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Introduction 

Calculus, or the study of continuous change, is an area within mathematics that I find especially 

intriguing since it gave me a new perspective on the subject as a whole. Derivatives in particular 

was one of my first introductions to the very abstract thinking that is used by both 

mathematicians and physicists when tackling complex problems. The paradoxical property of 

measuring the change in an essentially non-existent distance between two points and thus 

deriving a new function, made me realize what a powerful tool imagination is within 

mathematics and how useful it can be even if it intuitively doesn’t make sense. A differential 

equation is a system that relates a function to its own derivative and is a very important concept 

within physics as they’re used to describe several phenomena. Differential equations are divided 

into two forms: Ordinary (ODE) and partial (PDE), where the former contains the derivatives of 

a function that has only one independent variable, in contrast to the latter which can be in respect 

to several independent variables. One famous example of a PDE is the one dimensional wave 

equation, which contains both a spatial and time variable. I’ve worked with simpler wave 

equations before in physics, so I decided to investigate what’s required to solve a more complex 

problem. There are many ways to solve the equation, but I chose to investigate the following: 

Can you solve the one dimensional wave equation using the method of separation of variables? 

Separation of variables allows you to rewrite the equation in such a way that all expressions 

containing the same variable are on the same side of the equation and can thus be separated into 

two different ODEs. 

Setting up the problem 

The homogenous one-dimensional undamped wave equation describes the propagation of wave 

in one dimension between two fixed points where the amplitude remains constant. In this case, 

consider a piece of thin flexible string with a length of L and of negligible weight. When a pulse 

travels through the string, it will oscillate back and forth between the fixed points in the manner 

of a transverse standing wave. Thus the solution of the equation 𝑢(𝑥, 𝑡) is the displacement 

function that describes the vertical displacement of the string at any horizontal position of x, 

§1where 0 <  𝑥 <  𝐿, and at any time t, where 𝑡 >  0. This is because there can’t be any motion 

at the position where the string is clamped and since we’re measuring from the start of the wave 

motion time can only be positive. The equation itself is:  

𝑢𝑡𝑡  =  𝑐2𝑢𝑥𝑥  



 

4 
 

Where 𝑢𝑡𝑡 is the second derivative of 𝑢(𝑥, 𝑡) with respect to time, i.e. the vertical acceleration, 

and correspondingly 𝑢𝑥𝑥 is the second derivative of 𝑢(𝑥, 𝑡) with respect to position. The constant 

coefficient 𝑐2is the horizontal propagation speed. It’s given by the equation 𝑐2 = 𝑇/𝜌 where 𝑇 is 

the force of tension exerted on the string and 𝜌 is mass density (mass per unit length) of the 

string. 

To solve this differential equation, some boundary conditions are essential. Boundary conditions 

are used to restrain an equation at its extreme points, and used together with the domain of a 

function it can be used to find the appropriate general solution to the problem. In this case the 

boundary conditions are 𝑢(0, 𝑡) =  0 and 𝑢(𝐿, 𝑡)  =  0, which describes how there can be no 

vertical displacement at the ends of the string since they are clamped and therefore are held 

motionless at all time. The boundary conditions will be necessary to disregard the trivial 

solutions (i.e. solutions that will always lead to 0) for this equation and are thus essential in 

finding the eigenvalues and the corresponding eigenfunctions for the solution. Eigenfunctions are 

a form of eigenvectors that when acted upon by a linear operator, is only multiplied by some 

scalar, the eigenvalue. Eigenvectors never change direction and are perpendicular, two properties 

that will prove useful later on. 

The general solution to the equation found with the boundary conditions will contain some 

unknown coefficients that one can find using some initial conditions. The initial condition 

describes the vertical displacement when 𝑡 = 0, i.e. before the wave motion has started. The 

equation has two initial conditions since it involves a second derivative. The initial conditions in 

this case are 𝑢(𝑥, 0) = 𝑓(𝑥) = 2𝑥, which describes the initial vertical displacement as a function 

of x, and 𝑢𝑡(x, 0) =  g(x) = 2, which describes the initial vertical velocity as a function of x 

(though it is a constant in this case). The exact values of the initial conditions are arbitrary and 

just meant as an example when solving the differential equation. 

