IMU & AHRS algorithms

Francois

IMU & AHRS algorithms

The objective of this document is to provide a quick start to anyone interested in using IMUs.

Even though the code is simple and short, it is not a *plug and play* library. This document was created so you can understand what your code.

Hardware

You will need:

- Computer
- Arduino Uno R3
- IMU

I used IMU MinIMU-9 v3 from Polulu found here: https://www.pololu.com/product/2468

Follow tutorials and connect computer, Arduino and IMU

Software

You will need:

- Arduino IDE
- Arduino libraries for IMU sensors

https://www.pololu.com/product/2468/resources

- Excel
- PLX-DAQ add-in for Excel

http://www.parallax.com/downloads/plx-daq

IMU

Lets start with a reference

This is the most important step

Make sure your reference is clear

Now, lets get some data

💿 sketch_feb18b Arduino 1.6.0	
File Edit Sketch Tools Help	
	اه
sketch_feb18b	
<pre>#include <wire.h> #include <l3g.h> #include <lsm303.h></lsm303.h></l3g.h></wire.h></pre>	// load libraries
L3G gyro; LSM303 compass;	
<pre>float A[4]; float G[4]; float M[4];</pre>	// declare variables A for accelerometer, G for gyro and M for magnetometer
void setup()	
<pre>Serial.begin(9600); Wire begin();</pre>	// start talking
<pre>gyro.init(); gyro.enableDefault();</pre>	// start gyro
<pre>compass.init(); compass.enableDefault(}</pre>	// start accelerometer and magnetometer);
woid loop()	
{	
<pre>gyro.read(); compass.read();</pre>	// get data from sensors
<pre>A[1] = compass.a.x; A[2] = compass.a.y; A[3] = compass.a.z; G[1] = gyro.g.x; G[2] = gyro.g.y; G[3] = gyro.g.z; G[1] = gyro.g.x; G[2] = gyro.g.y; G[3] = gyro.g.z;</pre>	// record data
<pre>Serial.print(A[1]); Se Serial.print(G[1]); Se Serial.print(M[1]); Se Serial.println(); delay(20);</pre>	rial.print(","); Serial.print(A[2]); Serial.print(","); Serial.print (A[3]); Serial.print(","); // print all data rial.print(","); Serial.print(G[2]); Serial.print(","); Serial.print (G[3]); Serial.print(","); rial.print(","); Serial.print(M[2]); Serial.print(","); Serial.print (M[3]); Serial.print(",");
}	
Done uploading	
bone upladuing.	
Global variables use 526 bytes (25%)	of dynamic memory, leaving 1,522 bytes for local variables. Maximum is 2,048 bytes.
28	Arduino Unio en COM6

Click upload and here it is: raw data streaming to the serial port.

ch_feb18b Arduino 1.6.0			l l
it Sketch Tools Help			
1_feb18b			
olude ≼Wire h>	// load libraries		
clude <l3g.h></l3g.h>	// IOGG INFGITCD		
clude <lsm303.h></lsm303.h>			
gyro;			
03 compass;			
+ \[].	// deglare wariables & for aggelerometer (for gure and M for magnetomete	COMb (Arduino Uno)	
t G[4];	// declare variables A for accelerometer, G for gyro and M for magnetomete		Send
t M[4];			
		581.00,258.00,16804.00,91.00,-464.00,40.00,-32.00,146.00,-1544.00,	^
setup()		550.00,285.00,16823.00,81.00,-450.00,50.00,-33.00,148.00,-1542.00,	
mial bogin(0600):	(/ start talking	562.00,273.00,16805.00,83.00,-464.00,37.00,-33.00,148.00,-1542.00,	
re.begin();	// Start taiking	604.00,243.00,16826.00,88.00,-462.00,36.00,-33.00,148.00,-1542.00,	
ro.init();	// start gyro	591.00,247.00,16791.00,81.00,-469.00,43.00,-30.00,142.00,-1537.00,	
ro.enableDefault();		592.00,274.00,16795.00,75.00,-475.00,36.00,-30.00,142.00,-1537.00,	
<pre>apass.init();</pre>	// start accelerometer and magnetometer	566.00,262.00,16775.00,84.00,-467.00,43.00,-29.00,150.00,-1552.00,	
pass.enableDefault	();	568.00,284.00,16824.00,73.00,-461.00,48.00,-29.00,150.00,-1552.00,	
		583.00,294.00,16816.00,75.00,-450.00,65.00,-35.00,143.00,-1533.00,	
() gool		576.00,238.00,16787.00,77.00,-472.00,45.00,-35.00,143.00,-1533.00,	
		569.00,233.00,16828.00,79.00,-463.00,46.00,-26.00,146.00,-1544.00,	
ro. <mark>read</mark> ();	// get data from sensors	577.00,275.00,16808.00,94.00,-476.00,47.00,-26.00,146.00,-1544.00,	2
mpass.read();			ŧ
11 = compage a v:	// place holder for data conversion	581 00 249 00 16771 00 88 00 -472 00 43 00 -34 00 147	
2] = compass.a.y;	// prace notaer for data conversion	4 m	
3] = compass.a.z;			10
] = gyro.g.x;		V Autoscroll	
2] = gyro.g.y;			
3] = gyro.g.z; 1] = gyro.g.x;			
2] = gyro.g.y;			
3] = gyro.g.z;			
<pre>cial.print(A[1]); Section (G[1]); Section</pre>	erial.print(","); Serial.print(A[2]); Serial.print(","); Serial.print (A[3])); Serial.print(","); // print all data	
rial print(M[1]); S	erial.print(","); Serial.print(G[2]); Serial.print(","); Serial.print(G[3])); Serial print(",");	
cial.println();		, berrar prince () ,	
ay(20);			
ading			
ariabies use 526 bytes (25	s) of dynamic memory, leaving 1,522 bytes for local variables. Maximum is 2,048 bytes.		

Lets upload the raw data to Excel. It is not necessary but so useful

First install PLX-DAQ add-in for Excel

Add a row variable

int row = 0;

Add these commands to setup() function

Serial.println("CLEARDATA"); Serial.println("LABEL,time,dt in ms,acce x,acce y,acce z,gyro x,gyro y,gyro z,mag x,mag y,mag z,roll,pitch,yaw");

Replace print block in loop() function, by this one

```
Serial.print("DATA,TIME,");
Serial.print(","); Serial.print(",");
Serial.print(A[1]); Serial.print(","); Serial.print(A[2]); Serial.print(","); Serial.print (A[3]); Serial.print(","); // print all data
Serial.print(G[1]); Serial.print(","); Serial.print(G[2]); Serial.print(","); Serial.print (G[3]); Serial.print(",");
Serial.print(M[1]); Serial.print(","); Serial.print(M[2]); Serial.print(","); Serial.print (M[3]); Serial.print(",");
Serial.println();
row++;
if (row > 500) {row=0; Serial.println("ROW,SET,2"); }
```

For a complete explanation, see: http://robottini.altervista.org/arduino-and-real-time-charts-in-excel

Open PLX add-in for Excel, choose the right serial port and click connect

File Home Insert Page Layout Formulas Data Review View Developer Add-Ins Image: Solution of the page Layout Calibri * 11 A A Image: Solution of the page Layout Calibri * 11 A A Image: Solution of the page Layout Normal Bad Good Neutral Caluation Image: Solution of the page Layout Solution of the page
X Cut Calibri * 11 A * A* Parte Prime Painter Format Paint
Copy * Calibrit Calibri
Paste Image: Transmit Painter B Image: Transmit Painter Image: TransmitPainter Image: Transmit Painter <t< td=""></t<>
Clipboard is Font is Alignment is Number Styles Cells Editing W6
W6 • (<i>f</i>
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z AA AB Af
1 time dt in s acce x acce y acce z gyro x gyro y gyro z mag x mag y mag z roll pitch yaw
2 0.59106481 5.03 -4.61 -97.23 0 0 0 34.04 2.96 99.79
3 0.59106481 5.12 -4.55 -98.84 0 0 0 34.37 3.33 99.92
4 0.59107639 3.78 -4.28 -99.22 0 -0.01 0 34.37 3.33 99.92
5 0.5910/639 4.9 4-4.4 -99.5 0 0 0 35.15 2.75 99.62
11 0.59107639 2.22 5.51 09.77 0 0 0.09 25.76 2.20 09.96
12 0.59107639
13 0.59107639
15 0.59108796
18 0.59108/96 0 gyro y
1 0.510/07976
24 0.59108796
25 0.59108796 -150
26 0.59109954 3.74 -0.22 -99.43 0.04 0.02 0.07 16.8 -28.37 100.84
27 0.59109954 4.23 -9.12 -95.33 0.02 0.01 0.09 16.8 -28.37 100.84
28 0.59109954 8.09 -8.55 -102.06 -0.03 0.14 6.42 -24.5 103.37
29 0.59109954 4.15 -4.74 -106.95 -0.01 0 0.03 6.42 -24.5 103.37
30 0.59109954 -4.41 -3.05 -93 0.02 0 0.6 2.86 -30.08 120 11
31 0.59109954 0.2 -10.25 -99.33 0 0.02 26.54 1
02 (0.521075734) 1.50 -10.37 -100.20 -0.01 0.01 0.01 0.01 13.77 Create a granh Port 6 ▼ User2
23 0.521075757 2.00 -7/100 -002 0.01 0.01 -15/7 -760 Data approar Cicaica giapii
Connect Clear Columns
7 0.59111111 11.82 0.45 -99.58 0 0.06 -31.96 -25.08 in real time
38 0.59111111 19.47 -4.99 -97.22 0 -0.02 0.06 -40.7 -17.96
39 0.59111111 8.96 -3.87 -99.72 -0.02 0 0.04 -40.7 -17.96
40 0.5911111 8.99 -2.38 -98.37 -0.01 -0.02 0.06 -39.89 -14.92
41 0.5911111 0.95 -3.17 -100.13 0.01 -0.05 0.05 -39.89 -14.92 96.29
42 0.59111111 0.68 -3.15 -98.97 0 0.01 0.02 -33.39 -10.67 100.08

Note: I had troubles with PLX add-in.

