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PREFACE

The field of Artificial Intelligence (AI) really came into existence 
with the birth of computers in and around the 1940s and 1950s. 
For the earlier period of its development, attention was clearly 
focused on getting computers to do things that, if a human did 
them, would be regarded as intelligent. Essentially, this involved 
trying to get computers to copy humans in some or all aspects of 
their behaviour. In the 1960s and 1970s this opened up a philo-
sophical discussion as to just how close to a human brain a com-
puter could be, and whether any differences that arose were really 
important. This period – referred to as ‘classical AI’ in this book – 
was, however, rather limited in its potential.
	 In the 1980s and 1990s we saw a whole new approach, a sort of 
bottom-up attack on the problem, effectively building artificial 
brains to bring about AI. This completely opened up the possibil-
ities and created a whole new set of questions. No longer was AI 
restricted to merely copying human intelligence – now it could be 
intelligent in its own way. In some cases it could still be brought 
about by mimicking the way a human brain performed, but now it 
had the potential to be bigger, faster and better. The philosophical 
consequence of this was that now an artificial brain could poten-
tially outperform a human brain.
	 In more recent years the field has really taken off. Real-world 
applications of AI, particularly in the finance, manufacturing and 
military sectors, are performing in ways with which the human 
brain simply cannot compete. Artificial brains are now being given 
their own body, with which to perceive the world in their own 
way and to move around in it and modify it as they see fit. They 
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are being given the ability to learn, adapt and carry out their wishes 
with regard to humans. This raises all sorts of issues for the future.
	 The aim of this book has been to realise a truly modern and up-
to-date look at the field of AI in its entirety. Classical AI is cer-
tainly looked at, but only as part of the total area. Modern AI is 
also considered with equal balance. In particular, some of the very 
latest research into embodied AI and growing biological AI is also 
discussed.
	 The intention is to provide a readable basic guide to the field of 
AI today – to see where it has come from and where it may be 
going. The main aim is to provide an introduction for someone 
not at all familiar with the topic. However, it may well also be of 
interest to those already involved in science, technology and even 
computing, who perhaps need to catch up with recent 
developments.
	 I would like to thank many people for their help in putting this 
book together. In particular, my colleagues and research students at 
the University of Reading, especially Mark Gasson, Ben Hutt, Iain 
Goodhew, Jim Wyatt, Huma Shah and Carole Leppard, all of 
whom have contributed significantly to the work described. I also 
wish to extend my gratitude to Andy Humphries of Taylor & 
Francis, who has pushed me to get the book completed despite 
many other conflicting calls on my time. Finally, I wish to thank 
my wife, Irena, for her patience, and my kids, Maddi and James, 
for their criticism.

Kevin Warwick
Reading, January 2011



INTRODUCTION

SYNOPSIS

In this opening chapter a brief overview is given of what the book is 
about, its aims and potential readership. A glimpse is also given of 
how the subject area has developed over the years, including 
mention of the key movers, important issues and breakthroughs. 
Essentially, the chapter provides a gentle helping hand to guide new 
readers into the subject. This chapter is not a necessity for those 
already familiar with the subject of AI, but nevertheless it could stim-
ulate some thoughts or provide useful nuggets of information.

INTRODUCTION

The book is written as an introductory course text in Artificial 
Intelligence (AI), to provide material for a first course for students 
specialising in areas such as computer science, engineering and 
cybernetics. However, it can act as a background or reference text 
for all interested students, particularly in other branches of science 
and technology. It may also be useful as an introductory text for 
A-level students and even members of the general public who wish 
to get an overview of the field in an easily digestible form.
	 The subject area has shifted dramatically in the last few years and 
the text is intended to give a modern view of the subject. Classical 
AI techniques are certainly covered, but in a limited way – the goal 
is an all-encompassing, modern text.
	 The content of the book covers aspects of AI involving philo-
sophy, technology and basic methods. Although indicators are 
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given of AI programming with basic outlines, the book does not 
attend to the details of writing actual programs and does not get 
bogged down with intricacies concerning the differences 
between programming languages. The main aim is to give an 
overview of AI – an essential guide that doesn’t go too heavily 
into depth on any specific topic. Pointers are given as to further 
texts which can take the reader deeper into a particular area of 
interest.
	 Although the text provides a general overview, potentially 
accessible by the general public, it has been written with academic 
rigour. Some previous texts have been directed more towards a fun 
book for children – this book is not of that type.

EARLY HISTORY OF AI

There are strong links between the development of computers and 
the emergence of AI. However, the seeds of AI were sown long 
before the development of modern computers. Philosophers such 
as Descartes considered animals in terms of their machine perform-
ance, and automatons were the precursors of the humanoid robots 
of today. But artificial beings can be traced back even further, to 
stories of the Prague Golem, or even further to Greek myths such 
as Pygmalion’s Galatea.
	 The strongest immediate roots probably date back to the work 
of McCulloch and Pitts, who, in 1943, described mathematical 
models (called perceptrons) of neurons in the brain (brain cells) 
based on a detailed analysis of the biological originals. They not 
only indicated how neurons either fire or do not fire (are ‘on’ or 
‘off ’), thereby operating in a switching binary fashion, but also 
showed how such neurons could learn and hence change their 
action with respect to time.
	 Perhaps one of the greatest pioneers of the field was a British 
scientist, Alan Turing. In the 1950s (long before the computers of 
today appeared), Turing wrote a seminal paper in which he 
attempted to answer the question ‘Can a machine think?’ To even 
ask the question was, at the time, revolutionary, but to also come 
up with an applicable test (commonly known as the Turing Test) 
with which to answer the question was provocative in the extreme. 
The test is considered in detail in Chapter 3.
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	 It was shortly after this that Marvin Minsky and Dean Edmonds 
built what could be described as the first AI computer, based on a 
network of the neuron models of McCulloch and Pitts. At the 
same time, Claude Shannon considered the possibility of a com-
puter playing chess and the type of strategies needed in order to 
decide which move to make next. In 1956, at the instigation of 
John McCarthy, along with Minsky and Shannon, researchers came 
together at Dartmouth College in the USA for the first workshop 
celebrating the new field of AI. It was here that many of the sub-
sequent classical foundations of the subject were first laid.

THE MIDDLE AGES OF AI DEVELOPMENT

In the 1960s the most profound contribution to the field was argu-
ably the General Problem Solver of Newell and Simon. This was a 
multi-purpose program aimed at simulating, using a computer, 
some human problem-solving methods. Unfortunately the tech-
nique employed was not particularly efficient, and because of the 
time taken and memory requirements to solve even relatively 
straightforward real problems, the project was abandoned.
	 The other significant contribution of the 1960s was that of Lotfi 
Zadeh, with his introduction of the idea of ‘fuzzy’ sets and systems 
– meaning that computers do not have to operate in a merely 
binary, logical format, but can also perform in a human-like, ‘fuzzy’ 
way. This technique and its spin-offs are considered in Chapter 4.
	 Other than these examples, the 1960s was perhaps a time of 
some foolhardy claims regarding the potential of AI to copy and 
even perhaps recreate the entire workings of the human brain 
within a very short space of time. An observation in hindsight is 
that trying to get a computer to operate in exactly the same way as 
a human brain was rather like trying to make an aeroplane fly in 
the same way as a bird. In the latter case one would miss out on 
the good characteristics of the aeroplane, and so it was that AI 
research at this time missed out on much of the good points on 
offer from computers.
	 Unfortunately (and quite surprisingly), some of the limited think-
ing from the 1960s persists today. Some present textbooks (some even 
under the guise of modern AI) still concentrate merely on the classical 
approach of trying to get a computer to copy human intelligence, 
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without truly considering the extent and exciting possibilities of dif-
ferent types of AI – in terms of machines being intelligent in their 
own way, not merely copying human intelligence.
	 In this period, considerable effort did go into making computers 
understand and converse in natural, human language, rather than 
their more direct machine code. This was partly driven by Turing’s 
ideas of intelligence, but also partly by a desire for computers to 
more readily interface with the real world.
	 One of the best English-speaking computer programs was 
Joseph Weisenbaum’s ELIZA. Indeed, this was the first of what 
have become known as ‘Chatterbots’. Even at this relatively early 
stage, some of its conversations were sufficiently realistic that some 
users occasionally were fooled into thinking they were communi-
cating with a human rather than a computer.
	 In fact, ELIZA generally gave a canned response or simply 
repeated what had been said to it, merely rephrasing the response 
with a few basic rules of grammar. However, it was shown that 
such an action appeared to adequately copy, to some extent, some 
of the conversational activities of humans.

THE DARK AGES OF AI RESEARCH

After the excitement of the 1960s, with substantial research 
funding and claims of what would shortly be achieved in terms of 
AI replicating human intelligence, the 1970s proved to be some-
thing of a let down, and in many ways was a Dark Age for AI. 
Some of the more optimistic claims of the 1960s raised expecta-
tions to an extremely high level, and when the promised results 
failed to be realised, much of the research funding for AI 
disappeared.
	 At the same time the field of neural networks – computers 
copying the neural make-up of the brain – came to a halt almost 
overnight due to a scathing attack from Marvin Minsky and 
Seymour Papert on the inability of perceptrons to generalise in 
order to deal with certain types of relatively simple problems – 
something we will look at in Chapter 4.
	 It must be realised, however, that in the 1970s the capabilities of 
computers and therefore AI programs were quite limited in com-
parison with those of today. Even the best of the programs could 
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only deal with simple versions of the problems they were aimed at 
solving; indeed, all the programs at that time were, in some sense, 
‘toy’ programs.
	 Researchers had in fact run into several fundamental limits that 
would not be overcome until much later. The main one of these 
was limited computing power. There was nowhere near enough 
speed or memory for really useful tasks – an example of this from 
the time was Ross Quillan’s natural language machine, which had 
to get by with a total vocabulary of 20 words!
	 However, the main problem was that AI tasks, such as getting a 
computer to communicate in a natural language or to understand 
the content of a picture in anything like a human way, required a 
lot of information and a lot of processing power, even to operate at 
a very low, restricted level. General, everyday objects in an image 
can be difficult for computers to discern, and what humans regard 
as common-sense reasoning about words and objects actually 
requires a lot of background information.
	 If the technical difficulties faced in the 1970s were not 
enough, the field also became an acceptable topic of interest to 
philosophers. For example, John Searle came up with his 
Chinese room argument (which we look at in Chapter 3) to 
show that a computer cannot be said to ‘understand’ the symbols 
with which it communicates. Further, he argued, because of this 
the machine cannot necessarily be described as ‘thinking’ – as 
Turing had previously postulated – purely in terms of symbol 
manipulation.
	 Although many practical researchers simply got on with their 
jobs and avoided the flak, several philosophers (such as Searle) gave 
the strong impression that the actual achievements of AI would 
always be severely limited. Minsky said, of these people: ‘They 
misunderstand, and should be ignored.’ As a result, a lot of in-
fighting occurred, which took the focus away from technical 
developments, and towards philosophical arguments which (in 
hindsight) many now see to be red herrings.
	 Almost standing alone at the time, John McCarthy considered 
that how the human brain operates and what humans do is not 
directly relevant for AI. He felt that what were really needed were 
machines that could solve problems – not necessarily computers 
that think in exactly the same way people do. Minsky was critical 
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of this, claiming that understanding objects and conversing, to be 
done well, required a computer to think like a person. And so the 
arguments went on . . .

THE AI RENAISSANCE

The 1980s saw something of a revival in AI. This was due to three 
factors.
	 First, many researchers followed McCarthy’s lead and continued 
to develop AI systems from a practical point of view. To put it 
simply, they just got on with it. This period saw the development 
of ‘expert systems’, which were designed to deal with a very spe-
cific domain of knowledge – hence somewhat avoiding the argu-
ments based on a lack of ‘common sense’. Although initially piloted 
in the 1970s, it was in the 1980s that such systems began to be used 
for actual, practical applications in industry.
	 Second, although the philosophical discussions (and arguments) 
continued, particularly as regards to whether or not a machine 
could possibly think in the same way as a human, they seemed to 
do so largely independently of the practical AI work that was 
occurring. The two schools simply proceeded with their own 
thing, the AI developers realising practical industrial solutions 
without necessarily claiming that computers should or could 
behave like humans.
	 Third, the parallel development of robotics started to have a 
considerable influence on AI. In this respect a new paradigm arose 
in the belief that to exhibit ‘real’ intelligence, a computer needs to 
have a body in order to perceive, move and survive in the world. 
Without such skills, the argument goes, how can a computer ever 
be expected to behave in the same way as a human? Without these 
abilities, how could a computer experience common sense? So, the 
advent of a cybernetic influence on AI put much more emphasis 
on building AI from the bottom up, the sort of approach, in fact, 
originally postulated by McCulloch and Pitts.

TO THE PRESENT

Gradually, the emergent field of AI found its feet. Industrial 
applications of AI grew in number and it started to be used in 
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expansive areas, such as financial systems and the military. In these 
areas it was shown to be not only a replacement for a human oper-
ative, but also, in many cases, able to perform much better. 
Applications of AI in these areas have now expanded enormously, 
to the extent that financial companies that used to earn their 
money from advising clients now make much bigger profits from 
developing AI systems to sell to and service for their clients.
	 The period since the start of the 1990s has also seen various 
milestones reached and targets hit. For example, on 11 May 1997, 
Deep Blue became the first chess-playing computer system to beat 
a reigning, world chess champion (Garry Kasparov) at his own 
game. In another vein, on 14 March 2002 Kevin Warwick (the 
author) was the first to successfully link the human nervous system 
directly with a computer to realise a new combined form of AI – 
but more of that in a moment. On 8 October 2005 it was 
announced that a Stanford University robot had won the DARPA 
Grand Challenge by driving autonomously for 131 miles along an 
unrehearsed desert trail. Meanwhile, in 2009, the Blue Brain 
Project team announced that they had successfully simulated parts 
of a rat’s cortex.
	 For the most part, such successes as these were not, in any case, 
due to a newly invented form of technology, but rather to pushing 
the limits with the technology available. In fact, Deep Blue, as a 
computer, was over ten million times faster than the Ferranti com-
puter system taught to play chess in 1951. The ongoing, year-on-
year, dramatic increase in computing power is both followed and 
predicted by what has become known as Moore’s Law. 
	 Moore’s Law indicates that the speed and memory capacity of 
computers doubles every two years. It means that the earlier prob-
lems faced by AI systems are quite rapidly being overcome by sheer 
computing power. Interestingly, each year sees some claim or other 
in a newspaper that Moore’s Law will come to an end due to a 
limiting factor such as size, heat, cost, etc. However, each year new 
technological advances mean that available computing power 
doubles and Moore’s Law just keeps on going.
	 On top of this, the period has also seen novel approaches to AI 
emerge. One example is the method of ‘intelligent agents’. This is 
a modular approach, which could be said to be mimicking the 
brain in some ways – bringing together different specialist agents to 
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tackle each problem, in the same sort of way that a brain has differ-
ent regions for use in different situations. This approach also fits 
snugly with computer science methods in which different programs 
are associated with different objects or modules – the appropriate 
objects being brought together as required.
	 An intelligent agent is much more than merely a program. It is a 
system in itself in that it must perceive its environment and take 
actions to maximise its chances of success. That said, it is true that 
in their simplest form, intelligent agents are merely programs that 
solve specific problems. However, such agents can be individual 
robot or machine systems, operating physically autonomously.
	 As is described in Chapter 4, as well as agents, lots of other new 
approaches have arisen in the field of AI during this period. Some 
of these have been decidedly more mathematical in nature, such as 
probability and decision theory. Meanwhile, neural networks and 
concepts from evolution, such as genetic algorithms, have played a 
much more influential role.
	 It is certainly the case that particular actions can be construed as 
being intelligent acts (in humans or animals) up to the point that 
they can be performed (often more effectively) by a computer. It is 
also the case that a lot of new developments in AI have found their 
way into more general applications. In doing so, they often lose the 
tag of ‘AI’. Good examples of this can be found with data mining, 
speech recognition and much of the decision making presently 
carried out in the banking sector. In each case, what was originally 
AI has become regarded as just another part of a computer 
program.

THE ADVENT OF WIRELESS

One of the key technologies that became a practical reality in the 
1990s was wireless technology as a form of communication for 
computers, following on from widespread introduction and use of 
the internet. From an AI perspective, this completely changed the 
playing field. Until that time what existed were standalone com-
puters, the power and capabilities of which could be directly com-
pared with standalone human brains – the normal set up. With 
networked computers becoming commonplace, rather than con-
sidering each computer separately, it became realistically necessary 
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to consider the entire network as one, large intelligent brain with 
much distribution – called distributed intelligence.
	 Thanks to wireless technology, connectivity is an enormous 
advantage for AI over human intelligence – in its present-day stan-
dalone form. At first it was mainly a means whereby computers 
could communicate rapidly with each other. However, it has 
quickly become the case that large pockets of memory are dis-
persed around a network, specialism is spread and information 
flows freely and rapidly. It has changed the human outlook on 
security and privacy and has altered the main means by which 
humans communicate with each other.

HAL 9000

In 1968 Arthur C. Clarke wrote 2001: A Space Odyssey, which was 
later turned into a film of the same name by Stanley Kubrick. The 
story contains a character, HAL 9000. HAL is a machine whose 
intelligence is either the same as or better than human intelligence. 
Indeed it/he exhibits human traits of meaningful emotions and 
philosophy. Although HAL was merely a fictional machine, it nev-
ertheless became something of a milestone to be reached in the 
field of AI. In the late 1960s many believed that such a form of AI 
would exist by 2001 – particularly as HAL was based on underpin-
ning science of the time.
	 Various people have asked why we didn’t have some form of 
HAL, or at least a close approximation, by 2001. Minsky grumbled 
that too much time had been spent on industrial computing rather 
than on a fundamental understanding of issues such as common 
sense. In a similar vein, others complained that AI research con-
centrated on simple neuron models, such as the perceptron, rather 
than on an attempt to get a much closer model of original human 
brain cells.
	 Perhaps the answer as to why we didn’t have HAL by 2001 is 
an amalgamation of these issues, and more. We simply didn’t have 
the focused drive to achieve such a form of AI. No one put up the 
money to do it and no research team worked on the project. In 
many ways – such as networking, memory and speed – we had 
already realised something much more powerful than HAL by 
2001, but emotional, moody reflections within a computer did not 
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(and probably still do not) have a distinctive role to play, other than 
perhaps in feature films.
	 For the guru Ray Kurzweil, the reason for the non-appearance 
of HAL is merely computer power and, using Moore’s Law, his 
prediction is that machines with human-level intelligence will 
appear by 2029. Of course, what is meant by ‘human-level intelli-
gence’ is a big question. My own prediction in my earlier book, 
March of the Machines, was not too far away from Kurzweil though 
– machines will have an intelligence that is too much for humans 
to handle by 2050.

TO THE FUTURE

Much of the classical philosophy of AI (as discussed in Chapter 3) 
is based largely on the concept of a brain or computer as a sort of 
standalone entity – a disembodied brain in a jar, so to speak. In the 
real world, however, humans interact with the world around them 
through sensors and motor skills.
	 What is of considerable interest now, and will be even more so 
in the future, is the effect of the body on the intellectual abilities of 
that body’s brain. Ongoing research aims at realising an AI system 
in a body – embodiment – so it can experience the world, 
whether it be the real version of the world or a virtual or even 
simulated world. Although the study of AI is still focused on the AI 
brain in question, the fact that it does have a body with which it 
can interact with the world is seen as important.
	 As we step into the future, perhaps the most exciting area of AI 
research is that in which AI brains are grown from biological neural 
tissue – typically obtained from either a rat or a human. Particular 
details of the procedures involved and the methods required to 
launder and successfully grow living biological neural tissue are 
given in Chapter 5. In this case, the AI is no longer based on a 
computer system as we know it, but rather on a biological brain 
that has been grown afresh.
	 This topic is certainly of interest in its own right as a new form 
of AI, and is potentially useful in the future for household robots. 
However, it also provides a significant new area of study in terms 
of its questioning of many of the philosophical assumptions from 
classical AI. Essentially, such philosophy discussed the difference 
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between human intelligence and that of a silicon machine. In this 
novel research area, however, AI brains can be grown from human 
neurons, by building them up into something like an AI version of 
a human brain type, thus blurring what was a crisp divide between 
two distinctly different brain styles.

CYBORGS

It could be said that when a biological AI brain is given a techno-
logical robot body then it is a type of cyborg – a cybernetic organ-
ism (part animal/human, part technology/machine) – with an 
embodied brain. This area of research is the most exciting of all – 
the direct link between an animal and a machine for the better-
ment (in terms of performance) of both. Such a cyborg as discussed 
is just one potential version. Indeed, neither the normal researched 
form of cyborg nor that usually encountered in science fiction is of 
this type.
	 The type of cyborg more regularly encountered is in the form 
of a human who has, implanted in them, integral technology which 
is linked to a computer which thereby gives them abilities above 
those of the human norm – meaning a cyborg has skills that a 
human does not. These skills can be physical and/or mental and 
can pertain to intelligence. In particular, we will see that an AI 
brain is usually (excluding a biological AI brain) very different from 
a human brain, and these differences can be realised in terms of 
advantages (particularly for AI).
	 Reasons for the creation of cyborgs generally revolve around 
enhancing the performance of the human brain by linking it 
directly with a machine brain. The combined brain can then, 
potentially at least, function with characteristic features from 
both its constituent parts – a cyborg could therefore possibly 
have better memory, faster math skills, better senses, 
multidimensional thought and improved communication skills 
when compared with a human brain. To date, experiments have 
successfully shown both sensory enhancement and a new form of 
communication for cyborgs. Although not specifically dealt with 
in this text, it is felt that the material covered in Chapters 5 and 
6 will put the reader in good stead for a follow-on study in this 
field.
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CONCLUDING REMARKS

This chapter has set the scene for the rest of the book, giving a 
brief overview of AI’s historical development and some of the key 
developments. In doing so, some of the movers and shakers in the 
field have been introduced.
	 In the following text, after a gentle introduction (Chapter 1) to 
the overall concept of intelligence, Chapters 2 and 3 concentrate 
on the classical AI methods that were originally introduced. Chap-
ters 4 and 5 then consider ongoing, modern and more futuristic 
approaches. You will find that the more novel, up-to-date sections 
of Chapters 4 and 5 are probably not encountered in most other AI 
textbooks – even when such books are called Artificial Intelligence or 
AI: A Modern Approach. Chapter 6 then considers how an AI can 
perceive the world through its sensor system.
	 Enjoy!

KEY TERM
embodiment
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by Addison Wesley, 1st edition, 2001. This is quite a general 
book which keeps mathematics to a minimum and provides a 
reasonably broad coverage of classical AI with little jargon. It is a 
good introductory guide, based on lectures given by the author. 
Unfortunately, it doesn’t deal with topics such as robotics, bio-
logical AI or sensing.

2	 Artificial Intelligence: A Beginner’s Guide by B. Whitby, published 
by OneWorld, 2008. This is quite a reasonable, level-headed 
overview text. It is more concerned with ethical issues and is 
fairly conservative, but well posed. It doesn’t explain topics in 
any depth, however.

3	 Understanding Artificial Intelligence, edited by Scientific American 
staff, Warner Books, 2002. This is actually a collection of essays 
on the subject. Although mostly concerned with the philosophy 
of AI, it gives a feel for what different experts consider to be the 
main issues.
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WHAT IS INTELLIGENCE?

SYNOPSIS

Before embarking on a tour of an artificial form of intelligence, 
here we take a look at what intelligence actually is in humans, 
animals and machines. The important aspects of mental make-up 
are considered, some myths chopped down to size and comparisons 
are made between intelligence in the different entities. For 
example, what is the intelligence of a spider? What does it mean 
for a machine to be intelligent? How would human intelligence be 
regarded by an alien? Clearly the subjective nature of intelligence is 
important.

DEFINING INTELLIGENCE: AN IMPOSSIBLE 
TASK?

It is important, before looking into ‘artificial’ intelligence, to try to 
understand what exactly intelligence is in the first place. What do we 
mean when we say a person, animal or thing is intelligent? In fact, 
everyone has a different concept based on their own experiences and 
views, dependent on what they think is important and what is not. 
This can easily change – what may be deemed to be intelligent at 
one time and place may not be so deemed later or elsewhere.
	 As an example, in the New English Dictionary of 1932, intelli-
gence was defined as: ‘The exercise of understanding: intellectual 
power: acquired knowledge: quickness of intellect.’ Clearly, at that 
time an emphasis was placed on knowledge and mental speed, with 
a leaning towards human intelligence. More recently, the Macmillan 
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Encyclopedia of 1995 stated that ‘Intelligence is the ability to reason 
and to profit by experience. An individual’s level of intelligence is 
determined by a complex interaction between their heredity and 
environment.’
	 In the 1900s, Binet (the inventor of the IQ test) picked on 
judgement, common sense, initiative and adaptability as ‘essential 
ingredients of intelligence’. Recently, intelligence has even been 
linked with spiritual awareness or emotions. Clearly, intelligence in 
humans is important but it is not the only example of intelligence 
and we must not let it override all else. If we are comparing intel-
lectual ability between humans, then standard tests of one type or 
another are useful. However, we need here to consider intelligence 
in a much broader sense, particularly if we are to investigate intelli-
gence in machines.

ANIMAL INTELLIGENCE

It is well worth considering intelligence in creatures other than 
humans in order to open our minds to different possibilities. Here, 
we will look at a few to consider aspects of intelligence such as 
communication, planning and some of the terms just defined, such 
as initiative, reasoning and quickness of intellect.
	 Bees exhibit individual behavioural characteristics within a 
tightly knit society. They appear to communicate with each other 
by means of a complex dance routine. When one bee returns from 
a pollen collection expedition, it performs a dance at the hive 
entrance, wiggling its bottom and moving forward in a straight 
line. The distance moved is proportional to the distance of the 
pollen source and the angle moved indicates the angle between the 
source and the sun. In this way, other bees can learn which is a 
good direction to fly.
	 There are over 30,000 different species of spider, each with its 
own speciality. Water spiders, for example, live in ponds and build 
an air-filled diving bell out of silk. They then wait underwater for 
passing prey such as shrimps. At the right moment the spider 
pounces to deliver a fatal bite, pulling the prey back into its lair 
before devouring it.
	 Many creatures have been witnessed exhibiting learning abilities. 
A good example of this is the octopus. By training one octopus to 
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choose between objects of different colour, experiments have 
shown how a second octopus who has watched the first through a 
glass partition can then carry out the exact same decision-making 
process.
	 Many creatures use tools. An unusual example of this is the 
green heron. Herons have been seen dropping morsels of food into 
water where fish are expected to be. When the fish swims to take 
the bait, the heron catches it.
	 Because of their genetic links to humans, chimpanzees are the 
most widely studied non-human animal. They can: communicate 
(even with humans); plan hunting trips; use a variety of tools in 
sequenced order for food collection or climbing; play; put the 
blame on others; and even use devious ploys to gain sexual favours 
– this on top of exhibiting basic learning skills. But perhaps it is 
easier to measure such abilities when they are close to those of 
humans. The capabilities of creatures such as spiders, whales or 
slugs can be extremely difficult to give value to if they are mean-
ingless to humans.

BRAIN SIZE AND PERFORMANCE

It could be argued that one way in which direct comparisons can 
be made is in terms of brain size, relative numbers of brain cells 
(neurons) and complexity. Comparing a human brain of approxi-
mately 100 billion neurons with a sea slug consisting of 8–9 
neurons appears to make a good start. However, between species 
brain size, neuron size and connectivity all vary tremendously. 
Even between humans there can be large variations. In the past this 
was used to ‘prove’ all sorts of results.
	 In Germany in 1911 the minimum requirement for a professor 
was a head circumference of 52 centimetres. This was used to dis-
criminate against women; Bayerthal, a leading medical physicist of 
the time stated: ‘We do not have to ask for the head circumference 
of women of genius – they do not exist.’ At the same time, 
Gustave Le Bon, a French scientist of note pointed out that, on 
average, women had brains which were closer in size to gorillas 
than they were to those of men!
	 These serve as good examples of trying to use some sort of 
measure to come to the conclusion that was wanted (in this case by 
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some men) in the first place. This is something that must be 
avoided at all costs in studying intelligence, yet it is one that has 
appeared time and again in studies. That said, it is also inappropri-
ate to overlook observable differences simply because they are 
deemed to be not politically correct.
	 One issue with brain size and a count of neurons is the defini-
tion of what exactly constitutes a brain. For an individual creature 
this might be answered quite simply in terms of the main group of 
central neural-type cells (in a creature’s head). In humans, approxi-
mately 99% of neurons are in the skull, with the other 1% in the 
nervous system. In many insects the divide is more like 50–50 due 
to their dependence on rapid processing of sensory input. In 
machines, however, the brain is often networked – leading to a 
conclusion that the effective brain size is the total number of 
neural-type cells in the network, rather than merely those in one 
central repository.
	 A pure count of brain cells is extremely problematic, even in 
humans. As an example, consider a person who has had a stroke 
such that their neuron count is significantly reduced due to neural 
death over a section of the brain. Yet they may still be able to 
perform in many ways much better than many ‘normal’ 
individuals.
	 Perhaps energy usage would be a better start point. Brains are 
highly expensive in this regard. Human brain metabolism accounts 
for as much as 22% of total body requirements. In a chimpanzee 
this figure drops to 9%, and in insects is lower still. In machines 
that do not move, apart from cooling fans and indicating lights, not 
far short of 100% of its energy requirements are used for informa-
tion processing.

SENSING AND MOVEMENT

Intelligence is an important part of an individual’s make-up. 
However, this depends not on their brain alone, but also on how it 
senses and activates things in the world around it. How the world 
is perceived by that individual depends on the functioning of their 
brain, their senses and their actuators (e.g. muscles).
	 Humans have five senses: vision, hearing, taste, touch and smell. 
This gives us a limited range of inputs. We cannot sense many 
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signal frequencies; for example, we do not have ultraviolet, ultra-
sonic or X-ray sensory input. Our perception of the world is there-
fore quite limited – there is a lot going on around us that we have 
no idea about because we cannot sense it.
	 At the same time, another creature or a machine with different 
senses could be witnessing a major event which a human would 
know nothing about. A being’s senses need to be taken into 
account when considering intelligence. Just because a being is not 
the same as a human – for example, if it senses the world in a dif-
ferent way – this does not necessarily make it better or worse, 
merely different.
	 The success of a being depends on it performing well, or at least 
adequately, in its own environment. Intelligence plays a critical part 
in this success. Different creatures and machines succeed in their 
own way. We should not consider that humans are the only intel-
ligent beings on Earth; rather, we need to have an open concept of 
intelligence to include a breadth of human and non-human 
possibilities.
	 The story is much the same in terms of movement. Humans are 
able to manipulate the world in various ways and to move around 
within it. Each being has different abilities in this respect, depend-
ing on what their life role is. It is not appropriate to say something 
is not (or less) intelligent because it cannot do some specific task. 
For example, it would be wrong to say that a creature or machine 
is stupid because it cannot make a cup of tea – this is a very human 
task. Only in comparing humans should such a task even be con-
sidered as some form of measure.
	 Based on this broadening discussion, a more general definition 
of intelligence might be: ‘The variety of information-processing 
processes that collectively enable a being to autonomously pursue 
its survival.’
	 With this as a basis, not only can intelligence in animals and 
machines be respected and studied for what it is, but also intelligence 
in humans can be put into perspective in terms of merely serving as 
one example. Clearly, this definition is open to much criticism, but 
it is felt to be a substantial improvement on those given at the start of 
the chapter, which have far too strong a human bias to them. It 
could be argued that the earlier definitions are not explaining intelli-
gence in general, but only human intelligence.
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ALIEN VIEW

An interesting way to consider the problem of intelligence is to 
think of yourself as an alien from another planet, inspecting Earth 
from afar. What would you consider the intelligent life forms on 
Earth to be? Could they be vehicles, networks, water, clouds, 
animals, bacteria, televisions? Presumably you would apply some 
tests based on your own concepts of life form and intelligence. So, 
if you are living on a planet for which the main sensory input is a 
type of infrared signal, then your view of Earth may well not 
include humans as an intelligent life form.
	 Even considering what we as humans define as being the basics 
of life could lead to apparently strange conclusions. From basic 
biology we could consider the following as indications: nutrition, 
excretion, movement, growth, irritability, respiration, production 
(production rather than reproduction as humans produce, they do 
not ‘reproduce’ other than through cloning, which is ethically 
questionable).
	 From an alien standpoint, even a telephone exchange or com-
munications network satisfies these qualities of life – perhaps much 
more obviously than humans do – merely in terms of electrical 
pulses rather than chemical. From an alien viewpoint it could be 
concluded (even now) that a complex global networked intelli-
gence on Earth was being served by small drone-like simpler beings 
– humans.

SUBJECTIVE INTELLIGENCE

Intelligence is an extremely complex, multi-faceted entity. In each 
being it consists of many different aspects. Intelligence is also sub-
jective in terms of the group by which it is being viewed and the 
group being viewed. For any particular group that is considering 
intelligence, what are and what are not regarded as intelligent acts 
are dependent on the views of that group and are steeped in the 
social and cultural trappings of its members.
	 When a puppy walks by the side of a person, this could be 
considered to be an intelligent thing to do or simply as the puppy 
satisfying a trivial programmed goal. When a human is able to 
rapidly calculate answers to mathematical questions or accurately 
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remember a series of facts on a particular topic, these could be 
regarded as intelligent acts – indeed the person could be called a 
‘mastermind’ – or they could be regarded as a mere entertainment 
exercise.
	 With differences between species the problem is exacerbated 
due to their different mental and physical capabilities and require-
ments. For humans studying different species (I include machines 
here) it is therefore important to try to recognise aspects of intelli-
gence for what they are worth within that species rather than 
merely in terms of how they compare to aspects of human 
intelligence.
	 Between humans we need to try and retain a scientific basis for 
our analysis of intelligence rather than to pamper to social stereo-
types. For example, why is it that knowledge about politics, classi-
cal music or fine art is seen by some to be more indicative of 
intelligence than knowledge about football, pop music or pornog-
raphy? Why is it that playing music by Mozart to a baby while still 
in the womb is considered, by some, to make the baby more intel-
ligent, whereas playing music by the Rolling Stones is considered 
to be dangerous? Is there any scientific basis at all for such conclu-
sions? I think not. Where are the conclusive scientific studies that 
have shown these things to be so? There are none.
	 Unfortunately, we can quickly run into the problem previously 
mentioned, in that we already have a conclusion and we try to fit 
certain observations to match that conclusion and ignore others that 
do not match. If you wish to succeed at school or university, it is 
better (I take these merely as examples) to learn about fine art or 
classical music rather than football or pop music as these latter sub-
jects can be seen as disruptive or a complete waste of time. From 
those who succeed in these areas of education will come the teach-
ers and professors of the future who, in turn, because of the subject-
ive nature of intelligence, will value those who toe the line and 
follow the lead of learning about fine art or classical music – those 
who perform well in the areas considered to be proper by the teach-
ers themselves, who define the subject areas. And so it goes on.
	 A strong social bias runs through such human educational 
systems and this can result in completely different values associ-
ated with subject areas. An individual can be regarded by others 
as being stupid simply because they do not know particular facts, 
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cannot carry out specific mathematical calculations or deal with 
some aspect of everyday life. Clearly, this is merely representa-
tive of one aspect of their intelligence – nothing more and 
nothing less.
	 Despite this, humans often tend to use the same approach to 
make comparisons with other creatures or machines. Sometimes 
we do not give value to non-human abilities, partly because we 
do not understand them. Conversely, we give value to animals 
copying some aspect of human abilities – for example, some 
consider dolphins to be intelligent simply because they do some 
tricks and are friendly to humans, whereas sharks are sometimes 
regarded as mindless killing machines because humans do not 
necessarily have the same mind set and values as a shark.
	 Each individual has their own concept of intelligence with which 
they can measure others, both human and non-human, in order to 
make comparisons – often to come to the conclusion that one indi-
vidual is more or less intelligent than another. A group’s view of 
intelligence arises from a consensus between individuals who hold 
similar social and cultural beliefs and share common assumptions. 
Everyone’s concept also partly reflects their own personal qualities.
	 When assessing the intelligence of a non-human, possibly a 
machine, if we wish to put it down and claim in some way that it 
is not as good as a human, then we can certainly make comparisons 
of the non-human’s abilities in a field in which humans perform 
well. We can, of course, compare human abilities with a non-
human in a field in which the non-human performs well – 
however, the result would not be so good for humans, so we don’t 
tend to do such a thing.
	 In assessing the intelligence of an individual we really need to 
get to grips with the physical make-up of that individual, their 
mental make-up, their social requirements (if any) and the envir-
onment in which they live and perform.

