$10^{\text {th }}$ MATHS: ONE MARK - Study Material

Prepared by: M.PALANIYAPPAN, SGHSS, NERKUPPAI. Mobile: 9942904874

Unit-1: RELATIONS \& FUNCTIONS

Sl.No.	QUESTION	ANSWER
1	If $n(A \times B)=6$ and $A=\{1,3\}$ then $n(B)$ is	3
2	$\begin{aligned} & A=\{a, b, p\}, B=\{2,3\}, C=\{p, q, r, s\} \text { then } \\ & n[(A \cup C) \times B] \text { is } \end{aligned}$	12
3	If $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ and $D=\{5,6,7,8\}$ then state which of the following statement is true.	$(A \times C) \subset(B \times D)$
4	If there are 1024 relations from a set $A=\{1,2,3,4,5\}$ to a set B, then the number of elements	2
5	The range of the relation $R=\left\{\left(x, x^{2}\right) \mid x\right.$ is a prime number less than 13\} is	$\{4,9,25,49,121\}$
6	If the ordered pairs $(a+2,4)$ and $(5,2 a+b)$ are equal then (a, b) is	$(3,-2)$
7	Let $n(A)=m$ and $n(B)=n$ then the total number of non-empty relations that can be defined from A to B is	$2^{m n}-1$
8	If $\{(a, 8),(6, b)\}$ represents an identity function, then the value of a and b are respectively	$(8,6)$
9	Let $A=\{1,2,3,4\}$ and $B=\{4,8,9,10\}$. A function $f: A \cdots B$ given by $f \triangleq\{(1,4),(2,8),(3,9),(4,10)\}$ is a	One-to-one function
10	If $f(x)=2 x^{2}$ and $g(x)=\frac{1}{3 x}$, then $f \circ g$ is	$\frac{2}{9 x^{2}}$
11	If $f: A \rightarrow B$ is a bijective function and if $n(B)=7$, then $n(A)$ is equal to	7
12	Let f and g be two functions given by $f=\{(0,1),(2,0),(3,-4),(4,2),(5,7)\}$ $g=\{(0,2),(1,0),(2,4),(-4,2),(7,0)\} \quad$ then the range of $f \circ g$ is	$\{0,1,2\}$
13	Let $f(x)=\sqrt{1+x^{2}}$ then	$f(x y) \leq f(x) . f(y)$
14	If $g=\{(1,1),(2,3),(3,5),(4,7)\}$ is a function given by $g(x)=\alpha x+\beta$ then the values of	$(2,-1)$
15	$f(x)=(x+1)^{3}-(x-1)^{3}$ represents a function which is	quadratic

Unit-2: NUMBERS \& SEQUENCES

Sl.No.	QUESTION	ANSWER
16	Euclid's division lemma states that for positive integers a and b, there exist unique integers q and r such that $a=b q+r$, where r must satisfy	$\mathbf{0} \leq \boldsymbol{r}<\boldsymbol{b}$
17	Using Euclid's division lemma, if the cube of any positive integer is divided by 9 then the possible remainders are	0, 1, 8
18	If the HCF of 65 and 117 is expressible in the form of $65 m-117$, then the value of m is	2
19	The sum of the exponents of the prime factors in the prime factorization of 1729 is	3
20	The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is	2520
21	$7^{4 k} \equiv \ldots$	1
22	Given $F_{1}=1, F_{2}=3$ and $F_{n}=F_{n-1}+F_{n-2}$ then F_{5} is	11
23	The first term of an arithmetic progression is unity and the common difference is 4 . Which of the following will be a term of this A.P	7881
24	If 6 times of $6^{\text {th }}$ term of an A.P. is equal to 7 times the $7^{\text {th }}$ term, then the $13^{\text {th }}$ term of the A.P. is	0
25	An A.P. consists of 31 terms. If its $16^{\text {th }}$ term is m, then the sum of all the terms of this A.P. is	31 m
26	In an A.P., the first term is 1 and the common difference is 4. How many terms of the A.P. must be taken for their sum to be equal to 120 ?	8
27	If $A=2^{65}$ and $B=2^{64}+2^{63}+2^{62}+\ldots .+2^{0}$ which of the following is true?	A is larger than B by 1
28	The next term of the sequence $\frac{3}{16}, \frac{1}{8}, \frac{1}{12}, \frac{1}{18}, \ldots$ is	$\frac{1}{27}$
29	If the sequence $t_{1}, t_{2}, t_{3}, \ldots$ are in A.P. then the sequence $t_{6}, t_{12}, t_{18}, \ldots$ is	an Arithmetic Progression
30	The value of $\left(1^{3}+2^{3}+3^{3}+\cdots+15^{3}\right)-(1+2+3+\ldots+15)$ is	14280