The wave problem is given by (Tseng. 2012a): 

𝑢𝑡𝑡  =  𝑐2𝑢𝑥𝑥  

0 <  𝑥 <  𝐿     𝑡 >  0 

𝑢(0, 𝑡) =  0    𝑢(𝐿, 𝑡)  =  0 

𝑢(𝑥, 0) = 𝑓(𝑥) = 2𝑥      𝑢𝑡(x, 0) =  g(x) = 2 
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Separating the variables 

The method of separation of variables involves rewriting the equation 𝑢(𝑥, 𝑡) in such a way that 

there is only one independent variable on each side of the equation. The expression can then be 

separated into two different ODEs. The function 𝑢(𝑥, 𝑡) is linear and homogeneous so I will 

assume that the solution can be written in the special form as the product of the spatial and time 

variable (Tseng. 2012b): 

𝑢(𝑥, 𝑡)  =  𝑋(𝑥)𝑇(𝑡) 

Where 𝑋 is a function of the spatial variable x and 𝑇 is a function of the time variable t. This 

might seem as an odd assumption to make but this allows the function 𝑢(𝑥, 𝑡) to be split up in 

the time-axis and the position-axis. Consequently the partial derivatives of 𝑢(𝑥, 𝑡) can be 

expressed as: 

𝑢𝑥𝑥(𝑥, 𝑡) =  𝑋’’𝑇    𝑢𝑡𝑡(𝑥, 𝑡)  =  𝑋𝑇’’ 

Where ’’ denotes the function being a second derivative with respect to the corresponding 

variable. Substituting the expressions into the original wave equation 𝑢𝑡𝑡  =  𝑐2𝑢𝑥𝑥 yields: 

𝑋𝑇’’ =  𝑐2𝑋’’𝑇 

Now the variables can be separated by bringing all the x-terms to one side and all t-terms to the 

other. 

𝑋′′

𝑋
=  

𝑇′′

𝑐2𝑇
 

I assume that 𝑋 ≠ 0 and 𝑇 ≠ 0 in order to avoid arriving at the trivial solution. 

The expression on the left hand side depends only on the spatial variable x, and similarly the 

right hand side depends only on the time variable t. Thus no matter you tweak either of each 

variable, the two ratios will always be equal to the same constant. Let this constant be – λ. I 

chose a negative value to simplify further calculations as the two ODEs will now only obtain 

positive values. 

𝑋′′

𝑋
=  

𝑇′′

𝑐2𝑇
= – λ 
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The ratios between x and t will always be equal to the same constant which means that they can 

be split up into two ODEs: 

𝑋′′

𝑋
=  −λ =>  𝑋′′ + λX = 0        and  

𝑇′′

𝑐2𝑇
=  −λ   =>  𝑇′′ + 𝑐2𝜆𝑇 = 0 

The original equation has been broken up into two ODEs. 

- A second order linear homogeneous ODE with respect to x: 𝑋’’ +  𝜆𝑋 =  0   

- A second order linear homogeneous ODE with respect to t:  𝑇’’ +  𝑐2𝜆𝑇 =  0  

The equations are linear since they appear in a linear fashion independent variable and all its 

derivatives are not dependent on some coefficients in terms of the independent variable (i.e. the 

terms are not multiplied or squared with one another).  

Comparing the ODEs to the most general form of second order linear differential equations 

(Dawkins. 2019a): 

𝑦′′ + 𝑝(𝑡)𝑦′ + 𝑞(𝑡)𝑦 = 𝑔(𝑡) 

In both cases, 𝑔(𝑡) = 0, which means that both ODEs are homogeneous. Furthermore, in both 

cases 𝑞(𝑡) is equal to some constant which means that the equations are second order linear 

homogeneous ODEs with constant coefficients.  

Now that the PDE has been separated into two ODEs, I can rewrite the boundary conditions in 

the same fashion: 

𝑈(0, 𝑡) =  0 =>  𝑋(0)𝑇(𝑡) = 0    So: 𝑋(0) = 0  or  𝑇(𝑡) = 0 

𝑈(𝐿, 𝑡) =  0 =>  𝑋(𝐿)𝑇(𝑡) = 0    So: 𝑋(𝐿) = 0  or  𝑇(𝑡) = 0 

I will ignore the boundary condition 𝑇(𝑡) = 0 since it will lead to the trivial solution. 

In summary: By assuming the solution to 𝑢(𝑥, 𝑡) can be written in a special form, I’ve been able 

to separate the original PDE into two separate ODEs using the separation constant – λ. I’ve also 

established that the two second order ODEs are linear and homogenous. Furthermore I’ve also 

rewritten the boundary conditions in the same fashion as the ODEs: 

𝑋’’ +  𝜆𝑋 =  0   𝑋(0) = 0  and  𝑋(𝐿) = 0 
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𝑇’’ +  𝑐2𝜆𝑇 =  0 

Eigenvalues and Eigenfunctions within boundary conditions 

This section will be devoted to solving the second order linear homogeneous ODE with constant 

coefficients that is in respect to the spatial variable from the previous section: 

X’’+ λX = 0   𝑋(0) = 0  and 𝑋(𝐿) = 0 

The equation is restricted by two boundary conditions that equation has to fulfill which makes it 

a boundary value problem (BVP). An important detail to note is that the boundary conditions are 

homogeneous since they both equal to zero, just like the ODE was homogeneous since 𝑔(𝑡) = 0.  

This to ensure that solutions to the problem actually exists, as otherwise the boundary conditions 

could lead to a trivial solution or no solution at all. 