IQ TESTS

It is a basic feature of human nature to compare and compete. 
Indeed, our survival as a species on Earth depends on such basic 
qualities. In sport we wish to see which human can run fastest, lift 
the heaviest weights or eat the most eggs. We acknowledge that 
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physically people tend to have their own specialities. Sometimes 
we look for broader physical abilities, such as in the decathlon, but 
generally it is performance in one particular competition that is the 
focus. Importantly, we do not try to come up with a single number 
(a quotient) which defines an individual’s physical abilities – a PQ 
(physical quotient).
	 When it comes to intelligence it is apparent that people, once 
again, tend to have their own specialities. Perhaps someone is 
better at music, one aspect of math or maybe they are good at 
debating. These are very different talents. Yet for some reason we 
often appear to want to assign a level of intelligence to each human 
in terms of a simple numerical description – their IQ (intelligence 
quotient) – to the extent that this number (in one form or another) 
defines what they are allowed to do in society.
	 In the nineteenth century (and even before) there were many 
intelligence tests of one type or another. For example, Frances 
Galton exhibited a series of tests in the Science Museum in London. 
These included: putting in weight order a number of boxes each dif-
ferent by 1 g; distinguishing how close two points could be placed 
on the back of your hand before you couldn’t tell the difference; and 
measuring the speed of response to a noise. However, there was 
deemed to be no firm scientific basis for such tests in that there were 
no repeatable statistical links between the results of the test and how 
well individuals performed in their schooling.
	 The IQ test itself was originally formulated by Alfred Binet in 
1904. He was charged with developing a simple method by which 
children who would struggle in the normal school environment 
could be easily identified.
	 He concentrated on faculties such as memory, comprehension, 
imagination, moral understanding, motor skills and attention. The 
final version of his test, which was aimed at children 3–12 years 
old, was made up of 30 parts which children worked through in 
sequence from the start until they could no longer continue. The 
number reached was the ‘mental age’ of the child. By subtracting 
the answer from the child’s actual age, so the child’s intellectual 
level was revealed.
	 Binet’s test was originally required in order to select the appropri-
ate schooling for children, by predicting their likely performance from 
the result of a simple set of questions. It was never intended as an 
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indicator of the child’s general level of intelligence. In fact, Binet 
himself worried that children would be seen as unintelligent purely 
on the basis of a poor performance in the test. Despite this, sub-
sequent versions of Binet’s test were used around the world for people 
of all ages to decide on the type of schooling they should receive, 
whether they should be allowed entry to a country (the USA) and 
even whether they should be sterilised (Virginia up to 1972).
	 The use of such tests and their validity has been severely ques-
tioned in recent times. In fact, validity tends to have been shown 
in terms of statistical links insofar as those who do well in school 
exams tend to also do well in IQ tests. Whether this means IQ tests 
actually indicate anything at all about intelligence remains an unan-
swered question. However, there are strong statistical correlations 
between exam performance (and hence IQ test performance) and 
job status (interestingly, not so with job performance).
	 IQ test performance gives a likely indication of general exam 
performance and hence such tests have been used extensively to 
show the effects of lifestyle and activity – whatever one thinks of 
IQ tests such results are fascinating.
	 Changing one’s IQ score by more than three points is quite a 
strong indicator. Consider, then, that regular vitamin C intake in 
children has been shown to improve their IQ score by eight points 
(on average). Meanwhile, pollution appears to have little effect – 
doubling lead intake (pretty heavy) reduces one’s score by only one 
point. In later life, bottle-fed babies fare worse on IQ tests than 
breast-fed babies and children who regularly use a dummy score 
3–5 points lower (in later life) than those who do not. Children 
whose mothers were 35 or older score six points higher, and so it 
goes on. Obviously there are social links associated with each of 
the indicators mentioned and it is difficult, if not impossible, to 
separate items from such aspects.
	 Years ago (mostly for fun) I was involved in a study to look at 
the effects of what a person does immediately before taking an IQ 
test to see how it affected results, on the basis that if it affected 
results of IQ tests then it would probably be the same for exams. 
So we enlisted 200 first-year students to take one IQ test then 
carry out a different activity with specific nutrition. After half an 
hour they took a second IQ test. We compared the results to see 
which results had improved and which had declined. We were not 
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bothered about the actual results obtained, but rather whether they 
had improved or declined and how this related to the activity and 
nutrition.
	 We found that those who drank coffee increased their score by 
three points, whereas those that ate chocolate decreased their score 
by three points. The scores of those who watched a chat show on 
TV increased by five points, whereas those who read (as in swot-
ting) lowered their score by six points and those who played with a 
construction toy lowered their score by four points.
	 Although the media portrayed this in the form that watching TV 
chat shows makes you more intelligent, what it actually showed was 
that if you want to improve your exam performance, in the half 
hour before the exam it might be best to chill out, have a cup of 
coffee and watch TV, particularly a programme you don’t have to 
think about too much. It certainly doesn’t appear to be good to use 
your brain (by swotting) immediately prior to taking an exam.
	 While IQ tests can be fun, their links with intelligence appear to 
be solely based on correlations with exam performance. Like 
exams, they are extremely subjective in that an individual needs to 
know details in a specific area in order to perform well in a par-
ticular exam. This is also borne out in IQ tests. The tests we carried 
out involved spatial awareness, number sequences, anagrams and 
relationships. As examples, two actual questions employed were:

1	 Insert the word that means the same as the two words outside the 
brackets: Stake (. . . .) mail

2	 Which is the odd one out? Ofeed fstiw insietne tsuian dryah

The answers are (1) post and (2) Einstein (insietne) – the others are 
fiction authors.
	 With merely these examples it is easy to see the cultural require-
ments and the necessary type of knowledge in order to do well in 
such tests. The subjective nature of intelligence is apparent.

NATURE VERSUS NURTURE

One of the most important and yet contentious issues with regard 
to intelligence is how it originates in the first place. Is it a natural/
programmed entity or is it something that is learnt through 
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education and experience? Is it due to nature or is it due to 
nurture? Perhaps a more pertinent, and certainly more frequently 
asked, question is: in the make-up of an individual’s intelligence, 
what percentage is inherited and what percentage can be put down 
to environmental effects through life?
	 The question is perhaps similar to asking: when baking a cake, 
how much of the quality of the cake is down to the original mix of 
ingredients and how much is down to how it is cooked? For the 
cake we would see both aspects as being important and the overall 
quality as being a subtle mixture of the two. Sometimes the cake 
might come out really well despite it not being left in the oven for 
an ‘optimal’ time, whereas sometimes it can turn out badly even 
when the recipe has been followed to the letter. What people have 
been looking for, for thousands of years (certainly back to Plato in 
third-century bc Greece), is the recipe for intelligence.
	 If we look back to the start of this chapter, at the Macmillan 
definition of intelligence, which included the ability to reason and 
profit from experience, we can see that it points to both inherit-
ance and environment as contributing factors, although quite sensi-
bly it doesn’t make a stab at suggesting what the proportions are. In 
the past, the majority view has invariably swung one way or the 
other, often due to the political climate at the time.
	 For example, nineteenth-century western society was ordered 
strictly by class, the upper classes being considered (by the upper 
classes) to be more intelligent, the lower classes being considered as 
feeble-minded idiots. The general concept was that it was intelli-
gence that had brought about such differences and through genetic 
inheritance the class structure was preserved.
	 In fact, Plato had taken the same approach 2,300 years earlier. 
He saw a person’s intelligence as being class-related and felt that to 
maintain the status quo people should only produce offspring with 
members of their own class. At that time, average levels of 
intelligence were further maintained, so it was felt, by killing 
children at birth (or in infancy) if they were seen to display charac-
teristics of ‘idiocy’.
	 Only one century later, in Aristotle’s time, things had changed. 
Levels of intelligence were then considered to be more dependent 
on teaching and life experience. Aristotle himself said that intelli-
gence was present in all citizens. On the surface this may sound to 
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be quite radical; however, it must be remembered that slaves, 
labourers, many women and most foreigners were all excluded 
from citizenship and therefore from being intelligent.
	 Approaching the present time, eighteenth-century philosophers 
such as John Stuart Mill strongly supported the nurture hypothesis, 
although they were generally outnumbered and outpoliticised by 
those whose ideas reflected inherited intelligence, which was 
deemed appropriate for the colonialism and capitalism of the time.
	 In the century that followed, Darwin’s publication of On the 
Origin of Species (in 1859) regarding the means of natural selection 
led to huge support for the genetic nature of intelligence, which 
bolstered the idea of different levels of intelligence between 
nations, races, classes and individuals, thereby providing evidenced 
reasoning to justify slavery and oppression. It was also concluded 
that poorer people should be allowed to die out in order that 
society could maintain a higher average level of intelligence. This 
meant that poor people were not given social welfare and, in some 
parts of the world, were not even allowed to breed.
	 These days substantial research is focused on attempts to dis-
cover what percentage of intelligence in humans is produced by 
hereditary factors and what is due to the environment. Both genet-
ics and education need to be considered. However, this is not easy. 
If a child from a poor background does not develop in terms of 
their intelligence as well as a child from a wealthy background, 
what is the reason? Is it because their genetic make-up is different 
or is it because they have not grown up in as stimulating an envir-
onment? Or rather, is it a complex relationship of both factors?
	 Some more recent studies have even put great emphasis on the 
environment before birth. A 1997 article in Nature claimed that foetal 
development in the womb accounted for 20% of an individual’s total 
intelligence and that genetic influences only accounted for 34%, the 
remaining 46% being due to environmental factors after birth. While 
this study certainly has a basis of plausibility, the percentages are 
somewhat contrary to the norm – a straw poll of research papers indi-
cate figures of 60–80% being down to inheritance with the remaining 
40–20% being due to education and training.
	 An interesting study in Denmark looked at 100 men and women 
adopted in and around Copenhagen between 1924 and 1947. All 
the adoptees in the study had little in common with their biological 
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siblings in terms of their environment and education, but shared a 
common environmental upbringing with their adoptive siblings. 
The results showed that, despite their upbringing, biologically 
related siblings closely resembled each other in terms of occupa-
tional status, whereas there was no significant correlation between 
adoptive siblings.

TWINS

One area of considerable interest is the study of identical twins – 
who can be deemed to have a pretty close genetic make-up of their 
brains – even including the period in the womb. Hence any per-
ceived differences, so the theory goes, can be explained by nurture 
rather than nature.
	 In 1976, in a detailed study of 850 twins, John Loehlin came to 
the conclusion that the make-up of intelligence was something like 
80/20 in favour of inheritance (nature) over environment 
(nurture). The particular group of twins who are of most interest, 
however, are those who have been separated at birth and who have 
been brought up in completely different environments.
	 In 1966 Cyril Burt presented results on over 53 pairs of identical 
twins who, he claimed, had been separated at birth, randomly 
placed in their adoptive homes and had no further contact with 
each other since birth. He came up with a figure of 86/14 in 
favour of nature over nurture, although it must be said that his 
results were subsequently discredited in terms of the validity of the 
twins used for the studies.
	 More recently, at the University of Minneapolis, a special unit 
was set up specifically for the study of twins, and many interesting 
statistics have subsequently been obtained. For example, results 
were pooled on a total of 122 pairs of identical twins in terms of 
IQ test scores. Similarities between pairs of twins correlated to be 
82% (similar to the other results). However, unlike Burt’s claimed 
study, twins tended to be brought up in similar home backgrounds 
due to that being the strategy of the social services responsible. In 
fact, results did not correlate so well for those twins who had 
grown up in dissimilar backgrounds.
	 As well as numerical pointers, a plethora of anecdotal ‘evidence’ 
has also been obtained. As an example (and this is just one of 
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many), consider the twins Jim Springer and Jim Lewis. Both were 
adopted by separate Ohio families when only a few weeks old, and 
grew up completely independently in different towns until they 
met again at the age of 39. On meeting, they found that they drank 
the same brand of beer and smoked the same number of the same 
brand of cigarettes every day. Both men had a basement workshop 
and had built a circular bench, which they painted white, around a 
tree trunk. It continues: in their youth they both hated spelling but 
enjoyed mathematics and both had owned dogs which they called 
‘Toy’. When they left school, both men joined the local police 
force, got promoted to the rank of deputy sheriff and left after 
exactly seven years. Both men married and divorced women called 
Linda and then both married women called Betty, with whom they 
had one son, although Jim Lewis’ child was named James Alan 
while Jim Springer’s child was called James Allan. Both men took 
annual holidays in the same week at the same Florida beach, 
although somehow they never met up. After being brought 
together they both took an IQ test and gave almost identical 
answers. Of course, this could all be pure coincidence, but . . .

COMPARATIVE INTELLIGENCE

Intelligence in humans results from the functioning of their brain – 
their mental processing. What that person subjectively regards as 
being an intelligent act also results from that same mental process-
ing. Within a group there tends to be a consensus agreement, 
dependent on culture, as to what is an intelligent act.
	 What an individual considers to be an intelligent act depends on 
what thought processes and skills they value. Such decisions are 
coloured by life experiences, culture and their mental processing, 
which exhibit a genetic influence. Individuals function as a part of 
some form of society; their intelligence is therefore of relevance to 
and determined by that particular society.
	 When taken out of the context of society, the concept of intel-
ligence is relatively meaningless. Any value judgements or meas-
urements are made in the context of an individual’s cultural 
environment. The theoretical physicist Albert Einstein was not 
noted as a footballer and the footballer David Beckham might not 
be the best theoretical physicist, but in their own fields they have 
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both excelled and have been regarded as intelligent. But what if 
Einstein’s theories were overturned or Beckham broke his leg? 
Would they still be just as intelligent as they were? Would either of 
them be the best musician?
	 As we tend to apply subjective measurements between humans, 
so we do with other creatures and even machines. Because we are 
humans we can give value to things we do as humans – in a sim-
plistic way it is then difficult to give value to what other creatures 
do unless they are merely mimicking what a human can do. We 
tend to relate everything to a human value set, including 
intelligence.
	 All creatures, including humans, have evolved as balanced entities, 
physical and mental processes working in harmony. A human’s intel-
ligence is part of their overall make-up and relates directly to their 
physical abilities. For each creature there exists a subjective intelli-
gence which is relevant to their species and so further within a par-
ticular group of that species. Exactly the same is true with machines, 
in the broadest sense, in that subjective intelligence applies to par-
ticular skills and abilities that that type of machine exhibits.
	 It is clear that both mental and physical abilities are different 
between species. It is therefore extremely difficult to measure the 
performance of an individual in one species with an individual 
from another species, other than in the sense of performance in a 
specific task. We could, for example, consider the ability to cover 
a distance over land in a minimum time, comparing a cheetah, a 
human, an automobile and a snail. My guess is that the human 
might finish in the top three. But the result would only relate to 
one specific task – speed over a distance. We could also compare a 
human with a spider and a military tank in terms of web-making 
abilities – I’m not sure where humans would finish there as we do 
not have the physical capability to do so naturally.
	 Both of these tests could be regarded as very silly comparisons. 
But the same could easily be said if we compared a human, a rabbit 
and a computer in terms of ability to interact with a second human 
in a Chinese conversation. In fact, certain computers could well do 
a lot better than many humans (including myself ) who cannot 
communicate at all in Chinese.
	 So, making a comparison between the abilities of individuals 
from different species is relatively meaningless other than in terms 
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of the skills required to complete a particular task. This is particu-
larly true when we wish to make comparisons between humans 
and machines in terms of aspects of intelligence. We really need to 
be clear which human or humans we are talking about and which 
machine or machines are being considered. Is the comparison 
being made in terms of a task that is extremely human centric?
	 Can we expect the machine to carry out a task in exactly the 
same way as a human? Indeed, is that at all relevant? Surely the end 
result is the critical thing, not how the machine performed? If one 
human plays another human at chess, both must abide by the rules 
of the game – this is obvious. The winner is not then disqualified 
because they were thinking about food when they were playing. 
So if a machine beats a human at chess we should not say: yes, but 
it wasn’t thinking in exactly the same way as the human it beat, 
therefore it has lost.

CONCLUDING REMARKS

In this chapter we have tried to uncover what exactly intelligence 
is all about in order that we can move forward to look more deeply 
at AI. We have seen how intelligence is an integral part of an indi-
vidual and that how the world is presented, in terms of sensing, 
and how the world is manipulated, in terms of motor abilities, are 
important factors that need to be taken into account.
	 It has been stressed as vitally important to consider intelligence 
in other creatures as well as humans and to look at intelligence in 
humans in terms of the broad spread of individuals that form 
humanity as a whole and not simply an ‘ideal’. We will see, in our 
study of AI, that it is often tempting to compare the intellectual 
abilities of a machine with those of a human – in order perhaps to 
assess the standing of AI in relation to human intelligence. In doing 
so, we need to make sure that we do not make fools of ourselves in 
drawing conclusions that are relatively naïve.
	 We have considered here the make-up of human intelligence in 
terms of some aspects being due to nature and others due to 
nurture. With machines, of whatever type, it is much the same. 
There will be an initial design and build – which may include 
mechanical and/or biological components – and this may be 
subject to an initial program or arrangement – this is nature! Once 
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the machine starts interacting with its environment and learning – 
in a variety of ways – then nurture can be seen to be having an 
effect. If a specific machine does not have the facility to learn, then 
(as would be the case for a human) it is extremely limited in what 
it can ultimately do. It is therefore assumed throughout this text 
that machines are subject to both nature and nurture.
	 We will start our investigation into AI by looking at its classical 
origins and see how some of the original systems were developed.
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CLASSICAL AI

SYNOPSIS

Initial approaches to AI focused largely on classical, top-down 
methods which formed the first stages of the subject. In particular, 
knowledge-based systems and expert systems are considered here, 
especially the importance of the IF . . . THEN . . . statement. We 
consider how such statements can form a basic AI engine and how 
these can be applied for problem solutions. Both logic and fuzzy 
logic are discussed.

INTRODUCTION

It is undoubtedly a characteristic of humanity that we like to 
compare ourselves with others and, in many cases, try to find ways 
in which we are better than someone or something else. As com-
puters began to appear on the scene and the concept of AI was 
born in the 1950s and 1960s, so the desire arose to directly 
compare AI with human intelligence. But with this comparison 
came a basic ground rule that human intelligence was as good as 
intelligence got, in some cases to the extent of believing that 
human intelligence was the only form of intelligence. It followed, 
therefore, that the best AI could achieve was to be as good as 
human intelligence and to copy it in some way.
	 So it transpired that classical AI techniques focused on getting a 
machine to copy human intelligence. This was borne out by an 
early definition from Marvin Minsky, who said: ‘Artificial intelli-
gence is the science of making machines do things that would 
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require intelligence if done by men.’ Quite neatly (and probably 
intentionally) this definition side-steps the whole concept of what 
intelligence is and what it is not and merely points to machines 
copying humans.
	 The philosophy of that time is perhaps best described by a state-
ment made by Herb Simon in 1957, who was quoted as saying: 
‘There are now in the world machines that think, that learn and that 
create. Moreover, their ability to do these things is going to increase 
rapidly until . . . the range of problems they can handle will be coex-
tensive with the range to which the human mind has been applied.’
	 What arose in those days was an approach to AI rather along the 
lines of a psychiatrist: attempting to understand the human brain’s 
processing merely from the outside and then attempting to build a 
machine to copy that way of functioning – a top-down approach.
	 One aspect of human intelligence that was picked up on in 
those days was the ability of the human brain to reason. If given a 
number of facts the human brain can make a reasoned assumption 
about a situation and decide on a conclusion. For example, if it is 7 
a.m. and my alarm clock is ringing then it is time to get up. It was 
this approach that was first used successfully to build AI systems.

EXPERT SYSTEMS

The concept of an expert system is that of a machine being able to 
reason about facts in a specific domain and to work in roughly the 
same way that an expert’s brain would work. To do this the 
machine would need knowledge about that domain, some rules 
(generated by experts) to follow when new information occurred 
and some way of communicating with a user of the overall system. 
Such systems are called rule-based systems, knowledge-based 
systems or, more generally, expert systems.
	 One of the first successful working systems was called MYCIN, 
which was a medical system to diagnose blood infections. MYCIN 
contained approximately 450 rules and was claimed to be better 
than many junior doctors and as good as some experts. It had no 
theoretically generated rules but rather was built up by interview-
ing large numbers of experts who could report from direct experi-
ence. The rules could therefore, partially at least, reflect the 
uncertainties apparent with medical conditions.
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	 The general structure of MYCIN was similar to that of all 
expert systems. In an expert system, each rule is of the basic form:

IF (condition) THEN (conclusion).

For example, a rule in MYCIN could be IF (sneezing) THEN 
(flu).
	 However, it may be that several conditions must exist at the same 
time for a condition to be apparent (for the rule to be true) or, con-
versely, one of a number of conditions could exist in order that a 
conclusion can be drawn. So, it may be that a rule looks more like:

IF (condition1 and condition2 or condition3) THEN (conclusion).

In the medical example this might become:

IF (sneezing and coughing or headache) THEN (flu).

	 The actual rules employed are obtained by questioning a number 
of experts as to their opinion. In this case it was medical experts: 
what are the symptoms of flu? Or, if a patient is sneezing and cough-
ing what does this mean?
	 It might be that there are several possible conclusions that can 
be drawn from the same set of facts. This would be a problem for 
an expert just as it is for an expert system. In order to deal with 
such a situation, the system has to have further rules purely for such 
instances in order to decide what course of action to take – this is 
referred to as conflict resolution.

CONFLICT RESOLUTION

There are many situations in which several conditions are met but 
that only one conclusion is required. In such cases a decision is 
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necessary as to which of the rules (all of which have conditions that 
have been fully met) takes precedence. The conflict between these 
rules must be resolved. There are a number of possibilities; the 
actual one to be employed depends on the expert system itself. 
When several rules have all their conditions met, the one selected 
depends on one of the following criteria being applied:

1	 Highest priority rule – each rule has a priority associated with it 
and if several rules apply, the one with the highest priority is 
chosen.

2	 Highest priority conditions – each condition has a priority asso-
ciated with it. For a rule to be chosen it must contain the highest 
priority conditions.

3	 Most recent – the rule whose condition has most recently been 
met is chosen.

4	 Most specific – the rule which has most conditions met is 
selected. This is also referred to as ‘longest matching’.

5	 Context limiting – rules are split into groups, only some of 
which are active at a certain time. To be chosen a rule must 
belong to an active group – in this way the expert system can 
adapt over time to different conditions.

Which conflict resolution method is employed depends entirely on 
the application – for simple systems the resolution itself will most 
likely be very simple.
	 In certain circumstances the expert system may be expected to 
draw several conclusions from the same set of conditions, and may 
merely be required to inform the user that these conditions all 
apply at that time. Any further decisions, and hence any conflict 
resolution, can then be carried out by the user.

MULTIPLE RULES

Most expert systems involve several rules which depend on each 
other. These are structured in layers. Hence, when all the con-
ditions are met for one rule such that its conclusion is drawn, that 
conclusion can in turn meet a condition for a rule in the next layer, 
and so on. As an example, consider an engine management system 
for a vehicle:
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Layer 1 Rules:
IF (start button pressed) THEN (start engine)
IF (gear selection made) THEN (engage gears)

Layer 2 Rule:
IF (engine started and gears engaged) THEN (vehicle drive)

It is clear that both layer 1 rules must have fired in order that both 
conditions are met for the layer 2 rule to fire such that the vehicle 
can drive. It could be considered that the condition for rule 2 to fire 
has become a fact because both necessary rules in layer 1 have fired. 
There is, of course, no conflict resolution required in this case as the 
rules are independent.
	 It is obvious from this example, however, that if we include other 
factors such as brakes depressed, minimum fuel level in the tank, 
direction selected, object in front of the vehicle and so on, the expert 
system rapidly becomes more complex, with many layers of rules 
dealing with often conflicting requirements. It is interesting to con-
sider the total number of rules that would be necessary for an expert 
system to drive a vehicle on the normal road network.
	 In this case the original facts (data) entering our expert system 
are: first, the start button has been pressed; and second, that the 
gear selection has been made. Further facts are then realised in that 
the engine starts and the gears are engaged. Subsequently, the 
overall goal is realised as the vehicle drives. So we start with a set 
of facts which are input to our expert system and a goal which is 
achieved, which could be said to be the output.

FORWARD CHAINING
With an expert system in normal operation, a set of facts will be 
apparent at a particular time and these will fire a number of rules, 
realising further facts which fire other rules and so on until an end 
conclusion is reached, much as has been described in the engine 
management example. This way of working from the input data to 
the end goal is referred to as ‘forward chaining’. The purpose is to 
discover all that can be deduced from a given set of facts.
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BACKWARD CHAINING

Expert systems can also be used in a reverse fashion. In this sense, 
when a goal has been achieved the rules are then searched to inves-
tigate what facts (data) occurred in order for the system to reach 
the conclusion that it did. It is also possible to look backwards 
through the system to assess what facts we must input to the system 
in order for a specific goal to be realised.
	 In the given example, the question could be asked: what hap-
pened to cause the vehicle to drive? Backward chaining would 
then be employed to provide the answer that the start button was 
pressed and the gear selection had been made.
	 Backward chaining is good for system verification, particularly 
where the expert system must be safety critical and cannot arrive at 
a ‘wrong’ conclusion. It is also useful to assess the overall perform-
ance of the system in order to find out if further rules are necessary 
or if a strange set of (input) circumstances can cause an unexpected 
conclusion to be drawn.

GOOD POINTS

Expert systems have a number of advantages over other AI 
methods.
	 First, it can be seen that they are fairly easy to programme into a 
computer (uniform lines of code in an IF–THEN structure). Each 
rule is a separate entity with its own required data to fire and its 
own individual conclusion drawn. If a new rule is deemed neces-
sary it can be added to the overall system, although sometimes this 
might mean also altering rules governing conflict resolution.
	 The system is ideal for dealing with natural real-world informa-
tion. After all, it is the same information dealt with by experts. So 
when an expert says ‘in such a situation this is what I do’, this can 
readily be entered into the expert system.
	 The system structure is separate from the data, and hence the 
problem area, in the sense that the same expert system structure 
could be employed in very different domains. It is merely the rules 
themselves and how they are combined that would differ. Hence 
the same expert system structure in a computer could be used for 
the medical diagnosis system as well as the engine management 
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system, although different rules would need to be entered, different 
data would cause the rules to fire and different conclusions would 
be drawn.
	 An expert system can deal with uncertainty, as we will see when 
we consider fuzzy logic. In this case, when a series of facts are pre-
sented the conclusion of the system might be that, given those 
facts, it is 75% certain about the conclusion it is drawing. This may 
well be indicative of other useful evidence that is missing that could 
otherwise make the system 100% certain. Medical diagnosis is one 
example where confidence values are useful. Given the symptoms 
input as facts, the expert system could give an output which indi-
cates that it is only 50% sure of the diagnosis. In such a situation 
the experts themselves are rarely (if ever) 100% certain about a 
diagnosis – this is merely reflected in the system itself.
	 One big advantage of such a system, as with most AI systems, is 
speed of response, especially when compared to the speed of a 
human expert. When the last piece of necessary information arrives 
it may take only a small fraction of a second for the machine to 
come to its conclusion. A human expert may take several seconds 
or, in some circumstances, many minutes to arrive at the same con-
clusion for the same problem. This could mean significant financial 
savings or that the safety of individuals is enhanced. Expert systems 
to deal with machine or supply failure alarms or financial dealing 
systems are excellent examples.

PROBLEMS WITH EXPERT SYSTEMS

There are a number of problems with expert systems. First, gathering 
the rules can prove to be rather awkward. Often it is difficult for a 
person to put into simple terms what it is they do in an everyday 
situation. On top of this, if several experts are asked, they may well 
think about the problem in different ways, such that it is difficult to 
standardise the rules. This may mean that they differ completely on a 
solution. In some cases it may be possible to average results, but in 
other cases it may not. Consider, for example, an expert system 
designed to drive a vehicle: in the situation of an object directly in 
front, one expert may suggest steering to the left while another may 
prefer steering to the right. Averaging these responses and steering 
directly ahead would not be sensible!



38 	 ARTIFICIAL INTELLIGENCE: THE BASICS	

	 It is also worth pointing out that human experts, particularly 
specialists, can be quite expensive, particularly if several of them are 
needed, and it can be problematic to book them up and obtain 
answers from them. All this time and expense goes towards the cost 
of realising the overall system.
	 One of the biggest problems with expert systems is what is 
referred to as ‘combinatorial explosion’. Quite simply, the expert 
system becomes too big. One main aim of such a system is to deal 
with problems and to draw a conclusion no matter what the situ-
ation. But in order to deal with absolutely every eventuality, rules 
must be continually added to cover every possible situation, no 
matter how unlikely. As an example, consider the case of the expert 
system to drive a vehicle on normal roads: it is unlikely that an ele-
phant will walk in front of the vehicle, it is unlikely there will be 
lots of mud and it is unlikely there will be a settee, but there may be 
and the rules must take care of each of these circumstances.
	 Because some expert systems may contain many thousands of 
rules, even to deal with something that may, to a human, be rela-
tively straightforward, at each occurrence many (if not all) of these 
rules must be tested, along with any necessary conflict resolution 
and chaining. So rather than being much faster than a human 
expert, when many rules are present such a system may well be 
much slower than a human in making a decision. Debugging such a 
system to ensure that it works in each and every eventuality can also 
be difficult, with rules interacting and possibly cancelling each other 
out.
	 One final point to make here is that expert systems are merely 
one type of AI, being indicative of simply one aspect of intelli-
gence in general. In particular, they attempt to mimic the reason-
ing function of the human brain in terms of how decisions are 
reached given a number of facts at a particular time, based on 
expert knowledge about what to do with those facts.
	 It is important not to see such systems as merely programmed 
decision-making mechanisms that will always perform as we 
expect. It is certainly possible to operate them in this way, but it is 
also possible to enable them to learn as they draw conclusions and 
experience their domain. Clearly this depends on the function for 
which they are required. Such learning will be considered in 
greater detail later.
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	 Suffice here to say that if such a system draws a number of con-
clusions then the rules which resulted in the ‘winning/selected’ 
conclusion can be ‘rewarded’ in the sense of making them more 
likely to fire and/or be part of the overall conclusion next time 
around. Conversely, if a fired rule results in a conclusion which is 
not chosen then it will be less likely to fire again. Success is 
rewarded and failure is punished! This could also be achieved 
through prioritising for conflict resolution.

FUZZY LOGIC

With the expert systems we have considered thus far in this chapter 
it has been assumed that either a condition exists or it doesn’t. This 
is straightforward logic. A fact is either true or false.
	 Yet, as we saw, it was found useful in certain circumstances for 
conclusions to be partially true or rather for a confidence percent-
age to be applied to results. Indeed, this is how many things in 
human life actually appear. If someone is having a shower they 
want the water to be warm. The water is not simply hot or cold, it 
is warm. Fuzzy logic provides a basis for this.
	 Let us assume for a moment that for shower water to be com-
pletely cold it will be at a temperature of 0°C, whereas for it to be 
completely hot it will be at a temperature of 50°C. If the actual 
water we are measuring has a temperature between 0°C and 50°C 
then we can say, for example, that it is 65% hot, meaning that it is 
fairly warm, but has some way to go before it is hot. If it is 12% 
hot, then it is pretty cold.
	 Although I have given the shower water values as percentages, 
using fuzzy logic does not necessarily mean that the actual meas-
ured temperature would be 65% of 50°C (32.5°C). Fuzzy logic is 
more directed to a human concept of the temperature – remember 
it is a form of AI. So we can, if we wish, draw up a relationship 
between the actual temperature and the percentage value we will 
assign it, between 0% and 100%.

FUZZIFICATION

In a fuzzy logic system the first step is to take an actual real-world 
value and make it fuzzy – this is referred to as ‘fuzzification’. If we 
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are dealing with the temperature of water, the actual water tem-
perature would be measured and then fuzzified. For example, a 
temperature of 20°C might become a fuzzy value of 45%. This 
fuzzy value can then be input to our fuzzy expert system.
	 The relationship between the actual value and fuzzy value needs 
to be well defined for a particular problem – this could be done 
through graphical means or possibly a look-up table or even 
through mathematical relationships. As an example we could have, 
for our water temperature, the following:

0°C becomes 0%, 10°C becomes 20% – in between add 2% 
for every 1°C, so 3°C would become 6%.
10°C becomes 20% and 30°C becomes 80% – in between 
add 3% for every 1°C, so 24°C would become 62%.
30°C becomes 80% and 50°C becomes 100% – in between 
add 1% for every 1°C, so 43°C would become 93%.

The actual fuzzification routine depends entirely on the particular 
application. This example has merely been given to show what is 
possible.

FUZZY RULES
Once a value has been fuzzified it is passed to the rules for evalu-
ation. Fuzzy rules are the same as those we have already seen:

IF (condition) THEN (conclusion)

However, we now have the situation that the condition may be 
only partially true. For an expert system in which the water is either 
hot or cold, we may have had the rules:

IF (water is cold) THEN (turn water heater on)
IF (water is hot) THEN (turn water heater off )
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Now we can replace these rules with one fuzzy rule:

IF (water is hot) THEN (turn water heater on)

This may appear strange at first glance, but it must be remembered 
that we are dealing with fuzzy rules – so the condition part will be a 
percentage value (not simply ‘yes’ or ‘no’). As a consequence, the 
conclusion part will also be a percentage value. Now the water 
heater will not simply be turned on or off, but will be turned on to 
a certain extent – as we will see.
	 As we saw before, with straightforward expert systems, it may 
be that a rule has several conditions that need to be satisfied before 
the rule can fire, or conversely any one of a number of conditions 
might occur for a rule to fire. For example:

IF (water is hot AND energy tariff is high) THEN (turn water 
heater on)

This would require both conditions to be true for the water heater 
to turn on. Alternatively:

IF (water is cold OR energy tariff is low) THEN (turn water 
heater on)

This would require either (or both) of the conditions to be true for 
the water heater to turn on.
	 But with fuzzy rules, each of the conditions has a percentage 
assigned to it. Most fuzzy systems operate as follows. Where the 
AND term appears the minimum percentage value of the condition 
is carried forward. Where the OR term appears the maximum per-
centage value of the condition is carried forward.
	 As an example, we might have the fuzzy rule:
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IF (water temperature is hot AND energy tariff is high) 
THEN (turn water heater on)

For this example, let’s imagine that after fuzzification the water 
temperature has been assigned a value of 62% and the (also fuzzified) 
energy tariff has been assigned a value of 48%. The value carried 
forward, as this is an AND operation, will be the minimum of the 
values 62% and 48% – i.e. it will be 48%. Conversely, if the con-
dition contained an OR operation then the value taken forward 
would be the maximum of the values involved, in this case 62%. 
We will see shortly what happens with the value taken forward.
	 It may be that only one rule fires in an expert system; however, it 
is more normally the case that a number of different rules will fire. 
Each of the rules will then result in a different value taken forward 
and these values must be aggregated to provide a single end value 
that means something in the outside world. In the example we are 
considering here, we require an overall percentage output which will 
indicate how much the water heater needs to be turned on.

DEFUZZIFICATION

There are a number of ways in which the different percentage 
values taken forward can be aggregated. Perhaps the simplest, and 
most obvious, is merely to average the values.
	 If we have three rules – R1, R2 and R3 – which have produced 
the resultant percentage values R1 = 23%, R2 = 81% and R3 = 49%, 
then the average value would be the three percentages added 
together and divided by three (i.e. 51%). In our example, this refers 
to how much the water heater must be turned on – just over half 
way.
	 However, as discussed previously it is often the case that some 
rules will be more important that others. The most typical defuzzi-
fication method is therefore a weighted average method – referred 
to as the ‘centre of gravity’ (COG) method. In this case each 
resultant percentage value is multiplied by an associated weighting 
value, the answers being added together and divided by the total of 
all the weighting values added together.
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	 In the example just considered let us assume that R1 is more 
important than the others, so we’ll give it a weighting of 5; R2 
gets a weighting of 2; and R3 a weighting of 3. R2 is therefore the 
least important of the rules. When we add these weights together 
the answer is 10. Now we multiply our values for R1–R3 by their 
weighting (23 × 5, 81 × 2 and 49 × 3), the result of which is 424, 
which, when we divide it by 10 (the sum of the weights we 
applied) gives us a defuzzified value of 42.4%. This is lower than 
the previous unweighted calculation because more emphasis, 
through the weighting, was placed on the output of rule R1 which 
was much lower than the outputs of the other two rules. Because 
of this the water would not be heated to the same extent.

FUZZY EXPERT SYSTEM

In building an expert system it is simply the case that rules must be 
generated and arranged in layers with an appropriate conflict reso-
lution scheme put in place.
	 With fuzzy expert systems we certainly need rules, but in this 
case they must be fuzzy rules. It may be that a conflict resolution 
scheme is also necessary; however, this may well not be so as the 
defuzzification technique can, in this case, take into account things 
such as prioritisation between the rules and can even reflect the 
time that a rule fires by making the defuzzification weighting 
values time-dependent. As an example, when a fuzzy rule first fires 
its relative weighting value might be high, but as time passes the 
weighting might diminish with respect to time. This can be to the 
extent that if a particular rule has not fired for a long time, it is 
weighted as zero, i.e. it will be ignored by the system. So even if a 
rule has fired, when a certain period of time has elapsed, it can be 
overlooked in the defuzzification routine.
	 In the case of fuzzy expert systems, as well as a set of fuzzy rules, 
also required are appropriate fuzzification and defuzzification 
schemes. Defuzzification needs to take into account what the 
output value is actually intended for – possibly controlling a motor 
or pump to a proportion of its full capabilities or maybe driving a 
vehicle at a percentage of its full speed.
	 Fuzzification can be more problematic as the different quantities 
being fuzzified can be very different terms in reality, such as 
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voltages, temperature or flow rate, which are all measured differ-
ently. Unfortunately, there is not really a well-defined, tried-and-
tested systematic way to build up either the fuzzification method or 
the subsequent fuzzy rules. Hence, in order to obtain a successful 
fuzzy expert system quite a bit of trial and error is necessary to 
obtain the best performance.

