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Fundamental concepts
Well-ordering principle. Each non-empty subset of Z+

has a least element.

Mathematical induction. Let P (n) be a proposition on
n ∈ Z+. If P (1) and P (k) =⇒ P (k + 1) then P (n) holds
for all n ≥ 1.

Strong mathematical induction. Let P (n) be a
proposition on n ∈ Z+. If P (1) and P (s) for all
1 ≤ s ≤ k =⇒ P (k + 1), then P (n) holds for all n ≥ 1.

Pigeonhole principle. If the union of n sets contains
more than n elements, then at least one of those sets
contains more than one element.

Basic divisibility definitions and results
Let a, b ∈ Z.

• a|b ⇐⇒ na = b for some n ∈ Z. We write a|b
when a is a factor of b and say that a divides b.

• gcd(a, b) = g ⇐⇒ g is the greatest integer that
divides both a and b, and we say that g is the
greatest common divisor of a and b. Integers a and
b are coprime if and only if gcd(a, b) = 1.

• lcm(a, b) = l ⇐⇒ l is the smallest integer such
that a|l and b|l, and we say that l is the least
common multiple of a and b.

Theorem 1. gcd(a, b) · lcm(a, b) = ab.
Theorem 2. a|b and b|c =⇒ a|c.
Theorem 3. a|b and a|c =⇒ a|(b± c).
Theorem 4. If a, b ∈ Z with b > 0, then there are unique
q, r ∈ Z such that a = qb+ r with 0 ≤ r < b. We call r
the remainder of a divided by b, and q the quotient.
Theorem 5. If a, b 6= 0, then gcd(a, b) is the smallest
positive integer such that gcd(a, b) = ax+ by for x, y ∈ Z.
Theorem 6. If a = bq + r for b > 0 and 0 ≤ r < b, then
gcd(a, b) = gcd(b, r).
Theorem 7. For a, b 6= 0, gcd(a, b) = 1 if and only if
there exist x, y ∈ Z such that ax+ by = 1.
Theorem 8 (Fundamental thm. of arithmetic). Every
n > 1 in Z can be expressed as n = pa1

1 pa2
2 . . . p

ak
k for

distinct primes p1, . . . , pk and a1, . . . , ak ∈ Z+.

Euclidean algorithm

Let a, b ∈ Z with a ≥ b > 0. We can find gcd(a, b) using
the Euclidean algorithm. Write a as

a = bq1 + r1 for 0 ≤ r1 < b.

If r1 = 0 then b|a and gcd(a, b) = b. Otherwise if r1 ≥ 0,
write b as

b = r1q2 + r2for0 ≤ r2 < r1.

If r2 = 0 then gcd(a, b) = r1. If r2 6= 0, we repeat the
process as follows.

a = bq1 + r1, 0 < r1 < b

b = r1q2 + r2, 0 < r2 < r1

r1 = r2q3 + r3, 0 < r3 < r2

...

rn−2 = rn−1qn + rn, 0 < rn < rn−1

rn−1 = rnqn+1 + 0

Then, gcd(a, b) = rn (the last non-zero remainder).

Modular arithmetic

For a, b ∈ Z, we write

a ≡ b (mod m) ⇐⇒ m|(a− b),

and we say that a and b are congruent modulo m.
Theorem 9. Congruence modulo m is an equivalence
relation. Also, if a ≡ b (mod m) with a, b, c, d,m ∈ Z and
d,m > 0, we have

a+ c ≡ b+ c (mod m) ,

a− c ≡ b− c (mod m) ,

ac ≡ bc (mod m) ,

ad ≡ bd (mod m) .

Theorem 10. For a, b, c,m ∈ Z with m > 0 and
g = gcd(a, b),

ac ≡ bc (mod m) =⇒ a ≡ b
(

mod
m

g

)
.

Linear congruences

Theorem 11. If gcd(a, b)|b, then the number of
solutions for the congruence ax ≡ b (mod m) which are
incongruent to eachother mod m is equal to gcd(a, b).

To solve a system of multivariate linear congruences such
as

ax+ by ≡ e (mod m) ,

cx+ dy ≡ f (mod m) ,

you can use row-reduction to isolate variables and obtain
single-variable linear congruences.

Diophantine equations

A linear homogeneous Diophantine equation in two
variables x, y ∈ Z is an equation of the form ax+ by = c
where a, b, c ∈ Z.
Theorem 12. For a, b, c ∈ Z, a, b 6= 0, the Diophantine
equation ax+ by = c has a solution in integers (x, y) if
and only if gcd(a, b)|c.
Theorem 13. Let g = gcd(a, b). If x = x0 and y = y0 is
a particular solution to ax+ by = c then all other
solutions are of the form

x = x0 +
b

g
λ and y = y0 −

a

g
λ

where λ is an arbitrary integer.

Strategies for finding particular solutions for
Diophantine equations

To find a particular integer solution to ax+ by = c, one
might use these methods.

• Trial and error (not recommended).

• Via calculator (isolate x or y on one side of the
equation and enter as a function into your
calculator. Many calculators have a ‘table‘ function
that plots integer values for the independent
variable. Look for solutions where the dependent
variable is also an integer.)

• With linear congruences (write ax+ by = c as
ax ≡ c (mod b) and solve).