By inspecting the problem further I see that 
𝑑2

𝑑𝑥2
 is a differential operator that acts upon the 

function X to produce a new scalar multiple of itself, λX. Recognizing that this is the same 

relation of eigenvectors and eigenvalues in linear algebra (Dawkins. 2019b): 

𝐴�⃗� =  λ�⃗� 

Where A is a 𝑛 𝑥 𝑛 square matrix and �⃗� is an eigenvector in the form of 𝑛 𝑥 1 column vector. It’s 

clear that I am dealing with an eigenvalue problem. Eigenvalue problems include either an 

eigenfunction or vector with some operator that turns it into some new entity which is the scalar 

multiple of the same vector or function. The goal is thus to find the eigenvalue of λ which 

corresponds to the eigenfunction of X (which also acts an eigenvector) so that the expression 

holds true. Eigenvectors has the property of only changing in scale and never in direction, which 

will become useful when I reach the general solution as our eigenfunctions will have the same 

vector direction regardless of how it is multiplied or summed up. 

To find the eigenfunction and corresponding eigenvalue, the roots of the characteristic 

polynomial is needed. To find the roots I will compare the BVP with the general form of linear 

homogeneous second order differential equations with constant coefficients (Dawkins. 2019a): 

𝑎𝑦’’ +  𝑏𝑦’ +  𝑐𝑦 =  0 
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Where a, b and c corresponds respectively to some constant. The solutions for these equations 

are made up of exponential functions and therefore we can substitute our solution  𝑦 = 𝑒𝑟𝑥  with r 

as an unknown constant since 𝑒𝑥 has the property of being equal to its own derivative: 

𝑎𝑦’’ +  𝑏𝑦’ +  𝑐𝑦 =  0  =>          𝑎𝑟2𝑒𝑟𝑥  +  𝑏𝑟𝑒𝑟𝑥  +  𝑐𝑒𝑟𝑥  =  0 

Factorizing out 𝑒𝑟𝑥of the equation: 

𝑒𝑟𝑥(𝑎𝑟2  +  𝑏𝑟 +  𝑐)  =  0 

Since 𝑒𝑟𝑥 is an exponent, it can never be equal to zero: 

𝑎𝑟2  +  𝑏𝑟 +  𝑐 = 0 

So the characteristic equation for the general form of a second order linear homogenous equation 

is a simple quadratic: 

𝑎𝑦’’ +  𝑏𝑦’ +  𝑐𝑦 =  0       =>   𝑎𝑟2  +  𝑏𝑟 +  𝑐 =  0 

So a comparison between the ODE and its characteristic equation yields: 

𝑋’’ +  𝜆𝑋 =  0   =>   𝑟2 + 𝜆 =  0 

Subsequently the characteristic root is: 

𝑟 = √−𝜆 

The characteristic equation for our polynomial is 𝑟2 + 𝜆 =  0 and each of its roots will result in a 

different solution. The roots depend on the discriminant which in my case is: 

𝑏2 − 4𝑎𝑐  =>   −4𝜆 

There are three possible types of roots depending on the value of the discriminant (Tseng 

2012b): 

1. Distinct real roots when  −4𝜆 > 0, so λ < 0    

2. Two equal roots when −4𝜆 = 0, so  λ = 0     

3. Complex roots when −4𝜆 < 0, so  λ > 0     
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I need to examine each of these scenarios which I’ll substitute into the characteristic equation to 

obtain the different roots. The different roots will be used to find the general solution that I can 

use together with the boundary conditions to disregard any trivial solutions. 

Case 1. λ < 0  

Let’s denote √−λ as 𝜎 

 √−λ = 𝜎    =>   λ = − 𝜎 2 

The characteristic equation and root subsequently becomes: 

r2  − 𝜎 2 = 0  => r = ± 𝜎 

The general solution for two distinct real roots is (Tseng. 2012b): 

 𝑋(𝑥) = 𝐶1𝑒𝜎𝑥 + 𝐶2𝑒−𝜎𝑥 

Applying the first boundary condition: 

 𝑋(0) = 𝐶1𝑒0 + 𝐶2𝑒0 = 0 

𝐶1 =  −𝐶2 

𝐶1and 𝐶2 can thus be rewritten as 𝐶 and – 𝐶 respectively. Applying the second boundary 

condition: 

𝑋(𝐿) = 𝐶𝑒𝜎𝐿 − 𝐶𝑒−𝜎𝐿 = 0 

𝐶(𝑒𝜎𝐿 − 𝑒−𝜎𝐿) = 0 

This equation can only hold true for real roots if 𝐶 = 0 which will only give a trivial solution and 

can thus be discarded. 