PROBLEM SOLVING

We have looked at one aspect of AI in which we can enter a set of 
rules for the system to follow, such that all eventualities are 
covered. A different type of situation occurs when we need to 
realise an AI system to solve problems for us. One simple example 
of this exists in a satellite navigation system as used for vehicle 
guidance. We (hopefully) know where our start point is and we 
also know where we wish to get to, but we don’t know how to 
get there.
	 This is rarely a trivial problem as many different solutions exist. 
So it is usually the case that we have further requirements, such as 
wishing to know the quickest route or possibly the shortest one, or 
we could even require the most scenic route – in fact, there are all 
sorts of potential requirements when travelling from place to place. 
This type of problem is typical of many and is something that AI 
can be very good at solving – very quickly.
	 Let’s assume that we wish to travel from the town of Reading 
to Newcastle via several other towns. There are many possible 
routes to take. For example, we could start by travelling from 
Reading to Oxford or possibly Reading to London. Both of 
those routes would have costs associated with them in terms of 
the time the route would take, the fuel used, the distance trav-
elled and so on. From Oxford one could travel to Banbury or 
possibly Stratford and so on; each path from one town to the next 
has costs associated with it. Finally, the end goal of Newcastle is 
reached.
	 On the assumptions that we limit the number of possible towns 
to be considered on our trip from Reading to Newcastle and that 
we only visit a town once, then there are a number of ways that an 
AI system could search for the best solution.
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BREADTH-FIRST SEARCH

In order to decide which is the best solution to our travel problem, 
it is necessary to consider all possibilities. In our example with 
Reading as a start point we could search for the best route by first 
looking at all the possible towns to travel to from Reading – 
Oxford and London included. For each of those towns we could 
then look at all the possible choices from them. At each stage we 
would evaluate the total cost of taking that route.
	 We would eventually arrive at Newcastle via a number of dif-
ferent routes, but as we have a record of the total cost of each of 
these routes, a comparison could be made between them to decide 
which is best in terms of distance, time or whatever is the require-
ment. Essentially, we would have looked at all possible solutions 
and after making a comparison, as long as the costing information 
was accurate, we would definitely be able to find the best 
solution.
	 In some cases, particularly for simple routes with only a few 
towns, such a search is perfectly acceptable. However, because of 
the number of potential solutions it can prove to be problematic in 
terms both of the amount of computer memory required and the 
time taken, even on a very powerful computer, for all routes to be 
considered and associated costs calculated. The memory problem is 
caused by the fact that all information about all routes must be 
saved until we reach the goal town of Newcastle, when the final 
comparison can be made.

DEPTH-FIRST SEARCH

In a depth-first search, one complete route is tried initially from 
the start point to finish at the goal. Then a different route is tried 
from start to finish. Immediately a cost comparison can be made 
between the two and the best one retained. Other routes can be 
systematically tried in the same way. If we are only looking for the 
best solution then only one route needs to be retained in memory. 
If, on comparison, another route is found to be better in terms of 
cost (assuming this is our focus), then that simply replaces the ori-
ginal. For this type of search, computer memory requirements are 
therefore of little significance.
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	 One big issue with depth-first searches is that if a poor initial 
choice is made, it can produce a direction that results in a very 
long and expensive path involving hundreds of towns. Other 
similar poor, long, paths may well then be searched next. Mean-
while, it might be that the best solution only involved starting in a 
different initial direction such that low-cost routes could be taken. 
With depth-first searches such a solution might not be discovered 
for some time. A breadth-first search, for the same problem, would 
have found such a solution very quickly.

DEPTH-LIMITED SEARCH

The problem of a depth-first search looking into extremely long 
and costly routes can be alleviated by a depth-limited search. A 
defined number of towns, the depth limit, on a journey is first 
selected. The search then commences in depth-first fashion until 
the defined number is reached. That particular search is given up 
on and the next one started in depth-first mode.
	 Clearly, an amount of common sense and, where possible, 
knowledge of the particular problem needs to be applied with a 
depth-limited search. The previous two techniques (breadth-first 
and depth-first) are known as ‘blind searches’ because little needs 
to be known about the problem for the search to go ahead. With 
a depth-limited search it would be stupid, for example, to choose 
a very low limit when the solution might be expected to produce 
a result of two or three steps. A brief study of the problem may 
well tell us that a solution is likely in, say, nine or ten steps, so a 
good choice for the limit in this case might be 10–11 – if a solu-
tion doesn’t look good after that number of steps it is very 
unlikely to be the best solution, so let’s give up and try another 
path.

BIDIRECTIONAL SEARCH

An alternative strategy is to split the search in two and to com-
mence one search (forwards) from the start point and simultan-
eously to commence a second search (backwards) from the goal. 
The big advantage of this technique is that it can save a lot of time 
in finding a solution; however, it can require significant memory.
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	 In order to succeed, as part of one of the searches, a routine 
must also be included to check on whether or not a point reached 
has also just been reached on the fringe of the other search. Know-
ledge of the problem is therefore useful here, as such a fringe-
checking exercise, which can be time consuming, does not need to 
be carried out until such a depth has been reached that a solution is 
either likely or possible.

SEARCHING PROBLEMS

One enormous potential time waste is to repeatedly explore points 
that have already been reached and fully explored. This can result 
in never finding a solution or concluding with a poor or incorrect 
solution. For some problems (particularly simple ones) such a situ-
ation should not occur, but other problems can be complex and 
there may be several intermingling routes to consider.
	 To explain the problem in a little more detail, consider again 
attempting to travel from Reading to Newcastle. We may take one 
path from Reading to Oxford then on to Coventry, and subse-
quently explore all the possibilities from Coventry. As part of the 
search we may then try Reading to Banbury then on to Coventry 
– having arrived at Coventry by a different route. All possible paths 
out of Coventry, with their associated costs, have already been 
searched, so there is no point doing the same exercise again. 
However, it does mean that memory of all the different paths, with 
associated costs, is required until an overall solution has been 
found.
	 As part of the search it is necessary, when a new point is 
reached, to compare the point with those that have already been 
expanded. Apart from not expanding the point again, the two 
routes to that point can be compared, the best one selected and the 
loser discarded. As with intelligence in general, an AI search that 
forgets or ignores its past is likely to make the same mistakes over 
and over again.

PRACTICAL SEARCH EXAMPLES

Although a travelling example has been given here to explain some 
of the principles, the searching techniques described can be applied 
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to find the solution to puzzles. One example is a Rubik’s cube, 
where the initial start point is usually a random assortment of col-
oured squares on different faces of the cube, the end goal being 
when each of the faces of the cube consists of squares of only one 
colour.
	 Breaking down the problem, it is best to find a state that the 
cube can be in from which a known solution exists to reach the 
problem, and then a further state back from that, and so on. At any 
point in time it is then merely a case of taking a small step to get 
from one state to another, and thereby to reach the goal.
	 Maze-solving is another example, in this case where a human 
would typically use a depth-first strategy when a breadth-first strat-
egy would most likely be much better. In fact, for a maze as 
encountered in a puzzle book the best strategy is almost surely a 
bidirectional search – working backwards from the goal as well as 
forwards. Unfortunately this usually makes the problem trivial and 
spoils all the fun.
	 In Jerome K. Jerome’s Three Men in a Boat, Harris’ solution to 
finding the centre of Hampton Court Maze was ‘it’s very simple 
. . . you keep on taking the first turning on the right’. Unfortu-
nately this resulted in his party repeatedly returning to the same 
point, to the extent that ‘some of the people stopped and waited 
for the others [Harris] to walk round and come back to them’.
	 At a more complex level, games such as chess present themselves 
as prime examples. The present state at any time is the situation on 
the chess board, and the goal is to achieve checkmate. The added 
complexity in this case arises from the uncertainty as to what the 
opponent is likely to do. At any instant in time, therefore, the 
search must include costings that are based on probabilities rather 
than fixed values. So, unlike the travelling problem in which 
(traffic jams excluded) costs are assumed to be pretty much fixed, 
in chess the likely response of the opponent must be taken into 
account as much as possible.
	 In May 1997 the IBM computer Deep Blue beat the erstwhile 
human world chess champion, Garry Kasparov, over a six-match 
series. The computer was capable of extensively searching and ana-
lysing 200 million positions every second – thereby indicating a 
distinct advantage of AI over human intelligence in terms of speed 
of calculations. Kasparov said at the time: ‘There were many, many 
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discoveries in this match, and one of them was that sometimes the 
computer plays very, very human moves. It deeply understands 
positional factors.’

HEURISTIC SEARCHING

If some information is already held about the problem then differ-
ent strategies exist to modify the search procedures as described. 
The actual technique used in any particular case depends very 
much on the nature of information held. One obvious method, 
referred to as a best first search, expands the search from a partic-
ular point based on the minimum expected cost of a solution. This 
can be extended, where cost estimations or probabilities need to be 
made, to finding the minimum of a mathematical function in 
which estimates of costs are drawn up for different solutions.
	 A greedy best first search merely expands the search by 
finding the minimum cost for the next step taken. This does not 
always produce the best solution but it is generally efficient and can 
be very quick.
	 Other techniques involve finding a list of all possible solutions 
and starting with one initial solution. This solution is then only 
dropped in order to select an alternative if the overall cost is 
better, which, in turn, is retained until it is bettered. This is gen-
erally referred to as hill climbing or steepest descent. It is 
what is referred to as a local search method as the list of solu-
tions will be ordered such that similar solutions lie near to each 
other, with small changes being made to each solution. One 
problem of the technique therefore is that it will find the best 
solution which is only the best locally to those solutions around it 
– in other words, it may not find the overall (global) best 
solution. This is referred to as ‘getting stuck in a local minimum’. 
Ways of getting around this involve randomly jumping to another 
part of the solution list.

KNOWLEDGE REPRESENTATION

One important aspect of the types of AI systems we are looking at 
here is how information or knowledge about the problem faced is 
stored and dealt with. Essentially, we have to decide what content 
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to put in the knowledge base and how best to represent the world 
at large within a computer. In particular, we are faced with very 
different requirements depending on the type of information we 
are storing.
	 We must deal with the likes of physical objects, time, actions 
and beliefs we hold to be true in all sorts of different environments. 
Trying to model and represent everything in the world would be 
quite a significant task – humans cannot do this so we cannot 
expect an AI system to do so. But what can be represented is a 
limited domain of knowledge, focusing on a specific area or topic 
of interest.
	 There are several different approaches used in the world of AI 
to represent knowledge. Here we will look at one of the most 
widely used, a method called frames. Frames are used to represent 
large amounts of general purpose, common sense knowledge, in 
a structured way.

FRAMES

A frame represents necessary everyday typical knowledge about 
an entity. It is a file within the computer, with a number of 
pieces of information stored in slots in the file. Each of those slots 
is itself a sub-frame (or sub-file) with further embedded levels of 
information.
	 Let us assume that we have a frame-based AI system which is 
being used to describe a house. The initial frame is the house. 
Within the house are a number of slots, e.g. dining room, kitchen, 
lounge, etc. Each of these slots is then itself a frame. So we have a 
kitchen frame which contains a number of slots, e.g. refrigerator, 
cooker, sink, etc. These slots are, in turn, frames in themselves 
with slots of their own. And so on until a sufficient depth of know-
ledge is realised for the problem at hand.
	 Exactly the same basis is used for actions, with each potential 
action being described by a frame with slots containing sub-
actions. If we had a frame for going outside, this might contain 
action slots such as put on shoes, put on coat, take car keys, etc. 
As you can see, this type of knowledge representation is very 
much like the way humans might think. If I am going outside, 
what must I remember to do?
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	 Sometimes in everyday life, if the task we are faced with is 
unusual or is some time in the future, it is likely that we (as humans) 
might forget some of the slots. So we write down a list of what we 
need to do in order to accomplish the task. This list is essentially the 
principle of a frame-based knowledge store in an AI system.
	 A frame can contain (in its slots) all sorts of different pieces of 
information pertaining to the subject of the frame. These can be 
facts about, or objects within, a situation. Conversely, they could 
be knowledge about procedures or actions to be carried out. On 
the other hand, a frame could contain a mixture of this 
information.
	 If a frame describes an action then some of its slots describe the 
sub-tasks to be performed in order to carry out the overall action. 
But there also needs to be an actor slot, to indicate who or what is 
to carry out the action. It is also necessary for there to be an object 
slot, to indicate what or who will be acted upon; a source slot to 
indicate the start point; and a destination slot to describe the end 
point destination for this action.

METHODS AND DEMONS

Thus far we have seen how knowledge can be dealt with in the 
frame method. However, to employ this within an AI system we 
need to be able to manipulate and interrogate the knowledge. 
Methods and demons are the way in which appropriate actions can 
be carried out.
	 A method is a series of commands that is associated with a par-
ticular entity in a slot either to find out something about the entity 
or to carry out a series of actions when the value of the entity 
changes in a certain way. Methods can either be of the type when 
changed or when needed.
	 In a ‘when changed’ method, the appropriate procedure will be 
carried out when the value of the entity changes. For example, in a 
share-trading AI system, the value of a particular company’s shares 
could be monitored. When it changes a procedure is then auto-
matically carried out to test whether the share value is now above 
or below previously set threshold figures. If the value has gone 
outside these bounds then the shares may be automatically sold or 
bought as appropriate.
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	 In a ‘when needed’ method, the appropriate procedure will be 
carried out when a request appears to find out what the value of 
the entity is. In our share-price example, at the time of a ‘when 
needed’ request, possibly from a potential investor, the value of the 
company’s shares will be determined.
	 Demons are IF (condition) THEN (conclusion) statements 
which are fired when the value of the condition term changes. In 
this way demons and ‘when changed’ methods are very similar.
	 There are distinct similarities between expert systems – of the 
rule-based type considered earlier in this chapter – and the mode 
of operation of a frame system in terms of its methods and demons. 
Indeed, it is quite possible to operate a frame-based expert system.
	 The differences between the methods are slight and it is more 
down to the philosophy behind each approach. In a frame system 
the frames try to match to the present situation, the aim of the rea-
soning process carried out is then to find which frames apply at any 
time, i.e. which situation, action or object is the focus. If there is 
no match then another frame is given control, the attention is 
pointed elsewhere. A piece of data or value could change, but if it 
is nothing to do with the frame in control then it may have no 
impact.
	 A rule-based expert system is usually much more data driven. If 
a value changes then it may fire some rules which will create con-
clusions which could fire further rules, and so on. However, by 
employing conflict resolution, priorities can be set and this can 
effectively block certain rules from having any effect at certain 
times – which results in a similar method to a frame system. It must 
be pointed out, however, that for practical AI systems, a rule-based 
expert system is much more widely encountered, particularly 
within an industrial environment.

MACHINE LEARNING

One of the biggest misconceptions many people hold about com-
puters is that they are unable to learn and adapt to new opportun-
ities. It is certainly true that this may be the case for some 
computers in that they are merely programmed and are expected 
to perform only as they have been programmed. However, many 
computers can learn from experience, significantly alter their mode 
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of operation and change their behaviour in fundamental ways. Of 
course, they must have been given the ability to do so, but do so 
they can.
	 In fact, an important aspect of the field of AI is the ability of 
computers to learn. With the classical types of AI that have been 
considered in this chapter, while they are perhaps not as well suited 
as some of the methods described in later chapters to adapting, 
other than through human input, they are nevertheless quite 
capable of doing so.
	 A rule-based expert system is, by definition, originally set up by 
extracting a series of rules from human experts, along with other 
pieces of information, e.g. data sheets on the problem domain.
	 What is produced is a bank of rules, some of which lead on to 
other rules when they fire. So upon certain data being input, a 
winning series of rules may involve 6, 7 or more rules firing in 
series, each one triggering the next to fire until the final conclusion 
of the final rule is reached. It follows that for an end rule to draw a 
conclusion, all the previous rules in the series needed to fire.
	 It may be that the conclusion drawn is a good one, as far as any 
action taken in the outside world is concerned – maybe shares are 
sold and a profit is made or perhaps an alarm is sounded in good 
time. Each of the rules that have taken part in the successful con-
clusion can then be rewarded such that when a similar set of input 
data occurs, the rules are even more likely to fire. This reward 
mechanism can be brought about either through prioritising via 
conflict resolution or by increasing condition percentage values in 
a fuzzy rule-based system. The opposite is true if the end conclu-
sion turned out to be a bad one, whereby the rules are punished by 
decreasing probabilities.
	 The general method used is referred to as a bucket brigade 
technique, because the reward or punishment is passed back, in 
some measure, from the output conclusion. The method employed, 
the weightings applied and the amount of flexibility involved in 
the rules is all dependent on the problem domain. It may be, for 
example, that some rules must necessarily not change for safety or 
reliability reasons and these can then take no part in the learning 
process.
	 It is also possible for the computer to generate new rules by 
itself. A new rule can be brought about simply by allowing small 
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mutations to the condition probabilities or the conflict resolution 
procedure. If the new rule then takes part in a successful end con-
clusion it will receive a reward and will strengthen. If, however, it 
takes part in any unsuccessful conclusions it will be punished on 
each occasion until it withers away. How much of this learning is 
allowed depends entirely on the problem and how much trial and 
error is allowed in the real world.

DATA MINING

Humans operate by obtaining facts, termed data, about the world 
around us and making informed, reasoned choices based on that 
information. This may be simply deciding which loaf of bread to 
buy based on the price or which train to catch depending on 
timing and venue. However, the extent of information available to 
us now is, for many decisions, far more than our human brains can 
cope with – it’s a case of information overload. Hence many com-
panies exist simply to advise us, at a price, as to, for example, which 
insurance to purchase and how to go about it. We rely on them to 
do the ‘difficult’ thinking for us.
	 Even when buying a simple product we are faced with a plethora 
of different types of data. Different suppliers, prices and products 
with different performance measures, insurance deals, delivery offers 
and so on. We don’t want to make a fool of ourselves and waste our 
time and money. However, we would like to get that special deal, a 
bargain because we had the right advice at the right time.
	 Whether it is carried out by a human or a machine, extracting 
vital pieces of knowledge from the complexity of available data on 
a particular topic is referred to as data mining. AI systems are well 
suited to this because of their ability to store enormous quantities 
of data and to draw out all sorts of relationships within that data in 
order to realise patterns, connections and links that are meaningful.
	 It is said that the amount of data in the world (approximately) 
doubles each year – this means that over a ten-year period (e.g. 
2002 to 2012) there is a 1,000 times increase in data! Many new 
areas of study arise because of improvements in technology, and 
each of these inputs significantly to the data available – data that are 
not well understood and often with meanings that are not readily 
drawn out. In recent years the Human Genome Project has opened 
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up the complexities of DNA, and now we are able to look into the 
functioning of brains (even human brains) and try to make sense of 
what is going on based on the new forms of data obtained. There 
are, as a result, new business opportunities to seize, new medical 
techniques to develop and, most important of all, a more in-depth 
understanding of the scientific world around us is available. But we 
need to understand the data collected.

CORRELATIONS

There are a lot of situations in which many different pieces of data 
exist. What we may wish to discover are similarities, links and rela-
tionships between these pieces. Or, it may be that we wish to dis-
cover the most important pieces. On the other hand, it is possible 
that we wish to predict likely outcomes in the future based on the 
data available to this time – so we need to know which pieces of 
data are useful for the prediction and which are not.
	 One example is supermarket shopping. For many people such 
shopping is a regular exercise, e.g. the main weekly shop is carried 
out every Thursday evening. There are approximately 100 differ-
ent types of produce available in a typical (mainly food) supermar-
ket, and every time such a person uses the supermarket, data is 
obtained on what they have purchased.
	 Over a period of time statistical links can then be drawn up for 
an individual as to what they buy and how often they buy it. Sim-
ilarly for the different products, links can be drawn from the data 
to indicate which people buy certain products and when they buy 
them. A clear aim here is to be able to say: ‘Next Thursday a 
certain person will enter the supermarket, they will buy this 
product and that product – if we make them available the person 
will also buy other products based on our predictions.’ The predic-
tion may not be 100% accurate for a particular person at a particu-
lar time, but over 100 or 1,000 people it may well be sufficiently 
accurate (on average) for a significant profit to be made. This is 
how profit can be made from data mining.
	 One basic statistical technique that can be applied is that of 
correlation – to see how one piece of data is linked to another 
piece of data. As an example, let’s consider our person visiting the 
supermarket over a period of one year, and look at their purchases 
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of milk and cheese. The data on how much milk and cheese was 
purchased by that person, week by week, over the one-year period 
can then be analysed to see how the two pieces of data are related 
to each other. When one increases does the other increase, when 
one decreases does the other? A number of statistical tools are avail-
able for this, such as Principal Component Analysis, which detects 
the main links between different pieces of data, e.g. for one person 
the purchasing of shoe polish may be closely linked to buying 
pickles. But using a computer this analysis can be carried out for all 
100 (or more) different products.
	 Such techniques have been used to discover many strange facts 
about regular purchasing patterns in supermarkets. One intriguing 
example is the link, particularly on Friday nights, for young male 
adults to purchase both nappies (diapers) and beer – I will leave 
you to draw your own conclusions about this!

DECISION TREES

One technique used to reduce the complexity of problems, and 
hence to make an enormous database a little easier to analyse, is the 
use of decision trees. It is essentially a method whereby the entire 
database is chopped up into more manageable proportions, based 
on the requirements of the user. This makes it easy to follow a path 
through the tree.
	 In the example regarding purchases from a supermarket, we 
could decide that we only wish to consider female purchasers. This 
would be a user-specified branch, such that only data associated 
with female purchasers need be considered from the outset. The 
branch (section of the total data set) dealing with male purchasers 
can be completely ignored by the AI system.
	 However, we may also input other requirements, the resultant 
branches of which could be discovered as a part of the analysis. For 
example, only those purchasers who spend more than £60 per 
visit, regularly purchase soup and buy fresh vegetables. Rather than 
dealing with a large number of people (say 50,000), we may, with 
such a small subset generated by the specific criteria, only need to 
consider 1,000 or even less, which will dramatically reduce the 
time taken for the analysis, and at the same time will improve the 
accuracy of the results and subsequently any predictions made.
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FUZZY TREES

I’ve already described the tree as a logical decision routine to chop 
up the entire database. This need not be the case as we can have 
fuzzy trees. In the example I mentioned ‘regularly’ in terms of 
the frequency of purchasing soup. We could define ‘regularly’ in a 
straightforward (logical) way, e.g. at least once per month is 
regular, less than that (on average) is not. Conversely, we could 
define ‘regularly’ in a fuzzy way, e.g. never is 0% and every week 
is 100%, and any frequency in between these values is fuzzified 
with an associated percentage – so an individual who purchases 
soup once every two months might be associated with a fuzzy 
value of 26% (for example).
	 Fuzzifying the decision tree in this way still reduces the com-
plexity of the analysis in terms of the number of different para-
meters (food products in this case) considered. However, any final 
results will have a level of confidence associated with them. 
Someone who scores 26% on soup purchasing will not be as strong 
a member of the final group as someone who scores 84%.
	 Similar fuzzifying can be carried out in terms of other quantities. 
In our example one person could spend £10 per week on fresh 
vegetables while another might spend £25 per week on the same 
produce. Both individuals could purchase fresh vegetables every 
week, but clearly we might be more interested in one shopper than 
the other. We may wish to put more emphasis on the high-
spending shopper, especially when it comes to making a 
prediction.
	 One option is to increase the dimensions of the database by 
simply recording more separate values. This is not such a good idea 
as, in these circumstances, at any one time, an entry will appear in 
only one of the new split sections (e.g. high spender on vegetables 
or low spender on vegetables). More appropriate is the fuzzy 
concept of assigning a percentage value to the person with regard 
to the amount spent. This quantity can then be linked with the 
frequency of purchase to provide an overall percentage value for an 
individual. So, an individual may be given a total membership 
value of (say) 47% in the vegetable-purchasing database because 
they spend £18 on vegetables, but only buy them once per 
fortnight.
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APPLICATIONS

As we have seen, data mining is very useful for marketing products as 
it is possible to analyse purchasing patterns and behaviour and then to 
target any offers to a specific group of people in a way appropriate for 
that group. Data mining is also useful for analysing business move-
ments and finance, such as the stock market. Trends can be predicted 
and potential outcomes can be estimated if certain deals are carried 
out.
	 One relatively new area for data mining to be used is in detecting 
criminal activity. First, typical behaviours of groups of people, and 
even of certain individuals, can be accurately monitored and then any 
deviations can be quickly highlighted as the activity will not correlate 
well with previous behaviour. In this way crimes such as fraud can be 
identified or usage of a stolen credit card can be flagged.

CONCLUDING REMARKS

The classical AI techniques described here have been based more 
on trying to get machines/computers to copy humans in tasks that, 
when humans do those tasks, we deem them to be intelligent acts. 
The discussion has ranged from the ways we store information, as 
described in the frame technique, to the ways we reason and make 
decisions, as considered in rule-based expert systems. After all, such 
an expert system is merely trying to mimic how an expert deals 
with certain problems.
	 A motivation for such developments has been evidenced by some 
of the advantages of AI when compared with human intelligence, 
which gives us a practical reason to use machines in this context – to 
replace humans! These include speed of processing, accuracy of 
mathematical calculations, extent of memory, relating complex data 
and the ability to function 24 hours per day, seven days per week. 
Clearly, computers think in a different way to humans!
	 The concept of intelligence is in itself a controversial topic, but 
when we consider machines as being intelligent this raises enorm-
ous debate. What does this mean? How does machine intelligence 
compare with human intelligence? Can a machine actually be alive? 
In the next chapter we look at the important philosophical issues 
that underpin the subject area.
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KEY TERMS

best first search, bucket brigade, common sense knowledge, frames, 
fuzzy trees, greedy best first search, hill climbing, local search, 
steepest descent

FURTHER READING

1	 Essence of Artificial Intelligence by A. Cawsey, published by 
Prentice-Hall, 2007. This popular book is billed as ‘a concise 
and accessible introduction to the topic for students with no 
prior knowledge of AI’. It actually deals mainly with very classi-
cal AI. It does use case studies very well though, and seems to be 
quite a neat book in terms of depth. It is written in plain, easy to 
understand English with abbreviations and technical jargon 
being fully explained: no knowledge of a programming language 
is assumed.

2	 Introduction to Artificial Intelligence by P. Jackson, published by 
Dover, 1986. This is typical of a number of books on AI. Quite 
heavy, very classical, dealing mainly with programming lan-
guages and with little to do with intelligence. If programming is 
what you want then this is a useful resource, but if you are inter-
ested in AI then books of this type are to be avoided.

3	 Artificial Intelligence: A Modern Approach by S. Russell and P. 
Norvig, published by Prentice Hall, 2009. A very good, com-
prehensive book on classical AI – strongly recommended in that 
context. Despite the title, it does not deal well with modern AI; 
indeed, much of the content of the last three chapters of this 
book is not considered.

4	 Artificial Intelligence: A Systems Approach by M.T. Jones, published 
by Jones and Bartlett, 2008. This book is good for programmers 
who want to realise practical, classical AI systems.

5	 Artificial Intelligence by P.H. Winston, published by Addison-
Wesley, 1992. A classical book on classical AI. A little dated 
now, but nicely written and introduces ideas in a smooth way. It 
was a best seller on the subject.
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THE PHILOSOPHY OF AI

SYNOPSIS

The philosophy behind AI has played a critical role in the subject’s 
development. What does it mean for a machine to think? Can a 
machine be conscious? Can a machine fool you, in conversation, 
into thinking it is human? If so, is this important? This whole topic 
emphasises the importance of the subject by asking fundamental 
questions about ourselves. We look in this chapter specifically at 
the Turing Test, the Chinese room problem and conscious 
machines.

INTRODUCTION

The most important issue when considering arguments about intel-
ligence, whether it is of the human, animal or artificial kind is what 
exactly intelligence is in the first place. This is something that we 
looked at in Chapter 1, and in doing so attempted to consider 
intelligence in a general sense rather than simply the human 
version.
	 Unfortunately, as we will see through a number of key exam-
ples, the philosophical study of AI has been dogged by the desire to 
regard human intelligence as something special, and simply to try 
and show how computers can’t do some of the things that human 
brains do, and therefore the conclusion has been drawn that com-
puters are somehow inferior. This is probably understandable – 
after all, we are human and it is easy to fall into the trap of thinking 
that the human way of doing things is the best way.
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	 It is extremely difficult to be objective about something when 
you are immersed in it on a daily basis. Ask any company whose 
product is best and, naturally, they will tell you it is theirs. Ask any 
academic researcher whose research programme is the most 
important and deserves to be funded and they will tell you it is 
theirs. In order to get around this, external assessment is required.
	 Many magazines on the high street are sold simply because in 
their pages one can read about comparisons between products such 
as vehicles or washing machines. We respect the magazines’ authors 
as knowledgeable, independent sources who will give us an unbi-
ased view on all the aspects of the products we are interested in. 
We can then make up our own minds on which product is best (in 
some way) by analysing all the facts.
	 In a sense we do this in a scientific way – balancing price with 
performance with reliability and so on. In doing so, perhaps some 
aspects are more important to one person than they are to another.
	 In order to study the philosophy of AI we need to start by car-
rying out an independent assessment of intelligence. We need, for 
a moment, to try to forget that we are human and to look at 
human intelligence from the outside. Perhaps it might be easiest to 
imagine that you are an alien from another planet, with no precon-
ceived bias towards humans, and you must assess the intelligence of 
the entities that you observe on Earth.

STARTING POINT

First, let’s have a look at some of the misconceptions and biases 
that can occur and some important points to draw. With AI we 
are, as we will see, not necessarily trying to copy (simulate) the 
workings of the human brain. Nevertheless, one interesting initial 
question might be: could we simulate/copy the human brain with 
an AI brain?
	 One approach might be to take human brain cells and to grow 
them in a laboratory and, when they are connected and developed, 
put them in a body. This would, we assume, come pretty close to 
being a human brain. But even then, would it be exactly the same 
as a human brain if it was in a robot or animal body? It would not 
have experienced life as a human, with the range of experiences 
and education. But then, not all humans have a wide range of 
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experiences and there are considerable differences in performance 
between different human brains. We will look at this particular 
type of AI, in a practical sense, in Chapter 5.
	 However, if we take a computer form of AI, which historically 
has been that most widely considered, then, as John Searle stated, 
‘a computer simulation of a physical process (e.g. a human brain) is 
a very different thing from the actual process itself ’. Unless we 
build the brain of exactly the same material, we will never get it to 
be exactly the same, although, in theory, we might get very close.
	 With a computer-based AI there will, as a result, always be, the 
argument goes, some differences between it and a human brain. It 
is worth remembering, though, that human brains are diverse in 
their nature and performance – we need to include in our analysis 
humans who have autism, Alzheimer’s disease, cerebral palsy and 
so on. It must also be remembered, for example, that some humans 
have a limited or even no form of communication with other 
humans – however, they are still humans.

PENROSE’S PITFALL

We can all fall into simple traps when studying AI and the human 
brain. As an example, consider random behaviour. It might be said 
that computers think in a mechanistic, programmed way, whereas 
humans can think randomly. This is incorrect – all human thoughts 
are from and in our brains and are therefore based on the genetic 
make-up of our brains and what we have learnt in our lives. While 
an act may appear random to an outside observer, this is simply 
because they do not understand the reasoning behind it. Anything 
you do or say will have been based on the signals in your brain. As 
a simple test, do something random, say something at random. 
Whatever your action or utterance, you will have made a decision 
to make that specific response.
	 Roger Penrose, a mathematical physicist, said: ‘There is a great 
deal of randomness in the (human) brain’s wiring.’ This is simply 
not true. A human brain is certainly an extremely complex 
network of highly connected brain cells, but the connections have 
been made due to biological growth, partly as directed by our 
genetic make-up and partly down to learning experiences, which 
physically change the strengths of the connections.
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	 Just because something is complex and difficult to understand 
does not mean it is random. For example, if you do not understand 
what is going on, the functioning of a telephone exchange can 
appear complex to an observer – but it does not act randomly, 
otherwise we would almost never be able to make a telephone call, 
we could be connected with absolutely anyone else (at random).
	 Let us take another argument from Roger Penrose, which is 
laced with human bias and a desire for humans in general to have 
something extra. By comparing merely humans and computers we 
will first look at Penrose’s argument – see if you agree with it! We 
start by considering some form of communication and/or 
instructions:

1	 ‘Genuine intelligence requires that genuine understanding must be 
present’ or quite simply ‘intelligence requires understanding’. In 
other words, if you don’t understand things then you cannot be 
intelligent.

2	 ‘Actual understanding could not be achieved by any computer.’ 
Put another way, computers will never be able to understand.

3	 As a result: ‘Computers would always remain subservient to us 
[humans], no matter how far they advance.’

	 The general argument of points 1 and 2 appears to be that humans 
understand things, whether it be communication or an inspection of 
the world around us, and that this is the critical element necessary 
for intelligence. The argument continues that computers may indeed 
be able to do things, such as communicate, but they do not under-
stand what they are doing, so they cannot be intelligent. Point 3 
then follows with the conclusion that computers will always be sub-
servient to humans, on the basis that human intelligence is superior 
to AI, because AI will never be able to reach the human standard of 
understanding.
	 To counter the argument let us broaden the discussion to intel-
ligence in general, including animals. Many creatures appear to 
communicate or give instruction to each other: we can readily 
observe this in creatures such as cows, bees and ants, as well as 
chimpanzees, bats and so on. When one bat screeches to another 
or when one cow moos to another they presumably have some 
concept of what is being uttered; indeed, they often seem to 
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respond and interact with each other. One bat appears to under-
stand another bat; one cow appears to understand another cow. 
But do we humans understand them, can we communicate with 
them? No.
	 Using the same arguments put forward by Penrose – as humans 
do not genuinely understand bats, cows, etc., we are not as intelli-
gent as they are. As a result we will always be subservient to them 
– bats or cows will rule the Earth! Clearly, such an argument is silly 
– as, in exactly the same way, is Penrose’s argument for computers 
always being subservient to humans.
	 Computers may well understand things in a different way to 
humans; animals probably understand things in different ways to 
humans; some humans probably understand some things in differ-
ent ways to other humans. This doesn’t make one intelligent and 
another not. It merely means that one is intelligent in a different 
way to another. It’s all subjective, as was pointed out in Chapter 1.
	 As for Penrose’s third point. Well, that is pure Hollywood, total 
fiction. It may make someone feel nice to say that machines will 
always be subservient to humans, but there is no logic to it at all. 
When the Aztecs and the Native Americans were defeated by 
Europeans it could be said that the ‘better’, more intelligent culture 
lay with the home teams. What the invaders brought with them 
though, apart from disease, was a vastly superior technology that 
the home teams didn’t understand and never got to grips with. We 
must conclude that just because something is not intelligent in the 
same way as we humans are does not mean it will always be sub-
servient to us!

WEAK AI

There exist different schools of thought as to the actual nature of 
AI. These differing philosophical ideals are generally split into three 
camps, although there may be some overlap.
	 The possibility that machines can act intelligently as a human 
does or act as if they were as intelligent as a human is referred to as 
weak AI. This concept stems from Marvin Minsky’s definition of 
AI cited in Chapter 1, whereby machines do things that appear to 
be intelligent acts. This concept of weak AI is not accepted by 
some, however.



	 THE PHILOSOPHY OF AI	 65

	 Computers can, in fact, even now do many things better than 
(all) humans do, including things that we feel require understand-
ing – playing chess, for example. Humans use computers on a daily 
basis because of their memory and mathematical abilities, because 
they can perform in a better way than humans in many aspects of 
these fields.

STRONG AI

The possibility that a machine can actually think in exactly the same 
way as a human, as opposed simply to appearing to simulate human 
thinking, is referred to as strong AI. For this to hold, it would mean 
that it would be possible to build a computer that completely repli-
cated the functioning of the human brain in every aspect.
	 There are a number of important issues here if it is to be possible 
for a machine to think in exactly the same way as a human. In par-
ticular, a computer will most likely not have had life’s rich experi-
ences, as a human would have done, over many years. It would not 
have grown up experiencing different sensations, realising different 
values, being faced with moral dilemmas. It may well not have been 
treated in the same way as a human has. Perhaps most important of 
all, the computer’s body, if it has one (possibly in a robot form), may 
well be completely different to a human body. It could have wheels 
rather than legs and an infrared sensor rather than eyes.
	 A major issue, therefore, with the concept of strong AI is the 
mind–body problem and the concept of consciousness, with 
associated questions relating to understanding, as we have been dis-
cussing, and awareness. Perhaps the best argument brought to bear 
here is the brain-in-a-vat experiment. Imagine there are two 
versions of your brain. Version 1 is the normal version, the one 
you are used to. Version 2 can be considered as discussed in the 
following section.