Unit-3: ALGEBRA

Sl.No.	QUESTION	ANSWER
31	A system of three linear equations in three variables is inconsistent if their planes	do not intersect
32	The solution of the system $x+y-3 x=-6,-7 y+7 z=7$, $3 z=9$ is	$\begin{gathered} x=1, \quad y=2, \\ z=3 \end{gathered}$
33	If $(x-6)$ is the HCF of $x^{2}-2 x-24$ and $x^{2}-k x-6$ then the value of k is	5
34	$\frac{3 y-3}{y} \div \frac{7 y-7}{3 y^{2}}$ is	$\frac{9 y}{7}$
35	$y^{2}+\frac{1}{y^{2}}$ is not equal to	$\left[y+\frac{1}{y}\right]^{2}$
36	$\frac{x}{x^{2}-25}-\frac{8}{x^{2}+6 x+5}$ gives	$\frac{x^{2}-7 x+40}{\left(x^{2}-25\right)(x+1)}$
37	The square root of $\frac{256 x^{8} y^{4} z^{10}}{25 x^{6} y^{6} z^{6}}$ is equal to	$\frac{16}{5}\left\|\frac{x z^{2}}{y}\right\|$
38	Which of the following should'be added to make $x^{4}+64$ a perfect s quare	$16 x^{2}$
39	The solution of $(2 x-1)^{2}=9$ is equal to	-1,2
40	The values of a and b if $4 x^{4}-24 x^{3}+76 x^{2}+a x+b$ is a perfect square are	-120,100
41	If the roots of the equation $q^{2} x^{2}+p^{2} x+r^{2}=0$ are the squares of the roots of the equation $q x^{2}+p x+r=0$, then q, p, r are in \qquad	$\boldsymbol{G . P}$
42	Graph of a linear polynomial is a	straight line
43	The number of points of intersection of the quadratic polynomial $x^{2}+4 x+4$ with the X axis is	1
44	For the given matrix $A=\left[\begin{array}{rrlc}1 & 3 & 5 & 7 \\ 2 & 4 & 6 & 8 \\ 9 & 11 & 13 & 15\end{array}\right]$ the order of the matrix A^{T} is	4×3
45	If A is a 2×3 matrix and B is a 3×4 matrix, how many columns does $A B$ have	4
46	If number of columns and rows are not equal in a matrix then it is said to be a	rectangular matrix

47	Transpose of a column matrix is	row matrix
48	Find the matrix X if $2 X+\left(\begin{array}{ll}1 & 3 \\ 5 & 7\end{array}\right)=\left(\begin{array}{ll}5 & 7 \\ 9 & 5\end{array}\right)$	$\left(\begin{array}{rr}2 & 2 \\ 2 & -1\end{array}\right)$
49	Which of the following can be calculated from the given matrices $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right)$ and $B=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$, (i) A^{2} (ii) B^{2} (iii) $A B$ (iv) $B A$	(ii) and (iii) only
50	If $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right), \quad B=\left(\begin{array}{rr}1 & 0 \\ 2 & -1 \\ 0 & 2\end{array}\right) \quad$ and $\quad C=\left(\begin{array}{rr}0 & 1 \\ -2 & 5\end{array}\right)$. Which of the following statements are correct? (i) $A B+C=\left(\begin{array}{ll}5 & 5 \\ 5 & 5\end{array}\right)$ (ii) $B C=\left(\begin{array}{rr}0 & 1 \\ 2 & -3 \\ -4 & 10\end{array}\right)$ (iii) $B A+C=\left(\begin{array}{ll}2 & 5 \\ 3 & 0\end{array}\right)$ (iv) $(A B) C=\left(\begin{array}{ll} -8 & 20 \\ -8 & 13 \end{array}\right)$	(i) and (ii) only

