0

16x2 � 16y2 � 16x � 24y � 3 � 0

x2 � 4yx2 � 4y2 � 4

y2 � 4x2 � 4y2 � �4x

4x2 � y2 � 44x2 � y2 � 4

−2 2 4
−2

2

4

6

x

y

x
−2−4

−4

2 4

4

y

x
−2−4

−4

2 4

4

y

x
−2−4

−4

2

2

4

4

y

x

−4

−4−8−12

4

y

−2 2 4
−2

−4

2

4

x

y
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In Exercises 33–36, find a parametric representation of the line
or conic.

33. Line: passes through and 

34. Circle: center at radius 3

35. Ellipse: center at horizontal major axis of length 8 and
minor axis of length 6

36. Hyperbola: vertices at foci at 

37. Rotary Engine The rotary engine was developed by Felix
Wankel in the 1950s. It features a rotor, which is a modified
equilateral triangle. The rotor moves in a chamber that, in two
dimensions, is an epitrochoid. Use a graphing utility to graph
the chamber modeled by the parametric equations

and

38. Serpentine Curve Consider the parametric equations
and

(a) Use a graphing utility to graph the curve.

(b) Eliminate the parameter to show that the rectangular
equation of the serpentine curve is 

In Exercises 39–48, (a) find and all points of horizontal
tangency, (b) eliminate the parameter where possible, and
(c) sketch the curve represented by the parametric equations.

39. 40.

41. 42.

43. 44.

45.

46.

47.

48.

In Exercises 49–52, find all points (if any) of horizontal and 
vertical tangency to the curve. Use a graphing utility to confirm
your results.

49.

50.

51.

52.

In Exercises 53 and 54, (a) use a graphing utility to graph the
curve represented by the parametric equations, (b) use a
graphing utility to find and for and
(c) use a graphing utility to graph the tangent line to the curve
when

53. 54.

Arc Length In Exercises 55 and 56, find the arc length of the
curve on the given interval.

55. 56.

Surface Area In Exercises 57 and 58, find the area of the
surface generated by revolving the curve about (a) the -axis
and (b) the -axis.

57.

58.

Area In Exercises 59 and 60, find the area of the region.

59. 60.

In Exercises 61–64, plot the point in polar coordinates and find
the corresponding rectangular coordinates of the point.

61.

62.

63.

64.

In Exercises 65–68, the rectangular coordinates of a point are
given. Plot the point and find two sets of polar coordinates of the
point for 

65. 66.

67. 68. ���3, ��3���1, 3�
�0, �7��4, �4�

0 � 
 < 2�.

��2, �2.45�
��3, 1.56�
��6,

7	

6 	
�5,

3	

2 	

−1−2−3 1 2 3
−1

−2

−3

2

3

x

y

−1−2−3 1 2 3
−1

−2

1

3

4

x

y

0 �  � 	�
	

2
�  �

	

2

y � sin y � 2 cos 

x � 2 cos x � 3 sin 

0 �  �
	

2
y � 2 sin ,x � 2 cos ,

0 � t � 2y � 3t,x � t,

y
x

0 �  � 	0 �  � 	

y � 6 sin y � r�sin  �  cos  �
x � 6 cos x � r�cos  �  sin �

y � 2 � cos y � sin 2

x � 2 � sin x � cot 


 � �/6.


 � �/6,dy/dxdy/d
,dx/d
,

y � 2 sin 2x � 2 � 2 cos ,

y � 1 � cos x � 2 � 2 sin ,

y � t3 � 2tx � t � 2,

y � 2t2x � 5 � t,

y � e�t

x � et

y � 4 sin3 

x �  cos3 

y � 10 sin 

x � 10 cos 

y � 3 � 4 sin 

x � 5 � cos 

y �
1

t2 � 2t
y �

1
t2 � 2t

x � 2t � 1x �
1

2t � 1

x �
1
t
,  y � t2x �

1
t
,  y � 2t � 3

x � t � 6,  y � t2x � 2 � 5t,  y � 1 � 4t

dy/dx

�4 � x2�y � 8x.

0 <  < 	.y � 4 sin  cos ,x � 2 cot 

y � sin 3 � 5 sin .

x � cos 3 � 5 cos 

�0, ±5��0, ±4�;

��3, 4�;
��4, �5�;

�3, 2���2, 6�

Review Exercises 759



In Exercises 69–76, convert the polar equation to rectangular
form.

69. 70.

71. 72.

73. 74.

75. 76.

In Exercises 77–80, convert the rectangular equation to polar
form.

77. 78.

79. 80.

In Exercises 81–92, sketch a graph of the polar equation.

81. 82.

83. 84.

85. 86.

87. 88.

89. 90.

91. 92.

In Exercises 93–96, use a graphing utility to graph the polar
equation.

93. 94.

95. 96.

In Exercises 97 and 98, (a) find the tangents at the pole, (b) find
all points of vertical and horizontal tangency, and (c) use a
graphing utility to graph the polar equation and draw a tangent
line to the graph for 

97. 98.

In Exercises 99 and 100, show that the graphs of the polar
equations are orthogonal at the points of intersection. Use a
graphing utility to confirm your results graphically.

99. 100.

In Exercises 101–106, find the area of the region.

101. One petal of 

102. One petal of 

103. Interior of 

104. Interior of 

105. Interior of 

106. Common interior of and 

107. Find the points of intersection of the graphs of 
and

108. Find the points of intersection of the graphs of 
and

In Exercises 109–112, use a graphing utility to graph the polar
equation. Set up an integral for finding the area of the given
region and use the integration capabilities of a graphing utility
to approximate the integral accurate to two decimal places.

109. Interior of 

110. Interior of 

111. Common interior of and 

112. Region bounded by the polar axis and for 

In Exercises 113 and 114, find the length of the curve over the
given interval.

113.

114.

In Exercises 115 and 116, write an integral that represents the
area of the surface formed by revolving the curve about the
given line. Use a graphing utility to approximate the integral.

115. Polar axis

116.

In Exercises 117–122, sketch and identify the graph. Use a
graphing utility to confirm your results.

117. 118.

119. 120.

121. 122.

In Exercises 123 –128, find a polar equation for the line or conic
with its focus at the pole.

123. Circle 124. Line

Center: Solution point: (0, 0)

Solution point: Slope:

125. Parabola 126. Parabola

Vertex: Vertex:

127. Ellipse 128. Hyperbola

Vertices: Vertices: �1, 0�, �7, 0��5, 0�, �1, 	�

�2, 	�2��2, 	�

�3(0, 0�
�5, 	�2�

r �
8

2 � 5 cos 
r �

4
2 � 3 sin 

r �
4

5 � 3 sin 
r �

6
3 � 2 cos 

r �
2

1 � cos 
r �

6
1 � sin 

 �
	

2
0 �  �

	

2
r � 2 sin 

0 �  �
	

2
r � 1 � 4 cos 

Axis of RevolutionIntervalPolar Equation

�
	

2
�  �

	

2
r � a cos 2

0 �  � 	r � a�1 � cos �
IntervalPolar Equation

0 �  � 	r � e

r2 � 18 sin 2r � 3

r � 4 sin 3

r � sin   cos2 

r � 3 sin .
r � 1 � sin 

r � 1 � sin .
r � 1 � cos 

r � 2r � 4 cos 

r2 � 4 sin 2

r � 5�1 � sin  �
r � 2 � cos 

r � 2 sin 6

r � 3 cos 5

r � a cos r � 1 � cos 

r � a sin r � 1 � cos 

r2 � 4 sin 2r � 1 � 2 cos 


 � �/6.

r � 4 �sec  � cos �r � 4 cos 2  sec 

r � 2 sin   cos2 r �
3

cos� � 	�4�

r2 � cos 2r2 � 4 sin2 2

r � cos 5r � �3 cos 2

r � 4r � 4 � 3 cos 

r � 3 � 4 cos r � �2�1 � cos  �
r � 5 csc r � �sec 

 �
	

10
r � 6

�x2 � y2��arctan
y
x	

2

� a2x2 � y2 � a2�arctan
y
x	

2

x2 � y2 � 4x � 0�x2 � y2�2 � ax2y

 �
3	

4
r � 4 cos 2  sec 

r � 4 sec� �
	

3	r2 � cos 2

r �
1

2 � cos 
r � �2�1 � cos  �

r � 10r � 3 cos 
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1. Consider the parabola and the focal chord 

(a) Sketch the graph of the parabola and the focal chord.

(b) Show that the tangent lines to the parabola at the endpoints
of the focal chord intersect at right angles.

(c) Show that the tangent lines to the parabola at the endpoints
of the focal chord intersect on the directrix of the parabola.

2. Consider the parabola and one of its focal chords.

(a) Show that the tangent lines to the parabola at the endpoints
of the focal chord intersect at right angles.

(b) Show that the tangent lines to the parabola at the endpoints
of the focal chord intersect on the directrix of the parabola.

3. Prove Theorem 10.2, Reflective Property of a Parabola, as shown
in the figure.

4. Consider the hyperbola 

with foci and as shown in the figure. Let be the tangent
line at a point on the hyperbola. Show that incoming rays of
light aimed at one focus are reflected by a hyperbolic mirror
toward the other focus.

Figure for 4 Figure for 5

5. Consider a circle of radius tangent to the -axis and the line
as shown in the figure. Let be the point where the 

segment intersects the circle. The cissoid of Diocles consists
of all points such that 

(a) Find a polar equation of the cissoid.

(b) Find a set of parametric equations for the cissoid that does
not contain trigonometric functions.

(c) Find a rectangular equation of the cissoid.

6. Consider the region bounded by the ellipse 
with eccentricity 

(a) Show that the area of the region is 

(b) Show that the solid (oblate spheroid) generated by revolving
the region about the minor axis of the ellipse has a volume
of and a surface area of

(c) Show that the solid (prolate spheroid) generated by
revolving the region about the major axis of the ellipse has a
volume of and a surface area of

7. The curve given by the parametric equations 

and

is called a strophoid.

(a) Find a rectangular equation of the strophoid.

(b) Find a polar equation of the strophoid.

(c) Sketch a graph of the strophoid.

(d) Find the equations of the two tangent lines at the origin.

(e) Find the points on the graph at which the tangent lines are
horizontal.

8. Find a rectangular equation of the portion of the cycloid given by
the parametric equations and 

as shown in the figure.

9. Consider the cornu spiral given by 

and

(a) Use a graphing utility to graph the spiral over the interval

(b) Show that the cornu spiral is symmetric with respect to the
origin.

(c) Find the length of the cornu spiral from to What
is the length of the spiral from to t � 	?t � �	

t � a.t � 0

�	 � t � 	.

y�t� � 
t

0
sin�	u2

2 	 du.x�t� � 
t

0
cos�	u2

2 	 du

x
a

2a

πO

y

0 �  � 	,
y � a�1 � cos �,x � a� � sin �

y�t� �
t�1 � t2�
1 � t2x�t� �

1 � t2

1 � t2

S � 2	b2 � 2	�ab
e 	 arcsin e.

V � 4	ab2�3

S � 2	a2 � 	�b2

e 	 ln�1 � e
1 � e	.

V � 4	 2b�3

	ab.

e � c�a.
x2�a2 � y2�b2 � 1,

OP � AB.P
OB

Ax � 2a,
ya

xa cO

PA

B

θ

y

x
F1 F2

M

T ab

y

M
TF2,F1

x2

a2 �
y2

b2 � 1

x

P

F

y

x2 � 4py

y �
3
4x � 1.x2 � 4y
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10. A particle is moving along the path described by the parametric
equations and for as shown in
the figure. Find the length of this path.

11. Let and be positive constants. Find the area of the region in
the first quadrant bounded by the graph of the polar equation 

12. Consider the right triangle shown in the figure.

(a) Show that the area of the triangle is 

(b) Show that 

(c) Use part (b) to derive the formula for the derivative of the
tangent function.

Figure for 12 Figure for 13

13. Determine the polar equation of the set of all points , the
product of whose distances from the points and 
is equal to 1, as shown in the figure.

14. Four dogs are located at the corners of a square with sides of
length The dogs all move counterclockwise at the same
speed directly toward the next dog, as shown in the figure. Find
the polar equation of a dog’s path as it spirals toward the center
of the square.

15. An air traffic controller spots two planes at the same altitude
flying toward each other (see figure). Their flight paths are 
and One plane is 150 miles from point with a speed of
375 miles per hour. The other is 190 miles from point with a
speed of 450 miles per hour.

(a) Find parametric equations for the path of each plane where
is the time in hours, with corresponding to the time

at which the air traffic controller spots the planes.

(b) Use the result of part (a) to write the distance between the
planes as a function of 

(c) Use a graphing utility to graph the function in part (b).
When will the distance between the planes be minimum? If
the planes must keep a separation of at least 3 miles, is the
requirement met?

16. Use a graphing utility to graph the curve shown below. The
curve is given by

Over what interval must vary to produce the curve?

17. Use a graphing utility to graph the polar equation
for and for the integers

to What values of produce the “heart” portion
of the curve? What values of produce the “bell” portion?
(This curve, created by Michael W. Chamberlin, appeared in
The College Mathematics Journal)

n
nn � 5.n � �5

0 �  < 	r � cos 5 � n cos 



r � ecos  � 2 cos 4 � sin5 

12
.

t.

t � 0t

y

x
P

45°

20°

190 mi
150 mi

P
P315�.

20�

d

d d

d

d.

��1, 0��1, 0�
�r, �

x

−1

1

−1 1

(−1, 0) (1, 0)

y

1
α

tan � � 
�

0
sec2  d.

A��� �
1
2


�

0
sec2  d.

0 �  �
	

2
.r �

ab
�a sin  � b cos �,

ba

x
1

1

−1

y

1 � t < �,y � sin t�t,x � 1�t
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■ FOR FURTHER INFORMATION For more information on this
curve, see the article “A Study in Step Size” by Temple H. Fay 
in Mathematics Magazine. To view this article, go to the website
www.matharticles.com.

www.matharticles.com
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Proofs of Selected TheoremsA
THEOREM 1.2 PROPERTIES OF LIMITS (PROPERTIES 2, 3, 4, AND 5) (PAGE 59)

Let and be real numbers, let be a positive integer, and let and be
functions with the following limits.

and

2. Sum or difference:

3. Product:

4. Quotient: provided 

5. Power: lim
x→c

� f�x��n
� Ln

K � 0lim
x→c

f �x�
g�x� �

L
K

,

lim
x→c

� f�x�g�x�� � LK

lim
x→c

� f�x� ± g�x�� � L ± K

lim
x→c

g�x� � Klim
x→c

f�x� � L

gfncb

To prove Property 2, choose Because you know that there
exists such that implies You also know
that there exists such that implies Let 
be the smaller of and then implies that

and

So, you can apply the triangle inequality to conclude that

which implies that

The proof that

is similar.

To prove Property 3, given that

and

you can write

Because the limit of is and the limit of is you have

and lim
x→c

�g�x� � K� � 0.lim
x→c

� f�x� � L� � 0

K,g�x�L,f�x�

f�x�g�x� � � f �x� � L� �g�x� � "� � �Lg�x� � " f�x�� � LK.

lim
x→c

g�x� � Klim
x→c

f�x� � L

lim
x→c

� f �x� � g�x�� � L � K

lim
x→c

� f�x� � g�x�� � L � K � lim
x→c

f�x� � lim
x→c

g�x�.

�� f�x� � g�x�� � �L � K�� � � f�x� � L� � �g�x� � K� <
�

2
�

�

2
� �

�g�x� � K� <
�

2
.� f�x� � L� <

�

2

0 < �x � c� < ��2;�1

��g�x� � K� < ��2.0 < �x � c� < �2�2 > 0
� f�x� � L� < ��2.0 < �x � c� < �1�1 > 0

��2 > 0,� > 0.PROOF

A2



Let Then there exists such that if then

and

which implies that

So,

Furthermore, by Property 1, you have

and

Finally, by Property 2, you obtain

To prove Property 4, note that it is sufficient to prove that

Then you can use Property 3 to write

Let Because there exists such that if

then

which implies that

That is, for 

or

Similarly, there exists a such that if then

Let be the smaller of and For you have

So,

Finally, the proof of Property 5 can be obtained by a straightforward application of
mathematical induction coupled with Property 3. ■

lim
x→c

1
g�x� �

1
K

.

1

�K� �
2

�K�
�K�2

2
� � �.� 1

g�x� �
1
K� � �K � g�x�

g�x�K � �
1

�K� �
1

�g�x�� �K � g�x�� <

0 < �x � c� < �,�2.�1�

�g�x� � K� < �K�2

2
�.

0 < �x � c� < �2,�2 > 0

1

�g�x�� <
2

�K�
.�K�

2
< �g�x��

0 < �x � c� < �1,

�K� � �g�x� � ��K� � g�x��� � �g�x�� � ��K� � g�x�� < �g�x�� �
�K�
2

.

�g�x� � K� < �K�
2

0 < �x � c� < �1,

�1 > 0lim
x→c

g�x� � K,� > 0.

lim
x→c

f�x�
g�x� � lim

x→c
f�x� 1

g�x� � lim
x→c

f�x� �  lim
x→c

1
g�x� �

L
K

.

lim
x→c

1
g�x� �

1
K

.

� LK.

� 0 � LK � KL � LK

 lim
x→c

f�x�g�x� � lim
x→c

� f�x� � L� �g�x� � K� � lim
x→c

Lg�x� � lim
x→c

Kf�x� � lim
x→c

LK

lim
x→c

Kf�x� � KL.lim
x→c

Lg�x� � LK

lim
x→c

 [ f�x� � L� �g�x� � K� � 0.

�� f�x� � L� �g�x� � K� � 0� � � f�x� � L� �g�x� � K� < �� < �.

�g�x� � K � 0� < �� f�x� � L � 0� < �

0 < �x � c� < �,� > 00 < � < 1.
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Consider the case for which and is any positive integer. For a given
you need to find such that

whenever

which is the same as saying

whenever

Assume which implies that Now, let be the smaller
of the two numbers.

and

Then you have

■

For a given you must find such that

whenever

Because the limit of as is you know there exists such that

whenever

Moreover, because the limit of as is you know there exists such
that

whenever

Finally, letting you have

whenever ■0 < �x � c� < �.� f�g�x�� � f�L�� < �

u � g�x�,

0 < �x � c� < �.�g�x� � L� < �1

� > 0L,x → cg�x�
�u � L� < �1.� f�u� � f�L�� < �

�1 > 0f�L�,x → Lf�x�

0 < �x � c� < �.� f�g�x�� � f�L�� < �

� > 0� > 0,PROOF

�� < n�x � n�c < �.

n�c � � < n�x < n�c � �

� n�c � ��n
< x < � n�c � ��n

� n�c � ��n
� c < x � c < � n�c � ��n

� c

��c � � n�c � ��n� < x � c < � n�c � ��n
� c

�� < x � c < �

� n�c � ��n
� cc � � n�c � ��n

�0 < n�c � � < n�c.� < n�c,

�� < x � c < �.�� < n�x � n�c < �

0 < �x � c� < �� n�x � n�c� < �

�  >  0�  >  0,
nc  >  0PROOF

A4 Appendix A Proofs of Selected Theorems

THEOREM 1.4 THE LIMIT OF A FUNCTION INVOLVING A RADICAL (PAGE 60)

Let be a positive integer. The following limit is valid for all if is odd,
and is valid for if is even.

lim
x→c

n�x � n�c.

nc > 0
ncn

THEOREM 1.5 THE LIMIT OF A COMPOSITE FUNCTION (PAGE 61)

If and are functions such that and then

lim
x→c

f�g�x�� � f � lim
x→c

g�x�	 � f�L�.

lim
x→L

f�x� � f�L�,lim
x→c

g�x� � Lgf



Let be the limit of as Then, for each there exists a 
such that in the open intervals and and

whenever

Because for all in the open interval other than it follows that

whenever

So, the limit of as is also ■

For there exist and such that

whenever

and

whenever

Because for all in an open interval containing except possibly
at itself, there exists such that for Let

be the smallest of and Then, if it follows that
and which implies that

and

and

Now, because it follows that which
implies that Therefore,

■lim
x→c

f�x� � L.

� f�x� � L� < �.
L � � < f�x� < L � �,h�x� � f�x� � g�x�,

g�x� < L � �.L � � < h�x�
�� < g�x� � L < ��� < h�x� � L < �

�g�x� � L� < �,�h�x� � L� < �
0 < �x � c� < �,�3.�1, �2,�

0 < �x � c� < �3.h�x� � f�x� � g�x��3 > 0c
c,xh�x� � f�x� � g�x�

0 < �x � c� < �2.�g�x� � L� < �

0 < �x � c� < �1�h�x� � L� < �

�2 > 0�1 > 0� > 0PROOF

L.x → cf�x�

0 < �x � c� < �.� f�x� � L� < �

x � c,xf�x� � g�x�

0 < �x � c� < �.�g�x� � L� < �

�c, c � ��,�c � �, c�f�x� � g�x�
� > 0� > 0x → c.g�x�LPROOF

Appendix A Proofs of Selected Theorems A5

THEOREM 1.7 FUNCTIONS THAT AGREE AT ALL BUT ONE POINT (PAGE 62)

Let be a real number and let for all in an open interval
containing If the limit of as approaches exists, then the limit of 
also exists and

lim
x→c

f�x� � lim
x→c

g�x�.

f�x�cxg�x�c.
x � cf�x� � g�x�c

THEOREM 1.8 THE SQUEEZE THEOREM (PAGE 65)

If for all in an open interval containing except possibly
at itself, and if

then exists and is equal to L.lim
x→c

f�x�

lim
x→c

h�x� � L � lim
x→c

g�x�

c
c,xh�x� � f�x� � g�x�



Because and are continuous at you can write

and

For Property 1, when is a real number, it follows from Theorem 1.2 that

Thus, is continuous at 

For Property 2, it follows from Theorem 1.2 that

Thus, is continuous at 

For Property 3, it follows from Theorem 1.2 that

Thus, is continuous at 

For Property 4, when it follows from Theorem 1.2 that

Thus, is continuous at ■x � c.
f
g

�
f
g

�c�.

�
f�c�
g�c�

�
lim
x→c

f �x�

lim
x→c

g�x�

 lim
x→c

f
g

�x� � lim
x→c

f�x�
g�x�

g�c� � 0,

x � c.fg

� � fg��c�.
� f�c�g�c�

 � lim
x→c

� f �x�� lim
x→c

�g�x��

 lim
x→c

� fg��x� � lim
x→c

� f�x�g�x��

x � c.f ± g

� � f ± g��c�.
� f�c� ± g�c�

 � lim
x→c

� f �x�� ± lim
x→c

�g�x��

 lim
x→c

� f ± g��x� � lim
x→c

� f�x� ± g�x��

x � c.bf

lim
x→c

��bf��x�� � lim
x→c

�bf�x�� � b lim
x→c

� f�x�� � b f�c� � �bf��c�.

b

lim
x→c

g�x� � g�c�.lim
x→c

f�x� � f�c�

x � c,gfPROOF
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THEOREM 1.11 PROPERTIES OF CONTINUITY (PAGE 75)

If is a real number and and are continuous at then the following
functions are also continuous at 

1. Scalar multiple:

2. Sum or difference:

3. Product:

4. Quotient: if g�c� � 0
f
g

,

fg

f ± g

bf

c.
x � c,gfb



Consider the case for which and there exists such that
implies Then for choose such that

implies that

and such that

implies that

Now let be the smaller of and Then it follows that

implies that

So, it follows that

and the line is a vertical asymptote of the graph of ■

The derivative of at is given by

Let Then as So, replacing by you have

■f��c� � lim
�x→0

f�c � �x� � f�c�
�x

� lim
x→c

f�x� � f�c�
x � c

.

x,c � �x�x → 0.x → cx � c � �x.

f��c� � lim
�x→0

 
f�c � �x� � f�c�

�x
.

cfPROOF

h.x � c

lim
x→c�

f�x�
g�x� � �

f�x�
g�x� >

f�c�
2 � 2M

f�c�� � M.0 < x � c < �

�2.�1�

0 < g�x� <
f�c�
2M

.0 < x � c < �2

�2

f�c�
2

< f�x� <
3f�c�

2
0 < x � c < �1

�1M > 0,g�x� > 0.c < x < b
b > cf�c� > 0,PROOF
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THEOREM 1.14 VERTICAL ASYMPTOTES (PAGE 85)

Let and be continuous on an open interval containing If 
and there exists an open interval containing such that for

all in the interval, then the graph of the function given by

has a vertical asymptote at x � c.

h�x� �
f �x�
g�x�

x � c
g�x� � 0cg�c� � 0,

f�c� � 0,c.gf

ALTERNATIVE FORM OF THE DERIVATIVE (PAGE 101)

The derivative of at is given by

provided this limit exists.

f��c� � lim
x→c

f �x� � f �c�
x � c

cf



In Section 2.4, you let and used the alternative form of the 
derivative to show that provided for values of 
other than Now consider a more general proof. Begin by considering the derivative
of

For a fixed value of define a function such that

Because the limit of as doesn’t depend on the value of you have

and you can conclude that is continuous at 0. Moreover, because when
the equation

is valid whether is zero or not. Now, by letting you can
use the continuity of to conclude that

which implies that

Finally,

and taking the limit as you have

■�
du
dx

�
dy
du

.

�
du
dx

f��u�

dy
dx

�
du
dx � lim

�x→0
#��u�� �

du
dx

f��u� �
dy
dx

�0� �
du
dx

f��u�

�x → 0,

�x � 0�y � �u#��u� � �uf��u� → �y
�x

�
�u
�x

#��u� �
�u
�x

f��u�,

lim
�x→0

#��u� � 0.

lim
�x→0

�u � lim
�x→0

�g�x � �x� � g�x�� � 0

g
�u � g�x � �x� � g�x�,�x

�y � �x#��x� � �xf��x�

�x � 0,
�y � 0#

lim
�x→0

#��x� � lim
�x→0�

�y
�x

� f��x�� � 0

#�0�,�x → 0#��x�

#��x� � �0,

�y
� f��x�,

�x

�x � 0

�x � 0.

#x,

f��x� � lim
�x→0

 
f�x � �x� � f�x�

�x
� lim

�x→0
 
�y
�x

f.
c.

xg�x� � g�c�h��c� � f��g�c��g��c�,
h�x� � f�g�x��PROOF
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THEOREM 2.10 THE CHAIN RULE (PAGE 131)

If is a differentiable function of and is a differentiable
function of then is a differentiable function of and 

or, equivalently,

d
dx

� f �g�x��� � f��g�x��g��x�.

dy
dx

�
dy
du

�
du
dx

xy � f �g�x��x,
u � g�x�u,y � f �u�



Assume that is concave upward on Then, is increasing on
Let be a point in the interval The equation of the tangent line to

the graph of at is given by

If is in the open interval then the directed distance from point (on the
graph of ) to the point (on the tangent line) is given by

Moreover, by the Mean Value Theorem there exists a number in such that

So, you have

The second factor is positive because Moreover, because is increasing,
it follows that the first factor is also positive. Therefore, and you
can conclude that the graph of lies above the tangent line at If is in the open 
interval a similar argument can be given. This proves the first statement. The
proof of the second statement is similar. ■

For Property 1, assume for all in Then, by Theorem 3.5,
is increasing on Thus, by the definition of concavity, the graph of is concave

upward on 

For Property 2, assume for all in Then, by Theorem 3.5, is
decreasing on Thus, by the definition of concavity, the graph of is concave
downward on ■�a, b�.

f�a, b�.
f��a, b�.xf��x� < 0

�a, b�.
f�a, b�.f�

�a, b�.xf��x� > 0PROOF

�a, c�,
xx.f

d > 0� f��z� � f��c��
f�c < x.�x � c�

� � f��z� � f��c���x � c�.
� f��z��x � c� � f��c��x � c�

d � f�x� � f�c� � f��c��x � c�

f��z� �
f�x� � f�c�

x � c
.

�c, x�z

� f�x� � f�c� � f��c��x � c�.
d � f�x� � � f�c� � f��c��x � c��

�x, g�x��f
�x, f�x���c, b�,x

g�x� � f�c� � f��c��x � c�.

cf
I � �a, b�.c�a, b�.

f�I � �a, b�.fPROOF
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CONCAVITY INTERPRETATION (PAGE 190)

1. Let be differentiable on an open interval If the graph of is concave
upward on then the graph of lies above all of its tangent lines on 

2. Let be differentiable on an open interval If the graph of is concave
downward on then the graph of lies below all of its tangent lines on I.fI,

fI.f

I.fI,
fI.f

THEOREM 3.7 TEST FOR CONCAVITY (PAGE 191)

Let be a function whose second derivative exists on an open interval 

1. If for all in then the graph of is concave upward in 

2. If for all in then the graph of is concave downward in I.fI,xf ��x� < 0

I.fI,xf ��x� > 0

I.f



Begin by proving that

For let Then, for you have

So, by the definition of a limit at infinity, you can conclude that the limit of as
is 0. Now, using this result, and letting you can write the following.

The proof of the second part of the theorem is similar. ■

� 0

� c� n�0 �m

� c� n� lim
x→�

1
x	

m

� c� lim
x→�

n�1
x	

m

� c� lim
x→�

� 1
n�x	

m

�

 lim
x→�

c
xr � lim

x→�

c
xm�n

r � m�n,x →�
1�x

�1x � 0� < �.
1
x

< �x > M �
1
�

x  > M,M � 1��.� > 0,

lim
x→�

1
x

� 0.

PROOF
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THEOREM 3.10 LIMITS AT INFINITY (PAGE 199)

If is a positive rational number and is any real number, then

Furthermore, if is defined when then lim
x→��

c
xr � 0.x < 0,xr

lim
x→�

c
xr � 0.

cr

THEOREM 4.2 SUMMATION FORMULAS (PAGE 260)

1.

2.

3.

4. 
n

i�1
i3 �

n2�n � 1�2

4


n

i�1
i2 �

n�n � 1��2n � 1�
6


n

i�1
i �

n�n � 1�
2


n

i�1
c � cn



The proof of Property 1 is straightforward. By adding to itself times, you
obtain a sum of 

To prove Property 2, write the sum in increasing and decreasing order and add
corresponding terms, as follows.

So,

To prove Property 3, use mathematical induction. First, if the result is true
because

Now, assuming the result is true for you can show that it is true for 
as follows.

Property 4 can be proved using a similar argument with mathematical induction.
■

�
�k � 1��k � 2��2�k � 1� � 1�

6

�
k � 1

6
��2k � 3��k � 2��

�
k � 1

6
�2k2 � k � 6k � 6�

�
k�k � 1��2k � 1�

6
� �k � 1�2


k�1

i�1
i 2 � 

k

i�1
i 2 � �k � 1�2

n � k � 1,n � k,


1

i�1
i 2 � 12 � 1 �

1�1 � 1��2 � 1�
6

.

n � 1,


n

i�1
i �

n�n � 1�
2

.

 2 
n

i�1
i � �n � 1� � �n � 1� � �n � 1� � .  .  . � �n � 1� � �n � 1�


n

i�1
i � n � �n � 1� � �n � 2� � .  .  . �  2  �  1


n

i�1
i �  1  �  2  �  3  � .  .  . � �n � 1� � n

cn.
ncPROOF
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→ → → →

→ → → → →

termsn

THEOREM 4.8 PRESERVATION OF INEQUALITY (PAGE 278)

1. If is integrable and nonnegative on the closed interval then

2. If and are integrable on the closed interval and for
every in then


b

a

f �x� dx � 
b

a

g�x� dx.

�a, b�,x
f �x� ≤ g�x��a, b�gf

0 � 
b

a

f �x� dx.

�a, b�,f



To prove Property 1, suppose, on the contrary, that

Then, let be a partition of and let

be a Riemann sum. Because it follows that Now, for sufficiently
small, you have which implies that

which is not possible. From this contradiction, you can conclude that

To prove Property 2 of the theorem, note that implies that
So, you can apply the result of Property 1 to conclude that

■

Recall from Section P.3 that a function is one-to-one if for and in its
domain

Let Then for So is increasing on its entire domain

and therefore is strictly monotonic (see Section 3.3). Choose and in the
domain of such that Because is strictly monotonic, it follows that either

or

In either case, So, is one-to-one. To verify the limits, begin
by showing that From the Mean Value Theorem for Integrals, you can write 

where is in �1, 2�.c

ln 2 � 
2

1

1
x

dx �
1
c

�2 � 1� �
1
c

ln 2 �
1
2.

f�x� � ln xf�x1� � f�x2�.

f�x1� > f �x2�.f�x1� < f �x2�

fx1 � x2.f
x2x1�0, �)

fx > 0.f��x� �
1
x

> 0f�x� � ln x.

f�x1� � f�x2�.x1 � x2

x2x1fPROOF


b

a

f�x� dx � 
b

a

g�x� dx.

 0 � 
b

a

g�x� dx � 
b

a

f�x� dx

 0 � 
b

a

�g�x� � f�x�� dx

g�x� � f�x� ≥  0.
f�x� ≤ g�x�

0 � 
b

a

f�x� dx.


n

i�1
f�ci� �xi � R < I �

I
2

< 0

�R � I� < �I�2,
���R � 0.f �x� � 0,

R � 
n

i�1
f�ci� �xi

�a, b�,a � x0  < x1  < x2  < .  .  .  < xn � b


b

a

f�x� dx � I < 0.

PROOF
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PROPERTIES OF THE NATURAL LOGARITHMIC FUNCTION (PAGE 325)

The natural logarithmic function is one-to-one.

and lim
x→�

 ln x � �lim
x→0�

 ln x � ��



This implies that

Now, let be any positive (large) number. Because is increasing, it follows that
if then

However, because it follows that

This verifies the second limit. To verify the first limit, let Then, as
and you can write

■

To prove Property 1, first show that if is continuous on and has an inverse
function, then is strictly monotonic on Suppose that were not strictly monotonic.
Then there would exist numbers in such that but is not
between and Without loss of generality, assume By
the Intermediate Value Theorem, there exists a number between and such that

So, is not one-to-one and cannot have an inverse function. So, must
be strictly monotonic.

Because is continuous, the Intermediate Value Theorem implies that the set of 
values of 

forms an interval Assume that is an interior point of From the previous
argument, is an interior point of Let There exists such that

I1 � � f�1�a� � �1,  f�1�a� � �1� � I.

0 < �1 < �� > 0.I.f�1�a�
J.aJ.

� f�x�: x � $�

f
f

fff�x0� � f�x3�.
x2x1x0

f�x1� < f�x3� < f�x2�.f�x3�.f�x1�
f�x2�x1 < x2 < x3,Ix1, x2, x3

fI.f
IfPROOF

� ��.

� � lim
z→�

 ln z

� lim
z→�

��ln z�

lim
x→0�

 ln x � lim
x→0���ln

1
x	

x → 0�,
z →�z � 1�x.

ln x > 2N ln 2 � 2N�1
2	 � N.

ln 2 �
1
2,

ln x > ln 22N � 2N ln 2.

x > 22N,
ln xN

 1 �  ln 2 �
1
2

.

 1 �
1
c

�
1
2

1 � c � 2
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THEOREM 5.8 CONTINUITY AND DIFFERENTIABILITY OF INVERSE 
FUNCTIONS (PAGE 347)

Let be a function whose domain is an interval If has an inverse function,
then the following statements are true.

1. If is continuous on its domain, then is continuous on its domain.

2. If is increasing on its domain, then is increasing on its domain.

3. If is decreasing on its domain, then is decreasing on its domain.

4. If is differentiable on an interval containing and then 
is differentiable at f �c�.

f�1f��c� � 0,cf

f�1f

f�1f

f�1f

fI.f



Because is strictly monotonic on the set of values forms an interval
Let such that Finally, if

then

So, is continuous at A similar proof can be given if is an endpoint.

To prove Property 2, let and be in the domain of with Then, there
exist and in the domain of such that

Because is increasing, holds precisely when Therefore,

which implies that is increasing. (Property 3 can be proved in a similar way.)

Finally, to prove Property 4, consider the limit

where is in the domain of and Because is differentiable on an 
interval containing is continuous on that interval, and so is at So,
implies that and you have

So, exists, and is differentiable at ■

From the proof of Theorem 5.8, letting you know that is differen-
tiable. Using the Chain Rule, differentiate both sides of the equation 
to obtain

Because you can divide by this quantity to obtain

■
d
dx

�g�x�� �
1

f��g�x��.

f��g�x�� � 0,

1 � f��g�x�� d
dx

�g�x��.

x � f�g�x��
ga � x,PROOF

f�c�.f�1� f�1���a�

�
1

f��c�.

�
1

lim
x→c

f�x� � f�c�
x � c

� lim
x→c

1

� f �x� � f�c�
x � c 	

� f�1���a� � lim
x→c

x � c
f�x� � f�c�

x → c,
y → aa.f�1fc,

ff�1�a� � c.f�1a

� f�1���a� � lim
y→a

f�1�y� � f�1�a�
y � a

f�1

f�1�y1� � x1 < x2 � f�1�y2�

x1 < x2.f�x1� < f�x2�f

f�x1� � y1 < y2 � f�x2�.

fx2x1

y1 < y2.f�1,y2y1

aa.f�1

� f�1�y� � f�1�a�� < �1 < �.�y � a� < �,

�a � �, a � �� � J1.� > 0J1 � J.
� f�x�: x � I1�I1,f
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THEOREM 5.9 THE DERIVATIVE OF AN INVERSE FUNCTION (PAGE 347)

Let be a function that is differentiable on an interval If has an inverse
function then is differentiable at any for which Moreover,

f��g�x�� � 0.g��x� �
1

f��g�x�� ,

f��g�x�� � 0.xgg,
fI.f



To prove Property 2, you can write

Because the natural logarithmic function is one-to-one, you can conclude that

■

Let Taking the natural logarithm of each side, you have

Because the natural logarithmic function is continuous, you can write

Letting you have

Finally, because you know that and you can conclude that

■lim
x→�

�1 �
1
x	

x

� e.

y � e,ln y � 1,

� 1.

�
1
x
  at x � 1

�
d
dx

 ln x  at x � 1

� lim
t→0�

ln�1 � t� � ln 1
t

 ln y � lim
t→0�

ln�1 � t�
t

x �
1
t
,

 ln y � lim
x→�

�x ln�1 �
1
x	� � lim

x→� �ln �1 � �1�x��
1�x �.

ln y � ln� lim
x→�

�1 �
1
x	

x

�.

y � lim
x→�

�1 �
1
x	

x

.PROOF

ea

eb � ea�b.

� ln�ea�b�� a � b ln�ea

eb	 � ln ea � ln eb

PROOF

Appendix A Proofs of Selected Theorems A15

THEOREM 5.10 OPERATIONS WITH EXPONENTIAL FUNCTIONS 
(PROPERTY 2) (PAGE 353)

2. (Let and be any real numbers.)ba
ea

eb � ea�b

THEOREM 5.15 A LIMIT INVOLVING e (PAGE 366)

lim
x→�

�1 �
1
x	

x

� lim
x→�

�x � 1
x 	

x

� e

THEOREM 5.16 DERIVATIVES OF INVERSE TRIGONOMETRIC FUNCTIONS
(arcsin u and arccos u) (PAGE 376)

Let be a differentiable function of 

d
dx

�arccos u� �
�u�

�1 � u2

d
dx

�arcsin u� �
u�

�1 � u2

x.u



Method 1: Apply Theorem 5.9.

Let and Because is differentiable on
you can apply Theorem 5.9.

If is a differentiable function of then you can use the Chain Rule to write

where

Method 2: Use implicit differentiation.

Let So, and you can use implicit differentiation
as follows.

If is a differentiable function of then you can use the Chain Rule to write

where ■

You can assume that because otherwise, by Rolle’s Theorem, it
would follow that for some in Now, define as

Then

and

and by Rolle’s Theorem there exists a point in such that

which implies that ■
f��c�
g��c� �

f�b� � f�a�
g�b� � g�a�.

h��c� � f��c� �
f�b� � f�a�
g�b� � g�a� g��c� � 0

�a, b�c

h�b� � f�b� � � f�b� � f�a�
g�b� � g�a�� g�b� �

f�a�g�b� � f �b�g�a�
g�b� � g�a�

h�a� � f�a� � � f�b� � f�a�
g�b� � g�a�� g�a� �

f�a�g�b� � f �b�g�a�
g�b� � g�a�

h�x� � f�x� � � f�b� � f�a�
g�b� � g�a�� g�x�.

h�x��a, b�.xg��x� � 0
g�a� � g�b�,PROOF

u� �
du
dx

.
d
dx

�arccos u� �
�u�

�1 � u2
,

x,u

dy
dx

�
�1
sin y

�
�1

�1 � cos2 y
�

�1
�1 � x2

�sin y
dy
dx

� 1

 cos y � x

cos y � x,0 � y � 	.y � arccos x,

u� �
du
dx

.
d
dx

�arcsin u� �
u�

�1 � u2
,

x,u

�
1

�1 � x2
�

1
�1 � sin2�arcsin x�

�
1

cos�arcsin x�g��x� �
1

f��g�x��

�	�2 � y � 	�2,
fg�x� � arcsin x.f�x� � sin x

PROOF
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THEOREM 8.3 THE EXTENDED MEAN VALUE THEOREM (PAGE 570)

If and are differentiable on an open interval and continuous on 
such that for any in then there exists a point in such

that
f��c�
g��c� �

f�b� � f�a�
g�b� � g�a�.

�a, b�c�a, b�,xg��x� � 0
�a, b��a, b�gf



You can use the Extended Mean Value Theorem to prove L’Hôpital’s Rule. Of the
several different cases of this rule, the proof of only one case is illustrated. The
remaining cases where and are left for you to prove.

Consider the case for which and Define the 
following new functions:

and

For any and are differentiable on and continuous on 
You can apply the Extended Mean Value Theorem to conclude that there exists a 
number in such that

Finally, by letting approach from the right, you have because
and

■

To find fix in and write where 
is the Taylor polynomial for Then let be a function of defined by

g�t� � f�x� � f�t� � f��t��x � t� � .  .  . �
f �n��t�

n!
�x � t�n � Rn�x� �x � t�n�1

�x � c�n�1.

tgf�x�.nth
Pn�x�Rn�x� � f�x� � Pn�x��x � c�IxRn�x�,PROOF

� lim
x→c�

f��x�
g��x�.� lim

z→c�

f��z�
g��z� lim

x→c�

f�x�
g�x� � lim

x→c�

f��z�
g��z�

c < z < x,
z → c�x → c�,cx

�
f �x�
g�x�.�

f��z�
g��z��

F�x�
G�x�

F��z�
G��z� �

F�x� � F�c�
G�x� � G�c�

�c, x�z

�c, x�.�c, x�Gx, c < x < b, F

G�x� � �g�x�,
0,

x � c
x � c

.F�x� � �f�x�,
0,

x � c
x � c

lim
x→c�

g�x� � 0.lim
x→c�

f�x� � 0PROOF

x → cx → c�
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THEOREM 8.4 L’HÔPITAL’S RULE (PAGE 570)

Let and be functions that are differentiable on an open interval 
containing except possibly at itself. Assume that for all in

except possibly at itself. If the limit of as approaches 
produces the indeterminate form then

provided the limit on the right exists (or is infinite). This result also applies if
the limit of as approaches produces any one of the indeterminate
forms or ���������.���, ������, ������,

cxf�x��g�x�

lim
x→c

f�x�
g�x� � lim

x→c

f��x�
g��x�

0�0,
cxf�x��g�x�c�a, b�,

xg��x� � 0cc,
�a, b�gf

THEOREM 9.19 TAYLOR’S THEOREM (PAGE 656)

If a function is differentiable through order in an interval containing
then, for each in there exists between and such that

where Rn�x� �
f �n�1��z�
�n � 1�! �x � c�n�1.

� Rn�x�f �x� � f �c� � f��c��x � c� �
f � �c�
2!

�x � c�2
� .  .  . �

f �n��c�
n!

�x � c�n

cxzI,xc,
In � 1f



The reason for defining in this way is that differentiation with respect to has a
telescoping effect. For example, you have

The result is that the derivative simplifies to

for all between and Moreover, for a fixed 

and

Therefore, satisfies the conditions of Rolle’s Theorem, and it follows that there is a
number between and such that Substituting for in the equation for

and then solving for you obtain

Finally, because you have

■

In order to simplify the notation, the theorem for the power series 
centered at will be proved. The proof for a power series centered at 
follows easily. A key step in this proof uses the completeness property of the set of
real numbers: If a nonempty set of real numbers has an upper bound, then it must
have a least upper bound (see page 603).

It must be shown that if a power series converges at then it
converges for all satisfying Because converges, lim

x→�
andn � 0. anxn�b� < �d�.b

d � 0,x � d, anxn

S

x � cx � 0
 anxnPROOF

f�x� � f�c� � f��c��x � c� � .  .  . �
f �n��c�

n!
�x � c�n � Rn�x�.

 0 � f�x� � f�c� � f��c��x � c� � .  .  . �
f �n��c�

n!
�x � c�n � Rn�x�

g�c� � 0,

Rn�x� �
f �n�1��z�
�n � 1�! �x � c�n�1.

g��z� � �
f �n�1��z�

n!
�x � z�n � �n � 1�Rn�x� �x � z�n

�x � c�n�1 � 0

Rn�x�,g��t�
tzg��z� � 0.xcz

g

g�x� � f�x� � f�x� � 0 � .  .  . � 0 � f�x� � f�x� � 0.

g�c� � f�x� � �Pn�x� � Rn�x�� � f�x� � f�x� � 0

x,x.ct

g��t� � �
f �n�1��t�

n!
�x � t�n � �n � 1�Rn�x� �x � t�n

�x � c�n�1

g��t�

� �f � �t��x � t�.d
dt

��f�t� � f��t��x � t�� � �f��t� � f��t� � f ��t��x � t�

tg
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THEOREM 9.20 CONVERGENCE OF A POWER SERIES (PAGE 662)

For a power series centered at precisely one of the following is true.

1. The series converges only at 

2. There exists a real number such that the series converges absolutely
for and diverges for 

3. The series converges absolutely for all 

The number is the radius of convergence of the power series. If the series
converges only at the radius of convergence is and if the series
converges for all the radius of convergence is The set of all values
of for which the power series converges is the interval of convergence of
the power series.

x
R � �.x,
R � 0,c,

R

x.
�x � c� > R.�x � c� < R,

R > 0

c.

c,



So, there exists such that for all Then for 

So, for which implies that

is a convergent geometric series. By the Comparison Test, the series converges.

Similarly, if the power series diverges at where then it diverges
for all satisfying If converged, then the argument above would
imply that converged as well.

Finally, to prove the theorem, suppose that neither Case 1 nor Case 3 is true. Then
there exist points and such that converges at and diverges at Let

is nonempty because If then 
which shows that is an upper bound for the nonempty set By the completeness
property, has a least upper bound,

Now, if then so diverges. And if then is not an upper
bound for so there exists in satisfying Since 
converges, which implies that converges. ■

If then, by definition, the conic must be a parabola. If then you
can consider the focus to lie at the origin and the directrix to lie to the right
of the origin, as shown in Figure A.1. For the point you have

and Given that it follows that

By converting to rectangular coordinates and squaring each side, you obtain

Completing the square produces

If this equation represents an ellipse. If then and the
equation represents a hyperbola. ■

1 � e2 < 0,e > 1,e < 1,

�x �
e2d

1 � e2	
2

�
y2

1 � e2 �
e2d2

�1 � e2�2.

x2 � y2 � e2�d � x�2 � e2�d2 � 2dx � x2�.

r � e�d � r cos �.�PF� � �PQ�e
e � �PF���PQ�,�PQ� � d � r cos .�PF� � r

P � �r, � � �x, y�,
x � dF

e � 1,e � 1,PROOF

 anxn
 anbnb � S,�b� > �x�.SbS,

�x��x� < R, anxnx�S,�x� > R,

R.S
S.�d�

�x� � �d�,x � S,b � S.SS � �x:  anxn converges�.
d.b anxndb

 anbn
 andn�d� > �b�.d

b � 0,x � b, anxn

 anbn

 �bn

dn�
�bd� < 1,�b� < �d�,

�anbn� � �anbn dn

dn� � �and
n��bn

dn� < �bn

dn�.
n � N,n � N.andn < 1N > 0
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THEOREM 10.16 CLASSIFICATION OF CONICS BY ECCENTRICITY 
(PAGE 750)

Let be a fixed point ( focus) and let be a fixed line (directrix) in the plane.
Let be another point in the plane and let (eccentricity) be the ratio of the
distance between and to the distance between and The collection of
all points with a given eccentricity is a conic.

1. The conic is an ellipse if 

2. The conic is a parabola if 

3. The conic is a hyperbola if e > 1.

e � 1.

0 < e < 1.

P
D.PFP

eP
DF

x

Q
P

F

y

x = d

r

θ

Figure A.1



Integration TablesB
Forms Involving 

1.

2.

Forms Involving 

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13. 
 1
u2�a � bu�2 du � �

1
a2� a � 2bu

u�a � bu� �
2b
a

 ln� u
a � bu�� � C


 1
u2�a � bu� du � �

1
a �

1
u

�
b
a

 ln� u
a � bu�	 � C


 1
u�a � bu�2 du �

1
a �

1
a � bu

�
1
a

 ln� u
a � bu�	 � C


 1
u�a � bu� du �

1
a

 ln� u
a � bu� � C

n � 1, 2, 3
 u2

�a � bu�n du �
1
b3� �1

�n � 3��a � bu�n�3 �
2a

�n � 2��a � bu�n�2 �
a2

�n � 1��a � bu�n�1� � C,


 u2

�a � bu�3 du �
1
b3� 2a

a � bu
�

a2

2�a � bu�2 � ln�a � bu�� � C


 u2

�a � bu�2 du �
1
b3�bu �

a2

a � bu
� 2a ln�a � bu�	 � C


 u2

a � bu
du �

1
b3��bu

2
�2a � bu� � a2 ln�a � bu�� � C


 u
�a � bu�n du �

1
b2� �1

�n � 2��a � bu�n�2 �
a

�n � 1��a � bu�n�1� � C,  n � 1, 2


 u
�a � bu�2 du �

1
b2 � a

a � bu
� ln�a � bu�	 � C


 u
a � bu

du �
1
b2�bu � a ln�a � bu�� � C

a � bu


 1
u

du � ln�u� � C


 un du �
un�1

n � 1
� C, n � �1

un
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Forms Involving

14.

15.

Forms Involving 

16.

17.

18.

19.

20.

21.

22.

Forms Involving

23.

24.

25.

Forms Involving 

26.

27.

28. 
 �u2 � a2

u
du � �u2 � a2 � a ln�a � �u2 � a2

u � � C


 u2�u2 ± a2 du �
1
8

�u�2u2 ± a2��u2 ± a2 � a4 ln�u � �u2 ± a2�� � C


�u2 ± a2 du �
1
2

�u�u2 ± a2 ± a2 ln�u � �u2 ± a2�� � C

�u2 ± a2, a > 0


 1
�a2 ± u2�n du �

1
2a2�n � 1� �

u
�a2 ± u2�n�1

� �2n � 3�
 1
�a2 ± u2�n�1 du�, n � 1


 1
u2 � a2 du � �
 1

a2 � u2 du �
1

2a
 ln�u � a

u � a� � C


 1
a2 � u2 du �

1
a

 arctan 
u
a

� C

a2 ± u2, a > 0


 un

�a � bu
du �

2
�2n � 1�b �un�a � bu � na 
 un�1

�a � bu
du	


 u
�a � bu

du �
�2�2a � bu�

3b2
�a � bu � C


 �a � bu
un

du �
�1

a�n � 1� �
�a � bu�3�2

un�1 �
�2n � 5�b

2 
 �a � bu
un�1 du�, n � 1


 �a � bu
u

du � 2�a � bu � a
 1

u�a � bu
du


 1

un�a � bu
du �

�1
a�n � 1� �

�a � bu
un�1 �

�2n � 3�b
2 
 1

un�1�a � bu
du�, n � 1

a < 0
2

��a
 arctan �a � bu

�a
� C,


 1

u�a � bu
du � �


 un�a � bu du �
2

b�2n � 3� �un�a � bu�3�2 � na 
 un�1�a � bu du�
�a � bu


 u
a � bu � cu2 du �

1
2c �ln�a � bu � cu2� � b 
 1

a � bu � cu2 du	

b2 > 4ac
1

�b2 � 4ac
 ln�2cu � b � �b2 � 4ac

2cu � b � �b2 � 4ac� � C,

 1

a � bu � cu2 du � �
a � bu � cu2, b2 � 4ac
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a > 0
1
�a

 ln��a � bu � �a
�a � bu � �a� � C,

b2 < 4ac
2

�4ac � b2
 arctan 

2cu � b
�4ac � b2

� C,



29.

30.

31.

32.

33.

34.

35.

36.

Forms Involving 

37.

38.

39.

40.

41.

42.

43.

44.