BRAIN-IN-A-VAT EXPERIMENT

When you are born your brain is removed and placed in a vat, 
where it is kept alive and fed with suitable nutrients to allow it to 
grow and develop connections. Electro-chemical signals are sent to 
the brain over this period to feed it with a purely fictional world, 
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and motor signals from the brain are sent to the world such that 
you (your brain) are able to modify it and, apparently, move 
around in it. The Matrix-like world appears to you to be real. In 
theory, your brain, in this state, could have the same sort of feel-
ings and emotions as a brain which has developed in a body in the 
usual way.
	 Assuming that the two versions of brain in this discussion have 
been physically able to develop in identical ways (same tempera-
ture, same knocks, same stimulation, etc.) then it all rests on the 
nature of the fictional world. If it was absolutely identical to the 
real world then there would be no way to tell the difference and 
the brains must have developed in exactly the same way. In prac-
tice, however, all simulations are not quite the same as the real 
thing and therefore there would be, in reality, very small discrep-
ancies – referred to as ‘qualia’, intrinsic experiences.
	 A supporter of the strong AI argument would believe that any dif-
ferences between the two versions of your brain are so slight as not to 
matter; however, an opponent of the argument would feel that no 
matter how small they are, such differences are absolutely critical.
	 Underpinning this philosophical discussion is the standpoint that 
each individual takes. There are those who approach the subject 
from a materialist viewpoint, assuming that there are no spiritual 
aspects involved, there is no such thing as the immortal soul, and 
that ‘brains cause minds’. Conversely, there are those who believe 
that no matter what physical elements are involved, where the 
(human) brain is concerned, there is something else that cannot be 
measured and it is this that is the important thing.
	 From a scientific basis, the first case is the more obvious. There 
may be some very small differences, but the brain in the simulation 
could be near enough the same as the actual brain.
	 In the second case it can be pointless to argue with someone 
who says that no matter what we witness, no matter what we can 
experience or measure, there is something else – possibly God-like 
– at work and that overrides all else. This is not a scientific 
approach.
	 As a result there are two closely related topics which come up 
for discussion. The first of these is the concept of free will. How 
can a mind, restricted by physical constructs, achieve freedom of 
choice? One purely materialistic argument to this swiftly concludes 
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that free will is merely the decisions taken by an individual – and 
that these are based on their genetic make-up, their experience and 
the sensed environment at that time.
	 The other, more widely discussed topic is the general issue of 
the deeper operation of the inner functioning of the brain: con-
sciousness, with related questions of understanding and self-
awareness. Example questions can be posed, such as: what does it 
feel like to smell a rose? This can be followed up with: how can a 
computer possibly feel such a thing? Further points can be made, 
such as: why does it feel like something to have brain states whereas 
presumably it does not feel like anything to be a shoe? As a result, 
conclusions can then be drawn that a shoe (and hence a computer) 
cannot be conscious!
	 Issues raised regarding consciousness are often liberally laced 
with human-centric bias which, to view the subject scientifically, 
we need to overcome. First, as a human we know what it is like to 
be ourselves. We do not know what it is like to be anything else, 
such as a bat, a computer, another human, a cabbage, a rock or a 
shoe. We should not therefore presume we know what someone or 
something else is thinking. We certainly should not conclude that 
because something else is not the same as us, therefore it doesn’t 
think in as good a way as us or even that it cannot think at all.
	 Second, the arguments considered often apply human bias to the 
nature of any effect being felt. What is required to ‘smell’ a rose is 
the human sense of smell. Smelling a rose is something of value to 
a human; it may or may not be of value to a dog. A shoe, from sci-
entific analysis thus far, does not appear to have a sense of smell.
	 Third, a (presumably normal) human is (in the argument) com-
pared with a shoe, with a supposed follow-on assumption that a 
computer is similar to a shoe, allowing the conclusion to be drawn 
regarding the consciousness of a shoe to also apply to a computer. 
The argument states: if a shoe is not conscious then a computer 
cannot be conscious! I have to say that I have not yet witnessed a 
shoe that is similar to a computer.
	 Comparing a human with a shoe in this way and likening the 
shoe to a computer is akin to comparing a computer with a 
cabbage and then likening the cabbage to a human. Can the 
cabbage deal with mathematics, communicate in English or control 
a jet aircraft?
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	 Exactly the same logic as used in the shoe–computer conscious-
ness argument for humans would mean that if a cabbage can’t do 
these things then neither can a human. Clearly these are ridiculous 
comparisons, but so too is comparing a human with a shoe, or 
other such inanimate object, in this way.

RATIONAL AI

The possibility that a machine can act as if it was as intelligent as a 
human is referred to as weak AI, whereas the possibility that a 
machine can actually think in exactly the same way as a human is 
referred to as strong AI. Both of these positions suffer from the fact 
that a human-centric comparison is going on, to the extent that a 
starting point is taken that there is only one intelligence – human 
intelligence – to which all other forms of intelligence (including 
presumably that of aliens if they exist!) must aspire.
	 In fact, the distinction drawn here appears to have been pro-
posed back in the early days of AI, when computers merely oper-
ated on symbols. Clear links could then be shown between the 
embodied biological form of intelligence of humans and the disem-
bodied symbolic processing of computers, no matter how fast 
and accurate those computers might have been.
	 What is needed now is an up-to-date viewpoint that is not only 
representative of the computers, machines and robots of today, but 
that also encapsulates the different forms of intelligence witnessed 
in life in its broadest sense. A modern, open view of consciousness, 
understanding, self-awareness and free will is required for us to 
really get to terms with modern AI.
	 As a start, assume for a moment that an alien being lands on 
Earth, having travelled billions of miles from its own planet in 
order to do so. Most likely it will have intellectual properties 
way beyond those of humans as humans have not yet figured out 
how to travel as far in the opposite direction and stay alive. But 
if the alien is of a completely different form to humans – maybe 
the alien is a machine – then would we say that it is not aware of 
itself because it is not like me, a human? Would we say it is not 
conscious because it does not think in exactly the same way as 
we do? It is doubtful that the alien would bother too much 
about our idle thoughts. Yet the alien may well not come up to 
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scratch against our definition of weak AI, never mind in terms of 
strong AI.
	 We need a viewpoint on AI that is much less anthropomorphic 
than the classical AI considered thus far. We need to include fea-
tures such as distributed information processing, agent autonomy, 
embeddedness, sensory motor coupling with the environment, 
various forms of social interaction and more. In each case humans 
exhibit such features but so too do other animals and some 
machines.
	 We need to incorporate psychological and cognitive character-
istics, such as memory, without which it is unlikely that a truly 
intelligent behaviour can be observed. We also need to be open to 
the fact that any behaviour that can be characterised in this way is 
truly intelligent regardless of the nature of the being that generated 
it.
	 Rational AI means that any artefact fulfilling such a general defi-
nition can act intelligently and think in its own right, in its own 
way. Whether this turns out to be in any sense similar to the intel-
ligence, thought, consciousness, self-awareness, etc. of a human is 
neither here nor there. Concepts such as weak AI and strong AI 
therefore retain their meaning in the limited sense in which they 
have been generated, i.e. with regard to the human form of 
intelligence.
	 In the same way, other creatures conforming to such a rational 
definition of AI are intelligent and think in their own way, 
dependent on their particular senses and how their brain is 
structured.
	 AI, in the sense of machines, whether they be of silicon or 
carbon forms, then takes its place as one version of intelligence, 
different in some ways, appearance and characteristics from human 
and animal intelligence. Indeed, just as humans are intelligent in 
different ways from each other, so AI is diverse in itself in terms of 
the different types of machines that are apparent.

BRAIN PROSTHESIS EXPERIMENT

Quite a number of interesting philosophical arguments using AI as 
a basis have arisen and no book on AI would be complete without 
taking a look at some of them. The first of these is the brain 
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prosthesis experiment. For this argument we must presume that 
scientific understanding has progressed to such an extent that we 
can fully understand the working of human brain cells (neurons) 
and can perfectly engineer microscopic devices which perform 
exactly the same function.
	 Surgical techniques have, the argument continues, developed at an 
equally astounding pace to the extent that it is possible to replace 
individual neurons in a human brain with their microscopic equival-
ents without interrupting the workings of the brain as a whole. Cell 
by cell the whole brain is replaced. Once complete it is then gradually 
restored to its original self by reversing the process again cell by cell.
	 So the question is, for the individual involved, would their con-
sciousness remain the same throughout the whole process? Some 
philosophers argue one way and some the other.
	 If the individual smells a flower when in both versions, either:

1	 consciousness that generates the resultant feelings still operates in 
the technological version, which is therefore conscious in the same 
way as the original; or

2	 conscious mental events in the original brain have no connec-
tion to behaviour and are therefore missing in the technological 
version, which as a result is not conscious.

Presumably, once the reversal occurs the individual will be con-
scious although they may or may not suffer memory loss in the 
meantime.
	 Version 2 is what is called epiphenomenal, something which 
occurs but which has no effect whatsoever in the real world. This 
has little/no scientific basis at all. It is a case of no matter what 
results are obtained and no matter how much the technological 
brain is an exact copy of the original, the human original simply 
must have something extra, even if we cannot measure it and 
cannot witness any action which results from it.
	 Version 1 requires that the replacement neurons, and their con-
nections, are identical to the original. If we assume that we can, 
using present-day physics, completely and accurately form a math-
ematical model of the human brain (which actually appears not to 
be possible at the present time) then surely, in time, we would be 
able to carry out the experiment in this way.
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	 One argument against version 1 says that although we might be 
able to copy the neurons extremely closely, we would never be able 
to copy them exactly. It goes on that subtle differences due to 
chaotic behaviour or quantum randomness would still exist and it 
is these differences that are critical. Note: an older argument along 
the same lines (that you might come across) also suggested that it 
was the continuous nature of the human brain as opposed to the 
digital nature of a computer that was critical. The advent of the 
type of AI based on grown biological brains, as discussed in 
Chapter 5, has put paid to that argument.
	 Another more plausible argument, by Roger Penrose, says that 
it is our present-day understanding of physics that is to blame. He 
feels that for the very small elements that cannot be copied ‘such 
non-computational action would have to be found in an area of 
physics that lies outside the presently known physical laws’. He 
goes on to suggest that if we could discover these laws then version 
1 would be quite possible.
	 In the brain prosthesis argument we are not concerned as to 
whether or not the technological brain is conscious, but whether 
or not it is conscious in the same way as the original human 
brain. In the previous discussion of rational AI, the possibility of 
AI to be conscious, in its own way, is not in question. What is in 
question here is whether this could be identical to human 
consciousness.
	 As a reality check, a number of issues need to be raised: first, as 
pointed out earlier, no matter how good the technological neuron 
models, there will in practical terms be differences between the 
human and technological brain unless the replacement neurons 
happen to actually be the same human neurons that were removed 
in the first place. On the other hand, the model could be very 
close, which means that the form of consciousness exhibited by the 
technological brain could be extremely close to that of the original 
human brain, to the degree that (in an engineering sense) it makes 
no difference.
	 A further point, however, is that this is a purely philosophical 
exercise. The human brain is an extremely complex organ, full of 
highly connected neurons. If even just one neuron is removed 
through surgery then the overall effect may be negligible, but it can 
be dramatic, with the individual’s behaviour changing completely. 
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As an example: such dramatic changes can be readily witnessed in 
the human brain as a result of deep brain stimulation treatment for 
Parkinson’s disease.

THE CHINESE ROOM PROBLEM

The Chinese room is the scene for an argument originated by John 
Searle in an attempt to show that a symbol-processing machine (a 
computer) can never be properly described as having a mind or 
understanding or being conscious, no matter how intelligently it may 
behave. It has become a cornerstone argument in the philosophy of 
AI, with researchers either supporting his case or attempting to 
provide counter arguments. Let us start by considering the argu-
ment itself.
	 A computer (inside a room) takes Chinese characters as input 
and follows the instructions of a program to produce other Chinese 
characters, which it presents as output.
	 The computer does this so convincingly that it comfortably 
convinces an external human Chinese speaker that it is itself a 
human Chinese speaker – effectively it passes the Turing Test (dis-
cussed in a later section), it fools another human into believing that 
it is, itself, human.
	 It could be argued by a supporter of strong AI that the com-
puter understands Chinese. However, Searle argues that if the 
machine doesn’t have understanding we cannot describe what the 
machine is doing as thinking. If this is the case then because it does 
not think, it does not have a mind in anything like the normal sense 
of the word. Therefore, ‘strong AI’ is mistaken.
	 Consider that you are in a closed room and that you (an English 
speaker who understands no Chinese) have a rule book with an 
English version of the same program. You can receive Chinese 
characters, process them according to the instructions, and as a 
result you produce Chinese characters as output. As the computer 
has convinced a human Chinese speaker that it is itself a Chinese 
speaker it is fair to deduce that you will be able to do so as well.
	 There is in essence no difference between the computer’s role 
in the first case and the role you play in the latter. Each is simply 
following a program which simulates intelligent behaviour. Yet 
(as we have presumed) you do not understand a word of Chinese, 
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you are merely following instructions. Since you do not under-
stand Chinese we can infer that the computer does not under-
stand Chinese either – as both you and the computer perform 
exactly the same function. The conclusion drawn by Searle is 
therefore that running a computer program does not generate 
understanding.

THE EMERGENCE OF CONSCIOUSNESS

Searle’s argument is essentially that you (a human) have something 
more than the machine; you have a mind which could learn to 
understand Chinese and that your mind is realised through the type 
of brain that you have. Searle said: ‘The [human] brain is an organ. 
Consciousness [and understanding] is caused by lower-level neuro-
nal processes in the brain and is itself a feature of the brain. It is an 
emergent property of the brain.’ He continued: ‘Consciousness is 
not a property of any individual elements and it cannot be 
explained simply as a summation of the properties of those ele-
ments.’ He concluded: ‘Computers are useful devices for simulat-
ing brain processes. But the simulation of mental states is no more 
a mental state than the simulation of an explosion is itself an 
explosion.’
	 The very last line (Searle’s conclusion) here is importantly and 
appropriately refuting the concept of strong AI – much as was dis-
cussed earlier. However, in the argument made, Searle opens up a 
number of other important considerations.
	 First is the concept that you (a human) have something extra 
that the computer does not have (consciousness) and that this 
comes about as an emergent property of your brain – through your 
human neurons and their connections! This could be seen as epi-
phenomenal, in that there are ‘properties’ in human neurons that 
give rise to the mind, but these properties cannot be detected by 
anyone outside the mind, otherwise they could possibly be simu-
lated in a computer, thus realising strong AI. These extra differ-
ences in the human brain are perhaps the qualia referred to by 
Penrose.
	 One point here is that this is a good example of an argument in 
AI in which human intelligence is seen to be something special. It 
appears that even if we can’t measure it, the human brain is deemed 
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to have something more than a machine brain. The argument is 
human-centric. It is concerned with a human language, with all 
the nuances and life experiences that that conjures up. Without 
having lived a human life, could a machine possibly understand such 
a language in the same way as a human? This is indeed Searle’s 
point – no matter how much the computer is used in an attempt to 
copy the human brain, it will never be exactly the same – unless 
perhaps it is itself made up of human neurons and experiences 
some aspects of human life.
	 The Chinese room argument can be refuted in a number of 
ways. As an example, the argument can be turned on its head and 
posed in a favourable way for a machine by considering a 
machine code communication – with exactly the same type of 
argument. You now have to follow a set of instructions with 
regard to machine code rather than Chinese. On the basis that no 
matter what you might learn, the machine code will still mean 
nothing to you, you will not understand it, whereas, for all we 
know, a computer may well understand the machine code. The 
end conclusion of such an argument would be that while a 
machine can be conscious, it is not possible for a human to be 
conscious.
	 Searle has used his Chinese room argument in a number of 
different ways. He has said that while ‘humans have beliefs, ther-
mostats and adding machines do not’ or (as discussed earlier) ‘if a 
shoe is not conscious then how can a computer be conscious?’. 
As indicated earlier, the exact same logic would argue that if a 
cabbage is not conscious then how can a human be conscious?
	 Perhaps the most important aspect of human understanding and 
consciousness to conclude from this is that they are likely (as Searle 
postulated) emergent properties from the collective behaviour of 
human neurons. We will investigate this further, with intriguing 
consequences, in Chapter 5.

TECHNOLOGICAL SINGULARITY

One of the interesting and vitally important features to be gleaned 
from the study of machine intelligence is its potential not simply to 
be the same as, but to surpass human intelligence at some stage. 
The argument goes that it is intelligence that has put humans in 
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their relatively powerful position on Earth and if something comes 
along that is more intelligent then this could pose a threat to 
human dominance. Already, computers outperform humans in a 
number of ways – aspects of mathematics, memory, sensory facul-
ties, etc. Perhaps it is just a matter of time before a superintelligent 
machine appears, which can then design and produce even more 
superintelligent machines and so on.
	 Such a situation, where humans could lose control, was referred 
to as the ‘technological singularity’ by Vinge in 1993. He said: 
‘Within 30 years we will have the technological means to create 
superhuman intelligence.’ Moravec contributed: ‘Robots will 
match human intelligence in 50 years then exceed it – they will 
become our Mind Children.’
	 Because of this potential threat some people interestingly turn 
(for safety?) to the three laws of robotics, introduced by the 
science fiction writer Isaac Asimov, as though they have some sci-
entific basis. The laws are:

1	 A robot may not injure a human being or through inaction allow a 
human being to come to harm.

2	 A robot must obey the orders given by a human unless this con-
flicts with law 1.

3	 A robot must protect its own existence unless this conflicts with 
laws 1 or 2.

	 Although these laws are purely fictional they have been taken by 
some as though they are strict regulations to which robots must 
adhere. Let us be clear – they are simply fictional ideas, nothing 
more, nothing less. Further, it is not apparent that any real-world 
robot has ever operated under these rules. Indeed, if we consider 
many military robotic machines of today, they blatantly break all 
three of the laws in their everyday use.
	 Because of the potential loss of control by humans to machines, 
as a means perhaps to combat such an eventuality, various research-
ers have suggested a merger between humans and technology. 
Kurzweil predicted ‘a strong trend toward the merger of human 
thinking with the world of machine intelligence’, indicating further 
that ‘there will no longer be any clear distinction between humans 
and computers’.
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	 Steven Hawking poignantly commented:

In contrast with our intellect, computers double their perform-
ance every 18 months. The danger is real that they could 
develop intelligence and take over the world. We must develop 
as quickly as possible technologies that make a direct connec-
tion between brain and computer.

	 Research in the area suggested by Hawking has in fact been 
going on for some time, partly with regard to using such technology 
to assist those humans with a disability of one type or another. 
However, the area of human enhancement has also sprung up, 
investigating new sensory input and new means of communication 
for humans. The age of the cyborg – part human, part machine – 
has commenced.

THE TURING TEST

Arguably the most contentious and certainly the best known philo-
sophical discussion relating to AI is what has become known as the 
Turing Test. In fact, it was originally proposed by Alan Turing in 
1950 as an imitation game. His intention was to look at the ques-
tion of ‘Can a machine think?’ or, indeed, ‘Is a machine intelli-
gent?’ in the same way as we might consider whether or not 
another human can think or is intelligent.
	 If we wished to test another human with regard to their intelli-
gence, we might ask them questions or discuss topics with them, 
drawing our conclusions on this basis – much as is normally done 
in a standard job interview. So maybe we could do the same sort of 
thing with a machine!
	 When considering the intelligence of a computer, rather than 
listing a whole string of features characteristic of intelligence, many of 
which would be controversial and some irrelevant, what Turing pro-
posed was to test a machine as to its indistinguishability from humans, 
the idea being that if you converse with a computer for a period and 
can’t tell the difference between it and a human, then you must credit 
it with the same sort of intelligence as you would credit a human.
	 The test in its basic form is as follows. An interrogator faces a 
keyboard attached to a split computer monitor. Behind one half of 
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the screen is a computer respondent, behind the other is a human 
respondent. Both the human and computer respondents are hidden 
from view, possibly in another room, and the only interaction 
allowable is communication via the keyboard and monitor. The 
interrogator has five minutes to discuss whatever he/she likes with 
the two unknown entities. At the end of that period the interroga-
tor must decide which hidden entity is the human and which is the 
computer. The goal of the computer is to fool the interrogator, not 
that they are human but that they are more human than the hidden 
human.
	 In 1950 Turing said:

I believe that in about fifty years’ time it will be possible to pro-
gramme computers . . . to make them play the imitation game 
so well that an average interrogator will not have more than 
70% chance of making the right identification after five minutes 
of questioning.

This is what has become known as the Turing Test.
	 The wording Turing used was a little confusing. What it means 
is that to pass the Turing Test a computer needs to fool an average 
interrogator into making an incorrect decision at least 30% of the 
time.
	 In the computer’s favour is the fact that the computer does not 
actually have to fool the interrogator that it is human and that the 
hidden human is a machine, although that is the best result for the 
computer. Rather, to score in the computer’s favour it is sufficient 
for the interrogator to be unsure which is which or to think both 
hidden entities are the same, either human or machine – as these 
would also be incorrect decisions.
	 But looked at another way, it is actually a very tough task for 
the computer. Consider, for example, that instead of a machine 
and a human sitting behind the monitor, we have two humans, 
both trying to get the interrogator to believe that they are human 
but that the other entity is a computer. Effectively, the interrogator 
would choose which entity of the two he/she thought was most 
human-like. Achieving a score of 50% for one of the humans 
would be expected from average scoring; however, anything 
higher would mean that the other human has scored less than 50%. 
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Clearly it is quite possible (in fact very likely) for a reasonably intel-
ligent human, pitted against another human, to fail the Turing Test 
by scoring less than 30%. Looked at in this way the Turing Test is 
quite a challenge in that a computer must fool interrogators that it 
is more human than many humans.
	 The test is normally expected to be conducted in English, 
although any language would prove the point. But what about the 
hidden humans taking part? Are they adults, children, native English 
speakers, experts, do they have illnesses (e.g. dementia), do they try 
to be human or machine? Turing did not stipulate the exact nature 
of these hidden humans, which poses interesting questions in itself as 
to who (what sort of humans) the computer is competing against.
	 Another problem area with the test (in terms of practically carry-
ing out such a study) is the concept of an average interrogator. In 
any actual practical tests that occur it is invariably interested parties 
who are involved as interrogators. These include professors of com-
puter science, philosophers, journalists and even students of AI – 
none of which, in the circumstances, can be considered average.
	 To obtain a true statistical ‘average’ an extremely large number 
of interrogators would need to include some people who cannot 
use a computer, some who are not able to understand what they 
are supposed to do, some non-native language interrogators, some 
very young children, people from all different walks of life and so 
on. In terms of actual results this would most likely help towards 
the computer’s apparent performance, as any uncertainty or inabil-
ity to make the ‘right identification’ helps the computer’s cause.

WHAT DOES THE TURING TEST ACTUALLY 
TEST?

Turing posed the game instead of answering the question ‘Can 
machines think?’. The test/game indicates that a machine ‘appears’ 
to think in the same way as a human (if it passes)! We might ask, 
though, could we do any better if we tested a human – how do we 
know that they think?
	 The test does not, however, deal with issues such as consciousness 
or self-awareness, other than can be gleaned through questioning. 
The nature of the interrogation carried out is therefore an import-
ant factor.
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	 Turing himself said ‘Intelligent behaviour presumably consists in 
a departure from the completely disciplined behaviour involved in 
computation, but rather a slight one, which does not give rise to 
random behaviour, or to pointless repetitive loops.’ It is therefore 
down to a Turing Test interrogator to bring such aspects into play 
during a conversation.
	 At the time of this book going to press, no computer has offi-
cially passed the Turing Test. So what about Turing’s conjecture 
that by the year 2000, it would be possible for a computer to be 
programmed to pass his test? It is interesting to consider what 
Turing actually said. First (in 1950), he said in ‘about’ 50 years’ 
time, not ‘exactly’; and second, he said that it would be possible to 
programme computers to pass the test – not that necessarily a com-
puter would have passed the test by 2000. It is very useful, 
however, to take a look at where things stand now.

LOEBNER COMPETITION

Occasionally an ‘official’ Turing Test is carried out under strict 
rules, to assess the state of play. Every year, however, an open 
competition sponsored by Hugh Loebner is held, following some 
of Turing’s stipulations. Although usually it is not exactly as 
directed by Turing himself, it does give us some idea of where 
things stand. Most important of all, it gives an intriguing insight 
into conversational features of the interrogators, the machines and 
even the hidden humans.
	 Each year the Loebner competition is aimed at finding the best 
conversational machine from those that are entered. The format 
of the event is that parallel-paired comparisons (as just described 
– one human/one machine) are made between each of four 
hidden machines pitted in turn against each of four hidden 
humans in a 25-minute test. The task of each interrogator is to 
identify the machine and human in each test pair, assigning a total 
mark out of 100 to the pair (so a mark of Entry A 49/Entry B 51 
would mean that in that particular paired interrogation entry B is 
deemed to be very slightly more human than A, whereas a mark 
of Entry A 94/Entry B 6 would mean the interrogator believes 
that entry A is almost certainly the human and entry B the 
machine).
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	 It might be expected that over time as AI and machine techno-
logy improve so the top score achieved by a machine in the annual 
Loebner competition will generally improve year on year. Yet in 
the 2001 competition, one machine was deemed by two out of the 
five interrogators to be more human than any of the hidden 
humans present. However, in the same competition in 2006, no 
machine was deemed to be more human than any of the hidden 
humans. In fact, over the three-year period 2004–2006 the highest 
score obtained by any machine from any one of the interrogators 
was: 2004 = 48; 2005 = 45; 2006 = 28.
	 It is not easy to pinpoint the reasons for this. Perhaps the expec-
tations of Loebner judges/interrogators are increasing as they gain 
in knowledge of how to trick the machines, or could it be that the 
machines themselves are getting worse? On top of this, no machine 
from 2003 to 2007 deceived any interrogator that it was human, 
whereas this was a regular occurrence prior to 2003.
	 One reason appears to be that Hugh Loebner has insisted that 
each test lasts for 25 minutes, as opposed to Turing’s stipulation of 
five minutes. Another major factor is that networking (a big 
advantage of AI) has been disallowed due to the possibility of a 
linked-in human pretending to be a machine pretending to be a 
human in order to win the prize money offered by Hugh Loebner!

CAN A MACHINE TELL A JOKE?

How can a machine be caught out in conversation? For example, 
could humour catch the machine out? Surely, you might argue, a 
machine cannot have a sense of humour. One philosopher 
(Rickman) asserted in 1999 that ‘computers, whatever artificial 
intelligence they may display, cannot make jokes’. If he is right 
then this would be an easy give away. Could it be possible for a 
machine to ‘create’ (produce from its linguistic armoury) an ori-
ginal response that the human receiver may deem witty during 
conversational interaction? A point to ponder on here is that many 
of the machines which take part actually learn to communicate 
through numerous discussions with humans.
	 What about these examples taken from Loebner transcripts? 
These were actual responses during the competition in conversa-
tion with the machine called ‘Jabberwacky’:
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Interrogator:  Ok, but are you always right?
Jabberwacky:  Sometimes I am left.

Interrogator:  How small is small anyhow?
Jabberwacky:  Small.
Interrogator:  Yes but exactly how small?
Jabberwacky:  Very small.

Interrogator: So why don’t you take over the world?
Jabberwacky:  I wouldn’t know what to do with it. . . . Anyway, 

I’m pretty busy already.

These examples have been included to show how such machines 
can cope surprisingly well with some very human conversation and 
even perhaps upset a philosopher or two.

TURING 2008

In 2008, in order to assess the state of play, the Loebner competition 
was held at the University of Reading. Under special circumstances 
and the agreement of Hugh Loebner, strict Turing Test rules were 
invoked, so a series of five-minute paired machine/human tests were 
performed with a variety of interrogators. The winning machine was 
Fred Roberts’ Elbot, which succeeded in fooling 25% of its interro-
gators (30% is the Turing ‘pass mark’) into thinking it was human. 
So possibly the machines are almost there as far as the Turing Test is 
concerned, but perhaps not quite. Curiously, Elbot openly admits to 
interrogators, when asked, that it is a robot!
	 Interrogators who took part in 2008 included software engi-
neers, scientists, philosophers and newspaper journalists – certainly 
not the ‘average interrogator’ that Turing spoke of.
	 Various ploys have been used over the years in an attempt to 
trip up the machines competing. Asking mathematical questions 
does not work as the machines are not stupid, they are just as 
unlikely as a human to attempt to give a mathematical answer. It is 
perhaps better to ask topical or local questions; for example, to 
discuss what the weather is like or what colour the walls are 
painted. The point is not whether a machine gives a ‘correct’ 
answer, but if it gives one that a human would.



82 	 ARTIFICIAL INTELLIGENCE: THE BASICS	

	 Perhaps you can see for yourself how good you would be as an 
interrogator. At the Reading competition, one interrogator asked 
the same question of a number of hidden entities:

What did you think about the weather this morning?

Three different responses came from a male human, a female human 
and a machine. Which is which? Keep in mind that the event was 
held in October 2008 and they all knew it was autumn/fall in 
England. The responses were:

1	 ‘I do tend to like a nice foggy morning, as it adds a certain mystery.’
2	 ‘Not the best, expecting pirates to come out of the fog.’
3	 ‘The weather is not nice at the moment, unless you like fog.’

So which is which? Find the answer at the end of this chapter.
	 What follows is part of the conversation for which the machine 
Ultra Hal was scored ‘human’ by the interrogator concerned:

Interrogator:  Morning.
Ultra Hal:  Good morning judge.
Ultra Hal:  It’s eight something, maybe you ate something.
Ultra Hal:  Get it?
Interrogator:  Yes.

If an entity was deemed to be a machine, the interrogator was also 
asked to mark the humanness of their conversation out of 100. What 
follows is part of the conversation for which a non-native English-
speaking female (human) was scored ‘machine’ by the interrogator 
and was awarded 40/100 for their humanness – the interrogator was 
pretty certain that they were a machine:

Interrogator:  So let’s cut to the point. Are you the human or 
the computer?

Hidden human:  What do you think?
Interrogator:  That’s just the sort of answer I would expect from 

a computer.
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	 Here’s a successful double bluff from the eventual winner, Elbot, 
during one of the conversations for which Elbot was adjudged by 
the interrogator to be an adult male:

Interrogator:  Okay, fair enough, I’ll stop with the slang. How 
are you?

Elbot:  Just a moment! I’ll start my self-diagnosis algorithm and let 
you know the results.

Interrogator:  Very funny, that’s exactly what you’d say if you 
were a computer, right?

	 One interesting feature from the 2008 competition is that several 
times when an interrogator was fooled by a machine into thinking 
that the machine was human, the interrogator not only did not 
realise their mistake but even considered that they had done very 
well in easily selecting which entity was human and which was 
machine in each case.
	 One interrogator, a journalist for the Times newspaper, subse-
quently wrote a newspaper article describing how it was simple to 
detect which were the machines – even though he had been fooled 
on several occasions. Exactly the same was true of a university 
philosopher, another of the interrogators, who subsequently wrote 
in an academic paper that a ‘couple of questions and answers were 
usually sufficient to confirm’ which was the machine. The philo-
sopher (and his co-workers) actually achieved a 44% wrong identi-
fication rate, well above Turing’s 30%!
	 From the 2008 exercise overall, it is clear that machines are not 
yet at the level of conversational performance set by Turing. 
However, the best of them are getting quite close. What a machine 
will have achieved when it passes Turing’s target is difficult to say 
– other than it will have passed the Turing Test. The game is an 
interesting exercise as well as being an important milestone in AI. 
As you can see from the examples and related stories, it also tells us 
quite a bit more about ourselves.
	 It could be argued that the test is very tough for any machine to 
pass. Turing himself said:

The game may be criticised because the odds are weighted too 
heavily against the machine. If the man were to try and pretend 
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to be the machine he would clearly make a very poor showing. 
He would be given away at once by slowness and inaccuracy in 
arithmetic. May not machines carry out something which ought 
to be described as thinking but which is very different from 
what a man does? This objection is a very strong one, but at 
least we can say that if, nevertheless, a machine can be con-
structed to play the imitation game satisfactorily, we need not 
be troubled by this objection.

ARGUMENT FROM DISABILITY

It is apparent when comparing humans and machines that comput-
ers can now do many things better than humans do – in particular, 
things we feel require understanding, such as playing chess, mathe-
matics, recalling from an extensive memory and so on.
	 The ‘argument from disability’, as Turing called it, is the type of 
argument put up by humans against the abilities of a machine in a 
defensive fashion. We know that machines can do many things 
well; however, this appears to provoke a defensive attitude in some 
people to conclude that no matter what machines can do, humans 
still have something more. Indeed, this is the foundation of the 
Chinese room problem.
	 As Turing put it, some will say ‘a machine can never . . .’ Exam-
ples given by Turing are: ‘be kind, resourceful, beautiful, friendly, 
have initiative, have a sense of humor, tell right from wrong, make 
mistakes, fall in love, enjoy strawberries and cream, etc.’.
	 In fact, there is no reason that a computer could not do any of 
these things – indeed, in this chapter we have specifically looked 
further into one such example: the sense of humour. Whether a 
computer does them in the same way as a human and whether it 
‘understands’ what it is doing in the same way that a human would 
and whether or not the act is at all meaningful to the machine are 
quite different questions.
	 However, we can’t know whether another human ‘understands’ 
or ‘feels’ things in the same way that we do. Another person may say 
and think that they understand – but do they? How can we be sure?
	 There are many things that machines can do that humans cannot 
do – flying being a good example. This doesn’t make the machine 
better than humans at everything, it is just one feature. It would be 
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silly to conclude that humans are already generally inferior to 
machines because we cannot fly.
	 So when we point to something that a human can do but that 
apparently a machine may not be able to do, we need to be sensible 
about what conclusions we draw from that. Is the task an important, 
defining issue in some sense? After all, most machines are pretty spe-
cific in what they are required to do – we would not necessarily 
expect an aeroplane to smell a rose or to have a dry sense of humour.
	 If we were trying to build a machine that was an exact replica of a 
human (both physically and mentally), then it might be appropriate to 
criticise a particular feature of the machine as not being quite the 
same. However, no machine has ever been so designed. So why 
should anyone expect a machine to do absolutely everything that a 
human can do, as well as a human can do and then go on to do 
more?
	 When we consider the argument from disability, the Chinese 
room and the Turing Test we need to be clear most of all as to what 
the comparison is meant to prove. Which machine is being compared 
with which human? Both machines and humans have many different 
versions with many different abilities, so can we make generalisations 
as we might like to? Perhaps most important of all, is the comparison 
important in some sense? If a machine cannot smell a rose or enjoy a 
cup of tea will this save humans from an intelligent machine take 
over?

CONCLUDING REMARKS

In the previous chapter we looked at classical AI in which a top-
down approach is taken. In this sense a view is taken of human 
intelligence, like a psychiatrist’s testing, from the outside. Hence 
the basic rules performed in this way by a human, and the way the 
brain appears to work are copied, to some extent, by the artificially 
intelligent computer.
	 As a result of the classical approach taken, it was a natural step to 
see how close the computer could come to actually performing in 
exactly the same way as a human in terms of their intelligence. 
What sprung up was therefore a human-centric philosophical com-
parative analysis, as we have seen in this chapter. In some ways 
computers have been able to outperform humans for many years, 
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whereas in other ways – human communication for example, as 
witnessed by the Turing Test – computers are perhaps not quite 
yet able to perform in exactly the same way as humans.
	 The defensive nature of the philosophy that has arisen from clas-
sical AI is significant. The basic argument underpinning much of 
the philosophy encountered appears to be: ‘The computer can do 
lots of things that a human can do but surely humans have some-
thing more!’ This something more has been called consciousness – an 
abstract term and therefore something that probably cannot be sci-
entifically proven one way or the other. Unfortunately, as we will 
see, many of the philosophical arguments that appear to hold water 
as far as classical AI is concerned come unstuck all too quickly as 
we move forward to a bottom-up, modern approach to AI.
	 Alan Turing witnessed this over 60 years ago in his categorisa-
tion of the argument from disability: machines can do all sorts of 
things, but they can’t ... (whatever). Despite Turing’s insightful 
observation, much of the classical AI philosophy falls foul of exactly 
that. As an example, this is exactly the conclusion drawn from the 
Chinese room problem.
	 In the next chapter we will look at a number of modern 
approaches to AI, which can be employed on their own, in combi-
nation or, if it provides a desired end result, in combination with 
one of the classical approaches already considered. So onward into 
neural networks, evolutionary computing and genetic algorithms!

Did you guess correctly that A was the machine, B the male and C 
the female?

