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Abstract—The development of algorithmic trading has been
one of the most prominent trends in finance and its applications.
Hidden Markov Models (HMMs) help enhance the predictive
power of statistical models and improve trading strategies for
data scientists and algorithmic traders. In recent years there
has been growing interest in investigating the pairs trading
and multiple trading based on robust Kalman filtering (KF)
using data-driven innovation volatility forecasts (DDIVF). KF
algorithms were successfully applied in pairs trading with two
cointegrated assets using DDIVF as a method for forecasting
non-normal innovation volatility. In this paper a novel combined
pairwise trading strategy is proposed by combining HMM and
DDIVF to further optimize trading signals in different market
regimes. The results of the numerical experiments on two
cointegrated stocks show that the proposed profitable trading
strategy using DDIVF-HMM outperforms the recently studied
robust trading strategy using DDIVF alone.

Index Terms—Pairs Trading, Hidden Markov Models, Robust
Kalman Filter, Innovation Volatility

I. INTRODUCTION

The stock market is complex and volatile. The price fluctu-
ations depend on many factors, including equity, interest rate,
inflation, treasure yields, options, earnings calendar, merger
and acquisition of public listed companies etc. Therefore,
building a model that accounts for many factors as possible
is desirable. Algorithmic trading ( [3], [5], [9], [15]) not only
incorporates the predictions of the further market and imple-
ments trading strategies to profit in various global markets, but
also can produce profits at a speed and frequency that a human
trader can not achieve. Pairs trading is used to exploit the
securities that are out of equilibrium in financial markets. The
strategy involves identifying two securities (e.g. stocks, bonds,
foreign exchanges) whose prices tend to move together in the
long term. When prices are divergent, the cheaper security is
bought long and the more expensive one is sold short. When
prices converge back to the equilibrium, the trade is ended and
a profit is obtained.

Pairs trading was introduced to the academic community
through [7] in 2006. The key idea behind pairs trading is
closely linked with the statistical concept of cointegration. If
a linear combination of a group of non-stationary time series
is stationary, then the group is determined to be cointegrated.
For cointegrated prices, P1,t and P2,t, the difference or spread
of two prices, εt = P1,t − β0 − β1P2,t, is stationary, which

suggests that εt moves around an equilibrium value (about the
the mean of εt) . In pairs trading, the time varying regression
coefficient β1 is called the hedge ratio, and it describes the
amount of one security to purchase or sell for every unit
of the other security. The regression coefficients β0 and β1
are estimated with historical data along with an estimate of
volatility, σ̂, via the square root of mean square error (MSE).
However, σ̂ as a square root estimator is not efficient (see [14]
for details) statistically. For a trading period, trading signals
are generated by computing a z-score based on the regression
coefficient estimates and volatility estimate, which is given by
zt = (P1,t − β̂0 − β̂1P2,t)/σ̂.

In order to incorporate the time varying regression coeffi-
cients ( [2], [12]), and extend pairs trading to multiple trading
[8], the linear state space model or dynamic linear model can
be used. The state space model employs a random walk as the
state equation:

βt = βt−1 + vt, (1)

where βt is the m-dimensional state vector at time t, and vt is
i.i.d with mean zero and covariance matrix Σv . An observed
process yt, is described by an observation equation:

yt = Atβt + εt, (2)

where At is a m-dimensional feature or predictor, and the
observational noise εt is i.i.d with mean zero and variance σ2

ε .
A primary purpose of the analysis is to derive dynamic filtered
estimates, β̂t|t = E[βt|Fyt ], for the hedge ratio βt to hedge
the risk exposure of the stock price movement, given the data
Fyt = {y1, . . . , yt} up to time t. Using the filtered estimate
β̂t−1|t−1, νt = yt−Atβ̂t−1|t−1 is called the innovation at time
t. The innovation sequence νt and its time varying volatility
are used to generate trading signals in algorithmic trading.