45. 
 1
�a2 � u2�3�2 du �

u

a2�a2 � u2 � C


 1

u2�a2 � u2 du �
��a2 � u2

a2u
� C


 u2

�a2 � u2 du �
1
2 ��u�a2 � u2 � a2 arcsin 

u
a	 � C


 1

u�a2 � u2 du �
�1
a

 ln�a � �a2 � u2

u � � C


 1
�a2 � u2 du � arcsin

u
a

� C


 �a2 � u2

u2 du �
��a2 � u2

u
� arcsin

u
a

� C


 �a2 � u2

u
du � �a2 � u2 � a ln�a � �a2 � u2

u � � C


 u2�a2 � u2 du �
1
8�u�2u2 � a2��a2 � u2 � a4 arcsin 

u
a� � C


�a2 � u2 du �
1
2�u�a2 � u2 � a2 arcsin 

u
a	 � C

�a2 � u2, a > 0


 1
�u2 ± a2�3�2 du �

±u

a2�u2 ± a2
� C


 1

u2�u2 ± a2
du � %

�u2 ± a2

a2u
� C


 u2

�u2 ± a2 du �
1
2

�u�u2 ± a2 % a2 ln�u � �u2 ± a2�� � C


 1

u�u2 � a2 du �
1
a

 arcsec �u�
a

� C


 1

u�u2 � a2 du �
�1
a

 ln�a � �u2 � a2

u � � C


 1
�u2 ± a2 du � ln�u � �u2 ± a2� � C


�u2 ± a2

u2 du �
��u2 ± a2

u
� ln�u � �u2 ± a2� � C


 �u2 � a2

u
du � �u2 � a2 � a arcsec �u�

a
� C
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Forms Involving or 

46. 47.

48. 49.

50. 51.

52. 53.

54. 55.

56. 57.

58.

Forms Involving 

59. 60.

61.

62. or

63. 64.

65. 66.

67.

68.

69.

70.

71. 72.

73. 74. 
 1
1 ± csc u

du � u � tan u ± sec u � C
 1
1 ± sec u

du � u � cot u % csc u � C


 1
1 ± cot u

du �
1
2

�u % ln�sin u ± cos u�� � C
 1
1 ± tan u

du �
1
2

�u ± ln�cos u ± sin u�� � C


 cscn u du � �
cscn�2 u cot u

n � 1
�

n � 2
n � 1 
 cscn�2u du, n � 1


 secn u du �
secn�2 u tan u

n � 1
�

n � 2
n � 1 
  secn�2 u du, n � 1


cotn u du � �
cotn�1u
n � 1

� 
 �cotn�2 u� du, n � 1


 tann u du �
tann�1 u
n � 1

� 
 tann�2 u du, n � 1


 csc2 u du � �cot u � C
 sec2 u du � tan u � C


 cot2 u du � �u � cot u � C
 tan2 u du � �u � tan u � C


 csc u du � �ln�csc u � cot u� � C
 csc u du � ln�csc u � cot u� � C


 sec u du � ln�sec u � tan u� � C


 cot u du � ln�sin u� � C
 tan u du � �ln�cos u� � C

tan u, cot u, sec u, csc u


 1
sin u cos u

du � ln�tan u� � C


 1
1 ± cos u

du � �cot u ± csc u � C
 1
1 ± sin u

du � tan u % sec u � C


 un cos u du � un sin u � n 
 un�1 sin u du
 un sin u du � �un cos u � n
 un�1 cos u du


 u cos u du � cos u � u sin u � C
 u sin u du � sin u � u cos u � C


 cosn u du �
cosn�1 u sin u

n
�

n � 1
n 
 cosn�2 u du
 sinn u du � �

sinn�1 u cos u
n

�
n � 1

n 
 sinn�2 u du


 cos2 u du �
1
2

�u � sin u cos u� � C
 sin2 u du �
1
2

�u � sin u cos u� � C


 cos u du � sin u � C
 sin u du � �cos u � C

cos usin u
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Forms Involving Inverse Trigonometric Functions

75. 76.

77. 78.

79.

80.

Forms Involving

81. 82.

83. 84.

85.

86.

Forms Involving

87. 88.

89.

90. 91.

Forms Involving Hyperbolic Functions

92. 93.

94. 95.

96. 97.

Forms Involving Inverse Hyperbolic Functions (in logarithmic form)

98. 99.

100. 
 du

u�a2 ± u2
� �

1
a

 ln 
a � �a2 ± u2

�u� � C


 du
a2 � u2 �

1
2a

 ln�a � u
a � u� � C� C
 du

�u2 ± a2
� ln�u � �u2 ± a2 �


csch u coth u du � �csch u � C
sech u tanh u du � �sech u � C


csch2 u du � �coth u � C
sech2 u du � tanh u � C


sinh u du � cosh u � C
cosh u du � sinh u � C


 �ln u�n du � u�ln u�n � n 
 �ln u�n�1 du
 �ln u�2 du � u �2 � 2 ln u � �ln u�2� � C


 un ln u du �
un�1

�n � 1�2 ��1 � �n � 1� ln u� � C, n � �1


 u ln u du �
u2

4
��1 � 2 ln u� � C
 ln u du � u��1 � ln u� � C

ln u


 eau cos bu du �
eau

a2 � b2 �a cos bu � b sin bu� � C


 eau sin bu du �
eau

a2 � b2 �a sin bu � b cos bu� � C


 1
1 � eu du � u � ln�1 � eu� � C
uneu du � uneu � n
 un�1eu du


 ueu du � �u � 1�eu � C
 eu du � eu � C

eu


 arccsc u du � u arccsc u � ln�u � �u2 � 1� � C


 arcsec u du � u arcsec u � ln�u � �u2 � 1� � C


 arccot u du � u arccot u � ln�1 � u2 � C
 arctan u du � u arctan u � ln�1 � u2 � C


 arccos u du � u arccos u � �1 � u2 � C
 arcsin u du � u arcsin u � �1 � u2 � C
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Chapter P
Section P.1 (page 8)

1. b 2. d 3. a 4. c
5. Answers will vary.

7. Answers will vary.

9. Answers will vary.

11. Answers will vary.

13. Answers will vary.

15. 17.

(a) (b)
19. 21.
23. 25. 27.
29. Symmetric with respect to the axis
31. Symmetric with respect to the axis
33. Symmetric with respect to the origin 35. No symmetry
37. Symmetric with respect to the origin
39. Symmetric with respect to the axis

41. 43.
Symmetry: none Symmetry: none

x
108

y

42−2
−2

(0, −4)

(8, 0)
2

−8

−6

−10

(0, 2)2

1

x
32−1

−1

, 0
2
3

y

( (

y �
1
2 x � 4y � 2 � 3x

y-

x-
y-

�0, 0��4, 0��0, 0�, �4, 0�, ��4, 0�
�0, �2�, ��2, 0�, �1, 0��0, �5�, �5

2, 0�
x � �4y � 1.73

−6 6

−3

5

(−4.00, 3)
(2, 1.73)

y � �5 � x
Xmin = -5
Xmax = 4
Xscl = 1
Ymin = -5
Ymax = 8
Yscl = 1

y

x

(3, 1)

(1, 3)

(−3, −1)

(−1, −3)

−1−2−3 1 2 3
−1

−2

1

2

3

2,
3
2( (

−2, − 3
2( (

y

x

(0, −6)
(1, −5)

(4, −4)

(9, −3)
(16, −2)

−4 4 8 12 16

−2

−4

−6

−8

2

x

2

−2

4

6

−4−6 2

(−3, 1) (−1, 1)

(−4, 2)

(−2, 0)

(0, 2)
(1, 3)

(−5, 3)

y

x

2

−4

−2

−6

6

−4−6 4 6

(−3, −5) (3, −5)

(−2, 0)

(0, 4)

(2, 0)

y

−2−4 2 4

−2

4

6

y

x

(−2, 1)

(−4, 0)

(0, 2)
(2, 3)

(4, 4)

Answers to Odd-Numbered Exercises

x �4 �2 0 2 4

y 0 1 2 3 4

x �3 �2 0 2 3

y �5 0 4 0 �5

x �5 �4 �3 �2 �1 0 1

y 3 2 1 0 1 2 3

x 0 1 4 9 16

y �6 �5 �4 �3 �2

x �3 �2 �1 0 1 2 3

y �1 �
3
2 �3 Undef. 3 3

2
1
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45. 47.
Symmetry: axis Symmetry: none

49. 51.
Symmetry: none Symmetry: none

53. 55.
Symmetry: origin Symmetry: origin

57. 59.
Symmetry: axis

Symmetry: axis

61.

Symmetry: axis
63. 65. 67.
69.
71. 73.

75. (a)
(b) The model is a good fit for the data.

(c) 212.9
77. units 79.
81. (a) Proof (b) Proof
83. False. is not a point on the graph of 
85. True 87.

Section P.2 (page 16)
1. 3. 5.
7. 9.

11. is undefined. 13.

15. 17.
19. (a) (b) ft
21. (a) (b) Population increased least

rapidly from 2004 to 2005.

23.
25. 27. is undefined, no intercept
29. 31.

x
1 2 3 4

−1

2

3

4

(0, 0)

y

x
1−1−2−3−4

1

2

4

5

(0, 3)

y

2x � 3y � 03x � 4y � 12 � 0
y-mm � �

1
5, �0, 4�

m � 4, �0, �3�

y

t
1 2 3 4 5

275

280

285

290

295

300

Year (0 ↔ 2000)

Po
pu

la
tio

n 
(i

n 
m

ill
io

ns
)

10�101
3

�0, 10�, �2, 4�, �3, 1��0, 2�, �1, 2�, �5, 2�

x

−1

−2

−3

2

3

−2−3 21 3

y

(          )3
4

1
6

,−(          )1
2

2
3

,−

y

x

(4, 6)

(4, 1)

−1−2 1 2 3 5 6

1

2

3

4

5

6

7

m � 2m

x
1 2 3 5 6 7−1

(3, −4)

(5, 2)

−2

−3

−4

−5

1

2

3

ym � 3y

x

m = −2

(3, 4)

m = 1

3
2

m = −

m is undefined.

−4−6 2 4 8 10−2

2

4

6

8

m � �12m � 0m � 1

x2 � �y � 4�2 � 4
x � y2 � 29.�4, �5�

y � �x � 4��x � 3��x � 8�x � 3133

0 40
0

225

y � �0.027t2 � 5.73t � 26.9

��3, �3���2, 2�,��1, �5�, �0, �1�, �2, 1�
��1, �1�, �0, 0�, �1, 1�

��1, �2�, �2, 1���1, 5�, �2, 2��3, 5�
x-

y2 � ��6 � x
3

8

−3

−1

3

(6, 0)

(             )0, −    2

(           )0,     2y1 ��6 � x
3

1

−4

−11

4

(−9, 0)

(0, −3)

(0, 3)

x-

x
2

2

−4

−2

−6

−8

4

6

8

−4 −2−8 4 6 8

(−6, 0)

(0, 6)

(6, 0)

y

y2 � ��x � 9y-

y1 � �x � 9y � 6 � �x�

y

x
−2 2 4 6 8

2

4

6

8

x
1

−2

−3

−4

2

3

4

−2 −1−3−4 2 3 4

(0, 0)

y

y � 8�xx � y3

y

x
−1−2−3−4 1 2

−3

−4

2

3

(−5, 0) (0, 0)

y

x

(0, 2)

−2−3 1 2 3
−1

1

3

4

5

3(−    2, 0)

y � x�x � 5y � x3 � 2

x

2

−2

8

10

12

−8 −6−10 2 4(−3, 0)

(0, 9)

yy

x
(3, 0)

(0, 9)

(−3, 0)

−2−4−6 2 4 6
−2

2

4

6

10

y-
y � �x � 3�2y � 9 � x2
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33. 35.

37. 39.

41. 43.

45. 47. 49.
51. 53.

55. 57.

59. (a) (b)

The lines in (a) do not appear perpendicular, but they do in (b)
because a square setting is used. The lines are perpendicular.

61. (a) (b)
63. (a) (b)
65. (a) (b)

67. 69.
71. 73. Not collinear, because 

75. 77.

79.
81. (a)

(b)

(c) When six units are produced, the wage for both options is
$19.00 per hour. Choose option 1 if you think you will 
produce less than six units and choose option 2 if you think
you will produce more than six units.

83. (a)
(b) (c) 49 units

45 units
85. 87. 2 89. 91.
93. Proof 95. Proof 97. Proof 99. True

Section P.3 (page 27)
1. (a) Domain of Range of

Domain of Range of 
(b)
(c) (d) (e) and 

3. (a) (b) (c) (d)
5. (a) 5 (b) 0 (c) 1 (d)
7. (a) 1 (b) 0 (c) 9.

11.

13. Domain: Range:
15. Domain: Range:
17. Domain: All real numbers such that where is an

integer; Range:
19. Domain: Range:
21. Domain:
23. Domain: All real numbers such that where is 

an integer
25. Domain:
27. (a) (b) 2 (c) 6 (d)

Domain: Range: ���, 1� � �2, �����, ��;
2t 2 � 4�1

���, �3� � ��3, ��

nx � 2n	,x
�0, 1�

���, 0� � �0, �����, 0� � �0, ��;
���, �1� � �1, ��

nt � 4n � 2,t
�0, ���0, ��;

�0, �����, ��;
� �1���x � 1�1 � �x � 1��, x � 2

��x � 1 � x � 1����x � 2��x � 1��
3x2 � 3x �x � ��x�2, �x � 0�

1
2

4 � 2t � t 2

7x � 117b � 4�25�4
x � 2x � �1, x � 1,x � 1x � �1

g�3� � �4f ��2� � �1;
��4, 4�g:��3, 3�;g:
��3, 5�f :��4, 4�;f :

2�2�5�2��212y � 5x � 169 � 0

0
0

1600

50

x � �1530 � p��15

−2
0

10

25

(6, 19)

W2 � 11.20 � 1.30xW1 � 14.50 � 0.75x,
72�F � 22.2�C5F � 9C � 160 � 0;

�b,
a2 � b2

c 	�0,
�a2 � b2 � c2

2c 	
−1

−3 6
(0, 0)

(2, 4)

5

m1 � m2y � 2x
V � �1600t � 30,000V � 250t � 150

24x � 40y � 53 � 040x � 24y � 9 � 0
x � 2y � 4 � 02x � y � 3 � 0

y � 2 � 0x � 7 � 0

−6

−4

6

4

−5

−5

5

5

1

x
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−2
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y

x
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y

x
−2 −1 1 2

−1

3

1

y

x
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−6
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2

y

x � y � 3 � 03x � 2y � 6 � 0x � 3 � 0

x
1

2

1

3

4

−2 −1−3−4 2 3 4

y

(       )3
4

0,

(        )1
2

7
2

,

y

x
−2 2 4 8

2

−2

4

6

8

(6, 3)

(6, 8)

22x � 4y � 3 � 0x � 6 � 0

1
2
3
4
5
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6
7
8
9

x
−1 4 6 7 8 91 2 3

(5, 0)

(2, 8)

y

x
−2 −1 2 3 4 5

−1
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1

2

(2, 1)

(0, −3)

y

8x � 3y � 40 � 02x � y � 3 � 0

y

x
−2−4 2 4 6
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4

6

8 (4, 8)

(0, 0)

y

x

(3, −2)
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3

2x � y � 03x � y � 11 � 0
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29. (a) 4 (b) 0 (c) (d)
Domain: Range:

31. 33.
Domain: Domain:
Range: Range:

35. 37.
Domain: Domain:
Range: Range:

39. The student travels minute during the first 4 minutes, is 
stationary for the next 2 minutes, and travels minute 
during the final 4 minutes.

41. is not a function of 43. is a function of 
45. is not a function of 47. is not a function of 
49. 50. 51. 52. 53. 54.
55. (a) (b)

(c) (d)

(e) (f )

57. (a) Vertical translation (b) Reflection about the axis

(c) Horizontal translation

59. (a) 0 (b) 0 (c) (d)
(e) (f )

61. Domain:
Domain:

No, their domains are different.
63. Domain:

Domain:
No

65. (a) 4 (b)
(c) Undefined. The graph of does not exist at 
(d) 3 (e) 2
(f ) Undefined. The graph of does not exist at 

67. Answers will vary. 
Example:

69. Even 71. Odd 73. (a) (b)
75. is even. is neither even nor odd. is odd.
77. 79.
81. Answers will vary. 83. Answers will vary. 

Sample answer: Sample answer:

85.
87. (a)

(b) The changes in temperature occur 1 hour later.
(c) The temperatures are lower.1�

T�4� � 16�C, T�15� � 23�C
c � 25

y

x

Price (in dollars)

N
um

be
r 

of
 s

ne
ak

er
s 

so
ld

y

x

Time (in hours)

Sp
ee

d 
(i

n 
m

ile
s 

pe
r 

ho
ur

)

y � ���xf �x� � �5x � 6, �2 � x � 0
hgf

�3
2, �4��3

2, 4�
h�x� � 2xg�x� � x � 2;f �x� � �x ;

x � �4.f

x � �5.g
�2

���, 0� � �0, ���g � f ��x� � �9�x2� � 1;
���, �1� � ��1, 1� � �1, ��� f � g��x� �3��x2 � 1�;

���, ���g � f ��x� � �x�;
�0, ��� f � g��x� � x;

x � 1 �x � 0��x2 � 1
�15�1

643

3

2

1

1

−1

−2

2

4

5
x

y

4321

−1

−2

1

−3

x

y

4

3

2

1

4321
x

y

x-

x

−6

4

2

−4 −2 2 4 6

y

x

−2

−8

−10

−6

−4

−4 −2 4 6

y

x

−2

−8

−6

−4

−4 −2 2 4 6

y

x

−2

4

6

2

−4 −2 2 4 6

y

x

−6

−2

−4

4

2

−2 2 4 6 8

y

x

−6

−2

−4

4

−4−6 −2 2 4

y

geacbd
x.yx.y

x.yx.y

1 mile�

1
2 mile�

y

t
1 3

1

2

3

−1−2−3−4 1 2 3 4

−2

−3

1

2

4

5

x

y

��3, 3��0, 3�
���, ����3, 3�

g�t� � 3 sin 	 tf �x� � �9 � x2

y

x
3 6 9 12

1

2

3

−2−4 2 4

2

4

6

8

x

y

�0, �����, ��
�6, �����, ��

h�x� � �x � 6f �x� � 4 � x

���, 0� � �1, �����, ��;
�b2�2
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89. (a) (b)

91.

93. Proof 95. Proof
97. (a)

(b)

(c)

1
2
3
4
5
6

The dimensions of the box that yield a maximum volume
are

99. False. For example, if 
101. True 103. Putnam Problem A1, 1988

Section P.4 (page 34)
1. Trigonometric 3. No relationship
5. (a) and (b) 7. (a)

(b)

The model fits well.
(c) 3.63 cm

Approximately linear
(c) 136

9. (a)
(b)

(c) Greater per capita energy consumption by a country tends to
correspond to greater per capita gross national product of the
country. The four countries that differ most from the 
linear model are Venezuela, South Korea, Hong Kong, and
the United Kingdom.

(d)
11. (a)

(b)

13. (a)
(b)

(c) According to the model, the times required to attain speeds
of less than 20 miles per hour are all about the same.

(d)

(e) No. From the graph in part (b), you can see that the model 
from part (a) follows the data more closely than the model
from part (d).

15. (a)
(b) (c) 214 hp

17. (a) Yes. At time there is one and only one displacement 
(b) Amplitude: 0.35; Period: 0.5 (c)
(d) The model appears to fit

the data well.

19. Answers will vary. 21. Putnam Problem A2, 2004

0
0

0.9

(0.125, 2.35)

(0.375, 1.65)

4

y � 0.35 sin�4	 t� � 2
y.t

0
0

7

300

y � �1.806x3 � 14.58x2 � 16.4x � 10

0
0

100

20

t � 0.002s2 � 0.02s � 0.1

0
0

100

20

t � 0.002s2 � 0.04s � 1.9

About 47.5 cents�mi

0
0

8

18

y1

y2

y3

y1 + y2 + y3

y1 � y2 � y3 � 0.05479t 3 � 0.5581t 2 � 1.863t � 10.82
y3 � 0.01439t3 � 0.1886t2 � 0.476t � 1.59
y2 � 0.264t � 3.35
y1 � 0.04040t 3 � 0.3695t 2 � 1.123t � 5.88

r � 0.984y � 0.155x � 0.22;

0
0

200

35

y = 0.151x + 0.10

r � 0.880y � 0.151x � 0.10;

0

10

0 110

d = 0.066F

x
3 6 9 12 15

50

100

150

200

250

y

d � 0.066F

f �x� � x2, then f ��1� � f �1�.
4 
 16 
 16 cm.

 6�24 � 2�6��2 � 86424 � 2�6�
 5�24 � 2�5��2 � 98024 � 2�5�
 4�24 � 2�4��2 � 102424 � 2�4�
 3�24 � 2�3��2 � 97224 � 2�3�
 2�24 � 2�2��2 � 80024 � 2�2�
 1�24 � 2�1��2 � 48424 � 2�1�

Volume, VWidthHeight, x
Length and

4 
 16 
 16 cm

12

−100

−1

1100

V�x� � x�24 � 2x�2, 0 < x < 12

�2x � 2,
2,
�2x � 2,

 if x � 2
 if 0 < x < 2
 if x � 0

f �x� � �x� � �x � 2� �

A�20� � 384 acres�farm

5 15 25 35 45 55

100

200

300

400

500

t

A

A
ve
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ge

 n
um

be
r 

of
ac

re
s 

pe
r 

fa
rm

Year (5 ↔ 1955)
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Review Exercises for Chapter P (page 37)

1. 3. 5. axis symmetry
7. 9.

11. 13.

15. 17. 19.

21. 23.

25. 27. or

29. (a) (b)
(c) (d)

31.

33. Not a function 35. Function

37. (a) Undefined (b)
39. (a) Domain: Range:

(b) Domain: Range:
(c) Domain: Range:

41. (a) (b)

(c) (d)

43. (a)

All the graphs pass through the origin. The graphs of the odd
powers of are symmetric with respect to the origin 
and the graphs of the even powers are symmetric with
respect to the axis. As the powers increase, the graphs
become flatter in the interval Graphs of these
equations with odd powers pass through Quadrants I and III.
Graphs of these equations with even powers pass through
Quadrants I and II.

(b) The graph of should pass through the origin and
Quadrants I and III. It should be symmetric with respect to
the origin and be fairly flat in the interval The graph
of should pass through the origin and Quadrants I
and II. It should be symmetric with respect to the axis and
be fairly flat in the interval 

45. (a)
(b) Domain:

(c) Maximum area:
; 6 
 6 in.36 in.2

0
0

12

40

�0, 12�
A � x�12 � x�

��1, 1�.
y-

y � x8
��1, 1�.

y � x7

�1 < x < 1.
y-

x

3
0

−3

h

g

f

4

3

−2

−3

f

h

g2

3

3

2

1

21−1−2−3
x

c = −2

c = 0

c = 2

y

42

1

−1

2

−2

x

c = 2

c = 0

c = −2

y

3

1

2−2

−2

−3

x

c = 0

c = −2

c = 2

y

3

3

1

2−2−3
x

c = −2

c = 2

c = 0y

���, �����, ��;
���, 0� � �0, �����, 5� � �5, ��;

�0, 6���6, 6�;
�1��1 � �x� , �x � 0, �1

y

x
−1−2 1 3 4 5 6

−2

−3

−4

1

2

3

4

y

x
2 4 8 10 12 14−1

−2

−3

−4

1

2

3

4

$9950V � 12,500 � 850t;
x � 3 � 05x � 3y � 0

5x � 3y � 30 � 07x � 16y � 101 � 0

(−3, 0)

−4 −3 −1 1 2 3

−3

−4

1

2

3

x

yy

x
−2−4−6−8 2 4 6 8

−4

−6

−8

−10

2

(          )41
4

0, −

2x � 3y � 6 � 07x � 4y � 41 � 0
y � �

2
3 x � 2y �

7
4x �

41
4  or

m �
3
7

t �
1
5

x
1 2 3 4 5

1

2

3

4

5

y

(       )5
2

5,

(       )3
2

, 1

y � x3 � 16x��2, 3�
Xmin = -5
Xmax = 5
Xscl = 1
Ymin = -30
Ymax = 10
Yscl = 5

y

x
−1 1 2 3 4 5

−1

1

2

3

5

y

x
−2−4−6−12 2 4

4

8

12

24

28

−1−2−3 1

−1

2

3

x

y

−1 1 2 3

−1

−2

1

2

3

x

y

y-�3, 0�, �0, 3
4��8

5, 0�, �0, �8�
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47. (a) Minimum degree: 3; Leading coefficient: negative
(b) Minimum degree: 4; Leading coefficient: positive
(c) Minimum degree: 2; Leading coefficient: negative
(d) Minimum degree: 5; Leading coefficient: positive

49. (a) Yes. For each time there corresponds one and only one 
displacement

(b) Amplitude: 0.25; Period: 1.1 (c)
(d) The model appears to fit

the data.

P.S. Problem Solving (page 39)
1. (a) Center: Radius: 5

(b) (c) (d)
3.

(a) (b)

(c) (d)

(e) (f )

5. (a) Domain:
(b) Dimensions 

yield maximum area of 

(c)

7.
9. (a) 5, less (b) 3, greater (c) 4.1, less

(d) (e) 4; Answers will vary.
11. Using the definition of absolute value, you can rewrite the 

equation as 

For and you have For any
is any So, the graph of is as

follows.

13. (a)

(b)

(c) As becomes very large, and 

The center of the circle gets closer to and its radius
approaches 0.

15. (a) Domain: Range:

(b)

Domain:
(c)

Domain:
(d) The graph is not a line because

there are holes at and
x � 1.

x � 0

y

x
21−2

−2

1

2

���, 0� � �0, 1� � �1, ��
f � f � f �x��� � x

���, 0� � �0, 1� � �1, ��

f � f �x�� �
x � 1

x

���, 0� � �0, �����, 1� � �1, ��;

�0, 0�,

16k
�k � 1�2 → 0.

4
k � 1

→ 0k

x

y

−2−4−6 2 4

−2

−4

2

4

6

�x �
4

k � 1	
2

� y2 �
16k

�k � 1�2

y

x
−1−2−3−4 1 2 3 4

−2

−3

−4

1

2

3

4

y � �y� � x � �x�y � 0.yx � 0,
2y � 2x → y � x.y > 0,x > 0

�2y,  y > 0

0,  y � 0
� �2x,

0,
x > 0
x � 0

.

4 � h

T�x� � �2�4 � x2 � ��3 � x�2 � 1��4

50 m 
 25 m; Area � 1250 m2

1250 m2.

50 m 
 25 m

110
0

0

1600

�0, 100�A�x� � x��100 � x��2�;

x
1

1

3

4

−2 −1
−1

−2

−3

−4

−3−4 2 3 4

y

x
1

2

1

3

4

−2 −1
−1

−2

−3

−4

−3−4 2 3 4

y

�H�x � 2� � 2 � �1,  x � 2

2,  x < 2
1
2H�x� � �

1
2,  x � 0

0,  x < 0

x
1

2

3

4

−2 −1
−1

−2

−3

−4

−3−4 2 3 4

y

x
1

2

1

3

4

−2 −1
−1

−2

−3

−4

−3−4 2 3 4

y

H��x� � �1,  x � 0

0,  x > 0
�H�x� � ��1,  x � 0

0,  x < 0

x
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1
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4
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−3−4 2 3 4

y

x
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−2 −1
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−3−4 2 3 4

y

H�x � 2� � �1,  x � 2

0,  x < 2
H�x� � 2 � ��1,  x � 0

�2,  x < 0

x
1

2

1

3

4

−2 −1
−1

−3

−2

−4

−3−4 2 3 4

y

�3, �
9
4�y �

3
4 x �

9
2y � �

3
4 x

�3, 4�;

0 2.2

−0.5

0.5

(0.5, −0.25)

(1.1, 0.25)

y � 1
4 cos�5.7t�

y.
t
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x 2.9 2.99 2.999

f �x� �0.0641 �0.0627 �0.0625

x 3.001 3.01 3.1

f �x� �0.0625 �0.0623 �0.0610

x �0.1 �0.01 �0.001

f �x� 0.9983 0.99998 1.0000

x 0.001 0.01 0.1

f �x� 1.0000 0.99998 0.9983

Chapter 1
Section 1.1 (page 47)

1. Precalculus: 300 ft
3. Calculus: Slope of the tangent line at is 0.16.

5. (a) Precalculus: 10 square units (b) Calculus: 5 square units
7. (a)

(b)
(c) 2. Use points closer to 

9. (a) Area 10.417; Area 9.145 (b) Use more rectangles.
11. (a) 5.66 (b) 6.11 (c) Increase the number of line segments.

Section 1.2 (page 54)
1.

3.

5.

7.

(Actual limit is 1.)

9.

11.

13.

(Actual limit is 2.)

15. 1 17. 2
19. Limit does not exist. The function approaches 1 from the right

side of 2 but it approaches from the left side of 2.
21. 0
23. Limit does not exist. The function oscillates between 1 and 

as approaches 0.
25. (a) 2

(b) Limit does not exist. The function approaches 1 from the
right side of 1 but it approaches 3.5 from the left side of 1.

(c) Value does not exist. The function is undefined at 
(d) 2

27. exists for all points on the graph except where 

29. 31.

exists for all points 

on the graph except where 

33. (a)

0
8

6

16

c � 4.

lim
x→c

f �x�

y

x
−1−2 1 2 3 4 5

−1

1

2

4

5

6

f

−1−2 1 2 3 4 5−1

−2

1

2

3

4

5

6

y

x

f

c � �3.lim
x→c

f �x�

x � 4.

x
�1

�1

lim
x→0

sin 2x
x

� 2.0000

�Actual limit is 
2
3

.	lim
x→1

x4 � 1
x6 � 1

� 0.6666

�Actual limit is 
1
4

.	lim
x→1

x � 2
x2 � x � 6

� 0.2500

lim
x→0

sin x
x

� 1.0000

�Actual limit is �
1

16
.	lim

x→3

�1��x � 1�� � �1�4�
x � 3

� �0.0625

�Actual limit is 
1

2�6
.	lim

x→0

�x � 6 � �6
x

� 0.2041

�Actual limit is 
1
5

.	lim
x→4

x � 4
x2 � 3x � 4

� 0.2000

��
P.

1; 3
2; 5

2

−2 2 4 8

6

8

10

P

x

y

x � 2

x 3.9 3.99 3.999 4.001 4.01 4.1

f �x� 0.2041 0.2004 0.2000 0.2000 0.1996 0.1961

x �0.1 �0.01 �0.001 0.001 0.01 0.1

f �x� 0.2050 0.2042 0.2041 0.2041 0.2040 0.2033

x 0.9 0.99 0.999 1.001 1.01 1.1

f �x� 0.2564 0.2506 0.2501 0.2499 0.2494 0.2439

x 0.9 0.99 0.999 1.001 1.01 1.1

f �x� 0.7340 0.6733 0.6673 0.6660 0.6600 0.6015

x �0.1 �0.01 �0.001 0.001 0.01 0.1

f �x� 1.9867 1.9999 2.0000 2.0000 1.9999 1.9867



x �0.001 �0.0001 �0.00001

f �x� 2.7196 2.7184 2.7183

x 0.00001 0.0001 0.001

f �x� 2.7183 2.7181 2.7169

(b)

(c)

The limit does not exist because the limits from the right and
left are not equal.

35. 37.

39.

41. Let
43. 6 45. 47. 3 49. 0 51. 10 53. 2 55. 4
57. 59.

Domain: Domain:
The graph has a hole The graph has a hole 
at at 

61. Answers will vary. Sample answer: As approaches 8 from
either side, becomes arbitrarily close to 25.

63. (i) The values of approach        (ii) The values of increase
different numbers as or decrease without
approaches from different bound as 
sides of approaches 

(iii) The values of oscillate between two fixed numbers as 
approaches

65. (a) cm

(b) or approximately 

(c)

67.

69.

71. False. The existence or nonexistence of at has no 
bearing on the existence of the limit of as 

73. False. See Exercise 17.
75. Yes. As approaches 0.25 from either side, becomes 

arbitrarily close to 0.5.

77.

79–81. Proofs 83. Answers will vary.
85. Putnam Problem B1, 1986

Section 1.3 (page 67)
1. 3.

(a) 0 (b) (a) 0 (b) About 
5. 8 7. 9. 0 11. 7 13. 2 15. 1

17. 19. 21. 7 23. (a) 4 (b) 64 (c) 64
25. (a) 3 (b) 2 (c) 2 27. 1 29. 31. 1
33. 35. 37. (a) 10 (b) 5 (c) 6 (d)
39. (a) 64 (b) 2 (c) 12 (d) 8
41. (a) (b)

and agree except at x � 0.f �x� � x � 1g�x� �
x2 � x

x

�2�1

3�2�11�2
1�2

1�51�2
�1

0.52 or 	�6�5

−4

4

−	 	
−4

−3

8

5

lim
x→0

sin nx
x

� n

�xx

x → c.f �x�
x � cf �x�

�1.999, 2.001�
� � 0.001

1.998 2.002
0

(1.999, 0.001)

(2.001, 0.001)

0.002

x
2 3 4 5

2

3

7

1−1−2−3

1

−1

(0, 2.7183)

y

lim
x→0

f �x� � 2.7183

� � 0.0796� � 0.5;lim
r →3�	

 2	r � 6;

0.8754 < r < 1.0345
5.5
2	

� r �
6.5
2	

,

r �
3
	

� 0.9549

x

−3

−4

3

4

−4 −3 −2 2 3 4

y

c.
xf

−3 −2 −1

−2

−1

1

2

3

4

5

6

2 3 4 5
x

y

x
1

−1

−3

−4

2

1

3

4

−2 −1−3−4 2 3 4

y

c.c.
xc

x
ff

f �x�
x

x � 9.x � 4.

�0, 9� � �9, ����5, 4� � �4, ��

lim
x→9

f �x� � 6lim
x→4

f �x� �
1
6

0
0

10

10

−6 6

−0.1667

0.5

�3
� � 0.01�5 � 0.002.L � 1.

Let � � 0.01�3 � 0.0033.L � 8.

� �
1

11 � 0.091� � 0.4

lim
t→3.5

C�t� � 12.36

t 3 3.3 3.4 3.5 3.6 3.7 4

C 11.57 12.36 12.36 12.36 12.36 12.36 12.36

t 2 2.5 2.9 3 3.1 3.5 4

C 10.78 11.57 11.57 11.57 12.36 12.36 12.36
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x �0.1 �0.01 �0.001 0 0.001 0.01 0.1

f �x� �0.1 �0.01 �0.001 ? 0.001 0.01 0.1

t �0.1 �0.01 0 0.01 0.1

f �t� 2.96 2.9996 ? 2.9996 2.96

x �0.1 �0.01 �0.001 0.001 0.01 0.1

f �x� 0.358 0.354 0.354 0.354 0.353 0.349

A34 Answers to Odd-Numbered Exercises

x �0.1 �0.01 �0.001

f �x� �0.263 �0.251 �0.250

x 0.001 0.01 0.1

f �x� �0.250 �0.249 �0.238

43. (a) 2 (b) 0

and agree except at 

45.

and agree except at 

47. 12

and agree except at 

49. 51. 53. 55. 57.
59. 61. 2 63.
65. 67. 0 69. 0 71. 0 73. 1 75.
77.

The graph has a hole at 

Answers will vary. Example:

79.
The graph has a hole at 

Answers will vary. Example:

81.
The graph has a hole at 

Answers will vary. Example:

83.
The graph has a hole at 

Answers will vary. Example:

85. 3 87. 89. 4
91. 93.

0 0
95.

0

The graph has a hole at 

97. agree at all but one point if is a real number such that
for all 

99. An indeterminate form is obtained when evaluating a limit
using direct substitution produces a meaningless fractional
form, such as 

101. The magnitudes of and are
approximately equal when is
close to 0. Therefore, their ratio is
approximately 1.

103. 105.
107. Let and 

and do not exist. However,

and therefore does exist.
109–113. Proofs

115. Let

does not exist because for and for

x � 0, f �x� � 4.

x < 0, f �x� � �4lim
x→0

f �x�

lim
x→0 � f �x�� � lim

x→0
 4 � 4

f �x� � � 4,

�4,

if x � 0

if x < 0

lim
x→0

� f �x� � g�x�� � lim
x→0 �

1
x

� ��
1
x	� � lim

x→0
 0 � 0

lim
x→0

g�x�lim
x→0

f �x�
g�x� � �1�x.f �x� � 1�x

�29.4 m�sec�64 ft�sec �speed � 64 ft�sec�

x
g�x�f �x�

−3

5−5

f
g h

3

0
0.

x � c.f�x� � g�x�
cf and g

x � 0.

−0.5

0.5−0.5

0.5

−6

	2	−2

6

−4

3
2
	3

2
− 	

4

�1��x � 3�2

lim
x→0

sin x2

x
� 0

x � 0.

−1

	2	−2

1

lim
t→0

sin 3t
t

� 3

t � 0.

−1

	2	−2

4

�Actual limit is �
1
4

.	lim
x→0

�1��2 � x�� � �1�2�
x

� �0.250

x � 0.

−5 1

−2

3

�Actual limit is 
1

2�2
�

�2
4

.	lim
x→0

�x � 2 � �2
x

� 0.354

x � 0.
−3 3

−2

2

3�21�5
2x � 2�1�9

�5�101�65�61�8�1

x � 2.g�x� � x2 � 2x � 4f �x� �
x3 � 8
x � 2

x � �1.g�x� � x � 1f �x� �
x2 � 1
x � 1

�2

x � 1.f �x� � x2 � xg�x� �
x3 � x
x � 1



117. False. The limit does not exist because the function approaches
1 from the right side of 0 and approaches from the left 
side of 0. (See graph below.)

119. True.
121. False. The limit does not exist because approaches 3 from

the left side of 2 and approaches 0 from the right side of 2. (See
graph below.)

123. Proof

125. (a) All 

(b)

The domain is not obvious. The hole at is not 
apparent from the graph.

(c) (d)

127. The graphing utility was not set in radian mode.

Section 1.4 (page 78)
1. (a) 3 (b) 3 (c) 3; is continuous on 
3. (a) 0 (b) 0 (c) 0; Discontinuity at 
5. (a) (b) 3 (c) Limit does not exist. 

Discontinuity at 
7. 9.

11. Limit does not exist. The function decreases without bound as
approaches from the left.

13. 15. 17. 19. 2
21. Limit does not exist. The function decreases without bound as 

approaches from the left and increases without bound as 
approaches from the right.

23. 8
25. Limit does not exist. The function approaches 5 from the left

side of 3 but approaches 6 from the right side of 3.
27. Discontinuous at and 
29. Discontinuous at every integer
31. Continuous on 33. Continuous on 
35. Nonremovable discontinuity at 
37. Continuous for all real 
39. Nonremovable discontinuities at and 
41. Continuous for all real 

43. Nonremovable discontinuity at 
Removable discontinuity at 

45. Continuous for all real 
47. Removable discontinuity at 

Nonremovable discontinuity at 
49. Nonremovable discontinuity at 
51. Continuous for all real 
53. Nonremovable discontinuity at 
55. Continuous for all real 
57. Nonremovable discontinuities at integer multiples of 
59. Nonremovable discontinuities at each integer
61.

Discontinuity at 

63. 65. 67.
69. Continuous for all real 
71. Nonremovable discontinuities at and 
73. 75.

Nonremovable discontinuity Nonremovable discontinuity
at each integer at 

77. Continuous on 
79. Continuous on the open intervals . . .

. . . .

81. The graph has a hole at The
graph appears to be continuous, but the 
function is not continuous on 
It is not obvious from the graph that the
function has a discontinuity at 

83. Because is continuous on the interval and
and by the Intermediate Value

Theorem there exists a real number in such that 
85. Because is continuous on the interval and 

and by the Intermediate Value Theorem there
exists a real number in such that 

87. 0.68, 0.6823 89. 0.56, 0.5636
91. 93.
95. (a) The limit does not exist at 

(b) The function is not defined at 
(c) The limit exists, but it is not equal to the value of the 

function at 
(d) The limit does not exist at 

97. If and are continuous for all real then so is (Theorem
1.11, part 2). However, might not be continuous if 
For example, let and Then and are
continuous for all real but is not continuous at 

99. True
x � ±1.f�gx,

gfg�x� � x2 � 1.f �x� � x
g�x� � 0.f�g

f � gx,gf
x � c.

x � c.

x � c.
x � c.

f �2� � 4f �3� � 11

f �c� � 0.�0, 	�c
f �	� � 8.87,

f �0� � �3�0, 	�f �x�
f �c� � 0.�1, 2�c

f �2� � �8�3,f �1� � 37�12
�1, 2�f �x�

x � 0.

��4, 4�.

x � 0.

−4 4

−2

3

�2, 6�,
��2, 2�,��6, �2�,

���, ��
x � 4

−2

−2

8

10

−3 3

−1.5

0.5

x � �1x � 1
x

a � �1, b � 1a � 2a � 7

x � �2

lim
x→0�

f �x� � 0

lim
x→0�

f �x� � 0

−8 8

−10

50

	�2
x

x � 2
x

x � �7
x � 5

x � �2
x

x � 0
x � 1

x
x � 2x � �2

x
x � 0

��1, 4���7, 7�

x � 2x � �2

	
x	x

5�2�1�x2�1
�3x

1
10

1
16

x � 2
�3

x � 3
���, ��.f �x�

1
2

1
2

x � 0

−2

	
2

3	
2

3−

2

	

2
� n	x � 0,

6

−2

−3

4

f �x�

3

−2

−3

2

�1
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x 30 40 50 60

y 150 66.667 50 42.857

x �3.5 �3.1 �3.01 �3.001

f �x� 0.31 1.64 16.6 167

x �2.999 �2.99 �2.9 �2.5

f �x� �167 �16.7 �1.69 �0.36

A36 Answers to Odd-Numbered Exercises

x �3.5 �3.1 �3.01 �3.001

f �x� 3.8 16 151 1501

x �2.999 �2.99 �2.9 �2.5

f �x� �1499 �149 �14 �2.3

101. False. A rational function can be written as where 
and are polynomials of degree and respectively. It can
have, at most, discontinuities.

103.

At the end of day 3, the amount of chlorine in the pool is about
28 oz. At the beginning of day 4, the amount of chlorine in the
pool is about 56 oz.

105.

There is a nonremovable discontinuity
at each integer greater than or equal 
to 10.

107–109. Proofs 111. Answers will vary.
113. (a) (b) There appears to be a limiting

speed, and a possible cause is
air resistance.

115.
117. Domain: Let 
119. has a nonremovable discontinuity at every integer except 0.

121. Putnam Problem B2, 1988

Section 1.5 (page 88)

1.

3.

5.

7.

9.

11.

13. 15. 17. No vertical asymptote
19. 21. 23.
25. No vertical asymptote 27. No vertical asymptote
29. is an integer.
31. is a nonzero integer.
33. Removable discontinuity at 
35. Vertical asymptote at 37. 39.
41. 43. 45. 47. 49. 51. 0
53. Limit does not exist.
55. 57.

59. Answers will vary.

61. Answers will vary. Example:

63. 65.

67. (a)

(b)

(c)

69. (a) Domain:
(b)

(c)

As gets closer and closer to 25 mi h, becomes larger and
larger.

y/x

lim
x→25�

25x
x � 25

� �

x > 25

lim
→�	�2��

�50	 sec2 � � �

200	 ft�sec

1
3�200	� ft�sec

�y

x
1 3−1−2

−1

−2

2

1

3

f �x� �
x � 3

x2 � 4x � 12

lim
x→5�

f �x� � ��lim
x→1�

f �x� � �

−8 8

−0.3

0.3

5

−3

−4

3

���
1
2�

1
5�

��x � �1
x � �1

t � n	, n
nx �

1
2 � n,

x � �2, x � 1t � 0x � 2,  x � �1
x � ±2x � 0

lim
x→�3�

f �x� � �lim
x→�3�

f �x� � ��

lim
x→�3�

f �x� � �lim
x→�3�

f �x� � ��

lim
x→�2�

 tan�	x�4� � �lim
x→�2�

 tan�	x�4� � ��,

lim
x→�2�

 2� x
x2 � 4� � �lim

x→�2�
 2� x

x2 � 4� � �,

lim
x→4�

1
�x � 4�2 � �lim

x→4�

1
�x � 4�2 � �,

lim
x→4�

1
x � 4

� ��lim
x→4�

1
x � 4

� �,

3

−3

−3

15

h�x�
f �0� � 1��2c���c2, 0� � �0, ��;

c � ��1 ± �5��2

t

20

30

10

40

50

60

105 15 20 25 30

S

2 4 6 8 10 12 14

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t

C

C � �0.40,
0.40 � 0.05 �t � 9�,
0.40 � 0.05�t � 10�,

 0 < t � 10
t > 10, t is not an integer
t > 10, t is an integer

lim
t→4�

f �t� � 56lim
t→4�

f �t� � 28;
n

n,mQ
PP�x��Q�x�




 0.3 0.6 0.9 1.2 1.5

f�
� 0.47 4.21 18.0 68.6 630.1

x 1.1 1.01 1.001 1.0001

f �x� 0.5680 0.5764 0.5773 0.5773

x �0.1 �0.01 �0.001

f �x� �1.0526 �1.0050 �1.0005

x 0.001 0.01 0.1

f �x� �0.9995 �0.9950 �0.9524

71. (a) Domain:
(b)

(c)

73. False; let 
75. False; let 

77. Let and and let and 

but 

79. Given let Then by

Theorem 1.15.
81. Answers will vary.

Review Exercises for Chapter 1 (page 91)
1. Calculus Estimate: 8.3

3.

The estimate of the limit of , as approaches zero, is 
5. 5; Proof 7. ; Proof 9. (a) 4 (b) 5 11. 16

13. 15. 17. 19. 21. 75
23. 0 25. 27. 29.
31. (a)

(b)
The graph has a hole at 

(c)

33. 35. 37. 0
39. Limit does not exist. The limit as approaches 1 from the left is

2 whereas the limit as approaches 1 from the right is 1.
41. Continuous for all real 

43. Nonremovable discontinuity at each integer
Continuous on for all integers 

45. Removable discontinuity at 
Continuous on 

47. Nonremovable discontinuity at 
Continuous on 

49. Nonremovable discontinuity at 
Continuous on 

51. Nonremovable discontinuity at each even integer
Continuous on for all integers 

53. 55. Proof
57. (a) (b) 4 (c) Limit does not exist.
59. 61. 63. 65.
67. 69. 71. 73.
75. (a) $14,117.65 (b) $80,000.00 (c) $720,000.00 (d)

P.S. Problem Solving (page 93)
1. (a)

(b)

(c) 1
3. (a)

(b)
(c)

(d)
5. (a) (b)

(c)

(d) It is the same as the slope of the tangent line found in (b).
7. (a) Domain:

(b) (c) (d)

The graph has a hole at 
9. (a) (b) (c) g1, g3, g4g1g1, g4

x � 1.

1
12

1
14

12

−0.1

−30

0.5

��27, 1� � �1, ��

5
12;

mx �
��169 � x2 � 12

x � 5

y �
5

12 x �
169
12m � �

12
5

3.1416 or 	

An � �n�2� sin�2	�n�
Area �circle� � Area �hexagon� � 0.5435
Area �circle� � 	 � 3.1416

Area �hexagon� � �3�3��2 � 2.5981

Perimeter �PBO � 1 � �x 4 � �x � 1�2 � �x 4 � x2

Perimeter �PAO � 1 � ��x2 � 1�2 � x2 � �x 4 � x2

�
�

4
5����

1
3��x � 10x � 0

�4
c � �

1
2

k�2k, 2k � 2�

���, �1� � ��1, ��
x � �1

���, 2� � �2, ��
x � 2

���, 1 � � �1, ��
x � 1

k�k, k � 1�

x
t

t
�1�39.2 m�sec

�3�3

lim
x→1�

f �x� � 0.5774
x � 1.

2
0

−1

2

lim
x→1�

f �x� � 0.5773

7
12�

1
2�3�2

�11
2�

1
4�6 � 2.45

�3
�1.00.xf �x�

9

−1

−9

11

lim
x→c

g(x�
f �x� � 0g�x� � 1.lim

x→c
f �x� � �,

lim
x→0 �

1
x2 �

1
x 4	 � lim

x→0 �
x2 � 1

x 4 	 � �� � 0.lim
x→0

1
x 4 � �,

lim
x→0

1
x2 � �c � 0.g�x� �

1
x 4,f �x� �

1
x2

f �x� � tan x
f �x� � �x2 � 1���x � 1�

lim
→	�2�

A � �

0
0

1.5

100

�0, 	�2�A � 50 tan  � 50;

x 4 2 1

Perimeter �PAO 33.0166 9.0777 3.4142

Perimeter �PBO 33.7712 9.5952 3.4142

r �x� 0.9777 0.9461 1.0000

x 0.1 0.01

Perimeter �PAO 2.0955 2.0100

Perimeter �PBO 2.0006 2.0000

r �x� 1.0475 1.0050

n 6 12 24 48 96

An 2.5981 3.0000 3.1058 3.1326 3.1394
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11.
The graph jumps at every integer.

(a)

(b)

(c) There is a discontinuity at each integer.
13. (a) (b) (i)  

(ii)

(iii)

(iv)

(c) Continuous for all positive real numbers except and 
(d) The area under the graph of and above the -axis is 1.

Chapter 2
Section 2.1 (page 103)
1. (a) (b)
3. 5. 7.

9. 11. 13. 15.
17. 19.

21. 23.

25. (a) Tangent line: 27. (a) Tangent line:

(b) (b)

29. (a) Tangent line: 31. (a) Tangent line:

(b) (b)

33. 35.

37. 39. b 40. d 41. a 42. c

43.
45. 47.

49.

51. Answers will vary. 
Sample answer:

53. 55.

57. 59. Answers will vary.
Sample answer:

61.
63. (a)

For this function, the slopes of the
tangent lines are always distinct for
different values of 

(b)
For this function, the slopes of the
tangent lines are sometimes the
same.

−3

−3 3

3

(−1, −1)

(1, 1)(0, 0)

x.

−1

−3 3

3

(−1, 1) (1, 1)

(0, 0)

y � �2x � 9y � 2x � 1;

−2−3 1 2 3
−1

−2

−3

1

2

3

x

y

f

f �x� � x3

−1−2−3 2 3
−1

−2

−3

x

y

f

1

2

f �x� � �3x � 2
c � 6c � 1
f �x� � �x2f �x� � 5 � 3x

y � �x

x

−1

−2

−3

−4

2

1

3

4

−2 −1−3−4 2 3 4

y

y

x
−1−2 1 2 3 4

−2

1

2

f ′

−2−4−6 2 4 6
−2

−4

−6

−8

2

4

x

y

f ′

2

−2

−1

3

4

1 2−2 −1 3−3

f ′

y

x

g�4� � 5; g��4� � �
5
3

y � �
1
2 x �

3
2

y � 3x � 2y � 3x � 2;y � 2x � 1

12

−6

−12

10

(4, 5)

5

−1

−1

3

(1, 1)

y �
3
4 x � 2y �

1
2 x �

1
2

−5 5

−4

(2, 8)

10

−1

−3 3

8

(1, 4)

y � 12x � 16y � 2x � 2

f��x� �
1

2�x � 4
f��x� �

�1
�x � 1�2

f��x� � 3x2 � 12f��x� � 2x � 1
h��s� �

2
3f��x� � �10f��x� � 0m � 3

m � 4m � �5

6

5

4

3

2

654321

1

y

x

f (4) − f (1) = 3

(4, 5)

(1, 2)

f (4) = 5

f (1) = 2

f (4) − f (1)
4 − 1

y = (x − 1) + f (1) = x + 1

m1 � �5�2, m2 � 2m1 � 0, m2 � 5�2

xU
ba

lim
x→b�

Pa, b�x� � 1

lim
x→b�

Pa, b�x� � 0

lim
x→a�

Pa, b�x� � 0

lim
x→a�

Pa, b�x� � 1

x
b

2

a

1

y

lim
x→1�2

f �x� � �1lim
x→1�

f �x� � �1,lim
x→1�

f �x� � �1,

f ��2.7� � �1f �1
2� � �1,f �0� � 0,f �1� � 0,

x
1

−2

−3

−4

2

1

3

4

−2 −1−3−4 2 3 4

y



65. (a)

(b)
(c)

(d)
67.

69.
71.

As approaches infinity, the graph of
approaches a line of slope 0. Thus

approaches 0.

73. 6 75. 4 77. is not differentiable at 
79. is not differentiable at 
81. is not differentiable at 
83. 85.
87.
89. 91.

93. The derivative from the left is and the derivative from the
right is 1, so is not differentiable at 

95. The derivatives from both the right and the left are 0, so

97. is differentiable at 

99. (a)
(b)

Not differentiable at 

101. False. The slope is 

103. False. For example: The derivative from the left and
the derivative from the right both exist but are not equal.

105. Proof

Section 2.2 (page 115)
1. (a) (b) 3 3. 0 5. 7. 9.

