Part C— Development — N.R — Computer Science Wordcount: 1084

TABLE OF CONTENTS

Concept PAGE

Intuitive GUI - Additional Libraries (JAVAFX) . erereesetssssesssesssssssssessesssesssssssssessssssssssssssessssssssssssessssasssnes 2
(08 110 =T (o) PP 4
ODJECE OTIENTATION couvreueerieeeureeeesreueessessesssessebseesse s s s s e s b es e s see bR R s R AR 4R R R R e e e R e bbbt en 7
GIAPNITIZ et euree st ssse e eas s s s a s R £ SRR £ £ RS EE 4R AR AR R E e R AR £ R R e AR e e bbb en 8
File REAdiNg / WITHINEZcoiiiiiiiiiiei ettt ettt ettt ettt ebe b e ebeebe b e s esbesbessessessessaseaseeseesens 9
SOUTCES ittt bR SRR AR 11

Preposition:

In this writeup, aspects such as error handling have not been treated individually as they are evident in most

methods and have the purpose of preventing the application from crashing in the unlikely event.
Furthermore, the relationship between object of\entfjtion ost other aspects, particularly the Intuitive
GUI, are expected to be noticed due to the freqenNgalfin} of \gethods from other classes. The

application/solution on a whole is strongly intertwined with most classes being used in every scene.

Intuitive GUI — Additional Libraries (JavaFX)

| made the decision to use JavaFX rather than Swing as a GUI library as {Client} and | agreed that it

a. looked better, and b. allowed for more flexibility when dealing with user-inputs. This would all

aid in fulfilling (primarily) criterion A as the user would find the GUI far more intuitive. By using

fx:id’s, specific containers (e.g. Labels) could be altered individually.

Imports and containers for score calculation scene.

[import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

“ import

java.io.IOException;
java.net.URL;
java.util.ResourceBundle;
javafx.collections.FXCollections;
javafx.collections.ObservableList;
javafx.event.ActionEvent;
javafx.fxml.FXML;
javafx.fxml.Initializable;
scene.Scene;
scene.control.

javafx.
javafx. Button;
Label;
scene.control.TableColumn;
.TableView;

scene.control.

javafx.scene.control.
javafx.
javafx.scene.control
javafx.
javafx.scene.layout.GridPane;
java.text.SimpleDateFormat;
java.util.ArrayList;
java.util.Optional;
javafx.fxml.FXMLLoader;
javafx.scene.Parent;

javafx.
javafx.
javafx.

scene.control.Alert;
scene.control.ButtonType;
stage.Stage;

cell.PropertyValueFactory;

@FXML Button mm3
Label to
Label to
Label to
Label
GridPane

tota

Button
Button
Button
Button
Button
Button
Button
Button
Button
Button
Button
Button
Button
Label ou
TableView T
TableColumn<PredefinedColumns,
TableColumn<PredefinedColumns,
TableColumn<PredefinedColumns,
TableColumn<PredefinedColumns,
TableColumn<PredefinedColumns,
TableColumn<PredefinedColumns,
TableColumn<PredefinedColumns,
TableColumn<PredefinedColumns,
Label 1;
Label
@FXML Button £
ML Button ci

[l B - 7. o . O O O A8 -

Integer» hole:
Integer>
Integer>
Inceger>
Integer>
Integer>
Integer>
Integer> toPar;

Showing how all of these containers work together to produce a simple and in particular easy to use

interface is shown by using the final application below. Only buttons on the numpad are necessary to

be pressed even though 32 methods work together to produce accurate results. Ingenuity is evident

as multiple complicated and extensive methods work ‘behind the scenes’ to meet the requirements.