In recent years there has been growing interest in pairs
trading and multiple trading based on Kalman filtering (KF)
and maximum informative filtering. In the literature [2], [8],
[12], very small initial values (e.g. σ2

ε = 0.001) of the KF
are used. However trading profit is sensitive to initial values,
and it drops sharply when initial values increase slightly.
[10] studied a novel resilient data-driven filtering algorithm
based on regularized estimating functions for multiple trading,
which does not require either very small initial values or

1766

2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC)

978-1-6654-2463-9/21/$31.00 ©2021 IEEE
DOI 10.1109/COMPSAC51774.2021.00264

20
21

 IE
EE

 4
5t

h 
A

nn
ua

l C
om

pu
te

rs
, S

of
tw

ar
e,

 a
nd

 A
pp

lic
at

io
ns

 C
on

fe
re

nc
e 

(C
O

M
PS

A
C

) |
 9

78
-1

-6
65

4-
24

63
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

C
O

M
PS

A
C

51
77

4.
20

21
.0

02
64

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 14,2021 at 19:26:09 UTC from IEEE Xplore.  Restrictions apply. 



the normality assumption for errors. [14] showed that the
commonly used square root of the innovation variance is not an
appropriate estimator of the innovation (non-normal) volatility.
The data-driven generalized exponential weighted moving
average (DD-EWMA) volatility forecasting model proposed
in [14] is used in [10] to propose the data-driven innovation
volatility forecast (DDIVF), and improve the stability of the
filtering algorithm. The DDIVF provides accurate dynamic
one-step ahead forecasts of innovations which are used to
generate the trading signals appropriately. Let the conditional
variance of the innovation νt, based on the past data up to time
t− 1, be σ2

t . The DD-EWMA volatility forecasting model for
innovations is given by

σ̂t = (1− α) σ̂t−1 + α
|νt−1 − ν̄|

ρ̂ν
, 0 < α < 1, (3)

where α is the tuning parameter, and ρ̂ν is the estimated sign
correlation of the innovation sequence, defined as Corr(νt −
ν̄, sgn(νt−ν̄)). The optimal value of α is obtained by minimiz-
ing the one-step ahead forecast error sum of squares (FESS),
and the estimated sign correlation ρ̂ν is used to identify the
conditional t distribution of νt. It was demonstrated in [10]
that the pairs trading strategy using the DDIVF outperforms
that using Kalman filter innovation volatility forecast (KFIVF).
In this paper, model (3) is used and extended to study the
volatility forecasts of the innovations to incorporate the hidden
states of innovations.

Hidden Markov models (HMMs) have been widely used
in the areas such as speech recognition, DNA sequencing,
electrical signal prediction and image processing. HHMs have
also been applied in finance including stock price prediction
and option pricing. [6] implements a regime switching HMM
approach for airline stock prices forecasting for interrelated
markets. [11] discussed the use of HHMs to capture different
regimes, and switch the model for option valuation based
on each regime. Therefore, it is important to include regime
switching in pairs trading and multiple trading. We combine
the methodology of [11] and [10] to introduce a regime-aware
pairwise DDIVF-HMM trading strategy where the threshold
for trading signals is conditional on the hidden state of the
KF innovations ν.

The remainder of this paper is organized as follows. In
Section II, a KF algorithm is proposed with DDIVF. A data-
driven multiple trading strategy, using filtered hedge ratios and
DDIVF-HMM, is proposed in section II as well. In Section III,
the results of the numerical experiments on two cointegrated
stocks show that pairs trading strategies constructed using the
combined DDIVF-HMM with two or three hidden innovation
states outperform the trading strategies using the DDIVF
alone. These two strategies are analyzed and compared using a
training sample and a test sample. Finally, Section IV provides
conclusions.

II. METHODS

In this section, the multiple trading strategy using mul-
tiple cointegrated stocks is investigated. Consider m as-

set prices P1,t, P2,t, . . . , Pm,t with a cointegrated relation-
ship. The state space model (1) - (2) is used where
βt = (β0,t, β1,t, . . . , βm−1,t)

′, yt = P1,t and At =
(1, P2,t, . . . , Pm,t). In addition, it is assumed for simplicity
that β0,vt and εt are uncorrelated.

