| Group→1 | | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |-------------|----------|----------|------------------------------------|-----------|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | ↓Per | iod | | The Periodic Table of the Elements | | | | | | | | | | | | | | | | | 1 | 1
H | | ••• | 010 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 110 1 | abi | 6 01 | tile | Lici | | 13 | | | | | | 2
He | | 2 | 3
Li | 4
Be | | | | | | | | | | | 5
B | 6
C | 7
N | 8 | 9
F | 10
Ne | | 3 | 11
Na | 12
Mg | | | | | | | | | | | 13
Al | 14
Si | 15
P | 16
S | 17
Cl | 18
Ar | | 4 | 19
K | 20
Ca | 21
Sc | 22
Ti | 23
V | 24
Cr | 25
Mn | 26
Fe | 27
Co | 28
Ni | 29
Cu | 30
Zn | 31
Ga | 32
Ge | 33
As | 34
Se | 35
Br | 36
Kr | | 5 | 37
Rb | 38
Sr | 39
Y | 40
Zr | 41
Nb | 42
Mo | 43
Tc | 44
Ru | 45
Rh | 46
Pd | 47
Ag | 48
Cd | 49
In | 50
Sn | 51
Sb | 52
Te | 53
I | 54
Xe | | 6 | 55
Cs | 56
Ba | | 72
Hf | 73
Ta | 74
W | 75
Re | 76
Os | 77
Ir | 78
Pt | 79
Au | 80
Hg | 81
TI | 82
Pb | 83
Bi | 84
Po | 85
At | 86
Rn | | 7 | 87
Fr | 88
Ra | | 104
Rf | 105
Db | 106
Sg | 107
Bh | 108
Hs | 109
Mt | 110
Ds | 111
Rg | 112
Cn | 113
Nh | 114
FI | 115
Mc | 116
Lv | 117
Ts | 118
Og | Lanthanides | | | 57
La | 58
Ce | 59
Pr | 60
Nd | 61
Pm | 62
Sm | 63
Eu | 64
Gd | 65
Tb | 66
Dy | 67
Ho | 68
Er | 69
Tm | 70
Yb | 71
Lu | | | Actinides | | 89
Ac | 90
Th | 91
Pa | 92
U | 93
Np | 94
Pu | 95
Am | 96
Cm | 97
Bk | 98
Cf | 99
Es | 100
Fm | 101
Md | 102
No | 103
Lr | | | The periodic table of elements, simply known as the periodic table, is a two-dimensional chart of the chemical elements. The elements are organized by atomic number, electron configuration, and other periodic patterns based on the elements' chemical properties. #### **General Information** - The periodic table is a display of the chemical elements. - Chemical elements are materials that cannot be broken down through chemical methods. - As of 2019, there are 118 identified chemical elements. - 94 of these elements occur naturally. The other 24 were synthesized in laboratories. - The elements are arranged in columns (called groups), rows (called periods), and specific rectangular areas (called blocks). - The elements are also arranged according to atomic number, electron configuration, ionization energy, electronegativity, electron affinity, and metallic character. #### **Brief History of the Periodic Table** - French chemist Antoine-Laurent de Lavoisier came up with the first list of chemical elements in 1789. It had 33 elements in total. - In the following century, chemists continued to research and observe relationships of the elements and develop one scheme that unites these relationships. - In 1829, German chemist Johann Wolfgang Döbereiner discovered that the elements can be grouped into triads based on their chemical properties, which became known as the Law of Triads. Antoine-Laurent de Lavoisier - In 1843, German chemist Leopold Gmelin produced a table of 55 elements which is one of the foundations of our modern periodic table. - In 1857, French chemist Jean-Baptiste Dumas described relationships between groups of metals in his published work. - In 1862, French geologist Alexandre-Emile Beguyer de Chancourtois published the "telluric screw" which is a three-dimensional arrangement of the elements. - In 1864, German chemist Julius Lothar Meyer published a table with 28 elements while English chemist William Odling published a table of 57 elements. - From 1863 to 1866, English chemist John Newlands wrote a series of papers explaining similar properties of elements recurring at intervals of eight, which became known as the Law of Octaves. - In 1871, Russian Chemist Dmitri Mendeleev published a new edition of his periodic table with similar elements grouped in columns rather than in rows. - By the 1930s, the popular version of the periodic table attributed to Horace G. Deming was being circulated in American schools. - The periodic table we use now is based on Mendeleev's structure. ### **Reading An Element** - The parts included in the element's label depends on the version of the periodic table, but these are the basics: - Symbol an abbreviation of the chemical element's name. It is usually one or two letters. - Name the common name of the element. It is found below the symbol. - Atomic number the number of protons in the atom's nucleus. It is found above the symbol. - Atomic mass the mass of an atom. It is expressed in atomic mass units. It is found below the name. #### **Arrangement** - The arrangement of chemical elements can provide insight about the relationships of the elements with each other. - The organization of elements can also predict properties of unknown or newly discovered elements. - There are seven rows (periods), 18 columns (groups), and four blocks in the periodic table. - Groups are numbered from 1 (leftmost column) to 18 (rightmost column). - The blocks are labelled the s-block, f-block, d-block, and p-block. - The elements are also grouped into metals, metalloids, and nonmetals. ### **Chemical Properties** - Electron configuration is the distribution of electrons in atomic or molecular orbitals. - Ionization energy is the energy needed to remove electrons from a neutral atom resulting in a positively charged ion. - Electronegativity is a measure of the strength of atoms in attracting shared pair of electrons to themselves. - Electron affinity is a measure of a neutral atom's strength of gaining an electron. #### **Metallic Character** - Metallic character is defined by the degree of reactivity of a metal. - Metals are elements that effectively conduct heat and electricity. Metals easily lose electrons and form positive ions (cations). - Nonmetals are elements that cannot conduct heat or electricity. Nonmetals are not flexible and lustrous. - Metalloids are elements that show mixed properties of metals and nonmetals. - Metalloids are boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te), polonium (Po), and astatine (At). #### Periodic Trends - Elements in the same period exhibit trends in atomic radius, ionization energy, electronegativity, and electron affinity. - Atomic radius increases from right to left. - lonization energy increases from left to right. - Electronegativity increases left to right. - Electron affinity increases from left to right. - Elements in the same group show a trend in properties, such as electronegativity and ionization energy, with increasing atomic number: - Atomic radius decreases from top to bottom. - Ionization energy increases from bottom to top. - □ Electronegativity increases from bottom to top. - Blocks are grouped according to the sequence in which the electron shells of the elements are filled. - Generally, metals are on the left and nonmetals on the right.