Please Enter your Score

Hole Par Strokelndex Strokes Score Netto Brutto To Par
1 4 5 2 5 3 1 1
2 3 13 2 0 0 o = Please use the NumPad Below:
3 4 3 2 0 0 0 0
4 4 9 2 0 0 0 0
5 4 17 1 0 0 0 0
6 5 1 2 0 0 0 0 1 3
7 4 1 2 0 0 0 0
8 3 15 2 0 0 0 0 4 6
9 5 7 2 0 0 0 0
10 4 2 2 0 0 0 0 7 9
1 5 18 1 0 0 0 0
12 3 14 2 0 0 0 0
13 4 12 2 0 0 0 0
14 4 6 2 0 0 0 0 DEL N/A NEXT
15 3 16 1 0 0 0 0
16 5 8 2 0 0 0 0
17 4 10 2 0 0 0 0 Old HDC: New HDC
=== = £ ° 0 : 0 284

Total Score: Total Netto: Total Brutto: ~ Overall to Par:

5 3 it 1

The following is an example of all the logic that is behind the simple pressing of the “next” button,
which confirms the entry of a score for a hole. This is one many examples where dozens of lines of
code are executed without the user realising it, further illustrating the intuitive GUI, which is exactly
what {Client} required. Creating such a solution was very complicated and required ingenuity as this
is an obvious constraint and it not being possible/ feasible to freely program.

void setNEXT(ActionEvent event) throws IOException {

(outputNumber .getText().length() > 8) {
int index - calculationTable.getSelectionModel().selectedIndexProperty().get();

int scorelnput - Integer. parselnt(outputNumber. getText());
int par - data.get(index).getHolePar();

int shot - data.get(index).getShots();

PLayerController pc PLayerController();

Index (where in

the table we PredefinedColumns selectedColumn - data.get(index);
are) is selectedColumn.setScore(scorelnput);
A eI data.set(index, selectedColumn);

used to retrieve (AR setCellValueFactory(PropertyValueFactory<>("score™));

relevant values.

int netto - pc.calculateSingleNetto(shot, scorelnput, par);
selectedColumn.setNetto(netto);

data.set(index, selectedColumn);

this.netto.setCellValueFactory(PropertyValueFac >("netto™));

Each of the 4 int brutto pc.calculateSingleBrutto(scorelnput, par);

rows which are selectedColumn.setBrutto(brutto);

calculated are data.set(index, selectedColumn);

populated this. brutto.setCellValueFactory(PropertyValueFactory<>("brutto™));
following the
pressing of the
button.

int toPar - pc.calculateToSinglePar(scorelnput, par);
selectedColumn.setToPar(toPar);

data.set(index, selectedColumn);

this.toPar.setCellValueFac.ory | “rop rtyValueFactory<>("toPar™));
calculationTable.setItems(da“a |;

outputNumber . setText(™");

int totallNetto

int totalBrutto = 0;

int totalToPar = 0;
Totals are int totalScore - 0;
summed and (PredefinedColumns p : data) {
updated/ totallNetto p.getNetto();
totalBrutto p.getBrutto();
totalScore p.getScore();
totalToPar p.getToPar();

outputted.

1

J
totalBruttolabel.setText(Integer. toString(totalBrutto));
pressed on totalNettolLabel.setText(Integer.toString(totallNetto));
the last hole, totalScorelabel.setText(Intec
calculateNew
HDC method (index 17) {
is called from newHDCLabel . setText(Double . toString(pc.calculateNewHDC(0ldHDC, totalNetto)));
PlayerControll finishBtn.setVisible(true);

(isGuest false) {
er class. (ol BT A A RS 1N I Guai O Il “Continue” button only appears if the useris a

If “next” is

3 member, further simplifying the GUI for the
}
calculationTable.getSelectionModel() select(index + 1);

Calculations

Lying at the heart of the application, as the calculations are responsible for creating most values
(new HDC, netto, etc.) | soon realized that to do certain calculations, previous calculations were
necessary, which in turn required further previous calculations. The following flowchart illustrates
this.

Entered tor
rétﬂwed-fr%yms,‘c‘?v'ﬂie_if
member

Dependingon HDC & Gender a

certain number of strokes is Retrieve Handicap & Gender
awarded

Uwﬁ“"shso‘g"fd'“h Calculate amount of strokes awarded

Netto points calculate by
usingalgorithm that
compares the two values
ety

aplai;iig user in certain
HDC bracket (depending on
HDC) improvements vary

Calculate new Handicap using netto points|

As the flowchart shows, a unique series of algorithms are required to fulfil Mr. Williams’ requirements.
Said algorithms and their complexity are outlined below:

As the flowchart shows, we have to begin with calculating the correct amount of strokes for each
hole.

int[] calculateVorgabe(double handicap, int slope, double courseRating) {

int[] arrayToReturn int[18];
int[][] par = getPar();
int length = arrayToReturn.length;
int vorgabe - 0;
(handicap 36.0) {
double dbVorgabe = (double)(handicap * (double)(slope) / 113) - courseRating
vorgabe - abs((int) Math.round(dbVorgabe));
¥ (handicap > 36) {
vorgabe = (int) handicap
1
J

(vorgabe 18) {
(int 1 = 8; i < length; i++) {
(par[i][@] vorgabe) { -

arrayToReturn[i] 1; golf course, “slope” and

{ “courseRating” are specific for
arrayToReturn[i] D3 the GC.

