Gropl 24/3fes.
tee) - trko duction o %@qox

N
@ R @ - yrR
—od-
® _®
N\ o
» ">
tycln o a g (o)
0
9— 0
| /N
5——0 o O
%
gepv s

l T i Vel Wk
O — 0 c&tm orle)
\ /
ool e

O D‘“”MQ m&mjﬁe&

(o0 5 & Con have
audtble dlisedtion

- dssrionall

o 1. afod o npde

2 s

cyde-> dogt fom o onde. & wooh badeto

+he same 104

poth condoina 0 ot & redes 8

ool 6 them aX scathable
@ =<§:) | 2 %5-);/&1#“ %ngo&ﬂ anmgﬂ agbjm

532 ~>a0

M"H’\Qﬂ\ @nﬂ,fﬂ&{—’ﬂ?—b‘/

Deguon, 1 b
ondieded gl o nus of s ofoghed to o 0

@ @ (g] — 5

@-—==
. :
o ol o amof <y
%/ ol dgos = 2 MY

b i
occ;c%ﬁ ot 2 n&OQP’g
o
Disedle] Gt

fﬂdQ&&%(_J\()(f@J —> Num 95 men% ec?c(']aeé
&dcﬁ@g»@l@ (nod8) - qum of WXL{(@ q et

Q\,& a(3) —> 2

DUMZG&&%L@ "5)

o} w@, @g n QC@E
dw\/@ﬂ take, 1 onft

2 ‘ ‘ /O
/

0—2-0—20-
b _ore

2

M - Gw,ﬁjq, %ﬁ{ewfdﬂﬁm n Ot

0 wm%% lo &

A oy oA,
Aoy TD

int main(Q) {

int n, m;

cin >> n >> m;

// graph here

int adj[n+1][m+1];

for(int i = 0Q;i<m;i++) {
int u, v;
cin >> u >> v;

adjfullv] = 1;
adj[vi[u] = 1;

}

return 0;

ooo Z]

function graph() {
let n = prompt();
let m = prompt(); ’ 3
let mat = Array(n+1).fill().map(() => Array(m+1).fill(0));

for(let i=0; i<m; i++){ 2
let u = w(0)R
let v = ()
at [u][Z;
mat[v][u = 1 <?L\
}

} 25

Aoy U T
O—®

Ml’[ﬂnﬂ ‘ N = fo Y

| -
° .fu:ction graph() { @ R ? "4{

let n = prompt();

let m = prompt(); 3 E ?I/é\,gg
let adj = Array(n+1).fill([]);
30— 0(28
for(let i=0; i<m; i++){
let u = prompt(); ﬂ\-_—% %Q/ g/g;

let v = prompt();
j [ul .push(v);
S - fdvedd 5~ 4549
¥ s Uine st ner

} > 1> 0(E)
How B & wu%%@(’p ﬁ%)’?l"

\ @

O '

A

N

class Graph {
constructor(noOfVertices) {
this.noOfVertices = noOfVertices;
this.List = new Array(noOfVertices+1).fill().map(() => Array()); var g = new Graph(6);
} var vertices = ['1', '2', '3', '4', '5', '6'];

addEdge(v, w) {
this.List[v].push(w);

) this.List[w].push(v); g.addEdge(l, 2);
g.addEdge(1, 3);

printGraph() { H
for (let i=0; i<=this.noOfVertices; i++) { g.addEdge(2, 4);
console.log(i, this.List[il.join('')); g.addEdge(3, 4);

, } g.addEdge(3, 5);

g.addEdge(4, 5);

getList() {
return this.List;

’ g.printGraph();

let List = g.getList();

0" Z
1 123" 10, 0231,02,41,02,451,02,3,51, 03,41, 11

let List = g.getList(); Gy 02 31, i, &y Li, ds Bl K2 S 5l &, iy [0
2 '14'
3 '145"
4 '235'
5 '34' 00
6 "' : : :

function dfs(node, List, vis, result) {

vis[node] = 1;
X X result.push(node);

function bfsGraph(V, List) {
let vis = Array(V).fill(0);

SO b for(let neighbour of List[node]){

vis[start] = 1; if(!vis [neighbou r1){
let q = [I;
g e dfs(neighbour, List, vis, result);
let bfs = [I; }

b

while(q.length > @) {
let node = q.shift(); }
bfs.push(node);

for(let neighbour of List[node]) { function dstraph(V, List){
if(!vis[neighbour]) { let vis = Array(V).fiu(o);
vis[neighbour] = 1;
q.push(neighbour); let start = 1
. } let result = [];
y dfs(start, List, vis, result);

return result;
return bfs; }

function matToList(mat){

1 — [3;:] let V = mat.length;

let List = Array.from({ length: V+1 }, () => [1);

| 2 3 D= [j for(let i=0; i<V; i++){

for(let j=0; j<V; j++){
if(mat[il[j] == 1 & i != j) {
4 0 0! 3> [lj if(IList[i+1].includes(j+1)){

List[i+1].push(j+1);
201t 10 !

if(!List[j+1].includes(i+1)){

List[j + 1].push(i + 1);
gl 1| O] D -

}

return List;

Conwent ad(fa(wm% oeshsiX o L€ XX

kd e oee
" 0
r(no0fVertices) {

clas. raph {
nstructor(N 6
this.noOfVertices = noOfVertices;)
this.List = new Map(); U@lﬁ\ \f’)&"(@h <~ var g = new Graph(6);
} var vertices = ['1', '2', '3', '4', '5', '6'];
addvertex(v) {

this. nﬁi:’ % <:§-_,~ for (var i = 0; i < Yertifes.length; i++) {
' \: {’S [2:51 g.addVertex(vertices[il);

addEdge(v, w) { 2 («-S [\,q_'} }
S

this.List.get(v).push(w); - E 1 (1,‘} g
g.addEdge('1', '2');
4:CI(2 2,51 <\ g.addEdge(‘1*, '3');
, this.List.get(w).push(v); 5Ej {&,4—3 g.addEdge('2', '4');
6. 1

\
Y
)

g.addEdge('3', '4');
g.addEdge('3', '5');
printGraph() { i g.addEdge(4) |5|);

var get_keys = this.List.keys();
for (var i of get_keys) {

var get_values = this.List.get(i);

g.printGraph();

lee3 > Oroh Wesodadivn o Jowet

g > vt we conneded compaends

N= 10, M= &

s 0
) |
| 3 ?

24

i_g M“)/ZO”W&;

6 7

g q Wcﬁ gl 56') 810(96

> o ony foenal , olgfe kesp 0 ¥ et

4 o pode to st latéed,

s > BES c&edca‘%éw)wnmd%wOWM

t boed
N=8

thet

50,
fuel e,

* g,f@,y(q,za[aode. =/

;

N

—_—

node dould ée at e?uCU) Aoy
@@ﬂ@i’n(f e

0|0|

9)
e

dlo

$
= % fow quene, ofd # o ort
— dowese the mdg&k)w\& o diffed reds

e ool vished a\ﬁ@sﬂﬁ
gﬁﬁ o outh T & fe quen R

cohen QURN S
%‘;%ﬁ sehoan dhe ans . ‘@

I

B
Ut

D= § 3
| = 2.6
9 —7 §1,3.4]

—

o

00
— 3 Q\; OCMB %D(_QE 1 function bfsOfGraph(V, List) {
g TG"? 2 let vis = new Array(V).fill(o);
[X X] 3 vis[o] = 1;

$-792,%

1 function bfsGraph (v, List) { 4 let q = [];
2 let vis = Array(V).fill(e) 5 q.push(0);
1 Bl = 4 6 let bfs = [I;
5'-—-—7 4, Istart] = :
.2! =1 7
g 6 (start); 8 while (q.length > 0) {
6 7 % [l 7‘ 7 let = [lg 9 let node = q.shift();
? 5% 9 while(q.length > 0) { - bfs.push(node);
6/ 10 let node = g.shift(); 1
11 bfs.push(node); 12 for (let neighbour of List[nodel) {
— ?62 12 - o I T— 18 if (!vis[neighbourl) {
13 for(let neighbour of List = q I e
8 14 if(!vis[neighbour]) { L V15[nelght.’°ur] =i
15 oAl urll=i1; 15 q.push(neighbour);
16 q.push(bour) ; 16 }
, } 17 }
5 18 b
19
ret 20 return bfs;
} 21 }

.1.u:ction dfs(node, adj, vis, result TG '% OCN) .r 0<QE)

| - s> 0 () <O £000) % 00

for (let neighbour of adj[node]) {
if (!vis[neighbour]) {

dfs(neighbour, adj, vis, result);
) }
10 }
11}
)
13 function dfsOfGraph(V, adj) {
14 let vis = new Array(V).fill(e);
15 let start = 0;

result = [];

18 dfs(start, adj, vis, result);

;i }

b7 rumbs ¢ {oovicat

[
: 23
Number of Provinces 111, 0,1], @
Medium Accuracy: 54.29% Submissions: 46K+ Points: 4 20,1, 01, \ @
3 [1, 0, 1]

&)

INZl Stand out from the crowd. Prepare with Complete Interview Preparation

Given an undirected graph with V vertices. We say two vertices uand v
belong to a single province if there is a path from u to v or v to u. Your task is
to find the number of provinces.

Note: A province is a group of directly or indirectly connected cities and no

Output:

2

Explanation:

The graph clearly has 2 Provinces [1,3] and [2]. As city 1 and
city 3 has a path between them they belong to a single province.
City 2 has no path to city 1 or city 3 hence it belongs to another
province.

other cities outside of the group.

/93
/5/6

/R

: uﬁh\ﬁéb Q&ﬁ& ‘\U}W XX,

—s OU\) const mat = [[1,0,1],[0,1,0],[1,0,1]];

J 1 O (\f&?f') ::> 0('\]&'\:0(’\)) N D(‘N) let adjList = matToList(mat);

function dfs(node, List, vis) {
vis[node] = 1;

for (let neighbour of List[node]) {

O(NJ if (!vis[neighbour]) {
[N (P dfs(neighbour, List, vis);

}
}
o000 }
function matTolList(mat){
let V = mat.length; . 7 oo
let List = Array.from({ length: V+1 }, () => [1); funC:lon numOfPFOVll'(\C()ES(V, fd_;LISt){
et vis = Array(V).fill(0);
for(let i=0; i<V; i++){ .
for(let j=0; j<V; j++){ let count = 0;
if(mat[i][j] = 1 & 1 1= §) { for(let i=0; i<V; i++){
if(!List[i+1].includes(j+1)){ e . N
List[i+1].push(j+1); if(!vis[i]){
} q
if(1List[j+1].includes(i+1)){ count++;
List[j + 1).push(i + 1); dfs(i, adjList, vis);
}
) }
v }
}
return List; return count;
g }

numOfProvinces(3, adjList); 3

lut. aumbes f BlndS [g nne e wm/mww%j

Find the number of islands

Medium Accuracy: 42.12% Submissions: 143K+ Points: 4

Explore Job Fair for students & freshers for daily new opportunities. Find 7
A Job Today!

Given a grid of size n*m (n is the number of rows and m is the number of

columns in the grid) consisting of '0's (Water) and '1's(Land). Find the

0
0

olol 1| O
= 0

Note: Anisland is either surrounded by water or boundary of grid and is
formed by connecting adjacent lands horizontally or vertically or diagonally

i.e.,inall 8 directions.

o \ Example 1:

—
—

Input:
grid = {{0,1},{1,0},{1,1},{1,0}}

Output:
1

Explanation:
The grid is-
% 01

10

11

10

All lands are connected.

=
A\

B -
+~
>

NENER

— 0T
& P

\

chum und;

At gt ghiaws.
%5 [debnoow - 1 fo +)
49)((;99)%(1692-» -{ 1o ’H)
| eighbousRow = H01° +delarad

) (o +1 , oA H) neighbous(pl = O+ della
3

»

w,.,o)(\‘ 7l hpur\\/

Y + OV
‘ .fu::tion bfs(row, col, vis, grid) { w b O CN) + 4\
Qe

vis[row] [col] = 1; T\
let q = []; . &
q.push([row, coll); \[\S\te
while (q.length > @) {

let [r, c] = q.shift();

for (let delRow = -1; delRow <= 1; delRow++) {

2 o~
for (let delCol = -1; delCol <= 1; delCol++) { M" + N Yq ~
TC-> —

let newRow = r + delRow;
let newCol = c¢ + delCol; T ¢
0 , l&?“ (
newRow >= 0 && . \i &Xwﬂ\
newRow < grid.length && (gd\ X g

/\)2

skt (€
newCol >= 0 &
newCol < grid[@].length &&
grid[newRow] [newCol]
vis [newRow] [newCol]
) 4
q.push([newRow, newColl);
vis[newRow] [newCol] = 1;

function numIslands(grid) {
let n = grid.length;
let m = grid[@].length;
let vis = Array.from({ length: n }, () => Array(m).fill(@));
let cnt = 0;
for (let row = @; row < n; row++) {
for (let col = 0; col < m; col++) {

if (grid[row] [col] === 1 && vis[row] [col] === @) {
cnt++;
bfs(row, col, vis, grid);
}
}
b
return cnt;

}

const grid = [[0,1,1,1,0,0,0],[0,0,1,1,0,1,0]]
numIslands(grid); fL

Dt > Flood Ell_Algpithm

Input: image = {{1,1,1},{1,1,0},{1,0,1}},
sr =1, sc = 1, newColor = 2.
Output: {{2,2,2},{2,2,0},{2,0,1}}

Explanation: From the center of the image

Flood fill Algorithm

Medium Accuracy: 41.11% Submissions: 77K+ Points: 4

(with position (sr, sc) = (1, 1)), all
Explore Job Fair for students & freshers for daily new opportunities. Find 7
A Job Today!

pixels connected by a path of the same color
as the starting pixel are colored with the new

color.Note the bottom corner is not colored 2,

Animage is represented by a 2-D array of integers, each integer because it is not 4-directionally connected to

representing the pixel value of the image. the starting pixel.

Given a coordinate (sr, sc) representing the starting pixel (row and column)

of the flood fill, and a pixel value newColor, "flood fill" the image.
Your Task:

To perform a "flood fill", consider the starting pixel, plus any pixels You don't need to read or print anyhting. Your task is to complete the

connected 4-directionally to the starting pixel of the same color as the

function floodFill() which takes image, sr, sc and newColor as input

starting pixel, plus any pixels connected 4-directionally to those pixels paramater and returns the image after flood filling.
(also with the same color as the starting pixel), and so on. Replace the

color of all of the aforementioned pixels with the newColor.

Expected Time Compelxity: O(n*m)

Expected Space Complexity: O(n*m)

=2, $6=U

nittal Oden =2

(\g\ﬁ&)\ A&(LD)

™ NEM

oo
VA W NI

g o b ()

36> ONrM) 1D

npud
s 2

~ 0
D

)

Ll |

/45&

| x
‘Jl
o |Tep a0

s [2)

function dfs(row, col, ans, image, newColor, delRow, delCol, iniColor) {

ans[row] [col] = newColor;
let n = image.length;
let m = image[0].length;
for (let i = 0; i < 4; i++) {
let nrow = row + delRow[il;
let ncol = col + delCollil;
if (
nrow >= 0 &&
nrow < n &&

ncol >= 0@ &&
ncol < m &&
image[nrow] [ncol] === iniColor &&
ans[nrow] [ncol] !== newColor
) {

dfs(nrow, ncol, ans, image, newColor, delRow, delCol, iniColor);

}
3
}

function floodFill(image, sr, sc, newColor) {
let iniColor = imagelsr][scl;
let ans = image;
let delRow = [-1, 0, 1, 0];
let delCol = [0, 1, 0, -1];

~n node

return ans;
[ony)
const image = [[1,1,1],I[1,1,0]1,[1,0,11],
\ sr =1, sc = 1, newColor = 2

W\'\U\ floodFill(image, sr, sc, newColor);

[Zz,z,a], [2.2.0] [20 U}

dfs(sr, sc, ans, image, newColor, delRow, delCol, iniColor);

a0, Rotfon Oxeng &

Rotten Oranges

Medium Accuracy: 46.02% Submissions: 95K+ Points: 4

Explore Job Fair for students & freshers for daily new opportunities. Find 7
A Job Today!

Given a grid of dimension nxm where each cellin the grid can have values 0,
1 or 2 which has the following meaning:

0: Empty cell

1: Cells have fresh oranges

2: Cells have rotten oranges

We have to determine what is the minimum time required to rot all oranges.
Arotten orange atindex [i,j] can rot other fresh orange at indexes [i-1,j],

[i+1,j1, [i,j-11, [i,j+1] (up, down, left and right) in unit time.

Your Task:
You don't need to read or print anything, Your task is to complete the
function orangesRotting() which takes grid as input parameter and returns

the minimum time to rot all the fresh oranges. If not possible returns -1.

Expected Time Complexity: O(n*m)

Expected Auxiliary Space: 0(n*m)

Constraints:

1=<n,m=500

= -\—P(\a‘
-
S

[A)

1=3

N o [

Example 1:

Input: grid = {{0,1,2},{0,1,2},{2,1,1}}
Output: 1

Explanation: The grid is-

012

012

211

Oranges at positions (0,2), (1,2), (2,0)
will rot oranges at (0,1), (1,1), (2,2) and

(2,1) in unit time.

Example 2:

Input: grid = {{2,2,0,1}}
Output: -1

Explanation: The grid is-
2201

Oranges at (0,0) and (0,1) can't rot orange at
(0,3).

function orangesRotting(grid) {
let n = grid.length;
let m = grid[@].length;
let q = [];

minTime — &wfo ook &) may Aot
—%fn queup, put eendinste @3%
mrhag»(yetfon oS
time 0
(20,0
(6:2).0
> ff fom quent
st 1t
O ol its reljhbmA
<o the quent
pot

e

T O(WM) xf

let vis = Array.from({ length: n }, () => Array(m).fill(0)); SG‘% OZNYM}

for (let i = 0; i < n; i++) {
for (let j =0; j <m; j++) {
if (grid[i][j] === 2) {

q.push({ pos: [i, j], time: @ });

vis[il[j] = 2;
} else {
vis[i]l [j] = grid[il[j];
}
}
1

let tm = 0;
let drow = [-1, @0, 1, 0];
let dcol = [0, 1, 0, -1];

while (q.length > @) {
let {
pos: [r, cl,
time: t,
} = q.shift();
tm = Math.max(tm, t);

for (let i = 0; i < 4; i++) {
let nrow = r + drow[il;
let ncol = ¢ + dcollil;

if (nrow >= @ & nrow < n & ncol >= 0 &&

ncol < m && vis[nrow] [ncol] === 1 &&
grid[nrow] [ncol] === 1
) {

q.push({ pos: [nrow, ncoll, time: t + 1 });

vis[nrow] [ncol] = 2;
}
}
ik

for (let i = 0; i < n; i++) {
for (let j =0; j <m; j++) {

if (vis[il[j] !== 2 && grid[il [j]

}
b

return tm;

}

const grid = [[e,1,2],[0,1,2],[2,1,1]]
orangesRotting(grid);

=== 1) return -1;

dehet a in an undiseded geaph QMW OFS

ool

Example 1:

Detect cycle in an undirected graph Input:
Medium Accuracy: 30.13% Submissions: 269K+ Points: 4 V=5 E=5
adj = {{1}, {0, 2, 4}, {1, 3}, {2, 4}, {1, 3}}
Output: 1
Explore Job Fair for students & freshers for daily new opportunities. Find 7 Explanation:
A Job Today!

Given an undirected graph with V vertices and E edges, check whether it
contains any cycle or not. Graph is in the form of adjacency list where adj][i]

contains all the nodes ith node is having edge with.