11. 1 13. 15. 17.

19. 21. 23.

25.

27.

29.

31. 33. 0 35. 8 37. 3 39.
41. 43. 45.

47. 49. 51.

53.

55. (a) 57. (a)
(b) (b)

59. 61. No horizontal tangents
63. 65.
67. 69.
71. 73.

75. The rate of change of is constant and
therefore is a constant function.f�

f

3

3

1

21−1−2−3

−2

x

f

f ′

y

g��x� � f��x�

x

y

k � 4�27k � 3
k � �9k � �1,�	, 	�

��1, 2�, �0, 3�, �1, 2�

7

−1

−2

5

(1, 2)

3

−1

−2 2
(1, 0)

3x � 2y � 7 � 02x � y � 2 � 0

3
�x

� 5 sin x

4
5s1�5 �

2
3s1�3

1

2�x
�

2
x2�33x2 � 1

�x 3 � 8��x 38x � 32t � 12�t 4

2x � 6�x3�2

y� � �
1

2x 3�2y� � �
1
2

x�3�2y � x�1�2y �
�x
x

y� � �
18

125x 4y� � �
18

125
x�4y �

6
125

x�3y �
6

�5x�3

y� � �
5
x3y� � �5x�3y �

5
2

x�2y �
5

2x2

SimplifyDerivativeRewriteFunction

�
1
x2 � 3 cos x2x �

1
2

 sin x
	

2
 cos  � sin 

3t2 � 10t � 32x � 12x2�4t � 3
1��5x 4�5��5�x67x61

2

f �x� � �x�.
lim

�x→0

f �2 � �x� � f �2�
�x

.

m � �1
5

−1

−4 4

d � �3�m � 1����m2 � 1

x � 2.f
f��1� � 0.

x � 1.f
�1

���, 0� � �0, �����, 5� � �5, ��

6

−3

−6

5

−1

−1 11

7

�1, ��
���, �4� � ��4, �����, 3� � �3, ��

x � �7.h�x�
x � 6.f �x�

x � 0.g(x�

f��x�
f

x
5

−5

−2 5

f

f ′

f��2� � �0.1f �2.1� � 3.99;f �2� � 4;

g�x� � f��x�
3

−1

−2 4

g

f

f��x� � x

y

x
−2−3−4 1 2 3 4

−2

−3

−4

1

2

3

4

f ′

f���2� � �2f���1� � �1,f���1
2� � �

1
2,

f��2� � 2f��1� � 1,f��1
2� �

1
2,f��0� � 0,

−2

−6 6

6
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77.

79. for all 81.

83.
appears to be close to 

85. (a)

(b)
The slope (and equation) of the secant line approaches that
of the tangent line at as you choose points closer and
closer to 

(c)

The approximation becomes less accurate.
(d)

87. False. Let and 
89. False. 91. True
93. Average rate: 4 95. Average rate:

Instantaneous rates: Instantaneous rates:

97. (a) (b)
(c)

(d) sec (e)

99.

101. 103.

105. (a)
(b)
(c)

(d) (e)

(f ) Stopping distance increases at an increasing rate.

107. 109. Proof
111. (a) The rate of change of the number of gallons of gasoline

sold when the price is $2.979
(b) In general, the rate of change when should be

negative. As prices go up, sales go down.

113. 115.
117.
119. is differentiable for all an integer.

is differentiable for all 

Section 2.3 (page 126)
1. 3.
5. 7.
9. 11.

13.

15. 17.

19.

21.

23.

25.

27.

29.

31. 33. ��2x2 � 2x � 3���x2�x � 3�2�6s2�s3 � 2�

3
2

x�1�2 �
1
2

x�3�2 � �3x � 1��2x3�2

1 � 12��x � 3�2 � �x2 � 6x � 3���x � 3�2

�x2 � 1���3 � 2x� � �4 � 3x � x2��2x�
�x2 � 1�2 �

3
�x � 1�2, x � 1

x > 0x > 0

y� �
2
�x

,y� � 2x�1�2y � 4x1�2,y �
4x3�2

x

y� � �
12
7x3y� � �

12
7

x�3y �
6
7

x�2y �
6

7x2

y� �
2x � 3

7
y� �

2
7

x �
3
7

y �
1
7

x2 �
3
7

xy �
x2 � 3x

7

Simplify        Differentiate    RewriteFunction     

f��	

4	 �
�2
8

�4 � 	�f��1� � �
1
4

f��x� � cos x � x sin xf��x� �
x2 � 6x � 4

�x � 3�2

f��0� � �20
� 15x4 � 8x3 � 21x2 � 16x � 20

f��x� � �x3 � 4x��6x � 2) � �3x2 � 2x � 5��3x2 � 4�
�x cos x � 2 sin x��x3�1 � 5x3���2�x�x3 � 1�2�

�1 � x2���x2 � 1�2x2�3 cos x � x sin x�
�1 � 5t2���2�t �2�2x3 � 6x2 � 3x � 6�

x � 0.f2�x� � sin�x�
x � n	, nf1�x� � �sin x�

a �
1
3, b � �

4
3

9x � y � 0, 9x � 4y � 27 � 0y � 2x2 � 3x � 1

p � 2.979

V��6� � 108 cm3�cm

T��100� � 1.538

T��80� � 1.314

T��40� � 0.866

T��v� � 0.0112v � 0.418

120
0

0

T
B

R

80

T�v� � 0.0056v2 � 0.418v � 0.02
B�v� � 0.0056v2 � 0.001v � 0.04
R�v� � 0.417v � 0.02

Time (in minutes)

D
is

ta
nc

e 
(i

n 
m

ile
s)

t
2 4 6 8 10

2

4

6

8

10

(10, 6)

(8, 4)

(6, 4)

(0, 0)

s

t

Time (in minutes)
2 4 6 8 10

10

20

30

40

50

60

V
el

oc
ity

 (
in

 m
i/h

)

v

v�10� � 22 m�secv�5� � 71 m�sec;

�295.242 ft�sect �
�1362

4
� 9.226

s��2� � �64 ft�secs��1� � �32 ft�sec;
�48 ft�secv�t� � �32ts�t� � �16t2 � 1362;

f��2� �
1
4f��1� � 1;f��2� � 4f��1� � 4;

1
2

dy�dx � 0
g�x� � x � 1.f �x� � x

−2

−2 12
T

f

20

�4, 8�.
�4, 8�

T�x� � 3�x � 4� � 8 � 3x � 4

S�x� � 2.981x � 3.924
�3.9, 7.7019�,

−2

−2 12

(4, 8)

20

f��1� � �1

�1.f��1�

1.24
3.33

0.77

3.64

x � 4y � 4 � 0x.f��x� � 3 � cos x � 0

5

4

3

1

−1

−2

2

2 3
x

(1, 0)

(2, 4)

y

5

4

3

1

−1

2

2 3
x

(2, 3)

(1, 1)

y

y � 4x � 4y � 2x � 1

�x �3 �2 �1 �0.5 �0.1 0

f �4 1 �x� 1 2.828 5.196 6.548 7.702 8

T�4 1 �x� �1 2 5 6.5 7.7 8

�x 0.1 0.5 1 2 3

f �4 1 �x� 8.302 9.546 11.180 14.697 18.520

T�4 1 �x� 8.3 9.5 11 14 17



t 0 1 2 3 4

s�t� 0 57.75 99 123.75 132

v�t� 66 49.5 33 16.5 0

a�t� �16.5 �16.5 �16.5 �16.5 �16.5

35.

37.

39. 41.

43. 45.

47.

49. 51.
53.

55.

57. 59.

61.
63. (a) 65. (a)

(b) (b)

67. (a) 69.
(b)

71. 73. 75.
77. Tangent lines:

79. 81. (a) (b)
83.
85. (a) thousand 100 components

(b) thousand 100 components
(c) thousand 100 components
The cost decreases with increasing order size.

87. 89. Proof

91. (a)

(b)

(c)

represents the average value (in
billions of dollars) per one 
million personal computers.

(d) represents the rate of change of the average value per
one million personal computers for the given year.

93. 95. 97.
99. 101. 103.

105. 0 107.
109. Answers will vary. For example:

111. 113.

115. 117.

The speed of the object is
decreasing.

119.

The average velocity on is 57.75, on is 41.25, on
is 24.75, and on is 8.25.�3, 4��2, 3�

�1, 2��0, 1�

a�3� � �6 m�sec2

v�3� � 27 m�sec

−1

−2

−3

−4

1

y

x

f ′ f ″

2
π π2

−1−2−3 1 2 3 4 5

−3

−4

−5

1

2

3

4

x

y

f ′

f ″
2

2

1

1−1−2
x

f

y

f ′

f ″

x

1

1

2

2

3

3 4

4

y

f �x� � �x � 2�2

�10
1��x2x2 cos x � x sin x
2��x � 1�33��x12x2 � 12x � 6

A��t�

A

0
8 16

2

A �
0.0796t3 � 2.162t2 � 15.32t � 5.9

�0.0546t3 � 2.529t2 � 36.89t � 186.6

0
8 16

35

v(t)

0
8 16

30

q(t)

v�t� � 0.0796t3 � 2.162t2 � 15.32t � 5.9
q�t� � �0.0546t3 � 2.529t2 � 36.89t � 186.6

31.55 bacteria�h

��$3.80
��$10.37
��$38.13

�18t � 5���2�t� cm2�sec
q��4� � �1�3p��1� � 1f �x� � 2 � g�x�

−2 2 4 6

−4

−6

6

(3, 2)
(−1, 0)

2y + x = −1

2y + x = 7
y

x

f (x) = x + 1
x − 1

−2
−4−6

2y � x � �12y � x � 7;
�0, 0�, �2, 4��1, 1�25y � 12x � 16 � 0

−4

4

−

π
4( (, 1

		

2y � x � 4 � 04x � 2y � 	 � 2 � 0

−6

−8 1

8

(−5, 5)

−6

−1 3

3

(1, −4)

y � 4x � 25y � �3x � 1
h��t� � sec t�t tan t � 1��t2,   1�	 2

y� �
�2 csc x cot x
�1 � csc x�2 ,  �4�3

1 � sin  �  cos 

�1 � sin �2

�
2x2 � 8x � 1

�x � 2�2

�x � 1
x � 2	�2� � �2x � 5���x � 2��1� � �x � 1��1�

�x � 2�2 �
� 4x cos x � �2 � x2� sin x

2x cos x � 2 sin x � x2 sin x � 2x cos x
x�x sec2 x � 2 tan x�csc x cot x � cos x � cos x cot2 x

�
3
2

 sec x�tan x � sec x�

�6 cos2 x � 6 sin x � 6 sin2 x
4 cos2 x

�
3
2

��1 � tan x sec x � tan2 x�

1
4t3�4 � 6 csc t cot t�1 � sec2 x � tan2 x

��t sin t � cos t��t2t�t cos t � 2 sin t�

�x2 � c2��2x� � �x2 � c2��2x�
�x2 � c2�2 � �

4xc2

�x2 � c2�2

� 10x4 � 8x3 � 21x2 � 10x � 30
� �2x3 � 5x��x � 3��1�

�6x2 � 5��x � 3��x � 2� � �2x3 � 5x��1��x � 2�
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A42 Answers to Odd-Numbered Exercises

121.
123. (a)

(b)

125.

General rule:

127.

129.

131. False. 133. True

135. True 137.
139. does not exist. 141. Proof

Section 2.4 (page 137)

1.
3.
5.
7. 9.

11.

13.

15. 17.
19. 21.
23.

25.

27.

29. 31.

33.

35.

37.
The zero of corresponds to the
point on the graph of the function
where the tangent line is horizontal.

39. has no zeros.

41.
The zeros of correspond to the points
on the graph of the function where the
tangent lines are horizontal.

43. (a) 1 (b) 2; The slope of at the origin is 
45. 47. 49.
51. 53.
55. 57.

59.

61. 63.

65.

67. 69.

71. 73.

75. (a) 77. (a)
(b) (b)

79. (a) 81. (a)
(b) (b)

83. (a) 85. (a)
(b) (b)
(c) (c)

4

−1

−2

0, 4
3( (

3

4

−2

−2

1
2

3
2,( (

5

y �
4
33x � y � 3 � 0

s��0� � 0g��1�2� � �3

−

−4

	 	

4

π
4( (, 1

−2

0 2	

2

(   , 0)π

4x � y � �1 � 	� � 02x � y � 2	 � 0

−2

−2 1

14

(−1, 1)

−2

−6 6

6

(4, 5)

24x � y � 23 � 08x � 5y � 7 � 0

y� � �12 sec3 4x tan 4x, 0f��t� �
�5

�t � 1�2, �5

f��x� �
�15x2

�x3 � 2�2, �
3
5

s��t� �
t � 3

�t2 � 6t � 2
,

6
5

2 sec2 2x cos�tan 2x�

1
2�x

� 2x cos�2x�26	 sin�	t � 1�
cos3�	t � 1�

sin 2 cos 2 �
1
2

 sin 4

10 tan 5 sec2 58 sec2 x tan x
��1 � cos2 x��sin3 x2 cos 4x

2	 2 x cos�	x�215 sec2 3x�4 sin 4x
a.sin ax

y�

−3

−5 5

y

y ′

3

��	x sin�	x� � cos�	x� � 1��x2

y�

−2

−5 4

y

y ′

4

�
�x � 1

x
2x�x � 1�

y�

−2

−1 5

y

y ′

2

�1 � 3x2 � 4x3�2���2�x�x2 � 1�2�

�
1

8�x��2 � �x ���2 � �2 � �x	

1
2

�2 � �2 � x1�2�1�2��1�2�1
2

�2 � x1�2��1�2	�1
2

x�1�2	
� 20x�x2 � 3�9 � 2�x2 � 3�5 � 20x2�x2 � 3�4 � 2x

 2��x2 � 3�5 � x��5�x2 � 3�4�2x� � 1�

�9�1 � 2v�2

�v � 1�4

�2�x � 5��x2 � 10x � 2�
�x2 � 2�3

�x2 � 1�1�2�1� � x�1�2��x2 � 1��1�2�2x�
x2 � 1

�
1

��x2 � 1�3

x�1
2	�1 � x2��1�2��2x� � �1 � x2�1�2�1� �

1 � 2x2

�1 � x2

x2�4�x � 2�3�1�� � �x � 2�4�2x� � 2x�x � 2�3�3x � 2�
�1��2��x � 2)3��2�t � 3��3�1� � �2��t � 3�3

�1��x � 2�21
2�9 � x2��3�4��2x� � �x�4��9 � x2�3

1
3�6x2 � 1��2�3�12x� � 4x�3��6x2 � 1�2

1
2�5 � t��1�2��1� � �1��2�5 � t�

�108�4 � 9x�312�4x � 1�2

y � u3u � csc xy � csc3 x
y � �uu � x3 � 7y � �x3 � 7
y � u4u � 5x � 8y � �5x � 8�4

y � f �u�u � g�x�y � f �g�x��    

f � �0�f��x� � 2�x�;
f �x� � 3x2 � 2x � 1

dy�dx � f �x�g��x� � g�x�f��x�
y� � y � �2 sin x � 2 sin x � 3 � 3

y� � 2 cos x, y� � �2 sin x,
� 2 � 2 � 0

x3y� � 2x2y� � x3�2�x3� � 2x2��1�x2�
y� � 2�x3,y� � �1�x2,

f��x� � x n cos x � nx�n�1� sin x

f��x� � x 4 cos x � 4x3 sin xn � 4:

f��x� � x3 cos x � 3x2 sin xn � 3:

f��x� � x2 cos x � 2x sin xn � 2:

f��x� � x cos x � sin xn � 1:

n!
�n � 1�!1!

g�n�1��x�h��x� � g�n��x�h�x�

n!
2!�n � 2�! g� �x�h�n�2��x� � .  .  . �

f �n��x� � g�x�h�n��x� �
n!

1!�n � 1�! g��x�h�n�1��x� �

4g����x�h��x� � g�4��x�h�x�
f �4��x� � g�x�h�4��x� � 4g��x�h����x� � 6g��x�h��x� �

3g� �x�h��x� � g����x�h�x�
f����x� � g�x�h����x� � 3g��x�h� �x� �

f� �x� � g�x�h��x� � 2g��x�h��x� � g��x�h�x�
f �n��x� � n�n � 1��n � 2� . . . �2��1� � n!



87.

89. 91.

93.

95. 97.
99.

101. 103.

The zeros of correspond The zeros of correspond
to the points where the graph to the points where the graph
of has horizontal tangents. of has horizontal tangents.

105. The rate of change of is three times as fast as the rate of
change of 

107. (a) (b)
(c) (d)

109. (a)

(b) does not exist because is not differentiable at 6.
111. (a) 1.461 (b)
113. 0.2 rad, 115.
117. (a)

(b)

(c) Because the number of units produced in hours, is not
a linear function, and therefore the cost with respect to time

is not linear.
119. (a) Yes, if for all then 

which shows that is periodic as well.
(b) Yes, if then Because is

periodic, so is 
121. (a) 0

(b)

123. Proof 125.

127.
129. (a)

(b) (c)
(d) The accuracy worsens as

you move away from

131. False. If then 
133. Putnam Problem A1, 1967

Section 2.5 (page 146)
1. 3. 5.
7.
9.

11. 13.
15.
17. (a)

(b)

(c)

(d)

19. (a)
(b)

(c)

(d)

21. 23. Undefined 25.

27. or 29. 31. 0

33. 35.
37. 39.
41. (a) (b) Answers will vary.

43. 45.

47. 49.
51.

−1

−1 14

9

(9, 4)

2x � 3y � 30 � 0
�3x���4y��36�y3

�4�y31
1 � x2�

	

2
< y <

	

2
,cos2 y,

y � �2x � 4
y � �

2
11x �

30
11y � �3x�6 � 8�3�3

y � �x � 2y � �x � 7

�
1
2

�
x2

x2 � 1
, 0�sin2�x � y�

� 3�y
x
, �

1
2

98x
y�x2 � 49�2,�

y
x
, �

1
6

y� � �
16x
25y

y� � %
4x

5�25 � x2
� �

16x
25y

y1 =        25 − x2

−6 −2 2 6

6

2

−6

−2

y

x

4
5

y2 = −       25 − x24
5

y2 � �
4
5�25 � x2y1 �

4
5�25 � x2;

y� � �
x
y

y� � %
x

�64 � x2
� �

x
y

y1 =     64 − x2

−12 −4 4 12

12

4

−12 y2 = −    64 − x2

y

x

y2 � ��64 � x2y1 � �64 � x2;

�y cos�xy����1 � x cos�xy��
�cos x � tan y � 1���x sec2 y�cos x��4 sin �2y��

�6xy � 3x2 � 2y2���4xy � 3x2�
�1 � 3x2y3���3x3y2 � 1�

�y � 3x2���2y � x���y�x�x�y

f��x� � 2�sin 2x��2 cos 2x�.f �x� � sin2 2x,

x � 	�6.

P2

−1

−1.5 1.5

3

f

P1

P2

P2�x� � 5��3�3��x � 	�6�2 � 2�3�x � 	�6� � 2��3

P1�x� � 2�3�x � 	�6� � 2��3

f��x� � cos x sin x��sin x�, x � k	

x � ±3f��x� � 2x� x2 � 9

�x2 � 9�	,

f��x� � g��x�
g��x� � 2 tan x sec2 x � 2 sec2 x tan x
f��x� � 2 sec x � sec x tan x � 2 sec2 x tan x

g�.
f�g��x� � 2 f��2x�.g�x� � f �2x�,

f�
f��x � p� � f��x�,x,f �x � p� � f �x�

t

tx,

dC
dt

� �294.66t2 � 2317.2t � 30

x � �1.637t3 � 19.31t2 � 0.5t � 1
0.04224 cm�sec1.45 rad�sec

�1.016
gs��5�

1
2

s��x� � f��x � 2�r��x� � �3 f���3x�
h��x� � 2 f��x)g��x� � f��x�

f.
g

ff

f�f�

3

2

2−1−3
x

f

y

f ′

3

3

2

1

2−2

−2

−3

x

f

y

f ′

f � �x� � �4x2 cos�x2� � 2 sin�x2�, 0
h��x� � 18x � 6, 242�cos x2 � 2x2 sin x2�

2
�x � 6�3

2940�2 � 7x�2�3	

2
, 0	�5	

6
, �

3�3
2 	,�	

6
,
3�3

2 	,

9

−4

−9

8

(3, 4)

3x � 4y � 25 � 0
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x �2 �1 0 1 2 3

f��x� 4 2
3 �

1
3 �1 �2 �4

g��x� 4 2
3 �

1
3 �1 �2 �4

h��x� 8 4
3 �

2
3 �2 �4 �8

r��x� 12 1

s��x� �
1
3 �1 �2 �4



A44 Answers to Odd-Numbered Exercises

53. At
Tangent line:
Normal line:

At
Tangent line:
Normal line:

55. slope of normal line.
Then for on the circle, an equation of the normal
line is which passes through the origin. If 
the normal line is vertical and passes through the origin.

57. Horizontal tangents:
Vertical tangents:

59. 61.

At At 
Slope of ellipse: Slope of line:
Slope of parabola: 1 Slope of sine curve: 1
At
Slope of ellipse: 1
Slope of parabola:

63. Derivatives:

65. (a) (b)

67. (a) (b)

69. Answers will vary. In the explicit form of a function, the variable
is explicitly written as a function of In an implicit equation,
the function is only implied by an equation. An example of an
implicit function is In explicit form it would be

71. Use starting point B.

73. (a)

(b) (c)

75. Proof 77.

79.

81. (a)

(b) (c)

Section 2.6 (page 154)
1. (a) (b) 20 3. (a) (b)
5. (a) (b) (c)
7. (a) (b) (c)
9. In a linear function, if changes at a constant rate, so does 

However, unless does not change at the same rate as 

11.
13. (a) (b)
15. (a) Proof

(b) When When 

(c) If and are constant, is proportional to cos 

17. (a) (b)

19. (a) (b) 21.
23. (a) (b)

25. (a)

(b) (c)
27. Rate of vertical change:

Rate of horizontal change:
29. (a) (b) 30 min
31. 33. (a) (b)
35. (a) 12 sec (b) m (c) ��5	��120 m�sec1

2�3

10
3  ft�sec25

3  ft�sec�50��85 � �5.42 ft�sec
�750 mi�h

��3�15 m�sec

1
5 m�sec

1
12 rad�sec527

24  ft2�sec

�
48
7  ft�sec�

3
2 ft�sec;�

7
12 ft�sec;

1
144 m�min12.5%

8��405	� ft�min720 cm2�sec144 cm2�sec

1��18	� cm�min2��9	� cm�min

.dA�dtd�dts

 �
	

3
,

dA
dt

�
1
8

s2. �
	

6
,

dA
dt

�
�3
8

s2.

256	 cm2�min64	 cm2�min
�4x3 � 6x���x4 � 3x2 � 1

x.ya � 1,
y.x

2 cm�sec4 cm�sec8 cm�sec
8 cm�sec0 cm�sec�8 cm�sec

3
2�

5
8

3
4

�28
17, �

46
17�4

6

−4

−6

y � 2x � 6

y �
�3
2

x � 2�3y � �
�3
2

x � 2�3,

��6, 8��6, �8�,

y4 � �
1
3 ���7 � 7�x � �8�7 � 23��

y3 � �
1
3 ���7 � 7�x � �23 � 8�7��

y2 � �
1
3 ����7 � 7�x � �23 � 8�7��

y1 �
1
3 ���7 � 7�x � �8�7 � 23��

�8�7
7

, 5	
10−10

−10

y1
y3 y2

y4

10

10−10

−10

10

A

B

1800

1800

1994

1671

y � �5 � x2��x.
x2 � xy � 5.

x.

�sin 	y�dy
dt	 � 3 cos 	x�dx

dt	
dy
dx

�
�3 cos 	x

sin 	y

y
dy
dt

� 3x3 dx
dt

dy
dx

�
3x3

y

−2

−3 3

C = 4

K = 2

2

−2

−3 3
C = 1

K = −1

2

dy
dx

� �
y
x
,

dy
dx

�
x
y

�1

�1, �2�:

�1�1
�0, 0�:�1, 2�:

−6 6

−4

(0, 0)

4

x = sin y

x + y = 0

−6 6

−4

y2 = 4x4

(1, −2)

(1, 2)

2x2 + y2 = 6

�0, 5�, ��8, 5�
��4, 0�, ��4, 10�

x0 � 0,y � �y0�x0�x,
x0 � 0,�x0, y0�

y�x �x2 � y2 � r 2 ⇒ y� � �x�y ⇒

4x � 3y � 0
3x � 4y � 25 � 0

−6

−9 9

(−3, 4)

6��3, 4�:

3x � 4y � 0
4x � 3y � 25 � 0

−6

6

−9 9

(4, 3)

�4, 3�:



x 0 10 25 30 50

y� 1 0.6 0 �0.2 �1

37. Evaporation rate proportional to 

So

39. 0.6 ohm/sec 41.

43.

45. (a) (b) (c) About 

47. About 84.9797 

49. (a) means that changes three times as fast as 

changes.
(b) changes slowly when or changes more 

rapidly when is near the middle of the interval.
51. 53. About

Review Exercises for Chapter 2 (page 158)
1. 3.
5. is differentiable at all 
7. (a) Yes

(b) No, because the derivatives from
the left and right are not equal.

9.
11. (a) 13. 8

(b)

15. 0 17. 19. 21. 23.

25. 27. 29.
31.

where the slopes of tangent
lines to the graph of are positive.

33. (a)
(b)

35. 1354.24 ft or 412.77 m

37. (a) (b) 50
(c)
(d)

(e)

39. (a) (b) (c) (d) 1

41. 43.
45. 47.

49. 51.

53. 55. 57.
59.

61. 63. 65.
67.

69.

71.
73. 75.
77.

79. 81. 83. 0

85. 87.

is not equal to zero for has no zeros.
any 

89. (a) (b)
(c)

91. (a)

(b)

(c)

−4

−8

8

π
2

−2π
f

f

(−2, tan 3 (

y

x

y � �
�3�x � 2�
6 cos2�3

� tan �3

f���2� � �
1

2�3 cos2�3
� �11.1983

−1−2 1 3 4 5

1

2

3

4

5

y

x

(2, 4)

f

y � 24t � 44f��2� � 24
x.

f�g�

−1

−2 7

f

5

f ′

−2

−2 7

g

g′

4

5��6�t � 1�1�6 �(x � 2���x � 1�3�2

�2
�x � 2��	 cos 	x� � sin 	x

�x � 2�2

sin1�2 x cos x � sin5�2 x cos x � cos3 x�sin x

1
2 �1 � cos 2x� � sin2 x�45 sin�9x � 1�

s�s2 � 1�3�2�8s3 � 3s � 25�

2�x � 5���x2 � 10x � 3�
�x2 � 3�3

y� � y � ��2 sin x � 3 cos x� � �2 sin x � 3 cos x� � 0
6 sec2  tan 225

4 �x�48t

a�4� � �8 m�sec2v�4� � 20 m�sec;
y � 0y � 4x � 3�x sin x

3x2 sec x tan x � 6x sec x
4x3 cos x � x4 sin x

cos2 x

�8x���9 � 4x2�2��x2 � 1���x2 � 1�2

�x cos x � sin x ��2�x�4�5x3 � 15x2 � 11x � 8�

x � �
1
4���, 1.5�x��t� � 2t � 3

y��25� � 0

y� � 1 � 0.04x
x � 25

15

10

5

x
604020

y

33.33 vibrations�sec�lb
50 vibrations�sec�lb

f
f� > 0

x

1

1

2

−1

ff ′

y

�3 sin  � �cos ��44 � 5 cos �4��3t3�

3
�x

�
1

3�x2
3x2 � 22x52t38x7

2

−4

−4
0

(−1, −2)

y � 3x � 1
�

3
2

x
1

−2
−3

2

3

4
5

6

7

−1 2 3 4 5 6

y

x � 3.f
f��x� � �2��x � 1�2f��x� � 2x � 4

m�sec�97.96ft�sec2�18.432
x

yx � L.x � 0y

xy
dy
dt

� 3
dx
dt

mi�h

ft�sec427.43	ft�sec200	ft�sec
200	

3

rad�sec
2�21
525

� 0.017

d

dt
�

v
16r

 cos2  
dv
dt

dv
dt

�
16r
v

 sec2 
d

dt
,

k �
dr
dt

.V � �4
3		r 3 ⇒ dV

dt
� 4	r 2 dr

dt
.

S ⇒ dV
dt

� k�4	r2�
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x �1.0 �0.1 �0.001 0 0.001

cos x 0.5403 0.9950 1.000 1 1.000

P2�x� 0.5 0.995 1.000 1 1.000

x 0.1 1.0

cos x 0.9950 0.5403

P2�x� 0.995 0.5

A46 Answers to Odd-Numbered Exercises

93. 95.
97.
99.

101. (a) (b)
(c) (d)

103. 105.

107.

109. Tangent line:
Normal line:

111. (a) (b) (c)
113. 115.

P.S. Problem Solving (page 161)
1. (a)

(b) Center:

3. (a) (b)
(c)

is a good approximation of when is
very close to 0.

(d)

5.

7. (a) Graph as separate equations.

(b) Answers will vary. Sample answer:

The intercepts will always be and 

and the maximum and minimum values appear to be 

(c)

9. (a) When the man is 90 ft from the light, the tip of his shadow
is ft from the light. The tip of the child’s shadow is

ft from the light, so the man’s shadow extends ft
beyond the child’s shadow.

(b) When the man is 60 ft from the light, the tip of his shadow is

75 ft from the light. The tip of the child’s shadow is ft

from the light, so the child’s shadow extends ft beyond the

man’s shadow.

(c) ft
(d) Let be the distance of the man from the light and let be

the distance from the light to the tip of the shadow.
If
If
There is a discontinuity at 

11. Proof. The graph of is a line passing through the origin 
13. (a)

(b) (c)

(d)
(e) Answers will vary.

15. (a) would be the rate of change of acceleration.
(b) Acceleration is constant, so there is no change in

acceleration.
(c) : position function, : velocity function,

: acceleration function, : jerk function

Chapter 3
Section 3.1 (page 169)

1. 3. 5. is undefined.

7. 2, absolute maximum (and relative maximum)
9. 1, absolute maximum (and relative maximum); 

2, absolute minimum (and relative minimum); 
3, absolute maximum (and relative maximum)

11. 13. 15.
17. Minimum: 19. Minimum:

Maximum: Maximum:
21. Minimum: 23. Minimum:

Maximum: Maximum:

25. Minimum: 27. Minimum:

Maxima: Maximum:

29. Minimum:
Maximum:

31. Minimum value is for 
Maximum:

33. Minimum: 35. Minimum:
Maximum: Maxima: and 

37. (a) Minimum: 39. (a) Minimum:
Maximum: Maximum:

(b) Minimum: (b) Maximum:
(c) Maximum: (c) Minimum:
(d) No extrema (d) Minimum: �1, �1�

�1, �1��2, 1�
�3, 3��0, �3�
��1, 3��2, 1�
�1, �1�;�0, �3�;

�2	, 3��0, 3��0, 1�
�	, �3��1�6, �3�2�

�2, 2�
�2 � x < �1.�2

�3, 3�
��1, �1�

�0, �
1
2���1, 1

4� and �1, 1
4�

�1, �1��0, 0�
��1, 5��2, 2�
�0, 0���1, �

5
2�

�4, 8���1, 4�
�1, �1��2, 1�

x � 	�3, 	, 5	�3t � 8�3x � 2x � 0,

f���2�f��2� � 0f��0� � 0

cb
da

j � 0.
j

�	�180�C�z�C�180� � �1;S�90� � 1,

�	�180� cos z	�180

�0, 0�.L
x � 80.

ds�dt � �25�4.x > 80,
ds�dt � �50�9.0 < x < 80,

sx
d � 80

27
9

777
9

1 7
18111 1

9

112 1
2

��
a�2

2
, �

a
2	��

a�2
2

,
a
2	,�a�2

2
, �

a
2	,�a�2

2
,

a
2	,

±1
2a.y-

��a, 0�,�a, 0�,�0, 0�,

3

−2

−3

2

a = 1
a = 2

a = 1
2

�y1 �

y2 �

1
a �x2�a2 � x2�

�
1
a
�x2�a2 � x2�

p�x� � 2x3 � 4x2 � 5

P3�x� � x �
1
6 x3

xf �x� � cos xP2�x�

P2�x� � 1 �
1
2 x2P1�x� � 1

x2 � �y �
5
4�2

� 1�0, 5
4�;

x2 � �y �
1
2�2

�
1
4r �

1
2;

�38.34 m�sec2
25 m�min

8 units�sec4 units�secunits�sec2�2

−4

−6 6

4

(3, 1)

x � 3y � 0
3x � y � 10 � 0

y sin x � sin y
cos x � x cos y

�y�2�x � �y�
�x��x � 8�y�

�
2x � 9y

9x � 32y
�

2x � 3y
3�x � y2�

�0.747��h�3.240��h
�7.284��h�18.667��h

18 sec2 3 tan 3 � sin� � 1�
�8�2t � 1����1 � t�4

2 csc2 x cot x14 � 4 cos 2x

z� 0.1 0.01 0.0001

sin z
z

0.0174532837 0.0174532924 0.0174532925



41. 43.

Minimum: Minimum:
Maximum:

45. Minima: and

Maximum:

47. (a) (b) Minimum:

49. Maximum:

51. Maximum:
53. Answers will vary. Let 55. Answers will vary. Example:

is continuous 
on but does not have 
a maximum or minimum.

57. (a) Yes (b) No 59. (a) No (b) Yes
61. Maximum: No. is decreasing for 
63.
65. True 67. True 69. Proof 71. Putnam Problem B3, 2004

Section 3.2 (page 176)
1. is not continuous on 

3. is not differentiable on 

5. 7.

9. 11.

13.

15. Not differentiable at 17.
19. 21.
23. Not continuous on 
25. 27.

Rolle’s Theorem does not Rolle’s Theorem does not 
apply. apply.

29. (a)
(b) Velocity for some in sec

31.

33. The function is not continuous on 
35. The function is not continuous on 

37. (a) Secant line: (b)
(c) Tangent line:
(d)

39. 41.

43. 45. is not differentiable at 
47.

49. (a)–(c) (b)

(c)

51. (a)–(c) (b)

(c)

53. (a) (b) 1.5 sec
55. No. Let 
57. No. is not continuous on So it does not satisfy the

hypothesis of Rolle’s Theorem.
59. By the Mean Value Theorem, there is a time when the speed of the

plane must equal the average speed of 454.5 miles hour. The
speed was 400 miles hour when the plane was accelerating to
454.5 miles hour and decelerating from 454.5 miles hour.

61. Proof
63. (a)

(b) Yes; yes
(c) Because Rolle’s Theorem applies on

Because and Rolle’s Theorem
does not apply on 

(d) lim
x→3�

f��x� � 0; lim
x→3�

f��x� � 0
�1, 2�.

f �2� � 3,f �1) � 0��1, 1�.
f ��1� � f�1� � 0,

−7

	2	−2

7

��
�

�

�0, 1�.f �x�
f �x� � x2 on ��1, 2�.

�14.7 m�sec

y �
1
4x � 1

y �
1
4x �

3
4

1
1 9

Tangent

Secantf

3

y �
1
3�2x � 5 � 2�6�

y �
2
3�x � 1�

−1

−0.5 2

1

fTangent

Secant

f��	�2� � 0
x � �

1
2.ff��8�27� � 1

f���1��3� � 3f��1��3� � 3,f���1�2� � �1

−1

−6 6

7

Tangent

Secant

f

4x � 4y � 21 � 0
c �

1
2x � y � 3 � 0

�0, 6�.
�0, 6�.

x

y

a b

f(a, f (a))

(c1, f (c1))

(c2, f (c2))

(b, f (b))

Tangent line

Tangent line

Secant line

�1, 2�; t �
3
2t� 0

f �1� � f �2� � 38

−0.75

−0.25 0.25

0.75

−1

−1

1

1

�0, 	�
f��0.249� � 0f��3	�2� � 0f��	�2� � 0;

f���2 � �5� � 0x � 0

f��6 � �3
3 	 � 0f��6 � �3

3 	 � 0;

f� �3
2� � 0f���1� � 0

�0, 0�, ��4, 0�; f���8
3� � 0�2, 0�, ��1, 0�; f��1

2� � 0

�0, 2�.ff �0� � f �2� � 0;

��1, 1].ff (�1� � f �1� � 1;

 � arcsec �3 � 0.9553 rad
I > 12.PP�12� � 72;

y

x
1 2

1

2

�0, 1�

x

f

1 3 4 5 6

2

3

4

5

−2 −1

1

−3

−2

yff �x� � 1�x.

� f �4��0�� �
56
81

� f � ��3 � 1� � 1.47� f� � 3��10 � �108��

�0.4398, �1.0613�

−2

0 1

(0.4398, −1.0613)

(1, 4.7)

5

�3, 31�

��3 � 1
2

,
3
4	

���3 � 1
2

,
3
4	

3

−4

−1

32

�3, 36�
�4, 1��0, 2�

0
0 4

8

0
0 3

36
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A48 Answers to Odd-Numbered Exercises

65. 67. Proof 69. Proof

71. 73. 75.
77. False. is not continuous on 79. True
81– 89. Proofs

Section 3.3 (page 186)
1. (a) (b)
3. Increasing on Decreasing on 
5. Increasing on and Decreasing on 
7. Increasing on Decreasing on 
9. Increasing on Decreasing on 

11. Increasing on 

Decreasing on and 

13. Increasing on and 
Decreasing on 

15. Increasing on and 
Decreasing on 

17. (a) Critical number:
(b) Increasing on Decreasing on 
(c) Relative minimum:

19. (a) Critical number:
(b) Increasing on Decreasing on 
(c) Relative maximum:

21. (a) Critical numbers:
(b) Increasing on Decreasing on 
(c) Relative maximum: Relative minimum:

23. (a) Critical numbers:
(b) Increasing on 

Decreasing on 
(c) Relative maximum:

Relative minimum:
25. (a) Critical numbers:

(b) Increasing on Decreasing on 
(c) Relative maximum: Relative minimum:

27. (a) Critical number:
(b) Increasing on 
(c) No relative extrema

29. (a) Critical number:
(b) Increasing on Decreasing on 
(c) Relative minimum:

31. (a) Critical number:
(b) Increasing on Decreasing on 
(c) Relative maximum:

33. (a) Critical numbers: Discontinuity:
(b) Increasing on 

Decreasing on 
(c) Relative maximum:

Relative minimum:

35. (a) Critical number: Discontinuities:
(b) Increasing on and 

Decreasing on and 
(c) Relative maximum:

37. (a) Critical numbers: Discontinuity:
(b) Increasing on 

Decreasing on 
(c) Relative maximum: Relative minimum:

39. (a) Critical number:
(b) Increasing on Decreasing on 
(c) No relative extrema

41. (a) Critical number:
(b) Increasing on Decreasing on 
(c) Relative maximum:

43. (a) Critical numbers:
Increasing on 
Decreasing on 

(b) Relative maximum:

Relative minimum:
45. (a) Critical numbers:

Increasing on 
Decreasing on 

(b) Relative maximum:
Relative minimum:

47. (a) Critical numbers:

Increasing on 

Decreasing on 

(b) Relative maxima:
Relative minima:

49. (a) Critical numbers:

Increasing on 

Decreasing on 

(b) Relative maxima:

Relative minima:

51. (a)

(b) (c) Critical numbers:

(d)

f� < 0 on ��3, �3�2�2�, �3�2�2, 3�
f� > 0 on ��3�2�2, 3�2�2�

x � ±3�2�2

x
21−1

f ′

2
4

8
10 f

−10
−8

y

f��x� � 2�9 � 2x2���9 � x2

�7	

6
, �

1
4	, �11	

6
, �

1
4	

�	

2
, 2	, �3	

2
, 0	

�	

2
,

7	

6 	, �3	

2
,

11	

6 	
�0,

	

2	, �7	

6
,

3	

2 	, �11	

6
, 2		

11	�63	�2,7	�6,	�2,
�7	�4, 0��5	�4, 0�,�3	�4, 0�,�	�4, 0�,

�3	�2, 1��	, 1�,�	�2, 1�,
�3	�2, 7	�4�

�	, 5	�4�,�	�2, 3	�4�,�0, 	�4�,
�7	�4, 2	�

�5	�4, 3	�2�,�3	�4, 	�,�	�4, 	�2�,
x � 	�4, 	�2, 3	�4, 	, 5	�4, 3	�2, 7	�4

�5	�4, ��2�
�	�4, �2�

�	�4, 5	�4�
�0, 	�4�, �5	�4, 2	�

x � 	�4, 5	�4
�5	�6, �5	 � 6�3��12�
�	�6, �	 � 6�3��12�

�	�6, 5	�6�
�0, 	�6�, �5	�6, 2	�

x � 	�6, 5	�6
�1, 4�

�1, �����, 1�;
x � 1

�0, �����, 0�;
x � 0

�1, 0���3, �8�;
��3, �1� and ��1, 1�

���, �3� and �1, ��
x � �1x � �3, 1;

�0, 0�
�3, ���0, 3�

��3, 0����, �3�
x � ±3x � 0;

��2�2, 2�2 �
���2�2, �2�2�

���2�2, 0� and �0, �2�2�
���, ��2�2� and ��2�2, ��

x � 0x � ±�2�2;
�5, 5�

�5, �����, 5�;
x � 5

��2, 0�
���, �2���2, ��;

x � �2

���, ��
x � 0

�1, �
4
5���1, 4

5�;
��1, 1����, �1� and �1, ��;

x � ±1
�1, 0�
��5

3, 256
27 �

��5
3, 1�

���, �
5
3�, �1, ��

x � �
5
3, 1

�1, �7���2, 20�;
��2, 1����, �2� and �1, ��;

x � �2, 1
�1, 5�

�1, �����, 1�;
x � 1

�2, �4�
���, 2��2, ��;

x � 2
�7	�6, 11	�6�

�11	�6, 2	�;�0, 7	�6�
�	�2, 3	�2�

�3	�2, 2	�;�0, 	�2�
�2�2, 4���4, �2�2�

��2�2, 2�2�
���, 1��1, ��;

��1, �����, �1�;
��2, 2��2, ��;���, �2�

���, 3��3, ��;
�6, 8��0, 6�

��1, 1�.f
f �x� � x2 � 1f �x� � 5c � 2b � 1,a � 6,

8

2

4

6

2−2−4

−2

4
x

(−5, 5) (5, 5)

f (x) = ⏐x⏐

y



53. (a)
(b) (c) Critical numbers:

(d)

55. (a)
(b) (c) Critical numbers:

(d) on 

on

57. is symmetric with 59.
respect to the origin.
Zeros:

is continuous on 
and has holes at 
and

61. 63.

65. (a) Increasing on Decreasing on 
(b) Relative minimum:

67. (a) Increasing on and 
Decreasing on and 

(b) Relative maxima: and 
Relative minimum:

69. (a) Critical numbers:
(b) Relative maximum at relative minimum at and

neither at 
71. 73. 75.

77. Answers will vary. Sample answer:

79. (a)

(b) Critical numbers: and 
(c) Relative maximum:

Relative minimum:
81. (a) speed 

(b)

The speed is maximum at 

83. (a)

(b) (c) Proof

85.

87. (a)

Critical number:
Minimum resistance: About 8.3666 ohms

(b)

Minimum resistance: About 8.3666 ohms
89. (a) (b) (c) (d) t � 3�3, ���0, 3�v�t� � 6 � 2t

−25

−100 100

125

T � 10

dR
dT

�
0.004T 3 � 4

2�0.001T 4 � 4T � 100

r � 2R�3
f �x� > g�x�

0

−2

5

	

g

f

f �x� > g�x�

 � 	�2.

� �9.8(sin �t�s��t� � 9.8�sin �t;
��0.40, 0.75�
�0.48, 1.25�

x � 0.48x � �0.40

1

1

−1

−1
x

y

f

543

1

1
−1

2

−3

x

y

g��0� > 0g���6� < 0g��0� < 0
x � �1

x � 2,x � 1,
x � �1, x � 1, x � 2

x � 0
x � 1x � �1

�1, �)��1, 0�
�0, 1�;���, �1�

x � 2
���, 2��2, ��;

x
4

4

2

2

−4

−4

−2

−2

f ′

y

x
4

4

2

2

−4

−4

−2

−2

f ′

y

x � �1.
x � 1f �x�
���, ��g�x�

x
21 3 4 5

3
4
5

−1−3−4

−2
−3
−4
−5

y

(−1, 2)

(1, −2)

�0, 0�, �±�3, 0�
x

4

4

2

2

−4

−4

−2

−2

f ′

yf �x�

�0,
3	

2 	, �9	

2
, 6		f� < 0

�3	

2
,

9	

2 	f� > 0

x � 3	�2, 9	�2

−2

−4

2

4

y

x
2

f

f ′

π 4π

f��x� � �cos �x�3�
f� < 0 on �2.2889, 5.0870�
f� > 0 on �0, 2.2889�, �5.0870, 2	�

t � 2.2889, 5.0870

t

f ′

f

−10

−20

10

20

30

40

2
2

y

π π

f��t� � t�t cos t � 2 sin t�


 0 	�4 	�3 	�2 2	�3 3	�4 	

s��t� 0 4.9�2 t 4.9�3 t 9.8t 4.9�3 t 4.9�2 t 0

x 0.5 1 1.5 2 2.5 3

f �x� 0.5 1 1.5 2 2.5 3

g�x� 0.48 0.84 1.00 0.91 0.60 0.14
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A50 Answers to Odd-Numbered Exercises

91. (a)

(b) and 

(c) (d)

93. Answers will vary.
95. (a) Minimum degree: 3

(b)

(c)
97. (a) Minimum degree: 4

(b)

(c)
99. True 101. False. Let 

103. False. Let There is a critical number at but
not a relative extremum.

105–107. Proofs

Section 3.4 (page 195)
1. 3.
5. Concave upward:
7. Concave upward: Concave downward:
9. Concave upward: Concave downward:

11. Concave upward:
Concave downward:

13. Concave upward:
Concave downward:

15. Concave upward:
Concave downward:

17. Concave upward: Concave downward:
19. Points of inflection:

Concave upward:
Concave downward:

21. Point of inflection: Concave downward:
Concave upward:

23. Points of inflection:

Concave upward:

Concave downward:
25. Points of inflection:

Concave upward: Concave downward:
27. Concave upward:
29. Points of inflection:

Concave upward:

Concave downward:
31. Point of inflection:

Concave upward: Concave downward:

33. Concave upward:
Concave downward:

35. Points of inflection:
Concave upward:
Concave downward:

37. Relative minimum: 39. Relative maximum:
41. Relative maximum: Relative minimum:
43. Relative minimum:
45. Relative maximum: Relative minimum:
47. Relative minimum:
49. Relative maximum: Relative minimum:
51. No relative extrema, because is nonincreasing.
53. (a)

(b) Relative maximum:
Relative minimum:
Points of inflection:

(c) is increasing when is positive,
and decreasing when is negative.

is concave upward when is
positive, and concave downward
when is negative.

55. (a)

(b) Relative maximum:
Points of inflection:

(c)
is increasing when is positive,

and decreasing when is negative. 
is concave upward when is posi-
tive, and concave downward when 
is negative.

57. (a) (b)

59. Answers will vary. Example: 61.
but 

is not a point of inflection.

x
−3 −2 −1 1 2 3

1

2

3

4

5

6

y

�0, 0�f��0� � 0,f �x� � x4;

x

f
2

−1

1−2

y

f ′

f ″

x
4

4

3

3

2

1

1 2

y

x
4

4

3

3

2

1

1 2

y

f�
f�

ff�
f�f

x

−2

−4

−6

−8

2

4

f

y

f ′

f ″

4
π π

2
π

�1.9685, 0.9637�, �5	�6, 0.2667�
�	�6, 0.2667�, �1.1731, 0.9637�,
�	�2, 1.53333�

f ��x� � �sin x � 3 sin 3x � 5 sin 5x

f��x� � cos x � cos 3x � cos 5x

f�

f�f
f�
f�f

4

2

1

−1−2
x

f

y

f ′
f ″

�1.9348, �0.9048�, �3, 0�
�0.4652, �0.7048�,

�1.2, �1.6796�
�0, 0�

f ��x� � 0.4�x � 3��10x2 � 24x � 9�
f��x� � 0.2x�x � 3�2�5x � 6�

f
�2, 4���2, �4�;

�0, �3�
�0, 0��2.4, 268.74�;

�3, �25�
�2, �1��0, 3�;

�3, 9��5, 0�
�0, 1.823�, �	, 4.46�

�1.823, 	�, �4.46, 2	�
�	, 0�, �1.823, 1.452�, �4.46, �1.452�

�	, 2	�, �3	, 4	�
�0, 	�, �2	, 3	�

�0, 2	��2	, 4	�;
�2	, 0�

���3�3, �3�3�
���, ��3�3�, ��3�3, ��

���3�3, 3�, ��3�3, 3�
��3, ��

�2, 4����, 2�, �4, ��;
�2, �16�, �4, 0�
��2�3�3, 2�3�3�

�2�3�3, �����, �2�3�3�,
�±2�3�3, �20�9�

�2, ��
���, 2��2, 8�;

��2, 0)
���, �2�, �0, ��

��2, �8�, �0, 0�
�0, 	�2���	�2, 0�;

���, �2�, �2, ��
��2, 2�

��1, 1�
���, �1�, �1, ��

��2, 2�
���, �2�, �2, ��

�2, �����, 2�;
�1, �����, 1�;

���, ��
f� < 0, f� < 0f� > 0, f� > 0

x � 0,f �x� � x3.
f �x� � x3.

f �x� �
1
4 x4 � 2x3 � 4x2

 4a4�4�3 � 3a3�4�2 � 2a2�4� � a1 � 0
 4a4�2�3 � 3a3�2�2 � 2a2�2� � a1 � 0
 4a4�0�3 � 3a3�0�2 � 2a2�0� � a1 � 0

a4�4�4 � a3�4�3 � a2�4�2 � a1�4� � a0 � 0
a4�2�4 � a3�2�3 � a2�2�2 � a1�2� � a0 � 4
a4�0�4 � a3�0�3 � a2�0�2 � a1�0� � a0 � 0

f �x� � �
1
2 x3 �

3
2 x2

 3a3�2�2 � 2a2�2� � a1 � 0
 3a3�0�2 � 2a2�0� � a1 � 0

a3�2�3 � a2�2�2 � a1�2� � a0 � 2
a3�0�3 � a2�0�2 � a1�0� � a0 � 0

t �
5 ± �13

3� 5 � �13
3

,
5 � �13

3 	
��5 � �13��3, ���0, �5 � �13��3�

v�t� � 3t2 � 10t � 4



x 100 101 102 103

f �x� �2 �2.9814 �2.9998 �3.0000

x 104 105 106

f �x� �3.0000 �3.0000 �3.0000

x 100 101 102 103

f �x� 4.5000 4.9901 4.9999 5.0000

x 104 105 106

f �x� 5.0000 5.0000 5.0000

x 100 101 102 103

f �x� 7 2.2632 2.0251 2.0025

x 104 105 106

f �x� 2.0003 2.0000 2.0000

63. 65.

67. 69. Example:

71. (a) has a point of inflection at if is odd
and

(b) Proof

73.

75. (a) (b) Two miles from touchdown

77. 79. units

81. (a)

(b) (c) About 1.633 yr

83.

The values of and and 
their first derivatives are equal 
when The approximations
worsen as you move away from 

85.

The values of and and
their first derivatives are equal
when The approximations
worsen as you move away from

87. 89. Proof 91. True

93. False. is concave upward at 95. Proof

Section 3.5 (page 205)
1. f 2. c 3. d 4. a 5. b 6. e
7.

9.

11.

lim
x→�

�5 �
1

x2 � 1	 � 5

8
0

−1

6

lim
x→�

�6x
�4x2 � 5

� �310−10

−10

10

lim
x→�

4x � 3
2x � 1

� 210−10

−10

10

x � c if f ��c� > 0.f

1−1

−1

( (, 0π
1

1

x � 0.

x � 0.

P2P1,f,
P2�x� � 1 � x�2 � x2�8

4

−3

−8

5

f

P2

P1
P1�x� � 1 � x�2

x � 	�4.

x � 	�4.