Ingenuity required to
customize formula to {Client}'s

1
J

1
J

(vorgabe > 18 vorgabe
(int i = @; i < length; i++) {
(par[i][@] vorgabe 18) { Custom nested if statements

arr'ayT?Retur*n[i] 23 required to fulfil {Client}’s
-arr‘a T;Return[i] 1 requirements. 3 different HDC
Y i ‘categories’ to correctly award

1
J
strokes.

(vorgabe > 36) {
(int i = 8; i < length; i++ {
(par[i][@] vorgabe - 36) {
arrayToReturn[i] 35
i {
arrayToReturn[i] 2:
}
is
¥
1
J
arrayToReturn contains correct distribution of strokes for the
array of size [18] (18 holes on a golf course), which can then

be used for further calculations.

arrayToReturn;

Hole Par Stroke Index Strokes Score Netto Brutto To Par
3 13 2
4 3 2
4 9 2 Here we can see this algorithm in action.
i 1 1 ‘ Using an inputted HDC, strokes have been
a g 5 calculated a correctly allocated. 33
3 15 2 e Strokes have been awarded meaning that
3 ! 2 2 strokes should be awarded on the 15
: ; Z . hardest holes (those with Stroke Index 1-
= i 5 ————___ "fy~15)and 1 stroke should be awarded on
4 12 2 ri__:i:f——ﬂ-'ﬁ?3 easiest holes (Sl 16-18). This has
43 ie Z 4(7__f__;)—!"’:f;f been done correctly proving that the
= 8 : algorithm works successfully.
4 10 2
5 4 2

Now that strokes have been calculated, we can calculate the respective netto points depending on
the hole’s score and par.

int calculateSingleNetto(int shots, int score, int par) {

As will be explained later, this
method is created so it can be int nettoToReturn - 0;

2

called from the central | nettoToReturn - ((par + shots) - (score))
(nettoToReturn > @) {

calculation class in order to nettoToReturn;

maintain modularity. A custom
formula has been created to use
“shots” (strokes), score and par.

Having calculated netto points, the new Handicap can be calculated by using a custom and complex
categorical system, which is conform with the relevant logic.

double calculateNewHDC(double currentHDC, int nettoPoints) {

See Appendix C.1 to understand
different “handicap categories”,
the term “pufferzone” (buffer
zone) and “geht hoch” (increase
(currentHDC 2.0 &% currentHDC 1.4) | in HDC). These are differentiated
(nettoPoints { . . "
newHDC = BigDecimal .valueOf(currentHDC - (finalNetto here by using cascadmg if
statements. “Vorgabenklasse” is
(nettoPoints 35 nettoPoints 36) { . lv the G ivalent
newHDC - BigDecimal .valueOf (currentHDC); simply the German equivalen
word. In each case, an
! i in HDC if
newHDC = BigDecimal .valueOf(currentHDC + 0.1); improvement in occurs |
nettoPoints>36. However, the

BigD: L newHDC = null;

int finalNetto - nettoPoints - 36;

(currentHDC - 4. currentHDC <= 11.4) { HDC improves (decreases) by a

(nettoPoints X different margin per point for
newHDC - BigDe valueOf (currentHDC - (finalNetto = 0.2)); gin perp
every HDC bracket. Therefore,

(nettoPoints 34 nettoPoin .. 3 ettoP ints complex algorithmic thinking was

newHDC - BigDecimal .valueOf(current DU ;
necessitated; in order to account

for all scenarios and therefore

i

1
newHDC - BigDecimal .valueOf (currentHDC
complete calculations correctly
(currentHDC 1.5 8& currentHDC 3.2 and thus reliably for Mr. Williams.