So if PLX add-in works you are lucky, if it does not work, do not panic: click *debug* or press *Alt+F11* to open VBA

Then find the line that bugs (it will be shown in yellow) and comment this line.

Now that you can plot the data in real time in Excel, we can start calibrating the accelerometer

The accelerometer measure the acceleration, however like any sensor it is not perfect and the accelerometer has an offset.

The best way to calibrate the offset of the accelerometer would be to go in space and measure the output of the sensor under no acceleration and no gravity, but this is not going to happen. So lets point the accelerometer down to measure gravity then point the sensor up to measure gravity again. The mean between the 2 values is the sensor's offset.

Then repeat the experiment for all three axis.

Now that you can plot the data in real time in Excel, we can start calibrating the accelerometer

X 🖌 🤊 -	≷			100		1		-	-	-			Boo	ok4 - Microso	oft Excel							_					-	- 0 ->	×
File	ome Inse	rt Page	Layout	Formulas	Data Re	view V	iew De	veloper .	Add-Ins																			∧ (3) — ₫	j X
🦰 🔏 Cu		Calibri	*	11 - A /	č = = [- **	M - 6	Wrap Text	G	eneral		<	1	Normal	В	ad	Good		Neutral	Ca	alculation		-		Σ AutoSum	* 🎢	A		
Paste Co	oy *	BIU	.	- & - A			E 6	Merge & C	enter - S	%, ,	€.0 .00 0.€ 00.	Condition	nal Format	Check Ce	410 E	xplanatory .	Input	_	Linked Co	ell N	ote	_ Ir	isert Del	ete Format	Fill *	Sort & F	Find &		
✓ ✓ F0 Clinhoai	d rainter		Font		15	Δ	lionment	_	-	Numbe		Formattin	g * as Table	× [0			Styles		-				* * Ce	r ▼ lis	∠ Clear *	Filter * S Editing	Select *		
T31		. (=	fx				ignitette										Styles									conting			~
																													A
A	В	с	D	E	F	G	н	ï	J	к	L	M	N	0	р	Q	R	S	Т	U	V	W	х	Y	Z	AA	AB	AC	
1 time	dt in s	acce x	acce y	acce z	gyro x g	gyro y	gyro z	mag x	mag y	mag z	roll	pitch	yaw																1
2 ########	447	916			-38	-1022	-210	-48	10	-1503																			
3 ########	109	1138			-187	1006	-432	-72	30	-1491																			
4 ########	122	156			339	5557	-123	141	27	-1568																			
5 ########	122	-2772			-272	8581	323	141	27	-1568																			
7 ##########	124	-4899			253	6312	397	1085	15	-1045																			
8 ########	120	1000			200	0312	557	1000		1041															_				
9 ########	20000																	-						Data	Acquisition for	Excel)	
10 ########						1	V					N	daw				7	dau								Cont	trol		
11 ########	10000					/	лu	ib J				/ 1	uowi				۷	uow	/11 \								wnioad Dat	a	
12 ########	10000					/			X			/							1						LA-DHQ E	🗧 🗌 🗌	ar Stored I	Data	
13 ########		х тіат				/					/											aco	ex	Bo	tungs	Use	er1 er2		
14 ##########	0	2			ſ					-													ev			- Dec	at Timer		
15 #########																		1						Dat	ia: 9600 _		et finier		
17 ########														1				/				dee			Connect	Clear	Columns		
18 ########	-10000 -	\rightarrow			_/										\					<u> </u>					Connect		R T		
19 ########			X	down												Yup					up				Cont	roller Mess	ages		
20 ########			\sim												\sim	~~~				\sim	\sim					Disconnected			
21 ########	-20000 🗆																									-	-		
22 ***	124	16200			201	5692	47	2262	12	202																			
24 ########	124	-16319			95	-10904	-30	3252	-21	0																			
25 ########	125	-15383			-218	-11141	-2	2951	5	-601																			
26 ########	125	-13437			-891	-13540	472	2395	22	-1150																			
27 ########	128	-11296			-35	-11024	349	2395	22	-1150																			
28 ########	129	-8441			573	-11396	-371	1801	28	-1478							-												
29 #######	130	-5816			185	-8915	346	1193	32	-1641							- Pro	oced	ure:										
30 #########	126	-3927			348	-10226	852	650	24	-1642																			
32 ########	12/	-1257			1379	-8597	-247	116	25	-1547								First	poin	t X c	lown	i ther	า นต).					
33 ########	120	3200			172	-6696	-118	-299	25	-1406									10 0 11				- 14	'					
34 ########	128	5607			286	-8553	-10	-651	14	-1165								Nev	t noir	nt V d		h the	m u	n					
35 ########	128	8946			524	-8755	317	-1082	19	-794								NCA	r poli			i the	u	2					
36 ########	127	11045			479	-9745	80	-1082	19	-794								Eina	llune	vint 7	7 day	un th	on	un					
37 ########	126	12884			445	-8352	102	-1407	40	-352								гшd	iny ho	JIIIU 2	2 uov		en	up.					
38 ########	130	14507			107	-9671	-169	-1578	36	87							C.c.	mo de	.+		at a d	to mo		rank	imple				
39 ########	127	15834			304	-9068	17	-1710	40	580							201	neua		is uel	eled	to ma	ke gi	ahus	simple	I			
40 ########	127	16902			4/1	-5782	81	-1/03	44	980																			
42 ########	127	16894			-1/2	-0425	-43	-1/03	44 50	580 1387																			-
H I F F S	eet1 She	eet2 / She	et3 🖯 🞾	/	103	2042	50	1032	50	1307		1	1		1		14	1	1	1	1	1				1	1	•	> [
Ready 🔚													_														100% 🗩		-+

Now that you can plot the data in real time in Excel, we can start calibrating the accelerometer

I added the calibration factors as definitions before the setup() function like this:

#define ACCEL_X_MIN ((float) -16340) // Add Min an Max values from calibration #define ACCEL_X_MAX ((float) 16975) #define ACCEL_Y_MIN ((float) -15830) #define ACCEL_Y_MAX ((float) 16380) #define ACCEL Z MIN ((float) -16570) #define ACCEL_Z_MAX ((float) 16910) #define ACCEL_X_DIR ((int) 1) // If up and down are reversed then the direction of the sensor is negative #define ACCEL Y DIR ((int) -1 #define ACCEL_Z_DIR ((int) -1 #define ACCEL_X_OFFSET ((ACCEL_X_MIN + ACCEL_X_MAX) / 2.0f) // The Offset is the average of the Min and MAX values #define ACCEL_Y_OFFSET ((ACCEL_Y_MIN + ACCEL_Y_MAX) / 2.0f) #define ACCEL_Z_OFFSET ((ACCEL_Z_MIN + ACCEL_Z_MAX) / 2.0f) #define ACCEL_X_SCALE (100.0f / (ACCEL_X_MAX - ACCEL_X_OFFSET)) // Scale all accelerometers between -100 and 100 #define ACCEL_Y_SCALE (100.0f / (ACCEL_Y_MAX - ACCEL_Y_OFFSET)) #define ACCEL Z SCALE (100.0f / (ACCEL Z MAX - ACCEL Z OFFSET))

Note: scaling all accelerometer's value between -100 and 100 is arbitrary, most people like to scale the accelerometer between -9.8 and 9.8 because gravity was used during calibration. In the end accelerometers data will be used to calculate angles so the scale factor does not change anything.

A good tutorial for calibration is found here: http://www.starlino.com/imu_guide.html

Now, process raw accelerometer data into calibrated accelerometer data

Replace this

A[1] = compass.a.x; // place holder for data conversion
A[2] = compass.a.y;
A[3] = compass.a.z;

Into this

A[1] = (compass.a.x - ACCEL_X_OFFSET) * ACCEL_X_SCALE * ACCEL_X_DIR; // accelerometer' values are now between -100 and 100
A[2] = (compass.a.y - ACCEL_Y_OFFSET) * ACCEL_Y_SCALE * ACCEL_Y_DIR;
A[3] = (compass.a.z - ACCEL_Z_OFFSET) * ACCEL_Z_SCALE * ACCEL_Z_DIR;

Final results! Accelerometer values as a function of time

All values are fixed between -100 and 100 and value are negative when sensor is down and positive when sensor is up

Now let's calibrate the gyro's offset

Getting the offset of the gyro is easy, leave the sensor alone (not moving) and look at the gyro's values for x y and z.