4

1->2->3->4->1 is a cycle.

function detect(src, adj, vis) { “ l _)> D [N f 25‘)
vis[src] = 1;

let q = [];
q.push({ node: src, parent: -1 });

while (q.length > 0) { | 3([-7 00\}} —-f' @ [.NJ /X/ [N)

let { node, parent } = g.shift();

for (let adjacentNode of adj[nodel) {
if (is[a d] ntNode]) {
is[a d] N de] = 1;

q.push({ node: adjacentNode, parent: node });
} else if (par t!= d] entNode) {
return true;
}
}
}
return false;
+

function isCycle(V, adj) {
let vis = Array(V).fill(o);

for (let i = 0; i <V; i++) {
if (lvis[i]) {
if (detect(i, adj, vis)) return true;
}
}

turn false;
}

L2 > deleck 0 oo undisecded geabh \A&m& 3

) R

0= I

1 — (9%
C’Wﬁ& ~ 20
N S— 71,46

5—= §% Yj
l 65— $357

T—> 55,64

: e
, s fom a0, if we ereout |
Mﬁwﬂ% me (ﬁi/e& ibied Han How 1S

beod b gl
st [0 To(o]o[olD)]

—> 3 S 6 [

[/
v P :))
k2] o8
%//
A/,
[/
T/;%ﬁ/sj croa !
G eCEEEENS
1(7/
AN "
3> 0T
/%(41%) &fs[& ooy o & F o ot oot

9% - oLl
D
| o) i

i (mode(= |
by (1 #t o O&me&x]')
D (i =08

| el node) = = g
; Whusn e

o, it (it 1= poed]

: i T,

) Wn éﬂ&‘

function dfs(node, parent, vis, adj) {
vis[node] = 1;
for (let adjacentNode of adj[node]) {
if (!vis[adjacentNode]) {
if (dfs(adjacentNode, node, vis, adj)) {
return true;
}
} else if (adjacentNode !== parent) {
return true;
}
b
return false;

}

function isCycle(V, adj) {
let vis = new Array(V).fill(0);
for (let 1 = 0; i < V; i++) {
if (!vis[i]) {
if (dfs(i, -1, vis, adj)) return true;
}
}
return false;

}

>N -+ 0N)
i
6> O(N +2£) +0

N
! Y \ITS'I'M) mﬂ

[N)
e (oo

lbo13. dtckence, 8) neorert ol Q\O\r\rf

Distance of nearest cell having 1

Medium Accuracy: 47.7% Submissions: 51K+ Points: 4

Explore Job Fair for students & freshers for daily new opportunities. Find A

A Job Today!

Given a binary grid of n*m. Find the distance of the nearest 1 in the grid for
each cell.

The distance is calculated as |i1 -i2| + |j1 -j2l, where iy, j1 are the row
number and column number of the current cell, and ip, jp are the row
number and column number of the nearest cell having value 1. There

should be atleast one 1in the grid.

L) 0/ mabix

Example 1:

Input: grid = {{0,1,1,0},{1,1,0,0},{0,0,1,1}}
Output: {{1,0,0,1},{0,0,1,1},{1,1,0,0}}
Explanation: The grid is-

0110

1100

0011

0's at (0,0), (0,3), (1,2), (1,3), (2,0) and
(2,1) are at a distance of 1 from 1's at (0,1),
(0,2), (0,2), (2,3), (1,0) and (1,1)

respectively.

. function nearest(grid) {
const n = grid.length;

3 const m = grid[0].length;

A const vis = Array.from({ length: n }, () => Array(m).fill(e));
const dist = Array.from({ length: n }, () => Array(m).fill(@));
const q = [1;

for (let i = 0; i < n; i++) {
for (let j =0; j <m; j++) {
if (grid[il[j] === 1) {
q.push({ pos: { row: i, col: j }, steps: @ });
vis[i] [j] = 1;
} else {
vis[il [j] = o;

1
1

1

1

|

1t }
1 }

1 }

1

| const delRow = [-1, 0, 1, 0];
const delCol = [0, 1, 0, -1];

while (q.length > @) {
const {
pos: { row, col },
steps,
} = q.shift();
dist[row] [col] = steps;

for (let i = 0; i < 4; i++) {
const nRow = row + delRow[il;
const nCol = col + delCollil;

if (
nRow >= 0 &&
nRow < n &&
nCol >= 0 &&
nCol < m &&
vis [nRow] [nCol] === @
) {
vis [nRow] [nCol] = 1;
q.push({ pos: { row: nRow, col: nCol }, steps: steps + 1 });
}
43 }
14 }

return dist; U)IN‘QL L(m)

id
&
. 1o olren)x 100v7) 25 BN

19 const grid = [[1,0,1],[1,1,0],[1,0,0]]

0 nearest(grid); //7 SO’> OCN'?QM)‘('O(N?CM)
CCon, 03, (00,13, [00,2] Vi) didancls

Lo 5 suspunded seglors

Replace O's with X's Example 1:

Medium Accuracy: 34.0% Submissions: 35K+ Points: 4

Input: n =5 m =4

mat = {{'X', 'X', 'X', 'X'},
O, H0r, BE, O
{x, 0, "0, X},

Given a matrix mat of size N x M where every element is either O or X. e, X EXG

Explore Job Fair for students & freshers for daily new opportunities. Find 7
A Job Today!

Replace all O with X that are surrounded by X. e 5o '0'}}

A0 (orasetof 0) is considered to be surrounded by X if there are X at Output: ans = {{'X', 'X', "X, 'X'}
, IX', IXI}'
, 'X', lxl},

locations just below, just above, just left and just right of it. X X

Your Task: {'x, 'x'

You do not need to read input or print anything. Your task is to complete the XXX XY
! ! U !

function fill() which takes n, m and mat as input parameters ad returns a 2D

{‘XI, |X|’ |OI' Iol}}
Explanation: Following the rule the above

array representing the resultant matrix.

Expectsd Time Complexity:0(nm) matrix is the resultant matrix

Expected Auxiliary Space: 0(n*m)

Constraints:

1=n,m=<500

XX > ¥ e
XQCEQ@
S > O X X
) XX X X

S S X O %
= X O O X2
=< o > R X
XXQOS{

‘b o O
b

0 >(4Y

ds(40)

u

I
(4
/
()

function dfs(row, col, vis, mat, delRow, delCol) {
vis[row] [col] = 1;
const n = mat.length;
const m = mat[0].length;

for (let i =
const nRow =
const nCol =

0; i< 4; i++) {
row + delRow[il;
col + delCollil;

if (
nRow >= 0 &&
nRow < n &&
nCol >= 0 &&
nCol < m &&
vis [nRow] [nCol]
mat [nRow] [nCol]

) 4
dfs(nRow, nCol,

}

}
}

vis, mat, delRow, delCol);

function fill(n, m, mat) {
const delRow = [-1, 0, 1, 0];
const delCol = [0, 1, @, -1];

const vis = Array.from({ length: n }, () => Array(m).fill(o0));

for (let j = 0; j < m; j++) {
if (vis[e][j] 0 && mat([0][j] "0") {
dfs(e, j, vis, mat, delRow, delCol);
}

if (vis[n - 1][j] 0 & matln - 1][j] === "0") {
dfs(n - 1, j, vis, mat, delRow, delCol);
}

}

for (let i = @; i < n; i++) {
if (vis[i][e] 0 & mat[i] [0] === "0") {
dfs(i, @, vis, mat, delRow, delCol);
}

if (vis[i]l[m - 1] 0 && mat[il[m - 1] === "0") {
dfs(i, m - 1, vis, mat, delRow, delCol);
}

}

for (let i = @; i < n; i++) {
for (let j = 0; j <m; j++) {
if (vis[il[§] === 0 && mat[il [j] === "0") {
mat[i] [j] = "X";

}
}
}
return mat;
}
t t [[X X X x] [[IXI' IXI' IXI, IXI]'
const mat = [['X', 'X', 'X', 'X'], Tyl iyl ayr gyl
X, 00, 'X', 'X'1. [Xy, !Xy, Xy, ',
['x', ‘o', ‘o', 'x'l, ['X', IXI’ 'X', X!]’
['x+, ‘o', 'x*, 'x'1, Oy a3,
[lx.' .x.' IOII IOI]] 1 1 1 1 1 1 1 1
fill(s, 4, mat); by g i U
fill(5, 4, mat); qoa

petom > done
> QAQ;AJ

k(Y
4

He(24)

o) x4 + 00 1907
S
SC> D[vxm)

6> U

X

Example 1:

Input:

grid[1{]1 = {{0, 0, 0, 0},
{1, 0 1,0},
{0, 1,1, 0},
{0, 0, 0, 0}}

Number Of Enclaves

Medium Accuracy: 50.93% Submissions: 15K+ Points: 4

Explore Job Fair for students & freshers for daily new opportunities. Find

g
A Job Today! Output:

3
Explanation:
0000

Amove consists of walking from one land cell to another adjacent (4- 1010

You are given an n x m binary matrix grid, where 0 represents a sea cell and

1represents aland cell.

directionally) land cell or walking off the boundary of the grid. 0110
0000

Find th ber of land cells in grid for which t walk off th
ind the number ot tand cells in grid forwhich we cannot watk oft the The highlighted cells represents the land cells.

boundary of the grid in any number of moves.

Your Task:

You don't need to print or input anything. Complete the function
numberOfEnclaves() which takes a 2D integer matrix grid as the input

parameter and returns an integer, denoting the number of land cells.
Expected Time Complexity:

Expected Space Complexity: O(n * m)

Constraints:

e 1<=n,m<=500

e grid[i][j]==00r1

(] (
nRow >= 0
function numberOfEnclaves(grid) { nRow < n
const q A nCol 0
const n = grid.length; nCol < m
P -shviiy vis [nRow] [nCol] === 0
£ous 9 s SE00T grid[nRow] [nCol] 1
const vis = Array.from({ n}, () => Array(m).fill(e));) {
q.push([nRow, nColl);
for (let i = @; i < n; i++) { vis [nRow] [nCol] = 1;
r(let j=0; j<m j++) { }
f(l==0||j=—=0||i=n-1]]j=n-1){ .
G (SRR)] == &) &
q.push([i, j1); let cnt = 0;
vis[i] [j] e for (let i = @; i < n; i++) {
} (et j =0; j <m; j++) {
} (grid[i][j] 1 vis[i][j] 0) cnt
y V!
}
cnt;
const delRow = [-1, 0, 1, @]; }
const delCol = [0, 1, 0, -1];
const grid = [
e, o, o, 1],
Lpler = O) 1 -, lo, 1, 1, 0],
const [row, col]l = g.shift(); [0, 1, 1, oI,
o, o, 0, 1],
for (let i = 0; i < 4; i++) { le, 1, 1, o,

const nRow = row + delRow[i]; 1;

const nCol = col + delCollil; ofE (grid)
number0fEnclaves H

M mb% G‘g Cﬂh'#ﬂ(} 732&”0’@. Example 1:

Input:

grid[1(] = {{1, 1, 0, 0, 0},
{1, 1,0, 0, 0},
i, @, @, 1, 01
{0, 0,0 1, 1}}

Number of Distinct Islands

Medium Accuracy: 62.29% Submissions: 31K+ Points: 4

Explore Job Fair for students & freshers for daily new opportunities. Find 7
A Job Today! Output:

1

Explanation:

grid[1[I = {{1, 1, 0, 0, 0},
Ll 1 @ 0, O
{0, 0, 0, 1, 1},
{0, 0,0, 1, 1}}

Given a boolean 2D matrix grid of size n * m. You have to find the number of

distinct islands where a group of connected 1s (horizontally or vertically)

forms anisland. Two islands are considered to be distinct if and only if one

island is not equal to another (not rotated or reflected).

Same colored islands are equal.

We have 2 equal islands, so we

have only 1 distinct island.

ittt et vy i v v) oo O (wmaxst 00w xm xlog (v

vis[row] [col] = 1;
vec.push({ x: row - rowd, y: col - col@ });
const delRow = [-1, @, 1, 0];

const delCol = [0, 1, 0, -11; 8> O[N%‘Mj

for (let i = 0; i < 4; i++) {
const nRow = row + delRow[il;
const nCol = col + delColl[il;
if (
nRow >= 0 &&
nRow < grid.length &&
nCol >= 0 &&

nCol < grid[0@].length &&
!vis [nRow] [nCol] &&
grid[nRow] [nCol] ===

)
dfs(nRow, nCol, vis, grid, vec, rowd, col0);

}

}
}

function countDistinctIslands(grid) {
const n = grid.length;
const m = grid[@].length;
const vis = Array.from({ length: n }, () => Array(m).fill(0));
const st = new Set();

for (let i = 0; i < n; i++) {
for (let j = 0; j < m; j++) {
if (!vis[il[j] && grid[il[j] === 1) {
const vec = [];
dfs(i, j, vis, grid, vec, i, j);
st.add(JSON.stringify(vec));
b
}
}

return st.size;

}

const grid = [
[ll 1! 0' 0! 0]'
1, 1, o, o, 0],
[e, o, 0, 1, 1],
[e, o, 0, 1, 1],
1;
countDistinctIslands(grid); \

bolT. Aiposkiy_gaplo
(s e gl with 2 olps such

ame ol

Hod aof’awuﬁ neclos Pows

A No—0—0

6 + /0 S() G7

&

O) pumibl, — e
éf/ws%rl{eggaﬂu

é}@ Z(I) e Poesble

-%%WA#RM%MD%%CW NM%

%GW$$\WWWM %Qwﬁm&%%%k
0dd e forgh > ot pmkite

BES A = ook @\ﬁﬁ&j’e}
Ol = 0— ol s
1 - Q;BW)?/ 2> §1,3,63

@em@m% Q 55§23

1> $3,C,3)
s > U, 63
6 > 52, 5)
/ 72 ;‘11‘3
2> (7]
gw
!

0 N Q
el - ff/
: g 4567

uition e 08 85
([N N J TC)'%

. function check(start, V, adj, color) { %"3
p) const q = [];

3 q.push(start);
color[start] = 0;

.
g
K
L
=
2
4
uen

5 while (q.length > @) {
const node = q.shift();

for (const it of adj[nodel) {
if (color[it] === -1) {
color[it] = 1 - color[node];
q.push(it);
} else if (color[it] === color[node]) {
return false;

22 function isBipartite(V, adj) {
onst color = new Array(V).fill(-1);

for (let i = @; i < V; i++) {
if (color[i] === -1) {
if (!check(i, V, adj, color)) {
return false;

lalt, (J%a/;z% gng?/\ ﬂ"ﬂ@?_?/i
/@\@ﬁ4 B

3 = % 2,41

Y~ $3,5,7

@ _é s > 4,43

6 > 52,53
7 > $‘4)'¢;

9 g > 73

Ccalph - 0/

N I BN E| ET RGN

z%$66“78

L e
CJ%?{Q function dfs(node, col, col adj) {
olor[node] = col
//;7 for (let it of adj[nodel) {
if (color[it] -1) {
<; f (dfs(it, SRcol dj) false) ret fal
lse if (color[it] = 1) {
urn false

'>
(MEU‘: \? function isBipartite(V, adj) {

let color = new Array(V).fill(-1);
Tl) for (let i =0; i <V; i++) {
&{5 (70/ (ﬂ%(ﬁ/ if (color[i] === -1) {
! ,&% if (dfs(i, @, color, adj) === false) return false;
}
/ /K’ \f }
return true;

L9 defeck opdle I o direcked gaphs (2R | > $23

2> ¢ 33

@ >@ @ 2> $v, 71

vy — 9(;
s > }e3

é]/) > 6 > %3

7> ¢}

¢> 393

4’ 0,3 7103

me@cﬂck 102 (I¢7
BN ﬂ@&mew% a mﬁa%%hm%\%@@‘\% e fo(‘%(QQ%

O\Q 3 4+ 5 6 7 9
\“&’L} \0‘0(0)00 o b(o
PGH«U&['D 0100 ol ofo [o | OE@ oQ{‘éW

o v
Swepls My
e
;%Zgj F &% i{%
7/ A X e
JMU 3 T7) e
1 e " /
ALY, ; Q@gw & 4o
Y ot

([J Ce
function dfsCheck(node, adj, vis, pathVis) { 2

vis [node] 1;

pathVis[node] = 1; 86.27
for (let it of adj[nodel) { W % :DF\S

if (vis[it] === 0) {
if (dfsCheck(it, adj, vis, pathVis) === true) return true;
}

else if (pathVis[it] === 1) {
return true;
}
}
pathVis[node] = 0;
return false;

}

function isCyclic(V, adj) {
let vis = new Array(V).fill(0);
let pathVis new Array(V).fill(e);

for (let 1 = 0; i < V; i++) {

f (vis[i] === 0) {
if (dfsCheck(i, adj, vis, pathVis) === true) return true;
}
g
return false;
}

lac20. %//ld) eventugl zaB@ sfaes.

Eventual Safe States

Medium Accuracy: 55.52% Submissions: 11K+ Points: 4

Explore Job Fair for students & freshers for daily new opportunities. Find 4

A Job Today! ‘

Adirected graph of V vertices and E edges is given in the form of an
adjacency list adj. Each node of the graph is labelled with a distinct integer
intherange0toV-1.

Anode is a terminal node if there are no outgoing edges. A node is a safe
node if every possible path starting from that node leads to a terminal

node.

Output:
2456

Explanation:
answer should be sorted in ascending order. hetgiventoraphlislhowniabovel

You have to return an array containing all the safe nodes of the graph. The

Nodes 5 and 6 are terminal nodes as there are no
outgoing edges from either of them.
Every path starting at nodes 2, 4, 5, and 6 all

lead to either node 5 or 6.

0 1+ 2 I M S b F 2 910
Vis eyt T T T [T71 11

pis D DT T T T T 1T 7]

@a@ D > |

/ | = 2

@/@ l, L 5 o
@%/ OO0, —0) b)- « s
O~e S
@/’ ;v»t') 2> 1 7
a1 Eni

D o) == "
Koo 7 "f@}fb’)?‘f}(l’]
dy Mo :Zemdg w07 > o nole

s
Jk@ 3 A Qde@&M

Ll K
TJ » 0@2 ol 2> olsoatyy wiated

GWV I} =7 ﬁ%m'\aj W

M
00
function dfsCheck(node, adj, vis, pathVis, check) { TCW

vis[node] = 1;
pathVis[node] = 1;

check[node] = 0; 307

for (let it of adj[nodel) { In the given code, “check" is an array used to keep track of the nodes that are eventually
if (vis[it] === @) { safe. It is an array of integers with the same length as the number of nodes in the graph (*v*).
if (dfsCheck(it, adj, vis, pathVis, check) === true) return true; Initially, all the elements in the “check " array are set to O.
}
During the depth-first search (DFS) traversal of the graph, the *dfsCheck " function updates
else if (pathvis[it] == 1) { the values in the “check" array. When a node has been processed and is considered safe, the
return true; value of the corresponding index in the “check" array is set to 1.
}
} After the DFS traversal is complete, the “eventualSafeNodes " function iterates through the
U (L }; “check" array to find the nodes with a value of 1. These nodes are considered safe and are

pathVis [node]
return false;

}

0;
added to the *safeNodes " list, which is then returned as the final result.

In summary, the “check" array serves as an indicator to mark whether a node is eventually
function/eventualsafeNades(V, adj)i safe or not. If the value at the index corresponding to a node is 1, the node is considered safe;
let vis = new Array(V).fill(e);
let pathVis = new Array(V).fill(e);
let check = new Array(V).fill(e);

otherwise, it is not considered safe.

for (let i = @; i < V; i++) {
if (vis[i] === 0) {
dfsCheck(i, adj, vis, pathVis, check);
}
}

let safeNodes = [];
for (let i = 0; i < V; i++) {

if (check[i] === 1) safeNodes.push(i);
}

return safeNodes;

L2l _@LZOOZ%WE St %@QM

eV ne el ards (dFs)
QPQPX‘ na > l,lw\WL [QHIQL")V‘a :
vots 4 & uzh 4

fane 4 o oo bohorza
uf v, o appens »

b%mn \/"py MﬂA&L‘l“a

@ ©
1 >eY)
O—>0-"

Topological sort

Medium Accuracy: 56.52% Submissions: 132K+ Points: 4

Explore Job Fair for students & freshers for daily new opportunities. Find

g
A Job Today!

Given a Directed Acyclic Graph (DAG) with V vertices and E edges, Find any

Topological Sorting of that Graph.

Output:

1

Explanation:

The output 1 denotes that the order is
valid. So, if you have, implemented
your function correctly, then output
would be 1 for all test cases.

