
IMU & AHRS algorithms

Francois

IMU & AHRS algorithms

The objective of this document is to provide a quick start to

anyone interested in using IMUs.

Even though the code is simple and short, it is not a plug and

play library. This document was created so you can understand

what your code.

Hardware

You will need:

• Computer

• Arduino Uno R3

• IMU

I used IMU MinIMU-9 v3 from Polulu found here: https://www.pololu.com/product/2468

Follow tutorials and connect computer, Arduino and IMU

Software

You will need:

• Arduino IDE

• Arduino libraries for IMU sensors

https://www.pololu.com/product/2468/resources

• Excel

• PLX-DAQ add-in for Excel

http://www.parallax.com/downloads/plx-daq

IMU

Lets start with a reference

x

y

z

roll

pitch

yaw

This is the most important step

Make sure your reference is clear

OK Not OK

Z is different

x

y

z

Now, lets get some data

#include < Wire .h> // load libraries
#include < L3G.h>
#include < LSM303.h>

L3G gyro;
LSM303 compass;

float A[4]; // declare variables A for accelerometer, G for gyro and M for magnetometer
float G[4];
float M[4];

void setup()
{

Serial . begin (9600); // start talking
Wire . begin ();
gyro. init (); // start gyro
gyro. enableDefault ();
compass. init (); // start accelerometer and magnetometer
compass. enableDefault ();

}

void loop()
{

gyro. read (); // get data from sensors
compass. read ();

A[1] = compass.a.x; // record data
A[2] = compass.a.y;
A[3] = compass.a.z;
G[1] = gyro.g.x;
G[2] = gyro.g.y;
G[3] = gyro.g.z;
G[1] = gyro.g.x;
G[2] = gyro.g.y;
G[3] = gyro.g.z;

Serial . print (A[1]); Serial . print (","); Serial . print (A[2]); Serial . print (","); Serial . print (A[3]); Serial . print (","); // print all data
Serial . print (G[1]); Serial . print (","); Serial . print (G[2]); Serial . print (","); Serial . print (G[3]); Serial . print (",");
Serial . print (M[1]); Serial . print (","); Serial . print (M[2]); Serial . print (","); Serial . print (M[3]); Serial . print (",");
Serial . println ();
delay (20);

}

Click upload and here it is:

raw data streaming to the serial port.

#include < Wire .h> // load libraries
#include < L3G.h>
#include < LSM303.h>

L3G gyro;
LSM303 compass;

float A[4]; // declare variables A for accelerometer, G for gyro and M for magnetometer
float G[4];
float M[4];

void setup()
{

Serial . begin (9600); // start talking
Wire . begin ();
gyro. init (); // start gyro
gyro. enableDefault ();
compass. init (); // start accelerometer and magnetometer
compass. enableDefault ();

}

void loop()
{

gyro. read (); // get data from sensors
compass. read ();

A[1] = compass.a.x; // place holder for data conversion
A[2] = compass.a.y;
A[3] = compass.a.z;
G[1] = gyro.g.x;
G[2] = gyro.g.y;
G[3] = gyro.g.z;
G[1] = gyro.g.x;
G[2] = gyro.g.y;
G[3] = gyro.g.z;

Serial . print (A[1]); Serial . print (","); Serial . print (A[2]); Serial . print (","); Serial . print (A[3]); Serial . print (","); // print all data
Serial . print (G[1]); Serial . print (","); Serial . print (G[2]); Serial . print (","); Serial . print (G[3]); Serial . print (",");
Serial . print (M[1]); Serial . print (","); Serial . print (M[2]); Serial . print (","); Serial . print (M[3]); Serial . print (",");
Serial . println ();
delay (20);

}

Lets upload the raw data to Excel.

It is not necessary but so useful

First install PLX-DAQ add-in for Excel

Add these commands to setup() function

Replace print block in loop() function, by this one

Serial . println ("CLEARDATA");
Serial . println ("LABEL,time,dt in ms,acce x,acce y,acce z,gyro x,gyro y,g yro z,mag x,mag y,mag z,roll,pitch,yaw");

Serial . print ("DATA,TIME,");
Serial . print (","); Serial . print (",");
Serial . print (A[1]); Serial . print (","); Serial . print (A[2]); Serial . print (","); Serial . print (A[3]); Serial . print (","); // print all data
Serial . print (G[1]); Serial . print (","); Serial . print (G[2]); Serial . print (","); Serial . print (G[3]); Serial . print (",");
Serial . print (M[1]); Serial . print (","); Serial . print (M[2]); Serial . print (","); Serial . print (M[3]); Serial . print (",");
Serial . println ();

row++;
if (row > 500) {row=0; Serial . println ("ROW,SET,2"); }

Add a row variable
int row = 0;

For a complete explanation, see: http://robottini.altervista.org/arduino-and-real-time-charts-in-excel

Open PLX add-in for Excel, choose the right

serial port and click connect

Data appear

in real time

Create a graph

to plot data in

real time

Note: I had troubles with PLX add-in.