P2P1,f,

P2�x� � 2�2 � �2�x � 	�4�2

−2

−4

P2

P1

f

	 2	

4P1�x� � 2�2
t � 1.5

0
0

3

3000

1.5 < t < 2

x � 100x � �15 � �33
16 	L � 0.578L

f �x� �
1
32x3 �

3
16x2

f �x� �
1
2x3 � 6x2 �

45
2 x � 24

−6

9−9

6

f(x) = ( x − 2)4
Point of
inflection

−6

9−9

6

f(x) = ( x − 2)3

−6

9−9

6

f(x) = ( x − 2)2

−6

9−9

6

f(x) = x − 2

n � 3.
n�2, 0�f �x� � �x � 2�n

−8

−4 8 12
x

f

y

f ″

542 3

2

1

1

3

x

y

(2, 0) (4, 0)

x
64

4

2

2

y

(2, 0) (4, 0)

f
4

x
2

−2

−2

−4

y

f ′ f ″
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t 0.5 1 1.5 2 2.5 3

S 151.5 555.6 1097.6 1666.7 2193.0 2647.1



13. (a) (b) 5 (c) 0 15. (a) 0 (b) 1 (c)
17. (a) 0 (b) (c) 19. 4 21. 23. 0

25. 27. 29. 31. 33.
35. 0 37. 0
39. 41.

43. 1 45. 0 47.
49.

51.

The graph has a hole at 

53. As becomes large, approaches 4.

55. Answers will vary. Example: let 

57. (a) 5 (b)
59. 61.

63. 65.

67. 69.

71. 73.

75.

77. 79.

81. 83.

85. (a) (c)

(b) Proof The slant asymptote 

87. 100% 89. lim
t→�

E�t� � clim
t→�

N�t� � ��;

y � x

80

−70

−80

70

8

−2

−4

f g=

8

12
0

3

1.2

y = sin(1)

, 1( ( − 2
2π

π

3

−2

−3

y = − 3
2

y = 3
2

2

5

−2

−1

x = 3

y = 0

x = 1

2

−2

−6 6

12

x = 0
y = 9

x
3 4 5

12
8
4

16
20

−1−3−4−5

−8
−12
−16
−20

y

21−2

x
54

5
4

−4

y

6
7
8

3
2

1 2−1−2−3 3

x
3 4

3

1

4

−2−3−4

y

2

2

y

x
−1−2−3−4 2 3 4 5 6

−2

−4
−5
−6
−7

1
2
3

1

−3

y

x
1 2 3 4 5 6 7−1

−2

−3

−4

1

2

3

4

x
64

6

4

−4

y

8

2

2−2

y

x
−2−4−6−8 6 8

−1

−2

2

42

1

y

x
−1−4 3 4

−2

−3

−4

1

2

3

4

2

y

x
2 3 4 5

−2

−3

−4

1

2

3

4

1−1

�5

4

8

642−2
x

y

f �x� �
�6

0.1�x � 2�2 � 1
� 6.

f �x�x

lim
x→�

x sin 
1
2x

�
1
2

x � 0.
2

−1

−2

1

lim
x→�

�x � �x�x � 1�� �
1
2

8

−2

−1

2

1
6

6

−6

−9 9

y = −3

y = 3

6

−4

−6

4

y = −1
y = 1

�
1
2�2�1��

2
3���

2
3

��
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x 100 101 102 103 104 105 106

f �x� 1.000 0.513 0.501 0.500 0.500 0.500 0.500

x 100 101 102 103 104 105 106

f �x� 0.479 0.500 0.500 0.500 0.500 0.500 0.500



91. (a) (b) Yes. 

93. (a)
(b) (c)

(d) (e) 86
(f) The limiting temperature is 

No. has no horizontal asymptote.

95. (a)

(b) (c)

As approaches the
distance approaches 3.

97. (a) (b)

(c) (d)

99. (a) Answers will vary. 101–105. Proofs

(b) Answers will vary. 

107. False. Let for all real numbers.

Section 3.6 (page 215)
1. d 2. c 3. a 4. b
5. 7.

9. 11.

13. 15.

17. 19.

21. 23.

25. 27.

29. 31.

33. Minimum:
Maximum:
Points of inflection:

Vertical asymptote:
Horizontal asymptote:

35.
Point of inflection:
Horizontal asymptotes: y � ±2

�0, 0�

−4

−6 6

4

y � 0
x � 0

��1.84, �7.86�, �1.84, 7.86�

�1.10, 9.05�
��1.10, �9.05�

15

−10

−15

10

2

3

x
3 4

1

y

(0, 3)

3
2
   , 0( (

x
21

4

−2
−1−2

−4

−6

6

y

4 5, 0

4 5, 0−

(0, 0)

(1, −4)

(−1, 4)

))

) )

x
−2 1

1

2

(−1, −1)

(0, 0)

2
3

16
27

y

−   , −( (

4
3

−   , 0( (

5

x

1

(0, 2)

(1, 0)

4

32−1−2−3

y

4

x

−2

−2 4

(1, 1)

(2, −1)

(0, 3)

y

(1.347, 0)

(2.532, 0)

(−0.879, 0)

x
5321

5

−2

y

27
8

, 0

(0, 0)

(1, 1)
(        )

y

x
−1−3 1 2 3

−2

−3

1

2

3

2, −2

(2, 0)(0, 0)(−2, 0)

−) )

2, 2) )

x
−2 2 4

2

4 ,8 16
3 9

y

(0, 0) (4, 0)

3( (

108

8

6

6

4

2

x

y

(2, −2)

(0, −3)

(6, 6)

y = x − 2

x = 4

(−1, −2)

(1, 2) y = x

x = 0

2 4−2−4

2

4

−4

x

y

y

x
−4−6 4 6 8

6

8

−8

y = x

3 −16, 
(−16)2/3

−24( (

y

x
−2−3 2 3 4

1

−1 1

x = −1 x = 1

y = 0
(0, 0)

x
4

1, 1
4

2−4 )

y

1

(0, 0)

y = 1

( ((−1, 1
4(

x

y

y = −3

x = 2

−2

−4

4

, 0 7
3( (

0, − 7
2( (

f��x� > 0f �x� �
2x

�x2 � 2
.

M �
29�177

59

M �
5�33

11

��4 � 2�

��4 � 2�

�

x2 � ��4 � 2�

�
x1 ��4 � 2�

�
,lim

x→�
f �x� � 2

±�,m

lim
m→��

d�m� � 3

lim
m→�

d�m� � 3

12

−2

−12

6

d�m� � �3m � 3�
�m2 � 1

T1

86�.
T2�0) � 25.0�T1�0� � 26.6�,

−10

T2

−10 120

90

130

−10

−10

T1

90

T1 � �0.003t2 � 0.68t � 26.6

lim
t→�

y � 3.351

20
0

100

5
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A54 Answers to Odd-Numbered Exercises

37. 39.

41. 43.

45. 47. is decreasing on and 
therefore

49. The zeros of correspond to the
points where the graph of has 
horizontal tangents. The zero of 
corresponds to the point where the
graph of has a horizontal tangent.

51. The graph crosses the horizontal
asymptote

The graph of a function does not
cross its vertical asymptote 
because does not exist.

53. The graph has a hole at 
The graph crosses the horizontal
asymptote
The graph of a function does not
cross its vertical asymptote 
because does not exist.

55. The graph has a hole at The
rational function is not reduced to
lowest terms.

57. The graph appears to approach the
line which is the
slant asymptote.

59. The graph appears to approach the
line which is the slant
asymptote.

61.

63.

65. (a) The graph has holes at 
and at 
Visually approximated critical 
numbers:

(b)

Approximate critical numbers:
The critical numbers where maxima occur appear to be 
integers in part (a), but by approximating them using you
can see that they are not integers.

67. Answers will vary. Example:
69. Answers will vary. Example:
71. (a) for for 

for
(b) for for 

for
(c)
(d) is minimum for 

is decreasing at the greatest rate at 
73. Answers will vary. Sample answer: The graph has a vertical

asymptote at If and are both positive, or both 
negative, then the graph of approaches as approaches 
and the graph has a minimum at If and have 
opposite signs, then the graph of approaches as 
approaches and the graph has a maximum at 

75. (a) If is even, is symmetric with respect to the axis.
If is odd, is symmetric with respect to the origin.

(b) (c)
(d) When the slant asymptote is y � 2x.n � 5,

n � 4n � 0, 1, 2, 3
fn

y-fn
x � �b.b,

x��f
bax � �b.

b,x�f
bax � b.

x � 0.f
x � 0.f�

�0, ��
���, 0�f��x� < 0

�0, ��f��x� > 0x � 0;f��x� � 0
��2, 2�f��x� < 0

���, �2�, �2, ��f��x� > 0x � ±2;f��x� � 0
y � �3x2 � 7x � 5���x � 3�
y � 1��x � 3�

f�

1
2, 0.97, 32, 1.98, 52, 2.98, 72

f��x� �
�x cos2�	x�
�x2 � 1�3�2 �

2	 sin�	x� cos�	x�
�x2 � 1

1
2, 1, 32, 2, 52, 3, 72

x � 4.
x � 0

4

−0.5

0

1.5

x

4

−2

−4

2

4−8

y

f ″
x

8

4

−2

−4

−4

2

y

f

x
4

4

2

−4

−4 −2

2

f ″

y

x
4

4

2

−4

−4

−2

−2

f

y

y � 2x,

−4

−6 6

4

y � �x � 1,

6

−3

−3

3

x � 3.

4

−1

−2

3

f �c�
x � c

f
y � 0.

x � 0.

−1

−2	 2	

3

f �c�
x � c

f

y � 4.

9

−1

−6

9

f�

f �
f

f�

2

−1

−2

−2
x

f

y

f ′

f ″

f �3� > f �5�.
�2, 8�f

x

6
4
2

8
10

−4
−2

−6
−8

y

3πππ
24

π−

x

y

−4

4

8

12

16

4 2
ππ

x

−1

−2

1

2

y

−
2
π

4
π

2
π

x

−1

−2

1

2

3

y

2
π π

2
π

y

x

4

8

12

16

3π 2ππ
2

π
2



(e)

77. (a) (b) 2434
(c) The number of bacteria reaches

its maximum early on the 
seventh day.

(d) The rate of increase in the num-
ber of bacteria is greatest in the
early part of the third day.

(e)
79.

Section 3.7 (page 223)
1. (a) and (b)

The maximum is attained near and 60.
(c)
(d) (e) 55 and 55

3. and 5. 21 and 7 7. 54 and 27
9. 11. 13.

15.
17. Dimensions of page:

19. 21.
23. (a) Proof (b)

(c) in.
25. Rectangular portion:

27. (a)

(b)
Minimum when 

(c)
29. Width: Length:

31. (a)

(b)

The maximum area of the rectangle is approximately 
(c)

(d) (e)

The maximum value is 
approximately 1592 
when

33. 35.
37. No. The volume changes because the shape of the container

changes when squeezed.
39. so the solid is a sphere.

41. Side of square: Side of triangle:

43. 45.
47. 49. One mile from the nearest point on the coast
51. Proof

h � �2 ft
 � 	�4w � �20�3��3 in., h � �20�6��3 in.

30

9 � 4�3

10�3

9 � 4�3
;

��h � 0,r � 3�21��2	� � 1.50

32	r 3�8118 
 18 
 36 in.

x � 50.

� 0 when x � 50

0 100
0

2000

(50, 1591.6)

dA
dx

�
2
	

�100 � 2x�

A � 2�	 �100x � x2�,  0 < x < 100
1592 m2.

y

y
2

x

5�25�2�2;
�0, 0�, �2, 0�, �0, 4�

x � 2.587

10
0

0

(2.587, 4.162)

10

L ��x2 � 4 �
8

x � 1
�

4
�x � 1�2,  x > 1

16��	 � 4� 
 32��	 � 4� ft
5 
 5 
 5

V3 � 117 in.3V2 � 125 in.3,V1 � 99 in.3,
700 
 350 mx � Q0�2


 �2 � �30� in.�2 � �30� in.

�7
2, �7

2 �
�1, 1�l � w � 4�2 ftl � w � 20 m

S�2S�2

120
0

0

3500

(55, 3025)

P � x�110 � x�
x � 50

−3−6−9 3 6
−3

3

6

9

12

15

x

yy � �x � 3y � x � 3,
13,250�7

8
0

1

2750

−1.5

−3 3

2.5

n = 3

n = 4 n = 5

−1.5

−3 3

2.5

n = 2

n = 0

n = 1

Answers to Odd-Numbered Exercises A55

n 0 1 2 3 4 5

M 1 2 3 2 1 0

N 2 3 4 5 2 3

First
Number x

Second
Number Product P

10 110 � 10 10�110 � 10� � 1000

20 110 � 20 20�110 � 20� � 1800

30 110 � 30 30�110 � 30� � 2400

40 110 � 40 40�110 � 40� � 2800

50 110 � 50 50�110 � 50� � 3000

60 110 � 60 60�110 � 60� � 3000

70 110 � 70 70�110 � 70� � 2800

80 110 � 80 80�110 � 80� � 2400

90 110 � 90 90�110 � 90� � 1800

100 110 � 100 100�110 � 100� � 1000

Length x Width y Area xy

10 2�	 �100 � 10� �10��2�	��100 � 10� � 573

20 2�	 �100 � 20� �20��2�	��100 � 20� � 1019

30 2�	 �100 � 30� �30��2�	��100 � 30� � 1337

40 2�	 �100 � 40� �40��2�	��100 � 40� � 1528

50 2�	 �100 � 50� �50��2�	��100 � 50� � 1592

60 2�	 �100 � 60� �60��2�	��100 � 60� � 1528



n xn f �xn� f� �xn� f �xn�
f��xn� xn �

f �xn�
f��xn�

1 2.2000 �0.1600 4.4000 �0.0364 2.2364

2 2.2364 0.0015 4.4728 0.0003 2.2361

n xn f �xn� f� �xn� f �xn�
f��xn� xn �

f �xn�
f��xn�

1 1.6 �0.0292 �0.9996 0.0292 1.5708

2 1.5708 0 �1 0 1.5708

53. (a) Origin to intercept: 2
Origin to intercept:

(b)

(c) Minimum distance is 0.9795 when 

55.

57. (a)

(b)

The maximum cross-sectional area is approximately 

(c)

(d)

The maximum area occurs when 
(e)

59. 4045 units 61.
63. 65. Putnam Problem A1, 1986

Section 3.8 (page 233)
In the answers for Exercises 1 and 3, the values in the tables have
been rounded for convenience. Because a calculator or a computer
program calculates internally using more digits than they display,
you may produce slightly different values than those shown in the
tables.

1.

3.

5. 7. 0.682 9. 1.250, 5.000
11. 0.900, 1.100, 1.900 13. 1.935 15. 0.569
17. 4.493 19. (a) Proof (b)
21. 23.

25. 0.74 27. Proof
29. (a) (b) 1.347 (c) 2.532

(d) intercept of is 
intercept of 

is approximately 2.404.

(e) If the initial estimate is not sufficiently close to 
the desired zero of a function, the intercept of the 
corresponding tangent line to the function may approximate
a second zero of the function.

31. Answers will vary. Sample answer:
If is a function continuous on 

and differentiable on 

where and 

Newton’s Method uses tangent 

lines to approximate First,

estimate an initial close to 

(See graph.) Then determine using 

Calculate a third estimate using 
Continue this process until is within the desired 
accuracy and let be the final approximation of c.xn�1

�xn � xn�1�
x3 � x2 � f �x2��f��x2�.x3

x2 � x1 � f �x1��f��x1�.x2

c.x1

c.

f �c� � 0,c � �a, b�
�a, b�,�a, b�

f

x
2

1

−1

−2

−1

y

a
bc

x1
x2

x3

f (x)

x-
x � x1

y � �1.313x � 3.156x-

4
3.y � �3x � 4x-

5

3

1−2 4
x

y

f

y = −3x + 4

y = −1.313x + 3.156

−4 5

−2

4

1 � x2 � x4 � .  .  . 2 � x1 � x3 � .  .  . ;f��x1� � 0
�7 � 2.646�5 � 2.236;

�1.587

S3 � 4.50 miy �
3
10 x;

S1 � 6.1 miy �
64
141 x;

0 90
0

(60°, 83.1)

100

 � 60�.
� 0 when  � 60�, 180�, 300�

dA
d

� 64�2 cos  � 1��cos  � 1�

A � 64�1 � cos �sin , 0� <  < 90�

83.1 ft2.

F � kW��k2 � 1;  � arctan k

x � 0.7967.
−1

(0.7967, 0.9795)

3

	
2

	
4

−

d � �x2 � �2 � 2 sin x�2

	�2x-
y-

x

3

1

2

−1

−

y

4
π

4
π

2
π

Base 1 Base 2 Altitude Area

8 8 � 16 cos 10� 8 sin 10� �  22.1

8 8 � 16 cos 20� 8 sin 20� �  42.5

8 8 � 16 cos 30� 8 sin 30� �  59.7

8 8 � 16 cos 40� 8 sin 40� �  72.7

8 8 � 16 cos 50� 8 sin 50� �  80.5

8 8 � 16 cos 60� 8 sin 60� �  83.1

Base 1 Base 2 Altitude Area

8 8 � 16 cos 70� 8 sin 70� �  80.7

8 8 � 16 cos 80� 8 sin 80� �  74.0

8 8 � 16 cos 90� 8 sin 90� �  64.0
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33. 0.860 35.

37. 39. 15.1, 26.8 41. False:
43. True 45. 0.217

Section 3.9 (page 240)
1.

3.

5.

7. 9.

11. 13. 15.

17. 19.

21. (a) 0.9 (b) 1.04 23. (a) 1.05 (b) 0.98

25. (a) 8.035 (b) 7.95 27. 29.

31. (a) (b)

33. (a) (b) (c) 0.75%, 0.5%

35. 37. (a) (b) 216 sec 3.6 min
39. (a) (b) 41. 6407 ft

43.

Calculator: 9.97

45.

Calculator: 4.998

47.

49. The value of becomes closer to the value of as decreases.

51. (a)

(b)

53. True 55. True

Review Exercises for Chapter 3 (page 242)
1. Let be defined at If is undefined at then

is a critical number of 

3. Maximum: 5. Maximum:

Minimum: Minimum:
7. 9. Not continuous on 

11. (a) (b) is not differentiable at 

13. 15. is not differentiable at 

17. 19.

21. Critical number:
Increasing on Decreasing on 

23. Critical numbers:

Increasing on Decreasing on 

25. Critical number:
Increasing on Decreasing on 

27. Relative maximum:

Relative minimum:

29. Relative minimum:
31. (a) (b) Proof

(c) Period: Frequency: 6 �		�6;
y �

1
4 in.; v � 4 in.�sec

�2, �12�

��15
6

, �
5�15

9 	
��

�15
6

,
5�15

9 	
�0, 1��1, ��;

x � 1

�1, 7
3����, 1�, �7

3, ��;
x � 1, 7

3

���, �
3
2���3

2, ��;
x � �

3
2

c �
x1 � x2

2
f��0� � 1

x � 5.ff��2744
729 	 �

3
7

x � 4.f

x
2 104 6

2

4

6

−2

−6

−4

y

��2, 2�f �0� � f �4�
�2.73, 0.88���5

2, �
25
4 �

�2	, 17.57��0, 0�

x
4

4

3

21

−4

−4 −3 −1

−2

−3

f c′( ) = 0f c′( ) is
undefined.

y

f.c
c,f��c� � 0 or if f�c.f

f �0.05� � tan 0 � sec2�0� �0.05� � 0 � 1�0.05�
f �x� � tan x; dy � sec2 x dx

f �4.02� � �4 �
1

2�4
�0.02� � 2 �

1
4

�0.02�

dy �
1

2�x
dxf �x� � �x;

�x�ydy

y � 2 � x�4
y � 2 �

1
4 x

6

−2

−6

(0, 2)y
f

6y � f �0� � f��0��x � 0�

f �624� � 4�625 �
1

4�625�3�4 ��1� � 4.998

f �x� � 4�x, dy �
1

4x3�4 dx

f �99.4� � �100 �
1

2�100
��0.6� � 9.97

f �x� � �x, dy �
1

2�x
dx

2.16%0.87%
�

1
4%80	 cm3

±1.28	 in.2±5.12	 in.3
1.25%5

6%

±8	 in.2±5
8 in.2

�	 sin�6	x � 1
2 	 dx�3 � sin 2x� dx

1 � 2x2

�1 � x2
dx�

3
�2x � 1�2 dx6x dx

dy � �0.040�y � �0.039;dy � 0.3�y � 0.331;

T�x� � �cos 2��x � 2� � sin 2

T�x� � 80x � 128

T�x� � 4x � 4

let f �x� �
x2 � 1
x � 1

.x � 1.563 mi

x

1

−1

−2

(0.860, 0.561)

−3

y

2
π π

�1.939, 0.240�

x 1.9 1.99 2 2.01 2.1

f �x� 3.610 3.960 4 4.040 4.410

T�x� 3.600 3.960 4 4.040 4.400

x 1.9 1.99 2 2.01 2.1

f �x� 24.761 31.208 32 32.808 40.841

T�x� 24.000 31.200 32 32.800 40.000

x 1.9 1.99 2 2.01 2.1

f �x� 0.946 0.913 0.909 0.905 0.863

T�x� 0.951 0.913 0.909 0.905 0.868
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x 0 0.5 1 2

�1 1 x 1 1.2247 1.4142 1.7321

1
2 x 1 1 1 1.25 1.5 2

33. Concave upward:
Concave downward:

35. Concave upward:

Concave downward:
37. Relative minimum:
39. Relative maxima:

Relative minimum:
41. 43. Increasing and concave down

45. (a)
(b)

(c) Maximum in 2005; Minimum in 1972 (d) 2005
47. 8 49. 51. 53. 0 55. 6
57. Vertical asymptote: Horizontal asymptote:
59. Vertical asymptote: Horizontal asymptote:
61.

Vertical asymptote:
Relative minimum:
Relative maximum:

63. Horizontal asymptote:
Relative minimum:

Relative maximum:

65. 67.

69. 71.

73. 75.

77. 79.

81. 83. (a) and (b) Maximum:
Minimum:

85. P.M.; km
87. 89. Proof 91. 14.05 ft
93. ft 95. mi h
97. 99.

101.

103.

P.S. Problem Solving (page 245)
1. Choices of may vary.

(a) One relative minimum at 
for

(b) One relative maximum at 
for

(c) Two relative minima for 
when

(d) If there are three critical
points; if there is only
one critical point.

3. All where is a real number 5–7. Proofs
9. About 9.19 ft

11. Minimum: There is no maximum.
13. (a)–(c) Proofs
15. (a)

(b) Proof

��2 � 1�d;

cc

a � 0,
a < 0,

x � ±��a�2
a < 0

a < 0
�0, 1�

a � 0
�0, 1�

x

5
4

y

6
7
8

3
2

−1
−2

2−2

a = −3

a = −2

a = −1

a = 1 a = 3 a = 2 a = 0

a

dV
V


 100 � ±0.83%dV � ±8.1	 cm3,

dS
S


 100 � ±0.56%dS � ±1.8	 cm2,

dy � �1 � cos x � x sin x� dx
�1.164, 1.453�1.532, �0.347, 1.879

�v � 54.773(32�3 � 22�3�3�2 � 21.07
�0, 0�, �5, 0�, �0, 10�

d � 64t � 4.92 � 4:55

�1, 1�
�1, 3�

x
2

2

2

(0, 1)

y

π

π

ππ

π

3π

(2 , 2   + 1)π π

2
π
2

2
3π(

( (

(,

,

(0, 9)

(−3, 0) (3, 0)

10

x
42

5

−2−4

y

x
21

x = 0

5

10

−1

−5

−2
(−1, −6)

(1, 6)

y

x

(0, 4)

−1−2−3 1 2 3
−1

1

2

5

4

− , 3
3

3 ((

y

, 3
3

3 ((

y

x

x = 2

y = −3
−1−2 1 3 4 5 6

−2

−4

−5

−6

1

2

2

5
3
   , 0( (

5
2

   0, −( (

(−3, 0)

(−1, −1.59)

(0, 0)
x

21−1−2

1

2

3

4

−4−5

−3

y

x

(1, 0)

(3, 0)

, 1.1111
5( (

(1.71, 0.60)

(2.69, 0.46)

−2 4 6

2

4

−2

−4

y

8
x

4 62

6

4

−2−6

2

−8

8

−8

y

(−4, 0) (4, 0)

(0, 0)

2, −8−2 ))

2, 82 ))

x

(2, 4)

(4, 0)(0, 0)

5

4

2

3

5321

1

y

�2.155, 0.077�

��0.155, �1.077�

y � 0
−2 5

−1.4

0.2

��3, �108�
�3, 108�
x � 0

−5 5

−200

200

y � 2x � 4;
y � �2x � 0;

��
2
3

0
0 40

500

D � 0.00430t4 � 0.2856t3 � 5.833t2 � 26.85t � 87.1

x
2 3 4 5

5

2

6

(0, 0)

(6, 0)

3

7

−1

4

1

y

7

(3, f (3))

(5, f (5))

�0, 0�
���2�2, 1�2���2�2, 1�2�,

��9, 0�
�3	�2, 2	��0, 	�2�,

�	�2, 3	�2��3	�2, 3	�2�;�	�2, 	�2�,
���, 3)

�3, ��;�3, �54);
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v 20 40 60 80 100

s 5.56 11.11 16.67 22.22 27.78

d 5.1 13.7 27.2 44.2 66.4

17. (a)

(b) The distance between the back of the first vehicle and the
front of the second vehicle is the safe stopping 
distance. The first vehicle passes the given point in 
seconds, and the second vehicle takes additional 
seconds. So,

(c)

(d) 1.719 sec; 33.714 km h (e) 10.597 m
19. (a)

(b)

Chapter 4
Section 4.1 (page 255)
1–3. Proofs 5. 7.

9.

11.

13.

15. 17. 19.

21. 23. 25.

27.
29.
31. 33. 35.
37. 39. 41.
43.
45. Answers will vary. 47. Answers will vary.

Example: Example:

49.
51. (a) Answers will vary. 53. (a) Answers will vary.

Example: Example:

(b) (b)

55. (a) (b)

(c)

57. 59.
61. 63.
65. (a) (b) 69 cm

67. When you evaluate the integral you are finding a 
function that is an antiderivative of So, there is no 
difference.

69.

71. 62.25 ft 73.
75.

77. 7.1 m 79. 320 m; 
81. (a)

(b) (c)
83.
85. (a) (b) 190 m
87. (a) 300 ft (b)

89. (a) Airplane A:

Airplane B: sB �
49,275

68
t2 � 250t � 17

sA �
625
2

t2 � 150t � 10

60 ft�sec � 41 mi�h
1.18 m�sec2

a�t� � �1��2t3�2�; x�t� � 2�t � 2
�3�0, 1�, �3, 5�

v�t� � 3t2 � 12t � 9; a�t� � 6t � 12
�32 m�sec

f �t� � �4.9t 2 � v0t � C2 � �4.9t 2 � v0 t � s0

v�t� � �9.8t � C1 � �9.8t � v0

v0 � 187.617 ft�sec

x
1 2−2−3 3

1

2

3

−2

−3f

f ′

f ″

y

f �x�.F�x�
� f �x� dx,

h�t� �
3
4 t 2 � 5t � 12

f �x� � �4�x � 3xf �x� � x2 � x � 4
h�t� � 2t 4 � 5t � 11f �x� � 3x2 � 8

15

−8

−15

12

y � x2 � 6

3

−9

−3

9

6

−1

−6

7

−4 8

−2

6

y � sin x � 4y �
1
4 x2 � x � 2

3

−2

6

−4

y

x

x

y

−3 5

−3

5

y � x2 � x � 1

y

x

f ′

−1−3 1 2
−2

−4

4

6

8
f(x) = − x3 + 2x + 31

3

f(x) = − x3 + 2x1
3y

x
−1−2−3 1 2 3

2

3

5

f(x) = 4x + 2

f ′

f(x) = 4x

�csc x � C
tan y � Ctan  � cos  � Ct � csc t � C

5 sin x � 4 cos x � Cx � C2
7 y7�2 � C
x3 �

1
2 x2 � 2x � C

2
3 x3�2 � 12x1�2 � C �

2
3 x1�2�x � 18� � C

�1��4x4� � C3
5 x 5�3 � C2

5 x 5�2 � x2 � x � C

1
6 x6 � x � Cx2 � x3 � C1

2 x2 � 7x � C

�
1

4x2 � C
1
2 �

x�2

�2	 � C
1
2
x�3 dx
 1

2x3 dx

�
2
�x

� C
x�1�2

�1�2
� C
x�3�2 dx
 1

x�x
dx

3
4

x 4�3 � C
x 4�3

4�3
� C
x1�3 dx
 3�x dx

SimplifyIntegrateRewriteOriginal Integral
y �

2
5 x 5�2 � Cy � 3t3 � C

5

3

−3

−3
(0, 0)

P(x)

f (x)

P�x� � x � x2

�s � 9.365 m�sec;

s � 9.365 m�sec

30
0

0

10

T � d�s��s � 5.5�s.
d�s��s

5.5�s
d�s�,

d�s� � 0.071s2 � 0.389s � 0.727
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n 5 10 50 100

s�n� 1.6 1.8 1.96 1.98

S�n� 2.4 2.2 2.04 2.02

(b) (c)

Yes, for 
91. True 93. True
95. False. has an infinite number of antiderivatives, each differing

by a constant.
97. 99. Proof

Section 4.2 (page 267)

1. 75 3. 5. 7. 9.

11. 13. 15. 84

17. 1200 19. 2470 21. 12,040 23. 2930
25. (a) (b)

27.
29.
31.
33. The area of the shaded region falls between 12.5 square units and

16.5 square units.
35. The area of the shaded region falls between 7 square units and

11 square units.
37. 39. 9 41. 43.

45. 47.

49. 51.

53.

55. (a) (b)

(c)

(d)

(e)

(f)

57. 59.

61. 63.

65. 67.

69. 71.

73. 75. 0.34569
8

x

6

y

8

10

2

−2

−4

−2−4

y

x
−5 5 10 15 20 25

−2

−4

−6

2
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6

A �
44
3A �

125
3

y

x
2 4 6 8

−1

1

2

3

4

x
1−1

2

1

y

A � 8A �
2
3

y

x
−1−2 1 2 4 5

−6

6

12

18

24

30

y

x
−1 1 2 3 4 5

−5

5

10

15

20

A � 34A � 54

x
2 3

3

1

1

yy

x
−1−2 1 2 3

1

2

3

4

5

A �
7
3A � 3

lim
n→� 

n

i�1
�i�2�n���2�n� � 2lim

n→� 
n

i�1
��i � 1��2�n���2�n� � 2;

� 
n

i�1
�i�2�n���2�n�

S�n� � 
n

i�1
f �xi� �x

 � 
n

i�1
��i � 1��2�n���2�n�

s�n� � 
n

i�1
f �xi�1� �x

�x � �2 � 0��n � 2�n

x
31

3

2

1

y

lim
n→�

��3n � 1��n� � 3

lim
n→�

1
6 �

2n3 � 3n2 � n
n3 	 �

1
3

lim
n→�

�12�n � 1�
n � � 12

n � 10,000: S � 1.99999998n � 10,000: S � 1.0002
n � 1000: S � 1.999998n � 1000: S � 1.002
n � 100: S � 1.9998n � 100: S � 1.02
n � 10: S � 1.98n � 10: S � 1.2
�2�n � 1��n � 1���n2�n � 2��n

A � s � 0.646A � s � 0.518
A � S � 0.746A � S � 0.76881

4

0.7908 < �Area of region� < 1.1835
55 < �Area of region� < 74.5
13 < �Area of region� < 15

Area � 17.25Area � 21.75

y

x
1 2 3 4

−3

3

6

9

12

y

x
1 2 3 4

−3

3

6

9

12

3
n 

n

i�1
�2�1 �

3i
n 	

2

�2
n 

n

i�1
��2i

n 	
3

� �2i
n 	�


6

j�1
�7� j

6	 � 5�
11

i�1

1
5i

4c
158
85

1 2

1

2

3 4
x

y

f

t > 0.0505 hd < 3

0
0

0.1

20

d
3

d �
28,025

68
t2 � 100t � 7

0
0

0.1

20

sA

sB
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n 4 8 20 100 200

s�n� 15.333 17.368 18.459 18.995 19.060

S�n� 21.733 20.568 19.739 19.251 19.188

M�n� 19.403 19.201 19.137 19.125 19.125

n 4 8 12 16 20

Approximate
Area

5.3838 5.3523 5.3439 5.3403 5.3384

n 4 8 12 16 20

Approximate
Area

2.2223 2.2387 2.2418 2.2430 2.2435

77.

79.

81. b
83. You can use the line  The sum of the areas of the

bounded by and  circumscribed rectangles in
The sum of the areas of the the figure below is the 
inscribed rectangles in the upper sum.
figure below is the lower sum.

The rectangles in the first graph do not contain all of the area of
the region, and the rectangles in the second graph cover more
than the area of the region. The exact value of the area lies
between these two sums.

85. (a) (b)

(c) (d) Proof

(e)

(f ) Because is an increasing function, is always increasing
and is always decreasing.

87. True

89. Suppose there are rows and columns. The stars on the
left total as do the stars on the right. There are

stars in total. So,
and

91. (a)
(b) (c)

93. Proof

Section 4.3 (page 278)

1. 3. 32 5. 0 7. 9.

11. 13. 15.

17. 19. 21.

23. 25.

27. 29.

31. 33. 35. 48 37.

39. 16 41. (a) 13 (b) (c) 0 (d) 30
43. (a) 8 (b) (c) (d) 30 45.
47. (a) (b) 4 (c) (d)

(e) (f )
49. (a) 14 (b) 4 (c) 8 (d) 0 51. 81

53.

55. No. There is a discontinuity at 57. a 59. dx � 4.


n

i�1
f �xi� �x > 
5

1
f �x� dx

23 � 2	5 � 2	

3 � 2	��1 � 2	��	

�48, 88�4�12
�10

A � 49	�2

�12�6y

x
−2−4−6−8 2 4 6 8

−4

2

4

6

8

10

12

Semicircle

A � 1A � 14

1 Triangle

1−1
x

yy

x
−1 1 2 3

−4

4

8

12

Trapezoid

A � 8A � 12

x

Triangle

4

2

42

y

x
5

5

3

2

42 31

1

Rectangle

y


2

0
y3 dy
	�2

0
 cos x dx
5

�5
�25 � x2� dx


4

�4
�4 � �x�� dx
4

0
 5 dx
3

0

�x2 � 4 dx


5

�1
�3x � 10� dx10

32�3 � 3.464

76,897.5 ft2

0
0 350

500

y � ��4.09 
 10�5�x3 � 0.016x2 � 2.67x � 452.9
1 � 2 � .  .  . � n � �n�n � 1���2.

2�1 � 2 � .  .  . � n� � n�n � 1�n�n � 1�
1 � 2 � .  .  . � n,

n � 1n

S�n�
s�n�f

M�4� �
6112
315

x
1

2

2 3

4

4

6

8

y

S�4� �
326
15s�4� �

46
3

x
1

2

2 3

4

4

6

8

y

x
1

2

2 3

4

4

6

8

y

x

y

a b

x

y

a b

x � b.x � a
y � x
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n 4 8 12 16 20

L�n� 3.6830 3.9956 4.0707 4.1016 4.1177

M�n� 4.3082 4.2076 4.1838 4.1740 4.1690

R�n� 3.6830 3.9956 4.0707 4.1016 4.1177

n 4 8 12 16 20

L�n� 0.5890 0.6872 0.7199 0.7363 0.7461

M�n� 0.7854 0.7854 0.7854 0.7854 0.7854

R�n� 0.9817 0.8836 0.8508 0.8345 0.8247

61.

63.

65. True 67. True

69. False: 71. 272 73. Proof

75. No. No matter how small the subintervals, the number of 
both rational and irrational numbers within each subinterval is
infinite and 

77. and maximize the integral. 79.

Section 4.4 (page 293)
1. 3.

Positive Zero

5. 12 7. 9. 11. 13. 15. 17.

19. 21. 23. 25. 27.

29. 31. 33. 0 35. 37. 1 39.

41. 20 43. 45.
47. 49.

51. Average value 53. Average value

55. Average value 57. About 540 ft

59. (a) 8 (b) (c) Average value
61. (a) (b) 827 N
63. About
65. (a)

(b) (c) 2475.6 m

67. 69.

71.

73. (a)
(b) Increasing: Decreasing:
(c) A maximum occurs at 
(d)

75. 77. 79.

81. 83. 85. 87. 8
89. 91.
93. 95. (a)

(b)

An extremum of occurs 
at

97. (a) ft to the right (b) 99. (a) 0 ft (b)
101. (a) 2 ft to the right  (b) 2 ft 103. 28 units 105. 8190 L
107. has a nonremovable discontinuity at 
109. has a nonremovable discontinuity at 
111. 113. True

115.

Because is constant.

117. (a) 0 (b) 0 (c) (d) 0

Section 4.5 (page 306)

1.

3.

5.

7. No 9. Yes 11.
13. 15.
17. 19.
21. 23.
25. 27.
29. 31. �2x � C�

1
4�1 � 1�t�4 � C

��1 � x2 � C�1��3�1 � x3�� � C

1��4�1 � x2�2� � C�
15
8 �1 � x2�4�3 � C

1
3�t2 � 2�3�2 � C1

15�x3 � 1�5 � C

1
12�x4 � 3�3 � C2

3 �25 � x2�3�2 � C

1
5 �1 � 6x�5 � C

sec2 x dxtan x
 tan2 x sec2 x dx

2x dxx2 � 1
 x
�x2 � 1

dx

16x dx8x2 � 1
 �8x2 � 1�2�16x� dx

du � g��x� dxu � g�x�
f �g�x��g��x� dx

xf �x� � �x
0 f �t� dt

f �x�f��x� � 0,

f��x� �
1

�1�x�2 � 1 ��
1
x2	 �

1
x2 � 1

� 0

2�	 � 63.7%
x � 	�2.f �x� � sec2 x

x � 0.f �x� � x�2

63
2  ft113

10  ft3
2

x � 2.
g

C�10� � $338,394
C�5� � $214,721
C�1� � $137,000
C�x� � 1000�12x 5�4 � 125�

x

y

1

1 2 3 4

2

−2

−1

f g

3x2 sin x 6cos x�sin x
x cos x�x4 � 1x2 � 2x

tan x � 13
4 x 4�3 � 121

2 x2 � 2x

2 4 6 8

2

4

6

8

10

x

y

x � 4.
�4, 8��0, 4�;

g�8� � 5g�6� � 8,g�4� � 9,g�2� � 7,g�0� � 0,

F�8� � sin 8 � sin 1 � 0.1479
F�5� � sin 5 � sin 1 � �1.8004
F�2� � sin 2 � sin 1 � 0.0678
F�x� � sin x � sin 1

F�8� �
35
2F�8� � 72

F�5� � 16F�5� � 15
F�2� � 10F�2� � �6
F�x� � �20�x � 20F�x� � 2x2 � 7x

70

−10

−10

90

v � �0.00086t3 � 0.0782t2 � 0.208t � 0.10
0.5318 L

1500�3�	 �F�x� � 500 sec2 x
�

10
3�7

1 f �x) dx � 20;4
3

x � 0.690, x � 2.451
� 2�	

x � 3�2�2 � 0.6300x � ±�3 � ±1.7321
�

1
4� 6

±arccos �	�2 � ±0.48171444
225 � 6.4178

3 3�2�2 � 1.889932
3

52
3

1
62�3�3	�4

	 � 264
3

25
2�

27
20�

1
18

�42
3

1
2

1
3�

10
3�2

−5

−5 5

5

−2

−5 5

5

1
3b � 1a � �1

f �ci � � 0 or f �ci � � 1.


2

0
��x� dx � �2
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33.
35.
37.
39. 41.
43. (a) Answers will vary. 45. (a) Answers will vary.

Example: Example:

(b) (b)

47. 49. 51.

53. or or 

55. 57. or

59. 61.

63. 65.

67.

69.

71.

73. or

75. 0 77. 79. 2 81. 83. 85.

87. 89.

91. 93. 4 95.

97. 99.

101. 9.21

103. 105. 107. (a) (b) (c) (d) 64

109.

111. If then and

113. 16 115. $250,000
117. (a) Relative minimum: or July

Relative maximum: or February
(b) 36.68 in. (c) 3.99 in.

119. (a) Maximum flow:
at

(b) 1272 thousand gallons
121. (a) (b)
123. (a) $9.17 (b) $3.14
125. (a) (b) is nonnegative because the

graph of is positive at the
beginning, and generally has
more positive sections than
negative ones.

(c) The points on that correspond to the extrema of are
points of inflection of 

(d) No, some zeros of such as do not correspond
to extrema of The graph of continues to increase after

because remains above the axis.
(e)

The graph of is that of shifted
2 units downward.

127. (a) Proof (b) Proof

129. False. 

131. True 133. True 135–137. Proofs
139. Putnam Problem A1, 1958

Section 4.6 (page 316)

1. 2.7500 2.6667 2.6667
3. 4.2500 4.0000 4.0000
5. 20.2222 20.0000 20.0000
7. 12.6640 12.6667 12.6667
9. 0.3352 0.3334 0.3333

11. 3.2833 3.2396 3.2413
13. 0.3415 0.3720 0.3927
15. 0.5495 0.5483 0.5493
17. 0.0975 0.0977 0.0977
19. 0.1940 0.1860 0.1858
21. Trapezoidal: Linear (1st-degree) polynomials

Simpson’s: Quadratic (2nd-degree) polynomials
23. (a) 1.500 (b) 0.000 25. (a) 0.01 (b) 0.0005
27. (a) 0.1615 (b) 0.0066 29. (a) (b)
31. (a) (b) 33. (a) (b)
35. (a) (b) 37. (a) (b)
39. (a) 24.5 (b) 25.67 41. Answers will vary.

n � 48n � 643n � 12n � 130
n � 16n � 287n � 8n � 77
n � 26n � 366

���

Graphing UtilitySimpson'sTrapezoidal

ExactSimpson'sTrapezoidal


 �2x � 1�2 dx �
1
6 �2x � 1�3 � C

gh
0 9.4

−4

4

x-fx � 	�2
gg.
x � 	�2,f,

g.
fg

f
g

0 9.4

−4

f

g

4

b � 58.6%P0.50, 0.75 � 35.3%

t � 9.36.R � 61.713

0 24
0

70

�1.3, 5.1�
�6.7, 0.7�

�x�5 � x2�3 dx � �
1
2��5 � x2�3��2x� dx � �

1
2�u3 du.

du � �2x dxu � 5 � x2,

2
3

0
�4x2 � 6� dx � 36

�
64
3

128
3

64
3

2
3

272
15

−1

−1 5

6

0
0 8

15144
5

−0.5

−1 7

214
3

2��3 � 1�1209�28

f �x� � �2x2 � 1 � 3f �x� � �2x3 � 1�3 � 3

3�3�44
15

1
212 �

8
9�2

��x � 2�x � 1� � C1�x � 1 � 2�x � 1 � C

��2x � 1�15� �3x2 � 2x � 13� � C

1
8�2

5�2x � 1�5�2 �
4
3�2x � 1�3�2 � 6�2x � 1�1/2� � C �

�
2

105 �1 � x�3�2�15x2 � 12x � 8� � C

��2
3�1 � x�3�2 �

4
5�1 � x�5�2 �

2
7�1 � x�7�2� � C �

2
5 �x � 6�5�2 � 4�x � 6�3�2 � C �

2
5 �x � 6�3�2�x � 4� � C

f �x� �
1

12�4x2 � 10�3 � 8f �x� � �
1
2 cos 4x � 1

f �x� � 2 cos�x�2� � 4�cot x � x � C

1
2 sec2 x � C1

1
2 tan2 x � C1

5 tan5 x � C

�
1
8 cos 4x � C2�

1
4 cos2 2x � C1

1
4 sin2 2x � C

�sin�1�� � C�
1
4 cos 4x � C�cos�	x� � C

6

−3

−6

5

−2 2

−1

2

y �
1
2 sin x 2 � 1y � �

1
3 �4 � x2�3�2 � 2

−4 4

−4

4

x

y

x

y

−2 2

−1

3

�1��2�x2 � 2x � 3�� � C2x2 � 4�16 � x2 � C

6y3�2 �
2
5 y5�2 � C �

2
5 y3�2�15 � y� � C

1
4 t4 � 4t2 � C

2
5x5�2 �

10
3 x3�2 � 16x1�2 � C �

1
15�x �6x2 � 50x � 240� � C
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n L�n� M�n� R�n� T�n� S�n�

4 0.8739 0.7960 0.6239 0.7489 0.7709

8 0.8350 0.7892 0.7100 0.7725 0.7803

10 0.8261 0.7881 0.7261 0.7761 0.7818

12 0.8200 0.7875 0.7367 0.7783 0.7826

16 0.8121 0.7867 0.7496 0.7808 0.7836

20 0.8071 0.7864 0.7571 0.7821 0.7841

43.

45. 0.701 47. 17.476
49. (a) Trapezoidal Rule: 12.518; Simpson’s Rule: 12.592

(b)

51. 53. 55. 2.477

Review Exercises for Chapter 4 (page 318)

1. 3.

5. 7.
9.

11. (a) Answers will vary. (b)
Example:

13. 15. (a) 3 sec; 144 ft (b) (c) 108 ft

17. 19. 420 21. 3310

23. (a) (b) (c)

25.
27. 29.

31. 33. 35.

37. 39. (a) 17 (b) 7 (c) 9 (d) 84

41. 56 43. 0 45. 47.

49. 51.

53. 55.

57. 59. Average value

61. 63.

65. 67.
69.

71. 73.

75.

77. 79. 2 81. 83. 2

85. (a) Answers will vary. (b)
Example:

−3 3

2

y

x

6

−5

−6

3

y � �
1
3�9 � x2�3�2 � 5

28	�1521�4

1
3	

�1 � sec 	x�3 � C

�2�1 � sin  � C1
4 sin4 x � C

�
1
30�1 � 3x2�5 � C �

1
30�3x2 � 1�5 � C

2
3�x3 � 3 � C�

1
7x7 �

9
5x5 � 9x3 � 27x � C

x2 � 3x � 2x2�1 � x3

A � 16

1

2 4 6 8 10

2

25
4

2
5

,

x

y

))

�
2
5, x �

25
4

2−2
−2

2

4

6

8

10

4 6 8 10
x

y

A �
1
4

�cos 2 � 1 � 1.416

x

1

−1

1−1

y

A �
10
3A � 10

1 2 4 5 6 7 8

1

2

3

4

5

6

7

8

x

yy

x
−1 2 3 4 5

−2

−4

2

4

6

8

��2 � 2��2422
5

A �
25
2

x
9

y

6

9

12

3

−3

3−3 6

Triangle


0

�4
�2x � 8� dx
6

4
�2x � 3� dx27

2

x
4

1

3

−4

y

4

−2

2

6

1 2−1−3 3

y

x
−1 1 2 3 4 5

−2

2

4

6

8

A � 12A � 15
9.038 < �Area of region� < 13.038


10

i�1
�4i � 2�

n

i�1
i3

10

i�1
�2i � 1�


10

n�1

1
3n

3
2 sec240 ft�sec

−2 6

−6

2

x

y

1

8

−7

−4

y � x2 � 4x � 2
y � 1 � 3x2

x2 � 9 cos x � Cx2�2 � 4�x2 � C

4
3 x3 �

1
2 x2 � 3x � C

x

f ′

f

y

7435 m23.14159


2

0
y dx � 12.521

y � �1.37266x3 � 4.0092x2 � 0.620x � 4.28
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x 0.5 1.5 2 2.5

�x
1 �1/t� dt �0.6932 0.4055 0.6932 0.9163

x 3 3.5 4

�x
1 �1/t� dt 1.0987 1.2529 1.3865

x 0 1 2 3 4 5 6 7 8

F�x� 0 �
1
2 �2 �

7
2 �4 �

7
2 �2 1

4
3

87.
89. (a)

(b) 2.22 in.
91. Trapezoidal Rule: 0.285 93. Trapezoidal Rule: 0.637

Simpson’s Rule: 0.284 Simpson’s Rule: 0.685
Graphing Utility: 0.284 Graphing Utility: 0.704

P.S. Problem Solving (page 321)

1. (a) (b)
(c) (d) Proof

3. (a)

(b) (c)
5. (a)

(b)

(c) Relative maxima at 
Relative minima at 

(d) Points of inflection at 
7. (a)

(b) Base height

(c) Proof

Area
9. (a)

(b)

(c) (d)

11. Proof 13. 15.

17. (a) Proof (b) Proof (c) Proof
19. (a)

(b)
21.

Chapter 5
Section 5.1 (page 331)
1.

3. (a) 3.8067 (b)

5. (a) (b)

7. b 8. d 9. a 10. c
11. 13.

Domain: Domain:
15. 17.

Domain: Domain:
19. (a) 1.7917 (b) (c) 4.3944 (d) 0.5493
21. 23.
25. 27.
29.

31. 33. 35.

37. (a) (b)

39. 41. 43. y � 3x � 3ln 4 � 1.3863��

� g�x�
� 2 ln x � ln 4

f �x� � ln
x2

4
� ln x2 � ln 4

0

−3

9

f = g

3

ln�9��x2 � 1�ln 3�x�x � 3�2

x2 � 1
ln

x � 2
x � 2

ln z � 2 ln�z � 1�

1
2�ln�x � 1� � ln x�ln x �

1
2 ln�x2 � 5�

ln x � ln y � ln zln x � ln 4
�0.4055

x > �2x > 1

y

x
−3 1 2 3

−1

−2

−3

1

2

3

−2
x

4

1

2

−1

−2

3

y

x > 0x > 0

2

1

x
321

−1

y

x
5421 3

3

2

1

−2

−3

−1

y

ln 0.8 � 
0.8

1

1
t

dt � �0.2231�0.2231

ln 45 � 
45

1

1
t

dt � 3.8067

a � �4, b � 4
S�4� �

1
3� f �0� � 4 f �1� � 2 f �2� � 4 f �3� � f �4�� � 5.42

R�n�, I, T�n�, L�n�

1 � 
1

0

�1 � x4 dx � �22
3

x � 2x � 4, 8

x

y

1

42 5 6 7 8 9

2
3
4
5

−2
−3
−4
−5

−1

f
(0, 0)

(6, 2)
(8, 3)

(2, −2)

� 36

Area �
2
3 bh �

2
3�6��9� � 36

� 9� 6,

−4 −2 −1 1

1
2
3
4
5
6
7

10

2 4 5

y

x

x � 1, �3, �5, �7
x � 2, 2�2
x � �2, �6

2 3 5 6 7 2 21 2 3
−0.25

0.25

0.50

0.75

1.00

x

y

x

y

1

1 3

2

−2

−1

16�15�16n4 � 16���15n4�

lim
n→� �32

n5 
n

i�1
i 4 �

64
n4 

n

i�1
i3 �

32
n3 

n

i�1
i2�

x � 2.718
L��1� � 1L��x� � 1�x,L�1� � 0

�12
0 �2.880 � 2.125 sin �0.578t � 0.745�� dt � 36.63 in.

468
7
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45. 47. 49. 51.

53. 55. 57.

59. 61. 63.

65. 67. 69.

71. 73.

75.
77. (a) 79. (a)

(b) (b)

81. (a) 83.
(b)

85. 87.

89.

91. Relative minimum:
93. Relative minimum:
95. Relative minimum: Point of inflection:
97.

The values of and and their
first derivatives agree at 

99. 101.

103. 105.

107. The domain of the natural logarithmic function is and 
the range is The function is continuous, increasing,
and one-to-one, and its graph is concave downward. In addition,
if and are positive numbers and is rational, then 

and

109. (a) Yes. If the graph of is increasing , then Since
you know that and thus

Therefore, the graph of is increasing.
(b) No. Let (positive and concave up) and let

(not concave up).
111. False;

113. False; is a constant, so 

115. (a) (b) 30 yr; $503,434.80
(c) 20 yr; $386,685.60

(d) When 
When

(e) Two benefits of a higher monthly payment are a shorter term
and the total amount paid is lower.

117. (a) (c)

(b)

Answers will vary.

119. (a) (b) When 

When

(c)

121. (a) (b)

For For 
is increasing at a faster is increasing at a faster

rate than for large values rate than for large values
of of 

increases very slowly for large values of 

Section 5.2 (page 340)
1. 3. 5.

7. 9.
11. 13.
15. 17.

19. 21.
23. 25.
27.

29. 31.

33. 35.
37. 39.
41. 43.

The graph has a hole at x � 2.