A. Kalman Filters Using DDIVF

For model (1) - (2), let β̂t−1|t−1 = E[βt−1|Fyt−1] and
Pt−1|t−1 = Var(βt−1− β̂t−1|t−1|Fyt−1). Kalman filters or the
non-Gaussian maximum informative filters in [8], [10] yield
the optimal estimate of βt as

β̂t = β̂t−1|t−1 + (Pt−1|t−1 + Σv)A′tQ
−1
t (yt −Atβ̂t−1|t−1),

(4)
where the innovation variance is given by

Qt = Var(νt|Fyt−1) = At(Pt−1|t−1 + Σv)A′t + σ2
ε .

In most of the applications including pairs trading and risk
forecasting, the filtered estimate θ̂t−1|t−1 for the state variable,
the innovation, νt, and the innovation volatility,

√
Qt, are used.

However,
√
Qt is not an appropriate estimate of the innovation

volatility. Therefore, DD-EWMA volatility forecasting model
(3) is used to obtain DDIVF, and Algorithm 1 illustrates the
details of DDIVF calculation. Based on the past k innovations,
νt−k, . . . , νt−1, estimated sign correlation, ρ̂ν , and volatility
estimate |νs− ν̄|/ρ̂ν , s = t− k, · · · , t− 1, are calculated. The
smoothed value Ss of the volatility estimate is calculated re-
cursively. The optimal smoothing constant, αopt, is determined
by minimizing the one-step ahead FESS. Using the optimal
value αopt, the smoothed value, Ss, is calculated recursively.
Finally, St−1 is computed, and used as the volatility forecast
σ̂DDt for νt.

Algorithm 1 Dynamic DD-EWMA volatility forecasts of
innovation
Require: Predicted errors νs, s = t− k, · · · , t− 1

1: ρ̂ν ← Corr(νs − ν̄, sign(νs − ν̄))
2: Vs ← |νs − ν̄|/ρ̂ν {Compute estimated volatility}
3: St−k−1 ← V̄l {Initial volatility forecast using first l

observations}
4: α← (0.01, 0.5) by 0.01{Set a range for α}
5: Ss ← α ∗ Vs + (1− α) ∗ Ss−1, s = t− k, . . . , t− 1
6: αopt ← minα

∑t−1
s=t−k+l(Vs − Ss−1)2

7: Ss ← αopt ∗ Vt + (1− αopt) ∗ Ss−1, s = t− k, . . . , t− 1
8: σ̂DDt ← St−1
9: return αopt, σ̂

DD
t

Algorithm 2 explains how to compute the dynamic filtered
hedge ratio β̂t|t using KF and to incorporate DDIVF σ̂DDt
as the innovation volatility forecast. The innovation νt, and
the standard deviation

√
Qt or the DDIVF σ̂DDt can be used

to construct the signals for a trading strategy at each time t.
In the literature [2], [8], [12], trading profits using

√
Qt are

sensitive to initial values. Therefore, a robust multiple trading
strategy using β̂t−1|t−1, νt and DDIVF σ̂DDt is proposed in
[10] and compared with the multiple trading strategy using
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√
Qt to demonstrate the profitability and robustness of the

DDIVF approach. The dynamic robust z-score zt using σ̂DDt
is computed as

zt = νt/σ̂
DD
t , (5)

and the z-scores will be compared with a threshold value p to
generate trading signals.