One possible Topological order for the
graph is 3, 2, 1, 0.

function dfs(node, vis, st, adj) {

vis[node]l = 1;

for (let it of adj[node]l) {

if (!vis[it]) dfs(it, vis, st, adj);

}
st.push(node);
}

function topoSort(V, adj) {

const vis = Array(V).fill(o);

const st = [];

for (let i = 0; i <V; i++) {

if (!vis[i]) {

dfs(i, vis, st, adj);

}
}

return st.reverse();

}

56> 0(N) 10l
VRN
> 0(vtE)

lec22 Kahn's Mg;mf%m — 88

ook

Tepo!bb«\cak goﬁbv\a CK@!«».'; A(jm\}‘f*m (IZFS) 5_ D
N

@\3 O uu\ﬁwm&if :f): 4+ 0
I el o hos w220 .
@ —>@ ”@ edsqe befhw o 3':35':”; 41\ /
wlv, Ma@Pm e) 3

D 3

osdbsiy > 40 23

% 252 510

0
Yy 1 0

ir\al%Tw:Lle [Jo]))
o v 2 3 ¢ 5 ;
\ ') g

@) trgent ol necls otk 0 m(f%rgeg in queue -

® ok 4 fom quent

soduee e ¢ a3 Todefee from conmected

‘\OCQQ/ / C)/ s

B shiff 5 pom preue
wiuee the 5 A8

P —~ ~ ~— -

2 = 5%
£ 6]

4550, 13
§f—’>£0,2§

#@p@ "[O CQX MQ{Q‘G ﬁndﬁgw %,) ﬂ [N) *D(N/-}'D(N/ . .fu::tion topoSort(V, adj) {

4\ T 7\ let indegree = new Array(V).fill(Q);
X‘f *W& %\A—) for (let i = 0; i <V i++) {
U W (%:\ [V‘d?é“ 7 for (let it of adj[i]) {

indegree[it]++;
doece, Po L G oo 07 (V48 o
let q = [1;
e defpas s 0
}
I

let topo = [];

while (q.length > 0) {
let node = g.shift();
topo.push(node) ;

for (let it of adj[nodel) {
indegreelit]--;
if (indegree[it] === @) q.push(it);
}

return topo;
}

let adj = [[1, [1, [3], [1]1, [e, 11, [0, 2]1;
let V = 6;
let ans = topoSort(V, adj);

for (let node of ans) {
console.log(node + " ");
}

console. log();

Lec23. delect odme fn aﬂ;@d;cv gl s

O 1 [
(:M:)ﬂ:)ﬁ@ 2> 93§
/ 3945/
%] oIKle. f» -

w00 lnpw 9o ast Ts nit o2 5—> ¢ 7
ot e sl ity ot

ot =
,;0},%591;0_.\ ghum%ﬁm&%w . =
> Hew 3 G o 11 & 9 sedced by 1
’ % fut moa? no 0 ‘M%%@’/ podle

queie

o 6> O[Vv18)

function isCyclic(V, adj) {
let indegree = new Array(V).fill(e);
for (let i = 0; i < V; i++) {
for (let it of adjl[il) {
indegree[it]++;

N

}
}

let q = [];
for (let i = 0; i < V; i++) {
if (indegree[i] === @) {
q.push(i);
}
}

let cnt = 0;

while (q.length > @) {
let node = q.shift();
cnt++;

for (let it of adj[nodel) {
indegree[it]——;

if (indegree[it] === @) q.push(it);
}

}

if (cnt === V) return false;

return true;
}
let adj = [I1, [2], (3], [4, 51, [2], [1];
let V = 6;
let ans = isCyclic(V, adj);

console. log(ans);

olN) +0[N)

e 2% > counse schedule, 12 | PR neguiice tank)

Prerequisite Tasks

Medium Accuracy: 37.81% Submissions: 43K+ Points: 4

Explore Job Fair for students & freshers for daily new opportunities. Find 4
A Job Today!

There are a total of N tasks, labeled from 0 to N-1. Some tasks may have
prerequisites, for example to do task 0 you have to first complete task 1,
which is expressed as a pair: [0, 1]

Given the total number of tasks N and a list of prerequisite pairs P, find if it

is possible to finish all tasks.

Input:

N=4 P=3

prerequisites = {{1,0},{2,1},{3,2}}

Output:

Yes

Explanation:

To do task 1 you should have completed
task 0, and to do task 2 you should

have finished task 1, and to do task 3 you

should have finished task 2. So it is possible.

Input:

N=2 P=2

prerequisites = {{1,0},{0,1}}
Output:

No

Explanation:

To do task 1 you should have completed

task 0, and to do task 0 you should

have finished task 1. So it is impossible.

Course Schedule

Medium Accuracy: 51.77% Submissions: 19K+ Points: 4

Explore Job Fair for students & freshers for daily new opportunities. Find 9

A Job Today!

There are a total of n tasks you have to pick, labeled from 0 to n-1. Some
tasks may have prerequisites tasks, for example to pick task 0 you have to
first finish tasks 1, which is expressed as a pair: [0, 1]

Given the total number of n tasks and a list of prerequisite pairs of size m.
Find a ordering of tasks you should pick to finish all tasks.

Note: There may be multiple correct orders, you just need to return one of
them. If itis impossible to finish all tasks, return an empty array. Returning
any correct order will give the output as 1, whereas any invalid order will

give the output "No Ordering Possible".

function findOrder(V, m, prerequisites) {
let adj = new Array(V).fill(null).map(() => [1);
for (let it of prerequisites) {

adj [it[1]1].push(it[e]);

}
let indegree = new Array(V).fill(Q);
for (let i = 0; i < V; i++) {
for (let it of adjl[il) {
indegree [it]++;
}
}
let g = [];
for (let i = 0; i < V; i++) {
if (indegreel[i] === 0) {
q.push(i);
}
}

let topo = []1;

while (q.length > 0) {
let node = q.shift();
topo.push(node);

for (let it of adj[node]) {
indegree[it]——;

if (indegree[it] === @) q.push(it);
}
}
if (topo.length === V) return topo;
return [1;
}
let N = 4;
let M = 3;
let prerequisites = [
[o, 11,
1, 21,
2, Sl

1;

let ans = findOrder(N, M, prerequisites);
console. log(ans);

prerequisites = {{1, 0},

{2, 0},

{3, 1},

{3, 21}
Output:
1
Explanation:
There are a total of 4 tasks to pick.
To pick task 3 you should have finished
both tasks 1 and 2. Both tasks 1 and 2
should be pick after you finished task 0.
So one correct task order is [0, 1, 2, 3].
Another correct ordering is [0, 2, 1, 3].

Returning any of these order will result in

a Output of 1.

_@cgé fend evendudd sofe cfals — BFC

Eventual Safe States

Medium Accuracy: 55.52% Submissions: 11K+ Points: 4

Explore Job Fair for students & freshers for daily new opportunities. Find e
A Job Today!

Adirected graph of Vvertices and E edges is given in the form of an
adjacency list adj. Each node of the graph is labelled with a distinct integer

intherangeOtoV-1.

Anode is a terminal node if there are no outgoing edges. A node is a safe

node if every possible path starting from that node leads to a terminal
node.

You have to return an array containing all the safe nodes of the graph. The

answer should be sorted in ascending order.

The given graph is shown above.

Nodes 5 and 6 are terminal nodes as there are no
outgoing edges from either of them.
Every path starting at nodes 2, 4, 5, and 6 all

lead to either node 5 or 6.

®
)| | R

J| [T
)

©

STS
(\J

function eventualSafeNodes(V, adj) {
const adjRev = Array.from({ VY ()=>11);
const indegree = Array(V).fill(0);

for (let i = 0; i < V; i++) {
for (const it of adj[il) {
adjRev[it].push(i);
indegree[i]++;

}

const q = [];
const safeNodes = [];

for (let i = 0; i < V; i++) {
if (indegree[i] === 0) {
q.push(i);
}
}

while (qg.length > 0) {
const node = g.shift();
safeNodes.push(node) ;

for (const it of adjRev[node]) {
indegree[it]-—-;
if (indegree[it] === @) q.push(it);

}

safeNodes.sort((a, b) => a - b);

return safeNodes;
}
const adj = [[1],I[2], (3, 4],I[4, 51,I6],I61,(7]1,I[1,[1, 91,[10],[8],[9]1];
const V = 12;

const safeNodes = eventualSafeNodes(V, adj);

console. log(safeNodes.join(" "));

fec2s > alien &z‘c}{o% - Jc@be{(&(coﬂ so5t

Alien Dictionary

Hard Accuracy: 47.81% Submissions: 61K+ Points: 8

Explore Job Fair for students & freshers for daily new opportunities. Find 4

A Job Today!

Given a sorted dictionary of an alien language having N words and k
starting alphabets of standard dictionary. Find the order of characters in
the alien language.

Note: Many orders may be possible for a particular test case, thus you may
return any valid order and output will be 1 if the order of string returned by

the function is correct else 0 denoting incorrect string returned.

Input:
N=5 K=4

dict = {"baa","abcd","abca","cab","cad"}
Output:

1

Explanation:

Here order of characters is

'b', 'd', 'a', 'c' Note that words are sorted

and in the given language "baa" comes before

"abcd", therefore 'b' is before 'a' in output.

Similarly we can find other orders.

Wwf\oi # order s gl }ow%{o?

function topoSort(V, adj) {
let indegree = new Array(V).fill(e);
for (let i = 0; i < V; i++) {
for (const it of adj[il) {
indegree[it]++;

}

}

let q = [1;

for (let i 0; i <V; i++) {
if (indegree[il 0) {

q.push(i);

b

b

let topo = [1;

vshile (q.length > @) {
let node = q.shift();
topo.push(node) ;

for (const it of adj[nodel) {
indegree[it]
f (indegree[it] === @) q.push(it);

topo;

}

function findOrder(dict, N, K) {
let adj = new Array(K).fill(null).map(() => [1);

or (let i =0; i <N-1; i++) {
let s1 = dict[il;
let s2 dict[i + 1];
let len = Math.min(sl1.length, s2.length);
for (let ptr = @; ptr < len; ptr++) {

f (sllptr] !== s2[ptr]) {
adj [s1.charCodeAt(ptr) - "a".charCodeAt(@)].push(
s2.charCodeAt(ptr) "a".charCodeAt(0)

break;

}
}
}
let topo = topoSort(K, adj);
let ans
for (const it of topo) {
ans = ans + String.fromCharCode(it + "a".charCodeAt(0));
i}
1 ans;
Iy
let N=5,
& H

let dict ["baa", "abcd", "abca", "cab", "cad"];
let ans = findOrder(dict, N, K);
console. log(ans) ;

k2] ghostest fott In diserked g %Mlb \%@Mv_

Shortest path in Directed Acyclic Graph
Input:

Medium Accuracy: 48.48% Submissions: 22K+ Points: 4
m= 7

Explore Job Fair for students & freshers for daily new opportunities. Find 2 ed g e= [[0, ‘] ’2] . [0, 4, ']] ! [41 5[4]

A Job Today!
14,2,21,11,2,31,12,3,61,15,3,111
Given a Directed Acyclic Graph of N vertices from 0 to N-1 and a 2D Integer

array(orvector) edges[][] of length M, where there is a directed edge
y g g g

from edge[i] [0] to edge[il[1] with a distance of edge[i][2] for alli, 0<=i output

Find the shortest path from src(0) vertex to all the vertices and if it is 0 2 3 6 1 5

impossible to reach any vertex, then return -1 for that vertex.

DY Y53 2 «4_’3—)0 —;@;)@ fre 6

@ : : = bt
S \Oﬁﬂﬂ—ﬂ

(6) 1 = 43,1}
AM['I=:—> ¢) /:l/d‘— ik 9 1

—>

3
; ;JC,‘M 9i1) A0 v > $°»3§ ¢2113
sy St S0 il
Qiep) —> Pr P(?To

> $w2} (5,33
oot o o T e e O | ey I
o0 & » N & [(mm?%

_S@Lew’d}{@% nods et ¢
sock b telox e efper

coo -T'G.S; E)[N

function topoSort(node, adj, vis, st) {
vis[node] = 1;
for (const it of adj[nodel) {
let v = it.first;
if (lvis[vl) {
topoSort(v, adj, vis, st);

b
b
st.push(node);
}

function shortestPath(N, M, edges) {
let adj = new Array(N).fill(null).map(() => []);
for (let i = @; i < M; i++) {
let u = edges[il [0];
let v = edges[il[1];
let wt = edges[il[2];
adj [ul.push({ first: v, second: wt });
}

let vis = new Array(N).fill(e);
let st = [I;
for (let i = @; i < N; i++) {
if (lvis[i]) {
topoSort(i, adj, vis, st);
}
}

let dist = new Array(N).fill(1e9);
dist[o] = 0;
while (st.length > @) {
let node = st.pop();
for (const it of adjlnodel) {
let v = it.first;
let wt = it.second;

if (dist[node] + wt < dist[v]) {
dist[v] = wt + dist[node];
}

}

for (let i = 0; i < N; i++) {
if (dist[i] === 1e9) distl[i] = -1;
}

return dist;

let N = 6,
M=17;
let edges = [
lo, 1, 2],
lo, 4, 11,
[4, 5, 41,
4, 2, 21,
1, 2, 31,
2, 3, 61,
[5, 3, 11,
1;
let ans = shortestPath(N, M, edges);
console. log(ans); [" 6,

lecog. ahelend w W undikeded M)\ Witk unit wejaWs.

Shortest path in Undirected Graph having unit distance Inout
nput:

n=9 m=10
edges=[[0,11,0,3],[3,4],[4 ,5]
15, 61,01,2],[2,61,06,71,17,8],06,8]1

src=0

Medium Accuracy: 49.98% Submissions: 17K+ Points: 4

Explore Job Fair for students & freshers for daily new opportunities. Find 7

A Job Today!
You are given an Undirected Graph having unit weight, Find the shortest

Output:
012123344

: S 0, Jind choter dfanca

' 7 4 each nede Fom e
sourc. node.?

path from src to all the vertex and if it is unreachable to reach any vertex,

then return -1 for that vertex.

—

Qo, 03
- [}

dut > 77 (2] 2 [<] [& o] &
0 1 23 v s ¢ T 8 {nede, dat?

na&u T, d%{ - l
2

Y

node=0 node-2 node = $

b0 2 -
w0y (7 ({'/y
=0 . 2 -

[
L ks all dhe 0
function shortestPath(edges, N, M, src) {

let adj = new Array(N).fill(null).map(() => [1);
for (const it of edges) {

adj [it[0]].push(it[1]);

adj [it[1]].push(it[@]);

} > 0[4/+2£)

let dist = new Array(N).fill(1e9);

dist[src] = 0; Sc
let q = []; ‘>]
q.push(src);
while (q.length > @) {
let node = q.shift();
for (const it of adj[nodel) {
if (dist[node] + 1 < dist[it]) {
dist[it] = 1 + dist[nodel; mecomplexity
q.push(it);

. Creating the adjacency list takes ime, where M is the number of edges.
3} 1. Creating the adj list takes O(M) ti here Mis th ber of ed
} 2. The BFS algorithm itself takes O(V + E) time complexity, where V is the number of
3 vertices and E is the number of edges. In the worst case, E = O(V*2), making the time
complexity O(V*2).
let ans = new Array(N).fill(-1);
for (let i = @; i < N; i++) { The overall time complexity is O(M + V + E), which in the worst case becomes O(V*2).
if (dist[i]l !== 1e9) { .
ans[i] = dist[il; SEEEEITIR
H
} } 1. The adjacency list representation of the graph takes O(V + E) space.
. 2. The “dist" array takes O(V) space.
urr ;
} ! 3. The "q" queue takes O(V) space.
4. The “ans" array takes O(V) space.
let N =9, o PP ' :
M= 10: The overall space complexity is O(V + E), which is dominated by the adjacency list
= 10; y
let edges = [[0, 11,[0, 31,[3, 41,[4, 51,15, 61,[1, 21,12, 61,16, 71,17, 81,16, 811; LIS

let ans = shortestPath(edges, N, M, 0);
console. log(ans);

hood, wod locklr) [shestut ol

Word Ladder |

Hard Accuracy: 37.65% Submissions: 22K+ Points: 8

Explore Job Fair for students & freshers for daily new opportunities. Find 4

A Job Today!

Given two distinct words startWord and targetWord, and a list denoting
wordList of unique words of equal lengths. Find the length of the shortest
transformation sequence from startWord to targetWord.

Keep the following conditions in mind:

e Aword can only consist of lowercase characters.

e Only one letter can be changed in each transformation.

e Each transformed word must exist in the wordList including the
targetWord.

e startWord may or may not be part of the wordList
The second part of this problem can be found here.

Note: If no possible way to transform sequence from startWord to

targetWord return 0

)xgrmw"wt = “@*H eodwww(’: & .

ool bt -

<

W bufe foee

- dog > o

Input:

wordList = {"des","der","dfr","dgt","dfs"}
startWord = "der", targetWord= "dfs",
Output:

3

Explanation:

The length of the smallest transformation
sequence from "der" to "dfs" is 3

i,e "der" -> "dfr" -> "dfs".

T et dot [dog, Uot, log, Cog T

word Lst = [hof, ot oy, Lot . cog]
:{%fnwwv ~ hit , endWed = coqq
E fMM&DJM%,UH {

[,\j%%f

o000
function wordLadderLength(startWord, targetWord, wordList) {

const q = [1;

q.push({ word: startWord, steps: 1 });

const set = new Set(wordList);
set.delete(startWord);

while (q.length !== 0) {
const { word, steps } = gq.shift();

if (word === targetWord) {
return steps;
}

for (let i = 9; i < word.length; i++) {

const original = word[i];
for (let ch = "a".charCodeAt(@); ch <= "z".charCodeAt(@); ch++) {

const newWord =
word.substring(@, i) +
String.fromCharCode(ch) +
word.substring(i + 1);

if (set.has(newWord)) {

set.delete(newWord) ;
q.push({ word: newWord, steps: steps + 1 });

}

return 0;

}
const wordList = ["des", "der", "dfr", "dgt", "dfs"];
const startWord = "der";

const targetWord = "dfs";

const ans = wordlLadderLength(startWord, targetWord, wordList);

console. log(ans);

Lo 20— wod Luckl 2

Word Ladder Il

Hard Accuracy: 50.0% Submissions: 12K+ Points: 8

Explore Job Fair for students & freshers for daily new opportunities. Find e

A Job Today!

Given two distinct words startWord and targetWord, and a list denoting
wordList of unique words of equal lengths. Find all shortest transformation
sequence(s) from startWord to targetWord. You can return them in any

order possible.

Input:

startWord = "der", targetWord = "dfs",

wordList = {"des","der","dfr","dgt","dfs"}

Output:

der dfr dfs

der des dfs

Explanation:

The length of the smallest transformation is 3.
And the following are the only two ways to get

to targetWord:-

"der" -> "des" -> "dfs".

"der" -> "dfr" -> "dfs".

Keep the following conditions in mind:

A word can only consist of lowercase characters.

Only one letter can be changed in each transformation.

Each transformed word must exist in the wordList including the
targetWord.

startWord may or may not be part of the wordList.

Return an empty list if there is no such transformation sequence.