KEY TERMS

average interrogator, brain-in-a-vat experiment, consciousness, 
epiphenomenal, free will, strong AI, symbolic processing, three 
laws of robotics, weak AI

FURTHER READING

1	 Introducing Artificial Intelligence by H. Brighton and H. Selina, 
published by Icon Books, 2007. This book is an attempt to cover 
the general historical and philosophical background of AI. It is 
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certainly accessible for people not in the field of AI, but is very 
light on detailed explanation. It mainly concentrates on the phil-
osophical issues with some aspects of language. Not really a book 
for someone expecting a general overview – particularly not for 
engineering or science students, more for those approaching 
from the arts side.

2	 Beyond AI: Creating the Conscience of the Machine by J. Storrs Hall, 
published by Prometheus Books, 2007. This book looks at the 
history of AI and predicts future achievements. It considers what 
this means for society and the relations between technology and 
human beings. It is mainly concerned with the ethical and soci-
etal impact of AI.

3	 Minds and Computers: An Introduction to the Philosophy of Artificial 
Intelligence by M. Carter, published by Edinburgh University 
Press, 2007. This is an excellent next step in reading into the 
philosophy of AI – it considers the important philosophical issues 
in slightly greater depth.

4	 The Age of Spiritual Machines: When Computers Exceed Human 
Intelligence by R. Kurzweil, published by Penguin Putnam, 2000. 
This is one of a number of visionary views on the future of AI 
and the likely relationship that intelligent machines will have 
with humans.

5	 Views into the Chinese Room: New Essays on Searle and Artificial 
Intelligence, edited by J. Preston and M. Bishop, published by 
Oxford University Press, 2002. This book consists of collected 
essays on the specific topic of the Chinese room from all of the 
top philosophical thinkers in the field. A broad range of ideas are 
presented.
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MODERN AI

SYNOPSIS

In recent years the modern approach to AI has focused more on 
bottom-up techniques – that is, to take some of the basic building 
blocks of intelligence, put them together and get them to learn and 
develop over a period of time and see where we are. In this chapter 
you will be gently introduced to artificial neural networks, genetic 
algorithms and evolutionary computation. Mathematics can easily 
play a major role in applying these methods – this is not the case in 
the presentation here. Rather, the aim is to provide a minimally 
complex guide to the subject without losing meaning – an in-
depth mathematical consideration can follow for those who wish 
to delve deeper.

INTRODUCTION

In Chapter 2 we saw how, with classical AI, the approach is to 
look at the workings of a brain from the outside and, as a result of 
our observations, to attempt to replicate its performance in an AI 
system. This approach is particularly successful at dealing with well-
defined tasks for which a set of clear rules are appropriate, particu-
larly when a lot of such rules need to be processed and acted upon 
in a relatively short time frame. The machine’s advantage in speed 
of memory recall plays an important role in this.
	 However, the classical AI technique is not so good when it 
comes to awareness of a situation and making a rough comparison 
with previously learnt experiences – something which is an 
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extremely important aspect of intelligence. Indeed, for many crea-
tures it is an everyday feature of intelligence. Experiencing life, 
finding out what works and what doesn’t and then when a new, 
slightly different situation comes along, dealing with it in as good a 
way as possible, based on the previous experiences. This problem is 
much better dealt with by looking at how the brain works in a 
fundamental way.
	 The first underpinning concept of modern AI is to consider 
how a biological brain operates in terms of its basic functioning, 
how it learns, how it evolves and how it adapts over time. The 
second point is a need to obtain relatively simple models of the 
fundamental elements – the building blocks, if you like – of the 
brain. Third, these building blocks are mimicked by a technolo-
gical design – possibly a piece of electronic circuitry, possibly a 
computer program, the aim of which is to simulate the building 
blocks. The artificial building blocks can then be plugged 
together and modified in different ways to operate in a brain-like 
fashion.
	 It may be that the aim of such a study is to copy the original 
brain in some way, using an artificial version. However, most likely 
it will simply be a case of taking inspiration from the biological 
way of working and using that in the technological design. In 
doing so, the artificial version will benefit from some of the advan-
tages of the original biological brain – for example, the ability to 
generalise about a result or quite easily classify an event into one 
category or another.
	 Initially we will have a look at the basic components of a bio-
logical brain such that we can then consider piecing together 
models of some of the fundamental elements.

BIOLOGICAL BRAIN

The basic cell in a biological brain, a nerve cell, is referred to as a 
neuron (sometimes you may see it written as neurone – it’s the 
same thing). In a typical human brain there are about 100 billion of 
these. Each neuron is very small, typically being 2–30 micrometres 
in diameter (one-thousandth of the size of a small coin). The 
neurons are connected together to form an extremely complex 
network, each neuron having upwards of 10,000 connections.
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	 Different creatures have different numbers of neurons with 
varying complexities of networks. Slugs and snails can have just a 
few (9–10 for a sea slug) up to a few hundred. Even in these cases 
the structure and functioning of such a brain is not simple. The 
neurons are all a little bit different – although some are very differ-
ent – from each other, not only in terms of size, but also in terms 
of the strength of their connections with other neurons and which 
neurons they are connected to.
	 As far as human neurons are concerned, those that deal with 
information as it is captured by human senses (sensory neurons) are 
specialised in dealing with the signals obtained for sight, sound, etc. 
Meanwhile, those that are employed to send signals out to move 
muscles (motor neurons) are specialised to achieve that end. There 
are also neurons that deal with planning, reasoning and so on. Each 
neuron has a relatively simple structure, but with many of them 
acting together in a complex way, a biological brain is a powerful 
tool indeed.
	 Each neuron consists of a cell body with a nucleus at its centre. 
A number of fibres, called dendrites, stimulate the cell body with 
signals from other neurons, as shown in Figure 4.1. Meanwhile, 
signals are transmitted from the neuron along an axon, which sub-
sequently branches out and connects to the dendrites of other 
neurons, at points called synapses.
	 Ordinarily a neuron will be at a resting state, and will receive 
stimulating signals in the form of electro-chemical pulses (pulses 
which are both electrical and chemical in nature) along some of 
the dendrites from other neurons. Each of the pulses received 
changes the electrical potential (a voltage) of the cell body – some 
of the dendrites add to the cell potential signal (these are called 
excitatory), whereas some subtract from it (these are called inhib-
itory). If the total signal on the dendrites at any time reaches a 
particular threshold value then that cell will fire an electro-
chemical pulse, referred to as an action potential, onto its axon 
and hence out to other neurons to help them to fire in turn. 
Shortly after the neuron has fired in this way it returns to its 
resting state and waits for the pulses on its dendrites to build up 
again. If, conversely, the threshold value is not reached, then the 
neuron will not fire. It is an all-or-nothing process – the neuron 
either fires or it doesn’t.
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	 Observation of a cross-section of a portion of the brain indicates 
neurons of different sizes connected together in an extremely 
complex network – some axons are very long, others very short; 
one neuron may connect to another which connects back to it in 
turn; the connections may be of completely different size and 
strength and, as discussed, may add to the threshold summation 
(excitatory) or subtract from it (inhibitory). Purely due to location, 
a lot of connections from one neuron are to nearby neurons, but 
some can be to neurons quite a distance away.
	 This structure arises partly for genetic reasons, due to the make-
up of the brain of parents and ancestors, and partly from the brain 
development of the individual themselves, due to life experience. 
As an individual learns, the axon–dendrite connections in their 
brain strengthen (positively) or weaken (negatively), making the 
individual more or less likely to perform in a certain way. A brain 
is therefore extremely plastic in that it adapts and can function dif-
ferently, dependent on the patterns of signals it receives and the 
rewards or punishments associated with them.
	 Doing something correctly in response to a particular event 
means that the neural pathways involved with the decision are 
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Figure 4.1  Basic schematic of a neuron.
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likely to be strengthened, such that the next time the same event 
occurs, the brain is even more likely to make a similar choice. 
Meanwhile, doing something incorrectly in response to a particular 
event means that the neural pathways involved are likely to be 
weakened, such that next time that event occurs, the brain is less 
likely to make the same mistake!
	 This is the basis of biological brain growth, operation and devel-
opment. It is ideas taken from both the structure of such a network 
and its method of learning that form the essential ingredients of an 
artificial neural network (ANN), the aim of which is to employ 
technological means to realise some of the characteristics of the ori-
ginal biological version.
	 Before taking a look at ANNs it is important to realise that it is, 
almost surely, not the aim to exactly copy an original biological 
brain, but rather to employ some of the ideas obtained from its 
method of operation in building the ANN. For a start, while the 
human brain has 100 billion cells, a typical ANN may have only a 
hundred or even less. This said, ANNs have been found to be 
extremely powerful and versatile AI tools capable of making 
decisions on, for example, rerouting power transmission lines, 
identifying forged signatures, recognising and understanding speech 
and spotting devious behaviour in credit card usage.

BASIC NEURON MODEL

We have already seen how a biological neuron works. A starting 
point for building an artificial network of neurons is to form a 
simple model of an individual neuron that can either be pro-
grammed into a computer – so that we can form an ANN by 
means of a computer program – or that can be built using elec-
tronic circuitry. In either case the overall aim is to build an ANN 
by connecting together lots of individual neuron models.
	 A neuron receives a number of signals on its inputs (its dendrites 
in the biological case), each one of which can be more or less influ-
ential. It adds these signals up and compares them with a threshold 
level. If the total sum is the same as or more than the threshold 
value then the neuron fires; if the sum is below the threshold then 
it does not fire. In this basic sense an artificial neuron operates in 
the same way as a biological neuron.
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	 The neuron model shown in Figure 4.2 is commonly known as 
the McCulloch and Pitts model, named after the two scientists 
(Warren McCulloch and Walter Pitts) who proposed it in 1943. It 
operates as follows. The inputs x and y are multiplied by their asso-
ciated weightings W1 and W2 and are summed together. The total 
is then compared to the bias value (b). The bias is effectively a 
negative value that the sum of the weighted inputs must surpass. 
So, if the sum of the weighted inputs is the same as or more than 
b, the neuron fires, giving an output of 1; if the sum is less than b, 
the neuron does not fire, giving an output of 0. The output can 
then be multiplied by its own further weighting before being in 
turn input to the next neuron.
	 As an example, assume that at some time, x is 2 and y is 1, W1 is 
2 and W2 is –2, with the bias term b equal to 1. So W1 multiplied 
by x is 4, whereas W2 multiplied by y is –2, giving a sum of 2. 
Comparing the sum with the bias term b means that in this case 
the output would fire as 2 is greater than the value of b, which is 1 
– i.e. the sum is more than the threshold.
	 Of course, we do not have to be limited to two inputs (in 
Figure 4.2 they are x and y); we can have any number, each one 
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Figure 4.2  Basic model of a neuron.
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being multiplied by their own weighting value. For the compari-
son with the threshold to occur, however, all of the inputs must 
first be multiplied by their respective weighting value before being 
summed.
	 Although the threshold action is very much like that of an actual 
neuron, it is just one possibility when it comes to describing the 
functioning of a neuron model. Another possibility exists if the 
output swings between 1 when fired and –1 (rather than 0) when 
not fired. This alternative model is just as plausible as they are both 
based on simple ideas from the operation of a biological neuron.
	 In fact, what appears to be the most popular choice, for research 
purposes, happens to use what is called a sigmoid (also called a leaky 
threshold) rather than a straightforward yes/no type of threshold. In 
this case, as the sum starts to increase, so the output will itself increase 
a little in value from its original 0, continuing to slowly increase as the 
sum increases, until its final value (1) is realised. Although this action 
is in fact less like that of an actual neuron it exhibits some nice math-
ematical characteristics which have been found to be useful. Essen-
tially, the output travels more gently from 0 to 1 rather than being an 
immediate firing when the sum reaches exactly the threshold.

PERCEPTRONS AND LEARNING

The particular form of neuron model just described is referred to as 
a perceptron. Another way of looking at such a model (and using 
it in a practical way) is in terms of its ability to pigeon-hole pieces 
of information into particular classes (referred to as ‘classifying’). In 
this sense, with any set of input values, the output of the neuron 
will be either 1 or –1, indicating to us that the input falls into one 
of two classes, Class 1, when the output is 1, or Class 2, when the 
output is –1.
	 When a perceptron has been set up appropriately it can be used to 
test inputs applied to assess whether they belong to Class 1 or Class 
2. As an example, consider a (very) simple test to see if an applicant 
should receive a loan. Input x is 0 if they have never paid off a loan 
before and 1 if they have; input y is 0 if they have savings below 
some minimum and 1 if their savings are above the minimum. Let’s 
assume that if an applicant satisfies the criteria both x and y being 1, 
then they will be given a loan, otherwise they will not.
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	 One solution to this would be to make both weights, W1 and 
W2, equal to 2 and to have a bias term b of 3. To achieve the loan, 
both x and y would need to be 1 for the sum to reach 4 – a figure 
of greater than 3 – to achieve an output of 1, indicating Class 1. In 
this case, if x and/or y is zero the output for that item will be zero 
(0 × 2). This is referred to as the AND function as it needs both x 
AND y to be 1 for the output to be 1. In fact, with these same 
weights both equal to 2, simply lowering the threshold, b, to 1 
means that the OR function is achieved in that, with the weights 
the same as before, when functioning in this way either x OR y 
OR both of them can be 1 for the output to be 1.
	 With only two inputs and one output the problem is not a 
particularly difficult one – this example was given merely to show 
how the perceptron can operate as a classifier. Even with only one 
perceptron it is quite possible for the number of inputs to be much 
higher, but with just one such neuron it is only possible to decide 
between two classes, nothing more complex, no matter how many 
inputs are applied. It is referred to as a linearly separable 
problem. If we wish to achieve a solution where lots of different 
classifications can be made, something referred to as linearly insep-
arable, then several perceptrons would need to be included – it is 
not possible with only one perceptron.
	 One issue, even with this simple case, is how we can know 
what weighting and bias values to use to obtain the classification 
action we want. For this we need a rule by which means the 
perceptron can learn – a technique to train the neuron’s weights 
to satisfy the performance required from them. The idea is to 
start with any arbitrary selection of weights and for our learning 
technique, if it is a good one, to find for itself a set of weights 
that will provide the wanted solution by making small 
adjustments.
	 Let us consider training a perceptron to perform the AND func-
tion as an example. Assume the two inputs can only be either 0 or 
1 and that the bias, b, is 3. For any particular set of inputs we know 
what we want the output to be – for the AND function when x is 
1 AND y is 1 we want the output to be 1; for any other combina-
tion (e.g. when x is 1 and y is 0, the output will be 0). But assume 
initially that we do not know what value of weights, W1 and W2, 
are needed to achieve this. We need to find out.
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	 Let us try some initial weights – a rough guess. Say W1 is 1 and 
W2 is 1, then the actual output found for the input pair (x is 1 and 
y is 1) would be 2, which is clearly less than the bias of 3, so the 
output would be 0, whereas we want it to be 1 – these weights are 
not a good choice. So, there is an error – our guess was not a good 
one. If we subtract the actual output (0) from the output we want 
(1) the resultant error is 1. We multiply the error by the inputs 
applied and add the result to the weight values selected to provide 
new weight values and then try the test again, so now the weights 
are both 2. When we try the inputs again we find this time the 
answer is correct – for these inputs, this selection of weights pro-
vides us with the function we wanted.
	 This process must normally be repeated with all the different input 
possibilities time and time again until eventually we find that the error 
has dropped to a very small value (hopefully zero) for all input possib-
ilities, at which point the weights will be the correct ones for that 
input/output selection. It is useful when updating the weight values 
to also apply a value which signifies the rate of learning – the amount 
of updating can be either greater or, as is normal, much less than we 
used in the example. So the weight values would change much more 
slowly, eventually reaching a satisfactory solution.
	 For a simple example, as this one, it is not so critical what we 
choose for a learning rate factor, as long as it is somewhere between 0 
and 1. A small number (e.g. 0.1) means the neuron will learn slowly, 
whereas a larger number (e.g. 0.5) means it will change (maybe too) 
quickly. Nevertheless, for the simple AND example here, no matter 
what initial weight selections we choose, after possibly six or seven 
adjustments over all of the input possibilities our weights should have 
settled down to a steady solution. Applying the weight update pro-
cedure described one more time will then result in no change in 
weight values. Indeed, this is often the best way to decide that learn-
ing has completed, in that the weight values do not change from one 
adjustment to the next (or at least change by a very small amount).

SELF-ORGANISING NEURAL NETWORK

Different parts of a brain carry out different functions. Various 
ANN schemes aim at copying, to a certain extent at least, some 
specific aspects of the brain’s activity. One example is the area of 
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the brain in humans, called the cerebral cortex, part of which deals 
with sensory input. In this region of the brain, sensory input is 
mapped to different regions of the cortex, which has organised 
itself to understand the variety of signals that arrive.
	 Ideas from this have been used in the development of a self-
organising (winner-takes-all) ANN which consists of a single layer 
of neurons. Usually these do not have a strict threshold as has been 
previously described. They can operate on a more complex func-
tion, such as a sigmoid, but it might be best initially to consider 
them quite simply as outputting a value related to the sum of their 
input signals – possibly the sum itself.
	 These neurons are formed into a square matrix of possibly 100 
neurons in a 10 × 10 array. The idea is that a particular input 
pattern will excite a specific region of the neurons in the array. In 
this way, when the network is operating, if it is witnessed that a 
particular region of the neurons is excited then the input pattern 
that caused this can be inferred, i.e. that particular piece of input 
information must have caused the output. The network is called a 
feature map in that by considering the different regions of the 
network, each region (when excited) infers that a particular input 
pattern, a feature, has been applied.
	 In this type of network, the same input signals – we have been 
considering two, x and y up to now, but there may well be more – 
are applied to all of the neurons in the array in exactly the same 
fashion. What is different here, however, is that the outputs from 
each of the neurons are also fed back to form further inputs to each 
of the neurons in turn – these are referred to as lateral connections.
	 Each of the signals applied to a neuron, both directly from the 
inputs themselves and also those fed back from neuron outputs, 
will have a weight associated with them. Initially these weights can 
be set to random values. When a particular input pattern is then 
applied, one of the (100) neurons will have an output signal which 
is higher than all the other neurons. This neuron is selected as the 
winner and its weights are adjusted to make its output even higher 
for that input pattern. In turn, the neurons in its vicinity also have 
their weights adjusted (but not quite so much) so that their outputs 
are also a little higher, and so on as we radiate out from the 
winning neuron, until neurons further away actually have their 
weights modified so that their outputs decrease.
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	 For this reason the learning function is said to resemble a 
‘Mexican hat’ shape, with the winning neuron at the centre/ 
pinnacle of the hat and neurons further away on the brim. The hat 
shape defines how much an output is increased by a change of 
weights if it is close to the winning neuron, and how much the 
output is decreased when that neuron is further away. When trained 
in this way, if that specific input appears again then the neuron map 
will ‘recognise’ the input because the specific area around the 
winning neuron will be far more excited than the rest of the map.
	 Another input pattern is applied and a different neuron in 
another sector of the map is selected as the winner. Again, the 
Mexican hat learning function is employed in order to modify the 
weights, and as a result another area of the map will recognise this 
new input if it is applied again. This process is repeated with more, 
different inputs. In each case a new sector of the map is excited by 
the new input. So the map organises itself such that when training 
has been completed and the weights are fixed, the overall network 
can monitor a set of inputs such that when a particular input 
pattern is applied, or at least something close to it, one specific 
region of the neuron map will be excited.
	 It turns out that where there are some similarities or links 
between the different input signals then they are likely to excite 
adjacent regions of the neuron map. This means that if a sequence 
of input signals is applied, the result is that the area of excitation 
moves around the map as the inputs change.
	 Although such a map could be useful for recognising a whole 
range of different input types, one area of application in which it 
has been found to be successful is that of speech recognition. As a 
speech signal is input to the network – in terms of energy at differ-
ent frequencies – phonemes can be recognised and the initial 
uttered words can be reconstructed from their frequency com-
ponents by means of the map. Perhaps surprisingly, the Chinese 
language is one of the best to employ in such a test due to its 
logical phoneme structure.

N-TUPLE NETWORK

One final type of neural network we will consider here is the 
N-Tuple network, also referred to as a ‘weightless’ network 
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because it operates in a distinctly different way, being (as one might 
guess) devoid of weights. Indeed, its principles of operation are 
substantially different to those looked at already and its method of 
learning is also dissimilar. However, in many ways it is a lot easier 
to actually build in electronics/hardware and possibly even to 
understand in terms of its mode of operation.
	 The basic building block (neuron) of an N-Tuple network is a 
standard computer random access memory (RAM) chip, as 
depicted in Figure 4.3. Further, for this technique all of the signals 
at both the input and output are binary, i.e. they are either 0 or 1 
(no or yes). Such a restriction is not particularly limiting when it is 
remembered that when a signal is digitised, as required by a com-
puter, then it is readily available in terms of 0s and 1s. The input 
connections to the neuron are actually the address lines of the 
RAM chip, and the output is the value of data (0 or 1) stored at 
that address.
	 When the RAM neuron is in learning mode, the pattern 
being taught is input in terms of 1s and 0s on the memory 
address lines, with the appropriate value being stored – either 1 

a cb

0

0 0

0

0

0

0

0 0

1

0

0

0

0

0

01

1

1

1

1

1

1

1

1 1

1

1

0

0

1

1

0:000

1:001

2:010

3:011

4:100

5:101

6:110

7:111

Address o/pa

b

c

d

r/w

A
dd

re
ss

 in
pu

ts

o/p

Figure 4.3  RAM neuron.



100 	 ARTIFICIAL INTELLIGENCE: THE BASICS	

or 0. The number of inputs used to address the RAM neuron is 
referred to as a Tuple – if there are eight bits (eight 0s and 1s) 
then this would be an 8-Tuple. Subsequently, when in analysis 
mode, the neuron is addressed with the same input pattern and 
the data extracted will be either the 1 or 0 that was previously 
learnt. This is essentially a different – yet powerful – way of 
employing a RAM chip.
	 This type of neuron can be particularly useful for learning to 
recognise an image. If the image is split up into pixels, with each 
pixel having a value either of 1 or 0, then the pixels can be taken 
four at a time (if it is a 4-Tuple network) and fed into RAM 
neurons. Different RAM neurons are required for each Tuple.
	 To see how it works, let us initially store a 0 as data for all pos-
sible addresses in a RAM neuron. Then assume that we have an 
image which simply consists of four pixels, with each pixel either 
being black (0) or white (1). For this example let us say the four 
pixels will have value 1010 and a RAM neuron will be so 
addressed, with a 1 being stored at that address.
	 If we subsequently test the neuron with an image 1011 then the 
neuron will output 0, indicating that it does not recognise that 
image. If, however, we input an image 1010 then the neuron will 
output 1, indicating that it does recognise that image as the one it 
originally learnt.
	 Of course, a typical image consists of many more pixels than 
this, even with merely a black and white image. So a whole bank 
of such neurons are needed, with every pixel being fed into at least 
one neuron, although it is usual to over-sample and feed each (0/1) 
pixel value into four or more different neurons, often in a pseudo-
random way in order to generalise and mix up the inputs. For a 
particular image, the first N bits are fed into the first neuron, the 
second N bits into the next neuron and so on until the whole 
image input pattern has been dealt with.
	 For a specific image fed into the neurons in this way, all of the 
neurons have their outputs set to 1 for this particular pattern. In 
this case, because so many neurons are involved, when it comes 
to the analysis stage and a subsequent image is presented, because 
of small changes such as light discrepancies or noise, the image 
will probably not be exactly the same at any later time – it may 
be that for what we think is the same image, only 83% of the 



	 MODERN AI	 101

neurons give a 1 as output. In fact, this is probably near enough. 
Because the percentage is so high, it is likely the case that the 
image is just about the same as the one originally learnt. If only 
25% of the outputs had given a 1 as output then we could be 
pretty sure that it was a different image to the first one.
	 For a bank of neurons, therefore, we simply need to sum up all 
of the outputs and make a judgement ourselves as to what value we 
feel is sufficient to convince us that the image is near enough to 
the original.
	 In practice it is best for the neurons not simply to learn one spe-
cific image but to learn a number of similar images.
	 If the neurons were learning to recognise the image taken of a 
person’s face, for example, it might be that the person could move 
their head slightly or open and close their mouth, with a different 
image fed in to the bank of neurons in each case – each of the dif-
ferent images causing some extra neurons to have their data lines 
set to 1. Subsequently, the sum of neuron outputs would then be 
more likely to give a high percentage value even if the person’s 
head was not in exactly the same position as it was at first – pos-
sibly due to the wind blowing their hair or the sun reflecting 
differently.
	 One issue is that if too many different images are learnt by a 
bank of such neurons, then in analysis mode it tends to recognise 
absolutely everything it is tested with – its discrimination is 
impaired. It is usual, therefore, to have a different bank of RAM 
neurons for each different image, with slight variations on that 
image. For this reason, such a bank of neurons is referred to as a 
‘discriminator’. If it is, at a later time, desired to clear the entire 
discriminator and teach it a completely new input pattern then it 
is relatively straightforward to simply set all neuron outputs for 
all address inputs to 0 and start again.
	 It is clear that RAM neurons are not a particularly accurate 
model of a human neuron. However, their performance in input 
(particularly image) recognition has certainly been inspired by 
the neural processes of the human brain – as a result such per-
formance itself results in further questions being asked as to the 
actual nature of human neurons themselves – perhaps, in some 
cases, they are more like the RAM neurons than we initially 
thought.



102 	 ARTIFICIAL INTELLIGENCE: THE BASICS	

EVOLUTIONARY COMPUTING

In Chapter 2 we considered problem solving in terms of searching 
for a solution. Various search techniques were investigated. In 
recent years inspiration has been taken from the study of biological 
evolution to provide an alternative, very powerful strategy when it 
is required to search for a – possibly the best – solution to a 
problem by selecting from a number of potential solutions. Even, if 
required, realising new solutions not previously considered – i.e. 
being creative.
	 In the biological evolutionary process, at one point in time a 
population of individuals in a species exists, forming a generation. 
These individuals are mixed together (usually by mating) to 
produce a new generation, and so over time the species survives 
and (hopefully) thrives. As the environment changes, to stay in 
existence the species must adapt to those changes. But this overall 
process is extremely slow, possibly taking millions of years.
	 By copying (modelling) in a computer some of the general 
processes involved in the biological form of evolution, it is possible 
to achieve a technique which adapts (improves) the solution to an 
AI problem, from a population of potential solutions, either 
towards the best possible solution or at least to achieve a solution 
that works.
	 Different solutions in one generation of the population of solu-
tions are mixed (genetically by mating) to produce a new, 
improved generation. The solutions in that new generation can in 
turn be mixed, in a number of ways, to realise the next generation 
and so on, until many – possibly thousands – of generations later a 
much better solution to the original problem is arrived at. Fortu-
nately, computer generations can be brought about within a much 
shorter time frame – possibly seconds or even milliseconds – so we 
don’t have to wait millions of years for a solution to appear.

GENETIC ALGORITHMS

The best-known approach to evolutionary computing is the 
method of genetic algorithms (GAs). In this technique, each 
member of a population is defined in terms of a genetic make-up 
(computer chromosomes) which describes it uniquely. This can be 
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written in binary fashion, in terms of 1s and 0s. To get from one 
generation to the next, the chromosomes of one member are 
mixed/mated with those of another by procedures such as cross
over and mutation, which were inspired by their biological 
counterparts.
	 As we will see, a binary chromosome code relates directly to the 
characteristics of each member. Differences between members’ 
chromosomes relate to the actual differences between their proper-
ties. As a simple example, one member – let’s say A – may be 
described by the code 0101, whereas another – we’ll call it B – 
could be described by 1100. The process of crossover involves 
taking part of the code of A and mixing it with part of the code of 
B to make a new member for the next generation. For example, 
the first part (first two digits) of A mixed with the second part (last 
two digits) of B would realise 0100 – a new code. For longer 
codes, which is the usual case, the process is exactly the same; it’s 
just that more digits are involved.
	 Mutation, which is generally used less frequently, involves 
taking one digit (possibly at random) and changing it. So we might 
take A as 0101 and mutate this by changing the third digit for it to 
become 0111 in the next generation. In a piece of code with only 
four digits, as in our example, this has quite a dramatic effect, 
whereas if only one digit is mutated out of a 24-digit code descrip-
tion then the effect is much less apparent.
	 It needs to be remembered here that the original members of 
the population might well be quite reasonable solutions in any case, 
so we most likely would not wish to change them much from one 
generation to the next, just some small tweaks to improve them 
slightly. In nature, mutation occurs sparingly and this is perhaps the 
best case with a GA also – in fact, too much mutation can seriously 
disrupt a GA, leading to it never finding a good solution.
	 When operating a GA, the first task is to construct fixed-length 
chromosomes which are representative of the problem and which 
uniquely characterise each individual in the total population. Also, 
one needs to choose a population size and decide if this is going to 
be allowed to grow in any way (probably not). When the popula-
tion size is fixed from generation to generation it means that some 
of the entities in a generation will need to be killed off – i.e. they 
will not proceed further. They will most likely be the weakest 
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individuals, though it may be that some diversity is required and 
hence individuals that are very similar to others, but not quite as 
good, can be killed off along with clones – a population full of 
identical individuals is not desirable.
	 It also needs to be decided how much crossover and how much 
mutation will occur. The probability of either of these occurring 
can usually be determined from experience with a particular 
problem – too much of either and the population will not settle 
down and converge on a good solution; not enough of either and 
the population can get trapped with only bad solutions.
	 Perhaps the most important aspect is determining how the 
individuals are to be measured – what is good and what is bad. 
For this an overall function which defines the fitness of indi-
viduals needs to be constructed (a fitness function). This 
depends on the problem for which the GA is being applied. The 
function may therefore be arrived at by a combination of differ-
ent factors – e.g. speed, cost, power or length, whatever is 
important for the problem.
	 To start the algorithm off, an initial population is required. This 
might be obtained randomly or it could be obtained through a 
number of rough guesses at a solution. The fitness of each member of 
the first generation in the population is found by means of the fitness 
function. A pair of chromosomes can then be selected for mating – 
those achieving a better fitness score are more likely to mate. Cross
over and mutation operators are applied depending on their probability 
in each case. As a result, one or more offspring are produced. This 
process may well then be repeated with other pairs of chromosomes.
	 What results is a new population consisting of the original chro-
mosomes and the new offspring. Each of the chromosomes is then 
tested against the fitness function and the population is slimmed down 
to the population size by killing off some chromosomes (simply elim-
inating them from the proceedings). These chromosomes take no 
further part in the process. The fitness function may indeed include a 
factor dependent on age, such that for each generation a chromosome 
may be deemed a little less fit simply because it is ageing. This aspect 
depends on the application, however, and it may be that chromo-
some age is not deemed important.
	 This whole process is repeated, generation after generation – pos-
sibly many thousands of generations – until there is little or no change 
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in the fitness function calculations for the best chromosomes. At this 
point it can be deemed that a solution has been arrived at.
	 Sometimes it may be that there is little change in the best chromo-
some’s fitness function calculation for several generations – indeed, 
the value may deteriorate – and then it can start to improve again. It 
really depends on the complexity of the problem. It could therefore 
be that it is simply better to stop the algorithm after a specified 
number of generations have been realised or when the best fitness 
reaches a certain value – the result will then be deemed to be ‘good 
enough’.

GENETIC ALGORITHM: SIMPLE EXAMPLE

In this simple example we wish to use a GA to find the best robot 
to perform a package carrying task. The robot can have one of two 
motors, one of two chassis, one of two power supplies and one of 
two grippers. For the first type of each item this will be denoted by 
0, with the second type denoted by 1. Let’s have a population of 
three possible robots and let’s start them off as 1010, 0111 and 
1000. Each of these chromosomes actually represents a different 
physical robot made up of the four different possible components.
	 Each robot performs in terms of speed (S), manoeuvrability (M) 
and load carrying (L), due to the way it is constructed. Our fitness 
function (F ) can therefore be made up of some aspects of each of 
these features – let’s say F = xS + yM + zL, where x, y and z are 
numbers we choose to denote the importance of each feature. In 
the first generation we calculate F for each of the three robots – to 
do so we need a mathematical model which relates S, L and M to 
each of the robot designs. Assume that, as a result, we find that 
1010 and 0111 have better values of F. We then apply crossover to 
these to obtain 1011 and subsequently apply mutation to the third 
digit of 0111 to obtain an offspring 0101.
	 On testing it is found that 1000 from the original population 
and 1011 have the worst fitness functions (F ) – so our population 
at the start of the second generation consists of 1010 and 0111 from 
the original population, along with the offspring 0101.
	 Now we test each of these robots against F using the model (which 
we assume we have) and find that 0111 and 0101 are the best two in 
this case. Applying crossover gives us 0101 again, while applying 
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mutation to the fourth digit of the first of these (0111) gives us 0110. 
As a result, we find the new population of three robots to be 0111, 
0101 and 0110.
	 So the process continues. Perhaps we eventually find that 0110 
turns out to be the best solution in terms of satisfying the fitness func-
tion and we simply cannot obtain a better design of robot. In this case 
we have found the components we need to build the actual, physical 
robot, which we can go ahead and do.
	 One of the first tests for the robot will be to check its actual speed, 
manoeuvrability and load-carrying performance. In this way the 
mathematical model relating these features to the actual robot com-
ponents (which we assumed we already had) can be checked. If the 
model is found to accurately relate to the actual performance charac-
teristics then we can be pretty sure that the GA has found the best 
solution for the design of the robot. If, however, the model is found 
to be in error, then it may be the case that a different fitness function 
would have been better and that the GA has found the right solution 
to the wrong problem. What is needed, though, is a more accurate 
model so that the fitness function is more realistic.
	 This example points to a number of important characteristics 
inherent in the use of GAs for problem solving. First, the chromo-
somes must accurately represent the individuals – in the case of the 
robot the motor, gripper and so on must be accurately represented. 
Second, the fitness function must accurately be related to the per-
formance of the individuals in the population.
	 In a realistic version of a problem such as this, each chromosome 
could be made up of 20 or more digits (not four as in the example), 
the population might contain hundreds of different chromosomes 
(not just the three in the example) and the fitness function could rep-
resent a complex mathematical description relating each individual’s 
make-up to its performance, consisting of many more than the three 
terms in the example.

GENETIC ALGORITHMS: SOME COMMENTS

In natural selection, individuals who are not so fit in terms of their 
performance do not survive; as they age, they die off. Although 
this was originally referred to as ‘survival of the fittest’, perhaps a 
better description might be non-survival of the unfit. Those that 
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are fit enough survive and mate, and in that fashion pass on their 
genes to the next generation. In many ways, GAs are based on the 
same principles. For example, the chromosome size (length) does 
not change from generation to generation.
	 One difference with nature is that the size of a GA population 
normally remains fixed. This is rather akin to managing a group of 
animals on a wildlife reservation – the strongest animals survive and 
the weakest and/or oldest are culled. The main reason for retaining 
population size in a GA is simply management of the algorithm – 
letting the size expand would mean that for each generation, the 
fitness function for every individual would have to be calculated, 
which takes up computer time, so as generations passed the amount 
of computation time required would increase considerably.
	 However, restricting the population size in a GA, while helping 
on time, does create problems. What can tend to happen is that 
individuals in the population can become similar, leading to a lack 
of diversity. If we wish to find the best solution it can be good to 
have some different individuals in the population to vary the solu-
tion to an extent.
	 In some instances the GA can be operated adaptively to deal 
with changing circumstances, such as when a robot has to deal with 
different environmental conditions. In these cases diversity in the 
population is important such that quite large changes in individuals 
can occur if and when necessary, relatively quickly.
	 Although the desire is for a GA to find the overall (global) best 
solution, it may be that there are several potential solutions, some 
of them better than others. This situation occurs when the fitness 
function is quite complex. It is then possible for the GA to con-
verge on a local maximum rather than the global solution. It can 
be that a different start point (i.e. different initial conditions) will 
allow the global solution to be found, but there again we don’t 
know what those conditions are if we don’t know the final/global 
solution.
	 In biological evolution local maxima can in some circumstances 
be good solutions. Such is the case for different species that have 
developed to fill a niche for which they physically and mentally 
evolve with specific characteristics to deal with a particular situ-
ation. This same feature may also be useful with some GA applica-
tions, with the GA providing a neat solution to a specific problem. 
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In essence, whether we are looking at a niche solution – a good 
thing – or merely a local maximum – possibly not such a good 
thing – really depends on the particular application.

AGENT METHODS

If we take a look at the general approach to AI discussed in this 
chapter so far it is one of the emergence of an overall complex 
intelligent behaviour through a collection of simpler interacting 
entities which are, themselves, semi-autonomous – agents. It may 
be, as we have seen with ANNs, that these agents, in the form of 
neurons, merely link together and, by their sheer numbers achieve 
intelligent behaviour. Alternatively, as we have seen with GAs, it 
may be that a population of genes, as agents, improves through an 
evolutionary process with an external assessor – the fitness 
function.
	 In either case we can see that each agent has little/no know-
ledge of what other agents do. They are relatively independent and 
are only affected, in turn, by other agents in terms of achieving 
environmental goals. An end result may then be realised in terms 
of one agent alone (in the case of a GA) or by a collection or com-
munity of agents (in the case of an ANN).
	 One approach to AI is to specifically focus on the idea of agents 
in particular and their individual identities to produce an overall 
emergent behaviour. Each element can be considered as a member 
of a society that can usually perceive limited aspects of its environ-
ment, which it can in turn affect either singly or in cooperation 
with other agents. In this way an agent coordinates with other 
agents to achieve a specific task. A key difference between this 
approach and classical AI is that with agents the overall intelligence 
is distributed between the agents rather than being housed in one 
centralised depository.