Algorithm 2 Dynamic filtered hedge ratios and innovation
volatility forecasts
Require: Data: adjusted closing stock prices

P1,t, P2,t, . . . , Pm,t, t = 1, . . . , n
1: Let yt = P1,t,At = (1, P2,t, . . . , Pm,t)
2: Initialization: initial state β0, initial error covariance ma-

trix P0|0 = Σ0, constant error covariance matrix Σv,
constant innovation variance σ2

ε

3: for t← 1, . . . , n do
4: Prediction: Based on data available at t− 1:
5: β̂t|t−1 ← β̂t−1|t−1;Pt|t−1 ← Pt−1|t−1 + Σv; ŷt|t−1 ←

Atβ̂t|t−1
6: Update: Inference about βt is updated using the obser-

vation yt at time t
7: νt ← yt − ŷt|t−1;Qt ← AtPt|t−1A

′
t + σ2

ε

8: DDIVF σ̂DDt is calculated based on νt−k, . . . , νt−1
using Algorithm 1

9: β̂t|t ← β̂t|t−1 + Pt|t−1A
′
tQ
−1
t νt;Pt|t = (I −

Pt|t−1A
′
tQ
−1
t At)Pt|t−1

10: end for
11: return β̂t|t, νt, σ̂DDt

B. HMM for Innovation

Define St as the hidden innovation state variable with K
possible values. Here we discuss how to apply a HMM to
determine the value of the hidden state variable St for each
observed innovation νt at time t, t = 1, 2, . . . , n. Under HMM,
future hidden states depend only on the current hidden state by
the Markov assumption. At each time t, an observation of νt
is estimated and its corresponding state St is determined de-
pending on the previous state St−1, state transition probability
P (St|St−1) and emission probability P (νt|St). The emission
probabilities link the states (unobserved) to νt (observed).

To fit a HMM, the transition matrix of the Markov chain and
emission probabilities must be estimated. Define the transition
probability matrix of hidden states as

P = {pij} s.t. pij = P (St+1 = j|St = i) (6)

where i, j ∈ {1, 2, . . . ,K}. Observable data νt is linked to the
hidden state St by emission probabilities P (νt|St). The joint
density of the hidden states and observable data is given as

P (ν1:n, S1:n) = P (S1)

n∏
t=2

P (St|St−1)

n∏
t=1

P (νt|St) (7)

The expectation-maximization (EM) algorithm is used to
estimate the transition matrix and emission probability pa-
rameters (see [1], [13], [16]). Define γi,t = P (St = i|ν1:t)

as the probability of being in state 1, . . . ,K at time t. Let
γil,t = P (St = i, νit = l|ν1:t) where νil is a random
variable indicating the mixture component at time t for state
i. The parameters µ and Σ for the emission probabilities
are obtained using the update equations: µil =

∑n
t=1 γil,tνt∑n
t=1 γil,t

;

Σil =
∑n

t=1 γil,t(νt−µil)(νt−µil)
T∑n

t=1 γil,t
.

C. A Novel Multiple Trading Strategy using DDIVF-HMM

This paper’s novelty is highlighted in this subsection. The
DDIVF approach presented in [10] is extended by incorporat-
ing a HMM to generate a dynamic fitting of the trading thresh-
old (p). With the DDIVF approach the upper and lower trading
bands are fitted with a single optimal value popt. DDIVF-
HMM determines an optimal threshold value pHMM

opt for each
hidden innovation state, St = j, j ∈ {1, . . . ,K}, t = 1, . . . , n,
that is used to build the trading signals. pHMM

opt [St] is defined
as pHMM

opt ∈ RK and popt|St = j, j ∈ {1, . . . ,K}. The upper
and lower trading bands are calculated using pHMM

opt [St]σ̂
DD
t ,

where pHMM
opt [St] is determined from the training data as

explained in Algorithm 3. A flow chart in Fig. 1 characterizes
the relationship between the KF hedge ratio, DDIVF σ̂DDt ,
hidden innovations states, and the trading signal zt.

DDIVF-HMM ONE STEP

Data: yt,At

KF: νt, Qt
DDIVF σ̂DDt

HMM: determine hidden St
using observed νt from KF

Use St to determine pHMM
opt [St]

Compare zt = νt/σ̂
DD
t with pHMM

opt [St]

Fig. 1. The flow chart demonstrates the algorithm that integrates Kalman
Filter, data driven innovation volatility forecast and hidden Markov model
(KF-DDIVF-HMM) trading strategy.