1 2	<u>a</u> -		-						-	-	-		Boo	k4 - Microsoft	Excel	-	_	_	_	_	_	-		_	_	-	_		- 6 ×
File	me Inse	rt Pa	ge Layout	Formulas	Data	Review	View	Developer	Add-Ins																				∧ 🕜 🗆 🗗 X
ho 🖌 📙		Calibri	×	11 · A .	A' = =	*	- •¶ -	Wrap Tex	t	Number	*		1	Normal	E	Bad	Goo	d	Neutral	C	alculation	-	-	*	Σ Αυ	toSum *	A7 #	1	
Paste	у *	B Z	π	- 3- A	. = -		siz .	Herge &	Center *	\$ - %	•.0 .00	Condition	al Format	Check Cell		Explanatory	Inpu	t	Linked C	ell N	lote		Insert [elete Form	nat 🔗 Fil		Sort & Find	1&	
+ 🍑 For	mat Painter		-			9-1-				. In a	.00 .0.0	Formatting	g * as Table *	Personal Association	_	4	Chaire					- T	*	• •	2 Cle	ear *	Filter * Sele	ct *	
Ciipboar	a ta	1-	Fort		THE STATE		Alignmen	t	181	NUMB	et 13						Styles							Cells		Edit	ing		
Q3		. (Jx =4	VERAGE(F2:	(41)																								
A	В	C	D	E	F	G	Н	1	J	К	L	М	N	0	Р	Q	R	S	Т	U	V	W	×		Y	Z	AA	AB	AC
1 time	dt in s	acce x	acce y	acce z	gyro x	gyro y	gyro z	mag x	mag y	mag z	roll	pitch	yaw																1
2 ########	447	1.	99 0.	42 -99.15	5 163	-46	7	57 -143	1	-147	0 71050.98	115123.2	-749298			gyro x	gyro y	gyro z											
3 ########	100	1.	94 0.	26 -99.41	109	-50	4	56 -152		-146	8 254443.7	106252	-653909			122	-496	48											
4 #########	115	1.	91 0.	34 -99.28	3 122	-49	5	47 -152	1 1	-146	333868	148526.6	-602288				1												
5 ########	115	2.	03 0.	43 -99.37	7 120	-49	5	52 -161	8	-145	5 323725.8	135420.8	-702990																
6 ########	114	1.	82 0.	47 -99.16	5 119	-47	В	53 -150	1 2	4 -147	2 235740.8	110230.9	-539377																
7 #########	114	2.	02 0.	57 -99.16	5 110	-49	1	47 -144	. 1	.8 -146	3 386535.1	127060	-473273																
8 <mark>#######</mark> #	115	1	L.9 0.	33 -99.1	L 123	-51	D	48 -144	1	.8 -146	3 372615.8	67569.25	-433892											-	10 State				
9 #######	113	2.	03 0.	41 -99.42	2 122	2 -50	1	43 -153	2	-147	2 350469.4	121558.1	-433039											Da	ita Acquisiti	on for Exe	cel	1	
10 ########	114	1.	88 C	.4 -99.19	119	-50	D	43 -152	1	-148	0 363377.1	156626	-470222												A. 14	3	Contro	h	
11 ########	114	1.	93 0.	38 -99.32	2 123	-50	D	50 -152	1	-148	348967.2	182633.1	-338484														Downl	load Datz	
12 ########	114	1.	79 0.	55 -99.27	7 123	-49	5	37 -158	2	-145	8 464472.3	157996.4	-402378												IFLX-D	nų 🔗	Clear !	Stored Da	ata
13 ########	115	2.	02 0.	24 -99.3	3 12:	L -49	1	44 -152	1	-147	1 517258.4	132695.8	-456924												Setting	s i	🛛 🛄 User1		
14 ########	114	1.	93 0.	26 -99.07	7 128	3 -50	7	51 -154	1	7 -146	8 558798.5	113008.3	-511346												Port: 6		User2		
15 ########	115	1.	76 0.	44 -99.13	3 11:	5 -50	3	46 -154		7 -146	8 593911	114780.9	-390118												Baud: 960	00 🗾	Reset T	imer	
16 #######	114	1.	95 0.	35 -99.33	125	5 -49	3	48 -150		2 -146	503361.7	99017.6	-438318												Con	nect	Clear Co	lumns	
17 ########	114	2.	15 0.	53 -99.19	126	5 -50	1	52 -152		8 -147	2 489727.1	126002.2	-477374												- Res	et on		71	
18 ########	114	2.	13 0.	32 -99.24	119	-48	9	56 -152		8 -147	2 491041.2	68558.49	-473001												Con	nect		<u> </u>	
19 ########	113	1.	85 0.	38 -99.03	3 130) -50	D	49 -146	2	-147	9 493570.3	11562.69	-469391													Control	ler Message	es	
20 ########	114	1.	93 0.	43 -99.27	7 128	3 -50	5	50 -156	1	.8 -146	5 493414.1	61016.26	-486691													Disc	onnected		
21 ########	112	1.	89 0.	17 -99.27	7 110	-49	5	41 -150	-	15 -148	0 493522	19607.03	-514603															_	
22 ########	114	1.	79 0.	34 -99.15	5 1 33	-49	3	48 -150	1	15 -148	489364.9	46132.37	-582982																
23 ########	114	1.	92 0.	43 -99.41	122	-48	7	40 -145	2	-145	8 431650.4	-8931.67	-585736																
24 ########	112	1.	89 0.	38 -99.47	7 110	5 -49	2	56 -152		2 -147	4 426012.7	23130.22	11164195																
25 ########	115	1.	89 0.	52 -99.43	3 128	3 -50	5	53 -152		12 -147	4 12733651	17793.31	11004516																
26 <mark>########</mark>	117	2.	07 0.	45 -99.31	117	7 -49	5	48 -156		3 -147	9 12520686	45807.51	11923605																
27 #########	117	2.	08 0.	23 -99.13	3 109	-48	2	45 -147		-145	2 13390538	-4036.92	11799144																
28 ########	115	2.	08 0.	42 -99.12	2 113	-50	3	43 -154		-147	1 13022623	-56403.5	11514397																
29 ########	118	1.	98 0.	28 -99.14	120	-49	6	44 -154		-147	1 12732214	-56662.1	11356667																
30 ########	118	2.	03 0.	47 -99.27	7 119	-50	0	59 -149	2	-147	2 12445792	-14315.1	11595768																
31 ########	118	1.	91 0.	39 -99.24	112	-48	4	60 -153		-145	6 12657041	36262.75	11563039																
32 ########	115	1.	96 0.	32 -99.01	113	-48	9	53 -153		-145	5 12227973	84810.21	11302439																
33 ########	117	2.	01 0.	35 -99.24	124	-49	4	45 -153	-	-147	7 12012744	93849.75	10914746																
34 ########	117	2.	13 0.	35 -99.06	5 124	-49	1	52 -149		2 -147	1 11936532	35469.23	10701856																n I I

Now let's calibrate the gyro's direction

Let's check the direction of the sensor, by rolling 90° positive, pitching 90° positive and yawing 90° positive.

K 🔒 🤊 - C	* -		-	-					_	-	-		Boo	4 - Microsof	t Excel					_		-					_		_ 0 _ X
File Hor	ne Inse	ert Page i	ayout	Formulas	Data F	Review V	/iew D	eveloper	Add-Ins																				∧ (2) ⊂ ⊕ Σ
Cut	. *	Calibri	*	11 * A*	∧`	 \$\$/~	• P 4	Wrap Tex	t	Seneral	*			Normal	В	ad	Good		Neutral	C	alculation	*				Σ AutoSum	* 者 🛛	A	
Paste Eor	, nat Painter	BIU	•	• 🔕 • A		≡ 律 €	F I	Merge &	Center *	\$ - % ,	€.0 .00 0.€ 00.	Condition	al Format	Check Cel	E	kplanatory .	Input		Linked Ce	ell N	lote	-	Insert	Delete F	Format	Clear *	Sort & F	ind &	
Clipboard	lac i uniter		Font		rg.	A	lionment		5	Numbe	r G	rormatting	j * as lable *	1.22			Styles							Cells		E	diting	elect *	
W/34		• (a	fr														- 1										-		
1154			-																										
A	В	С	D	E	F	G	Н	1	J	К	L	м	N	0	р	Q	R	S	Т	U	V	W		X	γ	Z	AA	AB	AC
1 time	dt in s	acce x	acce y	acce z	gyro x	gyro y	gyro z	mag x	mag y	mag z	roll	pitch	yaw																
2 #########	447	7 -1.6	3.5	-99.46	5 -24	-341	7	3 131	-5	-1416	-10160.7	7191.45	152915.8																
3 #########	69	-1.79	3.1	.2 -99.2	-82	-473	-1	1 129	14	-1431	-19891.3	7543.66	182831.4																
4 #########	110) -1.79	3.7	2 -99.34	120	-548	-4(6 129	14	-1431	-23555.5	58922.5	116012.9																
5 #########	114	4 -2.86	3	.5 -101.4	895	-239	12	2 129	12	-1427	95471.98	48030.26	142102.1																
6 #########	111	L -2.16	-0.6	-100.97	3021	-292	-265	9 112	-61	-1394	444266.1	31243.95	-27429.1																
7 #########	119	9 -0.11	-7.4	-99.58	4790	-712	-460	0 112	-61	-1394	1334802	-39056.2	-96629.4																
8 ########	120	-0.52	-17.6	i4 - <mark>101.5</mark> 5	8522	-757	-439	9 115	-296	-1348	2314951	64433.45	-92071.2											1					
9 ########	122	-0.67	-37.0	-94.4	10983	-1026	-60:	1 128	-735	-1132	3580998	107941.9	-345098												Data Ac	quisition for	Excel		25
10 ########	124	1 2.7	-53.7	8 -80.17	7 10809	-1659	-50	1 120	-1239	-733	5159661	299770.3	-96072.6													<i>3</i> 86 5	Cont	trol	
11 #########	122	-2.37	-69.3	3 -70.9	12511	-1329	-1179	9 120	-1239	-733	6572527	152756.6	260361.2							L								woload Dat	
12 #########	125	5 2500									haa		•		h	a al e tra	•								IPL	X-DHQ	T Clea	ar Stored I	Data
13 #########	124	1 200	10								bac	<u>K to (</u>	J		D	аск то	0								Sett	tings	🗧 🗌 Use	er1	
14 #########	119	9	ŭ.									A 4				~									Port:	6 _	Use	er2	
15 #########	121	1500	00		7.000 C											$\langle \rangle$									Baud:	9600 💌	Rese	at Timer	
16 ########	119	100	00								/	1														Connect	Clear	Columns	
17 ########	120)	0.000	1	90° +						/									Series1						Bocotion			
18 ####### #	121	L 50	00			1	_				1	1		~		٨٨	1			Series2					E.	Connect	B		
19 ####### #	120)	0	1		10		-	And Persons in which the			-			X	VVA	2	AL-	-	Serie 32						Cont	roller Messa	ages	
20 ########	123	3	1	3 5 7	9 11 13	15 17 1	9 21 23	25 27 2	9 31 33	36 37 39	41 43 4	45 47 49	51 53	5 57 59	61 63 6	5V67V69 7	1 73 75	77 79	81	Series3						1	Disconnected		
21 ########	123	3 -500					/			1					1														
22 ####### #	119	-100	00							1 91	≌/+			1	1														
23 #########	120)				1	/							-	1														
24 #########	120) -150				bac	k to	0		\sim				900	° +														
25 #########	121	-2000	∞ ⊥					-						50															
26 ########	124	4 -3.24	-9.4	5 -96.54	- <mark>4</mark> 345	-497	-70	6 177	-373	-1290	-1760319	582513.8	87003.41					1											
27 #########	120	-3.36	-1.6	4 -103.09	-3580	288	-85	5 177	-373	-1290	-2124356	605249.3	-450942																
28 ########	123	-4.11	1.4	3 -101.03	-919	-388	223	3 190	-152	-1372	-485985	540790.5	-400506																
29 ########	121	-2.94	1.1	.8 -98.78	128	-1048	44:	1 188	-60	-1407	-410066	441038	-263385																
30 ########	119	-2.74	0.5	7 -99.44	622	-525	80	6 173	-65	-1406	-300975	375303.8	-282919		- V	' nn	7 7	1	vic a	ro	in	+h	\sim		h	h 7	iro	atic	
31 ########	116	-3.08	-0.6	3 -100.77	450	-838	115	5 173	-65	-1406	-241047	446531.1	-193236		ľ	dll	uΖ	. d)	(1) c	ar e			2 V	VIC	JU	g U	neo	こして	וו
32 ########	119	-2.82	-0.2	-98.65	325	-643	210	0 157	-85	-1385	-133776	483733.2	30705.3																
33 ########	117	7 -2.23	-0.7	7 -98.89	-23	-644	63	3 148	-98	-1379	-295967	429296.7	-28958.4																
34 #########	117	7 -2.03	-0.6	8 -99.49	-38	-887	9(6 131	-92	-1377	-298825	332566.9	150707.5									r							