Case 2. λ = 0 

𝑟2 = 0           =>             𝑟 = 0 

There are two equal roots so the general solution is (Tseng. 2012b): 

𝑋(𝑥)  =  𝐶1 + 𝐶2𝑥 
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Applying the first boundary condition: 

𝑋(0)  =  𝐶1 =  0 

Substituting  𝐶1 =  0 and applying the second boundary condition gives the expression: 

𝑋(𝐿) =  𝐶2𝐿 =  0 

Since 𝐿 > 0 the equation only holds true if 𝐶2 = 0, hence the general solution is: 

𝑋(𝑥) =  0 +  0𝑥 =  0 

Which is trivial and can be discarded. 

Case 3. λ > 0 

Let’s denote √λ  as 𝜎 

 √λ = 𝜎  =>  λ = 𝜎 2 

r2  + 𝜎 2 = 0 => r = ± 𝜎𝑖 

The general solution for complex roots is (Tseng. 2012b): 

𝑋(𝑥) =  𝐶1 cos(𝜎𝑥) + 𝐶2 sin(𝜎𝑥) 

Applying the first boundary condition: 

𝑋(0) = 𝐶1 cos(0) +  𝐶2 sin(0) = 0  

𝐶1 = 0 

Applying second boundary condition: 

𝑋(𝐿)  =  0 =  𝐶1 𝑐𝑜𝑠(𝜎𝐿) +  𝐶2 𝑠𝑖𝑛(𝜎𝐿) 

 𝐶2 𝑠𝑖𝑛(𝜎𝐿) = 0  

𝜎 ≠ 0, and 𝐶1 and 𝐶2 cannot both be equal to zero as it would give the trivial solution, hence: 

sin(𝜎𝐿) = 0 

Since sin(𝜋) = 0, the equation implies that 𝜎𝐿 is equal to 𝜋 or any multiple, n, of 𝜋. Therefore: 
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𝜎𝐿 = 𝑛𝜋 

𝜎 =
𝑛𝜋

𝐿
 

Thus the eigenvalue for the first BVP is: 

λ = 𝜎2  =>   λ =  
𝑛2𝜋2

𝐿2
 

To each eigenvalue there is an eigenfunction that corresponds to the solution. In this case the 

eigenfunction that corresponds to the spatial second order ODE with coefficient λ =  
𝑛2𝜋2

𝐿2  is a 

periodic function: 

𝑋𝑛(𝑥) = sin
𝑛𝜋𝑥

𝐿
 

Where n is any positive integer. The eigenfunction was found by substituting the value of 𝜎 into 

the general solution to the complex roots, and since 𝐶1 = 0, I was left with just sinus function. 

Though I dropped the constant 𝐶2 since the eigenfunction in itself is the only matter of interest, 

and because the solution will hold true regardless of the constant in this case.  

In summary I recognized that the spatial ODE was both a BVP and an eigenvalue problem where 

I had to find the eigenvalue and corresponding eigenfunction. By finding the characteristic roots 

of the polynomial and discarding any trivial solution using the boundary conditions, I deduced 

that the solution was an infinite set of eigenvalues and corresponding eigenfunctions which are 

respectively: 

λ =  
𝑛2𝜋2

𝐿2
  And    𝑋𝑛 = sin

𝑛𝜋𝑥

𝐿
  Where 𝑛 = 1, 2, 3 … 

General solution: 

In the previous section I found the eigenvalue and corresponding eigenfunction for the spatial 

ODE. I will solve the second order linear homogeneous ODE with respect to time: 

𝑇′′ + 𝑐2λT = 0 
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The two ODEs are connected since they make up the same system of simultaneous equations. 

Consequently I can substitute the eigenvalue λ =  
𝑛2𝜋2

𝐿2
 of the spatial variable into the time 

variable ODE: 

𝑇′′ + 𝑐2
𝑛2𝜋2

𝐿2
𝑇 = 0 

It’s a second order homogenous linear equation with constant coefficients. So its characteristic 

equation has a pair of purely complex roots (Tseng. 2012a): 

𝑟 = ± 
𝑐𝑛𝜋

𝐿
𝑖  Where  𝑛 = 1, 2, 3 … 

In the previous section I determined that the general solution is then: 

𝑇(𝑡) =  𝐶1 cos(𝜎𝑡) +  𝐶2 sin(𝜎𝑡)  Where 𝜎 =
𝑐𝑛𝜋

𝐿
 

So the corresponding eigenfunction is a simple harmonic function with constants 𝐴𝑛 and 𝐵𝑛: 

𝑇𝑛(𝑡) = 𝐴𝑛 cos
𝑐𝑛𝜋𝑡

𝐿
+ 𝐵𝑛 sin

𝑐𝑛𝜋𝑡

𝐿
  Where 𝑛 = 1, 2, 3 … 

I have now obtained the two eigenfunctions which correspond to the eigenvalue the two 

simultaneous equations. These eigenfunctions propagate independently in their respective axis, 

position and time, and are thus not affected by each other. Recall that I assumed the solution to 