KF, DDIVF and the HMM are integrated to create a novel
combined trading strategy, DDIVF-HMM as shown in Fig.
1. The key idea of the combined DDIVF-HMM approach is
that the HMM at time t is built based on the innovation νt
and pHMM

opt [St] is used to generate the trading signal at time
t. The DDIVF-HMM trading strategy is further explained in
Algorithm 3. Sells are represented as st = −1, buys as st = 1,
and no signal as st = 0. Sell signal (st = −1, sell more
expensive P1,t) is generated when zt crosses pHMM [St] from
below, or equivalently, νt crosses pHMM [St]σ̂

DD
t from below.

Buy signal (st = 1, buy cheaper P1,t) is generated when zt
crosses a threshold −pHMM [St] from above, or equivalently,
νt crosses −pHMM [St]σ̂

DD
t from above. Trading positions

are determined using st, and profit is computed. The p vector
is from 0.5 to 2.5 with increments by 0.1. A brute force
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method is used when finding the optimal pHMM
opt , where the

combination of the values in the vector p are created in a
matrix with PK being the number of rows and K being the
number of columns. We use the notation pHMM

PK ,K to denote the
matrix of p for training the DDIVF-HMM approach.

Algorithm 3 DDIVF-HMM trading strategy
Require: pHMM

PK ,K , P1,t, . . . , Pm,t, t = 1, . . . , n

1: Compute νt, σ̂DDt with Algorithm 2
2: Determine St with input νt
3: for length of PHMM do
4: Generate trading signals st:
5: for t← k + 2, . . . , n do
6: If νt > pHMM [St]σ̂

DD
t & νt−1 <

pHMM [St−1]σ̂DDt−1 , then st ← −1
7: If νt < −pHMM [St]σ̂

DD
t & νt−1 >

−pHMM [St−1]σ̂DDt−1 , then st ← 1
8: Else st ← 0
9: position.At ← −1000∗β̂t−1|t−1∗st; position.yt ←

1000 ∗ st
10: profit.At ← (At − At−1) ∗ position.At;

profit.yt ← position.yt ∗ (yt − yt−1)
11: profitt ← profit.At + profit.yt
12: end for
13: Calculate the ASR as ASR(PHMM ) =

√
252 ∗

mean(profitt)/sd(profitt)
14: end for
15: Determine the optimal value pHMM

opt that maximizes ASR
16: Obtain the cumulative profit using pHMM

opt

17: return pHMM
opt , cumulative profit

III. RESULTS

This section compares the DDIVF-HMM pairs trading
strategy and the DDIVF pairs trading strategy. The proposed
methods and algorithms are illustrated using the adjusted
closing prices of two cointegrated stocks downloaded from
Yahoo Finance for the period from 2018-01-01 to 2021-01-
01: Duke A. O. Smith Corp (AOS) and Energy Corp (DUK)
as shown in Fig. 2. The training data is selected from 2018-
01-01 to 2020-02-09 and the test data is selected from 2020-
02-10 to 2021-01-01. The cointegration of the two stocks are
regularly checked by the Engle-Granger test and the Johansen
test over time. The training data is used to obtain pHMM

opt

for each hidden state of the innovation. Then the test data is
used to test the profitability and robustness of the proposed
DDIVF-HMM trading strategy. It is known that March 2020
was a historically volatile month for the stock market. The
proposed strategy is demonstrated to be profitable and robust
during this period. The vertical blue line in 2 is used to show
the separation between the train and test data set.