We can start calibrating the gyro's data

Add offset and directions of the gyro as definitions

define GYRO_OFFSET_X ((float) 122.0)
#define GYRO_OFFSET_Y ((float) -496.0)
#define GYRO_OFFSET_Z ((float) 48.0)
#define GYRO_X_DIR ((int) 1)
#define GYRO_Y_DIR ((int) -1)
#define GYRO_Z_DIR ((int) -1)

Then, replace this block

G[1] = gyro.g.x; G[2] = gyro.g.y; G[3] = gyro.g.z;

By this one

G[1] = (gyro.g.x - GYRO_OFFSET_X) * GYRO_X_DIR; // This take into account the offset of the gyro and the direction
G[2] = (gyro.g.y - GYRO_OFFSET_Y) * GYRO_Y_DIR; // scale factor is still missing
G[3] = (gyro.g.z - GYRO_OFFSET_Z) * GYRO_Z_DIR;

Now the gyro's data is 0 when the gyro is not moving and direction correct, but data has no units

Let's calibrate the gyro's scale factor.

We need to find out the units of the gyro

The gyro provides a rate of change, not the change itself, so we need take time into account

First declare time variables

float dt; // time between gyro readings in milliseconds
float t = millis(); // time = now in milliseconds

Then right after reading the gyro data add

dt = millis() - t; t = millis();

Add the time between readings into excel

```
Serial.print("DTA,TIME,");
Serial.print("dt) Serial.print(","); // dt is added here nothing else change
Serial.print(A[1]); Serial.print(","); Serial.print(A[2]); Serial.print(","); Serial.print (A[3]); Serial.print(",");
Serial.print(G[1]); Serial.print(","); Serial.print(G[2]); Serial.print(","); Serial.print (G[3]); Serial.print(",");
Serial.print(M[1]); Serial.print(","); Serial.print(M[2]); Serial.print(","); Serial.print (M[3]); Serial.print(",");
Serial.println();
```

Now the gyro's data is 0 when the gyro is not moving and directions are correct.

Next, we need to convert the gyro arbitrary scale to something useful. In order to do that we move the gyro by 90 degrees and record the data:

Add in Excel a column with the eq. Gyro x dt

	-		-	-	-	-	-						Bo	ok4 - Micros	soft Excel	_		_	_	_				_	_			
File Hou	ne Insert	Page Lav	out For	mulas	Data B	eview V	iew D	Developer	Add-Ins																			
E		P	1	M	A	R	W		X													1.000	0.00	(S Assessment	A	a.a. 1	
an cut	C	Talibri	* 11	• A A		≡ ≫^-	►¶ ~	Wrap T	ext	General		*		Normal	Bad		Good	N	eutral	Calculat		+			Z Autosum	- 77 d	A	
Paste		B I U -		3 - A -	EE	∃ (2 €	z –	Han Merge	& Center -	\$ - %	• * .0	.00 Conditi	onal Format	Check C	ell Exp	lanatory	Followed	Hy H	yperlink	Input		Insert	t Delete	Format	C C	Sort & Fir	1d &	
- OFFOR	lat Painter		E a a b				for a second					Formatt	ing + as Table	-		~						9	(T + 11 +	τ.	∠ Clear *	Filter Sel	ect *	
Cipboard	14		Font	J.	20	P	algnment		- 19	NU	nber	- 196				SL	ytes						Cens			calling		1.1.1
SUM	• (- × × Þ	=G2*B2	4																								-
	7/120	12 1		715	1121			1	1 4/	1.02		1 202	1 525	1	1		2	1 23	T 22	1	1.2		1000	1 2		1 2 1	12.2	×
A	В	С	D	E	F	G	н	L.	1	K	L	M	N	0	P	Q	R	S	T	U		V	W	X	Y	Z	AA	AB
1 time	dtins a	cce x ac	cey ac	ce z į	gyro x	gyro y	gyro z	mag x	mag y	mag z	roll	pitch	yaw		gyro x .dt	gyro y .dt	gyro z .dt	70										
2	98	1.77	0.6	-99.56	-13	-31	-0.	1- 0	11	-3 -1	+/5				-12/	=G2*B2	-0:	70										
3	106	1.24	0.41	-99.4	-23	- 3	-	1 -1	11	4 -1	+/2				-130	-20	6	06										
5 ##########	100	1.75	0.70	-99.23	-33	12	-	1 -1	12	4 .11	+/2 192				-324	140	о и	20										
5 ####################################	109	1.66	0.43	-99 64	-51	-51		5 -1	13	3 .1	165				10	-555	9	45										
7 #########	107	1.68	0.53	-99.3	-25	-10		9 -1	13	3 -1	165				-267	-107	0	63										
8 #########	107	1.83	0.64	-99.46	-22	11	-	2 -1	14	10 -1	179				-235	117	7 -	14										
9 #########	110	1.78	0.55	-99.37	-29	-30	12	2 -1	16	3 -1	175				-319	-330	0 -	20										
10 #########	109	1.87	0.37	-99.32	-25	3	-3	1 -1	16	3 -1	175				-272	32	7 -39	79										
11 #########	108	1.68	0.45	-99.2	-28	-2	-3	0 -1	16	-1 -1	172				-302	-21	6 -33	40										
12 #########	110	7000 -																										
13 #########	108	6000					~																					
14 #########	110	0000 -					\int																					
15 #########	108	5000 -					+ +	- 1		A	_			0.00														
16 ########	111	4000						VV		1	Gy	ro da	ita for	90°	pitch													
17 ########	114	4000 -				1		1	Γ											/ro x								
18 #########	113	3000 -								- 1									gr	/ro y								
19 ************************************	117	1000							\sim										g	/ro z								
20 нинини	115	2000 -				1																						
22 #########	117	1000 -				/																						
23 #########	119	0				~	_				1~	~		-														
24 #########	118	v									V	1	\sim		~								(- ·				57	
25 #########	118	-1000 -									1.000								-				Data A	Acquisition	for Excel			
26 #########	117	70.09	0.01	-72.32	98	5387	5	8 -14	92	-14 -	159				1146	63027	9 6	86						Sec.	Co	ntrol		
27 #########	117	800000	L 1															i.					P	LX-DAG		ownload Dat	a	
28 #########	114	700000	8				-																Se	ttinas		lear Stored E	ata	
29 #########	115	/00000						4.1															Port	t: 6	T	Jser2		
30 #########	116	600000	0				A		(•													Bau	d: 9600	▼ Re	eset Timer		(
31 #########	116	500000	C						-															Conres		an Column -		
32 ############	115	400000							_/		<u> </u>	ro v c	4+						gyro	y .dt				Comlec		ai columnis		
34 HHHHH	117	300000	(Gy		μ						-gyro	x .dt				Conne	on 🗾	BT		
35 #########	116	200000								Δ										z dt				c	ontroller Me	ssages		
36 #########	116	200000	03																5,10						Disconnect	ed		
37 ########	115	100000			2	1																						
38 #########	111	0			-						V		-															
39 #########	114	1 -100000	(. 								V																	
40 #########	115	-200000	<u></u>																									
41 ####################################	112	100.10	-0.1	0.74	-030	-07	-1	1	21	12 1	100				-7000		4 -1-	00										
42 ####################################	117	100.44	0.09	5.51	25	349	-4	8 -15	20	5 1	767				292	4083	3 -50	16										~
IN A DE She	et1 / Sheet	t2 / Sheet3	<u></u>															_				111	0		12	con (55) (11)	-	> ∐
Edit 🔛																										毎回医 14	19% (O)-	0