Sl.No.	QUESTION	ANSWER	
51	If in triangles $A B C$ and $E D F, \frac{A B}{D E}=\frac{B C}{F D}$, then they will be similar, when	$\angle B=\angle D$	
52	In $\triangle L M N, \angle L=60^{\circ}, \angle M=50^{\circ}$. If $\triangle L M N \sim \triangle P Q R$ then the value of $\angle R$ is	70°	
53	If $\triangle A B C$ is an isosceles triangle with $\angle C=90^{\circ}$ and $A C=5 \mathrm{~cm}$, then $A B$ is	$5 \sqrt{2} \mathrm{~cm}$	
54	In a given figure $S T \\| Q R, P S=2 \mathrm{~cm}$ and $S Q=3 \mathrm{~cm}$. Then the ratio of the area of $\triangle P Q R$ to the area of $\triangle P S T$ is	$25: 4$	
55	The perimeters of two similar triangles $\triangle A B C$ and $\triangle P Q R$ are 36 cm and 24 cm respectively. If $P Q=10 \mathrm{~cm}$, then the length of $A B$ is	15 cm	
56	If in $\triangle A B C, D E \\| B C . A B=3.6 \mathrm{~cm}, A C=2.4 \mathrm{~cm}$ and $A D=2.1 \mathrm{~cm}$ then the length of $A E$ is	1.4 cm	
57	In a $\triangle A B C, A D$ is the bisector of $\angle B A C$. If $A B=8 \mathrm{~cm}$ $B D=6 \mathrm{~cm}$ and $D C=3 \mathrm{~cm}$. The length of the side $A C$ is	4 cm	
58	In the adjacent figure $\angle B A C=90^{\circ}$ and $A D \perp B C$ then	$B D \cdot C D=A D^{\mathbf{2}}$	
59	Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m , what is the distance between their tops?	13 m	
60	In the given figure, $P R=26 \mathrm{~cm}$, $Q R=24 \mathrm{~cm}, \angle P A Q=90^{\circ}, P A=6 \mathrm{~cm}$ and $Q A=8 \mathrm{~cm}$. Find $\angle P Q R$	90°	
61	A tangent is perpendicular to the radius at the	point of contact	
62	How many tangents can be drawn to the circle from an exterior point?	two	
63	The two tangents from an external points P to a circle with centre at O are $P A$ and $P B$. If $\angle A P B=70^{\circ}$ then the value of $\angle A O B$ is	110°	
64	In figure $C P$ and $C Q$ are tangents to a circle with centre at $O . A R B$ is another tangent touching the circle at R. If $C P=11 \mathrm{~cm}$ and $B C=7 \mathrm{~cm}$, then the length of $B R$ is	4 cm	
65	In figure if $P R$ is tangent to the circle at P and O is the centre of the circle, then $\angle P O Q$ is	120°	

