lambda's handy dandy IB number theory cheat sheet

Cheatsheet template taken from <wch.github.io/latexsheet> (Copyright © 2014)
Winston Chang), a IATEXtemplate shared under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. This Cheat sheet is mainly modeled after the discrete mathematics section in Pearson's Mathematics IB Mathematics HL textbook.

Fundamental concepts

Well-ordering principle. Each non-empty subset of \mathbb{Z}^+ has a least element.

Mathematical induction. Let $P(n)$ be a proposition on $n \in \mathbb{Z}^+$. If $P(1)$ and $P(k) \implies P(k+1)$ then $P(n)$ holds for all $n > 1$.

Strong mathematical induction. Let $P(n)$ be a proposition on $n \in \mathbb{Z}^+$. If $P(1)$ and $P(s)$ for all $1 \leq s \leq k \implies P(k+1)$, then $P(n)$ holds for all $n \geq 1$. **Pigeonhole principle.** If the union of n sets contains more than n elements, then at least one of those sets contains more than one element.

Basic divisibility definitions and results

Let $a, b \in \mathbb{Z}$.

- $a|b \iff na = b$ for some $n \in \mathbb{Z}$. We write $a|b$ when a is a factor of b and say that a divides b .
- $gcd(a, b) = g \iff g$ is the greatest integer that divides both a and b , and we say that q is the greatest common divisor of a and b. Integers a and b are coprime if and only if $gcd(a, b) = 1$.
- $\text{lcm}(a, b) = l \iff l$ is the smallest integer such that $a|l$ and $b|l$, and we say that l is the least common multiple of a and b.

Theorem 1. $gcd(a, b) \cdot lcm(a, b) = ab$. **Theorem 2.** $a|b$ and $b|c \implies a|c$. **Theorem 3.** $a|b$ and $a|c \implies a|(b \pm c)$. **Theorem 4.** If $a, b \in \mathbb{Z}$ with $b > 0$, then there are unique $q, r \in \mathbb{Z}$ such that $a = qb + r$ with $0 \le r < b$. We call r the remainder of a divided by b, and q the quotient. **Theorem 5.** If $a, b \neq 0$, then $gcd(a, b)$ is the smallest positive integer such that $gcd(a, b) = ax + by$ for $x, y \in \mathbb{Z}$. **Theorem 6.** If $a = bq + r$ for $b > 0$ and $0 \le r \le b$, then $gcd(a, b) = gcd(b, r).$

Theorem 7. For $a, b \neq 0$, $gcd(a, b) = 1$ if and only if there exist $x, y \in \mathbb{Z}$ such that $ax + by = 1$. Theorem 8 (Fundamental thm. of arithmetic). Every

 $n > 1$ in Z can be expressed as $n = p_1^{a_1} p_2^{a_2} \dots p_k^{a_k}$ for distinct primes p_1, \ldots, p_k and $a_1, \ldots, a_k \in \mathbb{Z}^+$.

Euclidean algorithm

Let $a, b \in \mathbb{Z}$ with $a \geq b > 0$. We can find $gcd(a, b)$ using the Euclidean algorithm. Write a as

$$
a = bq_1 + r_1 \quad \text{for} \quad 0 \le r_1 < b.
$$

If $r_1 = 0$ then $b|a$ and $gcd(a, b) = b$. Otherwise if $r_1 \geq 0$, write b as

 $b = r_1q_2 + r_2$ f or $0 \le r_2 \le r_1$.

If $r_2 = 0$ then $gcd(a, b) = r_1$. If $r_2 \neq 0$, we repeat the process as follows.

Then, $gcd(a, b) = r_n$ (the last non-zero remainder).

Modular arithmetic

For $a, b \in \mathbb{Z}$, we write

 $a \equiv b \pmod{m} \iff m|(a - b),$

and we say that a and b are congruent modulo m.

Theorem 9. Congruence modulo m is an equivalence relation. Also, if $a \equiv b \pmod{m}$ with $a, b, c, d, m \in \mathbb{Z}$ and $d, m > 0$, we have

$$
a + c \equiv b + c \pmod{m},
$$

\n
$$
a - c \equiv b - c \pmod{m},
$$

\n
$$
ac \equiv bc \pmod{m},
$$

\n
$$
a^d \equiv b^d \pmod{m}.
$$

Theorem 10. For $a, b, c, m \in \mathbb{Z}$ with $m > 0$ and $q = \gcd(a, b),$

$$
ac \equiv bc \pmod{m} \implies a \equiv b \pmod{\frac{m}{g}}.
$$

Linear congruences

Theorem 11. If $gcd(a, b) | b$, then the number of solutions for the congruence $ax \equiv b \pmod{m}$ which are incongruent to eachother mod m is equal to $gcd(a, b)$.

