Metallurgy

DR. AHMED MAGDY SAYED

LECTURER OF DENTAL BIOMATERIALS

Metallurgy

It is the study of metals and alloy

Metals

Metal can be defined as any elements that ionized positively in solution.

Periodic table

Periodic Table

Metals occupy the left side.

- Non-metals occupy the right side.
- Metalloids (semiconductors) are arranged in between, e.g. carbon and silicon.

Properties of metals:

Metals gain their unique properties from their

i. Metallic bond.

ii. Crystalline structure.

Properties of metals:

- 1. Ionized positively in solutions.
- 2. At normal conditions, they are crystalline solids excep
 - i. Mercury and gallium \rightarrow liquids.
 - ii. Hydrogen→ gas.

Properties of metals:

- 3. Opaque \rightarrow because the free electrons absorb light.
- 4. Lusters \rightarrow because the free electrons reflect the light.
- 5. Good thermal conductors \rightarrow because free electrons carry heat.
- Good electrical conductors → because free electrons carry electricity.

Properties of metals:

- 7. High mechanical properties → because the metallic bond is a primary bond.
- 8. High melting and boiling point → because the metallic bond is a primary bond.

Properties of metals:

9. Malleable and ductile → due to presence of crystalline

imperfection (dislocations).

Properties of metals:

10. Give metallic ring when striking.

11. Most metals are white in color with different tint except:

- i. Gold \rightarrow yellow
- ii. Copper \rightarrow red.

Pure Metals in Dentistry:

- Titanium in dental implants and framework of fixed partial dentures.
- 2. Mercury in dental amalgam restoration.

Pure Metals in Dentistry:

- 3. Silver and copper in electroplated dies.
- 4. Platinum foil in construction of porcelain crowns.
- 5. Gold foils used as direct restoration (Historical).

Shaping of Metals:

- 1. Casting
- 2. Cold working
- 3. Powder metallurgy (sintering)
- 4. Electroplating

1. Casting

It is the process of pouring a liquid metal or alloy into a mold with desired shape.

Heat is applied <u>above</u> the melting point of metal or alloy.

2. Cold Working

> It requires applying stresses <u>above</u> the yield strength of the metal.

> Plastic deformation occurs through slip of metal atoms through

line crystalline defects (dislocations).

2. Cold Working

> Application of heat <u>below</u> melting temperature facilitates cold

working.

3. Powder metallurgy (Sintering):

- It is the process of densification and agglomeration of metal powder.
- > It requires application of high temperature (below melting

temperature) to allow atomic diffusion.

3. Powder metallurgy (Sintering):

> Sintering can be facilitated by application of pressure.

Sintering is accompanied by shrinkage and elimination of porosities.

4. Electroplating

It the process of electrolysis (corrosion in reverse) as in silver and

copper electroplated dies.

In order to understand metal solidification mechanism, a metal is melted then allowed to cool.

Temperature during cooling is

plotted as a function of time.

The temperature decreased from A

to B

 \succ The metal are purely liquid.

The temperature remains constant from B to C (horizontal plateau)

> The metal is liquid and solid.

The Temperature decreased from C to D (room temperature)

 \succ the metal is purely solid.

The melting and freezing temperature (T_f) is indicated by the Temperature horizontal plateau В Freezing Temperature B` Liquid Solid + Liquid Solid Time

The temperature remains constant at T_f due to the liberation of latent

heat of fusion.

Heat of fusion:

The amount of heat required to convert 1 gm of the material from

solid to liquid state at the melting temperature.

Latent Heat of fusion:

The amount of heat liberated from convert 1 gm of the material from

liquid to solid state at the melting temperature

Supercooling:

Initial cooling to B' is called supercooling.

After the crystallization begins, the

temperature is raised to T_f and remains

until complete crystallization.