So if PLX add-in works you are lucky, if it does not work, do not

panic: click debug or press Alt+F11 to open VBA

Then find the line that bugs (it will be shown in yellow) and

comment this line.

Like this

Now that you can plot the data in real time in

Excel, we can start calibrating the accelerometer

The accelerometer measure the acceleration, however like any sensor it is not

perfect and the accelerometer has an offset.

The best way to calibrate the offset of the accelerometer would be to go in

space and measure the output of the sensor under no acceleration and no

gravity, but this is not going to happen. So lets point the accelerometer down

to measure gravity then point the sensor up to measure gravity again. The

mean between the 2 values is the sensor’s offset.

Then repeat the experiment for all three axis.

X flat

X down

X up

Y up

Y down

Z up

Z down

Procedure:

� First point X down then up,

� Next point Y down them up,

� Finally point Z down then up.

Some data was deleted to make graph simpler

Now that you can plot the data in real time in

Excel, we can start calibrating the accelerometer

I added the calibration factors as definitions before the setup() function like this:

Note: scaling all accelerometer’s value between -100 and 100 is arbitrary, most people like to

scale the accelerometer between -9.8 and 9.8 because gravity was used during calibration. In the

end accelerometers data will be used to calculate angles so the scale factor does not change

anything.

A good tutorial for calibration is found here: http://www.starlino.com/imu_guide.html

#define ACCEL_X_MIN ((float) -16340) // Add Min an Max values from calibration
#define ACCEL_X_MAX ((float) 16975)
#define ACCEL_Y_MIN ((float) -15830)
#define ACCEL_Y_MAX ((float) 16380)
#define ACCEL_Z_MIN ((float) -16570)
#define ACCEL_Z_MAX ((float) 16910)
#define ACCEL_X_DIR ((int) 1) // If up and down are reversed then the direction o f the sensor is negative
#define ACCEL_Y_DIR ((int) -1)
#define ACCEL_Z_DIR ((int) -1)
#define ACCEL_X_OFFSET ((ACCEL_X_MIN + ACCEL_X_MAX) / 2.0f) // The Offset is the average of the Min and MAX val ues
#define ACCEL_Y_OFFSET ((ACCEL_Y_MIN + ACCEL_Y_MAX) / 2.0f)
#define ACCEL_Z_OFFSET ((ACCEL_Z_MIN + ACCEL_Z_MAX) / 2.0f)
#define ACCEL_X_SCALE (100.0f / (ACCEL_X_MAX - ACCE L_X_OFFSET)) // Scale all accelerometers between -100 and 100
#define ACCEL_Y_SCALE (100.0f / (ACCEL_Y_MAX - ACCE L_Y_OFFSET))
#define ACCEL_Z_SCALE (100.0f / (ACCEL_Z_MAX - ACCE L_Z_OFFSET))

Now that you can plot the data in real time in

Excel, we can start calibrating the accelerometer

Now, process raw accelerometer data into

calibrated accelerometer data

X down

Replace this
A[1] = compass.a.x; // place holder for data conversion
A[2] = compass.a.y;
A[3] = compass.a.z;

Into this
A[1] = (compass.a.x - ACCEL_X_OFFSET) * ACCEL_X_SCALE * ACCEL_X_DIR; // accelerometer’ values are now between -100 and 1 00
A[2] = (compass.a.y - ACCEL_Y_OFFSET) * ACCEL_Y_SCALE * ACCEL_Y_DIR;
A[3] = (compass.a.z - ACCEL_Z_OFFSET) * ACCEL_Z_SCALE * ACCEL_Z_DIR;

Final results! Accelerometer values as a function of time

All values are fixed between -100 and 100 and value are negative when sensor is down and positive when
sensor is up

X up Y up

Y down

Z up

Z down

Now let’s calibrate the gyro’s offset

Getting the offset of the gyro is easy, leave the sensor alone (not moving) and

look at the gyro’s values for x y and z.