−10 10

−10

(1, 0)

10

−10

−6 6

10

(1, 2)

y � �3 ln�2 � x� � Cy � 4 ln�x� � C
ln�sec x � 1� � Cln�1 � sin t� � C

1
3 sin 3 �  � C�

1
2 ln�csc 2x � cot 2x� � C

3 ln�sin


3� � Cx � 6�x � 18 ln��x � 3� � C

�2x � ln�1 � �2x� � C

2 ln�x � 1� � 2��x � 1� � C2�x � 1 � C

1
3 �ln x�3 � C1

3 x3 � 2x � ln�x2 � 2 � C

1
3 x3 � 5 ln�x � 3� � C1

2 x2 � 4x � 6 ln�x � 1� � C

1
3 ln�x3 � 3x2 � 9x� � Cx2�2 � ln�x 4� � C

ln�x4 � 3x� � C1
2 ln�x2 � 3� � C

1
2 ln�2x � 5� � Cln�x � 1� � C5 ln�x� � C

x.f �x� � ln x
x.x.

ff
gg

g��x� > f��x�.x > 256,g��x� > f��x�.x > 4,

0 20,000
0

g

f

15

0
0

500

g

f

25

lim
x→10�

dy
dx

� 0

dy�dx � ��19�9.
x � 9,

dy�dx � ��3.
x � 5,

0
0

10

20

T��70� � 0.97��lb�in.2

lim
p →�

T�� p� � 0T��10� � 4.75��lb�in.2

0 100
0

30

0
0

100

350

dt�dx � �0.0287.x � 1611.19,
dt�dx � �0.0805.x � 1398.43,

0
1000 3000

50

d
dx

�ln 	� � 0.	

ln x � ln 25 � ln 25x.
g�x� � ln�x2 � 1�

f �x� � x2 � 1
ff��x� > 0.

f��x� � g��x�f �x�f �x� > 0,
g��x� > 0.g

ln�a�b� � ln a � ln b.
ln�an� � n ln a,ln�a � b� � ln a � ln b,ln�1� � 0,

nba

���, ��.
�0, ��

�2x2 � 2x � 1��x � 1
�x � 1�3�2

3x3 � 15x2 � 8x

2�x � 1�3�3x � 2

�2x2 � 1���x2 � 1x � 0.567

x � 1.
P2P1,f,

−1 5

−2

P1

P2

f

2

P2�x� � x � 1 �
1
2�x � 1�2P1�x� � x � 1;

�e2, e2�2��e, e�;
�e�1, �e�1�
�1, 1

2�
xy� � y� � x��2�x2� � �2�x� � 0

y � x � 1
y�1 � 6x2�

1 � y

(1, 0)
3

−2

−1

2

2xy��3 � 2y2�y � x � 1

2

−2

−2

2

π , ln (( 3
24

−1 2

−3

4

(1, 3)

y �
1
3 x �

1
12	 �

1
2 ln�3

2�5x � y � 2 � 0
�ln�2x� � 1��x

3 cos x
�sin x � 1��sin x � 2��tan x �

sin x
cos x � 1

cot x
�x2 � 1

x2

�4
x�x2 � 4�

1
1 � x2

2
x ln x2 �

1
x ln x

1 � 2 ln t
t3

1 � x2

x�x2 � 1�
2x2 � 1

x�x2 � 1�2��t � 1�

4�ln x�3�x2�x1�xy � 4x � 4
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45. 47.

49. (a) (b)

51. (a) (b)

53. 55. 57.

59. 61.

63. 65.

67. 69. 71. d 73. 75.
77.

79.

81. Trapezoidal Rule: 20.2 83. Trapezoidal Rule: 5.3368
Simpson’s Rule: 19.4667 Simpson’s Rule: 5.3632

85. Power Rule 87. Log Rule 89. 91. Proof
93.

95.

97. 1 99.
101.
103. 105. False. 107. True
109. (a) (b) Answers will vary.

Example:

(c) Answers will vary.
111. Proof

Section 5.3 (page 349)
1. (a)

(b)

3. (a)
(b)

5. (a)

(b)

7. (a)

(b)

9. c 10. b 11. a 12. d
13.

One-to-one, inverse exists.

15.

Not one-to-one, inverse does not exist.

−1.5

−

1.5

2
	

2
5	

−1

−10 2

7

x

2

1

1

3

2 3−1

f = g

y

g� f �x�� �
1

1�x
� xf �g�x�� �

1
1�x

� x;

x

4

8

10

12

2

6

42 6 8 10 12

g

f

y

g� f �x�� � ��x � 4�2
� 4 � x

f �g�x�� ��x2 � 4 � 4 � x;

x

2

1

3

2 3−3

−3

−2

−2

g

f

1

y

g� f �x�� � 3�x3 � xf �g�x�� � �3�x�3
� x;

x

2

3

1

2 31−3

g

f

y

g� f �x�� � ��5x � 1� � 1]�5 � x
f �g�x�� � 5��x � 1��5� � 1 � x

−10 10

−10

10

y 2 � e�ln x� ln 4 � 4�x−10 10

−10

10

1
2�ln x� � ln x1�2$168.27

P�3� � 7715P�t� � 1000�12 ln�1 � 0.25t� � 1�;
1��e � 1� � 0.582

� �ln�sec x � tan x� � C

ln�sec x � tan x� � C � ln�sec2 x � tan2 x
sec x � tan x � � C

�ln�cos x� � C � ln�1�cos x� � C � ln�sec x� � C
x � 2

�12�	�ln�2 � �3� � 5.03

15
2 � 8 ln 2 � 13.045

1
2 ln 26 ln 31�x1�x

ln��2 � 1� �
�2
2

� 0.174ln��x � 1
�x � 1	� 2�x � C

2��x � ln�1 � �x �� � Cln�2 � sin 2
1 � sin 1� � 1.929

�ln 3 � �1.0997
3

5
3 ln 13 � 4.275

8

−1

−1

8

y � ln x � x � 3

8−1

−2

−3

1

2

3

4

5

x

y
(1, 4)

−3 6

−3

3

y � ln�x � 2
2 	 � 1

x

3

−3

4−2

(0, 1)
y

−3 3

−3

(0, 2) 4

f �x� � �2 ln x � 3x � 2s � �
1
2 ln�cos 2� � C
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x 0 1 2 4

f �x� 1 2 3 4

x 1 2 3 4

f �1 �x� 0 1 2 4

17. 19.

One-to-one, inverse exists. One-to-one, inverse exists.

21.

One-to-one, inverse exists.

23. (a) 25. (a)
(b) (b)

(c) and are symmetric (c) and are symmetric 
about about 

(d) Domain of and (d) Domain of and 
all real numbers all real numbers

Range of and Range of and 
all real numbers all real numbers

27. (a) 29. (a)

(b) (b)

(c) and are symmetric (c) and are symmetric 
about about 

(d) Domain of and (d) Domain of and 

Range of and Range of and 

31. (a) 33. (a)
(b) (b)

(c) and are symmetric (c) and are symmetric 
about about 

(d) Domain of and (d) Domain of and 
all real numbers

Range of and Range of and 
all real numbers

35. (a)
(b)

(c) and are symmetric about 
(d) Domain of all real numbers

Domain of 
Range of 
Range of all real numbers

37.

39. (a) Proof
(b)

: total cost
: number of pounds of the less expensive commodity

(c) (d) 20 lb

41. Inverse exists. 43. Inverse does not exist.
45. Inverse exists. 47. on
49. on

51. on

53.

The graph of is a reflection of the
graph of in the line 

55. (a) and (b) 57. (a) and (b)

(c) is one-to-one and (c) is not one-to-one and does
has an inverse function. not have an inverse function.

59. One-to-one 61. One-to-one

63. (Answer is not unique.)
65. (Answer is not unique.)
67. Inverse exists. Volume is an increasing function, and therefore is 

one-to-one. The inverse function gives the time corresponding
to the volume 

69. Inverse does not exist. 71. 73.
75. 77. 79. 1�13�22�3�3

1�51�27
V.

t

x ≥  0f �1�x� � x � 3,
x ≥  0f �1�x� � �x � 3,

x ≥  0f �1�x� � 2 � x,x ≥  0f �1�x� � x2 � 2,

gf

−6 6

−4

g

g−1

4

−5 10

−4

f

f −1

6

y � �x.f
f �1

f
3−3

−2

f −1

2

f �1�x� � ��1 � �1 � 16x2���2x�,
0,

  if x � 0
  if x � 0

�0, 	�f��x� � �sin x  <  0

�0, ��f��x� � �8�x3  <  0
�4, ��f��x� � 2�x � 4�  >  0

�62.5, 80�
y
x
y �

20
7 �80 � x�

x
1 2 3 4

1

2

3

4 (4, 4)

(3, 2)

(2, 1)

(1, 0)

y

f �1:
�1 < y < 1f:

�1 < x < 1f �1:
f:

y � x.f �1f

−3 3

−2

f
f −1

2

�1  < x  <  1f �1�x� � �7x��1 � x2 ,

y � 0
f �1:ff �1:f

x � 0
f �1:ff �1:f

y � x.y � x.
f �1ff �1f

0 6
0

f

4

f −1

−3 3

−2

f −1

f

2

x ≥  0f �1�x� � x3�2,f �1�x� � x3 � 1
0 � y � 2y � 0

f �1:ff �1:f
0 � x � 2x � 0

f �1:ff �1:f

y � x.y � x.
f �1ff �1f

3

2

321

1

f = f −1

x

y

3

2

321

1

f

f −1

x

y

0 � x � 2
f �1�x� � �4 � x2,x � 0f �1�x� � x2,

f �1:ff �1:f

f �1:ff �1:f
y � x.y � x.
f �1ff �1f

x

f

1

2

−2

−2 1 2

y

f −1

4
x

4

2

2

−2

f −1

f−2

y

f �1�x� � x1�5f �1�x� � �x � 3��2

−10 2

−50

200

−1 5

−2

2

−4 8

−7

1
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81. (a) Domain of (b) Range of 
Domain of Range of 

(c) (d)

83. (a) Domain of (b) Range of 
Domain of Range of 

(c) (d)

85. 87. 32 89. 600
91. 93.
95. Let be one-to-one. Solve for as a function of 

Interchange and to get Let the domain of be
the range of Verify that and 
Example:

97. Many values yield the same value. For example,
The graph is not continuous at 

where is an integer.

99. 101. False. Let 103. True
105. (a) (b)

does not pass the horizontal line test.
107–109. Proofs 111. Proof; concave upward

113. Proof;

115. (a) Proof (b)

(c) or 

Section 5.4 (page 358)
1. 3. 5. 7.
9. 11. 13.

15.
17. 19.

21.

23. (a) (b)

Translation two units Reflection in the axis 
to the right and a vertical shrink

(c)
Reflection in the axis and 
a translation three units upward

25. c 26. d 27. a 28. b
29. 31.

33.

35. 37. (a) (b)

39. 41. 43. 45.

47. 49.
51. 53.
55. 57. 59.
61. 63. 65.

67. 69.

71. 73.
75.

77.

 0 � 0
3ex �cos�2 x � sin�2 x� � 0

2ex ���2 sin�2 x � �2 cos�2 x � cos�2 x � sin�2 x� �

ex ��cos�2x � sin�2 x � 2�2 sin�2 x � 2�2 cos�2 x� �

y� � 2y� � 3y � 0
4e�x � 4e�x � 0
y� � y � 0

3�6x � 5�e�3xy � ��e � 1�x � 1

10 � e y

xey � 3
y � �1�e�x � 1�e

y � exy � �4�x � 1�y � �x � 2
cos�x��x2e x cos x�2ex��ex � 1�2

�2�ex � e�x���ex � e�x�22e2x��1 � e2x�
3�e�t � et �2�et � e�t �ex�x3 � 3x2�

ex�1
x

� ln x	ex�4e�x��2�x�2e2x

y � �3x � 1y � 3x � 12.7182805  < e

lim
x→�

f �x� � lim
x→�

g�x� � e0.5

−1 4

−1

f

g

3

f

g

2 4 6

2

4

6

x

y

x

4

6

2

4 62−2

−2

g

f

y

y-

−4 8

−1

f

q

7

x-

−2 4

−3

f

h

3

−5 7

f g

7

−1

2

1−1
x

y

y

x
−1−2−3 1 2 3

1

2

3

4

5

6

3

4

31 2−1
x

y

x � 5.389
x � 10.389x � 7.389x � 8.862

x � 0.511x � 0x � 2.485x � 4

a � db � c � 0,a � �d,

f �1�x� �
b � dx
cx � a

�5�5

f

c � 2

5

−45

−6

90

f �x� � x2.1
4

n
��2n � 1�	��2f �	� � 0 � f �0�.

y-x-
f �1�x� � 3�xy � 3�x;x � 3�y;y � x3;f �x� � x3;

f �1� f �x�� � x.f � f �1�x�� � xf.
f �1y � f �1�x�.yx

y.xy � f �x�
� f � g��1�x� � �x � 1��2�g�1

� f �1��x� � �x � 1��2
�

1
11

f��5� �
1
2, � f �1���1� � 2

x

4

8

10

12

2

6

42 6 8 10 12

f

f −1

y

�4, ��f �1:�0, ��f �1:
�0, ��f:�4, ��f:

f� �1
2� �

3
4, � f �1�� �1

8� �
4
3

x

2

3

1

2 31−3

−2

−2

−3

f

f −1

y

���, ��f �1:���, ��f �1:
���, ��f :���, ��f :
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79. Relative minimum:

81. Relative maximum:

Points of inflection:

83. Relative minimum:
Relative maximum:
Points of inflection:

85. Relative maximum:
Point of inflection:

87.
89.

91. (a) (c)

(b) When 

When

93. (a) (c)

(b) (d)

95.

The values of and and their
first derivatives agree at 

97.
Stirling’s Formula:

99. 101. 103.
105.
107.

109. 111.

113. 115.
117. 119. 121.

123. 125.

127. 129.
131. (a) (b)

133. 135.

137. Midpoint Rule: 92.190; Trapezoidal Rule: 93.837; 
Simpson’s Rule: 92.7385

139. The probability that a given battery will last between 48 months
and 60 months is approximately 

141. (a)

(b) is the constant of proportionality.
143.

The domain of is and the range of is 
is continuous, increasing, one-to-one, and concave upward

on its entire domain.

145. (a) Log Rule (b) Substitution

147.

149. 151. Proof

Section 5.5 (page 368)
1. 3. 0 5. (a) (b)

7. (a) (b) �1
2��3

� 810�2 � 0.01

log3�1�3� � �1log2 8 � 3�3

x � 0.567

e x � x � 1 for x � 0e x � 1 � x;
x

0
et dt � 
x

0
 1 dt;

lim
x→��

e x � 0 and lim
x→�

e x � �

f �x�
�0, ��.f �x����, ��f �x�

f �x� � ex

k2x��t� � k2�Aekt � Be�kt �,

t �
1
2k

 ln 
B
A

47.72%.

−4.5

−3

4.5

3

0 6
0

150

2�1 � e�3�2� � 1.554e5 � 1 � 147.413

−4 8

−2

6

y � �4e�x�2 � 5

x
−2

−2

5

5

y

(0, 1)

f �x� �
1
2 �e x � e�x ��1��2a��eax2

� C

�1�	��esin�	2�2� � 1�ln�1 � e6

2 	
�e�3��e2 � 1��e � 1���2e��e2 � 1���2e2�

ln�cos e�x � � C�
5
2e�2x � e�x � C

ln�e x � e�x � � C�
2
3�1 � e x �3�2 � C

x � ln�e x � 1� � C1 or �ln�1 � e�x � � C2

2e�x � C

1
3 ex3

� C1
2 e2x�1 � Ce5x � C

12! � 475,687,487
12! � 479,001,600

x � 0.
P2P1,f,

−1

−6 4

8

f

P1

P2

P2 � 1 � x �
1
2 x2P1 � 1 � x;

h � 18: �111
h � 5: �776P � 10,957.7e�0.1499h

ln P � �0.1499h � 9.3018

0
0 22

12,000

−2 22
0

12

dV
dt

� �406.89.t � 5,

dV
dt

� �5028.84.t � 1,

0 10
0

20,000

0 10
0

20,000

20
0

8

, e ((1
2

f(x) = e2x

f(x) = (2 e)x

�1
2, e�

A � �2e�1�2

�0, 3�

−6

−3

6

5

(−1, 1 + e)
(0, 3)

��1, 1 � e�

�2 ± �2, �6 ± 4�2 �e��2 ±�2 ��

�2, 4e�2�

−1 5
0

(0, 0)
2, 4 )) e −2

2 ±    2, (6 ± 4    2) e− (2 ±    2) ))

3�0, 0�

�1,
e�0.5

�2		, �3,
e�0.5

�2		

�2, 1��2	�

0
0

4

0.8
2,( (2π

1

3,( (2π
e−0.5

1,( (2π
e−0.5

−3 3
0

(0, 1)

6

�0, 1�
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t 1 10 20 30

P $95,122.94 $60,653.07 $36,787.94 $22,313.02

t 40 50

P $13,533.53 $8208.50

n 1 2 4 12

A $4321.94 $4399.79 $4440.21 $4467.74

n 365 Continuous

A $4481.23 $4481.69

n 1 2 4 12

A $1410.60 $1414.78 $1416.91 $1418.34

n 365 Continuous

A $1419.04 $1419.07

9. 11.

13. 15. d 16. c 17. b 18. a

19. (a) (b) 21. (a) (b)
23. (a) (b) 25. 1.965 27.
29. 31. 33.000 33. 11.845
35. 37.

39. 41. 43.

45. 47.
49.
51. 53.
55. 57.
59.
61. 63.
65. 67.
69.

71. 73. 75.

77. 79.

81. 83.
85. 87.

89. (a) (b)

91. (a) (b) (c)
(d) (e) 10 (f)

93. (a) (b) (c) (d) 0
95. (a) $40.64 (b)

(c)
97.

99.

101.

103.

105. c
107. (a)

(b)

109. (a) (b) 16.7%
(c)

egg masses
(d)

egg masses

111. (a)
(b) (c) When the rate of

growth is 41.99.
When the rate of
growth is 160.21. 

d � 1.5,

d � 0.8,

0
0

2

120

B � 4.75�6.774�d

x � 27.75 or 27,750

x � 38.8 or 38,800

0
0

100

100

dV
dt

� 0.040t � 60:
dV
dt

� 0.073;t � 20:

6.7 million ft3�acre

ln 1.05
C��1� � 0.051P, C��8� � 0.072P

xx�1 � ln x��ln a)axaxa�1

100n0 < x < 1
3 � f �x� � 410xx > 0

−6 6

−4

4

y �
3�1 � 0.4 x�3�

ln 2.5
�

1
2

x

−4

−4 4

4

y

0, (( 1
2

26�ln 34�ln 5 � 2�ln 3
7��2 ln 2�ln�32x � 1���2 ln 3� � C

��1��2 ln 5�� �5�x2� � C
1
3

x3 �
2�x

ln 2
� C

3x�ln 3 � Cy �
cos e

e
x �  cos e � 1y � x

�x � 2�x�1��x � 1���x � 2� � ln�x � 2��
2�1 � ln x�x�2�x��2y � �1��27 ln 3��x � 3 � 1�ln 3

y � �2x ln 2 � 2 ln 2 � 25�1 � ln t���t2 ln 2�
�3x � 2����2x ln 3��x � 1��

�x � 2��[�ln 2�x�x � 1��x���ln 5��x2 � 1��
2���ln 5��t � 4��5���ln 4��5x � 1)�

�2� ��ln 2� cos 	 � 	 sin 	�
t2t �t ln 2 � 2�9x�x ln 9 � 1)

��4 ln 5�5�4x�ln 4�4x

3

32

2

−1

−1

x

f

g

y

�2.340, 0���1.059, 0�

8

−20

−1

40

(2.340, 0)

10

−30

−4

30

(−1.059, 0)

±12.253
�6.288x �

1
3x � �1, 2

x �
1

16x �
1
3x � �1x � 3

4

3

1

2

4321
x

y

3

2

21−2 −1

4

x

y

3

2

21−2 −1

4

x

y

t 1 10 20 30

P $95,132.82 $60,716.10 $36,864.45 $22,382.66

t 40 50

P $13,589.88 $8251.24
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x �1 �0.8 �0.6 �0.4 �0.2

y �1.57 �0.93 �0.64 �0.41 �0.20

x 0 0.2 0.4 0.6 0.8 1

y 0 0.20 0.41 0.64 0.93 1.57

113. (a) 5.67; 5.67; 5.67
(b) (c) No, because

the definite integrals of two
functions over a given interval
may be equal even though the
functions are not equal.

115. 117. 119.
121. False: is an irrational number. 123. True 125. True
127. (a)

(b) No. and 
(c)

129. Proof

131. (a)

(b) (i) 1 when (ii) (iii)
(c)

133. Putnam Problem A15, 1940

Section 5.6 (page 379)
1. (a)

(b) (c)

(d) Intercept:
Symmetry: origin

3.

5. 7. 9. 11. 13. 2.50
15. 17. (a) (b)
19. (a) (b) 21. 23. 25.
27. 29.
31. 33.
35. (a) (b) Proof 

(c) Horizontal asymptotes:

37. 39.
41. (a) and (b) Proofs 43.
45. 47.
49.
51. 53. 55.
57. 59. 61.

63.
65. 67.
69.

71.

73. Relative maximum:
Relative minimum:

75. Relative maximum:
77. 79.

Maximum: Maximum:

Minimum: Minimum:

Point of inflection: Asymptote:

81.
83.
85. If the domains were not restricted, the trigonometric functions

would have no inverses because they would not be one-to-one.

87. If If 

89. (a)
does not exist.

(b)
91. False. The range of arccos is 93. True 95. True
97. (a)

(b)
99. (a) sec

(b) �0.1116 rad�sect � 2:�0.0520 rad�sec;t � 1:
t � 4h�t� � �16t 2 � 256;

58.824 rad�hx � 3:16 rad�h;x � 10:
 � arccot�x�5�

�0, 	�.
sin��1� � x � sin�1�
arcsin�arcsin 1�
arcsin�arcsin 0.5� � 0.551

y � arctan
1
x

� 	.x < 0,y � arccot x � arctan
1
x
;x > 0,

y � �x � �2
y � �2	x��	 � 8� � 1 � 	 2��2	 � 16�

y �
	

2
�1, 0�

�1
2

, 0	�0, �
	

2	
��

1
2

, 		�2,
	

2	
−2 −1 1 2

x

y

(

((

( 1
2

, π−

1
2

, 0 

2
π

2
π

2
π

π

π

y

−1 1 2 3
x

−

−

))2,
2
π

))0, −
2
π

(1, 0)

�2, 2.214�
��1.272, 3.747�
�1.272, �0.606�

−1.0

0.5

1.0

1.5

−1.5

0.5 1.0 1.5

y

x

f

P1

P2

P2�x� �
	

6
�

2�3
3 �x �

1
2	 �

2�3
9 �x �

1
2	

2

P1�x� �
	

6
�

2�3
3 �x �

1
2	

−1.0 0.5 1.0 1.5

−1.0

−1.5

0.5

1.0

1.5

x

y

f

P1 = P2

P1�x� � x; P2�x� � x
y � �2	 � 4�x � 4y �

1
4 x � �	 � 2��4

y �
1
3�4�3x � 2�3 � 	�

2��1 � x2�2x2��16 � x2arcsin x
1��1 � x4�2 arccos x�t��1 � t2

�3x � �1 � 9x2 arcsin 3x���x2�1 � 9x2�
ex��1 � e2x��3��4 � x2

2��2x � x2

x �
1
3x �

1
3�sin�1

2� � 	� � 1.207

y � �1, y � 12

−2

−2

2

f = g

�x2 � 2�x�x2 � 9�3
�x2 � 1��x��1 � 4x2

1�x�1 � x2�xx�
13
5��3

5�33�5arccos�1�1.269� � 0.66
�	�4	�6	�3	�6

��3�2, 	�6��1�2, 	�3�,���2�2, 3	�4�,

�0, 0�;

1−1

−2

2

x
−1 1

−

y

2
π

2
π

�e, e�
�0.3147�3.1774c � ec � 0,

dy
dx

�
y2 � yx ln y
x2 � xy ln x

g��x� � xxx�x�1�x�ln x�2 � x ln x � 1�
f��x� � xx2�x � 2x ln x�

g�x� � x�xx�f �x� � �xx�x � x�x2�
2�32� � 29 � 512

�23�2 � 26 � 64
e

e2ey � 1200�0.6t �

f �t� � g�t� � h�t�.

5

−1

−1

6
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101. 103. (a) and (b) Proofs
105.
107. (a) (b) The graph is a horizontal line

at

(c) Proof

109.
111. (a) (b) Proof

Section 5.7 (page 387)

1. 3. 5.

7. 9.

11. 13.

15. 17.

19. 21.
23. 25.

27. 29.

31. 33.

35. 37. 39.

41.
43. 45.

47. 49.

51. 53.

55. a and b 57. a, b, and c
59. No. This integral does not correspond to any of the basic 

integration rules.
61.
63. (a) (b)

65. (a) (b)

67. 69.

71. 73. 75.

77. (a) Proof (b)

79. (a) (b) 0.5708
(c)

81. (a) represents the average value of over the interval
Maximum at 

(b) Maximum at 

83. False. 

85. True 87–89. Proofs
91. (a)

(b) ft

(c)

(d) (e) 1088 ft
(f ) When air resistance is taken

into account, the maximum
height of the object is not as
great.

6.86 sec

Section 5.8 (page 398)
1. (a) 10.018 (b) 3. (a) (b)
5. (a) 1.317 (b) 0.962 7–15. Proofs

17.

19. 21. 23.
25. 27. 29. sech tsinh2 xcsch x

coth x�10x�sech�5x2�tanh�5x2��3 cosh 3x
coth x � �13�3sech x � 2�13�13;

csch x � 2�3;tanh x � 3�13�13;cosh x � �13�2;

13
12

4
3�0.964

t0 �

0
0

7

500

v�t� ��32
k

 tan�arctan�500� k
32	 � �32k t�

s�t� � �16t2 � 500t; 3906.25

0 20
0

550

v�t� � �32t � 500


 dx

3x�9x2 � 16
�

1
12

 arcsec �3x�
4

� C

x � �1.
x � �1.�x, x � 2�.

f �x�F�x�

�	 � 2��2

1 2

1

2

y

x

ln��6�2� � �9	 � 4	�3��36

3	�2	�8	�3

−3

−1

3

3

−6 12

−8

4

4

−4

−4

4

x � 2
y �

1
2 arcsec �x�2� � 1,

−1 1 4

−2

−3

−4

1

2

3

4

x

y

8−8

3
2
	−

3
2
	

y � 3 arctan x

x

y

5

5

−5

−5
(0, 0)

y � arcsin�x�2� � 	

	�62�et � 3 � 2�3 arctan��et � 3��3� � C

1
2 arctan�x2 � 1� � C4 � 2�3 �

1
6	 � 1.059

���x2 � 4x � Carcsin��x � 2��2� � C
ln�x2 � 6x � 13� � 3 arctan��x � 3��2� � C

	�21
32	 2 � 0.308	�4

arctan 5 �
	

4
� 0.588

1
5

 arctan 
3
5

� 0.108

1
2��3 � 2� � �0.134	�6

	�68 arcsin��x � 3��3� � �6x � x2 � C

1
2 ln�x2 � 1� � 3 arctan x � C2 arcsin�x � C

1
2 x2 �

1
2 ln�x2 � 1� � Carcsin�tan x

5 	 � C

1
4

 arctan �e2x�2� � C
1

10
 arctan 

t2

5
� C

1
2 arcsin t 2 � Carcsin�x � 1� � C

arcsec�2x� � C
7
4

 arctan 
x
4

� Carcsin
x
3

� C

x

y

−2−4−6 2 4 6

2
π

2
3π

c � 2

	

2
.

−1 1

1

2

y

x

k � �1 or k � 1
50�2 � 70.71 ft
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31. 33.
35. Relative maxima: Relative minimum:
37. Relative maximum:

Relative minimum:
39.

Therefore,

41.

43. (a) (b) 33.146 units; 25 units
(c)

45. 47.
49. 51.
53. 55.
57. 59. 61.

63. 65. 67. 69.

71. 73. 75. Answers will vary.

77. 79. 81. 1 83. 0 85. 1

87. 89.

91.

93. 95.

97. 99. 101.

103.

105. 107.

109. (a) (b)

111. kg 113. 115–123. Proofs
125. Putnam Problem 8, 1939

Review Exercises for Chapter 5 (page 401)
1. Vertical asymptote:

3.
5. 7.

9. 11.

13. 15.

17. 19.

21. 23.
25. (a)

(b) (c) Proof

(d) Domain of and all real numbers
Range of and all real numbers

27. (a)
(b) (c) Proof

(d) Domain of 
Domain of
Range of 
Range of

29. (a)
(b) (c) Proof

(d) Domain of and all real numbers
Range of and all real numbers

31. 33.

35. (a)
(b) (c) Proof

(d) Domain of 
Domain of all real numbers
Range of all real numbers
Range of 

37. 39.

41. 43.
45. 47. �y��x�2y � ln x��y � �4x � 4

x�2 � x��ex�e2x � e�2x���e2x � e�2x

tet�t � 2�

x

−2

−2

2

2

4

6

4

y

y > 0f �1:
f :

f �1:
x > 0f :

3−3

−2

f

2

f −1

f �1�x� � e2x

3�41��3� 3��3�2� � 0.160

f �1:f
f �1:f

5

−2

−4

f

4

f −1

f �1�x� � x3 � 1
y � �1f �1:

y � 0f:
x � 0f �1:

x � �1f :

−3 6

−2

f

4

f −1

x ≥  0f �1�x� � x2 � 1,

f �1:f
f �1:f

−11 10

−7

f

f −1

7

f �1�x� � 2x � 6
ln�2 � �3 �3 � ln 2

�ln�1 � cos x� � C1
7 ln�7x � 2� � C

y � �x � 1
dy
dx

�
1
b2�b �

ab
a � bx	 �

x
a � bx

�1 � 2 ln x���2�ln x�1��2x�

e4 � 1 � 53.598ln�3 3�4 � x2�x�
1
5�ln�2x � 1� � ln�2x � 1� � ln�4x 2 � 1��

x � 0y

x
−1 1 2 3 4 5

−1

−2

−3

−4

−5

−6

x = 0

��a2 � x2�x52
31

sinh�1�3ln��3 � 2�
5
2 ln��17 � 4� � 5.2378 arctan�e2� � 2	 � 5.207

�
x2

2
� 4x �

10
3

 ln�x � 5
x � 1� � C

1
4

 arcsin�4x � 1
9 	 � C

ln 7
12

ln�3 � �5
2 	

1

2�6
 ln��2�x � 1� � �3

�2�x � 1� � �3� � C
1
4

 ln�x � 4
x � � C

2 sinh�1�x � C � 2 ln��x � �1 � x � � C

ln��e2x � 1 � 1� � x � C
�3
18

 ln �1 � �3x

1 � �3x� � C

�cosh x, sech x

2 sinh�1�2x��2 csch�1 x

�x��1 � x2

�sec x�1

2�x �1 � x�
3��9x2 � 1	�4

1
5 ln 3ln�5�4�1

2 arctan x 2 � C
csch�1�x� � C�coth�x2�2� � C

ln�sinh x� � C1
3 cosh3�x � 1� � C

�
1
2 cosh�1 � 2x� � C1

2 sinh 2x � C

m � sinh�1� � 1.175

2010

10

20

30

−10

y

x

f

P1

P2

3

−2

−3

2

P1�x� � x; P2�x� � x

y��� � y� � 0.
y��� � a cosh x;y� � a sinh x;y� � a cosh x;y � a sinh x;

��1.20, �0.66�
�1.20, 0.66�

�0, �1��±	, cosh 	�;
y � 1 � 2xy � �2x � 2
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49. 51.
53. 55.
57.

59.
61. 63.

65. 67.
69. 71.
73. (a) Domain:

(b) (c)

Vertical asymptote:
75. 77. (a) (b)

79. 81. 83.

85. 87.

89. 91.
93.

95.

97.

P.S. Problem Solving (page 403)
1.
3. (a) (b) 1 (c) Proof

5. and
intersect the line 

7.
9. (a) Area of region 

Area of region 

(b)
(c) 1.2958 (d) 0.6818

11. Proof 13.
15. (a) (i) (ii)

(iii)

(b) Pattern:

(c) The pattern implies that 

Chapter 6
Section 6.1 (page 411)
1–11. Proofs 13. Not a solution 15. Solution

17. Solution 19. Solution 21. Not a solution
23. Solution 25. Not a solution 27. Not a solution
29. 31. 4y2 � x3y � 3e�x�2

ex � 1 �
x
1!

�
x2

2!
�

x3

3!
� .  .  ..

y
−5 3

−1

y4

4

y4 � 1 �
x
1!

�
x2

2!
�

x3

3!
�

x4

4!

yn � 1 �
x
1!

�
x2

2!
� .  .  . �

xn

n!
� .  .  .

y

−2 2

−1

y3

4

y

−2 2

−1

y2

4

−2 2

−1

y

y1

4

2 ln 32 � 0.8109

1
24�3	�2 � 12��3 � �2� � 2	� � 0.1346

B � 	�12 � 0.2618

A � ��3 � �2��2 � 0.1589
e � 1

0 < a < e1�e

y � x;
y � 1.2xy � 0.5x

−2−3−4 1 2 3 4

−2

2

3

4

5

6

a = 0.5

a = 1.2

a = 2
y = x

x

y

1
0

−1

2

a � 4.7648;  � 1.7263 or 98.9�

1
3 tanh x3 � C

y� � x� 2
1 � 4x2	 � tanh�1 2x �

2x
1 � 4x2 � tanh�1 2x

y � A sin�t�k�m�
2
3	 � �3 � 2 � 1.8261

4�arctan �x�2��2 � C

1
2 arcsin x2 � C1

2 arctan�e2x� � C

�arcsin x�2x

�x��x2 � 1
� arcsec x�1 � x2��3�2

�3�21�2

x
2−2−4−6

−2

−4

4

y

h � 18,000

t � 0

−2,000

−20

20,000

100

0 � h < 18,000
5�x�1�2��2 ln 5� � C�1��ln 3�2 � 2x��

x2x�1�2 ln x � 2 � 1�x�3x�1 ln 3

x
1 432 5 6 7

4

3

2

1

y

−2

−1

−3

−4

x
1 432−2

−2

−1−3−4

4

5

6

3

2

y

�
1
2 �e�16 � 1� � 0.500

   ���8a � 6b� � 2�a � 3b� � 10a� cos 3x� � 0

� ex����6a � 8b� � 2��3a � b� � 10b� sin 3x �

y� � 2y� � 10y

y� � ex ���6a � 8b� sin 3x � ��8a � 6b� cos 3x�
y� � ex���3a � b� sin 3x � �a � 3b� cos 3x�
y � e x�a cos 3x � b sin 3x�

ln�e2 � e � 1� � 2.408�
1
2e1�x2

� C
�e4x � 3e2x � 3���3ex� � C�1 � e�3��6 � 0.158
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x �4 �2 0 2 4 8

y 2 0 4 4 6 8

dy/dx �2�2 �2 0 0 �2�2 �8

x �4 �2 0 2 4 8

y 2 0 4 4 6 8

dy/dx �4 Undef. 0 1 4
3

2

33.

35. 37.
39. 41.
43. 45.
47.
49.
51.
53.

55.

57. b 58. c 59. d 60. a
61. (a) and (b) 63. (a) and (b)

(c) As (c) As 
as as 

65. (a) (b)

As As 

67. (a) and (b) 69. (a) and (b)

71. (a) and (b)

73.

75.

77.

79.

8

−2

−2

8

−12 48

−2

12

−6 6

−4

12

x →�, y →�x →�, y →�

6
−1

−2

−3

1

2

3

x

y

(2, −1)

6
−1

−2

−3

1

2

3

x

y

(1, 0)

y → ��x → ��,y → ��x → ��,
y → ��;x →�,y → ��;x →�,

4

−3

5

x

y
(2, 2)

−4

8

5

y

x

(4, 2)

−2

y �
1
2ex2

� C

y �
2
5�x � 6�5�2 � 4�x � 6�3�2 � C

y � �
1
2 cos 2x � C

y � x � ln x2 � Cy �
1
2 ln�1 � x2� � C

2x3 � Cy � �2x �
1
2 x3

y � 2 sin 3x �
1
3 cos 3xy � 3e�2x

−3 3

−2

C = −4

2

−3 3

−2

C = 4

2

−3 3

−2

C = −1

2

−3 3

−2

C = 1

2

−3 3

−2

C = 0

2
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x 0 0.2 0.4 0.6 0.8 1

exact��
y�x�

3.0000 3.6642 4.4755 5.4664 6.6766 8.1548

�h � 0.2�
y�x�

3.0000 3.6000 4.3200 5.1840 6.2208 7.4650

�h � 0.1�
y�x�

3.0000 3.6300 4.3923 5.3147 6.4308 7.7812

n 0 1 2 3 4 5 6

xn 0 0.1 0.2 0.3 0.4 0.5 0.6

yn 1 1.1 1.212 1.339 1.488 1.670 1.900

n 7 8 9 10

xn 0.7 0.8 0.9 1.0

yn 2.213 2.684 3.540 5.958

n 0 1 2 3 4 5 6

xn 0 0.05 0.1 0.15 0.2 0.25 0.3

yn 3 2.7 2.438 2.209 2.010 1.839 1.693

n 7 8 9 10

xn 0.35 0.4 0.45 0.5

yn 1.569 1.464 1.378 1.308

n 0 1 2 3 4 5 6

xn 0 0.1 0.2 0.3 0.4 0.5 0.6

yn 2 2.2 2.43 2.693 2.992 3.332 3.715

n 7 8 9 10

xn 0.7 0.8 0.9 1.0

yn 4.146 4.631 5.174 5.781



81.

83. (a)
(b)
(c) Euler’s Method:

Exact solution:

The approximations are better using 
85. The general solution is a family of curves that satisfies the

differential equation. A particular solution is one member of the
family that satisfies given conditions. 

87. Begin with a point that satisfies the initial condition
Then, using a small step size calculate the point

Continue generating the
sequence of points or 

89. False: is a solution of but is
not a solution.

91. True
93. (a)

(b) If is halved, then the error is approximately halved because
is approximately 0.5.

(c) The error will again be halved.
95. (a) (b)

97. 99. Putnam Problem 3, Morning Session, 1954

Section 6.2 (page 420)
1. 3. 5.

7. 9.
11. 13.

15. (a) (b)

17. 19.

21.

23.

25.
27.
29. is the initial value of and is the proportionality constant.
31. Quadrants I and III; is positive when both and are

positive (Quadrant I) or when both and are negative
(Quadrant III).

33. Amount after 1000 yr: 12.96 g; 
Amount after 10,000 yr: 0.26 g

35. Initial quantity: 7.63 g; 
Amount after 1000 yr: 4.95 g

37. Amount after 1000 yr: 4.43 g; 
Amount after 10,000 yr: 1.49 g

39. Initial quantity: 2.16 g; 
Amount after 10,000 yr: 1.62 g

41. 95.76%
43. Time to double: 11.55 yr; Amount after 10 yr: $7288.48
45. Annual rate: 8.94%; Amount after 10 yr: $1833.67
47. Annual rate: 9.50%; Time to double: 7.30 yr
49. $224,174.18 51. $61,377.75
53. (a) 10.24 yr (b) 9.93 yr (c) 9.90 yr (d) 9.90 yr
55. (a) 8.50 yr (b) 8.18 yr (c) 8.16 yr (d) 8.15 yr
57. (a) (b) 2.19 million

(c) Because the population is decreasing.
59. (a) (b) 8.11 million

(c) Because the population is increasing.
61. (a) (b) 40.41 million

(c) Because the population is increasing.
63. (a) (b) 6.3 h
65. (a) (b) 36 daysN � 30�1 � e�0.0502t �

N � 100.1596�1.2455�t

k > 0,
P � 23.55e0.036t

k > 0,
P � 5.66e0.024t

k < 0,
P � 2.40e�0.006t

yx
yxdy�dx

ky,C
y � 5�5�2�1�4e�ln�2�5��4�t � 6.2872e�0.2291t

y � �1�2�e��ln 10��5�t � �1�2�e0.4605t

V�6� � 9882
V � 20,000e�1�4�ln�5�8�t � 20,000e�0.1175t

dV�dt � kV
y�8� � 37.5

y � 6e�1�4�ln�5�2�x � 6e0.2291x

dy�dx � ky

10

−1

−1

(0, 10)

16

4

−1

−4

(0, 10)

16

y � 10e�t�2y �
1
4t 2 � 10

−6 6

−1

7

y � 6 � 6e�x 2�2

x
−5 −1

9

5

y

(0, 0)

N � ��k�2� �500 � s�2 � CQ � �k�t � C
dN�ds � k�500 � s�dQ�dt � k�t2

y � C�1 � x2�y � Ce�2x3�2��3

y 2 � 5x2 � Cy � Ce x � 3y �
1
2 x2 � 3x � C

� � ±4

lim
t→�

I�t� � 2

−3 3

−3

3

t

I

r
h

y � x3 � 1xy� � 3y � 0,y � x3

�xn�1, yn�1�.�xn � h, yn � hF�xn, yn��
�x1, y1� � �x0 � h, y0 � hF�x0, y0��.

h,y�x0� � y0.
�x0, y0�

h � 0.05.
y�3� � 87.1729�

y�2� � 97.0158�;y�1� � 113.2441�;
y�3� � 86.8863�

y�2� � 96.6998�;y�1� � 112.9828�;
y�3) � 87.1729�y�2) � 97.0158�;y�1� � 113.2441�;
y(3) � 86.5954�y�2) � 96.3770�;y�1) � 112.7141�;

Answers to Odd-Numbered Exercises A77

x 0 0.2 0.4 0.6 0.8 1

exact��
y�x�

0.0000 0.2200 0.4801 0.7807 1.1231 1.5097

�h � 0.2�
y�x�

0.0000 0.2000 0.4360 0.7074 1.0140 1.3561

�h � 0.1�
y�x�

0.0000 0.2095 0.4568 0.7418 1.0649 1.4273

x 0 0.2 0.4 0.6 0.8 1

y 4 2.6813 1.7973 1.2048 0.8076 0.5413

y1 4 2.56 1.6384 1.0486 0.6711 0.4295

y2 4 2.4 1.44 0.864 0.5184 0.3110

e1 0 0.1213 0.1589 0.1562 0.1365 0.1118

e2 0 0.2813 0.3573 0.3408 0.2892 0.2303

r 0.4312 0.4447 0.4583 0.4720 0.4855



67. (a)
(b)
(c) (d) 2011

is a better approximation.
69. (a) 20 dB (b) 70 dB (c) 95 dB (d) 120 dB
71. 73.
75. False. The rate of growth is proportional to 
77. True

Section 6.3 (page 431)
1. 3. 5.
7. 9.

11. 13.
15. 17.
19. 21. 23.
25. 27. 29.
31. Homogeneous of degree 3 33. Homogeneous of degree 3
35. Not homogeneous 37. Homogeneous of degree 0
39. 41.
43. 45. 47.
49. 51.

53. (a) (b) (c)
55. (a) (b) (c)
57. 97.9% of the original amount
59. (a) (b) a (c) Proof
60. (a) (b) b (c) Proof
61. (a) (b) c (c) Proof
62. (a) (b) d (c) Proof
63. (a)

(b) 1.31 yr; 1.16 yr; 1.05 yr (c) 1200 lb

65. Circles: 67. Parabolas:
Lines: Ellipses:
Graphs will vary. Graphs will vary.

69. Curves:
Ellipses:
Graphs will vary.

71. d 72. a 73. b 74. c
75. (a) 0.75 (b) 2100 (c) 70 (d) 4.49 yr

(e)
77. (a) 3 (b) 100

(c) (d) 50

79. 81.

83. (a) (b) 70 panthers (c) 7.37 yr

(d) 65.6 (e) 100 yr
85. Answers will vary.
87. Two families of curves are mutually orthogonal if each curve in

the first family intersects each curve in the second family at right
angles.

89. Proof
91. False. is separable, but is not a solution.
93. False: 95. Putnam Problem A2, 1988

Section 6.4 (page 440)
1. Linear; can be written in the form 
3. Not linear; cannot be written in the form 
5. 7.
9. 11.

13.
15. (a) Answers will vary. (c)

(b)

17. 19.
21. 23. y � �2 � x ln�x� � 12xxy � 4

y � sin x � �x � 1� cos xy � 1 � 4�etan x

y �
1
2�ex � e�x�

x
−4

−3

4

5

y

−6

−2

6

6

y � ex3�x � C�
y � �x3 � 3x � C���3�x � 1��y � �1 � Cesin x

y � �16 � Ce xy � 2x2 � x � C�x
dy�dx � P�x�y � Q�x�

dy�dx � P�x�y � Q�x�

f �tx, ty� � tn f �x, y�.
y � 0y� � x�y

dP�dt � 0.2640P�1 � P�200�;

P �
200

1 � 7e�0.2640t

y � 120��1 � 14e�0.8t�y � 36��1 � 8e�t�

0
0

120

5

dP�dt � 0.75P�1 � P�2100�

2x2 � 3y 2 � K

−6 6

−4

4y 2 � Cx3

−6 6

−4

4

−6 6

−4

4

x2 � 2y 2 � Ky � Kx
x2 � Cyx2 � y 2 � C

0

1400

100

w � 1200 � 1140e�t

0

1400

100
0

1400

100

w � 1200 � 1140e�0.9tw � 1200 � 1140e�0.8t

dy�dx � ky2

dy�dx � ky�y � 4�
dy�dx � k�x � 4�
dy�dx � k�y � 4�

y � 3y3 � 4y � x2 � 12x � 13y � 3.0318
y � 0.2489y � 5e�3x2

y � 0.1602
y � 4 � Ce�xy �

1
2 x2 � C

8

4321−3−4
x

y

4

2

−4

−2
x

y

x � esin� y�x�e y�x � 1 � ln x2y � Ce�x2��2y 2�
�y 2 � 2xy � x2� � C�x� � C�x � y�2

f �x� � Ce�x�2y �
1
3�x4y2 � x2 � 16

P � P0e ktu � e�1�cos v2��2y 2 � 4x2 � 3
y � e��x2�2x��2y2 � 4ex � 5

y � Ce�ln x�2�2y � �
1
4�1 � 4x2 � C

y 2 � C � 8 cos xy � C�x � 2�3

r � Ce0.75s15y2 � 2x3 � Cy 2 � x2 � C

y.dy�dx
379.2�F2024 �t � 16�

P2

150
500

P1
P2

300

P2 � 182.3248�1.01091�t

� 181�1.01253�tP1 � 181e0.01245t
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x �4 �2 0 2 4 8

y 2 0 4 4 6 8

dy/dx �10 �4 �4 0 2 8

25.
27. (a) $4,212,796.94 (b) $31,424,909.75

29. (a) (b) (c)

31. Proof
33. (a) (b) (c) 0

35. (a) (b)

(c)

37.

39. 41.

43. c 44. d 45. a 46. b
47. 49.
51. 53.
55. (a) (c)

(b)

57. (a)

(b)

(c)

59. 61.
63. 65.
67. 69.
71. False. is linear.

Review Exercises for Chapter 6 (page 443)

1. Yes 3. 5.

7. 9.

11.

13. (a) and (b) 15. (a) and (b)

17. (a) and (b) 19.

21. 23.
25. 27. 29. About
31. (a) (b) 20,965 units

(c)

33. About 37.5 yr 35.
37. 39.
41. Proof;
43. Graphs will vary.

45. (a) 0.55 (b) 5250 (c) 150 (d) 6.41 yr

(e)

47.

49. (a) (b) 17,118 trout (c) 4.94 yr

51. 53.
55.
57.
59. 61.
63.
65. Answers will vary. Sample answer:

67. Answers will vary. Sample answer:
x3y� � 2x2 y � 1; x2 y � ln�x� � C

�x2 � 3y2� dx � 2xy dy � 0; x3 � C�x2 � y2�

y�2 � Cx2 � 2��3x�
y � 1��1 � x � Cex�y � e5x�10 � Ce�5x

y � Ce3x �
1
13�2 cos 2x � 3 sin 2x�

y � �x � C���x � 2�
y � ex�4�1

4x � C�y � �10 � Ce x

P�t� �
20,400

1 � 16e�0.553t

y �
80

1 � 9e�t

dP
dt

� 0.55P�1 �
P

5250	

4x2 � y2 � C

x

y

4

−4

−4 4

y � �2x �
1
2 x3

x��x2 � y2� � Cy � Ce8x2

y �
1
5 x5 � 7 ln�x� � C

0
0

40

30

S � 30e�1.7918�t

7.79 in.y � 5e�0.680ty � 3
4e0.379t

y � Cex��2 � x�2y � �3 � 1��x � C�

4

−4

4

x

y

(0, 1)

−4

y � 8x �
1
2 x2 � C

−4 4

−4

4

x

y

(0, 3)

x

y
(2, 1)

4

8−2

y � �e2�x � Cy �
2
5 �x � 5�5�2 �

10
3 �x � 5�3�2 � C

y �
1
2 sin 2x � Cy �

4
3 x3 � 7x � C

y� � xy � x2

y �
12
5 x2 � C�x3x4y4 � 2x2 � C

y � �ex�x � 1� � C��x2x3y2 � x4y � C
y � Ce�sin x � 12ex � e�2y � C

−2

−3

6

3

y � �2 cos 3 � sin 3� csc x � 2 cot x�3, �1�:
y � �2 cos 1 � sin 1� csc x � 2 cot x�1, 1�:

−2

−3

6

3

y �
1
2 x�x2 � 4��2, 8�:

y �
1
2 x�x2 � 8���2, 4�:

−6

10

− 4 4− 4

−6

10

4

y2�3 � 2ex � Ce2x�31�y2 � 2x � Cx2

y � 1��Cx � x2�1�y2 � Ce2x3
�

1
3

u�x� � e 
P�x� dx
dy
dx

� P�x�y � Q�x�;I �
E0

R
� Ce�Rt�L

v(t� � �159.47�1 � e�0.2007t�; �159.47 ft�sec

t � 50 min; 200 �
50
�2

� 164.64 lb

100 �
25
�2

� 82.32 lbt � 50 min

�20 ln�3
5� � 10.2 minQ � 25e�t�20

q
k

Q �
q
k

� �Q0 �
q
k	e�ktdQ

dt
� q � kQ

P � �N�k � �N�k � P0�e kt
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P.S. Problem Solving (page 445)
1. (a)

(b) Explanations will vary.

3. (a)
(b) 2.7 mo
(c) (d)

(e) Sales will decrease toward the line 
5. Proof; The graph of the logistics function is just a shift of the

graph of the hyperbolic tangent.
7.
9.

11. (a)
(b) (c) As 

and

13. (a) (b)

Chapter 7
Section 7.1 (page 454)

1. 3.

5.

7. 9.

11. 13.

15. d
17. (a) (b) (c) Integrating with respect to Answers

will vary.
19. 21.

2

23. 25.

27. 29.

1

31. 33.

6

9
2

64 5

3

1

32

−2

x

y

(0, −1)

(0, 2) (5, 2)

(2, −1)

3

2

1

542 31
−1

−3

(4, 2)

(1, −1)

x

y

4
3

x

y

(4, 5)

(0, 3)

−1−2 1 2 3 4 5
−1

1

2

4

5

6

321

3

1

2

x
(0, 0)

(2, 0)

(1, 1)

y

9
2

32
3

x

y

−4 2 4

−2

2

4

6

(−2, 0)

(1, 3)

x
(4, 0)(0, 0)

1 2 3 5

−1

−2

−3

−4

−5

y

13
6

6

5

4

3

43−2 1

1

x

y

(0, 1)

(0, 2)

(2, 6)

(2, 3)

x

y

−2−4 2 4

−2

2

4

6

y;125
6

125
6

−1 1 2 3 4 5
−1

−3

2

3

x

y

x

y

3

−1

2
3
π 2

3
π

3
π

3
π− −

6

5

3

2

654321

1

x

y

5

4

3

2

1

542 31
x

y

�6
1

0
�x3 � x� dx


3

0
��2x2 � 6x� dx�
6

0
�x2 � 6x� dx

0
0

4

0.8

0
0

4

0.8

C � 0.6e�0.75tC � 0.6e�0.25t

s → 184.21.
t →�, Ce�0.019t → 0,

0
0 200

400

s � 184.21 � Ce�0.019t

2575.95 sec � 42 min, 56 sec
1481.45 sec � 24 min, 41 sec

S � L.

t
1 2 3 4

140

120

100

80

60

40

20

S

0
0

10

125

dS�dt � kS�L � S�; S � 100��1 � 9e�0.8109t�

y � 1��� 1
y0
	�

� k�t�1��
;

y � 1��1 � 0.01t�100; T � 100



35. 37. (a)

(b)

39. (a) 41. (a)

(b) (b) 8
43. (a) 45. (a)

(b) (b)
47. 49.

51. 53. (a)

(b) 4
55. (a) 57. (a)

(b) About (b) The function is difficult
to integrate.

(c) About 

59. (a) (b) The intersections are difficult
to find.

(c) About 

61.
(a) (b)

(c)

63.
(a) (b)

(c)

65. 14 67. 16

69. Answers will vary. Sample answers:
(a) About (b) About 

71. 73.