• Use the extended (reverse) Euclidean algorithm to
obtain a particular solution (x′, y′) for ax′ + by′ = g
where g = gcd(a, b). Then, multiply both sides of
the equation by c

g
to obtain

a(x′
c

g
) + b(y′

c

g
) = c,

and hence obtain the particular solution x = x′ c
g

and y = y′ c
g

for ax+ by = c.
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Extended Euclidean algorithm (a.k.a. reverse
Euclidean algorithm)

This algorithm can be used to solve the Diophantine
equation ax+ by = gcd(a, b). In other words, it is an
algorithm to express gcd(a, b) as a linear combination of a
and b. Firstly, one would apply the regular Euclidean
algorithm on a and b to determine gcd(a, b), storing all
the quotients and remainders, then ‘reversing‘ the
algorithm. As an example, we will find a particular
solution (x, y) for 64x+ 27y = gcd(64, 27). Applying the
Euclidean algorithm, we have

64 = 27 · 2 + 10

27 = 10 · 2 + 7

10 = 7 · 1 + 3

7 = 3 · 2 + 1

3 = 1 · 3 + 0.

Since 1 is the last non-zero remainder, 1 = gcd(64, 27).
Now, we solve for this remainder in terms of 64 and 27.
We see that 1 = 7− 3 · 2. Since 3 was one of the previous
remainders, we can replace 3 with 10− 7 · 1 to obtain

1 = 7− (10− 7 · 1) · 2
= 7 · 3− 10 · 2.

Since 7 was also a previous remainder, we can express it
in terms of its previous remainders and repeat the process
until we arrive at a final answer in terms of 64 and 27:

1 = 7− (10− 7 · 1) · 2
= 7 · 3− 10 · 2
= (27− 10 · 2) · 3− 10 · 2
= 27 · 3− 10 · 8
= 27 · 3− (64− 27 · 2) · 8
= 27 · 19− 64 · 8

Hence, we have a solution x = −8 and y = 19.

Fermat’s little theorem

Theorem 14. If p is prime, then for any a ∈ Z, we have

ap ≡ a (mod p) .

If a and p are coprime, then we have

ap−1 ≡ 1 (mod p) .

Applying the Chinese remainder thm.
Let m1,m2, . . . ,mr ∈ Z+ be pairwise coprime. To find a
solution modulo M = m1m2 . . .mr to the system of linear
congruences

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

...

x ≡ ar (mod mr) ,

we first let Mk = M
mk

= m1m2 . . .mk−1mk+1 . . .mr. For
each 1 ≤ k ≤ r we can solve the congruence

Mkxk ≡ 1 (mod mk) .

to obtain xk for 1 ≤ k ≤ r. Then the unique solution
modulo M to the original system of equations is

x ≡ a1M1x1 + a2M2x2 + · · ·+ arMrxr (mod M) .

Integer representations & operations
Theorem 15. For any base b ∈ Z+, every n ∈ Z+ can be
written in the form

n = ak · bk + · · ·+ a1 · b1 + a0 · b0 =

k∑
i=0

aib
i

for k ∈ Z, k ≥ 0, and each ai ∈ Z+ with ai ≤ b− 1, and
ak 6= 0.
Numbers expressed in a base b other than 10 are often
denoted (akak−1 . . . a2a1)b where each ai denotes a digit
in base b.
To convert a number n from base 10 to arbitrary base b,
simply divide repeatedly by b, storing the remainders.
Then, reverse the list of remainders and concatenate
them. The result is the base b representation of n.
To add/multiply numbers in base b, create an addition or
multiplication table for all the digits in base b and
proceed to use the standard long addition/multiplication
algorithms.

Recurrence relations
A linear homogeneous recurrence relation (LHRR) of
degree k with constant coefficients is a recurrence relation
of the form

an = ckan−k + ck+1an−k−1 + . . . cna1 =

k∑
i=1

cian−i.

which which defines the sequence a1, a2, a3 . . . .

A LHRR can be solved using its characteristic polynomial
by letting an = xn and dividing by the highest power of x
that appears in the resulting equation. For
an = c1an−1 + c2an−2, we have

xn − c1xn−1 − c2xn−2 = 0.

Dividing by xn−2, the characteristic polynomial equation
becomes

x2 − c1x− c2 = 0.

The roots of this equation determine the solution to the
LHRR If the characteristic polynomial has two distinct
real roots r1 and r2, then

an = brn1 + drn2 ,

If it has one real root r, then

an = brn + dnrn,

and if it has two conjugate complex zeroes z1 = (d, θ) and
z2 = (d,−θ) where d is the modulus and θ is the
argument, then

an = dn(b cos(nθ) + d sin(nθ).

In each case, b and d are real constants determined by the
initial conditions of the LHRR.
Theorem 16. If vn and wn are two solutions to the
LHRR an, then any linear combination of vn and wn will
also be a solution (i.e., bn = λvn + µwn is a solution,
λ, µ ∈ R).

Non-homogeneous relations

A linear non-homogeneous recurrence relation (LNHRR)
of degree k with constant coefficients is a recurrence
relation of the form

an =

(
k∑

i=1

cian−i

)
+ f(n)

Theorem 17. If pn is a particular solution for the
LNHRR an = (

∑k
i=1 cian−i) + f(n) and hn is a solution

of the associated LHRR an =
∑k

i=1 cian−i, then every
solution for the non-homogeneous relation is of the form
pn + hn.
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