The first part of this problem can be found here.

wosdlit = [ﬁaf,%é’i/ %E’j/ /éﬁzr oz /5(}},407”/[502’/,@02, @07 5
éé%ffnwmd = bot erdwed = 002 (AJ/ 40// ﬁg{/ bz, MJZ} 5

/ 3 / /

N ¥]

(/()W‘/ [

Ol i)
bt b, fo) it
dlte oz fom

function findSequences(beginWord, endWord, wordList) {

const st = new Set(wordList);

const q = [1;
q.push([beginWord]);

const usedOnLevel = [];
usedOnLevel.push(beginWord);
let level = 0;

const ans = [1;
while (g.length > @) {

}

const vec = g.shift();

if (vec.length > level) {
level++;
for (const it of usedOnLevel) {
st.delete(it);
H

const word = vec[vec.length - 1];

if (word === endWord) {
if (ans.length === 0) {
ans.push(vec);
} else if (ans[@].length === vec.length) {
ans.push(vec);
}
}
for (let i = @; i < word.length; i++) {
const original = word[i];
for (let ¢ = "a".charCodeAt(@); c <= "z".charCodeAt(0); c++) {
const modifiedWord =
word.slice(®0, i) +
String.fromCharCode(c) +
word.slice(i + 1);
if (st.has(modifiedWord)) {
vec.push(modifiedword);
q.push([...vecl);
usedOnLevel.push(modifiedwWord);
vec.pop();

return ans;

function comp(a, b) {
const x = a.join("");
const y = b.join("");
return x < y;

)

const wordList = ["des", "der", "dfr", “dgt", "dfs"];

const startWord = "der";

const targetWord = "dfs";

const ans = findSequences(startWord, targetWord, wordList);

if (ans.length === 0) {
console. log(-1);

} else {

ans.sort(comp);
for (const sequence of ans) {

console. log(sequence.join(" "));

Hom eamplet o exmjsles

Juesl > wd lackler 2 [opfim’ed abonths [y inensenes doasntead]
werdlist - f}&,dﬁ{,o@ﬂa. lot, ‘Aﬂ g
begin - hit ed - (9
S > follow wed bdder!, b find i tlee
6 dore e s s i |
o > bookodk A map fom end > &g

P gl He anguwes
ﬁl‘%m&lﬂl’: e g A g 105]
begm = ik ond = o
r
i
B -
528 g
= o B
fiz & (oo,)
_hischoud
oo (el ®

dhllyy, g b3) b (dy Tong dag

d%//l% fap, b 4

/
ols (Dol Joop, oo, B, bl)
/

s kit § cap, bog. bt bot, 1)
q\k%mmf{? mbi

const findLadders = (beginWord, endWord, wordList) => {
const map = new Map();
const ans = [];
let b = beginWord;

const dfs = (word, seq) => {
if (word === b) {
ans.push([...seql.reverse());
return;
}
const sz = word.length;
const steps = map.get(word);

for (let i = 0; i < sz; i++) {
const original = word[i];
for (let ch = "a".charCodeAt(0); ch <= "z".charCodeAt(®@); ch++) {
word =
word.slice(0, i) +
String.fromCharCode(ch) +
word.slice(i + 1);
if (map.has(word) && map.get(word) + 1 === steps) {
seq.push(word);
dfs(word, seq);
seq.pop();
}
}
word = word.slice(®, i) + original + word.slice(i + 1);

bH

const st = new Set(wordList);
const q = [beginWord];
map.set(beginWord, 1);
const sz = beginWord.length;
st.delete(beginWord);

while (g.length > 0) {
const word = q.shift();
const steps = map.get(word);

if (word === endWord) break;

for (let i = @; i < sz; i++) {
const original = word[il;
for (let ch = "a".charCodeAt(@); ch <= "z".charCodeAt(®@); ch++) {
const newWord =
word.slice(®, i) +
String.fromCharCode(ch) +
word.slice(i + 1);
if (st.has(newWord)) {
q.push(newWord) ;
st.delete(newWord);
map.set(newWord, steps + 1);

}

if (map.has(endWord)) {
const seq = [endWord];
dfs(endWord, seq);

return ans;

};

const comp = (a, b) => {
const x = a.join("");
const y = b.join("");
return x < y;

};

const wordList = ["des", "der", "dfr", "dgt", “dfs"];
const startWord = "der";

const targetWord = "dfs";

const ans = findLadders(startWord, targetWord, wordList);

if (ans.length === 0) {
console. log(-1);
} else {

ans.sort(comp);
ans. forEach((path) => {
console. log(path.join(" "));

loc32 D ketas a[g»m/’fﬁm. as/”%7 /ay‘m/';fz quens. , ottt | shostel foft-

Implementing Dijkstra Algorithm Input:

V=2

adj [1 = {{{1, 93}, {{o, 91}}
s=0

Output:

09

Explanation:

Medium Accuracy: 50.83% Submissions: 99K+ Points: 4

Explore Job Fair for students & freshers for daily new opportunities. Find 7

A Job Today!

Given a weighted, undirected and connected graph of V vertices and an
adjacency list adj where adj[i] is a list of lists containing two integers where
the firstinteger of each list j denotes there is edge betweeniand j, second
integers corresponds to the weight of that edge . You are given the source
vertex S and You to Find the shortest distance of all the vertex's from the
source vertex S. You have to return a list of integers denoting shortest
distance between each node and Source vertexS.

The source vertex is 0. Hence, the shortest
distance of node 0 is 0 and the shortest
Note: The Graph doesn't contain any negative weight cycle. distance from node 1 is 9.

given e

0 < V? dhie a&o an ke }m})f@mem}f’ol WS”‘{ 00
00 . 449)) = ¢ “
B - minls, 37 @%:%‘W, e
W‘E —) &j d&)’U sﬁuc}m&@
?MWP/

ccccc { MinPriorityQueue } = require("@datastructures-js/priority-queue"); ‘ 9&0 "'3 Ml" pﬁlW}yWe rn \73 (/D] gél)eﬁs
const dijkstra = (V, ad; S) = {
co pg = new Min ({ priority: () = pair[e] });
di; = ().f («MAX_S: GER) ;
To[S] 0;
ue([0, S1);
lllll (!pq. i ()) {
nst [] 0
r (co []) {
const [w] =
if W< [] {
o[v]
ueue([+w, v])
}
B
}
ret
}
con

a
_— _— e |
sE SN 5o

Y S o 00

TG > WVV\»WW&.\W

el 0_

[@033 uefna{ sof > s el nst possible 7n TS
gont it i1 oscending erdep

C»mf aa%m TwoShipl o qm&a@cm‘*{q& gt

£SO © & 2 g

[@ L&S)

41)
OF Nga |

S D¢

2 AT Bl éda‘,no‘b.?
I S

a3t 1y Paoiy Quowe § ot quene fo5 Djiteha alpy

$ra=0 ’

A1 = | i \ \j\

O(V * (pop vertex from min heap + no. of edges on each vertex * push in PQ))

O(V * (log(heapSize) + no. of edges * log(heapSize))

O(V * (log(heapSize) + V-1 * log(heapSize)) { one vertex can have V-1 edges }

O(V * (log(heapSize) * (V-1+1))

O(V * V * log(heapSize))

Now, at the worst case the heapSize will be equivalent to v2 as if we consider pushing

adjacent elements of a node, at the worst case each element will have V-1 nodes and they

will be pushed onto the queue.

O(V * V * log(v?))

O (v2 * 2 log (V))

O (E * 2 log(V)) { E= v2, total number of edges}

* log(V)) Worst case Time Complexity of Dijkstra’s Algorithm.

loss > pont shostert Pt | Dijhits olg0

K =/
d{rf:5
\ \ 7@%%%“55
D) + @ (1,4 5,5) @8
£ ot W@%W [i]
> by ey 9 am i fom
0
77 (579
CP/@\M()/, C?Q)
: /3]@j
Ok 49~
i
- A S ol B A 10,7
PM Tl Vl)(lg/ \("\ .
%d;] o } \f\f\g(f) ?abs{&),éohi il
:
0, g \75)

+2 \/
/\yﬂ Ky (@9 GV &
oher /’?ﬁfsemﬁ#/
g@\k é;mg fﬁﬂm

5 (5/5) QW; QJ

@Qﬁ @Q S WZ,%W faukik

XX, TUZDDO" méz[wdéng ()Wg

const shortestPath = (n, m, edges) => { a@ M/n PW;“?/QW

const adj = Array(n + 1)

atilv}

map(() = [1); TC—~> 0 £ w‘ﬂ‘d

edges. forEach((edge) => { > rmw
adj [edge[0]].push([edge[1], edgel2]]); \f

. adj [edge[1]].push([edge[0], edgel2]]); 8:;%) (lE['f‘IVﬂ + O U\/l)
const pq = [1; ‘ q\ 4\4‘1&_0 'QO'H"'

const dist = Array(n + 1).fill(1e9);

const parent = Array.from({ length: n + 1}, (_, i) => i); ’(ﬂ K) dfd a/l?

dist[1] = 0;
pg.push([0, 11);

while (pq.length) {
pq.sort(([al, [b]) => a - b);
const [dis, node] = pq.shift();

adj [node] . forEach(([adjNode, edW]) => {
if (dis + edW < dist[adjNode]) {
dist[adjNode] = dis + edW;
pq.push([dis + edW, adjNode]);
parent[adjNode] = node;

iH
};
}
if (dist[n] === 1e9) {
return [-1];
}

const path = [];

let node = n;

while (parent[node] !== node) {
path.push(node) ;
node = parent[node];

}

path.push(1);

path.reverse();

return path;
L)

const V = 5;
const E = 6;
const edges = [

27205

(2585 851h

2, 3, 41,
(1, 4, 11,
47378315
(3, 5, 11,
1;

const path = shortestPath(V, E, edges);
console. log(path.join(" "));

le36 . shestert distance n Q ﬁﬂ%ﬁ 0i2e

<

L w9 —©9

2R (% R

>ols|rle

Shortest Distance in a Binary Maze

Medium Accuracy: 58.22% Submissions: 27K+ Points: 4

Explore Job Fair for students & freshers for daily new opportunities. Find 4
A Job Today!

Given a n* m matrix grid where each element can either be 0 or 1. You need
to find the shortest distance between a given source cell to a destination

cell. The path can only be created out of a cellif its value is 1.

If the path is not possible between source cell and destination cell, then

return -1.

Note : You can move into an adjacent cell if that adjacent cell is filled with
element 1. Two cells are adjacent if they share a side. In other words, you
can move in one of the four directions, Up, Down, Left and Right. The source

and destination cell are based on the zero based indexing.

qon moe | deus din

P

N 7

D]“\ legaa
6,19

(2,21
(20

| /6o

(R)
)u, u").

P
zduk, }w,wl}é

(0,2
4 H
Yo Er0

Input:
grid[1(] = {{1, 1, 1, 1},

1},
1}
0},
11}

o Up @;
1y g Uy
1, 1,0,

{1, 0,0,

source = {0, 1}

{2, 2}

destination =

Output:

3

Explanation:
111
101

100
001
The highlighted part in the matrix denotes the

1
1
1111
1
1

shortest path from source to destination cell.

f
ol #/

function shortestPath(grid, source, destination) {

f (source[@] destination[0] && source[1] destination[1]) {
et 0;
i maze.
const q = [];
const n = grid.length;
const m = grid[0].length;
const dist = Array.from({ n} ()= maze.

Array. from({ m}, () = 1e9)
)i

dist[source[0]] [source[1]] = ©;
q.push([0, sourcel);

const dr = [-1, o, 1, 0];
const dc = [0, 1, 0, -1];

(g.length > 0) {
const [dis, [r, c]] = q.shift();

r(leti=0; i<4; iv+) {
const newr = r + drli];
const newc = ¢ + dclil;

f(
newr >= 0 &&
newr < n &&
newc >= 0 &&
newc < m &&
grid[newr] [newc] === 1 &
dis + 1 < dist[newr] [newc]
dist[newr] [newc] = 1 + dis;
f (newr === destination[0] & newc === destination[1]) {

turn dis + 1;
}

q.push([1 + dis, [newr, newcl]);

const source = [0, 1];
const destination = [2, 2];

const grid = [
1, 1,
[
1, 1,
(B 51,
1, o
1;

11,
11,

Sorepr

1],

const res = shortestPath(grid, source, destination);
console. log(res);

Time Complexity: O(4*N*M) { N*M are the total cells, for each of which we also check 4 adjacent nodes for

the shortest path length}, Where N = No. of rows of the binary maze and M = No. of columns of the binary

Space Complexity: O(N*M), Where N = No. of rows of the binary maze and M = No. of columns of the binary

lat37 Pt olth moin_ ol

Path With Minimum Effort

Medium Accuracy: 64.76% Submissions: 7K+ Points: 4

Explore Job Fair for students & freshers for daily new opportunities. Find 9
A Job Today!

You are a hiker preparing for an upcoming hike. You are given heights, a 2D
array of size rows x columns, where heights[row][col] represents the
height of cell (row, col). You are situated in the top-left cell, (0, 0), and you

hope to travel to the bottom-right cell, (rows-1,

columns-1) (i.e., 0-indexed). You can move up, down, left, or right, and you

wish to find a route that requires the minimum effort.

Aroute's effort is the maximum absolute difference in heights between two

consecutive cells of the route.

KLL 3 2 | iy

-2

S e e 1= e] i 2 L
DRSS |

i@, e
=11 2-

) iy S
S ﬁmmag%J

heights = [[1,2,2],[3,8,2],[5,3,5]]

Output: 2

Explaination: The route of [1,3,5,3,5] has a maximum absolute
difference of 2 in consecutive cells.This is better than the route

of [1,2,2,2,5], where the maximum absolute difference is 3.

?a,(\\ Wwith min mum ?d%wt g;_,? 'nl« ::f ?w‘\.g
2 (0/7’) ; (23

L Gty

' il

> 5
i
S 8
S e

() P
13 \
e A e @ o &\@y
e (0. —(0:2
-0
[L Sl oo (V9
: |

Time Complexity: O(4*N*M * log(N*M)) { N*M are the total cells, for each of which we also check 4 adjacent

nodes for the minimum effort and additional log(N*M) for insertion-deletion operations in a priority queue }
Where, N = No. of rows of the binary maze and M = No. of columns of the binary maze.

Space Complexity: O(N*M) { Distance matrix containing N*M cells + priority queue in the worst case

containing all the nodes (N*M) }.

Where, N = No. of rows of the binary maze and M = No. of columns of the binary maze.

LN N J 0
const { MinPriorityQueue } = require("@datastructures-js/priority-queue"); I Db

\

Min Puiorly Queue.
!

function minimumEffort(heights) { ‘}

const pq = new MinPriorityQueue({ priority: (cell) => cell.diff });
const n = heights.length;
const m = heights[0].1length;

const dist = Array.from({ length: n }, () => Array(m).fill(1e9));
dist[e][e] = o;
pq.enqueue({ diff: @, row: @, col: @ });

const dr = [-1, @, 1, 0];
const dc = [0, 1, @, -1];

while (!pq.isEmpty()) {
const it = pg.dequeue().element;
const { diff, row, col } = it;

if (row === n - 1 & col ===m - 1) {
return diff;

}

for (let i = 0; i < 4; i++) {
const newr = row + dr[il;
const newc = col + dclil;

if (newr >= @ & newc >= @ &5 newr < n && newc < m) {
const newEffort = Math.max(
Math.abs (heights[row] [col] - heights[newr] [newc]),
diff
);

if (newEffort < dist[newr] [newc]) {
dist[newr] [newc] = newEffort;
pg.enqueue({ diff: newEffort, row: newr, col: newc });

return 0;

}

const heights = [
[y 73, 75
[3, 8, 21,
[5, 3, 51,

Y

const ans = minimumEffort(heights);

console. log(ans);

Example 1:

Mf d_ﬁ/’g@# %(?/NS wifhin K_Jfgps

Cheapest Flights Within K Stops [] n=4

Medium Accuracy: 62.5% Submissions: 8 Points: 4 flights = [[0,1,100],[1,2,100],(2,0,100],[1,3,600],[2,3,200]]

src = 0

dst = 3

k=1

Output:

700

cost price;. Explanation:

The optimal path with at most 1 stop from city 0 to 3 is marked
in red and has cost 100 + 600 = 700.

There are n cities and m edges connected by some number of flights.
You are given an array flights where flights[i] = [fromj, to;,

pricej] indicates that there is a flight from city from; to city toj with

You are also given three integers src, dst, and k, return the cheapest

price from src to dst with at most k stops. If there is@ch route, Note that the path through cities [0,1,2,3] is cheaper but is

return -1 invalid because it uses 2 stops.

0 B G

l~(7\mh/@‘”g\éktp\1)l&’J’A7“t wHhin 1€ dfcfi Sm =0 \

dalb -2

“ 10z HOH
£4.9) ’

S
@:b'; @ siop=2:K .

e

T T R G G (5 L) & Time Complexity: O(N) { Additional log(N) of time eliminated here because we're using a simple queue rather

than a priority queue which is usually used in Dijkstra’s Algorithm }.

const adj w Array(n).fill(null).map(() => [1);
for (const flight of flights) {
adj [flight[@]].push([flight[1], flight[21]);

¥ Space Complexity: O(|E| + |V|) { for the adjacency list, priority queue, and the dist array }.

Where N = Number of flights / Number of edges.

Where E = Number of edges (flights.size()) and V = Number of Airports.

const q 95

q.push([@, [src, 0]]1);

const dist new Array(n).fill(1e9);
dist[src] = 0;

e (q.length > 0) {
const [stops, [node, cost]] = q.shift();

f (stops > K) continue;

(const [adjNode, edW] of adj[node]) {

f (cost + edW < dist[adjNode] && stops <= K) {
dist[adjNode] cost + edWw;
q.push([stops + 1, [adjNode, cost + edW]]);

f (dist[dst] 1e9) return -1;
rn dist[dst];

const n = 4,

src = 0,
dst 3,
K=1;

const flights [
[0, 1, 100],
[1, 2, 100],
[2, o, 100],
[1, 3, 600],
[2783782008]%
1;

const ans = cheapestFlight(n, flights, src, dst, K);
console. log(ans);

beBY min mu%%b’aa%n f ench end,

Minimum Multiplications to reach End

Input:
arr[] = {2, 5, 7}
start = 3, end = 30

Medium Accuracy: 48.94% Submissions: 14K+ Points: 4

Explore Job Fair for students & freshers for daily new opportunities. Find 7

A Job Today! Output:

Given start, end and an array arr of n numbers. At each step, startis 2
multiplied with any number in the array and then mod operation with
100000 is done to get the new start.

Explanation:
Step 1: 3*2 = 6 % 100000 = 6
Step 2: 6*5 = 30 % 100000 = 30

Your task is to find the minimum steps in which end can be achieved starting

from start. If it is not possible to reach end, then return -1.

MY = [000DD = 10°

stad = 3 end = 30 tlond = 1 ad - 66175
ww 53 oA A% onif=%3,4, 653
Sl —5 & 2530 3x3 = 2
[2(x3 =63
t‘,\" 63x 66 = Y0918
& YoqC X6S= 2 66(FC
5 = 6613
mu%\ohcu%oww& dail.3 06[1=[251], end> 7
i — (3, OJ —— 30
/ 1 Nt e i ol
1l (C—ey
Z@%
l*g 5
w1y (@ ©
stod 23 end=FS pod = (00000
wn >§ 2, ¢,1) @ \
(9 , ¥ X
- TN
(12
[1 ® oy
i - ; !
a2 I 71
Giha i aigld s) € 2 1997 e ; (2,19 (2,30) (?/f‘y
1 R
b e
—@e # MV bt (f
el i He 19 02 -
90) neQL?%?(Xd(ﬂ dd(?w’/

[) Time Complexity : 0(100000 * N)

function minimumMultiplications(arr, start, end) {

Where “100000' are the total possible numbers generated by multiplication (hypothetical) and N = size of the

array with numbers of which each node could be multiplied.

let q = [1;

q-push([start, 0]); Space Complexity : 0(100000 * N)

Where “100000' are the total possible numbers generated by multiplication (hypothetical) and N = size of the

array with numbers of which each node could be multiplied. 100000 * N is the max possible queue size. The

let dist = Array(100000).fill(1e9); space complexity of the dist array is constant.
dist[start] = 0;
let mod = 100000;

while (q.length) {
let [node, steps] = qg.shift();

for (let item of arr) {
let num = (item * node) % mod;

if (steps + 1 < dist[num]) {

dist[num] = steps + 1;
if (num === end) return steps + 1;
q.push([num, steps + 1]1);
}
}
}
return -1;

let start = 3, end = 30;
let arr = [2, 5, 71;

let ans = minimumMultiplications(arr, start, end);
console. log(ans);

bedD . nuntker of s o aive ab detirplion

Number of Ways to Arrive at Destination

Input:
Medium Accuracy: 61.13% Submissions: 18K+ Points: 4 :

n=7, m=10

edges= [[0,6,7],[0,1,2],01,2,3],01,3,3],6,3,31,3,5,11,[6,5,11,[2,5,11,
Explore Job Fair for students & freshers for daily new opportunities. Findc‘/| [0,4'5]1 [4,6,2]]
A Job Today!

You are in a city that consists of n intersections numbered from O ton - Output:

1 with bi-directional roads between some intersections. The inputs are 4

generated such that you can reach any intersection from any other Explaination:
intersection and that there is at most one road between any two

intersections. ‘ :
The four ways to get there in 7 minutes are:

You are given an integer n and a 2D integer array roads where roads/[i] = [u;, = U
vj, timej] means that there is a road between intersections uj and vj that

takes timej minutes to travel. You want to know in how many ways you can

travel from intersection 0 to intersection n - 1in the shortest amount of

time.

Return the number of ways you can arrive at your destination in the shortest

amount of time. Since the answer may be large, return it modulo 109 + 7

N umb n Z] wwj,; [0 nwdﬂa\opﬂjtabeﬁ
AP"",‘J;{}}Q

Qv
D > 6
0o—>4 —> 6
0> 1 = 2>3>6
0> =2 %2>53526

T oms

[R

' \ (36)
S0 - ‘3%’3)

\/\
32

—

3¢
12+
\ 7 + ‘ ‘K;F-:l
0

=
=

\\;
'\-I\'>
-
s
b

0o 9
e
«| £\

y W VAR

function countPaths(n, roads) { n

const adj = Array.from({ nEERO)==R11); /6)
for (const it of roads) { L‘S{gj 4\ 7 (.%7
adj [it[0]].push([it[1], it[2]]); \ QW & 3} /
adj [it[1]].push([it[0], it[2]]);
N 80, M
const pq = []; aﬂ,?
const dist = Array(n).fill(1e9);
const ways = Array(n).fill(0);
dist[0] = 0;
ways [0] 1;

pq.push([e, 0]);
const mod 1e9 + 7;

while (pq.length > @) {
pq.sort(([al, [b]) => a - b);
const [dis, node] pq.shift();

for (const it of adj[node]) {
const [adjNode, edW] it;

f (dis + edW < dist[adjNode]) {
dist[adjNode] = dis + edW;
pq.push([dis + edW, adjNodel);
ways [adjNode] = ways[node];
} else if (dis + edW dist[adjNode]) {
ways [adjNode] = (ways([adjNode] + ways[node]) % mod;

return ways[n - 1] % mod;

}

const n = 7;
const edges = [

[e, 6, 71,
| T |
[l 72, =],
(1797031
5y Sy <,
[R5 L
(6, 5, 11,
P2y Sy 2l
[0, 4, 51,
4,6, 21,

1;

const ans countPaths(n, edges);
console. log(ans);

Time Complexity: O(E* log(V)) { As we are using simple Dijkstra’s algorithm here, the time complexity will be
or the order E*log(V)}

Where E = Number of edges and V = No. of vertices.