- Two-steps mechanism theory can explain the solidification of metal in two steps;
 - a) Nucleus formation
 - b) Crystallization.

a) <u>Nucleus formation</u>

> When the molten metal cooled and reaches its freezing point

→ some atoms aggregates in the space lattice arrangement to

form what is called "embryo".

a) <u>Nucleus formation</u>

> Once the supercooling reached, the formed embryos grow to

form centers for solidifications called "nuclei of crystallization"

a) <u>Nucleus formation</u>

- > Nucleus originates by:
 - 1. Homogeneous nucleation.
 - 2. Heterogeneous nucleation

- a) <u>Nucleus formation</u>
 - 1. <u>Homogeneous nucleation.</u>

Nucleus arise from atoms of the metal itself.

- a) Nucleus formation
 - 2. <u>Heterogeneous nucleation</u>.
 - > Nucleus arises from atoms of foreign metal such as: iridium.
 - The foreign metal should have higher melting temperature than the original metal. Therefore, it would be solid before the solidification of the original metal starts.

b) Crystal Growth (Crystallization):

The molten atoms aggregate around the nuclei in three

dimensions (tree like structure or dendrites) to form crystals.

b) Crystal Growth (Crystallization):

> The crystal growth continues until contact between adjacent

crystals occurs.

b) Crystal Growth (Crystallization):

- > Atoms between two adjacent grains are called grain boundaries.
- > Atoms at the grain boundaries are highly stressed atoms.

DR AHMED MAGDY

b) Crystal Growth (Crystallization):

> In very rare occasions, the molten metal solidifies in a single

crystal (whisker).

- a) Rate of Cooling from liquid state:
- b) Nucleating agents (Grain refiners):.

a) Rate of Cooling from liquid state:

Rapid rate of cooling \rightarrow more nuclei of crystallization \rightarrow more

grains \rightarrow smaller grain size \rightarrow more grain boundaries.

b) Nucleating agents (Grain refiners):

Nucleating agent is a foreign metal with higher melting point than

original metal (heterogeneous nucleation).

- **b)** Nucleating agents (Grain refiners):
- Addition of nucleating agent \rightarrow more nuclei of crystallization \rightarrow more grains \rightarrow smaller grain size \rightarrow more grain boundaries.

b) Nucleating agents (Grain refiners):

It is called grain refiner as they produce metal with smaller (finer) grain size.

- **1.** Elastic deformation:
- It is a temporary deformation, results from stretching of the interatomic bond.
- It depends on chemical composition and not affected by microstructure or heat treatment.

- **2.** Plastic deformation:
- It is a permanent deformation.
- > It results from slip of atoms over each other.
- Atomic slippage occurs at dislocations (line defect) and the movement (slippage) of atoms is called dislocation movement.

- **2.** Plastic deformation:
- Casted metals contain numerous dislocations \rightarrow atoms slip (movement of dislocation) occurs easily.
- i.e: Permanent deformation requires less stress
- i.e: Metal characterized by low strength, low hardness and high ductility.

- **2.** Plastic deformation:
- > If dislocation movement is obstructed \rightarrow atoms slip become difficult.
- i.e Permanent deformation require more stress.
- i.e: Metal characterized by high strength, high hardness and low ductility.

Obstructing dislocation movement occurs by:

1. Grain boundaries: Therefore, metals with small grains have

higher strength and hardness.

Obstructing dislocation movement occurs by:

2. Other dislocations.

Obstructing dislocation movement occurs by:

3. Other types of space lattice discontinuity (as impurities).

Wrought Metals:

They are the metals that subjected to cold working (Stresses above yield strength).

Wrought Metals:

- Cold worked structure characterized by:
 - 1. Fibrous structure.
 - 2. High strength, hardness and proportional limit.
 - **3**. Low ductility.
 - Low tarnish and corrosion resistance → cannot be used inside patient mouth.

- It is a heat treatment process that can reverse the effect of cold working.
- It is done by heating the cold worked structure at temperature below its melting temperature.

It involves three stages according to time of heating:

1. Recovery.

- 2. Recrystallization.
- 3. Grain Growth.