AGENTS FOR PROBLEM SOLVING

We saw in Chapter 2 how classical AI systems can be very good at 
solving problems. An alternative solution is to employ an agent-
based approach. In this way a complex problem can be chopped up 
into a number of smaller problems, each one of which is much 
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easier to deal with. Agents can then be used to find solutions to 
these smaller problems – combining together to realise the final 
solution. One advantage of this is that each agent can contain 
information about its own smaller problem – it doesn’t need to 
know anything about the problem in general.
	 Such an approach is often taken between humans to tackle a dif-
ficult task, each human only dealing with their specific part of the 
problem, usually not understanding the full complexity of the 
overall situation. So it seems quite reasonable to apply the same 
technique to an AI system. But of course, there are many different 
ways in which this can be brought about. As such, you will 
encounter several different definitions of what an agent is and what 
it can do.
	 Some agents have a fixed action, while others are flexible and 
adaptive. Some are autonomous, while some are completely 
dependent on the decisions of others. Most are responsive to the 
environment in which they exist, although this can mean environ-
ment in the sense of the outside world or it can mean the actions 
of other surrounding agents – think of one of your neurons in the 
middle of your brain, for example – it is only affected by other 
neurons, not directly by any external influence.
	 It may be that in a particular design all agents have the same 
power and capabilities; however, it may be that some agents can 
override the decisions of others – this is referred to as subsump-
tion architecture as the action or decision of one, lower-priority 
agent is subsumed by that of an agent of higher priority. As an 
example, we will shortly consider this further in terms of a mobile 
robot application.

SOFTWARE AGENTS

An agent can take the form of a physical hardware entity or it can 
be a piece of code in the computer as part of an overall program. 
In either case it exhibits some or all of the characteristics already 
discussed. In a moment we will look at hardware agents. First, 
however, let us consider the software version.
	 There are a wide range of possible software agents – sometimes 
referred to as softbots. For example, such agents are presently used 
to monitor the financial markets, checking on the real-time 
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movements of stocks and share prices. An agent may well be 
responsible for buying and selling commodities, in which case it 
needs to know if the (human) dealer has any up-to-the-minute 
instructions as to which trades it should be especially interested in 
and which to avoid – in this case the agent may need to ‘under-
stand’ certain natural language instructions.
	 Agents are ideal for such transactions because they can simply sit 
monitoring activity, only carrying out an action when the right 
conditions are apparent. Not only is this very difficult for a human 
to do, but once a decision is needed the agent can make it almost 
instantly. In the time it would take for a human broker to make 
the same decision (several seconds or even minutes) the deal may 
well have been lost.
	 As a result, a large proportion of daily financial transactions 
around the world are actually carried out, not by humans, but by 
software agents. The office floors of financial houses in the city 
market places (London/New York) are smothered in computers. 
Brokers that formerly were involved in carrying out the transac-
tions are now involved in monitoring AI agents and feeding them 
with information and occasionally instructions – then they let them 
get on with it. Meanwhile, others are involved in new AI agent 
design – it is no longer the company making the best deals that 
makes the money, but rather the company that realises the best AI 
agents.
	 Such an agent may well monitor numerous factors at the same 
time: keeping a historical record of the value of shares over a 
period; investigating trends; correlating these with other shares; 
linking them with financial exchange rates and other external 
information translated from up-to-date news items. As many factors 
are brought together it may be that some of the data mining tech-
niques discussed earlier need to be either directly incorporated into 
an agent or the agent needs access as and when it is required.
	 The basic action of an agent is to take in information from one 
or a number of inputs, process this information, relate it to histor-
ical data and to make a decision which can be acted on either phys-
ically or in terms of a further software output, possibly even by 
another agent. This could be achieved simply through the agent 
consisting of a rule base or a look-up table. If historical data is 
ignored then the agent is referred to as a reflex agent.
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	 It may be that the agent contains elements concerned with plan-
ning in order to achieve either an internal goal or to direct itself 
towards an external goal – in which case it is referred to as a goal-
based agent. Meanwhile, if the planning elements themselves are 
adapted appropriately in response to external influences from the 
environment, possibly due to the performance of the agent itself, 
then this is referred to as a learning agent. Finally, an agent can 
be based on models obtained from the real world, which it attempts 
to mimic in its performance, in which case it is referred to as a 
model-based agent.

MULTIAGENTS

We have looked thus far more at single agents acting, in some way, 
as a part of a collective whole. It may well be in some cases that a 
single agent is required to deal with a task (many industrial moni-
toring systems are of this ilk), merely checking on a measured level, 
pressure or flow and sounding an alarm or triggering a valve to 
open/close if the measured value deviates outside previously 
defined bounds.
	 If a single agent is appropriate to deal with a problem, then so be it 
– there is no point making the solution more complex than it needs 
to be. However, there are many cases in which a number of agents 
are required; in fact, it is more than likely that this will be the case as 
it is such situations in which AI agent systems are applied.
	 Where multiagents are involved they may need to operate in a 
cooperative fashion such that each agent provides a partial answer 
to a problem, an overall solution being provided by bringing 
together the cohesive outputs from a number of agents. Alterna-
tively, the agents may operate competitively, either singly or in 
groups, with only one or a small group of active agents providing 
the final overall solution.
	 To deal with multiagent systems, a form of selection is required. 
This can be carried out either in terms of a simple calculation; for 
example, each agent can be assigned a priority grading (can be 
called an ego), with such gradings being merely added together if 
groups of agents are involved. The winning active agent(s) is then 
the one(s) with the ‘best’ grading. Alternatively, a critic or 
superagent is also required in order to choose, by means of its 
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comparative calculations, which is the winning agent to be applied. 
The superagent itself does not therefore affect the outside world; its 
role is to select which agents can do so.

HARDWARE AGENTS

Historically, computer systems were fed information by users. In 
many cases this is still true. However, it is also the case that many 
computer systems (acting as agents) obtain their information 
directly from sensing the environment and are both expected and 
trusted to act on that information without any form of human 
intervention. The result of this may well mean the actuation of 
some entity which directly affects and influences the real world. As 
an example, a peacekeeper missile system receives information 
regarding incoming enemy missiles and their range and trajectory. 
The AI system itself then decides when to deploy a missile – 
humans merely have a veto but no direct control.
	 The computer system requires an accurate up-to-date picture of 
the state of the external world. If it senses inaccurate information then 
any decisions it makes will themselves be inaccurate. Such data, on 
collection, may need processing to reduce the possibility of error, so 
data may need to be averaged or filtered to remove noise. One good 
example of a computer/agent system operating in this way is the case 
of a mobile robot. The robot senses information related to its position 
and whether any objects are in its vicinity. It may then need to plan a 
course of action and subsequently attempt to carry out that action, 
taking into account any environmental changes or newly sensed 
information – maybe an object has suddenly appeared in front of it.
	 Such a robot can also learn a reliable procedure or behaviour 
depending on potential actions it tries itself being ‘rewarded’ when 
it gets things right and ‘punished’ when it gets things wrong. We 
will look at this in more detail in the next chapter.

SUBSUMPTION ARCHITECTURE

In order to describe the subsumption architecture method, it is best 
to stick with the mobile robot as our example agent because the 
robot has a number of levels of operation. At one level the robot 
may need to form a map of its environment – in practice this may 
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be by means of a laser range-finding mechanism or perhaps 
ultrasonic sensors. In order to do this it will need to move around 
in the environment.
	 Another task the robot might have is to go to one point on the 
map to take an object from that point to another point. Of course, 
the desire would probably be that if any objects get in its way then 
it must avoid them (in an industrial setting) or possibly destroy 
them (in a military setting). It might be, however, that its role will 
change depending on the object sensed and the function the object 
is carrying out. Hence, it might be required that on encountering a 
specific object, the robot stops taking its load from one place to 
another, changes its direction and goes somewhere else.
	 Each of the tasks of the robot has a level of required competence 
– avoiding collisions is of high priority but requires a low compe-
tence. Following a path requires a high competence but is not so 
high in terms of priority. Other functions of the robot can similarly 
be defined, such as building a map, travelling relatively aimlessly, 
sensing changes in the environment and so on.
	 Overall, at any point in time, the robot will be collecting data 
but will also need to decide on a course of action for that point in 
time – what does it do? To this end the controller has several layers 
of action, each with its own level of competence and each with its 
own priority. It is important that at each point in time there will 
be only one selected action.
	 It will most likely be the case that a number of possible actions 
are active – maybe the robot is presently carrying an object from 
one place to another (high competence) when it encounters an 
object blocking its path requiring avoidance (low competence).
	 The basic rules of subsumption architecture are that: first, a 
lower competence action will always subsume (or suppress) a 
higher competence action; second, the ‘default behaviour’ is always 
the lowest competence one. In this way different levels of possible 
action are subsumed into the immediate, necessary action which 
simply must be taken.

CONCLUDING REMARKS

In this chapter we have looked at some of the modern approaches 
to AI. In doing so we have taken more of a bottom-up approach, 
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looking at the basic building blocks of intelligence and investigating 
how these can be plugged together, rather like the neurons in our 
brains, in order to function as an intelligent collective whole. This 
is in direct contrast to classical AI in which an external, top-down 
approach is taken.
	 As we have travelled through the chapter, so ANNs, evolution-
ary computing and agent architectures have all been considered, 
each with their own distinctly different mode of operation. We 
have seen that robotics has proved to be a good example to con-
sider where and how AI systems operate. As a result we will con-
tinue our investigation into AI by looking at robots in more detail, 
considering how they sense the world and operate within it, focus-
ing on how they exhibit intelligence in the form of AI.

KEY TERMS

artificial neural network, fitness function, goal-based agent, learn-
ing agent, linearly separable problem, model-based agent, multi
agents, perceptron, reflex agent, subsumption architecture

FURTHER READING

1	 Bio-inspired Artificial Intelligence: Theories, Methods and Technologies 
by D. Floreano and C. Mattiussi, published by MIT Press, 2008. 
This is well written with many highly informative examples 
from biology, engineering and computing. It provides excellent 
coverage of the bio-inspired area.

2	 Neural Networks for Pattern Recognition by C.M. Bishop, published 
by Clarendon Press, 1996. A very popular book for good reason. 
It offers comprehensive coverage of all types of neural networks, 
and has a pattern-recognition theme.

3	 Neural Networks and Learning Machines by S. Haykin, published 
by Pearson Education, 2008. This is quite simply the best book 
on neural networks. It is a thorough, readable edition focusing 
mainly on an engineering approach.

4	 Introduction to Evolutionary Computing by A.E. Eiben and J.E. 
Smith, published by Springer, 2010. This book provides a 
complete overview of evolutionary computing based on the 
principles of biological evolution, such as natural selection and 



	 MODERN AI	 115

genetic inheritance. It is meant for those who wish to apply 
evolutionary computing to a particular problem or within a 
given application area. It contains quick-reference information 
on the current state-of-the-art.

5	 Soft Computing: Integrating Evolutionary, Neural and Fuzzy Systems 
by A. Tettamanzi, M. Tomassini and J. Janßen, published by 
Springer, 2010. This is more for engineering or applied science 
students, and contains many application examples.



5

ROBOTS

SYNOPSIS

Some of the most exciting developments in the field of AI have 
appeared through the development of robotics. Indeed, it could be 
argued that an intelligent robot is merely the embodiment of an 
artificially intelligent entity – giving a body to AI. Topics to be 
covered here include artificial life, collective and swarm intelli-
gence, and biologically inspired techniques. However, we also look 
at an exciting new form of AI in the sense of growing biological 
brains, as the AI, within a physical robot body. This can even mean 
culturing human brain cells as the AI!

ARTIFICIAL LIFE

In Chapter 1, when we were trying to pin down intelligence by 
defining it, the proposal was: ‘The variety of information-
processing processes that collectively enable a being to autono-
mously pursue its survival.’ At first glance this definition can appear 
a bit bland – a similar, but more direct alternative might be: ‘The 
variety of mental processes that act together to make up those 
necessary for life.’ Again, we are looking here at a general, all-
encompassing concept rather than something that is specific to (or 
biased towards) humans. However, in this latter definition we have 
tied intelligence to being something to do with mental (of the 
mind) processes, but more importantly have given it a central role 
in terms of life and living entities, including properties such as 
success and gain as well as mere survival.
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	 Immediately, though, we can expect to have follow-up ques-
tions as to what is meant by ‘the mind’ and, somewhat more 
importantly, what is meant by ‘life’? In Chapter 3 we attempted to 
tackle some of the philosophical arguments that relate to what a 
mind is and how a computer mind compares with a human mind. 
It is, however, relatively straightforward to regard a mind as merely 
being a brain, a physical entity which carries out the mental proc-
esses exhibited by an intelligent being. In this sense, discussing 
what a ‘mind’ is becomes more of a fun parlour game – the real 
question relates to what life is all about.
	 We can, as we did in Chapter 1 with regard to intelligence, 
have a look at what dictionaries say about life. However, arguably 
the best definition one finds is actually taken from Wikipedia and 
can be expressed succinctly by saying that life is a characteristic that 
distinguishes entities that have self-sustaining processes from those 
that do not.
	 In terms of a biological perspective, these self-sustaining proc-
esses for an entity involve regulation of its internal environment, 
organisation in itself, metabolism (e.g. energy), growth, adaptabil-
ity, response to stimuli, production (not ‘reproduction’ – as men-
tioned earlier, humans do not reproduce other than in cloning) and 
other things such as excretion and nutrition, which are perhaps 
subsets of the previous categories.
	 So, to be considered to be alive an entity must exhibit the 
majority, if not all, of the characteristics mentioned – to go further 
we would be defining a specific form of life, such as organic or 
human, and in this look at AI we are trying to take a general 
approach to life, just as we are taking a general approach to intelli-
gence. As with our analysis of intelligence, it is worth thinking 
about the variety of entities we witness on our planet when we 
consider life. It is certainly not necessary to exhibit ALL of the 
processes mentioned to be alive – for example, not all humans 
produce offspring, but this doesn’t mean they are not alive.

A-LIFE

Having considered, to some extent at least, what life is all about, 
we can now look at the exciting topic of artificial life, otherwise 
known as A-life. This can mean a number of things to different 
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people, depending on the approach being taken. However, what is 
common between these approaches is that some aspects of life as 
we know it are taken as the basis (or inspiration) for the A-life 
study.
	 Essentially, what happens in life can be modelled and used as a 
basis, or inspiration, for an AI technique. Alternatively, the role of 
an AI system can be to perform some or all aspects of life itself – 
which can be in terms of hardware (e.g. an actual physical robot) 
or in terms of a computer simulation of a world within the com-
puter. In the latter case this can mean an attempt at representing 
the real world or it can be merely in terms of a toy/virtual world 
within software.
	 A-life approach 1 (merely inspirational): in the previous chapter 
we looked at neural networks, evolutionary computing, GAs and 
software agents. These computing AI methods are all inspired by a 
look at what happens in nature, either (as in the case of a neural 
network) how a brain works or (as in the case of evolutionary 
computing) how life evolves. Whether it be in terms merely of 
computer simulations of these forms of AI, to some people such 
techniques are considered to be part of the field of A-life.
	 A-life approach 2 (again merely inspirational): other, different 
aspects of life can be picked on and employed along with more 
standard forms of AI of the type considered in earlier chapters (e.g. 
planning) to improve performance or simply to take a different 
approach. Examples of this would be the use of models of social 
and cultural change to affect what would be otherwise standard 
forms of machine learning. In common with GAs, an attempt is 
made to cause a resultant behaviour to emerge through a perceived 
evolutionary process. This can be achieved in a simple way through 
merely having a number of potential solutions to a problem, being 
able to put a value on each solution and progressively (in an evolv-
ing way) to improve the best solution selected.

SIMULATED A-LIFE

What I have described so far is merely the use of inspirational ideas, 
gleaned from life, to influence the way either classical or modern 
AI methods operate. On first encountering the term ‘artificial life’, 
however, the immediate concept that would probably spring up in 
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most people’s minds is not this at all, but rather the idea of actually 
putting together/building an artificial life form. This is something 
that could be in terms of a simulation or in terms of a real-world, 
physical robot.
	 A simulated A-life can be quite complex (possibly a model of some 
aspects of life), containing behavioural models of individuals living 
within a simulated world, or it can be very simple in its construction. 
The amazing thing is that even with simple rules and simple behav-
iours, extremely complex overall population effects can arise.

CELLULAR AUTOMATA

Perhaps the best example of simulated A-life is the approach called 
cellular automata (also known as finite-state machines). One 
straightforward way to understand this is to consider a chess/
draughts board as the simulated world, but in this case each of the 
squares can be either black or white and their status can change 
over time. Each square (described as a cell) is then considered to be 
an individual member of the world, which is the board itself.
	 If we consider a square in the middle of the board, it has eight 
neighbouring squares, four to the north (N), south (S), east (E) and 
west (W), and also four to the northwest (NW), northeast (NE), 
southwest (SW) and southeast (SE). At a specific time (t) then that 
square (in our simulated world) will be either black or white, 
which we can also call being in the state 1 or 0.
	 If we then consider the same square the next time we look at it 
(t + 1) then its state at the new time will depend both on what its 
own state was at time t and what the state of its neighbours was at 
time t. At the next time (t + 2) so things will depend on the states 
at time t + 1, and so on.
	 Although this sounds a very simple operational description, 
when viewed over a sequence of such time steps, extremely 
complex patterns can emerge dependent on the choice of relation-
ships between an individual square at a certain time, its previous 
self and its previous neighbours. Essentially, complexity emerges 
from simple behaviours even when the population (in this case the 
total number of squares) is relatively small.
	 What such a relatively simple set up does allow us to do is to 
study the effects of society, in that the state of an individual not 
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only depends on itself but also on those around it. The type of 
relationships between a single cell and its surrounding cells can take 
a variety of forms, as we will see shortly, and in certain circum-
stances this can lead to cell ‘death’. In this sense, ‘death’ means that 
a cell no longer changes its state over time and no longer has an 
effect on other cells around it – the speed with which this occurs 
(if it occurs) depends on the relationships themselves.
	 One thing that transpires from such a study is that the evolution 
of the total population over time, including the patterns that 
emerge, may not have an ‘intent’ about it (i.e. there may be no 
apparent, selected goal for the population), but rather a supposed 
‘intent’ emerges from the simple interactions between the cells (i.e. 
regular patterns clearly emerge).
	 Conclusions from this can be drawn and posed back on our own 
human society. For example, such evolution may well not result in 
a ‘better’ existence (a better pattern) but merely a different one. 
Perhaps more importantly, mere survival seems to be the key factor 
(for a cell) – as long as you survive then you still have a role to play 
and can change things – this can be considered to be success in 
itself.

GAME OF LIFE

In looking at cellular automata it is worth considering how such 
evolutionary behaviour can occur in terms of a simple example. To 
start with, let’s look again at a cell (square) in the middle of the 
board, along with its eight near neighbours. We need to define the 
relationships which will transform the state of the cell from time t 
to time t + 1. For this example, let us merely use three rules to 
encompass the whole arrangement.

1	 If a cell is in state 1 at time t and has exactly two (no more, no less) 
of its neighbours also in state 1 at time t, then at time t + 1 it will 
remain in state 1.

2	 Whatever the state of a cell at time t, if exactly three (no more, 
no less) of its eight neighbours are in state 1 at time t, then at 
time t + 1 it will be in state 1.

3	 For any other situation at time t, then at time t + 1 the cell will 
be in state 0.
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	 Consider for a moment the meaning of the rules in this example. 
If two or three neighbouring cells are 1 then the cell will itself result 
as a 1, whereas if more than three or less than two neighbouring 
cells are 1 then the cell itself will result as a 0. The cell needs just the 
right amount of activity around it – too much or too little and it 
will become 0. Even with such a simple set of rules, which all cells 
adhere to, seemingly rich and complex patterns can emerge in the 
population as a whole.
	 To see what can happen over just one time step with these rules 
it is worth simply drawing out a small grid (say 5 × 5), scattering 
some 1s and 0s around the grid and applying the rules repeatedly 
over a small number of time steps. From this it should be apparent 
that, dependent on the initial set up you selected, the grid may well, 
in this case, quickly fill up entirely with 0s or 1s or could, very 
quickly, simply become a stable, non-changing pattern. On further 
study it is realised that a larger population with a more diverse initial 
arrangement can easily lead to more complex patterns forming over 
time, possibly with waves, repeated cycles and shape changes.

WRAP-AROUND

It is quite straightforward, computationally, to extend the two-
dimensional world cell picture considered thus far by operating a 
wrap-around policy. In the simple two-dimensional board case, the 
cells along an edge only have five neighbours. These cells either 
need to be given slightly different rules or their status will most 
likely have a biasing effect on the whole population.
	 It can be best for a cell on the right-hand edge to regard those 
respective cells on the left-hand edge as its neighbours and vice 
versa, with the same applying to cells on the top/bottom. Cells in 
the corner positions of a two-dimensional board meanwhile would 
nominally only have three neighbours. Wrapping around a corner 
cell in terms of right/left and top/bottom realises a further two 
neighbours in each case. Such corner cells therefore need to be 
wrapped around diagonally such that the opposite diagonal corner 
cell will also be a neighbour. In this way a corner cell will have all 
three other corner cells considered as its neighbours.
	 Interestingly, when wrap-around is applied, waves and what are 
termed ‘gliders’ (apparent objects with evolving shape) can move 
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across the world and disappear off one edge only to reappear on 
the opposite edge. It is possible, in this way, to get gliders to con-
tinually circle the world in a stable, time-locked loop.

REAL-LIFE MODIFICATION

Just as AI can take inspiration from the real world in terms of its 
construction and operation, the same is true with A-life. However, 
it is also apparent that results from A-life can make us think in an 
alternate way about real life and our understanding of evolution. 
This is particularly true because of the ‘bottom-up’ aspect of A-life, 
in that simple individual cells realise a complex overall social and 
evolutionary behaviour simply through their interaction.
	 With cellular automata, a small change to individual cell rules, 
particularly in terms of how they are affected by their neighbours, 
can often result in distinctly different population developments, 
leading to a conclusion that in the real world if we all behaved 
slightly differently then the human race would realise very different 
outputs and evolve differently.
	 One input from the field of A-life to other subject areas is to 
stimulate a simplistic view of what may at first appear to be 
complex behaviour. Whatever the field (e.g. biology, physics, 
chemistry), an approach to studying complex behaviour as 
observed in those fields can be to try to realise a similar behaviour 
in terms of simple (cell) interactive behaviours. If this is possible, 
approximately at least, then it may be possible to modify the 
complex behaviour more to what we want by changing the cell 
behaviour.

REAL-LIFE INSPIRATION

What we have considered thus far in terms of cellular automata has 
involved all cells having the same set of (relatively simple) rules and 
behaving in exactly the same way. If we study a group of ants, for 
example, it may be that we conclude that all ants (or groups of ants 
at least) behave in the same sort of way. We can therefore draw an 
analogy between the ants and our game of life in that just as we see 
complex societal effects resulting from our simple cellular auto
mata, so we see complex population output from a group of ants. 
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In both cases the population may appear to exhibit an overall goal or 
driving force as a result of the individual behaviour of its members.
	 But if we consider instead populations that we can perhaps under-
stand (at least we think we understand) a little more about, such as 
humans, then we can see immediately that we may well need to 
change our specific set of rules for each individual and even groups 
of individuals in one or a number of ways, some of which are:

1	 Different cells can operate on different sets of rules.
2	 Groups of cells can operate with similar/collective rules. Such 

cells can be positioned geographically adjacent or can be scat-
tered over the population in a structured or unstructured way.

3	 Rules for cells can change as time progresses. In this way learn-
ing can be incorporated.

4	 Rule sets can be goal directed, even on an individual basis. Dif-
ferent cells can have different goals.

5	 Not all cells need to be updated on every time step.
6	 Related to point 5, some cells can be updated every second or 

third time step, although this update frequency can change with 
respect to time.

7	 A cell’s update in terms of its neighbours’ status can be quite dif-
ferent, resulting in either a much simpler or more complex rule 
set. For example, a cell could be affected by its neighbours’ 
neighbours, or it could be affected by cells which are not geo-
graphically local, or it could be affected by only a select number 
of its neighbours – perhaps those at NW, NE, SW and SE only, 
not those at N, S, E, W.

Adding one or more of these features to the study of cellular automata 
immediately makes the overall population evolution more complex. 
However, as all cells are not then, strictly speaking, equal, it does mean 
that pockets of different behaviours can appear. This can easily mean 
that various different behaviours appear in one overall world, some-
times clashing and affecting each other both temporally and spatially.

TOTALISTIC CELLULAR AUTOMATA

As we have seen in the previous section, from the basic foundation 
of cellular automata, there are many variations possible. One special 
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case exists when, rather than being 1 or 0, the state of each cell can 
be represented by a number (usually an integer). In the same sort 
of way as we have witnessed thus far, the state of each cell at time 
t + 1 then depends on some relationship with the state of that cell 
at time t along with the state of its neighbours. For example, it may 
be that the new state of the cell at time t + 1 is simply a summation 
of the states of the cell and its neighbours at time t, divided by nine 
– the number of cells being employed.
	 It is apparent that very quickly totalistic cellular automata can 
become extremely complicated. Not only can the updating rule for 
a cell be much more complex – involving mathematical functions 
of considerable depth – but also some of the variations discussed in 
the previous section can be brought to bear. This is an area that 
has, perhaps surprisingly, to this time only been researched to a 
limited extent and we are yet to discover many patterns and 
numerical phenomena that could easily exist, some possibly by the 
use of very straightforward rule extensions.

REVERSIBLE CELLULAR AUTOMATA

A further special case of cellular automata worth looking at is 
when they are reversible. This is the situation if, for every 
possible configuration of a cellular automata world at a particular 
time (t + 1), there is one and only one immediately previous 
configuration (t). These reversible cellular automata are directly 
useful in studying physical phenomena such as fluid or gas 
dynamics, an important aspect being that they obey the laws of 
thermodynamics.
	 Cellular automata of this type have specific sets of rules which 
enable the reversibility to occur. The types of rules that achieve 
this are therefore also a feature of study. Even for very simple, 
1/0 types of cellular automata it is not an easy task to prove that 
only one previous state could have resulted in the present state. 
Some techniques, such as partitioning the entire world into spe-
cific groupings, can bring about such proofs more easily, although 
in doing so they can change the general definitions applied.
	 For non-reversible cellular automata, patterns can exist for 
which there are no previous states. Such patterns are referred to as 
Garden of Eden patterns, because they are patterns which no 
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previous pattern can lead to through the evolution of the world. 
Garden of Eden patterns can only be realised as start-up arrange-
ments input by the user.

EVOLVING SOFTWARE A-LIFE

As we have seen in the previous section, considerable complexity 
can arise even from simple beginnings by following simple rules. 
All that is needed is a world populated by entities of some kind, 
which are affected not only by themselves but also socially by those 
around them. With cellular automata the entities were merely 
squares on a board, which could be in a particular state at any time. 
It is quite possible, however, for the entities to be more complex 
and to have something of a biological or real-world link. This is 
much more difficult to do if we actually want to create the entities 
in real life; however, within a computer, as simulations, it is 
possible.
	 It is not only the case that entities can be simulated but also that 
they can exist within a virtual world. The world can have its own 
set of rules, some of which are to do with the state of each of the 
entities within the world, and hence their evolution, and some are 
to do with how the entities interact – not something that was 
apparent with cellular automata. The entities can be based on bio-
logical beings, living in a representation of the real world, or they 
can be purely imaginary, living in an imaginary world.
	 In particular, different techniques in AI, as discussed thus far, 
can be applied to the entities in a virtual world, so each entity 
can make its decisions using a neural network or through a fuzzy 
expert system. This decision making can itself evolve due to some 
of the GAs guiding the changes – as long as the decision making 
can be encoded for the algorithm to use. The added advantage 
here is that entities can be mixed together to (genetically) form 
the next generation of entities. For example, the virtual world 
could be populated by cyclops fish as shown in Figure 5.1. Here, 
a fish can move around by means of rocket thrusters on its right 
and left side. It has one eye which has a retina based on an ANN. 
To survive, the fish needs to learn to recognise food pellets and 
then to coordinate its thrusters in order to move towards a pellet 
and eat it.
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	 This learning can partly be carried out by means of straight-
forward AI, but partly it can also be carried out by genetic means – 
successful cyclops fish ‘mating’ with other successful cyclops fish in 
order to produce offspring which form the next generation. The 
big advantage of computer simulation here is that the time taken to 
calculate a new generation is very short – in fact, within a few 
seconds, for a small population, thousands of generations could be 
investigated. A small change to the initial population and a whole 
new evolutionary pathway can be investigated very quickly.
	 Simulated evolution has the big advantage of being extremely 
fast. As we will see shortly, this technique can also be used to play 
an important role in developing much-improved hardware, includ-
ing real-world entities such as robots.
	 In Figure 5.2 we can see an example of what can occur even 
with a relatively simple neural network. Here the cyclops fish 
ANN brain has evolved over 200 generations into quite a complex 
decision-making mechanism – linking sensory input from the 
retina to motor thrusters. Hence it has learnt what to do when it 
can ‘see’ food in order to move itself towards the food pellets and 
eventually to capture them.
	 Even though it only consists of ten neurons, the network is 
extremely complicated and attempting to figure out exactly how 
the fish will behave in certain circumstances is by no means a 
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Figure 5.1  Cyclops fish simulation.
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simple task. The network has evolved on a genetic basis, successful 
traits being strengthened, with failures tending to cause a weaken-
ing of connections that brought them about.
	 Although the sensory input and motor output of each of the fish 
are identical in software, due to different successes with different 
food pellets at different times, each fish developed in this way has a 
slightly different network set-up after 200 generations and there-
fore the fish behave differently – some perhaps better at their form 
of life than others. A change in the environment at any time – for 
example, different sized pellets – may well mean that some of the 
fish are not as well adapted as before and they may die off, whereas 
others may become better suited to the changed surroundings.

PREDATOR–PREY CO-EVOLUTION

Rather than evolving software A-life as merely one species, it is 
interesting to consider virtual worlds in which one species acts as 
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predator while another is its prey. For the predator to be successful, 
it must catch reasonable prey without expending too much energy. 
For the prey to be successful it must avoid the predator, again 
without expending too much energy. However, if the predator is 
too successful this also causes problems as there will soon be no 
prey left for it to feed on.
	 Typical first generations of both predators and prey can exhibit a 
relatively random behaviour. With the predators trying to get close 
to the prey and the prey trying to get a good distance from the 
predators, after just a few generations the predators effectively 
pursue the prey; however, the prey is also quite effective at evading 
the predators. So it goes on. If, over the course of several genera-
tions, the predators improve considerably, then the less effective 
prey strategies will quickly die out, leaving the more successful 
strategies to have more of an impact on future generations.
	 Essentially, a co-evolution occurs, the evolution of both the 
predator and prey being dependent on the external environment 
which, in this case, includes the other species. Any dramatic change 
in either species could completely destroy the happy balance of the 
system.
	 Although what has been described here has been merely two 
species, this is really just to serve as a simple example. Much 
more complex virtual worlds are easily constructed with both 
cooperating species and/or prey which is in turn predator of its 
own prey.

VIRTUAL WORLDS

A considerable volume of virtual world software is readily available 
online and it is well worth a search to view different alternatives. 
For example, you will find ‘Gene Pool’ in which the swimmers are 
evolved over generations in terms of colour, length, motion and so 
on. You will also discover virtual creatures in which software genes 
are employed to describe both the neural network of each creature 
as well as its body as a whole. Technological creatures have been 
evolved for various simple tasks, such as swimming, walking, 
jumping and following.
	 Another example is the Golem project in which both the body 
and brain of technological entities are evolved in terms of designs 
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which are physically accurate representations of real-world artefacts. 
Concluding designs have then actually been fabricated using a rapid 
prototype machine – only real motors need to be added. There-
fore, an artefact is evolved in a simulation to perform an act, such 
as moving across a table. The evolved solution in the simulation is 
then fabricated into a real item and it can perform the movement 
in the real world.
	 This feature indicates a distinct advantage of evolution through 
simulation. If hardware robots or machines were built and evolved 
through real-world interaction, it could take quite some time 
before improvement is witnessed. As long as the simulation is rea-
sonably representative of the real world and a robot can also be 
accurately represented in the simulation, then evolution can occur 
within the simulation over thousands of generations – possibly 
merely taking a few real-world seconds – with the final solution 
being realised by means of a real-world build.

HARDWARE ROBOTS AS A FORM OF A-LIFE

An A-life simulation can be, as we have seen, an extremely power-
ful tool, particularly due to its advantage of the speed of calculation 
of each new generation. However, even though it provides a won-
derfully flexible test bed for AI algorithms, it is merely a virtual 
world within the computer with no tangible output unless time is 
halted while a real-world analogy of an entity within the software 
is manufactured. In a simulation, entities are ‘alive’ (in some sense) 
within the computer, but it is difficult to argue that they are really 
alive! In the true sense of A-life, what we need are physical entities 
that exist in the real world.
	 AI and its relation with sensory input and motor output, particu-
larly in terms of providing the thinking power for a robot, will be 
investigated in the next chapter. Here, however, a brief look is 
taken at some of the main issues affecting the realisation of hard-
ware A-life entities by means of a robot base.

SEVEN DWARF ROBOTS

In order to consider some fundamental aspects of A-Life, some 
simple robots have been constructed, as shown in Figure 5.3, 
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called the seven dwarf robots (mainly because there were seven of 
them initially built). They have relatively few sensors and move 
around by means of two independent drive wheels at their rear 
with a small (non-drive) castor ball-wheel for stability, at their 
front.
	 The drive wheels can go forwards or backwards, so the robot 
can move around and turn quickly. Typically, the forward-only 
sensors are ultrasonic which means that the robot obtains an indi-
cation of objects to its front left, front centre and/or front right as 
appropriate, as can be seen in Figure 5.3. With a relatively simple 
mode of operation they provide an ideal platform on which to 
study some of the principles of A-life.
	 At any particular time the robot’s sensors will provide specific 
information on the robot’s position with regard to other objects. 
For example, the readings could be: object close front right; object 
medium distance front centre; no object front left. This is a state of 
the robot at a certain time. In this case it probably means there is 
something to the front right of the robot. If the robot continued to 
move forwards and turn right, then it would likely hit the object. 
The robot’s situation can therefore be categorised in terms of the 
state it is in – as just described in terms of the sensor readings at a 
particular time.
	 In each state the robot has a probability of performing a particu-
lar action with its wheels. For example, left wheel forwards fast, 
right wheel backwards slow, which would cause the robot to spin 
to the right. When first initialised, all possible such actions have a 
roughly equal probability of being performed.

WALL

State=OBJECT_AHEAD

POSSIBLE ACTIONS

Figure 5.3  Seven dwarf robot.
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REINFORCEMENT LEARNING

When any specific action is taken (the robot will of course be in 
some state) the resulting state situation is examined and categorised 
as being either ‘good’ or ‘bad’. For actions taken which result in a 
‘good’ state, a positive reinforcement takes place; i.e. the probabil-
ity of the same action being taken when the robot is in the same 
situation in the future is increased. For actions which result in a 
‘bad’ state, a negative reinforcement takes place; i.e. the probability 
of that action being taken when the robot is in the same situation 
in the future is decreased.
	 Over time, as the robot moves around and interacts with the 
environment, so different actions in different situations (different 
states) are evaluated. If (for example) the robot is given a target 
goal to move forwards but not to bump into anything, the robot 
will quickly learn by positive reinforcement that going forward in 
the open is ‘good’. Under repeated reinforcement, suitable wheel 
movements that achieve this action will develop a very high prob-
ability of being taken.
	 In terms of the state of the robot, this means that when all 
three of the robot’s sensors indicate that there is no object appar-
ent, both wheels will move forward fast as a learned action. 
Consequently, other possible actions will become very unlikely 
in this state. The robot will also learn that going forward near a 
wall is ‘bad’ due to negative reinforcement. Under repeated rein-
forcement this action will develop a low probability in this state, 
meaning other possible actions will be far more likely to be 
taken.
	 Each time the robot is switched off and switched back on again 
its memory is erased. As a result of this, depending on the environ-
ment, the robot can exhibit different behaviours at the end of each 
run. This often depends on what it tries, in a certain state, early on 
and whether this action results in a good or bad conclusion. As an 
example, if the first time the robot moved into a corner the 
attempted action was to spin to the right and this succeeded, then 
the robot would be more likely to attempt the same action next 
time – as a result, the action would become even more likely still. 
So the robot can pick up particular behaviours through a successful 
sequence of results.
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REINFORCEMENT LEARNING: PROBLEMS

Assessing when the robot is being successful and when not can be 
very difficult to achieve in practice. In the example described it is 
not particularly problematic – for example, when the robot’s 
sensors indicate the presence of an object, that is a direct measure. 
If, as a result of an action, an object gets closer (according to the 
sensor readings) then the action taken was a bad one. In a more 
complex environment, however, the evaluation of robot behaviour 
can need much ‘tweaking’ in order to get it to work correctly. 
This is especially true when the overall goal of the robot is not 
(apparently) directly connected to its immediate behavioural 
action.
	 In some situations it is not possible to know whether an action 
is good or bad until some time after a decision event; that is, the 
reward or punishment may be delayed. For example, consider a 
robot mouse finding its way through a maze, such as that depicted 
in Figure 5.4.
	 Such a robot is slightly more complicated than the seven dwarf 
robot we have just looked at in that it requires elements of memory 
and planning to find its way to the end goal. In this case the robot 
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Figure 5.4  Simple robot maze.
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mouse receives no reward until it has found its way to the ‘cheese’ 
at the end (goal) of the maze. In such cases it is not always possible 
to use simple reinforcement, as the rewards are delayed.
	 In our example, each square represents a position or state the 
robot mouse can be in at any time. The robot is free to move in 
any of the directions: north, south, east or west from each square. 
For any start point, the arrows in Figure 5.4 show the optimum/
fastest path to the end/goal state which is square 1. When the robot 
reaches the goal it obtains a reward.
	 Many intermediate steps are required to be taken by the robot 
in order for it to reach the goal, where it receives its reward. The 
question is: how should correct actions in previous states be 
rewarded? In this case, for example, if the robot starts from square 
8 it is best for it to move in sequence to squares 9, 7, 6, 3, 2 and 
finally to 1 in order to reach the goal.