To solve a system of multivariate linear congruences such as

$$
ax + by \equiv e \pmod{m},
$$

$$
cx + dy \equiv f \pmod{m},
$$

you can use row-reduction to isolate variables and obtain single-variable linear congruences.

Diophantine equations

A linear homogeneous Diophantine equation in two variables $x, y \in \mathbb{Z}$ is an equation of the form $ax + by = c$ where $a, b, c \in \mathbb{Z}$.

Theorem 12. For $a, b, c \in \mathbb{Z}$, $a, b \neq 0$, the Diophantine equation $ax + by = c$ has a solution in integers (x, y) if and only if $gcd(a, b) | c$.

Theorem 13. Let $q = \gcd(a, b)$. If $x = x_0$ and $y = y_0$ is a particular solution to $ax + by = c$ then all other solutions are of the form

$$
x = x_0 + \frac{b}{g}\lambda
$$
 and $y = y_0 - \frac{a}{g}\lambda$

where λ is an arbitrary integer.

Strategies for finding particular solutions for Diophantine equations

To find a particular integer solution to $ax + by = c$, one might use these methods.

- Trial and error (not recommended).
- Via calculator (isolate x or y on one side of the equation and enter as a function into your calculator. Many calculators have a 'table' function that plots integer values for the independent variable. Look for solutions where the dependent variable is also an integer.)
- With linear congruences (write $ax + by = c$ as $ax \equiv c \pmod{b}$ and solve).
- Use the extended (reverse) Euclidean algorithm to obtain a particular solution (x', y') for $ax' + by' = g$ where $q = \gcd(a, b)$. Then, multiply both sides of the equation by $\frac{c}{g}$ to obtain

$$
a(x'\frac{c}{g}) + b(y'\frac{c}{g}) = c,
$$

and hence obtain the particular solution $x = x' \frac{c}{g}$ and $y = y' \frac{c}{g}$ for $ax + by = c$.

Extended Euclidean algorithm (a.k.a. reverse Euclidean algorithm)

This algorithm can be used to solve the Diophantine equation $ax + by = \gcd(a, b)$. In other words, it is an algorithm to express $gcd(a, b)$ as a linear combination of a and b. Firstly, one would apply the regular Euclidean algorithm on a and b to determine $gcd(a, b)$, storing all the quotients and remainders, then 'reversing' the algorithm. As an example, we will find a particular solution (x, y) for $64x + 27y = \gcd(64, 27)$. Applying the Euclidean algorithm, we have

> $64 = 27 \cdot 2 + 10$ $27 = 10 \cdot 2 + 7$ $10 = 7 \cdot 1 + 3$ $7 = 3 \cdot 2 + 1$ $3 = 1 \cdot 3 + 0.$

Since 1 is the last non-zero remainder, $1 = \gcd(64, 27)$. Now, we solve for this remainder in terms of 64 and 27. We see that $1 = 7 - 3 \cdot 2$. Since 3 was one of the previous remainders, we can replace 3 with $10 - 7 \cdot 1$ to obtain

$$
1 = 7 - (10 - 7 \cdot 1) \cdot 2
$$

= 7 \cdot 3 - 10 \cdot 2.

Since 7 was also a previous remainder, we can express it in terms of its previous remainders and repeat the process until we arrive at a final answer in terms of 64 and 27:

$$
1 = 7 - (10 - 7 \cdot 1) \cdot 2
$$

= 7 \cdot 3 - 10 \cdot 2
= (27 - 10 \cdot 2) \cdot 3 - 10 \cdot 2
= 27 \cdot 3 - 10 \cdot 8
= 27 \cdot 3 - (64 - 27 \cdot 2) \cdot 8
= 27 \cdot 19 - 64 \cdot 8

Hence, we have a solution $x = -8$ and $y = 19$.

Fermat's little theorem

Theorem 14. If p is prime, then for any $a \in \mathbb{Z}$, we have

$$
a^p \equiv a \pmod{p}.
$$

If a and p are coprime, then we have

$$
a^{p-1} \equiv 1 \pmod{p}.
$$

Applying the Chinese remainder thm.