Space Complexity : O(N) { for dist array + ways array + approximate complexity for priority queue }

Where, N = Number of nodes.

Jec 4 @QJM_/@MWW/ [ﬁ’lﬁ’ﬂo%f disfance [vomls eoith neda}fve %76&’/

J ==

Distance from the Source (Bellman-Ford Algorithm)

Source
/'_

/ \
'; o)

Medium Accuracy: 48.11% Submissions: 40K+ Points: 4

Explore Job Fair for students & freshers for daily new opportunities. Find 2

9
A Job Today! P
[
(
O,

Given a weighted, directed and connected graph of V vertices and E edges,

E = [[0,1,9]]
)) o s=0
Note: If the Graph contains a negative cycle then return an array consisting Output:

09

Explanation:

Find the shortest distance of all the vertex's from the source vertex S.

of only -1.

el only ssif dlkeded O\FN
— comvedt ndiicected 40&1&1/@99& @o%k o @F}’Q Belllon

o

Shortest distance of all nodes from

source is printed.

web

¥ R&mmtn\kdﬂ%
N-1 dimtd Aegy

sn Rellom

gk §uT +wt C A]
Jj(&ic}]ﬂv]:obtﬂ:}]ﬁ:w)

o <92_1..), o be

MMﬂo/wb)L
dide [0 [#]#] »]o] o
b 1 2 3 4 5

Since in a graph of N nodes, in worst case, you will
take N-1 edges to reach from the first to the last,
thereby we iterate for N-1 iterations.

Try drawing a graph which takes more than N-1 edges
for any path, it is not possible.

Two follow-up questions about the algorithm: Why do we need exact N-1 iterations? ()

Let's try to first understand this using an example: function bellmanFord(V, edges, S) {
’ ’

1 1 const dist = Array(V).fill(1e8);
@060 distis] - 0;

Given order of the edges:
Checking in each iteration|u wt for (let i = 0; i <V - 1; i++) {
dist[3] + 1 < dist[4] 3 1 for (const it of edges) {
dist[2] + 1 < dist[3] 2 1 const u = it[0];
dist[1] + 1 < dist[2] 1 1 const v = it[1];

0 1

dist[0] + 1 < dist[1] const wt = it[2];

if (dist[u] !== 1e8 && dist[u] + wt < dist[v]) {
dist[v] = dist[u] + wt;

« In the above graph, the algorithm will minimize the distance of the it node in the it" iteration like dist[1] will be

updated in the 1st iteration, dist[2] will be updated in the 2nd iteration, and so on. So we will need a total of 4 }
iterations(i.e. N- 1 iterations) to minimize all the distances as dist[0] is already set to 0. }
Note: Points to remember since, in a graph of N nodes we will take at most N- 1 edges to reach from the first to the last ¥

node, we need exact N-1 iterations. It is impossible to draw a graph that takes more than N-1 edges to reach any node.

* How to detect a negative cycle in the graph? for (const it of edges) {
const u = it[0];
const v = it[1];

« We know if we keep on rotating inside a negative cycle, the path weight will be decreased in every
const wt = it[2];

iteration. But according to our intuition, we should have minimized all the distances within N-1

iterations(that means, after N-1 iterations no relaxation of edges is possible). if (dist[u] !== 1e8 && dist[u]l + wt < dist[v]) {
* In order to check the existence of a negative cycle, we will relax the edges one more time after the return [-1];

completion of N-1 iterations. And if in that N iteration, it is found that further relaxation of any edgeis) ¥

possible, we can conclude that the graph has a negative cycle. Thus, the Bellman-Ford algorithm detects

negative cycles. return dist;

Time Complexity: O(V*E), where VV = no. of vertices and E = no. of Edges.
const V 6;
const edges = [
Space Complexity: O(V) for the distance array which stores the minimized distances. [3, 2, 61,
5, 8, i,
[0, 1
[R5 =31
[1, 2, -2],
4
4

[3, 4, -21,
[2, 4, 31,
IH

const S 'H
const dist bellmanFord(V, edges, S);
console. log(dist);

o2 Pyl all Ao > bt ok b v

Floyd Warshall Input: matrix = {{0,25},{-1,0}}

Medium Accuracy: 32.89% Submissions: 85K+ Points: 4

Explore Job Fair for students & freshers for daily new opportunities. Find 7
A Job Today!

The problemis to find the shortest distances between every pair of vertices
in a given edge-weighted directed graph. The graph is represented as an

adjacency matrix of size n*n. Matrix[il [j1 denotes the weight of the edge

fromitoj. If Matrix[i]l [j1=-1, it means there is no edge fromitoj.

Explanation: The shortest distance between

Doitin-place. every pair is already given(if it exists).

heect %AW\ «g&om ech node o eveyd dhes node

@ e ! 0 ; (] | L= 3’_ . o | 2 3__
S 4 ;
) O

z

4

>
/\1‘—9

Th e a 1 g or lt hm l s not mu Ch lnt u lt iV e as « How to detect a negative cycle using the Floyd Warshall algorithm?

L S R Lo T G S o K (o T SO) A T ¢ L VR =0 (0 L QO "sotive Cycle: A cycieis called a negative cycleif the sum of allits weights becomes negative. The folowing illstraton i
where all combination of paths have been o s

tried to get the shortest paths. (@ e 312y = 8

an example of a negative cycle:

N Ot h in g t 0 b e p a n i C m U C h 0 n t h e We have previously said that the cost of reaching a node from itself must be 0. But in the above graph, if we try to reach
1 1 : 1 1 1 node O from itself we can follow the path: 0->1->2->0. In this case, the cost to reach node O from itself becomes -3
l n t u lt 10 n - lt 1 s a S lm p 1e b ru t e 0 n a 1 1 which is less than O. This is only possible if the graph contains a negative cycle.
pat h S - Fo c u s o n t h e t h ree f o r 10 0 p s - So, if we find that the cost of reaching any node from itself is less than O, we can conclude that the graph has a negative
cycle.
o What will happen if we will apply Dijkstra’s algorithm for this purpose?
function shortestDistance(matrix) {
const n = matrix.length; o If the graph has a negative cycle: We cannot apply Dijkstra’s algorithm to the graph which contains a negative
for (let i = @; i < n; i++) { cycle. It will give TLE error in that case.
for (let j = 0; j = E i) { « If the graph does not contain a negative cycle: In this case, we will apply Dijkstra’s algorithm for every possible
LfRmaty]:'x [%] [!] 1 U node to make it work like a multi-source shortest path algorithm like Floyd Warshall. The time complexity of Floyd
} RIS Warshall is O} Which we will discuss later in this article) whereas if we apply Dijkstra’s algorithm for the
if (i j) matrix[i]l[j] 0; same purpose the time complexity reduces to O(V*(E*logl)) (where v = no. of vertices).

T0>0(VvS) vo m o vesls

for (let i = @; i < n; i++) {
for (let j 0; j <n; j++) {) \
matrix[i] [j] = Math.min(
matrix[i] [j], SC% D (/sz R SF,B’SG/ ada m)(
matrix[i] [k] + matrix[k][j]

H

}
}
}
for (let i = @; i < n; i++) {
for (let j 0; j <n; j++) {
if (matrix[i][j] 1e9) {
matrix[i] [j] 1;
}
b
}
}
const V = 4;
const matrix = Array.from({ V}, () = Array(V).fill(-1));

matrix([0][1] = 2;
matrix[1][0] = 1;
matrix[1][2] = 3;
matrix[3][0] = 3;
matrix[3][1] = 5;
matrix[3]1[2] = 4;

shortestDistance(matrix);

’b/,@i{g/ find fhe U'é(with smalles numbol of nefphbous of o Auethold
dfﬁﬁﬂw

City With the Smallest Number of Neighbors at a Threshold

Distance Input:

N=4,M=4

edges = [[0,1,31,[1,2,1],[1,3,4],[2,3,1]]
distanceThreshold = 4

Output:3

Explaination:The neighboring cities at a distanceThreshold = 4 for

Medium Accuracy: 41.59% Submissions: 9K+ Points: 4

Explore Job Fair for students & freshers for daily new opportunities. Find 2
A Job Today!

There are n cities numbered from 0 to n-1. Given the array edges where each city are:

edgeslil = [from;, toj weightj] represents a bidirectional and weighted City 0 -> [City 1, City 2]

edge between cities fromj and toj, and given the integer distance City 1 -> [City 0, City 2, City 3]

Threshold. You need to find out a city with the smallest number of cities that

City 2 -> [City 0, City 1, City 3]
City 3 -> [City 1, City 2]

Cities 0 and 3 have 2 neighboring cities at a distanceThreshold =

are reachable through some path and whose distance is at most Threshold
Distance, If there are multiple such cities, our answer will be the city with

the greatest number.

4, but we have to return city 3 since it has the greatest number.
Note: that the distance of a path connecting cities i andjis equal to the sum

of the edges' weights along that path. Your Task:
You don't need to read input or print anything. Your task is to complete the
function findCity() which takes a No of nodes N and vector of edges and
ThresHold Distance. and Return the city with the smallest number of cities
that are reachable through some path and whose distance is at
most Threshold Distance, If there are multiple such cities, return the city

with the greatest number.

Expected Time Complexity: 0(V~2 + EVlogV)
Expected Auxiliary Space: 0(N”3)

function findCity(n, m, edges, distanceThreshold) { P} O[VJ
const dist = Array.from({ n }, () => Array(n).fill(Infinity));

for (const it of edges) { 2
dist[it[0]]1[it[1]] = it[2]; V
distlit[1]][it[o]] = it[2]; SC 4

¥

for (let i = 0; i < n; i++) distl[illi]l = 0;

for (let k = 0; k < n; k++) {
o , for (let i = 0; i < nj i++) {
for (let j = @; j < n; j++) {

f (dist[il [k] === Infinity || dist[k][j] === Infinity)

continue;
dist[i] [j] = Math.min(dist[i][j], dist[i][k] + dist[k][j]);
}

o , }

let cntCity = n;
let cityNo = -1;
for (let city = 0; city < n; city++) {
let cnt = 0;
for (let adjCity = 0; adjCity < n; adjCity++) {
‘ if (distlcity][adjCity] <= distanceThreshold) cnt++;

b

if (cnt <= cntCity) {
cntCity = cnt;

cityNo = city;
}
}

return cityNo;
}

const n = 4;

— b const m = 4;
const edges [
lo, 1, 31,
(i, 7 T,
[1, 3, 41,

2, 3, 11,

1;
const distanceThreshold = 4;

const cityNo = findCity(n, m, edges, distanceThreshold);
console. log("The answer is node:", cityNo);

Jectd. min s/aann?flqo 400 - themy

A spanning tree is a tree in which we have N nodes{i.e. All the nodes present in the original graph) and N-1 edges and all
nodes are reachable from each other.

Let's understand this using an example. Assume we are given an undirected weighted graph with N nodes and M

edges. Here in this example, we have taken N as 5 and M as 6.

Undirected

Weighted graph

There are 5 nodes and 4 edges, and all
nodes are reachable from each other. So,
this is definitely a spanning tree.

Spanning Tree |

Sum of edge weights = 18

woig » find MST
1 feim's olgenithm
2 Koughds olggsrthm

Minimum Spanning Tree:

Among all possible spanning trees of a graph, the minimum spanning tree is the one for which the sum of all the edge
weights is the minimum.

Let's understand the definition using the given graph drawn above. Until now, for the given graph we have drawn
three spanning trees with the sum of edge weights 18, 24, and 18. If we can draw all possible spanning trees, we
will find that the following spanning tree with the minimum sum of edge weights 16 is the minimum spanning tree

for the given graph:

Minimum spanning tree
Sum of edge weights = 16

Note: There may exist multiple minimum spanning trees for a graph like a graph may have multiple spanning trees.

loc 45 Buims cslkw'%m — sy Spanning o

@—=—0

s
® o

o _g

. é

“,w,;)(z,;)@,y |
gG—r7re |

o |
71 /)
>

Intuition:

)
o000
function spanningTree(V, adj) {
const pq = [];
const vis = Array(V).fill(e);
pq.push({ wt: @, node: @ });
let sum = 0;

while (pq.length > @) {
const it = pg.shift();
const node = it.node;
const wt = it.wt;

| if (vis[nodel] 1) continue;

vis[node] = 1;

L sum += wt;
2,
for (const it of adj[nodel) {
! const adjNode = it[0];
/ 7]

const edW = it[1];

if (!vis[adjNode]) {
pq.push({ wt: edW, node: adjNode });
pq.sort((a, b) => a.wt - b.wt);

1) }

return sum;

~

const V = 5;
const edges = [

The intuition of this algorithm is the greedy technique used for every node. If we carefully observe, for every node,
we are greedily selecting its unvisited adjacent node with the minimum edge weight(as the priority queue hereis a
min-heap and the topmost element is the node with the minimum edge weight). Doing so for every node, we can
get the sum of all the edge weights of the minimum spanning tree and the spanning tree itself(if we wish to) as

well.

Time Complexity: O(E*|logE) + O(E*logE)~ O(E*logE), where E = no. of given edges.

The maximum size of the priority queue can be E so after at most E iterations the priority queue will be empty
and the loop will end. Inside the loop, there is a pop operation that will take logE time. This will result in the
first O(E*logE) time complexity. Now, inside that loop, for every node, we need to traverse all its adjacent
nodes where the number of nodes can be at most E. If we find any node unvisited, we will perform a push

operation and for that, we need a logE time complexity. So this will result in the second O(E*logE).

Space Complexity: O(E) + O(V), where E = no. of edges and V = no. of vertices. O(E) occurs due to the size of
the priority queue and O(V) due to the visited array. If we wish to get the mst, we need an extra O(V-1) space

to store the edges of the most.

[0 i Al
[0), 725 il
iy, 2 il
253 %218
[3, 4; 11,
[4, 2, 21,

1;

const adj = Array.from({ lengt

for (const it of edges) {
const tmp = [it[1], it[2]];
adj [it[@]].push(tmp);

const tmp2 = [it[0], it[2]];

adj [it[1]1].push(tmp2);

const sum = spanningTree(V, adj);

(

SRV

() = 1[1);

console.log("The sum of all the edge weights:", sum);

Disjoint Set | Union by Rank | Union by Size | Path
Compression: G-46

In this article, we will discuss the Disjoint Set data structure which is a very important topic in the entire graph

series. Let's first understand why we need a Disjoint Set data structure using the below question:

Question: Given two components of an undirected graph

0—0G@06G0
060

The question is whether node 1 and node 5 are in the same component or not.
Approach:

Now, in order to solve this question we can use either the or traversal technique like if we traverse the
components of the graph we can find that node 1 and node 5 are not in the same component. This is actually the
brute force approach whose time complexity is O(N+E)(N = no. of nodes, E = no. of edges). But using a Disjoint Set data

structure we can solve this same problem in constant time.

The disjoint Set data structure is generally used for dynamic graphs.

Functionalities of Disjoint Set data structure:

The disjoint set data structure generally provides two types of functionalities:

 Finding the parent for a particular node (findPar{))

« Union (in broad terms this method basically adds an edge between two nodes)

* Union by rank

o Union by size

First, we will be discussing Union by rank and then Union by size.

Union by rank:

Before discussing Union by rank we need to discuss some terminologies:
Rank:

The rank of a node generally refers to the distance (the number of nodes including the leaf node) between the

furthest leaf node and the current node. Basically rank includes all the nodes beneath the current node.

Here the rank of node 1 is 2 as the
o distance between node 1 and the furthest
leaf node 4 is 2.

Ultimate parent:

The parent of a node generally refers to the node right above that particular node. But the ultimate parent refers to

the topmost node or the root node.

In this graph, the parent of 8 is 5 but the ultimate
parent of 8 is 4

Now let's discuss the implementation of the union by rank function. In order to implement Union by rank, we
basically need two arrays of size N(no. of nodes). One is the rankand the other one is the parent. The rank array

basically stores the rank of each node and the parent array stores the ultimate parent for each node.

Initial configuration:
rank array: This array is initialized with zero.
parent array: The array is initialized with the value of nodes i.e. parent[i] = i.

The algorithm steps are as follows:

1. Firstly, the Union function requires two nodes(/et’s say u and v) as arguments. Then we will find the ultimate
parent (using the findPar() function that is discussed later) of u and v. Let's consider the ultimate parent of u is pu
and the ultimate parent of v is pv.

2. After that, we will find the rank of puand pv.

3. Finally, we will connect the ultimate parent with a smaller rank to the other ultimate parent with a larger rank.
But if the ranks are equal, we can connect any parent to the other parent and we will increase the rank by one for

the parent node to whom we have connected the other one.

Dynamic graph:

A dynamic graph generally refers to a graph that keeps on changing its configuration. Let's deep dive into it using an

example:

 Let's consider the edge information for the given graph as: {{1,2}, {2,3}, {4,5}, {6,7}, {5,6}, {3,7}}. Now if we start
adding the edges one by one, in each step the structure of the graph will change. So, after each step, if we

perform the same operation on the graph while updating the edges, the result might be different. In this case,

the graph will be considered a dynamic graph.

« For example, after adding the first 4 edges if we look at the graph, we will find that node 4 and node 1 belong to

different components but after adding all 6 edges if we search for the same we will figure out that node 4 and

node 1 belong to the same component.

(1.2}
{23}
{4.5}
6.7}
{56}
@37

After adding the edges upto {6,7)

606
&0 60

After adding all the edges

06@
@600

* So, after any step, if we try to figure out whether two arbitrary nodes u and v belong to the same component or not,

Disjoint Set will be able to answer this query in constant time.

Let's understand it further using the below example.

Given the edges of a graph are: {{1,2}, {2,3}, {4,5}, {6,7}, {5.6}}

Given

(1.2}
2.3}
{4.5)
6.7}
(5.6}

Initial configuration

®@ @ @
@66 6

1 2

rankamay [0 [0 o [o

parent array ng 13 14 15 JG J7_1

After applying the union by rank function to every edge the graph and the arrays will look like the following:

Observation 1:
If we carefully observe, we are only concerned about the ultimate parent but not the immediate parent.

Let's see why we need to find the ultimate parents.

o After union by rank operations, if we are asked (refer to the above picture) if node 5 and node 7 belong to the
same component or not, the answer must be yes. If we carefully look at their immediate parents, they are not
the same but if we consider their ultimate parents they are the same i.e. node 4. So, we can determine the

answer by considering the ultimate parent. That is why we need to find the ultimate par

So, here comes the findPar() function which will help us to find the ultimate parent for a particular node.
findPar() function:

This function actually takes a single node as an argument and finds the ultimate parent for each node.
Observation 2:

Now;, if we try to find the ultimate parent(typically using recursion) of each query separately, it will end up taking
O(logN) time complexity for each case. But we want the operation to be done in a constant time. This is where the

path compression technique comes in.

Using the path compression technique we can reduce the time complexity nearly to constant time. It is discussed

later on why the time complexity actually reduces.

What is path compression?