(nettoPoints

newHDC - BigDecimal .valueOf(currentHDC - (finalNetto * 0.3));

(nettoPoints EE nettoPoints 34 nettoPoints 35 nettoPoints
newHDC - BigDecimal .valueOf (currentHDC);

i
1
newHDC - BigDecimal .valueOf (currentHDC

(currentHDC 8.5 currentHDC 26.4) {
(nettoPoints > 3 {
newHDC = BigDecimal .valueOf(currentHDC - (finalNetto = 0.4));

(nettoPoints 32 nettoPoints 33 nettoPoints 34 nettoPoints 35 nettoPoints
newHDC - BigDecimal .valueOf (currentHDC);

L.valueOf (currentHDC

currentHdC 8y {
valueOf (currentHDC (Finalietto ¥

nettoPoints nettofoints nettoPoints i nettoPoints ¥ nettoPoints
newHDC = 8 mal valueOf (o ¥

{ Math functions used to create usable,
newHDC = Bi imal valueOf (currentHDC $. . L
accurate double. BigDecimal limits value to

(CurrentHDC 1 B currentHIC) 4 one decimal place, assuring conformity.

(nettoPoints) . .)
nesdDC - NigDecimal valueOf (currentlDC - (FinalNetto Again, an original solution was required.

Hath. round{newhDC . doubleValue()

Object Orientation

One key aspect of the entire application, which was crucial to its success in terms of usability and

extensibility, was the usage of Object Orientation in the creation process. Methods, to e.g. append

information could now be called across multiple scenes and restrictions were removed.

By using OOP | found that it is useful to deal with multiple classes and it made my program more

modular. Being more modular made it easier to version the application, meaning that

consequently, extensibility is a lot easier, and so is maintenance. Moreover, due to the size and the

number of classes, OOP made the programming substantially easier and allowed for the many

complicated methods to be used in various scenarios.

Encapsulation

E|~-[‘_§b MemberData

- () getBruttoPoints() : int
getDate() : String
getFairways(@ int
getFirstMame() : String
getGIR() : int
getGameID() @ int
getGender() : char
getlastMame() : String
getNettoPoints() : int
getNewHDC() : double
getOldHDC() : double
getPlayerID{) : int
getPutts() : int
getScore() : int]]
getTotalShots() @ int
setBruttoPoints(int bruttoPoints)
setDate(String date)
setFairways(int fairways)
setFirstName(String firstMame)
setGIR{nt GIR)
setGameID(int gamelD)
setGender(char gender)

CI‘I C- CI Cv d [] Cﬁn C

)

© ©

setlastiame(String lastName)
sethettoPoints(int nettoPoints)
getNewHDC{double newHDC)
setOldHDC{double oldHDC)
setPlayerID{nt playerID)
setPutts(int putts)
setScore(int[] score)
sefTotalShots(int totalShots)
GIR :int
bruttoPoints : int
date : String
@ fairways : int

t:t] firstName : String
gamelD : int
@] gender : char
] lastMame : String
@] nettoPaints : int

L':tl newHDC : double
& oldHDC : double
E@ playerID : int
@] putts : int
Gt] score : int[]
& totalShots ¢ int

PfPFoocc0000000000000000C

In most cases | used encapsulation to ensure that the variables
could not be accessed directly from another class to maintain data
conformity. Each variable has its own getter and setter by which
data can be retrieved and defined/altered. This increases usability
and makes it possible to separate an object’s implementation
from its behaviour to restrict access to its internal data meaning
that possible errors are averted. This will make it easy to expand
Mr. Williams” application in future patches and it has made the
creation process easier as issues could be fixed faster.