𝑢(𝑥, 𝑡) could be in the form of the product of the spatial and time variable: 

𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡) 

The equation is a linear system, and thus the principles of superposition applies, which are the 

properties of additivity, 𝐹(𝑥1 + 𝑥2) = 𝐹(𝑥1) + 𝐹(𝑥2), and homogeneity, 𝐹(𝑎𝑥) = 𝑎𝐹(𝑥) 

(Wikipedia. 2019). In other words any multiple, sum, difference, sum of the multiples, or 

difference of the multiples of any two solutions will also be a solution. Thus taking the sum of 

the product of each of our eigenfunctions of ODEs yields the general solution to the one-

dimensional linear homogeneous wave equation (Tseng. 2012a): 

𝑢(𝑥, 𝑡) = ∑(𝐴𝑛 cos
𝑐𝑛𝜋𝑡

𝐿
+ 𝐵𝑛 sin

𝑐𝑛𝜋𝑡

𝐿
)

∞

𝑛=1

sin
𝑛𝜋𝑥

𝐿
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I was able to do this due to the property of eigenvectors being orthogonal, or in other terms, 

being perpendicular to each other. Thus what I’ve essentially done is combine two eigenvectors 

that propagates in their own respective axes, unchanged by one another, into one general periodic 

wave equation. It is helpful to visualize this in a three dimensional space, as despite it being 

called a one-dimensional wave, it’s actually monitored in three axes: Time, horizontal position 

and the resultant vertical displacement of the former two: 

  

Figure 1 showing the function 𝑢(𝑥, 𝑡) = (𝐴𝑛 cos
𝑐𝑛𝜋𝑡

𝐿
+ 𝐵𝑛 sin

𝑐𝑛𝜋𝑡

𝐿
) sin

𝑛𝜋𝑥

𝐿
 for =  𝐿 = 𝐴𝑛 =

𝐵𝑛 = 𝑛 = 1. Where u is the resultant vertical displacement, x is the position and t is the time. Note 

the graph is only valid in this case for  0 ≤ 𝑡 and 0 ≤ 𝑥. The colours represent different levels of 

displacement of the function and in this case are more there to make the graph easier to look at and 

understand. Made using Scilab. 
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Solving for coefficients 

The equation from the previous section is an incomplete solution, since I have two unknown 

coefficients: 𝐴𝑛 and 𝐵𝑛. To determine these I need to introduce the initial conditions that 

describe the initial vertical displacement and velocity as two different functions of the horizontal 

position: 

𝑢(𝑥, 0) = 𝑓(𝑥) = 2𝑥      𝑢𝑡(x, 0) =  g(x) = 2 

These initial conditions will be used to solve for the coefficients 𝐴𝑛 and 𝐵𝑛 respectively. 

Solving for: 𝐴𝑛 

Applying the first boundary condition for initial position: 𝑢(𝑥, 0) = 𝑓(𝑥): 

𝑢(𝑥, 0) = ∑ 𝐴𝑛

∞

𝑛=1

sin
𝑛𝜋𝑥

𝐿
= 𝑓(𝑥) 

The solution to 𝑓(𝑥) will be an infinite series of sines and coefficients of 𝐴𝑛. At first glance this 

equation might be impossible to solve, however that is not the case. By recognizing that this is an 

odd Fourier sine series, I can make use of the very special property of our eigenfunctions being 

orthogonal to give the answer to 𝐴𝑛. A function is mutually orthogonal when (Dawkins. 2019c): 

∫ 𝑓𝑖(𝑥)𝑓𝑗(𝑥)𝑑𝑥 = 𝑓(𝑥) = {
0              𝑖 ≠ 𝑗
𝑐 > 0     𝑖 = 𝑗

𝑏

𝑎

 

So at some defined interval, the scalar product of the integral of two functions will always equal 

zero when the multiples of j and i are not equal to one another. I’ll use this feature by multiplying 

each side with the odd periodic function of 𝑠𝑖𝑛
𝑚𝜋𝑥

𝐿
 where m is some positive integer, and then 

integrate both sides within interval 0 ≤ 𝑥 ≤ 𝐿. 

∫ 𝑓(𝑥) sin
𝑚𝜋𝑥

𝐿

𝐿

0

𝑑𝑥 = ∑ 𝐴𝑛

∞

𝑛=1

∫ sin
𝑛𝜋𝑥

𝐿
sin

𝑚𝜋𝑥

𝐿

𝐿

0

𝑑𝑥 

Note that both the series and the coefficient 𝐴𝑛 were factored out of the integral. It is not always 

possible to do this but in this particular case it is. I will now use the feature of the eigenfunctions’ 

orthogonality with the interval 0 ≤ 𝑥 ≤ 𝐿 to find the non-zero solution: (Dawkins. 2019d) 
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∫ sin
𝑛𝜋𝑥