Unit5: COORDINATE GEOMETRY

Sl.No.	QUESTION	ANSWER
66	The area of triangle formed by the points $(-5,0),(0,-5)$ and $(5,0)$ is	25 sq.units
67	A man walks near a wall, such that the distance between him and the wall is 10 units. Consider the wall to be the Y axis. The path travelled by the man is	$x=10$
68	The straight line given by the equation $x=11$ is	parallel to Y axis
69	If $(5,7),(3, p)$ and $(6,6)$ are collinear, then the value of p is	9
70	The point of intersection of $3 x-y=4$ and $x+y=8$ is	$(3,5)$
71	The slope of the line joining $(12,3),(4, a)$ is $\frac{1}{8}$. The value of ' a ' is	2
72	The slope of the line which is perpendicular ta line joining the points $(0,0)$ and $(-8,8)$ is	1
73	If slope of the line $P Q$ is $\frac{1}{\sqrt{3}}$ then the slope of the perpendicular bisector of $P Q$ is	$-\sqrt{3}$
74	If A is a point on the Y axis whose ordinate is 8 and B is a point on the X axis whose abscissae is 5 then the equation of the line $A B$ is	$8 x+5 y=40$
75	The equation of a line passing through the origin and perpendicular to the line	$3 x+7 y=0$
76	Consider four straiĝht lines (i) $l_{1}: 3 y=4 x+5$ (ii) $l_{2}: 4 y=3 x-1$ (iii) $l_{3}: 4 y+3 x=7$ (iv) $l_{4}: 4 x+3 y=2$ Which of the following statement is true ?	l_{2} and l_{4} are perpendicular
77	A straight line has equation $8 y=4 x+21$. Which of the following is true	The slope is 0.5 and the y intercept is 2.6
78	When proving that a quadrilateral is a trapezium, it is necessary to show	Two parallel and two non-parallel sides
79	When proving that a quadrilateral is a parallelogram by using slopes you must find	The slopes of two sides
80	$(2,1)$ is the point of intersection of two lines.	$\begin{aligned} & x+y=3 \\ & 3 x+y=7 \end{aligned}$

Unit6: TRIGONOMETRY

Sl.No.	QUESTION	ANSWER
81	The value of $\sin ^{2} \theta+\frac{1}{1+\tan ^{2} \theta}$ is equal to	1
82	$\tan \theta \operatorname{cosec}^{2} \theta-\tan \theta$ is equal to	$\cot \theta$
83	If $(\sin \alpha+\operatorname{cosec} \alpha)^{2}+(\cos \alpha+\sec \alpha)^{2}=k+\tan ^{2} \alpha+\cot ^{2} \alpha$, then the value of k is equal to	7
84	If $\sin \theta+\cos \theta=a$ and $\sec \theta+\operatorname{cosec} \theta=b$, then the value of $b\left(a^{2}-1\right)$ is equal to	$2 a$
85	If $5 x=\sec \theta$ and $\frac{5}{x}=\tan \theta$, then $x^{2}-\frac{1}{x^{2}}$ is equal to	$\frac{1}{25}$
86	If $\sin \theta=\cos \theta$, then $2 \tan ^{2} \theta+\sin \theta-1$ is equal to	$\frac{3}{2}$
87	If $x=\operatorname{atan} \theta$ and $y=b \sec \theta$ then	$\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1$
88	$(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)$ is equal to	2
89	$a \cot \theta+b \operatorname{cosec} \theta=p$ and $b \cot \theta+a \operatorname{cosec} \theta=q$ then $p^{2}-q^{2}$ is equal to	$b^{2}-a^{2}$
90	If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}: 1$, then the angle of eleyátion of the sun has measure	60°
91	The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point 'b' metres above the first, the depression of the foot of the pole is 60°. The height of the pole (in metres) is equal to	$\frac{b}{3}$
92	A tower is 60 m high. Its shadow is x metres shorter when the sun's altitude is 45° than when it has been 30°, then x is equal to	43.92 m
93	The angle of depression of the top and bottom of 20 m tall building from the top of a multistoried building are 30° and 60° respectively. The height of the multistoried building and the distance between two buildings (in metres) is	30,10 $\sqrt{3}$
94	Two persons are standing ' x ' metres apart from each other and the height of the first person is double that of the other. If from the middle point of the line joining their feet an observer finds the angular elevations of their tops to be complementary, then the height of the shorter person (in metres) is	$\frac{x}{2 \sqrt{2}}$
95	The angle of elevation of a cloud from a point h metres above a lake is β. The angle of depression of its reflection in the lake is 45°. The height of location of the cloud from the lake is	$\frac{h(1+\tan \beta)}{1-\tan \beta}$