A. DDIVF Pairs Trading Strategy

The DDIVF strategy is performed as follows. First, a rolling
window approach is applied to the training data to forecast the
volatility of νt using Algorithm 1. The selected data covers 531

Fig. 2. Daily adjusted closing prices of AOS and DUK. The vertical straight
line separates the training data and test data.

trading days, with 431 overlapping rolling windows, where
each rolling window is 100 days and is used to calculate a
one-day-ahead DDIVF. For example, ν1, . . . , ν100 are used to
calculate the volatility forecast σ̂101 for ν101. The range of the
tuning parameter α is chosen as (0.1, 2) with an increment
of 0.01. The single optimal threshold value is determined as
popt = 0.83 using DDIVF. The corresponding optimal trading
signals are visualized in Fig. 3, with upper trading band in
orange and the lower trading band in green. The upper band
is calculated using ±poptσ̂DDt and the lower band is calculated
using ±popt − σ̂DDt . Trading signals (i.e. sell when st = −1
and buy when st = 1) are generated when innovation νt
crosses the upper band from bottom, or crosses the lower band
from above. The look-ahead bias is eliminated by lagging the
signals. Each trade consists of 1,000 units of the spread.

Fig. 3. Trading signals, st, are obtained using DDIVF and training data from
2018-01-01 to 2020-02-09.

With the training data, the optimal threshold value is popt =
0.83 as shown in Table I. The cumulative profit of the robust
pairs trading strategy using DDIVF during the training period
is $31722, which is higher than a buy and hold (B/H) strategy
with a profit of $-1306 over the same time span.

1769

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 14,2021 at 19:26:09 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
TRADING PERFORMANCE: 2018-01-01 TO 2020-02-09 (TRAINING DATA)

popt ASR Profit B/H Profit
AOS/DUK 0.83 3.1 31722 -1306
popt: the optimal threshold value using DDIVF
ASR: annualized Sharpe ratio; B/H: buy and hold

In Table II, using popt = 0.83 from the training data, the
trading signals are visualized in Fig. 4 for the test period. The
profit and ASR of the DDIVF strategy and B/H strategy are
compared for the test period in Table II. The cumulative profit
of the DDIVF pairs trading strategy during the training period
is $5011, which is lower than B/H with a profit of $24319.

Fig. 4. Trading signals, st, are obtained using DDIVF and test data from
2020-02-10 to 2021-01-01.

TABLE II
TRADING PERFORMANCE: 2020-02-10 TO 2021-01-01 (TEST DATA)

popt ASR Profit B/H Profit
AOS/DUK 0.83 0.86 5011 24319

B. DDIVF-HMM Pairs Trading Strategy with Two Hidden
Innovation States

The proposed DDIVF-HMM pairs strategy is validated with
the same adjusted closing prices of AOS and DUK. The HMM
state St at time t is found from the innovation estimate νt. The
training data is used to obtain pHMM

opt for each of the HMM
states. We begin with a two state HMM before expanding the
scope to three. The number of states of the model is a hyper-
parameter that can be tuned with the training data and chosen
based on the maximum annual sharp ratio.

We first explore two hidden states of the innovations, and
adjust the upper and lower trading bands. Both HMM state 0
and state 1 (yellow and red trajectories) have their respective
values of pHMM

opt that are fitted from the training data. The
orange lower and blue upper trading bands are modelled from
±pHMM

opt [St]σ̂
DD
t in Fig. 5. Trading signals -1/1 are generated

when innovation νt crosses the upper band from bottom, or
crosses the lower band from above. The optimal threshold

values using the DDIVF-HMM method are pHMM
opt = {state 0:

0.5, state 1: 1.7} as in Table III. The cumulative profit using
DDIVF-HMM during the training period is $50338, higher
than B/H with a profit of $-1306.

Fig. 5. Trading signals, st, are obtained from DDIVF-HMM and trained on:
2018-01-01 to 2020-02-09. Upper and lower bands are adjusted based on the
optimal pHMM

opt for each state St at time t.