Basically, connecting each node in a particular path to its ultimate parent refers to path compression. Let's class {
understand it using the following illustration: constructor(n) {
this.rank new Array(n + 1).fill(0);
o this.parent new Array(n + 1).fill(0).map((_, i) => i);
° After path compression }
° findUPar(node) {
(node this.parent[node]) {

o ‘ return node;

How the time complexity reduces: return (this.parent[node] = this.findUPar(this.parent[nodel));

« Before path compression, if we had tried to find the ultimate pa for node 4, we had to traverse all the way

back to node 1 which is basically the height of size logN. But after path compression, we can easily access the

ultimate parent with a single step. Thus the traversal reduces and as a result the time complexity also reduces. unionByRan k(u L v) {

const ulp_u this.findUPar(u);
Though using the path compression technique it seems like the rank of the node is also changing, we cannot be sure const ulp_v = this.findUPar(v);
about it. So, we will not make any changes to the rank array while applying path compression. The following f (ulp_u ulp_v) return;
example depicts an example: if (this.rank [ulp_u] < this. rank[ulp_v]) {
.parent [ulp_ul ulp_v;
N @ } else if (this.rank[ulp_v] < this.rank[ulp_u]) {
@ @ s.parent [ulp_v] ulp_u;
® } else {

The rank of
@ rode { remains @ this.parent[ulp_v] = ulp_u;
N\
this.rank[ulp_ul++;

®

Note: We cannot change the ranks while applying path compression.

Overall, findPar() method helps to reduce the time complexity of the union by the rank method as it can find the

ultimate parent within constant time. const main () ={

Algorithm: const ds = new DisjointSet(7);
ds.unionByRank(1, 2);
ds.unionByRank(2, 3);

This process is done using the backtracking method.

The algorithm steps are as follows: ds.unionByRank(4, 5);
ds.unionByRank(6, 7);
1. Base case: If the node and the parent of the node become the same, it will return the node. ds.union ByRank (5)) -
2. We will call the findPar() function for a node until it hits the base case and while backtracking we will update the
parent of the current node with the returned value. f (ds.findUPar(3) === ds.findUPar(7)) {

console. log("Same");
telse {

console. log("Not same");

Note: The actual time complexity of union by rank and findPar() is O(4) which is very small and close to 1. So, we can

consider 4 as a constant. Now, this 4 term has a long mathematical derivation which is not required for an interview.

Note: /f you wish to see the dry run of the above approach, you can watch the video attached to this article. }

Follow-up question:
ds.unionByRank(3, 7);

In the union by rank method, why do we need to connect the smaller rank to the larger rank?

o Let's understand it using the following example: f (ds.findUPar(3) ds.findUPar(7)) {
console. log("Same");
@ Case 1: Connecting larger to smaller } else {

console. log("Not same");

@' ® main();

In this case, the traversal time to find the ultimate parent for nodes 3, 4, 5, 6, 7, and 8 increases and so the path

compression time also increases. But if we do the following

:1) ©) Case 2: Connecting smaller to larger

o the traversal time to find the ultimate parent for only nodes 1 and 2 increases. So the path compression time

becomes relatively lesser than in the previous case. So, we can conclude that we should always connect a .
smaller rank to a larger one with the goal of
class {
o shrinking the height of the graph. constructor(n) {
o reducing the time complexity as much as we can. 5 s.rank ew Array(n 1).fill(e);
.parent - w Array(n + 1).fill(0).map((_, i) => i);
Observation 3: . . -
s.5ize = new Array(n + 1).fill(1);
Until now, we have learned union by rank, the findPar() function, and the path compression technique. Now, if we }
again carefully observe, after applying path compression the rank of the graphs becomes distorted. So, rather than
storing the rank, we can just store the size of the components for comparing which component is greater or smaller. findUPar(node) {
(node t .parent[node]) {
So, here comes the concept of Union by size.
node;
Union by size: }
(this.parent[node] this.findUPar(t .parent[nodel));
This is as same as the Union by rank method except this method uses the size to compare the components while }

connecting. That is why we need a ‘size”array of size N(no. of nodes) instead of a rankarray. The size array will be

storing the size for each particular node i.e. size[i] will be the size of the compot starting from node i. unionByRank(u, v) {

Typically, the size of a node refers to the number of nodes that are connected to const ulp_u = this.findUPar(u);
const ulp_v = this.findUPar(v);

Algorithm: (ulp_u ulp_v) s ;

Initial configuration: (t . rank [ULP_U] this.rank [UlP_V]) {
.parent [ulp_ul ulp_v;

size array: This array is initialized with one. } f (t .rank[ulp_v] < t .rank[ulp_ul) {
5 e n :

parent array: The array is initialized with the value of nodes i.e. parent[i] = i. } { parent [ulp_v] ulp_u;

The algorithm steps are as follows: t .parent [u lp_V] ulp_u;

s.rank [ulp_u]++;
1. Firstly, the Union function requires two nodes(let’s say u and v) as arguments. Then we will find the ultimate }
parent (using the findPar() function discussed earlier) of u and v. Let's consider the ultimate parent of u is puand }

the ultimate parent of v is pv.

2. After that, we will find the size of puand pvi.e. size[pu] and size[pv]. unionBySize(u, v) {
3. Finally, we will connect the ultimate parent with a smaller size to the other ultimate parent with a larger size. But const ulp_u this.findUPar(u);
if the size of the two is equal, we can connect any parent to the other parent. const ulp_v t 5. findUPar(v) -
While connecting in both cases we will increase the size of the parent node to whom we have connected by the f (ulp_u = ulp_v) return;
size of the other p: node which is actually connected. f (t .size[ulp_ul this.size[ulp_v]) {
.parent [ulp_ul ulp_v;
Let's understand it further using the below example. .sizelulp_v] += t .size[ulp_ul;

Given the edges of a graph are {{1,2}, {2,3}, {&,5}, {6,7}, {5,6}, {3, 7}} } else {
.parent [ulp_v] ulp_u;

.size[ulp_u] += this.size[ulp_v];

ilsan Initial configuration

1.2 @ @ @
g @ @ @® ¢ }

67 }
{5.6}

const main = () = {
const ds 1ew DisjointSet(7);

parentarray [5 |6 ds.unionBySize(1, 2);

size array

ds.unionBySize 3);
) : . .) ,) ds.unionBySi 5);
After applying the union by size function to every edge the graph and the arrays will look like the following: P BYS 7)
.unionBySi b
hen Final configuration: , ds.unionBySize(5, 6);
Union(1,2)
Union(2.3))) ©€ f (ds.findUPar(3) ds.findUPar(7)) {
3:2::23; console. log("Same");

Union(5,6) A 1
Union(3.7) } {

console. log("Not same");
size array

parent array

ds.unionBySize(3, 7);

Note: /t seems much more intuitive than union by rank as the rank gets distorted after path compression.

(ds.findUPar(3) ds.findUPar(7)) {
Note: The findPar() function remains the exact same as we have discussed earlier. console. log("Same");
} {
Note: /f you wish to see the dry run of the above approach, you can watch the video attached to this article. console. log("Not same");

UodT - Ksuskol's Alpestfm — minfoun spaaning 40
a @ > C}) g) cond ald dw
© /'J \ 3\@ i (kai?,wvb)w”

\ \1
= T D2 I 2
@ 2 @ [t L .
X 7 2, 4 class {
7 constructor(n) {
Yoo Mo S S .rank Array(n + 1).fill(e);
35 32] .parent A y(n 1).f (0). ({5 1) = 1);
v })< £ = .size Array(n + 1).fill(1);
O " Ad . 2, 6 }
@ 0 } X 8,3,6 findUPar(node) {
indUPar(node
\X q NSy < (node .parent[node]) {
;‘ node;
}
\K (.parent [node] f Par(.parent[node]));
- g
}’_ unionByRank(u, v) {
i Ao [T BT ;—) Y 93 t) const ulp_u f Par(u);
. const ulp_v f Par(v);
(4 (ulp_u ulp_v) H
(.rank [ulp_u] .rank[ulp_v]) {
. . . : .parent [ulp_ul = ulp_v;
Given a weighted, undirected and connected graph of V vertices and E . PF B e e Iain %
- ') L. .parent [ulp_v] = ulp_u;
edges. The taskis to find the sum of weights of the edges of the Minimum } else {
.parent[ulp_v] = ulp_u;
. .rank[ulp_u]
Spanning Tree. }
}
unionBySize(u, v) {
const ulp_u findUPar(u);
const ulp_v .findUPar(v);
(ulp_u ulp_v) H
(.sizelulp_ul .sizelulp_v]) {
.parent [ulp_u] ulp_v;
.size[ulp_v] .sizelulp_ul;
} {
.parent [ulp_v] ulp_u;
.size[ulp_ul .sizelulp_v];
}
}
}
class {
spanningTree(V, adj) {
const edges = [];
(let i = 0; 1 <V; i++) {
(const it adj[i]) {
const adjNode = it[e];
const wt = it[1];
const node = i;
edges. ({ wt, { node, adjNode } });
}
}
const ds D tSet(V);
edges. t((a, b) = a.wt b.wt);
Output' let mstWt 0;
(const it edges) {
4 const { wt, nodePair: { node, adjNode } } it;
Explanation: (ds. findUPar(node) ds. findUPar(adjNode)) {
mstWt wt;
ds. nBy e(node, adjNode);
}
}
mstwWt;
}
}
const main = () = {
const V = 5;
const edges = [
le, 1, 2],
o, 2, 11,
1, 2, 1],
2, 3, 21,
(3, 4, 1],
(4, 2, 21,
I;
const adj £ y(V).fill(e) (0= 1);
The Spanning Tree resulting in a weight (const it of edges) {
const tmp [it[1], itl[2]);
of 4 is shown above. bt Hondiin o
const tmp2 [it[e], it[2]);
adj [it[1]]. (tmp2) ;
}
const obj t 0;
const mstWt obj. ree(V, adj);
console 3("The sum of all the edge weights:", mstWt);

Joc9R. AU 6oA % /&DVH’?Q% - aQr's{D(mL

Number of Provinces

Medium Accuracy: 54.29% Submissions: 46K+ Points: 4

Explore Job Fair for students & freshers for daily new opportunities. Find 7
A Job Today!

Given an undirected graph with V vertices. We say two verticesuand v

belong to a single province if there is a path from u to v or v to u. Your task is

to find the number of provinces.

Output:
Note: A province is a group of directly or indirectly connected cities and no Z
other cities outside of the group. Explanation:
The graph clearly has 2 Provinces [1,3] and [2]. As city 1 and
ﬂw.,‘m frw V“"M city 3 has a path between them they belong to a single province.
7 City 2 has no path to city 1 or city 3 hence it belongs to another

province.

&

\
B
S
S

&

|+ 3 4 € ¢ *F
0 T Y Y
/1) [T e e o T) [y
3lofl 1 |6]lol%2])0]o
9|9 Jo o0] oo
clol° Jolislo]lolo
NN EEERN
?,00000' /]

The matrix represents the adj. matrix for the
graph shown with three components.

class {
numProvinces(adj, V) {
const ds = new DisjointSet(V);

class {

constructor(n) {
this.rank = new Array(n + 1).fill(0);
this.parent = new Array(n + 1).fill(@).map((_, i) => i);
this.size = new Array(n + 1).fill(1); for (let i = 0; i <V; i++) {

b for (let j = 0; j < V; j++) {

if (adj[il[j]) {
findUPar(node) {

if (node === this.parent[nodel) { ds.unionBySize(i, j);
return node; }
} }
return (this.parent[node] = this.findUPar(this.parent[node])); }
}
let cnt = 0;
unionByRank(u, v) { for (let i = 0; i < V; i++) {
const ulp_u = this.findUPar(u); if (ds.findUPar(i) === i) cnt++;
const ulp_v = this.findUPar(v); }
if (ulp_u === ulp_v) return;
if (this.rank[ulp_ul < this.rank[ulp_v]) { T G
this.parent[ulp_ul = ulp_v; } !
} else if (this.rank[ulp_v] < this.rank[ulp_u]) {
) - }
this.parent[ulp_v] = ulp_u;
} else {
this.parent[ulp_v] = ulp_u;
this.rank[ulp_ul++;
}
}

unionBySize(u, v) {

const ulp_u = this.findUPar(u);

const ulp_v = this.findUPar(v);

if (ulp_u === ulp_v) return;

if (this.sizelulp_u] < this.sizelulp_v]) {
this.parent[ulp_ul = ulp_v;
this.size[ulp_v] += this.size[ulp_ul;
else {
this.parent[ulp_v] = ulp_u;
this.size[ulp_ul += this.size[ulp_vl;

-

ool tonneuted

Connecting the graph
Medium Accuracy: 65.31% Submissions: 5K+ Points: 4 L
m=3

Edge=[[0,11],[0,21,[1,2]]

Explore Job Fair for students & freshers for daily new opportunities. Find

g
A Job Today!

Output:
g ; : 1
You are given a graph with nvertices and m edges.

You can remove one edge from anywhere and add that edge between any Explanation:

two vertices in one operation. Remove edge between vertices 1 and 2 and add between vertices 1 and
3.

Find the minimum number of operation that will be required to make the

graph connected.

Ifitis not possible to make the graph connected, return -1.

ALMDVR em‘b’HnEf Q@%Q 0 (pmmﬁ/modiﬁ (VY E’&gap

Note: /n order to add any edge to the desired position, we must take it out from somewhere inside the graph. We cannot
add any edge randomly from outside. So, the intuition is to remove the required minimum number of edges and plant

them somewhere in the graph so that the graph becomes connected.

Observation 1: How can we connect components to make the graph connected?

In order to connect two different components of a graph we need to connect any node of the first component to any
node of the second component. For example, if we have a graph like the following we can connect them in several

ways like connecting nodes 2 and 3 or connecting nodes 2 and 4, and so on.

i
87

connect the nodes

e

Observation 2:

From the method of connecting the components, discussed above, we can conclude that we need a minimum of nc-1

edges to make the graph connected if the graph contains nc number of different components.

Component 1

Component 2

For example, the above graph has two different components and so to make it connected we need a minimum of 1
edge. Similarly, if a graph contains a single component we need 0 edges to make it connected. \e need to remove the
edges in such a way that the components remain connected even after removing those edges. We can assume

these types of edges as extra-edges.

This is an extra-edge as the component
remains connected even after removing the
edge.

Until now, we have found that we need a minimum of nc-1 edges (nc = no. of components of the graph) to make the graph

connected. And according to the question, to add these nc-1 edges, the graph must contain a minimum of nc-1 extra edges.

So, we can conclude that if a graph contains nc-1 extra-edges, we can make the graph connected with just nc-1

operations(where nc = no. of components of the graph).

Approach:

In order to solve this question we will first find out the number of extra-edges and then we will find out the number

of components of the graph. We will be using the to do so.

The algorithm steps are the following:

1. First we need to extract all the edge information (If not already given) in the form of the pair (u, v) where u =
starting node and v = ending node. We should store all the edge information in an array.

2. Then we will iterate through the array selecting every pair and checking the following:

1. If the ultimate parent of u and v(checked using the findPar() method of the Disjoint set) becomes the
same, we should increase the count of extra-edges by 1.
Because the same ultimate parent means the nodes are already connected and so we can consider the
current edge as an extra edge.

2. But if the ultimate parents are different, then we should apply the union(either unionBySize() or
unionByRank()) method on those two nodes.

3. Thus we will get the count of the extra edges. Now it's time to count the number of components. In order to do
so, we will just count the number of the nodes that are the ultimate parent of themselves.

4. We will iterate over all the nodes and for each node, we will check the following:
1. If the node is the ultimate parent of itself, we will increase the count of components by 1.
2. Otherwise, we will continue to the next node.
This checking will be done using the parent array inside the Disjoint set.
5. Finally, we will check the count of extra edges and the number of components. If the count of extra-edges is

greater or the same, we will return the answer that is (number of components — 1), and otherwise, we will return
-1.

Time Complexity: O(E*4a)+O(N*4a) where E = no. of edges and N = no. of nodes. The first term is to calculate

the number of extra edges and the second term is to count the number of components. 4a is for the disjoint

set operation we have used and this term is so small that it can be considered constant.

Space Complexity: O(2N) where N = no. of nodes. 2N for the two arrays(parent and size) of size N we have

used inside the disjoint set.

[J
class {
Solve(n, edge) {
const ds = new DisjointSet(n);
let cntExtras = 0;
for (const it of edge) {
const u = it[0];
const v = it[1];
if (ds.findUPar(u) === ds.findUPar(v)) {
cntExtras++;
} else {
ds.unionBySize(u, v);
}
b
let cntC = 0;
for (let i = 0; i < n; i++) {
if (ds.parent[i] === i) cntC++;
}
const ans cntC - 1;
if (cntExtras >= ans) return ans;
return -1;
}
}

function main() {
const V = 9;
const edge = [[0, 1],[0, 2],I[0, 31,I[1, 21,[2, 31,[4, 51,[5, 61,[7, 81];

const obj = new Solution();

const ans = obj.Solve(V, edge);
console. log("The number of operations needed:", ans);

main();

&050 > Accountc mexpe~ DSU
‘__/

Problem Statement: Given a list of accounts where each element account [i] is a list of strings, where the first

element account [i][0] is a name, and the rest of the elements are emails representing emails of the account.

Now, we would like to merge these accounts. Two accounts definitely belong to the same person if there is some
common email to both accounts. Note that even if two accounts have the same name, they may belong to different
people as people could have the same name. A person can have any number of accounts initially, but all of their

accounts definitely have the same name.

[
After merging the accounts, return the accounts in the following format: the first element of each account is the
- class
name, and the rest of the elements are emails in sorted order. { .
accountsMerge(details) {
Note: Accounts themselves can be returned in any order. const n details.length;
const ds new DisjointSet(n);
details.sort();
E: le 1: .
xample const mapMailNode = new Map();
Input: N = 4 (ltA 0: i){
accounts [] = S L .' & l'.l, & ; . .
[["John","johnsmith@mail.com! john_newyork@mail.com"], fo (let] 1; [details [1] . length; I+) {
["John", "johnsmith@mail.com","john00@mail.com"], const mail details[il[j];
["Mary", "mary€mail.com"], f (!mapMailNode.has(mail)) {
["John", " johnnybravo@mail.com"]] mapMailNode .set (mail' i) .
h; h: @ 1 h! k@ 1 h he 1 ¥ {
Output: [["John","john0O@mail.com","john_newyork@mail.com", "johnsmith@mail.com"], < . “ -
- .unionBySize m .get(m H
e, it 1. ds.u y (i, mapMailNode.get(mail));
["John", " johnnybravo@mail.com"]] }
}
Explanation: The first and the second John are the same person as they have a common email. }
But the third Mary and fourth John are not the same as they do not have any common email.
The result can be in any order but the emails must be in sorted order. The following is const me rgedMai’L Array. from ({ n }' () = []) :
also a valid resuit: (const [mail, nodeIndex] of mapMailNode.entries()) {
‘Mary', email.com’
et It const node = ds.findUPar(nodeIndex);
['John', 'johnnybravo@mail.com'], 2 .
['John', 'john0O€mail.com' , 'john_newyork@mail.com', 'johnsmith@mail.com']] mergedMail [node] .push(mail);
}
Let's quickly understand the question before moving on to the solution part. According to the question, we can only
merge two accounts with the same name only if the accounts contain at least one common email. After merging the const ans (1;
H
accounts accordingly, we should return the answer where for each account the emails must be in the sorted order.
But the order of the accounts does not matter. In order to solve this problem we are going to use the f (let i 0; i <n; i++) {
. Now, let's discuss the approach using the following example: f (mergedMail[i].length 0) t .
mergedMail[i].sort();
Given: N = 6
accounts [] = const temp [details[i] [@], ...mergedMaillil];
[["John jlécom","j2@com","j3@com"], ans.push(temp);
["John","j4@com"], }
["Raj",”"rl@com”, “r2€com”], ans.sort () .
["Joh: 1€com","j5€com"], ' '
["Raj",”r2@com”, “r3@com”],
["Mary", "ml@com"]] return ans;
}
}
First, we will try to iterate over every single email and add them with their respective indices(i.e. Index of the
accounts the email belongs to) in a map data structure. While doing this, when we will reach out to “j1@com” in the function main() {
fourth account, we will find that it is already mapped with index 0. This incident means that we are currently in an const accounts [
account that can be merged. So, we will perform the unio ation between the current index i.e. 3, and index ["John", "jl@com", "j2@com", "j3@com"],
0(As in this case, we are following 0-based indexing). It will mean that the ultimate parent of index 3 is index 0. ["John", "j4@com"],
Similarly, this incident will repeat in the case of the third and fifth Raj. So we will perform the union of index 2 and 4. ["Raj", "rl@com", "r2@com"],
["John", "jl@com", "j5@com"],
After completing the above process, the situation will be like the following: ["Raj", "r2@com", "r3@com"],
M: " woon "
Ji;a@pcom7>0 \ ["Mary", "ml@com"],
j2@com —> 0 A \ \ 1:
j3@com —> 0) z
jA@com —> 1
ri@com —> 2
12goom —»2 const obj new Solution();
j5@com —> 3
3@com —> 4 const ans obj.accountsMerge(accounts);
mi@com —> 5 g
for (const acc of ans) {

-) o . .) console. log(${acc[0]}: ${acc.slice(1).join(" ")});
Now, it's time to merge the emails. So, we will iterate over each email and will add them to the ultimate parent of } (" 81 (o1} {). ¥
the current account’s index. Like, while adding the emails of account 4, we will add them to index 2 as the ultimate }
parent of 4 is index 2.

main();

Finally, we will sort the emails for each account individually to get our answers in the format specified in the

question.