Add in Excel a column with the eq. Gyro x dt

X			-	-					_	-	-		Boo	ok4 - Microso	ft Excel		_	_									0 ×
File Ho	me Insert	Page Lav	out Fo	mulas	Data Re	view Viev	v Deve	loper	Add-Ins																	۵ 🕜	- @ X
F	H N	P		M	A (R W) []	L)'	X			0000	inning.								1		(manager)	∑ AutoSum a	A		0 - 13 0
a cut	C	alibri	* 11	* A A	= = :	≡ ≫^-	▶¶ ~ 📑	Wrap Text		General	.*		1	Normal	Bad		Good	Neutral	Calcu					Z Autosum -	27 m		
Paste	, . 	B I U -		3 - A			+3+	Merge & C	enter -	\$ - %	.00, 0.0÷	Condition	nal Format	Check Ce	II Expl	anatory	Followed Hy.	Hyperlink	Inpu		Inse	ert Delete	Format	C C	Sort & Find &	2	
- OFFOR	hat Painter		Front ()							Manufactor		Formattin	g + as Table	-		<i>Ch</i> .	499				7.) · · ·	Calle	Ψ.	∠ Clear *	Filter = Select	*	
Ciipboard	2		ront	-1	136	Alig	nment		18	NUMD	st	6				Sty	165					Cens		EQ	nung		1000
SUM	• (- × √ J	Gr =G2*B	2																							^
	7000	3052 T	1000		1925		100AV 11			1		20040	1 5500	1	120	1577	20	26 1 57		0/00	- 44	2820-5			201	2004 I 225	*
A	В	C	D	E	F	G	H	L	1	К	L	M	N	0	Р	Q	R	S T		U	V	W	X	Y	Z	AA AI	B
1 time	dtins ad	ccex ac	ccey a	cce z	gyro x g	yro y gy	roz n	nag x	mag y	mag z	roll	pitch	yaw		gyro x .dt	gyro y .dt	gyro z .dt			_							_
2 #########	98	1.77	0.6	-99.56	-13	-31	-65	-104	-	3 -1475					-1274	=G2*B2	-6370										
3 #########	68	1.24	0.41	-99.4	-23	-3	-1	-111		4 -14/2					-1564	-202	-08										_
4 #########	100	1.75	0.76	-99.25	-35	31	-1	-111	- 1	4 -1472					-3710	3280	-100			1							
5 #########	100	1./1	0.07	-99.12	-51	13	4	-112	-1	1 -1462					-5548	1404	432			l We	su	m ev	verv	v red	point	S	
7 ##########	107	1.69	0.43	-99.04	-25	-51	9	-113		-1403					-2675	-333	962							/	P		
8 ##########	107	1.83	0.64	-99.46	-22	11	-2	-114	1	-1479					-2354	117	7 -214			anc	d ge	et: 10	035	59600			
9 #########	110	1.78	0.55	-99.37	-29	-30	-2	-116	-	3 -1475					-3190	-3300	-220				. 0-						
10 #########	109	1.87	0.37	-99.32	-25	3	-31	-116		3 -1475					-2725	32	7 -3379										
11 #########	108	1.68	0.45	-99.2	-28	-2	-30	-116	12	1 -1472					-3024	-210	- 3240	4									
12 #########	110	7000	T	. 2510 87.90	0185		1005	1994,985							(2)(2)(1))		604 (* 624 * 6 66) (*			1 Thie	s ni	umh	er i	renre	sents	а	
13 #########	108	-2022					~														5 11			cpic.	Jenes	u	
14 #########	110	6000 -				1	7	2.07												an°	' nit	ch t	tha	roford	o our	avro	
15 ########	108	5000	-				1	۸												50	pro	un,	the	leiun	eoui	Byiu	
16 ########	111	7753483					V	1	Γ	1	Gyr	o dat	a for	90° p	itch					662	lo i	c					
17 #########	114	4000						1	T	1									yro x	SCa	ie i	2					
18 #########	113	3000				_/_			1	N_								e	yro y								
19 ########	117							\sim											vro z								
20 ########	114	2000 -			1	1														0.00	11	005	000	<u> </u>		000	-
21 ***	115	1000 -				(-		90	/ 1	1035	96	JU = U).000(JU9	_
22	119					~					~ /	~															
24 #########	118	0 -									V	V	~		· ·				-								
25 #########	118	-1000									v																
26 #########	117	70.09	0.01	-72.32	98	5387	58	-1492	-1	4 -159		T			11466	630279	6786			You	i sh	ould	d re	peat	this s	tep	
27 #########	117	800000	1	biotosos a	18.8		A Sector	a de la companya		nd (* 1985))	4		1			1 Constanting	al constal		P					•			
28 #########	114	00000					_													1 tor	all	axis.	. I n	otice	d tha	tl	
29 #########	115	700000	,			1		577.1. 0																			
30 #########	116	600000	D					A	1.4	0.2										พลง	s ge	ettin	g tł	he sar	ne sc	ale	
31 #########	116	500000	o ↓																		- 0,		0.0				
32 #########	115	400000									_								v.dt	fact	tor	for r	roll	nitch	and	/aw	
33 ########	117	- 200000									Gyr	o x d	t					gyro	, .uc			1011		Pitteri	unu	yuv,	
34 #########	116	300000								Å								gyro	x.dt	SOL	an	n rici	inσ	only	one a	vro	
35 #########	116	200000) <u> </u>			1				100								gyro	z.dt	1 30 1	un	1 431	ыя	Unity	one g	yıu	
36 ########	116	100000	o ————————————————————————————————————			(1										602	lo f	acto	or fo	nr all t	throo	avic	
3/ #########	115	0	o 🗕 🗕 🗕			-					-		-							SLO	IE I	aciu		лан	unee	axis.	
38 ##########	111	1 .10000									\vee	_															
40 ########	114	1 -100000																									
41 #########	112	-200000				-0.7		-1.12.								-,											
42 #########	117	100.44	0.09	5.51	25	349	-48	-1520		5 1767					2925	40833	-5616										v
IN N N Sh	eet1 / Sheet	2 / Sheet3	3 / 🔁 /			-5-55di				_,,,,	Ni:	-10	11	6			14		-16	-li		m			1	11))
Edit 🛅																								E	100%	0	

Final gyro's calibration

Add offset and directions of the gyro as definitions

define (GYRO_OFFSET_X	((float)	122.0)
#define	GYRO_OFFSET_	Y ((float)	-496.0)
#define	GYRO_OFFSET_	Z ((float)	48.0)
#define	GYRO_SCALE ((float)	0.000	0090)
#define	GYRO_X_DIR ((int)	1)
#define	GYRO_Y_DIR ((int)	-1)
#define	GYRO_Z_DIR ((int)	-1)

Then, replace this block

G[1] = (gyro.g.x - GYRO_OFFSET_X) * GYRO_X_DIR; // This take into account the offset of the gyro and the direction
G[2] = (gyro.g.y - GYRO_OFFSET_Y) * GYRO_Y_DIR;
G[3] = (gyro.g.z - GYRO_OFFSET_Z) * GYRO_Z_DIR;

By this one

G[1] = (gyro.g.x - GYRO_OFFSET_X) * GYRO_SCALE * GYRO_X_DIR; // now the gyro's data is fully calibrated [degrees / ms / gyro unit]
G[2] = (gyro.g.y - GYRO_OFFSET_Y) * GYRO_SCALE * GYRO_Y_DIR;
G[3] = (gyro.g.z - GYRO_OFFSET_Z) * GYRO_SCALE * GYRO_Z_DIR;

Gyro is now calibrated !

X 3-7-0		-											Bo	ok4 - Micro	soft Excel					_									×
File Hor	ne Inser	t Page	Layout	Formulas	Data R	eview Vi	iew De	veloper	Add-Ins																			ا ت 🕥 ۵	e ک
Cut		Calibri	*	11 • A A	· = =	≡ ≫-	▶¶ ~ [Wrap Text		ieneral	*			Normal	E	ad	0	Good	Neut	ral	Calcula	tion +	+		Σ Auto	Sum * 者	A		
Paste S Forn	iat Painter	BI	<u>a</u> - 111	- <u>@</u> - A		書「評判	F	動 Merge & (Senter -	\$ - % *	00, 00, 00, 00, 00, 00, 00, 00, 00, 00,	Formattin	nal Format ig * as Table	- 19110330	tall k	xplanator	V	-ollowed Hy.	Hype	rlink	Input	7	insert.	Delete Form	at 🧷 Clear	· Filte	r = Select *		
Clipboard	15		Font		15:	AI	lignment		15	Numbe	r G	-					Styles	s						Cells		Editing			
SUM	*	(* × •	/ fx =G	7*87+Q6																									* * *
A	В	С	D	E	F	G	н	I.	J	К	L	M	N	0	P	0	1	R	S	т	U	V	W	X	Y	Z	AA	AB	AC
1 time	dt in ms	acce x	acce y	acce z	gyro x	gyro y g	gyro z	mag x	mag y	mag z	roll	pitch	yaw		roll	pitch)	yaw											1
2 #########	448	7.22	2 2.7	6 -98.61	0	0	0	-236	123	-1448						0	0	0											
3 #########	56	7.42	2 2.2	-99.04	0	0	0	-233	114	-1437						0	0	0											
4 #########	100	7.82	2 0.9	4 -102.77	0	0	0	-233	114	-1437						0	0	0											
5 #########	99	-2.99	9 10.7	2 -99.03	0.03	0	0	-229	82	-1429					2	.97	0	0											
6 ########	98	7.08	-8.1	.5 -105.02	0.05	-0.02	0.01	-229	82	-1429					7	.87	-1.96	0.98											
/	98	3.14	-12.8	-98.19	0.06	-0.01	0.01	-141	-183	-1393					13	.75 =G7*B	7+Q6	1.96											
8 ********	100	1.25	-22.2	9 -100.75	0.06	0.01	0.01	-42	-555	-1243					19	75	-2.94	2.96											
10 #########	100		-52	7 -96.72	0.08	0.01	0.01	-42	-001	-1243					27	95	-1.54	2.50											
11 ####################################	98	3.1	7 -61.2	4 -77.68	0.11	0.01	0.01	-25	-981	-972					48	73	0.06	4.96											
12 #########	97		0.2 -			0101	0.02		201	2/16																			
13 #########	99																												
14 #########	97		0.15 -						~	6			~																
15 #########	97		0.1 -		~				<u> </u>			-/	1	-															
16 #########	96		0.05 -	-						1		1		1															
17 #########	97		50			-	~ ~	/		1-	~		~ ~	N	~	~	~			gyro	×								
18 ##########	96		D 0 -			1	\sim	1		1	V Te		Xr	A	V	7	V	0.0		PVrC	v l								
19 #########	96		0.05 -			-		/			_/_		V	1	0	-													
20 #########	97		- 01 -				/	<u> </u>												BAIC									
21 #########	98		в С			1					1			\sim															
22 #########	99		-0.15 -)					1																		
23 ########	99		-0.2 -								V																		
24 ########	99		0.25																				ſ	Data Acquisi	tion for Excel		23	_)	
25 пляняни	99	10.50	-0.25 -	00.05	0.00	0	0.00	100	505	1100	1	1	1	1	10	50	5.00	0.02		Т						Control	6	n	
20 #########	98	10.5	-19.8	-98.95	-0.08	U	-0.02	-199	-535	-1130					13	.59	5.93	-0.03			1					Downlo	ad Data		
27 нининин	100		125																					PLX-L	JHŲ 🕅	Clear St	ored Data		
20 #########	100		100 -			\sim							/	\frown									-	Setting	S	User1			
30 #########	102		75 -		/				1	2											-			Port: 6	<u>•</u>	User2	-	-	
31 #########	100		n		/	roll			/	oich \			/ V	aw										Baud: 96	500 💌	Reset Ti	ner		
32 #########	98	1	B0 50 -		/		1		/	1	N	/	-		1									Cor	mect	Clear Colu	mns		
33 #########	99		10 25 -	/	<u> </u>		/		/		1				1					roll				r Re	set on		1		
34 ##########	99		5 0-									-			~	-	_			— pite	:h			Co	nnect		1		
35 ########	98	1	-25 -																	-vav	1				Controller	Messages]	
36 #########	96		5																	1.50					Discon	nected		1	
37 #########	96	ć	⊻ -50 -																				L		-			9	
38 ######## #	97		-75 -																										
39 #########	93	1	-100 -																										
40 #########	97		-125																										
41 #########	94	1	1		1	1		1			1	T	1	1	1		T			T									
42 #########	98	94.33	3 1.7	'3 -8. <mark>4</mark> 6	0	-0.1	0	-1548	67	1631					6	42	78.61	-4.95		_						_			• [7]
Sale She	ect / She	et2 _/ She	ets 🖉 🗘	/													1						111				TTI Jone (<u>▶U</u>
căit 🔛																											El 100% ((3)

Calibration of the magnetometer can be tricky...