0

−1

2

3

	


1

�2
�x3 � �3x � 2�� dx �

27
4A �

3�3
4

�
1
2

� 0.7990

1004 ft2966 ft2

y

θ
1

3
2

1
2

1
2

−

1
2

1
2

−

F�1�2� � ��2 � 2��	 � 1.0868

y

θ
1

3
2

1
2

1
2

−

1
2

1
2

−

y

1

3
2

1
2

1
2

θ

−

1
2

1
2

−

F�0� � 2�	 � 0.6366F��1� � 0
F��� � �2�	��sin �	��2� � 1�

t

4

y

5

6

2

3

−1
−1 1 2 3 4 5 6

F�6� � 15

t

4

y

5

6

2

3

−1
−1 1 2 3 4 5 6

t

4

y

5

6

2

3

−1
−1 1 2 3 4 5 6

F�2� � 3F�0� � 0
F�x� �

1
4 x2 � x

6.3043

3

−1

−3

5

4.7721

1.323
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75.

77. Answers will vary. Example: on

79. Offer 2 is better because the cumulative salary (area under the
curve) is greater.

81. (a) The integral means that the first
car traveled 10 more meters than the second car between 0
and 5 seconds.
The integral means that the first

car traveled 30 more meters than the second car between 0
and 10 seconds.
The integral means that the
second car traveled 5 more meters than the first car
between 20 and 30 seconds.

(b) No. You do not know when both cars started or the initial 
distance between the cars.

(c) The car with velocity is ahead by 30 meters.
(d) Car 1 is ahead by 8 meters.

83. 85.

87. Answers will vary. Sample answer:

89. (a) (b)
(c) 3.2, 6.4, 3.2; The area between the two inflection points is

the sum of the areas between the other two regions.
91. $6.825 billion
93. (a)

(b) (c)

(d) About 

95.
97. (a) About (b) About (c) 60,310 lb
99. True

101. False. Let and and intersect at
the midpoint of but

103.
105. Putnam Problem A1, 1993

Section 7.2 (page 465)

1. 3.

5. 7.

9.

11. (a) (b) (c)
(d)

13. (a) (b) 15.
17. 19. 21.
23. 25. 27.
29. 31. 33.
35. 37. 39. 15.4115
41. 43. 45. 47.
49. (a) The area appears to be close to 1 and therefore the volume

is near 3.
51. A sine curve on revolved about the axis
53. The parabola is a horizontal translation of the

parabola Therefore, their volumes are equal.
55. (a) This statement is true. Explanations will vary.

(b) This statement is false. Explanations will vary.
57. 59. Proof 61.
63. 65. (a) (b)

67. (a)
(b) (c)

69. (a) ii; right circular cylinder of radius and height 
(b) iv; ellipsoid whose underlying ellipse has the equation

(c) iii; sphere of radius 
(d) i; right circular cone of radius and height 
(e) v; torus of cross-sectional radius and other radius 

71. (a) (b) 73. 75.
77. 19.7443 79. (a) (b) As 

Section 7.3 (page 474)

1. 3.

5. 7. 2	
2

0
x�4x � 2x2� dx �

16	

3
2	
3

0
x3 dx �

81
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x�x dx �

128	

5
2	
2

0
x2 dx �
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	 2�2 � 4.9358	277	�3
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832	�15124	�3	�48 ln 2 �
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Answers to Odd-Numbered Exercises A83

9.

11.

13.

15.

17.

19.

21. 23. 25.

27. Shell method; it is much easier to put in terms of rather than
vice versa.

29. (a) (b) (c)
31. (a) (b) (c)
33. (a) 35. (a)

(b) 1.506 (b) 187.25
37. d 39. a, c, b
41. Both integrals yield the volume of the solid generated by 

revolving the region bounded by the graphs of 
and about the axis.

43. (a) The rectangles would be vertical.
(b) The rectangles would be horizontal.

45. Diameter 47.
49. (a) Region bounded by 

(b) Revolved about the axis
51. (a) Region bounded by 

(b) Revolved about 
53. (a) Proof (b) (i) (ii)
55. Proof
57. (a) (b)

(c)

(d)

(e) As the graph approaches the line 
59. (a) and (b) About 61.
63. (a) (b) (c)

Section 7.4 (page 485)
1. (a) and (b) 17 3. 5.

7. 9. 309.3195
11.

13. 15.

17. (a) 19. (a)

(b) (b)

(c) About (c) About 
21. (a) 23. (a)

(b) (b)

(c) About 

(c) About 
25. (a)

(b)

(c) About 

27. b 29. (a) 64.125 (b) 64.525 (c) 64.666 (d) 64.672
31. 33. About
35.

37.

39.

41.

43.

45.

47. 14.424
49. A rectifiable curve is a curve with a finite arc length.
51. The integral formula for the area of a surface of revolution 

is derived from the formula for the lateral surface area of the
frustum of a right circular cone. The formula is where

which is the average radius of the 
frustum, and is the length of a line segment on the frustum. The
representative element is 2	 f �di��1 � ��yi��xi�2 �xi.

L
r �

1
2�r1 � r2 �,

S � 2	rL,

2	
2

0
x�1 �

x2

4
dx �

	

3
�16�2 � 8� � 15.318

�
	

27
�145�145 � 10�10� � 199.482	
8

1
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1
9x 4�3 dx
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1

�1
2 dx � 8	 � 25.13
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2
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1
2x2	 dx �
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16
� 9.23
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3

0

1
3

x3�1 � x 4 dx �
	

9
�82�82 � 1� � 258.85

3 arcsin 23 � 2.1892
148020�sinh 1 � sinh��1�� � 47.0 m
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3

1
2�e2 � 1�e2� � 3.627

ln���2 � 1����2 � 1�� � 1.763
5�5 � 2�2 � 8.352

2
3�2�2 � 1� � 1.2195

3

8192	�1052048	�3564	�3
c � 2121,475 ft3

x � b.n →�,

lim
n→�

R2�n� � 1

V � 	 abn�2�n��n � 2��; R2�n� � n��n � 2�
lim

n→�
R1�n� � 1R1�n� � n��n � 1�

V � 6	 2V � 2	
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x � 0y � 0,x � �6 � y,
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53. (a) (b)
(c)

55. 57.
59. (a) Answers will vary. Sample answer:

(b) Answers will vary. Sample answer:
(c)

(d)

61. (a) (b)

(c)

(d) Because on 

you have 

and So,

63. (a) (b)

(c) You cannot evaluate this definite integral because the 
integrand is not defined at Simpson’s Rule will not
work for the same reason.

65. Fleeing object: unit

Pursuer:

67. 69. Proof 71. Proof

Section 7.5 (page 495)
1. 2000 ft-lb 3. 896 N-m
5. 7. 8750 N-cm 87.5 N-m
9. 160 in.-lb ft-lb 11. 37.125 ft-lb

13. (a) 487.805 mile-tons ft-lb
(b) 1395.349 mile-tons ft-lb

15. (a) mile-tons ft-lb
(b) mile-tons ft-lb

17. (a) 2496 ft-lb (b) 9984 ft-lb 19. 470,400 N-m
21. 2995.2 ft-lb 23. 20,217.6 ft-lb 25. 2457 ft-lb
27. 600 ft-lb 29. 450 ft-lb 31. 168.75 ft-lb

33. If an object is moved a distance in the direction of an applied
constant force then the work done by the force is defined
as

35. The situation in part (a) requires more work. There is no work
required for part (b) because the distance is 0.

37. (a) 54 ft-lb (b) 160 ft-lb (c) 9 ft-lb (d) 18 ft-lb
39. ft-lb 41.
43. 3249.4 ft-lb 45. 10,330.3 ft-lb

Section 7.6 (page 506)
1. 3. 5. (a) (b)
7. ft 9. 11.

13.
15.
17.
19.
21.
23.
25.

27.

29.

31. 33.

35. 37.

39.
41. (a) (b) by symmetry

(c)

because is an odd 
function.

(d) because the area is
greater for 

(e)
43. (a)

(b)
(c) �x, y� � �0, 12.85�

y � ��1.02 
 10�5�x 4 � 0.0019x2 � 29.28
�x, y� � �0, 12.98�

y � �3�5�b
y > b�2.

y > b�2

x�b � x2�

My � 
�b

��b

x�b � x2� dx � 0

x � 0

−1−2−3−4−5 1 2 3 4 5
x

y = b

y

�x, y� � �0, 4b��3	��

�x, y� � ��a � 2b�c
3�a � b� ,

a2 � ab � b2

3�a � b� 	�x, y� � �b
3

,
c
3	

�x, y� � �0, 16.2��x, y� � �3.0, 126.0�

−25

−5

25

50

−50

−1 6

400

My � 
3

0
x�2x � 4� dx � 36

Mx � 
3

0
�2x � 4

2 	�2x � 4� dx � 78

A � 
3

0
�2x � 4� dx � 21

My � 
2

0
x�2x � x2� dx �

4
3

Mx � 
2

0
�2x � x2

2 	�2x � x2� dx �
32
15

A � 
2

0
�2x � x2� dx �

4
3

Mx � 27��4, My � �27��10,  �x, y� � ��3�5, 3�2�
Mx � 0, My � 256��15,  �x, y� � �8�5, 0�
Mx � 192��7, My � 96�,  �x, y� � �5, 10�7�
Mx � 99��5, My � 27��4,  �x, y� � �3�2, 22�5�
Mx � ��35, My � ��20,  �x, y� � �3�5, 12�35�
Mx � 4�, My � 64��5,  �x, y� � �12�5, 3�4�
Mx � ��3, My � 4��3,  �x, y� � �4�3, 1�3�

�x, y� � �2, 48
25��x, y� � �10

9 , �
1
9�x � 6

x � �2x � 16x � 12x � �
4
3

3k�42000 ln�3�2� � 810.93

W � FD.
WF,
D
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1
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 ln b →�.
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1
x

dx � �ln x�
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1
� ln b

�1, b�,
�x 4 � 1

x3 >
�x 4

x3 �
1
x

> 0

lim
b→�

V � lim
b→�

	 �1 � 1�b� � 	

2	
b

1

�x 4 � 1�x3 dx	 �1 � 1�b�

1179.5 in.25279.64 in.3;

−1

−1 19
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r � 0.0040y3 � 0.142y2 � 1.23y � 7.9
1168.64 in.2
5207.62 in.3

6	 �3 � �5� � 14.4020	

s4 � 6.063s3 � 5.916;
s2 � 5.759;s1 � 5.657;
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45. 47.

49. 51.

53.
55. The center of mass where:

1. is the total mass of the system.
2. is the moment about

the axis.
3. is the moment about

the axis.
57. See Theorem 7.1 on page 505. 59.

61. the region shrinks toward

the line segments for and for

Section 7.7 (page 513)
1. 1497.6 lb 3. 4992 lb 5. 748.8 lb 7. 1123.2 lb
9. 748.8 lb 11. 1064.96 lb 13. 117,600 N

15. 2,381,400 N 17. 2814 lb 19. 6753.6 lb 21. 94.5 lb
23. Proof 25. Proof 27. 960 lb
29. Answers will vary. Sample answer (using Simpson’s Rule):

3010.8 lb
31. 8213.0 lb

33. The pressure increases with increasing depth.
35. Because you are measuring total force against a region between

two depths.

Review Exercises for Chapter 7 (page 515)
1. 3.

5. 7.

9. 11.

13.

15.

17.

19. (a) 9920 (b)
21. (a) (b) (c) (d)
23. (a) (b) 25.
27.

29. (a) (b) (c) 31. ft

33. 35. 4018.2 ft
37. 39.
41. 43. 200 ft-lb
45. 47. 49.

51.

53. surface of liquid; weight per cubic volume.

(area)(depth of centroid)

x
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� �
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�x, y� is x � My�m and y � Mx�m,
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A86 Answers to Odd-Numbered Exercises

P.S. Problem Solving (page 517)
1. 3 3.

5.

7. 9.
11. 89.3%

13. (a)

(b)

(c)

15. Consumer surplus: 1600; Producer surplus:400
17. Wall at shallow end: 9984 lb

Wall at deep end: 39,936 lb
Side wall:

Chapter 8
Section 8.1 (page 524)
1. b 3. c

5. 7. 9.

11. 13. 15.

17. 19.
21. 23.

25. 27.

29. 31.
33. 35. 37.
39.
41.
43. 45.
47. 49.
51.

53. (a) (b)

55.
(a) (b)

57. 59.

61. 63.

65. 67. 69. 8 71.

73. 75.
77.

79. 81.
Graphs will vary. Graphs will vary.
Example: Example:

One graph is a vertical One graph is a vertical
translation of the other. translation of the other.

83. Power Rule:

85. Log Rule:

87.

89.
91.

Negative; more area below the axis
than above

93. a
95. (a) (b)

321−1−2−3

−3

−2

−1

1

2

3

x

y
y =    2 x

x

y

−1−2−3 1 2 3

5

10

15

20

25

x-

0 5

−5

5

a �
1
2

�
1
�2

 ln�csc�x �
	

4	 � cot�x �
	

4	� � Ca � �2, b �
	

4
;

u � x2 � 1
 du
u

� ln�u� � C;

u � x2 � 1, n � 3
 un du �
un�1

n � 1
� C;

−6

6

− 7	
2

	
2

C = 2

C = 0
−7 5

−1

1

C = 0

C = −0.2

tan  � sec  � C1
3 arctan�1

3�x � 2�� � C

4
3 � 1.333

3
2 ln�34

9 � �
2
3 arctan�5

3� � 2.6818�6�5 � 8.82

	�181
2�1 � e�1� � 0.3161

2

y �
1
2 arctan�tan x�2� � Cr � 10 arcsin et � C

3−5

−1

9

y �
1
2e2x � 10ex � 25x � Cy � 4e0.8x

9

−9

−9

9

2 tan x � 2 sec x � x � 1 � C

8−8

−8

8

x

y

1.2−1.2

−0.8

0.8

1
2 arcsin t 2 �

1
2

t

s

1

1

−1

−1

arcsin��x � 2���5� � C

1
4 arctan��2x � 1��8� � C6 arcsin��x � 5��5� � C

1
2 ln�cos�2�t�� � C�

1
4 arcsin�4t � 1� � C

csc  � cot  � C � �1 � cos ��sin  � C
�ln�1 � sin x� � C � ln�sec x�sec x � tan x�� � C

�ln x�2 � C2 ln�1 � ex� � C1
11e11x � C

��1�	� csc 	x � Csin�2	x2���4	� � C

x
15

�48x 4 � 200x2 � 375� � Cln�1 � ex� � C

1
2 x2 � x � ln�x � 1� � C�

1
3 ln��t3 � 9t � 1� � C

1
2 v2 � 1��6�3v � 1�2� � C�7��6�z � 10�6� � C

u � sin xu � t2

2�x � 5�7 � C
 eu du
 sin u du

u � t, a � 1u � 1 � 2�xu � 5x � 3, n � 4


 du
�a2 � u2
 du

u
 un du

19,968 � 26,624 � 46,592 lb

�3
2

, 0	

� x, y � � � 3b�b � 1�
2�b2 � b � 1�, 0	

�x, y � � �63
43

, 0	

1

−1
−1 2 3 4 5

−2

−3

2

3

y

x

y = − 1
x4

y = 1
x4

f �x� � 2ex�2 � 2V � 2	�d �
1
2�w2 � l 2� lw

5�2	

3

−0.5

1.5−1.5

−0.25

0.25

0.5

y

x

y � 0.2063x



(c)

97. (a) (b)

99.
101.
103. 105. About
107. (a)

(b)
(c)

(d)

You would expand 
109. Proof

Section 8.2 (page 533)
1. 3.
5. 7.

9. 11.

13.
15. 17.
19. 21.
23. 25.
27.
29.
31.
33.
35.
37. 39.

41.

43.
45. (a) (b)

47. 49.

51.

53.

55.

57.

59.
61.
63.
65. 67.
69. 71.
73. 75. Product Rule
77. In order for the integration by parts technique to be efficient,

you want to be the most complicated portion of the integrand
and you want to be the portion of the integrand whose 
derivative is a function simpler than If you let then

is not a simpler function.
79. (a)

(b) Graphs will vary. Example: (c) One graph is a vertical
translation of the other.

81. (a)
(b) Graphs will vary. Example: (c) One graph is a vertical

translation of the other.

83. 85.
87.

89–93. Proofs
95. 97.
99. 101.

103. (a) 1 (b) (c)

(d)

105. In Example 6, we showed that the centroid of an equivalent
region was By symmetry, the centroid of this region is

107. 109. $931,265�7��10	�� �1 � e�4	� � 0.223

�	�8, 1�.
�1, 	�8�.

�e2 � 1
4

,
e � 2

2 	 � �2.097, 0.359�

1
2	�e2 � 1� � 13.177	�e � 2� � 2.257

	

1 � 	 2 �1
e

� 1	 � 0.3952 �
8
e3 � 1.602

0 1.5
0

1

7−1

−1

1

1
13e2x�2 cos 3x � 3 sin 3x� � C1

36 x6�6 ln x � 1� � C


 x n ln x dx �
x n�1

�n � 1�2 ��n � 1� ln x � 1� � C

1
25 x5 �5 ln x � 1� � Cn � 4:

1
16 x 4 �4 ln x � 1� � Cn � 3:

1
9 x3 �3 ln x � 1� � Cn � 2:

1
4 x2 �2 ln x � 1� � Cn � 1:

x�ln x � 1� � Cn � 0:

1
3�4 � x2�x2 � 8� � C2

5�2x � 3�3�2�x � 1� � C

6

−1

−2

C = 5

C = 2

7

1
13�2e�	 � 3� � 0.2374

4

−1

−2

C = 2

C = 1

5

��e�4t�128� �32t3 � 24t 2 � 12t � 3� � C
du

u � sin x,u.
u

dv

1
2 x�cos�ln x� � sin�ln x�� � C

1
2�x4ex2

� 2x2ex2
� 2ex2� � C128

15

2�sin�x � �x cos �x� � Cx tan x � ln�cos x� � C

�3x2 � 6� sin x � �x3 � 6x� cos x � C
�e2x�4� �2x2 � 2x � 1� � C
8 arcsec 4 � �3�2 � �15�2 � 2	�3 � 7.380

4
3�2 ln 2 �

8
9�2 �

4
9 � 0.494

1
2�e�sin 1 � cos 1� � 1� � 0.909

�	 � 3�3 � 6��6 � 0.658

	

8
�

1
4

� 0.143

2e3�2 � 4 � 12.963

−10 10

−2

10

−6 6

−2

6

2�y � cos x � x sin x � 3

x
42−2

8

6

2

y

−4

sin y � x2 � C

�
2

625
�3 � 5t �25t2 � 20t � 24� � C

y �
2
5

t2�3 � 5t �
8t
75

�3 � 5t�3�2 �
16

1875
�3 � 5t�5�2 � C

y �
1
2e x 2

� C1
5e�x�2 sin 2x � cos 2x� � C

1
5e2x �2 sin x � cos x� � C
x arctan x �

1
2 ln�1 � x2� � C

�t csc t � ln�csc t � cot t� � C
�6x � x3� cos x � �3x2 � 6� sin x � C
x sin x � cos x � C

2
15�x � 5�3�2�3x � 10� � C�x � 1�2ex � C

e2x��4�2x � 1�� � C1
3�ln x�3 � C

1
4�2�t 2 � 1� ln�t � 1� � t 2 � 2t� � C1

3e x 3
� C

ex�x3 � 3x2 � 6x � 6� � C

�
1

16e4x �4x � 1� � C
1
9

 sin 3x �
1
3

x cos 3x � C

1
16 x4�4 ln x � 1� � Cu � x, dv � sec2 x dx

u � �ln x�2, dv � dxu � x, dv � e2x dx

�1 � sin2 x�7.


cos15 x dx � 
�1 � sin2 x�7 cos x dx

1
35 sin x�5 cos6 x � 6 cos4 x � 8 cos2 x � 16�

1
15 sin x�3 cos4 x � 4 cos2 x � 8�

1
3 sin x�cos2 x � 2�

1.03201
3 arctan 3 � 0.416
�8	�3��10�10 � 1� � 256.545

ln��2 � 1� � 0.8814

b ��ln� 3	

3	 � 4	 � 0.743	 �1 � e�1� � 1.986

2−2

−1

2

3

x

y

y = x
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n xn yn

0 0 0

1 0.1 0

2 0.2 0.0060

3 0.3 0.0293

4 0.4 0.0801

� � �

40 4.0 1.0210

n xn yn

0 0 0

1 0.05 0

2 0.10 7.4875 
 10�4

3 0.15 0.0037

4 0.20 0.0104

� � �

80 4.00 1.3181

111. Proof 113.

115. Shell:

Disk:

Both methods yield the same volume because 
if then and if then

117. (a)

(b)

(c) You obtain the following points.

(d) You obtain the following points.

119. The graph of is below the graph of on 

Section 8.3 (page 542)
1. c 2. a 3. d 4. b 5.
7. 9.

11.
13.
15.
17. 19.
21. 23. 25.

27.
29.
31.
33. 35.
37. 39.
41.
43.
45.
47. (a) (b)

49. 51.

53. 55.

57. 59.
61.
63. 65.
67. 69. 71. 73. 4

75.
Graphs will vary. Example:

77.

Graphs will vary. Example:

79. 81. 83.
Graphs will vary. Example:

2−2

−5

5

C = 0C = 2

3	�162�2�7�sec5 	x���5	� � C

−3 3

−3

3 C = 1

C = −1

3
2�sec 	x tan 	x � ln�sec 	x � tan 	x�����4	� � C

�sec3 	x tan 	x �

−9 9

−6

C = 0

C = 2

6

1
16�6x � 8 sin x � sin 2x� � C

ln 23�1 � ln 2�	

t � 2 tan t � Cln�csc x � cot x� � cos x � C
ln�csc t � cot t� � cos t � C

�
1
2 cot 2x �

1
6 cot3 2x � C1

4�ln�csc2 2x� � cot2 2x� � C

1
8�2 sin 2 � sin 4� � C1

12�3 cos 2x � cos 6x� � C

1
16 �2 sin 4x � sin 8x� � C

−9 9

−4

8

−6 6

−4

4

y �
1
2 x �

1
4 sin 2x

x

y

4

4

−4

y �
1
9 sec3 3x �

1
3 sec 3x � C

�12	 � 8 sin 2	 � sin 4	���32	� � C

ln�sec x � tan x� � sin x � C

1
7 sec7 x �

1
5 sec5 x � C1

24 sec6 4x � C

1
3 tan3 x �

1
5 tan5 x � C1

2 tan2 x � C

1
2 tan4�x�2� � tan2�x�2� � 2 ln�cos�x�2�� � C

�sec 	x tan 	x � ln�sec 	x � tan 	x����2	� � C

1
15 tan 5x�3 � tan2 5x� � C

1
7 ln�sec 7x � tan 7x� � C5	�3263	�512

16
35

1
8 �2x2 � 2x sin 2x � cos 2x� � C

3
8� �

1
12 sin 6� �

1
96 sin 12� � C

1
12 �6x � sin 6x� � C

�
1
3�cos 2�3�2 �

1
7�cos 2�7�2 � C

�
1
3 cos3 x �

1
5 cos5 x � C1

16 sin8 2x � C

�
1
6 cos6 x � C

�0, 	�2�.
y � xy � x sin x

5

−5

0

3

5

−5

0

3

5

−5

0

3

y �
1
4�3 sin 2x � 6x cos 2x�

x � b.
y � f �b�x � a,y � f �a�f��x� dx � dy,

x � f �1�y�,

V � 	�b2 f �b� � a2 f �a� � 
f �b�

f �a�
� f �1�y��2 dy�

V � 	�b2 f �b� � a2 f �a� � 
b

a

x2 f��x� dx�
bn � �8h��n	�2� sin�n	�2�
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85. (a) Save one sine factor and convert the remaining factors to
cosines. Then expand and integrate.

(b) Save one cosine factor and convert the remaining factors to
sines. Then expand and integrate.

(c) Make repeated use of the power reducing formulas to
convert the integrand to odd powers of the cosine. Then 
proceed as in part (b).

87. (a) (b)

(c) (d)
The answers are all the same, they are just written in different
forms. Using trigonometric identities, you can rewrite each
answer in the same form.

89. (a)
(b) (c) Proof

91. 93. 1 95.
97. (a) (b) 99–101. Proofs

103.

105.

107. (a)
(b)
(c) The maximum difference is at

or late spring.

109. Proof

Section 8.4 (page 551)
1. 3. 5.

7.

9.

11.

13. 15.

17.

19.

21. 23.

25. 27.

29. 31.

33. 35.
37.

39.

41.

43.

45.

47. (a) and (b)

49. (a) and (b)

51. (a) and (b)

53.
55.

57.

59. (a) Let where 

(b) Let where 

(c) Let if and 

if where 
or

61. Trigonometric substitution: 63. True

65. False:

67. 69. (a) (b) (c)

71. 73.

75. Length of one arch of sine curve:

Length of one arch of cosine curve:

77. (a) (b) 200

(c)

79. 81.
83. (a) lb (b) lb
85. Proof 87.
89. Putnum Problem A5, 2005

Section 8.5 (page 561)

1. 3. 5.

7. 9.

11.
13. 5 ln�x � 2� � ln�x � 2� � 3 ln�x� � C

3
2 ln�2x � 1� � 2 ln�x � 1� � C

ln��x � 1���x � 4�� � C1
6 ln��x � 3���x � 3�� � C

A
x

�
B

x � 6
A
x

�
Bx � C
x2 � 10

A
x

�
B

x � 8

12 � 9	�2 � 25 arcsin�3�5� � 10.050
62.4	d187.2	

�	�32� �102�2 � ln�3 � 2�2 �� � 13.989�0, 0.422�
100�2 � 50 ln���2 � 1����2 � 1�� � 229.559

−25 250

−10

60

� 
	

0

�1 � cos2 u du � L1� 
0

�	

�1 � cos2 u du

u � x � 	�2, du � dx� 
	�2

�	�2

�1 � cos2�x � 	�2� dx,

L2 � 
	�2

�	�2

�1 � sin2 x dx

y � cos x, y� � �sin x

L1 � 
	

0

�1 � cos2 x dx

y� � cos xy � sin x,

ln�5��2 � 1�
�26 � 1 � � �26 � �2 � 4.3676	 2

r 2�1 � 	�4�25�1 � 	�4�5�2	ab


�3

0

dx
�1 � x2�3�2 � 
	�3

0
 cos  d

x � sec 

	�2 <  � 	.
0 �  < 	�2u < �a,�u2 � a2 � �tan 

u > a�u2 � a2 � tan u � a sec ,

�	�2 <  < 	�2.
u � a tan , �a2 � u2 � a sec ,

�	�2 �  � 	�2.
u � a sin , �a2 � u2 � a cos ,

1
2�x�x2 � 1 � ln�x � �x2 � 1�� � C

� 33 ln��x2 � 10x � 9 � �x � 5�� � C

1
2�x � 15��x2 � 10x � 9
�x2 � 9 � 3 arctan��x2 � 9�3� � 1

� 9�3 � 2�7 � 12.644
��9�2� ln�2�7�3 � 4�3�3 � �21�3 � 8�3�
9�2 � �2 � � 5.272

�3 � 	�3 � 0.685

�x2 � 6x � 12 � 3 ln��x2 � 6x � 12 � �x � 3�� � C

arcsin��x � 2��2� � C

x arcsec 2x �
1
2 ln�2x � �4x 2 � 1� � C

1
4 �x��x2 � 2� � �1��2� arctan�x��2�� � C

1
2�arcsin e x � e x�1 � e2x � � C

1
3�1 � e2x�3�2 � C3��x2 � 3 � C

�
1
3

 ln��4x2 � 9 � 3
2x � � C�

�1 � x2�3�2

3x3 � C

ln�x � �x2 � 4� � C4 arcsin�x�2� � x�4 � x2 � C

arcsin�x�4� � C�x2 � 36 � C

25
4  arcsin�2x�5� �

1
2 x�25 � 4x2 � C

1
2 x�9 � 16x2 �

9
8 ln�4x � �9 � 16x2� � C

1
2�arctan x � x��1 � x2�� � C1

3�1 � x2�3�2 � C

1
15�x2 � 25�3�2�3x2 � 50� � C

ln�x � �x2 � 25� � C

4 ln��4 � �16 � x2��x� � �16 � x2 � C

x��16�16 � x2� � Cx � 4 sin x � 3 tan 

t � 4.9,

14
10

0

H

L

90

L�t� � 42.04 � 20.91 cos�	 t�6� � 4.33 sin�	 t�6�
H�t� � 57.72 � 23.36 cos�	 t�6� � 2.75 sin�	 t�6�

5
6	

 tan 
2	x

5 �sec2 2	x
5

� 2	 � C

�
1
15 cos x�3 sin4 x � 4 sin2 x � 8� � C

�x, y� � �	�2, 	�8�	 2�2
2	�1 � 	�4� � 1.3481

3

−0.5 0.5

−0.05

0.05

1
18 sec6 3x �

1
12 sec4 3x � C2

1
18 tan6 3x �

1
12 tan4 3x � C1,

�
1
4 cos 2x � C1

2 sin2 x � C

�
1
2 cos2 x � C1

2 sin2 x � C
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A90 Answers to Odd-Numbered Exercises

15.
17.
19.
21.

23.

25.

27.

29. 31.
33.

35.

37.

39.

41. 43.

45. 47.

49. 51–53. Proofs

55. 57. First divide by 

59. 61.
63. or

65.

67. 69.

Section 8.6 (page 567)
1.

3.

5.
7.
9. 11.

13.
15. (a) and (b)
17. (a) and (b)

19.

21. 23.
25.
27.

29.

31.

33.

35.

37.

39.
41.

43. 45.
47. 49. 51–55. Proofs

57.

59.

61.

63. 65.

67. 69. 71.

73. (a)


 x3 ln x dx �
1
4 x 4 ln x �

1
16 x 4 � C


 x2 ln x dx �
1
3 x3 ln x �

1
9 x3 � C


 x ln x dx �
1
2 x2 ln x �

1
4 x2 � C

4�3�2 cos� � C1
2 ln�3 � 2 cos � � C

ln 2
1
�5

 ln�2 tan��2� � 3 � �5

2 tan��2� � 3 � �5� � C

π

−2

2

10

, 2
2( (

− 	
	
2

y � �csc  � �2 � 2

8−8

−2

(3, 0)

2

y �
1
2��x � 3���x2 � 6x � 10� � arctan�x � 3��

−2

1.5−0.5

8

1
2( (, 5

y � �2�1 � x��x � 7

	 3�8 � 3	 � 6 � 0.4510	�2

32
5  ln 2 �

31
25 � 3.19611

2�e � 1� � 0.8591

2��1 � ex� � 1��2�1 � ex�2� � ln�1 � e x� � C
�

1
3�4 � x2�x2 � 8� � C

1
2 ln�x2 � 3 � �x 4 � 6x2 � 5� � C

�3x � 10���2�x2 � 6x � 10�� �
3
2 arctan�x � 3� � C

1
4�2 ln�x� � 3 ln�3 � 2 ln�x��� � C

��2 � 9x2��2x� � C

��2�2� arctan��1 � sin ���2� � C

1
2�x2 � cot x2 � csc x2� � C
ex arccos�e x� � �1 � e2x � C

4
25�ln�2 � 5x� � 2��2 � 5x�� � C�x2 � 4��4x� � C

� ln�x2 � 1 � �x 4 � 2x2 �� � C1
2��x2 � 1� arccsc�x2 � 1�

ln��x � 1��x� � 1�x � C

1
27 e3x�9x2 � 6x � 2� � C

1
64 x8�8 ln x � 1� � C

x �
1
2 ln�1 � e2 x� � C�2�cot�x � csc�x � � C

1
24�3x � sin 3x cos 3x � 2 cos3 3x sin 3x� � C
��1 � x2�x � C

1
2�ex�e2x � 1 � ln�ex � �e2x � 1 �� � C

�
1
2 x�10 � x� � 25 ln�5 � x� � C

	�8x � n�e�n�1�kt � 1���n � e�n�1�kt�

�x, y� � �1.521, 0.412�V � 2	 �arctan 3 �
3

10� � 5.963;

$490,0004.90
6 �

7
4 ln 7 � 2.594712 ln�9

8� � 1.4134

2−2

−4

10

�x � 5�.x3y �
3
2

 ln�2 � x
2 � x� � 3

2�x � 2 ln��x � 2
�x � 2� � C

1
5

 ln�e x � 1
e x � 4� � Cln�tan x � 2

tan x � 3� � C

ln� sin x
1 � sin x� � Cln� cos x

cos x � 1� � C

(7, 2)

10−10

−1

4

y �
1
10 ln��x � 5���x � 5�� �

1
10 ln 6 � 2

−2

−5

6

20

(3, 10)

� �3 arctan�7��3� � 10

� �3 arctan��2x � 1���3� �
1
2 ln 13

y � ln�x � 2� �
1
2 ln�x2 � x � 1�

−3 3

−1

3

(0, 1)

y � ��2�2� arctan�x��2� � 1��2�x2 � 2�� � 5�4

10−1

−20

80

(6, 0)

y � 5 ln�x � 5� � 5x��x � 5� � 30

1
2 ln�8�5� � 	�4 � arctan 2 � 0.557ln 3

ln�x � 1� � �2 arctan��x � 1���2� � C

1
16 ln��4x2 � 1���4x2 � 1�� � C

1
6 �ln��x � 2���x � 2�� � �2 arctan�x��2�� � C

ln��x2 � 1��x� � C
2 ln�x � 2� � ln�x� � 3��x � 2� � C
1�x � ln�x 4 � x3� � C

x2 �
3
2 ln�x � 4� �

1
2 ln�x � 2� � C



(b)

75. False. Substitutions may first have to be made to rewrite the 
integral in a form that appears in the table.

77. 79. 1919.145 ft-lb
81. (a)

lb
(b)

83. (a) 85. Putnam Problem A3, 1980
(b)

Section 8.7 (page 576)
1.

3.

0

5. 7. 9. 11. 4 13. 0 15. 2
17. 19. 21. 23. 1 25. 27.
29. 0 31. 1 33. 0 35. 0 37.
39. 41. 1 43.
45. (a) Not indeterminate 47. (a)

(b) (b) 1
(c) (c)

49. (a) Not indeterminate 51. (a)
(b) 0 (b) 1
(c) (c)

53. (a) (b) 55. (a) (b) 3
(c) (c)

57. (a) (b) 1 59. (a) (b)
(c) (c)

61. (a) (b) 63. (a)
(c)

(b)

65. (a) 67.

(b)
69. Answers will vary. Examples:

(a)
(b)
(c)

71.

73. 0 75. 0 77. 0
79. Horizontal asymptote: 81. Horizontal asymptote:

Relative maximum: Relative maximum:

83. Limit is not of the form or 
85. Limit is not of the form or 
87. Limit is not of the form or 

89. (a)

Applying L’Hôpital’s Rule twice results in the original limit,
so L’Hôpital’s Rule fails.

(b) 1
(c)

−1.5

−6 6

1.5

lim
x→�

x
�x2 � 1

� lim
x→�

�x2 � 1
x

� lim
x→�

x
�x2 � 1

���.0�0
���.0�0
���.0�0

−2

−5

10

2
e

3

1,( (

0
0

6

( , )e  e1/e

4

�1, 2�e��e, e1�e�
y � 0y � 1

f �x� � x2 � 25, g�x� � �x � 5�3

f �x� � �x � 5)2, g�x� � x2 � 25
f �x� � x2 � 25, g�x� � x � 5

5
2

0
0

, �
�

, 0 � �, 1�, 00, ���

−8 10

−2

10

1
2

−1

−4

4

8

−1

−1

7

3�� � �

5−7

−4

4

−4 8

−2

6

�
3
2� � �00

−6 6

−1

7

−1

−1

4

6

00e1�

−5 20

−0.5

2

−0.5

−0.5

2

2

�0

−1 1

−0.5

1.5

4

−1

0

3
�

0 � �
�

5
9

�
�

5
4

3
5

11
4�

5
3

1
8

3
8

4
3

0 4

−1

8

k � 30�ln 7 � 15.42
�0, 1.19�
W � 11,840 ln��10 � 3� � 21,530.4
V � 80 ln��10 � 3� � 145.5 ft3

32	 2


 x n ln x dx � x n�1 ln x��n � 1� � x n�1��n � 1�2 � C

x 1 10 102 103 104 105

f �x� 0.9900 90,483.7 3.7 
 109 4.5 
 1010 0 0

x 10 102 104 106 108 1010

�ln x�4

x
2.811 4.498 0.720 0.036 0.001 0.000

x �0.1 �0.01 �0.001 0.001 0.01 0.1

f �x� 1.3177 1.3332 1.3333 1.3333 1.3332 1.3177
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A92 Answers to Odd-Numbered Exercises

91. As the graphs get closer
together (they both approach 0.75).

By L’Hôpital’s Rule,

93. 95. Proof 97. 99.
101. False:L’Hôpital’s Rule does not apply, 103. True

because

105. 107. 109. 111. Proof
113. 115. (a) (b) 0

117. Proof
119. (a)–(c) 2

121. (a) (b)

(c) No

123. Putnam Problem A1, 1956

Section 8.8 (page 587)
1. Improper; 3. Not improper; continuous on 
5. Not improper; continuous on 
7. Improper; infinite limits of integration
9. Infinite discontinuity at 4

11. Infinite discontinuity at diverges
13. Infinite limit of integration; 
15. Infinite discontinuity at diverges
17. Infinite limit of integration; converges to 1 19.
21. Diverges 23. Diverges 25. 2 27.
29. 31. 33. 35. Diverges

37. Diverges 39. 6 41. 43. Diverges 45.
47. 49. 0 51. 53.
55. 57. Proof 59. Diverges 61. Converges
63. Converges 65. Diverges 67. Diverges 69. Converges
71. An integral with infinite integration limits, an integral with an

infinite discontinuity at or between the integration limits
73. The improper integral diverges. 75. 77.
79. (a) 1 (b) (c)
81.

Perimeter

83. 85. (a) mile-tons (b) 4000 mi
87. (a) Proof (b) (c)
89. (a) $757,992.41 (b) $837,995.15 (c) $1,066,666.67

91.
93. False. Let 95. True
97. (a) and (b) Proofs

(c) The definition of the improper integral is not 

but rather if you rewrite the integral that diverges, you can

find that the integral converges.

99. (a) will converge if and diverge if 

(b) (c) Converges

101. (a) (b) Proof
(c)

103. 105. 107.
109.

111. (a) (b) About 
(c) 0.2525; same by symmetry

113.
115.

117.

119. (a) (b) Proof

Review Exercises for Chapter 8 (page 591)
1. 3.

5. 7.
9.

11.
13.
15.

17.
19.

21. 23.

25. 27.

29. 31. 	1
3�x2 � 4�1�2�x2 � 8� � C

3�4 � x2�x � C3	�16 �
1
2 � 1.0890

tan  � sec  � C2
3�tan3�x�2� � 3 tan�x�2�� � C

sin�	x � 1��cos2�	x � 1� � 2���3	� � C

1
16 ��8x2 � 1� arcsin 2x � 2x�1 � 4x2� � C

�
1
2 x2 cos 2x �

1
2 x sin 2x �

1
4 cos 2x � C

2
15 �x � 1�3�2�3x � 2� � C

1
13 e2x�2 sin 3x � 3 cos 3x� � C

1
9 e3x�3x � 1� � C

100 arcsin�x�10� � Cln�2� �
1
2 � 1.1931

1
2 ln�x2 � 49� � C1

3�x2 � 36�3�2 � C

3

−1

−3

3


1

0
 2 sin�u2� du; 0.6278

8	 ��ln 2�2�3 � �ln 4��9 � 2�27� � 2.01545
c � 1; ln �2�

0.2525

50 90

−0.2

0.4

s��s2 � a2), s > �a�
s��s2 � a2�, s > 02�s3, s > 01�s, s > 0

��n� � �n � 1�!
��1� � 1, ��2� � 1, ��3� � 2

x
15−5 20

1.00

0.75

0.50

0.25

−0.25

y

n � 1.n > 1
�

1

1
xn dx

lim
a→�


a

�a

�

��

f �x� � 1��x � 1�.
P � �2	NI��r2 � c2 � c����kr�r2 � c2�

E�x� � 7P � 43.53%
W � 20,0008	 2

� 48

x
−8 −2

2

2 8

8

−8

y

(0, 8)

(8, 0)

(0, −8)

(−8, 0)

2		�2
	e

p > 1
2	�6�3	�6ln�2 � �3�

	�3�
1
4

	�4	1��2�ln 4�2�

1
2

1
2

x � 0;

1
4

x � 1;
x � 0;

�0, 2�
�0, 1�0 �

3
5 � 1

lim
x→�

h�x� � 1

20
0

−2

3

g��0� � 0

0 � �

x
1 2−2 −1

1.5

0.5

−0.5

y

a � 1, b � ±24
3

3
4

lim
x→0

�x2 � x � 1� � 0.

c � 	�4c �
2
3v � 32t � v0

lim
x→0

sin 3x
sin 4x

� lim
x→0

3 cos 3x
4 cos 4x

�
3
4

.

x → 0,
1.5

0.5
0.5

−0.5

y =
sin 3x
sin 4x

y =
3 cos 3x
4 cos 4x



n 1 2 3 4

An $10,045.83 $10,091.88 $10,138.13 $10,184.60

n 5 6 7

An $10,231.28 $10,278.17 $10,325.28

n 8 9 10

An $10,372.60 $10,420.14 $10,467.90

33. (a), (b), and (c)
35.
37.

39.
41. 43.
45.

47. 49. Proof

51.

53.

55. 57.
59.
61. 63.

65. 67. 69.

71. 73. 3.82 75. 0 77. 79. 1
81. 83. Converges; 85. Diverges
87. Converges; 1 89. Converges; 
91. (a) $6,321,205.59 (b) $10,000,000
93. (a) 0.4581 (b) 0.0135

P.S. Problem Solving (page 593)
1. (a) (b) Proof 3. 5. Proof

7. (a) (b)

(c)

9. 11. Proof 13. About

15. (a) (b) 0 (c)
The form is indeterminant.

17.

19. Proof 21. About

Chapter 9
Section 9.1 (page 604)
1. 3, 9, 27, 81, 243 3.

5. 7. 9.

11. 13.
15. c 16. a 17. d 18. b 19. b 20. c
21. a 22. d 23. 14, 17; add 3 to preceding term
25. 80, 160; multiply preceding term by 2.
27. multiply preceding term by 
29. 31. 33.
35. 5 37. 2 39. 0
41. 43.

Converges to 1 Diverges

45. Converges to 47. Converges to 0
49. Diverges 51. Converges to 53. Converges to 0
55. Converges to 0 57. Converges to 0 59. Converges to 0
61. Diverges 63. Converges to 0 65. Converges to 0
67. Converges to 1 69. Converges to 71. Converges to 0
73. Answers will vary. Sample answer:
75. Answers will vary. Sample answer:
77. Answers will vary. Sample answer:
79. Answers will vary. Sample answer:
81. Answers will vary. Sample answer:
83. Answers will vary. Sample answer:

85. Answers will vary. Sample answer:
87. Monotonic, bounded 89. Monotonic, bounded
91. Not monotonic, bounded 93. Monotonic, bounded
95. Not monotonic, bounded 97. Not monotonic, bounded

99. (a) (b)

So, converges.

Limit

101. (a)

So, converges.
(b)

Limit

103. has a limit because it is bounded and monotonic; since

105. (a) No; does not exist.

(b)

107. No. A sequence is said to converge when its terms approach a
real number.

109. The graph on the left represents a sequence with alternating
signs because the terms alternate from being above the -axis to
being below the -axis.x

x

lim
n→�

An

2 � L � 4.2 � an � 4,
�an�

�
1
3

−1

−0.1

12

0.4

�an�
an < an�1 ⇒  monotonic

�13�1 �
1
3n	� <

1
3

⇒  bounded

� 5

{an�
an > an�1 ⇒  monotonic

−1

−1

12

7�5 �
1
n� � 6 ⇒  bounded

�2n�!

��1�n�1

1 � 3 � 5 . . . �2n � 1� �
��1�n�12nn!

�2n�!

n���n � 1��n � 2��
�n � 1��n
�n � 1���n � 2�
n2 � 2
3n � 2
ek

3
2

�1

12−1

−2

2

−1

12−1

3

1���2n � 1��2n��n � 111 � 10 � 9 � 990
�

1
2

3
16, �

3
32;

32, 16, 8, 4, 23, 4, 6, 10, 18

5, 19
4 , 43

9 , 77
16, 121

25�1, �
1
4, 1

9, 1
16, �

1
251, 0, �1, 0, 1

�
1
4, 1

16, �
1
64, 1

256, �
1

1024

0.0158

1�12
x

�
1�42
x � 3

�
1�10
x � 1

�
111�140

x � 4

0 � �
�

2
3�

0.8670ln 3 �
1
2 � 0.5986

Area � 0.2986

ln 3 �
4
5

ln 3 �
4
5

0
0

4

0.2

ln 34
3, 16

15

	�4

32
31000e0.09 � 1094.17

��x, y� � �0, 4��3	��

128
15	1

2 �ln 4�2 � 0.961

1
5y � x ln�x2 � x� � 2x � ln�x � 1� � C

5
2 ln��x � 5���x � 5�� � C

sin x ln�sin x� � sin x � C2�1 � cos x � C

4
3 �x3�4 � 3x1�4 � 3 arctan�x1�4�� � C

1
8 �sin 2 � 2 cos 2� � C

ln�tan 	x��	 � C

1
2 ln�x2 � 4x � 8� � arctan��x � 2��2� � C

1 � �2�21
25 �4��4 � 5x� � ln�4 � 5x�� � C
x �

64
11 ln�x � 8� �

9
11 ln�x � 3� � C

1
4 �6 ln�x � 1� � ln�x2 � 1� � 6 arctan x� � C
6 ln�x � 3� � 5 ln�x � 4� � C

1
3�4 � x2�x2 � 8� � C
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n 5 10 20 50 100

Sn 8.1902 13.0264 17.5685 19.8969 19.9995

n 5 10 20 50 100

Sn 2.7976 3.1643 3.3936 3.5513 3.6078

n 5 10 20 50 100

Sn 13.3203 13.3333 13.3333 13.3333 13.3333

Year 1 2

Budget $3,600,000,000 $2,880,000,000

Year 3 4

Budget $2,304,000,000 $1,843,200,000

111. (a)
(b)

(c) Converges to 0
113. (a)

(b) $11,522.4 billion
115. (a) (b) Decreasing

(c) Factorials increase more rapidly than exponentials.
117. 1, 1.4142, 1.4422, 1.4142, 1.3797, 1.3480; Converges to 1
119. True 121. True 123. True
125. (a)

(b) 1, 2, 1.5, 1.6667, 1.6, 1.6250, 1.6154, 1.6190,
1.6176, 1.6182

(c) Proof (d)
127. (a) 1.4142, 1.8478, 1.9616, 1.9904, 1.9976

(b) (c)

129. (a) Proof (b) Proof (c)

131. (a) Proof (b) Proof
133. (a) Proof

(b) (c) Proof (d) Proof

(e)

135. Proof
137. Answers will vary. Sample answer:
139. Proof 141. Putnam Problem A1, 1990

Section 9.2 (page 614)
1. 1, 1.25, 1.361, 1.424, 1.464
3.
5. 3, 4.5, 5.25, 5.625, 5.8125
7. converges, diverges

9. Geometric series:
11. Geometric series: 13.

15. 17. 19. c; 3

20. b; 3 21. a; 3 22. d; 3 23. f; 24. e;
25. Geometric series:
27. Geometric series:

29. Telescoping series: Converges to 1.

31. (a)

(b)

(c) (d) The terms of the series decrease
in magnitude relatively slowly,
and the sequence of partial sums
approaches the sum of the series
relatively slowly.

33. (a) 20

(b)

(c) (d) The terms of the series decrease
in magnitude relatively slowly,
and the sequence of partial sums
approaches the sum of the series
relatively slowly.

35. (a)
(b)

(c) (d) The terms of the series decrease
in magnitude relatively rapidly,
and the sequence of partial sums
approaches the sum of the series
relatively rapidly.

37. 2 39. 41. 43. 4 45. 47. 49.

51. 53. (a) (b)

55. (a) (b)

57. (a) (b) 59. Diverges 61. Diverges

63. Converges 65. Converges 67. Diverges
69. Converges 71. Diverges 73. Diverges 75. Diverges
77. See definitions on page 608.
79. The series given by 

is a geometric series with ratio When the series 

converges to the sum 

81. The series in (a) and (b) are the same. The series in (c) is 
different unless is constant.

83. 85.
87.
89. 91. c � ��3 � 1��2x��x � 1����, �1� � �1, ��;x:

�1 < x < 1; 1��1 � x�
0 < x < 2; �x � 1���2 � x��2 < x < 2; x��2 � x�

a1 � a2 � .  .  . � a


�

n�0
ar n �

a
1 � r

.

0 < �r� < 1,r.

� . . ., a � 0
�

n�0
ar n � a � ar � ar2 � . . . � ar n

5
66

�

n�0

3
40

�0.01�n

9
11

�

n�0

81
100

�0.01�n

4
9

�

n�0

4
10

�0.1�nsin�1�
1 � sin�1�

1
2

9
4

10
9

3
4

3
4

110
0

15

40
3

0
0

11

22

0
0

5

11

11
3

an �  1�n � 1��n � 1�;

r � 0.9  <  1
r �

5
6  <  1

5
3

34
9

lim
n→�

an �
1
2 � 0lim

n→�
an � 1 � 0

lim
n→�

an � 1 � 0r � 1.055  >  1
r �

7
6  >  1

 an�an�

3, �1.5, 5.25, �4.875, 10.3125

an � ��1�n

100�100!
100

� 0.3799

50�50!
50

� 0.3897;

20�20!
20

� 0.4152;

x

y

2 3 4

0.5

1.0

1.5

2.0

n + 1...

y = lnx

lim
n→�

an � �1 � �1 � 4k��2

lim
n→�

an � 2an � �2 � an�1

� � �1 � �5��2 � 1.6180

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

a9 � a10 � 1,562,500�567

0
4000

8

10,000

an � �5.364n2 � 608.04n � 4998.3

$4,500,000,000�0.8�n

A94 Answers to Odd-Numbered Exercises



n 5 10 20 50 100

Sn 1.4636 1.5498 1.5962 1.6251 1.635

n 5 10 20 50 100

Sn 3.7488 3.75 3.75 3.75 3.75

93. Neither statement is true. The formula is valid for 
95. (a) (b)

(c) Answers will vary.

97. Horizontal asymptote:
The horizontal asymptote is the
sum of the series.

99. The required terms for the two series are and 
respectively. The second series converges at a higher rate.

101. units

103. Sum million

105. 152.42 feet 107.

109. (a)

(b) No (c) 2
111. (a) (b)
113. The $2,000,000 sweepstakes has a present value of

$1,146,992.12. After accruing interest over the 
period, it attains its full value.

115. (a) $5,368,709.11 (b) $10,737,418.23 (c) $21,474,836.47
117. (a) $14,773.59 (b) $14,779.65
119. (a) $91,373.09 (b) $91,503.32 121. $4,751,275.79

123. False. but diverges.

125. False. The formula requires that the

geometric series begins with 
127. True 129. Proof

131. Answers will vary. Example:

133–137. Proofs
139. (a)

(b)

(c) and The sum of all the shaded

regions is the area of the square, 1.
141. half-life of the drug

number of equal doses
number of units of the drug

equal time intervals
The total amount of the drug in the patient’s system at the time
the last dose is given is 

where One time interval after the last dose is
administered is given by

and so on. Because as 
143. Putnam Problem A1, 1966

Section 9.3 (page 622)
1. Diverges 3. Converges 5. Converges 7. Converges
9. Diverges 11. Diverges 13. Diverges 15. Converges

17. Converges 19. Converges 21. Diverges
23. Diverges 25. Diverges 27. is not positive for 
29. is not always decreasing. 31. Converges 33. Diverges
35. Diverges 37. Diverges 39. Converges 41. Converges
43. c; diverges 44. f; diverges 45. b; converges
46. a; diverges 47. d; converges 48. e; converges
49. (a)

The partial sums approach the
sum 3.75 very quickly.

(b)

The partial sums approach the sum
more slowly than

the series in part (a).

51. See Theorem 9.10 on page 619. Answers will vary. For example,
convergence or divergence can be determined for the series 


�

n�1

1
n2 � 1

.

	 2�6 � 1.6449
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0
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0
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f �x�
x � 1.f �x�

s →�.Tn�s → 0k < 0,
Tn�1 � Pekt � Pe2kt � Pe3kt � .  .  . � Penkt

k � ��ln 2��H.
Tn � P � Pekt � Pe2kt � .  .  . � Pe�n�1�kt

t �

P �
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H �


�

n�1
an � 1;an �

1
n

�
1

n � 1


1

0
�x2 � x3� dx �

1
12


1

0
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1
6


1

0
�1 � x� dx �

1
2

y

x
1
2

1
2

1

1

y

x
1
2

1

1
2

1

y

x
1
2

1

1
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�

n�0
��1�

�

n�0
 1,

n � 0.