Approach:

Note:

* Here we will perform the disjoint set operations on the indices of the accounts considering them as the nodes.
e As in each account, the first element is the name, we will start iterating from the second element in each account

to visit only the emails sequentially.
The algorithm steps are the following:

1. First, we will create @ map data structure. Then we will store each email with the respective index of the
account(the email belongs to) in that map data structure.

2. While doing so, if we encounter an email again(i.e. If any index is previously assigned for the email), we will

BySize() or

3. After completing step 2, now it's time to merge the accounts. For merging, we will iterate over all the emails

perform union(either () of the current index and the previously assigned index.
individually and find the ultimate parent{using the findUPar{) method) of the assigned index of every email. Then
we will add the email of the current account to the index(account index) that is the ultimate parent. Thus the
accounts will be merged.

4. Finally, we will sort the emails for every account separately and store the final results in the answer array

accordingly.

Note: /f you wish to see the dry run of the above approach, you can watch the video attached to this article.

o , “ D

Problem Statement: You are given an n, m which means the row and column of the 2D matrix, and an array of size k

S¢)L /" " 0,

denoting the number of operations. Matrix elements are O if there is water or 1 if there is land. Originally, the 2D
matrix is all 0 which means there is no land in the matrix. The array has k operator(s) and each operator has two
integers A[i][0], A[i][1] means that you can change the cell matrix[A[i][0]][A[i][1]] from sea to island. Return how

many islands are there in the matrix after each operation. You need to return an array of size k.
Note: An island means a group of 1s such that they share a common side.
Pre-requisite:

Example 1:
Input Format: n =4 m =5k =4 A ={{1,1},{0,1},{3,3},{3,4}} Output: 1 1 2 2 Explanation: The following illustration is

the representation of the operation:

)

Observation 3: How to connect cells to include them in the same group or consider them
a single island.

ol‘

Generally, a cell is represented by two parameters i.e. row and column. But to connect the cells as we have done
with nodes, we need to first represent each cell with a single number. So, we will number them from 0 to

n*m-1(from left to right) where n = no. of total rows and m = total no. of columns.

For example, if a 5X4 matrix is given we will number the cell in the following way:

0|1 |2 (3 (4

5 |6 |7 (8 (9

1 (1213 |14

15 (16 (1718 |19

Now if we want to connect cells (1,0) and (2,0), we will just perform a union of 5 and 10. The number for
representing each cell can be found using the following formula:
number = (row of the current cell*total number of columns)+column of the current cell for example, for the cell (2, 0)

the number is = (2*5) + 0 = 10.

0. 00000 1.00000 2. 01000 3. 01000 4. 01000
00000 01000 01000 01000 01000
00000 00000 00000 00000 00000
00000 00000 00000 00010 00011
\/ _/ u \/ Final array
Example 2:

Input Format: n =4 m =5k = 12 A = {{0,0},{0,0}{1,1},{1,0},{0,1}.{0,3},{1,3}{0,4}, {3,2}, {2,2},{1,2}, {0,2}} Output: 1

1211222331 1Explanation: If we follow the process like in example 1, we will get the above result.
Solution

Disclaimer: Don't jump directly to the solution, try it out yourself first.

Observation 4: How to count the number of islands.

For each operation, if the given cell is not visited, we will first mark the cell visited and increase the counter by 1.
Now we will check all four sides of the given cell. If any other islands are found, we will connect the current cell with
each of them(If not already connected) decreasing the counter value by 1. While connecting we need to check if the
cells are already connected or not. For this, we will first convert the cells’ indices into numbers using the above
formula and then we will check their ultimate parents. If the parents become the same, we will not connect them as

well as we will not make any changes to the counter variable. Thus the number of islands will be calculated.

Before moving on to the solution, let's quickly discuss some points about the question. First, we need to remember
that an island means a group of 1s such that they share a common side. If we look into it from the matrix view, the
statement actually means that two cells with value 1 are considered a single group if one of them is located in any

of the four directions (Up, Down, Left, Right) of the other cell. But two diagonal adjacent cells will not be considered
asingle group rather they will be counted as different groups. The following illustration will depict the concept:

111 |00 (0O
0|0 (20 (0

0|0 (00 (0O

0|1 |00 (O

Here cells [0,0] and [0,1] are considered a single island as they share a common side but cells [0,1] and [1,2] must

be considered two different islands as they do not have any common side.

Now, in the question, it is clearly stated that the operations are given in an array and we should find the number of
islands after each operation. This fact actually indicates that after performing each operation the structure of the
islands and the sea may change. If we assume the structure as a graph, the graph will be dynamic in nature. And

there is also a concept of connecting two different islands if they share a common side.

So, from these observations, we can easily decide to choose the in order to solve this

problem.

These types of problems are considered online query problems where we need to find the result after every query.
Let's discuss the following observations:

Observation 1: What does each operation/query mean?

In each operation/query, an index of a cell will be given and we need to add an island on that particular cell i.e. we

need to place the value 1 to that particular cell.

Observation 2: Optimizing the repeating same operations

The same operations may repeat any number of times but it is meaningless to perform all of them every time. So,
we will maintain a visited array that will keep track of the cells on which the operations have been already
performed. If the operations repeat, by just checking the visited array we can decide not to calculate again, and

instead, just take the current answer into our account. Thus we can optimize the number of operations.

Approach:
The algorithm steps are as follows:

Initial Configuration:
Visited array: This 2D array should be initialized with 0.
Counter variable: This variable will also be initialized with 0.

Answer array: After performing the algorithm, this array will store the results after performing the queries.

1. First, we will iterate over all the queries selecting each at a time. Now, we can get the row and the column of the cell
given in that query.

2. Then, we will check that cell in the visited array, if the cell is previously visited or not.

1. If the cell is previously visited, we will just take the current count into our account storing that count value in our
answer array and we will move on to the next query.

2. Otherwise, we will mark the cell as visited in the visited array and increase the value of the counter variable by 1.

1. Now, it's time to connect the adjacent islands properly. For that, we will check all four adjacent cells of the
current cell. If any island is found, we will first check if they(the current cell and the adjacent cell that
contains an island) are already connected or not using the findUPar() method.

2. For checking, we will first convert the indices of the current cell and the adjacent cell into the numbers
using the specified formula. Then we will check their ultimate parents.

3. If the ultimate parents are different, we will decrease the counter value by 1 and perform the union(either
unionBySize{) or unionByRank({)) between those two numbers that represent the cells.

4. Similarly, checking all four sides and making the required changes in the counter variable, we will put the
counter value into our answer array.

3. After performing step 2 for all the queries, we will get our final answer array containing the results for all the queries.

class S {
isValid(adjr, adjc, n, m) { constant.
return adjr >= @ & adjr < n & adjc >= @ & adjc < m; :

}

num0fIslands(n, m, operators) { Space Complexit
const ds = new DisjointSet(n * m);

Array.fron({ le n} () = Array(m).fill(e));

const ans = [1; The first term is to store the answer.

for (const it of operators) {
const row = it[e];
const col = it[1];

if (vislrow] [col] === 1) {
ans.push(cnt);
continue;

}

vis[row] [col] = 1;

cnt++;

const dr = [-1, @, 1, @];

const dc = [o, 1, 0, -1];

for (let ind = 0; ind < 4; ind++) {
const adjr = row + dr[ind];
const adjc = col + dclind];

f (this.isValid(adjr, adjc, n, m)) {
if (visladjr][adjc] === 1) {
const nodeNo = row * m + col;
const adjNodeNo = adjr * m + adjc;
if (ds.findUPar(nodeNo) !== ds.findUPar(adjNodeNo)) {
cnt—;
ds.unionBySize(nodeNo, adjNodeNo);

}
}

ans.push(ent);
return ans;
}

function main() {
const n = 4;
const m = 5;
const operators = [
el,

le, o1,
1, 11,
(1, oI,
lo, 11,
[, 31,
1, 31,
[0, 41,
3, 21,
2, 21,
1, 21,
leo, 21,

1

const obj = new Solution();

const ans = obj.nun0fIslands(n, m, operators);
console. log(ans. join(" "));

}

main();

0(Q) + O(N*M) + O(N*M), where Q =

columns. The last two terms are for the parent and the size array used inside the Disjoint set data structure.

Time Complexity: 0(Q*4a) ~ 0(Q) where Q = no. of queries. The term 4a is so small that it can be considered

0. of queries, N = total no. of rows, M = total no. of

52 mak?r}g: a Qﬂ/\g\@ telond — DSV

Problem Statement: You are given an n x n binary grid. A grid is said to be binary if every value in the grid is either 1
or 0. You can change at most one cell in the grid from O to 1. You need to find the largest group of connected 1's.

Two cells are said to be connected if both are adjacent to each other and both have the same value.

Pre-requisite: Disjoint Set data structure

Example 1:

Input Format: The following grid is given:

Result: 20
Explanation: We can get the largest group of 20 connected 1s if we change the (2,2) to 1. The ¢

Before moving on to the solution, let’s quickly discuss some points about the question. First, we need to remember
that a group means a group of cells with the value 1 such that they share a common side. If we look into it from the
matrix view, the statement actually means that two cells with value 1 are considered a single group if one of them
is located in any of the four directions (Up, Down, Left, Right) of the other cell. But two diagonal adjacent cells will

not be considered a single group rather they will be counted as different groups. The following illustration will depict

the concept:

Here cells [0,0] and [0, 1] are considered a single group as they share a common side but cells [0,1] and [1,2] must

be considered two different groups as they do not have any common side.

Now, we need to discuss the approach with which we are trying to solve this question. Here, we are selecting the
cells with value O one at a time, then placing the value 1 to that selected cell and finally, we are trying to connect the

cells to get the largest possible group of connected 1's.

Basically, we are checking the largest group of connected 1's we can get by changing each possible cell with the

value O one at a time.

So, here is a concept of connecting cells as well as dynamically changing the matrix. We can imagine this matrix as a
dynamic graph. So, from these observations, we can easily decide to choose the Disjoint Set data structure to solve

this problem.

Observation 1: How to connect cells to include them in the same group.

Generally, a cell is represented by two parameters i.e. row and column. But to connect the cells as we have done
with nodes, we need to first represent each cell with a single number. So, we will number them from 0 to

n*m-1(from left to right) where n = no. of total rows and m = total no. of columns.

For example, if a 5X4 matrix is given we will number the cell in the following way:

Now if we want to connect cells (1,0) and (2,0), we will just perform a union of 5 and 10. The number for
representing each cell can be found using the following formula:

node number = (row of the current cell*total number of columns)+column of the current cell for example, for the cell
(2, 0) the number is = (2*5) + 0 = 10.

Observation 2: How to find the cell in which if we invert the value, we will get the largest
possible group of connected 1s.

In order to find the cell, we will follow the brute force approach. We will check for every possible cell with a value of
0 one by one and we will try to figure out the largest group we can get after inverting that particular cell to 1 in each

case. Among all the answers we will find the cell that creates the largest possible group.

Now, with these two s, the 1g Is our first app.

We will first invert a cell from the value O to 1 and will check all its four adjacent cells(Up, Down, Left, Right). If any
component/group exists, we will just connect the current cell to that adjacent component and add the component's
size to our answer. Finally, checking all four cells, we will add an extra 1 to our answer for the current cell being

included in the group, and then we will get the total size of the newly created group.
But How to get the size of an existing group/component of connected 1s:

In order to get the size of the existing groups, first, we need to create the existing group by connecting the cells with
the value 1. To do so we will do a union of the two node numbers calculated using the above-specified formula if the
cells contain 1 and they share a common side. Now after connecting all such cells we will get the different existing
components.

Now to find the size of the components, we will just find their ultimate parents and refer to the ultimate parent index

of the size array inside the Disjoint Set data structure(size[ultimateParent]).
Thus we can calculate the size of the components/groups. But there exists an edge case in this approach.

Edge Case:

Here is the edge case. Let's understand it using the following example.

In this given grid, we will check for every cell with the value 0. When we come to cell (3,3), we will check all four
adjacent cells to get the components’ sizes. Now it will first add the component of size 7 in our answer while
checking the left cell and will again add the same component while checking the downward cell. This is where the
answer gets incorrect. So, to avoid this edge case, instead of adding the component sizes to our answer we will store
the ultimate parents in a set data structure. This process will automatically discard the case of adding duplicate
components. After that, to get the size of the ultimate parents we will just refer to the ultimate parent index of the

size array inside the Disjoint Set data structure(size[ultimateParent]). Thus we will get the final answer.
The algorithm steps are as follows (step 3 is very important):

1. Our first objective is to connect all the nodes that have formed groups. In order to do so, we will visit each cell of

the grid and check if it contains the value 1.

1. If the value is 1, we will check all four adjacent cells of the current cell. If we find any adjacent cell with the
ionBysSize{) or

that represent those two cells i.e. the current cell and the adjacent cell.

k() of the two node numbers

same value 1, we will perform the union(either

2. Now, step 1 is completed.
2. Then, we will again visit each cell of the grid and check if it contains the value 0.

1. If the value is 0, we will check all four adjacent cells of the current cell. If we found any cell with value 1, we
will just insert the ultimate parent of that cell(using the findUPar{) method) in the set data structure. This
process will add the adjacent components to our answer.

2. After doing so for all the adjacent cells containing 1, we will iterate through the set data structure and add
the size of each ultimate parent(referring to the size array inside the Disjoint Set data structure) to our answer.
Finally, we will add an extra 1 to our answer for the current cell being included in the group.

3. Now, we will compare to get the maximum answer among all the previous answers we got for the
previous cells with the value 0 and the current one.

3. But if the matrix does not contain any cell with O, step 2 will not be executed. For that reason, we will just run a
loop from node number O to n*n and for each node number, we will find the ultimate parent. After that, we will
find the sizes of those ultimate parents and will take the size of the largest one.

4, Thus we will get the maximum size of the group of connected 1s stored in our answer.

class Solution {
isValid(newr, newc, n) {
return newr >= 0 &% newr < n & newc >= @ && newc < n;

maxConnection(grid) {
const n = grid.length;
const ds = new DisjointSet(n * n);

for (let row = @; row < n; row++) {
for (let col = @; col < n; col++) {
if (grid[row] [col] === @) continue;
const dr = [-1, @, 1, 0];
const dc = [0, -1, @, 1];
for (let ind = @; ind < 4; ind++) {
const newr = row + dr[ind];
const newc = col + dclind];
if (this.isValid(newr, newc, n) &% grid[newr] [newc] === 1) {
const nodeNo = row * n + col;
const adjNodeNo = newr * n + newc;
ds.unionBySize(nodeNo, adjNodeNo);

let mx = 0;
for (let row = @; row < n; row++) {

for (let col = @; col < n; col++) {
if (grid[row] [col] === 1) continue;
const dr = [-1, 0, 1, 0];
const dc = [0, -1, @, 1];

const components = new Set();
for (let ind = @; ind < 4; ind++) {
const newr = row + drlind];
const newc = col + dclind];
if (this.isValid(newr, newc, n)) {
if (grid[newr] [newc] === 1) {
components.add(ds. findUPar(newr * n + newc));

}

let sizeTotal = 0;

for (const it of components) {
sizeTotal += ds.sizel[it];

}

mx = Math.max(mx, sizeTotal + 1);

for (let cellNo = 0; cellNo < n * n; cellNo++) {
mx = Math.max(mx, ds.sizel[ds.findUPar(cellNo)l);
i

return mx;

function main() {
const grid = [

1, 1, 9, 1, 1, 0],

1, 1, o, 1, 1, ol,

Bl B Oy Al b1

[0, o, 1, 0, 0, 0],

[e, o, 1, 1, 1, @],

16;80; 01, 017810 01

const obj = new Solution();
const ans = obj.maxConnection(grid);
console. log("The largest group of connected 1s is of size: " + ans);

main();

Time Complexity: O(N2)+O(N?) ~ O(N?) where N = total number of rows of the grid. Inside those nested loops,
all the operations are taking apparently constant time. So, O(N?) for the nested loop only, is the time
complexity.

Space Complexity: O(2*N?) where N = the total number of rows of the grid. This is for the two arrays i.e.

parent array and size array of size N2 inside the Disjoint set.

4peB3 - sl sones Fempved

Problem Statement: There are n stones at some integer coordinate points on a 2D plane. Each coordinate point

may have at most one stone.
You need to remove some stones.

A stone can be removed if it shares either the same row or the same column as another stone that has not been

removed.

Given an array of stones of length n where stonesli] = [xi, yi] represents the location of the ith stone, return the

maximum possible number of stones that you can remove.

Pr isite: Disjoint Set data structure

Input Format: n=6 stones = [[O, O0],[O, 1], [1, O],[1, 2],[2, 1],[2, 2]]

Result: 5

Explanation: One of the many ways to remove 5 stones is to remove the following stones:

10,01, 1,01, 0,11, 2,11, [1,2]
Let’s first understand the thought process that we will be using to solve this problem. In this problem, it is clearly
stated that a stone can be removed if it shares either the same row or the same column as another stone that has
not been removed. So, we can assume that these types of stones, sharing either the same row or column, are

connected and belong to the same group. If we take example 2:

We can easily spot two different groups in this example. The first group includes the stones [0,0], [0,2], [3,2], and
[3,1], and the second one includes [1,3] and [4,3].

If we carefully observe, for each group we can remove all the stones leaving one stone intact. So, we can conclude
that at most we can remove (size of the group -1) no. of stones from a group as we need to leave one stone

untouched for each group.

Now, if we can think of the stones as nodes, the different groups then seem to be the different components of a

graph.
Mathematical Explanation of getting the maximum no. of stones:

Let's assume there are n stones in total. And these n stones have formed k different components each containing X;

no. of stones. This indicates the following:

Until now, we have proved that we can remove a maximum of (n-k) no. of stones from the whole 2D plane, where n

is the total number of stones and k is the total number of components.

Now, we have reduced the question in such a way that we just need to connect the stones properly to find out the

number of different components and we will easily solve the problem.

Here we are getting the thought of connected components. So, we can easily decide to choose the Disjoint Set data

structure to solve this problem.

How to connect the cells containing stones to form a component:

In order to connect the cells we will assume that each entire row and column of the 2D plane is a particular node.
Now, with each row, we will connect the column no.s in which the stones are located. But column no. may be the
same as the row number. To avoid this, we will convert each column no. to (column no. + total no. of rows) and

perform the union of row no. and the converted column number i.e. (column no. + total no. of rows) like the

following:

For the above example, to connect the two stones in the cells [0, 0] and [0, 2] of the first row, we will first take row

no. i.e. O(because of 0-based indexing) as a node and then convert column no.s 0 to (0+5) and 2 to (2+5). Then, we will

perform the union of (0 and 5) and (0 and 7).

Thus we will connect all the stones that are either in the same row or in the same column to form different connected

components.

wrth same 00 o Clumin — DSV

Approach:

The algorithm steps are as follows:

1. First, from the stone information, we will find out the maximum row and the maximum column number so that
we can get an idea about the size of the 2D plane(i.e. nothing but a matrix).

2. Then, we need to create a disjoint set of sizes (maximum row index+maximum column index). For safety, we may
take a size one more than required.

3. Now it's time to connect the cells having a stone. For that we will loop through the given cell information array

and for each cell we will extract the row and the column number and do the following:

1. First, we will convert column no. to (column no. + maximum row index +1).

2. We will perform the union(either ySize() or f) of the row number and the converted

column number.
3. We will store the row and the converted column number in a map data structure for later use.
4. Now, it's time to calculate the number of components and for that, we will count the number of ultimate parents.

Here we will refer to the previously created map.

1. We just need the nodes in the Disjoint Set that are involved in having a stone. So we have stored the rows
and the columns in a map in step 3.3, as they will have stones. Now we just need to check them from the
map data structure once for getting the number of ultimate parents.

5. Finally, we will subtract the no. of components(i.e. no. of ultimate parents) from the total no. of stones and we

will get our answer.

Time Complexity: O(N), where N = total no. of stones. Here we have just traversed the given stones array
several times. And inside those loops, every operation is apparently taking constant time. So, the time

complexity is only the time of traversal of the array.