Now let’s calibrate the gyro’s direction

Let’s check the direction of the sensor, by rolling 90° positive, pitching 90°

positive and yawing 90° positive.

90° +

back to 0

90° +

back to 0 back to 0

90° +

Y and Z axis are in the wrong direction

We can start calibrating the gyro’s data

Add offset and directions of the gyro as definitions

define GYRO_OFFSET_X ((float) 122.0)
#define GYRO_OFFSET_Y ((float) -496.0)
#define GYRO_OFFSET_Z ((float) 48.0)

#define GYRO_X_DIR ((int) 1)
#define GYRO_Y_DIR ((int) -1)
#define GYRO_Z_DIR ((int) -1)

Then, replace this block

G[1] = gyro.g.x;
G[2] = gyro.g.y;
G[3] = gyro.g.z;

By this one

G[1] = (gyro.g.x - GYRO_OFFSET_X) * GYRO_X_DIR; // This take into account the offset of the gyro an d the direction
G[2] = (gyro.g.y - GYRO_OFFSET_Y) * GYRO_Y_DIR; // scale factor is still missing
G[3] = (gyro.g.z - GYRO_OFFSET_Z) * GYRO_Z_DIR;

Now the gyro’s data is 0 when the gyro is not

moving and direction correct, but data has no

units

Let’s calibrate the gyro’s scale factor.

We need to convert these arbitrary

numbers into a useful unit

We need to find out the units of the gyro

The gyro provides a rate of change, not the change itself, so we need take time

into account

First declare time variables

float dt; // time between gyro readings in milliseconds

float t = millis(); // time = now in milliseconds

Then right after reading the gyro data add

dt = millis () - t;

t = millis ();

Add the time between readings into excel
Serial . print ("DATA,TIME,");
Serial . print (dt); Serial . print (","); // dt is added here nothing else change
Serial . print (A[1]); Serial . print (","); Serial . print (A[2]); Serial . print (","); Serial . print (A[3]); Serial . print (",");
Serial . print (G[1]); Serial . print (","); Serial . print (G[2]); Serial . print (","); Serial . print (G[3]); Serial . print (",");
Serial . print (M[1]); Serial . print (","); Serial . print (M[2]); Serial . print (","); Serial . print (M[3]); Serial . print (",");
Serial . println ();

Now the gyro’s data is 0 when the gyro is not

moving and directions are correct.

Next, we need to convert the gyro arbitrary

scale to something useful.

In order to do that we move the gyro by 90

degrees and record the data:

Add in Excel a column with the eq. Gyro x dt

Gyro data for 90° pitch

Gyro x dt

Add in Excel a column with the eq. Gyro x dt

Gyro data for 90° pitch

Gyro x dt

We sum every red points

and get: 10359600

This number represents a

90° pitch, therefore our gyro

scale is

90° / 10359600 = 0.000009

You should repeat this step

for all axis. I noticed that I

was getting the same scale

factor for roll pitch and yaw,

so I am using only one gyro

scale factor for all three axis.

Final gyro’s calibration

Add offset and directions of the gyro as definitions

define GYRO_OFFSET_X ((float) 122.0)
#define GYRO_OFFSET_Y ((float) -496.0)
#define GYRO_OFFSET_Z ((float) 48.0)
#define GYRO_SCALE ((float) 0.0000090)
#define GYRO_X_DIR ((int) 1)
#define GYRO_Y_DIR ((int) -1)
#define GYRO_Z_DIR ((int) -1)

Then, replace this block

G[1] = (gyro.g.x - GYRO_OFFSET_X) * GYRO_X_DIR; // This take into account the offset of the gyro an d the direction
G[2] = (gyro.g.y - GYRO_OFFSET_Y) * GYRO_Y_DIR;
G[3] = (gyro.g.z - GYRO_OFFSET_Z) * GYRO_Z_DIR;

By this one

G[1] = (gyro.g.x - GYRO_OFFSET_X) * GYRO_SCALE * GYRO _X_DIR; // now the gyro’s data is fully calibrated [degrees / ms / gyro unit]
G[2] = (gyro.g.y - GYRO_OFFSET_Y) * GYRO_SCALE * GYRO _Y_DIR;
G[3] = (gyro.g.z - GYRO_OFFSET_Z) * GYRO_SCALE * GYRO _Z_DIR;

Gyro is now calibrated !

roll pich yaw

Calibration of the magnetometer can be tricky…

A good tutorial can be found here:

https://github.com/ptrbrtz/razor-9dof-ahrs/wiki/Tutorial

I used a simple calibration using min and max similar to the

accelerometer’s calibration with good results. The tricky part is

that it is not easy to get the min and max values because you

need to orientate the accelerometer exactly in the direction of

the earth’s magnetic field.