𝐿
sin

𝑚𝜋𝑥

𝐿

𝐿

0

𝑑𝑥 =  {
𝐿

2
   𝑛 = 𝑚

0    𝑛 ≠ 𝑚
 

Thus the case when 𝑛 ≠ 𝑚 can be discarded as it will only lead to the trivial zero-constant 

solution. This useful feature of the Fourier series has allowed me to narrow down an infinite 

number of possible solutions to only one possible integral. It’s helpful to think of this property in 

terms of eigenvectors. When two vectors are perpendicular their scalar product is always equal to 

zero: 

𝑎 ∙ 𝑏 = |𝑎||𝑏| cos 90 = 0 

Where a and b are vectors and |𝑎| and |𝑏| are their respective scalar magnitudes. By the same 

way the eigenfunctions 𝑠𝑖𝑛
𝑛𝜋𝑥

𝐿
 and 𝑠𝑖𝑛

𝑚𝜋𝑥

𝐿
 will be perpendicular when they have different 

periods and cancel out due to the principal of superposition, and because of their orthogonality 

this will hold true for every 𝑛 ≠ 𝑚.  
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Figure 2 showing 𝑦 = sin
𝑛𝜋𝑥

𝐿
sin

𝑚𝜋𝑥

𝐿
 for 𝐿 = 1, 𝑛 = 3 and 𝑚 = 2 (blue solid line) and 𝑛 =

𝑚 = 3 (red dashed line). The area beneath the blue curve will be zero and the area beneath the 

red curve will be a non-zero value. Made using Scilab. 

The answer can thus be substituted into the orthogonal integral as the answer to 𝑓(𝑥):  

∫ 𝑓(𝑥)sin
𝑚𝜋𝑥

𝐿

𝐿

0

𝑑𝑥 = 𝐴𝑚

𝐿

2
 

𝑚 = 𝑛  => 𝐴𝑚 = 𝐴𝑛 

𝑓(𝑥) = 2𝑥 

By rearranging the equation and substituting in the values, I have obtained an expression for the 

definite integral of 𝐴𝑛 that can be solved: 

𝐴𝑛 =
4

𝐿
∫ 𝑥 sin

𝑛𝜋𝑥

𝐿

𝐿

0

𝑑𝑥 

The appropriate method for solving this integral is by integration of parts (Dawkins. 2019e): 

∫ 𝑢 𝑑𝑣
𝑏

𝑎

= 𝑢𝑣|𝑎
𝑏 − ∫ 𝑣 𝑑𝑢

𝑏

𝑎

 

Where u and 𝑣 are two different functions of the same variable x. To use this method I must 

identify the two functions u and 𝑑𝑣 which in this case are x and sin
𝑛𝜋𝑥

𝐿
.  

𝑢 = 𝑥,                        
𝑑𝑣

𝑑𝑥
= sin

𝑛𝜋𝑥

𝐿
   =>     𝑑𝑣 = sin

𝑛𝜋𝑥

𝐿
𝑑𝑥 

Taking the derivative of u to find du: 

𝑑𝑢

𝑑𝑥
= 1   =>   𝑑𝑢 = 𝑑𝑥  

Taking the integral of dv to find v. 

𝑣 = ∫ 𝑑𝑣 = ∫ sin
𝑛𝜋𝑥

𝐿
𝑑𝑥 

Solving this integral using substitution: 
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𝜇 =
𝑛𝜋𝑥

𝐿
    =>      

𝑑𝜇

𝑑𝑥
 =

𝑛𝜋

𝐿
     =>     𝐿

𝑑𝜇

𝑛𝜋
= 𝑑𝑥 

Then the expression becomes: 

𝑣 = ∫ sin
𝑛𝜋𝑥

𝐿
𝑑𝑥 = ∫ sin 𝜇 𝐿

𝑑𝜇

𝑛𝜋
=

𝐿

𝑛𝜋
∫ sin 𝜇 𝑑𝜇 

This is a standard integral. Solve this then undo the substitution. 

𝑣 =
𝐿

𝑛𝜋
∫ sin 𝜇 𝑑𝜇 = −

𝐿

𝑛𝜋
cos 𝜇 = −

𝐿

𝑛𝜋
cos

𝑛𝜋𝑥

𝐿
 

Usually the answer to a non-definite integral should have some arbitrary constant +C at the end 

of the expression. However this is not necessary when integrating by parts since the constants 

will cancel out by the end of the expression anyway. Now that I have obtained du and v I can 

now substitute them into the original expression. 