	Cold	Recovery	Recrystalliza	Grain
	working		tion	growth
Structure	Fibrous	Fibrous	Fine cast	Coarse
	structure	structure	grains	grains
	L			R

	Cold	Recovery	Recrystalliza	Grain
	working		tion	growth
Tensile	Increased	Very little	Decreased	Slight
strength and		decrease	(like cast	decrease
hardness			metal)	
Ductility	Decreased	No changes	Increased	Slight
			(like cast	increase
			metal)	

	Cold	Recovery	Recrystalliza	Grain
	working		tion	growth
Corrosion resistance	Low	High	High	High
Internal stresses	High	Relieved	Strain free	Strain free

ANNEALING			
Recovery	Recrystallization	Grain growth	
	Recovery	Recovery Recrystallization	

DR AHMED MAGDY

DR AHMED MAGDY

- > Any cold worked structure should be subjected to recovery to:
 - a) Avoid its corrosion inside oral cavity.
 - b) Avoid its fracture or warpage during service (due to high internal stresses).

Recrystallization may be done if low strength and high ductility are required.

Alloys

- \geq Alloy is the mixture to two or more metal.
- Alloys are more commonly used in dentistry because of their higher mechanical properties.

Any physically distinct, homogenous and mechanically separable portion of a system.

Solution:

A system in which the molecules of a solute diffuse and intermingle

randomly within the atoms of solvent.

Solvent:

In the alloy system, the metal with persistent space lattice.

If the two metals have the same space lattice, the solvent will be the

metal occupy > 50% of the space lattice.

The other metal in the alloy system.

Classification of Alloys:

1. According to use:

Alloy for inlays, crown and bridges, removable partial dentures and implant.

2. <u>According to number of alloying elements:</u>

Binary alloys contain two metals, ternary alloys contain three metals

etc...

3. According to major element:

Gold alloy, silver alloy and etc...

4. <u>According to nobility:</u>

- a) High noble alloy: contains ≥40% gold and ≥60% other noble elements
- b) Nobile alloy: ≥25% noble metals
- c) Predominantly base metal alloys: <25% noble metals.

5. <u>According to miscibility of atoms in solid state:</u>

When two molten metals are mixed, they usually form a solution in

the liquid state.

5. <u>According to miscibility of atoms in solid state:</u>

When they are cooled they may be one of three things:

- a) Solid solution alloy.
- b) Eutectic alloy.
- c) Intermetallic compound.

Solid Solution Alloys

- It is an alloy where the parent metals are soluble in both liquid and solid states.
- Most dental alloys are solid solution alloys.

Types of Solid Solution Alloy:

- a) Substitutional solid solution alloy.
- b) Interstitial solid solution alloy.

a) Substitutional solid solution alloy:

The solute atoms substitute some spaces of solvent atoms

randomly in the space lattice.

a) Substitutional solid solution alloy: Conditions :

- 1. The two metals should have same space lattice.
- 2. Have the same valence.
- 3. The atomic size difference between the two metals is less than 15%.
- 4. No chemical affinity between the two metals. Otherwise, intermetallic compound will be formed.

b) Interstitial solid solution alloy: :

The solute atoms present in the interstitial spaces between the solvent atoms.

b) Interstitial solid solution alloy: :

> Example: Stainless steel (alloy of carbon in iron)

Iron has a FCC space lattice with a relatively large space in the

center of the space lattice.

Carbon atom occupy that space

Properties of Solid Solution Alloy

- 1. They have melting range.
- 2. They are homogeneous (Solid is one phase).

Properties of Solid Solution Alloy

- 3. They have high tarnish and corrosion resistance.
- 4. They have higher strength and hardness than parent metals.
- 5. They have lower ductility than parent metals.