Let $m_1, m_2, \ldots, m_r \in \mathbb{Z}^+$ be pairwise coprime. To find a solution modulo $M = m_1 m_2 \dots m_r$ to the system of linear congruences

$$
x \equiv a_1 \pmod{m_1}
$$

$$
x \equiv a_2 \pmod{m_2}
$$

$$
\vdots
$$

$$
x \equiv a_r \pmod{m_r},
$$

we first let $M_k = \frac{M}{m_k} = m_1 m_2 \dots m_{k-1} m_{k+1} \dots m_r$. For each $1 \leq k \leq r$ we can solve the congruence

 $M_kx_k \equiv 1 \pmod{m_k}$.

to obtain x_k for $1 \leq k \leq r$. Then the unique solution modulo M to the original system of equations is

$$
x \equiv a_1 M_1 x_1 + a_2 M_2 x_2 + \cdots + a_r M_r x_r \pmod{M}.
$$

Integer representations & operations

Theorem 15. For any base $b \in \mathbb{Z}^+$, every $n \in \mathbb{Z}^+$ can be written in the form

$$
n = a_k \cdot b^k + \dots + a_1 \cdot b^1 + a_0 \cdot b^0 = \sum_{i=0}^k a_i b^i
$$

for $k \in \mathbb{Z}$, $k \geq 0$, and each $a_i \in \mathbb{Z}^+$ with $a_i \leq b-1$, and $a_k \neq 0.$

Numbers expressed in a base b other than 10 are often denoted $(a_ka_{k-1} \ldots a_2 a_1)_b$ where each a_i denotes a digit in base b.

To convert a number n from base 10 to arbitrary base b , simply divide repeatedly by b , storing the remainders. Then, reverse the list of remainders and concatenate them. The result is the base b representation of n . To add/multiply numbers in base b, create an addition or multiplication table for all the digits in base b and proceed to use the standard long addition/multiplication algorithms.

Recurrence relations

A linear homogeneous recurrence relation (LHRR) of degree k with constant coefficients is a recurrence relation of the form

$$
a_n = c_k a_{n-k} + c_{k+1} a_{n-k-1} + \dots + c_n a_1 = \sum_{i=1}^k c_i a_{n-i}.
$$

which which defines the sequence $a_1, a_2, a_3 \ldots$

A LHRR can be solved using its characteristic polynomial by letting $a_n = x^n$ and dividing by the highest power of x that appears in the resulting equation. For $a_n = c_1 a_{n-1} + c_2 a_{n-2}$, we have

$$
x^n - c_1 x^{n-1} - c_2 x^{n-2} = 0.
$$

Dividing by x^{n-2} , the characteristic polynomial equation becomes

$$
x^2 - c_1 x - c_2 = 0.
$$

The roots of this equation determine the solution to the LHRR If the characteristic polynomial has two distinct real roots r_1 and r_2 , then

$$
a_n = br_1^n + dr_2^n,
$$

If it has one real root r , then

$$
a_n = br^n + dnr^n,
$$

and if it has two conjugate complex zeroes $z_1 = (d, \theta)$ and $z_2 = (d, -\theta)$ where d is the modulus and θ is the argument, then

$$
a_n = d^n(b\cos(n\theta) + d\sin(n\theta).
$$

In each case, b and d are real constants determined by the initial conditions of the LHRR.

Theorem 16. If v_n and w_n are two solutions to the LHRR a_n , then any linear combination of v_n and w_n will also be a solution (i.e., $b_n = \lambda v_n + \mu w_n$ is a solution, $\lambda, \mu \in \mathbb{R}$).

Non-homogeneous relations

A linear non-homogeneous recurrence relation (LNHRR) of degree k with constant coefficients is a recurrence relation of the form

$$
a_n = \left(\sum_{i=1}^k c_i a_{n-i}\right) + f(n)
$$

Theorem 17. If p_n is a particular solution for the LNHRR $a_n = (\sum_{i=1}^k c_i a_{n-i}) + f(n)$ and h_n is a solution of the associated LHRR $a_n = \sum_{i=1}^{k} c_i a_{n-i}$, then every solution for the non-homogeneous relation is of the form $p_n + h_n$.

Copyright \odot 2014 Winston Chang <http://wch.github.io/latexsheet/>