𝐴𝑛 = 𝑢𝑣|𝑎
𝑏 − ∫ 𝑣 𝑑𝑢

𝑏

𝑎

=
4

𝐿
[−𝑥

𝐿

𝑛𝜋
cos

𝑛𝜋𝑥

𝐿
|

0

𝐿

− (−
𝐿

𝑛𝜋
∫ cos

𝑛𝜋𝑥

𝐿

𝐿

0

 𝑑𝑥)] 

Recall that the integral on the right hand side can be solved using substitution: 

𝜇 =
𝑛𝜋𝑥

𝐿
    =>   𝐿

𝑑𝜇

𝑛𝜋
= 𝑑𝑥 

−
𝐿

𝑛𝜋
∫ cos

𝑛𝜋𝑥

𝐿

𝐿

0

𝑑𝑥 = −
𝐿2

𝑛2𝜋2
∫ cos 𝜇 𝑑𝜇 =

𝐿

0

−
𝐿2

𝑛2𝜋2
sin

𝑛𝜋𝑥

𝐿
|

0

𝐿

 

Since cosine is also a standard integral. With the right hand solved and with some 

rearrangements I can finalize the expression: 

𝐴𝑛 =
4

𝐿
∫ 𝑥 sin

𝑛𝜋𝑥

𝐿

𝐿

0

𝑑𝑥 =
4

𝐿
[−𝑥

𝐿

𝑛𝜋
cos

𝑛𝜋𝑥

𝐿
+

𝐿2

𝑛2𝜋2
sin

𝑛𝜋𝑥

𝐿
]

0

𝐿

 

I’ve changed the notation of evaluation from two separate brackets to one large encircling 

bracket for clarity. The change is arbitrary and doesn’t affect the results. Evaluating the 

expression will yield the result: 
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𝐴𝑛 =
4

𝐿
[( −𝐿

𝐿

𝑛𝜋
cos

𝑛𝜋𝐿

𝐿
+

𝐿2

𝑛2𝜋2
sin

𝑛𝜋𝐿

𝐿
) − (−0

𝐿

𝑛𝜋
cos

𝑛𝜋0

𝐿
+

𝐿2

𝑛2𝜋2
sin

𝑛𝜋0

𝐿
)] 

Solving the expression and rearranging gives a final expression for 𝐴𝑛: 

𝐴𝑛 =
4𝐿

𝑛2𝜋2
sin 𝑛𝜋 −

4𝐿

𝑛𝜋
cos 𝑛𝜋 

Since sin 𝑛𝜋 = 0 and cos 𝑛𝜋 = (−1)n  for 𝑛 = 1, 2, 3 …  The expression becomes:  

𝐴𝑛 = −
4𝐿

𝑛𝜋
(−1)𝑛       𝑛 = 1, 2, 3 …  

Solving for: 𝐵𝑛 

For the other coefficient 𝐵𝑛 the second initial condition will be applied: 𝑈𝑡(x, 0) =  g(x) = 2. 

To do this the first partial derivative of the general solution with respect to time is needed: 

𝑢𝑡(𝑥, 𝑡) = ∑(𝐴𝑛 −
𝑐𝑛𝜋

𝐿
sin

𝑐𝑛𝜋𝑡

𝐿
+ 𝐵𝑛

𝑐𝑛𝜋

𝐿
cos

𝑐𝑛𝜋𝑡

𝐿
)

∞

𝑛=1

 sin
𝑛𝜋𝑥

𝐿
 

Applying the initial condition yields: 

𝑢𝑡(𝑥, 0) = ∑
𝑐𝑛𝜋

𝐿
𝐵𝑛

∞

𝑛=1

 sin
𝑛𝜋𝑥

𝐿
= 𝑔(𝑥) 

Again using the same method as when I solved for 𝐴𝑛, I’ll multiply each side by 𝑠𝑖𝑛
𝑚𝜋𝑥

𝐿
 and 

integrate within the interval 0 ≤ 𝑥 ≤ 𝐿: 

∫ 𝑔(𝑥) sin
𝑚𝜋𝑥

𝐿

𝐿

0

𝑑𝑥 =  ∑
𝑐𝑛𝜋

𝐿
𝐵𝑛

∞

𝑛=1

∫ sin
𝑛𝜋𝑥

𝐿
sin

𝑚𝜋𝑥

𝐿

𝐿

0

𝑑𝑥 

Using the same principles, I know that 𝑠𝑖𝑛
𝑛𝜋𝑥

𝐿
 and 𝑠𝑖𝑛

𝑚𝜋𝑥

𝐿
 are mutually orthogonal and the 

answer to the integral is thus (Dawkins. 2019d): 

∫ sin
𝑛𝜋𝑥

𝐿
sin

𝑚𝜋𝑥

𝐿

𝐿

0

𝑑𝑥 =  {
𝐿

2
    𝑛 = 𝑚

0    𝑛 ≠ 𝑚
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I know from before that 𝑛 ≠ 𝑚 will only give a trivial zero-constant solution, so the solution 

must be when 𝑛 = 𝑚. Substituting the integral into the solution yields: 