TEMPORAL DIFFERENCE ALGORITHMS

In an example such as the maze of Figure 5.4, how best should an 
overall reward, which is goal driven, be divided amongst the many 
actions and states that ultimately lead the robot to the goal? A 
common solution to such problems is to use a temporal differ-
ence algorithm.
	 Let us assume that if the robot eventually gets to the end goal it 
will receive a reward of +100 for arriving at square 1. However, if 
square 1 is the perfect end point solution then perhaps being in 
state 2 isn’t that bad as it can readily lead to state 1, simply by the 
robot moving west. So we could assign a reward value for getting 
to state 2 based on its own reward (if there is one) AND some 
element of the reward that is expected when it reaches state 1.
	 In turn, as we now have an updated version of the reward for 
getting to state 2, we could reason that going west from state 3 
might not be so bad and so on. Temporal difference learning allows 
for such a reward to slowly filter down through a chain of states as 
exploration proceeds. In the case of the very simple maze con-
sidered, it is all relatively straightforward. However, in problems 
like this parallel or even multiple paths may exist, so one route may 
be much better/faster than another route. This can be reflected in 
the rewards assigned at different points throughout the maze.
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	 The overall key element is for the robot mouse to find its way 
to the goal, even if it takes a round-about route. Once it has found 
a solution then maybe it can improve on that solution by trying a 
different route next time it has a go. This can even be seen in 
Figure 5.4, where the robot could travel east when in state 9 to get 
to state 10, then travel west from state 10, back to state 9 and then 
north from state 9 to state 7.
	 While this is by no means a sequence of moves which fits into 
the best solution, nevertheless it can result in the robot subse-
quently arriving at the goal. Filtering down rewards, as in the case 
of the temporal difference algorithm, must therefore also take into 
account changing the value of a particular reward over time. Here, 
we would wish to deter the robot from going the route just 
described, in which it would unnecessarily take in state 10. We 
need it to be more attractive to move from state 9 directly to state 
7, rather than to 8 or 10.
	 However, if the robot did (by mistake!) move from state 9 to 
state 10, we would still wish to encourage it, through reward, to 
move back to state 9 as quickly as possible. This means punishing a 
robot for retracing its steps is probably not a good idea – if the 
robot felt it was not good to move back to 9 from 10 then it might 
just sit at 10 and never move, so it needs to be encouraged to shift 
in a good direction.
	 The complexity of such algorithms can include an overall energy 
value which depletes with respect to time – simply by moving the 
robot can pick up energy. This strategy ensures that the robot 
keeps going. The norm is then for the robot to take several 
attempts to find the goal – the route with the greatest reward will 
be the one it subsequently performs in later trials. It can in these 
cases be best for the robot to try different possibilities at different 
attempts, such that it might eventually ‘stumble’ across a better 
solution. The time taken in searching for a solution, the need for 
the optimal solution and actual energy expended by the robot are 
all factors in the practical realisation of this problem.

COLLECTIVE INTELLIGENCE

As we saw from our previous discussion of cellular automata, an 
overall complex behaviour can emerge from the interaction of 
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relatively simple cellular elements. It could be said that this is the 
sort of process that goes on in a neural network such as the human 
brain. It does, however, point to a more general type of intelli-
gence, namely collective intelligence. This is the type of group 
or shared intelligence that emerges from the collaboration and 
competition of many individuals which are not, in themselves, 
necessarily simple.
	 Such intelligence can be observed in animals, especially humans, 
even bacteria and, importantly, in computer networks. It stems 
from the concept that seemingly independent individuals can coop-
erate so closely as to become indistinguishable from a single organ-
ism, as is the case of an ant colony, with each ant acting as the cells 
of a single ‘superorganism’. H.G. Wells referred to this phenomena 
as a ‘World Brain’. It can be witnessed regularly in humans and 
other creatures as group behaviour – even explained by/as mass 
suggestion.
	 One everyday appearance of collective intelligence is in the area 
generally referred to now as new media. With this, the ability to 
store and retrieve information through databases and the internet 
allows for information to be shared without difficulty. Thus know-
ledge easily passes between cells (humans). It is a form of network-
ing and high-speed information passing enabled by the internet.
	 In a sense the collective merger of groups of humans and net-
worked computers allows both the manipulation and use of the 
knowledge therein for both individual and collective benefit. 
Overall, however, it is the ability of networked technology to 
enhance community knowledge and make it readily available that 
is a powerful tool. Indeed, because of its community basis, know-
ledge repositories linked into the network take on a group view-
point (as shown by Wikipedia), rather than the heavily biased 
perspectives previously exhibited by tools such as encyclopaedias 
and the like (biased towards the publishers, for example).
	 One excellent example of this form of AI is the use of collective 
intelligence to predict stock market prices and their movement. 
This has become more than just a viable option for human opera-
tives; it has completely taken over from them in many cases. In 
some cases aggregated current stock market information is pre-
sented along with views from both human stock analysts and AI 
predictions. Human investors can submit their financial opinions, 
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with the end result being that an amalgamated human–machine 
opinion is created. The opinion of humans and machines can be 
weighed to reflect a broad spectrum of stock market expertise, 
which can ultimately be utilised to more accurately predict the 
behaviour of financial markets.
	 On the basis of considerable evidence in terms of financial gain, 
funds of this type have become very popular investment options 
using the collective intelligence of the market, rather than simply the 
judgement of professional fund managers, as an investment strategy.

SWARM INTELLIGENCE

A different form of intelligence results from collective or collabora-
tive behaviour when each of the individuals connected into the 
network are no longer extremely simple elements but rather have 
at least some limited intellectual abilities. Indeed, it may be that 
each individual has its own goals and maintenance program that 
even involves self-organisation. A key point here is that they are a 
member of a collective and it is (as the name suggests) the opera-
tion of the collective that is the critical factor.
	 In AI systems swarm intelligence has, thus far, been mainly 
focused on in terms of either hardware, real-world cellular robotic 
systems or software agents performing a particular task within an 
overall program. In the case of robots, they are often relatively 
small in size and of the same type, but this is more for ease of 
implementation.
	 Swarm intelligence is typically made up of a population of rela-
tively simple robots or agents interacting locally with one another as 
well as with their environment. Indeed, depending on the nature of 
the network connection between them, the environment can be a 
different one for each of the agents. The agents tend to follow 
simple rules, and although there is no centralised control structure 
dictating how individual agents should behave, interactions between 
such agents lead to the emergence of apparently intelligent, global 
behaviour, which may well be unknown to the individual agents. A 
natural example of this phenomenon can be seen in bird flocking.
	 When employed with robots, such principles are generally 
referred to as ‘swarm robotics’, while the term ‘swarm intelligence’ 
usually refers to the more general set of procedures employed or 
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decisions taken. ‘Swarm prediction’, meanwhile, has been used in 
the specific context of forecasting problems. Biological inspiration 
is also behind several different optimisation techniques, where an 
attempt is made to find the best solution to a problem based on a 
method observed in the biological world. The most popular and 
successful of these will now be described in general terms.

ANT COLONY OPTIMISATION

By taking inspiration from the function of an ant colony, software 
methods can be obtained which are useful in problems that need to 
find paths to goals. Artificial ‘ants’, in the form of software agents, 
find optimal solutions to sub-problems by moving through a space 
which represents all possible solutions. In the real world, ants lay 
down pheromones, a chemical trail directing each other to 
resources while exploring their environment.
	 In a similar fashion the simulated ‘ants’ record their positions 
and the quality of their solutions and pass on this information to 
other ‘ants’. As a result, in later iterations more such ants can locate 
better solutions. A slight variation on this approach is the Bees 
algorithm, which is analogous to the foraging patterns of the honey 
bee – nevertheless, much of the same principles apply.

PARTICLE SWARM OPTIMISATION

Particle swarm optimisation (PSO) is a global search and optimisa-
tion method for dealing with problems in which the best solution 
can be represented as a point in multidimensional space. Different 
hypotheses are first plotted in the space and are seeded with what is 
referred to as an ‘initial velocity’, as well as a communication 
channel between the particles. Particles then move through the 
solution space and are evaluated according to a fitness criterion.
	 Over time, particles are accelerated towards those particles 
within their communication grouping which exhibit better fitness 
values. The main advantage of such an approach over other global 
optimisation strategies is that due to the large number of members 
that make up the particle swarm, the technique is extremely 
unlikely to be caught up in local minima – a global solution is by 
far most likely.
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STOCHASTIC DIFFUSION SEARCH

Stochastic diffusion search (SDS) is an agent-based global search 
and optimisation technique best suited to problems where the 
objective goal can be broken down into independent partial-goals. 
Each agent maintains its own hypothesis, which is iteratively tested 
by evaluating a randomly selected partial-goal parameterised by the 
agent’s current hypothesis. In the standard version of SDS such 
partial evaluations are binary, resulting in each agent becoming 
either active or inactive.
	 Information on hypotheses is diffused across the population of 
agents by means of a one-to-one inter-agent communication strat-
egy which is similar to the technique used by a tandem-running 
ant to lead another ant from nest to food. A positive feedback 
mechanism ensures that, over time, a population of agents stabilises 
as the agents flock around the globally best solution. SDS is both 
efficient and robust in relation to the problem to be solved.

INTELLIGENT WATER DROPS

This is a swarm-based, nature-inspired optimisation method, which 
is based on the observed changes in routing of natural rivers and 
how they find close-to-optimal paths between source and mouth. 
The end result is at least a reasonable one, even if not exactly 
optimal. The near-optimal path of a river, at a point in time, 
follows from actions and reactions which occur both between 
water droplets and between the water and the riverbed.
	 In the IWD software procedure, artificial water drops cooperate 
to change their environment in such a way that the optimal path 
for the drops, acting as a collective, is eventually revealed. Solu-
tions are incrementally constructed by the IWD algorithm based 
on a population of water drops.

HYBRID SYSTEMS

In many cases an artificially intelligent system is developed to tackle 
a specific task, which is a real-world problem. It may well be that 
the designer has their own particular type of AI that they are well 
versed in and that they like to use. However, one technique may 
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not provide a good solution to the problem. What is usually wished 
for is the best possible solution, regardless of the method employed. 
In many cases it is therefore typical that not just one AI method is 
employed, but rather an amalgam of several techniques, combined 
together in a hybrid solution to best tackle the problem in hand.

BIOLOGICAL AI BRAINS

Until recently it has been the case that the whole concept of AI has 
been associated with its employment on a silicon machine base – a 
computer system made up of technological elements. In fact, up to 
now this book has focused on this specific type of AI because his-
torically the philosophy and construct of AI systems has been tar-
geted on that basis.
	 In Chapter 3 it was seen that most philosophical ideas of 
consciousness have been rooted largely in the emergent nature of a 
collective of biological neurons, principally with the aim of distin-
guishing it from anything apparently emanating from a machine. 
Recently, however, this boundary has been blurred by the 
introduction of biological brains, a form of AI realised by growing 
biological neurons.
	 While it has for some time been quite possible to culture (grow) 
biological neurons in a dish, the critical developments of late have 
involved embodying the culture within a robot body. Essentially, 
the brain is grown and is given a robot body with which it can 
sense the world and move around in it. It must be acknowledged 
that such development is still in its infancy, but already it has a role 
to play in the field of AI and raises numerous questions with regard 
to its future development.
	 As this approach is distinctly different to that considered thus far 
in this book, here we will first take a look at the basic technique 
involved and then consider some of the implications as the techno-
logy is developed, particularly insofar as they affect the philosophy 
and deployment of AI systems in general.

CULTURING NEURONS

A cultured brain is created by collecting and separating the neurons 
found in cortical (biological) brain tissue using enzymes, and then 
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growing them in an incubator, providing suitable environmental con-
ditions and nutrients at a constant temperature (typically 37°C). In 
order to connect a culture with its robot body, the neurons are grown 
in a small dish, on the base of which is an array of flat micro elec-
trodes. This provides an electrical interface with the neuronal culture.
	 Once spread out on the array and fed, the neurons in such cul-
tures spontaneously begin to grow and shoot branches. They 
connect with nearby neurons and commence both chemical and 
electrical communication. This propensity to spontaneously 
connect and communicate demonstrates an innate tendency to 
network. The neuronal cultures themselves form a layer over the 
electrode array, effectively growing into a two-dimensional brain.
	 The electrode array enables output voltages from the brain to be 
monitored from each of the electrodes and for the brain to be stim-
ulated by the application of appropriate voltage signals. In this way 
both motor output and sensory input can be achieved. The moni-
tored signals can be employed to drive the motors of a robot body 
and move the robot around, while sensory signals from the robot 
body can be used to apply different stimulating, sensory pulses. A 
feedback loop is formed, incorporating the robot body with its 
new cultured brain.
	 Several different schemes have thus far been constructed in order 
to investigate the ability of such systems. These vary in terms of 
both the method of applying signals to stimulate the culture (how 
big, how frequent, etc.) and in terms of how the response of the 
brain is interpreted (how many electrodes are monitored, whether 
they are filtered, averaged, etc.). The input–output relationship 
between the culture and its robot body is a focus of ongoing 
research as better methods are realised.

PRESENT-DAY EMBODIMENT

Present-day ongoing research usually involves the removal of the 
neural cortex from the foetus of a rat in order to provide the initial 
neural culture. The culture must be fed with a drink of minerals 
and nutrients which are inserted into the culture’s dish, which acts 
as a bath. This bath must be refreshed every two days in order to 
both provide a food source for the culture and to flush away waste 
material.
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	 By the time the culture is only one week old, electrical activity 
can be witnessed to appear relatively structured and pattern forming 
in what is, by that time, a very densely connected matrix of 
neurons. Typically, the arrays presently employed consist of an 
8 × 8 or 10 × 10 array of electrodes measuring approximately 
50 mm × 50 mm. Each of the electrodes is approximately 30 
micrometres in diameter.
	 Thus far a modular closed-loop system between a (physical) 
mobile robotic platform and a cultured neuronal network has been 
successfully achieved using the electrode array method described, 
allowing for bidirectional communication between the culture and 
the robot. It is estimated that presently each culture typically 
consists of approximately 100,000 densely connected neurons. This 
can be compared with 100 billion neurons in a typical human brain 
or a few hundred, or less, in the brain of a slug or snail.

BIOLOGICAL AI BRAIN: CHALLENGES

Apart from generally improving the reliability of an overall robot 
with a biological brain, several challenges are presently being tar-
geted, not the least of which is getting the robot to learn.
	 Habitual learning has been recognised; this is the type of learn-
ing that occurs when something is done repetitively. A human 
often says that something becomes automatic or they are perform-
ing a task without even thinking about it. In fact, such learning is 
due to specific neural pathways in the brain being repetitively stim-
ulated, causing the pathways to strengthen until a particular set of 
sensory signals causes a particular response – effectively, the brain is 
sort of programmed. By requiring a robot with a biological brain 
to behave in a particular way – say, avoiding an object when it 
moves towards it – this type of habitual learning can be witnessed 
in the brain, the neural pathways physically strengthening.
	 It is also possible to apply different chemicals to parts of the brain 
of the robot to either enhance neural development or to restrict 
neural growth. In this way the robot can (chemically) be made to 
improve its performance – a different type of learning. Meanwhile, 
the more standard form of reinforcement learning – rewarding and 
punishing the robot to get it to improve its behaviour in some way – 
is presently problematic. Questions being faced are: how do you 
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reward such a robot with electrical or electro-chemical signals? How 
can such signals be made meaningful to the robot?
	 Another challenge is the use of human neurons, taken from 
human embryos, rather than rat neurons. This certainly throws up 
some technical issues, mainly in terms of development time – while 
rat neurons tend to develop over a 21–28-day period, human 
neurons take 18 years or so. While a one-month time span is very 
useful for laboratory purposes, carrying out an experiment over 18 
years can prove rather expensive! The point to be made here, 
though, is that human neurons can be employed to form a biologi-
cal brain within a robot body.
	 Some present research is aimed at providing a small encapsulated, 
pseudo-incubator that sits on top of a robot. The aim is for the 
culture to exist within this attempt at a robot head. So instead of 
growing in a remote incubator, linking up with its robot body 
through a wireless connection, it may well be possible for the brain to 
actually travel around on top of its body. At present, however, 
numerous practical problems exist with this, not the least of which is 
dealing with the vibrations that are caused when the robot moves 
around.
	 A more direct technical challenge is presently to increase the 
overall size of the culture in terms of the total number of neurons 
contained. A primary step in this move is a shift towards a three-
dimensional growth rather than the two-dimensional method 
described earlier. Lattice methods are now being researched for just 
this purpose. While this has the potential to increase the overall power 
of the brain, it does present a significant problem in understanding 
what exactly is going on in the central area of the volume.

ROBOT CONSCIOUSNESS

In Chapter 3 we looked at the question of consciousness in a 
human and the possibility of consciousness in an AI system. Some 
of the stronger defensive philosophical arguments (particularly 
those of Searle and Penrose) essentially place the emphasis on the 
need for the collective operation of human brain cells in order to 
realise consciousness.
	 Searle claimed that consciousness emerges from the collective 
operation of human neurons, while Penrose asserted that no matter 
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how closely we might be able to copy these brain cells with silicon 
technology, we will always miss out by a little bit, and that is the 
critically important bit for consciousness to occur in a robot. Essen-
tially, the argument is that because a robot silicon brain is not 
exactly the same as a human brain, we can conclude that it is not 
conscious.
	 In this chapter we have discussed the culture of a biological 
brain, possibly from human neurons, and its placement within a 
robot body. The lattice-culturing methods being investigated allow 
for a three-dimensional brain to be kept alive and embodied, which 
means we will, before long, have a robot brain with (typically) 30 
million neurons. In fact, looking ahead a little, it is not completely 
out of bounds to speculate on the realisation of a three-dimensional 
volume brain consisting of over 60 billion neurons – more than 
half the size of a typical human brain.
	 So how do we now consider the consciousness of our robot 
when it has a brain that consists of 60 billion densely packed, 
highly connected and developed human neurons? Can we endow 
it with genuine understanding and therefore genuine intelligence? 
If so, we will definitely have to think about giving the robot voting 
rights and allowing it to live its own life, whatever that means – 
possibly even putting it in prison if it does something it shouldn’t.
	 Indeed, it is difficult – based on the philosophical arguments 
employed thus far – to argue against such a biologically brained 
robot being conscious. It might be for some that 60 billion is still 
not 100 billion and that’s all there is to it. If so, then maybe we 
need to start counting the number of brain cells in each human’s 
head such that those whose total falls below a threshold (let’s say 80 
billion) will find themselves dropped from the human race on the 
grounds that they are no longer a conscious being!
	 The point here is that in placing a biological brain (particularly 
when made up of human neurons) within a robot body, it bridges 
the gap between the operation of a human brain and that of a com-
puter/machine brain. It also undermines many of the philosophical 
arguments (as we can see), which conclude some sort of superlative 
for the human brain. Perhaps it makes us think again, this time a 
little more deeply, about the differences between robots, AI and 
humans. Perhaps it also makes us ask more pertinent questions 
about what being a human actually means.
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CONCLUDING REMARKS

In this chapter we have taken a look at embodied AI in terms of 
robotics. In particular, by considering A-life, we took a look both 
at life within a computer simulation and actual physical life within 
a body, moving around in the real world.
	 As soon as A-life is considered in terms of the existence of an 
individual, whether that individual exists inside a computer or 
indeed if the computer exists as a brain inside the individual, then 
that individual’s role within a society becomes important. Funda-
mental studies on relationships can be carried out by looking at cel-
lular automata – relatively simple entities which interact with other 
nearby similar entities. It can be seen that even if the entities are 
basic and the relationships with other entities are relatively trivial, 
extremely complex social behaviours can apparently emerge. Such 
results make one reflect on the nature of human society, where the 
individuals and the relationships are far more complex and much 
less standardised. This is an area where much further study can be 
carried out.
	 The same complexity in interaction is true for other collective 
robot behaviours, and here we looked briefly at collective intelli-
gence, swarm intelligence and hybrid intelligence – all in terms 
chiefly of their practical realisation.
	 The latter part of this chapter is the most novel area of AI at this 
time – the concept of growing a biological form of AI. In this case, 
what is described here merely takes a glimpse at future possibilities. 
As the support technology is developed, so larger cultures will be 
grown with more sensory input and with more powerful motor 
outputs. Even in their present form it is impossible to claim that 
such robots are not alive – particularly in terms of brain life. It is 
expected that this area of AI will expand dramatically in the years 
ahead.

KEY TERMS

artificial life, cellular automata, collective intelligence, Garden of 
Eden patterns, new media, temporal difference algorithm
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SENSING THE WORLD

SYNOPSIS

When considering intelligence it is worth remembering that a large 
proportion of the human brain is devoted to sensory input. In 
insect brains the proportion is even greater – often exceeding 90% 
of the total operational cells. Sensing the world therefore has a 
huge impact on intelligence. Without input how can an entity per-
ceive the world, respond, learn or communicate? The nature of the 
sensory input dictates the nature of the entity. In this chapter we 
consider how sensory input is dealt with in machine systems. We 
look here at the processes involved in computer vision and other 
sensing systems such as audio, ultrasonics, infrared and radar.

VISION

As far as human brains are concerned, by far the overriding sensory 
input is that of vision. The nature of human visual input, by means 
of stereo (two eyes) sight near the top of our bodies, which can be 
rotated and scanned, is often regarded as the single most important 
aspect of the human success story on Earth. That, of course, and 
the associated brain development that has gone along with it. Some 
scientists even estimate that two-thirds of the neurons in the 
human brain are devoted entirely to dealing with visual input.
	 If machines are to operate in a world which has been con-
structed by human ingenuity, largely for human use, then it seems 
sensible that vision systems which form part of an AI system are 
capable of a similar performance when dealing with viewing the 
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world and understanding what is seen. It has to be said that 
although much research has gone into developing computer vision 
systems, by far the bulk of work in the design of AI has been 
focused on central problem solving, planning and decision-making 
aspects rather than sensory signal processing. Also, as we saw in 
Chapter 3 when looking at the philosophy of AI, this has concen-
trated more on abstract internal issues such as consciousness rather 
than arguably more important topics such as how AI comprehends 
what it is looking at.
	 Partly because of technological developments in terms of 
cameras (television and charge coupled devices – CCDs), AI vision 
is a relatively new field of study. In the early days of computing, it 
was difficult to process large sets of image data. However, as 
cameras became much smaller, cheaper and robust, and hardware 
memory became more powerful and cost-effective, in the 1970s 
and 1980s a stronger research effort was targeted in the field.
	 Interestingly, there is not a well-focused directive for the tech-
niques to apply; rather, there is an abundance of specialised methods 
for solving well-defined computer vision problems. Each method is 
often task-specific and can seldom be generalised over a wide body 
of applications. Many of the methods and applications are, at this 
time, still in the research arena. However, several methods have 
found their way into the commercial sector, either as one solution to 
a particular problem or as part of a library of techniques in a larger 
system aimed at solving complex tasks such as medical imaging or 
industrial processes. Usually, in practical computer vision applica-
tions, the computers are previously programmed to deal with a par-
ticular task, although methods that incorporate some aspects of 
learning are also becoming quite common.
	 In this chapter we will take a look at the different elements 
involved in a computer-based vision system. At this point the dis-
cussion will be focused on light acquisition techniques – machine-
based versions of the human eye. Other sensory signals which can 
aid visual understanding, such as radar and range sensors, are dealt 
with in their own right, separately, later in the chapter.
	 There are three main elements to dealing with a visual image: 
first, image acquisition and transformation; second, image analysis; 
and third, image understanding. Here we take a look at each of 
these in turn.
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IMAGE TRANSFORMATION

Image acquisition and transformation in AI involves converting light 
images into processed electrical signals that can be used by a com-
puter. This is generally performed by a camera of some type. In fact, 
the camera is merely replacing the human eye in carrying out the 
same sort of treatment towards photons of light, and so it is worth-
while briefly looking at how an eye works for comparative purposes.
	 Light energy enters the eye via the transparent cornea, where it is 
directed through the pupil. The iris controls the amount of light 
entering by increasing or decreasing the size of the pupil. The lens 
then focuses the energy onto the retina. The retina consists of cells 
called rods (which deal with brightness) and cones (which deal with 
colour). It is here that an external image, represented by photons of 
light, in terms of different energy levels, is converted into electro-
chemical signals which are transported to the brain along the optic 
nerve. The principle of operation of a camera is very similar to this.
	 The vast majority of cameras employed with robots nowadays are 
based on CCD arrays. The reasons for this are that they are small and 
lightweight, consume little power and are very sensitive. They are 
made up of an array of small transistors called MOSFETs (metal 
oxide semiconductor field effect transistors). In these arrays, cells 
operate rather like individual electric charge-storing capacitors. Light 
photons pass through a lens and then strike the array, resulting in dif-
ferent positive charges across the array, each charge being directly 
proportional to the light intensity at that point in the image.
	 The overall image is, in this way, recorded in the array at a spe-
cific time in terms of the different charges across the array. These 
charges are then transferred (coupled) from one cell to the next by 
switching the cells positively/negatively, such that the light image 
is ultimately transferred into an image (frame) buffer as an array of 
charges. The frame array stores the image temporarily until it is 
collected and stored by the computer. Typical common CCD 
arrays consist of 400 × 500 cells.

IMAGE PIXELS

At a specific time the frame array contains analogue signal elements 
which are proportional to the light energy across the image. In 
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order for the computer to deal with the image, each analogue 
element needs to be converted into a digital value. Once in digital 
form each of the values is referred to as a pixel. If we consider 
merely a black and white image in the first instance, then typically 
each pixel will be converted by either an 8-bit or 16-bit analogue-
to-digital converter.
	 Hence, for an 8-bit converter, a perfectly white pixel would 
become 0 (actually binary 00000000), whereas a perfectly black 
pixel would become 256 (actually binary 11111111). Different 
shades of grey are thus represented by all codes in between – 
converted values are therefore referred to as grey level values. A 
pixel of value 200 would be quite dark; one of 40 would be quite 
light.
	 For an image frame array at a particular time, the values stored 
are converted into a matrix referred to as a picture matrix, which 
is essentially a matrix of greyscale values representative of the image 
viewed at that instant. To give a typical idea of speed, it may well 
be that 50 complete frames in a camera are being converted every 
second, although this figure can be higher if required. However, in 
some applications – some video games, for example – frame rates 
of six per second have proven to be sufficiently fast.
	 Colour images are merely made up of three times what has been 
described. Effectively, using filters, separate red, green and blue 
image frames can be obtained and dealt with separately, being 
mixed together again as required. Many computer vision systems 
do not deal with colour (and some deal with it only trivially), and 
hence this facility is not always required. However, if understand-
ing of an image does depend on an analysis of colour values then 
this can be carried out in terms of the basic red, green and blue 
constituent components.

IMAGE ANALYSIS

Having obtained a picture matrix which is representative of the 
external scene being viewed by the camera, the next stage is a 
requirement to analyse the image. Here the aim is merely to give a 
basic idea of what is involved.
	 Image analysis is all about trying to extract meaningful informa-
tion from the image frames obtained thus far, remembering that 
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now we have digital/binary values that can be operated on by the 
computer. A task may be very simple, such as reading a barcode 
tag, or it could be as complex as identifying an individual from a 
picture of their face. Here we will look at a few fairly general tools 
that may (or may not) be applicable to a particular problem.
	 What we are trying to do at this stage of the process is to obtain 
characteristic information that can ultimately be recognised as being 
part of an image. Our start point is merely an array of numbers. It 
is worth remembering that we may be dealing with an array of 
400 × 500 numbers that are arriving (and need to be dealt with in 
their entirety) 50 times per second. So, in carrying out such an 
analysis one would tend to look for relatively simple rapid solu-
tions. If time is not a problem, in an offline situation, then clearly 
more sophisticated techniques may well be possible.
	 Because the human visual cortex is very good at dealing with 
vision, ideas about its operation have been taken on board for ana-
lysing images. As an example, we considered neural networks in 
Chapter 4. Different versions of these can be particularly useful in 
this respect – the N-tuple network being able to deal readily with 
the required 50 frames per second processing speed.
	 However, it may be that we consider building fundamental 
images from the digital greyscale numbers we have to start with, 
using a sort of line drawing caricature of the image content. In 
order to build such a picture we need to first extract information 
on where the lines and edges are in our picture matrix, which is to 
turn the numerical representation of the matrix into a more graphi-
cal, pictorial version.

PRE-PROCESSING

Noise can affect the image in a number of ways (noise being any 
unwanted signal), particularly because of changes in light intensity 
over time. What we don’t want is to waste time searching for lines 
and edges in an image only to find that they are not lines at all, but 
merely distortions due to changing light patterns – importantly, 
these will shift over time, so they can be filtered out by pre-
processing the matrix values before looking for edges.
	 The simplest form of filtering in one frame is local averaging, 
wherein the value of a pixel is replaced by the average value of that 
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pixel and its neighbours. This considerably reduces the effect of 
noise in a frame, although it does tend to blur what could other-
wise be crisp edges. Consider a section of the picture matrix con-
taining nine greyscale elements:

9  7  6
9  8  5
4  4  2

In this case the central pixel value 8 is replaced by the average of all 
the nine values shown – the value 6 in this case. Merely considering 
the central value, this section of the matrix would become:

9  7  6
9  6  5
4  4  2

	 However, apart from the edge values in the overall picture 
matrix, this procedure would need to be done across the whole 
image, working systematically. This can be extremely time consum-
ing and in time-critical situations it may well simply be out of the 
question.
	 Another form of pre-processing is an attempt to remove what is 
called salt-and-pepper noise, which amounts to odd changes in the 
picture matrix that only last for one or two frames and are then 
gone – maybe due to a conversion error or a brief glint of light. 
The technique used here is ensemble averaging.
	 In this case the same pixel is viewed over a window of several 
time steps, essentially four or five versions of the same pixel. An 
average value is taken over these different versions of the same 
pixel, so any pixel value changes merely due to salt-and-pepper 
noise are averaged out.
	 Once again, this can greatly increase the computational effort 
and hence the time taken to process an image, especially if many 
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pixels are filtered in this way over many time steps. For both local 
and ensemble averaging it is best therefore to consider employing 
such techniques only if they appear necessary given the problem 
domain.

IMAGE SPECTRUM

It really does depend very much on what the robot could possibly 
be looking for as to what happens next. Almost surely the robot 
must focus its attention on a particular spectrum of possible objects 
in the picture. For example, if the robot is looking for a ball then it 
is best to focus the image analysis on looking for round objects 
with a relatively uniform distribution in the shape of a circle.
	 But even if there are only a relatively small number of potential 
objects to encounter, their outlines may well be complex. For 
example, a robot vehicle may need to spot humans, other vehicles, 
trees, road signs and so on. Each of these shapes is fairly distinct 
but, depending on the robot’s distance from the object, the sizes 
could be quite different.

FINDING EDGES

As a general approach, unless only one specific object is being 
searched for, once any apparent noise has been filtered out the next 
step is to look for any edges or lines in the picture matrix. Ulti-
mately, any edges detected can then be joined together to form a 
rough outline (a sort of caricature) of an object, which can be com-
pared with a spectrum of shape and object possibilities such that a 
decision can be made as to what and where the object is. Obvi-
ously, other information – such as speed of movement or colour – 
can be employed to assist in narrowing down the search. Here we 
look briefly at how to find edges in an image, if these are required.
	 The characteristic of an ideal edge is a distinct change in pixel 
value over a very short distance. If the image is scanned, what we 
are looking for is a large step change in value from one pixel to the 
next – if this occurs then it is likely that that point is on a line 
which forms an edge. But for any given image, an edge could 
appear at any angle, dependent on the orientation of the object. So 
the step change needs to be checked in all directions.
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	 For this we can use pixel differentiation, which simply checks 
for large changes in pixel magnitude from one pixel to the next, in 
all directions. Several versions of pixel differentiation exist; a 
straightforward indicator is shown here for example purposes – 
called the Roberts Cross Operator. Alternatives can be far more 
complex. It is found as follows:

A  B
C  D

A, B, C and D are values of four pixels next to each other in the 
picture matrix. First, we calculate (A – D) and square the answer, 
then calculate (B – C) and square the answer. The two results are 
added together and the square root of the total is found. A large 
final answer indicates that that point is likely to be part of an 
edge; a small answer indicates that it is unlikely to be part of an 
edge.
	 In theory the whole image needs to be scanned at each time 
step such that all pixels are taken into account. In practice, once an 
object has first been identified it may only be pixels around where 
the object is expected to be that need to be used on each scan, 
although this does depend on how fast an object is likely to be 
moving, which direction it is moving in and whether the robot is 
likely itself to be moving to or from the object (hence whether the 
object is getting bigger or smaller).
	 At a particular instant in time, for a picture frame, we now have 
a set of differentiated values. Next, these values are thresholded to 
decide if they are an edge candidate or not. What this means is 
that each value from the differentiator is compared with a previ-
ously selected threshold value. If it is above the value then it is 
replaced by a 1, meaning it is an edge candidate, whereas if it is 
below the value it is replaced by a 0, meaning it is not an edge 
candidate.
	 The threshold value may well depend on ambient lighting and 
the clarity in definition of objects – square-type, sharp objects in 
strong light may well have crisp edges, whereas squidgy, soft 
objects in fuzzy light may well have indistinct edges. Nevertheless, 
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it is generally the case that the higher the threshold value is, the 
fewer edge candidate points there will be; a low threshold value 
will of course realise a lot of edge points.
	 Looking at the small example output from a pixel differentiator,

  3    41  126  18
  38  162    57  23
147    29    17    5
  31    10    6    2

we can see that a threshold value of 100 applied to this would 
produce a binary output image of:

0  0  1  0
0  1  0  0
1  0  0  0
0  0  0  0

which shows a crisp diagonal line of 1s, depicting the partial edge of 
an object, whereas threshold values of 9 or 200, respectively, would 
produce binary output images of:

0  1  1  1		  0  0  0  0
1  1  1  0	 and	 0  0  0  0
1  1  1  0		  0  0  0  0
1  1  0  0		  0  0  0  0

At best, you might say that the left-hand image (relating to a thresh-
old value of 9) depicts a very thick edge, whereas in the right-hand 
image (relating to a threshold value of 200) the edge has gone 
altogether.
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FINDING LINES

Once a collection of potential edge points have been obtained, 
these need to be joined together in some fashion in order to decide 
on what sort of objects are being looked at. To this point in the 
process the procedures for image capture and processing have been 
relatively straightforward. Once clear lines have been obtained it 
can again be a direct process to decide whether it is object A or B 
that is in front of the robot and where exactly the object is. So, in 
many ways, accurately finding lines is the most difficult yet import-
ant part of a robot’s visual portfolio.
	 What is expected to be in the robot’s view can be a main driver 
at this point in the analysis. The approaches discussed here are there-
fore merely aimed at presenting the general ideas behind finding 
lines; the actual approach taken will largely depend on the situation 
and the spectrum of objects expected. If an object comes into view 
in general, it will ultimately either be regarded as being like a type of 
object in memory (e.g. it is a human or tree or vehicle) or it will 
simply be ignored as being spurious. Learning to recognise com-
pletely new objects is an extremely interesting task, but one that is 
well beyond the scope of the simple tools we consider here.