A good tutorial can be found here: https://github.com/ptrbrtz/razor-9dof-ahrs/wiki/Tutorial

I used a simple calibration using min and max similar to the accelerometer's calibration with good results. The tricky part is that it is not easy to get the min and max values because you need to orientate the accelerometer exactly in the direction of the earth's magnetic field.

One solution can be to take lots and lots of points and hope to be lucky. That works, but I prefer to see the data in a graph in order to make sure I am at the right place. This was done in Excel (Matlab would be much easier).

Lets find magnetometer's mins and maxs

	3d_magneton	neter.xls [Compatibility Mode] - Microsoft Exce				- 0 ×
File Home Insett Page Layout Formulas Data Review View Developer Add-Ins $\overset{\bullet}{\bullet}$ Cut $\overset{\bullet}{\bullet}$ Cut $\overset{\bullet}{\bullet}$ III $\overset{\bullet}{\bullet}$ A $\overset{\bullet}{\bullet}$ $\overset{\bullet}{=}$ $\overset{\bullet}{=}$ $\overset{\bullet}{=}$ $\overset{\bullet}{\to}$ $\overset{\bullet}{=}$ $$	nal → % → *00 +000 Number Fa	Format Bad Check Cell Explanatory .	Good Neutral Followed Hyp Hyperlink Styles	Calculation	E AutoSum * Arr Andrew Sort & Find & Fill - Sort & Find & Clear * Filter * Select * Editing	
SUM ▼ (* × ✓ fx =MIN(12:11502)						
A B C D E F G H I J K L 1 time dt ins accex accey accey <td>M N O pitch yaw</td> <td>P Q R S T</td> <td>U V W X</td> <td>Y Z AA AB AC</td> <td>AD AE AF AG</td> <td>AH</td>	M N O pitch yaw	P Q R S T	U V W X	Y Z AA AB AC	AD AE AF AG	AH
6 7 8 9 9 10 112 12 13 16 16 16 16 16 16 16 16 16 16		X Angle 253 T	prefered values x	255		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Y Angle 0 C		0 285		
22 ψ ζ		calibration parameters	min max x 2:11502) 3251 y -2071 2729 z -1550 3198			
27 28 29 29				Data Acquisition fo	or Excel	
30 31 32 33 34 35 36 37 38 39 39 39 39 39 39				PLX-DRQ Settings Port: 6 Baud: 9000 Connect F Reset or Connect	Control Download Data Clear Stored Data User1 User2 Reset Timer Clear Columns	
41 11:34:27 AM 91 -82.43 55:96 -19.46 -0.01 0.18 0.07 2595 2090 863 42 11:34:27 AM 95 -67.85 64.18 -40.18 0 0.14 0.08 2595 2090 863 43 11:34:27 AM 95 -67.85 64.18 -40.18 0 0.14 0.08 2595 2090 863 44 11:34:27 AM 93 -53.25 74.33 -46.24 -0.03 0.09 0.07 2102 2398 286 6 11:34:77 AM 94 -56.66 44 -60.65 0 0.07 2102 2398 286					Itroller Messages	
47 11:34:27 AM 94 50:24 94:18 24:94 -0.05 -0.14 0.01 1626 2630 379 47 11:34:27 AM 95 -52:33 92:33 -12:59 -0.09 -0.22 -0.01 1622 2642 1112 48 11:34:27 AM 97 -52:37 91:06 19:49 -0.07 -0.29 -0.03 1622 2642 1112			If you want info here: h	to make a plot in 3D in exe http://www.doka.ch/Excel3	cel, you will find mc BDscatterplot.htm	ore
192 12-942/Am 32 -2/00 //83 40.59 -0.04 -0.22 -0.02 1094 243/ 1919 K (↓) K (3) Rotate data (2) / 200 0.00 0.00 0.00 0.00 0.00 0.00 0.0						

Magnetometer calibration

Visualisation of the data in 3D is not necessary, but useful to make sure nothing strange is happening (for example, magnetometer's data is messed up by your computer's screen magnetic field). Once min and max have been identified add calibration parameters as definitions

#define MAGN_X_MIN ((float) -1643)
#define MAGN_X_MAX ((float) 3251)
#define MAGN_Y_MIN ((float) -2071)
#define MAGN_Y_MAX ((float) 2729)
#define MAGN_Z_MIN ((float) -1550)
#define MAGN_Z_MAX ((float) 3198)
#define MAGN_Z_MAX ((float) 3198)
#define MAGN_X_OFFSET ((MAGN_X_MIN + MAGN_X_MAX) / 2.0f)
#define MAGN_Y_OFFSET ((MAGN_Y_MIN + MAGN_Y_MAX) / 2.0f)
#define MAGN_Z_OFFSET ((MAGN_Z_MIN + MAGN_Z_MAX) / 2.0f)
#define MAGN_X_SCALE (100.0f / (MAGN_X_MAX - MAGN_X_OFFSET)) // again magnetometer is calibrated to be set between -100 and 100
#define MAGN_Z_SCALE (100.0f / (MAGN_Y_MAX - MAGN_Y_OFFSET))
#define MAGN_Z_SCALE (100.0f / (MAGN_Z_MAX - MAGN_Y_OFFSET))

Change the magnetometer values from

M[1] = (compass.m.x); M[2] = (compass.m.y); M[3] = (compass.m.z);

То

```
M[1] = (compass.m.x - MAGN_X_OFFSET) * MAGN_X_SCALE * ACCEL_X_DIR; // note the directions of the magnetometer are the same as the
M[2] = (compass.m.y - MAGN_Y_OFFSET) * MAGN_Y_SCALE * ACCEL_Y_DIR; // accelerometer in my IMU
M[3] = (compass.m.z - MAGN_Z_OFFSET) * MAGN_Z_SCALE * ACCEL_Z_DIR;
```

Magnetometer is now calibrated

🔟 🛃 🤊 - 1	(× + \$												Boo	k4 - Microsoft E	xcel			_									_ 0 _ ×
File Ho	ome Inser	t Page	Layout	Formulas	Data Re	view Vi	ew D	eveloper	Add-Ins																		a 🕜 🗆 🗗 🕮
Cut		Calibri	Ŧ	11 - A A	• = = [Pf -	Wrap Text		Seneral				Normal	Bad		Good	Neut	ral	Calculati	on		🗫 🎬	Σ AutoSu	um * A		
Paste Cop	oy *	B Z I	τ	- 3 - A	. = =		-	Merne & (Center T	\$ - % •	€.g .0g	Condition	nal Format	Check Cell	Exp	lanatory	Followed Hy	Hype	rlink	Input	*	Insert (لسين الله Delete Format	🛃 Fill 🔻	Sort	& Find &	
→ 🍼 For	mat Painter		E data	<u></u>				in the ge of t		e ye y	.000	Formattin	g * as Table '	, handshakan dhalan kili					111-22	Total Reserve		*			Filter	* Select *	
M/5	u (a)	(a.	£		1.26	Al	ignment		1.8	TACHIDE	1 13					31)	lies					1	Cens		county		
***																											4
A	В	С	D	E	F	G	Н	ï	J	к	Ē	M	N	0	P	Q	R	S	Т	Ú	V	W	X	Y	Z	AA	AB AC
1 time	dt in ms	acce x	acce y	acce z	gyrox g	yroy j	gyro z	mag x	mag y	mag z	roll	pitch	yaw														
2 #########	448	1.2	2 0.6	6 -98.94	0	0	(33.18	-17	101.68																	
3 #########	50	2.48	3 0.6	4 -99.31	0	0	0.03	1 33.18	-17	101.68																	
4 #########	91	2.19	-0.2	-99.25	0	0	0.04	4 32.98	-17.21	102.44												r	-				
5 ##########	95	-1.0	0.1	4 -99.47	0	0	0.0	2 32.04	-19.67	102.23																	
7 #########	94	-1.16	5 -0.0	-99.19	0	0	0.0	21 52.04	-19.07	102.23																	
8 ##########	95	-0.05	5 -0.1	4 -99.35	0	-0.01	0.03	3 31.59	-21.12	101.73																	
9 #########	95	-0.48	3 0.7	1 -99.18	0	0	0.02	2 31.1	-23	102.11																	
10 #########	96	0.59	0.8	-99.52	0	0.01	0.0	1 30.2	-24.58	101.56																	
11 ####### ##	92	0.29) 0	4 -99.37	0	0.02		30.2	-24.58	101.56																	
12 #########	92		120															2				(0.1.1		926 3 1		53	
13 #########	94		100 -						_	_			-									Data Acc	quisition for Ex	cel	-		
14 #########	92		-																			, pig	AND B	Contro	bl		
15 ########	94		E 🕺 🗌																			PL	X-DAQ	Down	load Data		
15 #########	93		ee 60 +																			Sett	ings	User1	Stored Da	ca	
18 ##########	92	-	5 40 -								_	_	_				_		mag	g x		Port:	6 💌	🗌 User2			
19 #########	92		ate			-				~		\rightarrow							—mag	ε γ		Baud:	9600 💌	Reset 1	Timer		
20 ########	93						\sim			_									——mag	g z			Connect	Clear Co	lumns		
21 ########	93		e o t						~~				<u> </u>				_						Reset on		 _		
22 ########	92		-20			_				~													Connect		<u>.</u>		
23 ########	91		-40			~																	Contro	ller Message	es		
24 ########	92		60																				Dis	connected			
25 ########	94		-00	00.40	0	0	0.1	1 26.4	24.70	100.07		1										(
20 *****	96	-2.13	0.0		0	0	0.1	1 -20.4	-24.75	100.97																	
28 #########	94	0.61	1.0	2 -98.86	0	0	0.1	1 -31.83	-16.54	100.84																	
29 ########	93	1.26	5 0.6	3 -99.17	0	0	0.1	1 -34.98	-6.79	100.46																	
30 ########	93	1.02	2 0.7	3 -98.92	0	0	0.09	9 -34.98	-6.79	100.46																	
31 #########	92	0.11	L 0.9	-99.68	0	0	0.09	9 -36.04	2.13	99.66																	
32 ########	89	0.74	<mark>۱ 0.</mark> 6	-99.76	0	0	0.09	9 -36.04	2.13	99.66									_	_							
33 ########	92	0.56	5 1.1	.1 -99.71	0	0	0.09	9 -35.39	10.42	99.83				Mag	on e	tom	neter	· \/2	lue	s fo	r 26	SO°	V 2W	1			
34 #########	90	0.82	2 1.3	6 -98.97	0	0	0.:	1 -35.39	10.42	99.83				ivide	5110			va	iuc	510	1 3(50	yuv	/			
35 ########	91	0.10	s 1	.2 -98.89	0	0	0.:	1 -31.39	19.12	99.07																	
37 ####################################	89	-0.12	· 1.2	-4 -99.37	0	0	0.1	1 -25.99	20.54	100.08																	
38 #########	91	3.15	5 11	2 -99.07	0	0	0.0	-172	32.04	99,92																	
39 #########	88	0.84	1.5	6 -99.28	0	0	0.1	1 -17.2	32.04	99.92																	
40 #########	89	3.2	2 4.0	-99.09	0	0	0.1	1 -8.99	35.21	100.13																	
41 #########	89	-0.15	i -2.0	-99.78	0	0	0.13	1 -8.99	35.21	100.13																	
42 ########	91	2.57	7 1.1	.4 -98.75	0	0	0.13	1 1.14	35.71	100.93																	- _
R A P P Sh	eet1 / She	et2 / She	eet3 📈 🔁																							□ 100%	
кеаду 🛅						_																				- <u>100%</u> (-	y