�

n�1
arn � � a

1 � r	 � a


�

n�1

1
n

lim
n→�

1
n

� 0,

20-year

128 in.2126 in.2

�1 � 
�

n�0
�1

2	
n

� �1 �
a

1 � r
� �1 �

1
1 � 1�2

� 1

1
8

; 
�

n�0

1
2�

1
2	

n

�
1�2

1 � 1�2
� 1

� $800
�

i�0
 200�0.75�i;

160,000�1 � 0.95n�

n � 5,n � 100

y � 6

−2 10

−1

y = 6
7

1.5−1.5
0

f

S3

S5

3
�x�  <  1f �x� � 1��1 � x�,x

�1 < x < 1.
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53. No. Because diverges, also diverges. The con-

vergence or divergence of a series is not determined by the first
finite number of terms of the series.

55.

57. 59. 61. 63. Diverges
65. Converges 67. Proof
69. 71. 73.

75. 77. 79.

81. (a) converges by the Test because 

diverges by the Integral Test because 

diverges.

(b)

(c)
83. (a) Let is positive, continuous, and decreasing on

So,
(b)

Also, for So,
and the sequence is bounded.

(c)

So,
(d) Because the sequence is bounded and monotonic, it

converges to a limit,
(e) 0.5822

85. (a) Diverges (b) Diverges

(c) converges for 

87. Diverges 89. Converges 91. Converges 93. Diverges
95. Diverges 97. Converges

Section 9.4 (page 630)
1. (a)

(b) Converges

(c) The magnitudes of the terms are less than the magnitudes of
the terms of the p-series. Therefore, the series converges.

(d) The smaller the magnitudes of the terms, the smaller the
magnitudes of the terms of the sequence of partial sums.

3. Converges 5. Diverges 7. Converges 9. Diverges
11. Converges 13. Converges 15. Diverges 17. Diverges
19. Converges 21. Converges 23. Converges
25. Diverges 27. Diverges 29. Diverges; p-Series Test

31. Converges; Direct Comparison Test with 

33. Diverges; nth-Term Test 35. Converges; Integral Test

37.

but is finite. 

The series diverges by the Limit Comparison Test.
39. Diverges 41. Converges

43.

So, diverges.

45. Diverges 47. Converges
49. Convergence or divergence is dependent on the form of the

general term for the series and not necessarily on the magnitudes
of the terms.

51. See Theorem 9.13 on page 628. Answers will vary. For example,

diverges because and 

diverges (p-series).

53. (a) Proof
(b)

(c) 0.1226 (d) 0.0277
55. False. Let and 

57. True 59. True 61. Proof 63.

65–71. Proofs 73. Putnam Problem B4, 1988

Section 9.5 (page 638)
1. d 2. f 3. a 4. b 5. e 6. c


�

n�1

1
n2, 

�

n�1

1
n3

bn � 1�n2.an � 1�n3


�

n�2

1
�n

lim
n→�

1��n � 1

1��n
� 1

�

n�2

1
�n � 1


�

n�1

n3

5n4 � 3

lim
n→�

n� n3

5n4 � 3	 �
1
5

� 0

lim
n→�

nan � 0,

lim
n→�

an

1�n
� lim

n→�
nan


�

n�1
�1

5	
n


�

n�1

6
n3�2;

n

2

2

4

4

6

6 8

8

10

10

12

Σ
k = 1

n

Σ
k = 1

n

Σ 6
k2 + 0.5kk = 1

n

Sn
6

k3/2

6
k3/2 + 3

n

2

1

2

4

3

4

6

5

6 8 10

6
n3/2

6
n2 + 0.5

an =

6
n3/2 + 3

an =

an =
n

an

x < 1�e.
�

n�2
x ln n

�.

an � an�1.

� 
n�1

n

1
x

dx �
1

n � 1
� 0

an � an�1 � �Sn � ln n� � �Sn�1 � ln�n � 1��
�an�

0 � Sn � ln n � 1,n � 1.ln�n � 1� � ln n > 0
ln�n � 1� � ln n � Sn � ln n � 1.

ln�n � 1� � Sn � 1 � ln n.

Sn � 
n�1

1

1
x

dx � ln�n � 1�

Sn � 1 � 
n

1

1
x

dx � ln n

�1, ��.
ff �x� � 1�x.

n ≥  3.431 
 1015

� 0.0930 � . . .

0.7213 � 0.3034 � 0.1803 � 0.1243
�

n�2

1
n ln n

�

� 0.1393 � . . .

0.4665 � 0.2987 � 0.2176 � 0.1703
�

n�2

1
n1.1 �


�

2

1
x ln x

dx
�

n�2

1
n ln n

1.1 > 1.p-Series
�

n�2

1
n1.1

N � 1000N � 2N � 7
R4 � 5.6 
 10�8R10 � 0.0997R6 � 0.0015
S4 � 0.4049S10 � 0.9818S6 � 1.0811

p > 1p > 1p > 1


6

n�1
an � 
7

1
f �x� dx � 

7

n�2
an

1 2 3 4 5 6 7

1

x

y


�

n�10,000

1
n

�

n�1

1
n
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n 5 10 20 50 100

Sn 1.1839 1.2087 1.2212 1.2287 1.2312



7. (a)

(b) (c) The points alternate sides of
the horizontal line 
that represents the sum of the
series. The distances between
the successive points and the
line decrease.

(d) The distance in part (c) is always less than the magnitude of
the next term of the series.

9. (a)

(b) (c) The points alternate sides of
the horizontal line 
that represents the sum of the
series. The distances between
the successive points and the
line decrease.

(d) The distance in part (c) is always less than the magnitude of
the next term of the series.

11. Converges 13. Converges 15. Diverges
17. Converges 19. Diverges 21. Converges 23. Diverges
25. Diverges 27. Diverges 29. Converges
31. Converges 33. Converges 35. Converges
37. 39.
41. (a) 7 terms Note that the sum begins with (b) 0.368
43. (a) 3 terms Note that the sum begins with (b) 0.842
45. (a) 1000 terms (b) 0.693 47. 10 49. 7
51. Converges absolutely 53. Converges absolutely
55. Converges absolutely 57. Converges conditionally
59. Diverges 61. Converges conditionally
63. Converges absolutely 65. Converges absolutely
67. Converges conditionally 69. Converges absolutely
71. An alternating series is a series whose terms alternate in sign. 
73.
75. Graph (b). The partial sums alternate above and below the 

horizontal line representing the sum.
77. True 79.
81. Proof; The converse is false. For example: Let 

83. converges, hence so does 

85. (a) No; is not satisfied for all For example,
(b) Yes; 0.5

87. Converges; Test 89. Diverges; Test
91. Converges; Geometric Series Test

93. Converges; Integral Test
95. Converges; Alternating Series Test
97. The first term of the series is 0, not 1. You cannot regroup series

terms arbitrarily.
99. Putnam Problem 2, afternoon session, 1954

Section 9.6 (page 647)
1–3. Proofs 5. d 6. c 7. f 8. b 9. a 10. e

11. (a) Proof
(b)

(c) (d) 19.26

(e) The more rapidly the terms of the series approach 0, the
more rapidly the sequence of partial sums approaches the
sum of the series.

13. Converges 15. Diverges 17. Diverges
19. Converges 21. Diverges 23. Converges
25. Diverges 27. Converges 29. Converges
31. Diverges 33. Converges 35. Converges
37. Converges 39. Diverges 41. Converges
43. Diverges 45. Converges 47. Converges
49. Converges 51. Converges; Alternating Series Test
53. Converges; p-Series Test 55. Diverges; nth-Term Test
57. Diverges; Geometric Series Test
59. Converges; Limit Comparison Test with 
61. Converges; Direct Comparison Test with 
63. Converges; Ratio Test 65. Converges; Ratio Test
67. Converges; Ratio Test 69. a and c 71. a and b

73. 75. (a) 9 (b)

77. Diverges; 

79. Converges; 

81. Diverges; lim 83. Converges 85. Converges
87. 89. 91.
93. See Theorem 9.17 on page 641.

95. No; the series diverges.

97. Absolutely; by Theorem 9.17 99–105. Proofs
107. (a) Diverges (b) Converges (c) Converges

(d) Converges for all integers 
109. Answers will vary.
111. Putnam Problem 7, morning session, 1951

Section 9.7 (page 658)
1. d 2. c 3. a 4. b

x � 2


�

n�1

1
n � 10,000

x � 0��2, 0�(�3, 3�
an � 0

lim
n→� �an�1

an � < 1

lim
n→� �an�1

an � > 1

�0.7769
�

n�0

n � 1
7n�1

bn � 1�3n

bn � 1�2n

0
0

12

20

nth-Termp-Series

1
9 < 1

8.n.an�1 � an


�

n�1

1
n 4.

�

n�1

1
n2

an � 1�n.
p > 0

�S � SN� � �RN� � aN�1

n � 0.��
n � 0.��

2.3713 � S � 2.49370.7305 � S � 0.7361

y � 	 2�12

0.6
0 11

1.1

y � 	�4

0.6
0 11

1.1
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n 1 2 3 4 5

Sn 1.0000 0.6667 0.8667 0.7238 0.8349

n 6 7 8 9 10

Sn 0.7440 0.8209 0.7543 0.8131 0.7605

n 1 2 3 4 5

Sn 1.0000 0.7500 0.8611 0.7986 0.8386

n 6 7 8 9 10

Sn 0.8108 0.8312 0.8156 0.8280 0.8180

n 5 10 15 20 25

Sn 9.2104 16.7598 18.8016 19.1878 19.2491



x �0.75 �0.50 �0.25 0 0.25

f �x� �0.848 �0.524 �0.253 0 0.253

P3�x� �0.820 �0.521 �0.253 0 0.253

x 0.50 0.75

f �x� 0.524 0.848

P3�x� 0.521 0.820

x 0 0.25 0.50 0.75 1.00

sin x 0 0.2474 0.4794 0.6816 0.8415

P1�x� 0 0.25 0.50 0.75 1.00

P3 �x� 0 0.2474 0.4792 0.6797 0.8333

P5 �x� 0 0.2474 0.4794 0.6817 0.8417

x 0 0.8 0.9 1 1.1

f �x� Error 4.4721 4.2164 4.0000 3.8139

P2�x� 7.5000 4.4600 4.2150 4.0000 3.8150

x 1.2 2

f �x� 3.6515 2.8284

P2�x� 3.6600 3.5000

5. 7.

is the first-degree Taylor is the first-degree Taylor
polynomial for at 4. polynomial for at 

9.

11. (a) (b)

(c)

13.
15.
17. 19.

21. 23.
25.
27.
29.

31. (a)

(b)

33. (a)

(b) (c) As the distance increases,
the polynomial approxima-
tion becomes less accurate.

35. (a)

(b)

(c)

37. 39.

41. 4.3984 43. 0.7419 45.
47. 49. 3 51. 5

53. 55.
57. 59.
61. The graph of the approximating polynomial and the elemen-

tary function both pass through the point and the slope
of the graph of is the same as the slope of the graph of at the
point If is of degree then the first derivatives of 
and agree at This allows for the graph of to resemble the
graph of near the point 

63. See “Definitions of Taylor Polynomial and Maclaurin
Polynomial”on page 652.

nthnth
�c, f �c��.f

Pc.P
fnn,P�c, f �c��.

fP
�c, f �c��,f

P
�0.9467 < x < 0.9467�0.3936  < x  <  0

e�	�1.3� � 0.01684n � 16;ln�1.5� � 0.4055n � 9;

R3 � 7.82 
 10�3; 0.00085
R4 � 2.03 
 10�5; 0.000001
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f (x) = cos x
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1
4	 � 2	 2�x �

1
4	
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�
8	3

3 �x �
1
4	

3

P3�x� � 	x �
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3
x3

ln 2 �
1
2�x � 2� �

1
8�x � 2�2 �

1
24�x � 2�3 �

1
64�x � 2�4

2 �
1
4�x � 4� �

1
64�x � 4�2 �

1
512�x � 4�3

2 � 2�x � 1� � 2�x � 1�2 � 2�x � 1�3

1 �
1
2 x21 � x � x2 � x3 � x4 � x5

x � x2 �
1
2 x3 �

1
6 x 4x �

1
6 x3 �

1
120 x5

1 �
1
2 x �

1
8 x2 �

1
48 x3 �

1
384 x4

1 � 3x �
9
2 x2 �

9
2 x3 �

27
8 x4

f �n��0� � Pn
�n��0�

P6
�6��0� � �1f �6��0� � �1

P4
�4� �0� � 1f �4��0� � 1

3−3

−2

2

P6

P2

P4

f

P2
�2��0� � �1f �2��0� � �1

−2 6
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P2

f

(1, 4)

	�4.ff
P1P1
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5

P1
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2
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P1 (4, 4)

−1 11
0
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x 0.0 0.2 0.4 0.6 0.8 1.0

S2 0.000 0.180 0.320 0.420 0.480 0.500

ln�x 1 1� 0.000 0.182 0.336 0.470 0.588 0.693

S3 0.000 0.183 0.341 0.492 0.651 0.833

65. As the degree of the polynomial increases, the graph of the
Taylor polynomial becomes a better and better approximation of
the function within the interval of convergence. Therefore, the
accuracy is increased.

67. (a)

(b)
(c)

69. (a)

(b)
(c) No. Horizontal translations of the result in part (a) are 

possible only at (where is an integer)
because the period of is 8.

71. Proof
73. As you move away from the Taylor polynomial becomes

less and less accurate.

Section 9.8 (page 668)
1. 0 3. 2 5. 7. 9.

11. 13. 15. 17.
19. 21. 23. 25.
27. 29. 31. 33.
35. 37. 39.

41. 43.

45. (a) (b) (c) (d)
47. (a) (b) (c) (d)
49. c; 50. a;
51. b; diverges 52. d; alternating
53. b 54. c 55. d 56. a
57. A series of the form 

is called a power series centered at where is a constant.
59. 1. A single point 2. An interval centered at 

3. The entire real line
61. Answers will vary.
63. (a) For ; For 

(b) Proof (c) Proof (d)
65– 69. Proofs
71. (a) Proof (b) Proof

(c) (d) 0.92

73. 75.

77. (a) (b)

(c) The alternating series converges more rapidly. The partial
sums of the series of positive terms approach the sum from
below. The partial sums of the alternating series alternate
sides of the horizontal line representing the sum.

(d)

79. False. Let 81. True 83. Proof
85. (a) (b)
87. Proof

Section 9.9 (page 676)

1. 3. 5. 7.

9. 11.

13. 15.

17. 19. 21.

23. 25.

27.

−4 8

−3

S3
f

S2

5

��1
2, 1

2���1, 1�


�

n�0
��1�n�2x�2n

�

n�0
��1�nx2n

��1, 1���1, 1���1, 1�


�

n�0

��1�nx n�1

n � 1
�

n�1
n��1�nx n�12 

�

n�0
x 2n

��1, 1���1, 1�


�

n�0
x n�1 � ��1�n� � 2 

�

n�0
x2n

�

n�0
� 1

��3�n � 1�x n

��
3
2

,
3
2	��

15
2

,
3
2	


�

n�0

��1�n 2n�1xn

3n�1�
5
9 

�

n�0
�2

9
�x � 3��

n

��1
3, 1

3���1, 3�


�

n�0
�3x�n

�

n�0

�x � 1�n

2n�1
�

n�0

3��1�nx n

4 n�1
�

n�0

x n

4 n�1

f �x� � �c0 � c1x � c2 x2���1 � x3���1, 1�
an � ��1�n��n2n�

M 10 100 1000 10,000

N 5 14 24 35

0 6
0

1

0 6
0

4

8
13

8
3

f �x� � 1��1 � x�f �x� � cos x

1−1
0

3

−2

2

2	−2	

−6 6

−5

3

g�x� � cos xf �x� � sin x;
g�x�: ���, ��f �x�: ���, ��

c
cc,

� an�x � c�n � . . .

� a2�x � c�2 � . . .
�

n�0
an�x � c�n � a0 � a1�x � c�

S2 � 1.67S1 � 1,S2 � 1.33S1 � 1,
�0, 2��0, 2��0, 2��0, 2�

��3, 3���3, 3���3, 3���3, 3�


�

n�1

x 2n�1

�2n � 1�!
�

n�1

x n�1

�n � 1�!

��1, 1���k, k�R � c
x � 3��1, 1����, ����1

2, 1
2�

�0, 6��0, 2���5, 13���4, 4�
x � 0���, ����1, 1���4, 4�

R � �R �
1
4R � 1

x � c,

f
nx � �2 � 8n

R2�x� � �1 � �	 2�32� �x � 6�2

Q2�x� � �1 � �	 2�32� �x � 2�2

g�x� � P4�x� � 1 � x2�3! � x 4�5!
g�x� � P6�x� � x2 � x 4�3! � x6�5!

Q5�x� � xP4�x�
g�x� � Q5�x� � x � x2 � �1�2�x3 � �1�6�x 4 � �1�24�x5

f �x� � P4�x� � 1 � x � �1�2�x2 � �1�6�x3 � �1�24�x 4
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29. (a) (b)
(c)
(d) The error is 

approximately 0.

31. c 32. d 33. a 34. b 35. 0.245 37. 0.125

39. 41.

43. Because the probability of obtaining a head on a
single toss is it is expected that, on average, a head will be
obtained in two tosses.

45. Because substitute into the geometric

series.

47. Because substitute into the 

geometric series and then multiply the series by 5.
49. Proof 51. (a) Proof (b) 3.14

53. See Exercise 21.

55. See Exercise 53.

57. See Exercise 56.
59. is an odd function (symmetric to the origin).
61. The series in Exercise 56 converges to its sum at a lower rate

because its terms approach 0 at a much lower rate.
63. The series converges on the interval and perhaps also at

one or both endpoints.
65. 67.

Section 9.10 (page 687)

1. 3.

5. 7.

9. 11.

13–15. Proofs 17.

19.

21.

23.

25.

27. 29. 31.

33. 35. 37.

39. 41.

43. 45. Proof

47.

49.

51.

53. c; 54. d; 55. a;

56. b; 57.

59. 0.6931 61. 63. 0 65. 1 67. 0.8075
69. 0.9461 71. 0.4872 73. 0.2010 75. 0.7040
77. 0.3412
79.

81.

83. See “Guidelines for Finding a Taylor Series”on page 682.
85. The binomial series is given by

The radius of convergence is 
87. Proof
89. (a) (b) Proof

(c) 
�

n�0
 0x n � 0 � f �x�

21 3

2

1

−1−2−3
x

y

R � 1.

�1 � x�k � 1 � kx �
k�k � 1�

2!
x2 �

k�k � 1��k � 2�
3!

x3 � .  .  . .

�1
4, 2�

−2 4

−2

g

3

P5

P5�x� � �x � 1� �
1

24�x � 1�3 �
1

24�x � 1�4 �
71

1920�x � 1�5

��3
4, 3

4�

3−3

−2

f

2

P5

P5�x� � x � 2x3 �
2
3 x 5

7.3891


�

n�0

��1��n�1�x2n�3

�2n � 3��n � 1�!f �x� � x2� 1
1 � x	

f �x� � xexf �x� � x cos xf �x� � x sin x

−6 6

−4

g

4

P4

P4�x� � x � x2 �
5
6 x3 �

5
6 x 4

−3 9

−4

h

P5

4

P5�x� � x �
1
2 x2 �

1
6 x3 �

3
40 x 5

−6 6

−2

P5

f

14

P5�x� � x � x2 �
1
3 x3 �

1
30 x 5

�
�

n�0

��1�nx2n

�2n � 1�!,

1,

x � 0

x � 0


�

n�0

��1�nx2n�2

�2n � 1�!
1
2�1 � 

�

n�0

��1�n�2x�2n

�2n�! �

�

n�0

x2n�1

�2n � 1�!
�

n�0

��1�nx3n

�2n�!
�

n�0

��1�n 42n x2n

�2n�!


�

n�0

��1�n�3x�2n�1

�2n � 1�!
�

n�1

��1�n�1 xn

n
�

n�0

x2n

2nn!

1 �
x2

2
� 

�

n�2

��1�n�11 � 3 � 5 .  .  . �2n � 3�x2n

2nn!

1 �
x
2

� 
�

n�2

��1�n�1 1 � 3 � 5 .  .  . �2n � 3�xn

2nn!

1
2�1 � 

�

n�1

��1�n1 � 3 � 5 .  .  . �2n � 1�x2n

23nn! �
1 � 

�

n�1

1 � 3 � 5 .  .  . �2n � 1�xn

2nn!


�

n�0
��1�n�n � 1�x n

1 � x2�2! � 5x 4�4! � .  .  .
�

n�0

��1�n�3x�2n�1

�2n � 1�!


�

n�0

��1�n�x � 1�n�1

n � 1
�

n�0
��1�n �x � 1�n

�2
2 

�

n�0

��1�n �n�1��2

n! �x �
	

4	
n


�

n�0

�2x�n

n!

1�	 � 0.3183098862S1 � 0.3183098862,�3	�6

��5, 3�

f �x� � arctan x
arctan 1

2 � 0.4636;

ln 7
5 � 0.3365;

ln 3
2 � 0.4055;

��x�5
1 � x

� 5� 1
1 � ��x�	,

��x�1
1 � x

�
1

1 � ��x�,

1
2,

E�n� � 2.


�

n�0
�2n � 1�x n, �1 < x < 1

�

n�1
nx n�1, �1 < x < 1

ln�0.5�;
�0.6931
ln x, 0 < x � 2, R � 1

−3

0 4

n = 1
n = 3

n = 6
n = 2

3
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n 5 10 15 20 25

Sn 2.8752 3.6366 3.7377 3.7488 3.7499

91. Proof 93. 10 95.

97. 99. Proof

Review Exercises for Chapter 9 (page 690)
1. 3. a 4. c 5. d 6. b
7.

Converges to 5

9. Converges to 3 11. Diverges 13. Converges to 0
15. Converges to 0 17. Converges to 0
19. (a)

(b) $13,148.96
21. (a)

(b)

23. (a)

(b)

25. 3 27. 5.5 29. (a) (b)

31. Diverges 33. Diverges 35. 37. $7630.70
39. Converges 41. Diverges 43. Diverges
45. Converges 47. Diverges 49. Converges
51. Converges 53. Diverges 55. Diverges
57. Converges 59. Diverges
61. (a) Proof

(b)

(c) (d) 3.75

63. (a)

(b)

The series in part (b) converges more rapidly. This is evident
from the integrals that give the remainders of the partial sums.

65. 67. 0.996 69. 0.559
71. (a) 4 (b) 6 (c) 5 (d) 10 73.
75. 77. Converges only at 79. Proof

81. 83.

85. 87.

89. 91.

93.

95. 97. 99.

101. The series in Exercise 45 converges to its sum at a lower rate
because its terms approach 0 at a lower rate.

103. (a)–(c)

105. 107. 109. 0

P.S. Problem Solving (page 693)
1. (a) 1 (b) Answers will vary. Example: (c) 0
3. Proof 5. (a) Proof (b) Yes (c) Any distance
7. For the series converges conditionally. For no values of

and does the series converge absolutely.
9. 665,280 11. (a) Proof (b) Diverges

13. Proof 15. (a) Proof (b) Proof
17. (a) The height is infinite. (b) The surface area is infinite.

(c) Proof

ba
a � b,

0, 1
3, 2

3


�

n�0

��1�nx n�1

�n � 1�2
�

n�0

��1�nx2n�1

�2n � 1��2n � 1�!

1 � 2x � 2x2 �
4
3

x3

cos 2
3 � 0.7859e1�2 � 1.6487ln 5

4 � 0.2231

1 � x�5 � 2x2�25 � 6x3�125 � 21x 4�625 � . . .

� 
�

n�0
�x � 1�n

�

n�0

�x ln 3�n

n!

�2
2 

�

n�0

��1�n�n�1��2

n! �x �
3	

4 	n
f �x� �

3
3 � 2x

, ��
3
2

,
3
2	


�

n�0

2
9

�n � 1��x
3	

n


�

n�0

2
3 �

x
3	

n

x � 2�1, 3�
��10, 10�

P3�x� � 1 � 3x �
9
2 x2 �

9
2x3

−1

0 12

4

451
3 m

1
11

�

n�0
�0.09��0.01�n

120

−0.1

1

120

−10

120

120
0

8

an � 1��n! � 1�


�

n�0
�k
n	xn

�0.0390625

Answers to Odd-Numbered Exercises A101

n 1 2 3 4

An $8100.00 $8201.25 $8303.77 $8407.56

n 5 6 7 8

An $8512.66 $8619.07 $8726.80 $8835.89

n 5 10 15 20 25

Sn 13.2 113.3 873.8 6648.5 50,500.3

n 5 10 15 20 25

Sn 0.4597 0.4597 0.4597 0.4597 0.4597

N 5 10 20 30 40


N

n�1

1
n5 1.0367 1.0369 1.0369 1.0369 1.0369


�

N

1
x5 dx 0.0004 0.0000 0.0000 0.0000 0.0000

N 5 10 20 30 40


N

n�1

1
n2 1.4636 1.5498 1.5962 1.6122 1.6202


�

N

1
x2 dx 0.2000 0.1000 0.0500 0.0333 0.0250



A102 Answers to Odd-Numbered Exercises

Chapter 10
Section 10.1 (page 706)
1. h 2. a 3. e 4. b 5. f 6. g 7. c 8. d
9. Vertex: 11. Vertex:

Focus: Focus:

Directrix: Directrix:

13. Vertex: 15. Vertex:
Focus: Focus:
Directrix: Directrix:

17. Vertex: 19. Vertex:

Focus: Focus:

Directrix: Directrix:

21. 23.
25. 27.
29. Center: 31. Center:

Foci: Foci:
Vertices: Vertices:

33. Center:
Foci:
Vertices:

35. Center:

Foci:

Vertices:
To obtain the graph, solve 
for and get

and

Graph these equations in the same viewing window.

37. Center:

Foci:

Vertices:
To obtain the graph, solve for 
and get

and

Graph these equations in the same viewing window.

39. 41.
43.
45. Center: 47. Center:

Foci: Foci:
Vertices: Vertices:

49. Center: 51. Degenerate hyperbola
Foci: Graph is two lines 
Vertices:

intersecting at 

2−2−4

−4

−2

−6

x

y

��1, �3�.

642−2

−2

−4

−6

x

y

y � �3 ± 1
3�x � 1��1, �3�, �3, �3�

�2 ± �10, �3�
�2, �3�

32

1

1−1

−4

−2

−5

x

y

x

y

−6−8 6 8−2

−4

−6

−8

2

4

6

8

��1, �2�, �3, �2��0, ±1�
�1 ± �5, �2��0, ±�10 �

�1, �2��0, 0�
x2�16 � 7y2�16 � 1

�x � 3�2�9 � � y � 5�2�16 � 1x2�36 � y2�11 � 1

y2 � �1 � ��7 � 12x � 4x2��8.

y1 � �1 � ��7 � 12x � 4x2��8

y
��1

2, �1�, �7
2, �1�

�3
2 ± �2, �1� −2

−3

4

1�3
2, �1�

y2 � �1 � ��57 � 12x � 12x2��20.

y1 � �1 � ��57 � 12x � 12x2��20

y

�1
2 ± �5, �1�

�1
2 ± �2, �1� −3 3

−3

1�1
2, �1�

e � �5�3
��2, 6�, ��2, 0�

��2, 3 ± �5 �
6

4

2

2−2−4−6
x

(−2, 3)

y��2, 3�

x

y

−2 2 4 6 8

−2

−4

4

6

(3, 1)
x

y

(0, 0)

2

−4

1

2

4

−2−3−4 3 4

e �
3
5e � �15�4

�3, 6�, �3, �4��0, ±4�
�3, 4�, �3, �2��0, ±�15�

�3, 1��0, 0�
5x2 � 14x � 3y � 9 � 0x2 � y � 4 � 0

x2 � 32y � 160 � 0y2 � 8y � 8x � 24 � 0

−6

−4

6

4

−5 2

−3

2

x � �2x �
1
2

�0, 0��0, �
1
2�

��1, 0��1
4, �

1
2�

x
2

4

−2

−4

(−2, 2)

−2−4−6

y

6

4

6

42−2

−2

x

(−1, 2)

y

y � 3x � �2
��2, 1��0, 2�
��2, 2���1, 2�

x

y

−2−4−6−8−10−12−14
−1

1

2

3

4

5

6

(−5, 3)

−2−4−6−8 2 4

−4

−6

4

6

(0, 0)
x

y

x � �
19
4x � 2

��21
4 , 3���2, 0�

��5, 3��0, 0�



t 0 1 2 3 4

x 0 1 �2 �3 2

y 3 2 1 0 �1

53. Center: 55. Center:
Foci: Foci:
Vertices: Vertices:

Asymptotes: Asymptotes:

57. 59.
61. 63.
65. (a)

(b)

67. Ellipse 69. Parabola 71. Circle
73. Circle 75. Hyperbola
77. (a) A parabola is the set of all points that are equidistant

from a fixed line and a fixed point not on the line.
(b) For directrix 

For directrix 
(c) If is a point on a parabola, then the tangent line to the

parabola at makes equal angles with the line passing
through and the focus, and with the line passing through 
parallel to the axis of the parabola.

79. (a) A hyperbola is the set of all points for which the
absolute value of the difference between the distances from
two distinct fixed points is constant.

(b) Transverse axis is horizontal:

Transverse axis is vertical:

(c) Transverse axis is horizontal:
and

Transverse axis is vertical:
and

81. m 83. 85. (a) Proof (b) Proof
87. Distance from hill:
89.
91. (a)

(b) m

93.
As increases, the graph of 

gets wider.

95. (a)
(b) The thumbtacks are located at the foci, and the length of

string is the constant sum of distances from the foci.
97. 99. Proof 101.

103. 105.
107. Minor endpoints:

Major endpoints:

109. (a) Area

(b) Volume

Surface area
(c) Volume

Surface area

111. 37.96 113. 40 115.
117. 119. Proof

121.

123. There are four points of intersection.

At the slopes of the tangent 

lines are and 
Because the slopes are negative reciprocals, the tangent lines
are perpendicular. Similarly, the curves are perpendicular at the
other three points of intersection.

125. False. See the definition of a parabola. 127. True
129. True 131. Putnam Problem B4, 1976

Section 10.2 (page 718)
1. (a)

(b) and (c) (d)

−1 1 2 3

−1

1

2

3

x

y

31

1

2

3

−1

−1
x

y

y � 3 � x2, x � 0

y�h � a�c.y�e � �c�a

� �2 ac
�2a2 � b2

,
b2

�2�2a2 � b2	,

y � �160 � 96�2��7 � 3.462

x � ��90 � 96�2��7 � 6.538

16 17
141312

8 9

5
6 7

10
11

4
1 2 3

15

1
4 3 2

6 5

9 8

11 10

1314
12

15
17 16

7

�x � 6�2�9 � � y � 2�2�7 � 1

�
4	 �6 � �3 ln�2 � �3 ��

3
� 34.69

� 16	�3
� �2	 �9 � 4�3	���9 � 21.48

� 8	�3

� 2	

��3, �6�, ��3, 2�-axis
��6, �2�, �0, �2�-axis

�0, 25
3 �e � 0.9671

e � 0.1776

x

16 17

141312

1

4 3 2

8 9

5 6 7

6 5

10 11

4

1
2 3

15

9 8

11 10

1314
12

15
17 16

7

y

L � 2a

x2 � 4py
p

x
168−8−16

28

y p = 1

p = 2

p = 1
2

p = 1
4

p = 3
2

� 128.410�2�13 � 9 ln�2 � �13
3 	�

y � �1�180�x2

�16�4 � 3�3 � 2	���3 � 15.536 ft2

2�3�3 � 1x0 � 2�3�3;
y � 2ax0 x � ax0

29
4

y � k � �a�b� �x � h�y � k � �a�b� �x � h�

y � k � �b�a� �x � h�y � k � �b�a� �x � h�

�y � k�2

a2 �
�x � h�2

b2 � 1

�x � h�2

a2 �
�y � k�2

b2 � 1

�x, y�

PP
P

P
�y � k�2 � 4p�x � h�x � h � p:
�x � h�2 � 4p�y � k�y � k � p:

�x, y�

�6, ��3�: 9 x � 2�3y � 60 � 0

�6, �3�: 9 x � 2�3y � 60 � 0

�6, ��3�: 2 x � 3�3y � 3 � 0

�6, �3�: 2 x � 3�3y � 3 � 0
�x � 3�2�9 � � y � 2�2�4 � 1y2�4 � x2�12 � 1
y2�9 � �x � 2�2��9�4� � 1x2�1 � y2�25 � 1

−5

−7

7

1

−5

−7

7

1

y � ��6 x�2 � �6�2 � 3y � �
1
3 x �

1
3 � 3

y � �6 x�2 � �6�2 � 3;y �
1
3 x �

1
3 � 3;

��1, �3�, �3, �3��1, �3 ± �2 �
�1 ± �10, �3��1, �3 ± 2�5 �

�1, �3��1, �3�
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3. 5.

7.

9. 11.

13. 15.

17. 19.

21. 23.

25. 27.

29. 31.

33. Each curve represents a portion of the line 

(a) Up Yes

(b) Oscillates No,

when

(c) Down Yes
(d) Up Yes

35. (a) and (b) represent the parabola for
The curve is smooth. The orientation is from right

to left in part (a) and in part (b).
37. (a)

(b) The orientation is reversed. (c) The orientation is reversed.
(d) Answers will vary. For example,

have the same graphs, but their orientations are reversed.

39. 41.

43. 45.

(Solution is not unique.) (Solution is not unique.)
47. 49.

(Solution is not unique.) (Solution is not unique.)
51. 53.

(Solution is not unique.) (Solution is not unique.)
55. 57. x � t, y � t2x � t � 3, y � 2t � 1

y � tan3 ty � 6t � 1
x � tan tx � t � 1
y � t3;y � 6t � 5;
x � tx � t

y � 3 tan y � 6 sin 

x � 4 sec x � 10 cos 

y � 1 � 2 sin y � �7t

x � 3 � 2 cos x � 4t

�x � h�2

a2 �
�y � k�2

b2 � 1y � y1 �
y2 � y1

x2 � x1
�x � x1�

y � 5 sin��t�y � 5 sin t
x � 2 sec��t�x � 2 sec t

−6

−4

6

4

−6

−4

6

4

�1 � x � 1.
y � 2�1 � x2�

0  < x  < �
0  < x  < �

 � 0, ±	, ±2	, .  .  .

dx
d

�
dy
d

� 0�1 � x � 1

�� < x < �
SmoothOrientationDomain

y � 2x � 1.
x  >  0y � 1�x3,y � ln x

−1

−1

5

3

−1

−2

5

2

x2

16
�

y2

9
� 1

�x � 3�2

16
�

�y � 2�2

25
� 1

−9 9

−6

6

−12

−4

6

8

�x � 4�2

4
�

�y � 1�2

1
� 1

x2

36
�

y2

16
� 1

−1

−4

8

2

−9

−6

9

6

x2 � y2 � 64�x� � 1y � 1�x,

x

y

−6 −4 −2 62 4

−4

−6

2

4

6
2

3

31 2

−2

−3

1

x

y

x > 0y � x3 � 1,y � �x � 4��2

3

2

4

5

−1
3 421−2 −1

1

x

y

4

8

1284−4
x

y

y � �x � 3��xx � 0y � x2 � 5,

x

y

−1−3−4 1 2 3 4

2

3

4

5

1

x

y

−1−2−3−4 1 3 4

−2

−3

−4

−5

−6

1

2

y �
1
2 x2�3

1

321−1−2−3
x

y
y � �x � 1�23x � 2y � 11 � 0

4

42−2
x

y

x

y

−1−2−3−5 1 2 3

1

2

3

4

6

7



59. 61.

Not smooth at Smooth everywhere
63. 65.

Not smooth at Smooth everywhere
67. Each point in the plane is determined by the plane curve

For each plot As increases, the curve
is traced out in a specific direction called the orientation of the
curve.

69.
71. False. The graph of the parametric equations is the portion of the

line when 

73. True

75. (a)
(b) (c)

Not a home run Home run
(d)

Section 10.3 (page 727)
1. 3.

5. Neither concave upward nor concave downward

7.
At Concave upward

9.
At
Concave downward

11.
At
Concave downward

13.
At
Concave upward

15.

17.

19. (a) and (d)
(b) At 

and
(c)

21. (a) and (d)
(b) At 

and
(c)

23. 25. and
27. Horizontal:

Vertical:
29. Horizontal: 31. Horizontal:

Vertical: None Vertical: None
33. Horizontal: 35. Horizontal:

Vertical: Vertical:
37. Horizontal: None

Vertical:
39. Concave downward:

Concave upward:
41. Concave upward:
43. Concave downward:

Concave upward:

45. 47.

49. 51.
53.

55. 57. 59.
61. (a) (b) 219.2 ft

(c) 230.8 ft

63. (a) (b)
(c) About 6.557

65. (a)

(b) The average speed of the particle on the second path is twice
the average speed of the particle on the first path.

(c) 4	

−1

3

	− 	3

−1

3

	− 	3

4 3�4�3��4 3�2�3,�0, 0�,

6−6

−4

4

0
0

240

35

8a6a1
12�ln��37 � 6� � 6�37� � 3.249

�2�1 � e�	�2� � 1.12
70�5 � 156.5254�13 � 14.422


2

�2

�e2t � 4 dt
3

1

�4t2 � 3t � 9 dt

	�2 < t < 	

0 < t < 	�2
t > 0
0 < t < �

�� < t < 0
�1, 0�, ��1, 0�

�8, �2�, �2, �2��3, 0�, ��3, 0�
�5, �1�, �5, �3��0, 3�, �0, �3�

�5, �2�, �3, 2��4, 0�
�	�2, 1�, ��3	�2, �1�, �5	�2, 1�

�1, 0�, ��1, 	�, �1, �2	�
y � 1y � 3x � 5y � ±3

4 x

y � 2
dy�dx � 0.dy�dt � 0,

dx�dt � �3,t � �1,

−1

−3

8

(4, 2)

5

y �
1
3 x � 3

dy�dx � 1�3.dy�dt � 2,
dx�dt � 6,t � 1,

−8

−4

10

8

(6, 5)

��3, 3�: 2x � y � 9 � 0
��3, �1�: y � 1 � 0
�0, 0): 2y � x � 0

�3x � 8y � 10 � 0�2�3, 1�2�:
y � 2 � 0�0, 2�:

3�3x � 8y � 18 � 0��2��3, 3�2�:

d 2y�dx2 � 4�2�3; � 	�4, dy�dx � �1,

d 2y�dx2 � sec4  csc �3dy�dx � �tan ,

d 2y�dx2 � �6�3; � 	�6, dy�dx � 4,

d 2y�dx2 � �2 cot3 dy�dx � 2 csc ,

d 2y�dx2 � ��2�2; � 	�4, dy�dx � �1,

d 2y�dx2 � ��csc �3�4dy�dx � �cot ,
d2y�dx2 � 2;t � �1, dy�dx � 1,

d 2y�dx2 � 2dy�dx � 2t � 3,

dy
dx

�
3
4

,
d 2y
dx2 � 0;

�1�3�t

19.4�

0
0

400

60

0
0

400

30

y � 3 � �440
3  sin �t � 16t2x � �440

3  cos �t;

x � 0.y � x

y � a � b cos x � a � b sin ;

t�x, y�.t,y � g�t�.x � f �t),
�x, y�

 �
1
2 n	

−6 6

−4

4

−6 6

−4

4

 � 2n	

−2 7

−1

5

−2 16

−1

5
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67.

69.

71. (a) (b) 73. 75.
77. See Theorem 10.7, Parametric Form of the Derivative, on page

721.
79. 6

81. (a)

(b)

83. Proof 85. 87. d 88. b 89. f 90. c

91. a 92. e 93. 95.
97. (a)

(b)

(c)
(d) Concave downward on etc.
(e)

99. Proof
101. (a)

(b) Circle of radius 1 and center at except the point

(c) As increases from to 0, the speed increases, and as 
increases from 0 to 20, the speed decreases.

103. False:

105. About 982 ft

Section 10.4 (page 738)
1. 3.

5. 7.

9. 11.

13. 15.

17. 19.
21. (a) (b)

23. c 24. b 25. a 26. d
27. 29.

31. 33.

35. 37.

x

y

−3 −2 −1 31 2

−2

−3

1

2

3

0
21 3 5 74 6

π
2

x2 � y2 � 16r � 9 csc2  cos 

0
21

π
2

0

π
2

2 4 6

r �
�2

3 cos  � sin 
r � 8 csc 

0
a

π
2

0

π
2

1 2

r � ar � 3

0

(4, 3.5)

1

π
2

x
1 2 3 4

1

2

3

4 (4, 3.5)

y

�3.052, 0.960��3.606, �0.588�
�2, 4	�3�, ��2, 	�3��5, 2.214�, ��5, 5.356�

−1, −    3

x

y

( )

−1−2

−1

−2
x

1−1−2−3−4

5

4

3

2

1

(−3, 4)

y

�2�2, 	�4�, ��2�2, 5	�4�

x

y

(2, 2)

1 2 3

1

2

3

x

y

(4.214, 1.579)

−1 1 2 3 4 5
−1

−2

1

2

3

4

��1.004, 0.996�

x

y

−1−2−3−4−5 1
−1

−2

−3

−4

−5

1

(−4.95, −4.95)

0

2, 2.36( )

1

π
2

�2�2, 2�2� � �2.828, 2.828��0, 8�

0
21 3 4

π
4

3−4, − ( (

π
2

0
2 4 6

π
2

8,( (

π
2

d 2y
dx2 �

d
dt�

g��t�
f��t� �

f��t� �
f��t�g��t� � g��t�f ��t�

� f��t��3 .

t�20t

��1, 0�
�0, 0�

−3

−2

3

2

s � 8a
�2	, 4	�,�0, 2	�,

�a�2n � 1�	, 2a�
y � �2 � �3��x � a�	�6 �

1
2�� � a�1 � �3�2�

d2y�dx2 � �1��a�cos  � 1�2�dy�dx � sin ��1 � cos �;
288	�3

4, 8
5�

3	�2

S � 2	
b

a

f �t���dx
dt	

2

� �dy
dt	

2

dt

S � 2	
b

a

g�t���dx
dt	

2

� �dy
dt	

2

dt

12	a2�550	18	�1327	�13
� 5.330

S � 2	
	�2

0
�sin  cos �4 cos2 � 1� d �

�5�5 � 1�	
6

S � 2	
4

0

�10�t � 2� dt � 32	�10 � 317.907



39. 41.

43. 45.

47. 49.

51. 53.

55. 57.
Radius:

Center:

59. 61. About 5.6

63.

65. (a) and (b) 67. (a) and (b)

(c) (c)

69. Horizontal:

Vertical:

71.
73. 75.

77. 79.

81. 83.

85. 87.

89. 91.

93. 95.

0
1

π
2

−15 15

−15

5

10

20

0

π
2

0
21

π
2

π
2

0
2

0
642 10

π
2

0

π
2

4 12

 � 0, 	�2 � 	�6, 	�2, 5	�6

0
3

π
2

0

π
2

4

 � 	�2 � 0

0
321

π
2

0

π
2

1 2 3

�1.4142, 2.3562�
�7, 1.5708�, �3, 4.7124��1.4142, 0.7854�,�0, 0�,

−12 12

−6

10

−3 3

−2

2

�5, 	�2�, �1, 3	�2�
�3

2, 7	�6�, �3
2, 11	�6�

�2, 3	�2�, �1
2, 	�6�, �1

2, 5	�6�

dy�dx � ��3dy�dx � �1

−4

−1

5

5

−8

−4

4

4

dy�dx � 0��1, 3	�2�:
dy�dx � �2�3�2, 	�:

dy�dx � 0�5, 	�2�:

dy
dx

�
2 cos  �3 sin  � 1�

6 cos2  � 2 sin  � 3

�17

0 ≤   < 	�2

�h, k�
�h2 � k2

�x � h�2 � �y � k�2 � h2 � k2

−3 3

−2

2

0 ≤   <  4 	�	  <   < 	

−3

−2

3

2

−10

−5

5

5

0 ≤   <  2 	0 �  < 2	

−4 5

−2

4

−9

−4

3

4

x

y

−1−2−3−4 1 2 3 4

1

2

3

4

5

6

7

2

1

3

21
x

y

x2 � y � 0x � 3 � 0

9

−6

−9

−12

3

6

9

12

x

y

x

y

−1−2 1 2

1

2

4

�x2 � y2 � arctan � y�x�x2 � y2 � 3y � 0
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A108 Answers to Odd-Numbered Exercises

97. 99.

101. The rectangular coordinate system is a collection of points of
the form where is the directed distance from the axis
to the point and is the directed distance from the axis to the
point. Every point has a unique representation.
The polar coordinate system is a collection of points of the form

where is the directed distance from the origin to a point
and is the directed angle, measured counterclockwise, from

the polar axis to the segment Polar coordinates do not have
unique representations.

103. Slope of tangent line to graph of at is

If and then is tangent at the pole.
105. (a) (b)

(c)

107. Proof

109. (a) (b)

(c) (d)

111. (a) (b)

113. 115.

117. 119. True 121. True

Section 10.5 (page 747)

1. 3. 5.

7. 9. 11. 13. 15. 4
17. 19.

21. 23.

25.

27.

29. 31.

33.

�1, 13	�12�, �1, 17	�12�, �1, 19	�12�, �1, 23	�12�
�1, 	�12�, �1, 5	�12�, �1, 7	�12�, �1, 11	�12�,

�2, 4�, ��2, �4��3
2

,
	

6	, �3
2

,
5	

6 	, �0, 0�

�2 � �2
2

,
3	

4 	, �2 � �2
2

,
7	

4 	, �0, 0�

�1, 	�2�, �1, 3	�2�, �0, 0�
9	 � 27�3	 � 3�3

−9

−10

9

2

−1 4

−2

2

�2	 � 3�3 ��2�2	 � 3�3��2

−3

−0.5

3

3.5

−1 4

−2

2

27	3	�2	�8	�3

9	
1
2 


3	�2

	�2
�3 � 2 sin �2 d8
	�2

0
 sin2  d

60�! � 	�3,

−20 22

−12

θ

ψ

16

! � arctan 1
3 � 18.4�! � 	�2

−3

−2

3

2

θ

ψ

−6

−3

3

3

0
21

π
2

0
21

π
2

−6 6

−4

4

−6 6

−4

4

r � 2 � cos r � 2 � sin 

−6 6

−4

4
−6 6

−4

4

� 2 �
�2�sin  � cos �

2

r � 2 � cos r � 2 � sin� � 	�4�

0
1 2

π
2

0
1 2

π
2

0
1 2

π
2

 � �f���� � 0,f ��� � 0

dy
dx

�
f ��cos  � f���sin 

�f ��sin  � f��)cos 
.

�r, �r � f ��

OP.
P

Or�r, �,

x-y
y-x(x, y�,

−3 3

−1

y = 2

3

−6

−4

6

x = −1
4




 0.2 0.4 0.6 0.8 1.0 1.2 1.4

A 6.32 12.14 17.06 20.80 23.27 24.60 25.08

35. 37.

The graphs reach the pole 
at different times ( -values).

39. 41.

43. 45.

47. 49.
51. (a)

(b) (c)

53. The area enclosed by the function is if is odd and is
if is even.

55. 57. 59.
61. 63.

About 4.16 About 0.71

65. 67.

About 4.39

69. 71.

73. You will only find simultaneous points of intersection. There
may be intersection points that do not occur with the same 
coordinates in the two graphs.

75. (a)

(b)

77.
79. (a)

(b)

(c) and (d) For of area 

For of area 

For of area 
(e) No. The results do not depend on the radius. Answers will

vary.
81. Circle
83. (a) The graph becomes larger and

more spread out. The graph is
reflected over the axis.

(b) where 
(c) About 21.26 (d)

85.
87. False. The graphs of and coincide.
89. Proof

Section 10.6 (page 755)
1. 3.

(a) Parabola (b) Ellipse (a) Parabola (b) Ellipse
(c) Hyperbola (c) Hyperbola

5. (a) (b)

Ellipse Parabola
As the ellipse
becomes more elliptical, and
as it becomes more circular.e → 0�,

e → 1�,

−30

−40

30

5

−40

30−30

e = 0.25

e = 0.1

e = 0.5

e = 0.75

e = 0.9

5

−9 9

−8

e = 0.5e = 1.0

e = 1.5

4

−4 8

−4

e = 1.5

e = 1.0

e = 0.5

4

g�� � �1f �� � 1

r � �2 cos 

4�3	 3

n � 1, 2, 3, .  .  .�an	, n	�

y-

12

14

−12

−10

�12	 � 37.70�: 2.733
4

�8	 � 25.13�: 1.57�	�2�1
2

�4	 � 12.57�: 0.421
4

16	

40	 2

S � 2	
�

�

f ()cos �f ()2 � f�()2 d

S � 2	
�

�

f ()sin �f ()2 � f�()2 d

21.87
2	�1 � a2

1 � 4a2 �e	a � 2a�

36	

−1

−1

2

1

−0.5

−0.5

0.5

0.5

2−1

−1

4

84	16	

n	a2�2
n	a2�4

15	�2

−6 6

−4

a = 4 a = 6

4

�x2 � y2�3�2 � ax2

�a2�2��	 � 2�5	a2�4
	�3 � �3�22

3�4	 � 3�3�

−2

−1.5

2.5

1.5

r = 1

r = 2 cos θ

−6 6

−3

5

r = 2

r = 4 sin θ

11	 � 244
3�4	 � 3�3 �

9−9

−6

6 r = −3 + 2 sin θ

r = 3 − 2 sin θ

6−6

−4

4r = 2 θr = 4 sin 2



�0.535, �1.006��2.581, ±1.376�
�0, 0�, �0.935, 0.363�,��0.581, ±2.607�,

−4 5

−5

= cosr = cos θ

θr = 2 − 3 sin

1

−4 8

−4

r = sec θ

r = 2 + 3 cos θ

24
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(c) Hyperbola
As the hyperbola
opens more slowly, and 
as it opens more 
rapidly.

7. c 8. f 9. a 10. e 11. b 12. d
13. 15.

Distance Distance

Parabola Parabola

17. 19.
Distance Distance

Ellipse Ellipse

21. 23.
Distance Distance

Hyperbola Hyperbola
25. 27.

Distance

Ellipse

Ellipse

29. 31.

Parabola Rotated radian
counterclockwise.

33. 35.

Rotated radian clockwise.
37. 39.
41. 43.
45. 47.
49.
51. If the conic is an ellipse.

If the conic is a parabola.
If the conic is a hyperbola.

53. If the foci are fixed and then To see this, compare
the ellipses 

and

55. Proof

57. 59.

61. About 10.88 63. 3.37 65. 11,015 mi

67. 69.

Perihelion: 147,101,680 km Per ihelion: 4,459,317,200 km
Aphelion: 152,098,320 km Aphelion: 4,536,682,800 km

71. Answers will vary. Sample answers:
(a) ; 9.322 yr
(b) Larger angle with the smaller ray to 

generate an equal area
(c) Part (a): ; 

Part (b): ; 
73. Proof
75. Let and 

The points of intersection of are and 
The slopes of the tangent lines to are at and 1 at

The slopes of the tangent lines to are 1 at and
at Therefore, at and at 

and the curves intersect at right angles.m1m2 � �1,
�ed, 	�,m1m2 � �1,�ed, 0�,�ed, 	�.�1

�ed, 0�r2�ed, 	�.
�ed, 0��1r1

�ed, 	�.�ed, 0�r1 and r2

r2 � ed��1 � sin �.r1 � ed��1 � sin �

1.727 
 108 km�yr1.610 
 109 km
1.698 
 108 km�yr1.583 
 109 km

� � 0.361 � 	 ;
3.591 
 1018 km2

r �
4,497,667,328

1 � 0.0086 cos 
r �

149,558,278.0560
1 � 0.0167 cos 

7979.21
1 � 0.9372 cos 

;

r2 �
�16

1 � �25�9� cos2 
r2 �

9
1 � �16�25� cos2 

d �
5
4

.e �
1
4

,r �
5�16

1 � �1�4�cos 
,

e �
1
2

, d � 1r �
1�2

1 � �1�2)cos 
,

d →�.e → 0,
e > 1,
e � 1,
0 < e < 1,

r � 4��2 � cos �
r � 9��4 � 5 sin �r � 16��5 � 3 cos �

r � 2��1 � sin �r � 2��1 � 2 cos �
r � 1��2 � sin �r � 3��1 � cos �

	�6

r �
8

8 � 5 cos� �
	

6	
−8 4

−3

5

e � 1
	�4

−6

−18

18

6

−8

−15

7

15

e �
1
2

0

π
2

10 20 40

� 50
2−2

−2

1e �
1
2

0
1

π
2

0
4 6 8

π
2

�
1
2�

5
2

e � 3e � 2

0
1 43

π
2

0
1 3

π
2

� 4� 6
e �

1
2e �

1
2

0

π
2

2 4 6 8
0

π
2

1 2 3 4 5

� 4� 1
e � 1e � 1

e →�,

e → 1�,

−90

−40

90

e = 1.1

e = 1.5

e = 2

80



Review Exercises for Chapter 10 (page 758)
1. e 2. c 3. b 4. d 5. a 6. f
7. Circle 9. Hyperbola

Center: Center:

Radius: Vertices:

11. Ellipse
Center:

Vertices:

13. 15.
17. 19. About 15.87
21. 23. (a) (b) About 38,294.49
25. 27.