The 3N tHpt e vaFXML file has its own Controller class
requi to OP, this can be seen in the file structure
below”. EvEry®cBne Muld now be fully extended on its own,

which would not have been possible otherwise.

|| ©“AdvancedCalculationController.java
2 |g ChooseCalcTypeController.java
[Coursework.java
: @%atﬁReader.java
[FXMLIntialScene. fxml
- [#] FXMLIntialSceneController.java
- @@-ﬁstoryOverviewControIler.java
'@]QOginConh'oller.java
[& MemberData.java
2 |g PerformanceController.java
= @BPlayerController.java
& PredefinedColumns.java
[®scoreCalculationController java
- [@] SelectCalcTypeController.java
- IEJ advancedCalculation. fxml
@ chooseCalcType. fxml
Eﬁ historyOverview. fxml
[initialGuest. fml
[login. fxml
[memberOverview. fxml
[& BmemberOverviewController java
[scoreCalculation. fxml
= @ selectCalcType. fxml
[setGenderGuest.fxml
[#) setGenderGuestController.java

ity simplecalc. fxml

Graphing

Correct, readable and clear graphing was imperative to the fulfilment of success criteria C and
the general functionality of the product (one of {Client}’'s main issues that this solution should
solve was looking at how his students developed over time).

| decided to use JavaFX LineCharts, which turned out to be extremely complicated to populate as
| had to first retrieve data from the CSV file. Once | managed to populate them, | realised that an
even more complicated aspect was to make them comprehendible and therefore useful.

Creating
comprehendible
charts/results was
plaverlDs the complex aspect
series) e 0 ; of this task. By

seriesBrutto > i
serieshetto : ; oF adding the dates on

seriesTotalScore XYC} >0): h i X
seriesPutts 5 t.Ses 3 : the x-axis, | give
seriesFairways

5 seriesGIR

playerGameData

void initialize(URL url, | dlLe rb) {

data Dat membersDataj;

a clear indication of
the|time period the

imgrovements took

(m.getPlayerID() playerID) { . X
playerGameData.add(m); pla e, which d|r8Ct|y

a m : data) {

helps him and his

series.getData().add(XY Jata<String, Number>(m.getDate(), m.getNewHDC()));

seriesBrutto.getData() .add() t.Dc String / m.getDate(), m.getBruttoPoints()));
seriesNetto. getData().add(X 5 n 1 ->(m.getDate(), m.getNettoPoints()));
seriesTotalScore.getData().add(= Number>(m.getDate(), m.getTotalShots()));

seriesPutts.getData().add(X < m.getDate(), m.getPutts()));
seriesFairways getData() .add(XYC i -[1ta<St @ v >(m.getDate(), m.getFairways/()));
seriesGIR.getData() . add(X rt. lai - m.getDate(), m.getGIR()));

1
¥

series.setName("Handicap");
hdcDev.getData() .add(series);
seriesBrutto.setName("Brutto™);
snb.getData() .add(seriesBrutto); © Brutto
seriesNetto.setName("Netto");
snb.getData() add(seriesNetto);
seriesTotalScore.setName("Total Score");
snb_getData() . add(seriesTotalScore);
seriesPutts.setName("Putts");
pfg.getData() add(seriesPutts);
seriesFairways.setName("Fairways");

pfg. getData() . add(seriesFairways);
seriesGIR.setName("GIR");

pfg.getData() add(seriesGIR);

O Total Score

Netto

Overview of your Games

Totdl Scare | Nelto | Brutto

Handicap Development

Putts | Fairways | GIR

File Reading and Writing

Accessing and altering the CSV file that contains the information of members is necessary to fulfil
Success Criteria A, B, C and D, as they all directly and indirectly rely on the data contained within the
file and on being able to update/edit the file. A custom and extendable solution was required for
Mr. Williams to be able to do said actions for all variables that he required in his application.

This method takes the parameters as input and inserts them to the end of the csv file (appending).

g firstName, S lastName, int totalShots,
e pulxs, int fainweys,

csvPath = "enter path to PlayerDataCSV.csv";
s get(csvPath); If the file does not exist, csv file is

created.

er(csvPath, true))); Try and catch block initialized, it
tries to open a PrintWriter,
BufferedWrtier and FileWriter to

SRl ; read the contents of the file.
append(gameID)

append(”,”);
append(playerID)
append (",
append(gendEI)a
append (",
append(flrstName),
append(”,");
append(lasﬂlame
append(”,");
append(totalShots);
-,

")s

append

;i

; i
z: : Building the String (line) that is appended.

sb
sb
sb
)

sb .z i 2
;E Is appended and PrintWriter is closed.

sb

sb

sb.append ("

sb append (G

sb.append("”,");

sb_append (date); | had to create an original method that would never throw an

sb.append 5 ("line.separator”)); . . .
T Write (b tostring()): B error and could easily be extended by simply copying-and-

pe.close(); pasting existing conventions.