Magnetometer is now calibrated

🛛 😓 🧐 🔻 G	* 🔻												Boo	k4 - Micros	oft Excel				_								- 0	×
File Hon	ie Insei	rt Pag	e Layout	Formulas	Data Re	eview V	/iew De	veloper	Add-Ins																		۵ 🕜 🗆	. er 23
🚰 🔏 Cut		Calibri	*	11 × A* /	· = _ (- Ser	k¶ − 5	Wran Text		eneral	*		H	Normal	Ba	4	Good	Neu	itral	Calculati	on 1		B	Σ AutoSur	m * A	40		
Copy	7	1.001/00/	227. 11.040		·	<u>=) ~</u>		a	9 🗵 8 17 17	2000 C	× 000			Process area		n Geographica		1971 - 1986			•	Tarrat		🛃 Fill 🔹	Nu Zu	Curd A		
🚽 💞 Form	at Painter	BI	<u>u</u> • <u> </u>	• <u>></u> • A			F I	and Merge & (Center *	\$ * % ,	.000	Formattin	g * as Table :	CONTENCIO	all EX	planatory	Followed H	<u>ч</u> нур	erlink	Input	7	*		🖉 Clear 🕶	Filter	Select *		
Clipboard	T _M		Font		ι <u>α</u>	A	lignment		Γ ₂	Numbe	er Ga					St	yles						Cells		Editing			
										^																		
			-	T. mer-	T		10 10 MAX	T	10	T	1	1	1	1	1		40	1 78	1 22	T - 22	- W	I anares				Sec. 1		-
A	В	С	D	E	F	G	н	1	1	к	E	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z	AA	AB	AC
1 time	it in ms	acce x	acce y	acce z	gyro x	gyro y	gyro z	mag x	mag y	mag z	roll	pitch	yaw															102
2 #########	448	8.	7 1	.3 -98.34	0	-0.01	0	-44.09	1.88	94.14																		
3 #########	50	8.9	2 0.7	/5 -98.96	0	-0.01	0	-44.09	1.88	94.14																		
5 ##########	91). 1 /	2 -0.5	101.00	0.01	-0.02	0	-41.77	2.21	90.04																		
5 ####################################	95	-6.3	1 09	-101.99	-0.01	-0.03	0	-35.00	2.04	98.61					1													
7 ##########	93	-19.0	3 1	.5 -98.32	-0.01	-0.09	0.01	-18.19	2.33	103.33						•												
8 #########	95	-37.7	3 0.0)3 -92.11	0.01	-0.11	0	-18.19	2.33	103.33																		
9 #########	95	-51.4	8 -1.3	-81.82	0	-0.1	0	11.24	2.75	105.18																		
10 #########	98	-69.	3 -2.7	-69.96	0.01	-0.09	-0.01	40.17	3.83	98.1																		
11 #########	94	-80.9	6 -1	.4 -56.87	-0.01	-0.12	0	40.17	3.83	98.1										1								
12 #########	95	-	150 _T		e e e e e e e e e e e e e e e e e e e	Construction of		C. Strongers																	1	57		
13 #########	95																					Data Ac	quisition for E	xcel		25		
14 #########	96	-1	100 -	-	~	-	~										_	-				1	A	Control	1			
15 #########	93	-	c				1	-			1											PI	X-DA0	C Downlo	oad Data			
16 ########	96		80 50 -			1		1														Set	tings	Clear S	tored Data			
17 #########	97	-	E		F														mag	; x		Port:	6 -	User1				
18 #########	95	-	- ted		/													•	—— m ag	s y		Baud	9600 -	Reset Ti	mer			
19 #########	95		ora		-		\mathbf{N}												— mag	g z								
20 #########	95		₩ -50 -				<u> </u>		-+			_						·					Connect	Clear Coli	umns			
21 *********	95		U U					~	>	≺												- F	Reset on Connect					
22 ********	93		-100 -					<u> </u>		<u> </u>													Contro	ller Messages	-			
24 #########	91																						Dis	sconnected		-		
25 #########	90		-150																									
26 ########	91	26.2	1 7.0	93.75	0.01	-0.04	-0.01	19.25	-4.92	-101.22																		
27 #########	94	22.	5 6.5	68 105.08	0.01	-0.05	0.01	9.89	-7.92	-102.86																		
28 #########	93	35.2	5 9.4	14 98.24	0	-0.06	0	9.89	-7.92	-102.86																		
29 #########	96	43.3	2 7.0	90.26	-0.01	-0.07	0	-8.75	-6.13	-102.19																		
30 #########	95	59.0	7 6.6	53 85.5 8	-0.01	-0.12	0	-8.75	-6.13	-102.19																		
31 #########	97	81.8	6 9.5	66.14	0.01	-0.14	0	-36	-3.38	-95.96																		
32 #########	95	46.	7 7.1	.3 3.59	0.14	-0.19	-0.08	-74.42	-15.75	-68.58																		
33 #########	97	110.5	6 21	.2 22.75	0.01	-0.17	0.03	-74.42	-15.75	-68.58				N/ a	aσna	ton	nete	r va	alue	s fo	r 26	ናበ°	nite	•h				
34 #########	96	102.	3 5.0	8.75	-0.03	-0.13	0.03	-95.26	-12.46	-35.97				IVIC	18110		icie		nuc	510	1 3	00	pitt					
35 #########	95	97.8	2 5.4	-27.65	-0.02	-0.08	0.02	-95.26	-12.46	-35.97																		
36 #########	97	89.7	3 1.4	42 -34.18	-0.01	-0.1	0.02	-103.43	-5.17	-3.12																		
3/ #########	97	84.3	/ 3.6	08 -54./3	0	-0.08	0.01	-100.69	-1	22.96																		
30 ####################################	9/	73.2	0 1.7 8 _2 ?	-00.15	0.01	-0.07	0.01	-100.09	-1	22.96																		
10 #########	50	75.2	0 -3.2 1 _2.4	-72.3 -79.27	0.01	-0.09	0.02	- 24.77	2.5	40.14																		
41 ########	96	50.1	4 -6.8	31 -90 17	-0.01	-0.08	0.01	-34.77	6.42	61.92																		
42 #########	96	35.6	. 0.0 8 -2.6	57 -94.84	-0.01	-0.08	0,01	-64.98	6,58	80,33																		
II I I I She	et1 / She	et2 / Sh	eet3 🏑 🔁	/		2.50		250	2.00			1	1															•
Ready 🔚																										100% 😑)	

All 9 sensors a now calibrated.

We need to use them to calculate roll pitch and yaw. I am going to use a complementary filter.