29. 31.

33. Answers will vary. Sample answer:

35. 37.

39. (a) 41. (a)
Horizontal tangents: Horizontal tangents:
None None

(b) (b)
(c) (c)

43. (a)

Horizontal tangent:

(b)

(c)

45. (a)

Horizontal tangents:

(b)

(c)

47. (a)

Horizontal tangents: None

(b)
(c)

49. Horizontal:

Vertical: None

�5, 0�

42

4

−2−4

−4

x

y

x2�3 � �y�4�2�3 � 1

dy
dx

� �4 tan ;

x

y

−2 2 4 6 8

−2

2

4

6

8

�x � 5�2 �
�y � 3�2

16
� 1

�5, 7�, �5, �1�

dy
dx

� �4 cot ;

x
2 3−2 −1

−2

−1

3

2

y

y �
4x2

�5x � 1��x � 1�

�1
3

, �1	

dy
dx

�
�t � 1��2t � 1�2

t2�t � 2�2 ;

6

4

2−2−4 4

2

x

y

x

y

−1−2 1 2 3
−1

−2

1

2

4

y � 3 � 2�xy � ��4x � 13��5

dy�dx � �2t2;dy�dx � �
4
5;

y � 4 � 3 sin 

−7 8

−5

5x � 4 cos  � 3
y � 6 � 4t
x � 5t � 2

�x � 2�2 � � y � 3�2 � 1x2 � y2 � 36

4

8

−2

−4

842−4

2

x

y

−2

−4

42−2−4

2

4

x

y

y � �x � 1�3, x > �1x � 2y � 7 � 0

x

y

−1−2−3 1 2 3
−1

1

2

3

4

5

x

y

−2−4 2 4 6
−2

−4

−6

2

6

�0, 50�4x � 4y � 7 � 0
x2�49 � y2�32 � 1

�x � 1�2�36 � y2�20 � 1y2 � 4y � 12x � 4 � 0

321−1

−1

−2

−3

−4

x

(2, −3)

y

�2, �3 ± �2�2 �
�2, �3�

6

4

2

−2−4−6
x

y

21−1

1

−2

x

1
2

3
4

y

, − ))

��4 ± �2, 3�1

��4, 3��1
2, �

3
4�
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51. Horizontal:
Vertical:

53. (a) and (c)

(b)

55.

57. (a) 59.
(b)

61. 63.

Rectangular: Rectangular:

65. 67.

69. 71.

73. 75.

77. 79.

81. Circle 83. Line

85. Cardioid 87. Limaçon

89. Rose curve 91. Rose curve

93. 95.

97. (a)

(b) Vertical:

Horizontal:

(c)

99. Proof 101. 103. 105. 4

107.

109.

111.

113.

115.

� 34	�17�5 � 88.08

S � 2	
	�2

0
�1 � 4 cos � sin �17 � 8 cos  d

4a
� 1.2058 � 9.4248 � 1.2058 � 11.8364

A � 2�1
2 


	�12

0
 18 sin 2 �

1
2 


5	�12

	�12
 9 d �

1
2 


	�2

5	�12
 18 sin 2 d�

−6 6

−4

4

A � 2�1
2	


	�2

0
 sin2  cos4  d � 0.10

−0.5 0.5

−0.1

0.5

�1 �
�2
2

,
3	

4 	, �1 �
�2
2

,
7	

4 	, �0, 0�

9	

2
9	

20

−5 1

−2.5

2.5

��0.686, ±0.568�, �2.186, ±2.206�

��1, 0�, �3, 	�, �1
2, ±1.318�

 � ±	�3

−6 6

−4

4

−1

−1

8

5

0
2

π
2

0
4

π
2

0
2 4

π
2

0
1
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117. Parabola 119. Ellipse

121. Hyperbola 123.
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P.S. Problem Solving (page 761)
1. (a) 3. Proof

(b) and (c) Proofs

5. (a)

(b)

(c)

7. (a)

(b)

(c)

(d)

(e)

9. (a) (b) Proof (c)

11. 13.

15. (a) First plane:

Second plane:

(b)

(c)
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A

Abel, Niels Henrik (1802–1829), 232
Absolute convergence, 636
Absolute maximum of a function, 164
Absolute minimum of a function, 164
Absolute value, 50

derivative involving, 330
function, 22

Absolute Value Theorem, 600
Absolute zero, 74
Absolutely convergent series, 636
Acceleration, 125
Accumulation function, 288
Additive Interval Property, 276
Agnesi, Maria Gaetana (1718–1799), 201
Algebraic function(s), 24, 25, 378

derivatives of, 136 
Alternating series, 633

geometric, 633
harmonic, 634, 636, 638

Alternating Series Remainder, 635
Alternating Series Test, 633
Alternative form

of the derivative, 101, A7
of Log Rule for Integration, 334
of Mean Value Theorem, 175

Angle
of incidence, 698
of reflection, 698

Antiderivative, 248
of f with respect to x, 249
finding by integration by parts, 527
general, 249
notation for, 249
representation of, 248

Antidifferentiation, 249
of a composite function, 297

Aphelion, 708, 757
Apogee, 708
Applied minimum and maximum problems,

guidelines for solving, 219
Approximating zeros

bisection method, 78
Intermediate Value Theorem, 77
Newton’s Method, 229

Approximation,
linear, 235
Padé, 333
polynomial, 650
Stirling’s, 529
tangent line, 235
Two-point Gaussian Quadrature, 321

Arc length, 478, 479

in parametric form, 724
of a polar curve, 745

Arccosecant function, 373
Arccosine function, 373
Arccotangent function, 373
Archimedes (287–212 B.C.), 261

Principle, 518
spiral of, 725, 733, 749

Arcsecant function, 373
Arcsine function, 373

series for, 684
Arctangent function, 373

series for, 684
Area

found by exhaustion method, 261
in polar coordinates, 741
problem, 45, 46
of a rectangle, 261
of a region between two curves, 449
of a region in the plane, 265
of a surface of revolution, 483

in parametric form, 726
in polar coordinates, 746

Astroid, 146
Asymptote(s)

horizontal, 199
of a hyperbola, 703
slant, 211
vertical, 84, 85, A7

Average rate of change, 12
Average value of a function on an interval,

286
Average velocity, 113
Axis

conjugate, of a hyperbola, 703
major, of an ellipse, 699
minor, of an ellipse, 699
of a parabola, 697
polar, 731
of revolution, 458
transverse, of a hyperbola, 703

B

Barrow, Isaac (1630–1677), 145
Base(s), 327, 362

of the natural exponential function, 362
of a natural logarithm, 327
other than e,

derivatives for, 364
exponential function, 362
logarithmic function, 363

Basic differentiation rules for elementary
functions, 378

Basic equation obtained in a partial fraction
decomposition, 556

guidelines for solving, 560
Basic integration rules, 250, 385, 522

procedures for fitting integrands to, 523
Basic limits, 59
Basic types of transformations, 23
Bernoulli equation, 438

general solution of, 439
Bernoulli, James (1654–1705), 717
Bernoulli, John (1667–1748), 554
Bessel function, 669, 670
Bifolium, 146
Binomial series, 683
Bisection method, 78
Bose-Einstein condensate, 74
Bounded

above, 603
below, 603
monotonic sequence, 603
sequence, 603

Brachistochrone problem, 717
Breteuil, Emilie de (1706–1749), 490
Bullet-nose curve, 138

C

Cantor set, 693
Cardioid, 736, 737
Carrying capacity, 427, 429
Catenary, 393
Cauchy, Augustin-Louis (1789–1857), 75
Cavalieri’s Theorem, 468
Center

of an ellipse, 699
of gravity, 500, 501

of a one-dimensional system, 500
of a two-dimensional system, 501

of a hyperbola, 703
of mass, 499, 500, 501

of a one-dimensional system, 499, 500
of a planar lamina, 502
of a two-dimensional system, 501

of a power series, 661
Centered at c, 650
Centroid, 503
Chain Rule, 130, 131, 136, A8

and trigonometric functions, 135
Change in x, 97
Change in y, 97
Change of variables, 300

for definite integrals, 303
guidelines for making, 301
for homogeneous equations, 426
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Charles, Jacques (1746–1823), 74
Charles’s Law, 74
Circle, 146, 696, 737
Circle of curvature, 161
Circumscribed rectangle, 263
Cissoid, 146

of Diocles, 761
Classification of conics by eccentricity,

750, A19
Coefficient, 24

correlation, 31
leading, 24

Collinear, 17
Combinations of functions, 25
Common logarithmic function, 363
Common types of behavior associated with

nonexistence of a limit, 51
Comparison Test

Direct, 626
for improper integrals, 588
Limit, 628

Completeness, 77, 603
Completing the square, 383
Composite function, 25

antidifferentiation of, 297
continuity of, 75
derivative of, 130
limit of, 61, A4

Composition of functions, 25
Compound interest formulas, 366
Compounding, continuous, 366
Concave downward, 190, A9
Concave upward, 190, A9
Concavity, 190, A9

test for, 191, A9
Conditional convergence, 636
Conditionally convergent series, 636
Conic(s), 696

circle, 696
classification by eccentricity, 750, A19
degenerate, 696
directrix of, 750
eccentricity, 750
ellipse, 696, 699
focus of, 750
hyperbola, 696, 703
parabola, 696, 697
polar equations of, 751

Conic section, 696
Conjugate axis of a hyperbola, 703
Constant

Euler’s, 625
force, 489
function, 24
of integration, 249
Multiple Rule, 110, 136

differential form, 238
Rule, 107, 136
spring, 34

term of a polynomial function, 24
Continued fraction expansion, 693
Continuity

on a closed interval, 73
of a composite function, 75
differentiability implies, 103
and differentiability of inverse functions,

347, A13
implies integrability, 273
properties of, 75, A6

Continuous, 70
at c, 59, 70
on the closed interval 73
compounding, 366
everywhere, 70
from the left and from the right, 73
on an open interval 70

Continuously differentiable, 478
Converge, 231, 597, 608
Convergence

absolute, 636
conditional, 636
endpoint, 664
of a geometric series, 610
of improper integral with infinite 

discontinuities, 583
integration limits, 580

interval of, 662, 666, A18
of Newton’s Method, 231, 232
of a power series, 662, A18
of p-series, 621
radius of, 662, 666, A18
of a sequence, 597
of a series, 608
of Taylor series, 680
tests for series

Alternating Series Test, 633
Direct Comparison Test, 626
geometric series, 610
guidelines, 645
Integral Test, 619
Limit Comparison Test, 628
p-series, 621
Ratio Test, 641
Root Test, 644
summary, 646

Convergent power series, form of, 678
Convergent series, limit of nth term of, 612
Convex limaçon, 737
Coordinate conversion 

polar to rectangular, 732
rectangular to polar, 732

Coordinate system, polar, 731
Coordinates, polar, 731

area in, 741
area of a surface of revolution in, 746
converting to rectangular, 732
Distance Formula in, 739

Coordinates, rectangular, converting to

polar, 732
Copernicus, Nicolaus (1473–1543), 699
Cornu spiral, 761
Correlation coefficient, 31
Cosecant function

derivative of, 123, 136
integral of, 339
inverse of, 373

derivative of, 376
Cosine function, 22

derivative of, 112, 136
integral of, 339
inverse of, 373

derivative of, 376, A15
series for, 684

Cotangent function
derivative of, 123, 136
integral of, 339
inverse of, 373

derivative of, 376
Coulomb’s Law, 491
Critical number(s)

of a function, 166
relative extrema occur only at, 166

Cruciform, 146
Cubic function, 24
Cubing function, 22
Curtate cycloid, 719
Curvature, circle of, 161
Curve

astroid, 146
bifolium, 146
bullet-nose, 138
cissoid, 146
cruciform, 146
equipotential, 428
folium of Descartes, 146, 749
isothermal, 428
kappa, 145, 147
lemniscate, 40, 144, 147, 737
logistic, 429, 562
plane, 711
pursuit, 395, 397
rectifiable, 478
rose, 734, 737
smooth, 478, 716

piecewise, 716
Curve sketching, summary of, 209
Cycloid, 716, 720

curtate, 719
prolate, 723

D

Darboux’s Theorem, 245
Decay model, exponential, 416
Decomposition of into partial

fractions, 555
Decreasing function, 179

test for, 179

N�x��D�x�
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Definite integral(s), 273
approximating

Midpoint Rule, 269, 313
Simpson’s Rule, 314
Trapezoidal Rule, 312

as the area of a region, 274
change of variables, 303
properties of, 277
two special, 276

Degenerate conic, 696
line, 696
point, 696
two intersecting lines, 696

Degree of a polynomial function, 24
Demand, 18
Density, 502
Dependent variable, 19
Derivative(s)

of algebraic functions, 136
alternative form, 101, A7
Chain Rule, 130, 131, 136, A8
of a composite function, 130
Constant Multiple Rule, 110, 136
Constant Rule, 107, 136
of cosecant function, 123, 136
of cosine function, 112, 136
of cotangent function, 123, 136
Difference Rule, 111, 136
of an exponential function, base a, 364
of a function, 99
General Power Rule, 132, 136
higher-order, 125
of hyperbolic functions, 392
implicit, 142
of an inverse function, 347, A14
of inverse trigonometric functions,

376, A15
involving absolute value, 330
from the left and from the right, 101 
of a logarithmic function, base a, 364
of the natural exponential function, 354
of the natural logarithmic function, 328
notation, 99
parametric form, 721
Power Rule, 108, 136
Product Rule, 119, 136
Quotient Rule, 121, 136
of secant function, 123, 136
second, 125
Simple Power Rule, 108, 136
simplifying, 134
of sine function, 112, 136
Sum Rule, 111, 136
of tangent function, 123, 136
third, 125
of trigonometric functions, 123, 136

Descartes, René (1596–1650), 2
Difference quotient, 20, 97
Difference Rule, 111, 136

differential form, 238
Difference of two functions, 25
Differentiability 

implies continuity, 103
and continuity of inverse functions,

347, A13
Differentiable at x, 99
Differentiable, continuously, 478
Differentiable function

on the closed interval 101
on an open interval 99

Differential, 236
of x, 236
of y, 236

Differential equation, 249, 406
Bernoulli equation, 438
doomsday, 445
Euler’s Method, 410
first-order linear, 434, 440
general solution of, 249, 406
Gompertz, 445
homogeneous, 425

change of variables, 426
initial condition, 253, 407
integrating factor, 434
logistic, 245, 429
order of, 406
particular solution of, 253, 407
separable, 423
separation of variables, 415, 423
singular solution of, 406
solution of, 406
summary of first-order, 440

Differential form, 236
Differential formulas, 238

constant multiple, 238
product, 238
quotient, 238
sum or difference, 238

Differentiation, 99
basic rules for elementary functions, 378
implicit, 141

guidelines for, 142
involving inverse hyperbolic functions,

396
logarithmic, 329
numerical, 103
of power series, 666

Differentiation rules
basic, 378
Chain, 130, 131, 136, A8
Constant, 107, 136
Constant Multiple, 110, 136
cosecant function, 123, 136
cosine function, 112, 136
cotangent function, 123, 136
Difference, 111, 136
general, 136
General Power, 132, 136

Power, 108, 136
for Real Exponents, 365

Product, 119, 136
Quotient, 121, 136
secant function, 123, 136
Simple Power, 108, 136
sine function, 112, 136
Sum, 111, 136
summary of, 136
tangent function, 123, 136

Diminishing returns, point of, 227
Dimpled limaçon, 737
Direct Comparison Test, 626
Direct substitution, 59, 60
Directed distance, 501
Direction field, 256, 325, 408
Directrix

of a conic, 750
of a parabola, 697

Dirichlet, Peter Gustav (1805–1859), 51
Dirichlet function, 51
Discontinuity, 71

infinite, 580
nonremovable, 71
removable, 71

Disk, 458
method, 459

compared to shell, 471
Displacement of a particle, 291, 292
Distance

directed, 501
total, traveled on 292

Distance Formula in polar coordinates, 739
Diverge, 597, 608
Divergence

of improper integral with infinite 
discontinuities, 583
integration limits, 580

of a sequence, 597
of a series, 608
tests for series

Direct Comparison Test, 626
geometric series, 610
guidelines, 645
Integral Test, 619
Limit Comparison Test, 628
nth-Term Test, 612
p-series, 621
Ratio Test, 641
Root Test, 644
summary, 646

Divide out like factors, 63
Domain

feasible, 218
of a function, 19

explicitly defined, 21
implied, 21
of a power series, 662

Doomsday equation, 445

�a, b�,

�a, b�,
�a, b�,
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Dummy variable, 275
Dyne, 489

E

e, the number, 327
limit involving, 366, A15

Eccentricity, 750, A19
classification of conics by, 750, A19
of an ellipse, 701
of a hyperbola, 704

Eight curve, 161
Elementary function(s), 24, 378

basic differentiation rules for, 378
polynomial approximation of, 650
power series for, 684

Eliminating the parameter, 713
Ellipse, 696, 699

center of, 699
eccentricity of, 701
foci of, 699
major axis of, 699
minor axis of, 699
reflective property of, 701
rotated, 146
standard equation of, 699
vertices of, 699

Elliptic integral, 317
Endpoint convergence, 664
Endpoint extrema, 164
Epicycloid, 719, 720, 724
Epsilon-delta, - , definition of limit, 52
Equation(s)

basic, 556
guidelines for solving, 560

Bernoulli, 438
of conics, polar, 751
doomsday, 445
of an ellipse, 699
general second-degree, 696
Gompertz, 445
graph of, 2
of a hyperbola, 703
of a line

general form, 14
horizontal, 14
point-slope form, 11, 14
slope-intercept form, 13, 14
summary, 14
vertical, 14

of a parabola, 697
parametric, 711

finding, 715
graph of, 711

primary, 218, 219
related-rate, 149
secondary, 219
separable, 423
solution point of, 2

Equilibrium, 499

Equipotential curves, 428 
Error

in approximating a Taylor 
polynomial, 656

in measurement, 237
percent error, 237
propagated error, 237
relative error, 237

in Simpson’s Rule, 315
in Trapezoidal Rule, 315

Escape velocity, 94
Euler, Leonhard (1707–1783), 24
Euler’s

constant, 625
Method, 410

Evaluate a function, 19
Even function, 26

integration of, 305
test for, 26

Everywhere continuous, 70
Existence

of an inverse function, 345
of a limit, 73
theorem, 77, 164

Expanded about c, approximating 
polynomial, 650

Explicit form of a function, 19, 141
Explicitly defined domain, 21
Exponential decay, 416
Exponential function, 24

to base a, 362
derivative of, 364

integration rules, 356
natural, 352

derivative of, 354
properties of, 353

operations with, 353, A15
series for, 684

Exponential growth and decay model, 416
initial value, 416
proportionality constant, 416

Exponentiate, 353
Extended Mean Value Theorem, 245, 570,

A16
Extrema

endpoint, 164
of a function, 164
guidelines for finding, 167
relative, 165

Extreme Value Theorem, 164
Extreme values of a function, 164

F

Factorial, 599
Family of functions, 273
Famous curves

astroid, 146
bifolium, 146
bullet-nose curve, 138

circle, 146, 696, 737
cissoid, 146
cruciform, 146
eight curve, 161
folium of Descartes, 146, 749
kappa curve, 145, 147
lemniscate, 40, 144, 147, 737
parabola, 2, 146, 696, 697
pear-shaped quartic, 161
rotated ellipse, 146
rotated hyperbola, 146
serpentine, 127
top half of circle, 138
witch of Agnesi, 127, 146, 201

Feasible domain, 218
Fermat, Pierre de (1601–1665), 166
Fibonacci sequence, 606, 617
Field

direction, 256, 325, 408
slope, 256, 306, 325, 408

Finite Fourier series, 544
First Derivative Test, 181
First-order differential equations

linear, 434, 440
solution of, 435

summary of, 440
Fitting integrands to basic rules, 523
Fixed point, 233
Fluid(s)

force, 510
pressure, 509
weight-densities of, 509

Focal chord of a parabola, 697
Focus

of a conic, 750
of an ellipse, 699
of a hyperbola, 703
of a parabola, 697

Folium of Descartes, 146, 749
Force, 489

constant, 489
exerted by a fluid, 510
variable, 490

Form of a convergent power series, 678
Fourier, Joseph (1768–1830), 671
Fourier series, finite, 544
Fourier Sine Series, 535
Fraction expansion, continued, 693
Fractions, partial, 554

decomposition of into, 555
method of, 554

Fresnel function, 321
Function(s), 6, 19

absolute maximum of, 164
absolute minimum of, 164
absolute value, 22
acceleration, 125
accumulation, 288
addition of, 25
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algebraic, 24, 25, 378
antiderivative of, 248
arc length, 478, 479
arccosecant, 373
arccosine, 373
arccotangent, 373
arcsecant, 373
arcsine, 373
arctangent, 373
average value of, 286
Bessel, 669, 670
combinations of, 25
common logarithmic, 363
composite, 25
composition of, 25
concave downward, 190, A9
concave upward, 190, A9
constant, 24
continuous, 70
continuously differentiable, 478
cosine, 22
critical number of, 166
cubic, 24
cubing, 22
decreasing, 179

test for, 179
defined by power series, properties of, 666
derivative of, 99
difference of, 25
differentiable, 99, 101
Dirichlet, 51
domain of, 19
elementary, 24, 378

algebraic, 24, 25
exponential, 24
logarithmic, 24
trigonometric, 24

evaluate, 19
even, 26
explicit form, 19, 141
exponential to base a, 362
extrema of, 164
extreme values of, 164
family of, 273
feasible domain of, 218
Fresnel, 321
Gamma, 578, 590
global maximum of, 164
global minimum of, 164
graph of, guidelines for analyzing, 209
greatest integer, 72
Gudermannian, 404
Heaviside, 39
homogeneous, 425, 931
hyperbolic, 390
identity, 22
implicit form, 19
implicitly defined, 141
increasing, 179

test for, 179
inner product of two, 544
integrable, 273
inverse, 343
inverse hyperbolic, 394
inverse trigonometric, 373
involving a radical, limit of, 60, A4
jerk, 162
limit of, 48
linear, 24
local extrema of, 165
local maximum of, 165
local minimum of, 165
logarithmic, 324

to base a, 363
logistic growth, 367
natural exponential, 352
natural logarithmic, 324
notation, 19
odd, 26
one-to-one, 21
onto, 21
orthogonal, 544
point of inflection, 192, 193
polynomial, 24, 60
position, 32, 113
product of, 25
pulse, 94
quadratic, 24
quotient of, 25
range of, 19
rational, 22, 25
real-valued, 19
relative extrema of, 165
relative maximum of, 165
relative minimum of, 165
representation by power series, 671
Riemann zeta, 625
signum, 82
sine, 22
sine integral, 322
square root, 22
squaring, 22
standard normal probability density, 355
step, 72
strictly monotonic, 180, 345
sum of, 25
that agree at all but one point, 62, A5
transcendental, 25, 378
transformation of a graph of, 23

horizontal shift, 23
reflection about origin, 23
reflection about x-axis, 23
reflection about y-axis, 23
reflection in the line 344
vertical shift, 23

trigonometric, 24
unit pulse, 94
Vertical Line Test, 22

zero of, 26
approximating with Newton’s Method,

229
Fundamental Theorem of Calculus, 282

guidelines for using, 283
Second, 289

G

Gabriel’s Horn, 586
Galilei, Galileo (1564–1642), 378
Galois, Evariste (1811–1832), 232
Gamma Function, 578, 590
Gauss, Carl Friedrich (1777–1855), 260
Gaussian Quadrature Approximation, two-

point, 321
General antiderivative, 249
General differentiation rules, 136
General form

of the equation of a line, 14
of a second-degree equation, 694

General harmonic series, 621
General partition, 272
General Power Rule

for differentiation, 132, 136
for Integration, 302

General second-degree equation, 696
General solution 

of the Bernoulli equation, 439
of a differential equation, 249, 406

Geometric power series, 671
Geometric series, 610

alternating, 633
convergence of, 610
divergence of, 610

Global maximum of a function, 164
Global minimum of a function, 164
Golden ratio, 606
Gompertz equation, 445
Graph(s)

of absolute value function, 22
of cosine function, 22
of cubing function, 22
of an equation, 2
of a function

guidelines for analyzing, 209
transformation of, 23

of hyperbolic functions, 391
of identity function, 22
intercept of, 4
of inverse hyperbolic functions, 395
of inverse trigonometric functions, 374
orthogonal, 147
of parametric equations, 711
polar, 733

points of intersection, 743
special polar graphs, 737

of rational function, 22
of sine function, 22
of square root function, 22

y � x,
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of squaring function, 22
symmetry of, 5

Greatest integer function, 72
Gregory, James (1638–1675), 666
Gudermannian function, 404
Guidelines

for analyzing the graph of a function, 209
for evaluating integrals involving secant

and tangent, 539
for evaluating integrals involving sine

and cosine, 536
for finding extrema on a closed interval,

167
for finding intervals on which a function

is increasing or decreasing, 180
for finding an inverse function, 346
for finding limits at infinity of rational 

functions, 201
for finding a Taylor series, 682
for implicit differentiation, 142
for integration, 337
for integration by parts, 527
for making a change of variables, 301
for solving applied minimum and 

maximum problems, 219
for solving the basic equation, 560
for solving related-rate problems, 150
for testing a series for convergence or

divergence, 645
for using the Fundamental Theorem of

Calculus, 283

H

Half-life, 362, 417
Harmonic series, 621

alternating, 634, 636, 638
Heaviside, Oliver (1850–1925), 39
Heaviside function, 39
Herschel, Caroline (1750–1848), 705
Higher-order derivative, 125
Homogeneous of degree n, 425
Homogeneous differential equation, 425

change of variables for, 426
Homogeneous function, 425
Hooke’s Law, 491
Horizontal asymptote, 199
Horizontal line, 14
Horizontal Line Test, 345
Horizontal shift of a graph of a function, 23
Huygens, Christian (1629–1795), 478
Hypatia (370 – 415 A.D.), 696
Hyperbola, 696, 703

asymptotes of, 703
center of, 703
conjugate axis of, 703
eccentricity of, 704
foci of, 703
rotated, 146
standard equation of, 703

transverse axis of, 703
vertices of, 703

Hyperbolic functions, 390
derivatives of, 392
graphs of, 391
identities, 391, 392
integrals of, 392
inverse, 394

differentiation involving, 396
graphs of, 395
integration involving, 396

Hyperbolic identities, 391, 392
Hypocycloid, 720

I

Identities, hyperbolic, 391, 392
Identity function, 22
If and only if, 14
Image of x under f, 19
Implicit derivative, 142
Implicit differentiation, 141

guidelines for, 142
Implicit form of a function, 19
Implicitly defined function, 141
Implied domain, 21
Improper integral, 580

comparison test for, 588
with infinite discontinuities, 583

convergence of, 583
divergence of, 583

with infinite integration limits, 580
convergence of, 580
divergence of, 580

special type, 586
Incidence, angle of, 698
Increasing function, 179

test for, 179
Indefinite integral, 249

pattern recognition, 297
Indefinite integration, 249
Independent variable, 19
Indeterminate form, 63, 85, 200, 214, 569,

572
Index of summation, 259
Inductive reasoning, 601
Inequality

Napier’s, 342
preservation of, 278, A11

Infinite discontinuities, 580
improper integrals with, 583

convergence of, 583
divergence of, 583

Infinite integration limits, 580
improper integrals with, 580

convergence of, 580
divergence of, 580

Infinite interval, 198
Infinite limit(s), 83

at infinity, 204

from the left and from the right, 83
properties of, 87

Infinite series (or series), 608
absolutely convergent, 636
alternating, 633

geometric, 633
harmonic, 634, 636
remainder, 635

conditionally convergent, 636
convergence of, 608
convergent, limit of nth term, 612
divergence of, 608

nth term test for, 612
geometric, 610
guidelines for testing for convergence

or divergence of, 645
harmonic, 621

alternating, 634, 636, 638
nth partial sum, 608
properties of, 612
p-series, 621
rearrangement of, 637
sum of, 608
telescoping, 609
terms of, 608

Infinity
infinite limit at, 204
limit at, 198, 199, A10

Inflection point, 192, 193
Initial condition(s), 253, 407
Initial value, 416
Inner product of two functions, 544
Inner radius of a solid of revolution, 461
Inscribed rectangle, 263
Instantaneous velocity, 114
Integrability and continuity, 273
Integrable function, 273
Integral(s)

definite, 273
properties of, 277
two special, 276

elliptic, 317
of hyperbolic functions, 392
improper, 580
indefinite, 249
involving inverse trigonometric functions,

382
involving secant and tangent, guidelines

for evaluating, 539
involving sine and cosine, guidelines

for evaluating, 536
Mean Value Theorem, 285
of 313
of the six basic trigonometric functions,

339
trigonometric, 536

Integral Test, 619
Integrand(s), procedures for fitting to basic

rules, 523

p�x� � Ax2 � Bx � C,

A120 INDEX



Integrating factor, 434
Integration

as an accumulation process, 453
Additive Interval Property, 276
basic rules of, 250, 385, 522
change of variables, 300

guidelines for, 301
constant of, 249
of even and odd functions, 305
guidelines for, 337
indefinite, 249

pattern recognition, 297
involving inverse hyperbolic functions,

396
Log Rule, 334
lower limit of, 273
of power series, 666
preservation of inequality, 278, A11
rules for exponential functions, 356
upper limit of, 273

Integration by parts, 527
guidelines for, 527
summary of common integrals using, 532
tabular method, 532

Integration by tables, 563
Integration formulas

reduction formulas, 565
special, 549

Integration rules
basic, 250, 385, 522
General Power Rule, 302
Power Rule, 250

Integration techniques
basic integration rules, 250, 385, 522
integration by parts, 527
method of partial fractions, 554
substitution for rational functions of

sine and cosine, 566
tables, 563
trigonometric substitution, 545

Intercept(s), 4
x-intercept, 4
y-intercept, 4

Interest formulas, summary of, 366
Intermediate Value Theorem, 77
Interpretation of concavity, 190, A9
Interval of convergence, 662, A18
Interval, infinite, 198
Inverse function, 343

continuity and differentiability of, 347, A13
derivative of, 347, A14
existence of, 345
guidelines for finding, 346
Horizontal Line Test, 345
properties of, 363
reflective property of, 344

Inverse hyperbolic functions, 394
differentiation involving, 396
graphs of, 395

integration involving, 396
Inverse trigonometric functions, 373

derivatives of, 376, A15
graphs of, 374
integrals involving, 382
properties of, 375 

Isobars, 148
Isothermal curves, 428
Iteration, 229
ith term of a sum, 259

J

Jerk function, 162

K

Kappa curve, 145, 147
Kepler, Johannes, (1571–1630), 753
Kepler’s Laws, 753
Kirchhoff’s Second Law, 438 

L

Lagrange, Joseph-Louis (1736–1813), 174
Lagrange form of the remainder, 656
Lambert, Johann Heinrich (1728–1777), 390
Lamina, planar, 502
Laplace Transform, 590
Latus rectum, of a parabola, 697
Leading coefficient 

of a polynomial function, 24
test, 24

Least squares regression, 7
Least upper bound, 603
Left-hand limit, 72
Leibniz, Gottfried Wilhelm (1646–1716), 238
Leibniz notation, 238
Lemniscate, 40, 144, 147, 737
Length

of an arc, 478, 479
parametric form, 724
polar form, 745

of the moment arm, 499
L’Hôpital, Guillaume (1661–1704), 570
L’Hôpital’s Rule, 570, A17
Limaçon, 737

convex, 737
dimpled, 737
with inner loop, 737

Limit(s), 45, 48
basic, 59
of a composite function, 61, A4
definition of, 52
- definition of, 52

evaluating
direct substitution, 59, 60
divide out like factors, 63
rationalize the numerator, 63

existence of, 73

of a function involving a radical, 60, A4
indeterminate form, 63
infinite, 83

from the left and from the right, 83
properties of, 87

at infinity, 198, 199, A10
infinite, 204
of a rational function, guidelines for 

finding, 201
of integration

lower, 273
upper, 273

involving e, 366, A15
from the left and from the right, 72
of the lower and upper sums, 265
nonexistence of, common types of

behavior, 51
of nth term of a convergent series, 612
one-sided, 72
of polynomial and rational functions, 60
properties of, 59, A2
of a sequence, 597

properties of, 598
strategy for finding, 62
of trigonometric functions, 61
two special trigonometric, 65

Limit Comparison Test, 628
Line(s)

as a degenerate conic, 696
equation of

general form, 14
horizontal, 14
point-slope form, 11, 14
slope-intercept form, 13, 14
summary, 14
vertical, 14

moment about, 499
at a point, 147

parallel, 14
perpendicular, 14
radial, 731
secant, 45, 97
slope of, 10
tangent, 45, 97

approximation, 235
at the pole, 736
with slope m, 97
vertical, 99

Linear approximation, 235
Linear function, 24
Local maximum, 165
Local minimum, 165
Locus, 696
Log Rule for Integration, 334
Logarithmic differentiation, 329
Logarithmic function, 24, 324

to base a, 363
derivative of, 364

common, 363

��
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natural, 324
derivative of, 328
properties of, 325, A12

Logarithmic properties, 325
Logarithmic spiral, 749
Logistic curve, 429, 562
Logistic differential equation, 245, 429

carrying capacity, 429
Logistic growth function, 367
Lorenz curves, 456
Lower bound of a sequence, 603
Lower bound of summation, 259
Lower limit of integration, 273
Lower sum, 263

limit of, 265
Lune, 553

M

Macintyre, Sheila Scott (1910–1960), 536
Maclaurin, Colin, (1698–1746), 678
Maclaurin polynomial, 652
Maclaurin series, 679
Major axis of an ellipse, 699
Mass, 498

center of, 499, 500, 501
of a one-dimensional system, 499, 500
of a planar lamina, 502
of a two-dimensional system, 501

pound mass, 498
total, 500, 501

of a one-dimensional system, 500
of a two-dimensional system, 501

Mathematical model, 7
Mathematical modeling, 33
Maximum

absolute, 164
of f on I, 164
global, 164
local, 165
relative, 165

Mean Value Theorem, 174
alternative form of, 175
Extended, 245, 570, A16
for Integrals, 285

Measurement, error in, 237
Mechanic’s Rule, 233
Method of partial fractions, 554
Midpoint Rule, 269, 313
Minimum

absolute, 164
of f on I, 164
global, 164
local, 165
relative, 165

Minor axis of an ellipse, 699
Model

exponential growth and decay, 416
mathematical, 7

Modeling, mathematical, 33

Moment(s)
about a line, 499
about the origin, 499, 500
about a point, 499
about the x-axis

of a planar lamina, 502
of a two-dimensional system, 501

about the y-axis
of a planar lamina, 502
of a two-dimensional system, 501

arm, length of, 499
of a one-dimensional system, 500
of a planar lamina, 502

Monotonic sequence, 602
bounded, 603

Monotonic, strictly, 180, 345
Mutually orthogonal, 428

N

n factorial, 599
Napier, John (1550–1617), 324
Napier’s Inequality, 342
Natural exponential function, 352

derivative of, 354
integration rules, 356
operations with, 353, A15
properties of, 353
series for, 684

Natural logarithmic base, 327
Natural logarithmic function, 324

base of, 327
derivative of, 328
properties of, 325, A12
series for, 684

Net change, 291
Net Change Theorem, 291
Newton, Isaac (1642–1727), 96, 229
Newton’s Law of Cooling, 419
Newton’s Law of Gravitation, 1059
Newton’s Law of Universal Gravitation,

491
Newton’s Method for approximating the

zeros of a function, 229
convergence of, 231, 232
iteration, 229

Newton’s Second Law of Motion, 437
Nonexistence of a limit, common types of

behavior, 51
Nonremovable discontinuity, 71
Norm of a partition, 272
Normal line at a point, 147
Normal probability density function, 355
Notation

antiderivative, 249
derivative, 99
function, 19
Leibniz, 238
sigma, 259

nth Maclaurin polynomial for f at c, 652

nth partial sum, 608
nth Taylor polynomial for f at c, 652
nth term

of a convergent series, 612
of a sequence, 596

nth-Term Test for Divergence, 612
Number, critical, 166
Number e, 327

limit involving, 366, A15
Numerical differentiation, 103

O

Odd function, 26
integration of, 305
test for, 26

Ohm’s Law, 241
One-dimensional system

center of gravity of, 500
center of mass of, 499, 500
moment of, 499, 500
total mass of, 500

One-sided limit, 72
One-to-one function, 21
Onto function, 21
Open interval

continuous on, 70
differentiable on, 99

Operations
with exponential functions, 353, A15
with power series, 673

Order of a differential equation, 406
Orientation of a plane curve, 712
Origin

moment about, 499, 500
of a polar coordinate system, 731
reflection about, 23
symmetry, 5

Orthogonal
functions, 544
graphs, 147
trajectory, 147, 428

Outer radius of a solid of revolution, 461

P

Padé approximation, 333
Pappus

Second Theorem of, 508
Theorem of, 505

Parabola, 2, 146, 696, 697
axis of, 697
directrix of, 697
focal chord of, 697
focus of, 697
latus rectum of, 697
reflective property of, 698
standard equation of, 697
vertex of, 697

Parabolic spandrel, 507

A122 INDEX



Parallel lines, 14
Parameter, 711

eliminating, 713
Parametric equations, 711

finding, 715
graph of, 711

Parametric form
of arc length, 724
of the area of a surface of revolution, 726
of the derivative, 721

Partial fractions, 554
decomposition of into, 555
method of, 554

Partial sums, sequence of, 608
Particular solution of a differential equation,

253, 407
Partition

general, 272
norm of, 272
regular, 272

Pascal, Blaise (1623–1662), 509
Pascal’s Principle, 509
Pear-shaped quartic, 161
Percent error, 237
Perigee, 708
Perihelion, 708, 757
Perpendicular lines, 14
Piecewise smooth curve, 716
Planar lamina, 502

center of mass of, 502
moment of, 502

Plane curve, 711
orientation of, 712

Plane region, area of, 265
Point

as a degenerate conic, 696
of diminishing returns, 227
fixed, 233
of inflection, 192, 193
of intersection, 6

of polar graphs, 743 
moment about, 499

Point-slope equation of a line, 11, 14
Polar axis, 731
Polar coordinate system, 731

polar axis of, 731
pole (or origin), 731

Polar coordinates, 731
area in, 741
area of a surface of revolution in, 746
converting to rectangular, 732
Distance Formula in, 739

Polar curve, arc length of, 745
Polar equations of conics, 751
Polar form of slope, 735
Polar graphs, 733

cardioid, 736, 737
circle, 737
convex limaçon, 737

dimpled limaçon, 737
lemniscate, 737
limaçon with inner loop, 737
points of intersection, 743
rose curve, 734, 737

Pole, 731
tangent lines at, 736

Polynomial
Maclaurin, 652
Taylor, 161, 652

Polynomial approximation, 650
centered at c, 650
expanded about c, 650

Polynomial function, 24, 60
constant term of, 24
degree of, 24
leading coefficient of, 24
limit of, 60
zero, 24

Position function, 32, 113, 125
Pound mass, 498
Power Rule

for differentiation, 108, 136
for integration, 250, 302
for Real Exponents, 365

Power series, 661
centered at c, 661
convergence of, 662, A18
convergent, form of, 678
differentiation of, 666
domain of, 662
for elementary functions, 684
endpoint convergence, 664
geometric, 671
integration of, 666
interval of convergence, 662, A18
operations with, 673
properties of functions defined by, 666

interval of convergence of, 666
radius of convergence of, 666

radius of convergence, 662, A18
representation of functions by, 671

Preservation of inequality, 278, A11
Pressure, fluid, 509
Primary equation, 218, 219
Probability density function, 355
Procedures for fitting integrands to basic

rules, 523
Product Rule, 119, 136

differential form, 238
Product of two functions, 25

inner, 544
Prolate cycloid, 723
Propagated error, 237
Properties

of continuity, 75, A6
of definite integrals, 277
of functions defined by power series, 666
of infinite limits, 87

of infinite series, 612
of inverse functions, 363
of inverse trigonometric functions, 375
of limits, 59, A2
of limits of sequences, 598
logarithmic, 325
of the natural exponential function, 325,

353
of the natural logarithmic function, 325,

A12
Proportionality constant, 416
p-series, 621

convergence of, 621
divergence of, 621
harmonic, 621

Pulse function, 94
unit, 94

Pursuit curve, 395, 397

Q

Quadratic function, 24
Quotient, difference, 20, 97
Quotient Rule, 121, 136

differential form, 238
Quotient of two functions, 25

R

Radial lines, 731
Radical, limit of a function involving a, 60,

A4
Radicals, solution by, 232
Radioactive isotopes, half-lives of, 417
Radius

of convergence, 662, A18
inner, 461
outer, 461

Ramanujan, Srinivasa (1887–1920), 675
Range of a function, 19
Raphson, Joseph (1648–1715), 229
Rate of change, 12

average, 12
instantaneous, 12

Ratio, 12
golden, 606

Ratio Test, 641
Rational function, 22, 25

guidelines for finding limits at infinity
of, 201

limit of, 60
Rationalize the numerator, 63
Real Exponents, Power Rule, 365
Real numbers, completeness of, 77, 603
Real-valued function f of a real variable x, 19
Reasoning, inductive, 601
Rectangle

area of, 261
circumscribed, 263
inscribed, 263
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representative, 448
Rectangular coordinates, converting to

polar, 732
Rectifiable curve, 478
Recursively defined sequence, 596
Reduction formulas, 565
Reflection

about the origin, 23
about the x-axis, 23
about the y-axis, 23
angle of, 698
in the line 344

Reflective property
of an ellipse, 701
of inverse functions, 344
of a parabola, 698

Reflective surface, 698
Refraction, 226
Region in the plane

area of, 265
between two curves, 449

centroid of, 503
Regression, least squares, 7
Regular partition, 272
Related-rate equation, 149
Related-rate problems, guidelines for solving,

150
Relation, 19
Relative error, 237
Relative extrema

First Derivative Test for, 181
of a function, 165
occur only at critical numbers, 166
Second Derivative Test for, 194

Relative maximum
at 165
First Derivative Test for, 181
of a function, 165
Second Derivative Test for, 194

Relative minimum
at 165
First Derivative Test for, 181
of a function, 165
Second Derivative Test for, 194

Remainder
alternating series, 635
of a Taylor polynomial, 656

Removable discontinuity, 71
Representation of antiderivatives, 248
Representative element, 453

disk, 458
rectangle, 448
shell, 469
washer, 461

Return wave method, 544
Review

of basic differentiation rules, 378
of basic integration rules, 385, 522

Revolution

axis of, 458
solid of, 458
surface of, 482

area of, 483, 726, 746
volume of solid of

disk method, 458
shell method, 469, 470
washer method, 461

Riemann, Georg Friedrich Bernhard
(1826–1866), 272, 638

Riemann sum, 272
Riemann zeta function, 625
Right-hand limit, 72
Rolle, Michel (1652–1719), 172
Rolle’s Theorem, 172
Root Test, 644
Rose curve, 734, 737
Rotated ellipse, 146
Rotated hyperbola, 146

S

Secant function
derivative of, 123, 136
integral of, 339
inverse of, 373

derivative of, 376
Secant line, 45, 97
Second-degree equation, general, 696
Second derivative, 125
Second Derivative Test, 194
Second Fundamental Theorem of Calculus,

289
Second Theorem of Pappus, 508
Secondary equation, 219
Separable differential equation, 423
Separation of variables, 415, 423
Sequence, 596

Absolute Value Theorem, 600
bounded, 603
bounded above, 603
bounded below, 603
bounded monotonic, 603
convergence of, 597
divergence of, 597
Fibonacci, 606, 617
least upper bound of, 603
limit of, 597

properties of, 598
lower bound of, 603
monotonic, 602
nth term of, 596
of partial sums, 608
pattern recognition for, 600
recursively defined, 596
Squeeze Theorem, 599
terms of, 596
upper bound of, 603

Series, 608
absolutely convergent, 636

alternating, 633
geometric, 633
harmonic, 634, 636, 638

Alternating Series Test, 633
binomial, 683
conditionally convergent, 636
convergence of, 608
convergent, limit of nth term, 612
Direct Comparison Test, 626
divergence of, 608

nth term test for, 612
finite Fourier, 544
Fourier Sine, 535
geometric, 610

alternating, 633
convergence of, 610
divergence of, 610

guidelines for testing for convergence or
divergence, 645

harmonic, 621
alternating, 634, 636, 638

infinite, 608
properties of, 612

Integral Test, 619
Limit Comparison Test, 628
Maclaurin, 679
nth partial sum, 608
nth term of convergent, 612
power, 661
p-series, 621
Ratio Test, 641
rearrangement of, 637
Root Test, 644
sum of, 608
summary of tests for, 646
Taylor, 678, 679
telescoping, 609
terms of, 608

Serpentine, 127
Shell method, 469, 470

and disk method, comparison of, 471
Shift of a graph

horizontal, 23
vertical, 23

Sigma notation, 259
index of summation, 259
ith term, 259
lower bound of summation, 259
upper bound of summation, 259

Signum function, 82
Simple Power Rule, 108, 136
Simpson’s Rule, 314

error in, 315
Sine function, 22

derivative of, 112, 136
integral of, 339
inverse of, 373

derivative of, 376, A15
series for, 684

�c, f �c��,

�c, f �c��,

y � x,
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Sine integral function, 322
Sine Series, Fourier, 535
Singular solution, differential equation, 406
Slant asymptote, 211
Slope(s)

field, 256, 306, 325, 408
of the graph of f at 97
of a line, 10
of a tangent line, 97

parametric form, 721
polar form, 735

Slope-intercept equation of a line, 13, 14
Smooth

curve, 478, 716
piecewise, 716

Snell’s Law of Refraction, 226
Solid of revolution, 458

volume of
disk method, 458
shell method, 469, 470
washer method, 461

Solution
curves, 407
of a differential equation, 406

Bernoulli, 439
Euler’s Method, 410
first-order linear, 435
general, 249, 406
particular, 253, 407
singular, 406

point of an equation, 2
by radicals, 232

Some basic limits, 59
Spandrel, parabolic, 507
Special integration formulas, 549
Special polar graphs, 737
Special type of improper integral, 586
Speed, 114
Spiral

of Archimedes, 725, 733, 749
cornu, 761
logarithmic, 749

Spring constant, 34
Square root function, 22
Squaring function, 22
Squeeze Theorem, 65, A5

for Sequences, 599
Standard equation of

an ellipse, 699
a hyperbola, 703
a parabola, 697

Standard form of the equation of
an ellipse, 699
a hyperbola, 703
a parabola, 697

Standard form of a first-order linear 
differential equation, 434

Standard normal probability density function,
355

Step function, 72
Stirling’s approximation, 529
Stirling’s Formula, 360
Strategy for finding limits, 62
Strictly monotonic function, 180, 345
Strophoid, 761
Substitution for rational functions of sine

and cosine, 566
Sum(s)

ith term of, 259
lower, 263

limit of, 265
nth partial, 608
Riemann, 272
Rule, 111, 136

differential form, 238
sequence of partial, 608
of a series, 608
of two functions, 25
upper, 263

limit of, 265
Summary

of common integrals using integration
by parts, 532

of compound interest formulas, 366
of curve sketching, 209
of differentiation rules, 136
of equations of lines, 14
of first-order differential equations, 440
of tests for series, 646

Summation
formulas, 260, A10
index of, 259
lower bound of, 259
upper bound of, 259

Surface, reflective, 698
Surface of revolution, 482

area of, 483
parametric form, 726
polar form, 746

Symmetry
tests for, 5
with respect to the origin, 5
with respect to the point 403
with respect to the x-axis, 5
with respect to the y-axis, 5

T

Table of values, 2
Tables, integration by, 563
Tabular method for integration by parts, 532
Tangent function

derivative of, 123, 136
integral of, 339
inverse of, 373

derivative of, 376
Tangent line(s), 45, 97

approximation of f at c, 235
at the pole, 736

problem, 45
slope of, 97

parametric form, 721
polar form, 735

with slope m, 97
vertical, 99

Tautochrone problem, 717
Taylor, Brook (1685–1731), 652
Taylor polynomial, 161, 652

error in approximating, 656
remainder, Lagrange form of, 656

Taylor series, 678, 679
convergence of, 680
guidelines for finding, 682

Taylor’s Theorem, 656, A17
Telescoping series, 609
Terms

of a sequence, 596
of a series, 608

Test(s)
comparison, for improper integrals, 588
for concavity, 191, A9
for convergence

Alternating Series, 633
Direct Comparison, 626
geometric series, 610
guidelines, 645
Integral, 619
Limit Comparison, 628
p-series, 621
Ratio, 641
Root, 644
summary, 646

for even and odd functions, 26
First Derivative, 181
Horizontal Line, 345
for increasing and decreasing functions,

179
Leading Coefficient, 24
Second Derivative, 194
for symmetry, 5
Vertical Line, 22

Theorem
Absolute Value, 600
of Calculus, Fundamental, 282

guidelines for using, 283
of Calculus, Second Fundamental, 289
Cavalieri’s, 468
Darboux’s, 245
existence, 77, 164
Extended Mean Value, 245, 570, A16
Extreme Value, 164
Intermediate Value, 77
Mean Value, 174

alternative form, 175
Extended, 245, 570, A16
for Integrals, 285

Net Change, 291
of Pappus, 505

�a, b�,

x � c,
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Second, 508
Rolle’s, 172
Squeeze, 65, A5

for sequences, 599
Taylor’s, 656, A17

Third derivative, 125
Top half of circle, 138
Torque, 500
Torricelli’s Law, 445
Total distance traveled on 292
Total mass, 500, 501

of a one-dimensional system, 500
of a two-dimensional system, 501

Tractrix, 333, 395, 396
Trajectories, orthogonal, 147, 428
Transcendental function, 25, 378
Transformation, 23
Transformation of a graph of a function, 23

basic types, 23
horizontal shift, 23
reflection about origin, 23
reflection about x-axis, 23
reflection about y-axis, 23
reflection in the line 344
vertical shift, 23

Transverse axis of a hyperbola, 703
Trapezoidal Rule, 312

error in, 315
Trigonometric function(s), 24

and the Chain Rule, 135
cosine, 22
derivative of, 123, 136
integrals of the six basic, 339
inverse, 373

derivatives of, 376, A15
graphs of, 374
integrals involving, 382
properties of, 375

limit of, 61
sine, 22

Trigonometric integrals, 536
Trigonometric substitution, 545
Two-dimensional system

center of gravity of, 501
center of mass of, 501
moment of, 501

total mass of, 501
Two-Point Gaussian Quadrature

Approximation, 321
Two special definite integrals, 276
Two special trigonometric limits, 65

U

Unit pulse function, 94
Universal Gravitation, Newton’s Law, 491
Upper bound

least, 603
of a sequence, 603
of summation, 259

Upper limit of integration, 273
Upper sum, 263

limit of, 265
u-substitution, 297

V

Value of f at x, 19
Variable

dependent, 19
dummy, 275
force, 490
independent, 19

Velocity, 114
average, 113
escape, 94
function, 125
instantaneous, 114
potential curves, 428

Vertéré, 201
Vertex

of an ellipse, 699
of a hyperbola, 703
of a parabola, 697

Vertical asymptote, 84, 85, A7
Vertical line, 14
Vertical Line Test, 22
Vertical shift of a graph of a function, 23
Vertical tangent line, 99
Volume of a solid

disk method, 459
with known cross sections, 463 
shell method, 469, 470

washer method, 461

W

Wallis, John (1616–1703), 538
Wallis’s Formulas, 538, 544
Washer, 461
Washer method, 461
Weight-densities of fluids, 509
Wheeler, Anna Johnson Pell (1883–1966),

435
Witch of Agnesi, 127, 146, 201
Work, 489

done by a constant force, 489
done by a variable force, 490

X

x-axis
moment about, of a planar lamina, 502
moment about, of a two-dimensional

system, 501
reflection about, 23
symmetry, 5

x-intercept, 4

Y

y-axis
moment about, of a planar lamina, 502
moment about, of a two-dimensional

system, 501
reflection about, 23
symmetry, 5

y-intercept, 4
Young, Grace Chisholm (1868–1944), 45

Z

Zero factorial, 599
Zero of a function, 26

approximating
bisection method, 78
Intermediate Value Theorem, 77
with Newton’s Method, 229

Zero polynomial, 24

y � x,

�a, b�,
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