Properties of Solid Solution Alloy

Increased strength and hardness and decrease ductility is due to:

Properties of Solid Solution Alloy

Increased strength and hardness and decrease ductility is due to:

The solute atoms causes expansion or contraction in the space lattice

of the solvent atoms \rightarrow localized distortion \rightarrow interfere with

dislocation movement.

- It is an alloy where the parent metals are soluble in liquid state but either partially soluble or completely insoluble in the solid states.
- > Eutectic is a Greek word that means (lowest melting).
- The eutectic composition has a lower melting point than the parent metals.

> Properties of Eutectic Alloy:

- 1. They have melting point.
- 2. They are heterogeneous.

> Properties of Eutectic Alloy:

- 3. They have poor tarnish and corrosion resistance.
- 4. They have higher strength and hardness than patent metals.
- 5. They are brittle.

> Dental Example of Eutectic Alloy:

Silver-copper eutectic alloy (used in admixed amalgam).

Intermetallic Compound

- > The parent metals have chemical affinity towards each other.
- They form a new chemical compound under specific temperatures.
- The atoms of one metal occupy a definite position in the space lattice of the other atom.

Intermetallic Compound

- > Properties of Intermetallic Compound:
 - 1. They are hard and brittle.
 - 2. They properties differ from the properties of parent metals.

Intermetallic Compound

> Dental Example of Intermetallic Compound:

Ag3SN (γ phase) of dental amalgam alloy

Importance:

- It shows phases present at different compositions and temperatures.
- 2. Determine the chemical composition of each phase.

Importance:

- 3. Determine the melting and freezing temperature of each phase.
- 4. Determine the range of solidification of the alloy.

Description of Solid Solution Phase

Diagram:

- The melting point of metal A is 1118 ° C.
- The melting point of metal B is 1553 ° C.

Description of Solid Solution Phase

Diagram:

- > The line (ACB) is the liquidus line
 - ➔ at any alloy composition and
 - temperature above the alloy is

liquid.

Description of Solid Solution Phase

Diagram:

- > The line (ADB) is the solidus line
 - At any alloy composition and

temperature below the alloy is

solid.

Description of Solid Solution Phase

Diagram:

- > At any alloy composition and
 - temperature between the two
 - lines the alloy will be solid and

liquid

Description of eutectic Phase

Diagram:

The line (ADG) is the liquidus line

Description of eutectic Phase

Diagram:

The line (ACDEG) is the solidus line

Description of eutectic Phase

Diagram:

➢ (BC) and (FE) are solvus lines →

represent the limit of solubility

of both metals in each other.

Description of eutectic Phase

Diagram:

> Point D is called eutectic point or

eutectic composition of lowest

melting temperature.

Definition:

It is the process of incremental
solidification of alloy with changing
in composition.

Discerption:

The peripheral part of the grain is rich in metal A, while the central part in rich in metal B with gradual increase of metal A from inside to outside the grain.

Mechanism:

The first embryo is formed from the metal with highest melting point (metal B).

As the temperature decreased, the grains increased in size incrementally.

Mechanism:

The inner increments are rich in metal B so the liquid will be depleted of it.
Mechanism:

When reaching freezing temperature of metal A, the core of each grain is formed and the periphery of grains will be precipitated with more metal A.

Effect of coring:

- 1. Increase strength and hardness.
- 2. Decrease ductility.
- 3. Decrease tarnish and corrosion resistance.

- 1. Slow cooling.
- 2. Homogenization Heat Treatment.

- 1. <u>Slow cooling.</u>
- This allows atomic diffusion towards equilibrium between inner and outer increments of each grain.

- 2. <u>Homogenization Heat Treatment.</u>
 - > It is a heat treatment procedure.
 - The cored alloy is heated at a temperature near its solidus temperature.

- 2. <u>Homogenization Heat Treatment.</u>
 - It is like annealing of wrought metals but with higher heat and for longer time.

- 2. <u>Homogenization Heat Treatment.</u>
 - > It is characterized by:
 - a) There is little or no grain growth.
 - b) Increase in ductility.

DR AHMED MAGDY