More info about it and why we would use a complementary filter found here:

https://b94be14129454da9cf7f056f5f8b89a9b17da0be.googledrive.com/host/0B0ZbiLZrqVa6Y2d3UjFVWDhNZms/filter.pdf

AHRS

AHRS

Step 1 Calculate roll pitch yaw using accelerometer and magnetometer

More definitions

 roll is defined in the [-180, 180] range and pitch is defined in the [-90, 90] range, therefore you can not use same equation to calculate both roll and pitch as it is shown in many tutorials

few equations

$$roll_a = atan2(a_y, a_z)$$

$$pitch_a = \operatorname{atan}\left(\frac{a_x}{\sqrt{a_y^2 + a_z^2}}\right)$$

$$yaw_m = atan2(Y_h, X_h)$$

Where, X_M, Y_M, and Z_M are magnetic sensor measurements.

https://www.pololu.com/file/download/...?file_id=0J434

First calculate roll pitch and yaw

Add 2 definitions

#define TO_RAD(x) (x * 0.01745329252) // *pi/180
#define TO_DEG(x) (x * 57.2957795131) // *180/pi

Then after data conversion in loop() function add

roll_A = TO_DEG(atan2(A[2], A[3]));

pitch_A = TO_DEG(atan(A[1]/sqrt(A[2]*A[2]+A[3]*A[3])));

```
Xh = M[1] * cos(TO_RAD(pitch)) + M[3] * sin(TO_RAD(pitch));
Yh = M[1] * sin(TO_RAD(roll)) * sin(TO_RAD(pitch)) + M[2] * cos(TO_RAD(roll)) - M[3] * sin(TO_RAD(roll)) * cos(TO_RAD(pitch));
yaw_M = TO_DEG(atan2(Yh,Xh));
```

This is a good beginning but these equations assumes that the IMU is flat (roll = pitch = 0) and pointing in the right direction (yaw = 0)

These equations take into account that the IMU might not be exactly flat and pointing in the right direction:

roll_A = T0_DEG(atan2(A[2], A[3])) - roll_init ; pitch_A = T0_DEG(atan(A[1]/sqrt(A[2]*A[2]+A[3]*A[3]))) - pitch_init ; Xh = M[1] * cos(T0_RAD(pitch)) + M[3] * sin(T0_RAD(pitch)); Yh = M[1] * sin(T0_RAD(roll)) * sin(T0_RAD(pitch)) + M[2] * cos(T0_RAD(roll)) - M[3] * sin(T0_RAD(roll)) * cos(T0_RAD(pitch)); yaw_M = T0_DEG(atan2(Yh,Xh)) - Heading ;

// roll_init, pitch_init and Heading are the original roll pitch and yaw when the code started

But the equations gives results outside of the [-180, 180] or [-90, 90] ranges

So I created a function to set all angles in the right ranges:

The Final roll pitch yaw corected equations are:

```
roll_A = Correction( 180 , TO_DEG( atan2(A[2], A[3])) - roll_init );
pitch_A = Correction( 90 , TO_DEG( atan(A[1]/sqrt(A[2]*A[2]+A[3]*A[3])) ) - pitch_init );
Xh = M[1] * cos(TO_RAD(pitch)) + M[3] * sin(TO_RAD(pitch));
Yh = M[1] * sin(TO_RAD(roll)) * sin(TO_RAD(pitch)) + M[2] * cos(TO_RAD(roll)) - M[3] * sin(TO_RAD(roll)) * cos(TO_RAD(pitch));
yaw_M = Correction( 180 , TO_DEG(atan2(Yh,Xh)) - Heading );
```

Add the data into Excel

Just to check that everything is OK

Replace print block by this one:

Serial.print("DATA,TIME,");

```
Serial.print(dt);
                       Serial.print(",");
Serial.print(A[1]);
                       Serial.print(","); Serial.print(A[2]); Serial.print(","); Serial.print(A[3]); Serial.print(",");
                       Serial.print(","); Serial.print(G[2]); Serial.print(","); Serial.print (G[3]); Serial.print(",");
Serial.print(G[1]);
Serial.print(M[1]);
                       Serial.print(","); Serial.print(M[2]); Serial.print(","); Serial.print (M[3]); Serial.print(",");
Serial.print(roll_A); Serial.print(","); // roll calculated using accelerometer's data
Serial.print(roll);
                       Serial.print(","); // final roll, will be used in step 2, not used for now
Serial.print(pitch_A); Serial.print(","); // pitch calculated using accelerometer's data
Serial.print(pitch);
                       Serial.print(","); // final pitch, will be used in step 2 , not used for now
Serial.print(yaw_M);
                       Serial.print(","); // yaw calculated using magnetometer's data
Serial.print(yaw);
                       Serial.print(","); // final yaw, will be used in step 2 , not used for now
Serial.println();
```

Add the data into Excel

AHRS

Step 2 Calculate roll pitch yaw using gyro

Using gyro

If IMU is flat it is simple

roll_G = roll + dt * G[1] ;
pitch_G = pitch + dt * G[2] ;
yaw_G = yaw + dt * G[3] ;

If IMU is not flat it is not simple, we must correct the angular rates of the gyro to Euler's angular rates first

The resulting transformation matrix for converting body-frame angular rates to Euler angular rates is given by

 $D(\phi, \theta, \psi) = \begin{pmatrix} 1 & \sin(\phi) \tan(\theta) & \cos(\phi) \tan(\theta) \\ 0 & \cos(\phi) & -\sin(\phi) \\ 0 & \sin(\phi) / \cos(\theta) & \cos(\phi) / \cos(\theta) \end{pmatrix}.$ Source: http://www.chrobotics.com/library/understanding-euler-angles

Final gyro's equations:

roll_G = roll + dt * (G[1]+sin(TO_RAD(roll))*tan(TO_RAD(pitch))*G[2]+cos(TO_RAD(roll))*tan(TO_RAD(pitch))*G[3]); pitch_G = pitch + dt * (cos(TO_RAD(roll))*G[2]-sin(TO_RAD(roll))*G[3]); yaw_G = yaw + dt * (sin(TO_RAD(roll))/cos(TO_RAD(pitch))*G[2]+cos(TO_RAD(roll))/cos(TO_RAD(pitch))*G[3]);

AHRS

Step 3 Combine step 1 and 2

Source: https://b94be14129454da9cf7f056f5f8b89a9b17da0be.googledrive.com/host/0B0ZbiLZrqVa6Y2d3UjFVWDhNZms/filter.pdf

If roll pitch and yaw are small, then it is easy to code:

roll = 0.02 * roll_A + 0.98 * roll_G ; pitch = 0.02 * pitch_A + 0.98 * pitch_G ; yaw = 0.02 * yaw_M + 0.98 * yaw_G ;

But this does not work when angles are large

Roll oscillations around 180 IMU is flipped

If roll pitch and yaw are large we have to take into account that the arithmetic mean is not the same as the mean used on angles

```
roll = CompFilter( 180, roll_A, roll_G );
pitch = CompFilter( 90, pitch_A, pitch_G );
yaw = CompFilter( 180, yaw_M, yaw_G );
```

I created a function that convert the angles before calculating the mean:

roll

calculated roll

The CompFilter function could have been avoided using the mean of circular quantities like this

roll = atan2(0.02*sin(roll_A) +0.98*sin(roll_G) , 0.02*cos(roll_A) +0.98*cos(roll_G)); pitch = atan2(0.02*sin(pitch_A)+0.98*sin(pitch_G) , 0.02*cos(pitch_A)+0.98*cos(pitch_G)); yaw = atan2(0.02*sin(yaw_M) +0.98*sin(yaw_G) , 0.02*cos(yaw_M) +0.98*cos(yaw_G));

This code is more elegant, does not require the CompFilter function but it is slightly slower.

More info here: http://en.wikipedia.org/wiki/Mean_of_circular_quantities

IMU and AHRS are working

Data visualization Excel

Data visualization Processing

Looking at the data in Excel is good for calibration, a processing sketch is better for visualization

IMU_Processing Processing 1.2.1			
File Edit Sketch Tools Help			
IMU_Processing			+
Serial fd;		MU_Processing	
int nitch - 0.			
int roll = 0;			
<pre>int yaw = 0;</pre>			
void setup ()			
(
<pre>size(640, 640, P3D); fd = new Serial(this, Serial, list()[1].</pre>	96001: // Connect to the corresponding serial port		
fd.bufferUntil('\n');	// Defer callback until new line		
))			
void draw ()			
(· · · · · · · · · · · · · · · · · · ·			
<pre>background(0.5);</pre>	// Set background		
pushMatrix();			
translate(width/2, height/2, -30);			
<pre>rotateZ(((float)pitch)*PI/180.0); rotateZ(((float)roll)*PI/180.0);</pre>	// Rotate		
<pre>rotateY(((float)yaw) *PI/180.0);</pre>			
<pre>print("Pitch: "); print(pitch);</pre>	// Print data		
<pre>print(", Roll: "); print(roll);</pre>			
<pre>print(", Yaw: "); println(yaw);</pre>			
scale(90); heginShane(OUADS);			
		L	
fill(0, 255, 0); vertex(-1, 0.1, 1);			-
			•
Pitch: 2, Roll: 5, Yaw: 39 Ditch: 2, Roll: 5, Yaw: 39			
Ditch: 2 Doll: 5 Yaw: 39			

Final note

Simpler algorithm

You might not need a full AHRS algorithm, for example in a balancing robot or hovering quadcopter where the IMU is flat

sin(x) = x

if x is small, typically x < 20°

This means that you do not have to use any trigonometry, this lead to much faster algorithms

Also, you do not have to convert the gyro's body frame to Euler's angles, because they are almost the same. This lead to even faster algorithms

Example balancing robot

Declarations and Setup function are the same as previously

```
void loop() {
 // GET DATA ------
 compass.read();
 qyro.read();
 dt = millis()-t;
 t = millis();
 // CALIBRATE DATA ------
 A[2] = (compass.a.y - ACCEL_Y_OFFSET) * ACCEL_Y_SCALE * ACCEL_Y_DIR; // Gather only necessary data
 A[3] = (compass.a.z - ACCEL_Z_OFFSET) * ACCEL_Z_SCALE * ACCEL_Z_DIR;
 G[1] = (gyro.g.x - GYRO_OFFSET_X) * GYRO_SCALE * GYRO_X_DIR ;
 // CALCULATE ROLL ONLY ------
 roll_A = TO_DEG(A[2]/A[3]) - roll_init; // no trigonometry here, accurate for angles bellow 30 degrees
 roll_G = roll + dt * G[1]; // no body frame to Euler conversion here
 roll = 0.04 * roll_A + 0.96 * roll_G; // simple complementary filter here
 // PID -----
 error = Setpoint - roll;
 integral = integral + error * dt;
 derivative = (error - previous_error) / dt;
 previous_error = error;
 Output = Kp*error + Ki*integral + Kd*derivative;
 // MOTORS ------
  motorGo(0, Output); // function that turn on the motor's to a specific speed
  motorGo(1, Output);
```

The simplifications make the code short and simple

}

GL HF