An ArraylList of the type MemberData is defined, this ArrayList will hold all the data from the player data
.csv file. The reason it is defined as static is because it needs to be accessed directly from other classes, in
other words the keyword ‘new’ does not have be used when accessing from another class. Creating this
complex method resulted in me having very easy access to every single piece of data. Due to the variance in
data Types (gender = Char/HDC = double/ FirstName = String/ #Putts = Integer etc.) | had to come up with a
specific and original solution to make every datatype usable wherever it was needed.

/List<MemberData> membersData;

Arraylist<MemberData> getMembersData() {
membersData;

void loadCSV(String csvPath) throws IOException {
membersData st<MemberData>();
BufferedReader br 4

String line = ""; BufferedReader and FileReader are initialised

String csvSplitBy - for accessing the content of the .csv file

{
br BufferedReader(FileReader(csvPath));
((1ine = br.readline()) null) {

A while loop is
used to loop String[] lineValues - line.split(csvSplitBy);
through every (int 1 = 8; i < lineValues.length; i++) {
line of the .csv }
. MemberData md MemberData();
file. T
v
- — md . setGameID(Integer.parselnt(lineValues[8]));
A String array is initialised md . setPlayerTD(Integer narseInt(lineValues[1]));
CUEINILTAGEREICRCRUEINN nd setGender 1 in Val lesl 2] charAt(9));
specific line, the split md.setFirstN me‘ ine lalies[3]);
method under the String md . setLastName(lineValues[4]);

class is used to separate md . setTotalShots(Integer . parselnt(lineValues[5]));

each value of that line for
int[] score int[18];

storing into the array. : 3
int size = score.length;

An object of String[] memberScore - Arrays.copyOfRange(lineValues,
MemberData is (int 1 = @; i < size; i++) {
created inside score[i] Integer . parselnt(memberScore[i]);
1
the while loop J

which will hold md . setScore(score);
that particular md . set01dHDC (Double . parseDouble(lineValues[24]));
) md . setNewHDC (Double .parseDouble(lineValues[25]));
Game’s data. md . setNettoPoints(Integer.parseInt(lineValues[26]));
md . setBruttoPoints(Integer parselnt(lineValues[27]));
md . setPutts(Integer. parselnt(lineValues[28]));
md . setFairways(Integer parseInt(lineValues[29]));
md . setGIR(Integer.parselnt(lineValues[38]));
md . setDate((1lineValues[31]));
} (NumberFormatException e) {

e printStackTrace();
} The setters from the MemberData class are
membersData . add(md); used to set each value of the ‘md’ object

using the data that was previously split into

1
J
¥ (FileNotFoundException e) { the String array. All primitive data type
e.printStackTrace(); conversions are considered.

1

J
br.close();

Finally, the MemberData object (‘md’) is added to the global variable ‘membersData’.

Bibliography

Graphing:

Redko, Alla. "Using Javafx Charts: Line Chart | Javafx 2 Tutorials And Documentation”.
Docs.oracle.com. N.p., 2014. Web. 12 Dec. 2016. http://docs.oracle.com/javafx/2/charts/line-
chart.htm

"Javafx Tutorial - Javafx Linechart". Java2s.com. Web. 6 Dec. 2016.
http://www.java2s.com/Tutorials/Java/JavaFX/0820 JavaFX LineChart.htm

File Reading/ Writing:

Sarhan, Ashraf. "Write/Read CSV Files In Java Example". Examples Java Code Geeks. N.p.,
2014. Web. 5 Dec. 2016. https://examples.javacodegeeks.com/core-java/writeread-csv-files-
in-java-example/

"How To Read And Parse CSV File In Java". Mkyong.com. N.p., 2013. Web. 14 Dec.
2016. https://www.mkyong.com/java/how-to-read-and-parse-csv-file-in-java/

JavaFX in General — shout out to Bucky:

"Javafx Java GUI Design Tutorials - Youtube". YouTube. N.p., 2017. Web. Dec. 2016.

IDGB] LSYVyS8EbTdpGbUIG

https://www.youtube.com/playlist?list=PL6gx4