Unit-7: MENSURATION

Sl.No.	QUESTION	ANSWER
96	The curved surface area of a right circular cone of height 15 cm and base diameter 16 cm is	$136 \pi \mathrm{~cm}^{2}$
97	If two solid hemispheres of same base radius r units are joined together along their bases, then curved surface area of this new solid is	$4 \pi r^{2}$ sq. units
98	The height of a right circular cone whose radius is 5 cm and slant height is 13 cm will be	12 cm
99	If the radius of the base of a right circular cylinder is halved keeping the same height, then the ratio of the volume of the cylinder thus obtained to the volume of original cylinder	1:4
100	The total surface area of a cylinder whose radius is $\frac{1}{3}$ its height is	$\frac{8 \pi h^{2}}{9}$ sq. units
101	In a hollow cylinder, the sum of the external and interngl radii is 14 cm and the width is 4 cm . If its height is 20 cm , the volume of the material in it is	$11200 \pi \mathrm{~cm}^{3}$
102	If the radius of the base of a cone is tripled and the height is doubled then the volume is	made 18 times
103	The total surface area of a hemi-sphere is how much times the square of its radius.	3π
104	A solid sphere of radius $x \mathrm{~cm}$ is melted and cast into a shape of a solid cone of same radius. The height of the cone is	$4 x \mathrm{~cm}$
105	A frustum of a right circular cone is of height 16 cm with radii of its ends as 8 cm and 20 cm . Then, the volume of the frustum is	3328 r cm ${ }^{3}$
106	A shuttle cock usedfor playing badminton has the shape of the combination of	frustum of a cone and a hemisphere
107	A spherical ball of radius r_{1} units is melted to make 8 new identical balls each of radius r_{2} units. Then $r_{1}: r_{2}$ is	2:1
108	The volume (in cm^{3}) of the greatest sphere that can be cut off from a cylindrical log of wood of base radius 1 cm and height 5 cm is	$\frac{4}{3} \pi$
109	The height and radius of the cone of which the frustum is a part are h_{1} units and r_{1} units respectively. Height of the frustum is h_{2} units and radius of the smaller base is r_{2} units. If $h_{2}: h_{1}=1: 2$ then $r_{2}: r_{1}$ is	1:2
110	The ratio of the volumes of a cylinder, a cone and a sphere, if each has the same diameter and same height is	3:1:2

Unit 8: STATISTICS \& PROBABILITY

Sl.No.	QUESTION	ANSWER
111	Which of the following is not a measure of dispersion?	Arithmetic mean
112	The range of the data $8,8,8,8,8 \ldots 8$ is	0
113	The sum of all deviations of the data from its mean is	zero
114	The mean of 100 observations is 40 and their standard deviation is 3 . The sum of squares of all deviations is	160900
115	Variance of first 20 natural numbers is	33.25
116	The standard deviation of a data is 3 . If each value is multiplied by 5 then the new variance is	225
117	If the standard deviation of x, y, z is p then the standard deviation of $3 x+5,3 y+5, \quad 3 z+5$ is	$3 p$
118	If the mean and coefficient of variation of a data are 4 and 87.5% then the standard deviation is	3.5
119	Which of the following is incorrect?	$\mathrm{P}(\mathrm{A})>1$
120	The probability of a red marble selected at random from a jar containing p red, q blue and r green marbles is	$\frac{p}{p+q+r}$
121	A page is selected at random from a book. The probability that the digit at units place of the page number chosen is less than 7 is	$\frac{7}{10}$
122	The probability of getting ${ }^{2}$ job for a person is $\frac{x}{3}$. If the probability of not getting the job is $\frac{2}{3}$ then the value of x is	1
123	Kamalam went to play a lucky draw contest. 135 tickets of the lucky draw were sold. If the probability of Kamalam winning is $\frac{1}{9}$, then the number of tickets bought by Kamalam is	15
124	If a letter is chosen at random from the English alphabets $\{a, b, \ldots, z\}$, then the probability that the letter chosen precedes x	$\frac{23}{26}$
125	A purse contains 10 notes of Rs.2000, 15 notes of Rs.500, and 25 notes of Rs.200. One note is drawn at random. What is the probability that the note is either a Rs. 500 note or Rs. 200 note?	$\frac{4}{5}$