TEMPLATE MATCHING

A bank of line and object shape templates (a mask) can be stored in 
memory (e.g. a circle of 1s to represent a ball). A template can then 
be passed across an image frame to see if it fits any shape of 1s that 
are apparent. A match is made when a number of 1s in the frame 
matches those in the template – the actual number chosen to be 
necessary for it to be considered a good fit depends on the size of 
the template and the total number of 1s it contains.
	 This approach can be extremely time-consuming, even to 
simply pass one template across one frame of the entire image, 
particularly if this needs to be done every time a new frame arrives, 
which may well be the case for a moving object. If several tem-
plates need to be separately trialled, the time taken can rocket and 
this can restrict its use if the robot needs to move around and make 
decisions in real time in the presence of many possible objects – 
unless large quantities of computing power can deal with it.
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	 It also presents a problem if the robot is moving in relation to 
the object in view, in that the apparent size and shape of the object 
may well vary over a relatively short time, requiring a versatile, 
adaptive template.
	 However, once an object has been initially spotted it is then 
possible, from frame to frame over time, to merely inspect the 
region in the image where the object is roughly expected to be – 
indeed, this can also take into account changes in size and shape to 
a large extent. In this way several objects in view can be tracked 
over time, so it really becomes a case of applying background 
prior knowledge to the task rather than simply inspecting each 
frame afresh. The technique can thus also allow for directional 
movement of the robot and likely directional movement of the 
object, based on knowledge about the object and its likely pattern 
of movement.
	 It may be that rather than an entire object shape being tem-
plated, simply a specific arc or region of the outline is considered. 
The process then is referred to as model matching or pattern 
matching. It works by fitting several edges to different models so 
the overall object picture can be built up. This procedure is useful 
when information about the size or alignment of the object within 
the image frame is lacking.

POINT TRACKING

As its name suggests, the method of point tracking is extremely 
basic; in essence, any prior knowledge about the object is largely 
ignored. Quite simply, the image frame is scanned in a disciplined 
manner and when a 1 is encountered all neighbouring (not previ-
ously scanned) pixels are inspected. If a further 1 or 1s are discov-
ered, these are joined together with the original and the local area 
around each of the new 1s is inspected. This process is repeated 
until no further 1s are found – the search then moves on to another 
region of the image.
	 This procedure does have a number of advantages. For example, 
lines do not have to be of a specific thickness which, due to light-
ing and shadows, is invariably the case in reality – one-pixel-wide 
perfectly straight lines of 1s in an image are indeed a rarity. Lines 
also do not have to be a specific shape – straight or circular – which 
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can be particularly useful if we are not sure what angle a robot may 
approach the viewed object from.
	 In a practical scanning situation, due to imperfect lines, there 
may be odd pixels missing. This may appear when two or three 
separate lines are initially discovered – these lines can be joined 
together by bridging the gaps. However, it may take further analy-
sis to decide if they are in fact lines belonging to outlines of differ-
ent objects. Hence different possible outcomes may need to be 
stored until further details materialise.
	 It can also be the case that as part of the procedure, when a 1 is 
encountered, rather than inspecting the immediately neighbouring 
pixels, a two- or even three-pixel-wide search can be carried out – 
although clearly there may be time constraints with this. The 
problem of bridging a gap as opposed to potential separate objects 
still needs to be resolved, however.
	 In scanning an image, odd 1s may be encountered that either do 
not link at all with any other 1s or only link up with a small number 
of local 1s in an unexpected way. The simplest way of dealing with 
such instances is to regard these as noise to be ignored.
	 It could be that a small group of 1s in fact indicates the presence 
of a tiny and/or distant object in the line of vision. It may well be 
best to ignore this, even though it is not, strictly speaking, noise – 
simply because either the object is not relevant to the robot’s task 
in hand or it does not need to be dealt with directly.
	 However, when a group of 1s is located near a previously 
detected line, it may be an indication that the line needs to be 
longer. Both heuristics and (in some form) statistics, particularly 
involving prediction and comparison with a knowledge base, need 
to be employed as part of a good vision system.

THRESHOLD VARIATION

One possibility when there are either missing 1s or there exists a 
small, unconnected group of 1s is to change the threshold value 
of the specific pixels concerned. For missing 1s, a slight lowering 
of the threshold may cause these 1s to appear, whereas for unex-
pected 1s, by slightly increasing the threshold value these 1s may 
well disappear – in either case this would give more information 
on the nature of the pixels at the points of interest.
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	 The same routine of threshold variation can also be attempted in 
the region directly around the pixels of attention. Such an analysis 
can either confirm that any 1s do potentially link to a previously 
discovered line or conversely that a line is perhaps not as long as 
was previously thought. It is worth remembering that the original 
selection of threshold value is a fairly ad hoc, yet extremely critical, 
choice and that small variations in the threshold value can severely 
alter the nature of the image revealed.

SEGMENT ANALYSIS

In many ways the approach to segment analysis is the opposite to that 
of edge detection in that rather than looking for differences between 
pixels, the aim is to look for similarities. A located segment or region 
of the image can then be bordered by an edge, which can be con-
firmed, if desired, by means of the techniques just discussed.
	 Although the greyscale value (probably not thresholded) of pixels 
is one of the factors in shaping out a segment, other aspects such as 
colour may well help to finalise the analysis. A segment can then 
signify a specific area of the image which relates directly to an object, 
such as a person, vehicle or building. The segment can have a well-
defined shape and size which is defined by the type and nature of the 
object in question.
	 Characteristics and likely performance of that segment can then be 
linked directly to those of the object. Hence, if it is a building it is not 
likely to move from one image frame to the next, whereas if it is a 
vehicle it is likely to move at a particular speed which can be associ-
ated with that vehicle under certain conditions.
	 The big advantage of region analysis is that once a particular region 
has been identified it is relatively straightforward (and therefore fast) 
to locate the same region in subsequent image frames. It is also pos-
sible to study its relationship with other regions and hence to predict 
future scenarios – follow on image frames can then be compared with 
their predicted, or rather expected, behaviour.

FORMING SEGMENTS

Segments can be formed in an image either by splitting or 
growing. In splitting, an image is first broken up into areas with 
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similar pixel values – this can be achieved by banding the greyscale 
values into ranges such as 0–50, 50–100 and so on, then investigating 
where there are regions of pixels within a certain band. Each region 
that is so formed can then itself be subdivided into smaller regions on 
the same basis following tighter bands, until segments are formed 
exhibiting little variation in greyscale value within them. It may well 
be that certain of these smaller segments are linked together again – 
rather like Lego bricks, in the analysis that follows.
	 In the method of segment growing, the opposite approach is 
taken in that tight pixel value bounds are started with and from 
these very small atomic segments are formed. These may well 
each consist of just a small handful of pixels. The process con-
tinues by selecting one atomic segment and investigating its 
neighbouring segments. Where the next segment is similar or is 
linked by means of prior information – possibly constituent seg-
ments of an overall object – these segments can be merged. The 
neighbouring segments to the merged area are then investigated 
and further merging may occur. This continues, building up into 
a final object.
	 In both segment splitting and segment growing, heuristics are 
employed extensively to dictate the size of the bands used, the 
minimum pixel groupings for atomic segments, the segments 
expected in forming an overall object (which itself can subse-
quently be a big segment) and so on.

COLOUR

Colour can be used to help detect edges and segments as well as 
providing an assist in the identification of objects. For AI it is rarely 
a main line of attack, however. Rather, it adds one more piece of 
information in helping to understand an image.
	 With the human eye, it appears that to interpret a colour the 
human brain integrates the three colour signals (red, blue and 
green) into a blended whole.
	 A colour camera indicates signals which relate to the amount of 
red, blue and green in an image – each pixel being depicted by 
three separate values. If it is required, an overall colour value for 
each pixel can be obtained by combining (adding together) the 
three terms by means of a simple colour equation.
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	 It follows, therefore, that all of the image analysis described thus 
far for black and white images can be carried out three-fold for the 
red, green and blue values and/or for overall colour values.
	 What is particularly useful is the use of colour to indicate 
uniform areas in terms of the segmentation which has just been 
described. Analysis of an image can then be further assisted by 
the use of colour to identify objects, although this has limited 
application in practice. If a tank is attacking you, deciding 
whether it is pink or apricot is not as important as deciding that 
it is a tank.

IMAGE UNDERSTANDING

Image understanding is perhaps the most complex aspect of visual 
sensory input. Indeed, it is usual for visual information to be com-
bined with other sensory input, which we will shortly look at, to 
get an overall understanding of what is being viewed. As was just 
pointed out, colour can sometimes assist in the overall process, as 
can heuristic knowledge (i.e. what we are expecting to see); the 
main problem is trying to make sense of the object outlined. A lot 
of computational effort can be employed on this task alone – 
indeed, such is the case with human intelligence.
	 It is worth stating here that many books have been written on 
this subject alone. The intention here is merely to take a very brief 
look at what is involved.
	 If the potential scenarios are fairly well known then it may 
simply be a case of deciding which one of a small number of 
potential objects is being viewed. The aim in this case is to 
compare the image as it stands with a small number of possibil-
ities and see which of these fits most closely. It may be that spe-
cific information about likely objects can be used for a simple 
comparison – a particular shape or size, for instance. However, if 
a more general understanding is necessary we need to look a little 
deeper.

BLOCKS WORLD

Up to now we have obtained an image in terms of lines – a sort of 
caricature. All sorts of shape profiles can then be constructed from 
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these lines, the actual features most likely being dependent on the 
potential scenario being viewed. One of the simplest approaches in 
general is to assume that all lines must be straight (no curves) and 
the world being viewed consists merely of block-shaped objects – a 
sort of Toytown view of the world.
	 If lines exist in the image, to be part of an object they must link 
up with other lines. The first task is therefore to put aside lines that 
do not link up and focus on lines that link together to form solid 
objects. The next decision is then about which lines are boundary 
lines – outlining an object – and which are internal lines depicting 
convex (sticking out) or concave (leaning in) object features. Such 
decisions can be taken for all the lines in view in turn, and a 
number of block-shaped objects will result.
	 Further decisions then need to be taken as to whether one 
object is resting on another object or if it casts a shadow over 
another object and so on, i.e. giving an idea of the relationship 
between one object and another.

MOVEMENT

It is often the case that either the AI/camera system is attached to a 
moving vehicle, possibly a robot, or that some of the objects in 
view will be travelling in a different direction and/or at a different 
speed. In most cases, therefore, an object in view will move in the 
image, relative to the AI system. Once an object has been selected 
it can be segmented in the subsequent images that appear later and 
tracked from image to image with regard to time.
	 In a way, this makes subsequent image analysis easier as the 
object can be looked for in the vicinity of where it appeared in 
the previous images, taking into account any direction or pattern 
of movement. This has the added advantage that even if a par-
ticular image is badly affected by light or the object is occluded/
hidden, the actual shape and identity of the object will already 
be known – it does not have to be regarded as an unknown 
object.
	 Detecting movement is not as easy as it may first appear. What 
it requires is to find corresponding points, regions and possibly 
even pixels from one image frame to another. Identifying and sub-
sequently segmenting an object makes this process a lot easier.
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TRIANGULATION

Cameras can also be employed to give a reasonably accurate idea of 
the distance to an object. This can be performed simply by means 
of stereo vision through the use of two adjacent cameras, as would 
be the case if they were positioned rather like eyes in a head. If 
both cameras are then looking at the same object and the angle 
between each camera and the object can be either measured or cal-
culated – which can be simply found from the position of the 
object in the two images – then the distance to the object can be 
calculated by the sine rule which applies to triangles. This is 
referred to as triangulation.
	 The only other piece of information necessary before an accur-
ate calculation of the distance to the object can be made is the dis-
tance between the cameras, which usually would be known 
precisely. Where two cameras are used, as described, this is referred 
to as passive triangulation. The main problem with this tech-
nique is in establishing the exact position of a specific point on the 
object as it appears separately in the two camera images, something 
which needs to be found accurately. This is referred to as the 
correspondence problem.
	 The correspondence problem exists because we need to match a 
specific point in the image of the object from one camera with the 
same point in the object’s image in the second camera. This is diffi-
cult as it cannot be guaranteed that pixels with a particular greyscale 
value in one image correspond to pixels with the same greyscale 
value in the second image. The problem is often worsened due to 
the difference in light intensity between the two cameras.

ACTIVE TRIANGULATION

One way around the correspondence problem is to replace one 
camera with an active source such as a laser projector. A laser spot 
is then projected onto the object and the remaining camera can be 
employed to clearly pick out this spot in the image. The triangula-
tion method can then be used in a similar way to calculate the dis-
tance to the object. The known distance between the laser and the 
camera is very small (a fraction of a foot) in relation to the distance 
to the object (many feet).



	 SENSING THE WORLD	 163

LASERS

Lasers can also be used on their own (without cameras) in order to 
accurately find the distance to an object. In this case the system 
emits a short burst of light and measures the time it takes for the 
light to be reflected off an object and return. As the speed of light 
is known, simply dividing the total out-and-back time in half indi-
cates the distance to the object. Other aspects of the returning 
waveform (such as the phase) can also be employed both to sim-
plify the measurement process and to indicate the amount of light 
absorbed by the object.
	 It is often the case that a laser can be used to rapidly scan the 
path ahead in order to get an indication of the distance to objects 
in the foreground – a sort of laser image. A laser has a very narrow 
beam width and hence quite an accurate indication of the distance 
to foreground objects can be obtained, even helping to identify 
what the objects are from their laser image. This type of system is 
particularly useful for larger mobile vehicles driving around 
externally.

SONAR

For closer indications of the distance to objects, especially within 
buildings, sonar (ultrasound) is often a better option. Indeed, this is 
the technique used by bats to obtain an accurate picture of dis-
tance. On top of this, sonar sensors are relatively cheap, robust and 
small, and so are ideal for laboratory-scale AI-based robots. Ultra-
sound also travels at a much lower velocity than light, which means 
that it is far easier to obtain an accurate measurement of distance. 
On the negative side, however, the beam width is quite broad. 
Sonar is therefore not so good at discerning what objects are, but is 
very good at indicating if there is an object there or not.
	 Ultrasonics can be used for objects up to 50 feet away, but it 
works better over just a few feet at most. The procedure requires 
several pulses of high-frequency sound to be transmitted (usually 
around twice the highest frequency that the human ear can discern, 
which is 20 kHz, so a value of 40 kHz can be used), and a calcula-
tion is made of the time taken for the signal to travel out and 
return. As the speed of sound is well known, the distance to an 
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object can be accurately found by dividing the total time in half. If 
the signal does not return, then there is deemed to be no object 
present – care does have to be taken in some instances, however, as 
the signal can sometimes bounce off an object at a strange angle or 
even be absorbed by an object to some degree.
	 On the negative side, the signal can be disrupted by other higher 
frequency sounds, such as jangling keys! Nevertheless, it is rela-
tively easy to operate such sensors and difficult to break them! 
Usually they are purchased in pairs (sometimes packaged together) 
with one element transmitting the signal and the second element 
receiving the reflected signal.

RADAR

Electro-magnetic measurement of distance employs radio signals. 
This is called radar. The basic principle is the same as that described 
for both laser and sonar – a radio signal is transmitted and if an 
object is present the signal is reflected back. The distance to the 
object can then be calculated by dividing the total out-and-back 
time in half.
	 Radar is particularly good at detecting the distance to highly 
reflective metallic objects and not so good (but by no means out of 
the question) for non-metallic objects over short distances. Unfor-
tunately, many objects are good at absorbing radio signals, which 
means that high power is required to increase the strength of the 
signal. On top of this, a fairly large antenna is usually needed to 
focus the signal into a narrow beam width. On the positive side, 
once operative the signal is not so easily disrupted.
	 Although radar has not been employed for AI-based robotic 
systems to any great extent in the past, some smaller, reliable units 
are now available at relatively low cost, making it a viable altern-
ative for some particular applications.

MAGNETIC SENSORS

Rather than giving an indication of the distance to an object, mag-
netic sensors such as reed switches can be used to detect objects 
that are in close proximity. The switch consists of two magnetic 
contacts in a small tube. When a magnetic field is nearby (possibly 
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due to the presence of a magnet) the contacts close together, 
thereby completing an electrical circuit.
	 Although single switches can be used quite simply to detect the 
presence or absence of an object, it is more usual for an object to 
have a magnet attached or to be part of it. As the object moves past 
several switches so the switches close and open in turn, giving an 
idea of the speed of the object as it passes by. This technique can 
be employed for a variety of purposes.

MICRO SWITCH

There are a number of tools a machine can use to detect that 
something else is nearby. Perhaps the simplest of these is a mechan-
ical switch that operates when it comes into contact with an object. 
Such switches are relatively cheap, generally robust, simple to 
arrange and passive, in that, unlike laser beams and even sonar, they 
do not give away the presence of the robot. This is a positive point 
for military systems in particular.
	 Such switches can be placed on various parts of a robot that are 
likely to come into contact with other objects. When the switch is 
pressed a simple decision can be taken. Such switches are very 
useful as a safety feature for factory robots. The switches are linked 
to the robot’s bumpers so that when the bumper comes into 
contact with an object, a human maybe, a decision such as ‘stop 
moving’ can be immediately made. For certain types of military 
machines, the decision may be to self-explode when the switch is 
operated – a mine for example.

PROXIMITY SENSORS

One problem with micro switches is that actual contact with an 
object must be made for the switch to operate and hence for a 
decision to be made. One advantage of this is that it works with 
any object – the object to be detected does not have to be modi-
fied in any way. Magnetic switches are one alternative for close 
measurement, but this technique does require magnets to be posi-
tioned in or on the objects to be detected.
	 The same problem is true for other methods that can be used for 
close proximity measurement, such as inductive or capacitive 
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approaches. For example, in the capacitive technique, one plate of 
the capacitor must be positioned on the robot and the other plate 
on a specific object – the electrical capacitance between the plates 
varies dependent on their distance apart. As an object comes close 
to the robot so the measured capacitance indicates this. Import-
antly, the robot and the object do not need to touch each other.

RADIO FREQUENCY IDENTIFICATION DEVICE

Perhaps one of the most widely used proximity sensing methods 
nowadays is the technique employing a radio frequency identi-
fication device, commonly referred to as an RFID. It is based on 
the mutual induction between two coils of wire – one in the RFID 
and one in a stimulating transmitter. The RFID itself can be in the 
form of a smart card or a small tube that can be implanted in an 
object – either biological or technological.
	 The stimulating transmitter has electrical power connected to it. 
When the RFID is in close proximity, electrical current is induced 
in the coil within the RFID by means of a radio frequency signal. 
This power is merely used to transmit a previously programmed 
identifying code back to the original stimulating transmitter, which 
can be connected to a computer. In this way the computer is aware 
when a specific object carrying a particular RFID is nearby.
	 This is the basis for identifying tags used in many pets (pet pass-
ports), for which the transmitter and RFID need to be within a 
few inches for sufficient power to be transmitted. The RFID can 
be the size of a grain of rice for this to work well. Transmitters can 
also be positioned throughout a building (e.g. in door frames) such 
that as RFID-carrying entities move around a (computer-
integrated) building, so the computer will receive information on 
where the entity is at any time and hence can respond appropri-
ately. This technique can be used for building security, doors being 
opened or closed depending on the clearance of an individual or 
object. In this case the RFID needs to be much larger, typically an 
inch long or in the form of a smart card. It may be that it is used to 
indicate objects passing a specific point – to sound an alarm if an 
item is being stolen from a shop. But the most exciting use is for 
‘intelligent’ buildings, where a computer operates a building’s 
infrastructure depending on RFID information – possibly opening 
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doors, switching on lights and even communicating with indi-
viduals, depending on where they are, which way they are heading 
and so on.

TOUCH

Technology is rapidly being developed either to create (human-
like) hands for robots or as replacement hands for human amputees. 
The mechanical design of such hands is obviously important, along 
with their gripping abilities, but so too is the sensory feedback that 
can be obtained. Micro switches in the fingers are perhaps the 
easiest method, simply detecting whether or not an object is being 
touched.
	 It is possible to arrange a small grid of micro switches in a pad to 
get an indication of the shape of the object being touched – or at 
least how a particular object is being touched – depending on 
which of the switches is operated. Conversely, rather than use a 
simple on/off switch it is quite possible, through a force sensor, to 
obtain an indication of how much force is being applied by a finger 
when it is touching an object. This can be very useful in indicating 
how much force is necessary if a robot hand needs to maintain a 
grip.
	 Other techniques can be used to indicate slippage, and hence 
that perhaps more force needs to be applied so an object is not 
dropped. One method involves a type of roller in the finger – as an 
object slips so the roller rotates. Another approach employs a small 
microphone – object slippage causes an audio signal to be fed back, 
with the degree of loudness indicating the amount of slip.

MATERIAL FOR TOUCH

For a particular application it may be that the material coming into 
contact with an object is not of immediate importance – possibly 
only a simple switch is involved. However, for general touch-
sensing the type of material employed is critical. For example, it 
usually needs to be very sensitive and respond quickly, yet needs to 
be robust and deal with different temperatures. Conductive rubber 
is one type of material that is fairly versatile, but this area is defi-
nitely one where ongoing research is critical.
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FORCE SENSING

It is also possible to obtain a concept of the force being applied to 
an object indirectly by measuring the effect of the force on an arm 
joint or wrist. The most common means of such a measurement is 
the use of a strain gauge. A strain gauge is an extremely reliable, 
robust and relatively low-cost device that is fairly easy to connect 
and operate. It gives information on the three rotational forces that 
can be applied – pitch, roll and yaw.
	 A strain gauge is essentially a wound length of resistance wire. 
As its length changes due to a force being applied, so the change in 
resistance, which is proportional to the length change, can be 
directly measured. Although the gauge is very sensitive, unfortu-
nately it is also affected by even slight changes in temperature.

OPTICAL SENSORS

Optical sensors tend to be employed for measuring the distance 
moved by such things as robot joints or wheels. The main principle 
is that an optical encoder – a set of alternative transparent and 
opaque stripes – makes use of light detected by a phototransistor. 
The system generates a series of pulses as the optical encoder, 
which is directly connected to a robot arm, moves between the 
light source and the phototransistor, thereby giving an indication 
of the robot’s movement.
	 The optical encoder can be linear (essentially a flat package) or 
angular (a disc). The same type of circuit can be used for proximity 
sensing, in which case it detects when an object enters or exits the 
beam of light. An infrared light source and phototransistor can be 
purchased in a single package, with the phototransistor on one side 
of a slot and the infrared light source on the other side. This is 
called an optical interrupter.

INFRARED DETECTORS

Infrared detectors are extremely powerful sensing devices in their 
own right; they detect infrared radiation. Infrared is basically an 
indication of the heat being transmitted by a body. An infrared 
detector typically consists of a phototransistor or photodiode, 
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whereby the electrical characteristics of the device are directly 
affected by the intensity of the infrared signal being measured. 
They are generally relatively low-cost and fairly robust.
	 Because the device is measuring infrared signals it is particularly 
useful at night, and hence has direct military applications. Indeed, 
in bright sunlight or under high internal lighting such sensors do 
not operate particularly well. For robot AI uses they are therefore 
very useful as an additional sensor to detect the heat of a body. 
They can also be used in a similar way to sonar sensors, by bounc-
ing an infrared signal off an object to detect the presence of (and 
distance to) the object. However, within a laboratory environment, 
light intensity can cause considerable problems, even to the extent 
of making the sensor almost useless.

AUDIO DETECTION

We have previously discussed the possibility of an AI system com-
municating with a human to the extent that the human cannot dis-
tinguish between the system and a human – this was the basis of the 
Turing Test discussion in Chapter 3. But that was based on the 
concept of keyboard entry and screen output. It is also quite possible 
for a computer system to detect and respond to different sounds.
	 The more pronounced the sound, the easier the problem 
becomes to resolve. To this extent, onset detection can be used 
merely when a signal rises sharply in amplitude to an initial peak. A 
hand clap or loud bang is a good example of a signal that can 
readily be detected. However, more of interest in terms of robot 
interaction is voice activity detection (VAD).
	 With VAD, specific values or features of the audio signal are 
used to cause a robot or computer system to operate in different 
ways. Once the audio features have been obtained, the result can 
be classified as to the nature of the signal that has been witnessed, 
particularly if it has overcome previously specified threshold levels 
which characterise the signal type.

VAD IN NOISE

Often with audio input, considerable noise is present (e.g. back-
ground noise). This means that a compromise needs to be drawn 



170 	 ARTIFICIAL INTELLIGENCE: THE BASICS	

between a human voice being detected as noise and/or noise being 
detected as a voice. In such circumstances it is often desirable that 
VAD should be fail-safe, indicating speech has been detected even 
when the decision is in doubt, thereby lowering the chances of 
losing speech segments.
	 One problem for VAD under heavy noise conditions is the per-
centage of pauses during speech and the reliability in the detection 
of these intervals and when speech starts up again. Although it can 
be useful to have a low percentage of speech activity, clipping, 
which is the loss of the start of active speech, should be minimised 
to preserve quality.

TELEMARKETING AI

One interesting application of VAD in AI systems is the employ-
ment of predictive diallers, used extensively by telemarketing firms. 
To maximise (human) agent productivity, such firms use predictive 
diallers to call more numbers than they have agents available, 
knowing most calls will end up in either ringing out with no 
answer or an answering machine will come on line.
	 When a person answers, they typically speak very briefly, 
merely saying ‘Hello’ perhaps, and then there is a short period of 
silence. Answering machine messages, on the other hand, usually 
contain 10–15 seconds of continuous speech. It is not difficult to 
set VAD parameters to determine whether a person or a machine 
answered the call, and if it is a person, transfer the call to an 
available agent. The important thing is for the system to operate 
‘correctly’ in the vast majority of cases – it doesn’t have to be 
perfect.
	 If the system detects what it believes to be an answering 
machine, the system hangs up. Sometimes the system correctly 
detects a person answering the call, but no agent is available, 
leaving the person shouting ‘Hello, Hello’ into the phone, 
wondering why no one is on the other end. Due to its cost-
effectiveness it is anticipated that AI will be used far more exten-
sively in this field in the years ahead – particularly in terms of 
detecting (potential purchasing) characteristics of the person 
answering the telephone based on the first words they utter.



	 SENSING THE WORLD	 171

SMELL

An automated sense of smell is referred to as machine olfaction. As 
with classical AI techniques, in practice it is based mainly on attempt-
ing to copy, in some way, the human sense of smell, even though 
this is a very individual, subjective entity. The underlying techno-
logy is still in the relatively early stages of development, but the wide 
range of potential application areas indicates that a commercial drive 
may not be far away. There are application opportunities with drug 
and explosives detection, for example, as well as uses in food process-
ing, perfumery and chemical compound monitoring.
	 The main implement is the electronic nose. This consists of an 
array of sensors with associated electronics to convert scents to 
digital signals and for data processing such as in a computer. The 
overall nose system is then expected to convert the sensor responses 
into an odour output. A nose is ‘trained’ by subjecting it to a target 
odour; it is then required to ‘recognise’ future smells as being either 
alike or not to the original.
	 Electronic noses are also useful for olfactive nuisance monitoring 
of the environment, particularly surveying notorious sewerage 
systems in an attempt to keep them in check. However, for the 
most part such sensor systems are rather large and in many cases not 
very readily portable. They are also rather slow in carrying out an 
analysis and may take some time before they are ready for a second 
or further analysis. As such, their role in AI systems is somewhat 
limited at present.

TASTE

Just as there are electronic noses for smell, so there are electronic 
tongues (e-tongues) for taste. Again, it is more a question of 
copying human taste. Sensors detect the same organic or inorganic 
compounds perceived by human taste receptors. For a particular 
taste, information from the separate sensors is fused together to fit a 
unique identifying pattern. In this case it is apparent that the detec-
tion abilities of an e-tongue are far more sensitive (i.e. much better) 
than those of its human counterpart.
	 The sensory results from an e-tongue are dealt with in a similar 
way to the human case. Electronic signals produced are perceived 
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in terms of pattern recognition – attempting to match a new set of 
sensor readings with a database of memorised taste spectra. Due to 
the nature of the sensors, liquid samples can usually be analysed 
directly, whereas solids require dissolving before they can be dealt 
with. The difference between each sensor’s actual reading and the 
value of a reference electrode is obtained and used for calculations.
	 E-tongues (which don’t tend to look anything like biological 
tongues!) have numerous application areas, particularly, as one 
might expect, in the food and drink industry. These include the 
assessment of flavourings, as well as analysing drinks of both the 
alcoholic and non-alcoholic variety for quality purposes. The range 
of uses also includes sweet syrups, various powders and dissolvable 
tablets. Salt and caffeine detectors are relatively easy and cheap to 
operate when required.
	 It is the case, however, that e-tongues are not normally designed 
to be carried around on a small mobile robot. The sense of taste is 
quite specific to human nutrition and hence it only has a limited 
role to play in AI systems – indeed, no real role at all in A-life! Its 
main function is as a technical assistance to human taste testing due 
to its standardising properties and reliability.

ULTRAVIOLET DETECTION

Ultraviolet light is a form of electro-magnetic radiation. It has a 
shorter wavelength than visible light but longer wavelength than 
X-rays. It is referred to as ultraviolet as it is made up of electro-
magnetic waves with frequencies higher than those identified with 
the colour violet. It is not something that is apparently directly 
sensed and acted upon by humans. It is found in abundance in sun-
light and appears in electric arcs and other phenomena.
	 Ultraviolet light can be detected by photodiodes relatively easily; 
indeed, a variety of relatively low-cost detection devices is 
available. For the most part they are fairly small and certainly port-
able. Often they are based on an extension of sensors used to detect 
visible light – as a result they can sometimes be troubled by an 
undesirable response to visible light and inherent instabilities.
	 Ultraviolet sensors can potentially be employed for AI systems. 
They are, in this case, particularly useful if a robot’s energy supply 
contains solar cells that need recharging from sunlight – hence 
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making them useful for real A-life robots, as the sensor can be used, 
for example, to indicate the direction the robot needs to face in 
order to charge its energy supplies.

X-RAY

X-rays have a shorter wavelength than ultraviolet rays, but a longer 
wavelength than gamma rays. They are generally regarded as invis-
ible to the human eye, although extreme experiments have indi-
cated that there may be some slight recognition in certain 
circumstances. In medical applications X-rays are produced by 
firing electrons at a metal target – the resultant X-rays are absorbed 
by human bones but not so much by tissue, so a sensitive photo-
graphic plate can be employed to obtain a two-dimensional visual 
image of the result from firing X-rays at parts of a human body.
	 There is a wide range of X-ray sensors available, such as semi-
conductor array detectors. These are mainly small, portable and 
generally accurate and reliable. They can therefore be employed for 
AI systems, should the application need arise!

CONCLUDING REMARKS

It is a big advantage of AI in comparison with human intelligence 
that the potential range of sensory input is extremely broad, 
whereas human senses are limited. On top of this limitation, the 
frequency range of signals sensed by humans is very small – the 
visible light spectrum (humans’ main sensory input) is nowhere 
near as broad as the infrared spectrum alone.
	 AI can potentially sense signals not directly available to humans 
(other than by means of a conversion to a human sense, such as 
X-ray converted to a two-dimensional visual image). As we have 
seen, X-rays and ultraviolet light can be used as sensory input by a 
machine, but so too can sensed gamma radiation, microwaves, 
water vapour detection and so on – all that was done in this chapter 
was to give a brief overview of some of the most obvious.
	 One issue, however, as we saw with classical AI, in terms of 
intelligence in general, is the limited capabilities of human 
thought in conceiving of non-human applications such as those 
that might be useful for a robot. Therefore, most present-day 
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applications of non-human sensors are to convert signals into 
energy that humans can sense, such as an X-ray visual image. The 
employment of the potential wide range of sensory input by AI 
systems in their own right will clearly increase their range of abil-
ities as time passes.

KEY TERMS

atomic segments, correspondence problem, ensemble averaging, 
grey level, growing (segments), local averaging, machine olfaction, 
model matching, passive triangulation, pattern matching, picture 
matrix, pixel differentiation, point tracking, radio frequency identi-
fication device, reed switches, splitting (segments), strain gauge, tri-
angulation, voice activity detection
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GLOSSARY

artificial life  the recreation of biological life by technological 
means.
artificial neural network  an interconnected group of artificial 
neurons (brain cells) using computational, mathematical or techno-
logical models.
atomic segments  used in image segment growing; initially small 
groups of pixels with very similar greyscale values are identified.
average interrogator  Alan Turing’s name for a typical indi-
vidual involved as a judge in his imitation game, trying to differen-
tiate a machine from a human.
best first search  exploring a problem by expanding the best 
(most promising) option in the next level.
brain-in-a-vat experiment  a philosophical argument involving 
a disembodied brain, kept alive, yet fully experiencing life.
bucket brigade  a system used to pass on rewards from one rule 
to another.
cellular automata  a regular grid of cells in which each one has 
finite states that can be affected by neighbouring cells.
collective intelligence  shared or group intelligence arising from 
cooperation between individuals.
common sense knowledge  the collection of facts and informa-
tion that an ordinary person would know.
consciousness  subjective experience, awareness and executive 
control of the mind.
embodiment  giving a brain (or artificial neural network) a body 
in order for it to interact with the real world.
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ensemble averaging  the average value of the same pixel taken 
over several time steps.
epiphenomenal  mental states can be caused by physical effects 
but cause no resultant physical output themselves.
fitness function  used to calculate the overall value of a member 
of the population in a genetic algorithm in terms of its different 
characteristics.
frames  an AI structure used to divide knowledge into sub-
structures.
free will  the ability to make choices, free from constraints.
fuzzy trees  method of splitting a database into different regions, 
where the same piece of information can appear (to some extent) 
in several branches.
Garden of Eden patterns  in cellular automata, particular pat-
terns which cannot be realised from any previous pattern.
goal-based agent  an autonomous entity which observes and 
acts upon an environment and directs its activity towards achieving 
goals.
greedy best first search  use of a heuristic to predict how close 
the end of a path is to a solution; paths which are closer to a solu-
tion are extended first.
grey level  representation of an image pixel between black and 
white.
growing (segments)  the method used to grow regions in an 
image from atomic segments by associating areas with similar pixel 
values.
hill climbing  an iterative procedure that attempts to find a 
better solution to a problem by making small changes. If a change 
produces a better solution, the new solution is retained, repeating 
until no further improvements can be found.
learning agent  an agent which can operate in unknown envi-
ronments and improve through learning, using feedback to deter-
mine how its performance should be modified.
linearly separable problem  when represented as a pattern 
space, it requires only one straight cut to separate all of the pat-
terns of one type in the space from all of the patterns of another 
type.
local averaging  the value of a pixel is replaced with the average 
value of local pixels.



	 GLOSSARY	 177

local search  moving from solution to solution amongst candi-
date problem solutions until an optimal solution is found.
machine olfaction  sense of smell in a machine.
model matching  matching edge candidates in an image with an 
edge model.
model-based agent  an agent which can handle a partially 
observable environment. Its current state is stored, describing the 
part of the world which cannot be seen. This knowledge is called a 
model of the world.
multiagents  use of several agents in a cooperative fashion, each 
providing a partial answer to a problem.
new media  media which emerged in the latter part of the twen-
tieth century. On-demand access to (digitised) content any time, 
any where, on any digital device, with user feedback and creative 
participation.
passive triangulation  distance measurement to an object using a 
two-camera system; it requires the position of a corresponding point 
in the two images to be known, along with the distance between 
the cameras. 
pattern matching  in image processing, comparing a number of 
edge candidates with a previously defined edge pattern.
perceptron  a binary classifier as the simplest form of neuron 
model.
picture matrix  an array of image pixel values representing the 
scene viewed.
pixel differentiation  the rate of change/difference of values 
between picture elements.
point tracking  tracing an image object outline by joining the 
points that have been selected as edge candidates.
radio frequency identification device  technology using radio 
communication to exchange data between a tag and a reader (com-
puter) for the purpose of identification.
reed switches  electrical switches operated by applying a magnetic 
field.
reflex agent  an agent in which historical data is ignored.
splitting (segments)  the method used to divide an image into 
regions by breaking up the image into areas with similar pixel 
values.
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steepest descent  to find a local minimum of a function using 
steepest (or gradient) descent, steps taken are proportional to the 
gradient of the function at a point.
strain gauge  a device used to measure the strain of an object, 
usually due to a change of electrical resistance as the material 
changes in length.
strong AI  machines can think in the same way as humans.
subsumption architecture  intelligent behaviour is decomposed 
into several simple behavioural layers; each layer has its own goal; 
higher layers are more abstract.
symbolic processing  creating AI using high-level symbols, as 
in conventional computer programming.
temporal difference algorithm  a method of learning in which 
the difference between the estimated reward and the actual reward 
received is paired with a stimulus that also reflects a future reward.
three laws of robotics  a set of three rules written by author 
Isaac Asimov by which robots are programmed to behave with 
regard to humans.
triangulation  determining the distance to a point by measuring 
angles to it from known points.
voice activity detection  technique in which the presence or 
absence of human speech can be detected.
weak AI  machines can demonstrate intelligence but are not 
necessarily conscious like a human mind.
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