One solution can be to take lots and lots of points and hope to

be lucky. That works, but I prefer to see the data in a graph in

order to make sure I am at the right place. This was done in Excel

(Matlab would be much easier).

Lets find magnetometer’s mins and maxs

If you want to make a plot in 3D in excel, you will find more

info here: http://www.doka.ch/Excel3Dscatterplot.htm

Magnetometer calibration

Visualisation of the data in 3D is not necessary, but useful to make sure

nothing strange is happening (for example, magnetometer’s data is

messed up by your computer’s screen magnetic field). Once min and

max have been identified add calibration parameters as definitions
#define MAGN_X_MIN ((float) -1643)
#define MAGN_X_MAX ((float) 3251)
#define MAGN_Y_MIN ((float) -2071)
#define MAGN_Y_MAX ((float) 2729)
#define MAGN_Z_MIN ((float) -1550)
#define MAGN_Z_MAX ((float) 3198)
#define MAGN_X_OFFSET ((MAGN_X_MIN + MAGN_X_MAX) / 2.0f)
#define MAGN_Y_OFFSET ((MAGN_Y_MIN + MAGN_Y_MAX) / 2.0f)
#define MAGN_Z_OFFSET ((MAGN_Z_MIN + MAGN_Z_MAX) / 2.0f)
#define MAGN_X_SCALE (100.0f / (MAGN_X_MAX - MAGN_X_ OFFSET)) // again magnetometer is calibrated to be set betwe en -100 and 100
#define MAGN_Y_SCALE (100.0f / (MAGN_Y_MAX - MAGN_Y_ OFFSET))
#define MAGN_Z_SCALE (100.0f / (MAGN_Z_MAX - MAGN_Z_ OFFSET))

Change the magnetometer values from
M[1] = (compass.m.x);
M[2] = (compass.m.y);
M[3] = (compass.m.z);

To
M[1] = (compass.m.x - MAGN_X_OFFSET) * MAGN_X_SCALE * ACCEL_X_DIR; // note the directions of the magnetometer are the same as the
M[2] = (compass.m.y - MAGN_Y_OFFSET) * MAGN_Y_SCALE * ACCEL_Y_DIR; // accelerometer in my IMU
M[3] = (compass.m.z - MAGN_Z_OFFSET) * MAGN_Z_SCALE * ACCEL_Z_DIR;

Magnetometer is now calibrated

Magnetometer values for 360° yaw

C
a

lib
ra

te
d

 m
a

g
n

Magnetometer is now calibrated

Magnetometer values for 360° pitch

C
a

lib
ra

te
d

 m
a

g
n

All 9 sensors a now calibrated.

We need to use them to calculate roll pitch and yaw.

I am going to use a complementary filter.

More info about it and why we would use a

complementary filter found here:
https://b94be14129454da9cf7f056f5f8b89a9b17da0be.googledrive.com/host/0B0ZbiLZrqVa6Y2d3UjFVWDhNZms/filter.pdf

AHRS

AHRS

Step 1 Calculate roll pitch yaw using accelerometer and magnetometer

More definitions

• roll is defined in the [-180, 180] range and pitch is

defined in the [-90, 90] range, therefore you can not use

same equation to calculate both roll and pitch as it is

shown in many tutorials

few equations
a = accelerometer g = gyro m = magnetometer

����� = atan2(
�,
�)

���ℎ� = atan

�

�
� +
�

�

	

�
�� =
�
�2(�� , ��)

https://www.pololu.com/file/download/...?file_id=0J434

First calculate roll pitch and yaw

Add 2 definitions

#define TO_RAD(x) (x * 0.01745329252) // *pi/180

#define TO_DEG(x) (x * 57.2957795131) // *180/pi

Then after data conversion in loop() function add

roll_A = TO_DEG(atan2 (A[2], A[3]));

pitch_A = TO_DEG(atan (A[1]/ sqrt (A[2]*A[2]+A[3]*A[3])));

