Thyroid Gland

Introduction

- * Hypothalamo-pituitary-thyroid axis : (Feed back mechanism)
 - Any decrease in level of thyroid hormons (T3 & T4) in the circulation, stimulates hypothalamic secretion of thyrotropin releasing hormone (TRH) which stimulate the anterior pituitary to secret thyroid stimulating hormone (TSH).

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display. TRH 6 Negative feedback inhibition Θ 5 Target organs 2 TSH Thyroid hormone 3 Stimulatory effect Inhibitory effect

- TSH stimulates the thyroid gland to secret thyroid hormones (T3 & T4).
- Any elevation in the level of T3 & T4 in the circulation inhibit the hypothalamus and anterior pituitary to secret TRH & TSH i.e the level of thyroid hormones is inversely proportional to the level of TSH (negative feed back mechanism) .
- ***** Thyroid hormones synthesis :
 - Dietary *iodine* (in water , sea foods , iodized salt , diary products & vegetables) is *abdorbed* in the upper part of small intestine .
 - 80-90% of iodine is traped & stored in the thyroid gland , while excess iodine is excreted by the kidney .
 - **TSH** stimulates the follicular cells of thyroid gland leading to the followings (remember 3 hyper + TOB + CSR)
 - 1) Hyperplasia (increase number) of follicular cells .
 - 2) **Hypertrophy** (increase size) of follicular cells which become tall columnar cells instead of cubical cells .
 - 3) Increase **vascularity** of the gland .
 - 4) **Trapping** of iodine from the blood .
 - 5) **Oxidation** of iodides into organic iodine by peroxidase enzyme
 - Binding of iodine with tyrosine by tyrosinase enzyme to for mono & diiodotyrosine .
 - 7) **Coupling** of mono & diiodotyrosine to form T3 & T4 which unite with thyroglobin and are **stored** in the follicles .

- Few mono & diiodotyrosine (are not coupled to form T3 & T4), are deiodinated by dehalogenase enzyme and the released iodine is reused in thyroid hormone synthesis .
- 8) Release of T3 & T4 into the circulation upon need :
 - The *major* part of T3 & T4 in the circulation is *bounded* to plasma proteins (albumin , prealbumin & globulin) .
 - A *minor* part of T3 & T4 in the circulation is present as *free* part which is functionally active.
 - T3 is formed by thyroid gland and by peripheral conversion of T4 to T3.
 - T3 is physiologically *more quick* and more *powerful* than
 T4 .

SYNTHESIS OF THYROID HORMONES

★ Histology of thyroid gland :

- The *functional unite* of the thyroid gland is the *lobule* which is supplied by a *single arteriole*.
- Each lobule *consists of* 20-40 follicle .
- Each follicle is *lined by* follicular cells .
- The *resting follicles* are lined by cuboid cells and moderate amount of thyroglobulin is stored in the lumen .
- The *active follicles* are lined by tall columnar cells and little amount of thyroglobulin is stored in the lumen .

• Para-follicular C cells secret calcitonin .

* Physiological effects of thyroid hormones :

 Development: Essential for mental , physical and sexual development & maturity in young age.

II) Metabolic function :

- 1- **Increase metabolic rate** , caloric production and body temperature .
- 2- Increase blood flow , oxygen & glucose consumption nearly in **every cell** in the body (with few exception) .
- 3- Increase **protein** synthesis in case of normal level of thyroid hormone but catabolic in hyperthyroidism.
- 4- Increase rate & force of contraction of **skeletal muscles** in normal level but muscle weakness in case of hyperthyroidism .

- 5- Increase absorption of glucose , glycogenolysis \rightarrow hyperglycemia .
- 6- Lower low density cholesterol .
- 7- Enhance **B-adrenergic receptors** to catecholamines .
- 8- Increase **cardiac** excitability , conductivity , contractility and heart rate
- 9- Increase cardiac output .
- 10- Peripheral vasodilatation and **increase blood flow** to different organs .
- 11- Increase rate and depth of $\ensuremath{\textbf{respiration}}$.
- 12- Increase secretion and motility of $\ensuremath{\textbf{GIT}}$.