TABLE III
TRADING PERFORMANCE: 2018-01-01 TO 2020-02-09 (TRAINING DATA)

pHMM
opt ASR Profit B/H Profit

AOS/DUK 0.5, 1.7 1.15 50338 -1306
pHMM
opt : optimal threshold value for each hidden innovation state

Fig. 6 visualizes the trading signals using the DDIVF-
HMM trading strategy during the test period using pHMM

opt =
{state 0: 0.5, state 1: 1.7} determined from the training data.
Both HMM state 0 and state 1 (yellow and red trajectories)
innovations have their respective values of pHMM

opt that are
determined from the training data. The upper and lower trading
signals have been adjusted by the respective value of pHMM

opt

given the certain hidden state of the innovations.

Fig. 6. Trading signals, st, are obtained using DDIVF-HMM and test data
from 2020-02-10 to 2021-01-01.
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As shown in Table IV, the cumulative profit using DDIVF-
HMM during the test period is $33830, higher than B/H
strategy with a profit of $24314. Comparing to profit of the
DDIVF trading strategy in Table II, DDIVF-HMM outper-
forms DDIVF because the DDIVF-HMM trading strategy is
able to capture the time varying innovation volatility as well
as innovation state switching. Another interesting conclusion
is that of the values of pHMM

opt change when the hidden states
of the innovations change from volatile to less volatile market
states. pHMM

opt = 1.7 implies that less trades are made when
market conditions are more volatile (highlighted in red in Fig.
5 and Fig. 6). During the less volatile period (highlighted in
yellow in Fig. 5 and Fig. 6), pHMM

opt = 0.5 allows for more
trades to be made. It is consistent with human intuition that
one normally makes more trades during a non-volatile period
and less trades during a volatile period.

TABLE IV
TRADING PERFORMANCE: 2020-02-10 TO 2021-01-01 (TEST DATA)

pHMM
opt ASR Profit B/H Profit

AOS/DUK 0.5, 1.7 1.45 33830 24319

C. DDIVF-HMM Paris Trading Strategy with Three Hidden
States

Similarly, the DDIVF-HMM pairs trading strategy with
three hidden states of innovations is discussed. It is determined
from the training data that the optimal threshold value pHMM

opt

= {state 0: 0.9, state 1: 2.1, state 2: 0.5}, which are used to
adjust the upper and lower trading bands by pHMM

opt [St]σ
DD
t .

For the training period, the cumulative profit of the robust
pairs trading strategy using DDIVF-HMM with three hidden
states during the training period is $54449 shown in Table
V, higher than $50338 using DDIVF-HMM with two hidden
states shown in Table III.

TABLE V
TRADING PERFORMANCE: 2018-01-01 TO 2020-02-07 (TRAINING DATA)

pHMM
opt ASR Profit B/H Profit

AOS/DUK 0.9, 2.1, 0.5 1.22 54449 -1306

For test period, the cumulative profit of the trading strategy
using DDIVF-HMM with three hidden states during the train-
ing period is $57621, higher than B/H with a profit of $24319
shown in Table VI. The profit of $57621 is also higher than
that of $33830 using DDIVF-HMM with two hidden states
shown in Table IV. More than three hidden states will not be
discussed because a larger number of hidden states will cause
the over-fitting problem. The results of two and three hidden
innovation states show that both two and three hidden Markov
states for the pairs trading algorithm is more profitable than
B/H strategy, and DDIVF-HMM outperforms DDIVF.

IV. CONCLUSION

This paper presents a robust pairs trading strategy using KF
as well as DDIVF based on DD-EWMA forecasts for each

TABLE VI
TRADING PERFORMANCE: 2020-02-08 TO 2021-01-01 (TEST DATA)

pHMM
opt ASR Profit B/H Profit

AOS/DUK 0.9, 2.1, 0.5 2.48 57621 24319

hidden state of the proposed HMM of the innovation. The
driving idea, unlike the existing work in [10], is combining
the DDIVF and HMM for innovations. We demonstrate that
the DDIVF-HMM trading strategy is able to capture the
time varying innovation volatility as well as innovation state
switching. Numerical experiments are conducted to show that
the proposed DDIVF-HMM trading strategy outperforms (i.e.,
more profitable) the DDIVF trading strategy.
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