Xh = M[1] * cos (TO_RAD(pitch)) + M[3] * sin (TO_RAD(pitch));

Yh = M[1] * sin (TO_RAD(roll)) * sin (TO_RAD(pitch)) + M[2] * cos (TO_RAD(roll)) - M[3] * sin (TO_RAD(roll)) * cos (TO_RAD(pitch));

yaw_M = TO_DEG(atan2 (Yh,Xh));

This is a good beginning but these equations assumes

that the IMU is flat (roll = pitch = 0) and pointing in

the right direction (yaw = 0)

These equations take into account that the IMU might not be exactly

flat and pointing in the right direction:

roll_A = TO_DEG(atan2 (A[2], A[3])) - roll_init ;

pitch_A = TO_DEG(atan (A[1]/ sqrt (A[2]*A[2]+A[3]*A[3]))) - pitch_init ;

Xh = M[1] * cos (TO_RAD(pitch)) + M[3] * sin (TO_RAD(pitch));

Yh = M[1] * sin (TO_RAD(roll)) * sin (TO_RAD(pitch)) + M[2] * cos (TO_RAD(roll)) - M[3] * sin (TO_RAD(roll)) * cos (TO_RAD(pitch));

yaw_M = TO_DEG(atan2 (Yh,Xh)) - Heading ;

// roll_init, pitch_init and Heading are the origina l roll pitch and yaw when the code started

But the equations gives results outside of the

[-180, 180] or [-90, 90] ranges

So I created a function to set all angles in the right ranges:

float Correction (int angle, float aa) // corect angles between -90 to 90 or -180 to 180

{

if (aa > angle) { aa -= angle*2; }

else if (aa < -angle) { aa += angle*2; }

else { aa = aa; }

return aa;

}

The Final roll pitch yaw corected equations are:

roll_A = Correction(180 , TO_DEG(atan2 (A[2], A[3])) - roll_init);

pitch_A = Correction(90 , TO_DEG(atan (A[1]/ sqrt (A[2]*A[2]+A[3]*A[3]))) - pitch_init);

Xh = M[1] * cos (TO_RAD(pitch)) + M[3] * sin (TO_RAD(pitch));

Yh = M[1] * sin (TO_RAD(roll)) * sin (TO_RAD(pitch)) + M[2] * cos (TO_RAD(roll)) - M[3] * sin (TO_RAD(roll)) * cos (TO_RAD(pitch));

yaw_M = Correction(180 , TO_DEG(atan2 (Yh,Xh)) - Heading);

Add the data into Excel

Just to check that everything is OK

Replace print block by this one:

Serial . print ("DATA,TIME,");

Serial . print (dt); Serial . print (",");

Serial . print (A[1]); Serial . print (","); Serial . print (A[2]); Serial . print (","); Serial . print (A[3]); Serial . print (",");

Serial . print (G[1]); Serial . print (","); Serial . print (G[2]); Serial . print (","); Serial . print (G[3]); Serial . print (",");

Serial . print (M[1]); Serial . print (","); Serial . print (M[2]); Serial . print (","); Serial . print (M[3]); Serial . print (",");

Serial . print (roll_A); Serial . print (","); // roll calculated using accelerometer’s data

Serial . print (roll); Serial . print (","); // final roll, will be used in step 2, not used for now

Serial . print (pitch_A); Serial . print (","); // pitch calculated using accelerometer’s data

Serial . print (pitch); Serial . print (","); // final pitch, will be used in step 2 , not used fo r now

Serial . print (yaw_M); Serial . print (","); // yaw calculated using magnetometer’s data

Serial . print (yaw); Serial . print (","); // final yaw, will be used in step 2 , not used for now

Serial . println ();

Add the data into Excel

AHRS

Step 2 Calculate roll pitch yaw using gyro

Using gyro

If IMU is flat it is simple

roll_G = roll + dt * G[1] ;

pitch_G = pitch + dt * G[2] ;

yaw_G = yaw + dt * G[3] ;

If IMU is not flat it is not simple, we must correct the angular rates of

the gyro to Euler’s angular rates first

Final gyro’s equations:

roll_G = roll + dt * (G[1]+ sin (TO_RAD(roll))* tan (TO_RAD(pitch))*G[2]+ cos (TO_RAD(roll))* tan (TO_RAD(pitch))*G[3]);

pitch_G = pitch + dt * (cos (TO_RAD(roll))*G[2]- sin (TO_RAD(roll))*G[3]);

yaw_G = yaw + dt * (sin (TO_RAD(roll))/ cos (TO_RAD(pitch))*G[2]+ cos (TO_RAD(roll))/ cos (TO_RAD(pitch))*G[3]);