Space Complexity: O(2* (max row index + max column index)) for the parent and size array inside the Disjoint

Set data structure.

class Solution {
maxRemove(stones, n) {

let maxRow = 0;

let maxCol = 0;

for (const it of stones) {
maxRow = Math.max(maxRow, it[0]);
maxCol = Math.max(maxCol, it[1]);

}

const ds = new DisjointSet(maxRow + maxCol + 1);

const stoneNodes = new Map();

for (const it of stones) {
const nodeRow = it[0];
const nodeCol = it[1] + maxRow + 1;
ds.unionBySize(nodeRow, nodeCol);
stoneNodes. set(nodeRow, 1);
stoneNodes.set(nodeCol, 1);

Yy
let cnt = 0;
for (const [key, value] of stoneNodes) {
if (ds.findUPar(key) === key) {
cnt++;
}
}

return n - cnt;

function main() {
const n = 6;
const stones = [
[o, oI,
o, 2],
[ATES1R
(3, 1],
[3, 21,
[4, 31,

const obj = new Solution();
const ans = obj.maxRemove(stones, n);
console. log("The maximum number of stones we can remove is:

+ ans);

main();

loc 5% & 6o g connecled wm[bongy&

Problem Statement: Given a Directed Graph with \/ vertices (Numbered from O to V-1) and E edges, Find the

number of strongly connected components in the graph.
Pre-requisite: DFS algorithm

Example 1:

Result: 3
Explanation: Three strongly connected components are marked below:

Input Format:

4

Explanation: Four strongly connected components are marked below:

Result:

In this article, we are going to discuss strongly connected components(SCC) and Kosaraju's algorithm. In an

interview, we can expect two types of questions from this topic:

o Find the number of 1igly connected
o Print the gly connected

of a given graph.

of a given graph.

p

In this article, we are going to discuss the logic part in detail and once the logic part is clear, these two types of

questions can be easily solved.

1gly connected c (SCC) are only valid for directed graphs.

Strongly Connected Component(SCC):

A component is called a Strongly Connected Component(SCC) only if for every possible pair of vertices (u, v) inside

that component, u is reachable from v and v is reachable from u.

In the following directed graph, the SCCs have been marked:

If we take 1st SCC in the above graph, we can observe that each node is reachable from any of the other nodes. For

example, if take the pair (0, 1) from the 1st SCC, we can see that 0 is reachable from 1 and 1 is also reachable from

0. Similarly, this is true for all other pairs of nodes in the SCC like (0,2), and (1,2). But if we take node 3 with the
component, we can notice that for pair (2,3) 3 is reachable from 3 but 2 is not reachable from 3. So, the first SCC

only includes vertices 0, 1, and 2.

By definition, @ component containing a single vertex is always a For that vertex 3 in

gly connected ¢

the above graph is itself a strongly connected component.

By applying this logic, we can conclude that the above graph contains 4 strongly connected components like (0,1,2),

(3), (4,5,6), and (7).
Kosaraju's Algorithm:
To find the strongly connected components of a given directed graph, we are going to use Kosaraju's Algorithm.

Before understanding the algorithm, we are going to discuss the thought process behind it. If we start DFS from

node O for the following graph, we will end up visiting all the nodes. So, it is impossible to differentiate between
different SCCs.

— Ko ,ga{'u's M&w

Now, we need to think in a different way. We can convert the above graph into the following illustration:

SCC = Strongly Connected Component

By definition, within each SCC, every node is reachable. So, if we start DFS from a node of SCC1 we can visit all the
nodes in SCC1 and via edge e1 we can reach SCC2. Similarly, we can travel from SCC2 to SCC3 via e2 and SCC3 to
SCC4 via e3. Thus all the nodes of the graph become reachable.

But if we reverse the edges e1, e2, and e3, the graph will look like the following:

Now in this graph, if we start DFS from node 0 it will visit only the nodes of SCC1. Similarly, if we start from node 3 it
will visit only the nodes of SCC2. Thus, by reversing the SCC-connecting edges, the adjacent SCCs become
unreachable. Now, the DFS will work in such a way, that in one DFS call we can only visit the nodes of a particular
SCC. So, the number of DFS calls will represent the number of SCCs.

Until now, we have successfully found out the process of getting the number of SCCs. But here, comes a new
problem i.e. if we do not know the SCCs, how the edges will be reversed? To solve this problem, we will simply try to

reverse all the edges of the graph like the following:

If we carefully observe, the nodes within an SCC are reachable from each one to everyone even if we reverse the
edges of the SCC. So, the SCCs will have no effect on reversing the edges. Thus we can fulfill our intention of

reversing the SCC-connecting edge without affecting the SCCs.

Now, the question might be like, if node 0 is located in SCC4 and we start DFS from node 0, again we will visit all the
SCCs at once even after reversing the edges. This is where the starting time and the finishing time concept will come

in.

Now, we have a clear intuition about reversing edges before we move on to the starting and the finishing time

concept in the algorithm part.

The algorithm steps are as follows:

1. Sort all the nodes according to their finishing time:
To sort all the nodes according to their finishing time, we will start DFS from node 0 and while backtracking in the DFS
call we will store the nodes in a stack data structure. The nodes in the last SCC will finish first and will be stored in the
last of the stack. After the DFS gets completed for all the nodes, the stack will be storing all the nodes in the sorted

order of their finishing time.

N

. Reverse all the edges of the entire graph:
Now, we will create another adjacency list and store the information of the graph in a reversed manner.
. Perform the DFS and count the no. of different DFS calls to get the no. of SCC:

Now, we will start DFS from the node which is on the top of the stack and continue until the stack becomes empty. For

w

each individual DFS call, we will increment the counter variable by 1. We will get the number of SCCs by just counting the

number of individual DFS calls as in each individual DFS call, all the nodes of a particular SCC get visited.

&

. Finally, we will get the number of SCCs in the counter variable. If we want to store the SCCs as well, we need to store the

nodes in some array during each individual DFS call in step 3.

Note:

 The first step is to know, from which node we should start the DFS call.

* The second step is to make adjacent SCCs unreachable and to limit the DFS traversal in such a way, that in each DFS call,
all the nodes of a particular SCC get visited.

o The third step is to get the numbers of the SCCs. In this step, we can also store the nodes of each SCC if we want to do

S0.

Note: The sorting of the nodes according to their finishing time is very important. By performing this step, we will get to know
where we should start our DFS calls. The top-most element of the stack will finish last and it will surely belong to the SCC1. So, the
sorting step is important for the algorithm.

LA A Time Complexity: O(V+E) + O(V+E) + O(V+E) ~ O(V+E) , where V/ = no. of vertices, E = no. of edges. The first
1 olution {
¢ aszf:(m,de, vis, adj, st) { step is a simple DFS, so the first term is O(V+E). The second step of reversing the graph and the third step,
vis[node] = 1;
for (const it of adj[nodel) {
if (vislit]) {
this.dfs(it, vis, adj, st);

containing DFS again, will take O(V+E) each.

) Space Complexity: O(V)+0(V)+O(V+E), where V = no. of vertices, E = no. of edges. Two O(V) for the visited array

zt,push(node); and the stack we have used. O(V+E) space for the reversed adjacent list.

}

dfs3(node, vis, adjT) {
vis[node] = 1;
for (const it of adjT[nodel) {
if (tvis[it]) {
this.dfs3(it, vis, adjT);
b

}

kosaraju(V, adj) {
const vis = new Array(V).fill(@);
const st = [];
for (let i = 0; i <V; i++) {
if (tvisli]) {
this.dfs(i, vis, adj, st);
}
}

const adjT = new Array(V).fill(e).map(() = [1);
for (let i = 0; i < V; i++) {
vis[i] = o;
for (const it of adj[il) {
adjT[it].push(i);
}
}

let scc = 0;
while (st.length > @) {
const node = st.pop();
if (!vis[node]) {
SCCH+}
this.dfs3(node, vis, adjT);
}
}

return scc;
}

function main() {
const n = 5;
const edges = [[1, @],[e, 2],[2, 1],[0, 31,3, 41];
const adj = new Array(n).fill(@).map(() = [1);
for (let i = 0; i < n; i++) {
adj [edges [i] [0]].push(edges[i] [1]);
}

const obj = new Solution();
const ans = obj.kosaraju(n, adj);
console. log("The number of strongly connected components is: " + ans);

}

main();

looz. bitges 1 goph—> vty Tafans olpgsiim of e i and

W e

Bridges in Graph — Using Tarjan’s Algorithm of time in
and low time: G-55

Problem Statement: There are n servers numbered from O to n — 1 connected by undirected server-to-server
connections forming a network where connectionsi] = [ai, bi] represents a connection between servers ai and bi.

Any server can reach other servers directly or indirectly through the network.

A critical connection is a connection that, if removed, will make some servers unable to reach some other servers.
Return all critical connections in the network in any order.

Note: Here servers mean the nodes of the graph. The problem statement is taken from leetcode.

Pre-requisite: DFS algorithm

Input Format: N = 4, connections = [[0,1],[1,2],[2,0],[1,3]]

Result: [[1, 3]]
Explanation: The edge [1, 3] is the critical edge because if we remove the edge the graph will

Bridge:

Any edge in a component of a graph is called a bridge when the component is divided into 2 or more components if

we remove that particular edge.

Example:

If in this graph, we remove the edge (5,6), the component gets divided into 2 components. So, it is a bridge. But if we
remove the edge (2,3) the component remains connected. So, this is not a bridge. In this graph, we have a total of 3
bridges i.e. (4,5), (5,6), and (10, 8).

In order to find all the bridges of a graph, we will implement some logic over the DFS algorithm. This is more of an
algorithm-based approach. So, let's discuss the algorithm in detail. Before that, we will discuss two important

concepts of the algorithm i.e. time of insertion and lowest time of insertion.

« Time of insertion: Dring the DFS call, the time when a node is visited, is called its time of insertion. For example,
if in the above graph, we start DFS from node 1 it will visit node 1 first then node 2, node 3, node 4, and so on.
So, the time of insertion for node 1 will be 1, node 2 will be 2, node 3 will be 3 and it will continue like this. To
store the time of Insertion for each node, we will use a time array.

o Lowest time of insertion: In this case, the current node refers to all its adjacent nodes except the parent and
takes the minimum lowest time of insertion into account. To store this entity for each node, we will use another

‘low’ array.

The logical modification of the DFS algorithm is discussed below:

After the DFS for any adjacent node gets completed, we will just check if the edge, whose starting point is the
current node and ending point is that adjacent node, is a bridge. For that, we will just check if any other path from
the current node to the adjacent node exists if we remove that particular edge. If any other alternative path exists,

this edge is not a bridge. Otherwise, it can be considered a valid bridge.

1. First, we need to create the adjacency list for the given graph from the edge information(/f not already given). And
we will declare a variable timer(either globally or we can carry it while calling DFS), that will keep track of the time
of insertion for each node.

2. Then we will start DFS from node O(assuming the graph contains a single component otherwise, we will call DFS
for every component) with parent -1.

1. Inside DFS, we will first mark the node visited and then store the time of insertion and the lowest time of
insertion properly. The timer may be initialized to 0 or 1.

2. Now, it's time to visit the adjacent nodes.

1. If the adjacent node is the parent itself, we will just continue to the next node.

2. If the adjacent node is not visited, we will call DFS for the adjacent node with the current node as the
parent.
After the DFS gets completed, we will compare the lowest time of insertion of the current node and
the adjacent node and take the minimum one.
Now, we will check if the lowest time of insertion of the adjacent node is greater than the time of
insertion of the current node.
If it is, then we will store the adjacent node and the current node in our answer array as they are
representing the bridge.

3. If the adjacent node is already visited, we will just compare the lowest time of insertion of the
current node and the adjacent node and take the minimum one.

3. Finally, our answer array will store all the bridges.

class Solution {
constructor() {
this.timer = 1;

dfs(node, parent, vis, adj, tin, low, bridges) {
vis[node] = 1;
tin[node] = low[node] = this.timer;
this.timer++;

for (let it of adj[node]) {

if (it === parent) continue;

if (vis[it] === @) {
this.dfs(it, node, vis, adj, tin, low, bridges);
low[node] = Math.min(low[it], low[node]);
if (low[it] > tin[nodel) {

bridges.push([it, node]);

}

} else {
low[node] = Math.min(low[node]l, low[it]);

criticalConnections(n, connections) {
let adj = Array.from({ length: n }, () = []);
for (let it of connections) {
let u = it[e],
va=RtI1];
adj [u] .push(v);
adj [v].push(u);

Y

let vis = Array(n).fill(0);

let tin = Array(n).fill(0);

let low = Array(n).fill(e);

let bridges = [];

this.dfs(@, -1, vis, adj, tin, low, bridges);
return bridges;

let n = 4;
let connections = [[0, 11,[1, 2]1,[2, @],[1, 31];

let obj = new Solution();
let bridges = obj.criticalConnections(n, connections);
for (let it of bridges) {
console.log([${it[0]}, ${it[1]1}]1°);
}

console. log();

Note: We are not considering the parent’s insertion time during calculating the lowest insertion time as we want to check if

any other path from the node to the parent exists excluding the edge we intend to remove.

Note: /f you wish to see the dry run of the above approach, you can watch the video attached to this article.

Output: [3, 1] (In example 1, [1, 3] and [3, 1] both are accepted.)

Time Complexity: O(V+2E), where V = no. of vertices, E = no. of edges. It is because the algorithm is just a

simple DFS traversal.

Space Complexity: O(V+2E) + O(3V), where V = no. of vertices, E = no. of edges. O(V+2E) to store the graph in

an adjacency list and O(3V) for the three arrays i.e. tin, low, and vis, each of size V.

o5 Astioulorion Peing in Gozp

Articulation Point in Graph: G-56

Problem Statement: Given an undirected connected graph with V/ vertices and adjacency list adj. You are required to

find all the vertices removing which (and edges through it) disconnect the graph into 2 or more components.

Note: Indexing is zero-based i.e nodes numbering from (0 to V-1). There might be loops present in the graph.

Pre-requisite: Bridges in Graph problem & DFS algorithm. » Time of insertion: Dring the DFS call, the time when a node is visited, is called its time of insertion. For example,
if in the above graph, we start DFS from node 0 it will visit node 1 first then node 2, node 3, and so on. So, the

Example 1:

i time of insertion for node O will be 1, node 1 will be 2, node 2 will be 3 and it will continue like this. We will use a

time array to store the insertion time for each node.

Input Format:

This definition remains the same as it was during the bridge problem.
Lowest time of insertion: In this case, the current node refers to all its adjacent nodes except the parent and the

visited nodes and takes the minimum lowest time of insertion into account. To store this entity for each node, we

will use another ‘fow/ array.

The difference in finding the lowest time of insertion in this problem is that in the bridgealgorithm, we only excluded
the parent node but in this algorithm, we are excluding the visited nodes along with the parent node.

Result: {0, 2}
Explanation: If we remove node 0 or node 2, the graph will be divided into 2 or more components. The logical modification of the DFS algorithm Is discussed belows

To find out the bridges in the bridge problem, we checked inside the DFS, if there exists any alternative path from
the adjacent node to the current node.

But here we cannot do so as in this case, we are trying to remove the current node along with all the edges linked to
it. For that reason, here we will check if there exists any path from the adjacent node to the previous node of the
current node. /n addition to that, we must ensure that the current node we are trying to remove must not be the
starting node.

Example 2:

The check conditions for this case will change like the following:

Input Format: if(low[it] > tin[node]) converts to if(low[it] >= tin[node] && parent != -1)

The logic for the starting node:

If the node is a starting point we will check the number of children of the node. If the starting node has more than 1
child(The children must not be connected), it will definitely be one of the articulation points.

Result: {1, 4}
Explanation: If we remove either node 1 or node 4, the graph breaks into multiple components.

To find the number of children, we will generally count the number of adjacent nodes. But there is a point to notice.
In the following graph, the starting node 0 has two adjacent nodes, but it is not an articulation point.

Articulation Point:

Articulation Points of a graph are the nodes on whose removal, the graph breaks into multiple components.

Example:

To avoid this edge case, we will increment the number of children only if the adjacent node is not previously

visited(ie. child++ will be inside the not visited if statement).
We can get a single node as an articulation point multiple times:

If we carefully observe, we can easily notice that we can get a single node as the articulation point multiple times.

For example, consider the following graph:

For the above graph node 0 and node, 2 are the articulation points. If we remove either of the two nodes, the graph

breaks into multiple components like the following:

But node 3 is not an articulation point as this node’s removal does not break the graph into multiple components.

In order to find all the articulation points of a graph, we will implement some logic over the DFS algorithm. This is
more of an algorithm-based approach. So, let's discuss the algorithm in detail. Before that, we will discuss the two

important concepts of the algorithm i.e. time of insertion and lowest time of insertion.

While checking for node 2, we will get the node as the articulation point once for the first component that contains
nodes 4, 5, and 6 and we will again get the same node 2 for the second component that includes the nodes 7, 8, and
9.

To avoid the storing of duplicate nodes, we will store the nodes in a hash arrayfi.e. mark array used in the code) instead
of directly inserting them in a simple array.

Approach:

The algorithm steps are as follows:

1. First, we need to create the adjacency list for the given graph from the edge information(/f not already given). And
we will declare a variable timer(either globally or we can carry it while calling DFS), that will keep track of the time
of insertion for each node. The timer may be initialized to O or 1 accordingly.

2. Then we will perform DFS for each component. For each component, the starting node will carry -1 as its parent.

1. Inside DFS, we will first mark the node visited and then store the time of insertion and the lowest time of
insertion properly. We will declare a child variable to implement the logic for starting node.
2. Now, it's time to visit the adjacent nodes.

1. If the adjacent node is the parent itself, we will just continue to the next node.

2. If the adjacent node Is not visited, we will call DFS for the adjacent node with the current node as the
parent.
After the DFS gets completed, we will compare the lowest time of insertion of the current node and
the adjacent node and take the minimum.

Now, we will check if the lowest time of insertion of the adjacent node is greater or equal to the

Now, we will check if the lowest time of insertion of the adjacent node is greater or equal to the
time of insertion of the current node and also ensure that the current node is not the starting
node(checking parent not equal -1).

If the condition matches, then we will mark the current node in our hash array as one of our
answers as it is one of the articulation points of the graph.

Then we will increment the child variable by 1.

w

. If the adjacent node is visited, we will just compare the lowest time of insertion of the current node
and the time of insertion of the adjacent node and take the minimum.
3. Finally, we will check if the child value is greater than 1 and if the current node is the starting node. If it is
then we will keep the starting node marked in our hash array as the starting node is also an articulation
point in this case.

3. Finally, our answer array will store all the bridges.

Note: We are not considering the parent and the visited nodes during calculating the lowest insertion time as they may be

the articulation points of the graph which means they may be the nodes we intend to remove.

class Solution {
constructor() {

Output: 14 (Example 2)

this.timer = 1; Time Complexity: O(V+2E), where V = no. of vertices, E = no. of edges. It is because the algorithm is just a

z simple DFS traversal.
dfs(node, parent, vis, tin, low, mark, adj) {
vis([node] = 1;
tin[node] = low[node] = this.timer;
this.timer++; size \/.
let child = 0;
for (let it of adj[node]) {
if (it === parent) continue;
if (tvis[it]) {
this.dfs(it, node, vis, tin, low, mark, adj);
low[node] = Math.min(low[nodel, low[it]);
if (low[it] >= tin[node] && parent !== -1) {
mark[node] = 1;

}
child++;
} else {
low[node] = Math.min(low[node], tin[it]);
}
}
if (child > 1 && parent === -1) {
mark[node] = 1;
}

}

articulationPoints(n, adj) {
let vis = Array(n).fill(e);
let tin = Array(n).fill(e);
let low = Array(n).fill(@);
let mark = Array(n).fill(e);
for (let i = 0; i < n; i++) {
if (tvis[il) {
this.dfs(i, -1, vis, tin, low, mark, adj);

}

let ans = [];
for (let i = 0; i < n; i++) {
if (mark[i] === 1) {
ans.push(i);

}
}
if (ans.length === @) return [-1];
return ans;
}
}
let n = 5;

let edges = [[o, 1],[1, 41,[2, 4],[2, 31,3, 4]];

let adj = Array.from({ length: n }, () = [1);
for (let it of edges) {
let u = it[e],
v = it[1];
adj [ul.push(v);
adj [v].push(u);

let obj = new Solution();
let nodes = obj.articulationPoints(n, adj);
for (let node of nodes) {
console. log(node) ;
}
console.log();

Space Complexity: O(3V), where V = no. of vertices. O(3V) is for the three arrays i.e. tin, low, and vis, each of