∫ 𝑔(𝑥) sin
𝑚𝜋𝑥

𝐿

𝐿

0

𝑑𝑥 =  
𝐿

2

𝑐𝑛𝜋

𝐿
𝐵𝑚 

𝑚 = 𝑛  => 𝐵𝑚 = 𝐵𝑛 

𝑔(𝑥) = 2 

Rearranging and substituting yields a definite integral for 𝐵𝑛:  

𝐵𝑛 =
4

𝑐𝑛𝜋
∫ sin

𝑛𝜋𝑥

𝐿

𝐿

0

𝑑𝑥 

Recall from solving 𝐴𝑛 that I have already solved this integral using substitution: 

𝐵𝑛 = [−
4𝐿

𝑐𝑛2𝜋2
cos

𝑛𝜋𝑥

𝐿
]

0

𝐿

= −
4𝐿

𝑐𝑛2𝜋2
cos

𝑛𝜋𝐿

𝐿
− (−

4𝐿

𝑐𝑛2𝜋2
cos

𝑛𝜋0

𝐿
) 

Solving and rearranging gives 𝐵𝑛: 

𝐵𝑛 = −
4𝐿

𝑐𝑛2𝜋2
(cos(𝑛𝜋) − 1) 

I already established before that cos 𝑛𝜋 = (−1)𝑛 so the expression becomes: 

𝐵𝑛 = −
4𝐿

𝑐𝑛2𝜋2
((−1)𝑛 − 1)       𝑛 = 1, 2, 3 … 

In conclusion the solution to the one-dimensional undamped linear wave equation is: 

𝑢(𝑥, 𝑡) = ∑(𝐴𝑛 cos
𝑐𝑛𝜋𝑡

𝐿
+ 𝐵𝑛 sin

𝑐𝑛𝜋𝑡

𝐿
)

∞

𝑛=1

sin
𝑛𝜋𝑥

𝐿
 

𝐴𝑛 = −
4𝐿

𝑛𝜋
(−1)𝑛           𝐵𝑛 = −

4𝐿

𝑐𝑛2𝜋2
((−1)𝑛 − 1) 

Where 𝑛 = 1, 2, 3 …  

Using these formulas, one can find the particular solution which can be used to predict the 

vertical displacement of the string at any horizontal position x  and at any time t. 
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Conclusion 

In summary there was a lot of steps involved into solving this equation. Firstly under the 

assumption that the solution of the linear homogenous one dimensional wave equation could be 

written as the product of the spatial and time variable functions, the PDE was separated into two 

simultaneous systems of ODEs which were established to contain eigenvalues with 

corresponding eigenfunctions. Comparing the spatial ODE to the general form of a second order 

linear homogenous equation, the characteristic equation was found and by using the boundary 

conditions, the roots to the characteristic polynomial was determined and consequently the 

eigenvalue with corresponding eigenfunction was determined. Substituting the same eigenvalue 

into the time dependent ODE yielded the second eigenfunction. Recognizing the linearity of the 

system and the eigenfunctions to be orthogonal allowed for the principle of superposition to be 

applied. Taking the infinite sum of the product of the eigenfunctions gave us the general solution 

to the wave equation with two unknown coefficients. Recognizing the general solution to be a 

Fourier series, the initial conditions were applied and the orthogonality of the eigenfunctions 

were used to discard the trivial solution. The unknown coefficients were found to be two separate 

defined integrals. Through the methods integration by parts and substitution the exact answers to 

the coefficients were found. Using the general solution together with coefficients, one can find 

the particular solution which can be used to predict the vertical displacement of the wave at any 

horizontal position and at any time. 

Solving this differential equation required a lot of steps involving many different mathematical 

areas. Understanding these steps and methods behind it can not only yield a way into solving 

these kinds of differential equations, but also give a rich knowledge within the different methods, 

properties and ideas one would use to obtain the solution which can be applied to many other 

problems. Solving this problem also gives a good look into how challenging problems can be 

solved by different and abstracts ways of thinking. In my case I solved this equation using a 

combination of the orthogonality of eigenfunctions, the principle of superposition and the 

ingenious use of sinus waves that make up the Fourier series, which together could also give a 

visual understanding for the nature of the solution to this problem. Exploring different methods 

for solving these kinds of differential equations gives the mathematical foundation that can be 

built upon to solve more complex equations describing the world around us such as Maxwell’s 

equations or the Schrödinger wave equation. 
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Appendix 

Scilab Code Figure 1:  

function u=f(x, t) 

    u=(cos(%pi*t)+sin(%pi*t))*sin(%pi*x) 

endfunction 

x=linspace(-1,1,100) 

t=linspace(-2,2,200) 

u=feval(x,t,f)'; 

clf 

surf(x,t,u) 

 

Scilab Code Figure 2: 

xL=0:.01:1; 

 

n=3;g=sin(n*%pi*xL); 

 

m=2;f=sin(m*%pi*xL); 

 

plot(xL,f.*g,'b',xL,xL*0,'k',xL,g.*g,'--r') 

 

 