Source: http://www.chrobotics.com/library/understanding-euler-angles

AHRS

Step 3 Combine step 1 and 2

Complementary filter

Source: https://b94be14129454da9cf7f056f5f8b89a9b17da0be.googledrive.com/host/0B0ZbiLZrqVa6Y2d3UjFVWDhNZms/filter.pdf

Complementary filter

If roll pitch and yaw are small, then it is easy to code:

roll = 0.02 * roll_A + 0.98 * roll_G ;

pitch = 0.02 * pitch_A + 0.98 * pitch_G ;

yaw = 0.02 * yaw_M + 0.98 * yaw_G ;

But this does not work when angles are large

Roll oscillations around 0

OK

Roll oscillations around 180

IMU is flipped

Garbage

Complementary filter

If roll pitch and yaw are large we have to take into account that

the arithmetic mean is not the same as the mean used on angles

roll = CompFilter(180, roll_A, roll_G);

pitch = CompFilter(90, pitch_A, pitch_G);

yaw = CompFilter(180, yaw_M, yaw_G);

I created a function that convert the angles before calculating

the mean:
float CompFilter (int angle, float acce, float gyro)

{

if (abs (acce - gyro) > angle) {

if (gyro < -angle) gyro += angle*2;

if (gyro > angle) gyro -= angle*2;

}

return 0.02 * acce + 0.98 * gyro;

}

Roll oscillations around 0

OK

Roll oscillations around 180

IMU is flipped

OK

Complementary filter

The CompFilter function could have been avoided using the

mean of circular quantities like this

roll = atan2(0.02* sin (roll_A) +0.98* sin (roll_G) , 0.02* cos (roll_A) +0.98* cos (roll_G)) ;

pitch = atan2(0.02* sin (pitch_A)+0.98* sin (pitch_G) , 0.02* cos (pitch_A)+0.98* cos (pitch_G));

yaw = atan2(0.02* sin (yaw_M) +0.98* sin (yaw_G) , 0.02* cos (yaw_M) +0.98* cos (yaw_G)) ;

This code is more elegant, does not require the CompFilter
function but it is slightly slower.

More info here: http://en.wikipedia.org/wiki/Mean_of_circular_quantities

IMU and AHRS are working

Data visualization Excel

Data visualization Processing

Looking at the data in Excel is good for calibration, a processing sketch is

better for visualization

Final note

Simpler algorithm

You might not need a full AHRS algorithm, for example in a

balancing robot or hovering quadcopter where the IMU is flat

sin(x) = x
if x is small, typically x < 20°

This means that you do not have to use any trigonometry, this

lead to much faster algorithms

Also, you do not have to convert the gyro’s body frame to Euler’s

angles, because they are almost the same. This lead to even

faster algorithms

Example balancing robot

Declarations and Setup function are the same as previously

void loop () {

// GET DATA --
compass. read ();
gyro. read ();
dt = millis ()-t;
t = millis ();

// CALIBRATE DATA --
A[2] = (compass.a.y - ACCEL_Y_OFFSET) * ACCEL_Y_SCALE * ACCEL_Y_DIR; // Gather only necessary data
A[3] = (compass.a.z - ACCEL_Z_OFFSET) * ACCEL_Z_SCALE * ACCEL_Z_DIR;
G[1] = (gyro.g.x - GYRO_OFFSET_X) * GYRO_SCALE * GYRO_X_DIR ;

// CALCULATE ROLL ONLY ---
roll_A = TO_DEG(A[2]/A[3]) - roll_init; // no trigonometry here, accurate for angles bellow 30 degrees
roll_G = roll + dt * G[1]; // no body frame to Euler conversion here
roll = 0.04 * roll_A + 0.96 * roll_G; // simple complementary filter here

// PID ---
error = Setpoint - roll;
integral = integral + error * dt;
derivative = (error - previous_error) / dt;
previous_error = error;
Output = Kp*error + Ki*integral + Kd*derivative;

// MOTORS --
motorGo(0, Output); // function that turn on the motor’s to a specific speed
motorGo(1, Output);

}

The simplifications make the code short and simple

GL HF

